diff --git "a/46055/metadata.json" "b/46055/metadata.json" new file mode 100644--- /dev/null +++ "b/46055/metadata.json" @@ -0,0 +1,46772 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "46055", + "quality_score": 0.9022, + "per_segment_quality_scores": [ + { + "start": 202.0, + "end": 202.0, + "probability": 0.0 + }, + { + "start": 202.0, + "end": 202.0, + "probability": 0.0 + }, + { + "start": 202.0, + "end": 202.0, + "probability": 0.0 + }, + { + "start": 202.0, + "end": 202.0, + "probability": 0.0 + }, + { + "start": 202.0, + "end": 202.0, + "probability": 0.0 + }, + { + "start": 202.0, + "end": 202.0, + "probability": 0.0 + }, + { + "start": 202.2, + "end": 202.2, + "probability": 0.104 + }, + { + "start": 202.2, + "end": 202.2, + "probability": 0.06 + }, + { + "start": 202.2, + "end": 202.2, + "probability": 0.0597 + }, + { + "start": 202.2, + "end": 202.72, + "probability": 0.0415 + }, + { + "start": 203.7, + "end": 204.62, + "probability": 0.5157 + }, + { + "start": 206.4, + "end": 209.12, + "probability": 0.9403 + }, + { + "start": 210.58, + "end": 212.78, + "probability": 0.8936 + }, + { + "start": 213.94, + "end": 216.54, + "probability": 0.7393 + }, + { + "start": 217.08, + "end": 219.64, + "probability": 0.9727 + }, + { + "start": 219.92, + "end": 221.22, + "probability": 0.8794 + }, + { + "start": 231.32, + "end": 231.82, + "probability": 0.6859 + }, + { + "start": 231.86, + "end": 233.46, + "probability": 0.5737 + }, + { + "start": 233.58, + "end": 235.66, + "probability": 0.7457 + }, + { + "start": 236.28, + "end": 238.72, + "probability": 0.6005 + }, + { + "start": 240.68, + "end": 245.52, + "probability": 0.9549 + }, + { + "start": 246.18, + "end": 254.34, + "probability": 0.9197 + }, + { + "start": 254.98, + "end": 257.12, + "probability": 0.5974 + }, + { + "start": 258.9, + "end": 260.7, + "probability": 0.7144 + }, + { + "start": 261.44, + "end": 264.58, + "probability": 0.6138 + }, + { + "start": 264.96, + "end": 267.62, + "probability": 0.8817 + }, + { + "start": 268.18, + "end": 273.2, + "probability": 0.9896 + }, + { + "start": 273.36, + "end": 275.54, + "probability": 0.9183 + }, + { + "start": 276.12, + "end": 279.54, + "probability": 0.9756 + }, + { + "start": 280.1, + "end": 284.9, + "probability": 0.8783 + }, + { + "start": 285.04, + "end": 286.36, + "probability": 0.2032 + }, + { + "start": 287.14, + "end": 287.14, + "probability": 0.0368 + }, + { + "start": 287.14, + "end": 288.24, + "probability": 0.5464 + }, + { + "start": 289.28, + "end": 290.9, + "probability": 0.5859 + }, + { + "start": 292.77, + "end": 295.74, + "probability": 0.7708 + }, + { + "start": 296.27, + "end": 299.42, + "probability": 0.8273 + }, + { + "start": 300.38, + "end": 301.9, + "probability": 0.6366 + }, + { + "start": 302.06, + "end": 302.47, + "probability": 0.7891 + }, + { + "start": 303.0, + "end": 305.95, + "probability": 0.7922 + }, + { + "start": 306.52, + "end": 307.52, + "probability": 0.9458 + }, + { + "start": 307.92, + "end": 311.62, + "probability": 0.8784 + }, + { + "start": 312.8, + "end": 312.8, + "probability": 0.0329 + }, + { + "start": 312.82, + "end": 314.15, + "probability": 0.7563 + }, + { + "start": 315.22, + "end": 319.46, + "probability": 0.9708 + }, + { + "start": 320.72, + "end": 323.18, + "probability": 0.8813 + }, + { + "start": 323.74, + "end": 326.06, + "probability": 0.6688 + }, + { + "start": 327.32, + "end": 328.28, + "probability": 0.704 + }, + { + "start": 328.66, + "end": 330.06, + "probability": 0.9565 + }, + { + "start": 331.72, + "end": 333.63, + "probability": 0.8376 + }, + { + "start": 334.44, + "end": 336.9, + "probability": 0.8066 + }, + { + "start": 336.96, + "end": 337.64, + "probability": 0.7214 + }, + { + "start": 337.76, + "end": 338.98, + "probability": 0.7528 + }, + { + "start": 339.08, + "end": 339.68, + "probability": 0.9177 + }, + { + "start": 340.16, + "end": 342.94, + "probability": 0.7443 + }, + { + "start": 344.16, + "end": 349.22, + "probability": 0.9289 + }, + { + "start": 349.88, + "end": 353.7, + "probability": 0.8982 + }, + { + "start": 353.94, + "end": 358.38, + "probability": 0.9788 + }, + { + "start": 359.0, + "end": 362.66, + "probability": 0.9198 + }, + { + "start": 363.46, + "end": 367.53, + "probability": 0.8033 + }, + { + "start": 368.7, + "end": 371.2, + "probability": 0.9092 + }, + { + "start": 371.28, + "end": 372.2, + "probability": 0.8387 + }, + { + "start": 372.28, + "end": 375.74, + "probability": 0.9129 + }, + { + "start": 376.04, + "end": 377.3, + "probability": 0.6672 + }, + { + "start": 377.4, + "end": 381.24, + "probability": 0.6851 + }, + { + "start": 381.8, + "end": 383.84, + "probability": 0.9575 + }, + { + "start": 384.4, + "end": 387.76, + "probability": 0.8854 + }, + { + "start": 387.86, + "end": 389.9, + "probability": 0.9583 + }, + { + "start": 390.28, + "end": 390.7, + "probability": 0.7449 + }, + { + "start": 391.66, + "end": 393.04, + "probability": 0.7674 + }, + { + "start": 393.18, + "end": 395.28, + "probability": 0.6067 + }, + { + "start": 395.84, + "end": 398.56, + "probability": 0.9478 + }, + { + "start": 398.8, + "end": 399.9, + "probability": 0.9569 + }, + { + "start": 400.1, + "end": 401.62, + "probability": 0.7216 + }, + { + "start": 401.72, + "end": 403.0, + "probability": 0.7064 + }, + { + "start": 403.96, + "end": 405.02, + "probability": 0.9446 + }, + { + "start": 405.44, + "end": 405.88, + "probability": 0.6702 + }, + { + "start": 406.32, + "end": 408.28, + "probability": 0.716 + }, + { + "start": 408.7, + "end": 409.54, + "probability": 0.8797 + }, + { + "start": 409.62, + "end": 411.42, + "probability": 0.8083 + }, + { + "start": 411.46, + "end": 412.46, + "probability": 0.6419 + }, + { + "start": 412.84, + "end": 413.56, + "probability": 0.4398 + }, + { + "start": 413.8, + "end": 418.42, + "probability": 0.9922 + }, + { + "start": 419.34, + "end": 422.88, + "probability": 0.8476 + }, + { + "start": 423.72, + "end": 426.3, + "probability": 0.9714 + }, + { + "start": 426.42, + "end": 428.86, + "probability": 0.9183 + }, + { + "start": 428.94, + "end": 429.78, + "probability": 0.6454 + }, + { + "start": 430.92, + "end": 432.5, + "probability": 0.6259 + }, + { + "start": 432.58, + "end": 432.58, + "probability": 0.7783 + }, + { + "start": 432.58, + "end": 435.14, + "probability": 0.9905 + }, + { + "start": 435.26, + "end": 439.0, + "probability": 0.9678 + }, + { + "start": 440.08, + "end": 445.44, + "probability": 0.9776 + }, + { + "start": 445.96, + "end": 447.64, + "probability": 0.8853 + }, + { + "start": 447.82, + "end": 450.82, + "probability": 0.9879 + }, + { + "start": 450.92, + "end": 454.76, + "probability": 0.9912 + }, + { + "start": 455.28, + "end": 457.14, + "probability": 0.988 + }, + { + "start": 458.22, + "end": 463.3, + "probability": 0.8821 + }, + { + "start": 463.96, + "end": 467.1, + "probability": 0.9609 + }, + { + "start": 467.26, + "end": 469.66, + "probability": 0.9929 + }, + { + "start": 470.32, + "end": 472.52, + "probability": 0.7721 + }, + { + "start": 473.24, + "end": 473.64, + "probability": 0.7951 + }, + { + "start": 473.8, + "end": 474.78, + "probability": 0.8404 + }, + { + "start": 475.02, + "end": 478.66, + "probability": 0.9946 + }, + { + "start": 479.12, + "end": 482.1, + "probability": 0.9713 + }, + { + "start": 482.68, + "end": 486.34, + "probability": 0.9402 + }, + { + "start": 486.34, + "end": 490.26, + "probability": 0.9603 + }, + { + "start": 490.48, + "end": 490.94, + "probability": 0.3904 + }, + { + "start": 491.04, + "end": 493.04, + "probability": 0.6695 + }, + { + "start": 493.12, + "end": 495.7, + "probability": 0.7776 + }, + { + "start": 496.92, + "end": 500.26, + "probability": 0.7883 + }, + { + "start": 500.92, + "end": 501.72, + "probability": 0.5964 + }, + { + "start": 501.8, + "end": 505.36, + "probability": 0.956 + }, + { + "start": 507.12, + "end": 512.18, + "probability": 0.7412 + }, + { + "start": 513.12, + "end": 517.04, + "probability": 0.9199 + }, + { + "start": 517.1, + "end": 521.56, + "probability": 0.5338 + }, + { + "start": 522.61, + "end": 526.38, + "probability": 0.6451 + }, + { + "start": 526.92, + "end": 530.37, + "probability": 0.7875 + }, + { + "start": 530.84, + "end": 536.2, + "probability": 0.7042 + }, + { + "start": 537.02, + "end": 539.76, + "probability": 0.9073 + }, + { + "start": 540.3, + "end": 541.4, + "probability": 0.6937 + }, + { + "start": 541.66, + "end": 549.42, + "probability": 0.9837 + }, + { + "start": 549.44, + "end": 557.12, + "probability": 0.9398 + }, + { + "start": 557.5, + "end": 558.64, + "probability": 0.6451 + }, + { + "start": 559.08, + "end": 562.68, + "probability": 0.9492 + }, + { + "start": 562.84, + "end": 565.58, + "probability": 0.938 + }, + { + "start": 565.82, + "end": 570.2, + "probability": 0.9287 + }, + { + "start": 570.2, + "end": 571.84, + "probability": 0.3336 + }, + { + "start": 571.92, + "end": 573.92, + "probability": 0.8338 + }, + { + "start": 580.4, + "end": 581.82, + "probability": 0.356 + }, + { + "start": 582.72, + "end": 583.52, + "probability": 0.6332 + }, + { + "start": 584.86, + "end": 585.0, + "probability": 0.436 + }, + { + "start": 585.0, + "end": 586.6, + "probability": 0.6823 + }, + { + "start": 586.98, + "end": 590.58, + "probability": 0.8798 + }, + { + "start": 592.94, + "end": 594.94, + "probability": 0.9989 + }, + { + "start": 595.32, + "end": 596.18, + "probability": 0.7001 + }, + { + "start": 596.24, + "end": 597.24, + "probability": 0.8327 + }, + { + "start": 597.54, + "end": 598.6, + "probability": 0.9359 + }, + { + "start": 599.44, + "end": 600.52, + "probability": 0.8066 + }, + { + "start": 600.58, + "end": 602.88, + "probability": 0.8836 + }, + { + "start": 603.0, + "end": 607.08, + "probability": 0.6111 + }, + { + "start": 607.14, + "end": 607.36, + "probability": 0.875 + }, + { + "start": 607.4, + "end": 608.64, + "probability": 0.6406 + }, + { + "start": 609.98, + "end": 611.76, + "probability": 0.9708 + }, + { + "start": 611.9, + "end": 612.86, + "probability": 0.7773 + }, + { + "start": 613.34, + "end": 615.06, + "probability": 0.9859 + }, + { + "start": 615.28, + "end": 617.42, + "probability": 0.9 + }, + { + "start": 617.5, + "end": 618.18, + "probability": 0.5946 + }, + { + "start": 618.68, + "end": 620.2, + "probability": 0.8498 + }, + { + "start": 620.74, + "end": 621.74, + "probability": 0.8058 + }, + { + "start": 621.82, + "end": 622.56, + "probability": 0.9932 + }, + { + "start": 622.6, + "end": 623.21, + "probability": 0.967 + }, + { + "start": 623.72, + "end": 625.02, + "probability": 0.743 + }, + { + "start": 625.64, + "end": 627.28, + "probability": 0.9873 + }, + { + "start": 628.34, + "end": 629.98, + "probability": 0.9313 + }, + { + "start": 630.04, + "end": 630.39, + "probability": 0.8867 + }, + { + "start": 630.96, + "end": 633.35, + "probability": 0.8765 + }, + { + "start": 633.94, + "end": 635.7, + "probability": 0.7307 + }, + { + "start": 635.88, + "end": 637.44, + "probability": 0.5914 + }, + { + "start": 638.06, + "end": 639.0, + "probability": 0.6856 + }, + { + "start": 639.6, + "end": 641.9, + "probability": 0.5044 + }, + { + "start": 642.32, + "end": 646.76, + "probability": 0.9793 + }, + { + "start": 647.56, + "end": 649.72, + "probability": 0.6089 + }, + { + "start": 650.02, + "end": 650.74, + "probability": 0.7566 + }, + { + "start": 651.06, + "end": 652.58, + "probability": 0.8662 + }, + { + "start": 652.96, + "end": 654.58, + "probability": 0.9917 + }, + { + "start": 654.8, + "end": 655.82, + "probability": 0.9795 + }, + { + "start": 656.3, + "end": 658.06, + "probability": 0.9685 + }, + { + "start": 658.58, + "end": 659.94, + "probability": 0.9956 + }, + { + "start": 660.22, + "end": 662.66, + "probability": 0.8784 + }, + { + "start": 664.14, + "end": 665.16, + "probability": 0.8837 + }, + { + "start": 665.58, + "end": 668.82, + "probability": 0.9133 + }, + { + "start": 668.96, + "end": 669.3, + "probability": 0.7242 + }, + { + "start": 670.08, + "end": 670.38, + "probability": 0.3713 + }, + { + "start": 670.62, + "end": 672.24, + "probability": 0.9802 + }, + { + "start": 672.56, + "end": 673.26, + "probability": 0.7026 + }, + { + "start": 673.5, + "end": 676.14, + "probability": 0.9858 + }, + { + "start": 676.24, + "end": 678.26, + "probability": 0.9988 + }, + { + "start": 678.96, + "end": 682.26, + "probability": 0.9471 + }, + { + "start": 682.86, + "end": 685.36, + "probability": 0.9385 + }, + { + "start": 685.67, + "end": 687.19, + "probability": 0.4959 + }, + { + "start": 687.36, + "end": 689.26, + "probability": 0.7314 + }, + { + "start": 689.79, + "end": 693.81, + "probability": 0.9878 + }, + { + "start": 695.92, + "end": 697.88, + "probability": 0.9895 + }, + { + "start": 698.54, + "end": 701.06, + "probability": 0.969 + }, + { + "start": 701.68, + "end": 703.74, + "probability": 0.9796 + }, + { + "start": 704.58, + "end": 708.12, + "probability": 0.926 + }, + { + "start": 708.86, + "end": 710.14, + "probability": 0.8389 + }, + { + "start": 710.24, + "end": 712.07, + "probability": 0.9966 + }, + { + "start": 712.58, + "end": 716.4, + "probability": 0.9963 + }, + { + "start": 717.16, + "end": 718.76, + "probability": 0.8521 + }, + { + "start": 719.29, + "end": 721.36, + "probability": 0.9976 + }, + { + "start": 722.3, + "end": 725.5, + "probability": 0.9944 + }, + { + "start": 726.26, + "end": 729.24, + "probability": 0.9805 + }, + { + "start": 730.78, + "end": 731.13, + "probability": 0.4799 + }, + { + "start": 732.37, + "end": 736.64, + "probability": 0.9557 + }, + { + "start": 736.78, + "end": 738.38, + "probability": 0.9279 + }, + { + "start": 738.46, + "end": 740.38, + "probability": 0.9299 + }, + { + "start": 740.82, + "end": 742.04, + "probability": 0.7271 + }, + { + "start": 742.44, + "end": 742.46, + "probability": 0.3228 + }, + { + "start": 742.48, + "end": 743.12, + "probability": 0.7587 + }, + { + "start": 743.3, + "end": 744.58, + "probability": 0.9222 + }, + { + "start": 744.66, + "end": 746.84, + "probability": 0.6216 + }, + { + "start": 747.22, + "end": 749.74, + "probability": 0.4533 + }, + { + "start": 749.82, + "end": 751.38, + "probability": 0.9128 + }, + { + "start": 752.45, + "end": 753.26, + "probability": 0.1306 + }, + { + "start": 753.78, + "end": 757.62, + "probability": 0.7297 + }, + { + "start": 757.74, + "end": 759.72, + "probability": 0.7175 + }, + { + "start": 760.22, + "end": 763.52, + "probability": 0.9476 + }, + { + "start": 763.66, + "end": 766.5, + "probability": 0.8445 + }, + { + "start": 767.12, + "end": 769.5, + "probability": 0.9336 + }, + { + "start": 769.68, + "end": 770.6, + "probability": 0.9211 + }, + { + "start": 771.34, + "end": 772.36, + "probability": 0.7935 + }, + { + "start": 773.08, + "end": 773.68, + "probability": 0.5144 + }, + { + "start": 773.84, + "end": 774.42, + "probability": 0.7114 + }, + { + "start": 774.58, + "end": 777.32, + "probability": 0.9423 + }, + { + "start": 778.14, + "end": 778.18, + "probability": 0.2542 + }, + { + "start": 778.18, + "end": 781.86, + "probability": 0.8698 + }, + { + "start": 782.42, + "end": 783.87, + "probability": 0.9601 + }, + { + "start": 784.36, + "end": 786.52, + "probability": 0.9956 + }, + { + "start": 786.6, + "end": 789.88, + "probability": 0.7526 + }, + { + "start": 790.4, + "end": 792.12, + "probability": 0.9694 + }, + { + "start": 792.92, + "end": 795.02, + "probability": 0.9915 + }, + { + "start": 795.02, + "end": 798.3, + "probability": 0.996 + }, + { + "start": 798.4, + "end": 799.74, + "probability": 0.7817 + }, + { + "start": 799.84, + "end": 802.78, + "probability": 0.7087 + }, + { + "start": 803.34, + "end": 805.02, + "probability": 0.9946 + }, + { + "start": 805.18, + "end": 806.44, + "probability": 0.9941 + }, + { + "start": 807.0, + "end": 809.36, + "probability": 0.9956 + }, + { + "start": 809.64, + "end": 810.1, + "probability": 0.9626 + }, + { + "start": 810.94, + "end": 812.28, + "probability": 0.9375 + }, + { + "start": 812.36, + "end": 814.3, + "probability": 0.8777 + }, + { + "start": 814.46, + "end": 817.58, + "probability": 0.9717 + }, + { + "start": 817.7, + "end": 820.28, + "probability": 0.8956 + }, + { + "start": 820.38, + "end": 822.0, + "probability": 0.9628 + }, + { + "start": 822.82, + "end": 825.56, + "probability": 0.9834 + }, + { + "start": 825.74, + "end": 827.26, + "probability": 0.9915 + }, + { + "start": 827.82, + "end": 828.86, + "probability": 0.9893 + }, + { + "start": 829.48, + "end": 829.58, + "probability": 0.724 + }, + { + "start": 829.76, + "end": 832.28, + "probability": 0.9692 + }, + { + "start": 832.46, + "end": 835.18, + "probability": 0.5547 + }, + { + "start": 835.34, + "end": 835.8, + "probability": 0.9686 + }, + { + "start": 836.12, + "end": 841.02, + "probability": 0.9513 + }, + { + "start": 841.7, + "end": 843.54, + "probability": 0.9436 + }, + { + "start": 843.66, + "end": 844.5, + "probability": 0.7466 + }, + { + "start": 844.56, + "end": 846.58, + "probability": 0.9337 + }, + { + "start": 847.08, + "end": 847.98, + "probability": 0.9728 + }, + { + "start": 848.56, + "end": 848.78, + "probability": 0.863 + }, + { + "start": 848.86, + "end": 851.3, + "probability": 0.9751 + }, + { + "start": 851.38, + "end": 852.16, + "probability": 0.7111 + }, + { + "start": 852.38, + "end": 854.32, + "probability": 0.9787 + }, + { + "start": 855.8, + "end": 858.6, + "probability": 0.9318 + }, + { + "start": 858.6, + "end": 861.26, + "probability": 0.9824 + }, + { + "start": 862.72, + "end": 865.86, + "probability": 0.998 + }, + { + "start": 866.26, + "end": 868.66, + "probability": 0.9982 + }, + { + "start": 869.3, + "end": 871.12, + "probability": 0.809 + }, + { + "start": 871.34, + "end": 873.59, + "probability": 0.8468 + }, + { + "start": 874.5, + "end": 877.12, + "probability": 0.9022 + }, + { + "start": 877.84, + "end": 880.27, + "probability": 0.9873 + }, + { + "start": 880.59, + "end": 882.58, + "probability": 0.9968 + }, + { + "start": 883.94, + "end": 887.92, + "probability": 0.8966 + }, + { + "start": 888.1, + "end": 888.38, + "probability": 0.7072 + }, + { + "start": 889.58, + "end": 893.62, + "probability": 0.9956 + }, + { + "start": 893.76, + "end": 894.1, + "probability": 0.6544 + }, + { + "start": 894.18, + "end": 894.98, + "probability": 0.8157 + }, + { + "start": 900.08, + "end": 905.0, + "probability": 0.9385 + }, + { + "start": 905.84, + "end": 909.12, + "probability": 0.9358 + }, + { + "start": 921.2, + "end": 923.44, + "probability": 0.5107 + }, + { + "start": 923.44, + "end": 926.41, + "probability": 0.7246 + }, + { + "start": 927.8, + "end": 932.14, + "probability": 0.85 + }, + { + "start": 932.29, + "end": 934.1, + "probability": 0.9967 + }, + { + "start": 934.2, + "end": 934.36, + "probability": 0.433 + }, + { + "start": 934.48, + "end": 935.98, + "probability": 0.7759 + }, + { + "start": 937.0, + "end": 937.8, + "probability": 0.386 + }, + { + "start": 937.8, + "end": 940.48, + "probability": 0.9778 + }, + { + "start": 941.68, + "end": 941.68, + "probability": 0.2398 + }, + { + "start": 941.72, + "end": 943.98, + "probability": 0.8783 + }, + { + "start": 943.98, + "end": 946.62, + "probability": 0.6947 + }, + { + "start": 946.74, + "end": 947.58, + "probability": 0.9 + }, + { + "start": 947.72, + "end": 948.52, + "probability": 0.209 + }, + { + "start": 948.62, + "end": 950.24, + "probability": 0.9595 + }, + { + "start": 953.84, + "end": 957.88, + "probability": 0.9937 + }, + { + "start": 958.68, + "end": 962.28, + "probability": 0.9847 + }, + { + "start": 962.92, + "end": 964.9, + "probability": 0.9864 + }, + { + "start": 965.82, + "end": 968.66, + "probability": 0.9382 + }, + { + "start": 969.2, + "end": 976.12, + "probability": 0.9966 + }, + { + "start": 977.1, + "end": 977.34, + "probability": 0.6325 + }, + { + "start": 977.62, + "end": 978.96, + "probability": 0.7111 + }, + { + "start": 979.12, + "end": 980.9, + "probability": 0.8179 + }, + { + "start": 984.87, + "end": 986.36, + "probability": 0.7338 + }, + { + "start": 987.78, + "end": 988.66, + "probability": 0.8936 + }, + { + "start": 989.42, + "end": 996.32, + "probability": 0.9766 + }, + { + "start": 997.5, + "end": 999.59, + "probability": 0.6608 + }, + { + "start": 1000.56, + "end": 1000.88, + "probability": 0.2109 + }, + { + "start": 1001.62, + "end": 1004.04, + "probability": 0.9587 + }, + { + "start": 1006.98, + "end": 1009.5, + "probability": 0.922 + }, + { + "start": 1009.86, + "end": 1009.86, + "probability": 0.092 + }, + { + "start": 1009.86, + "end": 1010.52, + "probability": 0.5722 + }, + { + "start": 1011.3, + "end": 1015.66, + "probability": 0.7212 + }, + { + "start": 1019.16, + "end": 1022.92, + "probability": 0.8961 + }, + { + "start": 1024.04, + "end": 1028.94, + "probability": 0.9046 + }, + { + "start": 1029.76, + "end": 1031.42, + "probability": 0.9905 + }, + { + "start": 1031.5, + "end": 1033.43, + "probability": 0.9788 + }, + { + "start": 1034.08, + "end": 1037.42, + "probability": 0.9824 + }, + { + "start": 1038.24, + "end": 1040.58, + "probability": 0.9922 + }, + { + "start": 1041.24, + "end": 1042.78, + "probability": 0.9883 + }, + { + "start": 1043.2, + "end": 1049.4, + "probability": 0.9743 + }, + { + "start": 1050.2, + "end": 1053.2, + "probability": 0.915 + }, + { + "start": 1053.94, + "end": 1055.46, + "probability": 0.9637 + }, + { + "start": 1056.55, + "end": 1058.06, + "probability": 0.9685 + }, + { + "start": 1059.14, + "end": 1061.64, + "probability": 0.9893 + }, + { + "start": 1062.38, + "end": 1065.58, + "probability": 0.997 + }, + { + "start": 1065.58, + "end": 1069.12, + "probability": 0.9969 + }, + { + "start": 1069.74, + "end": 1074.06, + "probability": 0.998 + }, + { + "start": 1074.18, + "end": 1079.76, + "probability": 0.987 + }, + { + "start": 1080.64, + "end": 1083.36, + "probability": 0.8432 + }, + { + "start": 1084.18, + "end": 1085.68, + "probability": 0.9603 + }, + { + "start": 1086.38, + "end": 1093.52, + "probability": 0.9788 + }, + { + "start": 1094.42, + "end": 1095.26, + "probability": 0.9685 + }, + { + "start": 1095.34, + "end": 1100.8, + "probability": 0.994 + }, + { + "start": 1101.38, + "end": 1102.46, + "probability": 0.7828 + }, + { + "start": 1102.88, + "end": 1109.34, + "probability": 0.9956 + }, + { + "start": 1109.88, + "end": 1112.78, + "probability": 0.996 + }, + { + "start": 1113.46, + "end": 1114.82, + "probability": 0.7241 + }, + { + "start": 1115.34, + "end": 1119.56, + "probability": 0.9701 + }, + { + "start": 1120.08, + "end": 1124.0, + "probability": 0.9174 + }, + { + "start": 1124.5, + "end": 1124.72, + "probability": 0.7384 + }, + { + "start": 1124.9, + "end": 1126.52, + "probability": 0.7613 + }, + { + "start": 1127.46, + "end": 1129.68, + "probability": 0.5991 + }, + { + "start": 1130.74, + "end": 1134.34, + "probability": 0.1811 + }, + { + "start": 1134.5, + "end": 1135.28, + "probability": 0.299 + }, + { + "start": 1136.7, + "end": 1139.76, + "probability": 0.4617 + }, + { + "start": 1139.9, + "end": 1140.58, + "probability": 0.5788 + }, + { + "start": 1142.06, + "end": 1143.04, + "probability": 0.5253 + }, + { + "start": 1143.2, + "end": 1144.5, + "probability": 0.7282 + }, + { + "start": 1144.82, + "end": 1145.48, + "probability": 0.6872 + }, + { + "start": 1145.56, + "end": 1149.48, + "probability": 0.938 + }, + { + "start": 1149.58, + "end": 1150.26, + "probability": 0.811 + }, + { + "start": 1151.36, + "end": 1152.44, + "probability": 0.7806 + }, + { + "start": 1152.54, + "end": 1155.04, + "probability": 0.926 + }, + { + "start": 1155.56, + "end": 1158.08, + "probability": 0.9771 + }, + { + "start": 1159.06, + "end": 1159.62, + "probability": 0.6017 + }, + { + "start": 1160.28, + "end": 1161.64, + "probability": 0.7252 + }, + { + "start": 1162.14, + "end": 1168.14, + "probability": 0.9028 + }, + { + "start": 1168.8, + "end": 1174.14, + "probability": 0.9503 + }, + { + "start": 1174.16, + "end": 1179.4, + "probability": 0.6665 + }, + { + "start": 1179.46, + "end": 1179.84, + "probability": 0.0496 + }, + { + "start": 1179.98, + "end": 1181.7, + "probability": 0.6217 + }, + { + "start": 1181.84, + "end": 1182.22, + "probability": 0.8539 + }, + { + "start": 1182.34, + "end": 1187.74, + "probability": 0.7871 + }, + { + "start": 1188.02, + "end": 1191.64, + "probability": 0.2761 + }, + { + "start": 1191.64, + "end": 1195.92, + "probability": 0.9348 + }, + { + "start": 1196.28, + "end": 1196.48, + "probability": 0.7216 + }, + { + "start": 1198.3, + "end": 1200.52, + "probability": 0.6535 + }, + { + "start": 1200.68, + "end": 1203.16, + "probability": 0.8149 + }, + { + "start": 1203.38, + "end": 1207.92, + "probability": 0.948 + }, + { + "start": 1209.38, + "end": 1211.44, + "probability": 0.6648 + }, + { + "start": 1211.82, + "end": 1215.12, + "probability": 0.942 + }, + { + "start": 1215.68, + "end": 1220.52, + "probability": 0.9785 + }, + { + "start": 1221.18, + "end": 1224.52, + "probability": 0.7798 + }, + { + "start": 1225.26, + "end": 1228.64, + "probability": 0.952 + }, + { + "start": 1229.48, + "end": 1232.76, + "probability": 0.9969 + }, + { + "start": 1233.84, + "end": 1236.0, + "probability": 0.9766 + }, + { + "start": 1237.38, + "end": 1242.34, + "probability": 0.99 + }, + { + "start": 1242.54, + "end": 1243.52, + "probability": 0.6648 + }, + { + "start": 1243.88, + "end": 1245.04, + "probability": 0.799 + }, + { + "start": 1245.36, + "end": 1246.12, + "probability": 0.7174 + }, + { + "start": 1246.96, + "end": 1249.64, + "probability": 0.6262 + }, + { + "start": 1250.24, + "end": 1254.22, + "probability": 0.9845 + }, + { + "start": 1254.22, + "end": 1256.0, + "probability": 0.8836 + }, + { + "start": 1256.54, + "end": 1256.92, + "probability": 0.8805 + }, + { + "start": 1258.4, + "end": 1259.48, + "probability": 0.7101 + }, + { + "start": 1259.94, + "end": 1260.86, + "probability": 0.8745 + }, + { + "start": 1261.26, + "end": 1265.92, + "probability": 0.9591 + }, + { + "start": 1266.56, + "end": 1269.04, + "probability": 0.9827 + }, + { + "start": 1269.66, + "end": 1270.28, + "probability": 0.6588 + }, + { + "start": 1270.7, + "end": 1271.24, + "probability": 0.6443 + }, + { + "start": 1271.38, + "end": 1275.34, + "probability": 0.9854 + }, + { + "start": 1275.78, + "end": 1277.26, + "probability": 0.9384 + }, + { + "start": 1277.76, + "end": 1280.56, + "probability": 0.7974 + }, + { + "start": 1280.56, + "end": 1283.62, + "probability": 0.9971 + }, + { + "start": 1284.18, + "end": 1284.86, + "probability": 0.8627 + }, + { + "start": 1285.06, + "end": 1285.72, + "probability": 0.9797 + }, + { + "start": 1286.02, + "end": 1287.66, + "probability": 0.8381 + }, + { + "start": 1287.98, + "end": 1288.96, + "probability": 0.9071 + }, + { + "start": 1289.58, + "end": 1291.98, + "probability": 0.9916 + }, + { + "start": 1292.6, + "end": 1294.78, + "probability": 0.9211 + }, + { + "start": 1296.18, + "end": 1298.1, + "probability": 0.7727 + }, + { + "start": 1298.54, + "end": 1299.56, + "probability": 0.7326 + }, + { + "start": 1300.88, + "end": 1301.4, + "probability": 0.5284 + }, + { + "start": 1302.48, + "end": 1304.13, + "probability": 0.9573 + }, + { + "start": 1306.1, + "end": 1310.66, + "probability": 0.8687 + }, + { + "start": 1310.86, + "end": 1311.96, + "probability": 0.4556 + }, + { + "start": 1312.74, + "end": 1315.4, + "probability": 0.9726 + }, + { + "start": 1315.66, + "end": 1317.64, + "probability": 0.5297 + }, + { + "start": 1317.74, + "end": 1319.78, + "probability": 0.7537 + }, + { + "start": 1320.62, + "end": 1321.48, + "probability": 0.5606 + }, + { + "start": 1322.78, + "end": 1331.08, + "probability": 0.9172 + }, + { + "start": 1331.08, + "end": 1336.44, + "probability": 0.9093 + }, + { + "start": 1337.02, + "end": 1343.5, + "probability": 0.9644 + }, + { + "start": 1343.6, + "end": 1344.44, + "probability": 0.9829 + }, + { + "start": 1345.1, + "end": 1346.96, + "probability": 0.9976 + }, + { + "start": 1348.15, + "end": 1351.41, + "probability": 0.991 + }, + { + "start": 1352.59, + "end": 1355.52, + "probability": 0.9948 + }, + { + "start": 1357.1, + "end": 1360.28, + "probability": 0.9946 + }, + { + "start": 1360.78, + "end": 1365.72, + "probability": 0.781 + }, + { + "start": 1366.34, + "end": 1367.7, + "probability": 0.8411 + }, + { + "start": 1369.05, + "end": 1373.5, + "probability": 0.9375 + }, + { + "start": 1375.86, + "end": 1380.1, + "probability": 0.9718 + }, + { + "start": 1381.52, + "end": 1385.28, + "probability": 0.8069 + }, + { + "start": 1385.64, + "end": 1389.84, + "probability": 0.9855 + }, + { + "start": 1391.38, + "end": 1391.62, + "probability": 0.6326 + }, + { + "start": 1391.7, + "end": 1393.22, + "probability": 0.9854 + }, + { + "start": 1393.42, + "end": 1394.86, + "probability": 0.9951 + }, + { + "start": 1395.88, + "end": 1397.68, + "probability": 0.8696 + }, + { + "start": 1398.52, + "end": 1400.48, + "probability": 0.9756 + }, + { + "start": 1401.16, + "end": 1402.36, + "probability": 0.7759 + }, + { + "start": 1402.88, + "end": 1403.86, + "probability": 0.944 + }, + { + "start": 1404.94, + "end": 1409.16, + "probability": 0.8896 + }, + { + "start": 1409.94, + "end": 1410.22, + "probability": 0.5001 + }, + { + "start": 1410.8, + "end": 1414.14, + "probability": 0.7262 + }, + { + "start": 1414.14, + "end": 1415.64, + "probability": 0.7513 + }, + { + "start": 1416.48, + "end": 1417.48, + "probability": 0.652 + }, + { + "start": 1417.6, + "end": 1419.9, + "probability": 0.9904 + }, + { + "start": 1419.9, + "end": 1423.06, + "probability": 0.9468 + }, + { + "start": 1423.16, + "end": 1423.26, + "probability": 0.3297 + }, + { + "start": 1424.74, + "end": 1424.84, + "probability": 0.0019 + }, + { + "start": 1425.68, + "end": 1425.68, + "probability": 0.014 + }, + { + "start": 1425.68, + "end": 1428.31, + "probability": 0.6648 + }, + { + "start": 1429.3, + "end": 1433.34, + "probability": 0.9637 + }, + { + "start": 1434.04, + "end": 1435.52, + "probability": 0.8324 + }, + { + "start": 1435.62, + "end": 1436.24, + "probability": 0.6275 + }, + { + "start": 1436.32, + "end": 1436.56, + "probability": 0.3946 + }, + { + "start": 1436.68, + "end": 1438.44, + "probability": 0.811 + }, + { + "start": 1438.54, + "end": 1440.14, + "probability": 0.8096 + }, + { + "start": 1440.96, + "end": 1448.82, + "probability": 0.7483 + }, + { + "start": 1449.7, + "end": 1453.24, + "probability": 0.896 + }, + { + "start": 1453.24, + "end": 1454.98, + "probability": 0.9252 + }, + { + "start": 1455.64, + "end": 1459.1, + "probability": 0.7344 + }, + { + "start": 1461.98, + "end": 1465.48, + "probability": 0.9685 + }, + { + "start": 1465.64, + "end": 1467.22, + "probability": 0.4436 + }, + { + "start": 1467.38, + "end": 1472.6, + "probability": 0.926 + }, + { + "start": 1472.64, + "end": 1473.66, + "probability": 0.8056 + }, + { + "start": 1473.76, + "end": 1475.36, + "probability": 0.985 + }, + { + "start": 1475.92, + "end": 1478.24, + "probability": 0.9282 + }, + { + "start": 1478.64, + "end": 1482.48, + "probability": 0.9486 + }, + { + "start": 1483.38, + "end": 1486.46, + "probability": 0.8203 + }, + { + "start": 1487.04, + "end": 1489.34, + "probability": 0.8927 + }, + { + "start": 1489.9, + "end": 1493.0, + "probability": 0.9498 + }, + { + "start": 1493.68, + "end": 1496.52, + "probability": 0.8099 + }, + { + "start": 1496.98, + "end": 1498.9, + "probability": 0.6014 + }, + { + "start": 1499.88, + "end": 1504.14, + "probability": 0.7943 + }, + { + "start": 1504.76, + "end": 1505.3, + "probability": 0.2502 + }, + { + "start": 1506.16, + "end": 1507.06, + "probability": 0.0992 + }, + { + "start": 1507.3, + "end": 1507.84, + "probability": 0.5921 + }, + { + "start": 1507.88, + "end": 1510.56, + "probability": 0.9314 + }, + { + "start": 1511.24, + "end": 1512.29, + "probability": 0.015 + }, + { + "start": 1513.34, + "end": 1516.68, + "probability": 0.0836 + }, + { + "start": 1516.92, + "end": 1521.2, + "probability": 0.2449 + }, + { + "start": 1521.38, + "end": 1522.6, + "probability": 0.2007 + }, + { + "start": 1523.03, + "end": 1527.48, + "probability": 0.4931 + }, + { + "start": 1527.5, + "end": 1528.94, + "probability": 0.4193 + }, + { + "start": 1529.36, + "end": 1530.96, + "probability": 0.7137 + }, + { + "start": 1531.14, + "end": 1532.42, + "probability": 0.5209 + }, + { + "start": 1533.14, + "end": 1536.46, + "probability": 0.9398 + }, + { + "start": 1536.96, + "end": 1538.82, + "probability": 0.9609 + }, + { + "start": 1538.84, + "end": 1539.24, + "probability": 0.6727 + }, + { + "start": 1539.68, + "end": 1539.82, + "probability": 0.6366 + }, + { + "start": 1540.72, + "end": 1541.52, + "probability": 0.1829 + }, + { + "start": 1541.52, + "end": 1544.51, + "probability": 0.8064 + }, + { + "start": 1545.26, + "end": 1546.88, + "probability": 0.8269 + }, + { + "start": 1547.16, + "end": 1548.36, + "probability": 0.8558 + }, + { + "start": 1548.74, + "end": 1551.16, + "probability": 0.8577 + }, + { + "start": 1551.38, + "end": 1552.62, + "probability": 0.3334 + }, + { + "start": 1553.16, + "end": 1556.56, + "probability": 0.4649 + }, + { + "start": 1556.66, + "end": 1558.24, + "probability": 0.5195 + }, + { + "start": 1558.36, + "end": 1561.34, + "probability": 0.9453 + }, + { + "start": 1562.24, + "end": 1563.66, + "probability": 0.8477 + }, + { + "start": 1564.54, + "end": 1566.44, + "probability": 0.9966 + }, + { + "start": 1567.42, + "end": 1568.96, + "probability": 0.809 + }, + { + "start": 1570.08, + "end": 1573.42, + "probability": 0.9565 + }, + { + "start": 1574.2, + "end": 1574.28, + "probability": 0.2149 + }, + { + "start": 1574.28, + "end": 1576.5, + "probability": 0.6465 + }, + { + "start": 1576.5, + "end": 1579.14, + "probability": 0.8387 + }, + { + "start": 1579.62, + "end": 1580.3, + "probability": 0.1553 + }, + { + "start": 1580.4, + "end": 1581.27, + "probability": 0.9172 + }, + { + "start": 1581.46, + "end": 1584.12, + "probability": 0.7364 + }, + { + "start": 1584.12, + "end": 1587.9, + "probability": 0.9872 + }, + { + "start": 1588.56, + "end": 1589.48, + "probability": 0.9567 + }, + { + "start": 1589.6, + "end": 1590.2, + "probability": 0.8956 + }, + { + "start": 1590.94, + "end": 1593.64, + "probability": 0.9977 + }, + { + "start": 1593.92, + "end": 1594.48, + "probability": 0.8073 + }, + { + "start": 1594.52, + "end": 1595.64, + "probability": 0.7028 + }, + { + "start": 1595.72, + "end": 1598.12, + "probability": 0.8945 + }, + { + "start": 1598.62, + "end": 1600.2, + "probability": 0.7364 + }, + { + "start": 1600.84, + "end": 1604.18, + "probability": 0.6001 + }, + { + "start": 1604.7, + "end": 1606.44, + "probability": 0.9154 + }, + { + "start": 1606.56, + "end": 1607.22, + "probability": 0.6961 + }, + { + "start": 1607.56, + "end": 1608.2, + "probability": 0.7994 + }, + { + "start": 1609.12, + "end": 1613.88, + "probability": 0.8938 + }, + { + "start": 1614.62, + "end": 1615.32, + "probability": 0.9365 + }, + { + "start": 1615.72, + "end": 1616.96, + "probability": 0.9104 + }, + { + "start": 1617.08, + "end": 1617.36, + "probability": 0.8762 + }, + { + "start": 1617.92, + "end": 1619.08, + "probability": 0.8555 + }, + { + "start": 1619.18, + "end": 1620.84, + "probability": 0.8169 + }, + { + "start": 1620.9, + "end": 1623.02, + "probability": 0.8 + }, + { + "start": 1623.67, + "end": 1624.26, + "probability": 0.0655 + }, + { + "start": 1624.98, + "end": 1628.04, + "probability": 0.9359 + }, + { + "start": 1628.4, + "end": 1628.9, + "probability": 0.7489 + }, + { + "start": 1628.94, + "end": 1630.04, + "probability": 0.7237 + }, + { + "start": 1630.5, + "end": 1631.3, + "probability": 0.8227 + }, + { + "start": 1632.24, + "end": 1634.36, + "probability": 0.9677 + }, + { + "start": 1635.36, + "end": 1635.66, + "probability": 0.7056 + }, + { + "start": 1636.02, + "end": 1638.92, + "probability": 0.9708 + }, + { + "start": 1639.82, + "end": 1640.68, + "probability": 0.6766 + }, + { + "start": 1641.38, + "end": 1643.72, + "probability": 0.8833 + }, + { + "start": 1644.76, + "end": 1647.7, + "probability": 0.8813 + }, + { + "start": 1648.28, + "end": 1651.22, + "probability": 0.9961 + }, + { + "start": 1651.4, + "end": 1652.0, + "probability": 0.9457 + }, + { + "start": 1652.56, + "end": 1653.44, + "probability": 0.8391 + }, + { + "start": 1653.98, + "end": 1657.0, + "probability": 0.9502 + }, + { + "start": 1657.56, + "end": 1658.16, + "probability": 0.5401 + }, + { + "start": 1658.84, + "end": 1663.4, + "probability": 0.8076 + }, + { + "start": 1663.52, + "end": 1666.46, + "probability": 0.7929 + }, + { + "start": 1666.5, + "end": 1668.03, + "probability": 0.9346 + }, + { + "start": 1668.2, + "end": 1671.4, + "probability": 0.8972 + }, + { + "start": 1671.5, + "end": 1673.84, + "probability": 0.4546 + }, + { + "start": 1674.94, + "end": 1675.44, + "probability": 0.0143 + }, + { + "start": 1675.44, + "end": 1681.0, + "probability": 0.8734 + }, + { + "start": 1681.44, + "end": 1683.4, + "probability": 0.9221 + }, + { + "start": 1685.8, + "end": 1689.18, + "probability": 0.9953 + }, + { + "start": 1690.1, + "end": 1692.36, + "probability": 0.9838 + }, + { + "start": 1693.26, + "end": 1696.66, + "probability": 0.841 + }, + { + "start": 1697.7, + "end": 1703.38, + "probability": 0.7567 + }, + { + "start": 1704.28, + "end": 1706.86, + "probability": 0.9565 + }, + { + "start": 1708.22, + "end": 1710.59, + "probability": 0.7394 + }, + { + "start": 1711.1, + "end": 1711.48, + "probability": 0.3792 + }, + { + "start": 1711.68, + "end": 1712.38, + "probability": 0.8306 + }, + { + "start": 1712.48, + "end": 1714.27, + "probability": 0.7283 + }, + { + "start": 1714.6, + "end": 1721.86, + "probability": 0.9873 + }, + { + "start": 1722.94, + "end": 1723.54, + "probability": 0.9133 + }, + { + "start": 1723.7, + "end": 1725.66, + "probability": 0.8257 + }, + { + "start": 1726.2, + "end": 1727.16, + "probability": 0.9822 + }, + { + "start": 1727.3, + "end": 1728.44, + "probability": 0.6313 + }, + { + "start": 1728.52, + "end": 1729.22, + "probability": 0.9675 + }, + { + "start": 1730.42, + "end": 1733.54, + "probability": 0.9778 + }, + { + "start": 1733.72, + "end": 1734.62, + "probability": 0.8784 + }, + { + "start": 1735.02, + "end": 1736.58, + "probability": 0.8387 + }, + { + "start": 1736.66, + "end": 1738.58, + "probability": 0.9946 + }, + { + "start": 1738.72, + "end": 1741.86, + "probability": 0.9991 + }, + { + "start": 1742.78, + "end": 1743.56, + "probability": 0.5395 + }, + { + "start": 1743.88, + "end": 1745.92, + "probability": 0.8975 + }, + { + "start": 1746.08, + "end": 1747.64, + "probability": 0.6538 + }, + { + "start": 1748.28, + "end": 1750.58, + "probability": 0.9905 + }, + { + "start": 1750.7, + "end": 1753.52, + "probability": 0.6292 + }, + { + "start": 1753.64, + "end": 1755.21, + "probability": 0.5983 + }, + { + "start": 1756.22, + "end": 1759.34, + "probability": 0.8257 + }, + { + "start": 1759.4, + "end": 1761.84, + "probability": 0.989 + }, + { + "start": 1761.86, + "end": 1762.96, + "probability": 0.8089 + }, + { + "start": 1766.48, + "end": 1767.8, + "probability": 0.6457 + }, + { + "start": 1767.8, + "end": 1770.74, + "probability": 0.9428 + }, + { + "start": 1771.04, + "end": 1772.96, + "probability": 0.742 + }, + { + "start": 1773.84, + "end": 1776.36, + "probability": 0.9692 + }, + { + "start": 1776.91, + "end": 1780.03, + "probability": 0.8854 + }, + { + "start": 1780.66, + "end": 1782.04, + "probability": 0.7106 + }, + { + "start": 1783.22, + "end": 1785.44, + "probability": 0.9725 + }, + { + "start": 1785.72, + "end": 1786.72, + "probability": 0.9417 + }, + { + "start": 1787.06, + "end": 1789.04, + "probability": 0.7612 + }, + { + "start": 1789.26, + "end": 1792.02, + "probability": 0.9487 + }, + { + "start": 1792.64, + "end": 1798.02, + "probability": 0.9905 + }, + { + "start": 1798.36, + "end": 1800.18, + "probability": 0.9897 + }, + { + "start": 1801.14, + "end": 1801.9, + "probability": 0.3975 + }, + { + "start": 1802.56, + "end": 1804.94, + "probability": 0.4759 + }, + { + "start": 1806.32, + "end": 1808.68, + "probability": 0.9748 + }, + { + "start": 1810.0, + "end": 1810.5, + "probability": 0.7745 + }, + { + "start": 1810.62, + "end": 1811.62, + "probability": 0.9702 + }, + { + "start": 1811.98, + "end": 1813.64, + "probability": 0.0319 + }, + { + "start": 1813.64, + "end": 1818.88, + "probability": 0.5255 + }, + { + "start": 1819.22, + "end": 1820.04, + "probability": 0.808 + }, + { + "start": 1820.3, + "end": 1820.6, + "probability": 0.5139 + }, + { + "start": 1821.36, + "end": 1826.26, + "probability": 0.7122 + }, + { + "start": 1826.78, + "end": 1827.46, + "probability": 0.8006 + }, + { + "start": 1827.86, + "end": 1829.24, + "probability": 0.89 + }, + { + "start": 1829.96, + "end": 1832.54, + "probability": 0.8446 + }, + { + "start": 1833.51, + "end": 1837.38, + "probability": 0.9516 + }, + { + "start": 1837.84, + "end": 1838.12, + "probability": 0.9008 + }, + { + "start": 1840.06, + "end": 1842.22, + "probability": 0.9063 + }, + { + "start": 1842.48, + "end": 1843.1, + "probability": 0.8167 + }, + { + "start": 1843.16, + "end": 1843.7, + "probability": 0.6949 + }, + { + "start": 1843.78, + "end": 1844.82, + "probability": 0.8157 + }, + { + "start": 1845.28, + "end": 1846.08, + "probability": 0.7745 + }, + { + "start": 1846.2, + "end": 1847.16, + "probability": 0.6601 + }, + { + "start": 1847.32, + "end": 1847.39, + "probability": 0.5693 + }, + { + "start": 1848.34, + "end": 1853.98, + "probability": 0.8799 + }, + { + "start": 1854.77, + "end": 1861.18, + "probability": 0.9435 + }, + { + "start": 1861.96, + "end": 1863.2, + "probability": 0.1092 + }, + { + "start": 1864.48, + "end": 1867.1, + "probability": 0.8381 + }, + { + "start": 1867.66, + "end": 1868.28, + "probability": 0.8062 + }, + { + "start": 1869.2, + "end": 1875.64, + "probability": 0.7824 + }, + { + "start": 1877.2, + "end": 1879.48, + "probability": 0.8263 + }, + { + "start": 1879.96, + "end": 1881.86, + "probability": 0.9779 + }, + { + "start": 1882.0, + "end": 1884.92, + "probability": 0.9253 + }, + { + "start": 1885.46, + "end": 1887.04, + "probability": 0.7067 + }, + { + "start": 1888.26, + "end": 1889.4, + "probability": 0.599 + }, + { + "start": 1891.24, + "end": 1898.1, + "probability": 0.9375 + }, + { + "start": 1898.1, + "end": 1904.36, + "probability": 0.9117 + }, + { + "start": 1905.46, + "end": 1908.2, + "probability": 0.8842 + }, + { + "start": 1909.68, + "end": 1910.02, + "probability": 0.0819 + }, + { + "start": 1910.78, + "end": 1911.58, + "probability": 0.2215 + }, + { + "start": 1913.02, + "end": 1913.3, + "probability": 0.1748 + }, + { + "start": 1913.36, + "end": 1913.84, + "probability": 0.7438 + }, + { + "start": 1914.78, + "end": 1915.22, + "probability": 0.6094 + }, + { + "start": 1916.16, + "end": 1921.52, + "probability": 0.7473 + }, + { + "start": 1922.18, + "end": 1924.2, + "probability": 0.6793 + }, + { + "start": 1924.32, + "end": 1929.24, + "probability": 0.9266 + }, + { + "start": 1929.94, + "end": 1934.08, + "probability": 0.9719 + }, + { + "start": 1934.92, + "end": 1937.26, + "probability": 0.9445 + }, + { + "start": 1937.8, + "end": 1941.24, + "probability": 0.938 + }, + { + "start": 1942.32, + "end": 1947.44, + "probability": 0.7378 + }, + { + "start": 1947.9, + "end": 1949.12, + "probability": 0.7754 + }, + { + "start": 1949.92, + "end": 1951.32, + "probability": 0.9777 + }, + { + "start": 1952.38, + "end": 1953.98, + "probability": 0.9966 + }, + { + "start": 1954.6, + "end": 1956.72, + "probability": 0.9382 + }, + { + "start": 1960.04, + "end": 1961.06, + "probability": 0.1595 + }, + { + "start": 1961.38, + "end": 1962.28, + "probability": 0.0499 + }, + { + "start": 1962.28, + "end": 1963.24, + "probability": 0.6729 + }, + { + "start": 1963.46, + "end": 1965.68, + "probability": 0.9458 + }, + { + "start": 1970.12, + "end": 1973.08, + "probability": 0.7259 + }, + { + "start": 1973.22, + "end": 1976.66, + "probability": 0.9902 + }, + { + "start": 1977.14, + "end": 1978.76, + "probability": 0.9446 + }, + { + "start": 1979.56, + "end": 1981.62, + "probability": 0.8042 + }, + { + "start": 1982.32, + "end": 1987.74, + "probability": 0.9985 + }, + { + "start": 1988.38, + "end": 1989.9, + "probability": 0.6543 + }, + { + "start": 1990.48, + "end": 1994.0, + "probability": 0.8168 + }, + { + "start": 1994.62, + "end": 1998.52, + "probability": 0.9912 + }, + { + "start": 1998.52, + "end": 2002.0, + "probability": 0.998 + }, + { + "start": 2004.39, + "end": 2006.24, + "probability": 0.6506 + }, + { + "start": 2006.44, + "end": 2006.78, + "probability": 0.7749 + }, + { + "start": 2006.86, + "end": 2007.28, + "probability": 0.7307 + }, + { + "start": 2007.64, + "end": 2009.06, + "probability": 0.9724 + }, + { + "start": 2009.5, + "end": 2012.7, + "probability": 0.9342 + }, + { + "start": 2013.22, + "end": 2013.74, + "probability": 0.798 + }, + { + "start": 2014.36, + "end": 2014.86, + "probability": 0.3779 + }, + { + "start": 2014.86, + "end": 2015.52, + "probability": 0.7859 + }, + { + "start": 2018.18, + "end": 2021.32, + "probability": 0.8015 + }, + { + "start": 2022.32, + "end": 2024.06, + "probability": 0.9785 + }, + { + "start": 2025.7, + "end": 2028.5, + "probability": 0.9482 + }, + { + "start": 2029.64, + "end": 2031.6, + "probability": 0.7014 + }, + { + "start": 2032.72, + "end": 2035.38, + "probability": 0.7157 + }, + { + "start": 2035.98, + "end": 2038.32, + "probability": 0.8574 + }, + { + "start": 2039.44, + "end": 2044.24, + "probability": 0.8436 + }, + { + "start": 2044.78, + "end": 2046.7, + "probability": 0.9474 + }, + { + "start": 2047.22, + "end": 2048.26, + "probability": 0.8196 + }, + { + "start": 2049.52, + "end": 2050.54, + "probability": 0.9579 + }, + { + "start": 2050.9, + "end": 2051.6, + "probability": 0.4409 + }, + { + "start": 2052.0, + "end": 2054.34, + "probability": 0.9341 + }, + { + "start": 2054.56, + "end": 2058.08, + "probability": 0.9922 + }, + { + "start": 2058.22, + "end": 2059.08, + "probability": 0.6316 + }, + { + "start": 2059.54, + "end": 2062.54, + "probability": 0.9756 + }, + { + "start": 2063.16, + "end": 2069.28, + "probability": 0.9684 + }, + { + "start": 2069.64, + "end": 2069.8, + "probability": 0.6764 + }, + { + "start": 2069.9, + "end": 2070.5, + "probability": 0.5972 + }, + { + "start": 2070.56, + "end": 2074.96, + "probability": 0.7478 + }, + { + "start": 2076.06, + "end": 2078.08, + "probability": 0.9417 + }, + { + "start": 2078.92, + "end": 2080.52, + "probability": 0.9454 + }, + { + "start": 2081.0, + "end": 2082.32, + "probability": 0.7791 + }, + { + "start": 2082.52, + "end": 2085.96, + "probability": 0.7957 + }, + { + "start": 2087.3, + "end": 2090.1, + "probability": 0.8679 + }, + { + "start": 2090.94, + "end": 2095.32, + "probability": 0.9107 + }, + { + "start": 2095.92, + "end": 2095.94, + "probability": 0.2722 + }, + { + "start": 2095.94, + "end": 2097.1, + "probability": 0.9966 + }, + { + "start": 2097.62, + "end": 2101.4, + "probability": 0.8428 + }, + { + "start": 2102.62, + "end": 2103.86, + "probability": 0.9109 + }, + { + "start": 2105.28, + "end": 2107.88, + "probability": 0.9095 + }, + { + "start": 2107.88, + "end": 2111.6, + "probability": 0.6835 + }, + { + "start": 2112.42, + "end": 2116.2, + "probability": 0.9863 + }, + { + "start": 2120.58, + "end": 2122.36, + "probability": 0.6892 + }, + { + "start": 2122.5, + "end": 2126.92, + "probability": 0.9897 + }, + { + "start": 2128.12, + "end": 2129.32, + "probability": 0.9337 + }, + { + "start": 2129.48, + "end": 2130.5, + "probability": 0.7085 + }, + { + "start": 2130.5, + "end": 2132.24, + "probability": 0.9703 + }, + { + "start": 2133.28, + "end": 2134.74, + "probability": 0.755 + }, + { + "start": 2136.66, + "end": 2139.82, + "probability": 0.9214 + }, + { + "start": 2140.8, + "end": 2146.36, + "probability": 0.9797 + }, + { + "start": 2147.5, + "end": 2148.56, + "probability": 0.7979 + }, + { + "start": 2149.4, + "end": 2151.96, + "probability": 0.8936 + }, + { + "start": 2152.76, + "end": 2153.16, + "probability": 0.0864 + }, + { + "start": 2153.96, + "end": 2156.48, + "probability": 0.6065 + }, + { + "start": 2157.08, + "end": 2163.0, + "probability": 0.957 + }, + { + "start": 2163.72, + "end": 2167.88, + "probability": 0.9878 + }, + { + "start": 2168.74, + "end": 2168.98, + "probability": 0.8 + }, + { + "start": 2169.34, + "end": 2170.64, + "probability": 0.6681 + }, + { + "start": 2170.74, + "end": 2171.28, + "probability": 0.6072 + }, + { + "start": 2171.52, + "end": 2174.1, + "probability": 0.6746 + }, + { + "start": 2174.4, + "end": 2174.4, + "probability": 0.5746 + }, + { + "start": 2174.42, + "end": 2175.26, + "probability": 0.7267 + }, + { + "start": 2175.38, + "end": 2176.92, + "probability": 0.9206 + }, + { + "start": 2177.14, + "end": 2178.62, + "probability": 0.9463 + }, + { + "start": 2179.92, + "end": 2184.36, + "probability": 0.9656 + }, + { + "start": 2184.92, + "end": 2187.0, + "probability": 0.7798 + }, + { + "start": 2188.1, + "end": 2190.02, + "probability": 0.7477 + }, + { + "start": 2190.12, + "end": 2192.16, + "probability": 0.9916 + }, + { + "start": 2192.34, + "end": 2194.42, + "probability": 0.6221 + }, + { + "start": 2194.5, + "end": 2195.3, + "probability": 0.6985 + }, + { + "start": 2195.3, + "end": 2200.54, + "probability": 0.9812 + }, + { + "start": 2200.72, + "end": 2206.8, + "probability": 0.9613 + }, + { + "start": 2208.02, + "end": 2210.64, + "probability": 0.8774 + }, + { + "start": 2211.0, + "end": 2212.32, + "probability": 0.7581 + }, + { + "start": 2212.46, + "end": 2213.82, + "probability": 0.7603 + }, + { + "start": 2213.88, + "end": 2217.46, + "probability": 0.9893 + }, + { + "start": 2217.46, + "end": 2219.88, + "probability": 0.8604 + }, + { + "start": 2219.96, + "end": 2221.02, + "probability": 0.8999 + }, + { + "start": 2221.14, + "end": 2223.32, + "probability": 0.9842 + }, + { + "start": 2223.36, + "end": 2226.02, + "probability": 0.9978 + }, + { + "start": 2227.0, + "end": 2227.04, + "probability": 0.5366 + }, + { + "start": 2227.66, + "end": 2233.2, + "probability": 0.8151 + }, + { + "start": 2234.58, + "end": 2235.24, + "probability": 0.8381 + }, + { + "start": 2235.84, + "end": 2241.48, + "probability": 0.9924 + }, + { + "start": 2241.86, + "end": 2243.44, + "probability": 0.6811 + }, + { + "start": 2244.3, + "end": 2244.94, + "probability": 0.957 + }, + { + "start": 2245.0, + "end": 2250.36, + "probability": 0.9166 + }, + { + "start": 2251.54, + "end": 2254.1, + "probability": 0.9845 + }, + { + "start": 2254.1, + "end": 2256.9, + "probability": 0.9983 + }, + { + "start": 2257.16, + "end": 2263.32, + "probability": 0.9788 + }, + { + "start": 2263.42, + "end": 2265.68, + "probability": 0.9861 + }, + { + "start": 2265.7, + "end": 2268.86, + "probability": 0.9945 + }, + { + "start": 2269.02, + "end": 2270.5, + "probability": 0.9215 + }, + { + "start": 2271.12, + "end": 2273.2, + "probability": 0.9838 + }, + { + "start": 2275.04, + "end": 2276.74, + "probability": 0.6768 + }, + { + "start": 2276.94, + "end": 2277.72, + "probability": 0.5654 + }, + { + "start": 2277.78, + "end": 2278.28, + "probability": 0.7677 + }, + { + "start": 2279.12, + "end": 2281.56, + "probability": 0.8153 + }, + { + "start": 2282.4, + "end": 2283.2, + "probability": 0.8302 + }, + { + "start": 2284.24, + "end": 2288.92, + "probability": 0.7585 + }, + { + "start": 2289.6, + "end": 2293.46, + "probability": 0.979 + }, + { + "start": 2294.22, + "end": 2295.52, + "probability": 0.9393 + }, + { + "start": 2296.16, + "end": 2296.94, + "probability": 0.8213 + }, + { + "start": 2298.16, + "end": 2300.5, + "probability": 0.7654 + }, + { + "start": 2301.46, + "end": 2302.86, + "probability": 0.8534 + }, + { + "start": 2304.04, + "end": 2308.98, + "probability": 0.8249 + }, + { + "start": 2311.12, + "end": 2312.54, + "probability": 0.7589 + }, + { + "start": 2313.4, + "end": 2316.24, + "probability": 0.6633 + }, + { + "start": 2316.68, + "end": 2319.74, + "probability": 0.4929 + }, + { + "start": 2319.92, + "end": 2320.16, + "probability": 0.694 + }, + { + "start": 2324.34, + "end": 2325.52, + "probability": 0.7669 + }, + { + "start": 2326.48, + "end": 2327.2, + "probability": 0.7967 + }, + { + "start": 2328.8, + "end": 2340.78, + "probability": 0.9979 + }, + { + "start": 2341.36, + "end": 2346.42, + "probability": 0.9878 + }, + { + "start": 2347.28, + "end": 2349.94, + "probability": 0.982 + }, + { + "start": 2350.52, + "end": 2353.24, + "probability": 0.7317 + }, + { + "start": 2354.82, + "end": 2358.52, + "probability": 0.9849 + }, + { + "start": 2359.44, + "end": 2361.0, + "probability": 0.986 + }, + { + "start": 2361.8, + "end": 2366.14, + "probability": 0.9297 + }, + { + "start": 2367.98, + "end": 2370.5, + "probability": 0.9969 + }, + { + "start": 2371.04, + "end": 2375.0, + "probability": 0.9912 + }, + { + "start": 2375.14, + "end": 2377.93, + "probability": 0.8677 + }, + { + "start": 2378.83, + "end": 2383.68, + "probability": 0.7045 + }, + { + "start": 2384.04, + "end": 2386.4, + "probability": 0.7729 + }, + { + "start": 2386.5, + "end": 2391.84, + "probability": 0.9633 + }, + { + "start": 2392.76, + "end": 2399.08, + "probability": 0.9604 + }, + { + "start": 2399.44, + "end": 2400.48, + "probability": 0.689 + }, + { + "start": 2400.52, + "end": 2401.64, + "probability": 0.7164 + }, + { + "start": 2402.52, + "end": 2403.94, + "probability": 0.9276 + }, + { + "start": 2405.28, + "end": 2408.83, + "probability": 0.9333 + }, + { + "start": 2410.48, + "end": 2412.14, + "probability": 0.3667 + }, + { + "start": 2412.88, + "end": 2416.54, + "probability": 0.9844 + }, + { + "start": 2418.08, + "end": 2419.85, + "probability": 0.5597 + }, + { + "start": 2420.1, + "end": 2421.68, + "probability": 0.787 + }, + { + "start": 2421.88, + "end": 2431.1, + "probability": 0.7902 + }, + { + "start": 2431.58, + "end": 2434.06, + "probability": 0.999 + }, + { + "start": 2434.8, + "end": 2439.9, + "probability": 0.8865 + }, + { + "start": 2440.02, + "end": 2442.22, + "probability": 0.777 + }, + { + "start": 2443.2, + "end": 2445.64, + "probability": 0.9491 + }, + { + "start": 2445.94, + "end": 2449.44, + "probability": 0.7596 + }, + { + "start": 2449.5, + "end": 2453.78, + "probability": 0.9805 + }, + { + "start": 2454.52, + "end": 2459.14, + "probability": 0.9935 + }, + { + "start": 2459.6, + "end": 2464.94, + "probability": 0.9868 + }, + { + "start": 2466.06, + "end": 2468.3, + "probability": 0.9699 + }, + { + "start": 2468.4, + "end": 2469.74, + "probability": 0.9777 + }, + { + "start": 2472.74, + "end": 2474.0, + "probability": 0.8029 + }, + { + "start": 2474.06, + "end": 2477.63, + "probability": 0.8436 + }, + { + "start": 2477.76, + "end": 2484.46, + "probability": 0.9949 + }, + { + "start": 2484.56, + "end": 2485.46, + "probability": 0.783 + }, + { + "start": 2486.12, + "end": 2487.2, + "probability": 0.8506 + }, + { + "start": 2487.3, + "end": 2490.22, + "probability": 0.9561 + }, + { + "start": 2490.4, + "end": 2492.22, + "probability": 0.8967 + }, + { + "start": 2492.7, + "end": 2493.58, + "probability": 0.5237 + }, + { + "start": 2493.82, + "end": 2495.76, + "probability": 0.9043 + }, + { + "start": 2495.82, + "end": 2496.06, + "probability": 0.7974 + }, + { + "start": 2497.22, + "end": 2497.78, + "probability": 0.4048 + }, + { + "start": 2498.96, + "end": 2500.18, + "probability": 0.8388 + }, + { + "start": 2500.26, + "end": 2501.02, + "probability": 0.6319 + }, + { + "start": 2501.8, + "end": 2503.46, + "probability": 0.9917 + }, + { + "start": 2503.92, + "end": 2505.07, + "probability": 0.9904 + }, + { + "start": 2505.28, + "end": 2507.78, + "probability": 0.9297 + }, + { + "start": 2509.16, + "end": 2513.2, + "probability": 0.915 + }, + { + "start": 2514.36, + "end": 2514.36, + "probability": 0.2443 + }, + { + "start": 2514.36, + "end": 2514.6, + "probability": 0.071 + }, + { + "start": 2514.72, + "end": 2516.88, + "probability": 0.5987 + }, + { + "start": 2517.14, + "end": 2519.36, + "probability": 0.8247 + }, + { + "start": 2520.16, + "end": 2522.16, + "probability": 0.9895 + }, + { + "start": 2522.76, + "end": 2524.68, + "probability": 0.9964 + }, + { + "start": 2525.56, + "end": 2527.4, + "probability": 0.9227 + }, + { + "start": 2527.58, + "end": 2528.64, + "probability": 0.8608 + }, + { + "start": 2528.7, + "end": 2529.2, + "probability": 0.713 + }, + { + "start": 2529.44, + "end": 2532.76, + "probability": 0.9727 + }, + { + "start": 2533.44, + "end": 2537.6, + "probability": 0.9971 + }, + { + "start": 2537.7, + "end": 2541.1, + "probability": 0.9988 + }, + { + "start": 2541.26, + "end": 2542.78, + "probability": 0.8335 + }, + { + "start": 2543.6, + "end": 2545.24, + "probability": 0.7482 + }, + { + "start": 2546.46, + "end": 2550.28, + "probability": 0.8574 + }, + { + "start": 2550.36, + "end": 2552.68, + "probability": 0.9913 + }, + { + "start": 2552.68, + "end": 2555.58, + "probability": 0.9951 + }, + { + "start": 2555.66, + "end": 2556.98, + "probability": 0.998 + }, + { + "start": 2558.7, + "end": 2560.14, + "probability": 0.8174 + }, + { + "start": 2560.26, + "end": 2561.3, + "probability": 0.7582 + }, + { + "start": 2561.5, + "end": 2564.18, + "probability": 0.9887 + }, + { + "start": 2565.52, + "end": 2570.12, + "probability": 0.9991 + }, + { + "start": 2570.26, + "end": 2571.24, + "probability": 0.9194 + }, + { + "start": 2571.46, + "end": 2574.26, + "probability": 0.9977 + }, + { + "start": 2575.56, + "end": 2579.54, + "probability": 0.9916 + }, + { + "start": 2579.66, + "end": 2581.14, + "probability": 0.761 + }, + { + "start": 2581.22, + "end": 2582.52, + "probability": 0.6853 + }, + { + "start": 2582.56, + "end": 2583.14, + "probability": 0.7932 + }, + { + "start": 2583.82, + "end": 2583.84, + "probability": 0.877 + }, + { + "start": 2586.68, + "end": 2592.04, + "probability": 0.9984 + }, + { + "start": 2592.16, + "end": 2594.36, + "probability": 0.9958 + }, + { + "start": 2596.26, + "end": 2597.0, + "probability": 0.3966 + }, + { + "start": 2597.62, + "end": 2601.86, + "probability": 0.8066 + }, + { + "start": 2602.0, + "end": 2602.5, + "probability": 0.6647 + }, + { + "start": 2602.6, + "end": 2608.22, + "probability": 0.9917 + }, + { + "start": 2608.22, + "end": 2612.28, + "probability": 0.9929 + }, + { + "start": 2612.82, + "end": 2614.66, + "probability": 0.9932 + }, + { + "start": 2615.68, + "end": 2618.18, + "probability": 0.8753 + }, + { + "start": 2618.24, + "end": 2619.5, + "probability": 0.9759 + }, + { + "start": 2619.92, + "end": 2623.84, + "probability": 0.9954 + }, + { + "start": 2623.84, + "end": 2627.42, + "probability": 0.9965 + }, + { + "start": 2628.22, + "end": 2631.32, + "probability": 0.9823 + }, + { + "start": 2631.5, + "end": 2634.08, + "probability": 0.9859 + }, + { + "start": 2634.13, + "end": 2637.72, + "probability": 0.9771 + }, + { + "start": 2638.1, + "end": 2638.32, + "probability": 0.7974 + }, + { + "start": 2638.82, + "end": 2641.66, + "probability": 0.8541 + }, + { + "start": 2642.86, + "end": 2644.36, + "probability": 0.5349 + }, + { + "start": 2645.08, + "end": 2648.84, + "probability": 0.7499 + }, + { + "start": 2649.6, + "end": 2653.9, + "probability": 0.9514 + }, + { + "start": 2654.82, + "end": 2657.28, + "probability": 0.9507 + }, + { + "start": 2657.4, + "end": 2659.96, + "probability": 0.9343 + }, + { + "start": 2661.44, + "end": 2662.58, + "probability": 0.9333 + }, + { + "start": 2663.72, + "end": 2669.62, + "probability": 0.9972 + }, + { + "start": 2670.2, + "end": 2673.36, + "probability": 0.998 + }, + { + "start": 2674.28, + "end": 2676.42, + "probability": 0.9472 + }, + { + "start": 2676.92, + "end": 2678.34, + "probability": 0.9364 + }, + { + "start": 2679.32, + "end": 2683.7, + "probability": 0.9664 + }, + { + "start": 2683.84, + "end": 2684.22, + "probability": 0.5079 + }, + { + "start": 2684.38, + "end": 2688.92, + "probability": 0.9731 + }, + { + "start": 2691.28, + "end": 2696.0, + "probability": 0.864 + }, + { + "start": 2697.16, + "end": 2700.78, + "probability": 0.9907 + }, + { + "start": 2700.78, + "end": 2705.38, + "probability": 0.9858 + }, + { + "start": 2705.78, + "end": 2706.5, + "probability": 0.7944 + }, + { + "start": 2707.52, + "end": 2711.22, + "probability": 0.9144 + }, + { + "start": 2711.36, + "end": 2712.35, + "probability": 0.9647 + }, + { + "start": 2712.64, + "end": 2714.54, + "probability": 0.9964 + }, + { + "start": 2718.36, + "end": 2720.52, + "probability": 0.9963 + }, + { + "start": 2720.9, + "end": 2722.42, + "probability": 0.9883 + }, + { + "start": 2722.56, + "end": 2723.6, + "probability": 0.9142 + }, + { + "start": 2723.96, + "end": 2725.82, + "probability": 0.9915 + }, + { + "start": 2726.4, + "end": 2728.84, + "probability": 0.8889 + }, + { + "start": 2729.76, + "end": 2730.55, + "probability": 0.6986 + }, + { + "start": 2730.94, + "end": 2733.72, + "probability": 0.8869 + }, + { + "start": 2733.74, + "end": 2736.71, + "probability": 0.995 + }, + { + "start": 2739.02, + "end": 2743.1, + "probability": 0.7569 + }, + { + "start": 2743.2, + "end": 2745.3, + "probability": 0.9958 + }, + { + "start": 2745.38, + "end": 2746.24, + "probability": 0.8323 + }, + { + "start": 2747.34, + "end": 2749.26, + "probability": 0.8741 + }, + { + "start": 2750.76, + "end": 2751.98, + "probability": 0.7014 + }, + { + "start": 2752.12, + "end": 2755.43, + "probability": 0.7366 + }, + { + "start": 2756.14, + "end": 2756.8, + "probability": 0.479 + }, + { + "start": 2757.8, + "end": 2758.64, + "probability": 0.9059 + }, + { + "start": 2759.4, + "end": 2761.2, + "probability": 0.9842 + }, + { + "start": 2761.98, + "end": 2766.78, + "probability": 0.938 + }, + { + "start": 2767.28, + "end": 2769.72, + "probability": 0.9813 + }, + { + "start": 2770.7, + "end": 2772.14, + "probability": 0.9486 + }, + { + "start": 2772.98, + "end": 2773.9, + "probability": 0.9403 + }, + { + "start": 2773.96, + "end": 2777.5, + "probability": 0.9656 + }, + { + "start": 2778.3, + "end": 2780.74, + "probability": 0.5463 + }, + { + "start": 2781.64, + "end": 2784.08, + "probability": 0.9863 + }, + { + "start": 2784.98, + "end": 2785.66, + "probability": 0.8525 + }, + { + "start": 2786.34, + "end": 2788.94, + "probability": 0.9929 + }, + { + "start": 2789.38, + "end": 2791.04, + "probability": 0.9814 + }, + { + "start": 2802.84, + "end": 2804.06, + "probability": 0.57 + }, + { + "start": 2804.12, + "end": 2804.6, + "probability": 0.0379 + }, + { + "start": 2804.84, + "end": 2805.4, + "probability": 0.0739 + }, + { + "start": 2806.99, + "end": 2807.48, + "probability": 0.1842 + }, + { + "start": 2807.48, + "end": 2808.95, + "probability": 0.5688 + }, + { + "start": 2809.78, + "end": 2810.12, + "probability": 0.0464 + }, + { + "start": 2810.12, + "end": 2812.88, + "probability": 0.2047 + }, + { + "start": 2813.16, + "end": 2818.46, + "probability": 0.092 + }, + { + "start": 2823.31, + "end": 2826.44, + "probability": 0.0901 + }, + { + "start": 2826.8, + "end": 2829.77, + "probability": 0.0501 + }, + { + "start": 2830.32, + "end": 2830.74, + "probability": 0.1059 + }, + { + "start": 2832.5, + "end": 2835.26, + "probability": 0.0705 + }, + { + "start": 2835.26, + "end": 2838.58, + "probability": 0.0584 + }, + { + "start": 2839.48, + "end": 2839.88, + "probability": 0.1543 + }, + { + "start": 2840.54, + "end": 2843.86, + "probability": 0.0337 + }, + { + "start": 2843.86, + "end": 2843.86, + "probability": 0.0285 + }, + { + "start": 2845.5, + "end": 2848.88, + "probability": 0.0526 + }, + { + "start": 2849.0, + "end": 2850.5, + "probability": 0.0169 + }, + { + "start": 2851.08, + "end": 2855.74, + "probability": 0.0256 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2885.0, + "end": 2885.0, + "probability": 0.0 + }, + { + "start": 2886.8, + "end": 2887.5, + "probability": 0.1413 + }, + { + "start": 2888.64, + "end": 2890.6, + "probability": 0.2301 + }, + { + "start": 2891.56, + "end": 2893.18, + "probability": 0.1863 + }, + { + "start": 2893.26, + "end": 2898.32, + "probability": 0.4588 + }, + { + "start": 2898.68, + "end": 2899.98, + "probability": 0.7555 + }, + { + "start": 2900.54, + "end": 2906.58, + "probability": 0.5634 + }, + { + "start": 2908.4, + "end": 2909.44, + "probability": 0.9116 + }, + { + "start": 2910.18, + "end": 2911.74, + "probability": 0.9984 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.0, + "end": 3009.0, + "probability": 0.0 + }, + { + "start": 3009.12, + "end": 3009.36, + "probability": 0.2821 + }, + { + "start": 3009.36, + "end": 3009.36, + "probability": 0.0822 + }, + { + "start": 3009.36, + "end": 3009.36, + "probability": 0.0923 + }, + { + "start": 3009.36, + "end": 3011.68, + "probability": 0.3074 + }, + { + "start": 3012.8, + "end": 3015.42, + "probability": 0.8633 + }, + { + "start": 3017.32, + "end": 3019.1, + "probability": 0.8372 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.0, + "end": 3145.0, + "probability": 0.0 + }, + { + "start": 3145.38, + "end": 3145.56, + "probability": 0.1762 + }, + { + "start": 3145.56, + "end": 3145.56, + "probability": 0.0454 + }, + { + "start": 3145.56, + "end": 3145.56, + "probability": 0.0397 + }, + { + "start": 3145.56, + "end": 3146.26, + "probability": 0.6599 + }, + { + "start": 3147.2, + "end": 3148.2, + "probability": 0.806 + }, + { + "start": 3148.2, + "end": 3149.33, + "probability": 0.5121 + }, + { + "start": 3149.46, + "end": 3150.44, + "probability": 0.8961 + }, + { + "start": 3151.46, + "end": 3154.18, + "probability": 0.6815 + }, + { + "start": 3154.92, + "end": 3156.34, + "probability": 0.8301 + }, + { + "start": 3157.16, + "end": 3160.92, + "probability": 0.8882 + }, + { + "start": 3162.74, + "end": 3168.3, + "probability": 0.9622 + }, + { + "start": 3168.64, + "end": 3169.72, + "probability": 0.8426 + }, + { + "start": 3171.4, + "end": 3172.26, + "probability": 0.8373 + }, + { + "start": 3172.48, + "end": 3173.62, + "probability": 0.9756 + }, + { + "start": 3174.12, + "end": 3175.38, + "probability": 0.9858 + }, + { + "start": 3175.4, + "end": 3179.54, + "probability": 0.9272 + }, + { + "start": 3179.54, + "end": 3184.3, + "probability": 0.993 + }, + { + "start": 3184.78, + "end": 3185.76, + "probability": 0.5804 + }, + { + "start": 3185.92, + "end": 3189.34, + "probability": 0.9304 + }, + { + "start": 3190.28, + "end": 3191.7, + "probability": 0.9331 + }, + { + "start": 3192.08, + "end": 3194.0, + "probability": 0.9951 + }, + { + "start": 3194.46, + "end": 3194.84, + "probability": 0.7522 + }, + { + "start": 3195.1, + "end": 3197.42, + "probability": 0.9299 + }, + { + "start": 3197.62, + "end": 3202.64, + "probability": 0.9633 + }, + { + "start": 3202.74, + "end": 3203.1, + "probability": 0.6111 + }, + { + "start": 3221.12, + "end": 3221.3, + "probability": 0.3637 + }, + { + "start": 3222.2, + "end": 3223.02, + "probability": 0.565 + }, + { + "start": 3223.08, + "end": 3224.16, + "probability": 0.8258 + }, + { + "start": 3224.28, + "end": 3224.56, + "probability": 0.7184 + }, + { + "start": 3224.62, + "end": 3227.3, + "probability": 0.9315 + }, + { + "start": 3227.48, + "end": 3228.44, + "probability": 0.6843 + }, + { + "start": 3229.32, + "end": 3231.36, + "probability": 0.9902 + }, + { + "start": 3231.5, + "end": 3232.88, + "probability": 0.9832 + }, + { + "start": 3235.74, + "end": 3237.82, + "probability": 0.998 + }, + { + "start": 3237.84, + "end": 3238.25, + "probability": 0.8926 + }, + { + "start": 3239.18, + "end": 3244.58, + "probability": 0.874 + }, + { + "start": 3245.7, + "end": 3247.1, + "probability": 0.9656 + }, + { + "start": 3249.46, + "end": 3249.98, + "probability": 0.9559 + }, + { + "start": 3250.12, + "end": 3252.14, + "probability": 0.9648 + }, + { + "start": 3252.6, + "end": 3253.99, + "probability": 0.9895 + }, + { + "start": 3257.96, + "end": 3261.66, + "probability": 0.4951 + }, + { + "start": 3261.86, + "end": 3264.4, + "probability": 0.9388 + }, + { + "start": 3264.4, + "end": 3269.98, + "probability": 0.8403 + }, + { + "start": 3270.32, + "end": 3272.6, + "probability": 0.959 + }, + { + "start": 3273.16, + "end": 3274.9, + "probability": 0.8297 + }, + { + "start": 3275.06, + "end": 3276.92, + "probability": 0.8868 + }, + { + "start": 3277.08, + "end": 3277.88, + "probability": 0.9474 + }, + { + "start": 3277.94, + "end": 3282.24, + "probability": 0.7755 + }, + { + "start": 3283.5, + "end": 3289.56, + "probability": 0.9409 + }, + { + "start": 3290.62, + "end": 3292.82, + "probability": 0.8843 + }, + { + "start": 3294.2, + "end": 3296.22, + "probability": 0.9386 + }, + { + "start": 3296.28, + "end": 3298.0, + "probability": 0.9592 + }, + { + "start": 3298.48, + "end": 3299.98, + "probability": 0.981 + }, + { + "start": 3301.12, + "end": 3301.68, + "probability": 0.7023 + }, + { + "start": 3304.02, + "end": 3305.16, + "probability": 0.9966 + }, + { + "start": 3305.32, + "end": 3305.94, + "probability": 0.937 + }, + { + "start": 3306.02, + "end": 3306.1, + "probability": 0.5439 + }, + { + "start": 3306.1, + "end": 3307.42, + "probability": 0.6001 + }, + { + "start": 3308.16, + "end": 3308.62, + "probability": 0.5697 + }, + { + "start": 3308.98, + "end": 3309.7, + "probability": 0.9211 + }, + { + "start": 3310.4, + "end": 3312.88, + "probability": 0.8971 + }, + { + "start": 3314.52, + "end": 3318.1, + "probability": 0.979 + }, + { + "start": 3318.1, + "end": 3321.92, + "probability": 0.9865 + }, + { + "start": 3322.42, + "end": 3325.4, + "probability": 0.9634 + }, + { + "start": 3326.24, + "end": 3329.08, + "probability": 0.6393 + }, + { + "start": 3329.94, + "end": 3333.86, + "probability": 0.9956 + }, + { + "start": 3333.86, + "end": 3336.44, + "probability": 0.9988 + }, + { + "start": 3341.32, + "end": 3342.14, + "probability": 0.5878 + }, + { + "start": 3342.72, + "end": 3343.58, + "probability": 0.7339 + }, + { + "start": 3345.72, + "end": 3348.44, + "probability": 0.7308 + }, + { + "start": 3348.64, + "end": 3349.68, + "probability": 0.873 + }, + { + "start": 3349.9, + "end": 3354.68, + "probability": 0.9333 + }, + { + "start": 3354.78, + "end": 3356.65, + "probability": 0.3252 + }, + { + "start": 3357.42, + "end": 3358.9, + "probability": 0.4499 + }, + { + "start": 3360.26, + "end": 3361.6, + "probability": 0.5323 + }, + { + "start": 3364.38, + "end": 3370.22, + "probability": 0.9896 + }, + { + "start": 3370.22, + "end": 3376.44, + "probability": 0.9882 + }, + { + "start": 3377.8, + "end": 3379.39, + "probability": 0.9673 + }, + { + "start": 3379.94, + "end": 3384.14, + "probability": 0.971 + }, + { + "start": 3384.82, + "end": 3389.4, + "probability": 0.9009 + }, + { + "start": 3389.74, + "end": 3394.42, + "probability": 0.9401 + }, + { + "start": 3394.96, + "end": 3397.5, + "probability": 0.8073 + }, + { + "start": 3399.02, + "end": 3406.44, + "probability": 0.7509 + }, + { + "start": 3406.44, + "end": 3410.72, + "probability": 0.9842 + }, + { + "start": 3412.4, + "end": 3414.62, + "probability": 0.8497 + }, + { + "start": 3414.86, + "end": 3418.24, + "probability": 0.5647 + }, + { + "start": 3420.14, + "end": 3423.16, + "probability": 0.9905 + }, + { + "start": 3424.66, + "end": 3424.7, + "probability": 0.3424 + }, + { + "start": 3424.88, + "end": 3427.56, + "probability": 0.9006 + }, + { + "start": 3427.64, + "end": 3429.76, + "probability": 0.7366 + }, + { + "start": 3431.05, + "end": 3435.18, + "probability": 0.9313 + }, + { + "start": 3435.76, + "end": 3438.28, + "probability": 0.9566 + }, + { + "start": 3439.86, + "end": 3443.16, + "probability": 0.7382 + }, + { + "start": 3443.94, + "end": 3448.42, + "probability": 0.9918 + }, + { + "start": 3450.02, + "end": 3453.12, + "probability": 0.6883 + }, + { + "start": 3454.36, + "end": 3459.38, + "probability": 0.6352 + }, + { + "start": 3459.9, + "end": 3460.7, + "probability": 0.4282 + }, + { + "start": 3460.8, + "end": 3462.3, + "probability": 0.4657 + }, + { + "start": 3462.34, + "end": 3463.22, + "probability": 0.78 + }, + { + "start": 3463.28, + "end": 3466.46, + "probability": 0.9879 + }, + { + "start": 3467.36, + "end": 3470.62, + "probability": 0.6948 + }, + { + "start": 3471.18, + "end": 3472.92, + "probability": 0.7699 + }, + { + "start": 3474.52, + "end": 3479.1, + "probability": 0.9956 + }, + { + "start": 3481.44, + "end": 3483.02, + "probability": 0.5987 + }, + { + "start": 3484.88, + "end": 3486.94, + "probability": 0.6972 + }, + { + "start": 3488.38, + "end": 3489.56, + "probability": 0.7511 + }, + { + "start": 3490.32, + "end": 3492.98, + "probability": 0.9764 + }, + { + "start": 3493.8, + "end": 3495.44, + "probability": 0.9951 + }, + { + "start": 3496.6, + "end": 3499.24, + "probability": 0.9988 + }, + { + "start": 3501.22, + "end": 3502.98, + "probability": 0.9955 + }, + { + "start": 3504.32, + "end": 3504.32, + "probability": 0.8877 + }, + { + "start": 3506.2, + "end": 3506.8, + "probability": 0.3015 + }, + { + "start": 3506.8, + "end": 3506.8, + "probability": 0.1973 + }, + { + "start": 3506.8, + "end": 3507.53, + "probability": 0.6758 + }, + { + "start": 3507.64, + "end": 3509.18, + "probability": 0.998 + }, + { + "start": 3510.36, + "end": 3513.08, + "probability": 0.9972 + }, + { + "start": 3513.82, + "end": 3515.76, + "probability": 0.9516 + }, + { + "start": 3516.04, + "end": 3518.64, + "probability": 0.9885 + }, + { + "start": 3519.32, + "end": 3520.79, + "probability": 0.8043 + }, + { + "start": 3521.52, + "end": 3527.58, + "probability": 0.851 + }, + { + "start": 3527.94, + "end": 3531.32, + "probability": 0.9772 + }, + { + "start": 3531.42, + "end": 3532.34, + "probability": 0.3864 + }, + { + "start": 3532.56, + "end": 3533.38, + "probability": 0.118 + }, + { + "start": 3533.5, + "end": 3534.74, + "probability": 0.5327 + }, + { + "start": 3534.94, + "end": 3536.44, + "probability": 0.7659 + }, + { + "start": 3536.46, + "end": 3537.1, + "probability": 0.8428 + }, + { + "start": 3537.22, + "end": 3538.8, + "probability": 0.9283 + }, + { + "start": 3538.9, + "end": 3543.08, + "probability": 0.9883 + }, + { + "start": 3543.38, + "end": 3543.76, + "probability": 0.9056 + }, + { + "start": 3543.9, + "end": 3548.18, + "probability": 0.9811 + }, + { + "start": 3549.28, + "end": 3550.34, + "probability": 0.6869 + }, + { + "start": 3550.56, + "end": 3552.08, + "probability": 0.9825 + }, + { + "start": 3552.48, + "end": 3554.56, + "probability": 0.5663 + }, + { + "start": 3555.2, + "end": 3557.7, + "probability": 0.9401 + }, + { + "start": 3558.1, + "end": 3559.14, + "probability": 0.9622 + }, + { + "start": 3559.84, + "end": 3562.66, + "probability": 0.7944 + }, + { + "start": 3563.08, + "end": 3564.12, + "probability": 0.7714 + }, + { + "start": 3564.9, + "end": 3565.98, + "probability": 0.7472 + }, + { + "start": 3566.94, + "end": 3569.92, + "probability": 0.2059 + }, + { + "start": 3570.34, + "end": 3571.14, + "probability": 0.9906 + }, + { + "start": 3573.52, + "end": 3578.48, + "probability": 0.9663 + }, + { + "start": 3578.84, + "end": 3582.06, + "probability": 0.9891 + }, + { + "start": 3582.5, + "end": 3582.64, + "probability": 0.3069 + }, + { + "start": 3582.72, + "end": 3583.18, + "probability": 0.7088 + }, + { + "start": 3584.6, + "end": 3585.66, + "probability": 0.9956 + }, + { + "start": 3587.62, + "end": 3587.84, + "probability": 0.4486 + }, + { + "start": 3587.98, + "end": 3588.5, + "probability": 0.9371 + }, + { + "start": 3588.8, + "end": 3590.86, + "probability": 0.9637 + }, + { + "start": 3590.92, + "end": 3591.64, + "probability": 0.8574 + }, + { + "start": 3592.22, + "end": 3592.56, + "probability": 0.479 + }, + { + "start": 3592.94, + "end": 3593.7, + "probability": 0.8369 + }, + { + "start": 3593.86, + "end": 3594.78, + "probability": 0.9371 + }, + { + "start": 3594.92, + "end": 3596.68, + "probability": 0.7772 + }, + { + "start": 3597.32, + "end": 3597.7, + "probability": 0.7707 + }, + { + "start": 3598.14, + "end": 3601.64, + "probability": 0.953 + }, + { + "start": 3603.2, + "end": 3605.06, + "probability": 0.6105 + }, + { + "start": 3605.9, + "end": 3607.43, + "probability": 0.8638 + }, + { + "start": 3608.1, + "end": 3609.48, + "probability": 0.9808 + }, + { + "start": 3611.64, + "end": 3613.06, + "probability": 0.9301 + }, + { + "start": 3613.16, + "end": 3613.58, + "probability": 0.8129 + }, + { + "start": 3613.7, + "end": 3614.28, + "probability": 0.9883 + }, + { + "start": 3614.42, + "end": 3615.22, + "probability": 0.9605 + }, + { + "start": 3615.32, + "end": 3616.16, + "probability": 0.4133 + }, + { + "start": 3616.28, + "end": 3619.6, + "probability": 0.9224 + }, + { + "start": 3620.2, + "end": 3623.68, + "probability": 0.9608 + }, + { + "start": 3623.76, + "end": 3626.84, + "probability": 0.9941 + }, + { + "start": 3627.44, + "end": 3631.26, + "probability": 0.6803 + }, + { + "start": 3631.32, + "end": 3635.24, + "probability": 0.9924 + }, + { + "start": 3635.92, + "end": 3636.32, + "probability": 0.8288 + }, + { + "start": 3637.22, + "end": 3638.76, + "probability": 0.8561 + }, + { + "start": 3639.22, + "end": 3640.74, + "probability": 0.8917 + }, + { + "start": 3640.88, + "end": 3643.48, + "probability": 0.9596 + }, + { + "start": 3643.88, + "end": 3644.58, + "probability": 0.4213 + }, + { + "start": 3645.52, + "end": 3647.26, + "probability": 0.927 + }, + { + "start": 3654.3, + "end": 3655.34, + "probability": 0.8203 + }, + { + "start": 3655.42, + "end": 3655.72, + "probability": 0.7194 + }, + { + "start": 3655.82, + "end": 3658.38, + "probability": 0.9301 + }, + { + "start": 3658.5, + "end": 3659.32, + "probability": 0.5375 + }, + { + "start": 3660.06, + "end": 3661.1, + "probability": 0.4618 + }, + { + "start": 3661.16, + "end": 3663.18, + "probability": 0.8131 + }, + { + "start": 3663.48, + "end": 3663.98, + "probability": 0.8923 + }, + { + "start": 3664.3, + "end": 3664.52, + "probability": 0.8123 + }, + { + "start": 3665.5, + "end": 3669.8, + "probability": 0.9962 + }, + { + "start": 3670.14, + "end": 3672.06, + "probability": 0.8135 + }, + { + "start": 3672.14, + "end": 3672.72, + "probability": 0.7382 + }, + { + "start": 3673.48, + "end": 3674.86, + "probability": 0.8697 + }, + { + "start": 3676.4, + "end": 3679.64, + "probability": 0.9883 + }, + { + "start": 3683.5, + "end": 3687.46, + "probability": 0.9723 + }, + { + "start": 3688.02, + "end": 3689.22, + "probability": 0.8219 + }, + { + "start": 3690.66, + "end": 3693.12, + "probability": 0.9487 + }, + { + "start": 3694.14, + "end": 3695.74, + "probability": 0.9827 + }, + { + "start": 3697.5, + "end": 3703.94, + "probability": 0.994 + }, + { + "start": 3704.14, + "end": 3707.34, + "probability": 0.9958 + }, + { + "start": 3708.42, + "end": 3711.66, + "probability": 0.9618 + }, + { + "start": 3712.3, + "end": 3712.94, + "probability": 0.1802 + }, + { + "start": 3714.82, + "end": 3718.42, + "probability": 0.99 + }, + { + "start": 3718.72, + "end": 3721.06, + "probability": 0.9966 + }, + { + "start": 3721.36, + "end": 3721.7, + "probability": 0.8804 + }, + { + "start": 3721.84, + "end": 3722.76, + "probability": 0.8734 + }, + { + "start": 3722.86, + "end": 3723.48, + "probability": 0.9451 + }, + { + "start": 3723.68, + "end": 3724.86, + "probability": 0.9299 + }, + { + "start": 3725.0, + "end": 3727.97, + "probability": 0.9634 + }, + { + "start": 3729.46, + "end": 3730.76, + "probability": 0.9739 + }, + { + "start": 3731.46, + "end": 3736.16, + "probability": 0.9886 + }, + { + "start": 3736.74, + "end": 3738.68, + "probability": 0.8317 + }, + { + "start": 3739.74, + "end": 3740.96, + "probability": 0.7752 + }, + { + "start": 3743.16, + "end": 3744.12, + "probability": 0.9203 + }, + { + "start": 3744.9, + "end": 3747.12, + "probability": 0.9907 + }, + { + "start": 3748.4, + "end": 3752.04, + "probability": 0.9618 + }, + { + "start": 3752.4, + "end": 3752.82, + "probability": 0.6967 + }, + { + "start": 3754.16, + "end": 3756.38, + "probability": 0.9321 + }, + { + "start": 3757.04, + "end": 3759.1, + "probability": 0.3341 + }, + { + "start": 3759.22, + "end": 3761.56, + "probability": 0.9543 + }, + { + "start": 3762.16, + "end": 3765.3, + "probability": 0.9115 + }, + { + "start": 3770.54, + "end": 3770.54, + "probability": 0.0122 + }, + { + "start": 3771.18, + "end": 3772.72, + "probability": 0.6368 + }, + { + "start": 3773.68, + "end": 3773.96, + "probability": 0.908 + }, + { + "start": 3775.48, + "end": 3776.64, + "probability": 0.7964 + }, + { + "start": 3777.66, + "end": 3778.0, + "probability": 0.9814 + }, + { + "start": 3779.04, + "end": 3780.17, + "probability": 0.6707 + }, + { + "start": 3781.14, + "end": 3781.54, + "probability": 0.9868 + }, + { + "start": 3782.2, + "end": 3783.46, + "probability": 0.8898 + }, + { + "start": 3784.22, + "end": 3784.58, + "probability": 0.9824 + }, + { + "start": 3785.52, + "end": 3786.46, + "probability": 0.9016 + }, + { + "start": 3787.22, + "end": 3787.62, + "probability": 0.9948 + }, + { + "start": 3788.7, + "end": 3789.82, + "probability": 0.8477 + }, + { + "start": 3790.6, + "end": 3792.98, + "probability": 0.7233 + }, + { + "start": 3794.46, + "end": 3797.06, + "probability": 0.7669 + }, + { + "start": 3799.32, + "end": 3800.24, + "probability": 0.9832 + }, + { + "start": 3800.82, + "end": 3801.76, + "probability": 0.6531 + }, + { + "start": 3802.88, + "end": 3803.78, + "probability": 0.5833 + }, + { + "start": 3805.12, + "end": 3806.12, + "probability": 0.9454 + }, + { + "start": 3806.9, + "end": 3808.92, + "probability": 0.8507 + }, + { + "start": 3810.52, + "end": 3811.0, + "probability": 0.9909 + }, + { + "start": 3812.46, + "end": 3812.76, + "probability": 0.896 + }, + { + "start": 3817.2, + "end": 3818.9, + "probability": 0.4647 + }, + { + "start": 3819.9, + "end": 3820.84, + "probability": 0.7599 + }, + { + "start": 3821.78, + "end": 3822.54, + "probability": 0.9465 + }, + { + "start": 3823.16, + "end": 3824.02, + "probability": 0.9895 + }, + { + "start": 3825.13, + "end": 3827.58, + "probability": 0.9806 + }, + { + "start": 3828.28, + "end": 3831.12, + "probability": 0.8343 + }, + { + "start": 3832.24, + "end": 3834.14, + "probability": 0.8226 + }, + { + "start": 3835.5, + "end": 3835.98, + "probability": 0.9836 + }, + { + "start": 3837.0, + "end": 3837.88, + "probability": 0.982 + }, + { + "start": 3838.7, + "end": 3839.18, + "probability": 0.9886 + }, + { + "start": 3839.88, + "end": 3840.86, + "probability": 0.9321 + }, + { + "start": 3843.21, + "end": 3845.88, + "probability": 0.7008 + }, + { + "start": 3846.76, + "end": 3847.12, + "probability": 0.8825 + }, + { + "start": 3848.02, + "end": 3848.88, + "probability": 0.812 + }, + { + "start": 3849.62, + "end": 3850.14, + "probability": 0.9808 + }, + { + "start": 3850.72, + "end": 3851.8, + "probability": 0.9277 + }, + { + "start": 3855.6, + "end": 3855.9, + "probability": 0.791 + }, + { + "start": 3857.22, + "end": 3858.32, + "probability": 0.8907 + }, + { + "start": 3859.56, + "end": 3861.96, + "probability": 0.586 + }, + { + "start": 3862.82, + "end": 3865.1, + "probability": 0.9704 + }, + { + "start": 3865.98, + "end": 3867.7, + "probability": 0.8891 + }, + { + "start": 3868.62, + "end": 3870.4, + "probability": 0.9846 + }, + { + "start": 3871.24, + "end": 3871.72, + "probability": 0.9798 + }, + { + "start": 3872.7, + "end": 3874.18, + "probability": 0.9528 + }, + { + "start": 3875.14, + "end": 3877.66, + "probability": 0.87 + }, + { + "start": 3878.34, + "end": 3880.6, + "probability": 0.9607 + }, + { + "start": 3881.52, + "end": 3881.78, + "probability": 0.9919 + }, + { + "start": 3882.78, + "end": 3883.7, + "probability": 0.5483 + }, + { + "start": 3884.6, + "end": 3886.44, + "probability": 0.8485 + }, + { + "start": 3888.46, + "end": 3890.56, + "probability": 0.8117 + }, + { + "start": 3892.54, + "end": 3893.6, + "probability": 0.9801 + }, + { + "start": 3895.78, + "end": 3896.9, + "probability": 0.8372 + }, + { + "start": 3898.22, + "end": 3900.56, + "probability": 0.9438 + }, + { + "start": 3901.42, + "end": 3901.88, + "probability": 0.9915 + }, + { + "start": 3902.64, + "end": 3903.6, + "probability": 0.8523 + }, + { + "start": 3904.7, + "end": 3906.38, + "probability": 0.9914 + }, + { + "start": 3907.16, + "end": 3907.54, + "probability": 0.9826 + }, + { + "start": 3908.12, + "end": 3909.32, + "probability": 0.9553 + }, + { + "start": 3910.1, + "end": 3912.1, + "probability": 0.543 + }, + { + "start": 3913.32, + "end": 3913.64, + "probability": 0.877 + }, + { + "start": 3914.66, + "end": 3915.66, + "probability": 0.9776 + }, + { + "start": 3917.16, + "end": 3919.36, + "probability": 0.8597 + }, + { + "start": 3921.86, + "end": 3922.4, + "probability": 0.9863 + }, + { + "start": 3922.92, + "end": 3926.02, + "probability": 0.8719 + }, + { + "start": 3927.32, + "end": 3931.26, + "probability": 0.986 + }, + { + "start": 3932.3, + "end": 3934.74, + "probability": 0.9717 + }, + { + "start": 3936.72, + "end": 3937.64, + "probability": 0.9768 + }, + { + "start": 3939.28, + "end": 3940.08, + "probability": 0.3878 + }, + { + "start": 3941.02, + "end": 3943.28, + "probability": 0.6558 + }, + { + "start": 3948.5, + "end": 3951.0, + "probability": 0.5684 + }, + { + "start": 3952.46, + "end": 3953.92, + "probability": 0.6767 + }, + { + "start": 3954.6, + "end": 3955.06, + "probability": 0.7751 + }, + { + "start": 3955.8, + "end": 3956.94, + "probability": 0.8061 + }, + { + "start": 3957.74, + "end": 3958.22, + "probability": 0.9855 + }, + { + "start": 3959.04, + "end": 3961.72, + "probability": 0.99 + }, + { + "start": 3962.6, + "end": 3963.36, + "probability": 0.9194 + }, + { + "start": 3964.58, + "end": 3966.4, + "probability": 0.9657 + }, + { + "start": 3967.48, + "end": 3968.36, + "probability": 0.9917 + }, + { + "start": 3969.12, + "end": 3969.9, + "probability": 0.9495 + }, + { + "start": 3971.5, + "end": 3973.18, + "probability": 0.9493 + }, + { + "start": 3974.46, + "end": 3977.48, + "probability": 0.8142 + }, + { + "start": 3978.32, + "end": 3978.66, + "probability": 0.917 + }, + { + "start": 3980.0, + "end": 3980.66, + "probability": 0.9327 + }, + { + "start": 3981.86, + "end": 3985.02, + "probability": 0.7323 + }, + { + "start": 3986.52, + "end": 3988.36, + "probability": 0.9597 + }, + { + "start": 3989.3, + "end": 3990.08, + "probability": 0.8799 + }, + { + "start": 3990.62, + "end": 3994.34, + "probability": 0.9317 + }, + { + "start": 3996.38, + "end": 3997.22, + "probability": 0.9514 + }, + { + "start": 3998.6, + "end": 4000.84, + "probability": 0.9921 + }, + { + "start": 4003.82, + "end": 4005.2, + "probability": 0.8224 + }, + { + "start": 4006.04, + "end": 4006.96, + "probability": 0.4677 + }, + { + "start": 4008.42, + "end": 4008.84, + "probability": 0.8853 + }, + { + "start": 4010.02, + "end": 4010.86, + "probability": 0.8116 + }, + { + "start": 4011.7, + "end": 4013.5, + "probability": 0.9417 + }, + { + "start": 4014.5, + "end": 4017.08, + "probability": 0.9759 + }, + { + "start": 4018.2, + "end": 4019.92, + "probability": 0.945 + }, + { + "start": 4021.56, + "end": 4022.06, + "probability": 0.7969 + }, + { + "start": 4022.6, + "end": 4023.52, + "probability": 0.8445 + }, + { + "start": 4024.26, + "end": 4026.98, + "probability": 0.865 + }, + { + "start": 4027.72, + "end": 4029.28, + "probability": 0.9668 + }, + { + "start": 4030.08, + "end": 4032.92, + "probability": 0.9366 + }, + { + "start": 4036.4, + "end": 4038.48, + "probability": 0.6877 + }, + { + "start": 4039.24, + "end": 4039.64, + "probability": 0.9219 + }, + { + "start": 4040.88, + "end": 4041.92, + "probability": 0.8836 + }, + { + "start": 4042.84, + "end": 4044.98, + "probability": 0.9623 + }, + { + "start": 4045.64, + "end": 4046.14, + "probability": 0.9709 + }, + { + "start": 4047.84, + "end": 4048.76, + "probability": 0.4577 + }, + { + "start": 4049.32, + "end": 4051.1, + "probability": 0.908 + }, + { + "start": 4055.3, + "end": 4057.82, + "probability": 0.6901 + }, + { + "start": 4058.94, + "end": 4059.46, + "probability": 0.9072 + }, + { + "start": 4060.16, + "end": 4061.68, + "probability": 0.9196 + }, + { + "start": 4062.46, + "end": 4068.18, + "probability": 0.7076 + }, + { + "start": 4069.58, + "end": 4071.98, + "probability": 0.7778 + }, + { + "start": 4073.5, + "end": 4075.3, + "probability": 0.9469 + }, + { + "start": 4077.08, + "end": 4078.76, + "probability": 0.7593 + }, + { + "start": 4082.52, + "end": 4083.42, + "probability": 0.7484 + }, + { + "start": 4086.54, + "end": 4088.32, + "probability": 0.5626 + }, + { + "start": 4089.54, + "end": 4089.84, + "probability": 0.7937 + }, + { + "start": 4090.9, + "end": 4091.88, + "probability": 0.9818 + }, + { + "start": 4092.78, + "end": 4094.88, + "probability": 0.9683 + }, + { + "start": 4095.88, + "end": 4098.38, + "probability": 0.9208 + }, + { + "start": 4098.98, + "end": 4101.24, + "probability": 0.976 + }, + { + "start": 4101.82, + "end": 4103.66, + "probability": 0.8986 + }, + { + "start": 4104.32, + "end": 4105.32, + "probability": 0.9897 + }, + { + "start": 4105.92, + "end": 4106.82, + "probability": 0.7848 + }, + { + "start": 4107.9, + "end": 4110.36, + "probability": 0.9272 + }, + { + "start": 4111.22, + "end": 4111.58, + "probability": 0.7794 + }, + { + "start": 4112.52, + "end": 4113.8, + "probability": 0.5975 + }, + { + "start": 4115.04, + "end": 4116.4, + "probability": 0.8422 + }, + { + "start": 4117.4, + "end": 4119.7, + "probability": 0.9192 + }, + { + "start": 4123.58, + "end": 4126.04, + "probability": 0.9431 + }, + { + "start": 4126.58, + "end": 4127.12, + "probability": 0.9787 + }, + { + "start": 4129.86, + "end": 4130.74, + "probability": 0.6528 + }, + { + "start": 4131.8, + "end": 4134.22, + "probability": 0.8864 + }, + { + "start": 4134.96, + "end": 4135.8, + "probability": 0.9648 + }, + { + "start": 4136.52, + "end": 4137.46, + "probability": 0.9746 + }, + { + "start": 4138.12, + "end": 4139.22, + "probability": 0.9867 + }, + { + "start": 4139.9, + "end": 4140.88, + "probability": 0.9836 + }, + { + "start": 4141.4, + "end": 4145.4, + "probability": 0.8804 + }, + { + "start": 4149.08, + "end": 4149.9, + "probability": 0.4509 + }, + { + "start": 4150.78, + "end": 4151.2, + "probability": 0.9466 + }, + { + "start": 4151.78, + "end": 4152.64, + "probability": 0.8967 + }, + { + "start": 4153.8, + "end": 4154.2, + "probability": 0.9587 + }, + { + "start": 4155.0, + "end": 4157.44, + "probability": 0.8667 + }, + { + "start": 4158.2, + "end": 4159.24, + "probability": 0.8346 + }, + { + "start": 4160.66, + "end": 4162.48, + "probability": 0.8695 + }, + { + "start": 4164.84, + "end": 4165.66, + "probability": 0.998 + }, + { + "start": 4166.66, + "end": 4167.46, + "probability": 0.9363 + }, + { + "start": 4167.98, + "end": 4169.66, + "probability": 0.992 + }, + { + "start": 4170.38, + "end": 4171.24, + "probability": 0.8701 + }, + { + "start": 4171.86, + "end": 4174.38, + "probability": 0.9962 + }, + { + "start": 4175.6, + "end": 4180.22, + "probability": 0.7724 + }, + { + "start": 4181.02, + "end": 4185.94, + "probability": 0.931 + }, + { + "start": 4186.5, + "end": 4188.84, + "probability": 0.9686 + }, + { + "start": 4189.83, + "end": 4192.18, + "probability": 0.9739 + }, + { + "start": 4192.48, + "end": 4194.32, + "probability": 0.9366 + }, + { + "start": 4194.89, + "end": 4197.96, + "probability": 0.9608 + }, + { + "start": 4198.7, + "end": 4200.86, + "probability": 0.8884 + }, + { + "start": 4201.54, + "end": 4203.64, + "probability": 0.7809 + }, + { + "start": 4204.68, + "end": 4206.64, + "probability": 0.9912 + }, + { + "start": 4207.52, + "end": 4209.54, + "probability": 0.9829 + }, + { + "start": 4211.22, + "end": 4211.8, + "probability": 0.9775 + }, + { + "start": 4212.86, + "end": 4217.06, + "probability": 0.5055 + }, + { + "start": 4217.12, + "end": 4222.26, + "probability": 0.9958 + }, + { + "start": 4222.78, + "end": 4224.4, + "probability": 0.2262 + }, + { + "start": 4225.1, + "end": 4226.82, + "probability": 0.5944 + }, + { + "start": 4229.2, + "end": 4229.54, + "probability": 0.9259 + }, + { + "start": 4230.82, + "end": 4231.92, + "probability": 0.8568 + }, + { + "start": 4232.24, + "end": 4234.32, + "probability": 0.883 + }, + { + "start": 4234.78, + "end": 4237.26, + "probability": 0.8248 + }, + { + "start": 4238.08, + "end": 4240.18, + "probability": 0.9599 + }, + { + "start": 4241.2, + "end": 4243.36, + "probability": 0.9793 + }, + { + "start": 4244.38, + "end": 4245.1, + "probability": 0.8811 + }, + { + "start": 4246.64, + "end": 4247.76, + "probability": 0.924 + }, + { + "start": 4248.28, + "end": 4250.1, + "probability": 0.9655 + }, + { + "start": 4252.4, + "end": 4252.84, + "probability": 0.5437 + }, + { + "start": 4254.64, + "end": 4255.76, + "probability": 0.9166 + }, + { + "start": 4257.57, + "end": 4259.56, + "probability": 0.9715 + }, + { + "start": 4261.66, + "end": 4264.02, + "probability": 0.8479 + }, + { + "start": 4264.92, + "end": 4268.04, + "probability": 0.975 + }, + { + "start": 4268.66, + "end": 4269.26, + "probability": 0.5147 + }, + { + "start": 4270.54, + "end": 4272.86, + "probability": 0.8948 + }, + { + "start": 4274.34, + "end": 4276.5, + "probability": 0.9125 + }, + { + "start": 4277.08, + "end": 4279.04, + "probability": 0.9514 + }, + { + "start": 4279.92, + "end": 4280.62, + "probability": 0.9604 + }, + { + "start": 4283.48, + "end": 4284.38, + "probability": 0.346 + }, + { + "start": 4285.34, + "end": 4286.14, + "probability": 0.7736 + }, + { + "start": 4287.4, + "end": 4288.36, + "probability": 0.815 + }, + { + "start": 4289.92, + "end": 4292.24, + "probability": 0.3739 + }, + { + "start": 4293.16, + "end": 4295.18, + "probability": 0.7459 + }, + { + "start": 4295.82, + "end": 4298.26, + "probability": 0.9751 + }, + { + "start": 4299.26, + "end": 4301.98, + "probability": 0.527 + }, + { + "start": 4302.84, + "end": 4308.16, + "probability": 0.9453 + }, + { + "start": 4309.26, + "end": 4311.26, + "probability": 0.6072 + }, + { + "start": 4312.5, + "end": 4315.1, + "probability": 0.9427 + }, + { + "start": 4315.82, + "end": 4317.88, + "probability": 0.9673 + }, + { + "start": 4318.8, + "end": 4319.54, + "probability": 0.9933 + }, + { + "start": 4320.4, + "end": 4321.54, + "probability": 0.913 + }, + { + "start": 4322.5, + "end": 4324.64, + "probability": 0.9887 + }, + { + "start": 4325.76, + "end": 4331.24, + "probability": 0.9922 + }, + { + "start": 4331.86, + "end": 4332.56, + "probability": 0.8654 + }, + { + "start": 4334.06, + "end": 4338.28, + "probability": 0.9883 + }, + { + "start": 4338.28, + "end": 4341.68, + "probability": 0.997 + }, + { + "start": 4342.88, + "end": 4342.98, + "probability": 0.0175 + }, + { + "start": 4343.0, + "end": 4347.3, + "probability": 0.9432 + }, + { + "start": 4347.84, + "end": 4347.94, + "probability": 0.0237 + }, + { + "start": 4351.9, + "end": 4352.12, + "probability": 0.1184 + }, + { + "start": 4408.74, + "end": 4411.42, + "probability": 0.6058 + }, + { + "start": 4411.52, + "end": 4420.24, + "probability": 0.8335 + }, + { + "start": 4420.34, + "end": 4421.0, + "probability": 0.7623 + }, + { + "start": 4422.32, + "end": 4422.42, + "probability": 0.4644 + }, + { + "start": 4434.4, + "end": 4435.14, + "probability": 0.0491 + }, + { + "start": 4435.14, + "end": 4436.14, + "probability": 0.5046 + }, + { + "start": 4448.8, + "end": 4448.94, + "probability": 0.0796 + }, + { + "start": 4450.46, + "end": 4450.46, + "probability": 0.183 + }, + { + "start": 4450.46, + "end": 4452.92, + "probability": 0.8552 + }, + { + "start": 4453.58, + "end": 4454.28, + "probability": 0.6001 + }, + { + "start": 4457.0, + "end": 4458.52, + "probability": 0.7439 + }, + { + "start": 4459.32, + "end": 4460.56, + "probability": 0.6422 + }, + { + "start": 4461.22, + "end": 4461.98, + "probability": 0.738 + }, + { + "start": 4463.92, + "end": 4467.78, + "probability": 0.7689 + }, + { + "start": 4468.38, + "end": 4477.74, + "probability": 0.9004 + }, + { + "start": 4479.34, + "end": 4480.11, + "probability": 0.9641 + }, + { + "start": 4481.12, + "end": 4482.9, + "probability": 0.5625 + }, + { + "start": 4483.72, + "end": 4486.06, + "probability": 0.6742 + }, + { + "start": 4487.6, + "end": 4488.76, + "probability": 0.9526 + }, + { + "start": 4490.54, + "end": 4491.88, + "probability": 0.5751 + }, + { + "start": 4495.62, + "end": 4496.14, + "probability": 0.6042 + }, + { + "start": 4497.52, + "end": 4499.96, + "probability": 0.7928 + }, + { + "start": 4505.0, + "end": 4506.82, + "probability": 0.9621 + }, + { + "start": 4507.8, + "end": 4509.46, + "probability": 0.9323 + }, + { + "start": 4512.34, + "end": 4513.59, + "probability": 0.7203 + }, + { + "start": 4515.66, + "end": 4521.1, + "probability": 0.7603 + }, + { + "start": 4521.26, + "end": 4524.44, + "probability": 0.738 + }, + { + "start": 4526.46, + "end": 4528.64, + "probability": 0.5036 + }, + { + "start": 4530.68, + "end": 4533.89, + "probability": 0.7702 + }, + { + "start": 4535.44, + "end": 4541.28, + "probability": 0.8143 + }, + { + "start": 4542.54, + "end": 4545.04, + "probability": 0.7438 + }, + { + "start": 4545.38, + "end": 4546.62, + "probability": 0.612 + }, + { + "start": 4546.68, + "end": 4552.64, + "probability": 0.8986 + }, + { + "start": 4553.84, + "end": 4554.72, + "probability": 0.6955 + }, + { + "start": 4555.04, + "end": 4557.54, + "probability": 0.8376 + }, + { + "start": 4557.68, + "end": 4561.4, + "probability": 0.7354 + }, + { + "start": 4562.94, + "end": 4569.3, + "probability": 0.9508 + }, + { + "start": 4570.14, + "end": 4573.76, + "probability": 0.8302 + }, + { + "start": 4575.6, + "end": 4581.36, + "probability": 0.8638 + }, + { + "start": 4582.06, + "end": 4582.16, + "probability": 0.9085 + }, + { + "start": 4583.36, + "end": 4588.78, + "probability": 0.9939 + }, + { + "start": 4591.1, + "end": 4594.7, + "probability": 0.7702 + }, + { + "start": 4596.14, + "end": 4597.5, + "probability": 0.9827 + }, + { + "start": 4598.9, + "end": 4600.48, + "probability": 0.9196 + }, + { + "start": 4602.72, + "end": 4609.06, + "probability": 0.8672 + }, + { + "start": 4610.8, + "end": 4612.92, + "probability": 0.6317 + }, + { + "start": 4614.12, + "end": 4616.62, + "probability": 0.736 + }, + { + "start": 4617.16, + "end": 4617.66, + "probability": 0.0027 + }, + { + "start": 4618.7, + "end": 4620.34, + "probability": 0.823 + }, + { + "start": 4621.5, + "end": 4628.71, + "probability": 0.6796 + }, + { + "start": 4630.12, + "end": 4632.66, + "probability": 0.9585 + }, + { + "start": 4632.92, + "end": 4636.44, + "probability": 0.5062 + }, + { + "start": 4637.8, + "end": 4641.2, + "probability": 0.8477 + }, + { + "start": 4642.7, + "end": 4647.82, + "probability": 0.9398 + }, + { + "start": 4649.36, + "end": 4652.96, + "probability": 0.5685 + }, + { + "start": 4653.84, + "end": 4654.92, + "probability": 0.9631 + }, + { + "start": 4655.62, + "end": 4658.26, + "probability": 0.7305 + }, + { + "start": 4659.92, + "end": 4662.48, + "probability": 0.9203 + }, + { + "start": 4663.48, + "end": 4667.38, + "probability": 0.6917 + }, + { + "start": 4670.46, + "end": 4673.9, + "probability": 0.9905 + }, + { + "start": 4674.92, + "end": 4675.6, + "probability": 0.8944 + }, + { + "start": 4676.72, + "end": 4678.76, + "probability": 0.6785 + }, + { + "start": 4679.92, + "end": 4685.6, + "probability": 0.9475 + }, + { + "start": 4686.58, + "end": 4687.76, + "probability": 0.6836 + }, + { + "start": 4689.18, + "end": 4692.76, + "probability": 0.943 + }, + { + "start": 4695.1, + "end": 4697.86, + "probability": 0.8943 + }, + { + "start": 4697.96, + "end": 4702.68, + "probability": 0.9788 + }, + { + "start": 4704.92, + "end": 4710.6, + "probability": 0.8586 + }, + { + "start": 4711.98, + "end": 4713.38, + "probability": 0.9282 + }, + { + "start": 4714.56, + "end": 4717.06, + "probability": 0.925 + }, + { + "start": 4718.24, + "end": 4719.26, + "probability": 0.9279 + }, + { + "start": 4720.08, + "end": 4721.32, + "probability": 0.9835 + }, + { + "start": 4723.8, + "end": 4725.4, + "probability": 0.9327 + }, + { + "start": 4726.6, + "end": 4728.8, + "probability": 0.8679 + }, + { + "start": 4730.02, + "end": 4732.09, + "probability": 0.9035 + }, + { + "start": 4733.22, + "end": 4739.0, + "probability": 0.9567 + }, + { + "start": 4739.0, + "end": 4745.44, + "probability": 0.9487 + }, + { + "start": 4747.02, + "end": 4749.59, + "probability": 0.9952 + }, + { + "start": 4750.66, + "end": 4752.08, + "probability": 0.9731 + }, + { + "start": 4754.16, + "end": 4758.12, + "probability": 0.9907 + }, + { + "start": 4760.1, + "end": 4762.46, + "probability": 0.8649 + }, + { + "start": 4764.5, + "end": 4765.12, + "probability": 0.5803 + }, + { + "start": 4766.52, + "end": 4771.4, + "probability": 0.9707 + }, + { + "start": 4773.64, + "end": 4776.28, + "probability": 0.9888 + }, + { + "start": 4776.28, + "end": 4780.88, + "probability": 0.9559 + }, + { + "start": 4782.92, + "end": 4787.54, + "probability": 0.9318 + }, + { + "start": 4788.6, + "end": 4789.78, + "probability": 0.9983 + }, + { + "start": 4791.3, + "end": 4792.68, + "probability": 0.9673 + }, + { + "start": 4793.72, + "end": 4795.98, + "probability": 0.7529 + }, + { + "start": 4796.64, + "end": 4797.52, + "probability": 0.809 + }, + { + "start": 4798.12, + "end": 4799.96, + "probability": 0.5238 + }, + { + "start": 4800.96, + "end": 4804.92, + "probability": 0.9371 + }, + { + "start": 4806.58, + "end": 4807.34, + "probability": 0.6816 + }, + { + "start": 4808.86, + "end": 4810.08, + "probability": 0.7948 + }, + { + "start": 4811.18, + "end": 4813.12, + "probability": 0.8061 + }, + { + "start": 4814.38, + "end": 4819.0, + "probability": 0.4278 + }, + { + "start": 4819.56, + "end": 4820.06, + "probability": 0.6221 + }, + { + "start": 4822.78, + "end": 4825.7, + "probability": 0.7408 + }, + { + "start": 4826.36, + "end": 4830.62, + "probability": 0.8735 + }, + { + "start": 4830.66, + "end": 4833.48, + "probability": 0.8079 + }, + { + "start": 4845.14, + "end": 4849.14, + "probability": 0.7639 + }, + { + "start": 4850.38, + "end": 4852.92, + "probability": 0.8492 + }, + { + "start": 4852.92, + "end": 4855.44, + "probability": 0.7065 + }, + { + "start": 4855.6, + "end": 4857.3, + "probability": 0.1622 + }, + { + "start": 4857.44, + "end": 4859.68, + "probability": 0.9752 + }, + { + "start": 4860.22, + "end": 4862.62, + "probability": 0.9594 + }, + { + "start": 4862.62, + "end": 4865.04, + "probability": 0.9984 + }, + { + "start": 4865.16, + "end": 4866.52, + "probability": 0.6964 + }, + { + "start": 4867.3, + "end": 4867.76, + "probability": 0.4648 + }, + { + "start": 4867.88, + "end": 4868.54, + "probability": 0.7556 + }, + { + "start": 4868.62, + "end": 4869.66, + "probability": 0.974 + }, + { + "start": 4869.82, + "end": 4870.32, + "probability": 0.8341 + }, + { + "start": 4870.38, + "end": 4870.78, + "probability": 0.9726 + }, + { + "start": 4870.92, + "end": 4871.72, + "probability": 0.7918 + }, + { + "start": 4873.54, + "end": 4877.68, + "probability": 0.724 + }, + { + "start": 4878.34, + "end": 4882.62, + "probability": 0.9887 + }, + { + "start": 4882.62, + "end": 4885.78, + "probability": 0.9899 + }, + { + "start": 4886.6, + "end": 4891.98, + "probability": 0.9956 + }, + { + "start": 4891.98, + "end": 4896.9, + "probability": 0.9956 + }, + { + "start": 4897.84, + "end": 4900.68, + "probability": 0.9945 + }, + { + "start": 4900.78, + "end": 4902.06, + "probability": 0.9012 + }, + { + "start": 4902.18, + "end": 4905.64, + "probability": 0.9492 + }, + { + "start": 4905.66, + "end": 4907.9, + "probability": 0.9767 + }, + { + "start": 4908.44, + "end": 4912.4, + "probability": 0.9897 + }, + { + "start": 4913.0, + "end": 4916.3, + "probability": 0.7373 + }, + { + "start": 4916.82, + "end": 4919.5, + "probability": 0.9913 + }, + { + "start": 4919.56, + "end": 4921.3, + "probability": 0.9117 + }, + { + "start": 4922.44, + "end": 4926.9, + "probability": 0.9531 + }, + { + "start": 4927.88, + "end": 4928.36, + "probability": 0.8254 + }, + { + "start": 4928.42, + "end": 4928.42, + "probability": 0.66 + }, + { + "start": 4928.48, + "end": 4928.92, + "probability": 0.9109 + }, + { + "start": 4929.04, + "end": 4930.36, + "probability": 0.828 + }, + { + "start": 4930.4, + "end": 4930.94, + "probability": 0.5423 + }, + { + "start": 4931.08, + "end": 4932.06, + "probability": 0.8799 + }, + { + "start": 4932.22, + "end": 4935.1, + "probability": 0.9912 + }, + { + "start": 4936.08, + "end": 4941.24, + "probability": 0.928 + }, + { + "start": 4941.24, + "end": 4945.4, + "probability": 0.9907 + }, + { + "start": 4946.22, + "end": 4949.6, + "probability": 0.9689 + }, + { + "start": 4949.6, + "end": 4954.76, + "probability": 0.9904 + }, + { + "start": 4955.28, + "end": 4956.64, + "probability": 0.9448 + }, + { + "start": 4956.88, + "end": 4957.7, + "probability": 0.9513 + }, + { + "start": 4957.8, + "end": 4958.32, + "probability": 0.892 + }, + { + "start": 4958.42, + "end": 4959.42, + "probability": 0.8867 + }, + { + "start": 4959.92, + "end": 4960.6, + "probability": 0.7796 + }, + { + "start": 4960.76, + "end": 4963.2, + "probability": 0.9712 + }, + { + "start": 4963.9, + "end": 4967.88, + "probability": 0.8104 + }, + { + "start": 4967.9, + "end": 4970.38, + "probability": 0.9985 + }, + { + "start": 4971.26, + "end": 4973.8, + "probability": 0.8811 + }, + { + "start": 4973.96, + "end": 4974.14, + "probability": 0.7243 + }, + { + "start": 4975.14, + "end": 4977.1, + "probability": 0.9788 + }, + { + "start": 4977.32, + "end": 4979.86, + "probability": 0.8955 + }, + { + "start": 4980.58, + "end": 4982.32, + "probability": 0.6918 + }, + { + "start": 4985.4, + "end": 4986.0, + "probability": 0.8568 + }, + { + "start": 4986.4, + "end": 4987.04, + "probability": 0.664 + }, + { + "start": 4987.1, + "end": 4990.64, + "probability": 0.9851 + }, + { + "start": 5000.62, + "end": 5005.3, + "probability": 0.7903 + }, + { + "start": 5006.38, + "end": 5014.22, + "probability": 0.7095 + }, + { + "start": 5014.28, + "end": 5016.08, + "probability": 0.9392 + }, + { + "start": 5016.74, + "end": 5019.16, + "probability": 0.6747 + }, + { + "start": 5019.9, + "end": 5027.3, + "probability": 0.9132 + }, + { + "start": 5027.76, + "end": 5032.46, + "probability": 0.9175 + }, + { + "start": 5035.68, + "end": 5042.62, + "probability": 0.9872 + }, + { + "start": 5043.76, + "end": 5047.04, + "probability": 0.9818 + }, + { + "start": 5047.1, + "end": 5048.88, + "probability": 0.8165 + }, + { + "start": 5049.76, + "end": 5053.76, + "probability": 0.9412 + }, + { + "start": 5053.98, + "end": 5060.16, + "probability": 0.9805 + }, + { + "start": 5060.3, + "end": 5060.56, + "probability": 0.7353 + }, + { + "start": 5061.5, + "end": 5062.22, + "probability": 0.6645 + }, + { + "start": 5062.58, + "end": 5065.32, + "probability": 0.7448 + }, + { + "start": 5066.1, + "end": 5067.24, + "probability": 0.7269 + }, + { + "start": 5067.34, + "end": 5070.08, + "probability": 0.2999 + }, + { + "start": 5071.22, + "end": 5074.36, + "probability": 0.0143 + }, + { + "start": 5075.5, + "end": 5076.58, + "probability": 0.0762 + }, + { + "start": 5077.12, + "end": 5077.12, + "probability": 0.0509 + }, + { + "start": 5077.12, + "end": 5078.18, + "probability": 0.2235 + }, + { + "start": 5078.18, + "end": 5080.76, + "probability": 0.6813 + }, + { + "start": 5082.38, + "end": 5082.8, + "probability": 0.9648 + }, + { + "start": 5083.44, + "end": 5085.5, + "probability": 0.8173 + }, + { + "start": 5086.5, + "end": 5088.74, + "probability": 0.7558 + }, + { + "start": 5090.04, + "end": 5092.2, + "probability": 0.9486 + }, + { + "start": 5093.24, + "end": 5094.4, + "probability": 0.8875 + }, + { + "start": 5097.02, + "end": 5097.68, + "probability": 0.7395 + }, + { + "start": 5098.38, + "end": 5099.16, + "probability": 0.5702 + }, + { + "start": 5101.2, + "end": 5101.79, + "probability": 0.2025 + }, + { + "start": 5103.18, + "end": 5105.0, + "probability": 0.8288 + }, + { + "start": 5106.24, + "end": 5110.64, + "probability": 0.9724 + }, + { + "start": 5111.54, + "end": 5112.0, + "probability": 0.9766 + }, + { + "start": 5113.18, + "end": 5115.18, + "probability": 0.9618 + }, + { + "start": 5116.3, + "end": 5117.2, + "probability": 0.8909 + }, + { + "start": 5117.72, + "end": 5119.56, + "probability": 0.9937 + }, + { + "start": 5121.1, + "end": 5123.38, + "probability": 0.8327 + }, + { + "start": 5124.0, + "end": 5124.32, + "probability": 0.8877 + }, + { + "start": 5126.32, + "end": 5127.2, + "probability": 0.7303 + }, + { + "start": 5128.46, + "end": 5130.54, + "probability": 0.9433 + }, + { + "start": 5131.54, + "end": 5134.24, + "probability": 0.9871 + }, + { + "start": 5135.48, + "end": 5135.94, + "probability": 0.9894 + }, + { + "start": 5136.58, + "end": 5137.5, + "probability": 0.8794 + }, + { + "start": 5138.26, + "end": 5140.4, + "probability": 0.9889 + }, + { + "start": 5142.66, + "end": 5146.5, + "probability": 0.8476 + }, + { + "start": 5147.1, + "end": 5147.94, + "probability": 0.8229 + }, + { + "start": 5148.58, + "end": 5149.08, + "probability": 0.9019 + }, + { + "start": 5149.66, + "end": 5150.76, + "probability": 0.8926 + }, + { + "start": 5151.36, + "end": 5151.8, + "probability": 0.6893 + }, + { + "start": 5153.12, + "end": 5153.82, + "probability": 0.5304 + }, + { + "start": 5156.16, + "end": 5158.06, + "probability": 0.9305 + }, + { + "start": 5159.38, + "end": 5161.5, + "probability": 0.9064 + }, + { + "start": 5162.48, + "end": 5164.26, + "probability": 0.9939 + }, + { + "start": 5166.06, + "end": 5166.56, + "probability": 0.9854 + }, + { + "start": 5167.3, + "end": 5168.4, + "probability": 0.9379 + }, + { + "start": 5168.94, + "end": 5171.8, + "probability": 0.8485 + }, + { + "start": 5172.66, + "end": 5173.78, + "probability": 0.6312 + }, + { + "start": 5174.54, + "end": 5175.26, + "probability": 0.8073 + }, + { + "start": 5175.88, + "end": 5178.16, + "probability": 0.764 + }, + { + "start": 5179.16, + "end": 5180.54, + "probability": 0.968 + }, + { + "start": 5181.54, + "end": 5183.12, + "probability": 0.9091 + }, + { + "start": 5186.44, + "end": 5189.52, + "probability": 0.8306 + }, + { + "start": 5190.32, + "end": 5190.68, + "probability": 0.9709 + }, + { + "start": 5191.42, + "end": 5192.24, + "probability": 0.9314 + }, + { + "start": 5193.58, + "end": 5195.24, + "probability": 0.9727 + }, + { + "start": 5195.96, + "end": 5196.4, + "probability": 0.9902 + }, + { + "start": 5197.4, + "end": 5198.1, + "probability": 0.9898 + }, + { + "start": 5198.88, + "end": 5199.18, + "probability": 0.6928 + }, + { + "start": 5200.02, + "end": 5204.6, + "probability": 0.8167 + }, + { + "start": 5206.26, + "end": 5207.36, + "probability": 0.9803 + }, + { + "start": 5208.5, + "end": 5210.46, + "probability": 0.9326 + }, + { + "start": 5211.44, + "end": 5211.98, + "probability": 0.9959 + }, + { + "start": 5213.14, + "end": 5213.96, + "probability": 0.9302 + }, + { + "start": 5218.54, + "end": 5222.62, + "probability": 0.3634 + }, + { + "start": 5225.06, + "end": 5225.8, + "probability": 0.8615 + }, + { + "start": 5226.32, + "end": 5227.28, + "probability": 0.8559 + }, + { + "start": 5228.32, + "end": 5228.74, + "probability": 0.8528 + }, + { + "start": 5230.04, + "end": 5230.96, + "probability": 0.7572 + }, + { + "start": 5232.26, + "end": 5235.58, + "probability": 0.9639 + }, + { + "start": 5236.18, + "end": 5238.46, + "probability": 0.7912 + }, + { + "start": 5239.18, + "end": 5239.5, + "probability": 0.8861 + }, + { + "start": 5242.54, + "end": 5243.62, + "probability": 0.3552 + }, + { + "start": 5244.28, + "end": 5245.1, + "probability": 0.9089 + }, + { + "start": 5245.74, + "end": 5247.02, + "probability": 0.7948 + }, + { + "start": 5248.28, + "end": 5248.72, + "probability": 0.9595 + }, + { + "start": 5249.94, + "end": 5250.72, + "probability": 0.8264 + }, + { + "start": 5251.86, + "end": 5252.28, + "probability": 0.8 + }, + { + "start": 5253.18, + "end": 5254.0, + "probability": 0.9606 + }, + { + "start": 5255.42, + "end": 5256.18, + "probability": 0.9881 + }, + { + "start": 5256.9, + "end": 5257.78, + "probability": 0.9684 + }, + { + "start": 5258.34, + "end": 5258.8, + "probability": 0.9119 + }, + { + "start": 5259.7, + "end": 5260.88, + "probability": 0.9769 + }, + { + "start": 5262.06, + "end": 5264.0, + "probability": 0.9764 + }, + { + "start": 5266.84, + "end": 5267.76, + "probability": 0.9447 + }, + { + "start": 5268.7, + "end": 5269.78, + "probability": 0.9557 + }, + { + "start": 5270.68, + "end": 5270.9, + "probability": 0.5717 + }, + { + "start": 5271.9, + "end": 5273.0, + "probability": 0.2699 + }, + { + "start": 5274.0, + "end": 5274.44, + "probability": 0.9624 + }, + { + "start": 5275.12, + "end": 5275.9, + "probability": 0.8809 + }, + { + "start": 5277.68, + "end": 5281.66, + "probability": 0.9044 + }, + { + "start": 5284.02, + "end": 5286.1, + "probability": 0.9875 + }, + { + "start": 5287.06, + "end": 5288.8, + "probability": 0.9875 + }, + { + "start": 5289.98, + "end": 5292.02, + "probability": 0.9771 + }, + { + "start": 5293.4, + "end": 5295.48, + "probability": 0.9867 + }, + { + "start": 5296.34, + "end": 5301.92, + "probability": 0.8418 + }, + { + "start": 5302.62, + "end": 5303.0, + "probability": 0.9362 + }, + { + "start": 5303.64, + "end": 5304.46, + "probability": 0.7352 + }, + { + "start": 5305.58, + "end": 5307.62, + "probability": 0.8856 + }, + { + "start": 5308.62, + "end": 5309.4, + "probability": 0.8183 + }, + { + "start": 5310.56, + "end": 5311.38, + "probability": 0.9872 + }, + { + "start": 5312.06, + "end": 5313.22, + "probability": 0.8747 + }, + { + "start": 5313.76, + "end": 5315.46, + "probability": 0.9562 + }, + { + "start": 5316.5, + "end": 5317.22, + "probability": 0.8878 + }, + { + "start": 5320.04, + "end": 5320.8, + "probability": 0.6113 + }, + { + "start": 5321.88, + "end": 5322.98, + "probability": 0.8314 + }, + { + "start": 5323.58, + "end": 5324.38, + "probability": 0.7933 + }, + { + "start": 5326.14, + "end": 5326.74, + "probability": 0.965 + }, + { + "start": 5327.58, + "end": 5328.68, + "probability": 0.832 + }, + { + "start": 5332.16, + "end": 5333.38, + "probability": 0.563 + }, + { + "start": 5334.08, + "end": 5335.08, + "probability": 0.2431 + }, + { + "start": 5335.68, + "end": 5336.16, + "probability": 0.9831 + }, + { + "start": 5337.34, + "end": 5338.26, + "probability": 0.4585 + }, + { + "start": 5339.04, + "end": 5340.96, + "probability": 0.9026 + }, + { + "start": 5342.9, + "end": 5345.16, + "probability": 0.6345 + }, + { + "start": 5345.45, + "end": 5346.26, + "probability": 0.0153 + }, + { + "start": 5347.32, + "end": 5348.16, + "probability": 0.6802 + }, + { + "start": 5349.46, + "end": 5349.84, + "probability": 0.8918 + }, + { + "start": 5351.86, + "end": 5352.86, + "probability": 0.5416 + }, + { + "start": 5354.46, + "end": 5357.14, + "probability": 0.9355 + }, + { + "start": 5358.46, + "end": 5359.92, + "probability": 0.9881 + }, + { + "start": 5360.66, + "end": 5362.04, + "probability": 0.8002 + }, + { + "start": 5363.02, + "end": 5363.56, + "probability": 0.9834 + }, + { + "start": 5364.3, + "end": 5365.18, + "probability": 0.9181 + }, + { + "start": 5366.6, + "end": 5368.38, + "probability": 0.7056 + }, + { + "start": 5369.58, + "end": 5371.3, + "probability": 0.851 + }, + { + "start": 5373.32, + "end": 5377.72, + "probability": 0.8288 + }, + { + "start": 5378.44, + "end": 5380.38, + "probability": 0.9699 + }, + { + "start": 5381.28, + "end": 5381.66, + "probability": 0.8914 + }, + { + "start": 5382.42, + "end": 5383.38, + "probability": 0.9868 + }, + { + "start": 5384.24, + "end": 5384.7, + "probability": 0.9344 + }, + { + "start": 5385.28, + "end": 5386.24, + "probability": 0.8913 + }, + { + "start": 5386.98, + "end": 5389.26, + "probability": 0.948 + }, + { + "start": 5390.86, + "end": 5391.28, + "probability": 0.9832 + }, + { + "start": 5391.94, + "end": 5395.0, + "probability": 0.9071 + }, + { + "start": 5395.68, + "end": 5396.06, + "probability": 0.5478 + }, + { + "start": 5396.84, + "end": 5397.7, + "probability": 0.6594 + }, + { + "start": 5398.46, + "end": 5400.32, + "probability": 0.7588 + }, + { + "start": 5402.18, + "end": 5402.7, + "probability": 0.9837 + }, + { + "start": 5403.6, + "end": 5404.74, + "probability": 0.6727 + }, + { + "start": 5407.86, + "end": 5408.24, + "probability": 0.9119 + }, + { + "start": 5409.08, + "end": 5410.14, + "probability": 0.7957 + }, + { + "start": 5411.92, + "end": 5412.58, + "probability": 0.9744 + }, + { + "start": 5413.18, + "end": 5414.58, + "probability": 0.8513 + }, + { + "start": 5416.44, + "end": 5421.5, + "probability": 0.8817 + }, + { + "start": 5422.16, + "end": 5424.59, + "probability": 0.2223 + }, + { + "start": 5426.12, + "end": 5428.12, + "probability": 0.6565 + }, + { + "start": 5429.12, + "end": 5429.6, + "probability": 0.9237 + }, + { + "start": 5430.82, + "end": 5434.58, + "probability": 0.9828 + }, + { + "start": 5435.36, + "end": 5438.7, + "probability": 0.9615 + }, + { + "start": 5439.36, + "end": 5440.36, + "probability": 0.6858 + }, + { + "start": 5441.84, + "end": 5442.34, + "probability": 0.9946 + }, + { + "start": 5443.02, + "end": 5443.6, + "probability": 0.9883 + }, + { + "start": 5445.22, + "end": 5446.02, + "probability": 0.9941 + }, + { + "start": 5446.54, + "end": 5447.58, + "probability": 0.6498 + }, + { + "start": 5449.14, + "end": 5449.56, + "probability": 0.9678 + }, + { + "start": 5450.5, + "end": 5451.52, + "probability": 0.7459 + }, + { + "start": 5452.32, + "end": 5453.94, + "probability": 0.7317 + }, + { + "start": 5455.4, + "end": 5455.86, + "probability": 0.8853 + }, + { + "start": 5456.68, + "end": 5457.1, + "probability": 0.8648 + }, + { + "start": 5458.74, + "end": 5459.16, + "probability": 0.9762 + }, + { + "start": 5460.34, + "end": 5461.14, + "probability": 0.8265 + }, + { + "start": 5461.9, + "end": 5462.36, + "probability": 0.991 + }, + { + "start": 5462.92, + "end": 5463.64, + "probability": 0.9797 + }, + { + "start": 5464.94, + "end": 5465.38, + "probability": 0.9945 + }, + { + "start": 5466.16, + "end": 5467.24, + "probability": 0.8949 + }, + { + "start": 5467.82, + "end": 5468.16, + "probability": 0.9172 + }, + { + "start": 5468.98, + "end": 5470.02, + "probability": 0.9383 + }, + { + "start": 5470.7, + "end": 5472.74, + "probability": 0.9808 + }, + { + "start": 5473.54, + "end": 5473.98, + "probability": 0.9954 + }, + { + "start": 5474.5, + "end": 5475.88, + "probability": 0.8381 + }, + { + "start": 5476.72, + "end": 5477.02, + "probability": 0.7186 + }, + { + "start": 5477.72, + "end": 5478.68, + "probability": 0.5917 + }, + { + "start": 5480.34, + "end": 5480.84, + "probability": 0.9774 + }, + { + "start": 5481.44, + "end": 5483.92, + "probability": 0.888 + }, + { + "start": 5484.76, + "end": 5485.18, + "probability": 0.938 + }, + { + "start": 5486.08, + "end": 5486.96, + "probability": 0.9645 + }, + { + "start": 5487.52, + "end": 5489.54, + "probability": 0.9861 + }, + { + "start": 5490.48, + "end": 5491.22, + "probability": 0.9934 + }, + { + "start": 5491.76, + "end": 5492.7, + "probability": 0.983 + }, + { + "start": 5493.74, + "end": 5496.28, + "probability": 0.9388 + }, + { + "start": 5498.12, + "end": 5501.82, + "probability": 0.9619 + }, + { + "start": 5503.62, + "end": 5507.18, + "probability": 0.5818 + }, + { + "start": 5508.0, + "end": 5511.16, + "probability": 0.3739 + }, + { + "start": 5511.22, + "end": 5515.66, + "probability": 0.9523 + }, + { + "start": 5516.94, + "end": 5520.52, + "probability": 0.2791 + }, + { + "start": 5521.7, + "end": 5522.64, + "probability": 0.3754 + }, + { + "start": 5523.34, + "end": 5526.68, + "probability": 0.7492 + }, + { + "start": 5527.38, + "end": 5529.98, + "probability": 0.9636 + }, + { + "start": 5531.96, + "end": 5533.06, + "probability": 0.3474 + }, + { + "start": 5534.84, + "end": 5536.28, + "probability": 0.7588 + }, + { + "start": 5537.5, + "end": 5538.66, + "probability": 0.4837 + }, + { + "start": 5539.76, + "end": 5541.84, + "probability": 0.8792 + }, + { + "start": 5542.7, + "end": 5544.88, + "probability": 0.9514 + }, + { + "start": 5545.84, + "end": 5549.7, + "probability": 0.9595 + }, + { + "start": 5550.5, + "end": 5552.06, + "probability": 0.9759 + }, + { + "start": 5553.18, + "end": 5554.06, + "probability": 0.9359 + }, + { + "start": 5555.64, + "end": 5559.18, + "probability": 0.9627 + }, + { + "start": 5560.24, + "end": 5562.78, + "probability": 0.9852 + }, + { + "start": 5564.16, + "end": 5564.86, + "probability": 0.9827 + }, + { + "start": 5565.98, + "end": 5566.88, + "probability": 0.8951 + }, + { + "start": 5568.2, + "end": 5570.22, + "probability": 0.9838 + }, + { + "start": 5572.12, + "end": 5572.88, + "probability": 0.9947 + }, + { + "start": 5573.46, + "end": 5574.66, + "probability": 0.9777 + }, + { + "start": 5575.66, + "end": 5577.44, + "probability": 0.9705 + }, + { + "start": 5578.38, + "end": 5581.66, + "probability": 0.9686 + }, + { + "start": 5582.84, + "end": 5584.64, + "probability": 0.8514 + }, + { + "start": 5585.84, + "end": 5587.72, + "probability": 0.9838 + }, + { + "start": 5589.18, + "end": 5591.14, + "probability": 0.9874 + }, + { + "start": 5591.76, + "end": 5593.42, + "probability": 0.9436 + }, + { + "start": 5594.42, + "end": 5596.68, + "probability": 0.9463 + }, + { + "start": 5597.36, + "end": 5598.84, + "probability": 0.9858 + }, + { + "start": 5599.5, + "end": 5600.26, + "probability": 0.9948 + }, + { + "start": 5601.38, + "end": 5602.54, + "probability": 0.834 + }, + { + "start": 5603.76, + "end": 5604.46, + "probability": 0.8805 + }, + { + "start": 5605.22, + "end": 5607.18, + "probability": 0.7259 + }, + { + "start": 5608.28, + "end": 5609.12, + "probability": 0.9858 + }, + { + "start": 5609.7, + "end": 5611.48, + "probability": 0.9607 + }, + { + "start": 5611.98, + "end": 5613.74, + "probability": 0.9825 + }, + { + "start": 5613.92, + "end": 5615.5, + "probability": 0.8949 + }, + { + "start": 5616.18, + "end": 5617.84, + "probability": 0.9387 + }, + { + "start": 5618.74, + "end": 5622.48, + "probability": 0.8455 + }, + { + "start": 5625.16, + "end": 5625.46, + "probability": 0.8826 + }, + { + "start": 5626.58, + "end": 5627.54, + "probability": 0.7703 + }, + { + "start": 5628.62, + "end": 5629.42, + "probability": 0.9958 + }, + { + "start": 5630.9, + "end": 5631.84, + "probability": 0.9262 + }, + { + "start": 5631.88, + "end": 5633.48, + "probability": 0.9854 + }, + { + "start": 5633.72, + "end": 5635.36, + "probability": 0.9268 + }, + { + "start": 5637.26, + "end": 5639.46, + "probability": 0.9552 + }, + { + "start": 5640.58, + "end": 5641.42, + "probability": 0.9844 + }, + { + "start": 5644.48, + "end": 5648.4, + "probability": 0.9915 + }, + { + "start": 5650.36, + "end": 5650.58, + "probability": 0.5709 + }, + { + "start": 5651.14, + "end": 5653.5, + "probability": 0.8171 + }, + { + "start": 5655.74, + "end": 5655.92, + "probability": 0.0248 + }, + { + "start": 5661.26, + "end": 5661.68, + "probability": 0.1187 + }, + { + "start": 5669.76, + "end": 5670.24, + "probability": 0.0977 + }, + { + "start": 5716.64, + "end": 5724.42, + "probability": 0.9064 + }, + { + "start": 5725.74, + "end": 5727.32, + "probability": 0.6236 + }, + { + "start": 5727.48, + "end": 5731.35, + "probability": 0.9756 + }, + { + "start": 5732.68, + "end": 5735.31, + "probability": 0.0212 + }, + { + "start": 5736.2, + "end": 5736.88, + "probability": 0.0171 + }, + { + "start": 5737.12, + "end": 5738.56, + "probability": 0.2509 + }, + { + "start": 5738.56, + "end": 5738.56, + "probability": 0.5281 + }, + { + "start": 5738.56, + "end": 5740.72, + "probability": 0.5842 + }, + { + "start": 5744.36, + "end": 5747.86, + "probability": 0.9014 + }, + { + "start": 5754.88, + "end": 5754.88, + "probability": 0.2606 + }, + { + "start": 5754.88, + "end": 5754.88, + "probability": 0.0819 + }, + { + "start": 5754.88, + "end": 5754.88, + "probability": 0.0084 + }, + { + "start": 5761.66, + "end": 5762.5, + "probability": 0.2548 + }, + { + "start": 5764.94, + "end": 5769.64, + "probability": 0.8097 + }, + { + "start": 5770.22, + "end": 5771.26, + "probability": 0.6738 + }, + { + "start": 5772.5, + "end": 5778.52, + "probability": 0.9954 + }, + { + "start": 5781.5, + "end": 5785.9, + "probability": 0.9843 + }, + { + "start": 5786.88, + "end": 5787.9, + "probability": 0.7926 + }, + { + "start": 5789.56, + "end": 5793.44, + "probability": 0.8877 + }, + { + "start": 5794.64, + "end": 5797.24, + "probability": 0.7259 + }, + { + "start": 5798.44, + "end": 5799.66, + "probability": 0.9758 + }, + { + "start": 5800.0, + "end": 5801.47, + "probability": 0.9211 + }, + { + "start": 5801.72, + "end": 5804.0, + "probability": 0.8302 + }, + { + "start": 5804.68, + "end": 5807.1, + "probability": 0.9049 + }, + { + "start": 5808.54, + "end": 5812.08, + "probability": 0.7217 + }, + { + "start": 5812.86, + "end": 5820.52, + "probability": 0.9909 + }, + { + "start": 5821.92, + "end": 5829.0, + "probability": 0.9946 + }, + { + "start": 5829.12, + "end": 5830.06, + "probability": 0.9175 + }, + { + "start": 5831.0, + "end": 5834.38, + "probability": 0.8808 + }, + { + "start": 5836.3, + "end": 5839.5, + "probability": 0.9314 + }, + { + "start": 5840.2, + "end": 5841.4, + "probability": 0.9749 + }, + { + "start": 5842.18, + "end": 5843.76, + "probability": 0.8076 + }, + { + "start": 5844.6, + "end": 5845.86, + "probability": 0.915 + }, + { + "start": 5846.82, + "end": 5847.82, + "probability": 0.8999 + }, + { + "start": 5849.16, + "end": 5856.34, + "probability": 0.968 + }, + { + "start": 5856.34, + "end": 5862.1, + "probability": 0.9995 + }, + { + "start": 5863.54, + "end": 5870.98, + "probability": 0.9988 + }, + { + "start": 5870.98, + "end": 5877.94, + "probability": 0.9945 + }, + { + "start": 5879.6, + "end": 5884.68, + "probability": 0.9967 + }, + { + "start": 5884.68, + "end": 5890.5, + "probability": 0.9986 + }, + { + "start": 5890.5, + "end": 5895.18, + "probability": 0.9841 + }, + { + "start": 5897.5, + "end": 5903.2, + "probability": 0.9966 + }, + { + "start": 5903.2, + "end": 5908.34, + "probability": 0.9894 + }, + { + "start": 5910.64, + "end": 5918.38, + "probability": 0.9933 + }, + { + "start": 5919.02, + "end": 5921.16, + "probability": 0.9979 + }, + { + "start": 5922.42, + "end": 5926.8, + "probability": 0.9963 + }, + { + "start": 5928.02, + "end": 5929.5, + "probability": 0.6521 + }, + { + "start": 5930.7, + "end": 5933.0, + "probability": 0.9623 + }, + { + "start": 5934.02, + "end": 5935.46, + "probability": 0.9187 + }, + { + "start": 5936.54, + "end": 5936.8, + "probability": 0.4836 + }, + { + "start": 5936.84, + "end": 5940.22, + "probability": 0.9883 + }, + { + "start": 5941.12, + "end": 5947.68, + "probability": 0.9511 + }, + { + "start": 5947.9, + "end": 5952.84, + "probability": 0.9745 + }, + { + "start": 5956.48, + "end": 5957.26, + "probability": 0.57 + }, + { + "start": 5957.3, + "end": 5958.5, + "probability": 0.7309 + }, + { + "start": 5958.64, + "end": 5960.74, + "probability": 0.9904 + }, + { + "start": 5962.2, + "end": 5964.88, + "probability": 0.9521 + }, + { + "start": 5966.26, + "end": 5973.04, + "probability": 0.9692 + }, + { + "start": 5974.02, + "end": 5976.3, + "probability": 0.891 + }, + { + "start": 5977.16, + "end": 5982.02, + "probability": 0.9863 + }, + { + "start": 5982.88, + "end": 5984.86, + "probability": 0.7405 + }, + { + "start": 5985.04, + "end": 5987.16, + "probability": 0.9335 + }, + { + "start": 5988.18, + "end": 5990.26, + "probability": 0.8181 + }, + { + "start": 5991.26, + "end": 5994.08, + "probability": 0.9661 + }, + { + "start": 5995.16, + "end": 5996.62, + "probability": 0.971 + }, + { + "start": 5997.44, + "end": 6001.88, + "probability": 0.9973 + }, + { + "start": 6002.8, + "end": 6006.68, + "probability": 0.8779 + }, + { + "start": 6007.36, + "end": 6011.14, + "probability": 0.9908 + }, + { + "start": 6011.66, + "end": 6014.36, + "probability": 0.8774 + }, + { + "start": 6015.46, + "end": 6018.32, + "probability": 0.6787 + }, + { + "start": 6019.06, + "end": 6021.88, + "probability": 0.9828 + }, + { + "start": 6023.18, + "end": 6025.84, + "probability": 0.9907 + }, + { + "start": 6026.38, + "end": 6029.78, + "probability": 0.9742 + }, + { + "start": 6030.54, + "end": 6031.88, + "probability": 0.9895 + }, + { + "start": 6032.66, + "end": 6038.82, + "probability": 0.9954 + }, + { + "start": 6041.06, + "end": 6045.84, + "probability": 0.9365 + }, + { + "start": 6046.92, + "end": 6050.08, + "probability": 0.9699 + }, + { + "start": 6051.32, + "end": 6053.9, + "probability": 0.711 + }, + { + "start": 6054.7, + "end": 6059.84, + "probability": 0.9593 + }, + { + "start": 6060.96, + "end": 6062.34, + "probability": 0.8835 + }, + { + "start": 6063.08, + "end": 6064.14, + "probability": 0.826 + }, + { + "start": 6064.86, + "end": 6069.96, + "probability": 0.9982 + }, + { + "start": 6070.54, + "end": 6071.82, + "probability": 0.9977 + }, + { + "start": 6073.7, + "end": 6077.62, + "probability": 0.7732 + }, + { + "start": 6077.62, + "end": 6081.64, + "probability": 0.9791 + }, + { + "start": 6082.66, + "end": 6087.28, + "probability": 0.9952 + }, + { + "start": 6088.34, + "end": 6090.58, + "probability": 0.9766 + }, + { + "start": 6091.4, + "end": 6092.42, + "probability": 0.6721 + }, + { + "start": 6092.66, + "end": 6095.12, + "probability": 0.9841 + }, + { + "start": 6095.26, + "end": 6101.74, + "probability": 0.9707 + }, + { + "start": 6102.96, + "end": 6104.8, + "probability": 0.8599 + }, + { + "start": 6104.84, + "end": 6110.66, + "probability": 0.9918 + }, + { + "start": 6111.36, + "end": 6113.91, + "probability": 0.9917 + }, + { + "start": 6114.14, + "end": 6115.78, + "probability": 0.9209 + }, + { + "start": 6116.72, + "end": 6121.62, + "probability": 0.9948 + }, + { + "start": 6122.84, + "end": 6125.98, + "probability": 0.7331 + }, + { + "start": 6127.12, + "end": 6132.3, + "probability": 0.9229 + }, + { + "start": 6132.84, + "end": 6134.72, + "probability": 0.9894 + }, + { + "start": 6135.32, + "end": 6136.9, + "probability": 0.9457 + }, + { + "start": 6137.9, + "end": 6146.16, + "probability": 0.849 + }, + { + "start": 6147.16, + "end": 6149.88, + "probability": 0.7773 + }, + { + "start": 6150.64, + "end": 6155.26, + "probability": 0.9127 + }, + { + "start": 6155.26, + "end": 6159.58, + "probability": 0.9868 + }, + { + "start": 6160.34, + "end": 6164.12, + "probability": 0.9265 + }, + { + "start": 6165.26, + "end": 6166.46, + "probability": 0.8634 + }, + { + "start": 6167.34, + "end": 6169.78, + "probability": 0.9746 + }, + { + "start": 6171.2, + "end": 6173.94, + "probability": 0.9908 + }, + { + "start": 6174.64, + "end": 6178.16, + "probability": 0.985 + }, + { + "start": 6178.26, + "end": 6182.88, + "probability": 0.8651 + }, + { + "start": 6183.78, + "end": 6186.1, + "probability": 0.8229 + }, + { + "start": 6187.14, + "end": 6194.46, + "probability": 0.9872 + }, + { + "start": 6196.14, + "end": 6202.88, + "probability": 0.9941 + }, + { + "start": 6202.88, + "end": 6207.62, + "probability": 0.9958 + }, + { + "start": 6208.44, + "end": 6213.26, + "probability": 0.9993 + }, + { + "start": 6213.26, + "end": 6218.44, + "probability": 0.9669 + }, + { + "start": 6219.1, + "end": 6223.86, + "probability": 0.9938 + }, + { + "start": 6224.78, + "end": 6229.7, + "probability": 0.9961 + }, + { + "start": 6230.64, + "end": 6234.0, + "probability": 0.9946 + }, + { + "start": 6234.94, + "end": 6235.76, + "probability": 0.7059 + }, + { + "start": 6236.28, + "end": 6239.36, + "probability": 0.9736 + }, + { + "start": 6239.42, + "end": 6240.98, + "probability": 0.9712 + }, + { + "start": 6241.64, + "end": 6244.36, + "probability": 0.9969 + }, + { + "start": 6244.96, + "end": 6251.42, + "probability": 0.9812 + }, + { + "start": 6251.98, + "end": 6255.92, + "probability": 0.9912 + }, + { + "start": 6256.84, + "end": 6258.08, + "probability": 0.7381 + }, + { + "start": 6258.28, + "end": 6261.6, + "probability": 0.9701 + }, + { + "start": 6262.18, + "end": 6263.22, + "probability": 0.8364 + }, + { + "start": 6264.0, + "end": 6268.42, + "probability": 0.9771 + }, + { + "start": 6269.32, + "end": 6271.54, + "probability": 0.9145 + }, + { + "start": 6272.12, + "end": 6276.02, + "probability": 0.9883 + }, + { + "start": 6277.02, + "end": 6279.52, + "probability": 0.9807 + }, + { + "start": 6280.18, + "end": 6285.26, + "probability": 0.9604 + }, + { + "start": 6285.86, + "end": 6287.3, + "probability": 0.9101 + }, + { + "start": 6287.7, + "end": 6289.58, + "probability": 0.9907 + }, + { + "start": 6290.2, + "end": 6291.92, + "probability": 0.9761 + }, + { + "start": 6292.78, + "end": 6297.46, + "probability": 0.9796 + }, + { + "start": 6298.32, + "end": 6301.66, + "probability": 0.9905 + }, + { + "start": 6302.16, + "end": 6305.28, + "probability": 0.9433 + }, + { + "start": 6305.8, + "end": 6308.92, + "probability": 0.9629 + }, + { + "start": 6309.08, + "end": 6311.88, + "probability": 0.9113 + }, + { + "start": 6312.26, + "end": 6314.72, + "probability": 0.9937 + }, + { + "start": 6315.9, + "end": 6317.96, + "probability": 0.6133 + }, + { + "start": 6319.16, + "end": 6323.38, + "probability": 0.9714 + }, + { + "start": 6323.38, + "end": 6326.78, + "probability": 0.9897 + }, + { + "start": 6327.54, + "end": 6330.2, + "probability": 0.811 + }, + { + "start": 6330.74, + "end": 6332.72, + "probability": 0.9747 + }, + { + "start": 6334.24, + "end": 6337.1, + "probability": 0.9951 + }, + { + "start": 6337.32, + "end": 6343.06, + "probability": 0.9927 + }, + { + "start": 6343.16, + "end": 6345.66, + "probability": 0.9821 + }, + { + "start": 6346.34, + "end": 6350.36, + "probability": 0.9836 + }, + { + "start": 6350.94, + "end": 6354.66, + "probability": 0.9869 + }, + { + "start": 6355.5, + "end": 6358.9, + "probability": 0.9964 + }, + { + "start": 6359.04, + "end": 6360.6, + "probability": 0.9585 + }, + { + "start": 6360.72, + "end": 6361.38, + "probability": 0.7236 + }, + { + "start": 6361.92, + "end": 6363.82, + "probability": 0.9963 + }, + { + "start": 6364.38, + "end": 6367.08, + "probability": 0.9465 + }, + { + "start": 6367.48, + "end": 6371.34, + "probability": 0.9976 + }, + { + "start": 6371.58, + "end": 6374.34, + "probability": 0.9917 + }, + { + "start": 6375.0, + "end": 6376.32, + "probability": 0.9346 + }, + { + "start": 6376.38, + "end": 6380.7, + "probability": 0.9932 + }, + { + "start": 6381.18, + "end": 6382.5, + "probability": 0.7623 + }, + { + "start": 6382.6, + "end": 6385.8, + "probability": 0.9727 + }, + { + "start": 6386.24, + "end": 6387.72, + "probability": 0.9803 + }, + { + "start": 6387.84, + "end": 6388.26, + "probability": 0.8641 + }, + { + "start": 6388.88, + "end": 6390.18, + "probability": 0.8118 + }, + { + "start": 6390.86, + "end": 6392.42, + "probability": 0.9495 + }, + { + "start": 6392.94, + "end": 6394.42, + "probability": 0.5151 + }, + { + "start": 6394.76, + "end": 6397.72, + "probability": 0.9416 + }, + { + "start": 6398.7, + "end": 6400.22, + "probability": 0.7211 + }, + { + "start": 6400.44, + "end": 6402.46, + "probability": 0.9476 + }, + { + "start": 6402.52, + "end": 6403.78, + "probability": 0.7482 + }, + { + "start": 6404.12, + "end": 6404.18, + "probability": 0.0003 + }, + { + "start": 6404.32, + "end": 6404.62, + "probability": 0.4808 + }, + { + "start": 6404.84, + "end": 6405.08, + "probability": 0.9709 + }, + { + "start": 6405.82, + "end": 6406.9, + "probability": 0.3072 + }, + { + "start": 6408.14, + "end": 6410.02, + "probability": 0.8245 + }, + { + "start": 6411.41, + "end": 6411.48, + "probability": 0.3359 + }, + { + "start": 6411.48, + "end": 6413.18, + "probability": 0.5232 + }, + { + "start": 6414.82, + "end": 6417.96, + "probability": 0.8302 + }, + { + "start": 6418.26, + "end": 6418.36, + "probability": 0.3833 + }, + { + "start": 6418.36, + "end": 6419.34, + "probability": 0.5579 + }, + { + "start": 6419.44, + "end": 6419.78, + "probability": 0.8726 + }, + { + "start": 6425.96, + "end": 6426.88, + "probability": 0.7501 + }, + { + "start": 6427.48, + "end": 6428.72, + "probability": 0.4187 + }, + { + "start": 6430.64, + "end": 6432.34, + "probability": 0.3207 + }, + { + "start": 6433.62, + "end": 6436.41, + "probability": 0.7863 + }, + { + "start": 6437.51, + "end": 6440.82, + "probability": 0.8635 + }, + { + "start": 6442.0, + "end": 6442.0, + "probability": 0.1724 + }, + { + "start": 6442.0, + "end": 6445.92, + "probability": 0.8494 + }, + { + "start": 6448.33, + "end": 6449.62, + "probability": 0.5212 + }, + { + "start": 6450.92, + "end": 6451.0, + "probability": 0.7151 + }, + { + "start": 6451.08, + "end": 6452.78, + "probability": 0.7146 + }, + { + "start": 6452.9, + "end": 6454.28, + "probability": 0.5111 + }, + { + "start": 6455.08, + "end": 6456.7, + "probability": 0.9276 + }, + { + "start": 6456.98, + "end": 6457.36, + "probability": 0.8383 + }, + { + "start": 6458.36, + "end": 6460.2, + "probability": 0.9581 + }, + { + "start": 6460.48, + "end": 6462.8, + "probability": 0.9397 + }, + { + "start": 6462.98, + "end": 6466.0, + "probability": 0.898 + }, + { + "start": 6466.58, + "end": 6470.38, + "probability": 0.829 + }, + { + "start": 6470.9, + "end": 6471.38, + "probability": 0.8719 + }, + { + "start": 6471.48, + "end": 6472.92, + "probability": 0.9685 + }, + { + "start": 6473.36, + "end": 6476.9, + "probability": 0.9942 + }, + { + "start": 6485.54, + "end": 6486.88, + "probability": 0.4541 + }, + { + "start": 6487.58, + "end": 6488.54, + "probability": 0.6244 + }, + { + "start": 6490.26, + "end": 6495.1, + "probability": 0.9435 + }, + { + "start": 6496.56, + "end": 6502.24, + "probability": 0.9964 + }, + { + "start": 6503.26, + "end": 6509.38, + "probability": 0.9788 + }, + { + "start": 6511.38, + "end": 6512.52, + "probability": 0.861 + }, + { + "start": 6513.06, + "end": 6518.58, + "probability": 0.9906 + }, + { + "start": 6519.74, + "end": 6521.66, + "probability": 0.995 + }, + { + "start": 6522.58, + "end": 6524.0, + "probability": 0.9563 + }, + { + "start": 6525.38, + "end": 6527.86, + "probability": 0.9759 + }, + { + "start": 6528.82, + "end": 6529.46, + "probability": 0.8928 + }, + { + "start": 6530.28, + "end": 6532.22, + "probability": 0.8763 + }, + { + "start": 6533.38, + "end": 6537.3, + "probability": 0.9906 + }, + { + "start": 6538.16, + "end": 6538.84, + "probability": 0.9283 + }, + { + "start": 6539.48, + "end": 6541.34, + "probability": 0.953 + }, + { + "start": 6542.62, + "end": 6546.86, + "probability": 0.8885 + }, + { + "start": 6546.86, + "end": 6551.24, + "probability": 0.9935 + }, + { + "start": 6552.76, + "end": 6555.6, + "probability": 0.9989 + }, + { + "start": 6555.6, + "end": 6558.56, + "probability": 0.9972 + }, + { + "start": 6559.7, + "end": 6564.8, + "probability": 0.993 + }, + { + "start": 6566.3, + "end": 6567.14, + "probability": 0.7207 + }, + { + "start": 6568.1, + "end": 6572.5, + "probability": 0.9946 + }, + { + "start": 6573.66, + "end": 6574.6, + "probability": 0.9588 + }, + { + "start": 6575.24, + "end": 6576.26, + "probability": 0.9668 + }, + { + "start": 6577.8, + "end": 6580.45, + "probability": 0.9768 + }, + { + "start": 6581.5, + "end": 6583.42, + "probability": 0.9763 + }, + { + "start": 6584.4, + "end": 6587.74, + "probability": 0.9175 + }, + { + "start": 6589.2, + "end": 6591.38, + "probability": 0.5511 + }, + { + "start": 6591.52, + "end": 6595.14, + "probability": 0.9678 + }, + { + "start": 6596.1, + "end": 6596.98, + "probability": 0.9258 + }, + { + "start": 6597.7, + "end": 6600.01, + "probability": 0.9706 + }, + { + "start": 6601.26, + "end": 6604.34, + "probability": 0.8472 + }, + { + "start": 6605.54, + "end": 6607.1, + "probability": 0.9963 + }, + { + "start": 6607.68, + "end": 6614.64, + "probability": 0.9969 + }, + { + "start": 6615.86, + "end": 6618.76, + "probability": 0.9929 + }, + { + "start": 6618.76, + "end": 6624.3, + "probability": 0.8773 + }, + { + "start": 6625.52, + "end": 6630.12, + "probability": 0.6947 + }, + { + "start": 6631.2, + "end": 6635.08, + "probability": 0.8989 + }, + { + "start": 6635.08, + "end": 6641.46, + "probability": 0.981 + }, + { + "start": 6644.0, + "end": 6647.52, + "probability": 0.7996 + }, + { + "start": 6652.84, + "end": 6656.6, + "probability": 0.9909 + }, + { + "start": 6657.88, + "end": 6665.4, + "probability": 0.9849 + }, + { + "start": 6665.74, + "end": 6669.38, + "probability": 0.9961 + }, + { + "start": 6670.6, + "end": 6675.72, + "probability": 0.9932 + }, + { + "start": 6675.72, + "end": 6681.52, + "probability": 0.9987 + }, + { + "start": 6683.82, + "end": 6685.14, + "probability": 0.8181 + }, + { + "start": 6686.54, + "end": 6687.64, + "probability": 0.8821 + }, + { + "start": 6688.96, + "end": 6694.24, + "probability": 0.9965 + }, + { + "start": 6694.84, + "end": 6700.14, + "probability": 0.9979 + }, + { + "start": 6701.62, + "end": 6702.82, + "probability": 0.7712 + }, + { + "start": 6703.2, + "end": 6710.42, + "probability": 0.9755 + }, + { + "start": 6711.84, + "end": 6712.94, + "probability": 0.9371 + }, + { + "start": 6713.02, + "end": 6716.94, + "probability": 0.7966 + }, + { + "start": 6717.1, + "end": 6718.22, + "probability": 0.9067 + }, + { + "start": 6718.52, + "end": 6720.34, + "probability": 0.8443 + }, + { + "start": 6721.24, + "end": 6722.3, + "probability": 0.8596 + }, + { + "start": 6723.7, + "end": 6726.12, + "probability": 0.7015 + }, + { + "start": 6726.84, + "end": 6728.86, + "probability": 0.9707 + }, + { + "start": 6730.08, + "end": 6737.84, + "probability": 0.9914 + }, + { + "start": 6739.6, + "end": 6742.62, + "probability": 0.9752 + }, + { + "start": 6743.32, + "end": 6745.97, + "probability": 0.9346 + }, + { + "start": 6746.68, + "end": 6747.54, + "probability": 0.7574 + }, + { + "start": 6748.56, + "end": 6752.68, + "probability": 0.9547 + }, + { + "start": 6754.16, + "end": 6756.52, + "probability": 0.8366 + }, + { + "start": 6757.38, + "end": 6762.66, + "probability": 0.9836 + }, + { + "start": 6763.64, + "end": 6766.42, + "probability": 0.9917 + }, + { + "start": 6767.4, + "end": 6769.0, + "probability": 0.9838 + }, + { + "start": 6770.0, + "end": 6770.32, + "probability": 0.8026 + }, + { + "start": 6771.52, + "end": 6774.36, + "probability": 0.9478 + }, + { + "start": 6774.36, + "end": 6778.54, + "probability": 0.7878 + }, + { + "start": 6779.26, + "end": 6781.62, + "probability": 0.9919 + }, + { + "start": 6782.66, + "end": 6784.06, + "probability": 0.8601 + }, + { + "start": 6784.8, + "end": 6785.44, + "probability": 0.9535 + }, + { + "start": 6786.16, + "end": 6786.7, + "probability": 0.9861 + }, + { + "start": 6787.3, + "end": 6796.24, + "probability": 0.8751 + }, + { + "start": 6797.18, + "end": 6799.96, + "probability": 0.9844 + }, + { + "start": 6800.68, + "end": 6806.62, + "probability": 0.9918 + }, + { + "start": 6807.76, + "end": 6810.76, + "probability": 0.9039 + }, + { + "start": 6810.76, + "end": 6815.58, + "probability": 0.9605 + }, + { + "start": 6816.72, + "end": 6819.08, + "probability": 0.997 + }, + { + "start": 6820.92, + "end": 6821.3, + "probability": 0.3406 + }, + { + "start": 6822.84, + "end": 6823.7, + "probability": 0.8801 + }, + { + "start": 6824.86, + "end": 6825.68, + "probability": 0.9834 + }, + { + "start": 6826.94, + "end": 6827.48, + "probability": 0.8517 + }, + { + "start": 6829.1, + "end": 6833.38, + "probability": 0.9974 + }, + { + "start": 6834.06, + "end": 6835.5, + "probability": 0.7983 + }, + { + "start": 6836.42, + "end": 6839.22, + "probability": 0.9919 + }, + { + "start": 6840.84, + "end": 6844.2, + "probability": 0.9281 + }, + { + "start": 6845.32, + "end": 6846.68, + "probability": 0.9867 + }, + { + "start": 6847.36, + "end": 6848.3, + "probability": 0.8141 + }, + { + "start": 6849.72, + "end": 6852.44, + "probability": 0.997 + }, + { + "start": 6853.18, + "end": 6856.6, + "probability": 0.9971 + }, + { + "start": 6858.08, + "end": 6859.26, + "probability": 0.9963 + }, + { + "start": 6859.86, + "end": 6863.72, + "probability": 0.9863 + }, + { + "start": 6863.88, + "end": 6867.32, + "probability": 0.9934 + }, + { + "start": 6868.8, + "end": 6869.22, + "probability": 0.4326 + }, + { + "start": 6869.88, + "end": 6874.88, + "probability": 0.9886 + }, + { + "start": 6875.44, + "end": 6884.88, + "probability": 0.9244 + }, + { + "start": 6886.4, + "end": 6888.48, + "probability": 0.9894 + }, + { + "start": 6889.22, + "end": 6891.74, + "probability": 0.952 + }, + { + "start": 6893.1, + "end": 6897.84, + "probability": 0.9967 + }, + { + "start": 6898.56, + "end": 6903.52, + "probability": 0.999 + }, + { + "start": 6904.18, + "end": 6906.44, + "probability": 0.8934 + }, + { + "start": 6907.02, + "end": 6908.24, + "probability": 0.9046 + }, + { + "start": 6909.94, + "end": 6913.14, + "probability": 0.9971 + }, + { + "start": 6914.8, + "end": 6916.3, + "probability": 0.9886 + }, + { + "start": 6917.26, + "end": 6918.56, + "probability": 0.7899 + }, + { + "start": 6919.54, + "end": 6920.3, + "probability": 0.6679 + }, + { + "start": 6921.34, + "end": 6924.28, + "probability": 0.9599 + }, + { + "start": 6924.28, + "end": 6927.26, + "probability": 0.8074 + }, + { + "start": 6928.0, + "end": 6932.0, + "probability": 0.9925 + }, + { + "start": 6932.7, + "end": 6935.35, + "probability": 0.9929 + }, + { + "start": 6935.96, + "end": 6939.28, + "probability": 0.9673 + }, + { + "start": 6940.46, + "end": 6941.84, + "probability": 0.9291 + }, + { + "start": 6943.2, + "end": 6945.38, + "probability": 0.8695 + }, + { + "start": 6945.72, + "end": 6949.08, + "probability": 0.9934 + }, + { + "start": 6950.52, + "end": 6951.18, + "probability": 0.9563 + }, + { + "start": 6952.7, + "end": 6954.19, + "probability": 0.9611 + }, + { + "start": 6954.7, + "end": 6955.62, + "probability": 0.7806 + }, + { + "start": 6956.6, + "end": 6962.86, + "probability": 0.8976 + }, + { + "start": 6963.38, + "end": 6970.02, + "probability": 0.9254 + }, + { + "start": 6971.06, + "end": 6976.7, + "probability": 0.9456 + }, + { + "start": 6977.2, + "end": 6979.86, + "probability": 0.9945 + }, + { + "start": 6981.16, + "end": 6983.02, + "probability": 0.9 + }, + { + "start": 6983.98, + "end": 6988.98, + "probability": 0.9793 + }, + { + "start": 6989.82, + "end": 6993.9, + "probability": 0.9971 + }, + { + "start": 6994.54, + "end": 6998.18, + "probability": 0.8747 + }, + { + "start": 6999.86, + "end": 7000.99, + "probability": 0.8241 + }, + { + "start": 7001.54, + "end": 7002.94, + "probability": 0.9599 + }, + { + "start": 7004.02, + "end": 7007.34, + "probability": 0.9527 + }, + { + "start": 7008.06, + "end": 7010.02, + "probability": 0.9949 + }, + { + "start": 7011.42, + "end": 7014.86, + "probability": 0.9979 + }, + { + "start": 7016.42, + "end": 7019.06, + "probability": 0.999 + }, + { + "start": 7019.62, + "end": 7022.12, + "probability": 0.9778 + }, + { + "start": 7023.2, + "end": 7027.16, + "probability": 0.9663 + }, + { + "start": 7028.18, + "end": 7031.24, + "probability": 0.8285 + }, + { + "start": 7032.22, + "end": 7034.22, + "probability": 0.7577 + }, + { + "start": 7034.78, + "end": 7037.98, + "probability": 0.9499 + }, + { + "start": 7041.02, + "end": 7043.16, + "probability": 0.9972 + }, + { + "start": 7043.6, + "end": 7046.8, + "probability": 0.9984 + }, + { + "start": 7046.8, + "end": 7051.0, + "probability": 0.9968 + }, + { + "start": 7051.6, + "end": 7052.24, + "probability": 0.686 + }, + { + "start": 7053.0, + "end": 7054.17, + "probability": 0.9806 + }, + { + "start": 7055.18, + "end": 7056.92, + "probability": 0.8862 + }, + { + "start": 7057.64, + "end": 7059.02, + "probability": 0.915 + }, + { + "start": 7060.12, + "end": 7060.7, + "probability": 0.5485 + }, + { + "start": 7061.5, + "end": 7061.86, + "probability": 0.7919 + }, + { + "start": 7063.36, + "end": 7065.76, + "probability": 0.9402 + }, + { + "start": 7066.72, + "end": 7070.88, + "probability": 0.8991 + }, + { + "start": 7071.78, + "end": 7074.64, + "probability": 0.0262 + }, + { + "start": 7077.32, + "end": 7078.94, + "probability": 0.3647 + }, + { + "start": 7109.2, + "end": 7110.04, + "probability": 0.4648 + }, + { + "start": 7110.94, + "end": 7111.3, + "probability": 0.6606 + }, + { + "start": 7112.74, + "end": 7121.36, + "probability": 0.9744 + }, + { + "start": 7123.48, + "end": 7127.46, + "probability": 0.8096 + }, + { + "start": 7128.22, + "end": 7129.3, + "probability": 0.7266 + }, + { + "start": 7130.42, + "end": 7133.43, + "probability": 0.995 + }, + { + "start": 7134.92, + "end": 7139.92, + "probability": 0.8297 + }, + { + "start": 7140.7, + "end": 7142.88, + "probability": 0.9982 + }, + { + "start": 7144.84, + "end": 7148.84, + "probability": 0.913 + }, + { + "start": 7149.8, + "end": 7150.68, + "probability": 0.8312 + }, + { + "start": 7151.42, + "end": 7157.06, + "probability": 0.9173 + }, + { + "start": 7158.08, + "end": 7158.96, + "probability": 0.576 + }, + { + "start": 7159.7, + "end": 7160.98, + "probability": 0.8047 + }, + { + "start": 7161.62, + "end": 7164.42, + "probability": 0.979 + }, + { + "start": 7166.32, + "end": 7167.36, + "probability": 0.8898 + }, + { + "start": 7169.92, + "end": 7172.04, + "probability": 0.8508 + }, + { + "start": 7173.06, + "end": 7176.16, + "probability": 0.457 + }, + { + "start": 7177.34, + "end": 7180.16, + "probability": 0.9514 + }, + { + "start": 7180.94, + "end": 7182.94, + "probability": 0.7664 + }, + { + "start": 7183.08, + "end": 7184.56, + "probability": 0.968 + }, + { + "start": 7186.04, + "end": 7187.16, + "probability": 0.8249 + }, + { + "start": 7188.04, + "end": 7192.4, + "probability": 0.9754 + }, + { + "start": 7194.72, + "end": 7195.21, + "probability": 0.8507 + }, + { + "start": 7196.78, + "end": 7198.1, + "probability": 0.946 + }, + { + "start": 7199.48, + "end": 7205.78, + "probability": 0.9163 + }, + { + "start": 7206.36, + "end": 7209.84, + "probability": 0.9703 + }, + { + "start": 7210.4, + "end": 7210.96, + "probability": 0.9985 + }, + { + "start": 7212.14, + "end": 7214.44, + "probability": 0.4458 + }, + { + "start": 7215.86, + "end": 7216.72, + "probability": 0.9347 + }, + { + "start": 7217.32, + "end": 7218.0, + "probability": 0.8361 + }, + { + "start": 7219.22, + "end": 7220.02, + "probability": 0.6684 + }, + { + "start": 7220.86, + "end": 7221.82, + "probability": 0.729 + }, + { + "start": 7222.62, + "end": 7226.16, + "probability": 0.9622 + }, + { + "start": 7227.98, + "end": 7229.38, + "probability": 0.8047 + }, + { + "start": 7230.08, + "end": 7232.04, + "probability": 0.9818 + }, + { + "start": 7233.26, + "end": 7238.38, + "probability": 0.967 + }, + { + "start": 7239.34, + "end": 7243.0, + "probability": 0.8777 + }, + { + "start": 7243.6, + "end": 7245.24, + "probability": 0.983 + }, + { + "start": 7246.16, + "end": 7249.46, + "probability": 0.8668 + }, + { + "start": 7250.0, + "end": 7250.68, + "probability": 0.7514 + }, + { + "start": 7254.6, + "end": 7255.84, + "probability": 0.9883 + }, + { + "start": 7256.84, + "end": 7258.42, + "probability": 0.776 + }, + { + "start": 7259.22, + "end": 7261.48, + "probability": 0.7737 + }, + { + "start": 7262.68, + "end": 7263.72, + "probability": 0.8419 + }, + { + "start": 7264.74, + "end": 7268.42, + "probability": 0.9928 + }, + { + "start": 7268.42, + "end": 7272.26, + "probability": 0.9927 + }, + { + "start": 7272.84, + "end": 7275.08, + "probability": 0.9889 + }, + { + "start": 7276.02, + "end": 7279.01, + "probability": 0.9977 + }, + { + "start": 7279.48, + "end": 7283.04, + "probability": 0.7827 + }, + { + "start": 7283.96, + "end": 7289.72, + "probability": 0.9345 + }, + { + "start": 7291.1, + "end": 7294.88, + "probability": 0.9874 + }, + { + "start": 7296.1, + "end": 7300.45, + "probability": 0.9943 + }, + { + "start": 7300.82, + "end": 7304.7, + "probability": 0.9766 + }, + { + "start": 7306.7, + "end": 7307.86, + "probability": 0.9653 + }, + { + "start": 7310.0, + "end": 7312.7, + "probability": 0.8865 + }, + { + "start": 7313.28, + "end": 7315.08, + "probability": 0.7777 + }, + { + "start": 7316.54, + "end": 7320.14, + "probability": 0.8577 + }, + { + "start": 7321.04, + "end": 7323.06, + "probability": 0.8877 + }, + { + "start": 7324.24, + "end": 7325.34, + "probability": 0.7678 + }, + { + "start": 7327.1, + "end": 7328.66, + "probability": 0.9705 + }, + { + "start": 7330.02, + "end": 7331.12, + "probability": 0.9521 + }, + { + "start": 7331.68, + "end": 7332.48, + "probability": 0.6708 + }, + { + "start": 7334.54, + "end": 7336.46, + "probability": 0.9939 + }, + { + "start": 7338.04, + "end": 7342.72, + "probability": 0.9449 + }, + { + "start": 7346.66, + "end": 7349.06, + "probability": 0.9685 + }, + { + "start": 7349.68, + "end": 7350.76, + "probability": 0.9066 + }, + { + "start": 7352.48, + "end": 7356.48, + "probability": 0.9487 + }, + { + "start": 7356.54, + "end": 7357.18, + "probability": 0.5191 + }, + { + "start": 7358.28, + "end": 7359.68, + "probability": 0.9325 + }, + { + "start": 7361.12, + "end": 7362.32, + "probability": 0.8662 + }, + { + "start": 7363.08, + "end": 7364.04, + "probability": 0.8775 + }, + { + "start": 7365.4, + "end": 7368.04, + "probability": 0.6727 + }, + { + "start": 7369.26, + "end": 7370.66, + "probability": 0.6948 + }, + { + "start": 7370.78, + "end": 7373.9, + "probability": 0.991 + }, + { + "start": 7374.7, + "end": 7378.28, + "probability": 0.9175 + }, + { + "start": 7379.4, + "end": 7382.46, + "probability": 0.9622 + }, + { + "start": 7383.46, + "end": 7388.16, + "probability": 0.9849 + }, + { + "start": 7389.8, + "end": 7394.54, + "probability": 0.8985 + }, + { + "start": 7395.74, + "end": 7401.04, + "probability": 0.9919 + }, + { + "start": 7401.56, + "end": 7403.12, + "probability": 0.9894 + }, + { + "start": 7404.36, + "end": 7406.66, + "probability": 0.999 + }, + { + "start": 7408.4, + "end": 7412.68, + "probability": 0.9859 + }, + { + "start": 7413.64, + "end": 7416.38, + "probability": 0.994 + }, + { + "start": 7417.58, + "end": 7423.81, + "probability": 0.8939 + }, + { + "start": 7424.32, + "end": 7425.42, + "probability": 0.8416 + }, + { + "start": 7426.46, + "end": 7428.26, + "probability": 0.8647 + }, + { + "start": 7429.26, + "end": 7430.36, + "probability": 0.3278 + }, + { + "start": 7431.82, + "end": 7433.94, + "probability": 0.9427 + }, + { + "start": 7435.68, + "end": 7437.06, + "probability": 0.8658 + }, + { + "start": 7438.02, + "end": 7440.74, + "probability": 0.9746 + }, + { + "start": 7441.42, + "end": 7442.78, + "probability": 0.9215 + }, + { + "start": 7442.94, + "end": 7444.08, + "probability": 0.9257 + }, + { + "start": 7444.16, + "end": 7446.94, + "probability": 0.9245 + }, + { + "start": 7448.06, + "end": 7452.16, + "probability": 0.9544 + }, + { + "start": 7454.02, + "end": 7457.0, + "probability": 0.9404 + }, + { + "start": 7457.78, + "end": 7459.06, + "probability": 0.9823 + }, + { + "start": 7460.28, + "end": 7461.28, + "probability": 0.8954 + }, + { + "start": 7462.6, + "end": 7467.42, + "probability": 0.988 + }, + { + "start": 7467.42, + "end": 7471.78, + "probability": 0.7078 + }, + { + "start": 7473.62, + "end": 7475.22, + "probability": 0.9629 + }, + { + "start": 7475.38, + "end": 7480.12, + "probability": 0.9985 + }, + { + "start": 7480.56, + "end": 7483.93, + "probability": 0.9816 + }, + { + "start": 7484.96, + "end": 7485.46, + "probability": 0.8159 + }, + { + "start": 7486.1, + "end": 7487.46, + "probability": 0.9746 + }, + { + "start": 7487.52, + "end": 7487.98, + "probability": 0.599 + }, + { + "start": 7488.72, + "end": 7489.74, + "probability": 0.8078 + }, + { + "start": 7489.88, + "end": 7491.16, + "probability": 0.8347 + }, + { + "start": 7491.22, + "end": 7491.86, + "probability": 0.8208 + }, + { + "start": 7491.96, + "end": 7492.68, + "probability": 0.837 + }, + { + "start": 7493.62, + "end": 7498.84, + "probability": 0.9103 + }, + { + "start": 7499.64, + "end": 7501.36, + "probability": 0.9831 + }, + { + "start": 7501.92, + "end": 7504.12, + "probability": 0.9966 + }, + { + "start": 7504.94, + "end": 7505.68, + "probability": 0.9494 + }, + { + "start": 7506.72, + "end": 7507.46, + "probability": 0.9733 + }, + { + "start": 7508.64, + "end": 7509.46, + "probability": 0.782 + }, + { + "start": 7512.56, + "end": 7513.32, + "probability": 0.3299 + }, + { + "start": 7513.32, + "end": 7514.88, + "probability": 0.5693 + }, + { + "start": 7515.06, + "end": 7516.28, + "probability": 0.731 + }, + { + "start": 7516.84, + "end": 7522.82, + "probability": 0.9496 + }, + { + "start": 7523.5, + "end": 7526.82, + "probability": 0.6426 + }, + { + "start": 7527.46, + "end": 7530.44, + "probability": 0.8284 + }, + { + "start": 7531.24, + "end": 7532.56, + "probability": 0.8406 + }, + { + "start": 7533.34, + "end": 7536.96, + "probability": 0.7969 + }, + { + "start": 7538.48, + "end": 7541.3, + "probability": 0.7181 + }, + { + "start": 7544.18, + "end": 7548.52, + "probability": 0.9961 + }, + { + "start": 7549.48, + "end": 7555.14, + "probability": 0.9874 + }, + { + "start": 7556.44, + "end": 7560.44, + "probability": 0.8388 + }, + { + "start": 7562.64, + "end": 7563.18, + "probability": 0.9884 + }, + { + "start": 7565.82, + "end": 7566.84, + "probability": 0.4576 + }, + { + "start": 7570.93, + "end": 7575.32, + "probability": 0.9849 + }, + { + "start": 7576.9, + "end": 7578.22, + "probability": 0.9928 + }, + { + "start": 7579.74, + "end": 7582.9, + "probability": 0.959 + }, + { + "start": 7584.38, + "end": 7586.32, + "probability": 0.9803 + }, + { + "start": 7587.48, + "end": 7589.1, + "probability": 0.7459 + }, + { + "start": 7589.78, + "end": 7591.12, + "probability": 0.8044 + }, + { + "start": 7591.86, + "end": 7593.04, + "probability": 0.6183 + }, + { + "start": 7594.12, + "end": 7595.44, + "probability": 0.8184 + }, + { + "start": 7596.66, + "end": 7600.26, + "probability": 0.9729 + }, + { + "start": 7601.3, + "end": 7602.88, + "probability": 0.8552 + }, + { + "start": 7603.86, + "end": 7606.5, + "probability": 0.9949 + }, + { + "start": 7607.98, + "end": 7609.22, + "probability": 0.7606 + }, + { + "start": 7610.54, + "end": 7612.88, + "probability": 0.8479 + }, + { + "start": 7613.2, + "end": 7614.23, + "probability": 0.9951 + }, + { + "start": 7615.38, + "end": 7619.68, + "probability": 0.968 + }, + { + "start": 7620.88, + "end": 7622.78, + "probability": 0.9895 + }, + { + "start": 7622.92, + "end": 7624.4, + "probability": 0.999 + }, + { + "start": 7625.04, + "end": 7626.7, + "probability": 0.9995 + }, + { + "start": 7627.0, + "end": 7628.48, + "probability": 0.9956 + }, + { + "start": 7629.0, + "end": 7630.34, + "probability": 0.3897 + }, + { + "start": 7631.06, + "end": 7634.12, + "probability": 0.8252 + }, + { + "start": 7635.14, + "end": 7636.28, + "probability": 0.9734 + }, + { + "start": 7637.04, + "end": 7639.86, + "probability": 0.9844 + }, + { + "start": 7640.38, + "end": 7641.24, + "probability": 0.6503 + }, + { + "start": 7642.16, + "end": 7643.22, + "probability": 0.9227 + }, + { + "start": 7644.04, + "end": 7646.1, + "probability": 0.9042 + }, + { + "start": 7646.88, + "end": 7653.88, + "probability": 0.8975 + }, + { + "start": 7654.7, + "end": 7655.78, + "probability": 0.8076 + }, + { + "start": 7656.56, + "end": 7663.2, + "probability": 0.9801 + }, + { + "start": 7664.3, + "end": 7665.56, + "probability": 0.9048 + }, + { + "start": 7665.74, + "end": 7666.36, + "probability": 0.5454 + }, + { + "start": 7666.84, + "end": 7668.36, + "probability": 0.6054 + }, + { + "start": 7668.36, + "end": 7673.62, + "probability": 0.9947 + }, + { + "start": 7673.62, + "end": 7676.12, + "probability": 0.817 + }, + { + "start": 7676.82, + "end": 7678.44, + "probability": 0.862 + }, + { + "start": 7678.46, + "end": 7679.18, + "probability": 0.5504 + }, + { + "start": 7679.2, + "end": 7680.06, + "probability": 0.755 + }, + { + "start": 7680.82, + "end": 7683.63, + "probability": 0.8184 + }, + { + "start": 7685.36, + "end": 7687.04, + "probability": 0.5217 + }, + { + "start": 7687.16, + "end": 7690.48, + "probability": 0.8211 + }, + { + "start": 7692.32, + "end": 7697.46, + "probability": 0.9106 + }, + { + "start": 7698.6, + "end": 7699.28, + "probability": 0.8911 + }, + { + "start": 7699.46, + "end": 7699.92, + "probability": 0.8412 + }, + { + "start": 7699.94, + "end": 7701.12, + "probability": 0.959 + }, + { + "start": 7701.32, + "end": 7702.5, + "probability": 0.4098 + }, + { + "start": 7704.9, + "end": 7706.88, + "probability": 0.8994 + }, + { + "start": 7708.34, + "end": 7709.64, + "probability": 0.9743 + }, + { + "start": 7709.78, + "end": 7710.92, + "probability": 0.9902 + }, + { + "start": 7711.4, + "end": 7713.58, + "probability": 0.9793 + }, + { + "start": 7714.86, + "end": 7717.2, + "probability": 0.981 + }, + { + "start": 7718.94, + "end": 7721.26, + "probability": 0.9929 + }, + { + "start": 7722.58, + "end": 7723.64, + "probability": 0.6979 + }, + { + "start": 7723.76, + "end": 7723.96, + "probability": 0.4477 + }, + { + "start": 7724.08, + "end": 7726.98, + "probability": 0.8643 + }, + { + "start": 7727.66, + "end": 7729.68, + "probability": 0.9825 + }, + { + "start": 7730.22, + "end": 7731.98, + "probability": 0.957 + }, + { + "start": 7733.38, + "end": 7736.02, + "probability": 0.9133 + }, + { + "start": 7736.56, + "end": 7738.66, + "probability": 0.7497 + }, + { + "start": 7738.78, + "end": 7740.44, + "probability": 0.9731 + }, + { + "start": 7741.3, + "end": 7743.06, + "probability": 0.7033 + }, + { + "start": 7744.08, + "end": 7747.28, + "probability": 0.9438 + }, + { + "start": 7748.1, + "end": 7750.08, + "probability": 0.8208 + }, + { + "start": 7750.78, + "end": 7751.44, + "probability": 0.9632 + }, + { + "start": 7752.54, + "end": 7754.08, + "probability": 0.931 + }, + { + "start": 7754.42, + "end": 7757.88, + "probability": 0.9946 + }, + { + "start": 7758.02, + "end": 7758.47, + "probability": 0.9189 + }, + { + "start": 7759.18, + "end": 7761.62, + "probability": 0.9944 + }, + { + "start": 7763.74, + "end": 7765.86, + "probability": 0.7642 + }, + { + "start": 7766.08, + "end": 7766.52, + "probability": 0.3801 + }, + { + "start": 7766.68, + "end": 7766.8, + "probability": 0.7175 + }, + { + "start": 7766.94, + "end": 7767.34, + "probability": 0.9103 + }, + { + "start": 7767.52, + "end": 7769.08, + "probability": 0.9152 + }, + { + "start": 7769.14, + "end": 7771.32, + "probability": 0.75 + }, + { + "start": 7779.14, + "end": 7780.4, + "probability": 0.5938 + }, + { + "start": 7781.48, + "end": 7787.88, + "probability": 0.9555 + }, + { + "start": 7787.88, + "end": 7793.86, + "probability": 0.9954 + }, + { + "start": 7794.36, + "end": 7795.12, + "probability": 0.8167 + }, + { + "start": 7795.16, + "end": 7799.88, + "probability": 0.9884 + }, + { + "start": 7800.68, + "end": 7804.0, + "probability": 0.9493 + }, + { + "start": 7804.1, + "end": 7810.48, + "probability": 0.9903 + }, + { + "start": 7811.88, + "end": 7814.58, + "probability": 0.8525 + }, + { + "start": 7815.6, + "end": 7818.52, + "probability": 0.957 + }, + { + "start": 7819.46, + "end": 7825.36, + "probability": 0.9982 + }, + { + "start": 7826.2, + "end": 7828.17, + "probability": 0.8292 + }, + { + "start": 7828.56, + "end": 7834.78, + "probability": 0.9741 + }, + { + "start": 7835.96, + "end": 7837.02, + "probability": 0.9636 + }, + { + "start": 7837.68, + "end": 7838.2, + "probability": 0.7355 + }, + { + "start": 7838.46, + "end": 7844.92, + "probability": 0.9959 + }, + { + "start": 7845.42, + "end": 7850.9, + "probability": 0.8607 + }, + { + "start": 7851.1, + "end": 7852.9, + "probability": 0.9517 + }, + { + "start": 7854.06, + "end": 7855.9, + "probability": 0.7206 + }, + { + "start": 7856.68, + "end": 7860.26, + "probability": 0.9951 + }, + { + "start": 7861.16, + "end": 7868.0, + "probability": 0.9712 + }, + { + "start": 7869.1, + "end": 7870.4, + "probability": 0.7446 + }, + { + "start": 7871.16, + "end": 7871.92, + "probability": 0.7949 + }, + { + "start": 7872.54, + "end": 7873.9, + "probability": 0.8413 + }, + { + "start": 7874.52, + "end": 7876.96, + "probability": 0.6892 + }, + { + "start": 7877.54, + "end": 7880.7, + "probability": 0.5545 + }, + { + "start": 7882.34, + "end": 7886.56, + "probability": 0.8132 + }, + { + "start": 7888.52, + "end": 7890.5, + "probability": 0.6735 + }, + { + "start": 7891.06, + "end": 7893.38, + "probability": 0.8806 + }, + { + "start": 7895.42, + "end": 7897.18, + "probability": 0.7823 + }, + { + "start": 7897.28, + "end": 7898.5, + "probability": 0.7319 + }, + { + "start": 7898.7, + "end": 7902.02, + "probability": 0.996 + }, + { + "start": 7903.02, + "end": 7903.88, + "probability": 0.9729 + }, + { + "start": 7904.7, + "end": 7908.28, + "probability": 0.9121 + }, + { + "start": 7909.12, + "end": 7914.52, + "probability": 0.8813 + }, + { + "start": 7915.4, + "end": 7918.11, + "probability": 0.9883 + }, + { + "start": 7918.82, + "end": 7920.34, + "probability": 0.8749 + }, + { + "start": 7920.68, + "end": 7921.06, + "probability": 0.8464 + }, + { + "start": 7922.38, + "end": 7924.52, + "probability": 0.9893 + }, + { + "start": 7925.16, + "end": 7925.74, + "probability": 0.6975 + }, + { + "start": 7925.98, + "end": 7928.74, + "probability": 0.7 + }, + { + "start": 7929.86, + "end": 7933.2, + "probability": 0.8246 + }, + { + "start": 7934.28, + "end": 7943.72, + "probability": 0.2303 + }, + { + "start": 7943.72, + "end": 7947.76, + "probability": 0.8905 + }, + { + "start": 7949.24, + "end": 7951.72, + "probability": 0.6823 + }, + { + "start": 7955.33, + "end": 7957.72, + "probability": 0.362 + }, + { + "start": 7958.96, + "end": 7962.3, + "probability": 0.8334 + }, + { + "start": 7963.14, + "end": 7963.42, + "probability": 0.9805 + }, + { + "start": 7964.22, + "end": 7965.33, + "probability": 0.6806 + }, + { + "start": 7966.76, + "end": 7968.4, + "probability": 0.8651 + }, + { + "start": 7969.26, + "end": 7969.64, + "probability": 0.9774 + }, + { + "start": 7971.44, + "end": 7972.34, + "probability": 0.8935 + }, + { + "start": 7973.2, + "end": 7973.52, + "probability": 0.9855 + }, + { + "start": 7974.24, + "end": 7975.12, + "probability": 0.8382 + }, + { + "start": 7975.94, + "end": 7976.2, + "probability": 0.723 + }, + { + "start": 7976.82, + "end": 7977.64, + "probability": 0.5281 + }, + { + "start": 7979.68, + "end": 7980.4, + "probability": 0.9728 + }, + { + "start": 7981.24, + "end": 7981.96, + "probability": 0.6831 + }, + { + "start": 7982.88, + "end": 7983.36, + "probability": 0.9901 + }, + { + "start": 7984.12, + "end": 7984.92, + "probability": 0.6293 + }, + { + "start": 7986.18, + "end": 7989.74, + "probability": 0.9712 + }, + { + "start": 7992.0, + "end": 7994.08, + "probability": 0.9907 + }, + { + "start": 7995.3, + "end": 7995.8, + "probability": 0.9937 + }, + { + "start": 7997.32, + "end": 7999.98, + "probability": 0.9181 + }, + { + "start": 8001.32, + "end": 8003.06, + "probability": 0.7985 + }, + { + "start": 8004.24, + "end": 8004.7, + "probability": 0.9126 + }, + { + "start": 8005.58, + "end": 8006.46, + "probability": 0.7143 + }, + { + "start": 8007.14, + "end": 8008.66, + "probability": 0.9014 + }, + { + "start": 8009.85, + "end": 8012.12, + "probability": 0.9035 + }, + { + "start": 8015.08, + "end": 8016.56, + "probability": 0.936 + }, + { + "start": 8017.4, + "end": 8018.84, + "probability": 0.9888 + }, + { + "start": 8020.3, + "end": 8021.42, + "probability": 0.979 + }, + { + "start": 8022.16, + "end": 8022.48, + "probability": 0.7383 + }, + { + "start": 8023.76, + "end": 8024.22, + "probability": 0.7097 + }, + { + "start": 8024.88, + "end": 8025.68, + "probability": 0.846 + }, + { + "start": 8026.68, + "end": 8027.0, + "probability": 0.9601 + }, + { + "start": 8027.64, + "end": 8028.6, + "probability": 0.9095 + }, + { + "start": 8029.36, + "end": 8031.3, + "probability": 0.8556 + }, + { + "start": 8032.72, + "end": 8033.32, + "probability": 0.9727 + }, + { + "start": 8033.86, + "end": 8034.68, + "probability": 0.9828 + }, + { + "start": 8035.44, + "end": 8035.8, + "probability": 0.9888 + }, + { + "start": 8036.4, + "end": 8037.14, + "probability": 0.9384 + }, + { + "start": 8038.14, + "end": 8039.78, + "probability": 0.9927 + }, + { + "start": 8040.74, + "end": 8041.28, + "probability": 0.9865 + }, + { + "start": 8042.4, + "end": 8043.44, + "probability": 0.9235 + }, + { + "start": 8044.44, + "end": 8044.88, + "probability": 0.9919 + }, + { + "start": 8045.68, + "end": 8046.54, + "probability": 0.3967 + }, + { + "start": 8050.16, + "end": 8051.98, + "probability": 0.8136 + }, + { + "start": 8053.18, + "end": 8053.72, + "probability": 0.8091 + }, + { + "start": 8054.8, + "end": 8055.68, + "probability": 0.7945 + }, + { + "start": 8058.11, + "end": 8060.08, + "probability": 0.968 + }, + { + "start": 8060.72, + "end": 8062.16, + "probability": 0.901 + }, + { + "start": 8063.06, + "end": 8063.46, + "probability": 0.9894 + }, + { + "start": 8065.28, + "end": 8066.1, + "probability": 0.6834 + }, + { + "start": 8066.9, + "end": 8068.5, + "probability": 0.9749 + }, + { + "start": 8071.58, + "end": 8073.16, + "probability": 0.8975 + }, + { + "start": 8074.1, + "end": 8075.62, + "probability": 0.9558 + }, + { + "start": 8076.4, + "end": 8076.88, + "probability": 0.7996 + }, + { + "start": 8077.92, + "end": 8078.66, + "probability": 0.833 + }, + { + "start": 8079.52, + "end": 8081.04, + "probability": 0.8007 + }, + { + "start": 8083.08, + "end": 8086.14, + "probability": 0.9901 + }, + { + "start": 8087.1, + "end": 8088.96, + "probability": 0.8035 + }, + { + "start": 8090.02, + "end": 8090.48, + "probability": 0.9967 + }, + { + "start": 8091.52, + "end": 8092.36, + "probability": 0.9864 + }, + { + "start": 8093.72, + "end": 8095.66, + "probability": 0.9836 + }, + { + "start": 8098.04, + "end": 8098.5, + "probability": 0.9959 + }, + { + "start": 8099.2, + "end": 8100.06, + "probability": 0.7925 + }, + { + "start": 8101.24, + "end": 8101.68, + "probability": 0.6638 + }, + { + "start": 8102.54, + "end": 8103.46, + "probability": 0.6404 + }, + { + "start": 8104.34, + "end": 8105.96, + "probability": 0.9092 + }, + { + "start": 8106.88, + "end": 8108.84, + "probability": 0.7884 + }, + { + "start": 8109.3, + "end": 8111.14, + "probability": 0.9291 + }, + { + "start": 8111.64, + "end": 8113.5, + "probability": 0.9805 + }, + { + "start": 8114.62, + "end": 8115.16, + "probability": 0.9764 + }, + { + "start": 8115.76, + "end": 8116.44, + "probability": 0.9315 + }, + { + "start": 8117.58, + "end": 8119.24, + "probability": 0.9497 + }, + { + "start": 8121.36, + "end": 8122.8, + "probability": 0.6262 + }, + { + "start": 8123.88, + "end": 8124.36, + "probability": 0.6862 + }, + { + "start": 8125.46, + "end": 8126.64, + "probability": 0.8566 + }, + { + "start": 8127.72, + "end": 8128.0, + "probability": 0.9741 + }, + { + "start": 8128.66, + "end": 8129.5, + "probability": 0.9462 + }, + { + "start": 8130.46, + "end": 8130.9, + "probability": 0.9349 + }, + { + "start": 8131.62, + "end": 8132.3, + "probability": 0.9132 + }, + { + "start": 8133.44, + "end": 8135.0, + "probability": 0.6526 + }, + { + "start": 8136.02, + "end": 8136.3, + "probability": 0.9944 + }, + { + "start": 8136.82, + "end": 8137.46, + "probability": 0.9392 + }, + { + "start": 8138.5, + "end": 8138.76, + "probability": 0.9937 + }, + { + "start": 8139.42, + "end": 8142.78, + "probability": 0.7905 + }, + { + "start": 8143.47, + "end": 8145.2, + "probability": 0.9902 + }, + { + "start": 8146.32, + "end": 8146.86, + "probability": 0.5582 + }, + { + "start": 8147.54, + "end": 8148.3, + "probability": 0.8595 + }, + { + "start": 8149.48, + "end": 8151.0, + "probability": 0.8674 + }, + { + "start": 8151.9, + "end": 8153.86, + "probability": 0.6929 + }, + { + "start": 8154.6, + "end": 8155.58, + "probability": 0.9025 + }, + { + "start": 8156.84, + "end": 8157.42, + "probability": 0.9762 + }, + { + "start": 8158.36, + "end": 8159.32, + "probability": 0.8616 + }, + { + "start": 8163.0, + "end": 8164.94, + "probability": 0.7277 + }, + { + "start": 8168.54, + "end": 8169.32, + "probability": 0.4921 + }, + { + "start": 8170.32, + "end": 8170.6, + "probability": 0.7646 + }, + { + "start": 8171.54, + "end": 8172.3, + "probability": 0.7379 + }, + { + "start": 8173.74, + "end": 8175.79, + "probability": 0.9232 + }, + { + "start": 8176.9, + "end": 8178.32, + "probability": 0.9038 + }, + { + "start": 8179.54, + "end": 8180.24, + "probability": 0.8188 + }, + { + "start": 8181.3, + "end": 8182.1, + "probability": 0.9871 + }, + { + "start": 8183.48, + "end": 8185.34, + "probability": 0.9636 + }, + { + "start": 8186.2, + "end": 8186.64, + "probability": 0.9754 + }, + { + "start": 8187.36, + "end": 8188.34, + "probability": 0.9906 + }, + { + "start": 8189.44, + "end": 8191.3, + "probability": 0.8979 + }, + { + "start": 8192.14, + "end": 8192.48, + "probability": 0.741 + }, + { + "start": 8193.58, + "end": 8194.4, + "probability": 0.4559 + }, + { + "start": 8195.56, + "end": 8196.04, + "probability": 0.9133 + }, + { + "start": 8196.8, + "end": 8197.72, + "probability": 0.8865 + }, + { + "start": 8199.7, + "end": 8202.28, + "probability": 0.8722 + }, + { + "start": 8202.82, + "end": 8203.66, + "probability": 0.7268 + }, + { + "start": 8204.62, + "end": 8205.06, + "probability": 0.7827 + }, + { + "start": 8205.92, + "end": 8207.3, + "probability": 0.9652 + }, + { + "start": 8209.14, + "end": 8213.2, + "probability": 0.8135 + }, + { + "start": 8215.5, + "end": 8215.98, + "probability": 0.9756 + }, + { + "start": 8217.28, + "end": 8218.04, + "probability": 0.9539 + }, + { + "start": 8218.92, + "end": 8220.94, + "probability": 0.7477 + }, + { + "start": 8221.6, + "end": 8223.16, + "probability": 0.7311 + }, + { + "start": 8225.12, + "end": 8225.6, + "probability": 0.8937 + }, + { + "start": 8226.52, + "end": 8227.48, + "probability": 0.8578 + }, + { + "start": 8230.9, + "end": 8231.68, + "probability": 0.846 + }, + { + "start": 8232.32, + "end": 8233.34, + "probability": 0.8497 + }, + { + "start": 8234.54, + "end": 8234.96, + "probability": 0.9402 + }, + { + "start": 8235.66, + "end": 8236.42, + "probability": 0.9499 + }, + { + "start": 8237.44, + "end": 8237.94, + "probability": 0.9686 + }, + { + "start": 8239.0, + "end": 8242.72, + "probability": 0.918 + }, + { + "start": 8243.36, + "end": 8245.12, + "probability": 0.798 + }, + { + "start": 8249.94, + "end": 8252.24, + "probability": 0.4725 + }, + { + "start": 8253.08, + "end": 8253.58, + "probability": 0.8921 + }, + { + "start": 8254.18, + "end": 8255.1, + "probability": 0.6805 + }, + { + "start": 8256.9, + "end": 8259.3, + "probability": 0.8536 + }, + { + "start": 8263.48, + "end": 8265.48, + "probability": 0.642 + }, + { + "start": 8266.32, + "end": 8268.42, + "probability": 0.8172 + }, + { + "start": 8269.4, + "end": 8269.84, + "probability": 0.6815 + }, + { + "start": 8270.72, + "end": 8271.6, + "probability": 0.8856 + }, + { + "start": 8274.26, + "end": 8275.48, + "probability": 0.1685 + }, + { + "start": 8276.26, + "end": 8277.26, + "probability": 0.8897 + }, + { + "start": 8278.0, + "end": 8281.5, + "probability": 0.9846 + }, + { + "start": 8282.4, + "end": 8283.1, + "probability": 0.9755 + }, + { + "start": 8284.28, + "end": 8285.28, + "probability": 0.8568 + }, + { + "start": 8286.08, + "end": 8289.06, + "probability": 0.7229 + }, + { + "start": 8289.96, + "end": 8292.2, + "probability": 0.7243 + }, + { + "start": 8292.98, + "end": 8294.12, + "probability": 0.7666 + }, + { + "start": 8294.96, + "end": 8295.94, + "probability": 0.9213 + }, + { + "start": 8298.36, + "end": 8300.42, + "probability": 0.8141 + }, + { + "start": 8304.36, + "end": 8304.98, + "probability": 0.9598 + }, + { + "start": 8305.98, + "end": 8307.12, + "probability": 0.9149 + }, + { + "start": 8308.52, + "end": 8310.82, + "probability": 0.9238 + }, + { + "start": 8314.08, + "end": 8316.8, + "probability": 0.6246 + }, + { + "start": 8319.13, + "end": 8321.86, + "probability": 0.7632 + }, + { + "start": 8322.84, + "end": 8323.54, + "probability": 0.8569 + }, + { + "start": 8324.32, + "end": 8324.74, + "probability": 0.935 + }, + { + "start": 8326.95, + "end": 8328.34, + "probability": 0.8099 + }, + { + "start": 8331.36, + "end": 8331.92, + "probability": 0.9645 + }, + { + "start": 8332.74, + "end": 8333.46, + "probability": 0.9789 + }, + { + "start": 8334.62, + "end": 8335.12, + "probability": 0.9281 + }, + { + "start": 8335.68, + "end": 8336.7, + "probability": 0.9268 + }, + { + "start": 8337.78, + "end": 8338.22, + "probability": 0.9863 + }, + { + "start": 8339.22, + "end": 8340.3, + "probability": 0.9583 + }, + { + "start": 8342.94, + "end": 8343.4, + "probability": 0.6584 + }, + { + "start": 8344.2, + "end": 8345.12, + "probability": 0.6365 + }, + { + "start": 8346.18, + "end": 8346.48, + "probability": 0.959 + }, + { + "start": 8347.14, + "end": 8348.26, + "probability": 0.7823 + }, + { + "start": 8349.54, + "end": 8349.92, + "probability": 0.9743 + }, + { + "start": 8350.52, + "end": 8351.36, + "probability": 0.9457 + }, + { + "start": 8352.26, + "end": 8355.64, + "probability": 0.944 + }, + { + "start": 8356.36, + "end": 8358.76, + "probability": 0.9547 + }, + { + "start": 8359.4, + "end": 8360.88, + "probability": 0.9637 + }, + { + "start": 8361.92, + "end": 8364.2, + "probability": 0.9701 + }, + { + "start": 8365.32, + "end": 8367.08, + "probability": 0.959 + }, + { + "start": 8367.9, + "end": 8368.34, + "probability": 0.662 + }, + { + "start": 8368.9, + "end": 8369.7, + "probability": 0.6785 + }, + { + "start": 8372.22, + "end": 8374.34, + "probability": 0.7346 + }, + { + "start": 8374.86, + "end": 8375.8, + "probability": 0.9167 + }, + { + "start": 8376.78, + "end": 8378.58, + "probability": 0.9695 + }, + { + "start": 8381.38, + "end": 8382.34, + "probability": 0.4801 + }, + { + "start": 8382.42, + "end": 8387.0, + "probability": 0.9418 + }, + { + "start": 8387.6, + "end": 8389.18, + "probability": 0.5559 + }, + { + "start": 8394.06, + "end": 8394.64, + "probability": 0.5341 + }, + { + "start": 8396.38, + "end": 8398.02, + "probability": 0.7824 + }, + { + "start": 8399.52, + "end": 8402.84, + "probability": 0.9624 + }, + { + "start": 8405.58, + "end": 8407.5, + "probability": 0.93 + }, + { + "start": 8408.22, + "end": 8409.72, + "probability": 0.9919 + }, + { + "start": 8411.2, + "end": 8413.78, + "probability": 0.7758 + }, + { + "start": 8414.86, + "end": 8416.3, + "probability": 0.5534 + }, + { + "start": 8418.1, + "end": 8419.84, + "probability": 0.9328 + }, + { + "start": 8420.6, + "end": 8422.76, + "probability": 0.8582 + }, + { + "start": 8424.22, + "end": 8429.7, + "probability": 0.9622 + }, + { + "start": 8431.12, + "end": 8432.62, + "probability": 0.9806 + }, + { + "start": 8434.24, + "end": 8438.14, + "probability": 0.9596 + }, + { + "start": 8438.88, + "end": 8440.24, + "probability": 0.9207 + }, + { + "start": 8440.88, + "end": 8441.8, + "probability": 0.8643 + }, + { + "start": 8442.58, + "end": 8443.5, + "probability": 0.7883 + }, + { + "start": 8444.7, + "end": 8445.56, + "probability": 0.9418 + }, + { + "start": 8446.96, + "end": 8448.72, + "probability": 0.9065 + }, + { + "start": 8450.58, + "end": 8451.04, + "probability": 0.9329 + }, + { + "start": 8451.88, + "end": 8454.6, + "probability": 0.9031 + }, + { + "start": 8455.52, + "end": 8457.4, + "probability": 0.9838 + }, + { + "start": 8458.5, + "end": 8460.46, + "probability": 0.9526 + }, + { + "start": 8461.1, + "end": 8462.86, + "probability": 0.9697 + }, + { + "start": 8463.76, + "end": 8464.74, + "probability": 0.8264 + }, + { + "start": 8467.76, + "end": 8468.32, + "probability": 0.7094 + }, + { + "start": 8469.56, + "end": 8471.98, + "probability": 0.7358 + }, + { + "start": 8472.26, + "end": 8473.94, + "probability": 0.9316 + }, + { + "start": 8475.06, + "end": 8475.82, + "probability": 0.9676 + }, + { + "start": 8477.0, + "end": 8478.02, + "probability": 0.9801 + }, + { + "start": 8479.08, + "end": 8480.96, + "probability": 0.985 + }, + { + "start": 8483.56, + "end": 8486.02, + "probability": 0.9657 + }, + { + "start": 8487.62, + "end": 8489.52, + "probability": 0.6083 + }, + { + "start": 8490.56, + "end": 8492.34, + "probability": 0.8665 + }, + { + "start": 8492.86, + "end": 8494.56, + "probability": 0.9485 + }, + { + "start": 8495.88, + "end": 8496.98, + "probability": 0.4183 + }, + { + "start": 8498.36, + "end": 8499.48, + "probability": 0.4613 + }, + { + "start": 8500.42, + "end": 8501.32, + "probability": 0.8892 + }, + { + "start": 8504.86, + "end": 8506.06, + "probability": 0.6137 + }, + { + "start": 8507.12, + "end": 8509.14, + "probability": 0.9041 + }, + { + "start": 8510.16, + "end": 8512.3, + "probability": 0.9704 + }, + { + "start": 8512.96, + "end": 8513.7, + "probability": 0.9827 + }, + { + "start": 8515.22, + "end": 8516.04, + "probability": 0.8838 + }, + { + "start": 8516.08, + "end": 8517.46, + "probability": 0.9775 + }, + { + "start": 8517.88, + "end": 8519.48, + "probability": 0.9534 + }, + { + "start": 8520.26, + "end": 8525.12, + "probability": 0.8934 + }, + { + "start": 8525.56, + "end": 8527.64, + "probability": 0.6354 + }, + { + "start": 8527.74, + "end": 8528.0, + "probability": 0.2091 + }, + { + "start": 8528.0, + "end": 8529.26, + "probability": 0.4857 + }, + { + "start": 8529.62, + "end": 8531.14, + "probability": 0.9031 + }, + { + "start": 8531.98, + "end": 8532.26, + "probability": 0.4117 + }, + { + "start": 8532.3, + "end": 8533.02, + "probability": 0.3988 + }, + { + "start": 8533.04, + "end": 8534.8, + "probability": 0.9518 + }, + { + "start": 8545.2, + "end": 8545.6, + "probability": 0.0314 + }, + { + "start": 8558.92, + "end": 8559.4, + "probability": 0.1101 + }, + { + "start": 8562.46, + "end": 8565.34, + "probability": 0.0189 + }, + { + "start": 8565.34, + "end": 8565.47, + "probability": 0.0414 + }, + { + "start": 8567.36, + "end": 8572.68, + "probability": 0.0249 + }, + { + "start": 8572.68, + "end": 8573.78, + "probability": 0.0195 + }, + { + "start": 8638.6, + "end": 8642.7, + "probability": 0.8869 + }, + { + "start": 8642.9, + "end": 8644.86, + "probability": 0.8903 + }, + { + "start": 8645.36, + "end": 8646.9, + "probability": 0.4578 + }, + { + "start": 8647.5, + "end": 8651.42, + "probability": 0.9582 + }, + { + "start": 8651.98, + "end": 8654.24, + "probability": 0.868 + }, + { + "start": 8654.9, + "end": 8658.24, + "probability": 0.8991 + }, + { + "start": 8667.62, + "end": 8671.0, + "probability": 0.5955 + }, + { + "start": 8673.18, + "end": 8678.1, + "probability": 0.981 + }, + { + "start": 8680.04, + "end": 8681.92, + "probability": 0.9971 + }, + { + "start": 8683.14, + "end": 8684.84, + "probability": 0.9949 + }, + { + "start": 8686.1, + "end": 8693.72, + "probability": 0.8747 + }, + { + "start": 8695.5, + "end": 8697.52, + "probability": 0.9694 + }, + { + "start": 8698.72, + "end": 8703.94, + "probability": 0.9993 + }, + { + "start": 8704.12, + "end": 8708.1, + "probability": 0.999 + }, + { + "start": 8710.1, + "end": 8712.22, + "probability": 0.999 + }, + { + "start": 8713.26, + "end": 8716.1, + "probability": 0.9989 + }, + { + "start": 8716.1, + "end": 8718.58, + "probability": 0.9867 + }, + { + "start": 8719.76, + "end": 8721.58, + "probability": 0.9969 + }, + { + "start": 8722.78, + "end": 8725.58, + "probability": 0.9985 + }, + { + "start": 8725.58, + "end": 8727.58, + "probability": 0.9941 + }, + { + "start": 8729.2, + "end": 8729.82, + "probability": 0.5297 + }, + { + "start": 8730.54, + "end": 8731.54, + "probability": 0.8482 + }, + { + "start": 8732.6, + "end": 8734.92, + "probability": 0.7481 + }, + { + "start": 8738.28, + "end": 8743.88, + "probability": 0.9948 + }, + { + "start": 8744.56, + "end": 8748.14, + "probability": 0.9133 + }, + { + "start": 8748.82, + "end": 8752.22, + "probability": 0.9919 + }, + { + "start": 8752.98, + "end": 8756.22, + "probability": 0.9987 + }, + { + "start": 8757.42, + "end": 8764.38, + "probability": 0.9945 + }, + { + "start": 8764.38, + "end": 8770.0, + "probability": 0.9946 + }, + { + "start": 8770.9, + "end": 8777.24, + "probability": 0.9976 + }, + { + "start": 8777.9, + "end": 8779.66, + "probability": 0.9976 + }, + { + "start": 8780.8, + "end": 8786.66, + "probability": 0.9674 + }, + { + "start": 8786.84, + "end": 8790.02, + "probability": 0.9758 + }, + { + "start": 8791.12, + "end": 8795.28, + "probability": 0.9949 + }, + { + "start": 8797.3, + "end": 8801.34, + "probability": 0.9982 + }, + { + "start": 8801.34, + "end": 8806.94, + "probability": 0.9988 + }, + { + "start": 8806.94, + "end": 8810.76, + "probability": 0.9971 + }, + { + "start": 8811.68, + "end": 8813.82, + "probability": 0.9277 + }, + { + "start": 8814.98, + "end": 8823.96, + "probability": 0.972 + }, + { + "start": 8824.02, + "end": 8825.24, + "probability": 0.8673 + }, + { + "start": 8825.34, + "end": 8826.16, + "probability": 0.4276 + }, + { + "start": 8826.52, + "end": 8829.36, + "probability": 0.9948 + }, + { + "start": 8830.36, + "end": 8833.06, + "probability": 0.8162 + }, + { + "start": 8833.1, + "end": 8834.08, + "probability": 0.7362 + }, + { + "start": 8834.78, + "end": 8838.14, + "probability": 0.9979 + }, + { + "start": 8838.94, + "end": 8843.36, + "probability": 0.9498 + }, + { + "start": 8844.0, + "end": 8846.86, + "probability": 0.9539 + }, + { + "start": 8848.7, + "end": 8850.78, + "probability": 0.9978 + }, + { + "start": 8851.48, + "end": 8854.46, + "probability": 0.9766 + }, + { + "start": 8855.12, + "end": 8859.6, + "probability": 0.9985 + }, + { + "start": 8860.34, + "end": 8862.2, + "probability": 0.9155 + }, + { + "start": 8862.38, + "end": 8865.66, + "probability": 0.8923 + }, + { + "start": 8866.72, + "end": 8867.14, + "probability": 0.9047 + }, + { + "start": 8867.92, + "end": 8872.16, + "probability": 0.9984 + }, + { + "start": 8872.82, + "end": 8873.96, + "probability": 0.6878 + }, + { + "start": 8875.08, + "end": 8876.22, + "probability": 0.726 + }, + { + "start": 8876.32, + "end": 8881.14, + "probability": 0.9791 + }, + { + "start": 8881.64, + "end": 8884.16, + "probability": 0.9863 + }, + { + "start": 8885.34, + "end": 8889.98, + "probability": 0.9791 + }, + { + "start": 8891.26, + "end": 8891.92, + "probability": 0.7633 + }, + { + "start": 8892.54, + "end": 8895.62, + "probability": 0.9974 + }, + { + "start": 8896.38, + "end": 8897.72, + "probability": 0.9718 + }, + { + "start": 8898.5, + "end": 8899.62, + "probability": 0.5981 + }, + { + "start": 8900.14, + "end": 8903.44, + "probability": 0.8944 + }, + { + "start": 8904.4, + "end": 8908.0, + "probability": 0.9246 + }, + { + "start": 8909.48, + "end": 8911.8, + "probability": 0.9887 + }, + { + "start": 8912.44, + "end": 8918.82, + "probability": 0.9907 + }, + { + "start": 8919.84, + "end": 8925.2, + "probability": 0.9463 + }, + { + "start": 8925.3, + "end": 8926.58, + "probability": 0.8212 + }, + { + "start": 8926.82, + "end": 8931.3, + "probability": 0.9865 + }, + { + "start": 8933.02, + "end": 8938.02, + "probability": 0.9302 + }, + { + "start": 8938.54, + "end": 8940.56, + "probability": 0.5708 + }, + { + "start": 8941.84, + "end": 8944.02, + "probability": 0.8726 + }, + { + "start": 8944.94, + "end": 8948.54, + "probability": 0.9845 + }, + { + "start": 8949.1, + "end": 8951.6, + "probability": 0.7482 + }, + { + "start": 8952.04, + "end": 8953.82, + "probability": 0.8508 + }, + { + "start": 8954.22, + "end": 8955.56, + "probability": 0.8658 + }, + { + "start": 8956.8, + "end": 8958.94, + "probability": 0.9272 + }, + { + "start": 8959.42, + "end": 8962.3, + "probability": 0.9559 + }, + { + "start": 8964.42, + "end": 8970.32, + "probability": 0.9897 + }, + { + "start": 8971.34, + "end": 8973.34, + "probability": 0.967 + }, + { + "start": 8973.46, + "end": 8974.72, + "probability": 0.7566 + }, + { + "start": 8974.86, + "end": 8976.06, + "probability": 0.8228 + }, + { + "start": 8976.6, + "end": 8977.24, + "probability": 0.9484 + }, + { + "start": 8977.92, + "end": 8981.66, + "probability": 0.7869 + }, + { + "start": 8982.38, + "end": 8987.66, + "probability": 0.9661 + }, + { + "start": 8988.38, + "end": 8991.34, + "probability": 0.8895 + }, + { + "start": 8991.5, + "end": 8992.64, + "probability": 0.3853 + }, + { + "start": 8992.72, + "end": 8993.1, + "probability": 0.7382 + }, + { + "start": 8993.96, + "end": 8999.88, + "probability": 0.9793 + }, + { + "start": 9000.64, + "end": 9004.9, + "probability": 0.9974 + }, + { + "start": 9005.06, + "end": 9007.98, + "probability": 0.9782 + }, + { + "start": 9008.0, + "end": 9012.08, + "probability": 0.9486 + }, + { + "start": 9012.08, + "end": 9016.06, + "probability": 0.9918 + }, + { + "start": 9016.26, + "end": 9019.1, + "probability": 0.8647 + }, + { + "start": 9020.28, + "end": 9026.5, + "probability": 0.9295 + }, + { + "start": 9027.22, + "end": 9030.5, + "probability": 0.922 + }, + { + "start": 9031.24, + "end": 9036.44, + "probability": 0.9812 + }, + { + "start": 9036.52, + "end": 9038.28, + "probability": 0.9659 + }, + { + "start": 9038.84, + "end": 9044.28, + "probability": 0.9716 + }, + { + "start": 9044.3, + "end": 9048.34, + "probability": 0.9919 + }, + { + "start": 9049.54, + "end": 9054.3, + "probability": 0.9666 + }, + { + "start": 9054.3, + "end": 9059.68, + "probability": 0.9949 + }, + { + "start": 9059.68, + "end": 9064.78, + "probability": 0.994 + }, + { + "start": 9065.3, + "end": 9069.08, + "probability": 0.9982 + }, + { + "start": 9069.84, + "end": 9072.1, + "probability": 0.8211 + }, + { + "start": 9072.7, + "end": 9075.56, + "probability": 0.9971 + }, + { + "start": 9075.9, + "end": 9077.14, + "probability": 0.7678 + }, + { + "start": 9077.84, + "end": 9079.62, + "probability": 0.8872 + }, + { + "start": 9080.16, + "end": 9080.72, + "probability": 0.6438 + }, + { + "start": 9080.82, + "end": 9082.48, + "probability": 0.8986 + }, + { + "start": 9082.84, + "end": 9085.4, + "probability": 0.9077 + }, + { + "start": 9085.4, + "end": 9088.02, + "probability": 0.9888 + }, + { + "start": 9089.36, + "end": 9093.12, + "probability": 0.9237 + }, + { + "start": 9093.12, + "end": 9097.94, + "probability": 0.9859 + }, + { + "start": 9098.96, + "end": 9100.7, + "probability": 0.9759 + }, + { + "start": 9100.88, + "end": 9114.04, + "probability": 0.9919 + }, + { + "start": 9114.54, + "end": 9115.34, + "probability": 0.8075 + }, + { + "start": 9116.44, + "end": 9116.88, + "probability": 0.5829 + }, + { + "start": 9117.12, + "end": 9121.44, + "probability": 0.8382 + }, + { + "start": 9121.56, + "end": 9122.88, + "probability": 0.8157 + }, + { + "start": 9122.96, + "end": 9125.04, + "probability": 0.9886 + }, + { + "start": 9125.52, + "end": 9130.02, + "probability": 0.9929 + }, + { + "start": 9130.8, + "end": 9133.64, + "probability": 0.9976 + }, + { + "start": 9133.64, + "end": 9136.3, + "probability": 0.7452 + }, + { + "start": 9137.38, + "end": 9138.5, + "probability": 0.6516 + }, + { + "start": 9138.62, + "end": 9138.96, + "probability": 0.9503 + }, + { + "start": 9139.0, + "end": 9140.88, + "probability": 0.9657 + }, + { + "start": 9141.82, + "end": 9147.76, + "probability": 0.9025 + }, + { + "start": 9148.66, + "end": 9151.18, + "probability": 0.9481 + }, + { + "start": 9151.36, + "end": 9152.24, + "probability": 0.891 + }, + { + "start": 9153.92, + "end": 9158.36, + "probability": 0.9243 + }, + { + "start": 9159.52, + "end": 9160.96, + "probability": 0.9442 + }, + { + "start": 9161.82, + "end": 9166.43, + "probability": 0.9231 + }, + { + "start": 9166.76, + "end": 9169.66, + "probability": 0.6395 + }, + { + "start": 9169.66, + "end": 9172.9, + "probability": 0.8516 + }, + { + "start": 9173.62, + "end": 9177.96, + "probability": 0.9697 + }, + { + "start": 9178.48, + "end": 9182.16, + "probability": 0.9993 + }, + { + "start": 9182.98, + "end": 9188.02, + "probability": 0.9745 + }, + { + "start": 9189.26, + "end": 9192.58, + "probability": 0.9429 + }, + { + "start": 9193.84, + "end": 9203.54, + "probability": 0.9843 + }, + { + "start": 9204.2, + "end": 9206.66, + "probability": 0.9788 + }, + { + "start": 9207.48, + "end": 9209.22, + "probability": 0.9719 + }, + { + "start": 9210.08, + "end": 9215.78, + "probability": 0.998 + }, + { + "start": 9215.84, + "end": 9216.24, + "probability": 0.5833 + }, + { + "start": 9216.82, + "end": 9219.86, + "probability": 0.9539 + }, + { + "start": 9219.98, + "end": 9222.02, + "probability": 0.8708 + }, + { + "start": 9222.47, + "end": 9228.02, + "probability": 0.9963 + }, + { + "start": 9228.58, + "end": 9231.84, + "probability": 0.9459 + }, + { + "start": 9232.54, + "end": 9233.62, + "probability": 0.8546 + }, + { + "start": 9233.8, + "end": 9236.54, + "probability": 0.9538 + }, + { + "start": 9236.68, + "end": 9237.94, + "probability": 0.908 + }, + { + "start": 9238.36, + "end": 9243.06, + "probability": 0.9925 + }, + { + "start": 9243.52, + "end": 9245.98, + "probability": 0.9951 + }, + { + "start": 9246.5, + "end": 9250.12, + "probability": 0.9877 + }, + { + "start": 9250.26, + "end": 9252.76, + "probability": 0.9082 + }, + { + "start": 9253.5, + "end": 9258.06, + "probability": 0.9801 + }, + { + "start": 9258.1, + "end": 9258.48, + "probability": 0.5005 + }, + { + "start": 9258.48, + "end": 9264.76, + "probability": 0.9752 + }, + { + "start": 9264.76, + "end": 9273.26, + "probability": 0.9954 + }, + { + "start": 9273.8, + "end": 9277.13, + "probability": 0.9951 + }, + { + "start": 9277.94, + "end": 9282.02, + "probability": 0.9522 + }, + { + "start": 9282.28, + "end": 9282.7, + "probability": 0.7537 + }, + { + "start": 9283.52, + "end": 9286.3, + "probability": 0.6932 + }, + { + "start": 9287.58, + "end": 9290.88, + "probability": 0.7365 + }, + { + "start": 9320.5, + "end": 9322.92, + "probability": 0.6086 + }, + { + "start": 9325.06, + "end": 9327.0, + "probability": 0.7893 + }, + { + "start": 9329.24, + "end": 9332.7, + "probability": 0.9902 + }, + { + "start": 9333.64, + "end": 9335.62, + "probability": 0.4787 + }, + { + "start": 9336.24, + "end": 9338.22, + "probability": 0.9758 + }, + { + "start": 9341.18, + "end": 9343.08, + "probability": 0.3778 + }, + { + "start": 9343.36, + "end": 9346.7, + "probability": 0.482 + }, + { + "start": 9346.86, + "end": 9347.68, + "probability": 0.839 + }, + { + "start": 9348.64, + "end": 9351.94, + "probability": 0.943 + }, + { + "start": 9354.16, + "end": 9355.7, + "probability": 0.916 + }, + { + "start": 9356.46, + "end": 9361.22, + "probability": 0.9368 + }, + { + "start": 9361.54, + "end": 9362.78, + "probability": 0.2302 + }, + { + "start": 9363.04, + "end": 9363.56, + "probability": 0.1573 + }, + { + "start": 9364.44, + "end": 9365.54, + "probability": 0.8856 + }, + { + "start": 9366.64, + "end": 9369.35, + "probability": 0.8337 + }, + { + "start": 9369.5, + "end": 9372.18, + "probability": 0.3768 + }, + { + "start": 9372.92, + "end": 9374.36, + "probability": 0.0471 + }, + { + "start": 9378.98, + "end": 9382.3, + "probability": 0.2154 + }, + { + "start": 9382.38, + "end": 9385.94, + "probability": 0.7453 + }, + { + "start": 9386.02, + "end": 9389.38, + "probability": 0.9095 + }, + { + "start": 9389.74, + "end": 9391.26, + "probability": 0.9341 + }, + { + "start": 9392.02, + "end": 9394.12, + "probability": 0.8198 + }, + { + "start": 9394.34, + "end": 9396.98, + "probability": 0.1127 + }, + { + "start": 9396.98, + "end": 9398.2, + "probability": 0.63 + }, + { + "start": 9398.76, + "end": 9399.82, + "probability": 0.6205 + }, + { + "start": 9400.18, + "end": 9400.84, + "probability": 0.2387 + }, + { + "start": 9403.3, + "end": 9407.2, + "probability": 0.0211 + }, + { + "start": 9408.32, + "end": 9408.32, + "probability": 0.1938 + }, + { + "start": 9408.32, + "end": 9408.32, + "probability": 0.1068 + }, + { + "start": 9408.32, + "end": 9409.5, + "probability": 0.143 + }, + { + "start": 9410.44, + "end": 9412.02, + "probability": 0.9751 + }, + { + "start": 9413.3, + "end": 9415.86, + "probability": 0.8955 + }, + { + "start": 9416.48, + "end": 9418.68, + "probability": 0.9731 + }, + { + "start": 9419.4, + "end": 9420.36, + "probability": 0.8582 + }, + { + "start": 9422.14, + "end": 9425.66, + "probability": 0.9159 + }, + { + "start": 9427.16, + "end": 9430.66, + "probability": 0.9775 + }, + { + "start": 9430.66, + "end": 9433.58, + "probability": 0.9684 + }, + { + "start": 9435.2, + "end": 9436.78, + "probability": 0.9974 + }, + { + "start": 9438.24, + "end": 9442.86, + "probability": 0.7867 + }, + { + "start": 9442.98, + "end": 9449.38, + "probability": 0.6861 + }, + { + "start": 9450.22, + "end": 9451.84, + "probability": 0.9932 + }, + { + "start": 9452.46, + "end": 9456.12, + "probability": 0.947 + }, + { + "start": 9456.34, + "end": 9458.44, + "probability": 0.9827 + }, + { + "start": 9459.96, + "end": 9464.4, + "probability": 0.8986 + }, + { + "start": 9465.2, + "end": 9467.18, + "probability": 0.685 + }, + { + "start": 9468.08, + "end": 9468.46, + "probability": 0.9611 + }, + { + "start": 9470.52, + "end": 9474.26, + "probability": 0.9375 + }, + { + "start": 9476.04, + "end": 9480.54, + "probability": 0.9943 + }, + { + "start": 9482.52, + "end": 9484.34, + "probability": 0.8122 + }, + { + "start": 9486.1, + "end": 9491.62, + "probability": 0.8904 + }, + { + "start": 9492.54, + "end": 9497.64, + "probability": 0.9536 + }, + { + "start": 9498.52, + "end": 9499.98, + "probability": 0.6554 + }, + { + "start": 9500.72, + "end": 9505.96, + "probability": 0.8837 + }, + { + "start": 9506.9, + "end": 9511.24, + "probability": 0.983 + }, + { + "start": 9511.36, + "end": 9515.74, + "probability": 0.6107 + }, + { + "start": 9517.14, + "end": 9518.32, + "probability": 0.7536 + }, + { + "start": 9518.64, + "end": 9519.02, + "probability": 0.7026 + }, + { + "start": 9519.18, + "end": 9521.46, + "probability": 0.9202 + }, + { + "start": 9521.48, + "end": 9523.28, + "probability": 0.9312 + }, + { + "start": 9524.5, + "end": 9528.42, + "probability": 0.9797 + }, + { + "start": 9529.34, + "end": 9531.02, + "probability": 0.9841 + }, + { + "start": 9532.14, + "end": 9532.98, + "probability": 0.6237 + }, + { + "start": 9534.3, + "end": 9535.04, + "probability": 0.8644 + }, + { + "start": 9535.58, + "end": 9537.07, + "probability": 0.8654 + }, + { + "start": 9537.86, + "end": 9540.19, + "probability": 0.7655 + }, + { + "start": 9541.08, + "end": 9542.18, + "probability": 0.9961 + }, + { + "start": 9543.04, + "end": 9543.76, + "probability": 0.7083 + }, + { + "start": 9544.68, + "end": 9547.84, + "probability": 0.9668 + }, + { + "start": 9548.82, + "end": 9552.46, + "probability": 0.8971 + }, + { + "start": 9553.54, + "end": 9557.18, + "probability": 0.9901 + }, + { + "start": 9559.32, + "end": 9559.56, + "probability": 0.5446 + }, + { + "start": 9560.92, + "end": 9563.58, + "probability": 0.9917 + }, + { + "start": 9563.82, + "end": 9567.5, + "probability": 0.897 + }, + { + "start": 9567.6, + "end": 9568.3, + "probability": 0.7255 + }, + { + "start": 9568.48, + "end": 9573.08, + "probability": 0.9938 + }, + { + "start": 9573.78, + "end": 9575.42, + "probability": 0.642 + }, + { + "start": 9578.11, + "end": 9582.06, + "probability": 0.3005 + }, + { + "start": 9583.02, + "end": 9589.42, + "probability": 0.9907 + }, + { + "start": 9589.87, + "end": 9595.14, + "probability": 0.9318 + }, + { + "start": 9595.92, + "end": 9597.78, + "probability": 0.8036 + }, + { + "start": 9598.5, + "end": 9601.65, + "probability": 0.9956 + }, + { + "start": 9602.05, + "end": 9605.45, + "probability": 0.7903 + }, + { + "start": 9606.09, + "end": 9608.65, + "probability": 0.9644 + }, + { + "start": 9609.21, + "end": 9610.15, + "probability": 0.9127 + }, + { + "start": 9610.23, + "end": 9610.95, + "probability": 0.9164 + }, + { + "start": 9611.01, + "end": 9611.69, + "probability": 0.9415 + }, + { + "start": 9612.07, + "end": 9612.95, + "probability": 0.8324 + }, + { + "start": 9613.09, + "end": 9615.17, + "probability": 0.9592 + }, + { + "start": 9615.25, + "end": 9616.52, + "probability": 0.8496 + }, + { + "start": 9617.85, + "end": 9619.89, + "probability": 0.5717 + }, + { + "start": 9620.33, + "end": 9623.77, + "probability": 0.6536 + }, + { + "start": 9624.67, + "end": 9625.39, + "probability": 0.9958 + }, + { + "start": 9625.79, + "end": 9625.99, + "probability": 0.4404 + }, + { + "start": 9626.09, + "end": 9626.19, + "probability": 0.6519 + }, + { + "start": 9626.37, + "end": 9628.25, + "probability": 0.2605 + }, + { + "start": 9629.03, + "end": 9631.55, + "probability": 0.5643 + }, + { + "start": 9632.53, + "end": 9636.19, + "probability": 0.696 + }, + { + "start": 9637.01, + "end": 9639.37, + "probability": 0.7412 + }, + { + "start": 9640.13, + "end": 9645.05, + "probability": 0.3756 + }, + { + "start": 9647.35, + "end": 9648.43, + "probability": 0.3387 + }, + { + "start": 9648.77, + "end": 9649.69, + "probability": 0.5309 + }, + { + "start": 9650.73, + "end": 9652.11, + "probability": 0.4299 + }, + { + "start": 9652.83, + "end": 9653.83, + "probability": 0.6156 + }, + { + "start": 9658.71, + "end": 9664.75, + "probability": 0.745 + }, + { + "start": 9676.4, + "end": 9681.93, + "probability": 0.093 + }, + { + "start": 9681.93, + "end": 9682.03, + "probability": 0.0556 + }, + { + "start": 9682.03, + "end": 9683.15, + "probability": 0.0361 + }, + { + "start": 9683.21, + "end": 9685.3, + "probability": 0.3435 + }, + { + "start": 9688.21, + "end": 9688.69, + "probability": 0.0725 + }, + { + "start": 9688.95, + "end": 9689.07, + "probability": 0.0688 + }, + { + "start": 9689.07, + "end": 9689.27, + "probability": 0.1306 + }, + { + "start": 9689.27, + "end": 9689.27, + "probability": 0.0198 + }, + { + "start": 9690.39, + "end": 9697.85, + "probability": 0.6388 + }, + { + "start": 9698.57, + "end": 9699.89, + "probability": 0.3924 + }, + { + "start": 9700.71, + "end": 9704.53, + "probability": 0.9226 + }, + { + "start": 9705.13, + "end": 9707.39, + "probability": 0.9654 + }, + { + "start": 9707.93, + "end": 9708.83, + "probability": 0.8442 + }, + { + "start": 9710.71, + "end": 9711.29, + "probability": 0.9368 + }, + { + "start": 9714.13, + "end": 9715.51, + "probability": 0.9528 + }, + { + "start": 9716.55, + "end": 9719.15, + "probability": 0.8494 + }, + { + "start": 9720.93, + "end": 9722.47, + "probability": 0.9092 + }, + { + "start": 9723.07, + "end": 9725.97, + "probability": 0.8291 + }, + { + "start": 9726.53, + "end": 9727.99, + "probability": 0.998 + }, + { + "start": 9728.71, + "end": 9732.45, + "probability": 0.8752 + }, + { + "start": 9733.43, + "end": 9735.87, + "probability": 0.938 + }, + { + "start": 9736.45, + "end": 9737.93, + "probability": 0.9988 + }, + { + "start": 9739.27, + "end": 9740.89, + "probability": 0.9194 + }, + { + "start": 9741.37, + "end": 9744.01, + "probability": 0.9075 + }, + { + "start": 9744.57, + "end": 9746.08, + "probability": 0.9479 + }, + { + "start": 9747.53, + "end": 9749.07, + "probability": 0.988 + }, + { + "start": 9750.53, + "end": 9755.83, + "probability": 0.998 + }, + { + "start": 9756.39, + "end": 9759.11, + "probability": 0.9949 + }, + { + "start": 9759.65, + "end": 9760.57, + "probability": 0.4639 + }, + { + "start": 9760.91, + "end": 9762.65, + "probability": 0.8171 + }, + { + "start": 9763.53, + "end": 9765.73, + "probability": 0.1396 + }, + { + "start": 9765.97, + "end": 9767.43, + "probability": 0.2049 + }, + { + "start": 9767.43, + "end": 9767.75, + "probability": 0.4701 + }, + { + "start": 9768.17, + "end": 9771.35, + "probability": 0.8436 + }, + { + "start": 9771.9, + "end": 9777.87, + "probability": 0.9966 + }, + { + "start": 9778.81, + "end": 9781.93, + "probability": 0.9672 + }, + { + "start": 9783.03, + "end": 9788.21, + "probability": 0.9987 + }, + { + "start": 9789.03, + "end": 9794.15, + "probability": 0.9858 + }, + { + "start": 9795.27, + "end": 9797.71, + "probability": 0.5696 + }, + { + "start": 9798.87, + "end": 9801.69, + "probability": 0.9621 + }, + { + "start": 9802.69, + "end": 9804.47, + "probability": 0.9736 + }, + { + "start": 9805.01, + "end": 9807.93, + "probability": 0.9823 + }, + { + "start": 9808.33, + "end": 9809.63, + "probability": 0.9845 + }, + { + "start": 9809.71, + "end": 9810.65, + "probability": 0.8524 + }, + { + "start": 9811.09, + "end": 9812.25, + "probability": 0.9841 + }, + { + "start": 9812.83, + "end": 9815.95, + "probability": 0.9028 + }, + { + "start": 9818.35, + "end": 9819.4, + "probability": 0.8053 + }, + { + "start": 9820.19, + "end": 9822.67, + "probability": 0.9662 + }, + { + "start": 9823.37, + "end": 9825.79, + "probability": 0.9957 + }, + { + "start": 9825.87, + "end": 9829.57, + "probability": 0.9871 + }, + { + "start": 9829.57, + "end": 9832.79, + "probability": 0.998 + }, + { + "start": 9834.17, + "end": 9834.99, + "probability": 0.8188 + }, + { + "start": 9835.76, + "end": 9838.07, + "probability": 0.941 + }, + { + "start": 9838.99, + "end": 9843.11, + "probability": 0.796 + }, + { + "start": 9843.83, + "end": 9847.79, + "probability": 0.8851 + }, + { + "start": 9848.47, + "end": 9854.19, + "probability": 0.9904 + }, + { + "start": 9856.33, + "end": 9858.93, + "probability": 0.7954 + }, + { + "start": 9859.45, + "end": 9860.25, + "probability": 0.8516 + }, + { + "start": 9860.57, + "end": 9861.15, + "probability": 0.8839 + }, + { + "start": 9861.29, + "end": 9863.17, + "probability": 0.9885 + }, + { + "start": 9863.65, + "end": 9864.61, + "probability": 0.6695 + }, + { + "start": 9864.69, + "end": 9867.75, + "probability": 0.8431 + }, + { + "start": 9868.57, + "end": 9871.43, + "probability": 0.9508 + }, + { + "start": 9872.63, + "end": 9872.69, + "probability": 0.6792 + }, + { + "start": 9877.91, + "end": 9879.17, + "probability": 0.601 + }, + { + "start": 9880.55, + "end": 9881.55, + "probability": 0.7267 + }, + { + "start": 9881.71, + "end": 9881.97, + "probability": 0.5702 + }, + { + "start": 9882.11, + "end": 9882.97, + "probability": 0.4606 + }, + { + "start": 9883.23, + "end": 9884.57, + "probability": 0.9507 + }, + { + "start": 9884.59, + "end": 9887.87, + "probability": 0.951 + }, + { + "start": 9888.43, + "end": 9892.27, + "probability": 0.991 + }, + { + "start": 9893.05, + "end": 9895.45, + "probability": 0.9705 + }, + { + "start": 9896.59, + "end": 9901.47, + "probability": 0.8191 + }, + { + "start": 9902.89, + "end": 9906.29, + "probability": 0.8728 + }, + { + "start": 9906.35, + "end": 9907.81, + "probability": 0.779 + }, + { + "start": 9907.99, + "end": 9908.43, + "probability": 0.8561 + }, + { + "start": 9909.55, + "end": 9912.01, + "probability": 0.9971 + }, + { + "start": 9912.13, + "end": 9914.83, + "probability": 0.993 + }, + { + "start": 9915.51, + "end": 9916.79, + "probability": 0.8967 + }, + { + "start": 9917.35, + "end": 9919.41, + "probability": 0.9515 + }, + { + "start": 9919.57, + "end": 9921.79, + "probability": 0.7577 + }, + { + "start": 9921.87, + "end": 9925.89, + "probability": 0.9917 + }, + { + "start": 9926.87, + "end": 9929.63, + "probability": 0.9218 + }, + { + "start": 9930.09, + "end": 9932.93, + "probability": 0.9328 + }, + { + "start": 9933.53, + "end": 9937.59, + "probability": 0.6913 + }, + { + "start": 9938.15, + "end": 9939.87, + "probability": 0.941 + }, + { + "start": 9940.29, + "end": 9943.53, + "probability": 0.9788 + }, + { + "start": 9944.05, + "end": 9946.33, + "probability": 0.9579 + }, + { + "start": 9946.87, + "end": 9948.69, + "probability": 0.9163 + }, + { + "start": 9950.73, + "end": 9953.59, + "probability": 0.9546 + }, + { + "start": 9954.01, + "end": 9958.35, + "probability": 0.8833 + }, + { + "start": 9960.21, + "end": 9962.43, + "probability": 0.991 + }, + { + "start": 9962.47, + "end": 9966.33, + "probability": 0.9886 + }, + { + "start": 9966.83, + "end": 9970.03, + "probability": 0.9251 + }, + { + "start": 9970.61, + "end": 9971.37, + "probability": 0.9845 + }, + { + "start": 9973.45, + "end": 9976.37, + "probability": 0.9831 + }, + { + "start": 9976.81, + "end": 9980.05, + "probability": 0.9868 + }, + { + "start": 9980.05, + "end": 9983.07, + "probability": 0.9782 + }, + { + "start": 9984.45, + "end": 9984.89, + "probability": 0.8335 + }, + { + "start": 9985.43, + "end": 9987.51, + "probability": 0.9977 + }, + { + "start": 9987.51, + "end": 9991.71, + "probability": 0.9712 + }, + { + "start": 9992.77, + "end": 9994.71, + "probability": 0.9958 + }, + { + "start": 9995.45, + "end": 9998.11, + "probability": 0.9846 + }, + { + "start": 9998.15, + "end": 10000.03, + "probability": 0.9773 + }, + { + "start": 10001.09, + "end": 10004.53, + "probability": 0.9961 + }, + { + "start": 10004.53, + "end": 10007.55, + "probability": 0.9958 + }, + { + "start": 10008.29, + "end": 10009.43, + "probability": 0.7629 + }, + { + "start": 10010.07, + "end": 10011.93, + "probability": 0.944 + }, + { + "start": 10012.01, + "end": 10013.41, + "probability": 0.6058 + }, + { + "start": 10013.53, + "end": 10014.59, + "probability": 0.8179 + }, + { + "start": 10014.63, + "end": 10015.01, + "probability": 0.8661 + }, + { + "start": 10015.17, + "end": 10016.09, + "probability": 0.7672 + }, + { + "start": 10016.71, + "end": 10020.69, + "probability": 0.8896 + }, + { + "start": 10022.55, + "end": 10028.11, + "probability": 0.908 + }, + { + "start": 10029.09, + "end": 10033.59, + "probability": 0.9921 + }, + { + "start": 10034.13, + "end": 10039.53, + "probability": 0.9812 + }, + { + "start": 10039.91, + "end": 10040.41, + "probability": 0.4522 + }, + { + "start": 10040.51, + "end": 10042.47, + "probability": 0.7522 + }, + { + "start": 10043.19, + "end": 10045.73, + "probability": 0.6878 + }, + { + "start": 10046.29, + "end": 10049.05, + "probability": 0.9877 + }, + { + "start": 10049.15, + "end": 10050.23, + "probability": 0.5289 + }, + { + "start": 10050.33, + "end": 10051.43, + "probability": 0.6719 + }, + { + "start": 10052.03, + "end": 10055.21, + "probability": 0.9856 + }, + { + "start": 10055.31, + "end": 10055.81, + "probability": 0.8873 + }, + { + "start": 10055.83, + "end": 10056.31, + "probability": 0.7958 + }, + { + "start": 10057.19, + "end": 10058.65, + "probability": 0.993 + }, + { + "start": 10058.79, + "end": 10059.49, + "probability": 0.9243 + }, + { + "start": 10059.57, + "end": 10063.51, + "probability": 0.9752 + }, + { + "start": 10063.57, + "end": 10063.93, + "probability": 0.5834 + }, + { + "start": 10063.95, + "end": 10065.57, + "probability": 0.9554 + }, + { + "start": 10066.47, + "end": 10071.25, + "probability": 0.9897 + }, + { + "start": 10071.95, + "end": 10072.81, + "probability": 0.8385 + }, + { + "start": 10072.99, + "end": 10073.33, + "probability": 0.7652 + }, + { + "start": 10073.47, + "end": 10076.33, + "probability": 0.6165 + }, + { + "start": 10076.45, + "end": 10077.11, + "probability": 0.4857 + }, + { + "start": 10077.19, + "end": 10077.63, + "probability": 0.5751 + }, + { + "start": 10077.71, + "end": 10078.39, + "probability": 0.5237 + }, + { + "start": 10078.95, + "end": 10079.75, + "probability": 0.8738 + }, + { + "start": 10080.05, + "end": 10081.23, + "probability": 0.6718 + }, + { + "start": 10081.35, + "end": 10083.85, + "probability": 0.9798 + }, + { + "start": 10084.53, + "end": 10087.53, + "probability": 0.9811 + }, + { + "start": 10087.63, + "end": 10089.31, + "probability": 0.9766 + }, + { + "start": 10094.47, + "end": 10095.63, + "probability": 0.7301 + }, + { + "start": 10095.69, + "end": 10097.45, + "probability": 0.9913 + }, + { + "start": 10097.59, + "end": 10099.53, + "probability": 0.6744 + }, + { + "start": 10100.11, + "end": 10104.08, + "probability": 0.7401 + }, + { + "start": 10104.11, + "end": 10104.99, + "probability": 0.9721 + }, + { + "start": 10105.05, + "end": 10114.01, + "probability": 0.9165 + }, + { + "start": 10114.67, + "end": 10117.99, + "probability": 0.891 + }, + { + "start": 10118.05, + "end": 10122.24, + "probability": 0.9799 + }, + { + "start": 10123.35, + "end": 10124.41, + "probability": 0.9204 + }, + { + "start": 10125.19, + "end": 10126.55, + "probability": 0.9319 + }, + { + "start": 10132.67, + "end": 10136.03, + "probability": 0.9019 + }, + { + "start": 10136.17, + "end": 10137.37, + "probability": 0.9657 + }, + { + "start": 10137.47, + "end": 10138.25, + "probability": 0.9313 + }, + { + "start": 10138.39, + "end": 10139.37, + "probability": 0.9756 + }, + { + "start": 10139.45, + "end": 10141.13, + "probability": 0.6977 + }, + { + "start": 10141.47, + "end": 10142.79, + "probability": 0.8937 + }, + { + "start": 10143.71, + "end": 10146.01, + "probability": 0.8976 + }, + { + "start": 10146.03, + "end": 10148.15, + "probability": 0.7702 + }, + { + "start": 10149.17, + "end": 10154.09, + "probability": 0.9788 + }, + { + "start": 10154.27, + "end": 10157.11, + "probability": 0.9794 + }, + { + "start": 10159.23, + "end": 10160.43, + "probability": 0.9021 + }, + { + "start": 10160.83, + "end": 10162.39, + "probability": 0.7068 + }, + { + "start": 10162.39, + "end": 10165.07, + "probability": 0.9209 + }, + { + "start": 10165.17, + "end": 10167.33, + "probability": 0.8739 + }, + { + "start": 10168.01, + "end": 10175.25, + "probability": 0.984 + }, + { + "start": 10175.79, + "end": 10176.58, + "probability": 0.9924 + }, + { + "start": 10176.81, + "end": 10180.09, + "probability": 0.756 + }, + { + "start": 10181.01, + "end": 10181.99, + "probability": 0.4329 + }, + { + "start": 10182.09, + "end": 10182.79, + "probability": 0.9358 + }, + { + "start": 10183.09, + "end": 10184.55, + "probability": 0.5382 + }, + { + "start": 10184.79, + "end": 10189.61, + "probability": 0.8374 + }, + { + "start": 10190.21, + "end": 10192.82, + "probability": 0.0265 + }, + { + "start": 10193.29, + "end": 10193.89, + "probability": 0.1076 + }, + { + "start": 10193.89, + "end": 10194.87, + "probability": 0.5527 + }, + { + "start": 10195.15, + "end": 10195.87, + "probability": 0.3997 + }, + { + "start": 10195.99, + "end": 10196.71, + "probability": 0.1792 + }, + { + "start": 10197.05, + "end": 10200.64, + "probability": 0.7477 + }, + { + "start": 10201.21, + "end": 10203.16, + "probability": 0.9944 + }, + { + "start": 10203.49, + "end": 10210.65, + "probability": 0.5447 + }, + { + "start": 10211.17, + "end": 10214.53, + "probability": 0.6795 + }, + { + "start": 10214.87, + "end": 10216.25, + "probability": 0.3778 + }, + { + "start": 10216.45, + "end": 10219.85, + "probability": 0.9726 + }, + { + "start": 10219.85, + "end": 10224.23, + "probability": 0.9992 + }, + { + "start": 10225.37, + "end": 10230.53, + "probability": 0.9912 + }, + { + "start": 10230.59, + "end": 10231.63, + "probability": 0.8062 + }, + { + "start": 10232.05, + "end": 10236.49, + "probability": 0.9405 + }, + { + "start": 10237.32, + "end": 10243.45, + "probability": 0.9983 + }, + { + "start": 10244.09, + "end": 10247.37, + "probability": 0.9917 + }, + { + "start": 10247.87, + "end": 10252.11, + "probability": 0.9108 + }, + { + "start": 10252.51, + "end": 10253.67, + "probability": 0.7195 + }, + { + "start": 10253.99, + "end": 10254.83, + "probability": 0.7435 + }, + { + "start": 10254.87, + "end": 10255.87, + "probability": 0.7112 + }, + { + "start": 10256.51, + "end": 10261.07, + "probability": 0.9584 + }, + { + "start": 10261.91, + "end": 10263.51, + "probability": 0.9484 + }, + { + "start": 10263.81, + "end": 10265.41, + "probability": 0.9846 + }, + { + "start": 10265.49, + "end": 10266.43, + "probability": 0.8245 + }, + { + "start": 10266.79, + "end": 10270.77, + "probability": 0.9882 + }, + { + "start": 10270.81, + "end": 10273.6, + "probability": 0.9868 + }, + { + "start": 10275.71, + "end": 10282.77, + "probability": 0.989 + }, + { + "start": 10283.35, + "end": 10286.86, + "probability": 0.9933 + }, + { + "start": 10287.15, + "end": 10289.17, + "probability": 0.9692 + }, + { + "start": 10290.51, + "end": 10293.37, + "probability": 0.7433 + }, + { + "start": 10294.01, + "end": 10297.53, + "probability": 0.9059 + }, + { + "start": 10298.17, + "end": 10299.97, + "probability": 0.9573 + }, + { + "start": 10300.05, + "end": 10303.61, + "probability": 0.981 + }, + { + "start": 10303.75, + "end": 10308.91, + "probability": 0.9922 + }, + { + "start": 10309.33, + "end": 10313.37, + "probability": 0.9966 + }, + { + "start": 10313.53, + "end": 10314.11, + "probability": 0.7526 + }, + { + "start": 10315.43, + "end": 10317.57, + "probability": 0.9248 + }, + { + "start": 10317.83, + "end": 10321.15, + "probability": 0.878 + }, + { + "start": 10339.79, + "end": 10342.51, + "probability": 0.5082 + }, + { + "start": 10343.75, + "end": 10345.69, + "probability": 0.9924 + }, + { + "start": 10346.35, + "end": 10347.77, + "probability": 0.701 + }, + { + "start": 10349.17, + "end": 10351.31, + "probability": 0.9876 + }, + { + "start": 10352.11, + "end": 10356.15, + "probability": 0.951 + }, + { + "start": 10357.19, + "end": 10357.43, + "probability": 0.4179 + }, + { + "start": 10358.91, + "end": 10360.47, + "probability": 0.748 + }, + { + "start": 10361.15, + "end": 10363.89, + "probability": 0.8158 + }, + { + "start": 10364.25, + "end": 10366.59, + "probability": 0.9139 + }, + { + "start": 10367.33, + "end": 10368.43, + "probability": 0.8921 + }, + { + "start": 10370.69, + "end": 10373.73, + "probability": 0.957 + }, + { + "start": 10375.21, + "end": 10376.15, + "probability": 0.9135 + }, + { + "start": 10378.73, + "end": 10381.31, + "probability": 0.9907 + }, + { + "start": 10382.15, + "end": 10384.79, + "probability": 0.9562 + }, + { + "start": 10385.65, + "end": 10388.95, + "probability": 0.8756 + }, + { + "start": 10389.95, + "end": 10392.29, + "probability": 0.9652 + }, + { + "start": 10393.05, + "end": 10396.27, + "probability": 0.9907 + }, + { + "start": 10396.87, + "end": 10402.27, + "probability": 0.9561 + }, + { + "start": 10402.83, + "end": 10403.87, + "probability": 0.9695 + }, + { + "start": 10404.77, + "end": 10405.37, + "probability": 0.8406 + }, + { + "start": 10406.13, + "end": 10409.21, + "probability": 0.9531 + }, + { + "start": 10409.75, + "end": 10413.31, + "probability": 0.9412 + }, + { + "start": 10414.79, + "end": 10416.85, + "probability": 0.84 + }, + { + "start": 10417.79, + "end": 10419.43, + "probability": 0.8774 + }, + { + "start": 10421.45, + "end": 10423.91, + "probability": 0.8834 + }, + { + "start": 10423.91, + "end": 10428.93, + "probability": 0.9902 + }, + { + "start": 10430.03, + "end": 10430.61, + "probability": 0.9907 + }, + { + "start": 10431.21, + "end": 10434.89, + "probability": 0.9307 + }, + { + "start": 10435.41, + "end": 10437.05, + "probability": 0.9519 + }, + { + "start": 10437.77, + "end": 10439.61, + "probability": 0.9378 + }, + { + "start": 10440.31, + "end": 10441.47, + "probability": 0.9607 + }, + { + "start": 10441.97, + "end": 10442.11, + "probability": 0.083 + }, + { + "start": 10442.75, + "end": 10443.8, + "probability": 0.3831 + }, + { + "start": 10444.57, + "end": 10445.55, + "probability": 0.8887 + }, + { + "start": 10445.77, + "end": 10446.39, + "probability": 0.8573 + }, + { + "start": 10446.83, + "end": 10449.83, + "probability": 0.7803 + }, + { + "start": 10450.8, + "end": 10452.81, + "probability": 0.1271 + }, + { + "start": 10454.45, + "end": 10456.02, + "probability": 0.9961 + }, + { + "start": 10456.11, + "end": 10458.03, + "probability": 0.874 + }, + { + "start": 10458.45, + "end": 10460.11, + "probability": 0.9761 + }, + { + "start": 10461.07, + "end": 10462.51, + "probability": 0.9967 + }, + { + "start": 10463.05, + "end": 10464.81, + "probability": 0.5025 + }, + { + "start": 10465.11, + "end": 10466.03, + "probability": 0.3164 + }, + { + "start": 10466.09, + "end": 10467.35, + "probability": 0.4856 + }, + { + "start": 10467.65, + "end": 10470.59, + "probability": 0.4595 + }, + { + "start": 10471.13, + "end": 10471.87, + "probability": 0.3777 + }, + { + "start": 10471.87, + "end": 10475.15, + "probability": 0.2035 + }, + { + "start": 10475.21, + "end": 10478.48, + "probability": 0.0491 + }, + { + "start": 10479.85, + "end": 10484.17, + "probability": 0.3799 + }, + { + "start": 10485.01, + "end": 10485.29, + "probability": 0.8236 + }, + { + "start": 10485.55, + "end": 10487.37, + "probability": 0.1738 + }, + { + "start": 10488.11, + "end": 10492.17, + "probability": 0.9709 + }, + { + "start": 10492.17, + "end": 10495.61, + "probability": 0.9834 + }, + { + "start": 10496.27, + "end": 10496.97, + "probability": 0.8897 + }, + { + "start": 10497.27, + "end": 10497.77, + "probability": 0.1776 + }, + { + "start": 10497.93, + "end": 10501.89, + "probability": 0.8843 + }, + { + "start": 10501.89, + "end": 10506.63, + "probability": 0.9926 + }, + { + "start": 10506.63, + "end": 10511.21, + "probability": 0.9995 + }, + { + "start": 10512.13, + "end": 10515.97, + "probability": 0.9985 + }, + { + "start": 10517.11, + "end": 10522.63, + "probability": 0.9968 + }, + { + "start": 10523.69, + "end": 10525.89, + "probability": 0.8081 + }, + { + "start": 10526.45, + "end": 10530.17, + "probability": 0.9896 + }, + { + "start": 10530.93, + "end": 10536.79, + "probability": 0.9714 + }, + { + "start": 10537.37, + "end": 10541.85, + "probability": 0.9393 + }, + { + "start": 10543.01, + "end": 10547.33, + "probability": 0.9703 + }, + { + "start": 10547.97, + "end": 10553.27, + "probability": 0.9842 + }, + { + "start": 10554.24, + "end": 10555.41, + "probability": 0.9614 + }, + { + "start": 10556.15, + "end": 10560.85, + "probability": 0.9868 + }, + { + "start": 10561.47, + "end": 10562.43, + "probability": 0.9607 + }, + { + "start": 10562.99, + "end": 10566.53, + "probability": 0.9863 + }, + { + "start": 10567.49, + "end": 10570.63, + "probability": 0.9707 + }, + { + "start": 10571.23, + "end": 10572.4, + "probability": 0.7938 + }, + { + "start": 10572.47, + "end": 10577.83, + "probability": 0.7814 + }, + { + "start": 10579.43, + "end": 10581.41, + "probability": 0.8714 + }, + { + "start": 10582.27, + "end": 10582.83, + "probability": 0.8345 + }, + { + "start": 10583.53, + "end": 10584.63, + "probability": 0.9912 + }, + { + "start": 10585.17, + "end": 10588.35, + "probability": 0.9475 + }, + { + "start": 10589.29, + "end": 10589.83, + "probability": 0.7926 + }, + { + "start": 10590.71, + "end": 10593.67, + "probability": 0.8881 + }, + { + "start": 10593.71, + "end": 10594.79, + "probability": 0.7349 + }, + { + "start": 10595.69, + "end": 10596.33, + "probability": 0.5671 + }, + { + "start": 10598.47, + "end": 10600.6, + "probability": 0.7175 + }, + { + "start": 10601.77, + "end": 10602.51, + "probability": 0.7329 + }, + { + "start": 10602.61, + "end": 10604.03, + "probability": 0.8403 + }, + { + "start": 10604.27, + "end": 10605.83, + "probability": 0.9976 + }, + { + "start": 10607.23, + "end": 10609.25, + "probability": 0.8207 + }, + { + "start": 10609.51, + "end": 10610.61, + "probability": 0.8518 + }, + { + "start": 10611.31, + "end": 10613.35, + "probability": 0.5343 + }, + { + "start": 10613.47, + "end": 10617.65, + "probability": 0.8807 + }, + { + "start": 10619.29, + "end": 10621.29, + "probability": 0.7126 + }, + { + "start": 10621.83, + "end": 10622.79, + "probability": 0.9094 + }, + { + "start": 10624.47, + "end": 10626.97, + "probability": 0.8324 + }, + { + "start": 10627.71, + "end": 10632.29, + "probability": 0.9556 + }, + { + "start": 10633.87, + "end": 10634.91, + "probability": 0.9175 + }, + { + "start": 10635.53, + "end": 10639.67, + "probability": 0.9976 + }, + { + "start": 10639.67, + "end": 10642.79, + "probability": 0.9961 + }, + { + "start": 10642.87, + "end": 10646.57, + "probability": 0.972 + }, + { + "start": 10646.65, + "end": 10648.47, + "probability": 0.8078 + }, + { + "start": 10648.51, + "end": 10651.71, + "probability": 0.7631 + }, + { + "start": 10661.27, + "end": 10664.41, + "probability": 0.3571 + }, + { + "start": 10668.61, + "end": 10670.45, + "probability": 0.8286 + }, + { + "start": 10670.65, + "end": 10671.6, + "probability": 0.8404 + }, + { + "start": 10671.99, + "end": 10675.25, + "probability": 0.8151 + }, + { + "start": 10675.33, + "end": 10676.3, + "probability": 0.9429 + }, + { + "start": 10676.51, + "end": 10677.51, + "probability": 0.916 + }, + { + "start": 10677.99, + "end": 10681.01, + "probability": 0.9905 + }, + { + "start": 10681.63, + "end": 10683.29, + "probability": 0.9165 + }, + { + "start": 10683.87, + "end": 10687.37, + "probability": 0.9585 + }, + { + "start": 10687.81, + "end": 10689.53, + "probability": 0.9821 + }, + { + "start": 10689.61, + "end": 10691.61, + "probability": 0.9932 + }, + { + "start": 10692.05, + "end": 10696.75, + "probability": 0.8009 + }, + { + "start": 10696.93, + "end": 10699.43, + "probability": 0.7609 + }, + { + "start": 10699.49, + "end": 10706.15, + "probability": 0.9623 + }, + { + "start": 10706.15, + "end": 10711.63, + "probability": 0.92 + }, + { + "start": 10711.77, + "end": 10714.47, + "probability": 0.7988 + }, + { + "start": 10715.47, + "end": 10717.83, + "probability": 0.8343 + }, + { + "start": 10717.91, + "end": 10718.51, + "probability": 0.0283 + }, + { + "start": 10718.51, + "end": 10719.97, + "probability": 0.5284 + }, + { + "start": 10720.49, + "end": 10724.15, + "probability": 0.9576 + }, + { + "start": 10724.89, + "end": 10730.91, + "probability": 0.8031 + }, + { + "start": 10730.99, + "end": 10736.13, + "probability": 0.9984 + }, + { + "start": 10736.29, + "end": 10738.65, + "probability": 0.7291 + }, + { + "start": 10739.35, + "end": 10739.71, + "probability": 0.6389 + }, + { + "start": 10740.85, + "end": 10742.17, + "probability": 0.7815 + }, + { + "start": 10744.87, + "end": 10746.39, + "probability": 0.2611 + }, + { + "start": 10747.37, + "end": 10749.59, + "probability": 0.5923 + }, + { + "start": 10751.07, + "end": 10753.49, + "probability": 0.6639 + }, + { + "start": 10754.39, + "end": 10757.55, + "probability": 0.9546 + }, + { + "start": 10759.13, + "end": 10761.49, + "probability": 0.0418 + }, + { + "start": 10774.35, + "end": 10775.19, + "probability": 0.7522 + }, + { + "start": 10788.15, + "end": 10789.39, + "probability": 0.0552 + }, + { + "start": 10790.7, + "end": 10791.43, + "probability": 0.5743 + }, + { + "start": 10792.89, + "end": 10795.79, + "probability": 0.0351 + }, + { + "start": 10796.05, + "end": 10800.11, + "probability": 0.782 + }, + { + "start": 10800.71, + "end": 10803.18, + "probability": 0.7995 + }, + { + "start": 10804.79, + "end": 10804.79, + "probability": 0.1031 + }, + { + "start": 10804.79, + "end": 10808.27, + "probability": 0.9285 + }, + { + "start": 10808.55, + "end": 10809.35, + "probability": 0.7285 + }, + { + "start": 10810.32, + "end": 10814.73, + "probability": 0.9144 + }, + { + "start": 10817.73, + "end": 10818.29, + "probability": 0.9601 + }, + { + "start": 10818.47, + "end": 10818.71, + "probability": 0.691 + }, + { + "start": 10819.29, + "end": 10821.87, + "probability": 0.9385 + }, + { + "start": 10821.89, + "end": 10823.47, + "probability": 0.6652 + }, + { + "start": 10823.73, + "end": 10824.99, + "probability": 0.4452 + }, + { + "start": 10825.65, + "end": 10826.69, + "probability": 0.6976 + }, + { + "start": 10828.13, + "end": 10830.45, + "probability": 0.9856 + }, + { + "start": 10830.45, + "end": 10834.15, + "probability": 0.999 + }, + { + "start": 10835.98, + "end": 10839.59, + "probability": 0.4132 + }, + { + "start": 10839.59, + "end": 10842.15, + "probability": 0.679 + }, + { + "start": 10842.57, + "end": 10844.33, + "probability": 0.4837 + }, + { + "start": 10844.87, + "end": 10848.27, + "probability": 0.9646 + }, + { + "start": 10848.99, + "end": 10849.75, + "probability": 0.8113 + }, + { + "start": 10850.39, + "end": 10852.85, + "probability": 0.6739 + }, + { + "start": 10853.27, + "end": 10854.52, + "probability": 0.8072 + }, + { + "start": 10858.39, + "end": 10860.29, + "probability": 0.5575 + }, + { + "start": 10861.17, + "end": 10863.17, + "probability": 0.9062 + }, + { + "start": 10864.05, + "end": 10868.27, + "probability": 0.9409 + }, + { + "start": 10868.93, + "end": 10869.83, + "probability": 0.3635 + }, + { + "start": 10870.53, + "end": 10872.17, + "probability": 0.6915 + }, + { + "start": 10873.03, + "end": 10875.17, + "probability": 0.9603 + }, + { + "start": 10875.17, + "end": 10877.95, + "probability": 0.8507 + }, + { + "start": 10878.59, + "end": 10878.59, + "probability": 0.0349 + }, + { + "start": 10878.59, + "end": 10879.5, + "probability": 0.9772 + }, + { + "start": 10880.49, + "end": 10882.39, + "probability": 0.9388 + }, + { + "start": 10882.91, + "end": 10884.11, + "probability": 0.7124 + }, + { + "start": 10885.04, + "end": 10887.69, + "probability": 0.6398 + }, + { + "start": 10888.65, + "end": 10892.23, + "probability": 0.9362 + }, + { + "start": 10892.77, + "end": 10894.09, + "probability": 0.7233 + }, + { + "start": 10894.27, + "end": 10895.89, + "probability": 0.8956 + }, + { + "start": 10896.43, + "end": 10898.25, + "probability": 0.9967 + }, + { + "start": 10898.79, + "end": 10901.79, + "probability": 0.8306 + }, + { + "start": 10901.83, + "end": 10903.11, + "probability": 0.7504 + }, + { + "start": 10903.23, + "end": 10906.63, + "probability": 0.8869 + }, + { + "start": 10907.49, + "end": 10909.67, + "probability": 0.9651 + }, + { + "start": 10909.67, + "end": 10911.83, + "probability": 0.984 + }, + { + "start": 10912.61, + "end": 10914.99, + "probability": 0.8013 + }, + { + "start": 10915.07, + "end": 10917.85, + "probability": 0.9372 + }, + { + "start": 10917.95, + "end": 10919.01, + "probability": 0.9361 + }, + { + "start": 10919.09, + "end": 10920.07, + "probability": 0.9922 + }, + { + "start": 10920.53, + "end": 10923.47, + "probability": 0.9446 + }, + { + "start": 10924.01, + "end": 10926.23, + "probability": 0.9946 + }, + { + "start": 10926.41, + "end": 10927.65, + "probability": 0.9764 + }, + { + "start": 10928.29, + "end": 10928.87, + "probability": 0.7642 + }, + { + "start": 10928.99, + "end": 10930.65, + "probability": 0.9501 + }, + { + "start": 10930.65, + "end": 10933.93, + "probability": 0.9392 + }, + { + "start": 10934.45, + "end": 10935.83, + "probability": 0.9219 + }, + { + "start": 10936.85, + "end": 10940.31, + "probability": 0.9641 + }, + { + "start": 10940.33, + "end": 10943.85, + "probability": 0.9783 + }, + { + "start": 10943.95, + "end": 10944.41, + "probability": 0.7708 + }, + { + "start": 10945.19, + "end": 10946.95, + "probability": 0.9603 + }, + { + "start": 10947.53, + "end": 10951.01, + "probability": 0.8052 + }, + { + "start": 10973.81, + "end": 10975.09, + "probability": 0.4552 + }, + { + "start": 10975.23, + "end": 10975.23, + "probability": 0.3406 + }, + { + "start": 10975.23, + "end": 10976.23, + "probability": 0.6306 + }, + { + "start": 10977.43, + "end": 10980.27, + "probability": 0.9572 + }, + { + "start": 10980.27, + "end": 10984.01, + "probability": 0.7479 + }, + { + "start": 10984.01, + "end": 10985.73, + "probability": 0.6542 + }, + { + "start": 10986.47, + "end": 10987.89, + "probability": 0.0798 + }, + { + "start": 10988.05, + "end": 10988.43, + "probability": 0.2752 + }, + { + "start": 10988.51, + "end": 10991.17, + "probability": 0.9618 + }, + { + "start": 10991.39, + "end": 10994.15, + "probability": 0.7526 + }, + { + "start": 10994.51, + "end": 10998.67, + "probability": 0.9447 + }, + { + "start": 11000.01, + "end": 11000.59, + "probability": 0.5396 + }, + { + "start": 11001.11, + "end": 11005.29, + "probability": 0.3997 + }, + { + "start": 11005.89, + "end": 11006.66, + "probability": 0.5483 + }, + { + "start": 11007.11, + "end": 11011.95, + "probability": 0.2418 + }, + { + "start": 11011.95, + "end": 11014.09, + "probability": 0.5015 + }, + { + "start": 11014.13, + "end": 11014.87, + "probability": 0.187 + }, + { + "start": 11014.95, + "end": 11018.85, + "probability": 0.5666 + }, + { + "start": 11020.02, + "end": 11022.59, + "probability": 0.5909 + }, + { + "start": 11022.69, + "end": 11023.17, + "probability": 0.7131 + }, + { + "start": 11023.23, + "end": 11023.61, + "probability": 0.9433 + }, + { + "start": 11024.33, + "end": 11026.09, + "probability": 0.8704 + }, + { + "start": 11026.73, + "end": 11029.93, + "probability": 0.8161 + }, + { + "start": 11031.45, + "end": 11032.99, + "probability": 0.7806 + }, + { + "start": 11035.45, + "end": 11037.01, + "probability": 0.6838 + }, + { + "start": 11037.35, + "end": 11037.71, + "probability": 0.7932 + }, + { + "start": 11038.33, + "end": 11039.56, + "probability": 0.9834 + }, + { + "start": 11040.8, + "end": 11043.0, + "probability": 0.5475 + }, + { + "start": 11061.99, + "end": 11065.88, + "probability": 0.1978 + }, + { + "start": 11066.54, + "end": 11069.78, + "probability": 0.9097 + }, + { + "start": 11069.96, + "end": 11073.26, + "probability": 0.7927 + }, + { + "start": 11073.26, + "end": 11075.56, + "probability": 0.8282 + }, + { + "start": 11075.7, + "end": 11076.9, + "probability": 0.3045 + }, + { + "start": 11078.86, + "end": 11082.0, + "probability": 0.8587 + }, + { + "start": 11092.12, + "end": 11093.4, + "probability": 0.1419 + }, + { + "start": 11093.52, + "end": 11096.24, + "probability": 0.0771 + }, + { + "start": 11107.46, + "end": 11110.18, + "probability": 0.1921 + }, + { + "start": 11110.18, + "end": 11112.86, + "probability": 0.0472 + }, + { + "start": 11112.86, + "end": 11117.9, + "probability": 0.0574 + }, + { + "start": 11133.62, + "end": 11136.74, + "probability": 0.0875 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11191.0, + "end": 11191.0, + "probability": 0.0 + }, + { + "start": 11205.44, + "end": 11206.44, + "probability": 0.0244 + }, + { + "start": 11207.16, + "end": 11207.26, + "probability": 0.1826 + }, + { + "start": 11207.26, + "end": 11212.77, + "probability": 0.1178 + }, + { + "start": 11214.14, + "end": 11216.36, + "probability": 0.039 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.3, + "end": 11311.38, + "probability": 0.1474 + }, + { + "start": 11311.38, + "end": 11311.38, + "probability": 0.0033 + }, + { + "start": 11311.38, + "end": 11311.38, + "probability": 0.1172 + }, + { + "start": 11311.38, + "end": 11311.38, + "probability": 0.2674 + }, + { + "start": 11311.38, + "end": 11313.06, + "probability": 0.6597 + }, + { + "start": 11313.1, + "end": 11315.24, + "probability": 0.216 + }, + { + "start": 11315.96, + "end": 11315.96, + "probability": 0.0823 + }, + { + "start": 11315.96, + "end": 11319.04, + "probability": 0.9653 + }, + { + "start": 11320.36, + "end": 11322.26, + "probability": 0.933 + }, + { + "start": 11322.92, + "end": 11325.04, + "probability": 0.4645 + }, + { + "start": 11325.74, + "end": 11327.26, + "probability": 0.9797 + }, + { + "start": 11327.42, + "end": 11329.34, + "probability": 0.9606 + }, + { + "start": 11329.4, + "end": 11330.9, + "probability": 0.3806 + }, + { + "start": 11331.98, + "end": 11334.5, + "probability": 0.9906 + }, + { + "start": 11343.82, + "end": 11344.4, + "probability": 0.2099 + }, + { + "start": 11344.4, + "end": 11346.48, + "probability": 0.5911 + }, + { + "start": 11347.56, + "end": 11348.34, + "probability": 0.9482 + }, + { + "start": 11349.68, + "end": 11352.54, + "probability": 0.5629 + }, + { + "start": 11352.54, + "end": 11354.47, + "probability": 0.7542 + }, + { + "start": 11355.32, + "end": 11356.55, + "probability": 0.8372 + }, + { + "start": 11357.22, + "end": 11359.52, + "probability": 0.6408 + }, + { + "start": 11360.08, + "end": 11360.2, + "probability": 0.3626 + }, + { + "start": 11360.2, + "end": 11360.97, + "probability": 0.6622 + }, + { + "start": 11361.66, + "end": 11365.84, + "probability": 0.9762 + }, + { + "start": 11366.46, + "end": 11367.48, + "probability": 0.8461 + }, + { + "start": 11368.36, + "end": 11369.56, + "probability": 0.5931 + }, + { + "start": 11369.94, + "end": 11370.26, + "probability": 0.6643 + }, + { + "start": 11370.26, + "end": 11374.58, + "probability": 0.9674 + }, + { + "start": 11375.6, + "end": 11379.04, + "probability": 0.9236 + }, + { + "start": 11379.6, + "end": 11381.02, + "probability": 0.9955 + }, + { + "start": 11381.7, + "end": 11387.0, + "probability": 0.9443 + }, + { + "start": 11387.58, + "end": 11390.24, + "probability": 0.645 + }, + { + "start": 11390.4, + "end": 11394.87, + "probability": 0.8678 + }, + { + "start": 11395.48, + "end": 11396.66, + "probability": 0.8539 + }, + { + "start": 11397.34, + "end": 11401.74, + "probability": 0.5999 + }, + { + "start": 11402.06, + "end": 11402.58, + "probability": 0.8657 + }, + { + "start": 11402.72, + "end": 11406.14, + "probability": 0.8516 + }, + { + "start": 11407.3, + "end": 11409.96, + "probability": 0.8317 + }, + { + "start": 11410.06, + "end": 11411.62, + "probability": 0.7935 + }, + { + "start": 11411.7, + "end": 11412.42, + "probability": 0.727 + }, + { + "start": 11413.08, + "end": 11418.04, + "probability": 0.9453 + }, + { + "start": 11418.16, + "end": 11418.96, + "probability": 0.666 + }, + { + "start": 11419.34, + "end": 11420.52, + "probability": 0.5391 + }, + { + "start": 11421.14, + "end": 11424.88, + "probability": 0.7973 + }, + { + "start": 11425.62, + "end": 11426.42, + "probability": 0.6582 + }, + { + "start": 11426.54, + "end": 11429.82, + "probability": 0.6475 + }, + { + "start": 11429.9, + "end": 11431.02, + "probability": 0.778 + }, + { + "start": 11431.12, + "end": 11432.62, + "probability": 0.866 + }, + { + "start": 11433.12, + "end": 11433.48, + "probability": 0.4205 + }, + { + "start": 11433.62, + "end": 11436.32, + "probability": 0.9113 + }, + { + "start": 11436.46, + "end": 11440.1, + "probability": 0.9473 + }, + { + "start": 11440.14, + "end": 11441.84, + "probability": 0.9833 + }, + { + "start": 11442.68, + "end": 11444.3, + "probability": 0.8737 + }, + { + "start": 11445.34, + "end": 11449.94, + "probability": 0.9003 + }, + { + "start": 11449.94, + "end": 11453.68, + "probability": 0.9767 + }, + { + "start": 11454.92, + "end": 11456.94, + "probability": 0.9972 + }, + { + "start": 11457.36, + "end": 11462.2, + "probability": 0.9852 + }, + { + "start": 11462.74, + "end": 11467.34, + "probability": 0.8396 + }, + { + "start": 11468.48, + "end": 11471.78, + "probability": 0.7498 + }, + { + "start": 11472.4, + "end": 11473.7, + "probability": 0.8707 + }, + { + "start": 11474.66, + "end": 11477.08, + "probability": 0.9894 + }, + { + "start": 11477.28, + "end": 11481.58, + "probability": 0.703 + }, + { + "start": 11481.98, + "end": 11484.5, + "probability": 0.8508 + }, + { + "start": 11485.9, + "end": 11486.34, + "probability": 0.4196 + }, + { + "start": 11486.52, + "end": 11489.74, + "probability": 0.9008 + }, + { + "start": 11489.96, + "end": 11492.96, + "probability": 0.9956 + }, + { + "start": 11493.08, + "end": 11496.58, + "probability": 0.716 + }, + { + "start": 11497.2, + "end": 11499.36, + "probability": 0.9717 + }, + { + "start": 11499.8, + "end": 11500.24, + "probability": 0.5194 + }, + { + "start": 11500.38, + "end": 11502.64, + "probability": 0.9807 + }, + { + "start": 11503.04, + "end": 11503.56, + "probability": 0.727 + }, + { + "start": 11503.7, + "end": 11509.4, + "probability": 0.9968 + }, + { + "start": 11509.94, + "end": 11513.02, + "probability": 0.9993 + }, + { + "start": 11514.06, + "end": 11515.3, + "probability": 0.9058 + }, + { + "start": 11516.1, + "end": 11519.0, + "probability": 0.1018 + }, + { + "start": 11519.0, + "end": 11519.73, + "probability": 0.2191 + }, + { + "start": 11520.76, + "end": 11524.84, + "probability": 0.9285 + }, + { + "start": 11525.54, + "end": 11526.78, + "probability": 0.5647 + }, + { + "start": 11526.96, + "end": 11527.72, + "probability": 0.8697 + }, + { + "start": 11527.82, + "end": 11528.97, + "probability": 0.9834 + }, + { + "start": 11529.48, + "end": 11530.4, + "probability": 0.6237 + }, + { + "start": 11531.0, + "end": 11532.04, + "probability": 0.9796 + }, + { + "start": 11532.8, + "end": 11533.4, + "probability": 0.5247 + }, + { + "start": 11533.98, + "end": 11534.7, + "probability": 0.6707 + }, + { + "start": 11535.41, + "end": 11541.16, + "probability": 0.9736 + }, + { + "start": 11541.58, + "end": 11548.26, + "probability": 0.9879 + }, + { + "start": 11548.92, + "end": 11552.2, + "probability": 0.9961 + }, + { + "start": 11552.32, + "end": 11553.51, + "probability": 0.5882 + }, + { + "start": 11553.92, + "end": 11555.2, + "probability": 0.4347 + }, + { + "start": 11555.42, + "end": 11557.92, + "probability": 0.9927 + }, + { + "start": 11558.2, + "end": 11558.3, + "probability": 0.5559 + }, + { + "start": 11559.6, + "end": 11559.9, + "probability": 0.5249 + }, + { + "start": 11560.19, + "end": 11564.82, + "probability": 0.6793 + }, + { + "start": 11564.82, + "end": 11564.82, + "probability": 0.0429 + }, + { + "start": 11564.82, + "end": 11564.82, + "probability": 0.1005 + }, + { + "start": 11564.82, + "end": 11566.18, + "probability": 0.5808 + }, + { + "start": 11566.24, + "end": 11567.28, + "probability": 0.4583 + }, + { + "start": 11567.54, + "end": 11569.22, + "probability": 0.7929 + }, + { + "start": 11570.78, + "end": 11571.08, + "probability": 0.216 + }, + { + "start": 11571.08, + "end": 11571.8, + "probability": 0.4726 + }, + { + "start": 11572.36, + "end": 11572.36, + "probability": 0.0483 + }, + { + "start": 11572.36, + "end": 11572.36, + "probability": 0.0166 + }, + { + "start": 11572.36, + "end": 11573.87, + "probability": 0.6895 + }, + { + "start": 11574.76, + "end": 11575.04, + "probability": 0.0126 + }, + { + "start": 11575.08, + "end": 11576.2, + "probability": 0.3796 + }, + { + "start": 11576.2, + "end": 11577.1, + "probability": 0.3859 + }, + { + "start": 11577.68, + "end": 11579.44, + "probability": 0.8767 + }, + { + "start": 11579.9, + "end": 11581.13, + "probability": 0.9727 + }, + { + "start": 11581.82, + "end": 11584.92, + "probability": 0.9688 + }, + { + "start": 11584.92, + "end": 11588.8, + "probability": 0.8899 + }, + { + "start": 11588.96, + "end": 11589.68, + "probability": 0.6552 + }, + { + "start": 11590.14, + "end": 11591.12, + "probability": 0.8752 + }, + { + "start": 11591.52, + "end": 11592.54, + "probability": 0.6155 + }, + { + "start": 11592.6, + "end": 11596.24, + "probability": 0.9971 + }, + { + "start": 11596.54, + "end": 11596.74, + "probability": 0.7064 + }, + { + "start": 11597.44, + "end": 11599.82, + "probability": 0.9971 + }, + { + "start": 11600.5, + "end": 11603.68, + "probability": 0.8818 + }, + { + "start": 11603.82, + "end": 11604.56, + "probability": 0.9552 + }, + { + "start": 11605.18, + "end": 11606.82, + "probability": 0.1917 + }, + { + "start": 11608.4, + "end": 11613.4, + "probability": 0.0783 + }, + { + "start": 11636.4, + "end": 11643.42, + "probability": 0.9585 + }, + { + "start": 11643.42, + "end": 11646.46, + "probability": 0.9987 + }, + { + "start": 11647.22, + "end": 11649.1, + "probability": 0.9961 + }, + { + "start": 11649.1, + "end": 11652.28, + "probability": 0.9987 + }, + { + "start": 11652.88, + "end": 11654.54, + "probability": 0.9622 + }, + { + "start": 11655.02, + "end": 11656.6, + "probability": 0.9509 + }, + { + "start": 11656.94, + "end": 11658.8, + "probability": 0.7902 + }, + { + "start": 11659.6, + "end": 11662.64, + "probability": 0.7987 + }, + { + "start": 11663.02, + "end": 11665.84, + "probability": 0.8701 + }, + { + "start": 11666.36, + "end": 11673.32, + "probability": 0.8184 + }, + { + "start": 11673.76, + "end": 11676.12, + "probability": 0.7337 + }, + { + "start": 11676.52, + "end": 11678.74, + "probability": 0.9561 + }, + { + "start": 11679.36, + "end": 11681.68, + "probability": 0.8086 + }, + { + "start": 11682.76, + "end": 11685.82, + "probability": 0.9564 + }, + { + "start": 11686.8, + "end": 11687.26, + "probability": 0.6932 + }, + { + "start": 11687.8, + "end": 11689.36, + "probability": 0.7672 + }, + { + "start": 11691.37, + "end": 11696.3, + "probability": 0.931 + }, + { + "start": 11696.84, + "end": 11700.86, + "probability": 0.6994 + }, + { + "start": 11701.78, + "end": 11706.38, + "probability": 0.904 + }, + { + "start": 11706.76, + "end": 11708.24, + "probability": 0.9276 + }, + { + "start": 11708.52, + "end": 11710.5, + "probability": 0.7493 + }, + { + "start": 11712.58, + "end": 11716.38, + "probability": 0.9765 + }, + { + "start": 11716.92, + "end": 11723.62, + "probability": 0.911 + }, + { + "start": 11724.18, + "end": 11725.98, + "probability": 0.8864 + }, + { + "start": 11726.54, + "end": 11728.36, + "probability": 0.7497 + }, + { + "start": 11728.86, + "end": 11729.86, + "probability": 0.8203 + }, + { + "start": 11729.98, + "end": 11731.0, + "probability": 0.2498 + }, + { + "start": 11731.08, + "end": 11731.44, + "probability": 0.342 + }, + { + "start": 11735.63, + "end": 11736.92, + "probability": 0.6558 + }, + { + "start": 11736.96, + "end": 11737.72, + "probability": 0.684 + }, + { + "start": 11738.66, + "end": 11739.84, + "probability": 0.2122 + }, + { + "start": 11740.12, + "end": 11741.8, + "probability": 0.9887 + }, + { + "start": 11742.06, + "end": 11744.46, + "probability": 0.8017 + }, + { + "start": 11744.54, + "end": 11746.96, + "probability": 0.8223 + }, + { + "start": 11747.26, + "end": 11748.96, + "probability": 0.6707 + }, + { + "start": 11749.4, + "end": 11750.62, + "probability": 