diff --git "a/66551/metadata.json" "b/66551/metadata.json" new file mode 100644--- /dev/null +++ "b/66551/metadata.json" @@ -0,0 +1,15462 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "66551", + "quality_score": 0.8809, + "per_segment_quality_scores": [ + { + "start": 40.58, + "end": 41.7, + "probability": 0.8974 + }, + { + "start": 44.84, + "end": 46.16, + "probability": 0.7376 + }, + { + "start": 46.32, + "end": 47.7, + "probability": 0.7691 + }, + { + "start": 47.78, + "end": 49.57, + "probability": 0.8861 + }, + { + "start": 50.81, + "end": 55.06, + "probability": 0.5948 + }, + { + "start": 55.6, + "end": 57.04, + "probability": 0.5133 + }, + { + "start": 57.72, + "end": 58.78, + "probability": 0.9869 + }, + { + "start": 58.96, + "end": 63.98, + "probability": 0.9928 + }, + { + "start": 64.46, + "end": 70.54, + "probability": 0.993 + }, + { + "start": 71.28, + "end": 72.38, + "probability": 0.8267 + }, + { + "start": 72.96, + "end": 79.76, + "probability": 0.5011 + }, + { + "start": 80.28, + "end": 81.84, + "probability": 0.872 + }, + { + "start": 82.5, + "end": 84.58, + "probability": 0.901 + }, + { + "start": 85.2, + "end": 90.44, + "probability": 0.9826 + }, + { + "start": 90.46, + "end": 97.16, + "probability": 0.9396 + }, + { + "start": 98.44, + "end": 102.78, + "probability": 0.9971 + }, + { + "start": 102.78, + "end": 107.9, + "probability": 0.989 + }, + { + "start": 108.54, + "end": 113.01, + "probability": 0.9588 + }, + { + "start": 113.74, + "end": 115.82, + "probability": 0.9983 + }, + { + "start": 115.82, + "end": 118.24, + "probability": 0.9992 + }, + { + "start": 119.06, + "end": 121.28, + "probability": 0.9963 + }, + { + "start": 121.28, + "end": 123.4, + "probability": 0.9684 + }, + { + "start": 124.23, + "end": 129.36, + "probability": 0.9058 + }, + { + "start": 129.59, + "end": 132.9, + "probability": 0.6499 + }, + { + "start": 132.9, + "end": 133.18, + "probability": 0.6642 + }, + { + "start": 134.18, + "end": 138.06, + "probability": 0.9437 + }, + { + "start": 138.06, + "end": 141.2, + "probability": 0.9927 + }, + { + "start": 141.88, + "end": 145.72, + "probability": 0.1904 + }, + { + "start": 146.3, + "end": 149.76, + "probability": 0.9904 + }, + { + "start": 153.62, + "end": 157.48, + "probability": 0.9674 + }, + { + "start": 157.48, + "end": 161.9, + "probability": 0.9958 + }, + { + "start": 162.36, + "end": 163.64, + "probability": 0.5016 + }, + { + "start": 163.76, + "end": 167.12, + "probability": 0.7424 + }, + { + "start": 167.42, + "end": 167.66, + "probability": 0.7667 + }, + { + "start": 168.52, + "end": 169.88, + "probability": 0.5254 + }, + { + "start": 169.92, + "end": 170.6, + "probability": 0.788 + }, + { + "start": 170.66, + "end": 173.36, + "probability": 0.9107 + }, + { + "start": 173.5, + "end": 176.8, + "probability": 0.7495 + }, + { + "start": 177.54, + "end": 177.62, + "probability": 0.0008 + }, + { + "start": 178.56, + "end": 181.8, + "probability": 0.1151 + }, + { + "start": 183.42, + "end": 183.66, + "probability": 0.0275 + }, + { + "start": 183.66, + "end": 183.66, + "probability": 0.4341 + }, + { + "start": 183.66, + "end": 183.66, + "probability": 0.0173 + }, + { + "start": 183.66, + "end": 183.66, + "probability": 0.0089 + }, + { + "start": 183.66, + "end": 185.38, + "probability": 0.3483 + }, + { + "start": 186.54, + "end": 189.81, + "probability": 0.6015 + }, + { + "start": 190.1, + "end": 191.46, + "probability": 0.79 + }, + { + "start": 192.16, + "end": 194.7, + "probability": 0.9646 + }, + { + "start": 195.22, + "end": 196.3, + "probability": 0.9097 + }, + { + "start": 196.4, + "end": 196.84, + "probability": 0.8375 + }, + { + "start": 196.9, + "end": 197.72, + "probability": 0.8658 + }, + { + "start": 198.22, + "end": 200.52, + "probability": 0.8852 + }, + { + "start": 208.68, + "end": 210.26, + "probability": 0.6685 + }, + { + "start": 211.64, + "end": 212.76, + "probability": 0.8681 + }, + { + "start": 213.12, + "end": 213.76, + "probability": 0.4741 + }, + { + "start": 214.04, + "end": 214.32, + "probability": 0.79 + }, + { + "start": 215.08, + "end": 215.34, + "probability": 0.6709 + }, + { + "start": 215.42, + "end": 217.24, + "probability": 0.9792 + }, + { + "start": 217.38, + "end": 217.7, + "probability": 0.5246 + }, + { + "start": 218.22, + "end": 221.32, + "probability": 0.9678 + }, + { + "start": 221.36, + "end": 221.98, + "probability": 0.6736 + }, + { + "start": 222.24, + "end": 224.48, + "probability": 0.737 + }, + { + "start": 225.44, + "end": 226.22, + "probability": 0.3314 + }, + { + "start": 226.76, + "end": 229.74, + "probability": 0.936 + }, + { + "start": 230.26, + "end": 231.34, + "probability": 0.9465 + }, + { + "start": 231.46, + "end": 233.2, + "probability": 0.7747 + }, + { + "start": 233.32, + "end": 235.56, + "probability": 0.9102 + }, + { + "start": 236.74, + "end": 240.8, + "probability": 0.9961 + }, + { + "start": 241.84, + "end": 244.9, + "probability": 0.9747 + }, + { + "start": 246.26, + "end": 250.84, + "probability": 0.9909 + }, + { + "start": 251.84, + "end": 253.18, + "probability": 0.9805 + }, + { + "start": 253.3, + "end": 254.02, + "probability": 0.9744 + }, + { + "start": 254.66, + "end": 255.22, + "probability": 0.7616 + }, + { + "start": 256.14, + "end": 259.0, + "probability": 0.9962 + }, + { + "start": 260.36, + "end": 262.48, + "probability": 0.8988 + }, + { + "start": 263.4, + "end": 263.76, + "probability": 0.2978 + }, + { + "start": 263.76, + "end": 267.29, + "probability": 0.9441 + }, + { + "start": 268.02, + "end": 270.0, + "probability": 0.9938 + }, + { + "start": 271.38, + "end": 273.86, + "probability": 0.8726 + }, + { + "start": 273.92, + "end": 274.47, + "probability": 0.6754 + }, + { + "start": 276.32, + "end": 278.4, + "probability": 0.7772 + }, + { + "start": 278.54, + "end": 282.22, + "probability": 0.9442 + }, + { + "start": 283.44, + "end": 285.82, + "probability": 0.8542 + }, + { + "start": 286.0, + "end": 287.92, + "probability": 0.9869 + }, + { + "start": 288.64, + "end": 291.4, + "probability": 0.9813 + }, + { + "start": 293.1, + "end": 293.96, + "probability": 0.9531 + }, + { + "start": 294.14, + "end": 296.46, + "probability": 0.7467 + }, + { + "start": 297.14, + "end": 298.72, + "probability": 0.9419 + }, + { + "start": 298.88, + "end": 300.68, + "probability": 0.7122 + }, + { + "start": 300.82, + "end": 306.3, + "probability": 0.9675 + }, + { + "start": 307.2, + "end": 310.3, + "probability": 0.7747 + }, + { + "start": 312.32, + "end": 313.98, + "probability": 0.9397 + }, + { + "start": 315.48, + "end": 318.82, + "probability": 0.9824 + }, + { + "start": 319.38, + "end": 323.54, + "probability": 0.9945 + }, + { + "start": 325.0, + "end": 327.56, + "probability": 0.7923 + }, + { + "start": 329.0, + "end": 331.94, + "probability": 0.9849 + }, + { + "start": 332.52, + "end": 335.9, + "probability": 0.9356 + }, + { + "start": 336.5, + "end": 337.58, + "probability": 0.51 + }, + { + "start": 337.62, + "end": 338.7, + "probability": 0.4227 + }, + { + "start": 339.6, + "end": 341.4, + "probability": 0.8276 + }, + { + "start": 342.26, + "end": 343.52, + "probability": 0.8531 + }, + { + "start": 344.62, + "end": 347.14, + "probability": 0.8483 + }, + { + "start": 348.16, + "end": 350.14, + "probability": 0.9929 + }, + { + "start": 350.3, + "end": 352.0, + "probability": 0.9307 + }, + { + "start": 352.62, + "end": 353.28, + "probability": 0.7351 + }, + { + "start": 354.64, + "end": 358.04, + "probability": 0.9725 + }, + { + "start": 358.12, + "end": 358.62, + "probability": 0.5938 + }, + { + "start": 358.74, + "end": 362.62, + "probability": 0.9266 + }, + { + "start": 362.84, + "end": 367.26, + "probability": 0.9836 + }, + { + "start": 368.34, + "end": 369.18, + "probability": 0.984 + }, + { + "start": 369.42, + "end": 371.16, + "probability": 0.9655 + }, + { + "start": 372.38, + "end": 374.92, + "probability": 0.8596 + }, + { + "start": 375.92, + "end": 378.36, + "probability": 0.9829 + }, + { + "start": 379.08, + "end": 381.74, + "probability": 0.963 + }, + { + "start": 382.24, + "end": 387.18, + "probability": 0.9888 + }, + { + "start": 387.74, + "end": 389.08, + "probability": 0.709 + }, + { + "start": 389.76, + "end": 391.9, + "probability": 0.7351 + }, + { + "start": 393.16, + "end": 393.94, + "probability": 0.9717 + }, + { + "start": 395.08, + "end": 396.54, + "probability": 0.8351 + }, + { + "start": 397.12, + "end": 398.96, + "probability": 0.8877 + }, + { + "start": 400.42, + "end": 401.9, + "probability": 0.9451 + }, + { + "start": 402.08, + "end": 405.08, + "probability": 0.9603 + }, + { + "start": 405.12, + "end": 405.76, + "probability": 0.6349 + }, + { + "start": 406.58, + "end": 407.16, + "probability": 0.7595 + }, + { + "start": 407.78, + "end": 409.82, + "probability": 0.6907 + }, + { + "start": 411.06, + "end": 413.24, + "probability": 0.8119 + }, + { + "start": 413.42, + "end": 415.78, + "probability": 0.9309 + }, + { + "start": 415.9, + "end": 417.6, + "probability": 0.9941 + }, + { + "start": 418.2, + "end": 419.8, + "probability": 0.9494 + }, + { + "start": 420.96, + "end": 421.7, + "probability": 0.7791 + }, + { + "start": 422.04, + "end": 424.72, + "probability": 0.998 + }, + { + "start": 424.72, + "end": 427.42, + "probability": 0.9579 + }, + { + "start": 428.18, + "end": 431.58, + "probability": 0.9536 + }, + { + "start": 433.68, + "end": 434.12, + "probability": 0.7941 + }, + { + "start": 435.08, + "end": 435.92, + "probability": 0.1896 + }, + { + "start": 436.56, + "end": 438.96, + "probability": 0.9738 + }, + { + "start": 439.42, + "end": 440.08, + "probability": 0.9602 + }, + { + "start": 440.8, + "end": 442.42, + "probability": 0.7239 + }, + { + "start": 444.02, + "end": 445.76, + "probability": 0.9439 + }, + { + "start": 446.2, + "end": 448.88, + "probability": 0.9687 + }, + { + "start": 449.0, + "end": 449.56, + "probability": 0.9907 + }, + { + "start": 450.5, + "end": 451.3, + "probability": 0.8937 + }, + { + "start": 452.32, + "end": 453.44, + "probability": 0.9675 + }, + { + "start": 453.54, + "end": 455.42, + "probability": 0.9562 + }, + { + "start": 455.64, + "end": 457.3, + "probability": 0.8832 + }, + { + "start": 457.74, + "end": 461.4, + "probability": 0.9219 + }, + { + "start": 461.92, + "end": 462.72, + "probability": 0.7392 + }, + { + "start": 463.32, + "end": 464.18, + "probability": 0.893 + }, + { + "start": 464.38, + "end": 465.92, + "probability": 0.7597 + }, + { + "start": 468.7, + "end": 469.78, + "probability": 0.9648 + }, + { + "start": 471.0, + "end": 472.52, + "probability": 0.8957 + }, + { + "start": 473.6, + "end": 475.2, + "probability": 0.9846 + }, + { + "start": 476.2, + "end": 479.0, + "probability": 0.6454 + }, + { + "start": 479.16, + "end": 480.72, + "probability": 0.8854 + }, + { + "start": 481.2, + "end": 483.48, + "probability": 0.9181 + }, + { + "start": 483.62, + "end": 486.2, + "probability": 0.9495 + }, + { + "start": 487.16, + "end": 489.16, + "probability": 0.9799 + }, + { + "start": 489.22, + "end": 492.2, + "probability": 0.9964 + }, + { + "start": 492.88, + "end": 495.1, + "probability": 0.9213 + }, + { + "start": 497.34, + "end": 498.82, + "probability": 0.9288 + }, + { + "start": 498.94, + "end": 499.29, + "probability": 0.7115 + }, + { + "start": 499.56, + "end": 500.6, + "probability": 0.8442 + }, + { + "start": 500.92, + "end": 501.4, + "probability": 0.8751 + }, + { + "start": 501.66, + "end": 502.98, + "probability": 0.9901 + }, + { + "start": 503.1, + "end": 504.6, + "probability": 0.9735 + }, + { + "start": 505.56, + "end": 507.14, + "probability": 0.7489 + }, + { + "start": 507.2, + "end": 510.48, + "probability": 0.9902 + }, + { + "start": 511.46, + "end": 511.96, + "probability": 0.7471 + }, + { + "start": 512.1, + "end": 512.96, + "probability": 0.9844 + }, + { + "start": 514.2, + "end": 516.96, + "probability": 0.9102 + }, + { + "start": 517.2, + "end": 518.44, + "probability": 0.9478 + }, + { + "start": 519.44, + "end": 522.44, + "probability": 0.8934 + }, + { + "start": 522.6, + "end": 523.34, + "probability": 0.8557 + }, + { + "start": 524.22, + "end": 524.54, + "probability": 0.6304 + }, + { + "start": 524.66, + "end": 526.08, + "probability": 0.9449 + }, + { + "start": 526.24, + "end": 527.7, + "probability": 0.7026 + }, + { + "start": 527.82, + "end": 528.94, + "probability": 0.6569 + }, + { + "start": 529.24, + "end": 531.62, + "probability": 0.3293 + }, + { + "start": 531.68, + "end": 532.4, + "probability": 0.8231 + }, + { + "start": 533.66, + "end": 534.98, + "probability": 0.9974 + }, + { + "start": 535.6, + "end": 536.48, + "probability": 0.615 + }, + { + "start": 536.56, + "end": 538.0, + "probability": 0.9681 + }, + { + "start": 538.16, + "end": 541.12, + "probability": 0.9951 + }, + { + "start": 541.24, + "end": 542.94, + "probability": 0.7788 + }, + { + "start": 543.26, + "end": 546.72, + "probability": 0.9794 + }, + { + "start": 547.34, + "end": 548.36, + "probability": 0.9994 + }, + { + "start": 549.36, + "end": 550.5, + "probability": 0.9561 + }, + { + "start": 550.6, + "end": 551.06, + "probability": 0.8744 + }, + { + "start": 551.08, + "end": 553.06, + "probability": 0.9766 + }, + { + "start": 553.2, + "end": 553.92, + "probability": 0.9248 + }, + { + "start": 554.04, + "end": 554.86, + "probability": 0.9139 + }, + { + "start": 554.94, + "end": 556.0, + "probability": 0.9755 + }, + { + "start": 556.46, + "end": 557.82, + "probability": 0.9935 + }, + { + "start": 558.34, + "end": 562.38, + "probability": 0.9653 + }, + { + "start": 562.84, + "end": 570.54, + "probability": 0.7664 + }, + { + "start": 571.2, + "end": 572.5, + "probability": 0.8961 + }, + { + "start": 572.6, + "end": 572.84, + "probability": 0.7277 + }, + { + "start": 572.94, + "end": 573.84, + "probability": 0.7766 + }, + { + "start": 574.0, + "end": 574.86, + "probability": 0.9917 + }, + { + "start": 575.12, + "end": 576.16, + "probability": 0.4944 + }, + { + "start": 576.38, + "end": 576.98, + "probability": 0.7598 + }, + { + "start": 577.54, + "end": 578.08, + "probability": 0.8917 + }, + { + "start": 579.36, + "end": 580.54, + "probability": 0.9092 + }, + { + "start": 581.18, + "end": 583.76, + "probability": 0.9863 + }, + { + "start": 584.16, + "end": 588.24, + "probability": 0.8592 + }, + { + "start": 588.34, + "end": 588.62, + "probability": 0.8795 + }, + { + "start": 589.08, + "end": 590.96, + "probability": 0.9973 + }, + { + "start": 590.96, + "end": 593.06, + "probability": 0.8958 + }, + { + "start": 594.22, + "end": 595.9, + "probability": 0.8798 + }, + { + "start": 597.26, + "end": 600.24, + "probability": 0.9277 + }, + { + "start": 601.2, + "end": 602.06, + "probability": 0.5518 + }, + { + "start": 603.04, + "end": 603.78, + "probability": 0.9258 + }, + { + "start": 604.42, + "end": 604.85, + "probability": 0.875 + }, + { + "start": 605.16, + "end": 607.4, + "probability": 0.9205 + }, + { + "start": 608.68, + "end": 609.46, + "probability": 0.8798 + }, + { + "start": 609.82, + "end": 610.38, + "probability": 0.9429 + }, + { + "start": 611.88, + "end": 615.1, + "probability": 0.989 + }, + { + "start": 616.16, + "end": 618.22, + "probability": 0.8496 + }, + { + "start": 619.18, + "end": 620.24, + "probability": 0.7478 + }, + { + "start": 620.42, + "end": 622.98, + "probability": 0.985 + }, + { + "start": 623.88, + "end": 625.62, + "probability": 0.5206 + }, + { + "start": 626.68, + "end": 628.62, + "probability": 0.965 + }, + { + "start": 628.7, + "end": 629.2, + "probability": 0.906 + }, + { + "start": 629.3, + "end": 629.98, + "probability": 0.9868 + }, + { + "start": 631.52, + "end": 633.68, + "probability": 0.9933 + }, + { + "start": 633.88, + "end": 634.58, + "probability": 0.9907 + }, + { + "start": 636.04, + "end": 642.0, + "probability": 0.697 + }, + { + "start": 642.06, + "end": 643.32, + "probability": 0.6098 + }, + { + "start": 643.68, + "end": 644.54, + "probability": 0.7511 + }, + { + "start": 644.64, + "end": 647.48, + "probability": 0.9927 + }, + { + "start": 647.58, + "end": 648.26, + "probability": 0.9065 + }, + { + "start": 648.84, + "end": 651.26, + "probability": 0.9849 + }, + { + "start": 652.4, + "end": 656.44, + "probability": 0.855 + }, + { + "start": 656.9, + "end": 657.2, + "probability": 0.7423 + }, + { + "start": 657.34, + "end": 662.5, + "probability": 0.9738 + }, + { + "start": 663.24, + "end": 664.8, + "probability": 0.8588 + }, + { + "start": 664.84, + "end": 668.94, + "probability": 0.9885 + }, + { + "start": 669.48, + "end": 670.9, + "probability": 0.7981 + }, + { + "start": 670.96, + "end": 672.58, + "probability": 0.8655 + }, + { + "start": 673.06, + "end": 674.88, + "probability": 0.7444 + }, + { + "start": 675.54, + "end": 678.06, + "probability": 0.9854 + }, + { + "start": 678.9, + "end": 681.0, + "probability": 0.5113 + }, + { + "start": 681.64, + "end": 686.7, + "probability": 0.8739 + }, + { + "start": 686.84, + "end": 687.52, + "probability": 0.9539 + }, + { + "start": 689.55, + "end": 690.04, + "probability": 0.2996 + }, + { + "start": 690.04, + "end": 690.6, + "probability": 0.3437 + }, + { + "start": 690.68, + "end": 691.28, + "probability": 0.857 + }, + { + "start": 691.4, + "end": 692.1, + "probability": 0.6939 + }, + { + "start": 692.6, + "end": 695.78, + "probability": 0.9889 + }, + { + "start": 697.58, + "end": 700.24, + "probability": 0.9424 + }, + { + "start": 700.34, + "end": 704.26, + "probability": 0.9196 + }, + { + "start": 704.88, + "end": 707.04, + "probability": 0.8641 + }, + { + "start": 707.8, + "end": 709.88, + "probability": 0.7368 + }, + { + "start": 710.44, + "end": 714.26, + "probability": 0.9242 + }, + { + "start": 714.96, + "end": 715.2, + "probability": 0.3847 + }, + { + "start": 716.38, + "end": 716.48, + "probability": 0.3909 + }, + { + "start": 717.42, + "end": 718.98, + "probability": 0.6458 + }, + { + "start": 719.1, + "end": 720.78, + "probability": 0.585 + }, + { + "start": 720.88, + "end": 721.86, + "probability": 0.4733 + }, + { + "start": 722.24, + "end": 723.5, + "probability": 0.9426 + }, + { + "start": 723.63, + "end": 728.78, + "probability": 0.9529 + }, + { + "start": 729.62, + "end": 729.82, + "probability": 0.8564 + }, + { + "start": 729.92, + "end": 735.2, + "probability": 0.786 + }, + { + "start": 735.32, + "end": 737.38, + "probability": 0.9341 + }, + { + "start": 737.5, + "end": 739.12, + "probability": 0.7422 + }, + { + "start": 739.82, + "end": 740.5, + "probability": 0.5137 + }, + { + "start": 740.64, + "end": 741.78, + "probability": 0.9171 + }, + { + "start": 742.26, + "end": 744.62, + "probability": 0.8433 + }, + { + "start": 745.0, + "end": 746.3, + "probability": 0.9347 + }, + { + "start": 746.6, + "end": 746.72, + "probability": 0.0156 + }, + { + "start": 746.86, + "end": 747.74, + "probability": 0.5046 + }, + { + "start": 748.1, + "end": 749.92, + "probability": 0.9685 + }, + { + "start": 749.98, + "end": 752.34, + "probability": 0.9858 + }, + { + "start": 752.44, + "end": 753.12, + "probability": 0.9971 + }, + { + "start": 753.96, + "end": 759.68, + "probability": 0.9932 + }, + { + "start": 759.72, + "end": 760.54, + "probability": 0.9941 + }, + { + "start": 760.72, + "end": 761.76, + "probability": 0.7694 + }, + { + "start": 763.0, + "end": 764.94, + "probability": 0.7926 + }, + { + "start": 764.98, + "end": 765.82, + "probability": 0.7574 + }, + { + "start": 765.9, + "end": 767.64, + "probability": 0.915 + }, + { + "start": 768.26, + "end": 769.66, + "probability": 0.9468 + }, + { + "start": 772.02, + "end": 773.24, + "probability": 0.9845 + }, + { + "start": 773.42, + "end": 777.62, + "probability": 0.966 + }, + { + "start": 778.74, + "end": 779.46, + "probability": 0.9419 + }, + { + "start": 779.82, + "end": 782.1, + "probability": 0.6457 + }, + { + "start": 782.86, + "end": 786.52, + "probability": 0.9386 + }, + { + "start": 787.44, + "end": 789.86, + "probability": 0.9624 + }, + { + "start": 790.38, + "end": 791.3, + "probability": 0.9275 + }, + { + "start": 792.06, + "end": 794.62, + "probability": 0.9128 + }, + { + "start": 794.68, + "end": 796.16, + "probability": 0.834 + }, + { + "start": 796.84, + "end": 798.38, + "probability": 0.7677 + }, + { + "start": 798.58, + "end": 803.66, + "probability": 0.7581 + }, + { + "start": 804.1, + "end": 805.74, + "probability": 0.9261 + }, + { + "start": 806.52, + "end": 806.8, + "probability": 0.9054 + }, + { + "start": 807.46, + "end": 807.81, + "probability": 0.3403 + }, + { + "start": 808.4, + "end": 808.92, + "probability": 0.4787 + }, + { + "start": 809.34, + "end": 810.55, + "probability": 0.8015 + }, + { + "start": 811.2, + "end": 812.14, + "probability": 0.3905 + }, + { + "start": 812.24, + "end": 812.6, + "probability": 0.7283 + }, + { + "start": 812.64, + "end": 813.98, + "probability": 0.675 + }, + { + "start": 814.1, + "end": 814.59, + "probability": 0.9497 + }, + { + "start": 815.44, + "end": 816.52, + "probability": 0.9126 + }, + { + "start": 816.58, + "end": 820.9, + "probability": 0.915 + }, + { + "start": 821.5, + "end": 824.18, + "probability": 0.6291 + }, + { + "start": 824.62, + "end": 825.48, + "probability": 0.9327 + }, + { + "start": 826.2, + "end": 827.58, + "probability": 0.9536 + }, + { + "start": 827.76, + "end": 828.32, + "probability": 0.3933 + }, + { + "start": 828.4, + "end": 831.32, + "probability": 0.967 + }, + { + "start": 831.6, + "end": 834.2, + "probability": 0.6193 + }, + { + "start": 834.56, + "end": 837.9, + "probability": 0.9797 + }, + { + "start": 838.52, + "end": 840.76, + "probability": 0.4074 + }, + { + "start": 841.72, + "end": 846.82, + "probability": 0.979 + }, + { + "start": 847.46, + "end": 848.86, + "probability": 0.9283 + }, + { + "start": 849.88, + "end": 856.06, + "probability": 0.9492 + }, + { + "start": 856.18, + "end": 857.0, + "probability": 0.7061 + }, + { + "start": 857.58, + "end": 859.32, + "probability": 0.9954 + }, + { + "start": 860.04, + "end": 861.7, + "probability": 0.9905 + }, + { + "start": 862.1, + "end": 863.92, + "probability": 0.7996 + }, + { + "start": 863.98, + "end": 866.44, + "probability": 0.9282 + }, + { + "start": 867.78, + "end": 870.04, + "probability": 0.978 + }, + { + "start": 870.1, + "end": 870.68, + "probability": 0.8892 + }, + { + "start": 871.5, + "end": 873.62, + "probability": 0.8432 + }, + { + "start": 873.76, + "end": 877.02, + "probability": 0.8846 + }, + { + "start": 878.42, + "end": 880.06, + "probability": 0.4598 + }, + { + "start": 880.1, + "end": 880.3, + "probability": 0.8052 + }, + { + "start": 880.3, + "end": 882.0, + "probability": 0.8904 + }, + { + "start": 882.92, + "end": 883.93, + "probability": 0.9541 + }, + { + "start": 884.8, + "end": 890.08, + "probability": 0.9839 + }, + { + "start": 890.62, + "end": 894.5, + "probability": 0.9839 + }, + { + "start": 894.58, + "end": 897.18, + "probability": 0.5541 + }, + { + "start": 897.28, + "end": 897.82, + "probability": 0.4811 + }, + { + "start": 898.52, + "end": 899.3, + "probability": 0.7299 + }, + { + "start": 899.6, + "end": 903.38, + "probability": 0.9861 + }, + { + "start": 903.7, + "end": 907.02, + "probability": 0.956 + }, + { + "start": 907.6, + "end": 909.0, + "probability": 0.9502 + }, + { + "start": 909.1, + "end": 910.52, + "probability": 0.9917 + }, + { + "start": 911.06, + "end": 911.5, + "probability": 0.7255 + }, + { + "start": 912.18, + "end": 914.54, + "probability": 0.7987 + }, + { + "start": 915.5, + "end": 919.14, + "probability": 0.9578 + }, + { + "start": 919.18, + "end": 921.44, + "probability": 0.9624 + }, + { + "start": 938.98, + "end": 940.26, + "probability": 0.6827 + }, + { + "start": 942.16, + "end": 943.74, + "probability": 0.8809 + }, + { + "start": 943.9, + "end": 944.64, + "probability": 0.903 + }, + { + "start": 945.12, + "end": 949.32, + "probability": 0.9552 + }, + { + "start": 950.38, + "end": 955.04, + "probability": 0.9858 + }, + { + "start": 956.24, + "end": 958.08, + "probability": 0.9818 + }, + { + "start": 959.16, + "end": 962.3, + "probability": 0.852 + }, + { + "start": 962.8, + "end": 964.56, + "probability": 0.7157 + }, + { + "start": 965.38, + "end": 970.8, + "probability": 0.796 + }, + { + "start": 971.34, + "end": 974.16, + "probability": 0.9961 + }, + { + "start": 975.48, + "end": 978.02, + "probability": 0.979 + }, + { + "start": 979.16, + "end": 982.26, + "probability": 0.9484 + }, + { + "start": 982.78, + "end": 983.38, + "probability": 0.8025 + }, + { + "start": 983.9, + "end": 986.02, + "probability": 0.9464 + }, + { + "start": 987.1, + "end": 987.86, + "probability": 0.9255 + }, + { + "start": 988.58, + "end": 989.24, + "probability": 0.9004 + }, + { + "start": 990.42, + "end": 995.38, + "probability": 0.9953 + }, + { + "start": 995.84, + "end": 997.64, + "probability": 0.9631 + }, + { + "start": 998.5, + "end": 1005.42, + "probability": 0.9718 + }, + { + "start": 1006.38, + "end": 1007.74, + "probability": 0.8345 + }, + { + "start": 1009.24, + "end": 1011.08, + "probability": 0.992 + }, + { + "start": 1011.72, + "end": 1015.88, + "probability": 0.9976 + }, + { + "start": 1015.88, + "end": 1020.92, + "probability": 0.9773 + }, + { + "start": 1021.44, + "end": 1023.14, + "probability": 0.9768 + }, + { + "start": 1024.2, + "end": 1026.02, + "probability": 0.7812 + }, + { + "start": 1026.74, + "end": 1027.38, + "probability": 0.4709 + }, + { + "start": 1027.98, + "end": 1030.4, + "probability": 0.9269 + }, + { + "start": 1031.02, + "end": 1032.3, + "probability": 0.8584 + }, + { + "start": 1032.92, + "end": 1034.18, + "probability": 0.9884 + }, + { + "start": 1034.58, + "end": 1039.18, + "probability": 0.9873 + }, + { + "start": 1039.18, + "end": 1044.02, + "probability": 0.9788 + }, + { + "start": 1044.94, + "end": 1048.4, + "probability": 0.9806 + }, + { + "start": 1051.84, + "end": 1052.68, + "probability": 0.7593 + }, + { + "start": 1053.86, + "end": 1056.04, + "probability": 0.9559 + }, + { + "start": 1057.5, + "end": 1064.78, + "probability": 0.9834 + }, + { + "start": 1066.24, + "end": 1067.24, + "probability": 0.7944 + }, + { + "start": 1067.74, + "end": 1068.58, + "probability": 0.9783 + }, + { + "start": 1069.08, + "end": 1073.0, + "probability": 0.9199 + }, + { + "start": 1073.92, + "end": 1075.3, + "probability": 0.5958 + }, + { + "start": 1076.5, + "end": 1080.38, + "probability": 0.8226 + }, + { + "start": 1080.98, + "end": 1082.82, + "probability": 0.9534 + }, + { + "start": 1083.66, + "end": 1085.14, + "probability": 0.9969 + }, + { + "start": 1085.84, + "end": 1088.42, + "probability": 0.9879 + }, + { + "start": 1089.42, + "end": 1090.48, + "probability": 0.9893 + }, + { + "start": 1091.26, + "end": 1091.87, + "probability": 0.5525 + }, + { + "start": 1093.1, + "end": 1093.5, + "probability": 0.4514 + }, + { + "start": 1095.64, + "end": 1097.22, + "probability": 0.9989 + }, + { + "start": 1098.68, + "end": 1104.74, + "probability": 0.9954 + }, + { + "start": 1106.4, + "end": 1107.62, + "probability": 0.9308 + }, + { + "start": 1108.34, + "end": 1108.7, + "probability": 0.8501 + }, + { + "start": 1110.4, + "end": 1111.74, + "probability": 0.7464 + }, + { + "start": 1112.74, + "end": 1114.78, + "probability": 0.9456 + }, + { + "start": 1116.3, + "end": 1121.8, + "probability": 0.9634 + }, + { + "start": 1122.48, + "end": 1123.32, + "probability": 0.9879 + }, + { + "start": 1124.34, + "end": 1125.26, + "probability": 0.8833 + }, + { + "start": 1126.16, + "end": 1134.06, + "probability": 0.9475 + }, + { + "start": 1134.16, + "end": 1138.52, + "probability": 0.9797 + }, + { + "start": 1140.26, + "end": 1141.52, + "probability": 0.7556 + }, + { + "start": 1142.12, + "end": 1144.0, + "probability": 0.9626 + }, + { + "start": 1144.52, + "end": 1145.72, + "probability": 0.999 + }, + { + "start": 1148.12, + "end": 1150.5, + "probability": 0.843 + }, + { + "start": 1150.92, + "end": 1152.0, + "probability": 0.9472 + }, + { + "start": 1153.3, + "end": 1157.98, + "probability": 0.9827 + }, + { + "start": 1157.98, + "end": 1160.98, + "probability": 0.997 + }, + { + "start": 1161.98, + "end": 1162.92, + "probability": 0.9201 + }, + { + "start": 1163.68, + "end": 1165.46, + "probability": 0.9336 + }, + { + "start": 1166.76, + "end": 1169.72, + "probability": 0.9984 + }, + { + "start": 1170.66, + "end": 1173.04, + "probability": 0.9989 + }, + { + "start": 1174.32, + "end": 1175.7, + "probability": 0.9961 + }, + { + "start": 1175.78, + "end": 1177.82, + "probability": 0.9886 + }, + { + "start": 1178.54, + "end": 1179.58, + "probability": 0.9875 + }, + { + "start": 1179.78, + "end": 1183.92, + "probability": 0.7663 + }, + { + "start": 1184.84, + "end": 1188.16, + "probability": 0.9888 + }, + { + "start": 1188.88, + "end": 1190.87, + "probability": 0.9895 + }, + { + "start": 1191.54, + "end": 1192.94, + "probability": 0.8746 + }, + { + "start": 1193.54, + "end": 1194.12, + "probability": 0.7634 + }, + { + "start": 1194.76, + "end": 1198.08, + "probability": 0.9839 + }, + { + "start": 1199.3, + "end": 1200.58, + "probability": 0.3805 + }, + { + "start": 1201.26, + "end": 1202.42, + "probability": 0.8973 + }, + { + "start": 1203.42, + "end": 1206.72, + "probability": 0.9985 + }, + { + "start": 1206.72, + "end": 1210.26, + "probability": 0.9965 + }, + { + "start": 1210.44, + "end": 1210.72, + "probability": 0.7512 + }, + { + "start": 1211.64, + "end": 1212.39, + "probability": 0.969 + }, + { + "start": 1213.16, + "end": 1214.72, + "probability": 0.9584 + }, + { + "start": 1215.24, + "end": 1219.38, + "probability": 0.9835 + }, + { + "start": 1219.92, + "end": 1220.71, + "probability": 0.2913 + }, + { + "start": 1221.62, + "end": 1224.12, + "probability": 0.9937 + }, + { + "start": 1224.9, + "end": 1230.74, + "probability": 0.9844 + }, + { + "start": 1233.26, + "end": 1235.12, + "probability": 0.9722 + }, + { + "start": 1236.96, + "end": 1238.2, + "probability": 0.8686 + }, + { + "start": 1238.82, + "end": 1242.22, + "probability": 0.8564 + }, + { + "start": 1243.1, + "end": 1244.42, + "probability": 0.7312 + }, + { + "start": 1245.26, + "end": 1246.22, + "probability": 0.8901 + }, + { + "start": 1246.78, + "end": 1247.78, + "probability": 0.8203 + }, + { + "start": 1248.08, + "end": 1249.16, + "probability": 0.9061 + }, + { + "start": 1249.58, + "end": 1250.6, + "probability": 0.9654 + }, + { + "start": 1250.86, + "end": 1251.86, + "probability": 0.8149 + }, + { + "start": 1252.24, + "end": 1254.34, + "probability": 0.9399 + }, + { + "start": 1255.94, + "end": 1260.98, + "probability": 0.9946 + }, + { + "start": 1262.42, + "end": 1265.7, + "probability": 0.9844 + }, + { + "start": 1269.98, + "end": 1273.14, + "probability": 0.7792 + }, + { + "start": 1274.04, + "end": 1278.9, + "probability": 0.9967 + }, + { + "start": 1279.6, + "end": 1281.12, + "probability": 0.9993 + }, + { + "start": 1281.86, + "end": 1284.36, + "probability": 0.9951 + }, + { + "start": 1285.7, + "end": 1285.98, + "probability": 0.5482 + }, + { + "start": 1286.6, + "end": 1290.74, + "probability": 0.9961 + }, + { + "start": 1291.32, + "end": 1293.26, + "probability": 0.9879 + }, + { + "start": 1294.64, + "end": 1297.02, + "probability": 0.9903 + }, + { + "start": 1297.88, + "end": 1298.96, + "probability": 0.9972 + }, + { + "start": 1299.62, + "end": 1304.36, + "probability": 0.9769 + }, + { + "start": 1304.96, + "end": 1308.68, + "probability": 0.9941 + }, + { + "start": 1310.0, + "end": 1312.6, + "probability": 0.9941 + }, + { + "start": 1314.78, + "end": 1316.54, + "probability": 0.9977 + }, + { + "start": 1318.22, + "end": 1322.62, + "probability": 0.9791 + }, + { + "start": 1323.56, + "end": 1324.46, + "probability": 0.9467 + }, + { + "start": 1326.14, + "end": 1326.4, + "probability": 0.6398 + }, + { + "start": 1327.22, + "end": 1329.6, + "probability": 0.7956 + }, + { + "start": 1330.68, + "end": 1331.8, + "probability": 0.8821 + }, + { + "start": 1332.92, + "end": 1337.27, + "probability": 0.9525 + }, + { + "start": 1338.44, + "end": 1340.1, + "probability": 0.0935 + }, + { + "start": 1341.26, + "end": 1342.14, + "probability": 0.0025 + }, + { + "start": 1343.64, + "end": 1344.76, + "probability": 0.0913 + }, + { + "start": 1345.4, + "end": 1345.7, + "probability": 0.4708 + }, + { + "start": 1346.16, + "end": 1347.04, + "probability": 0.8618 + }, + { + "start": 1347.14, + "end": 1347.82, + "probability": 0.5828 + }, + { + "start": 1347.88, + "end": 1348.46, + "probability": 0.8675 + }, + { + "start": 1348.78, + "end": 1350.76, + "probability": 0.7586 + }, + { + "start": 1353.1, + "end": 1355.42, + "probability": 0.6355 + }, + { + "start": 1356.22, + "end": 1357.06, + "probability": 0.6693 + }, + { + "start": 1357.18, + "end": 1357.28, + "probability": 0.9611 + }, + { + "start": 1359.56, + "end": 1359.84, + "probability": 0.8765 + }, + { + "start": 1360.76, + "end": 1361.82, + "probability": 0.7577 + }, + { + "start": 1363.16, + "end": 1363.16, + "probability": 0.4391 + }, + { + "start": 1363.44, + "end": 1364.42, + "probability": 0.9185 + }, + { + "start": 1365.24, + "end": 1366.98, + "probability": 0.9504 + }, + { + "start": 1368.0, + "end": 1368.96, + "probability": 0.7267 + }, + { + "start": 1369.56, + "end": 1370.6, + "probability": 0.8665 + }, + { + "start": 1371.66, + "end": 1372.26, + "probability": 0.8024 + }, + { + "start": 1372.96, + "end": 1375.6, + "probability": 0.9944 + }, + { + "start": 1376.24, + "end": 1377.54, + "probability": 0.8656 + }, + { + "start": 1378.72, + "end": 1382.16, + "probability": 0.9942 + }, + { + "start": 1383.1, + "end": 1384.48, + "probability": 0.9953 + }, + { + "start": 1385.06, + "end": 1387.4, + "probability": 0.9824 + }, + { + "start": 1388.1, + "end": 1389.9, + "probability": 0.664 + }, + { + "start": 1390.42, + "end": 1392.4, + "probability": 0.82 + }, + { + "start": 1393.48, + "end": 1396.5, + "probability": 0.9879 + }, + { + "start": 1398.16, + "end": 1402.42, + "probability": 0.9831 + }, + { + "start": 1403.26, + "end": 1403.68, + "probability": 0.9607 + }, + { + "start": 1404.28, + "end": 1404.7, + "probability": 0.9443 + }, + { + "start": 1406.28, + "end": 1410.4, + "probability": 0.9692 + }, + { + "start": 1412.26, + "end": 1413.38, + "probability": 0.8254 + }, + { + "start": 1413.44, + "end": 1416.1, + "probability": 0.9942 + }, + { + "start": 1417.18, + "end": 1418.3, + "probability": 0.9805 + }, + { + "start": 1420.14, + "end": 1421.0, + "probability": 0.9827 + }, + { + "start": 1421.96, + "end": 1424.56, + "probability": 0.9668 + }, + { + "start": 1425.32, + "end": 1428.92, + "probability": 0.9907 + }, + { + "start": 1429.88, + "end": 1431.84, + "probability": 0.77 + }, + { + "start": 1432.7, + "end": 1433.42, + "probability": 0.2767 + }, + { + "start": 1434.0, + "end": 1439.96, + "probability": 0.9937 + }, + { + "start": 1440.5, + "end": 1441.62, + "probability": 0.9779 + }, + { + "start": 1442.06, + "end": 1443.0, + "probability": 0.9597 + }, + { + "start": 1443.86, + "end": 1445.5, + "probability": 0.9985 + }, + { + "start": 1446.98, + "end": 1448.0, + "probability": 0.8391 + }, + { + "start": 1448.62, + "end": 1450.24, + "probability": 0.741 + }, + { + "start": 1451.02, + "end": 1456.64, + "probability": 0.9893 + }, + { + "start": 1457.9, + "end": 1458.8, + "probability": 0.7138 + }, + { + "start": 1459.8, + "end": 1460.16, + "probability": 0.8358 + }, + { + "start": 1460.9, + "end": 1461.94, + "probability": 0.9702 + }, + { + "start": 1462.8, + "end": 1464.76, + "probability": 0.9129 + }, + { + "start": 1466.22, + "end": 1468.72, + "probability": 0.9256 + }, + { + "start": 1469.52, + "end": 1470.86, + "probability": 0.9898 + }, + { + "start": 1472.36, + "end": 1473.7, + "probability": 0.9868 + }, + { + "start": 1474.28, + "end": 1478.04, + "probability": 0.9642 + }, + { + "start": 1479.88, + "end": 1482.14, + "probability": 0.8982 + }, + { + "start": 1483.21, + "end": 1485.88, + "probability": 0.998 + }, + { + "start": 1487.52, + "end": 1492.36, + "probability": 0.9893 + }, + { + "start": 1493.62, + "end": 1496.67, + "probability": 0.9897 + }, + { + "start": 1498.3, + "end": 1501.16, + "probability": 0.9985 + }, + { + "start": 1501.96, + "end": 1503.36, + "probability": 0.9286 + }, + { + "start": 1504.78, + "end": 1505.94, + "probability": 0.9937 + }, + { + "start": 1507.02, + "end": 1508.1, + "probability": 0.9893 + }, + { + "start": 1509.12, + "end": 1510.34, + "probability": 0.9719 + }, + { + "start": 1513.82, + "end": 1515.02, + "probability": 0.8304 + }, + { + "start": 1516.06, + "end": 1516.76, + "probability": 0.9193 + }, + { + "start": 1517.88, + "end": 1519.92, + "probability": 0.9982 + }, + { + "start": 1521.44, + "end": 1524.94, + "probability": 0.9957 + }, + { + "start": 1526.18, + "end": 1530.08, + "probability": 0.999 + }, + { + "start": 1530.52, + "end": 1530.88, + "probability": 0.7755 + }, + { + "start": 1531.9, + "end": 1534.34, + "probability": 0.9149 + }, + { + "start": 1535.12, + "end": 1536.58, + "probability": 0.9886 + }, + { + "start": 1537.2, + "end": 1538.48, + "probability": 0.9517 + }, + { + "start": 1540.2, + "end": 1546.26, + "probability": 0.6101 + }, + { + "start": 1559.14, + "end": 1562.62, + "probability": 0.7985 + }, + { + "start": 1563.52, + "end": 1566.52, + "probability": 0.6759 + }, + { + "start": 1567.86, + "end": 1572.68, + "probability": 0.9851 + }, + { + "start": 1572.68, + "end": 1577.6, + "probability": 0.9974 + }, + { + "start": 1578.86, + "end": 1584.72, + "probability": 0.994 + }, + { + "start": 1585.82, + "end": 1588.38, + "probability": 0.9955 + }, + { + "start": 1589.42, + "end": 1592.22, + "probability": 0.9414 + }, + { + "start": 1593.0, + "end": 1598.98, + "probability": 0.9949 + }, + { + "start": 1600.7, + "end": 1603.6, + "probability": 0.8331 + }, + { + "start": 1604.46, + "end": 1606.64, + "probability": 0.9223 + }, + { + "start": 1608.52, + "end": 1610.02, + "probability": 0.9776 + }, + { + "start": 1610.76, + "end": 1613.66, + "probability": 0.9636 + }, + { + "start": 1614.3, + "end": 1616.78, + "probability": 0.9989 + }, + { + "start": 1617.7, + "end": 1621.52, + "probability": 0.873 + }, + { + "start": 1622.36, + "end": 1624.84, + "probability": 0.5676 + }, + { + "start": 1625.72, + "end": 1627.26, + "probability": 0.8859 + }, + { + "start": 1627.86, + "end": 1628.94, + "probability": 0.9093 + }, + { + "start": 1629.54, + "end": 1631.32, + "probability": 0.9529 + }, + { + "start": 1632.52, + "end": 1633.7, + "probability": 0.9972 + }, + { + "start": 1634.42, + "end": 1637.32, + "probability": 0.9841 + }, + { + "start": 1638.32, + "end": 1644.82, + "probability": 0.9965 + }, + { + "start": 1645.64, + "end": 1646.32, + "probability": 0.678 + }, + { + "start": 1646.96, + "end": 1651.38, + "probability": 0.9773 + }, + { + "start": 1651.38, + "end": 1654.72, + "probability": 0.8983 + }, + { + "start": 1655.36, + "end": 1657.04, + "probability": 0.8943 + }, + { + "start": 1658.94, + "end": 1662.84, + "probability": 0.9677 + }, + { + "start": 1663.98, + "end": 1667.58, + "probability": 0.9761 + }, + { + "start": 1668.22, + "end": 1672.48, + "probability": 0.9395 + }, + { + "start": 1674.2, + "end": 1676.56, + "probability": 0.9911 + }, + { + "start": 1677.1, + "end": 1678.42, + "probability": 0.9414 + }, + { + "start": 1679.84, + "end": 1681.28, + "probability": 0.9711 + }, + { + "start": 1681.46, + "end": 1684.42, + "probability": 0.9984 + }, + { + "start": 1685.6, + "end": 1687.58, + "probability": 0.9946 + }, + { + "start": 1688.12, + "end": 1689.04, + "probability": 0.8434 + }, + { + "start": 1691.22, + "end": 1693.26, + "probability": 0.9951 + }, + { + "start": 1694.64, + "end": 1699.58, + "probability": 0.9901 + }, + { + "start": 1700.86, + "end": 1704.44, + "probability": 0.9637 + }, + { + "start": 1705.44, + "end": 1708.9, + "probability": 0.9985 + }, + { + "start": 1711.9, + "end": 1713.02, + "probability": 0.5798 + }, + { + "start": 1714.04, + "end": 1716.16, + "probability": 0.9263 + }, + { + "start": 1716.64, + "end": 1718.04, + "probability": 0.9814 + }, + { + "start": 1719.18, + "end": 1722.74, + "probability": 0.9969 + }, + { + "start": 1723.5, + "end": 1724.9, + "probability": 0.9884 + }, + { + "start": 1725.02, + "end": 1726.98, + "probability": 0.9955 + }, + { + "start": 1727.42, + "end": 1729.28, + "probability": 0.998 + }, + { + "start": 1730.08, + "end": 1731.16, + "probability": 0.9846 + }, + { + "start": 1731.72, + "end": 1732.78, + "probability": 0.9897 + }, + { + "start": 1734.5, + "end": 1735.74, + "probability": 0.8171 + }, + { + "start": 1736.38, + "end": 1737.48, + "probability": 0.9229 + }, + { + "start": 1738.98, + "end": 1742.2, + "probability": 0.9205 + }, + { + "start": 1743.2, + "end": 1748.48, + "probability": 0.965 + }, + { + "start": 1748.68, + "end": 1754.04, + "probability": 0.9944 + }, + { + "start": 1755.14, + "end": 1756.8, + "probability": 0.6176 + }, + { + "start": 1757.6, + "end": 1759.72, + "probability": 0.824 + }, + { + "start": 1760.52, + "end": 1762.18, + "probability": 0.993 + }, + { + "start": 1762.72, + "end": 1764.56, + "probability": 0.9983 + }, + { + "start": 1765.88, + "end": 1771.46, + "probability": 0.9792 + }, + { + "start": 1772.0, + "end": 1774.68, + "probability": 0.9976 + }, + { + "start": 1775.12, + "end": 1776.44, + "probability": 0.5262 + }, + { + "start": 1776.52, + "end": 1780.94, + "probability": 0.9818 + }, + { + "start": 1782.4, + "end": 1783.76, + "probability": 0.7031 + }, + { + "start": 1784.38, + "end": 1786.44, + "probability": 0.9423 + }, + { + "start": 1786.94, + "end": 1793.12, + "probability": 0.9939 + }, + { + "start": 1794.46, + "end": 1796.08, + "probability": 0.8475 + }, + { + "start": 1797.06, + "end": 1801.46, + "probability": 0.9961 + }, + { + "start": 1802.66, + "end": 1803.42, + "probability": 0.5505 + }, + { + "start": 1804.06, + "end": 1805.6, + "probability": 0.9688 + }, + { + "start": 1806.54, + "end": 1812.88, + "probability": 0.988 + }, + { + "start": 1813.1, + "end": 1814.18, + "probability": 0.9653 + }, + { + "start": 1814.28, + "end": 1814.74, + "probability": 0.8829 + }, + { + "start": 1815.42, + "end": 1817.24, + "probability": 0.9927 + }, + { + "start": 1817.84, + "end": 1819.82, + "probability": 0.7727 + }, + { + "start": 1820.44, + "end": 1823.06, + "probability": 0.9894 + }, + { + "start": 1823.64, + "end": 1824.26, + "probability": 0.71 + }, + { + "start": 1824.82, + "end": 1827.48, + "probability": 0.9846 + }, + { + "start": 1828.16, + "end": 1831.1, + "probability": 0.9907 + }, + { + "start": 1831.56, + "end": 1831.72, + "probability": 0.8274 + }, + { + "start": 1831.82, + "end": 1832.46, + "probability": 0.78 + }, + { + "start": 1833.02, + "end": 1834.66, + "probability": 0.7246 + }, + { + "start": 1835.18, + "end": 1841.06, + "probability": 0.9878 + }, + { + "start": 1841.74, + "end": 1842.74, + "probability": 0.8507 + }, + { + "start": 1843.76, + "end": 1847.7, + "probability": 0.9709 + }, + { + "start": 1848.06, + "end": 1850.84, + "probability": 0.962 + }, + { + "start": 1851.64, + "end": 1853.48, + "probability": 0.6343 + }, + { + "start": 1854.04, + "end": 1855.18, + "probability": 0.941 + }, + { + "start": 1855.84, + "end": 1862.1, + "probability": 0.9842 + }, + { + "start": 1863.96, + "end": 1867.38, + "probability": 0.9985 + }, + { + "start": 1867.9, + "end": 1874.84, + "probability": 0.993 + }, + { + "start": 1875.48, + "end": 1877.78, + "probability": 0.9919 + }, + { + "start": 1878.76, + "end": 1881.94, + "probability": 0.9476 + }, + { + "start": 1882.98, + "end": 1885.1, + "probability": 0.9946 + }, + { + "start": 1889.48, + "end": 1889.92, + "probability": 0.6753 + }, + { + "start": 1889.92, + "end": 1892.58, + "probability": 0.6658 + }, + { + "start": 1893.46, + "end": 1895.48, + "probability": 0.9814 + }, + { + "start": 1896.4, + "end": 1901.06, + "probability": 0.9702 + }, + { + "start": 1901.56, + "end": 1902.26, + "probability": 0.9553 + }, + { + "start": 1902.62, + "end": 1904.3, + "probability": 0.789 + }, + { + "start": 1905.16, + "end": 1907.02, + "probability": 0.9807 + }, + { + "start": 1907.56, + "end": 1912.08, + "probability": 0.9509 + }, + { + "start": 1912.56, + "end": 1915.62, + "probability": 0.9871 + }, + { + "start": 1916.54, + "end": 1921.42, + "probability": 0.9225 + }, + { + "start": 1922.36, + "end": 1926.16, + "probability": 0.9138 + }, + { + "start": 1926.56, + "end": 1930.04, + "probability": 0.9918 + }, + { + "start": 1930.98, + "end": 1936.04, + "probability": 0.9895 + }, + { + "start": 1936.44, + "end": 1940.44, + "probability": 0.9681 + }, + { + "start": 1941.1, + "end": 1947.3, + "probability": 0.994 + }, + { + "start": 1948.1, + "end": 1950.74, + "probability": 0.9731 + }, + { + "start": 1951.36, + "end": 1954.12, + "probability": 0.9854 + }, + { + "start": 1954.12, + "end": 1957.78, + "probability": 0.9736 + }, + { + "start": 1959.74, + "end": 1960.78, + "probability": 0.7484 + }, + { + "start": 1962.06, + "end": 1962.94, + "probability": 0.8579 + }, + { + "start": 1963.5, + "end": 1965.42, + "probability": 0.9782 + }, + { + "start": 1965.74, + "end": 1967.64, + "probability": 0.9648 + }, + { + "start": 1968.5, + "end": 1968.92, + "probability": 0.7106 + }, + { + "start": 1969.48, + "end": 1971.24, + "probability": 0.9475 + }, + { + "start": 1971.92, + "end": 1975.92, + "probability": 0.9855 + }, + { + "start": 1976.44, + "end": 1978.52, + "probability": 0.8846 + }, + { + "start": 1979.0, + "end": 1981.48, + "probability": 0.8717 + }, + { + "start": 1981.54, + "end": 1983.01, + "probability": 0.9043 + }, + { + "start": 1983.84, + "end": 1985.88, + "probability": 0.964 + }, + { + "start": 1985.88, + "end": 1989.9, + "probability": 0.978 + }, + { + "start": 1990.56, + "end": 1993.54, + "probability": 0.8546 + }, + { + "start": 1994.14, + "end": 1997.22, + "probability": 0.892 + }, + { + "start": 1997.92, + "end": 2001.36, + "probability": 0.9019 + }, + { + "start": 2002.02, + "end": 2006.44, + "probability": 0.9932 + }, + { + "start": 2006.76, + "end": 2010.8, + "probability": 0.8926 + }, + { + "start": 2011.36, + "end": 2015.02, + "probability": 0.9978 + }, + { + "start": 2015.94, + "end": 2019.12, + "probability": 0.8317 + }, + { + "start": 2020.02, + "end": 2025.6, + "probability": 0.981 + }, + { + "start": 2026.44, + "end": 2028.18, + "probability": 0.9802 + }, + { + "start": 2029.0, + "end": 2030.82, + "probability": 0.996 + }, + { + "start": 2030.82, + "end": 2033.92, + "probability": 0.9966 + }, + { + "start": 2034.76, + "end": 2040.68, + "probability": 0.9923 + }, + { + "start": 2041.18, + "end": 2043.22, + "probability": 0.9232 + }, + { + "start": 2044.44, + "end": 2047.4, + "probability": 0.9066 + }, + { + "start": 2048.6, + "end": 2050.14, + "probability": 0.979 + }, + { + "start": 2050.8, + "end": 2052.08, + "probability": 0.8018 + }, + { + "start": 2052.64, + "end": 2056.12, + "probability": 0.9727 + }, + { + "start": 2056.74, + "end": 2057.66, + "probability": 0.7642 + }, + { + "start": 2058.26, + "end": 2059.86, + "probability": 0.981 + }, + { + "start": 2060.54, + "end": 2062.74, + "probability": 0.7795 + }, + { + "start": 2063.3, + "end": 2066.36, + "probability": 0.9913 + }, + { + "start": 2066.9, + "end": 2069.08, + "probability": 0.828 + }, + { + "start": 2069.36, + "end": 2072.44, + "probability": 0.9661 + }, + { + "start": 2072.52, + "end": 2073.02, + "probability": 0.8643 + }, + { + "start": 2073.48, + "end": 2079.94, + "probability": 0.9938 + }, + { + "start": 2080.26, + "end": 2084.66, + "probability": 0.9969 + }, + { + "start": 2085.48, + "end": 2085.6, + "probability": 0.0784 + }, + { + "start": 2085.66, + "end": 2085.88, + "probability": 0.8624 + }, + { + "start": 2086.04, + "end": 2088.38, + "probability": 0.8948 + }, + { + "start": 2088.46, + "end": 2089.14, + "probability": 0.7639 + }, + { + "start": 2090.42, + "end": 2094.02, + "probability": 0.9799 + }, + { + "start": 2095.04, + "end": 2100.02, + "probability": 0.9862 + }, + { + "start": 2100.6, + "end": 2101.58, + "probability": 0.8548 + }, + { + "start": 2102.24, + "end": 2105.36, + "probability": 0.9924 + }, + { + "start": 2106.14, + "end": 2107.64, + "probability": 0.7477 + }, + { + "start": 2108.22, + "end": 2109.08, + "probability": 0.8239 + }, + { + "start": 2109.66, + "end": 2110.54, + "probability": 0.9765 + }, + { + "start": 2111.06, + "end": 2112.42, + "probability": 0.9644 + }, + { + "start": 2113.26, + "end": 2119.0, + "probability": 0.9977 + }, + { + "start": 2119.54, + "end": 2123.08, + "probability": 0.9901 + }, + { + "start": 2123.66, + "end": 2126.86, + "probability": 0.9959 + }, + { + "start": 2127.8, + "end": 2130.36, + "probability": 0.8634 + }, + { + "start": 2131.24, + "end": 2134.1, + "probability": 0.9977 + }, + { + "start": 2134.36, + "end": 2138.1, + "probability": 0.9985 + }, + { + "start": 2138.88, + "end": 2141.6, + "probability": 0.9892 + }, + { + "start": 2142.02, + "end": 2142.76, + "probability": 0.8957 + }, + { + "start": 2142.98, + "end": 2143.94, + "probability": 0.7383 + }, + { + "start": 2144.46, + "end": 2146.74, + "probability": 0.9614 + }, + { + "start": 2147.6, + "end": 2152.44, + "probability": 0.9951 + }, + { + "start": 2152.76, + "end": 2157.46, + "probability": 0.9948 + }, + { + "start": 2158.16, + "end": 2160.1, + "probability": 0.9648 + }, + { + "start": 2160.84, + "end": 2165.84, + "probability": 0.9982 + }, + { + "start": 2166.28, + "end": 2168.44, + "probability": 0.9918 + }, + { + "start": 2168.54, + "end": 2169.52, + "probability": 0.9683 + }, + { + "start": 2169.68, + "end": 2173.86, + "probability": 0.9978 + }, + { + "start": 2173.86, + "end": 2179.98, + "probability": 0.9974 + }, + { + "start": 2181.86, + "end": 2183.1, + "probability": 0.6622 + }, + { + "start": 2183.42, + "end": 2186.56, + "probability": 0.8587 + }, + { + "start": 2186.64, + "end": 2187.84, + "probability": 0.9978 + }, + { + "start": 2188.7, + "end": 2192.1, + "probability": 0.9893 + }, + { + "start": 2192.52, + "end": 2193.26, + "probability": 0.9522 + }, + { + "start": 2193.5, + "end": 2194.62, + "probability": 0.783 + }, + { + "start": 2195.2, + "end": 2198.26, + "probability": 0.9898 + }, + { + "start": 2198.26, + "end": 2203.3, + "probability": 0.9966 + }, + { + "start": 2203.84, + "end": 2206.36, + "probability": 0.9978 + }, + { + "start": 2206.36, + "end": 2208.46, + "probability": 0.9976 + }, + { + "start": 2209.08, + "end": 2213.74, + "probability": 0.9905 + }, + { + "start": 2214.34, + "end": 2214.98, + "probability": 0.6673 + }, + { + "start": 2215.52, + "end": 2217.82, + "probability": 0.9984 + }, + { + "start": 2218.24, + "end": 2220.96, + "probability": 0.9914 + }, + { + "start": 2221.48, + "end": 2223.54, + "probability": 0.9685 + }, + { + "start": 2223.94, + "end": 2226.0, + "probability": 0.993 + }, + { + "start": 2226.36, + "end": 2227.6, + "probability": 0.9406 + }, + { + "start": 2228.18, + "end": 2231.02, + "probability": 0.9727 + }, + { + "start": 2231.66, + "end": 2232.98, + "probability": 0.7424 + }, + { + "start": 2233.6, + "end": 2234.19, + "probability": 0.9688 + }, + { + "start": 2234.78, + "end": 2238.18, + "probability": 0.9976 + }, + { + "start": 2238.42, + "end": 2238.86, + "probability": 0.8389 + }, + { + "start": 2240.04, + "end": 2242.42, + "probability": 0.7463 + }, + { + "start": 2244.48, + "end": 2248.42, + "probability": 0.9962 + }, + { + "start": 2249.3, + "end": 2254.92, + "probability": 0.9897 + }, + { + "start": 2256.42, + "end": 2257.12, + "probability": 0.5252 + }, + { + "start": 2257.22, + "end": 2258.32, + "probability": 0.9741 + }, + { + "start": 2266.38, + "end": 2267.22, + "probability": 0.6946 + }, + { + "start": 2267.22, + "end": 2268.1, + "probability": 0.667 + }, + { + "start": 2268.22, + "end": 2271.62, + "probability": 0.9577 + }, + { + "start": 2272.44, + "end": 2274.34, + "probability": 0.8985 + }, + { + "start": 2275.22, + "end": 2276.14, + "probability": 0.937 + }, + { + "start": 2277.14, + "end": 2277.42, + "probability": 0.9222 + }, + { + "start": 2279.04, + "end": 2282.02, + "probability": 0.9973 + }, + { + "start": 2282.24, + "end": 2284.46, + "probability": 0.9744 + }, + { + "start": 2285.38, + "end": 2288.74, + "probability": 0.999 + }, + { + "start": 2289.54, + "end": 2293.86, + "probability": 0.9893 + }, + { + "start": 2294.1, + "end": 2294.92, + "probability": 0.9143 + }, + { + "start": 2295.6, + "end": 2299.24, + "probability": 0.9723 + }, + { + "start": 2299.88, + "end": 2304.8, + "probability": 0.9302 + }, + { + "start": 2305.1, + "end": 2305.76, + "probability": 0.6043 + }, + { + "start": 2306.18, + "end": 2306.68, + "probability": 0.8417 + }, + { + "start": 2308.5, + "end": 2309.58, + "probability": 0.9316 + }, + { + "start": 2310.52, + "end": 2312.56, + "probability": 0.8229 + }, + { + "start": 2313.4, + "end": 2314.46, + "probability": 0.9556 + }, + { + "start": 2314.56, + "end": 2315.42, + "probability": 0.964 + }, + { + "start": 2315.48, + "end": 2316.6, + "probability": 0.998 + }, + { + "start": 2317.66, + "end": 2319.68, + "probability": 0.9863 + }, + { + "start": 2320.32, + "end": 2320.98, + "probability": 0.8582 + }, + { + "start": 2322.36, + "end": 2322.72, + "probability": 0.7165 + }, + { + "start": 2324.3, + "end": 2325.28, + "probability": 0.8076 + }, + { + "start": 2325.98, + "end": 2328.0, + "probability": 0.9976 + }, + { + "start": 2328.12, + "end": 2330.12, + "probability": 0.8634 + }, + { + "start": 2330.78, + "end": 2331.7, + "probability": 0.8636 + }, + { + "start": 2331.78, + "end": 2333.0, + "probability": 0.9938 + }, + { + "start": 2333.08, + "end": 2333.52, + "probability": 0.9253 + }, + { + "start": 2334.44, + "end": 2337.08, + "probability": 0.999 + }, + { + "start": 2337.98, + "end": 2338.92, + "probability": 0.6909 + }, + { + "start": 2339.16, + "end": 2339.78, + "probability": 0.7341 + }, + { + "start": 2340.82, + "end": 2341.08, + "probability": 0.9596 + }, + { + "start": 2342.4, + "end": 2343.16, + "probability": 0.9767 + }, + { + "start": 2344.58, + "end": 2346.58, + "probability": 0.9917 + }, + { + "start": 2347.32, + "end": 2347.9, + "probability": 0.9209 + }, + { + "start": 2348.74, + "end": 2349.38, + "probability": 0.8627 + }, + { + "start": 2350.36, + "end": 2351.16, + "probability": 0.9875 + }, + { + "start": 2352.32, + "end": 2354.0, + "probability": 0.9823 + }, + { + "start": 2354.9, + "end": 2355.56, + "probability": 0.7381 + }, + { + "start": 2355.98, + "end": 2356.84, + "probability": 0.988 + }, + { + "start": 2357.38, + "end": 2358.22, + "probability": 0.9557 + }, + { + "start": 2358.22, + "end": 2359.02, + "probability": 0.9951 + }, + { + "start": 2359.14, + "end": 2360.04, + "probability": 0.6814 + }, + { + "start": 2360.06, + "end": 2360.64, + "probability": 0.8792 + }, + { + "start": 2361.46, + "end": 2362.96, + "probability": 0.9932 + }, + { + "start": 2363.7, + "end": 2365.12, + "probability": 0.5802 + }, + { + "start": 2366.04, + "end": 2370.14, + "probability": 0.9709 + }, + { + "start": 2371.08, + "end": 2372.72, + "probability": 0.7502 + }, + { + "start": 2373.16, + "end": 2373.56, + "probability": 0.2467 + }, + { + "start": 2373.78, + "end": 2377.28, + "probability": 0.972 + }, + { + "start": 2378.64, + "end": 2379.08, + "probability": 0.0593 + }, + { + "start": 2379.08, + "end": 2379.08, + "probability": 0.1419 + }, + { + "start": 2379.08, + "end": 2379.08, + "probability": 0.4389 + }, + { + "start": 2379.08, + "end": 2381.62, + "probability": 0.8656 + }, + { + "start": 2381.98, + "end": 2383.8, + "probability": 0.9198 + }, + { + "start": 2384.08, + "end": 2386.77, + "probability": 0.0348 + }, + { + "start": 2386.86, + "end": 2389.08, + "probability": 0.0139 + }, + { + "start": 2389.08, + "end": 2389.26, + "probability": 0.0331 + }, + { + "start": 2389.26, + "end": 2389.72, + "probability": 0.2055 + }, + { + "start": 2389.96, + "end": 2391.7, + "probability": 0.9038 + }, + { + "start": 2392.28, + "end": 2394.02, + "probability": 0.9875 + }, + { + "start": 2394.12, + "end": 2395.45, + "probability": 0.972 + }, + { + "start": 2395.68, + "end": 2397.51, + "probability": 0.9909 + }, + { + "start": 2397.96, + "end": 2399.38, + "probability": 0.9792 + }, + { + "start": 2399.76, + "end": 2400.7, + "probability": 0.6264 + }, + { + "start": 2401.38, + "end": 2404.24, + "probability": 0.9957 + }, + { + "start": 2405.32, + "end": 2408.32, + "probability": 0.9694 + }, + { + "start": 2408.88, + "end": 2412.38, + "probability": 0.992 + }, + { + "start": 2413.48, + "end": 2415.56, + "probability": 0.9471 + }, + { + "start": 2416.3, + "end": 2417.94, + "probability": 0.9975 + }, + { + "start": 2418.7, + "end": 2420.96, + "probability": 0.9857 + }, + { + "start": 2421.92, + "end": 2422.96, + "probability": 0.8179 + }, + { + "start": 2423.52, + "end": 2425.16, + "probability": 0.9969 + }, + { + "start": 2425.56, + "end": 2427.74, + "probability": 0.9631 + }, + { + "start": 2428.82, + "end": 2431.8, + "probability": 0.9988 + }, + { + "start": 2432.8, + "end": 2434.72, + "probability": 0.9789 + }, + { + "start": 2436.08, + "end": 2437.62, + "probability": 0.8146 + }, + { + "start": 2438.74, + "end": 2441.58, + "probability": 0.9778 + }, + { + "start": 2442.34, + "end": 2444.72, + "probability": 0.9941 + }, + { + "start": 2445.86, + "end": 2449.68, + "probability": 0.9968 + }, + { + "start": 2450.56, + "end": 2455.1, + "probability": 0.9985 + }, + { + "start": 2456.32, + "end": 2457.04, + "probability": 0.7617 + }, + { + "start": 2458.06, + "end": 2458.06, + "probability": 0.0673 + }, + { + "start": 2458.06, + "end": 2460.38, + "probability": 0.701 + }, + { + "start": 2460.66, + "end": 2461.52, + "probability": 0.8925 + }, + { + "start": 2463.16, + "end": 2464.02, + "probability": 0.8465 + }, + { + "start": 2465.54, + "end": 2467.62, + "probability": 0.8158 + }, + { + "start": 2468.84, + "end": 2469.4, + "probability": 0.6246 + }, + { + "start": 2470.34, + "end": 2471.8, + "probability": 0.9904 + }, + { + "start": 2472.72, + "end": 2474.42, + "probability": 0.8965 + }, + { + "start": 2474.98, + "end": 2476.94, + "probability": 0.9854 + }, + { + "start": 2477.98, + "end": 2480.36, + "probability": 0.9684 + }, + { + "start": 2481.04, + "end": 2484.06, + "probability": 0.9951 + }, + { + "start": 2484.66, + "end": 2485.28, + "probability": 0.7323 + }, + { + "start": 2486.12, + "end": 2487.08, + "probability": 0.982 + }, + { + "start": 2488.88, + "end": 2491.4, + "probability": 0.0659 + }, + { + "start": 2491.4, + "end": 2491.48, + "probability": 0.1194 + }, + { + "start": 2491.48, + "end": 2496.38, + "probability": 0.8181 + }, + { + "start": 2496.92, + "end": 2496.92, + "probability": 0.4521 + }, + { + "start": 2496.92, + "end": 2497.46, + "probability": 0.7703 + }, + { + "start": 2497.86, + "end": 2498.42, + "probability": 0.8896 + }, + { + "start": 2498.86, + "end": 2499.58, + "probability": 0.8535 + }, + { + "start": 2499.66, + "end": 2500.72, + "probability": 0.8346 + }, + { + "start": 2500.78, + "end": 2501.94, + "probability": 0.7108 + }, + { + "start": 2502.34, + "end": 2505.26, + "probability": 0.9663 + }, + { + "start": 2505.6, + "end": 2507.02, + "probability": 0.886 + }, + { + "start": 2507.84, + "end": 2510.33, + "probability": 0.991 + }, + { + "start": 2510.76, + "end": 2511.58, + "probability": 0.8803 + }, + { + "start": 2511.88, + "end": 2513.35, + "probability": 0.9482 + }, + { + "start": 2514.36, + "end": 2515.28, + "probability": 0.9963 + }, + { + "start": 2516.5, + "end": 2517.58, + "probability": 0.9298 + }, + { + "start": 2518.68, + "end": 2519.8, + "probability": 0.921 + }, + { + "start": 2520.88, + "end": 2524.6, + "probability": 0.985 + }, + { + "start": 2525.0, + "end": 2527.96, + "probability": 0.9923 + }, + { + "start": 2528.14, + "end": 2529.54, + "probability": 0.9827 + }, + { + "start": 2542.4, + "end": 2542.84, + "probability": 0.5718 + }, + { + "start": 2542.84, + "end": 2542.84, + "probability": 0.06 + }, + { + "start": 2542.84, + "end": 2542.84, + "probability": 0.1676 + }, + { + "start": 2542.84, + "end": 2542.84, + "probability": 0.0285 + }, + { + "start": 2542.84, + "end": 2542.84, + "probability": 0.0437 + }, + { + "start": 2542.84, + "end": 2544.22, + "probability": 0.4095 + }, + { + "start": 2544.22, + "end": 2547.12, + "probability": 0.7896 + }, + { + "start": 2548.76, + "end": 2551.14, + "probability": 0.8265 + }, + { + "start": 2552.0, + "end": 2555.67, + "probability": 0.9886 + }, + { + "start": 2555.98, + "end": 2557.92, + "probability": 0.9974 + }, + { + "start": 2558.54, + "end": 2561.66, + "probability": 0.9267 + }, + { + "start": 2562.3, + "end": 2563.23, + "probability": 0.9626 + }, + { + "start": 2564.22, + "end": 2565.7, + "probability": 0.9712 + }, + { + "start": 2566.2, + "end": 2569.28, + "probability": 0.9985 + }, + { + "start": 2570.88, + "end": 2571.96, + "probability": 0.9966 + }, + { + "start": 2573.1, + "end": 2574.22, + "probability": 0.8223 + }, + { + "start": 2575.26, + "end": 2576.06, + "probability": 0.8813 + }, + { + "start": 2577.38, + "end": 2578.7, + "probability": 0.9881 + }, + { + "start": 2579.42, + "end": 2582.22, + "probability": 0.9113 + }, + { + "start": 2582.32, + "end": 2583.46, + "probability": 0.6856 + }, + { + "start": 2584.4, + "end": 2587.08, + "probability": 0.9988 + }, + { + "start": 2587.18, + "end": 2588.3, + "probability": 0.8397 + }, + { + "start": 2589.5, + "end": 2591.68, + "probability": 0.9829 + }, + { + "start": 2592.96, + "end": 2593.6, + "probability": 0.9579 + }, + { + "start": 2595.22, + "end": 2596.12, + "probability": 0.6285 + }, + { + "start": 2597.22, + "end": 2599.3, + "probability": 0.9964 + }, + { + "start": 2600.04, + "end": 2601.82, + "probability": 0.9844 + }, + { + "start": 2602.36, + "end": 2604.06, + "probability": 0.9965 + }, + { + "start": 2604.76, + "end": 2606.36, + "probability": 0.8238 + }, + { + "start": 2607.24, + "end": 2608.02, + "probability": 0.8385 + }, + { + "start": 2608.58, + "end": 2609.22, + "probability": 0.9512 + }, + { + "start": 2610.84, + "end": 2612.84, + "probability": 0.9978 + }, + { + "start": 2612.84, + "end": 2616.04, + "probability": 0.999 + }, + { + "start": 2616.7, + "end": 2619.56, + "probability": 0.9987 + }, + { + "start": 2619.58, + "end": 2622.08, + "probability": 0.9979 + }, + { + "start": 2622.54, + "end": 2623.54, + "probability": 0.7758 + }, + { + "start": 2624.7, + "end": 2629.94, + "probability": 0.9227 + }, + { + "start": 2630.26, + "end": 2631.1, + "probability": 0.8666 + }, + { + "start": 2631.36, + "end": 2632.12, + "probability": 0.5154 + }, + { + "start": 2632.52, + "end": 2635.14, + "probability": 0.9973 + }, + { + "start": 2635.86, + "end": 2636.26, + "probability": 0.8262 + }, + { + "start": 2638.16, + "end": 2640.64, + "probability": 0.9475 + }, + { + "start": 2640.84, + "end": 2643.5, + "probability": 0.8139 + }, + { + "start": 2643.78, + "end": 2644.36, + "probability": 0.8716 + }, + { + "start": 2645.06, + "end": 2648.36, + "probability": 0.9682 + }, + { + "start": 2669.44, + "end": 2673.4, + "probability": 0.6919 + }, + { + "start": 2674.6, + "end": 2679.24, + "probability": 0.7659 + }, + { + "start": 2680.96, + "end": 2681.8, + "probability": 0.5292 + }, + { + "start": 2682.33, + "end": 2685.36, + "probability": 0.8582 + }, + { + "start": 2685.48, + "end": 2690.66, + "probability": 0.91 + }, + { + "start": 