diff --git "a/65330/metadata.json" "b/65330/metadata.json" new file mode 100644--- /dev/null +++ "b/65330/metadata.json" @@ -0,0 +1,14807 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "65330", + "quality_score": 0.8971, + "per_segment_quality_scores": [ + { + "start": 49.1, + "end": 49.94, + "probability": 0.9019 + }, + { + "start": 50.56, + "end": 50.82, + "probability": 0.7006 + }, + { + "start": 50.96, + "end": 52.06, + "probability": 0.692 + }, + { + "start": 52.16, + "end": 53.46, + "probability": 0.8517 + }, + { + "start": 53.58, + "end": 55.1, + "probability": 0.7033 + }, + { + "start": 55.34, + "end": 55.96, + "probability": 0.7358 + }, + { + "start": 56.02, + "end": 56.6, + "probability": 0.7085 + }, + { + "start": 57.48, + "end": 60.4, + "probability": 0.8337 + }, + { + "start": 61.08, + "end": 63.66, + "probability": 0.7629 + }, + { + "start": 64.46, + "end": 68.14, + "probability": 0.5528 + }, + { + "start": 68.94, + "end": 73.94, + "probability": 0.8655 + }, + { + "start": 74.32, + "end": 75.3, + "probability": 0.8653 + }, + { + "start": 76.06, + "end": 78.76, + "probability": 0.9827 + }, + { + "start": 79.7, + "end": 84.84, + "probability": 0.8586 + }, + { + "start": 88.18, + "end": 90.02, + "probability": 0.6312 + }, + { + "start": 90.58, + "end": 92.54, + "probability": 0.901 + }, + { + "start": 93.4, + "end": 97.1, + "probability": 0.5157 + }, + { + "start": 100.94, + "end": 101.24, + "probability": 0.0356 + }, + { + "start": 101.24, + "end": 101.24, + "probability": 0.2112 + }, + { + "start": 101.24, + "end": 101.24, + "probability": 0.2339 + }, + { + "start": 101.24, + "end": 101.24, + "probability": 0.4437 + }, + { + "start": 101.24, + "end": 101.24, + "probability": 0.0122 + }, + { + "start": 101.24, + "end": 104.66, + "probability": 0.8598 + }, + { + "start": 105.36, + "end": 107.76, + "probability": 0.9735 + }, + { + "start": 122.84, + "end": 125.0, + "probability": 0.6895 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0012 + }, + { + "start": 125.18, + "end": 126.64, + "probability": 0.6637 + }, + { + "start": 130.78, + "end": 131.78, + "probability": 0.695 + }, + { + "start": 131.88, + "end": 133.01, + "probability": 0.6896 + }, + { + "start": 133.98, + "end": 139.32, + "probability": 0.9619 + }, + { + "start": 140.14, + "end": 141.63, + "probability": 0.9631 + }, + { + "start": 142.58, + "end": 145.26, + "probability": 0.9424 + }, + { + "start": 146.64, + "end": 149.18, + "probability": 0.8148 + }, + { + "start": 150.28, + "end": 153.4, + "probability": 0.739 + }, + { + "start": 154.0, + "end": 155.72, + "probability": 0.682 + }, + { + "start": 156.7, + "end": 159.74, + "probability": 0.8455 + }, + { + "start": 160.22, + "end": 167.98, + "probability": 0.9117 + }, + { + "start": 169.24, + "end": 171.5, + "probability": 0.666 + }, + { + "start": 172.48, + "end": 175.62, + "probability": 0.9985 + }, + { + "start": 175.62, + "end": 176.86, + "probability": 0.983 + }, + { + "start": 176.94, + "end": 177.7, + "probability": 0.4884 + }, + { + "start": 177.84, + "end": 178.46, + "probability": 0.7011 + }, + { + "start": 178.56, + "end": 179.34, + "probability": 0.9255 + }, + { + "start": 180.16, + "end": 184.65, + "probability": 0.9594 + }, + { + "start": 185.82, + "end": 189.24, + "probability": 0.7986 + }, + { + "start": 189.36, + "end": 190.14, + "probability": 0.988 + }, + { + "start": 191.78, + "end": 193.78, + "probability": 0.9808 + }, + { + "start": 195.08, + "end": 198.32, + "probability": 0.981 + }, + { + "start": 198.46, + "end": 200.6, + "probability": 0.952 + }, + { + "start": 201.08, + "end": 203.08, + "probability": 0.9976 + }, + { + "start": 204.88, + "end": 206.52, + "probability": 0.0933 + }, + { + "start": 206.72, + "end": 207.48, + "probability": 0.7174 + }, + { + "start": 207.66, + "end": 210.14, + "probability": 0.7402 + }, + { + "start": 211.46, + "end": 211.76, + "probability": 0.3357 + }, + { + "start": 211.88, + "end": 215.58, + "probability": 0.7036 + }, + { + "start": 215.6, + "end": 216.8, + "probability": 0.6489 + }, + { + "start": 216.86, + "end": 217.7, + "probability": 0.8659 + }, + { + "start": 218.2, + "end": 221.04, + "probability": 0.8944 + }, + { + "start": 221.78, + "end": 224.74, + "probability": 0.8832 + }, + { + "start": 225.06, + "end": 227.34, + "probability": 0.9568 + }, + { + "start": 228.2, + "end": 229.64, + "probability": 0.8619 + }, + { + "start": 229.94, + "end": 233.0, + "probability": 0.9819 + }, + { + "start": 234.66, + "end": 236.9, + "probability": 0.7771 + }, + { + "start": 237.76, + "end": 240.64, + "probability": 0.8974 + }, + { + "start": 240.74, + "end": 242.95, + "probability": 0.9063 + }, + { + "start": 244.04, + "end": 247.06, + "probability": 0.753 + }, + { + "start": 247.12, + "end": 247.8, + "probability": 0.5698 + }, + { + "start": 248.58, + "end": 250.24, + "probability": 0.7338 + }, + { + "start": 251.08, + "end": 253.04, + "probability": 0.5763 + }, + { + "start": 254.12, + "end": 256.12, + "probability": 0.9663 + }, + { + "start": 256.72, + "end": 263.92, + "probability": 0.9823 + }, + { + "start": 264.82, + "end": 265.78, + "probability": 0.7892 + }, + { + "start": 266.0, + "end": 268.94, + "probability": 0.8862 + }, + { + "start": 269.02, + "end": 274.94, + "probability": 0.8825 + }, + { + "start": 275.52, + "end": 277.86, + "probability": 0.989 + }, + { + "start": 277.86, + "end": 281.7, + "probability": 0.8305 + }, + { + "start": 282.08, + "end": 285.04, + "probability": 0.8962 + }, + { + "start": 285.32, + "end": 286.96, + "probability": 0.7476 + }, + { + "start": 287.64, + "end": 290.96, + "probability": 0.986 + }, + { + "start": 291.44, + "end": 294.48, + "probability": 0.986 + }, + { + "start": 294.96, + "end": 298.5, + "probability": 0.6838 + }, + { + "start": 298.58, + "end": 301.14, + "probability": 0.9965 + }, + { + "start": 301.29, + "end": 303.78, + "probability": 0.9941 + }, + { + "start": 304.28, + "end": 307.76, + "probability": 0.9948 + }, + { + "start": 307.84, + "end": 308.96, + "probability": 0.8204 + }, + { + "start": 309.16, + "end": 312.44, + "probability": 0.9773 + }, + { + "start": 312.44, + "end": 315.9, + "probability": 0.9963 + }, + { + "start": 316.12, + "end": 318.88, + "probability": 0.9093 + }, + { + "start": 319.0, + "end": 323.0, + "probability": 0.7587 + }, + { + "start": 323.14, + "end": 324.16, + "probability": 0.7903 + }, + { + "start": 325.04, + "end": 326.46, + "probability": 0.8242 + }, + { + "start": 326.68, + "end": 328.72, + "probability": 0.878 + }, + { + "start": 328.9, + "end": 330.56, + "probability": 0.9718 + }, + { + "start": 331.16, + "end": 333.14, + "probability": 0.9873 + }, + { + "start": 333.54, + "end": 335.24, + "probability": 0.6769 + }, + { + "start": 335.88, + "end": 338.82, + "probability": 0.9919 + }, + { + "start": 338.82, + "end": 342.32, + "probability": 0.9679 + }, + { + "start": 342.8, + "end": 344.3, + "probability": 0.8792 + }, + { + "start": 344.62, + "end": 345.42, + "probability": 0.7651 + }, + { + "start": 345.52, + "end": 346.32, + "probability": 0.9015 + }, + { + "start": 346.66, + "end": 348.66, + "probability": 0.8419 + }, + { + "start": 349.12, + "end": 350.52, + "probability": 0.8227 + }, + { + "start": 350.68, + "end": 353.68, + "probability": 0.8872 + }, + { + "start": 353.84, + "end": 354.86, + "probability": 0.8042 + }, + { + "start": 355.1, + "end": 357.76, + "probability": 0.7867 + }, + { + "start": 357.96, + "end": 358.74, + "probability": 0.8482 + }, + { + "start": 358.82, + "end": 359.88, + "probability": 0.8052 + }, + { + "start": 360.36, + "end": 360.92, + "probability": 0.5211 + }, + { + "start": 361.0, + "end": 362.14, + "probability": 0.7865 + }, + { + "start": 362.22, + "end": 363.24, + "probability": 0.8446 + }, + { + "start": 363.34, + "end": 363.76, + "probability": 0.9062 + }, + { + "start": 364.26, + "end": 366.34, + "probability": 0.9535 + }, + { + "start": 366.96, + "end": 371.72, + "probability": 0.983 + }, + { + "start": 371.84, + "end": 372.5, + "probability": 0.7793 + }, + { + "start": 372.62, + "end": 374.78, + "probability": 0.955 + }, + { + "start": 374.78, + "end": 377.76, + "probability": 0.9911 + }, + { + "start": 378.04, + "end": 381.54, + "probability": 0.8021 + }, + { + "start": 381.74, + "end": 384.5, + "probability": 0.8757 + }, + { + "start": 384.64, + "end": 387.42, + "probability": 0.9203 + }, + { + "start": 387.48, + "end": 387.82, + "probability": 0.8004 + }, + { + "start": 388.72, + "end": 389.36, + "probability": 0.7346 + }, + { + "start": 390.22, + "end": 390.26, + "probability": 0.1938 + }, + { + "start": 390.26, + "end": 392.24, + "probability": 0.9916 + }, + { + "start": 393.74, + "end": 396.9, + "probability": 0.674 + }, + { + "start": 397.22, + "end": 399.3, + "probability": 0.8179 + }, + { + "start": 400.8, + "end": 402.0, + "probability": 0.1634 + }, + { + "start": 402.0, + "end": 405.08, + "probability": 0.9519 + }, + { + "start": 405.78, + "end": 407.48, + "probability": 0.9648 + }, + { + "start": 408.18, + "end": 412.44, + "probability": 0.805 + }, + { + "start": 413.02, + "end": 415.96, + "probability": 0.8666 + }, + { + "start": 416.08, + "end": 416.54, + "probability": 0.3078 + }, + { + "start": 416.64, + "end": 418.66, + "probability": 0.9354 + }, + { + "start": 422.92, + "end": 426.3, + "probability": 0.986 + }, + { + "start": 427.3, + "end": 430.28, + "probability": 0.8995 + }, + { + "start": 430.34, + "end": 435.8, + "probability": 0.8373 + }, + { + "start": 435.88, + "end": 436.52, + "probability": 0.7816 + }, + { + "start": 437.98, + "end": 439.52, + "probability": 0.7338 + }, + { + "start": 440.32, + "end": 443.24, + "probability": 0.9448 + }, + { + "start": 444.46, + "end": 447.4, + "probability": 0.92 + }, + { + "start": 448.24, + "end": 452.22, + "probability": 0.9883 + }, + { + "start": 453.46, + "end": 455.34, + "probability": 0.9518 + }, + { + "start": 456.78, + "end": 461.28, + "probability": 0.9925 + }, + { + "start": 462.0, + "end": 462.9, + "probability": 0.7439 + }, + { + "start": 463.06, + "end": 464.04, + "probability": 0.9722 + }, + { + "start": 464.14, + "end": 465.78, + "probability": 0.8745 + }, + { + "start": 466.1, + "end": 468.16, + "probability": 0.848 + }, + { + "start": 468.62, + "end": 471.18, + "probability": 0.9586 + }, + { + "start": 471.3, + "end": 473.9, + "probability": 0.9733 + }, + { + "start": 473.9, + "end": 475.84, + "probability": 0.8687 + }, + { + "start": 477.66, + "end": 483.32, + "probability": 0.8706 + }, + { + "start": 484.84, + "end": 490.08, + "probability": 0.8433 + }, + { + "start": 491.0, + "end": 493.52, + "probability": 0.9236 + }, + { + "start": 493.52, + "end": 497.62, + "probability": 0.6934 + }, + { + "start": 498.84, + "end": 499.5, + "probability": 0.7077 + }, + { + "start": 499.56, + "end": 502.14, + "probability": 0.9715 + }, + { + "start": 502.34, + "end": 506.02, + "probability": 0.9644 + }, + { + "start": 506.24, + "end": 509.86, + "probability": 0.9564 + }, + { + "start": 509.86, + "end": 517.12, + "probability": 0.6613 + }, + { + "start": 517.2, + "end": 522.84, + "probability": 0.6474 + }, + { + "start": 522.98, + "end": 529.28, + "probability": 0.7193 + }, + { + "start": 529.74, + "end": 532.78, + "probability": 0.8644 + }, + { + "start": 533.08, + "end": 534.54, + "probability": 0.8819 + }, + { + "start": 535.0, + "end": 536.94, + "probability": 0.9146 + }, + { + "start": 537.12, + "end": 540.58, + "probability": 0.9745 + }, + { + "start": 540.58, + "end": 545.6, + "probability": 0.979 + }, + { + "start": 546.29, + "end": 549.22, + "probability": 0.5956 + }, + { + "start": 549.28, + "end": 551.66, + "probability": 0.7931 + }, + { + "start": 552.3, + "end": 554.06, + "probability": 0.6493 + }, + { + "start": 560.2, + "end": 560.58, + "probability": 0.5677 + }, + { + "start": 560.64, + "end": 561.34, + "probability": 0.7107 + }, + { + "start": 561.44, + "end": 562.92, + "probability": 0.7221 + }, + { + "start": 563.2, + "end": 566.88, + "probability": 0.9954 + }, + { + "start": 567.6, + "end": 570.56, + "probability": 0.9933 + }, + { + "start": 570.56, + "end": 573.32, + "probability": 0.9946 + }, + { + "start": 573.92, + "end": 575.1, + "probability": 0.4872 + }, + { + "start": 575.6, + "end": 578.96, + "probability": 0.9309 + }, + { + "start": 579.08, + "end": 579.84, + "probability": 0.7416 + }, + { + "start": 579.86, + "end": 585.2, + "probability": 0.894 + }, + { + "start": 585.78, + "end": 587.28, + "probability": 0.9455 + }, + { + "start": 587.36, + "end": 593.28, + "probability": 0.9927 + }, + { + "start": 593.28, + "end": 597.02, + "probability": 0.9997 + }, + { + "start": 597.44, + "end": 598.88, + "probability": 0.7677 + }, + { + "start": 599.2, + "end": 600.98, + "probability": 0.7633 + }, + { + "start": 601.48, + "end": 603.6, + "probability": 0.7695 + }, + { + "start": 603.96, + "end": 607.9, + "probability": 0.9386 + }, + { + "start": 608.4, + "end": 609.06, + "probability": 0.6783 + }, + { + "start": 609.18, + "end": 610.22, + "probability": 0.732 + }, + { + "start": 610.46, + "end": 613.97, + "probability": 0.9941 + }, + { + "start": 614.56, + "end": 615.38, + "probability": 0.8118 + }, + { + "start": 615.46, + "end": 616.38, + "probability": 0.9453 + }, + { + "start": 616.48, + "end": 620.0, + "probability": 0.9712 + }, + { + "start": 620.0, + "end": 623.16, + "probability": 0.908 + }, + { + "start": 623.24, + "end": 624.34, + "probability": 0.7657 + }, + { + "start": 624.68, + "end": 627.62, + "probability": 0.8729 + }, + { + "start": 628.08, + "end": 629.02, + "probability": 0.9113 + }, + { + "start": 629.62, + "end": 631.14, + "probability": 0.9976 + }, + { + "start": 631.22, + "end": 634.3, + "probability": 0.8703 + }, + { + "start": 634.58, + "end": 637.64, + "probability": 0.9927 + }, + { + "start": 638.18, + "end": 640.76, + "probability": 0.9019 + }, + { + "start": 641.02, + "end": 643.62, + "probability": 0.9514 + }, + { + "start": 643.98, + "end": 644.3, + "probability": 0.7883 + }, + { + "start": 645.3, + "end": 646.9, + "probability": 0.6132 + }, + { + "start": 646.98, + "end": 649.0, + "probability": 0.7281 + }, + { + "start": 649.16, + "end": 650.88, + "probability": 0.7135 + }, + { + "start": 655.96, + "end": 657.72, + "probability": 0.7408 + }, + { + "start": 658.26, + "end": 661.16, + "probability": 0.9927 + }, + { + "start": 661.76, + "end": 663.92, + "probability": 0.9818 + }, + { + "start": 664.8, + "end": 667.88, + "probability": 0.8599 + }, + { + "start": 668.6, + "end": 671.94, + "probability": 0.9723 + }, + { + "start": 672.16, + "end": 674.06, + "probability": 0.925 + }, + { + "start": 674.72, + "end": 675.6, + "probability": 0.6793 + }, + { + "start": 676.42, + "end": 680.78, + "probability": 0.9702 + }, + { + "start": 681.2, + "end": 685.26, + "probability": 0.9471 + }, + { + "start": 685.26, + "end": 689.64, + "probability": 0.9916 + }, + { + "start": 690.82, + "end": 691.96, + "probability": 0.9833 + }, + { + "start": 692.6, + "end": 695.74, + "probability": 0.9871 + }, + { + "start": 696.3, + "end": 699.42, + "probability": 0.984 + }, + { + "start": 699.42, + "end": 702.6, + "probability": 0.9982 + }, + { + "start": 704.46, + "end": 706.74, + "probability": 0.6406 + }, + { + "start": 706.86, + "end": 708.58, + "probability": 0.7087 + }, + { + "start": 709.16, + "end": 711.08, + "probability": 0.832 + }, + { + "start": 713.86, + "end": 716.38, + "probability": 0.7577 + }, + { + "start": 717.72, + "end": 721.82, + "probability": 0.9697 + }, + { + "start": 722.58, + "end": 725.76, + "probability": 0.9951 + }, + { + "start": 726.54, + "end": 732.18, + "probability": 0.7713 + }, + { + "start": 732.28, + "end": 735.54, + "probability": 0.9251 + }, + { + "start": 736.24, + "end": 738.98, + "probability": 0.9306 + }, + { + "start": 739.4, + "end": 740.4, + "probability": 0.8933 + }, + { + "start": 740.66, + "end": 742.52, + "probability": 0.615 + }, + { + "start": 743.58, + "end": 744.54, + "probability": 0.9011 + }, + { + "start": 744.64, + "end": 746.5, + "probability": 0.9878 + }, + { + "start": 746.5, + "end": 748.72, + "probability": 0.997 + }, + { + "start": 749.26, + "end": 751.78, + "probability": 0.9175 + }, + { + "start": 752.52, + "end": 754.04, + "probability": 0.9393 + }, + { + "start": 754.12, + "end": 755.0, + "probability": 0.9159 + }, + { + "start": 755.5, + "end": 758.22, + "probability": 0.9853 + }, + { + "start": 758.74, + "end": 761.1, + "probability": 0.9772 + }, + { + "start": 761.22, + "end": 764.74, + "probability": 0.8382 + }, + { + "start": 765.44, + "end": 769.34, + "probability": 0.992 + }, + { + "start": 769.46, + "end": 772.12, + "probability": 0.9971 + }, + { + "start": 772.62, + "end": 774.4, + "probability": 0.9377 + }, + { + "start": 774.76, + "end": 779.54, + "probability": 0.9897 + }, + { + "start": 780.06, + "end": 780.94, + "probability": 0.7644 + }, + { + "start": 781.12, + "end": 781.3, + "probability": 0.7403 + }, + { + "start": 781.82, + "end": 781.94, + "probability": 0.3374 + }, + { + "start": 781.94, + "end": 785.7, + "probability": 0.9851 + }, + { + "start": 786.24, + "end": 787.38, + "probability": 0.9706 + }, + { + "start": 787.58, + "end": 788.22, + "probability": 0.5768 + }, + { + "start": 788.28, + "end": 788.94, + "probability": 0.9477 + }, + { + "start": 789.3, + "end": 792.8, + "probability": 0.964 + }, + { + "start": 792.84, + "end": 795.62, + "probability": 0.953 + }, + { + "start": 795.62, + "end": 796.02, + "probability": 0.7566 + }, + { + "start": 797.2, + "end": 798.48, + "probability": 0.7832 + }, + { + "start": 798.8, + "end": 801.66, + "probability": 0.9091 + }, + { + "start": 804.84, + "end": 806.37, + "probability": 0.832 + }, + { + "start": 806.78, + "end": 807.5, + "probability": 0.7088 + }, + { + "start": 808.36, + "end": 809.5, + "probability": 0.5651 + }, + { + "start": 809.96, + "end": 810.72, + "probability": 0.6857 + }, + { + "start": 811.1, + "end": 812.06, + "probability": 0.511 + }, + { + "start": 812.9, + "end": 819.3, + "probability": 0.998 + }, + { + "start": 819.9, + "end": 820.9, + "probability": 0.7078 + }, + { + "start": 821.46, + "end": 826.22, + "probability": 0.9924 + }, + { + "start": 826.7, + "end": 831.88, + "probability": 0.9563 + }, + { + "start": 832.16, + "end": 834.64, + "probability": 0.7543 + }, + { + "start": 835.2, + "end": 842.06, + "probability": 0.99 + }, + { + "start": 842.98, + "end": 843.94, + "probability": 0.6782 + }, + { + "start": 844.02, + "end": 844.96, + "probability": 0.634 + }, + { + "start": 845.04, + "end": 846.68, + "probability": 0.8475 + }, + { + "start": 847.16, + "end": 850.24, + "probability": 0.8466 + }, + { + "start": 850.34, + "end": 854.92, + "probability": 0.9653 + }, + { + "start": 855.06, + "end": 859.02, + "probability": 0.9811 + }, + { + "start": 859.42, + "end": 861.64, + "probability": 0.9194 + }, + { + "start": 862.02, + "end": 864.4, + "probability": 0.9977 + }, + { + "start": 864.4, + "end": 869.2, + "probability": 0.9935 + }, + { + "start": 870.18, + "end": 872.44, + "probability": 0.5965 + }, + { + "start": 873.08, + "end": 878.92, + "probability": 0.9684 + }, + { + "start": 879.1, + "end": 879.36, + "probability": 0.646 + }, + { + "start": 879.4, + "end": 879.93, + "probability": 0.6279 + }, + { + "start": 880.74, + "end": 881.52, + "probability": 0.9246 + }, + { + "start": 881.68, + "end": 883.16, + "probability": 0.7389 + }, + { + "start": 883.84, + "end": 885.42, + "probability": 0.7148 + }, + { + "start": 886.02, + "end": 887.24, + "probability": 0.9534 + }, + { + "start": 887.8, + "end": 888.4, + "probability": 0.7241 + }, + { + "start": 888.62, + "end": 893.86, + "probability": 0.9717 + }, + { + "start": 894.46, + "end": 898.62, + "probability": 0.9306 + }, + { + "start": 898.88, + "end": 901.38, + "probability": 0.8018 + }, + { + "start": 901.7, + "end": 906.92, + "probability": 0.9631 + }, + { + "start": 906.92, + "end": 909.92, + "probability": 0.9047 + }, + { + "start": 910.08, + "end": 912.54, + "probability": 0.7715 + }, + { + "start": 913.18, + "end": 915.22, + "probability": 0.7879 + }, + { + "start": 921.18, + "end": 923.42, + "probability": 0.6676 + }, + { + "start": 923.9, + "end": 925.28, + "probability": 0.9922 + }, + { + "start": 925.8, + "end": 928.19, + "probability": 0.8416 + }, + { + "start": 929.04, + "end": 929.83, + "probability": 0.882 + }, + { + "start": 930.1, + "end": 932.08, + "probability": 0.9703 + }, + { + "start": 932.54, + "end": 933.66, + "probability": 0.9329 + }, + { + "start": 934.38, + "end": 937.68, + "probability": 0.9904 + }, + { + "start": 938.0, + "end": 938.38, + "probability": 0.5064 + }, + { + "start": 938.48, + "end": 941.12, + "probability": 0.9473 + }, + { + "start": 941.58, + "end": 944.74, + "probability": 0.7825 + }, + { + "start": 945.48, + "end": 947.06, + "probability": 0.3264 + }, + { + "start": 948.1, + "end": 950.18, + "probability": 0.8848 + }, + { + "start": 950.3, + "end": 951.41, + "probability": 0.9944 + }, + { + "start": 951.54, + "end": 953.18, + "probability": 0.9954 + }, + { + "start": 953.22, + "end": 954.02, + "probability": 0.7365 + }, + { + "start": 954.3, + "end": 955.38, + "probability": 0.9829 + }, + { + "start": 956.2, + "end": 961.1, + "probability": 0.9747 + }, + { + "start": 961.1, + "end": 965.04, + "probability": 0.9501 + }, + { + "start": 965.3, + "end": 966.92, + "probability": 0.9799 + }, + { + "start": 967.7, + "end": 969.76, + "probability": 0.9978 + }, + { + "start": 969.82, + "end": 970.72, + "probability": 0.9043 + }, + { + "start": 971.02, + "end": 972.88, + "probability": 0.869 + }, + { + "start": 973.76, + "end": 976.56, + "probability": 0.998 + }, + { + "start": 977.22, + "end": 979.64, + "probability": 0.9941 + }, + { + "start": 980.06, + "end": 984.42, + "probability": 0.9696 + }, + { + "start": 985.06, + "end": 987.86, + "probability": 0.9911 + }, + { + "start": 988.0, + "end": 989.28, + "probability": 0.8473 + }, + { + "start": 989.34, + "end": 990.46, + "probability": 0.97 + }, + { + "start": 990.48, + "end": 993.06, + "probability": 0.8292 + }, + { + "start": 993.7, + "end": 995.92, + "probability": 0.9713 + }, + { + "start": 996.54, + "end": 997.74, + "probability": 0.8438 + }, + { + "start": 998.28, + "end": 1002.63, + "probability": 0.9645 + }, + { + "start": 1002.82, + "end": 1004.02, + "probability": 0.7357 + }, + { + "start": 1004.32, + "end": 1005.28, + "probability": 0.9278 + }, + { + "start": 1005.88, + "end": 1007.08, + "probability": 0.8119 + }, + { + "start": 1007.24, + "end": 1011.78, + "probability": 0.9537 + }, + { + "start": 1012.2, + "end": 1013.86, + "probability": 0.2907 + }, + { + "start": 1015.12, + "end": 1017.46, + "probability": 0.6249 + }, + { + "start": 1018.98, + "end": 1019.7, + "probability": 0.3019 + }, + { + "start": 1020.28, + "end": 1022.82, + "probability": 0.3481 + }, + { + "start": 1023.9, + "end": 1025.12, + "probability": 0.6104 + }, + { + "start": 1025.92, + "end": 1027.67, + "probability": 0.834 + }, + { + "start": 1028.0, + "end": 1028.64, + "probability": 0.6003 + }, + { + "start": 1028.68, + "end": 1030.3, + "probability": 0.892 + }, + { + "start": 1030.42, + "end": 1031.56, + "probability": 0.8162 + }, + { + "start": 1032.72, + "end": 1034.56, + "probability": 0.6909 + }, + { + "start": 1034.6, + "end": 1035.08, + "probability": 0.6336 + }, + { + "start": 1036.07, + "end": 1038.66, + "probability": 0.9884 + }, + { + "start": 1039.26, + "end": 1041.5, + "probability": 0.9406 + }, + { + "start": 1041.84, + "end": 1042.58, + "probability": 0.9643 + }, + { + "start": 1042.66, + "end": 1043.38, + "probability": 0.938 + }, + { + "start": 1044.02, + "end": 1045.16, + "probability": 0.9631 + }, + { + "start": 1045.28, + "end": 1046.2, + "probability": 0.632 + }, + { + "start": 1046.24, + "end": 1049.28, + "probability": 0.6839 + }, + { + "start": 1049.66, + "end": 1049.9, + "probability": 0.7513 + }, + { + "start": 1050.66, + "end": 1053.62, + "probability": 0.8943 + }, + { + "start": 1053.7, + "end": 1056.78, + "probability": 