0.6169 + }, + { + "start": 11751.46, + "end": 11753.84, + "probability": 0.6998 + }, + { + "start": 11754.12, + "end": 11757.1, + "probability": 0.6924 + }, + { + "start": 11758.44, + "end": 11759.18, + "probability": 0.8695 + }, + { + "start": 11759.26, + "end": 11766.0, + "probability": 0.9707 + }, + { + "start": 11768.82, + "end": 11769.24, + "probability": 0.8338 + }, + { + "start": 11769.76, + "end": 11774.52, + "probability": 0.9901 + }, + { + "start": 11774.52, + "end": 11779.18, + "probability": 0.6944 + }, + { + "start": 11779.42, + "end": 11781.84, + "probability": 0.9062 + }, + { + "start": 11781.9, + "end": 11783.04, + "probability": 0.746 + }, + { + "start": 11783.52, + "end": 11786.0, + "probability": 0.9646 + }, + { + "start": 11786.6, + "end": 11790.08, + "probability": 0.9744 + }, + { + "start": 11791.6, + "end": 11795.48, + "probability": 0.8704 + }, + { + "start": 11796.02, + "end": 11797.58, + "probability": 0.9385 + }, + { + "start": 11798.34, + "end": 11801.74, + "probability": 0.9816 + }, + { + "start": 11802.12, + "end": 11806.58, + "probability": 0.995 + }, + { + "start": 11807.2, + "end": 11810.02, + "probability": 0.9151 + }, + { + "start": 11810.14, + "end": 11813.3, + "probability": 0.9888 + }, + { + "start": 11813.46, + "end": 11818.12, + "probability": 0.9762 + }, + { + "start": 11818.24, + "end": 11818.54, + "probability": 0.0911 + }, + { + "start": 11818.94, + "end": 11819.28, + "probability": 0.4829 + }, + { + "start": 11819.28, + "end": 11825.4, + "probability": 0.8199 + }, + { + "start": 11825.4, + "end": 11832.0, + "probability": 0.9945 + }, + { + "start": 11832.06, + "end": 11836.38, + "probability": 0.9512 + }, + { + "start": 11836.44, + "end": 11842.0, + "probability": 0.9952 + }, + { + "start": 11844.4, + "end": 11844.78, + "probability": 0.4051 + }, + { + "start": 11845.94, + "end": 11846.64, + "probability": 0.5935 + }, + { + "start": 11847.46, + "end": 11848.02, + "probability": 0.6908 + }, + { + "start": 11849.44, + "end": 11856.07, + "probability": 0.9693 + }, + { + "start": 11856.26, + "end": 11863.56, + "probability": 0.8954 + }, + { + "start": 11865.1, + "end": 11868.36, + "probability": 0.6025 + }, + { + "start": 11868.44, + "end": 11873.04, + "probability": 0.9927 + }, + { + "start": 11873.86, + "end": 11875.4, + "probability": 0.7766 + }, + { + "start": 11876.94, + "end": 11882.66, + "probability": 0.787 + }, + { + "start": 11882.66, + "end": 11887.24, + "probability": 0.8714 + }, + { + "start": 11887.24, + "end": 11891.6, + "probability": 0.9917 + }, + { + "start": 11891.82, + "end": 11892.34, + "probability": 0.1543 + }, + { + "start": 11894.7, + "end": 11895.29, + "probability": 0.9521 + }, + { + "start": 11896.58, + "end": 11900.0, + "probability": 0.0429 + }, + { + "start": 11901.18, + "end": 11902.72, + "probability": 0.8239 + }, + { + "start": 11903.66, + "end": 11907.96, + "probability": 0.269 + }, + { + "start": 11908.28, + "end": 11912.04, + "probability": 0.4442 + }, + { + "start": 11912.94, + "end": 11913.86, + "probability": 0.2639 + }, + { + "start": 11913.96, + "end": 11914.2, + "probability": 0.6475 + }, + { + "start": 11914.32, + "end": 11916.4, + "probability": 0.8441 + }, + { + "start": 11916.72, + "end": 11920.84, + "probability": 0.8326 + }, + { + "start": 11920.96, + "end": 11922.26, + "probability": 0.7226 + }, + { + "start": 11922.64, + "end": 11928.48, + "probability": 0.955 + }, + { + "start": 11928.8, + "end": 11931.56, + "probability": 0.5464 + }, + { + "start": 11931.56, + "end": 11932.2, + "probability": 0.3849 + }, + { + "start": 11932.74, + "end": 11933.56, + "probability": 0.5908 + }, + { + "start": 11933.94, + "end": 11934.52, + "probability": 0.4194 + }, + { + "start": 11934.52, + "end": 11936.22, + "probability": 0.7509 + }, + { + "start": 11936.3, + "end": 11937.38, + "probability": 0.2514 + }, + { + "start": 11937.42, + "end": 11938.06, + "probability": 0.3493 + }, + { + "start": 11938.06, + "end": 11939.3, + "probability": 0.9841 + }, + { + "start": 11940.6, + "end": 11942.62, + "probability": 0.9886 + }, + { + "start": 11943.6, + "end": 11943.86, + "probability": 0.4822 + }, + { + "start": 11944.6, + "end": 11945.52, + "probability": 0.3674 + }, + { + "start": 11945.52, + "end": 11945.72, + "probability": 0.4866 + }, + { + "start": 11945.76, + "end": 11946.06, + "probability": 0.9176 + }, + { + "start": 11946.12, + "end": 11949.06, + "probability": 0.9745 + }, + { + "start": 11949.7, + "end": 11950.68, + "probability": 0.7319 + }, + { + "start": 11950.78, + "end": 11951.6, + "probability": 0.9934 + }, + { + "start": 11952.02, + "end": 11958.04, + "probability": 0.9709 + }, + { + "start": 11959.32, + "end": 11960.82, + "probability": 0.5136 + }, + { + "start": 11961.76, + "end": 11966.3, + "probability": 0.7994 + }, + { + "start": 11968.32, + "end": 11969.74, + "probability": 0.2087 + }, + { + "start": 11970.8, + "end": 11973.36, + "probability": 0.8248 + }, + { + "start": 11974.84, + "end": 11975.68, + "probability": 0.7766 + }, + { + "start": 11976.96, + "end": 11977.72, + "probability": 0.458 + }, + { + "start": 11979.2, + "end": 11982.2, + "probability": 0.95 + }, + { + "start": 11982.2, + "end": 11986.06, + "probability": 0.9443 + }, + { + "start": 11986.84, + "end": 11988.42, + "probability": 0.7339 + }, + { + "start": 11988.48, + "end": 11991.16, + "probability": 0.9854 + }, + { + "start": 11991.22, + "end": 11991.74, + "probability": 0.8547 + }, + { + "start": 11993.36, + "end": 11993.88, + "probability": 0.957 + }, + { + "start": 11994.32, + "end": 11995.41, + "probability": 0.8916 + }, + { + "start": 11997.4, + "end": 11998.14, + "probability": 0.5163 + }, + { + "start": 11998.2, + "end": 11998.72, + "probability": 0.8365 + }, + { + "start": 12018.62, + "end": 12027.38, + "probability": 0.0895 + }, + { + "start": 12027.38, + "end": 12029.12, + "probability": 0.7429 + }, + { + "start": 12029.26, + "end": 12030.78, + "probability": 0.0815 + }, + { + "start": 12031.3, + "end": 12032.52, + "probability": 0.0749 + }, + { + "start": 12032.52, + "end": 12032.8, + "probability": 0.1291 + }, + { + "start": 12033.22, + "end": 12035.92, + "probability": 0.0059 + }, + { + "start": 12043.16, + "end": 12044.2, + "probability": 0.0225 + }, + { + "start": 12044.2, + "end": 12046.42, + "probability": 0.0153 + }, + { + "start": 12048.14, + "end": 12049.46, + "probability": 0.6596 + }, + { + "start": 12050.0, + "end": 12056.4, + "probability": 0.0314 + }, + { + "start": 12056.6, + "end": 12058.8, + "probability": 0.047 + }, + { + "start": 12059.28, + "end": 12060.64, + "probability": 0.0562 + }, + { + "start": 12061.76, + "end": 12063.24, + "probability": 0.1264 + }, + { + "start": 12064.88, + "end": 12064.98, + "probability": 0.0384 + }, + { + "start": 12065.0, + "end": 12065.0, + "probability": 0.0 + }, + { + "start": 12065.0, + "end": 12065.0, + "probability": 0.0 + }, + { + "start": 12065.0, + "end": 12065.0, + "probability": 0.0 + }, + { + "start": 12065.0, + "end": 12065.0, + "probability": 0.0 + }, + { + "start": 12065.0, + "end": 12065.0, + "probability": 0.0 + }, + { + "start": 12065.0, + "end": 12065.0, + "probability": 0.0 + }, + { + "start": 12065.0, + "end": 12065.0, + "probability": 0.0 + }, + { + "start": 12065.0, + "end": 12065.0, + "probability": 0.0 + }, + { + "start": 12065.0, + "end": 12065.0, + "probability": 0.0 + }, + { + "start": 12065.0, + "end": 12065.0, + "probability": 0.0 + }, + { + "start": 12065.0, + "end": 12065.0, + "probability": 0.0 + }, + { + "start": 12065.0, + "end": 12065.0, + "probability": 0.0 + }, + { + "start": 12065.0, + "end": 12065.0, + "probability": 0.0 + }, + { + "start": 12065.0, + "end": 12065.0, + "probability": 0.0 + }, + { + "start": 12065.0, + "end": 12065.0, + "probability": 0.0 + }, + { + "start": 12065.0, + "end": 12065.0, + "probability": 0.0 + }, + { + "start": 12065.0, + "end": 12065.0, + "probability": 0.0 + }, + { + "start": 12065.1, + "end": 12065.24, + "probability": 0.0304 + }, + { + "start": 12065.24, + "end": 12068.46, + "probability": 0.9595 + }, + { + "start": 12068.46, + "end": 12071.58, + "probability": 0.9616 + }, + { + "start": 12071.6, + "end": 12072.96, + "probability": 0.8292 + }, + { + "start": 12073.54, + "end": 12074.2, + "probability": 0.6665 + }, + { + "start": 12076.2, + "end": 12077.08, + "probability": 0.8867 + }, + { + "start": 12080.84, + "end": 12083.58, + "probability": 0.0448 + }, + { + "start": 12083.58, + "end": 12084.06, + "probability": 0.1123 + }, + { + "start": 12085.6, + "end": 12088.44, + "probability": 0.1353 + }, + { + "start": 12089.6, + "end": 12091.78, + "probability": 0.7846 + }, + { + "start": 12092.46, + "end": 12093.97, + "probability": 0.9966 + }, + { + "start": 12094.86, + "end": 12096.04, + "probability": 0.8545 + }, + { + "start": 12096.98, + "end": 12102.62, + "probability": 0.9619 + }, + { + "start": 12103.36, + "end": 12104.02, + "probability": 0.873 + }, + { + "start": 12104.66, + "end": 12106.84, + "probability": 0.9425 + }, + { + "start": 12107.7, + "end": 12108.62, + "probability": 0.6903 + }, + { + "start": 12110.0, + "end": 12113.44, + "probability": 0.8706 + }, + { + "start": 12114.62, + "end": 12118.3, + "probability": 0.9792 + }, + { + "start": 12118.94, + "end": 12125.3, + "probability": 0.9893 + }, + { + "start": 12125.38, + "end": 12126.7, + "probability": 0.8546 + }, + { + "start": 12127.68, + "end": 12129.72, + "probability": 0.9124 + }, + { + "start": 12130.44, + "end": 12132.46, + "probability": 0.9512 + }, + { + "start": 12133.4, + "end": 12135.2, + "probability": 0.9733 + }, + { + "start": 12135.9, + "end": 12138.72, + "probability": 0.965 + }, + { + "start": 12139.8, + "end": 12140.44, + "probability": 0.7112 + }, + { + "start": 12140.86, + "end": 12142.52, + "probability": 0.8002 + }, + { + "start": 12142.8, + "end": 12145.88, + "probability": 0.8702 + }, + { + "start": 12147.38, + "end": 12148.66, + "probability": 0.7577 + }, + { + "start": 12149.4, + "end": 12151.16, + "probability": 0.6974 + }, + { + "start": 12152.36, + "end": 12155.42, + "probability": 0.9664 + }, + { + "start": 12156.3, + "end": 12160.7, + "probability": 0.9771 + }, + { + "start": 12161.42, + "end": 12163.48, + "probability": 0.9878 + }, + { + "start": 12163.68, + "end": 12166.5, + "probability": 0.7517 + }, + { + "start": 12167.38, + "end": 12170.02, + "probability": 0.6552 + }, + { + "start": 12170.6, + "end": 12171.68, + "probability": 0.6991 + }, + { + "start": 12172.28, + "end": 12174.16, + "probability": 0.9974 + }, + { + "start": 12175.18, + "end": 12178.68, + "probability": 0.9867 + }, + { + "start": 12178.78, + "end": 12179.6, + "probability": 0.9023 + }, + { + "start": 12180.38, + "end": 12183.18, + "probability": 0.933 + }, + { + "start": 12183.7, + "end": 12187.48, + "probability": 0.9995 + }, + { + "start": 12188.12, + "end": 12191.18, + "probability": 0.916 + }, + { + "start": 12191.82, + "end": 12192.5, + "probability": 0.663 + }, + { + "start": 12193.46, + "end": 12199.0, + "probability": 0.9961 + }, + { + "start": 12199.66, + "end": 12200.59, + "probability": 0.9884 + }, + { + "start": 12201.56, + "end": 12202.65, + "probability": 0.9915 + }, + { + "start": 12203.7, + "end": 12205.18, + "probability": 0.9915 + }, + { + "start": 12205.2, + "end": 12208.04, + "probability": 0.9773 + }, + { + "start": 12208.74, + "end": 12212.44, + "probability": 0.9881 + }, + { + "start": 12213.44, + "end": 12215.76, + "probability": 0.9984 + }, + { + "start": 12216.74, + "end": 12218.84, + "probability": 0.9492 + }, + { + "start": 12219.76, + "end": 12221.44, + "probability": 0.9921 + }, + { + "start": 12222.28, + "end": 12224.2, + "probability": 0.9993 + }, + { + "start": 12225.24, + "end": 12226.94, + "probability": 0.9979 + }, + { + "start": 12227.66, + "end": 12229.06, + "probability": 0.9963 + }, + { + "start": 12229.68, + "end": 12233.37, + "probability": 0.9902 + }, + { + "start": 12234.1, + "end": 12236.46, + "probability": 0.8726 + }, + { + "start": 12236.62, + "end": 12238.88, + "probability": 0.9376 + }, + { + "start": 12239.84, + "end": 12243.94, + "probability": 0.9873 + }, + { + "start": 12245.56, + "end": 12250.46, + "probability": 0.9395 + }, + { + "start": 12251.12, + "end": 12254.06, + "probability": 0.9946 + }, + { + "start": 12254.42, + "end": 12255.48, + "probability": 0.5206 + }, + { + "start": 12256.54, + "end": 12257.82, + "probability": 0.9604 + }, + { + "start": 12258.1, + "end": 12259.24, + "probability": 0.8413 + }, + { + "start": 12259.74, + "end": 12261.18, + "probability": 0.9926 + }, + { + "start": 12262.4, + "end": 12264.42, + "probability": 0.7803 + }, + { + "start": 12265.2, + "end": 12266.94, + "probability": 0.9351 + }, + { + "start": 12267.98, + "end": 12271.66, + "probability": 0.9172 + }, + { + "start": 12272.58, + "end": 12274.96, + "probability": 0.8212 + }, + { + "start": 12276.24, + "end": 12277.8, + "probability": 0.8786 + }, + { + "start": 12277.92, + "end": 12279.93, + "probability": 0.6033 + }, + { + "start": 12280.58, + "end": 12282.88, + "probability": 0.973 + }, + { + "start": 12283.1, + "end": 12283.82, + "probability": 0.9583 + }, + { + "start": 12284.82, + "end": 12286.28, + "probability": 0.9519 + }, + { + "start": 12287.68, + "end": 12288.42, + "probability": 0.7231 + }, + { + "start": 12290.0, + "end": 12291.9, + "probability": 0.9912 + }, + { + "start": 12292.26, + "end": 12293.24, + "probability": 0.9988 + }, + { + "start": 12294.42, + "end": 12295.36, + "probability": 0.9156 + }, + { + "start": 12296.54, + "end": 12296.7, + "probability": 0.378 + }, + { + "start": 12296.82, + "end": 12297.3, + "probability": 0.8321 + }, + { + "start": 12297.42, + "end": 12298.44, + "probability": 0.9562 + }, + { + "start": 12298.48, + "end": 12299.46, + "probability": 0.4703 + }, + { + "start": 12300.34, + "end": 12303.82, + "probability": 0.7263 + }, + { + "start": 12304.32, + "end": 12305.86, + "probability": 0.9057 + }, + { + "start": 12307.0, + "end": 12308.86, + "probability": 0.9949 + }, + { + "start": 12308.94, + "end": 12310.76, + "probability": 0.9953 + }, + { + "start": 12312.28, + "end": 12314.14, + "probability": 0.7812 + }, + { + "start": 12315.28, + "end": 12318.12, + "probability": 0.9764 + }, + { + "start": 12319.1, + "end": 12321.98, + "probability": 0.7776 + }, + { + "start": 12323.04, + "end": 12327.2, + "probability": 0.9667 + }, + { + "start": 12327.22, + "end": 12328.16, + "probability": 0.9499 + }, + { + "start": 12328.64, + "end": 12330.42, + "probability": 0.9713 + }, + { + "start": 12330.96, + "end": 12333.06, + "probability": 0.8228 + }, + { + "start": 12333.94, + "end": 12337.0, + "probability": 0.998 + }, + { + "start": 12337.16, + "end": 12338.84, + "probability": 0.8475 + }, + { + "start": 12338.92, + "end": 12339.42, + "probability": 0.8533 + }, + { + "start": 12339.48, + "end": 12340.52, + "probability": 0.6543 + }, + { + "start": 12341.24, + "end": 12342.88, + "probability": 0.9686 + }, + { + "start": 12343.1, + "end": 12344.08, + "probability": 0.98 + }, + { + "start": 12344.42, + "end": 12345.2, + "probability": 0.9616 + }, + { + "start": 12345.78, + "end": 12346.6, + "probability": 0.8398 + }, + { + "start": 12348.16, + "end": 12349.95, + "probability": 0.9547 + }, + { + "start": 12352.08, + "end": 12356.38, + "probability": 0.98 + }, + { + "start": 12356.66, + "end": 12358.82, + "probability": 0.9184 + }, + { + "start": 12360.52, + "end": 12361.66, + "probability": 0.9395 + }, + { + "start": 12362.6, + "end": 12363.88, + "probability": 0.999 + }, + { + "start": 12364.72, + "end": 12365.8, + "probability": 0.9764 + }, + { + "start": 12366.38, + "end": 12367.54, + "probability": 0.9965 + }, + { + "start": 12368.36, + "end": 12370.34, + "probability": 0.9727 + }, + { + "start": 12370.46, + "end": 12371.08, + "probability": 0.6498 + }, + { + "start": 12371.18, + "end": 12372.88, + "probability": 0.9968 + }, + { + "start": 12373.36, + "end": 12374.46, + "probability": 0.9626 + }, + { + "start": 12374.96, + "end": 12375.68, + "probability": 0.9089 + }, + { + "start": 12376.06, + "end": 12377.38, + "probability": 0.9832 + }, + { + "start": 12377.76, + "end": 12381.08, + "probability": 0.9429 + }, + { + "start": 12381.08, + "end": 12383.74, + "probability": 0.9938 + }, + { + "start": 12384.94, + "end": 12385.84, + "probability": 0.5506 + }, + { + "start": 12386.6, + "end": 12388.05, + "probability": 0.8911 + }, + { + "start": 12389.14, + "end": 12389.58, + "probability": 0.4993 + }, + { + "start": 12390.78, + "end": 12393.98, + "probability": 0.9398 + }, + { + "start": 12394.6, + "end": 12399.34, + "probability": 0.892 + }, + { + "start": 12400.24, + "end": 12401.24, + "probability": 0.8657 + }, + { + "start": 12402.18, + "end": 12402.87, + "probability": 0.5414 + }, + { + "start": 12403.22, + "end": 12403.84, + "probability": 0.7566 + }, + { + "start": 12403.92, + "end": 12407.18, + "probability": 0.9961 + }, + { + "start": 12407.3, + "end": 12408.02, + "probability": 0.8252 + }, + { + "start": 12408.4, + "end": 12409.4, + "probability": 0.8657 + }, + { + "start": 12409.52, + "end": 12411.8, + "probability": 0.938 + }, + { + "start": 12411.9, + "end": 12412.92, + "probability": 0.3837 + }, + { + "start": 12413.98, + "end": 12414.5, + "probability": 0.9437 + }, + { + "start": 12415.26, + "end": 12417.26, + "probability": 0.9535 + }, + { + "start": 12418.58, + "end": 12419.9, + "probability": 0.984 + }, + { + "start": 12420.88, + "end": 12424.44, + "probability": 0.9849 + }, + { + "start": 12425.24, + "end": 12426.22, + "probability": 0.9784 + }, + { + "start": 12428.36, + "end": 12428.94, + "probability": 0.7099 + }, + { + "start": 12429.02, + "end": 12430.58, + "probability": 0.7979 + }, + { + "start": 12430.64, + "end": 12432.74, + "probability": 0.9607 + }, + { + "start": 12432.86, + "end": 12433.56, + "probability": 0.383 + }, + { + "start": 12434.2, + "end": 12435.24, + "probability": 0.8615 + }, + { + "start": 12436.18, + "end": 12437.88, + "probability": 0.9895 + }, + { + "start": 12438.52, + "end": 12439.18, + "probability": 0.7448 + }, + { + "start": 12439.76, + "end": 12440.9, + "probability": 0.957 + }, + { + "start": 12441.76, + "end": 12445.18, + "probability": 0.9687 + }, + { + "start": 12445.68, + "end": 12447.52, + "probability": 0.6972 + }, + { + "start": 12448.38, + "end": 12448.94, + "probability": 0.6982 + }, + { + "start": 12449.62, + "end": 12450.7, + "probability": 0.9539 + }, + { + "start": 12450.78, + "end": 12452.4, + "probability": 0.973 + }, + { + "start": 12453.56, + "end": 12455.88, + "probability": 0.981 + }, + { + "start": 12456.84, + "end": 12460.14, + "probability": 0.9959 + }, + { + "start": 12460.32, + "end": 12461.6, + "probability": 0.9938 + }, + { + "start": 12462.44, + "end": 12466.3, + "probability": 0.9032 + }, + { + "start": 12466.3, + "end": 12469.78, + "probability": 0.9488 + }, + { + "start": 12470.38, + "end": 12472.92, + "probability": 0.9966 + }, + { + "start": 12473.38, + "end": 12475.42, + "probability": 0.8771 + }, + { + "start": 12476.06, + "end": 12476.7, + "probability": 0.6879 + }, + { + "start": 12477.38, + "end": 12478.24, + "probability": 0.8157 + }, + { + "start": 12479.12, + "end": 12480.58, + "probability": 0.969 + }, + { + "start": 12481.28, + "end": 12482.84, + "probability": 0.9426 + }, + { + "start": 12483.6, + "end": 12486.28, + "probability": 0.9922 + }, + { + "start": 12486.96, + "end": 12487.92, + "probability": 0.8154 + }, + { + "start": 12492.22, + "end": 12493.18, + "probability": 0.667 + }, + { + "start": 12493.26, + "end": 12495.74, + "probability": 0.5756 + }, + { + "start": 12496.12, + "end": 12498.72, + "probability": 0.7757 + }, + { + "start": 12499.5, + "end": 12500.3, + "probability": 0.7117 + }, + { + "start": 12500.36, + "end": 12502.02, + "probability": 0.9533 + }, + { + "start": 12502.14, + "end": 12502.92, + "probability": 0.9329 + }, + { + "start": 12503.02, + "end": 12504.04, + "probability": 0.8778 + }, + { + "start": 12505.94, + "end": 12512.14, + "probability": 0.9897 + }, + { + "start": 12513.46, + "end": 12516.38, + "probability": 0.9913 + }, + { + "start": 12516.76, + "end": 12518.48, + "probability": 0.8442 + }, + { + "start": 12518.68, + "end": 12520.96, + "probability": 0.9631 + }, + { + "start": 12521.56, + "end": 12523.76, + "probability": 0.9834 + }, + { + "start": 12524.96, + "end": 12526.52, + "probability": 0.875 + }, + { + "start": 12526.76, + "end": 12527.32, + "probability": 0.917 + }, + { + "start": 12527.34, + "end": 12528.3, + "probability": 0.9209 + }, + { + "start": 12529.96, + "end": 12531.58, + "probability": 0.9836 + }, + { + "start": 12532.96, + "end": 12537.1, + "probability": 0.9927 + }, + { + "start": 12537.24, + "end": 12540.68, + "probability": 0.8094 + }, + { + "start": 12540.92, + "end": 12542.04, + "probability": 0.9113 + }, + { + "start": 12542.84, + "end": 12543.96, + "probability": 0.8733 + }, + { + "start": 12544.5, + "end": 12547.06, + "probability": 0.8161 + }, + { + "start": 12547.86, + "end": 12549.31, + "probability": 0.05 + }, + { + "start": 12550.52, + "end": 12552.86, + "probability": 0.8908 + }, + { + "start": 12555.22, + "end": 12559.34, + "probability": 0.5364 + }, + { + "start": 12559.74, + "end": 12562.23, + "probability": 0.9563 + }, + { + "start": 12562.64, + "end": 12565.68, + "probability": 0.2603 + }, + { + "start": 12565.74, + "end": 12568.82, + "probability": 0.7029 + }, + { + "start": 12569.02, + "end": 12570.6, + "probability": 0.1104 + }, + { + "start": 12570.6, + "end": 12571.32, + "probability": 0.4775 + }, + { + "start": 12571.42, + "end": 12572.94, + "probability": 0.9635 + }, + { + "start": 12573.14, + "end": 12575.06, + "probability": 0.2666 + }, + { + "start": 12576.78, + "end": 12577.04, + "probability": 0.0499 + }, + { + "start": 12577.04, + "end": 12577.98, + "probability": 0.9851 + }, + { + "start": 12580.88, + "end": 12584.0, + "probability": 0.8364 + }, + { + "start": 12584.86, + "end": 12588.5, + "probability": 0.9545 + }, + { + "start": 12589.26, + "end": 12592.26, + "probability": 0.9477 + }, + { + "start": 12592.94, + "end": 12595.12, + "probability": 0.9665 + }, + { + "start": 12596.06, + "end": 12597.5, + "probability": 0.5225 + }, + { + "start": 12598.02, + "end": 12601.14, + "probability": 0.5947 + }, + { + "start": 12601.88, + "end": 12605.36, + "probability": 0.9823 + }, + { + "start": 12606.06, + "end": 12606.68, + "probability": 0.9222 + }, + { + "start": 12607.28, + "end": 12608.56, + "probability": 0.9398 + }, + { + "start": 12609.1, + "end": 12610.03, + "probability": 0.666 + }, + { + "start": 12610.82, + "end": 12615.04, + "probability": 0.9031 + }, + { + "start": 12615.76, + "end": 12618.72, + "probability": 0.7719 + }, + { + "start": 12618.84, + "end": 12620.0, + "probability": 0.5434 + }, + { + "start": 12620.1, + "end": 12621.26, + "probability": 0.917 + }, + { + "start": 12622.0, + "end": 12625.8, + "probability": 0.9686 + }, + { + "start": 12625.86, + "end": 12627.3, + "probability": 0.8317 + }, + { + "start": 12627.68, + "end": 12628.56, + "probability": 0.2084 + }, + { + "start": 12628.72, + "end": 12628.72, + "probability": 0.3202 + }, + { + "start": 12628.72, + "end": 12628.72, + "probability": 0.3576 + }, + { + "start": 12628.72, + "end": 12630.36, + "probability": 0.6449 + }, + { + "start": 12631.32, + "end": 12639.74, + "probability": 0.9468 + }, + { + "start": 12640.46, + "end": 12642.42, + "probability": 0.9898 + }, + { + "start": 12642.5, + "end": 12643.16, + "probability": 0.8922 + }, + { + "start": 12643.22, + "end": 12644.12, + "probability": 0.435 + }, + { + "start": 12644.94, + "end": 12647.56, + "probability": 0.423 + }, + { + "start": 12647.56, + "end": 12650.6, + "probability": 0.7083 + }, + { + "start": 12651.14, + "end": 12653.09, + "probability": 0.9727 + }, + { + "start": 12654.1, + "end": 12655.4, + "probability": 0.1084 + }, + { + "start": 12657.07, + "end": 12659.94, + "probability": 0.6505 + }, + { + "start": 12660.3, + "end": 12662.38, + "probability": 0.292 + }, + { + "start": 12663.38, + "end": 12666.12, + "probability": 0.6235 + }, + { + "start": 12666.12, + "end": 12672.16, + "probability": 0.5395 + }, + { + "start": 12672.26, + "end": 12673.56, + "probability": 0.991 + }, + { + "start": 12673.64, + "end": 12673.82, + "probability": 0.5483 + }, + { + "start": 12673.84, + "end": 12674.64, + "probability": 0.7873 + }, + { + "start": 12674.7, + "end": 12675.91, + "probability": 0.9683 + }, + { + "start": 12676.26, + "end": 12677.14, + "probability": 0.7764 + }, + { + "start": 12677.16, + "end": 12678.58, + "probability": 0.9241 + }, + { + "start": 12678.66, + "end": 12679.58, + "probability": 0.959 + }, + { + "start": 12679.6, + "end": 12680.3, + "probability": 0.7542 + }, + { + "start": 12680.38, + "end": 12682.75, + "probability": 0.5085 + }, + { + "start": 12684.86, + "end": 12685.62, + "probability": 0.1954 + }, + { + "start": 12685.62, + "end": 12686.96, + "probability": 0.6954 + }, + { + "start": 12687.06, + "end": 12690.5, + "probability": 0.9152 + }, + { + "start": 12691.4, + "end": 12693.1, + "probability": 0.9434 + }, + { + "start": 12693.36, + "end": 12699.9, + "probability": 0.9952 + }, + { + "start": 12700.32, + "end": 12700.9, + "probability": 0.8328 + }, + { + "start": 12701.22, + "end": 12702.2, + "probability": 0.8548 + }, + { + "start": 12702.88, + "end": 12707.56, + "probability": 0.7037 + }, + { + "start": 12707.9, + "end": 12708.52, + "probability": 0.6441 + }, + { + "start": 12708.86, + "end": 12710.74, + "probability": 0.6935 + }, + { + "start": 12711.18, + "end": 12713.32, + "probability": 0.2763 + }, + { + "start": 12715.22, + "end": 12717.44, + "probability": 0.9562 + }, + { + "start": 12717.58, + "end": 12719.24, + "probability": 0.9924 + }, + { + "start": 12720.26, + "end": 12724.82, + "probability": 0.8105 + }, + { + "start": 12724.92, + "end": 12727.54, + "probability": 0.9938 + }, + { + "start": 12727.72, + "end": 12729.04, + "probability": 0.3087 + }, + { + "start": 12729.16, + "end": 12730.72, + "probability": 0.826 + }, + { + "start": 12731.78, + "end": 12732.66, + "probability": 0.8747 + }, + { + "start": 12732.78, + "end": 12737.1, + "probability": 0.8948 + }, + { + "start": 12737.14, + "end": 12737.62, + "probability": 0.932 + }, + { + "start": 12739.7, + "end": 12740.04, + "probability": 0.0247 + }, + { + "start": 12745.58, + "end": 12747.18, + "probability": 0.5476 + }, + { + "start": 12748.04, + "end": 12750.08, + "probability": 0.4797 + }, + { + "start": 12751.36, + "end": 12752.26, + "probability": 0.2653 + }, + { + "start": 12757.52, + "end": 12761.46, + "probability": 0.8488 + }, + { + "start": 12762.24, + "end": 12764.0, + "probability": 0.8174 + }, + { + "start": 12764.16, + "end": 12766.3, + "probability": 0.7922 + }, + { + "start": 12766.42, + "end": 12767.22, + "probability": 0.9673 + }, + { + "start": 12768.44, + "end": 12770.98, + "probability": 0.7865 + }, + { + "start": 12773.87, + "end": 12776.62, + "probability": 0.9948 + }, + { + "start": 12776.88, + "end": 12781.58, + "probability": 0.9635 + }, + { + "start": 12781.84, + "end": 12787.72, + "probability": 0.9819 + }, + { + "start": 12788.48, + "end": 12789.34, + "probability": 0.4959 + }, + { + "start": 12790.83, + "end": 12791.76, + "probability": 0.648 + }, + { + "start": 12791.76, + "end": 12792.76, + "probability": 0.0907 + }, + { + "start": 12792.98, + "end": 12797.58, + "probability": 0.7559 + }, + { + "start": 12799.12, + "end": 12800.66, + "probability": 0.9053 + }, + { + "start": 12801.3, + "end": 12802.28, + "probability": 0.96 + }, + { + "start": 12803.0, + "end": 12804.96, + "probability": 0.1224 + }, + { + "start": 12805.16, + "end": 12807.14, + "probability": 0.1681 + }, + { + "start": 12807.54, + "end": 12807.72, + "probability": 0.3862 + }, + { + "start": 12809.28, + "end": 12811.74, + "probability": 0.7825 + }, + { + "start": 12812.34, + "end": 12814.68, + "probability": 0.9721 + }, + { + "start": 12815.38, + "end": 12815.66, + "probability": 0.1123 + }, + { + "start": 12817.36, + "end": 12818.18, + "probability": 0.0149 + }, + { + "start": 12819.54, + "end": 12824.48, + "probability": 0.5641 + }, + { + "start": 12825.16, + "end": 12826.08, + "probability": 0.6963 + }, + { + "start": 12826.66, + "end": 12826.98, + "probability": 0.4518 + }, + { + "start": 12827.98, + "end": 12829.62, + "probability": 0.3919 + }, + { + "start": 12829.62, + "end": 12832.0, + "probability": 0.7517 + }, + { + "start": 12832.1, + "end": 12832.82, + "probability": 0.6915 + }, + { + "start": 12833.26, + "end": 12835.24, + "probability": 0.9133 + }, + { + "start": 12835.6, + "end": 12837.8, + "probability": 0.9738 + }, + { + "start": 12838.24, + "end": 12839.54, + "probability": 0.6984 + }, + { + "start": 12839.54, + "end": 12840.98, + "probability": 0.0617 + }, + { + "start": 12841.32, + "end": 12842.64, + "probability": 0.5546 + }, + { + "start": 12844.12, + "end": 12847.84, + "probability": 0.594 + }, + { + "start": 12848.7, + "end": 12857.78, + "probability": 0.8888 + }, + { + "start": 12858.4, + "end": 12859.52, + "probability": 0.7236 + }, + { + "start": 12859.6, + "end": 12866.04, + "probability": 0.9842 + }, + { + "start": 12867.16, + "end": 12870.38, + "probability": 0.3981 + }, + { + "start": 12870.48, + "end": 12872.58, + "probability": 0.5272 + }, + { + "start": 12872.78, + "end": 12873.48, + "probability": 0.6735 + }, + { + "start": 12873.54, + "end": 12874.88, + "probability": 0.3874 + }, + { + "start": 12874.94, + "end": 12876.88, + "probability": 0.9396 + }, + { + "start": 12877.04, + "end": 12878.78, + "probability": 0.8857 + }, + { + "start": 12878.9, + "end": 12880.45, + "probability": 0.9012 + }, + { + "start": 12880.9, + "end": 12884.76, + "probability": 0.4617 + }, + { + "start": 12884.96, + "end": 12886.28, + "probability": 0.9141 + }, + { + "start": 12900.32, + "end": 12903.8, + "probability": 0.5858 + }, + { + "start": 12909.2, + "end": 12915.48, + "probability": 0.8173 + }, + { + "start": 12915.62, + "end": 12918.24, + "probability": 0.9397 + }, + { + "start": 12919.08, + "end": 12924.68, + "probability": 0.9604 + }, + { + "start": 12926.3, + "end": 12930.5, + "probability": 0.9933 + }, + { + "start": 12931.3, + "end": 12933.62, + "probability": 0.9942 + }, + { + "start": 12934.24, + "end": 12938.12, + "probability": 0.9819 + }, + { + "start": 12938.24, + "end": 12941.76, + "probability": 0.9218 + }, + { + "start": 12942.46, + "end": 12946.74, + "probability": 0.9948 + }, + { + "start": 12947.18, + "end": 12948.06, + "probability": 0.8125 + }, + { + "start": 12948.84, + "end": 12949.76, + "probability": 0.7121 + }, + { + "start": 12949.9, + "end": 12952.64, + "probability": 0.9834 + }, + { + "start": 12953.74, + "end": 12956.16, + "probability": 0.706 + }, + { + "start": 12956.36, + "end": 12957.06, + "probability": 0.9091 + }, + { + "start": 12957.54, + "end": 12967.03, + "probability": 0.9585 + }, + { + "start": 12967.7, + "end": 12968.7, + "probability": 0.7638 + }, + { + "start": 12969.18, + "end": 12973.04, + "probability": 0.9645 + }, + { + "start": 12973.58, + "end": 12976.34, + "probability": 0.9946 + }, + { + "start": 12976.78, + "end": 12978.88, + "probability": 0.9174 + }, + { + "start": 12979.6, + "end": 12980.78, + "probability": 0.9882 + }, + { + "start": 12981.46, + "end": 12984.56, + "probability": 0.6677 + }, + { + "start": 12986.2, + "end": 12992.88, + "probability": 0.8108 + }, + { + "start": 12994.1, + "end": 12995.02, + "probability": 0.6674 + }, + { + "start": 12996.48, + "end": 13001.96, + "probability": 0.9938 + }, + { + "start": 13002.5, + "end": 13006.38, + "probability": 0.7721 + }, + { + "start": 13007.26, + "end": 13009.36, + "probability": 0.548 + }, + { + "start": 13010.34, + "end": 13010.84, + "probability": 0.463 + }, + { + "start": 13011.68, + "end": 13014.46, + "probability": 0.7403 + }, + { + "start": 13014.66, + "end": 13016.12, + "probability": 0.7819 + }, + { + "start": 13016.26, + "end": 13017.28, + "probability": 0.4625 + }, + { + "start": 13017.66, + "end": 13021.82, + "probability": 0.8249 + }, + { + "start": 13022.4, + "end": 13023.7, + "probability": 0.981 + }, + { + "start": 13024.46, + "end": 13026.56, + "probability": 0.9805 + }, + { + "start": 13026.9, + "end": 13030.6, + "probability": 0.9575 + }, + { + "start": 13031.22, + "end": 13036.8, + "probability": 0.879 + }, + { + "start": 13036.8, + "end": 13041.98, + "probability": 0.9843 + }, + { + "start": 13043.1, + "end": 13047.48, + "probability": 0.9788 + }, + { + "start": 13047.48, + "end": 13052.26, + "probability": 0.9528 + }, + { + "start": 13052.4, + "end": 13055.34, + "probability": 0.9805 + }, + { + "start": 13056.18, + "end": 13059.86, + "probability": 0.812 + }, + { + "start": 13060.54, + "end": 13062.66, + "probability": 0.9868 + }, + { + "start": 13062.8, + "end": 13064.74, + "probability": 0.7428 + }, + { + "start": 13065.1, + "end": 13067.16, + "probability": 0.9878 + }, + { + "start": 13067.26, + "end": 13068.92, + "probability": 0.5836 + }, + { + "start": 13070.46, + "end": 13074.42, + "probability": 0.9655 + }, + { + "start": 13074.52, + "end": 13076.42, + "probability": 0.9875 + }, + { + "start": 13076.82, + "end": 13078.0, + "probability": 0.9659 + }, + { + "start": 13078.7, + "end": 13082.08, + "probability": 0.8826 + }, + { + "start": 13082.42, + "end": 13083.64, + "probability": 0.8459 + }, + { + "start": 13086.96, + "end": 13091.92, + "probability": 0.9917 + }, + { + "start": 13092.52, + "end": 13094.78, + "probability": 0.9332 + }, + { + "start": 13095.4, + "end": 13098.14, + "probability": 0.9971 + }, + { + "start": 13098.46, + "end": 13101.96, + "probability": 0.9668 + }, + { + "start": 13103.0, + "end": 13105.6, + "probability": 0.9731 + }, + { + "start": 13106.06, + "end": 13108.92, + "probability": 0.9869 + }, + { + "start": 13108.92, + "end": 13112.2, + "probability": 0.9854 + }, + { + "start": 13112.62, + "end": 13116.58, + "probability": 0.9979 + }, + { + "start": 13116.58, + "end": 13120.38, + "probability": 0.9316 + }, + { + "start": 13121.0, + "end": 13122.16, + "probability": 0.6787 + }, + { + "start": 13122.22, + "end": 13123.56, + "probability": 0.8745 + }, + { + "start": 13123.78, + "end": 13124.42, + "probability": 0.3107 + }, + { + "start": 13126.78, + "end": 13129.12, + "probability": 0.9668 + }, + { + "start": 13129.26, + "end": 13130.16, + "probability": 0.6887 + }, + { + "start": 13130.28, + "end": 13130.62, + "probability": 0.8014 + }, + { + "start": 13131.18, + "end": 13135.52, + "probability": 0.923 + }, + { + "start": 13135.98, + "end": 13138.2, + "probability": 0.9771 + }, + { + "start": 13138.72, + "end": 13143.98, + "probability": 0.9515 + }, + { + "start": 13144.5, + "end": 13147.18, + "probability": 0.9954 + }, + { + "start": 13147.52, + "end": 13149.32, + "probability": 0.995 + }, + { + "start": 13149.44, + "end": 13154.42, + "probability": 0.9991 + }, + { + "start": 13154.54, + "end": 13154.66, + "probability": 0.3662 + }, + { + "start": 13154.78, + "end": 13156.82, + "probability": 0.6106 + }, + { + "start": 13156.86, + "end": 13158.18, + "probability": 0.93 + }, + { + "start": 13158.18, + "end": 13160.98, + "probability": 0.3755 + }, + { + "start": 13160.98, + "end": 13162.88, + "probability": 0.1277 + }, + { + "start": 13162.88, + "end": 13163.98, + "probability": 0.3212 + }, + { + "start": 13163.98, + "end": 13167.38, + "probability": 0.0558 + }, + { + "start": 13168.06, + "end": 13169.32, + "probability": 0.0865 + }, + { + "start": 13170.66, + "end": 13172.06, + "probability": 0.0373 + }, + { + "start": 13173.14, + "end": 13173.14, + "probability": 0.1536 + }, + { + "start": 13173.14, + "end": 13177.7, + "probability": 0.9219 + }, + { + "start": 13178.84, + "end": 13182.84, + "probability": 0.9723 + }, + { + "start": 13183.4, + "end": 13184.94, + "probability": 0.9885 + }, + { + "start": 13185.78, + "end": 13187.8, + "probability": 0.9604 + }, + { + "start": 13187.92, + "end": 13189.92, + "probability": 0.801 + }, + { + "start": 13190.32, + "end": 13193.34, + "probability": 0.9637 + }, + { + "start": 13193.56, + "end": 13194.02, + "probability": 0.9475 + }, + { + "start": 13194.62, + "end": 13195.84, + "probability": 0.8138 + }, + { + "start": 13196.36, + "end": 13197.42, + "probability": 0.98 + }, + { + "start": 13198.7, + "end": 13201.48, + "probability": 0.9976 + }, + { + "start": 13202.14, + "end": 13205.94, + "probability": 0.9491 + }, + { + "start": 13207.28, + "end": 13208.8, + "probability": 0.9773 + }, + { + "start": 13208.88, + "end": 13210.18, + "probability": 0.9653 + }, + { + "start": 13210.26, + "end": 13210.96, + "probability": 0.9634 + }, + { + "start": 13211.0, + "end": 13211.74, + "probability": 0.9902 + }, + { + "start": 13211.78, + "end": 13213.22, + "probability": 0.9781 + }, + { + "start": 13213.76, + "end": 13215.14, + "probability": 0.993 + }, + { + "start": 13216.02, + "end": 13218.88, + "probability": 0.6605 + }, + { + "start": 13219.58, + "end": 13222.8, + "probability": 0.9976 + }, + { + "start": 13223.54, + "end": 13226.48, + "probability": 0.9286 + }, + { + "start": 13226.92, + "end": 13229.08, + "probability": 0.9913 + }, + { + "start": 13229.3, + "end": 13230.84, + "probability": 0.9793 + }, + { + "start": 13231.28, + "end": 13236.1, + "probability": 0.998 + }, + { + "start": 13236.88, + "end": 13238.42, + "probability": 0.7531 + }, + { + "start": 13239.0, + "end": 13240.64, + "probability": 0.6714 + }, + { + "start": 13240.78, + "end": 13241.7, + "probability": 0.7151 + }, + { + "start": 13241.8, + "end": 13242.44, + "probability": 0.6318 + }, + { + "start": 13242.44, + "end": 13243.28, + "probability": 0.488 + }, + { + "start": 13243.56, + "end": 13244.06, + "probability": 0.6126 + }, + { + "start": 13244.12, + "end": 13244.18, + "probability": 0.0737 + }, + { + "start": 13244.2, + "end": 13245.12, + "probability": 0.8016 + }, + { + "start": 13245.24, + "end": 13245.7, + "probability": 0.5424 + }, + { + "start": 13245.7, + "end": 13248.43, + "probability": 0.8289 + }, + { + "start": 13249.46, + "end": 13252.52, + "probability": 0.9877 + }, + { + "start": 13252.52, + "end": 13255.82, + "probability": 0.9975 + }, + { + "start": 13255.82, + "end": 13260.1, + "probability": 0.9963 + }, + { + "start": 13260.24, + "end": 13261.62, + "probability": 0.8459 + }, + { + "start": 13261.76, + "end": 13263.9, + "probability": 0.9744 + }, + { + "start": 13264.24, + "end": 13265.76, + "probability": 0.9495 + }, + { + "start": 13266.36, + "end": 13266.74, + "probability": 0.394 + }, + { + "start": 13266.76, + "end": 13268.76, + "probability": 0.5836 + }, + { + "start": 13268.76, + "end": 13271.22, + "probability": 0.976 + }, + { + "start": 13271.58, + "end": 13274.36, + "probability": 0.9856 + }, + { + "start": 13274.52, + "end": 13279.76, + "probability": 0.9973 + }, + { + "start": 13280.24, + "end": 13282.6, + "probability": 0.7663 + }, + { + "start": 13282.72, + "end": 13288.04, + "probability": 0.9843 + }, + { + "start": 13288.26, + "end": 13288.64, + "probability": 0.7796 + }, + { + "start": 13288.92, + "end": 13291.06, + "probability": 0.8318 + }, + { + "start": 13291.34, + "end": 13292.48, + "probability": 0.788 + }, + { + "start": 13293.48, + "end": 13295.2, + "probability": 0.9834 + }, + { + "start": 13296.06, + "end": 13297.9, + "probability": 0.9922 + }, + { + "start": 13298.56, + "end": 13300.68, + "probability": 0.993 + }, + { + "start": 13301.04, + "end": 13303.98, + "probability": 0.3793 + }, + { + "start": 13303.98, + "end": 13304.35, + "probability": 0.4485 + }, + { + "start": 13305.38, + "end": 13305.52, + "probability": 0.5638 + }, + { + "start": 13313.02, + "end": 13313.96, + "probability": 0.8352 + }, + { + "start": 13316.06, + "end": 13318.58, + "probability": 0.8537 + }, + { + "start": 13318.7, + "end": 13319.26, + "probability": 0.3615 + }, + { + "start": 13319.36, + "end": 13323.28, + "probability": 0.9797 + }, + { + "start": 13323.3, + "end": 13324.48, + "probability": 0.5406 + }, + { + "start": 13324.7, + "end": 13325.46, + "probability": 0.6477 + }, + { + "start": 13325.54, + "end": 13325.94, + "probability": 0.8628 + }, + { + "start": 13326.0, + "end": 13327.24, + "probability": 0.9761 + }, + { + "start": 13328.2, + "end": 13328.8, + "probability": 0.5113 + }, + { + "start": 13329.36, + "end": 13330.0, + "probability": 0.8727 + }, + { + "start": 13330.76, + "end": 13331.56, + "probability": 0.8606 + }, + { + "start": 13331.74, + "end": 13334.3, + "probability": 0.9819 + }, + { + "start": 13334.84, + "end": 13339.1, + "probability": 0.9392 + }, + { + "start": 13340.0, + "end": 13342.12, + "probability": 0.8871 + }, + { + "start": 13342.88, + "end": 13349.26, + "probability": 0.9953 + }, + { + "start": 13349.78, + "end": 13353.5, + "probability": 0.9702 + }, + { + "start": 13354.06, + "end": 13354.7, + "probability": 0.9618 + }, + { + "start": 13354.8, + "end": 13357.24, + "probability": 0.9697 + }, + { + "start": 13357.24, + "end": 13361.44, + "probability": 0.9993 + }, + { + "start": 13361.5, + "end": 13362.02, + "probability": 0.4421 + }, + { + "start": 13362.76, + "end": 13364.16, + "probability": 0.7122 + }, + { + "start": 13364.82, + "end": 13369.26, + "probability": 0.8865 + }, + { + "start": 13369.86, + "end": 13372.14, + "probability": 0.9941 + }, + { + "start": 13372.98, + "end": 13377.88, + "probability": 0.8325 + }, + { + "start": 13378.42, + "end": 13380.62, + "probability": 0.9348 + }, + { + "start": 13381.18, + "end": 13383.28, + "probability": 0.9757 + }, + { + "start": 13383.8, + "end": 13388.86, + "probability": 0.9087 + }, + { + "start": 13389.32, + "end": 13392.52, + "probability": 0.98 + }, + { + "start": 13393.16, + "end": 13397.36, + "probability": 0.9072 + }, + { + "start": 13398.0, + "end": 13402.1, + "probability": 0.9833 + }, + { + "start": 13402.52, + "end": 13404.64, + "probability": 0.9964 + }, + { + "start": 13405.0, + "end": 13407.2, + "probability": 0.9814 + }, + { + "start": 13407.56, + "end": 13410.98, + "probability": 0.9893 + }, + { + "start": 13411.36, + "end": 13411.66, + "probability": 0.7377 + }, + { + "start": 13412.2, + "end": 13414.06, + "probability": 0.9941 + }, + { + "start": 13414.2, + "end": 13415.08, + "probability": 0.8315 + }, + { + "start": 13415.26, + "end": 13417.31, + "probability": 0.9691 + }, + { + "start": 13418.72, + "end": 13423.46, + "probability": 0.8818 + }, + { + "start": 13424.48, + "end": 13427.02, + "probability": 0.8447 + }, + { + "start": 13427.54, + "end": 13432.18, + "probability": 0.5635 + }, + { + "start": 13441.8, + "end": 13441.84, + "probability": 0.2873 + }, + { + "start": 13450.16, + "end": 13450.16, + "probability": 0.0042 + }, + { + "start": 13450.16, + "end": 13452.46, + "probability": 0.6524 + }, + { + "start": 13453.14, + "end": 13454.04, + "probability": 0.642 + }, + { + "start": 13454.94, + "end": 13455.26, + "probability": 0.7487 + }, + { + "start": 13455.34, + "end": 13455.64, + "probability": 0.888 + }, + { + "start": 13455.74, + "end": 13456.16, + "probability": 0.8721 + }, + { + "start": 13456.32, + "end": 13458.06, + "probability": 0.9757 + }, + { + "start": 13459.12, + "end": 13461.46, + "probability": 0.9937 + }, + { + "start": 13461.63, + "end": 13465.2, + "probability": 0.9951 + }, + { + "start": 13466.22, + "end": 13466.74, + "probability": 0.5202 + }, + { + "start": 13467.98, + "end": 13470.1, + "probability": 0.8229 + }, + { + "start": 13471.54, + "end": 13471.98, + "probability": 0.7602 + }, + { + "start": 13472.06, + "end": 13475.44, + "probability": 0.8477 + }, + { + "start": 13475.44, + "end": 13479.56, + "probability": 0.9884 + }, + { + "start": 13480.68, + "end": 13481.54, + "probability": 0.3647 + }, + { + "start": 13481.86, + "end": 13483.88, + "probability": 0.3195 + }, + { + "start": 13483.88, + "end": 13483.88, + "probability": 0.0267 + }, + { + "start": 13483.88, + "end": 13484.28, + "probability": 0.48 + }, + { + "start": 13485.42, + "end": 13488.8, + "probability": 0.8145 + }, + { + "start": 13489.0, + "end": 13489.68, + "probability": 0.9274 + }, + { + "start": 13491.02, + "end": 13494.66, + "probability": 0.9884 + }, + { + "start": 13495.22, + "end": 13497.04, + "probability": 0.801 + }, + { + "start": 13497.66, + "end": 13499.34, + "probability": 0.9841 + }, + { + "start": 13500.1, + "end": 13502.52, + "probability": 0.9856 + }, + { + "start": 13503.14, + "end": 13505.86, + "probability": 0.8643 + }, + { + "start": 13505.86, + "end": 13508.36, + "probability": 0.9921 + }, + { + "start": 13509.94, + "end": 13512.3, + "probability": 0.957 + }, + { + "start": 13513.14, + "end": 13515.01, + "probability": 0.7563 + }, + { + "start": 13515.66, + "end": 13517.32, + "probability": 0.981 + }, + { + "start": 13518.9, + "end": 13521.7, + "probability": 0.8097 + }, + { + "start": 13522.58, + "end": 13527.26, + "probability": 0.9925 + }, + { + "start": 13527.3, + "end": 13528.34, + "probability": 0.9535 + }, + { + "start": 13529.08, + "end": 13533.86, + "probability": 0.9741 + }, + { + "start": 13534.24, + "end": 13535.58, + "probability": 0.1424 + }, + { + "start": 13535.92, + "end": 13535.92, + "probability": 0.0146 + }, + { + "start": 13538.1, + "end": 13540.64, + "probability": 0.3 + }, + { + "start": 13540.82, + "end": 13541.57, + "probability": 0.7475 + }, + { + "start": 13543.54, + "end": 13545.67, + "probability": 0.6971 + }, + { + "start": 13546.12, + "end": 13547.31, + "probability": 0.3878 + }, + { + "start": 13547.82, + "end": 13550.78, + "probability": 0.1771 + }, + { + "start": 13550.78, + "end": 13550.88, + "probability": 0.0904 + }, + { + "start": 13550.88, + "end": 13551.54, + "probability": 0.3578 + }, + { + "start": 13551.68, + "end": 13552.38, + "probability": 0.7951 + }, + { + "start": 13552.7, + "end": 13552.82, + "probability": 0.3823 + }, + { + "start": 13552.98, + "end": 13553.94, + "probability": 0.7365 + }, + { + "start": 13553.94, + "end": 13559.12, + "probability": 0.7982 + }, + { + "start": 13559.26, + "end": 13560.58, + "probability": 0.6289 + }, + { + "start": 13560.64, + "end": 13561.78, + "probability": 0.9723 + }, + { + "start": 13562.52, + "end": 13567.48, + "probability": 0.8375 + }, + { + "start": 13567.48, + "end": 13573.06, + "probability": 0.9708 + }, + { + "start": 13573.92, + "end": 13575.62, + "probability": 0.8958 + }, + { + "start": 13575.76, + "end": 13577.34, + "probability": 0.8219 + }, + { + "start": 13578.58, + "end": 13582.56, + "probability": 0.9673 + }, + { + "start": 13582.6, + "end": 13584.88, + "probability": 0.8396 + }, + { + "start": 13586.02, + "end": 13588.48, + "probability": 0.991 + }, + { + "start": 13588.62, + "end": 13589.92, + "probability": 0.8017 + }, + { + "start": 13590.44, + "end": 13592.4, + "probability": 0.8009 + }, + { + "start": 13592.46, + "end": 13593.64, + "probability": 0.7404 + }, + { + "start": 13594.68, + "end": 13599.06, + "probability": 0.9964 + }, + { + "start": 13599.74, + "end": 13600.98, + "probability": 0.896 + }, + { + "start": 13601.22, + "end": 13604.64, + "probability": 0.9618 + }, + { + "start": 13604.64, + "end": 13608.16, + "probability": 0.9108 + }, + { + "start": 13608.94, + "end": 13613.1, + "probability": 0.9745 + }, + { + "start": 13613.7, + "end": 13616.38, + "probability": 0.9467 + }, + { + "start": 13617.52, + "end": 13620.92, + "probability": 0.9968 + }, + { + "start": 13621.64, + "end": 13624.96, + "probability": 0.9865 + }, + { + "start": 13624.96, + "end": 13628.42, + "probability": 0.9976 + }, + { + "start": 13629.2, + "end": 13631.9, + "probability": 0.7419 + }, + { + "start": 13632.44, + "end": 13634.3, + "probability": 0.9082 + }, + { + "start": 13635.28, + "end": 13638.0, + "probability": 0.9609 + }, + { + "start": 13638.7, + "end": 13640.86, + "probability": 0.9991 + }, + { + "start": 13640.86, + "end": 13644.16, + "probability": 0.964 + }, + { + "start": 13644.22, + "end": 13646.4, + "probability": 0.8551 + }, + { + "start": 13646.52, + "end": 13648.6, + "probability": 0.8953 + }, + { + "start": 13649.08, + "end": 13650.9, + "probability": 0.9789 + }, + { + "start": 13651.16, + "end": 13651.68, + "probability": 0.7904 + }, + { + "start": 13652.62, + "end": 13655.08, + "probability": 0.6266 + }, + { + "start": 13656.22, + "end": 13657.1, + "probability": 0.861 + }, + { + "start": 13657.24, + "end": 13661.34, + "probability": 0.8269 + }, + { + "start": 13661.8, + "end": 13662.78, + "probability": 0.837 + }, + { + "start": 13662.9, + "end": 13663.76, + "probability": 0.5342 + }, + { + "start": 13664.66, + "end": 13667.96, + "probability": 0.8156 + }, + { + "start": 13667.96, + "end": 13671.58, + "probability": 0.9677 + }, + { + "start": 13672.46, + "end": 13672.88, + "probability": 0.8408 + }, + { + "start": 13673.04, + "end": 13675.34, + "probability": 0.7231 + }, + { + "start": 13675.94, + "end": 13678.84, + "probability": 0.9495 + }, + { + "start": 13679.28, + "end": 13680.28, + "probability": 0.9786 + }, + { + "start": 13681.6, + "end": 13682.28, + "probability": 0.6456 + }, + { + "start": 13682.4, + "end": 13687.02, + "probability": 0.9826 + }, + { + "start": 13687.6, + "end": 13688.46, + "probability": 0.841 + }, + { + "start": 13690.1, + "end": 13691.06, + "probability": 0.9773 + }, + { + "start": 13692.44, + "end": 13693.52, + "probability": 0.7921 + }, + { + "start": 13694.14, + "end": 13696.06, + "probability": 0.5616 + }, + { + "start": 13697.0, + "end": 13698.21, + "probability": 0.988 + }, + { + "start": 13699.52, + "end": 13704.32, + "probability": 0.8131 + }, + { + "start": 13705.38, + "end": 13705.6, + "probability": 0.5372 + }, + { + "start": 13706.44, + "end": 13707.36, + "probability": 0.705 + }, + { + "start": 13708.08, + "end": 13710.28, + "probability": 0.546 + }, + { + "start": 13710.88, + "end": 13713.92, + "probability": 0.665 + }, + { + "start": 13714.24, + "end": 13717.42, + "probability": 0.2204 + }, + { + "start": 13717.88, + "end": 13719.68, + "probability": 0.7234 + }, + { + "start": 13719.84, + "end": 13721.22, + "probability": 0.9374 + }, + { + "start": 13721.56, + "end": 13723.76, + "probability": 0.9141 + }, + { + "start": 13723.94, + "end": 13726.26, + "probability": 0.7168 + }, + { + "start": 13727.06, + "end": 13728.62, + "probability": 0.8734 + }, + { + "start": 13728.72, + "end": 13732.86, + "probability": 0.9827 + }, + { + "start": 13733.8, + "end": 13736.14, + "probability": 0.9526 + }, + { + "start": 13736.78, + "end": 13737.28, + "probability": 0.8302 + }, + { + "start": 13739.2, + "end": 13741.32, + "probability": 0.9368 + }, + { + "start": 13749.88, + "end": 13751.84, + "probability": 0.6397 + }, + { + "start": 13752.4, + "end": 13753.32, + "probability": 0.867 + }, + { + "start": 13754.8, + "end": 13757.38, + "probability": 0.2765 + }, + { + "start": 13757.5, + "end": 13758.98, + "probability": 0.879 + }, + { + "start": 13760.14, + "end": 13762.28, + "probability": 0.9142 + }, + { + "start": 13762.48, + "end": 13764.23, + "probability": 0.99 + }, + { + "start": 13764.4, + "end": 13767.32, + "probability": 0.8667 + }, + { + "start": 13767.56, + "end": 13769.36, + "probability": 0.4519 + }, + { + "start": 13775.42, + "end": 13776.28, + "probability": 0.5514 + }, + { + "start": 13777.76, + "end": 13780.32, + "probability": 0.795 + }, + { + "start": 13781.82, + "end": 13784.94, + "probability": 0.9053 + }, + { + "start": 13787.22, + "end": 13788.3, + "probability": 0.9666 + }, + { + "start": 13788.9, + "end": 13790.08, + "probability": 0.5162 + }, + { + "start": 13790.22, + "end": 13791.36, + "probability": 0.8429 + }, + { + "start": 13791.42, + "end": 13791.78, + "probability": 0.4644 + }, + { + "start": 13791.78, + "end": 13792.48, + "probability": 0.3432 + }, + { + "start": 13792.48, + "end": 13797.64, + "probability": 0.9873 + }, + { + "start": 13798.88, + "end": 13803.4, + "probability": 0.9898 + }, + { + "start": 13804.64, + "end": 13808.22, + "probability": 0.9873 + }, + { + "start": 13808.34, + "end": 13812.28, + "probability": 0.8799 + }, + { + "start": 13814.78, + "end": 13814.96, + "probability": 0.1157 + }, + { + "start": 13814.96, + "end": 13815.08, + "probability": 0.478 + }, + { + "start": 13815.08, + "end": 13815.96, + "probability": 0.6714 + }, + { + "start": 13816.2, + "end": 13816.68, + "probability": 0.9563 + }, + { + "start": 13816.74, + "end": 13817.94, + "probability": 0.8203 + }, + { + "start": 13818.62, + "end": 13819.36, + "probability": 0.9188 + }, + { + "start": 13820.14, + "end": 13821.9, + "probability": 0.9528 + }, + { + "start": 13822.48, + "end": 13824.72, + "probability": 0.8259 + }, + { + "start": 13825.64, + "end": 13826.8, + "probability": 0.6411 + }, + { + "start": 13827.64, + "end": 13829.04, + "probability": 0.6852 + }, + { + "start": 13829.14, + "end": 13829.98, + "probability": 0.717 + }, + { + "start": 13830.36, + "end": 13832.14, + "probability": 0.6444 + }, + { + "start": 13832.18, + "end": 13834.49, + "probability": 0.0385 + }, + { + "start": 13834.84, + "end": 13838.02, + "probability": 0.1614 + }, + { + "start": 13840.48, + "end": 13843.78, + "probability": 0.1328 + }, + { + "start": 13843.78, + "end": 13843.88, + "probability": 0.1335 + }, + { + "start": 13843.88, + "end": 13844.32, + "probability": 0.4347 + }, + { + "start": 13844.4, + "end": 13845.56, + "probability": 0.9216 + }, + { + "start": 13845.66, + "end": 13846.5, + "probability": 0.6055 + }, + { + "start": 13846.58, + "end": 13847.56, + "probability": 0.3946 + }, + { + "start": 13848.14, + "end": 13852.42, + "probability": 0.8708 + }, + { + "start": 13852.42, + "end": 13852.8, + "probability": 0.0641 + }, + { + "start": 13853.04, + "end": 13853.04, + "probability": 0.647 + }, + { + "start": 13853.04, + "end": 13853.28, + "probability": 0.3782 + }, + { + "start": 13853.28, + "end": 13854.94, + "probability": 0.6244 + }, + { + "start": 13855.06, + "end": 13856.02, + "probability": 0.7017 + }, + { + "start": 13856.02, + "end": 13858.06, + "probability": 0.2114 + }, + { + "start": 13858.74, + "end": 13859.22, + "probability": 0.5161 + }, + { + "start": 13859.34, + "end": 13861.42, + "probability": 0.9609 + }, + { + "start": 13861.62, + "end": 13863.46, + "probability": 0.9785 + }, + { + "start": 13863.98, + "end": 13870.82, + "probability": 0.9761 + }, + { + "start": 13871.4, + "end": 13874.0, + "probability": 0.9735 + }, + { + "start": 13874.82, + "end": 13876.52, + "probability": 0.9485 + }, + { + "start": 13877.12, + "end": 13882.64, + "probability": 0.6646 + }, + { + "start": 13882.78, + "end": 13883.26, + "probability": 0.569 + }, + { + "start": 13883.8, + "end": 13885.43, + "probability": 0.9961 + }, + { + "start": 13886.22, + "end": 13889.74, + "probability": 0.91 + }, + { + "start": 13890.58, + "end": 13894.82, + "probability": 0.6917 + }, + { + "start": 13895.5, + "end": 13899.58, + "probability": 0.9785 + }, + { + "start": 13899.72, + "end": 13901.36, + "probability": 0.7157 + }, + { + "start": 13901.44, + "end": 13902.24, + "probability": 0.1621 + }, + { + "start": 13902.24, + "end": 13904.86, + "probability": 0.4271 + }, + { + "start": 13905.02, + "end": 13907.32, + "probability": 0.0728 + }, + { + "start": 13907.56, + "end": 13908.78, + "probability": 0.2491 + }, + { + "start": 13909.3, + "end": 13909.54, + "probability": 0.0065 + }, + { + "start": 13909.54, + "end": 13909.54, + "probability": 0.1367 + }, + { + "start": 13909.54, + "end": 13910.2, + "probability": 0.1967 + }, + { + "start": 13910.52, + "end": 13914.0, + "probability": 0.3687 + }, + { + "start": 13914.3, + "end": 13915.64, + "probability": 0.9232 + }, + { + "start": 13916.14, + "end": 13916.7, + "probability": 0.119 + }, + { + "start": 13916.7, + "end": 13921.56, + "probability": 0.9092 + }, + { + "start": 13921.8, + "end": 13923.5, + "probability": 0.9248 + }, + { + "start": 13923.58, + "end": 13925.52, + "probability": 0.9962 + }, + { + "start": 13925.54, + "end": 13927.44, + "probability": 0.9626 + }, + { + "start": 13928.06, + "end": 13930.2, + "probability": 0.9954 + }, + { + "start": 13930.56, + "end": 13932.52, + "probability": 0.8894 + }, + { + "start": 13932.98, + "end": 13935.46, + "probability": 0.9888 + }, + { + "start": 13935.8, + "end": 13936.52, + "probability": 0.5383 + }, + { + "start": 13936.54, + "end": 13938.89, + "probability": 0.9674 + }, + { + "start": 13939.06, + "end": 13939.46, + "probability": 0.502 + }, + { + "start": 13939.52, + "end": 13940.5, + "probability": 0.7949 + }, + { + "start": 13940.52, + "end": 13942.76, + "probability": 0.7512 + }, + { + "start": 13943.08, + "end": 13943.32, + "probability": 0.1123 + }, + { + "start": 13943.44, + "end": 13944.1, + "probability": 0.2871 + }, + { + "start": 13944.1, + "end": 13944.24, + "probability": 0.0249 + }, + { + "start": 13944.24, + "end": 13944.26, + "probability": 0.5373 + }, + { + "start": 13944.4, + "end": 13944.48, + "probability": 0.6762 + }, + { + "start": 13944.64, + "end": 13944.66, + "probability": 0.7228 + }, + { + "start": 13944.74, + "end": 13945.85, + "probability": 0.7049 + }, + { + "start": 13946.04, + "end": 13949.38, + "probability": 0.6224 + }, + { + "start": 13950.1, + "end": 13955.8, + "probability": 0.9796 + }, + { + "start": 13956.23, + "end": 13957.06, + "probability": 0.7002 + }, + { + "start": 13957.32, + "end": 13957.56, + "probability": 0.0294 + }, + { + "start": 13957.58, + "end": 13959.38, + "probability": 0.6605 + }, + { + "start": 13965.38, + "end": 13966.4, + "probability": 0.3448 + }, + { + "start": 13967.2, + "end": 13968.68, + "probability": 0.4526 + }, + { + "start": 13970.02, + "end": 13972.76, + "probability": 0.9942 + }, + { + "start": 13972.76, + "end": 13976.12, + "probability": 0.8439 + }, + { + "start": 13977.06, + "end": 13979.74, + "probability": 0.9133 + }, + { + "start": 13979.84, + "end": 13980.36, + "probability": 0.4046 + }, + { + "start": 13980.42, + "end": 13980.92, + "probability": 0.4006 + }, + { + "start": 13980.92, + "end": 13981.7, + "probability": 0.5375 + }, + { + "start": 13981.92, + "end": 13982.16, + "probability": 0.2507 + }, + { + "start": 13982.22, + "end": 13982.48, + "probability": 0.6979 + }, + { + "start": 13982.62, + "end": 13984.22, + "probability": 0.783 + }, + { + "start": 13984.22, + "end": 13984.92, + "probability": 0.568 + }, + { + "start": 13985.14, + "end": 13986.68, + "probability": 0.6734 + }, + { + "start": 13986.94, + "end": 13989.22, + "probability": 0.6606 + }, + { + "start": 13989.28, + "end": 13989.46, + "probability": 0.6653 + }, + { + "start": 13989.52, + "end": 13990.36, + "probability": 0.5972 + }, + { + "start": 13992.32, + "end": 13993.55, + "probability": 0.0712 + }, + { + "start": 13995.32, + "end": 13997.38, + "probability": 0.8395 + }, + { + "start": 13997.48, + "end": 13998.36, + "probability": 0.9519 + }, + { + "start": 13998.42, + "end": 14000.74, + "probability": 0.9904 + }, + { + "start": 14002.14, + "end": 14005.72, + "probability": 0.9395 + }, + { + "start": 14006.3, + "end": 14008.4, + "probability": 0.833 + }, + { + "start": 14010.24, + "end": 14011.42, + "probability": 0.8328 + }, + { + "start": 14013.08, + "end": 14015.16, + "probability": 0.658 + }, + { + "start": 14020.94, + "end": 14023.12, + "probability": 0.9953 + }, + { + "start": 14023.22, + "end": 14024.12, + "probability": 0.8935 + }, + { + "start": 14025.48, + "end": 14026.54, + "probability": 0.9595 + }, + { + "start": 14027.1, + "end": 14030.14, + "probability": 0.9834 + }, + { + "start": 14031.58, + "end": 14033.4, + "probability": 0.9967 + }, + { + "start": 14035.9, + "end": 14039.0, + "probability": 0.8295 + }, + { + "start": 14039.3, + "end": 14041.32, + "probability": 0.9727 + }, + { + "start": 14042.06, + "end": 14046.16, + "probability": 0.9875 + }, + { + "start": 14047.84, + "end": 14052.92, + "probability": 0.7624 + }, + { + "start": 14053.72, + "end": 14060.66, + "probability": 0.9855 + }, + { + "start": 14061.92, + "end": 14064.04, + "probability": 0.5848 + }, + { + "start": 14064.94, + "end": 14069.52, + "probability": 0.8959 + }, + { + "start": 14070.22, + "end": 14072.64, + "probability": 0.979 + }, + { + "start": 14074.4, + "end": 14075.85, + "probability": 0.9759 + }, + { + "start": 14077.38, + "end": 14081.96, + "probability": 0.9706 + }, + { + "start": 14084.2, + "end": 14087.72, + "probability": 0.9912 + }, + { + "start": 14090.02, + "end": 14092.04, + "probability": 0.6875 + }, + { + "start": 14092.2, + "end": 14097.22, + "probability": 0.9813 + }, + { + "start": 14099.3, + "end": 14100.16, + "probability": 0.7859 + }, + { + "start": 14100.94, + "end": 14102.46, + "probability": 0.749 + }, + { + "start": 14103.06, + "end": 14103.72, + "probability": 0.693 + }, + { + "start": 14104.58, + "end": 14105.79, + "probability": 0.9748 + }, + { + "start": 14106.3, + "end": 14107.34, + "probability": 0.7641 + }, + { + "start": 14108.1, + "end": 14108.62, + "probability": 0.7652 + }, + { + "start": 14109.72, + "end": 14116.48, + "probability": 0.9995 + }, + { + "start": 14118.56, + "end": 14122.96, + "probability": 0.386 + }, + { + "start": 14123.5, + "end": 14126.52, + "probability": 0.998 + }, + { + "start": 14127.7, + "end": 14130.47, + "probability": 0.9907 + }, + { + "start": 14131.88, + "end": 14132.44, + "probability": 0.9866 + }, + { + "start": 14133.56, + "end": 14140.14, + "probability": 0.9976 + }, + { + "start": 14140.84, + "end": 14143.02, + "probability": 0.7792 + }, + { + "start": 14143.56, + "end": 14145.52, + "probability": 0.9565 + }, + { + "start": 14146.78, + "end": 14148.42, + "probability": 0.8975 + }, + { + "start": 14150.12, + "end": 14151.08, + "probability": 0.829 + }, + { + "start": 14152.26, + "end": 14153.54, + "probability": 0.9922 + }, + { + "start": 14155.06, + "end": 14162.04, + "probability": 0.9915 + }, + { + "start": 14162.82, + "end": 14166.1, + "probability": 0.9573 + }, + { + "start": 14166.84, + "end": 14167.56, + "probability": 0.9011 + }, + { + "start": 14171.02, + "end": 14173.98, + "probability": 0.9896 + }, + { + "start": 14174.56, + "end": 14176.84, + "probability": 0.9413 + }, + { + "start": 14180.4, + "end": 14181.96, + "probability": 0.8609 + }, + { + "start": 14183.3, + "end": 14184.76, + "probability": 0.9953 + }, + { + "start": 14185.42, + "end": 14186.44, + "probability": 0.8167 + }, + { + "start": 14188.02, + "end": 14190.6, + "probability": 0.9771 + }, + { + "start": 14191.48, + "end": 14195.9, + "probability": 0.9795 + }, + { + "start": 14196.8, + "end": 14199.71, + "probability": 0.9889 + }, + { + "start": 14200.66, + "end": 14201.66, + "probability": 0.8476 + }, + { + "start": 14203.06, + "end": 14206.24, + "probability": 0.9536 + }, + { + "start": 14207.02, + "end": 14210.7, + "probability": 0.9974 + }, + { + "start": 14211.38, + "end": 14212.98, + "probability": 0.9714 + }, + { + "start": 14213.4, + "end": 14217.13, + "probability": 0.9663 + }, + { + "start": 14217.7, + "end": 14218.7, + "probability": 0.6793 + }, + { + "start": 14218.74, + "end": 14219.86, + "probability": 0.8035 + }, + { + "start": 14220.56, + "end": 14223.52, + "probability": 0.9342 + }, + { + "start": 14224.12, + "end": 14225.78, + "probability": 0.8791 + }, + { + "start": 14226.48, + "end": 14227.94, + "probability": 0.9932 + }, + { + "start": 14228.16, + "end": 14230.12, + "probability": 0.9412 + }, + { + "start": 14230.22, + "end": 14230.86, + "probability": 0.7499 + }, + { + "start": 14230.94, + "end": 14232.18, + "probability": 0.8741 + }, + { + "start": 14232.22, + "end": 14233.18, + "probability": 0.9812 + }, + { + "start": 14233.26, + "end": 14234.0, + "probability": 0.8209 + }, + { + "start": 14234.16, + "end": 14236.18, + "probability": 0.9631 + }, + { + "start": 14236.28, + "end": 14237.48, + "probability": 0.9623 + }, + { + "start": 14237.6, + "end": 14242.38, + "probability": 0.9415 + }, + { + "start": 14242.56, + "end": 14243.98, + "probability": 0.9706 + }, + { + "start": 14244.66, + "end": 14245.76, + "probability": 0.922 + }, + { + "start": 14246.8, + "end": 14251.3, + "probability": 0.9836 + }, + { + "start": 14251.76, + "end": 14254.44, + "probability": 0.9814 + }, + { + "start": 14255.1, + "end": 14256.12, + "probability": 0.8189 + }, + { + "start": 14256.38, + "end": 14260.44, + "probability": 0.9055 + }, + { + "start": 14260.62, + "end": 14260.76, + "probability": 0.4485 + }, + { + "start": 14260.76, + "end": 14261.16, + "probability": 0.7137 + }, + { + "start": 14261.22, + "end": 14263.5, + "probability": 0.9323 + }, + { + "start": 14270.72, + "end": 14271.52, + "probability": 0.8929 + }, + { + "start": 14271.54, + "end": 14272.62, + "probability": 0.4593 + }, + { + "start": 14272.64, + "end": 14273.68, + "probability": 0.9391 + }, + { + "start": 14274.56, + "end": 14276.44, + "probability": 0.9821 + }, + { + "start": 14276.52, + "end": 14279.12, + "probability": 0.9662 + }, + { + "start": 14279.99, + "end": 14282.82, + "probability": 0.7651 + }, + { + "start": 14282.84, + "end": 14284.94, + "probability": 0.8636 + }, + { + "start": 14285.14, + "end": 14285.9, + "probability": 0.5757 + }, + { + "start": 14286.18, + "end": 14287.4, + "probability": 0.7709 + }, + { + "start": 14287.94, + "end": 14288.52, + "probability": 0.1874 + }, + { + "start": 14289.62, + "end": 14291.0, + "probability": 0.4849 + }, + { + "start": 14291.0, + "end": 14291.0, + "probability": 0.5505 + }, + { + "start": 14291.0, + "end": 14291.2, + "probability": 0.6076 + }, + { + "start": 14295.66, + "end": 14298.0, + "probability": 0.5549 + }, + { + "start": 14298.1, + "end": 14303.4, + "probability": 0.9951 + }, + { + "start": 14303.88, + "end": 14305.26, + "probability": 0.5611 + }, + { + "start": 14306.08, + "end": 14308.78, + "probability": 0.8649 + }, + { + "start": 14309.6, + "end": 14311.0, + "probability": 0.7227 + }, + { + "start": 14311.66, + "end": 14315.14, + "probability": 0.9855 + }, + { + "start": 14315.56, + "end": 14319.07, + "probability": 0.9008 + }, + { + "start": 14319.76, + "end": 14322.1, + "probability": 0.9612 + }, + { + "start": 14323.02, + "end": 14325.26, + "probability": 0.9897 + }, + { + "start": 14326.14, + "end": 14327.36, + "probability": 0.9993 + }, + { + "start": 14329.2, + "end": 14332.33, + "probability": 0.9134 + }, + { + "start": 14332.98, + "end": 14333.76, + "probability": 0.8754 + }, + { + "start": 14334.5, + "end": 14335.4, + "probability": 0.7042 + }, + { + "start": 14336.22, + "end": 14338.32, + "probability": 0.877 + }, + { + "start": 14339.64, + "end": 14342.0, + "probability": 0.9849 + }, + { + "start": 14342.54, + "end": 14342.82, + "probability": 0.9607 + }, + { + "start": 14343.52, + "end": 14344.52, + "probability": 0.8558 + }, + { + "start": 14344.62, + "end": 14346.32, + "probability": 0.662 + }, + { + "start": 14346.4, + "end": 14351.98, + "probability": 0.9945 + }, + { + "start": 14352.72, + "end": 14357.52, + "probability": 0.9978 + }, + { + "start": 14357.98, + "end": 14361.38, + "probability": 0.9992 + }, + { + "start": 14361.76, + "end": 14364.22, + "probability": 0.9946 + }, + { + "start": 14364.6, + "end": 14366.38, + "probability": 0.9991 + }, + { + "start": 14367.18, + "end": 14368.5, + "probability": 0.5187 + }, + { + "start": 14368.7, + "end": 14369.88, + "probability": 0.9609 + }, + { + "start": 14370.44, + "end": 14373.98, + "probability": 0.8173 + }, + { + "start": 14374.06, + "end": 14375.92, + "probability": 0.9993 + }, + { + "start": 14376.24, + "end": 14379.16, + "probability": 0.8838 + }, + { + "start": 14380.04, + "end": 14380.74, + "probability": 0.7478 + }, + { + "start": 14381.6, + "end": 14382.46, + "probability": 0.989 + }, + { + "start": 14383.58, + "end": 14388.84, + "probability": 0.9913 + }, + { + "start": 14389.5, + "end": 14395.46, + "probability": 0.9222 + }, + { + "start": 14395.82, + "end": 14397.54, + "probability": 0.7165 + }, + { + "start": 14397.64, + "end": 14399.74, + "probability": 0.989 + }, + { + "start": 14400.48, + "end": 14401.36, + "probability": 0.7378 + }, + { + "start": 14401.5, + "end": 14402.04, + "probability": 0.9578 + }, + { + "start": 14402.86, + "end": 14405.04, + "probability": 0.4744 + }, + { + "start": 14405.36, + "end": 14406.04, + "probability": 0.981 + }, + { + "start": 14406.26, + "end": 14408.32, + "probability": 0.6066 + }, + { + "start": 14408.42, + "end": 14412.5, + "probability": 0.9526 + }, + { + "start": 14412.68, + "end": 14415.82, + "probability": 0.9536 + }, + { + "start": 14416.18, + "end": 14417.78, + "probability": 0.0504 + }, + { + "start": 14417.78, + "end": 14419.28, + "probability": 0.1204 + }, + { + "start": 14419.38, + "end": 14421.39, + "probability": 0.1517 + }, + { + "start": 14422.4, + "end": 14423.24, + "probability": 0.1529 + }, + { + "start": 14423.76, + "end": 14425.72, + "probability": 0.7172 + }, + { + "start": 14425.98, + "end": 14430.26, + "probability": 0.9983 + }, + { + "start": 14430.26, + "end": 14430.76, + "probability": 0.3955 + }, + { + "start": 14430.82, + "end": 14432.36, + "probability": 0.1681 + }, + { + "start": 14432.38, + "end": 14432.6, + "probability": 0.4421 + }, + { + "start": 14432.76, + "end": 14432.76, + "probability": 0.0964 + }, + { + "start": 14432.76, + "end": 14432.94, + "probability": 0.2897 + }, + { + "start": 14432.98, + "end": 14432.98, + "probability": 0.6275 + }, + { + "start": 14433.0, + "end": 14433.96, + "probability": 0.5712 + }, + { + "start": 14434.04, + "end": 14436.53, + "probability": 0.9716 + }, + { + "start": 14436.6, + "end": 14436.6, + "probability": 0.0612 + }, + { + "start": 14436.6, + "end": 14436.6, + "probability": 0.2554 + }, + { + "start": 14436.6, + "end": 14436.6, + "probability": 0.2871 + }, + { + "start": 14436.6, + "end": 14437.66, + "probability": 0.8328 + }, + { + "start": 14439.0, + "end": 14441.09, + "probability": 0.4654 + }, + { + "start": 14441.18, + "end": 14442.68, + "probability": 0.3215 + }, + { + "start": 14442.68, + "end": 14443.47, + "probability": 0.56 + }, + { + "start": 14444.12, + "end": 14444.89, + "probability": 0.4429 + }, + { + "start": 14445.48, + "end": 14445.52, + "probability": 0.1247 + }, + { + "start": 14445.52, + "end": 14445.52, + "probability": 0.0268 + }, + { + "start": 14445.52, + "end": 14447.05, + "probability": 0.084 + }, + { + "start": 14447.4, + "end": 14448.15, + "probability": 0.0841 + }, + { + "start": 14448.84, + "end": 14450.14, + "probability": 0.5302 + }, + { + "start": 14451.1, + "end": 14453.94, + "probability": 0.1113 + }, + { + "start": 14454.6, + "end": 14455.34, + "probability": 0.1272 + }, + { + "start": 14455.48, + "end": 14455.56, + "probability": 0.1748 + }, + { + "start": 14455.56, + "end": 14455.62, + "probability": 0.0233 + }, + { + "start": 14456.78, + "end": 14456.98, + "probability": 0.0792 + }, + { + "start": 14456.98, + "end": 14459.76, + "probability": 0.3974 + }, + { + "start": 14459.8, + "end": 14460.12, + "probability": 0.7933 + }, + { + "start": 14460.28, + "end": 14461.38, + "probability": 0.4547 + }, + { + "start": 14461.46, + "end": 14462.12, + "probability": 0.1952 + }, + { + "start": 14462.12, + "end": 14462.26, + "probability": 0.4589 + }, + { + "start": 14462.26, + "end": 14464.36, + "probability": 0.4092 + }, + { + "start": 14464.36, + "end": 14465.24, + "probability": 0.8307 + }, + { + "start": 14465.32, + "end": 14466.38, + "probability": 0.8867 + }, + { + "start": 14468.54, + "end": 14468.6, + "probability": 0.011 + }, + { + "start": 14468.6, + "end": 14468.6, + "probability": 0.0757 + }, + { + "start": 14468.6, + "end": 14470.4, + "probability": 0.971 + }, + { + "start": 14470.44, + "end": 14471.4, + "probability": 0.8674 + }, + { + "start": 14471.56, + "end": 14471.76, + "probability": 0.1116 + }, + { + "start": 14471.76, + "end": 14472.48, + "probability": 0.6455 + }, + { + "start": 14472.54, + "end": 14473.7, + "probability": 0.4155 + }, + { + "start": 14474.0, + "end": 14474.46, + "probability": 0.0683 + }, + { + "start": 14474.46, + "end": 14475.0, + "probability": 0.5114 + }, + { + "start": 14475.24, + "end": 14479.46, + "probability": 0.9021 + }, + { + "start": 14479.9, + "end": 14481.89, + "probability": 0.4858 + }, + { + "start": 14483.98, + "end": 14485.94, + "probability": 0.1811 + }, + { + "start": 14486.1, + "end": 14487.33, + "probability": 0.599 + }, + { + "start": 14489.91, + "end": 14492.71, + "probability": 0.0508 + }, + { + "start": 14493.68, + "end": 14495.96, + "probability": 0.1452 + }, + { + "start": 14497.34, + "end": 14500.04, + "probability": 0.7012 + }, + { + "start": 14501.16, + "end": 14503.56, + "probability": 0.0478 + }, + { + "start": 14504.74, + "end": 14505.26, + "probability": 0.1163 + }, + { + "start": 14505.4, + "end": 14507.75, + "probability": 0.0815 + }, + { + "start": 14508.52, + "end": 14508.62, + "probability": 0.035 + }, + { + "start": 14508.72, + "end": 14508.84, + "probability": 0.207 + }, + { + "start": 14509.62, + "end": 14512.46, + "probability": 0.1489 + }, + { + "start": 14512.46, + "end": 14515.36, + "probability": 0.1256 + }, + { + "start": 14515.36, + "end": 14516.22, + "probability": 0.1108 + }, + { + "start": 14516.36, + "end": 14517.74, + "probability": 0.0765 + }, + { + "start": 14517.8, + "end": 14518.16, + "probability": 0.0346 + }, + { + "start": 14520.0, + "end": 14520.0, + "probability": 0.0 + }, + { + "start": 14520.0, + "end": 14520.0, + "probability": 0.0 + }, + { + "start": 14520.0, + "end": 14520.0, + "probability": 0.0 + }, + { + "start": 14520.0, + "end": 14520.0, + "probability": 0.0 + }, + { + "start": 14520.0, + "end": 14520.0, + "probability": 0.0 + }, + { + "start": 14520.0, + "end": 14520.0, + "probability": 0.0 + }, + { + "start": 14520.0, + "end": 14520.0, + "probability": 0.0 + }, + { + "start": 14520.0, + "end": 14520.0, + "probability": 0.0 + }, + { + "start": 14520.0, + "end": 14520.0, + "probability": 0.0 + }, + { + "start": 14520.0, + "end": 14520.0, + "probability": 0.0 + }, + { + "start": 14520.0, + "end": 14520.0, + "probability": 0.0 + }, + { + "start": 14520.0, + "end": 14520.0, + "probability": 0.0 + }, + { + "start": 14520.0, + "end": 14520.0, + "probability": 0.0 + }, + { + "start": 14520.0, + "end": 14520.0, + "probability": 0.0 + }, + { + "start": 14520.0, + "end": 14520.0, + "probability": 0.0 + }, + { + "start": 14520.0, + "end": 14520.0, + "probability": 0.0 + }, + { + "start": 14520.32, + "end": 14525.46, + "probability": 0.5746 + }, + { + "start": 14526.44, + "end": 14527.08, + "probability": 0.5825 + }, + { + "start": 14527.52, + "end": 14528.12, + "probability": 0.1921 + }, + { + "start": 14528.34, + "end": 14529.04, + "probability": 0.3257 + }, + { + "start": 14529.3, + "end": 14530.98, + "probability": 0.2037 + }, + { + "start": 14531.04, + "end": 14531.04, + "probability": 0.2643 + }, + { + "start": 14531.04, + "end": 14531.64, + "probability": 0.0215 + }, + { + "start": 14531.64, + "end": 14531.9, + "probability": 0.3452 + }, + { + "start": 14531.98, + "end": 14533.34, + "probability": 0.4235 + }, + { + "start": 14533.88, + "end": 14535.02, + "probability": 0.4205 + }, + { + "start": 14535.02, + "end": 14535.08, + "probability": 0.1313 + }, + { + "start": 14535.08, + "end": 14535.94, + "probability": 0.3224 + }, + { + "start": 14536.08, + "end": 14536.16, + "probability": 0.2112 + }, + { + "start": 14536.4, + "end": 14537.76, + "probability": 0.0138 + }, + { + "start": 14537.76, + "end": 14537.84, + "probability": 0.193 + }, + { + "start": 14537.84, + "end": 14538.7, + "probability": 0.3736 + }, + { + "start": 14538.72, + "end": 14539.18, + "probability": 0.6632 + }, + { + "start": 14539.18, + "end": 14541.28, + "probability": 0.0391 + }, + { + "start": 14545.92, + "end": 14545.92, + "probability": 0.1538 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.0, + "end": 14648.0, + "probability": 0.0 + }, + { + "start": 14648.2, + "end": 14648.52, + "probability": 0.062 + }, + { + "start": 14648.52, + "end": 14648.52, + "probability": 0.1523 + }, + { + "start": 14648.52, + "end": 14648.52, + "probability": 0.02 + }, + { + "start": 14648.52, + "end": 14652.36, + "probability": 0.844 + }, + { + "start": 14652.5, + "end": 14654.42, + "probability": 0.8038 + }, + { + "start": 14655.0, + "end": 14655.7, + "probability": 0.8336 + }, + { + "start": 14657.66, + "end": 14658.24, + "probability": 0.0291 + }, + { + "start": 14658.24, + "end": 14660.92, + "probability": 0.9418 + }, + { + "start": 14661.18, + "end": 14663.38, + "probability": 0.917 + }, + { + "start": 14663.4, + "end": 14663.96, + "probability": 0.0255 + }, + { + "start": 14663.96, + "end": 14664.6, + "probability": 0.2135 + }, + { + "start": 14664.64, + "end": 14665.04, + "probability": 0.2706 + }, + { + "start": 14665.16, + "end": 14666.54, + "probability": 0.5643 + }, + { + "start": 14666.58, + "end": 14667.49, + "probability": 0.89 + }, + { + "start": 14667.92, + "end": 14672.7, + "probability": 0.9891 + }, + { + "start": 14673.4, + "end": 14674.06, + "probability": 0.7697 + }, + { + "start": 14674.3, + "end": 14675.42, + "probability": 0.5279 + }, + { + "start": 14675.74, + "end": 14677.46, + "probability": 0.9948 + }, + { + "start": 14678.52, + "end": 14678.8, + "probability": 0.7585 + }, + { + "start": 14680.7, + "end": 14681.4, + "probability": 0.8688 + }, + { + "start": 14683.78, + "end": 14684.78, + "probability": 0.8868 + }, + { + "start": 14689.46, + "end": 14691.96, + "probability": 0.4142 + }, + { + "start": 14693.84, + "end": 14694.22, + "probability": 0.5212 + }, + { + "start": 14694.28, + "end": 14694.44, + "probability": 0.7657 + }, + { + "start": 14694.74, + "end": 14695.64, + "probability": 0.7833 + }, + { + "start": 14696.32, + "end": 14697.66, + "probability": 0.7752 + }, + { + "start": 14697.66, + "end": 14698.02, + "probability": 0.4485 + }, + { + "start": 14698.16, + "end": 14699.28, + "probability": 0.9671 + }, + { + "start": 14699.7, + "end": 14701.28, + "probability": 0.7691 + }, + { + "start": 14701.96, + "end": 14702.44, + "probability": 0.6827 + }, + { + "start": 14703.06, + "end": 14703.34, + "probability": 0.5404 + }, + { + "start": 14704.26, + "end": 14705.9, + "probability": 0.9403 + }, + { + "start": 14706.22, + "end": 14709.72, + "probability": 0.9572 + }, + { + "start": 14711.26, + "end": 14712.9, + "probability": 0.7063 + }, + { + "start": 14713.28, + "end": 14718.18, + "probability": 0.853 + }, + { + "start": 14718.68, + "end": 14719.3, + "probability": 0.701 + }, + { + "start": 14719.34, + "end": 14721.56, + "probability": 0.9843 + }, + { + "start": 14722.52, + "end": 14724.78, + "probability": 0.8105 + }, + { + "start": 14725.48, + "end": 14727.62, + "probability": 0.2841 + }, + { + "start": 14727.62, + "end": 14732.72, + "probability": 0.4976 + }, + { + "start": 14732.86, + "end": 14732.86, + "probability": 0.0517 + }, + { + "start": 14732.86, + "end": 14733.8, + "probability": 0.6735 + }, + { + "start": 14733.82, + "end": 14736.98, + "probability": 0.822 + }, + { + "start": 14736.98, + "end": 14742.4, + "probability": 0.0744 + }, + { + "start": 14742.8, + "end": 14743.02, + "probability": 0.1704 + }, + { + "start": 14743.02, + "end": 14743.44, + "probability": 0.1149 + }, + { + "start": 14744.2, + "end": 14748.04, + "probability": 0.9818 + }, + { + "start": 14748.08, + "end": 14748.9, + "probability": 0.8083 + }, + { + "start": 14749.0, + "end": 14749.94, + "probability": 0.3685 + }, + { + "start": 14749.96, + "end": 14751.06, + "probability": 0.2207 + }, + { + "start": 14755.12, + "end": 14756.04, + "probability": 0.1828 + }, + { + "start": 14756.04, + "end": 14756.48, + "probability": 0.0848 + }, + { + "start": 14756.98, + "end": 14759.8, + "probability": 0.7096 + }, + { + "start": 14759.86, + "end": 14760.3, + "probability": 0.7668 + }, + { + "start": 14761.76, + "end": 14763.74, + "probability": 0.0701 + }, + { + "start": 14764.24, + "end": 14764.24, + "probability": 0.0202 + }, + { + "start": 14764.24, + "end": 14764.48, + "probability": 0.2163 + }, + { + "start": 14764.72, + "end": 14770.3, + "probability": 0.9875 + }, + { + "start": 14771.18, + "end": 14772.14, + "probability": 0.6292 + }, + { + "start": 14772.14, + "end": 14773.58, + "probability": 0.7901 + }, + { + "start": 14774.48, + "end": 14776.1, + "probability": 0.8765 + }, + { + "start": 14776.28, + "end": 14779.16, + "probability": 0.6691 + }, + { + "start": 14780.9, + "end": 14782.46, + "probability": 0.9956 + }, + { + "start": 14795.74, + "end": 14799.58, + "probability": 0.752 + }, + { + "start": 14800.5, + "end": 14802.14, + "probability": 0.6438 + }, + { + "start": 14802.9, + "end": 14806.7, + "probability": 0.8727 + }, + { + "start": 14806.7, + "end": 14810.8, + "probability": 0.8895 + }, + { + "start": 14810.84, + "end": 14811.6, + "probability": 0.5891 + }, + { + "start": 14812.26, + "end": 14815.13, + "probability": 0.8092 + }, + { + "start": 14815.28, + "end": 14817.18, + "probability": 0.3986 + }, + { + "start": 14817.28, + "end": 14817.74, + "probability": 0.3719 + }, + { + "start": 14818.16, + "end": 14819.58, + "probability": 0.9581 + }, + { + "start": 14820.1, + "end": 14824.8, + "probability": 0.9315 + }, + { + "start": 14826.02, + "end": 14827.28, + "probability": 0.8469 + }, + { + "start": 14828.08, + "end": 14828.6, + "probability": 0.9876 + }, + { + "start": 14829.52, + "end": 14830.5, + "probability": 0.6202 + }, + { + "start": 14831.46, + "end": 14832.48, + "probability": 0.9249 + }, + { + "start": 14832.56, + "end": 14834.26, + "probability": 0.9957 + }, + { + "start": 14834.7, + "end": 14835.98, + "probability": 0.8771 + }, + { + "start": 14837.06, + "end": 14837.88, + "probability": 0.9106 + }, + { + "start": 