2691.12, + "end": 2692.9, + "probability": 0.8841 + }, + { + "start": 2693.9, + "end": 2698.58, + "probability": 0.6924 + }, + { + "start": 2699.18, + "end": 2700.86, + "probability": 0.7032 + }, + { + "start": 2701.32, + "end": 2703.16, + "probability": 0.8599 + }, + { + "start": 2704.32, + "end": 2706.06, + "probability": 0.9533 + }, + { + "start": 2708.34, + "end": 2712.02, + "probability": 0.8874 + }, + { + "start": 2713.74, + "end": 2714.68, + "probability": 0.8456 + }, + { + "start": 2714.76, + "end": 2720.26, + "probability": 0.8922 + }, + { + "start": 2724.0, + "end": 2726.34, + "probability": 0.9788 + }, + { + "start": 2727.66, + "end": 2731.7, + "probability": 0.9912 + }, + { + "start": 2733.95, + "end": 2736.0, + "probability": 0.9951 + }, + { + "start": 2739.1, + "end": 2740.42, + "probability": 0.5471 + }, + { + "start": 2741.9, + "end": 2742.77, + "probability": 0.4443 + }, + { + "start": 2743.26, + "end": 2743.84, + "probability": 0.1617 + }, + { + "start": 2744.08, + "end": 2745.36, + "probability": 0.3573 + }, + { + "start": 2745.94, + "end": 2747.32, + "probability": 0.9785 + }, + { + "start": 2748.36, + "end": 2749.8, + "probability": 0.9333 + }, + { + "start": 2749.84, + "end": 2751.34, + "probability": 0.8901 + }, + { + "start": 2751.94, + "end": 2752.36, + "probability": 0.5088 + }, + { + "start": 2752.88, + "end": 2753.64, + "probability": 0.5148 + }, + { + "start": 2753.8, + "end": 2755.96, + "probability": 0.7544 + }, + { + "start": 2756.54, + "end": 2758.24, + "probability": 0.7671 + }, + { + "start": 2759.1, + "end": 2759.38, + "probability": 0.533 + }, + { + "start": 2759.86, + "end": 2760.08, + "probability": 0.7691 + }, + { + "start": 2760.48, + "end": 2760.86, + "probability": 0.7821 + }, + { + "start": 2762.42, + "end": 2763.72, + "probability": 0.845 + }, + { + "start": 2764.7, + "end": 2768.5, + "probability": 0.7852 + }, + { + "start": 2769.4, + "end": 2772.34, + "probability": 0.9984 + }, + { + "start": 2772.34, + "end": 2775.48, + "probability": 0.9963 + }, + { + "start": 2776.5, + "end": 2780.7, + "probability": 0.8883 + }, + { + "start": 2782.46, + "end": 2785.48, + "probability": 0.9978 + }, + { + "start": 2786.12, + "end": 2787.58, + "probability": 0.6739 + }, + { + "start": 2787.74, + "end": 2788.82, + "probability": 0.8691 + }, + { + "start": 2788.94, + "end": 2790.32, + "probability": 0.8303 + }, + { + "start": 2791.04, + "end": 2794.24, + "probability": 0.7715 + }, + { + "start": 2795.14, + "end": 2796.9, + "probability": 0.8312 + }, + { + "start": 2796.94, + "end": 2798.68, + "probability": 0.8883 + }, + { + "start": 2799.28, + "end": 2802.0, + "probability": 0.7958 + }, + { + "start": 2802.38, + "end": 2803.4, + "probability": 0.8409 + }, + { + "start": 2804.16, + "end": 2805.78, + "probability": 0.911 + }, + { + "start": 2805.94, + "end": 2808.9, + "probability": 0.8943 + }, + { + "start": 2809.46, + "end": 2810.7, + "probability": 0.8345 + }, + { + "start": 2811.34, + "end": 2812.86, + "probability": 0.8928 + }, + { + "start": 2814.68, + "end": 2821.7, + "probability": 0.9568 + }, + { + "start": 2822.7, + "end": 2823.42, + "probability": 0.7346 + }, + { + "start": 2823.6, + "end": 2824.24, + "probability": 0.6379 + }, + { + "start": 2824.56, + "end": 2827.08, + "probability": 0.8101 + }, + { + "start": 2827.12, + "end": 2828.8, + "probability": 0.9119 + }, + { + "start": 2829.6, + "end": 2836.42, + "probability": 0.2102 + }, + { + "start": 2836.64, + "end": 2837.58, + "probability": 0.0231 + }, + { + "start": 2839.06, + "end": 2839.98, + "probability": 0.7829 + }, + { + "start": 2840.22, + "end": 2843.86, + "probability": 0.9141 + }, + { + "start": 2844.34, + "end": 2846.44, + "probability": 0.9098 + }, + { + "start": 2846.96, + "end": 2849.98, + "probability": 0.7616 + }, + { + "start": 2850.58, + "end": 2851.36, + "probability": 0.9771 + }, + { + "start": 2851.86, + "end": 2854.04, + "probability": 0.721 + }, + { + "start": 2854.54, + "end": 2858.96, + "probability": 0.9903 + }, + { + "start": 2859.06, + "end": 2863.42, + "probability": 0.8234 + }, + { + "start": 2863.56, + "end": 2868.36, + "probability": 0.9563 + }, + { + "start": 2869.14, + "end": 2872.74, + "probability": 0.9321 + }, + { + "start": 2873.2, + "end": 2873.66, + "probability": 0.4416 + }, + { + "start": 2873.8, + "end": 2876.26, + "probability": 0.8667 + }, + { + "start": 2876.72, + "end": 2884.38, + "probability": 0.8039 + }, + { + "start": 2884.88, + "end": 2888.58, + "probability": 0.6329 + }, + { + "start": 2889.08, + "end": 2889.42, + "probability": 0.6138 + }, + { + "start": 2889.64, + "end": 2893.5, + "probability": 0.9074 + }, + { + "start": 2894.54, + "end": 2900.26, + "probability": 0.8663 + }, + { + "start": 2900.7, + "end": 2904.36, + "probability": 0.9964 + }, + { + "start": 2904.88, + "end": 2907.78, + "probability": 0.7479 + }, + { + "start": 2908.16, + "end": 2912.04, + "probability": 0.801 + }, + { + "start": 2912.74, + "end": 2916.22, + "probability": 0.9838 + }, + { + "start": 2917.34, + "end": 2918.32, + "probability": 0.6103 + }, + { + "start": 2918.78, + "end": 2923.34, + "probability": 0.8047 + }, + { + "start": 2923.34, + "end": 2926.24, + "probability": 0.9399 + }, + { + "start": 2926.88, + "end": 2928.9, + "probability": 0.9148 + }, + { + "start": 2929.78, + "end": 2935.26, + "probability": 0.478 + }, + { + "start": 2935.26, + "end": 2937.36, + "probability": 0.8083 + }, + { + "start": 2938.76, + "end": 2939.24, + "probability": 0.9644 + }, + { + "start": 2939.4, + "end": 2940.14, + "probability": 0.8975 + }, + { + "start": 2940.3, + "end": 2941.96, + "probability": 0.7283 + }, + { + "start": 2942.22, + "end": 2946.7, + "probability": 0.6449 + }, + { + "start": 2947.84, + "end": 2950.72, + "probability": 0.9062 + }, + { + "start": 2952.73, + "end": 2955.38, + "probability": 0.8277 + }, + { + "start": 2957.62, + "end": 2959.68, + "probability": 0.6515 + }, + { + "start": 2960.84, + "end": 2966.3, + "probability": 0.7175 + }, + { + "start": 2966.38, + "end": 2969.6, + "probability": 0.704 + }, + { + "start": 2970.82, + "end": 2971.82, + "probability": 0.7311 + }, + { + "start": 2972.7, + "end": 2975.3, + "probability": 0.9633 + }, + { + "start": 2975.52, + "end": 2977.86, + "probability": 0.8212 + }, + { + "start": 2979.02, + "end": 2979.78, + "probability": 0.8733 + }, + { + "start": 2980.22, + "end": 2981.84, + "probability": 0.7657 + }, + { + "start": 2981.84, + "end": 2984.26, + "probability": 0.6605 + }, + { + "start": 2984.4, + "end": 2985.72, + "probability": 0.4364 + }, + { + "start": 2987.34, + "end": 2989.38, + "probability": 0.7993 + }, + { + "start": 2990.0, + "end": 2991.92, + "probability": 0.5182 + }, + { + "start": 2992.06, + "end": 2995.0, + "probability": 0.7196 + }, + { + "start": 2995.06, + "end": 2996.08, + "probability": 0.8019 + }, + { + "start": 2996.16, + "end": 2997.12, + "probability": 0.895 + }, + { + "start": 2997.12, + "end": 2997.76, + "probability": 0.5077 + }, + { + "start": 2997.96, + "end": 3001.43, + "probability": 0.9043 + }, + { + "start": 3001.9, + "end": 3002.0, + "probability": 0.1953 + }, + { + "start": 3002.0, + "end": 3006.42, + "probability": 0.8168 + }, + { + "start": 3007.0, + "end": 3008.26, + "probability": 0.6938 + }, + { + "start": 3008.38, + "end": 3010.04, + "probability": 0.3487 + }, + { + "start": 3010.58, + "end": 3011.6, + "probability": 0.9175 + }, + { + "start": 3011.68, + "end": 3015.42, + "probability": 0.7516 + }, + { + "start": 3015.62, + "end": 3016.04, + "probability": 0.0141 + }, + { + "start": 3016.04, + "end": 3016.04, + "probability": 0.1648 + }, + { + "start": 3016.04, + "end": 3019.42, + "probability": 0.8392 + }, + { + "start": 3019.86, + "end": 3023.42, + "probability": 0.7293 + }, + { + "start": 3023.86, + "end": 3024.56, + "probability": 0.7684 + }, + { + "start": 3024.72, + "end": 3026.08, + "probability": 0.8927 + }, + { + "start": 3026.12, + "end": 3027.98, + "probability": 0.8511 + }, + { + "start": 3028.08, + "end": 3028.64, + "probability": 0.7986 + }, + { + "start": 3029.22, + "end": 3033.46, + "probability": 0.6873 + }, + { + "start": 3034.34, + "end": 3037.2, + "probability": 0.0735 + }, + { + "start": 3039.18, + "end": 3040.68, + "probability": 0.5193 + }, + { + "start": 3040.96, + "end": 3042.26, + "probability": 0.4995 + }, + { + "start": 3043.56, + "end": 3045.04, + "probability": 0.2524 + }, + { + "start": 3046.14, + "end": 3047.26, + "probability": 0.772 + }, + { + "start": 3048.24, + "end": 3048.92, + "probability": 0.2379 + }, + { + "start": 3048.92, + "end": 3053.3, + "probability": 0.9941 + }, + { + "start": 3053.36, + "end": 3053.62, + "probability": 0.4594 + }, + { + "start": 3053.78, + "end": 3054.38, + "probability": 0.2716 + }, + { + "start": 3054.46, + "end": 3054.84, + "probability": 0.0301 + }, + { + "start": 3055.2, + "end": 3057.08, + "probability": 0.8258 + }, + { + "start": 3057.2, + "end": 3058.4, + "probability": 0.9819 + }, + { + "start": 3058.7, + "end": 3060.44, + "probability": 0.9653 + }, + { + "start": 3060.44, + "end": 3061.84, + "probability": 0.8272 + }, + { + "start": 3062.54, + "end": 3063.7, + "probability": 0.5434 + }, + { + "start": 3064.74, + "end": 3066.14, + "probability": 0.0099 + }, + { + "start": 3066.14, + "end": 3066.14, + "probability": 0.1075 + }, + { + "start": 3066.14, + "end": 3070.15, + "probability": 0.8012 + }, + { + "start": 3070.36, + "end": 3071.74, + "probability": 0.8273 + }, + { + "start": 3072.14, + "end": 3074.32, + "probability": 0.807 + }, + { + "start": 3074.58, + "end": 3075.28, + "probability": 0.4064 + }, + { + "start": 3075.36, + "end": 3076.44, + "probability": 0.8506 + }, + { + "start": 3076.86, + "end": 3077.24, + "probability": 0.0133 + }, + { + "start": 3077.9, + "end": 3079.88, + "probability": 0.831 + }, + { + "start": 3079.88, + "end": 3079.92, + "probability": 0.0062 + }, + { + "start": 3081.82, + "end": 3082.34, + "probability": 0.2193 + }, + { + "start": 3082.34, + "end": 3083.37, + "probability": 0.8255 + }, + { + "start": 3084.8, + "end": 3087.48, + "probability": 0.9607 + }, + { + "start": 3087.56, + "end": 3087.8, + "probability": 0.2578 + }, + { + "start": 3087.82, + "end": 3089.08, + "probability": 0.348 + }, + { + "start": 3089.1, + "end": 3089.96, + "probability": 0.4807 + }, + { + "start": 3090.16, + "end": 3092.64, + "probability": 0.6409 + }, + { + "start": 3093.58, + "end": 3093.88, + "probability": 0.9541 + }, + { + "start": 3093.88, + "end": 3096.16, + "probability": 0.7582 + }, + { + "start": 3097.12, + "end": 3101.64, + "probability": 0.8116 + }, + { + "start": 3101.88, + "end": 3103.16, + "probability": 0.9524 + }, + { + "start": 3103.84, + "end": 3106.98, + "probability": 0.9965 + }, + { + "start": 3107.08, + "end": 3108.48, + "probability": 0.9169 + }, + { + "start": 3109.0, + "end": 3110.5, + "probability": 0.9988 + }, + { + "start": 3110.8, + "end": 3111.26, + "probability": 0.8405 + }, + { + "start": 3112.58, + "end": 3114.92, + "probability": 0.9868 + }, + { + "start": 3114.94, + "end": 3118.64, + "probability": 0.9743 + }, + { + "start": 3118.68, + "end": 3119.46, + "probability": 0.8748 + }, + { + "start": 3120.02, + "end": 3121.72, + "probability": 0.9849 + }, + { + "start": 3122.6, + "end": 3126.56, + "probability": 0.9875 + }, + { + "start": 3127.28, + "end": 3128.96, + "probability": 0.9923 + }, + { + "start": 3129.1, + "end": 3130.14, + "probability": 0.8034 + }, + { + "start": 3131.02, + "end": 3131.74, + "probability": 0.6792 + }, + { + "start": 3132.4, + "end": 3134.4, + "probability": 0.9342 + }, + { + "start": 3135.24, + "end": 3137.56, + "probability": 0.9738 + }, + { + "start": 3138.1, + "end": 3142.12, + "probability": 0.8758 + }, + { + "start": 3144.08, + "end": 3145.22, + "probability": 0.1402 + }, + { + "start": 3146.06, + "end": 3146.28, + "probability": 0.1454 + }, + { + "start": 3146.3, + "end": 3146.3, + "probability": 0.0474 + }, + { + "start": 3146.32, + "end": 3146.68, + "probability": 0.3329 + }, + { + "start": 3146.68, + "end": 3148.86, + "probability": 0.5609 + }, + { + "start": 3148.96, + "end": 3149.12, + "probability": 0.0558 + }, + { + "start": 3149.18, + "end": 3152.62, + "probability": 0.9797 + }, + { + "start": 3152.74, + "end": 3153.1, + "probability": 0.939 + }, + { + "start": 3153.16, + "end": 3154.24, + "probability": 0.886 + }, + { + "start": 3154.56, + "end": 3158.74, + "probability": 0.9964 + }, + { + "start": 3159.12, + "end": 3160.12, + "probability": 0.5872 + }, + { + "start": 3160.8, + "end": 3161.37, + "probability": 0.7202 + }, + { + "start": 3161.62, + "end": 3162.58, + "probability": 0.8108 + }, + { + "start": 3162.58, + "end": 3163.08, + "probability": 0.1506 + }, + { + "start": 3163.08, + "end": 3163.08, + "probability": 0.06 + }, + { + "start": 3163.08, + "end": 3167.3, + "probability": 0.9827 + }, + { + "start": 3167.38, + "end": 3167.78, + "probability": 0.7225 + }, + { + "start": 3167.88, + "end": 3168.39, + "probability": 0.6362 + }, + { + "start": 3168.88, + "end": 3171.86, + "probability": 0.4508 + }, + { + "start": 3171.94, + "end": 3173.6, + "probability": 0.7045 + }, + { + "start": 3173.86, + "end": 3174.72, + "probability": 0.737 + }, + { + "start": 3174.84, + "end": 3175.4, + "probability": 0.9565 + }, + { + "start": 3175.48, + "end": 3178.02, + "probability": 0.8534 + }, + { + "start": 3178.52, + "end": 3181.5, + "probability": 0.8433 + }, + { + "start": 3181.62, + "end": 3182.78, + "probability": 0.852 + }, + { + "start": 3182.84, + "end": 3183.44, + "probability": 0.6455 + }, + { + "start": 3183.7, + "end": 3183.98, + "probability": 0.4965 + }, + { + "start": 3184.02, + "end": 3184.48, + "probability": 0.9551 + }, + { + "start": 3184.94, + "end": 3186.86, + "probability": 0.8567 + }, + { + "start": 3186.98, + "end": 3188.94, + "probability": 0.8071 + }, + { + "start": 3189.98, + "end": 3192.6, + "probability": 0.855 + }, + { + "start": 3193.24, + "end": 3195.9, + "probability": 0.2862 + }, + { + "start": 3195.9, + "end": 3197.5, + "probability": 0.7386 + }, + { + "start": 3197.52, + "end": 3198.06, + "probability": 0.5918 + }, + { + "start": 3198.3, + "end": 3200.34, + "probability": 0.6372 + }, + { + "start": 3200.62, + "end": 3203.74, + "probability": 0.4421 + }, + { + "start": 3205.08, + "end": 3210.26, + "probability": 0.7528 + }, + { + "start": 3210.84, + "end": 3210.84, + "probability": 0.192 + }, + { + "start": 3210.84, + "end": 3211.58, + "probability": 0.0904 + }, + { + "start": 3211.58, + "end": 3213.16, + "probability": 0.5232 + }, + { + "start": 3216.64, + "end": 3218.46, + "probability": 0.6683 + }, + { + "start": 3219.46, + "end": 3219.56, + "probability": 0.1831 + }, + { + "start": 3219.56, + "end": 3220.72, + "probability": 0.6245 + }, + { + "start": 3221.18, + "end": 3222.72, + "probability": 0.6718 + }, + { + "start": 3223.28, + "end": 3225.76, + "probability": 0.6013 + }, + { + "start": 3226.52, + "end": 3231.02, + "probability": 0.9191 + }, + { + "start": 3232.48, + "end": 3235.1, + "probability": 0.8815 + }, + { + "start": 3235.56, + "end": 3236.4, + "probability": 0.6289 + }, + { + "start": 3236.58, + "end": 3241.1, + "probability": 0.9504 + }, + { + "start": 3243.28, + "end": 3245.96, + "probability": 0.8805 + }, + { + "start": 3246.5, + "end": 3251.52, + "probability": 0.9883 + }, + { + "start": 3251.52, + "end": 3255.66, + "probability": 0.9985 + }, + { + "start": 3257.04, + "end": 3261.88, + "probability": 0.7163 + }, + { + "start": 3263.1, + "end": 3265.98, + "probability": 0.8444 + }, + { + "start": 3267.3, + "end": 3269.9, + "probability": 0.8262 + }, + { + "start": 3270.74, + "end": 3271.74, + "probability": 0.9479 + }, + { + "start": 3272.16, + "end": 3274.94, + "probability": 0.8222 + }, + { + "start": 3275.42, + "end": 3279.12, + "probability": 0.9686 + }, + { + "start": 3279.44, + "end": 3283.64, + "probability": 0.8979 + }, + { + "start": 3284.62, + "end": 3285.98, + "probability": 0.9557 + }, + { + "start": 3286.64, + "end": 3291.8, + "probability": 0.8 + }, + { + "start": 3292.38, + "end": 3292.38, + "probability": 0.3982 + }, + { + "start": 3292.68, + "end": 3294.4, + "probability": 0.8502 + }, + { + "start": 3294.96, + "end": 3295.98, + "probability": 0.8994 + }, + { + "start": 3296.5, + "end": 3297.98, + "probability": 0.9036 + }, + { + "start": 3298.56, + "end": 3300.32, + "probability": 0.7668 + }, + { + "start": 3301.0, + "end": 3303.62, + "probability": 0.9964 + }, + { + "start": 3306.04, + "end": 3309.48, + "probability": 0.9924 + }, + { + "start": 3309.64, + "end": 3309.88, + "probability": 0.6741 + }, + { + "start": 3310.16, + "end": 3311.42, + "probability": 0.6405 + }, + { + "start": 3311.56, + "end": 3312.88, + "probability": 0.9828 + }, + { + "start": 3313.0, + "end": 3316.84, + "probability": 0.6598 + }, + { + "start": 3324.18, + "end": 3326.2, + "probability": 0.6632 + }, + { + "start": 3327.02, + "end": 3329.86, + "probability": 0.9903 + }, + { + "start": 3330.86, + "end": 3333.38, + "probability": 0.9966 + }, + { + "start": 3334.42, + "end": 3336.26, + "probability": 0.998 + }, + { + "start": 3337.42, + "end": 3341.9, + "probability": 0.9963 + }, + { + "start": 3342.5, + "end": 3344.12, + "probability": 0.9963 + }, + { + "start": 3345.32, + "end": 3346.42, + "probability": 0.8342 + }, + { + "start": 3347.46, + "end": 3349.16, + "probability": 0.971 + }, + { + "start": 3349.62, + "end": 3350.84, + "probability": 0.9106 + }, + { + "start": 3351.54, + "end": 3352.86, + "probability": 0.9941 + }, + { + "start": 3353.38, + "end": 3355.78, + "probability": 0.9863 + }, + { + "start": 3356.92, + "end": 3358.26, + "probability": 0.688 + }, + { + "start": 3359.22, + "end": 3362.06, + "probability": 0.9972 + }, + { + "start": 3362.14, + "end": 3363.52, + "probability": 0.9834 + }, + { + "start": 3363.9, + "end": 3364.98, + "probability": 0.6732 + }, + { + "start": 3365.92, + "end": 3369.04, + "probability": 0.9827 + }, + { + "start": 3369.74, + "end": 3372.0, + "probability": 0.9969 + }, + { + "start": 3372.17, + "end": 3375.96, + "probability": 0.9527 + }, + { + "start": 3376.32, + "end": 3377.58, + "probability": 0.9258 + }, + { + "start": 3377.62, + "end": 3382.26, + "probability": 0.9949 + }, + { + "start": 3382.86, + "end": 3384.42, + "probability": 0.9468 + }, + { + "start": 3385.04, + "end": 3387.16, + "probability": 0.9965 + }, + { + "start": 3387.7, + "end": 3388.33, + "probability": 0.4731 + }, + { + "start": 3388.86, + "end": 3391.52, + "probability": 0.9587 + }, + { + "start": 3391.52, + "end": 3394.72, + "probability": 0.9456 + }, + { + "start": 3395.06, + "end": 3395.28, + "probability": 0.5698 + }, + { + "start": 3395.4, + "end": 3396.28, + "probability": 0.8017 + }, + { + "start": 3396.42, + "end": 3397.16, + "probability": 0.8479 + }, + { + "start": 3397.64, + "end": 3399.58, + "probability": 0.9855 + }, + { + "start": 3399.9, + "end": 3403.74, + "probability": 0.9507 + }, + { + "start": 3403.76, + "end": 3403.9, + "probability": 0.2333 + }, + { + "start": 3404.0, + "end": 3405.28, + "probability": 0.9729 + }, + { + "start": 3406.06, + "end": 3407.62, + "probability": 0.782 + }, + { + "start": 3407.92, + "end": 3410.08, + "probability": 0.6372 + }, + { + "start": 3410.68, + "end": 3412.12, + "probability": 0.886 + }, + { + "start": 3415.18, + "end": 3416.58, + "probability": 0.9667 + }, + { + "start": 3418.7, + "end": 3422.78, + "probability": 0.6463 + }, + { + "start": 3423.7, + "end": 3425.62, + "probability": 0.9575 + }, + { + "start": 3426.62, + "end": 3433.52, + "probability": 0.9948 + }, + { + "start": 3434.9, + "end": 3439.04, + "probability": 0.9957 + }, + { + "start": 3439.66, + "end": 3442.28, + "probability": 0.8579 + }, + { + "start": 3442.28, + "end": 3443.22, + "probability": 0.7207 + }, + { + "start": 3443.24, + "end": 3443.86, + "probability": 0.8423 + }, + { + "start": 3444.72, + "end": 3445.36, + "probability": 0.2227 + }, + { + "start": 3446.58, + "end": 3446.68, + "probability": 0.2352 + }, + { + "start": 3446.68, + "end": 3446.9, + "probability": 0.3491 + }, + { + "start": 3448.32, + "end": 3449.72, + "probability": 0.7338 + }, + { + "start": 3451.04, + "end": 3453.86, + "probability": 0.9985 + }, + { + "start": 3454.52, + "end": 3456.46, + "probability": 0.9915 + }, + { + "start": 3457.26, + "end": 3458.8, + "probability": 0.9671 + }, + { + "start": 3459.84, + "end": 3463.68, + "probability": 0.9306 + }, + { + "start": 3464.36, + "end": 3464.99, + "probability": 0.9148 + }, + { + "start": 3466.0, + "end": 3469.7, + "probability": 0.9805 + }, + { + "start": 3469.9, + "end": 3477.54, + "probability": 0.9819 + }, + { + "start": 3478.66, + "end": 3481.04, + "probability": 0.8296 + }, + { + "start": 3481.86, + "end": 3482.24, + "probability": 0.7097 + }, + { + "start": 3482.36, + "end": 3485.26, + "probability": 0.7554 + }, + { + "start": 3485.28, + "end": 3486.34, + "probability": 0.3295 + }, + { + "start": 3486.5, + "end": 3488.24, + "probability": 0.9419 + }, + { + "start": 3488.44, + "end": 3490.28, + "probability": 0.5141 + }, + { + "start": 3490.58, + "end": 