0.9585 + }, + { + "start": 1057.5, + "end": 1060.68, + "probability": 0.981 + }, + { + "start": 1061.04, + "end": 1062.48, + "probability": 0.9896 + }, + { + "start": 1062.84, + "end": 1069.66, + "probability": 0.8886 + }, + { + "start": 1069.72, + "end": 1071.4, + "probability": 0.8902 + }, + { + "start": 1071.4, + "end": 1072.38, + "probability": 0.9481 + }, + { + "start": 1072.72, + "end": 1075.6, + "probability": 0.9976 + }, + { + "start": 1076.96, + "end": 1080.36, + "probability": 0.9694 + }, + { + "start": 1081.8, + "end": 1082.82, + "probability": 0.5477 + }, + { + "start": 1083.22, + "end": 1085.26, + "probability": 0.9351 + }, + { + "start": 1086.08, + "end": 1089.1, + "probability": 0.5331 + }, + { + "start": 1090.86, + "end": 1093.35, + "probability": 0.0325 + }, + { + "start": 1096.26, + "end": 1096.28, + "probability": 0.0923 + }, + { + "start": 1096.28, + "end": 1096.28, + "probability": 0.0742 + }, + { + "start": 1096.28, + "end": 1096.28, + "probability": 0.0563 + }, + { + "start": 1096.28, + "end": 1098.67, + "probability": 0.7786 + }, + { + "start": 1098.72, + "end": 1102.62, + "probability": 0.9352 + }, + { + "start": 1103.88, + "end": 1106.12, + "probability": 0.7822 + }, + { + "start": 1106.66, + "end": 1111.24, + "probability": 0.9628 + }, + { + "start": 1112.16, + "end": 1116.36, + "probability": 0.9941 + }, + { + "start": 1117.28, + "end": 1117.52, + "probability": 0.9098 + }, + { + "start": 1118.04, + "end": 1118.14, + "probability": 0.9977 + }, + { + "start": 1123.2, + "end": 1124.94, + "probability": 0.8223 + }, + { + "start": 1125.14, + "end": 1126.3, + "probability": 0.9869 + }, + { + "start": 1126.44, + "end": 1127.12, + "probability": 0.5583 + }, + { + "start": 1127.36, + "end": 1128.56, + "probability": 0.9543 + }, + { + "start": 1129.2, + "end": 1129.66, + "probability": 0.8075 + }, + { + "start": 1129.78, + "end": 1131.54, + "probability": 0.984 + }, + { + "start": 1131.86, + "end": 1132.83, + "probability": 0.8555 + }, + { + "start": 1132.92, + "end": 1138.32, + "probability": 0.9735 + }, + { + "start": 1139.38, + "end": 1144.08, + "probability": 0.9967 + }, + { + "start": 1145.22, + "end": 1146.8, + "probability": 0.9914 + }, + { + "start": 1147.38, + "end": 1147.84, + "probability": 0.9521 + }, + { + "start": 1150.74, + "end": 1152.18, + "probability": 0.8048 + }, + { + "start": 1152.9, + "end": 1158.08, + "probability": 0.996 + }, + { + "start": 1158.94, + "end": 1159.72, + "probability": 0.7993 + }, + { + "start": 1160.32, + "end": 1165.82, + "probability": 0.9941 + }, + { + "start": 1166.0, + "end": 1166.56, + "probability": 0.8652 + }, + { + "start": 1166.7, + "end": 1167.28, + "probability": 0.9761 + }, + { + "start": 1167.92, + "end": 1170.92, + "probability": 0.9717 + }, + { + "start": 1171.88, + "end": 1172.86, + "probability": 0.8263 + }, + { + "start": 1173.72, + "end": 1174.14, + "probability": 0.959 + }, + { + "start": 1174.76, + "end": 1179.5, + "probability": 0.9925 + }, + { + "start": 1180.2, + "end": 1180.7, + "probability": 0.8298 + }, + { + "start": 1181.24, + "end": 1185.56, + "probability": 0.9967 + }, + { + "start": 1186.26, + "end": 1189.94, + "probability": 0.9922 + }, + { + "start": 1189.94, + "end": 1193.76, + "probability": 0.9985 + }, + { + "start": 1194.82, + "end": 1197.06, + "probability": 0.9986 + }, + { + "start": 1197.06, + "end": 1200.48, + "probability": 0.996 + }, + { + "start": 1201.74, + "end": 1206.54, + "probability": 0.9869 + }, + { + "start": 1207.36, + "end": 1211.6, + "probability": 0.9985 + }, + { + "start": 1212.14, + "end": 1214.0, + "probability": 0.9514 + }, + { + "start": 1214.74, + "end": 1215.82, + "probability": 0.8838 + }, + { + "start": 1217.02, + "end": 1221.18, + "probability": 0.9892 + }, + { + "start": 1222.7, + "end": 1225.6, + "probability": 0.9821 + }, + { + "start": 1225.62, + "end": 1228.8, + "probability": 0.9976 + }, + { + "start": 1229.64, + "end": 1231.86, + "probability": 0.9932 + }, + { + "start": 1232.62, + "end": 1234.6, + "probability": 0.9627 + }, + { + "start": 1235.76, + "end": 1237.7, + "probability": 0.9917 + }, + { + "start": 1238.32, + "end": 1239.6, + "probability": 0.9669 + }, + { + "start": 1240.36, + "end": 1242.22, + "probability": 0.8984 + }, + { + "start": 1242.92, + "end": 1246.22, + "probability": 0.9839 + }, + { + "start": 1246.68, + "end": 1247.9, + "probability": 0.9714 + }, + { + "start": 1248.14, + "end": 1250.8, + "probability": 0.9865 + }, + { + "start": 1252.08, + "end": 1256.26, + "probability": 0.6979 + }, + { + "start": 1258.5, + "end": 1262.72, + "probability": 0.9465 + }, + { + "start": 1263.38, + "end": 1264.76, + "probability": 0.9513 + }, + { + "start": 1265.46, + "end": 1266.42, + "probability": 0.9885 + }, + { + "start": 1267.3, + "end": 1270.04, + "probability": 0.9205 + }, + { + "start": 1270.1, + "end": 1272.22, + "probability": 0.9205 + }, + { + "start": 1272.32, + "end": 1272.86, + "probability": 0.6308 + }, + { + "start": 1273.32, + "end": 1274.94, + "probability": 0.8971 + }, + { + "start": 1275.16, + "end": 1279.22, + "probability": 0.7586 + }, + { + "start": 1279.5, + "end": 1280.52, + "probability": 0.6789 + }, + { + "start": 1280.64, + "end": 1281.56, + "probability": 0.9212 + }, + { + "start": 1281.62, + "end": 1283.5, + "probability": 0.8515 + }, + { + "start": 1284.22, + "end": 1286.52, + "probability": 0.9783 + }, + { + "start": 1286.96, + "end": 1289.26, + "probability": 0.8192 + }, + { + "start": 1299.54, + "end": 1300.12, + "probability": 0.6345 + }, + { + "start": 1300.32, + "end": 1304.18, + "probability": 0.6779 + }, + { + "start": 1304.56, + "end": 1306.02, + "probability": 0.845 + }, + { + "start": 1306.08, + "end": 1307.38, + "probability": 0.9103 + }, + { + "start": 1307.72, + "end": 1308.7, + "probability": 0.9493 + }, + { + "start": 1308.84, + "end": 1309.92, + "probability": 0.9144 + }, + { + "start": 1310.4, + "end": 1312.96, + "probability": 0.9056 + }, + { + "start": 1313.46, + "end": 1316.84, + "probability": 0.9507 + }, + { + "start": 1317.28, + "end": 1321.28, + "probability": 0.9701 + }, + { + "start": 1321.44, + "end": 1324.8, + "probability": 0.983 + }, + { + "start": 1324.88, + "end": 1325.74, + "probability": 0.7192 + }, + { + "start": 1326.54, + "end": 1327.32, + "probability": 0.8692 + }, + { + "start": 1327.42, + "end": 1329.57, + "probability": 0.9832 + }, + { + "start": 1330.2, + "end": 1331.39, + "probability": 0.9526 + }, + { + "start": 1331.5, + "end": 1333.98, + "probability": 0.96 + }, + { + "start": 1333.98, + "end": 1338.74, + "probability": 0.9873 + }, + { + "start": 1338.84, + "end": 1339.23, + "probability": 0.8218 + }, + { + "start": 1339.7, + "end": 1343.1, + "probability": 0.739 + }, + { + "start": 1343.86, + "end": 1344.62, + "probability": 0.6988 + }, + { + "start": 1344.94, + "end": 1345.18, + "probability": 0.7219 + }, + { + "start": 1345.24, + "end": 1347.76, + "probability": 0.5648 + }, + { + "start": 1347.88, + "end": 1348.96, + "probability": 0.3724 + }, + { + "start": 1349.78, + "end": 1351.18, + "probability": 0.6499 + }, + { + "start": 1352.26, + "end": 1355.76, + "probability": 0.9058 + }, + { + "start": 1355.9, + "end": 1359.17, + "probability": 0.9418 + }, + { + "start": 1359.52, + "end": 1363.89, + "probability": 0.9959 + }, + { + "start": 1364.8, + "end": 1369.32, + "probability": 0.8711 + }, + { + "start": 1369.32, + "end": 1373.96, + "probability": 0.7566 + }, + { + "start": 1374.18, + "end": 1375.0, + "probability": 0.6057 + }, + { + "start": 1375.14, + "end": 1378.74, + "probability": 0.6295 + }, + { + "start": 1379.16, + "end": 1382.5, + "probability": 0.7707 + }, + { + "start": 1383.02, + "end": 1383.98, + "probability": 0.2959 + }, + { + "start": 1384.66, + "end": 1387.88, + "probability": 0.9848 + }, + { + "start": 1388.54, + "end": 1390.18, + "probability": 0.894 + }, + { + "start": 1390.86, + "end": 1391.8, + "probability": 0.9795 + }, + { + "start": 1391.88, + "end": 1393.4, + "probability": 0.5772 + }, + { + "start": 1393.4, + "end": 1393.94, + "probability": 0.758 + }, + { + "start": 1394.0, + "end": 1395.84, + "probability": 0.9673 + }, + { + "start": 1395.9, + "end": 1397.94, + "probability": 0.7835 + }, + { + "start": 1398.72, + "end": 1403.18, + "probability": 0.9653 + }, + { + "start": 1403.28, + "end": 1405.16, + "probability": 0.9499 + }, + { + "start": 1405.58, + "end": 1409.78, + "probability": 0.9218 + }, + { + "start": 1410.18, + "end": 1410.87, + "probability": 0.9556 + }, + { + "start": 1412.42, + "end": 1416.36, + "probability": 0.8829 + }, + { + "start": 1416.84, + "end": 1418.28, + "probability": 0.8217 + }, + { + "start": 1418.34, + "end": 1419.12, + "probability": 0.9788 + }, + { + "start": 1419.16, + "end": 1419.66, + "probability": 0.9621 + }, + { + "start": 1419.68, + "end": 1422.48, + "probability": 0.972 + }, + { + "start": 1422.56, + "end": 1422.98, + "probability": 0.9413 + }, + { + "start": 1423.56, + "end": 1427.66, + "probability": 0.9224 + }, + { + "start": 1428.06, + "end": 1432.46, + "probability": 0.7106 + }, + { + "start": 1432.52, + "end": 1432.98, + "probability": 0.7683 + }, + { + "start": 1433.02, + "end": 1434.96, + "probability": 0.8098 + }, + { + "start": 1435.42, + "end": 1438.88, + "probability": 0.9747 + }, + { + "start": 1439.54, + "end": 1441.22, + "probability": 0.8923 + }, + { + "start": 1441.28, + "end": 1441.9, + "probability": 0.5917 + }, + { + "start": 1442.04, + "end": 1445.78, + "probability": 0.9558 + }, + { + "start": 1446.28, + "end": 1449.06, + "probability": 0.9956 + }, + { + "start": 1449.58, + "end": 1450.38, + "probability": 0.5621 + }, + { + "start": 1450.6, + "end": 1452.34, + "probability": 0.9856 + }, + { + "start": 1452.66, + "end": 1453.68, + "probability": 0.9703 + }, + { + "start": 1454.08, + "end": 1455.28, + "probability": 0.9106 + }, + { + "start": 1455.34, + "end": 1457.71, + "probability": 0.9443 + }, + { + "start": 1458.32, + "end": 1464.42, + "probability": 0.9938 + }, + { + "start": 1464.84, + "end": 1468.5, + "probability": 0.9818 + }, + { + "start": 1468.62, + "end": 1471.8, + "probability": 0.2912 + }, + { + "start": 1471.92, + "end": 1475.36, + "probability": 0.7361 + }, + { + "start": 1475.36, + "end": 1478.36, + "probability": 0.9823 + }, + { + "start": 1479.44, + "end": 1482.18, + "probability": 0.9951 + }, + { + "start": 1482.18, + "end": 1487.06, + "probability": 0.9971 + }, + { + "start": 1487.72, + "end": 1491.28, + "probability": 0.9275 + }, + { + "start": 1491.8, + "end": 1493.8, + "probability": 0.7471 + }, + { + "start": 1494.02, + "end": 1501.3, + "probability": 0.9822 + }, + { + "start": 1504.06, + "end": 1509.68, + "probability": 0.7392 + }, + { + "start": 1510.56, + "end": 1515.04, + "probability": 0.8387 + }, + { + "start": 1515.1, + "end": 1517.38, + "probability": 0.8029 + }, + { + "start": 1517.8, + "end": 1518.9, + "probability": 0.8272 + }, + { + "start": 1519.22, + "end": 1520.16, + "probability": 0.6934 + }, + { + "start": 1520.7, + "end": 1523.38, + "probability": 0.9221 + }, + { + "start": 1523.68, + "end": 1527.65, + "probability": 0.9712 + }, + { + "start": 1528.22, + "end": 1529.64, + "probability": 0.689 + }, + { + "start": 1530.24, + "end": 1537.64, + "probability": 0.9937 + }, + { + "start": 1537.7, + "end": 1541.92, + "probability": 0.9156 + }, + { + "start": 1542.02, + "end": 1546.1, + "probability": 0.965 + }, + { + "start": 1546.34, + "end": 1548.42, + "probability": 0.9241 + }, + { + "start": 1548.94, + "end": 1554.74, + "probability": 0.9893 + }, + { + "start": 1554.82, + "end": 1556.0, + "probability": 0.9553 + }, + { + "start": 1556.08, + "end": 1557.46, + "probability": 0.9824 + }, + { + "start": 1557.5, + "end": 1559.5, + "probability": 0.9858 + }, + { + "start": 1559.92, + "end": 1561.48, + "probability": 0.9487 + }, + { + "start": 1561.62, + "end": 1563.62, + "probability": 0.8094 + }, + { + "start": 1564.1, + "end": 1567.68, + "probability": 0.5401 + }, + { + "start": 1567.68, + "end": 1571.62, + "probability": 0.9861 + }, + { + "start": 1571.98, + "end": 1574.74, + "probability": 0.8986 + }, + { + "start": 1574.8, + "end": 1575.56, + "probability": 0.9046 + }, + { + "start": 1575.66, + "end": 1577.92, + "probability": 0.9983 + }, + { + "start": 1578.58, + "end": 1584.84, + "probability": 0.9954 + }, + { + "start": 1585.56, + "end": 1588.48, + "probability": 0.8516 + }, + { + "start": 1588.66, + "end": 1589.34, + "probability": 0.9295 + }, + { + "start": 1589.54, + "end": 1594.18, + "probability": 0.9946 + }, + { + "start": 1594.52, + "end": 1600.5, + "probability": 0.7717 + }, + { + "start": 1602.04, + "end": 1602.96, + "probability": 0.5699 + }, + { + "start": 1603.18, + "end": 1604.62, + "probability": 0.8638 + }, + { + "start": 1604.72, + "end": 1608.42, + "probability": 0.9662 + }, + { + "start": 1608.62, + "end": 1610.58, + "probability": 0.9791 + }, + { + "start": 1611.0, + "end": 1614.72, + "probability": 0.9845 + }, + { + "start": 1615.12, + "end": 1615.94, + "probability": 0.7203 + }, + { + "start": 1616.38, + "end": 1618.54, + "probability": 0.9624 + }, + { + "start": 1618.86, + "end": 1620.56, + "probability": 0.9701 + }, + { + "start": 1620.84, + "end": 1621.74, + "probability": 0.9683 + }, + { + "start": 1622.96, + "end": 1625.3, + "probability": 0.9852 + }, + { + "start": 1625.66, + "end": 1631.36, + "probability": 0.9614 + }, + { + "start": 1631.76, + "end": 1637.46, + "probability": 0.993 + }, + { + "start": 1638.7, + "end": 1644.48, + "probability": 0.9805 + }, + { + "start": 1644.58, + "end": 1647.06, + "probability": 0.9795 + }, + { + "start": 1647.4, + "end": 1649.42, + "probability": 0.9841 + }, + { + "start": 1650.14, + "end": 1654.34, + "probability": 0.9814 + }, + { + "start": 1654.4, + "end": 1655.32, + "probability": 0.9724 + }, + { + "start": 1655.48, + "end": 1656.6, + "probability": 0.9532 + }, + { + "start": 1656.96, + "end": 1661.2, + "probability": 0.9861 + }, + { + "start": 1661.38, + "end": 1664.32, + "probability": 0.9316 + }, + { + "start": 1664.4, + "end": 1668.88, + "probability": 0.9361 + }, + { + "start": 1669.36, + "end": 1670.78, + "probability": 0.8949 + }, + { + "start": 1670.98, + "end": 1671.82, + "probability": 0.9244 + }, + { + "start": 1672.22, + "end": 1676.22, + "probability": 0.9929 + }, + { + "start": 1676.36, + "end": 1679.44, + "probability": 0.9973 + }, + { + "start": 1679.44, + "end": 1684.18, + "probability": 0.8965 + }, + { + "start": 1684.48, + "end": 1687.36, + "probability": 0.9875 + }, + { + "start": 1688.02, + "end": 1692.84, + "probability": 0.9966 + }, + { + "start": 1693.12, + "end": 1696.04, + "probability": 0.9155 + }, + { + "start": 1696.32, + "end": 1697.76, + "probability": 0.5004 + }, + { + "start": 1698.12, + "end": 1699.88, + "probability": 0.7971 + }, + { + "start": 1700.3, + "end": 1702.5, + "probability": 0.9969 + }, + { + "start": 1702.62, + "end": 1704.56, + "probability": 0.9372 + }, + { + "start": 1705.06, + "end": 1706.92, + "probability": 0.8878 + }, + { + "start": 1707.4, + "end": 1709.4, + "probability": 0.9929 + }, + { + "start": 1709.92, + "end": 1713.52, + "probability": 0.9891 + }, + { + "start": 1714.08, + "end": 1717.4, + "probability": 0.9929 + }, + { + "start": 1717.4, + "end": 1721.16, + "probability": 0.9944 + }, + { + "start": 1721.52, + "end": 1722.34, + "probability": 0.8008 + }, + { + "start": 1722.46, + "end": 1727.08, + "probability": 0.9894 + }, + { + "start": 1727.54, + "end": 1731.64, + "probability": 0.985 + }, + { + "start": 1731.64, + "end": 1736.86, + "probability": 0.9997 + }, + { + "start": 1737.48, + "end": 1743.84, + "probability": 0.9807 + }, + { + "start": 1744.32, + "end": 1745.96, + "probability": 0.9941 + }, + { + "start": 1746.38, + "end": 1748.8, + "probability": 0.9823 + }, + { + "start": 1749.12, + "end": 1749.92, + "probability": 0.5236 + }, + { + "start": 1750.28, + "end": 1754.98, + "probability": 0.9823 + }, + { + "start": 1754.98, + "end": 1758.52, + "probability": 0.9951 + }, + { + "start": 1758.6, + "end": 1760.92, + "probability": 0.9614 + }, + { + "start": 1761.58, + "end": 1764.34, + "probability": 0.9933 + }, + { + "start": 1764.36, + "end": 1765.7, + "probability": 0.5027 + }, + { + "start": 1765.88, + "end": 1766.4, + "probability": 0.4887 + }, + { + "start": 1766.56, + "end": 1767.95, + "probability": 0.9401 + }, + { + "start": 1768.36, + "end": 1773.64, + "probability": 0.9525 + }, + { + "start": 1774.12, + "end": 1775.96, + "probability": 0.8418 + }, + { + "start": 1776.86, + "end": 1778.82, + "probability": 0.9684 + }, + { + "start": 1779.14, + "end": 1783.36, + "probability": 0.9419 + }, + { + "start": 1783.8, + "end": 1785.32, + "probability": 0.9544 + }, + { + "start": 1785.42, + "end": 1786.84, + "probability": 0.8702 + }, + { + "start": 1787.22, + "end": 1789.02, + "probability": 0.9961 + }, + { + "start": 1789.1, + "end": 1790.46, + "probability": 0.9534 + }, + { + "start": 1790.76, + "end": 1791.5, + "probability": 0.803 + }, + { + "start": 1791.82, + "end": 1795.76, + "probability": 0.8224 + }, + { + "start": 1795.84, + "end": 1796.72, + "probability": 0.5178 + }, + { + "start": 1796.78, + "end": 1797.78, + "probability": 0.9293 + }, + { + "start": 1798.08, + "end": 1800.3, + "probability": 0.9976 + }, + { + "start": 1800.34, + "end": 1800.98, + "probability": 0.7038 + }, + { + "start": 1801.32, + "end": 1803.54, + "probability": 0.9914 + }, + { + "start": 1803.82, + "end": 1806.47, + "probability": 0.9989 + }, + { + "start": 1807.28, + "end": 1810.56, + "probability": 0.84 + }, + { + "start": 1810.76, + "end": 1813.1, + "probability": 0.5805 + }, + { + "start": 1813.16, + "end": 1813.64, + "probability": 0.9072 + }, + { + "start": 1813.76, + "end": 1815.24, + "probability": 0.8985 + }, + { + "start": 1816.08, + "end": 1819.36, + "probability": 0.9552 + }, + { + "start": 1820.82, + "end": 1822.88, + "probability": 0.8888 + }, + { + "start": 1822.94, + "end": 1825.1, + "probability": 0.8589 + }, + { + "start": 1825.58, + "end": 1827.76, + "probability": 0.978 + }, + { + "start": 1827.86, + "end": 1828.48, + "probability": 0.7935 + }, + { + "start": 1828.58, + "end": 1829.1, + "probability": 0.6315 + }, + { + "start": 1829.26, + "end": 1830.66, + "probability": 0.9344 + }, + { + "start": 1831.54, + "end": 1833.5, + "probability": 0.9961 + }, + { + "start": 1833.5, + "end": 1836.0, + "probability": 0.9844 + }, + { + "start": 1836.3, + "end": 1836.88, + "probability": 0.5478 + }, + { + "start": 1837.6, + "end": 1839.42, + "probability": 0.6665 + }, + { + "start": 1839.5, + "end": 1841.5, + "probability": 0.8934 + }, + { + "start": 1841.54, + "end": 1843.66, + "probability": 0.9822 + }, + { + "start": 1864.06, + "end": 1864.9, + "probability": 0.5088 + }, + { + "start": 1866.68, + "end": 1869.1, + "probability": 0.7918 + }, + { + "start": 1869.7, + "end": 1872.0, + "probability": 0.9902 + }, + { + "start": 1872.14, + "end": 1874.62, + "probability": 0.9742 + }, + { + "start": 1875.44, + "end": 1877.1, + "probability": 0.9229 + }, + { + "start": 1878.28, + "end": 1880.06, + "probability": 0.9238 + }, + { + "start": 1880.08, + "end": 1881.0, + "probability": 0.8187 + }, + { + "start": 1881.18, + "end": 1882.46, + "probability": 0.8013 + }, + { + "start": 1882.58, + "end": 1883.16, + "probability": 0.1248 + }, + { + "start": 1883.52, + "end": 1883.8, + "probability": 0.6467 + }, + { + "start": 1883.9, + "end": 1884.24, + "probability": 0.3938 + }, + { + "start": 1884.62, + "end": 1885.58, + "probability": 0.7168 + }, + { + "start": 1885.7, + "end": 1888.44, + "probability": 0.9956 + }, + { + "start": 1888.6, + "end": 1889.31, + "probability": 0.9601 + }, + { + "start": 1889.56, + "end": 1892.86, + "probability": 0.9829 + }, + { + "start": 1893.36, + "end": 1894.36, + "probability": 0.6285 + }, + { + "start": 1895.02, + "end": 1895.92, + "probability": 0.714 + }, + { + "start": 1896.84, + "end": 1898.28, + "probability": 0.7952 + }, + { + "start": 1901.02, + "end": 1903.77, + "probability": 0.9373 + }, + { + "start": 1905.26, + "end": 1906.24, + "probability": 0.5544 + }, + { + "start": 1906.34, + "end": 1907.14, + "probability": 0.9253 + }, + { + "start": 1907.24, + "end": 1908.84, + "probability": 0.998 + }, + { + "start": 1910.86, + "end": 1912.7, + "probability": 0.8026 + }, + { + "start": 1913.18, + "end": 1913.86, + "probability": 0.8926 + }, + { + "start": 1914.0, + "end": 1914.46, + "probability": 0.6884 + }, + { + "start": 1914.5, + "end": 1916.66, + "probability": 0.999 + }, + { + "start": 1917.22, + "end": 1917.76, + "probability": 0.8306 + }, + { + "start": 1918.84, + "end": 1919.22, + "probability": 0.9021 + }, + { + "start": 1919.28, + "end": 1920.7, + "probability": 0.9006 + }, + { + "start": 1920.78, + "end": 1921.94, + "probability": 0.8745 + }, + { + "start": 1922.68, + "end": 1924.6, + "probability": 0.9882 + }, + { + "start": 1925.28, + "end": 1925.88, + "probability": 0.8734 + }, + { + "start": 1925.92, + "end": 1926.3, + "probability": 0.6568 + }, + { + "start": 1926.36, + "end": 1930.08, + "probability": 0.9934 + }, + { + "start": 1930.18, + "end": 1931.2, + "probability": 0.9802 + }, + { + "start": 1931.38, + "end": 1935.5, + "probability": 0.9952 + }, + { + "start": 1936.14, + "end": 1938.46, + "probability": 0.7993 + }, + { + "start": 1938.58, + "end": 1939.02, + "probability": 0.3408 + }, + { + "start": 1939.12, + "end": 1944.98, + "probability": 0.9944 + }, + { + "start": 1945.04, + "end": 1945.84, + "probability": 0.9881 + }, + { + "start": 1946.82, + "end": 1947.58, + "probability": 0.8965 + }, + { + "start": 1947.68, + "end": 1948.46, + "probability": 0.8503 + }, + { + "start": 1948.5, + "end": 1949.64, + "probability": 0.9936 + }, + { + "start": 1949.86, + "end": 1950.62, + "probability": 0.9043 + }, + { + "start": 1950.76, + "end": 1951.5, + "probability": 0.7541 + }, + { + "start": 1952.1, + "end": 1952.7, + "probability": 0.7998 + }, + { + "start": 1953.5, + "end": 1954.11, + "probability": 0.8799 + }, + { + "start": 1954.2, + "end": 1955.48, + "probability": 0.8879 + }, + { + "start": 1955.56, + "end": 1956.88, + "probability": 0.9708 + }, + { + "start": 1957.36, + "end": 1958.1, + "probability": 0.8839 + }, + { + "start": 1958.1, + "end": 1958.56, + "probability": 0.8051 + }, + { + "start": 1958.62, + "end": 1959.24, + "probability": 0.9358 + }, + { + "start": 1959.26, + "end": 1961.46, + "probability": 0.9771 + }, + { + "start": 1963.26, + "end": 1964.14, + "probability": 0.9954 + }, + { + "start": 1964.22, + "end": 1966.32, + "probability": 0.9829 + }, + { + "start": 1966.44, + "end": 1967.38, + "probability": 0.9844 + }, + { + "start": 1967.74, + "end": 1968.4, + "probability": 0.9426 + }, + { + "start": 1969.14, + "end": 1970.58, + "probability": 0.9702 + }, + { + "start": 1970.62, + "end": 1971.48, + "probability": 0.7197 + }, + { + "start": 1971.6, + "end": 1972.1, + "probability": 0.7987 + }, + { + "start": 1972.2, + "end": 1972.94, + "probability": 0.8321 + }, + { + "start": 1973.4, + "end": 1974.7, + "probability": 0.8243 + }, + { + "start": 1975.4, + "end": 1977.14, + "probability": 0.9928 + }, + { + "start": 1977.18, + "end": 1982.24, + "probability": 0.9805 + }, + { + "start": 1982.42, + "end": 1983.14, + "probability": 0.8654 + }, + { + "start": 1983.2, + "end": 1984.36, + "probability": 0.9871 + }, + { + "start": 1985.6, + "end": 1988.98, + "probability": 0.9843 + }, + { + "start": 1989.6, + "end": 1991.16, + "probability": 0.9932 + }, + { + "start": 1991.76, + "end": 1994.14, + "probability": 0.8861 + }, + { + "start": 1994.2, + "end": 1995.62, + "probability": 0.9958 + }, + { + "start": 1996.4, + "end": 1997.96, + "probability": 0.967 + }, + { + "start": 1998.08, + "end": 2000.36, + "probability": 0.975 + }, + { + "start": 2000.62, + "end": 2001.26, + "probability": 0.5164 + }, + { + "start": 2002.1, + "end": 2003.34, + "probability": 0.9685 + }, + { + "start": 2004.24, + "end": 2006.46, + "probability": 0.9725 + }, + { + "start": 2007.2, + "end": 2007.6, + "probability": 0.8643 + }, + { + "start": 