diff --git "a/14756/metadata.json" "b/14756/metadata.json" new file mode 100644--- /dev/null +++ "b/14756/metadata.json" @@ -0,0 +1,46152 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "14756", + "quality_score": 0.886, + "per_segment_quality_scores": [ + { + "start": 22.02, + "end": 23.92, + "probability": 0.8996 + }, + { + "start": 24.92, + "end": 26.4, + "probability": 0.8259 + }, + { + "start": 27.24, + "end": 29.12, + "probability": 0.6434 + }, + { + "start": 30.46, + "end": 34.12, + "probability": 0.6713 + }, + { + "start": 35.44, + "end": 37.32, + "probability": 0.9777 + }, + { + "start": 37.82, + "end": 39.56, + "probability": 0.7083 + }, + { + "start": 40.54, + "end": 41.68, + "probability": 0.8613 + }, + { + "start": 42.86, + "end": 43.64, + "probability": 0.7335 + }, + { + "start": 44.42, + "end": 45.96, + "probability": 0.8662 + }, + { + "start": 46.44, + "end": 48.1, + "probability": 0.8776 + }, + { + "start": 48.4, + "end": 50.16, + "probability": 0.9779 + }, + { + "start": 50.9, + "end": 54.62, + "probability": 0.7903 + }, + { + "start": 56.02, + "end": 57.84, + "probability": 0.6903 + }, + { + "start": 58.44, + "end": 59.08, + "probability": 0.2101 + }, + { + "start": 59.72, + "end": 59.98, + "probability": 0.0268 + }, + { + "start": 60.2, + "end": 62.38, + "probability": 0.1292 + }, + { + "start": 62.88, + "end": 64.92, + "probability": 0.96 + }, + { + "start": 65.5, + "end": 68.26, + "probability": 0.993 + }, + { + "start": 68.4, + "end": 71.54, + "probability": 0.6975 + }, + { + "start": 71.66, + "end": 73.86, + "probability": 0.1148 + }, + { + "start": 74.0, + "end": 75.76, + "probability": 0.9814 + }, + { + "start": 76.26, + "end": 78.62, + "probability": 0.9678 + }, + { + "start": 78.62, + "end": 82.56, + "probability": 0.9865 + }, + { + "start": 82.7, + "end": 85.54, + "probability": 0.5424 + }, + { + "start": 85.56, + "end": 86.4, + "probability": 0.6246 + }, + { + "start": 87.1, + "end": 90.54, + "probability": 0.7278 + }, + { + "start": 91.0, + "end": 94.14, + "probability": 0.8509 + }, + { + "start": 94.32, + "end": 95.02, + "probability": 0.7594 + }, + { + "start": 95.94, + "end": 98.66, + "probability": 0.9376 + }, + { + "start": 98.88, + "end": 101.22, + "probability": 0.4328 + }, + { + "start": 101.76, + "end": 103.3, + "probability": 0.168 + }, + { + "start": 103.54, + "end": 106.72, + "probability": 0.9549 + }, + { + "start": 107.38, + "end": 111.64, + "probability": 0.9836 + }, + { + "start": 113.12, + "end": 115.0, + "probability": 0.6642 + }, + { + "start": 115.3, + "end": 116.76, + "probability": 0.1881 + }, + { + "start": 117.02, + "end": 119.86, + "probability": 0.9653 + }, + { + "start": 120.66, + "end": 122.9, + "probability": 0.9043 + }, + { + "start": 125.63, + "end": 127.5, + "probability": 0.5875 + }, + { + "start": 127.5, + "end": 128.87, + "probability": 0.67 + }, + { + "start": 129.66, + "end": 131.82, + "probability": 0.8175 + }, + { + "start": 131.96, + "end": 133.66, + "probability": 0.2263 + }, + { + "start": 133.8, + "end": 134.29, + "probability": 0.0337 + }, + { + "start": 135.36, + "end": 136.52, + "probability": 0.8379 + }, + { + "start": 138.25, + "end": 144.4, + "probability": 0.08 + }, + { + "start": 147.42, + "end": 148.32, + "probability": 0.0808 + }, + { + "start": 148.34, + "end": 152.46, + "probability": 0.07 + }, + { + "start": 152.5, + "end": 154.54, + "probability": 0.0173 + }, + { + "start": 167.52, + "end": 169.18, + "probability": 0.017 + }, + { + "start": 170.12, + "end": 172.24, + "probability": 0.0579 + }, + { + "start": 173.06, + "end": 173.76, + "probability": 0.1453 + }, + { + "start": 174.55, + "end": 174.94, + "probability": 0.1057 + }, + { + "start": 176.92, + "end": 178.04, + "probability": 0.0589 + }, + { + "start": 178.96, + "end": 179.58, + "probability": 0.0999 + }, + { + "start": 184.04, + "end": 188.42, + "probability": 0.0422 + }, + { + "start": 188.42, + "end": 190.98, + "probability": 0.0202 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.0, + "end": 191.0, + "probability": 0.0 + }, + { + "start": 191.2, + "end": 191.9, + "probability": 0.0334 + }, + { + "start": 192.63, + "end": 194.94, + "probability": 0.1491 + }, + { + "start": 195.54, + "end": 199.56, + "probability": 0.0162 + }, + { + "start": 200.42, + "end": 201.38, + "probability": 0.034 + }, + { + "start": 203.5, + "end": 207.44, + "probability": 0.1787 + }, + { + "start": 207.9, + "end": 209.14, + "probability": 0.1685 + }, + { + "start": 209.14, + "end": 210.78, + "probability": 0.1071 + }, + { + "start": 211.2, + "end": 212.28, + "probability": 0.0352 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 311.0, + "end": 311.0, + "probability": 0.0 + }, + { + "start": 312.82, + "end": 314.06, + "probability": 0.0592 + }, + { + "start": 314.28, + "end": 314.28, + "probability": 0.1664 + }, + { + "start": 314.28, + "end": 314.28, + "probability": 0.0614 + }, + { + "start": 314.28, + "end": 314.28, + "probability": 0.0166 + }, + { + "start": 314.28, + "end": 317.56, + "probability": 0.6696 + }, + { + "start": 318.08, + "end": 320.2, + "probability": 0.9142 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.0, + "end": 434.0, + "probability": 0.0 + }, + { + "start": 434.24, + "end": 435.08, + "probability": 0.1473 + }, + { + "start": 435.08, + "end": 435.22, + "probability": 0.0522 + }, + { + "start": 435.22, + "end": 435.22, + "probability": 0.2984 + }, + { + "start": 435.22, + "end": 435.22, + "probability": 0.1808 + }, + { + "start": 435.22, + "end": 435.5, + "probability": 0.0725 + }, + { + "start": 435.64, + "end": 437.08, + "probability": 0.7664 + }, + { + "start": 437.6, + "end": 441.5, + "probability": 0.7708 + }, + { + "start": 442.46, + "end": 447.7, + "probability": 0.9954 + }, + { + "start": 447.76, + "end": 448.06, + "probability": 0.5343 + }, + { + "start": 448.14, + "end": 453.14, + "probability": 0.8396 + }, + { + "start": 453.78, + "end": 456.64, + "probability": 0.8878 + }, + { + "start": 457.6, + "end": 460.52, + "probability": 0.3077 + }, + { + "start": 460.82, + "end": 461.72, + "probability": 0.4797 + }, + { + "start": 462.06, + "end": 463.76, + "probability": 0.7345 + }, + { + "start": 463.82, + "end": 464.26, + "probability": 0.7716 + }, + { + "start": 464.62, + "end": 465.0, + "probability": 0.572 + }, + { + "start": 465.0, + "end": 467.36, + "probability": 0.9466 + }, + { + "start": 467.44, + "end": 469.16, + "probability": 0.7739 + }, + { + "start": 469.34, + "end": 471.12, + "probability": 0.602 + }, + { + "start": 471.56, + "end": 473.68, + "probability": 0.9888 + }, + { + "start": 474.78, + "end": 476.66, + "probability": 0.7067 + }, + { + "start": 476.76, + "end": 479.14, + "probability": 0.9215 + }, + { + "start": 479.56, + "end": 481.08, + "probability": 0.9878 + }, + { + "start": 481.18, + "end": 485.06, + "probability": 0.9424 + }, + { + "start": 485.48, + "end": 486.32, + "probability": 0.7576 + }, + { + "start": 486.9, + "end": 487.6, + "probability": 0.6849 + }, + { + "start": 488.86, + "end": 491.26, + "probability": 0.7442 + }, + { + "start": 491.98, + "end": 495.72, + "probability": 0.9919 + }, + { + "start": 496.04, + "end": 499.59, + "probability": 0.9865 + }, + { + "start": 500.34, + "end": 503.28, + "probability": 0.8951 + }, + { + "start": 503.4, + "end": 504.89, + "probability": 0.5468 + }, + { + "start": 505.58, + "end": 506.92, + "probability": 0.2719 + }, + { + "start": 507.0, + "end": 507.96, + "probability": 0.9404 + }, + { + "start": 511.63, + "end": 514.58, + "probability": 0.7798 + }, + { + "start": 515.06, + "end": 516.54, + "probability": 0.9405 + }, + { + "start": 517.84, + "end": 518.82, + "probability": 0.6328 + }, + { + "start": 518.92, + "end": 520.34, + "probability": 0.8365 + }, + { + "start": 520.68, + "end": 524.34, + "probability": 0.8989 + }, + { + "start": 524.34, + "end": 530.14, + "probability": 0.9941 + }, + { + "start": 530.32, + "end": 531.08, + "probability": 0.8109 + }, + { + "start": 531.18, + "end": 532.26, + "probability": 0.6693 + }, + { + "start": 532.74, + "end": 536.0, + "probability": 0.9731 + }, + { + "start": 536.74, + "end": 541.3, + "probability": 0.9849 + }, + { + "start": 541.3, + "end": 544.92, + "probability": 0.9463 + }, + { + "start": 545.66, + "end": 549.78, + "probability": 0.9976 + }, + { + "start": 550.38, + "end": 552.32, + "probability": 0.8196 + }, + { + "start": 553.4, + "end": 554.68, + "probability": 0.9165 + }, + { + "start": 555.04, + "end": 560.1, + "probability": 0.9958 + }, + { + "start": 560.1, + "end": 566.78, + "probability": 0.9626 + }, + { + "start": 566.92, + "end": 569.58, + "probability": 0.8399 + }, + { + "start": 569.86, + "end": 573.58, + "probability": 0.9708 + }, + { + "start": 574.58, + "end": 579.94, + "probability": 0.9716 + }, + { + "start": 580.28, + "end": 582.7, + "probability": 0.9616 + }, + { + "start": 583.5, + "end": 586.16, + "probability": 0.9953 + }, + { + "start": 587.26, + "end": 592.98, + "probability": 0.9969 + }, + { + "start": 593.68, + "end": 594.94, + "probability": 0.9012 + }, + { + "start": 595.18, + "end": 600.64, + "probability": 0.9963 + }, + { + "start": 600.66, + "end": 606.0, + "probability": 0.9988 + }, + { + "start": 606.8, + "end": 609.48, + "probability": 0.9956 + }, + { + "start": 609.56, + "end": 617.92, + "probability": 0.9669 + }, + { + "start": 618.2, + "end": 619.0, + "probability": 0.736 + }, + { + "start": 619.4, + "end": 622.08, + "probability": 0.951 + }, + { + "start": 622.26, + "end": 623.08, + "probability": 0.9553 + }, + { + "start": 623.36, + "end": 624.66, + "probability": 0.9401 + }, + { + "start": 624.84, + "end": 625.8, + "probability": 0.7805 + }, + { + "start": 626.82, + "end": 629.64, + "probability": 0.7076 + }, + { + "start": 629.84, + "end": 634.74, + "probability": 0.9867 + }, + { + "start": 635.18, + "end": 637.52, + "probability": 0.9964 + }, + { + "start": 637.6, + "end": 641.78, + "probability": 0.991 + }, + { + "start": 641.88, + "end": 642.38, + "probability": 0.6628 + }, + { + "start": 642.84, + "end": 643.82, + "probability": 0.6679 + }, + { + "start": 644.2, + "end": 646.2, + "probability": 0.9875 + }, + { + "start": 646.62, + "end": 648.16, + "probability": 0.6323 + }, + { + "start": 648.36, + "end": 649.22, + "probability": 0.8118 + }, + { + "start": 649.42, + "end": 651.62, + "probability": 0.9858 + }, + { + "start": 652.18, + "end": 654.54, + "probability": 0.9868 + }, + { + "start": 655.06, + "end": 659.76, + "probability": 0.9435 + }, + { + "start": 660.54, + "end": 663.22, + "probability": 0.9645 + }, + { + "start": 664.08, + "end": 664.78, + "probability": 0.4684 + }, + { + "start": 664.9, + "end": 665.42, + "probability": 0.8948 + }, + { + "start": 665.62, + "end": 667.72, + "probability": 0.9765 + }, + { + "start": 667.88, + "end": 669.88, + "probability": 0.9944 + }, + { + "start": 670.52, + "end": 672.52, + "probability": 0.8155 + }, + { + "start": 672.58, + "end": 675.74, + "probability": 0.9954 + }, + { + "start": 676.62, + "end": 679.12, + "probability": 0.4149 + }, + { + "start": 679.28, + "end": 680.36, + "probability": 0.9402 + }, + { + "start": 680.52, + "end": 681.1, + "probability": 0.6421 + }, + { + "start": 681.6, + "end": 682.26, + "probability": 0.958 + }, + { + "start": 682.44, + "end": 685.23, + "probability": 0.8093 + }, + { + "start": 686.04, + "end": 687.48, + "probability": 0.5402 + }, + { + "start": 688.38, + "end": 690.22, + "probability": 0.3856 + }, + { + "start": 690.92, + "end": 692.91, + "probability": 0.9512 + }, + { + "start": 693.78, + "end": 695.95, + "probability": 0.981 + }, + { + "start": 696.62, + "end": 697.02, + "probability": 0.6895 + }, + { + "start": 697.16, + "end": 697.4, + "probability": 0.6569 + }, + { + "start": 697.56, + "end": 698.4, + "probability": 0.6134 + }, + { + "start": 698.44, + "end": 699.72, + "probability": 0.9664 + }, + { + "start": 699.86, + "end": 700.56, + "probability": 0.8369 + }, + { + "start": 700.72, + "end": 704.68, + "probability": 0.8787 + }, + { + "start": 705.7, + "end": 707.36, + "probability": 0.9346 + }, + { + "start": 708.22, + "end": 712.8, + "probability": 0.9788 + }, + { + "start": 712.94, + "end": 714.32, + "probability": 0.5389 + }, + { + "start": 714.38, + "end": 715.22, + "probability": 0.3621 + }, + { + "start": 715.4, + "end": 718.9, + "probability": 0.051 + }, + { + "start": 720.16, + "end": 723.3, + "probability": 0.7708 + }, + { + "start": 723.38, + "end": 725.6, + "probability": 0.8481 + }, + { + "start": 725.72, + "end": 731.98, + "probability": 0.9836 + }, + { + "start": 732.42, + "end": 735.2, + "probability": 0.8293 + }, + { + "start": 735.78, + "end": 738.14, + "probability": 0.9744 + }, + { + "start": 738.7, + "end": 740.08, + "probability": 0.9326 + }, + { + "start": 740.16, + "end": 740.74, + "probability": 0.7789 + }, + { + "start": 741.82, + "end": 744.94, + "probability": 0.9902 + }, + { + "start": 745.38, + "end": 747.14, + "probability": 0.9886 + }, + { + "start": 747.32, + "end": 749.66, + "probability": 0.9836 + }, + { + "start": 749.7, + "end": 752.08, + "probability": 0.8723 + }, + { + "start": 752.8, + "end": 753.78, + "probability": 0.8083 + }, + { + "start": 753.98, + "end": 754.76, + "probability": 0.9833 + }, + { + "start": 755.0, + "end": 755.44, + "probability": 0.9296 + }, + { + "start": 755.62, + "end": 760.88, + "probability": 0.9241 + }, + { + "start": 761.02, + "end": 761.2, + "probability": 0.2878 + }, + { + "start": 761.24, + "end": 764.48, + "probability": 0.7713 + }, + { + "start": 765.06, + "end": 766.4, + "probability": 0.8794 + }, + { + "start": 767.22, + "end": 773.1, + "probability": 0.9645 + }, + { + "start": 773.2, + "end": 773.36, + "probability": 0.3708 + }, + { + "start": 773.56, + "end": 776.69, + "probability": 0.9974 + }, + { + "start": 776.8, + "end": 777.44, + "probability": 0.8108 + }, + { + "start": 777.6, + "end": 778.38, + "probability": 0.769 + }, + { + "start": 779.1, + "end": 781.9, + "probability": 0.448 + }, + { + "start": 782.0, + "end": 782.48, + "probability": 0.1397 + }, + { + "start": 782.58, + "end": 785.64, + "probability": 0.7856 + }, + { + "start": 785.74, + "end": 785.76, + "probability": 0.0249 + }, + { + "start": 787.02, + "end": 788.36, + "probability": 0.1679 + }, + { + "start": 791.02, + "end": 799.12, + "probability": 0.5732 + }, + { + "start": 799.74, + "end": 801.7, + "probability": 0.9534 + }, + { + "start": 802.44, + "end": 803.42, + "probability": 0.3427 + }, + { + "start": 804.36, + "end": 805.74, + "probability": 0.5025 + }, + { + "start": 806.16, + "end": 812.14, + "probability": 0.9624 + }, + { + "start": 812.66, + "end": 813.04, + "probability": 0.5098 + }, + { + "start": 813.6, + "end": 815.0, + "probability": 0.7367 + }, + { + "start": 815.12, + "end": 817.54, + "probability": 0.7514 + }, + { + "start": 818.06, + "end": 820.06, + "probability": 0.9824 + }, + { + "start": 820.22, + "end": 821.9, + "probability": 0.9639 + }, + { + "start": 822.64, + "end": 826.5, + "probability": 0.8334 + }, + { + "start": 826.88, + "end": 829.12, + "probability": 0.9106 + }, + { + "start": 829.34, + "end": 832.62, + "probability": 0.9875 + }, + { + "start": 832.88, + "end": 833.86, + "probability": 0.7634 + }, + { + "start": 834.2, + "end": 835.68, + "probability": 0.9824 + }, + { + "start": 836.68, + "end": 838.72, + "probability": 0.9526 + }, + { + "start": 838.82, + "end": 840.16, + "probability": 0.7779 + }, + { + "start": 840.28, + "end": 842.8, + "probability": 0.9091 + }, + { + "start": 843.12, + "end": 843.38, + "probability": 0.6862 + }, + { + "start": 843.52, + "end": 845.66, + "probability": 0.8945 + }, + { + "start": 845.74, + "end": 846.94, + "probability": 0.973 + }, + { + "start": 847.48, + "end": 853.7, + "probability": 0.909 + }, + { + "start": 854.32, + "end": 855.9, + "probability": 0.6917 + }, + { + "start": 856.14, + "end": 859.66, + "probability": 0.7805 + }, + { + "start": 859.9, + "end": 861.32, + "probability": 0.9761 + }, + { + "start": 861.46, + "end": 862.2, + "probability": 0.8314 + }, + { + "start": 862.54, + "end": 867.84, + "probability": 0.8906 + }, + { + "start": 867.92, + "end": 869.66, + "probability": 0.6993 + }, + { + "start": 869.66, + "end": 872.9, + "probability": 0.8853 + }, + { + "start": 873.52, + "end": 877.6, + "probability": 0.953 + }, + { + "start": 878.32, + "end": 881.14, + "probability": 0.7584 + }, + { + "start": 881.72, + "end": 882.48, + "probability": 0.8783 + }, + { + "start": 882.66, + "end": 884.22, + "probability": 0.9229 + }, + { + "start": 884.24, + "end": 888.18, + "probability": 0.9426 + }, + { + "start": 888.86, + "end": 890.22, + "probability": 0.9338 + }, + { + "start": 890.38, + "end": 893.22, + "probability": 0.9639 + }, + { + "start": 893.38, + "end": 895.44, + "probability": 0.9966 + }, + { + "start": 895.96, + "end": 898.06, + "probability": 0.8912 + }, + { + "start": 898.58, + "end": 904.96, + "probability": 0.6494 + }, + { + "start": 905.18, + "end": 908.1, + "probability": 0.8226 + }, + { + "start": 908.34, + "end": 911.14, + "probability": 0.4252 + }, + { + "start": 911.4, + "end": 913.44, + "probability": 0.7271 + }, + { + "start": 913.58, + "end": 913.62, + "probability": 0.5099 + }, + { + "start": 913.76, + "end": 917.62, + "probability": 0.9746 + }, + { + "start": 917.62, + "end": 922.1, + "probability": 0.9891 + }, + { + "start": 922.52, + "end": 923.01, + "probability": 0.3287 + }, + { + "start": 923.36, + "end": 926.69, + "probability": 0.5338 + }, + { + "start": 926.92, + "end": 928.6, + "probability": 0.9287 + }, + { + "start": 928.78, + "end": 931.16, + "probability": 0.9958 + }, + { + "start": 931.24, + "end": 934.92, + "probability": 0.5724 + }, + { + "start": 935.32, + "end": 936.76, + "probability": 0.748 + }, + { + "start": 936.88, + "end": 937.82, + "probability": 0.5831 + }, + { + "start": 938.06, + "end": 938.9, + "probability": 0.2433 + }, + { + "start": 939.72, + "end": 941.98, + "probability": 0.3062 + }, + { + "start": 942.22, + "end": 945.34, + "probability": 0.9427 + }, + { + "start": 945.62, + "end": 948.14, + "probability": 0.7335 + }, + { + "start": 948.5, + "end": 949.22, + "probability": 0.6112 + }, + { + "start": 949.64, + "end": 949.78, + "probability": 0.5997 + }, + { + "start": 949.88, + "end": 950.68, + "probability": 0.4323 + }, + { + "start": 951.04, + "end": 953.12, + "probability": 0.8739 + }, + { + "start": 954.68, + "end": 957.72, + "probability": 0.298 + }, + { + "start": 957.78, + "end": 959.91, + "probability": 0.3556 + }, + { + "start": 960.22, + "end": 960.86, + "probability": 0.4565 + }, + { + "start": 962.78, + "end": 965.8, + "probability": 0.7493 + }, + { + "start": 965.92, + "end": 966.8, + "probability": 0.7611 + }, + { + "start": 966.88, + "end": 969.84, + "probability": 0.8657 + }, + { + "start": 970.04, + "end": 973.04, + "probability": 0.9846 + }, + { + "start": 973.28, + "end": 975.84, + "probability": 0.3743 + }, + { + "start": 975.88, + "end": 977.48, + "probability": 0.7769 + }, + { + "start": 977.68, + "end": 979.26, + "probability": 0.7605 + }, + { + "start": 979.4, + "end": 979.88, + "probability": 0.6997 + }, + { + "start": 979.92, + "end": 981.32, + "probability": 0.8347 + }, + { + "start": 981.46, + "end": 982.48, + "probability": 0.4463 + }, + { + "start": 982.48, + "end": 983.12, + "probability": 0.4706 + }, + { + "start": 983.76, + "end": 986.42, + "probability": 0.9932 + }, + { + "start": 986.44, + "end": 987.08, + "probability": 0.5522 + }, + { + "start": 988.37, + "end": 991.34, + "probability": 0.5053 + }, + { + "start": 991.4, + "end": 991.8, + "probability": 0.8267 + }, + { + "start": 991.8, + "end": 993.83, + "probability": 0.9524 + }, + { + "start": 994.02, + "end": 995.16, + "probability": 0.9176 + }, + { + "start": 995.26, + "end": 997.26, + "probability": 0.992 + }, + { + "start": 997.48, + "end": 1000.66, + "probability": 0.9748 + }, + { + "start": 1000.82, + "end": 1004.72, + "probability": 0.7648 + }, + { + "start": 1005.1, + "end": 1006.24, + "probability": 0.843 + }, + { + "start": 1006.42, + "end": 1006.9, + "probability": 0.5732 + }, + { + "start": 1006.94, + "end": 1008.16, + "probability": 0.9703 + }, + { + "start": 1008.32, + "end": 1008.42, + "probability": 0.0357 + }, + { + "start": 1008.42, + "end": 1014.8, + "probability": 0.9807 + }, + { + "start": 1015.76, + "end": 1016.6, + "probability": 0.0519 + }, + { + "start": 1016.7, + "end": 1017.42, + "probability": 0.1161 + }, + { + "start": 1017.42, + "end": 1018.18, + "probability": 0.5908 + }, + { + "start": 1018.18, + "end": 1019.9, + "probability": 0.7519 + }, + { + "start": 1020.08, + "end": 1020.63, + "probability": 0.9044 + }, + { + "start": 1021.74, + "end": 1026.42, + "probability": 0.9971 + }, + { + "start": 1026.82, + "end": 1028.8, + "probability": 0.4904 + }, + { + "start": 1028.88, + "end": 1029.78, + "probability": 0.9703 + }, + { + "start": 1029.9, + "end": 1030.9, + "probability": 0.8767 + }, + { + "start": 1031.4, + "end": 1032.7, + "probability": 0.4759 + }, + { + "start": 1032.72, + "end": 1033.78, + "probability": 0.7335 + }, + { + "start": 1034.0, + "end": 1038.04, + "probability": 0.6808 + }, + { + "start": 1038.2, + "end": 1041.04, + "probability": 0.673 + }, + { + "start": 1041.4, + "end": 1047.26, + "probability": 0.8029 + }, + { + "start": 1047.78, + "end": 1047.96, + "probability": 0.3359 + }, + { + "start": 1048.2, + "end": 1050.0, + "probability": 0.7946 + }, + { + "start": 1050.14, + "end": 1051.98, + "probability": 0.541 + }, + { + "start": 1052.06, + "end": 1052.96, + "probability": 0.0246 + }, + { + "start": 1053.56, + "end": 1056.04, + "probability": 0.5844 + }, + { + "start": 1056.56, + "end": 1059.36, + "probability": 0.9551 + }, + { + "start": 1059.36, + "end": 1064.2, + "probability": 0.9972 + }, + { + "start": 1064.4, + "end": 1065.26, + "probability": 0.7787 + }, + { + "start": 1065.54, + "end": 1069.52, + "probability": 0.902 + }, + { + "start": 1070.1, + "end": 1072.18, + "probability": 0.9365 + }, + { + "start": 1073.39, + "end": 1076.54, + "probability": 0.9875 + }, + { + "start": 1076.72, + "end": 1080.46, + "probability": 0.8384 + }, + { + "start": 1081.52, + "end": 1083.04, + "probability": 0.9487 + }, + { + "start": 1083.58, + "end": 1086.2, + "probability": 0.9897 + }, + { + "start": 1086.42, + "end": 1089.68, + "probability": 0.991 + }, + { + "start": 1089.82, + "end": 1090.28, + "probability": 0.932 + }, + { + "start": 1091.18, + "end": 1092.32, + "probability": 0.7786 + }, + { + "start": 1092.42, + "end": 1095.94, + "probability": 0.8714 + }, + { + "start": 1096.32, + "end": 1097.34, + "probability": 0.9163 + }, + { + "start": 1097.58, + "end": 1098.38, + "probability": 0.8142 + }, + { + "start": 1098.84, + "end": 1102.88, + "probability": 0.9949 + }, + { + "start": 1102.88, + "end": 1108.78, + "probability": 0.9433 + }, + { + "start": 1109.2, + "end": 1116.18, + "probability": 0.9722 + }, + { + "start": 1116.36, + "end": 1116.94, + "probability": 0.6727 + }, + { + "start": 1117.0, + "end": 1117.42, + "probability": 0.6086 + }, + { + "start": 1118.14, + "end": 1120.28, + "probability": 0.9492 + }, + { + "start": 1120.78, + "end": 1126.28, + "probability": 0.9946 + }, + { + "start": 1126.34, + "end": 1129.44, + "probability": 0.9619 + }, + { + "start": 1129.64, + "end": 1133.16, + "probability": 0.9958 + }, + { + "start": 1133.3, + "end": 1135.52, + "probability": 0.9995 + }, + { + "start": 1136.7, + "end": 1139.34, + "probability": 0.9851 + }, + { + "start": 1139.54, + "end": 1140.28, + "probability": 0.8916 + }, + { + "start": 1140.36, + "end": 1141.68, + "probability": 0.8631 + }, + { + "start": 1142.26, + "end": 1146.76, + "probability": 0.9279 + }, + { + "start": 1147.24, + "end": 1147.9, + "probability": 0.5246 + }, + { + "start": 1147.98, + "end": 1148.84, + "probability": 0.8208 + }, + { + "start": 1149.02, + "end": 1154.26, + "probability": 0.995 + }, + { + "start": 1154.64, + "end": 1155.88, + "probability": 0.6868 + }, + { + "start": 1156.04, + "end": 1156.38, + "probability": 0.6628 + }, + { + "start": 1156.68, + "end": 1158.52, + "probability": 0.9453 + }, + { + "start": 1159.1, + "end": 1162.6, + "probability": 0.9894 + }, + { + "start": 1162.6, + "end": 1166.96, + "probability": 0.9087 + }, + { + "start": 1167.6, + "end": 1171.4, + "probability": 0.9792 + }, + { + "start": 1171.64, + "end": 1171.74, + "probability": 0.4421 + }, + { + "start": 1172.32, + "end": 1173.41, + "probability": 0.9985 + }, + { + "start": 1174.24, + "end": 1177.04, + "probability": 0.9901 + }, + { + "start": 1177.04, + "end": 1180.42, + "probability": 0.9728 + }, + { + "start": 1181.02, + "end": 1182.74, + "probability": 0.7846 + }, + { + "start": 1182.86, + "end": 1184.76, + "probability": 0.7824 + }, + { + "start": 1185.4, + "end": 1185.98, + "probability": 0.7798 + }, + { + "start": 1186.56, + "end": 1188.58, + "probability": 0.9647 + }, + { + "start": 1189.1, + "end": 1191.98, + "probability": 0.8845 + }, + { + "start": 1192.88, + "end": 1195.64, + "probability": 0.9239 + }, + { + "start": 1195.94, + "end": 1200.68, + "probability": 0.9508 + }, + { + "start": 1201.74, + "end": 1202.34, + "probability": 0.6987 + }, + { + "start": 1202.48, + "end": 1202.78, + "probability": 0.7462 + }, + { + "start": 1202.86, + "end": 1206.7, + "probability": 0.9856 + }, + { + "start": 1207.48, + "end": 1209.04, + "probability": 0.9753 + }, + { + "start": 1209.7, + "end": 1215.42, + "probability": 0.8234 + }, + { + "start": 1215.48, + "end": 1218.92, + "probability": 0.667 + }, + { + "start": 1219.34, + "end": 1220.04, + "probability": 0.8605 + }, + { + "start": 1220.94, + "end": 1221.8, + "probability": 0.4647 + }, + { + "start": 1222.3, + "end": 1222.63, + "probability": 0.0898 + }, + { + "start": 1223.24, + "end": 1223.24, + "probability": 0.0074 + }, + { + "start": 1223.24, + "end": 1225.34, + "probability": 0.8394 + }, + { + "start": 1225.56, + "end": 1234.38, + "probability": 0.8581 + }, + { + "start": 1234.5, + "end": 1235.44, + "probability": 0.9577 + }, + { + "start": 1235.66, + "end": 1236.15, + "probability": 0.5342 + }, + { + "start": 1236.9, + "end": 1240.78, + "probability": 0.9771 + }, + { + "start": 1241.22, + "end": 1242.9, + "probability": 0.9175 + }, + { + "start": 1243.1, + "end": 1243.7, + "probability": 0.9698 + }, + { + "start": 1244.44, + "end": 1250.06, + "probability": 0.8649 + }, + { + "start": 1250.22, + "end": 1253.34, + "probability": 0.9871 + }, + { + "start": 1253.92, + "end": 1254.72, + "probability": 0.3101 + }, + { + "start": 1255.24, + "end": 1256.54, + "probability": 0.9976 + }, + { + "start": 1256.96, + "end": 1263.94, + "probability": 0.9799 + }, + { + "start": 1264.6, + "end": 1269.44, + "probability": 0.9175 + }, + { + "start": 1270.1, + "end": 1272.14, + "probability": 0.5993 + }, + { + "start": 1272.24, + "end": 1277.58, + "probability": 0.9911 + }, + { + "start": 1278.14, + "end": 1281.25, + "probability": 0.7462 + }, + { + "start": 1282.82, + "end": 1287.88, + "probability": 0.9902 + }, + { + "start": 1288.28, + "end": 1290.86, + "probability": 0.9961 + }, + { + "start": 1290.96, + "end": 1291.6, + "probability": 0.9896 + }, + { + "start": 1292.16, + "end": 1298.92, + "probability": 0.9878 + }, + { + "start": 1299.06, + "end": 1306.52, + "probability": 0.9139 + }, + { + "start": 1306.66, + "end": 1311.82, + "probability": 0.9976 + }, + { + "start": 1312.68, + "end": 1313.54, + "probability": 0.598 + }, + { + "start": 1313.96, + "end": 1316.56, + "probability": 0.997 + }, + { + "start": 1316.66, + "end": 1319.88, + "probability": 0.9924 + }, + { + "start": 1320.08, + "end": 1323.58, + "probability": 0.9183 + }, + { + "start": 1324.32, + "end": 1328.76, + "probability": 0.9725 + }, + { + "start": 1329.36, + "end": 1333.66, + "probability": 0.9882 + }, + { + "start": 1334.16, + "end": 1338.58, + "probability": 0.9766 + }, + { + "start": 1338.78, + "end": 1341.04, + "probability": 0.9751 + }, + { + "start": 1341.52, + "end": 1344.94, + "probability": 0.983 + }, + { + "start": 1345.02, + "end": 1346.22, + "probability": 0.9724 + }, + { + "start": 1347.24, + "end": 1349.7, + "probability": 0.9268 + }, + { + "start": 1349.84, + "end": 1353.1, + "probability": 0.8501 + }, + { + "start": 1353.22, + "end": 1356.5, + "probability": 0.9938 + }, + { + "start": 1356.84, + "end": 1361.58, + "probability": 0.8682 + }, + { + "start": 1361.66, + "end": 1363.86, + "probability": 0.9949 + }, + { + "start": 1363.94, + "end": 1367.9, + "probability": 0.8057 + }, + { + "start": 1367.9, + "end": 1373.38, + "probability": 0.9782 + }, + { + "start": 1373.5, + "end": 1378.96, + "probability": 0.994 + }, + { + "start": 1378.96, + "end": 1382.88, + "probability": 0.994 + }, + { + "start": 1383.26, + "end": 1385.56, + "probability": 0.9934 + }, + { + "start": 1386.32, + "end": 1389.98, + "probability": 0.9941 + }, + { + "start": 1390.06, + "end": 1393.08, + "probability": 0.9985 + }, + { + "start": 1393.08, + "end": 1397.84, + "probability": 0.9857 + }, + { + "start": 1398.12, + "end": 1399.69, + "probability": 0.998 + }, + { + "start": 1400.98, + "end": 1405.44, + "probability": 0.9915 + }, + { + "start": 1406.46, + "end": 1407.74, + "probability": 0.8411 + }, + { + "start": 1408.38, + "end": 1412.0, + "probability": 0.9795 + }, + { + "start": 1412.1, + "end": 1415.2, + "probability": 0.9694 + }, + { + "start": 1415.62, + "end": 1418.54, + "probability": 0.9923 + }, + { + "start": 1419.04, + "end": 1422.62, + "probability": 0.9985 + }, + { + "start": 1422.92, + "end": 1426.32, + "probability": 0.731 + }, + { + "start": 1426.78, + "end": 1429.76, + "probability": 0.9674 + }, + { + "start": 1430.2, + "end": 1435.56, + "probability": 0.9773 + }, + { + "start": 1435.66, + "end": 1437.4, + "probability": 0.9303 + }, + { + "start": 1437.86, + "end": 1440.98, + "probability": 0.9914 + }, + { + "start": 1441.28, + "end": 1443.02, + "probability": 0.6928 + }, + { + "start": 1443.62, + "end": 1446.27, + "probability": 0.999 + }, + { + "start": 1447.04, + "end": 1447.66, + "probability": 0.6014 + }, + { + "start": 1448.2, + "end": 1449.16, + "probability": 0.9162 + }, + { + "start": 1449.38, + "end": 1453.9, + "probability": 0.9849 + }, + { + "start": 1454.46, + "end": 1458.18, + "probability": 0.9871 + }, + { + "start": 1459.08, + "end": 1463.92, + "probability": 0.7566 + }, + { + "start": 1464.06, + "end": 1467.9, + "probability": 0.8868 + }, + { + "start": 1468.88, + "end": 1471.48, + "probability": 0.9681 + }, + { + "start": 1471.78, + "end": 1472.9, + "probability": 0.6764 + }, + { + "start": 1473.0, + "end": 1473.5, + "probability": 0.8154 + }, + { + "start": 1473.6, + "end": 1475.18, + "probability": 0.8333 + }, + { + "start": 1475.76, + "end": 1477.78, + "probability": 0.8204 + }, + { + "start": 1478.3, + "end": 1482.1, + "probability": 0.8663 + }, + { + "start": 1482.72, + "end": 1488.42, + "probability": 0.9717 + }, + { + "start": 1489.06, + "end": 1491.64, + "probability": 0.996 + }, + { + "start": 1491.94, + "end": 1493.7, + "probability": 0.6711 + }, + { + "start": 1494.2, + "end": 1496.74, + "probability": 0.4776 + }, + { + "start": 1497.2, + "end": 1498.69, + "probability": 0.8042 + }, + { + "start": 1499.5, + "end": 1505.08, + "probability": 0.9824 + }, + { + "start": 1505.68, + "end": 1507.82, + "probability": 0.8158 + }, + { + "start": 1508.44, + "end": 1509.62, + "probability": 0.7083 + }, + { + "start": 1510.2, + "end": 1514.62, + "probability": 0.9768 + }, + { + "start": 1515.26, + "end": 1516.94, + "probability": 0.9844 + }, + { + "start": 1517.48, + "end": 1521.3, + "probability": 0.998 + }, + { + "start": 1521.36, + "end": 1522.21, + "probability": 0.9335 + }, + { + "start": 1522.52, + "end": 1526.02, + "probability": 0.9967 + }, + { + "start": 1526.72, + "end": 1528.78, + "probability": 0.9902 + }, + { + "start": 1529.3, + "end": 1535.2, + "probability": 0.9966 + }, + { + "start": 1535.2, + "end": 1541.34, + "probability": 0.993 + }, + { + "start": 1542.0, + "end": 1544.66, + "probability": 0.9967 + }, + { + "start": 1544.66, + "end": 1548.86, + "probability": 0.9996 + }, + { + "start": 1549.3, + "end": 1551.6, + "probability": 0.9705 + }, + { + "start": 1551.78, + "end": 1552.36, + "probability": 0.4531 + }, + { + "start": 1552.6, + "end": 1556.26, + "probability": 0.9383 + }, + { + "start": 1557.08, + "end": 1558.04, + "probability": 0.6656 + }, + { + "start": 1558.24, + "end": 1559.46, + "probability": 0.9915 + }, + { + "start": 1559.5, + "end": 1562.08, + "probability": 0.8631 + }, + { + "start": 1562.84, + "end": 1567.06, + "probability": 0.9353 + }, + { + "start": 1567.5, + "end": 1571.56, + "probability": 0.9824 + }, + { + "start": 1571.7, + "end": 1573.64, + "probability": 0.9976 + }, + { + "start": 1574.26, + "end": 1575.9, + "probability": 0.9575 + }, + { + "start": 1576.2, + "end": 1577.36, + "probability": 0.7358 + }, + { + "start": 1578.06, + "end": 1579.02, + "probability": 0.9723 + }, + { + "start": 1579.6, + "end": 1579.99, + "probability": 0.4793 + }, + { + "start": 1580.34, + "end": 1581.64, + "probability": 0.7587 + }, + { + "start": 1581.74, + "end": 1582.2, + "probability": 0.5826 + }, + { + "start": 1582.36, + "end": 1585.78, + "probability": 0.4255 + }, + { + "start": 1586.36, + "end": 1586.36, + "probability": 0.0421 + }, + { + "start": 1586.36, + "end": 1588.78, + "probability": 0.0874 + }, + { + "start": 1589.55, + "end": 1591.74, + "probability": 0.4591 + }, + { + "start": 1592.16, + "end": 1596.3, + "probability": 0.9941 + }, + { + "start": 1597.0, + "end": 1600.62, + "probability": 0.9746 + }, + { + "start": 1600.76, + "end": 1601.4, + "probability": 0.5373 + }, + { + "start": 1601.48, + "end": 1603.33, + "probability": 0.9927 + }, + { + "start": 1603.94, + "end": 1607.4, + "probability": 0.9839 + }, + { + "start": 1607.4, + "end": 1610.74, + "probability": 0.9933 + }, + { + "start": 1611.36, + "end": 1611.6, + "probability": 0.4652 + }, + { + "start": 1611.8, + "end": 1612.36, + "probability": 0.3631 + }, + { + "start": 1612.42, + "end": 1616.9, + "probability": 0.9878 + }, + { + "start": 1617.66, + "end": 1618.12, + "probability": 0.7496 + }, + { + "start": 1618.2, + "end": 1619.34, + "probability": 0.9277 + }, + { + "start": 1619.44, + "end": 1620.64, + "probability": 0.9065 + }, + { + "start": 1621.64, + "end": 1622.84, + "probability": 0.9883 + }, + { + "start": 1622.96, + "end": 1625.42, + "probability": 0.6272 + }, + { + "start": 1625.5, + "end": 1628.4, + "probability": 0.9621 + }, + { + "start": 1628.44, + "end": 1628.94, + "probability": 0.6631 + }, + { + "start": 1629.5, + "end": 1632.88, + "probability": 0.978 + }, + { + "start": 1633.5, + "end": 1637.02, + "probability": 0.9901 + }, + { + "start": 1637.02, + "end": 1642.54, + "probability": 0.9968 + }, + { + "start": 1642.54, + "end": 1642.54, + "probability": 0.4146 + }, + { + "start": 1642.54, + "end": 1643.62, + "probability": 0.999 + }, + { + "start": 1644.32, + "end": 1644.46, + "probability": 0.2301 + }, + { + "start": 1644.46, + "end": 1647.66, + "probability": 0.6534 + }, + { + "start": 1647.72, + "end": 1652.36, + "probability": 0.9108 + }, + { + "start": 1652.82, + "end": 1654.8, + "probability": 0.8627 + }, + { + "start": 1655.3, + "end": 1657.64, + "probability": 0.7222 + }, + { + "start": 1658.08, + "end": 1661.28, + "probability": 0.6633 + }, + { + "start": 1661.86, + "end": 1664.6, + "probability": 0.7924 + }, + { + "start": 1665.06, + "end": 1665.86, + "probability": 0.903 + }, + { + "start": 1666.02, + "end": 1667.26, + "probability": 0.8737 + }, + { + "start": 1667.72, + "end": 1669.92, + "probability": 0.9883 + }, + { + "start": 1669.96, + "end": 1670.52, + "probability": 0.8263 + }, + { + "start": 1672.94, + "end": 1675.34, + "probability": 0.9356 + }, + { + "start": 1675.54, + "end": 1676.46, + "probability": 0.798 + }, + { + "start": 1676.9, + "end": 1678.5, + "probability": 0.9893 + }, + { + "start": 1679.46, + "end": 1680.16, + "probability": 0.8436 + }, + { + "start": 1680.6, + "end": 1681.94, + "probability": 0.8275 + }, + { + "start": 1682.96, + "end": 1683.88, + "probability": 0.9696 + }, + { + "start": 1684.62, + "end": 1685.82, + "probability": 0.2584 + }, + { + "start": 1685.82, + "end": 1686.78, + "probability": 0.2588 + }, + { + "start": 1686.84, + "end": 1686.86, + "probability": 0.4236 + }, + { + "start": 1689.24, + "end": 1692.48, + "probability": 0.856 + }, + { + "start": 1693.5, + "end": 1695.42, + "probability": 0.6138 + }, + { + "start": 1696.42, + "end": 1699.4, + "probability": 0.8851 + }, + { + "start": 1699.88, + "end": 1701.78, + "probability": 0.8997 + }, + { + "start": 1701.82, + "end": 1702.52, + "probability": 0.971 + }, + { + "start": 1702.84, + "end": 1703.06, + "probability": 0.911 + }, + { + "start": 1703.46, + "end": 1704.9, + "probability": 0.7054 + }, + { + "start": 1705.54, + "end": 1708.36, + "probability": 0.9935 + }, + { + "start": 1709.86, + "end": 1711.18, + "probability": 0.8486 + }, + { + "start": 1711.92, + "end": 1713.66, + "probability": 0.7474 + }, + { + "start": 1713.94, + "end": 1716.18, + "probability": 0.9344 + }, + { + "start": 1716.32, + "end": 1718.2, + "probability": 0.8853 + }, + { + "start": 1718.3, + "end": 1719.08, + "probability": 0.6968 + }, + { + "start": 1719.5, + "end": 1721.42, + "probability": 0.8412 + }, + { + "start": 1722.2, + "end": 1723.97, + "probability": 0.8113 + }, + { + "start": 1724.34, + "end": 1725.86, + "probability": 0.4379 + }, + { + "start": 1726.16, + "end": 1726.24, + "probability": 0.4194 + }, + { + "start": 1726.24, + "end": 1727.28, + "probability": 0.7275 + }, + { + "start": 1727.36, + "end": 1728.96, + "probability": 0.9892 + }, + { + "start": 1729.84, + "end": 1731.1, + "probability": 0.9962 + }, + { + "start": 1731.92, + "end": 1736.6, + "probability": 0.9989 + }, + { + "start": 1737.7, + "end": 1742.7, + "probability": 0.8877 + }, + { + "start": 1743.22, + "end": 1747.66, + "probability": 0.9232 + }, + { + "start": 1748.2, + "end": 1750.6, + "probability": 0.6894 + }, + { + "start": 1751.14, + "end": 1752.42, + "probability": 0.8996 + }, + { + "start": 1753.02, + "end": 1754.34, + "probability": 0.9648 + }, + { + "start": 1754.48, + "end": 1755.62, + "probability": 0.8757 + }, + { + "start": 1755.92, + "end": 1756.84, + "probability": 0.488 + }, + { + "start": 1757.16, + "end": 1759.86, + "probability": 0.928 + }, + { + "start": 1760.66, + "end": 1762.44, + "probability": 0.6509 + }, + { + "start": 1764.9, + "end": 1769.7, + "probability": 0.6955 + }, + { + "start": 1770.98, + "end": 1772.26, + "probability": 0.8975 + }, + { + "start": 1773.56, + "end": 1776.7, + "probability": 0.9962 + }, + { + "start": 1776.7, + "end": 1781.62, + "probability": 0.9908 + }, + { + "start": 1782.32, + "end": 1783.18, + "probability": 0.8409 + }, + { + "start": 1789.36, + "end": 1791.88, + "probability": 0.7681 + }, + { + "start": 1792.96, + "end": 1799.24, + "probability": 0.9881 + }, + { + "start": 1799.62, + "end": 1803.16, + "probability": 0.9991 + }, + { + "start": 1803.88, + "end": 1805.08, + "probability": 0.5201 + }, + { + "start": 1805.74, + "end": 1810.16, + "probability": 0.9987 + }, + { + "start": 1810.6, + "end": 1811.5, + "probability": 0.9946 + }, + { + "start": 1811.84, + "end": 1813.46, + "probability": 0.998 + }, + { + "start": 1813.8, + "end": 1815.78, + "probability": 0.9843 + }, + { + "start": 1816.58, + "end": 1818.54, + "probability": 0.9797 + }, + { + "start": 1818.54, + "end": 1822.74, + "probability": 0.9922 + }, + { + "start": 1822.8, + "end": 1823.62, + "probability": 0.7807 + }, + { + "start": 1824.46, + "end": 1827.24, + "probability": 0.6272 + }, + { + "start": 1827.8, + "end": 1828.88, + "probability": 0.8564 + }, + { + "start": 1829.64, + "end": 1832.44, + "probability": 0.8101 + }, + { + "start": 1832.98, + "end": 1834.32, + "probability": 0.9927 + }, + { + "start": 1835.22, + "end": 1836.84, + "probability": 0.9951 + }, + { + "start": 1837.58, + "end": 1839.26, + "probability": 0.9965 + }, + { + "start": 1839.34, + "end": 1841.58, + "probability": 0.9886 + }, + { + "start": 1841.7, + "end": 1844.44, + "probability": 0.9887 + }, + { + "start": 1844.92, + "end": 1846.46, + "probability": 0.91 + }, + { + "start": 1846.82, + "end": 1847.36, + "probability": 0.9324 + }, + { + "start": 1847.56, + "end": 1848.0, + "probability": 0.938 + }, + { + "start": 1848.1, + "end": 1848.54, + "probability": 0.8511 + }, + { + "start": 1848.92, + "end": 1849.8, + "probability": 0.8997 + }, + { + "start": 1850.0, + "end": 1850.18, + "probability": 0.8464 + }, + { + "start": 1850.5, + "end": 1851.44, + "probability": 0.9491 + }, + { + "start": 1851.64, + "end": 1851.74, + "probability": 0.9087 + }, + { + "start": 1852.62, + "end": 1853.3, + "probability": 0.9966 + }, + { + "start": 1853.94, + "end": 1854.86, + "probability": 0.8298 + }, + { + "start": 1854.96, + "end": 1855.3, + "probability": 0.4226 + }, + { + "start": 1855.38, + "end": 1856.02, + "probability": 0.6088 + }, + { + "start": 1856.42, + "end": 1859.08, + "probability": 0.9701 + }, + { + "start": 1859.56, + "end": 1861.0, + "probability": 0.8356 + }, + { + "start": 1861.62, + "end": 1863.6, + "probability": 0.9677 + }, + { + "start": 1864.06, + "end": 1865.4, + "probability": 0.9273 + }, + { + "start": 1865.7, + "end": 1866.98, + "probability": 0.8368 + }, + { + "start": 1867.3, + "end": 1870.78, + "probability": 0.9923 + }, + { + "start": 1871.42, + "end": 1872.84, + "probability": 0.9752 + }, + { + "start": 1873.34, + "end": 1875.34, + "probability": 0.9806 + }, + { + "start": 1875.54, + "end": 1878.76, + "probability": 0.9595 + }, + { + "start": 1878.9, + "end": 1879.76, + "probability": 0.9016 + }, + { + "start": 1880.44, + "end": 1880.98, + "probability": 0.8631 + }, + { + "start": 1881.92, + "end": 1886.14, + "probability": 0.8145 + }, + { + "start": 1886.58, + "end": 1889.54, + "probability": 0.9938 + }, + { + "start": 1890.08, + "end": 1891.8, + "probability": 0.7752 + }, + { + "start": 1892.22, + "end": 1894.06, + "probability": 0.9475 + }, + { + "start": 1894.8, + "end": 1895.26, + "probability": 0.9238 + }, + { + "start": 1895.9, + "end": 1897.74, + "probability": 0.9979 + }, + { + "start": 1898.36, + "end": 1900.78, + "probability": 0.9384 + }, + { + "start": 1901.6, + "end": 1903.44, + "probability": 0.9982 + }, + { + "start": 1903.78, + "end": 1905.42, + "probability": 0.8889 + }, + { + "start": 1905.82, + "end": 1907.46, + "probability": 0.9844 + }, + { + "start": 1907.94, + "end": 1912.76, + "probability": 0.9941 + }, + { + "start": 1913.22, + "end": 1914.06, + "probability": 0.998 + }, + { + "start": 1914.58, + "end": 1915.52, + "probability": 0.9291 + }, + { + "start": 1915.6, + "end": 1916.5, + "probability": 0.9637 + }, + { + "start": 1916.78, + "end": 1919.72, + "probability": 0.9619 + }, + { + "start": 1919.82, + "end": 1919.94, + "probability": 0.6586 + }, + { + "start": 1920.0, + "end": 1921.08, + "probability": 0.6948 + }, + { + "start": 1921.5, + "end": 1922.2, + "probability": 0.9193 + }, + { + "start": 1922.7, + "end": 1923.5, + "probability": 0.9958 + }, + { + "start": 1923.74, + "end": 1928.2, + "probability": 0.9473 + }, + { + "start": 1929.3, + "end": 1929.47, + "probability": 0.47 + }, + { + "start": 1929.92, + "end": 1930.48, + "probability": 0.1626 + }, + { + "start": 1930.86, + "end": 1931.94, + "probability": 0.7483 + }, + { + "start": 1932.06, + "end": 1933.02, + "probability": 0.6228 + }, + { + "start": 1933.02, + "end": 1933.04, + "probability": 0.3365 + }, + { + "start": 1933.04, + "end": 1933.53, + "probability": 0.8972 + }, + { + "start": 1933.94, + "end": 1934.52, + "probability": 0.8391 + }, + { + "start": 1934.64, + "end": 1936.6, + "probability": 0.915 + }, + { + "start": 1936.62, + "end": 1937.16, + "probability": 0.9324 + }, + { + "start": 1937.46, + "end": 1937.76, + "probability": 0.5217 + }, + { + "start": 1938.04, + "end": 1941.74, + "probability": 0.4972 + }, + { + "start": 1941.98, + "end": 1943.38, + "probability": 0.6802 + }, + { + "start": 1944.02, + "end": 1944.52, + "probability": 0.77 + }, + { + "start": 1944.6, + "end": 1945.32, + "probability": 0.9038 + }, + { + "start": 1945.38, + "end": 1947.5, + "probability": 0.9852 + }, + { + "start": 1947.54, + "end": 1947.76, + "probability": 0.6529 + }, + { + "start": 1948.1, + "end": 1950.12, + "probability": 0.9832 + }, + { + "start": 1950.4, + "end": 1952.64, + "probability": 0.7068 + }, + { + "start": 1953.06, + "end": 1955.66, + "probability": 0.7153 + }, + { + "start": 1956.2, + "end": 1959.24, + "probability": 0.9211 + }, + { + "start": 1960.0, + "end": 1962.7, + "probability": 0.9638 + }, + { + "start": 1963.36, + "end": 1965.86, + "probability": 0.7469 + }, + { + "start": 1967.12, + "end": 1969.84, + "probability": 0.6649 + }, + { + "start": 1971.64, + "end": 1973.7, + "probability": 0.8208 + }, + { + "start": 1975.1, + "end": 1978.02, + "probability": 0.6771 + }, + { + "start": 1978.94, + "end": 1980.18, + "probability": 0.9539 + }, + { + "start": 1981.0, + "end": 1981.46, + "probability": 0.9077 + }, + { + "start": 1982.28, + "end": 1983.6, + "probability": 0.65 + }, + { + "start": 1983.76, + "end": 1984.1, + "probability": 0.7579 + }, + { + "start": 1986.64, + "end": 1987.32, + "probability": 0.5703 + }, + { + "start": 1987.4, + "end": 1988.3, + "probability": 0.8318 + }, + { + "start": 1988.42, + "end": 1990.76, + "probability": 0.6674 + }, + { + "start": 1990.9, + "end": 1991.84, + "probability": 0.6675 + }, + { + "start": 1992.84, + "end": 1993.88, + "probability": 0.7964 + }, + { + "start": 1994.74, + "end": 1996.26, + "probability": 0.846 + }, + { + "start": 1996.82, + "end": 2000.7, + "probability": 0.9937 + }, + { + "start": 2001.62, + "end": 2003.02, + "probability": 0.8804 + }, + { + "start": 2004.56, + "end": 2005.68, + "probability": 0.7962 + }, + { + "start": 2007.42, + "end": 2009.94, + "probability": 0.9238 + }, + { + "start": 2010.58, + "end": 2013.44, + "probability": 0.9863 + }, + { + "start": 2013.92, + "end": 2015.3, + "probability": 0.9971 + }, + { + "start": 2015.84, + "end": 2018.22, + "probability": 0.9829 + }, + { + "start": 2018.7, + "end": 2020.3, + "probability": 0.894 + }, + { + "start": 2020.4, + "end": 2021.18, + "probability": 0.7411 + }, + { + "start": 2022.88, + "end": 2024.5, + "probability": 0.9497 + }, + { + "start": 2024.8, + "end": 2026.98, + "probability": 0.9661 + }, + { + "start": 2027.0, + "end": 2029.42, + "probability": 0.9796 + }, + { + "start": 2030.0, + "end": 2032.9, + "probability": 0.8449 + }, + { + "start": 2033.02, + "end": 2033.54, + "probability": 0.6397 + }, + { + "start": 2033.76, + "end": 2034.42, + "probability": 0.5012 + }, + { + "start": 2036.06, + "end": 2039.76, + "probability": 0.2684 + }, + { + "start": 2039.98, + "end": 2042.0, + "probability": 0.7657 + }, + { + "start": 2043.86, + "end": 2045.18, + "probability": 0.647 + }, + { + "start": 2048.82, + "end": 2052.5, + "probability": 0.4584 + }, + { + "start": 2054.02, + "end": 2054.02, + "probability": 0.5024 + }, + { + "start": 2060.2, + "end": 2063.58, + "probability": 0.999 + }, + { + "start": 2063.74, + "end": 2064.5, + "probability": 0.5664 + }, + { + "start": 2065.36, + "end": 2068.26, + "probability": 0.9991 + }, + { + "start": 2068.78, + "end": 2071.0, + "probability": 0.9649 + }, + { + "start": 2071.46, + "end": 2072.2, + "probability": 0.9624 + }, + { + "start": 2072.44, + "end": 2073.88, + "probability": 0.9952 + }, + { + "start": 2074.0, + "end": 2074.76, + "probability": 0.6289 + }, + { + "start": 2076.18, + "end": 2081.24, + "probability": 0.9726 + }, + { + "start": 2081.52, + "end": 2082.52, + "probability": 0.9161 + }, + { + "start": 2083.38, + "end": 2084.1, + "probability": 0.7199 + }, + { + "start": 2085.5, + "end": 2086.1, + "probability": 0.7734 + }, + { + "start": 2086.44, + "end": 2088.26, + "probability": 0.9698 + }, + { + "start": 2088.72, + "end": 2089.82, + "probability": 0.8359 + }, + { + "start": 2089.86, + "end": 2090.7, + "probability": 0.8918 + }, + { + "start": 2090.8, + "end": 2091.3, + "probability": 0.6654 + }, + { + "start": 2091.38, + "end": 2091.84, + "probability": 0.8547 + }, + { + "start": 2091.92, + "end": 2092.34, + "probability": 0.8752 + }, + { + "start": 2092.4, + "end": 2093.0, + "probability": 0.4246 + }, + { + "start": 2093.78, + "end": 2094.78, + "probability": 0.8106 + }, + { + "start": 2095.34, + "end": 2095.82, + "probability": 0.9161 + }, + { + "start": 2095.92, + "end": 2097.14, + "probability": 0.9805 + }, + { + "start": 2097.2, + "end": 2097.94, + "probability": 0.876 + }, + { + "start": 2098.34, + "end": 2100.06, + "probability": 0.9839 + }, + { + "start": 2101.46, + "end": 2105.74, + "probability": 0.9877 + }, + { + "start": 2106.4, + "end": 2108.12, + "probability": 0.984 + }, + { + "start": 2108.64, + "end": 2110.19, + "probability": 0.9893 + }, + { + "start": 2110.82, + "end": 2113.7, + "probability": 0.9971 + }, + { + "start": 2114.32, + "end": 2114.72, + "probability": 0.7004 + }, + { + "start": 2114.84, + "end": 2116.56, + "probability": 0.929 + }, + { + "start": 2117.06, + "end": 2120.66, + "probability": 0.9897 + }, + { + "start": 2121.3, + "end": 2122.36, + "probability": 0.7788 + }, + { + "start": 2122.48, + "end": 2125.26, + "probability": 0.9889 + }, + { + "start": 2125.8, + "end": 2126.98, + "probability": 0.8848 + }, + { + "start": 2127.62, + "end": 2130.82, + "probability": 0.9304 + }, + { + "start": 2130.92, + "end": 2133.64, + "probability": 0.9478 + }, + { + "start": 2133.8, + "end": 2134.7, + "probability": 0.9835 + }, + { + "start": 2135.74, + "end": 2137.42, + "probability": 0.8699 + }, + { + "start": 2138.38, + "end": 2142.88, + "probability": 0.9741 + }, + { + "start": 2143.04, + "end": 2145.66, + "probability": 0.9252 + }, + { + "start": 2146.18, + "end": 2147.74, + "probability": 0.946 + }, + { + "start": 2147.88, + "end": 2150.62, + "probability": 0.9793 + }, + { + "start": 2150.62, + "end": 2153.28, + "probability": 0.9769 + }, + { + "start": 2153.62, + "end": 2155.24, + "probability": 0.9985 + }, + { + "start": 2155.62, + "end": 2158.04, + "probability": 0.9053 + }, + { + "start": 2158.04, + "end": 2160.88, + "probability": 0.9915 + }, + { + "start": 2161.34, + "end": 2161.68, + "probability": 0.6973 + }, + { + "start": 2163.02, + "end": 2165.82, + "probability": 0.8149 + }, + { + "start": 2165.9, + "end": 2166.24, + "probability": 0.6165 + }, + { + "start": 2169.14, + "end": 2169.9, + "probability": 0.9814 + }, + { + "start": 2170.0, + "end": 2171.4, + "probability": 0.9386 + }, + { + "start": 2171.58, + "end": 2172.66, + "probability": 0.9873 + }, + { + "start": 2173.36, + "end": 2175.1, + "probability": 0.5164 + }, + { + "start": 2177.51, + "end": 2181.6, + "probability": 0.717 + }, + { + "start": 2182.22, + "end": 2183.4, + "probability": 0.5023 + }, + { + "start": 2189.12, + "end": 2190.88, + "probability": 0.3323 + }, + { + "start": 2193.82, + "end": 2194.02, + "probability": 0.7978 + }, + { + "start": 2197.44, + "end": 2199.34, + "probability": 0.6625 + }, + { + "start": 2201.28, + "end": 2201.76, + "probability": 0.8048 + }, + { + "start": 2204.22, + "end": 2207.08, + "probability": 0.8708 + }, + { + "start": 2207.82, + "end": 2209.26, + "probability": 0.9753 + }, + { + "start": 2210.92, + "end": 2213.06, + "probability": 0.9208 + }, + { + "start": 2213.74, + "end": 2215.62, + "probability": 0.8883 + }, + { + "start": 2218.64, + "end": 2220.64, + "probability": 0.9956 + }, + { + "start": 2223.82, + "end": 2225.0, + "probability": 0.166 + }, + { + "start": 2225.08, + "end": 2233.16, + "probability": 0.9744 + }, + { + "start": 2235.16, + "end": 2235.72, + "probability": 0.5077 + }, + { + "start": 2236.46, + "end": 2240.18, + "probability": 0.7705 + }, + { + "start": 2240.5, + "end": 2242.4, + "probability": 0.6914 + }, + { + "start": 2242.78, + "end": 2246.54, + "probability": 0.915 + }, + { + "start": 2246.84, + "end": 2250.02, + "probability": 0.6781 + }, + { + "start": 2250.24, + "end": 2252.84, + "probability": 0.999 + }, + { + "start": 2252.92, + "end": 2255.46, + "probability": 0.9327 + }, + { + "start": 2256.24, + "end": 2258.74, + "probability": 0.8825 + }, + { + "start": 2259.28, + "end": 2261.66, + "probability": 0.9888 + }, + { + "start": 2261.66, + "end": 2265.26, + "probability": 0.9978 + }, + { + "start": 2265.68, + "end": 2267.06, + "probability": 0.8134 + }, + { + "start": 2267.16, + "end": 2272.28, + "probability": 0.9924 + }, + { + "start": 2272.76, + "end": 2277.18, + "probability": 0.7727 + }, + { + "start": 2278.08, + "end": 2283.18, + "probability": 0.9505 + }, + { + "start": 2283.28, + "end": 2287.26, + "probability": 0.9939 + }, + { + "start": 2287.79, + "end": 2289.79, + "probability": 0.9902 + }, + { + "start": 2290.5, + "end": 2291.78, + "probability": 0.6564 + }, + { + "start": 2292.06, + "end": 2293.98, + "probability": 0.7705 + }, + { + "start": 2294.44, + "end": 2300.84, + "probability": 0.8115 + }, + { + "start": 2301.22, + "end": 2302.5, + "probability": 0.8431 + }, + { + "start": 2302.54, + "end": 2305.52, + "probability": 0.9037 + }, + { + "start": 2306.32, + "end": 2308.72, + "probability": 0.9531 + }, + { + "start": 2308.82, + "end": 2312.0, + "probability": 0.9994 + }, + { + "start": 2312.66, + "end": 2318.78, + "probability": 0.5985 + }, + { + "start": 2318.94, + "end": 2319.7, + "probability": 0.5537 + }, + { + "start": 2320.26, + "end": 2321.16, + "probability": 0.9438 + }, + { + "start": 2321.2, + "end": 2324.3, + "probability": 0.7026 + }, + { + "start": 2325.28, + "end": 2326.24, + "probability": 0.7483 + }, + { + "start": 2326.38, + "end": 2328.5, + "probability": 0.9335 + }, + { + "start": 2328.58, + "end": 2329.5, + "probability": 0.584 + }, + { + "start": 2330.0, + "end": 2332.06, + "probability": 0.9326 + }, + { + "start": 2332.1, + "end": 2337.68, + "probability": 0.9625 + }, + { + "start": 2338.76, + "end": 2341.38, + "probability": 0.9299 + }, + { + "start": 2341.54, + "end": 2342.84, + "probability": 0.6685 + }, + { + "start": 2342.96, + "end": 2343.34, + "probability": 0.716 + }, + { + "start": 2343.42, + "end": 2344.76, + "probability": 0.846 + }, + { + "start": 2344.86, + "end": 2345.0, + "probability": 0.395 + }, + { + "start": 2345.98, + "end": 2352.68, + "probability": 0.9539 + }, + { + "start": 2353.14, + "end": 2354.0, + "probability": 0.7798 + }, + { + "start": 2354.08, + "end": 2356.04, + "probability": 0.608 + }, + { + "start": 2356.58, + "end": 2361.28, + "probability": 0.9917 + }, + { + "start": 2361.98, + "end": 2363.08, + "probability": 0.968 + }, + { + "start": 2363.16, + "end": 2364.95, + "probability": 0.9968 + }, + { + "start": 2365.62, + "end": 2370.56, + "probability": 0.9566 + }, + { + "start": 2371.06, + "end": 2372.14, + "probability": 0.9047 + }, + { + "start": 2372.52, + "end": 2374.4, + "probability": 0.8179 + }, + { + "start": 2374.78, + "end": 2378.26, + "probability": 0.9712 + }, + { + "start": 2379.16, + "end": 2379.6, + "probability": 0.6666 + }, + { + "start": 2380.72, + "end": 2383.62, + "probability": 0.6404 + }, + { + "start": 2384.2, + "end": 2385.44, + "probability": 0.5701 + }, + { + "start": 2385.98, + "end": 2387.64, + "probability": 0.9528 + }, + { + "start": 2388.02, + "end": 2389.28, + "probability": 0.7139 + }, + { + "start": 2389.92, + "end": 2391.42, + "probability": 0.9805 + }, + { + "start": 2391.52, + "end": 2394.06, + "probability": 0.8911 + }, + { + "start": 2394.4, + "end": 2395.9, + "probability": 0.939 + }, + { + "start": 2396.4, + "end": 2398.48, + "probability": 0.9178 + }, + { + "start": 2399.12, + "end": 2400.72, + "probability": 0.9086 + }, + { + "start": 2401.28, + "end": 2404.42, + "probability": 0.9906 + }, + { + "start": 2405.04, + "end": 2408.96, + "probability": 0.9554 + }, + { + "start": 2409.62, + "end": 2412.56, + "probability": 0.7779 + }, + { + "start": 2412.9, + "end": 2415.26, + "probability": 0.9944 + }, + { + "start": 2416.48, + "end": 2416.66, + "probability": 0.4636 + }, + { + "start": 2416.66, + "end": 2417.7, + "probability": 0.6595 + }, + { + "start": 2418.0, + "end": 2420.24, + "probability": 0.995 + }, + { + "start": 2420.34, + "end": 2421.1, + "probability": 0.6503 + }, + { + "start": 2421.58, + "end": 2422.72, + "probability": 0.9124 + }, + { + "start": 2423.1, + "end": 2428.32, + "probability": 0.9833 + }, + { + "start": 2428.74, + "end": 2432.62, + "probability": 0.9863 + }, + { + "start": 2433.1, + "end": 2433.48, + "probability": 0.523 + }, + { + "start": 2433.54, + "end": 2434.08, + "probability": 0.8037 + }, + { + "start": 2434.12, + "end": 2436.28, + "probability": 0.9415 + }, + { + "start": 2436.76, + "end": 2439.56, + "probability": 0.9895 + }, + { + "start": 2439.56, + "end": 2442.48, + "probability": 0.9971 + }, + { + "start": 2442.56, + "end": 2445.38, + "probability": 0.9849 + }, + { + "start": 2445.46, + "end": 2445.8, + "probability": 0.6295 + }, + { + "start": 2445.8, + "end": 2447.62, + "probability": 0.9055 + }, + { + "start": 2448.26, + "end": 2449.92, + "probability": 0.4117 + }, + { + "start": 2450.0, + "end": 2450.94, + "probability": 0.8015 + }, + { + "start": 2451.8, + "end": 2454.28, + "probability": 0.4272 + }, + { + "start": 2454.52, + "end": 2455.98, + "probability": 0.6145 + }, + { + "start": 2456.48, + "end": 2457.08, + "probability": 0.431 + }, + { + "start": 2457.42, + "end": 2458.88, + "probability": 0.8034 + }, + { + "start": 2459.42, + "end": 2463.43, + "probability": 0.8296 + }, + { + "start": 2464.02, + "end": 2468.8, + "probability": 0.8774 + }, + { + "start": 2484.98, + "end": 2485.96, + "probability": 0.58 + }, + { + "start": 2490.22, + "end": 2491.34, + "probability": 0.5793 + }, + { + "start": 2491.97, + "end": 2494.57, + "probability": 0.9951 + }, + { + "start": 2494.68, + "end": 2495.54, + "probability": 0.9476 + }, + { + "start": 2496.98, + "end": 2499.3, + "probability": 0.9823 + }, + { + "start": 2499.46, + "end": 2499.64, + "probability": 0.8477 + }, + { + "start": 2499.8, + "end": 2503.28, + "probability": 0.9147 + }, + { + "start": 2503.78, + "end": 2504.18, + "probability": 0.8745 + }, + { + "start": 2504.98, + "end": 2505.48, + "probability": 0.828 + }, + { + "start": 2506.22, + "end": 2507.3, + "probability": 0.8481 + }, + { + "start": 2508.44, + "end": 2508.94, + "probability": 0.7649 + }, + { + "start": 2510.41, + "end": 2515.28, + "probability": 0.6984 + }, + { + "start": 2516.38, + "end": 2518.4, + "probability": 0.9535 + }, + { + "start": 2518.44, + "end": 2519.44, + "probability": 0.9843 + }, + { + "start": 2521.06, + "end": 2522.22, + "probability": 0.7892 + }, + { + "start": 2523.64, + "end": 2523.88, + "probability": 0.3951 + }, + { + "start": 2524.0, + "end": 2528.2, + "probability": 0.9888 + }, + { + "start": 2528.3, + "end": 2529.14, + "probability": 0.9741 + }, + { + "start": 2529.26, + "end": 2529.54, + "probability": 0.7758 + }, + { + "start": 2530.18, + "end": 2530.58, + "probability": 0.8107 + }, + { + "start": 2531.76, + "end": 2532.36, + "probability": 0.3192 + }, + { + "start": 2532.54, + "end": 2533.04, + "probability": 0.8481 + }, + { + "start": 2533.22, + "end": 2537.96, + "probability": 0.9795 + }, + { + "start": 2538.82, + "end": 2541.38, + "probability": 0.992 + }, + { + "start": 2541.38, + "end": 2543.58, + "probability": 0.9014 + }, + { + "start": 2543.74, + "end": 2544.52, + "probability": 0.7003 + }, + { + "start": 2544.98, + "end": 2546.88, + "probability": 0.9886 + }, + { + "start": 2546.96, + "end": 2548.74, + "probability": 0.9594 + }, + { + "start": 2551.58, + "end": 2553.58, + "probability": 0.9398 + }, + { + "start": 2554.62, + "end": 2557.08, + "probability": 0.8104 + }, + { + "start": 2557.7, + "end": 2562.0, + "probability": 0.9968 + }, + { + "start": 2562.04, + "end": 2566.96, + "probability": 0.908 + }, + { + "start": 2567.56, + "end": 2570.46, + "probability": 0.9966 + }, + { + "start": 2570.46, + "end": 2574.26, + "probability": 0.9934 + }, + { + "start": 2574.84, + "end": 2575.88, + "probability": 0.5906 + }, + { + "start": 2576.08, + "end": 2579.02, + "probability": 0.8101 + }, + { + "start": 2579.8, + "end": 2584.3, + "probability": 0.991 + }, + { + "start": 2585.28, + "end": 2586.5, + "probability": 0.9562 + }, + { + "start": 2586.68, + "end": 2590.48, + "probability": 0.9868 + }, + { + "start": 2591.06, + "end": 2596.94, + "probability": 0.9966 + }, + { + "start": 2597.58, + "end": 2599.7, + "probability": 0.9966 + }, + { + "start": 2599.84, + "end": 2600.21, + "probability": 0.9922 + }, + { + "start": 2600.78, + "end": 2603.22, + "probability": 0.8352 + }, + { + "start": 2604.08, + "end": 2605.66, + "probability": 0.9863 + }, + { + "start": 2605.98, + "end": 2610.29, + "probability": 0.9552 + }, + { + "start": 2611.14, + "end": 2611.94, + "probability": 0.9875 + }, + { + "start": 2612.06, + "end": 2612.26, + "probability": 0.7029 + }, + { + "start": 2612.32, + "end": 2614.66, + "probability": 0.954 + }, + { + "start": 2614.76, + "end": 2617.5, + "probability": 0.984 + }, + { + "start": 2618.44, + "end": 2622.8, + "probability": 0.8264 + }, + { + "start": 2624.06, + "end": 2626.4, + "probability": 0.7786 + }, + { + "start": 2627.54, + "end": 2630.18, + "probability": 0.872 + }, + { + "start": 2632.1, + "end": 2634.64, + "probability": 0.9308 + }, + { + "start": 2635.88, + "end": 2638.16, + "probability": 0.6867 + }, + { + "start": 2638.28, + "end": 2642.88, + "probability": 0.9757 + }, + { + "start": 2642.88, + "end": 2647.0, + "probability": 0.6574 + }, + { + "start": 2647.76, + "end": 2649.48, + "probability": 0.9979 + }, + { + "start": 2650.08, + "end": 2652.28, + "probability": 0.8778 + }, + { + "start": 2652.39, + "end": 2656.14, + "probability": 0.9617 + }, + { + "start": 2657.44, + "end": 2658.2, + "probability": 0.7235 + }, + { + "start": 2658.82, + "end": 2659.52, + "probability": 0.698 + }, + { + "start": 2660.34, + "end": 2663.46, + "probability": 0.8276 + }, + { + "start": 2664.14, + "end": 2666.02, + "probability": 0.849 + }, + { + "start": 2666.06, + "end": 2671.06, + "probability": 0.9761 + }, + { + "start": 2672.08, + "end": 2673.14, + "probability": 0.9792 + }, + { + "start": 2673.34, + "end": 2673.98, + "probability": 0.7441 + }, + { + "start": 2674.06, + "end": 2675.92, + "probability": 0.9407 + }, + { + "start": 2676.6, + "end": 2677.14, + "probability": 0.2759 + }, + { + "start": 2677.56, + "end": 2678.2, + "probability": 0.8604 + }, + { + "start": 2678.82, + "end": 2683.82, + "probability": 0.9338 + }, + { + "start": 2684.44, + "end": 2686.22, + "probability": 0.9052 + }, + { + "start": 2687.02, + "end": 2690.75, + "probability": 0.9836 + }, + { + "start": 2691.42, + "end": 2694.82, + "probability": 0.9956 + }, + { + "start": 2695.0, + "end": 2695.18, + "probability": 0.4797 + }, + { + "start": 2695.4, + "end": 2696.56, + "probability": 0.7297 + }, + { + "start": 2696.7, + "end": 2697.28, + "probability": 0.566 + }, + { + "start": 2697.38, + "end": 2701.36, + "probability": 0.994 + }, + { + "start": 2701.52, + "end": 2702.32, + "probability": 0.8413 + }, + { + "start": 2702.66, + "end": 2704.9, + "probability": 0.7568 + }, + { + "start": 2706.26, + "end": 2709.24, + "probability": 0.9585 + }, + { + "start": 2709.82, + "end": 2713.38, + "probability": 0.9346 + }, + { + "start": 2715.42, + "end": 2716.88, + "probability": 0.9405 + }, + { + "start": 2717.74, + "end": 2718.2, + "probability": 0.7188 + }, + { + "start": 2718.22, + "end": 2721.66, + "probability": 0.949 + }, + { + "start": 2721.84, + "end": 2722.2, + "probability": 0.2744 + }, + { + "start": 2722.82, + "end": 2723.06, + "probability": 0.5699 + }, + { + "start": 2723.86, + "end": 2724.1, + "probability": 0.9044 + }, + { + "start": 2725.56, + "end": 2725.88, + "probability": 0.7754 + }, + { + "start": 2726.46, + "end": 2727.22, + "probability": 0.758 + }, + { + "start": 2727.22, + "end": 2733.22, + "probability": 0.926 + }, + { + "start": 2734.0, + "end": 2734.88, + "probability": 0.9922 + }, + { + "start": 2736.64, + "end": 2738.88, + "probability": 0.9003 + }, + { + "start": 2739.52, + "end": 2739.74, + "probability": 0.6964 + }, + { + "start": 2740.6, + "end": 2741.38, + "probability": 0.8082 + }, + { + "start": 2741.56, + "end": 2745.98, + "probability": 0.9613 + }, + { + "start": 2747.64, + "end": 2749.52, + "probability": 0.9961 + }, + { + "start": 2750.38, + "end": 2752.06, + "probability": 0.9414 + }, + { + "start": 2754.2, + "end": 2758.48, + "probability": 0.8318 + }, + { + "start": 2758.86, + "end": 2762.44, + "probability": 0.9137 + }, + { + "start": 2763.56, + "end": 2765.5, + "probability": 0.8188 + }, + { + "start": 2767.38, + "end": 2769.24, + "probability": 0.959 + }, + { + "start": 2771.44, + "end": 2774.84, + "probability": 0.9827 + }, + { + "start": 2775.64, + "end": 2779.78, + "probability": 0.9805 + }, + { + "start": 2781.48, + "end": 2782.64, + "probability": 0.9808 + }, + { + "start": 2783.34, + "end": 2789.22, + "probability": 0.8791 + }, + { + "start": 2790.1, + "end": 2793.38, + "probability": 0.9736 + }, + { + "start": 2794.4, + "end": 2798.96, + "probability": 0.9605 + }, + { + "start": 2800.38, + "end": 2803.12, + "probability": 0.9945 + }, + { + "start": 2804.48, + "end": 2808.06, + "probability": 0.9373 + }, + { + "start": 2809.26, + "end": 2812.6, + "probability": 0.9555 + }, + { + "start": 2813.56, + "end": 2815.02, + "probability": 0.9995 + }, + { + "start": 2816.2, + "end": 2817.12, + "probability": 0.6652 + }, + { + "start": 2818.74, + "end": 2825.04, + "probability": 0.951 + }, + { + "start": 2825.2, + "end": 2826.64, + "probability": 0.8941 + }, + { + "start": 2826.74, + "end": 2829.8, + "probability": 0.9585 + }, + { + "start": 2829.8, + "end": 2830.48, + "probability": 0.9041 + }, + { + "start": 2832.08, + "end": 2832.82, + "probability": 0.7529 + }, + { + "start": 2834.86, + "end": 2837.82, + "probability": 0.9098 + }, + { + "start": 2838.76, + "end": 2840.24, + "probability": 0.7466 + }, + { + "start": 2841.42, + "end": 2842.88, + "probability": 0.924 + }, + { + "start": 2844.14, + "end": 2848.76, + "probability": 0.8521 + }, + { + "start": 2849.62, + "end": 2856.0, + "probability": 0.9594 + }, + { + "start": 2858.04, + "end": 2859.4, + "probability": 0.8518 + }, + { + "start": 2860.52, + "end": 2861.76, + "probability": 0.8025 + }, + { + "start": 2862.62, + "end": 2866.38, + "probability": 0.9922 + }, + { + "start": 2866.38, + "end": 2869.12, + "probability": 0.9962 + }, + { + "start": 2872.66, + "end": 2874.72, + "probability": 0.9992 + }, + { + "start": 2876.52, + "end": 2877.68, + "probability": 0.9312 + }, + { + "start": 2878.66, + "end": 2882.78, + "probability": 0.9731 + }, + { + "start": 2883.66, + "end": 2886.36, + "probability": 0.9577 + }, + { + "start": 2887.64, + "end": 2891.46, + "probability": 0.9595 + }, + { + "start": 2891.46, + "end": 2895.2, + "probability": 0.9929 + }, + { + "start": 2896.3, + "end": 2899.42, + "probability": 0.8549 + }, + { + "start": 2900.04, + "end": 2900.9, + "probability": 0.5898 + }, + { + "start": 2901.1, + "end": 2908.12, + "probability": 0.9702 + }, + { + "start": 2908.72, + "end": 2911.46, + "probability": 0.9727 + }, + { + "start": 2912.12, + "end": 2916.18, + "probability": 0.9819 + }, + { + "start": 2916.42, + "end": 2916.6, + "probability": 0.5489 + }, + { + "start": 2916.96, + "end": 2919.46, + "probability": 0.9366 + }, + { + "start": 2919.74, + "end": 2921.9, + "probability": 0.9473 + }, + { + "start": 2922.32, + "end": 2924.37, + "probability": 0.9443 + }, + { + "start": 2924.56, + "end": 2924.99, + "probability": 0.9022 + }, + { + "start": 2925.9, + "end": 2926.28, + "probability": 0.5169 + }, + { + "start": 2926.3, + "end": 2926.8, + "probability": 0.7295 + }, + { + "start": 2926.9, + "end": 2931.3, + "probability": 0.5096 + }, + { + "start": 2931.3, + "end": 2936.58, + "probability": 0.9768 + }, + { + "start": 2938.94, + "end": 2940.04, + "probability": 0.3778 + }, + { + "start": 2941.34, + "end": 2941.84, + "probability": 0.7703 + }, + { + "start": 2941.96, + "end": 2945.74, + "probability": 0.8852 + }, + { + "start": 2946.96, + "end": 2951.18, + "probability": 0.8504 + }, + { + "start": 2953.04, + "end": 2956.68, + "probability": 0.8595 + }, + { + "start": 2957.62, + "end": 2958.46, + "probability": 0.5681 + }, + { + "start": 2959.32, + "end": 2960.22, + "probability": 0.8263 + }, + { + "start": 2961.02, + "end": 2966.28, + "probability": 0.7971 + }, + { + "start": 2967.36, + "end": 2968.52, + "probability": 0.9419 + }, + { + "start": 2969.22, + "end": 2969.5, + "probability": 0.0038 + }, + { + "start": 2969.5, + "end": 2971.36, + "probability": 0.4443 + }, + { + "start": 2972.0, + "end": 2973.08, + "probability": 0.7673 + }, + { + "start": 2973.66, + "end": 2976.08, + "probability": 0.1276 + }, + { + "start": 2981.72, + "end": 2985.44, + "probability": 0.039 + }, + { + "start": 2985.96, + "end": 2989.76, + "probability": 0.6824 + }, + { + "start": 2990.64, + "end": 2993.88, + "probability": 0.7647 + }, + { + "start": 2994.4, + "end": 2995.12, + "probability": 0.7005 + }, + { + "start": 2995.76, + "end": 2999.64, + "probability": 0.7417 + }, + { + "start": 2999.98, + "end": 3003.52, + "probability": 0.7226 + }, + { + "start": 3003.56, + "end": 3004.08, + "probability": 0.4969 + }, + { + "start": 3004.8, + "end": 3007.16, + "probability": 0.8958 + }, + { + "start": 3015.3, + "end": 3019.44, + "probability": 0.8271 + }, + { + "start": 3019.86, + "end": 3021.64, + "probability": 0.9907 + }, + { + "start": 3024.6, + "end": 3025.38, + "probability": 0.3392 + }, + { + "start": 3025.66, + "end": 3026.38, + "probability": 0.6273 + }, + { + "start": 3027.65, + "end": 3030.8, + "probability": 0.6784 + }, + { + "start": 3032.58, + "end": 3036.08, + "probability": 0.8583 + }, + { + "start": 3036.34, + "end": 3037.5, + "probability": 0.8233 + }, + { + "start": 3038.84, + "end": 3038.94, + "probability": 0.6773 + }, + { + "start": 3041.4, + "end": 3042.08, + "probability": 0.8582 + }, + { + "start": 3042.64, + "end": 3046.14, + "probability": 0.8691 + }, + { + "start": 3046.14, + "end": 3050.6, + "probability": 0.8809 + }, + { + "start": 3051.16, + "end": 3052.42, + "probability": 0.7506 + }, + { + "start": 3052.56, + "end": 3055.52, + "probability": 0.8438 + }, + { + "start": 3055.7, + "end": 3059.02, + "probability": 0.9935 + }, + { + "start": 3059.02, + "end": 3063.18, + "probability": 0.7166 + }, + { + "start": 3072.72, + "end": 3074.56, + "probability": 0.4928 + }, + { + "start": 3075.26, + "end": 3076.42, + "probability": 0.8504 + }, + { + "start": 3076.98, + "end": 3080.32, + "probability": 0.9927 + }, + { + "start": 3081.06, + "end": 3085.78, + "probability": 0.826 + }, + { + "start": 3086.5, + "end": 3087.64, + "probability": 0.4595 + }, + { + "start": 3087.78, + "end": 3088.92, + "probability": 0.3536 + }, + { + "start": 3089.36, + "end": 3090.34, + "probability": 0.6297 + }, + { + "start": 3090.68, + "end": 3092.64, + "probability": 0.7876 + }, + { + "start": 3093.5, + "end": 3098.44, + "probability": 0.9172 + }, + { + "start": 3098.94, + "end": 3101.84, + "probability": 0.9283 + }, + { + "start": 3102.5, + "end": 3106.94, + "probability": 0.9663 + }, + { + "start": 3107.32, + "end": 3111.52, + "probability": 0.9928 + }, + { + "start": 3112.1, + "end": 3114.12, + "probability": 0.9357 + }, + { + "start": 3114.72, + "end": 3116.78, + "probability": 0.9918 + }, + { + "start": 3117.32, + "end": 3121.0, + "probability": 0.9951 + }, + { + "start": 3121.0, + "end": 3124.12, + "probability": 0.9956 + }, + { + "start": 3125.28, + "end": 3126.74, + "probability": 0.9885 + }, + { + "start": 3128.48, + "end": 3132.51, + "probability": 0.744 + }, + { + "start": 3133.16, + "end": 3136.64, + "probability": 0.9979 + }, + { + "start": 3136.84, + "end": 3137.8, + "probability": 0.4131 + }, + { + "start": 3138.52, + "end": 3141.34, + "probability": 0.9891 + }, + { + "start": 3142.06, + "end": 3145.38, + "probability": 0.9958 + }, + { + "start": 3145.92, + "end": 3151.64, + "probability": 0.9609 + }, + { + "start": 3152.38, + "end": 3154.98, + "probability": 0.9767 + }, + { + "start": 3154.98, + "end": 3159.22, + "probability": 0.9954 + }, + { + "start": 3163.02, + "end": 3166.02, + "probability": 0.9801 + }, + { + "start": 3166.4, + "end": 3170.42, + "probability": 0.9266 + }, + { + "start": 3170.42, + "end": 3174.04, + "probability": 0.9703 + }, + { + "start": 3174.6, + "end": 3181.54, + "probability": 0.9239 + }, + { + "start": 3182.3, + "end": 3182.86, + "probability": 0.1684 + }, + { + "start": 3182.86, + "end": 3186.48, + "probability": 0.6333 + }, + { + "start": 3187.22, + "end": 3192.16, + "probability": 0.9917 + }, + { + "start": 3192.66, + "end": 3194.2, + "probability": 0.9912 + }, + { + "start": 3194.82, + "end": 3197.86, + "probability": 0.9952 + }, + { + "start": 3197.86, + "end": 3200.78, + "probability": 0.9427 + }, + { + "start": 3201.4, + "end": 3203.14, + "probability": 0.9615 + }, + { + "start": 3203.86, + "end": 3206.22, + "probability": 0.9879 + }, + { + "start": 3206.94, + "end": 3208.21, + "probability": 0.9611 + }, + { + "start": 3209.02, + "end": 3212.02, + "probability": 0.9835 + }, + { + "start": 3212.52, + "end": 3215.42, + "probability": 0.925 + }, + { + "start": 3215.86, + "end": 3218.74, + "probability": 0.8596 + }, + { + "start": 3219.24, + "end": 3220.0, + "probability": 0.8223 + }, + { + "start": 3220.08, + "end": 3220.56, + "probability": 0.41 + }, + { + "start": 3221.36, + "end": 3222.22, + "probability": 0.7872 + }, + { + "start": 3222.76, + "end": 3223.82, + "probability": 0.895 + }, + { + "start": 3223.88, + "end": 3224.16, + "probability": 0.4479 + }, + { + "start": 3224.4, + "end": 3224.94, + "probability": 0.4089 + }, + { + "start": 3225.28, + "end": 3226.52, + "probability": 0.6688 + }, + { + "start": 3226.62, + "end": 3227.3, + "probability": 0.5541 + }, + { + "start": 3227.4, + "end": 3229.66, + "probability": 0.8048 + }, + { + "start": 3229.74, + "end": 3232.62, + "probability": 0.9753 + }, + { + "start": 3233.02, + "end": 3234.91, + "probability": 0.9312 + }, + { + "start": 3235.36, + "end": 3240.7, + "probability": 0.9921 + }, + { + "start": 3244.44, + "end": 3247.76, + "probability": 0.5416 + }, + { + "start": 3249.36, + "end": 3249.88, + "probability": 0.6092 + }, + { + "start": 3250.16, + "end": 3253.56, + "probability": 0.8571 + }, + { + "start": 3254.04, + "end": 3259.2, + "probability": 0.9772 + }, + { + "start": 3260.42, + "end": 3265.84, + "probability": 0.8106 + }, + { + "start": 3266.92, + "end": 3270.56, + "probability": 0.9191 + }, + { + "start": 3271.12, + "end": 3273.92, + "probability": 0.9308 + }, + { + "start": 3274.72, + "end": 3276.92, + "probability": 0.9025 + }, + { + "start": 3277.52, + "end": 3280.48, + "probability": 0.846 + }, + { + "start": 3281.54, + "end": 3284.44, + "probability": 0.9242 + }, + { + "start": 3285.28, + "end": 3288.0, + "probability": 0.9845 + }, + { + "start": 3288.0, + "end": 3292.54, + "probability": 0.6224 + }, + { + "start": 3293.42, + "end": 3296.2, + "probability": 0.9229 + }, + { + "start": 3296.32, + "end": 3297.22, + "probability": 0.7622 + }, + { + "start": 3297.6, + "end": 3299.76, + "probability": 0.8243 + }, + { + "start": 3300.62, + "end": 3304.08, + "probability": 0.8541 + }, + { + "start": 3304.6, + "end": 3305.06, + "probability": 0.5966 + }, + { + "start": 3305.2, + "end": 3305.68, + "probability": 0.6097 + }, + { + "start": 3305.7, + "end": 3306.2, + "probability": 0.6167 + }, + { + "start": 3306.28, + "end": 3306.96, + "probability": 0.5592 + }, + { + "start": 3307.4, + "end": 3308.6, + "probability": 0.0616 + }, + { + "start": 3317.27, + "end": 3322.92, + "probability": 0.7152 + }, + { + "start": 3323.04, + "end": 3326.24, + "probability": 0.9818 + }, + { + "start": 3326.79, + "end": 3330.5, + "probability": 0.6556 + }, + { + "start": 3330.86, + "end": 3333.12, + "probability": 0.9912 + }, + { + "start": 3333.22, + "end": 3336.38, + "probability": 0.9299 + }, + { + "start": 3336.66, + "end": 3337.3, + "probability": 0.7635 + }, + { + "start": 3337.48, + "end": 3341.1, + "probability": 0.9644 + }, + { + "start": 3341.64, + "end": 3343.42, + "probability": 0.4999 + }, + { + "start": 3343.48, + "end": 3346.08, + "probability": 0.9799 + }, + { + "start": 3346.08, + "end": 3348.98, + "probability": 0.7962 + }, + { + "start": 3349.54, + "end": 3351.34, + "probability": 0.8083 + }, + { + "start": 3370.64, + "end": 3375.5, + "probability": 0.6522 + }, + { + "start": 3375.5, + "end": 3379.66, + "probability": 0.6401 + }, + { + "start": 3380.22, + "end": 3381.8, + "probability": 0.1099 + }, + { + "start": 3394.32, + "end": 3395.18, + "probability": 0.0 + }, + { + "start": 3398.78, + "end": 3402.5, + "probability": 0.0746 + }, + { + "start": 3402.64, + "end": 3405.02, + "probability": 0.4 + }, + { + "start": 3405.02, + "end": 3407.16, + "probability": 0.9786 + }, + { + "start": 3407.88, + "end": 3410.66, + "probability": 0.5003 + }, + { + "start": 3411.12, + "end": 3414.28, + "probability": 0.0061 + }, + { + "start": 3415.3, + "end": 3416.34, + "probability": 0.0565 + }, + { + "start": 3416.34, + "end": 3416.34, + "probability": 0.0808 + }, + { + "start": 3416.34, + "end": 3416.34, + "probability": 0.0398 + }, + { + "start": 3416.34, + "end": 3419.19, + "probability": 0.2257 + }, + { + "start": 3425.46, + "end": 3428.6, + "probability": 0.0225 + }, + { + "start": 3428.6, + "end": 3428.84, + "probability": 0.0267 + }, + { + "start": 3431.38, + "end": 3432.66, + "probability": 0.0044 + }, + { + "start": 3437.54, + "end": 3439.3, + "probability": 0.0666 + }, + { + "start": 3439.9, + "end": 3440.0, + "probability": 0.1541 + }, + { + "start": 3440.0, + "end": 3441.92, + "probability": 0.0377 + }, + { + "start": 3443.1, + "end": 3444.66, + "probability": 0.1391 + }, + { + "start": 3444.92, + "end": 3445.22, + "probability": 0.0082 + }, + { + "start": 3445.22, + "end": 3446.02, + "probability": 0.0942 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3450.0, + "end": 3450.0, + "probability": 0.0 + }, + { + "start": 3451.3, + "end": 3452.16, + "probability": 0.0903 + }, + { + "start": 3453.44, + "end": 3454.71, + "probability": 0.3652 + }, + { + "start": 3455.38, + "end": 3456.28, + "probability": 0.8186 + }, + { + "start": 3456.56, + "end": 3456.7, + "probability": 0.707 + }, + { + "start": 3458.14, + "end": 3460.98, + "probability": 0.5317 + }, + { + "start": 3462.92, + "end": 3464.7, + "probability": 0.9347 + }, + { + "start": 3465.66, + "end": 3466.6, + "probability": 0.7858 + }, + { + "start": 3467.54, + "end": 3472.72, + "probability": 0.7194 + }, + { + "start": 3473.1, + "end": 3473.52, + "probability": 0.847 + }, + { + "start": 3475.16, + "end": 3476.82, + "probability": 0.5153 + }, + { + "start": 3478.28, + "end": 3479.78, + "probability": 0.625 + }, + { + "start": 3480.6, + "end": 3480.68, + "probability": 0.4361 + }, + { + "start": 3481.02, + "end": 3484.76, + "probability": 0.8142 + }, + { + "start": 3484.9, + "end": 