14838.0, + "end": 14842.84, + "probability": 0.9478 + }, + { + "start": 14842.92, + "end": 14845.84, + "probability": 0.9512 + }, + { + "start": 14845.98, + "end": 14846.48, + "probability": 0.8522 + }, + { + "start": 14846.54, + "end": 14847.64, + "probability": 0.9829 + }, + { + "start": 14847.7, + "end": 14848.43, + "probability": 0.9141 + }, + { + "start": 14848.96, + "end": 14850.46, + "probability": 0.9392 + }, + { + "start": 14851.26, + "end": 14852.04, + "probability": 0.8127 + }, + { + "start": 14852.16, + "end": 14853.3, + "probability": 0.9003 + }, + { + "start": 14853.38, + "end": 14854.58, + "probability": 0.9598 + }, + { + "start": 14855.02, + "end": 14856.26, + "probability": 0.9802 + }, + { + "start": 14856.56, + "end": 14858.9, + "probability": 0.7356 + }, + { + "start": 14860.4, + "end": 14862.18, + "probability": 0.9912 + }, + { + "start": 14863.22, + "end": 14864.4, + "probability": 0.5021 + }, + { + "start": 14865.0, + "end": 14867.8, + "probability": 0.6546 + }, + { + "start": 14868.56, + "end": 14872.9, + "probability": 0.8828 + }, + { + "start": 14873.42, + "end": 14876.3, + "probability": 0.9775 + }, + { + "start": 14876.8, + "end": 14878.46, + "probability": 0.99 + }, + { + "start": 14879.14, + "end": 14879.46, + "probability": 0.9727 + }, + { + "start": 14880.72, + "end": 14885.84, + "probability": 0.9844 + }, + { + "start": 14885.98, + "end": 14886.74, + "probability": 0.7057 + }, + { + "start": 14887.04, + "end": 14887.98, + "probability": 0.7597 + }, + { + "start": 14888.38, + "end": 14889.56, + "probability": 0.8009 + }, + { + "start": 14890.14, + "end": 14892.54, + "probability": 0.8368 + }, + { + "start": 14893.64, + "end": 14896.1, + "probability": 0.9856 + }, + { + "start": 14896.38, + "end": 14897.54, + "probability": 0.4349 + }, + { + "start": 14898.0, + "end": 14899.34, + "probability": 0.9061 + }, + { + "start": 14899.82, + "end": 14903.34, + "probability": 0.9469 + }, + { + "start": 14904.08, + "end": 14907.44, + "probability": 0.5858 + }, + { + "start": 14907.5, + "end": 14908.65, + "probability": 0.5354 + }, + { + "start": 14909.16, + "end": 14910.71, + "probability": 0.5146 + }, + { + "start": 14912.18, + "end": 14912.64, + "probability": 0.0052 + }, + { + "start": 14912.64, + "end": 14912.64, + "probability": 0.0874 + }, + { + "start": 14912.64, + "end": 14914.94, + "probability": 0.4313 + }, + { + "start": 14915.0, + "end": 14915.4, + "probability": 0.5335 + }, + { + "start": 14915.62, + "end": 14915.86, + "probability": 0.0827 + }, + { + "start": 14915.88, + "end": 14918.14, + "probability": 0.7397 + }, + { + "start": 14918.16, + "end": 14918.16, + "probability": 0.4025 + }, + { + "start": 14918.16, + "end": 14918.18, + "probability": 0.0799 + }, + { + "start": 14918.18, + "end": 14919.23, + "probability": 0.7243 + }, + { + "start": 14920.12, + "end": 14922.66, + "probability": 0.9661 + }, + { + "start": 14922.66, + "end": 14924.5, + "probability": 0.999 + }, + { + "start": 14925.0, + "end": 14925.66, + "probability": 0.5654 + }, + { + "start": 14925.74, + "end": 14926.94, + "probability": 0.9025 + }, + { + "start": 14927.48, + "end": 14927.72, + "probability": 0.3591 + }, + { + "start": 14927.76, + "end": 14931.56, + "probability": 0.9685 + }, + { + "start": 14931.78, + "end": 14933.26, + "probability": 0.7667 + }, + { + "start": 14933.76, + "end": 14935.16, + "probability": 0.7991 + }, + { + "start": 14935.68, + "end": 14938.26, + "probability": 0.0933 + }, + { + "start": 14938.74, + "end": 14941.94, + "probability": 0.7662 + }, + { + "start": 14942.02, + "end": 14943.57, + "probability": 0.6388 + }, + { + "start": 14943.92, + "end": 14945.44, + "probability": 0.9148 + }, + { + "start": 14945.62, + "end": 14948.12, + "probability": 0.9744 + }, + { + "start": 14948.54, + "end": 14950.05, + "probability": 0.6835 + }, + { + "start": 14950.6, + "end": 14950.92, + "probability": 0.7608 + }, + { + "start": 14951.0, + "end": 14953.02, + "probability": 0.9837 + }, + { + "start": 14953.36, + "end": 14955.96, + "probability": 0.9821 + }, + { + "start": 14956.3, + "end": 14957.52, + "probability": 0.7113 + }, + { + "start": 14957.66, + "end": 14958.66, + "probability": 0.8435 + }, + { + "start": 14958.72, + "end": 14959.06, + "probability": 0.8495 + }, + { + "start": 14959.08, + "end": 14960.38, + "probability": 0.9705 + }, + { + "start": 14960.66, + "end": 14962.44, + "probability": 0.9535 + }, + { + "start": 14963.0, + "end": 14966.8, + "probability": 0.9886 + }, + { + "start": 14967.14, + "end": 14970.28, + "probability": 0.94 + }, + { + "start": 14970.38, + "end": 14970.92, + "probability": 0.9813 + }, + { + "start": 14970.92, + "end": 14971.9, + "probability": 0.7935 + }, + { + "start": 14972.32, + "end": 14973.42, + "probability": 0.9904 + }, + { + "start": 14974.06, + "end": 14975.32, + "probability": 0.9821 + }, + { + "start": 14975.74, + "end": 14976.66, + "probability": 0.9579 + }, + { + "start": 14977.1, + "end": 14978.48, + "probability": 0.6992 + }, + { + "start": 14978.56, + "end": 14980.52, + "probability": 0.8403 + }, + { + "start": 14981.2, + "end": 14984.64, + "probability": 0.981 + }, + { + "start": 14985.1, + "end": 14988.34, + "probability": 0.9884 + }, + { + "start": 14988.64, + "end": 14992.12, + "probability": 0.9963 + }, + { + "start": 14992.14, + "end": 14993.64, + "probability": 0.68 + }, + { + "start": 14993.72, + "end": 14994.82, + "probability": 0.5822 + }, + { + "start": 14995.02, + "end": 14997.68, + "probability": 0.745 + }, + { + "start": 14997.8, + "end": 14998.42, + "probability": 0.7834 + }, + { + "start": 14998.72, + "end": 14999.28, + "probability": 0.7237 + }, + { + "start": 14999.34, + "end": 14999.98, + "probability": 0.634 + }, + { + "start": 15000.22, + "end": 15002.3, + "probability": 0.6652 + }, + { + "start": 15002.3, + "end": 15002.34, + "probability": 0.4227 + }, + { + "start": 15002.34, + "end": 15003.5, + "probability": 0.7036 + }, + { + "start": 15004.08, + "end": 15005.2, + "probability": 0.9323 + }, + { + "start": 15008.12, + "end": 15010.24, + "probability": 0.5593 + }, + { + "start": 15025.98, + "end": 15028.86, + "probability": 0.656 + }, + { + "start": 15030.32, + "end": 15036.02, + "probability": 0.9949 + }, + { + "start": 15036.88, + "end": 15042.4, + "probability": 0.9727 + }, + { + "start": 15043.1, + "end": 15046.56, + "probability": 0.9532 + }, + { + "start": 15047.24, + "end": 15051.0, + "probability": 0.936 + }, + { + "start": 15051.52, + "end": 15055.0, + "probability": 0.9592 + }, + { + "start": 15056.48, + "end": 15064.5, + "probability": 0.762 + }, + { + "start": 15064.62, + "end": 15066.18, + "probability": 0.5791 + }, + { + "start": 15066.28, + "end": 15067.46, + "probability": 0.1379 + }, + { + "start": 15067.62, + "end": 15068.52, + "probability": 0.771 + }, + { + "start": 15069.2, + "end": 15070.97, + "probability": 0.9468 + }, + { + "start": 15071.74, + "end": 15079.78, + "probability": 0.9947 + }, + { + "start": 15081.32, + "end": 15083.4, + "probability": 0.6396 + }, + { + "start": 15083.52, + "end": 15085.38, + "probability": 0.9307 + }, + { + "start": 15085.46, + "end": 15090.18, + "probability": 0.9761 + }, + { + "start": 15090.18, + "end": 15095.88, + "probability": 0.9193 + }, + { + "start": 15096.04, + "end": 15096.36, + "probability": 0.7538 + }, + { + "start": 15096.5, + "end": 15098.64, + "probability": 0.995 + }, + { + "start": 15098.94, + "end": 15100.14, + "probability": 0.8956 + }, + { + "start": 15100.68, + "end": 15101.78, + "probability": 0.8715 + }, + { + "start": 15102.26, + "end": 15103.94, + "probability": 0.0242 + }, + { + "start": 15104.36, + "end": 15109.94, + "probability": 0.7994 + }, + { + "start": 15110.28, + "end": 15111.12, + "probability": 0.8984 + }, + { + "start": 15111.36, + "end": 15113.96, + "probability": 0.9278 + }, + { + "start": 15114.08, + "end": 15114.66, + "probability": 0.4326 + }, + { + "start": 15114.76, + "end": 15115.58, + "probability": 0.9406 + }, + { + "start": 15116.78, + "end": 15123.42, + "probability": 0.9946 + }, + { + "start": 15123.82, + "end": 15124.22, + "probability": 0.6891 + }, + { + "start": 15124.8, + "end": 15127.28, + "probability": 0.9826 + }, + { + "start": 15127.82, + "end": 15128.04, + "probability": 0.8701 + }, + { + "start": 15128.88, + "end": 15132.18, + "probability": 0.966 + }, + { + "start": 15132.6, + "end": 15132.8, + "probability": 0.6116 + }, + { + "start": 15133.46, + "end": 15134.1, + "probability": 0.825 + }, + { + "start": 15134.16, + "end": 15135.44, + "probability": 0.6043 + }, + { + "start": 15135.74, + "end": 15137.4, + "probability": 0.8242 + }, + { + "start": 15138.44, + "end": 15141.3, + "probability": 0.683 + }, + { + "start": 15141.8, + "end": 15143.34, + "probability": 0.3588 + }, + { + "start": 15143.82, + "end": 15144.08, + "probability": 0.53 + }, + { + "start": 15144.94, + "end": 15146.39, + "probability": 0.9321 + }, + { + "start": 15147.68, + "end": 15153.74, + "probability": 0.9624 + }, + { + "start": 15153.74, + "end": 15155.14, + "probability": 0.539 + }, + { + "start": 15155.24, + "end": 15156.58, + "probability": 0.908 + }, + { + "start": 15156.66, + "end": 15157.04, + "probability": 0.3771 + }, + { + "start": 15157.1, + "end": 15157.72, + "probability": 0.3689 + }, + { + "start": 15157.88, + "end": 15164.14, + "probability": 0.9485 + }, + { + "start": 15164.14, + "end": 15166.4, + "probability": 0.2069 + }, + { + "start": 15166.54, + "end": 15170.56, + "probability": 0.974 + }, + { + "start": 15170.96, + "end": 15177.52, + "probability": 0.7896 + }, + { + "start": 15177.88, + "end": 15182.85, + "probability": 0.8755 + }, + { + "start": 15183.34, + "end": 15189.06, + "probability": 0.9657 + }, + { + "start": 15189.36, + "end": 15190.5, + "probability": 0.4876 + }, + { + "start": 15190.5, + "end": 15191.9, + "probability": 0.6631 + }, + { + "start": 15192.16, + "end": 15192.58, + "probability": 0.5064 + }, + { + "start": 15193.16, + "end": 15194.62, + "probability": 0.9525 + }, + { + "start": 15194.66, + "end": 15197.48, + "probability": 0.85 + }, + { + "start": 15197.88, + "end": 15199.98, + "probability": 0.978 + }, + { + "start": 15200.58, + "end": 15204.76, + "probability": 0.9448 + }, + { + "start": 15205.28, + "end": 15207.34, + "probability": 0.9971 + }, + { + "start": 15207.84, + "end": 15210.6, + "probability": 0.884 + }, + { + "start": 15210.64, + "end": 15213.1, + "probability": 0.9658 + }, + { + "start": 15213.26, + "end": 15214.5, + "probability": 0.79 + }, + { + "start": 15214.54, + "end": 15215.58, + "probability": 0.9928 + }, + { + "start": 15216.18, + "end": 15217.7, + "probability": 0.9945 + }, + { + "start": 15218.61, + "end": 15220.2, + "probability": 0.6733 + }, + { + "start": 15220.68, + "end": 15222.08, + "probability": 0.2572 + }, + { + "start": 15222.67, + "end": 15225.24, + "probability": 0.835 + }, + { + "start": 15225.42, + "end": 15227.58, + "probability": 0.9598 + }, + { + "start": 15227.98, + "end": 15230.85, + "probability": 0.501 + }, + { + "start": 15231.76, + "end": 15231.96, + "probability": 0.8909 + }, + { + "start": 15231.96, + "end": 15233.12, + "probability": 0.8999 + }, + { + "start": 15233.53, + "end": 15234.31, + "probability": 0.9808 + }, + { + "start": 15234.84, + "end": 15235.48, + "probability": 0.6378 + }, + { + "start": 15235.98, + "end": 15236.86, + "probability": 0.6085 + }, + { + "start": 15236.98, + "end": 15238.06, + "probability": 0.963 + }, + { + "start": 15238.28, + "end": 15238.6, + "probability": 0.1606 + }, + { + "start": 15238.84, + "end": 15239.16, + "probability": 0.6496 + }, + { + "start": 15239.36, + "end": 15241.02, + "probability": 0.8501 + }, + { + "start": 15241.28, + "end": 15248.62, + "probability": 0.9413 + }, + { + "start": 15248.94, + "end": 15252.28, + "probability": 0.7639 + }, + { + "start": 15253.02, + "end": 15260.16, + "probability": 0.9824 + }, + { + "start": 15264.5, + "end": 15266.1, + "probability": 0.9954 + }, + { + "start": 15266.2, + "end": 15266.34, + "probability": 0.7189 + }, + { + "start": 15267.8, + "end": 15268.56, + "probability": 0.7375 + }, + { + "start": 15271.42, + "end": 15274.26, + "probability": 0.9867 + }, + { + "start": 15274.88, + "end": 15276.8, + "probability": 0.9836 + }, + { + "start": 15276.9, + "end": 15278.5, + "probability": 0.7644 + }, + { + "start": 15279.14, + "end": 15279.82, + "probability": 0.8413 + }, + { + "start": 15283.36, + "end": 15284.94, + "probability": 0.9832 + }, + { + "start": 15285.04, + "end": 15287.84, + "probability": 0.7329 + }, + { + "start": 15288.12, + "end": 15290.8, + "probability": 0.8277 + }, + { + "start": 15291.6, + "end": 15292.36, + "probability": 0.6015 + }, + { + "start": 15293.02, + "end": 15293.72, + "probability": 0.8089 + }, + { + "start": 15294.26, + "end": 15295.27, + "probability": 0.8968 + }, + { + "start": 15296.82, + "end": 15298.64, + "probability": 0.2844 + }, + { + "start": 15298.64, + "end": 15299.64, + "probability": 0.5335 + }, + { + "start": 15299.76, + "end": 15302.5, + "probability": 0.7508 + }, + { + "start": 15303.34, + "end": 15304.74, + "probability": 0.9912 + }, + { + "start": 15306.04, + "end": 15309.08, + "probability": 0.9505 + }, + { + "start": 15310.06, + "end": 15311.7, + "probability": 0.8663 + }, + { + "start": 15312.6, + "end": 15314.38, + "probability": 0.9447 + }, + { + "start": 15315.64, + "end": 15316.74, + "probability": 0.7539 + }, + { + "start": 15317.14, + "end": 15324.88, + "probability": 0.9876 + }, + { + "start": 15326.54, + "end": 15334.82, + "probability": 0.9966 + }, + { + "start": 15336.63, + "end": 15343.06, + "probability": 0.7437 + }, + { + "start": 15344.06, + "end": 15346.94, + "probability": 0.9562 + }, + { + "start": 15347.46, + "end": 15349.58, + "probability": 0.9842 + }, + { + "start": 15350.46, + "end": 15353.06, + "probability": 0.9803 + }, + { + "start": 15353.64, + "end": 15358.86, + "probability": 0.9813 + }, + { + "start": 15359.38, + "end": 15360.54, + "probability": 0.9854 + }, + { + "start": 15360.94, + "end": 15362.0, + "probability": 0.9309 + }, + { + "start": 15362.66, + "end": 15367.16, + "probability": 0.9634 + }, + { + "start": 15367.92, + "end": 15372.6, + "probability": 0.9922 + }, + { + "start": 15372.9, + "end": 15373.52, + "probability": 0.8039 + }, + { + "start": 15375.88, + "end": 15377.8, + "probability": 0.8572 + }, + { + "start": 15379.46, + "end": 15381.36, + "probability": 0.7878 + }, + { + "start": 15381.52, + "end": 15384.96, + "probability": 0.9957 + }, + { + "start": 15385.06, + "end": 15387.43, + "probability": 0.8111 + }, + { + "start": 15388.72, + "end": 15391.58, + "probability": 0.9048 + }, + { + "start": 15392.9, + "end": 15398.3, + "probability": 0.9805 + }, + { + "start": 15399.2, + "end": 15399.56, + "probability": 0.4686 + }, + { + "start": 15399.6, + "end": 15402.24, + "probability": 0.8617 + }, + { + "start": 15402.78, + "end": 15403.88, + "probability": 0.874 + }, + { + "start": 15404.7, + "end": 15406.22, + "probability": 0.8739 + }, + { + "start": 15406.24, + "end": 15407.92, + "probability": 0.8932 + }, + { + "start": 15408.56, + "end": 15409.74, + "probability": 0.676 + }, + { + "start": 15417.22, + "end": 15418.3, + "probability": 0.1032 + }, + { + "start": 15418.84, + "end": 15419.04, + "probability": 0.0822 + }, + { + "start": 15427.82, + "end": 15428.84, + "probability": 0.1894 + }, + { + "start": 15432.38, + "end": 15432.72, + "probability": 0.0501 + }, + { + "start": 15432.72, + "end": 15433.26, + "probability": 0.6502 + }, + { + "start": 15433.26, + "end": 15433.26, + "probability": 0.07 + }, + { + "start": 15433.7, + "end": 15435.0, + "probability": 0.6331 + }, + { + "start": 15435.06, + "end": 15436.5, + "probability": 0.4074 + }, + { + "start": 15437.16, + "end": 15438.16, + "probability": 0.7835 + }, + { + "start": 15438.56, + "end": 15440.4, + "probability": 0.9738 + }, + { + "start": 15443.46, + "end": 15448.7, + "probability": 0.8978 + }, + { + "start": 15449.78, + "end": 15453.24, + "probability": 0.8913 + }, + { + "start": 15453.24, + "end": 15455.5, + "probability": 0.8684 + }, + { + "start": 15455.86, + "end": 15457.94, + "probability": 0.8818 + }, + { + "start": 15458.78, + "end": 15461.14, + "probability": 0.7671 + }, + { + "start": 15461.62, + "end": 15462.28, + "probability": 0.911 + }, + { + "start": 15469.99, + "end": 15472.62, + "probability": 0.0847 + }, + { + "start": 15472.62, + "end": 15472.62, + "probability": 0.0636 + }, + { + "start": 15474.64, + "end": 15477.48, + "probability": 0.2032 + }, + { + "start": 15477.84, + "end": 15479.0, + "probability": 0.0102 + }, + { + "start": 15479.0, + "end": 15479.0, + "probability": 0.5396 + }, + { + "start": 15479.0, + "end": 15479.1, + "probability": 0.0629 + }, + { + "start": 15479.74, + "end": 15482.5, + "probability": 0.8133 + }, + { + "start": 15483.0, + "end": 15488.48, + "probability": 0.8483 + }, + { + "start": 15489.0, + "end": 15489.22, + "probability": 0.2154 + }, + { + "start": 15489.82, + "end": 15492.76, + "probability": 0.8784 + }, + { + "start": 15493.2, + "end": 15494.78, + "probability": 0.9672 + }, + { + "start": 15496.16, + "end": 15497.74, + "probability": 0.8614 + }, + { + "start": 15497.74, + "end": 15499.22, + "probability": 0.896 + }, + { + "start": 15499.52, + "end": 15502.46, + "probability": 0.9849 + }, + { + "start": 15503.58, + "end": 15504.28, + "probability": 0.6178 + }, + { + "start": 15504.3, + "end": 15504.82, + "probability": 0.8898 + }, + { + "start": 15507.12, + "end": 15507.28, + "probability": 0.1927 + }, + { + "start": 15525.56, + "end": 15529.01, + "probability": 0.168 + }, + { + "start": 15533.26, + "end": 15536.02, + "probability": 0.3369 + }, + { + "start": 15540.32, + "end": 15540.84, + "probability": 0.0705 + }, + { + "start": 15541.66, + "end": 15543.22, + "probability": 0.0923 + }, + { + "start": 15543.22, + "end": 15544.28, + "probability": 0.0076 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.0, + "end": 15613.0, + "probability": 0.0 + }, + { + "start": 15613.36, + "end": 15616.56, + "probability": 0.9956 + }, + { + "start": 15616.79, + "end": 15620.64, + "probability": 0.6667 + }, + { + "start": 15621.08, + "end": 15621.34, + "probability": 0.6862 + }, + { + "start": 15621.92, + "end": 15626.7, + "probability": 0.7809 + }, + { + "start": 15627.06, + "end": 15627.64, + "probability": 0.8165 + }, + { + "start": 15627.76, + "end": 15629.12, + "probability": 0.7799 + }, + { + "start": 15629.92, + "end": 15631.82, + "probability": 0.7616 + }, + { + "start": 15632.18, + "end": 15634.12, + "probability": 0.98 + }, + { + "start": 15634.18, + "end": 15637.68, + "probability": 0.8763 + }, + { + "start": 15638.14, + "end": 15642.3, + "probability": 0.9729 + }, + { + "start": 15642.46, + "end": 15643.14, + "probability": 0.9095 + }, + { + "start": 15643.58, + "end": 15645.36, + "probability": 0.0077 + }, + { + "start": 15647.32, + "end": 15647.58, + "probability": 0.0725 + }, + { + "start": 15647.8, + "end": 15648.4, + "probability": 0.4708 + }, + { + "start": 15649.12, + "end": 15649.7, + "probability": 0.3515 + }, + { + "start": 15655.14, + "end": 15656.1, + "probability": 0.2073 + }, + { + "start": 15656.42, + "end": 15657.26, + "probability": 0.6176 + }, + { + "start": 15657.78, + "end": 15659.36, + "probability": 0.4873 + }, + { + "start": 15659.54, + "end": 15660.52, + "probability": 0.7816 + }, + { + "start": 15660.84, + "end": 15663.48, + "probability": 0.9355 + }, + { + "start": 15664.24, + "end": 15665.08, + "probability": 0.9866 + }, + { + "start": 15665.18, + "end": 15666.08, + "probability": 0.9681 + }, + { + "start": 15666.08, + "end": 15666.38, + "probability": 0.4646 + }, + { + "start": 15666.5, + "end": 15668.04, + "probability": 0.9453 + }, + { + "start": 15668.92, + "end": 15670.62, + "probability": 0.8372 + }, + { + "start": 15670.7, + "end": 15671.68, + "probability": 0.9017 + }, + { + "start": 15671.74, + "end": 15672.3, + "probability": 0.8185 + }, + { + "start": 15672.84, + "end": 15674.44, + "probability": 0.9727 + }, + { + "start": 15674.92, + "end": 15678.66, + "probability": 0.9767 + }, + { + "start": 15678.74, + "end": 15679.14, + "probability": 0.6561 + }, + { + "start": 15679.16, + "end": 15680.22, + "probability": 0.9802 + }, + { + "start": 15680.62, + "end": 15682.42, + "probability": 0.9733 + }, + { + "start": 15682.94, + "end": 15686.0, + "probability": 0.9087 + }, + { + "start": 15686.58, + "end": 15690.92, + "probability": 0.9897 + }, + { + "start": 15691.44, + "end": 15692.45, + "probability": 0.9856 + }, + { + "start": 15692.68, + "end": 15693.76, + "probability": 0.9384 + }, + { + "start": 15693.88, + "end": 15694.82, + "probability": 0.8307 + }, + { + "start": 15695.28, + "end": 15696.14, + "probability": 0.995 + }, + { + "start": 15696.3, + "end": 15697.26, + "probability": 0.5868 + }, + { + "start": 15697.72, + "end": 15700.28, + "probability": 0.9833 + }, + { + "start": 15701.0, + "end": 15702.5, + "probability": 0.8358 + }, + { + "start": 15703.0, + "end": 15704.82, + "probability": 0.8782 + }, + { + "start": 15705.56, + "end": 15711.78, + "probability": 0.8533 + }, + { + "start": 15711.9, + "end": 15713.44, + "probability": 0.7203 + }, + { + "start": 15713.54, + "end": 15715.3, + "probability": 0.8926 + }, + { + "start": 15715.82, + "end": 15717.26, + "probability": 0.9895 + }, + { + "start": 15717.66, + "end": 15720.46, + "probability": 0.9361 + }, + { + "start": 15721.06, + "end": 15722.34, + "probability": 0.5445 + }, + { + "start": 15722.4, + "end": 15724.04, + "probability": 0.9794 + }, + { + "start": 15724.5, + "end": 15725.72, + "probability": 0.4773 + }, + { + "start": 15725.84, + "end": 15726.64, + "probability": 0.501 + }, + { + "start": 15726.64, + "end": 15726.64, + "probability": 0.0263 + }, + { + "start": 15726.64, + "end": 15726.64, + "probability": 0.0591 + }, + { + "start": 15726.64, + "end": 15726.92, + "probability": 0.1514 + }, + { + "start": 15727.42, + "end": 15727.42, + "probability": 0.3101 + }, + { + "start": 15727.6, + "end": 15728.12, + "probability": 0.8297 + }, + { + "start": 15728.12, + "end": 15730.16, + "probability": 0.7474 + }, + { + "start": 15730.2, + "end": 15730.52, + "probability": 0.0292 + }, + { + "start": 15730.52, + "end": 15731.08, + "probability": 0.6494 + }, + { + "start": 15731.1, + "end": 15733.5, + "probability": 0.7479 + }, + { + "start": 15733.5, + "end": 15733.58, + "probability": 0.6348 + }, + { + "start": 15733.58, + "end": 15734.94, + "probability": 0.5756 + }, + { + "start": 15736.03, + "end": 15736.84, + "probability": 0.429 + }, + { + "start": 15736.84, + "end": 15736.84, + "probability": 0.3284 + }, + { + "start": 15736.88, + "end": 15738.94, + "probability": 0.6686 + }, + { + "start": 15738.98, + "end": 15740.84, + "probability": 0.9377 + }, + { + "start": 15741.98, + "end": 15744.44, + "probability": 0.7843 + }, + { + "start": 15744.9, + "end": 15747.78, + "probability": 0.8805 + }, + { + "start": 15748.4, + "end": 15751.36, + "probability": 0.9953 + }, + { + "start": 15752.22, + "end": 15754.04, + "probability": 0.9537 + }, + { + "start": 15754.88, + "end": 15756.38, + "probability": 0.9925 + }, + { + "start": 15756.84, + "end": 15761.76, + "probability": 0.9973 + }, + { + "start": 15762.2, + "end": 15763.92, + "probability": 0.9937 + }, + { + "start": 15764.88, + "end": 15767.88, + "probability": 0.9149 + }, + { + "start": 15768.36, + "end": 15771.94, + "probability": 0.933 + }, + { + "start": 15772.24, + "end": 15774.38, + "probability": 0.7047 + }, + { + "start": 15775.32, + "end": 15778.8, + "probability": 0.9598 + }, + { + "start": 15779.34, + "end": 15783.14, + "probability": 0.9589 + }, + { + "start": 15783.9, + "end": 15786.44, + "probability": 0.9988 + }, + { + "start": 15787.36, + "end": 15792.3, + "probability": 0.9976 + }, + { + "start": 15792.52, + "end": 15795.14, + "probability": 0.6528 + }, + { + "start": 15795.76, + "end": 15796.6, + "probability": 0.7081 + }, + { + "start": 15797.18, + "end": 15799.46, + "probability": 0.7577 + }, + { + "start": 15800.28, + "end": 15800.79, + "probability": 0.8005 + }, + { + "start": 15801.06, + "end": 15802.88, + "probability": 0.9587 + }, + { + "start": 15804.02, + "end": 15806.76, + "probability": 0.9382 + }, + { + "start": 15807.64, + "end": 15811.44, + "probability": 0.9924 + }, + { + "start": 15811.44, + "end": 15815.84, + "probability": 0.9873 + }, + { + "start": 15816.36, + "end": 15820.12, + "probability": 0.9364 + }, + { + "start": 15821.78, + "end": 15824.7, + "probability": 0.9547 + }, + { + "start": 15824.82, + "end": 15825.8, + "probability": 0.9808 + }, + { + "start": 15826.18, + "end": 15827.86, + "probability": 0.9734 + }, + { + "start": 15828.3, + "end": 15830.0, + "probability": 0.8568 + }, + { + "start": 15830.54, + "end": 15830.88, + "probability": 0.8289 + }, + { + "start": 15831.0, + "end": 15831.44, + "probability": 0.4733 + }, + { + "start": 15831.52, + "end": 15834.4, + "probability": 0.9919 + }, + { + "start": 15835.12, + "end": 15836.2, + "probability": 0.9535 + }, + { + "start": 15836.26, + "end": 15840.2, + "probability": 0.7388 + }, + { + "start": 15840.6, + "end": 15841.82, + "probability": 0.6728 + }, + { + "start": 15841.86, + "end": 15844.0, + "probability": 0.828 + }, + { + "start": 15844.38, + "end": 15845.4, + "probability": 0.7741 + }, + { + "start": 15845.5, + "end": 15846.84, + "probability": 0.5624 + }, + { + "start": 15847.26, + "end": 15850.86, + "probability": 0.9888 + }, + { + "start": 15851.18, + "end": 15852.28, + "probability": 0.9445 + }, + { + "start": 15852.4, + "end": 15853.2, + "probability": 0.9732 + }, + { + "start": 15853.4, + "end": 15854.94, + "probability": 0.9336 + }, + { + "start": 15855.24, + "end": 15856.06, + "probability": 0.9607 + }, + { + "start": 15856.12, + "end": 15857.2, + "probability": 0.9509 + }, + { + "start": 15857.44, + "end": 15860.1, + "probability": 0.9664 + }, + { + "start": 15860.4, + "end": 15861.52, + "probability": 0.9368 + }, + { + "start": 15861.84, + "end": 15862.52, + "probability": 0.6371 + }, + { + "start": 15862.82, + "end": 15864.84, + "probability": 0.6216 + }, + { + "start": 15864.98, + "end": 15865.14, + "probability": 0.0034 + }, + { + "start": 15865.14, + "end": 15865.9, + "probability": 0.3017 + }, + { + "start": 15866.32, + "end": 15870.8, + "probability": 0.9186 + }, + { + "start": 15871.06, + "end": 15874.06, + "probability": 0.7322 + }, + { + "start": 15874.58, + "end": 15876.21, + "probability": 0.8438 + }, + { + "start": 15877.56, + "end": 15878.5, + "probability": 0.6683 + }, + { + "start": 15878.54, + "end": 15881.42, + "probability": 0.8068 + }, + { + "start": 15881.44, + "end": 15884.48, + "probability": 0.9494 + }, + { + "start": 15884.48, + "end": 15885.96, + "probability": 0.1643 + }, + { + "start": 15886.7, + "end": 15890.5, + "probability": 0.5483 + }, + { + "start": 15890.5, + "end": 15891.48, + "probability": 0.5969 + }, + { + "start": 15891.48, + "end": 15894.72, + "probability": 0.9539 + }, + { + "start": 15896.34, + "end": 15898.78, + "probability": 0.2945 + }, + { + "start": 15899.6, + "end": 15901.64, + "probability": 0.7868 + }, + { + "start": 15901.84, + "end": 15903.02, + "probability": 0.8456 + }, + { + "start": 15903.78, + "end": 15906.16, + "probability": 0.428 + }, + { + "start": 15906.74, + "end": 15911.56, + "probability": 0.9829 + }, + { + "start": 15912.32, + "end": 15914.24, + "probability": 0.815 + }, + { + "start": 15914.32, + "end": 15915.1, + "probability": 0.8417 + }, + { + "start": 15915.56, + "end": 15916.06, + "probability": 0.506 + }, + { + "start": 15916.18, + "end": 15917.5, + "probability": 0.9302 + }, + { + "start": 15918.14, + "end": 15919.34, + "probability": 0.8823 + }, + { + "start": 15924.16, + "end": 15926.88, + "probability": 0.5725 + }, + { + "start": 15929.96, + "end": 15932.04, + "probability": 0.8649 + }, + { + "start": 15932.72, + "end": 15935.12, + "probability": 0.9102 + }, + { + "start": 15935.9, + "end": 15939.58, + "probability": 0.9916 + }, + { + "start": 15939.58, + "end": 15944.26, + "probability": 0.99 + }, + { + "start": 15944.78, + "end": 15949.34, + "probability": 0.9067 + }, + { + "start": 15949.9, + "end": 15953.38, + "probability": 0.8034 + }, + { + "start": 15953.74, + "end": 15956.28, + "probability": 0.9688 + }, + { + "start": 15956.46, + "end": 15958.54, + "probability": 0.8093 + }, + { + "start": 15959.42, + "end": 15964.3, + "probability": 0.9953 + }, + { + "start": 15964.3, + "end": 15969.28, + "probability": 0.9935 + }, + { + "start": 15969.4, + "end": 15972.08, + "probability": 0.9953 + }, + { + "start": 15972.28, + "end": 15974.44, + "probability": 0.5522 + }, + { + "start": 15974.44, + "end": 15975.14, + "probability": 0.5059 + }, + { + "start": 15975.32, + "end": 15978.18, + "probability": 0.9028 + }, + { + "start": 15978.32, + "end": 15979.0, + "probability": 0.6447 + }, + { + "start": 15979.4, + "end": 15980.56, + "probability": 0.696 + }, + { + "start": 15981.3, + "end": 15984.72, + "probability": 0.949 + }, + { + "start": 15984.82, + "end": 15987.86, + "probability": 0.9542 + }, + { + "start": 15988.22, + "end": 15991.32, + "probability": 0.9979 + }, + { + "start": 15991.32, + "end": 15995.96, + "probability": 0.9919 + }, + { + "start": 15997.3, + "end": 16000.44, + "probability": 0.7719 + }, + { + "start": 16000.78, + "end": 16002.66, + "probability": 0.9886 + }, + { + "start": 16003.14, + "end": 16006.9, + "probability": 0.9669 + }, + { + "start": 16007.54, + "end": 16010.58, + "probability": 0.9777 + }, + { + "start": 16011.32, + "end": 16016.9, + "probability": 0.9788 + }, + { + "start": 16018.82, + "end": 16021.48, + "probability": 0.8998 + }, + { + "start": 16021.56, + "end": 16023.28, + "probability": 0.9941 + }, + { + "start": 16023.78, + "end": 16025.59, + "probability": 0.9551 + }, + { + "start": 16026.08, + "end": 16029.8, + "probability": 0.9934 + }, + { + "start": 16029.94, + "end": 16033.66, + "probability": 0.9956 + }, + { + "start": 16034.6, + "end": 16041.52, + "probability": 0.9974 + }, + { + "start": 16041.58, + "end": 16042.56, + "probability": 0.9451 + }, + { + "start": 16042.64, + "end": 16045.24, + "probability": 0.9879 + }, + { + "start": 16045.66, + "end": 16046.72, + "probability": 0.9829 + }, + { + "start": 16047.16, + "end": 16047.94, + "probability": 0.9845 + }, + { + "start": 16048.74, + "end": 16049.86, + "probability": 0.765 + }, + { + "start": 16049.92, + "end": 16050.76, + "probability": 0.8689 + }, + { + "start": 16051.66, + "end": 16052.4, + "probability": 0.8197 + }, + { + "start": 16052.92, + "end": 16058.3, + "probability": 0.9951 + }, + { + "start": 16059.16, + "end": 16061.96, + "probability": 0.9348 + }, + { + "start": 16061.96, + "end": 16064.54, + "probability": 0.9978 + }, + { + "start": 16065.14, + "end": 16067.66, + "probability": 0.9662 + }, + { + "start": 16068.86, + "end": 16069.42, + "probability": 0.438 + }, + { + "start": 16070.78, + "end": 16075.42, + "probability": 0.9976 + }, + { + "start": 16075.42, + "end": 16081.0, + "probability": 0.9777 + }, + { + "start": 16081.98, + "end": 16083.48, + "probability": 0.9688 + }, + { + "start": 16084.18, + "end": 16085.68, + "probability": 0.9199 + }, + { + "start": 16087.4, + "end": 16089.64, + "probability": 0.9897 + }, + { + "start": 16090.56, + "end": 16094.86, + "probability": 0.9843 + }, + { + "start": 16095.14, + "end": 16096.7, + "probability": 0.9941 + }, + { + "start": 16097.08, + "end": 16097.88, + "probability": 0.9566 + }, + { + "start": 16098.04, + "end": 16099.38, + "probability": 0.673 + }, + { + "start": 16099.82, + "end": 16105.12, + "probability": 0.987 + }, + { + "start": 16105.26, + "end": 16106.22, + "probability": 0.9279 + }, + { + "start": 16106.36, + "end": 16106.78, + "probability": 0.9551 + }, + { + "start": 16106.9, + "end": 16107.28, + "probability": 0.9695 + }, + { + "start": 16107.38, + "end": 16109.48, + "probability": 0.7203 + }, + { + "start": 16109.52, + "end": 16113.2, + "probability": 0.9805 + }, + { + "start": 16113.26, + "end": 16119.36, + "probability": 0.9637 + }, + { + "start": 16120.66, + "end": 16122.84, + "probability": 0.6014 + }, + { + "start": 16122.84, + "end": 16124.4, + "probability": 0.769 + }, + { + "start": 16124.5, + "end": 16124.88, + "probability": 0.4072 + }, + { + "start": 16125.26, + "end": 16127.98, + "probability": 0.8066 + }, + { + "start": 16128.14, + "end": 16128.62, + "probability": 0.8076 + }, + { + "start": 16128.78, + "end": 16129.68, + "probability": 0.7646 + }, + { + "start": 16129.82, + "end": 16130.6, + "probability": 0.9084 + }, + { + "start": 16130.7, + "end": 16131.52, + "probability": 0.8745 + }, + { + "start": 16131.8, + "end": 16133.02, + "probability": 0.9734 + }, + { + "start": 16133.24, + "end": 16133.8, + "probability": 0.9695 + }, + { + "start": 16133.88, + "end": 16134.96, + "probability": 0.859 + }, + { + "start": 16135.46, + "end": 16136.92, + "probability": 0.9962 + }, + { + "start": 16138.6, + "end": 16140.36, + "probability": 0.9613 + }, + { + "start": 16140.46, + "end": 16141.32, + "probability": 0.9047 + }, + { + "start": 16141.4, + "end": 16142.91, + "probability": 0.9966 + }, + { + "start": 16144.96, + "end": 16146.74, + "probability": 0.8916 + }, + { + "start": 16147.44, + "end": 16150.08, + "probability": 0.9694 + }, + { + "start": 16150.14, + "end": 16152.64, + "probability": 0.9365 + }, + { + "start": 16152.72, + "end": 16153.72, + "probability": 0.8899 + }, + { + "start": 16154.24, + "end": 16158.74, + "probability": 0.89 + }, + { + "start": 16159.0, + "end": 16162.86, + "probability": 0.9533 + }, + { + "start": 16162.86, + "end": 16167.9, + "probability": 0.9731 + }, + { + "start": 16167.9, + "end": 16172.12, + "probability": 0.9977 + }, + { + "start": 16172.46, + "end": 16175.9, + "probability": 0.9952 + }, + { + "start": 16176.62, + "end": 16180.42, + "probability": 0.9967 + }, + { + "start": 16180.68, + "end": 16183.7, + "probability": 0.6677 + }, + { + "start": 16185.92, + "end": 16186.48, + "probability": 0.31 + }, + { + "start": 16186.81, + "end": 16189.52, + "probability": 0.5689 + }, + { + "start": 16189.64, + "end": 16190.6, + "probability": 0.8015 + }, + { + "start": 16190.74, + "end": 16194.16, + "probability": 0.9858 + }, + { + "start": 16194.22, + "end": 16198.18, + "probability": 0.9862 + }, + { + "start": 16198.62, + "end": 16199.82, + "probability": 0.8655 + }, + { + "start": 16199.98, + "end": 16203.48, + "probability": 0.8799 + }, + { + "start": 16204.28, + "end": 16209.26, + "probability": 0.9191 + }, + { + "start": 16209.36, + "end": 16210.8, + "probability": 0.9791 + }, + { + "start": 16211.28, + "end": 16213.74, + "probability": 0.9847 + }, + { + "start": 16213.88, + "end": 16217.52, + "probability": 0.9456 + }, + { + "start": 16217.64, + "end": 16220.31, + "probability": 0.9619 + }, + { + "start": 16220.44, + "end": 16223.3, + "probability": 0.9932 + }, + { + "start": 16223.76, + "end": 16225.96, + "probability": 0.6905 + }, + { + "start": 16226.34, + "end": 16228.52, + "probability": 0.9379 + }, + { + "start": 16228.52, + "end": 16231.98, + "probability": 0.9924 + }, + { + "start": 16232.58, + "end": 16234.64, + "probability": 0.9814 + }, + { + "start": 16234.7, + "end": 16235.84, + "probability": 0.7381 + }, + { + "start": 16236.06, + "end": 16238.26, + "probability": 0.8132 + }, + { + "start": 16238.66, + "end": 16240.86, + "probability": 0.991 + }, + { + "start": 16241.66, + "end": 16245.33, + "probability": 0.8109 + }, + { + "start": 16246.04, + "end": 16251.28, + "probability": 0.979 + }, + { + "start": 16251.44, + "end": 16253.16, + "probability": 0.7975 + }, + { + "start": 16253.5, + "end": 16254.66, + "probability": 0.9467 + }, + { + "start": 16255.64, + "end": 16257.52, + "probability": 0.8085 + }, + { + "start": 16258.16, + "end": 16260.94, + "probability": 0.9917 + }, + { + "start": 16261.28, + "end": 16263.32, + "probability": 0.9542 + }, + { + "start": 16263.46, + "end": 16264.02, + "probability": 0.898 + }, + { + "start": 16264.48, + "end": 16267.48, + "probability": 0.9917 + }, + { + "start": 16267.7, + "end": 16270.4, + "probability": 0.8355 + }, + { + "start": 16270.5, + "end": 16271.42, + "probability": 0.5746 + }, + { + "start": 16272.14, + "end": 16274.64, + "probability": 0.8836 + }, + { + "start": 16275.7, + "end": 16280.92, + "probability": 0.9514 + }, + { + "start": 16281.02, + "end": 16284.22, + "probability": 0.9832 + }, + { + "start": 16284.8, + "end": 16288.62, + "probability": 0.9419 + }, + { + "start": 16288.9, + "end": 16292.2, + "probability": 0.8417 + }, + { + "start": 16292.34, + "end": 16297.64, + "probability": 0.9622 + }, + { + "start": 16298.64, + "end": 16299.78, + "probability": 0.7999 + }, + { + "start": 16299.82, + "end": 16301.22, + "probability": 0.925 + }, + { + "start": 16301.3, + "end": 16304.96, + "probability": 0.9176 + }, + { + "start": 16305.42, + "end": 16309.24, + "probability": 0.9965 + }, + { + "start": 16309.24, + "end": 16312.44, + "probability": 0.9916 + }, + { + "start": 16312.46, + "end": 16313.36, + "probability": 0.563 + }, + { + "start": 16313.52, + "end": 16317.38, + "probability": 0.9249 + }, + { + "start": 16318.28, + "end": 16319.7, + "probability": 0.1298 + }, + { + "start": 16319.7, + "end": 16320.78, + "probability": 0.7341 + }, + { + "start": 16321.14, + "end": 16321.98, + "probability": 0.6766 + }, + { + "start": 16322.06, + "end": 16322.6, + "probability": 0.814 + }, + { + "start": 16323.34, + "end": 16324.18, + "probability": 0.9619 + }, + { + "start": 16324.18, + "end": 16325.52, + "probability": 0.881 + }, + { + "start": 16325.56, + "end": 16329.46, + "probability": 0.7562 + }, + { + "start": 16330.1, + "end": 16334.9, + "probability": 0.9805 + }, + { + "start": 16335.56, + "end": 16338.58, + "probability": 0.9336 + }, + { + "start": 16338.6, + "end": 16341.06, + "probability": 0.9189 + }, + { + "start": 16341.7, + "end": 16344.56, + "probability": 0.8341 + }, + { + "start": 16344.83, + "end": 16345.42, + "probability": 0.9781 + }, + { + "start": 16346.74, + "end": 16349.02, + "probability": 0.994 + }, + { + "start": 16349.06, + "end": 16350.86, + "probability": 0.9785 + }, + { + "start": 16350.9, + "end": 16352.07, + "probability": 0.884 + }, + { + "start": 16353.08, + "end": 16356.4, + "probability": 0.9894 + }, + { + "start": 16357.6, + "end": 16359.9, + "probability": 0.9536 + }, + { + "start": 16360.06, + "end": 16360.92, + "probability": 0.9008 + }, + { + "start": 16360.94, + "end": 16361.68, + "probability": 0.9637 + }, + { + "start": 16361.74, + "end": 16362.82, + "probability": 0.9487 + }, + { + "start": 16363.84, + "end": 16369.54, + "probability": 0.9584 + }, + { + "start": 16369.54, + "end": 16375.14, + "probability": 0.9718 + }, + { + "start": 16376.26, + "end": 16379.08, + "probability": 0.9875 + }, + { + "start": 16379.56, + "end": 16380.36, + "probability": 0.4982 + }, + { + "start": 16380.6, + "end": 16383.34, + "probability": 0.9916 + }, + { + "start": 16383.34, + "end": 16387.44, + "probability": 0.9878 + }, + { + "start": 16387.66, + "end": 16390.48, + "probability": 0.9443 + }, + { + "start": 16390.88, + "end": 16395.08, + "probability": 0.9292 + }, + { + "start": 16395.28, + "end": 16396.66, + "probability": 0.8221 + }, + { + "start": 16397.28, + "end": 16399.66, + "probability": 0.978 + }, + { + "start": 16401.29, + "end": 16408.3, + "probability": 0.9743 + }, + { + "start": 16408.66, + "end": 16411.29, + "probability": 0.9922 + }, + { + "start": 16412.66, + "end": 16413.68, + "probability": 0.9632 + }, + { + "start": 16414.14, + "end": 16414.86, + "probability": 0.9102 + }, + { + "start": 16415.64, + "end": 16421.6, + "probability": 0.8338 + }, + { + "start": 16422.58, + "end": 16428.71, + "probability": 0.9922 + }, + { + "start": 16429.22, + "end": 16432.02, + "probability": 0.8646 + }, + { + "start": 16433.24, + "end": 16436.6, + "probability": 0.9985 + }, + { + "start": 16436.6, + "end": 16440.2, + "probability": 0.9848 + }, + { + "start": 16440.64, + "end": 16442.34, + "probability": 0.8059 + }, + { + "start": 16443.0, + "end": 16444.94, + "probability": 0.994 + }, + { + "start": 16445.6, + "end": 16450.1, + "probability": 0.9214 + }, + { + "start": 16450.48, + "end": 16451.4, + "probability": 0.9437 + }, + { + "start": 16451.44, + "end": 16451.88, + "probability": 0.9871 + }, + { + "start": 16451.96, + "end": 16453.16, + "probability": 0.8708 + }, + { + "start": 16453.2, + "end": 16454.66, + "probability": 0.9899 + }, + { + "start": 16455.18, + "end": 16456.58, + "probability": 0.9189 + }, + { + "start": 16456.76, + "end": 16460.34, + "probability": 0.9881 + }, + { + "start": 16460.76, + "end": 16463.76, + "probability": 0.971 + }, + { + "start": 16464.08, + "end": 16467.12, + "probability": 0.9648 + }, + { + "start": 16467.5, + "end": 16469.64, + "probability": 0.9878 + }, + { + "start": 16470.16, + "end": 16471.32, + "probability": 0.9686 + }, + { + "start": 16471.78, + "end": 16473.65, + "probability": 0.9961 + }, + { + "start": 16473.84, + "end": 16477.44, + "probability": 0.9967 + }, + { + "start": 16477.96, + "end": 16479.08, + "probability": 0.9443 + }, + { + "start": 16480.04, + "end": 16485.54, + "probability": 0.9997 + }, + { + "start": 16486.2, + "end": 16490.48, + "probability": 0.9917 + }, + { + "start": 16490.78, + "end": 16491.44, + "probability": 0.6618 + }, + { + "start": 16491.68, + "end": 16492.36, + "probability": 0.7537 + }, + { + "start": 16493.5, + "end": 16494.92, + "probability": 0.9695 + }, + { + "start": 16494.98, + "end": 16500.0, + "probability": 0.8679 + }, + { + "start": 16500.5, + "end": 16505.84, + "probability": 0.9458 + }, + { + "start": 16506.3, + "end": 16508.26, + "probability": 0.9726 + }, + { + "start": 16509.02, + "end": 16511.8, + "probability": 0.9938 + }, + { + "start": 16512.24, + "end": 16515.52, + "probability": 0.9937 + }, + { + "start": 16515.8, + "end": 16516.6, + "probability": 0.9884 + }, + { + "start": 16516.96, + "end": 16519.34, + "probability": 0.9937 + }, + { + "start": 16519.72, + "end": 16523.38, + "probability": 0.9974 + }, + { + "start": 16523.84, + "end": 16527.38, + "probability": 0.9827 + }, + { + "start": 16527.38, + "end": 16531.3, + "probability": 0.9913 + }, + { + "start": 16531.68, + "end": 16533.12, + "probability": 0.9788 + }, + { + "start": 16533.44, + "end": 16534.58, + "probability": 0.994 + }, + { + "start": 16535.1, + "end": 16535.7, + "probability": 0.9922 + }, + { + "start": 16536.5, + "end": 16539.96, + "probability": 0.9976 + }, + { + "start": 16540.36, + "end": 16540.56, + "probability": 0.8134 + }, + { + "start": 16540.96, + "end": 16541.36, + "probability": 0.7008 + }, + { + "start": 16542.7, + "end": 16544.84, + "probability": 0.5414 + }, + { + "start": 16544.88, + "end": 16546.58, + "probability": 0.8275 + }, + { + "start": 16548.62, + "end": 16548.76, + "probability": 0.6963 + }, + { + "start": 16548.82, + "end": 16553.96, + "probability": 0.9224 + }, + { + "start": 16554.14, + "end": 16555.12, + "probability": 0.9847 + }, + { + "start": 16555.92, + "end": 16557.08, + "probability": 0.7749 + }, + { + "start": 16557.86, + "end": 16560.42, + "probability": 0.742 + }, + { + "start": 16560.46, + "end": 16560.9, + "probability": 0.3517 + }, + { + "start": 16561.0, + "end": 16563.06, + "probability": 0.8969 + }, + { + "start": 16563.5, + "end": 16565.26, + "probability": 0.6663 + }, + { + "start": 16566.14, + "end": 16570.02, + "probability": 0.9843 + }, + { + "start": 16571.04, + "end": 16572.32, + "probability": 0.753 + }, + { + "start": 16572.46, + "end": 16573.4, + "probability": 0.8907 + }, + { + "start": 16573.46, + "end": 16574.94, + "probability": 0.9883 + }, + { + "start": 16577.07, + "end": 16579.28, + "probability": 0.7584 + }, + { + "start": 16579.34, + "end": 16581.96, + "probability": 0.9982 + }, + { + "start": 16582.08, + "end": 16583.56, + "probability": 0.9619 + }, + { + "start": 16584.88, + "end": 16586.66, + "probability": 0.9974 + }, + { + "start": 16587.54, + "end": 16589.7, + "probability": 0.9953 + }, + { + "start": 16590.48, + "end": 16593.72, + "probability": 0.938 + }, + { + "start": 16593.72, + "end": 16595.94, + "probability": 0.9985 + }, + { + "start": 16596.56, + "end": 16597.64, + "probability": 0.7438 + }, + { + "start": 16598.34, + "end": 16599.34, + "probability": 0.9819 + }, + { + "start": 16599.4, + "end": 16601.44, + "probability": 0.8243 + }, + { + "start": 16601.46, + "end": 16602.2, + "probability": 0.8088 + }, + { + "start": 16603.1, + "end": 16604.74, + "probability": 0.9844 + }, + { + "start": 16604.82, + "end": 16606.6, + "probability": 0.949 + }, + { + "start": 16607.22, + "end": 16610.2, + "probability": 0.9814 + }, + { + "start": 16611.62, + "end": 16613.08, + "probability": 0.5836 + }, + { + "start": 16613.2, + "end": 16614.68, + "probability": 0.5467 + }, + { + "start": 16615.02, + "end": 16618.46, + "probability": 0.9982 + }, + { + "start": 16619.56, + "end": 16620.9, + "probability": 0.96 + }, + { + "start": 16621.84, + "end": 16623.46, + "probability": 0.755 + }, + { + "start": 16624.28, + "end": 16626.13, + "probability": 0.9912 + }, + { + "start": 16627.18, + "end": 16631.4, + "probability": 0.9963 + }, + { + "start": 16631.48, + "end": 16633.18, + "probability": 0.9959 + }, + { + "start": 16633.3, + "end": 16633.9, + "probability": 0.7867 + }, + { + "start": 16634.36, + "end": 16635.46, + "probability": 0.929 + }, + { + "start": 16635.9, + "end": 16637.42, + "probability": 0.9951 + }, + { + "start": 16637.88, + "end": 16641.58, + "probability": 0.9745 + }, + { + "start": 16642.24, + "end": 16643.4, + "probability": 0.7975 + }, + { + "start": 16644.92, + "end": 16647.36, + "probability": 0.5555 + }, + { + "start": 16647.56, + "end": 16650.84, + "probability": 0.9457 + }, + { + "start": 16651.38, + "end": 16653.78, + "probability": 0.9878 + }, + { + "start": 16654.58, + "end": 16657.24, + "probability": 0.9364 + }, + { + "start": 16658.48, + "end": 16660.08, + "probability": 0.7719 + }, + { + "start": 16660.64, + "end": 16663.82, + "probability": 0.9175 + }, + { + "start": 16664.0, + "end": 16666.82, + "probability": 0.9841 + }, + { + "start": 16667.88, + "end": 16668.99, + "probability": 0.7417 + }, + { + "start": 16669.24, + "end": 16670.34, + "probability": 0.7679 + }, + { + "start": 16670.4, + "end": 16671.32, + "probability": 0.6167 + }, + { + "start": 16672.08, + "end": 16675.68, + "probability": 0.9769 + }, + { + "start": 16675.8, + "end": 16676.81, + "probability": 0.7823 + }, + { + "start": 16677.76, + "end": 16680.16, + "probability": 0.9845 + }, + { + "start": 16680.62, + "end": 16680.92, + "probability": 0.6672 + }, + { + "start": 16681.72, + "end": 16682.44, + "probability": 0.9382 + }, + { + "start": 16683.42, + "end": 16686.86, + "probability": 0.9848 + }, + { + "start": 16687.36, + "end": 16689.08, + "probability": 0.8889 + }, + { + "start": 16689.78, + "end": 16692.36, + "probability": 0.9775 + }, + { + "start": 16694.14, + "end": 16695.86, + "probability": 0.9467 + }, + { + "start": 16696.02, + "end": 16697.92, + "probability": 0.9946 + }, + { + "start": 16698.12, + "end": 16699.06, + "probability": 0.7353 + }, + { + "start": 16700.36, + "end": 16702.64, + "probability": 0.9955 + }, + { + "start": 16702.8, + "end": 16704.98, + "probability": 0.901 + }, + { + "start": 16705.12, + "end": 16708.26, + "probability": 0.7454 + }, + { + "start": 16708.86, + "end": 16709.52, + "probability": 0.4592 + }, + { + "start": 16709.74, + "end": 16711.68, + "probability": 0.9493 + }, + { + "start": 16712.1, + "end": 16713.23, + "probability": 0.5049 + }, + { + "start": 16714.74, + "end": 16717.21, + "probability": 0.9048 + }, + { + "start": 16717.94, + "end": 16718.7, + "probability": 0.6994 + }, + { + "start": 16718.74, + "end": 16719.22, + "probability": 0.8704 + }, + { + "start": 16719.6, + "end": 16720.22, + "probability": 0.8045 + }, + { + "start": 16720.3, + "end": 16720.8, + "probability": 0.9464 + }, + { + "start": 16720.92, + "end": 16721.54, + "probability": 0.7837 + }, + { + "start": 16722.44, + "end": 16724.12, + "probability": 0.9609 + }, + { + "start": 16724.28, + "end": 16729.12, + "probability": 0.9551 + }, + { + "start": 16730.42, + "end": 16732.38, + "probability": 0.9766 + }, + { + "start": 16732.42, + "end": 16733.68, + "probability": 0.9304 + }, + { + "start": 16733.9, + "end": 16738.6, + "probability": 0.9932 + }, + { + "start": 16740.16, + "end": 16742.9, + "probability": 0.9175 + }, + { + "start": 16742.98, + "end": 16744.02, + "probability": 0.9976 + }, + { + "start": 16744.06, + "end": 16745.12, + "probability": 0.8377 + }, + { + "start": 16745.22, + "end": 16745.48, + "probability": 0.6486 + }, + { + "start": 16745.96, + "end": 16749.04, + "probability": 0.9535 + }, + { + "start": 16750.36, + "end": 16754.92, + "probability": 0.9064 + }, + { + "start": 16755.88, + "end": 16757.6, + "probability": 0.833 + }, + { + "start": 16757.64, + "end": 16758.1, + "probability": 0.6805 + }, + { + "start": 16758.24, + "end": 16758.42, + "probability": 0.018 + }, + { + "start": 16758.46, + "end": 16762.66, + "probability": 0.9111 + }, + { + "start": 16762.74, + "end": 16766.66, + "probability": 0.9937 + }, + { + "start": 16767.26, + "end": 16771.36, + "probability": 0.9978 + }, + { + "start": 16771.86, + "end": 16776.1, + "probability": 0.9861 + }, + { + "start": 16776.88, + "end": 16779.63, + "probability": 0.9834 + }, + { + "start": 16780.24, + "end": 16781.02, + "probability": 0.9872 + }, + { + "start": 16781.32, + "end": 16782.67, + "probability": 0.8862 + }, + { + "start": 16783.46, + "end": 16786.88, + "probability": 0.9798 + }, + { + "start": 16787.48, + "end": 16788.8, + "probability": 0.9329 + }, + { + "start": 16790.22, + "end": 16791.96, + "probability": 0.671 + }, + { + "start": 16792.82, + "end": 16795.44, + "probability": 0.8094 + }, + { + "start": 16797.8, + "end": 16799.24, + "probability": 0.0091 + }, + { + "start": 16801.24, + "end": 16803.92, + "probability": 0.7137 + }, + { + "start": 16804.7, + "end": 16804.96, + "probability": 0.9084 + }, + { + "start": 16805.5, + "end": 16806.92, + "probability": 0.547 + }, + { + "start": 16808.16, + "end": 16808.4, + "probability": 0.9722 + }, + { + "start": 16809.08, + "end": 16811.28, + "probability": 0.708 + }, + { + "start": 16812.18, + "end": 16814.06, + "probability": 0.8913 + }, + { + "start": 16814.86, + "end": 16815.28, + "probability": 0.9751 + }, + { + "start": 16816.36, + "end": 16817.24, + "probability": 0.938 + }, + { + "start": 16818.6, + "end": 16819.32, + "probability": 0.9913 + }, + { + "start": 16819.94, + "end": 16821.02, + "probability": 0.8126 + }, + { + "start": 16822.08, + "end": 16824.12, + "probability": 0.7678 + }, + { + "start": 16825.32, + "end": 16826.9, + "probability": 0.893 + }, + { + "start": 16827.98, + "end": 16829.58, + "probability": 0.8616 + }, + { + "start": 16830.54, + "end": 16833.28, + "probability": 0.9731 + }, + { + "start": 16835.24, + "end": 16835.72, + "probability": 0.9873 + }, + { + "start": 16836.28, + "end": 16837.28, + "probability": 0.9401 + }, + { + "start": 16838.1, + "end": 16838.92, + "probability": 0.9899 + }, + { + "start": 16839.6, + "end": 16840.46, + "probability": 0.5342 + }, + { + "start": 16842.12, + "end": 16844.04, + "probability": 0.8604 + }, + { + "start": 16845.32, + "end": 16846.08, + "probability": 0.9309 + }, + { + "start": 16846.68, + "end": 16847.86, + "probability": 0.9663 + }, + { + "start": 16848.58, + "end": 16849.06, + "probability": 0.9704 + }, + { + "start": 16850.22, + "end": 16851.36, + "probability": 0.722 + }, + { + "start": 16852.66, + "end": 16853.48, + "probability": 0.9214 + }, + { + "start": 16854.1, + "end": 16855.04, + "probability": 0.6121 + }, + { + "start": 16856.56, + "end": 16858.42, + "probability": 0.943 + }, + { + "start": 16860.44, + "end": 16862.26, + "probability": 0.9116 + }, + { + "start": 16862.92, + "end": 16864.98, + "probability": 0.9868 + }, + { + "start": 16866.08, + "end": 16866.52, + "probability": 0.7458 + }, + { + "start": 16867.4, + "end": 16868.26, + "probability": 0.6937 + }, + { + "start": 16868.98, + "end": 16869.44, + "probability": 0.9373 + }, + { + "start": 16870.02, + "end": 16870.92, + "probability": 0.859 + }, + { + "start": 16872.16, + "end": 16872.88, + "probability": 0.9292 + }, + { + "start": 16873.6, + "end": 16874.7, + "probability": 0.9402 + }, + { + "start": 16875.44, + "end": 16875.76, + "probability": 0.7534 + }, + { + "start": 16877.38, + "end": 16878.7, + "probability": 0.5772 + }, + { + "start": 16879.48, + "end": 16881.54, + "probability": 0.9811 + }, + { + "start": 16882.26, + "end": 16883.92, + "probability": 0.9335 + }, + { + "start": 16885.04, + "end": 16886.56, + "probability": 0.9716 + }, + { + "start": 16887.96, + "end": 16888.9, + "probability": 0.6747 + }, + { + "start": 16889.66, + "end": 16890.72, + "probability": 0.6738 + }, + { + "start": 16891.52, + "end": 16891.94, + "probability": 0.9175 + }, + { + "start": 16892.86, + "end": 16893.8, + "probability": 0.5122 + }, + { + "start": 16894.34, + "end": 16896.14, + "probability": 0.914 + }, + { + "start": 16897.08, + "end": 16898.82, + "probability": 0.7953 + }, + { + "start": 16899.4, + "end": 16899.92, + "probability": 0.8948 + }, + { + "start": 16901.14, + "end": 16902.28, + "probability": 0.9752 + }, + { + "start": 16902.86, + "end": 16904.56, + "probability": 0.8751 + }, + { + "start": 16905.26, + "end": 16906.2, + "probability": 0.9657 + }, + { + "start": 16907.2, + "end": 16908.46, + "probability": 0.7586 + }, + { + "start": 16909.84, + "end": 16911.62, + "probability": 0.8716 + }, + { + "start": 16912.94, + "end": 16914.16, + "probability": 0.7225 + }, + { + "start": 16915.04, + "end": 16916.78, + "probability": 0.8098 + }, + { + "start": 16917.42, + "end": 16919.0, + "probability": 0.9763 + }, + { + "start": 16920.02, + "end": 16920.78, + "probability": 0.9771 + }, + { + "start": 16921.44, + "end": 16922.32, + "probability": 0.9395 + }, + { + "start": 16923.32, + "end": 16925.1, + "probability": 0.9474 + }, + { + "start": 16927.1, + "end": 16928.94, + "probability": 0.992 + }, + { + "start": 16930.04, + "end": 16932.32, + "probability": 0.9041 + }, + { + "start": 16934.0, + "end": 16935.32, + "probability": 0.8506 + }, + { + "start": 16936.76, + "end": 16937.52, + "probability": 0.8171 + }, + { + "start": 16938.22, + "end": 16939.38, + "probability": 0.9701 + }, + { + "start": 16940.64, + "end": 16941.42, + "probability": 0.9653 + }, + { + "start": 16942.14, + "end": 16943.22, + "probability": 0.8655 + }, + { + "start": 16944.02, + "end": 16946.3, + "probability": 0.926 + }, + { + "start": 16946.88, + "end": 16948.7, + "probability": 0.9255 + }, + { + "start": 16950.5, + "end": 16953.58, + "probability": 0.8149 + }, + { + "start": 16954.52, + "end": 16955.46, + "probability": 0.8928 + }, + { + "start": 16956.3, + "end": 16957.22, + "probability": 0.7768 + }, + { + "start": 16957.78, + "end": 16959.18, + "probability": 0.7333 + }, + { + "start": 16960.84, + "end": 16961.22, + "probability": 0.9606 + }, + { + "start": 16962.58, + "end": 16963.34, + "probability": 0.7432 + }, + { + "start": 16964.12, + "end": 16966.48, + "probability": 0.7791 + }, + { + "start": 16967.64, + "end": 16968.04, + "probability": 0.9446 + }, + { + "start": 16968.96, + "end": 16969.86, + "probability": 0.9473 + }, + { + "start": 16971.36, + "end": 16973.54, + "probability": 0.972 + }, + { + "start": 16974.64, + "end": 16976.34, + "probability": 0.9725 + }, + { + "start": 16977.62, + "end": 16980.94, + "probability": 0.9634 + }, + { + "start": 16982.14, + "end": 16983.18, + "probability": 0.262 + }, + { + "start": 16984.14, + "end": 16984.54, + "probability": 0.6114 + }, + { + "start": 16985.26, + "end": 16985.92, + "probability": 0.7441 + }, + { + "start": 16986.74, + "end": 16990.38, + "probability": 0.8233 + }, + { + "start": 16991.32, + "end": 16992.86, + "probability": 0.9836 + }, + { + "start": 16993.66, + "end": 16995.26, + "probability": 0.9657 + }, + { + "start": 16996.56, + "end": 16998.18, + "probability": 0.9756 + }, + { + "start": 16999.12, + "end": 17000.8, + "probability": 0.9762 + }, + { + "start": 17001.42, + "end": 17002.66, + "probability": 0.9839 + }, + { + "start": 17003.98, + "end": 17005.8, + "probability": 0.7983 + }, + { + "start": 17006.56, + "end": 17008.16, + "probability": 0.8834 + }, + { + "start": 17008.94, + "end": 17010.58, + "probability": 0.9337 + }, + { + "start": 17012.08, + "end": 17014.2, + "probability": 0.9495 + }, + { + "start": 17014.98, + "end": 17016.54, + "probability": 0.9696 + }, + { + "start": 17017.32, + "end": 17018.08, + "probability": 0.9828 + }, + { + "start": 17019.26, + "end": 17020.44, + "probability": 0.9546 + }, + { + "start": 17021.02, + "end": 17022.36, + "probability": 0.9661 + }, + { + "start": 17023.98, + "end": 17025.26, + "probability": 0.6753 + }, + { + "start": 17026.14, + "end": 17027.28, + "probability": 0.6922 + }, + { + "start": 17028.2, + "end": 17030.24, + "probability": 0.9278 + }, + { + "start": 17031.3, + "end": 17033.2, + "probability": 0.7729 + }, + { + "start": 17034.85, + "end": 17037.7, + "probability": 0.9271 + }, + { + "start": 17038.74, + "end": 17040.52, + "probability": 0.9656 + }, + { + "start": 17042.34, + "end": 17044.22, + "probability": 0.9622 + }, + { + "start": 17045.0, + "end": 17047.32, + "probability": 0.8753 + }, + { + "start": 17047.98, + "end": 17048.5, + "probability": 0.7001 + }, + { + "start": 17049.78, + "end": 17050.66, + "probability": 0.6068 + }, + { + "start": 17051.72, + "end": 17055.62, + "probability": 0.8924 + }, + { + "start": 17057.72, + "end": 17058.2, + "probability": 0.8395 + }, + { + "start": 17059.18, + "end": 17060.22, + "probability": 0.9687 + }, + { + "start": 17060.82, + "end": 17061.36, + "probability": 0.9906 + }, + { + "start": 17062.16, + "end": 17063.12, + "probability": 0.8798 + }, + { + "start": 17063.86, + "end": 17065.7, + "probability": 0.9418 + }, + { + "start": 17066.74, + "end": 17067.24, + "probability": 0.9757 + }, + { + "start": 17068.2, + "end": 17069.14, + "probability": 0.9126 + }, + { + "start": 17069.94, + "end": 17071.88, + "probability": 0.8823 + }, + { + "start": 17072.78, + "end": 17074.58, + "probability": 0.7577 + }, + { + "start": 17077.84, + "end": 17078.3, + "probability": 0.7879 + }, + { + "start": 17080.08, + "end": 17081.18, + "probability": 0.77 + }, + { + "start": 17082.04, + "end": 17083.56, + "probability": 0.8926 + }, + { + "start": 17084.18, + "end": 17086.2, + "probability": 0.8389 + }, + { + "start": 17086.78, + "end": 17087.22, + "probability": 0.8141 + }, + { + "start": 17087.98, + "end": 17089.18, + "probability": 0.7931 + }, + { + "start": 17090.62, + "end": 17091.26, + "probability": 0.9851 + }, + { + "start": 17091.82, + "end": 17092.86, + "probability": 0.7444 + }, + { + "start": 17094.26, + "end": 17094.72, + "probability": 0.6898 + }, + { + "start": 17096.76, + "end": 17097.44, + "probability": 0.6323 + }, + { + "start": 17099.63, + "end": 17103.12, + "probability": 0.8249 + }, + { + "start": 17104.32, + "end": 17108.86, + "probability": 0.9159 + }, + { + "start": 17110.26, + "end": 17110.84, + "probability": 0.9539 + }, + { + "start": 17112.48, + "end": 17113.44, + "probability": 0.9356 + }, + { + "start": 17114.82, + "end": 17117.42, + "probability": 0.9567 + }, + { + "start": 17118.36, + "end": 17118.82, + "probability": 0.979 + }, + { + "start": 17120.08, + "end": 17120.98, + "probability": 0.9476 + }, + { + "start": 17121.94, + "end": 17122.44, + "probability": 0.9933 + }, + { + "start": 17123.32, + "end": 17124.0, + "probability": 0.4503 + }, + { + "start": 17125.22, + "end": 17127.48, + "probability": 0.8918 + }, + { + "start": 17128.16, + "end": 17130.08, + "probability": 0.8342 + }, + { + "start": 17130.76, + "end": 17136.08, + "probability": 0.9111 + }, + { + "start": 17137.4, + "end": 17137.9, + "probability": 0.9927 + }, + { + "start": 17139.46, + "end": 17140.4, + "probability": 0.8741 + }, + { + "start": 17141.34, + "end": 17141.88, + "probability": 0.9941 + }, + { + "start": 17143.22, + "end": 17144.06, + "probability": 0.7805 + }, + { + "start": 17145.94, + "end": 17146.94, + "probability": 0.1848 + }, + { + "start": 17148.36, + "end": 17149.26, + "probability": 0.2639 + }, + { + "start": 17156.74, + "end": 17158.24, + "probability": 0.4495 + }, + { + "start": 17159.9, + "end": 17163.04, + "probability": 0.6544 + }, + { + "start": 17164.36, + "end": 17166.18, + "probability": 0.8243 + }, + { + "start": 17167.1, + "end": 17168.9, + "probability": 0.8807 + }, + { + "start": 17170.14, + "end": 17170.56, + "probability": 0.9834 + }, + { + "start": 17171.76, + "end": 17172.6, + "probability": 0.7988 + }, + { + "start": 17175.78, + "end": 17179.48, + "probability": 0.918 + }, + { + "start": 17181.24, + "end": 17182.42, + "probability": 0.7993 + }, + { + "start": 17182.94, + "end": 17183.76, + "probability": 0.7815 + }, + { + "start": 17184.58, + "end": 17188.6, + "probability": 0.9758 + }, + { + "start": 17190.5, + "end": 17192.54, + "probability": 0.9491 + }, + { + "start": 17194.29, + "end": 17196.64, + "probability": 0.9536 + }, + { + "start": 17197.58, + "end": 17199.84, + "probability": 0.9336 + }, + { + "start": 17200.52, + "end": 17201.5, + "probability": 0.8237 + }, + { + "start": 17202.57, + "end": 17202.98, + "probability": 0.1769 + }, + { + "start": 17208.78, + "end": 17210.38, + "probability": 0.4386 + }, + { + "start": 17210.66, + "end": 17213.32, + "probability": 0.4804 + }, + { + "start": 17214.42, + "end": 17215.24, + "probability": 0.472 + }, + { + "start": 17216.04, + "end": 17217.26, + "probability": 0.3507 + }, + { + "start": 17218.28, + "end": 17220.36, + "probability": 0.9012 + }, + { + "start": 17221.52, + "end": 17223.76, + "probability": 0.9743 + }, + { + "start": 17224.6, + "end": 17226.52, + "probability": 0.7613 + }, + { + "start": 17227.3, + "end": 17229.08, + "probability": 0.7542 + }, + { + "start": 17230.2, + "end": 17231.8, + "probability": 0.8114 + }, + { + "start": 17232.68, + "end": 17236.3, + "probability": 0.9443 + }, + { + "start": 17238.28, + "end": 17239.74, + "probability": 0.8675 + }, + { + "start": 17240.7, + "end": 17241.74, + "probability": 0.8187 + }, + { + "start": 17242.28, + "end": 17244.2, + "probability": 0.9874 + }, + { + "start": 17245.34, + "end": 17247.38, + "probability": 0.8359 + }, + { + "start": 17247.94, + "end": 17249.74, + "probability": 0.6661 + }, + { + "start": 17250.48, + "end": 17251.86, + "probability": 0.8921 + }, + { + "start": 17253.0, + "end": 17256.3, + "probability": 0.9583 + }, + { + "start": 17258.2, + "end": 17259.6, + "probability": 0.8524 + }, + { + "start": 17260.4, + "end": 17261.42, + "probability": 0.9496 + }, + { + "start": 17262.6, + "end": 17264.88, + "probability": 0.9881 + }, + { + "start": 17266.06, + "end": 17268.26, + "probability": 0.9604 + }, + { + "start": 17270.36, + "end": 17270.88, + "probability": 0.8887 + }, + { + "start": 17272.98, + "end": 17273.9, + "probability": 0.6605 + }, + { + "start": 17275.12, + "end": 17276.82, + "probability": 0.6061 + }, + { + "start": 17277.88, + "end": 17278.68, + "probability": 0.9665 + }, + { + "start": 17279.2, + "end": 17281.98, + "probability": 0.8546 + }, + { + "start": 17284.54, + "end": 17284.98, + "probability": 0.7327 + }, + { + "start": 17287.54, + "end": 17288.56, + "probability": 0.7549 + }, + { + "start": 17289.2, + "end": 17290.98, + "probability": 0.9586 + }, + { + "start": 17291.86, + "end": 17295.44, + "probability": 0.9603 + }, + { + "start": 17296.14, + "end": 17299.35, + "probability": 0.3379 + }, + { + "start": 17300.82, + "end": 17302.36, + "probability": 0.88 + }, + { + "start": 17303.0, + "end": 17304.56, + "probability": 0.9362 + }, + { + "start": 17305.68, + "end": 17308.1, + "probability": 0.8454 + }, + { + "start": 17311.02, + "end": 17311.54, + "probability": 0.9385 + }, + { + "start": 17313.8, + "end": 17315.16, + "probability": 0.8857 + }, + { + "start": 17315.94, + "end": 17317.92, + "probability": 0.7767 + }, + { + "start": 17318.76, + "end": 17320.54, + "probability": 0.7495 + }, + { + "start": 17321.52, + "end": 17325.46, + "probability": 0.9757 + }, + { + "start": 17326.04, + "end": 17327.6, + "probability": 0.9576 + }, + { + "start": 17328.48, + "end": 17329.88, + "probability": 0.9121 + }, + { + "start": 17330.28, + "end": 17331.76, + "probability": 0.8558 + }, + { + "start": 17331.92, + "end": 17333.46, + "probability": 0.8029 + }, + { + "start": 17334.46, + "end": 17336.0, + "probability": 0.5424 + }, + { + "start": 17337.48, + "end": 17338.16, + "probability": 0.5811 + }, + { + "start": 17338.82, + "end": 17339.48, + "probability": 0.8125 + }, + { + "start": 17340.16, + "end": 17340.76, + "probability": 0.8614 + }, + { + "start": 17341.56, + "end": 17342.72, + "probability": 0.9738 + }, + { + "start": 17343.8, + "end": 17345.28, + "probability": 0.9411 + }, + { + "start": 17345.94, + "end": 17347.34, + "probability": 0.9694 + }, + { + "start": 17347.96, + "end": 17349.4, + "probability": 0.8687 + }, + { + "start": 17350.34, + "end": 17351.92, + "probability": 0.8665 + }, + { + "start": 17352.46, + "end": 17354.04, + "probability": 0.7938 + }, + { + "start": 17354.8, + "end": 17357.3, + "probability": 0.7815 + }, + { + "start": 17357.56, + "end": 17360.16, + "probability": 0.7575 + }, + { + "start": 17362.5, + "end": 17363.52, + "probability": 0.9545 + }, + { + "start": 17363.96, + "end": 17365.86, + "probability": 0.9737 + }, + { + "start": 17366.14, + "end": 17367.48, + "probability": 0.9648 + }, + { + "start": 17369.16, + "end": 17369.66, + "probability": 0.904 + }, + { + "start": 17370.7, + "end": 17371.4, + "probability": 0.9813 + }, + { + "start": 17372.0, + "end": 17373.74, + "probability": 0.9677 + }, + { + "start": 17374.74, + "end": 17376.8, + "probability": 0.9778 + }, + { + "start": 17377.82, + "end": 17379.52, + "probability": 0.8632 + }, + { + "start": 17380.48, + "end": 17382.6, + "probability": 0.8298 + }, + { + "start": 17383.38, + "end": 17385.12, + "probability": 0.9378 + }, + { + "start": 17385.74, + "end": 17387.22, + "probability": 0.9006 + }, + { + "start": 17387.82, + "end": 17388.58, + "probability": 0.937 + }, + { + "start": 17389.1, + "end": 17391.3, + "probability": 0.7587 + }, + { + "start": 17392.02, + "end": 17392.8, + "probability": 0.8148 + }, + { + "start": 17393.48, + "end": 17395.5, + "probability": 0.7111 + }, + { + "start": 17396.3, + "end": 17398.26, + "probability": 0.9388 + }, + { + "start": 17399.38, + "end": 17401.08, + "probability": 0.8938 + }, + { + "start": 17402.58, + "end": 17404.56, + "probability": 0.9752 + }, + { + "start": 17405.26, + "end": 17406.76, + "probability": 0.9632 + }, + { + "start": 17407.3, + "end": 17410.14, + "probability": 0.9299 + }, + { + "start": 17411.38, + "end": 17413.6, + "probability": 0.9878 + }, + { + "start": 17415.54, + "end": 17418.06, + "probability": 0.6314 + }, + { + "start": 17418.56, + "end": 17420.04, + "probability": 0.5349 + }, + { + "start": 17420.54, + "end": 17420.88, + "probability": 0.8602 + }, + { + "start": 17423.02, + "end": 17424.06, + "probability": 0.7542 + }, + { + "start": 17424.08, + "end": 17425.62, + "probability": 0.9083 + }, + { + "start": 17425.78, + "end": 17427.34, + "probability": 0.9639 + }, + { + "start": 17427.8, + "end": 17429.46, + "probability": 0.9641 + }, + { + "start": 17430.46, + "end": 17432.06, + "probability": 0.9419 + }, + { + "start": 17432.76, + "end": 17437.64, + "probability": 0.9739 + }, + { + "start": 17438.28, + "end": 17440.48, + "probability": 0.2301 + }, + { + "start": 17450.64, + "end": 17454.08, + "probability": 0.7181 + }, + { + "start": 17455.02, + "end": 17456.16, + "probability": 0.1317 + }, + { + "start": 17457.36, + "end": 17461.34, + "probability": 0.0786 + }, + { + "start": 17480.5, + "end": 17482.82, + "probability": 0.0862 + }, + { + "start": 17485.7, + "end": 17494.23, + "probability": 0.0401 + }, + { + "start": 17497.96, + "end": 17500.92, + "probability": 0.0105 + }, + { + "start": 17594.28, + "end": 17594.62, + "probability": 0.1499 + }, + { + "start": 17594.62, + "end": 17594.62, + "probability": 0.1907 + }, + { + "start": 17594.62, + "end": 17594.62, + "probability": 0.0239 + }, + { + "start": 17594.62, + "end": 17594.62, + "probability": 0.2942 + }, + { + "start": 17594.62, + "end": 17594.62, + "probability": 0.348 + }, + { + "start": 17594.62, + "end": 17594.62, + "probability": 0.2955 + }, + { + "start": 17594.62, + "end": 17596.8, + "probability": 0.1446 + }, + { + "start": 17597.62, + "end": 17599.58, + "probability": 0.6574 + }, + { + "start": 17600.4, + "end": 17603.54, + "probability": 0.9009 + }, + { + "start": 17604.84, + "end": 17605.2, + "probability": 0.7412 + }, + { + "start": 17607.18, + "end": 17610.07, + "probability": 0.9851 + }, + { + "start": 17612.22, + "end": 17612.56, + "probability": 0.7623 + }, + { + "start": 17614.64, + "end": 17616.98, + "probability": 0.8642 + }, + { + "start": 17634.82, + "end": 17638.18, + "probability": 0.9634 + }, + { + "start": 17640.16, + "end": 17640.8, + "probability": 0.8496 + }, + { + "start": 17640.92, + "end": 17642.46, + "probability": 0.9974 + }, + { + "start": 17642.58, + "end": 17643.56, + "probability": 0.9916 + }, + { + "start": 17644.12, + "end": 17646.74, + "probability": 0.9606 + }, + { + "start": 17647.18, + "end": 17649.52, + "probability": 0.7964 + }, + { + "start": 17649.52, + "end": 17652.76, + "probability": 0.6527 + }, + { + "start": 17653.16, + "end": 17656.0, + "probability": 0.9435 + }, + { + "start": 17657.04, + "end": 17657.7, + "probability": 0.4385 + }, + { + "start": 17658.26, + "end": 17660.56, + "probability": 0.3991 + }, + { + "start": 17662.42, + "end": 17666.04, + "probability": 0.9576 + }, + { + "start": 17666.72, + "end": 17668.82, + "probability": 0.9866 + }, + { + "start": 17669.66, + "end": 17670.54, + "probability": 0.8476 + }, + { + "start": 17671.26, + "end": 17672.12, + "probability": 0.9088 + }, + { + "start": 17673.16, + "end": 17674.28, + "probability": 0.8247 + }, + { + "start": 17675.2, + "end": 17676.6, + "probability": 0.8174 + }, + { + "start": 17678.06, + "end": 17679.6, + "probability": 0.9107 + }, + { + "start": 17680.12, + "end": 17681.42, + "probability": 0.8461 + }, + { + "start": 17681.42, + "end": 17682.52, + "probability": 0.3237 + }, + { + "start": 17682.58, + "end": 17685.44, + "probability": 0.7852 + }, + { + "start": 17686.06, + "end": 17688.44, + "probability": 0.9705 + }, + { + "start": 17690.74, + "end": 17692.9, + "probability": 0.9067 + }, + { + "start": 17694.88, + "end": 17697.4, + "probability": 0.9841 + }, + { + "start": 17697.98, + "end": 17699.38, + "probability": 0.8123 + }, + { + "start": 17699.44, + "end": 17701.18, + "probability": 0.5042 + }, + { + "start": 17701.22, + "end": 17702.12, + "probability": 0.9399 + }, + { + "start": 17702.48, + "end": 17704.74, + "probability": 0.7652 + }, + { + "start": 17705.78, + "end": 17708.58, + "probability": 0.6919 + }, + { + "start": 17709.18, + "end": 17710.98, + "probability": 0.9551 + }, + { + "start": 17711.98, + "end": 17713.66, + "probability": 0.9084 + }, + { + "start": 17716.22, + "end": 17718.36, + "probability": 0.621 + }, + { + "start": 17719.72, + "end": 17720.96, + "probability": 0.7878 + }, + { + "start": 17722.44, + "end": 17723.58, + "probability": 0.8836 + }, + { + "start": 17724.94, + "end": 17726.38, + "probability": 0.9258 + }, + { + "start": 17726.74, + "end": 17727.56, + "probability": 0.8334 + }, + { + "start": 17727.62, + "end": 17728.54, + "probability": 0.9866 + }, + { + "start": 17729.52, + "end": 17733.04, + "probability": 0.9934 + }, + { + "start": 17733.66, + "end": 17735.44, + "probability": 0.9879 + }, + { + "start": 17736.06, + "end": 17737.3, + "probability": 0.8413 + }, + { + "start": 17738.48, + "end": 17740.06, + "probability": 0.7892 + }, + { + "start": 17740.82, + "end": 17744.08, + "probability": 0.9977 + }, + { + "start": 17744.6, + "end": 17745.44, + "probability": 0.8572 + }, + { + "start": 17747.32, + "end": 17748.66, + "probability": 0.9854 + }, + { + "start": 17750.78, + "end": 17752.24, + "probability": 0.9889 + }, + { + "start": 17752.54, + "end": 17755.48, + "probability": 0.926 + }, + { + "start": 17756.26, + "end": 17757.96, + "probability": 0.9556 + }, + { + "start": 17758.64, + "end": 17760.68, + "probability": 0.8143 + }, + { + "start": 17762.42, + "end": 17766.58, + "probability": 0.9802 + }, + { + "start": 17767.86, + "end": 17769.38, + "probability": 0.9479 + }, + { + "start": 17771.5, + "end": 17773.36, + "probability": 0.6889 + }, + { + "start": 17774.4, + "end": 17776.3, + "probability": 0.9449 + }, + { + "start": 17777.46, + "end": 17778.14, + "probability": 0.6751 + }, + { + "start": 17778.72, + "end": 17783.72, + "probability": 0.7265 + }, + { + "start": 17786.22, + "end": 17787.04, + "probability": 0.8653 + }, + { + "start": 17788.0, + "end": 17788.88, + "probability": 0.9554 + }, + { + "start": 17789.72, + "end": 17790.66, + "probability": 0.6385 + }, + { + "start": 17791.24, + "end": 17793.0, + "probability": 0.9933 + }, + { + "start": 17794.62, + "end": 17797.7, + "probability": 0.696 + }, + { + "start": 17798.64, + "end": 17801.82, + "probability": 0.9583 + }, + { + "start": 17802.56, + "end": 17804.08, + "probability": 0.9695 + }, + { + "start": 17805.08, + "end": 17805.34, + "probability": 0.3827 + }, + { + "start": 17805.36, + "end": 17808.56, + "probability": 0.6621 + }, + { + "start": 17809.26, + "end": 17811.24, + "probability": 0.9307 + }, + { + "start": 17814.82, + "end": 17816.54, + "probability": 0.033 + }, + { + "start": 17822.4, + "end": 17823.6, + "probability": 0.0265 + }, + { + "start": 17838.12, + "end": 17842.12, + "probability": 0.774 + }, + { + "start": 17842.86, + "end": 17843.76, + "probability": 0.3981 + }, + { + "start": 17844.84, + "end": 17845.08, + "probability": 0.391 + }, + { + "start": 17845.08, + "end": 17847.82, + "probability": 0.948 + }, + { + "start": 17848.2, + "end": 17852.6, + "probability": 0.9333 + }, + { + "start": 17852.76, + "end": 17853.06, + "probability": 0.9635 + }, + { + "start": 17853.66, + "end": 17854.44, + "probability": 0.8888 + }, + { + "start": 17855.04, + "end": 17856.92, + "probability": 0.8086 + }, + { + "start": 17857.06, + "end": 17859.06, + "probability": 0.9922 + }, + { + "start": 17860.2, + "end": 17863.78, + "probability": 0.4347 + }, + { + "start": 17863.78, + "end": 17864.21, + "probability": 0.8459 + }, + { + "start": 17864.88, + "end": 17866.58, + "probability": 0.8843 + }, + { + "start": 17866.58, + "end": 17870.26, + "probability": 0.9815 + }, + { + "start": 17871.2, + "end": 17871.98, + "probability": 0.4431 + }, + { + "start": 17874.04, + "end": 17875.92, + "probability": 0.9166 + }, + { + "start": 17876.36, + "end": 17878.86, + "probability": 0.8661 + }, + { + "start": 17880.06, + "end": 17885.64, + "probability": 0.9973 + }, + { + "start": 17885.78, + "end": 17886.58, + "probability": 0.9438 + }, + { + "start": 17886.64, + "end": 17888.4, + "probability": 0.8867 + }, + { + "start": 17888.56, + "end": 17889.66, + "probability": 0.9744 + }, + { + "start": 17890.72, + "end": 17890.96, + "probability": 0.8686 + }, + { + "start": 17891.08, + "end": 17894.5, + "probability": 0.8719 + }, + { + "start": 17895.32, + "end": 17900.14, + "probability": 0.9604 + }, + { + "start": 17900.22, + "end": 17902.58, + "probability": 0.9939 + }, + { + "start": 17902.66, + "end": 17903.26, + "probability": 0.8036 + }, + { + "start": 17903.76, + "end": 17907.16, + "probability": 0.8366 + }, + { + "start": 17907.28, + "end": 17907.64, + "probability": 0.8831 + }, + { + "start": 17907.72, + "end": 17908.36, + "probability": 0.8911 + }, + { + "start": 17908.82, + "end": 17913.14, + "probability": 0.9115 + }, + { + "start": 17914.68, + "end": 17916.1, + "probability": 0.9888 + }, + { + "start": 17916.14, + "end": 17917.36, + "probability": 0.9491 + }, + { + "start": 17917.5, + "end": 17922.0, + "probability": 0.9867 + }, + { + "start": 17922.1, + "end": 17926.38, + "probability": 0.9796 + }, + { + "start": 17926.46, + "end": 17927.3, + "probability": 0.8818 + }, + { + "start": 17927.72, + "end": 17928.08, + "probability": 0.4758 + }, + { + "start": 17928.64, + "end": 17931.06, + "probability": 0.8087 + }, + { + "start": 17931.2, + "end": 17931.86, + "probability": 0.4495 + }, + { + "start": 17932.28, + "end": 17934.16, + "probability": 0.8735 + }, + { + "start": 17934.58, + "end": 17935.94, + "probability": 0.9251 + }, + { + "start": 17936.04, + "end": 17940.7, + "probability": 0.8684 + }, + { + "start": 17940.7, + "end": 17945.02, + "probability": 0.8594 + }, + { + "start": 17945.32, + "end": 17946.61, + "probability": 0.9976 + }, + { + "start": 17947.12, + "end": 17951.1, + "probability": 0.9976 + }, + { + "start": 17951.22, + "end": 17954.12, + "probability": 0.9935 + }, + { + "start": 17954.78, + "end": 17957.82, + "probability": 0.8765 + }, + { + "start": 17958.08, + "end": 17959.39, + "probability": 0.9814 + }, + { + "start": 17959.58, + "end": 17960.94, + "probability": 0.5075 + }, + { + "start": 17961.1, + "end": 17964.44, + "probability": 0.9725 + }, + { + "start": 17964.52, + "end": 17966.16, + "probability": 0.9237 + }, + { + "start": 17966.52, + "end": 17967.64, + "probability": 0.9579 + }, + { + "start": 17967.86, + "end": 17968.24, + "probability": 0.5125 + }, + { + "start": 17968.64, + "end": 17971.68, + "probability": 0.9919 + }, + { + "start": 17972.22, + "end": 17973.52, + "probability": 0.8562 + }, + { + "start": 17973.68, + "end": 17976.48, + "probability": 0.978 + }, + { + "start": 17977.08, + "end": 17978.66, + "probability": 0.9198 + }, + { + "start": 17978.8, + "end": 17979.7, + "probability": 0.7348 + }, + { + "start": 17979.72, + "end": 17980.06, + "probability": 0.9618 + }, + { + "start": 17980.48, + "end": 17983.38, + "probability": 0.9009 + }, + { + "start": 17983.56, + "end": 17985.7, + "probability": 0.9941 + }, + { + "start": 17986.12, + "end": 17988.28, + "probability": 0.9973 + }, + { + "start": 17988.7, + "end": 17992.36, + "probability": 0.9944 + }, + { + "start": 17992.36, + "end": 17995.0, + "probability": 0.9621 + }, + { + "start": 17995.22, + "end": 17996.3, + "probability": 0.9582 + }, + { + "start": 17996.8, + "end": 17999.7, + "probability": 0.9905 + }, + { + "start": 17999.94, + "end": 18004.98, + "probability": 0.9308 + }, + { + "start": 18005.96, + "end": 18010.18, + "probability": 0.9739 + }, + { + "start": 18010.72, + "end": 18013.94, + "probability": 0.9786 + }, + { + "start": 18014.42, + "end": 18020.81, + "probability": 0.9905 + }, + { + "start": 18021.54, + "end": 18025.86, + "probability": 0.9861 + }, + { + "start": 18026.0, + "end": 18030.24, + "probability": 0.9962 + }, + { + "start": 18030.4, + "end": 18031.84, + "probability": 0.9071 + }, + { + "start": 18031.94, + "end": 18033.78, + "probability": 0.8966 + }, + { + "start": 18033.88, + "end": 18036.74, + "probability": 0.9973 + }, + { + "start": 18036.74, + "end": 18040.14, + "probability": 0.9886 + }, + { + "start": 18040.52, + "end": 18041.24, + "probability": 0.5825 + }, + { + "start": 18041.44, + "end": 18042.38, + "probability": 0.8617 + }, + { + "start": 18042.66, + "end": 18044.36, + "probability": 0.803 + }, + { + "start": 18044.66, + "end": 18046.42, + "probability": 0.9328 + }, + { + "start": 18046.7, + "end": 18048.24, + "probability": 0.9672 + }, + { + "start": 18048.36, + "end": 18051.04, + "probability": 0.9678 + }, + { + "start": 18051.04, + "end": 18053.74, + "probability": 0.9785 + }, + { + "start": 18054.1, + "end": 18056.66, + "probability": 0.9832 + }, + { + "start": 18056.88, + "end": 18057.04, + "probability": 0.5127 + }, + { + "start": 18057.2, + "end": 18058.2, + "probability": 0.886 + }, + { + "start": 18058.48, + "end": 18060.8, + "probability": 0.9902 + }, + { + "start": 18061.62, + "end": 18062.42, + "probability": 0.8969 + }, + { + "start": 18064.1, + "end": 18064.78, + "probability": 0.285 + }, + { + "start": 18065.18, + "end": 18069.06, + "probability": 0.9924 + }, + { + "start": 18069.66, + "end": 18071.44, + "probability": 0.9908 + }, + { + "start": 18071.5, + "end": 18074.92, + "probability": 0.9906 + }, + { + "start": 18075.3, + "end": 18076.5, + "probability": 0.9042 + }, + { + "start": 18077.26, + "end": 18078.0, + "probability": 0.4976 + }, + { + "start": 18078.36, + "end": 18079.56, + "probability": 0.8631 + }, + { + "start": 18079.7, + "end": 18080.56, + "probability": 0.9026 + }, + { + "start": 18080.7, + "end": 18081.56, + "probability": 0.9674 + }, + { + "start": 18081.82, + "end": 18082.96, + "probability": 0.6749 + }, + { + "start": 18083.36, + "end": 18086.84, + "probability": 0.9749 + }, + { + "start": 18087.28, + "end": 18088.72, + "probability": 0.9885 + }, + { + "start": 18089.08, + "end": 18090.08, + "probability": 0.689 + }, + { + "start": 18090.34, + "end": 18093.38, + "probability": 0.9694 + }, + { + "start": 18093.56, + "end": 18093.8, + "probability": 0.7977 + }, + { + "start": 18094.22, + "end": 18098.64, + "probability": 0.9901 + }, + { + "start": 18098.8, + "end": 18102.98, + "probability": 0.9935 + }, + { + "start": 18103.99, + "end": 18105.24, + "probability": 0.9916 + }, + { + "start": 18105.76, + "end": 18108.9, + "probability": 0.9828 + }, + { + "start": 18109.28, + "end": 18115.22, + "probability": 