3494.24, + "probability": 0.9934 + }, + { + "start": 3496.34, + "end": 3500.78, + "probability": 0.8984 + }, + { + "start": 3500.78, + "end": 3502.74, + "probability": 0.8163 + }, + { + "start": 3502.9, + "end": 3504.22, + "probability": 0.866 + }, + { + "start": 3504.8, + "end": 3506.74, + "probability": 0.8892 + }, + { + "start": 3507.46, + "end": 3508.77, + "probability": 0.9907 + }, + { + "start": 3509.74, + "end": 3510.9, + "probability": 0.9869 + }, + { + "start": 3511.36, + "end": 3512.0, + "probability": 0.6313 + }, + { + "start": 3512.44, + "end": 3516.82, + "probability": 0.9929 + }, + { + "start": 3518.38, + "end": 3522.24, + "probability": 0.9812 + }, + { + "start": 3522.7, + "end": 3524.26, + "probability": 0.1815 + }, + { + "start": 3524.42, + "end": 3525.42, + "probability": 0.528 + }, + { + "start": 3526.08, + "end": 3526.78, + "probability": 0.269 + }, + { + "start": 3526.78, + "end": 3527.74, + "probability": 0.3867 + }, + { + "start": 3527.78, + "end": 3530.02, + "probability": 0.5087 + }, + { + "start": 3530.22, + "end": 3533.24, + "probability": 0.8991 + }, + { + "start": 3534.16, + "end": 3537.96, + "probability": 0.7878 + }, + { + "start": 3538.56, + "end": 3541.56, + "probability": 0.9438 + }, + { + "start": 3542.24, + "end": 3543.58, + "probability": 0.6149 + }, + { + "start": 3543.72, + "end": 3545.84, + "probability": 0.9072 + }, + { + "start": 3546.24, + "end": 3546.6, + "probability": 0.5988 + }, + { + "start": 3546.62, + "end": 3548.22, + "probability": 0.8333 + }, + { + "start": 3548.46, + "end": 3549.28, + "probability": 0.9039 + }, + { + "start": 3549.56, + "end": 3555.06, + "probability": 0.9055 + }, + { + "start": 3555.72, + "end": 3555.8, + "probability": 0.1371 + }, + { + "start": 3555.82, + "end": 3557.88, + "probability": 0.7252 + }, + { + "start": 3557.96, + "end": 3560.24, + "probability": 0.8852 + }, + { + "start": 3560.3, + "end": 3562.02, + "probability": 0.8789 + }, + { + "start": 3571.38, + "end": 3573.14, + "probability": 0.7234 + }, + { + "start": 3574.18, + "end": 3576.28, + "probability": 0.7691 + }, + { + "start": 3576.38, + "end": 3580.4, + "probability": 0.9868 + }, + { + "start": 3580.6, + "end": 3581.3, + "probability": 0.7502 + }, + { + "start": 3581.44, + "end": 3583.9, + "probability": 0.9512 + }, + { + "start": 3583.94, + "end": 3585.28, + "probability": 0.9766 + }, + { + "start": 3586.02, + "end": 3588.86, + "probability": 0.99 + }, + { + "start": 3588.86, + "end": 3591.3, + "probability": 0.9863 + }, + { + "start": 3591.32, + "end": 3596.08, + "probability": 0.948 + }, + { + "start": 3596.66, + "end": 3599.68, + "probability": 0.9958 + }, + { + "start": 3600.38, + "end": 3601.32, + "probability": 0.8979 + }, + { + "start": 3601.5, + "end": 3602.7, + "probability": 0.7516 + }, + { + "start": 3602.78, + "end": 3603.5, + "probability": 0.6613 + }, + { + "start": 3603.9, + "end": 3606.04, + "probability": 0.98 + }, + { + "start": 3606.18, + "end": 3607.28, + "probability": 0.9067 + }, + { + "start": 3608.26, + "end": 3611.04, + "probability": 0.9215 + }, + { + "start": 3611.46, + "end": 3612.72, + "probability": 0.7285 + }, + { + "start": 3612.92, + "end": 3613.6, + "probability": 0.4364 + }, + { + "start": 3614.02, + "end": 3614.9, + "probability": 0.8689 + }, + { + "start": 3615.12, + "end": 3617.0, + "probability": 0.8979 + }, + { + "start": 3617.08, + "end": 3617.5, + "probability": 0.8086 + }, + { + "start": 3617.52, + "end": 3618.84, + "probability": 0.9824 + }, + { + "start": 3619.22, + "end": 3620.24, + "probability": 0.8974 + }, + { + "start": 3620.42, + "end": 3622.3, + "probability": 0.9795 + }, + { + "start": 3622.84, + "end": 3629.28, + "probability": 0.991 + }, + { + "start": 3630.0, + "end": 3630.92, + "probability": 0.6166 + }, + { + "start": 3631.08, + "end": 3632.3, + "probability": 0.7773 + }, + { + "start": 3632.78, + "end": 3634.0, + "probability": 0.9329 + }, + { + "start": 3634.18, + "end": 3635.32, + "probability": 0.976 + }, + { + "start": 3635.72, + "end": 3640.14, + "probability": 0.972 + }, + { + "start": 3640.98, + "end": 3643.8, + "probability": 0.9756 + }, + { + "start": 3646.08, + "end": 3648.46, + "probability": 0.9065 + }, + { + "start": 3648.68, + "end": 3651.0, + "probability": 0.8681 + }, + { + "start": 3651.12, + "end": 3652.92, + "probability": 0.862 + }, + { + "start": 3657.48, + "end": 3658.88, + "probability": 0.738 + }, + { + "start": 3659.52, + "end": 3660.64, + "probability": 0.8547 + }, + { + "start": 3660.78, + "end": 3664.3, + "probability": 0.9992 + }, + { + "start": 3664.88, + "end": 3667.12, + "probability": 0.9894 + }, + { + "start": 3667.18, + "end": 3668.32, + "probability": 0.9097 + }, + { + "start": 3668.76, + "end": 3669.94, + "probability": 0.9907 + }, + { + "start": 3670.48, + "end": 3672.26, + "probability": 0.9654 + }, + { + "start": 3672.3, + "end": 3673.62, + "probability": 0.9547 + }, + { + "start": 3674.36, + "end": 3678.24, + "probability": 0.9642 + }, + { + "start": 3678.88, + "end": 3683.94, + "probability": 0.9896 + }, + { + "start": 3684.22, + "end": 3685.52, + "probability": 0.9889 + }, + { + "start": 3685.92, + "end": 3688.62, + "probability": 0.9807 + }, + { + "start": 3689.2, + "end": 3690.52, + "probability": 0.998 + }, + { + "start": 3691.14, + "end": 3693.46, + "probability": 0.9886 + }, + { + "start": 3693.9, + "end": 3694.8, + "probability": 0.771 + }, + { + "start": 3695.42, + "end": 3696.46, + "probability": 0.8706 + }, + { + "start": 3696.84, + "end": 3698.18, + "probability": 0.9714 + }, + { + "start": 3698.44, + "end": 3702.04, + "probability": 0.944 + }, + { + "start": 3703.42, + "end": 3704.94, + "probability": 0.7469 + }, + { + "start": 3705.02, + "end": 3707.14, + "probability": 0.7379 + }, + { + "start": 3707.76, + "end": 3708.26, + "probability": 0.6492 + }, + { + "start": 3708.38, + "end": 3711.02, + "probability": 0.9508 + }, + { + "start": 3713.92, + "end": 3715.24, + "probability": 0.8732 + }, + { + "start": 3715.52, + "end": 3720.42, + "probability": 0.9796 + }, + { + "start": 3720.54, + "end": 3721.32, + "probability": 0.4115 + }, + { + "start": 3721.88, + "end": 3725.48, + "probability": 0.9302 + }, + { + "start": 3725.58, + "end": 3728.16, + "probability": 0.8087 + }, + { + "start": 3728.38, + "end": 3729.7, + "probability": 0.9617 + }, + { + "start": 3729.82, + "end": 3731.41, + "probability": 0.5789 + }, + { + "start": 3732.78, + "end": 3737.08, + "probability": 0.8375 + }, + { + "start": 3737.8, + "end": 3743.08, + "probability": 0.9872 + }, + { + "start": 3743.7, + "end": 3748.16, + "probability": 0.9872 + }, + { + "start": 3748.86, + "end": 3754.46, + "probability": 0.9944 + }, + { + "start": 3754.52, + "end": 3755.9, + "probability": 0.9656 + }, + { + "start": 3756.34, + "end": 3760.88, + "probability": 0.9858 + }, + { + "start": 3760.88, + "end": 3768.12, + "probability": 0.986 + }, + { + "start": 3768.8, + "end": 3773.4, + "probability": 0.8541 + }, + { + "start": 3774.04, + "end": 3774.76, + "probability": 0.738 + }, + { + "start": 3775.4, + "end": 3776.5, + "probability": 0.9209 + }, + { + "start": 3776.88, + "end": 3778.86, + "probability": 0.9958 + }, + { + "start": 3779.3, + "end": 3782.68, + "probability": 0.9587 + }, + { + "start": 3782.68, + "end": 3787.0, + "probability": 0.9263 + }, + { + "start": 3787.26, + "end": 3787.76, + "probability": 0.8703 + }, + { + "start": 3788.86, + "end": 3790.18, + "probability": 0.7209 + }, + { + "start": 3790.48, + "end": 3793.34, + "probability": 0.9101 + }, + { + "start": 3796.28, + "end": 3798.28, + "probability": 0.7658 + }, + { + "start": 3799.22, + "end": 3804.9, + "probability": 0.9853 + }, + { + "start": 3805.4, + "end": 3809.62, + "probability": 0.9329 + }, + { + "start": 3809.74, + "end": 3811.34, + "probability": 0.9941 + }, + { + "start": 3812.84, + "end": 3815.54, + "probability": 0.9946 + }, + { + "start": 3815.54, + "end": 3817.0, + "probability": 0.7015 + }, + { + "start": 3817.56, + "end": 3820.18, + "probability": 0.9784 + }, + { + "start": 3821.1, + "end": 3826.24, + "probability": 0.9932 + }, + { + "start": 3826.94, + "end": 3827.52, + "probability": 0.9043 + }, + { + "start": 3828.06, + "end": 3830.54, + "probability": 0.9928 + }, + { + "start": 3831.06, + "end": 3835.65, + "probability": 0.9935 + }, + { + "start": 3836.72, + "end": 3837.76, + "probability": 0.9356 + }, + { + "start": 3838.52, + "end": 3841.32, + "probability": 0.9067 + }, + { + "start": 3841.52, + "end": 3842.7, + "probability": 0.9665 + }, + { + "start": 3842.7, + "end": 3844.14, + "probability": 0.9085 + }, + { + "start": 3844.6, + "end": 3846.06, + "probability": 0.9837 + }, + { + "start": 3846.1, + "end": 3846.9, + "probability": 0.8397 + }, + { + "start": 3847.2, + "end": 3848.84, + "probability": 0.9368 + }, + { + "start": 3849.52, + "end": 3852.28, + "probability": 0.9101 + }, + { + "start": 3852.9, + "end": 3857.68, + "probability": 0.771 + }, + { + "start": 3857.88, + "end": 3859.76, + "probability": 0.9927 + }, + { + "start": 3859.9, + "end": 3864.17, + "probability": 0.7585 + }, + { + "start": 3865.02, + "end": 3866.46, + "probability": 0.8011 + }, + { + "start": 3867.32, + "end": 3870.64, + "probability": 0.6782 + }, + { + "start": 3870.96, + "end": 3872.5, + "probability": 0.1232 + }, + { + "start": 3872.54, + "end": 3873.94, + "probability": 0.6762 + }, + { + "start": 3874.3, + "end": 3874.74, + "probability": 0.8791 + }, + { + "start": 3875.18, + "end": 3876.78, + "probability": 0.848 + }, + { + "start": 3876.88, + "end": 3878.48, + "probability": 0.9272 + }, + { + "start": 3879.12, + "end": 3881.62, + "probability": 0.9309 + }, + { + "start": 3881.74, + "end": 3884.88, + "probability": 0.9204 + }, + { + "start": 3885.22, + "end": 3886.74, + "probability": 0.8089 + }, + { + "start": 3887.22, + "end": 3889.26, + "probability": 0.752 + }, + { + "start": 3889.96, + "end": 3892.74, + "probability": 0.9783 + }, + { + "start": 3893.1, + "end": 3893.3, + "probability": 0.7669 + }, + { + "start": 3893.4, + "end": 3894.72, + "probability": 0.7244 + }, + { + "start": 3894.8, + "end": 3896.86, + "probability": 0.8759 + }, + { + "start": 3898.06, + "end": 3901.98, + "probability": 0.9745 + }, + { + "start": 3902.9, + "end": 3906.6, + "probability": 0.8804 + }, + { + "start": 3907.38, + "end": 3910.44, + "probability": 0.9743 + }, + { + "start": 3911.26, + "end": 3914.42, + "probability": 0.9858 + }, + { + "start": 3914.8, + "end": 3915.54, + "probability": 0.547 + }, + { + "start": 3916.56, + "end": 3919.84, + "probability": 0.9388 + }, + { + "start": 3919.98, + "end": 3921.1, + "probability": 0.8 + }, + { + "start": 3921.24, + "end": 3922.16, + "probability": 0.3236 + }, + { + "start": 3922.98, + "end": 3923.38, + "probability": 0.4476 + }, + { + "start": 3925.06, + "end": 3925.08, + "probability": 0.3371 + }, + { + "start": 3925.08, + "end": 3925.82, + "probability": 0.7659 + }, + { + "start": 3926.12, + "end": 3926.76, + "probability": 0.6045 + }, + { + "start": 3926.8, + "end": 3927.88, + "probability": 0.6056 + }, + { + "start": 3933.44, + "end": 3937.8, + "probability": 0.454 + }, + { + "start": 3938.12, + "end": 3939.84, + "probability": 0.1635 + }, + { + "start": 3940.38, + "end": 3941.08, + "probability": 0.4905 + }, + { + "start": 3941.24, + "end": 3941.44, + "probability": 0.3876 + }, + { + "start": 3941.64, + "end": 3944.32, + "probability": 0.9852 + }, + { + "start": 3944.98, + "end": 3946.22, + "probability": 0.9144 + }, + { + "start": 3946.46, + "end": 3954.5, + "probability": 0.3511 + }, + { + "start": 3954.78, + "end": 3955.42, + "probability": 0.8398 + }, + { + "start": 3955.56, + "end": 3956.28, + "probability": 0.9169 + }, + { + "start": 3956.36, + "end": 3957.26, + "probability": 0.7766 + }, + { + "start": 3957.3, + "end": 3959.14, + "probability": 0.964 + }, + { + "start": 3959.88, + "end": 3961.3, + "probability": 0.964 + }, + { + "start": 3961.38, + "end": 3963.4, + "probability": 0.7691 + }, + { + "start": 3963.48, + "end": 3965.18, + "probability": 0.9537 + }, + { + "start": 3965.58, + "end": 3968.46, + "probability": 0.9973 + }, + { + "start": 3968.46, + "end": 3971.12, + "probability": 0.9874 + }, + { + "start": 3971.16, + "end": 3971.56, + "probability": 0.6207 + }, + { + "start": 3977.36, + "end": 3977.68, + "probability": 0.2114 + }, + { + "start": 3978.56, + "end": 3980.4, + "probability": 0.8938 + }, + { + "start": 3980.62, + "end": 3984.29, + "probability": 0.9201 + }, + { + "start": 3984.54, + "end": 3987.2, + "probability": 0.9299 + }, + { + "start": 3987.66, + "end": 3988.08, + "probability": 0.9001 + }, + { + "start": 3988.4, + "end": 3990.34, + "probability": 0.8999 + }, + { + "start": 3990.42, + "end": 3992.32, + "probability": 0.6647 + }, + { + "start": 3997.0, + "end": 4000.46, + "probability": 0.7031 + }, + { + "start": 4004.09, + "end": 4008.98, + "probability": 0.6996 + }, + { + "start": 4009.82, + "end": 4015.2, + "probability": 0.0368 + }, + { + "start": 4016.02, + "end": 4016.94, + "probability": 0.6286 + }, + { + "start": 4016.94, + "end": 4016.94, + "probability": 0.0714 + }, + { + "start": 4016.94, + "end": 4016.94, + "probability": 0.0347 + }, + { + "start": 4016.94, + "end": 4018.13, + "probability": 0.1653 + }, + { + "start": 4018.4, + "end": 4019.6, + "probability": 0.8619 + }, + { + "start": 4020.3, + "end": 4023.04, + "probability": 0.8015 + }, + { + "start": 4023.1, + "end": 4023.64, + "probability": 0.706 + }, + { + "start": 4032.14, + "end": 4035.08, + "probability": 0.79 + }, + { + "start": 4035.9, + "end": 4038.35, + "probability": 0.9187 + }, + { + "start": 4042.06, + "end": 4045.14, + "probability": 0.9918 + }, + { + "start": 4045.16, + "end": 4046.24, + "probability": 0.9884 + }, + { + "start": 4046.34, + "end": 4047.26, + "probability": 0.7674 + }, + { + "start": 4048.64, + "end": 4051.52, + "probability": 0.9948 + }, + { + "start": 4052.58, + "end": 4052.68, + "probability": 0.6277 + }, + { + "start": 4053.22, + "end": 4053.82, + "probability": 0.9751 + }, + { + "start": 4055.02, + "end": 4057.78, + "probability": 0.9502 + }, + { + "start": 4058.14, + "end": 4062.82, + "probability": 0.9673 + }, + { + "start": 4063.38, + "end": 4064.58, + "probability": 0.9502 + }, + { + "start": 4064.62, + "end": 4065.34, + "probability": 0.9004 + }, + { + "start": 4065.38, + "end": 4066.14, + "probability": 0.8653 + }, + { + "start": 4066.26, + "end": 4067.28, + "probability": 0.7085 + }, + { + "start": 4067.88, + "end": 4069.02, + "probability": 0.6749 + }, + { + "start": 4069.76, + "end": 4071.5, + "probability": 0.9083 + }, + { + "start": 4072.72, + "end": 4074.38, + "probability": 0.843 + }, + { + "start": 4074.96, + "end": 4077.5, + "probability": 0.9768 + }, + { + "start": 4079.36, + "end": 4084.48, + "probability": 0.989 + }, + { + "start": 4086.16, + "end": 4087.5, + "probability": 0.8644 + }, + { + "start": 4088.16, + "end": 4090.3, + "probability": 0.9252 + }, + { + "start": 4090.82, + "end": 4093.16, + "probability": 0.9287 + }, + { + "start": 4093.26, + "end": 4095.76, + "probability": 0.825 + }, + { + "start": 4096.6, + "end": 4100.64, + "probability": 0.9736 + }, + { + "start": 4101.54, + "end": 4103.86, + "probability": 0.8931 + }, + { + "start": 4104.76, + "end": 4106.44, + "probability": 0.9795 + }, + { + "start": 4107.28, + "end": 4109.42, + "probability": 0.996 + }, + { + "start": 4110.24, + "end": 4113.9, + "probability": 0.9808 + }, + { + "start": 4120.32, + "end": 4120.9, + "probability": 0.2707 + }, + { + "start": 4121.04, + "end": 4124.0, + "probability": 0.9933 + }, + { + "start": 4124.9, + "end": 4127.02, + "probability": 0.6671 + }, + { + "start": 4128.3, + "end": 4131.5, + "probability": 0.9912 + }, + { + "start": 4131.5, + "end": 4134.7, + "probability": 0.9813 + }, + { + "start": 4135.5, + "end": 4138.84, + "probability": 0.9443 + }, + { + "start": 4139.8, + "end": 4140.74, + "probability": 0.7625 + }, + { + "start": 4141.36, + "end": 4142.02, + "probability": 0.671 + }, + { + "start": 4143.62, + "end": 4144.28, + "probability": 0.5988 + }, + { + "start": 4145.04, + "end": 4150.58, + "probability": 0.9913 + }, + { + "start": 4151.12, + "end": 4151.98, + "probability": 0.8925 + }, + { + "start": 4152.9, + "end": 4155.1, + "probability": 0.9847 + }, + { + "start": 4155.68, + "end": 4157.82, + "probability": 0.9653 + }, + { + "start": 4158.7, + "end": 4159.5, + "probability": 0.8583 + }, + { + "start": 4160.06, + "end": 4165.64, + "probability": 0.9966 + }, + { + "start": 4166.46, + "end": 4167.74, + "probability": 0.833 + }, + { + "start": 4169.22, + "end": 4169.88, + "probability": 0.6177 + }, + { + "start": 4170.84, + "end": 4175.92, + "probability": 0.7869 + }, + { + "start": 4176.74, + "end": 4177.4, + "probability": 0.9758 + }, + { + "start": 4177.96, + "end": 4180.15, + "probability": 0.9518 + }, + { + "start": 4181.96, + "end": 4182.92, + "probability": 0.5421 + }, + { + "start": 4182.96, + "end": 4185.98, + "probability": 0.96 + }, + { + "start": 4186.86, + "end": 4187.54, + "probability": 0.6459 + }, + { + "start": 4188.06, + "end": 4191.29, + "probability": 0.9771 + }, + { + "start": 4191.9, + "end": 4198.16, + "probability": 0.9288 + }, + { + "start": 4198.6, + "end": 4200.1, + "probability": 0.9967 + }, + { + "start": 4201.26, + "end": 4204.4, + "probability": 0.7097 + }, + { + "start": 4205.1, + "end": 4208.24, + "probability": 0.9333 + }, + { + "start": 4209.1, + "end": 4210.76, + "probability": 0.7266 + }, + { + "start": 4211.4, + "end": 4213.28, + "probability": 0.7765 + }, + { + "start": 4213.86, + "end": 4217.98, + "probability": 0.9226 + }, + { + "start": 4219.2, + "end": 4221.52, + "probability": 0.8572 + }, + { + "start": 4222.46, + "end": 4225.78, + "probability": 0.9914 + }, + { + "start": 4227.7, + "end": 4229.96, + "probability": 0.9827 + }, + { + "start": 4233.62, + "end": 4233.96, + "probability": 0.5963 + }, + { + "start": 4234.26, + "end": 4236.06, + "probability": 0.768 + }, + { + "start": 4237.04, + "end": 4237.98, + "probability": 0.9832 + }, + { + "start": 4240.55, + "end": 4242.96, + "probability": 0.9984 + }, + { + "start": 4243.96, + "end": 4249.0, + "probability": 0.9959 + }, + { + "start": 4249.34, + "end": 4250.84, + "probability": 0.7367 + }, + { + "start": 4251.88, + "end": 4254.96, + "probability": 0.9974 + }, + { + "start": 4256.22, + "end": 4258.68, + "probability": 0.891 + }, + { + "start": 4259.24, + "end": 4260.56, + "probability": 0.9756 + }, + { + "start": 4261.22, + "end": 4261.32, + "probability": 0.1834 + }, + { + "start": 4262.7, + "end": 4265.9, + "probability": 0.5006 + }, + { + "start": 4266.52, + "end": 4268.78, + "probability": 0.7247 + }, + { + "start": 4269.34, + "end": 4274.24, + "probability": 0.8443 + }, + { + "start": 4274.66, + "end": 4276.04, + "probability": 0.5018 + }, + { + "start": 4277.04, + "end": 4279.62, + "probability": 0.8376 + }, + { + "start": 4280.64, + "end": 4282.56, + "probability": 0.7951 + }, + { + "start": 4283.62, + "end": 4286.36, + "probability": 0.8589 + }, + { + "start": 4287.0, + "end": 4289.41, + "probability": 0.9478 + }, + { + "start": 4290.06, + "end": 4292.24, + "probability": 0.9763 + }, + { + "start": 4292.94, + "end": 4293.66, + "probability": 0.6319 + }, + { + "start": 4294.8, + "end": 4296.42, + "probability": 0.9545 + }, + { + "start": 4297.8, + "end": 4298.79, + "probability": 0.9917 + }, + { + "start": 4299.38, + "end": 4300.1, + "probability": 0.9467 + }, + { + "start": 4300.54, + "end": 4301.82, + "probability": 0.9307 + }, + { + "start": 4302.0, + "end": 4302.98, + "probability": 0.3493 + }, + { + "start": 4303.68, + "end": 4304.84, + "probability": 0.8372 + }, + { + "start": 4305.42, + "end": 4309.26, + "probability": 0.989 + }, + { + "start": 4309.86, + "end": 4314.12, + "probability": 0.5613 + }, + { + "start": 4314.66, + "end": 4316.62, + "probability": 0.8206 + }, + { + "start": 4317.26, + "end": 4318.84, + "probability": 0.7253 + }, + { + "start": 4318.98, + "end": 4322.82, + "probability": 0.9835 + }, + { + "start": 4325.8, + "end": 4326.78, + "probability": 0.4122 + }, + { + "start": 4327.24, + "end": 4328.78, + "probability": 0.9297 + }, + { + "start": 4329.5, + "end": 4333.28, + "probability": 0.9386 + }, + { + "start": 4333.76, + "end": 4334.92, + "probability": 0.342 + }, + { + "start": 4335.52, + "end": 4337.98, + "probability": 0.941 + }, + { + "start": 4338.56, + "end": 4340.92, + "probability": 0.6938 + }, + { + "start": 4341.72, + "end": 4344.16, + "probability": 0.9559 + }, + { + "start": 4345.0, + "end": 4353.4, + "probability": 0.8921 + }, + { + "start": 4353.48, + "end": 4354.02, + "probability": 0.868 + }, + { + "start": 4354.94, + "end": 4355.54, + "probability": 0.9691 + }, + { + "start": 4356.58, + "end": 4357.12, + "probability": 0.9004 + }, + { + "start": 4357.48, + "end": 4359.76, + "probability": 0.896 + }, + { + "start": 4360.44, + "end": 4362.39, + "probability": 0.9626 + }, + { + "start": 4363.52, + "end": 4367.54, + "probability": 0.9391 + }, + { + "start": 4368.32, + "end": 4370.52, + "probability": 0.6015 + }, + { + "start": 