3487.74, + "probability": 0.9255 + }, + { + "start": 3487.96, + "end": 3493.18, + "probability": 0.943 + }, + { + "start": 3493.92, + "end": 3495.68, + "probability": 0.9112 + }, + { + "start": 3496.32, + "end": 3500.9, + "probability": 0.9556 + }, + { + "start": 3500.9, + "end": 3506.84, + "probability": 0.6453 + }, + { + "start": 3508.64, + "end": 3511.24, + "probability": 0.7707 + }, + { + "start": 3511.76, + "end": 3513.92, + "probability": 0.9927 + }, + { + "start": 3513.92, + "end": 3517.34, + "probability": 0.8402 + }, + { + "start": 3518.0, + "end": 3519.14, + "probability": 0.3738 + }, + { + "start": 3519.52, + "end": 3524.6, + "probability": 0.9816 + }, + { + "start": 3525.12, + "end": 3528.08, + "probability": 0.8868 + }, + { + "start": 3528.5, + "end": 3533.0, + "probability": 0.9874 + }, + { + "start": 3533.0, + "end": 3538.0, + "probability": 0.994 + }, + { + "start": 3538.56, + "end": 3539.62, + "probability": 0.8827 + }, + { + "start": 3540.52, + "end": 3543.02, + "probability": 0.9618 + }, + { + "start": 3543.44, + "end": 3546.09, + "probability": 0.8359 + }, + { + "start": 3546.64, + "end": 3548.24, + "probability": 0.3361 + }, + { + "start": 3548.8, + "end": 3551.5, + "probability": 0.8617 + }, + { + "start": 3552.54, + "end": 3554.56, + "probability": 0.7891 + }, + { + "start": 3554.96, + "end": 3559.46, + "probability": 0.5903 + }, + { + "start": 3560.42, + "end": 3564.94, + "probability": 0.938 + }, + { + "start": 3565.84, + "end": 3568.2, + "probability": 0.6403 + }, + { + "start": 3569.3, + "end": 3573.8, + "probability": 0.8834 + }, + { + "start": 3574.36, + "end": 3577.26, + "probability": 0.9164 + }, + { + "start": 3577.26, + "end": 3580.32, + "probability": 0.9935 + }, + { + "start": 3581.58, + "end": 3584.4, + "probability": 0.993 + }, + { + "start": 3584.84, + "end": 3588.08, + "probability": 0.9931 + }, + { + "start": 3588.5, + "end": 3589.54, + "probability": 0.8596 + }, + { + "start": 3590.08, + "end": 3591.46, + "probability": 0.9633 + }, + { + "start": 3592.12, + "end": 3597.08, + "probability": 0.9242 + }, + { + "start": 3597.7, + "end": 3597.8, + "probability": 0.0381 + }, + { + "start": 3599.7, + "end": 3604.84, + "probability": 0.331 + }, + { + "start": 3605.36, + "end": 3607.26, + "probability": 0.9105 + }, + { + "start": 3607.26, + "end": 3610.58, + "probability": 0.9604 + }, + { + "start": 3611.06, + "end": 3613.56, + "probability": 0.9317 + }, + { + "start": 3614.76, + "end": 3616.09, + "probability": 0.5859 + }, + { + "start": 3616.18, + "end": 3621.86, + "probability": 0.9782 + }, + { + "start": 3622.68, + "end": 3623.58, + "probability": 0.7541 + }, + { + "start": 3624.54, + "end": 3625.86, + "probability": 0.501 + }, + { + "start": 3627.01, + "end": 3631.32, + "probability": 0.8598 + }, + { + "start": 3631.32, + "end": 3636.74, + "probability": 0.9114 + }, + { + "start": 3637.16, + "end": 3637.72, + "probability": 0.5737 + }, + { + "start": 3638.18, + "end": 3639.46, + "probability": 0.6165 + }, + { + "start": 3641.34, + "end": 3647.36, + "probability": 0.1393 + }, + { + "start": 3647.44, + "end": 3650.52, + "probability": 0.7456 + }, + { + "start": 3650.9, + "end": 3654.88, + "probability": 0.7106 + }, + { + "start": 3654.88, + "end": 3657.6, + "probability": 0.9212 + }, + { + "start": 3658.1, + "end": 3660.12, + "probability": 0.6972 + }, + { + "start": 3660.64, + "end": 3662.64, + "probability": 0.9789 + }, + { + "start": 3663.58, + "end": 3663.79, + "probability": 0.337 + }, + { + "start": 3664.18, + "end": 3664.18, + "probability": 0.0281 + }, + { + "start": 3664.18, + "end": 3664.18, + "probability": 0.4073 + }, + { + "start": 3664.26, + "end": 3666.58, + "probability": 0.9626 + }, + { + "start": 3667.08, + "end": 3669.86, + "probability": 0.8882 + }, + { + "start": 3670.7, + "end": 3670.9, + "probability": 0.318 + }, + { + "start": 3671.52, + "end": 3675.76, + "probability": 0.5826 + }, + { + "start": 3676.12, + "end": 3679.18, + "probability": 0.8786 + }, + { + "start": 3680.26, + "end": 3682.88, + "probability": 0.9801 + }, + { + "start": 3683.24, + "end": 3687.38, + "probability": 0.9949 + }, + { + "start": 3688.4, + "end": 3689.52, + "probability": 0.6968 + }, + { + "start": 3689.54, + "end": 3689.54, + "probability": 0.4112 + }, + { + "start": 3689.56, + "end": 3690.64, + "probability": 0.7796 + }, + { + "start": 3690.68, + "end": 3696.14, + "probability": 0.5778 + }, + { + "start": 3696.44, + "end": 3697.58, + "probability": 0.8606 + }, + { + "start": 3698.24, + "end": 3703.52, + "probability": 0.8846 + }, + { + "start": 3703.98, + "end": 3705.74, + "probability": 0.1875 + }, + { + "start": 3706.52, + "end": 3710.1, + "probability": 0.7316 + }, + { + "start": 3710.12, + "end": 3711.02, + "probability": 0.8941 + }, + { + "start": 3713.26, + "end": 3717.82, + "probability": 0.9681 + }, + { + "start": 3717.82, + "end": 3726.18, + "probability": 0.5292 + }, + { + "start": 3726.38, + "end": 3727.1, + "probability": 0.614 + }, + { + "start": 3727.1, + "end": 3727.72, + "probability": 0.5614 + }, + { + "start": 3727.88, + "end": 3730.42, + "probability": 0.0112 + }, + { + "start": 3731.2, + "end": 3732.32, + "probability": 0.1007 + }, + { + "start": 3742.7, + "end": 3745.36, + "probability": 0.5719 + }, + { + "start": 3745.84, + "end": 3747.76, + "probability": 0.9868 + }, + { + "start": 3747.82, + "end": 3748.92, + "probability": 0.9253 + }, + { + "start": 3749.08, + "end": 3751.2, + "probability": 0.7141 + }, + { + "start": 3751.24, + "end": 3752.0, + "probability": 0.9583 + }, + { + "start": 3752.38, + "end": 3757.42, + "probability": 0.71 + }, + { + "start": 3757.46, + "end": 3758.95, + "probability": 0.2577 + }, + { + "start": 3759.34, + "end": 3759.7, + "probability": 0.7584 + }, + { + "start": 3760.84, + "end": 3761.8, + "probability": 0.3177 + }, + { + "start": 3762.16, + "end": 3764.08, + "probability": 0.0674 + }, + { + "start": 3764.18, + "end": 3766.32, + "probability": 0.0226 + }, + { + "start": 3767.96, + "end": 3767.98, + "probability": 0.101 + }, + { + "start": 3771.1, + "end": 3772.76, + "probability": 0.2441 + }, + { + "start": 3772.86, + "end": 3774.2, + "probability": 0.8885 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.0, + "end": 3872.0, + "probability": 0.0 + }, + { + "start": 3872.08, + "end": 3872.1, + "probability": 0.043 + }, + { + "start": 3872.1, + "end": 3873.78, + "probability": 0.0498 + }, + { + "start": 3873.86, + "end": 3875.58, + "probability": 0.0976 + }, + { + "start": 3877.38, + "end": 3877.38, + "probability": 0.0083 + }, + { + "start": 3891.26, + "end": 3892.08, + "probability": 0.0755 + }, + { + "start": 3892.08, + "end": 3892.18, + "probability": 0.3562 + }, + { + "start": 3892.76, + "end": 3895.72, + "probability": 0.0635 + }, + { + "start": 3895.76, + "end": 3896.86, + "probability": 0.1601 + }, + { + "start": 3898.04, + "end": 3899.32, + "probability": 0.0117 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.0, + "end": 4010.0, + "probability": 0.0 + }, + { + "start": 4010.28, + "end": 4010.66, + "probability": 0.3408 + }, + { + "start": 4010.66, + "end": 4010.66, + "probability": 0.0642 + }, + { + "start": 4010.66, + "end": 4010.66, + "probability": 0.2198 + }, + { + "start": 4010.66, + "end": 4011.46, + "probability": 0.1051 + }, + { + "start": 4011.46, + "end": 4011.46, + "probability": 0.0593 + }, + { + "start": 4011.46, + "end": 4016.26, + "probability": 0.3576 + }, + { + "start": 4016.92, + "end": 4017.8, + "probability": 0.7075 + }, + { + "start": 4019.2, + "end": 4020.18, + "probability": 0.7613 + }, + { + "start": 4020.4, + "end": 4021.56, + "probability": 0.7028 + }, + { + "start": 4021.64, + "end": 4022.87, + "probability": 0.8682 + }, + { + "start": 4023.02, + "end": 4024.24, + "probability": 0.6909 + }, + { + "start": 4024.46, + "end": 4029.34, + "probability": 0.7862 + }, + { + "start": 4030.36, + "end": 4031.8, + "probability": 0.905 + }, + { + "start": 4031.86, + "end": 4036.36, + "probability": 0.9832 + }, + { + "start": 4036.88, + "end": 4038.42, + "probability": 0.9052 + }, + { + "start": 4038.58, + "end": 4040.14, + "probability": 0.9854 + }, + { + "start": 4040.8, + "end": 4043.52, + "probability": 0.9593 + }, + { + "start": 4043.56, + "end": 4046.24, + "probability": 0.9512 + }, + { + "start": 4046.5, + "end": 4047.42, + "probability": 0.9034 + }, + { + "start": 4048.26, + "end": 4050.56, + "probability": 0.7396 + }, + { + "start": 4052.02, + "end": 4053.32, + "probability": 0.5714 + }, + { + "start": 4054.43, + "end": 4057.42, + "probability": 0.8713 + }, + { + "start": 4058.01, + "end": 4060.54, + "probability": 0.8181 + }, + { + "start": 4060.9, + "end": 4063.42, + "probability": 0.9544 + }, + { + "start": 4063.64, + "end": 4064.32, + "probability": 0.9686 + }, + { + "start": 4064.66, + "end": 4065.52, + "probability": 0.9834 + }, + { + "start": 4065.76, + "end": 4066.02, + "probability": 0.1598 + }, + { + "start": 4066.07, + "end": 4066.54, + "probability": 0.8236 + }, + { + "start": 4066.94, + "end": 4068.52, + "probability": 0.7527 + }, + { + "start": 4069.1, + "end": 4069.78, + "probability": 0.9325 + }, + { + "start": 4069.88, + "end": 4072.58, + "probability": 0.7943 + }, + { + "start": 4073.44, + "end": 4074.34, + "probability": 0.9839 + }, + { + "start": 4074.58, + "end": 4075.72, + "probability": 0.9951 + }, + { + "start": 4075.86, + "end": 4076.28, + "probability": 0.8168 + }, + { + "start": 4076.46, + "end": 4077.2, + "probability": 0.9078 + }, + { + "start": 4078.58, + "end": 4078.84, + "probability": 0.6565 + }, + { + "start": 4078.86, + "end": 4081.75, + "probability": 0.9389 + }, + { + "start": 4082.08, + "end": 4086.02, + "probability": 0.568 + }, + { + "start": 4086.32, + "end": 4088.1, + "probability": 0.9654 + }, + { + "start": 4088.38, + "end": 4089.0, + "probability": 0.5064 + }, + { + "start": 4089.56, + "end": 4090.06, + "probability": 0.6532 + }, + { + "start": 4090.32, + "end": 4094.92, + "probability": 0.8669 + }, + { + "start": 4095.14, + "end": 4098.34, + "probability": 0.964 + }, + { + "start": 4099.72, + "end": 4100.96, + "probability": 0.8709 + }, + { + "start": 4101.06, + "end": 4103.0, + "probability": 0.7356 + }, + { + "start": 4103.68, + "end": 4105.84, + "probability": 0.8392 + }, + { + "start": 4105.96, + "end": 4107.96, + "probability": 0.8838 + }, + { + "start": 4109.62, + "end": 4109.7, + "probability": 0.3553 + }, + { + "start": 4109.7, + "end": 4112.66, + "probability": 0.9707 + }, + { + "start": 4112.66, + "end": 4114.38, + "probability": 0.6976 + }, + { + "start": 4114.92, + "end": 4118.06, + "probability": 0.9909 + }, + { + "start": 4118.16, + "end": 4118.32, + "probability": 0.7084 + }, + { + "start": 4118.94, + "end": 4119.42, + "probability": 0.6706 + }, + { + "start": 4119.5, + "end": 4121.4, + "probability": 0.8007 + }, + { + "start": 4121.92, + "end": 4123.84, + "probability": 0.8222 + }, + { + "start": 4124.3, + "end": 4127.0, + "probability": 0.7988 + }, + { + "start": 4127.48, + "end": 4130.04, + "probability": 0.8848 + }, + { + "start": 4130.52, + "end": 4133.86, + "probability": 0.978 + }, + { + "start": 4134.3, + "end": 4135.04, + "probability": 0.5349 + }, + { + "start": 4135.18, + "end": 4136.24, + "probability": 0.6525 + }, + { + "start": 4137.28, + "end": 4142.1, + "probability": 0.5797 + }, + { + "start": 4142.54, + "end": 4143.4, + "probability": 0.4554 + }, + { + "start": 4143.78, + "end": 4147.23, + "probability": 0.8727 + }, + { + "start": 4147.42, + "end": 4149.7, + "probability": 0.7386 + }, + { + "start": 4149.74, + "end": 4150.08, + "probability": 0.5488 + }, + { + "start": 4150.72, + "end": 4151.74, + "probability": 0.4548 + }, + { + "start": 4151.86, + "end": 4153.48, + "probability": 0.257 + }, + { + "start": 4155.61, + "end": 4159.68, + "probability": 0.1404 + }, + { + "start": 4160.28, + "end": 4160.9, + "probability": 0.5963 + }, + { + "start": 4161.48, + "end": 4162.36, + "probability": 0.0099 + }, + { + "start": 4166.17, + "end": 4166.8, + "probability": 0.4058 + }, + { + "start": 4166.8, + "end": 4168.66, + "probability": 0.2274 + }, + { + "start": 4169.22, + "end": 4173.22, + "probability": 0.5779 + }, + { + "start": 4173.78, + "end": 4175.08, + "probability": 0.6637 + }, + { + "start": 4175.3, + "end": 4178.22, + "probability": 0.9739 + }, + { + "start": 4178.62, + "end": 4181.24, + "probability": 0.909 + }, + { + "start": 4185.14, + "end": 4188.12, + "probability": 0.8599 + }, + { + "start": 4189.16, + "end": 4189.78, + "probability": 0.5562 + }, + { + "start": 4190.38, + "end": 4191.62, + "probability": 0.6666 + }, + { + "start": 4192.32, + "end": 4197.78, + "probability": 0.9896 + }, + { + "start": 4197.96, + "end": 4198.72, + "probability": 0.5052 + }, + { + "start": 4199.86, + "end": 4201.0, + "probability": 0.7228 + }, + { + "start": 4201.84, + "end": 4203.0, + "probability": 0.7033 + }, + { + "start": 4204.06, + "end": 4207.06, + "probability": 0.6518 + }, + { + "start": 4207.58, + "end": 4208.7, + "probability": 0.7454 + }, + { + "start": 4209.44, + "end": 4212.3, + "probability": 0.5142 + }, + { + "start": 4215.74, + "end": 4217.48, + "probability": 0.5454 + }, + { + "start": 4218.16, + "end": 4218.44, + "probability": 0.4483 + }, + { + "start": 4219.34, + "end": 4222.78, + "probability": 0.8483 + }, + { + "start": 4223.68, + "end": 4226.58, + "probability": 0.8374 + }, + { + "start": 4227.02, + "end": 4227.7, + "probability": 0.954 + }, + { + "start": 4228.36, + "end": 4233.58, + "probability": 0.8179 + }, + { + "start": 4234.24, + "end": 4236.46, + "probability": 0.8555 + }, + { + "start": 4236.62, + "end": 4239.42, + "probability": 0.6964 + }, + { + "start": 4240.38, + "end": 4245.62, + "probability": 0.9751 + }, + { + "start": 4246.24, + "end": 4248.24, + "probability": 0.6654 + }, + { + "start": 4248.38, + "end": 4251.54, + "probability": 0.7929 + }, + { + "start": 4251.88, + "end": 4254.42, + "probability": 0.9924 + }, + { + "start": 4254.9, + "end": 4256.87, + "probability": 0.9797 + }, + { + "start": 4257.58, + "end": 4259.48, + "probability": 0.7554 + }, + { + "start": 4260.2, + "end": 4265.88, + "probability": 0.9248 + }, + { + "start": 4266.24, + "end": 4266.92, + "probability": 0.853 + }, + { + "start": 4267.16, + "end": 4269.86, + "probability": 0.9624 + }, + { + "start": 4270.0, + "end": 4271.3, + "probability": 0.9951 + }, + { + "start": 4271.86, + "end": 4274.78, + "probability": 0.9789 + }, + { + "start": 4275.4, + "end": 4278.84, + "probability": 0.9458 + }, + { + "start": 4279.68, + "end": 4281.66, + "probability": 0.9983 + }, + { + "start": 4281.76, + "end": 4285.62, + "probability": 0.9965 + }, + { + "start": 4285.94, + "end": 4286.26, + "probability": 0.6696 + }, + { + "start": 4288.64, + "end": 4291.5, + "probability": 0.2935 + }, + { + "start": 4291.5, + "end": 4292.02, + "probability": 0.6516 + }, + { + "start": 4292.24, + "end": 4295.44, + "probability": 0.9767 + }, + { + "start": 4295.52, + "end": 4298.28, + "probability": 0.9449 + }, + { + "start": 4298.64, + "end": 4300.16, + "probability": 0.9851 + }, + { + "start": 4300.78, + "end": 4304.08, + "probability": 0.9788 + }, + { + "start": 4304.76, + "end": 4307.7, + "probability": 0.9625 + }, + { + "start": 4308.36, + "end": 4309.46, + "probability": 0.9985 + }, + { + "start": 4310.36, + "end": 4311.06, + "probability": 0.9926 + }, + { + "start": 4311.88, + "end": 4313.84, + "probability": 0.998 + }, + { + "start": 4314.66, + "end": 4319.14, + "probability": 0.9979 + }, + { + "start": 4319.14, + "end": 4321.46, + "probability": 0.9597 + }, + { + "start": 4322.44, + "end": 4324.12, + "probability": 0.907 + }, + { + "start": 4324.66, + "end": 4325.38, + "probability": 0.8615 + }, + { + "start": 4326.04, + "end": 4330.62, + "probability": 0.984 + }, + { + "start": 4331.22, + "end": 4333.52, + "probability": 0.9479 + }, + { + "start": 4334.08, + "end": 4337.68, + "probability": 0.9279 + }, + { + "start": 4337.86, + "end": 4340.04, + "probability": 0.9399 + }, + { + "start": 4340.08, + "end": 4340.56, + "probability": 0.7291 + }, + { + "start": 4341.02, + "end": 4341.98, + "probability": 0.6805 + }, + { + "start": 4342.18, + "end": 4343.16, + "probability": 0.8666 + }, + { + "start": 4343.24, + "end": 4345.6, + "probability": 0.9843 + }, + { + "start": 4346.0, + "end": 4349.5, + "probability": 0.9089 + }, + { + "start": 4350.02, + "end": 4352.62, + "probability": 0.8657 + }, + { + "start": 4353.6, + "end": 4356.06, + "probability": 0.9935 + }, + { + "start": 4356.58, + "end": 4358.22, + "probability": 0.9854 + }, + { + "start": 4359.34, + "end": 4363.14, + "probability": 0.8662 + }, + { + "start": 4364.0, + "end": 4369.3, + "probability": 0.907 + }, + { + "start": 4369.88, + "end": 4374.2, + "probability": 0.9913 + }, + { + "start": 4374.32, + "end": 4375.46, + "probability": 0.8154 + }, + { + "start": 4375.56, + "end": 4379.66, + "probability": 0.9852 + }, + { + "start": 4380.26, + "end": 4382.44, + "probability": 0.8795 + }, + { + "start": 4382.88, + "end": 4386.54, + "probability": 0.9551 + }, + { + "start": 4387.12, + "end": 4387.98, + "probability": 0.7467 + }, + { + "start": 4388.66, + "end": 4390.66, + "probability": 0.9198 + }, + { + "start": 4391.5, + "end": 4396.9, + "probability": 0.9785 + }, + { + "start": 4397.32, + "end": 4398.94, + "probability": 0.6798 + }, + { + "start": 4399.52, + "end": 4400.24, + "probability": 0.842 + }, + { + "start": 4401.58, + "end": 4404.08, + "probability": 0.786 + }, + { + "start": 4404.7, + "end": 4408.32, + "probability": 0.921 + }, + { + "start": 4408.38, + "end": 4408.72, + "probability": 0.5265 + }, + { + "start": 4410.14, + "end": 4415.56, + "probability": 0.9888 + }, + { + "start": 4416.26, + "end": 4418.72, + "probability": 0.7745 + }, + { + "start": 4418.92, + "end": 4421.78, + "probability": 0.9348 + }, + { + "start": 4421.86, + "end": 4425.42, + "probability": 0.8419 + }, + { + "start": 4425.52, + "end": 4427.74, + "probability": 0.9822 + }, + { + "start": 4429.42, + "end": 4431.8, + "probability": 0.056 + }, + { + "start": 4433.42, + "end": 4434.2, + "probability": 0.0038 + }, + { + "start": 4434.2, + "end": 4434.2, + "probability": 0.0727 + }, + { + "start": 4434.2, + "end": 4434.2, + "probability": 0.0695 + }, + { + "start": 4434.2, + "end": 4435.57, + "probability": 0.7407 + }, + { + "start": 4436.02, + "end": 4436.7, + "probability": 0.1679 + }, + { + "start": 4436.7, + "end": 4437.44, + "probability": 0.6589 + }, + { + "start": 4437.76, + "end": 4442.86, + "probability": 0.9489 + }, + { + "start": 4443.76, + "end": 4448.6, + "probability": 0.9927 + }, + { + "start": 4448.66, + "end": 4455.62, + "probability": 0.9343 + }, + { + "start": 4455.72, + "end": 4457.04, + "probability": 0.7124 + }, + { + "start": 4457.31, + "end": 4458.68, + "probability": 0.5222 + }, + { + "start": 4458.68, + "end": 4460.14, + "probability": 0.8644 + }, + { + "start": 4460.26, + "end": 4460.88, + "probability": 0.87 + }, + { + "start": 4461.02, + "end": 4461.85, + "probability": 0.831 + }, + { + "start": 4462.2, + "end": 4463.26, + "probability": 0.648 + }, + { + "start": 4463.42, + "end": 4467.04, + "probability": 0.8989 + }, + { + "start": 4467.44, + "end": 4470.62, + "probability": 0.9761 + }, + { + "start": 4471.08, + "end": 4471.7, + "probability": 0.7895 + }, + { + "start": 4472.48, + "end": 4473.76, + "probability": 0.6901 + }, + { + "start": 4474.52, + "end": 4475.86, + "probability": 0.8482 + }, + { + "start": 4477.08, + "end": 4477.86, + "probability": 0.8875 + }, + { + "start": 4478.5, + "end": 4482.0, + "probability": 0.7204 + }, + { + "start": 4482.74, + "end": 4484.67, + "probability": 0.835 + }, + { + "start": 4485.2, + "end": 4486.92, + "probability": 0.9647 + }, + { + "start": 4487.2, + "end": 4488.56, + "probability": 0.7471 + }, + { + "start": 4489.08, + "end": 4489.59, + "probability": 0.5195 + }, + { + "start": 4489.94, + "end": 4490.82, + "probability": 0.6122 + }, + { + "start": 4491.38, + "end": 4492.5, + "probability": 0.7118 + }, + { + "start": 4492.66, + "end": 4496.42, + "probability": 0.9432 + }, + { + "start": 4496.58, + "end": 4498.58, + "probability": 0.7723 + }, + { + "start": 4499.1, + "end": 4500.42, + "probability": 0.8746 + }, + { + "start": 4501.24, + "end": 4504.04, + "probability": 0.3677 + }, + { + "start": 4505.18, + "end": 4506.46, + "probability": 0.8595 + }, + { + "start": 4506.52, + "end": 4509.0, + "probability": 0.838 + }, + { + "start": 4509.2, + "end": 4513.38, + "probability": 0.9494 + }, + { + "start": 4513.84, + "end": 4517.12, + "probability": 0.7881 + }, + { + "start": 4517.76, + "end": 4517.76, + "probability": 0.6631 + }, + { + "start": 4517.76, + "end": 4518.08, + "probability": 0.4602 + }, + { + "start": 4518.5, + "end": 4520.3, + "probability": 0.4829 + }, + { + "start": 4520.56, + "end": 4525.74, + "probability": 0.9683 + }, + { + "start": 4525.98, + "end": 4531.1, + "probability": 0.9946 + }, + { + "start": 4531.26, + "end": 4531.56, + "probability": 0.6277 + }, + { + "start": 4531.76, + "end": 4534.1, + "probability": 0.4451 + }, + { + "start": 4534.26, + "end": 4538.64, + "probability": 0.738 + }, + { + "start": 4538.66, + "end": 4540.26, + "probability": 0.6499 + }, + { + "start": 4540.3, + "end": 4541.62, + "probability": 0.6065 + }, + { + "start": 4541.66, + "end": 4542.2, + "probability": 0.9429 + }, + { + "start": 4542.74, + "end": 4543.4, + "probability": 0.4171 + }, + { + "start": 4543.48, + "end": 4549.46, + "probability": 0.9251 + }, + { + "start": 4549.96, + "end": 4551.5, + "probability": 0.9714 + }, + { + "start": 4552.34, + "end": 4553.76, + "probability": 0.6857 + }, + { + "start": 4554.54, + "end": 4556.58, + "probability": 0.8858 + }, + { + "start": 4556.74, + "end": 4558.32, + "probability": 0.8843 + }, + { + "start": 4559.14, + "end": 4560.16, + "probability": 0.7553 + }, + { + "start": 4560.26, + "end": 4563.5, + "probability": 0.9666 + }, + { + "start": 4563.6, + "end": 4564.71, + "probability": 0.5737 + }, + { + "start": 4564.88, + "end": 4567.12, + "probability": 0.9561 + }, + { + "start": 4567.54, + "end": 4568.34, + "probability": 0.8722 + }, + { + "start": 4568.84, + "end": 4571.12, + "probability": 0.8828 + }, + { + "start": 4571.48, + "end": 4573.64, + "probability": 0.9155 + }, + { + "start": 4574.2, + "end": 4575.76, + "probability": 0.8938 + }, + { + "start": 4575.94, + "end": 4576.6, + "probability": 0.7347 + }, + { + "start": 4577.88, + "end": 4579.3, + "probability": 0.5537 + }, + { + "start": 4579.84, + "end": 4582.68, + "probability": 0.7317 + }, + { + "start": 4583.1, + "end": 4587.82, + "probability": 0.9961 + }, + { + "start": 4588.06, + "end": 4588.26, + "probability": 0.5158 + }, + { + "start": 4588.66, + "end": 4590.48, + "probability": 0.749 + }, + { + "start": 4590.64, + "end": 4591.52, + "probability": 0.6385 + }, + { + "start": 4591.54, + "end": 4592.18, + "probability": 0.5518 + }, + { + "start": 4592.68, + "end": 4596.34, + "probability": 0.9092 + }, + { + "start": 4596.5, + "end": 4598.38, + "probability": 0.8338 + }, + { + "start": 4598.74, + "end": 4599.08, + "probability": 0.743 + }, + { + "start": 4599.1, + "end": 4600.14, + "probability": 0.8754 + }, + { + "start": 4600.2, + "end": 4601.3, + "probability": 0.7179 + }, + { + "start": 4601.64, + "end": 4603.36, + "probability": 0.8428 + }, + { + "start": 4603.88, + "end": 4604.9, + "probability": 0.9709 + }, + { + "start": 4605.46, + "end": 4607.2, + "probability": 0.7994 + }, + { + "start": 4607.88, + "end": 4611.32, + "probability": 0.9863 + }, + { + "start": 4612.12, + "end": 4614.42, + "probability": 0.9745 + }, + { + "start": 4614.86, + "end": 4616.18, + "probability": 0.9586 + }, + { + "start": 4616.48, + "end": 4618.0, + "probability": 0.8534 + }, + { + "start": 4618.54, + "end": 4619.98, + "probability": 0.9382 + }, + { + "start": 4621.26, + "end": 4622.44, + "probability": 0.9849 + }, + { + "start": 4624.1, + "end": 4625.6, + "probability": 0.674 + }, + { + "start": 4626.28, + "end": 4627.26, + "probability": 0.7732 + }, + { + "start": 4627.76, + "end": 4628.2, + "probability": 0.8994 + }, + { + "start": 4629.14, + "end": 4631.46, + "probability": 0.759 + }, + { + "start": 4631.8, + "end": 4633.0, + "probability": 0.9552 + }, + { + "start": 4633.92, + "end": 4635.98, + "probability": 0.672 + }, + { + "start": 4636.52, + "end": 4638.26, + "probability": 0.7225 + }, + { + "start": 4638.58, + "end": 4643.92, + "probability": 0.6591 + }, + { + "start": 4644.06, + "end": 4644.76, + "probability": 0.5846 + }, + { + "start": 4645.2, + "end": 4646.68, + "probability": 0.8763 + }, + { + "start": 4647.22, + "end": 4650.16, + "probability": 0.9748 + }, + { + "start": 4650.34, + "end": 4652.08, + "probability": 0.4341 + }, + { + "start": 4652.18, + "end": 4652.64, + "probability": 0.5902 + }, + { + "start": 4653.0, + "end": 4654.06, + "probability": 0.8322 + }, + { + "start": 4654.12, + "end": 4654.84, + "probability": 0.8842 + }, + { + "start": 4655.2, + "end": 4655.94, + "probability": 0.6355 + }, + { + "start": 4656.12, + "end": 4658.38, + "probability": 0.8673 + }, + { + "start": 4658.68, + "end": 4662.22, + "probability": 0.6186 + }, + { + "start": 4662.74, + "end": 4668.04, + "probability": 0.9175 + }, + { + "start": 4669.44, + "end": 4671.36, + "probability": 0.8178 + }, + { + "start": 4674.3, + "end": 4676.38, + "probability": 0.4535 + }, + { + "start": 4678.54, + "end": 4680.52, + "probability": 0.7575 + }, + { + "start": 4681.84, + "end": 4682.94, + "probability": 0.8826 + }, + { + "start": 4683.72, + "end": 4686.24, + "probability": 0.9758 + }, + { + "start": 4687.26, + "end": 4690.58, + "probability": 0.9913 + }, + { + "start": 4691.52, + "end": 4695.18, + "probability": 0.4588 + }, + { + "start": 4695.32, + "end": 4699.62, + "probability": 0.9954 + }, + { + "start": 4700.14, + "end": 4704.1, + "probability": 0.9916 + }, + { + "start": 4705.0, + "end": 4707.54, + "probability": 0.9938 + }, + { + "start": 4708.2, + "end": 4712.9, + "probability": 0.9039 + }, + { + "start": 4713.34, + "end": 4715.64, + "probability": 0.828 + }, + { + "start": 4716.7, + "end": 4720.96, + "probability": 0.9829 + }, + { + "start": 4721.58, + "end": 4726.16, + "probability": 0.9889 + }, + { + "start": 4726.28, + "end": 4732.04, + "probability": 0.994 + }, + { + "start": 4732.64, + "end": 4733.08, + "probability": 0.7074 + }, + { + "start": 4733.88, + "end": 4739.26, + "probability": 0.9876 + }, + { + "start": 4739.26, + "end": 4744.82, + "probability": 0.9215 + }, + { + "start": 4746.02, + "end": 4750.62, + "probability": 0.8833 + }, + { + "start": 4750.71, + "end": 4756.74, + "probability": 0.9928 + }, + { + "start": 4757.72, + "end": 4758.34, + "probability": 0.7493 + }, + { + "start": 4758.96, + "end": 4761.58, + "probability": 0.9464 + }, + { + "start": 4761.97, + "end": 4764.96, + "probability": 0.994 + }, + { + "start": 4766.98, + "end": 4768.82, + "probability": 0.7577 + }, + { + "start": 4769.16, + "end": 4773.88, + "probability": 0.8074 + }, + { + "start": 4774.66, + "end": 4775.12, + "probability": 0.7662 + }, + { + "start": 4775.8, + "end": 4778.9, + "probability": 0.8858 + }, + { + "start": 4778.9, + "end": 4782.46, + "probability": 0.9786 + }, + { + "start": 4784.42, + "end": 4784.94, + "probability": 0.5535 + }, + { + "start": 4785.04, + "end": 4788.5, + "probability": 0.9939 + }, + { + "start": 4788.5, + "end": 4792.38, + "probability": 0.9985 + }, + { + "start": 4793.06, + "end": 4795.84, + "probability": 0.9974 + }, + { + "start": 4796.68, + "end": 4799.32, + "probability": 0.9838 + }, + { + "start": 4800.24, + "end": 4803.24, + "probability": 0.5614 + }, + { + "start": 4804.4, + "end": 4805.56, + "probability": 0.9893 + }, + { + "start": 4805.56, + "end": 4806.48, + "probability": 0.6845 + }, + { + "start": 4806.6, + "end": 4808.12, + "probability": 0.9937 + }, + { + "start": 4808.7, + "end": 4809.86, + "probability": 0.8701 + }, + { + "start": 4810.32, + "end": 4810.56, + "probability": 0.8478 + }, + { + "start": 4812.4, + "end": 4814.94, + "probability": 0.9995 + }, + { + "start": 4815.86, + "end": 4818.1, + "probability": 0.9916 + }, + { + "start": 4818.9, + "end": 4820.6, + "probability": 0.9886 + }, + { + "start": 4821.12, + "end": 4824.86, + "probability": 0.9971 + }, + { + "start": 4825.7, + "end": 4828.16, + "probability": 0.9933 + }, + { + "start": 4829.96, + "end": 4832.34, + "probability": 0.8988 + }, + { + "start": 4833.14, + "end": 4834.92, + "probability": 0.9932 + }, + { + "start": 4835.84, + "end": 4840.0, + "probability": 0.996 + }, + { + "start": 4840.84, + "end": 4843.36, + "probability": 0.9683 + }, + { + "start": 4844.1, + "end": 4849.34, + "probability": 0.9666 + }, + { + "start": 4850.06, + "end": 4850.98, + "probability": 0.73 + }, + { + "start": 4851.52, + "end": 4858.22, + "probability": 0.8573 + }, + { + "start": 4859.12, + "end": 4861.22, + "probability": 0.8579 + }, + { + "start": 4861.64, + "end": 4865.86, + "probability": 0.8044 + }, + { + "start": 4867.3, + "end": 4868.06, + "probability": 0.7666 + }, + { + "start": 4869.16, + "end": 4871.52, + "probability": 0.8971 + }, + { + "start": 4872.96, + "end": 4874.5, + "probability": 0.9905 + }, + { + "start": 4875.06, + "end": 4878.62, + "probability": 0.9958 + }, + { + "start": 4879.42, + "end": 4882.38, + "probability": 0.8407 + }, + { + "start": 4883.12, + "end": 4884.86, + "probability": 0.946 + }, + { + "start": 4885.84, + "end": 4889.29, + "probability": 0.9741 + }, + { + "start": 4890.62, + "end": 4893.24, + "probability": 0.9787 + }, + { + "start": 4893.38, + "end": 4897.3, + "probability": 0.977 + }, + { + "start": 4897.66, + "end": 4897.88, + "probability": 0.7822 + }, + { + "start": 4899.0, + "end": 4901.24, + "probability": 0.7783 + }, + { + "start": 4902.06, + "end": 4902.78, + "probability": 0.9792 + }, + { + "start": 4905.16, + "end": 4906.72, + "probability": 0.813 + }, + { + "start": 4907.2, + "end": 4910.84, + "probability": 0.8228 + }, + { + "start": 4911.46, + "end": 4912.5, + "probability": 0.7851 + }, + { + "start": 4913.7, + "end": 4916.88, + "probability": 0.9416 + }, + { + "start": 4920.62, + "end": 4922.54, + "probability": 0.6545 + }, + { + "start": 4923.3, + "end": 4925.66, + "probability": 0.8581 + }, + { + "start": 4926.46, + "end": 4926.62, + "probability": 0.9177 + }, + { + "start": 4932.42, + "end": 4934.56, + "probability": 0.7512 + }, + { + "start": 4936.02, + "end": 4937.52, + "probability": 0.6466 + }, + { + "start": 4938.5, + "end": 4938.56, + "probability": 0.4349 + }, + { + "start": 4938.56, + "end": 4939.92, + "probability": 0.7626 + }, + { + "start": 4940.78, + "end": 4943.32, + "probability": 0.7175 + }, + { + "start": 4943.48, + "end": 4944.02, + "probability": 0.7034 + }, + { + "start": 4944.87, + "end": 4945.82, + "probability": 0.6544 + }, + { + "start": 4946.82, + "end": 4950.0, + "probability": 0.1166 + }, + { + "start": 4950.94, + "end": 4953.3, + "probability": 0.4525 + }, + { + "start": 4954.82, + "end": 4960.28, + "probability": 0.9619 + }, + { + "start": 4961.64, + "end": 4963.44, + "probability": 0.9965 + }, + { + "start": 4964.08, + "end": 4968.05, + "probability": 0.6368 + }, + { + "start": 4969.68, + "end": 4969.9, + "probability": 0.0304 + }, + { + "start": 4969.9, + "end": 4970.67, + "probability": 0.3951 + }, + { + "start": 4971.46, + "end": 4974.22, + "probability": 0.9755 + }, + { + "start": 4975.28, + "end": 4978.12, + "probability": 0.812 + }, + { + "start": 4980.2, + "end": 4980.84, + "probability": 0.5601 + }, + { + "start": 4980.94, + "end": 4981.42, + "probability": 0.2893 + }, + { + "start": 4981.77, + "end": 4984.2, + "probability": 0.6588 + }, + { + "start": 4984.26, + "end": 4984.92, + "probability": 0.2905 + }, + { + "start": 4989.64, + "end": 4991.36, + "probability": 0.9363 + }, + { + "start": 4991.44, + "end": 4992.73, + "probability": 0.9735 + }, + { + "start": 4993.22, + "end": 4996.88, + "probability": 0.9806 + }, + { + "start": 4996.98, + "end": 4999.28, + "probability": 0.3471 + }, + { + "start": 5000.26, + "end": 5000.38, + "probability": 0.5433 + }, + { + "start": 5000.52, + "end": 5002.2, + "probability": 0.9873 + }, + { + "start": 5002.28, + "end": 5007.46, + "probability": 0.9643 + }, + { + "start": 5008.74, + "end": 5009.91, + "probability": 0.6385 + }, + { + "start": 5011.2, + "end": 5012.2, + "probability": 0.9819 + }, + { + "start": 5013.18, + "end": 5013.82, + "probability": 0.9333 + }, + { + "start": 5014.52, + "end": 5017.06, + "probability": 0.9934 + }, + { + "start": 5018.08, + "end": 5018.9, + "probability": 0.6655 + }, + { + "start": 5019.12, + "end": 5019.78, + "probability": 0.8253 + }, + { + "start": 5019.84, + "end": 5020.1, + "probability": 0.4682 + }, + { + "start": 5020.24, + "end": 5023.3, + "probability": 0.8539 + }, + { + "start": 5023.42, + "end": 5025.82, + "probability": 0.9973 + }, + { + "start": 5027.14, + "end": 5027.34, + "probability": 0.7942 + }, + { + "start": 5027.48, + "end": 5030.52, + "probability": 0.993 + }, + { + "start": 5031.72, + "end": 5035.62, + "probability": 0.9924 + }, + { + "start": 5036.04, + "end": 5039.08, + "probability": 0.9988 + }, + { + "start": 5039.08, + "end": 5041.52, + "probability": 0.9773 + }, + { + "start": 5041.96, + "end": 5043.4, + "probability": 0.2656 + }, + { + "start": 5043.4, + "end": 5046.04, + "probability": 0.9849 + }, + { + "start": 5046.2, + "end": 5048.44, + "probability": 0.9458 + }, + { + "start": 5048.56, + "end": 5049.82, + "probability": 0.725 + }, + { + "start": 5050.74, + "end": 5053.06, + "probability": 0.9575 + }, + { + "start": 5053.36, + "end": 5054.02, + "probability": 0.9067 + }, + { + "start": 5055.54, + "end": 5055.84, + "probability": 0.4787 + }, + { + "start": 5056.32, + "end": 5061.92, + "probability": 0.9479 + }, + { + "start": 5062.56, + "end": 5067.9, + "probability": 0.9667 + }, + { + "start": 5069.56, + "end": 5070.94, + "probability": 0.9702 + }, + { + "start": 5071.28, + "end": 5072.18, + "probability": 0.9263 + }, + { + "start": 5073.08, + "end": 5075.3, + "probability": 0.9211 + }, + { + "start": 5076.5, + "end": 5077.0, + "probability": 0.707 + }, + { + "start": 5077.14, + "end": 5078.78, + "probability": 0.9046 + }, + { + "start": 5078.9, + "end": 5080.08, + "probability": 0.8947 + }, + { + "start": 5080.62, + "end": 5082.84, + "probability": 0.9819 + }, + { + "start": 5082.84, + "end": 5087.2, + "probability": 0.8031 + }, + { + "start": 5087.76, + "end": 5089.64, + "probability": 0.954 + }, + { + "start": 5091.58, + "end": 5093.18, + "probability": 0.7271 + }, + { + "start": 5093.22, + "end": 5093.56, + "probability": 0.4733 + }, + { + "start": 5093.58, + "end": 5096.8, + "probability": 0.97 + }, + { + "start": 5098.02, + "end": 5098.44, + "probability": 0.8068 + }, + { + "start": 5099.78, + "end": 5103.04, + "probability": 0.9807 + }, + { + "start": 5103.12, + "end": 5104.76, + "probability": 0.7001 + }, + { + "start": 5106.7, + "end": 5107.78, + "probability": 0.6028 + }, + { + "start": 5108.78, + "end": 5109.12, + "probability": 0.4407 + }, + { + "start": 5110.18, + "end": 5111.16, + "probability": 0.8442 + }, + { + "start": 5112.74, + "end": 5114.2, + "probability": 0.968 + }, + { + "start": 5114.76, + "end": 5117.04, + "probability": 0.9979 + }, + { + "start": 5117.94, + "end": 5120.56, + "probability": 0.9968 + }, + { + "start": 5120.72, + "end": 5124.47, + "probability": 0.9619 + }, + { + "start": 5125.26, + "end": 5126.02, + "probability": 0.9548 + }, + { + "start": 5126.94, + "end": 5128.8, + "probability": 0.9281 + }, + { + "start": 5128.96, + "end": 5132.1, + "probability": 0.8283 + }, + { + "start": 5132.9, + "end": 5136.2, + "probability": 0.9247 + }, + { + "start": 5136.76, + "end": 5137.46, + "probability": 0.8527 + }, + { + "start": 5137.58, + "end": 5143.02, + "probability": 0.9972 + }, + { + "start": 5143.1, + "end": 5143.28, + "probability": 0.8129 + }, + { + "start": 5143.62, + "end": 5144.36, + "probability": 0.9774 + }, + { + "start": 5146.28, + "end": 5147.3, + "probability": 0.9828 + }, + { + "start": 5148.12, + "end": 5153.8, + "probability": 0.9962 + }, + { + "start": 5154.6, + "end": 5157.84, + "probability": 0.9889 + }, + { + "start": 5157.96, + "end": 5160.88, + "probability": 0.6664 + }, + { + "start": 5162.48, + "end": 5162.64, + "probability": 0.6367 + }, + { + "start": 5163.74, + "end": 5166.96, + "probability": 0.9955 + }, + { + "start": 5167.7, + "end": 5173.54, + "probability": 0.9858 + }, + { + "start": 5175.42, + "end": 5177.64, + "probability": 0.8808 + }, + { + "start": 5178.6, + "end": 5180.28, + "probability": 0.9983 + }, + { + "start": 5181.68, + "end": 5183.64, + "probability": 0.8262 + }, + { + "start": 5184.72, + "end": 5186.22, + "probability": 0.9746 + }, + { + "start": 5188.2, + "end": 5190.18, + "probability": 0.9127 + }, + { + "start": 5191.28, + "end": 5193.34, + "probability": 0.993 + }, + { + "start": 5195.4, + "end": 5196.4, + "probability": 0.9846 + }, + { + "start": 5197.58, + "end": 5200.46, + "probability": 0.9969 + }, + { + "start": 5200.86, + "end": 5202.1, + "probability": 0.7333 + }, + { + "start": 5202.18, + "end": 5208.3, + "probability": 0.9773 + }, + { + "start": 5210.26, + "end": 5214.0, + "probability": 0.8237 + }, + { + "start": 5214.78, + "end": 5215.74, + "probability": 0.859 + }, + { + "start": 5216.6, + "end": 5218.74, + "probability": 0.768 + }, + { + "start": 5219.86, + "end": 5222.56, + "probability": 0.9368 + }, + { + "start": 5223.48, + "end": 5226.18, + "probability": 0.9028 + }, + { + "start": 5226.48, + "end": 5228.16, + "probability": 0.9904 + }, + { + "start": 5229.34, + "end": 5231.3, + "probability": 0.999 + }, + { + "start": 5232.74, + "end": 5236.54, + "probability": 0.9647 + }, + { + "start": 5237.4, + "end": 5240.24, + "probability": 0.9978 + }, + { + "start": 5240.66, + "end": 5241.44, + "probability": 0.5367 + }, + { + "start": 5243.82, + "end": 5244.52, + "probability": 0.7661 + }, + { + "start": 5246.86, + "end": 5251.32, + "probability": 0.9979 + }, + { + "start": 5253.18, + "end": 5256.42, + "probability": 0.9994 + }, + { + "start": 5256.42, + "end": 5258.5, + "probability": 0.9728 + }, + { + "start": 5259.46, + "end": 5260.88, + "probability": 0.9565 + }, + { + "start": 5261.24, + "end": 5265.82, + "probability": 0.9817 + }, + { + "start": 5267.76, + "end": 5272.04, + "probability": 0.644 + }, + { + "start": 5273.1, + "end": 5276.2, + "probability": 0.867 + }, + { + "start": 5276.92, + "end": 5278.78, + "probability": 0.7454 + }, + { + "start": 5279.32, + "end": 5279.74, + "probability": 0.5846 + }, + { + "start": 5281.36, + "end": 5281.48, + "probability": 0.4996 + }, + { + "start": 5281.58, + "end": 5282.04, + "probability": 0.7147 + }, + { + "start": 5282.16, + "end": 5285.38, + "probability": 0.9937 + }, + { + "start": 5286.08, + "end": 5286.98, + "probability": 0.9989 + }, + { + "start": 5287.54, + "end": 5288.27, + "probability": 0.9964 + }, + { + "start": 5288.82, + "end": 5292.99, + "probability": 0.9438 + }, + { + "start": 5294.87, + "end": 5296.15, + "probability": 0.7395 + }, + { + "start": 5297.44, + "end": 5299.24, + "probability": 0.8904 + }, + { + "start": 5300.12, + "end": 5301.86, + "probability": 0.9581 + }, + { + "start": 5302.84, + "end": 5306.22, + "probability": 0.967 + }, + { + "start": 5307.44, + "end": 5310.1, + "probability": 0.9927 + }, + { + "start": 5310.54, + "end": 5311.56, + "probability": 0.672 + }, + { + "start": 5311.64, + "end": 5311.98, + "probability": 0.6764 + }, + { + "start": 5312.5, + "end": 5313.9, + "probability": 0.8306 + }, + { + "start": 5314.66, + "end": 5318.28, + "probability": 0.9712 + }, + { + "start": 5319.26, + "end": 5322.22, + "probability": 0.9876 + }, + { + "start": 5322.56, + "end": 5324.58, + "probability": 0.9396 + }, + { + "start": 5327.02, + "end": 5331.46, + "probability": 0.9951 + }, + { + "start": 5331.52, + "end": 5332.22, + "probability": 0.6119 + }, + { + "start": 5332.88, + "end": 5333.38, + "probability": 0.6905 + }, + { + "start": 5333.96, + "end": 5335.28, + "probability": 0.9826 + }, + { + "start": 5336.64, + "end": 5338.96, + "probability": 0.9431 + }, + { + "start": 5339.8, + "end": 5341.98, + "probability": 0.8759 + }, + { + "start": 5342.56, + "end": 5343.82, + "probability": 0.9807 + }, + { + "start": 5345.28, + "end": 5346.78, + "probability": 0.8117 + }, + { + "start": 5347.74, + "end": 5351.16, + "probability": 0.9927 + }, + { + "start": 5352.24, + "end": 5354.1, + "probability": 0.8887 + }, + { + "start": 5355.94, + "end": 5358.54, + "probability": 0.9648 + }, + { + "start": 5360.8, + "end": 5362.94, + "probability": 0.9059 + }, + { + "start": 5363.84, + "end": 5364.38, + "probability": 0.5475 + }, + { + "start": 5365.54, + "end": 5368.48, + "probability": 0.9915 + }, + { + "start": 5369.32, + "end": 5370.06, + "probability": 0.7994 + }, + { + "start": 5371.68, + "end": 5373.22, + "probability": 0.9971 + }, + { + "start": 5373.32, + "end": 5374.25, + "probability": 0.99 + }, + { + "start": 5374.94, + "end": 5376.48, + "probability": 0.918 + }, + { + "start": 5377.52, + "end": 5378.66, + "probability": 0.9873 + }, + { + "start": 5379.7, + "end": 5382.02, + "probability": 0.7806 + }, + { + "start": 5382.74, + "end": 5384.26, + "probability": 0.938 + }, + { + "start": 5385.16, + "end": 5388.08, + "probability": 0.9904 + }, + { + "start": 5388.62, + "end": 5391.5, + "probability": 0.985 + }, + { + "start": 5391.54, + "end": 5392.2, + "probability": 0.725 + }, + { + "start": 5392.68, + "end": 5395.54, + "probability": 0.9006 + }, + { + "start": 5396.22, + "end": 5397.0, + "probability": 0.7967 + }, + { + "start": 5397.52, + "end": 5398.26, + "probability": 0.8731 + }, + { + "start": 5398.96, + "end": 5403.72, + "probability": 0.9808 + }, + { + "start": 5404.28, + "end": 5405.16, + "probability": 0.9302 + }, + { + "start": 5405.84, + "end": 5409.52, + "probability": 0.9546 + }, + { + "start": 5410.44, + "end": 5413.61, + "probability": 0.9316 + }, + { + "start": 5414.34, + "end": 5415.86, + "probability": 0.8564 + }, + { + "start": 5416.74, + "end": 5420.62, + "probability": 0.9271 + }, + { + "start": 5420.8, + "end": 5423.0, + "probability": 0.9055 + }, + { + "start": 5423.7, + "end": 5425.4, + "probability": 0.7432 + }, + { + "start": 5426.12, + "end": 5427.98, + "probability": 0.8223 + }, + { + "start": 5428.98, + "end": 5431.0, + "probability": 0.9832 + }, + { + "start": 5431.92, + "end": 5434.0, + "probability": 0.9857 + }, + { + "start": 5435.02, + "end": 5440.16, + "probability": 0.7456 + }, + { + "start": 5440.96, + "end": 5444.36, + "probability": 0.9618 + }, + { + "start": 5445.1, + "end": 5447.96, + "probability": 0.5427 + }, + { + "start": 5448.06, + "end": 5448.63, + "probability": 0.5481 + }, + { + "start": 5449.02, + "end": 5450.28, + "probability": 0.9834 + }, + { + "start": 5450.54, + "end": 5452.18, + "probability": 0.9034 + }, + { + "start": 5452.94, + "end": 5455.3, + "probability": 0.9816 + }, + { + "start": 5455.4, + "end": 5455.8, + "probability": 0.4088 + }, + { + "start": 5456.4, + "end": 5460.14, + "probability": 0.9895 + }, + { + "start": 5460.52, + "end": 5462.62, + "probability": 0.991 + }, + { + "start": 5463.56, + "end": 5466.4, + "probability": 0.9229 + }, + { + "start": 5467.04, + "end": 5469.26, + "probability": 0.7473 + }, + { + "start": 5469.85, + "end": 5472.68, + "probability": 0.8579 + }, + { + "start": 5474.3, + "end": 5474.3, + "probability": 0.7734 + }, + { + "start": 5474.84, + "end": 5475.42, + "probability": 0.9573 + }, + { + "start": 5476.24, + "end": 5479.76, + "probability": 0.4333 + }, + { + "start": 5480.7, + "end": 5481.02, + "probability": 0.3288 + }, + { + "start": 5481.58, + "end": 5483.18, + "probability": 0.9041 + }, + { + "start": 5483.7, + "end": 5484.76, + "probability": 0.9944 + }, + { + "start": 5486.82, + "end": 5488.88, + "probability": 0.7232 + }, + { + "start": 5491.64, + "end": 5492.28, + "probability": 0.6983 + }, + { + "start": 5492.84, + "end": 5493.36, + "probability": 0.5673 + }, + { + "start": 5493.54, + "end": 5495.81, + "probability": 0.9709 + }, + { + "start": 5496.72, + "end": 5497.76, + "probability": 0.9839 + }, + { + "start": 5498.04, + "end": 5499.32, + "probability": 0.9854 + }, + { + "start": 5500.86, + "end": 5501.74, + "probability": 0.6392 + }, + { + "start": 5501.8, + "end": 5503.06, + "probability": 0.9543 + }, + { + "start": 5503.16, + "end": 5505.24, + "probability": 0.9833 + }, + { + "start": 5505.52, + "end": 5506.12, + "probability": 0.4947 + }, + { + "start": 5507.0, + "end": 5511.84, + "probability": 0.9092 + }, + { + "start": 5512.4, + "end": 5513.88, + "probability": 0.9917 + }, + { + "start": 5514.04, + "end": 5515.03, + "probability": 0.9743 + }, + { + "start": 5517.84, + "end": 5519.96, + "probability": 0.7867 + }, + { + "start": 5521.4, + "end": 5525.36, + "probability": 0.726 + }, + { + "start": 5527.12, + "end": 5530.16, + "probability": 0.991 + }, + { + "start": 5531.16, + "end": 5532.1, + "probability": 0.7703 + }, + { + "start": 5532.24, + "end": 5534.9, + "probability": 0.9458 + }, + { + "start": 5534.9, + "end": 5537.26, + "probability": 0.96 + }, + { + "start": 5537.88, + "end": 5539.56, + "probability": 0.8246 + }, + { + "start": 5540.1, + "end": 5544.02, + "probability": 0.9807 + }, + { + "start": 5544.94, + "end": 5547.24, + "probability": 0.9954 + }, + { + "start": 5547.86, + "end": 5548.8, + "probability": 0.9355 + }, + { + "start": 5549.56, + "end": 5552.56, + "probability": 0.776 + }, + { + "start": 5553.14, + "end": 5553.72, + "probability": 0.8121 + }, + { + "start": 5554.14, + "end": 5554.56, + "probability": 0.7291 + }, + { + "start": 5555.02, + "end": 5555.64, + "probability": 0.5757 + }, + { + "start": 5556.04, + "end": 5559.28, + "probability": 0.984 + }, + { + "start": 5560.08, + "end": 5561.0, + "probability": 0.6094 + }, + { + "start": 5561.04, + "end": 5563.68, + "probability": 0.9023 + }, + { + "start": 5563.88, + "end": 5563.98, + "probability": 0.6598 + }, + { + "start": 5564.7, + "end": 5567.2, + "probability": 0.9805 + }, + { + "start": 5567.78, + "end": 5568.96, + "probability": 0.7671 + }, + { + "start": 5569.64, + "end": 5571.02, + "probability": 0.9723 + }, + { + "start": 5573.22, + "end": 5573.88, + "probability": 0.8631 + }, + { + "start": 5573.92, + "end": 5575.12, + "probability": 0.6867 + }, + { + "start": 5576.12, + "end": 5579.5, + "probability": 0.6954 + }, + { + "start": 5579.62, + "end": 5581.8, + "probability": 0.9915 + }, + { + "start": 5583.64, + "end": 5585.54, + "probability": 0.7363 + }, + { + "start": 5586.3, + "end": 5590.04, + "probability": 0.7532 + }, + { + "start": 5600.46, + "end": 5600.8, + "probability": 0.3618 + }, + { + "start": 5600.8, + "end": 5603.36, + "probability": 0.6453 + }, + { + "start": 5604.7, + "end": 5608.38, + "probability": 0.9707 + }, + { + "start": 5609.24, + "end": 5614.96, + "probability": 0.9979 + }, + { + "start": 5615.38, + "end": 5617.58, + "probability": 0.9969 + }, + { + "start": 5618.26, + "end": 5622.12, + "probability": 0.9995 + }, + { + "start": 5622.3, + "end": 5622.96, + "probability": 0.8823 + }, + { + "start": 5625.4, + "end": 5626.14, + "probability": 0.972 + }, + { + "start": 5626.3, + "end": 5627.06, + "probability": 0.7801 + }, + { + "start": 5627.24, + "end": 5629.26, + "probability": 0.8525 + }, + { + "start": 5629.38, + "end": 5631.28, + "probability": 0.9655 + }, + { + "start": 5631.46, + "end": 5631.48, + "probability": 0.0589 + }, + { + "start": 5631.68, + "end": 5632.04, + "probability": 0.3295 + }, + { + "start": 5632.42, + "end": 5634.54, + "probability": 0.9924 + }, + { + "start": 5634.94, + "end": 5635.98, + "probability": 0.8917 + }, + { + "start": 5636.52, + "end": 5637.08, + "probability": 0.6946 + }, + { + "start": 5637.28, + "end": 5639.4, + "probability": 0.9815 + }, + { + "start": 5639.52, + "end": 5639.96, + "probability": 0.8788 + }, + { + "start": 5640.04, + "end": 5641.0, + "probability": 0.9264 + }, + { + "start": 5641.68, + "end": 5644.88, + "probability": 0.9934 + }, + { + "start": 5645.72, + "end": 5647.51, + "probability": 0.9076 + }, + { + "start": 5648.28, + "end": 5650.98, + "probability": 0.9613 + }, + { + "start": 5651.7, + "end": 5654.44, + "probability": 0.9472 + }, + { + "start": 5654.9, + "end": 5656.3, + "probability": 0.9819 + }, + { + "start": 5656.58, + "end": 5658.92, + "probability": 0.9687 + }, + { + "start": 5659.5, + "end": 5661.3, + "probability": 0.9439 + }, + { + "start": 5661.32, + "end": 5663.78, + "probability": 0.9539 + }, + { + "start": 5664.1, + "end": 5664.78, + "probability": 0.9028 + }, + { + "start": 5664.94, + "end": 5665.94, + "probability": 0.4929 + }, + { + "start": 5666.06, + "end": 5670.54, + "probability": 0.9854 + }, + { + "start": 5672.18, + "end": 5674.18, + "probability": 0.8229 + }, + { + "start": 5674.9, + "end": 5676.2, + "probability": 0.7988 + }, + { + "start": 5676.96, + "end": 5683.02, + "probability": 0.9936 + }, + { + "start": 5683.16, + "end": 5683.96, + "probability": 0.9133 + }, + { + "start": 5684.08, + "end": 5684.38, + "probability": 0.8458 + }, + { + "start": 5684.52, + "end": 5685.18, + "probability": 0.8314 + }, + { + "start": 5686.52, + "end": 5686.78, + "probability": 0.7908 + }, + { + "start": 5686.9, + "end": 5688.3, + "probability": 0.9629 + }, + { + "start": 5688.44, + "end": 5689.12, + "probability": 0.9701 + }, + { + "start": 5689.8, + "end": 5690.76, + "probability": 0.9487 + }, + { + "start": 5690.88, + "end": 5691.58, + "probability": 0.9577 + }, + { + "start": 5691.7, + "end": 5692.86, + "probability": 0.9475 + }, + { + "start": 5693.48, + "end": 5696.44, + "probability": 0.9849 + }, + { + "start": 5696.64, + "end": 5697.4, + "probability": 0.9064 + }, + { + "start": 5697.92, + "end": 5699.32, + "probability": 0.9863 + }, + { + "start": 5699.36, + "end": 5703.66, + "probability": 0.9949 + }, + { + "start": 5705.3, + "end": 5711.04, + "probability": 0.9987 + }, + { + "start": 5711.04, + "end": 5714.2, + "probability": 0.9985 + }, + { + "start": 5714.92, + "end": 5717.98, + "probability": 0.8603 + }, + { + "start": 5719.58, + "end": 5721.64, + "probability": 0.9918 + }, + { + "start": 5722.92, + "end": 5723.68, + "probability": 0.9977 + }, + { + "start": 5724.32, + "end": 5725.62, + "probability": 0.9976 + }, + { + "start": 5726.62, + "end": 5729.4, + "probability": 0.9731 + }, + { + "start": 5730.5, + "end": 5732.42, + "probability": 0.9686 + }, + { + "start": 5732.78, + "end": 5734.42, + "probability": 0.8846 + }, + { + "start": 5734.56, + "end": 5735.64, + "probability": 0.9492 + }, + { + "start": 5735.74, + "end": 5738.92, + "probability": 0.9666 + }, + { + "start": 5740.72, + "end": 5743.64, + "probability": 0.9749 + }, + { + "start": 5744.16, + "end": 5745.02, + "probability": 0.8365 + }, + { + "start": 5745.54, + "end": 5747.54, + "probability": 0.9365 + }, + { + "start": 5748.18, + "end": 5749.36, + "probability": 0.9499 + }, + { + "start": 5749.82, + "end": 5751.68, + "probability": 0.9746 + }, + { + "start": 5752.16, + "end": 5753.47, + "probability": 0.9711 + }, + { + "start": 5754.1, + "end": 5756.56, + "probability": 0.9937 + }, + { + "start": 5757.96, + "end": 5762.34, + "probability": 0.9818 + }, + { + "start": 5762.98, + "end": 5764.76, + "probability": 0.8317 + }, + { + "start": 5766.24, + "end": 5768.08, + "probability": 0.9968 + }, + { + "start": 5769.24, + "end": 5769.8, + "probability": 0.9364 + }, + { + "start": 5769.94, + "end": 5771.93, + "probability": 0.9631 + }, + { + "start": 5772.36, + "end": 5772.74, + "probability": 0.9592 + }, + { + "start": 5772.82, + "end": 5773.98, + "probability": 0.9491 + }, + { + "start": 5774.24, + "end": 5778.64, + "probability": 0.9683 + }, + { + "start": 5779.34, + "end": 5780.74, + "probability": 0.8123 + }, + { + "start": 5781.64, + "end": 5782.88, + "probability": 0.5815 + }, + { + "start": 5783.04, + "end": 5787.24, + "probability": 0.7701 + }, + { + "start": 5788.99, + "end": 5790.47, + "probability": 0.9802 + }, + { + "start": 5791.6, + "end": 5793.88, + "probability": 0.6879 + }, + { + "start": 5794.36, + "end": 5796.34, + "probability": 0.905 + }, + { + "start": 5796.8, + "end": 5798.82, + "probability": 0.9769 + }, + { + "start": 5799.26, + "end": 5801.06, + "probability": 0.9976 + }, + { + "start": 5801.46, + "end": 5802.86, + "probability": 0.7291 + }, + { + "start": 5803.72, + "end": 5807.42, + "probability": 0.96 + }, + { + "start": 5807.78, + "end": 5809.62, + "probability": 0.9041 + }, + { + "start": 5812.16, + "end": 5813.2, + "probability": 0.9841 + }, + { + "start": 5813.74, + "end": 5814.8, + "probability": 0.9421 + }, + { + "start": 5815.12, + "end": 5816.23, + "probability": 0.9625 + }, + { + "start": 5816.34, + "end": 5817.37, + "probability": 0.7655 + }, + { + "start": 5820.08, + "end": 5824.84, + "probability": 0.9933 + }, + { + "start": 5825.32, + "end": 5826.26, + "probability": 0.6555 + }, + { + "start": 5826.78, + "end": 5830.02, + "probability": 0.9972 + }, + { + "start": 5830.6, + "end": 5832.42, + "probability": 0.9243 + }, + { + "start": 5833.1, + "end": 5835.06, + "probability": 0.5317 + }, + { + "start": 5835.94, + "end": 5837.4, + "probability": 0.3505 + }, + { + "start": 5838.02, + "end": 5839.38, + "probability": 0.8722 + }, + { + "start": 5840.06, + "end": 5841.94, + "probability": 0.7668 + }, + { + "start": 5842.12, + "end": 5842.93, + "probability": 0.9556 + }, + { + "start": 5843.54, + "end": 5844.7, + "probability": 0.9887 + }, + { + "start": 5844.76, + "end": 5845.73, + "probability": 0.8469 + }, + { + "start": 5847.25, + "end": 5849.15, + "probability": 0.7754 + }, + { + "start": 5850.02, + "end": 5851.08, + "probability": 0.7355 + }, + { + "start": 5851.66, + "end": 5853.46, + "probability": 0.9961 + }, + { + "start": 5853.5, + "end": 5854.84, + "probability": 0.9559 + }, + { + "start": 5855.18, + "end": 5858.16, + "probability": 0.9626 + }, + { + "start": 5858.48, + "end": 5860.1, + "probability": 0.8599 + }, + { + "start": 5861.02, + "end": 5864.18, + "probability": 0.9097 + }, + { + "start": 5864.78, + "end": 5865.54, + "probability": 0.9493 + }, + { + "start": 5866.46, + "end": 5868.32, + "probability": 0.9395 + }, + { + "start": 5868.74, + "end": 5871.1, + "probability": 0.996 + }, + { + "start": 5871.24, + "end": 5872.08, + "probability": 0.8968 + }, + { + "start": 5872.64, + "end": 5873.78, + "probability": 0.9744 + }, + { + "start": 5874.42, + "end": 5876.28, + "probability": 0.9987 + }, + { + "start": 5876.92, + "end": 5880.08, + "probability": 0.9354 + }, + { + "start": 5880.66, + "end": 5882.04, + "probability": 0.7818 + }, + { + "start": 5882.62, + "end": 5884.48, + "probability": 0.7852 + }, + { + "start": 5884.72, + "end": 5886.6, + "probability": 0.9354 + }, + { + "start": 5887.08, + "end": 5888.04, + "probability": 0.9442 + }, + { + "start": 5888.78, + "end": 5891.9, + "probability": 0.9751 + }, + { + "start": 5892.68, + "end": 5894.94, + "probability": 0.9337 + }, + { + "start": 5895.57, + "end": 5897.13, + "probability": 0.999 + }, + { + "start": 5897.94, + "end": 5900.67, + "probability": 0.9795 + }, + { + "start": 5901.64, + "end": 5902.68, + "probability": 0.9976 + }, + { + "start": 5903.14, + "end": 5903.66, + "probability": 0.7518 + }, + { + "start": 5903.74, + "end": 5904.56, + "probability": 0.8518 + }, + { + "start": 5904.68, + "end": 5907.04, + "probability": 0.9714 + }, + { + "start": 5907.08, + "end": 5907.84, + "probability": 0.9568 + }, + { + "start": 5907.92, + "end": 5908.74, + "probability": 0.8591 + }, + { + "start": 5908.8, + "end": 5909.32, + "probability": 0.9375 + }, + { + "start": 5909.86, + "end": 5911.46, + "probability": 0.822 + }, + { + "start": 5911.6, + "end": 5912.04, + "probability": 0.5894 + }, + { + "start": 5912.7, + "end": 5913.44, + "probability": 0.8513 + }, + { + "start": 5914.18, + "end": 5915.14, + "probability": 0.9795 + }, + { + "start": 5915.74, + "end": 5917.8, + "probability": 0.9848 + }, + { + "start": 5918.3, + "end": 5921.98, + "probability": 0.9973 + }, + { + "start": 5923.52, + "end": 5928.98, + "probability": 0.9453 + }, + { + "start": 5929.52, + "end": 5930.02, + "probability": 0.8239 + }, + { + "start": 5930.54, + "end": 5932.08, + "probability": 0.9852 + }, + { + "start": 5932.52, + "end": 5934.82, + "probability": 0.9964 + }, + { + "start": 5934.92, + "end": 5935.98, + "probability": 0.917 + }, + { + "start": 5936.56, + "end": 5938.0, + "probability": 0.8994 + }, + { + "start": 5938.78, + "end": 5939.66, + "probability": 0.9814 + }, + { + "start": 5939.76, + "end": 5940.12, + "probability": 0.5353 + }, + { + "start": 5940.16, + "end": 5943.48, + "probability": 0.9869 + }, + { + "start": 5943.96, + "end": 5947.38, + "probability": 0.9844 + }, + { + "start": 5947.97, + "end": 5956.48, + "probability": 0.8383 + }, + { + "start": 5956.62, + "end": 5962.18, + "probability": 0.9807 + }, + { + "start": 5963.18, + "end": 5964.74, + "probability": 0.9966 + }, + { + "start": 5965.5, + "end": 5966.54, + "probability": 0.8155 + }, + { + "start": 5967.38, + "end": 5968.48, + "probability": 0.747 + }, + { + "start": 5968.84, + "end": 5970.16, + "probability": 0.979 + }, + { + "start": 5970.7, + "end": 5971.56, + "probability": 0.9399 + }, + { + "start": 5971.64, + "end": 5973.08, + "probability": 0.9058 + }, + { + "start": 5973.74, + "end": 5975.96, + "probability": 0.9969 + }, + { + "start": 5976.04, + "end": 5976.3, + "probability": 0.583 + }, + { + "start": 5976.38, + "end": 5977.08, + "probability": 0.9868 + }, + { + "start": 5977.74, + "end": 5978.64, + "probability": 0.9836 + }, + { + "start": 5978.72, + "end": 5979.6, + "probability": 0.9014 + }, + { + "start": 5980.1, + "end": 5984.98, + "probability": 0.9654 + }, + { + "start": 5985.18, + "end": 5986.08, + "probability": 0.9449 + }, + { + "start": 5986.38, + "end": 5990.92, + "probability": 0.9534 + }, + { + "start": 5990.92, + "end": 5994.5, + "probability": 0.9971 + }, + { + "start": 5995.18, + "end": 5995.88, + "probability": 0.7618 + }, + { + "start": 5996.4, + "end": 5996.98, + "probability": 0.959 + }, + { + "start": 5997.78, + "end": 6000.06, + "probability": 0.9941 + }, + { + "start": 6000.42, + "end": 6003.54, + "probability": 0.9948 + }, + { + "start": 6005.08, + "end": 6011.48, + "probability": 0.9823 + }, + { + "start": 6011.5, + "end": 6012.64, + "probability": 0.5506 + }, + { + "start": 6013.24, + "end": 6013.78, + "probability": 0.9346 + }, + { + "start": 6014.4, + "end": 6018.06, + "probability": 0.9881 + }, + { + "start": 6019.94, + "end": 6024.6, + "probability": 0.9953 + }, + { + "start": 6024.6, + "end": 6026.62, + "probability": 0.9992 + }, + { + "start": 6027.9, + "end": 6031.3, + "probability": 0.9977 + }, + { + "start": 6032.14, + "end": 6035.82, + "probability": 0.994 + }, + { + "start": 6036.82, + "end": 6040.14, + "probability": 0.9231 + }, + { + "start": 6040.26, + "end": 6040.98, + "probability": 0.9531 + }, + { + "start": 6041.1, + "end": 6041.7, + "probability": 0.6912 + }, + { + "start": 6042.2, + "end": 6043.94, + "probability": 0.8989 + }, + { + "start": 6044.36, + "end": 6045.9, + "probability": 0.9935 + }, + { + "start": 6045.94, + "end": 6046.48, + "probability": 0.9426 + }, + { + "start": 6046.6, + "end": 6047.28, + "probability": 0.9856 + }, + { + "start": 6047.34, + "end": 6047.83, + "probability": 0.5905 + }, + { + "start": 6048.68, + "end": 6050.26, + "probability": 0.9561 + }, + { + "start": 6051.12, + "end": 6053.86, + "probability": 0.9872 + }, + { + "start": 6055.36, + "end": 6057.74, + "probability": 0.9969 + }, + { + "start": 6058.74, + "end": 6061.1, + "probability": 0.9755 + }, + { + "start": 6061.64, + "end": 6064.12, + "probability": 0.9885 + }, + { + "start": 6064.72, + "end": 6065.51, + "probability": 0.9653 + }, + { + "start": 6066.2, + "end": 6069.9, + "probability": 0.9976 + }, + { + "start": 6071.68, + "end": 6074.54, + "probability": 0.8405 + }, + { + "start": 6075.78, + "end": 6078.24, + "probability": 0.942 + }, + { + "start": 6078.9, + "end": 6079.18, + "probability": 0.492 + }, + { + "start": 6079.28, + "end": 6079.44, + "probability": 0.445 + }, + { + "start": 6080.71, + "end": 6084.04, + "probability": 0.9287 + }, + { + "start": 6085.22, + "end": 6087.92, + "probability": 0.6414 + }, + { + "start": 6089.36, + "end": 6093.72, + "probability": 0.9954 + }, + { + "start": 6094.3, + "end": 6097.84, + "probability": 0.9086 + }, + { + "start": 6098.86, + "end": 6099.22, + "probability": 0.9712 + }, + { + "start": 6099.66, + "end": 6100.14, + "probability": 0.9663 + }, + { + "start": 6101.1, + "end": 6101.46, + "probability": 0.9553 + }, + { + "start": 6101.82, + "end": 6102.3, + "probability": 0.5443 + }, + { + "start": 6102.44, + "end": 6105.58, + "probability": 0.9983 + }, + { + "start": 6106.28, + "end": 6107.86, + "probability": 0.9652 + }, + { + "start": 6108.8, + "end": 6114.02, + "probability": 0.9875 + }, + { + "start": 6114.02, + "end": 6117.48, + "probability": 0.9318 + }, + { + "start": 6118.92, + "end": 6120.24, + "probability": 0.66 + }, + { + "start": 6120.88, + "end": 6121.44, + "probability": 0.5394 + }, + { + "start": 6122.56, + "end": 6123.33, + "probability": 0.821 + }, + { + "start": 6123.98, + "end": 6124.76, + "probability": 0.9775 + }, + { + "start": 6125.78, + "end": 6129.44, + "probability": 0.9798 + }, + { + "start": 6129.74, + "end": 6130.14, + "probability": 0.9136 + }, + { + "start": 6130.38, + "end": 6130.9, + "probability": 0.5374 + }, + { + "start": 6131.58, + "end": 6135.28, + "probability": 0.9954 + }, + { + "start": 6136.1, + "end": 6137.5, + "probability": 0.8656 + }, + { + "start": 6138.08, + "end": 6139.38, + "probability": 0.6805 + }, + { + "start": 6139.82, + "end": 6142.7, + "probability": 0.9478 + }, + { + "start": 6142.98, + "end": 6144.42, + "probability": 0.93 + }, + { + "start": 6145.52, + "end": 6148.44, + "probability": 0.9336 + }, + { + "start": 6149.14, + "end": 6150.62, + "probability": 0.9903 + }, + { + "start": 6151.4, + "end": 6153.84, + "probability": 0.9492 + }, + { + "start": 6155.38, + "end": 6156.88, + "probability": 0.9897 + }, + { + "start": 6157.56, + "end": 6158.24, + "probability": 0.8932 + }, + { + "start": 6158.98, + "end": 6159.74, + "probability": 0.9157 + }, + { + "start": 6160.74, + "end": 6162.42, + "probability": 0.9089 + }, + { + "start": 6162.46, + "end": 6163.68, + "probability": 0.5382 + }, + { + "start": 6163.76, + "end": 6164.34, + "probability": 0.9489 + }, + { + "start": 6165.22, + "end": 6165.82, + "probability": 0.7337 + }, + { + "start": 6165.98, + "end": 6166.72, + "probability": 0.7134 + }, + { + "start": 6167.08, + "end": 6168.9, + "probability": 0.8319 + }, + { + "start": 6169.56, + "end": 6170.75, + "probability": 0.9751 + }, + { + "start": 6171.72, + "end": 6173.4, + "probability": 0.992 + }, + { + "start": 6173.98, + "end": 6175.08, + "probability": 0.9462 + }, + { + "start": 6176.24, + "end": 6179.42, + "probability": 0.9804 + }, + { + "start": 6182.24, + "end": 6186.92, + "probability": 0.9833 + }, + { + "start": 6187.82, + "end": 6191.5, + "probability": 0.998 + }, + { + "start": 6192.1, + "end": 6192.32, + "probability": 0.6254 + }, + { + "start": 6192.38, + "end": 6192.92, + "probability": 0.7191 + }, + { + "start": 6192.98, + "end": 6193.24, + "probability": 0.7772 + }, + { + "start": 6193.28, + "end": 6195.6, + "probability": 0.9585 + }, + { + "start": 6196.44, + "end": 6198.02, + "probability": 0.9925 + }, + { + "start": 6198.56, + "end": 6200.08, + "probability": 0.9308 + }, + { + "start": 6200.76, + "end": 6201.78, + "probability": 0.8484 + }, + { + "start": 6202.3, + "end": 6205.2, + "probability": 0.8997 + }, + { + "start": 6205.4, + "end": 6211.4, + "probability": 0.8948 + }, + { + "start": 6211.9, + "end": 6212.88, + "probability": 0.798 + }, + { + "start": 6213.34, + "end": 6216.32, + "probability": 0.6917 + }, + { + "start": 6216.82, + "end": 6220.68, + "probability": 0.9014 + }, + { + "start": 6221.08, + "end": 6224.4, + "probability": 0.9888 + }, + { + "start": 6224.9, + "end": 6225.78, + "probability": 0.9592 + }, + { + "start": 6226.46, + "end": 6227.96, + "probability": 0.8571 + }, + { + "start": 6228.04, + "end": 6229.3, + "probability": 0.9388 + }, + { + "start": 6229.36, + "end": 6229.76, + "probability": 0.5212 + }, + { + "start": 6229.82, + "end": 6230.54, + "probability": 0.9653 + }, + { + "start": 6231.54, + "end": 6235.32, + "probability": 0.9641 + }, + { + "start": 6235.46, + "end": 6236.84, + "probability": 0.7825 + }, + { + "start": 6237.32, + "end": 6238.5, + "probability": 0.9409 + }, + { + "start": 6238.76, + "end": 6241.14, + "probability": 0.9468 + }, + { + "start": 6241.16, + "end": 6242.98, + "probability": 0.625 + }, + { + "start": 6243.0, + "end": 6246.5, + "probability": 0.5197 + }, + { + "start": 6247.22, + "end": 6247.22, + "probability": 0.0824 + }, + { + "start": 6247.22, + "end": 6249.36, + "probability": 0.9432 + }, + { + "start": 6250.6, + "end": 6256.32, + "probability": 0.8446 + }, + { + "start": 6263.14, + "end": 6264.46, + "probability": 0.6586 + }, + { + "start": 6266.06, + "end": 6266.64, + "probability": 0.709 + }, + { + "start": 6267.62, + "end": 6270.38, + "probability": 0.9875 + }, + { + "start": 6271.2, + "end": 6275.36, + "probability": 0.9591 + }, + { + "start": 6276.68, + "end": 6278.14, + "probability": 0.9384 + }, + { + "start": 6279.7, + "end": 6280.28, + "probability": 0.9946 + }, + { + "start": 6281.3, + "end": 6284.2, + "probability": 0.4551 + }, + { + "start": 6285.96, + "end": 6286.94, + "probability": 0.9314 + }, + { + "start": 6287.06, + "end": 6287.93, + "probability": 0.9574 + }, + { + "start": 6288.62, + "end": 6292.64, + "probability": 0.9772 + }, + { + "start": 6295.48, + "end": 6300.0, + "probability": 0.9241 + }, + { + "start": 6300.06, + "end": 6301.84, + "probability": 0.9618 + }, + { + "start": 6302.88, + "end": 6303.56, + "probability": 0.7176 + }, + { + "start": 6304.0, + "end": 6305.4, + "probability": 0.8853 + }, + { + "start": 6307.64, + "end": 6309.14, + "probability": 0.5987 + }, + { + "start": 6309.18, + "end": 6310.08, + "probability": 0.9142 + }, + { + "start": 6310.12, + "end": 6312.84, + "probability": 0.9915 + }, + { + "start": 6313.08, + "end": 6315.08, + "probability": 0.9968 + }, + { + "start": 6317.46, + "end": 6320.2, + "probability": 0.9979 + }, + { + "start": 6321.1, + "end": 6322.06, + "probability": 0.9343 + }, + { + "start": 6323.3, + "end": 6324.86, + "probability": 0.9961 + }, + { + "start": 6325.56, + "end": 6326.5, + "probability": 0.8605 + }, + { + "start": 6327.62, + "end": 6329.98, + "probability": 0.8127 + }, + { + "start": 6330.68, + "end": 6331.38, + "probability": 0.9242 + }, + { + "start": 6331.48, + "end": 6332.9, + "probability": 0.9521 + }, + { + "start": 6333.5, + "end": 6335.4, + "probability": 0.9927 + }, + { + "start": 6336.14, + "end": 6340.58, + "probability": 0.9954 + }, + { + "start": 6340.7, + "end": 6342.52, + "probability": 0.9857 + }, + { + "start": 6342.66, + "end": 6345.32, + "probability": 0.6773 + }, + { + "start": 6346.04, + "end": 6350.4, + "probability": 0.973 + }, + { + "start": 6351.06, + "end": 6352.7, + "probability": 0.9946 + }, + { + "start": 6353.86, + "end": 6355.03, + "probability": 0.9806 + }, + { + "start": 6355.44, + "end": 6358.1, + "probability": 0.9971 + }, + { + "start": 6358.76, + "end": 6359.38, + "probability": 0.9875 + }, + { + "start": 6360.92, + "end": 6361.18, + "probability": 0.4497 + }, + { + "start": 6362.2, + "end": 6364.64, + "probability": 0.9778 + }, + { + "start": 6366.02, + "end": 6368.96, + "probability": 0.9969 + }, + { + "start": 6369.28, + "end": 6372.57, + "probability": 0.9697 + }, + { + "start": 6374.2, + "end": 6374.88, + "probability": 0.8665 + }, + { + "start": 6375.52, + "end": 6375.8, + "probability": 0.9406 + }, + { + "start": 6376.4, + "end": 6377.16, + "probability": 0.1558 + }, + { + "start": 6377.64, + "end": 6378.14, + "probability": 0.3701 + }, + { + "start": 6378.14, + "end": 6381.36, + "probability": 0.4998 + }, + { + "start": 6381.66, + "end": 6383.52, + "probability": 0.2481 + }, + { + "start": 6383.68, + "end": 6386.28, + "probability": 0.5208 + }, + { + "start": 6386.48, + "end": 6388.61, + "probability": 0.4785 + }, + { + "start": 6389.36, + "end": 6391.12, + "probability": 0.7229 + }, + { + "start": 6391.16, + "end": 6392.46, + "probability": 0.814 + }, + { + "start": 6392.84, + "end": 6396.64, + "probability": 0.9968 + }, + { + "start": 6396.64, + "end": 6401.38, + "probability": 0.9995 + }, + { + "start": 6402.16, + "end": 6403.52, + "probability": 0.999 + }, + { + "start": 6404.32, + "end": 6405.86, + "probability": 0.9614 + }, + { + "start": 6405.96, + "end": 6407.28, + "probability": 0.8674 + }, + { + "start": 6408.08, + "end": 6408.86, + "probability": 0.8702 + }, + { + "start": 6408.96, + "end": 6409.22, + "probability": 0.6066 + }, + { + "start": 6409.28, + "end": 6409.86, + "probability": 0.4981 + }, + { + "start": 6409.88, + "end": 6410.46, + "probability": 0.1565 + }, + { + "start": 6410.92, + "end": 6413.64, + "probability": 0.8395 + }, + { + "start": 6414.14, + "end": 6419.69, + "probability": 0.9089 + }, + { + "start": 6420.82, + "end": 6423.9, + "probability": 0.9579 + }, + { + "start": 6423.94, + "end": 6424.68, + "probability": 0.7151 + }, + { + "start": 6425.14, + "end": 6426.89, + "probability": 0.7659 + }, + { + "start": 6427.18, + "end": 6428.45, + "probability": 0.5548 + }, + { + "start": 6428.64, + "end": 6430.24, + "probability": 0.6886 + }, + { + "start": 6430.7, + "end": 6432.22, + "probability": 0.7426 + }, + { + "start": 6432.22, + "end": 6433.98, + "probability": 0.8139 + }, + { + "start": 6434.3, + "end": 6436.78, + "probability": 0.9917 + }, + { + "start": 6437.04, + "end": 6438.4, + "probability": 0.9946 + }, + { + "start": 6438.88, + "end": 6441.26, + "probability": 0.997 + }, + { + "start": 6441.68, + "end": 6443.94, + "probability": 0.9451 + }, + { + "start": 6444.14, + "end": 6446.0, + "probability": 0.937 + }, + { + "start": 6446.18, + "end": 6449.58, + "probability": 0.999 + }, + { + "start": 6450.18, + "end": 6451.06, + "probability": 0.8485 + }, + { + "start": 6451.24, + "end": 6453.28, + "probability": 0.9909 + }, + { + "start": 6453.36, + "end": 6454.52, + "probability": 0.9933 + }, + { + "start": 6455.0, + "end": 6456.98, + "probability": 0.9604 + }, + { + "start": 6457.1, + "end": 6459.9, + "probability": 0.9946 + }, + { + "start": 6460.3, + "end": 6461.36, + "probability": 0.9563 + }, + { + "start": 6461.5, + "end": 6463.52, + "probability": 0.981 + }, + { + "start": 6463.58, + "end": 6464.62, + "probability": 0.9447 + }, + { + "start": 6465.42, + "end": 6466.78, + "probability": 0.9855 + }, + { + "start": 6468.5, + "end": 6469.76, + "probability": 0.9775 + }, + { + "start": 6470.7, + "end": 6471.82, + "probability": 0.9468 + }, + { + "start": 6471.96, + "end": 6475.76, + "probability": 0.9624 + }, + { + "start": 6476.42, + "end": 6482.34, + "probability": 0.988 + }, + { + "start": 6482.52, + "end": 6484.74, + "probability": 0.9949 + }, + { + "start": 6485.46, + "end": 6488.42, + "probability": 0.9893 + }, + { + "start": 6489.86, + "end": 6491.38, + "probability": 0.9732 + }, + { + "start": 6491.88, + "end": 6493.06, + "probability": 0.9808 + }, + { + "start": 6493.48, + "end": 6494.54, + "probability": 0.9382 + }, + { + "start": 6495.58, + "end": 6497.7, + "probability": 0.9968 + }, + { + "start": 6500.28, + "end": 6502.4, + "probability": 0.9486 + }, + { + "start": 6502.52, + "end": 6505.16, + "probability": 0.9985 + }, + { + "start": 6505.18, + "end": 6506.64, + "probability": 0.9773 + }, + { + "start": 6507.18, + "end": 6509.92, + "probability": 0.9932 + }, + { + "start": 6510.0, + "end": 6511.66, + "probability": 0.9077 + }, + { + "start": 6511.92, + "end": 6514.78, + "probability": 0.9462 + }, + { + "start": 6515.28, + "end": 6516.74, + "probability": 0.9883 + }, + { + "start": 6517.5, + "end": 6518.22, + "probability": 0.4834 + }, + { + "start": 6518.32, + "end": 6519.74, + "probability": 0.9692 + }, + { + "start": 6520.14, + "end": 6522.03, + "probability": 0.9976 + }, + { + "start": 6522.34, + "end": 6526.06, + "probability": 0.9973 + }, + { + "start": 6526.34, + "end": 6527.16, + "probability": 0.787 + }, + { + "start": 6527.28, + "end": 6527.7, + "probability": 0.4327 + }, + { + "start": 6527.86, + "end": 6528.34, + "probability": 0.6988 + }, + { + "start": 6528.7, + "end": 6531.28, + "probability": 0.9675 + }, + { + "start": 6532.56, + "end": 6533.82, + "probability": 0.7855 + }, + { + "start": 6534.7, + "end": 6536.4, + "probability": 0.9482 + }, + { + "start": 6537.02, + "end": 6538.34, + "probability": 0.9551 + }, + { + "start": 6539.64, + "end": 6541.92, + "probability": 0.9724 + }, + { + "start": 6542.74, + "end": 6546.66, + "probability": 0.9761 + }, + { + "start": 6546.66, + "end": 6550.24, + "probability": 0.9997 + }, + { + "start": 6550.76, + "end": 6552.46, + "probability": 0.9937 + }, + { + "start": 6552.98, + "end": 6557.18, + "probability": 0.7985 + }, + { + "start": 6557.52, + "end": 6559.0, + "probability": 0.989 + }, + { + "start": 6559.24, + "end": 6560.56, + "probability": 0.983 + }, + { + "start": 6560.84, + "end": 6562.34, + "probability": 0.8322 + }, + { + "start": 6563.88, + "end": 6565.22, + "probability": 0.991 + }, + { + "start": 6567.5, + "end": 6570.94, + "probability": 0.963 + }, + { + "start": 6575.58, + "end": 6576.58, + "probability": 0.6349 + }, + { + "start": 6579.42, + "end": 6580.76, + "probability": 0.6833 + }, + { + "start": 6581.66, + "end": 6585.04, + "probability": 0.9938 + }, + { + "start": 6585.72, + "end": 6587.1, + "probability": 0.9622 + }, + { + "start": 6589.42, + "end": 6592.06, + "probability": 0.8157 + }, + { + "start": 6592.14, + "end": 6592.84, + "probability": 0.8899 + }, + { + "start": 6593.58, + "end": 6594.3, + "probability": 0.8011 + }, + { + "start": 6596.26, + "end": 6598.34, + "probability": 0.9579 + }, + { + "start": 6599.4, + "end": 6600.02, + "probability": 0.5188 + }, + { + "start": 6600.82, + "end": 6601.86, + "probability": 0.8915 + }, + { + "start": 6602.06, + "end": 6603.58, + "probability": 0.9316 + }, + { + "start": 6604.16, + "end": 6605.78, + "probability": 0.9434 + }, + { + "start": 6606.42, + "end": 6607.88, + "probability": 0.9491 + }, + { + "start": 6608.36, + "end": 6612.78, + "probability": 0.998 + }, + { + "start": 6613.06, + "end": 6613.98, + "probability": 0.9087 + }, + { + "start": 6614.02, + "end": 6615.42, + "probability": 0.8746 + }, + { + "start": 6615.84, + "end": 6618.46, + "probability": 0.9938 + }, + { + "start": 6618.84, + "end": 6620.74, + "probability": 0.8388 + }, + { + "start": 6621.32, + "end": 6622.1, + "probability": 0.889 + }, + { + "start": 6623.62, + "end": 6625.84, + "probability": 0.8661 + }, + { + "start": 6626.94, + "end": 6627.68, + "probability": 0.7618 + }, + { + "start": 6631.16, + "end": 6631.34, + "probability": 0.4225 + }, + { + "start": 6631.34, + "end": 6631.42, + "probability": 0.0407 + }, + { + "start": 6631.42, + "end": 6633.66, + "probability": 0.2989 + }, + { + "start": 6634.06, + "end": 6634.54, + "probability": 0.4035 + }, + { + "start": 6634.94, + "end": 6636.36, + "probability": 0.4059 + }, + { + "start": 6637.32, + "end": 6637.52, + "probability": 0.2857 + }, + { + "start": 6637.52, + "end": 6641.66, + "probability": 0.7645 + }, + { + "start": 6641.8, + "end": 6643.04, + "probability": 0.5361 + }, + { + "start": 6643.04, + "end": 6644.86, + "probability": 0.0154 + }, + { + "start": 6644.86, + "end": 6645.0, + "probability": 0.1111 + }, + { + "start": 6645.0, + "end": 6646.52, + "probability": 0.3466 + }, + { + "start": 6646.7, + "end": 6650.64, + "probability": 0.5476 + }, + { + "start": 6650.98, + "end": 6651.88, + "probability": 0.9863 + }, + { + "start": 6652.36, + "end": 6654.64, + "probability": 0.9705 + }, + { + "start": 6655.2, + "end": 6655.78, + "probability": 0.7513 + }, + { + "start": 6655.9, + "end": 6659.74, + "probability": 0.5403 + }, + { + "start": 6660.02, + "end": 6661.98, + "probability": 0.9857 + }, + { + "start": 6662.52, + "end": 6662.66, + "probability": 0.7292 + }, + { + "start": 6662.74, + "end": 6669.3, + "probability": 0.9524 + }, + { + "start": 6670.06, + "end": 6670.06, + "probability": 0.2834 + }, + { + "start": 6670.74, + "end": 6673.54, + "probability": 0.9572 + }, + { + "start": 6673.62, + "end": 6675.84, + "probability": 0.9762 + }, + { + "start": 6677.64, + "end": 6678.58, + "probability": 0.8422 + }, + { + "start": 6678.62, + "end": 6681.14, + "probability": 0.9934 + }, + { + "start": 6681.76, + "end": 6684.54, + "probability": 0.7616 + }, + { + "start": 6685.2, + "end": 6686.56, + "probability": 0.9961 + }, + { + "start": 6686.76, + "end": 6688.16, + "probability": 0.8998 + }, + { + "start": 6688.38, + "end": 6689.62, + "probability": 0.9613 + }, + { + "start": 6689.84, + "end": 6691.08, + "probability": 0.7875 + }, + { + "start": 6691.38, + "end": 6691.76, + "probability": 0.6787 + }, + { + "start": 6691.86, + "end": 6692.66, + "probability": 0.9625 + }, + { + "start": 6692.9, + "end": 6693.4, + "probability": 0.6571 + }, + { + "start": 6693.44, + "end": 6696.28, + "probability": 0.9755 + }, + { + "start": 6696.56, + "end": 6697.48, + "probability": 0.7559 + }, + { + "start": 6697.72, + "end": 6700.86, + "probability": 0.97 + }, + { + "start": 6701.28, + "end": 6702.16, + "probability": 0.8281 + }, + { + "start": 6702.72, + "end": 6703.38, + "probability": 0.4892 + }, + { + "start": 6705.38, + "end": 6708.8, + "probability": 0.9692 + }, + { + "start": 6709.78, + "end": 6713.0, + "probability": 0.9892 + }, + { + "start": 6713.64, + "end": 6715.16, + "probability": 0.9516 + }, + { + "start": 6716.82, + "end": 6720.44, + "probability": 0.9287 + }, + { + "start": 6721.54, + "end": 6724.08, + "probability": 0.7164 + }, + { + "start": 6724.14, + "end": 6730.52, + "probability": 0.98 + }, + { + "start": 6733.16, + "end": 6736.68, + "probability": 0.8547 + }, + { + "start": 6736.96, + "end": 6738.38, + "probability": 0.9431 + }, + { + "start": 6738.56, + "end": 6739.96, + "probability": 0.9247 + }, + { + "start": 6740.22, + "end": 6741.82, + "probability": 0.8141 + }, + { + "start": 6742.63, + "end": 6745.04, + "probability": 0.5794 + }, + { + "start": 6745.7, + "end": 6748.46, + "probability": 0.9966 + }, + { + "start": 6748.6, + "end": 6752.1, + "probability": 0.9912 + }, + { + "start": 6752.88, + "end": 6756.42, + "probability": 0.9948 + }, + { + "start": 6756.9, + "end": 6758.64, + "probability": 0.9987 + }, + { + "start": 6758.78, + "end": 6760.92, + "probability": 0.9959 + }, + { + "start": 6761.66, + "end": 6763.0, + "probability": 0.9956 + }, + { + "start": 6763.04, + "end": 6764.72, + "probability": 0.9183 + }, + { + "start": 6765.64, + "end": 6766.44, + "probability": 0.6426 + }, + { + "start": 6766.8, + "end": 6769.6, + "probability": 0.6236 + }, + { + "start": 6772.55, + "end": 6774.04, + "probability": 0.618 + }, + { + "start": 6774.2, + "end": 6778.2, + "probability": 0.9103 + }, + { + "start": 6779.02, + "end": 6781.42, + "probability": 0.7844 + }, + { + "start": 6782.58, + "end": 6783.44, + "probability": 0.9385 + }, + { + "start": 6783.62, + "end": 6785.4, + "probability": 0.9833 + }, + { + "start": 6785.46, + "end": 6786.18, + "probability": 0.6329 + }, + { + "start": 6786.26, + "end": 6786.82, + "probability": 0.5974 + }, + { + "start": 6787.9, + "end": 6789.04, + "probability": 0.2346 + }, + { + "start": 6789.82, + "end": 6790.14, + "probability": 0.2604 + }, + { + "start": 6790.42, + "end": 6792.88, + "probability": 0.1127 + }, + { + "start": 6793.86, + "end": 6801.78, + "probability": 0.998 + }, + { + "start": 6802.4, + "end": 6804.86, + "probability": 0.9976 + }, + { + "start": 6804.96, + "end": 6806.28, + "probability": 0.96 + }, + { + "start": 6806.54, + "end": 6810.61, + "probability": 0.9966 + }, + { + "start": 6811.3, + "end": 6815.1, + "probability": 0.774 + }, + { + "start": 6815.58, + "end": 6816.95, + "probability": 0.9409 + }, + { + "start": 6818.02, + "end": 6819.38, + "probability": 0.8921 + }, + { + "start": 6820.18, + "end": 6822.56, + "probability": 0.9363 + }, + { + "start": 6823.2, + "end": 6824.92, + "probability": 0.7013 + }, + { + "start": 6826.12, + "end": 6828.32, + "probability": 0.5645 + }, + { + "start": 6828.92, + "end": 6830.96, + "probability": 0.9611 + }, + { + "start": 6831.54, + "end": 6833.3, + "probability": 0.8344 + }, + { + "start": 6833.44, + "end": 6835.08, + "probability": 0.9947 + }, + { + "start": 6835.46, + "end": 6836.32, + "probability": 0.8872 + }, + { + "start": 6837.16, + "end": 6837.72, + "probability": 0.9445 + }, + { + "start": 6837.8, + "end": 6838.28, + "probability": 0.988 + }, + { + "start": 6838.76, + "end": 6839.78, + "probability": 0.7642 + }, + { + "start": 6839.94, + "end": 6840.48, + "probability": 0.3347 + }, + { + "start": 6840.54, + "end": 6842.0, + "probability": 0.6331 + }, + { + "start": 6842.82, + "end": 6846.07, + "probability": 0.9858 + }, + { + "start": 6846.88, + "end": 6849.06, + "probability": 0.9476 + }, + { + "start": 6849.88, + "end": 6854.4, + "probability": 0.9845 + }, + { + "start": 6855.1, + "end": 6860.52, + "probability": 0.8712 + }, + { + "start": 6861.38, + "end": 6863.24, + "probability": 0.7466 + }, + { + "start": 6863.96, + "end": 6869.06, + "probability": 0.9941 + }, + { + "start": 6869.8, + "end": 6877.8, + "probability": 0.953 + }, + { + "start": 6878.86, + "end": 6883.02, + "probability": 0.9942 + }, + { + "start": 6883.86, + "end": 6885.94, + "probability": 0.9979 + }, + { + "start": 6887.06, + "end": 6889.14, + "probability": 0.7887 + }, + { + "start": 6890.68, + "end": 6891.44, + "probability": 0.8335 + }, + { + "start": 6892.16, + "end": 6893.52, + "probability": 0.9592 + }, + { + "start": 6893.68, + "end": 6896.46, + "probability": 0.8551 + }, + { + "start": 6896.78, + "end": 6897.67, + "probability": 0.7871 + }, + { + "start": 6899.23, + "end": 6901.84, + "probability": 0.9252 + }, + { + "start": 6902.76, + "end": 6904.26, + "probability": 0.6484 + }, + { + "start": 6904.42, + "end": 6910.78, + "probability": 0.9204 + }, + { + "start": 6912.52, + "end": 6913.62, + "probability": 0.8937 + }, + { + "start": 6914.36, + "end": 6917.88, + "probability": 0.9989 + }, + { + "start": 6919.1, + "end": 6920.56, + "probability": 0.6184 + }, + { + "start": 6921.61, + "end": 6923.84, + "probability": 0.9988 + }, + { + "start": 6924.54, + "end": 6925.34, + "probability": 0.9617 + }, + { + "start": 6926.14, + "end": 6930.88, + "probability": 0.9977 + }, + { + "start": 6930.92, + "end": 6931.66, + "probability": 0.516 + }, + { + "start": 6931.72, + "end": 6931.84, + "probability": 0.8606 + }, + { + "start": 6931.88, + "end": 6932.56, + "probability": 0.9068 + }, + { + "start": 6932.6, + "end": 6933.22, + "probability": 0.7013 + }, + { + "start": 6933.24, + "end": 6934.38, + "probability": 0.6207 + }, + { + "start": 6934.74, + "end": 6934.78, + "probability": 0.0009 + }, + { + "start": 6934.78, + "end": 6935.74, + "probability": 0.5905 + }, + { + "start": 6936.06, + "end": 6937.78, + "probability": 0.8741 + }, + { + "start": 6940.93, + "end": 6942.04, + "probability": 0.8289 + }, + { + "start": 6942.2, + "end": 6946.94, + "probability": 0.7524 + }, + { + "start": 6947.94, + "end": 6951.3, + "probability": 0.9191 + }, + { + "start": 6951.82, + "end": 6952.64, + "probability": 0.9334 + }, + { + "start": 6953.38, + "end": 6957.4, + "probability": 0.979 + }, + { + "start": 6958.02, + "end": 6961.14, + "probability": 0.8588 + }, + { + "start": 6961.56, + "end": 6965.5, + "probability": 0.7241 + }, + { + "start": 6967.04, + "end": 6967.56, + "probability": 0.6825 + }, + { + "start": 6968.34, + "end": 6973.72, + "probability": 0.9565 + }, + { + "start": 6975.76, + "end": 6978.28, + "probability": 0.9863 + }, + { + "start": 6983.08, + "end": 6984.7, + "probability": 0.748 + }, + { + "start": 6985.76, + "end": 6986.66, + "probability": 0.6365 + }, + { + "start": 6987.18, + "end": 6988.62, + "probability": 0.8451 + }, + { + "start": 6989.88, + "end": 6992.22, + "probability": 0.8656 + }, + { + "start": 6992.88, + "end": 6994.9, + "probability": 0.9608 + }, + { + "start": 6994.94, + "end": 6997.78, + "probability": 0.9902 + }, + { + "start": 6997.88, + "end": 6998.96, + "probability": 0.8644 + }, + { + "start": 6999.04, + "end": 7000.22, + "probability": 0.9018 + }, + { + "start": 7000.38, + "end": 7001.36, + "probability": 0.4434 + }, + { + "start": 7001.42, + "end": 7002.78, + "probability": 0.8994 + }, + { + "start": 7002.92, + "end": 7005.82, + "probability": 0.98 + }, + { + "start": 7006.08, + "end": 7007.28, + "probability": 0.8148 + }, + { + "start": 7008.26, + "end": 7011.86, + "probability": 0.8332 + }, + { + "start": 7012.08, + "end": 7013.88, + "probability": 0.9857 + }, + { + "start": 7014.78, + "end": 7021.28, + "probability": 0.9989 + }, + { + "start": 7022.3, + "end": 7023.5, + "probability": 0.8975 + }, + { + "start": 7024.2, + "end": 7025.62, + "probability": 0.9893 + }, + { + "start": 7025.84, + "end": 7028.68, + "probability": 0.9897 + }, + { + "start": 7030.46, + "end": 7031.1, + "probability": 0.7807 + }, + { + "start": 7031.8, + "end": 7033.76, + "probability": 0.9921 + }, + { + "start": 7034.56, + "end": 7036.16, + "probability": 0.9729 + }, + { + "start": 7036.22, + "end": 7036.56, + "probability": 0.4639 + }, + { + "start": 7036.99, + "end": 7038.7, + "probability": 0.9561 + }, + { + "start": 7038.8, + "end": 7040.14, + "probability": 0.8271 + }, + { + "start": 7040.54, + "end": 7041.82, + "probability": 0.9961 + }, + { + "start": 7042.46, + "end": 7047.18, + "probability": 0.9756 + }, + { + "start": 7047.26, + "end": 7048.38, + "probability": 0.9932 + }, + { + "start": 7048.74, + "end": 7050.64, + "probability": 0.9915 + }, + { + "start": 7062.1, + "end": 7062.97, + "probability": 0.9644 + }, + { + "start": 7063.18, + "end": 7063.3, + "probability": 0.081 + }, + { + "start": 7063.3, + "end": 7063.34, + "probability": 0.0151 + }, + { + "start": 7063.34, + "end": 7067.3, + "probability": 0.6784 + }, + { + "start": 7068.84, + "end": 7073.48, + "probability": 0.972 + }, + { + "start": 7074.22, + "end": 7075.92, + "probability": 0.9139 + }, + { + "start": 7076.52, + "end": 7077.26, + "probability": 0.7043 + }, + { + "start": 7078.16, + "end": 7079.4, + "probability": 0.8707 + }, + { + "start": 7079.94, + "end": 7081.26, + "probability": 0.4966 + }, + { + "start": 7081.76, + "end": 7083.52, + "probability": 0.5141 + }, + { + "start": 7085.96, + "end": 7086.06, + "probability": 0.003 + }, + { + "start": 7087.66, + "end": 7089.9, + "probability": 0.806 + }, + { + "start": 7090.48, + "end": 7092.4, + "probability": 0.9555 + }, + { + "start": 7092.92, + "end": 7094.76, + "probability": 0.8895 + }, + { + "start": 7096.62, + "end": 7098.08, + "probability": 0.8732 + }, + { + "start": 7098.18, + "end": 7100.59, + "probability": 0.9932 + }, + { + "start": 7101.24, + "end": 7101.44, + "probability": 0.9061 + }, + { + "start": 7102.94, + "end": 7103.84, + "probability": 0.9122 + }, + { + "start": 7104.72, + "end": 7105.48, + "probability": 0.6912 + }, + { + "start": 7107.3, + "end": 7108.46, + "probability": 0.9033 + }, + { + "start": 7109.48, + "end": 7112.22, + "probability": 0.8508 + }, + { + "start": 7112.54, + "end": 7116.68, + "probability": 0.8697 + }, + { + "start": 7116.82, + "end": 7121.74, + "probability": 0.9879 + }, + { + "start": 7121.92, + "end": 7130.6, + "probability": 0.9905 + }, + { + "start": 7130.92, + "end": 7131.98, + "probability": 0.7389 + }, + { + "start": 7132.7, + "end": 7135.24, + "probability": 0.8276 + }, + { + "start": 7135.36, + "end": 7137.42, + "probability": 0.6022 + }, + { + "start": 7138.88, + "end": 7142.98, + "probability": 0.4715 + }, + { + "start": 7143.1, + "end": 7149.44, + "probability": 0.7458 + }, + { + "start": 7149.44, + "end": 7154.14, + "probability": 0.8473 + }, + { + "start": 7154.9, + "end": 7159.9, + "probability": 0.8564 + }, + { + "start": 7160.48, + "end": 7161.36, + "probability": 0.7173 + }, + { + "start": 7161.92, + "end": 7165.68, + "probability": 0.9662 + }, + { + "start": 7165.98, + "end": 7166.68, + "probability": 0.3501 + }, + { + "start": 7166.72, + "end": 7172.24, + "probability": 0.4326 + }, + { + "start": 7172.6, + "end": 7176.54, + "probability": 0.99 + }, + { + "start": 7176.86, + "end": 7180.46, + "probability": 0.6285 + }, + { + "start": 7180.76, + "end": 7182.44, + "probability": 0.6571 + }, + { + "start": 7182.56, + "end": 7186.8, + "probability": 0.9941 + }, + { + "start": 7187.46, + "end": 7189.26, + "probability": 0.8698 + }, + { + "start": 7189.7, + "end": 7190.36, + "probability": 0.5487 + }, + { + "start": 7191.02, + "end": 7193.06, + "probability": 0.8015 + }, + { + "start": 7193.16, + "end": 7193.5, + "probability": 0.2856 + }, + { + "start": 7193.5, + "end": 7196.12, + "probability": 0.8857 + }, + { + "start": 7196.76, + "end": 7199.02, + "probability": 0.9933 + }, + { + "start": 7199.02, + "end": 7201.66, + "probability": 0.9989 + }, + { + "start": 7202.5, + "end": 7205.5, + "probability": 0.9669 + }, + { + "start": 7205.52, + "end": 7206.46, + "probability": 0.9287 + }, + { + "start": 7206.94, + "end": 7207.48, + "probability": 0.7184 + }, + { + "start": 7207.66, + "end": 7208.42, + "probability": 0.668 + }, + { + "start": 7209.3, + "end": 7212.32, + "probability": 0.9817 + }, + { + "start": 7212.86, + "end": 7215.0, + "probability": 0.9987 + }, + { + "start": 7216.22, + "end": 7220.22, + "probability": 0.9017 + }, + { + "start": 7220.96, + "end": 7224.94, + "probability": 0.7472 + }, + { + "start": 7225.0, + "end": 7225.96, + "probability": 0.7191 + }, + { + "start": 7226.14, + "end": 7227.68, + "probability": 0.9887 + }, + { + "start": 7227.88, + "end": 7229.46, + "probability": 0.8384 + }, + { + "start": 7229.58, + "end": 7230.24, + "probability": 0.6265 + }, + { + "start": 7230.76, + "end": 7233.7, + "probability": 0.9713 + }, + { + "start": 7234.32, + "end": 7236.04, + "probability": 0.7926 + }, + { + "start": 7236.92, + "end": 7239.5, + "probability": 0.9736 + }, + { + "start": 7240.32, + "end": 7244.28, + "probability": 0.979 + }, + { + "start": 7245.24, + "end": 7245.24, + "probability": 0.0333 + }, + { + "start": 7245.24, + "end": 7249.38, + "probability": 0.9365 + }, + { + "start": 7249.48, + "end": 7250.47, + "probability": 0.9871 + }, + { + "start": 7251.34, + "end": 7253.58, + "probability": 0.6819 + }, + { + "start": 7254.46, + "end": 7256.72, + "probability": 0.9602 + }, + { + "start": 7257.68, + "end": 7260.06, + "probability": 0.9602 + }, + { + "start": 7272.82, + "end": 7274.66, + "probability": 0.6514 + }, + { + "start": 7275.98, + "end": 7276.9, + "probability": 0.8003 + }, + { + "start": 7277.08, + "end": 7277.7, + "probability": 0.9147 + }, + { + "start": 7278.18, + "end": 7280.9, + "probability": 0.7681 + }, + { + "start": 7282.58, + "end": 7285.66, + "probability": 0.9788 + }, + { + "start": 7286.54, + "end": 7287.74, + "probability": 0.6349 + }, + { + "start": 7288.26, + "end": 7289.84, + "probability": 0.939 + }, + { + "start": 7290.56, + "end": 7293.0, + "probability": 0.9967 + }, + { + "start": 7293.56, + "end": 7296.6, + "probability": 0.9988 + }, + { + "start": 7297.66, + "end": 7301.7, + "probability": 0.9971 + }, + { + "start": 7302.28, + "end": 7306.58, + "probability": 0.997 + }, + { + "start": 7307.48, + "end": 7310.54, + "probability": 0.9923 + }, + { + "start": 7311.28, + "end": 7315.38, + "probability": 0.9614 + }, + { + "start": 7316.06, + "end": 7319.36, + "probability": 0.9964 + }, + { + "start": 7319.36, + "end": 7322.66, + "probability": 0.9972 + }, + { + "start": 7324.06, + "end": 7324.1, + "probability": 0.22 + }, + { + "start": 7324.1, + "end": 7328.3, + "probability": 0.7323 + }, + { + "start": 7328.68, + "end": 7335.0, + "probability": 0.9846 + }, + { + "start": 7335.98, + "end": 7339.22, + "probability": 0.9824 + }, + { + "start": 7339.9, + "end": 7341.3, + "probability": 0.9707 + }, + { + "start": 7341.82, + "end": 7344.88, + "probability": 0.975 + }, + { + "start": 7345.44, + "end": 7347.46, + "probability": 0.9163 + }, + { + "start": 7349.28, + "end": 7350.02, + "probability": 0.5567 + }, + { + "start": 7350.66, + "end": 7351.7, + "probability": 0.8938 + }, + { + "start": 7352.42, + "end": 7353.88, + "probability": 0.9982 + }, + { + "start": 7354.48, + "end": 7360.26, + "probability": 0.9814 + }, + { + "start": 7362.12, + "end": 7363.22, + "probability": 0.7812 + }, + { + "start": 7364.1, + "end": 7367.84, + "probability": 0.9893 + }, + { + "start": 7368.64, + "end": 7371.0, + "probability": 0.96 + }, + { + "start": 7371.08, + "end": 7372.76, + "probability": 0.9503 + }, + { + "start": 7373.52, + "end": 7375.2, + "probability": 0.9546 + }, + { + "start": 7375.94, + "end": 7379.8, + "probability": 0.9409 + }, + { + "start": 7380.38, + "end": 7384.26, + "probability": 0.9967 + }, + { + "start": 7385.36, + "end": 7388.94, + "probability": 0.9873 + }, + { + "start": 7389.88, + "end": 7393.56, + "probability": 0.9244 + }, + { + "start": 7394.2, + "end": 7397.12, + "probability": 0.9628 + }, + { + "start": 7397.62, + "end": 7401.04, + "probability": 0.9858 + }, + { + "start": 7401.6, + "end": 7404.96, + "probability": 0.9932 + }, + { + "start": 7405.56, + "end": 7406.88, + "probability": 0.6475 + }, + { + "start": 7407.06, + "end": 7412.74, + "probability": 0.9436 + }, + { + "start": 7412.74, + "end": 7417.64, + "probability": 0.9958 + }, + { + "start": 7418.2, + "end": 7421.2, + "probability": 0.988 + }, + { + "start": 7422.98, + "end": 7425.56, + "probability": 0.7476 + }, + { + "start": 7426.14, + "end": 7430.04, + "probability": 0.9943 + }, + { + "start": 7430.68, + "end": 7433.68, + "probability": 0.9832 + }, + { + "start": 7434.34, + "end": 7435.96, + "probability": 0.8123 + }, + { + "start": 7436.36, + "end": 7437.64, + "probability": 0.8743 + }, + { + "start": 7438.2, + "end": 7439.7, + "probability": 0.9926 + }, + { + "start": 7440.76, + "end": 7443.0, + "probability": 0.9132 + }, + { + "start": 7443.54, + "end": 7445.8, + "probability": 0.9523 + }, + { + "start": 7446.3, + "end": 7447.2, + "probability": 0.974 + }, + { + "start": 7447.28, + "end": 7450.94, + "probability": 0.8833 + }, + { + "start": 7451.62, + "end": 7455.28, + "probability": 0.9493 + }, + { + "start": 7455.92, + "end": 7460.14, + "probability": 0.9134 + }, + { + "start": 7461.1, + "end": 7462.66, + "probability": 0.8663 + }, + { + "start": 7462.82, + "end": 7463.9, + "probability": 0.8683 + }, + { + "start": 7464.22, + "end": 7466.6, + "probability": 0.994 + }, + { + "start": 7467.48, + "end": 7472.24, + "probability": 0.9983 + }, + { + "start": 7472.24, + "end": 7475.8, + "probability": 0.998 + }, + { + "start": 7476.52, + "end": 7479.94, + "probability": 0.8382 + }, + { + "start": 7480.14, + "end": 7480.7, + "probability": 0.6027 + }, + { + "start": 7481.14, + "end": 7486.42, + "probability": 0.9938 + }, + { + "start": 7487.02, + "end": 7488.74, + "probability": 0.9717 + }, + { + "start": 7489.26, + "end": 7490.78, + "probability": 0.8732 + }, + { + "start": 7493.1, + "end": 7494.42, + "probability": 0.6722 + }, + { + "start": 7495.1, + "end": 7496.72, + "probability": 0.9049 + }, + { + "start": 7497.54, + "end": 7500.8, + "probability": 0.9868 + }, + { + "start": 7501.58, + "end": 7505.58, + "probability": 0.9876 + }, + { + "start": 7505.58, + "end": 7509.44, + "probability": 0.9898 + }, + { + "start": 7510.04, + "end": 7511.6, + "probability": 0.7742 + }, + { + "start": 7512.38, + "end": 7516.16, + "probability": 0.9937 + }, + { + "start": 7516.66, + "end": 7518.12, + "probability": 0.8718 + }, + { + "start": 7518.4, + "end": 7525.44, + "probability": 0.9934 + }, + { + "start": 7525.86, + "end": 7527.78, + "probability": 0.8934 + }, + { + "start": 7527.82, + "end": 7530.14, + "probability": 0.9914 + }, + { + "start": 7530.86, + "end": 7531.34, + "probability": 0.635 + }, + { + "start": 7532.08, + "end": 7533.74, + "probability": 0.9651 + }, + { + "start": 7534.52, + "end": 7537.96, + "probability": 0.9615 + }, + { + "start": 7538.84, + "end": 7540.34, + "probability": 0.9802 + }, + { + "start": 7540.94, + "end": 7543.84, + "probability": 0.9805 + }, + { + "start": 7545.14, + "end": 7551.14, + "probability": 0.9964 + }, + { + "start": 7551.58, + "end": 7552.54, + "probability": 0.3018 + }, + { + "start": 7552.62, + "end": 7552.62, + "probability": 0.0667 + }, + { + "start": 7552.62, + "end": 7557.36, + "probability": 0.8727 + }, + { + "start": 7557.56, + "end": 7558.28, + "probability": 0.4694 + }, + { + "start": 7558.94, + "end": 7562.54, + "probability": 0.8378 + }, + { + "start": 7563.14, + "end": 7568.76, + "probability": 0.8493 + }, + { + "start": 7569.22, + "end": 7573.02, + "probability": 0.9873 + }, + { + "start": 7573.28, + "end": 7576.98, + "probability": 0.9284 + }, + { + "start": 7578.64, + "end": 7579.44, + "probability": 0.6326 + }, + { + "start": 7579.56, + "end": 7580.52, + "probability": 0.9594 + }, + { + "start": 7580.66, + "end": 7582.64, + "probability": 0.9727 + }, + { + "start": 7583.2, + "end": 7586.12, + "probability": 0.9937 + }, + { + "start": 7586.64, + "end": 7587.32, + "probability": 0.7185 + }, + { + "start": 7587.44, + "end": 7588.48, + "probability": 0.9717 + }, + { + "start": 7588.88, + "end": 7594.26, + "probability": 0.993 + }, + { + "start": 7594.88, + "end": 7596.64, + "probability": 0.9036 + }, + { + "start": 7596.72, + "end": 7598.38, + "probability": 0.9434 + }, + { + "start": 7598.88, + "end": 7602.56, + "probability": 0.9856 + }, + { + "start": 7603.1, + "end": 7608.7, + "probability": 0.9952 + }, + { + "start": 7608.76, + "end": 7609.92, + "probability": 0.8828 + }, + { + "start": 7610.4, + "end": 7613.82, + "probability": 0.9943 + }, + { + "start": 7615.36, + "end": 7616.64, + "probability": 0.9178 + }, + { + "start": 7617.18, + "end": 7618.9, + "probability": 0.917 + }, + { + "start": 7619.6, + "end": 7622.86, + "probability": 0.9517 + }, + { + "start": 7623.5, + "end": 7625.1, + "probability": 0.7396 + }, + { + "start": 7625.6, + "end": 7626.82, + "probability": 0.6656 + }, + { + "start": 7626.9, + "end": 7629.32, + "probability": 0.9849 + }, + { + "start": 7629.7, + "end": 7631.5, + "probability": 0.9909 + }, + { + "start": 7632.38, + "end": 7637.5, + "probability": 0.9966 + }, + { + "start": 7638.02, + "end": 7642.26, + "probability": 0.9242 + }, + { + "start": 7642.84, + "end": 7644.38, + "probability": 0.8546 + }, + { + "start": 7644.88, + "end": 7648.72, + "probability": 0.9974 + }, + { + "start": 7648.72, + "end": 7652.62, + "probability": 0.9868 + }, + { + "start": 7653.24, + "end": 7655.82, + "probability": 0.9976 + }, + { + "start": 7657.32, + "end": 7658.48, + "probability": 0.7642 + }, + { + "start": 7658.62, + "end": 7662.5, + "probability": 0.9913 + }, + { + "start": 7663.34, + "end": 7669.06, + "probability": 0.9929 + }, + { + "start": 7669.58, + "end": 7671.8, + "probability": 0.8573 + }, + { + "start": 7672.4, + "end": 7677.98, + "probability": 0.9709 + }, + { + "start": 7678.14, + "end": 7681.4, + "probability": 0.989 + }, + { + "start": 7681.4, + "end": 7686.16, + "probability": 0.9984 + }, + { + "start": 7687.64, + "end": 7690.78, + "probability": 0.9982 + }, + { + "start": 7690.78, + "end": 7694.62, + "probability": 0.9702 + }, + { + "start": 7695.36, + "end": 7696.94, + "probability": 0.7696 + }, + { + "start": 7697.04, + "end": 7697.84, + "probability": 0.8548 + }, + { + "start": 7698.26, + "end": 7703.28, + "probability": 0.9915 + }, + { + "start": 7704.38, + "end": 7706.48, + "probability": 0.9954 + }, + { + "start": 7706.58, + "end": 7707.94, + "probability": 0.8182 + }, + { + "start": 7708.7, + "end": 7713.32, + "probability": 0.9991 + }, + { + "start": 7713.94, + "end": 7717.82, + "probability": 0.8762 + }, + { + "start": 7718.72, + "end": 7719.8, + "probability": 0.8215 + }, + { + "start": 7719.96, + "end": 7722.05, + "probability": 0.967 + }, + { + "start": 7722.32, + "end": 7724.08, + "probability": 0.8779 + }, + { + "start": 7724.66, + "end": 7728.61, + "probability": 0.9881 + }, + { + "start": 7729.18, + "end": 7731.48, + "probability": 0.9961 + }, + { + "start": 7731.88, + "end": 7733.92, + "probability": 0.9481 + }, + { + "start": 7734.48, + "end": 7739.24, + "probability": 0.9957 + }, + { + "start": 7739.84, + "end": 7743.14, + "probability": 0.9984 + }, + { + "start": 7743.44, + "end": 7744.96, + "probability": 0.9614 + }, + { + "start": 7745.48, + "end": 7749.28, + "probability": 0.9607 + }, + { + "start": 7750.94, + "end": 7752.44, + "probability": 0.7694 + }, + { + "start": 7753.56, + "end": 7756.16, + "probability": 0.9763 + }, + { + "start": 7756.94, + "end": 7759.42, + "probability": 0.938 + }, + { + "start": 7760.02, + "end": 7762.52, + "probability": 0.9973 + }, + { + "start": 7762.52, + "end": 7765.98, + "probability": 0.9989 + }, + { + "start": 7766.16, + "end": 7767.88, + "probability": 0.9517 + }, + { + "start": 7768.5, + "end": 7773.24, + "probability": 0.9676 + }, + { + "start": 7773.8, + "end": 7775.6, + "probability": 0.9846 + }, + { + "start": 7776.5, + "end": 7778.08, + "probability": 0.8794 + }, + { + "start": 7778.96, + "end": 7779.92, + "probability": 0.5196 + }, + { + "start": 7780.24, + "end": 7783.0, + "probability": 0.9087 + }, + { + "start": 7783.5, + "end": 7788.22, + "probability": 0.9854 + }, + { + "start": 7788.22, + "end": 7792.5, + "probability": 0.9889 + }, + { + "start": 7793.02, + "end": 7793.96, + "probability": 0.8843 + }, + { + "start": 7794.18, + "end": 7798.4, + "probability": 0.9797 + }, + { + "start": 7799.0, + "end": 7804.26, + "probability": 0.9949 + }, + { + "start": 7804.9, + "end": 7807.1, + "probability": 0.9828 + }, + { + "start": 7807.56, + "end": 7810.1, + "probability": 0.981 + }, + { + "start": 7810.46, + "end": 7816.28, + "probability": 0.998 + }, + { + "start": 7817.5, + "end": 7818.78, + "probability": 0.7822 + }, + { + "start": 7818.94, + "end": 7823.84, + "probability": 0.9811 + }, + { + "start": 7823.84, + "end": 7829.04, + "probability": 0.9971 + }, + { + "start": 7829.72, + "end": 7830.82, + "probability": 0.8628 + }, + { + "start": 7830.92, + "end": 7832.28, + "probability": 0.8777 + }, + { + "start": 7832.66, + "end": 7834.54, + "probability": 0.9842 + }, + { + "start": 7835.38, + "end": 7837.12, + "probability": 0.9495 + }, + { + "start": 7837.68, + "end": 7839.4, + "probability": 0.667 + }, + { + "start": 7840.08, + "end": 7845.36, + "probability": 0.9473 + }, + { + "start": 7845.44, + "end": 7850.12, + "probability": 0.9 + }, + { + "start": 7850.36, + "end": 7851.26, + "probability": 0.8849 + }, + { + "start": 7851.36, + "end": 7852.2, + "probability": 0.5875 + }, + { + "start": 7852.68, + "end": 7853.14, + "probability": 0.9377 + }, + { + "start": 7854.34, + "end": 7858.3, + "probability": 0.9705 + }, + { + "start": 7858.86, + "end": 7863.32, + "probability": 0.9624 + }, + { + "start": 7864.1, + "end": 7866.5, + "probability": 0.8086 + }, + { + "start": 7867.7, + "end": 7872.7, + "probability": 0.9628 + }, + { + "start": 7873.84, + "end": 7874.04, + "probability": 0.0387 + }, + { + "start": 7874.04, + "end": 7875.46, + "probability": 0.3697 + }, + { + "start": 7875.5, + "end": 7876.74, + "probability": 0.8302 + }, + { + "start": 7877.0, + "end": 7878.68, + "probability": 0.8671 + }, + { + "start": 7878.68, + "end": 7878.74, + "probability": 0.3998 + }, + { + "start": 7878.74, + "end": 7880.82, + "probability": 0.9302 + }, + { + "start": 7881.52, + "end": 7883.48, + "probability": 0.9721 + }, + { + "start": 7883.54, + "end": 7883.66, + "probability": 0.0433 + }, + { + "start": 7883.66, + "end": 7886.24, + "probability": 0.7962 + }, + { + "start": 7886.24, + "end": 7888.12, + "probability": 0.3897 + }, + { + "start": 7888.64, + "end": 7892.0, + "probability": 0.9992 + }, + { + "start": 7892.76, + "end": 7894.32, + "probability": 0.9094 + }, + { + "start": 7894.98, + "end": 7897.66, + "probability": 0.9877 + }, + { + "start": 7898.12, + "end": 7901.64, + "probability": 0.9951 + }, + { + "start": 7901.64, + "end": 7904.92, + "probability": 0.9996 + }, + { + "start": 7905.44, + "end": 7911.06, + "probability": 0.9995 + }, + { + "start": 7911.74, + "end": 7917.6, + "probability": 0.9912 + }, + { + "start": 7919.04, + "end": 7924.16, + "probability": 0.9974 + }, + { + "start": 7924.16, + "end": 7928.7, + "probability": 0.9942 + }, + { + "start": 7929.04, + "end": 7933.7, + "probability": 0.6145 + }, + { + "start": 7933.9, + "end": 7934.59, + "probability": 0.2455 + }, + { + "start": 7935.08, + "end": 7935.12, + "probability": 0.0075 + }, + { + "start": 7936.02, + "end": 7938.32, + "probability": 0.7733 + }, + { + "start": 7938.48, + "end": 7939.3, + "probability": 0.5644 + }, + { + "start": 7939.32, + "end": 7940.22, + "probability": 0.9419 + }, + { + "start": 7940.36, + "end": 7940.78, + "probability": 0.8782 + }, + { + "start": 7940.9, + "end": 7941.24, + "probability": 0.1511 + }, + { + "start": 7941.24, + "end": 7941.68, + "probability": 0.6922 + }, + { + "start": 7942.12, + "end": 7943.3, + "probability": 0.8887 + }, + { + "start": 7943.8, + "end": 7947.72, + "probability": 0.3167 + }, + { + "start": 7947.9, + "end": 7948.16, + "probability": 0.0038 + }, + { + "start": 7949.76, + "end": 7950.76, + "probability": 0.7693 + }, + { + "start": 7950.84, + "end": 7954.34, + "probability": 0.9873 + }, + { + "start": 7954.34, + "end": 7957.72, + "probability": 0.8889 + }, + { + "start": 7958.46, + "end": 7959.3, + "probability": 0.8306 + }, + { + "start": 7959.82, + "end": 7965.32, + "probability": 0.9292 + }, + { + "start": 7965.4, + "end": 7965.96, + "probability": 0.5297 + }, + { + "start": 7966.0, + "end": 7967.96, + "probability": 0.8493 + }, + { + "start": 7968.54, + "end": 7972.2, + "probability": 0.9744 + }, + { + "start": 7972.9, + "end": 7973.64, + "probability": 0.4359 + }, + { + "start": 7974.12, + "end": 7977.26, + "probability": 0.9005 + }, + { + "start": 7977.62, + "end": 7978.44, + "probability": 0.9447 + }, + { + "start": 7979.52, + "end": 7983.84, + "probability": 0.9338 + }, + { + "start": 7984.58, + "end": 7987.3, + "probability": 0.8306 + }, + { + "start": 7987.94, + "end": 7989.62, + "probability": 0.8833 + }, + { + "start": 7990.5, + "end": 7991.52, + "probability": 0.8378 + }, + { + "start": 7993.1, + "end": 7995.64, + "probability": 0.9956 + }, + { + "start": 7996.34, + "end": 7998.76, + "probability": 0.9509 + }, + { + "start": 7999.6, + "end": 8001.38, + "probability": 0.9535 + }, + { + "start": 8001.98, + "end": 8004.3, + "probability": 0.8872 + }, + { + "start": 8005.14, + "end": 8005.42, + "probability": 0.2624 + }, + { + "start": 8005.42, + "end": 8007.14, + "probability": 0.2199 + }, + { + "start": 8007.14, + "end": 8008.54, + "probability": 0.7979 + }, + { + "start": 8008.62, + "end": 8009.84, + "probability": 0.9879 + }, + { + "start": 8009.96, + "end": 8010.8, + "probability": 0.7865 + }, + { + "start": 8011.8, + "end": 8015.86, + "probability": 0.9587 + }, + { + "start": 8016.28, + "end": 8017.5, + "probability": 0.6723 + }, + { + "start": 8017.74, + "end": 8019.56, + "probability": 0.9956 + }, + { + "start": 8020.66, + "end": 8025.36, + "probability": 0.9934 + }, + { + "start": 8026.18, + "end": 8029.9, + "probability": 0.8374 + }, + { + "start": 8030.62, + "end": 8033.64, + "probability": 0.9937 + }, + { + "start": 8034.16, + "end": 8038.02, + "probability": 0.9764 + }, + { + "start": 8038.62, + "end": 8038.96, + "probability": 0.0701 + }, + { + "start": 8040.56, + "end": 8040.56, + "probability": 0.0104 + }, + { + "start": 8040.56, + "end": 8041.96, + "probability": 0.5137 + }, + { + "start": 8042.02, + "end": 8043.14, + "probability": 0.7955 + }, + { + "start": 8043.26, + "end": 8043.98, + "probability": 0.6614 + }, + { + "start": 8044.44, + "end": 8044.96, + "probability": 0.5717 + }, + { + "start": 8044.98, + "end": 8045.56, + "probability": 0.3098 + }, + { + "start": 8045.6, + "end": 8046.48, + "probability": 0.7466 + }, + { + "start": 8046.66, + "end": 8047.52, + "probability": 0.736 + }, + { + "start": 8047.54, + "end": 8049.3, + "probability": 0.9754 + }, + { + "start": 8049.34, + "end": 8051.82, + "probability": 0.6739 + }, + { + "start": 8052.08, + "end": 8053.28, + "probability": 0.9033 + }, + { + "start": 8054.26, + "end": 8059.04, + "probability": 0.9768 + }, + { + "start": 8059.72, + "end": 8064.84, + "probability": 0.9954 + }, + { + "start": 8065.5, + "end": 8066.94, + "probability": 0.8545 + }, + { + "start": 8067.02, + "end": 8068.16, + "probability": 0.8746 + }, + { + "start": 8068.4, + "end": 8070.58, + "probability": 0.9689 + }, + { + "start": 8070.68, + "end": 8071.78, + "probability": 0.874 + }, + { + "start": 8071.94, + "end": 8074.22, + "probability": 0.8425 + }, + { + "start": 8074.24, + "end": 8074.9, + "probability": 0.28 + }, + { + "start": 8074.9, + "end": 8074.94, + "probability": 0.3208 + }, + { + "start": 8075.04, + "end": 8079.72, + "probability": 0.918 + }, + { + "start": 8080.28, + "end": 8080.72, + "probability": 0.1966 + }, + { + "start": 8080.72, + "end": 8081.62, + "probability": 0.5008 + }, + { + "start": 8082.48, + "end": 8083.66, + "probability": 0.8599 + }, + { + "start": 8083.86, + "end": 8088.92, + "probability": 0.9386 + }, + { + "start": 8088.92, + "end": 8095.04, + "probability": 0.9988 + }, + { + "start": 8095.04, + "end": 8098.58, + "probability": 0.9922 + }, + { + "start": 8099.52, + "end": 8105.26, + "probability": 0.9851 + }, + { + "start": 8105.68, + "end": 8110.14, + "probability": 0.9971 + }, + { + "start": 8110.26, + "end": 8112.78, + "probability": 0.1245 + }, + { + "start": 8112.78, + "end": 8113.96, + "probability": 0.3813 + }, + { + "start": 8114.3, + "end": 8114.88, + "probability": 0.0695 + }, + { + "start": 8114.88, + "end": 8114.88, + "probability": 0.0055 + }, + { + "start": 8114.88, + "end": 8114.88, + "probability": 0.0072 + }, + { + "start": 8114.88, + "end": 8115.12, + "probability": 0.4882 + }, + { + "start": 8115.34, + "end": 8116.46, + "probability": 0.7884 + }, + { + "start": 8117.94, + "end": 8123.98, + "probability": 0.9712 + }, + { + "start": 8123.98, + "end": 8128.96, + "probability": 0.9637 + }, + { + "start": 8129.02, + "end": 8130.92, + "probability": 0.7542 + }, + { + "start": 8131.56, + "end": 8135.09, + "probability": 0.9858 + }, + { + "start": 8135.3, + "end": 8137.96, + "probability": 0.9951 + }, + { + "start": 8138.88, + "end": 8142.76, + "probability": 0.9951 + }, + { + "start": 8143.58, + "end": 8145.24, + "probability": 0.6522 + }, + { + "start": 8146.32, + "end": 8147.96, + "probability": 0.8632 + }, + { + "start": 8148.74, + "end": 8150.4, + "probability": 0.9894 + }, + { + "start": 8151.02, + "end": 8155.1, + "probability": 0.9902 + }, + { + "start": 8155.1, + "end": 8159.32, + "probability": 0.9041 + }, + { + "start": 8159.82, + "end": 8163.14, + "probability": 0.9893 + }, + { + "start": 8163.14, + "end": 8166.92, + "probability": 0.9913 + }, + { + "start": 8167.14, + "end": 8167.88, + "probability": 0.4725 + }, + { + "start": 8169.06, + "end": 8171.62, + "probability": 0.1012 + }, + { + "start": 8174.32, + "end": 8178.36, + "probability": 0.9735 + }, + { + "start": 8179.36, + "end": 8180.94, + "probability": 0.7416 + }, + { + "start": 8181.12, + "end": 8184.26, + "probability": 0.801 + }, + { + "start": 8185.28, + "end": 8188.48, + "probability": 0.9964 + }, + { + "start": 8188.98, + "end": 8191.86, + "probability": 0.9945 + }, + { + "start": 8191.86, + "end": 8196.72, + "probability": 0.911 + }, + { + "start": 8197.0, + "end": 8199.62, + "probability": 0.9971 + }, + { + "start": 8200.22, + "end": 8200.86, + "probability": 0.7483 + }, + { + "start": 8200.96, + "end": 8203.94, + "probability": 0.9237 + }, + { + "start": 8204.76, + "end": 8207.3, + "probability": 0.9454 + }, + { + "start": 8207.88, + "end": 8209.54, + "probability": 0.9021 + }, + { + "start": 8209.78, + "end": 8212.44, + "probability": 0.9697 + }, + { + "start": 8212.44, + "end": 8214.24, + "probability": 0.66 + }, + { + "start": 8215.1, + "end": 8219.4, + "probability": 0.9907 + }, + { + "start": 8219.4, + "end": 8224.18, + "probability": 0.9966 + }, + { + "start": 8225.08, + "end": 8226.28, + "probability": 0.9829 + }, + { + "start": 8227.1, + "end": 8228.0, + "probability": 0.979 + }, + { + "start": 8228.66, + "end": 8233.0, + "probability": 0.9982 + }, + { + "start": 8233.62, + "end": 8239.14, + "probability": 0.9847 + }, + { + "start": 8240.98, + "end": 8243.4, + "probability": 0.9338 + }, + { + "start": 8244.14, + "end": 8246.5, + "probability": 0.8859 + }, + { + "start": 8246.76, + "end": 8249.08, + "probability": 0.7093 + }, + { + "start": 8249.56, + "end": 8251.22, + "probability": 0.995 + }, + { + "start": 8252.14, + "end": 8258.52, + "probability": 0.9868 + }, + { + "start": 8259.18, + "end": 8262.24, + "probability": 0.9948 + }, + { + "start": 8262.76, + "end": 8267.96, + "probability": 0.9966 + }, + { + "start": 8268.54, + "end": 8273.4, + "probability": 0.988 + }, + { + "start": 8274.3, + "end": 8279.7, + "probability": 0.9888 + }, + { + "start": 8279.92, + "end": 8281.86, + "probability": 0.9852 + }, + { + "start": 8282.72, + "end": 8287.9, + "probability": 0.9845 + }, + { + "start": 8288.76, + "end": 8292.92, + "probability": 0.9976 + }, + { + "start": 8292.92, + "end": 8296.88, + "probability": 0.9988 + }, + { + "start": 8297.74, + "end": 8300.52, + "probability": 0.8368 + }, + { + "start": 8301.46, + "end": 8308.66, + "probability": 0.9907 + }, + { + "start": 8308.66, + "end": 8314.08, + "probability": 0.9977 + }, + { + "start": 8314.2, + "end": 8315.24, + "probability": 0.5525 + }, + { + "start": 8315.84, + "end": 8317.52, + "probability": 0.9742 + }, + { + "start": 8318.08, + "end": 8318.58, + "probability": 0.9099 + }, + { + "start": 8319.9, + "end": 8322.06, + "probability": 0.7564 + }, + { + "start": 8322.98, + "end": 8324.12, + "probability": 0.959 + }, + { + "start": 8324.64, + "end": 8326.86, + "probability": 0.9553 + }, + { + "start": 8327.54, + "end": 8328.52, + "probability": 0.8523 + }, + { + "start": 8329.66, + "end": 8333.22, + "probability": 0.9894 + }, + { + "start": 8333.22, + "end": 8338.12, + "probability": 0.9764 + }, + { + "start": 8338.26, + "end": 8339.08, + "probability": 0.9599 + }, + { + "start": 8339.14, + "end": 8342.42, + "probability": 0.8053 + }, + { + "start": 8343.08, + "end": 8345.78, + "probability": 0.9707 + }, + { + "start": 8346.02, + "end": 8347.86, + "probability": 0.9419 + }, + { + "start": 8348.58, + "end": 8349.9, + "probability": 0.9141 + }, + { + "start": 8350.16, + "end": 8350.94, + "probability": 0.6073 + }, + { + "start": 8351.06, + "end": 8356.26, + "probability": 0.9731 + }, + { + "start": 8356.78, + "end": 8358.54, + "probability": 0.9443 + }, + { + "start": 8359.04, + "end": 8360.12, + "probability": 0.4624 + }, + { + "start": 8360.48, + "end": 8361.38, + "probability": 0.9382 + }, + { + "start": 8361.78, + "end": 8365.52, + "probability": 0.9495 + }, + { + "start": 8366.04, + "end": 8369.96, + "probability": 0.9947 + }, + { + "start": 8371.48, + "end": 8372.94, + "probability": 0.68 + }, + { + "start": 8373.18, + "end": 8377.1, + "probability": 0.9188 + }, + { + "start": 8377.94, + "end": 8379.92, + "probability": 0.9867 + }, + { + "start": 8380.56, + "end": 8383.82, + "probability": 0.9575 + }, + { + "start": 8384.42, + "end": 8386.88, + "probability": 0.9185 + }, + { + "start": 8388.04, + "end": 8393.28, + "probability": 0.9412 + }, + { + "start": 8394.18, + "end": 8395.94, + "probability": 0.9685 + }, + { + "start": 8396.78, + "end": 8398.82, + "probability": 0.9857 + }, + { + "start": 8399.7, + "end": 8401.32, + "probability": 0.9729 + }, + { + "start": 8402.04, + "end": 8406.22, + "probability": 0.9876 + }, + { + "start": 8406.88, + "end": 8409.5, + "probability": 0.9605 + }, + { + "start": 8410.2, + "end": 8412.74, + "probability": 0.9792 + }, + { + "start": 8412.98, + "end": 8413.22, + "probability": 0.7833 + }, + { + "start": 8413.62, + "end": 8416.1, + "probability": 0.6281 + }, + { + "start": 8416.16, + "end": 8417.84, + "probability": 0.9467 + }, + { + "start": 8418.92, + "end": 8421.38, + "probability": 0.9724 + }, + { + "start": 8422.46, + "end": 8423.62, + "probability": 0.7166 + }, + { + "start": 8426.64, + "end": 8428.34, + "probability": 0.7788 + }, + { + "start": 8429.14, + "end": 8429.52, + "probability": 0.5764 + }, + { + "start": 8430.64, + "end": 8431.34, + "probability": 0.7103 + }, + { + "start": 8434.48, + "end": 8436.84, + "probability": 0.7479 + }, + { + "start": 8438.06, + "end": 8443.46, + "probability": 0.8736 + }, + { + "start": 8443.84, + "end": 8444.74, + "probability": 0.804 + }, + { + "start": 8445.74, + "end": 8447.68, + "probability": 0.9938 + }, + { + "start": 8449.2, + "end": 8451.38, + "probability": 0.8839 + }, + { + "start": 8452.7, + "end": 8455.3, + "probability": 0.9637 + }, + { + "start": 8456.2, + "end": 8459.4, + "probability": 0.8818 + }, + { + "start": 8460.38, + "end": 8463.2, + "probability": 0.882 + }, + { + "start": 8464.24, + "end": 8466.04, + "probability": 0.8036 + }, + { + "start": 8466.9, + "end": 8468.12, + "probability": 0.9514 + }, + { + "start": 8468.82, + "end": 8469.82, + "probability": 0.8499 + }, + { + "start": 8470.72, + "end": 8471.92, + "probability": 0.9294 + }, + { + "start": 8473.16, + "end": 8476.92, + "probability": 0.9751 + }, + { + "start": 8478.4, + "end": 8482.48, + "probability": 0.7209 + }, + { + "start": 8484.2, + "end": 8488.4, + "probability": 0.9756 + }, + { + "start": 8489.74, + "end": 8491.66, + "probability": 0.8219 + }, + { + "start": 8492.7, + "end": 8495.64, + "probability": 0.9407 + }, + { + "start": 8496.38, + "end": 8498.94, + "probability": 0.959 + }, + { + "start": 8499.88, + "end": 8501.0, + "probability": 0.9971 + }, + { + "start": 8501.7, + "end": 8503.38, + "probability": 0.956 + }, + { + "start": 8504.84, + "end": 8508.06, + "probability": 0.9436 + }, + { + "start": 8508.82, + "end": 8510.38, + "probability": 0.6769 + }, + { + "start": 8511.1, + "end": 8512.24, + "probability": 0.7983 + }, + { + "start": 8513.48, + "end": 8514.34, + "probability": 0.9739 + }, + { + "start": 8515.04, + "end": 8517.64, + "probability": 0.6903 + }, + { + "start": 8518.3, + "end": 8521.69, + "probability": 0.7007 + }, + { + "start": 8523.9, + "end": 8525.66, + "probability": 0.0206 + }, + { + "start": 8527.64, + "end": 8527.74, + "probability": 0.1211 + }, + { + "start": 8528.32, + "end": 8528.32, + "probability": 0.0549 + }, + { + "start": 8528.32, + "end": 8530.02, + "probability": 0.3818 + }, + { + "start": 8530.18, + "end": 8530.52, + "probability": 0.8707 + }, + { + "start": 8532.72, + "end": 8533.92, + "probability": 0.247 + }, + { + "start": 8534.1, + "end": 8538.48, + "probability": 0.6255 + }, + { + "start": 8538.5, + "end": 8539.84, + "probability": 0.911 + }, + { + "start": 8540.74, + "end": 8543.3, + "probability": 0.9805 + }, + { + "start": 8545.06, + "end": 8549.74, + "probability": 0.7619 + }, + { + "start": 8550.36, + "end": 8552.7, + "probability": 0.892 + }, + { + "start": 8553.72, + "end": 8554.62, + "probability": 0.7352 + }, + { + "start": 8555.92, + "end": 8557.14, + "probability": 0.9235 + }, + { + "start": 8558.32, + "end": 8560.42, + "probability": 0.9325 + }, + { + "start": 8561.3, + "end": 8563.12, + "probability": 0.978 + }, + { + "start": 8564.32, + "end": 8566.44, + "probability": 0.957 + }, + { + "start": 8567.66, + "end": 8569.54, + "probability": 0.9833 + }, + { + "start": 8570.78, + "end": 8572.92, + "probability": 0.983 + }, + { + "start": 8573.76, + "end": 8576.56, + "probability": 0.9941 + }, + { + "start": 8577.54, + "end": 8582.54, + "probability": 0.9978 + }, + { + "start": 8583.28, + "end": 8587.54, + "probability": 0.9959 + }, + { + "start": 8589.58, + "end": 8592.0, + "probability": 0.7393 + }, + { + "start": 8592.86, + "end": 8593.72, + "probability": 0.6252 + }, + { + "start": 8593.72, + "end": 8597.3, + "probability": 0.9296 + }, + { + "start": 8597.4, + "end": 8598.12, + "probability": 0.912 + }, + { + "start": 8598.9, + "end": 8601.88, + "probability": 0.87 + }, + { + "start": 8602.8, + "end": 8606.06, + "probability": 0.7511 + }, + { + "start": 8606.72, + "end": 8607.48, + "probability": 0.9334 + }, + { + "start": 8608.58, + "end": 8609.98, + "probability": 0.4533 + }, + { + "start": 8610.1, + "end": 8611.46, + "probability": 0.9664 + }, + { + "start": 8612.42, + "end": 8613.86, + "probability": 0.9001 + }, + { + "start": 8615.58, + "end": 8619.18, + "probability": 0.6374 + }, + { + "start": 8620.44, + "end": 8624.1, + "probability": 0.7465 + }, + { + "start": 8624.68, + "end": 8625.92, + "probability": 0.5018 + }, + { + "start": 8626.82, + "end": 8630.18, + "probability": 0.8091 + }, + { + "start": 8630.46, + "end": 8631.42, + "probability": 0.9556 + }, + { + "start": 8632.28, + "end": 8635.2, + "probability": 0.9116 + }, + { + "start": 8635.82, + "end": 8637.12, + "probability": 0.9663 + }, + { + "start": 8638.2, + "end": 8639.7, + "probability": 0.9945 + }, + { + "start": 8641.5, + "end": 8642.6, + "probability": 0.6193 + }, + { + "start": 8643.36, + "end": 8644.56, + "probability": 0.7436 + }, + { + "start": 8645.4, + "end": 8646.44, + "probability": 0.8773 + }, + { + "start": 8647.22, + "end": 8649.44, + "probability": 0.97 + }, + { + "start": 8650.12, + "end": 8652.84, + "probability": 0.8108 + }, + { + "start": 8653.62, + "end": 8655.3, + "probability": 0.9613 + }, + { + "start": 8656.68, + "end": 8658.04, + "probability": 0.976 + }, + { + "start": 8659.0, + "end": 8660.64, + "probability": 0.9918 + }, + { + "start": 8661.48, + "end": 8664.22, + "probability": 0.9727 + }, + { + "start": 8665.14, + "end": 8670.64, + "probability": 0.9146 + }, + { + "start": 8671.9, + "end": 8672.92, + "probability": 0.811 + }, + { + "start": 8673.72, + "end": 8677.6, + "probability": 0.7332 + }, + { + "start": 8678.16, + "end": 8679.78, + "probability": 0.8512 + }, + { + "start": 8680.5, + "end": 8681.14, + "probability": 0.5021 + }, + { + "start": 8681.74, + "end": 8683.08, + "probability": 0.9236 + }, + { + "start": 8684.06, + "end": 8684.7, + "probability": 0.9492 + }, + { + "start": 8685.46, + "end": 8686.52, + "probability": 0.9918 + }, + { + "start": 8687.28, + "end": 8692.66, + "probability": 0.9561 + }, + { + "start": 8693.76, + "end": 8695.34, + "probability": 0.7983 + }, + { + "start": 8696.24, + "end": 8697.12, + "probability": 0.7254 + }, + { + "start": 8698.0, + "end": 8698.8, + "probability": 0.7562 + }, + { + "start": 8699.92, + "end": 8701.62, + "probability": 0.9819 + }, + { + "start": 8701.82, + "end": 8703.7, + "probability": 0.8457 + }, + { + "start": 8704.44, + "end": 8707.74, + "probability": 0.9047 + }, + { + "start": 8708.3, + "end": 8709.87, + "probability": 0.9437 + }, + { + "start": 8710.46, + "end": 8714.02, + "probability": 0.9995 + }, + { + "start": 8715.92, + "end": 8716.68, + "probability": 0.9889 + }, + { + "start": 8717.3, + "end": 8717.72, + "probability": 0.7549 + }, + { + "start": 8718.34, + "end": 8719.08, + "probability": 0.6312 + }, + { + "start": 8719.64, + "end": 8722.18, + "probability": 0.7888 + }, + { + "start": 8722.6, + "end": 8722.9, + "probability": 0.8091 + }, + { + "start": 8723.04, + "end": 8727.88, + "probability": 0.9829 + }, + { + "start": 8728.8, + "end": 8732.84, + "probability": 0.9099 + }, + { + "start": 8736.32, + "end": 8737.14, + "probability": 0.0695 + }, + { + "start": 8737.14, + "end": 8737.52, + "probability": 0.2215 + }, + { + "start": 8738.04, + "end": 8738.78, + "probability": 0.2246 + }, + { + "start": 8738.78, + "end": 8738.9, + "probability": 0.3974 + }, + { + "start": 8738.9, + "end": 8738.9, + "probability": 0.4221 + }, + { + "start": 8738.9, + "end": 8738.9, + "probability": 0.1308 + }, + { + "start": 8738.9, + "end": 8740.48, + "probability": 0.0448 + }, + { + "start": 8740.84, + "end": 8741.04, + "probability": 0.0693 + }, + { + "start": 8741.04, + "end": 8741.04, + "probability": 0.1762 + }, + { + "start": 8741.04, + "end": 8743.02, + "probability": 0.1514 + }, + { + "start": 8743.2, + "end": 8747.62, + "probability": 0.126 + }, + { + "start": 8761.36, + "end": 8762.24, + "probability": 0.0292 + }, + { + "start": 8763.16, + "end": 8769.2, + "probability": 0.0755 + }, + { + "start": 8771.76, + "end": 8773.62, + "probability": 0.0168 + }, + { + "start": 8773.84, + "end": 8775.92, + "probability": 0.113 + }, + { + "start": 8775.92, + "end": 8777.86, + "probability": 0.0225 + }, + { + "start": 8777.86, + "end": 8780.5, + "probability": 0.1729 + }, + { + "start": 8781.26, + "end": 8781.61, + "probability": 0.0092 + }, + { + "start": 8782.0, + "end": 8783.24, + "probability": 0.224 + }, + { + "start": 8787.04, + "end": 8787.82, + "probability": 0.0707 + }, + { + "start": 8787.98, + "end": 8788.68, + "probability": 0.0098 + }, + { + "start": 8790.18, + "end": 8791.2, + "probability": 0.1125 + }, + { + "start": 8791.2, + "end": 8794.1, + "probability": 0.0458 + }, + { + "start": 8794.21, + "end": 8794.96, + "probability": 0.0647 + }, + { + "start": 8795.28, + "end": 8795.96, + "probability": 0.0819 + }, + { + "start": 8795.96, + "end": 8796.51, + "probability": 0.2121 + }, + { + "start": 8797.68, + "end": 8798.98, + "probability": 0.157 + }, + { + "start": 8799.0, + "end": 8799.0, + "probability": 0.0 + }, + { + "start": 8799.0, + "end": 8799.0, + "probability": 0.0 + }, + { + "start": 8799.0, + "end": 8799.0, + "probability": 0.0 + }, + { + "start": 8799.0, + "end": 8799.0, + "probability": 0.0 + }, + { + "start": 8799.0, + "end": 8799.0, + "probability": 0.0 + }, + { + "start": 8799.0, + "end": 8799.0, + "probability": 0.0 + }, + { + "start": 8799.0, + "end": 8799.0, + "probability": 0.0 + }, + { + "start": 8799.0, + "end": 8799.0, + "probability": 0.0 + }, + { + "start": 8799.0, + "end": 8799.0, + "probability": 0.0 + }, + { + "start": 8799.0, + "end": 8799.0, + "probability": 0.0 + }, + { + "start": 8799.0, + "end": 8799.0, + "probability": 0.0 + }, + { + "start": 8799.0, + "end": 8799.0, + "probability": 0.0 + }, + { + "start": 8799.0, + "end": 8799.0, + "probability": 0.0 + }, + { + "start": 8799.0, + "end": 8799.0, + "probability": 0.0 + }, + { + "start": 8807.08, + "end": 8807.48, + "probability": 0.0246 + }, + { + "start": 8807.96, + "end": 8808.4, + "probability": 0.1373 + }, + { + "start": 8808.4, + "end": 8809.04, + "probability": 0.1145 + }, + { + "start": 8809.52, + "end": 8809.72, + "probability": 0.0965 + }, + { + "start": 8809.76, + "end": 8813.43, + "probability": 0.1216 + }, + { + "start": 8814.88, + "end": 8816.26, + "probability": 0.1325 + }, + { + "start": 8816.28, + "end": 8819.74, + "probability": 0.038 + }, + { + "start": 8819.74, + "end": 8821.7, + "probability": 0.0267 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.0, + "end": 8922.0, + "probability": 0.0 + }, + { + "start": 8922.24, + "end": 8924.94, + "probability": 0.7522 + }, + { + "start": 8925.48, + "end": 8927.9, + "probability": 0.7637 + }, + { + "start": 8928.4, + "end": 8931.76, + "probability": 0.9243 + }, + { + "start": 8931.76, + "end": 8932.48, + "probability": 0.6272 + }, + { + "start": 8932.72, + "end": 8936.88, + "probability": 0.7922 + }, + { + "start": 8937.24, + "end": 8939.12, + "probability": 0.8734 + }, + { + "start": 8939.38, + "end": 8940.9, + "probability": 0.8491 + }, + { + "start": 8941.58, + "end": 8943.54, + "probability": 0.819 + }, + { + "start": 8944.58, + "end": 8946.18, + "probability": 0.9578 + }, + { + "start": 8946.98, + "end": 8949.84, + "probability": 0.7327 + }, + { + "start": 8950.46, + "end": 8954.06, + "probability": 0.614 + }, + { + "start": 8954.46, + "end": 8956.74, + "probability": 0.5557 + }, + { + "start": 8957.32, + "end": 8965.96, + "probability": 0.9761 + }, + { + "start": 8966.62, + "end": 8968.98, + "probability": 0.9536 + }, + { + "start": 8969.6, + "end": 8970.84, + "probability": 0.7568 + }, + { + "start": 8971.42, + "end": 8974.08, + "probability": 0.845 + }, + { + "start": 8974.74, + "end": 8975.68, + "probability": 0.6338 + }, + { + "start": 8976.26, + "end": 8979.74, + "probability": 0.972 + }, + { + "start": 8980.2, + "end": 8983.46, + "probability": 0.991 + }, + { + "start": 8984.36, + "end": 8985.54, + "probability": 0.6243 + }, + { + "start": 8986.2, + "end": 8988.92, + "probability": 0.8599 + }, + { + "start": 8989.36, + "end": 8990.36, + "probability": 0.787 + }, + { + "start": 8990.58, + "end": 8991.06, + "probability": 0.6135 + }, + { + "start": 8991.84, + "end": 8992.62, + "probability": 0.4205 + }, + { + "start": 8993.58, + "end": 8996.04, + "probability": 0.9543 + }, + { + "start": 8996.46, + "end": 8997.58, + "probability": 0.7864 + }, + { + "start": 8998.42, + "end": 8999.6, + "probability": 0.9946 + }, + { + "start": 9000.58, + "end": 9001.8, + "probability": 0.3769 + }, + { + "start": 9002.66, + "end": 9005.06, + "probability": 0.9819 + }, + { + "start": 9006.04, + "end": 9010.56, + "probability": 0.9085 + }, + { + "start": 9011.1, + "end": 9012.39, + "probability": 0.8666 + }, + { + "start": 9013.04, + "end": 9015.5, + "probability": 0.907 + }, + { + "start": 9016.04, + "end": 9017.14, + "probability": 0.9756 + }, + { + "start": 9018.58, + "end": 9024.46, + "probability": 0.9492 + }, + { + "start": 9024.84, + "end": 9026.44, + "probability": 0.8493 + }, + { + "start": 9027.52, + "end": 9033.8, + "probability": 0.9709 + }, + { + "start": 9034.46, + "end": 9038.26, + "probability": 0.9897 + }, + { + "start": 9038.7, + "end": 9043.38, + "probability": 0.9122 + }, + { + "start": 9043.7, + "end": 9044.56, + "probability": 0.6603 + }, + { + "start": 9044.98, + "end": 9045.64, + "probability": 0.9627 + }, + { + "start": 9048.1, + "end": 9051.6, + "probability": 0.9353 + }, + { + "start": 9053.26, + "end": 9055.6, + "probability": 0.7048 + }, + { + "start": 9056.16, + "end": 9061.26, + "probability": 0.6612 + }, + { + "start": 9061.96, + "end": 9064.8, + "probability": 0.9064 + }, + { + "start": 9065.74, + "end": 9067.35, + "probability": 0.9531 + }, + { + "start": 9068.18, + "end": 9069.1, + "probability": 0.9529 + }, + { + "start": 9070.1, + "end": 9071.72, + "probability": 0.9037 + }, + { + "start": 9072.82, + "end": 9073.96, + "probability": 0.6373 + }, + { + "start": 9074.2, + "end": 9077.3, + "probability": 0.9378 + }, + { + "start": 9078.18, + "end": 9088.26, + "probability": 0.8785 + }, + { + "start": 9088.26, + "end": 9095.02, + "probability": 0.9783 + }, + { + "start": 9097.28, + "end": 9099.44, + "probability": 0.51 + }, + { + "start": 9099.9, + "end": 9101.16, + "probability": 0.6217 + }, + { + "start": 9101.3, + "end": 9103.68, + "probability": 0.5053 + }, + { + "start": 9105.26, + "end": 9112.54, + "probability": 0.9875 + }, + { + "start": 9113.26, + "end": 9115.14, + "probability": 0.925 + }, + { + "start": 9115.66, + "end": 9118.1, + "probability": 0.8212 + }, + { + "start": 9118.78, + "end": 9124.66, + "probability": 0.994 + }, + { + "start": 9125.18, + "end": 9130.28, + "probability": 0.8544 + }, + { + "start": 9130.68, + "end": 9132.38, + "probability": 0.8935 + }, + { + "start": 9132.66, + "end": 9137.02, + "probability": 0.8343 + }, + { + "start": 9138.08, + "end": 9138.68, + "probability": 0.8639 + }, + { + "start": 9139.72, + "end": 9141.77, + "probability": 0.5348 + }, + { + "start": 9143.42, + "end": 9144.31, + "probability": 0.836 + }, + { + "start": 9145.02, + "end": 9146.0, + "probability": 0.8348 + }, + { + "start": 9146.72, + "end": 9147.7, + "probability": 0.7063 + }, + { + "start": 9148.44, + "end": 9149.28, + "probability": 0.9432 + }, + { + "start": 9150.1, + "end": 9151.36, + "probability": 0.9816 + }, + { + "start": 9151.76, + "end": 9152.98, + "probability": 0.9938 + }, + { + "start": 9153.66, + "end": 9155.06, + "probability": 0.9881 + }, + { + "start": 9156.3, + "end": 9158.28, + "probability": 0.7254 + }, + { + "start": 9158.94, + "end": 9161.02, + "probability": 0.8012 + }, + { + "start": 9161.7, + "end": 9162.94, + "probability": 0.9196 + }, + { + "start": 9163.52, + "end": 9165.24, + "probability": 0.9941 + }, + { + "start": 9167.64, + "end": 9168.14, + "probability": 0.8451 + }, + { + "start": 9168.86, + "end": 9173.06, + "probability": 0.9917 + }, + { + "start": 9173.62, + "end": 9174.72, + "probability": 0.8016 + }, + { + "start": 9175.7, + "end": 9176.08, + "probability": 0.9076 + }, + { + "start": 9177.34, + "end": 9178.77, + "probability": 0.8289 + }, + { + "start": 9179.48, + "end": 9181.66, + "probability": 0.9047 + }, + { + "start": 9182.12, + "end": 9183.4, + "probability": 0.5208 + }, + { + "start": 9184.16, + "end": 9187.8, + "probability": 0.6573 + }, + { + "start": 9188.64, + "end": 9190.86, + "probability": 0.9975 + }, + { + "start": 9191.36, + "end": 9194.08, + "probability": 0.7918 + }, + { + "start": 9194.58, + "end": 9195.42, + "probability": 0.9691 + }, + { + "start": 9196.18, + "end": 9198.52, + "probability": 0.6922 + }, + { + "start": 9199.14, + "end": 9200.32, + "probability": 0.9062 + }, + { + "start": 9200.84, + "end": 9202.52, + "probability": 0.6976 + }, + { + "start": 9203.14, + "end": 9205.48, + "probability": 0.9694 + }, + { + "start": 9206.02, + "end": 9207.86, + "probability": 0.9527 + }, + { + "start": 9208.7, + "end": 9210.46, + "probability": 0.9523 + }, + { + "start": 9211.26, + "end": 9212.86, + "probability": 0.8802 + }, + { + "start": 9213.38, + "end": 9215.14, + "probability": 0.9029 + }, + { + "start": 9215.88, + "end": 9219.16, + "probability": 0.6739 + }, + { + "start": 9219.72, + "end": 9223.47, + "probability": 0.9586 + }, + { + "start": 9236.36, + "end": 9237.4, + "probability": 0.0973 + }, + { + "start": 9237.4, + "end": 9237.4, + "probability": 0.067 + }, + { + "start": 9237.4, + "end": 9238.76, + "probability": 0.1125 + }, + { + "start": 9239.52, + "end": 9242.04, + "probability": 0.6605 + }, + { + "start": 9243.0, + "end": 9243.95, + "probability": 0.8094 + }, + { + "start": 9245.02, + "end": 9246.0, + "probability": 0.5596 + }, + { + "start": 9246.56, + "end": 9250.02, + "probability": 0.9524 + }, + { + "start": 9250.68, + "end": 9252.44, + "probability": 0.9954 + }, + { + "start": 9252.92, + "end": 9254.44, + "probability": 0.9214 + }, + { + "start": 9254.96, + "end": 9256.16, + "probability": 0.9365 + }, + { + "start": 9257.28, + "end": 9260.7, + "probability": 0.745 + }, + { + "start": 9261.52, + "end": 9262.24, + "probability": 0.4642 + }, + { + "start": 9263.26, + "end": 9265.94, + "probability": 0.901 + }, + { + "start": 9266.6, + "end": 9267.28, + "probability": 0.8138 + }, + { + "start": 9268.3, + "end": 9270.38, + "probability": 0.8634 + }, + { + "start": 9270.9, + "end": 9272.3, + "probability": 0.8359 + }, + { + "start": 9273.81, + "end": 9277.66, + "probability": 0.8485 + }, + { + "start": 9277.72, + "end": 9281.22, + "probability": 0.9824 + }, + { + "start": 9281.7, + "end": 9282.48, + "probability": 0.9773 + }, + { + "start": 9282.84, + "end": 9283.74, + "probability": 0.9502 + }, + { + "start": 9284.1, + "end": 9285.78, + "probability": 0.9271 + }, + { + "start": 9286.44, + "end": 9287.1, + "probability": 0.8916 + }, + { + "start": 9287.64, + "end": 9292.12, + "probability": 0.939 + }, + { + "start": 9292.92, + "end": 9293.55, + "probability": 0.9595 + }, + { + "start": 9294.44, + "end": 9300.06, + "probability": 0.9871 + }, + { + "start": 9300.88, + "end": 9304.46, + "probability": 0.7688 + }, + { + "start": 9306.12, + "end": 9306.86, + "probability": 0.5875 + }, + { + "start": 9308.54, + "end": 9312.26, + "probability": 0.72 + }, + { + "start": 9312.26, + "end": 9316.96, + "probability": 0.9664 + }, + { + "start": 9317.8, + "end": 9320.44, + "probability": 0.7217 + }, + { + "start": 9321.02, + "end": 9325.4, + "probability": 0.7798 + }, + { + "start": 9325.96, + "end": 9327.56, + "probability": 0.8488 + }, + { + "start": 9327.98, + "end": 9330.34, + "probability": 0.7882 + }, + { + "start": 9330.66, + "end": 9333.3, + "probability": 0.9836 + }, + { + "start": 9333.92, + "end": 9334.82, + "probability": 0.5861 + }, + { + "start": 9335.66, + "end": 9337.08, + "probability": 0.9712 + }, + { + "start": 9338.42, + "end": 9343.96, + "probability": 0.9199 + }, + { + "start": 9345.2, + "end": 9349.34, + "probability": 0.7337 + }, + { + "start": 9351.04, + "end": 9352.16, + "probability": 0.7534 + }, + { + "start": 9353.18, + "end": 9357.48, + "probability": 0.977 + }, + { + "start": 9357.96, + "end": 9361.24, + "probability": 0.9849 + }, + { + "start": 9361.56, + "end": 9366.12, + "probability": 0.7702 + }, + { + "start": 9366.68, + "end": 9369.56, + "probability": 0.9448 + }, + { + "start": 9370.28, + "end": 9373.46, + "probability": 0.9214 + }, + { + "start": 9374.1, + "end": 9375.42, + "probability": 0.4485 + }, + { + "start": 9375.84, + "end": 9377.8, + "probability": 0.916 + }, + { + "start": 9378.26, + "end": 9382.82, + "probability": 0.9754 + }, + { + "start": 9382.94, + "end": 9383.12, + "probability": 0.6668 + }, + { + "start": 9383.4, + "end": 9386.66, + "probability": 0.971 + }, + { + "start": 9387.08, + "end": 9387.9, + "probability": 0.7373 + }, + { + "start": 9388.12, + "end": 9389.0, + "probability": 0.8976 + }, + { + "start": 9389.58, + "end": 9393.38, + "probability": 0.9796 + }, + { + "start": 9393.42, + "end": 9397.18, + "probability": 0.9328 + }, + { + "start": 9398.72, + "end": 9398.9, + "probability": 0.5135 + }, + { + "start": 9398.96, + "end": 9399.78, + "probability": 0.7303 + }, + { + "start": 9400.06, + "end": 9408.36, + "probability": 0.9347 + }, + { + "start": 9411.94, + "end": 9414.64, + "probability": 0.9319 + }, + { + "start": 9414.66, + "end": 9418.1, + "probability": 0.7599 + }, + { + "start": 9418.66, + "end": 9421.18, + "probability": 0.9277 + }, + { + "start": 9421.88, + "end": 9424.44, + "probability": 0.8327 + }, + { + "start": 9425.34, + "end": 9427.34, + "probability": 0.6425 + }, + { + "start": 9427.86, + "end": 9429.44, + "probability": 0.6546 + }, + { + "start": 9430.46, + "end": 9433.4, + "probability": 0.922 + }, + { + "start": 9433.92, + "end": 9435.38, + "probability": 0.588 + }, + { + "start": 9436.14, + "end": 9438.72, + "probability": 0.9442 + }, + { + "start": 9439.18, + "end": 9440.64, + "probability": 0.6986 + }, + { + "start": 9441.22, + "end": 9443.76, + "probability": 0.9138 + }, + { + "start": 9444.54, + "end": 9448.7, + "probability": 0.7039 + }, + { + "start": 9449.44, + "end": 9452.62, + "probability": 0.929 + }, + { + "start": 9453.34, + "end": 9455.56, + "probability": 0.7969 + }, + { + "start": 9456.32, + "end": 9459.58, + "probability": 0.9548 + }, + { + "start": 9460.54, + "end": 9467.64, + "probability": 0.9261 + }, + { + "start": 9468.16, + "end": 9470.28, + "probability": 0.9041 + }, + { + "start": 9471.26, + "end": 9471.98, + "probability": 0.7041 + }, + { + "start": 9472.66, + "end": 9477.26, + "probability": 0.9325 + }, + { + "start": 9478.22, + "end": 9485.06, + "probability": 0.7618 + }, + { + "start": 9486.66, + "end": 9490.15, + "probability": 0.99 + }, + { + "start": 9491.02, + "end": 9495.58, + "probability": 0.9571 + }, + { + "start": 9496.36, + "end": 9497.88, + "probability": 0.6603 + }, + { + "start": 9498.42, + "end": 9504.52, + "probability": 0.8644 + }, + { + "start": 9505.26, + "end": 9508.86, + "probability": 0.5406 + }, + { + "start": 9509.4, + "end": 9511.4, + "probability": 0.8431 + }, + { + "start": 9511.92, + "end": 9516.08, + "probability": 0.4764 + }, + { + "start": 9517.04, + "end": 9518.7, + "probability": 0.9874 + }, + { + "start": 9522.7, + "end": 9529.32, + "probability": 0.9714 + }, + { + "start": 9529.32, + "end": 9536.78, + "probability": 0.9885 + }, + { + "start": 9537.36, + "end": 9542.14, + "probability": 0.9438 + }, + { + "start": 9543.32, + "end": 9546.82, + "probability": 0.9719 + }, + { + "start": 9547.42, + "end": 9548.92, + "probability": 0.9041 + }, + { + "start": 9549.52, + "end": 9553.44, + "probability": 0.8974 + }, + { + "start": 9554.5, + "end": 9556.14, + "probability": 0.7918 + }, + { + "start": 9556.98, + "end": 9565.04, + "probability": 0.8004 + }, + { + "start": 9565.58, + "end": 9569.1, + "probability": 0.9929 + }, + { + "start": 9569.76, + "end": 9570.64, + "probability": 0.9341 + }, + { + "start": 9571.92, + "end": 9574.48, + "probability": 0.6529 + }, + { + "start": 9575.28, + "end": 9577.28, + "probability": 0.7667 + }, + { + "start": 9578.08, + "end": 9579.46, + "probability": 0.3589 + }, + { + "start": 9579.96, + "end": 9582.82, + "probability": 0.7674 + }, + { + "start": 9583.52, + "end": 9588.6, + "probability": 0.9385 + }, + { + "start": 9588.6, + "end": 9594.6, + "probability": 0.9414 + }, + { + "start": 9594.74, + "end": 9601.62, + "probability": 0.9517 + }, + { + "start": 9602.34, + "end": 9603.14, + "probability": 0.5364 + }, + { + "start": 9603.46, + "end": 9610.14, + "probability": 0.9546 + }, + { + "start": 9610.92, + "end": 9612.38, + "probability": 0.8069 + }, + { + "start": 9613.67, + "end": 9620.2, + "probability": 0.883 + }, + { + "start": 9620.8, + "end": 9621.32, + "probability": 0.4252 + }, + { + "start": 9621.84, + "end": 9624.88, + "probability": 0.9945 + }, + { + "start": 9625.18, + "end": 9626.08, + "probability": 0.7373 + }, + { + "start": 9626.7, + "end": 9630.6, + "probability": 0.9314 + }, + { + "start": 9631.22, + "end": 9632.74, + "probability": 0.9738 + }, + { + "start": 9633.46, + "end": 9635.02, + "probability": 0.7676 + }, + { + "start": 9635.86, + "end": 9636.69, + "probability": 0.3611 + }, + { + "start": 9638.28, + "end": 9639.24, + "probability": 0.76 + }, + { + "start": 9640.36, + "end": 9645.84, + "probability": 0.802 + }, + { + "start": 9646.98, + "end": 9649.58, + "probability": 0.6185 + }, + { + "start": 9650.12, + "end": 9651.74, + "probability": 0.8975 + }, + { + "start": 9652.42, + "end": 9656.5, + "probability": 0.9869 + }, + { + "start": 9656.5, + "end": 9660.48, + "probability": 0.9758 + }, + { + "start": 9660.9, + "end": 9663.76, + "probability": 0.855 + }, + { + "start": 9663.98, + "end": 9666.8, + "probability": 0.9094 + }, + { + "start": 9667.05, + "end": 9669.04, + "probability": 0.5285 + }, + { + "start": 9669.04, + "end": 9669.82, + "probability": 0.4894 + }, + { + "start": 9670.42, + "end": 9671.34, + "probability": 0.7384 + }, + { + "start": 9671.58, + "end": 9674.63, + "probability": 0.9102 + }, + { + "start": 9675.1, + "end": 9676.88, + "probability": 0.8448 + }, + { + "start": 9677.56, + "end": 9679.5, + "probability": 0.6527 + }, + { + "start": 9682.18, + "end": 9684.76, + "probability": 0.5089 + }, + { + "start": 9684.86, + "end": 9687.6, + "probability": 0.7524 + }, + { + "start": 9688.2, + "end": 9689.42, + "probability": 0.8079 + }, + { + "start": 9692.34, + "end": 9695.56, + "probability": 0.8169 + }, + { + "start": 9696.9, + "end": 9698.44, + "probability": 0.8689 + }, + { + "start": 9699.86, + "end": 9702.4, + "probability": 0.8718 + }, + { + "start": 9705.14, + "end": 9707.08, + "probability": 0.6585 + }, + { + "start": 9708.74, + "end": 9709.54, + "probability": 0.4795 + }, + { + "start": 9725.94, + "end": 9729.04, + "probability": 0.499 + }, + { + "start": 9730.78, + "end": 9732.2, + "probability": 0.702 + }, + { + "start": 9734.48, + "end": 9734.96, + "probability": 0.7542 + }, + { + "start": 9736.06, + "end": 9737.02, + "probability": 0.9371 + }, + { + "start": 9738.7, + "end": 9739.84, + "probability": 0.7459 + }, + { + "start": 9741.62, + "end": 9744.04, + "probability": 0.9653 + }, + { + "start": 9748.34, + "end": 9751.72, + "probability": 0.8936 + }, + { + "start": 9752.94, + "end": 9754.8, + "probability": 0.6927 + }, + { + "start": 9756.2, + "end": 9764.44, + "probability": 0.9767 + }, + { + "start": 9765.1, + "end": 9769.26, + "probability": 0.9909 + }, + { + "start": 9772.7, + "end": 9775.76, + "probability": 0.8339 + }, + { + "start": 9778.08, + "end": 9782.46, + "probability": 0.7947 + }, + { + "start": 9783.42, + "end": 9784.98, + "probability": 0.8405 + }, + { + "start": 9786.0, + "end": 9789.94, + "probability": 0.9839 + }, + { + "start": 9791.24, + "end": 9793.48, + "probability": 0.9166 + }, + { + "start": 9794.68, + "end": 9798.5, + "probability": 0.9948 + }, + { + "start": 9798.5, + "end": 9802.62, + "probability": 0.9912 + }, + { + "start": 9804.66, + "end": 9805.36, + "probability": 0.0874 + }, + { + "start": 9806.22, + "end": 9808.7, + "probability": 0.5845 + }, + { + "start": 9808.74, + "end": 9809.56, + "probability": 0.6163 + }, + { + "start": 9810.44, + "end": 9812.68, + "probability": 0.5147 + }, + { + "start": 9818.64, + "end": 9820.96, + "probability": 0.3536 + }, + { + "start": 9821.6, + "end": 9825.22, + "probability": 0.6976 + }, + { + "start": 9825.28, + "end": 9826.68, + "probability": 0.8027 + }, + { + "start": 9827.3, + "end": 9830.22, + "probability": 0.842 + }, + { + "start": 9830.36, + "end": 9831.44, + "probability": 0.6278 + }, + { + "start": 9831.54, + "end": 9832.94, + "probability": 0.0012 + }, + { + "start": 9839.76, + "end": 9841.34, + "probability": 0.5955 + }, + { + "start": 9842.48, + "end": 9844.44, + "probability": 0.9834 + }, + { + "start": 9850.3, + "end": 9851.74, + "probability": 0.7466 + }, + { + "start": 9853.17, + "end": 9857.24, + "probability": 0.7473 + }, + { + "start": 9857.36, + "end": 9858.4, + "probability": 0.3877 + }, + { + "start": 9858.4, + "end": 9859.94, + "probability": 0.6615 + }, + { + "start": 9859.98, + "end": 9862.1, + "probability": 0.6859 + }, + { + "start": 9863.12, + "end": 9867.02, + "probability": 0.6821 + }, + { + "start": 9867.02, + "end": 9871.06, + "probability": 0.9987 + }, + { + "start": 9872.04, + "end": 9873.24, + "probability": 0.7658 + }, + { + "start": 9873.86, + "end": 9876.68, + "probability": 0.9514 + }, + { + "start": 9877.44, + "end": 9881.38, + "probability": 0.9951 + }, + { + "start": 9882.1, + "end": 9885.46, + "probability": 0.7598 + }, + { + "start": 9885.6, + "end": 9885.74, + "probability": 0.3536 + }, + { + "start": 9885.84, + "end": 9886.24, + "probability": 0.8924 + }, + { + "start": 9886.34, + "end": 9887.4, + "probability": 0.7947 + }, + { + "start": 9887.82, + "end": 9888.16, + "probability": 0.8818 + }, + { + "start": 9889.2, + "end": 9892.36, + "probability": 0.9753 + }, + { + "start": 9893.44, + "end": 9896.34, + "probability": 0.9144 + }, + { + "start": 9897.06, + "end": 9898.16, + "probability": 0.9696 + }, + { + "start": 9898.72, + "end": 9903.14, + "probability": 0.991 + }, + { + "start": 9903.56, + "end": 9905.84, + "probability": 0.7964 + }, + { + "start": 9907.2, + "end": 9908.7, + "probability": 0.9637 + }, + { + "start": 9910.52, + "end": 9913.5, + "probability": 0.8204 + }, + { + "start": 9914.36, + "end": 9920.04, + "probability": 0.9821 + }, + { + "start": 9921.66, + "end": 9926.14, + "probability": 0.7504 + }, + { + "start": 9926.5, + "end": 9927.45, + "probability": 0.9716 + }, + { + "start": 9927.74, + "end": 9928.56, + "probability": 0.5312 + }, + { + "start": 9929.68, + "end": 9932.84, + "probability": 0.8071 + }, + { + "start": 9933.9, + "end": 9936.14, + "probability": 0.8723 + }, + { + "start": 9937.44, + "end": 9937.92, + "probability": 0.923 + }, + { + "start": 9938.14, + "end": 9943.88, + "probability": 0.9596 + }, + { + "start": 9944.48, + "end": 9946.72, + "probability": 0.9738 + }, + { + "start": 9947.3, + "end": 9949.04, + "probability": 0.8854 + }, + { + "start": 9949.16, + "end": 9951.64, + "probability": 0.9799 + }, + { + "start": 9952.06, + "end": 9955.44, + "probability": 0.9669 + }, + { + "start": 9958.5, + "end": 9962.22, + "probability": 0.943 + }, + { + "start": 9962.5, + "end": 9964.02, + "probability": 0.5683 + }, + { + "start": 9967.9, + "end": 9969.9, + "probability": 0.8515 + }, + { + "start": 9970.26, + "end": 9971.82, + "probability": 0.7155 + }, + { + "start": 9972.04, + "end": 9977.26, + "probability": 0.9751 + }, + { + "start": 9980.42, + "end": 9985.2, + "probability": 0.9902 + }, + { + "start": 9985.92, + "end": 9987.98, + "probability": 0.9316 + }, + { + "start": 9988.06, + "end": 9990.56, + "probability": 0.855 + }, + { + "start": 9990.72, + "end": 9992.66, + "probability": 0.9159 + }, + { + "start": 9993.74, + "end": 9994.76, + "probability": 0.9767 + }, + { + "start": 9998.62, + "end": 9999.52, + "probability": 0.9902 + }, + { + "start": 10000.66, + "end": 10001.96, + "probability": 0.9512 + }, + { + "start": 10002.68, + "end": 10007.58, + "probability": 0.894 + }, + { + "start": 10008.82, + "end": 10014.8, + "probability": 0.2562 + }, + { + "start": 10015.48, + "end": 10023.32, + "probability": 0.811 + }, + { + "start": 10023.88, + "end": 10026.5, + "probability": 0.9817 + }, + { + "start": 10026.78, + "end": 10029.28, + "probability": 0.9604 + }, + { + "start": 10029.96, + "end": 10031.96, + "probability": 0.4705 + }, + { + "start": 10034.46, + "end": 10038.8, + "probability": 0.9935 + }, + { + "start": 10038.92, + "end": 10041.02, + "probability": 0.4974 + }, + { + "start": 10041.12, + "end": 10041.86, + "probability": 0.7735 + }, + { + "start": 10042.26, + "end": 10043.4, + "probability": 0.7852 + }, + { + "start": 10043.72, + "end": 10044.74, + "probability": 0.7226 + }, + { + "start": 10044.84, + "end": 10046.22, + "probability": 0.966 + }, + { + "start": 10047.4, + "end": 10049.68, + "probability": 0.9644 + }, + { + "start": 10051.6, + "end": 10056.1, + "probability": 0.9309 + }, + { + "start": 10056.96, + "end": 10059.3, + "probability": 0.9141 + }, + { + "start": 10060.84, + "end": 10065.14, + "probability": 0.9826 + }, + { + "start": 10067.46, + "end": 10070.98, + "probability": 0.9677 + }, + { + "start": 10073.52, + "end": 10075.64, + "probability": 0.998 + }, + { + "start": 10076.2, + "end": 10078.04, + "probability": 0.6897 + }, + { + "start": 10078.78, + "end": 10081.26, + "probability": 0.8405 + }, + { + "start": 10081.26, + "end": 10083.08, + "probability": 0.7338 + }, + { + "start": 10083.1, + "end": 10083.42, + "probability": 0.8049 + }, + { + "start": 10083.8, + "end": 10084.4, + "probability": 0.5171 + }, + { + "start": 10084.78, + "end": 10085.84, + "probability": 0.7993 + }, + { + "start": 10086.34, + "end": 10087.78, + "probability": 0.9392 + }, + { + "start": 10089.3, + "end": 10090.34, + "probability": 0.7829 + }, + { + "start": 10090.72, + "end": 10094.0, + "probability": 0.9877 + }, + { + "start": 10094.0, + "end": 10098.76, + "probability": 0.8041 + }, + { + "start": 10101.7, + "end": 10104.42, + "probability": 0.95 + }, + { + "start": 10105.7, + "end": 10108.26, + "probability": 0.9326 + }, + { + "start": 10109.34, + "end": 10114.64, + "probability": 0.9477 + }, + { + "start": 10115.12, + "end": 10117.34, + "probability": 0.9572 + }, + { + "start": 10118.3, + "end": 10119.02, + "probability": 0.6929 + }, + { + "start": 10121.12, + "end": 10122.86, + "probability": 0.9937 + }, + { + "start": 10123.12, + "end": 10125.96, + "probability": 0.8457 + }, + { + "start": 10127.12, + "end": 10128.7, + "probability": 0.9801 + }, + { + "start": 10132.08, + "end": 10134.74, + "probability": 0.6427 + }, + { + "start": 10137.0, + "end": 10140.12, + "probability": 0.8993 + }, + { + "start": 10140.92, + "end": 10141.84, + "probability": 0.9089 + }, + { + "start": 10142.14, + "end": 10145.62, + "probability": 0.9542 + }, + { + "start": 10146.1, + "end": 10147.08, + "probability": 0.9228 + }, + { + "start": 10147.82, + "end": 10150.16, + "probability": 0.6645 + }, + { + "start": 10150.66, + "end": 10151.58, + "probability": 0.6978 + }, + { + "start": 10152.85, + "end": 10154.82, + "probability": 0.9355 + }, + { + "start": 10155.02, + "end": 10155.74, + "probability": 0.4425 + }, + { + "start": 10158.64, + "end": 10160.64, + "probability": 0.9595 + }, + { + "start": 10162.1, + "end": 10166.16, + "probability": 0.9854 + }, + { + "start": 10169.64, + "end": 10171.62, + "probability": 0.9741 + }, + { + "start": 10171.8, + "end": 10173.58, + "probability": 0.9927 + }, + { + "start": 10176.98, + "end": 10180.78, + "probability": 0.9548 + }, + { + "start": 10181.36, + "end": 10189.38, + "probability": 0.939 + }, + { + "start": 10190.32, + "end": 10194.1, + "probability": 0.9989 + }, + { + "start": 10195.76, + "end": 10197.36, + "probability": 0.6644 + }, + { + "start": 10197.42, + "end": 10198.92, + "probability": 0.9843 + }, + { + "start": 10199.08, + "end": 10200.28, + "probability": 0.7698 + }, + { + "start": 10201.58, + "end": 10204.86, + "probability": 0.9785 + }, + { + "start": 10206.06, + "end": 10209.42, + "probability": 0.9822 + }, + { + "start": 10210.1, + "end": 10213.16, + "probability": 0.9893 + }, + { + "start": 10213.4, + "end": 10215.38, + "probability": 0.9712 + }, + { + "start": 10215.46, + "end": 10216.7, + "probability": 0.8318 + }, + { + "start": 10218.36, + "end": 10222.08, + "probability": 0.9779 + }, + { + "start": 10223.4, + "end": 10225.04, + "probability": 0.5005 + }, + { + "start": 10225.7, + "end": 10227.58, + "probability": 0.9731 + }, + { + "start": 10228.68, + "end": 10233.9, + "probability": 0.9902 + }, + { + "start": 10235.92, + "end": 10238.8, + "probability": 0.9883 + }, + { + "start": 10239.86, + "end": 10242.04, + "probability": 0.6035 + }, + { + "start": 10242.68, + "end": 10243.6, + "probability": 0.8285 + }, + { + "start": 10244.38, + "end": 10248.62, + "probability": 0.9966 + }, + { + "start": 10253.18, + "end": 10254.93, + "probability": 0.9854 + }, + { + "start": 10256.3, + "end": 10258.38, + "probability": 0.9871 + }, + { + "start": 10260.22, + "end": 10262.98, + "probability": 0.9224 + }, + { + "start": 10265.34, + "end": 10268.3, + "probability": 0.9979 + }, + { + "start": 10269.4, + "end": 10272.48, + "probability": 0.9976 + }, + { + "start": 10273.36, + "end": 10276.38, + "probability": 0.8432 + }, + { + "start": 10277.04, + "end": 10277.9, + "probability": 0.7047 + }, + { + "start": 10278.0, + "end": 10280.88, + "probability": 0.8868 + }, + { + "start": 10281.6, + "end": 10282.62, + "probability": 0.5198 + }, + { + "start": 10282.9, + "end": 10283.74, + "probability": 0.8936 + }, + { + "start": 10283.9, + "end": 10287.86, + "probability": 0.8726 + }, + { + "start": 10288.76, + "end": 10289.34, + "probability": 0.9363 + }, + { + "start": 10289.98, + "end": 10294.46, + "probability": 0.9843 + }, + { + "start": 10296.08, + "end": 10298.38, + "probability": 0.9988 + }, + { + "start": 10299.36, + "end": 10299.6, + "probability": 0.751 + }, + { + "start": 10300.44, + "end": 10301.67, + "probability": 0.9717 + }, + { + "start": 10302.98, + "end": 10309.78, + "probability": 0.9756 + }, + { + "start": 10311.7, + "end": 10314.1, + "probability": 0.9189 + }, + { + "start": 10317.18, + "end": 10319.88, + "probability": 0.979 + }, + { + "start": 10320.7, + "end": 10325.64, + "probability": 0.9913 + }, + { + "start": 10325.68, + "end": 10327.0, + "probability": 0.7543 + }, + { + "start": 10327.14, + "end": 10327.38, + "probability": 0.4137 + }, + { + "start": 10329.76, + "end": 10330.84, + "probability": 0.9956 + }, + { + "start": 10331.18, + "end": 10332.24, + "probability": 0.9336 + }, + { + "start": 10333.82, + "end": 10334.06, + "probability": 0.7574 + }, + { + "start": 10335.16, + "end": 10336.18, + "probability": 0.7176 + }, + { + "start": 10336.4, + "end": 10339.88, + "probability": 0.5035 + }, + { + "start": 10341.46, + "end": 10342.5, + "probability": 0.9973 + }, + { + "start": 10343.46, + "end": 10346.76, + "probability": 0.9673 + }, + { + "start": 10348.34, + "end": 10349.02, + "probability": 0.6583 + }, + { + "start": 10349.3, + "end": 10351.46, + "probability": 0.9982 + }, + { + "start": 10352.38, + "end": 10355.86, + "probability": 0.9944 + }, + { + "start": 10358.04, + "end": 10358.68, + "probability": 0.9887 + }, + { + "start": 10359.72, + "end": 10362.88, + "probability": 0.9805 + }, + { + "start": 10364.34, + "end": 10366.84, + "probability": 0.8274 + }, + { + "start": 10368.14, + "end": 10370.66, + "probability": 0.9511 + }, + { + "start": 10371.64, + "end": 10373.96, + "probability": 0.8733 + }, + { + "start": 10375.2, + "end": 10377.64, + "probability": 0.9946 + }, + { + "start": 10378.6, + "end": 10380.24, + "probability": 0.9361 + }, + { + "start": 10381.4, + "end": 10381.68, + "probability": 0.9824 + }, + { + "start": 10382.56, + "end": 10384.4, + "probability": 0.9651 + }, + { + "start": 10384.98, + "end": 10385.58, + "probability": 0.523 + }, + { + "start": 10386.18, + "end": 10386.64, + "probability": 0.5146 + }, + { + "start": 10386.76, + "end": 10388.22, + "probability": 0.8757 + }, + { + "start": 10388.4, + "end": 10390.36, + "probability": 0.9893 + }, + { + "start": 10391.14, + "end": 10393.28, + "probability": 0.8759 + }, + { + "start": 10394.6, + "end": 10396.72, + "probability": 0.9697 + }, + { + "start": 10398.14, + "end": 10400.24, + "probability": 0.9668 + }, + { + "start": 10401.26, + "end": 10403.92, + "probability": 0.9911 + }, + { + "start": 10404.84, + "end": 10406.5, + "probability": 0.7483 + }, + { + "start": 10407.26, + "end": 10410.68, + "probability": 0.9803 + }, + { + "start": 10412.98, + "end": 10413.18, + "probability": 0.9343 + }, + { + "start": 10415.82, + "end": 10420.34, + "probability": 0.8643 + }, + { + "start": 10421.3, + "end": 10426.46, + "probability": 0.8425 + }, + { + "start": 10427.0, + "end": 10428.38, + "probability": 0.8291 + }, + { + "start": 10428.64, + "end": 10429.74, + "probability": 0.861 + }, + { + "start": 10431.54, + "end": 10433.88, + "probability": 0.7022 + }, + { + "start": 10434.48, + "end": 10436.98, + "probability": 0.9298 + }, + { + "start": 10437.04, + "end": 10439.28, + "probability": 0.8621 + }, + { + "start": 10439.92, + "end": 10441.44, + "probability": 0.9487 + }, + { + "start": 10442.94, + "end": 10442.98, + "probability": 0.3279 + }, + { + "start": 10443.52, + "end": 10444.38, + "probability": 0.7655 + }, + { + "start": 10447.1, + "end": 10447.68, + "probability": 0.8589 + }, + { + "start": 10450.84, + "end": 10451.78, + "probability": 0.9482 + }, + { + "start": 10453.06, + "end": 10453.42, + "probability": 0.9793 + }, + { + "start": 