0.9741 + }, + { + "start": 18115.22, + "end": 18119.42, + "probability": 0.9742 + }, + { + "start": 18119.92, + "end": 18121.02, + "probability": 0.6984 + }, + { + "start": 18121.16, + "end": 18123.9, + "probability": 0.9833 + }, + { + "start": 18124.06, + "end": 18125.18, + "probability": 0.9656 + }, + { + "start": 18125.74, + "end": 18127.02, + "probability": 0.8831 + }, + { + "start": 18127.58, + "end": 18133.84, + "probability": 0.9792 + }, + { + "start": 18134.08, + "end": 18135.12, + "probability": 0.7636 + }, + { + "start": 18135.34, + "end": 18136.48, + "probability": 0.9488 + }, + { + "start": 18136.82, + "end": 18137.62, + "probability": 0.6478 + }, + { + "start": 18137.72, + "end": 18138.08, + "probability": 0.8764 + }, + { + "start": 18138.18, + "end": 18139.34, + "probability": 0.9058 + }, + { + "start": 18139.7, + "end": 18140.29, + "probability": 0.5072 + }, + { + "start": 18140.48, + "end": 18142.34, + "probability": 0.9827 + }, + { + "start": 18143.14, + "end": 18144.8, + "probability": 0.9084 + }, + { + "start": 18149.98, + "end": 18151.22, + "probability": 0.8998 + }, + { + "start": 18154.74, + "end": 18155.56, + "probability": 0.6487 + }, + { + "start": 18156.86, + "end": 18158.56, + "probability": 0.8649 + }, + { + "start": 18159.34, + "end": 18160.34, + "probability": 0.7335 + }, + { + "start": 18161.88, + "end": 18164.83, + "probability": 0.9463 + }, + { + "start": 18165.92, + "end": 18167.12, + "probability": 0.8195 + }, + { + "start": 18168.54, + "end": 18172.88, + "probability": 0.978 + }, + { + "start": 18174.12, + "end": 18176.14, + "probability": 0.999 + }, + { + "start": 18177.1, + "end": 18178.78, + "probability": 0.98 + }, + { + "start": 18179.92, + "end": 18183.78, + "probability": 0.7451 + }, + { + "start": 18183.9, + "end": 18184.54, + "probability": 0.938 + }, + { + "start": 18185.64, + "end": 18188.96, + "probability": 0.9722 + }, + { + "start": 18189.2, + "end": 18194.65, + "probability": 0.9865 + }, + { + "start": 18195.5, + "end": 18196.48, + "probability": 0.6339 + }, + { + "start": 18197.66, + "end": 18198.68, + "probability": 0.8371 + }, + { + "start": 18199.18, + "end": 18201.26, + "probability": 0.9855 + }, + { + "start": 18202.06, + "end": 18202.38, + "probability": 0.9297 + }, + { + "start": 18203.38, + "end": 18204.02, + "probability": 0.3493 + }, + { + "start": 18204.12, + "end": 18206.82, + "probability": 0.9661 + }, + { + "start": 18207.02, + "end": 18208.82, + "probability": 0.9137 + }, + { + "start": 18209.36, + "end": 18212.68, + "probability": 0.9873 + }, + { + "start": 18215.36, + "end": 18216.44, + "probability": 0.6681 + }, + { + "start": 18219.94, + "end": 18223.32, + "probability": 0.6758 + }, + { + "start": 18224.78, + "end": 18228.24, + "probability": 0.8078 + }, + { + "start": 18229.56, + "end": 18232.34, + "probability": 0.984 + }, + { + "start": 18234.34, + "end": 18235.0, + "probability": 0.5134 + }, + { + "start": 18235.14, + "end": 18236.02, + "probability": 0.7534 + }, + { + "start": 18236.14, + "end": 18237.86, + "probability": 0.7207 + }, + { + "start": 18238.8, + "end": 18243.14, + "probability": 0.9699 + }, + { + "start": 18244.42, + "end": 18246.85, + "probability": 0.6962 + }, + { + "start": 18247.7, + "end": 18250.82, + "probability": 0.8149 + }, + { + "start": 18251.7, + "end": 18252.96, + "probability": 0.9894 + }, + { + "start": 18254.46, + "end": 18257.41, + "probability": 0.6643 + }, + { + "start": 18258.5, + "end": 18260.54, + "probability": 0.7324 + }, + { + "start": 18261.08, + "end": 18263.16, + "probability": 0.9451 + }, + { + "start": 18263.72, + "end": 18265.28, + "probability": 0.9019 + }, + { + "start": 18266.84, + "end": 18268.66, + "probability": 0.7547 + }, + { + "start": 18268.9, + "end": 18270.26, + "probability": 0.9619 + }, + { + "start": 18270.72, + "end": 18275.08, + "probability": 0.9342 + }, + { + "start": 18276.14, + "end": 18278.2, + "probability": 0.9865 + }, + { + "start": 18279.02, + "end": 18283.2, + "probability": 0.9928 + }, + { + "start": 18284.08, + "end": 18287.7, + "probability": 0.7772 + }, + { + "start": 18287.84, + "end": 18288.26, + "probability": 0.813 + }, + { + "start": 18289.54, + "end": 18293.46, + "probability": 0.9678 + }, + { + "start": 18294.54, + "end": 18295.74, + "probability": 0.9631 + }, + { + "start": 18295.94, + "end": 18298.58, + "probability": 0.8975 + }, + { + "start": 18298.62, + "end": 18299.78, + "probability": 0.777 + }, + { + "start": 18301.08, + "end": 18304.14, + "probability": 0.9461 + }, + { + "start": 18305.14, + "end": 18306.16, + "probability": 0.9923 + }, + { + "start": 18306.76, + "end": 18309.96, + "probability": 0.9639 + }, + { + "start": 18310.86, + "end": 18312.48, + "probability": 0.7664 + }, + { + "start": 18313.06, + "end": 18313.88, + "probability": 0.7145 + }, + { + "start": 18314.14, + "end": 18315.42, + "probability": 0.5114 + }, + { + "start": 18316.36, + "end": 18318.32, + "probability": 0.8379 + }, + { + "start": 18320.72, + "end": 18321.94, + "probability": 0.9993 + }, + { + "start": 18323.12, + "end": 18324.04, + "probability": 0.7498 + }, + { + "start": 18325.08, + "end": 18328.38, + "probability": 0.7912 + }, + { + "start": 18329.0, + "end": 18329.38, + "probability": 0.506 + }, + { + "start": 18329.5, + "end": 18330.42, + "probability": 0.5848 + }, + { + "start": 18331.3, + "end": 18335.94, + "probability": 0.7176 + }, + { + "start": 18336.9, + "end": 18339.96, + "probability": 0.791 + }, + { + "start": 18341.26, + "end": 18343.0, + "probability": 0.1388 + }, + { + "start": 18343.52, + "end": 18344.98, + "probability": 0.4861 + }, + { + "start": 18346.28, + "end": 18347.88, + "probability": 0.8735 + }, + { + "start": 18348.04, + "end": 18349.72, + "probability": 0.6144 + }, + { + "start": 18350.38, + "end": 18355.97, + "probability": 0.8027 + }, + { + "start": 18356.48, + "end": 18357.58, + "probability": 0.8141 + }, + { + "start": 18358.52, + "end": 18363.44, + "probability": 0.5987 + }, + { + "start": 18366.04, + "end": 18368.32, + "probability": 0.8487 + }, + { + "start": 18368.7, + "end": 18369.52, + "probability": 0.6069 + }, + { + "start": 18369.76, + "end": 18370.8, + "probability": 0.6639 + }, + { + "start": 18371.3, + "end": 18375.76, + "probability": 0.856 + }, + { + "start": 18376.06, + "end": 18377.2, + "probability": 0.8115 + }, + { + "start": 18377.84, + "end": 18385.18, + "probability": 0.9548 + }, + { + "start": 18385.48, + "end": 18387.54, + "probability": 0.9329 + }, + { + "start": 18387.66, + "end": 18389.98, + "probability": 0.9434 + }, + { + "start": 18390.38, + "end": 18391.62, + "probability": 0.4885 + }, + { + "start": 18391.62, + "end": 18392.9, + "probability": 0.7703 + }, + { + "start": 18393.64, + "end": 18396.94, + "probability": 0.8821 + }, + { + "start": 18397.36, + "end": 18398.7, + "probability": 0.9976 + }, + { + "start": 18399.14, + "end": 18400.58, + "probability": 0.9282 + }, + { + "start": 18400.98, + "end": 18405.24, + "probability": 0.9604 + }, + { + "start": 18405.48, + "end": 18410.18, + "probability": 0.9492 + }, + { + "start": 18410.84, + "end": 18412.12, + "probability": 0.818 + }, + { + "start": 18412.98, + "end": 18414.74, + "probability": 0.9878 + }, + { + "start": 18415.56, + "end": 18417.18, + "probability": 0.9581 + }, + { + "start": 18417.28, + "end": 18419.0, + "probability": 0.9927 + }, + { + "start": 18419.66, + "end": 18422.2, + "probability": 0.9784 + }, + { + "start": 18422.66, + "end": 18426.0, + "probability": 0.705 + }, + { + "start": 18426.12, + "end": 18426.8, + "probability": 0.4208 + }, + { + "start": 18426.86, + "end": 18427.4, + "probability": 0.8598 + }, + { + "start": 18427.66, + "end": 18431.1, + "probability": 0.9159 + }, + { + "start": 18432.04, + "end": 18433.34, + "probability": 0.6378 + }, + { + "start": 18434.02, + "end": 18435.31, + "probability": 0.979 + }, + { + "start": 18435.44, + "end": 18436.86, + "probability": 0.9727 + }, + { + "start": 18437.58, + "end": 18440.73, + "probability": 0.8752 + }, + { + "start": 18441.02, + "end": 18441.72, + "probability": 0.6417 + }, + { + "start": 18442.26, + "end": 18443.1, + "probability": 0.9491 + }, + { + "start": 18443.3, + "end": 18443.66, + "probability": 0.8345 + }, + { + "start": 18443.66, + "end": 18444.64, + "probability": 0.3963 + }, + { + "start": 18445.46, + "end": 18445.56, + "probability": 0.9667 + }, + { + "start": 18446.68, + "end": 18449.14, + "probability": 0.9853 + }, + { + "start": 18449.92, + "end": 18456.02, + "probability": 0.8427 + }, + { + "start": 18456.38, + "end": 18456.9, + "probability": 0.4686 + }, + { + "start": 18456.94, + "end": 18458.64, + "probability": 0.8359 + }, + { + "start": 18459.06, + "end": 18459.68, + "probability": 0.8154 + }, + { + "start": 18459.76, + "end": 18460.76, + "probability": 0.5593 + }, + { + "start": 18461.1, + "end": 18462.18, + "probability": 0.9833 + }, + { + "start": 18462.32, + "end": 18465.88, + "probability": 0.9818 + }, + { + "start": 18466.64, + "end": 18469.8, + "probability": 0.8041 + }, + { + "start": 18469.94, + "end": 18471.0, + "probability": 0.9763 + }, + { + "start": 18471.22, + "end": 18473.78, + "probability": 0.9302 + }, + { + "start": 18474.8, + "end": 18476.74, + "probability": 0.9453 + }, + { + "start": 18477.28, + "end": 18479.04, + "probability": 0.7592 + }, + { + "start": 18479.58, + "end": 18481.68, + "probability": 0.639 + }, + { + "start": 18481.68, + "end": 18482.52, + "probability": 0.9125 + }, + { + "start": 18482.6, + "end": 18482.92, + "probability": 0.5152 + }, + { + "start": 18483.42, + "end": 18485.31, + "probability": 0.6143 + }, + { + "start": 18486.54, + "end": 18489.48, + "probability": 0.9174 + }, + { + "start": 18490.32, + "end": 18492.04, + "probability": 0.8199 + }, + { + "start": 18494.42, + "end": 18496.56, + "probability": 0.9144 + }, + { + "start": 18512.32, + "end": 18513.0, + "probability": 0.5609 + }, + { + "start": 18513.26, + "end": 18513.3, + "probability": 0.1123 + }, + { + "start": 18513.3, + "end": 18514.32, + "probability": 0.6706 + }, + { + "start": 18514.5, + "end": 18514.74, + "probability": 0.593 + }, + { + "start": 18514.82, + "end": 18515.38, + "probability": 0.8249 + }, + { + "start": 18515.48, + "end": 18517.38, + "probability": 0.9121 + }, + { + "start": 18517.68, + "end": 18518.5, + "probability": 0.8132 + }, + { + "start": 18518.58, + "end": 18523.62, + "probability": 0.9663 + }, + { + "start": 18524.82, + "end": 18527.42, + "probability": 0.981 + }, + { + "start": 18528.52, + "end": 18529.02, + "probability": 0.8115 + }, + { + "start": 18529.24, + "end": 18530.08, + "probability": 0.9596 + }, + { + "start": 18530.14, + "end": 18530.18, + "probability": 0.0301 + }, + { + "start": 18530.18, + "end": 18531.42, + "probability": 0.6113 + }, + { + "start": 18531.66, + "end": 18533.96, + "probability": 0.7463 + }, + { + "start": 18534.32, + "end": 18539.16, + "probability": 0.9817 + }, + { + "start": 18539.36, + "end": 18540.36, + "probability": 0.9883 + }, + { + "start": 18541.88, + "end": 18544.14, + "probability": 0.9001 + }, + { + "start": 18544.28, + "end": 18546.06, + "probability": 0.9717 + }, + { + "start": 18546.14, + "end": 18546.52, + "probability": 0.6424 + }, + { + "start": 18547.3, + "end": 18547.62, + "probability": 0.0741 + }, + { + "start": 18547.66, + "end": 18552.32, + "probability": 0.3297 + }, + { + "start": 18552.46, + "end": 18557.3, + "probability": 0.1306 + }, + { + "start": 18557.3, + "end": 18557.3, + "probability": 0.2261 + }, + { + "start": 18557.3, + "end": 18557.6, + "probability": 0.2916 + }, + { + "start": 18557.9, + "end": 18559.16, + "probability": 0.259 + }, + { + "start": 18559.8, + "end": 18560.73, + "probability": 0.3358 + }, + { + "start": 18561.08, + "end": 18562.72, + "probability": 0.0974 + }, + { + "start": 18563.4, + "end": 18565.52, + "probability": 0.8131 + }, + { + "start": 18566.08, + "end": 18568.72, + "probability": 0.9834 + }, + { + "start": 18569.38, + "end": 18572.04, + "probability": 0.8101 + }, + { + "start": 18573.22, + "end": 18573.22, + "probability": 0.6225 + }, + { + "start": 18573.32, + "end": 18576.42, + "probability": 0.8959 + }, + { + "start": 18576.56, + "end": 18578.92, + "probability": 0.9937 + }, + { + "start": 18579.78, + "end": 18582.34, + "probability": 0.6244 + }, + { + "start": 18583.88, + "end": 18586.72, + "probability": 0.996 + }, + { + "start": 18586.88, + "end": 18587.76, + "probability": 0.8877 + }, + { + "start": 18588.0, + "end": 18590.36, + "probability": 0.9359 + }, + { + "start": 18590.38, + "end": 18592.8, + "probability": 0.9668 + }, + { + "start": 18593.66, + "end": 18596.04, + "probability": 0.5039 + }, + { + "start": 18599.84, + "end": 18601.9, + "probability": 0.9766 + }, + { + "start": 18602.28, + "end": 18605.08, + "probability": 0.6628 + }, + { + "start": 18605.1, + "end": 18609.04, + "probability": 0.8362 + }, + { + "start": 18609.1, + "end": 18611.36, + "probability": 0.4478 + }, + { + "start": 18611.42, + "end": 18612.94, + "probability": 0.4809 + }, + { + "start": 18613.0, + "end": 18614.78, + "probability": 0.828 + }, + { + "start": 18614.96, + "end": 18617.14, + "probability": 0.9988 + }, + { + "start": 18617.42, + "end": 18623.3, + "probability": 0.9697 + }, + { + "start": 18623.46, + "end": 18627.02, + "probability": 0.9917 + }, + { + "start": 18628.52, + "end": 18630.84, + "probability": 0.9819 + }, + { + "start": 18630.88, + "end": 18634.38, + "probability": 0.9973 + }, + { + "start": 18635.34, + "end": 18637.16, + "probability": 0.6419 + }, + { + "start": 18639.06, + "end": 18639.74, + "probability": 0.2319 + }, + { + "start": 18640.26, + "end": 18644.6, + "probability": 0.7949 + }, + { + "start": 18644.78, + "end": 18646.28, + "probability": 0.9189 + }, + { + "start": 18646.5, + "end": 18646.76, + "probability": 0.5333 + }, + { + "start": 18646.78, + "end": 18647.39, + "probability": 0.7945 + }, + { + "start": 18647.76, + "end": 18648.5, + "probability": 0.983 + }, + { + "start": 18648.68, + "end": 18649.76, + "probability": 0.6884 + }, + { + "start": 18650.04, + "end": 18651.4, + "probability": 0.9958 + }, + { + "start": 18652.04, + "end": 18655.78, + "probability": 0.9937 + }, + { + "start": 18655.92, + "end": 18657.74, + "probability": 0.9976 + }, + { + "start": 18658.2, + "end": 18661.02, + "probability": 0.9392 + }, + { + "start": 18661.06, + "end": 18664.92, + "probability": 0.9954 + }, + { + "start": 18665.34, + "end": 18665.84, + "probability": 0.2666 + }, + { + "start": 18666.86, + "end": 18672.18, + "probability": 0.2571 + }, + { + "start": 18672.52, + "end": 18673.56, + "probability": 0.9398 + }, + { + "start": 18673.9, + "end": 18680.96, + "probability": 0.9946 + }, + { + "start": 18680.96, + "end": 18685.46, + "probability": 0.9981 + }, + { + "start": 18686.78, + "end": 18689.14, + "probability": 0.5384 + }, + { + "start": 18689.28, + "end": 18689.82, + "probability": 0.8958 + }, + { + "start": 18689.86, + "end": 18691.4, + "probability": 0.9922 + }, + { + "start": 18692.56, + "end": 18695.66, + "probability": 0.9963 + }, + { + "start": 18695.88, + "end": 18698.46, + "probability": 0.7501 + }, + { + "start": 18698.68, + "end": 18701.7, + "probability": 0.9989 + }, + { + "start": 18702.42, + "end": 18704.2, + "probability": 0.9971 + }, + { + "start": 18704.4, + "end": 18710.02, + "probability": 0.9688 + }, + { + "start": 18710.18, + "end": 18713.36, + "probability": 0.9976 + }, + { + "start": 18715.0, + "end": 18715.46, + "probability": 0.6776 + }, + { + "start": 18715.54, + "end": 18718.56, + "probability": 0.9842 + }, + { + "start": 18718.56, + "end": 18721.4, + "probability": 0.9782 + }, + { + "start": 18722.06, + "end": 18725.78, + "probability": 0.9033 + }, + { + "start": 18726.44, + "end": 18729.48, + "probability": 0.9095 + }, + { + "start": 18730.64, + "end": 18735.18, + "probability": 0.9615 + }, + { + "start": 18735.3, + "end": 18740.36, + "probability": 0.9884 + }, + { + "start": 18742.02, + "end": 18743.74, + "probability": 0.5958 + }, + { + "start": 18743.82, + "end": 18745.2, + "probability": 0.6713 + }, + { + "start": 18745.2, + "end": 18746.94, + "probability": 0.3326 + }, + { + "start": 18747.06, + "end": 18748.55, + "probability": 0.9683 + }, + { + "start": 18750.25, + "end": 18755.78, + "probability": 0.8863 + }, + { + "start": 18756.0, + "end": 18756.28, + "probability": 0.0346 + }, + { + "start": 18756.64, + "end": 18758.8, + "probability": 0.4934 + }, + { + "start": 18759.42, + "end": 18761.18, + "probability": 0.599 + }, + { + "start": 18761.38, + "end": 18762.72, + "probability": 0.1475 + }, + { + "start": 18763.32, + "end": 18766.52, + "probability": 0.5392 + }, + { + "start": 18766.78, + "end": 18767.34, + "probability": 0.8313 + }, + { + "start": 18767.42, + "end": 18768.09, + "probability": 0.7247 + }, + { + "start": 18768.92, + "end": 18770.66, + "probability": 0.892 + }, + { + "start": 18770.76, + "end": 18772.12, + "probability": 0.9312 + }, + { + "start": 18772.16, + "end": 18773.85, + "probability": 0.3569 + }, + { + "start": 18774.32, + "end": 18776.06, + "probability": 0.5002 + }, + { + "start": 18776.34, + "end": 18778.58, + "probability": 0.6639 + }, + { + "start": 18778.9, + "end": 18780.33, + "probability": 0.6311 + }, + { + "start": 18780.5, + "end": 18783.72, + "probability": 0.6103 + }, + { + "start": 18783.86, + "end": 18784.08, + "probability": 0.4562 + }, + { + "start": 18784.3, + "end": 18786.08, + "probability": 0.6776 + }, + { + "start": 18787.28, + "end": 18789.22, + "probability": 0.4237 + }, + { + "start": 18789.26, + "end": 18791.54, + "probability": 0.597 + }, + { + "start": 18793.92, + "end": 18797.42, + "probability": 0.9922 + }, + { + "start": 18798.16, + "end": 18798.86, + "probability": 0.4769 + }, + { + "start": 18799.05, + "end": 18802.02, + "probability": 0.6848 + }, + { + "start": 18802.04, + "end": 18805.14, + "probability": 0.9626 + }, + { + "start": 18805.52, + "end": 18807.55, + "probability": 0.8487 + }, + { + "start": 18807.88, + "end": 18809.48, + "probability": 0.9951 + }, + { + "start": 18809.62, + "end": 18810.64, + "probability": 0.923 + }, + { + "start": 18811.36, + "end": 18811.68, + "probability": 0.0048 + }, + { + "start": 18811.68, + "end": 18813.42, + "probability": 0.4513 + }, + { + "start": 18814.06, + "end": 18815.76, + "probability": 0.2118 + }, + { + "start": 18815.8, + "end": 18817.28, + "probability": 0.3532 + }, + { + "start": 18817.34, + "end": 18820.76, + "probability": 0.6293 + }, + { + "start": 18820.9, + "end": 18823.44, + "probability": 0.8054 + }, + { + "start": 18824.3, + "end": 18827.6, + "probability": 0.8387 + }, + { + "start": 18828.64, + "end": 18835.18, + "probability": 0.8843 + }, + { + "start": 18836.32, + "end": 18838.1, + "probability": 0.6074 + }, + { + "start": 18838.16, + "end": 18842.02, + "probability": 0.9907 + }, + { + "start": 18842.2, + "end": 18843.72, + "probability": 0.9011 + }, + { + "start": 18845.08, + "end": 18848.26, + "probability": 0.9702 + }, + { + "start": 18848.48, + "end": 18850.86, + "probability": 0.988 + }, + { + "start": 18851.04, + "end": 18854.14, + "probability": 0.7913 + }, + { + "start": 18854.14, + "end": 18856.6, + "probability": 0.9939 + }, + { + "start": 18857.14, + "end": 18860.48, + "probability": 0.9521 + }, + { + "start": 18861.54, + "end": 18862.44, + "probability": 0.0915 + }, + { + "start": 18862.76, + "end": 18868.18, + "probability": 0.998 + }, + { + "start": 18868.18, + "end": 18872.08, + "probability": 0.9985 + }, + { + "start": 18872.14, + "end": 18874.08, + "probability": 0.9951 + }, + { + "start": 18874.92, + "end": 18876.66, + "probability": 0.9849 + }, + { + "start": 18877.36, + "end": 18879.9, + "probability": 0.9986 + }, + { + "start": 18880.44, + "end": 18882.88, + "probability": 0.9736 + }, + { + "start": 18883.12, + "end": 18884.38, + "probability": 0.8224 + }, + { + "start": 18884.5, + "end": 18886.76, + "probability": 0.9916 + }, + { + "start": 18888.26, + "end": 18888.34, + "probability": 0.0549 + }, + { + "start": 18888.34, + "end": 18891.72, + "probability": 0.9497 + }, + { + "start": 18892.5, + "end": 18897.02, + "probability": 0.8966 + }, + { + "start": 18898.88, + "end": 18907.08, + "probability": 0.9831 + }, + { + "start": 18907.08, + "end": 18912.74, + "probability": 0.9852 + }, + { + "start": 18913.62, + "end": 18917.84, + "probability": 0.9835 + }, + { + "start": 18917.98, + "end": 18920.08, + "probability": 0.9893 + }, + { + "start": 18921.86, + "end": 18925.48, + "probability": 0.9899 + }, + { + "start": 18925.66, + "end": 18926.46, + "probability": 0.8191 + }, + { + "start": 18928.09, + "end": 18930.92, + "probability": 0.9734 + }, + { + "start": 18930.96, + "end": 18932.46, + "probability": 0.9915 + }, + { + "start": 18932.64, + "end": 18936.72, + "probability": 0.5678 + }, + { + "start": 18936.92, + "end": 18938.46, + "probability": 0.6814 + }, + { + "start": 18939.04, + "end": 18942.44, + "probability": 0.972 + }, + { + "start": 18943.04, + "end": 18944.42, + "probability": 0.7656 + }, + { + "start": 18944.9, + "end": 18950.5, + "probability": 0.9979 + }, + { + "start": 18950.58, + "end": 18951.96, + "probability": 0.9255 + }, + { + "start": 18952.0, + "end": 18958.94, + "probability": 0.9939 + }, + { + "start": 18960.64, + "end": 18963.44, + "probability": 0.9743 + }, + { + "start": 18963.44, + "end": 18967.16, + "probability": 0.9932 + }, + { + "start": 18967.28, + "end": 18970.26, + "probability": 0.9905 + }, + { + "start": 18970.72, + "end": 18971.72, + "probability": 0.8444 + }, + { + "start": 18971.8, + "end": 18974.12, + "probability": 0.9425 + }, + { + "start": 18974.62, + "end": 18976.3, + "probability": 0.9909 + }, + { + "start": 18976.88, + "end": 18977.66, + "probability": 0.9879 + }, + { + "start": 18977.86, + "end": 18980.38, + "probability": 0.8995 + }, + { + "start": 18980.48, + "end": 18983.18, + "probability": 0.6609 + }, + { + "start": 18984.08, + "end": 18984.58, + "probability": 0.6238 + }, + { + "start": 18984.6, + "end": 18986.36, + "probability": 0.7443 + }, + { + "start": 18987.6, + "end": 18987.84, + "probability": 0.0247 + }, + { + "start": 18987.84, + "end": 18990.08, + "probability": 0.835 + }, + { + "start": 18991.24, + "end": 18993.62, + "probability": 0.8194 + }, + { + "start": 18993.96, + "end": 18994.96, + "probability": 0.978 + }, + { + "start": 18995.02, + "end": 18995.94, + "probability": 0.7799 + }, + { + "start": 18996.36, + "end": 18999.22, + "probability": 0.9823 + }, + { + "start": 18999.36, + "end": 19001.06, + "probability": 0.9276 + }, + { + "start": 19002.94, + "end": 19003.5, + "probability": 0.7181 + }, + { + "start": 19004.08, + "end": 19006.16, + "probability": 0.9058 + }, + { + "start": 19007.2, + "end": 19008.42, + "probability": 0.7401 + }, + { + "start": 19008.94, + "end": 19011.97, + "probability": 0.7616 + }, + { + "start": 19012.52, + "end": 19013.98, + "probability": 0.1884 + }, + { + "start": 19014.08, + "end": 19015.02, + "probability": 0.485 + }, + { + "start": 19015.26, + "end": 19016.66, + "probability": 0.0533 + }, + { + "start": 19016.66, + "end": 19017.32, + "probability": 0.0123 + }, + { + "start": 19017.32, + "end": 19021.8, + "probability": 0.6213 + }, + { + "start": 19021.92, + "end": 19022.49, + "probability": 0.5975 + }, + { + "start": 19022.78, + "end": 19023.16, + "probability": 0.4879 + }, + { + "start": 19023.16, + "end": 19023.86, + "probability": 0.1766 + }, + { + "start": 19024.28, + "end": 19026.48, + "probability": 0.0587 + }, + { + "start": 19029.22, + "end": 19029.82, + "probability": 0.1224 + }, + { + "start": 19029.9, + "end": 19031.22, + "probability": 0.0224 + }, + { + "start": 19031.22, + "end": 19031.22, + "probability": 0.0552 + }, + { + "start": 19031.22, + "end": 19031.22, + "probability": 0.1157 + }, + { + "start": 19031.22, + "end": 19031.43, + "probability": 0.0399 + }, + { + "start": 19032.11, + "end": 19032.72, + "probability": 0.4123 + }, + { + "start": 19033.9, + "end": 19034.86, + "probability": 0.6092 + }, + { + "start": 19035.0, + "end": 19038.54, + "probability": 0.9813 + }, + { + "start": 19038.6, + "end": 19039.76, + "probability": 0.4895 + }, + { + "start": 19039.96, + "end": 19041.14, + "probability": 0.7765 + }, + { + "start": 19041.3, + "end": 19042.9, + "probability": 0.9161 + }, + { + "start": 19043.02, + "end": 19044.36, + "probability": 0.4424 + }, + { + "start": 19044.74, + "end": 19046.3, + "probability": 0.8342 + }, + { + "start": 19046.42, + "end": 19054.08, + "probability": 0.8333 + }, + { + "start": 19055.02, + "end": 19056.34, + "probability": 0.039 + }, + { + "start": 19056.34, + "end": 19056.38, + "probability": 0.2341 + }, + { + "start": 19056.58, + "end": 19057.1, + "probability": 0.5396 + }, + { + "start": 19058.65, + "end": 19059.96, + "probability": 0.6666 + }, + { + "start": 19060.04, + "end": 19062.02, + "probability": 0.7462 + }, + { + "start": 19062.12, + "end": 19063.68, + "probability": 0.8929 + }, + { + "start": 19064.54, + "end": 19065.88, + "probability": 0.4678 + }, + { + "start": 19065.9, + "end": 19070.58, + "probability": 0.9729 + }, + { + "start": 19071.1, + "end": 19073.04, + "probability": 0.9474 + }, + { + "start": 19073.46, + "end": 19075.82, + "probability": 0.9854 + }, + { + "start": 19076.22, + "end": 19078.32, + "probability": 0.9741 + }, + { + "start": 19078.98, + "end": 19079.02, + "probability": 0.0004 + }, + { + "start": 19079.02, + "end": 19081.5, + "probability": 0.9839 + }, + { + "start": 19081.64, + "end": 19082.88, + "probability": 0.3996 + }, + { + "start": 19082.88, + "end": 19082.88, + "probability": 0.3084 + }, + { + "start": 19082.88, + "end": 19082.95, + "probability": 0.1449 + }, + { + "start": 19083.76, + "end": 19084.6, + "probability": 0.1908 + }, + { + "start": 19084.6, + "end": 19087.94, + "probability": 0.8532 + }, + { + "start": 19087.94, + "end": 19088.56, + "probability": 0.1595 + }, + { + "start": 19088.66, + "end": 19092.4, + "probability": 0.9442 + }, + { + "start": 19092.96, + "end": 19095.36, + "probability": 0.5286 + }, + { + "start": 19095.42, + "end": 19096.48, + "probability": 0.8095 + }, + { + "start": 19097.0, + "end": 19097.84, + "probability": 0.4301 + }, + { + "start": 19097.92, + "end": 19098.62, + "probability": 0.308 + }, + { + "start": 19098.66, + "end": 19100.08, + "probability": 0.9503 + }, + { + "start": 19100.22, + "end": 19100.82, + "probability": 0.841 + }, + { + "start": 19101.4, + "end": 19103.1, + "probability": 0.9359 + }, + { + "start": 19103.83, + "end": 19104.32, + "probability": 0.0062 + }, + { + "start": 19104.32, + "end": 19105.72, + "probability": 0.8675 + }, + { + "start": 19106.58, + "end": 19106.82, + "probability": 0.7225 + }, + { + "start": 19106.9, + "end": 19109.8, + "probability": 0.9847 + }, + { + "start": 19109.94, + "end": 19112.3, + "probability": 0.9817 + }, + { + "start": 19112.38, + "end": 19115.2, + "probability": 0.9893 + }, + { + "start": 19115.28, + "end": 19115.82, + "probability": 0.8148 + }, + { + "start": 19116.1, + "end": 19118.98, + "probability": 0.8343 + }, + { + "start": 19119.78, + "end": 19120.38, + "probability": 0.6625 + }, + { + "start": 19120.4, + "end": 19122.9, + "probability": 0.0534 + }, + { + "start": 19125.03, + "end": 19127.1, + "probability": 0.6761 + }, + { + "start": 19127.9, + "end": 19133.72, + "probability": 0.9788 + }, + { + "start": 19133.88, + "end": 19134.68, + "probability": 0.5659 + }, + { + "start": 19135.2, + "end": 19137.46, + "probability": 0.8054 + }, + { + "start": 19138.7, + "end": 19141.76, + "probability": 0.9533 + }, + { + "start": 19141.98, + "end": 19144.7, + "probability": 0.557 + }, + { + "start": 19144.7, + "end": 19147.35, + "probability": 0.8975 + }, + { + "start": 19148.1, + "end": 19148.4, + "probability": 0.7379 + }, + { + "start": 19148.46, + "end": 19151.56, + "probability": 0.9126 + }, + { + "start": 19151.78, + "end": 19153.76, + "probability": 0.9984 + }, + { + "start": 19154.12, + "end": 19155.24, + "probability": 0.912 + }, + { + "start": 19157.1, + "end": 19160.34, + "probability": 0.5632 + }, + { + "start": 19162.14, + "end": 19162.54, + "probability": 0.8071 + }, + { + "start": 19166.3, + "end": 19168.2, + "probability": 0.0976 + }, + { + "start": 19168.3, + "end": 19168.62, + "probability": 0.3246 + }, + { + "start": 19168.86, + "end": 19168.98, + "probability": 0.8594 + }, + { + "start": 19169.12, + "end": 19169.86, + "probability": 0.999 + }, + { + "start": 19170.1, + "end": 19172.72, + "probability": 0.9866 + }, + { + "start": 19172.98, + "end": 19177.44, + "probability": 0.6904 + }, + { + "start": 19178.08, + "end": 19180.06, + "probability": 0.037 + }, + { + "start": 19180.06, + "end": 19180.96, + "probability": 0.0658 + }, + { + "start": 19181.18, + "end": 19184.54, + "probability": 0.2413 + }, + { + "start": 19186.26, + "end": 19187.06, + "probability": 0.9717 + }, + { + "start": 19187.82, + "end": 19190.72, + "probability": 0.9352 + }, + { + "start": 19191.44, + "end": 19193.36, + "probability": 0.998 + }, + { + "start": 19193.44, + "end": 19193.56, + "probability": 0.0715 + }, + { + "start": 19193.6, + "end": 19194.06, + "probability": 0.7283 + }, + { + "start": 19194.78, + "end": 19196.58, + "probability": 0.0839 + }, + { + "start": 19197.61, + "end": 19201.1, + "probability": 0.998 + }, + { + "start": 19201.47, + "end": 19203.62, + "probability": 0.942 + }, + { + "start": 19203.74, + "end": 19204.58, + "probability": 0.4137 + }, + { + "start": 19204.92, + "end": 19205.08, + "probability": 0.4926 + }, + { + "start": 19205.16, + "end": 19205.56, + "probability": 0.8277 + }, + { + "start": 19205.58, + "end": 19206.4, + "probability": 0.8483 + }, + { + "start": 19206.44, + "end": 19207.58, + "probability": 0.972 + }, + { + "start": 19208.72, + "end": 19217.54, + "probability": 0.9884 + }, + { + "start": 19217.62, + "end": 19218.78, + "probability": 0.8335 + }, + { + "start": 19219.3, + "end": 19221.96, + "probability": 0.8824 + }, + { + "start": 19222.1, + "end": 19225.94, + "probability": 0.9952 + }, + { + "start": 19225.94, + "end": 19230.98, + "probability": 0.9993 + }, + { + "start": 19231.52, + "end": 19231.88, + "probability": 0.666 + }, + { + "start": 19231.98, + "end": 19234.04, + "probability": 0.9962 + }, + { + "start": 19234.42, + "end": 19237.92, + "probability": 0.9617 + }, + { + "start": 19238.4, + "end": 19240.54, + "probability": 0.994 + }, + { + "start": 19240.54, + "end": 19243.32, + "probability": 0.9976 + }, + { + "start": 19244.68, + "end": 19246.76, + "probability": 0.9734 + }, + { + "start": 19246.86, + "end": 19247.92, + "probability": 0.8719 + }, + { + "start": 19247.98, + "end": 19250.3, + "probability": 0.8944 + }, + { + "start": 19251.0, + "end": 19252.02, + "probability": 0.847 + }, + { + "start": 19252.08, + "end": 19259.6, + "probability": 0.9659 + }, + { + "start": 19259.8, + "end": 19261.66, + "probability": 0.9741 + }, + { + "start": 19261.88, + "end": 19262.72, + "probability": 0.9337 + }, + { + "start": 19262.9, + "end": 19265.96, + "probability": 0.9745 + }, + { + "start": 19266.04, + "end": 19268.1, + "probability": 0.9973 + }, + { + "start": 19268.81, + "end": 19271.56, + "probability": 0.8048 + }, + { + "start": 19271.74, + "end": 19271.74, + "probability": 0.675 + }, + { + "start": 19271.74, + "end": 19273.6, + "probability": 0.9931 + }, + { + "start": 19274.32, + "end": 19278.82, + "probability": 0.6344 + }, + { + "start": 19278.94, + "end": 19279.69, + "probability": 0.8729 + }, + { + "start": 19279.88, + "end": 19283.5, + "probability": 0.991 + }, + { + "start": 19284.02, + "end": 19287.46, + "probability": 0.8337 + }, + { + "start": 19288.74, + "end": 19292.08, + "probability": 0.9977 + }, + { + "start": 19292.08, + "end": 19296.58, + "probability": 0.967 + }, + { + "start": 19296.76, + "end": 19297.28, + "probability": 0.6509 + }, + { + "start": 19297.7, + "end": 19298.76, + "probability": 0.9305 + }, + { + "start": 19299.4, + "end": 19300.12, + "probability": 0.9776 + }, + { + "start": 19300.48, + "end": 19300.7, + "probability": 0.6457 + }, + { + "start": 19301.52, + "end": 19303.23, + "probability": 0.9065 + }, + { + "start": 19303.42, + "end": 19306.03, + "probability": 0.7017 + }, + { + "start": 19306.42, + "end": 19308.2, + "probability": 0.9795 + }, + { + "start": 19310.98, + "end": 19311.82, + "probability": 0.6637 + }, + { + "start": 19311.88, + "end": 19314.72, + "probability": 0.9677 + }, + { + "start": 19314.82, + "end": 19315.4, + "probability": 0.6614 + }, + { + "start": 19315.4, + "end": 19316.66, + "probability": 0.7698 + }, + { + "start": 19317.06, + "end": 19321.06, + "probability": 0.6173 + }, + { + "start": 19322.38, + "end": 19323.12, + "probability": 0.7163 + }, + { + "start": 19324.12, + "end": 19328.96, + "probability": 0.71 + }, + { + "start": 19330.64, + "end": 19333.08, + "probability": 0.7394 + }, + { + "start": 19333.14, + "end": 19334.3, + "probability": 0.9938 + }, + { + "start": 19337.06, + "end": 19340.96, + "probability": 0.7421 + }, + { + "start": 19341.04, + "end": 19344.16, + "probability": 0.9727 + }, + { + "start": 19344.36, + "end": 19345.74, + "probability": 0.9814 + }, + { + "start": 19346.08, + "end": 19351.52, + "probability": 0.9345 + }, + { + "start": 19351.52, + "end": 19356.28, + "probability": 0.9517 + }, + { + "start": 19356.74, + "end": 19359.72, + "probability": 0.5764 + }, + { + "start": 19359.96, + "end": 19361.28, + "probability": 0.9062 + }, + { + "start": 19362.02, + "end": 19362.42, + "probability": 0.6083 + }, + { + "start": 19362.58, + "end": 19366.2, + "probability": 0.9763 + }, + { + "start": 19366.72, + "end": 19367.64, + "probability": 0.9293 + }, + { + "start": 19367.82, + "end": 19368.57, + "probability": 0.9685 + }, + { + "start": 19369.46, + "end": 19370.97, + "probability": 0.9521 + }, + { + "start": 19371.86, + "end": 19375.8, + "probability": 0.9929 + }, + { + "start": 19376.04, + "end": 19380.16, + "probability": 0.9006 + }, + { + "start": 19380.16, + "end": 19385.08, + "probability": 0.9609 + }, + { + "start": 19385.6, + "end": 19388.26, + "probability": 0.9933 + }, + { + "start": 19388.84, + "end": 19391.38, + "probability": 0.9542 + }, + { + "start": 19392.04, + "end": 19394.78, + "probability": 0.9946 + }, + { + "start": 19395.38, + "end": 19399.27, + "probability": 0.9805 + }, + { + "start": 19399.86, + "end": 19402.6, + "probability": 0.9263 + }, + { + "start": 19402.88, + "end": 19403.3, + "probability": 0.7008 + }, + { + "start": 19403.88, + "end": 19404.3, + "probability": 0.7391 + }, + { + "start": 19404.86, + "end": 19409.58, + "probability": 0.885 + }, + { + "start": 19410.1, + "end": 19410.2, + "probability": 0.4028 + }, + { + "start": 19410.2, + "end": 19411.42, + "probability": 0.8428 + }, + { + "start": 19411.58, + "end": 19412.28, + "probability": 0.99 + }, + { + "start": 19412.34, + "end": 19413.02, + "probability": 0.7703 + }, + { + "start": 19413.74, + "end": 19418.39, + "probability": 0.9701 + }, + { + "start": 19418.64, + "end": 19423.02, + "probability": 0.8812 + }, + { + "start": 19424.14, + "end": 19424.6, + "probability": 0.6544 + }, + { + "start": 19425.2, + "end": 19425.2, + "probability": 0.6248 + }, + { + "start": 19425.2, + "end": 19429.12, + "probability": 0.2816 + }, + { + "start": 19429.64, + "end": 19430.86, + "probability": 0.187 + }, + { + "start": 19430.86, + "end": 19430.9, + "probability": 0.4708 + }, + { + "start": 19431.0, + "end": 19433.7, + "probability": 0.8458 + }, + { + "start": 19434.2, + "end": 19434.86, + "probability": 0.6904 + }, + { + "start": 19435.54, + "end": 19436.5, + "probability": 0.5765 + }, + { + "start": 19436.82, + "end": 19436.82, + "probability": 0.6034 + }, + { + "start": 19437.04, + "end": 19437.48, + "probability": 0.6573 + }, + { + "start": 19437.6, + "end": 19439.26, + "probability": 0.873 + }, + { + "start": 19440.24, + "end": 19441.26, + "probability": 0.6349 + }, + { + "start": 19441.36, + "end": 19443.76, + "probability": 0.7664 + }, + { + "start": 19444.2, + "end": 19447.42, + "probability": 0.9562 + }, + { + "start": 19447.66, + "end": 19449.72, + "probability": 0.2819 + }, + { + "start": 19451.0, + "end": 19452.6, + "probability": 0.1823 + }, + { + "start": 19471.54, + "end": 19471.84, + "probability": 0.6428 + }, + { + "start": 19472.62, + "end": 19476.58, + "probability": 0.634 + }, + { + "start": 19477.14, + "end": 19479.24, + "probability": 0.9478 + }, + { + "start": 19479.78, + "end": 19482.34, + "probability": 0.9253 + }, + { + "start": 19483.52, + "end": 19484.92, + "probability": 0.9182 + }, + { + "start": 19485.52, + "end": 19487.36, + "probability": 0.5059 + }, + { + "start": 19489.28, + "end": 19491.86, + "probability": 0.8597 + }, + { + "start": 19492.62, + "end": 19493.36, + "probability": 0.018 + }, + { + "start": 19493.36, + "end": 19493.36, + "probability": 0.2575 + }, + { + "start": 19493.36, + "end": 19493.36, + "probability": 0.2396 + }, + { + "start": 19493.36, + "end": 19493.36, + "probability": 0.0973 + }, + { + "start": 19493.36, + "end": 19495.98, + "probability": 0.7315 + }, + { + "start": 19496.0, + "end": 19496.74, + "probability": 0.4863 + }, + { + "start": 19497.16, + "end": 19498.66, + "probability": 0.9476 + }, + { + "start": 19505.44, + "end": 19506.04, + "probability": 0.7331 + }, + { + "start": 19508.18, + "end": 19513.24, + "probability": 0.8176 + }, + { + "start": 19514.46, + "end": 19517.04, + "probability": 0.9914 + }, + { + "start": 19517.18, + "end": 19519.4, + "probability": 0.502 + }, + { + "start": 19520.78, + "end": 19521.28, + "probability": 0.8867 + }, + { + "start": 19521.34, + "end": 19524.74, + "probability": 0.9906 + }, + { + "start": 19524.74, + "end": 19528.5, + "probability": 0.9992 + }, + { + "start": 19529.34, + "end": 19530.24, + "probability": 0.8621 + }, + { + "start": 19531.4, + "end": 19532.48, + "probability": 0.3639 + }, + { + "start": 19533.86, + "end": 19535.02, + "probability": 0.6518 + }, + { + "start": 19536.06, + "end": 19537.84, + "probability": 0.7919 + }, + { + "start": 19538.78, + "end": 19540.02, + "probability": 0.7924 + }, + { + "start": 19541.0, + "end": 19542.02, + "probability": 0.9377 + }, + { + "start": 19543.5, + "end": 19544.96, + "probability": 0.702 + }, + { + "start": 19545.58, + "end": 19546.94, + "probability": 0.8774 + }, + { + "start": 19547.46, + "end": 19549.26, + "probability": 0.7898 + }, + { + "start": 19549.88, + "end": 19551.26, + "probability": 0.9584 + }, + { + "start": 19551.86, + "end": 19553.44, + "probability": 0.9116 + }, + { + "start": 19554.12, + "end": 19555.3, + "probability": 0.883 + }, + { + "start": 19555.86, + "end": 19557.24, + "probability": 0.5377 + }, + { + "start": 19558.02, + "end": 19559.62, + "probability": 0.7857 + }, + { + "start": 19560.5, + "end": 19561.76, + "probability": 0.9779 + }, + { + "start": 19562.76, + "end": 19564.12, + "probability": 0.668 + }, + { + "start": 19565.0, + "end": 19566.8, + "probability": 0.9394 + }, + { + "start": 19567.66, + "end": 19569.24, + "probability": 0.5738 + }, + { + "start": 19570.14, + "end": 19571.52, + "probability": 0.6666 + }, + { + "start": 19572.34, + "end": 19573.12, + "probability": 0.6714 + }, + { + "start": 19574.44, + "end": 19575.7, + "probability": 0.9164 + }, + { + "start": 19576.4, + "end": 19577.8, + "probability": 0.9663 + }, + { + "start": 19578.48, + "end": 19579.98, + "probability": 0.9801 + }, + { + "start": 19580.68, + "end": 19582.08, + "probability": 0.9847 + }, + { + "start": 19582.66, + "end": 19584.38, + "probability": 0.6508 + }, + { + "start": 19584.92, + "end": 19586.62, + "probability": 0.9889 + }, + { + "start": 19587.5, + "end": 19589.2, + "probability": 0.6836 + }, + { + "start": 19589.84, + "end": 19591.5, + "probability": 0.9683 + }, + { + "start": 19592.16, + "end": 19594.7, + "probability": 0.9322 + }, + { + "start": 19595.98, + "end": 19599.56, + "probability": 0.411 + }, + { + "start": 19600.5, + "end": 19603.52, + "probability": 0.3206 + }, + { + "start": 19603.82, + "end": 19605.66, + "probability": 0.9862 + }, + { + "start": 19605.66, + "end": 19609.78, + "probability": 0.9259 + }, + { + "start": 19610.5, + "end": 19613.44, + "probability": 0.8132 + }, + { + "start": 19614.74, + "end": 19615.74, + "probability": 0.8193 + }, + { + "start": 19615.96, + "end": 19619.66, + "probability": 0.9773 + }, + { + "start": 19620.36, + "end": 19620.8, + "probability": 0.7418 + }, + { + "start": 19621.66, + "end": 19622.01, + "probability": 0.541 + }, + { + "start": 19622.88, + "end": 19627.64, + "probability": 0.993 + }, + { + "start": 19628.28, + "end": 19629.0, + "probability": 0.9763 + }, + { + "start": 19629.72, + "end": 19632.62, + "probability": 0.4782 + }, + { + "start": 19633.24, + "end": 19637.06, + "probability": 0.9549 + }, + { + "start": 19638.02, + "end": 19639.44, + "probability": 0.6975 + }, + { + "start": 19640.02, + "end": 19640.98, + "probability": 0.8784 + }, + { + "start": 19641.8, + "end": 19643.8, + "probability": 0.9674 + }, + { + "start": 19644.22, + "end": 19646.02, + "probability": 0.9271 + }, + { + "start": 19646.1, + "end": 19648.66, + "probability": 0.7351 + }, + { + "start": 19648.94, + "end": 19649.58, + "probability": 0.6289 + }, + { + "start": 19650.8, + "end": 19652.1, + "probability": 0.9805 + }, + { + "start": 19652.74, + "end": 19654.34, + "probability": 0.9015 + }, + { + "start": 19655.04, + "end": 19655.44, + "probability": 0.7091 + }, + { + "start": 19656.16, + "end": 19657.32, + "probability": 0.9299 + }, + { + "start": 19657.86, + "end": 19660.32, + "probability": 0.9883 + }, + { + "start": 19660.54, + "end": 19660.98, + "probability": 0.8617 + }, + { + "start": 19661.78, + "end": 19665.42, + "probability": 0.9736 + }, + { + "start": 19666.0, + "end": 19668.14, + "probability": 0.9918 + }, + { + "start": 19668.98, + "end": 19670.38, + "probability": 0.8562 + }, + { + "start": 19670.44, + "end": 19671.26, + "probability": 0.969 + }, + { + "start": 19671.44, + "end": 19672.6, + "probability": 0.8286 + }, + { + "start": 19675.06, + "end": 19675.88, + "probability": 0.9404 + }, + { + "start": 19676.42, + "end": 19678.76, + "probability": 0.9954 + }, + { + "start": 19679.34, + "end": 19681.74, + "probability": 0.9956 + }, + { + "start": 19682.32, + "end": 19684.36, + "probability": 0.9971 + }, + { + "start": 19685.04, + "end": 19687.56, + "probability": 0.9855 + }, + { + "start": 19688.28, + "end": 19689.42, + "probability": 0.9645 + }, + { + "start": 19689.52, + "end": 19692.52, + "probability": 0.9968 + }, + { + "start": 19693.04, + "end": 19694.12, + "probability": 0.9761 + }, + { + "start": 19695.12, + "end": 19695.64, + "probability": 0.8086 + }, + { + "start": 19696.38, + "end": 19699.23, + "probability": 0.9966 + }, + { + "start": 19700.02, + "end": 19701.3, + "probability": 0.9628 + }, + { + "start": 19703.38, + "end": 19705.32, + "probability": 0.8631 + }, + { + "start": 19708.78, + "end": 19711.36, + "probability": 0.9053 + }, + { + "start": 19712.44, + "end": 19714.92, + "probability": 0.8848 + }, + { + "start": 19715.96, + "end": 19716.7, + "probability": 0.6417 + }, + { + "start": 19716.8, + "end": 19722.24, + "probability": 0.9294 + }, + { + "start": 19723.26, + "end": 19724.64, + "probability": 0.3906 + }, + { + "start": 19726.24, + "end": 19726.7, + "probability": 0.8093 + }, + { + "start": 19728.44, + "end": 19729.62, + "probability": 0.9977 + }, + { + "start": 19731.16, + "end": 19731.58, + "probability": 0.9803 + }, + { + "start": 19732.34, + "end": 19733.58, + "probability": 0.999 + }, + { + "start": 19734.94, + "end": 19735.46, + "probability": 0.9896 + }, + { + "start": 19736.36, + "end": 19737.58, + "probability": 0.9993 + }, + { + "start": 19739.3, + "end": 19740.16, + "probability": 0.998 + }, + { + "start": 19741.26, + "end": 19742.07, + "probability": 0.8113 + }, + { + "start": 19743.1, + "end": 19744.04, + "probability": 0.7092 + }, + { + "start": 19745.14, + "end": 19747.42, + "probability": 0.9756 + }, + { + "start": 19747.42, + "end": 19750.4, + "probability": 0.9949 + }, + { + "start": 19750.86, + "end": 19752.34, + "probability": 0.994 + }, + { + "start": 19752.43, + "end": 19753.22, + "probability": 0.8775 + }, + { + "start": 19753.34, + "end": 19755.88, + "probability": 0.9478 + }, + { + "start": 19756.46, + "end": 19757.48, + "probability": 0.766 + }, + { + "start": 19757.62, + "end": 19758.54, + "probability": 0.8201 + }, + { + "start": 19758.78, + "end": 19759.2, + "probability": 0.7755 + }, + { + "start": 19759.86, + "end": 19761.64, + "probability": 0.9861 + }, + { + "start": 19761.84, + "end": 19764.6, + "probability": 0.5555 + }, + { + "start": 19764.6, + "end": 19764.95, + "probability": 0.576 + }, + { + "start": 19766.88, + "end": 19767.82, + "probability": 0.9961 + }, + { + "start": 19767.92, + "end": 19768.5, + "probability": 0.8438 + }, + { + "start": 19768.54, + "end": 19768.98, + "probability": 0.602 + }, + { + "start": 19769.02, + "end": 19769.9, + "probability": 0.8363 + }, + { + "start": 19769.96, + "end": 19771.88, + "probability": 0.9033 + }, + { + "start": 19773.38, + "end": 19776.08, + "probability": 0.9918 + }, + { + "start": 19776.36, + "end": 19776.66, + "probability": 0.532 + }, + { + "start": 19776.7, + "end": 19779.7, + "probability": 0.984 + }, + { + "start": 19779.72, + "end": 19781.44, + "probability": 0.5483 + }, + { + "start": 19781.5, + "end": 19785.16, + "probability": 0.8265 + }, + { + "start": 19785.54, + "end": 19786.32, + "probability": 0.7357 + }, + { + "start": 19786.36, + "end": 19789.18, + "probability": 0.9655 + }, + { + "start": 19789.84, + "end": 19793.16, + "probability": 0.7876 + }, + { + "start": 19794.12, + "end": 19797.32, + "probability": 0.9674 + }, + { + "start": 19798.16, + "end": 19798.98, + "probability": 0.5964 + }, + { + "start": 19800.12, + "end": 19801.7, + "probability": 0.7813 + }, + { + "start": 19801.86, + "end": 19802.06, + "probability": 0.8796 + }, + { + "start": 19803.54, + "end": 19805.61, + "probability": 0.9438 + }, + { + "start": 19826.9, + "end": 19829.52, + "probability": 0.3516 + }, + { + "start": 19830.5, + "end": 19834.36, + "probability": 0.7523 + }, + { + "start": 19836.86, + "end": 19838.86, + "probability": 0.958 + }, + { + "start": 19840.34, + "end": 19844.16, + "probability": 0.9714 + }, + { + "start": 19846.04, + "end": 19849.9, + "probability": 0.8041 + }, + { + "start": 19851.16, + "end": 19852.54, + "probability": 0.7831 + }, + { + "start": 19854.16, + "end": 19857.52, + "probability": 0.9579 + }, + { + "start": 19860.2, + "end": 19863.8, + "probability": 0.8362 + }, + { + "start": 19864.12, + "end": 19867.4, + "probability": 0.7556 + }, + { + "start": 19869.16, + "end": 19872.24, + "probability": 0.7882 + }, + { + "start": 19872.8, + "end": 19875.84, + "probability": 0.9669 + }, + { + "start": 19877.34, + "end": 19881.16, + "probability": 0.959 + }, + { + "start": 19882.8, + "end": 19884.64, + "probability": 0.9924 + }, + { + "start": 19885.14, + "end": 19887.64, + "probability": 0.9945 + }, + { + "start": 19888.06, + "end": 19892.36, + "probability": 0.9387 + }, + { + "start": 19894.54, + "end": 19898.84, + "probability": 0.9886 + }, + { + "start": 19900.16, + "end": 19902.97, + "probability": 0.9317 + }, + { + "start": 19903.66, + "end": 19904.98, + "probability": 0.9224 + }, + { + "start": 19905.64, + "end": 19906.98, + "probability": 0.9965 + }, + { + "start": 19907.96, + "end": 19909.26, + "probability": 0.782 + }, + { + "start": 19909.28, + "end": 19910.56, + "probability": 0.8271 + }, + { + "start": 19911.06, + "end": 19913.22, + "probability": 0.9588 + }, + { + "start": 19914.46, + "end": 19915.88, + "probability": 0.8109 + }, + { + "start": 19916.42, + "end": 19919.12, + "probability": 0.6129 + }, + { + "start": 19920.34, + "end": 19924.58, + "probability": 0.9692 + }, + { + "start": 19924.72, + "end": 19926.38, + "probability": 0.6419 + }, + { + "start": 19926.98, + "end": 19931.52, + "probability": 0.9975 + }, + { + "start": 19931.7, + "end": 19933.9, + "probability": 0.9886 + }, + { + "start": 19935.3, + "end": 19937.52, + "probability": 0.9977 + }, + { + "start": 19937.76, + "end": 19941.76, + "probability": 0.991 + }, + { + "start": 19943.1, + "end": 19945.02, + "probability": 0.9867 + }, + { + "start": 19946.38, + "end": 19948.66, + "probability": 0.9771 + }, + { + "start": 19948.86, + "end": 19951.25, + "probability": 0.971 + }, + { + "start": 19952.06, + "end": 19952.06, + "probability": 0.0148 + }, + { + "start": 19952.1, + "end": 19952.26, + "probability": 0.1461 + }, + { + "start": 19952.26, + "end": 19952.26, + "probability": 0.0766 + }, + { + "start": 19952.26, + "end": 19954.64, + "probability": 0.8405 + }, + { + "start": 19955.86, + "end": 19959.02, + "probability": 0.662 + }, + { + "start": 19960.04, + "end": 19960.67, + "probability": 0.5673 + }, + { + "start": 19961.4, + "end": 19965.0, + "probability": 0.8424 + }, + { + "start": 19965.18, + "end": 19966.46, + "probability": 0.9011 + }, + { + "start": 19966.72, + "end": 19969.96, + "probability": 0.8659 + }, + { + "start": 19970.58, + "end": 19973.14, + "probability": 0.9805 + }, + { + "start": 19973.7, + "end": 19975.5, + "probability": 0.9802 + }, + { + "start": 19976.26, + "end": 19978.88, + "probability": 0.9798 + }, + { + "start": 19978.91, + "end": 19984.72, + "probability": 0.9893 + }, + { + "start": 19985.12, + "end": 19986.92, + "probability": 0.9723 + }, + { + "start": 19987.54, + "end": 19990.3, + "probability": 0.9941 + }, + { + "start": 19990.8, + "end": 19991.42, + "probability": 0.8541 + }, + { + "start": 19991.78, + "end": 19994.08, + "probability": 0.934 + }, + { + "start": 19994.58, + "end": 19996.06, + "probability": 0.9122 + }, + { + "start": 19996.52, + "end": 19998.78, + "probability": 0.8547 + }, + { + "start": 19999.12, + "end": 20002.9, + "probability": 0.9927 + }, + { + "start": 20003.06, + "end": 20006.7, + "probability": 0.6897 + }, + { + "start": 20007.46, + "end": 20010.36, + "probability": 0.8238 + }, + { + "start": 20011.2, + "end": 20012.58, + "probability": 0.8711 + }, + { + "start": 20012.64, + "end": 20013.6, + "probability": 0.9639 + }, + { + "start": 20014.0, + "end": 20015.46, + "probability": 0.7294 + }, + { + "start": 20016.04, + "end": 20019.44, + "probability": 0.8547 + }, + { + "start": 20019.72, + "end": 20020.24, + "probability": 0.6646 + }, + { + "start": 20020.74, + "end": 20025.52, + "probability": 0.4063 + }, + { + "start": 20025.56, + "end": 20026.16, + "probability": 0.4995 + }, + { + "start": 20026.3, + "end": 20028.58, + "probability": 0.9724 + }, + { + "start": 20028.78, + "end": 20029.36, + "probability": 0.8444 + }, + { + "start": 20029.44, + "end": 20030.48, + "probability": 0.9043 + }, + { + "start": 20030.98, + "end": 20031.24, + "probability": 0.8221 + }, + { + "start": 20032.02, + "end": 20032.56, + "probability": 0.7737 + }, + { + "start": 20034.58, + "end": 20036.14, + "probability": 0.8988 + }, + { + "start": 20036.2, + "end": 20036.8, + "probability": 0.5251 + }, + { + "start": 20036.82, + "end": 20038.24, + "probability": 0.9264 + }, + { + "start": 20055.38, + "end": 20057.09, + "probability": 0.4313 + }, + { + "start": 20057.82, + "end": 20061.3, + "probability": 0.9843 + }, + { + "start": 20061.54, + "end": 20062.74, + "probability": 0.9045 + }, + { + "start": 20063.26, + "end": 20066.18, + "probability": 0.948 + }, + { + "start": 20066.34, + "end": 20067.12, + "probability": 0.9419 + }, + { + "start": 20067.26, + "end": 20067.5, + "probability": 0.7252 + }, + { + "start": 20068.06, + "end": 20070.66, + "probability": 0.9768 + }, + { + "start": 20071.64, + "end": 20072.48, + "probability": 0.696 + }, + { + "start": 20072.64, + "end": 20077.7, + "probability": 0.9103 + }, + { + "start": 20078.36, + "end": 20080.04, + "probability": 0.8924 + }, + { + "start": 20080.12, + "end": 20081.36, + "probability": 0.7898 + }, + { + "start": 20081.46, + "end": 20082.5, + "probability": 0.9482 + }, + { + "start": 20082.52, + "end": 20083.7, + "probability": 0.9492 + }, + { + "start": 20084.82, + "end": 20088.92, + "probability": 1.0 + }, + { + "start": 20088.92, + "end": 20092.0, + "probability": 0.9965 + }, + { + "start": 20092.06, + "end": 20092.32, + "probability": 0.9163 + }, + { + "start": 20092.38, + "end": 20094.38, + "probability": 0.9883 + }, + { + "start": 20095.04, + "end": 20095.26, + "probability": 0.9141 + }, + { + "start": 20095.34, + "end": 20097.18, + "probability": 0.9565 + }, + { + "start": 20097.62, + "end": 20098.27, + "probability": 0.8435 + }, + { + "start": 20099.84, + "end": 20102.24, + "probability": 0.8196 + }, + { + "start": 20102.68, + "end": 20105.88, + "probability": 0.8677 + }, + { + "start": 20106.2, + "end": 20107.46, + "probability": 0.6677 + }, + { + "start": 20107.54, + "end": 20108.22, + "probability": 0.819 + }, + { + "start": 20108.3, + "end": 20110.28, + "probability": 0.9711 + }, + { + "start": 20110.42, + "end": 20112.8, + "probability": 0.9637 + }, + { + "start": 20113.12, + "end": 20117.14, + "probability": 0.8865 + }, + { + "start": 20117.76, + "end": 20118.88, + "probability": 0.8164 + }, + { + "start": 20119.02, + "end": 20121.68, + "probability": 0.985 + }, + { + "start": 20121.82, + "end": 20123.24, + "probability": 0.921 + }, + { + "start": 20123.9, + "end": 20129.51, + "probability": 0.9838 + }, + { + "start": 20129.56, + "end": 20133.74, + "probability": 0.9481 + }, + { + "start": 20134.36, + "end": 20136.04, + "probability": 0.9526 + }, + { + "start": 20136.44, + "end": 20142.62, + "probability": 0.9062 + }, + { + "start": 20143.36, + "end": 20146.04, + "probability": 0.9729 + }, + { + "start": 20146.16, + "end": 20148.96, + "probability": 0.9952 + }, + { + "start": 20149.66, + "end": 20151.5, + "probability": 0.9046 + }, + { + "start": 20152.22, + "end": 20153.2, + "probability": 0.9796 + }, + { + "start": 20153.36, + "end": 20155.34, + "probability": 0.9955 + }, + { + "start": 20155.46, + "end": 20158.46, + "probability": 0.858 + }, + { + "start": 20158.46, + "end": 20161.52, + "probability": 0.9817 + }, + { + "start": 20162.92, + "end": 20168.66, + "probability": 0.9941 + }, + { + "start": 20168.78, + "end": 20171.7, + "probability": 0.9633 + }, + { + "start": 20171.86, + "end": 20173.24, + "probability": 0.7932 + }, + { + "start": 20173.82, + "end": 20175.68, + "probability": 0.9618 + }, + { + "start": 20176.16, + "end": 20179.64, + "probability": 0.9949 + }, + { + "start": 20180.2, + "end": 20185.22, + "probability": 0.9281 + }, + { + "start": 20185.76, + "end": 20189.52, + "probability": 0.9312 + }, + { + "start": 20189.7, + "end": 20193.1, + "probability": 0.9902 + }, + { + "start": 20194.48, + "end": 20195.52, + "probability": 0.8838 + }, + { + "start": 20195.58, + "end": 20196.06, + "probability": 0.9761 + }, + { + "start": 20196.2, + "end": 20198.32, + "probability": 0.7403 + }, + { + "start": 20198.74, + "end": 20201.04, + "probability": 0.8987 + }, + { + "start": 20201.26, + "end": 20202.88, + "probability": 0.8511 + }, + { + "start": 20203.3, + "end": 20207.08, + "probability": 0.9933 + }, + { + "start": 20208.16, + "end": 20214.12, + "probability": 0.9993 + }, + { + "start": 20214.56, + "end": 20217.72, + "probability": 0.9977 + }, + { + "start": 20218.22, + "end": 20219.84, + "probability": 0.8728 + }, + { + "start": 20219.9, + "end": 20223.6, + "probability": 0.9479 + }, + { + "start": 20224.3, + "end": 20225.42, + "probability": 0.7354 + }, + { + "start": 20225.88, + "end": 20232.7, + "probability": 0.9968 + }, + { + "start": 20233.22, + "end": 20239.3, + "probability": 0.9402 + }, + { + "start": 20239.76, + "end": 20241.82, + "probability": 0.9434 + }, + { + "start": 20242.52, + "end": 20244.32, + "probability": 0.8696 + }, + { + "start": 20244.72, + "end": 20246.02, + "probability": 0.9819 + }, + { + "start": 20246.42, + "end": 20248.44, + "probability": 0.9705 + }, + { + "start": 20249.28, + "end": 20252.46, + "probability": 0.923 + }, + { + "start": 20253.2, + "end": 20259.3, + "probability": 0.9569 + }, + { + "start": 20259.34, + "end": 20260.88, + "probability": 0.9958 + }, + { + "start": 20261.54, + "end": 20264.06, + "probability": 0.9869 + }, + { + "start": 20264.9, + "end": 20266.1, + "probability": 0.9371 + }, + { + "start": 20266.2, + "end": 20268.68, + "probability": 0.952 + }, + { + "start": 20269.54, + "end": 20270.34, + "probability": 0.9813 + }, + { + "start": 20270.5, + "end": 20270.76, + "probability": 0.4613 + }, + { + "start": 20270.78, + "end": 20271.2, + "probability": 0.9617 + }, + { + "start": 20271.24, + "end": 20273.96, + "probability": 0.7841 + }, + { + "start": 20275.0, + "end": 20280.52, + "probability": 0.8414 + }, + { + "start": 20280.6, + "end": 20281.42, + "probability": 0.9555 + }, + { + "start": 20281.6, + "end": 20281.8, + "probability": 0.7268 + }, + { + "start": 20281.8, + "end": 20281.92, + "probability": 0.728 + }, + { + "start": 20282.52, + "end": 20283.84, + "probability": 0.8811 + }, + { + "start": 20285.79, + "end": 20286.74, + "probability": 0.8615 + }, + { + "start": 20288.04, + "end": 20289.42, + "probability": 0.0161 + }, + { + "start": 20292.06, + "end": 20292.34, + "probability": 0.2485 + }, + { + "start": 20310.88, + "end": 20314.24, + "probability": 0.6333 + }, + { + "start": 20316.56, + "end": 20318.94, + "probability": 0.7459 + }, + { + "start": 20319.62, + "end": 20321.66, + "probability": 0.8882 + }, + { + "start": 20322.66, + "end": 20323.06, + "probability": 0.4874 + }, + { + "start": 20323.06, + "end": 20329.54, + "probability": 0.9015 + }, + { + "start": 20329.64, + "end": 20330.9, + "probability": 0.8214 + }, + { + "start": 20331.94, + "end": 20334.22, + "probability": 0.9886 + }, + { + "start": 20334.54, + "end": 20336.26, + "probability": 0.8657 + }, + { + "start": 20337.06, + "end": 20339.32, + "probability": 0.9833 + }, + { + "start": 20340.34, + "end": 20346.52, + "probability": 0.9381 + }, + { + "start": 20347.4, + "end": 20349.66, + "probability": 0.9395 + }, + { + "start": 20350.06, + "end": 20353.14, + "probability": 0.8011 + }, + { + "start": 20353.94, + "end": 20359.3, + "probability": 0.9792 + }, + { + "start": 20359.84, + "end": 20365.08, + "probability": 0.9782 + }, + { + "start": 20365.18, + "end": 20365.98, + "probability": 0.5444 + }, + { + "start": 20366.46, + "end": 20367.44, + "probability": 0.7724 + }, + { + "start": 20367.94, + "end": 20374.6, + "probability": 0.8016 + }, + { + "start": 20374.9, + "end": 20376.56, + "probability": 0.9792 + }, + { + "start": 20376.6, + "end": 20377.58, + "probability": 0.9698 + }, + { + "start": 20377.62, + "end": 20378.24, + "probability": 0.9755 + }, + { + "start": 20378.96, + "end": 20383.2, + "probability": 0.9808 + }, + { + "start": 20383.38, + "end": 20385.58, + "probability": 0.7744 + }, + { + "start": 20386.2, + "end": 20391.66, + "probability": 0.9583 + }, + { + "start": 20393.1, + "end": 20400.38, + "probability": 0.0497 + }, + { + "start": 20400.38, + "end": 20404.9, + "probability": 0.3198 + }, + { + "start": 20407.32, + "end": 20407.54, + "probability": 0.0563 + }, + { + "start": 20439.24, + "end": 20442.58, + "probability": 0.0489 + }, + { + "start": 20443.22, + "end": 20443.5, + "probability": 0.1461 + }, + { + "start": 20443.5, + "end": 20444.3, + "probability": 0.0091 + }, + { + "start": 20499.64, + "end": 20502.88, + "probability": 0.8645 + }, + { + "start": 20503.16, + "end": 20507.64, + "probability": 0.9799 + }, + { + "start": 20507.98, + "end": 20512.78, + "probability": 0.7656 + }, + { + "start": 20513.6, + "end": 20514.72, + "probability": 0.8644 + }, + { + "start": 20514.88, + "end": 20516.92, + "probability": 0.936 + }, + { + "start": 20517.06, + "end": 20519.86, + "probability": 0.6649 + }, + { + "start": 20520.04, + "end": 20522.44, + "probability": 0.7995 + }, + { + "start": 20522.58, + "end": 20524.92, + "probability": 0.8918 + }, + { + "start": 20525.62, + "end": 20531.22, + "probability": 0.9946 + }, + { + "start": 20531.38, + "end": 20534.1, + "probability": 0.932 + }, + { + "start": 20534.42, + "end": 20536.86, + "probability": 0.9922 + }, + { + "start": 20537.2, + "end": 20537.92, + "probability": 0.6495 + }, + { + "start": 20538.04, + "end": 20542.84, + "probability": 0.9677 + }, + { + "start": 20543.26, + "end": 20543.82, + "probability": 0.8587 + }, + { + "start": 20544.24, + "end": 20544.66, + "probability": 0.7448 + }, + { + "start": 20544.96, + "end": 20545.52, + "probability": 0.8306 + }, + { + "start": 20545.98, + "end": 20546.32, + "probability": 0.0589 + }, + { + "start": 20546.36, + "end": 20549.74, + "probability": 0.7541 + }, + { + "start": 20550.24, + "end": 20554.82, + "probability": 0.9977 + }, + { + "start": 20555.22, + "end": 20555.86, + "probability": 0.8726 + }, + { + "start": 20555.92, + "end": 20556.02, + "probability": 0.6493 + }, + { + "start": 20556.28, + "end": 20560.48, + "probability": 0.9953 + }, + { + "start": 20560.48, + "end": 20565.98, + "probability": 0.9983 + }, + { + "start": 20566.02, + "end": 20566.5, + "probability": 0.3453 + }, + { + "start": 20566.78, + "end": 20567.56, + "probability": 0.8395 + }, + { + "start": 20567.7, + "end": 20568.1, + "probability": 0.5812 + }, + { + "start": 20569.2, + "end": 20569.2, + "probability": 0.2655 + }, + { + "start": 20569.3, + "end": 20571.38, + "probability": 0.9642 + }, + { + "start": 20588.5, + "end": 20591.2, + "probability": 0.7173 + }, + { + "start": 20592.46, + "end": 20597.18, + "probability": 0.9551 + }, + { + "start": 20598.54, + "end": 20601.68, + "probability": 0.9734 + }, + { + "start": 20606.32, + "end": 20611.5, + "probability": 0.8417 + }, + { + "start": 20612.26, + "end": 20616.5, + "probability": 0.994 + }, + { + "start": 20616.74, + "end": 20617.12, + "probability": 0.7869 + }, + { + "start": 20617.62, + "end": 20619.92, + "probability": 0.9408 + }, + { + "start": 20620.32, + "end": 20625.46, + "probability": 0.988 + }, + { + "start": 20625.6, + "end": 20627.26, + "probability": 0.366 + }, + { + "start": 20627.3, + "end": 20628.8, + "probability": 0.996 + }, + { + "start": 20629.92, + "end": 20635.34, + "probability": 0.8243 + }, + { + "start": 20635.98, + "end": 20638.5, + "probability": 0.9932 + }, + { + "start": 20639.02, + "end": 20640.12, + "probability": 0.9875 + }, + { + "start": 20640.8, + "end": 20642.06, + "probability": 0.7503 + }, + { + "start": 20644.12, + "end": 20646.54, + "probability": 0.9215 + }, + { + "start": 20646.8, + "end": 20647.92, + "probability": 0.6326 + }, + { + "start": 20649.12, + "end": 20653.26, + "probability": 0.8779 + }, + { + "start": 20654.66, + "end": 20655.94, + "probability": 0.8526 + }, + { + "start": 20656.04, + "end": 20657.46, + "probability": 0.841 + }, + { + "start": 20657.5, + "end": 20659.46, + "probability": 0.9903 + }, + { + "start": 20659.7, + "end": 20660.42, + "probability": 0.9858 + }, + { + "start": 20662.78, + "end": 20665.34, + "probability": 0.9909 + }, + { + "start": 20667.0, + "end": 20667.1, + "probability": 0.4999 + }, + { + "start": 20667.1, + "end": 20667.58, + "probability": 0.6727 + }, + { + "start": 20668.84, + "end": 20671.52, + "probability": 0.8145 + }, + { + "start": 20672.4, + "end": 20673.83, + "probability": 0.743 + }, + { + "start": 20674.78, + "end": 20676.46, + "probability": 0.9948 + }, + { + "start": 20677.32, + "end": 20682.34, + "probability": 0.9729 + }, + { + "start": 20685.72, + "end": 20689.14, + "probability": 0.6554 + }, + { + "start": 20689.32, + "end": 20691.82, + "probability": 0.9734 + }, + { + "start": 20693.84, + "end": 20694.28, + "probability": 0.8255 + }, + { + "start": 20695.94, + "end": 20697.78, + "probability": 0.9744 + }, + { + "start": 20698.06, + "end": 20699.84, + "probability": 0.9824 + }, + { + "start": 20700.1, + "end": 20701.96, + "probability": 0.9934 + }, + { + "start": 20704.86, + "end": 20707.02, + "probability": 0.8888 + }, + { + "start": 20707.4, + "end": 20708.78, + "probability": 0.3688 + }, + { + "start": 20709.14, + "end": 20710.08, + "probability": 0.9739 + }, + { + "start": 20710.26, + "end": 20710.74, + "probability": 0.99 + }, + { + "start": 20710.9, + "end": 20712.14, + "probability": 0.8171 + }, + { + "start": 20715.32, + "end": 20715.9, + "probability": 0.8559 + }, + { + "start": 20716.72, + "end": 20717.34, + "probability": 0.972 + }, + { + "start": 20717.86, + "end": 20719.88, + "probability": 0.9737 + }, + { + "start": 20720.56, + "end": 20721.86, + "probability": 0.9912 + }, + { + "start": 20722.48, + "end": 20723.44, + "probability": 0.4195 + }, + { + "start": 20724.58, + "end": 20725.1, + "probability": 0.9904 + }, + { + "start": 20726.62, + "end": 20727.96, + "probability": 0.9609 + }, + { + "start": 20729.34, + "end": 20729.62, + "probability": 0.9466 + }, + { + "start": 20731.06, + "end": 20732.76, + "probability": 0.9716 + }, + { + "start": 20732.84, + "end": 20735.58, + "probability": 0.8707 + }, + { + "start": 20737.02, + "end": 20737.88, + "probability": 0.9877 + }, + { + "start": 20738.54, + "end": 20738.9, + "probability": 0.7757 + }, + { + "start": 20738.98, + "end": 20740.39, + "probability": 0.8168 + }, + { + "start": 20740.68, + "end": 20744.82, + "probability": 0.713 + }, + { + "start": 20745.38, + "end": 20747.66, + "probability": 0.8029 + }, + { + "start": 20749.56, + "end": 20751.06, + "probability": 0.9112 + }, + { + "start": 20753.16, + "end": 20753.82, + "probability": 0.6894 + }, + { + "start": 20756.62, + "end": 20759.3, + "probability": 0.9951 + }, + { + "start": 20760.48, + "end": 20761.86, + "probability": 0.9803 + }, + { + "start": 20763.08, + "end": 20763.74, + "probability": 0.966 + }, + { + "start": 20764.36, + "end": 20764.74, + "probability": 0.9832 + }, + { + "start": 20766.66, + "end": 20768.32, + "probability": 0.9252 + }, + { + "start": 20772.64, + "end": 20774.04, + "probability": 0.8834 + }, + { + "start": 20774.96, + "end": 20777.42, + "probability": 0.9979 + }, + { + "start": 20778.38, + "end": 20782.68, + "probability": 0.9747 + }, + { + "start": 20783.28, + "end": 20785.1, + "probability": 0.8555 + }, + { + "start": 20785.9, + "end": 20788.18, + "probability": 0.8774 + }, + { + "start": 20789.44, + "end": 20790.98, + "probability": 0.8927 + }, + { + "start": 20791.56, + "end": 20794.84, + "probability": 0.9053 + }, + { + "start": 20795.54, + "end": 20796.28, + "probability": 0.7017 + }, + { + "start": 20797.0, + "end": 20798.66, + "probability": 0.6391 + }, + { + "start": 20799.72, + "end": 20803.42, + "probability": 0.869 + }, + { + "start": 20803.7, + "end": 20803.98, + "probability": 0.8185 + }, + { + "start": 20804.54, + "end": 20807.36, + "probability": 0.8427 + }, + { + "start": 20809.12, + "end": 20812.0, + "probability": 0.8962 + }, + { + "start": 20812.72, + "end": 20813.44, + "probability": 0.9248 + }, + { + "start": 20813.8, + "end": 20816.44, + "probability": 0.7227 + }, + { + "start": 20818.31, + "end": 20822.38, + "probability": 0.8427 + }, + { + "start": 20823.82, + "end": 20825.98, + "probability": 0.7429 + }, + { + "start": 20826.2, + "end": 20828.34, + "probability": 0.67 + }, + { + "start": 20829.06, + "end": 20831.0, + "probability": 0.8862 + }, + { + "start": 20833.4, + "end": 20835.31, + "probability": 0.9387 + }, + { + "start": 20835.52, + "end": 20838.6, + "probability": 0.9894 + }, + { + "start": 20839.12, + "end": 20839.72, + "probability": 0.4646 + }, + { + "start": 20841.0, + "end": 20841.46, + "probability": 0.6339 + }, + { + "start": 20842.86, + "end": 20844.56, + "probability": 0.9583 + }, + { + "start": 20845.2, + "end": 20845.98, + "probability": 0.9256 + }, + { + "start": 20846.02, + "end": 20846.5, + "probability": 0.6022 + }, + { + "start": 20847.18, + "end": 20848.44, + "probability": 0.5657 + }, + { + "start": 20849.78, + "end": 20852.74, + "probability": 0.978 + }, + { + "start": 20855.06, + "end": 20859.62, + "probability": 0.9611 + }, + { + "start": 20860.52, + "end": 20862.56, + "probability": 0.9597 + }, + { + "start": 20862.6, + "end": 20864.4, + "probability": 0.999 + }, + { + "start": 20865.44, + "end": 20866.52, + "probability": 0.9431 + }, + { + "start": 20866.74, + "end": 20867.2, + "probability": 0.8018 + }, + { + "start": 20867.32, + "end": 20867.82, + "probability": 0.8765 + }, + { + "start": 20869.44, + "end": 20871.14, + "probability": 0.8391 + }, + { + "start": 20873.4, + "end": 20877.12, + "probability": 0.9414 + }, + { + "start": 20895.48, + "end": 20898.8, + "probability": 0.6528 + }, + { + "start": 20900.9, + "end": 20904.88, + "probability": 0.9943 + }, + { + "start": 20904.88, + "end": 20908.52, + "probability": 0.9924 + }, + { + "start": 20910.2, + "end": 20910.8, + "probability": 0.7467 + }, + { + "start": 20911.53, + "end": 20913.2, + "probability": 0.9924 + }, + { + "start": 20913.3, + "end": 20914.76, + "probability": 0.9775 + }, + { + "start": 20915.08, + "end": 20915.44, + "probability": 0.4092 + }, + { + "start": 20915.46, + "end": 20916.14, + "probability": 0.4202 + }, + { + "start": 20917.26, + "end": 20921.24, + "probability": 0.8992 + }, + { + "start": 20921.3, + "end": 20927.12, + "probability": 0.958 + }, + { + "start": 20928.08, + "end": 20929.62, + "probability": 0.9744 + }, + { + "start": 20929.8, + "end": 20932.66, + "probability": 0.9832 + }, + { + "start": 20932.82, + "end": 20934.84, + "probability": 0.7731 + }, + { + "start": 20934.96, + "end": 20937.34, + "probability": 0.98 + }, + { + "start": 20937.44, + "end": 20941.08, + "probability": 0.989 + }, + { + "start": 20941.08, + "end": 20945.8, + "probability": 0.9988 + }, + { + "start": 20947.68, + "end": 20956.36, + "probability": 0.9941 + }, + { + "start": 20956.36, + "end": 20960.48, + "probability": 0.9949 + }, + { + "start": 20961.42, + "end": 20964.74, + "probability": 0.9177 + }, + { + "start": 20965.32, + "end": 20967.82, + "probability": 0.9824 + }, + { + "start": 20967.96, + "end": 20971.84, + "probability": 0.9819 + }, + { + "start": 20972.84, + "end": 20975.66, + "probability": 0.9544 + }, + { + "start": 20975.8, + "end": 20978.92, + "probability": 0.9827 + }, + { + "start": 20979.02, + "end": 20980.24, + "probability": 0.7051 + }, + { + "start": 20980.52, + "end": 20983.12, + "probability": 0.9434 + }, + { + "start": 20983.26, + "end": 20987.98, + "probability": 0.9248 + }, + { + "start": 20987.98, + "end": 20992.34, + "probability": 0.9819 + }, + { + "start": 20993.76, + "end": 20995.08, + "probability": 0.9045 + }, + { + "start": 20995.16, + "end": 20998.52, + "probability": 0.9464 + }, + { + "start": 20998.66, + "end": 21001.22, + "probability": 0.9963 + }, + { + "start": 21001.78, + "end": 21004.08, + "probability": 0.6883 + }, + { + "start": 21004.08, + "end": 21007.22, + "probability": 0.9734 + }, + { + "start": 21007.3, + "end": 21009.76, + "probability": 0.9415 + }, + { + "start": 21010.46, + "end": 21012.66, + "probability": 0.8506 + }, + { + "start": 21012.66, + "end": 21015.36, + "probability": 0.9315 + }, + { + "start": 21015.5, + "end": 21017.64, + "probability": 0.9969 + }, + { + "start": 21018.3, + "end": 21018.74, + "probability": 0.2333 + }, + { + "start": 21018.8, + "end": 21022.12, + "probability": 0.9317 + }, + { + "start": 21022.9, + "end": 21026.72, + "probability": 0.9908 + }, + { + "start": 21026.8, + "end": 21029.16, + "probability": 0.9895 + }, + { + "start": 21029.16, + "end": 21032.04, + "probability": 0.9984 + }, + { + "start": 21032.6, + "end": 21033.7, + "probability": 0.9333 + }, + { + "start": 21034.22, + "end": 21036.78, + "probability": 0.8907 + }, + { + "start": 21036.78, + "end": 21040.26, + "probability": 0.9781 + }, + { + "start": 21040.68, + "end": 21041.58, + "probability": 0.1313 + }, + { + "start": 21041.58, + "end": 21044.3, + "probability": 0.291 + }, + { + "start": 21045.84, + "end": 21047.08, + "probability": 0.2827 + }, + { + "start": 21048.24, + "end": 21049.66, + "probability": 0.1068 + }, + { + "start": 21049.88, + "end": 21050.16, + "probability": 0.3279 + }, + { + "start": 21050.24, + "end": 21051.44, + "probability": 0.9136 + }, + { + "start": 21051.8, + "end": 21054.94, + "probability": 0.8989 + }, + { + "start": 21055.34, + "end": 21056.66, + "probability": 0.9197 + }, + { + "start": 21056.78, + "end": 21058.62, + "probability": 0.6297 + }, + { + "start": 21059.2, + "end": 21062.2, + "probability": 0.941 + }, + { + "start": 21062.38, + "end": 21065.92, + "probability": 0.9872 + }, + { + "start": 21065.92, + "end": 21070.58, + "probability": 0.999 + }, + { + "start": 21071.0, + "end": 21073.74, + "probability": 0.9926 + }, + { + "start": 21073.74, + "end": 21077.22, + "probability": 0.9994 + }, + { + "start": 21078.52, + "end": 21082.38, + "probability": 0.9951 + }, + { + "start": 21082.6, + "end": 21085.32, + "probability": 0.8973 + }, + { + "start": 21085.32, + "end": 21089.84, + "probability": 0.9987 + }, + { + "start": 21089.88, + "end": 21091.18, + "probability": 0.5326 + }, + { + "start": 21091.38, + "end": 21095.38, + "probability": 0.9372 + }, + { + "start": 21095.48, + "end": 21097.44, + "probability": 0.9959 + }, + { + "start": 21097.9, + "end": 21101.94, + "probability": 0.9823 + }, + { + "start": 21103.26, + "end": 21105.86, + "probability": 0.976 + }, + { + "start": 21106.94, + "end": 21111.98, + "probability": 0.9907 + }, + { + "start": 21112.04, + "end": 21116.68, + "probability": 0.989 + }, + { + "start": 21117.5, + "end": 21121.28, + "probability": 0.9969 + }, + { + "start": 21124.88, + "end": 21125.38, + "probability": 0.1186 + }, + { + "start": 21125.52, + "end": 21127.08, + "probability": 0.7017 + }, + { + "start": 21128.2, + "end": 21131.24, + "probability": 0.2007 + }, + { + "start": 21132.42, + "end": 21134.65, + "probability": 0.5269 + }, + { + "start": 21134.88, + "end": 21136.7, + "probability": 0.8046 + }, + { + "start": 21141.18, + "end": 21144.5, + "probability": 0.9453 + }, + { + "start": 21144.6, + "end": 21149.1, + "probability": 0.8616 + }, + { + "start": 21149.1, + "end": 21154.72, + "probability": 0.9587 + }, + { + "start": 21154.82, + "end": 21160.78, + "probability": 0.991 + }, + { + "start": 21161.34, + "end": 21164.62, + "probability": 0.9292 + }, + { + "start": 21165.72, + "end": 21166.68, + "probability": 0.9667 + }, + { + "start": 21166.76, + "end": 21167.48, + "probability": 0.7902 + }, + { + "start": 21167.84, + "end": 21169.96, + "probability": 0.6782 + }, + { + "start": 21169.98, + "end": 21172.16, + "probability": 0.9778 + }, + { + "start": 21172.6, + "end": 21176.96, + "probability": 0.9692 + }, + { + "start": 21177.46, + "end": 21180.62, + "probability": 0.7284 + }, + { + "start": 21181.06, + "end": 21184.28, + "probability": 0.9678 + }, + { + "start": 21184.52, + "end": 21192.5, + "probability": 0.8136 + }, + { + "start": 21192.66, + "end": 21195.96, + "probability": 0.8562 + }, + { + "start": 21196.06, + "end": 21196.88, + "probability": 0.8938 + }, + { + "start": 21198.7, + "end": 21203.88, + "probability": 0.9624 + }, + { + "start": 21204.38, + "end": 21207.6, + "probability": 0.9956 + }, + { + "start": 21208.02, + "end": 21208.64, + "probability": 0.6933 + }, + { + "start": 21208.72, + "end": 21214.36, + "probability": 0.7721 + }, + { + "start": 21214.92, + "end": 21218.4, + "probability": 0.917 + }, + { + "start": 21219.04, + "end": 21222.62, + "probability": 0.9879 + }, + { + "start": 21223.0, + "end": 21225.62, + "probability": 0.9939 + }, + { + "start": 21225.86, + "end": 21226.36, + "probability": 0.6489 + }, + { + "start": 21226.74, + "end": 21229.62, + "probability": 0.676 + }, + { + "start": 21237.44, + "end": 21238.4, + "probability": 0.3227 + }, + { + "start": 21239.1, + "end": 21239.92, + "probability": 0.6588 + }, + { + "start": 21240.14, + "end": 21245.22, + "probability": 0.8716 + }, + { + "start": 21245.98, + "end": 21248.0, + "probability": 0.5768 + }, + { + "start": 21248.14, + "end": 21250.08, + "probability": 0.921 + }, + { + "start": 21250.82, + "end": 21254.58, + "probability": 0.8768 + }, + { + "start": 21255.44, + "end": 21258.28, + "probability": 0.8622 + }, + { + "start": 21259.26, + "end": 21261.82, + "probability": 0.6664 + }, + { + "start": 21263.0, + "end": 21267.44, + "probability": 0.9128 + }, + { + "start": 21268.2, + "end": 21269.42, + "probability": 0.8913 + }, + { + "start": 21270.42, + "end": 21271.98, + "probability": 0.9932 + }, + { + "start": 21272.68, + "end": 21276.02, + "probability": 0.4796 + }, + { + "start": 21277.72, + "end": 21278.54, + "probability": 0.5598 + }, + { + "start": 21278.54, + "end": 21279.76, + "probability": 0.7533 + }, + { + "start": 21280.26, + "end": 21282.08, + "probability": 0.9126 + }, + { + "start": 21282.92, + "end": 21285.14, + "probability": 0.8429 + }, + { + "start": 21286.0, + "end": 21288.36, + "probability": 0.5194 + }, + { + "start": 21289.06, + "end": 21290.9, + "probability": 0.607 + }, + { + "start": 21291.76, + "end": 21296.32, + "probability": 0.8021 + }, + { + "start": 21296.86, + "end": 21297.14, + "probability": 0.7191 + }, + { + "start": 21297.36, + "end": 21297.7, + "probability": 0.6676 + }, + { + "start": 21298.38, + "end": 21299.56, + "probability": 0.6346 + }, + { + "start": 21299.94, + "end": 21302.14, + "probability": 0.9633 + }, + { + "start": 21304.34, + "end": 21311.3, + "probability": 0.3555 + }, + { + "start": 21314.24, + "end": 21315.6, + "probability": 0.562 + }, + { + "start": 21315.74, + "end": 21316.92, + "probability": 0.6707 + }, + { + "start": 21316.94, + "end": 21320.4, + "probability": 0.8519 + }, + { + "start": 21320.4, + "end": 21322.82, + "probability": 0.2907 + }, + { + "start": 21323.6, + "end": 21324.98, + "probability": 0.0229 + }, + { + "start": 21328.46, + "end": 21329.44, + "probability": 0.1178 + }, + { + "start": 21332.82, + "end": 21336.64, + "probability": 0.713 + }, + { + "start": 21338.14, + "end": 21338.66, + "probability": 0.0151 + }, + { + "start": 21339.74, + "end": 21342.52, + "probability": 0.6615 + }, + { + "start": 21342.62, + "end": 21344.22, + "probability": 0.984 + }, + { + "start": 21344.22, + "end": 21350.04, + "probability": 0.9776 + }, + { + "start": 21350.76, + "end": 21352.6, + "probability": 0.3815 + }, + { + "start": 21355.18, + "end": 21357.12, + "probability": 0.4039 + }, + { + "start": 21357.4, + "end": 21359.64, + "probability": 0.1978 + }, + { + "start": 21360.04, + "end": 21362.7, + "probability": 0.4593 + }, + { + "start": 21363.36, + "end": 21365.02, + "probability": 0.9704 + }, + { + "start": 21365.06, + "end": 21366.44, + "probability": 0.9655 + }, + { + "start": 21366.62, + "end": 21370.12, + "probability": 0.7107 + }, + { + "start": 21370.38, + "end": 21371.46, + "probability": 0.6935 + }, + { + "start": 21371.56, + "end": 21372.44, + "probability": 0.7627 + }, + { + "start": 21372.58, + "end": 21376.62, + "probability": 0.9291 + }, + { + "start": 21378.82, + "end": 21380.54, + "probability": 0.938 + }, + { + "start": 21386.82, + "end": 21388.38, + "probability": 0.5734 + }, + { + "start": 21391.9, + "end": 21393.1, + "probability": 0.2017 + }, + { + "start": 21393.32, + "end": 21395.08, + "probability": 0.2377 + }, + { + "start": 21395.16, + "end": 21396.03, + "probability": 0.3786 + }, + { + "start": 21396.86, + "end": 21398.38, + "probability": 0.2593 + }, + { + "start": 21398.38, + "end": 21399.68, + "probability": 0.1523 + }, + { + "start": 21400.62, + "end": 21401.76, + "probability": 0.0208 + }, + { + "start": 21402.08, + "end": 21403.92, + "probability": 0.079 + }, + { + "start": 21404.16, + "end": 21407.14, + "probability": 0.5815 + }, + { + "start": 21407.58, + "end": 21409.96, + "probability": 0.8683 + }, + { + "start": 21409.96, + "end": 21410.55, + "probability": 0.5185 + }, + { + "start": 21411.12, + "end": 21414.4, + "probability": 0.3814 + }, + { + "start": 21414.74, + "end": 21414.76, + "probability": 0.2216 + }, + { + "start": 21414.76, + "end": 21417.56, + "probability": 0.2156 + }, + { + "start": 21417.78, + "end": 21420.04, + "probability": 0.3235 + }, + { + "start": 21420.28, + "end": 21421.86, + "probability": 0.2514 + }, + { + "start": 21421.98, + "end": 21424.2, + "probability": 0.8712 + }, + { + "start": 21424.3, + "end": 21426.94, + "probability": 0.7581 + }, + { + "start": 21427.06, + "end": 21428.86, + "probability": 0.1625 + }, + { + "start": 21429.28, + "end": 21433.2, + "probability": 0.0772 + }, + { + "start": 21435.72, + "end": 21438.0, + "probability": 0.1509 + }, + { + "start": 21441.12, + "end": 21448.0, + "probability": 0.5495 + }, + { + "start": 21449.8, + "end": 21455.2, + "probability": 0.0236 + }, + { + "start": 21455.44, + "end": 21456.66, + "probability": 0.0769 + }, + { + "start": 21457.36, + "end": 21459.02, + "probability": 0.2366 + }, + { + "start": 21459.18, + "end": 21460.86, + "probability": 0.0196 + }, + { + "start": 21461.16, + "end": 21461.54, + "probability": 0.4397 + }, + { + "start": 21461.68, + "end": 21465.8, + "probability": 0.7064 + }, + { + "start": 21466.1, + "end": 21468.24, + "probability": 0.9515 + }, + { + "start": 21468.68, + "end": 21469.32, + "probability": 0.8308 + }, + { + "start": 21470.6, + "end": 21475.16, + "probability": 0.2574 + }, + { + "start": 21485.52, + "end": 21485.98, + "probability": 0.0305 + }, + { + "start": 21486.6, + "end": 21492.1, + "probability": 0.5283 + }, + { + "start": 21492.32, + "end": 21495.58, + "probability": 0.9746 + }, + { + "start": 21496.32, + "end": 21501.24, + "probability": 0.8041 + }, + { + "start": 21503.02, + "end": 21504.52, + "probability": 0.0367 + }, + { + "start": 21504.52, + "end": 21506.44, + "probability": 0.581 + }, + { + "start": 21508.48, + "end": 21509.82, + "probability": 0.7411 + }, + { + "start": 21509.88, + "end": 21511.04, + "probability": 0.5126 + }, + { + "start": 21511.16, + "end": 21512.84, + "probability": 0.7586 + }, + { + "start": 21513.76, + "end": 21515.28, + "probability": 0.978 + }, + { + "start": 21516.5, + "end": 21520.26, + "probability": 0.901 + }, + { + "start": 21521.5, + "end": 21522.3, + "probability": 0.5854 + }, + { + "start": 21522.62, + "end": 21524.26, + "probability": 0.1472 + }, + { + "start": 21524.46, + "end": 21525.22, + "probability": 0.9764 + }, + { + "start": 21525.58, + "end": 21525.78, + "probability": 0.8396 + }, + { + "start": 21527.16, + "end": 21527.98, + "probability": 0.4825 + }, + { + "start": 21529.63, + "end": 21536.6, + "probability": 0.9723 + }, + { + "start": 21536.96, + "end": 21537.5, + "probability": 0.81 + }, + { + "start": 21538.12, + "end": 21542.7, + "probability": 0.9175 + }, + { + "start": 21542.92, + "end": 21543.02, + "probability": 0.717 + }, + { + "start": 21544.36, + "end": 21546.92, + "probability": 0.7438 + }, + { + "start": 21546.96, + "end": 21550.58, + "probability": 0.9028 + }, + { + "start": 21551.24, + "end": 21554.96, + "probability": 0.0325 + }, + { + "start": 21557.16, + "end": 21557.52, + "probability": 0.1684 + }, + { + "start": 21563.14, + "end": 21563.82, + "probability": 0.2695 + }, + { + "start": 21563.82, + "end": 21568.3, + "probability": 0.0298 + }, + { + "start": 21568.84, + "end": 21572.4, + "probability": 0.8303 + }, + { + "start": 21572.6, + "end": 21574.3, + "probability": 0.98 + }, + { + "start": 21574.44, + "end": 21575.56, + "probability": 0.9614 + }, + { + "start": 21585.32, + "end": 21586.6, + "probability": 0.4906 + }, + { + "start": 21587.32, + "end": 21590.24, + "probability": 0.53 + }, + { + "start": 21591.16, + "end": 21595.96, + "probability": 0.998 + }, + { + "start": 21596.56, + "end": 21598.44, + "probability": 0.9979 + }, + { + "start": 21599.16, + "end": 21604.84, + "probability": 0.9869 + }, + { + "start": 21605.48, + "end": 21606.9, + "probability": 0.8984 + }, + { + "start": 21608.2, + "end": 21610.06, + "probability": 0.9585 + }, + { + "start": 21610.6, + "end": 21614.04, + "probability": 0.9762 + }, + { + "start": 21614.36, + "end": 21616.82, + "probability": 0.9859 + }, + { + "start": 21617.52, + "end": 21618.46, + "probability": 0.8019 + }, + { + "start": 21619.16, + "end": 21621.62, + "probability": 0.9816 + }, + { + "start": 21621.82, + "end": 21623.7, + "probability": 0.9696 + }, + { + "start": 21623.88, + "end": 21624.44, + "probability": 0.6701 + }, + { + "start": 21624.52, + "end": 21625.12, + "probability": 0.8766 + }, + { + "start": 21625.54, + "end": 21627.8, + "probability": 0.969 + }, + { + "start": 21628.14, + "end": 21628.78, + "probability": 0.778 + }, + { + "start": 21628.9, + "end": 21631.22, + "probability": 0.9962 + }, + { + "start": 21631.24, + "end": 21634.38, + "probability": 0.9682 + }, + { + "start": 21634.42, + "end": 21639.1, + "probability": 0.9811 + }, + { + "start": 21639.62, + "end": 21640.22, + "probability": 0.9266 + }, + { + "start": 21640.98, + "end": 21641.96, + "probability": 0.7495 + }, + { + "start": 21642.02, + "end": 21644.82, + "probability": 0.9878 + }, + { + "start": 21645.58, + "end": 21645.94, + "probability": 0.8741 + }, + { + "start": 21646.5, + "end": 21649.08, + "probability": 0.9244 + }, + { + "start": 21649.82, + "end": 21653.08, + "probability": 0.9821 + }, + { + "start": 21653.08, + "end": 21656.88, + "probability": 0.8943 + }, + { + "start": 21657.26, + "end": 21660.62, + "probability": 0.9906 + }, + { + "start": 21661.82, + "end": 21662.7, + "probability": 0.8771 + }, + { + "start": 21663.36, + "end": 21668.2, + "probability": 0.9966 + }, + { + "start": 21668.54, + "end": 21668.92, + "probability": 0.5492 + }, + { + "start": 21669.5, + "end": 21670.42, + "probability": 0.6016 + }, + { + "start": 21670.9, + "end": 21675.0, + "probability": 0.9528 + }, + { + "start": 21676.12, + "end": 21679.74, + "probability": 0.9176 + }, + { + "start": 21679.8, + "end": 21683.66, + "probability": 0.9892 + }, + { + "start": 21684.42, + "end": 21687.0, + "probability": 0.9753 + }, + { + "start": 21687.36, + "end": 21688.3, + "probability": 0.9721 + }, + { + "start": 21688.74, + "end": 21690.16, + "probability": 0.7772 + }, + { + "start": 21690.64, + "end": 21691.2, + "probability": 0.5495 + }, + { + "start": 21691.26, + "end": 21692.06, + "probability": 0.8721 + }, + { + "start": 21692.06, + "end": 21693.38, + "probability": 0.9863 + }, + { + "start": 21693.92, + "end": 21695.78, + "probability": 0.9982 + }, + { + "start": 21696.44, + "end": 21696.9, + "probability": 0.6597 + }, + { + "start": 21697.72, + "end": 21700.92, + "probability": 0.9964 + }, + { + "start": 21701.44, + "end": 21704.08, + "probability": 0.9852 + }, + { + "start": 21704.54, + "end": 21705.0, + "probability": 0.7711 + }, + { + "start": 21705.18, + "end": 21707.88, + "probability": 0.9399 + }, + { + "start": 21708.94, + "end": 21709.84, + "probability": 0.8958 + }, + { + "start": 21710.46, + "end": 21713.44, + "probability": 0.9783 + }, + { + "start": 21713.98, + "end": 21716.64, + "probability": 0.8597 + }, + { + "start": 21717.2, + "end": 21717.88, + "probability": 0.8056 + }, + { + "start": 21717.96, + "end": 21722.2, + "probability": 0.9957 + }, + { + "start": 21722.56, + "end": 21724.78, + "probability": 0.9386 + }, + { + "start": 21725.3, + "end": 21727.3, + "probability": 0.9805 + }, + { + "start": 21728.28, + "end": 21730.1, + "probability": 0.9737 + }, + { + "start": 21730.3, + "end": 21732.46, + "probability": 0.9292 + }, + { + "start": 21732.88, + "end": 21733.68, + "probability": 0.9442 + }, + { + "start": 21734.36, + "end": 21738.24, + "probability": 0.9312 + }, + { + "start": 21738.94, + "end": 21740.94, + "probability": 0.9922 + }, + { + "start": 21741.48, + "end": 21742.34, + "probability": 0.9143 + }, + { + "start": 21742.74, + "end": 21744.46, + "probability": 0.9336 + }, + { + "start": 21744.86, + "end": 21748.56, + "probability": 0.9983 + }, + { + "start": 21748.56, + "end": 21752.42, + "probability": 0.9947 + }, + { + "start": 21753.54, + "end": 21754.56, + "probability": 0.8271 + }, + { + "start": 21755.06, + "end": 21756.1, + "probability": 0.9956 + }, + { + "start": 21756.56, + "end": 21758.62, + "probability": 0.9536 + }, + { + "start": 21758.68, + "end": 21759.0, + "probability": 0.7322 + }, + { + "start": 21759.24, + "end": 21760.26, + "probability": 0.9623 + }, + { + "start": 21760.66, + "end": 21761.48, + "probability": 0.9753 + }, + { + "start": 21762.22, + "end": 21762.96, + "probability": 0.6581 + }, + { + "start": 21763.02, + "end": 21764.86, + "probability": 0.9799 + }, + { + "start": 21764.94, + "end": 21768.34, + "probability": 0.9402 + }, + { + "start": 21768.74, + "end": 21774.18, + "probability": 0.9795 + }, + { + "start": 21774.5, + "end": 21776.5, + "probability": 0.9872 + }, + { + "start": 21777.6, + "end": 21782.78, + "probability": 0.9973 + }, + { + "start": 21783.38, + "end": 21787.34, + "probability": 0.9944 + }, + { + "start": 21787.6, + "end": 21790.32, + "probability": 0.8419 + }, + { + "start": 21791.2, + "end": 21794.08, + "probability": 0.9971 + }, + { + "start": 21794.5, + "end": 21797.4, + "probability": 0.9974 + }, + { + "start": 21797.82, + "end": 21799.38, + "probability": 0.9032 + }, + { + "start": 21799.76, + "end": 21800.99, + "probability": 0.9805 + }, + { + "start": 21802.95, + "end": 21806.16, + "probability": 0.7747 + }, + { + "start": 21806.54, + "end": 21810.8, + "probability": 0.9893 + }, + { + "start": 21811.04, + "end": 21811.48, + "probability": 0.7247 + }, + { + "start": 21813.22, + "end": 21815.94, + "probability": 0.2976 + }, + { + "start": 21815.94, + "end": 21820.1, + "probability": 0.6991 + }, + { + "start": 21820.34, + "end": 21823.52, + "probability": 0.9061 + }, + { + "start": 21840.16, + "end": 21843.26, + "probability": 0.7539 + }, + { + "start": 21844.66, + "end": 21845.66, + "probability": 0.6563 + }, + { + "start": 21845.72, + "end": 21846.6, + "probability": 0.8929 + }, + { + "start": 21846.82, + "end": 21850.7, + "probability": 0.9747 + }, + { + "start": 21851.6, + "end": 21854.7, + "probability": 0.9898 + }, + { + "start": 21855.72, + "end": 21859.88, + "probability": 0.9633 + }, + { + "start": 21860.48, + "end": 21862.4, + "probability": 0.8717 + }, + { + "start": 21862.86, + "end": 21866.02, + "probability": 0.9972 + }, + { + "start": 21866.24, + "end": 21869.98, + "probability": 0.9951 + }, + { + "start": 21870.3, + "end": 21870.64, + "probability": 0.8245 + }, + { + "start": 21870.68, + "end": 21871.94, + "probability": 0.9907 + }, + { + "start": 21872.56, + "end": 21877.74, + "probability": 0.9633 + }, + { + "start": 21878.22, + "end": 21881.46, + "probability": 0.9805 + }, + { + "start": 21881.66, + "end": 21883.28, + "probability": 0.6757 + }, + { + "start": 21883.46, + "end": 21884.42, + "probability": 0.8885 + }, + { + "start": 21885.02, + "end": 21886.74, + "probability": 0.9624 + }, + { + "start": 21886.9, + "end": 21890.74, + "probability": 0.9647 + }, + { + "start": 21891.14, + "end": 21892.02, + "probability": 0.9717 + }, + { + "start": 21892.18, + "end": 21895.0, + "probability": 0.5275 + }, + { + "start": 21895.32, + "end": 21898.86, + "probability": 0.9894 + }, + { + "start": 21901.2, + "end": 21901.76, + "probability": 0.6551 + }, + { + "start": 21902.98, + "end": 21903.08, + "probability": 0.2069 + }, + { + "start": 21904.14, + "end": 21906.56, + "probability": 0.9888 + }, + { + "start": 21906.64, + "end": 21910.32, + "probability": 0.9883 + }, + { + "start": 21910.58, + "end": 21911.75, + "probability": 0.9257 + }, + { + "start": 21912.8, + "end": 21913.48, + "probability": 0.9193 + }, + { + "start": 21914.46, + "end": 21917.6, + "probability": 0.9141 + }, + { + "start": 21918.4, + "end": 21921.36, + "probability": 0.9944 + }, + { + "start": 21922.84, + "end": 21927.86, + "probability": 0.9354 + }, + { + "start": 21928.18, + "end": 21934.76, + "probability": 0.965 + }, + { + "start": 21935.26, + "end": 21938.7, + "probability": 0.605 + }, + { + "start": 21940.46, + "end": 21941.46, + "probability": 0.675 + }, + { + "start": 21942.42, + "end": 21944.6, + "probability": 0.5209 + }, + { + "start": 21945.66, + "end": 21948.86, + "probability": 0.8757 + }, + { + "start": 21948.86, + "end": 21953.68, + "probability": 0.9945 + }, + { + "start": 21953.84, + "end": 21960.88, + "probability": 0.9824 + }, + { + "start": 21960.88, + "end": 21964.64, + "probability": 0.9952 + }, + { + "start": 21965.18, + "end": 21968.98, + "probability": 0.7146 + }, + { + "start": 21972.14, + "end": 21980.8, + "probability": 0.9963 + }, + { + "start": 21981.1, + "end": 21981.96, + "probability": 0.8404 + }, + { + "start": 21982.66, + "end": 21990.7, + "probability": 0.913 + }, + { + "start": 21990.84, + "end": 21993.84, + "probability": 0.9888 + }, + { + "start": 21994.6, + "end": 21998.7, + "probability": 0.9875 + }, + { + "start": 21998.7, + "end": 22002.1, + "probability": 0.8324 + }, + { + "start": 22002.22, + "end": 22003.5, + "probability": 0.2801 + }, + { + "start": 22003.78, + "end": 22004.86, + "probability": 0.257 + }, + { + "start": 22005.26, + "end": 22006.26, + "probability": 0.2408 + }, + { + "start": 22006.26, + "end": 22006.54, + "probability": 0.4889 + }, + { + "start": 22006.54, + "end": 22007.44, + "probability": 0.4997 + }, + { + "start": 22007.64, + "end": 22008.3, + "probability": 0.3241 + }, + { + "start": 22008.5, + "end": 22014.92, + "probability": 0.6874 + }, + { + "start": 22015.94, + "end": 22018.7, + "probability": 0.3894 + }, + { + "start": 22019.22, + "end": 22020.22, + "probability": 0.1598 + }, + { + "start": 22022.9, + "end": 22025.34, + "probability": 0.9873 + }, + { + "start": 22025.52, + "end": 22025.96, + "probability": 0.868 + }, + { + "start": 22026.06, + "end": 22034.84, + "probability": 0.8645 + }, + { + "start": 22036.04, + "end": 22036.04, + "probability": 0.2154 + }, + { + "start": 22036.04, + "end": 22040.32, + "probability": 0.9361 + }, + { + "start": 22041.02, + "end": 22043.38, + "probability": 0.8859 + }, + { + "start": 22044.42, + "end": 22048.76, + "probability": 0.9629 + }, + { + "start": 22049.38, + "end": 22052.85, + "probability": 0.7561 + }, + { + "start": 22053.54, + "end": 22056.12, + "probability": 0.9573 + }, + { + "start": 22056.96, + "end": 22058.54, + "probability": 0.7825 + }, + { + "start": 22058.82, + "end": 22060.6, + "probability": 0.9303 + }, + { + "start": 22060.92, + "end": 22062.34, + "probability": 0.9286 + }, + { + "start": 22063.02, + "end": 22067.04, + "probability": 0.9465 + }, + { + "start": 22067.44, + "end": 22071.9, + "probability": 0.9792 + }, + { + "start": 22071.9, + "end": 22075.18, + "probability": 0.9912 + }, + { + "start": 22075.18, + "end": 22078.2, + "probability": 0.9989 + }, + { + "start": 22078.44, + "end": 22078.72, + "probability": 0.7208 + }, + { + "start": 22080.3, + "end": 22082.0, + "probability": 0.2546 + }, + { + "start": 22085.46, + "end": 22091.72, + "probability": 0.7018 + }, + { + "start": 22093.44, + "end": 22096.32, + "probability": 0.6298 + }, + { + "start": 22100.7, + "end": 22102.98, + "probability": 0.929 + }, + { + "start": 22103.26, + "end": 22104.66, + "probability": 0.4651 + }, + { + "start": 22104.86, + "end": 22106.74, + "probability": 0.9943 + }, + { + "start": 22108.06, + "end": 22109.72, + "probability": 0.4545 + }, + { + "start": 22110.16, + "end": 22112.54, + "probability": 0.2218 + }, + { + "start": 22118.64, + "end": 22119.3, + "probability": 0.571 + }, + { + "start": 22119.42, + "end": 22120.38, + "probability": 0.4478 + }, + { + "start": 22120.5, + "end": 22121.28, + "probability": 0.7457 + }, + { + "start": 22122.94, + "end": 22125.68, + "probability": 0.4155 + }, + { + "start": 22126.58, + "end": 22127.66, + "probability": 0.6903 + }, + { + "start": 22128.97, + "end": 22132.48, + "probability": 0.8158 + }, + { + "start": 22133.44, + "end": 22136.8, + "probability": 0.8461 + }, + { + "start": 22137.36, + "end": 22137.72, + "probability": 0.3932 + }, + { + "start": 22138.08, + "end": 22138.22, + "probability": 0.4015 + }, + { + "start": 22138.86, + "end": 22139.56, + "probability": 0.4691 + }, + { + "start": 22139.9, + "end": 22142.84, + "probability": 0.5269 + }, + { + "start": 22143.9, + "end": 22146.48, + "probability": 0.7689 + }, + { + "start": 22147.5, + "end": 22149.32, + "probability": 0.9958 + }, + { + "start": 22150.14, + "end": 22154.22, + "probability": 0.9844 + }, + { + "start": 22155.36, + "end": 22159.64, + "probability": 0.9686 + }, + { + "start": 22160.18, + "end": 22161.38, + "probability": 0.9829 + }, + { + "start": 22161.46, + "end": 22163.08, + "probability": 0.9289 + }, + { + "start": 22163.16, + "end": 22164.5, + "probability": 0.6056 + }, + { + "start": 22165.28, + "end": 22168.44, + "probability": 0.9715 + }, + { + "start": 22168.7, + "end": 22173.26, + "probability": 0.9122 + }, + { + "start": 22173.88, + "end": 22175.24, + "probability": 0.8057 + }, + { + "start": 22176.06, + "end": 22177.42, + "probability": 0.1934 + }, + { + "start": 22177.68, + "end": 22179.34, + "probability": 0.5808 + }, + { + "start": 22179.62, + "end": 22180.78, + "probability": 0.5838 + }, + { + "start": 22180.8, + "end": 22182.86, + "probability": 0.6362 + }, + { + "start": 22182.92, + "end": 22183.62, + "probability": 0.5454 + }, + { + "start": 22184.54, + "end": 22186.08, + "probability": 0.5313 + }, + { + "start": 22186.4, + "end": 22188.16, + "probability": 0.4489 + }, + { + "start": 22188.16, + "end": 22189.42, + "probability": 0.1099 + }, + { + "start": 22189.52, + "end": 22189.56, + "probability": 0.3524 + }, + { + "start": 22189.56, + "end": 22190.18, + "probability": 0.5148 + }, + { + "start": 22190.78, + "end": 22193.18, + "probability": 0.6204 + }, + { + "start": 22193.5, + "end": 22193.58, + "probability": 0.0152 + }, + { + "start": 22194.84, + "end": 22196.38, + "probability": 0.7955 + }, + { + "start": 22197.5, + "end": 22197.78, + "probability": 0.5489 + }, + { + "start": 22199.24, + "end": 22201.3, + "probability": 0.8341 + }, + { + "start": 22202.18, + "end": 22205.18, + "probability": 0.7302 + }, + { + "start": 22206.22, + "end": 22212.14, + "probability": 0.9282 + }, + { + "start": 22212.64, + "end": 22216.18, + "probability": 0.9325 + }, + { + "start": 22217.1, + "end": 22219.84, + "probability": 0.8927 + }, + { + "start": 22220.44, + "end": 22222.86, + "probability": 0.7018 + }, + { + "start": 22222.96, + "end": 22227.36, + "probability": 0.95 + }, + { + "start": 22227.66, + "end": 22227.66, + "probability": 0.3564 + }, + { + "start": 22227.86, + "end": 22227.86, + "probability": 0.6346 + }, + { + "start": 22227.86, + "end": 22228.92, + "probability": 0.9043 + }, + { + "start": 22228.94, + "end": 22229.72, + "probability": 0.3774 + }, + { + "start": 22229.76, + "end": 22230.62, + "probability": 0.1291 + }, + { + "start": 22230.62, + "end": 22230.8, + "probability": 0.4977 + }, + { + "start": 22230.9, + "end": 22231.27, + "probability": 0.55 + }, + { + "start": 22231.86, + "end": 22233.78, + "probability": 0.9432 + }, + { + "start": 22233.88, + "end": 22234.14, + "probability": 0.7661 + }, + { + "start": 22234.58, + "end": 22236.12, + "probability": 0.9305 + }, + { + "start": 22236.22, + "end": 22236.22, + "probability": 0.7421 + }, + { + "start": 22236.3, + "end": 22237.5, + "probability": 0.9785 + }, + { + "start": 22237.62, + "end": 22237.96, + "probability": 0.603 + }, + { + "start": 22237.96, + "end": 22238.92, + "probability": 0.6946 + }, + { + "start": 22239.26, + "end": 22240.28, + "probability": 0.0385 + }, + { + "start": 22240.28, + "end": 22241.36, + "probability": 0.746 + }, + { + "start": 22241.88, + "end": 22245.28, + "probability": 0.8874 + }, + { + "start": 22245.86, + "end": 22247.58, + "probability": 0.8521 + }, + { + "start": 22247.98, + "end": 22252.64, + "probability": 0.9199 + }, + { + "start": 22252.92, + "end": 22254.18, + "probability": 0.7924 + }, + { + "start": 22254.48, + "end": 22257.17, + "probability": 0.8734 + }, + { + "start": 22257.36, + "end": 22259.64, + "probability": 0.5918 + }, + { + "start": 22260.66, + "end": 22261.46, + "probability": 0.7612 + }, + { + "start": 22263.8, + "end": 22264.84, + "probability": 0.7587 + }, + { + "start": 22265.02, + "end": 22265.9, + "probability": 0.8491 + }, + { + "start": 22265.98, + "end": 22268.78, + "probability": 0.7403 + }, + { + "start": 22268.78, + "end": 22271.86, + "probability": 0.9293 + }, + { + "start": 22272.48, + "end": 22273.82, + "probability": 0.999 + }, + { + "start": 22274.9, + "end": 22276.03, + "probability": 0.9263 + }, + { + "start": 22277.04, + "end": 22279.28, + "probability": 0.8157 + }, + { + "start": 22279.64, + "end": 22280.02, + "probability": 0.7841 + }, + { + "start": 22280.66, + "end": 22281.54, + "probability": 0.9847 + }, + { + "start": 22282.12, + "end": 22282.98, + "probability": 0.2066 + }, + { + "start": 22283.24, + "end": 22285.86, + "probability": 0.735 + }, + { + "start": 22286.68, + "end": 22290.5, + "probability": 0.9703 + }, + { + "start": 22291.04, + "end": 22294.32, + "probability": 0.865 + }, + { + "start": 22295.18, + "end": 22296.06, + "probability": 0.9453 + }, + { + "start": 22297.0, + "end": 22297.52, + "probability": 0.8218 + }, + { + "start": 22298.22, + "end": 22300.04, + "probability": 0.7604 + }, + { + "start": 22300.8, + "end": 22301.12, + "probability": 0.932 + }, + { + "start": 22301.12, + "end": 22301.9, + "probability": 0.9209 + }, + { + "start": 22302.14, + "end": 22304.62, + "probability": 0.9919 + }, + { + "start": 22304.96, + "end": 22305.72, + "probability": 0.9583 + }, + { + "start": 22305.74, + "end": 22306.06, + "probability": 0.5142 + }, + { + "start": 22306.08, + "end": 22306.82, + "probability": 0.96 + }, + { + "start": 22306.9, + "end": 22307.48, + "probability": 0.8387 + }, + { + "start": 22308.14, + "end": 22309.64, + "probability": 0.998 + }, + { + "start": 22310.58, + "end": 22311.54, + "probability": 0.94 + }, + { + "start": 22312.44, + "end": 22313.22, + "probability": 0.8906 + }, + { + "start": 22313.42, + "end": 22314.56, + "probability": 0.9778 + }, + { + "start": 22314.72, + "end": 22315.64, + "probability": 0.8571 + }, + { + "start": 22316.4, + "end": 22321.9, + "probability": 0.9507 + }, + { + "start": 22322.0, + "end": 22322.66, + "probability": 0.9229 + }, + { + "start": 22323.06, + "end": 22325.0, + "probability": 0.9927 + }, + { + "start": 22326.12, + "end": 22327.94, + "probability": 0.9866 + }, + { + "start": 22328.8, + "end": 22331.44, + "probability": 0.927 + }, + { + "start": 22331.86, + "end": 22333.12, + "probability": 0.984 + }, + { + "start": 22333.58, + "end": 22334.99, + "probability": 0.929 + }, + { + "start": 22335.44, + "end": 22336.76, + "probability": 0.7644 + }, + { + "start": 22336.84, + "end": 22339.54, + "probability": 0.7792 + }, + { + "start": 22339.66, + "end": 22340.14, + "probability": 0.0495 + }, + { + "start": 22340.3, + "end": 22340.3, + "probability": 0.1199 + }, + { + "start": 22340.3, + "end": 22340.74, + "probability": 0.7892 + }, + { + "start": 22340.8, + "end": 22341.74, + "probability": 0.3779 + }, + { + "start": 22342.06, + "end": 22342.08, + "probability": 0.0326 + }, + { + "start": 22342.14, + "end": 22343.9, + "probability": 0.672 + }, + { + "start": 22343.9, + "end": 22345.14, + "probability": 0.6874 + }, + { + "start": 22345.44, + "end": 22346.1, + "probability": 0.7269 + }, + { + "start": 22346.1, + "end": 22347.5, + "probability": 0.7119 + }, + { + "start": 22348.16, + "end": 22349.48, + "probability": 0.7007 + }, + { + "start": 22349.56, + "end": 22351.64, + "probability": 0.6593 + }, + { + "start": 22351.72, + "end": 22354.52, + "probability": 0.9318 + }, + { + "start": 22354.86, + "end": 22360.64, + "probability": 0.9681 + }, + { + "start": 22360.76, + "end": 22361.74, + "probability": 0.7524 + }, + { + "start": 22362.12, + "end": 22363.94, + "probability": 0.9705 + }, + { + "start": 22364.62, + "end": 22366.95, + "probability": 0.9624 + }, + { + "start": 22367.76, + "end": 22368.04, + "probability": 0.5261 + }, + { + "start": 22368.36, + "end": 22368.7, + "probability": 0.6585 + }, + { + "start": 22369.78, + "end": 22371.12, + "probability": 0.9143 + }, + { + "start": 22371.92, + "end": 22375.42, + "probability": 0.7568 + }, + { + "start": 22376.24, + "end": 22379.44, + "probability": 0.9974 + }, + { + "start": 22380.2, + "end": 22381.44, + "probability": 0.9543 + }, + { + "start": 22381.8, + "end": 22382.58, + "probability": 0.9192 + }, + { + "start": 22382.88, + "end": 22383.92, + "probability": 0.8508 + }, + { + "start": 22384.0, + "end": 22387.0, + "probability": 0.9434 + }, + { + "start": 22387.08, + "end": 22387.3, + "probability": 0.4984 + }, + { + "start": 22387.3, + "end": 22388.16, + "probability": 0.5025 + }, + { + "start": 22388.9, + "end": 22390.12, + "probability": 0.9449 + }, + { + "start": 22390.2, + "end": 22390.96, + "probability": 0.9699 + }, + { + "start": 22391.48, + "end": 22393.18, + "probability": 0.9822 + }, + { + "start": 22393.5, + "end": 22396.66, + "probability": 0.9947 + }, + { + "start": 22397.08, + "end": 22398.52, + "probability": 0.836 + }, + { + "start": 22398.92, + "end": 22403.2, + "probability": 0.9985 + }, + { + "start": 22403.62, + "end": 22403.62, + "probability": 0.066 + }, + { + "start": 22403.62, + "end": 22407.04, + "probability": 0.6494 + }, + { + "start": 22407.32, + "end": 22409.02, + "probability": 0.1751 + }, + { + "start": 22409.02, + "end": 22409.16, + "probability": 0.5188 + }, + { + "start": 22409.28, + "end": 22409.48, + "probability": 0.1653 + }, + { + "start": 22409.48, + "end": 22410.76, + "probability": 0.2361 + }, + { + "start": 22410.96, + "end": 22412.68, + "probability": 0.789 + }, + { + "start": 22412.7, + "end": 22412.7, + "probability": 0.6935 + }, + { + "start": 22412.78, + "end": 22415.18, + "probability": 0.9159 + }, + { + "start": 22416.6, + "end": 22417.3, + "probability": 0.7832 + }, + { + "start": 22417.34, + "end": 22417.72, + "probability": 0.3736 + }, + { + "start": 22417.82, + "end": 22418.0, + "probability": 0.6757 + }, + { + "start": 22418.12, + "end": 22421.28, + "probability": 0.9902 + }, + { + "start": 22421.38, + "end": 22421.46, + "probability": 0.5956 + }, + { + "start": 22421.46, + "end": 22421.56, + "probability": 0.6181 + }, + { + "start": 22421.62, + "end": 22421.72, + "probability": 0.3828 + }, + { + "start": 22421.72, + "end": 22422.96, + "probability": 0.8116 + }, + { + "start": 22423.0, + "end": 22423.48, + "probability": 0.69 + }, + { + "start": 22423.6, + "end": 22424.19, + "probability": 0.9544 + }, + { + "start": 22424.82, + "end": 22425.74, + "probability": 0.7997 + }, + { + "start": 22425.8, + "end": 22426.52, + "probability": 0.7623 + }, + { + "start": 22426.68, + "end": 22427.52, + "probability": 0.6127 + }, + { + "start": 22427.68, + "end": 22428.1, + "probability": 0.0723 + }, + { + "start": 22428.48, + "end": 22429.08, + "probability": 0.9058 + }, + { + "start": 22429.08, + "end": 22431.0, + "probability": 0.6445 + }, + { + "start": 22431.72, + "end": 22433.92, + "probability": 0.9661 + }, + { + "start": 22454.9, + "end": 22455.6, + "probability": 0.3009 + }, + { + "start": 22455.62, + "end": 22455.62, + "probability": 0.2867 + }, + { + "start": 22455.62, + "end": 22455.62, + "probability": 0.1386 + }, + { + "start": 22455.62, + "end": 22455.62, + "probability": 0.2163 + }, + { + "start": 22455.62, + "end": 22455.8, + "probability": 0.048 + }, + { + "start": 22465.66, + "end": 22466.8, + "probability": 0.1643 + }, + { + "start": 22477.78, + "end": 22481.14, + "probability": 0.0654 + }, + { + "start": 22481.86, + "end": 22483.08, + "probability": 0.7882 + }, + { + "start": 22483.2, + "end": 22486.0, + "probability": 0.9979 + }, + { + "start": 22487.28, + "end": 22489.08, + "probability": 0.9095 + }, + { + "start": 22489.92, + "end": 22491.2, + "probability": 0.8683 + }, + { + "start": 22491.64, + "end": 22494.64, + "probability": 0.8674 + }, + { + "start": 22495.26, + "end": 22497.34, + "probability": 0.8856 + }, + { + "start": 22498.1, + "end": 22501.72, + "probability": 0.9972 + }, + { + "start": 22502.66, + "end": 22505.68, + "probability": 0.9667 + }, + { + "start": 22506.38, + "end": 22511.1, + "probability": 0.9626 + }, + { + "start": 22511.5, + "end": 22514.94, + "probability": 0.9852 + }, + { + "start": 22515.8, + "end": 22520.36, + "probability": 0.804 + }, + { + "start": 22521.32, + "end": 22524.6, + "probability": 0.9592 + }, + { + "start": 22524.6, + "end": 22527.8, + "probability": 0.9966 + }, + { + "start": 22528.74, + "end": 22530.56, + "probability": 0.9826 + }, + { + "start": 22531.18, + "end": 22531.72, + "probability": 0.8888 + }, + { + "start": 22532.46, + "end": 22534.9, + "probability": 0.9412 + }, + { + "start": 22535.48, + "end": 22538.74, + "probability": 0.9658 + }, + { + "start": 22539.26, + "end": 22539.98, + "probability": 0.868 + }, + { + "start": 22542.12, + "end": 22543.18, + "probability": 0.7937 + }, + { + "start": 22544.46, + "end": 22551.28, + "probability": 0.9875 + }, + { + "start": 22552.42, + "end": 22556.18, + "probability": 0.8317 + }, + { + "start": 22557.06, + "end": 22557.41, + "probability": 0.7822 + }, + { + "start": 22558.54, + "end": 22560.46, + "probability": 0.9705 + }, + { + "start": 22561.18, + "end": 22565.78, + "probability": 0.988 + }, + { + "start": 22566.7, + "end": 22570.44, + "probability": 0.9512 + }, + { + "start": 22571.38, + "end": 22572.7, + "probability": 0.9949 + }, + { + "start": 22573.26, + "end": 22574.9, + "probability": 0.9117 + }, + { + "start": 22575.66, + "end": 22576.78, + "probability": 0.9519 + }, + { + "start": 22577.4, + "end": 22578.72, + "probability": 0.6949 + }, + { + "start": 22579.3, + "end": 22580.16, + "probability": 0.9416 + }, + { + "start": 22581.1, + "end": 22582.26, + "probability": 0.9325 + }, + { + "start": 22582.82, + "end": 22585.72, + "probability": 0.9775 + }, + { + "start": 22586.66, + "end": 22588.88, + "probability": 0.9847 + }, + { + "start": 22590.08, + "end": 22591.4, + "probability": 0.9976 + }, + { + "start": 22594.66, + "end": 22595.59, + "probability": 0.9052 + }, + { + "start": 22596.26, + "end": 22597.36, + "probability": 0.8691 + }, + { + "start": 22598.22, + "end": 22601.72, + "probability": 0.9912 + }, + { + "start": 22602.54, + "end": 22603.92, + "probability": 0.9971 + }, + { + "start": 22605.0, + "end": 22606.28, + "probability": 0.9884 + }, + { + "start": 22607.94, + "end": 22609.72, + "probability": 0.9871 + }, + { + "start": 22610.68, + "end": 22614.52, + "probability": 0.9759 + }, + { + "start": 22615.86, + "end": 22617.7, + "probability": 0.9912 + }, + { + "start": 22617.82, + "end": 22619.5, + "probability": 0.8987 + }, + { + "start": 22621.32, + "end": 22622.44, + "probability": 0.7141 + }, + { + "start": 22623.28, + "end": 22623.96, + "probability": 0.9761 + }, + { + "start": 22624.62, + "end": 22625.3, + "probability": 0.7336 + }, + { + "start": 22626.02, + "end": 22627.28, + "probability": 0.7432 + }, + { + "start": 22628.04, + "end": 22630.52, + "probability": 0.9438 + }, + { + "start": 22631.56, + "end": 22632.74, + "probability": 0.9704 + }, + { + "start": 22633.52, + "end": 22634.38, + "probability": 0.9028 + }, + { + "start": 22635.0, + "end": 22636.86, + "probability": 0.9859 + }, + { + "start": 22639.2, + "end": 22640.3, + "probability": 0.7195 + }, + { + "start": 22641.0, + "end": 22642.6, + "probability": 0.9893 + }, + { + "start": 22643.12, + "end": 22646.26, + "probability": 0.9536 + }, + { + "start": 22647.12, + "end": 22650.52, + "probability": 0.9741 + }, + { + "start": 22653.98, + "end": 22655.82, + "probability": 0.9424 + }, + { + "start": 22656.98, + "end": 22658.66, + "probability": 0.9895 + }, + { + "start": 22659.16, + "end": 22660.96, + "probability": 0.9764 + }, + { + "start": 22661.56, + "end": 22664.38, + "probability": 0.9736 + }, + { + "start": 22665.16, + "end": 22667.74, + "probability": 0.8095 + }, + { + "start": 22668.74, + "end": 22670.02, + "probability": 0.998 + }, + { + "start": 22670.92, + "end": 22671.66, + "probability": 0.9897 + }, + { + "start": 22673.18, + "end": 22673.92, + "probability": 0.8627 + }, + { + "start": 22674.7, + "end": 22678.0, + "probability": 0.9048 + }, + { + "start": 22678.6, + "end": 22681.94, + "probability": 0.9438 + }, + { + "start": 22682.56, + "end": 22684.32, + "probability": 0.8121 + }, + { + "start": 22684.86, + "end": 22685.56, + "probability": 0.9861 + }, + { + "start": 22686.4, + "end": 22688.0, + "probability": 0.7001 + }, + { + "start": 22689.24, + "end": 22691.84, + "probability": 0.7202 + }, + { + "start": 22692.52, + "end": 22694.1, + "probability": 0.9702 + }, + { + "start": 22695.2, + "end": 22697.41, + "probability": 0.9863 + }, + { + "start": 22697.58, + "end": 22698.62, + "probability": 0.9895 + }, + { + "start": 22700.06, + "end": 22700.92, + "probability": 0.9837 + }, + { + "start": 22701.9, + "end": 22705.32, + "probability": 0.7615 + }, + { + "start": 22706.12, + "end": 22707.62, + "probability": 0.6468 + }, + { + "start": 22708.14, + "end": 22710.84, + "probability": 0.6414 + }, + { + "start": 22711.88, + "end": 22712.26, + "probability": 0.9331 + }, + { + "start": 22712.82, + "end": 22714.48, + "probability": 0.9929 + }, + { + "start": 22715.68, + "end": 22717.44, + "probability": 0.9979 + }, + { + "start": 22718.1, + "end": 22721.48, + "probability": 0.9889 + }, + { + "start": 22721.92, + "end": 22724.06, + "probability": 0.9813 + }, + { + "start": 22724.6, + "end": 22726.68, + "probability": 0.9345 + }, + { + "start": 22729.7, + "end": 22735.0, + "probability": 0.9769 + }, + { + "start": 22735.38, + "end": 22736.76, + "probability": 0.9299 + }, + { + "start": 22737.68, + "end": 22738.37, + "probability": 0.9985 + }, + { + "start": 22738.94, + "end": 22739.1, + "probability": 0.5774 + }, + { + "start": 22739.64, + "end": 22741.16, + "probability": 0.89 + }, + { + "start": 22741.68, + "end": 22742.12, + "probability": 0.8557 + }, + { + "start": 22743.1, + "end": 22745.04, + "probability": 0.9678 + }, + { + "start": 22746.04, + "end": 22746.86, + "probability": 0.7498 + }, + { + "start": 22747.54, + "end": 22751.1, + "probability": 0.9744 + }, + { + "start": 22751.1, + "end": 22754.02, + "probability": 0.9972 + }, + { + "start": 22754.74, + "end": 22757.1, + "probability": 0.99 + }, + { + "start": 22757.44, + "end": 22757.89, + "probability": 0.9718 + }, + { + "start": 22758.84, + "end": 22759.56, + "probability": 0.9595 + }, + { + "start": 22760.52, + "end": 22764.96, + "probability": 0.9808 + }, + { + "start": 22765.7, + "end": 22767.56, + "probability": 0.8189 + }, + { + "start": 22768.64, + "end": 22769.94, + "probability": 0.6075 + }, + { + "start": 22770.58, + "end": 22773.78, + "probability": 0.8725 + }, + { + "start": 22774.3, + "end": 22774.82, + "probability": 0.8309 + }, + { + "start": 22775.76, + "end": 22776.2, + "probability": 0.8512 + }, + { + "start": 22777.0, + "end": 22777.95, + "probability": 0.9508 + }, + { + "start": 22778.7, + "end": 22779.63, + "probability": 0.9676 + }, + { + "start": 22780.84, + "end": 22783.28, + "probability": 0.992 + }, + { + "start": 22783.92, + "end": 22785.06, + "probability": 0.6835 + }, + { + "start": 22786.52, + "end": 22790.54, + "probability": 0.9707 + }, + { + "start": 22791.06, + "end": 22792.22, + "probability": 0.6934 + }, + { + "start": 22792.32, + "end": 22794.02, + "probability": 0.7569 + }, + { + "start": 22794.54, + "end": 22795.9, + "probability": 0.9248 + }, + { + "start": 22796.64, + "end": 22799.12, + "probability": 0.9878 + }, + { + "start": 22800.78, + "end": 22802.9, + "probability": 0.9597 + }, + { + "start": 22803.82, + "end": 22805.16, + "probability": 0.9661 + }, + { + "start": 22805.66, + "end": 22806.61, + "probability": 0.9866 + }, + { + "start": 22806.96, + "end": 22808.16, + "probability": 0.8109 + }, + { + "start": 22809.26, + "end": 22809.92, + "probability": 0.9478 + }, + { + "start": 22810.56, + "end": 22812.74, + "probability": 0.6726 + }, + { + "start": 22813.5, + "end": 22814.02, + "probability": 0.7366 + }, + { + "start": 22814.7, + "end": 22816.88, + "probability": 0.8794 + }, + { + "start": 22818.12, + "end": 22819.9, + "probability": 0.5856 + }, + { + "start": 22820.68, + "end": 22824.04, + "probability": 0.9771 + }, + { + "start": 22824.9, + "end": 22825.96, + "probability": 0.7944 + }, + { + "start": 22826.68, + "end": 22829.46, + "probability": 0.9927 + }, + { + "start": 22830.12, + "end": 22833.94, + "probability": 0.9474 + }, + { + "start": 22834.42, + "end": 22836.4, + "probability": 0.9799 + }, + { + "start": 22837.08, + "end": 22837.46, + "probability": 0.5826 + }, + { + "start": 22837.56, + "end": 22841.72, + "probability": 0.9983 + }, + { + "start": 22843.12, + "end": 22843.36, + "probability": 0.5804 + }, + { + "start": 22844.54, + "end": 22845.96, + "probability": 0.9914 + }, + { + "start": 22846.52, + "end": 22848.22, + "probability": 0.998 + }, + { + "start": 22848.88, + "end": 22852.56, + "probability": 0.9926 + }, + { + "start": 22853.18, + "end": 22855.98, + "probability": 0.9433 + }, + { + "start": 22856.8, + "end": 22857.44, + "probability": 0.9668 + }, + { + "start": 22858.16, + "end": 22862.22, + "probability": 0.8823 + }, + { + "start": 22862.56, + "end": 22862.66, + "probability": 0.8305 + }, + { + "start": 22863.3, + "end": 22863.74, + "probability": 0.6484 + }, + { + "start": 22865.27, + "end": 22869.01, + "probability": 0.846 + }, + { + "start": 22870.12, + "end": 22872.88, + "probability": 0.9642 + }, + { + "start": 22879.54, + "end": 22882.64, + "probability": 0.6571 + }, + { + "start": 22884.48, + "end": 22889.64, + "probability": 0.918 + }, + { + "start": 22891.2, + "end": 22893.83, + "probability": 0.9506 + }, + { + "start": 22895.44, + "end": 22899.38, + "probability": 0.8308 + }, + { + "start": 22900.86, + "end": 22901.46, + "probability": 0.5271 + }, + { + "start": 22901.82, + "end": 22909.28, + "probability": 0.9945 + }, + { + "start": 22909.72, + "end": 22910.4, + "probability": 0.4939 + }, + { + "start": 22910.52, + "end": 22911.24, + "probability": 0.7414 + }, + { + "start": 22912.02, + "end": 22914.5, + "probability": 0.9618 + }, + { + "start": 22915.16, + "end": 22919.76, + "probability": 0.904 + }, + { + "start": 22919.76, + "end": 22923.77, + "probability": 0.9868 + }, + { + "start": 22924.46, + "end": 22930.06, + "probability": 0.9506 + }, + { + "start": 22931.16, + "end": 22932.42, + "probability": 0.8315 + }, + { + "start": 22933.56, + "end": 22934.94, + "probability": 0.7484 + }, + { + "start": 22935.56, + "end": 22936.22, + "probability": 0.9321 + }, + { + "start": 22936.28, + "end": 22940.66, + "probability": 0.9624 + }, + { + "start": 22941.76, + "end": 22946.94, + "probability": 0.7675 + }, + { + "start": 22947.8, + "end": 22950.36, + "probability": 0.844 + }, + { + "start": 22951.2, + "end": 22953.78, + "probability": 0.9955 + }, + { + "start": 22955.02, + "end": 22959.26, + "probability": 0.9934 + }, + { + "start": 22960.08, + "end": 22962.84, + "probability": 0.856 + }, + { + "start": 22963.72, + "end": 22966.46, + "probability": 0.9822 + }, + { + "start": 22967.56, + "end": 22975.24, + "probability": 0.9792 + }, + { + "start": 22975.66, + "end": 22982.16, + "probability": 0.9136 + }, + { + "start": 22982.72, + "end": 22987.38, + "probability": 0.9915 + }, + { + "start": 22988.62, + "end": 22989.94, + "probability": 0.7335 + }, + { + "start": 22990.78, + "end": 22993.56, + "probability": 0.9683 + }, + { + "start": 22994.3, + "end": 22997.2, + "probability": 0.982 + }, + { + "start": 22998.08, + "end": 23001.3, + "probability": 0.9983 + }, + { + "start": 23001.3, + "end": 23004.42, + "probability": 0.9372 + }, + { + "start": 23004.88, + "end": 23007.38, + "probability": 0.9935 + }, + { + "start": 23009.8, + "end": 23011.96, + "probability": 0.9602 + }, + { + "start": 23012.68, + "end": 23017.34, + "probability": 0.9992 + }, + { + "start": 23017.34, + "end": 23021.18, + "probability": 0.998 + }, + { + "start": 23022.24, + "end": 23022.86, + "probability": 0.7609 + }, + { + "start": 23023.66, + "end": 23028.72, + "probability": 0.996 + }, + { + "start": 23029.18, + "end": 23033.46, + "probability": 0.9988 + }, + { + "start": 23033.96, + "end": 23038.44, + "probability": 0.9995 + }, + { + "start": 23039.04, + "end": 23042.12, + "probability": 0.9067 + }, + { + "start": 23042.68, + "end": 23045.22, + "probability": 0.9797 + }, + { + "start": 23046.32, + "end": 23047.54, + "probability": 0.8004 + }, + { + "start": 23047.94, + "end": 23053.68, + "probability": 0.9647 + }, + { + "start": 23054.46, + "end": 23055.86, + "probability": 0.8091 + }, + { + "start": 23056.4, + "end": 23059.34, + "probability": 0.9912 + }, + { + "start": 23060.3, + "end": 23065.82, + "probability": 0.9743 + }, + { + "start": 23067.14, + "end": 23072.66, + "probability": 0.9902 + }, + { + "start": 23072.66, + "end": 23079.08, + "probability": 0.9948 + }, + { + "start": 23080.28, + "end": 23083.26, + "probability": 0.9865 + }, + { + "start": 23083.42, + "end": 23084.7, + "probability": 0.6677 + }, + { + "start": 23085.28, + "end": 23088.84, + "probability": 0.986 + }, + { + "start": 23089.76, + "end": 23091.18, + "probability": 0.5804 + }, + { + "start": 23091.92, + "end": 23096.8, + "probability": 0.9034 + }, + { + "start": 23096.8, + "end": 23101.56, + "probability": 0.9771 + }, + { + "start": 23103.18, + "end": 23105.4, + "probability": 0.9965 + }, + { + "start": 23105.92, + "end": 23107.96, + "probability": 0.9327 + }, + { + "start": 23108.8, + "end": 23110.44, + "probability": 0.9889 + }, + { + "start": 23111.44, + "end": 23115.74, + "probability": 0.9548 + }, + { + "start": 23116.4, + "end": 23119.18, + "probability": 0.9719 + }, + { + "start": 23119.7, + "end": 23123.0, + "probability": 0.9993 + }, + { + "start": 23123.0, + "end": 23126.6, + "probability": 0.9985 + }, + { + "start": 23128.1, + "end": 23131.28, + "probability": 0.9799 + }, + { + "start": 23131.78, + "end": 23134.54, + "probability": 0.9968 + }, + { + "start": 23135.3, + "end": 23139.18, + "probability": 0.9779 + }, + { + "start": 23139.74, + "end": 23142.08, + "probability": 0.9847 + }, + { + "start": 23142.92, + "end": 23147.22, + "probability": 0.993 + }, + { + "start": 23147.78, + "end": 23153.06, + "probability": 0.9756 + }, + { + "start": 23154.72, + "end": 23156.84, + "probability": 0.7735 + }, + { + "start": 23157.78, + "end": 23164.42, + "probability": 0.9972 + }, + { + "start": 23165.08, + "end": 23168.54, + "probability": 0.9871 + }, + { + "start": 23169.86, + "end": 23173.34, + "probability": 0.9976 + }, + { + "start": 23174.22, + "end": 23176.12, + "probability": 0.9952 + }, + { + "start": 23176.7, + "end": 23180.5, + "probability": 0.9956 + }, + { + "start": 23181.94, + "end": 23186.38, + "probability": 0.9791 + }, + { + "start": 23186.38, + "end": 23190.16, + "probability": 0.9788 + }, + { + "start": 23190.8, + "end": 23195.3, + "probability": 0.9725 + }, + { + "start": 23196.48, + "end": 23199.44, + "probability": 0.9779 + }, + { + "start": 23200.02, + "end": 23203.06, + "probability": 0.9928 + }, + { + "start": 23203.74, + "end": 23204.68, + "probability": 0.9401 + }, + { + "start": 23205.46, + "end": 23207.82, + "probability": 0.8866 + }, + { + "start": 23208.44, + "end": 23212.1, + "probability": 0.9668 + }, + { + "start": 23213.26, + "end": 23221.2, + "probability": 0.959 + }, + { + "start": 23222.64, + "end": 23224.76, + "probability": 0.9745 + }, + { + "start": 23225.34, + "end": 23227.32, + "probability": 0.6741 + }, + { + "start": 23227.86, + "end": 23230.26, + "probability": 0.6728 + }, + { + "start": 23231.0, + "end": 23236.12, + "probability": 0.7998 + }, + { + "start": 23236.66, + "end": 23239.92, + "probability": 0.6414 + }, + { + "start": 23240.56, + "end": 23241.74, + "probability": 0.938 + }, + { + "start": 23241.84, + "end": 23245.12, + "probability": 0.9827 + }, + { + "start": 23245.64, + "end": 23247.06, + "probability": 0.761 + }, + { + "start": 23247.48, + "end": 23250.58, + "probability": 0.7639 + }, + { + "start": 23251.28, + "end": 23252.52, + "probability": 0.9912 + }, + { + "start": 23253.7, + "end": 23254.24, + "probability": 0.4956 + }, + { + "start": 23254.26, + "end": 23254.9, + "probability": 0.7015 + }, + { + "start": 23255.14, + "end": 23259.32, + "probability": 0.97 + }, + { + "start": 23259.96, + "end": 23266.46, + "probability": 0.9548 + }, + { + "start": 23266.92, + "end": 23274.14, + "probability": 0.9915 + }, + { + "start": 23274.48, + "end": 23278.36, + "probability": 0.9993 + }, + { + "start": 23278.78, + "end": 23283.5, + "probability": 0.9941 + }, + { + "start": 23283.78, + "end": 23284.18, + "probability": 0.6827 + }, + { + "start": 23284.2, + "end": 23286.74, + "probability": 0.3578 + }, + { + "start": 23286.76, + "end": 23289.46, + "probability": 0.9632 + }, + { + "start": 23290.4, + "end": 23291.86, + "probability": 0.8044 + }, + { + "start": 23291.9, + "end": 23292.6, + "probability": 0.4435 + }, + { + "start": 23293.06, + "end": 23293.74, + "probability": 0.7086 + }, + { + "start": 23293.78, + "end": 23296.1, + "probability": 0.8197 + }, + { + "start": 23296.62, + "end": 23297.4, + "probability": 0.7894 + }, + { + "start": 23297.82, + "end": 23297.82, + "probability": 0.4684 + }, + { + "start": 23298.94, + "end": 23299.46, + "probability": 0.2651 + }, + { + "start": 23300.02, + "end": 23301.34, + "probability": 0.3843 + }, + { + "start": 23301.6, + "end": 23301.76, + "probability": 0.0399 + }, + { + "start": 23301.84, + "end": 23303.36, + "probability": 0.2931 + }, + { + "start": 23304.06, + "end": 23307.56, + "probability": 0.6452 + }, + { + "start": 23314.88, + "end": 23316.98, + "probability": 0.241 + }, + { + "start": 23326.1, + "end": 23326.32, + "probability": 0.084 + }, + { + "start": 23326.82, + "end": 23331.58, + "probability": 0.7298 + }, + { + "start": 23332.12, + "end": 23336.32, + "probability": 0.9728 + }, + { + "start": 23336.94, + "end": 23339.68, + "probability": 0.4058 + }, + { + "start": 23340.5, + "end": 23343.94, + "probability": 0.9137 + }, + { + "start": 23345.64, + "end": 23345.78, + "probability": 0.0116 + }, + { + "start": 23346.7, + "end": 23347.9, + "probability": 0.3082 + }, + { + "start": 23347.9, + "end": 23349.2, + "probability": 0.312 + }, + { + "start": 23350.68, + "end": 23353.84, + "probability": 0.4255 + }, + { + "start": 23354.62, + "end": 23355.3, + "probability": 0.458 + }, + { + "start": 23355.68, + "end": 23355.78, + "probability": 0.6946 + }, + { + "start": 23357.74, + "end": 23360.22, + "probability": 0.8151 + }, + { + "start": 23360.68, + "end": 23364.02, + "probability": 0.6826 + }, + { + "start": 23369.18, + "end": 23371.76, + "probability": 0.251 + }, + { + "start": 23372.82, + "end": 23375.26, + "probability": 0.9949 + }, + { + "start": 23375.3, + "end": 23377.0, + "probability": 0.9617 + }, + { + "start": 23377.08, + "end": 23378.64, + "probability": 0.7981 + }, + { + "start": 23378.76, + "end": 23381.03, + "probability": 0.9865 + }, + { + "start": 23381.88, + "end": 23385.24, + "probability": 0.8462 + }, + { + "start": 23386.04, + "end": 23389.9, + "probability": 0.9915 + }, + { + "start": 23390.84, + "end": 23393.38, + "probability": 0.9983 + }, + { + "start": 23393.38, + "end": 23396.48, + "probability": 0.9882 + }, + { + "start": 23399.04, + "end": 23402.3, + "probability": 0.9834 + }, + { + "start": 23403.4, + "end": 23405.44, + "probability": 0.9551 + }, + { + "start": 23407.14, + "end": 23409.24, + "probability": 0.7665 + }, + { + "start": 23410.38, + "end": 23414.32, + "probability": 0.9828 + }, + { + "start": 23416.56, + "end": 23419.0, + "probability": 0.9809 + }, + { + "start": 23420.22, + "end": 23427.08, + "probability": 0.9705 + }, + { + "start": 23427.08, + "end": 23427.68, + "probability": 0.8109 + }, + { + "start": 23429.28, + "end": 23430.46, + "probability": 0.6535 + }, + { + "start": 23431.34, + "end": 23435.5, + "probability": 0.8322 + }, + { + "start": 23437.28, + "end": 23438.6, + "probability": 0.9072 + }, + { + "start": 23439.96, + "end": 23444.82, + "probability": 0.947 + }, + { + "start": 23446.72, + "end": 23451.8, + "probability": 0.8975 + }, + { + "start": 23454.42, + "end": 23457.4, + "probability": 0.994 + }, + { + "start": 23458.18, + "end": 23460.74, + "probability": 0.907 + }, + { + "start": 23462.8, + "end": 23467.48, + "probability": 0.9897 + }, + { + "start": 23469.66, + "end": 23473.96, + "probability": 0.9944 + }, + { + "start": 23474.46, + "end": 23476.06, + "probability": 0.9403 + }, + { + "start": 23477.9, + "end": 23478.88, + "probability": 0.9713 + }, + { + "start": 23480.0, + "end": 23481.3, + "probability": 0.8518 + }, + { + "start": 23481.86, + "end": 23482.74, + "probability": 0.6461 + }, + { + "start": 23482.84, + "end": 23490.04, + "probability": 0.8538 + }, + { + "start": 23490.4, + "end": 23491.78, + "probability": 0.9467 + }, + { + "start": 23494.36, + "end": 23496.23, + "probability": 0.8708 + }, + { + "start": 23498.34, + "end": 23500.32, + "probability": 0.895 + }, + { + "start": 23501.86, + "end": 23505.06, + "probability": 0.9111 + }, + { + "start": 23507.16, + "end": 23507.86, + "probability": 0.8555 + }, + { + "start": 23508.22, + "end": 23509.78, + "probability": 0.9591 + }, + { + "start": 23511.54, + "end": 23515.28, + "probability": 0.9166 + }, + { + "start": 23516.38, + "end": 23519.34, + "probability": 0.9924 + }, + { + "start": 23520.48, + "end": 23525.52, + "probability": 0.9963 + }, + { + "start": 23526.54, + "end": 23526.98, + "probability": 0.4646 + }, + { + "start": 23529.74, + "end": 23531.42, + "probability": 0.8037 + }, + { + "start": 23533.64, + "end": 23537.72, + "probability": 0.9479 + }, + { + "start": 23537.82, + "end": 23538.7, + "probability": 0.8141 + }, + { + "start": 23539.06, + "end": 23540.1, + "probability": 0.9772 + }, + { + "start": 23540.16, + "end": 23541.04, + "probability": 0.6437 + }, + { + "start": 23541.76, + "end": 23545.66, + "probability": 0.9454 + }, + { + "start": 23548.06, + "end": 23550.56, + "probability": 0.9551 + }, + { + "start": 23551.86, + "end": 23554.1, + "probability": 0.8186 + }, + { + "start": 23554.18, + "end": 23555.46, + "probability": 0.6504 + }, + { + "start": 23556.96, + "end": 23558.3, + "probability": 0.9163 + }, + { + "start": 23559.58, + "end": 23563.12, + "probability": 0.979 + }, + { + "start": 23563.5, + "end": 23565.76, + "probability": 0.9937 + }, + { + "start": 23565.8, + "end": 23568.68, + "probability": 0.1071 + }, + { + "start": 23568.68, + "end": 23569.98, + "probability": 0.7602 + }, + { + "start": 23571.6, + "end": 23575.42, + "probability": 0.9971 + }, + { + "start": 23575.88, + "end": 23577.34, + "probability": 0.8076 + }, + { + "start": 23578.36, + "end": 23578.98, + "probability": 0.8267 + }, + { + "start": 23579.74, + "end": 23580.1, + "probability": 0.8778 + }, + { + "start": 23582.56, + "end": 23583.86, + "probability": 0.5984 + }, + { + "start": 23584.88, + "end": 23584.94, + "probability": 0.7442 + }, + { + "start": 23584.94, + "end": 23587.56, + "probability": 0.7752 + }, + { + "start": 23587.7, + "end": 23587.82, + "probability": 0.7847 + }, + { + "start": 23587.82, + "end": 23590.46, + "probability": 0.9254 + }, + { + "start": 23590.68, + "end": 23591.74, + "probability": 0.3611 + }, + { + "start": 23591.84, + "end": 23592.32, + "probability": 0.1475 + }, + { + "start": 23592.42, + "end": 23593.24, + "probability": 0.2812 + }, + { + "start": 23593.24, + "end": 23593.7, + "probability": 0.6219 + }, + { + "start": 23593.82, + "end": 23598.64, + "probability": 0.9907 + }, + { + "start": 23598.8, + "end": 23601.0, + "probability": 0.9705 + }, + { + "start": 23601.54, + "end": 23602.8, + "probability": 0.7285 + }, + { + "start": 23603.42, + "end": 23604.54, + "probability": 0.4571 + }, + { + "start": 23604.54, + "end": 23605.78, + "probability": 0.0256 + }, + { + "start": 23605.78, + "end": 23609.2, + "probability": 0.8763 + }, + { + "start": 23609.84, + "end": 23610.76, + "probability": 0.76 + }, + { + "start": 23610.84, + "end": 23615.52, + "probability": 0.9989 + }, + { + "start": 23616.5, + "end": 23618.3, + "probability": 0.9932 + }, + { + "start": 23619.26, + "end": 23619.74, + "probability": 0.9644 + }, + { + "start": 23620.98, + "end": 23623.48, + "probability": 0.9966 + }, + { + "start": 23625.18, + "end": 23628.22, + "probability": 0.9907 + }, + { + "start": 23630.8, + "end": 23631.46, + "probability": 0.2765 + }, + { + "start": 23631.46, + "end": 23635.72, + "probability": 0.5944 + }, + { + "start": 23636.06, + "end": 23636.46, + "probability": 0.6032 + }, + { + "start": 23636.72, + "end": 23637.32, + "probability": 0.6244 + }, + { + "start": 23638.04, + "end": 23640.45, + "probability": 0.8027 + }, + { + "start": 23648.54, + "end": 23651.08, + "probability": 0.5933 + }, + { + "start": 23651.82, + "end": 23652.36, + "probability": 0.6199 + }, + { + "start": 23654.04, + "end": 23655.14, + "probability": 0.9966 + }, + { + "start": 23656.04, + "end": 23656.58, + "probability": 0.8928 + }, + { + "start": 23659.52, + "end": 23660.66, + "probability": 0.8872 + }, + { + "start": 23661.2, + "end": 23663.3, + "probability": 0.7234 + }, + { + "start": 23664.38, + "end": 23665.28, + "probability": 0.8075 + }, + { + "start": 23666.46, + "end": 23668.14, + "probability": 0.9629 + }, + { + "start": 23669.26, + "end": 23669.86, + "probability": 0.8586 + }, + { + "start": 23670.4, + "end": 23674.08, + "probability": 0.9742 + }, + { + "start": 23674.88, + "end": 23676.46, + "probability": 0.854 + }, + { + "start": 23677.62, + "end": 23678.06, + "probability": 0.5756 + }, + { + "start": 23680.78, + "end": 23682.08, + "probability": 0.9969 + }, + { + "start": 23682.34, + "end": 23684.16, + "probability": 0.8823 + }, + { + "start": 23684.4, + "end": 23685.23, + "probability": 0.9998 + }, + { + "start": 23686.04, + "end": 23688.08, + "probability": 0.9681 + }, + { + "start": 23689.12, + "end": 23690.08, + "probability": 0.7107 + }, + { + "start": 23690.14, + "end": 23692.94, + "probability": 0.9894 + }, + { + "start": 23693.0, + "end": 23697.54, + "probability": 0.9044 + }, + { + "start": 23698.32, + "end": 23701.08, + "probability": 0.8641 + }, + { + "start": 23701.88, + "end": 23709.54, + "probability": 0.9932 + }, + { + "start": 23710.54, + "end": 23711.44, + "probability": 0.3321 + }, + { + "start": 23711.44, + "end": 23712.02, + "probability": 0.3101 + }, + { + "start": 23712.16, + "end": 23713.18, + "probability": 0.7198 + }, + { + "start": 23713.78, + "end": 23714.44, + "probability": 0.6241 + }, + { + "start": 23715.08, + "end": 23718.41, + "probability": 0.8858 + }, + { + "start": 23720.06, + "end": 23720.58, + "probability": 0.9893 + }, + { + "start": 23721.54, + "end": 23724.68, + "probability": 0.9831 + }, + { + "start": 23725.3, + "end": 23729.31, + "probability": 0.5875 + }, + { + "start": 23729.98, + "end": 23731.86, + "probability": 0.9087 + }, + { + "start": 23732.43, + "end": 23732.64, + "probability": 0.0508 + }, + { + "start": 23733.58, + "end": 23736.54, + "probability": 0.7159 + }, + { + "start": 23737.4, + "end": 23742.98, + "probability": 0.8457 + }, + { + "start": 23743.44, + "end": 23744.14, + "probability": 0.4626 + }, + { + "start": 23744.54, + "end": 23751.16, + "probability": 0.9093 + }, + { + "start": 23751.56, + "end": 23754.48, + "probability": 0.9005 + }, + { + "start": 23755.02, + "end": 23759.9, + "probability": 0.9603 + }, + { + "start": 23759.9, + "end": 23763.54, + "probability": 0.9869 + }, + { + "start": 23764.2, + "end": 23768.9, + "probability": 0.9905 + }, + { + "start": 23768.9, + "end": 23773.84, + "probability": 0.9965 + }, + { + "start": 23774.56, + "end": 23778.72, + "probability": 0.9985 + }, + { + "start": 23780.34, + "end": 23783.6, + "probability": 0.8633 + }, + { + "start": 23784.58, + "end": 23792.64, + "probability": 0.8732 + }, + { + "start": 23792.82, + "end": 23796.16, + "probability": 0.9778 + }, + { + "start": 23797.32, + "end": 23798.66, + "probability": 0.7993 + }, + { + "start": 23799.62, + "end": 23801.14, + "probability": 0.7468 + }, + { + "start": 23801.98, + "end": 23803.98, + "probability": 0.7924 + }, + { + "start": 23804.8, + "end": 23806.72, + "probability": 0.997 + }, + { + "start": 23807.44, + "end": 23809.24, + "probability": 0.9054 + }, + { + "start": 23809.88, + "end": 23811.34, + "probability": 0.8464 + }, + { + "start": 23811.94, + "end": 23814.02, + "probability": 0.991 + }, + { + "start": 23816.06, + "end": 23817.8, + "probability": 0.9297 + }, + { + "start": 23818.37, + "end": 23822.82, + "probability": 0.9046 + }, + { + "start": 23823.7, + "end": 23826.1, + "probability": 0.9232 + }, + { + "start": 23827.7, + "end": 23830.64, + "probability": 0.7395 + }, + { + "start": 23830.9, + "end": 23833.84, + "probability": 0.956 + }, + { + "start": 23833.84, + "end": 23836.32, + "probability": 0.9962 + }, + { + "start": 23837.04, + "end": 23841.08, + "probability": 0.802 + }, + { + "start": 23842.39, + "end": 23845.19, + "probability": 0.7687 + }, + { + "start": 23846.4, + "end": 23848.3, + "probability": 0.75 + }, + { + "start": 23848.38, + "end": 23851.16, + "probability": 0.957 + }, + { + "start": 23852.56, + "end": 23854.96, + "probability": 0.7313 + }, + { + "start": 23855.32, + "end": 23860.18, + "probability": 0.8522 + }, + { + "start": 23860.24, + "end": 23860.48, + "probability": 0.7381 + }, + { + "start": 23861.68, + "end": 23861.8, + "probability": 0.2581 + }, + { + "start": 23861.86, + "end": 23863.99, + "probability": 0.8585 + }, + { + "start": 23870.86, + "end": 23872.42, + "probability": 0.4254 + }, + { + "start": 23880.3, + "end": 23884.32, + "probability": 0.5463 + }, + { + "start": 23885.6, + "end": 23886.88, + "probability": 0.9057 + }, + { + "start": 23888.86, + "end": 23891.52, + "probability": 0.9829 + }, + { + "start": 23893.46, + "end": 23895.14, + "probability": 0.8618 + }, + { + "start": 23896.52, + "end": 23899.76, + "probability": 0.998 + }, + { + "start": 23900.72, + "end": 23902.82, + "probability": 0.9812 + }, + { + "start": 23903.74, + "end": 23905.18, + "probability": 0.9948 + }, + { + "start": 23905.8, + "end": 23906.82, + "probability": 0.8977 + }, + { + "start": 23907.36, + "end": 23911.12, + "probability": 0.9906 + }, + { + "start": 23913.46, + "end": 23914.24, + "probability": 0.6142 + }, + { + "start": 23914.94, + "end": 23916.62, + "probability": 0.9764 + }, + { + "start": 23917.34, + "end": 23919.38, + "probability": 0.9864 + }, + { + "start": 23920.18, + "end": 23923.22, + "probability": 0.9985 + }, + { + "start": 23924.14, + "end": 23928.24, + "probability": 0.9983 + }, + { + "start": 23928.78, + "end": 23931.8, + "probability": 0.9995 + }, + { + "start": 23932.66, + "end": 23933.9, + "probability": 0.9808 + }, + { + "start": 23934.32, + "end": 23937.96, + "probability": 0.9858 + }, + { + "start": 23939.84, + "end": 23940.32, + "probability": 0.5261 + }, + { + "start": 23941.24, + "end": 23944.25, + "probability": 0.7659 + }, + { + "start": 23945.73, + "end": 23947.52, + "probability": 0.7867 + }, + { + "start": 23948.06, + "end": 23948.42, + "probability": 0.9314 + }, + { + "start": 23949.06, + "end": 23951.24, + "probability": 0.7575 + }, + { + "start": 23951.34, + "end": 23953.74, + "probability": 0.9609 + }, + { + "start": 23955.02, + "end": 23957.4, + "probability": 0.6776 + }, + { + "start": 23958.34, + "end": 23962.0, + "probability": 0.9152 + }, + { + "start": 23962.45, + "end": 23964.42, + "probability": 0.9902 + }, + { + "start": 23964.84, + "end": 23965.08, + "probability": 0.6086 + }, + { + "start": 23965.18, + "end": 23965.68, + "probability": 0.9537 + }, + { + "start": 23965.78, + "end": 23966.3, + "probability": 0.9466 + }, + { + "start": 23966.62, + "end": 23971.88, + "probability": 0.9817 + }, + { + "start": 23971.88, + "end": 23976.52, + "probability": 0.8833 + }, + { + "start": 23977.48, + "end": 23977.68, + "probability": 0.3036 + }, + { + "start": 23977.86, + "end": 23980.7, + "probability": 0.8979 + }, + { + "start": 23980.76, + "end": 23981.11, + "probability": 0.8501 + }, + { + "start": 23981.64, + "end": 23982.6, + "probability": 0.4369 + }, + { + "start": 23982.86, + "end": 23983.54, + "probability": 0.7784 + }, + { + "start": 23984.64, + "end": 23985.55, + "probability": 0.9615 + }, + { + "start": 23985.74, + "end": 23989.7, + "probability": 0.8584 + }, + { + "start": 23990.5, + "end": 23991.55, + "probability": 0.9142 + }, + { + "start": 23992.4, + "end": 23995.74, + "probability": 0.8882 + }, + { + "start": 23997.62, + "end": 24000.39, + "probability": 0.959 + }, + { + "start": 24000.94, + "end": 24002.24, + "probability": 0.9767 + }, + { + "start": 24003.1, + "end": 24005.38, + "probability": 0.8419 + }, + { + "start": 24005.9, + "end": 24008.09, + "probability": 0.9731 + }, + { + "start": 24008.5, + "end": 24011.02, + "probability": 0.9956 + }, + { + "start": 24011.3, + "end": 24011.58, + "probability": 0.7729 + }, + { + "start": 24011.86, + "end": 24012.54, + "probability": 0.8932 + }, + { + "start": 24013.22, + "end": 24014.2, + "probability": 0.9976 + }, + { + "start": 24014.92, + "end": 24016.56, + "probability": 0.9971 + }, + { + "start": 24017.12, + "end": 24019.68, + "probability": 0.944 + }, + { + "start": 24020.06, + "end": 24020.6, + "probability": 0.7864 + }, + { + "start": 24020.74, + "end": 24022.02, + "probability": 0.9824 + }, + { + "start": 24022.56, + "end": 24024.74, + "probability": 0.988 + }, + { + "start": 24025.0, + "end": 24026.32, + "probability": 0.7684 + }, + { + "start": 24026.5, + "end": 24027.52, + "probability": 0.9889 + }, + { + "start": 24027.58, + "end": 24028.96, + "probability": 0.9157 + }, + { + "start": 24029.04, + "end": 24030.1, + "probability": 0.993 + }, + { + "start": 24030.68, + "end": 24034.76, + "probability": 0.99 + }, + { + "start": 24035.22, + "end": 24035.58, + "probability": 0.3001 + }, + { + "start": 24035.68, + "end": 24036.99, + "probability": 0.9749 + }, + { + "start": 24037.82, + "end": 24039.28, + "probability": 0.967 + }, + { + "start": 24039.56, + "end": 24041.3, + "probability": 0.9319 + }, + { + "start": 24041.46, + "end": 24042.66, + "probability": 0.8495 + }, + { + "start": 24042.68, + "end": 24043.78, + "probability": 0.9399 + }, + { + "start": 24045.0, + "end": 24048.76, + "probability": 0.9949 + }, + { + "start": 24049.24, + "end": 24051.22, + "probability": 0.9404 + }, + { + "start": 24051.52, + "end": 24052.92, + "probability": 0.9326 + }, + { + "start": 24053.62, + "end": 24055.04, + "probability": 0.9349 + }, + { + "start": 24055.64, + "end": 24058.42, + "probability": 0.9766 + }, + { + "start": 24058.54, + "end": 24061.58, + "probability": 0.9965 + }, + { + "start": 24062.06, + "end": 24063.84, + "probability": 0.824 + }, + { + "start": 24064.3, + "end": 24066.42, + "probability": 0.7965 + }, + { + "start": 24066.78, + "end": 24068.12, + "probability": 0.8601 + }, + { + "start": 24068.52, + "end": 24068.56, + "probability": 0.585 + }, + { + "start": 24068.56, + "end": 24069.52, + "probability": 0.9152 + }, + { + "start": 24071.26, + "end": 24072.65, + "probability": 0.1677 + }, + { + "start": 24073.5, + "end": 24073.72, + "probability": 0.7212 + }, + { + "start": 24073.96, + "end": 24074.74, + "probability": 0.5519 + }, + { + "start": 24076.76, + "end": 24078.34, + "probability": 0.6168 + }, + { + "start": 24078.42, + "end": 24081.07, + "probability": 0.8921 + }, + { + "start": 24087.64, + "end": 24089.96, + "probability": 0.5335 + }, + { + "start": 24090.74, + "end": 24095.0, + "probability": 0.9863 + }, + { + "start": 24095.3, + "end": 24095.86, + "probability": 0.7482 + }, + { + "start": 24096.4, + "end": 24098.86, + "probability": 0.9801 + }, + { + "start": 24098.86, + "end": 24099.22, + "probability": 0.6778 + }, + { + "start": 24099.32, + "end": 24100.52, + "probability": 0.5019 + }, + { + "start": 24100.68, + "end": 24100.93, + "probability": 0.8433 + }, + { + "start": 24101.88, + "end": 24106.9, + "probability": 0.9618 + }, + { + "start": 24107.02, + "end": 24113.46, + "probability": 0.9529 + }, + { + "start": 24113.84, + "end": 24116.78, + "probability": 0.8904 + }, + { + "start": 24117.04, + "end": 24118.1, + "probability": 0.476 + }, + { + "start": 24118.26, + "end": 24120.96, + "probability": 0.8716 + }, + { + "start": 24121.32, + "end": 24123.04, + "probability": 0.8922 + }, + { + "start": 24124.09, + "end": 24129.36, + "probability": 0.9788 + }, + { + "start": 24129.82, + "end": 24137.02, + "probability": 0.9577 + }, + { + "start": 24137.79, + "end": 24144.06, + "probability": 0.7159 + }, + { + "start": 24144.08, + "end": 24144.9, + "probability": 0.9352 + }, + { + "start": 24145.34, + "end": 24146.56, + "probability": 0.8709 + }, + { + "start": 24146.74, + "end": 24147.86, + "probability": 0.8186 + }, + { + "start": 24148.2, + "end": 24149.56, + "probability": 0.5005 + }, + { + "start": 24149.62, + "end": 24151.06, + "probability": 0.9536 + }, + { + "start": 24151.62, + "end": 24153.64, + "probability": 0.6433 + }, + { + "start": 24153.72, + "end": 24156.16, + "probability": 0.922 + }, + { + "start": 24156.16, + "end": 24160.58, + "probability": 0.9823 + }, + { + "start": 24161.14, + "end": 24163.45, + "probability": 0.9946 + }, + { + "start": 24163.94, + "end": 24167.46, + "probability": 0.9932 + }, + { + "start": 24167.7, + "end": 24168.7, + "probability": 0.635 + }, + { + "start": 24169.4, + "end": 24173.1, + "probability": 0.9705 + }, + { + "start": 24173.1, + "end": 24175.96, + "probability": 0.9799 + }, + { + "start": 24176.0, + "end": 24176.8, + "probability": 0.7138 + }, + { + "start": 24176.86, + "end": 24177.76, + "probability": 0.8438 + }, + { + "start": 24178.24, + "end": 24178.56, + "probability": 0.7095 + }, + { + "start": 24178.62, + "end": 24180.44, + "probability": 0.9801 + }, + { + "start": 24180.78, + "end": 24184.64, + "probability": 0.9567 + }, + { + "start": 24184.64, + "end": 24185.3, + "probability": 0.8003 + }, + { + "start": 24185.46, + "end": 24188.04, + "probability": 0.8357 + }, + { + "start": 24188.12, + "end": 24190.32, + "probability": 0.9202 + }, + { + "start": 24190.92, + "end": 24194.28, + "probability": 0.9617 + }, + { + "start": 24195.1, + "end": 24197.0, + "probability": 0.9243 + }, + { + "start": 24197.18, + "end": 24200.28, + "probability": 0.9353 + }, + { + "start": 24200.62, + "end": 24203.46, + "probability": 0.9959 + }, + { + "start": 24204.28, + "end": 24205.84, + "probability": 0.7168 + }, + { + "start": 24206.2, + "end": 24209.36, + "probability": 0.9807 + }, + { + "start": 24209.94, + "end": 24211.92, + "probability": 0.7712 + }, + { + "start": 24212.0, + "end": 24214.72, + "probability": 0.9709 + }, + { + "start": 24215.27, + "end": 24216.0, + "probability": 0.9458 + }, + { + "start": 24217.12, + "end": 24218.56, + "probability": 0.9479 + }, + { + "start": 24218.72, + "end": 24220.32, + "probability": 0.917 + }, + { + "start": 24220.44, + "end": 24224.2, + "probability": 0.9619 + }, + { + "start": 24224.58, + "end": 24229.98, + "probability": 0.918 + }, + { + "start": 24230.1, + "end": 24232.74, + "probability": 0.404 + }, + { + "start": 24232.78, + "end": 24233.54, + "probability": 0.7785 + }, + { + "start": 24233.78, + "end": 24237.18, + "probability": 0.9209 + }, + { + "start": 24237.96, + "end": 24238.14, + "probability": 0.2406 + }, + { + "start": 24238.14, + "end": 24241.44, + "probability": 0.9008 + }, + { + "start": 24241.52, + "end": 24242.29, + "probability": 0.9897 + }, + { + "start": 24242.44, + "end": 24244.94, + "probability": 0.9869 + }, + { + "start": 24245.66, + "end": 24246.6, + "probability": 0.8839 + }, + { + "start": 24246.82, + "end": 24247.8, + "probability": 0.9083 + }, + { + "start": 24247.84, + "end": 24248.34, + "probability": 0.9067 + }, + { + "start": 24248.5, + "end": 24249.96, + "probability": 0.8792 + }, + { + "start": 24250.6, + "end": 24253.84, + "probability": 0.9932 + }, + { + "start": 24253.84, + "end": 24256.88, + "probability": 0.8116 + }, + { + "start": 24256.98, + "end": 24258.32, + "probability": 0.9804 + }, + { + "start": 24258.72, + "end": 24262.06, + "probability": 0.9676 + }, + { + "start": 24265.4, + "end": 24265.58, + "probability": 0.1898 + }, + { + "start": 24265.58, + "end": 24269.02, + "probability": 0.8813 + }, + { + "start": 24269.4, + "end": 24270.48, + "probability": 0.8494 + }, + { + "start": 24270.54, + "end": 24272.62, + "probability": 0.9425 + }, + { + "start": 24272.96, + "end": 24275.72, + "probability": 0.93 + }, + { + "start": 24276.18, + "end": 24277.18, + "probability": 0.971 + }, + { + "start": 24277.92, + "end": 24279.32, + "probability": 0.9897 + }, + { + "start": 24279.42, + "end": 24283.36, + "probability": 0.9707 + }, + { + "start": 24283.68, + "end": 24284.78, + "probability": 0.7595 + }, + { + "start": 24285.1, + "end": 24288.16, + "probability": 0.8735 + }, + { + "start": 24288.16, + "end": 24291.22, + "probability": 0.9771 + }, + { + "start": 24291.34, + "end": 24292.02, + "probability": 0.7002 + }, + { + "start": 24292.24, + "end": 24292.64, + "probability": 0.3939 + }, + { + "start": 24292.82, + "end": 24294.12, + "probability": 0.9533 + }, + { + "start": 24294.18, + "end": 24295.52, + "probability": 0.5012 + }, + { + "start": 24295.58, + "end": 24296.24, + "probability": 0.759 + }, + { + "start": 24296.36, + "end": 24298.14, + "probability": 0.9443 + }, + { + "start": 24314.74, + "end": 24316.2, + "probability": 0.7638 + }, + { + "start": 24317.32, + "end": 24319.22, + "probability": 0.8696 + }, + { + "start": 24320.62, + "end": 24325.56, + "probability": 0.9882 + }, + { + "start": 24325.56, + "end": 24330.77, + "probability": 0.9689 + }, + { + "start": 24332.5, + "end": 24335.98, + "probability": 0.5216 + }, + { + "start": 24337.14, + "end": 24339.88, + "probability": 0.969 + }, + { + "start": 24341.1, + "end": 24342.86, + "probability": 0.9902 + }, + { + "start": 24344.54, + "end": 24346.62, + "probability": 0.9622 + }, + { + "start": 24347.42, + "end": 24348.58, + "probability": 0.9839 + }, + { + "start": 24349.18, + "end": 24349.84, + "probability": 0.8242 + }, + { + "start": 24350.8, + "end": 24352.68, + "probability": 0.9196 + }, + { + "start": 24353.24, + "end": 24357.26, + "probability": 0.9866 + }, + { + "start": 24358.84, + "end": 24360.38, + "probability": 0.9966 + }, + { + "start": 24362.46, + "end": 24363.92, + "probability": 0.9791 + }, + { + "start": 24364.68, + "end": 24366.34, + "probability": 0.998 + }, + { + "start": 24366.76, + "end": 24369.28, + "probability": 0.6809 + }, + { + "start": 24369.88, + "end": 24376.34, + "probability": 0.9829 + }, + { + "start": 24377.54, + "end": 24378.96, + "probability": 0.8641 + }, + { + "start": 24379.6, + "end": 24382.78, + "probability": 0.903 + }, + { + "start": 24383.58, + "end": 24386.08, + "probability": 0.9088 + }, + { + "start": 24386.84, + "end": 24388.66, + "probability": 0.8375 + }, + { + "start": 24389.52, + "end": 24393.6, + "probability": 0.8846 + }, + { + "start": 24395.36, + "end": 24396.56, + "probability": 0.7576 + }, + { + "start": 24396.62, + "end": 24398.16, + "probability": 0.9762 + }, + { + "start": 24399.0, + "end": 24400.72, + "probability": 0.7242 + }, + { + "start": 24401.62, + "end": 24404.62, + "probability": 0.9514 + }, + { + "start": 24408.14, + "end": 24409.76, + "probability": 0.5299 + }, + { + "start": 24410.66, + "end": 24412.6, + "probability": 0.9961 + }, + { + "start": 24412.9, + "end": 24414.54, + "probability": 0.9983 + }, + { + "start": 24415.14, + "end": 24417.26, + "probability": 0.8853 + }, + { + "start": 24417.84, + "end": 24421.66, + "probability": 0.9888 + }, + { + "start": 24423.44, + "end": 24426.68, + "probability": 0.9639 + }, + { + "start": 24427.36, + "end": 24428.18, + "probability": 0.6972 + }, + { + "start": 24428.98, + "end": 24429.24, + "probability": 0.6903 + }, + { + "start": 24430.18, + "end": 24431.14, + "probability": 0.9831 + }, + { + "start": 24432.36, + "end": 24433.88, + "probability": 0.7971 + }, + { + "start": 24435.38, + "end": 24437.0, + "probability": 0.98 + }, + { + "start": 24437.4, + "end": 24439.14, + "probability": 0.9414 + }, + { + "start": 24439.68, + "end": 24441.32, + "probability": 0.9741 + }, + { + "start": 24443.36, + "end": 24443.93, + "probability": 0.9711 + }, + { + "start": 24445.28, + "end": 24447.78, + "probability": 0.8931 + }, + { + "start": 24448.74, + "end": 24449.9, + "probability": 0.9747 + }, + { + "start": 24450.02, + "end": 24450.9, + "probability": 0.9783 + }, + { + "start": 24450.98, + "end": 24452.08, + "probability": 0.8136 + }, + { + "start": 24452.58, + "end": 24454.48, + "probability": 0.9581 + }, + { + "start": 24455.84, + "end": 24458.1, + "probability": 0.5712 + }, + { + "start": 24459.74, + "end": 24462.2, + "probability": 0.6454 + }, + { + "start": 24463.28, + "end": 24463.98, + "probability": 0.7607 + }, + { + "start": 24465.72, + "end": 24466.44, + "probability": 0.8677 + }, + { + "start": 24466.72, + "end": 24466.94, + "probability": 0.5803 + }, + { + "start": 24467.02, + "end": 24467.56, + "probability": 0.7555 + }, + { + "start": 24467.64, + "end": 24468.16, + "probability": 0.969 + }, + { + "start": 24468.84, + "end": 24470.06, + "probability": 0.7336 + }, + { + "start": 24470.96, + "end": 24473.06, + "probability": 0.8441 + }, + { + "start": 24473.34, + "end": 24476.24, + "probability": 0.6051 + }, + { + "start": 24476.36, + "end": 24479.4, + "probability": 0.742 + }, + { + "start": 24480.24, + "end": 24481.94, + "probability": 0.9517 + }, + { + "start": 24482.28, + "end": 24483.83, + "probability": 0.9628 + }, + { + "start": 24484.6, + "end": 24485.86, + "probability": 0.9816 + }, + { + "start": 24486.58, + "end": 24487.58, + "probability": 0.7199 + }, + { + "start": 24488.36, + "end": 24489.08, + "probability": 0.6882 + }, + { + "start": 24490.12, + "end": 24491.04, + "probability": 0.9877 + }, + { + "start": 24492.04, + "end": 24492.58, + "probability": 0.9917 + }, + { + "start": 24494.12, + "end": 24495.0, + "probability": 0.6476 + }, + { + "start": 24495.02, + "end": 24495.86, + "probability": 0.9552 + }, + { + "start": 24495.9, + "end": 24496.86, + "probability": 0.9847 + }, + { + "start": 24498.26, + "end": 24499.08, + "probability": 0.7786 + }, + { + "start": 24499.44, + "end": 24500.16, + "probability": 0.8037 + }, + { + "start": 24500.78, + "end": 24504.98, + "probability": 0.4813 + }, + { + "start": 24506.02, + "end": 24509.14, + "probability": 0.8749 + }, + { + "start": 24525.16, + "end": 24525.94, + "probability": 0.5504 + }, + { + "start": 24526.66, + "end": 24527.26, + "probability": 0.6842 + }, + { + "start": 24528.78, + "end": 24534.32, + "probability": 0.9809 + }, + { + "start": 24535.52, + "end": 24536.06, + "probability": 0.8935 + }, + { + "start": 24536.2, + "end": 24538.44, + "probability": 0.996 + }, + { + "start": 24540.08, + "end": 24541.62, + "probability": 0.995 + }, + { + "start": 24543.94, + "end": 24545.06, + "probability": 0.9508 + }, + { + "start": 24545.76, + "end": 24546.04, + "probability": 0.648 + }, + { + "start": 24546.1, + "end": 24546.6, + "probability": 0.8463 + }, + { + "start": 24546.76, + "end": 24547.52, + "probability": 0.9412 + }, + { + "start": 24547.54, + "end": 24549.32, + "probability": 0.9619 + }, + { + "start": 24550.58, + "end": 24550.58, + "probability": 0.1072 + }, + { + "start": 24550.58, + "end": 24551.18, + "probability": 0.2734 + }, + { + "start": 24552.04, + "end": 24552.12, + "probability": 0.152 + }, + { + "start": 24552.12, + "end": 24554.24, + "probability": 0.9583 + }, + { + "start": 24554.86, + "end": 24555.74, + "probability": 0.8174 + }, + { + "start": 24556.6, + "end": 24557.92, + "probability": 0.7444 + }, + { + "start": 24558.6, + "end": 24559.62, + "probability": 0.7022 + }, + { + "start": 24560.66, + "end": 24563.76, + "probability": 0.9604 + }, + { + "start": 24564.0, + "end": 24566.24, + "probability": 0.835 + }, + { + "start": 24566.98, + "end": 24569.26, + "probability": 0.9741 + }, + { + "start": 24570.38, + "end": 24573.74, + "probability": 0.9924 + }, + { + "start": 24575.32, + "end": 24578.02, + "probability": 0.957 + }, + { + "start": 24579.54, + "end": 24580.58, + "probability": 0.9318 + }, + { + "start": 24581.14, + "end": 24584.06, + "probability": 0.9487 + }, + { + "start": 24584.18, + "end": 24584.82, + "probability": 0.9477 + }, + { + "start": 24584.9, + "end": 24586.3, + "probability": 0.9707 + }, + { + "start": 24587.12, + "end": 24588.52, + "probability": 0.7333 + }, + { + "start": 24589.28, + "end": 24590.33, + "probability": 0.9961 + }, + { + "start": 24591.22, + "end": 24594.96, + "probability": 0.979 + }, + { + "start": 24595.66, + "end": 24596.32, + "probability": 0.9033 + }, + { + "start": 24597.48, + "end": 24599.36, + "probability": 0.9893 + }, + { + "start": 24599.44, + "end": 24600.26, + "probability": 0.8965 + }, + { + "start": 24600.3, + "end": 24602.28, + "probability": 0.9932 + }, + { + "start": 24602.32, + "end": 24603.1, + "probability": 0.6599 + }, + { + "start": 24603.24, + "end": 24603.76, + "probability": 0.9394 + }, + { + "start": 24603.86, + "end": 24604.9, + "probability": 0.9929 + }, + { + "start": 24605.62, + "end": 24606.44, + "probability": 0.9737 + }, + { + "start": 24607.24, + "end": 24609.24, + "probability": 0.9725 + }, + { + "start": 24609.82, + "end": 24612.52, + "probability": 0.9746 + }, + { + "start": 24612.92, + "end": 24613.56, + "probability": 0.7166 + }, + { + "start": 24614.22, + "end": 24616.12, + "probability": 0.9667 + }, + { + "start": 24616.74, + "end": 24618.96, + "probability": 0.8779 + }, + { + "start": 24619.3, + "end": 24620.7, + "probability": 0.9026 + }, + { + "start": 24621.28, + "end": 24622.68, + "probability": 0.9623 + }, + { + "start": 24623.98, + "end": 24627.78, + "probability": 0.9895 + }, + { + "start": 24628.4, + "end": 24630.46, + "probability": 0.9993 + }, + { + "start": 24631.42, + "end": 24632.36, + "probability": 0.9145 + }, + { + "start": 24632.84, + "end": 24633.8, + "probability": 0.8975 + }, + { + "start": 24634.48, + "end": 24636.2, + "probability": 0.9853 + }, + { + "start": 24636.42, + "end": 24638.12, + "probability": 0.6422 + }, + { + "start": 24638.72, + "end": 24640.12, + "probability": 0.9707 + }, + { + "start": 24640.78, + "end": 24641.6, + "probability": 0.7355 + }, + { + "start": 24642.26, + "end": 24644.82, + "probability": 0.8713 + }, + { + "start": 24645.54, + "end": 24647.58, + "probability": 0.6219 + }, + { + "start": 24648.1, + "end": 24650.56, + "probability": 0.5631 + }, + { + "start": 24650.62, + "end": 24652.52, + "probability": 0.9434 + }, + { + "start": 24655.18, + "end": 24657.34, + "probability": 0.8442 + }, + { + "start": 24658.74, + "end": 24664.24, + "probability": 0.9918 + }, + { + "start": 24664.82, + "end": 24666.58, + "probability": 0.9735 + }, + { + "start": 24667.2, + "end": 24670.68, + "probability": 0.8656 + }, + { + "start": 24670.8, + "end": 24671.8, + "probability": 0.9927 + }, + { + "start": 24672.08, + "end": 24672.58, + "probability": 0.2624 + }, + { + "start": 24672.64, + "end": 24673.18, + "probability": 0.8989 + }, + { + "start": 24674.16, + "end": 24674.2, + "probability": 0.0012 + }, + { + "start": 24674.2, + "end": 24676.7, + "probability": 0.9836 + }, + { + "start": 24676.74, + "end": 24678.48, + "probability": 0.9463 + }, + { + "start": 24679.82, + "end": 24681.88, + "probability": 0.987 + }, + { + "start": 24681.88, + "end": 24684.0, + "probability": 0.9559 + }, + { + "start": 24684.04, + "end": 24687.96, + "probability": 0.9941 + }, + { + "start": 24688.52, + "end": 24689.24, + "probability": 0.8963 + }, + { + "start": 24689.34, + "end": 24690.02, + "probability": 0.8754 + }, + { + "start": 24690.04, + "end": 24691.02, + "probability": 0.9551 + }, + { + "start": 24691.08, + "end": 24691.42, + "probability": 0.7438 + }, + { + "start": 24691.62, + "end": 24691.9, + "probability": 0.492 + }, + { + "start": 24691.96, + "end": 24694.12, + "probability": 0.4527 + }, + { + "start": 24694.16, + "end": 24694.44, + "probability": 0.8789 + }, + { + "start": 24694.56, + "end": 24694.74, + "probability": 0.4693 + }, + { + "start": 24694.8, + "end": 24694.86, + "probability": 0.4555 + }, + { + "start": 24694.86, + "end": 24695.26, + "probability": 0.6237 + }, + { + "start": 24695.78, + "end": 24695.82, + "probability": 0.0547 + }, + { + "start": 24695.82, + "end": 24695.82, + "probability": 0.0211 + }, + { + "start": 24695.82, + "end": 24696.92, + "probability": 0.7082 + }, + { + "start": 24697.94, + "end": 24702.94, + "probability": 0.9341 + }, + { + "start": 24704.82, + "end": 24704.9, + "probability": 0.2439 + }, + { + "start": 24704.9, + "end": 24705.5, + "probability": 0.6027 + }, + { + "start": 24705.58, + "end": 24707.22, + "probability": 0.7163 + }, + { + "start": 24707.4, + "end": 24711.04, + "probability": 0.9897 + }, + { + "start": 24712.58, + "end": 24712.92, + "probability": 0.2137 + }, + { + "start": 24712.92, + "end": 24713.28, + "probability": 0.0159 + }, + { + "start": 24713.28, + "end": 24717.88, + "probability": 0.994 + }, + { + "start": 24717.96, + "end": 24719.08, + "probability": 0.7181 + }, + { + "start": 24719.08, + "end": 24719.7, + "probability": 0.0881 + }, + { + "start": 24719.7, + "end": 24720.32, + "probability": 0.6591 + }, + { + "start": 24720.46, + "end": 24721.06, + "probability": 0.7077 + }, + { + "start": 24721.1, + "end": 24721.62, + "probability": 0.8582 + }, + { + "start": 24721.7, + "end": 24722.08, + "probability": 0.9573 + }, + { + "start": 24722.16, + "end": 24725.62, + "probability": 0.9155 + }, + { + "start": 24726.18, + "end": 24730.54, + "probability": 0.6891 + }, + { + "start": 24731.14, + "end": 24732.06, + "probability": 0.898 + }, + { + "start": 24733.04, + "end": 24733.26, + "probability": 0.1787 + }, + { + "start": 24733.26, + "end": 24736.66, + "probability": 0.983 + }, + { + "start": 24736.66, + "end": 24738.78, + "probability": 0.9931 + }, + { + "start": 24739.2, + "end": 24740.36, + "probability": 0.6536 + }, + { + "start": 24740.42, + "end": 24741.96, + "probability": 0.9985 + }, + { + "start": 24742.38, + "end": 24743.24, + "probability": 0.4911 + }, + { + "start": 24743.24, + "end": 24743.42, + "probability": 0.206 + }, + { + "start": 24743.52, + "end": 24744.12, + "probability": 0.7092 + }, + { + "start": 24744.46, + "end": 24746.02, + "probability": 0.9988 + }, + { + "start": 24746.74, + "end": 24748.28, + "probability": 0.865 + }, + { + "start": 24748.3, + "end": 24749.74, + "probability": 0.8936 + }, + { + "start": 24749.76, + "end": 24752.06, + "probability": 0.9744 + }, + { + "start": 24752.52, + "end": 24757.6, + "probability": 0.9478 + }, + { + "start": 24758.04, + "end": 24762.3, + "probability": 0.9963 + }, + { + "start": 24762.32, + "end": 24765.66, + "probability": 0.9904 + }, + { + "start": 24765.92, + "end": 24767.76, + "probability": 0.9916 + }, + { + "start": 24768.0, + "end": 24768.14, + "probability": 0.6707 + }, + { + "start": 24769.18, + "end": 24769.38, + "probability": 0.1127 + }, + { + "start": 24769.4, + "end": 24770.82, + "probability": 0.8171 + }, + { + "start": 24770.96, + "end": 24771.34, + "probability": 0.1274 + }, + { + "start": 24771.42, + "end": 24773.22, + "probability": 0.471 + }, + { + "start": 