4371.18, + "end": 4373.56, + "probability": 0.9547 + }, + { + "start": 4374.4, + "end": 4375.82, + "probability": 0.8043 + }, + { + "start": 4377.68, + "end": 4379.9, + "probability": 0.9605 + }, + { + "start": 4385.06, + "end": 4385.86, + "probability": 0.552 + }, + { + "start": 4387.36, + "end": 4389.2, + "probability": 0.861 + }, + { + "start": 4390.82, + "end": 4392.22, + "probability": 0.9971 + }, + { + "start": 4393.4, + "end": 4394.68, + "probability": 0.9072 + }, + { + "start": 4395.66, + "end": 4396.24, + "probability": 0.3044 + }, + { + "start": 4397.96, + "end": 4399.88, + "probability": 0.8494 + }, + { + "start": 4401.32, + "end": 4402.68, + "probability": 0.7409 + }, + { + "start": 4402.94, + "end": 4403.48, + "probability": 0.9703 + }, + { + "start": 4403.6, + "end": 4408.34, + "probability": 0.9228 + }, + { + "start": 4408.52, + "end": 4409.42, + "probability": 0.7055 + }, + { + "start": 4409.52, + "end": 4410.54, + "probability": 0.9819 + }, + { + "start": 4411.22, + "end": 4413.22, + "probability": 0.9634 + }, + { + "start": 4413.68, + "end": 4416.6, + "probability": 0.9922 + }, + { + "start": 4417.26, + "end": 4419.42, + "probability": 0.8472 + }, + { + "start": 4421.76, + "end": 4426.34, + "probability": 0.7946 + }, + { + "start": 4429.7, + "end": 4437.34, + "probability": 0.9971 + }, + { + "start": 4437.58, + "end": 4438.04, + "probability": 0.5311 + }, + { + "start": 4438.8, + "end": 4439.42, + "probability": 0.6959 + }, + { + "start": 4440.64, + "end": 4443.2, + "probability": 0.7879 + }, + { + "start": 4443.62, + "end": 4448.18, + "probability": 0.8727 + }, + { + "start": 4449.7, + "end": 4450.72, + "probability": 0.8463 + }, + { + "start": 4451.78, + "end": 4452.41, + "probability": 0.7436 + }, + { + "start": 4453.34, + "end": 4455.58, + "probability": 0.9939 + }, + { + "start": 4455.88, + "end": 4457.9, + "probability": 0.8314 + }, + { + "start": 4460.74, + "end": 4461.44, + "probability": 0.8214 + }, + { + "start": 4463.72, + "end": 4466.3, + "probability": 0.5911 + }, + { + "start": 4466.34, + "end": 4467.02, + "probability": 0.6423 + }, + { + "start": 4467.44, + "end": 4470.5, + "probability": 0.9821 + }, + { + "start": 4472.08, + "end": 4472.18, + "probability": 0.9381 + }, + { + "start": 4473.38, + "end": 4475.84, + "probability": 0.983 + }, + { + "start": 4477.8, + "end": 4478.78, + "probability": 0.8563 + }, + { + "start": 4480.62, + "end": 4481.4, + "probability": 0.9381 + }, + { + "start": 4481.94, + "end": 4484.08, + "probability": 0.8116 + }, + { + "start": 4485.1, + "end": 4487.48, + "probability": 0.9473 + }, + { + "start": 4489.5, + "end": 4490.6, + "probability": 0.92 + }, + { + "start": 4491.26, + "end": 4493.12, + "probability": 0.9556 + }, + { + "start": 4493.2, + "end": 4493.5, + "probability": 0.8911 + }, + { + "start": 4494.08, + "end": 4494.71, + "probability": 0.9207 + }, + { + "start": 4494.94, + "end": 4496.42, + "probability": 0.7437 + }, + { + "start": 4496.8, + "end": 4497.72, + "probability": 0.8922 + }, + { + "start": 4499.54, + "end": 4500.6, + "probability": 0.6613 + }, + { + "start": 4501.62, + "end": 4503.92, + "probability": 0.9565 + }, + { + "start": 4504.1, + "end": 4505.94, + "probability": 0.9292 + }, + { + "start": 4506.84, + "end": 4508.0, + "probability": 0.7328 + }, + { + "start": 4508.92, + "end": 4509.62, + "probability": 0.9173 + }, + { + "start": 4510.52, + "end": 4511.14, + "probability": 0.7615 + }, + { + "start": 4511.78, + "end": 4513.4, + "probability": 0.9629 + }, + { + "start": 4514.5, + "end": 4515.72, + "probability": 0.854 + }, + { + "start": 4516.66, + "end": 4517.96, + "probability": 0.9967 + }, + { + "start": 4519.28, + "end": 4521.5, + "probability": 0.9863 + }, + { + "start": 4522.54, + "end": 4524.28, + "probability": 0.6665 + }, + { + "start": 4524.42, + "end": 4525.18, + "probability": 0.9878 + }, + { + "start": 4525.36, + "end": 4526.78, + "probability": 0.9893 + }, + { + "start": 4526.92, + "end": 4528.76, + "probability": 0.8853 + }, + { + "start": 4529.64, + "end": 4531.78, + "probability": 0.8744 + }, + { + "start": 4535.3, + "end": 4536.17, + "probability": 0.9416 + }, + { + "start": 4537.02, + "end": 4537.66, + "probability": 0.8788 + }, + { + "start": 4538.62, + "end": 4542.98, + "probability": 0.9653 + }, + { + "start": 4544.2, + "end": 4548.4, + "probability": 0.8938 + }, + { + "start": 4548.96, + "end": 4550.34, + "probability": 0.6872 + }, + { + "start": 4551.52, + "end": 4554.88, + "probability": 0.9736 + }, + { + "start": 4555.42, + "end": 4556.6, + "probability": 0.9551 + }, + { + "start": 4557.22, + "end": 4558.26, + "probability": 0.9724 + }, + { + "start": 4559.8, + "end": 4561.34, + "probability": 0.9942 + }, + { + "start": 4561.7, + "end": 4563.17, + "probability": 0.7442 + }, + { + "start": 4563.72, + "end": 4564.5, + "probability": 0.7836 + }, + { + "start": 4565.44, + "end": 4566.82, + "probability": 0.9289 + }, + { + "start": 4567.26, + "end": 4573.06, + "probability": 0.9858 + }, + { + "start": 4573.36, + "end": 4573.66, + "probability": 0.7771 + }, + { + "start": 4575.02, + "end": 4578.54, + "probability": 0.98 + }, + { + "start": 4579.48, + "end": 4580.26, + "probability": 0.5112 + }, + { + "start": 4583.28, + "end": 4583.9, + "probability": 0.4323 + }, + { + "start": 4584.42, + "end": 4584.66, + "probability": 0.3678 + }, + { + "start": 4584.74, + "end": 4586.68, + "probability": 0.9936 + }, + { + "start": 4587.0, + "end": 4588.06, + "probability": 0.7634 + }, + { + "start": 4588.82, + "end": 4591.6, + "probability": 0.7436 + }, + { + "start": 4591.82, + "end": 4592.64, + "probability": 0.5287 + }, + { + "start": 4592.74, + "end": 4593.94, + "probability": 0.5158 + }, + { + "start": 4594.32, + "end": 4596.14, + "probability": 0.7097 + }, + { + "start": 4596.46, + "end": 4596.46, + "probability": 0.174 + }, + { + "start": 4596.46, + "end": 4597.72, + "probability": 0.3712 + }, + { + "start": 4597.84, + "end": 4600.14, + "probability": 0.6971 + }, + { + "start": 4600.46, + "end": 4602.72, + "probability": 0.4627 + }, + { + "start": 4603.12, + "end": 4604.02, + "probability": 0.7981 + }, + { + "start": 4604.6, + "end": 4608.84, + "probability": 0.908 + }, + { + "start": 4608.84, + "end": 4612.78, + "probability": 0.8129 + }, + { + "start": 4613.06, + "end": 4613.54, + "probability": 0.7145 + }, + { + "start": 4613.9, + "end": 4614.88, + "probability": 0.55 + }, + { + "start": 4615.32, + "end": 4618.46, + "probability": 0.9973 + }, + { + "start": 4618.92, + "end": 4619.75, + "probability": 0.7889 + }, + { + "start": 4621.66, + "end": 4622.52, + "probability": 0.6401 + }, + { + "start": 4622.74, + "end": 4623.56, + "probability": 0.8264 + }, + { + "start": 4623.6, + "end": 4627.34, + "probability": 0.9935 + }, + { + "start": 4631.2, + "end": 4631.76, + "probability": 0.653 + }, + { + "start": 4632.56, + "end": 4633.36, + "probability": 0.3018 + }, + { + "start": 4634.48, + "end": 4636.52, + "probability": 0.9167 + }, + { + "start": 4639.7, + "end": 4640.32, + "probability": 0.9492 + }, + { + "start": 4640.98, + "end": 4641.54, + "probability": 0.9972 + }, + { + "start": 4643.4, + "end": 4644.32, + "probability": 0.8708 + }, + { + "start": 4645.78, + "end": 4648.82, + "probability": 0.9829 + }, + { + "start": 4649.62, + "end": 4651.02, + "probability": 0.9868 + }, + { + "start": 4653.62, + "end": 4656.78, + "probability": 0.9661 + }, + { + "start": 4657.88, + "end": 4658.02, + "probability": 0.2797 + }, + { + "start": 4658.36, + "end": 4660.16, + "probability": 0.9817 + }, + { + "start": 4660.32, + "end": 4660.94, + "probability": 0.7553 + }, + { + "start": 4660.96, + "end": 4661.9, + "probability": 0.5085 + }, + { + "start": 4662.9, + "end": 4663.36, + "probability": 0.6981 + }, + { + "start": 4663.62, + "end": 4664.0, + "probability": 0.9106 + }, + { + "start": 4664.7, + "end": 4666.03, + "probability": 0.8477 + }, + { + "start": 4666.92, + "end": 4669.3, + "probability": 0.947 + }, + { + "start": 4669.36, + "end": 4671.28, + "probability": 0.9768 + }, + { + "start": 4671.36, + "end": 4672.85, + "probability": 0.9925 + }, + { + "start": 4673.72, + "end": 4674.52, + "probability": 0.9124 + }, + { + "start": 4676.5, + "end": 4677.74, + "probability": 0.996 + }, + { + "start": 4678.66, + "end": 4680.32, + "probability": 0.9226 + }, + { + "start": 4680.44, + "end": 4681.32, + "probability": 0.874 + }, + { + "start": 4681.66, + "end": 4684.34, + "probability": 0.997 + }, + { + "start": 4684.4, + "end": 4686.24, + "probability": 0.6511 + }, + { + "start": 4691.02, + "end": 4692.5, + "probability": 0.9902 + }, + { + "start": 4697.12, + "end": 4701.08, + "probability": 0.837 + }, + { + "start": 4704.9, + "end": 4706.26, + "probability": 0.9545 + }, + { + "start": 4708.84, + "end": 4709.84, + "probability": 0.8516 + }, + { + "start": 4710.84, + "end": 4711.98, + "probability": 0.9966 + }, + { + "start": 4713.28, + "end": 4714.86, + "probability": 0.9746 + }, + { + "start": 4715.06, + "end": 4715.88, + "probability": 0.8758 + }, + { + "start": 4716.0, + "end": 4716.34, + "probability": 0.71 + }, + { + "start": 4717.94, + "end": 4718.57, + "probability": 0.9302 + }, + { + "start": 4718.74, + "end": 4719.15, + "probability": 0.9885 + }, + { + "start": 4719.64, + "end": 4721.56, + "probability": 0.9786 + }, + { + "start": 4721.74, + "end": 4721.94, + "probability": 0.7079 + }, + { + "start": 4723.8, + "end": 4725.77, + "probability": 0.9532 + }, + { + "start": 4728.6, + "end": 4731.86, + "probability": 0.9753 + }, + { + "start": 4732.0, + "end": 4733.56, + "probability": 0.9965 + }, + { + "start": 4734.64, + "end": 4738.4, + "probability": 0.9753 + }, + { + "start": 4740.58, + "end": 4744.1, + "probability": 0.7735 + }, + { + "start": 4745.64, + "end": 4747.0, + "probability": 0.9293 + }, + { + "start": 4747.66, + "end": 4747.94, + "probability": 0.7412 + }, + { + "start": 4748.74, + "end": 4752.36, + "probability": 0.925 + }, + { + "start": 4753.28, + "end": 4753.54, + "probability": 0.8755 + }, + { + "start": 4754.86, + "end": 4756.1, + "probability": 0.7675 + }, + { + "start": 4757.2, + "end": 4757.98, + "probability": 0.9346 + }, + { + "start": 4758.56, + "end": 4759.2, + "probability": 0.8898 + }, + { + "start": 4760.2, + "end": 4761.74, + "probability": 0.6147 + }, + { + "start": 4763.26, + "end": 4764.56, + "probability": 0.8882 + }, + { + "start": 4766.1, + "end": 4770.74, + "probability": 0.9453 + }, + { + "start": 4771.66, + "end": 4775.64, + "probability": 0.9189 + }, + { + "start": 4775.74, + "end": 4776.04, + "probability": 0.5168 + }, + { + "start": 4777.4, + "end": 4782.2, + "probability": 0.6962 + }, + { + "start": 4782.3, + "end": 4784.54, + "probability": 0.6457 + }, + { + "start": 4784.54, + "end": 4785.3, + "probability": 0.0215 + }, + { + "start": 4785.32, + "end": 4787.32, + "probability": 0.6539 + }, + { + "start": 4787.44, + "end": 4792.76, + "probability": 0.6969 + }, + { + "start": 4793.62, + "end": 4794.74, + "probability": 0.9602 + }, + { + "start": 4796.8, + "end": 4798.96, + "probability": 0.9707 + }, + { + "start": 4800.32, + "end": 4801.0, + "probability": 0.6934 + }, + { + "start": 4803.94, + "end": 4804.92, + "probability": 0.9502 + }, + { + "start": 4805.98, + "end": 4806.64, + "probability": 0.9865 + }, + { + "start": 4807.18, + "end": 4808.88, + "probability": 0.7042 + }, + { + "start": 4808.96, + "end": 4810.28, + "probability": 0.6243 + }, + { + "start": 4812.42, + "end": 4813.22, + "probability": 0.6898 + }, + { + "start": 4814.7, + "end": 4815.98, + "probability": 0.9456 + }, + { + "start": 4816.86, + "end": 4818.28, + "probability": 0.8416 + }, + { + "start": 4818.98, + "end": 4819.62, + "probability": 0.6379 + }, + { + "start": 4820.2, + "end": 4821.02, + "probability": 0.9258 + }, + { + "start": 4821.34, + "end": 4824.0, + "probability": 0.9035 + }, + { + "start": 4824.56, + "end": 4825.8, + "probability": 0.5995 + }, + { + "start": 4827.76, + "end": 4828.94, + "probability": 0.9916 + }, + { + "start": 4829.32, + "end": 4833.17, + "probability": 0.965 + }, + { + "start": 4834.72, + "end": 4835.42, + "probability": 0.6962 + }, + { + "start": 4838.12, + "end": 4840.4, + "probability": 0.9891 + }, + { + "start": 4840.66, + "end": 4841.64, + "probability": 0.9859 + }, + { + "start": 4842.64, + "end": 4843.2, + "probability": 0.9961 + }, + { + "start": 4844.3, + "end": 4845.58, + "probability": 0.9957 + }, + { + "start": 4847.1, + "end": 4848.04, + "probability": 0.8639 + }, + { + "start": 4848.56, + "end": 4850.52, + "probability": 0.8579 + }, + { + "start": 4851.28, + "end": 4852.0, + "probability": 0.7568 + }, + { + "start": 4852.92, + "end": 4856.72, + "probability": 0.9517 + }, + { + "start": 4856.72, + "end": 4860.66, + "probability": 0.9556 + }, + { + "start": 4861.04, + "end": 4862.4, + "probability": 0.9876 + }, + { + "start": 4864.98, + "end": 4865.66, + "probability": 0.4689 + }, + { + "start": 4866.54, + "end": 4867.38, + "probability": 0.8267 + }, + { + "start": 4867.66, + "end": 4868.44, + "probability": 0.9615 + }, + { + "start": 4868.54, + "end": 4870.06, + "probability": 0.9286 + }, + { + "start": 4870.4, + "end": 4871.92, + "probability": 0.9304 + }, + { + "start": 4872.2, + "end": 4872.96, + "probability": 0.9564 + }, + { + "start": 4874.42, + "end": 4875.0, + "probability": 0.9611 + }, + { + "start": 4878.22, + "end": 4879.0, + "probability": 0.7941 + }, + { + "start": 4879.58, + "end": 4879.86, + "probability": 0.988 + }, + { + "start": 4883.88, + "end": 4885.21, + "probability": 0.7827 + }, + { + "start": 4885.84, + "end": 4886.24, + "probability": 0.7144 + }, + { + "start": 4888.4, + "end": 4890.22, + "probability": 0.9939 + }, + { + "start": 4892.68, + "end": 4893.7, + "probability": 0.7072 + }, + { + "start": 4894.0, + "end": 4894.56, + "probability": 0.9819 + }, + { + "start": 4894.84, + "end": 4895.32, + "probability": 0.8127 + }, + { + "start": 4898.54, + "end": 4901.06, + "probability": 0.9966 + }, + { + "start": 4901.22, + "end": 4901.92, + "probability": 0.7367 + }, + { + "start": 4902.86, + "end": 4904.08, + "probability": 0.0617 + }, + { + "start": 4904.64, + "end": 4905.14, + "probability": 0.0496 + }, + { + "start": 4906.3, + "end": 4909.18, + "probability": 0.9553 + }, + { + "start": 4911.26, + "end": 4912.84, + "probability": 0.9775 + }, + { + "start": 4913.66, + "end": 4916.14, + "probability": 0.9897 + }, + { + "start": 4916.3, + "end": 4918.9, + "probability": 0.8627 + }, + { + "start": 4920.92, + "end": 4922.54, + "probability": 0.5273 + }, + { + "start": 4923.28, + "end": 4924.26, + "probability": 0.6243 + }, + { + "start": 4925.62, + "end": 4926.62, + "probability": 0.9907 + }, + { + "start": 4927.14, + "end": 4927.74, + "probability": 0.9904 + }, + { + "start": 4928.26, + "end": 4928.82, + "probability": 0.8432 + }, + { + "start": 4930.34, + "end": 4932.14, + "probability": 0.9757 + }, + { + "start": 4935.22, + "end": 4937.46, + "probability": 0.9966 + }, + { + "start": 4938.42, + "end": 4940.42, + "probability": 0.9346 + }, + { + "start": 4942.6, + "end": 4944.4, + "probability": 0.9602 + }, + { + "start": 4947.48, + "end": 4950.02, + "probability": 0.9544 + }, + { + "start": 4951.7, + "end": 4953.26, + "probability": 0.748 + }, + { + "start": 4953.74, + "end": 4956.04, + "probability": 0.9604 + }, + { + "start": 4957.12, + "end": 4959.95, + "probability": 0.9424 + }, + { + "start": 4961.62, + "end": 4962.42, + "probability": 0.9387 + }, + { + "start": 4964.82, + "end": 4966.22, + "probability": 0.8888 + }, + { + "start": 4967.2, + "end": 4967.9, + "probability": 0.5369 + }, + { + "start": 4969.1, + "end": 4970.4, + "probability": 0.5811 + }, + { + "start": 4971.86, + "end": 4974.32, + "probability": 0.9851 + }, + { + "start": 4975.04, + "end": 4979.54, + "probability": 0.8483 + }, + { + "start": 4980.12, + "end": 4982.48, + "probability": 0.8433 + }, + { + "start": 4982.94, + "end": 4985.2, + "probability": 0.9611 + }, + { + "start": 4986.14, + "end": 4988.52, + "probability": 0.8951 + }, + { + "start": 4989.6, + "end": 4989.88, + "probability": 0.519 + }, + { + "start": 4990.62, + "end": 4991.54, + "probability": 0.678 + }, + { + "start": 4992.86, + "end": 4993.6, + "probability": 0.9111 + }, + { + "start": 4994.56, + "end": 4995.54, + "probability": 0.889 + }, + { + "start": 4996.12, + "end": 4996.6, + "probability": 0.8331 + }, + { + "start": 4997.36, + "end": 4998.72, + "probability": 0.9513 + }, + { + "start": 4999.28, + "end": 5001.92, + "probability": 0.966 + }, + { + "start": 5003.06, + "end": 5003.72, + "probability": 0.804 + }, + { + "start": 5004.3, + "end": 5008.52, + "probability": 0.9424 + }, + { + "start": 5009.18, + "end": 5009.66, + "probability": 0.6951 + }, + { + "start": 5010.17, + "end": 5013.02, + "probability": 0.8759 + }, + { + "start": 5014.48, + "end": 5016.7, + "probability": 0.8743 + }, + { + "start": 5016.78, + "end": 5017.72, + "probability": 0.8159 + }, + { + "start": 5022.82, + "end": 5023.9, + "probability": 0.999 + }, + { + "start": 5026.68, + "end": 5029.94, + "probability": 0.9907 + }, + { + "start": 5030.22, + "end": 5031.08, + "probability": 0.6292 + }, + { + "start": 5031.94, + "end": 5032.72, + "probability": 0.7391 + }, + { + "start": 5032.86, + "end": 5033.64, + "probability": 0.6741 + }, + { + "start": 5033.82, + "end": 5034.69, + "probability": 0.9932 + }, + { + "start": 5034.82, + "end": 5038.26, + "probability": 0.9593 + }, + { + "start": 5038.26, + "end": 5038.62, + "probability": 0.5823 + }, + { + "start": 5039.36, + "end": 5039.86, + "probability": 0.9856 + }, + { + "start": 5041.72, + "end": 5041.88, + "probability": 0.0127 + }, + { + "start": 5041.88, + "end": 5042.8, + "probability": 0.2477 + }, + { + "start": 5043.84, + "end": 5045.52, + "probability": 0.6851 + }, + { + "start": 5046.8, + "end": 5047.48, + "probability": 0.811 + }, + { + "start": 5048.92, + "end": 5055.45, + "probability": 0.9751 + }, + { + "start": 5056.78, + "end": 5057.48, + "probability": 0.5356 + }, + { + "start": 5059.92, + "end": 5065.92, + "probability": 0.9885 + }, + { + "start": 5067.22, + "end": 5069.42, + "probability": 0.9952 + }, + { + "start": 5070.04, + "end": 5070.32, + "probability": 0.9924 + }, + { + "start": 5071.38, + "end": 5073.58, + "probability": 0.9683 + }, + { + "start": 5074.88, + "end": 5079.7, + "probability": 0.6177 + }, + { + "start": 5080.78, + "end": 5083.72, + "probability": 0.9913 + }, + { + "start": 5084.46, + "end": 5087.84, + "probability": 0.8895 + }, + { + "start": 5089.16, + "end": 5089.92, + "probability": 0.7584 + }, + { + "start": 5091.88, + "end": 5094.92, + "probability": 0.4891 + }, + { + "start": 5096.82, + "end": 5098.32, + "probability": 0.4932 + }, + { + "start": 5099.68, + "end": 5102.26, + "probability": 0.5295 + }, + { + "start": 5103.48, + "end": 5106.46, + "probability": 0.9909 + }, + { + "start": 5107.92, + "end": 5110.34, + "probability": 0.801 + }, + { + "start": 5111.56, + "end": 5113.63, + "probability": 0.8475 + }, + { + "start": 5114.42, + "end": 5116.18, + "probability": 0.7958 + }, + { + "start": 5117.76, + "end": 5121.69, + "probability": 0.9797 + }, + { + "start": 5122.58, + "end": 5124.2, + "probability": 0.2798 + }, + { + "start": 5125.22, + "end": 5127.46, + "probability": 0.8245 + }, + { + "start": 5127.56, + "end": 5131.54, + "probability": 0.9814 + }, + { + "start": 5133.58, + "end": 5136.66, + "probability": 0.6563 + }, + { + "start": 5137.78, + "end": 5145.4, + "probability": 0.9876 + }, + { + "start": 5147.2, + "end": 5151.46, + "probability": 0.9916 + }, + { + "start": 5151.62, + "end": 5153.51, + "probability": 0.9595 + }, + { + "start": 5154.52, + "end": 5160.06, + "probability": 0.9754 + }, + { + "start": 5160.74, + "end": 5164.34, + "probability": 0.981 + }, + { + "start": 5166.06, + "end": 5168.24, + "probability": 0.8785 + }, + { + "start": 5169.52, + "end": 5170.28, + "probability": 0.7997 + }, + { + "start": 5171.12, + "end": 5173.44, + "probability": 0.7436 + }, + { + "start": 5174.06, + "end": 5175.44, + "probability": 0.9894 + }, + { + "start": 5176.4, + "end": 5179.58, + "probability": 0.9696 + }, + { + "start": 5181.36, + "end": 5182.26, + "probability": 0.7371 + }, + { + "start": 5182.82, + "end": 5185.5, + "probability": 0.8147 + }, + { + "start": 5186.5, + "end": 5187.26, + "probability": 0.4437 + }, + { + "start": 5187.82, + "end": 5190.84, + "probability": 0.9093 + }, + { + "start": 5192.3, + "end": 5195.26, + "probability": 0.8726 + }, + { + "start": 5196.08, + "end": 5197.18, + "probability": 0.9619 + }, + { + "start": 5198.68, + "end": 5200.46, + "probability": 0.7584 + }, + { + "start": 5200.9, + "end": 5201.4, + "probability": 0.4248 + }, + { + "start": 5201.5, + "end": 5202.2, + "probability": 0.8174 + }, + { + "start": 5202.44, + "end": 5203.48, + "probability": 0.8757 + }, + { + "start": 5204.68, + "end": 5208.26, + "probability": 0.9546 + }, + { + "start": 5209.18, + "end": 5211.42, + "probability": 0.9653 + }, + { + "start": 5212.8, + "end": 5216.98, + "probability": 0.9973 + }, + { + "start": 5216.98, + "end": 5221.22, + "probability": 