2007.68, + "end": 2008.7, + "probability": 0.7924 + }, + { + "start": 2008.86, + "end": 2009.56, + "probability": 0.905 + }, + { + "start": 2010.06, + "end": 2010.94, + "probability": 0.9089 + }, + { + "start": 2011.9, + "end": 2012.8, + "probability": 0.9519 + }, + { + "start": 2012.96, + "end": 2013.37, + "probability": 0.1266 + }, + { + "start": 2013.42, + "end": 2014.04, + "probability": 0.6756 + }, + { + "start": 2014.08, + "end": 2015.62, + "probability": 0.9334 + }, + { + "start": 2015.7, + "end": 2016.8, + "probability": 0.7418 + }, + { + "start": 2017.18, + "end": 2018.54, + "probability": 0.8896 + }, + { + "start": 2019.46, + "end": 2019.46, + "probability": 0.0745 + }, + { + "start": 2019.46, + "end": 2019.84, + "probability": 0.8407 + }, + { + "start": 2020.18, + "end": 2021.46, + "probability": 0.0217 + }, + { + "start": 2021.96, + "end": 2027.68, + "probability": 0.9862 + }, + { + "start": 2029.22, + "end": 2030.94, + "probability": 0.9672 + }, + { + "start": 2031.1, + "end": 2034.38, + "probability": 0.9126 + }, + { + "start": 2035.02, + "end": 2035.84, + "probability": 0.7888 + }, + { + "start": 2037.14, + "end": 2040.4, + "probability": 0.9765 + }, + { + "start": 2041.12, + "end": 2042.52, + "probability": 0.6544 + }, + { + "start": 2042.6, + "end": 2044.42, + "probability": 0.9656 + }, + { + "start": 2044.9, + "end": 2046.88, + "probability": 0.9871 + }, + { + "start": 2047.44, + "end": 2047.92, + "probability": 0.5007 + }, + { + "start": 2048.84, + "end": 2052.06, + "probability": 0.9967 + }, + { + "start": 2053.66, + "end": 2057.3, + "probability": 0.8352 + }, + { + "start": 2057.9, + "end": 2059.98, + "probability": 0.8902 + }, + { + "start": 2060.96, + "end": 2061.86, + "probability": 0.6364 + }, + { + "start": 2062.0, + "end": 2064.38, + "probability": 0.9933 + }, + { + "start": 2064.68, + "end": 2065.94, + "probability": 0.8366 + }, + { + "start": 2067.3, + "end": 2071.46, + "probability": 0.9943 + }, + { + "start": 2072.52, + "end": 2072.9, + "probability": 0.5628 + }, + { + "start": 2073.0, + "end": 2073.58, + "probability": 0.7364 + }, + { + "start": 2073.64, + "end": 2076.1, + "probability": 0.9862 + }, + { + "start": 2076.68, + "end": 2080.84, + "probability": 0.9891 + }, + { + "start": 2081.36, + "end": 2081.76, + "probability": 0.5709 + }, + { + "start": 2082.14, + "end": 2082.64, + "probability": 0.8096 + }, + { + "start": 2082.68, + "end": 2083.58, + "probability": 0.9254 + }, + { + "start": 2083.9, + "end": 2085.6, + "probability": 0.846 + }, + { + "start": 2086.12, + "end": 2086.8, + "probability": 0.9821 + }, + { + "start": 2087.44, + "end": 2089.3, + "probability": 0.9963 + }, + { + "start": 2089.6, + "end": 2091.2, + "probability": 0.9689 + }, + { + "start": 2091.9, + "end": 2092.2, + "probability": 0.4393 + }, + { + "start": 2092.34, + "end": 2094.98, + "probability": 0.9736 + }, + { + "start": 2095.26, + "end": 2096.56, + "probability": 0.975 + }, + { + "start": 2096.62, + "end": 2098.49, + "probability": 0.9425 + }, + { + "start": 2099.02, + "end": 2101.26, + "probability": 0.9431 + }, + { + "start": 2101.84, + "end": 2103.06, + "probability": 0.9747 + }, + { + "start": 2103.68, + "end": 2105.96, + "probability": 0.9961 + }, + { + "start": 2106.12, + "end": 2106.98, + "probability": 0.9456 + }, + { + "start": 2107.1, + "end": 2108.22, + "probability": 0.9773 + }, + { + "start": 2108.34, + "end": 2111.78, + "probability": 0.9919 + }, + { + "start": 2112.7, + "end": 2115.18, + "probability": 0.9894 + }, + { + "start": 2116.26, + "end": 2116.91, + "probability": 0.441 + }, + { + "start": 2117.18, + "end": 2117.86, + "probability": 0.9372 + }, + { + "start": 2118.02, + "end": 2119.02, + "probability": 0.8751 + }, + { + "start": 2119.06, + "end": 2120.6, + "probability": 0.9668 + }, + { + "start": 2122.32, + "end": 2123.4, + "probability": 0.9731 + }, + { + "start": 2123.48, + "end": 2125.94, + "probability": 0.9937 + }, + { + "start": 2126.02, + "end": 2128.0, + "probability": 0.9897 + }, + { + "start": 2128.16, + "end": 2130.18, + "probability": 0.9761 + }, + { + "start": 2130.18, + "end": 2132.46, + "probability": 0.9994 + }, + { + "start": 2132.82, + "end": 2133.98, + "probability": 0.983 + }, + { + "start": 2134.1, + "end": 2135.08, + "probability": 0.9011 + }, + { + "start": 2135.64, + "end": 2137.0, + "probability": 0.9803 + }, + { + "start": 2137.84, + "end": 2140.2, + "probability": 0.8749 + }, + { + "start": 2141.04, + "end": 2144.88, + "probability": 0.9827 + }, + { + "start": 2145.38, + "end": 2149.24, + "probability": 0.9942 + }, + { + "start": 2149.82, + "end": 2151.1, + "probability": 0.6357 + }, + { + "start": 2151.7, + "end": 2153.34, + "probability": 0.8745 + }, + { + "start": 2153.54, + "end": 2154.92, + "probability": 0.9822 + }, + { + "start": 2155.4, + "end": 2159.82, + "probability": 0.8219 + }, + { + "start": 2160.0, + "end": 2161.38, + "probability": 0.7995 + }, + { + "start": 2162.12, + "end": 2163.44, + "probability": 0.99 + }, + { + "start": 2164.88, + "end": 2168.22, + "probability": 0.9896 + }, + { + "start": 2169.62, + "end": 2171.98, + "probability": 0.946 + }, + { + "start": 2172.32, + "end": 2174.06, + "probability": 0.8985 + }, + { + "start": 2174.28, + "end": 2174.98, + "probability": 0.9663 + }, + { + "start": 2175.86, + "end": 2176.66, + "probability": 0.8886 + }, + { + "start": 2176.82, + "end": 2177.54, + "probability": 0.6885 + }, + { + "start": 2177.64, + "end": 2178.84, + "probability": 0.9545 + }, + { + "start": 2179.3, + "end": 2179.9, + "probability": 0.3729 + }, + { + "start": 2180.04, + "end": 2180.4, + "probability": 0.5328 + }, + { + "start": 2180.46, + "end": 2180.88, + "probability": 0.6787 + }, + { + "start": 2180.9, + "end": 2181.68, + "probability": 0.9072 + }, + { + "start": 2182.94, + "end": 2188.54, + "probability": 0.9832 + }, + { + "start": 2188.54, + "end": 2194.5, + "probability": 0.9985 + }, + { + "start": 2195.4, + "end": 2200.1, + "probability": 0.9937 + }, + { + "start": 2200.88, + "end": 2201.94, + "probability": 0.9388 + }, + { + "start": 2202.02, + "end": 2204.08, + "probability": 0.9721 + }, + { + "start": 2205.1, + "end": 2206.16, + "probability": 0.9499 + }, + { + "start": 2206.18, + "end": 2207.06, + "probability": 0.6892 + }, + { + "start": 2207.16, + "end": 2207.64, + "probability": 0.7423 + }, + { + "start": 2207.72, + "end": 2208.72, + "probability": 0.8623 + }, + { + "start": 2209.08, + "end": 2210.32, + "probability": 0.9489 + }, + { + "start": 2210.36, + "end": 2212.24, + "probability": 0.897 + }, + { + "start": 2212.64, + "end": 2214.72, + "probability": 0.9922 + }, + { + "start": 2215.48, + "end": 2218.64, + "probability": 0.9701 + }, + { + "start": 2219.4, + "end": 2221.82, + "probability": 0.9717 + }, + { + "start": 2221.94, + "end": 2225.26, + "probability": 0.998 + }, + { + "start": 2225.8, + "end": 2226.6, + "probability": 0.9446 + }, + { + "start": 2226.84, + "end": 2227.68, + "probability": 0.9412 + }, + { + "start": 2227.74, + "end": 2228.4, + "probability": 0.3988 + }, + { + "start": 2228.52, + "end": 2232.12, + "probability": 0.7563 + }, + { + "start": 2232.32, + "end": 2235.64, + "probability": 0.7594 + }, + { + "start": 2236.3, + "end": 2239.46, + "probability": 0.8935 + }, + { + "start": 2239.6, + "end": 2241.5, + "probability": 0.6935 + }, + { + "start": 2241.92, + "end": 2246.12, + "probability": 0.9812 + }, + { + "start": 2246.14, + "end": 2247.0, + "probability": 0.8357 + }, + { + "start": 2247.04, + "end": 2248.06, + "probability": 0.6412 + }, + { + "start": 2248.24, + "end": 2250.04, + "probability": 0.8586 + }, + { + "start": 2250.24, + "end": 2251.88, + "probability": 0.9755 + }, + { + "start": 2253.16, + "end": 2253.9, + "probability": 0.6385 + }, + { + "start": 2254.58, + "end": 2256.44, + "probability": 0.9405 + }, + { + "start": 2259.7, + "end": 2261.32, + "probability": 0.5573 + }, + { + "start": 2261.94, + "end": 2263.92, + "probability": 0.7271 + }, + { + "start": 2276.08, + "end": 2276.8, + "probability": 0.4948 + }, + { + "start": 2277.04, + "end": 2278.44, + "probability": 0.7644 + }, + { + "start": 2278.98, + "end": 2283.34, + "probability": 0.8856 + }, + { + "start": 2284.4, + "end": 2289.48, + "probability": 0.8116 + }, + { + "start": 2292.66, + "end": 2293.66, + "probability": 0.5057 + }, + { + "start": 2293.74, + "end": 2297.46, + "probability": 0.9062 + }, + { + "start": 2297.82, + "end": 2303.14, + "probability": 0.7441 + }, + { + "start": 2303.34, + "end": 2305.94, + "probability": 0.6969 + }, + { + "start": 2308.26, + "end": 2309.88, + "probability": 0.8711 + }, + { + "start": 2310.86, + "end": 2312.52, + "probability": 0.6631 + }, + { + "start": 2313.34, + "end": 2314.2, + "probability": 0.7782 + }, + { + "start": 2314.98, + "end": 2319.56, + "probability": 0.9189 + }, + { + "start": 2327.32, + "end": 2328.8, + "probability": 0.8121 + }, + { + "start": 2329.56, + "end": 2332.46, + "probability": 0.8759 + }, + { + "start": 2333.36, + "end": 2335.0, + "probability": 0.865 + }, + { + "start": 2336.02, + "end": 2344.38, + "probability": 0.919 + }, + { + "start": 2345.22, + "end": 2350.08, + "probability": 0.9484 + }, + { + "start": 2350.24, + "end": 2353.16, + "probability": 0.9705 + }, + { + "start": 2353.3, + "end": 2355.03, + "probability": 0.6212 + }, + { + "start": 2356.02, + "end": 2359.84, + "probability": 0.9366 + }, + { + "start": 2360.92, + "end": 2365.38, + "probability": 0.8867 + }, + { + "start": 2366.2, + "end": 2376.54, + "probability": 0.9681 + }, + { + "start": 2377.02, + "end": 2383.86, + "probability": 0.9578 + }, + { + "start": 2384.78, + "end": 2388.32, + "probability": 0.9977 + }, + { + "start": 2388.46, + "end": 2394.86, + "probability": 0.9941 + }, + { + "start": 2396.18, + "end": 2397.54, + "probability": 0.6993 + }, + { + "start": 2397.62, + "end": 2399.74, + "probability": 0.9728 + }, + { + "start": 2399.9, + "end": 2404.22, + "probability": 0.9929 + }, + { + "start": 2406.84, + "end": 2408.44, + "probability": 0.8671 + }, + { + "start": 2408.58, + "end": 2412.18, + "probability": 0.8543 + }, + { + "start": 2412.6, + "end": 2415.12, + "probability": 0.9902 + }, + { + "start": 2415.2, + "end": 2419.96, + "probability": 0.9521 + }, + { + "start": 2420.3, + "end": 2426.0, + "probability": 0.9008 + }, + { + "start": 2427.74, + "end": 2429.64, + "probability": 0.924 + }, + { + "start": 2429.96, + "end": 2432.04, + "probability": 0.8996 + }, + { + "start": 2432.22, + "end": 2435.68, + "probability": 0.9331 + }, + { + "start": 2435.68, + "end": 2437.88, + "probability": 0.8773 + }, + { + "start": 2437.96, + "end": 2439.24, + "probability": 0.6857 + }, + { + "start": 2439.72, + "end": 2444.0, + "probability": 0.9206 + }, + { + "start": 2444.8, + "end": 2449.74, + "probability": 0.9817 + }, + { + "start": 2450.16, + "end": 2453.06, + "probability": 0.9822 + }, + { + "start": 2453.18, + "end": 2458.46, + "probability": 0.7097 + }, + { + "start": 2458.5, + "end": 2460.24, + "probability": 0.958 + }, + { + "start": 2460.48, + "end": 2461.14, + "probability": 0.7175 + }, + { + "start": 2461.34, + "end": 2462.84, + "probability": 0.5245 + }, + { + "start": 2463.02, + "end": 2466.08, + "probability": 0.9422 + }, + { + "start": 2466.6, + "end": 2468.7, + "probability": 0.815 + }, + { + "start": 2468.9, + "end": 2470.22, + "probability": 0.8671 + }, + { + "start": 2470.62, + "end": 2474.3, + "probability": 0.981 + }, + { + "start": 2474.58, + "end": 2478.38, + "probability": 0.9881 + }, + { + "start": 2478.88, + "end": 2482.32, + "probability": 0.9868 + }, + { + "start": 2482.64, + "end": 2486.84, + "probability": 0.9412 + }, + { + "start": 2487.62, + "end": 2492.72, + "probability": 0.9943 + }, + { + "start": 2492.72, + "end": 2500.2, + "probability": 0.9972 + }, + { + "start": 2500.6, + "end": 2505.94, + "probability": 0.8133 + }, + { + "start": 2506.38, + "end": 2512.16, + "probability": 0.9683 + }, + { + "start": 2512.26, + "end": 2516.62, + "probability": 0.9951 + }, + { + "start": 2516.62, + "end": 2521.2, + "probability": 0.9837 + }, + { + "start": 2521.3, + "end": 2525.05, + "probability": 0.9972 + }, + { + "start": 2525.8, + "end": 2528.4, + "probability": 0.9306 + }, + { + "start": 2529.16, + "end": 2529.88, + "probability": 0.8403 + }, + { + "start": 2530.42, + "end": 2533.44, + "probability": 0.7536 + }, + { + "start": 2533.54, + "end": 2535.52, + "probability": 0.9657 + }, + { + "start": 2535.62, + "end": 2541.06, + "probability": 0.991 + }, + { + "start": 2541.1, + "end": 2547.76, + "probability": 0.9558 + }, + { + "start": 2547.96, + "end": 2554.26, + "probability": 0.9897 + }, + { + "start": 2555.04, + "end": 2557.08, + "probability": 0.834 + }, + { + "start": 2557.94, + "end": 2559.0, + "probability": 0.9197 + }, + { + "start": 2559.88, + "end": 2562.62, + "probability": 0.9823 + }, + { + "start": 2563.44, + "end": 2568.16, + "probability": 0.9762 + }, + { + "start": 2568.34, + "end": 2572.84, + "probability": 0.9552 + }, + { + "start": 2573.0, + "end": 2575.94, + "probability": 0.9766 + }, + { + "start": 2576.66, + "end": 2579.6, + "probability": 0.9375 + }, + { + "start": 2579.68, + "end": 2583.84, + "probability": 0.8835 + }, + { + "start": 2584.1, + "end": 2591.5, + "probability": 0.8779 + }, + { + "start": 2591.64, + "end": 2594.48, + "probability": 0.9453 + }, + { + "start": 2594.72, + "end": 2595.4, + "probability": 0.8743 + }, + { + "start": 2595.88, + "end": 2596.8, + "probability": 0.956 + }, + { + "start": 2596.86, + "end": 2597.68, + "probability": 0.9567 + }, + { + "start": 2598.04, + "end": 2598.84, + "probability": 0.9495 + }, + { + "start": 2599.18, + "end": 2601.44, + "probability": 0.9862 + }, + { + "start": 2601.8, + "end": 2602.16, + "probability": 0.8782 + }, + { + "start": 2604.16, + "end": 2606.27, + "probability": 0.7648 + }, + { + "start": 2606.54, + "end": 2608.28, + "probability": 0.7694 + }, + { + "start": 2608.84, + "end": 2610.36, + "probability": 0.7726 + }, + { + "start": 2628.74, + "end": 2629.04, + "probability": 0.3722 + }, + { + "start": 2629.12, + "end": 2629.66, + "probability": 0.5918 + }, + { + "start": 2631.04, + "end": 2633.56, + "probability": 0.7671 + }, + { + "start": 2634.38, + "end": 2635.44, + "probability": 0.8154 + }, + { + "start": 2635.5, + "end": 2640.72, + "probability": 0.9871 + }, + { + "start": 2641.88, + "end": 2646.52, + "probability": 0.9719 + }, + { + "start": 2646.82, + "end": 2648.06, + "probability": 0.9521 + }, + { + "start": 2649.14, + "end": 2656.56, + "probability": 0.9774 + }, + { + "start": 2657.07, + "end": 2664.16, + "probability": 0.9976 + }, + { + "start": 2665.84, + "end": 2673.56, + "probability": 0.9484 + }, + { + "start": 2674.62, + "end": 2678.46, + "probability": 0.9827 + }, + { + "start": 2679.92, + "end": 2682.64, + "probability": 0.8182 + }, + { + "start": 2683.88, + "end": 2689.01, + "probability": 0.8687 + }, + { + "start": 2689.74, + "end": 2691.3, + "probability": 0.9212 + }, + { + "start": 2692.2, + "end": 2701.16, + "probability": 0.9865 + }, + { + "start": 2702.52, + "end": 2705.12, + "probability": 0.6871 + }, + { + "start": 2706.5, + "end": 2710.04, + "probability": 0.9968 + }, + { + "start": 2711.32, + "end": 2711.72, + "probability": 0.9348 + }, + { + "start": 2712.92, + "end": 2715.22, + "probability": 0.9932 + }, + { + "start": 2716.26, + "end": 2718.68, + "probability": 0.9449 + }, + { + "start": 2719.82, + "end": 2723.62, + "probability": 0.5955 + }, + { + "start": 2724.24, + "end": 2727.54, + "probability": 0.5408 + }, + { + "start": 2727.6, + "end": 2728.34, + "probability": 0.5383 + }, + { + "start": 2728.38, + "end": 2730.2, + "probability": 0.753 + }, + { + "start": 2730.84, + "end": 2732.42, + "probability": 0.89 + }, + { + "start": 2733.22, + "end": 2733.36, + "probability": 0.4503 + }, + { + "start": 2734.02, + "end": 2735.88, + "probability": 0.9126 + }, + { + "start": 2736.64, + "end": 2738.68, + "probability": 0.9348 + }, + { + "start": 2739.04, + "end": 2740.36, + "probability": 0.9927 + }, + { + "start": 2740.9, + "end": 2741.88, + "probability": 0.9983 + }, + { + "start": 2742.6, + "end": 2746.92, + "probability": 0.9734 + }, + { + "start": 2747.64, + "end": 2749.9, + "probability": 0.9382 + }, + { + "start": 2750.66, + "end": 2758.62, + "probability": 0.9974 + }, + { + "start": 2759.28, + "end": 2760.28, + "probability": 0.9326 + }, + { + "start": 2761.24, + "end": 2761.82, + "probability": 0.8623 + }, + { + "start": 2762.04, + "end": 2768.58, + "probability": 0.9422 + }, + { + "start": 2769.18, + "end": 2773.18, + "probability": 0.9956 + }, + { + "start": 2773.92, + "end": 2778.12, + "probability": 0.9987 + }, + { + "start": 2778.44, + "end": 2780.18, + "probability": 0.7808 + }, + { + "start": 2781.8, + "end": 2792.36, + "probability": 0.6981 + }, + { + "start": 2792.36, + "end": 2795.6, + "probability": 0.9946 + }, + { + "start": 2796.18, + "end": 2796.94, + "probability": 0.7327 + }, + { + "start": 2797.52, + "end": 2805.38, + "probability": 0.9863 + }, + { + "start": 2806.8, + "end": 2809.9, + "probability": 0.8199 + }, + { + "start": 2810.56, + "end": 2811.98, + "probability": 0.9847 + }, + { + "start": 2812.46, + "end": 2815.66, + "probability": 0.9494 + }, + { + "start": 2816.12, + "end": 2817.62, + "probability": 0.9488 + }, + { + "start": 2818.22, + "end": 2819.98, + "probability": 0.882 + }, + { + "start": 2820.68, + "end": 2824.44, + "probability": 0.806 + }, + { + "start": 2825.12, + "end": 2828.72, + "probability": 0.9719 + }, + { + "start": 2829.16, + "end": 2832.08, + "probability": 0.994 + }, + { + "start": 2832.84, + "end": 2836.38, + "probability": 0.8994 + }, + { + "start": 2836.98, + "end": 2837.62, + "probability": 0.7669 + }, + { + "start": 2838.5, + "end": 2841.84, + "probability": 0.9605 + }, + { + "start": 2843.16, + "end": 2845.62, + "probability": 0.9637 + }, + { + "start": 2846.66, + "end": 2848.02, + "probability": 0.7725 + }, + { + "start": 2849.72, + "end": 2857.6, + "probability": 0.9011 + }, + { + "start": 2857.74, + "end": 2859.08, + "probability": 0.6366 + }, + { + "start": 2859.2, + "end": 2864.52, + "probability": 0.9868 + }, + { + "start": 2864.76, + "end": 2865.96, + "probability": 0.8736 + }, + { + "start": 2866.34, + "end": 2867.32, + "probability": 0.5352 + }, + { + "start": 2867.52, + "end": 2867.84, + "probability": 0.8062 + }, + { + "start": 2868.5, + "end": 2873.28, + "probability": 0.9832 + }, + { + "start": 2873.38, + "end": 2873.86, + "probability": 0.3738 + }, + { + "start": 2874.66, + "end": 2875.86, + "probability": 0.5434 + }, + { + "start": 2876.46, + "end": 2884.24, + "probability": 0.8929 + }, + { + "start": 2884.86, + "end": 2890.16, + "probability": 0.9958 + }, + { + "start": 2890.56, + "end": 2893.26, + "probability": 0.9129 + }, + { + "start": 2893.54, + "end": 2895.06, + "probability": 0.9441 + }, + { + "start": 2895.2, + "end": 2896.42, + "probability": 0.819 + }, + { + "start": 2897.22, + "end": 2900.62, + "probability": 0.7553 + }, + { + "start": 2901.26, + "end": 2902.98, + "probability": 0.9268 + }, + { + "start": 2903.14, + "end": 2906.72, + "probability": 0.934 + }, + { + "start": 2907.0, + "end": 2912.34, + "probability": 0.9606 + }, + { + "start": 2912.72, + "end": 2914.14, + "probability": 0.9818 + }, + { + "start": 2914.58, + "end": 2916.08, + "probability": 0.8689 + }, + { + "start": 2917.24, + "end": 2922.44, + "probability": 0.8077 + }, + { + "start": 2923.02, + "end": 2928.12, + "probability": 0.9875 + }, + { + "start": 2928.86, + "end": 2929.84, + "probability": 0.6094 + }, + { + "start": 2929.92, + "end": 2937.24, + "probability": 0.9915 + }, + { + "start": 2938.0, + "end": 2940.24, + "probability": 0.922 + }, + { + "start": 2940.92, + "end": 2942.46, + "probability": 0.9793 + }, + { + "start": 2942.8, + "end": 2949.68, + "probability": 0.9746 + }, + { + "start": 2949.78, + "end": 2954.74, + "probability": 0.9873 + }, + { + "start": 2954.86, + "end": 2955.28, + "probability": 0.4872 + }, + { + "start": 2955.8, + "end": 2956.24, + "probability": 0.9756 + }, + { + "start": 2956.64, + "end": 2957.34, + "probability": 0.7277 + }, + { + "start": 2958.44, + "end": 2960.78, + "probability": 0.7698 + }, + { + "start": 2960.86, + "end": 2962.76, + "probability": 0.9934 + }, + { + "start": 2963.4, + "end": 2964.5, + "probability": 0.4073 + }, + { + "start": 2964.82, + "end": 2967.42, + "probability": 0.931 + }, + { + "start": 2967.54, + "end": 2968.2, + "probability": 0.9766 + }, + { + "start": 2968.84, + "end": 2972.66, + "probability": 0.9667 + }, + { + "start": 2981.92, + "end": 2982.26, + "probability": 0.4391 + }, + { + "start": 2982.3, + "end": 2983.04, + "probability": 0.5677 + }, + { + "start": 2985.04, + "end": 2985.68, + "probability": 0.6831 + }, + { + "start": 2986.34, + "end": 2987.36, + "probability": 0.7122 + }, + { + "start": 2987.52, + "end": 2988.54, + "probability": 0.8632 + }, + { + "start": 2988.88, + "end": 2993.22, + "probability": 0.9177 + }, + { + "start": 2993.22, + "end": 2994.34, + "probability": 0.6643 + }, + { + "start": 2994.34, + "end": 2995.12, + "probability": 0.5517 + }, + { + "start": 2996.54, + "end": 3002.02, + "probability": 0.7534 + }, + { + "start": 3002.22, + "end": 3003.37, + "probability": 0.8792 + }, + { + "start": 3003.6, + "end": 3005.94, + "probability": 0.8402 + }, + { + "start": 3006.12, + "end": 3007.04, + "probability": 0.8658 + }, + { + "start": 3007.2, + "end": 3007.64, + "probability": 0.4274 + }, + { + "start": 3007.78, + "end": 3008.42, + "probability": 0.4635 + }, + { + "start": 3009.18, + "end": 3010.74, + "probability": 0.9432 + }, + { + "start": 3010.88, + "end": 3014.32, + "probability": 0.8745 + }, + { + "start": 3014.58, + "end": 3015.7, + "probability": 0.372 + }, + { + "start": 3015.7, + "end": 3015.84, + "probability": 0.4188 + }, + { + "start": 3015.86, + "end": 3016.28, + "probability": 0.3699 + }, + { + "start": 3016.68, + "end": 3017.56, + "probability": 0.8393 + }, + { + "start": 3017.66, + "end": 3018.06, + "probability": 0.8559 + }, + { + "start": 3018.54, + "end": 3020.44, + "probability": 0.6866 + }, + { + "start": 3020.52, + "end": 3021.38, + "probability": 0.7195 + }, + { + "start": 3021.46, + "end": 3027.18, + "probability": 0.9937 + }, + { + "start": 3027.18, + "end": 3030.24, + "probability": 0.9774 + }, + { + "start": 3030.96, + "end": 3031.7, + "probability": 0.9466 + }, + { + "start": 3031.84, + "end": 3033.29, + "probability": 0.3533 + }, + { + "start": 3035.08, + "end": 3037.54, + "probability": 0.9769 + }, + { + "start": 3038.46, + "end": 3040.18, + "probability": 0.9364 + }, + { + "start": 3040.26, + "end": 3041.04, + "probability": 0.6116 + }, + { + "start": 3041.1, + "end": 3041.78, + "probability": 0.4217 + }, + { + "start": 3046.54, + "end": 3049.26, + "probability": 0.6221 + }, + { + "start": 3050.76, + "end": 3051.82, + "probability": 0.0772 + }, + { + "start": 3052.76, + "end": 3053.64, + "probability": 0.2362 + }, + { + "start": 3053.7, + "end": 3056.66, + "probability": 0.7682 + }, + { + "start": 3057.16, + "end": 3058.54, + "probability": 0.8392 + }, + { + "start": 3060.42, + "end": 3062.2, + "probability": 0.9957 + }, + { + "start": 3064.56, + "end": 3064.96, + "probability": 0.2849 + }, + { + "start": 3064.96, + "end": 3066.48, + "probability": 0.9302 + }, + { + "start": 3066.68, + "end": 3069.34, + "probability": 0.8472 + }, + { + "start": 3070.02, + "end": 3072.3, + "probability": 0.9036 + }, + { + "start": 3072.54, + "end": 3073.65, + "probability": 0.5979 + }, + { + "start": 3073.96, + "end": 3074.31, + "probability": 0.5967 + }, + { + "start": 3076.54, + "end": 3076.96, + "probability": 0.0978 + }, + { + "start": 3076.96, + "end": 3078.0, + "probability": 0.5974 + }, + { + "start": 3078.4, + "end": 3079.38, + "probability": 0.8644 + }, + { + "start": 3079.5, + "end": 3080.34, + "probability": 0.8946 + }, + { + "start": 3080.42, + "end": 3083.52, + "probability": 0.9839 + }, + { + "start": 3084.62, + "end": 3086.2, + "probability": 0.7754 + }, + { + "start": 3086.24, + "end": 