10454.22, + "end": 10456.32, + "probability": 0.9652 + }, + { + "start": 10456.96, + "end": 10457.68, + "probability": 0.9381 + }, + { + "start": 10458.06, + "end": 10460.3, + "probability": 0.9571 + }, + { + "start": 10461.04, + "end": 10462.88, + "probability": 0.7036 + }, + { + "start": 10464.16, + "end": 10466.28, + "probability": 0.9907 + }, + { + "start": 10466.98, + "end": 10468.44, + "probability": 0.9272 + }, + { + "start": 10469.26, + "end": 10470.7, + "probability": 0.7719 + }, + { + "start": 10472.48, + "end": 10473.38, + "probability": 0.9233 + }, + { + "start": 10474.14, + "end": 10475.64, + "probability": 0.985 + }, + { + "start": 10478.44, + "end": 10481.42, + "probability": 0.9736 + }, + { + "start": 10483.3, + "end": 10483.96, + "probability": 0.711 + }, + { + "start": 10486.44, + "end": 10486.84, + "probability": 0.6295 + }, + { + "start": 10487.1, + "end": 10487.32, + "probability": 0.1811 + }, + { + "start": 10487.42, + "end": 10491.67, + "probability": 0.9266 + }, + { + "start": 10492.39, + "end": 10494.36, + "probability": 0.9927 + }, + { + "start": 10495.08, + "end": 10499.3, + "probability": 0.969 + }, + { + "start": 10500.6, + "end": 10501.3, + "probability": 0.4677 + }, + { + "start": 10501.78, + "end": 10503.56, + "probability": 0.9167 + }, + { + "start": 10504.56, + "end": 10507.58, + "probability": 0.9648 + }, + { + "start": 10507.6, + "end": 10509.98, + "probability": 0.8897 + }, + { + "start": 10510.1, + "end": 10513.96, + "probability": 0.9935 + }, + { + "start": 10514.26, + "end": 10515.72, + "probability": 0.9065 + }, + { + "start": 10516.72, + "end": 10518.35, + "probability": 0.9907 + }, + { + "start": 10519.14, + "end": 10520.5, + "probability": 0.6312 + }, + { + "start": 10520.92, + "end": 10524.04, + "probability": 0.7142 + }, + { + "start": 10524.12, + "end": 10524.32, + "probability": 0.793 + }, + { + "start": 10524.86, + "end": 10528.72, + "probability": 0.974 + }, + { + "start": 10529.16, + "end": 10530.44, + "probability": 0.8622 + }, + { + "start": 10530.9, + "end": 10532.76, + "probability": 0.9069 + }, + { + "start": 10534.06, + "end": 10535.6, + "probability": 0.9875 + }, + { + "start": 10539.36, + "end": 10541.0, + "probability": 0.9844 + }, + { + "start": 10542.66, + "end": 10543.1, + "probability": 0.8689 + }, + { + "start": 10544.16, + "end": 10545.22, + "probability": 0.8744 + }, + { + "start": 10546.28, + "end": 10547.54, + "probability": 0.8412 + }, + { + "start": 10548.42, + "end": 10553.02, + "probability": 0.9272 + }, + { + "start": 10554.3, + "end": 10557.64, + "probability": 0.3885 + }, + { + "start": 10559.86, + "end": 10560.46, + "probability": 0.8652 + }, + { + "start": 10561.7, + "end": 10564.0, + "probability": 0.9383 + }, + { + "start": 10565.44, + "end": 10570.68, + "probability": 0.8831 + }, + { + "start": 10571.3, + "end": 10574.74, + "probability": 0.8722 + }, + { + "start": 10576.66, + "end": 10577.14, + "probability": 0.6287 + }, + { + "start": 10578.12, + "end": 10579.7, + "probability": 0.9977 + }, + { + "start": 10580.28, + "end": 10585.26, + "probability": 0.972 + }, + { + "start": 10585.4, + "end": 10587.3, + "probability": 0.9593 + }, + { + "start": 10587.72, + "end": 10589.38, + "probability": 0.8677 + }, + { + "start": 10592.0, + "end": 10592.96, + "probability": 0.5506 + }, + { + "start": 10593.4, + "end": 10595.1, + "probability": 0.7095 + }, + { + "start": 10595.8, + "end": 10599.76, + "probability": 0.7628 + }, + { + "start": 10600.1, + "end": 10603.2, + "probability": 0.723 + }, + { + "start": 10603.4, + "end": 10604.42, + "probability": 0.6096 + }, + { + "start": 10604.98, + "end": 10607.52, + "probability": 0.8999 + }, + { + "start": 10607.64, + "end": 10608.58, + "probability": 0.8564 + }, + { + "start": 10608.9, + "end": 10610.38, + "probability": 0.9956 + }, + { + "start": 10610.76, + "end": 10613.0, + "probability": 0.7261 + }, + { + "start": 10613.02, + "end": 10615.3, + "probability": 0.3668 + }, + { + "start": 10616.86, + "end": 10617.56, + "probability": 0.7739 + }, + { + "start": 10617.62, + "end": 10619.56, + "probability": 0.7118 + }, + { + "start": 10620.94, + "end": 10621.14, + "probability": 0.117 + }, + { + "start": 10621.14, + "end": 10623.82, + "probability": 0.8109 + }, + { + "start": 10623.82, + "end": 10627.16, + "probability": 0.861 + }, + { + "start": 10627.78, + "end": 10629.33, + "probability": 0.6023 + }, + { + "start": 10629.76, + "end": 10630.78, + "probability": 0.481 + }, + { + "start": 10631.26, + "end": 10635.72, + "probability": 0.8918 + }, + { + "start": 10635.86, + "end": 10637.0, + "probability": 0.5055 + }, + { + "start": 10639.24, + "end": 10640.84, + "probability": 0.4707 + }, + { + "start": 10640.84, + "end": 10641.24, + "probability": 0.5497 + }, + { + "start": 10641.4, + "end": 10647.36, + "probability": 0.905 + }, + { + "start": 10648.98, + "end": 10650.8, + "probability": 0.7447 + }, + { + "start": 10651.4, + "end": 10654.58, + "probability": 0.9835 + }, + { + "start": 10655.26, + "end": 10657.46, + "probability": 0.9211 + }, + { + "start": 10659.08, + "end": 10660.4, + "probability": 0.7775 + }, + { + "start": 10662.33, + "end": 10664.76, + "probability": 0.6673 + }, + { + "start": 10665.78, + "end": 10668.14, + "probability": 0.7902 + }, + { + "start": 10668.7, + "end": 10670.58, + "probability": 0.7255 + }, + { + "start": 10672.32, + "end": 10674.13, + "probability": 0.8532 + }, + { + "start": 10675.64, + "end": 10676.96, + "probability": 0.9915 + }, + { + "start": 10678.08, + "end": 10679.54, + "probability": 0.9333 + }, + { + "start": 10680.2, + "end": 10681.18, + "probability": 0.6252 + }, + { + "start": 10682.16, + "end": 10683.9, + "probability": 0.9843 + }, + { + "start": 10684.64, + "end": 10685.76, + "probability": 0.8656 + }, + { + "start": 10686.9, + "end": 10688.52, + "probability": 0.8888 + }, + { + "start": 10689.36, + "end": 10691.97, + "probability": 0.9348 + }, + { + "start": 10692.6, + "end": 10693.9, + "probability": 0.9657 + }, + { + "start": 10694.68, + "end": 10695.84, + "probability": 0.9411 + }, + { + "start": 10696.28, + "end": 10696.7, + "probability": 0.6309 + }, + { + "start": 10697.52, + "end": 10700.56, + "probability": 0.9296 + }, + { + "start": 10701.6, + "end": 10704.07, + "probability": 0.8652 + }, + { + "start": 10704.78, + "end": 10706.96, + "probability": 0.9027 + }, + { + "start": 10707.08, + "end": 10707.4, + "probability": 0.84 + }, + { + "start": 10707.5, + "end": 10709.52, + "probability": 0.8518 + }, + { + "start": 10709.6, + "end": 10711.5, + "probability": 0.9915 + }, + { + "start": 10712.6, + "end": 10714.68, + "probability": 0.7661 + }, + { + "start": 10715.96, + "end": 10717.0, + "probability": 0.6722 + }, + { + "start": 10717.44, + "end": 10720.3, + "probability": 0.6697 + }, + { + "start": 10724.8, + "end": 10726.3, + "probability": 0.0491 + }, + { + "start": 10726.3, + "end": 10728.98, + "probability": 0.7857 + }, + { + "start": 10729.74, + "end": 10731.86, + "probability": 0.7627 + }, + { + "start": 10731.86, + "end": 10734.16, + "probability": 0.7112 + }, + { + "start": 10734.24, + "end": 10736.72, + "probability": 0.9258 + }, + { + "start": 10738.14, + "end": 10739.02, + "probability": 0.5711 + }, + { + "start": 10739.6, + "end": 10742.48, + "probability": 0.1732 + }, + { + "start": 10742.56, + "end": 10743.86, + "probability": 0.7333 + }, + { + "start": 10746.56, + "end": 10747.44, + "probability": 0.3512 + }, + { + "start": 10760.36, + "end": 10761.7, + "probability": 0.3234 + }, + { + "start": 10763.62, + "end": 10766.52, + "probability": 0.7183 + }, + { + "start": 10768.02, + "end": 10772.5, + "probability": 0.9768 + }, + { + "start": 10773.22, + "end": 10773.74, + "probability": 0.9097 + }, + { + "start": 10774.66, + "end": 10776.8, + "probability": 0.9433 + }, + { + "start": 10777.04, + "end": 10781.56, + "probability": 0.9856 + }, + { + "start": 10781.56, + "end": 10785.58, + "probability": 0.9988 + }, + { + "start": 10786.06, + "end": 10791.62, + "probability": 0.9956 + }, + { + "start": 10791.98, + "end": 10793.08, + "probability": 0.9862 + }, + { + "start": 10793.62, + "end": 10794.52, + "probability": 0.9163 + }, + { + "start": 10795.8, + "end": 10796.82, + "probability": 0.9806 + }, + { + "start": 10797.6, + "end": 10798.9, + "probability": 0.9826 + }, + { + "start": 10799.32, + "end": 10804.2, + "probability": 0.9866 + }, + { + "start": 10804.82, + "end": 10808.04, + "probability": 0.958 + }, + { + "start": 10808.48, + "end": 10811.82, + "probability": 0.9877 + }, + { + "start": 10811.9, + "end": 10815.16, + "probability": 0.9423 + }, + { + "start": 10815.74, + "end": 10818.45, + "probability": 0.7199 + }, + { + "start": 10819.26, + "end": 10825.2, + "probability": 0.9938 + }, + { + "start": 10825.52, + "end": 10827.3, + "probability": 0.9928 + }, + { + "start": 10827.84, + "end": 10830.7, + "probability": 0.9814 + }, + { + "start": 10831.06, + "end": 10833.8, + "probability": 0.9683 + }, + { + "start": 10834.22, + "end": 10836.2, + "probability": 0.9859 + }, + { + "start": 10836.72, + "end": 10838.8, + "probability": 0.9888 + }, + { + "start": 10839.18, + "end": 10840.64, + "probability": 0.9963 + }, + { + "start": 10840.72, + "end": 10842.34, + "probability": 0.8048 + }, + { + "start": 10842.44, + "end": 10843.1, + "probability": 0.9319 + }, + { + "start": 10843.5, + "end": 10844.34, + "probability": 0.9353 + }, + { + "start": 10844.82, + "end": 10845.86, + "probability": 0.8264 + }, + { + "start": 10845.94, + "end": 10847.31, + "probability": 0.9592 + }, + { + "start": 10847.96, + "end": 10849.76, + "probability": 0.995 + }, + { + "start": 10850.42, + "end": 10851.44, + "probability": 0.9666 + }, + { + "start": 10851.96, + "end": 10853.72, + "probability": 0.9755 + }, + { + "start": 10854.08, + "end": 10857.09, + "probability": 0.9973 + }, + { + "start": 10857.58, + "end": 10860.86, + "probability": 0.9992 + }, + { + "start": 10861.46, + "end": 10865.72, + "probability": 0.9854 + }, + { + "start": 10866.46, + "end": 10867.7, + "probability": 0.9141 + }, + { + "start": 10867.86, + "end": 10870.56, + "probability": 0.9927 + }, + { + "start": 10871.14, + "end": 10874.44, + "probability": 0.9943 + }, + { + "start": 10874.86, + "end": 10876.46, + "probability": 0.8179 + }, + { + "start": 10876.78, + "end": 10878.62, + "probability": 0.9558 + }, + { + "start": 10878.88, + "end": 10881.4, + "probability": 0.9492 + }, + { + "start": 10881.4, + "end": 10883.94, + "probability": 0.934 + }, + { + "start": 10884.52, + "end": 10886.51, + "probability": 0.8892 + }, + { + "start": 10886.86, + "end": 10888.36, + "probability": 0.9804 + }, + { + "start": 10888.8, + "end": 10892.8, + "probability": 0.9551 + }, + { + "start": 10893.18, + "end": 10894.78, + "probability": 0.9821 + }, + { + "start": 10895.16, + "end": 10900.1, + "probability": 0.9468 + }, + { + "start": 10900.56, + "end": 10901.94, + "probability": 0.9753 + }, + { + "start": 10902.4, + "end": 10906.86, + "probability": 0.9943 + }, + { + "start": 10907.32, + "end": 10908.92, + "probability": 0.906 + }, + { + "start": 10909.06, + "end": 10910.8, + "probability": 0.9955 + }, + { + "start": 10911.18, + "end": 10912.26, + "probability": 0.6437 + }, + { + "start": 10913.24, + "end": 10914.42, + "probability": 0.8908 + }, + { + "start": 10914.8, + "end": 10917.05, + "probability": 0.9967 + }, + { + "start": 10918.18, + "end": 10919.54, + "probability": 0.5359 + }, + { + "start": 10919.98, + "end": 10921.04, + "probability": 0.8646 + }, + { + "start": 10921.48, + "end": 10922.38, + "probability": 0.9453 + }, + { + "start": 10922.5, + "end": 10924.48, + "probability": 0.9384 + }, + { + "start": 10925.58, + "end": 10927.4, + "probability": 0.8634 + }, + { + "start": 10928.1, + "end": 10929.42, + "probability": 0.9447 + }, + { + "start": 10929.7, + "end": 10932.2, + "probability": 0.9938 + }, + { + "start": 10932.96, + "end": 10936.04, + "probability": 0.8643 + }, + { + "start": 10937.64, + "end": 10940.02, + "probability": 0.9924 + }, + { + "start": 10940.06, + "end": 10940.94, + "probability": 0.7665 + }, + { + "start": 10941.18, + "end": 10942.5, + "probability": 0.9233 + }, + { + "start": 10942.98, + "end": 10945.43, + "probability": 0.964 + }, + { + "start": 10946.06, + "end": 10949.52, + "probability": 0.9445 + }, + { + "start": 10949.96, + "end": 10956.36, + "probability": 0.9953 + }, + { + "start": 10956.86, + "end": 10958.98, + "probability": 0.9199 + }, + { + "start": 10959.72, + "end": 10960.98, + "probability": 0.9868 + }, + { + "start": 10961.38, + "end": 10964.92, + "probability": 0.8887 + }, + { + "start": 10965.4, + "end": 10968.08, + "probability": 0.8618 + }, + { + "start": 10968.6, + "end": 10971.22, + "probability": 0.9858 + }, + { + "start": 10971.36, + "end": 10975.12, + "probability": 0.9937 + }, + { + "start": 10975.4, + "end": 10977.72, + "probability": 0.6989 + }, + { + "start": 10978.62, + "end": 10978.72, + "probability": 0.3291 + }, + { + "start": 10978.72, + "end": 10978.72, + "probability": 0.5068 + }, + { + "start": 10978.72, + "end": 10978.72, + "probability": 0.7346 + }, + { + "start": 10978.72, + "end": 10979.28, + "probability": 0.3301 + }, + { + "start": 10979.28, + "end": 10980.1, + "probability": 0.1205 + }, + { + "start": 10980.1, + "end": 10980.82, + "probability": 0.5218 + }, + { + "start": 10981.1, + "end": 10983.48, + "probability": 0.409 + }, + { + "start": 10983.5, + "end": 10983.52, + "probability": 0.0074 + }, + { + "start": 10983.52, + "end": 10985.28, + "probability": 0.6482 + }, + { + "start": 10986.54, + "end": 10987.62, + "probability": 0.1831 + }, + { + "start": 10987.62, + "end": 10989.3, + "probability": 0.2759 + }, + { + "start": 10989.3, + "end": 10989.9, + "probability": 0.731 + }, + { + "start": 10989.98, + "end": 10990.54, + "probability": 0.6492 + }, + { + "start": 10990.68, + "end": 10992.62, + "probability": 0.5042 + }, + { + "start": 10992.94, + "end": 10993.84, + "probability": 0.9139 + }, + { + "start": 10993.92, + "end": 10997.4, + "probability": 0.9796 + }, + { + "start": 10997.98, + "end": 11000.64, + "probability": 0.6608 + }, + { + "start": 11001.4, + "end": 11002.92, + "probability": 0.8783 + }, + { + "start": 11003.28, + "end": 11006.58, + "probability": 0.8489 + }, + { + "start": 11007.04, + "end": 11010.7, + "probability": 0.9925 + }, + { + "start": 11011.24, + "end": 11011.8, + "probability": 0.9111 + }, + { + "start": 11012.4, + "end": 11014.64, + "probability": 0.9613 + }, + { + "start": 11015.0, + "end": 11015.98, + "probability": 0.843 + }, + { + "start": 11016.06, + "end": 11016.42, + "probability": 0.8898 + }, + { + "start": 11016.52, + "end": 11017.06, + "probability": 0.7525 + }, + { + "start": 11017.68, + "end": 11018.76, + "probability": 0.9796 + }, + { + "start": 11019.16, + "end": 11019.36, + "probability": 0.916 + }, + { + "start": 11019.74, + "end": 11020.78, + "probability": 0.9137 + }, + { + "start": 11021.2, + "end": 11022.86, + "probability": 0.9543 + }, + { + "start": 11023.22, + "end": 11024.44, + "probability": 0.9873 + }, + { + "start": 11024.9, + "end": 11026.2, + "probability": 0.7551 + }, + { + "start": 11026.68, + "end": 11028.36, + "probability": 0.732 + }, + { + "start": 11028.58, + "end": 11029.26, + "probability": 0.7719 + }, + { + "start": 11029.84, + "end": 11029.88, + "probability": 0.2207 + }, + { + "start": 11029.88, + "end": 11033.84, + "probability": 0.9762 + }, + { + "start": 11034.36, + "end": 11034.36, + "probability": 0.0705 + }, + { + "start": 11034.36, + "end": 11034.36, + "probability": 0.0723 + }, + { + "start": 11034.36, + "end": 11037.2, + "probability": 0.9553 + }, + { + "start": 11037.28, + "end": 11039.36, + "probability": 0.8879 + }, + { + "start": 11039.5, + "end": 11040.29, + "probability": 0.9316 + }, + { + "start": 11040.98, + "end": 11043.92, + "probability": 0.9636 + }, + { + "start": 11044.32, + "end": 11045.38, + "probability": 0.7922 + }, + { + "start": 11045.68, + "end": 11049.0, + "probability": 0.9315 + }, + { + "start": 11049.24, + "end": 11050.42, + "probability": 0.8701 + }, + { + "start": 11050.46, + "end": 11054.58, + "probability": 0.9931 + }, + { + "start": 11054.88, + "end": 11057.92, + "probability": 0.9155 + }, + { + "start": 11058.48, + "end": 11062.88, + "probability": 0.915 + }, + { + "start": 11063.04, + "end": 11064.34, + "probability": 0.999 + }, + { + "start": 11065.56, + "end": 11068.21, + "probability": 0.9371 + }, + { + "start": 11069.26, + "end": 11069.98, + "probability": 0.6254 + }, + { + "start": 11070.18, + "end": 11072.22, + "probability": 0.8718 + }, + { + "start": 11072.98, + "end": 11075.84, + "probability": 0.9927 + }, + { + "start": 11076.32, + "end": 11077.34, + "probability": 0.9705 + }, + { + "start": 11078.46, + "end": 11078.94, + "probability": 0.69 + }, + { + "start": 11080.38, + "end": 11082.92, + "probability": 0.7054 + }, + { + "start": 11083.8, + "end": 11084.74, + "probability": 0.8485 + }, + { + "start": 11085.22, + "end": 11085.74, + "probability": 0.0643 + }, + { + "start": 11085.74, + "end": 11088.64, + "probability": 0.9282 + }, + { + "start": 11088.64, + "end": 11090.24, + "probability": 0.527 + }, + { + "start": 11090.24, + "end": 11090.24, + "probability": 0.0786 + }, + { + "start": 11090.24, + "end": 11090.66, + "probability": 0.2664 + }, + { + "start": 11090.72, + "end": 11090.72, + "probability": 0.002 + }, + { + "start": 11091.54, + "end": 11094.04, + "probability": 0.3866 + }, + { + "start": 11094.34, + "end": 11095.58, + "probability": 0.2812 + }, + { + "start": 11095.94, + "end": 11096.8, + "probability": 0.5147 + }, + { + "start": 11097.1, + "end": 11097.84, + "probability": 0.8636 + }, + { + "start": 11098.0, + "end": 11099.44, + "probability": 0.949 + }, + { + "start": 11099.58, + "end": 11101.1, + "probability": 0.8341 + }, + { + "start": 11101.44, + "end": 11102.57, + "probability": 0.3862 + }, + { + "start": 11103.02, + "end": 11105.9, + "probability": 0.6487 + }, + { + "start": 11106.3, + "end": 11107.74, + "probability": 0.6766 + }, + { + "start": 11107.76, + "end": 11109.54, + "probability": 0.7823 + }, + { + "start": 11112.14, + "end": 11112.84, + "probability": 0.7832 + }, + { + "start": 11113.44, + "end": 11115.12, + "probability": 0.6842 + }, + { + "start": 11115.8, + "end": 11115.82, + "probability": 0.5496 + }, + { + "start": 11115.82, + "end": 11118.86, + "probability": 0.9801 + }, + { + "start": 11119.04, + "end": 11119.86, + "probability": 0.7166 + }, + { + "start": 11120.56, + "end": 11122.6, + "probability": 0.9915 + }, + { + "start": 11122.64, + "end": 11123.92, + "probability": 0.8474 + }, + { + "start": 11124.68, + "end": 11126.1, + "probability": 0.8775 + }, + { + "start": 11127.8, + "end": 11131.76, + "probability": 0.967 + }, + { + "start": 11132.74, + "end": 11133.3, + "probability": 0.8124 + }, + { + "start": 11133.42, + "end": 11134.88, + "probability": 0.891 + }, + { + "start": 11135.2, + "end": 11135.58, + "probability": 0.5764 + }, + { + "start": 11135.8, + "end": 11136.72, + "probability": 0.5529 + }, + { + "start": 11137.9, + "end": 11138.68, + "probability": 0.3069 + }, + { + "start": 11138.76, + "end": 11140.16, + "probability": 0.9906 + }, + { + "start": 11140.44, + "end": 11142.8, + "probability": 0.9777 + }, + { + "start": 11143.36, + "end": 11149.36, + "probability": 0.9978 + }, + { + "start": 11149.64, + "end": 11149.64, + "probability": 0.0295 + }, + { + "start": 11151.14, + "end": 11152.48, + "probability": 0.413 + }, + { + "start": 11155.86, + "end": 11158.0, + "probability": 0.9233 + }, + { + "start": 11159.34, + "end": 11160.72, + "probability": 0.9971 + }, + { + "start": 11161.46, + "end": 11164.4, + "probability": 0.9797 + }, + { + "start": 11165.08, + "end": 11168.96, + "probability": 0.9894 + }, + { + "start": 11170.72, + "end": 11173.84, + "probability": 0.994 + }, + { + "start": 11174.3, + "end": 11176.72, + "probability": 0.9753 + }, + { + "start": 11178.06, + "end": 11179.34, + "probability": 0.8613 + }, + { + "start": 11179.5, + "end": 11180.2, + "probability": 0.728 + }, + { + "start": 11180.24, + "end": 11180.94, + "probability": 0.9032 + }, + { + "start": 11181.18, + "end": 11182.64, + "probability": 0.7664 + }, + { + "start": 11183.42, + "end": 11184.54, + "probability": 0.9705 + }, + { + "start": 11185.2, + "end": 11187.44, + "probability": 0.8581 + }, + { + "start": 11188.08, + "end": 11191.78, + "probability": 0.9937 + }, + { + "start": 11192.72, + "end": 11194.0, + "probability": 0.7612 + }, + { + "start": 11194.88, + "end": 11196.9, + "probability": 0.9549 + }, + { + "start": 11197.62, + "end": 11199.12, + "probability": 0.9883 + }, + { + "start": 11199.86, + "end": 11201.66, + "probability": 0.9249 + }, + { + "start": 11201.82, + "end": 11203.33, + "probability": 0.9458 + }, + { + "start": 11203.64, + "end": 11205.43, + "probability": 0.9843 + }, + { + "start": 11205.52, + "end": 11206.82, + "probability": 0.4026 + }, + { + "start": 11206.94, + "end": 11207.68, + "probability": 0.7999 + }, + { + "start": 11207.84, + "end": 11208.4, + "probability": 0.9718 + }, + { + "start": 11209.22, + "end": 11212.4, + "probability": 0.9899 + }, + { + "start": 11212.4, + "end": 11215.76, + "probability": 0.9883 + }, + { + "start": 11216.44, + "end": 11221.18, + "probability": 0.9919 + }, + { + "start": 11221.24, + "end": 11221.94, + "probability": 0.7379 + }, + { + "start": 11223.58, + "end": 11225.06, + "probability": 0.8579 + }, + { + "start": 11226.36, + "end": 11226.62, + "probability": 0.3881 + }, + { + "start": 11227.29, + "end": 11233.14, + "probability": 0.8671 + }, + { + "start": 11233.16, + "end": 11234.5, + "probability": 0.7583 + }, + { + "start": 11234.6, + "end": 11236.28, + "probability": 0.9351 + }, + { + "start": 11237.42, + "end": 11240.14, + "probability": 0.9697 + }, + { + "start": 11240.14, + "end": 11242.88, + "probability": 0.9538 + }, + { + "start": 11243.48, + "end": 11246.46, + "probability": 0.8975 + }, + { + "start": 11247.3, + "end": 11251.82, + "probability": 0.9748 + }, + { + "start": 11252.22, + "end": 11254.02, + "probability": 0.9785 + }, + { + "start": 11254.6, + "end": 11257.78, + "probability": 0.5328 + }, + { + "start": 11257.78, + "end": 11257.78, + "probability": 0.0565 + }, + { + "start": 11257.78, + "end": 11259.4, + "probability": 0.6601 + }, + { + "start": 11259.56, + "end": 11260.83, + "probability": 0.981 + }, + { + "start": 11261.58, + "end": 11263.42, + "probability": 0.9187 + }, + { + "start": 11264.82, + "end": 11266.64, + "probability": 0.9836 + }, + { + "start": 11269.08, + "end": 11274.0, + "probability": 0.9894 + }, + { + "start": 11275.58, + "end": 11278.56, + "probability": 0.9837 + }, + { + "start": 11278.96, + "end": 11279.96, + "probability": 0.9277 + }, + { + "start": 11280.62, + "end": 11282.38, + "probability": 0.8997 + }, + { + "start": 11282.9, + "end": 11284.36, + "probability": 0.7595 + }, + { + "start": 11285.84, + "end": 11286.14, + "probability": 0.7658 + }, + { + "start": 11288.38, + "end": 11288.82, + "probability": 0.1255 + }, + { + "start": 11289.5, + "end": 11291.68, + "probability": 0.6847 + }, + { + "start": 11291.96, + "end": 11293.88, + "probability": 0.3593 + }, + { + "start": 11294.08, + "end": 11297.34, + "probability": 0.4441 + }, + { + "start": 11297.34, + "end": 11297.62, + "probability": 0.6583 + }, + { + "start": 11298.9, + "end": 11301.82, + "probability": 0.9585 + }, + { + "start": 11303.34, + "end": 11304.96, + "probability": 0.9494 + }, + { + "start": 11305.74, + "end": 11309.98, + "probability": 0.9791 + }, + { + "start": 11310.96, + "end": 11311.52, + "probability": 0.8805 + }, + { + "start": 11312.12, + "end": 11313.36, + "probability": 0.9844 + }, + { + "start": 11313.44, + "end": 11314.24, + "probability": 0.8298 + }, + { + "start": 11314.3, + "end": 11315.35, + "probability": 0.9829 + }, + { + "start": 11316.16, + "end": 11316.98, + "probability": 0.9017 + }, + { + "start": 11317.42, + "end": 11318.44, + "probability": 0.9858 + }, + { + "start": 11318.52, + "end": 11319.36, + "probability": 0.7765 + }, + { + "start": 11319.62, + "end": 11320.16, + "probability": 0.1339 + }, + { + "start": 11320.32, + "end": 11320.56, + "probability": 0.3689 + }, + { + "start": 11320.7, + "end": 11326.24, + "probability": 0.7972 + }, + { + "start": 11326.46, + "end": 11327.22, + "probability": 0.6172 + }, + { + "start": 11327.36, + "end": 11328.55, + "probability": 0.3083 + }, + { + "start": 11328.9, + "end": 11329.62, + "probability": 0.1044 + }, + { + "start": 11330.12, + "end": 11331.16, + "probability": 0.5803 + }, + { + "start": 11331.16, + "end": 11336.22, + "probability": 0.8857 + }, + { + "start": 11336.62, + "end": 11337.28, + "probability": 0.1179 + }, + { + "start": 11337.42, + "end": 11337.42, + "probability": 0.0481 + }, + { + "start": 11337.42, + "end": 11338.42, + "probability": 0.5024 + }, + { + "start": 11338.46, + "end": 11340.0, + "probability": 0.9922 + }, + { + "start": 11340.16, + "end": 11341.42, + "probability": 0.9155 + }, + { + "start": 11341.44, + "end": 11343.4, + "probability": 0.2547 + }, + { + "start": 11343.66, + "end": 11345.28, + "probability": 0.6396 + }, + { + "start": 11346.28, + "end": 11346.28, + "probability": 0.0092 + }, + { + "start": 11346.28, + "end": 11348.04, + "probability": 0.2892 + }, + { + "start": 11348.2, + "end": 11353.36, + "probability": 0.9931 + }, + { + "start": 11353.44, + "end": 11353.78, + "probability": 0.9189 + }, + { + "start": 11353.78, + "end": 11354.58, + "probability": 0.9137 + }, + { + "start": 11354.98, + "end": 11356.84, + "probability": 0.5771 + }, + { + "start": 11358.86, + "end": 11361.38, + "probability": 0.0707 + }, + { + "start": 11361.4, + "end": 11362.88, + "probability": 0.7079 + }, + { + "start": 11363.58, + "end": 11364.04, + "probability": 0.4454 + }, + { + "start": 11364.96, + "end": 11365.24, + "probability": 0.6187 + }, + { + "start": 11365.38, + "end": 11365.38, + "probability": 0.3287 + }, + { + "start": 11365.38, + "end": 11366.32, + "probability": 0.939 + }, + { + "start": 11366.42, + "end": 11367.76, + "probability": 0.7595 + }, + { + "start": 11367.78, + "end": 11369.12, + "probability": 0.7949 + }, + { + "start": 11369.12, + "end": 11371.85, + "probability": 0.8599 + }, + { + "start": 11373.12, + "end": 11376.7, + "probability": 0.9907 + }, + { + "start": 11378.22, + "end": 11378.7, + "probability": 0.4725 + }, + { + "start": 11380.04, + "end": 11381.7, + "probability": 0.1883 + }, + { + "start": 11382.74, + "end": 11384.32, + "probability": 0.9628 + }, + { + "start": 11385.04, + "end": 11385.7, + "probability": 0.9773 + }, + { + "start": 11385.78, + "end": 11386.94, + "probability": 0.8872 + }, + { + "start": 11387.52, + "end": 11387.82, + "probability": 0.3997 + }, + { + "start": 11387.92, + "end": 11388.22, + "probability": 0.8789 + }, + { + "start": 11388.26, + "end": 11389.12, + "probability": 0.9516 + }, + { + "start": 11389.28, + "end": 11391.04, + "probability": 0.5981 + }, + { + "start": 11392.4, + "end": 11393.82, + "probability": 0.1266 + }, + { + "start": 11393.82, + "end": 11394.02, + "probability": 0.5003 + }, + { + "start": 11394.02, + "end": 11395.72, + "probability": 0.5426 + }, + { + "start": 11395.76, + "end": 11396.9, + "probability": 0.2455 + }, + { + "start": 11399.06, + "end": 11399.06, + "probability": 0.078 + }, + { + "start": 11399.06, + "end": 11399.06, + "probability": 0.0174 + }, + { + "start": 11399.06, + "end": 11399.1, + "probability": 0.0608 + }, + { + "start": 11399.1, + "end": 11399.16, + "probability": 0.1441 + }, + { + "start": 11399.16, + "end": 11399.24, + "probability": 0.1196 + }, + { + "start": 11399.24, + "end": 11399.24, + "probability": 0.5745 + }, + { + "start": 11399.24, + "end": 11403.4, + "probability": 0.5477 + }, + { + "start": 11404.06, + "end": 11404.62, + "probability": 0.3422 + }, + { + "start": 11404.68, + "end": 11405.88, + "probability": 0.8999 + }, + { + "start": 11406.22, + "end": 11407.28, + "probability": 0.2312 + }, + { + "start": 11407.34, + "end": 11410.92, + "probability": 0.9936 + }, + { + "start": 11412.64, + "end": 11412.94, + "probability": 0.0994 + }, + { + "start": 11413.28, + "end": 11414.1, + "probability": 0.5058 + }, + { + "start": 11414.32, + "end": 11415.82, + "probability": 0.9551 + }, + { + "start": 11416.28, + "end": 11419.32, + "probability": 0.9753 + }, + { + "start": 11420.44, + "end": 11421.08, + "probability": 0.9688 + }, + { + "start": 11421.26, + "end": 11422.24, + "probability": 0.89 + }, + { + "start": 11422.36, + "end": 11423.46, + "probability": 0.9901 + }, + { + "start": 11423.68, + "end": 11424.26, + "probability": 0.4963 + }, + { + "start": 11425.24, + "end": 11427.38, + "probability": 0.9854 + }, + { + "start": 11427.38, + "end": 11431.04, + "probability": 0.928 + }, + { + "start": 11431.24, + "end": 11432.42, + "probability": 0.9412 + }, + { + "start": 11432.72, + "end": 11434.16, + "probability": 0.9932 + }, + { + "start": 11434.16, + "end": 11436.3, + "probability": 0.967 + }, + { + "start": 11436.42, + "end": 11441.2, + "probability": 0.9988 + }, + { + "start": 11441.66, + "end": 11443.3, + "probability": 0.107 + }, + { + "start": 11443.36, + "end": 11444.92, + "probability": 0.4758 + }, + { + "start": 11445.56, + "end": 11446.12, + "probability": 0.9616 + }, + { + "start": 11447.64, + "end": 11450.4, + "probability": 0.8755 + }, + { + "start": 11450.54, + "end": 11452.8, + "probability": 0.9917 + }, + { + "start": 11452.96, + "end": 11458.32, + "probability": 0.9814 + }, + { + "start": 11458.5, + "end": 11460.42, + "probability": 0.8893 + }, + { + "start": 11461.12, + "end": 11462.32, + "probability": 0.9766 + }, + { + "start": 11462.4, + "end": 11467.16, + "probability": 0.9582 + }, + { + "start": 11467.94, + "end": 11471.88, + "probability": 0.9744 + }, + { + "start": 11472.48, + "end": 11475.66, + "probability": 0.999 + }, + { + "start": 11476.18, + "end": 11478.44, + "probability": 0.9863 + }, + { + "start": 11479.54, + "end": 11480.56, + "probability": 0.6607 + }, + { + "start": 11481.1, + "end": 11481.82, + "probability": 0.7206 + }, + { + "start": 11482.4, + "end": 11484.58, + "probability": 0.9576 + }, + { + "start": 11485.7, + "end": 11490.02, + "probability": 0.9581 + }, + { + "start": 11491.36, + "end": 11494.62, + "probability": 0.7664 + }, + { + "start": 11495.32, + "end": 11497.76, + "probability": 0.9951 + }, + { + "start": 11498.02, + "end": 11499.79, + "probability": 0.998 + }, + { + "start": 11500.56, + "end": 11503.52, + "probability": 0.7378 + }, + { + "start": 11504.04, + "end": 11505.44, + "probability": 0.0558 + }, + { + "start": 11505.44, + "end": 11505.56, + "probability": 0.0185 + }, + { + "start": 11505.56, + "end": 11506.88, + "probability": 0.493 + }, + { + "start": 11506.88, + "end": 11507.82, + "probability": 0.4027 + }, + { + "start": 11507.94, + "end": 11508.94, + "probability": 0.5654 + }, + { + "start": 11509.04, + "end": 11509.38, + "probability": 0.0133 + }, + { + "start": 11509.38, + "end": 11509.38, + "probability": 0.108 + }, + { + "start": 11509.38, + "end": 11509.38, + "probability": 0.2424 + }, + { + "start": 11509.38, + "end": 11509.38, + "probability": 0.2535 + }, + { + "start": 11509.38, + "end": 11514.86, + "probability": 0.7188 + }, + { + "start": 11515.4, + "end": 11516.87, + "probability": 0.9202 + }, + { + "start": 11517.62, + "end": 11520.1, + "probability": 0.9978 + }, + { + "start": 11520.5, + "end": 11524.24, + "probability": 0.8819 + }, + { + "start": 11524.76, + "end": 11525.24, + "probability": 0.8376 + }, + { + "start": 11525.26, + "end": 11525.26, + "probability": 0.2649 + }, + { + "start": 11525.38, + "end": 11526.26, + "probability": 0.136 + }, + { + "start": 11526.28, + "end": 11528.0, + "probability": 0.7408 + }, + { + "start": 11528.0, + "end": 11530.26, + "probability": 0.924 + }, + { + "start": 11530.3, + "end": 11530.3, + "probability": 0.0479 + }, + { + "start": 11530.42, + "end": 11531.08, + "probability": 0.7377 + }, + { + "start": 11531.42, + "end": 11535.52, + "probability": 0.6879 + }, + { + "start": 11535.88, + "end": 11536.92, + "probability": 0.3885 + }, + { + "start": 11536.98, + "end": 11539.38, + "probability": 0.7461 + }, + { + "start": 11539.66, + "end": 11540.94, + "probability": 0.1815 + }, + { + "start": 11541.1, + "end": 11542.57, + "probability": 0.3935 + }, + { + "start": 11543.4, + "end": 11547.18, + "probability": 0.8724 + }, + { + "start": 11547.48, + "end": 11548.36, + "probability": 0.1643 + }, + { + "start": 11548.36, + "end": 11549.32, + "probability": 0.1923 + }, + { + "start": 11549.34, + "end": 11549.63, + "probability": 0.0362 + }, + { + "start": 11550.7, + "end": 11551.54, + "probability": 0.5873 + }, + { + "start": 11551.56, + "end": 11552.06, + "probability": 0.8161 + }, + { + "start": 11552.58, + "end": 11553.9, + "probability": 0.8173 + }, + { + "start": 11555.0, + "end": 11556.08, + "probability": 0.8264 + }, + { + "start": 11557.74, + "end": 11562.54, + "probability": 0.9929 + }, + { + "start": 11563.3, + "end": 11564.52, + "probability": 0.6973 + }, + { + "start": 11565.96, + "end": 11568.18, + "probability": 0.5699 + }, + { + "start": 11571.28, + "end": 11573.48, + "probability": 0.8412 + }, + { + "start": 11574.28, + "end": 11576.86, + "probability": 0.7992 + }, + { + "start": 11578.0, + "end": 11584.06, + "probability": 0.8816 + }, + { + "start": 11584.84, + "end": 11587.3, + "probability": 0.9937 + }, + { + "start": 11587.3, + "end": 11592.48, + "probability": 0.9015 + }, + { + "start": 11592.78, + "end": 11598.12, + "probability": 0.9965 + }, + { + "start": 11598.12, + "end": 11604.4, + "probability": 0.9766 + }, + { + "start": 11606.9, + "end": 11609.34, + "probability": 0.874 + }, + { + "start": 11609.46, + "end": 11613.16, + "probability": 0.6111 + }, + { + "start": 11614.16, + "end": 11619.52, + "probability": 0.79 + }, + { + "start": 11620.98, + "end": 11622.56, + "probability": 0.589 + }, + { + "start": 11623.16, + "end": 11628.04, + "probability": 0.8942 + }, + { + "start": 11628.14, + "end": 11631.44, + "probability": 0.9714 + }, + { + "start": 11632.06, + "end": 11637.28, + "probability": 0.9702 + }, + { + "start": 11637.88, + "end": 11641.18, + "probability": 0.934 + }, + { + "start": 11641.92, + "end": 11644.88, + "probability": 0.9647 + }, + { + "start": 11645.04, + "end": 11646.83, + "probability": 0.9159 + }, + { + "start": 11648.37, + "end": 11653.98, + "probability": 0.9899 + }, + { + "start": 11654.92, + "end": 11659.3, + "probability": 0.9845 + }, + { + "start": 11660.24, + "end": 11666.12, + "probability": 0.9833 + }, + { + "start": 11666.45, + "end": 11669.54, + "probability": 0.9985 + }, + { + "start": 11670.2, + "end": 11674.56, + "probability": 0.9144 + }, + { + "start": 11675.88, + "end": 11677.3, + "probability": 0.5334 + }, + { + "start": 11677.48, + "end": 11680.79, + "probability": 0.9902 + }, + { + "start": 11682.58, + "end": 11685.72, + "probability": 0.4595 + }, + { + "start": 11685.88, + "end": 11686.76, + "probability": 0.8358 + }, + { + "start": 11688.0, + "end": 11696.04, + "probability": 0.8631 + }, + { + "start": 11696.04, + "end": 11699.7, + "probability": 0.9996 + }, + { + "start": 11700.7, + "end": 11702.82, + "probability": 0.6964 + }, + { + "start": 11704.44, + "end": 11708.14, + "probability": 0.998 + }, + { + "start": 11708.3, + "end": 11715.84, + "probability": 0.9835 + }, + { + "start": 11716.38, + "end": 11719.52, + "probability": 0.9474 + }, + { + "start": 11721.68, + "end": 11726.08, + "probability": 0.9837 + }, + { + "start": 11727.14, + "end": 11729.56, + "probability": 0.8461 + }, + { + "start": 11730.64, + "end": 11732.52, + "probability": 0.5115 + }, + { + "start": 11733.2, + "end": 11737.96, + "probability": 0.9515 + }, + { + "start": 11738.2, + "end": 11739.2, + "probability": 0.667 + }, + { + "start": 11739.32, + "end": 11744.24, + "probability": 0.99 + }, + { + "start": 11744.84, + "end": 11753.0, + "probability": 0.9374 + }, + { + "start": 11754.02, + "end": 11757.2, + "probability": 0.9639 + }, + { + "start": 11757.8, + "end": 11761.36, + "probability": 0.9654 + }, + { + "start": 11762.1, + "end": 11766.16, + "probability": 0.9496 + }, + { + "start": 11767.16, + "end": 11770.44, + "probability": 0.984 + }, + { + "start": 11770.86, + "end": 11777.82, + "probability": 0.9973 + }, + { + "start": 11779.38, + "end": 11780.04, + "probability": 0.6937 + }, + { + "start": 11781.06, + "end": 11783.98, + "probability": 0.9956 + }, + { + "start": 11784.3, + "end": 11787.08, + "probability": 0.9821 + }, + { + "start": 11787.72, + "end": 11795.22, + "probability": 0.9877 + }, + { + "start": 11795.36, + "end": 11800.52, + "probability": 0.9453 + }, + { + "start": 11801.42, + "end": 11807.16, + "probability": 0.9924 + }, + { + "start": 11807.16, + "end": 11811.12, + "probability": 0.944 + }, + { + "start": 11812.02, + "end": 11812.66, + "probability": 0.2895 + }, + { + "start": 11812.74, + "end": 11813.34, + "probability": 0.795 + }, + { + "start": 11813.58, + "end": 11814.22, + "probability": 0.9099 + }, + { + "start": 11814.32, + "end": 11816.68, + "probability": 0.864 + }, + { + "start": 11816.84, + "end": 11817.9, + "probability": 0.8809 + }, + { + "start": 11818.12, + "end": 11821.72, + "probability": 0.9465 + }, + { + "start": 11821.98, + "end": 11823.24, + "probability": 0.9119 + }, + { + "start": 11823.82, + "end": 11830.54, + "probability": 0.969 + }, + { + "start": 11831.72, + "end": 11835.5, + "probability": 0.9934 + }, + { + "start": 11836.5, + "end": 11836.74, + "probability": 0.7583 + }, + { + "start": 11838.42, + "end": 11841.88, + "probability": 0.9316 + }, + { + "start": 11842.08, + "end": 11846.32, + "probability": 0.8463 + }, + { + "start": 11846.6, + "end": 11848.48, + "probability": 0.9908 + }, + { + "start": 11848.62, + "end": 11849.8, + "probability": 0.9941 + }, + { + "start": 11850.2, + "end": 11852.3, + "probability": 0.9067 + }, + { + "start": 11852.36, + "end": 11853.9, + "probability": 0.8271 + }, + { + "start": 11854.12, + "end": 11856.48, + "probability": 0.7695 + }, + { + "start": 11856.54, + "end": 11857.78, + "probability": 0.8998 + }, + { + "start": 11858.98, + "end": 11862.76, + "probability": 0.845 + }, + { + "start": 11863.4, + "end": 11864.18, + "probability": 0.8295 + }, + { + "start": 11864.52, + "end": 11869.02, + "probability": 0.9792 + }, + { + "start": 11869.1, + "end": 11875.84, + "probability": 0.9854 + }, + { + "start": 11875.92, + "end": 11877.04, + "probability": 0.9588 + }, + { + "start": 11877.28, + "end": 11878.28, + "probability": 0.7825 + }, + { + "start": 11878.98, + "end": 11884.8, + "probability": 0.9466 + }, + { + "start": 11885.42, + "end": 11894.38, + "probability": 0.9825 + }, + { + "start": 11894.8, + "end": 11895.98, + "probability": 0.7154 + }, + { + "start": 11896.6, + "end": 11902.34, + "probability": 0.9829 + }, + { + "start": 11902.92, + "end": 11907.16, + "probability": 0.9954 + }, + { + "start": 11907.16, + "end": 11910.42, + "probability": 0.9961 + }, + { + "start": 11910.88, + "end": 11915.2, + "probability": 0.9961 + }, + { + "start": 11915.34, + "end": 11917.76, + "probability": 0.7449 + }, + { + "start": 11919.06, + "end": 11924.72, + "probability": 0.9921 + }, + { + "start": 11924.96, + "end": 11928.84, + "probability": 0.9917 + }, + { + "start": 11930.98, + "end": 11935.56, + "probability": 0.9982 + }, + { + "start": 11937.88, + "end": 11946.02, + "probability": 0.9929 + }, + { + "start": 11946.96, + "end": 11950.64, + "probability": 0.6009 + }, + { + "start": 11950.8, + "end": 11955.55, + "probability": 0.9893 + }, + { + "start": 11955.78, + "end": 11956.32, + "probability": 0.3847 + }, + { + "start": 11956.46, + "end": 11957.76, + "probability": 0.8931 + }, + { + "start": 11958.2, + "end": 11962.54, + "probability": 0.959 + }, + { + "start": 11963.78, + "end": 11970.3, + "probability": 0.9827 + }, + { + "start": 11971.42, + "end": 11977.38, + "probability": 0.8477 + }, + { + "start": 11977.38, + "end": 11981.06, + "probability": 0.7597 + }, + { + "start": 11981.1, + "end": 11981.64, + "probability": 0.871 + }, + { + "start": 11982.0, + "end": 11983.12, + "probability": 0.7748 + }, + { + "start": 11983.86, + "end": 11986.26, + "probability": 0.937 + }, + { + "start": 11986.44, + "end": 11989.44, + "probability": 0.9368 + }, + { + "start": 11989.44, + "end": 11992.26, + "probability": 0.9945 + }, + { + "start": 11992.7, + "end": 11993.3, + "probability": 0.974 + }, + { + "start": 11997.5, + "end": 12000.38, + "probability": 0.8733 + }, + { + "start": 12000.9, + "end": 12001.96, + "probability": 0.784 + }, + { + "start": 12002.06, + "end": 12006.14, + "probability": 0.9595 + }, + { + "start": 12006.32, + "end": 12007.92, + "probability": 0.7778 + }, + { + "start": 12008.12, + "end": 12008.9, + "probability": 0.8852 + }, + { + "start": 12009.28, + "end": 12010.34, + "probability": 0.9832 + }, + { + "start": 12012.4, + "end": 12014.54, + "probability": 0.9903 + }, + { + "start": 12014.94, + "end": 12014.94, + "probability": 0.2223 + }, + { + "start": 12014.94, + "end": 12016.56, + "probability": 0.9917 + }, + { + "start": 12017.24, + "end": 12021.08, + "probability": 0.9878 + }, + { + "start": 12021.34, + "end": 12026.44, + "probability": 0.9277 + }, + { + "start": 12026.58, + "end": 12030.18, + "probability": 0.9681 + }, + { + "start": 12031.06, + "end": 12033.74, + "probability": 0.9689 + }, + { + "start": 12034.82, + "end": 12038.74, + "probability": 0.9808 + }, + { + "start": 12038.74, + "end": 12041.44, + "probability": 0.9894 + }, + { + "start": 12041.88, + "end": 12043.16, + "probability": 0.9698 + }, + { + "start": 12043.6, + "end": 12045.07, + "probability": 0.9912 + }, + { + "start": 12046.5, + "end": 12047.22, + "probability": 0.7157 + }, + { + "start": 12047.26, + "end": 12047.99, + "probability": 0.8776 + }, + { + "start": 12048.8, + "end": 12051.3, + "probability": 0.4474 + }, + { + "start": 12052.06, + "end": 12055.92, + "probability": 0.9333 + }, + { + "start": 12056.22, + "end": 12056.72, + "probability": 0.8403 + }, + { + "start": 12057.28, + "end": 12058.7, + "probability": 0.8817 + }, + { + "start": 12058.96, + "end": 12063.92, + "probability": 0.9733 + }, + { + "start": 12064.08, + "end": 12066.56, + "probability": 0.8274 + }, + { + "start": 12066.78, + "end": 12068.5, + "probability": 0.8257 + }, + { + "start": 12069.94, + "end": 12069.94, + "probability": 0.9106 + }, + { + "start": 12070.46, + "end": 12072.74, + "probability": 0.8938 + }, + { + "start": 12072.82, + "end": 12077.2, + "probability": 0.9409 + }, + { + "start": 12077.72, + "end": 12079.9, + "probability": 0.7886 + }, + { + "start": 12080.32, + "end": 12081.64, + "probability": 0.978 + }, + { + "start": 12081.96, + "end": 12082.78, + "probability": 0.7667 + }, + { + "start": 12082.82, + "end": 12085.22, + "probability": 0.9715 + }, + { + "start": 12085.82, + "end": 12089.24, + "probability": 0.9132 + }, + { + "start": 12089.34, + "end": 12092.64, + "probability": 0.9849 + }, + { + "start": 12093.06, + "end": 12093.98, + "probability": 0.8516 + }, + { + "start": 12094.82, + "end": 12098.02, + "probability": 0.972 + }, + { + "start": 12099.22, + "end": 12102.79, + "probability": 0.9448 + }, + { + "start": 12103.68, + "end": 12104.08, + "probability": 0.9589 + }, + { + "start": 12104.32, + "end": 12108.32, + "probability": 0.8398 + }, + { + "start": 12108.56, + "end": 12110.2, + "probability": 0.9395 + }, + { + "start": 12110.36, + "end": 12110.98, + "probability": 0.8942 + }, + { + "start": 12111.38, + "end": 12112.5, + "probability": 0.9225 + }, + { + "start": 12112.56, + "end": 12115.32, + "probability": 0.9448 + }, + { + "start": 12117.82, + "end": 12121.74, + "probability": 0.9861 + }, + { + "start": 12122.4, + "end": 12123.0, + "probability": 0.9705 + }, + { + "start": 12123.74, + "end": 12127.84, + "probability": 0.8893 + }, + { + "start": 12128.82, + "end": 12131.46, + "probability": 0.8961 + }, + { + "start": 12132.02, + "end": 12133.0, + "probability": 0.8697 + }, + { + "start": 12133.92, + "end": 12137.72, + "probability": 0.9489 + }, + { + "start": 12138.24, + "end": 12140.6, + "probability": 0.7082 + }, + { + "start": 12141.26, + "end": 12142.6, + "probability": 0.8139 + }, + { + "start": 12144.02, + "end": 12152.82, + "probability": 0.9707 + }, + { + "start": 12152.9, + "end": 12154.2, + "probability": 0.9605 + }, + { + "start": 12154.36, + "end": 12155.72, + "probability": 0.9905 + }, + { + "start": 12156.62, + "end": 12158.78, + "probability": 0.9956 + }, + { + "start": 12159.42, + "end": 12161.0, + "probability": 0.9792 + }, + { + "start": 12161.4, + "end": 12165.88, + "probability": 0.6017 + }, + { + "start": 12166.54, + "end": 12166.78, + "probability": 0.4443 + }, + { + "start": 12167.14, + "end": 12170.7, + "probability": 0.9962 + }, + { + "start": 12170.88, + "end": 12174.94, + "probability": 0.9946 + }, + { + "start": 12175.18, + "end": 12176.72, + "probability": 0.9983 + }, + { + "start": 12177.08, + "end": 12177.86, + "probability": 0.6968 + }, + { + "start": 12177.92, + "end": 12178.66, + "probability": 0.7534 + }, + { + "start": 12179.54, + "end": 12185.4, + "probability": 0.8572 + }, + { + "start": 12186.08, + "end": 12193.25, + "probability": 0.9967 + }, + { + "start": 12193.4, + "end": 12193.98, + "probability": 0.6778 + }, + { + "start": 12194.18, + "end": 12195.9, + "probability": 0.6814 + }, + { + "start": 12196.0, + "end": 12197.3, + "probability": 0.7812 + }, + { + "start": 12197.92, + "end": 12199.04, + "probability": 0.7487 + }, + { + "start": 12199.14, + "end": 12206.28, + "probability": 0.9294 + }, + { + "start": 12206.34, + "end": 12207.16, + "probability": 0.9629 + }, + { + "start": 12208.04, + "end": 12208.77, + "probability": 0.4448 + }, + { + "start": 12209.9, + "end": 12211.66, + "probability": 0.7078 + }, + { + "start": 12212.24, + "end": 12214.22, + "probability": 0.7105 + }, + { + "start": 12214.54, + "end": 12218.92, + "probability": 0.7338 + }, + { + "start": 12219.46, + "end": 12220.64, + "probability": 0.9706 + }, + { + "start": 12220.88, + "end": 12222.16, + "probability": 0.9382 + }, + { + "start": 12222.56, + "end": 12224.4, + "probability": 0.883 + }, + { + "start": 12224.46, + "end": 12230.02, + "probability": 0.985 + }, + { + "start": 12230.18, + "end": 12231.06, + "probability": 0.7463 + }, + { + "start": 12231.3, + "end": 12231.4, + "probability": 0.4431 + }, + { + "start": 12231.62, + "end": 12233.14, + "probability": 0.9671 + }, + { + "start": 12233.8, + "end": 12234.8, + "probability": 0.9458 + }, + { + "start": 12235.5, + "end": 12237.46, + "probability": 0.9179 + }, + { + "start": 12238.08, + "end": 12240.34, + "probability": 0.9879 + }, + { + "start": 12241.94, + "end": 12244.66, + "probability": 0.8119 + }, + { + "start": 12245.16, + "end": 12251.34, + "probability": 0.9744 + }, + { + "start": 12251.52, + "end": 12255.3, + "probability": 0.9697 + }, + { + "start": 12255.66, + "end": 12256.66, + "probability": 0.9906 + }, + { + "start": 12257.7, + "end": 12260.42, + "probability": 0.974 + }, + { + "start": 12261.06, + "end": 12262.3, + "probability": 0.8807 + }, + { + "start": 12262.93, + "end": 12265.1, + "probability": 0.7979 + }, + { + "start": 12267.22, + "end": 12269.94, + "probability": 0.9778 + }, + { + "start": 12270.94, + "end": 12271.68, + "probability": 0.6159 + }, + { + "start": 12272.62, + "end": 12277.5, + "probability": 0.9889 + }, + { + "start": 12278.08, + "end": 12278.9, + "probability": 0.543 + }, + { + "start": 12279.44, + "end": 12284.6, + "probability": 0.9575 + }, + { + "start": 12285.1, + "end": 12286.68, + "probability": 0.9762 + }, + { + "start": 12287.3, + "end": 12288.8, + "probability": 0.7137 + }, + { + "start": 12289.14, + "end": 12291.7, + "probability": 0.7065 + }, + { + "start": 12291.84, + "end": 12295.52, + "probability": 0.9785 + }, + { + "start": 12295.9, + "end": 12299.62, + "probability": 0.973 + }, + { + "start": 12300.44, + "end": 12301.72, + "probability": 0.9966 + }, + { + "start": 12302.0, + "end": 12307.44, + "probability": 0.9738 + }, + { + "start": 12310.7, + "end": 12317.02, + "probability": 0.958 + }, + { + "start": 12317.58, + "end": 12318.88, + "probability": 0.9808 + }, + { + "start": 12319.5, + "end": 12320.56, + "probability": 0.9222 + }, + { + "start": 12321.1, + "end": 12321.32, + "probability": 0.8457 + }, + { + "start": 12322.1, + "end": 12327.44, + "probability": 0.9473 + }, + { + "start": 12327.96, + "end": 12330.28, + "probability": 0.7647 + }, + { + "start": 12331.0, + "end": 12338.82, + "probability": 0.9618 + }, + { + "start": 12339.42, + "end": 12342.94, + "probability": 0.905 + }, + { + "start": 12343.0, + "end": 12344.08, + "probability": 0.8692 + }, + { + "start": 12344.22, + "end": 12346.36, + "probability": 0.9538 + }, + { + "start": 12346.74, + "end": 12351.14, + "probability": 0.9829 + }, + { + "start": 12351.22, + "end": 12353.96, + "probability": 0.985 + }, + { + "start": 12355.28, + "end": 12357.24, + "probability": 0.9454 + }, + { + "start": 12358.28, + "end": 12360.8, + "probability": 0.9744 + }, + { + "start": 12360.84, + "end": 12364.8, + "probability": 0.9707 + }, + { + "start": 12365.3, + "end": 12366.28, + "probability": 0.9896 + }, + { + "start": 12366.38, + "end": 12367.12, + "probability": 0.7569 + }, + { + "start": 12367.24, + "end": 12367.56, + "probability": 0.5693 + }, + { + "start": 12367.82, + "end": 12369.38, + "probability": 0.6084 + }, + { + "start": 12369.88, + "end": 12370.84, + "probability": 0.9726 + }, + { + "start": 12371.56, + "end": 12374.66, + "probability": 0.9539 + }, + { + "start": 12374.74, + "end": 12376.96, + "probability": 0.9741 + }, + { + "start": 12377.24, + "end": 12382.6, + "probability": 0.991 + }, + { + "start": 12384.08, + "end": 12384.76, + "probability": 0.973 + }, + { + "start": 12385.48, + "end": 12387.0, + "probability": 0.9521 + }, + { + "start": 12387.16, + "end": 12390.24, + "probability": 0.9814 + }, + { + "start": 12390.32, + "end": 12393.84, + "probability": 0.946 + }, + { + "start": 12394.14, + "end": 12395.64, + "probability": 0.7966 + }, + { + "start": 12396.78, + "end": 12397.56, + "probability": 0.8228 + }, + { + "start": 12398.8, + "end": 12400.12, + "probability": 0.9414 + }, + { + "start": 12400.82, + "end": 12404.14, + "probability": 0.9707 + }, + { + "start": 12404.34, + "end": 12406.6, + "probability": 0.9458 + }, + { + "start": 12406.82, + "end": 12408.48, + "probability": 0.9904 + }, + { + "start": 12410.08, + "end": 12410.9, + "probability": 0.8719 + }, + { + "start": 12411.64, + "end": 12415.96, + "probability": 0.9932 + }, + { + "start": 12415.96, + "end": 12419.74, + "probability": 0.9963 + }, + { + "start": 12419.88, + "end": 12422.58, + "probability": 0.8244 + }, + { + "start": 12423.06, + "end": 12426.22, + "probability": 0.8308 + }, + { + "start": 12426.82, + "end": 12429.34, + "probability": 0.9702 + }, + { + "start": 12429.86, + "end": 12431.6, + "probability": 0.8271 + }, + { + "start": 12432.42, + "end": 12433.94, + "probability": 0.979 + }, + { + "start": 12434.02, + "end": 12435.04, + "probability": 0.989 + }, + { + "start": 12435.12, + "end": 12436.18, + "probability": 0.9917 + }, + { + "start": 12436.52, + "end": 12437.38, + "probability": 0.9492 + }, + { + "start": 12437.48, + "end": 12439.42, + "probability": 0.9138 + }, + { + "start": 12439.58, + "end": 12440.0, + "probability": 0.5186 + }, + { + "start": 12440.14, + "end": 12442.12, + "probability": 0.9526 + }, + { + "start": 12442.5, + "end": 12445.3, + "probability": 0.8191 + }, + { + "start": 12445.3, + "end": 12447.71, + "probability": 0.9806 + }, + { + "start": 12448.68, + "end": 12449.52, + "probability": 0.7546 + }, + { + "start": 12451.93, + "end": 12456.3, + "probability": 0.8123 + }, + { + "start": 12456.98, + "end": 12463.3, + "probability": 0.9828 + }, + { + "start": 12463.66, + "end": 12466.74, + "probability": 0.6229 + }, + { + "start": 12467.36, + "end": 12467.5, + "probability": 0.1573 + }, + { + "start": 12468.4, + "end": 12472.63, + "probability": 0.9945 + }, + { + "start": 12474.38, + "end": 12477.52, + "probability": 0.9577 + }, + { + "start": 12477.96, + "end": 12479.86, + "probability": 0.9963 + }, + { + "start": 12480.42, + "end": 12484.0, + "probability": 0.9928 + }, + { + "start": 12484.56, + "end": 12485.36, + "probability": 0.7401 + }, + { + "start": 12485.92, + "end": 12487.66, + "probability": 0.6664 + }, + { + "start": 12488.86, + "end": 12490.14, + "probability": 0.9613 + }, + { + "start": 12490.58, + "end": 12491.92, + "probability": 0.8521 + }, + { + "start": 12492.38, + "end": 12493.74, + "probability": 0.5472 + }, + { + "start": 12493.86, + "end": 12494.46, + "probability": 0.6531 + }, + { + "start": 12495.0, + "end": 12497.24, + "probability": 0.8685 + }, + { + "start": 12497.3, + "end": 12502.5, + "probability": 0.9052 + }, + { + "start": 12503.08, + "end": 12504.2, + "probability": 0.6232 + }, + { + "start": 12504.3, + "end": 12505.26, + "probability": 0.7806 + }, + { + "start": 12505.52, + "end": 12509.6, + "probability": 0.9848 + }, + { + "start": 12509.9, + "end": 12512.48, + "probability": 0.9802 + }, + { + "start": 12513.42, + "end": 12515.8, + "probability": 0.9937 + }, + { + "start": 12516.04, + "end": 12519.6, + "probability": 0.8337 + }, + { + "start": 12521.81, + "end": 12523.5, + "probability": 0.9371 + }, + { + "start": 12524.38, + "end": 12524.98, + "probability": 0.3462 + }, + { + "start": 12525.22, + "end": 12526.54, + "probability": 0.9399 + }, + { + "start": 12527.12, + "end": 12531.08, + "probability": 0.9542 + }, + { + "start": 12531.6, + "end": 12533.46, + "probability": 0.7133 + }, + { + "start": 12533.58, + "end": 12537.04, + "probability": 0.9956 + }, + { + "start": 12537.16, + "end": 12537.6, + "probability": 0.5498 + }, + { + "start": 12537.76, + "end": 12538.16, + "probability": 0.8058 + }, + { + "start": 12538.2, + "end": 12545.3, + "probability": 0.9912 + }, + { + "start": 12545.92, + "end": 12546.78, + "probability": 0.8856 + }, + { + "start": 12547.34, + "end": 12549.62, + "probability": 0.948 + }, + { + "start": 12549.78, + "end": 12555.02, + "probability": 0.9913 + }, + { + "start": 12555.5, + "end": 12556.5, + "probability": 0.9147 + }, + { + "start": 12556.62, + "end": 12558.02, + "probability": 0.954 + }, + { + "start": 12558.16, + "end": 12560.04, + "probability": 0.9967 + }, + { + "start": 12560.86, + "end": 12561.34, + "probability": 0.8398 + }, + { + "start": 12561.88, + "end": 12562.98, + "probability": 0.6625 + }, + { + "start": 12563.5, + "end": 12567.12, + "probability": 0.9975 + }, + { + "start": 12567.74, + "end": 12571.62, + "probability": 0.9071 + }, + { + "start": 12572.12, + "end": 12573.88, + "probability": 0.6732 + }, + { + "start": 12573.92, + "end": 12579.1, + "probability": 0.7789 + }, + { + "start": 12579.58, + "end": 12581.46, + "probability": 0.985 + }, + { + "start": 12582.12, + "end": 12586.44, + "probability": 0.5192 + }, + { + "start": 12586.86, + "end": 12590.71, + "probability": 0.9948 + }, + { + "start": 12591.4, + "end": 12592.9, + "probability": 0.819 + }, + { + "start": 12594.46, + "end": 12597.34, + "probability": 0.9922 + }, + { + "start": 12597.72, + "end": 12600.08, + "probability": 0.9778 + }, + { + "start": 12600.5, + "end": 12602.98, + "probability": 0.994 + }, + { + "start": 12603.4, + "end": 12606.78, + "probability": 0.9467 + }, + { + "start": 12606.86, + "end": 12611.52, + "probability": 0.7939 + }, + { + "start": 12612.3, + "end": 12613.82, + "probability": 0.98 + }, + { + "start": 12614.0, + "end": 12614.84, + "probability": 0.8472 + }, + { + "start": 12615.34, + "end": 12620.6, + "probability": 0.872 + }, + { + "start": 12621.4, + "end": 12625.16, + "probability": 0.9518 + }, + { + "start": 12625.16, + "end": 12630.4, + "probability": 0.9911 + }, + { + "start": 12632.4, + "end": 12633.28, + "probability": 0.8005 + }, + { + "start": 12634.18, + "end": 12636.12, + "probability": 0.9941 + }, + { + "start": 12636.28, + "end": 12637.44, + "probability": 0.9653 + }, + { + "start": 12637.58, + "end": 12638.34, + "probability": 0.9354 + }, + { + "start": 12638.78, + "end": 12640.2, + "probability": 0.993 + }, + { + "start": 12640.78, + "end": 12644.48, + "probability": 0.7577 + }, + { + "start": 12645.14, + "end": 12647.89, + "probability": 0.7809 + }, + { + "start": 12648.8, + "end": 12652.04, + "probability": 0.9913 + }, + { + "start": 12655.42, + "end": 12662.76, + "probability": 0.7413 + }, + { + "start": 12663.04, + "end": 12664.98, + "probability": 0.7393 + }, + { + "start": 12665.22, + "end": 12668.68, + "probability": 0.9747 + }, + { + "start": 12669.18, + "end": 12671.72, + "probability": 0.7961 + }, + { + "start": 12672.02, + "end": 12673.04, + "probability": 0.8232 + }, + { + "start": 12673.5, + "end": 12674.42, + "probability": 0.5427 + }, + { + "start": 12674.9, + "end": 12676.88, + "probability": 0.9352 + }, + { + "start": 12677.38, + "end": 12678.79, + "probability": 0.8236 + }, + { + "start": 12680.06, + "end": 12686.18, + "probability": 0.97 + }, + { + "start": 12686.18, + "end": 12691.92, + "probability": 0.9977 + }, + { + "start": 12692.68, + "end": 12697.02, + "probability": 0.7878 + }, + { + "start": 12697.62, + "end": 12700.4, + "probability": 0.8375 + }, + { + "start": 12700.98, + "end": 12701.53, + "probability": 0.9596 + }, + { + "start": 12702.1, + "end": 12705.66, + "probability": 0.9822 + }, + { + "start": 12705.8, + "end": 12707.56, + "probability": 0.9862 + }, + { + "start": 12708.18, + "end": 12710.81, + "probability": 0.9916 + }, + { + "start": 12711.74, + "end": 12714.78, + "probability": 0.9459 + }, + { + "start": 12715.34, + "end": 12718.46, + "probability": 0.6681 + }, + { + "start": 12718.74, + "end": 12721.14, + "probability": 0.8125 + }, + { + "start": 12721.78, + "end": 12723.02, + "probability": 0.9214 + }, + { + "start": 12723.7, + "end": 12726.5, + "probability": 0.9773 + }, + { + "start": 12726.68, + "end": 12731.78, + "probability": 0.9608 + }, + { + "start": 12732.72, + "end": 12735.72, + "probability": 0.8449 + }, + { + "start": 12735.84, + "end": 12741.88, + "probability": 0.7126 + }, + { + "start": 12742.7, + "end": 12744.03, + "probability": 0.961 + }, + { + "start": 12744.9, + "end": 12745.22, + "probability": 0.8821 + }, + { + "start": 12745.86, + "end": 12747.84, + "probability": 0.7594 + }, + { + "start": 12748.32, + "end": 12750.36, + "probability": 0.9826 + }, + { + "start": 12750.78, + "end": 12752.48, + "probability": 0.8281 + }, + { + "start": 12753.06, + "end": 12753.52, + "probability": 0.9632 + }, + { + "start": 12753.84, + "end": 12755.18, + "probability": 0.5856 + }, + { + "start": 12755.22, + "end": 12756.3, + "probability": 0.5702 + }, + { + "start": 12756.38, + "end": 12757.92, + "probability": 0.9011 + }, + { + "start": 12758.5, + "end": 12761.38, + "probability": 0.9648 + }, + { + "start": 12761.38, + "end": 12762.7, + "probability": 0.8425 + }, + { + "start": 12763.18, + "end": 12764.88, + "probability": 0.0478 + }, + { + "start": 12765.18, + "end": 12767.92, + "probability": 0.3074 + }, + { + "start": 12768.0, + "end": 12769.38, + "probability": 0.9895 + }, + { + "start": 12769.88, + "end": 12772.3, + "probability": 0.9829 + }, + { + "start": 12772.94, + "end": 12774.48, + "probability": 0.6652 + }, + { + "start": 12774.56, + "end": 12777.18, + "probability": 0.5666 + }, + { + "start": 12777.36, + "end": 12779.3, + "probability": 0.8147 + }, + { + "start": 12779.68, + "end": 12784.17, + "probability": 0.9445 + }, + { + "start": 12784.8, + "end": 12786.32, + "probability": 0.2207 + }, + { + "start": 12787.1, + "end": 12789.56, + "probability": 0.0539 + }, + { + "start": 12789.64, + "end": 12791.42, + "probability": 0.7443 + }, + { + "start": 12791.74, + "end": 12792.06, + "probability": 0.7851 + }, + { + "start": 12792.38, + "end": 12793.62, + "probability": 0.608 + }, + { + "start": 12794.16, + "end": 12796.09, + "probability": 0.9727 + }, + { + "start": 12796.84, + "end": 12798.04, + "probability": 0.8135 + }, + { + "start": 12798.34, + "end": 12801.06, + "probability": 0.8872 + }, + { + "start": 12804.5, + "end": 12806.62, + "probability": 0.8087 + }, + { + "start": 12808.56, + "end": 12810.02, + "probability": 0.345 + }, + { + "start": 12814.84, + "end": 12815.56, + "probability": 0.8341 + }, + { + "start": 12817.92, + "end": 12822.12, + "probability": 0.8989 + }, + { + "start": 12823.24, + "end": 12823.96, + "probability": 0.9097 + }, + { + "start": 12824.66, + "end": 12827.52, + "probability": 0.9739 + }, + { + "start": 12830.12, + "end": 12831.22, + "probability": 0.946 + }, + { + "start": 12833.62, + "end": 12835.34, + "probability": 0.9668 + }, + { + "start": 12836.88, + "end": 12838.8, + "probability": 0.4338 + }, + { + "start": 12840.5, + "end": 12842.4, + "probability": 0.6049 + }, + { + "start": 12843.38, + "end": 12847.96, + "probability": 0.9834 + }, + { + "start": 12847.96, + "end": 12851.34, + "probability": 0.9711 + }, + { + "start": 12852.88, + "end": 12853.1, + "probability": 0.9321 + }, + { + "start": 12853.2, + "end": 12854.28, + "probability": 0.9678 + }, + { + "start": 12854.42, + "end": 12857.44, + "probability": 0.986 + }, + { + "start": 12858.1, + "end": 12859.14, + "probability": 0.9371 + }, + { + "start": 12860.04, + "end": 12862.26, + "probability": 0.9921 + }, + { + "start": 12862.68, + "end": 12866.18, + "probability": 0.9949 + }, + { + "start": 12867.5, + "end": 12868.78, + "probability": 0.7897 + }, + { + "start": 12870.1, + "end": 12871.42, + "probability": 0.9941 + }, + { + "start": 12872.38, + "end": 12874.16, + "probability": 0.9843 + }, + { + "start": 12874.96, + "end": 12876.2, + "probability": 0.986 + }, + { + "start": 12878.74, + "end": 12882.72, + "probability": 0.9995 + }, + { + "start": 12882.72, + "end": 12888.0, + "probability": 0.989 + }, + { + "start": 12888.62, + "end": 12889.32, + "probability": 0.8976 + }, + { + "start": 12890.76, + "end": 12893.14, + "probability": 0.9753 + }, + { + "start": 12894.56, + "end": 12895.96, + "probability": 0.7382 + }, + { + "start": 12896.94, + "end": 12897.6, + "probability": 0.8192 + }, + { + "start": 12898.78, + "end": 12900.82, + "probability": 0.9543 + }, + { + "start": 12902.0, + "end": 12904.14, + "probability": 0.9004 + }, + { + "start": 12905.68, + "end": 12907.62, + "probability": 0.8203 + }, + { + "start": 12908.24, + "end": 12911.96, + "probability": 0.9941 + }, + { + "start": 12913.94, + "end": 12915.1, + "probability": 0.8788 + }, + { + "start": 12915.7, + "end": 12916.78, + "probability": 0.8562 + }, + { + "start": 12917.32, + "end": 12918.24, + "probability": 0.8003 + }, + { + "start": 12919.02, + "end": 12920.52, + "probability": 0.9406 + }, + { + "start": 12921.16, + "end": 12923.78, + "probability": 0.999 + }, + { + "start": 12925.48, + "end": 12926.54, + "probability": 0.9465 + }, + { + "start": 12926.86, + "end": 12928.06, + "probability": 0.9629 + }, + { + "start": 12928.56, + "end": 12930.42, + "probability": 0.9909 + }, + { + "start": 12931.06, + "end": 12932.28, + "probability": 0.947 + }, + { + "start": 12933.06, + "end": 12934.54, + "probability": 0.9861 + }, + { + "start": 12935.26, + "end": 12936.78, + "probability": 0.967 + }, + { + "start": 12937.82, + "end": 12939.24, + "probability": 0.9894 + }, + { + "start": 12940.2, + "end": 12940.76, + "probability": 0.76 + }, + { + "start": 12942.14, + "end": 12942.96, + "probability": 0.9368 + }, + { + "start": 12943.6, + "end": 12943.92, + "probability": 0.9151 + }, + { + "start": 12945.46, + "end": 12947.84, + "probability": 0.9552 + }, + { + "start": 12949.32, + "end": 12951.82, + "probability": 0.9971 + }, + { + "start": 12952.98, + "end": 12954.72, + "probability": 0.9985 + }, + { + "start": 12958.34, + "end": 12961.58, + "probability": 0.9942 + }, + { + "start": 12963.14, + "end": 12965.08, + "probability": 0.9924 + }, + { + "start": 12966.22, + "end": 12968.26, + "probability": 0.9814 + }, + { + "start": 12970.92, + "end": 12972.16, + "probability": 0.7751 + }, + { + "start": 12973.36, + "end": 12974.48, + "probability": 0.9644 + }, + { + "start": 12976.08, + "end": 12977.6, + "probability": 0.9849 + }, + { + "start": 12978.58, + "end": 12984.76, + "probability": 0.997 + }, + { + "start": 12985.42, + "end": 12987.7, + "probability": 0.9151 + }, + { + "start": 12988.26, + "end": 12988.88, + "probability": 0.7125 + }, + { + "start": 12989.9, + "end": 12991.62, + "probability": 0.9833 + }, + { + "start": 12993.2, + "end": 12994.7, + "probability": 0.9928 + }, + { + "start": 12995.26, + "end": 12996.7, + "probability": 0.9778 + }, + { + "start": 12997.4, + "end": 12998.44, + "probability": 0.9635 + }, + { + "start": 13000.68, + "end": 13002.22, + "probability": 0.6664 + }, + { + "start": 13003.64, + "end": 13008.82, + "probability": 0.9589 + }, + { + "start": 13010.92, + "end": 13012.78, + "probability": 0.9586 + }, + { + "start": 13013.3, + "end": 13015.44, + "probability": 0.9364 + }, + { + "start": 13018.48, + "end": 13024.32, + "probability": 0.9972 + }, + { + "start": 13025.54, + "end": 13028.28, + "probability": 0.9844 + }, + { + "start": 13028.9, + "end": 13032.04, + "probability": 0.9972 + }, + { + "start": 13033.4, + "end": 13035.44, + "probability": 0.6437 + }, + { + "start": 13036.16, + "end": 13041.12, + "probability": 0.9726 + }, + { + "start": 13042.34, + "end": 13043.1, + "probability": 0.9858 + }, + { + "start": 13044.74, + "end": 13051.78, + "probability": 0.9938 + }, + { + "start": 13053.44, + "end": 13054.52, + "probability": 0.8201 + }, + { + "start": 13055.58, + "end": 13060.32, + "probability": 0.9941 + }, + { + "start": 13060.32, + "end": 13063.04, + "probability": 0.9988 + }, + { + "start": 13064.24, + "end": 13068.5, + "probability": 0.999 + }, + { + "start": 13068.5, + "end": 13071.86, + "probability": 0.999 + }, + { + "start": 13072.02, + "end": 13073.18, + "probability": 0.7897 + }, + { + "start": 13073.62, + "end": 13075.9, + "probability": 0.9683 + }, + { + "start": 13076.28, + "end": 13079.58, + "probability": 0.9925 + }, + { + "start": 13081.46, + "end": 13081.84, + "probability": 0.8295 + }, + { + "start": 13081.98, + "end": 13083.22, + "probability": 0.9204 + }, + { + "start": 13083.46, + "end": 13087.38, + "probability": 0.9362 + }, + { + "start": 13088.42, + "end": 13093.68, + "probability": 0.9916 + }, + { + "start": 13094.52, + "end": 13097.22, + "probability": 0.99 + }, + { + "start": 13097.8, + "end": 13100.04, + "probability": 0.9761 + }, + { + "start": 13102.22, + "end": 13103.14, + "probability": 0.685 + }, + { + "start": 13104.32, + "end": 13110.94, + "probability": 0.9885 + }, + { + "start": 13112.28, + "end": 13114.82, + "probability": 0.9956 + }, + { + "start": 13115.5, + "end": 13118.66, + "probability": 0.9756 + }, + { + "start": 13119.48, + "end": 13121.86, + "probability": 0.9811 + }, + { + "start": 13122.38, + "end": 13125.12, + "probability": 0.99 + }, + { + "start": 13125.56, + "end": 13128.76, + "probability": 0.9876 + }, + { + "start": 13130.14, + "end": 13135.24, + "probability": 0.9766 + }, + { + "start": 13136.28, + "end": 13137.16, + "probability": 0.7726 + }, + { + "start": 13137.7, + "end": 13140.54, + "probability": 0.9978 + }, + { + "start": 13141.64, + "end": 13143.68, + "probability": 0.925 + }, + { + "start": 13144.62, + "end": 13149.18, + "probability": 0.9847 + }, + { + "start": 13150.3, + "end": 13152.42, + "probability": 0.8514 + }, + { + "start": 13154.38, + "end": 13156.52, + "probability": 0.6207 + }, + { + "start": 13157.44, + "end": 13160.44, + "probability": 0.9968 + }, + { + "start": 13163.3, + "end": 13166.14, + "probability": 0.9977 + }, + { + "start": 13167.0, + "end": 13169.88, + "probability": 0.9535 + }, + { + "start": 13170.44, + "end": 13172.82, + "probability": 0.9844 + }, + { + "start": 13174.24, + "end": 13177.24, + "probability": 0.9104 + }, + { + "start": 13177.78, + "end": 13178.66, + "probability": 0.8599 + }, + { + "start": 13179.28, + "end": 13184.28, + "probability": 0.9786 + }, + { + "start": 13185.5, + "end": 13188.92, + "probability": 0.9967 + }, + { + "start": 13188.98, + "end": 13193.86, + "probability": 0.9868 + }, + { + "start": 13194.64, + "end": 13196.92, + "probability": 0.9559 + }, + { + "start": 13198.02, + "end": 13201.28, + "probability": 0.9414 + }, + { + "start": 13202.54, + "end": 13204.96, + "probability": 0.9837 + }, + { + "start": 13205.82, + "end": 13206.94, + "probability": 0.9998 + }, + { + "start": 13207.5, + "end": 13214.06, + "probability": 0.9648 + }, + { + "start": 13215.9, + "end": 13217.84, + "probability": 0.4298 + }, + { + "start": 13217.92, + "end": 13223.12, + "probability": 0.9347 + }, + { + "start": 13224.56, + "end": 13226.68, + "probability": 0.7066 + }, + { + "start": 13227.28, + "end": 13231.72, + "probability": 0.9956 + }, + { + "start": 13232.74, + "end": 13234.38, + "probability": 0.9959 + }, + { + "start": 13235.48, + "end": 13238.1, + "probability": 0.9923 + }, + { + "start": 13238.78, + "end": 13243.02, + "probability": 0.9531 + }, + { + "start": 13244.46, + "end": 13246.34, + "probability": 0.8654 + }, + { + "start": 13246.96, + "end": 13253.26, + "probability": 0.9872 + }, + { + "start": 13253.74, + "end": 13254.58, + "probability": 0.8686 + }, + { + "start": 13255.02, + "end": 13255.72, + "probability": 0.4376 + }, + { + "start": 13256.14, + "end": 13258.4, + "probability": 0.9773 + }, + { + "start": 13259.64, + "end": 13260.78, + "probability": 0.9101 + }, + { + "start": 13261.42, + "end": 13262.5, + "probability": 0.9436 + }, + { + "start": 13263.64, + "end": 13266.08, + "probability": 0.9646 + }, + { + "start": 13267.04, + "end": 13272.58, + "probability": 0.9961 + }, + { + "start": 13272.76, + "end": 13275.04, + "probability": 0.7602 + }, + { + "start": 13275.98, + "end": 13278.06, + "probability": 0.9633 + }, + { + "start": 13279.06, + "end": 13279.54, + "probability": 0.5246 + }, + { + "start": 13281.0, + "end": 13283.58, + "probability": 0.9585 + }, + { + "start": 13284.78, + "end": 13287.14, + "probability": 0.9588 + }, + { + "start": 13287.76, + "end": 13288.64, + "probability": 0.8369 + }, + { + "start": 13290.08, + "end": 13294.66, + "probability": 0.9785 + }, + { + "start": 13295.22, + "end": 13298.46, + "probability": 0.7584 + }, + { + "start": 13299.96, + "end": 13301.26, + "probability": 0.8701 + }, + { + "start": 13302.06, + "end": 13303.26, + "probability": 0.985 + }, + { + "start": 13304.74, + "end": 13307.94, + "probability": 0.9084 + }, + { + "start": 13308.56, + "end": 13311.12, + "probability": 0.9912 + }, + { + "start": 13311.86, + "end": 13314.02, + "probability": 0.8249 + }, + { + "start": 13316.14, + "end": 13316.98, + "probability": 0.8721 + }, + { + "start": 13317.08, + "end": 13317.94, + "probability": 0.9001 + }, + { + "start": 13318.26, + "end": 13318.92, + "probability": 0.8902 + }, + { + "start": 13319.06, + "end": 13319.69, + "probability": 0.8462 + }, + { + "start": 13320.56, + "end": 13325.2, + "probability": 0.9661 + }, + { + "start": 13326.14, + "end": 13327.96, + "probability": 0.8308 + }, + { + "start": 13330.56, + "end": 13331.82, + "probability": 0.9141 + }, + { + "start": 13334.3, + "end": 13334.82, + "probability": 0.9741 + }, + { + "start": 13337.24, + "end": 13339.14, + "probability": 0.9797 + }, + { + "start": 13339.92, + "end": 13340.52, + "probability": 0.9977 + }, + { + "start": 13341.8, + "end": 13343.14, + "probability": 0.9984 + }, + { + "start": 13345.08, + "end": 13346.52, + "probability": 0.8984 + }, + { + "start": 13348.08, + "end": 13352.92, + "probability": 0.9739 + }, + { + "start": 13353.5, + "end": 13355.7, + "probability": 0.9971 + }, + { + "start": 13357.38, + "end": 13360.08, + "probability": 0.969 + }, + { + "start": 13360.64, + "end": 13362.29, + "probability": 0.9959 + }, + { + "start": 13363.3, + "end": 13364.18, + "probability": 0.911 + }, + { + "start": 13364.72, + "end": 13365.92, + "probability": 0.9746 + }, + { + "start": 13367.28, + "end": 13369.58, + "probability": 0.9924 + }, + { + "start": 13371.78, + "end": 13372.43, + "probability": 0.874 + }, + { + "start": 13373.82, + "end": 13375.94, + "probability": 0.9826 + }, + { + "start": 13376.68, + "end": 13382.16, + "probability": 0.9832 + }, + { + "start": 13382.16, + "end": 13386.9, + "probability": 0.999 + }, + { + "start": 13387.04, + "end": 13387.58, + "probability": 0.7262 + }, + { + "start": 13388.42, + "end": 13393.3, + "probability": 0.9944 + }, + { + "start": 13395.96, + "end": 13396.62, + "probability": 0.9331 + }, + { + "start": 13397.28, + "end": 13399.54, + "probability": 0.9541 + }, + { + "start": 13400.26, + "end": 13405.14, + "probability": 0.9845 + }, + { + "start": 13405.98, + "end": 13407.48, + "probability": 0.9971 + }, + { + "start": 13409.42, + "end": 13411.66, + "probability": 0.9967 + }, + { + "start": 13413.2, + "end": 13415.18, + "probability": 0.9751 + }, + { + "start": 13415.98, + "end": 13420.78, + "probability": 0.9983 + }, + { + "start": 13421.56, + "end": 13423.76, + "probability": 0.8923 + }, + { + "start": 13424.54, + "end": 13427.02, + "probability": 0.8671 + }, + { + "start": 13428.12, + "end": 13430.42, + "probability": 0.9781 + }, + { + "start": 13430.64, + "end": 13434.58, + "probability": 0.9583 + }, + { + "start": 13435.26, + "end": 13437.5, + "probability": 0.9302 + }, + { + "start": 13439.4, + "end": 13440.28, + "probability": 0.6134 + }, + { + "start": 13440.96, + "end": 13444.14, + "probability": 0.9736 + }, + { + "start": 13444.8, + "end": 13449.92, + "probability": 0.9978 + }, + { + "start": 13450.54, + "end": 13452.92, + "probability": 0.9985 + }, + { + "start": 13453.56, + "end": 13457.88, + "probability": 0.9904 + }, + { + "start": 13458.14, + "end": 13461.62, + "probability": 0.9737 + }, + { + "start": 13462.16, + "end": 13465.48, + "probability": 0.787 + }, + { + "start": 13466.54, + "end": 13471.82, + "probability": 0.993 + }, + { + "start": 13471.82, + "end": 13477.44, + "probability": 0.999 + }, + { + "start": 13479.64, + "end": 13480.98, + "probability": 0.8369 + }, + { + "start": 13481.76, + "end": 13483.72, + "probability": 0.998 + }, + { + "start": 13484.56, + "end": 13490.4, + "probability": 0.9862 + }, + { + "start": 13491.02, + "end": 13494.16, + "probability": 0.9669 + }, + { + "start": 13494.86, + "end": 13496.82, + "probability": 0.9036 + }, + { + "start": 13498.16, + "end": 13503.06, + "probability": 0.9918 + }, + { + "start": 13503.58, + "end": 13505.42, + "probability": 0.9697 + }, + { + "start": 13506.06, + "end": 13506.72, + "probability": 0.6974 + }, + { + "start": 13508.36, + "end": 13510.12, + "probability": 0.8657 + }, + { + "start": 13511.12, + "end": 13514.1, + "probability": 0.9331 + }, + { + "start": 13514.8, + "end": 13515.52, + "probability": 0.9218 + }, + { + "start": 13516.3, + "end": 13518.82, + "probability": 0.9891 + }, + { + "start": 13519.54, + "end": 13520.88, + "probability": 0.896 + }, + { + "start": 13521.1, + "end": 13524.22, + "probability": 0.8249 + }, + { + "start": 13524.92, + "end": 13525.92, + "probability": 0.825 + }, + { + "start": 13527.18, + "end": 13527.42, + "probability": 0.5808 + }, + { + "start": 13527.52, + "end": 13529.38, + "probability": 0.944 + }, + { + "start": 13529.88, + "end": 13533.34, + "probability": 0.9954 + }, + { + "start": 13534.04, + "end": 13534.88, + "probability": 0.8634 + }, + { + "start": 13535.58, + "end": 13538.62, + "probability": 0.978 + }, + { + "start": 13538.9, + "end": 13539.84, + "probability": 0.8439 + }, + { + "start": 13542.04, + "end": 13546.44, + "probability": 0.9868 + }, + { + "start": 13547.0, + "end": 13549.48, + "probability": 0.967 + }, + { + "start": 13551.08, + "end": 13552.52, + "probability": 0.7466 + }, + { + "start": 13553.9, + "end": 13561.96, + "probability": 0.9926 + }, + { + "start": 13562.82, + "end": 13564.9, + "probability": 0.9333 + }, + { + "start": 13565.7, + "end": 13567.12, + "probability": 0.9606 + }, + { + "start": 13568.18, + "end": 13575.74, + "probability": 0.9931 + }, + { + "start": 13577.74, + "end": 13578.68, + "probability": 0.9253 + }, + { + "start": 13578.96, + "end": 13582.08, + "probability": 0.9993 + }, + { + "start": 13583.18, + "end": 13586.89, + "probability": 0.9927 + }, + { + "start": 13588.16, + "end": 13590.02, + "probability": 0.9584 + }, + { + "start": 13591.32, + "end": 13592.14, + "probability": 0.9597 + }, + { + "start": 13592.88, + "end": 13593.46, + "probability": 0.8663 + }, + { + "start": 13594.12, + "end": 13596.24, + "probability": 0.973 + }, + { + "start": 13597.62, + "end": 13598.8, + "probability": 0.9561 + }, + { + "start": 13600.12, + "end": 13602.0, + "probability": 0.5962 + }, + { + "start": 13604.8, + "end": 13605.9, + "probability": 0.822 + }, + { + "start": 13607.18, + "end": 13611.66, + "probability": 0.9831 + }, + { + "start": 13612.24, + "end": 13613.82, + "probability": 0.9829 + }, + { + "start": 13614.48, + "end": 13617.06, + "probability": 0.9566 + }, + { + "start": 13617.72, + "end": 13618.8, + "probability": 0.9285 + }, + { + "start": 13619.88, + "end": 13621.14, + "probability": 0.8882 + }, + { + "start": 13621.72, + "end": 13622.92, + "probability": 0.9751 + }, + { + "start": 13623.02, + "end": 13625.48, + "probability": 0.9943 + }, + { + "start": 13626.38, + "end": 13627.94, + "probability": 0.9233 + }, + { + "start": 13628.5, + "end": 13629.19, + "probability": 0.9819 + }, + { + "start": 13630.2, + "end": 13632.28, + "probability": 0.9072 + }, + { + "start": 13633.34, + "end": 13634.94, + "probability": 0.9966 + }, + { + "start": 13636.72, + "end": 13639.62, + "probability": 0.9844 + }, + { + "start": 13640.26, + "end": 13640.62, + "probability": 0.9554 + }, + { + "start": 13641.14, + "end": 13642.21, + "probability": 0.957 + }, + { + "start": 13643.38, + "end": 13645.44, + "probability": 0.7315 + }, + { + "start": 13646.14, + "end": 13648.92, + "probability": 0.9576 + }, + { + "start": 13649.82, + "end": 13653.98, + "probability": 0.9822 + }, + { + "start": 13654.7, + "end": 13661.34, + "probability": 0.9966 + }, + { + "start": 13661.94, + "end": 13664.58, + "probability": 0.9067 + }, + { + "start": 13666.08, + "end": 13668.34, + "probability": 0.9287 + }, + { + "start": 13668.88, + "end": 13674.74, + "probability": 0.9808 + }, + { + "start": 13675.36, + "end": 13676.9, + "probability": 0.9861 + }, + { + "start": 13677.44, + "end": 13680.02, + "probability": 0.9956 + }, + { + "start": 13682.06, + "end": 13688.64, + "probability": 0.9976 + }, + { + "start": 13690.14, + "end": 13691.34, + "probability": 0.9176 + }, + { + "start": 13692.82, + "end": 13694.68, + "probability": 0.8853 + }, + { + "start": 13695.86, + "end": 13698.86, + "probability": 0.9934 + }, + { + "start": 13699.3, + "end": 13701.46, + "probability": 0.9818 + }, + { + "start": 13702.46, + "end": 13705.52, + "probability": 0.9942 + }, + { + "start": 13705.6, + "end": 13711.66, + "probability": 0.9395 + }, + { + "start": 13712.04, + "end": 13716.6, + "probability": 0.9934 + }, + { + "start": 13717.66, + "end": 13718.4, + "probability": 0.5208 + }, + { + "start": 13719.34, + "end": 13721.68, + "probability": 0.9797 + }, + { + "start": 13721.94, + "end": 13724.32, + "probability": 0.9875 + }, + { + "start": 13727.72, + "end": 13729.04, + "probability": 0.9946 + }, + { + "start": 13729.72, + "end": 13734.14, + "probability": 0.9986 + }, + { + "start": 13734.68, + "end": 13737.7, + "probability": 0.9926 + }, + { + "start": 13738.76, + "end": 13740.92, + "probability": 0.9949 + }, + { + "start": 13741.94, + "end": 13742.96, + "probability": 0.979 + }, + { + "start": 13743.62, + "end": 13744.78, + "probability": 0.9608 + }, + { + "start": 13745.7, + "end": 13751.58, + "probability": 0.9797 + }, + { + "start": 13751.94, + "end": 13754.34, + "probability": 0.9926 + }, + { + "start": 13755.18, + "end": 13760.78, + "probability": 0.9904 + }, + { + "start": 13761.38, + "end": 13762.78, + "probability": 0.6808 + }, + { + "start": 13763.88, + "end": 13767.36, + "probability": 0.9598 + }, + { + "start": 13767.9, + "end": 13769.76, + "probability": 0.8648 + }, + { + "start": 13770.72, + "end": 13775.4, + "probability": 0.9778 + }, + { + "start": 13776.36, + "end": 13778.92, + "probability": 0.9375 + }, + { + "start": 13780.68, + "end": 13785.76, + "probability": 0.8462 + }, + { + "start": 13786.28, + "end": 13787.88, + "probability": 0.9875 + }, + { + "start": 13789.12, + "end": 13792.12, + "probability": 0.9949 + }, + { + "start": 13792.86, + "end": 13795.2, + "probability": 0.9838 + }, + { + "start": 13797.26, + "end": 13799.54, + "probability": 0.8543 + }, + { + "start": 13800.72, + "end": 13805.72, + "probability": 0.9533 + }, + { + "start": 13805.82, + "end": 13807.2, + "probability": 0.8593 + }, + { + "start": 13808.32, + "end": 13808.74, + "probability": 0.9012 + }, + { + "start": 13809.34, + "end": 13810.56, + "probability": 0.9073 + }, + { + "start": 13810.68, + "end": 13813.36, + "probability": 0.9933 + }, + { + "start": 13814.14, + "end": 13815.48, + "probability": 0.9672 + }, + { + "start": 13815.92, + "end": 13817.54, + "probability": 0.9737 + }, + { + "start": 13817.6, + "end": 13818.22, + "probability": 0.7009 + }, + { + "start": 13818.22, + "end": 13819.14, + "probability": 0.7919 + }, + { + "start": 13819.8, + "end": 13821.64, + "probability": 0.9975 + }, + { + "start": 13822.36, + "end": 13823.4, + "probability": 0.9604 + }, + { + "start": 13824.06, + "end": 13826.78, + "probability": 0.9865 + }, + { + "start": 13827.94, + "end": 13831.3, + "probability": 0.947 + }, + { + "start": 13831.72, + "end": 13834.42, + "probability": 0.9937 + }, + { + "start": 13834.76, + "end": 13837.18, + "probability": 0.9834 + }, + { + "start": 13837.56, + "end": 13839.94, + "probability": 0.8983 + }, + { + "start": 13840.5, + "end": 13842.36, + "probability": 0.8573 + }, + { + "start": 13842.92, + "end": 13846.24, + "probability": 0.8378 + }, + { + "start": 13846.82, + "end": 13849.82, + "probability": 0.9781 + }, + { + "start": 13850.34, + "end": 13851.38, + "probability": 0.9568 + }, + { + "start": 13852.3, + "end": 13852.6, + "probability": 0.8873 + }, + { + "start": 13853.0, + "end": 13858.18, + "probability": 0.9736 + }, + { + "start": 13858.64, + "end": 13861.02, + "probability": 0.9972 + }, + { + "start": 13861.54, + "end": 13866.98, + "probability": 0.9796 + }, + { + "start": 13868.16, + "end": 13869.63, + "probability": 0.9844 + }, + { + "start": 13870.62, + "end": 13876.74, + "probability": 0.996 + }, + { + "start": 13877.78, + "end": 13882.78, + "probability": 0.9278 + }, + { + "start": 13883.58, + "end": 13884.72, + "probability": 0.8884 + }, + { + "start": 13885.12, + "end": 13886.52, + "probability": 0.9637 + }, + { + "start": 13887.14, + "end": 13889.0, + "probability": 0.9381 + }, + { + "start": 13890.04, + "end": 13891.58, + "probability": 0.9817 + }, + { + "start": 13892.04, + "end": 13894.04, + "probability": 0.9196 + }, + { + "start": 13894.48, + "end": 13896.32, + "probability": 0.8804 + }, + { + "start": 13896.8, + "end": 13898.7, + "probability": 0.9971 + }, + { + "start": 13899.38, + "end": 13904.92, + "probability": 0.9589 + }, + { + "start": 13905.0, + "end": 13906.18, + "probability": 0.9502 + }, + { + "start": 13908.68, + "end": 13909.84, + "probability": 0.8019 + }, + { + "start": 13912.4, + "end": 13913.66, + "probability": 0.7627 + }, + { + "start": 13914.74, + "end": 13918.22, + "probability": 0.9307 + }, + { + "start": 13919.48, + "end": 13921.24, + "probability": 0.9446 + }, + { + "start": 13922.62, + "end": 13923.6, + "probability": 0.9579 + }, + { + "start": 13924.8, + "end": 13929.1, + "probability": 0.9731 + }, + { + "start": 13929.24, + "end": 13929.7, + "probability": 0.9554 + }, + { + "start": 13931.14, + "end": 13932.12, + "probability": 0.883 + }, + { + "start": 13932.12, + "end": 13934.74, + "probability": 0.7328 + }, + { + "start": 13935.38, + "end": 13936.48, + "probability": 0.9488 + }, + { + "start": 13936.6, + "end": 13937.08, + "probability": 0.8061 + }, + { + "start": 13937.7, + "end": 13940.26, + "probability": 0.8907 + }, + { + "start": 13941.32, + "end": 13944.24, + "probability": 0.9518 + }, + { + "start": 13945.04, + "end": 13949.18, + "probability": 0.9902 + }, + { + "start": 13949.96, + "end": 13951.04, + "probability": 0.8588 + }, + { + "start": 13952.08, + "end": 13956.26, + "probability": 0.9576 + }, + { + "start": 13956.92, + "end": 13957.94, + "probability": 0.967 + }, + { + "start": 13958.48, + "end": 13962.56, + "probability": 0.9813 + }, + { + "start": 13962.96, + "end": 13964.86, + "probability": 0.8829 + }, + { + "start": 13965.92, + "end": 13969.08, + "probability": 0.9561 + }, + { + "start": 13969.62, + "end": 13970.5, + "probability": 0.7418 + }, + { + "start": 13971.32, + "end": 13972.64, + "probability": 0.8617 + }, + { + "start": 13977.14, + "end": 13977.96, + "probability": 0.7297 + }, + { + "start": 13979.5, + "end": 13983.48, + "probability": 0.7497 + }, + { + "start": 13983.72, + "end": 13987.68, + "probability": 0.988 + }, + { + "start": 13988.36, + "end": 13992.46, + "probability": 0.9896 + }, + { + "start": 13993.68, + "end": 13998.3, + "probability": 0.9956 + }, + { + "start": 13998.3, + "end": 14002.14, + "probability": 0.9896 + }, + { + "start": 14002.66, + "end": 14010.08, + "probability": 0.9878 + }, + { + "start": 14010.56, + "end": 14017.6, + "probability": 0.9927 + }, + { + "start": 14018.12, + "end": 14019.94, + "probability": 0.8778 + }, + { + "start": 14020.46, + "end": 14021.14, + "probability": 0.7072 + }, + { + "start": 14022.22, + "end": 14023.18, + "probability": 0.623 + }, + { + "start": 14024.14, + "end": 14030.1, + "probability": 0.8498 + }, + { + "start": 14031.44, + "end": 14031.88, + "probability": 0.6446 + }, + { + "start": 14032.1, + "end": 14034.16, + "probability": 0.9961 + }, + { + "start": 14034.28, + "end": 14035.4, + "probability": 0.9709 + }, + { + "start": 14036.3, + "end": 14040.98, + "probability": 0.9922 + }, + { + "start": 14040.98, + "end": 14044.72, + "probability": 0.9972 + }, + { + "start": 14045.44, + "end": 14049.82, + "probability": 0.9465 + }, + { + "start": 14049.88, + "end": 14054.96, + "probability": 0.995 + }, + { + "start": 14056.2, + "end": 14058.26, + "probability": 0.615 + }, + { + "start": 14058.36, + "end": 14061.94, + "probability": 0.7719 + }, + { + "start": 14062.68, + "end": 14064.42, + "probability": 0.95 + }, + { + "start": 14065.58, + "end": 14066.86, + "probability": 0.9209 + }, + { + "start": 14068.16, + "end": 14070.32, + "probability": 0.9079 + }, + { + "start": 14071.72, + "end": 14077.92, + "probability": 0.9234 + }, + { + "start": 14079.36, + "end": 14083.3, + "probability": 0.8766 + }, + { + "start": 14084.3, + "end": 14085.06, + "probability": 0.91 + }, + { + "start": 14085.66, + "end": 14088.14, + "probability": 0.9973 + }, + { + "start": 14089.36, + "end": 14092.06, + "probability": 0.8097 + }, + { + "start": 14092.92, + "end": 14094.78, + "probability": 0.9972 + }, + { + "start": 14095.86, + "end": 14097.38, + "probability": 0.9927 + }, + { + "start": 14100.26, + "end": 14100.5, + "probability": 0.0506 + }, + { + "start": 14100.5, + "end": 14103.2, + "probability": 0.716 + }, + { + "start": 14104.04, + "end": 14105.04, + "probability": 0.9628 + }, + { + "start": 14105.96, + "end": 14106.86, + "probability": 0.973 + }, + { + "start": 14107.7, + "end": 14108.7, + "probability": 0.7679 + }, + { + "start": 14109.52, + "end": 14112.92, + "probability": 0.9929 + }, + { + "start": 14113.38, + "end": 14114.58, + "probability": 0.8335 + }, + { + "start": 14115.02, + "end": 14117.28, + "probability": 0.9784 + }, + { + "start": 14117.6, + "end": 14118.18, + "probability": 0.8781 + }, + { + "start": 14118.4, + "end": 14118.72, + "probability": 0.843 + }, + { + "start": 14119.36, + "end": 14122.15, + "probability": 0.9497 + }, + { + "start": 14122.32, + "end": 14124.67, + "probability": 0.9751 + }, + { + "start": 14124.96, + "end": 14125.48, + "probability": 0.4761 + }, + { + "start": 14126.68, + "end": 14126.9, + "probability": 0.7337 + }, + { + "start": 14127.12, + "end": 14131.34, + "probability": 0.9822 + }, + { + "start": 14132.6, + "end": 14134.84, + "probability": 0.9997 + }, + { + "start": 14135.66, + "end": 14139.8, + "probability": 0.9966 + }, + { + "start": 14140.28, + "end": 14143.42, + "probability": 0.5637 + }, + { + "start": 14144.44, + "end": 14146.98, + "probability": 0.9976 + }, + { + "start": 14148.82, + "end": 14151.26, + "probability": 0.5046 + }, + { + "start": 14151.88, + "end": 14152.94, + "probability": 0.4453 + }, + { + "start": 14153.02, + "end": 14154.05, + "probability": 0.6886 + }, + { + "start": 14154.51, + "end": 14156.76, + "probability": 0.8091 + }, + { + "start": 14156.82, + "end": 14159.36, + "probability": 0.4231 + }, + { + "start": 14159.62, + "end": 14160.98, + "probability": 0.9775 + }, + { + "start": 14162.2, + "end": 14163.14, + "probability": 0.6807 + }, + { + "start": 14163.2, + "end": 14164.08, + "probability": 0.4593 + }, + { + "start": 14164.48, + "end": 14164.96, + "probability": 0.8206 + }, + { + "start": 14166.46, + "end": 14167.08, + "probability": 0.387 + }, + { + "start": 14167.1, + "end": 14168.22, + "probability": 0.9343 + }, + { + "start": 14168.54, + "end": 14173.08, + "probability": 0.8743 + }, + { + "start": 14173.2, + "end": 14173.64, + "probability": 0.8341 + }, + { + "start": 14173.78, + "end": 14174.58, + "probability": 0.3978 + }, + { + "start": 14174.88, + "end": 14177.92, + "probability": 0.7238 + }, + { + "start": 14184.33, + "end": 14189.14, + "probability": 0.8107 + }, + { + "start": 14190.74, + "end": 14195.64, + "probability": 0.8851 + }, + { + "start": 14195.82, + "end": 14197.4, + "probability": 0.7935 + }, + { + "start": 14198.1, + "end": 14199.58, + "probability": 0.9912 + }, + { + "start": 14200.8, + "end": 14204.08, + "probability": 0.8208 + }, + { + "start": 14205.52, + "end": 14208.9, + "probability": 0.9471 + }, + { + "start": 14209.78, + "end": 14210.24, + "probability": 0.9679 + }, + { + "start": 14211.38, + "end": 14211.88, + "probability": 0.6604 + }, + { + "start": 14212.6, + "end": 14214.72, + "probability": 0.9663 + }, + { + "start": 14216.34, + "end": 14217.28, + "probability": 0.7225 + }, + { + "start": 14218.44, + "end": 14220.85, + "probability": 0.9782 + }, + { + "start": 14223.36, + "end": 14224.28, + "probability": 0.9867 + }, + { + "start": 14225.84, + "end": 14226.48, + "probability": 0.3465 + }, + { + "start": 14227.08, + "end": 14227.51, + "probability": 0.8434 + }, + { + "start": 14228.38, + "end": 14229.04, + "probability": 0.7227 + }, + { + "start": 14230.1, + "end": 14231.54, + "probability": 0.9954 + }, + { + "start": 14232.56, + "end": 14234.44, + "probability": 0.5477 + }, + { + "start": 14235.84, + "end": 14238.38, + "probability": 0.8016 + }, + { + "start": 14241.04, + "end": 14242.6, + "probability": 0.8604 + }, + { + "start": 14244.38, + "end": 14245.22, + "probability": 0.999 + }, + { + "start": 14247.22, + "end": 14250.12, + "probability": 0.993 + }, + { + "start": 14250.92, + "end": 14252.82, + "probability": 0.9518 + }, + { + "start": 14253.82, + "end": 14254.92, + "probability": 0.8386 + }, + { + "start": 14255.66, + "end": 14260.58, + "probability": 0.9917 + }, + { + "start": 14261.26, + "end": 14266.46, + "probability": 0.9389 + }, + { + "start": 14266.94, + "end": 14268.34, + "probability": 0.9698 + }, + { + "start": 14269.96, + "end": 14271.82, + "probability": 0.8854 + }, + { + "start": 14273.62, + "end": 14274.24, + "probability": 0.9425 + }, + { + "start": 14276.72, + "end": 14279.92, + "probability": 0.7617 + }, + { + "start": 14281.84, + "end": 14284.58, + "probability": 0.9971 + }, + { + "start": 14286.88, + "end": 14287.46, + "probability": 0.9075 + }, + { + "start": 14288.52, + "end": 14289.0, + "probability": 0.8507 + }, + { + "start": 14289.52, + "end": 14293.0, + "probability": 0.9867 + }, + { + "start": 14294.36, + "end": 14297.45, + "probability": 0.9966 + }, + { + "start": 14297.63, + "end": 14298.87, + "probability": 0.999 + }, + { + "start": 14299.47, + "end": 14303.63, + "probability": 0.9847 + }, + { + "start": 14303.77, + "end": 14305.63, + "probability": 0.9913 + }, + { + "start": 14306.53, + "end": 14308.03, + "probability": 0.8227 + }, + { + "start": 14310.73, + "end": 14314.75, + "probability": 0.9637 + }, + { + "start": 14315.35, + "end": 14317.14, + "probability": 0.2547 + }, + { + "start": 14317.57, + "end": 14318.05, + "probability": 0.006 + }, + { + "start": 14319.69, + "end": 14320.81, + "probability": 0.547 + }, + { + "start": 14321.29, + "end": 14321.85, + "probability": 0.6832 + }, + { + "start": 14321.99, + "end": 14324.97, + "probability": 0.789 + }, + { + "start": 14325.13, + "end": 14326.81, + "probability": 0.4744 + }, + { + "start": 14327.01, + "end": 14327.65, + "probability": 0.5368 + }, + { + "start": 14328.05, + "end": 14329.47, + "probability": 0.4902 + }, + { + "start": 14329.77, + "end": 14331.95, + "probability": 0.6759 + }, + { + "start": 14332.09, + "end": 14337.59, + "probability": 0.2741 + }, + { + "start": 14337.91, + "end": 14339.97, + "probability": 0.0601 + }, + { + "start": 14340.31, + "end": 14341.75, + "probability": 0.1086 + }, + { + "start": 14343.01, + "end": 14344.97, + "probability": 0.7769 + }, + { + "start": 14345.31, + "end": 14347.37, + "probability": 0.9927 + }, + { + "start": 14347.45, + "end": 14347.71, + "probability": 0.0876 + }, + { + "start": 14347.93, + "end": 14348.77, + "probability": 0.0099 + }, + { + "start": 14349.01, + "end": 14351.25, + "probability": 0.2244 + }, + { + "start": 14351.27, + "end": 14354.31, + "probability": 0.3981 + }, + { + "start": 14354.49, + "end": 14354.99, + "probability": 0.2621 + }, + { + "start": 14355.21, + "end": 14356.16, + "probability": 0.6945 + }, + { + "start": 14356.89, + "end": 14360.07, + "probability": 0.9889 + }, + { + "start": 14362.09, + "end": 14363.57, + "probability": 0.2838 + }, + { + "start": 14363.91, + "end": 14364.59, + "probability": 0.3544 + }, + { + "start": 14364.73, + "end": 14364.93, + "probability": 0.4648 + }, + { + "start": 14365.31, + "end": 14366.67, + "probability": 0.4795 + }, + { + "start": 14366.87, + "end": 14367.49, + "probability": 0.3716 + }, + { + "start": 14367.49, + "end": 14368.44, + "probability": 0.0425 + }, + { + "start": 14371.23, + "end": 14374.43, + "probability": 0.4642 + }, + { + "start": 14374.59, + "end": 14376.89, + "probability": 0.6939 + }, + { + "start": 14376.91, + "end": 14378.69, + "probability": 0.7221 + }, + { + "start": 14378.87, + "end": 14379.07, + "probability": 0.8721 + }, + { + "start": 14379.41, + "end": 14380.64, + "probability": 0.8098 + }, + { + "start": 14380.91, + "end": 14382.91, + "probability": 0.5298 + }, + { + "start": 14383.05, + "end": 14384.01, + "probability": 0.7931 + }, + { + "start": 14384.37, + "end": 14384.89, + "probability": 0.4048 + }, + { + "start": 14385.17, + "end": 14386.21, + "probability": 0.2272 + }, + { + "start": 14386.21, + "end": 14387.91, + "probability": 0.0249 + }, + { + "start": 14388.59, + "end": 14392.21, + "probability": 0.0742 + }, + { + "start": 14392.57, + "end": 14392.67, + "probability": 0.0516 + }, + { + "start": 14392.71, + "end": 14392.77, + "probability": 0.2137 + }, + { + "start": 14392.77, + "end": 14393.93, + "probability": 0.0486 + }, + { + "start": 14394.99, + "end": 14398.43, + "probability": 0.2102 + }, + { + "start": 14398.79, + "end": 14399.05, + "probability": 0.1386 + }, + { + "start": 14399.05, + "end": 14399.09, + "probability": 0.2407 + }, + { + "start": 14399.09, + "end": 14399.09, + "probability": 0.0947 + }, + { + "start": 14399.09, + "end": 14399.27, + "probability": 0.0309 + }, + { + "start": 14399.27, + "end": 14399.34, + "probability": 0.2269 + }, + { + "start": 14400.09, + "end": 14400.72, + "probability": 0.2038 + }, + { + "start": 14402.01, + "end": 14402.01, + "probability": 0.1577 + }, + { + "start": 14402.01, + "end": 14402.81, + "probability": 0.0257 + }, + { + "start": 14402.87, + "end": 14406.89, + "probability": 0.8064 + }, + { + "start": 14407.49, + "end": 14408.39, + "probability": 0.9784 + }, + { + "start": 14409.11, + "end": 14410.45, + "probability": 0.7689 + }, + { + "start": 14410.81, + "end": 14414.49, + "probability": 0.7416 + }, + { + "start": 14414.75, + "end": 14415.13, + "probability": 0.3941 + }, + { + "start": 14416.59, + "end": 14417.31, + "probability": 0.7434 + }, + { + "start": 14417.51, + "end": 14418.09, + "probability": 0.7508 + }, + { + "start": 14418.45, + "end": 14418.71, + "probability": 0.4883 + }, + { + "start": 14419.59, + "end": 14420.37, + "probability": 0.8799 + }, + { + "start": 14420.95, + "end": 14425.65, + "probability": 0.9802 + }, + { + "start": 14426.41, + "end": 14426.97, + "probability": 0.9687 + }, + { + "start": 14427.99, + "end": 14428.77, + "probability": 0.5677 + }, + { + "start": 14429.69, + "end": 14432.91, + "probability": 0.9814 + }, + { + "start": 14433.49, + "end": 14434.99, + "probability": 0.8559 + }, + { + "start": 14435.33, + "end": 14435.95, + "probability": 0.7143 + }, + { + "start": 14436.27, + "end": 14437.13, + "probability": 0.8609 + }, + { + "start": 14437.79, + "end": 14438.37, + "probability": 0.764 + }, + { + "start": 14438.95, + "end": 14439.47, + "probability": 0.921 + }, + { + "start": 14439.61, + "end": 14442.05, + "probability": 0.9814 + }, + { + "start": 14442.47, + "end": 14443.33, + "probability": 0.8608 + }, + { + "start": 14444.35, + "end": 14444.41, + "probability": 0.0582 + }, + { + "start": 14444.41, + "end": 14446.95, + "probability": 0.9055 + }, + { + "start": 14447.15, + "end": 14448.07, + "probability": 0.806 + }, + { + "start": 14449.11, + "end": 14450.67, + "probability": 0.9448 + }, + { + "start": 14451.23, + "end": 14452.53, + "probability": 0.9963 + }, + { + "start": 14453.33, + "end": 14455.31, + "probability": 0.8713 + }, + { + "start": 14455.85, + "end": 14458.27, + "probability": 0.901 + }, + { + "start": 14458.55, + "end": 14459.51, + "probability": 0.9705 + }, + { + "start": 14460.05, + "end": 14460.75, + "probability": 0.9982 + }, + { + "start": 14461.85, + "end": 14462.69, + "probability": 0.8519 + }, + { + "start": 14463.01, + "end": 14463.11, + "probability": 0.2858 + }, + { + "start": 14463.37, + "end": 14465.39, + "probability": 0.7866 + }, + { + "start": 14465.95, + "end": 14467.61, + "probability": 0.8647 + }, + { + "start": 14468.11, + "end": 14469.17, + "probability": 0.87 + }, + { + "start": 14469.95, + "end": 14475.87, + "probability": 0.8909 + }, + { + "start": 14476.57, + "end": 14478.29, + "probability": 0.9548 + }, + { + "start": 14478.61, + "end": 14482.71, + "probability": 0.9866 + }, + { + "start": 14483.51, + "end": 14489.97, + "probability": 0.9956 + }, + { + "start": 14490.39, + "end": 14491.27, + "probability": 0.8083 + }, + { + "start": 14492.37, + "end": 14495.55, + "probability": 0.9889 + }, + { + "start": 14495.69, + "end": 14497.33, + "probability": 0.8397 + }, + { + "start": 14497.75, + "end": 14498.43, + "probability": 0.7239 + }, + { + "start": 14498.93, + "end": 14499.19, + "probability": 0.8549 + }, + { + "start": 14500.31, + "end": 14501.49, + "probability": 0.9905 + }, + { + "start": 14503.09, + "end": 14505.37, + "probability": 0.9425 + }, + { + "start": 14505.67, + "end": 14507.05, + "probability": 0.98 + }, + { + "start": 14507.43, + "end": 14510.71, + "probability": 0.9891 + }, + { + "start": 14510.87, + "end": 14511.49, + "probability": 0.9797 + }, + { + "start": 14511.71, + "end": 14512.43, + "probability": 0.9518 + }, + { + "start": 14513.31, + "end": 14516.03, + "probability": 0.9445 + }, + { + "start": 14517.27, + "end": 14521.85, + "probability": 0.9259 + }, + { + "start": 14522.31, + "end": 14522.81, + "probability": 0.5827 + }, + { + "start": 14524.05, + "end": 14526.19, + "probability": 0.9229 + }, + { + "start": 14527.67, + "end": 14529.56, + "probability": 0.9429 + }, + { + "start": 14530.53, + "end": 14530.75, + "probability": 0.3433 + }, + { + "start": 14531.09, + "end": 14533.05, + "probability": 0.6919 + }, + { + "start": 14534.05, + "end": 14538.15, + "probability": 0.961 + }, + { + "start": 14540.05, + "end": 14540.69, + "probability": 0.5811 + }, + { + "start": 14542.63, + "end": 14548.59, + "probability": 0.8447 + }, + { + "start": 14550.01, + "end": 14551.34, + "probability": 0.9834 + }, + { + "start": 14552.03, + "end": 14554.51, + "probability": 0.6851 + }, + { + "start": 14554.55, + "end": 14555.79, + "probability": 0.7132 + }, + { + "start": 14555.83, + "end": 14556.95, + "probability": 0.669 + }, + { + "start": 14557.05, + "end": 14558.32, + "probability": 0.9941 + }, + { + "start": 14558.95, + "end": 14562.43, + "probability": 0.7987 + }, + { + "start": 14563.59, + "end": 14564.43, + "probability": 0.9455 + }, + { + "start": 14565.75, + "end": 14566.29, + "probability": 0.6568 + }, + { + "start": 14567.23, + "end": 14569.03, + "probability": 0.5727 + }, + { + "start": 14569.69, + "end": 14570.81, + "probability": 0.8585 + }, + { + "start": 14571.51, + "end": 14574.8, + "probability": 0.8416 + }, + { + "start": 14575.41, + "end": 14577.47, + "probability": 0.177 + }, + { + "start": 14577.89, + "end": 14582.23, + "probability": 0.2784 + }, + { + "start": 14582.63, + "end": 14584.31, + "probability": 0.0081 + }, + { + "start": 14584.75, + "end": 14586.73, + "probability": 0.0294 + }, + { + "start": 14587.05, + "end": 14588.01, + "probability": 0.098 + }, + { + "start": 14588.21, + "end": 14589.39, + "probability": 0.0372 + }, + { + "start": 14589.39, + "end": 14590.01, + "probability": 0.0316 + }, + { + "start": 14591.29, + "end": 14593.65, + "probability": 0.3921 + }, + { + "start": 14594.31, + "end": 14595.25, + "probability": 0.1227 + }, + { + "start": 14595.63, + "end": 14598.67, + "probability": 0.3523 + }, + { + "start": 14599.15, + "end": 14600.15, + "probability": 0.3806 + }, + { + "start": 14600.93, + "end": 14602.23, + "probability": 0.8677 + }, + { + "start": 14602.43, + "end": 14607.99, + "probability": 0.927 + }, + { + "start": 14608.21, + "end": 14609.31, + "probability": 0.0447 + }, + { + "start": 14609.31, + "end": 14610.51, + "probability": 0.3685 + }, + { + "start": 14610.61, + "end": 14614.23, + "probability": 0.5517 + }, + { + "start": 14614.31, + "end": 14615.35, + "probability": 0.9379 + }, + { + "start": 14617.09, + "end": 14618.43, + "probability": 0.9121 + }, + { + "start": 14619.07, + "end": 14620.79, + "probability": 0.9818 + }, + { + "start": 14621.67, + "end": 14623.63, + "probability": 0.8747 + }, + { + "start": 14624.93, + "end": 14625.87, + "probability": 0.9031 + }, + { + "start": 14626.05, + "end": 14628.13, + "probability": 0.9408 + }, + { + "start": 14628.39, + "end": 14631.31, + "probability": 0.9922 + }, + { + "start": 14631.49, + "end": 14632.43, + "probability": 0.7697 + }, + { + "start": 14632.99, + "end": 14633.65, + "probability": 0.4982 + }, + { + "start": 14633.79, + "end": 14636.05, + "probability": 0.7986 + }, + { + "start": 14636.45, + "end": 14637.71, + "probability": 0.7311 + }, + { + "start": 14638.01, + "end": 14644.91, + "probability": 0.9856 + }, + { + "start": 14644.91, + "end": 14645.77, + "probability": 0.4242 + }, + { + "start": 14647.51, + "end": 14648.13, + "probability": 0.8946 + }, + { + "start": 14649.91, + "end": 14650.55, + "probability": 0.0153 + }, + { + "start": 14650.55, + "end": 14651.11, + "probability": 0.0004 + }, + { + "start": 14651.97, + "end": 14652.83, + "probability": 0.7181 + }, + { + "start": 14654.23, + "end": 14657.81, + "probability": 0.1333 + }, + { + "start": 14658.11, + "end": 14658.25, + "probability": 0.1553 + }, + { + "start": 14658.25, + "end": 14658.85, + "probability": 0.6304 + }, + { + "start": 14659.15, + "end": 14661.77, + "probability": 0.983 + }, + { + "start": 14661.95, + "end": 14662.63, + "probability": 0.9524 + }, + { + "start": 14662.97, + "end": 14663.41, + "probability": 0.9453 + }, + { + "start": 14663.41, + "end": 14663.87, + "probability": 0.9393 + }, + { + "start": 14664.03, + "end": 14664.71, + "probability": 0.634 + }, + { + "start": 14666.45, + "end": 14668.61, + "probability": 0.4519 + }, + { + "start": 14669.67, + "end": 14670.53, + "probability": 0.8521 + }, + { + "start": 14671.49, + "end": 14673.43, + "probability": 0.6192 + }, + { + "start": 14674.75, + "end": 14676.85, + "probability": 0.9026 + }, + { + "start": 14677.43, + "end": 14680.85, + "probability": 0.9955 + }, + { + "start": 14682.07, + "end": 14686.61, + "probability": 0.9829 + }, + { + "start": 14688.24, + "end": 14690.03, + "probability": 0.2341 + }, + { + "start": 14690.03, + "end": 14691.77, + "probability": 0.1318 + }, + { + "start": 14692.15, + "end": 14695.52, + "probability": 0.609 + }, + { + "start": 14696.73, + "end": 14697.13, + "probability": 0.955 + }, + { + "start": 14698.01, + "end": 14698.87, + "probability": 0.9011 + }, + { + "start": 14699.03, + "end": 14699.65, + "probability": 0.7574 + }, + { + "start": 14699.73, + "end": 14701.77, + "probability": 0.1555 + }, + { + "start": 14701.77, + "end": 14701.77, + "probability": 0.3396 + }, + { + "start": 14701.85, + "end": 14702.49, + "probability": 0.4445 + }, + { + "start": 14702.77, + "end": 14704.33, + "probability": 0.0802 + }, + { + "start": 14704.33, + "end": 14706.09, + "probability": 0.4921 + }, + { + "start": 14706.11, + "end": 14707.29, + "probability": 0.9689 + }, + { + "start": 14707.57, + "end": 14712.25, + "probability": 0.3175 + }, + { + "start": 14712.25, + "end": 14713.65, + "probability": 0.0925 + }, + { + "start": 14713.65, + "end": 14715.29, + "probability": 0.27 + }, + { + "start": 14715.37, + "end": 14716.63, + "probability": 0.5724 + }, + { + "start": 14717.47, + "end": 14717.47, + "probability": 0.2164 + }, + { + "start": 14717.47, + "end": 14718.63, + "probability": 0.5168 + }, + { + "start": 14720.27, + "end": 14721.29, + "probability": 0.2223 + }, + { + "start": 14722.29, + "end": 14724.57, + "probability": 0.0222 + }, + { + "start": 14724.57, + "end": 14724.97, + "probability": 0.0673 + }, + { + "start": 14724.97, + "end": 14724.97, + "probability": 0.0741 + }, + { + "start": 14724.97, + "end": 14724.97, + "probability": 0.0344 + }, + { + "start": 14724.97, + "end": 14726.28, + "probability": 0.3626 + }, + { + "start": 14727.15, + "end": 14728.01, + "probability": 0.3816 + }, + { + "start": 14728.29, + "end": 14730.09, + "probability": 0.5034 + }, + { + "start": 14730.11, + "end": 14731.21, + "probability": 0.9934 + }, + { + "start": 14731.59, + "end": 14733.85, + "probability": 0.1799 + }, + { + "start": 14734.29, + "end": 14734.85, + "probability": 0.7048 + }, + { + "start": 14734.87, + "end": 14735.97, + "probability": 0.7563 + }, + { + "start": 14736.09, + "end": 14736.27, + "probability": 0.8711 + }, + { + "start": 14736.37, + "end": 14737.71, + "probability": 0.0061 + }, + { + "start": 14737.79, + "end": 14738.31, + "probability": 0.8936 + }, + { + "start": 14738.59, + "end": 14742.21, + "probability": 0.1727 + }, + { + "start": 14742.61, + "end": 14744.65, + "probability": 0.7259 + }, + { + "start": 14744.87, + "end": 14746.49, + "probability": 0.9937 + }, + { + "start": 14746.67, + "end": 14748.49, + "probability": 0.9912 + }, + { + "start": 14748.55, + "end": 14751.05, + "probability": 0.6817 + }, + { + "start": 14752.35, + "end": 14752.78, + "probability": 0.6736 + }, + { + "start": 14753.59, + "end": 14753.91, + "probability": 0.1958 + }, + { + "start": 14754.11, + "end": 14757.45, + "probability": 0.9619 + }, + { + "start": 14757.83, + "end": 14759.06, + "probability": 0.0952 + }, + { + "start": 14759.33, + "end": 14761.11, + "probability": 0.5037 + }, + { + "start": 14762.13, + "end": 14764.99, + "probability": 0.5421 + }, + { + "start": 14766.77, + "end": 14770.53, + "probability": 0.8567 + }, + { + "start": 14772.07, + "end": 14772.91, + "probability": 0.9031 + }, + { + "start": 14773.59, + "end": 14774.93, + "probability": 0.8298 + }, + { + "start": 14776.99, + "end": 14778.21, + "probability": 0.9531 + }, + { + "start": 14778.77, + "end": 14779.93, + "probability": 0.9519 + }, + { + "start": 14781.55, + "end": 14781.81, + "probability": 0.5669 + }, + { + "start": 14783.85, + "end": 14787.59, + "probability": 0.9364 + }, + { + "start": 14788.51, + "end": 14790.17, + "probability": 0.4709 + }, + { + "start": 14791.94, + "end": 14794.43, + "probability": 0.6749 + }, + { + "start": 14795.79, + "end": 14797.43, + "probability": 0.9568 + }, + { + "start": 14798.37, + "end": 14802.41, + "probability": 0.9985 + }, + { + "start": 14804.09, + "end": 14805.67, + "probability": 0.8879 + }, + { + "start": 14807.67, + "end": 14807.87, + "probability": 0.3858 + }, + { + "start": 14808.01, + "end": 14812.95, + "probability": 0.9746 + }, + { + "start": 14814.93, + "end": 14816.01, + "probability": 0.6905 + }, + { + "start": 14816.77, + "end": 14820.39, + "probability": 0.9019 + }, + { + "start": 14820.39, + "end": 14827.53, + "probability": 0.9186 + }, + { + "start": 14829.41, + "end": 14833.61, + "probability": 0.7267 + }, + { + "start": 14833.77, + "end": 14835.21, + "probability": 0.7972 + }, + { + "start": 14835.89, + "end": 14836.23, + "probability": 0.6758 + }, + { + "start": 14837.03, + "end": 14837.55, + "probability": 0.913 + }, + { + "start": 14837.65, + "end": 14838.77, + "probability": 0.7091 + }, + { + "start": 14839.15, + "end": 14840.21, + "probability": 0.9564 + }, + { + "start": 14840.65, + "end": 14841.79, + "probability": 0.9534 + }, + { + "start": 14842.57, + "end": 14843.11, + "probability": 0.6482 + }, + { + "start": 14844.57, + "end": 14845.85, + "probability": 0.7685 + }, + { + "start": 14847.93, + "end": 14848.47, + "probability": 0.8838 + }, + { + "start": 14849.37, + "end": 14854.35, + "probability": 0.9717 + }, + { + "start": 14854.89, + "end": 14856.95, + "probability": 0.9719 + }, + { + "start": 14857.83, + "end": 14860.37, + "probability": 0.9958 + }, + { + "start": 14864.05, + "end": 14868.47, + "probability": 0.9911 + }, + { + "start": 14869.33, + "end": 14869.89, + "probability": 0.1926 + }, + { + "start": 14870.85, + "end": 14871.65, + "probability": 0.2678 + }, + { + "start": 14872.47, + "end": 14877.33, + "probability": 0.499 + }, + { + "start": 14877.53, + "end": 14878.11, + "probability": 0.203 + }, + { + "start": 14879.25, + "end": 14880.53, + "probability": 0.6021 + }, + { + "start": 14880.53, + "end": 14881.64, + "probability": 0.0839 + }, + { + "start": 14884.57, + "end": 14886.55, + "probability": 0.0816 + }, + { + "start": 14886.57, + "end": 14888.43, + "probability": 0.078 + }, + { + "start": 14888.63, + "end": 14888.69, + "probability": 0.2804 + }, + { + "start": 14888.69, + "end": 14889.31, + "probability": 0.0448 + }, + { + "start": 14890.33, + "end": 14890.87, + "probability": 0.2911 + }, + { + "start": 14891.89, + "end": 14893.57, + "probability": 0.3333 + }, + { + "start": 14896.5, + "end": 14898.09, + "probability": 0.0084 + }, + { + "start": 14898.09, + "end": 14901.85, + "probability": 0.2866 + }, + { + "start": 14901.93, + "end": 14902.95, + "probability": 0.1683 + }, + { + "start": 14903.83, + "end": 14906.37, + "probability": 0.077 + }, + { + "start": 14906.75, + "end": 14907.89, + "probability": 0.0508 + }, + { + "start": 14908.33, + "end": 14908.61, + "probability": 0.0733 + }, + { + "start": 14910.97, + "end": 14916.13, + "probability": 0.0758 + }, + { + "start": 14924.87, + "end": 14925.96, + "probability": 0.0195 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.0, + "end": 14948.0, + "probability": 0.0 + }, + { + "start": 14948.92, + "end": 14950.7, + "probability": 0.1797 + }, + { + "start": 14950.92, + "end": 14952.46, + "probability": 0.79 + }, + { + "start": 14952.78, + "end": 14956.15, + "probability": 0.4542 + }, + { + "start": 14956.32, + "end": 14956.58, + "probability": 0.1343 + }, + { + "start": 14956.98, + "end": 14961.44, + "probability": 0.3649 + }, + { + "start": 14962.27, + "end": 14964.16, + "probability": 0.4806 + }, + { + "start": 14964.18, + "end": 14964.66, + "probability": 0.0701 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.0, + "end": 15075.0, + "probability": 0.0 + }, + { + "start": 15075.14, + "end": 15075.14, + "probability": 0.1324 + }, + { + "start": 15075.14, + "end": 15075.94, + "probability": 0.6311 + }, + { + "start": 15076.58, + "end": 15078.84, + "probability": 0.981 + }, + { + "start": 15078.94, + "end": 15083.16, + "probability": 0.9238 + }, + { + "start": 15084.18, + "end": 15087.0, + "probability": 0.4957 + }, + { + "start": 15087.0, + "end": 15088.22, + "probability": 0.5527 + }, + { + "start": 15089.01, + "end": 15094.54, + "probability": 0.9762 + }, + { + "start": 15096.3, + "end": 15099.6, + "probability": 0.4885 + }, + { + "start": 15100.86, + "end": 15102.86, + "probability": 0.7947 + }, + { + "start": 15103.46, + "end": 15105.32, + "probability": 0.5011 + }, + { + "start": 15105.5, + "end": 15107.86, + "probability": 0.988 + }, + { + "start": 15109.74, + "end": 15114.56, + "probability": 0.9274 + }, + { + "start": 15115.34, + "end": 15117.46, + "probability": 0.5074 + }, + { + "start": 15117.64, + "end": 15119.27, + "probability": 0.4937 + }, + { + "start": 15121.91, + "end": 15125.48, + "probability": 0.4341 + }, + { + "start": 15125.6, + "end": 15127.38, + "probability": 0.8709 + }, + { + "start": 15127.6, + "end": 15129.46, + "probability": 0.526 + }, + { + "start": 15130.1, + "end": 15132.52, + "probability": 0.2768 + }, + { + "start": 15132.98, + "end": 15134.5, + "probability": 0.7724 + }, + { + "start": 15134.88, + "end": 15135.14, + "probability": 0.965 + }, + { + "start": 15135.9, + "end": 15137.04, + "probability": 0.9797 + }, + { + "start": 15137.92, + "end": 15140.22, + "probability": 0.7546 + }, + { + "start": 15140.54, + "end": 15141.94, + "probability": 0.3706 + }, + { + "start": 15142.22, + "end": 15142.98, + "probability": 0.6978 + }, + { + "start": 15143.16, + "end": 15145.22, + "probability": 0.1607 + }, + { + "start": 15145.72, + "end": 15150.94, + "probability": 0.9616 + }, + { + "start": 15152.1, + "end": 15153.54, + "probability": 0.913 + }, + { + "start": 15153.72, + "end": 15155.12, + "probability": 0.9666 + }, + { + "start": 15156.28, + "end": 15157.42, + "probability": 0.6693 + }, + { + "start": 15157.52, + "end": 15158.08, + "probability": 0.5487 + }, + { + "start": 15158.32, + "end": 15159.54, + "probability": 0.7475 + }, + { + "start": 15160.78, + "end": 15163.34, + "probability": 0.5636 + }, + { + "start": 15163.94, + "end": 15164.16, + "probability": 0.5288 + }, + { + "start": 15165.46, + "end": 15166.7, + "probability": 0.9673 + }, + { + "start": 15167.96, + "end": 15169.68, + "probability": 0.9751 + }, + { + "start": 15170.7, + "end": 15174.25, + "probability": 0.6849 + }, + { + "start": 15174.86, + "end": 15176.02, + "probability": 0.8658 + }, + { + "start": 15176.08, + "end": 15177.06, + "probability": 0.953 + }, + { + "start": 15177.26, + "end": 15178.32, + "probability": 0.7337 + }, + { + "start": 15179.04, + "end": 15180.28, + "probability": 0.9749 + }, + { + "start": 15181.16, + "end": 15184.22, + "probability": 0.9013 + }, + { + "start": 15184.28, + "end": 15188.72, + "probability": 0.8773 + }, + { + "start": 15189.66, + "end": 15190.0, + "probability": 0.6939 + }, + { + "start": 15192.54, + "end": 15194.86, + "probability": 0.557 + }, + { + "start": 15196.56, + "end": 15197.6, + "probability": 0.1436 + }, + { + "start": 15197.6, + "end": 15197.6, + "probability": 0.3927 + }, + { + "start": 15197.66, + "end": 15199.08, + "probability": 0.9383 + }, + { + "start": 15199.16, + "end": 15201.82, + "probability": 0.9121 + }, + { + "start": 15203.94, + "end": 15206.26, + "probability": 0.9966 + }, + { + "start": 15207.2, + "end": 15210.3, + "probability": 0.9824 + }, + { + "start": 15210.86, + "end": 15211.74, + "probability": 0.9354 + }, + { + "start": 15212.36, + "end": 15216.78, + "probability": 0.9888 + }, + { + "start": 15218.04, + "end": 15223.02, + "probability": 0.8592 + }, + { + "start": 15223.86, + "end": 15226.18, + "probability": 0.9834 + }, + { + "start": 15227.4, + "end": 15230.34, + "probability": 0.8614 + }, + { + "start": 15231.22, + "end": 15231.74, + "probability": 0.5554 + }, + { + "start": 15232.14, + "end": 15235.36, + "probability": 0.4223 + }, + { + "start": 15237.04, + "end": 15238.08, + "probability": 0.018 + }, + { + "start": 15238.08, + "end": 15239.06, + "probability": 0.1576 + }, + { + "start": 15239.3, + "end": 15240.24, + "probability": 0.6826 + }, + { + "start": 15240.5, + "end": 15242.6, + "probability": 0.6833 + }, + { + "start": 15242.68, + "end": 15243.22, + "probability": 0.9686 + }, + { + "start": 15244.3, + "end": 15245.8, + "probability": 0.9344 + }, + { + "start": 15245.84, + "end": 15248.1, + "probability": 0.987 + }, + { + "start": 15249.72, + "end": 15250.54, + "probability": 0.9718 + }, + { + "start": 15251.56, + "end": 15253.42, + "probability": 0.7657 + }, + { + "start": 15254.15, + "end": 15255.8, + "probability": 0.9922 + }, + { + "start": 15256.5, + "end": 15259.16, + "probability": 0.9829 + }, + { + "start": 15260.1, + "end": 15260.1, + "probability": 0.1397 + }, + { + "start": 15260.1, + "end": 15261.82, + "probability": 0.6392 + }, + { + "start": 15262.3, + "end": 15267.44, + "probability": 0.603 + }, + { + "start": 15267.96, + "end": 15272.52, + "probability": 0.9811 + }, + { + "start": 15272.64, + "end": 15274.32, + "probability": 0.852 + }, + { + "start": 15274.72, + "end": 15275.69, + "probability": 0.8379 + }, + { + "start": 15276.72, + "end": 15277.6, + "probability": 0.7681 + }, + { + "start": 15277.6, + "end": 15278.52, + "probability": 0.8562 + }, + { + "start": 15278.76, + "end": 15281.3, + "probability": 0.4768 + }, + { + "start": 15281.44, + "end": 15282.28, + "probability": 0.5157 + }, + { + "start": 15283.52, + "end": 15284.54, + "probability": 0.3145 + }, + { + "start": 15284.7, + "end": 15288.82, + "probability": 0.5011 + }, + { + "start": 15289.16, + "end": 15290.94, + "probability": 0.047 + }, + { + "start": 15291.88, + "end": 15292.86, + "probability": 0.5018 + }, + { + "start": 15294.02, + "end": 15294.44, + "probability": 0.3833 + }, + { + "start": 15294.68, + "end": 15296.48, + "probability": 0.3854 + }, + { + "start": 15296.5, + "end": 15297.5, + "probability": 0.1572 + }, + { + "start": 15300.08, + "end": 15301.06, + "probability": 0.0109 + }, + { + "start": 15301.06, + "end": 15302.34, + "probability": 0.2081 + }, + { + "start": 15303.1, + "end": 15304.83, + "probability": 0.3739 + }, + { + "start": 15305.46, + "end": 15306.96, + "probability": 0.4686 + }, + { + "start": 15307.3, + "end": 15307.9, + "probability": 0.2217 + }, + { + "start": 15310.58, + "end": 15313.76, + "probability": 0.8593 + }, + { + "start": 15314.14, + "end": 15315.18, + "probability": 0.1082 + }, + { + "start": 15317.03, + "end": 15321.62, + "probability": 0.3397 + }, + { + "start": 15322.88, + "end": 15327.24, + "probability": 0.4741 + }, + { + "start": 15328.3, + "end": 15329.8, + "probability": 0.9314 + }, + { + "start": 15330.12, + "end": 15333.02, + "probability": 0.6345 + }, + { + "start": 15333.1, + "end": 15333.3, + "probability": 0.5496 + }, + { + "start": 15334.5, + "end": 15337.22, + "probability": 0.992 + }, + { + "start": 15337.86, + "end": 15338.59, + "probability": 0.8813 + }, + { + "start": 15340.08, + "end": 15342.52, + "probability": 0.5248 + }, + { + "start": 15342.94, + "end": 15345.0, + "probability": 0.734 + }, + { + "start": 15345.0, + "end": 15345.98, + "probability": 0.8569 + }, + { + "start": 15346.34, + "end": 15348.36, + "probability": 0.8451 + }, + { + "start": 15348.66, + "end": 15349.8, + "probability": 0.9894 + }, + { + "start": 15349.96, + "end": 15350.68, + "probability": 0.9233 + }, + { + "start": 15350.76, + "end": 15351.84, + "probability": 0.8658 + }, + { + "start": 15351.9, + "end": 15353.14, + "probability": 0.9225 + }, + { + "start": 15353.36, + "end": 15353.92, + "probability": 0.3119 + }, + { + "start": 15354.7, + "end": 15357.06, + "probability": 0.949 + }, + { + "start": 15358.08, + "end": 15358.68, + "probability": 0.7451 + }, + { + "start": 15359.38, + "end": 15361.08, + "probability": 0.984 + }, + { + "start": 15362.46, + "end": 15362.72, + "probability": 0.3415 + }, + { + "start": 15363.86, + "end": 15366.02, + "probability": 0.7641 + }, + { + "start": 15366.68, + "end": 15368.78, + "probability": 0.9055 + }, + { + "start": 15369.22, + "end": 15371.78, + "probability": 0.9822 + }, + { + "start": 15373.18, + "end": 15373.54, + "probability": 0.2068 + }, + { + "start": 15374.6, + "end": 15375.48, + "probability": 0.3709 + }, + { + "start": 15376.14, + "end": 15378.22, + "probability": 0.3323 + }, + { + "start": 15378.32, + "end": 15379.38, + "probability": 0.7628 + }, + { + "start": 15379.62, + "end": 15380.28, + "probability": 0.4062 + }, + { + "start": 15382.78, + "end": 15387.44, + "probability": 0.9633 + }, + { + "start": 15388.42, + "end": 15391.2, + "probability": 0.813 + }, + { + "start": 15392.54, + "end": 15393.2, + "probability": 0.6862 + }, + { + "start": 15395.06, + "end": 15399.26, + "probability": 0.9983 + }, + { + "start": 15400.66, + "end": 15403.42, + "probability": 0.7751 + }, + { + "start": 15403.72, + "end": 15404.91, + "probability": 0.4507 + }, + { + "start": 15405.16, + "end": 15409.72, + "probability": 0.0128 + }, + { + "start": 15409.96, + "end": 15414.39, + "probability": 0.4921 + }, + { + "start": 15414.74, + "end": 15416.42, + "probability": 0.5774 + }, + { + "start": 15417.0, + "end": 15419.4, + "probability": 0.9888 + }, + { + "start": 15420.64, + "end": 15421.66, + "probability": 0.7444 + }, + { + "start": 15422.22, + "end": 15428.5, + "probability": 0.5713 + }, + { + "start": 15429.4, + "end": 15432.06, + "probability": 0.1747 + }, + { + "start": 15432.06, + "end": 15433.16, + "probability": 0.8406 + }, + { + "start": 15434.06, + "end": 15434.16, + "probability": 0.0012 + }, + { + "start": 15436.98, + "end": 15437.58, + "probability": 0.0308 + }, + { + "start": 15438.22, + "end": 15438.66, + "probability": 0.6431 + }, + { + "start": 15439.64, + "end": 15442.6, + "probability": 0.4626 + }, + { + "start": 15442.68, + "end": 15443.26, + "probability": 0.2981 + }, + { + "start": 15443.88, + "end": 15445.01, + "probability": 0.8672 + }, + { + "start": 15445.46, + "end": 15446.12, + "probability": 0.6068 + }, + { + "start": 15446.92, + "end": 15448.04, + "probability": 0.2801 + }, + { + "start": 15448.6, + "end": 15450.92, + "probability": 0.7454 + }, + { + "start": 15451.18, + "end": 15453.04, + "probability": 0.0137 + }, + { + "start": 15453.26, + "end": 15454.14, + "probability": 0.6745 + }, + { + "start": 15454.36, + "end": 15456.52, + "probability": 0.1817 + }, + { + "start": 15456.52, + "end": 15457.3, + "probability": 0.2682 + }, + { + "start": 15457.36, + "end": 15459.5, + "probability": 0.8212 + }, + { + "start": 15459.84, + "end": 15466.87, + "probability": 0.2618 + }, + { + "start": 15468.36, + "end": 15469.27, + "probability": 0.7549 + }, + { + "start": 15469.84, + "end": 15472.46, + "probability": 0.4235 + }, + { + "start": 15473.88, + "end": 15476.56, + "probability": 0.2718 + }, + { + "start": 15479.24, + "end": 15481.56, + "probability": 0.7887 + }, + { + "start": 15481.7, + "end": 15484.18, + "probability": 0.3773 + }, + { + "start": 15484.26, + "end": 15487.08, + "probability": 0.5247 + }, + { + "start": 15487.16, + "end": 15487.5, + "probability": 0.3047 + }, + { + "start": 15487.5, + "end": 15487.78, + "probability": 0.0957 + }, + { + "start": 15487.78, + "end": 15488.58, + "probability": 0.3025 + }, + { + "start": 15488.84, + "end": 15489.84, + "probability": 0.5684 + }, + { + "start": 15490.0, + "end": 15493.38, + "probability": 0.5138 + }, + { + "start": 15493.56, + "end": 15496.62, + "probability": 0.7307 + }, + { + "start": 15497.8, + "end": 15499.3, + "probability": 0.728 + }, + { + "start": 15499.44, + "end": 15503.08, + "probability": 0.8997 + }, + { + "start": 15503.46, + "end": 15505.14, + "probability": 0.494 + }, + { + "start": 15505.4, + "end": 15508.38, + "probability": 0.5458 + }, + { + "start": 15508.44, + "end": 15514.08, + "probability": 0.8777 + }, + { + "start": 15514.9, + "end": 15517.92, + "probability": 0.0848 + }, + { + "start": 15517.94, + "end": 15520.8, + "probability": 0.2215 + }, + { + "start": 15521.32, + "end": 15523.78, + "probability": 0.8893 + }, + { + "start": 15523.82, + "end": 15524.42, + "probability": 0.7736 + }, + { + "start": 15524.92, + "end": 15527.35, + "probability": 0.6871 + }, + { + "start": 15527.66, + "end": 15530.0, + "probability": 0.0435 + }, + { + "start": 15530.04, + "end": 15533.08, + "probability": 0.2593 + }, + { + "start": 15533.62, + "end": 15537.32, + "probability": 0.459 + }, + { + "start": 15537.64, + "end": 15538.76, + "probability": 0.2775 + }, + { + "start": 15538.84, + "end": 15541.24, + "probability": 0.3932 + }, + { + "start": 15541.32, + "end": 15541.32, + "probability": 0.0361 + }, + { + "start": 15541.32, + "end": 15542.2, + "probability": 0.4828 + }, + { + "start": 15543.3, + "end": 15544.34, + "probability": 0.5589 + }, + { + "start": 15544.38, + "end": 15545.4, + "probability": 0.6544 + }, + { + "start": 15545.5, + "end": 15546.58, + "probability": 0.4937 + }, + { + "start": 15546.64, + "end": 15547.68, + "probability": 0.7601 + }, + { + "start": 15547.76, + "end": 15550.14, + "probability": 0.5036 + }, + { + "start": 15550.6, + "end": 15553.38, + "probability": 0.8035 + }, + { + "start": 15553.52, + "end": 15560.5, + "probability": 0.1228 + }, + { + "start": 15560.76, + "end": 15561.82, + "probability": 0.7381 + }, + { + "start": 15561.92, + "end": 15564.34, + "probability": 0.1215 + }, + { + "start": 15564.72, + "end": 15566.4, + "probability": 0.3061 + }, + { + "start": 15566.42, + "end": 15566.98, + "probability": 0.5785 + }, + { + "start": 15568.06, + "end": 15568.84, + "probability": 0.391 + }, + { + "start": 15570.32, + "end": 15571.98, + "probability": 0.0209 + }, + { + "start": 15573.54, + "end": 15573.92, + "probability": 0.1146 + }, + { + "start": 15573.92, + "end": 15573.92, + "probability": 0.2474 + }, + { + "start": 15573.92, + "end": 15574.08, + "probability": 0.4838 + }, + { + "start": 15576.42, + "end": 15584.2, + "probability": 0.2556 + }, + { + "start": 15584.4, + "end": 15585.68, + "probability": 0.918 + }, + { + "start": 15585.74, + "end": 15586.7, + "probability": 0.6426 + }, + { + "start": 15586.82, + "end": 15587.64, + "probability": 0.8113 + }, + { + "start": 15588.08, + "end": 15588.94, + "probability": 0.8884 + }, + { + "start": 15589.08, + "end": 15590.54, + "probability": 0.9424 + }, + { + "start": 15591.52, + "end": 15597.34, + "probability": 0.9915 + }, + { + "start": 15598.02, + "end": 15599.66, + "probability": 0.8568 + }, + { + "start": 15600.3, + "end": 15600.68, + "probability": 0.3299 + }, + { + "start": 15601.14, + "end": 15604.54, + "probability": 0.5529 + }, + { + "start": 15604.94, + "end": 15608.54, + "probability": 0.99 + }, + { + "start": 15609.72, + "end": 15610.86, + "probability": 0.2499 + }, + { + "start": 15610.86, + "end": 15612.4, + "probability": 0.5479 + }, + { + "start": 15612.42, + "end": 15616.0, + "probability": 0.5569 + }, + { + "start": 15617.41, + "end": 15621.04, + "probability": 0.356 + }, + { + "start": 15621.58, + "end": 15623.8, + "probability": 0.9246 + }, + { + "start": 15623.9, + "end": 15625.92, + "probability": 0.674 + }, + { + "start": 15626.42, + "end": 15631.4, + "probability": 0.3652 + }, + { + "start": 15632.46, + "end": 15635.54, + "probability": 0.6118 + }, + { + "start": 15636.06, + "end": 15637.06, + "probability": 0.9647 + }, + { + "start": 15637.38, + "end": 15638.1, + "probability": 0.5742 + }, + { + "start": 15638.18, + "end": 15638.6, + "probability": 0.9447 + }, + { + "start": 15639.46, + "end": 15640.62, + "probability": 0.8138 + }, + { + "start": 15641.38, + "end": 15645.72, + "probability": 0.9246 + }, + { + "start": 15645.84, + "end": 15646.94, + "probability": 0.8971 + }, + { + "start": 15648.46, + "end": 15650.34, + "probability": 0.7847 + }, + { + "start": 15655.84, + "end": 15656.66, + "probability": 0.6962 + }, + { + "start": 15657.26, + "end": 15657.48, + "probability": 0.2171 + }, + { + "start": 15658.64, + "end": 15659.44, + "probability": 0.0135 + }, + { + "start": 15661.88, + "end": 15666.72, + "probability": 0.2303 + }, + { + "start": 15672.12, + "end": 15673.68, + "probability": 0.0796 + }, + { + "start": 15679.24, + "end": 15679.72, + "probability": 0.0022 + }, + { + "start": 15680.68, + "end": 15683.98, + "probability": 0.1732 + }, + { + "start": 15684.7, + "end": 15686.02, + "probability": 0.7136 + }, + { + "start": 15686.2, + "end": 15687.36, + "probability": 0.4254 + }, + { + "start": 15691.02, + "end": 15692.54, + "probability": 0.7063 + }, + { + "start": 15694.54, + "end": 15700.47, + "probability": 0.5778 + }, + { + "start": 15707.6, + "end": 15712.9, + "probability": 0.7907 + }, + { + "start": 15713.94, + "end": 15716.5, + "probability": 0.9966 + }, + { + "start": 15717.9, + "end": 15720.68, + "probability": 0.7775 + }, + { + "start": 15722.34, + "end": 15727.98, + "probability": 0.9944 + }, + { + "start": 15728.54, + "end": 15729.8, + "probability": 0.991 + }, + { + "start": 15731.12, + "end": 15732.6, + "probability": 0.8611 + }, + { + "start": 15733.48, + "end": 15735.62, + "probability": 0.7261 + }, + { + "start": 15735.72, + "end": 15739.26, + "probability": 0.9939 + }, + { + "start": 15739.68, + "end": 15741.36, + "probability": 0.9331 + }, + { + "start": 15742.06, + "end": 15748.22, + "probability": 0.9916 + }, + { + "start": 15748.88, + "end": 15753.44, + "probability": 0.911 + }, + { + "start": 15754.46, + "end": 15755.8, + "probability": 0.9464 + }, + { + "start": 15756.82, + "end": 15758.16, + "probability": 0.9947 + }, + { + "start": 15758.7, + "end": 15760.5, + "probability": 0.9805 + }, + { + "start": 15761.4, + "end": 15762.41, + "probability": 0.7715 + }, + { + "start": 15763.06, + "end": 15765.62, + "probability": 0.9856 + }, + { + "start": 15766.12, + "end": 15771.06, + "probability": 0.9686 + }, + { + "start": 15771.68, + "end": 15773.92, + "probability": 0.8851 + }, + { + "start": 15775.32, + "end": 15778.54, + "probability": 0.9395 + }, + { + "start": 15779.82, + "end": 15781.81, + "probability": 0.7059 + }, + { + "start": 15783.26, + "end": 15786.27, + "probability": 0.985 + }, + { + "start": 15786.64, + "end": 15789.7, + "probability": 0.6735 + }, + { + "start": 15789.96, + "end": 15791.98, + "probability": 0.8391 + }, + { + "start": 15792.14, + "end": 15796.98, + "probability": 0.9811 + }, + { + "start": 15799.65, + "end": 15801.42, + "probability": 0.9905 + }, + { + "start": 15802.48, + "end": 15806.42, + "probability": 0.8066 + }, + { + "start": 15807.44, + "end": 15809.76, + "probability": 0.9111 + }, + { + "start": 15809.79, + "end": 15814.44, + "probability": 0.9599 + }, + { + "start": 15814.54, + "end": 15815.58, + "probability": 0.856 + }, + { + "start": 15816.34, + "end": 15818.76, + "probability": 0.7453 + }, + { + "start": 15820.08, + "end": 15825.68, + "probability": 0.9849 + }, + { + "start": 15826.58, + "end": 15831.94, + "probability": 0.7349 + }, + { + "start": 15833.04, + "end": 15839.64, + "probability": 0.5419 + }, + { + "start": 15841.74, + "end": 15844.22, + "probability": 0.3375 + }, + { + "start": 15845.56, + "end": 15846.84, + "probability": 0.6238 + }, + { + "start": 15846.96, + "end": 15849.88, + "probability": 0.6688 + }, + { + "start": 15851.4, + "end": 15853.26, + "probability": 0.618 + }, + { + "start": 15854.4, + "end": 15858.38, + "probability": 0.9655 + }, + { + "start": 15859.06, + "end": 15861.14, + "probability": 0.9871 + }, + { + "start": 15861.76, + "end": 15864.04, + "probability": 0.9897 + }, + { + "start": 15864.56, + "end": 15868.64, + "probability": 0.83 + }, + { + "start": 15870.06, + "end": 15872.4, + "probability": 0.9559 + }, + { + "start": 15872.56, + "end": 15873.36, + "probability": 0.6916 + }, + { + "start": 15873.62, + "end": 15876.0, + "probability": 0.9972 + }, + { + "start": 15876.9, + "end": 15879.86, + "probability": 0.9026 + }, + { + "start": 15880.42, + "end": 15881.4, + "probability": 0.99 + }, + { + "start": 15882.34, + "end": 15886.15, + "probability": 0.7534 + }, + { + "start": 15887.37, + "end": 15889.84, + "probability": 0.762 + }, + { + "start": 15892.38, + "end": 15893.28, + "probability": 0.547 + }, + { + "start": 15893.66, + "end": 15896.78, + "probability": 0.7297 + }, + { + "start": 15897.14, + "end": 15900.8, + "probability": 0.8562 + }, + { + "start": 15902.3, + "end": 15905.82, + "probability": 0.9963 + }, + { + "start": 15907.9, + "end": 15908.7, + "probability": 0.4976 + }, + { + "start": 15910.68, + "end": 15912.42, + "probability": 0.8163 + }, + { + "start": 15913.24, + "end": 15917.08, + "probability": 0.9217 + }, + { + "start": 15917.74, + "end": 15917.96, + "probability": 0.1373 + }, + { + "start": 15917.98, + "end": 15919.68, + "probability": 0.8438 + }, + { + "start": 15920.96, + "end": 15926.38, + "probability": 0.9778 + }, + { + "start": 15926.38, + "end": 15930.12, + "probability": 0.5378 + }, + { + "start": 15930.8, + "end": 15935.01, + "probability": 0.854 + }, + { + "start": 15936.88, + "end": 15937.75, + "probability": 0.0667 + }, + { + "start": 15938.42, + "end": 15942.7, + "probability": 0.9648 + }, + { + "start": 15943.12, + "end": 15943.7, + "probability": 0.8149 + }, + { + "start": 15944.82, + "end": 15950.96, + "probability": 0.7993 + }, + { + "start": 15951.02, + "end": 15953.82, + "probability": 0.7231 + }, + { + "start": 15954.02, + "end": 15959.24, + "probability": 0.6813 + }, + { + "start": 15960.14, + "end": 15961.16, + "probability": 0.9771 + }, + { + "start": 15963.36, + "end": 15969.12, + "probability": 0.7672 + }, + { + "start": 15971.0, + "end": 15971.9, + "probability": 0.8405 + }, + { + "start": 15974.92, + "end": 15975.02, + "probability": 0.0775 + }, + { + "start": 15975.02, + "end": 15977.68, + "probability": 0.2882 + }, + { + "start": 15978.8, + "end": 15983.3, + "probability": 0.7125 + }, + { + "start": 15985.17, + "end": 15987.74, + "probability": 0.7108 + }, + { + "start": 15988.58, + "end": 15993.2, + "probability": 0.9904 + }, + { + "start": 15995.36, + "end": 15996.44, + "probability": 0.4209 + }, + { + "start": 15996.44, + "end": 15999.3, + "probability": 0.7365 + }, + { + "start": 15999.54, + "end": 16004.32, + "probability": 0.5871 + }, + { + "start": 16005.08, + "end": 16008.75, + "probability": 0.9018 + }, + { + "start": 16009.46, + "end": 16012.86, + "probability": 0.9722 + }, + { + "start": 16013.4, + "end": 16016.1, + "probability": 0.9427 + }, + { + "start": 16016.82, + "end": 16022.53, + "probability": 0.9688 + }, + { + "start": 16024.7, + "end": 16027.78, + "probability": 0.9742 + }, + { + "start": 16028.6, + "end": 16033.84, + "probability": 0.847 + }, + { + "start": 16034.3, + "end": 16038.28, + "probability": 0.9958 + }, + { + "start": 16039.02, + "end": 16041.18, + "probability": 0.7042 + }, + { + "start": 16041.3, + "end": 16042.16, + "probability": 0.7687 + }, + { + "start": 16042.38, + "end": 16048.74, + "probability": 0.9371 + }, + { + "start": 16048.74, + "end": 16052.78, + "probability": 0.9987 + }, + { + "start": 16054.2, + "end": 16058.48, + "probability": 0.886 + }, + { + "start": 16058.68, + "end": 16062.44, + "probability": 0.5639 + }, + { + "start": 16063.4, + "end": 16070.18, + "probability": 0.7196 + }, + { + "start": 16070.34, + "end": 16070.54, + "probability": 0.7811 + }, + { + "start": 16070.62, + "end": 16070.86, + "probability": 0.6749 + }, + { + "start": 16071.68, + "end": 16074.16, + "probability": 0.9883 + }, + { + "start": 16075.12, + "end": 16077.62, + "probability": 0.3901 + }, + { + "start": 16079.47, + "end": 16081.18, + "probability": 0.5134 + }, + { + "start": 16082.9, + "end": 16084.36, + "probability": 0.9513 + }, + { + "start": 16086.88, + "end": 16087.38, + "probability": 0.823 + }, + { + "start": 16101.86, + "end": 16103.7, + "probability": 0.5766 + }, + { + "start": 16105.38, + "end": 16110.26, + "probability": 0.9511 + }, + { + "start": 16111.96, + "end": 16115.02, + "probability": 0.9211 + }, + { + "start": 16116.92, + "end": 16121.62, + "probability": 0.9592 + }, + { + "start": 16122.9, + "end": 16126.74, + "probability": 0.9004 + }, + { + "start": 16128.24, + "end": 16129.8, + "probability": 0.9212 + }, + { + "start": 16130.64, + "end": 16135.06, + "probability": 0.994 + }, + { + "start": 16135.06, + "end": 16139.74, + "probability": 0.8975 + }, + { + "start": 16141.36, + "end": 16146.22, + "probability": 0.9748 + }, + { + "start": 16146.82, + "end": 16148.5, + "probability": 0.8146 + }, + { + "start": 16149.54, + "end": 16151.16, + "probability": 0.872 + }, + { + "start": 16151.88, + "end": 16154.72, + "probability": 0.7334 + }, + { + "start": 16155.86, + "end": 16159.16, + "probability": 0.9749 + }, + { + "start": 16160.28, + "end": 16163.64, + "probability": 0.9889 + }, + { + "start": 16164.92, + "end": 16166.42, + "probability": 0.8899 + }, + { + "start": 16167.28, + "end": 16168.4, + "probability": 0.7567 + }, + { + "start": 16169.04, + "end": 16174.24, + "probability": 0.9715 + }, + { + "start": 16175.14, + "end": 16179.5, + "probability": 0.865 + }, + { + "start": 16180.82, + "end": 16181.48, + "probability": 0.2723 + }, + { + "start": 16181.58, + "end": 16182.16, + "probability": 0.5673 + }, + { + "start": 16182.92, + "end": 16183.7, + "probability": 0.5258 + }, + { + "start": 16184.52, + "end": 16185.24, + "probability": 0.8518 + }, + { + "start": 16186.08, + "end": 16187.54, + "probability": 0.6699 + }, + { + "start": 16187.54, + "end": 16192.32, + "probability": 0.7692 + }, + { + "start": 16193.48, + "end": 16195.58, + "probability": 0.9614 + }, + { + "start": 16196.8, + "end": 16198.52, + "probability": 0.6889 + }, + { + "start": 16199.68, + "end": 16200.54, + "probability": 0.5714 + }, + { + "start": 16200.82, + "end": 16205.82, + "probability": 0.6664 + }, + { + "start": 16207.56, + "end": 16209.16, + "probability": 0.9261 + }, + { + "start": 16209.36, + "end": 16211.3, + "probability": 0.8104 + }, + { + "start": 16212.04, + "end": 16216.16, + "probability": 0.4714 + }, + { + "start": 16216.32, + "end": 16217.02, + "probability": 0.5517 + }, + { + "start": 16217.06, + "end": 16217.86, + "probability": 0.7119 + }, + { + "start": 16219.02, + "end": 16222.84, + "probability": 0.9818 + }, + { + "start": 16228.12, + "end": 16229.04, + "probability": 0.384 + }, + { + "start": 16230.1, + "end": 16232.44, + "probability": 0.8405 + }, + { + "start": 16233.58, + "end": 16236.08, + "probability": 0.8228 + }, + { + "start": 16236.82, + "end": 16239.13, + "probability": 0.951 + }, + { + "start": 16240.16, + "end": 16241.76, + "probability": 0.7899 + }, + { + "start": 16243.28, + "end": 16250.2, + "probability": 0.9901 + }, + { + "start": 16251.44, + "end": 16253.06, + "probability": 0.8772 + }, + { + "start": 16254.4, + "end": 16256.62, + "probability": 0.6452 + }, + { + "start": 16257.84, + "end": 16261.74, + "probability": 0.9707 + }, + { + "start": 16262.66, + "end": 16263.62, + "probability": 0.8061 + }, + { + "start": 16264.86, + "end": 16266.62, + "probability": 0.826 + }, + { + "start": 16267.68, + "end": 16269.98, + "probability": 0.9668 + }, + { + "start": 16271.08, + "end": 16271.5, + "probability": 0.9956 + }, + { + "start": 16272.44, + "end": 16276.46, + "probability": 0.9256 + }, + { + "start": 16278.62, + "end": 16280.9, + "probability": 0.7094 + }, + { + "start": 16281.52, + "end": 16282.02, + "probability": 0.6461 + }, + { + "start": 16282.9, + "end": 16283.78, + "probability": 0.8757 + }, + { + "start": 16284.56, + "end": 16285.44, + "probability": 0.8199 + }, + { + "start": 16286.42, + "end": 16287.98, + "probability": 0.9437 + }, + { + "start": 16288.74, + "end": 16293.0, + "probability": 0.8192 + }, + { + "start": 16294.74, + "end": 16296.22, + "probability": 0.9932 + }, + { + "start": 16297.12, + "end": 16298.22, + "probability": 0.869 + }, + { + "start": 16299.46, + "end": 16304.08, + "probability": 0.9885 + }, + { + "start": 16304.12, + "end": 16307.0, + "probability": 0.9996 + }, + { + "start": 16307.98, + "end": 16310.48, + "probability": 0.9908 + }, + { + "start": 16311.92, + "end": 16313.26, + "probability": 0.7647 + }, + { + "start": 16313.9, + "end": 16314.82, + "probability": 0.8192 + }, + { + "start": 16316.08, + "end": 16317.44, + "probability": 0.9962 + }, + { + "start": 16318.74, + "end": 16321.22, + "probability": 0.9927 + }, + { + "start": 16322.28, + "end": 16325.72, + "probability": 0.9937 + }, + { + "start": 16327.48, + "end": 16329.2, + "probability": 0.8578 + }, + { + "start": 16330.62, + "end": 16332.56, + "probability": 0.7543 + }, + { + "start": 16333.66, + "end": 16336.58, + "probability": 0.9854 + }, + { + "start": 16337.66, + "end": 16341.0, + "probability": 0.9711 + }, + { + "start": 16342.54, + "end": 16347.03, + "probability": 0.9796 + }, + { + "start": 16348.84, + "end": 16350.64, + "probability": 0.9653 + }, + { + "start": 16351.84, + "end": 16352.3, + "probability": 0.9136 + }, + { + "start": 16353.22, + "end": 16354.82, + "probability": 0.9981 + }, + { + "start": 16355.6, + "end": 16356.5, + "probability": 0.932 + }, + { + "start": 16357.52, + "end": 16358.26, + "probability": 0.6364 + }, + { + "start": 16359.82, + "end": 16360.92, + "probability": 0.8507 + }, + { + "start": 16362.5, + "end": 16365.32, + "probability": 0.9427 + }, + { + "start": 16366.4, + "end": 16368.9, + "probability": 0.8352 + }, + { + "start": 16369.98, + "end": 16371.26, + "probability": 0.8184 + }, + { + "start": 16372.62, + "end": 16374.09, + "probability": 0.9293 + }, + { + "start": 16374.96, + "end": 16377.0, + "probability": 0.9801 + }, + { + "start": 16378.26, + "end": 16380.92, + "probability": 0.9739 + }, + { + "start": 16381.74, + "end": 16382.26, + "probability": 0.8582 + }, + { + "start": 16384.06, + "end": 16387.96, + "probability": 0.937 + }, + { + "start": 16389.08, + "end": 16393.02, + "probability": 0.8007 + }, + { + "start": 16394.3, + "end": 16398.06, + "probability": 0.9818 + }, + { + "start": 16399.1, + "end": 16400.38, + "probability": 0.6596 + }, + { + "start": 16401.76, + "end": 16402.94, + "probability": 0.9482 + }, + { + "start": 16403.66, + "end": 16405.46, + "probability": 0.9656 + }, + { + "start": 16406.88, + "end": 16410.36, + "probability": 0.9138 + }, + { + "start": 16410.48, + "end": 16411.4, + "probability": 0.8983 + }, + { + "start": 16411.7, + "end": 16414.42, + "probability": 0.9755 + }, + { + "start": 16416.04, + "end": 16416.68, + "probability": 0.8009 + }, + { + "start": 16416.76, + "end": 16417.72, + "probability": 0.7174 + }, + { + "start": 16418.06, + "end": 16424.14, + "probability": 0.996 + }, + { + "start": 16425.06, + "end": 16425.78, + "probability": 0.821 + }, + { + "start": 16426.54, + "end": 16429.2, + "probability": 0.972 + }, + { + "start": 16430.14, + "end": 16432.14, + "probability": 0.9654 + }, + { + "start": 16432.82, + "end": 16434.74, + "probability": 0.8592 + }, + { + "start": 16435.54, + "end": 16441.0, + "probability": 0.868 + }, + { + "start": 16442.02, + "end": 16449.74, + "probability": 0.8677 + }, + { + "start": 16450.78, + "end": 16451.94, + "probability": 0.951 + }, + { + "start": 16453.28, + "end": 16454.8, + "probability": 0.8405 + }, + { + "start": 16455.92, + "end": 16459.02, + "probability": 0.998 + }, + { + "start": 16460.62, + "end": 16465.22, + "probability": 0.8386 + }, + { + "start": 16466.28, + "end": 16468.2, + "probability": 0.8325 + }, + { + "start": 16469.42, + "end": 16472.7, + "probability": 0.8459 + }, + { + "start": 16473.4, + "end": 16477.34, + "probability": 0.9548 + }, + { + "start": 16478.44, + "end": 16481.54, + "probability": 0.998 + }, + { + "start": 16482.54, + "end": 16484.76, + "probability": 0.9966 + }, + { + "start": 16486.22, + "end": 16487.4, + "probability": 0.9568 + }, + { + "start": 16487.52, + "end": 16488.4, + "probability": 0.7075 + }, + { + "start": 16488.64, + "end": 16489.3, + "probability": 0.6168 + }, + { + "start": 16489.32, + "end": 16490.02, + "probability": 0.5796 + }, + { + "start": 16490.94, + "end": 16491.66, + "probability": 0.9666 + }, + { + "start": 16492.84, + "end": 16494.06, + "probability": 0.996 + }, + { + "start": 16495.56, + "end": 16496.82, + "probability": 0.9937 + }, + { + "start": 16497.54, + "end": 16499.2, + "probability": 0.9789 + }, + { + "start": 16500.28, + "end": 16502.18, + "probability": 0.8453 + }, + { + "start": 16503.18, + "end": 16504.7, + "probability": 0.9765 + }, + { + "start": 16505.72, + "end": 16506.8, + "probability": 0.8817 + }, + { + "start": 16508.2, + "end": 16510.28, + "probability": 0.9875 + }, + { + "start": 16511.56, + "end": 16515.88, + "probability": 0.9827 + }, + { + "start": 16517.36, + "end": 16518.16, + "probability": 0.7029 + }, + { + "start": 16518.83, + "end": 16522.38, + "probability": 0.5786 + }, + { + "start": 16523.46, + "end": 16526.7, + "probability": 0.9686 + }, + { + "start": 16527.54, + "end": 16528.36, + "probability": 0.8098 + }, + { + "start": 16529.34, + "end": 16530.48, + "probability": 0.988 + }, + { + "start": 16531.46, + "end": 16532.52, + "probability": 0.9985 + }, + { + "start": 16533.44, + "end": 16534.76, + "probability": 0.9988 + }, + { + "start": 16535.74, + "end": 16536.94, + "probability": 0.9917 + }, + { + "start": 16538.28, + "end": 16539.54, + "probability": 0.9567 + }, + { + "start": 16540.7, + "end": 16542.14, + "probability": 0.6552 + }, + { + "start": 16543.4, + "end": 16544.24, + "probability": 0.9564 + }, + { + "start": 16545.82, + "end": 16547.12, + "probability": 0.9211 + }, + { + "start": 16548.3, + "end": 16548.8, + "probability": 0.7985 + }, + { + "start": 16550.48, + "end": 16551.9, + "probability": 0.8283 + }, + { + "start": 16552.64, + "end": 16553.74, + "probability": 0.9115 + }, + { + "start": 16554.6, + "end": 16556.62, + "probability": 0.9863 + }, + { + "start": 16557.34, + "end": 16561.9, + "probability": 0.9966 + }, + { + "start": 16562.7, + "end": 16568.24, + "probability": 0.8748 + }, + { + "start": 16569.42, + "end": 16569.56, + "probability": 0.1849 + }, + { + "start": 16570.56, + "end": 16573.24, + "probability": 0.9114 + }, + { + "start": 16573.96, + "end": 16577.24, + "probability": 0.8674 + }, + { + "start": 16577.92, + "end": 16580.8, + "probability": 0.9995 + }, + { + "start": 16582.64, + "end": 16584.46, + "probability": 0.7208 + }, + { + "start": 16587.72, + "end": 16588.14, + "probability": 0.7074 + }, + { + "start": 16589.04, + "end": 16591.56, + "probability": 0.8403 + }, + { + "start": 16592.66, + "end": 16595.28, + "probability": 0.8156 + }, + { + "start": 16595.28, + "end": 16599.96, + "probability": 0.994 + }, + { + "start": 16600.9, + "end": 16602.06, + "probability": 0.9266 + }, + { + "start": 16603.02, + "end": 16605.78, + "probability": 0.7529 + }, + { + "start": 16607.04, + "end": 16613.58, + "probability": 0.9778 + }, + { + "start": 16615.1, + "end": 16618.26, + "probability": 0.9117 + }, + { + "start": 16619.52, + "end": 16621.58, + "probability": 0.9119 + }, + { + "start": 16623.02, + "end": 16625.56, + "probability": 0.9301 + }, + { + "start": 16626.34, + "end": 16628.2, + "probability": 0.9967 + }, + { + "start": 16629.5, + "end": 16633.6, + "probability": 0.943 + }, + { + "start": 16634.48, + "end": 16636.4, + "probability": 0.7914 + }, + { + "start": 16636.48, + "end": 16637.74, + "probability": 0.7606 + }, + { + "start": 16638.58, + "end": 16640.22, + "probability": 0.9158 + }, + { + "start": 16641.38, + "end": 16649.62, + "probability": 0.7448 + }, + { + "start": 16650.84, + "end": 16652.96, + "probability": 0.9646 + }, + { + "start": 16654.0, + "end": 16654.5, + "probability": 0.6036 + }, + { + "start": 16654.68, + "end": 16656.86, + "probability": 0.6806 + }, + { + "start": 16656.98, + "end": 16658.68, + "probability": 0.6605 + }, + { + "start": 16659.16, + "end": 16662.28, + "probability": 0.8528 + }, + { + "start": 16663.06, + "end": 16665.66, + "probability": 0.7341 + }, + { + "start": 16665.76, + "end": 16667.58, + "probability": 0.8752 + }, + { + "start": 16668.72, + "end": 16671.46, + "probability": 0.8522 + }, + { + "start": 16672.22, + "end": 16673.68, + "probability": 0.9427 + }, + { + "start": 16674.62, + "end": 16676.64, + "probability": 0.9606 + }, + { + "start": 16677.8, + "end": 16680.66, + "probability": 0.797 + }, + { + "start": 16681.6, + "end": 16683.86, + "probability": 0.8251 + }, + { + "start": 16684.38, + "end": 16686.44, + "probability": 0.6507 + }, + { + "start": 16687.54, + "end": 16691.14, + "probability": 0.9652 + }, + { + "start": 16691.22, + "end": 16694.42, + "probability": 0.9731 + }, + { + "start": 16695.68, + "end": 16696.8, + "probability": 0.7026 + }, + { + "start": 16697.58, + "end": 16699.38, + "probability": 0.949 + }, + { + "start": 16700.0, + "end": 16701.3, + "probability": 0.8267 + }, + { + "start": 16701.92, + "end": 16703.88, + "probability": 0.8199 + }, + { + "start": 16704.28, + "end": 16705.32, + "probability": 0.7231 + }, + { + "start": 16705.4, + "end": 16705.98, + "probability": 0.9857 + }, + { + "start": 16706.02, + "end": 16706.44, + "probability": 0.9891 + }, + { + "start": 16706.74, + "end": 16707.66, + "probability": 0.972 + }, + { + "start": 16709.12, + "end": 16711.1, + "probability": 0.9957 + }, + { + "start": 16712.02, + "end": 16715.34, + "probability": 0.9712 + }, + { + "start": 16716.12, + "end": 16720.41, + "probability": 0.926 + }, + { + "start": 16720.78, + "end": 16725.08, + "probability": 0.9755 + }, + { + "start": 16726.42, + "end": 16732.54, + "probability": 0.561 + }, + { + "start": 16733.1, + "end": 16734.48, + "probability": 0.9143 + }, + { + "start": 16735.04, + "end": 16736.26, + "probability": 0.6225 + }, + { + "start": 16736.96, + "end": 16742.38, + "probability": 0.9704 + }, + { + "start": 16744.58, + "end": 16745.92, + "probability": 0.6417 + }, + { + "start": 16746.08, + "end": 16746.74, + "probability": 0.5884 + }, + { + "start": 16746.92, + "end": 16747.72, + "probability": 0.8984 + }, + { + "start": 16752.76, + "end": 16754.72, + "probability": 0.8367 + }, + { + "start": 16755.8, + "end": 16756.48, + "probability": 0.5199 + }, + { + "start": 16757.34, + "end": 16762.42, + "probability": 0.9417 + }, + { + "start": 16763.44, + "end": 16765.5, + "probability": 0.99 + }, + { + "start": 16766.36, + "end": 16767.12, + "probability": 0.8071 + }, + { + "start": 16769.2, + "end": 16772.1, + "probability": 0.5357 + }, + { + "start": 16772.1, + "end": 16776.24, + "probability": 0.8504 + }, + { + "start": 16778.24, + "end": 16781.14, + "probability": 0.7565 + }, + { + "start": 16782.02, + "end": 16785.48, + "probability": 0.7546 + }, + { + "start": 16786.16, + "end": 16789.72, + "probability": 0.9767 + }, + { + "start": 16790.56, + "end": 16791.2, + "probability": 0.8546 + }, + { + "start": 16791.82, + "end": 16797.7, + "probability": 0.9548 + }, + { + "start": 16799.0, + "end": 16801.32, + "probability": 0.9753 + }, + { + "start": 16802.56, + "end": 16803.16, + "probability": 0.6304 + }, + { + "start": 16803.26, + "end": 16807.4, + "probability": 0.9488 + }, + { + "start": 16809.04, + "end": 16812.82, + "probability": 0.9761 + }, + { + "start": 16813.96, + "end": 16819.04, + "probability": 0.9712 + }, + { + "start": 16819.88, + "end": 16824.8, + "probability": 0.978 + }, + { + "start": 16825.66, + "end": 16826.02, + "probability": 0.4935 + }, + { + "start": 16826.16, + "end": 16829.34, + "probability": 0.9781 + }, + { + "start": 16830.18, + "end": 16834.22, + "probability": 0.97 + }, + { + "start": 16834.74, + "end": 16835.4, + "probability": 0.8948 + }, + { + "start": 16836.0, + "end": 16838.72, + "probability": 0.9914 + }, + { + "start": 16839.34, + "end": 16840.78, + "probability": 0.887 + }, + { + "start": 16841.4, + "end": 16843.48, + "probability": 0.8261 + }, + { + "start": 16844.36, + "end": 16846.62, + "probability": 0.9807 + }, + { + "start": 16847.28, + "end": 16848.32, + "probability": 0.9766 + }, + { + "start": 16849.78, + "end": 16853.28, + "probability": 0.4485 + }, + { + "start": 16854.52, + "end": 16858.42, + "probability": 0.9751 + }, + { + "start": 16859.36, + "end": 16860.26, + "probability": 0.9767 + }, + { + "start": 16861.38, + "end": 16865.58, + "probability": 0.9779 + }, + { + "start": 16865.72, + "end": 16866.24, + "probability": 0.8582 + }, + { + "start": 16866.36, + "end": 16867.72, + "probability": 0.9435 + }, + { + "start": 16868.3, + "end": 16873.9, + "probability": 0.9634 + }, + { + "start": 16874.52, + "end": 16878.84, + "probability": 0.9539 + }, + { + "start": 16879.78, + "end": 16881.48, + "probability": 0.6684 + }, + { + "start": 16882.38, + "end": 16887.54, + "probability": 0.9666 + }, + { + "start": 16888.24, + "end": 16894.04, + "probability": 0.9803 + }, + { + "start": 16895.06, + "end": 16895.78, + "probability": 0.865 + }, + { + "start": 16895.9, + "end": 16896.96, + "probability": 0.8812 + }, + { + "start": 16897.34, + "end": 16902.76, + "probability": 0.9929 + }, + { + "start": 16904.02, + "end": 16905.42, + "probability": 0.9983 + }, + { + "start": 16905.5, + "end": 16906.12, + "probability": 0.6661 + }, + { + "start": 16906.26, + "end": 16906.76, + "probability": 0.5362 + }, + { + "start": 16906.82, + "end": 16907.5, + "probability": 0.6716 + }, + { + "start": 16908.34, + "end": 16912.58, + "probability": 0.9481 + }, + { + "start": 16914.28, + "end": 16917.86, + "probability": 0.9335 + }, + { + "start": 16918.7, + "end": 16919.8, + "probability": 0.8959 + }, + { + "start": 16919.96, + "end": 16920.36, + "probability": 0.3027 + }, + { + "start": 16920.42, + "end": 16921.18, + "probability": 0.6828 + }, + { + "start": 16921.52, + "end": 16923.68, + "probability": 0.6671 + }, + { + "start": 16925.62, + "end": 16929.68, + "probability": 0.965 + }, + { + "start": 16930.46, + "end": 16933.5, + "probability": 0.9089 + }, + { + "start": 16934.26, + "end": 16937.62, + "probability": 0.8004 + }, + { + "start": 16938.46, + "end": 16940.16, + "probability": 0.8537 + }, + { + "start": 16941.36, + "end": 16943.78, + "probability": 0.9221 + }, + { + "start": 16944.78, + "end": 16947.3, + "probability": 0.9692 + }, + { + "start": 16948.3, + "end": 16952.94, + "probability": 0.9937 + }, + { + "start": 16953.6, + "end": 16955.68, + "probability": 0.9564 + }, + { + "start": 16956.44, + "end": 16959.56, + "probability": 0.991 + }, + { + "start": 16961.04, + "end": 16964.26, + "probability": 0.9834 + }, + { + "start": 16964.9, + "end": 16968.68, + "probability": 0.9918 + }, + { + "start": 16969.66, + "end": 16971.68, + "probability": 0.6903 + }, + { + "start": 16971.84, + "end": 16974.08, + "probability": 0.7772 + }, + { + "start": 16974.7, + "end": 16978.22, + "probability": 0.9484 + }, + { + "start": 16978.22, + "end": 16981.02, + "probability": 0.9806 + }, + { + "start": 16981.28, + "end": 16985.78, + "probability": 0.9843 + }, + { + "start": 16986.68, + "end": 16987.4, + "probability": 0.7872 + }, + { + "start": 16988.32, + "end": 16990.9, + "probability": 0.9827 + }, + { + "start": 16991.76, + "end": 16994.2, + "probability": 0.907 + }, + { + "start": 16994.82, + "end": 16995.6, + "probability": 0.9097 + }, + { + "start": 16996.4, + "end": 16997.38, + "probability": 0.9819 + }, + { + "start": 16999.2, + "end": 17002.48, + "probability": 0.9209 + }, + { + "start": 17003.0, + "end": 17003.74, + "probability": 0.9531 + }, + { + "start": 17005.54, + "end": 17007.78, + "probability": 0.9811 + }, + { + "start": 17008.32, + "end": 17015.4, + "probability": 0.9656 + }, + { + "start": 17016.14, + "end": 17016.56, + "probability": 0.5104 + }, + { + "start": 17016.82, + "end": 17017.48, + "probability": 0.7715 + }, + { + "start": 17017.62, + "end": 17018.12, + "probability": 0.7962 + }, + { + "start": 17018.22, + "end": 17021.18, + "probability": 0.9033 + }, + { + "start": 17021.58, + "end": 17022.3, + "probability": 0.5725 + }, + { + "start": 17023.36, + "end": 17026.68, + "probability": 0.9578 + }, + { + "start": 17028.24, + "end": 17028.72, + "probability": 0.7615 + }, + { + "start": 17029.96, + "end": 17031.28, + "probability": 0.963 + }, + { + "start": 17031.84, + "end": 17032.88, + "probability": 0.5076 + }, + { + "start": 17033.96, + "end": 17039.06, + "probability": 0.981 + }, + { + "start": 17039.96, + "end": 17042.6, + "probability": 0.8643 + }, + { + "start": 17043.34, + "end": 17046.64, + "probability": 0.4919 + }, + { + "start": 17047.78, + "end": 17048.62, + "probability": 0.7664 + }, + { + "start": 17049.78, + "end": 17051.96, + "probability": 0.9717 + }, + { + "start": 17053.14, + "end": 17056.32, + "probability": 0.9138 + }, + { + "start": 17056.9, + "end": 17063.76, + "probability": 0.8664 + }, + { + "start": 17064.66, + "end": 17068.52, + "probability": 0.8873 + }, + { + "start": 17069.3, + "end": 17075.68, + "probability": 0.9796 + }, + { + "start": 17076.4, + "end": 17078.22, + "probability": 0.7964 + }, + { + "start": 17078.94, + "end": 17088.9, + "probability": 0.9465 + }, + { + "start": 17089.98, + "end": 17095.08, + "probability": 0.9424 + }, + { + "start": 17095.98, + "end": 17096.38, + "probability": 0.8693 + }, + { + "start": 17096.54, + "end": 17097.52, + "probability": 0.6735 + }, + { + "start": 17097.54, + "end": 17101.0, + "probability": 0.6667 + }, + { + "start": 17101.02, + "end": 17101.98, + "probability": 0.3716 + }, + { + "start": 17102.36, + "end": 17103.72, + "probability": 0.9614 + }, + { + "start": 17104.24, + "end": 17107.38, + "probability": 0.8103 + }, + { + "start": 17108.22, + "end": 17110.3, + "probability": 0.9976 + }, + { + "start": 17113.16, + "end": 17113.84, + "probability": 0.341 + }, + { + "start": 17114.58, + "end": 17118.52, + "probability": 0.7745 + }, + { + "start": 17123.48, + "end": 17126.86, + "probability": 0.6217 + }, + { + "start": 17128.0, + "end": 