0.9469 + }, + { + "start": 5222.4, + "end": 5226.58, + "probability": 0.9839 + }, + { + "start": 5228.38, + "end": 5230.26, + "probability": 0.9717 + }, + { + "start": 5230.36, + "end": 5235.92, + "probability": 0.9645 + }, + { + "start": 5236.22, + "end": 5239.32, + "probability": 0.34 + }, + { + "start": 5239.62, + "end": 5243.64, + "probability": 0.761 + }, + { + "start": 5244.4, + "end": 5247.92, + "probability": 0.9668 + }, + { + "start": 5248.66, + "end": 5249.64, + "probability": 0.9399 + }, + { + "start": 5249.68, + "end": 5254.96, + "probability": 0.9833 + }, + { + "start": 5255.6, + "end": 5259.72, + "probability": 0.9753 + }, + { + "start": 5260.26, + "end": 5263.82, + "probability": 0.9124 + }, + { + "start": 5264.96, + "end": 5267.5, + "probability": 0.918 + }, + { + "start": 5268.76, + "end": 5269.0, + "probability": 0.9736 + }, + { + "start": 5269.72, + "end": 5272.64, + "probability": 0.9153 + }, + { + "start": 5273.5, + "end": 5274.66, + "probability": 0.8942 + }, + { + "start": 5275.48, + "end": 5280.68, + "probability": 0.9159 + }, + { + "start": 5281.72, + "end": 5284.7, + "probability": 0.9941 + }, + { + "start": 5285.5, + "end": 5286.74, + "probability": 0.9993 + }, + { + "start": 5288.12, + "end": 5291.6, + "probability": 0.9383 + }, + { + "start": 5291.92, + "end": 5293.0, + "probability": 0.8471 + }, + { + "start": 5293.3, + "end": 5294.26, + "probability": 0.6143 + }, + { + "start": 5295.46, + "end": 5296.24, + "probability": 0.7895 + }, + { + "start": 5297.18, + "end": 5297.72, + "probability": 0.5131 + }, + { + "start": 5297.9, + "end": 5298.28, + "probability": 0.5829 + }, + { + "start": 5298.48, + "end": 5299.44, + "probability": 0.9597 + }, + { + "start": 5299.92, + "end": 5305.3, + "probability": 0.9757 + }, + { + "start": 5305.96, + "end": 5309.6, + "probability": 0.9126 + }, + { + "start": 5311.12, + "end": 5312.42, + "probability": 0.8929 + }, + { + "start": 5313.14, + "end": 5314.08, + "probability": 0.9928 + }, + { + "start": 5314.98, + "end": 5317.1, + "probability": 0.977 + }, + { + "start": 5318.22, + "end": 5318.54, + "probability": 0.9551 + }, + { + "start": 5319.32, + "end": 5321.04, + "probability": 0.7865 + }, + { + "start": 5321.16, + "end": 5323.72, + "probability": 0.7498 + }, + { + "start": 5323.84, + "end": 5325.68, + "probability": 0.4244 + }, + { + "start": 5325.68, + "end": 5325.96, + "probability": 0.3891 + }, + { + "start": 5326.56, + "end": 5327.26, + "probability": 0.8565 + }, + { + "start": 5328.22, + "end": 5329.18, + "probability": 0.7097 + }, + { + "start": 5329.36, + "end": 5329.92, + "probability": 0.5028 + }, + { + "start": 5330.74, + "end": 5331.88, + "probability": 0.8791 + }, + { + "start": 5333.04, + "end": 5335.7, + "probability": 0.8915 + }, + { + "start": 5337.6, + "end": 5339.24, + "probability": 0.9556 + }, + { + "start": 5339.96, + "end": 5341.88, + "probability": 0.8943 + }, + { + "start": 5342.54, + "end": 5348.12, + "probability": 0.9808 + }, + { + "start": 5348.2, + "end": 5349.6, + "probability": 0.509 + }, + { + "start": 5351.0, + "end": 5355.9, + "probability": 0.9764 + }, + { + "start": 5356.9, + "end": 5360.46, + "probability": 0.9161 + }, + { + "start": 5362.3, + "end": 5363.24, + "probability": 0.8335 + }, + { + "start": 5364.3, + "end": 5365.28, + "probability": 0.6198 + }, + { + "start": 5365.92, + "end": 5367.04, + "probability": 0.5819 + }, + { + "start": 5367.22, + "end": 5367.66, + "probability": 0.7289 + }, + { + "start": 5367.94, + "end": 5372.88, + "probability": 0.9707 + }, + { + "start": 5373.6, + "end": 5376.18, + "probability": 0.9851 + }, + { + "start": 5377.06, + "end": 5377.74, + "probability": 0.7456 + }, + { + "start": 5378.14, + "end": 5380.76, + "probability": 0.9498 + }, + { + "start": 5381.84, + "end": 5382.8, + "probability": 0.8669 + }, + { + "start": 5383.94, + "end": 5389.62, + "probability": 0.9725 + }, + { + "start": 5390.0, + "end": 5391.94, + "probability": 0.8613 + }, + { + "start": 5392.52, + "end": 5395.88, + "probability": 0.8123 + }, + { + "start": 5397.32, + "end": 5401.04, + "probability": 0.7507 + }, + { + "start": 5401.14, + "end": 5402.28, + "probability": 0.4357 + }, + { + "start": 5402.44, + "end": 5402.68, + "probability": 0.4071 + }, + { + "start": 5402.78, + "end": 5403.76, + "probability": 0.8455 + }, + { + "start": 5403.84, + "end": 5404.14, + "probability": 0.437 + }, + { + "start": 5404.36, + "end": 5405.5, + "probability": 0.4938 + }, + { + "start": 5405.5, + "end": 5406.62, + "probability": 0.3408 + }, + { + "start": 5406.7, + "end": 5407.4, + "probability": 0.2932 + }, + { + "start": 5408.06, + "end": 5408.2, + "probability": 0.0835 + }, + { + "start": 5408.2, + "end": 5408.9, + "probability": 0.6599 + }, + { + "start": 5410.12, + "end": 5414.8, + "probability": 0.4047 + }, + { + "start": 5415.8, + "end": 5418.2, + "probability": 0.9863 + }, + { + "start": 5420.78, + "end": 5421.62, + "probability": 0.1766 + }, + { + "start": 5422.98, + "end": 5423.64, + "probability": 0.0098 + }, + { + "start": 5423.64, + "end": 5427.72, + "probability": 0.0853 + }, + { + "start": 5428.86, + "end": 5432.95, + "probability": 0.1591 + }, + { + "start": 5435.44, + "end": 5437.48, + "probability": 0.1276 + }, + { + "start": 5437.48, + "end": 5440.18, + "probability": 0.1071 + }, + { + "start": 5441.28, + "end": 5444.36, + "probability": 0.022 + }, + { + "start": 5445.62, + "end": 5446.66, + "probability": 0.1734 + }, + { + "start": 5447.56, + "end": 5449.05, + "probability": 0.0835 + }, + { + "start": 5453.9, + "end": 5455.74, + "probability": 0.2183 + }, + { + "start": 5456.58, + "end": 5457.72, + "probability": 0.199 + }, + { + "start": 5459.36, + "end": 5460.48, + "probability": 0.0681 + }, + { + "start": 5460.48, + "end": 5461.4, + "probability": 0.1438 + }, + { + "start": 5462.9, + "end": 5464.84, + "probability": 0.0471 + }, + { + "start": 5465.0, + "end": 5466.8, + "probability": 0.2137 + }, + { + "start": 5467.09, + "end": 5467.8, + "probability": 0.077 + }, + { + "start": 5467.8, + "end": 5470.5, + "probability": 0.1989 + }, + { + "start": 5471.92, + "end": 5478.12, + "probability": 0.0878 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.0, + "end": 5726.0, + "probability": 0.0 + }, + { + "start": 5726.26, + "end": 5727.81, + "probability": 0.1857 + }, + { + "start": 5727.98, + "end": 5728.6, + "probability": 0.7459 + }, + { + "start": 5728.72, + "end": 5729.24, + "probability": 0.9367 + }, + { + "start": 5731.02, + "end": 5732.7, + "probability": 0.9792 + }, + { + "start": 5732.78, + "end": 5734.64, + "probability": 0.2772 + }, + { + "start": 5734.64, + "end": 5736.24, + "probability": 0.708 + }, + { + "start": 5748.84, + "end": 5749.6, + "probability": 0.3838 + }, + { + "start": 5749.76, + "end": 5755.02, + "probability": 0.901 + }, + { + "start": 5758.2, + "end": 5761.24, + "probability": 0.793 + }, + { + "start": 5762.04, + "end": 5763.18, + "probability": 0.9252 + }, + { + "start": 5766.18, + "end": 5768.6, + "probability": 0.9771 + }, + { + "start": 5768.82, + "end": 5772.34, + "probability": 0.9792 + }, + { + "start": 5776.32, + "end": 5778.08, + "probability": 0.6607 + }, + { + "start": 5778.82, + "end": 5779.62, + "probability": 0.941 + }, + { + "start": 5780.3, + "end": 5783.2, + "probability": 0.9627 + }, + { + "start": 5785.44, + "end": 5785.94, + "probability": 0.8841 + }, + { + "start": 5786.62, + "end": 5789.0, + "probability": 0.9373 + }, + { + "start": 5790.82, + "end": 5791.76, + "probability": 0.0147 + }, + { + "start": 5793.72, + "end": 5793.86, + "probability": 0.2544 + }, + { + "start": 5795.94, + "end": 5796.84, + "probability": 0.1922 + }, + { + "start": 5815.22, + "end": 5817.58, + "probability": 0.4124 + }, + { + "start": 5819.04, + "end": 5822.08, + "probability": 0.8853 + }, + { + "start": 5822.22, + "end": 5823.56, + "probability": 0.9717 + }, + { + "start": 5823.76, + "end": 5824.29, + "probability": 0.561 + }, + { + "start": 5825.52, + "end": 5827.76, + "probability": 0.9957 + }, + { + "start": 5828.78, + "end": 5832.18, + "probability": 0.8861 + }, + { + "start": 5832.98, + "end": 5834.3, + "probability": 0.406 + }, + { + "start": 5835.18, + "end": 5837.35, + "probability": 0.8262 + }, + { + "start": 5838.42, + "end": 5842.76, + "probability": 0.9881 + }, + { + "start": 5843.68, + "end": 5848.02, + "probability": 0.9659 + }, + { + "start": 5849.94, + "end": 5854.42, + "probability": 0.9629 + }, + { + "start": 5856.78, + "end": 5857.44, + "probability": 0.6415 + }, + { + "start": 5859.76, + "end": 5861.7, + "probability": 0.7807 + }, + { + "start": 5863.9, + "end": 5865.22, + "probability": 0.9699 + }, + { + "start": 5866.12, + "end": 5866.54, + "probability": 0.6812 + }, + { + "start": 5868.46, + "end": 5870.32, + "probability": 0.9648 + }, + { + "start": 5871.84, + "end": 5875.0, + "probability": 0.7845 + }, + { + "start": 5875.04, + "end": 5877.38, + "probability": 0.8369 + }, + { + "start": 5879.0, + "end": 5880.06, + "probability": 0.9749 + }, + { + "start": 5880.06, + "end": 5880.68, + "probability": 0.5953 + }, + { + "start": 5880.78, + "end": 5884.54, + "probability": 0.9744 + }, + { + "start": 5885.54, + "end": 5886.76, + "probability": 0.9985 + }, + { + "start": 5888.24, + "end": 5889.52, + "probability": 0.9966 + }, + { + "start": 5889.84, + "end": 5890.65, + "probability": 0.9613 + }, + { + "start": 5890.74, + "end": 5891.9, + "probability": 0.6525 + }, + { + "start": 5892.0, + "end": 5893.26, + "probability": 0.9969 + }, + { + "start": 5895.58, + "end": 5896.34, + "probability": 0.8221 + }, + { + "start": 5897.32, + "end": 5899.28, + "probability": 0.5161 + }, + { + "start": 5900.44, + "end": 5902.42, + "probability": 0.9913 + }, + { + "start": 5902.58, + "end": 5902.86, + "probability": 0.3061 + }, + { + "start": 5902.94, + "end": 5904.48, + "probability": 0.9987 + }, + { + "start": 5905.72, + "end": 5909.8, + "probability": 0.8638 + }, + { + "start": 5911.34, + "end": 5913.56, + "probability": 0.9399 + }, + { + "start": 5915.0, + "end": 5916.18, + "probability": 0.5165 + }, + { + "start": 5916.24, + "end": 5918.66, + "probability": 0.8687 + }, + { + "start": 5918.7, + "end": 5919.36, + "probability": 0.7117 + }, + { + "start": 5920.42, + "end": 5920.84, + "probability": 0.5712 + }, + { + "start": 5922.6, + "end": 5924.96, + "probability": 0.9289 + }, + { + "start": 5925.04, + "end": 5926.3, + "probability": 0.9538 + }, + { + "start": 5927.92, + "end": 5930.1, + "probability": 0.6147 + }, + { + "start": 5931.46, + "end": 5932.7, + "probability": 0.9857 + }, + { + "start": 5934.8, + "end": 5937.19, + "probability": 0.9807 + }, + { + "start": 5939.16, + "end": 5940.1, + "probability": 0.7599 + }, + { + "start": 5942.0, + "end": 5947.32, + "probability": 0.9876 + }, + { + "start": 5948.84, + "end": 5949.32, + "probability": 0.3991 + }, + { + "start": 5949.46, + "end": 5950.08, + "probability": 0.6991 + }, + { + "start": 5950.12, + "end": 5950.66, + "probability": 0.6827 + }, + { + "start": 5950.72, + "end": 5951.8, + "probability": 0.8945 + }, + { + "start": 5953.14, + "end": 5953.38, + "probability": 0.9621 + }, + { + "start": 5954.46, + "end": 5958.64, + "probability": 0.9336 + }, + { + "start": 5959.8, + "end": 5961.1, + "probability": 0.8554 + }, + { + "start": 5961.92, + "end": 5963.32, + "probability": 0.9831 + }, + { + "start": 5963.52, + "end": 5967.92, + "probability": 0.9335 + }, + { + "start": 5967.98, + "end": 5969.04, + "probability": 0.9461 + }, + { + "start": 5969.92, + "end": 5971.12, + "probability": 0.921 + }, + { + "start": 5971.16, + "end": 5973.14, + "probability": 0.9965 + }, + { + "start": 5974.46, + "end": 5977.76, + "probability": 0.9672 + }, + { + "start": 5978.3, + "end": 5979.6, + "probability": 0.9984 + }, + { + "start": 5981.24, + "end": 5983.44, + "probability": 0.7668 + }, + { + "start": 5985.08, + "end": 5986.74, + "probability": 0.5582 + }, + { + "start": 5986.96, + "end": 5988.72, + "probability": 0.9963 + }, + { + "start": 5989.96, + "end": 5993.96, + "probability": 0.9964 + }, + { + "start": 5994.56, + "end": 5996.28, + "probability": 0.6613 + }, + { + "start": 5997.52, + "end": 6000.08, + "probability": 0.9542 + }, + { + "start": 6000.14, + "end": 6002.2, + "probability": 0.9602 + }, + { + "start": 6002.58, + "end": 6004.86, + "probability": 0.9951 + }, + { + "start": 6005.84, + "end": 6007.12, + "probability": 0.8584 + }, + { + "start": 6008.0, + "end": 6009.54, + "probability": 0.7508 + }, + { + "start": 6010.32, + "end": 6011.76, + "probability": 0.9499 + }, + { + "start": 6012.86, + "end": 6014.44, + "probability": 0.9867 + }, + { + "start": 6015.32, + "end": 6017.12, + "probability": 0.9875 + }, + { + "start": 6017.3, + "end": 6018.66, + "probability": 0.9777 + }, + { + "start": 6019.28, + "end": 6021.48, + "probability": 0.8608 + }, + { + "start": 6021.9, + "end": 6022.62, + "probability": 0.937 + }, + { + "start": 6022.88, + "end": 6024.47, + "probability": 0.7485 + }, + { + "start": 6025.52, + "end": 6029.08, + "probability": 0.9795 + }, + { + "start": 6030.78, + "end": 6031.54, + "probability": 0.4694 + }, + { + "start": 6031.64, + "end": 6032.12, + "probability": 0.5126 + }, + { + "start": 6032.18, + "end": 6033.57, + "probability": 0.9875 + }, + { + "start": 6033.82, + "end": 6034.4, + "probability": 0.8124 + }, + { + "start": 6035.68, + "end": 6037.36, + "probability": 0.9049 + }, + { + "start": 6037.38, + "end": 6037.8, + "probability": 0.8177 + }, + { + "start": 6038.64, + "end": 6039.78, + "probability": 0.6859 + }, + { + "start": 6041.22, + "end": 6042.24, + "probability": 0.7057 + }, + { + "start": 6042.96, + "end": 6043.36, + "probability": 0.8625 + }, + { + "start": 6043.58, + "end": 6046.32, + "probability": 0.9672 + }, + { + "start": 6046.5, + "end": 6047.47, + "probability": 0.9839 + }, + { + "start": 6048.7, + "end": 6049.56, + "probability": 0.8367 + }, + { + "start": 6050.7, + "end": 6055.58, + "probability": 0.9714 + }, + { + "start": 6057.08, + "end": 6060.22, + "probability": 0.9978 + }, + { + "start": 6061.24, + "end": 6062.46, + "probability": 0.9684 + }, + { + "start": 6062.5, + "end": 6065.56, + "probability": 0.8328 + }, + { + "start": 6066.22, + "end": 6067.62, + "probability": 0.9441 + }, + { + "start": 6067.78, + "end": 6070.5, + "probability": 0.8001 + }, + { + "start": 6071.56, + "end": 6072.54, + "probability": 0.9609 + }, + { + "start": 6074.21, + "end": 6076.08, + "probability": 0.1954 + }, + { + "start": 6076.08, + "end": 6076.62, + "probability": 0.2533 + }, + { + "start": 6077.18, + "end": 6079.58, + "probability": 0.6108 + }, + { + "start": 6082.98, + "end": 6083.9, + "probability": 0.6583 + }, + { + "start": 6084.38, + "end": 6086.3, + "probability": 0.9837 + }, + { + "start": 6086.4, + "end": 6087.22, + "probability": 0.9601 + }, + { + "start": 6087.94, + "end": 6089.0, + "probability": 0.8007 + }, + { + "start": 6089.12, + "end": 6089.68, + "probability": 0.8081 + }, + { + "start": 6090.18, + "end": 6090.5, + "probability": 0.4461 + }, + { + "start": 6090.72, + "end": 6093.26, + "probability": 0.9873 + }, + { + "start": 6094.02, + "end": 6096.0, + "probability": 0.9633 + }, + { + "start": 6096.02, + "end": 6096.66, + "probability": 0.9825 + }, + { + "start": 6098.18, + "end": 6100.26, + "probability": 0.9752 + }, + { + "start": 6102.54, + "end": 6103.4, + "probability": 0.6874 + }, + { + "start": 6104.16, + "end": 6105.04, + "probability": 0.8862 + }, + { + "start": 6105.14, + "end": 6107.6, + "probability": 0.9472 + }, + { + "start": 6107.88, + "end": 6111.74, + "probability": 0.9905 + }, + { + "start": 6111.74, + "end": 6115.9, + "probability": 0.994 + }, + { + "start": 6116.26, + "end": 6117.04, + "probability": 0.2234 + }, + { + "start": 6117.3, + "end": 6119.1, + "probability": 0.9628 + }, + { + "start": 6119.74, + "end": 6120.92, + "probability": 0.9823 + }, + { + "start": 6121.3, + "end": 6124.5, + "probability": 0.8848 + }, + { + "start": 6124.8, + "end": 6125.46, + "probability": 0.9692 + }, + { + "start": 6125.74, + "end": 6126.39, + "probability": 0.7053 + }, + { + "start": 6127.04, + "end": 6128.0, + "probability": 0.8076 + }, + { + "start": 6128.14, + "end": 6130.74, + "probability": 0.6371 + }, + { + "start": 6131.22, + "end": 6133.07, + "probability": 0.8352 + }, + { + "start": 6133.34, + "end": 6134.06, + "probability": 0.2864 + }, + { + "start": 6135.02, + "end": 6138.75, + "probability": 0.994 + }, + { + "start": 6139.82, + "end": 6142.82, + "probability": 0.9988 + }, + { + "start": 6142.82, + "end": 6145.68, + "probability": 0.9772 + }, + { + "start": 6145.72, + "end": 6146.54, + "probability": 0.7844 + }, + { + "start": 6147.22, + "end": 6149.36, + "probability": 0.9648 + }, + { + "start": 6150.42, + "end": 6151.2, + "probability": 0.7559 + }, + { + "start": 6152.04, + "end": 6152.56, + "probability": 0.8667 + }, + { + "start": 6153.66, + "end": 6158.06, + "probability": 0.989 + }, + { + "start": 6158.72, + "end": 6160.68, + "probability": 0.9948 + }, + { + "start": 6160.94, + "end": 6162.52, + "probability": 0.9529 + }, + { + "start": 6163.08, + "end": 6163.94, + "probability": 0.9375 + }, + { + "start": 6164.84, + "end": 6165.34, + "probability": 0.8218 + }, + { + "start": 6166.22, + "end": 6169.02, + "probability": 0.9327 + }, + { + "start": 6169.46, + "end": 6170.2, + "probability": 0.8394 + }, + { + "start": 6170.4, + "end": 6173.66, + "probability": 0.8887 + }, + { + "start": 6174.34, + "end": 6175.2, + "probability": 0.6724 + }, + { + "start": 6176.22, + "end": 6177.86, + "probability": 0.9819 + }, + { + "start": 6179.29, + "end": 6180.8, + "probability": 0.6568 + }, + { + "start": 6181.74, + "end": 6184.34, + "probability": 0.8737 + }, + { + "start": 6184.9, + "end": 6186.32, + "probability": 0.7715 + }, + { + "start": 6186.8, + "end": 6187.26, + "probability": 0.9237 + }, + { + "start": 6198.02, + "end": 6198.38, + "probability": 0.3687 + }, + { + "start": 6198.46, + "end": 6201.26, + "probability": 0.651 + }, + { + "start": 6202.56, + "end": 6207.18, + "probability": 0.9478 + }, + { + "start": 6207.48, + "end": 6208.3, + "probability": 0.9191 + }, + { + "start": 6209.42, + "end": 6209.8, + "probability": 0.7892 + }, + { + "start": 6211.4, + "end": 6215.6, + "probability": 0.7734 + }, + { + "start": 6216.78, + "end": 6217.18, + "probability": 0.7826 + }, + { + "start": 6217.34, + "end": 6219.06, + "probability": 0.6682 + }, + { + "start": 6219.24, + "end": 6222.31, + "probability": 0.9119 + }, + { + "start": 6223.48, + "end": 6224.7, + "probability": 0.7988 + }, + { + "start": 6224.82, + "end": 6225.21, + "probability": 0.9639 + }, + { + "start": 6225.56, + "end": 6226.08, + "probability": 0.9116 + }, + { + "start": 6227.76, + "end": 6232.4, + "probability": 0.7847 + }, + { + "start": 6233.34, + "end": 6237.1, + "probability": 0.9825 + }, + { + "start": 6237.1, + "end": 6242.32, + "probability": 0.9795 + }, + { + "start": 6243.9, + "end": 6247.54, + "probability": 0.9899 + }, + { + "start": 6249.32, + "end": 6254.24, + "probability": 0.9714 + }, + { + "start": 6254.98, + "end": 6260.52, + "probability": 0.9716 + }, + { + "start": 6262.18, + "end": 6264.36, + "probability": 0.6989 + }, + { + "start": 6265.5, + "end": 6270.44, + "probability": 0.9676 + }, + { + "start": 6272.84, + "end": 6276.46, + "probability": 0.9889 + }, + { + "start": 6277.02, + "end": 6280.48, + "probability": 0.9402 + }, + { + "start": 6281.54, + "end": 6285.02, + "probability": 0.9515 + }, + { + "start": 6286.54, + "end": 6287.18, + "probability": 0.8319 + }, + { + "start": 6289.34, + "end": 6291.12, + "probability": 0.673 + }, + { + "start": 6292.34, + "end": 6295.56, + "probability": 0.9937 + }, + { + "start": 6296.0, + "end": 6300.42, + "probability": 0.8914 + }, + { + "start": 6300.55, + "end": 6302.52, + "probability": 0.9953 + }, + { + "start": 6304.16, + "end": 6307.36, + "probability": 0.8892 + }, + { + "start": 6308.52, + "end": 6309.54, + "probability": 0.1099 + }, + { + "start": 6310.16, + "end": 6310.54, + "probability": 0.3952 + }, + { + "start": 6310.64, + "end": 6311.08, + "probability": 0.9081 + }, + { + "start": 6312.86, + "end": 6316.1, + "probability": 0.9229 + }, + { + "start": 6316.54, + "end": 6317.16, + "probability": 0.8218 + }, + { + "start": 6318.28, + "end": 6320.82, + "probability": 0.6712 + }, + { + "start": 6321.02, + "end": 6324.66, + "probability": 0.9463 + }, + { + "start": 6324.68, + "end": 6327.92, + "probability": 0.9858 + }, + { + "start": 6329.44, + "end": 6334.83, + "probability": 0.7172 + }, + { + "start": 6335.68, + "end": 6337.58, + "probability": 0.6775 + }, + { + "start": 6338.76, + "end": 6342.78, + "probability": 0.9803 + }, + { + "start": 6344.48, + "end": 6347.82, + "probability": 0.9854 + }, + { + "start": 6348.06, + "end": 6351.02, + "probability": 0.8739 + }, + { + "start": 6351.02, + "end": 6353.92, + "probability": 0.9649 + }, + { + "start": 6354.52, + "end": 6355.78, + "probability": 0.9865 + }, + { + "start": 6357.52, + "end": 6360.66, + "probability": 0.9204 + }, + { + "start": 6360.82, + "end": 6361.84, + "probability": 