24773.64, + "end": 24773.84, + "probability": 0.7911 + }, + { + "start": 24774.8, + "end": 24775.24, + "probability": 0.283 + }, + { + "start": 24775.24, + "end": 24775.31, + "probability": 0.0545 + }, + { + "start": 24777.07, + "end": 24777.84, + "probability": 0.1041 + }, + { + "start": 24778.22, + "end": 24778.26, + "probability": 0.0381 + }, + { + "start": 24778.26, + "end": 24778.68, + "probability": 0.3062 + }, + { + "start": 24786.68, + "end": 24788.68, + "probability": 0.9543 + }, + { + "start": 24789.36, + "end": 24790.66, + "probability": 0.6284 + }, + { + "start": 24791.2, + "end": 24792.72, + "probability": 0.9917 + }, + { + "start": 24792.78, + "end": 24797.16, + "probability": 0.9871 + }, + { + "start": 24798.28, + "end": 24802.32, + "probability": 0.9214 + }, + { + "start": 24803.06, + "end": 24808.16, + "probability": 0.9922 + }, + { + "start": 24809.72, + "end": 24812.84, + "probability": 0.9985 + }, + { + "start": 24812.84, + "end": 24816.24, + "probability": 0.996 + }, + { + "start": 24816.28, + "end": 24819.12, + "probability": 0.9971 + }, + { + "start": 24819.9, + "end": 24821.72, + "probability": 0.7226 + }, + { + "start": 24822.46, + "end": 24822.84, + "probability": 0.4378 + }, + { + "start": 24822.92, + "end": 24828.04, + "probability": 0.9209 + }, + { + "start": 24828.54, + "end": 24830.18, + "probability": 0.9478 + }, + { + "start": 24831.2, + "end": 24833.0, + "probability": 0.9768 + }, + { + "start": 24833.74, + "end": 24836.84, + "probability": 0.9882 + }, + { + "start": 24837.58, + "end": 24838.7, + "probability": 0.8464 + }, + { + "start": 24838.8, + "end": 24839.84, + "probability": 0.8173 + }, + { + "start": 24840.1, + "end": 24845.76, + "probability": 0.9757 + }, + { + "start": 24847.32, + "end": 24851.28, + "probability": 0.8932 + }, + { + "start": 24852.48, + "end": 24853.22, + "probability": 0.9133 + }, + { + "start": 24853.28, + "end": 24854.12, + "probability": 0.9879 + }, + { + "start": 24854.38, + "end": 24862.34, + "probability": 0.9767 + }, + { + "start": 24863.38, + "end": 24867.42, + "probability": 0.9689 + }, + { + "start": 24868.0, + "end": 24872.28, + "probability": 0.986 + }, + { + "start": 24872.72, + "end": 24875.98, + "probability": 0.9979 + }, + { + "start": 24876.58, + "end": 24879.28, + "probability": 0.9957 + }, + { + "start": 24879.34, + "end": 24883.26, + "probability": 0.6577 + }, + { + "start": 24883.88, + "end": 24886.38, + "probability": 0.9985 + }, + { + "start": 24887.2, + "end": 24890.4, + "probability": 0.8661 + }, + { + "start": 24890.4, + "end": 24892.74, + "probability": 0.999 + }, + { + "start": 24893.48, + "end": 24898.68, + "probability": 0.9315 + }, + { + "start": 24899.0, + "end": 24901.71, + "probability": 0.9404 + }, + { + "start": 24902.92, + "end": 24903.06, + "probability": 0.1129 + }, + { + "start": 24903.06, + "end": 24905.8, + "probability": 0.8383 + }, + { + "start": 24907.86, + "end": 24908.3, + "probability": 0.0957 + }, + { + "start": 24908.3, + "end": 24908.3, + "probability": 0.2532 + }, + { + "start": 24908.3, + "end": 24914.54, + "probability": 0.9634 + }, + { + "start": 24915.14, + "end": 24918.22, + "probability": 0.9493 + }, + { + "start": 24918.34, + "end": 24920.0, + "probability": 0.85 + }, + { + "start": 24921.02, + "end": 24926.74, + "probability": 0.8423 + }, + { + "start": 24927.56, + "end": 24930.24, + "probability": 0.8599 + }, + { + "start": 24931.31, + "end": 24934.44, + "probability": 0.7094 + }, + { + "start": 24935.02, + "end": 24936.62, + "probability": 0.838 + }, + { + "start": 24937.14, + "end": 24938.92, + "probability": 0.9897 + }, + { + "start": 24939.54, + "end": 24942.46, + "probability": 0.8857 + }, + { + "start": 24942.86, + "end": 24943.56, + "probability": 0.7077 + }, + { + "start": 24943.98, + "end": 24945.46, + "probability": 0.9807 + }, + { + "start": 24946.04, + "end": 24948.2, + "probability": 0.9325 + }, + { + "start": 24948.76, + "end": 24950.09, + "probability": 0.9925 + }, + { + "start": 24950.98, + "end": 24953.38, + "probability": 0.9712 + }, + { + "start": 24953.94, + "end": 24957.9, + "probability": 0.8017 + }, + { + "start": 24957.98, + "end": 24958.52, + "probability": 0.7964 + }, + { + "start": 24958.68, + "end": 24959.26, + "probability": 0.7308 + }, + { + "start": 24959.8, + "end": 24962.3, + "probability": 0.6239 + }, + { + "start": 24963.18, + "end": 24963.84, + "probability": 0.0177 + }, + { + "start": 24964.24, + "end": 24967.82, + "probability": 0.0604 + }, + { + "start": 24968.24, + "end": 24972.66, + "probability": 0.2779 + }, + { + "start": 24973.86, + "end": 24974.9, + "probability": 0.7266 + }, + { + "start": 24974.9, + "end": 24976.64, + "probability": 0.6957 + }, + { + "start": 24977.5, + "end": 24980.22, + "probability": 0.5866 + }, + { + "start": 24980.52, + "end": 24980.96, + "probability": 0.0853 + }, + { + "start": 24980.96, + "end": 24981.5, + "probability": 0.2271 + }, + { + "start": 24982.32, + "end": 24982.32, + "probability": 0.3832 + }, + { + "start": 24982.52, + "end": 24984.1, + "probability": 0.16 + }, + { + "start": 24984.1, + "end": 24984.16, + "probability": 0.1038 + }, + { + "start": 24987.2, + "end": 24987.2, + "probability": 0.0592 + }, + { + "start": 24989.94, + "end": 24989.94, + "probability": 0.1771 + }, + { + "start": 24994.14, + "end": 24996.22, + "probability": 0.6072 + }, + { + "start": 24996.22, + "end": 24997.78, + "probability": 0.4437 + }, + { + "start": 24999.32, + "end": 24999.88, + "probability": 0.4937 + }, + { + "start": 25000.04, + "end": 25000.52, + "probability": 0.0007 + }, + { + "start": 25005.6, + "end": 25009.64, + "probability": 0.725 + }, + { + "start": 25013.0, + "end": 25014.22, + "probability": 0.385 + }, + { + "start": 25015.96, + "end": 25016.36, + "probability": 0.0171 + }, + { + "start": 25016.98, + "end": 25017.66, + "probability": 0.1123 + }, + { + "start": 25018.5, + "end": 25020.12, + "probability": 0.1289 + }, + { + "start": 25034.58, + "end": 25036.7, + "probability": 0.423 + }, + { + "start": 25037.7, + "end": 25040.36, + "probability": 0.1824 + }, + { + "start": 25041.62, + "end": 25043.66, + "probability": 0.063 + }, + { + "start": 25043.66, + "end": 25045.78, + "probability": 0.2786 + }, + { + "start": 25045.78, + "end": 25047.8, + "probability": 0.0518 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25053.0, + "end": 25053.0, + "probability": 0.0 + }, + { + "start": 25055.82, + "end": 25055.92, + "probability": 0.0201 + }, + { + "start": 25069.38, + "end": 25069.52, + "probability": 0.3962 + }, + { + "start": 25070.4, + "end": 25072.44, + "probability": 0.7323 + }, + { + "start": 25073.91, + "end": 25076.38, + "probability": 0.6452 + }, + { + "start": 25077.54, + "end": 25078.34, + "probability": 0.6135 + }, + { + "start": 25078.5, + "end": 25080.8, + "probability": 0.9186 + }, + { + "start": 25080.96, + "end": 25082.54, + "probability": 0.9723 + }, + { + "start": 25084.12, + "end": 25089.1, + "probability": 0.9846 + }, + { + "start": 25090.58, + "end": 25096.6, + "probability": 0.9634 + }, + { + "start": 25097.32, + "end": 25100.7, + "probability": 0.9778 + }, + { + "start": 25101.0, + "end": 25102.54, + "probability": 0.9448 + }, + { + "start": 25102.66, + "end": 25102.96, + "probability": 0.9626 + }, + { + "start": 25103.88, + "end": 25105.12, + "probability": 0.9702 + }, + { + "start": 25105.26, + "end": 25106.07, + "probability": 0.8418 + }, + { + "start": 25106.66, + "end": 25112.82, + "probability": 0.9459 + }, + { + "start": 25113.14, + "end": 25115.22, + "probability": 0.8546 + }, + { + "start": 25115.98, + "end": 25119.46, + "probability": 0.9881 + }, + { + "start": 25120.06, + "end": 25123.16, + "probability": 0.993 + }, + { + "start": 25123.56, + "end": 25127.7, + "probability": 0.9941 + }, + { + "start": 25127.7, + "end": 25130.5, + "probability": 0.8543 + }, + { + "start": 25131.16, + "end": 25136.86, + "probability": 0.9316 + }, + { + "start": 25136.86, + "end": 25138.93, + "probability": 0.8338 + }, + { + "start": 25140.32, + "end": 25143.04, + "probability": 0.8811 + }, + { + "start": 25143.66, + "end": 25150.18, + "probability": 0.9832 + }, + { + "start": 25150.18, + "end": 25154.56, + "probability": 0.9862 + }, + { + "start": 25155.2, + "end": 25157.8, + "probability": 0.998 + }, + { + "start": 25157.8, + "end": 25161.84, + "probability": 0.9979 + }, + { + "start": 25162.36, + "end": 25166.02, + "probability": 0.877 + }, + { + "start": 25166.58, + "end": 25168.8, + "probability": 0.9877 + }, + { + "start": 25168.8, + "end": 25172.92, + "probability": 0.9418 + }, + { + "start": 25173.54, + "end": 25177.66, + "probability": 0.9946 + }, + { + "start": 25177.8, + "end": 25178.64, + "probability": 0.7965 + }, + { + "start": 25178.72, + "end": 25180.04, + "probability": 0.9343 + }, + { + "start": 25180.64, + "end": 25181.42, + "probability": 0.7832 + }, + { + "start": 25181.82, + "end": 25185.44, + "probability": 0.9956 + }, + { + "start": 25185.44, + "end": 25190.56, + "probability": 0.9981 + }, + { + "start": 25191.28, + "end": 25194.4, + "probability": 0.9978 + }, + { + "start": 25194.92, + "end": 25200.04, + "probability": 0.9769 + }, + { + "start": 25201.02, + "end": 25201.06, + "probability": 0.5642 + }, + { + "start": 25201.18, + "end": 25204.0, + "probability": 0.9133 + }, + { + "start": 25204.08, + "end": 25205.92, + "probability": 0.9971 + }, + { + "start": 25206.34, + "end": 25207.58, + "probability": 0.9966 + }, + { + "start": 25208.3, + "end": 25211.85, + "probability": 0.9725 + }, + { + "start": 25212.48, + "end": 25213.44, + "probability": 0.8418 + }, + { + "start": 25213.54, + "end": 25214.7, + "probability": 0.8638 + }, + { + "start": 25215.08, + "end": 25216.62, + "probability": 0.8718 + }, + { + "start": 25216.76, + "end": 25217.62, + "probability": 0.4305 + }, + { + "start": 25219.61, + "end": 25224.64, + "probability": 0.9836 + }, + { + "start": 25225.52, + "end": 25231.5, + "probability": 0.8356 + }, + { + "start": 25232.08, + "end": 25232.7, + "probability": 0.7548 + }, + { + "start": 25233.26, + "end": 25236.16, + "probability": 0.8753 + }, + { + "start": 25236.8, + "end": 25238.72, + "probability": 0.9858 + }, + { + "start": 25238.98, + "end": 25241.66, + "probability": 0.9396 + }, + { + "start": 25243.63, + "end": 25245.92, + "probability": 0.1547 + }, + { + "start": 25247.94, + "end": 25248.92, + "probability": 0.0678 + }, + { + "start": 25249.24, + "end": 25249.24, + "probability": 0.2784 + }, + { + "start": 25249.3, + "end": 25249.3, + "probability": 0.1231 + }, + { + "start": 25249.3, + "end": 25249.3, + "probability": 0.0305 + }, + { + "start": 25249.3, + "end": 25249.54, + "probability": 0.087 + }, + { + "start": 25249.54, + "end": 25250.91, + "probability": 0.8594 + }, + { + "start": 25251.14, + "end": 25256.02, + "probability": 0.8966 + }, + { + "start": 25256.62, + "end": 25258.38, + "probability": 0.6741 + }, + { + "start": 25258.9, + "end": 25259.65, + "probability": 0.9869 + }, + { + "start": 25260.9, + "end": 25263.98, + "probability": 0.9819 + }, + { + "start": 25264.8, + "end": 25268.2, + "probability": 0.892 + }, + { + "start": 25269.38, + "end": 25270.06, + "probability": 0.7013 + }, + { + "start": 25270.64, + "end": 25272.92, + "probability": 0.9473 + }, + { + "start": 25272.96, + "end": 25273.66, + "probability": 0.9021 + }, + { + "start": 25273.82, + "end": 25275.28, + "probability": 0.6798 + }, + { + "start": 25275.68, + "end": 25276.7, + "probability": 0.6166 + }, + { + "start": 25276.88, + "end": 25278.8, + "probability": 0.9409 + }, + { + "start": 25279.92, + "end": 25282.42, + "probability": 0.9785 + }, + { + "start": 25282.58, + "end": 25283.62, + "probability": 0.9781 + }, + { + "start": 25283.82, + "end": 25286.24, + "probability": 0.9649 + }, + { + "start": 25286.48, + "end": 25289.38, + "probability": 0.9963 + }, + { + "start": 25289.84, + "end": 25291.4, + "probability": 0.9615 + }, + { + "start": 25291.8, + "end": 25294.02, + "probability": 0.9698 + }, + { + "start": 25294.48, + "end": 25297.32, + "probability": 0.9954 + }, + { + "start": 25297.84, + "end": 25303.88, + "probability": 0.9795 + }, + { + "start": 25304.58, + "end": 25306.48, + "probability": 0.9521 + }, + { + "start": 25307.2, + "end": 25308.36, + "probability": 0.7362 + }, + { + "start": 25309.42, + "end": 25309.82, + "probability": 0.5956 + }, + { + "start": 25310.62, + "end": 25310.98, + "probability": 0.6928 + }, + { + "start": 25311.7, + "end": 25312.32, + "probability": 0.8558 + }, + { + "start": 25312.4, + "end": 25314.86, + "probability": 0.9486 + }, + { + "start": 25315.02, + "end": 25317.78, + "probability": 0.8365 + }, + { + "start": 25317.98, + "end": 25317.98, + "probability": 0.0888 + }, + { + "start": 25317.98, + "end": 25318.78, + "probability": 0.7797 + }, + { + "start": 25318.86, + "end": 25321.02, + "probability": 0.7542 + }, + { + "start": 25323.12, + "end": 25326.52, + "probability": 0.7602 + }, + { + "start": 25327.14, + "end": 25330.54, + "probability": 0.9697 + }, + { + "start": 25330.86, + "end": 25331.0, + "probability": 0.6787 + }, + { + "start": 25331.14, + "end": 25331.92, + "probability": 0.6835 + }, + { + "start": 25332.6, + "end": 25334.54, + "probability": 0.777 + }, + { + "start": 25334.56, + "end": 25336.3, + "probability": 0.2856 + }, + { + "start": 25337.28, + "end": 25338.96, + "probability": 0.5872 + }, + { + "start": 25339.39, + "end": 25339.46, + "probability": 0.0594 + }, + { + "start": 25339.46, + "end": 25339.46, + "probability": 0.0708 + }, + { + "start": 25339.46, + "end": 25341.11, + "probability": 0.6817 + }, + { + "start": 25341.46, + "end": 25347.2, + "probability": 0.8703 + }, + { + "start": 25347.54, + "end": 25350.76, + "probability": 0.9405 + }, + { + "start": 25351.34, + "end": 25354.2, + "probability": 0.837 + }, + { + "start": 25354.64, + "end": 25356.46, + "probability": 0.9482 + }, + { + "start": 25357.26, + "end": 25357.68, + "probability": 0.7166 + }, + { + "start": 25357.78, + "end": 25358.06, + "probability": 0.7128 + }, + { + "start": 25358.46, + "end": 25361.84, + "probability": 0.8768 + }, + { + "start": 25378.98, + "end": 25379.06, + "probability": 0.0338 + }, + { + "start": 25379.06, + "end": 25379.82, + "probability": 0.2913 + }, + { + "start": 25380.94, + "end": 25381.56, + "probability": 0.7703 + }, + { + "start": 25381.86, + "end": 25382.66, + "probability": 0.722 + }, + { + "start": 25382.66, + "end": 25383.26, + "probability": 0.6662 + }, + { + "start": 25383.4, + "end": 25383.84, + "probability": 0.571 + }, + { + "start": 25384.62, + "end": 25385.66, + "probability": 0.9716 + }, + { + "start": 25386.63, + "end": 25387.92, + "probability": 0.7374 + }, + { + "start": 25395.8, + "end": 25395.94, + "probability": 0.1884 + }, + { + "start": 25395.94, + "end": 25395.94, + "probability": 0.0042 + }, + { + "start": 25395.94, + "end": 25395.94, + "probability": 0.0219 + }, + { + "start": 25395.94, + "end": 25396.04, + "probability": 0.0843 + }, + { + "start": 25396.08, + "end": 25396.5, + "probability": 0.2414 + }, + { + "start": 25397.3, + "end": 25397.3, + "probability": 0.0666 + }, + { + "start": 25397.3, + "end": 25397.3, + "probability": 0.2416 + }, + { + "start": 25397.3, + "end": 25398.66, + "probability": 0.7979 + }, + { + "start": 25400.35, + "end": 25401.56, + "probability": 0.0033 + }, + { + "start": 25402.9, + "end": 25405.88, + "probability": 0.1253 + }, + { + "start": 25405.88, + "end": 25406.65, + "probability": 0.1223 + }, + { + "start": 25408.12, + "end": 25410.86, + "probability": 0.4308 + }, + { + "start": 25411.86, + "end": 25416.8, + "probability": 0.8548 + }, + { + "start": 25418.16, + "end": 25420.9, + "probability": 0.9446 + }, + { + "start": 25424.16, + "end": 25428.2, + "probability": 0.9944 + }, + { + "start": 25429.4, + "end": 25431.28, + "probability": 0.9565 + }, + { + "start": 25432.7, + "end": 25434.16, + "probability": 0.9797 + }, + { + "start": 25435.06, + "end": 25436.3, + "probability": 0.6413 + }, + { + "start": 25438.08, + "end": 25441.72, + "probability": 0.7249 + }, + { + "start": 25443.82, + "end": 25447.43, + "probability": 0.6617 + }, + { + "start": 25449.32, + "end": 25451.07, + "probability": 0.6449 + }, + { + "start": 25452.32, + "end": 25453.08, + "probability": 0.7351 + }, + { + "start": 25454.74, + "end": 25456.58, + "probability": 0.5832 + }, + { + "start": 25458.06, + "end": 25459.67, + "probability": 0.994 + }, + { + "start": 25461.3, + "end": 25466.78, + "probability": 0.7769 + }, + { + "start": 25467.82, + "end": 25473.72, + "probability": 0.9543 + }, + { + "start": 25474.3, + "end": 25477.1, + "probability": 0.536 + }, + { + "start": 25479.34, + "end": 25480.68, + "probability": 0.7877 + }, + { + "start": 25481.24, + "end": 25482.56, + "probability": 0.9163 + }, + { + "start": 25484.5, + "end": 25486.34, + "probability": 0.9561 + }, + { + "start": 25488.78, + "end": 25490.26, + "probability": 0.7673 + }, + { + "start": 25491.96, + "end": 25493.24, + "probability": 0.5183 + }, + { + "start": 25495.6, + "end": 25498.72, + "probability": 0.6774 + }, + { + "start": 25499.4, + "end": 25500.88, + "probability": 0.8372 + }, + { + "start": 25501.56, + "end": 25504.02, + "probability": 0.4758 + }, + { + "start": 25504.2, + "end": 25507.1, + "probability": 0.2211 + }, + { + "start": 25507.94, + "end": 25507.94, + "probability": 0.4266 + }, + { + "start": 25507.94, + "end": 25507.94, + "probability": 0.2234 + }, + { + "start": 25507.94, + "end": 25507.94, + "probability": 0.2015 + }, + { + "start": 25507.94, + "end": 25509.24, + "probability": 0.418 + }, + { + "start": 25509.86, + "end": 25512.08, + "probability": 0.6592 + }, + { + "start": 25512.82, + "end": 25513.06, + "probability": 0.5611 + }, + { + "start": 25513.14, + "end": 25514.62, + "probability": 0.5501 + }, + { + "start": 25515.54, + "end": 25517.48, + "probability": 0.9736 + }, + { + "start": 25517.56, + "end": 25518.7, + "probability": 0.6136 + }, + { + "start": 25519.48, + "end": 25524.72, + "probability": 0.844 + }, + { + "start": 25524.9, + "end": 25525.78, + "probability": 0.0997 + }, + { + "start": 25527.78, + "end": 25529.74, + "probability": 0.4913 + }, + { + "start": 25530.34, + "end": 25531.14, + "probability": 0.0344 + }, + { + "start": 25532.04, + "end": 25536.04, + "probability": 0.6382 + }, + { + "start": 25538.02, + "end": 25539.52, + "probability": 0.5953 + }, + { + "start": 25541.44, + "end": 25543.76, + "probability": 0.9711 + }, + { + "start": 25545.06, + "end": 25548.72, + "probability": 0.9135 + }, + { + "start": 25550.4, + "end": 25553.44, + "probability": 0.9262 + }, + { + "start": 25555.3, + "end": 25556.92, + "probability": 0.485 + }, + { + "start": 25557.84, + "end": 25558.72, + "probability": 0.1712 + }, + { + "start": 25560.04, + "end": 25563.8, + "probability": 0.3951 + }, + { + "start": 25566.9, + "end": 25569.16, + "probability": 0.7688 + }, + { + "start": 25569.84, + "end": 25570.98, + "probability": 0.8774 + }, + { + "start": 25572.34, + "end": 25573.14, + "probability": 0.4954 + }, + { + "start": 25575.06, + "end": 25576.38, + "probability": 0.5962 + }, + { + "start": 25577.28, + "end": 25579.48, + "probability": 0.8028 + }, + { + "start": 25580.26, + "end": 25580.58, + "probability": 0.8191 + }, + { + "start": 25581.24, + "end": 25585.78, + "probability": 0.0582 + }, + { + "start": 25585.78, + "end": 25585.84, + "probability": 0.0289 + }, + { + "start": 25585.84, + "end": 25586.04, + "probability": 0.1056 + }, + { + "start": 25586.5, + "end": 25587.5, + "probability": 0.0061 + }, + { + "start": 25587.64, + "end": 25589.9, + "probability": 0.612 + }, + { + "start": 25590.62, + "end": 25591.92, + "probability": 0.2199 + }, + { + "start": 25591.96, + "end": 25594.54, + "probability": 0.1704 + }, + { + "start": 25595.31, + "end": 25597.4, + "probability": 0.0754 + }, + { + "start": 25597.4, + "end": 25598.94, + "probability": 0.1191 + }, + { + "start": 25599.5, + "end": 25599.86, + "probability": 0.0471 + }, + { + "start": 25599.9, + "end": 25600.18, + "probability": 0.5598 + }, + { + "start": 25600.28, + "end": 25601.26, + "probability": 0.7729 + }, + { + "start": 25601.46, + "end": 25602.82, + "probability": 0.9797 + }, + { + "start": 25602.96, + "end": 25604.14, + "probability": 0.9541 + }, + { + "start": 25604.26, + "end": 25604.88, + "probability": 0.7461 + }, + { + "start": 25604.92, + "end": 25606.92, + "probability": 0.9243 + }, + { + "start": 25609.44, + "end": 25609.8, + "probability": 0.1721 + }, + { + "start": 25609.8, + "end": 25609.8, + "probability": 0.0411 + }, + { + "start": 25609.8, + "end": 25609.8, + "probability": 0.0775 + }, + { + "start": 25609.8, + "end": 25612.04, + "probability": 0.623 + }, + { + "start": 25612.24, + "end": 25612.74, + "probability": 0.9226 + }, + { + "start": 25614.34, + "end": 25617.5, + "probability": 0.0006 + }, + { + "start": 25618.04, + "end": 25618.04, + "probability": 0.0242 + }, + { + "start": 25618.04, + "end": 25618.04, + "probability": 0.4939 + }, + { + "start": 25618.04, + "end": 25618.04, + "probability": 0.1544 + }, + { + "start": 25618.04, + "end": 25618.67, + "probability": 0.1264 + }, + { + "start": 25619.88, + "end": 25623.22, + "probability": 0.0537 + }, + { + "start": 25623.44, + "end": 25626.18, + "probability": 0.3249 + }, + { + "start": 25627.2, + "end": 25628.18, + "probability": 0.6507 + }, + { + "start": 25629.1, + "end": 25629.58, + "probability": 0.0561 + }, + { + "start": 25630.72, + "end": 25631.66, + "probability": 0.0917 + }, + { + "start": 25631.66, + "end": 25632.86, + "probability": 0.7428 + }, + { + "start": 25633.02, + "end": 25634.46, + "probability": 0.8107 + }, + { + "start": 25634.6, + "end": 25635.36, + "probability": 0.8939 + }, + { + "start": 25636.18, + "end": 25637.82, + "probability": 0.9982 + }, + { + "start": 25637.84, + "end": 25638.4, + "probability": 0.9 + }, + { + "start": 25639.1, + "end": 25639.66, + "probability": 0.1135 + }, + { + "start": 25640.34, + "end": 25642.02, + "probability": 0.8885 + }, + { + "start": 25642.72, + "end": 25644.88, + "probability": 0.7515 + }, + { + "start": 25646.8, + "end": 25647.12, + "probability": 0.0149 + }, + { + "start": 25647.36, + "end": 25648.72, + "probability": 0.6304 + }, + { + "start": 25648.72, + "end": 25652.76, + "probability": 0.9927 + }, + { + "start": 25653.56, + "end": 25656.5, + "probability": 0.8358 + }, + { + "start": 25657.64, + "end": 25658.18, + "probability": 0.0552 + }, + { + "start": 25658.18, + "end": 25660.23, + "probability": 0.8957 + }, + { + "start": 25662.97, + "end": 25664.16, + "probability": 0.144 + }, + { + "start": 25664.16, + "end": 25664.24, + "probability": 0.0005 + }, + { + "start": 25665.12, + "end": 25665.78, + "probability": 0.0709 + }, + { + "start": 25665.78, + "end": 25665.78, + "probability": 0.099 + }, + { + "start": 25665.78, + "end": 25665.78, + "probability": 0.0273 + }, + { + "start": 25665.78, + "end": 25670.46, + "probability": 0.6729 + }, + { + "start": 25670.96, + "end": 25673.38, + "probability": 0.8411 + }, + { + "start": 25673.86, + "end": 25674.8, + "probability": 0.6925 + }, + { + "start": 25675.18, + "end": 25676.44, + "probability": 0.4439 + }, + { + "start": 25676.6, + "end": 25677.38, + "probability": 0.921 + }, + { + "start": 25677.74, + "end": 25678.44, + "probability": 0.4226 + }, + { + "start": 25678.64, + "end": 25680.12, + "probability": 0.8955 + }, + { + "start": 25680.18, + "end": 25680.8, + "probability": 0.6702 + }, + { + "start": 25681.12, + "end": 25684.04, + "probability": 0.742 + }, + { + "start": 25684.04, + "end": 25685.48, + "probability": 0.5652 + }, + { + "start": 25685.62, + "end": 25687.74, + "probability": 0.0356 + }, + { + "start": 25687.74, + "end": 25687.74, + "probability": 0.061 + }, + { + "start": 25688.06, + "end": 25689.42, + "probability": 0.8739 + }, + { + "start": 25689.68, + "end": 25689.68, + "probability": 0.036 + }, + { + "start": 25689.68, + "end": 25689.96, + "probability": 0.1283 + }, + { + "start": 25689.96, + "end": 25690.6, + "probability": 0.2485 + }, + { + "start": 25691.02, + "end": 25691.54, + "probability": 0.0565 + }, + { + "start": 25691.78, + "end": 25692.14, + "probability": 0.5776 + }, + { + "start": 25692.34, + "end": 25695.76, + "probability": 0.8356 + }, + { + "start": 25695.76, + "end": 25699.4, + "probability": 0.8657 + }, + { + "start": 25699.82, + "end": 25703.0, + "probability": 0.311 + }, + { + "start": 25703.06, + "end": 25703.1, + "probability": 0.1872 + }, + { + "start": 25703.1, + "end": 25704.48, + "probability": 0.3889 + }, + { + "start": 25704.64, + "end": 25706.44, + "probability": 0.2036 + }, + { + "start": 25707.18, + "end": 25707.18, + "probability": 0.0234 + }, + { + "start": 25707.18, + "end": 25709.2, + "probability": 0.8322 + }, + { + "start": 25709.58, + "end": 25709.78, + "probability": 0.9822 + }, + { + "start": 25710.36, + "end": 25714.26, + "probability": 0.7546 + }, + { + "start": 25714.42, + "end": 25716.92, + "probability": 0.8568 + }, + { + "start": 25718.28, + "end": 25718.6, + "probability": 0.0134 + }, + { + "start": 25719.72, + "end": 25721.42, + "probability": 0.1102 + }, + { + "start": 25721.92, + "end": 25721.99, + "probability": 0.047 + }, + { + "start": 25722.64, + "end": 25723.2, + "probability": 0.256 + }, + { + "start": 25724.62, + "end": 25726.06, + "probability": 0.2714 + }, + { + "start": 25727.86, + "end": 25729.52, + "probability": 0.7651 + }, + { + "start": 25730.0, + "end": 25731.72, + "probability": 0.8263 + }, + { + "start": 25732.4, + "end": 25733.12, + "probability": 0.059 + }, + { + "start": 25734.3, + "end": 25735.18, + "probability": 0.0537 + }, + { + "start": 25735.66, + "end": 25737.16, + "probability": 0.0752 + }, + { + "start": 25737.68, + "end": 25738.6, + "probability": 0.1478 + }, + { + "start": 25741.08, + "end": 25742.04, + "probability": 0.5545 + }, + { + "start": 25751.98, + "end": 25751.98, + "probability": 0.0007 + }, + { + "start": 25751.98, + "end": 25752.08, + "probability": 0.3152 + }, + { + "start": 25752.1, + "end": 25755.26, + "probability": 0.7659 + }, + { + "start": 25758.12, + "end": 25760.6, + "probability": 0.8328 + }, + { + "start": 25761.34, + "end": 25764.58, + "probability": 0.9838 + }, + { + "start": 25764.68, + "end": 25767.68, + "probability": 0.9785 + }, + { + "start": 25767.82, + "end": 25769.56, + "probability": 0.9952 + }, + { + "start": 25770.28, + "end": 25776.54, + "probability": 0.7552 + }, + { + "start": 25777.2, + "end": 25778.06, + "probability": 0.6379 + }, + { + "start": 25778.08, + "end": 25779.84, + "probability": 0.9914 + }, + { + "start": 25779.86, + "end": 25780.32, + "probability": 0.866 + }, + { + "start": 25780.5, + "end": 25785.38, + "probability": 0.8274 + }, + { + "start": 25785.56, + "end": 25786.7, + "probability": 0.8757 + }, + { + "start": 25787.0, + "end": 25788.24, + "probability": 0.6245 + }, + { + "start": 25788.38, + "end": 25789.18, + "probability": 0.9373 + }, + { + "start": 25790.0, + "end": 25791.06, + "probability": 0.9651 + }, + { + "start": 25791.58, + "end": 25792.66, + "probability": 0.951 + }, + { + "start": 25792.68, + "end": 25797.5, + "probability": 0.9093 + }, + { + "start": 25798.52, + "end": 25801.32, + "probability": 0.9943 + }, + { + "start": 25801.73, + "end": 25804.92, + "probability": 0.9196 + }, + { + "start": 25805.1, + "end": 25807.76, + "probability": 0.8697 + }, + { + "start": 25809.54, + "end": 25811.07, + "probability": 0.9939 + }, + { + "start": 25811.96, + "end": 25818.22, + "probability": 0.9214 + }, + { + "start": 25818.26, + "end": 25819.26, + "probability": 0.9866 + }, + { + "start": 25820.68, + "end": 25820.84, + "probability": 0.8364 + }, + { + "start": 25820.92, + "end": 25823.37, + "probability": 0.9951 + }, + { + "start": 25824.1, + "end": 25825.46, + "probability": 0.868 + }, + { + "start": 25825.5, + "end": 25826.0, + "probability": 0.7644 + }, + { + "start": 25826.08, + "end": 25827.1, + "probability": 0.9575 + }, + { + "start": 25827.56, + "end": 25828.26, + "probability": 0.9856 + }, + { + "start": 25828.64, + "end": 25830.2, + "probability": 0.8972 + }, + { + "start": 25830.64, + "end": 25831.6, + "probability": 0.9087 + }, + { + "start": 25832.46, + "end": 25832.9, + "probability": 0.3206 + }, + { + "start": 25832.9, + "end": 25835.54, + "probability": 0.9553 + }, + { + "start": 25835.94, + "end": 25837.2, + "probability": 0.8537 + }, + { + "start": 25837.26, + "end": 25838.36, + "probability": 0.5749 + }, + { + "start": 25838.36, + "end": 25839.68, + "probability": 0.3691 + }, + { + "start": 25840.78, + "end": 25842.66, + "probability": 0.9932 + }, + { + "start": 25843.64, + "end": 25845.88, + "probability": 0.9966 + }, + { + "start": 25846.16, + "end": 25847.36, + "probability": 0.998 + }, + { + "start": 25848.49, + "end": 25850.0, + "probability": 0.5072 + }, + { + "start": 25852.42, + "end": 25852.52, + "probability": 0.1063 + }, + { + "start": 25852.52, + "end": 25852.52, + "probability": 0.106 + }, + { + "start": 25852.52, + "end": 25852.62, + "probability": 0.0476 + }, + { + "start": 25852.74, + "end": 25853.02, + "probability": 0.767 + }, + { + "start": 25853.62, + "end": 25856.09, + "probability": 0.8861 + }, + { + "start": 25857.18, + "end": 25857.76, + "probability": 0.9084 + }, + { + "start": 25857.84, + "end": 25862.64, + "probability": 0.949 + }, + { + "start": 25863.92, + "end": 25867.02, + "probability": 0.8819 + }, + { + "start": 25867.74, + "end": 25870.0, + "probability": 0.7186 + }, + { + "start": 25870.26, + "end": 25872.64, + "probability": 0.9605 + }, + { + "start": 25872.8, + "end": 25875.28, + "probability": 0.9676 + }, + { + "start": 25875.56, + "end": 25876.22, + "probability": 0.8065 + }, + { + "start": 25876.32, + "end": 25877.02, + "probability": 0.8565 + }, + { + "start": 25877.36, + "end": 25878.98, + "probability": 0.9988 + }, + { + "start": 25879.12, + "end": 25882.36, + "probability": 0.9331 + }, + { + "start": 25883.82, + "end": 25885.24, + "probability": 0.8253 + }, + { + "start": 25886.56, + "end": 25887.8, + "probability": 0.995 + }, + { + "start": 25888.18, + "end": 25890.01, + "probability": 0.9939 + }, + { + "start": 25890.84, + "end": 25892.56, + "probability": 0.8043 + }, + { + "start": 25892.62, + "end": 25893.26, + "probability": 0.9476 + }, + { + "start": 25894.4, + "end": 25894.88, + "probability": 0.8911 + }, + { + "start": 25894.96, + "end": 25895.32, + "probability": 0.9429 + }, + { + "start": 25895.42, + "end": 25896.04, + "probability": 0.9064 + }, + { + "start": 25896.18, + "end": 25897.68, + "probability": 0.7704 + }, + { + "start": 25898.78, + "end": 25899.24, + "probability": 0.5682 + }, + { + "start": 25899.42, + "end": 25899.74, + "probability": 0.9056 + }, + { + "start": 25900.02, + "end": 25901.66, + "probability": 0.9883 + }, + { + "start": 25901.74, + "end": 25903.0, + "probability": 0.9849 + }, + { + "start": 25904.12, + "end": 25905.18, + "probability": 0.9918 + }, + { + "start": 25905.28, + "end": 25906.61, + "probability": 0.863 + }, + { + "start": 25907.02, + "end": 25907.69, + "probability": 0.9111 + }, + { + "start": 25907.9, + "end": 25909.76, + "probability": 0.7329 + }, + { + "start": 25910.08, + "end": 25915.31, + "probability": 0.8635 + }, + { + "start": 25916.12, + "end": 25916.24, + "probability": 0.1983 + }, + { + "start": 25916.26, + "end": 25917.92, + "probability": 0.9824 + }, + { + "start": 25918.32, + "end": 25920.0, + "probability": 0.7822 + }, + { + "start": 25920.3, + "end": 25921.78, + "probability": 0.7868 + }, + { + "start": 25923.44, + "end": 25926.96, + "probability": 0.7734 + }, + { + "start": 25927.54, + "end": 25929.18, + "probability": 0.7245 + }, + { + "start": 25929.48, + "end": 25932.2, + "probability": 0.9611 + }, + { + "start": 25932.3, + "end": 25932.54, + "probability": 0.8392 + }, + { + "start": 25933.52, + "end": 25936.12, + "probability": 0.7532 + }, + { + "start": 25936.88, + "end": 25939.04, + "probability": 0.9702 + }, + { + "start": 25953.6, + "end": 25956.36, + "probability": 0.9418 + }, + { + "start": 25956.44, + "end": 25957.91, + "probability": 0.2536 + }, + { + "start": 25958.4, + "end": 25958.44, + "probability": 0.4684 + }, + { + "start": 25958.7, + "end": 25959.72, + "probability": 0.9495 + }, + { + "start": 25959.8, + "end": 25960.52, + "probability": 0.7575 + }, + { + "start": 25961.54, + "end": 25965.84, + "probability": 0.7415 + }, + { + "start": 25966.32, + "end": 25966.74, + "probability": 0.7581 + }, + { + "start": 25967.04, + "end": 25968.68, + "probability": 0.6678 + }, + { + "start": 25969.9, + "end": 25971.54, + "probability": 0.9188 + }, + { + "start": 25978.94, + "end": 25979.2, + "probability": 0.3749 + }, + { + "start": 25979.38, + "end": 25981.4, + "probability": 0.6303 + }, + { + "start": 25981.94, + "end": 25983.93, + "probability": 0.6745 + }, + { + "start": 25984.88, + "end": 25987.96, + "probability": 0.9204 + }, + { + "start": 25988.1, + "end": 25988.78, + "probability": 0.9527 + }, + { + "start": 25989.25, + "end": 25993.9, + "probability": 0.9834 + }, + { + "start": 25993.9, + "end": 25998.37, + "probability": 0.8438 + }, + { + "start": 25998.54, + "end": 26002.14, + "probability": 0.9876 + }, + { + "start": 26002.76, + "end": 26004.54, + "probability": 0.4678 + }, + { + "start": 26004.76, + "end": 26005.96, + "probability": 0.8313 + }, + { + "start": 26006.14, + "end": 26007.77, + "probability": 0.5021 + }, + { + "start": 26009.12, + "end": 26012.68, + "probability": 0.9823 + }, + { + "start": 26013.06, + "end": 26019.32, + "probability": 0.99 + }, + { + "start": 26019.42, + "end": 26021.38, + "probability": 0.9564 + }, + { + "start": 26021.54, + "end": 26022.72, + "probability": 0.7473 + }, + { + "start": 26023.26, + "end": 26025.34, + "probability": 0.6004 + }, + { + "start": 26026.16, + "end": 26030.54, + "probability": 0.6416 + }, + { + "start": 26031.14, + "end": 26034.64, + "probability": 0.8697 + }, + { + "start": 26035.44, + "end": 26036.72, + "probability": 0.2704 + }, + { + "start": 26037.04, + "end": 26038.6, + "probability": 0.6492 + }, + { + "start": 26039.22, + "end": 26041.32, + "probability": 0.6888 + }, + { + "start": 26041.54, + "end": 26042.46, + "probability": 0.6217 + }, + { + "start": 26042.5, + "end": 26043.94, + "probability": 0.5782 + }, + { + "start": 26044.26, + "end": 26048.3, + "probability": 0.9829 + }, + { + "start": 26048.4, + "end": 26048.84, + "probability": 0.6162 + }, + { + "start": 26049.14, + "end": 26049.88, + "probability": 0.3128 + }, + { + "start": 26050.14, + "end": 26050.88, + "probability": 0.794 + }, + { + "start": 26051.12, + "end": 26053.82, + "probability": 0.9761 + }, + { + "start": 26054.6, + "end": 26056.68, + "probability": 0.9046 + }, + { + "start": 26056.9, + "end": 26058.02, + "probability": 0.9941 + }, + { + "start": 26059.24, + "end": 26060.58, + "probability": 0.8835 + }, + { + "start": 26061.12, + "end": 26062.74, + "probability": 0.9452 + }, + { + "start": 26063.36, + "end": 26065.68, + "probability": 0.9958 + }, + { + "start": 26066.36, + "end": 26068.36, + "probability": 0.8349 + }, + { + "start": 26068.88, + "end": 26069.84, + "probability": 0.7597 + }, + { + "start": 26070.34, + "end": 26076.58, + "probability": 0.8748 + }, + { + "start": 26076.94, + "end": 26078.58, + "probability": 0.8803 + }, + { + "start": 26078.68, + "end": 26080.66, + "probability": 0.1949 + }, + { + "start": 26081.22, + "end": 26081.57, + "probability": 0.1786 + }, + { + "start": 26081.6, + "end": 26082.83, + "probability": 0.8636 + }, + { + "start": 26083.38, + "end": 26083.96, + "probability": 0.0763 + }, + { + "start": 26084.1, + "end": 26086.92, + "probability": 0.16 + }, + { + "start": 26087.02, + "end": 26088.14, + "probability": 0.9526 + }, + { + "start": 26088.74, + "end": 26090.5, + "probability": 0.9332 + }, + { + "start": 26091.72, + "end": 26093.3, + "probability": 0.896 + }, + { + "start": 26093.44, + "end": 26094.56, + "probability": 0.8721 + }, + { + "start": 26094.66, + "end": 26096.28, + "probability": 0.7815 + }, + { + "start": 26096.56, + "end": 26098.2, + "probability": 0.8996 + }, + { + "start": 26098.4, + "end": 26098.98, + "probability": 0.8643 + }, + { + "start": 26099.36, + "end": 26100.66, + "probability": 0.4173 + }, + { + "start": 26100.84, + "end": 26103.1, + "probability": 0.7552 + }, + { + "start": 26103.44, + "end": 26104.52, + "probability": 0.7573 + }, + { + "start": 26105.58, + "end": 26106.68, + "probability": 0.7221 + }, + { + "start": 26106.72, + "end": 26108.82, + "probability": 0.9944 + }, + { + "start": 26109.14, + "end": 26110.42, + "probability": 0.4958 + }, + { + "start": 26110.8, + "end": 26111.74, + "probability": 0.4603 + }, + { + "start": 26111.84, + "end": 26118.32, + "probability": 0.7856 + }, + { + "start": 26118.88, + "end": 26121.24, + "probability": 0.9175 + }, + { + "start": 26121.74, + "end": 26124.66, + "probability": 0.9678 + }, + { + "start": 26126.97, + "end": 26128.22, + "probability": 0.9053 + }, + { + "start": 26128.72, + "end": 26130.86, + "probability": 0.6752 + }, + { + "start": 26130.9, + "end": 26131.5, + "probability": 0.5776 + }, + { + "start": 26131.56, + "end": 26133.76, + "probability": 0.9724 + }, + { + "start": 26133.82, + "end": 26134.83, + "probability": 0.8722 + }, + { + "start": 26135.0, + "end": 26137.24, + "probability": 0.9575 + }, + { + "start": 26137.4, + "end": 26138.42, + "probability": 0.9729 + }, + { + "start": 26139.04, + "end": 26139.59, + "probability": 0.9265 + }, + { + "start": 26140.2, + "end": 26142.62, + "probability": 0.865 + }, + { + "start": 26143.16, + "end": 26144.06, + "probability": 0.8376 + }, + { + "start": 26144.18, + "end": 26144.5, + "probability": 0.4887 + }, + { + "start": 26144.54, + "end": 26146.16, + "probability": 0.8779 + }, + { + "start": 26148.54, + "end": 26150.14, + "probability": 0.3394 + }, + { + "start": 26150.14, + "end": 26150.56, + "probability": 0.2329 + }, + { + "start": 26150.8, + "end": 26151.1, + "probability": 0.5674 + }, + { + "start": 26151.22, + "end": 26153.4, + "probability": 0.9408 + }, + { + "start": 26153.66, + "end": 26155.14, + "probability": 0.7705 + }, + { + "start": 26155.86, + "end": 26156.0, + "probability": 0.6039 + }, + { + "start": 26156.02, + "end": 26158.8, + "probability": 0.9678 + }, + { + "start": 26159.36, + "end": 26159.86, + "probability": 0.8423 + }, + { + "start": 26160.3, + "end": 26160.88, + "probability": 0.6311 + }, + { + "start": 26160.92, + "end": 26161.94, + "probability": 0.7571 + }, + { + "start": 26162.06, + "end": 26166.26, + "probability": 0.5449 + }, + { + "start": 26166.98, + "end": 26171.21, + "probability": 0.9112 + }, + { + "start": 26171.5, + "end": 26174.24, + "probability": 0.9355 + }, + { + "start": 26174.42, + "end": 26175.48, + "probability": 0.6952 + }, + { + "start": 26175.92, + "end": 26179.08, + "probability": 0.8099 + }, + { + "start": 26179.44, + "end": 26180.32, + "probability": 0.7223 + }, + { + "start": 26180.44, + "end": 26181.34, + "probability": 0.8825 + }, + { + "start": 26181.46, + "end": 26183.46, + "probability": 0.9198 + }, + { + "start": 26183.92, + "end": 26187.28, + "probability": 0.9517 + }, + { + "start": 26187.88, + "end": 26188.22, + "probability": 0.3493 + }, + { + "start": 26188.56, + "end": 26191.28, + "probability": 0.8061 + }, + { + "start": 26191.92, + "end": 26193.1, + "probability": 0.8098 + }, + { + "start": 26193.48, + "end": 26194.28, + "probability": 0.9182 + }, + { + "start": 26194.58, + "end": 26197.08, + "probability": 0.9375 + }, + { + "start": 26197.82, + "end": 26199.42, + "probability": 0.7374 + }, + { + "start": 26200.02, + "end": 26201.16, + "probability": 0.5907 + }, + { + "start": 26201.2, + "end": 26203.58, + "probability": 0.7824 + }, + { + "start": 26203.68, + "end": 26204.44, + "probability": 0.7099 + }, + { + "start": 26204.76, + "end": 26207.96, + "probability": 0.9859 + }, + { + "start": 26208.72, + "end": 26211.42, + "probability": 0.9001 + }, + { + "start": 26211.74, + "end": 26214.2, + "probability": 0.7796 + }, + { + "start": 26214.62, + "end": 26216.32, + "probability": 0.9946 + }, + { + "start": 26216.86, + "end": 26218.6, + "probability": 0.9877 + }, + { + "start": 26218.98, + "end": 26221.76, + "probability": 0.7933 + }, + { + "start": 26221.84, + "end": 26222.7, + "probability": 0.925 + }, + { + "start": 26223.04, + "end": 26224.0, + "probability": 0.9092 + }, + { + "start": 26224.3, + "end": 26225.46, + "probability": 0.1327 + }, + { + "start": 26225.52, + "end": 26227.5, + "probability": 0.205 + }, + { + "start": 26227.6, + "end": 26228.78, + "probability": 0.7926 + }, + { + "start": 26228.84, + "end": 26229.4, + "probability": 0.5171 + }, + { + "start": 26229.58, + "end": 26230.38, + "probability": 0.5095 + }, + { + "start": 26230.44, + "end": 26231.88, + "probability": 0.6678 + }, + { + "start": 26231.9, + "end": 26237.52, + "probability": 0.8868 + }, + { + "start": 26237.6, + "end": 26238.48, + "probability": 0.9084 + }, + { + "start": 26238.6, + "end": 26238.87, + "probability": 0.8744 + }, + { + "start": 26239.28, + "end": 26239.56, + "probability": 0.7505 + }, + { + "start": 26240.12, + "end": 26241.58, + "probability": 0.777 + }, + { + "start": 26242.6, + "end": 26245.2, + "probability": 0.7619 + }, + { + "start": 26245.28, + "end": 26249.12, + "probability": 0.9387 + }, + { + "start": 26249.18, + "end": 26250.06, + "probability": 0.9409 + }, + { + "start": 26253.42, + "end": 26253.58, + "probability": 0.0681 + }, + { + "start": 26253.58, + "end": 26255.62, + "probability": 0.4501 + }, + { + "start": 26256.1, + "end": 26256.6, + "probability": 0.4902 + }, + { + "start": 26257.02, + "end": 26260.14, + "probability": 0.6005 + }, + { + "start": 26260.24, + "end": 26263.04, + "probability": 0.7784 + }, + { + "start": 26263.64, + "end": 26264.34, + "probability": 0.5483 + }, + { + "start": 26264.52, + "end": 26265.82, + "probability": 0.507 + }, + { + "start": 26265.88, + "end": 26267.48, + "probability": 0.9925 + }, + { + "start": 26268.32, + "end": 26269.49, + "probability": 0.9893 + }, + { + "start": 26269.94, + "end": 26271.46, + "probability": 0.9508 + }, + { + "start": 26272.24, + "end": 26273.46, + "probability": 0.9966 + }, + { + "start": 26273.86, + "end": 26276.1, + "probability": 0.7744 + }, + { + "start": 26276.38, + "end": 26277.78, + "probability": 0.7837 + }, + { + "start": 26277.86, + "end": 26279.24, + "probability": 0.9883 + }, + { + "start": 26279.66, + "end": 26280.38, + "probability": 0.9416 + }, + { + "start": 26280.66, + "end": 26282.6, + "probability": 0.7871 + }, + { + "start": 26282.74, + "end": 26283.38, + "probability": 0.7048 + }, + { + "start": 26283.44, + "end": 26284.19, + "probability": 0.4016 + }, + { + "start": 26284.96, + "end": 26286.1, + "probability": 0.9623 + }, + { + "start": 26287.32, + "end": 26291.08, + "probability": 0.9751 + }, + { + "start": 26291.82, + "end": 26292.92, + "probability": 0.8521 + }, + { + "start": 26293.88, + "end": 26295.2, + "probability": 0.5657 + }, + { + "start": 26295.9, + "end": 26297.14, + "probability": 0.8031 + }, + { + "start": 26297.66, + "end": 26300.98, + "probability": 0.8304 + }, + { + "start": 26301.92, + "end": 26305.48, + "probability": 0.6833 + }, + { + "start": 26306.18, + "end": 26307.32, + "probability": 0.846 + }, + { + "start": 26308.02, + "end": 26312.56, + "probability": 0.9609 + }, + { + "start": 26313.0, + "end": 26313.9, + "probability": 0.9356 + }, + { + "start": 26314.64, + "end": 26315.24, + "probability": 0.5781 + }, + { + "start": 26316.32, + "end": 26317.22, + "probability": 0.4564 + }, + { + "start": 26317.76, + "end": 26320.18, + "probability": 0.7724 + }, + { + "start": 26320.24, + "end": 26322.14, + "probability": 0.616 + }, + { + "start": 26322.82, + "end": 26323.76, + "probability": 0.6782 + }, + { + "start": 26323.9, + "end": 26324.56, + "probability": 0.6897 + }, + { + "start": 26324.66, + "end": 26328.52, + "probability": 0.957 + }, + { + "start": 26329.94, + "end": 26330.48, + "probability": 0.6663 + }, + { + "start": 26330.86, + "end": 26331.83, + "probability": 0.97 + }, + { + "start": 26332.36, + "end": 26333.46, + "probability": 0.3682 + }, + { + "start": 26334.1, + "end": 26336.54, + "probability": 0.3684 + }, + { + "start": 26336.6, + "end": 26337.7, + "probability": 0.8893 + }, + { + "start": 26338.34, + "end": 26341.96, + "probability": 0.9482 + }, + { + "start": 26342.48, + "end": 26346.16, + "probability": 0.7997 + }, + { + "start": 26346.82, + "end": 26347.22, + "probability": 0.2334 + }, + { + "start": 26347.7, + "end": 26352.86, + "probability": 0.3729 + }, + { + "start": 26352.86, + "end": 26354.9, + "probability": 0.8773 + }, + { + "start": 26355.22, + "end": 26356.26, + "probability": 0.7887 + }, + { + "start": 26356.64, + "end": 26358.64, + "probability": 0.7969 + }, + { + "start": 26358.78, + "end": 26360.3, + "probability": 0.3732 + }, + { + "start": 26360.78, + "end": 26363.48, + "probability": 0.6869 + }, + { + "start": 26363.56, + "end": 26365.08, + "probability": 0.7198 + }, + { + "start": 26365.82, + "end": 26366.67, + "probability": 0.7313 + }, + { + "start": 26368.92, + "end": 26370.34, + "probability": 0.6256 + }, + { + "start": 26370.62, + "end": 26373.16, + "probability": 0.7099 + }, + { + "start": 26373.28, + "end": 26374.37, + "probability": 0.9045 + }, + { + "start": 26374.68, + "end": 26375.56, + "probability": 0.8036 + }, + { + "start": 26376.88, + "end": 26377.62, + "probability": 0.7251 + }, + { + "start": 26377.62, + "end": 26377.76, + "probability": 0.4509 + }, + { + "start": 26378.18, + "end": 26378.83, + "probability": 0.9042 + }, + { + "start": 26379.38, + "end": 26380.76, + "probability": 0.964 + }, + { + "start": 26381.28, + "end": 26382.32, + "probability": 0.7459 + }, + { + "start": 26382.4, + "end": 26382.74, + "probability": 0.1948 + }, + { + "start": 26382.84, + "end": 26383.6, + "probability": 0.734 + }, + { + "start": 26383.72, + "end": 26384.31, + "probability": 0.576 + }, + { + "start": 26384.38, + "end": 26384.54, + "probability": 0.1463 + }, + { + "start": 26384.64, + "end": 26387.02, + "probability": 0.7322 + }, + { + "start": 26387.5, + "end": 26389.18, + "probability": 0.5635 + }, + { + "start": 26389.28, + "end": 26389.84, + "probability": 0.5594 + }, + { + "start": 26390.22, + "end": 26391.6, + "probability": 0.9587 + }, + { + "start": 26392.0, + "end": 26392.76, + "probability": 0.733 + }, + { + "start": 26393.5, + "end": 26395.46, + "probability": 0.8166 + }, + { + "start": 26395.62, + "end": 26396.56, + "probability": 0.8926 + }, + { + "start": 26396.9, + "end": 26397.34, + "probability": 0.6291 + }, + { + "start": 26397.34, + "end": 26397.92, + "probability": 0.2119 + }, + { + "start": 26398.24, + "end": 26400.08, + "probability": 0.9834 + }, + { + "start": 26400.54, + "end": 26402.58, + "probability": 0.902 + }, + { + "start": 26402.76, + "end": 26405.05, + "probability": 0.9954 + }, + { + "start": 26405.84, + "end": 26406.48, + "probability": 0.491 + }, + { + "start": 26408.04, + "end": 26409.69, + "probability": 0.9198 + }, + { + "start": 26409.8, + "end": 26409.8, + "probability": 0.0186 + }, + { + "start": 26410.46, + "end": 26412.52, + "probability": 0.9511 + }, + { + "start": 26421.0, + "end": 26422.06, + "probability": 0.6802 + }, + { + "start": 26422.98, + "end": 26423.62, + "probability": 0.62 + }, + { + "start": 26424.46, + "end": 26428.24, + "probability": 0.8195 + }, + { + "start": 26429.3, + "end": 26433.32, + "probability": 0.9773 + }, + { + "start": 26433.88, + "end": 26437.62, + "probability": 0.7219 + }, + { + "start": 26438.2, + "end": 26440.78, + "probability": 0.9905 + }, + { + "start": 26441.34, + "end": 26444.22, + "probability": 0.8697 + }, + { + "start": 26445.02, + "end": 26448.64, + "probability": 0.7957 + }, + { + "start": 26449.36, + "end": 26454.42, + "probability": 0.9922 + }, + { + "start": 26455.62, + "end": 26457.32, + "probability": 0.7777 + }, + { + "start": 26458.12, + "end": 26460.4, + "probability": 0.7568 + }, + { + "start": 26460.92, + "end": 26464.52, + "probability": 0.8351 + }, + { + "start": 26465.76, + "end": 26469.14, + "probability": 0.785 + }, + { + "start": 26469.66, + "end": 26471.84, + "probability": 0.6888 + }, + { + "start": 26473.22, + "end": 26481.42, + "probability": 0.9117 + }, + { + "start": 26482.3, + "end": 26485.2, + "probability": 0.9777 + }, + { + "start": 26486.6, + "end": 26487.92, + "probability": 0.5565 + }, + { + "start": 26488.48, + "end": 26491.78, + "probability": 0.9863 + }, + { + "start": 26493.12, + "end": 26494.36, + "probability": 0.8787 + }, + { + "start": 26495.08, + "end": 26496.8, + "probability": 0.9784 + }, + { + "start": 26497.38, + "end": 26499.42, + "probability": 0.878 + }, + { + "start": 26500.28, + "end": 26503.06, + "probability": 0.8381 + }, + { + "start": 26504.04, + "end": 26507.62, + "probability": 0.8438 + }, + { + "start": 26507.62, + "end": 26513.18, + "probability": 0.9907 + }, + { + "start": 26514.06, + "end": 26519.42, + "probability": 0.9814 + }, + { + "start": 26520.16, + "end": 26521.52, + "probability": 0.6223 + }, + { + "start": 26522.16, + "end": 26522.36, + "probability": 0.514 + }, + { + "start": 26522.88, + "end": 26524.42, + "probability": 0.7574 + }, + { + "start": 26525.54, + "end": 26528.2, + "probability": 0.9966 + }, + { + "start": 26528.72, + "end": 26530.82, + "probability": 0.99 + }, + { + "start": 26531.5, + "end": 26534.1, + "probability": 0.9919 + }, + { + "start": 26534.9, + "end": 26538.56, + "probability": 0.9062 + }, + { + "start": 26540.04, + "end": 26541.8, + "probability": 0.9834 + }, + { + "start": 26542.54, + "end": 26546.54, + "probability": 0.8794 + }, + { + "start": 26547.58, + "end": 26552.16, + "probability": 0.9674 + }, + { + "start": 26552.3, + "end": 26555.96, + "probability": 0.9347 + }, + { + "start": 26555.96, + "end": 26560.58, + "probability": 0.9537 + }, + { + "start": 26561.68, + "end": 26562.44, + "probability": 0.7262 + }, + { + "start": 26563.34, + "end": 26564.76, + "probability": 0.8653 + }, + { + "start": 26565.46, + "end": 26571.02, + "probability": 0.9968 + }, + { + "start": 26571.78, + "end": 26574.28, + "probability": 0.9796 + }, + { + "start": 26575.86, + "end": 26580.78, + "probability": 0.8869 + }, + { + "start": 26581.44, + "end": 26585.14, + "probability": 0.9845 + }, + { + "start": 26585.52, + "end": 26590.66, + "probability": 0.9907 + }, + { + "start": 26591.12, + "end": 26591.96, + "probability": 0.4777 + }, + { + "start": 26592.68, + "end": 26593.82, + "probability": 0.5156 + }, + { + "start": 26594.3, + "end": 26594.44, + "probability": 0.9031 + }, + { + "start": 26594.9, + "end": 26596.02, + "probability": 0.8985 + }, + { + "start": 26596.16, + "end": 26598.47, + "probability": 0.9087 + }, + { + "start": 26600.5, + "end": 26601.84, + "probability": 0.5053 + }, + { + "start": 26602.48, + "end": 26603.82, + "probability": 0.7521 + }, + { + "start": 26604.52, + "end": 26605.82, + "probability": 0.6845 + }, + { + "start": 26606.38, + "end": 26609.82, + "probability": 0.8652 + }, + { + "start": 26610.6, + "end": 26615.12, + "probability": 0.9632 + }, + { + "start": 26616.7, + "end": 26620.8, + "probability": 0.991 + }, + { + "start": 26620.8, + "end": 26623.96, + "probability": 0.831 + }, + { + "start": 26625.34, + "end": 26626.27, + "probability": 0.7159 + }, + { + "start": 26627.38, + "end": 26632.38, + "probability": 0.9486 + }, + { + "start": 26633.0, + "end": 26633.38, + "probability": 0.5136 + }, + { + "start": 26634.08, + "end": 26636.66, + "probability": 0.8239 + }, + { + "start": 26636.94, + "end": 26637.7, + "probability": 0.7899 + }, + { + "start": 26638.1, + "end": 26640.86, + "probability": 0.9188 + }, + { + "start": 26642.06, + "end": 26646.16, + "probability": 0.8521 + }, + { + "start": 26646.84, + "end": 26651.92, + "probability": 0.9644 + }, + { + "start": 26653.08, + "end": 26654.82, + "probability": 0.4327 + }, + { + "start": 26655.64, + "end": 26656.9, + "probability": 0.7135 + }, + { + "start": 26657.0, + "end": 26657.32, + "probability": 0.5933 + }, + { + "start": 26657.56, + "end": 26659.9, + "probability": 0.9125 + }, + { + "start": 26660.1, + "end": 26660.68, + "probability": 0.7678 + }, + { + "start": 26661.36, + "end": 26662.3, + "probability": 0.7292 + }, + { + "start": 26663.12, + "end": 26666.4, + "probability": 0.9713 + }, + { + "start": 26667.08, + "end": 26667.76, + "probability": 0.9897 + }, + { + "start": 26668.3, + "end": 26670.94, + "probability": 0.7199 + }, + { + "start": 26671.82, + "end": 26673.9, + "probability": 0.9863 + }, + { + "start": 26674.34, + "end": 26675.72, + "probability": 0.8762 + }, + { + "start": 26676.3, + "end": 26677.16, + "probability": 0.804 + }, + { + "start": 26678.22, + "end": 26678.54, + "probability": 0.5297 + }, + { + "start": 26679.08, + "end": 26683.64, + "probability": 0.9917 + }, + { + "start": 26684.44, + "end": 26687.42, + "probability": 0.9868 + }, + { + "start": 26687.94, + "end": 26691.16, + "probability": 0.9719 + }, + { + "start": 26692.56, + "end": 26696.36, + "probability": 0.9954 + }, + { + "start": 26697.0, + "end": 26702.14, + "probability": 0.9744 + }, + { + "start": 26703.98, + "end": 26705.24, + "probability": 0.9968 + }, + { + "start": 26705.9, + "end": 26706.72, + "probability": 0.9806 + }, + { + "start": 26707.8, + "end": 26710.42, + "probability": 0.9952 + }, + { + "start": 26710.66, + "end": 26714.18, + "probability": 0.9746 + }, + { + "start": 26714.64, + "end": 26716.28, + "probability": 0.7474 + }, + { + "start": 26716.88, + "end": 26718.34, + "probability": 0.8146 + }, + { + "start": 26719.84, + "end": 26725.36, + "probability": 0.9879 + }, + { + "start": 26726.48, + "end": 26731.02, + "probability": 0.9937 + }, + { + "start": 26731.56, + "end": 26732.56, + "probability": 0.7803 + }, + { + "start": 26733.22, + "end": 26738.56, + "probability": 0.9953 + }, + { + "start": 26739.76, + "end": 26740.48, + "probability": 0.7284 + }, + { + "start": 26741.12, + "end": 26743.96, + "probability": 0.7845 + }, + { + "start": 26744.48, + "end": 26746.0, + "probability": 0.9132 + }, + { + "start": 26746.9, + "end": 26749.34, + "probability": 0.9941 + }, + { + "start": 26749.94, + "end": 26751.6, + "probability": 0.9303 + }, + { + "start": 26752.26, + "end": 26752.54, + "probability": 0.7709 + }, + { + "start": 26753.52, + "end": 26756.98, + "probability": 0.9363 + }, + { + "start": 26756.98, + "end": 26759.34, + "probability": 0.9382 + }, + { + "start": 26760.02, + "end": 26762.08, + "probability": 0.7927 + }, + { + "start": 26762.4, + "end": 26765.38, + "probability": 0.9854 + }, + { + "start": 26765.42, + "end": 26768.32, + "probability": 0.8465 + }, + { + "start": 26768.42, + "end": 26768.88, + "probability": 0.8408 + }, + { + "start": 26769.54, + "end": 26772.9, + "probability": 0.8941 + }, + { + "start": 26773.6, + "end": 26774.26, + "probability": 0.6881 + }, + { + "start": 26774.82, + "end": 26775.56, + "probability": 0.7175 + }, + { + "start": 26776.3, + "end": 26780.64, + "probability": 0.9763 + }, + { + "start": 26780.84, + "end": 26781.68, + "probability": 0.8906 + }, + { + "start": 26782.34, + "end": 26783.48, + "probability": 0.7598 + }, + { + "start": 26784.16, + "end": 26786.72, + "probability": 0.1908 + }, + { + "start": 26787.0, + "end": 26789.0, + "probability": 0.3856 + }, + { + "start": 26789.08, + "end": 26789.63, + "probability": 0.4643 + }, + { + "start": 26790.04, + "end": 26790.78, + "probability": 0.4358 + }, + { + "start": 26790.78, + "end": 26790.78, + "probability": 0.8434 + }, + { + "start": 26790.78, + "end": 26791.42, + "probability": 0.3502 + }, + { + "start": 26791.76, + "end": 26793.44, + "probability": 0.3495 + }, + { + "start": 26794.0, + "end": 26794.14, + "probability": 0.0179 + }, + { + "start": 26794.14, + "end": 26795.42, + "probability": 0.2461 + }, + { + "start": 26796.76, + "end": 26797.76, + "probability": 0.872 + }, + { + "start": 26797.98, + "end": 26801.24, + "probability": 0.8228 + }, + { + "start": 26801.24, + "end": 26803.42, + "probability": 0.8998 + }, + { + "start": 26804.14, + "end": 26810.92, + "probability": 0.8719 + }, + { + "start": 26811.4, + "end": 26817.18, + "probability": 0.8864 + }, + { + "start": 26817.18, + "end": 26821.82, + "probability": 0.9688 + }, + { + "start": 26822.48, + "end": 26827.44, + "probability": 0.9761 + }, + { + "start": 26827.48, + "end": 26829.54, + "probability": 0.869 + }, + { + "start": 26830.08, + "end": 26832.06, + "probability": 0.8245 + }, + { + "start": 26832.52, + "end": 26837.68, + "probability": 0.8857 + }, + { + "start": 26838.76, + "end": 26839.85, + "probability": 0.4781 + }, + { + "start": 26840.24, + "end": 26842.98, + "probability": 0.9841 + }, + { + "start": 26844.44, + "end": 26845.84, + "probability": 0.5446 + }, + { + "start": 26846.46, + "end": 26847.1, + "probability": 0.438 + }, + { + "start": 26847.12, + "end": 26847.46, + "probability": 0.5881 + }, + { + "start": 26847.6, + "end": 26848.16, + "probability": 0.9253 + }, + { + "start": 26848.74, + "end": 26851.58, + "probability": 0.7865 + }, + { + "start": 26851.58, + "end": 26854.26, + "probability": 0.7978 + }, + { + "start": 26854.44, + "end": 26855.22, + "probability": 0.8997 + }, + { + "start": 26856.34, + "end": 26859.44, + "probability": 0.8251 + }, + { + "start": 26859.92, + "end": 26863.42, + "probability": 0.9963 + }, + { + "start": 26864.6, + "end": 26864.8, + "probability": 0.7929 + }, + { + "start": 26865.24, + "end": 26865.62, + "probability": 0.6936 + }, + { + "start": 26865.72, + "end": 26866.62, + "probability": 0.9843 + }, + { + "start": 26866.8, + "end": 26867.44, + "probability": 0.7143 + }, + { + "start": 26867.66, + "end": 26869.46, + "probability": 0.9667 + }, + { + "start": 26870.24, + "end": 26871.24, + "probability": 0.8988 + }, + { + "start": 26871.8, + "end": 26873.94, + "probability": 0.723 + }, + { + "start": 26874.14, + "end": 26875.76, + "probability": 0.8 + }, + { + "start": 26875.84, + "end": 26876.32, + "probability": 0.5284 + }, + { + "start": 26876.68, + "end": 26876.86, + "probability": 0.754 + }, + { + "start": 26876.88, + "end": 26877.4, + "probability": 0.3753 + }, + { + "start": 26879.32, + "end": 26879.32, + "probability": 0.8799 + }, + { + "start": 26879.32, + "end": 26880.32, + "probability": 0.6536 + }, + { + "start": 26880.32, + "end": 26880.32, + "probability": 0.0813 + }, + { + "start": 26880.32, + "end": 26880.32, + "probability": 0.0492 + }, + { + "start": 26880.32, + "end": 26883.7, + "probability": 0.4338 + }, + { + "start": 26884.04, + "end": 26885.94, + "probability": 0.9407 + }, + { + "start": 26886.64, + "end": 26887.4, + "probability": 0.9707 + }, + { + "start": 26887.48, + "end": 26888.22, + "probability": 0.3091 + }, + { + "start": 26890.0, + "end": 26891.08, + "probability": 0.9087 + }, + { + "start": 26912.86, + "end": 26912.86, + "probability": 0.1677 + }, + { + "start": 26912.86, + "end": 26912.86, + "probability": 0.035 + }, + { + "start": 26912.86, + "end": 26914.5, + "probability": 0.9462 + }, + { + "start": 26916.54, + "end": 26917.66, + "probability": 0.7696 + }, + { + "start": 26918.28, + "end": 26919.96, + "probability": 0.7677 + }, + { + "start": 26921.76, + "end": 26923.02, + "probability": 0.9176 + }, + { + "start": 26923.08, + "end": 26924.58, + "probability": 0.8446 + }, + { + "start": 26924.7, + "end": 26926.07, + "probability": 0.9659 + }, + { + "start": 26927.22, + "end": 26928.64, + "probability": 0.9823 + }, + { + "start": 26930.28, + "end": 26931.1, + "probability": 0.6594 + }, + { + "start": 26931.5, + "end": 26932.28, + "probability": 0.8374 + }, + { + "start": 26932.7, + "end": 26935.6, + "probability": 0.9606 + }, + { + "start": 26936.58, + "end": 26939.88, + "probability": 0.9828 + }, + { + "start": 26940.74, + "end": 26945.02, + "probability": 0.9029 + }, + { + "start": 26945.66, + "end": 26947.46, + "probability": 0.8594 + }, + { + "start": 26948.02, + "end": 26948.46, + "probability": 0.7896 + }, + { + "start": 26949.0, + "end": 26950.86, + "probability": 0.8753 + }, + { + "start": 26950.92, + "end": 26954.22, + "probability": 0.977 + }, + { + "start": 26955.16, + "end": 26960.46, + "probability": 0.9854 + }, + { + "start": 26961.58, + "end": 26967.28, + "probability": 0.9756 + }, + { + "start": 26967.86, + "end": 26971.54, + "probability": 0.9971 + }, + { + "start": 26972.26, + "end": 26974.06, + "probability": 0.9294 + }, + { + "start": 26974.6, + "end": 26975.3, + "probability": 0.9788 + }, + { + "start": 26976.28, + "end": 26977.6, + "probability": 0.6973 + }, + { + "start": 26978.24, + "end": 26979.26, + "probability": 0.8206 + }, + { + "start": 26980.4, + "end": 26984.12, + "probability": 0.7296 + }, + { + "start": 26984.54, + "end": 26987.0, + "probability": 0.9344 + }, + { + "start": 26987.48, + "end": 26991.7, + "probability": 0.9619 + }, + { + "start": 26992.54, + "end": 26995.6, + "probability": 0.9965 + }, + { + "start": 26995.6, + "end": 26999.64, + "probability": 0.9981 + }, + { + "start": 27000.38, + "end": 27004.2, + "probability": 0.9288 + }, + { + "start": 27004.2, + "end": 27009.34, + "probability": 0.999 + }, + { + "start": 27010.88, + "end": 27016.38, + "probability": 0.9895 + }, + { + "start": 27016.96, + "end": 27019.68, + "probability": 0.9875 + }, + { + "start": 27020.22, + "end": 27023.64, + "probability": 0.8822 + }, + { + "start": 27023.64, + "end": 27028.3, + "probability": 0.9964 + }, + { + "start": 27029.68, + "end": 27030.54, + "probability": 0.5114 + }, + { + "start": 27030.6, + "end": 27036.56, + "probability": 0.9678 + }, + { + "start": 27037.4, + "end": 27040.6, + "probability": 0.9971 + }, + { + "start": 27040.6, + "end": 27044.9, + "probability": 0.9731 + }, + { + "start": 27045.76, + "end": 27048.2, + "probability": 0.8291 + }, + { + "start": 27048.9, + "end": 27050.34, + "probability": 0.9976 + }, + { + "start": 27050.96, + "end": 27053.48, + "probability": 0.9913 + }, + { + "start": 27053.96, + "end": 27054.88, + "probability": 0.5372 + }, + { + "start": 27056.08, + "end": 27060.3, + "probability": 0.9398 + }, + { + "start": 27060.94, + "end": 27061.76, + "probability": 0.7184 + }, + { + "start": 27062.42, + "end": 27063.82, + "probability": 0.5164 + }, + { + "start": 27064.38, + "end": 27064.98, + "probability": 0.9001 + }, + { + "start": 27066.75, + "end": 27070.28, + "probability": 0.9919 + }, + { + "start": 27071.06, + "end": 27074.82, + "probability": 0.8944 + }, + { + "start": 27075.58, + "end": 27078.24, + "probability": 0.9917 + }, + { + "start": 27079.5, + "end": 27084.22, + "probability": 0.9954 + }, + { + "start": 27084.3, + "end": 27086.18, + "probability": 0.7541 + }, + { + "start": 27086.32, + "end": 27086.84, + "probability": 0.9465 + }, + { + "start": 27087.24, + "end": 27087.8, + "probability": 0.9806 + }, + { + "start": 27088.18, + "end": 27089.28, + "probability": 0.9419 + }, + { + "start": 27089.9, + "end": 27092.96, + "probability": 0.969 + }, + { + "start": 27093.98, + "end": 27095.96, + "probability": 0.9792 + }, + { + "start": 27096.28, + "end": 27096.73, + "probability": 0.6594 + }, + { + "start": 27097.58, + "end": 27097.96, + "probability": 0.9336 + }, + { + "start": 27098.82, + "end": 27101.14, + "probability": 0.8981 + }, + { + "start": 27101.82, + "end": 27104.58, + "probability": 0.9734 + }, + { + "start": 27105.38, + "end": 27107.46, + "probability": 0.7535 + }, + { + "start": 27108.6, + "end": 27110.76, + "probability": 0.2759 + }, + { + "start": 27111.28, + "end": 27113.18, + "probability": 0.8342 + }, + { + "start": 27113.54, + "end": 27114.73, + "probability": 0.9893 + }, + { + "start": 27115.14, + "end": 27116.96, + "probability": 0.999 + }, + { + "start": 27117.5, + "end": 27120.94, + "probability": 0.4785 + }, + { + "start": 27121.44, + "end": 27127.08, + "probability": 0.8509 + }, + { + "start": 27127.8, + "end": 27131.2, + "probability": 0.9275 + }, + { + "start": 27131.74, + "end": 27138.26, + "probability": 0.8568 + }, + { + "start": 27138.75, + "end": 27146.16, + "probability": 0.9338 + }, + { + "start": 27146.7, + "end": 27149.46, + "probability": 0.7973 + }, + { + "start": 27150.08, + "end": 27152.2, + "probability": 0.7473 + }, + { + "start": 27153.1, + "end": 27157.58, + "probability": 0.9143 + }, + { + "start": 27157.72, + "end": 27161.92, + "probability": 0.9087 + }, + { + "start": 27162.6, + "end": 27167.2, + "probability": 0.5761 + }, + { + "start": 27168.08, + "end": 27170.08, + "probability": 0.5681 + }, + { + "start": 27170.24, + "end": 27171.79, + "probability": 0.9888 + }, + { + "start": 27171.9, + "end": 27172.7, + "probability": 0.6382 + }, + { + "start": 27173.44, + "end": 27174.24, + "probability": 0.7487 + }, + { + "start": 27174.3, + "end": 27176.79, + "probability": 0.7314 + }, + { + "start": 27176.84, + "end": 27177.66, + "probability": 0.7632 + }, + { + "start": 27177.78, + "end": 27180.26, + "probability": 0.9761 + }, + { + "start": 27180.92, + "end": 27186.8, + "probability": 0.9972 + }, + { + "start": 27187.4, + "end": 27191.02, + "probability": 0.9987 + }, + { + "start": 27191.46, + "end": 27192.08, + "probability": 0.7116 + }, + { + "start": 27192.42, + "end": 27194.3, + "probability": 0.9962 + }, + { + "start": 27195.66, + "end": 27198.91, + "probability": 0.9377 + }, + { + "start": 27199.38, + "end": 27200.98, + "probability": 0.4138 + }, + { + "start": 27201.72, + "end": 27205.14, + "probability": 0.705 + }, + { + "start": 27205.36, + "end": 27207.51, + "probability": 0.8265 + }, + { + "start": 27207.64, + "end": 27209.36, + "probability": 0.8713 + }, + { + "start": 27209.42, + "end": 27210.62, + "probability": 0.5377 + }, + { + "start": 27211.78, + "end": 27211.9, + "probability": 0.2352 + }, + { + "start": 27211.9, + "end": 27213.16, + "probability": 0.5083 + }, + { + "start": 27213.16, + "end": 27213.86, + "probability": 0.488 + }, + { + "start": 27213.92, + "end": 27215.82, + "probability": 0.6561 + }, + { + "start": 27216.5, + "end": 27216.64, + "probability": 0.0022 + }, + { + "start": 27217.28, + "end": 27220.98, + "probability": 0.5038 + }, + { + "start": 27221.88, + "end": 27223.3, + "probability": 0.5197 + }, + { + "start": 27223.74, + "end": 27224.46, + "probability": 0.7463 + }, + { + "start": 27224.78, + "end": 27225.12, + "probability": 0.6596 + }, + { + "start": 27225.24, + "end": 27228.2, + "probability": 0.8186 + }, + { + "start": 27228.9, + "end": 27230.96, + "probability": 0.8644 + }, + { + "start": 27231.86, + "end": 27234.5, + "probability": 0.4952 + }, + { + "start": 27235.16, + "end": 27238.96, + "probability": 0.9888 + }, + { + "start": 27239.6, + "end": 27241.26, + "probability": 0.8786 + }, + { + "start": 27245.88, + "end": 27247.64, + "probability": 0.1047 + }, + { + "start": 27247.64, + "end": 27248.76, + "probability": 0.7932 + }, + { + "start": 27256.62, + "end": 27258.8, + "probability": 0.5344 + }, + { + "start": 27259.28, + "end": 27260.48, + "probability": 0.7676 + }, + { + "start": 27262.2, + "end": 27262.68, + "probability": 0.9425 + }, + { + "start": 27263.4, + "end": 27269.01, + "probability": 0.8889 + }, + { + "start": 27269.6, + "end": 27271.34, + "probability": 0.9888 + }, + { + "start": 27271.38, + "end": 27272.56, + "probability": 0.8211 + }, + { + "start": 27274.78, + "end": 27277.04, + "probability": 0.7237 + }, + { + "start": 27277.04, + "end": 27277.83, + "probability": 0.7094 + }, + { + "start": 27278.24, + "end": 27280.52, + "probability": 0.9602 + }, + { + "start": 27281.24, + "end": 27281.82, + "probability": 0.7173 + }, + { + "start": 27281.94, + "end": 27288.46, + "probability": 0.9592 + }, + { + "start": 27288.56, + "end": 27290.78, + "probability": 0.9381 + }, + { + "start": 27291.72, + "end": 27294.4, + "probability": 0.9829 + }, + { + "start": 27294.52, + "end": 27298.46, + "probability": 0.9762 + }, + { + "start": 27299.3, + "end": 27304.24, + "probability": 0.9861 + }, + { + "start": 27305.04, + "end": 27307.22, + "probability": 0.5037 + }, + { + "start": 27308.48, + "end": 27314.02, + "probability": 0.9406 + }, + { + "start": 27315.92, + "end": 27323.32, + "probability": 0.8242 + }, + { + "start": 27324.24, + "end": 27326.76, + "probability": 0.9031 + }, + { + "start": 27328.53, + "end": 27334.64, + "probability": 0.9766 + }, + { + "start": 27335.38, + "end": 27336.2, + "probability": 0.8784 + }, + { + "start": 27337.3, + "end": 27339.26, + "probability": 0.9866 + }, + { + "start": 27340.18, + "end": 27342.6, + "probability": 0.8761 + }, + { + "start": 27344.12, + "end": 27348.68, + "probability": 0.7109 + }, + { + "start": 27349.3, + "end": 27351.62, + "probability": 0.5611 + }, + { + "start": 27351.94, + "end": 27352.44, + "probability": 0.8048 + }, + { + "start": 27352.58, + "end": 27353.74, + "probability": 0.7836 + }, + { + "start": 27354.54, + "end": 27358.06, + "probability": 0.7523 + }, + { + "start": 27359.18, + "end": 27360.3, + "probability": 0.2996 + }, + { + "start": 27360.98, + "end": 27367.6, + "probability": 0.7787 + }, + { + "start": 27368.42, + "end": 27370.08, + "probability": 0.2914 + }, + { + "start": 27370.44, + "end": 27375.06, + "probability": 0.6598 + }, + { + "start": 27375.16, + "end": 27376.52, + "probability": 0.8417 + }, + { + "start": 27376.66, + "end": 27377.34, + "probability": 0.6745 + }, + { + "start": 27378.36, + "end": 27380.84, + "probability": 0.7195 + }, + { + "start": 27381.38, + "end": 27381.98, + "probability": 0.7699 + }, + { + "start": 27383.22, + "end": 27384.38, + "probability": 0.6869 + }, + { + "start": 27384.42, + "end": 27386.66, + "probability": 0.9109 + }, + { + "start": 27386.7, + "end": 27388.9, + "probability": 0.972 + }, + { + "start": 27389.98, + "end": 27392.12, + "probability": 0.9003 + }, + { + "start": 27392.22, + "end": 27398.42, + "probability": 0.9834 + }, + { + "start": 27398.84, + "end": 27399.96, + "probability": 0.8464 + }, + { + "start": 27401.94, + "end": 27408.34, + "probability": 0.6839 + }, + { + "start": 27408.88, + "end": 27412.34, + "probability": 0.9325 + }, + { + "start": 27414.46, + "end": 27416.94, + "probability": 0.6437 + }, + { + "start": 27417.92, + "end": 27422.28, + "probability": 0.9073 + }, + { + "start": 27422.86, + "end": 27433.08, + "probability": 0.9277 + }, + { + "start": 27433.2, + "end": 27437.78, + "probability": 0.8358 + }, + { + "start": 27438.06, + "end": 27440.18, + "probability": 0.8875 + }, + { + "start": 27440.72, + "end": 27442.6, + "probability": 0.891 + }, + { + "start": 27443.44, + "end": 27444.46, + "probability": 0.9665 + }, + { + "start": 27445.62, + "end": 27449.3, + "probability": 0.9609 + }, + { + "start": 27449.68, + "end": 27455.06, + "probability": 0.9437 + }, + { + "start": 27455.98, + "end": 27456.58, + "probability": 0.6175 + }, + { + "start": 27457.32, + "end": 27460.82, + "probability": 0.9963 + }, + { + "start": 27462.14, + "end": 27468.84, + "probability": 0.9569 + }, + { + "start": 27469.5, + "end": 27481.48, + "probability": 0.9817 + }, + { + "start": 27482.08, + "end": 27483.88, + "probability": 0.9761 + }, + { + "start": 27484.42, + "end": 27489.3, + "probability": 0.8293 + }, + { + "start": 27489.84, + "end": 27493.3, + "probability": 0.5943 + }, + { + "start": 27493.74, + "end": 27494.92, + "probability": 0.7008 + }, + { + "start": 27495.02, + "end": 27501.98, + "probability": 0.9766 + }, + { + "start": 27502.42, + "end": 27507.16, + "probability": 0.9956 + }, + { + "start": 27509.16, + "end": 27512.0, + "probability": 0.9643 + }, + { + "start": 27513.04, + "end": 27514.56, + "probability": 0.9971 + }, + { + "start": 27516.0, + "end": 27517.1, + "probability": 0.5986 + }, + { + "start": 27517.96, + "end": 27519.08, + "probability": 0.9969 + }, + { + "start": 27520.16, + "end": 27521.66, + "probability": 0.9521 + }, + { + "start": 27522.24, + "end": 27523.66, + "probability": 0.9814 + }, + { + "start": 27524.56, + "end": 27525.98, + "probability": 0.7468 + }, + { + "start": 27526.64, + "end": 27529.42, + "probability": 0.9274 + }, + { + "start": 27530.84, + "end": 27537.74, + "probability": 0.9521 + }, + { + "start": 27537.98, + "end": 27539.3, + "probability": 0.9479 + }, + { + "start": 27539.54, + "end": 27539.84, + "probability": 0.7258 + }, + { + "start": 27540.0, + "end": 27540.66, + "probability": 0.5418 + }, + { + "start": 27541.16, + "end": 27542.36, + "probability": 0.8939 + }, + { + "start": 27543.26, + "end": 27547.25, + "probability": 0.8544 + }, + { + "start": 27547.42, + "end": 27550.0, + "probability": 0.9312 + }, + { + "start": 27550.94, + "end": 27551.42, + "probability": 0.548 + }, + { + "start": 27551.84, + "end": 27553.08, + "probability": 0.9686 + }, + { + "start": 27553.24, + "end": 27555.9, + "probability": 0.9746 + }, + { + "start": 27556.1, + "end": 27557.46, + "probability": 0.7505 + }, + { + "start": 27558.06, + "end": 27561.98, + "probability": 0.7627 + }, + { + "start": 27562.48, + "end": 27564.72, + "probability": 0.6453 + }, + { + "start": 27565.3, + "end": 27566.08, + "probability": 0.787 + }, + { + "start": 27568.74, + "end": 27571.96, + "probability": 0.9331 + }, + { + "start": 27572.2, + "end": 27572.9, + "probability": 0.8244 + }, + { + "start": 27573.06, + "end": 27573.34, + "probability": 0.7601 + }, + { + "start": 27574.64, + "end": 27576.42, + "probability": 0.821 + }, + { + "start": 27576.6, + "end": 27577.62, + "probability": 0.7769 + }, + { + "start": 27578.16, + "end": 27580.16, + "probability": 0.9673 + }, + { + "start": 27582.0, + "end": 27582.98, + "probability": 0.6625 + }, + { + "start": 27583.52, + "end": 27590.18, + "probability": 0.5007 + }, + { + "start": 27591.1, + "end": 27591.1, + "probability": 0.0007 + }, + { + "start": 27591.1, + "end": 27595.12, + "probability": 0.8003 + }, + { + "start": 27595.12, + "end": 27599.12, + "probability": 0.7585 + }, + { + "start": 27599.12, + "end": 27599.19, + "probability": 0.7933 + }, + { + "start": 27599.32, + "end": 27599.78, + "probability": 0.8311 + }, + { + "start": 27599.8, + "end": 27600.5, + "probability": 0.7076 + }, + { + "start": 27600.64, + "end": 27601.36, + "probability": 0.835 + }, + { + "start": 27601.98, + "end": 27604.42, + "probability": 0.7517 + }, + { + "start": 27605.52, + "end": 27606.36, + "probability": 0.6053 + }, + { + "start": 27607.18, + "end": 27607.76, + "probability": 0.0921 + }, + { + "start": 27608.42, + "end": 27609.06, + "probability": 0.4692 + }, + { + "start": 27609.24, + "end": 27611.7, + "probability": 0.8545 + }, + { + "start": 27611.9, + "end": 27616.1, + "probability": 0.9622 + }, + { + "start": 27616.22, + "end": 27617.08, + "probability": 0.8709 + }, + { + "start": 27617.94, + "end": 27619.22, + "probability": 0.9532 + }, + { + "start": 27622.48, + "end": 27624.38, + "probability": 0.6719 + }, + { + "start": 27630.82, + "end": 27631.36, + "probability": 0.5076 + }, + { + "start": 27633.2, + "end": 27633.96, + "probability": 0.9465 + }, + { + "start": 27634.4, + "end": 27634.86, + "probability": 0.7145 + }, + { + "start": 27637.06, + "end": 27637.94, + "probability": 0.9906 + }, + { + "start": 27639.36, + "end": 27639.68, + "probability": 0.7708 + }, + { + "start": 27639.7, + "end": 27640.42, + "probability": 0.9542 + }, + { + "start": 27641.88, + "end": 27646.28, + "probability": 0.8576 + }, + { + "start": 27646.88, + "end": 27647.22, + "probability": 0.0561 + }, + { + "start": 27648.36, + "end": 27650.46, + "probability": 0.9011 + }, + { + "start": 27651.52, + "end": 27654.92, + "probability": 0.9019 + }, + { + "start": 27655.56, + "end": 27656.26, + "probability": 0.6742 + }, + { + "start": 27656.38, + "end": 27657.2, + "probability": 0.8725 + }, + { + "start": 27657.36, + "end": 27657.82, + "probability": 0.5593 + }, + { + "start": 27657.88, + "end": 27659.7, + "probability": 0.8047 + }, + { + "start": 27660.6, + "end": 27661.92, + "probability": 0.7978 + }, + { + "start": 27662.5, + "end": 27664.02, + "probability": 0.7254 + }, + { + "start": 27664.6, + "end": 27665.02, + "probability": 0.7854 + }, + { + "start": 27665.82, + "end": 27668.52, + "probability": 0.9204 + }, + { + "start": 27669.1, + "end": 27672.54, + "probability": 0.7844 + }, + { + "start": 27673.02, + "end": 27674.42, + "probability": 0.9844 + }, + { + "start": 27675.32, + "end": 27677.86, + "probability": 0.9847 + }, + { + "start": 27678.74, + "end": 27682.46, + "probability": 0.8271 + }, + { + "start": 27683.18, + "end": 27685.64, + "probability": 0.8584 + }, + { + "start": 27686.58, + "end": 27691.72, + "probability": 0.9923 + }, + { + "start": 27692.4, + "end": 27697.1, + "probability": 0.946 + }, + { + "start": 27697.66, + "end": 27700.52, + "probability": 0.9829 + }, + { + "start": 27700.68, + "end": 27704.02, + "probability": 0.9706 + }, + { + "start": 27704.02, + "end": 27706.98, + "probability": 0.9986 + }, + { + "start": 27707.56, + "end": 27708.48, + "probability": 0.6984 + }, + { + "start": 27709.36, + "end": 27712.58, + "probability": 0.7619 + }, + { + "start": 27713.16, + "end": 27718.58, + "probability": 0.6728 + }, + { + "start": 27719.4, + "end": 27722.06, + "probability": 0.9685 + }, + { + "start": 27722.06, + "end": 27722.54, + "probability": 0.5159 + }, + { + "start": 27722.66, + "end": 27722.86, + "probability": 0.7137 + }, + { + "start": 27722.9, + "end": 27725.62, + "probability": 0.9711 + }, + { + "start": 27726.48, + "end": 27728.24, + "probability": 0.9249 + }, + { + "start": 27728.76, + "end": 27734.14, + "probability": 0.9305 + }, + { + "start": 27734.14, + "end": 27737.88, + "probability": 0.6279 + }, + { + "start": 27739.14, + "end": 27739.5, + "probability": 0.8172 + }, + { + "start": 27740.54, + "end": 27742.3, + "probability": 0.7713 + }, + { + "start": 27743.92, + "end": 27744.2, + "probability": 0.286 + }, + { + "start": 27745.74, + "end": 27747.0, + "probability": 0.6635 + }, + { + "start": 27747.24, + "end": 27748.66, + "probability": 0.8811 + }, + { + "start": 27749.68, + "end": 27751.18, + "probability": 0.9881 + }, + { + "start": 27751.58, + "end": 27752.08, + "probability": 0.9656 + }, + { + "start": 27752.16, + "end": 27753.23, + "probability": 0.981 + }, + { + "start": 27753.78, + "end": 27755.4, + "probability": 0.9634 + }, + { + "start": 27756.26, + "end": 27758.24, + "probability": 0.9972 + }, + { + "start": 27758.82, + "end": 27761.3, + "probability": 0.9911 + }, + { + "start": 27762.12, + "end": 27762.9, + "probability": 0.8253 + }, + { + "start": 27763.44, + "end": 27765.82, + "probability": 0.8657 + }, + { + "start": 27766.4, + "end": 27767.38, + "probability": 0.9186 + }, + { + "start": 27768.08, + "end": 27769.08, + "probability": 0.979 + }, + { + "start": 27769.7, + "end": 27770.64, + "probability": 0.9834 + }, + { + "start": 27771.24, + "end": 27775.2, + "probability": 0.9938 + }, + { + "start": 27776.0, + "end": 27778.76, + "probability": 0.8581 + }, + { + "start": 27779.38, + "end": 27783.94, + "probability": 0.9819 + }, + { + "start": 27784.92, + "end": 27788.14, + "probability": 0.6801 + }, + { + "start": 27788.8, + "end": 27789.28, + "probability": 0.9302 + }, + { + "start": 27790.28, + "end": 27794.38, + "probability": 0.8516 + }, + { + "start": 27794.92, + "end": 27796.52, + "probability": 0.9109 + }, + { + "start": 27797.14, + "end": 27798.3, + "probability": 0.9729 + }, + { + "start": 27799.48, + "end": 27800.16, + "probability": 0.0521 + }, + { + "start": 27800.86, + "end": 27804.46, + "probability": 0.9714 + }, + { + "start": 27804.46, + "end": 27808.96, + "probability": 0.958 + }, + { + "start": 27810.38, + "end": 27810.96, + "probability": 0.5464 + }, + { + "start": 27814.08, + "end": 27815.4, + "probability": 0.387 + }, + { + "start": 27815.66, + "end": 27818.66, + "probability": 0.4128 + }, + { + "start": 27819.12, + "end": 27821.02, + "probability": 0.6923 + }, + { + "start": 27821.08, + "end": 27821.94, + "probability": 0.4923 + }, + { + "start": 27822.06, + "end": 27823.9, + "probability": 0.7909 + }, + { + "start": 27824.54, + "end": 27825.02, + "probability": 0.516 + }, + { + "start": 27825.88, + "end": 27827.02, + "probability": 0.7067 + }, + { + "start": 27827.16, + "end": 27827.52, + "probability": 0.7485 + }, + { + "start": 27827.62, + "end": 27828.58, + "probability": 0.8351 + }, + { + "start": 27829.72, + "end": 27831.62, + "probability": 0.7937 + }, + { + "start": 27831.68, + "end": 27832.86, + "probability": 0.5192 + }, + { + "start": 27833.6, + "end": 27834.2, + "probability": 0.7232 + }, + { + "start": 27841.04, + "end": 27842.32, + "probability": 0.876 + }, + { + "start": 27843.38, + "end": 27844.7, + "probability": 0.7479 + }, + { + "start": 27845.72, + "end": 27846.74, + "probability": 0.8741 + }, + { + "start": 27861.68, + "end": 27863.89, + "probability": 0.8605 + }, + { + "start": 27864.02, + "end": 27867.0, + "probability": 0.7484 + }, + { + "start": 27867.78, + "end": 27868.96, + "probability": 0.5284 + }, + { + "start": 27869.08, + "end": 27871.14, + "probability": 0.9835 + }, + { + "start": 27871.62, + "end": 27873.1, + "probability": 0.4329 + }, + { + "start": 27873.56, + "end": 27875.56, + "probability": 0.7856 + }, + { + "start": 27876.46, + "end": 27880.04, + "probability": 0.8235 + }, + { + "start": 27880.6, + "end": 27880.7, + "probability": 0.271 + } + ], + "segments_count": 9351, + "words_count": 44368, + "avg_words_per_segment": 4.7447, + "avg_segment_duration": 2.0658, + "avg_words_per_minute": 95.431, + "plenum_id": "46055", + "duration": 27895.34, + "title": null, + "plenum_date": "2015-10-28" +} \ No newline at end of file