17128.28, + "probability": 0.9175 + }, + { + "start": 17129.4, + "end": 17129.82, + "probability": 0.9677 + }, + { + "start": 17130.44, + "end": 17131.72, + "probability": 0.7947 + }, + { + "start": 17132.16, + "end": 17134.0, + "probability": 0.8022 + }, + { + "start": 17135.38, + "end": 17135.94, + "probability": 0.9365 + }, + { + "start": 17140.32, + "end": 17141.78, + "probability": 0.6882 + }, + { + "start": 17144.7, + "end": 17145.84, + "probability": 0.7141 + }, + { + "start": 17148.42, + "end": 17154.44, + "probability": 0.8229 + }, + { + "start": 17156.02, + "end": 17162.22, + "probability": 0.9901 + }, + { + "start": 17162.22, + "end": 17168.94, + "probability": 0.9408 + }, + { + "start": 17169.9, + "end": 17174.64, + "probability": 0.9947 + }, + { + "start": 17175.7, + "end": 17183.68, + "probability": 0.981 + }, + { + "start": 17184.76, + "end": 17188.22, + "probability": 0.9693 + }, + { + "start": 17190.02, + "end": 17196.84, + "probability": 0.9904 + }, + { + "start": 17198.08, + "end": 17199.02, + "probability": 0.9003 + }, + { + "start": 17200.58, + "end": 17203.46, + "probability": 0.9858 + }, + { + "start": 17204.64, + "end": 17207.24, + "probability": 0.9969 + }, + { + "start": 17208.28, + "end": 17208.94, + "probability": 0.9575 + }, + { + "start": 17209.5, + "end": 17211.3, + "probability": 0.9289 + }, + { + "start": 17212.52, + "end": 17213.42, + "probability": 0.6887 + }, + { + "start": 17214.3, + "end": 17220.22, + "probability": 0.7486 + }, + { + "start": 17220.86, + "end": 17221.12, + "probability": 0.3378 + }, + { + "start": 17221.88, + "end": 17223.16, + "probability": 0.8669 + }, + { + "start": 17223.92, + "end": 17226.14, + "probability": 0.9823 + }, + { + "start": 17228.18, + "end": 17231.64, + "probability": 0.8892 + }, + { + "start": 17232.16, + "end": 17235.16, + "probability": 0.9832 + }, + { + "start": 17236.38, + "end": 17238.78, + "probability": 0.8593 + }, + { + "start": 17239.9, + "end": 17241.04, + "probability": 0.9182 + }, + { + "start": 17241.9, + "end": 17243.3, + "probability": 0.9897 + }, + { + "start": 17244.18, + "end": 17246.48, + "probability": 0.724 + }, + { + "start": 17247.32, + "end": 17249.8, + "probability": 0.9319 + }, + { + "start": 17251.5, + "end": 17251.7, + "probability": 0.8073 + }, + { + "start": 17252.58, + "end": 17255.08, + "probability": 0.8329 + }, + { + "start": 17256.2, + "end": 17256.76, + "probability": 0.7282 + }, + { + "start": 17257.38, + "end": 17259.44, + "probability": 0.8695 + }, + { + "start": 17260.28, + "end": 17260.98, + "probability": 0.8267 + }, + { + "start": 17261.48, + "end": 17262.93, + "probability": 0.9982 + }, + { + "start": 17263.72, + "end": 17264.73, + "probability": 0.0393 + }, + { + "start": 17266.04, + "end": 17267.04, + "probability": 0.5024 + }, + { + "start": 17267.58, + "end": 17269.64, + "probability": 0.9868 + }, + { + "start": 17270.58, + "end": 17273.32, + "probability": 0.994 + }, + { + "start": 17274.42, + "end": 17277.46, + "probability": 0.9085 + }, + { + "start": 17278.3, + "end": 17279.24, + "probability": 0.7675 + }, + { + "start": 17279.48, + "end": 17281.52, + "probability": 0.7081 + }, + { + "start": 17282.3, + "end": 17284.2, + "probability": 0.9958 + }, + { + "start": 17284.48, + "end": 17286.98, + "probability": 0.9878 + }, + { + "start": 17288.08, + "end": 17289.22, + "probability": 0.2985 + }, + { + "start": 17289.36, + "end": 17290.34, + "probability": 0.5051 + }, + { + "start": 17290.58, + "end": 17291.02, + "probability": 0.6262 + }, + { + "start": 17291.36, + "end": 17291.58, + "probability": 0.526 + }, + { + "start": 17292.22, + "end": 17295.52, + "probability": 0.9059 + }, + { + "start": 17297.1, + "end": 17297.82, + "probability": 0.8594 + }, + { + "start": 17297.86, + "end": 17305.12, + "probability": 0.98 + }, + { + "start": 17305.52, + "end": 17307.48, + "probability": 0.8386 + }, + { + "start": 17308.1, + "end": 17308.76, + "probability": 0.1935 + }, + { + "start": 17309.8, + "end": 17315.0, + "probability": 0.9186 + }, + { + "start": 17316.6, + "end": 17319.0, + "probability": 0.984 + }, + { + "start": 17319.82, + "end": 17321.1, + "probability": 0.657 + }, + { + "start": 17321.9, + "end": 17323.98, + "probability": 0.9529 + }, + { + "start": 17324.8, + "end": 17327.34, + "probability": 0.9717 + }, + { + "start": 17328.08, + "end": 17328.82, + "probability": 0.6782 + }, + { + "start": 17329.34, + "end": 17329.92, + "probability": 0.7587 + }, + { + "start": 17331.08, + "end": 17331.78, + "probability": 0.7805 + }, + { + "start": 17333.06, + "end": 17334.36, + "probability": 0.9823 + }, + { + "start": 17335.5, + "end": 17337.56, + "probability": 0.9948 + }, + { + "start": 17338.48, + "end": 17340.36, + "probability": 0.8208 + }, + { + "start": 17341.14, + "end": 17342.16, + "probability": 0.9728 + }, + { + "start": 17342.94, + "end": 17343.9, + "probability": 0.9727 + }, + { + "start": 17345.3, + "end": 17348.42, + "probability": 0.9773 + }, + { + "start": 17349.22, + "end": 17354.84, + "probability": 0.9297 + }, + { + "start": 17355.24, + "end": 17356.88, + "probability": 0.9722 + }, + { + "start": 17358.14, + "end": 17360.98, + "probability": 0.4242 + }, + { + "start": 17360.98, + "end": 17365.84, + "probability": 0.4959 + }, + { + "start": 17366.44, + "end": 17369.68, + "probability": 0.9912 + }, + { + "start": 17369.74, + "end": 17371.38, + "probability": 0.8324 + }, + { + "start": 17372.26, + "end": 17373.06, + "probability": 0.9718 + }, + { + "start": 17374.71, + "end": 17376.54, + "probability": 0.9592 + }, + { + "start": 17377.34, + "end": 17378.4, + "probability": 0.9535 + }, + { + "start": 17379.24, + "end": 17380.94, + "probability": 0.9009 + }, + { + "start": 17382.14, + "end": 17382.36, + "probability": 0.5842 + }, + { + "start": 17382.36, + "end": 17382.36, + "probability": 0.1118 + }, + { + "start": 17382.36, + "end": 17382.36, + "probability": 0.6521 + }, + { + "start": 17382.36, + "end": 17386.88, + "probability": 0.9482 + }, + { + "start": 17387.76, + "end": 17389.14, + "probability": 0.2804 + }, + { + "start": 17389.98, + "end": 17391.12, + "probability": 0.2253 + }, + { + "start": 17392.92, + "end": 17394.88, + "probability": 0.8629 + }, + { + "start": 17395.68, + "end": 17396.89, + "probability": 0.98 + }, + { + "start": 17398.14, + "end": 17401.06, + "probability": 0.959 + }, + { + "start": 17401.74, + "end": 17403.54, + "probability": 0.9774 + }, + { + "start": 17406.3, + "end": 17406.58, + "probability": 0.5378 + }, + { + "start": 17406.62, + "end": 17407.4, + "probability": 0.9749 + }, + { + "start": 17407.92, + "end": 17410.28, + "probability": 0.878 + }, + { + "start": 17412.8, + "end": 17414.9, + "probability": 0.9954 + }, + { + "start": 17415.7, + "end": 17418.36, + "probability": 0.9726 + }, + { + "start": 17419.16, + "end": 17419.9, + "probability": 0.9319 + }, + { + "start": 17419.96, + "end": 17421.11, + "probability": 0.9786 + }, + { + "start": 17421.5, + "end": 17422.46, + "probability": 0.2728 + }, + { + "start": 17422.56, + "end": 17423.86, + "probability": 0.8537 + }, + { + "start": 17425.76, + "end": 17426.36, + "probability": 0.9226 + }, + { + "start": 17427.68, + "end": 17429.88, + "probability": 0.8031 + }, + { + "start": 17430.68, + "end": 17433.96, + "probability": 0.6236 + }, + { + "start": 17435.2, + "end": 17439.4, + "probability": 0.9783 + }, + { + "start": 17441.06, + "end": 17441.72, + "probability": 0.8364 + }, + { + "start": 17442.96, + "end": 17443.69, + "probability": 0.9751 + }, + { + "start": 17444.84, + "end": 17445.6, + "probability": 0.9175 + }, + { + "start": 17447.44, + "end": 17448.56, + "probability": 0.9935 + }, + { + "start": 17449.2, + "end": 17451.7, + "probability": 0.9933 + }, + { + "start": 17452.32, + "end": 17454.44, + "probability": 0.7863 + }, + { + "start": 17454.88, + "end": 17458.34, + "probability": 0.42 + }, + { + "start": 17458.78, + "end": 17466.3, + "probability": 0.669 + }, + { + "start": 17468.64, + "end": 17470.08, + "probability": 0.7015 + }, + { + "start": 17471.28, + "end": 17472.24, + "probability": 0.7345 + }, + { + "start": 17473.96, + "end": 17478.8, + "probability": 0.9845 + }, + { + "start": 17480.18, + "end": 17482.41, + "probability": 0.7252 + }, + { + "start": 17484.3, + "end": 17488.46, + "probability": 0.7986 + }, + { + "start": 17489.54, + "end": 17491.72, + "probability": 0.8472 + }, + { + "start": 17494.39, + "end": 17497.8, + "probability": 0.753 + }, + { + "start": 17498.56, + "end": 17500.38, + "probability": 0.4609 + }, + { + "start": 17501.24, + "end": 17504.83, + "probability": 0.8135 + }, + { + "start": 17506.84, + "end": 17509.42, + "probability": 0.6421 + }, + { + "start": 17510.06, + "end": 17510.67, + "probability": 0.5132 + }, + { + "start": 17512.06, + "end": 17517.82, + "probability": 0.9412 + }, + { + "start": 17518.58, + "end": 17519.98, + "probability": 0.8206 + }, + { + "start": 17520.2, + "end": 17521.26, + "probability": 0.5465 + }, + { + "start": 17521.48, + "end": 17523.5, + "probability": 0.6927 + }, + { + "start": 17524.68, + "end": 17525.6, + "probability": 0.96 + }, + { + "start": 17525.98, + "end": 17527.24, + "probability": 0.9819 + }, + { + "start": 17529.28, + "end": 17533.6, + "probability": 0.9181 + }, + { + "start": 17533.6, + "end": 17536.74, + "probability": 0.9619 + }, + { + "start": 17538.06, + "end": 17539.14, + "probability": 0.6008 + }, + { + "start": 17539.98, + "end": 17541.04, + "probability": 0.4605 + }, + { + "start": 17541.9, + "end": 17544.04, + "probability": 0.918 + }, + { + "start": 17545.56, + "end": 17546.06, + "probability": 0.4458 + }, + { + "start": 17547.2, + "end": 17547.78, + "probability": 0.6586 + }, + { + "start": 17548.16, + "end": 17549.4, + "probability": 0.9837 + }, + { + "start": 17551.2, + "end": 17552.34, + "probability": 0.9569 + }, + { + "start": 17553.62, + "end": 17553.92, + "probability": 0.7229 + }, + { + "start": 17554.1, + "end": 17554.68, + "probability": 0.6247 + }, + { + "start": 17554.9, + "end": 17557.22, + "probability": 0.58 + }, + { + "start": 17558.02, + "end": 17560.04, + "probability": 0.9559 + }, + { + "start": 17562.38, + "end": 17563.02, + "probability": 0.9151 + }, + { + "start": 17563.72, + "end": 17564.6, + "probability": 0.978 + }, + { + "start": 17565.38, + "end": 17566.22, + "probability": 0.9307 + }, + { + "start": 17566.34, + "end": 17566.41, + "probability": 0.2874 + }, + { + "start": 17567.82, + "end": 17568.28, + "probability": 0.6107 + }, + { + "start": 17568.84, + "end": 17569.36, + "probability": 0.4636 + }, + { + "start": 17569.68, + "end": 17570.04, + "probability": 0.5625 + }, + { + "start": 17570.06, + "end": 17570.7, + "probability": 0.9466 + }, + { + "start": 17571.2, + "end": 17571.62, + "probability": 0.1166 + }, + { + "start": 17572.46, + "end": 17572.46, + "probability": 0.1254 + }, + { + "start": 17572.48, + "end": 17574.4, + "probability": 0.7789 + }, + { + "start": 17575.32, + "end": 17576.16, + "probability": 0.7354 + }, + { + "start": 17577.36, + "end": 17579.9, + "probability": 0.7119 + }, + { + "start": 17580.64, + "end": 17581.44, + "probability": 0.7236 + }, + { + "start": 17582.14, + "end": 17587.82, + "probability": 0.7921 + }, + { + "start": 17588.18, + "end": 17589.9, + "probability": 0.9515 + }, + { + "start": 17592.86, + "end": 17594.75, + "probability": 0.6381 + }, + { + "start": 17595.4, + "end": 17596.68, + "probability": 0.9161 + }, + { + "start": 17597.4, + "end": 17598.2, + "probability": 0.9054 + }, + { + "start": 17598.76, + "end": 17600.58, + "probability": 0.9951 + }, + { + "start": 17602.1, + "end": 17605.9, + "probability": 0.7585 + }, + { + "start": 17606.94, + "end": 17610.14, + "probability": 0.9771 + }, + { + "start": 17610.66, + "end": 17614.72, + "probability": 0.974 + }, + { + "start": 17615.1, + "end": 17615.52, + "probability": 0.499 + }, + { + "start": 17616.58, + "end": 17617.76, + "probability": 0.7217 + }, + { + "start": 17618.42, + "end": 17620.94, + "probability": 0.9715 + }, + { + "start": 17621.98, + "end": 17622.92, + "probability": 0.5563 + }, + { + "start": 17623.56, + "end": 17623.76, + "probability": 0.4091 + }, + { + "start": 17625.12, + "end": 17627.98, + "probability": 0.9852 + }, + { + "start": 17629.36, + "end": 17631.8, + "probability": 0.9671 + }, + { + "start": 17632.88, + "end": 17634.95, + "probability": 0.9468 + }, + { + "start": 17636.28, + "end": 17636.5, + "probability": 0.6768 + }, + { + "start": 17637.32, + "end": 17638.94, + "probability": 0.8335 + }, + { + "start": 17639.48, + "end": 17642.88, + "probability": 0.8303 + }, + { + "start": 17643.92, + "end": 17644.66, + "probability": 0.7472 + }, + { + "start": 17645.74, + "end": 17650.18, + "probability": 0.9311 + }, + { + "start": 17650.86, + "end": 17652.06, + "probability": 0.9591 + }, + { + "start": 17652.4, + "end": 17653.38, + "probability": 0.8408 + }, + { + "start": 17653.7, + "end": 17655.2, + "probability": 0.9628 + }, + { + "start": 17656.44, + "end": 17657.26, + "probability": 0.7934 + }, + { + "start": 17657.9, + "end": 17658.62, + "probability": 0.7232 + }, + { + "start": 17660.4, + "end": 17661.18, + "probability": 0.5982 + }, + { + "start": 17662.2, + "end": 17663.62, + "probability": 0.9749 + }, + { + "start": 17664.68, + "end": 17666.34, + "probability": 0.948 + }, + { + "start": 17667.34, + "end": 17668.54, + "probability": 0.9867 + }, + { + "start": 17669.14, + "end": 17671.76, + "probability": 0.6163 + }, + { + "start": 17672.6, + "end": 17673.4, + "probability": 0.9871 + }, + { + "start": 17674.22, + "end": 17675.58, + "probability": 0.5858 + }, + { + "start": 17676.86, + "end": 17678.5, + "probability": 0.8748 + }, + { + "start": 17679.88, + "end": 17680.54, + "probability": 0.9712 + }, + { + "start": 17681.48, + "end": 17682.36, + "probability": 0.9016 + }, + { + "start": 17683.48, + "end": 17684.46, + "probability": 0.9454 + }, + { + "start": 17685.28, + "end": 17686.86, + "probability": 0.9944 + }, + { + "start": 17687.92, + "end": 17692.18, + "probability": 0.7571 + }, + { + "start": 17693.42, + "end": 17694.44, + "probability": 0.4303 + }, + { + "start": 17694.62, + "end": 17695.04, + "probability": 0.447 + }, + { + "start": 17695.14, + "end": 17696.84, + "probability": 0.7561 + }, + { + "start": 17697.66, + "end": 17697.66, + "probability": 0.1306 + }, + { + "start": 17697.66, + "end": 17699.46, + "probability": 0.9211 + }, + { + "start": 17699.76, + "end": 17703.6, + "probability": 0.991 + }, + { + "start": 17704.28, + "end": 17709.08, + "probability": 0.7549 + }, + { + "start": 17710.08, + "end": 17711.02, + "probability": 0.4922 + }, + { + "start": 17711.74, + "end": 17713.34, + "probability": 0.9473 + }, + { + "start": 17714.18, + "end": 17715.7, + "probability": 0.9484 + }, + { + "start": 17716.42, + "end": 17717.8, + "probability": 0.9641 + }, + { + "start": 17718.58, + "end": 17719.12, + "probability": 0.1167 + }, + { + "start": 17720.8, + "end": 17721.0, + "probability": 0.0574 + }, + { + "start": 17721.0, + "end": 17721.96, + "probability": 0.4053 + }, + { + "start": 17722.06, + "end": 17722.82, + "probability": 0.0485 + }, + { + "start": 17724.1, + "end": 17727.82, + "probability": 0.4583 + }, + { + "start": 17727.82, + "end": 17729.68, + "probability": 0.7907 + }, + { + "start": 17729.82, + "end": 17733.32, + "probability": 0.6989 + }, + { + "start": 17733.56, + "end": 17737.4, + "probability": 0.8485 + }, + { + "start": 17737.66, + "end": 17739.4, + "probability": 0.8218 + }, + { + "start": 17740.42, + "end": 17741.58, + "probability": 0.6512 + }, + { + "start": 17742.68, + "end": 17743.98, + "probability": 0.8334 + }, + { + "start": 17744.74, + "end": 17746.92, + "probability": 0.9959 + }, + { + "start": 17747.5, + "end": 17748.78, + "probability": 0.9985 + }, + { + "start": 17749.62, + "end": 17750.8, + "probability": 0.8609 + }, + { + "start": 17751.4, + "end": 17751.6, + "probability": 0.4089 + }, + { + "start": 17752.38, + "end": 17754.02, + "probability": 0.7949 + }, + { + "start": 17754.66, + "end": 17755.9, + "probability": 0.9748 + }, + { + "start": 17756.7, + "end": 17757.42, + "probability": 0.9612 + }, + { + "start": 17758.06, + "end": 17759.14, + "probability": 0.9648 + }, + { + "start": 17759.72, + "end": 17760.48, + "probability": 0.5406 + }, + { + "start": 17761.08, + "end": 17762.16, + "probability": 0.6767 + }, + { + "start": 17762.6, + "end": 17763.6, + "probability": 0.7623 + }, + { + "start": 17764.0, + "end": 17764.84, + "probability": 0.9419 + }, + { + "start": 17765.26, + "end": 17768.28, + "probability": 0.8966 + }, + { + "start": 17768.92, + "end": 17769.24, + "probability": 0.6849 + }, + { + "start": 17769.3, + "end": 17770.02, + "probability": 0.715 + }, + { + "start": 17770.1, + "end": 17775.82, + "probability": 0.8022 + }, + { + "start": 17776.82, + "end": 17780.14, + "probability": 0.9891 + }, + { + "start": 17780.14, + "end": 17780.9, + "probability": 0.6294 + }, + { + "start": 17781.44, + "end": 17782.66, + "probability": 0.8259 + }, + { + "start": 17783.38, + "end": 17788.66, + "probability": 0.7915 + }, + { + "start": 17789.02, + "end": 17789.8, + "probability": 0.5978 + }, + { + "start": 17790.68, + "end": 17791.3, + "probability": 0.7982 + }, + { + "start": 17792.12, + "end": 17793.3, + "probability": 0.9818 + }, + { + "start": 17794.44, + "end": 17795.28, + "probability": 0.9195 + }, + { + "start": 17796.04, + "end": 17797.96, + "probability": 0.6628 + }, + { + "start": 17798.36, + "end": 17801.22, + "probability": 0.6062 + }, + { + "start": 17801.58, + "end": 17802.1, + "probability": 0.3388 + }, + { + "start": 17802.4, + "end": 17803.54, + "probability": 0.9849 + }, + { + "start": 17804.22, + "end": 17807.64, + "probability": 0.8193 + }, + { + "start": 17808.7, + "end": 17810.54, + "probability": 0.9561 + }, + { + "start": 17811.04, + "end": 17813.98, + "probability": 0.7393 + }, + { + "start": 17814.28, + "end": 17816.3, + "probability": 0.7457 + }, + { + "start": 17816.66, + "end": 17821.18, + "probability": 0.8846 + }, + { + "start": 17821.86, + "end": 17821.88, + "probability": 0.5654 + }, + { + "start": 17822.62, + "end": 17823.06, + "probability": 0.9836 + }, + { + "start": 17823.76, + "end": 17824.84, + "probability": 0.9158 + }, + { + "start": 17825.46, + "end": 17826.16, + "probability": 0.7501 + }, + { + "start": 17827.02, + "end": 17829.62, + "probability": 0.7659 + }, + { + "start": 17830.22, + "end": 17834.44, + "probability": 0.9922 + }, + { + "start": 17835.22, + "end": 17836.3, + "probability": 0.688 + }, + { + "start": 17837.0, + "end": 17839.48, + "probability": 0.6966 + }, + { + "start": 17840.04, + "end": 17841.18, + "probability": 0.8719 + }, + { + "start": 17841.74, + "end": 17841.9, + "probability": 0.7689 + }, + { + "start": 17842.7, + "end": 17844.68, + "probability": 0.5328 + }, + { + "start": 17845.26, + "end": 17847.86, + "probability": 0.9928 + }, + { + "start": 17849.11, + "end": 17850.25, + "probability": 0.7111 + }, + { + "start": 17851.46, + "end": 17852.94, + "probability": 0.8263 + }, + { + "start": 17854.8, + "end": 17855.22, + "probability": 0.5888 + }, + { + "start": 17857.12, + "end": 17857.96, + "probability": 0.6368 + }, + { + "start": 17860.46, + "end": 17861.64, + "probability": 0.7773 + }, + { + "start": 17868.06, + "end": 17872.74, + "probability": 0.6772 + }, + { + "start": 17873.31, + "end": 17877.28, + "probability": 0.9871 + }, + { + "start": 17877.86, + "end": 17881.26, + "probability": 0.9858 + }, + { + "start": 17881.3, + "end": 17882.8, + "probability": 0.9847 + }, + { + "start": 17883.04, + "end": 17883.98, + "probability": 0.7792 + }, + { + "start": 17884.7, + "end": 17886.54, + "probability": 0.896 + }, + { + "start": 17887.38, + "end": 17888.24, + "probability": 0.97 + }, + { + "start": 17888.64, + "end": 17894.58, + "probability": 0.7973 + }, + { + "start": 17894.68, + "end": 17898.5, + "probability": 0.9928 + }, + { + "start": 17899.52, + "end": 17902.12, + "probability": 0.9327 + }, + { + "start": 17903.06, + "end": 17909.46, + "probability": 0.9966 + }, + { + "start": 17909.62, + "end": 17915.0, + "probability": 0.6909 + }, + { + "start": 17915.02, + "end": 17915.8, + "probability": 0.8024 + }, + { + "start": 17915.98, + "end": 17917.42, + "probability": 0.8294 + }, + { + "start": 17917.94, + "end": 17919.74, + "probability": 0.9756 + }, + { + "start": 17920.12, + "end": 17922.02, + "probability": 0.9009 + }, + { + "start": 17922.14, + "end": 17923.54, + "probability": 0.9656 + }, + { + "start": 17924.58, + "end": 17928.7, + "probability": 0.9907 + }, + { + "start": 17928.84, + "end": 17929.56, + "probability": 0.7391 + }, + { + "start": 17929.7, + "end": 17930.39, + "probability": 0.9324 + }, + { + "start": 17930.86, + "end": 17931.3, + "probability": 0.8067 + }, + { + "start": 17931.38, + "end": 17934.32, + "probability": 0.9981 + }, + { + "start": 17935.16, + "end": 17941.26, + "probability": 0.9599 + }, + { + "start": 17941.44, + "end": 17943.6, + "probability": 0.9624 + }, + { + "start": 17944.3, + "end": 17945.5, + "probability": 0.9333 + }, + { + "start": 17947.0, + "end": 17948.54, + "probability": 0.9967 + }, + { + "start": 17949.48, + "end": 17953.0, + "probability": 0.991 + }, + { + "start": 17953.38, + "end": 17956.24, + "probability": 0.701 + }, + { + "start": 17956.58, + "end": 17958.1, + "probability": 0.7523 + }, + { + "start": 17958.38, + "end": 17962.33, + "probability": 0.9964 + }, + { + "start": 17963.32, + "end": 17966.88, + "probability": 0.9529 + }, + { + "start": 17967.52, + "end": 17968.82, + "probability": 0.6105 + }, + { + "start": 17969.42, + "end": 17971.28, + "probability": 0.6171 + }, + { + "start": 17972.0, + "end": 17975.32, + "probability": 0.9579 + }, + { + "start": 17975.8, + "end": 17978.6, + "probability": 0.888 + }, + { + "start": 17979.02, + "end": 17981.22, + "probability": 0.9792 + }, + { + "start": 17982.76, + "end": 17986.46, + "probability": 0.8523 + }, + { + "start": 17987.04, + "end": 17989.96, + "probability": 0.9827 + }, + { + "start": 17990.72, + "end": 17994.02, + "probability": 0.9583 + }, + { + "start": 17995.1, + "end": 17996.44, + "probability": 0.723 + }, + { + "start": 17997.2, + "end": 17998.38, + "probability": 0.9976 + }, + { + "start": 17999.04, + "end": 18002.32, + "probability": 0.9746 + }, + { + "start": 18002.6, + "end": 18004.12, + "probability": 0.7495 + }, + { + "start": 18004.64, + "end": 18006.9, + "probability": 0.9178 + }, + { + "start": 18007.04, + "end": 18010.26, + "probability": 0.9065 + }, + { + "start": 18011.14, + "end": 18015.1, + "probability": 0.8355 + }, + { + "start": 18015.44, + "end": 18016.44, + "probability": 0.866 + }, + { + "start": 18016.98, + "end": 18019.28, + "probability": 0.8538 + }, + { + "start": 18019.42, + "end": 18021.03, + "probability": 0.4825 + }, + { + "start": 18022.1, + "end": 18024.72, + "probability": 0.6463 + }, + { + "start": 18025.64, + "end": 18026.44, + "probability": 0.9268 + }, + { + "start": 18027.06, + "end": 18028.1, + "probability": 0.9727 + }, + { + "start": 18028.38, + "end": 18030.62, + "probability": 0.7976 + }, + { + "start": 18031.28, + "end": 18034.5, + "probability": 0.9019 + }, + { + "start": 18034.58, + "end": 18035.84, + "probability": 0.8134 + }, + { + "start": 18036.16, + "end": 18038.96, + "probability": 0.3689 + }, + { + "start": 18039.2, + "end": 18041.36, + "probability": 0.9595 + }, + { + "start": 18041.96, + "end": 18042.85, + "probability": 0.8938 + }, + { + "start": 18043.5, + "end": 18046.06, + "probability": 0.6686 + }, + { + "start": 18046.24, + "end": 18047.04, + "probability": 0.95 + }, + { + "start": 18047.28, + "end": 18050.84, + "probability": 0.9364 + }, + { + "start": 18051.14, + "end": 18055.78, + "probability": 0.9413 + }, + { + "start": 18056.22, + "end": 18057.66, + "probability": 0.998 + }, + { + "start": 18058.0, + "end": 18062.26, + "probability": 0.9886 + }, + { + "start": 18062.64, + "end": 18064.62, + "probability": 0.9502 + }, + { + "start": 18066.5, + "end": 18067.72, + "probability": 0.8198 + }, + { + "start": 18067.72, + "end": 18069.46, + "probability": 0.7645 + }, + { + "start": 18069.74, + "end": 18071.54, + "probability": 0.8856 + }, + { + "start": 18071.76, + "end": 18075.74, + "probability": 0.9829 + }, + { + "start": 18076.36, + "end": 18078.44, + "probability": 0.9686 + }, + { + "start": 18078.84, + "end": 18079.34, + "probability": 0.9003 + }, + { + "start": 18079.38, + "end": 18081.06, + "probability": 0.9875 + }, + { + "start": 18081.3, + "end": 18081.38, + "probability": 0.1196 + }, + { + "start": 18081.38, + "end": 18083.07, + "probability": 0.9773 + }, + { + "start": 18084.06, + "end": 18087.44, + "probability": 0.4891 + }, + { + "start": 18087.48, + "end": 18089.68, + "probability": 0.3819 + }, + { + "start": 18089.68, + "end": 18090.47, + "probability": 0.6336 + }, + { + "start": 18091.26, + "end": 18092.82, + "probability": 0.5309 + }, + { + "start": 18093.02, + "end": 18094.92, + "probability": 0.8802 + }, + { + "start": 18095.3, + "end": 18098.56, + "probability": 0.9699 + }, + { + "start": 18099.5, + "end": 18099.72, + "probability": 0.0531 + }, + { + "start": 18099.72, + "end": 18102.92, + "probability": 0.9202 + }, + { + "start": 18102.96, + "end": 18103.92, + "probability": 0.9757 + }, + { + "start": 18104.66, + "end": 18105.9, + "probability": 0.1143 + }, + { + "start": 18108.5, + "end": 18108.82, + "probability": 0.0002 + }, + { + "start": 18108.82, + "end": 18108.84, + "probability": 0.1812 + }, + { + "start": 18108.84, + "end": 18110.06, + "probability": 0.1005 + }, + { + "start": 18110.22, + "end": 18111.94, + "probability": 0.8945 + }, + { + "start": 18112.26, + "end": 18117.14, + "probability": 0.9955 + }, + { + "start": 18117.18, + "end": 18118.48, + "probability": 0.9752 + }, + { + "start": 18118.6, + "end": 18119.23, + "probability": 0.9524 + }, + { + "start": 18120.26, + "end": 18123.3, + "probability": 0.9976 + }, + { + "start": 18123.3, + "end": 18126.8, + "probability": 0.824 + }, + { + "start": 18126.88, + "end": 18129.22, + "probability": 0.4981 + }, + { + "start": 18129.94, + "end": 18131.66, + "probability": 0.8631 + }, + { + "start": 18131.68, + "end": 18134.82, + "probability": 0.9793 + }, + { + "start": 18135.24, + "end": 18137.18, + "probability": 0.9424 + }, + { + "start": 18138.38, + "end": 18140.64, + "probability": 0.7586 + }, + { + "start": 18140.7, + "end": 18143.52, + "probability": 0.7871 + }, + { + "start": 18144.1, + "end": 18146.8, + "probability": 0.7954 + }, + { + "start": 18147.5, + "end": 18150.8, + "probability": 0.984 + }, + { + "start": 18151.34, + "end": 18154.38, + "probability": 0.9497 + }, + { + "start": 18155.0, + "end": 18157.32, + "probability": 0.8259 + }, + { + "start": 18157.52, + "end": 18160.82, + "probability": 0.9766 + }, + { + "start": 18160.84, + "end": 18163.7, + "probability": 0.9967 + }, + { + "start": 18164.04, + "end": 18166.24, + "probability": 0.9969 + }, + { + "start": 18166.8, + "end": 18168.84, + "probability": 0.7666 + }, + { + "start": 18169.14, + "end": 18172.76, + "probability": 0.9907 + }, + { + "start": 18172.8, + "end": 18175.8, + "probability": 0.9752 + }, + { + "start": 18175.96, + "end": 18177.46, + "probability": 0.7965 + }, + { + "start": 18177.6, + "end": 18178.5, + "probability": 0.9546 + }, + { + "start": 18179.04, + "end": 18181.3, + "probability": 0.9625 + }, + { + "start": 18181.78, + "end": 18182.18, + "probability": 0.9709 + }, + { + "start": 18182.58, + "end": 18183.8, + "probability": 0.9922 + }, + { + "start": 18184.82, + "end": 18188.76, + "probability": 0.8934 + }, + { + "start": 18189.42, + "end": 18192.72, + "probability": 0.9979 + }, + { + "start": 18192.94, + "end": 18193.6, + "probability": 0.2631 + }, + { + "start": 18193.7, + "end": 18194.18, + "probability": 0.2421 + }, + { + "start": 18194.38, + "end": 18196.46, + "probability": 0.5265 + }, + { + "start": 18196.46, + "end": 18199.84, + "probability": 0.2944 + }, + { + "start": 18200.32, + "end": 18201.4, + "probability": 0.7949 + }, + { + "start": 18201.62, + "end": 18205.66, + "probability": 0.6299 + }, + { + "start": 18206.0, + "end": 18210.03, + "probability": 0.6528 + }, + { + "start": 18210.38, + "end": 18212.47, + "probability": 0.917 + }, + { + "start": 18212.8, + "end": 18213.82, + "probability": 0.0598 + }, + { + "start": 18213.82, + "end": 18214.66, + "probability": 0.1788 + }, + { + "start": 18214.8, + "end": 18215.59, + "probability": 0.6392 + }, + { + "start": 18216.06, + "end": 18217.54, + "probability": 0.3754 + }, + { + "start": 18217.6, + "end": 18221.33, + "probability": 0.8468 + }, + { + "start": 18222.16, + "end": 18223.8, + "probability": 0.6673 + }, + { + "start": 18223.94, + "end": 18228.24, + "probability": 0.8617 + }, + { + "start": 18228.82, + "end": 18229.84, + "probability": 0.5826 + }, + { + "start": 18229.92, + "end": 18231.38, + "probability": 0.9862 + }, + { + "start": 18231.42, + "end": 18234.66, + "probability": 0.9487 + }, + { + "start": 18234.84, + "end": 18236.1, + "probability": 0.9459 + }, + { + "start": 18236.68, + "end": 18238.2, + "probability": 0.9722 + }, + { + "start": 18238.62, + "end": 18240.82, + "probability": 0.8994 + }, + { + "start": 18241.24, + "end": 18244.06, + "probability": 0.967 + }, + { + "start": 18244.9, + "end": 18250.92, + "probability": 0.9702 + }, + { + "start": 18251.26, + "end": 18255.38, + "probability": 0.9961 + }, + { + "start": 18255.38, + "end": 18260.07, + "probability": 0.9944 + }, + { + "start": 18260.46, + "end": 18261.46, + "probability": 0.569 + }, + { + "start": 18261.86, + "end": 18263.42, + "probability": 0.7363 + }, + { + "start": 18263.5, + "end": 18264.8, + "probability": 0.9353 + }, + { + "start": 18264.9, + "end": 18267.48, + "probability": 0.8315 + }, + { + "start": 18267.58, + "end": 18271.92, + "probability": 0.6705 + }, + { + "start": 18273.13, + "end": 18280.5, + "probability": 0.732 + }, + { + "start": 18281.07, + "end": 18282.24, + "probability": 0.5887 + }, + { + "start": 18282.82, + "end": 18283.94, + "probability": 0.5671 + }, + { + "start": 18284.1, + "end": 18290.34, + "probability": 0.6953 + }, + { + "start": 18291.12, + "end": 18294.78, + "probability": 0.9891 + }, + { + "start": 18295.4, + "end": 18296.03, + "probability": 0.5269 + }, + { + "start": 18296.42, + "end": 18297.44, + "probability": 0.9365 + }, + { + "start": 18297.82, + "end": 18299.14, + "probability": 0.7864 + }, + { + "start": 18299.52, + "end": 18306.64, + "probability": 0.9888 + }, + { + "start": 18306.96, + "end": 18307.58, + "probability": 0.5038 + }, + { + "start": 18307.8, + "end": 18312.32, + "probability": 0.9285 + }, + { + "start": 18312.62, + "end": 18313.41, + "probability": 0.6305 + }, + { + "start": 18313.94, + "end": 18315.62, + "probability": 0.9928 + }, + { + "start": 18316.26, + "end": 18320.0, + "probability": 0.9629 + }, + { + "start": 18326.76, + "end": 18328.3, + "probability": 0.5675 + }, + { + "start": 18331.98, + "end": 18335.22, + "probability": 0.5055 + }, + { + "start": 18335.46, + "end": 18335.8, + "probability": 0.0966 + }, + { + "start": 18335.8, + "end": 18336.3, + "probability": 0.3638 + }, + { + "start": 18336.5, + "end": 18337.66, + "probability": 0.6462 + }, + { + "start": 18338.82, + "end": 18342.36, + "probability": 0.9955 + }, + { + "start": 18343.52, + "end": 18346.4, + "probability": 0.9901 + }, + { + "start": 18347.84, + "end": 18348.48, + "probability": 0.8549 + }, + { + "start": 18349.68, + "end": 18352.34, + "probability": 0.6897 + }, + { + "start": 18355.78, + "end": 18355.94, + "probability": 0.0375 + }, + { + "start": 18355.94, + "end": 18355.94, + "probability": 0.0105 + }, + { + "start": 18355.94, + "end": 18357.6, + "probability": 0.9673 + }, + { + "start": 18358.06, + "end": 18363.26, + "probability": 0.9512 + }, + { + "start": 18364.6, + "end": 18366.14, + "probability": 0.6994 + }, + { + "start": 18366.8, + "end": 18370.38, + "probability": 0.9517 + }, + { + "start": 18370.54, + "end": 18372.09, + "probability": 0.8766 + }, + { + "start": 18373.92, + "end": 18378.1, + "probability": 0.991 + }, + { + "start": 18378.6, + "end": 18378.92, + "probability": 0.6633 + }, + { + "start": 18379.94, + "end": 18380.44, + "probability": 0.9917 + }, + { + "start": 18382.58, + "end": 18383.9, + "probability": 0.819 + }, + { + "start": 18385.04, + "end": 18386.16, + "probability": 0.9893 + }, + { + "start": 18387.36, + "end": 18389.8, + "probability": 0.9966 + }, + { + "start": 18392.28, + "end": 18397.64, + "probability": 0.98 + }, + { + "start": 18397.84, + "end": 18401.26, + "probability": 0.9523 + }, + { + "start": 18404.72, + "end": 18409.5, + "probability": 0.9879 + }, + { + "start": 18411.4, + "end": 18418.68, + "probability": 0.9241 + }, + { + "start": 18419.68, + "end": 18421.12, + "probability": 0.7998 + }, + { + "start": 18422.36, + "end": 18423.66, + "probability": 0.6453 + }, + { + "start": 18424.2, + "end": 18425.84, + "probability": 0.842 + }, + { + "start": 18426.7, + "end": 18429.96, + "probability": 0.9503 + }, + { + "start": 18430.58, + "end": 18435.28, + "probability": 0.9789 + }, + { + "start": 18437.78, + "end": 18439.64, + "probability": 0.9136 + }, + { + "start": 18442.7, + "end": 18449.82, + "probability": 0.9897 + }, + { + "start": 18450.08, + "end": 18451.01, + "probability": 0.7471 + }, + { + "start": 18453.74, + "end": 18456.8, + "probability": 0.9526 + }, + { + "start": 18457.6, + "end": 18457.62, + "probability": 0.7451 + }, + { + "start": 18458.16, + "end": 18463.14, + "probability": 0.9977 + }, + { + "start": 18463.14, + "end": 18469.42, + "probability": 0.9993 + }, + { + "start": 18471.14, + "end": 18477.24, + "probability": 0.9977 + }, + { + "start": 18479.0, + "end": 18481.7, + "probability": 0.9976 + }, + { + "start": 18481.94, + "end": 18483.24, + "probability": 0.6551 + }, + { + "start": 18483.38, + "end": 18489.02, + "probability": 0.9955 + }, + { + "start": 18489.12, + "end": 18490.42, + "probability": 0.9619 + }, + { + "start": 18491.9, + "end": 18494.64, + "probability": 0.8171 + }, + { + "start": 18495.54, + "end": 18496.76, + "probability": 0.8616 + }, + { + "start": 18497.44, + "end": 18501.34, + "probability": 0.9751 + }, + { + "start": 18502.52, + "end": 18506.24, + "probability": 0.9807 + }, + { + "start": 18507.2, + "end": 18508.44, + "probability": 0.6335 + }, + { + "start": 18508.64, + "end": 18509.28, + "probability": 0.9088 + }, + { + "start": 18510.7, + "end": 18513.43, + "probability": 0.5428 + }, + { + "start": 18513.66, + "end": 18514.6, + "probability": 0.7842 + }, + { + "start": 18514.82, + "end": 18515.44, + "probability": 0.691 + }, + { + "start": 18515.64, + "end": 18519.72, + "probability": 0.9943 + }, + { + "start": 18519.72, + "end": 18522.96, + "probability": 0.8979 + }, + { + "start": 18522.98, + "end": 18524.4, + "probability": 0.9463 + }, + { + "start": 18525.84, + "end": 18530.82, + "probability": 0.7803 + }, + { + "start": 18532.76, + "end": 18535.3, + "probability": 0.9596 + }, + { + "start": 18535.82, + "end": 18537.14, + "probability": 0.9289 + }, + { + "start": 18539.86, + "end": 18540.96, + "probability": 0.9111 + }, + { + "start": 18542.68, + "end": 18548.24, + "probability": 0.9977 + }, + { + "start": 18548.54, + "end": 18550.68, + "probability": 0.8154 + }, + { + "start": 18550.92, + "end": 18551.26, + "probability": 0.7916 + }, + { + "start": 18551.92, + "end": 18554.76, + "probability": 0.9759 + }, + { + "start": 18554.86, + "end": 18558.74, + "probability": 0.9893 + }, + { + "start": 18559.9, + "end": 18562.52, + "probability": 0.9215 + }, + { + "start": 18563.48, + "end": 18565.4, + "probability": 0.4218 + }, + { + "start": 18567.84, + "end": 18570.32, + "probability": 0.988 + }, + { + "start": 18571.58, + "end": 18575.92, + "probability": 0.5864 + }, + { + "start": 18576.72, + "end": 18584.22, + "probability": 0.9211 + }, + { + "start": 18585.02, + "end": 18591.08, + "probability": 0.9743 + }, + { + "start": 18591.8, + "end": 18596.82, + "probability": 0.9856 + }, + { + "start": 18596.82, + "end": 18600.44, + "probability": 0.9985 + }, + { + "start": 18604.68, + "end": 18609.32, + "probability": 0.9838 + }, + { + "start": 18610.04, + "end": 18615.48, + "probability": 0.9651 + }, + { + "start": 18615.78, + "end": 18617.48, + "probability": 0.9138 + }, + { + "start": 18618.8, + "end": 18622.94, + "probability": 0.9287 + }, + { + "start": 18623.64, + "end": 18626.3, + "probability": 0.9187 + }, + { + "start": 18626.92, + "end": 18629.14, + "probability": 0.8799 + }, + { + "start": 18629.14, + "end": 18630.75, + "probability": 0.9662 + }, + { + "start": 18630.94, + "end": 18632.32, + "probability": 0.8358 + }, + { + "start": 18632.5, + "end": 18632.88, + "probability": 0.6819 + }, + { + "start": 18633.04, + "end": 18637.8, + "probability": 0.5837 + }, + { + "start": 18638.46, + "end": 18642.76, + "probability": 0.9814 + }, + { + "start": 18643.32, + "end": 18647.48, + "probability": 0.9987 + }, + { + "start": 18648.74, + "end": 18654.6, + "probability": 0.9899 + }, + { + "start": 18654.8, + "end": 18658.2, + "probability": 0.9937 + }, + { + "start": 18658.2, + "end": 18660.94, + "probability": 0.9685 + }, + { + "start": 18661.42, + "end": 18666.38, + "probability": 0.9934 + }, + { + "start": 18666.38, + "end": 18671.5, + "probability": 0.9985 + }, + { + "start": 18671.66, + "end": 18672.28, + "probability": 0.7445 + }, + { + "start": 18672.84, + "end": 18675.56, + "probability": 0.9976 + }, + { + "start": 18675.96, + "end": 18676.62, + "probability": 0.7147 + }, + { + "start": 18677.16, + "end": 18680.54, + "probability": 0.9788 + }, + { + "start": 18680.98, + "end": 18686.12, + "probability": 0.5635 + }, + { + "start": 18686.66, + "end": 18690.9, + "probability": 0.9854 + }, + { + "start": 18691.84, + "end": 18692.72, + "probability": 0.9679 + }, + { + "start": 18693.48, + "end": 18694.88, + "probability": 0.9708 + }, + { + "start": 18696.16, + "end": 18698.18, + "probability": 0.868 + }, + { + "start": 18699.24, + "end": 18702.46, + "probability": 0.9987 + }, + { + "start": 18703.66, + "end": 18707.16, + "probability": 0.751 + }, + { + "start": 18708.16, + "end": 18709.7, + "probability": 0.9726 + }, + { + "start": 18709.88, + "end": 18711.0, + "probability": 0.6978 + }, + { + "start": 18711.46, + "end": 18715.9, + "probability": 0.9924 + }, + { + "start": 18716.56, + "end": 18718.98, + "probability": 0.9922 + }, + { + "start": 18719.34, + "end": 18722.76, + "probability": 0.9451 + }, + { + "start": 18722.8, + "end": 18723.24, + "probability": 0.5103 + }, + { + "start": 18723.3, + "end": 18723.78, + "probability": 0.8372 + }, + { + "start": 18723.82, + "end": 18724.72, + "probability": 0.8358 + }, + { + "start": 18724.86, + "end": 18727.86, + "probability": 0.7344 + }, + { + "start": 18728.78, + "end": 18733.71, + "probability": 0.7666 + }, + { + "start": 18737.86, + "end": 18741.08, + "probability": 0.1804 + }, + { + "start": 18744.2, + "end": 18744.64, + "probability": 0.3947 + }, + { + "start": 18744.82, + "end": 18748.68, + "probability": 0.192 + }, + { + "start": 18748.68, + "end": 18749.44, + "probability": 0.0287 + }, + { + "start": 18750.26, + "end": 18750.8, + "probability": 0.1371 + }, + { + "start": 18751.94, + "end": 18752.26, + "probability": 0.007 + }, + { + "start": 18752.3, + "end": 18755.14, + "probability": 0.0287 + }, + { + "start": 18755.14, + "end": 18756.18, + "probability": 0.1032 + }, + { + "start": 18757.2, + "end": 18757.2, + "probability": 0.0288 + }, + { + "start": 18759.0, + "end": 18759.14, + "probability": 0.146 + }, + { + "start": 18759.14, + "end": 18759.62, + "probability": 0.3235 + }, + { + "start": 18764.36, + "end": 18764.44, + "probability": 0.3447 + }, + { + "start": 18764.44, + "end": 18764.72, + "probability": 0.1914 + }, + { + "start": 18765.56, + "end": 18765.68, + "probability": 0.0297 + }, + { + "start": 18765.68, + "end": 18766.59, + "probability": 0.0635 + }, + { + "start": 18768.29, + "end": 18769.16, + "probability": 0.0127 + }, + { + "start": 18772.72, + "end": 18774.44, + "probability": 0.0542 + }, + { + "start": 18778.52, + "end": 18780.28, + "probability": 0.0136 + }, + { + "start": 18782.68, + "end": 18784.46, + "probability": 0.311 + }, + { + "start": 18787.52, + "end": 18790.7, + "probability": 0.6135 + }, + { + "start": 18792.28, + "end": 18794.86, + "probability": 0.6987 + }, + { + "start": 18795.8, + "end": 18797.3, + "probability": 0.7404 + }, + { + "start": 18798.62, + "end": 18803.02, + "probability": 0.9867 + }, + { + "start": 18803.24, + "end": 18805.66, + "probability": 0.8921 + }, + { + "start": 18805.82, + "end": 18806.38, + "probability": 0.9051 + }, + { + "start": 18807.0, + "end": 18807.42, + "probability": 0.6614 + }, + { + "start": 18808.28, + "end": 18809.42, + "probability": 0.9027 + }, + { + "start": 18811.06, + "end": 18812.06, + "probability": 0.8219 + }, + { + "start": 18812.14, + "end": 18815.7, + "probability": 0.9911 + }, + { + "start": 18815.78, + "end": 18818.13, + "probability": 0.9969 + }, + { + "start": 18819.56, + "end": 18825.54, + "probability": 0.9767 + }, + { + "start": 18826.2, + "end": 18827.72, + "probability": 0.8935 + }, + { + "start": 18827.76, + "end": 18829.0, + "probability": 0.9164 + }, + { + "start": 18830.96, + "end": 18834.32, + "probability": 0.8175 + }, + { + "start": 18836.62, + "end": 18840.36, + "probability": 0.9293 + }, + { + "start": 18841.24, + "end": 18842.0, + "probability": 0.9696 + }, + { + "start": 18843.24, + "end": 18844.14, + "probability": 0.7651 + }, + { + "start": 18845.76, + "end": 18849.78, + "probability": 0.8484 + }, + { + "start": 18851.26, + "end": 18854.56, + "probability": 0.9833 + }, + { + "start": 18856.78, + "end": 18858.04, + "probability": 0.9838 + }, + { + "start": 18858.7, + "end": 18862.18, + "probability": 0.887 + }, + { + "start": 18863.16, + "end": 18864.76, + "probability": 0.9653 + }, + { + "start": 18864.94, + "end": 18868.08, + "probability": 0.9448 + }, + { + "start": 18868.84, + "end": 18873.5, + "probability": 0.9614 + }, + { + "start": 18873.72, + "end": 18875.7, + "probability": 0.8916 + }, + { + "start": 18876.82, + "end": 18878.22, + "probability": 0.9424 + }, + { + "start": 18878.4, + "end": 18879.12, + "probability": 0.8343 + }, + { + "start": 18879.3, + "end": 18881.16, + "probability": 0.9835 + }, + { + "start": 18881.54, + "end": 18882.15, + "probability": 0.9868 + }, + { + "start": 18883.38, + "end": 18884.14, + "probability": 0.6176 + }, + { + "start": 18885.14, + "end": 18887.73, + "probability": 0.9659 + }, + { + "start": 18888.8, + "end": 18891.32, + "probability": 0.959 + }, + { + "start": 18892.12, + "end": 18893.18, + "probability": 0.9102 + }, + { + "start": 18894.06, + "end": 18896.94, + "probability": 0.9319 + }, + { + "start": 18897.66, + "end": 18898.52, + "probability": 0.9576 + }, + { + "start": 18899.2, + "end": 18902.66, + "probability": 0.9589 + }, + { + "start": 18903.52, + "end": 18906.52, + "probability": 0.9885 + }, + { + "start": 18906.52, + "end": 18910.1, + "probability": 0.9607 + }, + { + "start": 18910.24, + "end": 18912.54, + "probability": 0.9766 + }, + { + "start": 18913.66, + "end": 18916.9, + "probability": 0.7902 + }, + { + "start": 18917.5, + "end": 18918.54, + "probability": 0.4592 + }, + { + "start": 18918.6, + "end": 18921.1, + "probability": 0.9744 + }, + { + "start": 18921.2, + "end": 18921.71, + "probability": 0.5327 + }, + { + "start": 18922.02, + "end": 18922.64, + "probability": 0.9998 + }, + { + "start": 18923.24, + "end": 18924.08, + "probability": 0.7145 + }, + { + "start": 18924.18, + "end": 18925.35, + "probability": 0.895 + }, + { + "start": 18925.92, + "end": 18930.12, + "probability": 0.9788 + }, + { + "start": 18932.76, + "end": 18934.42, + "probability": 0.8888 + }, + { + "start": 18934.9, + "end": 18937.56, + "probability": 0.8247 + }, + { + "start": 18938.36, + "end": 18938.98, + "probability": 0.8004 + }, + { + "start": 18939.18, + "end": 18940.22, + "probability": 0.9927 + }, + { + "start": 18940.32, + "end": 18941.06, + "probability": 0.4113 + }, + { + "start": 18942.32, + "end": 18944.24, + "probability": 0.9699 + }, + { + "start": 18945.1, + "end": 18946.96, + "probability": 0.924 + }, + { + "start": 18948.1, + "end": 18950.34, + "probability": 0.9174 + }, + { + "start": 18950.7, + "end": 18951.84, + "probability": 0.8804 + }, + { + "start": 18952.32, + "end": 18954.52, + "probability": 0.611 + }, + { + "start": 18954.6, + "end": 18956.96, + "probability": 0.5156 + }, + { + "start": 18957.01, + "end": 18960.66, + "probability": 0.8923 + }, + { + "start": 18962.72, + "end": 18963.88, + "probability": 0.7625 + }, + { + "start": 18964.0, + "end": 18965.18, + "probability": 0.524 + }, + { + "start": 18965.34, + "end": 18966.02, + "probability": 0.8303 + }, + { + "start": 18967.32, + "end": 18968.04, + "probability": 0.5635 + }, + { + "start": 18968.82, + "end": 18970.6, + "probability": 0.997 + }, + { + "start": 18970.64, + "end": 18972.76, + "probability": 0.6856 + }, + { + "start": 18973.52, + "end": 18976.22, + "probability": 0.9159 + }, + { + "start": 18977.24, + "end": 18981.56, + "probability": 0.9283 + }, + { + "start": 18982.56, + "end": 18982.8, + "probability": 0.6724 + }, + { + "start": 18985.14, + "end": 18985.14, + "probability": 0.0277 + }, + { + "start": 18985.14, + "end": 18986.42, + "probability": 0.6783 + }, + { + "start": 18987.22, + "end": 18988.22, + "probability": 0.8601 + }, + { + "start": 18988.96, + "end": 18990.94, + "probability": 0.9697 + }, + { + "start": 18991.78, + "end": 18995.25, + "probability": 0.8908 + }, + { + "start": 18995.7, + "end": 18996.32, + "probability": 0.8538 + }, + { + "start": 18998.14, + "end": 19001.26, + "probability": 0.7937 + }, + { + "start": 19001.82, + "end": 19004.72, + "probability": 0.877 + }, + { + "start": 19005.42, + "end": 19007.48, + "probability": 0.7638 + }, + { + "start": 19008.2, + "end": 19008.4, + "probability": 0.4555 + }, + { + "start": 19008.48, + "end": 19009.74, + "probability": 0.8738 + }, + { + "start": 19010.24, + "end": 19011.76, + "probability": 0.9761 + }, + { + "start": 19012.3, + "end": 19013.68, + "probability": 0.9207 + }, + { + "start": 19016.04, + "end": 19017.1, + "probability": 0.8453 + }, + { + "start": 19018.08, + "end": 19019.32, + "probability": 0.9595 + }, + { + "start": 19022.1, + "end": 19026.62, + "probability": 0.9922 + }, + { + "start": 19028.82, + "end": 19032.42, + "probability": 0.9971 + }, + { + "start": 19032.42, + "end": 19036.12, + "probability": 0.9812 + }, + { + "start": 19037.56, + "end": 19038.64, + "probability": 0.9119 + }, + { + "start": 19040.42, + "end": 19043.88, + "probability": 0.9791 + }, + { + "start": 19045.3, + "end": 19047.44, + "probability": 0.9911 + }, + { + "start": 19049.3, + "end": 19051.56, + "probability": 0.9813 + }, + { + "start": 19051.76, + "end": 19053.76, + "probability": 0.8528 + }, + { + "start": 19055.0, + "end": 19058.7, + "probability": 0.9766 + }, + { + "start": 19059.7, + "end": 19060.8, + "probability": 0.9565 + }, + { + "start": 19060.9, + "end": 19062.14, + "probability": 0.8441 + }, + { + "start": 19062.24, + "end": 19062.8, + "probability": 0.6943 + }, + { + "start": 19063.74, + "end": 19067.6, + "probability": 0.9673 + }, + { + "start": 19067.7, + "end": 19069.46, + "probability": 0.6992 + }, + { + "start": 19070.04, + "end": 19071.92, + "probability": 0.6622 + }, + { + "start": 19072.14, + "end": 19075.02, + "probability": 0.4023 + }, + { + "start": 19075.02, + "end": 19077.64, + "probability": 0.8652 + }, + { + "start": 19078.02, + "end": 19078.7, + "probability": 0.7886 + }, + { + "start": 19078.72, + "end": 19080.64, + "probability": 0.4838 + }, + { + "start": 19080.84, + "end": 19081.6, + "probability": 0.9266 + }, + { + "start": 19082.48, + "end": 19083.34, + "probability": 0.7538 + }, + { + "start": 19083.54, + "end": 19084.38, + "probability": 0.918 + }, + { + "start": 19084.66, + "end": 19086.82, + "probability": 0.9912 + }, + { + "start": 19087.06, + "end": 19088.44, + "probability": 0.825 + }, + { + "start": 19088.5, + "end": 19088.78, + "probability": 0.998 + }, + { + "start": 19089.64, + "end": 19093.06, + "probability": 0.1715 + }, + { + "start": 19094.28, + "end": 19099.0, + "probability": 0.5849 + }, + { + "start": 19099.62, + "end": 19104.46, + "probability": 0.5244 + }, + { + "start": 19105.79, + "end": 19111.96, + "probability": 0.811 + }, + { + "start": 19112.68, + "end": 19114.17, + "probability": 0.9978 + }, + { + "start": 19114.6, + "end": 19116.74, + "probability": 0.8286 + }, + { + "start": 19117.78, + "end": 19121.92, + "probability": 0.5154 + }, + { + "start": 19123.34, + "end": 19124.11, + "probability": 0.6318 + }, + { + "start": 19124.58, + "end": 19128.12, + "probability": 0.9947 + }, + { + "start": 19128.96, + "end": 19129.9, + "probability": 0.493 + }, + { + "start": 19130.8, + "end": 19132.42, + "probability": 0.7809 + }, + { + "start": 19132.58, + "end": 19136.32, + "probability": 0.995 + }, + { + "start": 19138.08, + "end": 19139.86, + "probability": 0.9697 + }, + { + "start": 19141.88, + "end": 19143.96, + "probability": 0.8928 + }, + { + "start": 19144.04, + "end": 19144.54, + "probability": 0.5455 + }, + { + "start": 19147.28, + "end": 19148.3, + "probability": 0.9119 + }, + { + "start": 19148.34, + "end": 19149.36, + "probability": 0.7955 + }, + { + "start": 19149.4, + "end": 19154.7, + "probability": 0.9722 + }, + { + "start": 19155.96, + "end": 19156.82, + "probability": 0.9992 + }, + { + "start": 19159.26, + "end": 19162.38, + "probability": 0.9891 + }, + { + "start": 19163.32, + "end": 19166.48, + "probability": 0.802 + }, + { + "start": 19167.58, + "end": 19168.96, + "probability": 0.7432 + }, + { + "start": 19170.0, + "end": 19173.64, + "probability": 0.9969 + }, + { + "start": 19173.76, + "end": 19176.76, + "probability": 0.9967 + }, + { + "start": 19179.68, + "end": 19182.72, + "probability": 0.8892 + }, + { + "start": 19183.78, + "end": 19184.46, + "probability": 0.6506 + }, + { + "start": 19184.52, + "end": 19184.96, + "probability": 0.8718 + }, + { + "start": 19185.04, + "end": 19186.85, + "probability": 0.9846 + }, + { + "start": 19187.36, + "end": 19188.44, + "probability": 0.9966 + }, + { + "start": 19189.32, + "end": 19192.12, + "probability": 0.7538 + }, + { + "start": 19192.84, + "end": 19194.7, + "probability": 0.9664 + }, + { + "start": 19195.34, + "end": 19196.96, + "probability": 0.7016 + }, + { + "start": 19197.62, + "end": 19198.56, + "probability": 0.9563 + }, + { + "start": 19199.16, + "end": 19200.8, + "probability": 0.6984 + }, + { + "start": 19200.86, + "end": 19204.22, + "probability": 0.9687 + }, + { + "start": 19204.52, + "end": 19205.68, + "probability": 0.9329 + }, + { + "start": 19206.36, + "end": 19207.0, + "probability": 0.925 + }, + { + "start": 19207.06, + "end": 19207.96, + "probability": 0.7742 + }, + { + "start": 19208.02, + "end": 19210.0, + "probability": 0.9702 + }, + { + "start": 19210.42, + "end": 19212.46, + "probability": 0.8568 + }, + { + "start": 19214.36, + "end": 19216.18, + "probability": 0.1296 + }, + { + "start": 19216.62, + "end": 19217.14, + "probability": 0.2741 + }, + { + "start": 19217.3, + "end": 19219.56, + "probability": 0.6246 + }, + { + "start": 19219.56, + "end": 19221.16, + "probability": 0.995 + }, + { + "start": 19221.6, + "end": 19223.36, + "probability": 0.9961 + }, + { + "start": 19223.86, + "end": 19224.93, + "probability": 0.7566 + }, + { + "start": 19225.14, + "end": 19225.82, + "probability": 0.7757 + }, + { + "start": 19226.22, + "end": 19228.18, + "probability": 0.9277 + }, + { + "start": 19228.26, + "end": 19229.48, + "probability": 0.9712 + }, + { + "start": 19229.58, + "end": 19230.8, + "probability": 0.9275 + }, + { + "start": 19230.9, + "end": 19233.98, + "probability": 0.7934 + }, + { + "start": 19234.4, + "end": 19235.44, + "probability": 0.8821 + }, + { + "start": 19235.86, + "end": 19236.99, + "probability": 0.9867 + }, + { + "start": 19237.62, + "end": 19239.22, + "probability": 0.9355 + }, + { + "start": 19240.38, + "end": 19242.58, + "probability": 0.827 + }, + { + "start": 19243.12, + "end": 19245.12, + "probability": 0.868 + }, + { + "start": 19245.16, + "end": 19246.92, + "probability": 0.663 + }, + { + "start": 19247.54, + "end": 19249.36, + "probability": 0.9727 + }, + { + "start": 19249.98, + "end": 19252.98, + "probability": 0.9488 + }, + { + "start": 19253.64, + "end": 19254.1, + "probability": 0.5269 + }, + { + "start": 19255.2, + "end": 19257.7, + "probability": 0.907 + }, + { + "start": 19258.08, + "end": 19259.35, + "probability": 0.9263 + }, + { + "start": 19259.7, + "end": 19260.38, + "probability": 0.4275 + }, + { + "start": 19260.38, + "end": 19261.49, + "probability": 0.9333 + }, + { + "start": 19261.72, + "end": 19266.02, + "probability": 0.9871 + }, + { + "start": 19266.96, + "end": 19272.18, + "probability": 0.9753 + }, + { + "start": 19273.26, + "end": 19275.18, + "probability": 0.8415 + }, + { + "start": 19276.46, + "end": 19279.14, + "probability": 0.8982 + }, + { + "start": 19280.1, + "end": 19281.6, + "probability": 0.8942 + }, + { + "start": 19282.12, + "end": 19283.38, + "probability": 0.8319 + }, + { + "start": 19284.4, + "end": 19286.96, + "probability": 0.9382 + }, + { + "start": 19287.7, + "end": 19289.42, + "probability": 0.7863 + }, + { + "start": 19290.46, + "end": 19291.96, + "probability": 0.8794 + }, + { + "start": 19292.92, + "end": 19294.08, + "probability": 0.7361 + }, + { + "start": 19294.16, + "end": 19295.92, + "probability": 0.7404 + }, + { + "start": 19297.06, + "end": 19298.64, + "probability": 0.75 + }, + { + "start": 19299.98, + "end": 19301.26, + "probability": 0.9609 + }, + { + "start": 19301.34, + "end": 19301.78, + "probability": 0.8999 + }, + { + "start": 19303.2, + "end": 19304.69, + "probability": 0.9634 + }, + { + "start": 19308.02, + "end": 19308.96, + "probability": 0.5448 + }, + { + "start": 19309.82, + "end": 19311.7, + "probability": 0.6288 + }, + { + "start": 19311.9, + "end": 19313.52, + "probability": 0.8857 + }, + { + "start": 19313.7, + "end": 19314.12, + "probability": 0.8507 + }, + { + "start": 19315.96, + "end": 19317.66, + "probability": 0.9853 + }, + { + "start": 19319.36, + "end": 19323.35, + "probability": 0.9722 + }, + { + "start": 19325.1, + "end": 19326.58, + "probability": 0.972 + }, + { + "start": 19327.6, + "end": 19331.6, + "probability": 0.9719 + }, + { + "start": 19332.52, + "end": 19333.54, + "probability": 0.7756 + }, + { + "start": 19334.64, + "end": 19335.88, + "probability": 0.9709 + }, + { + "start": 19336.16, + "end": 19336.6, + "probability": 0.4337 + }, + { + "start": 19336.82, + "end": 19339.06, + "probability": 0.0346 + }, + { + "start": 19339.12, + "end": 19339.9, + "probability": 0.4429 + }, + { + "start": 19340.7, + "end": 19344.58, + "probability": 0.2029 + }, + { + "start": 19344.62, + "end": 19346.18, + "probability": 0.8843 + }, + { + "start": 19346.72, + "end": 19347.51, + "probability": 0.6326 + }, + { + "start": 19348.14, + "end": 19349.62, + "probability": 0.686 + }, + { + "start": 19349.74, + "end": 19350.92, + "probability": 0.8389 + }, + { + "start": 19351.6, + "end": 19352.08, + "probability": 0.8994 + }, + { + "start": 19353.46, + "end": 19357.16, + "probability": 0.9724 + }, + { + "start": 19357.28, + "end": 19357.58, + "probability": 0.7862 + }, + { + "start": 19357.64, + "end": 19359.18, + "probability": 0.973 + }, + { + "start": 19359.76, + "end": 19361.36, + "probability": 0.9961 + }, + { + "start": 19362.46, + "end": 19362.92, + "probability": 0.7518 + }, + { + "start": 19364.2, + "end": 19364.88, + "probability": 0.7176 + }, + { + "start": 19364.94, + "end": 19365.38, + "probability": 0.6148 + }, + { + "start": 19365.94, + "end": 19368.26, + "probability": 0.8818 + }, + { + "start": 19369.34, + "end": 19372.34, + "probability": 0.9164 + }, + { + "start": 19372.4, + "end": 19380.58, + "probability": 0.9478 + }, + { + "start": 19381.02, + "end": 19382.5, + "probability": 0.3389 + }, + { + "start": 19382.5, + "end": 19383.32, + "probability": 0.9678 + }, + { + "start": 19383.88, + "end": 19385.24, + "probability": 0.9459 + }, + { + "start": 19385.64, + "end": 19388.26, + "probability": 0.9888 + }, + { + "start": 19388.42, + "end": 19391.38, + "probability": 0.9564 + }, + { + "start": 19391.86, + "end": 19393.74, + "probability": 0.8633 + }, + { + "start": 19393.82, + "end": 19394.1, + "probability": 0.5388 + }, + { + "start": 19394.16, + "end": 19395.96, + "probability": 0.7713 + }, + { + "start": 19396.82, + "end": 19399.13, + "probability": 0.9905 + }, + { + "start": 19399.92, + "end": 19402.34, + "probability": 0.9872 + }, + { + "start": 19402.44, + "end": 19405.86, + "probability": 0.7481 + }, + { + "start": 19406.5, + "end": 19407.66, + "probability": 0.7882 + }, + { + "start": 19408.54, + "end": 19408.64, + "probability": 0.2622 + }, + { + "start": 19408.84, + "end": 19409.04, + "probability": 0.3942 + }, + { + "start": 19409.1, + "end": 19410.96, + "probability": 0.9741 + }, + { + "start": 19411.04, + "end": 19411.72, + "probability": 0.8708 + }, + { + "start": 19411.92, + "end": 19412.52, + "probability": 0.4008 + }, + { + "start": 19412.82, + "end": 19413.38, + "probability": 0.6648 + }, + { + "start": 19413.58, + "end": 19414.51, + "probability": 0.9175 + }, + { + "start": 19415.28, + "end": 19419.4, + "probability": 0.8734 + }, + { + "start": 19420.84, + "end": 19421.68, + "probability": 0.9717 + }, + { + "start": 19422.76, + "end": 19423.2, + "probability": 0.5044 + }, + { + "start": 19423.3, + "end": 19424.66, + "probability": 0.9958 + }, + { + "start": 19425.36, + "end": 19428.04, + "probability": 0.9601 + }, + { + "start": 19428.58, + "end": 19429.75, + "probability": 0.9971 + }, + { + "start": 19431.24, + "end": 19434.28, + "probability": 0.9862 + }, + { + "start": 19435.1, + "end": 19436.06, + "probability": 0.9657 + }, + { + "start": 19437.46, + "end": 19439.48, + "probability": 0.9743 + }, + { + "start": 19439.64, + "end": 19440.1, + "probability": 0.7794 + }, + { + "start": 19441.94, + "end": 19442.74, + "probability": 0.9788 + }, + { + "start": 19444.32, + "end": 19446.46, + "probability": 0.9763 + }, + { + "start": 19447.94, + "end": 19450.48, + "probability": 0.6954 + }, + { + "start": 19453.14, + "end": 19455.54, + "probability": 0.9019 + }, + { + "start": 19455.64, + "end": 19456.04, + "probability": 0.7373 + }, + { + "start": 19456.18, + "end": 19456.91, + "probability": 0.2543 + }, + { + "start": 19457.14, + "end": 19457.7, + "probability": 0.9194 + }, + { + "start": 19457.74, + "end": 19462.4, + "probability": 0.8995 + }, + { + "start": 19464.66, + "end": 19468.12, + "probability": 0.8946 + }, + { + "start": 19469.86, + "end": 19471.2, + "probability": 0.9346 + }, + { + "start": 19471.26, + "end": 19472.89, + "probability": 0.6879 + }, + { + "start": 19473.72, + "end": 19475.14, + "probability": 0.4682 + }, + { + "start": 19475.14, + "end": 19476.18, + "probability": 0.4086 + }, + { + "start": 19477.54, + "end": 19478.42, + "probability": 0.7864 + }, + { + "start": 19479.36, + "end": 19480.92, + "probability": 0.9941 + }, + { + "start": 19482.58, + "end": 19486.28, + "probability": 0.9125 + }, + { + "start": 19487.12, + "end": 19492.08, + "probability": 0.8473 + }, + { + "start": 19492.88, + "end": 19496.28, + "probability": 0.9875 + }, + { + "start": 19497.14, + "end": 19500.8, + "probability": 0.7667 + }, + { + "start": 19501.02, + "end": 19504.86, + "probability": 0.997 + }, + { + "start": 19505.38, + "end": 19506.98, + "probability": 0.983 + }, + { + "start": 19507.72, + "end": 19510.5, + "probability": 0.9916 + }, + { + "start": 19511.78, + "end": 19517.84, + "probability": 0.9991 + }, + { + "start": 19519.58, + "end": 19521.3, + "probability": 0.8617 + }, + { + "start": 19522.14, + "end": 19522.68, + "probability": 0.9941 + }, + { + "start": 19523.52, + "end": 19524.16, + "probability": 0.9314 + }, + { + "start": 19525.66, + "end": 19528.34, + "probability": 0.9871 + }, + { + "start": 19529.54, + "end": 19532.0, + "probability": 0.8217 + }, + { + "start": 19532.78, + "end": 19534.78, + "probability": 0.9942 + }, + { + "start": 19535.5, + "end": 19539.42, + "probability": 0.5122 + }, + { + "start": 19540.48, + "end": 19541.96, + "probability": 0.9346 + }, + { + "start": 19543.58, + "end": 19545.48, + "probability": 0.9932 + }, + { + "start": 19546.89, + "end": 19548.42, + "probability": 0.9766 + }, + { + "start": 19550.0, + "end": 19552.16, + "probability": 0.9984 + }, + { + "start": 19553.02, + "end": 19555.64, + "probability": 0.9966 + }, + { + "start": 19557.64, + "end": 19559.7, + "probability": 0.9998 + }, + { + "start": 19560.58, + "end": 19564.3, + "probability": 0.9321 + }, + { + "start": 19565.32, + "end": 19567.44, + "probability": 0.8067 + }, + { + "start": 19568.16, + "end": 19571.14, + "probability": 0.8647 + }, + { + "start": 19571.8, + "end": 19573.16, + "probability": 0.7263 + }, + { + "start": 19573.6, + "end": 19574.04, + "probability": 0.3716 + }, + { + "start": 19574.12, + "end": 19575.4, + "probability": 0.756 + }, + { + "start": 19576.02, + "end": 19577.53, + "probability": 0.8458 + }, + { + "start": 19578.0, + "end": 19578.1, + "probability": 0.1767 + }, + { + "start": 19578.1, + "end": 19579.0, + "probability": 0.4874 + }, + { + "start": 19579.02, + "end": 19580.5, + "probability": 0.2587 + }, + { + "start": 19581.08, + "end": 19581.68, + "probability": 0.4855 + }, + { + "start": 19582.06, + "end": 19582.4, + "probability": 0.4002 + }, + { + "start": 19582.48, + "end": 19583.5, + "probability": 0.6382 + }, + { + "start": 19584.28, + "end": 19584.7, + "probability": 0.5626 + }, + { + "start": 19584.8, + "end": 19587.37, + "probability": 0.7613 + }, + { + "start": 19588.4, + "end": 19590.68, + "probability": 0.9551 + }, + { + "start": 19590.78, + "end": 19591.34, + "probability": 0.7476 + }, + { + "start": 19592.42, + "end": 19592.86, + "probability": 0.5827 + }, + { + "start": 19593.32, + "end": 19593.84, + "probability": 0.9321 + }, + { + "start": 19594.2, + "end": 19594.96, + "probability": 0.9753 + }, + { + "start": 19595.2, + "end": 19595.54, + "probability": 0.9702 + }, + { + "start": 19596.82, + "end": 19597.46, + "probability": 0.8537 + }, + { + "start": 19598.0, + "end": 19600.7, + "probability": 0.8971 + }, + { + "start": 19601.04, + "end": 19606.04, + "probability": 0.9927 + }, + { + "start": 19606.12, + "end": 19607.74, + "probability": 0.8081 + }, + { + "start": 19607.86, + "end": 19608.72, + "probability": 0.8779 + }, + { + "start": 19611.32, + "end": 19613.52, + "probability": 0.7193 + }, + { + "start": 19613.64, + "end": 19616.27, + "probability": 0.5313 + }, + { + "start": 19617.84, + "end": 19621.42, + "probability": 0.9015 + }, + { + "start": 19624.36, + "end": 19625.64, + "probability": 0.4358 + }, + { + "start": 19626.42, + "end": 19626.62, + "probability": 0.9053 + }, + { + "start": 19627.18, + "end": 19629.38, + "probability": 0.7607 + }, + { + "start": 19629.56, + "end": 19630.2, + "probability": 0.7898 + }, + { + "start": 19630.98, + "end": 19632.2, + "probability": 0.9622 + }, + { + "start": 19632.2, + "end": 19633.58, + "probability": 0.8269 + }, + { + "start": 19634.74, + "end": 19637.57, + "probability": 0.9879 + }, + { + "start": 19638.18, + "end": 19638.72, + "probability": 0.2083 + }, + { + "start": 19638.84, + "end": 19640.32, + "probability": 0.7767 + }, + { + "start": 19640.38, + "end": 19641.78, + "probability": 0.9049 + }, + { + "start": 19644.0, + "end": 19646.48, + "probability": 0.6988 + }, + { + "start": 19647.12, + "end": 19647.9, + "probability": 0.6256 + }, + { + "start": 19648.58, + "end": 19650.42, + "probability": 0.7102 + }, + { + "start": 19650.58, + "end": 19651.84, + "probability": 0.9271 + }, + { + "start": 19651.96, + "end": 19654.0, + "probability": 0.9629 + }, + { + "start": 19655.78, + "end": 19657.3, + "probability": 0.9902 + }, + { + "start": 19657.32, + "end": 19659.12, + "probability": 0.9639 + }, + { + "start": 19659.78, + "end": 19662.06, + "probability": 0.8662 + }, + { + "start": 19662.66, + "end": 19663.98, + "probability": 0.8681 + }, + { + "start": 19664.06, + "end": 19665.44, + "probability": 0.9009 + }, + { + "start": 19666.26, + "end": 19667.46, + "probability": 0.9369 + }, + { + "start": 19667.62, + "end": 19669.42, + "probability": 0.877 + }, + { + "start": 19670.2, + "end": 19673.06, + "probability": 0.9701 + }, + { + "start": 19673.24, + "end": 19676.82, + "probability": 0.7593 + }, + { + "start": 19677.46, + "end": 19679.38, + "probability": 0.9861 + }, + { + "start": 19680.16, + "end": 19680.98, + "probability": 0.6535 + }, + { + "start": 19681.68, + "end": 19682.24, + "probability": 0.4531 + }, + { + "start": 19682.24, + "end": 19686.74, + "probability": 0.9849 + }, + { + "start": 19687.68, + "end": 19688.92, + "probability": 0.9672 + }, + { + "start": 19690.54, + "end": 19691.92, + "probability": 0.9857 + }, + { + "start": 19693.24, + "end": 19694.24, + "probability": 0.7886 + }, + { + "start": 19694.84, + "end": 19698.36, + "probability": 0.8481 + }, + { + "start": 19699.59, + "end": 19701.4, + "probability": 0.8188 + }, + { + "start": 19701.48, + "end": 19702.16, + "probability": 0.8473 + }, + { + "start": 19702.76, + "end": 19705.4, + "probability": 0.9859 + }, + { + "start": 19706.36, + "end": 19707.64, + "probability": 0.7319 + }, + { + "start": 19708.0, + "end": 19708.96, + "probability": 0.9573 + }, + { + "start": 19710.02, + "end": 19711.08, + "probability": 0.9751 + }, + { + "start": 19711.14, + "end": 19711.84, + "probability": 0.98 + }, + { + "start": 19711.98, + "end": 19713.58, + "probability": 0.9884 + }, + { + "start": 19714.16, + "end": 19715.14, + "probability": 0.8735 + }, + { + "start": 19715.16, + "end": 19717.08, + "probability": 0.7158 + }, + { + "start": 19717.16, + "end": 19719.32, + "probability": 0.7961 + }, + { + "start": 19720.1, + "end": 19721.14, + "probability": 0.7646 + }, + { + "start": 19721.94, + "end": 19722.34, + "probability": 0.9436 + }, + { + "start": 19723.02, + "end": 19723.75, + "probability": 0.531 + }, + { + "start": 19724.18, + "end": 19725.0, + "probability": 0.986 + }, + { + "start": 19725.18, + "end": 19725.95, + "probability": 0.8333 + }, + { + "start": 19726.12, + "end": 19726.42, + "probability": 0.7284 + }, + { + "start": 19726.52, + "end": 19727.15, + "probability": 0.7573 + }, + { + "start": 19729.3, + "end": 19729.3, + "probability": 0.0906 + }, + { + "start": 19729.3, + "end": 19730.18, + "probability": 0.1279 + }, + { + "start": 19730.36, + "end": 19730.62, + "probability": 0.347 + }, + { + "start": 19730.72, + "end": 19731.64, + "probability": 0.983 + }, + { + "start": 19732.22, + "end": 19732.48, + "probability": 0.1734 + }, + { + "start": 19732.54, + "end": 19734.18, + "probability": 0.5394 + }, + { + "start": 19736.11, + "end": 19736.98, + "probability": 0.5065 + }, + { + "start": 19736.98, + "end": 19739.43, + "probability": 0.8083 + }, + { + "start": 19740.2, + "end": 19741.1, + "probability": 0.8408 + }, + { + "start": 19741.22, + "end": 19742.3, + "probability": 0.8142 + }, + { + "start": 19742.5, + "end": 19744.34, + "probability": 0.9221 + }, + { + "start": 19744.4, + "end": 19745.24, + "probability": 0.8816 + }, + { + "start": 19746.68, + "end": 19749.64, + "probability": 0.8888 + }, + { + "start": 19750.94, + "end": 19752.96, + "probability": 0.9932 + }, + { + "start": 19753.46, + "end": 19755.24, + "probability": 0.9877 + }, + { + "start": 19755.34, + "end": 19757.9, + "probability": 0.9906 + }, + { + "start": 19758.32, + "end": 19759.8, + "probability": 0.973 + }, + { + "start": 19759.94, + "end": 19761.1, + "probability": 0.9824 + }, + { + "start": 19761.24, + "end": 19761.68, + "probability": 0.514 + }, + { + "start": 19762.08, + "end": 19762.76, + "probability": 0.5571 + }, + { + "start": 19763.58, + "end": 19763.58, + "probability": 0.2292 + }, + { + "start": 19763.72, + "end": 19766.28, + "probability": 0.8352 + }, + { + "start": 19766.86, + "end": 19770.44, + "probability": 0.8689 + }, + { + "start": 19771.38, + "end": 19772.64, + "probability": 0.8125 + }, + { + "start": 19772.78, + "end": 19773.2, + "probability": 0.3962 + }, + { + "start": 19773.24, + "end": 19773.64, + "probability": 0.5165 + }, + { + "start": 19773.84, + "end": 19774.64, + "probability": 0.6211 + }, + { + "start": 19774.78, + "end": 19775.02, + "probability": 0.1141 + }, + { + "start": 19775.02, + "end": 19775.64, + "probability": 0.2501 + }, + { + "start": 19775.78, + "end": 19776.06, + "probability": 0.5667 + }, + { + "start": 19776.48, + "end": 19777.12, + "probability": 0.5736 + }, + { + "start": 19777.8, + "end": 19778.12, + "probability": 0.3165 + }, + { + "start": 19778.48, + "end": 19779.12, + "probability": 0.7933 + }, + { + "start": 19779.76, + "end": 19781.12, + "probability": 0.9536 + }, + { + "start": 19781.78, + "end": 19782.29, + "probability": 0.6411 + }, + { + "start": 19783.02, + "end": 19784.06, + "probability": 0.9536 + }, + { + "start": 19784.54, + "end": 19787.02, + "probability": 0.9515 + }, + { + "start": 19787.46, + "end": 19789.48, + "probability": 0.8608 + }, + { + "start": 19789.52, + "end": 19789.9, + "probability": 0.8171 + }, + { + "start": 19789.98, + "end": 19791.98, + "probability": 0.8147 + }, + { + "start": 19792.02, + "end": 19794.9, + "probability": 0.9445 + }, + { + "start": 19795.92, + "end": 19796.88, + "probability": 0.3683 + }, + { + "start": 19798.96, + "end": 19800.62, + "probability": 0.0378 + }, + { + "start": 19806.28, + "end": 19808.52, + "probability": 0.2455 + }, + { + "start": 19819.44, + "end": 19822.54, + "probability": 0.052 + }, + { + "start": 19823.38, + "end": 19824.48, + "probability": 0.7886 + }, + { + "start": 19826.32, + "end": 19829.66, + "probability": 0.9977 + }, + { + "start": 19829.86, + "end": 19835.0, + "probability": 0.9987 + }, + { + "start": 19835.54, + "end": 19837.25, + "probability": 0.9908 + }, + { + "start": 19838.28, + "end": 19840.62, + "probability": 0.9985 + }, + { + "start": 19841.06, + "end": 19842.52, + "probability": 0.7519 + }, + { + "start": 19844.58, + "end": 19848.76, + "probability": 0.9944 + }, + { + "start": 19849.36, + "end": 19850.78, + "probability": 0.9814 + }, + { + "start": 19851.34, + "end": 19857.12, + "probability": 0.9841 + }, + { + "start": 19857.72, + "end": 19858.58, + "probability": 0.7178 + }, + { + "start": 19859.54, + "end": 19860.76, + "probability": 0.8252 + }, + { + "start": 19861.5, + "end": 19864.52, + "probability": 0.9813 + }, + { + "start": 19864.64, + "end": 19869.26, + "probability": 0.8807 + }, + { + "start": 19870.58, + "end": 19872.94, + "probability": 0.8088 + }, + { + "start": 19873.2, + "end": 19877.1, + "probability": 0.9821 + }, + { + "start": 19878.1, + "end": 19883.22, + "probability": 0.9679 + }, + { + "start": 19883.22, + "end": 19888.68, + "probability": 0.9397 + }, + { + "start": 19890.76, + "end": 19894.8, + "probability": 0.9978 + }, + { + "start": 19895.98, + "end": 19899.1, + "probability": 0.8181 + }, + { + "start": 19900.16, + "end": 19901.2, + "probability": 0.7262 + }, + { + "start": 19903.1, + "end": 19906.88, + "probability": 0.7498 + }, + { + "start": 19909.24, + "end": 19910.48, + "probability": 0.9031 + }, + { + "start": 19910.52, + "end": 19911.7, + "probability": 0.9685 + }, + { + "start": 19911.96, + "end": 19912.4, + "probability": 0.7434 + }, + { + "start": 19913.02, + "end": 19916.54, + "probability": 0.9377 + }, + { + "start": 19917.16, + "end": 19918.64, + "probability": 0.4537 + }, + { + "start": 19919.6, + "end": 19925.18, + "probability": 0.7759 + }, + { + "start": 19926.32, + "end": 19931.65, + "probability": 0.8315 + }, + { + "start": 19933.02, + "end": 19938.36, + "probability": 0.9824 + }, + { + "start": 19938.94, + "end": 19940.58, + "probability": 0.9115 + }, + { + "start": 19941.8, + "end": 19944.5, + "probability": 0.8446 + }, + { + "start": 19946.3, + "end": 19948.46, + "probability": 0.9876 + }, + { + "start": 19949.96, + "end": 19953.12, + "probability": 0.9617 + }, + { + "start": 19954.58, + "end": 19957.3, + "probability": 0.9392 + }, + { + "start": 19958.36, + "end": 19960.41, + "probability": 0.8496 + }, + { + "start": 19961.68, + "end": 19964.06, + "probability": 0.9723 + }, + { + "start": 19964.14, + "end": 19964.84, + "probability": 0.6851 + }, + { + "start": 19965.06, + "end": 19967.46, + "probability": 0.9303 + }, + { + "start": 19968.34, + "end": 19970.8, + "probability": 0.9352 + }, + { + "start": 19973.0, + "end": 19976.94, + "probability": 0.9596 + }, + { + "start": 19979.26, + "end": 19981.96, + "probability": 0.7876 + }, + { + "start": 19982.72, + "end": 19983.98, + "probability": 0.9258 + }, + { + "start": 19984.92, + "end": 19986.1, + "probability": 0.9814 + }, + { + "start": 19988.54, + "end": 19990.74, + "probability": 0.971 + }, + { + "start": 19990.74, + "end": 19993.42, + "probability": 0.9507 + }, + { + "start": 19993.98, + "end": 19996.95, + "probability": 0.8026 + }, + { + "start": 19999.2, + "end": 20001.92, + "probability": 0.9806 + }, + { + "start": 20003.1, + "end": 20005.02, + "probability": 0.9067 + }, + { + "start": 20006.08, + "end": 20008.96, + "probability": 0.9629 + }, + { + "start": 20008.96, + "end": 20012.22, + "probability": 0.9507 + }, + { + "start": 20012.72, + "end": 20013.62, + "probability": 0.9951 + }, + { + "start": 20014.74, + "end": 20015.58, + "probability": 0.8434 + }, + { + "start": 20016.28, + "end": 20018.51, + "probability": 0.9962 + }, + { + "start": 20019.08, + "end": 20019.92, + "probability": 0.9492 + }, + { + "start": 20021.68, + "end": 20024.8, + "probability": 0.9212 + }, + { + "start": 20026.52, + "end": 20030.34, + "probability": 0.8862 + }, + { + "start": 20031.66, + "end": 20034.12, + "probability": 0.9934 + }, + { + "start": 20034.42, + "end": 20035.25, + "probability": 0.9939 + }, + { + "start": 20035.88, + "end": 20039.76, + "probability": 0.9591 + }, + { + "start": 20040.02, + "end": 20040.68, + "probability": 0.6346 + }, + { + "start": 20041.14, + "end": 20042.48, + "probability": 0.9324 + }, + { + "start": 20043.74, + "end": 20049.76, + "probability": 0.9773 + }, + { + "start": 20051.26, + "end": 20052.0, + "probability": 0.814 + }, + { + "start": 20052.82, + "end": 20055.14, + "probability": 0.955 + }, + { + "start": 20056.7, + "end": 20059.42, + "probability": 0.9939 + }, + { + "start": 20060.72, + "end": 20061.04, + "probability": 0.8839 + }, + { + "start": 20061.72, + "end": 20063.6, + "probability": 0.9908 + }, + { + "start": 20064.8, + "end": 20071.36, + "probability": 0.9758 + }, + { + "start": 20073.56, + "end": 20079.16, + "probability": 0.9561 + }, + { + "start": 20079.82, + "end": 20084.26, + "probability": 0.998 + }, + { + "start": 20084.66, + "end": 20088.08, + "probability": 0.7957 + }, + { + "start": 20088.72, + "end": 20092.94, + "probability": 0.9958 + }, + { + "start": 20093.32, + "end": 20099.06, + "probability": 0.9946 + }, + { + "start": 20099.6, + "end": 20100.64, + "probability": 0.9551 + }, + { + "start": 20102.24, + "end": 20106.16, + "probability": 0.9963 + }, + { + "start": 20106.8, + "end": 20109.38, + "probability": 0.9814 + }, + { + "start": 20110.26, + "end": 20110.68, + "probability": 0.7295 + }, + { + "start": 20111.02, + "end": 20111.38, + "probability": 0.8048 + }, + { + "start": 20111.52, + "end": 20112.64, + "probability": 0.9312 + }, + { + "start": 20112.98, + "end": 20114.52, + "probability": 0.9571 + }, + { + "start": 20115.86, + "end": 20118.6, + "probability": 0.994 + }, + { + "start": 20119.16, + "end": 20121.1, + "probability": 0.9914 + }, + { + "start": 20122.0, + "end": 20127.24, + "probability": 0.9809 + }, + { + "start": 20128.04, + "end": 20131.84, + "probability": 0.9909 + }, + { + "start": 20131.94, + "end": 20132.54, + "probability": 0.6594 + }, + { + "start": 20132.58, + "end": 20133.0, + "probability": 0.978 + }, + { + "start": 20133.8, + "end": 20135.7, + "probability": 0.994 + }, + { + "start": 20135.8, + "end": 20142.2, + "probability": 0.9715 + }, + { + "start": 20142.76, + "end": 20146.78, + "probability": 0.9876 + }, + { + "start": 20147.42, + "end": 20150.72, + "probability": 0.9971 + }, + { + "start": 20151.28, + "end": 20156.34, + "probability": 0.9575 + }, + { + "start": 20156.5, + "end": 20158.02, + "probability": 0.5472 + }, + { + "start": 20158.14, + "end": 20162.7, + "probability": 0.9945 + }, + { + "start": 20162.7, + "end": 20167.96, + "probability": 0.9429 + }, + { + "start": 20168.62, + "end": 20170.4, + "probability": 0.9059 + }, + { + "start": 20171.0, + "end": 20176.88, + "probability": 0.9803 + }, + { + "start": 20176.9, + "end": 20177.42, + "probability": 0.5033 + }, + { + "start": 20177.52, + "end": 20178.82, + "probability": 0.7559 + }, + { + "start": 20180.57, + "end": 20187.26, + "probability": 0.8435 + }, + { + "start": 20188.0, + "end": 20189.75, + "probability": 0.8836 + }, + { + "start": 20189.92, + "end": 20192.86, + "probability": 0.8051 + }, + { + "start": 20213.9, + "end": 20215.28, + "probability": 0.591 + }, + { + "start": 20215.88, + "end": 20217.3, + "probability": 0.8845 + }, + { + "start": 20226.56, + "end": 20228.42, + "probability": 0.4146 + }, + { + "start": 20228.52, + "end": 20229.86, + "probability": 0.8594 + }, + { + "start": 20230.24, + "end": 20234.18, + "probability": 0.9781 + }, + { + "start": 20235.58, + "end": 20240.22, + "probability": 0.9197 + }, + { + "start": 20243.64, + "end": 20244.32, + "probability": 0.7559 + }, + { + "start": 20246.14, + "end": 20250.54, + "probability": 0.9241 + }, + { + "start": 20252.58, + "end": 20255.22, + "probability": 0.8787 + }, + { + "start": 20256.76, + "end": 20258.8, + "probability": 0.8879 + }, + { + "start": 20259.92, + "end": 20262.6, + "probability": 0.9542 + }, + { + "start": 20264.34, + "end": 20270.1, + "probability": 0.9734 + }, + { + "start": 20271.58, + "end": 20278.64, + "probability": 0.9946 + }, + { + "start": 20280.82, + "end": 20282.48, + "probability": 0.9897 + }, + { + "start": 20286.48, + "end": 20286.84, + "probability": 0.678 + }, + { + "start": 20287.76, + "end": 20290.3, + "probability": 0.9556 + }, + { + "start": 20295.42, + "end": 20296.28, + "probability": 0.5045 + }, + { + "start": 20297.56, + "end": 20301.24, + "probability": 0.9032 + }, + { + "start": 20303.58, + "end": 20303.94, + "probability": 0.9565 + }, + { + "start": 20305.86, + "end": 20306.92, + "probability": 0.5733 + }, + { + "start": 20308.56, + "end": 20308.92, + "probability": 0.8918 + }, + { + "start": 20310.38, + "end": 20311.64, + "probability": 0.825 + }, + { + "start": 20313.98, + "end": 20315.92, + "probability": 0.7913 + }, + { + "start": 20317.48, + "end": 20319.3, + "probability": 0.5223 + }, + { + "start": 20320.0, + "end": 20321.9, + "probability": 0.8335 + }, + { + "start": 20321.9, + "end": 20325.28, + "probability": 0.9979 + }, + { + "start": 20326.62, + "end": 20330.56, + "probability": 0.6238 + }, + { + "start": 20331.82, + "end": 20334.72, + "probability": 0.6403 + }, + { + "start": 20336.9, + "end": 20338.9, + "probability": 0.9974 + }, + { + "start": 20340.22, + "end": 20342.86, + "probability": 0.9985 + }, + { + "start": 20343.04, + "end": 20344.13, + "probability": 0.8926 + }, + { + "start": 20346.92, + "end": 20348.06, + "probability": 0.9534 + }, + { + "start": 20349.92, + "end": 20353.8, + "probability": 0.9655 + }, + { + "start": 20354.68, + "end": 20355.66, + "probability": 0.8921 + }, + { + "start": 20357.02, + "end": 20357.62, + "probability": 0.8518 + }, + { + "start": 20358.22, + "end": 20360.98, + "probability": 0.9413 + }, + { + "start": 20361.72, + "end": 20368.8, + "probability": 0.8959 + }, + { + "start": 20371.1, + "end": 20372.72, + "probability": 0.9075 + }, + { + "start": 20374.7, + "end": 20376.04, + "probability": 0.9669 + }, + { + "start": 20378.92, + "end": 20382.22, + "probability": 0.9757 + }, + { + "start": 20384.8, + "end": 20388.84, + "probability": 0.9949 + }, + { + "start": 20390.6, + "end": 20391.94, + "probability": 0.9585 + }, + { + "start": 20393.28, + "end": 20395.34, + "probability": 0.8196 + }, + { + "start": 20396.48, + "end": 20399.26, + "probability": 0.9531 + }, + { + "start": 20401.12, + "end": 20402.0, + "probability": 0.4826 + }, + { + "start": 20402.2, + "end": 20403.0, + "probability": 0.8504 + }, + { + "start": 20403.98, + "end": 20404.64, + "probability": 0.7141 + }, + { + "start": 20405.74, + "end": 20408.64, + "probability": 0.9517 + }, + { + "start": 20409.4, + "end": 20411.54, + "probability": 0.98 + }, + { + "start": 20412.76, + "end": 20416.76, + "probability": 0.835 + }, + { + "start": 20417.82, + "end": 20420.06, + "probability": 0.9968 + }, + { + "start": 20421.02, + "end": 20421.8, + "probability": 0.9988 + }, + { + "start": 20422.5, + "end": 20428.6, + "probability": 0.9976 + }, + { + "start": 20429.36, + "end": 20431.1, + "probability": 0.6473 + }, + { + "start": 20431.7, + "end": 20435.16, + "probability": 0.9326 + }, + { + "start": 20435.66, + "end": 20436.64, + "probability": 0.988 + }, + { + "start": 20437.94, + "end": 20440.18, + "probability": 0.9839 + }, + { + "start": 20440.72, + "end": 20447.14, + "probability": 0.9985 + }, + { + "start": 20448.18, + "end": 20449.91, + "probability": 0.9384 + }, + { + "start": 20452.22, + "end": 20452.88, + "probability": 0.9785 + }, + { + "start": 20453.96, + "end": 20458.98, + "probability": 0.9932 + }, + { + "start": 20460.4, + "end": 20467.94, + "probability": 0.9849 + }, + { + "start": 20467.96, + "end": 20473.56, + "probability": 0.9979 + }, + { + "start": 20474.42, + "end": 20479.72, + "probability": 0.6776 + }, + { + "start": 20480.26, + "end": 20484.2, + "probability": 0.937 + }, + { + "start": 20484.48, + "end": 20489.31, + "probability": 0.9844 + }, + { + "start": 20496.78, + "end": 20497.3, + "probability": 0.6264 + }, + { + "start": 20498.14, + "end": 20502.68, + "probability": 0.9072 + }, + { + "start": 20503.68, + "end": 20505.46, + "probability": 0.9839 + }, + { + "start": 20506.38, + "end": 20507.72, + "probability": 0.9618 + }, + { + "start": 20508.6, + "end": 20510.2, + "probability": 0.8662 + }, + { + "start": 20511.02, + "end": 20513.98, + "probability": 0.975 + }, + { + "start": 20514.0, + "end": 20518.54, + "probability": 0.9702 + }, + { + "start": 20519.42, + "end": 20520.96, + "probability": 0.9944 + }, + { + "start": 20521.88, + "end": 20522.14, + "probability": 0.9473 + }, + { + "start": 20523.74, + "end": 20525.58, + "probability": 0.9709 + }, + { + "start": 20526.54, + "end": 20527.74, + "probability": 0.864 + }, + { + "start": 20528.7, + "end": 20532.66, + "probability": 0.9394 + }, + { + "start": 20533.54, + "end": 20537.24, + "probability": 0.994 + }, + { + "start": 20537.5, + "end": 20538.1, + "probability": 0.6192 + }, + { + "start": 20538.2, + "end": 20539.74, + "probability": 0.6926 + }, + { + "start": 20540.46, + "end": 20543.92, + "probability": 0.9958 + }, + { + "start": 20544.2, + "end": 20547.38, + "probability": 0.837 + }, + { + "start": 20547.42, + "end": 20547.8, + "probability": 0.7593 + }, + { + "start": 20548.08, + "end": 20550.04, + "probability": 0.7646 + }, + { + "start": 20550.22, + "end": 20553.02, + "probability": 0.9543 + }, + { + "start": 20563.34, + "end": 20565.38, + "probability": 0.5667 + }, + { + "start": 20569.8, + "end": 20570.24, + "probability": 0.2175 + }, + { + "start": 20570.32, + "end": 20570.72, + "probability": 0.8274 + }, + { + "start": 20570.94, + "end": 20572.74, + "probability": 0.6443 + }, + { + "start": 20573.1, + "end": 20573.36, + "probability": 0.7245 + }, + { + "start": 20574.2, + "end": 20574.68, + "probability": 0.285 + }, + { + "start": 20574.68, + "end": 20575.06, + "probability": 0.3322 + }, + { + "start": 20575.14, + "end": 20579.2, + "probability": 0.6877 + }, + { + "start": 20580.1, + "end": 20583.56, + "probability": 0.5129 + }, + { + "start": 20584.66, + "end": 20587.0, + "probability": 0.2887 + }, + { + "start": 20587.42, + "end": 20588.71, + "probability": 0.7238 + }, + { + "start": 20589.78, + "end": 20590.36, + "probability": 0.9473 + }, + { + "start": 20591.5, + "end": 20593.1, + "probability": 0.4558 + }, + { + "start": 20593.1, + "end": 20593.86, + "probability": 0.3171 + }, + { + "start": 20598.24, + "end": 20598.92, + "probability": 0.0524 + }, + { + "start": 20598.92, + "end": 20599.26, + "probability": 0.0095 + }, + { + "start": 20599.38, + "end": 20600.12, + "probability": 0.3814 + }, + { + "start": 20600.4, + "end": 20601.4, + "probability": 0.2577 + }, + { + "start": 20602.72, + "end": 20605.4, + "probability": 0.6322 + }, + { + "start": 20605.5, + "end": 20609.24, + "probability": 0.6177 + }, + { + "start": 20609.4, + "end": 20610.66, + "probability": 0.8141 + }, + { + "start": 20610.72, + "end": 20612.72, + "probability": 0.9878 + }, + { + "start": 20612.88, + "end": 20613.9, + "probability": 0.9907 + }, + { + "start": 20613.98, + "end": 20615.05, + "probability": 0.9915 + }, + { + "start": 20616.62, + "end": 20618.7, + "probability": 0.6184 + }, + { + "start": 20618.89, + "end": 20623.0, + "probability": 0.9904 + }, + { + "start": 20623.34, + "end": 20625.3, + "probability": 0.9444 + }, + { + "start": 20625.44, + "end": 20627.31, + "probability": 0.7935 + }, + { + "start": 20627.66, + "end": 20627.88, + "probability": 0.5463 + }, + { + "start": 20627.94, + "end": 20628.68, + "probability": 0.8784 + }, + { + "start": 20628.88, + "end": 20631.04, + "probability": 0.9868 + }, + { + "start": 20631.04, + "end": 20634.26, + "probability": 0.9964 + }, + { + "start": 20635.16, + "end": 20638.54, + "probability": 0.9758 + }, + { + "start": 20638.6, + "end": 20639.5, + "probability": 0.5873 + }, + { + "start": 20640.42, + "end": 20643.12, + "probability": 0.9647 + }, + { + "start": 20643.7, + "end": 20646.36, + "probability": 0.9328 + }, + { + "start": 20646.46, + "end": 20647.34, + "probability": 0.9346 + }, + { + "start": 20647.4, + "end": 20648.28, + "probability": 0.9424 + }, + { + "start": 20648.72, + "end": 20649.24, + "probability": 0.9276 + }, + { + "start": 20650.02, + "end": 20654.06, + "probability": 0.9835 + }, + { + "start": 20654.16, + "end": 20655.52, + "probability": 0.9889 + }, + { + "start": 20656.18, + "end": 20661.32, + "probability": 0.9825 + }, + { + "start": 20661.32, + "end": 20664.66, + "probability": 0.9755 + }, + { + "start": 20665.54, + "end": 20669.54, + "probability": 0.9984 + }, + { + "start": 20669.54, + "end": 20673.56, + "probability": 0.9877 + }, + { + "start": 20674.18, + "end": 20678.0, + "probability": 0.9956 + }, + { + "start": 20678.0, + "end": 20682.92, + "probability": 0.9694 + }, + { + "start": 20683.8, + "end": 20684.0, + "probability": 0.7442 + }, + { + "start": 20684.52, + "end": 20686.54, + "probability": 0.9135 + }, + { + "start": 20687.54, + "end": 20689.02, + "probability": 0.9819 + }, + { + "start": 20689.16, + "end": 20691.7, + "probability": 0.9468 + }, + { + "start": 20691.7, + "end": 20696.74, + "probability": 0.871 + }, + { + "start": 20696.74, + "end": 20701.24, + "probability": 0.9902 + }, + { + "start": 20701.36, + "end": 20701.88, + "probability": 0.8683 + }, + { + "start": 20701.96, + "end": 20702.64, + "probability": 0.7444 + }, + { + "start": 20703.14, + "end": 20704.78, + "probability": 0.6621 + }, + { + "start": 20704.92, + "end": 20705.64, + "probability": 0.5294 + }, + { + "start": 20706.5, + "end": 20707.06, + "probability": 0.3511 + }, + { + "start": 20707.16, + "end": 20713.34, + "probability": 0.9911 + }, + { + "start": 20713.92, + "end": 20716.28, + "probability": 0.8557 + }, + { + "start": 20716.92, + "end": 20720.56, + "probability": 0.9821 + }, + { + "start": 20721.14, + "end": 20723.62, + "probability": 0.9352 + }, + { + "start": 20724.1, + "end": 20724.73, + "probability": 0.9277 + }, + { + "start": 20724.94, + "end": 20726.8, + "probability": 0.9961 + }, + { + "start": 20726.8, + "end": 20730.28, + "probability": 0.9803 + }, + { + "start": 20730.76, + "end": 20731.74, + "probability": 0.9573 + }, + { + "start": 20732.26, + "end": 20735.3, + "probability": 0.9839 + }, + { + "start": 20735.88, + "end": 20736.16, + "probability": 0.5125 + }, + { + "start": 20736.32, + "end": 20738.82, + "probability": 0.9949 + }, + { + "start": 20739.08, + "end": 20739.88, + "probability": 0.6576 + }, + { + "start": 20740.42, + "end": 20742.2, + "probability": 0.8911 + }, + { + "start": 20742.44, + "end": 20743.05, + "probability": 0.9488 + }, + { + "start": 20743.32, + "end": 20743.88, + "probability": 0.9265 + }, + { + "start": 20744.12, + "end": 20747.06, + "probability": 0.973 + }, + { + "start": 20747.06, + "end": 20748.91, + "probability": 0.9834 + }, + { + "start": 20750.44, + "end": 20750.72, + "probability": 0.165 + }, + { + "start": 20750.84, + "end": 20751.18, + "probability": 0.6606 + }, + { + "start": 20751.28, + "end": 20755.4, + "probability": 0.9649 + }, + { + "start": 20756.0, + "end": 20758.1, + "probability": 0.9922 + }, + { + "start": 20759.56, + "end": 20761.48, + "probability": 0.9924 + }, + { + "start": 20762.56, + "end": 20764.9, + "probability": 0.8945 + }, + { + "start": 20765.5, + "end": 20767.78, + "probability": 0.9771 + }, + { + "start": 20767.98, + "end": 20770.26, + "probability": 0.9964 + }, + { + "start": 20770.98, + "end": 20773.42, + "probability": 0.9851 + }, + { + "start": 20773.9, + "end": 20774.36, + "probability": 0.7327 + }, + { + "start": 20774.84, + "end": 20778.1, + "probability": 0.9168 + }, + { + "start": 20778.8, + "end": 20781.9, + "probability": 0.9263 + }, + { + "start": 20782.36, + "end": 20783.96, + "probability": 0.9648 + }, + { + "start": 20784.04, + "end": 20786.76, + "probability": 0.8583 + }, + { + "start": 20786.84, + "end": 20787.92, + "probability": 0.84 + }, + { + "start": 20788.06, + "end": 20788.16, + "probability": 0.8225 + }, + { + "start": 20788.44, + "end": 20789.96, + "probability": 0.9817 + }, + { + "start": 20790.68, + "end": 20793.38, + "probability": 0.9466 + }, + { + "start": 20793.8, + "end": 20797.66, + "probability": 0.9725 + }, + { + "start": 20797.8, + "end": 20800.36, + "probability": 0.9888 + }, + { + "start": 20800.82, + "end": 20805.76, + "probability": 0.9875 + }, + { + "start": 20806.0, + "end": 20806.94, + "probability": 0.9194 + }, + { + "start": 20807.32, + "end": 20808.46, + "probability": 0.985 + }, + { + "start": 20808.68, + "end": 20810.4, + "probability": 0.8128 + }, + { + "start": 20810.78, + "end": 20812.54, + "probability": 0.8595 + }, + { + "start": 20812.62, + "end": 20814.92, + "probability": 0.8504 + }, + { + "start": 20815.28, + "end": 20816.24, + "probability": 0.7992 + }, + { + "start": 20816.46, + "end": 20819.26, + "probability": 0.6939 + }, + { + "start": 20820.02, + "end": 20822.3, + "probability": 0.6994 + }, + { + "start": 20822.94, + "end": 20824.79, + "probability": 0.9978 + }, + { + "start": 20825.82, + "end": 20829.6, + "probability": 0.9982 + }, + { + "start": 20829.6, + "end": 20834.24, + "probability": 0.9925 + }, + { + "start": 20834.4, + "end": 20835.36, + "probability": 0.8759 + }, + { + "start": 20835.82, + "end": 20838.56, + "probability": 0.8828 + }, + { + "start": 20840.28, + "end": 20840.88, + "probability": 0.0861 + }, + { + "start": 20841.3, + "end": 20841.8, + "probability": 0.0776 + }, + { + "start": 20841.98, + "end": 20843.26, + "probability": 0.7168 + }, + { + "start": 20843.48, + "end": 20844.28, + "probability": 0.894 + }, + { + "start": 20844.42, + "end": 20846.8, + "probability": 0.7706 + }, + { + "start": 20847.08, + "end": 20847.6, + "probability": 0.7227 + }, + { + "start": 20847.72, + "end": 20851.02, + "probability": 0.8127 + }, + { + "start": 20851.06, + "end": 20852.42, + "probability": 0.7803 + }, + { + "start": 20852.56, + "end": 20856.42, + "probability": 0.992 + }, + { + "start": 20857.2, + "end": 20857.96, + "probability": 0.9628 + }, + { + "start": 20858.0, + "end": 20858.94, + "probability": 0.8191 + }, + { + "start": 20859.42, + "end": 20862.18, + "probability": 0.8071 + }, + { + "start": 20862.74, + "end": 20864.42, + "probability": 0.9821 + }, + { + "start": 20864.5, + "end": 20865.52, + "probability": 0.9731 + }, + { + "start": 20865.9, + "end": 20867.46, + "probability": 0.924 + }, + { + "start": 20867.82, + "end": 20869.7, + "probability": 0.9572 + }, + { + "start": 20870.5, + "end": 20875.56, + "probability": 0.8584 + }, + { + "start": 20875.72, + "end": 20878.6, + "probability": 0.9899 + }, + { + "start": 20879.52, + "end": 20880.86, + "probability": 0.9661 + }, + { + "start": 20881.3, + "end": 20885.48, + "probability": 0.9855 + }, + { + "start": 20885.48, + "end": 20890.02, + "probability": 0.9524 + }, + { + "start": 20890.06, + "end": 20890.68, + "probability": 0.9519 + }, + { + "start": 20891.44, + "end": 20894.2, + "probability": 0.9872 + }, + { + "start": 20894.2, + "end": 20897.0, + "probability": 0.8075 + }, + { + "start": 20897.84, + "end": 20901.26, + "probability": 0.9883 + }, + { + "start": 20901.74, + "end": 20903.12, + "probability": 0.9186 + }, + { + "start": 20903.28, + "end": 20905.08, + "probability": 0.9348 + }, + { + "start": 20905.14, + "end": 20905.54, + "probability": 0.9589 + }, + { + "start": 20905.98, + "end": 20906.14, + "probability": 0.6809 + }, + { + "start": 20906.3, + "end": 20906.78, + "probability": 0.7212 + }, + { + "start": 20906.9, + "end": 20907.52, + "probability": 0.8914 + }, + { + "start": 20908.04, + "end": 20908.64, + "probability": 0.6679 + }, + { + "start": 20909.56, + "end": 20911.7, + "probability": 0.9899 + }, + { + "start": 20911.7, + "end": 20914.08, + "probability": 0.8886 + }, + { + "start": 20914.98, + "end": 20917.74, + "probability": 0.8692 + }, + { + "start": 20918.7, + "end": 20919.56, + "probability": 0.3663 + }, + { + "start": 20919.6, + "end": 20919.78, + "probability": 0.4616 + }, + { + "start": 20919.9, + "end": 20922.2, + "probability": 0.7768 + }, + { + "start": 20922.36, + "end": 20923.88, + "probability": 0.963 + }, + { + "start": 20925.06, + "end": 20926.54, + "probability": 0.966 + }, + { + "start": 20926.68, + "end": 20930.24, + "probability": 0.993 + }, + { + "start": 20930.38, + "end": 20931.84, + "probability": 0.7581 + }, + { + "start": 20932.2, + "end": 20934.16, + "probability": 0.914 + }, + { + "start": 20935.04, + "end": 20935.6, + "probability": 0.8598 + }, + { + "start": 20935.68, + "end": 20936.54, + "probability": 0.9465 + }, + { + "start": 20936.64, + "end": 20939.76, + "probability": 0.972 + }, + { + "start": 20940.32, + "end": 20945.58, + "probability": 0.9429 + }, + { + "start": 20945.7, + "end": 20947.54, + "probability": 0.9937 + }, + { + "start": 20947.74, + "end": 20948.68, + "probability": 0.9927 + }, + { + "start": 20949.28, + "end": 20953.62, + "probability": 0.8692 + }, + { + "start": 20953.62, + "end": 20957.0, + "probability": 0.986 + }, + { + "start": 20957.66, + "end": 20961.06, + "probability": 0.7768 + }, + { + "start": 20961.88, + "end": 20964.68, + "probability": 0.9879 + }, + { + "start": 20965.1, + "end": 20966.16, + "probability": 0.8667 + }, + { + "start": 20966.58, + "end": 20969.48, + "probability": 0.9084 + }, + { + "start": 20969.84, + "end": 20976.0, + "probability": 0.9904 + }, + { + "start": 20976.38, + "end": 20977.04, + "probability": 0.8911 + }, + { + "start": 20977.34, + "end": 20978.13, + "probability": 0.9473 + }, + { + "start": 20978.74, + "end": 20979.84, + "probability": 0.9858 + }, + { + "start": 20980.0, + "end": 20980.92, + "probability": 0.9833 + }, + { + "start": 20981.26, + "end": 20982.3, + "probability": 0.6408 + }, + { + "start": 20982.78, + "end": 20984.1, + "probability": 0.5537 + }, + { + "start": 20984.38, + "end": 20986.84, + "probability": 0.9807 + }, + { + "start": 20987.1, + "end": 20987.4, + "probability": 0.8845 + }, + { + "start": 20987.98, + "end": 20988.64, + "probability": 0.5396 + }, + { + "start": 20989.42, + "end": 20993.0, + "probability": 0.6548 + }, + { + "start": 20995.23, + "end": 20997.4, + "probability": 0.993 + }, + { + "start": 20998.68, + "end": 20999.52, + "probability": 0.6241 + }, + { + "start": 21001.22, + "end": 21001.52, + "probability": 0.6193 + }, + { + "start": 21001.52, + "end": 21002.48, + "probability": 0.7421 + }, + { + "start": 21002.82, + "end": 21005.2, + "probability": 0.0702 + }, + { + "start": 21006.22, + "end": 21006.62, + "probability": 0.0626 + }, + { + "start": 21007.6, + "end": 21008.5, + "probability": 0.0588 + }, + { + "start": 21011.54, + "end": 21011.64, + "probability": 0.1535 + }, + { + "start": 21013.5, + "end": 21016.84, + "probability": 0.0751 + }, + { + "start": 21019.94, + "end": 21020.44, + "probability": 0.279 + }, + { + "start": 21024.8, + "end": 21025.62, + "probability": 0.5465 + }, + { + "start": 21027.51, + "end": 21028.68, + "probability": 0.0622 + }, + { + "start": 21030.42, + "end": 21030.74, + "probability": 0.0548 + }, + { + "start": 21034.94, + "end": 21037.44, + "probability": 0.8939 + }, + { + "start": 21039.22, + "end": 21040.3, + "probability": 0.1507 + }, + { + "start": 21042.38, + "end": 21042.89, + "probability": 0.1317 + }, + { + "start": 21069.42, + "end": 21071.04, + "probability": 0.319 + }, + { + "start": 21072.5, + "end": 21074.46, + "probability": 0.9961 + }, + { + "start": 21076.1, + "end": 21078.44, + "probability": 0.9929 + }, + { + "start": 21079.08, + "end": 21080.58, + "probability": 0.8239 + }, + { + "start": 21082.94, + "end": 21086.6, + "probability": 0.8052 + }, + { + "start": 21089.46, + "end": 21090.46, + "probability": 0.2605 + }, + { + "start": 21091.36, + "end": 21095.2, + "probability": 0.9988 + }, + { + "start": 21095.2, + "end": 21099.84, + "probability": 0.9882 + }, + { + "start": 21101.72, + "end": 21102.82, + "probability": 0.841 + }, + { + "start": 21103.58, + "end": 21104.92, + "probability": 0.7487 + }, + { + "start": 21106.5, + "end": 21108.96, + "probability": 0.9544 + }, + { + "start": 21109.64, + "end": 21110.9, + "probability": 0.8483 + }, + { + "start": 21111.62, + "end": 21112.64, + "probability": 0.6201 + }, + { + "start": 21115.2, + "end": 21118.62, + "probability": 0.9396 + }, + { + "start": 21119.22, + "end": 21128.3, + "probability": 0.9902 + }, + { + "start": 21130.34, + "end": 21131.08, + "probability": 0.9722 + }, + { + "start": 21131.14, + "end": 21132.36, + "probability": 0.9276 + }, + { + "start": 21132.84, + "end": 21134.64, + "probability": 0.9591 + }, + { + "start": 21136.9, + "end": 21139.7, + "probability": 0.9978 + }, + { + "start": 21139.96, + "end": 21145.26, + "probability": 0.9995 + }, + { + "start": 21146.94, + "end": 21156.4, + "probability": 0.9293 + }, + { + "start": 21157.08, + "end": 21158.44, + "probability": 0.9941 + }, + { + "start": 21160.44, + "end": 21166.18, + "probability": 0.9946 + }, + { + "start": 21166.68, + "end": 21168.32, + "probability": 0.9937 + }, + { + "start": 21169.56, + "end": 21175.28, + "probability": 0.9812 + }, + { + "start": 21177.24, + "end": 21177.7, + "probability": 0.5415 + }, + { + "start": 21178.96, + "end": 21179.68, + "probability": 0.894 + }, + { + "start": 21179.8, + "end": 21180.38, + "probability": 0.7259 + }, + { + "start": 21180.46, + "end": 21181.96, + "probability": 0.7942 + }, + { + "start": 21182.7, + "end": 21186.34, + "probability": 0.9899 + }, + { + "start": 21187.28, + "end": 21189.0, + "probability": 0.9071 + }, + { + "start": 21190.68, + "end": 21192.14, + "probability": 0.762 + }, + { + "start": 21192.34, + "end": 21193.22, + "probability": 0.39 + }, + { + "start": 21193.58, + "end": 21194.26, + "probability": 0.8608 + }, + { + "start": 21195.56, + "end": 21198.68, + "probability": 0.9629 + }, + { + "start": 21200.02, + "end": 21204.87, + "probability": 0.8925 + }, + { + "start": 21206.1, + "end": 21209.5, + "probability": 0.7815 + }, + { + "start": 21210.22, + "end": 21210.8, + "probability": 0.9945 + }, + { + "start": 21211.64, + "end": 21216.46, + "probability": 0.9893 + }, + { + "start": 21216.66, + "end": 21217.14, + "probability": 0.8958 + }, + { + "start": 21217.72, + "end": 21221.22, + "probability": 0.993 + }, + { + "start": 21221.96, + "end": 21223.14, + "probability": 0.8086 + }, + { + "start": 21224.32, + "end": 21225.04, + "probability": 0.9947 + }, + { + "start": 21226.34, + "end": 21231.16, + "probability": 0.9979 + }, + { + "start": 21231.22, + "end": 21232.76, + "probability": 0.8401 + }, + { + "start": 21232.84, + "end": 21233.4, + "probability": 0.8529 + }, + { + "start": 21234.18, + "end": 21236.66, + "probability": 0.9051 + }, + { + "start": 21237.72, + "end": 21241.08, + "probability": 0.9652 + }, + { + "start": 21241.7, + "end": 21242.88, + "probability": 0.8536 + }, + { + "start": 21244.06, + "end": 21248.74, + "probability": 0.9792 + }, + { + "start": 21249.8, + "end": 21252.24, + "probability": 0.8331 + }, + { + "start": 21253.34, + "end": 21254.99, + "probability": 0.9912 + }, + { + "start": 21255.36, + "end": 21256.88, + "probability": 0.9482 + }, + { + "start": 21257.48, + "end": 21259.66, + "probability": 0.9909 + }, + { + "start": 21260.18, + "end": 21262.58, + "probability": 0.9434 + }, + { + "start": 21263.0, + "end": 21265.71, + "probability": 0.8198 + }, + { + "start": 21267.6, + "end": 21267.7, + "probability": 0.0329 + }, + { + "start": 21267.7, + "end": 21272.48, + "probability": 0.9702 + }, + { + "start": 21273.66, + "end": 21275.32, + "probability": 0.9964 + }, + { + "start": 21277.14, + "end": 21279.28, + "probability": 0.9749 + }, + { + "start": 21279.32, + "end": 21280.54, + "probability": 0.6119 + }, + { + "start": 21280.54, + "end": 21280.8, + "probability": 0.3679 + }, + { + "start": 21280.86, + "end": 21281.7, + "probability": 0.9421 + }, + { + "start": 21282.92, + "end": 21289.64, + "probability": 0.9346 + }, + { + "start": 21290.6, + "end": 21292.68, + "probability": 0.5665 + }, + { + "start": 21293.94, + "end": 21298.58, + "probability": 0.7511 + }, + { + "start": 21299.06, + "end": 21301.59, + "probability": 0.8247 + }, + { + "start": 21302.34, + "end": 21305.12, + "probability": 0.9604 + }, + { + "start": 21305.2, + "end": 21308.52, + "probability": 0.9824 + }, + { + "start": 21308.74, + "end": 21313.07, + "probability": 0.9783 + }, + { + "start": 21313.16, + "end": 21317.24, + "probability": 0.9918 + }, + { + "start": 21317.26, + "end": 21320.72, + "probability": 0.1475 + }, + { + "start": 21320.82, + "end": 21323.78, + "probability": 0.9821 + }, + { + "start": 21324.22, + "end": 21329.66, + "probability": 0.955 + }, + { + "start": 21330.1, + "end": 21334.9, + "probability": 0.62 + }, + { + "start": 21335.1, + "end": 21340.24, + "probability": 0.6919 + }, + { + "start": 21340.36, + "end": 21342.1, + "probability": 0.2479 + }, + { + "start": 21342.12, + "end": 21344.0, + "probability": 0.9504 + }, + { + "start": 21344.54, + "end": 21346.58, + "probability": 0.9944 + }, + { + "start": 21346.9, + "end": 21351.08, + "probability": 0.9568 + }, + { + "start": 21351.4, + "end": 21353.26, + "probability": 0.9814 + }, + { + "start": 21353.7, + "end": 21355.92, + "probability": 0.9944 + }, + { + "start": 21356.36, + "end": 21356.84, + "probability": 0.5642 + }, + { + "start": 21356.9, + "end": 21358.22, + "probability": 0.991 + }, + { + "start": 21358.62, + "end": 21359.76, + "probability": 0.9704 + }, + { + "start": 21359.84, + "end": 21364.42, + "probability": 0.9684 + }, + { + "start": 21364.58, + "end": 21366.9, + "probability": 0.4943 + }, + { + "start": 21367.44, + "end": 21369.44, + "probability": 0.8682 + }, + { + "start": 21369.92, + "end": 21370.3, + "probability": 0.5313 + }, + { + "start": 21370.5, + "end": 21375.32, + "probability": 0.96 + }, + { + "start": 21375.86, + "end": 21381.04, + "probability": 0.9988 + }, + { + "start": 21381.18, + "end": 21381.52, + "probability": 0.7781 + }, + { + "start": 21381.98, + "end": 21383.12, + "probability": 0.5048 + }, + { + "start": 21383.42, + "end": 21385.16, + "probability": 0.886 + }, + { + "start": 21385.7, + "end": 21389.14, + "probability": 0.9661 + }, + { + "start": 21389.36, + "end": 21392.24, + "probability": 0.9971 + }, + { + "start": 21392.76, + "end": 21393.82, + "probability": 0.1119 + }, + { + "start": 21394.12, + "end": 21394.44, + "probability": 0.622 + }, + { + "start": 21394.44, + "end": 21395.46, + "probability": 0.7473 + }, + { + "start": 21395.8, + "end": 21396.38, + "probability": 0.5959 + }, + { + "start": 21396.44, + "end": 21397.62, + "probability": 0.9514 + }, + { + "start": 21397.86, + "end": 21402.76, + "probability": 0.9116 + }, + { + "start": 21403.48, + "end": 21403.52, + "probability": 0.655 + }, + { + "start": 21403.52, + "end": 21405.84, + "probability": 0.9919 + }, + { + "start": 21406.02, + "end": 21409.88, + "probability": 0.9923 + }, + { + "start": 21410.1, + "end": 21410.99, + "probability": 0.7189 + }, + { + "start": 21411.14, + "end": 21411.74, + "probability": 0.1829 + }, + { + "start": 21412.12, + "end": 21412.32, + "probability": 0.3109 + }, + { + "start": 21413.08, + "end": 21413.9, + "probability": 0.428 + }, + { + "start": 21413.9, + "end": 21415.72, + "probability": 0.9263 + }, + { + "start": 21415.82, + "end": 21416.08, + "probability": 0.3811 + }, + { + "start": 21416.14, + "end": 21416.58, + "probability": 0.6387 + }, + { + "start": 21417.34, + "end": 21419.32, + "probability": 0.9924 + }, + { + "start": 21419.84, + "end": 21421.36, + "probability": 0.9629 + }, + { + "start": 21421.88, + "end": 21423.62, + "probability": 0.9766 + }, + { + "start": 21424.14, + "end": 21429.76, + "probability": 0.9189 + }, + { + "start": 21431.78, + "end": 21432.84, + "probability": 0.3667 + }, + { + "start": 21436.34, + "end": 21436.64, + "probability": 0.383 + }, + { + "start": 21437.08, + "end": 21439.42, + "probability": 0.972 + }, + { + "start": 21439.52, + "end": 21443.08, + "probability": 0.9319 + }, + { + "start": 21443.52, + "end": 21444.98, + "probability": 0.6935 + }, + { + "start": 21445.08, + "end": 21447.26, + "probability": 0.7788 + }, + { + "start": 21447.34, + "end": 21449.86, + "probability": 0.9919 + }, + { + "start": 21450.56, + "end": 21451.12, + "probability": 0.5421 + }, + { + "start": 21451.26, + "end": 21452.9, + "probability": 0.6957 + }, + { + "start": 21453.04, + "end": 21453.26, + "probability": 0.501 + }, + { + "start": 21453.98, + "end": 21455.56, + "probability": 0.992 + }, + { + "start": 21455.84, + "end": 21457.88, + "probability": 0.9838 + }, + { + "start": 21458.28, + "end": 21462.98, + "probability": 0.9662 + }, + { + "start": 21463.06, + "end": 21463.32, + "probability": 0.4783 + }, + { + "start": 21463.46, + "end": 21463.96, + "probability": 0.5539 + }, + { + "start": 21464.82, + "end": 21468.8, + "probability": 0.9399 + }, + { + "start": 21469.28, + "end": 21470.76, + "probability": 0.9217 + }, + { + "start": 21471.5, + "end": 21472.86, + "probability": 0.8961 + }, + { + "start": 21473.5, + "end": 21475.92, + "probability": 0.6672 + }, + { + "start": 21475.96, + "end": 21479.1, + "probability": 0.9974 + }, + { + "start": 21479.44, + "end": 21480.9, + "probability": 0.7433 + }, + { + "start": 21481.02, + "end": 21483.12, + "probability": 0.9824 + }, + { + "start": 21483.64, + "end": 21486.04, + "probability": 0.9845 + }, + { + "start": 21486.6, + "end": 21486.8, + "probability": 0.2661 + }, + { + "start": 21486.96, + "end": 21489.2, + "probability": 0.6672 + }, + { + "start": 21489.38, + "end": 21489.72, + "probability": 0.6257 + }, + { + "start": 21489.78, + "end": 21491.4, + "probability": 0.7632 + }, + { + "start": 21491.48, + "end": 21493.42, + "probability": 0.7364 + }, + { + "start": 21493.92, + "end": 21496.5, + "probability": 0.9796 + }, + { + "start": 21496.86, + "end": 21499.42, + "probability": 0.801 + }, + { + "start": 21499.54, + "end": 21502.6, + "probability": 0.8521 + }, + { + "start": 21502.6, + "end": 21503.75, + "probability": 0.9758 + }, + { + "start": 21503.92, + "end": 21505.96, + "probability": 0.6343 + }, + { + "start": 21506.12, + "end": 21506.52, + "probability": 0.7565 + }, + { + "start": 21506.64, + "end": 21506.74, + "probability": 0.5816 + }, + { + "start": 21506.8, + "end": 21507.38, + "probability": 0.5903 + }, + { + "start": 21507.52, + "end": 21510.08, + "probability": 0.9108 + }, + { + "start": 21510.72, + "end": 21511.88, + "probability": 0.7799 + }, + { + "start": 21513.94, + "end": 21517.06, + "probability": 0.9585 + }, + { + "start": 21517.68, + "end": 21524.5, + "probability": 0.9761 + }, + { + "start": 21525.06, + "end": 21528.34, + "probability": 0.8852 + }, + { + "start": 21529.08, + "end": 21533.16, + "probability": 0.8977 + }, + { + "start": 21534.2, + "end": 21537.58, + "probability": 0.7425 + }, + { + "start": 21538.12, + "end": 21540.16, + "probability": 0.9137 + }, + { + "start": 21541.14, + "end": 21543.32, + "probability": 0.9958 + }, + { + "start": 21544.04, + "end": 21552.26, + "probability": 0.9383 + }, + { + "start": 21553.88, + "end": 21555.78, + "probability": 0.9464 + }, + { + "start": 21557.02, + "end": 21558.78, + "probability": 0.9852 + }, + { + "start": 21558.98, + "end": 21562.48, + "probability": 0.6658 + }, + { + "start": 21562.96, + "end": 21564.88, + "probability": 0.8593 + }, + { + "start": 21565.54, + "end": 21572.56, + "probability": 0.945 + }, + { + "start": 21575.38, + "end": 21579.33, + "probability": 0.0613 + }, + { + "start": 21585.98, + "end": 21586.88, + "probability": 0.0148 + }, + { + "start": 21587.36, + "end": 21587.72, + "probability": 0.6565 + }, + { + "start": 21587.78, + "end": 21588.44, + "probability": 0.9536 + }, + { + "start": 21588.56, + "end": 21590.51, + "probability": 0.8721 + }, + { + "start": 21592.0, + "end": 21594.6, + "probability": 0.9929 + }, + { + "start": 21594.72, + "end": 21595.57, + "probability": 0.9111 + }, + { + "start": 21596.6, + "end": 21599.54, + "probability": 0.8729 + }, + { + "start": 21599.96, + "end": 21605.8, + "probability": 0.9911 + }, + { + "start": 21608.56, + "end": 21609.72, + "probability": 0.6952 + }, + { + "start": 21610.98, + "end": 21612.16, + "probability": 0.7378 + }, + { + "start": 21612.36, + "end": 21613.92, + "probability": 0.4685 + }, + { + "start": 21613.92, + "end": 21619.24, + "probability": 0.9757 + }, + { + "start": 21619.94, + "end": 21621.87, + "probability": 0.8761 + }, + { + "start": 21623.16, + "end": 21626.56, + "probability": 0.7922 + }, + { + "start": 21627.1, + "end": 21628.76, + "probability": 0.9805 + }, + { + "start": 21630.22, + "end": 21631.02, + "probability": 0.7932 + }, + { + "start": 21635.46, + "end": 21638.98, + "probability": 0.6387 + }, + { + "start": 21640.12, + "end": 21642.44, + "probability": 0.8377 + }, + { + "start": 21643.04, + "end": 21644.0, + "probability": 0.9966 + }, + { + "start": 21654.68, + "end": 21656.08, + "probability": 0.6235 + }, + { + "start": 21656.72, + "end": 21658.8, + "probability": 0.6239 + }, + { + "start": 21658.94, + "end": 21661.96, + "probability": 0.573 + }, + { + "start": 21662.64, + "end": 21664.08, + "probability": 0.8995 + }, + { + "start": 21665.14, + "end": 21666.94, + "probability": 0.8355 + }, + { + "start": 21667.46, + "end": 21668.78, + "probability": 0.4618 + }, + { + "start": 21670.99, + "end": 21672.85, + "probability": 0.5073 + }, + { + "start": 21672.96, + "end": 21673.44, + "probability": 0.0768 + }, + { + "start": 21673.44, + "end": 21676.78, + "probability": 0.9818 + }, + { + "start": 21677.38, + "end": 21681.94, + "probability": 0.957 + }, + { + "start": 21682.68, + "end": 21683.4, + "probability": 0.7003 + }, + { + "start": 21683.4, + "end": 21683.98, + "probability": 0.4295 + }, + { + "start": 21684.06, + "end": 21684.66, + "probability": 0.6679 + }, + { + "start": 21684.7, + "end": 21685.1, + "probability": 0.7527 + }, + { + "start": 21685.34, + "end": 21685.78, + "probability": 0.3992 + }, + { + "start": 21687.64, + "end": 21691.64, + "probability": 0.0418 + }, + { + "start": 21691.64, + "end": 21692.34, + "probability": 0.0116 + }, + { + "start": 21702.28, + "end": 21707.8, + "probability": 0.7191 + }, + { + "start": 21708.72, + "end": 21710.28, + "probability": 0.743 + }, + { + "start": 21711.02, + "end": 21711.44, + "probability": 0.8089 + }, + { + "start": 21711.54, + "end": 21716.84, + "probability": 0.8639 + }, + { + "start": 21716.84, + "end": 21720.92, + "probability": 0.9904 + }, + { + "start": 21726.58, + "end": 21730.44, + "probability": 0.7734 + }, + { + "start": 21730.96, + "end": 21731.44, + "probability": 0.1885 + }, + { + "start": 21731.44, + "end": 21732.88, + "probability": 0.799 + }, + { + "start": 21733.32, + "end": 21736.9, + "probability": 0.9921 + }, + { + "start": 21737.26, + "end": 21738.28, + "probability": 0.9207 + }, + { + "start": 21738.5, + "end": 21739.62, + "probability": 0.8979 + }, + { + "start": 21740.58, + "end": 21744.46, + "probability": 0.9898 + }, + { + "start": 21744.5, + "end": 21744.8, + "probability": 0.435 + }, + { + "start": 21745.14, + "end": 21746.64, + "probability": 0.4885 + }, + { + "start": 21747.12, + "end": 21748.7, + "probability": 0.5928 + }, + { + "start": 21749.84, + "end": 21753.92, + "probability": 0.8774 + }, + { + "start": 21754.48, + "end": 21755.34, + "probability": 0.7259 + }, + { + "start": 21755.38, + "end": 21757.08, + "probability": 0.8041 + }, + { + "start": 21757.26, + "end": 21759.45, + "probability": 0.5355 + }, + { + "start": 21759.66, + "end": 21760.3, + "probability": 0.3536 + }, + { + "start": 21760.3, + "end": 21761.08, + "probability": 0.4232 + }, + { + "start": 21761.62, + "end": 21765.52, + "probability": 0.2095 + }, + { + "start": 21768.18, + "end": 21774.02, + "probability": 0.0397 + }, + { + "start": 21774.44, + "end": 21774.86, + "probability": 0.5545 + }, + { + "start": 21774.92, + "end": 21777.8, + "probability": 0.3399 + }, + { + "start": 21777.92, + "end": 21778.58, + "probability": 0.4892 + }, + { + "start": 21778.66, + "end": 21780.28, + "probability": 0.6997 + }, + { + "start": 21780.7, + "end": 21782.3, + "probability": 0.9638 + }, + { + "start": 21782.64, + "end": 21784.98, + "probability": 0.6804 + }, + { + "start": 21785.52, + "end": 21786.62, + "probability": 0.7595 + }, + { + "start": 21787.12, + "end": 21788.5, + "probability": 0.001 + }, + { + "start": 21789.52, + "end": 21789.52, + "probability": 0.4648 + }, + { + "start": 21789.52, + "end": 21790.48, + "probability": 0.7555 + }, + { + "start": 21792.49, + "end": 21796.06, + "probability": 0.8154 + }, + { + "start": 21796.44, + "end": 21798.22, + "probability": 0.6902 + }, + { + "start": 21808.16, + "end": 21811.46, + "probability": 0.9984 + }, + { + "start": 21812.02, + "end": 21813.56, + "probability": 0.9343 + }, + { + "start": 21814.04, + "end": 21816.78, + "probability": 0.6478 + }, + { + "start": 21820.98, + "end": 21823.5, + "probability": 0.3765 + }, + { + "start": 21823.5, + "end": 21825.12, + "probability": 0.5537 + }, + { + "start": 21829.14, + "end": 21829.62, + "probability": 0.5653 + }, + { + "start": 21830.2, + "end": 21835.01, + "probability": 0.4645 + }, + { + "start": 21835.22, + "end": 21835.68, + "probability": 0.3657 + }, + { + "start": 21835.68, + "end": 21836.12, + "probability": 0.6267 + }, + { + "start": 21836.12, + "end": 21836.58, + "probability": 0.795 + }, + { + "start": 21843.42, + "end": 21845.71, + "probability": 0.0527 + }, + { + "start": 21850.38, + "end": 21854.66, + "probability": 0.8301 + }, + { + "start": 21855.34, + "end": 21860.92, + "probability": 0.8455 + }, + { + "start": 21861.64, + "end": 21865.94, + "probability": 0.9014 + }, + { + "start": 21866.22, + "end": 21866.8, + "probability": 0.9709 + }, + { + "start": 21868.71, + "end": 21869.8, + "probability": 0.0849 + }, + { + "start": 21869.8, + "end": 21870.79, + "probability": 0.1965 + }, + { + "start": 21871.7, + "end": 21873.14, + "probability": 0.5506 + }, + { + "start": 21873.42, + "end": 21874.28, + "probability": 0.8943 + }, + { + "start": 21875.78, + "end": 21877.8, + "probability": 0.877 + }, + { + "start": 21878.26, + "end": 21879.56, + "probability": 0.7901 + }, + { + "start": 21880.71, + "end": 21883.5, + "probability": 0.8609 + }, + { + "start": 21884.08, + "end": 21884.88, + "probability": 0.4951 + }, + { + "start": 21885.38, + "end": 21886.16, + "probability": 0.6671 + }, + { + "start": 21896.51, + "end": 21900.76, + "probability": 0.2532 + }, + { + "start": 21901.28, + "end": 21904.24, + "probability": 0.3283 + }, + { + "start": 21904.7, + "end": 21907.08, + "probability": 0.9765 + }, + { + "start": 21907.6, + "end": 21910.6, + "probability": 0.7183 + }, + { + "start": 21912.28, + "end": 21919.96, + "probability": 0.1186 + }, + { + "start": 21919.96, + "end": 21925.9, + "probability": 0.9369 + }, + { + "start": 21926.66, + "end": 21932.1, + "probability": 0.9372 + }, + { + "start": 21932.42, + "end": 21933.16, + "probability": 0.6595 + }, + { + "start": 21933.3, + "end": 21936.7, + "probability": 0.6332 + }, + { + "start": 21938.04, + "end": 21940.52, + "probability": 0.2495 + }, + { + "start": 21940.98, + "end": 21943.9, + "probability": 0.1426 + }, + { + "start": 21944.7, + "end": 21946.26, + "probability": 0.2877 + }, + { + "start": 21947.8, + "end": 21949.64, + "probability": 0.221 + }, + { + "start": 21952.02, + "end": 21956.3, + "probability": 0.5635 + }, + { + "start": 21956.72, + "end": 21957.66, + "probability": 0.8753 + }, + { + "start": 21957.76, + "end": 21960.04, + "probability": 0.9878 + }, + { + "start": 21960.28, + "end": 21960.42, + "probability": 0.2167 + }, + { + "start": 21960.84, + "end": 21965.82, + "probability": 0.6437 + }, + { + "start": 21966.34, + "end": 21969.58, + "probability": 0.6845 + }, + { + "start": 21969.76, + "end": 21970.34, + "probability": 0.5372 + }, + { + "start": 21970.34, + "end": 21970.76, + "probability": 0.4848 + }, + { + "start": 21970.78, + "end": 21971.2, + "probability": 0.5853 + }, + { + "start": 21971.2, + "end": 21971.86, + "probability": 0.754 + }, + { + "start": 21981.68, + "end": 21985.72, + "probability": 0.4607 + }, + { + "start": 21986.06, + "end": 21991.18, + "probability": 0.6468 + }, + { + "start": 21991.32, + "end": 21996.4, + "probability": 0.8893 + }, + { + "start": 21997.04, + "end": 21998.64, + "probability": 0.6868 + }, + { + "start": 21999.38, + "end": 22001.44, + "probability": 0.8641 + }, + { + "start": 22001.88, + "end": 22002.62, + "probability": 0.5859 + }, + { + "start": 22003.42, + "end": 22003.42, + "probability": 0.1151 + }, + { + "start": 22003.56, + "end": 22003.9, + "probability": 0.3746 + }, + { + "start": 22004.0, + "end": 22004.84, + "probability": 0.2836 + }, + { + "start": 22006.22, + "end": 22009.2, + "probability": 0.9846 + }, + { + "start": 22009.5, + "end": 22010.44, + "probability": 0.6147 + }, + { + "start": 22017.32, + "end": 22019.02, + "probability": 0.8711 + }, + { + "start": 22020.82, + "end": 22023.48, + "probability": 0.219 + }, + { + "start": 22023.48, + "end": 22025.86, + "probability": 0.6526 + }, + { + "start": 22026.04, + "end": 22027.48, + "probability": 0.5759 + }, + { + "start": 22027.9, + "end": 22028.44, + "probability": 0.7825 + }, + { + "start": 22028.56, + "end": 22028.99, + "probability": 0.7163 + }, + { + "start": 22029.28, + "end": 22034.62, + "probability": 0.934 + }, + { + "start": 22035.18, + "end": 22037.92, + "probability": 0.8294 + }, + { + "start": 22038.54, + "end": 22046.9, + "probability": 0.8924 + }, + { + "start": 22047.38, + "end": 22047.98, + "probability": 0.7073 + }, + { + "start": 22048.1, + "end": 22048.74, + "probability": 0.6308 + }, + { + "start": 22048.76, + "end": 22049.46, + "probability": 0.8344 + }, + { + "start": 22049.68, + "end": 22050.5, + "probability": 0.7653 + }, + { + "start": 22051.0, + "end": 22054.98, + "probability": 0.2217 + }, + { + "start": 22054.98, + "end": 22056.32, + "probability": 0.1298 + }, + { + "start": 22056.94, + "end": 22056.94, + "probability": 0.0 + }, + { + "start": 22069.84, + "end": 22071.78, + "probability": 0.2866 + }, + { + "start": 22072.34, + "end": 22073.88, + "probability": 0.7476 + }, + { + "start": 22074.94, + "end": 22078.86, + "probability": 0.993 + }, + { + "start": 22079.36, + "end": 22080.98, + "probability": 0.7459 + }, + { + "start": 22081.72, + "end": 22082.86, + "probability": 0.3631 + }, + { + "start": 22082.98, + "end": 22084.42, + "probability": 0.9338 + }, + { + "start": 22084.88, + "end": 22085.76, + "probability": 0.7261 + }, + { + "start": 22085.86, + "end": 22089.88, + "probability": 0.7682 + }, + { + "start": 22089.98, + "end": 22095.28, + "probability": 0.9962 + }, + { + "start": 22095.32, + "end": 22096.28, + "probability": 0.8134 + }, + { + "start": 22096.74, + "end": 22097.9, + "probability": 0.9433 + }, + { + "start": 22098.5, + "end": 22102.98, + "probability": 0.841 + }, + { + "start": 22104.44, + "end": 22106.5, + "probability": 0.0101 + }, + { + "start": 22106.6, + "end": 22111.22, + "probability": 0.7734 + }, + { + "start": 22111.46, + "end": 22112.96, + "probability": 0.8099 + }, + { + "start": 22113.18, + "end": 22113.56, + "probability": 0.3399 + }, + { + "start": 22113.64, + "end": 22114.1, + "probability": 0.642 + }, + { + "start": 22114.28, + "end": 22117.16, + "probability": 0.7372 + }, + { + "start": 22117.28, + "end": 22117.9, + "probability": 0.7049 + }, + { + "start": 22118.48, + "end": 22122.0, + "probability": 0.6017 + }, + { + "start": 22122.52, + "end": 22124.52, + "probability": 0.3715 + }, + { + "start": 22124.9, + "end": 22128.34, + "probability": 0.6368 + }, + { + "start": 22129.59, + "end": 22132.38, + "probability": 0.2725 + }, + { + "start": 22134.42, + "end": 22138.82, + "probability": 0.249 + }, + { + "start": 22142.9, + "end": 22142.9, + "probability": 0.0342 + }, + { + "start": 22142.9, + "end": 22145.74, + "probability": 0.5707 + }, + { + "start": 22145.98, + "end": 22149.02, + "probability": 0.9449 + }, + { + "start": 22149.08, + "end": 22150.52, + "probability": 0.8371 + }, + { + "start": 22150.98, + "end": 22154.66, + "probability": 0.9691 + }, + { + "start": 22154.76, + "end": 22155.54, + "probability": 0.4679 + }, + { + "start": 22155.92, + "end": 22156.34, + "probability": 0.5378 + }, + { + "start": 22156.4, + "end": 22156.84, + "probability": 0.6825 + }, + { + "start": 22156.84, + "end": 22157.28, + "probability": 0.6818 + }, + { + "start": 22167.22, + "end": 22171.22, + "probability": 0.6157 + }, + { + "start": 22172.62, + "end": 22177.74, + "probability": 0.655 + }, + { + "start": 22177.98, + "end": 22183.8, + "probability": 0.9806 + }, + { + "start": 22184.62, + "end": 22188.22, + "probability": 0.9597 + }, + { + "start": 22188.62, + "end": 22189.2, + "probability": 0.8109 + }, + { + "start": 22189.2, + "end": 22190.02, + "probability": 0.8792 + }, + { + "start": 22190.64, + "end": 22191.34, + "probability": 0.7443 + }, + { + "start": 22191.36, + "end": 22191.96, + "probability": 0.8285 + }, + { + "start": 22192.44, + "end": 22193.66, + "probability": 0.7715 + }, + { + "start": 22193.78, + "end": 22196.72, + "probability": 0.7928 + }, + { + "start": 22197.34, + "end": 22197.88, + "probability": 0.709 + }, + { + "start": 22209.16, + "end": 22210.58, + "probability": 0.1719 + }, + { + "start": 22211.24, + "end": 22212.53, + "probability": 0.4625 + }, + { + "start": 22212.94, + "end": 22215.1, + "probability": 0.6054 + }, + { + "start": 22215.34, + "end": 22216.6, + "probability": 0.9116 + }, + { + "start": 22216.64, + "end": 22219.46, + "probability": 0.3271 + }, + { + "start": 22219.54, + "end": 22221.66, + "probability": 0.5018 + }, + { + "start": 22221.66, + "end": 22222.3, + "probability": 0.4311 + }, + { + "start": 22223.04, + "end": 22223.74, + "probability": 0.2965 + }, + { + "start": 22223.8, + "end": 22234.02, + "probability": 0.297 + }, + { + "start": 22234.42, + "end": 22234.86, + "probability": 0.3739 + }, + { + "start": 22240.92, + "end": 22241.36, + "probability": 0.3094 + }, + { + "start": 22241.36, + "end": 22241.78, + "probability": 0.1309 + }, + { + "start": 22242.04, + "end": 22247.56, + "probability": 0.3469 + }, + { + "start": 22247.84, + "end": 22249.81, + "probability": 0.9917 + }, + { + "start": 22252.52, + "end": 22257.16, + "probability": 0.0402 + }, + { + "start": 22257.34, + "end": 22260.08, + "probability": 0.4111 + }, + { + "start": 22262.06, + "end": 22263.68, + "probability": 0.4753 + }, + { + "start": 22263.98, + "end": 22265.12, + "probability": 0.8604 + }, + { + "start": 22265.48, + "end": 22271.6, + "probability": 0.9639 + }, + { + "start": 22272.12, + "end": 22272.12, + "probability": 0.0012 + }, + { + "start": 22273.92, + "end": 22276.02, + "probability": 0.5092 + }, + { + "start": 22276.55, + "end": 22279.1, + "probability": 0.5432 + }, + { + "start": 22279.46, + "end": 22280.32, + "probability": 0.6387 + }, + { + "start": 22280.46, + "end": 22283.24, + "probability": 0.9251 + }, + { + "start": 22283.78, + "end": 22285.74, + "probability": 0.4908 + }, + { + "start": 22287.79, + "end": 22294.78, + "probability": 0.6686 + }, + { + "start": 22295.34, + "end": 22296.22, + "probability": 0.7739 + }, + { + "start": 22296.42, + "end": 22297.01, + "probability": 0.8546 + }, + { + "start": 22297.72, + "end": 22300.94, + "probability": 0.9055 + }, + { + "start": 22301.76, + "end": 22304.42, + "probability": 0.4053 + }, + { + "start": 22304.74, + "end": 22305.84, + "probability": 0.7629 + }, + { + "start": 22306.4, + "end": 22311.56, + "probability": 0.9121 + }, + { + "start": 22311.84, + "end": 22314.08, + "probability": 0.9024 + }, + { + "start": 22314.68, + "end": 22317.54, + "probability": 0.5048 + }, + { + "start": 22317.89, + "end": 22319.36, + "probability": 0.4752 + }, + { + "start": 22325.92, + "end": 22326.44, + "probability": 0.0005 + }, + { + "start": 22334.06, + "end": 22334.38, + "probability": 0.1895 + }, + { + "start": 22334.38, + "end": 22338.16, + "probability": 0.5251 + }, + { + "start": 22338.18, + "end": 22342.34, + "probability": 0.8665 + }, + { + "start": 22343.66, + "end": 22344.74, + "probability": 0.7815 + }, + { + "start": 22344.88, + "end": 22345.3, + "probability": 0.8678 + }, + { + "start": 22345.76, + "end": 22348.24, + "probability": 0.4335 + }, + { + "start": 22350.78, + "end": 22352.48, + "probability": 0.4646 + }, + { + "start": 22352.48, + "end": 22352.48, + "probability": 0.4367 + }, + { + "start": 22352.88, + "end": 22355.18, + "probability": 0.8174 + }, + { + "start": 22355.72, + "end": 22357.8, + "probability": 0.9737 + }, + { + "start": 22358.16, + "end": 22360.18, + "probability": 0.9729 + }, + { + "start": 22360.46, + "end": 22361.66, + "probability": 0.9971 + }, + { + "start": 22362.7, + "end": 22368.42, + "probability": 0.6726 + }, + { + "start": 22369.06, + "end": 22372.76, + "probability": 0.5342 + }, + { + "start": 22373.04, + "end": 22374.76, + "probability": 0.8071 + }, + { + "start": 22374.92, + "end": 22377.0, + "probability": 0.7275 + }, + { + "start": 22377.02, + "end": 22378.0, + "probability": 0.4239 + }, + { + "start": 22378.08, + "end": 22378.54, + "probability": 0.6572 + }, + { + "start": 22378.86, + "end": 22379.5, + "probability": 0.7872 + }, + { + "start": 22399.28, + "end": 22400.9, + "probability": 0.2136 + }, + { + "start": 22400.98, + "end": 22403.0, + "probability": 0.0867 + }, + { + "start": 22404.46, + "end": 22404.7, + "probability": 0.2843 + }, + { + "start": 22404.7, + "end": 22405.08, + "probability": 0.0567 + }, + { + "start": 22405.92, + "end": 22406.12, + "probability": 0.0241 + }, + { + "start": 22409.18, + "end": 22409.6, + "probability": 0.069 + }, + { + "start": 22409.6, + "end": 22409.6, + "probability": 0.4184 + }, + { + "start": 22409.6, + "end": 22409.6, + "probability": 0.0389 + }, + { + "start": 22409.6, + "end": 22412.7, + "probability": 0.584 + }, + { + "start": 22412.72, + "end": 22413.78, + "probability": 0.4146 + }, + { + "start": 22417.52, + "end": 22417.86, + "probability": 0.5193 + }, + { + "start": 22420.14, + "end": 22421.18, + "probability": 0.4654 + }, + { + "start": 22430.02, + "end": 22430.24, + "probability": 0.1882 + }, + { + "start": 22430.24, + "end": 22430.58, + "probability": 0.0972 + }, + { + "start": 22430.58, + "end": 22432.74, + "probability": 0.4728 + }, + { + "start": 22433.7, + "end": 22435.34, + "probability": 0.6231 + }, + { + "start": 22435.84, + "end": 22437.14, + "probability": 0.9544 + }, + { + "start": 22437.64, + "end": 22438.18, + "probability": 0.6545 + }, + { + "start": 22438.76, + "end": 22447.02, + "probability": 0.7313 + }, + { + "start": 22449.4, + "end": 22451.12, + "probability": 0.7755 + }, + { + "start": 22451.18, + "end": 22451.84, + "probability": 0.4812 + }, + { + "start": 22452.12, + "end": 22453.6, + "probability": 0.6606 + }, + { + "start": 22455.86, + "end": 22463.24, + "probability": 0.226 + }, + { + "start": 22465.86, + "end": 22466.08, + "probability": 0.0 + }, + { + "start": 22471.08, + "end": 22471.64, + "probability": 0.569 + }, + { + "start": 22472.02, + "end": 22473.28, + "probability": 0.4878 + }, + { + "start": 22473.64, + "end": 22474.24, + "probability": 0.4613 + }, + { + "start": 22474.36, + "end": 22474.75, + "probability": 0.8467 + }, + { + "start": 22475.44, + "end": 22479.1, + "probability": 0.7849 + }, + { + "start": 22479.66, + "end": 22479.92, + "probability": 0.4675 + }, + { + "start": 22480.0, + "end": 22483.12, + "probability": 0.9268 + }, + { + "start": 22483.12, + "end": 22483.38, + "probability": 0.6833 + }, + { + "start": 22483.58, + "end": 22483.82, + "probability": 0.3652 + }, + { + "start": 22484.99, + "end": 22486.3, + "probability": 0.8833 + }, + { + "start": 22486.76, + "end": 22487.76, + "probability": 0.5107 + }, + { + "start": 22488.84, + "end": 22489.18, + "probability": 0.6047 + }, + { + "start": 22489.92, + "end": 22491.24, + "probability": 0.0921 + }, + { + "start": 22491.3, + "end": 22493.16, + "probability": 0.6761 + }, + { + "start": 22493.52, + "end": 22495.96, + "probability": 0.9381 + }, + { + "start": 22496.26, + "end": 22499.76, + "probability": 0.9797 + }, + { + "start": 22500.28, + "end": 22504.64, + "probability": 0.4879 + }, + { + "start": 22506.36, + "end": 22509.68, + "probability": 0.5337 + }, + { + "start": 22510.16, + "end": 22511.92, + "probability": 0.9518 + }, + { + "start": 22512.38, + "end": 22513.58, + "probability": 0.8748 + }, + { + "start": 22513.72, + "end": 22515.54, + "probability": 0.686 + }, + { + "start": 22515.94, + "end": 22517.17, + "probability": 0.6473 + }, + { + "start": 22522.06, + "end": 22522.16, + "probability": 0.4707 + }, + { + "start": 22526.54, + "end": 22529.34, + "probability": 0.885 + }, + { + "start": 22530.06, + "end": 22532.86, + "probability": 0.9079 + }, + { + "start": 22533.08, + "end": 22533.44, + "probability": 0.7618 + }, + { + "start": 22533.52, + "end": 22534.4, + "probability": 0.615 + }, + { + "start": 22534.6, + "end": 22534.96, + "probability": 0.6972 + }, + { + "start": 22535.36, + "end": 22536.44, + "probability": 0.9534 + }, + { + "start": 22536.64, + "end": 22536.86, + "probability": 0.583 + }, + { + "start": 22536.9, + "end": 22540.22, + "probability": 0.7734 + }, + { + "start": 22540.56, + "end": 22544.98, + "probability": 0.8964 + }, + { + "start": 22544.98, + "end": 22550.68, + "probability": 0.9724 + }, + { + "start": 22550.96, + "end": 22556.0, + "probability": 0.9897 + }, + { + "start": 22556.0, + "end": 22562.56, + "probability": 0.776 + }, + { + "start": 22563.22, + "end": 22568.0, + "probability": 0.9763 + }, + { + "start": 22568.46, + "end": 22571.1, + "probability": 0.6449 + }, + { + "start": 22571.16, + "end": 22572.72, + "probability": 0.5212 + }, + { + "start": 22574.66, + "end": 22577.06, + "probability": 0.8076 + }, + { + "start": 22577.76, + "end": 22580.64, + "probability": 0.1357 + }, + { + "start": 22589.48, + "end": 22594.02, + "probability": 0.7494 + }, + { + "start": 22594.52, + "end": 22598.66, + "probability": 0.9571 + }, + { + "start": 22599.26, + "end": 22602.02, + "probability": 0.9204 + }, + { + "start": 22602.14, + "end": 22602.8, + "probability": 0.8434 + }, + { + "start": 22602.88, + "end": 22603.82, + "probability": 0.9434 + }, + { + "start": 22603.88, + "end": 22608.06, + "probability": 0.9491 + }, + { + "start": 22608.94, + "end": 22612.44, + "probability": 0.9575 + }, + { + "start": 22612.58, + "end": 22613.34, + "probability": 0.3777 + }, + { + "start": 22613.48, + "end": 22613.92, + "probability": 0.8826 + }, + { + "start": 22614.52, + "end": 22616.06, + "probability": 0.8654 + }, + { + "start": 22616.9, + "end": 22620.64, + "probability": 0.9965 + }, + { + "start": 22620.96, + "end": 22622.08, + "probability": 0.5378 + }, + { + "start": 22622.84, + "end": 22624.34, + "probability": 0.8896 + }, + { + "start": 22625.14, + "end": 22626.94, + "probability": 0.7374 + }, + { + "start": 22626.98, + "end": 22628.72, + "probability": 0.5846 + }, + { + "start": 22628.76, + "end": 22629.58, + "probability": 0.6073 + }, + { + "start": 22632.78, + "end": 22634.62, + "probability": 0.5607 + }, + { + "start": 22646.34, + "end": 22646.34, + "probability": 0.0487 + }, + { + "start": 22646.34, + "end": 22646.84, + "probability": 0.0827 + }, + { + "start": 22646.84, + "end": 22648.92, + "probability": 0.5665 + }, + { + "start": 22649.06, + "end": 22650.1, + "probability": 0.4441 + }, + { + "start": 22650.56, + "end": 22651.18, + "probability": 0.7746 + }, + { + "start": 22651.28, + "end": 22651.91, + "probability": 0.7779 + }, + { + "start": 22652.62, + "end": 22657.84, + "probability": 0.8421 + }, + { + "start": 22658.16, + "end": 22661.04, + "probability": 0.7748 + }, + { + "start": 22661.66, + "end": 22666.36, + "probability": 0.777 + }, + { + "start": 22666.74, + "end": 22669.42, + "probability": 0.9486 + }, + { + "start": 22669.86, + "end": 22673.96, + "probability": 0.8584 + }, + { + "start": 22674.38, + "end": 22678.04, + "probability": 0.8321 + }, + { + "start": 22678.5, + "end": 22683.88, + "probability": 0.8045 + }, + { + "start": 22684.88, + "end": 22691.28, + "probability": 0.7772 + }, + { + "start": 22691.76, + "end": 22692.76, + "probability": 0.5509 + }, + { + "start": 22693.96, + "end": 22695.36, + "probability": 0.5004 + }, + { + "start": 22695.42, + "end": 22695.9, + "probability": 0.6693 + }, + { + "start": 22695.9, + "end": 22696.56, + "probability": 0.7999 + }, + { + "start": 22697.18, + "end": 22698.2, + "probability": 0.0621 + }, + { + "start": 22698.96, + "end": 22706.16, + "probability": 0.0191 + }, + { + "start": 22715.4, + "end": 22717.3, + "probability": 0.6564 + }, + { + "start": 22717.44, + "end": 22718.92, + "probability": 0.5006 + }, + { + "start": 22719.34, + "end": 22719.78, + "probability": 0.4361 + }, + { + "start": 22719.86, + "end": 22720.29, + "probability": 0.4499 + }, + { + "start": 22720.94, + "end": 22723.18, + "probability": 0.8006 + }, + { + "start": 22723.38, + "end": 22726.04, + "probability": 0.5551 + }, + { + "start": 22727.0, + "end": 22729.98, + "probability": 0.3528 + }, + { + "start": 22730.08, + "end": 22733.0, + "probability": 0.7655 + }, + { + "start": 22733.7, + "end": 22735.42, + "probability": 0.807 + }, + { + "start": 22735.54, + "end": 22736.5, + "probability": 0.6708 + }, + { + "start": 22737.16, + "end": 22741.62, + "probability": 0.0441 + }, + { + "start": 22743.22, + "end": 22743.36, + "probability": 0.0004 + }, + { + "start": 22751.02, + "end": 22752.22, + "probability": 0.4376 + }, + { + "start": 22755.32, + "end": 22757.24, + "probability": 0.4989 + }, + { + "start": 22757.26, + "end": 22758.4, + "probability": 0.5056 + }, + { + "start": 22758.74, + "end": 22759.24, + "probability": 0.4782 + }, + { + "start": 22759.28, + "end": 22759.73, + "probability": 0.4419 + }, + { + "start": 22760.0, + "end": 22763.9, + "probability": 0.9824 + }, + { + "start": 22764.58, + "end": 22766.98, + "probability": 0.9844 + }, + { + "start": 22767.82, + "end": 22770.28, + "probability": 0.8217 + }, + { + "start": 22770.66, + "end": 22771.3, + "probability": 0.4158 + }, + { + "start": 22772.0, + "end": 22773.58, + "probability": 0.7629 + }, + { + "start": 22774.04, + "end": 22774.4, + "probability": 0.6768 + }, + { + "start": 22774.68, + "end": 22775.46, + "probability": 0.9722 + }, + { + "start": 22775.46, + "end": 22775.62, + "probability": 0.9601 + }, + { + "start": 22776.18, + "end": 22776.84, + "probability": 0.8038 + }, + { + "start": 22777.18, + "end": 22780.62, + "probability": 0.9897 + }, + { + "start": 22780.76, + "end": 22781.98, + "probability": 0.8188 + }, + { + "start": 22782.34, + "end": 22782.74, + "probability": 0.643 + }, + { + "start": 22782.74, + "end": 22788.24, + "probability": 0.3019 + }, + { + "start": 22788.48, + "end": 22789.24, + "probability": 0.326 + }, + { + "start": 22789.24, + "end": 22790.46, + "probability": 0.0442 + }, + { + "start": 22790.46, + "end": 22791.2, + "probability": 0.2774 + }, + { + "start": 22791.46, + "end": 22792.4, + "probability": 0.8748 + }, + { + "start": 22792.78, + "end": 22795.42, + "probability": 0.9852 + }, + { + "start": 22795.52, + "end": 22796.1, + "probability": 0.975 + }, + { + "start": 22796.66, + "end": 22797.7, + "probability": 0.8015 + }, + { + "start": 22797.72, + "end": 22798.44, + "probability": 0.5564 + }, + { + "start": 22798.8, + "end": 22801.1, + "probability": 0.6639 + }, + { + "start": 22801.54, + "end": 22803.72, + "probability": 0.7997 + }, + { + "start": 22804.28, + "end": 22808.54, + "probability": 0.1824 + }, + { + "start": 22809.42, + "end": 22811.4, + "probability": 0.1687 + }, + { + "start": 22811.56, + "end": 22813.36, + "probability": 0.7796 + }, + { + "start": 22813.52, + "end": 22814.52, + "probability": 0.928 + }, + { + "start": 22815.16, + "end": 22819.5, + "probability": 0.1449 + }, + { + "start": 22819.5, + "end": 22822.12, + "probability": 0.9697 + }, + { + "start": 22822.52, + "end": 22824.21, + "probability": 0.9741 + }, + { + "start": 22824.66, + "end": 22825.16, + "probability": 0.6062 + }, + { + "start": 22825.32, + "end": 22825.74, + "probability": 0.5189 + }, + { + "start": 22826.12, + "end": 22828.62, + "probability": 0.5601 + }, + { + "start": 22829.14, + "end": 22830.48, + "probability": 0.9155 + }, + { + "start": 22830.98, + "end": 22832.12, + "probability": 0.9539 + }, + { + "start": 22832.38, + "end": 22834.22, + "probability": 0.2452 + }, + { + "start": 22834.54, + "end": 22835.36, + "probability": 0.8594 + }, + { + "start": 22836.3, + "end": 22836.9, + "probability": 0.7669 + }, + { + "start": 22840.47, + "end": 22843.7, + "probability": 0.2484 + }, + { + "start": 22843.88, + "end": 22845.8, + "probability": 0.5269 + }, + { + "start": 22847.18, + "end": 22847.76, + "probability": 0.7381 + }, + { + "start": 22850.64, + "end": 22851.92, + "probability": 0.919 + }, + { + "start": 22852.84, + "end": 22857.26, + "probability": 0.7217 + }, + { + "start": 22857.6, + "end": 22859.36, + "probability": 0.8006 + }, + { + "start": 22860.14, + "end": 22864.08, + "probability": 0.8197 + }, + { + "start": 22864.58, + "end": 22866.06, + "probability": 0.8651 + }, + { + "start": 22866.48, + "end": 22867.3, + "probability": 0.5977 + }, + { + "start": 22867.52, + "end": 22868.64, + "probability": 0.6868 + }, + { + "start": 22868.84, + "end": 22869.84, + "probability": 0.4894 + }, + { + "start": 22869.94, + "end": 22870.32, + "probability": 0.6292 + }, + { + "start": 22870.62, + "end": 22871.22, + "probability": 0.9487 + }, + { + "start": 22872.5, + "end": 22876.2, + "probability": 0.559 + }, + { + "start": 22877.24, + "end": 22877.5, + "probability": 0.5775 + }, + { + "start": 22877.94, + "end": 22881.08, + "probability": 0.6746 + }, + { + "start": 22881.82, + "end": 22882.32, + "probability": 0.5754 + }, + { + "start": 22882.42, + "end": 22885.32, + "probability": 0.3859 + }, + { + "start": 22886.1, + "end": 22887.32, + "probability": 0.5122 + }, + { + "start": 22888.88, + "end": 22891.0, + "probability": 0.8615 + }, + { + "start": 22892.04, + "end": 22896.38, + "probability": 0.6326 + }, + { + "start": 22896.6, + "end": 22898.1, + "probability": 0.8133 + }, + { + "start": 22899.36, + "end": 22899.58, + "probability": 0.0829 + }, + { + "start": 22901.14, + "end": 22901.46, + "probability": 0.0121 + }, + { + "start": 22901.46, + "end": 22905.06, + "probability": 0.6341 + }, + { + "start": 22905.84, + "end": 22907.12, + "probability": 0.9026 + }, + { + "start": 22908.38, + "end": 22909.72, + "probability": 0.59 + }, + { + "start": 22910.18, + "end": 22910.72, + "probability": 0.5257 + }, + { + "start": 22910.88, + "end": 22911.24, + "probability": 0.8704 + }, + { + "start": 22911.72, + "end": 22912.14, + "probability": 0.9049 + }, + { + "start": 22913.1, + "end": 22913.9, + "probability": 0.9257 + }, + { + "start": 22914.74, + "end": 22916.82, + "probability": 0.7175 + }, + { + "start": 22916.96, + "end": 22917.76, + "probability": 0.4971 + }, + { + "start": 22918.32, + "end": 22918.68, + "probability": 0.0706 + }, + { + "start": 22918.82, + "end": 22920.46, + "probability": 0.7558 + }, + { + "start": 22921.08, + "end": 22922.28, + "probability": 0.7233 + }, + { + "start": 22922.76, + "end": 22926.62, + "probability": 0.8954 + }, + { + "start": 22926.68, + "end": 22926.72, + "probability": 0.551 + }, + { + "start": 22928.92, + "end": 22929.8, + "probability": 0.5655 + }, + { + "start": 22930.5, + "end": 22932.62, + "probability": 0.195 + }, + { + "start": 22934.14, + "end": 22934.68, + "probability": 0.3799 + }, + { + "start": 22935.54, + "end": 22938.72, + "probability": 0.437 + }, + { + "start": 22940.84, + "end": 22946.28, + "probability": 0.0464 + }, + { + "start": 22946.92, + "end": 22951.16, + "probability": 0.6167 + }, + { + "start": 22951.52, + "end": 22955.54, + "probability": 0.7216 + }, + { + "start": 22956.04, + "end": 22958.6, + "probability": 0.7827 + }, + { + "start": 22958.98, + "end": 22963.82, + "probability": 0.9775 + }, + { + "start": 22964.42, + "end": 22965.22, + "probability": 0.3951 + }, + { + "start": 22965.96, + "end": 22967.84, + "probability": 0.8767 + }, + { + "start": 22968.06, + "end": 22968.2, + "probability": 0.0813 + }, + { + "start": 22968.44, + "end": 22969.06, + "probability": 0.7607 + }, + { + "start": 22969.4, + "end": 22970.82, + "probability": 0.7749 + }, + { + "start": 22973.26, + "end": 22974.88, + "probability": 0.8261 + }, + { + "start": 22975.4, + "end": 22980.02, + "probability": 0.6885 + }, + { + "start": 22980.2, + "end": 22987.58, + "probability": 0.4992 + }, + { + "start": 22989.28, + "end": 22990.64, + "probability": 0.5034 + }, + { + "start": 22994.28, + "end": 22997.58, + "probability": 0.5848 + }, + { + "start": 22997.98, + "end": 23003.42, + "probability": 0.8508 + }, + { + "start": 23003.42, + "end": 23004.92, + "probability": 0.752 + }, + { + "start": 23005.44, + "end": 23008.94, + "probability": 0.9252 + }, + { + "start": 23011.96, + "end": 23014.36, + "probability": 0.8017 + }, + { + "start": 23014.86, + "end": 23016.02, + "probability": 0.5193 + }, + { + "start": 23016.46, + "end": 23016.94, + "probability": 0.7253 + }, + { + "start": 23017.08, + "end": 23018.86, + "probability": 0.872 + }, + { + "start": 23019.1, + "end": 23020.38, + "probability": 0.9059 + }, + { + "start": 23020.44, + "end": 23021.26, + "probability": 0.8323 + }, + { + "start": 23023.24, + "end": 23024.12, + "probability": 0.6134 + }, + { + "start": 23025.78, + "end": 23026.3, + "probability": 0.01 + }, + { + "start": 23036.36, + "end": 23037.06, + "probability": 0.0812 + }, + { + "start": 23037.06, + "end": 23041.3, + "probability": 0.6641 + }, + { + "start": 23041.56, + "end": 23045.5, + "probability": 0.9241 + }, + { + "start": 23046.22, + "end": 23050.08, + "probability": 0.8228 + }, + { + "start": 23050.94, + "end": 23053.82, + "probability": 0.0732 + }, + { + "start": 23054.48, + "end": 23054.83, + "probability": 0.0702 + }, + { + "start": 23055.56, + "end": 23057.06, + "probability": 0.9736 + }, + { + "start": 23059.84, + "end": 23061.26, + "probability": 0.2854 + }, + { + "start": 23061.74, + "end": 23062.38, + "probability": 0.1828 + }, + { + "start": 23063.1, + "end": 23064.87, + "probability": 0.5722 + }, + { + "start": 23065.12, + "end": 23065.6, + "probability": 0.3068 + }, + { + "start": 23065.66, + "end": 23067.48, + "probability": 0.8527 + }, + { + "start": 23067.86, + "end": 23069.58, + "probability": 0.9556 + }, + { + "start": 23069.96, + "end": 23071.02, + "probability": 0.9433 + }, + { + "start": 23071.58, + "end": 23075.58, + "probability": 0.8965 + }, + { + "start": 23076.22, + "end": 23078.04, + "probability": 0.9388 + }, + { + "start": 23078.7, + "end": 23079.52, + "probability": 0.5944 + }, + { + "start": 23079.7, + "end": 23080.98, + "probability": 0.9398 + }, + { + "start": 23082.5, + "end": 23084.0, + "probability": 0.4207 + }, + { + "start": 23085.97, + "end": 23089.68, + "probability": 0.7035 + }, + { + "start": 23089.68, + "end": 23089.68, + "probability": 0.0031 + }, + { + "start": 23100.42, + "end": 23104.52, + "probability": 0.7057 + }, + { + "start": 23104.74, + "end": 23105.78, + "probability": 0.9609 + }, + { + "start": 23105.82, + "end": 23106.2, + "probability": 0.7358 + }, + { + "start": 23106.56, + "end": 23108.98, + "probability": 0.9645 + }, + { + "start": 23109.94, + "end": 23115.06, + "probability": 0.9844 + }, + { + "start": 23115.3, + "end": 23119.22, + "probability": 0.9897 + }, + { + "start": 23119.66, + "end": 23120.46, + "probability": 0.7412 + }, + { + "start": 23120.86, + "end": 23122.44, + "probability": 0.7935 + }, + { + "start": 23122.82, + "end": 23126.5, + "probability": 0.8188 + }, + { + "start": 23128.28, + "end": 23130.0, + "probability": 0.0623 + }, + { + "start": 23134.44, + "end": 23136.68, + "probability": 0.0775 + }, + { + "start": 23139.56, + "end": 23140.6, + "probability": 0.4481 + }, + { + "start": 23141.4, + "end": 23142.72, + "probability": 0.7855 + }, + { + "start": 23143.24, + "end": 23143.98, + "probability": 0.6553 + }, + { + "start": 23144.64, + "end": 23151.08, + "probability": 0.9644 + }, + { + "start": 23151.54, + "end": 23159.16, + "probability": 0.9955 + }, + { + "start": 23161.4, + "end": 23163.12, + "probability": 0.9937 + }, + { + "start": 23164.0, + "end": 23164.28, + "probability": 0.1804 + }, + { + "start": 23165.36, + "end": 23166.98, + "probability": 0.3347 + }, + { + "start": 23167.24, + "end": 23168.04, + "probability": 0.4319 + }, + { + "start": 23168.15, + "end": 23169.6, + "probability": 0.1571 + }, + { + "start": 23169.8, + "end": 23170.7, + "probability": 0.268 + }, + { + "start": 23170.7, + "end": 23173.2, + "probability": 0.5079 + }, + { + "start": 23173.22, + "end": 23176.32, + "probability": 0.8004 + }, + { + "start": 23176.84, + "end": 23177.58, + "probability": 0.9016 + }, + { + "start": 23178.46, + "end": 23179.82, + "probability": 0.7225 + }, + { + "start": 23180.38, + "end": 23181.04, + "probability": 0.8517 + }, + { + "start": 23181.58, + "end": 23188.06, + "probability": 0.9756 + }, + { + "start": 23188.44, + "end": 23188.62, + "probability": 0.5086 + }, + { + "start": 23188.8, + "end": 23188.8, + "probability": 0.2271 + }, + { + "start": 23188.8, + "end": 23189.58, + "probability": 0.8004 + }, + { + "start": 23189.92, + "end": 23191.64, + "probability": 0.7775 + }, + { + "start": 23192.12, + "end": 23193.78, + "probability": 0.9258 + }, + { + "start": 23193.96, + "end": 23194.6, + "probability": 0.9522 + }, + { + "start": 23195.06, + "end": 23197.52, + "probability": 0.57 + }, + { + "start": 23197.64, + "end": 23201.44, + "probability": 0.7891 + }, + { + "start": 23201.72, + "end": 23203.64, + "probability": 0.8717 + }, + { + "start": 23204.08, + "end": 23204.67, + "probability": 0.823 + }, + { + "start": 23205.24, + "end": 23209.84, + "probability": 0.9675 + }, + { + "start": 23210.36, + "end": 23211.34, + "probability": 0.9712 + }, + { + "start": 23212.84, + "end": 23214.52, + "probability": 0.7851 + }, + { + "start": 23215.2, + "end": 23217.7, + "probability": 0.983 + }, + { + "start": 23218.14, + "end": 23219.42, + "probability": 0.2989 + }, + { + "start": 23219.92, + "end": 23222.24, + "probability": 0.8625 + }, + { + "start": 23222.82, + "end": 23227.12, + "probability": 0.9022 + }, + { + "start": 23228.24, + "end": 23231.64, + "probability": 0.8079 + }, + { + "start": 23231.9, + "end": 23233.18, + "probability": 0.6901 + }, + { + "start": 23233.2, + "end": 23233.3, + "probability": 0.0713 + }, + { + "start": 23233.4, + "end": 23233.56, + "probability": 0.5802 + }, + { + "start": 23233.94, + "end": 23234.92, + "probability": 0.8228 + }, + { + "start": 23235.42, + "end": 23239.12, + "probability": 0.8872 + }, + { + "start": 23239.2, + "end": 23240.74, + "probability": 0.844 + }, + { + "start": 23241.4, + "end": 23242.14, + "probability": 0.9835 + }, + { + "start": 23242.9, + "end": 23243.96, + "probability": 0.6433 + }, + { + "start": 23244.36, + "end": 23247.36, + "probability": 0.8712 + }, + { + "start": 23248.02, + "end": 23252.0, + "probability": 0.8835 + }, + { + "start": 23252.64, + "end": 23254.74, + "probability": 0.9441 + }, + { + "start": 23255.58, + "end": 23260.24, + "probability": 0.9341 + }, + { + "start": 23261.92, + "end": 23262.74, + "probability": 0.2051 + }, + { + "start": 23274.72, + "end": 23276.58, + "probability": 0.7998 + }, + { + "start": 23279.54, + "end": 23283.02, + "probability": 0.4497 + }, + { + "start": 23283.62, + "end": 23285.54, + "probability": 0.8586 + }, + { + "start": 23286.1, + "end": 23289.74, + "probability": 0.9593 + }, + { + "start": 23290.54, + "end": 23294.98, + "probability": 0.8912 + }, + { + "start": 23307.76, + "end": 23309.14, + "probability": 0.2511 + }, + { + "start": 23311.02, + "end": 23314.82, + "probability": 0.6549 + }, + { + "start": 23315.78, + "end": 23319.64, + "probability": 0.8417 + }, + { + "start": 23320.52, + "end": 23322.72, + "probability": 0.7736 + }, + { + "start": 23323.78, + "end": 23324.2, + "probability": 0.994 + }, + { + "start": 23327.58, + "end": 23328.58, + "probability": 0.5501 + }, + { + "start": 23329.36, + "end": 23329.72, + "probability": 0.8061 + }, + { + "start": 23331.06, + "end": 23332.39, + "probability": 0.8971 + }, + { + "start": 23333.06, + "end": 23335.32, + "probability": 0.7793 + }, + { + "start": 23337.46, + "end": 23341.08, + "probability": 0.7714 + }, + { + "start": 23342.74, + "end": 23343.5, + "probability": 0.9398 + }, + { + "start": 23344.36, + "end": 23345.3, + "probability": 0.9499 + }, + { + "start": 23346.48, + "end": 23349.32, + "probability": 0.9275 + }, + { + "start": 23350.44, + "end": 23353.06, + "probability": 0.9546 + }, + { + "start": 23354.22, + "end": 23354.52, + "probability": 0.9868 + }, + { + "start": 23355.16, + "end": 23356.06, + "probability": 0.647 + }, + { + "start": 23357.3, + "end": 23359.98, + "probability": 0.8093 + }, + { + "start": 23361.12, + "end": 23363.72, + "probability": 0.8573 + }, + { + "start": 23364.84, + "end": 23366.7, + "probability": 0.924 + }, + { + "start": 23367.64, + "end": 23370.14, + "probability": 0.9838 + }, + { + "start": 23371.06, + "end": 23372.98, + "probability": 0.9814 + }, + { + "start": 23373.8, + "end": 23375.72, + "probability": 0.9911 + }, + { + "start": 23376.78, + "end": 23378.58, + "probability": 0.7076 + }, + { + "start": 23380.62, + "end": 23381.42, + "probability": 0.8704 + }, + { + "start": 23382.28, + "end": 23383.24, + "probability": 0.8207 + }, + { + "start": 23383.88, + "end": 23385.23, + "probability": 0.8101 + }, + { + "start": 23386.06, + "end": 23387.54, + "probability": 0.8166 + }, + { + "start": 23388.3, + "end": 23389.92, + "probability": 0.8958 + }, + { + "start": 23391.51, + "end": 23394.06, + "probability": 0.9624 + }, + { + "start": 23395.12, + "end": 23396.98, + "probability": 0.9924 + }, + { + "start": 23398.38, + "end": 23400.52, + "probability": 0.9942 + }, + { + "start": 23401.3, + "end": 23402.76, + "probability": 0.9453 + }, + { + "start": 23403.8, + "end": 23406.16, + "probability": 0.7449 + }, + { + "start": 23407.56, + "end": 23409.5, + "probability": 0.8621 + }, + { + "start": 23410.26, + "end": 23412.46, + "probability": 0.9173 + }, + { + "start": 23413.6, + "end": 23415.04, + "probability": 0.7319 + }, + { + "start": 23415.18, + "end": 23415.72, + "probability": 0.6909 + }, + { + "start": 23416.14, + "end": 23416.7, + "probability": 0.2861 + }, + { + "start": 23417.66, + "end": 23418.28, + "probability": 0.0139 + }, + { + "start": 23422.6, + "end": 23423.4, + "probability": 0.0492 + }, + { + "start": 23423.4, + "end": 23423.4, + "probability": 0.3004 + }, + { + "start": 23423.4, + "end": 23424.18, + "probability": 0.2839 + }, + { + "start": 23424.18, + "end": 23425.38, + "probability": 0.7645 + }, + { + "start": 23426.4, + "end": 23428.08, + "probability": 0.8135 + }, + { + "start": 23429.36, + "end": 23429.72, + "probability": 0.9661 + }, + { + "start": 23430.38, + "end": 23431.08, + "probability": 0.6896 + }, + { + "start": 23431.88, + "end": 23433.74, + "probability": 0.7435 + }, + { + "start": 23434.7, + "end": 23435.0, + "probability": 0.7214 + }, + { + "start": 23436.34, + "end": 23437.24, + "probability": 0.5337 + }, + { + "start": 23439.48, + "end": 23439.8, + "probability": 0.6914 + }, + { + "start": 23442.52, + "end": 23443.26, + "probability": 0.6014 + }, + { + "start": 23443.86, + "end": 23444.48, + "probability": 0.5526 + }, + { + "start": 23444.52, + "end": 23444.6, + "probability": 0.152 + }, + { + "start": 23444.6, + "end": 23446.08, + "probability": 0.7879 + }, + { + "start": 23446.78, + "end": 23448.06, + "probability": 0.8855 + }, + { + "start": 23449.14, + "end": 23450.98, + "probability": 0.8813 + }, + { + "start": 23451.94, + "end": 23453.16, + "probability": 0.9826 + }, + { + "start": 23454.26, + "end": 23455.66, + "probability": 0.7714 + }, + { + "start": 23456.54, + "end": 23457.98, + "probability": 0.7515 + }, + { + "start": 23462.68, + "end": 23464.18, + "probability": 0.855 + }, + { + "start": 23464.24, + "end": 23464.38, + "probability": 0.7887 + }, + { + "start": 23465.3, + "end": 23466.82, + "probability": 0.0813 + }, + { + "start": 23466.82, + "end": 23469.76, + "probability": 0.6051 + }, + { + "start": 23470.84, + "end": 23472.72, + "probability": 0.5153 + }, + { + "start": 23473.9, + "end": 23475.38, + "probability": 0.601 + }, + { + "start": 23475.96, + "end": 23478.46, + "probability": 0.7458 + }, + { + "start": 23479.64, + "end": 23480.26, + "probability": 0.7727 + }, + { + "start": 23482.44, + "end": 23483.76, + "probability": 0.8711 + }, + { + "start": 23484.66, + "end": 23486.42, + "probability": 0.1307 + }, + { + "start": 23486.42, + "end": 23487.66, + "probability": 0.7466 + }, + { + "start": 23489.18, + "end": 23492.82, + "probability": 0.5609 + }, + { + "start": 23494.16, + "end": 23496.5, + "probability": 0.8753 + }, + { + "start": 23497.78, + "end": 23499.44, + "probability": 0.8569 + }, + { + "start": 23500.06, + "end": 23501.76, + "probability": 0.9321 + }, + { + "start": 23502.46, + "end": 23503.56, + "probability": 0.9341 + }, + { + "start": 23504.92, + "end": 23506.58, + "probability": 0.9614 + }, + { + "start": 23507.3, + "end": 23509.6, + "probability": 0.9848 + }, + { + "start": 23510.98, + "end": 23512.52, + "probability": 0.7104 + }, + { + "start": 23513.34, + "end": 23513.78, + "probability": 0.6934 + }, + { + "start": 23514.42, + "end": 23515.02, + "probability": 0.6074 + }, + { + "start": 23516.06, + "end": 23517.06, + "probability": 0.929 + }, + { + "start": 23519.68, + "end": 23520.48, + "probability": 0.2544 + }, + { + "start": 23524.1, + "end": 23527.94, + "probability": 0.4499 + }, + { + "start": 23528.54, + "end": 23530.16, + "probability": 0.6688 + }, + { + "start": 23531.14, + "end": 23531.42, + "probability": 0.9036 + }, + { + "start": 23531.98, + "end": 23532.62, + "probability": 0.4211 + }, + { + "start": 23533.9, + "end": 23535.8, + "probability": 0.957 + }, + { + "start": 23536.52, + "end": 23538.61, + "probability": 0.954 + }, + { + "start": 23540.64, + "end": 23544.88, + "probability": 0.7611 + }, + { + "start": 23546.06, + "end": 23547.3, + "probability": 0.4911 + }, + { + "start": 23547.3, + "end": 23547.96, + "probability": 0.815 + }, + { + "start": 23548.02, + "end": 23548.76, + "probability": 0.0208 + }, + { + "start": 23549.28, + "end": 23549.64, + "probability": 0.4916 + }, + { + "start": 23551.42, + "end": 23553.66, + "probability": 0.7874 + }, + { + "start": 23554.6, + "end": 23555.74, + "probability": 0.906 + }, + { + "start": 23556.96, + "end": 23561.36, + "probability": 0.7979 + }, + { + "start": 23561.4, + "end": 23561.66, + "probability": 0.5891 + }, + { + "start": 23566.84, + "end": 23566.94, + "probability": 0.6103 + }, + { + "start": 23566.96, + "end": 23567.34, + "probability": 0.0073 + }, + { + "start": 23567.34, + "end": 23567.34, + "probability": 0.0363 + }, + { + "start": 23567.34, + "end": 23567.97, + "probability": 0.2736 + }, + { + "start": 23569.04, + "end": 23571.1, + "probability": 0.8546 + }, + { + "start": 23572.12, + "end": 23572.88, + "probability": 0.9 + }, + { + "start": 23574.08, + "end": 23575.58, + "probability": 0.8928 + }, + { + "start": 23576.76, + "end": 23579.88, + "probability": 0.7773 + }, + { + "start": 23580.66, + "end": 23581.98, + "probability": 0.7544 + }, + { + "start": 23582.7, + "end": 23584.04, + "probability": 0.7098 + }, + { + "start": 23584.82, + "end": 23585.2, + "probability": 0.9778 + }, + { + "start": 23587.28, + "end": 23588.34, + "probability": 0.3244 + }, + { + "start": 23589.58, + "end": 23592.84, + "probability": 0.7892 + }, + { + "start": 23596.34, + "end": 23597.24, + "probability": 0.6311 + }, + { + "start": 23597.86, + "end": 23598.7, + "probability": 0.7839 + }, + { + "start": 23600.54, + "end": 23603.1, + "probability": 0.9513 + }, + { + "start": 23603.82, + "end": 23605.74, + "probability": 0.7356 + }, + { + "start": 23607.38, + "end": 23609.7, + "probability": 0.6931 + }, + { + "start": 23610.78, + "end": 23611.76, + "probability": 0.6417 + }, + { + "start": 23612.48, + "end": 23612.88, + "probability": 0.636 + }, + { + "start": 23613.52, + "end": 