3088.5, + "probability": 0.5556 + }, + { + "start": 3089.06, + "end": 3091.4, + "probability": 0.8673 + }, + { + "start": 3091.94, + "end": 3093.68, + "probability": 0.959 + }, + { + "start": 3093.68, + "end": 3095.02, + "probability": 0.7948 + }, + { + "start": 3095.12, + "end": 3095.5, + "probability": 0.9063 + }, + { + "start": 3095.58, + "end": 3097.46, + "probability": 0.816 + }, + { + "start": 3098.2, + "end": 3100.84, + "probability": 0.5916 + }, + { + "start": 3101.6, + "end": 3102.62, + "probability": 0.7853 + }, + { + "start": 3102.74, + "end": 3104.04, + "probability": 0.5429 + }, + { + "start": 3104.22, + "end": 3104.9, + "probability": 0.8221 + }, + { + "start": 3105.1, + "end": 3105.94, + "probability": 0.9131 + }, + { + "start": 3106.16, + "end": 3107.12, + "probability": 0.8999 + }, + { + "start": 3107.22, + "end": 3108.58, + "probability": 0.9397 + }, + { + "start": 3109.06, + "end": 3112.16, + "probability": 0.9652 + }, + { + "start": 3112.28, + "end": 3115.14, + "probability": 0.6584 + }, + { + "start": 3117.19, + "end": 3119.14, + "probability": 0.4237 + }, + { + "start": 3119.4, + "end": 3120.16, + "probability": 0.3005 + }, + { + "start": 3120.2, + "end": 3122.59, + "probability": 0.6907 + }, + { + "start": 3122.84, + "end": 3124.16, + "probability": 0.9398 + }, + { + "start": 3124.34, + "end": 3126.02, + "probability": 0.7409 + }, + { + "start": 3126.78, + "end": 3127.74, + "probability": 0.7658 + }, + { + "start": 3127.86, + "end": 3129.2, + "probability": 0.9657 + }, + { + "start": 3129.52, + "end": 3129.7, + "probability": 0.5314 + }, + { + "start": 3129.78, + "end": 3131.26, + "probability": 0.5754 + }, + { + "start": 3132.58, + "end": 3133.3, + "probability": 0.4917 + }, + { + "start": 3133.34, + "end": 3135.0, + "probability": 0.8318 + }, + { + "start": 3135.38, + "end": 3136.18, + "probability": 0.729 + }, + { + "start": 3136.18, + "end": 3138.38, + "probability": 0.8772 + }, + { + "start": 3138.78, + "end": 3141.44, + "probability": 0.9866 + }, + { + "start": 3141.66, + "end": 3143.68, + "probability": 0.9913 + }, + { + "start": 3144.2, + "end": 3148.28, + "probability": 0.8467 + }, + { + "start": 3149.1, + "end": 3153.74, + "probability": 0.8298 + }, + { + "start": 3154.7, + "end": 3157.54, + "probability": 0.6654 + }, + { + "start": 3158.08, + "end": 3159.44, + "probability": 0.6356 + }, + { + "start": 3159.52, + "end": 3163.88, + "probability": 0.894 + }, + { + "start": 3163.92, + "end": 3164.12, + "probability": 0.7869 + }, + { + "start": 3164.18, + "end": 3165.4, + "probability": 0.9688 + }, + { + "start": 3165.86, + "end": 3168.72, + "probability": 0.7434 + }, + { + "start": 3168.82, + "end": 3169.04, + "probability": 0.1193 + }, + { + "start": 3169.12, + "end": 3169.48, + "probability": 0.7509 + }, + { + "start": 3170.32, + "end": 3172.68, + "probability": 0.5361 + }, + { + "start": 3172.68, + "end": 3175.74, + "probability": 0.9942 + }, + { + "start": 3176.34, + "end": 3177.74, + "probability": 0.6556 + }, + { + "start": 3178.52, + "end": 3179.06, + "probability": 0.2196 + }, + { + "start": 3179.54, + "end": 3180.94, + "probability": 0.662 + }, + { + "start": 3181.18, + "end": 3182.9, + "probability": 0.6758 + }, + { + "start": 3183.22, + "end": 3185.18, + "probability": 0.9496 + }, + { + "start": 3186.1, + "end": 3188.9, + "probability": 0.9915 + }, + { + "start": 3188.9, + "end": 3190.92, + "probability": 0.9928 + }, + { + "start": 3191.0, + "end": 3192.66, + "probability": 0.957 + }, + { + "start": 3193.04, + "end": 3193.18, + "probability": 0.363 + }, + { + "start": 3193.34, + "end": 3196.6, + "probability": 0.9437 + }, + { + "start": 3197.68, + "end": 3200.9, + "probability": 0.8102 + }, + { + "start": 3201.02, + "end": 3203.64, + "probability": 0.9959 + }, + { + "start": 3203.64, + "end": 3208.18, + "probability": 0.9838 + }, + { + "start": 3208.9, + "end": 3213.14, + "probability": 0.8581 + }, + { + "start": 3213.22, + "end": 3219.0, + "probability": 0.5267 + }, + { + "start": 3219.1, + "end": 3222.34, + "probability": 0.8647 + }, + { + "start": 3223.58, + "end": 3228.32, + "probability": 0.9905 + }, + { + "start": 3228.68, + "end": 3229.88, + "probability": 0.9907 + }, + { + "start": 3230.48, + "end": 3231.3, + "probability": 0.9417 + }, + { + "start": 3231.5, + "end": 3231.8, + "probability": 0.8122 + }, + { + "start": 3233.36, + "end": 3236.24, + "probability": 0.9831 + }, + { + "start": 3236.74, + "end": 3242.3, + "probability": 0.9766 + }, + { + "start": 3260.06, + "end": 3261.32, + "probability": 0.7581 + }, + { + "start": 3263.68, + "end": 3265.64, + "probability": 0.2913 + }, + { + "start": 3268.19, + "end": 3268.26, + "probability": 0.1286 + }, + { + "start": 3269.3, + "end": 3270.15, + "probability": 0.0588 + }, + { + "start": 3272.96, + "end": 3274.3, + "probability": 0.0539 + }, + { + "start": 3274.34, + "end": 3274.5, + "probability": 0.0126 + }, + { + "start": 3284.48, + "end": 3285.36, + "probability": 0.4182 + }, + { + "start": 3286.36, + "end": 3287.56, + "probability": 0.0644 + }, + { + "start": 3292.54, + "end": 3293.08, + "probability": 0.6657 + }, + { + "start": 3293.16, + "end": 3296.33, + "probability": 0.7507 + }, + { + "start": 3297.98, + "end": 3299.42, + "probability": 0.7226 + }, + { + "start": 3301.3, + "end": 3302.22, + "probability": 0.0149 + }, + { + "start": 3302.26, + "end": 3302.82, + "probability": 0.6753 + }, + { + "start": 3302.98, + "end": 3304.3, + "probability": 0.7537 + }, + { + "start": 3304.36, + "end": 3305.74, + "probability": 0.624 + }, + { + "start": 3305.9, + "end": 3307.78, + "probability": 0.9087 + }, + { + "start": 3309.0, + "end": 3310.86, + "probability": 0.1136 + }, + { + "start": 3311.54, + "end": 3311.74, + "probability": 0.1102 + }, + { + "start": 3311.74, + "end": 3313.46, + "probability": 0.9453 + }, + { + "start": 3313.64, + "end": 3314.26, + "probability": 0.9669 + }, + { + "start": 3314.36, + "end": 3315.1, + "probability": 0.9857 + }, + { + "start": 3315.26, + "end": 3316.36, + "probability": 0.8008 + }, + { + "start": 3317.12, + "end": 3319.14, + "probability": 0.6987 + }, + { + "start": 3319.7, + "end": 3320.2, + "probability": 0.8611 + }, + { + "start": 3320.74, + "end": 3321.38, + "probability": 0.746 + }, + { + "start": 3323.98, + "end": 3324.84, + "probability": 0.6263 + }, + { + "start": 3324.88, + "end": 3325.72, + "probability": 0.6871 + }, + { + "start": 3326.08, + "end": 3328.22, + "probability": 0.5816 + }, + { + "start": 3330.66, + "end": 3336.16, + "probability": 0.9733 + }, + { + "start": 3337.28, + "end": 3338.46, + "probability": 0.75 + }, + { + "start": 3339.1, + "end": 3341.0, + "probability": 0.9954 + }, + { + "start": 3341.04, + "end": 3346.0, + "probability": 0.9318 + }, + { + "start": 3348.18, + "end": 3351.04, + "probability": 0.9084 + }, + { + "start": 3351.04, + "end": 3356.8, + "probability": 0.9852 + }, + { + "start": 3358.92, + "end": 3361.94, + "probability": 0.9435 + }, + { + "start": 3362.52, + "end": 3366.22, + "probability": 0.9881 + }, + { + "start": 3367.86, + "end": 3371.66, + "probability": 0.8201 + }, + { + "start": 3371.66, + "end": 3374.94, + "probability": 0.991 + }, + { + "start": 3376.12, + "end": 3379.8, + "probability": 0.9488 + }, + { + "start": 3379.8, + "end": 3382.84, + "probability": 0.9927 + }, + { + "start": 3385.46, + "end": 3389.42, + "probability": 0.9114 + }, + { + "start": 3389.98, + "end": 3395.04, + "probability": 0.9983 + }, + { + "start": 3395.64, + "end": 3399.36, + "probability": 0.9858 + }, + { + "start": 3401.24, + "end": 3404.66, + "probability": 0.9873 + }, + { + "start": 3405.32, + "end": 3406.32, + "probability": 0.6461 + }, + { + "start": 3407.32, + "end": 3410.74, + "probability": 0.9277 + }, + { + "start": 3410.81, + "end": 3414.88, + "probability": 0.8588 + }, + { + "start": 3415.76, + "end": 3417.4, + "probability": 0.833 + }, + { + "start": 3418.92, + "end": 3421.34, + "probability": 0.8394 + }, + { + "start": 3422.34, + "end": 3425.3, + "probability": 0.9664 + }, + { + "start": 3425.36, + "end": 3428.14, + "probability": 0.9874 + }, + { + "start": 3428.7, + "end": 3430.58, + "probability": 0.9678 + }, + { + "start": 3431.72, + "end": 3432.24, + "probability": 0.2355 + }, + { + "start": 3432.24, + "end": 3436.68, + "probability": 0.7192 + }, + { + "start": 3437.0, + "end": 3439.96, + "probability": 0.9235 + }, + { + "start": 3440.6, + "end": 3441.86, + "probability": 0.74 + }, + { + "start": 3444.0, + "end": 3446.16, + "probability": 0.7407 + }, + { + "start": 3446.16, + "end": 3449.32, + "probability": 0.8703 + }, + { + "start": 3449.98, + "end": 3450.94, + "probability": 0.8329 + }, + { + "start": 3452.4, + "end": 3458.56, + "probability": 0.9509 + }, + { + "start": 3459.48, + "end": 3460.24, + "probability": 0.6938 + }, + { + "start": 3461.1, + "end": 3463.12, + "probability": 0.7929 + }, + { + "start": 3463.18, + "end": 3464.9, + "probability": 0.8729 + }, + { + "start": 3465.92, + "end": 3469.24, + "probability": 0.7698 + }, + { + "start": 3469.42, + "end": 3471.7, + "probability": 0.9086 + }, + { + "start": 3472.76, + "end": 3473.68, + "probability": 0.9508 + }, + { + "start": 3473.74, + "end": 3476.44, + "probability": 0.8561 + }, + { + "start": 3477.32, + "end": 3479.68, + "probability": 0.6069 + }, + { + "start": 3479.82, + "end": 3480.9, + "probability": 0.7645 + }, + { + "start": 3482.74, + "end": 3487.02, + "probability": 0.8847 + }, + { + "start": 3488.12, + "end": 3490.18, + "probability": 0.7607 + }, + { + "start": 3491.32, + "end": 3496.98, + "probability": 0.9521 + }, + { + "start": 3497.98, + "end": 3500.04, + "probability": 0.9682 + }, + { + "start": 3500.88, + "end": 3506.22, + "probability": 0.9575 + }, + { + "start": 3506.9, + "end": 3510.32, + "probability": 0.9956 + }, + { + "start": 3510.32, + "end": 3513.14, + "probability": 0.9982 + }, + { + "start": 3514.16, + "end": 3514.92, + "probability": 0.8094 + }, + { + "start": 3515.7, + "end": 3516.74, + "probability": 0.7909 + }, + { + "start": 3517.84, + "end": 3523.2, + "probability": 0.7429 + }, + { + "start": 3523.2, + "end": 3527.96, + "probability": 0.9781 + }, + { + "start": 3528.9, + "end": 3532.1, + "probability": 0.9854 + }, + { + "start": 3532.1, + "end": 3537.2, + "probability": 0.9931 + }, + { + "start": 3538.7, + "end": 3541.56, + "probability": 0.969 + }, + { + "start": 3542.42, + "end": 3542.98, + "probability": 0.3487 + }, + { + "start": 3543.62, + "end": 3547.62, + "probability": 0.99 + }, + { + "start": 3548.24, + "end": 3552.7, + "probability": 0.9439 + }, + { + "start": 3552.7, + "end": 3555.86, + "probability": 0.9872 + }, + { + "start": 3557.62, + "end": 3559.85, + "probability": 0.9952 + }, + { + "start": 3560.72, + "end": 3562.62, + "probability": 0.8973 + }, + { + "start": 3563.26, + "end": 3566.4, + "probability": 0.7395 + }, + { + "start": 3567.4, + "end": 3569.68, + "probability": 0.823 + }, + { + "start": 3569.68, + "end": 3572.72, + "probability": 0.993 + }, + { + "start": 3573.38, + "end": 3577.84, + "probability": 0.9946 + }, + { + "start": 3579.54, + "end": 3583.7, + "probability": 0.9219 + }, + { + "start": 3585.22, + "end": 3586.54, + "probability": 0.9455 + }, + { + "start": 3586.68, + "end": 3588.78, + "probability": 0.8398 + }, + { + "start": 3588.86, + "end": 3591.47, + "probability": 0.9946 + }, + { + "start": 3592.22, + "end": 3595.12, + "probability": 0.9706 + }, + { + "start": 3595.68, + "end": 3599.04, + "probability": 0.7244 + }, + { + "start": 3599.18, + "end": 3602.16, + "probability": 0.9585 + }, + { + "start": 3602.16, + "end": 3604.7, + "probability": 0.9923 + }, + { + "start": 3605.72, + "end": 3609.86, + "probability": 0.9557 + }, + { + "start": 3610.82, + "end": 3614.36, + "probability": 0.8766 + }, + { + "start": 3614.4, + "end": 3614.8, + "probability": 0.5967 + }, + { + "start": 3614.86, + "end": 3619.96, + "probability": 0.9 + }, + { + "start": 3620.26, + "end": 3627.78, + "probability": 0.8833 + }, + { + "start": 3628.78, + "end": 3632.18, + "probability": 0.9503 + }, + { + "start": 3632.24, + "end": 3637.36, + "probability": 0.9032 + }, + { + "start": 3638.08, + "end": 3639.82, + "probability": 0.9391 + }, + { + "start": 3642.52, + "end": 3646.1, + "probability": 0.9818 + }, + { + "start": 3646.64, + "end": 3652.68, + "probability": 0.8618 + }, + { + "start": 3652.68, + "end": 3656.3, + "probability": 0.8643 + }, + { + "start": 3657.48, + "end": 3658.14, + "probability": 0.628 + }, + { + "start": 3658.2, + "end": 3658.66, + "probability": 0.8408 + }, + { + "start": 3658.74, + "end": 3661.98, + "probability": 0.9943 + }, + { + "start": 3662.92, + "end": 3665.48, + "probability": 0.9162 + }, + { + "start": 3665.48, + "end": 3668.14, + "probability": 0.9578 + }, + { + "start": 3668.7, + "end": 3671.54, + "probability": 0.9868 + }, + { + "start": 3673.04, + "end": 3675.94, + "probability": 0.9706 + }, + { + "start": 3676.26, + "end": 3679.86, + "probability": 0.9886 + }, + { + "start": 3680.56, + "end": 3681.84, + "probability": 0.9746 + }, + { + "start": 3682.44, + "end": 3683.14, + "probability": 0.6129 + }, + { + "start": 3683.18, + "end": 3686.8, + "probability": 0.859 + }, + { + "start": 3686.8, + "end": 3689.36, + "probability": 0.8364 + }, + { + "start": 3690.78, + "end": 3693.92, + "probability": 0.9713 + }, + { + "start": 3695.12, + "end": 3697.48, + "probability": 0.8265 + }, + { + "start": 3698.74, + "end": 3703.22, + "probability": 0.7636 + }, + { + "start": 3703.34, + "end": 3704.06, + "probability": 0.9355 + }, + { + "start": 3704.12, + "end": 3707.54, + "probability": 0.9723 + }, + { + "start": 3708.7, + "end": 3712.18, + "probability": 0.9105 + }, + { + "start": 3712.96, + "end": 3714.0, + "probability": 0.4439 + }, + { + "start": 3714.62, + "end": 3715.82, + "probability": 0.9061 + }, + { + "start": 3716.58, + "end": 3720.1, + "probability": 0.8087 + }, + { + "start": 3721.22, + "end": 3723.08, + "probability": 0.9929 + }, + { + "start": 3723.68, + "end": 3725.26, + "probability": 0.8585 + }, + { + "start": 3727.3, + "end": 3733.36, + "probability": 0.7028 + }, + { + "start": 3734.06, + "end": 3737.24, + "probability": 0.8091 + }, + { + "start": 3737.42, + "end": 3740.16, + "probability": 0.9686 + }, + { + "start": 3740.82, + "end": 3742.1, + "probability": 0.8705 + }, + { + "start": 3742.92, + "end": 3744.55, + "probability": 0.7461 + }, + { + "start": 3745.42, + "end": 3746.78, + "probability": 0.959 + }, + { + "start": 3746.86, + "end": 3752.02, + "probability": 0.968 + }, + { + "start": 3753.48, + "end": 3754.68, + "probability": 0.9995 + }, + { + "start": 3755.94, + "end": 3758.58, + "probability": 0.8263 + }, + { + "start": 3759.14, + "end": 3760.14, + "probability": 0.7275 + }, + { + "start": 3760.86, + "end": 3762.62, + "probability": 0.9946 + }, + { + "start": 3765.08, + "end": 3765.94, + "probability": 0.8282 + }, + { + "start": 3766.08, + "end": 3770.98, + "probability": 0.9961 + }, + { + "start": 3770.98, + "end": 3773.38, + "probability": 0.992 + }, + { + "start": 3773.6, + "end": 3774.96, + "probability": 0.9983 + }, + { + "start": 3775.72, + "end": 3781.26, + "probability": 0.9976 + }, + { + "start": 3781.86, + "end": 3784.66, + "probability": 0.8017 + }, + { + "start": 3785.32, + "end": 3787.46, + "probability": 0.997 + }, + { + "start": 3790.7, + "end": 3792.08, + "probability": 0.9604 + }, + { + "start": 3792.56, + "end": 3792.68, + "probability": 0.7322 + }, + { + "start": 3793.22, + "end": 3794.78, + "probability": 0.9477 + }, + { + "start": 3795.36, + "end": 3796.28, + "probability": 0.4856 + }, + { + "start": 3797.24, + "end": 3799.48, + "probability": 0.8553 + }, + { + "start": 3800.44, + "end": 3803.29, + "probability": 0.258 + }, + { + "start": 3805.6, + "end": 3806.0, + "probability": 0.2879 + }, + { + "start": 3806.28, + "end": 3807.26, + "probability": 0.2966 + }, + { + "start": 3807.26, + "end": 3809.17, + "probability": 0.8546 + }, + { + "start": 3811.12, + "end": 3811.26, + "probability": 0.2192 + }, + { + "start": 3811.26, + "end": 3813.0, + "probability": 0.4403 + }, + { + "start": 3813.2, + "end": 3817.04, + "probability": 0.9865 + }, + { + "start": 3817.24, + "end": 3819.42, + "probability": 0.9271 + }, + { + "start": 3819.76, + "end": 3821.42, + "probability": 0.8951 + }, + { + "start": 3822.02, + "end": 3823.24, + "probability": 0.7442 + }, + { + "start": 3824.13, + "end": 3827.56, + "probability": 0.6971 + }, + { + "start": 3828.42, + "end": 3830.03, + "probability": 0.6264 + }, + { + "start": 3831.22, + "end": 3836.14, + "probability": 0.9956 + }, + { + "start": 3837.28, + "end": 3843.24, + "probability": 0.9976 + }, + { + "start": 3843.86, + "end": 3846.22, + "probability": 0.9694 + }, + { + "start": 3846.86, + "end": 3851.2, + "probability": 0.995 + }, + { + "start": 3851.6, + "end": 3854.16, + "probability": 0.9976 + }, + { + "start": 3855.14, + "end": 3858.1, + "probability": 0.9855 + }, + { + "start": 3858.1, + "end": 3862.04, + "probability": 0.9991 + }, + { + "start": 3862.68, + "end": 3866.58, + "probability": 0.9943 + }, + { + "start": 3866.58, + "end": 3871.48, + "probability": 0.9855 + }, + { + "start": 3872.22, + "end": 3874.8, + "probability": 0.8862 + }, + { + "start": 3875.72, + "end": 3878.26, + "probability": 0.9215 + }, + { + "start": 3878.64, + "end": 3884.18, + "probability": 0.9283 + }, + { + "start": 3884.18, + "end": 3889.54, + "probability": 0.9444 + }, + { + "start": 3890.08, + "end": 3892.46, + "probability": 0.9949 + }, + { + "start": 3892.8, + "end": 3895.24, + "probability": 0.983 + }, + { + "start": 3895.98, + "end": 3896.78, + "probability": 0.5154 + }, + { + "start": 3896.8, + "end": 3899.68, + "probability": 0.743 + }, + { + "start": 3905.18, + "end": 3905.74, + "probability": 0.7255 + }, + { + "start": 3906.34, + "end": 3911.3, + "probability": 0.9445 + }, + { + "start": 3911.76, + "end": 3916.3, + "probability": 0.986 + }, + { + "start": 3917.4, + "end": 3922.2, + "probability": 0.9737 + }, + { + "start": 3922.52, + "end": 3924.7, + "probability": 0.9971 + }, + { + "start": 3925.26, + "end": 3926.68, + "probability": 0.9963 + }, + { + "start": 3926.72, + "end": 3929.12, + "probability": 0.9985 + }, + { + "start": 3929.8, + "end": 3931.8, + "probability": 0.9985 + }, + { + "start": 3932.22, + "end": 3936.6, + "probability": 0.9866 + }, + { + "start": 3936.68, + "end": 3937.72, + "probability": 0.8092 + }, + { + "start": 3938.1, + "end": 3940.44, + "probability": 0.9234 + }, + { + "start": 3940.76, + "end": 3943.58, + "probability": 0.9761 + }, + { + "start": 3943.94, + "end": 3947.42, + "probability": 0.9844 + }, + { + "start": 3947.58, + "end": 3949.16, + "probability": 0.9161 + }, + { + "start": 3950.08, + "end": 3951.28, + "probability": 0.7648 + }, + { + "start": 3952.02, + "end": 3953.15, + "probability": 0.9255 + }, + { + "start": 3953.48, + "end": 3956.36, + "probability": 0.9591 + }, + { + "start": 3956.92, + "end": 3960.34, + "probability": 0.9078 + }, + { + "start": 3961.08, + "end": 3965.28, + "probability": 0.9789 + }, + { + "start": 3965.74, + "end": 3969.1, + "probability": 0.9949 + }, + { + "start": 3969.1, + "end": 3972.34, + "probability": 0.9949 + }, + { + "start": 3972.86, + "end": 3976.72, + "probability": 0.9971 + }, + { + "start": 3977.26, + "end": 3978.16, + "probability": 0.9545 + }, + { + "start": 3978.96, + "end": 3982.4, + "probability": 0.1277 + }, + { + "start": 3982.4, + "end": 3982.4, + "probability": 0.0746 + }, + { + "start": 3982.4, + "end": 3983.28, + "probability": 0.6235 + }, + { + "start": 3983.32, + "end": 3983.8, + "probability": 0.8414 + }, + { + "start": 3983.92, + "end": 3984.78, + "probability": 0.8859 + }, + { + "start": 3987.18, + "end": 3988.66, + "probability": 0.6429 + }, + { + "start": 3989.32, + "end": 3990.36, + "probability": 0.7398 + }, + { + "start": 3991.04, + "end": 3994.54, + "probability": 0.9619 + }, + { + "start": 3995.63, + "end": 3999.79, + "probability": 0.9996 + }, + { + "start": 4000.64, + "end": 4001.64, + "probability": 0.6392 + }, + { + "start": 4001.68, + "end": 4005.94, + "probability": 0.8256 + }, + { + "start": 4006.46, + "end": 4010.84, + "probability": 0.9498 + }, + { + "start": 4012.02, + "end": 4014.72, + "probability": 0.7377 + }, + { + "start": 4015.58, + "end": 4023.86, + "probability": 0.6559 + }, + { + "start": 4025.14, + "end": 4027.52, + "probability": 0.7533 + }, + { + "start": 4028.26, + "end": 4033.68, + "probability": 0.7395 + }, + { + "start": 4034.32, + "end": 4038.36, + "probability": 0.6929 + }, + { + "start": 4038.86, + "end": 4041.66, + "probability": 0.8571 + }, + { + "start": 4042.66, + "end": 4043.56, + "probability": 0.4578 + }, + { + "start": 4043.78, + "end": 4045.12, + "probability": 0.8075 + }, + { + "start": 4045.28, + "end": 4047.17, + "probability": 0.7428 + }, + { + "start": 4047.68, + "end": 4051.2, + "probability": 0.9458 + }, + { + "start": 4052.54, + "end": 4055.58, + "probability": 0.8977 + }, + { + "start": 4056.32, + "end": 4059.48, + "probability": 0.9266 + }, + { + "start": 4060.08, + "end": 4063.92, + "probability": 0.967 + }, + { + "start": 4065.02, + "end": 4066.84, + "probability": 0.9851 + }, + { + "start": 4068.28, + "end": 4073.48, + "probability": 0.8816 + }, + { + "start": 4074.0, + "end": 4082.02, + "probability": 0.9312 + }, + { + "start": 4082.48, + "end": 4082.76, + "probability": 0.702 + }, + { + "start": 4083.32, + "end": 4084.24, + "probability": 0.5026 + }, + { + "start": 4084.48, + "end": 4087.2, + "probability": 0.9356 + }, + { + "start": 4087.28, + "end": 4090.28, + "probability": 0.8266 + }, + { + "start": 4090.86, + "end": 4090.86, + "probability": 0.0273 + }, + { + "start": 4090.86, + "end": 4092.06, + "probability": 0.7642 + }, + { + "start": 4092.5, + "end": 4092.9, + "probability": 0.4418 + }, + { + "start": 4092.94, + "end": 4093.16, + "probability": 0.3956 + }, + { + "start": 4093.24, + "end": 4096.64, + "probability": 0.9849 + }, + { + "start": 4096.72, + "end": 4097.54, + "probability": 0.728 + }, + { + "start": 4097.82, + "end": 4098.18, + "probability": 0.8744 + }, + { + "start": 4098.28, + "end": 4099.06, + "probability": 0.7405 + }, + { + "start": 4099.84, + "end": 4102.14, + "probability": 0.2959 + }, + { + "start": 4102.28, + "end": 4102.4, + "probability": 0.3258 + }, + { + "start": 4102.4, + "end": 4102.4, + "probability": 0.5311 + }, + { + "start": 4102.4, + "end": 4103.1, + "probability": 0.3886 + }, + { + "start": 4103.46, + "end": 4108.4, + "probability": 0.9069 + }, + { + "start": 4109.12, + "end": 4109.86, + "probability": 0.6409 + }, + { + "start": 4109.88, + "end": 4110.38, + "probability": 0.5724 + }, + { + "start": 4110.44, + "end": 4113.24, + "probability": 0.8826 + }, + { + "start": 4128.64, + "end": 4128.96, + "probability": 0.2579 + }, + { + "start": 4128.96, + "end": 4129.42, + "probability": 0.0641 + }, + { + "start": 4129.42, + "end": 4131.04, + "probability": 0.6255 + }, + { + "start": 4131.96, + "end": 4137.12, + "probability": 0.6286 + }, + { + "start": 4138.4, + "end": 4142.06, + "probability": 0.5981 + }, + { + "start": 4142.72, + "end": 4146.0, + "probability": 0.805 + }, + { + "start": 4147.84, + "end": 4147.96, + "probability": 0.0738 + }, + { + "start": 4147.96, + "end": 4148.6, + "probability": 0.5076 + }, + { + "start": 4148.96, + "end": 4152.68, + "probability": 0.8661 + }, + { + "start": 4153.96, + "end": 4158.14, + "probability": 0.8662 + }, + { + "start": 4158.66, + "end": 4160.62, + "probability": 0.9052 + }, + { + "start": 4162.0, + "end": 4163.78, + "probability": 0.9686 + }, + { + "start": 4164.16, + "end": 4167.14, + "probability": 0.9211 + }, + { + "start": 4167.64, + "end": 4170.54, + "probability": 0.9867 + }, + { + "start": 4171.68, + "end": 4172.72, + "probability": 0.9811 + }, + { + "start": 4173.3, + "end": 4174.4, + "probability": 0.9961 + }, + { + "start": 4174.92, + "end": 4176.08, + "probability": 0.9878 + }, + { + "start": 4176.8, + "end": 4180.0, + "probability": 0.989 + }, + { + "start": 4180.0, + "end": 4183.9, + "probability": 0.9835 + }, + { + "start": 4184.88, + "end": 4188.32, + "probability": 0.9761 + }, + { + "start": 4188.98, + "end": 4191.76, + "probability": 0.9636 + }, + { + "start": 4192.36, + "end": 4194.54, + "probability": 0.844 + }, + { + "start": 4195.6, + "end": 4197.32, + "probability": 0.8902 + }, + { + "start": 4198.28, + "end": 4201.62, + "probability": 0.9729 + }, + { + "start": 4202.7, + "end": 4209.08, + "probability": 0.9918 + }, + { + "start": 4210.0, + "end": 4213.06, + "probability": 0.98 + }, + { + "start": 4213.5, + "end": 4217.32, + "probability": 0.9826 + }, + { + "start": 4219.66, + "end": 4223.16, + "probability": 0.989 + }, + { + "start": 4224.24, + "end": 4228.44, + "probability": 0.9963 + }, + { + "start": 4228.44, + "end": 4233.14, + "probability": 0.9907 + }, + { + "start": 4234.36, + "end": 4238.34, + "probability": 0.947 + }, + { + "start": 4240.48, + "end": 4244.44, + "probability": 0.9934 + }, + { + "start": 4245.08, + "end": 4245.8, + "probability": 0.5851 + }, + { + "start": 4246.52, + "end": 4248.34, + "probability": 0.6716 + }, + { + "start": 4249.08, + "end": 4252.86, + "probability": 0.24 + }, + { + "start": 4252.86, + "end": 4256.66, + "probability": 0.9818 + }, + { + "start": 4257.9, + "end": 4261.08, + "probability": 0.999 + }, + { + "start": 4262.2, + "end": 4269.52, + "probability": 0.9946 + }, + { + "start": 4270.68, + "end": 4274.28, + "probability": 0.999 + }, + { + "start": 4274.9, + "end": 4278.76, + "probability": 0.9824 + }, + { + "start": 4280.54, + "end": 4280.54, + "probability": 0.2018 + }, + { + "start": 4280.54, + "end": 4282.28, + "probability": 0.6638 + }, + { + "start": 4283.26, + "end": 4288.94, + "probability": 0.9906 + }, + { + "start": 4289.46, + "end": 4290.78, + "probability": 0.9633 + }, + { + "start": 4291.4, + "end": 4293.48, + "probability": 0.8835 + }, + { + "start": 4293.82, + "end": 4299.64, + "probability": 0.967 + }, + { + "start": 4300.86, + "end": 4301.44, + "probability": 0.8265 + }, + { + "start": 4302.22, + "end": 4305.04, + "probability": 0.9649 + }, + { + "start": 4306.78, + "end": 4311.04, + "probability": 0.9934 + }, + { + "start": 4311.62, + "end": 4313.7, + "probability": 0.9895 + }, + { + "start": 4314.74, + "end": 4320.34, + "probability": 0.9808 + }, + { + "start": 4320.94, + "end": 4322.42, + "probability": 0.8871 + }, + { + "start": 4323.12, + "end": 4324.66, + "probability": 0.921 + }, + { + "start": 4325.34, + "end": 4330.62, + "probability": 0.9246 + }, + { + "start": 4331.58, + "end": 4334.28, + "probability": 0.9965 + }, + { + "start": 4335.0, + "end": 4336.14, + "probability": 0.9003 + }, + { + "start": 4336.7, + "end": 4339.44, + "probability": 0.985 + }, + { + "start": 4340.32, + "end": 4340.94, + "probability": 0.589 + }, + { + "start": 4341.84, + "end": 4345.6, + "probability": 0.699 + }, + { + "start": 4346.5, + "end": 4349.46, + "probability": 0.8044 + }, + { + "start": 4350.0, + "end": 4351.42, + "probability": 0.7085 + }, + { + "start": 4351.96, + "end": 4352.78, + "probability": 0.815 + }, + { + "start": 4352.88, + "end": 4354.22, + "probability": 0.9257 + }, + { + "start": 4354.46, + "end": 4354.84, + "probability": 0.6383 + }, + { + "start": 4355.46, + "end": 4356.74, + "probability": 0.4866 + }, + { + "start": 4369.0, + "end": 4371.68, + "probability": 0.4757 + }, + { + "start": 4373.42, + "end": 4374.02, + "probability": 0.3463 + }, + { + "start": 4374.42, + "end": 4375.78, + "probability": 0.6162 + }, + { + "start": 4380.94, + "end": 4381.66, + "probability": 0.9565 + }, + { + "start": 4384.32, + "end": 4387.16, + "probability": 0.6967 + }, + { + "start": 4387.92, + "end": 4388.9, + "probability": 0.4498 + }, + { + "start": 4390.16, + "end": 4394.74, + "probability": 0.7498 + }, + { + "start": 4395.66, + "end": 4398.62, + "probability": 0.8173 + }, + { + "start": 4399.36, + "end": 4404.16, + "probability": 0.846 + }, + { + "start": 4405.26, + "end": 4409.62, + "probability": 0.9173 + }, + { + "start": 4411.24, + "end": 4417.04, + "probability": 0.7158 + }, + { + "start": 4417.04, + "end": 4423.12, + "probability": 0.9922 + }, + { + "start": 4423.94, + "end": 4429.7, + "probability": 0.9618 + }, + { + "start": 4431.74, + "end": 4439.6, + "probability": 0.9924 + }, + { + "start": 4440.02, + "end": 4447.76, + "probability": 0.9785 + }, + { + "start": 4447.82, + "end": 4448.68, + "probability": 0.9088 + }, + { + "start": 4449.92, + "end": 4452.04, + "probability": 0.941 + }, + { + "start": 4452.14, + "end": 4454.54, + "probability": 0.8284 + }, + { + "start": 4455.28, + "end": 4458.54, + "probability": 0.9622 + }, + { + "start": 4459.1, + "end": 4465.78, + "probability": 0.9925 + }, + { + "start": 4466.08, + "end": 4468.78, + "probability": 0.981 + }, + { + "start": 4469.3, + "end": 4475.66, + "probability": 0.9976 + }, + { + "start": 4478.2, + "end": 4483.86, + "probability": 0.9712 + }, + { + "start": 4484.3, + "end": 4486.78, + "probability": 0.9736 + }, + { + "start": 4487.94, + "end": 4489.6, + "probability": 0.706 + }, + { + "start": 4490.04, + "end": 4492.52, + "probability": 0.9648 + }, + { + "start": 4492.52, + "end": 4496.62, + "probability": 0.9799 + }, + { + "start": 4498.86, + "end": 4504.16, + "probability": 0.8364 + }, + { + "start": 4504.98, + "end": 4511.44, + "probability": 0.9335 + }, + { + "start": 4511.44, + "end": 4516.56, + "probability": 0.9878 + }, + { + "start": 4516.62, + "end": 4520.86, + "probability": 0.936 + }, + { + "start": 4522.16, + "end": 4528.28, + "probability": 0.9936 + }, + { + "start": 4529.4, + "end": 4532.76, + "probability": 0.9402 + }, + { + "start": 4534.36, + "end": 4535.62, + "probability": 0.7872 + }, + { + "start": 4537.98, + "end": 4544.08, + "probability": 0.9225 + }, + { + "start": 4544.24, + "end": 4545.54, + "probability": 0.8664 + }, + { + "start": 4546.68, + "end": 4548.74, + "probability": 0.8495 + }, + { + "start": 4550.46, + "end": 4555.88, + "probability": 0.9473 + }, + { + "start": 4556.82, + "end": 4560.38, + "probability": 0.8974 + }, + { + "start": 4561.08, + "end": 4561.54, + "probability": 0.8569 + }, + { + "start": 4562.1, + "end": 4567.56, + "probability": 0.988 + }, + { + "start": 4567.72, + "end": 4568.48, + "probability": 0.8213 + }, + { + "start": 4569.78, + "end": 4575.78, + "probability": 0.9095 + }, + { + "start": 4576.66, + "end": 4577.64, + "probability": 0.7568 + }, + { + "start": 4578.3, + "end": 4579.66, + "probability": 0.8306 + }, + { + "start": 4580.04, + "end": 4582.8, + "probability": 0.9963 + }, + { + "start": 4583.7, + "end": 4588.44, + "probability": 0.9818 + }, + { + "start": 4589.06, + "end": 4592.76, + "probability": 0.6953 + }, + { + "start": 4593.64, + "end": 4595.2, + "probability": 0.8811 + }, + { + "start": 4596.08, + "end": 4597.96, + "probability": 0.7043 + }, + { + "start": 4597.98, + "end": 4602.1, + "probability": 0.9951 + }, + { + "start": 4603.44, + "end": 4606.36, + "probability": 0.8724 + }, + { + "start": 4608.0, + "end": 4609.06, + "probability": 0.8994 + }, + { + "start": 4610.42, + "end": 4618.86, + "probability": 0.9909 + }, + { + "start": 4619.64, + "end": 4621.2, + "probability": 0.6232 + }, + { + "start": 4621.28, + "end": 4623.24, + "probability": 0.85 + }, + { + "start": 4623.74, + "end": 4625.42, + "probability": 0.9951 + }, + { + "start": 4625.98, + "end": 4631.88, + "probability": 0.9233 + }, + { + "start": 4632.78, + "end": 4637.44, + "probability": 0.9495 + }, + { + "start": 4638.42, + "end": 4640.62, + "probability": 0.8541 + }, + { + "start": 4641.44, + "end": 4643.26, + "probability": 0.8356 + }, + { + "start": 4643.36, + "end": 4644.26, + "probability": 0.973 + }, + { + "start": 4644.32, + "end": 4646.38, + "probability": 0.9761 + }, + { + "start": 4647.32, + "end": 4648.92, + "probability": 0.9883 + }, + { + "start": 4649.74, + "end": 4650.84, + "probability": 0.8988 + }, + { + "start": 4652.08, + "end": 4654.14, + "probability": 0.8469 + }, + { + "start": 4655.32, + "end": 4662.42, + "probability": 0.9838 + }, + { + "start": 4663.2, + "end": 4665.16, + "probability": 0.9564 + }, + { + "start": 4668.32, + "end": 4676.28, + "probability": 0.9787 + }, + { + "start": 4676.42, + "end": 4677.92, + "probability": 0.949 + }, + { + "start": 4678.44, + "end": 4680.14, + "probability": 0.8167 + }, + { + "start": 4680.68, + "end": 4684.12, + "probability": 0.9844 + }, + { + "start": 4684.3, + "end": 4685.64, + "probability": 0.7076 + }, + { + "start": 4686.14, + "end": 4687.86, + "probability": 0.6195 + }, + { + "start": 4688.0, + "end": 4691.8, + "probability": 0.943 + }, + { + "start": 4692.64, + "end": 4697.66, + "probability": 0.9865 + }, + { + "start": 4698.58, + "end": 4701.86, + "probability": 0.9913 + }, + { + "start": 4702.68, + "end": 4702.68, + "probability": 0.2535 + }, + { + "start": 4702.9, + "end": 4708.38, + "probability": 0.7952 + }, + { + "start": 4710.18, + "end": 4712.46, + "probability": 0.8335 + }, + { + "start": 4713.84, + "end": 4716.44, + "probability": 0.9705 + }, + { + "start": 4717.38, + "end": 4719.02, + "probability": 0.8909 + }, + { + "start": 4719.42, + "end": 4721.36, + "probability": 0.9932 + }, + { + "start": 4721.74, + "end": 4725.76, + "probability": 0.9256 + }, + { + "start": 4726.18, + "end": 4728.46, + "probability": 0.6616 + }, + { + "start": 4729.64, + "end": 4730.76, + "probability": 0.873 + }, + { + "start": 4730.88, + "end": 4732.0, + "probability": 0.7179 + }, + { + "start": 4732.08, + "end": 4734.48, + "probability": 0.9305 + }, + { + "start": 4734.84, + "end": 4735.1, + "probability": 0.7203 + }, + { + "start": 4735.88, + "end": 4738.03, + "probability": 0.827 + }, + { + "start": 4738.34, + "end": 4740.88, + "probability": 0.9128 + }, + { + "start": 4741.08, + "end": 4742.62, + "probability": 0.8426 + }, + { + "start": 4744.18, + "end": 4746.16, + "probability": 0.8612 + }, + { + "start": 4747.1, + "end": 4747.48, + "probability": 0.8677 + }, + { + "start": 4762.64, + "end": 4764.04, + "probability": 0.3251 + }, + { + "start": 4765.34, + "end": 4766.14, + "probability": 0.8508 + }, + { + "start": 4767.28, + "end": 4769.08, + "probability": 0.6477 + }, + { + "start": 4771.06, + "end": 4777.22, + "probability": 0.8294 + }, + { + "start": 4777.22, + "end": 4785.54, + "probability": 0.988 + }, + { + "start": 4788.02, + "end": 4788.32, + "probability": 0.8252 + }, + { + "start": 4790.44, + "end": 4793.6, + "probability": 0.9877 + }, + { + "start": 4795.02, + "end": 4797.46, + "probability": 0.8623 + }, + { + "start": 4798.98, + "end": 4801.4, + "probability": 0.986 + }, + { + "start": 4802.66, + "end": 4803.94, + "probability": 0.9563 + }, + { + "start": 4805.5, + "end": 4808.78, + "probability": 0.8046 + }, + { + "start": 4810.7, + "end": 4812.94, + "probability": 0.8118 + }, + { + "start": 4813.98, + "end": 4817.5, + "probability": 0.9937 + }, + { + "start": 4818.62, + "end": 4821.78, + "probability": 0.8872 + }, + { + "start": 4822.68, + "end": 4823.08, + "probability": 0.4774 + }, + { + "start": 4825.34, + "end": 4826.94, + "probability": 0.7525 + }, + { + "start": 4828.22, + "end": 4831.98, + "probability": 0.956 + }, + { + "start": 4833.3, + "end": 4838.56, + "probability": 0.8519 + }, + { + "start": 4839.28, + "end": 4843.0, + "probability": 0.8338 + }, + { + "start": 4844.1, + "end": 4847.72, + "probability": 0.9521 + }, + { + "start": 4848.28, + "end": 4852.04, + "probability": 0.9863 + }, + { + "start": 4854.02, + "end": 4862.82, + "probability": 0.9847 + }, + { + "start": 4864.32, + "end": 4865.52, + "probability": 0.917 + }, + { + "start": 4866.42, + "end": 4869.78, + "probability": 0.9945 + }, + { + "start": 4871.44, + "end": 4874.62, + "probability": 0.9445 + }, + { + "start": 4876.5, + "end": 4879.64, + "probability": 0.9789 + }, + { + "start": 4881.02, + "end": 4882.2, + "probability": 0.9088 + }, + { + "start": 4884.16, + "end": 4884.6, + "probability": 0.5496 + }, + { + "start": 4885.76, + "end": 4890.06, + "probability": 0.9875 + }, + { + "start": 4890.66, + "end": 4894.86, + "probability": 0.9916 + }, + { + "start": 4896.08, + "end": 4897.74, + "probability": 0.9854 + }, + { + "start": 4898.6, + "end": 4902.4, + "probability": 0.993 + }, + { + "start": 4904.14, + "end": 4905.94, + "probability": 0.6863 + }, + { + "start": 4907.08, + "end": 4913.12, + "probability": 0.9908 + }, + { + "start": 4915.18, + "end": 4917.56, + "probability": 0.7631 + }, + { + "start": 4918.6, + "end": 4925.02, + "probability": 0.9814 + }, + { + "start": 4925.96, + "end": 4934.96, + "probability": 0.9645 + }, + { + "start": 4936.54, + "end": 4937.6, + "probability": 0.8346 + }, + { + "start": 4938.68, + "end": 4942.86, + "probability": 0.8605 + }, + { + "start": 4943.6, + "end": 4943.98, + "probability": 0.8269 + }, + { + "start": 4945.46, + "end": 4948.9, + "probability": 0.8003 + }, + { + "start": 4949.84, + "end": 4951.48, + "probability": 0.7449 + }, + { + "start": 4953.14, + "end": 4953.74, + "probability": 0.8541 + }, + { + "start": 4954.5, + "end": 4955.54, + "probability": 0.8999 + }, + { + "start": 4956.36, + "end": 4963.1, + "probability": 0.9984 + }, + { + "start": 4963.92, + "end": 4966.46, + "probability": 0.9961 + }, + { + "start": 4968.98, + "end": 4974.7, + "probability": 0.9435 + }, + { + "start": 4974.7, + "end": 4981.22, + "probability": 0.9985 + }, + { + "start": 4984.1, + "end": 4987.96, + "probability": 0.9915 + }, + { + "start": 4988.54, + "end": 4998.02, + "probability": 0.9936 + }, + { + "start": 4999.7, + "end": 5000.1, + "probability": 0.6143 + }, + { + "start": 5000.64, + "end": 5001.0, + "probability": 0.7841 + }, + { + "start": 5001.98, + "end": 5004.0, + "probability": 0.9802 + }, + { + "start": 5005.14, + "end": 5007.18, + "probability": 0.9869 + }, + { + "start": 5008.34, + "end": 5011.88, + "probability": 0.9855 + }, + { + "start": 5012.46, + "end": 5018.8, + "probability": 0.9731 + }, + { + "start": 5019.3, + "end": 5019.6, + "probability": 0.752 + }, + { + "start": 5021.08, + "end": 5023.14, + "probability": 0.8184 + }, + { + "start": 5023.68, + "end": 5026.0, + "probability": 0.6066 + }, + { + "start": 5026.92, + "end": 5029.08, + "probability": 0.8492 + }, + { + "start": 5033.92, + "end": 5036.9, + "probability": 0.6517 + }, + { + "start": 5040.33, + "end": 5042.0, + "probability": 0.9418 + }, + { + "start": 5042.76, + "end": 5045.78, + "probability": 0.4164 + }, + { + "start": 5046.72, + "end": 5048.62, + "probability": 0.7832 + }, + { + "start": 5049.18, + "end": 5051.98, + "probability": 0.8808 + }, + { + "start": 5053.22, + "end": 5058.84, + "probability": 0.9491 + }, + { + "start": 5059.22, + "end": 5060.66, + "probability": 0.8646 + }, + { + "start": 5061.02, + "end": 5061.66, + "probability": 0.9472 + }, + { + "start": 5062.1, + "end": 5065.64, + "probability": 0.8134 + }, + { + "start": 5066.9, + "end": 5067.84, + "probability": 0.7401 + }, + { + "start": 5068.66, + "end": 5072.34, + "probability": 0.8538 + }, + { + "start": 5073.2, + "end": 5078.82, + "probability": 0.9849 + }, + { + "start": 5078.82, + "end": 5082.4, + "probability": 0.9952 + }, + { + "start": 5084.04, + "end": 5087.84, + "probability": 0.9207 + }, + { + "start": 5088.6, + "end": 5093.09, + "probability": 0.9726 + }, + { + "start": 5094.5, + "end": 5097.7, + "probability": 0.9806 + }, + { + "start": 5098.52, + "end": 5105.48, + "probability": 0.9859 + }, + { + "start": 5106.02, + "end": 5107.64, + "probability": 0.8113 + }, + { + "start": 5108.52, + "end": 5109.34, + "probability": 0.6469 + }, + { + "start": 5110.32, + "end": 5115.56, + "probability": 0.9692 + }, + { + "start": 5116.46, + "end": 5119.82, + "probability": 0.9879 + }, + { + "start": 5121.4, + "end": 5124.35, + "probability": 0.8268 + }, + { + "start": 5125.78, + "end": 5127.23, + "probability": 0.9917 + }, + { + "start": 5128.32, + "end": 5133.74, + "probability": 0.9853 + }, + { + "start": 5134.28, + "end": 5135.76, + "probability": 0.7067 + }, + { + "start": 5136.72, + "end": 5137.62, + "probability": 0.77 + }, + { + "start": 5138.44, + "end": 5140.32, + "probability": 0.9228 + }, + { + "start": 5140.9, + "end": 5142.2, + "probability": 0.5384 + }, + { + "start": 5142.76, + "end": 5145.94, + "probability": 0.9492 + }, + { + "start": 5147.44, + "end": 5148.1, + "probability": 0.6123 + }, + { + "start": 5148.76, + "end": 5150.96, + "probability": 0.9967 + }, + { + "start": 5151.6, + "end": 5154.18, + "probability": 0.9902 + }, + { + "start": 5154.82, + "end": 5155.83, + "probability": 0.9766 + }, + { + "start": 5156.94, + "end": 5161.42, + "probability": 0.9126 + }, + { + "start": 5162.04, + "end": 5162.77, + "probability": 0.9829 + }, + { + "start": 5163.68, + "end": 5164.43, + "probability": 0.9518 + }, + { + "start": 5164.78, + "end": 5165.51, + "probability": 0.9286 + }, + { + "start": 5166.1, + "end": 5169.42, + "probability": 0.9917 + }, + { + "start": 5170.54, + "end": 5171.76, + "probability": 0.89 + }, + { + "start": 5172.32, + "end": 5174.35, + "probability": 0.9902 + }, + { + "start": 5175.38, + "end": 5178.88, + "probability": 0.9885 + }, + { + "start": 5179.7, + "end": 5183.64, + "probability": 0.9204 + }, + { + "start": 5184.46, + "end": 5188.92, + "probability": 0.986 + }, + { + "start": 5190.22, + "end": 5196.4, + "probability": 0.9808 + }, + { + "start": 5196.98, + "end": 5197.7, + "probability": 0.8818 + }, + { + "start": 5198.26, + "end": 5200.52, + "probability": 0.9885 + }, + { + "start": 5201.18, + "end": 5203.86, + "probability": 0.9477 + }, + { + "start": 5203.94, + "end": 5207.06, + "probability": 0.9857 + }, + { + "start": 5207.58, + "end": 5208.32, + "probability": 0.5393 + }, + { + "start": 5208.86, + "end": 5211.66, + "probability": 0.9943 + }, + { + "start": 5211.66, + "end": 5217.24, + "probability": 0.9913 + }, + { + "start": 5218.04, + "end": 5219.06, + "probability": 0.8997 + }, + { + "start": 5220.32, + "end": 5226.62, + "probability": 0.9919 + }, + { + "start": 5227.82, + "end": 5232.02, + "probability": 0.9282 + }, + { + "start": 5232.5, + "end": 5236.4, + "probability": 0.9877 + }, + { + "start": 5236.4, + "end": 5242.32, + "probability": 0.9727 + }, + { + "start": 5243.24, + "end": 5247.04, + "probability": 0.9889 + }, + { + "start": 5250.24, + "end": 5254.38, + "probability": 0.998 + }, + { + "start": 5255.16, + "end": 5259.72, + "probability": 0.9987 + }, + { + "start": 5260.44, + "end": 5263.42, + "probability": 0.936 + }, + { + "start": 5264.04, + "end": 5265.5, + "probability": 0.9944 + }, + { + "start": 5266.42, + "end": 5270.44, + "probability": 0.974 + }, + { + "start": 5271.66, + "end": 5275.68, + "probability": 0.9092 + }, + { + "start": 5276.3, + "end": 5281.72, + "probability": 0.9952 + }, + { + "start": 5282.1, + "end": 5287.14, + "probability": 0.9449 + }, + { + "start": 5288.18, + "end": 5291.16, + "probability": 0.957 + }, + { + "start": 5291.82, + "end": 5293.7, + "probability": 0.9987 + }, + { + "start": 5294.26, + "end": 5302.52, + "probability": 0.9972 + }, + { + "start": 5302.86, + "end": 5306.2, + "probability": 0.6377 + }, + { + "start": 5306.8, + "end": 5309.32, + "probability": 0.9956 + }, + { + "start": 5310.48, + "end": 5311.18, + "probability": 0.9797 + }, + { + "start": 5312.0, + "end": 5312.7, + "probability": 0.5511 + }, + { + "start": 5313.44, + "end": 5313.88, + "probability": 0.971 + }, + { + "start": 5316.66, + "end": 5318.44, + "probability": 0.9347 + }, + { + "start": 5318.7, + "end": 5320.58, + "probability": 0.7583 + }, + { + "start": 5320.94, + "end": 5322.68, + "probability": 0.6155 + }, + { + "start": 5340.06, + "end": 5341.78, + "probability": 0.949 + }, + { + "start": 5342.66, + "end": 5344.76, + "probability": 0.5592 + }, + { + "start": 5346.12, + "end": 5352.04, + "probability": 0.9777 + }, + { + "start": 5352.76, + "end": 5353.46, + "probability": 0.8285 + }, + { + "start": 5354.46, + "end": 5363.1, + "probability": 0.9434 + }, + { + "start": 5363.46, + "end": 5364.8, + "probability": 0.6978 + }, + { + "start": 5365.56, + "end": 5368.26, + "probability": 0.9307 + }, + { + "start": 5369.08, + "end": 5370.78, + "probability": 0.8547 + }, + { + "start": 5371.92, + "end": 5372.7, + "probability": 0.9098 + }, + { + "start": 5373.66, + "end": 5376.5, + "probability": 0.8663 + }, + { + "start": 5377.08, + "end": 5379.46, + "probability": 0.9902 + }, + { + "start": 5380.2, + "end": 5384.96, + "probability": 0.6995 + }, + { + "start": 5385.82, + "end": 5386.38, + "probability": 0.8835 + }, + { + "start": 5388.04, + "end": 5390.22, + "probability": 0.9969 + }, + { + "start": 5390.84, + "end": 5392.62, + "probability": 0.9932 + }, + { + "start": 5392.78, + "end": 5395.0, + "probability": 0.9967 + }, + { + "start": 5395.18, + "end": 5395.66, + "probability": 0.9019 + }, + { + "start": 5396.14, + "end": 5396.82, + "probability": 0.9585 + }, + { + "start": 5398.16, + "end": 5398.2, + "probability": 0.8042 + }, + { + "start": 5399.18, + "end": 5401.02, + "probability": 0.8947 + }, + { + "start": 5401.94, + "end": 5409.26, + "probability": 0.9832 + }, + { + "start": 5410.66, + "end": 5412.4, + "probability": 0.7681 + }, + { + "start": 5413.86, + "end": 5415.76, + "probability": 0.8707 + }, + { + "start": 5416.62, + "end": 5418.46, + "probability": 0.9989 + }, + { + "start": 5419.02, + "end": 5422.6, + "probability": 0.8155 + }, + { + "start": 5422.76, + "end": 5425.48, + "probability": 0.7829 + }, + { + "start": 5426.32, + "end": 5426.86, + "probability": 0.6439 + }, + { + "start": 5427.62, + "end": 5428.24, + "probability": 0.7914 + }, + { + "start": 5430.46, + "end": 5435.94, + "probability": 0.9765 + }, + { + "start": 5435.94, + "end": 5442.6, + "probability": 0.9866 + }, + { + "start": 5443.76, + "end": 5444.98, + "probability": 0.6963 + }, + { + "start": 5446.12, + "end": 5451.8, + "probability": 0.9862 + }, + { + "start": 5452.52, + "end": 5461.6, + "probability": 0.9744 + }, + { + "start": 5462.6, + "end": 5465.66, + "probability": 0.9202 + }, + { + "start": 5466.58, + "end": 5467.76, + "probability": 0.6386 + }, + { + "start": 5468.32, + "end": 5470.3, + "probability": 0.82 + }, + { + "start": 5472.2, + "end": 5475.7, + "probability": 0.9592 + }, + { + "start": 5476.4, + "end": 5478.84, + "probability": 0.4872 + }, + { + "start": 5480.04, + "end": 5482.46, + "probability": 0.7006 + }, + { + "start": 5483.66, + "end": 5487.76, + "probability": 0.4989 + }, + { + "start": 5488.52, + "end": 5491.16, + "probability": 0.6612 + }, + { + "start": 5492.9, + "end": 5495.02, + "probability": 0.7621 + }, + { + "start": 5496.0, + "end": 5497.94, + "probability": 0.975 + }, + { + "start": 5499.16, + "end": 5499.98, + "probability": 0.9219 + }, + { + "start": 5501.92, + "end": 5509.02, + "probability": 0.9752 + }, + { + "start": 5509.48, + "end": 5510.14, + "probability": 0.9377 + }, + { + "start": 5511.56, + "end": 5513.38, + "probability": 0.5659 + }, + { + "start": 5515.3, + "end": 5516.66, + "probability": 0.8077 + }, + { + "start": 5517.36, + "end": 5518.02, + "probability": 0.5976 + }, + { + "start": 5519.52, + "end": 5525.78, + "probability": 0.8955 + }, + { + "start": 5526.78, + "end": 5527.46, + "probability": 0.8067 + }, + { + "start": 5528.62, + "end": 5530.44, + "probability": 0.9944 + }, + { + "start": 5531.76, + "end": 5534.42, + "probability": 0.9956 + }, + { + "start": 5535.86, + "end": 5539.52, + "probability": 0.7834 + }, + { + "start": 5540.36, + "end": 5542.28, + "probability": 0.9908 + }, + { + "start": 5542.88, + "end": 5548.02, + "probability": 0.9469 + }, + { + "start": 5549.18, + "end": 5549.98, + "probability": 0.6793 + }, + { + "start": 5550.04, + "end": 5553.08, + "probability": 0.9888 + }, + { + "start": 5553.58, + "end": 5556.6, + "probability": 0.9506 + }, + { + "start": 5558.78, + "end": 5563.78, + "probability": 0.9858 + }, + { + "start": 5564.24, + "end": 5567.1, + "probability": 0.968 + }, + { + "start": 5568.68, + "end": 5572.12, + "probability": 0.9874 + }, + { + "start": 5572.3, + "end": 5572.83, + "probability": 0.8887 + }, + { + "start": 5575.32, + "end": 5580.6, + "probability": 0.958 + }, + { + "start": 5581.72, + "end": 