23614.84, + "probability": 0.9007 + }, + { + "start": 23615.6, + "end": 23617.36, + "probability": 0.9061 + }, + { + "start": 23620.2, + "end": 23622.52, + "probability": 0.7971 + }, + { + "start": 23623.2, + "end": 23624.62, + "probability": 0.9281 + }, + { + "start": 23626.26, + "end": 23629.16, + "probability": 0.9863 + }, + { + "start": 23630.52, + "end": 23632.14, + "probability": 0.9561 + }, + { + "start": 23633.9, + "end": 23635.4, + "probability": 0.9502 + }, + { + "start": 23636.28, + "end": 23637.74, + "probability": 0.9704 + }, + { + "start": 23639.2, + "end": 23641.88, + "probability": 0.4841 + }, + { + "start": 23643.12, + "end": 23645.08, + "probability": 0.6941 + }, + { + "start": 23645.92, + "end": 23650.3, + "probability": 0.8335 + }, + { + "start": 23650.7, + "end": 23651.44, + "probability": 0.1122 + }, + { + "start": 23652.84, + "end": 23655.2, + "probability": 0.9215 + }, + { + "start": 23656.12, + "end": 23660.76, + "probability": 0.7529 + }, + { + "start": 23661.7, + "end": 23664.26, + "probability": 0.8893 + }, + { + "start": 23665.04, + "end": 23666.64, + "probability": 0.8506 + }, + { + "start": 23667.44, + "end": 23668.64, + "probability": 0.9642 + }, + { + "start": 23669.64, + "end": 23671.9, + "probability": 0.6471 + }, + { + "start": 23672.04, + "end": 23672.66, + "probability": 0.0032 + }, + { + "start": 23672.94, + "end": 23674.78, + "probability": 0.5782 + }, + { + "start": 23675.24, + "end": 23675.34, + "probability": 0.4146 + }, + { + "start": 23676.82, + "end": 23677.76, + "probability": 0.6431 + }, + { + "start": 23677.76, + "end": 23679.34, + "probability": 0.4841 + }, + { + "start": 23679.4, + "end": 23680.42, + "probability": 0.698 + }, + { + "start": 23680.94, + "end": 23681.3, + "probability": 0.8361 + }, + { + "start": 23681.78, + "end": 23682.4, + "probability": 0.848 + }, + { + "start": 23682.98, + "end": 23683.27, + "probability": 0.187 + }, + { + "start": 23683.64, + "end": 23685.12, + "probability": 0.7477 + }, + { + "start": 23685.46, + "end": 23687.66, + "probability": 0.8979 + }, + { + "start": 23687.98, + "end": 23690.22, + "probability": 0.8695 + }, + { + "start": 23691.96, + "end": 23692.4, + "probability": 0.7235 + }, + { + "start": 23693.0, + "end": 23694.14, + "probability": 0.5223 + }, + { + "start": 23694.86, + "end": 23696.2, + "probability": 0.7874 + }, + { + "start": 23697.18, + "end": 23698.2, + "probability": 0.9801 + }, + { + "start": 23699.14, + "end": 23700.4, + "probability": 0.9421 + }, + { + "start": 23702.78, + "end": 23707.06, + "probability": 0.9541 + }, + { + "start": 23708.1, + "end": 23711.6, + "probability": 0.1634 + }, + { + "start": 23712.26, + "end": 23713.7, + "probability": 0.2136 + }, + { + "start": 23714.38, + "end": 23714.54, + "probability": 0.0089 + }, + { + "start": 23714.54, + "end": 23714.54, + "probability": 0.0925 + }, + { + "start": 23714.54, + "end": 23714.54, + "probability": 0.2538 + }, + { + "start": 23714.54, + "end": 23716.06, + "probability": 0.6351 + }, + { + "start": 23716.16, + "end": 23718.42, + "probability": 0.7098 + }, + { + "start": 23719.16, + "end": 23722.42, + "probability": 0.6294 + }, + { + "start": 23725.14, + "end": 23732.22, + "probability": 0.7217 + }, + { + "start": 23733.84, + "end": 23735.58, + "probability": 0.6623 + }, + { + "start": 23736.34, + "end": 23738.3, + "probability": 0.7208 + }, + { + "start": 23739.3, + "end": 23739.64, + "probability": 0.9733 + }, + { + "start": 23741.08, + "end": 23742.84, + "probability": 0.6617 + }, + { + "start": 23748.76, + "end": 23749.66, + "probability": 0.446 + }, + { + "start": 23750.94, + "end": 23753.42, + "probability": 0.7143 + }, + { + "start": 23753.62, + "end": 23756.62, + "probability": 0.9928 + }, + { + "start": 23757.48, + "end": 23758.68, + "probability": 0.3025 + }, + { + "start": 23758.78, + "end": 23759.21, + "probability": 0.1856 + }, + { + "start": 23760.04, + "end": 23763.12, + "probability": 0.8112 + }, + { + "start": 23763.58, + "end": 23765.8, + "probability": 0.7985 + }, + { + "start": 23766.36, + "end": 23771.4, + "probability": 0.8698 + }, + { + "start": 23773.1, + "end": 23774.78, + "probability": 0.8713 + }, + { + "start": 23775.32, + "end": 23776.82, + "probability": 0.9038 + }, + { + "start": 23776.82, + "end": 23778.96, + "probability": 0.8338 + }, + { + "start": 23779.14, + "end": 23781.0, + "probability": 0.8726 + }, + { + "start": 23781.56, + "end": 23783.52, + "probability": 0.9811 + }, + { + "start": 23783.98, + "end": 23786.5, + "probability": 0.6838 + }, + { + "start": 23787.0, + "end": 23789.04, + "probability": 0.9354 + }, + { + "start": 23789.46, + "end": 23790.16, + "probability": 0.989 + }, + { + "start": 23793.1, + "end": 23795.7, + "probability": 0.5922 + }, + { + "start": 23796.6, + "end": 23800.94, + "probability": 0.8122 + }, + { + "start": 23801.52, + "end": 23806.04, + "probability": 0.9778 + }, + { + "start": 23807.08, + "end": 23809.5, + "probability": 0.9493 + }, + { + "start": 23811.16, + "end": 23811.5, + "probability": 0.4914 + }, + { + "start": 23812.26, + "end": 23813.36, + "probability": 0.3828 + }, + { + "start": 23814.7, + "end": 23817.32, + "probability": 0.6992 + }, + { + "start": 23820.28, + "end": 23821.28, + "probability": 0.2706 + }, + { + "start": 23821.94, + "end": 23825.02, + "probability": 0.7094 + }, + { + "start": 23825.8, + "end": 23830.56, + "probability": 0.9325 + }, + { + "start": 23831.16, + "end": 23833.04, + "probability": 0.6772 + }, + { + "start": 23833.98, + "end": 23835.9, + "probability": 0.7225 + }, + { + "start": 23835.94, + "end": 23838.38, + "probability": 0.9493 + }, + { + "start": 23838.44, + "end": 23840.52, + "probability": 0.39 + }, + { + "start": 23841.22, + "end": 23843.64, + "probability": 0.8689 + }, + { + "start": 23844.24, + "end": 23845.66, + "probability": 0.9434 + }, + { + "start": 23846.66, + "end": 23849.34, + "probability": 0.3923 + }, + { + "start": 23849.46, + "end": 23849.92, + "probability": 0.5947 + }, + { + "start": 23850.54, + "end": 23852.64, + "probability": 0.5934 + }, + { + "start": 23852.98, + "end": 23855.96, + "probability": 0.5708 + }, + { + "start": 23857.08, + "end": 23859.92, + "probability": 0.8405 + }, + { + "start": 23859.94, + "end": 23863.26, + "probability": 0.9068 + }, + { + "start": 23863.68, + "end": 23866.34, + "probability": 0.8977 + }, + { + "start": 23866.34, + "end": 23867.08, + "probability": 0.403 + }, + { + "start": 23867.34, + "end": 23874.24, + "probability": 0.9966 + }, + { + "start": 23874.86, + "end": 23875.48, + "probability": 0.6738 + }, + { + "start": 23876.64, + "end": 23876.88, + "probability": 0.5901 + }, + { + "start": 23876.94, + "end": 23878.52, + "probability": 0.8848 + }, + { + "start": 23878.94, + "end": 23883.1, + "probability": 0.985 + }, + { + "start": 23883.76, + "end": 23886.09, + "probability": 0.9771 + }, + { + "start": 23886.84, + "end": 23888.54, + "probability": 0.9504 + }, + { + "start": 23888.56, + "end": 23893.08, + "probability": 0.9873 + }, + { + "start": 23893.08, + "end": 23899.46, + "probability": 0.9857 + }, + { + "start": 23899.46, + "end": 23899.46, + "probability": 0.0013 + }, + { + "start": 23908.88, + "end": 23913.55, + "probability": 0.7276 + }, + { + "start": 23914.88, + "end": 23915.34, + "probability": 0.2961 + }, + { + "start": 23917.3, + "end": 23918.16, + "probability": 0.503 + }, + { + "start": 23919.18, + "end": 23920.86, + "probability": 0.0546 + }, + { + "start": 23920.86, + "end": 23924.52, + "probability": 0.137 + }, + { + "start": 23925.02, + "end": 23928.12, + "probability": 0.308 + }, + { + "start": 23929.3, + "end": 23931.2, + "probability": 0.917 + }, + { + "start": 23932.94, + "end": 23934.24, + "probability": 0.9205 + }, + { + "start": 23934.48, + "end": 23934.9, + "probability": 0.0438 + }, + { + "start": 23935.68, + "end": 23936.24, + "probability": 0.2739 + }, + { + "start": 23937.62, + "end": 23939.02, + "probability": 0.6302 + }, + { + "start": 23939.62, + "end": 23942.44, + "probability": 0.9893 + }, + { + "start": 23942.82, + "end": 23947.94, + "probability": 0.8589 + }, + { + "start": 23948.2, + "end": 23949.36, + "probability": 0.776 + }, + { + "start": 23949.52, + "end": 23953.49, + "probability": 0.8403 + }, + { + "start": 23953.76, + "end": 23957.64, + "probability": 0.8828 + }, + { + "start": 23958.2, + "end": 23959.36, + "probability": 0.7999 + }, + { + "start": 23959.44, + "end": 23961.52, + "probability": 0.9331 + }, + { + "start": 23962.21, + "end": 23964.68, + "probability": 0.9138 + }, + { + "start": 23966.94, + "end": 23968.97, + "probability": 0.7643 + }, + { + "start": 23970.16, + "end": 23971.99, + "probability": 0.5716 + }, + { + "start": 23972.5, + "end": 23974.6, + "probability": 0.5996 + }, + { + "start": 23974.7, + "end": 23976.66, + "probability": 0.7495 + }, + { + "start": 23977.06, + "end": 23977.06, + "probability": 0.3653 + }, + { + "start": 23977.22, + "end": 23977.88, + "probability": 0.6875 + }, + { + "start": 23977.94, + "end": 23978.14, + "probability": 0.7581 + }, + { + "start": 23978.34, + "end": 23978.52, + "probability": 0.2495 + }, + { + "start": 23978.82, + "end": 23979.48, + "probability": 0.9569 + }, + { + "start": 23979.56, + "end": 23980.26, + "probability": 0.6013 + }, + { + "start": 23980.26, + "end": 23983.08, + "probability": 0.3513 + }, + { + "start": 23983.08, + "end": 23984.48, + "probability": 0.5499 + }, + { + "start": 23984.84, + "end": 23988.22, + "probability": 0.7456 + }, + { + "start": 23988.22, + "end": 23989.62, + "probability": 0.3909 + }, + { + "start": 23990.2, + "end": 23991.44, + "probability": 0.7874 + }, + { + "start": 23992.02, + "end": 23992.96, + "probability": 0.0853 + }, + { + "start": 23993.42, + "end": 23994.12, + "probability": 0.1511 + }, + { + "start": 23994.56, + "end": 23994.56, + "probability": 0.2146 + }, + { + "start": 23994.56, + "end": 23994.94, + "probability": 0.2467 + }, + { + "start": 23994.94, + "end": 23994.98, + "probability": 0.2235 + }, + { + "start": 23995.34, + "end": 23995.84, + "probability": 0.2138 + }, + { + "start": 23995.96, + "end": 23997.38, + "probability": 0.183 + }, + { + "start": 23998.56, + "end": 23998.86, + "probability": 0.3188 + }, + { + "start": 23999.02, + "end": 23999.64, + "probability": 0.5575 + }, + { + "start": 23999.88, + "end": 24000.28, + "probability": 0.0277 + }, + { + "start": 24000.64, + "end": 24001.98, + "probability": 0.3744 + }, + { + "start": 24003.08, + "end": 24006.2, + "probability": 0.1702 + }, + { + "start": 24007.92, + "end": 24008.48, + "probability": 0.0092 + }, + { + "start": 24010.63, + "end": 24010.75, + "probability": 0.0324 + }, + { + "start": 24013.36, + "end": 24014.9, + "probability": 0.2288 + }, + { + "start": 24014.9, + "end": 24015.18, + "probability": 0.0376 + }, + { + "start": 24015.2, + "end": 24015.62, + "probability": 0.3211 + }, + { + "start": 24015.62, + "end": 24016.4, + "probability": 0.1594 + }, + { + "start": 24017.39, + "end": 24022.28, + "probability": 0.7997 + }, + { + "start": 24022.46, + "end": 24024.6, + "probability": 0.8087 + }, + { + "start": 24024.88, + "end": 24025.3, + "probability": 0.7046 + }, + { + "start": 24025.3, + "end": 24025.88, + "probability": 0.5319 + }, + { + "start": 24026.6, + "end": 24028.34, + "probability": 0.2815 + }, + { + "start": 24029.58, + "end": 24030.8, + "probability": 0.7137 + }, + { + "start": 24031.64, + "end": 24037.12, + "probability": 0.9972 + }, + { + "start": 24038.06, + "end": 24040.02, + "probability": 0.8468 + }, + { + "start": 24040.46, + "end": 24043.56, + "probability": 0.9907 + }, + { + "start": 24043.56, + "end": 24047.8, + "probability": 0.922 + }, + { + "start": 24048.88, + "end": 24050.56, + "probability": 0.851 + }, + { + "start": 24051.0, + "end": 24054.04, + "probability": 0.9922 + }, + { + "start": 24055.12, + "end": 24057.78, + "probability": 0.9716 + }, + { + "start": 24057.82, + "end": 24059.98, + "probability": 0.982 + }, + { + "start": 24061.64, + "end": 24063.66, + "probability": 0.9922 + }, + { + "start": 24063.76, + "end": 24065.36, + "probability": 0.947 + }, + { + "start": 24066.0, + "end": 24067.12, + "probability": 0.938 + }, + { + "start": 24067.34, + "end": 24070.54, + "probability": 0.9941 + }, + { + "start": 24070.74, + "end": 24072.94, + "probability": 0.9996 + }, + { + "start": 24074.1, + "end": 24076.42, + "probability": 0.9401 + }, + { + "start": 24076.62, + "end": 24076.72, + "probability": 0.1143 + }, + { + "start": 24076.8, + "end": 24076.98, + "probability": 0.6778 + }, + { + "start": 24078.34, + "end": 24080.76, + "probability": 0.8439 + }, + { + "start": 24081.14, + "end": 24083.48, + "probability": 0.9811 + }, + { + "start": 24084.44, + "end": 24087.12, + "probability": 0.9908 + }, + { + "start": 24087.9, + "end": 24089.68, + "probability": 0.9924 + }, + { + "start": 24090.22, + "end": 24092.42, + "probability": 0.9976 + }, + { + "start": 24093.22, + "end": 24093.92, + "probability": 0.9727 + }, + { + "start": 24094.18, + "end": 24095.5, + "probability": 0.8552 + }, + { + "start": 24095.68, + "end": 24098.34, + "probability": 0.9879 + }, + { + "start": 24100.16, + "end": 24100.9, + "probability": 0.7392 + }, + { + "start": 24101.0, + "end": 24102.5, + "probability": 0.9763 + }, + { + "start": 24102.94, + "end": 24103.66, + "probability": 0.9214 + }, + { + "start": 24104.0, + "end": 24107.12, + "probability": 0.9919 + }, + { + "start": 24107.76, + "end": 24110.64, + "probability": 0.9949 + }, + { + "start": 24110.7, + "end": 24112.54, + "probability": 0.955 + }, + { + "start": 24113.92, + "end": 24116.98, + "probability": 0.9792 + }, + { + "start": 24117.6, + "end": 24118.74, + "probability": 0.9746 + }, + { + "start": 24119.56, + "end": 24122.33, + "probability": 0.9971 + }, + { + "start": 24123.1, + "end": 24126.28, + "probability": 0.9937 + }, + { + "start": 24127.2, + "end": 24130.14, + "probability": 0.9965 + }, + { + "start": 24130.16, + "end": 24133.04, + "probability": 0.9987 + }, + { + "start": 24133.66, + "end": 24135.72, + "probability": 0.9642 + }, + { + "start": 24136.22, + "end": 24143.96, + "probability": 0.9977 + }, + { + "start": 24144.66, + "end": 24149.34, + "probability": 0.992 + }, + { + "start": 24150.48, + "end": 24153.56, + "probability": 0.9347 + }, + { + "start": 24154.7, + "end": 24157.64, + "probability": 0.9805 + }, + { + "start": 24159.36, + "end": 24162.74, + "probability": 0.9974 + }, + { + "start": 24162.74, + "end": 24165.34, + "probability": 0.9949 + }, + { + "start": 24166.66, + "end": 24170.32, + "probability": 0.9927 + }, + { + "start": 24170.82, + "end": 24171.31, + "probability": 0.959 + }, + { + "start": 24172.1, + "end": 24173.56, + "probability": 0.8088 + }, + { + "start": 24174.18, + "end": 24178.06, + "probability": 0.9967 + }, + { + "start": 24178.06, + "end": 24181.18, + "probability": 0.998 + }, + { + "start": 24182.56, + "end": 24186.96, + "probability": 0.9963 + }, + { + "start": 24187.12, + "end": 24191.58, + "probability": 0.9971 + }, + { + "start": 24192.48, + "end": 24195.42, + "probability": 0.9958 + }, + { + "start": 24196.34, + "end": 24199.78, + "probability": 0.976 + }, + { + "start": 24200.7, + "end": 24201.54, + "probability": 0.4822 + }, + { + "start": 24201.66, + "end": 24205.82, + "probability": 0.9983 + }, + { + "start": 24206.58, + "end": 24208.62, + "probability": 0.942 + }, + { + "start": 24209.28, + "end": 24211.94, + "probability": 0.9969 + }, + { + "start": 24213.24, + "end": 24214.32, + "probability": 0.8361 + }, + { + "start": 24214.84, + "end": 24216.86, + "probability": 0.9755 + }, + { + "start": 24217.36, + "end": 24218.14, + "probability": 0.9016 + }, + { + "start": 24218.5, + "end": 24221.12, + "probability": 0.9957 + }, + { + "start": 24221.12, + "end": 24223.8, + "probability": 0.9857 + }, + { + "start": 24224.6, + "end": 24227.58, + "probability": 0.999 + }, + { + "start": 24228.04, + "end": 24232.46, + "probability": 0.9771 + }, + { + "start": 24232.98, + "end": 24233.22, + "probability": 0.6799 + }, + { + "start": 24234.18, + "end": 24236.7, + "probability": 0.9895 + }, + { + "start": 24236.76, + "end": 24237.74, + "probability": 0.9191 + }, + { + "start": 24238.7, + "end": 24241.8, + "probability": 0.9214 + }, + { + "start": 24242.46, + "end": 24243.9, + "probability": 0.9227 + }, + { + "start": 24244.58, + "end": 24246.48, + "probability": 0.9745 + }, + { + "start": 24247.02, + "end": 24248.64, + "probability": 0.3108 + }, + { + "start": 24249.16, + "end": 24252.02, + "probability": 0.6487 + }, + { + "start": 24252.4, + "end": 24256.98, + "probability": 0.8295 + }, + { + "start": 24257.48, + "end": 24259.12, + "probability": 0.9722 + }, + { + "start": 24260.16, + "end": 24260.64, + "probability": 0.9971 + }, + { + "start": 24264.04, + "end": 24267.4, + "probability": 0.9975 + }, + { + "start": 24267.54, + "end": 24269.12, + "probability": 0.3029 + }, + { + "start": 24270.5, + "end": 24276.26, + "probability": 0.9916 + }, + { + "start": 24276.88, + "end": 24278.6, + "probability": 0.5769 + }, + { + "start": 24279.16, + "end": 24281.84, + "probability": 0.7535 + }, + { + "start": 24285.64, + "end": 24286.42, + "probability": 0.3941 + }, + { + "start": 24290.14, + "end": 24290.86, + "probability": 0.5271 + }, + { + "start": 24292.64, + "end": 24294.72, + "probability": 0.9885 + }, + { + "start": 24295.24, + "end": 24297.2, + "probability": 0.8787 + }, + { + "start": 24297.98, + "end": 24300.1, + "probability": 0.7514 + }, + { + "start": 24300.66, + "end": 24302.02, + "probability": 0.7927 + }, + { + "start": 24303.02, + "end": 24306.54, + "probability": 0.985 + }, + { + "start": 24306.66, + "end": 24307.32, + "probability": 0.5805 + }, + { + "start": 24308.6, + "end": 24309.94, + "probability": 0.6876 + }, + { + "start": 24310.34, + "end": 24312.92, + "probability": 0.8804 + }, + { + "start": 24313.0, + "end": 24313.58, + "probability": 0.8534 + }, + { + "start": 24314.1, + "end": 24314.36, + "probability": 0.7593 + }, + { + "start": 24317.22, + "end": 24318.8, + "probability": 0.6522 + }, + { + "start": 24319.3, + "end": 24319.82, + "probability": 0.6326 + }, + { + "start": 24319.92, + "end": 24326.32, + "probability": 0.8688 + }, + { + "start": 24326.84, + "end": 24328.92, + "probability": 0.9729 + }, + { + "start": 24329.28, + "end": 24333.54, + "probability": 0.9854 + }, + { + "start": 24333.94, + "end": 24334.67, + "probability": 0.4398 + }, + { + "start": 24335.34, + "end": 24337.32, + "probability": 0.4657 + }, + { + "start": 24337.46, + "end": 24341.6, + "probability": 0.6895 + }, + { + "start": 24341.6, + "end": 24344.24, + "probability": 0.9246 + }, + { + "start": 24344.34, + "end": 24344.96, + "probability": 0.7574 + }, + { + "start": 24345.3, + "end": 24347.62, + "probability": 0.9396 + }, + { + "start": 24348.44, + "end": 24351.96, + "probability": 0.9075 + }, + { + "start": 24352.56, + "end": 24356.72, + "probability": 0.9149 + }, + { + "start": 24357.32, + "end": 24358.03, + "probability": 0.9756 + }, + { + "start": 24358.82, + "end": 24361.12, + "probability": 0.9565 + }, + { + "start": 24361.9, + "end": 24365.08, + "probability": 0.9893 + }, + { + "start": 24365.9, + "end": 24368.48, + "probability": 0.9959 + }, + { + "start": 24369.14, + "end": 24375.4, + "probability": 0.9858 + }, + { + "start": 24375.5, + "end": 24377.2, + "probability": 0.9842 + }, + { + "start": 24377.72, + "end": 24378.72, + "probability": 0.9613 + }, + { + "start": 24378.86, + "end": 24381.56, + "probability": 0.8753 + }, + { + "start": 24382.1, + "end": 24385.95, + "probability": 0.9808 + }, + { + "start": 24387.92, + "end": 24391.42, + "probability": 0.9717 + }, + { + "start": 24392.26, + "end": 24395.1, + "probability": 0.8278 + }, + { + "start": 24395.74, + "end": 24397.88, + "probability": 0.4576 + }, + { + "start": 24397.88, + "end": 24400.82, + "probability": 0.9777 + }, + { + "start": 24401.06, + "end": 24401.4, + "probability": 0.7486 + }, + { + "start": 24401.78, + "end": 24402.38, + "probability": 0.3933 + }, + { + "start": 24402.52, + "end": 24404.6, + "probability": 0.9178 + }, + { + "start": 24404.98, + "end": 24406.6, + "probability": 0.6298 + }, + { + "start": 24406.82, + "end": 24408.0, + "probability": 0.8748 + }, + { + "start": 24408.74, + "end": 24409.62, + "probability": 0.7812 + }, + { + "start": 24409.7, + "end": 24410.54, + "probability": 0.5248 + }, + { + "start": 24410.86, + "end": 24412.98, + "probability": 0.9887 + }, + { + "start": 24413.16, + "end": 24413.78, + "probability": 0.9792 + }, + { + "start": 24417.08, + "end": 24417.94, + "probability": 0.0861 + }, + { + "start": 24417.94, + "end": 24419.0, + "probability": 0.5378 + }, + { + "start": 24422.62, + "end": 24424.76, + "probability": 0.7743 + }, + { + "start": 24425.42, + "end": 24428.05, + "probability": 0.9925 + }, + { + "start": 24429.32, + "end": 24430.32, + "probability": 0.5019 + }, + { + "start": 24430.5, + "end": 24432.32, + "probability": 0.823 + }, + { + "start": 24435.03, + "end": 24438.62, + "probability": 0.9781 + }, + { + "start": 24439.1, + "end": 24441.2, + "probability": 0.9003 + }, + { + "start": 24441.42, + "end": 24443.16, + "probability": 0.8757 + }, + { + "start": 24443.58, + "end": 24444.37, + "probability": 0.4222 + }, + { + "start": 24445.22, + "end": 24447.58, + "probability": 0.8179 + }, + { + "start": 24449.23, + "end": 24453.3, + "probability": 0.6341 + }, + { + "start": 24454.02, + "end": 24456.9, + "probability": 0.9145 + }, + { + "start": 24457.66, + "end": 24458.9, + "probability": 0.9879 + }, + { + "start": 24459.48, + "end": 24460.83, + "probability": 0.9226 + }, + { + "start": 24461.58, + "end": 24463.26, + "probability": 0.9702 + }, + { + "start": 24463.92, + "end": 24469.84, + "probability": 0.9245 + }, + { + "start": 24470.46, + "end": 24475.28, + "probability": 0.9463 + }, + { + "start": 24476.56, + "end": 24478.34, + "probability": 0.6594 + }, + { + "start": 24478.66, + "end": 24479.54, + "probability": 0.9455 + }, + { + "start": 24480.02, + "end": 24485.26, + "probability": 0.999 + }, + { + "start": 24485.48, + "end": 24486.78, + "probability": 0.8034 + }, + { + "start": 24487.6, + "end": 24491.94, + "probability": 0.9798 + }, + { + "start": 24492.38, + "end": 24493.14, + "probability": 0.7102 + }, + { + "start": 24493.58, + "end": 24496.84, + "probability": 0.9759 + }, + { + "start": 24497.28, + "end": 24498.26, + "probability": 0.9338 + }, + { + "start": 24498.86, + "end": 24499.74, + "probability": 0.3335 + }, + { + "start": 24500.64, + "end": 24502.24, + "probability": 0.4927 + }, + { + "start": 24502.78, + "end": 24507.2, + "probability": 0.9862 + }, + { + "start": 24508.24, + "end": 24509.48, + "probability": 0.5288 + }, + { + "start": 24509.62, + "end": 24513.88, + "probability": 0.9983 + }, + { + "start": 24514.24, + "end": 24516.0, + "probability": 0.9281 + }, + { + "start": 24516.12, + "end": 24517.16, + "probability": 0.7989 + }, + { + "start": 24517.92, + "end": 24524.4, + "probability": 0.6054 + }, + { + "start": 24524.58, + "end": 24528.04, + "probability": 0.9398 + }, + { + "start": 24528.5, + "end": 24529.96, + "probability": 0.9657 + }, + { + "start": 24530.3, + "end": 24531.5, + "probability": 0.8515 + }, + { + "start": 24531.56, + "end": 24532.17, + "probability": 0.9819 + }, + { + "start": 24533.12, + "end": 24534.26, + "probability": 0.7786 + }, + { + "start": 24535.12, + "end": 24535.68, + "probability": 0.0218 + }, + { + "start": 24536.2, + "end": 24537.18, + "probability": 0.839 + }, + { + "start": 24537.56, + "end": 24540.28, + "probability": 0.9707 + }, + { + "start": 24540.56, + "end": 24544.38, + "probability": 0.9752 + }, + { + "start": 24544.94, + "end": 24547.78, + "probability": 0.9834 + }, + { + "start": 24548.26, + "end": 24549.02, + "probability": 0.5028 + }, + { + "start": 24549.18, + "end": 24553.5, + "probability": 0.917 + }, + { + "start": 24554.02, + "end": 24557.14, + "probability": 0.6877 + }, + { + "start": 24557.7, + "end": 24558.24, + "probability": 0.922 + }, + { + "start": 24558.48, + "end": 24559.8, + "probability": 0.8467 + }, + { + "start": 24560.6, + "end": 24564.4, + "probability": 0.9132 + }, + { + "start": 24565.1, + "end": 24567.38, + "probability": 0.6708 + }, + { + "start": 24568.12, + "end": 24570.62, + "probability": 0.3154 + }, + { + "start": 24571.04, + "end": 24571.64, + "probability": 0.6026 + }, + { + "start": 24571.66, + "end": 24572.2, + "probability": 0.5312 + }, + { + "start": 24572.42, + "end": 24573.1, + "probability": 0.2165 + }, + { + "start": 24573.7, + "end": 24575.42, + "probability": 0.1657 + }, + { + "start": 24576.58, + "end": 24577.86, + "probability": 0.1775 + }, + { + "start": 24587.24, + "end": 24587.88, + "probability": 0.0023 + }, + { + "start": 24587.96, + "end": 24587.96, + "probability": 0.0412 + }, + { + "start": 24587.96, + "end": 24587.96, + "probability": 0.1694 + }, + { + "start": 24587.96, + "end": 24590.22, + "probability": 0.6264 + }, + { + "start": 24590.42, + "end": 24594.24, + "probability": 0.723 + }, + { + "start": 24594.74, + "end": 24595.98, + "probability": 0.6314 + }, + { + "start": 24596.5, + "end": 24598.84, + "probability": 0.6847 + }, + { + "start": 24598.84, + "end": 24603.16, + "probability": 0.8139 + }, + { + "start": 24603.54, + "end": 24604.16, + "probability": 0.7183 + }, + { + "start": 24605.46, + "end": 24606.58, + "probability": 0.621 + }, + { + "start": 24606.7, + "end": 24607.08, + "probability": 0.634 + }, + { + "start": 24607.44, + "end": 24608.46, + "probability": 0.8491 + }, + { + "start": 24608.86, + "end": 24609.64, + "probability": 0.8838 + }, + { + "start": 24609.72, + "end": 24612.28, + "probability": 0.9784 + }, + { + "start": 24613.42, + "end": 24616.22, + "probability": 0.639 + }, + { + "start": 24617.14, + "end": 24618.96, + "probability": 0.326 + }, + { + "start": 24619.2, + "end": 24620.64, + "probability": 0.6465 + }, + { + "start": 24620.8, + "end": 24621.34, + "probability": 0.4781 + }, + { + "start": 24621.56, + "end": 24622.94, + "probability": 0.7464 + }, + { + "start": 24624.04, + "end": 24625.96, + "probability": 0.9667 + }, + { + "start": 24630.36, + "end": 24634.78, + "probability": 0.8424 + }, + { + "start": 24636.2, + "end": 24636.2, + "probability": 0.1442 + }, + { + "start": 24636.2, + "end": 24637.4, + "probability": 0.2348 + }, + { + "start": 24637.78, + "end": 24640.28, + "probability": 0.5095 + }, + { + "start": 24641.64, + "end": 24644.6, + "probability": 0.9681 + }, + { + "start": 24644.68, + "end": 24647.98, + "probability": 0.8877 + }, + { + "start": 24648.96, + "end": 24652.84, + "probability": 0.7876 + }, + { + "start": 24653.58, + "end": 24655.06, + "probability": 0.3902 + }, + { + "start": 24655.32, + "end": 24657.0, + "probability": 0.9706 + }, + { + "start": 24657.14, + "end": 24663.16, + "probability": 0.6992 + }, + { + "start": 24663.38, + "end": 24665.68, + "probability": 0.9327 + }, + { + "start": 24666.72, + "end": 24670.56, + "probability": 0.909 + }, + { + "start": 24670.56, + "end": 24674.52, + "probability": 0.9938 + }, + { + "start": 24674.72, + "end": 24675.1, + "probability": 0.4877 + }, + { + "start": 24675.18, + "end": 24675.74, + "probability": 0.6837 + }, + { + "start": 24676.98, + "end": 24679.88, + "probability": 0.8497 + }, + { + "start": 24680.72, + "end": 24683.2, + "probability": 0.9326 + }, + { + "start": 24684.2, + "end": 24685.74, + "probability": 0.8767 + }, + { + "start": 24687.4, + "end": 24687.8, + "probability": 0.5336 + }, + { + "start": 24688.5, + "end": 24691.3, + "probability": 0.1852 + }, + { + "start": 24691.6, + "end": 24691.64, + "probability": 0.1103 + }, + { + "start": 24691.64, + "end": 24691.86, + "probability": 0.16 + }, + { + "start": 24692.31, + "end": 24696.44, + "probability": 0.2259 + }, + { + "start": 24696.44, + "end": 24699.92, + "probability": 0.5826 + }, + { + "start": 24700.46, + "end": 24701.54, + "probability": 0.2311 + }, + { + "start": 24707.3, + "end": 24708.16, + "probability": 0.709 + }, + { + "start": 24710.23, + "end": 24712.22, + "probability": 0.3721 + }, + { + "start": 24712.38, + "end": 24714.02, + "probability": 0.5822 + }, + { + "start": 24714.16, + "end": 24715.28, + "probability": 0.8232 + }, + { + "start": 24715.4, + "end": 24717.1, + "probability": 0.9398 + }, + { + "start": 24717.54, + "end": 24721.1, + "probability": 0.8978 + }, + { + "start": 24721.8, + "end": 24722.96, + "probability": 0.8768 + }, + { + "start": 24723.98, + "end": 24726.22, + "probability": 0.6935 + }, + { + "start": 24726.26, + "end": 24729.6, + "probability": 0.677 + }, + { + "start": 24730.78, + "end": 24731.7, + "probability": 0.8294 + }, + { + "start": 24731.86, + "end": 24734.12, + "probability": 0.9731 + }, + { + "start": 24734.2, + "end": 24735.68, + "probability": 0.1753 + }, + { + "start": 24737.06, + "end": 24740.62, + "probability": 0.9141 + }, + { + "start": 24741.6, + "end": 24746.56, + "probability": 0.9854 + }, + { + "start": 24747.06, + "end": 24750.52, + "probability": 0.9767 + }, + { + "start": 24750.52, + "end": 24754.12, + "probability": 0.7332 + }, + { + "start": 24755.0, + "end": 24756.98, + "probability": 0.9164 + }, + { + "start": 24756.98, + "end": 24760.1, + "probability": 0.8345 + }, + { + "start": 24760.8, + "end": 24761.48, + "probability": 0.6267 + }, + { + "start": 24761.52, + "end": 24763.9, + "probability": 0.9679 + }, + { + "start": 24764.04, + "end": 24767.38, + "probability": 0.9615 + }, + { + "start": 24767.5, + "end": 24770.78, + "probability": 0.9697 + }, + { + "start": 24773.52, + "end": 24775.32, + "probability": 0.6618 + }, + { + "start": 24775.86, + "end": 24778.46, + "probability": 0.2372 + }, + { + "start": 24778.56, + "end": 24783.3, + "probability": 0.7718 + }, + { + "start": 24783.34, + "end": 24786.54, + "probability": 0.7678 + }, + { + "start": 24787.54, + "end": 24789.8, + "probability": 0.6846 + }, + { + "start": 24790.46, + "end": 24792.58, + "probability": 0.7977 + }, + { + "start": 24793.52, + "end": 24794.18, + "probability": 0.6971 + }, + { + "start": 24794.36, + "end": 24795.38, + "probability": 0.8754 + }, + { + "start": 24795.42, + "end": 24796.52, + "probability": 0.4656 + }, + { + "start": 24796.64, + "end": 24799.58, + "probability": 0.8706 + }, + { + "start": 24799.7, + "end": 24801.7, + "probability": 0.6695 + }, + { + "start": 24803.48, + "end": 24806.92, + "probability": 0.7658 + }, + { + "start": 24806.98, + "end": 24807.76, + "probability": 0.6058 + }, + { + "start": 24807.78, + "end": 24809.0, + "probability": 0.4943 + }, + { + "start": 24809.56, + "end": 24811.84, + "probability": 0.797 + }, + { + "start": 24811.88, + "end": 24813.62, + "probability": 0.8833 + }, + { + "start": 24814.22, + "end": 24815.56, + "probability": 0.8302 + }, + { + "start": 24816.26, + "end": 24818.5, + "probability": 0.8589 + }, + { + "start": 24819.44, + "end": 24822.5, + "probability": 0.9166 + }, + { + "start": 24822.5, + "end": 24825.04, + "probability": 0.9562 + }, + { + "start": 24825.98, + "end": 24828.78, + "probability": 0.9676 + }, + { + "start": 24829.72, + "end": 24830.48, + "probability": 0.8061 + }, + { + "start": 24830.7, + "end": 24833.68, + "probability": 0.7915 + }, + { + "start": 24833.82, + "end": 24834.7, + "probability": 0.9592 + }, + { + "start": 24835.36, + "end": 24837.18, + "probability": 0.7833 + }, + { + "start": 24837.76, + "end": 24838.82, + "probability": 0.9698 + }, + { + "start": 24840.4, + "end": 24841.96, + "probability": 0.7014 + }, + { + "start": 24842.86, + "end": 24844.36, + "probability": 0.8442 + }, + { + "start": 24845.06, + "end": 24848.14, + "probability": 0.928 + }, + { + "start": 24849.12, + "end": 24851.06, + "probability": 0.5301 + }, + { + "start": 24851.06, + "end": 24851.14, + "probability": 0.0018 + }, + { + "start": 24851.14, + "end": 24852.68, + "probability": 0.6058 + }, + { + "start": 24853.2, + "end": 24853.88, + "probability": 0.8516 + }, + { + "start": 24854.64, + "end": 24855.48, + "probability": 0.8309 + }, + { + "start": 24856.16, + "end": 24859.96, + "probability": 0.9133 + }, + { + "start": 24860.94, + "end": 24862.81, + "probability": 0.9799 + }, + { + "start": 24863.34, + "end": 24865.98, + "probability": 0.9612 + }, + { + "start": 24866.94, + "end": 24867.36, + "probability": 0.2179 + }, + { + "start": 24868.54, + "end": 24869.22, + "probability": 0.7229 + }, + { + "start": 24870.68, + "end": 24873.84, + "probability": 0.6948 + }, + { + "start": 24874.1, + "end": 24875.26, + "probability": 0.9907 + }, + { + "start": 24876.12, + "end": 24878.18, + "probability": 0.6911 + }, + { + "start": 24881.16, + "end": 24884.0, + "probability": 0.8213 + }, + { + "start": 24885.02, + "end": 24885.38, + "probability": 0.9175 + }, + { + "start": 24885.38, + "end": 24885.98, + "probability": 0.9395 + }, + { + "start": 24886.14, + "end": 24888.28, + "probability": 0.8582 + }, + { + "start": 24888.66, + "end": 24890.14, + "probability": 0.9575 + }, + { + "start": 24890.54, + "end": 24891.88, + "probability": 0.697 + }, + { + "start": 24892.4, + "end": 24894.94, + "probability": 0.5238 + }, + { + "start": 24894.96, + "end": 24896.7, + "probability": 0.202 + }, + { + "start": 24896.74, + "end": 24897.5, + "probability": 0.5486 + }, + { + "start": 24897.98, + "end": 24898.5, + "probability": 0.8172 + }, + { + "start": 24898.98, + "end": 24899.58, + "probability": 0.925 + }, + { + "start": 24903.88, + "end": 24910.52, + "probability": 0.2595 + }, + { + "start": 24911.1, + "end": 24912.24, + "probability": 0.2111 + }, + { + "start": 24916.44, + "end": 24917.58, + "probability": 0.0056 + }, + { + "start": 24918.1, + "end": 24918.28, + "probability": 0.0268 + }, + { + "start": 24919.9, + "end": 24921.46, + "probability": 0.0459 + }, + { + "start": 24922.48, + "end": 24922.86, + "probability": 0.1296 + }, + { + "start": 24922.86, + "end": 24929.8, + "probability": 0.6946 + }, + { + "start": 24929.82, + "end": 24930.52, + "probability": 0.43 + }, + { + "start": 24931.48, + "end": 24932.84, + "probability": 0.802 + }, + { + "start": 24935.44, + "end": 24937.5, + "probability": 0.3675 + }, + { + "start": 24937.94, + "end": 24938.4, + "probability": 0.0219 + }, + { + "start": 24938.54, + "end": 24944.18, + "probability": 0.8105 + }, + { + "start": 24944.28, + "end": 24945.46, + "probability": 0.5799 + }, + { + "start": 24945.78, + "end": 24948.24, + "probability": 0.8434 + }, + { + "start": 24948.96, + "end": 24949.26, + "probability": 0.0001 + }, + { + "start": 24950.53, + "end": 24952.98, + "probability": 0.2482 + }, + { + "start": 24952.98, + "end": 24953.2, + "probability": 0.5336 + }, + { + "start": 24958.74, + "end": 24960.18, + "probability": 0.3164 + }, + { + "start": 24960.36, + "end": 24961.82, + "probability": 0.3945 + }, + { + "start": 24961.9, + "end": 24963.87, + "probability": 0.7646 + }, + { + "start": 24964.12, + "end": 24965.96, + "probability": 0.2685 + }, + { + "start": 24966.0, + "end": 24968.24, + "probability": 0.1627 + }, + { + "start": 24968.24, + "end": 24969.82, + "probability": 0.2317 + }, + { + "start": 24969.84, + "end": 24970.52, + "probability": 0.568 + }, + { + "start": 24971.08, + "end": 24972.0, + "probability": 0.0563 + }, + { + "start": 24972.38, + "end": 24972.38, + "probability": 0.3877 + }, + { + "start": 24974.58, + "end": 24977.44, + "probability": 0.6438 + }, + { + "start": 24977.44, + "end": 24977.44, + "probability": 0.1122 + }, + { + "start": 24978.48, + "end": 24978.78, + "probability": 0.2303 + }, + { + "start": 24979.24, + "end": 24980.08, + "probability": 0.3234 + }, + { + "start": 24980.08, + "end": 24981.0, + "probability": 0.1637 + }, + { + "start": 24981.34, + "end": 24983.34, + "probability": 0.2168 + }, + { + "start": 24984.14, + "end": 24987.94, + "probability": 0.1066 + }, + { + "start": 24988.42, + "end": 24989.94, + "probability": 0.5251 + }, + { + "start": 24990.08, + "end": 24990.18, + "probability": 0.2336 + }, + { + "start": 24993.18, + "end": 24993.6, + "probability": 0.0058 + }, + { + "start": 24999.64, + "end": 24999.92, + "probability": 0.0129 + }, + { + "start": 25006.24, + "end": 25009.12, + "probability": 0.0297 + }, + { + "start": 25014.84, + "end": 25014.84, + "probability": 0.0009 + }, + { + "start": 25016.88, + "end": 25017.04, + "probability": 0.3271 + }, + { + "start": 25022.78, + "end": 25028.88, + "probability": 0.9007 + }, + { + "start": 25029.64, + "end": 25031.12, + "probability": 0.0942 + }, + { + "start": 25031.96, + "end": 25035.4, + "probability": 0.6511 + }, + { + "start": 25036.2, + "end": 25039.46, + "probability": 0.2017 + }, + { + "start": 25041.14, + "end": 25042.02, + "probability": 0.0304 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.0, + "end": 25184.0, + "probability": 0.0 + }, + { + "start": 25184.16, + "end": 25184.16, + "probability": 0.0415 + }, + { + "start": 25184.16, + "end": 25185.0, + "probability": 0.4864 + }, + { + "start": 25185.68, + "end": 25186.52, + "probability": 0.7754 + }, + { + "start": 25187.22, + "end": 25191.12, + "probability": 0.663 + }, + { + "start": 25191.92, + "end": 25193.54, + "probability": 0.9451 + }, + { + "start": 25193.78, + "end": 25196.5, + "probability": 0.9871 + }, + { + "start": 25197.12, + "end": 25199.32, + "probability": 0.8696 + }, + { + "start": 25199.98, + "end": 25205.82, + "probability": 0.7756 + }, + { + "start": 25206.3, + "end": 25209.64, + "probability": 0.9956 + }, + { + "start": 25210.08, + "end": 25213.36, + "probability": 0.9923 + }, + { + "start": 25213.88, + "end": 25215.4, + "probability": 0.999 + }, + { + "start": 25215.94, + "end": 25221.42, + "probability": 0.9889 + }, + { + "start": 25221.86, + "end": 25222.49, + "probability": 0.9707 + }, + { + "start": 25223.3, + "end": 25226.62, + "probability": 0.9678 + }, + { + "start": 25227.44, + "end": 25229.18, + "probability": 0.8782 + }, + { + "start": 25229.54, + "end": 25233.94, + "probability": 0.9644 + }, + { + "start": 25234.46, + "end": 25239.18, + "probability": 0.9825 + }, + { + "start": 25240.34, + "end": 25243.26, + "probability": 0.9896 + }, + { + "start": 25243.6, + "end": 25245.04, + "probability": 0.9829 + }, + { + "start": 25245.86, + "end": 25248.14, + "probability": 0.9993 + }, + { + "start": 25248.18, + "end": 25250.72, + "probability": 0.8865 + }, + { + "start": 25251.16, + "end": 25256.58, + "probability": 0.8177 + }, + { + "start": 25256.98, + "end": 25257.8, + "probability": 0.7575 + }, + { + "start": 25257.9, + "end": 25260.84, + "probability": 0.8268 + }, + { + "start": 25261.02, + "end": 25261.56, + "probability": 0.6732 + }, + { + "start": 25261.98, + "end": 25263.28, + "probability": 0.8436 + }, + { + "start": 25263.44, + "end": 25264.22, + "probability": 0.6408 + }, + { + "start": 25264.82, + "end": 25266.2, + "probability": 0.7488 + }, + { + "start": 25266.48, + "end": 25270.02, + "probability": 0.9863 + }, + { + "start": 25270.32, + "end": 25271.88, + "probability": 0.8426 + }, + { + "start": 25272.6, + "end": 25277.32, + "probability": 0.7479 + }, + { + "start": 25278.08, + "end": 25280.5, + "probability": 0.925 + }, + { + "start": 25281.1, + "end": 25283.4, + "probability": 0.7795 + }, + { + "start": 25284.0, + "end": 25287.7, + "probability": 0.9167 + }, + { + "start": 25288.5, + "end": 25288.5, + "probability": 0.0436 + }, + { + "start": 25288.5, + "end": 25296.38, + "probability": 0.8613 + }, + { + "start": 25297.16, + "end": 25300.2, + "probability": 0.4799 + }, + { + "start": 25300.62, + "end": 25301.1, + "probability": 0.792 + }, + { + "start": 25301.26, + "end": 25307.06, + "probability": 0.94 + }, + { + "start": 25307.72, + "end": 25310.62, + "probability": 0.9971 + }, + { + "start": 25311.51, + "end": 25313.83, + "probability": 0.9958 + }, + { + "start": 25313.88, + "end": 25316.56, + "probability": 0.97 + }, + { + "start": 25317.58, + "end": 25324.18, + "probability": 0.9414 + }, + { + "start": 25324.6, + "end": 25325.96, + "probability": 0.5578 + }, + { + "start": 25326.38, + "end": 25329.94, + "probability": 0.6333 + }, + { + "start": 25330.6, + "end": 25333.12, + "probability": 0.9483 + }, + { + "start": 25333.66, + "end": 25337.34, + "probability": 0.8087 + }, + { + "start": 25337.86, + "end": 25338.72, + "probability": 0.7111 + }, + { + "start": 25339.14, + "end": 25340.9, + "probability": 0.9188 + }, + { + "start": 25341.8, + "end": 25342.08, + "probability": 0.1891 + }, + { + "start": 25342.24, + "end": 25342.98, + "probability": 0.5547 + }, + { + "start": 25343.42, + "end": 25343.74, + "probability": 0.5853 + }, + { + "start": 25343.86, + "end": 25344.0, + "probability": 0.9518 + }, + { + "start": 25344.06, + "end": 25344.74, + "probability": 0.7438 + }, + { + "start": 25344.86, + "end": 25346.67, + "probability": 0.9513 + }, + { + "start": 25347.98, + "end": 25348.08, + "probability": 0.011 + }, + { + "start": 25348.08, + "end": 25353.2, + "probability": 0.6967 + }, + { + "start": 25353.98, + "end": 25356.5, + "probability": 0.8954 + }, + { + "start": 25358.3, + "end": 25361.78, + "probability": 0.8117 + }, + { + "start": 25363.92, + "end": 25373.54, + "probability": 0.0094 + }, + { + "start": 25374.48, + "end": 25378.14, + "probability": 0.5254 + }, + { + "start": 25378.22, + "end": 25381.04, + "probability": 0.9808 + }, + { + "start": 25381.22, + "end": 25383.28, + "probability": 0.8497 + }, + { + "start": 25383.46, + "end": 25383.94, + "probability": 0.568 + }, + { + "start": 25384.08, + "end": 25385.08, + "probability": 0.538 + }, + { + "start": 25386.16, + "end": 25386.16, + "probability": 0.0055 + }, + { + "start": 25386.16, + "end": 25390.26, + "probability": 0.8438 + }, + { + "start": 25391.0, + "end": 25391.4, + "probability": 0.8514 + }, + { + "start": 25394.4, + "end": 25398.96, + "probability": 0.4428 + }, + { + "start": 25399.76, + "end": 25401.28, + "probability": 0.0053 + }, + { + "start": 25402.6, + "end": 25404.28, + "probability": 0.1362 + }, + { + "start": 25404.88, + "end": 25406.68, + "probability": 0.1018 + }, + { + "start": 25409.36, + "end": 25411.96, + "probability": 0.4725 + }, + { + "start": 25412.02, + "end": 25414.56, + "probability": 0.6821 + }, + { + "start": 25415.2, + "end": 25415.32, + "probability": 0.4569 + }, + { + "start": 25415.5, + "end": 25416.44, + "probability": 0.642 + }, + { + "start": 25416.72, + "end": 25419.58, + "probability": 0.7225 + }, + { + "start": 25420.58, + "end": 25427.14, + "probability": 0.9049 + }, + { + "start": 25427.8, + "end": 25429.16, + "probability": 0.5157 + }, + { + "start": 25429.16, + "end": 25430.4, + "probability": 0.5267 + }, + { + "start": 25431.06, + "end": 25431.93, + "probability": 0.5776 + }, + { + "start": 25432.34, + "end": 25434.28, + "probability": 0.6399 + }, + { + "start": 25434.8, + "end": 25435.78, + "probability": 0.9288 + }, + { + "start": 25436.7, + "end": 25437.1, + "probability": 0.8075 + }, + { + "start": 25437.9, + "end": 25440.1, + "probability": 0.7519 + }, + { + "start": 25440.68, + "end": 25441.76, + "probability": 0.9285 + }, + { + "start": 25442.34, + "end": 25444.94, + "probability": 0.9871 + }, + { + "start": 25445.56, + "end": 25446.96, + "probability": 0.9934 + }, + { + "start": 25447.14, + "end": 25448.24, + "probability": 0.9829 + }, + { + "start": 25448.4, + "end": 25449.42, + "probability": 0.9819 + }, + { + "start": 25450.18, + "end": 25452.62, + "probability": 0.8404 + }, + { + "start": 25453.34, + "end": 25455.38, + "probability": 0.8907 + }, + { + "start": 25456.06, + "end": 25456.72, + "probability": 0.7246 + }, + { + "start": 25456.76, + "end": 25458.38, + "probability": 0.9622 + }, + { + "start": 25458.4, + "end": 25458.7, + "probability": 0.8869 + }, + { + "start": 25458.88, + "end": 25462.0, + "probability": 0.942 + }, + { + "start": 25462.72, + "end": 25463.8, + "probability": 0.9281 + }, + { + "start": 25464.0, + "end": 25466.0, + "probability": 0.7849 + }, + { + "start": 25466.4, + "end": 25468.14, + "probability": 0.7609 + }, + { + "start": 25468.5, + "end": 25471.5, + "probability": 0.7591 + }, + { + "start": 25472.08, + "end": 25472.72, + "probability": 0.9326 + }, + { + "start": 25472.72, + "end": 25475.8, + "probability": 0.4866 + }, + { + "start": 25475.88, + "end": 25476.96, + "probability": 0.2734 + }, + { + "start": 25477.6, + "end": 25477.74, + "probability": 0.4024 + }, + { + "start": 25477.94, + "end": 25480.07, + "probability": 0.9072 + }, + { + "start": 25480.64, + "end": 25482.42, + "probability": 0.7328 + }, + { + "start": 25483.42, + "end": 25486.58, + "probability": 0.7754 + }, + { + "start": 25486.62, + "end": 25488.48, + "probability": 0.2259 + }, + { + "start": 25492.16, + "end": 25494.14, + "probability": 0.7182 + }, + { + "start": 25494.22, + "end": 25494.8, + "probability": 0.7861 + }, + { + "start": 25494.94, + "end": 25496.06, + "probability": 0.757 + }, + { + "start": 25496.28, + "end": 25501.28, + "probability": 0.9562 + }, + { + "start": 25501.75, + "end": 25505.62, + "probability": 0.8271 + }, + { + "start": 25506.78, + "end": 25509.44, + "probability": 0.8919 + }, + { + "start": 25510.66, + "end": 25511.76, + "probability": 0.858 + }, + { + "start": 25512.16, + "end": 25516.68, + "probability": 0.9932 + }, + { + "start": 25517.28, + "end": 25519.92, + "probability": 0.9219 + }, + { + "start": 25519.96, + "end": 25525.1, + "probability": 0.9902 + }, + { + "start": 25525.96, + "end": 25526.92, + "probability": 0.2896 + }, + { + "start": 25527.16, + "end": 25529.44, + "probability": 0.7352 + }, + { + "start": 25529.68, + "end": 25531.02, + "probability": 0.7372 + }, + { + "start": 25531.04, + "end": 25532.26, + "probability": 0.6465 + }, + { + "start": 25532.94, + "end": 25536.34, + "probability": 0.924 + }, + { + "start": 25537.1, + "end": 25538.05, + "probability": 0.5349 + }, + { + "start": 25540.73, + "end": 25543.36, + "probability": 0.8202 + }, + { + "start": 25543.36, + "end": 25544.26, + "probability": 0.2662 + }, + { + "start": 25544.26, + "end": 25545.34, + "probability": 0.7716 + }, + { + "start": 25545.36, + "end": 25547.32, + "probability": 0.5771 + }, + { + "start": 25547.4, + "end": 25548.53, + "probability": 0.43 + }, + { + "start": 25549.12, + "end": 25550.0, + "probability": 0.8197 + }, + { + "start": 25550.78, + "end": 25551.8, + "probability": 0.6893 + }, + { + "start": 25553.28, + "end": 25556.22, + "probability": 0.8137 + }, + { + "start": 25556.22, + "end": 25559.5, + "probability": 0.7178 + }, + { + "start": 25559.96, + "end": 25563.56, + "probability": 0.9816 + }, + { + "start": 25563.56, + "end": 25565.16, + "probability": 0.9766 + }, + { + "start": 25565.24, + "end": 25565.86, + "probability": 0.8333 + }, + { + "start": 25566.14, + "end": 25567.44, + "probability": 0.8383 + }, + { + "start": 25570.14, + "end": 25571.04, + "probability": 0.3403 + }, + { + "start": 25571.12, + "end": 25572.14, + "probability": 0.6392 + }, + { + "start": 25572.56, + "end": 25573.76, + "probability": 0.9507 + }, + { + "start": 25574.46, + "end": 25575.74, + "probability": 0.9868 + }, + { + "start": 25579.74, + "end": 25582.46, + "probability": 0.9559 + }, + { + "start": 25583.06, + "end": 25583.26, + "probability": 0.4867 + }, + { + "start": 25583.26, + "end": 25583.92, + "probability": 0.4182 + }, + { + "start": 25584.1, + "end": 25584.28, + "probability": 0.7556 + }, + { + "start": 25587.58, + "end": 25588.78, + "probability": 0.6569 + }, + { + "start": 25589.22, + "end": 25591.08, + "probability": 0.6241 + }, + { + "start": 25591.7, + "end": 25593.0, + "probability": 0.5913 + }, + { + "start": 25594.28, + "end": 25595.78, + "probability": 0.7313 + }, + { + "start": 25596.14, + "end": 25597.88, + "probability": 0.8127 + }, + { + "start": 25598.24, + "end": 25599.04, + "probability": 0.7688 + }, + { + "start": 25599.1, + "end": 25600.46, + "probability": 0.8542 + }, + { + "start": 25600.84, + "end": 25601.72, + "probability": 0.856 + }, + { + "start": 25601.9, + "end": 25602.58, + "probability": 0.7974 + }, + { + "start": 25602.98, + "end": 25605.12, + "probability": 0.9858 + }, + { + "start": 25605.76, + "end": 25608.76, + "probability": 0.9238 + }, + { + "start": 25610.16, + "end": 25610.68, + "probability": 0.1635 + }, + { + "start": 25611.8, + "end": 25612.53, + "probability": 0.7983 + }, + { + "start": 25613.36, + "end": 25616.5, + "probability": 0.665 + }, + { + "start": 25618.02, + "end": 25620.32, + "probability": 0.9546 + }, + { + "start": 25621.84, + "end": 25625.12, + "probability": 0.4746 + }, + { + "start": 25626.88, + "end": 25629.9, + "probability": 0.9866 + }, + { + "start": 25630.54, + "end": 25634.54, + "probability": 0.7877 + }, + { + "start": 25635.04, + "end": 25638.25, + "probability": 0.852 + }, + { + "start": 25640.54, + "end": 25641.9, + "probability": 0.7385 + }, + { + "start": 25643.2, + "end": 25644.76, + "probability": 0.4813 + }, + { + "start": 25646.09, + "end": 25649.84, + "probability": 0.9985 + }, + { + "start": 25651.48, + "end": 25654.68, + "probability": 0.903 + }, + { + "start": 25655.4, + "end": 25657.18, + "probability": 0.5034 + }, + { + "start": 25657.7, + "end": 25662.5, + "probability": 0.9904 + }, + { + "start": 25662.88, + "end": 25665.06, + "probability": 0.7528 + }, + { + "start": 25665.66, + "end": 25668.58, + "probability": 0.9919 + }, + { + "start": 25668.58, + "end": 25671.6, + "probability": 0.9574 + }, + { + "start": 25672.34, + "end": 25675.38, + "probability": 0.783 + }, + { + "start": 25675.94, + "end": 25680.32, + "probability": 0.9835 + }, + { + "start": 25680.32, + "end": 25684.86, + "probability": 0.9905 + }, + { + "start": 25685.46, + "end": 25690.98, + "probability": 0.9771 + }, + { + "start": 25691.5, + "end": 25692.46, + "probability": 0.5929 + }, + { + "start": 25693.24, + "end": 25694.86, + "probability": 0.9516 + }, + { + "start": 25695.18, + "end": 25697.38, + "probability": 0.9626 + }, + { + "start": 25698.14, + "end": 25698.84, + "probability": 0.7371 + }, + { + "start": 25699.62, + "end": 25701.0, + "probability": 0.9941 + }, + { + "start": 25702.2, + "end": 25705.4, + "probability": 0.973 + }, + { + "start": 25706.06, + "end": 25709.98, + "probability": 0.9441 + }, + { + "start": 25710.6, + "end": 25712.88, + "probability": 0.9969 + }, + { + "start": 25712.88, + "end": 25718.56, + "probability": 0.8393 + }, + { + "start": 25719.1, + "end": 25722.5, + "probability": 0.9976 + }, + { + "start": 25723.36, + "end": 25723.54, + "probability": 0.697 + }, + { + "start": 25725.54, + "end": 25728.12, + "probability": 0.9629 + }, + { + "start": 25730.5, + "end": 25732.6, + "probability": 0.7093 + }, + { + "start": 25732.92, + "end": 25733.2, + "probability": 0.4896 + }, + { + "start": 25733.82, + "end": 25737.88, + "probability": 0.9553 + }, + { + "start": 25737.88, + "end": 25742.04, + "probability": 0.9224 + }, + { + "start": 25742.5, + "end": 25743.98, + "probability": 0.8149 + }, + { + "start": 25744.28, + "end": 25746.98, + "probability": 0.9956 + }, + { + "start": 25747.7, + "end": 25749.38, + "probability": 0.7451 + }, + { + "start": 25749.96, + "end": 25750.91, + "probability": 0.6404 + }, + { + "start": 25752.42, + "end": 25755.62, + "probability": 0.7009 + }, + { + "start": 25756.34, + "end": 25760.46, + "probability": 0.9874 + }, + { + "start": 25760.46, + "end": 25766.78, + "probability": 0.9507 + }, + { + "start": 25767.3, + "end": 25768.5, + "probability": 0.6136 + }, + { + "start": 25769.32, + "end": 25774.22, + "probability": 0.9691 + }, + { + "start": 25774.6, + "end": 25780.72, + "probability": 0.9876 + }, + { + "start": 25781.22, + "end": 25781.74, + "probability": 0.8015 + }, + { + "start": 25782.36, + "end": 25785.14, + "probability": 0.8156 + }, + { + "start": 25785.72, + "end": 25787.12, + "probability": 0.7132 + }, + { + "start": 25787.48, + "end": 25790.3, + "probability": 0.9204 + }, + { + "start": 25791.16, + "end": 25792.5, + "probability": 0.8481 + }, + { + "start": 25794.62, + "end": 25797.74, + "probability": 0.9095 + }, + { + "start": 25800.42, + "end": 25804.26, + "probability": 0.9247 + }, + { + "start": 25804.78, + "end": 25806.34, + "probability": 0.9036 + }, + { + "start": 25806.98, + "end": 25809.68, + "probability": 0.9678 + }, + { + "start": 25810.32, + "end": 25811.4, + "probability": 0.6009 + }, + { + "start": 25812.28, + "end": 25813.08, + "probability": 0.7329 + }, + { + "start": 25813.18, + "end": 25817.26, + "probability": 0.9691 + }, + { + "start": 25817.36, + "end": 25821.78, + "probability": 0.9667 + }, + { + "start": 25822.96, + "end": 25826.74, + "probability": 0.8827 + }, + { + "start": 25827.04, + "end": 25828.34, + "probability": 0.846 + }, + { + "start": 25828.76, + "end": 25834.42, + "probability": 0.9753 + }, + { + "start": 25834.74, + "end": 25837.02, + "probability": 0.9835 + }, + { + "start": 25837.02, + "end": 25841.72, + "probability": 0.9927 + }, + { + "start": 25842.18, + "end": 25844.98, + "probability": 0.9935 + }, + { + "start": 25845.26, + "end": 25846.08, + "probability": 0.9624 + }, + { + "start": 25847.16, + "end": 25849.04, + "probability": 0.8538 + }, + { + "start": 25849.68, + "end": 25853.4, + "probability": 0.8397 + }, + { + "start": 25853.82, + "end": 25854.6, + "probability": 0.8682 + }, + { + "start": 25854.7, + "end": 25855.02, + "probability": 0.4115 + }, + { + "start": 25855.28, + "end": 25856.18, + "probability": 0.5787 + }, + { + "start": 25856.64, + "end": 25858.1, + "probability": 0.9559 + }, + { + "start": 25858.16, + "end": 25858.68, + "probability": 0.5811 + }, + { + "start": 25859.08, + "end": 25859.54, + "probability": 0.6446 + }, + { + "start": 25860.26, + "end": 25861.98, + "probability": 0.9199 + }, + { + "start": 25862.72, + "end": 25863.44, + "probability": 0.7749 + }, + { + "start": 25863.48, + "end": 25866.52, + "probability": 0.9944 + }, + { + "start": 25867.2, + "end": 25869.86, + "probability": 0.8846 + }, + { + "start": 25872.24, + "end": 25872.92, + "probability": 0.8545 + }, + { + "start": 25873.98, + "end": 25875.2, + "probability": 0.7267 + }, + { + "start": 25875.76, + "end": 25878.76, + "probability": 0.8489 + }, + { + "start": 25879.26, + "end": 25884.12, + "probability": 0.9532 + }, + { + "start": 25884.64, + "end": 25887.18, + "probability": 0.9407 + }, + { + "start": 25887.96, + "end": 25890.26, + "probability": 0.948 + }, + { + "start": 25891.3, + "end": 25891.64, + "probability": 0.743 + }, + { + "start": 25892.3, + "end": 25894.2, + "probability": 0.7625 + }, + { + "start": 25895.46, + "end": 25899.16, + "probability": 0.7771 + }, + { + "start": 25900.72, + "end": 25904.26, + "probability": 0.8706 + }, + { + "start": 25904.88, + "end": 25908.12, + "probability": 0.5867 + }, + { + "start": 25908.96, + "end": 25909.78, + "probability": 0.8471 + }, + { + "start": 25910.12, + "end": 25913.48, + "probability": 0.0002 + }, + { + "start": 25923.2, + "end": 25924.28, + "probability": 0.0599 + }, + { + "start": 25925.04, + "end": 25928.44, + "probability": 0.575 + }, + { + "start": 25928.52, + "end": 25930.64, + "probability": 0.779 + }, + { + "start": 25930.78, + "end": 25932.42, + "probability": 0.8909 + }, + { + "start": 25932.86, + "end": 25934.28, + "probability": 0.4274 + }, + { + "start": 25935.08, + "end": 25938.92, + "probability": 0.9254 + }, + { + "start": 25943.52, + "end": 25947.36, + "probability": 0.417 + }, + { + "start": 25948.06, + "end": 25951.34, + "probability": 0.5909 + }, + { + "start": 25951.68, + "end": 25952.52, + "probability": 0.2506 + }, + { + "start": 25952.52, + "end": 25952.96, + "probability": 0.1598 + }, + { + "start": 25956.36, + "end": 25959.32, + "probability": 0.41 + }, + { + "start": 25959.48, + "end": 25963.8, + "probability": 0.7786 + }, + { + "start": 25964.04, + "end": 25964.44, + "probability": 0.3445 + }, + { + "start": 25965.02, + "end": 25967.0, + "probability": 0.7993 + }, + { + "start": 25967.63, + "end": 25969.7, + "probability": 0.9935 + }, + { + "start": 25971.44, + "end": 25973.72, + "probability": 0.9636 + }, + { + "start": 25973.72, + "end": 25975.74, + "probability": 0.9329 + }, + { + "start": 25976.44, + "end": 25976.68, + "probability": 0.0057 + }, + { + "start": 25976.96, + "end": 25980.84, + "probability": 0.7959 + }, + { + "start": 25981.36, + "end": 25982.44, + "probability": 0.9447 + }, + { + "start": 25991.24, + "end": 25993.32, + "probability": 0.5968 + }, + { + "start": 25993.94, + "end": 25995.63, + "probability": 0.8885 + }, + { + "start": 25996.96, + "end": 25998.64, + "probability": 0.9824 + }, + { + "start": 25998.64, + "end": 26001.28, + "probability": 0.68 + }, + { + "start": 26002.92, + "end": 26006.74, + "probability": 0.9111 + }, + { + "start": 26007.04, + "end": 26009.82, + "probability": 0.7614 + }, + { + "start": 26010.66, + "end": 26013.04, + "probability": 0.59 + }, + { + "start": 26013.52, + "end": 26014.77, + "probability": 0.7373 + }, + { + "start": 26015.12, + "end": 26016.02, + "probability": 0.8525 + }, + { + "start": 26016.14, + "end": 26017.4, + "probability": 0.9646 + }, + { + "start": 26018.86, + "end": 26021.04, + "probability": 0.9963 + }, + { + "start": 26021.04, + "end": 26023.4, + "probability": 0.9897 + }, + { + "start": 26024.76, + "end": 26025.1, + "probability": 0.2947 + }, + { + "start": 26025.14, + "end": 26028.6, + "probability": 0.8111 + }, + { + "start": 26028.82, + "end": 26030.08, + "probability": 0.4516 + }, + { + "start": 26031.62, + "end": 26032.92, + "probability": 0.7479 + }, + { + "start": 26033.0, + "end": 26034.58, + "probability": 0.2323 + }, + { + "start": 26034.92, + "end": 26038.46, + "probability": 0.9975 + }, + { + "start": 26043.32, + "end": 26044.74, + "probability": 0.9515 + }, + { + "start": 26044.9, + "end": 26047.44, + "probability": 0.976 + }, + { + "start": 26047.48, + "end": 26048.8, + "probability": 0.8642 + }, + { + "start": 26049.06, + "end": 26051.58, + "probability": 0.9417 + }, + { + "start": 26052.26, + "end": 26053.22, + "probability": 0.7774 + }, + { + "start": 26053.68, + "end": 26056.32, + "probability": 0.9883 + }, + { + "start": 26057.1, + "end": 26057.42, + "probability": 0.6577 + }, + { + "start": 26057.52, + "end": 26059.68, + "probability": 0.979 + }, + { + "start": 26059.68, + "end": 26061.9, + "probability": 0.7924 + }, + { + "start": 26062.74, + "end": 26067.18, + "probability": 0.8916 + }, + { + "start": 26068.04, + "end": 26069.69, + "probability": 0.7837 + }, + { + "start": 26069.98, + "end": 26074.1, + "probability": 0.9822 + }, + { + "start": 26074.62, + "end": 26077.38, + "probability": 0.993 + }, + { + "start": 26078.08, + "end": 26080.7, + "probability": 0.9679 + }, + { + "start": 26080.84, + "end": 26083.26, + "probability": 0.978 + }, + { + "start": 26084.48, + "end": 26084.7, + "probability": 0.6216 + }, + { + "start": 26084.8, + "end": 26086.8, + "probability": 0.9105 + }, + { + "start": 26086.82, + "end": 26088.68, + "probability": 0.9813 + }, + { + "start": 26089.6, + "end": 26094.18, + "probability": 0.9366 + }, + { + "start": 26094.74, + "end": 26097.66, + "probability": 0.9792 + }, + { + "start": 26098.48, + "end": 26100.16, + "probability": 0.8384 + }, + { + "start": 26100.16, + "end": 26102.32, + "probability": 0.9553 + }, + { + "start": 26103.08, + "end": 26104.26, + "probability": 0.9967 + }, + { + "start": 26104.8, + "end": 26106.3, + "probability": 0.9527 + }, + { + "start": 26107.04, + "end": 26107.44, + "probability": 0.6344 + }, + { + "start": 26107.5, + "end": 26109.16, + "probability": 0.9162 + }, + { + "start": 26109.4, + "end": 26112.02, + "probability": 0.8394 + }, + { + "start": 26112.62, + "end": 26113.64, + "probability": 0.8844 + }, + { + "start": 26114.42, + "end": 26116.36, + "probability": 0.932 + }, + { + "start": 26116.72, + "end": 26118.1, + "probability": 0.9632 + }, + { + "start": 26118.66, + "end": 26120.4, + "probability": 0.9867 + }, + { + "start": 26121.6, + "end": 26122.12, + "probability": 0.9659 + }, + { + "start": 26122.18, + "end": 26126.56, + "probability": 0.9781 + }, + { + "start": 26126.8, + "end": 26128.48, + "probability": 0.9604 + }, + { + "start": 26129.06, + "end": 26129.6, + "probability": 0.8546 + }, + { + "start": 26130.36, + "end": 26130.82, + "probability": 0.4158 + }, + { + "start": 26130.84, + "end": 26131.68, + "probability": 0.6096 + }, + { + "start": 26131.8, + "end": 26133.94, + "probability": 0.9769 + }, + { + "start": 26134.08, + "end": 26134.58, + "probability": 0.8517 + }, + { + "start": 26135.12, + "end": 26138.96, + "probability": 0.9379 + }, + { + "start": 26139.48, + "end": 26141.24, + "probability": 0.8743 + }, + { + "start": 26141.4, + "end": 26145.22, + "probability": 0.7187 + }, + { + "start": 26145.88, + "end": 26147.12, + "probability": 0.8458 + }, + { + "start": 26147.2, + "end": 26148.24, + "probability": 0.4765 + }, + { + "start": 26148.38, + "end": 26149.14, + "probability": 0.8796 + }, + { + "start": 26149.6, + "end": 26153.74, + "probability": 0.9578 + }, + { + "start": 26153.82, + "end": 26154.24, + "probability": 0.8806 + }, + { + "start": 26155.48, + "end": 26157.92, + "probability": 0.7562 + }, + { + "start": 26159.56, + "end": 26160.72, + "probability": 0.6893 + }, + { + "start": 26160.82, + "end": 26163.26, + "probability": 0.9902 + }, + { + "start": 26165.92, + "end": 26168.02, + "probability": 0.9855 + }, + { + "start": 26168.02, + "end": 26170.54, + "probability": 0.3823 + }, + { + "start": 26170.82, + "end": 26172.84, + "probability": 0.4948 + }, + { + "start": 26173.74, + "end": 26174.46, + "probability": 0.8658 + }, + { + "start": 26175.5, + "end": 26175.74, + "probability": 0.0249 + }, + { + "start": 26189.06, + "end": 26189.52, + "probability": 0.011 + }, + { + "start": 26189.52, + "end": 26191.78, + "probability": 0.5259 + }, + { + "start": 26191.94, + "end": 26193.1, + "probability": 0.7012 + }, + { + "start": 26193.2, + "end": 26193.78, + "probability": 0.7955 + }, + { + "start": 26194.4, + "end": 26196.41, + "probability": 0.955 + }, + { + "start": 26197.12, + "end": 26197.22, + "probability": 0.2573 + }, + { + "start": 26199.5, + "end": 26199.94, + "probability": 0.0203 + }, + { + "start": 26199.94, + "end": 26204.2, + "probability": 0.9521 + }, + { + "start": 26204.92, + "end": 26205.82, + "probability": 0.8166 + }, + { + "start": 26210.74, + "end": 26211.44, + "probability": 0.0849 + }, + { + "start": 26212.12, + "end": 26212.4, + "probability": 0.0071 + }, + { + "start": 26212.74, + "end": 26216.92, + "probability": 0.1605 + }, + { + "start": 26216.92, + "end": 26216.92, + "probability": 0.476 + }, + { + "start": 26217.28, + "end": 26218.04, + "probability": 0.1424 + }, + { + "start": 26218.96, + "end": 26220.36, + "probability": 0.7399 + }, + { + "start": 26220.46, + "end": 26220.7, + "probability": 0.2956 + }, + { + "start": 26221.04, + "end": 26223.66, + "probability": 0.6034 + }, + { + "start": 26223.96, + "end": 26226.38, + "probability": 0.9752 + }, + { + "start": 26228.34, + "end": 26229.58, + "probability": 0.9979 + }, + { + "start": 26230.76, + "end": 26232.58, + "probability": 0.1976 + }, + { + "start": 26235.91, + "end": 26238.14, + "probability": 0.6386 + }, + { + "start": 26238.38, + "end": 26239.46, + "probability": 0.2374 + }, + { + "start": 26240.0, + "end": 26241.48, + "probability": 0.7068 + }, + { + "start": 26241.58, + "end": 26243.04, + "probability": 0.9659 + }, + { + "start": 26243.38, + "end": 26244.16, + "probability": 0.9219 + }, + { + "start": 26244.34, + "end": 26245.8, + "probability": 0.8183 + }, + { + "start": 26260.5, + "end": 26261.52, + "probability": 0.222 + }, + { + "start": 26261.98, + "end": 26262.9, + "probability": 0.9312 + }, + { + "start": 26263.22, + "end": 26263.84, + "probability": 0.6783 + }, + { + "start": 26264.14, + "end": 26268.1, + "probability": 0.9762 + }, + { + "start": 26268.24, + "end": 26271.32, + "probability": 0.5244 + }, + { + "start": 26274.68, + "end": 26276.38, + "probability": 0.4332 + }, + { + "start": 26277.16, + "end": 26279.7, + "probability": 0.7926 + }, + { + "start": 26280.28, + "end": 26284.68, + "probability": 0.4195 + }, + { + "start": 26285.56, + "end": 26289.32, + "probability": 0.9895 + }, + { + "start": 26289.32, + "end": 26293.16, + "probability": 0.9537 + }, + { + "start": 26294.34, + "end": 26296.5, + "probability": 0.9436 + }, + { + "start": 26296.5, + "end": 26300.0, + "probability": 0.9987 + }, + { + "start": 26300.5, + "end": 26304.4, + "probability": 0.8869 + }, + { + "start": 26304.82, + "end": 26306.8, + "probability": 0.8591 + }, + { + "start": 26307.82, + "end": 26310.1, + "probability": 0.9741 + }, + { + "start": 26310.4, + "end": 26313.56, + "probability": 0.9907 + }, + { + "start": 26313.74, + "end": 26317.34, + "probability": 0.9916 + }, + { + "start": 26317.78, + "end": 26320.0, + "probability": 0.9714 + }, + { + "start": 26320.94, + "end": 26325.76, + "probability": 0.8894 + }, + { + "start": 26326.32, + "end": 26326.94, + "probability": 0.6673 + }, + { + "start": 26327.46, + "end": 26331.68, + "probability": 0.9814 + }, + { + "start": 26331.68, + "end": 26335.94, + "probability": 0.9917 + }, + { + "start": 26337.36, + "end": 26340.58, + "probability": 0.7322 + }, + { + "start": 26341.42, + "end": 26342.38, + "probability": 0.6652 + }, + { + "start": 26344.18, + "end": 26348.4, + "probability": 0.7235 + }, + { + "start": 26349.04, + "end": 26351.31, + "probability": 0.7423 + }, + { + "start": 26351.7, + "end": 26353.46, + "probability": 0.8418 + }, + { + "start": 26353.96, + "end": 26358.48, + "probability": 0.7603 + }, + { + "start": 26359.84, + "end": 26360.38, + "probability": 0.227 + }, + { + "start": 26363.54, + "end": 26365.66, + "probability": 0.3025 + }, + { + "start": 26365.72, + "end": 26368.04, + "probability": 0.9598 + }, + { + "start": 26368.76, + "end": 26369.58, + "probability": 0.9912 + }, + { + "start": 26371.06, + "end": 26373.48, + "probability": 0.9682 + }, + { + "start": 26373.56, + "end": 26379.04, + "probability": 0.8187 + }, + { + "start": 26380.32, + "end": 26381.04, + "probability": 0.6534 + }, + { + "start": 26381.72, + "end": 26386.36, + "probability": 0.9059 + }, + { + "start": 26386.42, + "end": 26387.34, + "probability": 0.7578 + }, + { + "start": 26387.62, + "end": 26392.22, + "probability": 0.886 + }, + { + "start": 26392.38, + "end": 26396.46, + "probability": 0.8177 + }, + { + "start": 26396.56, + "end": 26396.7, + "probability": 0.5431 + }, + { + "start": 26399.42, + "end": 26400.12, + "probability": 0.7236 + }, + { + "start": 26400.3, + "end": 26402.2, + "probability": 0.9517 + }, + { + "start": 26402.4, + "end": 26403.06, + "probability": 0.9385 + }, + { + "start": 26403.1, + "end": 26403.7, + "probability": 0.7671 + }, + { + "start": 26404.22, + "end": 26405.32, + "probability": 0.9185 + }, + { + "start": 26407.06, + "end": 26409.76, + "probability": 0.7492 + }, + { + "start": 26411.28, + "end": 26414.04, + "probability": 0.8293 + }, + { + "start": 26414.8, + "end": 26416.12, + "probability": 0.9487 + }, + { + "start": 26417.6, + "end": 26421.44, + "probability": 0.0794 + }, + { + "start": 26424.5, + "end": 26425.06, + "probability": 0.0 + }, + { + "start": 26425.94, + "end": 26426.84, + "probability": 0.0985 + }, + { + "start": 26433.78, + "end": 26436.14, + "probability": 0.9938 + }, + { + "start": 26436.24, + "end": 26438.94, + "probability": 0.5026 + }, + { + "start": 26439.4, + "end": 26439.82, + "probability": 0.6738 + }, + { + "start": 26439.86, + "end": 26440.86, + "probability": 0.9438 + }, + { + "start": 26441.08, + "end": 26442.34, + "probability": 0.9454 + }, + { + "start": 26444.06, + "end": 26446.28, + "probability": 0.9266 + }, + { + "start": 26448.95, + "end": 26451.76, + "probability": 0.6694 + }, + { + "start": 26452.1, + "end": 26463.64, + "probability": 0.2322 + }, + { + "start": 26464.6, + "end": 26464.6, + "probability": 0.0421 + }, + { + "start": 26464.6, + "end": 26466.6, + "probability": 0.5008 + }, + { + "start": 26466.7, + "end": 26470.26, + "probability": 0.9455 + }, + { + "start": 26470.26, + "end": 26472.56, + "probability": 0.9993 + }, + { + "start": 26473.34, + "end": 26476.62, + "probability": 0.8125 + }, + { + "start": 26476.62, + "end": 26479.44, + "probability": 0.9944 + }, + { + "start": 26480.0, + "end": 26481.84, + "probability": 0.5175 + }, + { + "start": 26482.1, + "end": 26485.73, + "probability": 0.7669 + }, + { + "start": 26486.22, + "end": 26487.06, + "probability": 0.7916 + }, + { + "start": 26488.06, + "end": 26489.1, + "probability": 0.7659 + }, + { + "start": 26489.2, + "end": 26489.52, + "probability": 0.8449 + }, + { + "start": 26493.98, + "end": 26494.28, + "probability": 0.2674 + }, + { + "start": 26494.28, + "end": 26497.34, + "probability": 0.7037 + }, + { + "start": 26498.06, + "end": 26499.16, + "probability": 0.8206 + }, + { + "start": 26499.34, + "end": 26502.16, + "probability": 0.9743 + }, + { + "start": 26502.16, + "end": 26505.3, + "probability": 0.834 + }, + { + "start": 26506.86, + "end": 26512.5, + "probability": 0.8845 + }, + { + "start": 26512.6, + "end": 26516.64, + "probability": 0.6678 + }, + { + "start": 26518.42, + "end": 26519.48, + "probability": 0.5886 + }, + { + "start": 26520.04, + "end": 26524.8, + "probability": 0.9834 + }, + { + "start": 26526.35, + "end": 26530.44, + "probability": 0.7222 + }, + { + "start": 26531.0, + "end": 26533.68, + "probability": 0.9052 + }, + { + "start": 26533.74, + "end": 26536.66, + "probability": 0.5941 + }, + { + "start": 26537.04, + "end": 26541.06, + "probability": 0.9525 + }, + { + "start": 26541.66, + "end": 26545.68, + "probability": 0.9593 + }, + { + "start": 26546.14, + "end": 26546.68, + "probability": 0.8851 + }, + { + "start": 26546.98, + "end": 26547.52, + "probability": 0.9198 + }, + { + "start": 26547.8, + "end": 26548.28, + "probability": 0.9787 + }, + { + "start": 26548.42, + "end": 26550.72, + "probability": 0.9858 + }, + { + "start": 26551.22, + "end": 26554.72, + "probability": 0.9484 + }, + { + "start": 26555.14, + "end": 26556.26, + "probability": 0.9028 + }, + { + "start": 26556.74, + "end": 26562.5, + "probability": 0.9541 + }, + { + "start": 26562.92, + "end": 26566.38, + "probability": 0.9457 + }, + { + "start": 26566.38, + "end": 26569.66, + "probability": 0.9958 + }, + { + "start": 26570.36, + "end": 26571.7, + "probability": 0.8003 + }, + { + "start": 26572.42, + "end": 26575.68, + "probability": 0.9711 + }, + { + "start": 26576.1, + "end": 26581.24, + "probability": 0.9406 + }, + { + "start": 26581.78, + "end": 26584.8, + "probability": 0.5588 + }, + { + "start": 26587.98, + "end": 26589.6, + "probability": 0.5315 + }, + { + "start": 26590.24, + "end": 26593.66, + "probability": 0.7337 + }, + { + "start": 26594.22, + "end": 26597.74, + "probability": 0.9626 + }, + { + "start": 26597.74, + "end": 26601.3, + "probability": 0.996 + }, + { + "start": 26601.88, + "end": 26602.34, + "probability": 0.5327 + }, + { + "start": 26602.42, + "end": 26606.94, + "probability": 0.9802 + }, + { + "start": 26606.94, + "end": 26610.98, + "probability": 0.9799 + }, + { + "start": 26611.42, + "end": 26614.74, + "probability": 0.5987 + }, + { + "start": 26614.94, + "end": 26619.58, + "probability": 0.6782 + }, + { + "start": 26620.36, + "end": 26622.64, + "probability": 0.9382 + }, + { + "start": 26622.78, + "end": 26623.28, + "probability": 0.6077 + }, + { + "start": 26623.88, + "end": 26629.84, + "probability": 0.8779 + }, + { + "start": 26630.36, + "end": 26633.98, + "probability": 0.2963 + }, + { + "start": 26634.32, + "end": 26636.56, + "probability": 0.9788 + }, + { + "start": 26636.94, + "end": 26638.0, + "probability": 0.653 + }, + { + "start": 26638.02, + "end": 26639.74, + "probability": 0.8496 + }, + { + "start": 26639.9, + "end": 26644.74, + "probability": 0.978 + }, + { + "start": 26644.94, + "end": 26645.88, + "probability": 0.8471 + }, + { + "start": 26645.98, + "end": 26646.18, + "probability": 0.7914 + }, + { + "start": 26646.62, + "end": 26647.24, + "probability": 0.6691 + }, + { + "start": 26647.4, + "end": 26648.18, + "probability": 0.5198 + }, + { + "start": 26648.62, + "end": 26649.7, + "probability": 0.6459 + }, + { + "start": 26649.82, + "end": 26652.13, + "probability": 0.8299 + }, + { + "start": 26653.52, + "end": 26656.12, + "probability": 0.916 + }, + { + "start": 26656.12, + "end": 26658.24, + "probability": 0.9526 + }, + { + "start": 26658.38, + "end": 26659.1, + "probability": 0.2536 + }, + { + "start": 26659.8, + "end": 26663.34, + "probability": 0.7606 + }, + { + "start": 26664.24, + "end": 26666.12, + "probability": 0.7946 + }, + { + "start": 26668.62, + "end": 26668.9, + "probability": 0.0009 + }, + { + "start": 26671.52, + "end": 26671.86, + "probability": 0.0001 + }, + { + "start": 26673.18, + "end": 26678.46, + "probability": 0.0536 + }, + { + "start": 26681.71, + "end": 26684.58, + "probability": 0.3645 + }, + { + "start": 26684.72, + "end": 26687.7, + "probability": 0.7645 + }, + { + "start": 26688.12, + "end": 26689.62, + "probability": 0.6472 + }, + { + "start": 26690.66, + "end": 26692.38, + "probability": 0.8581 + }, + { + "start": 26701.08, + "end": 26706.22, + "probability": 0.7771 + }, + { + "start": 26713.22, + "end": 26713.22, + "probability": 0.0569 + }, + { + "start": 26713.22, + "end": 26715.3, + "probability": 0.2694 + }, + { + "start": 26715.38, + "end": 26717.28, + "probability": 0.9402 + }, + { + "start": 26717.28, + "end": 26719.18, + "probability": 0.9277 + }, + { + "start": 26719.48, + "end": 26720.32, + "probability": 0.1725 + }, + { + "start": 26720.62, + "end": 26721.95, + "probability": 0.9419 + }, + { + "start": 26722.7, + "end": 26723.38, + "probability": 0.776 + }, + { + "start": 26723.9, + "end": 26725.56, + "probability": 0.9854 + }, + { + "start": 26726.14, + "end": 26727.52, + "probability": 0.7655 + }, + { + "start": 26730.45, + "end": 26733.26, + "probability": 0.9031 + }, + { + "start": 26733.26, + "end": 26736.42, + "probability": 0.429 + }, + { + "start": 26736.6, + "end": 26737.72, + "probability": 0.3241 + }, + { + "start": 26738.36, + "end": 26740.72, + "probability": 0.7928 + }, + { + "start": 26740.86, + "end": 26741.54, + "probability": 0.8316 + }, + { + "start": 26741.64, + "end": 26742.9, + "probability": 0.7838 + }, + { + "start": 26743.12, + "end": 26744.46, + "probability": 0.0746 + }, + { + "start": 26744.46, + "end": 26745.46, + "probability": 0.0745 + }, + { + "start": 26746.06, + "end": 26746.2, + "probability": 0.8503 + }, + { + "start": 26747.18, + "end": 26748.62, + "probability": 0.5139 + }, + { + "start": 26748.7, + "end": 26750.3, + "probability": 0.8692 + }, + { + "start": 26750.52, + "end": 26751.96, + "probability": 0.764 + }, + { + "start": 26752.06, + "end": 26752.46, + "probability": 0.6215 + }, + { + "start": 26752.5, + "end": 26752.94, + "probability": 0.8113 + }, + { + "start": 26753.36, + "end": 26753.82, + "probability": 0.8277 + }, + { + "start": 26753.82, + "end": 26756.35, + "probability": 0.9834 + }, + { + "start": 26757.14, + "end": 26758.78, + "probability": 0.7483 + }, + { + "start": 26759.42, + "end": 26764.82, + "probability": 0.6186 + }, + { + "start": 26765.26, + "end": 26768.04, + "probability": 0.892 + }, + { + "start": 26768.82, + "end": 26769.28, + "probability": 0.9302 + }, + { + "start": 26769.96, + "end": 26770.88, + "probability": 0.8381 + }, + { + "start": 26771.36, + "end": 26774.7, + "probability": 0.974 + }, + { + "start": 26775.79, + "end": 26776.47, + "probability": 0.2757 + }, + { + "start": 26777.3, + "end": 26778.08, + "probability": 0.5037 + }, + { + "start": 26778.18, + "end": 26779.36, + "probability": 0.2779 + }, + { + "start": 26779.76, + "end": 26781.18, + "probability": 0.7192 + }, + { + "start": 26781.48, + "end": 26785.42, + "probability": 0.8586 + }, + { + "start": 26785.9, + "end": 26788.07, + "probability": 0.8882 + }, + { + "start": 26788.78, + "end": 26791.06, + "probability": 0.8948 + }, + { + "start": 26791.22, + "end": 26793.12, + "probability": 0.892 + }, + { + "start": 26793.48, + "end": 26794.53, + "probability": 0.5605 + }, + { + "start": 26795.36, + "end": 26797.36, + "probability": 0.9781 + }, + { + "start": 26797.76, + "end": 26800.48, + "probability": 0.9906 + }, + { + "start": 26800.48, + "end": 26802.54, + "probability": 0.9199 + }, + { + "start": 26802.72, + "end": 26804.4, + "probability": 0.8591 + }, + { + "start": 26805.08, + "end": 26807.76, + "probability": 0.9526 + }, + { + "start": 26808.28, + "end": 26810.14, + "probability": 0.9492 + }, + { + "start": 26810.64, + "end": 26811.9, + "probability": 0.9638 + }, + { + "start": 26812.08, + "end": 26812.85, + "probability": 0.7988 + }, + { + "start": 26813.6, + "end": 26816.0, + "probability": 0.8474 + }, + { + "start": 26816.0, + "end": 26816.7, + "probability": 0.7203 + }, + { + "start": 26817.52, + "end": 26821.18, + "probability": 0.9305 + }, + { + "start": 26821.5, + "end": 26823.6, + "probability": 0.933 + }, + { + "start": 26824.06, + "end": 26824.3, + "probability": 0.7253 + }, + { + "start": 26824.56, + "end": 26826.37, + "probability": 0.7674 + }, + { + "start": 26827.12, + "end": 26830.34, + "probability": 0.8201 + }, + { + "start": 26833.38, + "end": 26834.26, + "probability": 0.0602 + }, + { + "start": 26834.82, + "end": 26836.52, + "probability": 0.2561 + }, + { + "start": 26837.06, + "end": 26837.94, + "probability": 0.3173 + }, + { + "start": 26838.68, + "end": 26841.12, + "probability": 0.2409 + }, + { + "start": 26841.26, + "end": 26843.06, + "probability": 0.5473 + }, + { + "start": 26845.62, + "end": 26846.48, + "probability": 0.1614 + }, + { + "start": 26864.06, + "end": 26870.42, + "probability": 0.6176 + }, + { + "start": 26870.42, + "end": 26873.0, + "probability": 0.2694 + }, + { + "start": 26873.46, + "end": 26875.36, + "probability": 0.3554 + }, + { + "start": 26878.9, + "end": 26879.82, + "probability": 0.7339 + }, + { + "start": 26881.82, + "end": 26882.86, + "probability": 0.0395 + }, + { + "start": 26882.92, + "end": 26886.02, + "probability": 0.0964 + }, + { + "start": 26886.02, + "end": 26887.0, + "probability": 0.0167 + }, + { + "start": 26887.0, + "end": 26888.66, + "probability": 0.0147 + }, + { + "start": 26888.8, + "end": 26891.02, + "probability": 0.0455 + }, + { + "start": 26892.18, + "end": 26893.0, + "probability": 0.0967 + }, + { + "start": 26893.0, + "end": 26893.34, + "probability": 0.0398 + }, + { + "start": 26893.34, + "end": 26893.34, + "probability": 0.0526 + }, + { + "start": 26893.42, + "end": 26894.78, + "probability": 0.0646 + }, + { + "start": 26896.02, + "end": 26897.14, + "probability": 0.0175 + }, + { + "start": 26899.74, + "end": 26899.88, + "probability": 0.0079 + }, + { + "start": 26899.88, + "end": 26899.88, + "probability": 0.1737 + }, + { + "start": 26899.88, + "end": 26900.41, + "probability": 0.0 + }, + { + "start": 26900.41, + "end": 26900.41, + "probability": 0.0 + } + ], + "segments_count": 9227, + "words_count": 44583, + "avg_words_per_segment": 4.8318, + "avg_segment_duration": 2.0777, + "avg_words_per_minute": 99.4401, + "plenum_id": "14756", + "duration": 26900.41, + "title": null, + "plenum_date": "2011-07-11" +} \ No newline at end of file