5583.36, + "probability": 0.785 + }, + { + "start": 5584.12, + "end": 5589.08, + "probability": 0.9772 + }, + { + "start": 5590.36, + "end": 5596.42, + "probability": 0.9858 + }, + { + "start": 5596.86, + "end": 5597.54, + "probability": 0.3442 + }, + { + "start": 5597.64, + "end": 5599.56, + "probability": 0.9966 + }, + { + "start": 5600.5, + "end": 5601.98, + "probability": 0.9991 + }, + { + "start": 5603.06, + "end": 5605.48, + "probability": 0.964 + }, + { + "start": 5606.42, + "end": 5608.52, + "probability": 0.9438 + }, + { + "start": 5609.24, + "end": 5614.28, + "probability": 0.9037 + }, + { + "start": 5614.31, + "end": 5618.48, + "probability": 0.5434 + }, + { + "start": 5619.48, + "end": 5623.02, + "probability": 0.9701 + }, + { + "start": 5624.64, + "end": 5625.44, + "probability": 0.8799 + }, + { + "start": 5625.68, + "end": 5626.78, + "probability": 0.8514 + }, + { + "start": 5626.9, + "end": 5627.12, + "probability": 0.7679 + }, + { + "start": 5627.12, + "end": 5627.54, + "probability": 0.7176 + }, + { + "start": 5628.04, + "end": 5630.04, + "probability": 0.9799 + }, + { + "start": 5630.72, + "end": 5632.48, + "probability": 0.9524 + }, + { + "start": 5633.48, + "end": 5636.14, + "probability": 0.7502 + }, + { + "start": 5636.76, + "end": 5638.2, + "probability": 0.9591 + }, + { + "start": 5638.94, + "end": 5642.12, + "probability": 0.974 + }, + { + "start": 5642.82, + "end": 5647.88, + "probability": 0.9812 + }, + { + "start": 5648.4, + "end": 5649.5, + "probability": 0.6618 + }, + { + "start": 5650.04, + "end": 5654.78, + "probability": 0.9681 + }, + { + "start": 5655.14, + "end": 5660.66, + "probability": 0.9881 + }, + { + "start": 5661.22, + "end": 5662.34, + "probability": 0.7472 + }, + { + "start": 5663.0, + "end": 5664.38, + "probability": 0.8564 + }, + { + "start": 5664.94, + "end": 5668.1, + "probability": 0.9828 + }, + { + "start": 5668.82, + "end": 5669.98, + "probability": 0.9635 + }, + { + "start": 5670.24, + "end": 5670.92, + "probability": 0.818 + }, + { + "start": 5671.64, + "end": 5672.98, + "probability": 0.929 + }, + { + "start": 5673.96, + "end": 5676.54, + "probability": 0.664 + }, + { + "start": 5677.52, + "end": 5679.58, + "probability": 0.9951 + }, + { + "start": 5681.42, + "end": 5682.36, + "probability": 0.6452 + }, + { + "start": 5682.9, + "end": 5683.98, + "probability": 0.988 + }, + { + "start": 5686.84, + "end": 5689.18, + "probability": 0.9031 + }, + { + "start": 5698.0, + "end": 5699.1, + "probability": 0.6115 + }, + { + "start": 5699.46, + "end": 5700.46, + "probability": 0.7286 + }, + { + "start": 5700.86, + "end": 5704.04, + "probability": 0.974 + }, + { + "start": 5704.88, + "end": 5708.56, + "probability": 0.996 + }, + { + "start": 5709.08, + "end": 5710.0, + "probability": 0.9798 + }, + { + "start": 5710.16, + "end": 5710.97, + "probability": 0.9719 + }, + { + "start": 5711.16, + "end": 5717.2, + "probability": 0.993 + }, + { + "start": 5717.82, + "end": 5721.16, + "probability": 0.9047 + }, + { + "start": 5721.88, + "end": 5723.78, + "probability": 0.6679 + }, + { + "start": 5724.66, + "end": 5726.14, + "probability": 0.8787 + }, + { + "start": 5726.66, + "end": 5727.92, + "probability": 0.9793 + }, + { + "start": 5728.8, + "end": 5730.2, + "probability": 0.9743 + }, + { + "start": 5730.34, + "end": 5731.76, + "probability": 0.9874 + }, + { + "start": 5732.02, + "end": 5732.92, + "probability": 0.9852 + }, + { + "start": 5733.08, + "end": 5733.86, + "probability": 0.9235 + }, + { + "start": 5734.42, + "end": 5734.9, + "probability": 0.7969 + }, + { + "start": 5735.56, + "end": 5738.98, + "probability": 0.9861 + }, + { + "start": 5739.84, + "end": 5742.32, + "probability": 0.8941 + }, + { + "start": 5744.08, + "end": 5747.78, + "probability": 0.8748 + }, + { + "start": 5748.38, + "end": 5750.28, + "probability": 0.9852 + }, + { + "start": 5751.38, + "end": 5756.42, + "probability": 0.9884 + }, + { + "start": 5756.88, + "end": 5761.86, + "probability": 0.9924 + }, + { + "start": 5762.3, + "end": 5763.34, + "probability": 0.8091 + }, + { + "start": 5763.86, + "end": 5769.36, + "probability": 0.9867 + }, + { + "start": 5769.44, + "end": 5774.68, + "probability": 0.9837 + }, + { + "start": 5774.96, + "end": 5776.28, + "probability": 0.9394 + }, + { + "start": 5776.82, + "end": 5777.84, + "probability": 0.8627 + }, + { + "start": 5778.58, + "end": 5783.52, + "probability": 0.9279 + }, + { + "start": 5784.44, + "end": 5787.34, + "probability": 0.9917 + }, + { + "start": 5787.6, + "end": 5788.76, + "probability": 0.9818 + }, + { + "start": 5790.93, + "end": 5791.97, + "probability": 0.4558 + }, + { + "start": 5792.98, + "end": 5797.64, + "probability": 0.9904 + }, + { + "start": 5797.8, + "end": 5799.86, + "probability": 0.802 + }, + { + "start": 5799.94, + "end": 5801.28, + "probability": 0.9966 + }, + { + "start": 5801.38, + "end": 5802.56, + "probability": 0.3987 + }, + { + "start": 5804.1, + "end": 5805.58, + "probability": 0.8848 + }, + { + "start": 5806.32, + "end": 5808.94, + "probability": 0.5513 + }, + { + "start": 5809.1, + "end": 5810.02, + "probability": 0.9832 + }, + { + "start": 5810.26, + "end": 5812.89, + "probability": 0.9277 + }, + { + "start": 5814.2, + "end": 5817.92, + "probability": 0.969 + }, + { + "start": 5818.5, + "end": 5820.3, + "probability": 0.9104 + }, + { + "start": 5820.44, + "end": 5820.8, + "probability": 0.9167 + }, + { + "start": 5821.08, + "end": 5821.74, + "probability": 0.5966 + }, + { + "start": 5822.22, + "end": 5824.78, + "probability": 0.9013 + }, + { + "start": 5825.54, + "end": 5833.81, + "probability": 0.9731 + }, + { + "start": 5834.1, + "end": 5836.36, + "probability": 0.8066 + }, + { + "start": 5836.38, + "end": 5838.1, + "probability": 0.9902 + }, + { + "start": 5838.78, + "end": 5840.96, + "probability": 0.9806 + }, + { + "start": 5841.62, + "end": 5844.12, + "probability": 0.988 + }, + { + "start": 5846.38, + "end": 5848.22, + "probability": 0.7639 + }, + { + "start": 5850.3, + "end": 5853.9, + "probability": 0.9392 + }, + { + "start": 5854.08, + "end": 5856.08, + "probability": 0.9088 + }, + { + "start": 5857.3, + "end": 5858.96, + "probability": 0.743 + }, + { + "start": 5859.06, + "end": 5861.7, + "probability": 0.9619 + }, + { + "start": 5862.2, + "end": 5863.68, + "probability": 0.6416 + }, + { + "start": 5864.12, + "end": 5868.42, + "probability": 0.98 + }, + { + "start": 5868.84, + "end": 5869.68, + "probability": 0.8071 + }, + { + "start": 5870.04, + "end": 5870.84, + "probability": 0.9534 + }, + { + "start": 5871.34, + "end": 5872.74, + "probability": 0.759 + }, + { + "start": 5874.02, + "end": 5879.0, + "probability": 0.9908 + }, + { + "start": 5879.0, + "end": 5883.86, + "probability": 0.7094 + }, + { + "start": 5883.94, + "end": 5887.44, + "probability": 0.877 + }, + { + "start": 5887.9, + "end": 5890.12, + "probability": 0.9897 + }, + { + "start": 5890.22, + "end": 5891.52, + "probability": 0.9225 + }, + { + "start": 5892.04, + "end": 5896.3, + "probability": 0.9301 + }, + { + "start": 5897.2, + "end": 5898.98, + "probability": 0.9665 + }, + { + "start": 5899.2, + "end": 5900.76, + "probability": 0.9883 + }, + { + "start": 5900.98, + "end": 5902.62, + "probability": 0.9487 + }, + { + "start": 5902.66, + "end": 5904.04, + "probability": 0.7622 + }, + { + "start": 5904.3, + "end": 5905.6, + "probability": 0.9499 + }, + { + "start": 5905.68, + "end": 5907.14, + "probability": 0.9883 + }, + { + "start": 5908.18, + "end": 5911.64, + "probability": 0.905 + }, + { + "start": 5911.7, + "end": 5915.6, + "probability": 0.8921 + }, + { + "start": 5915.84, + "end": 5916.88, + "probability": 0.8353 + }, + { + "start": 5917.02, + "end": 5917.26, + "probability": 0.5039 + }, + { + "start": 5918.0, + "end": 5922.84, + "probability": 0.9215 + }, + { + "start": 5923.04, + "end": 5925.18, + "probability": 0.7823 + }, + { + "start": 5925.28, + "end": 5926.12, + "probability": 0.7035 + }, + { + "start": 5926.22, + "end": 5926.56, + "probability": 0.6617 + }, + { + "start": 5927.4, + "end": 5929.78, + "probability": 0.9727 + }, + { + "start": 5930.1, + "end": 5934.5, + "probability": 0.9868 + }, + { + "start": 5934.62, + "end": 5935.48, + "probability": 0.8276 + }, + { + "start": 5936.06, + "end": 5936.98, + "probability": 0.8364 + }, + { + "start": 5937.1, + "end": 5940.82, + "probability": 0.7754 + }, + { + "start": 5940.82, + "end": 5945.73, + "probability": 0.866 + }, + { + "start": 5948.05, + "end": 5949.12, + "probability": 0.5509 + }, + { + "start": 5949.44, + "end": 5950.32, + "probability": 0.9894 + }, + { + "start": 5950.38, + "end": 5956.48, + "probability": 0.9943 + }, + { + "start": 5957.3, + "end": 5963.92, + "probability": 0.9291 + }, + { + "start": 5964.16, + "end": 5965.34, + "probability": 0.7082 + }, + { + "start": 5967.74, + "end": 5970.5, + "probability": 0.9785 + }, + { + "start": 5970.62, + "end": 5972.37, + "probability": 0.9875 + }, + { + "start": 5973.9, + "end": 5976.34, + "probability": 0.9746 + }, + { + "start": 5977.36, + "end": 5979.4, + "probability": 0.9941 + }, + { + "start": 5979.52, + "end": 5983.14, + "probability": 0.9902 + }, + { + "start": 5983.96, + "end": 5987.58, + "probability": 0.949 + }, + { + "start": 5988.18, + "end": 5990.28, + "probability": 0.9826 + }, + { + "start": 5990.92, + "end": 5992.02, + "probability": 0.6584 + }, + { + "start": 5992.32, + "end": 5994.44, + "probability": 0.9396 + }, + { + "start": 5994.8, + "end": 5995.98, + "probability": 0.6948 + }, + { + "start": 5996.34, + "end": 5998.1, + "probability": 0.8526 + }, + { + "start": 5998.5, + "end": 6000.84, + "probability": 0.7974 + }, + { + "start": 6001.34, + "end": 6003.92, + "probability": 0.8821 + }, + { + "start": 6004.82, + "end": 6005.46, + "probability": 0.6486 + }, + { + "start": 6005.52, + "end": 6008.04, + "probability": 0.9479 + }, + { + "start": 6008.56, + "end": 6017.8, + "probability": 0.9061 + }, + { + "start": 6018.56, + "end": 6020.02, + "probability": 0.8215 + }, + { + "start": 6020.06, + "end": 6020.98, + "probability": 0.8412 + }, + { + "start": 6021.5, + "end": 6023.38, + "probability": 0.9816 + }, + { + "start": 6023.64, + "end": 6028.65, + "probability": 0.9053 + }, + { + "start": 6029.56, + "end": 6031.26, + "probability": 0.6359 + }, + { + "start": 6031.94, + "end": 6034.12, + "probability": 0.992 + }, + { + "start": 6034.7, + "end": 6037.58, + "probability": 0.9841 + }, + { + "start": 6037.74, + "end": 6042.5, + "probability": 0.9816 + }, + { + "start": 6042.68, + "end": 6043.2, + "probability": 0.8483 + }, + { + "start": 6043.96, + "end": 6045.62, + "probability": 0.9224 + }, + { + "start": 6045.88, + "end": 6046.12, + "probability": 0.787 + }, + { + "start": 6047.26, + "end": 6049.16, + "probability": 0.6779 + }, + { + "start": 6049.28, + "end": 6051.04, + "probability": 0.9984 + }, + { + "start": 6051.08, + "end": 6051.96, + "probability": 0.5193 + }, + { + "start": 6052.22, + "end": 6053.42, + "probability": 0.9707 + }, + { + "start": 6053.54, + "end": 6054.4, + "probability": 0.7508 + }, + { + "start": 6055.14, + "end": 6057.58, + "probability": 0.9272 + }, + { + "start": 6058.42, + "end": 6062.72, + "probability": 0.9776 + }, + { + "start": 6063.88, + "end": 6069.5, + "probability": 0.9594 + }, + { + "start": 6070.64, + "end": 6071.52, + "probability": 0.37 + }, + { + "start": 6071.68, + "end": 6073.78, + "probability": 0.9702 + }, + { + "start": 6074.5, + "end": 6077.92, + "probability": 0.9951 + }, + { + "start": 6078.32, + "end": 6079.5, + "probability": 0.6478 + }, + { + "start": 6080.12, + "end": 6081.96, + "probability": 0.9946 + }, + { + "start": 6082.72, + "end": 6084.76, + "probability": 0.9746 + }, + { + "start": 6085.4, + "end": 6087.98, + "probability": 0.9841 + }, + { + "start": 6088.5, + "end": 6090.18, + "probability": 0.9945 + }, + { + "start": 6090.38, + "end": 6093.18, + "probability": 0.0429 + }, + { + "start": 6093.48, + "end": 6095.12, + "probability": 0.5264 + }, + { + "start": 6095.74, + "end": 6097.8, + "probability": 0.6256 + }, + { + "start": 6098.52, + "end": 6101.96, + "probability": 0.8086 + }, + { + "start": 6102.52, + "end": 6104.17, + "probability": 0.5485 + }, + { + "start": 6104.4, + "end": 6104.62, + "probability": 0.6939 + }, + { + "start": 6104.84, + "end": 6108.74, + "probability": 0.9938 + }, + { + "start": 6109.5, + "end": 6110.2, + "probability": 0.3983 + }, + { + "start": 6110.26, + "end": 6111.28, + "probability": 0.6688 + }, + { + "start": 6111.28, + "end": 6112.68, + "probability": 0.7793 + }, + { + "start": 6113.54, + "end": 6113.68, + "probability": 0.8326 + }, + { + "start": 6114.26, + "end": 6114.7, + "probability": 0.5739 + }, + { + "start": 6115.1, + "end": 6116.19, + "probability": 0.998 + }, + { + "start": 6116.34, + "end": 6116.7, + "probability": 0.9095 + }, + { + "start": 6117.42, + "end": 6118.08, + "probability": 0.6969 + }, + { + "start": 6118.5, + "end": 6119.32, + "probability": 0.6905 + }, + { + "start": 6120.84, + "end": 6123.1, + "probability": 0.6192 + }, + { + "start": 6123.92, + "end": 6127.08, + "probability": 0.9016 + }, + { + "start": 6127.14, + "end": 6129.84, + "probability": 0.7597 + }, + { + "start": 6129.92, + "end": 6131.28, + "probability": 0.8725 + }, + { + "start": 6132.1, + "end": 6132.46, + "probability": 0.528 + }, + { + "start": 6132.56, + "end": 6135.52, + "probability": 0.9569 + }, + { + "start": 6135.52, + "end": 6139.12, + "probability": 0.9485 + }, + { + "start": 6139.86, + "end": 6143.0, + "probability": 0.7308 + }, + { + "start": 6143.62, + "end": 6144.06, + "probability": 0.4612 + }, + { + "start": 6144.1, + "end": 6145.42, + "probability": 0.3725 + }, + { + "start": 6145.54, + "end": 6146.36, + "probability": 0.3696 + }, + { + "start": 6146.42, + "end": 6146.82, + "probability": 0.8753 + }, + { + "start": 6147.3, + "end": 6149.48, + "probability": 0.9747 + }, + { + "start": 6150.04, + "end": 6152.0, + "probability": 0.9392 + }, + { + "start": 6152.56, + "end": 6154.72, + "probability": 0.9203 + }, + { + "start": 6155.42, + "end": 6158.18, + "probability": 0.9955 + }, + { + "start": 6158.24, + "end": 6159.46, + "probability": 0.9898 + }, + { + "start": 6160.42, + "end": 6160.98, + "probability": 0.6011 + }, + { + "start": 6161.06, + "end": 6163.34, + "probability": 0.9453 + }, + { + "start": 6163.34, + "end": 6166.42, + "probability": 0.9937 + }, + { + "start": 6167.36, + "end": 6169.72, + "probability": 0.8 + }, + { + "start": 6170.26, + "end": 6173.54, + "probability": 0.9142 + }, + { + "start": 6173.54, + "end": 6177.96, + "probability": 0.9799 + }, + { + "start": 6178.58, + "end": 6181.0, + "probability": 0.9273 + }, + { + "start": 6181.0, + "end": 6184.3, + "probability": 0.9777 + }, + { + "start": 6184.76, + "end": 6188.52, + "probability": 0.9762 + }, + { + "start": 6189.07, + "end": 6190.62, + "probability": 0.7969 + }, + { + "start": 6191.56, + "end": 6196.32, + "probability": 0.9927 + }, + { + "start": 6197.42, + "end": 6201.56, + "probability": 0.9718 + }, + { + "start": 6202.24, + "end": 6206.2, + "probability": 0.9943 + }, + { + "start": 6206.68, + "end": 6209.58, + "probability": 0.9912 + }, + { + "start": 6210.1, + "end": 6211.4, + "probability": 0.7216 + }, + { + "start": 6211.86, + "end": 6214.98, + "probability": 0.9964 + }, + { + "start": 6215.58, + "end": 6218.04, + "probability": 0.4647 + }, + { + "start": 6218.12, + "end": 6223.24, + "probability": 0.9797 + }, + { + "start": 6223.8, + "end": 6226.52, + "probability": 0.465 + }, + { + "start": 6227.32, + "end": 6229.24, + "probability": 0.6635 + }, + { + "start": 6229.34, + "end": 6231.34, + "probability": 0.8418 + }, + { + "start": 6231.46, + "end": 6232.44, + "probability": 0.7331 + }, + { + "start": 6233.0, + "end": 6237.74, + "probability": 0.9858 + }, + { + "start": 6238.24, + "end": 6241.92, + "probability": 0.9015 + }, + { + "start": 6242.04, + "end": 6246.43, + "probability": 0.9866 + }, + { + "start": 6247.24, + "end": 6249.06, + "probability": 0.6575 + }, + { + "start": 6249.76, + "end": 6252.18, + "probability": 0.7037 + }, + { + "start": 6252.86, + "end": 6254.5, + "probability": 0.7913 + }, + { + "start": 6255.14, + "end": 6255.36, + "probability": 0.9852 + }, + { + "start": 6255.94, + "end": 6257.7, + "probability": 0.9137 + }, + { + "start": 6257.84, + "end": 6263.38, + "probability": 0.9673 + }, + { + "start": 6265.5, + "end": 6268.94, + "probability": 0.9426 + }, + { + "start": 6269.84, + "end": 6270.16, + "probability": 0.4735 + }, + { + "start": 6270.26, + "end": 6274.64, + "probability": 0.7499 + }, + { + "start": 6275.22, + "end": 6278.57, + "probability": 0.9707 + }, + { + "start": 6278.82, + "end": 6280.92, + "probability": 0.9958 + }, + { + "start": 6282.04, + "end": 6285.46, + "probability": 0.9875 + }, + { + "start": 6285.58, + "end": 6287.1, + "probability": 0.8597 + }, + { + "start": 6287.6, + "end": 6291.3, + "probability": 0.976 + }, + { + "start": 6292.06, + "end": 6292.22, + "probability": 0.8071 + }, + { + "start": 6292.5, + "end": 6295.26, + "probability": 0.9183 + }, + { + "start": 6295.48, + "end": 6297.02, + "probability": 0.8116 + }, + { + "start": 6297.48, + "end": 6298.35, + "probability": 0.9484 + }, + { + "start": 6299.28, + "end": 6301.88, + "probability": 0.9695 + }, + { + "start": 6301.92, + "end": 6304.98, + "probability": 0.9863 + }, + { + "start": 6304.98, + "end": 6308.24, + "probability": 0.9968 + }, + { + "start": 6308.72, + "end": 6309.3, + "probability": 0.6033 + }, + { + "start": 6309.76, + "end": 6313.05, + "probability": 0.9874 + }, + { + "start": 6314.24, + "end": 6318.82, + "probability": 0.9875 + }, + { + "start": 6319.24, + "end": 6320.08, + "probability": 0.973 + }, + { + "start": 6321.86, + "end": 6323.64, + "probability": 0.853 + }, + { + "start": 6324.34, + "end": 6327.68, + "probability": 0.8823 + }, + { + "start": 6327.68, + "end": 6330.26, + "probability": 0.9522 + }, + { + "start": 6330.7, + "end": 6334.2, + "probability": 0.9707 + }, + { + "start": 6334.76, + "end": 6337.7, + "probability": 0.9457 + }, + { + "start": 6337.7, + "end": 6342.18, + "probability": 0.9934 + }, + { + "start": 6342.18, + "end": 6346.62, + "probability": 0.9969 + }, + { + "start": 6347.38, + "end": 6348.86, + "probability": 0.8359 + }, + { + "start": 6349.44, + "end": 6350.36, + "probability": 0.6992 + }, + { + "start": 6350.56, + "end": 6353.22, + "probability": 0.6709 + }, + { + "start": 6353.3, + "end": 6355.6, + "probability": 0.8207 + }, + { + "start": 6356.26, + "end": 6359.38, + "probability": 0.7231 + }, + { + "start": 6360.02, + "end": 6363.2, + "probability": 0.9904 + }, + { + "start": 6363.74, + "end": 6364.8, + "probability": 0.4126 + }, + { + "start": 6366.4, + "end": 6369.62, + "probability": 0.169 + }, + { + "start": 6369.74, + "end": 6370.5, + "probability": 0.7293 + }, + { + "start": 6371.16, + "end": 6372.86, + "probability": 0.6768 + }, + { + "start": 6373.02, + "end": 6379.84, + "probability": 0.9646 + }, + { + "start": 6380.24, + "end": 6386.36, + "probability": 0.9559 + }, + { + "start": 6386.5, + "end": 6390.36, + "probability": 0.865 + }, + { + "start": 6390.92, + "end": 6395.16, + "probability": 0.8891 + }, + { + "start": 6395.26, + "end": 6395.5, + "probability": 0.8737 + }, + { + "start": 6395.64, + "end": 6400.2, + "probability": 0.9773 + }, + { + "start": 6402.24, + "end": 6404.94, + "probability": 0.9422 + }, + { + "start": 6404.94, + "end": 6407.98, + "probability": 0.957 + }, + { + "start": 6408.42, + "end": 6412.36, + "probability": 0.9398 + }, + { + "start": 6413.1, + "end": 6413.64, + "probability": 0.2892 + }, + { + "start": 6414.82, + "end": 6416.9, + "probability": 0.6744 + }, + { + "start": 6418.24, + "end": 6421.68, + "probability": 0.6674 + }, + { + "start": 6422.46, + "end": 6424.98, + "probability": 0.8928 + }, + { + "start": 6425.8, + "end": 6426.78, + "probability": 0.9834 + }, + { + "start": 6427.32, + "end": 6429.16, + "probability": 0.9391 + }, + { + "start": 6429.68, + "end": 6433.5, + "probability": 0.9962 + }, + { + "start": 6434.18, + "end": 6435.94, + "probability": 0.6816 + }, + { + "start": 6436.64, + "end": 6438.16, + "probability": 0.9368 + }, + { + "start": 6438.78, + "end": 6442.58, + "probability": 0.9677 + }, + { + "start": 6445.62, + "end": 6446.42, + "probability": 0.7236 + }, + { + "start": 6446.86, + "end": 6448.22, + "probability": 0.7931 + }, + { + "start": 6448.66, + "end": 6450.34, + "probability": 0.29 + }, + { + "start": 6451.4, + "end": 6452.68, + "probability": 0.3718 + }, + { + "start": 6452.68, + "end": 6454.6, + "probability": 0.6476 + }, + { + "start": 6455.42, + "end": 6459.26, + "probability": 0.6571 + }, + { + "start": 6460.88, + "end": 6464.74, + "probability": 0.932 + }, + { + "start": 6467.62, + "end": 6475.28, + "probability": 0.7751 + }, + { + "start": 6475.72, + "end": 6477.18, + "probability": 0.4079 + }, + { + "start": 6477.32, + "end": 6479.18, + "probability": 0.3498 + }, + { + "start": 6479.42, + "end": 6480.13, + "probability": 0.5757 + }, + { + "start": 6480.76, + "end": 6482.4, + "probability": 0.8071 + }, + { + "start": 6483.16, + "end": 6483.78, + "probability": 0.4601 + }, + { + "start": 6483.84, + "end": 6484.62, + "probability": 0.0275 + }, + { + "start": 6485.48, + "end": 6485.48, + "probability": 0.6427 + }, + { + "start": 6485.54, + "end": 6485.66, + "probability": 0.3524 + }, + { + "start": 6485.66, + "end": 6486.02, + "probability": 0.3892 + }, + { + "start": 6486.08, + "end": 6487.56, + "probability": 0.9187 + }, + { + "start": 6487.62, + "end": 6489.04, + "probability": 0.6682 + }, + { + "start": 6489.04, + "end": 6490.06, + "probability": 0.4947 + }, + { + "start": 6490.62, + "end": 6494.06, + "probability": 0.8975 + }, + { + "start": 6494.62, + "end": 6495.98, + "probability": 0.8597 + }, + { + "start": 6497.04, + "end": 6505.62, + "probability": 0.9785 + }, + { + "start": 6506.12, + "end": 6508.58, + "probability": 0.9637 + }, + { + "start": 6509.22, + "end": 6511.86, + "probability": 0.9485 + }, + { + "start": 6514.12, + "end": 6520.8, + "probability": 0.655 + }, + { + "start": 6521.28, + "end": 6521.8, + "probability": 0.8696 + }, + { + "start": 6521.92, + "end": 6523.34, + "probability": 0.6298 + }, + { + "start": 6523.36, + "end": 6524.75, + "probability": 0.5205 + }, + { + "start": 6525.7, + "end": 6526.76, + "probability": 0.9374 + }, + { + "start": 6527.0, + "end": 6527.0, + "probability": 0.6524 + }, + { + "start": 6527.08, + "end": 6529.2, + "probability": 0.9461 + }, + { + "start": 6529.36, + "end": 6531.16, + "probability": 0.7003 + }, + { + "start": 6531.64, + "end": 6534.34, + "probability": 0.9898 + }, + { + "start": 6534.9, + "end": 6536.5, + "probability": 0.8916 + }, + { + "start": 6536.72, + "end": 6538.58, + "probability": 0.084 + }, + { + "start": 6538.64, + "end": 6539.52, + "probability": 0.4715 + }, + { + "start": 6539.6, + "end": 6541.32, + "probability": 0.9902 + }, + { + "start": 6541.64, + "end": 6542.7, + "probability": 0.7936 + }, + { + "start": 6542.72, + "end": 6548.42, + "probability": 0.9993 + }, + { + "start": 6548.92, + "end": 6552.22, + "probability": 0.9899 + }, + { + "start": 6552.28, + "end": 6553.16, + "probability": 0.68 + }, + { + "start": 6553.62, + "end": 6554.18, + "probability": 0.0959 + }, + { + "start": 6554.86, + "end": 6556.08, + "probability": 0.0226 + }, + { + "start": 6556.08, + "end": 6557.38, + "probability": 0.6287 + }, + { + "start": 6557.42, + "end": 6559.78, + "probability": 0.7469 + }, + { + "start": 6562.8, + "end": 6563.26, + "probability": 0.0708 + }, + { + "start": 6563.26, + "end": 6566.08, + "probability": 0.8647 + }, + { + "start": 6566.68, + "end": 6571.02, + "probability": 0.9929 + }, + { + "start": 6571.06, + "end": 6573.76, + "probability": 0.8879 + }, + { + "start": 6576.26, + "end": 6579.3, + "probability": 0.0573 + }, + { + "start": 6579.3, + "end": 6581.66, + "probability": 0.0352 + }, + { + "start": 6581.76, + "end": 6590.56, + "probability": 0.3024 + }, + { + "start": 6590.74, + "end": 6595.42, + "probability": 0.0343 + }, + { + "start": 6595.58, + "end": 6598.17, + "probability": 0.3356 + }, + { + "start": 6599.88, + "end": 6601.54, + "probability": 0.4518 + }, + { + "start": 6605.84, + "end": 6608.02, + "probability": 0.8144 + }, + { + "start": 6612.16, + "end": 6614.66, + "probability": 0.0129 + }, + { + "start": 6615.14, + "end": 6616.22, + "probability": 0.1666 + }, + { + "start": 6616.86, + "end": 6620.54, + "probability": 0.2372 + }, + { + "start": 6620.54, + "end": 6623.52, + "probability": 0.0499 + }, + { + "start": 6623.94, + "end": 6624.46, + "probability": 0.3513 + }, + { + "start": 6625.0, + "end": 6625.77, + "probability": 0.0521 + }, + { + "start": 6630.62, + "end": 6637.36, + "probability": 0.2762 + }, + { + "start": 6637.36, + "end": 6637.5, + "probability": 0.004 + }, + { + "start": 6637.5, + "end": 6637.78, + "probability": 0.2405 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.0, + "end": 6652.0, + "probability": 0.0 + }, + { + "start": 6652.92, + "end": 6653.54, + "probability": 0.1732 + }, + { + "start": 6654.52, + "end": 6654.88, + "probability": 0.0555 + }, + { + "start": 6654.88, + "end": 6654.88, + "probability": 0.1615 + }, + { + "start": 6654.88, + "end": 6656.86, + "probability": 0.3479 + }, + { + "start": 6657.0, + "end": 6657.64, + "probability": 0.076 + }, + { + "start": 6657.68, + "end": 6660.52, + "probability": 0.057 + }, + { + "start": 6660.86, + "end": 6660.92, + "probability": 0.0072 + }, + { + "start": 6664.42, + "end": 6669.18, + "probability": 0.1065 + }, + { + "start": 6669.26, + "end": 6669.26, + "probability": 0.0065 + }, + { + "start": 6669.3, + "end": 6670.51, + "probability": 0.0596 + }, + { + "start": 6671.16, + "end": 6672.04, + "probability": 0.1832 + }, + { + "start": 6672.26, + "end": 6673.78, + "probability": 0.0451 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6823.0, + "end": 6823.0, + "probability": 0.0 + }, + { + "start": 6843.98, + "end": 6845.3, + "probability": 0.1259 + }, + { + "start": 6845.3, + "end": 6845.3, + "probability": 0.0124 + }, + { + "start": 6845.3, + "end": 6846.12, + "probability": 0.0927 + }, + { + "start": 6846.12, + "end": 6846.78, + "probability": 0.1458 + }, + { + "start": 6847.46, + "end": 6848.34, + "probability": 0.0619 + }, + { + "start": 6848.96, + "end": 6850.94, + "probability": 0.3532 + }, + { + "start": 6856.48, + "end": 6859.48, + "probability": 0.0748 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.0, + "end": 6955.0, + "probability": 0.0 + }, + { + "start": 6955.3, + "end": 6960.0, + "probability": 0.059 + }, + { + "start": 6960.16, + "end": 6960.44, + "probability": 0.0984 + }, + { + "start": 6960.46, + "end": 6962.54, + "probability": 0.0098 + }, + { + "start": 6963.42, + "end": 6963.42, + "probability": 0.0808 + }, + { + "start": 6963.42, + "end": 6963.42, + "probability": 0.0514 + }, + { + "start": 6963.42, + "end": 6963.42, + "probability": 0.233 + }, + { + "start": 6963.42, + "end": 6963.42, + "probability": 0.033 + }, + { + "start": 6963.42, + "end": 6963.42, + "probability": 0.0906 + }, + { + "start": 6963.42, + "end": 6963.42, + "probability": 0.0919 + }, + { + "start": 6963.42, + "end": 6965.56, + "probability": 0.5361 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.0, + "end": 7076.0, + "probability": 0.0 + }, + { + "start": 7076.22, + "end": 7076.6, + "probability": 0.0211 + }, + { + "start": 7076.6, + "end": 7076.6, + "probability": 0.0643 + }, + { + "start": 7076.6, + "end": 7076.6, + "probability": 0.3326 + }, + { + "start": 7076.6, + "end": 7077.04, + "probability": 0.0566 + }, + { + "start": 7077.4, + "end": 7078.07, + "probability": 0.1599 + }, + { + "start": 7078.4, + "end": 7081.14, + "probability": 0.8427 + }, + { + "start": 7081.28, + "end": 7082.4, + "probability": 0.8124 + }, + { + "start": 7082.5, + "end": 7082.7, + "probability": 0.5707 + }, + { + "start": 7082.72, + "end": 7086.36, + "probability": 0.9206 + }, + { + "start": 7086.54, + "end": 7087.7, + "probability": 0.7313 + }, + { + "start": 7088.04, + "end": 7091.88, + "probability": 0.8966 + }, + { + "start": 7093.64, + "end": 7096.32, + "probability": 0.368 + }, + { + "start": 7096.32, + "end": 7097.4, + "probability": 0.3577 + }, + { + "start": 7097.44, + "end": 7097.44, + "probability": 0.1454 + }, + { + "start": 7097.44, + "end": 7097.92, + "probability": 0.3937 + }, + { + "start": 7097.98, + "end": 7098.4, + "probability": 0.1596 + }, + { + "start": 7098.6, + "end": 7099.82, + "probability": 0.4284 + }, + { + "start": 7099.96, + "end": 7102.5, + "probability": 0.3717 + }, + { + "start": 7105.76, + "end": 7106.8, + "probability": 0.0699 + }, + { + "start": 7106.8, + "end": 7108.52, + "probability": 0.0196 + }, + { + "start": 7108.7, + "end": 7110.42, + "probability": 0.0716 + }, + { + "start": 7110.52, + "end": 7111.5, + "probability": 0.1054 + }, + { + "start": 7113.36, + "end": 7113.86, + "probability": 0.2773 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7196.0, + "end": 7196.0, + "probability": 0.0 + }, + { + "start": 7198.68, + "end": 7204.52, + "probability": 0.5964 + }, + { + "start": 7205.04, + "end": 7206.56, + "probability": 0.6714 + }, + { + "start": 7206.88, + "end": 7209.06, + "probability": 0.5068 + }, + { + "start": 7210.06, + "end": 7211.55, + "probability": 0.961 + }, + { + "start": 7211.68, + "end": 7214.36, + "probability": 0.9846 + }, + { + "start": 7214.92, + "end": 7216.18, + "probability": 0.7215 + }, + { + "start": 7216.98, + "end": 7221.88, + "probability": 0.8314 + }, + { + "start": 7222.78, + "end": 7224.32, + "probability": 0.9399 + }, + { + "start": 7225.0, + "end": 7227.74, + "probability": 0.9385 + }, + { + "start": 7227.74, + "end": 7233.4, + "probability": 0.8904 + }, + { + "start": 7233.82, + "end": 7234.66, + "probability": 0.2412 + }, + { + "start": 7234.74, + "end": 7236.1, + "probability": 0.4871 + }, + { + "start": 7236.46, + "end": 7237.9, + "probability": 0.9131 + }, + { + "start": 7238.26, + "end": 7240.98, + "probability": 0.7657 + }, + { + "start": 7241.82, + "end": 7243.4, + "probability": 0.6875 + }, + { + "start": 7243.58, + "end": 7244.04, + "probability": 0.887 + }, + { + "start": 7244.12, + "end": 7244.82, + "probability": 0.7135 + }, + { + "start": 7244.9, + "end": 7246.74, + "probability": 0.974 + }, + { + "start": 7247.06, + "end": 7247.94, + "probability": 0.5927 + }, + { + "start": 7247.94, + "end": 7248.46, + "probability": 0.2232 + }, + { + "start": 7248.72, + "end": 7252.66, + "probability": 0.7875 + }, + { + "start": 7252.9, + "end": 7253.78, + "probability": 0.4192 + }, + { + "start": 7254.36, + "end": 7256.74, + "probability": 0.5366 + }, + { + "start": 7256.82, + "end": 7258.0, + "probability": 0.8725 + }, + { + "start": 7258.12, + "end": 7259.38, + "probability": 0.6545 + }, + { + "start": 7259.74, + "end": 7261.96, + "probability": 0.9076 + }, + { + "start": 7262.04, + "end": 7264.36, + "probability": 0.9734 + }, + { + "start": 7264.76, + "end": 7267.2, + "probability": 0.9891 + }, + { + "start": 7267.32, + "end": 7267.96, + "probability": 0.6405 + }, + { + "start": 7268.18, + "end": 7270.86, + "probability": 0.9845 + }, + { + "start": 7271.08, + "end": 7271.66, + "probability": 0.7729 + }, + { + "start": 7271.7, + "end": 7272.34, + "probability": 0.7737 + }, + { + "start": 7272.86, + "end": 7274.06, + "probability": 0.6898 + }, + { + "start": 7274.58, + "end": 7277.56, + "probability": 0.8102 + }, + { + "start": 7277.66, + "end": 7278.12, + "probability": 0.6999 + }, + { + "start": 7278.3, + "end": 7279.6, + "probability": 0.1276 + }, + { + "start": 7281.33, + "end": 7284.78, + "probability": 0.4321 + }, + { + "start": 7285.08, + "end": 7288.06, + "probability": 0.7686 + }, + { + "start": 7289.53, + "end": 7293.32, + "probability": 0.8271 + }, + { + "start": 7293.53, + "end": 7294.69, + "probability": 0.2234 + }, + { + "start": 7294.88, + "end": 7295.32, + "probability": 0.2685 + }, + { + "start": 7296.2, + "end": 7296.5, + "probability": 0.0716 + }, + { + "start": 7297.14, + "end": 7299.34, + "probability": 0.5728 + }, + { + "start": 7299.42, + "end": 7303.16, + "probability": 0.9855 + }, + { + "start": 7303.26, + "end": 7308.7, + "probability": 0.9396 + }, + { + "start": 7308.72, + "end": 7309.14, + "probability": 0.4999 + }, + { + "start": 7309.24, + "end": 7309.9, + "probability": 0.802 + }, + { + "start": 7311.14, + "end": 7312.64, + "probability": 0.9104 + }, + { + "start": 7316.22, + "end": 7318.84, + "probability": 0.5936 + }, + { + "start": 7320.66, + "end": 7322.78, + "probability": 0.8213 + }, + { + "start": 7323.4, + "end": 7325.7, + "probability": 0.8853 + }, + { + "start": 7326.22, + "end": 7328.46, + "probability": 0.9071 + }, + { + "start": 7329.16, + "end": 7330.0, + "probability": 0.1382 + }, + { + "start": 7330.16, + "end": 7331.68, + "probability": 0.171 + }, + { + "start": 7332.1, + "end": 7333.98, + "probability": 0.9519 + }, + { + "start": 7335.37, + "end": 7340.62, + "probability": 0.91 + }, + { + "start": 7341.36, + "end": 7346.76, + "probability": 0.9972 + }, + { + "start": 7347.76, + "end": 7348.46, + "probability": 0.5465 + }, + { + "start": 7349.08, + "end": 7351.0, + "probability": 0.8415 + }, + { + "start": 7351.98, + "end": 7352.46, + "probability": 0.2833 + }, + { + "start": 7352.46, + "end": 7352.46, + "probability": 0.1787 + }, + { + "start": 7352.46, + "end": 7355.0, + "probability": 0.8428 + }, + { + "start": 7355.28, + "end": 7356.6, + "probability": 0.3753 + }, + { + "start": 7357.22, + "end": 7358.22, + "probability": 0.3008 + }, + { + "start": 7358.26, + "end": 7359.34, + "probability": 0.7422 + }, + { + "start": 7359.42, + "end": 7359.82, + "probability": 0.5454 + }, + { + "start": 7360.32, + "end": 7360.84, + "probability": 0.5037 + }, + { + "start": 7362.87, + "end": 7366.24, + "probability": 0.921 + }, + { + "start": 7366.48, + "end": 7368.74, + "probability": 0.9478 + }, + { + "start": 7378.21, + "end": 7382.14, + "probability": 0.4359 + }, + { + "start": 7382.66, + "end": 7383.3, + "probability": 0.7064 + }, + { + "start": 7383.4, + "end": 7385.94, + "probability": 0.6158 + }, + { + "start": 7388.2, + "end": 7388.52, + "probability": 0.043 + }, + { + "start": 7388.52, + "end": 7388.52, + "probability": 0.0382 + }, + { + "start": 7388.52, + "end": 7388.52, + "probability": 0.2317 + }, + { + "start": 7388.52, + "end": 7394.46, + "probability": 0.1136 + }, + { + "start": 7394.7, + "end": 7400.48, + "probability": 0.5343 + }, + { + "start": 7401.0, + "end": 7403.56, + "probability": 0.9082 + }, + { + "start": 7403.56, + "end": 7406.98, + "probability": 0.8936 + }, + { + "start": 7407.32, + "end": 7408.62, + "probability": 0.5746 + }, + { + "start": 7408.92, + "end": 7409.96, + "probability": 0.9561 + }, + { + "start": 7410.26, + "end": 7414.2, + "probability": 0.8123 + }, + { + "start": 7414.46, + "end": 7415.56, + "probability": 0.6276 + }, + { + "start": 7417.8, + "end": 7419.18, + "probability": 0.974 + }, + { + "start": 7420.86, + "end": 7424.22, + "probability": 0.8382 + }, + { + "start": 7425.32, + "end": 7427.74, + "probability": 0.9943 + }, + { + "start": 7428.06, + "end": 7430.96, + "probability": 0.9853 + }, + { + "start": 7430.96, + "end": 7433.53, + "probability": 0.9762 + }, + { + "start": 7434.01, + "end": 7439.62, + "probability": 0.9808 + }, + { + "start": 7440.08, + "end": 7441.9, + "probability": 0.9888 + }, + { + "start": 7442.62, + "end": 7443.36, + "probability": 0.7762 + }, + { + "start": 7443.4, + "end": 7445.36, + "probability": 0.7759 + }, + { + "start": 7445.8, + "end": 7449.58, + "probability": 0.9991 + }, + { + "start": 7449.58, + "end": 7452.6, + "probability": 0.9904 + }, + { + "start": 7453.08, + "end": 7458.56, + "probability": 0.9978 + }, + { + "start": 7459.12, + "end": 7462.9, + "probability": 0.9978 + }, + { + "start": 7462.9, + "end": 7468.74, + "probability": 0.9966 + }, + { + "start": 7469.56, + "end": 7470.74, + "probability": 0.8569 + }, + { + "start": 7471.36, + "end": 7476.78, + "probability": 0.9607 + }, + { + "start": 7477.48, + "end": 7483.5, + "probability": 0.9778 + }, + { + "start": 7483.62, + "end": 7486.16, + "probability": 0.9954 + }, + { + "start": 7486.84, + "end": 7492.0, + "probability": 0.9953 + }, + { + "start": 7492.08, + "end": 7493.2, + "probability": 0.9424 + }, + { + "start": 7493.96, + "end": 7499.86, + "probability": 0.9878 + }, + { + "start": 7500.12, + "end": 7501.1, + "probability": 0.6433 + }, + { + "start": 7501.3, + "end": 7502.06, + "probability": 0.7589 + }, + { + "start": 7502.44, + "end": 7503.24, + "probability": 0.3999 + }, + { + "start": 7504.2, + "end": 7505.26, + "probability": 0.9298 + }, + { + "start": 7505.98, + "end": 7508.26, + "probability": 0.9253 + }, + { + "start": 7508.4, + "end": 7511.62, + "probability": 0.9614 + }, + { + "start": 7512.42, + "end": 7515.1, + "probability": 0.9944 + }, + { + "start": 7515.82, + "end": 7519.62, + "probability": 0.9694 + }, + { + "start": 7520.04, + "end": 7522.38, + "probability": 0.9983 + }, + { + "start": 7522.58, + "end": 7529.34, + "probability": 0.9891 + }, + { + "start": 7529.98, + "end": 7532.84, + "probability": 0.998 + }, + { + "start": 7532.94, + "end": 7535.94, + "probability": 0.9971 + }, + { + "start": 7535.94, + "end": 7539.16, + "probability": 0.9953 + }, + { + "start": 7540.38, + "end": 7545.48, + "probability": 0.9973 + }, + { + "start": 7545.58, + "end": 7547.84, + "probability": 0.9265 + }, + { + "start": 7548.74, + "end": 7554.48, + "probability": 0.9907 + }, + { + "start": 7555.46, + "end": 7557.9, + "probability": 0.9575 + }, + { + "start": 7558.08, + "end": 7559.32, + "probability": 0.815 + }, + { + "start": 7560.9, + "end": 7563.18, + "probability": 0.9237 + }, + { + "start": 7564.0, + "end": 7566.16, + "probability": 0.9979 + }, + { + "start": 7566.84, + "end": 7571.32, + "probability": 0.9873 + }, + { + "start": 7571.98, + "end": 7573.16, + "probability": 0.8207 + }, + { + "start": 7573.68, + "end": 7579.24, + "probability": 0.9905 + }, + { + "start": 7579.78, + "end": 7580.82, + "probability": 0.9626 + }, + { + "start": 7581.76, + "end": 7584.44, + "probability": 0.9719 + }, + { + "start": 7585.0, + "end": 7588.46, + "probability": 0.9847 + }, + { + "start": 7589.74, + "end": 7592.28, + "probability": 0.9399 + }, + { + "start": 7592.82, + "end": 7594.36, + "probability": 0.9303 + }, + { + "start": 7595.24, + "end": 7595.7, + "probability": 0.8406 + }, + { + "start": 7596.3, + "end": 7598.1, + "probability": 0.9849 + }, + { + "start": 7599.14, + "end": 7601.28, + "probability": 0.9569 + }, + { + "start": 7602.46, + "end": 7608.14, + "probability": 0.9634 + }, + { + "start": 7608.82, + "end": 7611.52, + "probability": 0.9216 + }, + { + "start": 7611.58, + "end": 7615.64, + "probability": 0.9951 + }, + { + "start": 7616.14, + "end": 7619.48, + "probability": 0.9551 + }, + { + "start": 7620.36, + "end": 7624.02, + "probability": 0.8512 + }, + { + "start": 7624.62, + "end": 7626.34, + "probability": 0.9647 + }, + { + "start": 7627.32, + "end": 7630.88, + "probability": 0.9784 + }, + { + "start": 7630.98, + "end": 7631.72, + "probability": 0.5461 + }, + { + "start": 7632.52, + "end": 7633.98, + "probability": 0.7168 + }, + { + "start": 7634.08, + "end": 7635.02, + "probability": 0.9105 + }, + { + "start": 7635.42, + "end": 7637.14, + "probability": 0.901 + }, + { + "start": 7637.6, + "end": 7640.96, + "probability": 0.9847 + }, + { + "start": 7641.44, + "end": 7643.64, + "probability": 0.9497 + }, + { + "start": 7643.76, + "end": 7645.22, + "probability": 0.847 + }, + { + "start": 7646.42, + "end": 7649.42, + "probability": 0.8929 + }, + { + "start": 7649.48, + "end": 7652.2, + "probability": 0.9962 + }, + { + "start": 7652.9, + "end": 7654.96, + "probability": 0.9497 + }, + { + "start": 7655.12, + "end": 7657.02, + "probability": 0.8489 + }, + { + "start": 7657.6, + "end": 7659.26, + "probability": 0.9725 + }, + { + "start": 7660.06, + "end": 7664.04, + "probability": 0.9775 + }, + { + "start": 7664.7, + "end": 7667.9, + "probability": 0.988 + }, + { + "start": 7668.42, + "end": 7669.08, + "probability": 0.7725 + }, + { + "start": 7669.1, + "end": 7671.7, + "probability": 0.9505 + }, + { + "start": 7672.0, + "end": 7674.88, + "probability": 0.9988 + }, + { + "start": 7674.88, + "end": 7678.48, + "probability": 0.9972 + }, + { + "start": 7679.08, + "end": 7679.84, + "probability": 0.5037 + }, + { + "start": 7680.04, + "end": 7681.86, + "probability": 0.951 + }, + { + "start": 7682.1, + "end": 7683.66, + "probability": 0.7564 + }, + { + "start": 7684.06, + "end": 7685.4, + "probability": 0.7426 + }, + { + "start": 7685.96, + "end": 7690.46, + "probability": 0.9929 + }, + { + "start": 7690.84, + "end": 7692.28, + "probability": 0.9974 + }, + { + "start": 7692.72, + "end": 7695.3, + "probability": 0.9797 + }, + { + "start": 7696.06, + "end": 7697.34, + "probability": 0.7793 + }, + { + "start": 7697.4, + "end": 7698.38, + "probability": 0.6999 + }, + { + "start": 7698.38, + "end": 7699.8, + "probability": 0.9418 + }, + { + "start": 7699.9, + "end": 7703.74, + "probability": 0.9971 + }, + { + "start": 7703.74, + "end": 7708.38, + "probability": 0.9916 + }, + { + "start": 7709.34, + "end": 7710.19, + "probability": 0.8691 + }, + { + "start": 7710.48, + "end": 7713.46, + "probability": 0.9974 + }, + { + "start": 7714.26, + "end": 7716.14, + "probability": 0.916 + }, + { + "start": 7716.3, + "end": 7721.04, + "probability": 0.9565 + }, + { + "start": 7721.26, + "end": 7723.1, + "probability": 0.9373 + }, + { + "start": 7723.22, + "end": 7724.58, + "probability": 0.8156 + }, + { + "start": 7725.4, + "end": 7727.44, + "probability": 0.7164 + }, + { + "start": 7727.52, + "end": 7728.02, + "probability": 0.7865 + }, + { + "start": 7728.74, + "end": 7730.8, + "probability": 0.8264 + }, + { + "start": 7730.92, + "end": 7733.02, + "probability": 0.9136 + }, + { + "start": 7733.76, + "end": 7734.98, + "probability": 0.8519 + }, + { + "start": 7735.26, + "end": 7735.94, + "probability": 0.6836 + }, + { + "start": 7736.06, + "end": 7737.32, + "probability": 0.9946 + }, + { + "start": 7737.38, + "end": 7737.98, + "probability": 0.7236 + }, + { + "start": 7738.24, + "end": 7739.76, + "probability": 0.9186 + }, + { + "start": 7742.4, + "end": 7745.73, + "probability": 0.9593 + }, + { + "start": 7758.66, + "end": 7760.06, + "probability": 0.8353 + }, + { + "start": 7761.24, + "end": 7762.46, + "probability": 0.7821 + }, + { + "start": 7762.86, + "end": 7763.32, + "probability": 0.8144 + }, + { + "start": 7763.4, + "end": 7764.1, + "probability": 0.7127 + }, + { + "start": 7764.16, + "end": 7764.34, + "probability": 0.6246 + }, + { + "start": 7764.46, + "end": 7765.32, + "probability": 0.9264 + }, + { + "start": 7766.2, + "end": 7768.62, + "probability": 0.8517 + }, + { + "start": 7769.16, + "end": 7771.96, + "probability": 0.9993 + }, + { + "start": 7772.94, + "end": 7773.98, + "probability": 0.999 + }, + { + "start": 7774.56, + "end": 7776.2, + "probability": 0.9956 + }, + { + "start": 7776.28, + "end": 7777.14, + "probability": 0.7804 + }, + { + "start": 7777.26, + "end": 7779.08, + "probability": 0.9795 + }, + { + "start": 7779.7, + "end": 7782.14, + "probability": 0.9976 + }, + { + "start": 7782.18, + "end": 7783.18, + "probability": 0.9185 + }, + { + "start": 7784.04, + "end": 7787.72, + "probability": 0.9903 + }, + { + "start": 7788.06, + "end": 7789.68, + "probability": 0.9819 + }, + { + "start": 7789.74, + "end": 7791.06, + "probability": 0.9914 + }, + { + "start": 7791.54, + "end": 7792.28, + "probability": 0.959 + }, + { + "start": 7792.78, + "end": 7794.02, + "probability": 0.9887 + }, + { + "start": 7794.74, + "end": 7796.9, + "probability": 0.9656 + }, + { + "start": 7797.54, + "end": 7798.4, + "probability": 0.9863 + }, + { + "start": 7798.52, + "end": 7800.0, + "probability": 0.8237 + }, + { + "start": 7800.84, + "end": 7804.46, + "probability": 0.9894 + }, + { + "start": 7804.54, + "end": 7806.1, + "probability": 0.9884 + }, + { + "start": 7806.18, + "end": 7807.64, + "probability": 0.9948 + }, + { + "start": 7808.28, + "end": 7809.6, + "probability": 0.9742 + }, + { + "start": 7811.36, + "end": 7811.82, + "probability": 0.3532 + }, + { + "start": 7812.92, + "end": 7812.92, + "probability": 0.3867 + }, + { + "start": 7812.92, + "end": 7814.53, + "probability": 0.592 + }, + { + "start": 7815.04, + "end": 7815.16, + "probability": 0.9187 + }, + { + "start": 7816.78, + "end": 7817.64, + "probability": 0.9944 + }, + { + "start": 7818.84, + "end": 7819.52, + "probability": 0.9619 + }, + { + "start": 7819.68, + "end": 7821.0, + "probability": 0.9985 + }, + { + "start": 7821.82, + "end": 7823.38, + "probability": 0.9946 + }, + { + "start": 7823.68, + "end": 7825.12, + "probability": 0.9963 + }, + { + "start": 7825.26, + "end": 7826.3, + "probability": 0.989 + }, + { + "start": 7826.42, + "end": 7828.5, + "probability": 0.9987 + }, + { + "start": 7829.1, + "end": 7829.92, + "probability": 0.988 + }, + { + "start": 7830.16, + "end": 7831.48, + "probability": 0.9427 + }, + { + "start": 7832.3, + "end": 7832.74, + "probability": 0.7974 + }, + { + "start": 7832.9, + "end": 7833.16, + "probability": 0.9173 + }, + { + "start": 7833.24, + "end": 7834.13, + "probability": 0.9468 + }, + { + "start": 7834.2, + "end": 7837.96, + "probability": 0.9856 + }, + { + "start": 7838.2, + "end": 7839.3, + "probability": 0.8771 + }, + { + "start": 7839.88, + "end": 7840.88, + "probability": 0.9393 + }, + { + "start": 7840.96, + "end": 7844.14, + "probability": 0.9707 + }, + { + "start": 7844.18, + "end": 7845.06, + "probability": 0.6235 + }, + { + "start": 7845.1, + "end": 7845.9, + "probability": 0.9692 + }, + { + "start": 7846.2, + "end": 7847.2, + "probability": 0.9644 + }, + { + "start": 7847.24, + "end": 7847.9, + "probability": 0.9912 + }, + { + "start": 7848.26, + "end": 7850.22, + "probability": 0.9126 + }, + { + "start": 7850.56, + "end": 7853.34, + "probability": 0.9961 + }, + { + "start": 7853.86, + "end": 7856.14, + "probability": 0.9537 + }, + { + "start": 7856.36, + "end": 7857.12, + "probability": 0.8906 + }, + { + "start": 7857.48, + "end": 7858.84, + "probability": 0.9784 + }, + { + "start": 7859.22, + "end": 7859.94, + "probability": 0.6602 + }, + { + "start": 7860.44, + "end": 7861.26, + "probability": 0.9685 + }, + { + "start": 7861.38, + "end": 7864.84, + "probability": 0.9689 + }, + { + "start": 7865.2, + "end": 7867.62, + "probability": 0.9988 + }, + { + "start": 7868.06, + "end": 7869.44, + "probability": 0.9268 + }, + { + "start": 7870.1, + "end": 7870.74, + "probability": 0.5041 + }, + { + "start": 7870.78, + "end": 7871.2, + "probability": 0.6028 + }, + { + "start": 7871.24, + "end": 7871.76, + "probability": 0.6313 + }, + { + "start": 7871.88, + "end": 7874.6, + "probability": 0.7682 + }, + { + "start": 7874.7, + "end": 7877.04, + "probability": 0.953 + }, + { + "start": 7878.4, + "end": 7880.06, + "probability": 0.9346 + }, + { + "start": 7880.88, + "end": 7883.2, + "probability": 0.9802 + }, + { + "start": 7883.78, + "end": 7884.6, + "probability": 0.9989 + }, + { + "start": 7885.18, + "end": 7887.82, + "probability": 0.9996 + }, + { + "start": 7889.4, + "end": 7891.6, + "probability": 0.946 + }, + { + "start": 7892.96, + "end": 7894.08, + "probability": 0.941 + }, + { + "start": 7894.26, + "end": 7895.5, + "probability": 0.9516 + }, + { + "start": 7895.58, + "end": 7897.52, + "probability": 0.9971 + }, + { + "start": 7897.82, + "end": 7898.74, + "probability": 0.7808 + }, + { + "start": 7899.34, + "end": 7900.28, + "probability": 0.6412 + }, + { + "start": 7900.44, + "end": 7903.42, + "probability": 0.9956 + }, + { + "start": 7904.06, + "end": 7904.92, + "probability": 0.9489 + }, + { + "start": 7905.02, + "end": 7907.38, + "probability": 0.8286 + }, + { + "start": 7907.8, + "end": 7909.98, + "probability": 0.849 + }, + { + "start": 7910.64, + "end": 7913.38, + "probability": 0.9639 + }, + { + "start": 7913.54, + "end": 7914.42, + "probability": 0.9176 + }, + { + "start": 7915.54, + "end": 7915.56, + "probability": 0.4559 + }, + { + "start": 7915.68, + "end": 7916.18, + "probability": 0.8751 + }, + { + "start": 7916.3, + "end": 7917.1, + "probability": 0.9824 + }, + { + "start": 7917.36, + "end": 7918.32, + "probability": 0.974 + }, + { + "start": 7918.94, + "end": 7922.32, + "probability": 0.9871 + }, + { + "start": 7923.12, + "end": 7924.34, + "probability": 0.9952 + }, + { + "start": 7924.42, + "end": 7927.0, + "probability": 0.9924 + }, + { + "start": 7927.82, + "end": 7928.54, + "probability": 0.7571 + }, + { + "start": 7929.28, + "end": 7931.84, + "probability": 0.9985 + }, + { + "start": 7932.78, + "end": 7936.32, + "probability": 0.995 + }, + { + "start": 7937.02, + "end": 7938.64, + "probability": 0.9727 + }, + { + "start": 7939.54, + "end": 7940.7, + "probability": 0.9946 + }, + { + "start": 7940.8, + "end": 7941.5, + "probability": 0.9404 + }, + { + "start": 7942.06, + "end": 7942.58, + "probability": 0.6631 + }, + { + "start": 7942.98, + "end": 7945.94, + "probability": 0.9458 + }, + { + "start": 7946.28, + "end": 7948.6, + "probability": 0.9951 + }, + { + "start": 7948.76, + "end": 7949.34, + "probability": 0.8198 + }, + { + "start": 7949.42, + "end": 7950.14, + "probability": 0.7231 + }, + { + "start": 7950.26, + "end": 7951.48, + "probability": 0.7086 + }, + { + "start": 7951.6, + "end": 7952.8, + "probability": 0.6803 + }, + { + "start": 7954.44, + "end": 7957.2, + "probability": 0.9892 + }, + { + "start": 7957.26, + "end": 7957.88, + "probability": 0.9205 + }, + { + "start": 7957.96, + "end": 7960.91, + "probability": 0.9951 + }, + { + "start": 7961.06, + "end": 7962.08, + "probability": 0.9952 + }, + { + "start": 7962.68, + "end": 7964.36, + "probability": 0.686 + }, + { + "start": 7964.88, + "end": 7965.06, + "probability": 0.6641 + }, + { + "start": 7965.16, + "end": 7966.34, + "probability": 0.6601 + }, + { + "start": 7966.7, + "end": 7966.98, + "probability": 0.325 + }, + { + "start": 7967.12, + "end": 7967.9, + "probability": 0.9795 + }, + { + "start": 7968.08, + "end": 7968.98, + "probability": 0.644 + }, + { + "start": 7969.58, + "end": 7972.1, + "probability": 0.9863 + }, + { + "start": 7972.76, + "end": 7975.6, + "probability": 0.9866 + }, + { + "start": 7975.6, + "end": 7978.23, + "probability": 0.9958 + }, + { + "start": 7978.34, + "end": 7981.04, + "probability": 0.9128 + }, + { + "start": 7981.3, + "end": 7981.62, + "probability": 0.8409 + }, + { + "start": 7981.96, + "end": 7983.9, + "probability": 0.8537 + }, + { + "start": 7984.42, + "end": 7986.26, + "probability": 0.8085 + }, + { + "start": 7986.6, + "end": 7988.38, + "probability": 0.7224 + }, + { + "start": 7990.46, + "end": 7994.72, + "probability": 0.6031 + }, + { + "start": 8005.42, + "end": 8006.62, + "probability": 0.1271 + }, + { + "start": 8007.38, + "end": 8007.6, + "probability": 0.2868 + }, + { + "start": 8007.6, + "end": 8011.32, + "probability": 0.0241 + }, + { + "start": 8011.64, + "end": 8012.7, + "probability": 0.1283 + }, + { + "start": 8013.62, + "end": 8013.8, + "probability": 0.2699 + }, + { + "start": 8013.96, + "end": 8015.1, + "probability": 0.1386 + }, + { + "start": 8015.36, + "end": 8015.66, + "probability": 0.0295 + }, + { + "start": 8015.66, + "end": 8016.18, + "probability": 0.5676 + }, + { + "start": 8016.76, + "end": 8017.48, + "probability": 0.0685 + }, + { + "start": 8017.48, + "end": 8017.48, + "probability": 0.3084 + }, + { + "start": 8017.48, + "end": 8017.48, + "probability": 0.3118 + }, + { + "start": 8017.48, + "end": 8017.48, + "probability": 0.2435 + }, + { + "start": 8017.48, + "end": 8017.48, + "probability": 0.0539 + }, + { + "start": 8017.48, + "end": 8018.68, + "probability": 0.2261 + }, + { + "start": 8019.84, + "end": 8021.38, + "probability": 0.6265 + }, + { + "start": 8022.46, + "end": 8025.08, + "probability": 0.8549 + }, + { + "start": 8025.2, + "end": 8027.24, + "probability": 0.935 + }, + { + "start": 8027.44, + "end": 8030.5, + "probability": 0.4238 + }, + { + "start": 8030.84, + "end": 8033.32, + "probability": 0.7976 + }, + { + "start": 8034.18, + "end": 8035.48, + "probability": 0.697 + }, + { + "start": 8035.54, + "end": 8043.76, + "probability": 0.9761 + }, + { + "start": 8043.84, + "end": 8044.92, + "probability": 0.9248 + }, + { + "start": 8046.08, + "end": 8049.24, + "probability": 0.9321 + }, + { + "start": 8049.94, + "end": 8052.76, + "probability": 0.9979 + }, + { + "start": 8053.59, + "end": 8057.46, + "probability": 0.7809 + }, + { + "start": 8058.5, + "end": 8060.48, + "probability": 0.7284 + }, + { + "start": 8061.14, + "end": 8065.14, + "probability": 0.9664 + }, + { + "start": 8065.96, + "end": 8069.22, + "probability": 0.9863 + }, + { + "start": 8069.9, + "end": 8077.56, + "probability": 0.846 + }, + { + "start": 8077.66, + "end": 8079.26, + "probability": 0.9381 + }, + { + "start": 8079.62, + "end": 8081.04, + "probability": 0.9775 + }, + { + "start": 8081.18, + "end": 8082.34, + "probability": 0.7929 + }, + { + "start": 8083.3, + "end": 8083.4, + "probability": 0.7749 + }, + { + "start": 8084.14, + "end": 8085.01, + "probability": 0.9681 + }, + { + "start": 8086.12, + "end": 8087.28, + "probability": 0.9321 + }, + { + "start": 8088.36, + "end": 8090.32, + "probability": 0.9602 + }, + { + "start": 8091.06, + "end": 8091.24, + "probability": 0.5779 + }, + { + "start": 8092.38, + "end": 8093.18, + "probability": 0.8687 + }, + { + "start": 8093.22, + "end": 8096.32, + "probability": 0.8176 + }, + { + "start": 8096.66, + "end": 8097.42, + "probability": 0.7969 + }, + { + "start": 8098.1, + "end": 8098.56, + "probability": 0.4635 + }, + { + "start": 8099.16, + "end": 8100.4, + "probability": 0.9019 + }, + { + "start": 8101.52, + "end": 8102.68, + "probability": 0.9762 + }, + { + "start": 8103.78, + "end": 8108.3, + "probability": 0.9796 + }, + { + "start": 8108.9, + "end": 8110.92, + "probability": 0.8552 + }, + { + "start": 8111.56, + "end": 8112.0, + "probability": 0.8753 + }, + { + "start": 8112.6, + "end": 8114.92, + "probability": 0.8956 + }, + { + "start": 8115.92, + "end": 8118.68, + "probability": 0.8292 + }, + { + "start": 8119.52, + "end": 8121.06, + "probability": 0.9755 + }, + { + "start": 8121.6, + "end": 8124.93, + "probability": 0.9783 + }, + { + "start": 8125.5, + "end": 8128.14, + "probability": 0.9288 + }, + { + "start": 8128.4, + "end": 8129.83, + "probability": 0.9566 + }, + { + "start": 8130.38, + "end": 8131.76, + "probability": 0.0668 + }, + { + "start": 8131.76, + "end": 8135.26, + "probability": 0.4952 + }, + { + "start": 8135.46, + "end": 8137.02, + "probability": 0.8947 + }, + { + "start": 8137.08, + "end": 8138.62, + "probability": 0.8579 + }, + { + "start": 8138.68, + "end": 8144.08, + "probability": 0.8978 + }, + { + "start": 8144.34, + "end": 8147.68, + "probability": 0.9255 + }, + { + "start": 8148.02, + "end": 8149.88, + "probability": 0.8703 + }, + { + "start": 8150.36, + "end": 8154.44, + "probability": 0.7138 + }, + { + "start": 8154.52, + "end": 8155.0, + "probability": 0.2193 + }, + { + "start": 8155.0, + "end": 8158.54, + "probability": 0.7526 + }, + { + "start": 8158.54, + "end": 8163.48, + "probability": 0.9942 + }, + { + "start": 8163.92, + "end": 8166.1, + "probability": 0.9884 + }, + { + "start": 8166.6, + "end": 8169.04, + "probability": 0.6929 + }, + { + "start": 8169.96, + "end": 8173.56, + "probability": 0.8257 + }, + { + "start": 8173.6, + "end": 8175.1, + "probability": 0.6906 + }, + { + "start": 8175.16, + "end": 8175.82, + "probability": 0.5557 + }, + { + "start": 8177.32, + "end": 8179.18, + "probability": 0.3427 + }, + { + "start": 8179.32, + "end": 8180.06, + "probability": 0.5487 + }, + { + "start": 8180.08, + "end": 8182.06, + "probability": 0.9899 + }, + { + "start": 8182.12, + "end": 8186.48, + "probability": 0.9714 + }, + { + "start": 8186.78, + "end": 8190.14, + "probability": 0.7978 + }, + { + "start": 8190.58, + "end": 8191.48, + "probability": 0.6171 + }, + { + "start": 8192.3, + "end": 8192.92, + "probability": 0.0755 + }, + { + "start": 8193.12, + "end": 8193.32, + "probability": 0.565 + }, + { + "start": 8193.32, + "end": 8193.32, + "probability": 0.4177 + }, + { + "start": 8193.32, + "end": 8193.79, + "probability": 0.2993 + }, + { + "start": 8194.12, + "end": 8196.3, + "probability": 0.6565 + }, + { + "start": 8196.36, + "end": 8197.48, + "probability": 0.959 + }, + { + "start": 8197.96, + "end": 8199.76, + "probability": 0.4691 + }, + { + "start": 8200.32, + "end": 8201.94, + "probability": 0.5405 + }, + { + "start": 8202.1, + "end": 8205.46, + "probability": 0.9832 + }, + { + "start": 8206.44, + "end": 8207.44, + "probability": 0.4551 + }, + { + "start": 8207.78, + "end": 8210.04, + "probability": 0.9502 + }, + { + "start": 8210.7, + "end": 8213.42, + "probability": 0.9216 + }, + { + "start": 8213.96, + "end": 8215.58, + "probability": 0.9255 + }, + { + "start": 8215.74, + "end": 8219.18, + "probability": 0.8804 + }, + { + "start": 8219.44, + "end": 8222.34, + "probability": 0.6401 + }, + { + "start": 8222.44, + "end": 8225.28, + "probability": 0.8391 + }, + { + "start": 8225.92, + "end": 8227.78, + "probability": 0.179 + }, + { + "start": 8227.78, + "end": 8229.74, + "probability": 0.7314 + }, + { + "start": 8229.84, + "end": 8231.76, + "probability": 0.5516 + }, + { + "start": 8231.96, + "end": 8233.98, + "probability": 0.6683 + }, + { + "start": 8234.16, + "end": 8234.92, + "probability": 0.4655 + }, + { + "start": 8235.02, + "end": 8237.24, + "probability": 0.835 + }, + { + "start": 8237.44, + "end": 8237.98, + "probability": 0.7899 + }, + { + "start": 8238.5, + "end": 8239.82, + "probability": 0.9311 + }, + { + "start": 8241.82, + "end": 8243.28, + "probability": 0.634 + }, + { + "start": 8243.92, + "end": 8245.09, + "probability": 0.9639 + }, + { + "start": 8245.3, + "end": 8245.84, + "probability": 0.348 + }, + { + "start": 8246.0, + "end": 8247.48, + "probability": 0.8563 + }, + { + "start": 8247.6, + "end": 8248.46, + "probability": 0.6754 + }, + { + "start": 8250.12, + "end": 8250.12, + "probability": 0.375 + }, + { + "start": 8250.12, + "end": 8251.46, + "probability": 0.5865 + }, + { + "start": 8251.58, + "end": 8252.22, + "probability": 0.5554 + }, + { + "start": 8252.32, + "end": 8253.6, + "probability": 0.7512 + }, + { + "start": 8253.82, + "end": 8256.04, + "probability": 0.6394 + }, + { + "start": 8256.5, + "end": 8257.82, + "probability": 0.8312 + }, + { + "start": 8257.92, + "end": 8258.42, + "probability": 0.9799 + }, + { + "start": 8260.92, + "end": 8261.6, + "probability": 0.3418 + }, + { + "start": 8261.6, + "end": 8261.6, + "probability": 0.4462 + }, + { + "start": 8261.6, + "end": 8262.09, + "probability": 0.8072 + }, + { + "start": 8262.84, + "end": 8263.46, + "probability": 0.6874 + }, + { + "start": 8263.72, + "end": 8264.94, + "probability": 0.7937 + }, + { + "start": 8264.94, + "end": 8265.52, + "probability": 0.5667 + }, + { + "start": 8265.7, + "end": 8266.96, + "probability": 0.7186 + }, + { + "start": 8267.54, + "end": 8270.14, + "probability": 0.7897 + }, + { + "start": 8271.26, + "end": 8273.74, + "probability": 0.69 + }, + { + "start": 8275.31, + "end": 8278.34, + "probability": 0.8004 + }, + { + "start": 8287.35, + "end": 8289.96, + "probability": 0.7807 + }, + { + "start": 8291.52, + "end": 8292.04, + "probability": 0.2894 + }, + { + "start": 8292.12, + "end": 8293.68, + "probability": 0.7424 + }, + { + "start": 8293.78, + "end": 8294.48, + "probability": 0.7043 + }, + { + "start": 8294.62, + "end": 8296.4, + "probability": 0.9035 + }, + { + "start": 8297.22, + "end": 8298.34, + "probability": 0.8364 + }, + { + "start": 8298.92, + "end": 8300.8, + "probability": 0.6456 + }, + { + "start": 8301.16, + "end": 8301.32, + "probability": 0.278 + }, + { + "start": 8301.32, + "end": 8303.4, + "probability": 0.2786 + }, + { + "start": 8303.4, + "end": 8304.52, + "probability": 0.4697 + }, + { + "start": 8304.78, + "end": 8305.88, + "probability": 0.6868 + }, + { + "start": 8306.0, + "end": 8306.93, + "probability": 0.3111 + }, + { + "start": 8309.39, + "end": 8309.66, + "probability": 0.0438 + }, + { + "start": 8310.73, + "end": 8313.28, + "probability": 0.1869 + }, + { + "start": 8313.4, + "end": 8314.78, + "probability": 0.3472 + }, + { + "start": 8315.02, + "end": 8316.98, + "probability": 0.6816 + }, + { + "start": 8317.16, + "end": 8318.22, + "probability": 0.2149 + }, + { + "start": 8318.56, + "end": 8319.82, + "probability": 0.7284 + }, + { + "start": 8320.0, + "end": 8322.2, + "probability": 0.5119 + }, + { + "start": 8326.08, + "end": 8328.42, + "probability": 0.6362 + }, + { + "start": 8328.54, + "end": 8330.1, + "probability": 0.4655 + }, + { + "start": 8331.48, + "end": 8334.44, + "probability": 0.6575 + }, + { + "start": 8335.96, + "end": 8337.34, + "probability": 0.9983 + }, + { + "start": 8338.2, + "end": 8341.8, + "probability": 0.9773 + }, + { + "start": 8342.32, + "end": 8347.76, + "probability": 0.9954 + }, + { + "start": 8348.46, + "end": 8350.06, + "probability": 0.9906 + }, + { + "start": 8352.14, + "end": 8355.48, + "probability": 0.9807 + }, + { + "start": 8356.24, + "end": 8358.48, + "probability": 0.9976 + }, + { + "start": 8359.4, + "end": 8360.44, + "probability": 0.9769 + }, + { + "start": 8361.3, + "end": 8364.62, + "probability": 0.9249 + }, + { + "start": 8365.92, + "end": 8370.48, + "probability": 0.8542 + }, + { + "start": 8371.1, + "end": 8374.92, + "probability": 0.9871 + }, + { + "start": 8375.56, + "end": 8378.18, + "probability": 0.6663 + }, + { + "start": 8378.96, + "end": 8382.02, + "probability": 0.7002 + }, + { + "start": 8382.54, + "end": 8384.46, + "probability": 0.9949 + }, + { + "start": 8385.44, + "end": 8393.46, + "probability": 0.9729 + }, + { + "start": 8393.46, + "end": 8401.46, + "probability": 0.9882 + }, + { + "start": 8401.54, + "end": 8406.86, + "probability": 0.9983 + }, + { + "start": 8407.24, + "end": 8410.36, + "probability": 0.7555 + }, + { + "start": 8411.04, + "end": 8417.86, + "probability": 0.9778 + }, + { + "start": 8417.86, + "end": 8422.16, + "probability": 0.9827 + }, + { + "start": 8423.22, + "end": 8426.36, + "probability": 0.9966 + }, + { + "start": 8426.54, + "end": 8434.34, + "probability": 0.9152 + }, + { + "start": 8435.64, + "end": 8441.64, + "probability": 0.889 + }, + { + "start": 8441.84, + "end": 8444.02, + "probability": 0.9896 + }, + { + "start": 8444.66, + "end": 8450.6, + "probability": 0.9595 + }, + { + "start": 8450.76, + "end": 8452.02, + "probability": 0.9666 + }, + { + "start": 8452.18, + "end": 8458.46, + "probability": 0.9659 + }, + { + "start": 8458.72, + "end": 8462.2, + "probability": 0.9811 + }, + { + "start": 8463.16, + "end": 8470.34, + "probability": 0.8679 + }, + { + "start": 8470.78, + "end": 8472.56, + "probability": 0.9136 + }, + { + "start": 8473.2, + "end": 8474.1, + "probability": 0.801 + }, + { + "start": 8474.16, + "end": 8480.14, + "probability": 0.962 + }, + { + "start": 8480.42, + "end": 8487.8, + "probability": 0.9911 + }, + { + "start": 8487.8, + "end": 8493.28, + "probability": 0.9948 + }, + { + "start": 8495.8, + "end": 8497.6, + "probability": 0.5038 + }, + { + "start": 8497.78, + "end": 8500.4, + "probability": 0.6706 + }, + { + "start": 8500.6, + "end": 8502.52, + "probability": 0.975 + }, + { + "start": 8503.72, + "end": 8504.88, + "probability": 0.0155 + }, + { + "start": 8504.88, + "end": 8507.16, + "probability": 0.5514 + }, + { + "start": 8507.48, + "end": 8509.7, + "probability": 0.6008 + }, + { + "start": 8510.36, + "end": 8511.46, + "probability": 0.8536 + }, + { + "start": 8511.5, + "end": 8512.02, + "probability": 0.7513 + }, + { + "start": 8512.16, + "end": 8513.38, + "probability": 0.9733 + }, + { + "start": 8513.94, + "end": 8516.48, + "probability": 0.9908 + }, + { + "start": 8519.74, + "end": 8520.32, + "probability": 0.2679 + }, + { + "start": 8520.32, + "end": 8520.32, + "probability": 0.1081 + }, + { + "start": 8520.32, + "end": 8520.67, + "probability": 0.7775 + }, + { + "start": 8520.9, + "end": 8521.54, + "probability": 0.7271 + }, + { + "start": 8522.34, + "end": 8524.28, + "probability": 0.6849 + }, + { + "start": 8524.86, + "end": 8526.84, + "probability": 0.7165 + }, + { + "start": 8530.3, + "end": 8530.96, + "probability": 0.6616 + }, + { + "start": 8531.84, + "end": 8532.16, + "probability": 0.2607 + }, + { + "start": 8532.16, + "end": 8532.16, + "probability": 0.4924 + }, + { + "start": 8532.16, + "end": 8532.79, + "probability": 0.7447 + }, + { + "start": 8533.12, + "end": 8533.74, + "probability": 0.8196 + }, + { + "start": 8534.82, + "end": 8537.52, + "probability": 0.7557 + }, + { + "start": 8538.32, + "end": 8541.03, + "probability": 0.8441 + }, + { + "start": 8544.7, + "end": 8561.08, + "probability": 0.8542 + }, + { + "start": 8567.72, + "end": 8567.72, + "probability": 0.0807 + }, + { + "start": 8567.72, + "end": 8570.02, + "probability": 0.6886 + }, + { + "start": 8571.72, + "end": 8573.24, + "probability": 0.728 + }, + { + "start": 8573.36, + "end": 8574.66, + "probability": 0.9106 + }, + { + "start": 8574.74, + "end": 8576.3, + "probability": 0.9778 + }, + { + "start": 8577.86, + "end": 8582.56, + "probability": 0.9839 + }, + { + "start": 8583.96, + "end": 8586.26, + "probability": 0.9835 + }, + { + "start": 8587.58, + "end": 8589.94, + "probability": 0.9982 + }, + { + "start": 8591.18, + "end": 8596.26, + "probability": 0.7212 + }, + { + "start": 8597.02, + "end": 8603.02, + "probability": 0.9972 + }, + { + "start": 8603.02, + "end": 8608.3, + "probability": 0.9202 + }, + { + "start": 8609.66, + "end": 8614.8, + "probability": 0.9993 + }, + { + "start": 8616.64, + "end": 8619.98, + "probability": 0.999 + }, + { + "start": 8621.5, + "end": 8624.16, + "probability": 0.9868 + }, + { + "start": 8624.66, + "end": 8627.6, + "probability": 0.9963 + }, + { + "start": 8628.14, + "end": 8630.02, + "probability": 0.9956 + }, + { + "start": 8631.0, + "end": 8636.04, + "probability": 0.9777 + }, + { + "start": 8637.58, + "end": 8640.86, + "probability": 0.9938 + }, + { + "start": 8641.54, + "end": 8646.14, + "probability": 0.9897 + }, + { + "start": 8646.14, + "end": 8649.62, + "probability": 0.9943 + }, + { + "start": 8650.36, + "end": 8651.22, + "probability": 0.8722 + }, + { + "start": 8651.42, + "end": 8653.96, + "probability": 0.9289 + }, + { + "start": 8654.02, + "end": 8659.06, + "probability": 0.9926 + }, + { + "start": 8659.84, + "end": 8661.3, + "probability": 0.8577 + }, + { + "start": 8662.5, + "end": 8664.48, + "probability": 0.9518 + }, + { + "start": 8665.52, + "end": 8668.76, + "probability": 0.9476 + }, + { + "start": 8669.4, + "end": 8672.48, + "probability": 0.9646 + }, + { + "start": 8673.08, + "end": 8675.18, + "probability": 0.88 + }, + { + "start": 8675.34, + "end": 8676.54, + "probability": 0.9692 + }, + { + "start": 8676.64, + "end": 8677.92, + "probability": 0.7384 + }, + { + "start": 8677.98, + "end": 8679.68, + "probability": 0.815 + }, + { + "start": 8680.02, + "end": 8682.8, + "probability": 0.9965 + }, + { + "start": 8683.78, + "end": 8687.54, + "probability": 0.9582 + }, + { + "start": 8689.26, + "end": 8691.12, + "probability": 0.8104 + }, + { + "start": 8692.42, + "end": 8697.84, + "probability": 0.9709 + }, + { + "start": 8698.88, + "end": 8701.56, + "probability": 0.9702 + }, + { + "start": 8701.56, + "end": 8705.58, + "probability": 0.8643 + }, + { + "start": 8706.52, + "end": 8710.74, + "probability": 0.9854 + }, + { + "start": 8711.14, + "end": 8712.58, + "probability": 0.7264 + }, + { + "start": 8713.06, + "end": 8714.14, + "probability": 0.8083 + }, + { + "start": 8714.74, + "end": 8717.28, + "probability": 0.9971 + }, + { + "start": 8717.86, + "end": 8721.64, + "probability": 0.9901 + }, + { + "start": 8721.74, + "end": 8723.14, + "probability": 0.9785 + }, + { + "start": 8723.4, + "end": 8725.18, + "probability": 0.8507 + }, + { + "start": 8725.28, + "end": 8726.58, + "probability": 0.7244 + }, + { + "start": 8726.7, + "end": 8730.72, + "probability": 0.9989 + }, + { + "start": 8730.72, + "end": 8736.22, + "probability": 0.9961 + }, + { + "start": 8737.1, + "end": 8740.42, + "probability": 0.7136 + }, + { + "start": 8740.44, + "end": 8742.68, + "probability": 0.9837 + }, + { + "start": 8743.14, + "end": 8745.57, + "probability": 0.9958 + }, + { + "start": 8746.04, + "end": 8746.12, + "probability": 0.1052 + }, + { + "start": 8746.12, + "end": 8750.3, + "probability": 0.8687 + }, + { + "start": 8750.3, + "end": 8754.0, + "probability": 0.1488 + }, + { + "start": 8754.0, + "end": 8754.0, + "probability": 0.0747 + }, + { + "start": 8754.0, + "end": 8754.0, + "probability": 0.4258 + }, + { + "start": 8754.0, + "end": 8758.9, + "probability": 0.6347 + }, + { + "start": 8759.16, + "end": 8759.16, + "probability": 0.0979 + }, + { + "start": 8759.48, + "end": 8764.15, + "probability": 0.4929 + }, + { + "start": 8764.56, + "end": 8768.34, + "probability": 0.027 + }, + { + "start": 8768.86, + "end": 8768.86, + "probability": 0.0992 + }, + { + "start": 8768.86, + "end": 8768.86, + "probability": 0.0524 + }, + { + "start": 8768.86, + "end": 8770.18, + "probability": 0.0476 + }, + { + "start": 8770.4, + "end": 8771.72, + "probability": 0.7142 + }, + { + "start": 8771.88, + "end": 8773.28, + "probability": 0.4427 + }, + { + "start": 8773.54, + "end": 8774.02, + "probability": 0.4118 + }, + { + "start": 8775.16, + "end": 8775.7, + "probability": 0.0121 + }, + { + "start": 8775.7, + "end": 8781.22, + "probability": 0.6182 + }, + { + "start": 8781.4, + "end": 8783.78, + "probability": 0.6865 + }, + { + "start": 8784.64, + "end": 8788.42, + "probability": 0.9941 + }, + { + "start": 8790.2, + "end": 8792.98, + "probability": 0.8665 + }, + { + "start": 8794.4, + "end": 8797.06, + "probability": 0.9531 + }, + { + "start": 8797.78, + "end": 8798.15, + "probability": 0.5454 + }, + { + "start": 8799.5, + "end": 8802.52, + "probability": 0.9891 + }, + { + "start": 8802.52, + "end": 8806.58, + "probability": 0.6236 + }, + { + "start": 8806.58, + "end": 8810.56, + "probability": 0.9526 + }, + { + "start": 8810.8, + "end": 8813.62, + "probability": 0.8728 + }, + { + "start": 8814.18, + "end": 8814.74, + "probability": 0.5856 + }, + { + "start": 8814.96, + "end": 8815.62, + "probability": 0.552 + }, + { + "start": 8816.3, + "end": 8817.04, + "probability": 0.8972 + }, + { + "start": 8820.22, + "end": 8820.42, + "probability": 0.1979 + }, + { + "start": 8836.18, + "end": 8838.96, + "probability": 0.477 + }, + { + "start": 8838.96, + "end": 8842.56, + "probability": 0.6915 + }, + { + "start": 8842.56, + "end": 8845.32, + "probability": 0.8381 + }, + { + "start": 8846.16, + "end": 8854.72, + "probability": 0.5996 + }, + { + "start": 8857.0, + "end": 8870.38, + "probability": 0.0384 + }, + { + "start": 8980.54, + "end": 8981.92, + "probability": 0.0006 + }, + { + "start": 8985.271, + "end": 8985.271, + "probability": 0.0 + }, + { + "start": 8985.271, + "end": 8985.271, + "probability": 0.0 + }, + { + "start": 8985.271, + "end": 8985.271, + "probability": 0.0 + }, + { + "start": 8985.271, + "end": 8985.271, + "probability": 0.0 + }, + { + "start": 8985.271, + "end": 8985.271, + "probability": 0.0 + }, + { + "start": 8985.271, + "end": 8985.271, + "probability": 0.0 + }, + { + "start": 8985.271, + "end": 8985.271, + "probability": 0.0 + }, + { + "start": 8985.271, + "end": 8985.271, + "probability": 0.0 + }, + { + "start": 8985.271, + "end": 8985.271, + "probability": 0.0 + }, + { + "start": 8985.271, + "end": 8985.271, + "probability": 0.0 + }, + { + "start": 8985.271, + "end": 8985.271, + "probability": 0.0 + }, + { + "start": 8985.271, + "end": 8985.271, + "probability": 0.0 + }, + { + "start": 8985.271, + "end": 8985.271, + "probability": 0.0 + } + ], + "segments_count": 2958, + "words_count": 15006, + "avg_words_per_segment": 5.073, + "avg_segment_duration": 2.1835, + "avg_words_per_minute": 100.2043, + "plenum_id": "65330", + "duration": 8985.24, + "title": null, + "plenum_date": "2017-07-04" +} \ No newline at end of file