0.6727 + }, + { + "start": 6362.9, + "end": 6364.42, + "probability": 0.6636 + }, + { + "start": 6365.48, + "end": 6366.72, + "probability": 0.3111 + }, + { + "start": 6366.72, + "end": 6369.6, + "probability": 0.7446 + }, + { + "start": 6369.68, + "end": 6370.24, + "probability": 0.8457 + }, + { + "start": 6370.84, + "end": 6374.06, + "probability": 0.944 + }, + { + "start": 6374.24, + "end": 6379.6, + "probability": 0.9613 + }, + { + "start": 6380.06, + "end": 6381.24, + "probability": 0.7411 + }, + { + "start": 6382.42, + "end": 6385.74, + "probability": 0.9903 + }, + { + "start": 6387.28, + "end": 6391.82, + "probability": 0.8311 + }, + { + "start": 6392.24, + "end": 6394.52, + "probability": 0.9264 + }, + { + "start": 6394.52, + "end": 6397.32, + "probability": 0.9985 + }, + { + "start": 6398.9, + "end": 6399.3, + "probability": 0.6733 + }, + { + "start": 6399.46, + "end": 6403.87, + "probability": 0.9782 + }, + { + "start": 6404.5, + "end": 6408.18, + "probability": 0.9896 + }, + { + "start": 6409.2, + "end": 6412.6, + "probability": 0.8318 + }, + { + "start": 6413.22, + "end": 6415.06, + "probability": 0.7087 + }, + { + "start": 6415.14, + "end": 6416.51, + "probability": 0.8076 + }, + { + "start": 6416.86, + "end": 6417.72, + "probability": 0.5423 + }, + { + "start": 6417.78, + "end": 6417.86, + "probability": 0.0785 + }, + { + "start": 6418.46, + "end": 6420.02, + "probability": 0.9883 + }, + { + "start": 6422.1, + "end": 6424.3, + "probability": 0.4934 + }, + { + "start": 6425.7, + "end": 6427.26, + "probability": 0.7026 + }, + { + "start": 6427.32, + "end": 6429.74, + "probability": 0.6023 + }, + { + "start": 6430.22, + "end": 6431.68, + "probability": 0.7164 + }, + { + "start": 6431.8, + "end": 6434.08, + "probability": 0.9191 + }, + { + "start": 6434.2, + "end": 6435.14, + "probability": 0.8661 + }, + { + "start": 6435.26, + "end": 6436.06, + "probability": 0.7808 + }, + { + "start": 6436.48, + "end": 6440.08, + "probability": 0.7112 + }, + { + "start": 6440.96, + "end": 6442.32, + "probability": 0.7578 + }, + { + "start": 6442.42, + "end": 6445.84, + "probability": 0.7849 + }, + { + "start": 6446.54, + "end": 6447.43, + "probability": 0.9636 + }, + { + "start": 6449.5, + "end": 6453.14, + "probability": 0.6926 + }, + { + "start": 6453.28, + "end": 6455.89, + "probability": 0.6919 + }, + { + "start": 6456.12, + "end": 6458.3, + "probability": 0.8705 + }, + { + "start": 6458.38, + "end": 6460.5, + "probability": 0.6634 + }, + { + "start": 6461.28, + "end": 6462.85, + "probability": 0.9666 + }, + { + "start": 6463.14, + "end": 6468.08, + "probability": 0.8479 + }, + { + "start": 6470.09, + "end": 6473.1, + "probability": 0.5811 + }, + { + "start": 6473.74, + "end": 6474.62, + "probability": 0.6417 + }, + { + "start": 6474.72, + "end": 6476.52, + "probability": 0.8556 + }, + { + "start": 6477.16, + "end": 6477.94, + "probability": 0.4989 + }, + { + "start": 6478.36, + "end": 6480.16, + "probability": 0.7617 + }, + { + "start": 6480.54, + "end": 6481.68, + "probability": 0.7704 + }, + { + "start": 6482.12, + "end": 6485.08, + "probability": 0.9346 + }, + { + "start": 6485.56, + "end": 6487.72, + "probability": 0.8926 + }, + { + "start": 6488.74, + "end": 6489.8, + "probability": 0.9784 + }, + { + "start": 6490.52, + "end": 6493.57, + "probability": 0.8189 + }, + { + "start": 6494.12, + "end": 6497.64, + "probability": 0.7871 + }, + { + "start": 6498.2, + "end": 6499.6, + "probability": 0.7594 + }, + { + "start": 6500.14, + "end": 6503.94, + "probability": 0.8882 + }, + { + "start": 6505.12, + "end": 6506.34, + "probability": 0.7673 + }, + { + "start": 6506.46, + "end": 6511.18, + "probability": 0.7172 + }, + { + "start": 6511.62, + "end": 6513.82, + "probability": 0.9212 + }, + { + "start": 6514.52, + "end": 6516.0, + "probability": 0.8543 + }, + { + "start": 6516.36, + "end": 6521.84, + "probability": 0.856 + }, + { + "start": 6522.54, + "end": 6529.52, + "probability": 0.731 + }, + { + "start": 6530.32, + "end": 6531.62, + "probability": 0.7174 + }, + { + "start": 6532.5, + "end": 6538.04, + "probability": 0.8576 + }, + { + "start": 6538.18, + "end": 6538.36, + "probability": 0.6674 + }, + { + "start": 6538.88, + "end": 6539.98, + "probability": 0.9881 + }, + { + "start": 6540.9, + "end": 6543.38, + "probability": 0.8092 + }, + { + "start": 6544.06, + "end": 6546.76, + "probability": 0.7991 + }, + { + "start": 6547.3, + "end": 6551.96, + "probability": 0.8026 + }, + { + "start": 6552.78, + "end": 6554.24, + "probability": 0.6832 + }, + { + "start": 6554.4, + "end": 6557.72, + "probability": 0.8444 + }, + { + "start": 6558.4, + "end": 6562.8, + "probability": 0.7701 + }, + { + "start": 6563.34, + "end": 6567.22, + "probability": 0.9207 + }, + { + "start": 6567.38, + "end": 6571.62, + "probability": 0.8837 + }, + { + "start": 6572.1, + "end": 6576.18, + "probability": 0.9012 + }, + { + "start": 6576.24, + "end": 6579.0, + "probability": 0.8685 + }, + { + "start": 6579.76, + "end": 6583.56, + "probability": 0.8116 + }, + { + "start": 6584.06, + "end": 6586.4, + "probability": 0.6417 + }, + { + "start": 6586.48, + "end": 6592.46, + "probability": 0.8051 + }, + { + "start": 6593.04, + "end": 6595.04, + "probability": 0.5615 + }, + { + "start": 6595.18, + "end": 6596.52, + "probability": 0.3634 + }, + { + "start": 6597.18, + "end": 6597.46, + "probability": 0.8813 + }, + { + "start": 6597.64, + "end": 6598.1, + "probability": 0.7611 + }, + { + "start": 6598.56, + "end": 6598.7, + "probability": 0.4459 + }, + { + "start": 6598.74, + "end": 6599.98, + "probability": 0.9771 + }, + { + "start": 6600.72, + "end": 6601.64, + "probability": 0.4752 + }, + { + "start": 6601.66, + "end": 6601.78, + "probability": 0.0176 + }, + { + "start": 6601.84, + "end": 6602.62, + "probability": 0.77 + }, + { + "start": 6602.86, + "end": 6603.66, + "probability": 0.8887 + }, + { + "start": 6603.8, + "end": 6605.46, + "probability": 0.2092 + }, + { + "start": 6605.52, + "end": 6606.36, + "probability": 0.895 + }, + { + "start": 6606.68, + "end": 6607.92, + "probability": 0.7014 + }, + { + "start": 6608.0, + "end": 6608.12, + "probability": 0.7451 + }, + { + "start": 6608.32, + "end": 6611.28, + "probability": 0.9788 + }, + { + "start": 6611.28, + "end": 6614.14, + "probability": 0.6204 + }, + { + "start": 6614.14, + "end": 6614.48, + "probability": 0.5902 + }, + { + "start": 6614.68, + "end": 6615.32, + "probability": 0.6826 + }, + { + "start": 6616.18, + "end": 6618.98, + "probability": 0.8742 + }, + { + "start": 6619.78, + "end": 6621.5, + "probability": 0.7877 + }, + { + "start": 6624.44, + "end": 6626.92, + "probability": 0.9842 + }, + { + "start": 6627.02, + "end": 6633.06, + "probability": 0.8321 + }, + { + "start": 6633.56, + "end": 6633.56, + "probability": 0.2569 + }, + { + "start": 6633.56, + "end": 6636.7, + "probability": 0.9243 + }, + { + "start": 6637.22, + "end": 6641.12, + "probability": 0.9938 + }, + { + "start": 6643.02, + "end": 6648.08, + "probability": 0.8874 + }, + { + "start": 6649.98, + "end": 6653.72, + "probability": 0.9609 + }, + { + "start": 6654.6, + "end": 6657.2, + "probability": 0.1361 + }, + { + "start": 6659.14, + "end": 6659.48, + "probability": 0.1993 + }, + { + "start": 6659.62, + "end": 6659.66, + "probability": 0.04 + }, + { + "start": 6659.66, + "end": 6660.15, + "probability": 0.8566 + }, + { + "start": 6660.46, + "end": 6660.62, + "probability": 0.2291 + }, + { + "start": 6660.62, + "end": 6661.66, + "probability": 0.7432 + }, + { + "start": 6661.92, + "end": 6662.2, + "probability": 0.4479 + }, + { + "start": 6662.2, + "end": 6662.2, + "probability": 0.1707 + }, + { + "start": 6662.44, + "end": 6664.06, + "probability": 0.6128 + }, + { + "start": 6664.8, + "end": 6666.16, + "probability": 0.707 + }, + { + "start": 6666.6, + "end": 6668.66, + "probability": 0.4603 + }, + { + "start": 6668.66, + "end": 6671.32, + "probability": 0.3919 + }, + { + "start": 6671.32, + "end": 6673.6, + "probability": 0.8755 + }, + { + "start": 6675.54, + "end": 6676.96, + "probability": 0.3688 + }, + { + "start": 6677.52, + "end": 6678.22, + "probability": 0.161 + }, + { + "start": 6681.0, + "end": 6682.62, + "probability": 0.0453 + }, + { + "start": 6682.62, + "end": 6683.19, + "probability": 0.2068 + }, + { + "start": 6684.0, + "end": 6685.14, + "probability": 0.7949 + }, + { + "start": 6685.14, + "end": 6685.4, + "probability": 0.4652 + }, + { + "start": 6685.4, + "end": 6686.6, + "probability": 0.6772 + }, + { + "start": 6686.66, + "end": 6688.08, + "probability": 0.6161 + }, + { + "start": 6688.08, + "end": 6689.21, + "probability": 0.9727 + }, + { + "start": 6689.86, + "end": 6691.8, + "probability": 0.9871 + }, + { + "start": 6692.3, + "end": 6694.32, + "probability": 0.8958 + }, + { + "start": 6694.44, + "end": 6694.8, + "probability": 0.5759 + }, + { + "start": 6694.86, + "end": 6695.64, + "probability": 0.0618 + }, + { + "start": 6695.94, + "end": 6697.04, + "probability": 0.2708 + }, + { + "start": 6697.28, + "end": 6698.52, + "probability": 0.8715 + }, + { + "start": 6698.68, + "end": 6699.72, + "probability": 0.6991 + }, + { + "start": 6700.52, + "end": 6700.52, + "probability": 0.0905 + }, + { + "start": 6700.52, + "end": 6703.44, + "probability": 0.6182 + }, + { + "start": 6703.44, + "end": 6704.32, + "probability": 0.4648 + }, + { + "start": 6704.88, + "end": 6707.3, + "probability": 0.4044 + }, + { + "start": 6707.4, + "end": 6708.36, + "probability": 0.4966 + }, + { + "start": 6708.44, + "end": 6709.14, + "probability": 0.7815 + }, + { + "start": 6709.94, + "end": 6710.86, + "probability": 0.8864 + }, + { + "start": 6710.86, + "end": 6713.94, + "probability": 0.2459 + }, + { + "start": 6713.94, + "end": 6714.08, + "probability": 0.034 + }, + { + "start": 6714.22, + "end": 6714.42, + "probability": 0.1572 + }, + { + "start": 6714.92, + "end": 6715.14, + "probability": 0.2397 + }, + { + "start": 6715.14, + "end": 6717.32, + "probability": 0.5152 + }, + { + "start": 6717.44, + "end": 6720.0, + "probability": 0.772 + }, + { + "start": 6720.26, + "end": 6722.46, + "probability": 0.8054 + }, + { + "start": 6722.74, + "end": 6722.78, + "probability": 0.167 + }, + { + "start": 6722.78, + "end": 6722.78, + "probability": 0.0431 + }, + { + "start": 6722.78, + "end": 6726.52, + "probability": 0.8359 + }, + { + "start": 6727.32, + "end": 6727.32, + "probability": 0.5455 + }, + { + "start": 6727.34, + "end": 6730.66, + "probability": 0.783 + }, + { + "start": 6730.8, + "end": 6732.74, + "probability": 0.7695 + }, + { + "start": 6733.16, + "end": 6734.68, + "probability": 0.6406 + }, + { + "start": 6734.68, + "end": 6740.0, + "probability": 0.8491 + }, + { + "start": 6740.12, + "end": 6740.41, + "probability": 0.1259 + }, + { + "start": 6740.48, + "end": 6740.9, + "probability": 0.3166 + }, + { + "start": 6742.18, + "end": 6745.08, + "probability": 0.8532 + }, + { + "start": 6745.18, + "end": 6747.19, + "probability": 0.9684 + }, + { + "start": 6747.51, + "end": 6748.0, + "probability": 0.6372 + }, + { + "start": 6748.35, + "end": 6748.83, + "probability": 0.7422 + }, + { + "start": 6748.87, + "end": 6750.75, + "probability": 0.6963 + }, + { + "start": 6750.85, + "end": 6751.29, + "probability": 0.8252 + }, + { + "start": 6751.37, + "end": 6752.73, + "probability": 0.877 + }, + { + "start": 6752.87, + "end": 6753.35, + "probability": 0.3172 + }, + { + "start": 6753.45, + "end": 6753.75, + "probability": 0.1557 + }, + { + "start": 6753.75, + "end": 6754.87, + "probability": 0.2897 + }, + { + "start": 6755.41, + "end": 6756.47, + "probability": 0.9543 + }, + { + "start": 6757.11, + "end": 6758.27, + "probability": 0.4368 + }, + { + "start": 6759.03, + "end": 6759.97, + "probability": 0.76 + }, + { + "start": 6759.97, + "end": 6759.97, + "probability": 0.4921 + }, + { + "start": 6759.97, + "end": 6761.34, + "probability": 0.5581 + }, + { + "start": 6762.68, + "end": 6763.13, + "probability": 0.0485 + }, + { + "start": 6763.13, + "end": 6766.27, + "probability": 0.9326 + }, + { + "start": 6766.75, + "end": 6767.69, + "probability": 0.0624 + }, + { + "start": 6768.49, + "end": 6769.25, + "probability": 0.0301 + }, + { + "start": 6769.25, + "end": 6770.89, + "probability": 0.2981 + }, + { + "start": 6771.17, + "end": 6773.13, + "probability": 0.2757 + }, + { + "start": 6773.29, + "end": 6773.55, + "probability": 0.3978 + }, + { + "start": 6774.62, + "end": 6775.29, + "probability": 0.0894 + }, + { + "start": 6777.15, + "end": 6778.91, + "probability": 0.2085 + }, + { + "start": 6779.63, + "end": 6779.79, + "probability": 0.0296 + }, + { + "start": 6779.79, + "end": 6779.81, + "probability": 0.1748 + }, + { + "start": 6779.81, + "end": 6780.33, + "probability": 0.4985 + }, + { + "start": 6780.33, + "end": 6780.41, + "probability": 0.5126 + }, + { + "start": 6780.41, + "end": 6781.25, + "probability": 0.3357 + }, + { + "start": 6781.37, + "end": 6783.63, + "probability": 0.9163 + }, + { + "start": 6784.11, + "end": 6784.35, + "probability": 0.7036 + }, + { + "start": 6784.85, + "end": 6789.54, + "probability": 0.6221 + }, + { + "start": 6790.39, + "end": 6791.03, + "probability": 0.5746 + }, + { + "start": 6791.11, + "end": 6791.75, + "probability": 0.8047 + }, + { + "start": 6791.85, + "end": 6792.94, + "probability": 0.227 + }, + { + "start": 6793.43, + "end": 6794.15, + "probability": 0.54 + }, + { + "start": 6794.15, + "end": 6794.17, + "probability": 0.1637 + }, + { + "start": 6794.17, + "end": 6794.49, + "probability": 0.6383 + }, + { + "start": 6794.57, + "end": 6795.19, + "probability": 0.4707 + }, + { + "start": 6795.69, + "end": 6796.09, + "probability": 0.8562 + }, + { + "start": 6796.67, + "end": 6797.99, + "probability": 0.994 + }, + { + "start": 6798.05, + "end": 6801.19, + "probability": 0.7385 + }, + { + "start": 6801.89, + "end": 6802.67, + "probability": 0.6367 + }, + { + "start": 6803.75, + "end": 6806.87, + "probability": 0.6436 + }, + { + "start": 6807.21, + "end": 6808.3, + "probability": 0.174 + }, + { + "start": 6808.37, + "end": 6811.17, + "probability": 0.9618 + }, + { + "start": 6811.31, + "end": 6813.85, + "probability": 0.8457 + }, + { + "start": 6814.25, + "end": 6815.37, + "probability": 0.6552 + }, + { + "start": 6815.49, + "end": 6816.35, + "probability": 0.3447 + }, + { + "start": 6816.35, + "end": 6816.59, + "probability": 0.7042 + }, + { + "start": 6816.75, + "end": 6817.67, + "probability": 0.4068 + }, + { + "start": 6817.93, + "end": 6819.43, + "probability": 0.7102 + }, + { + "start": 6819.51, + "end": 6819.83, + "probability": 0.5474 + }, + { + "start": 6820.67, + "end": 6824.45, + "probability": 0.5987 + }, + { + "start": 6824.67, + "end": 6825.11, + "probability": 0.4292 + }, + { + "start": 6825.97, + "end": 6826.47, + "probability": 0.4519 + }, + { + "start": 6826.87, + "end": 6827.27, + "probability": 0.3463 + }, + { + "start": 6827.39, + "end": 6827.83, + "probability": 0.0993 + }, + { + "start": 6827.85, + "end": 6829.13, + "probability": 0.7837 + }, + { + "start": 6829.43, + "end": 6830.87, + "probability": 0.6779 + }, + { + "start": 6830.97, + "end": 6831.55, + "probability": 0.8396 + }, + { + "start": 6831.69, + "end": 6831.83, + "probability": 0.2405 + }, + { + "start": 6831.83, + "end": 6833.33, + "probability": 0.4514 + }, + { + "start": 6833.63, + "end": 6833.91, + "probability": 0.4552 + }, + { + "start": 6834.09, + "end": 6835.55, + "probability": 0.1337 + }, + { + "start": 6835.95, + "end": 6837.46, + "probability": 0.1161 + }, + { + "start": 6840.85, + "end": 6842.23, + "probability": 0.2139 + }, + { + "start": 6842.37, + "end": 6845.73, + "probability": 0.1939 + }, + { + "start": 6845.85, + "end": 6847.17, + "probability": 0.0632 + }, + { + "start": 6848.23, + "end": 6849.33, + "probability": 0.1326 + }, + { + "start": 6850.35, + "end": 6850.95, + "probability": 0.1701 + }, + { + "start": 6851.57, + "end": 6852.79, + "probability": 0.1201 + }, + { + "start": 6852.97, + "end": 6855.73, + "probability": 0.0145 + }, + { + "start": 6857.31, + "end": 6857.99, + "probability": 0.0139 + }, + { + "start": 6858.03, + "end": 6859.65, + "probability": 0.1162 + }, + { + "start": 6860.7, + "end": 6861.19, + "probability": 0.0784 + }, + { + "start": 6862.07, + "end": 6862.75, + "probability": 0.0523 + }, + { + "start": 6862.75, + "end": 6868.05, + "probability": 0.0709 + }, + { + "start": 6869.09, + "end": 6870.87, + "probability": 0.0374 + }, + { + "start": 6872.73, + "end": 6873.25, + "probability": 0.0925 + }, + { + "start": 6873.57, + "end": 6874.07, + "probability": 0.0405 + }, + { + "start": 6875.0, + "end": 6875.0, + "probability": 0.0 + }, + { + "start": 6875.0, + "end": 6875.0, + "probability": 0.0 + }, + { + "start": 6875.0, + "end": 6875.0, + "probability": 0.0 + }, + { + "start": 6875.0, + "end": 6875.0, + "probability": 0.0 + }, + { + "start": 6875.0, + "end": 6875.0, + "probability": 0.0 + }, + { + "start": 6875.0, + "end": 6875.0, + "probability": 0.0 + }, + { + "start": 6875.0, + "end": 6875.0, + "probability": 0.0 + }, + { + "start": 6875.0, + "end": 6875.0, + "probability": 0.0 + }, + { + "start": 6875.0, + "end": 6875.0, + "probability": 0.0 + }, + { + "start": 6875.0, + "end": 6875.0, + "probability": 0.0 + }, + { + "start": 6875.0, + "end": 6875.0, + "probability": 0.0 + }, + { + "start": 6875.0, + "end": 6875.0, + "probability": 0.0 + }, + { + "start": 6875.0, + "end": 6875.0, + "probability": 0.0 + }, + { + "start": 6875.0, + "end": 6875.0, + "probability": 0.0 + }, + { + "start": 6875.0, + "end": 6875.0, + "probability": 0.0 + }, + { + "start": 6875.0, + "end": 6875.0, + "probability": 0.0 + }, + { + "start": 6875.0, + "end": 6875.0, + "probability": 0.0 + }, + { + "start": 6878.48, + "end": 6880.6, + "probability": 0.9985 + }, + { + "start": 6880.68, + "end": 6881.56, + "probability": 0.9214 + }, + { + "start": 6881.7, + "end": 6883.3, + "probability": 0.8563 + }, + { + "start": 6883.36, + "end": 6883.58, + "probability": 0.4783 + }, + { + "start": 6883.72, + "end": 6884.58, + "probability": 0.2688 + }, + { + "start": 6885.4, + "end": 6886.86, + "probability": 0.6022 + }, + { + "start": 6887.98, + "end": 6888.58, + "probability": 0.1889 + }, + { + "start": 6890.2, + "end": 6890.64, + "probability": 0.7957 + }, + { + "start": 6892.1, + "end": 6894.3, + "probability": 0.9921 + }, + { + "start": 6899.02, + "end": 6899.58, + "probability": 0.7169 + }, + { + "start": 6899.66, + "end": 6900.64, + "probability": 0.2455 + }, + { + "start": 6901.24, + "end": 6902.98, + "probability": 0.5586 + }, + { + "start": 6903.12, + "end": 6903.44, + "probability": 0.6739 + }, + { + "start": 6903.56, + "end": 6904.06, + "probability": 0.5976 + }, + { + "start": 6904.18, + "end": 6905.84, + "probability": 0.9067 + }, + { + "start": 6905.96, + "end": 6907.06, + "probability": 0.9872 + }, + { + "start": 6907.12, + "end": 6908.62, + "probability": 0.9502 + }, + { + "start": 6908.68, + "end": 6911.32, + "probability": 0.9448 + }, + { + "start": 6911.48, + "end": 6913.7, + "probability": 0.7339 + }, + { + "start": 6913.88, + "end": 6914.44, + "probability": 0.3622 + }, + { + "start": 6914.56, + "end": 6918.78, + "probability": 0.8579 + }, + { + "start": 6918.84, + "end": 6920.04, + "probability": 0.968 + }, + { + "start": 6920.1, + "end": 6922.02, + "probability": 0.7553 + }, + { + "start": 6922.12, + "end": 6922.7, + "probability": 0.0946 + }, + { + "start": 6922.7, + "end": 6923.36, + "probability": 0.3443 + }, + { + "start": 6923.46, + "end": 6925.25, + "probability": 0.6358 + }, + { + "start": 6925.8, + "end": 6926.62, + "probability": 0.9011 + }, + { + "start": 6927.24, + "end": 6928.3, + "probability": 0.8892 + }, + { + "start": 6929.32, + "end": 6934.56, + "probability": 0.9537 + }, + { + "start": 6935.94, + "end": 6936.8, + "probability": 0.7663 + }, + { + "start": 6938.72, + "end": 6942.24, + "probability": 0.5453 + }, + { + "start": 6943.3, + "end": 6943.98, + "probability": 0.5884 + }, + { + "start": 6944.28, + "end": 6946.09, + "probability": 0.6616 + }, + { + "start": 6947.58, + "end": 6949.24, + "probability": 0.5278 + }, + { + "start": 6951.84, + "end": 6953.42, + "probability": 0.9767 + }, + { + "start": 6954.26, + "end": 6956.14, + "probability": 0.7722 + }, + { + "start": 6956.9, + "end": 6957.34, + "probability": 0.47 + }, + { + "start": 6958.34, + "end": 6960.52, + "probability": 0.9131 + }, + { + "start": 6962.16, + "end": 6963.6, + "probability": 0.4995 + }, + { + "start": 6966.32, + "end": 6967.1, + "probability": 0.8544 + }, + { + "start": 6968.06, + "end": 6968.18, + "probability": 0.4704 + }, + { + "start": 6969.48, + "end": 6970.28, + "probability": 0.1894 + }, + { + "start": 6970.28, + "end": 6973.24, + "probability": 0.6561 + }, + { + "start": 6974.0, + "end": 6976.1, + "probability": 0.687 + }, + { + "start": 6977.25, + "end": 6979.84, + "probability": 0.6542 + }, + { + "start": 6980.66, + "end": 6982.2, + "probability": 0.5938 + }, + { + "start": 6983.72, + "end": 6986.6, + "probability": 0.7057 + }, + { + "start": 6986.9, + "end": 6987.48, + "probability": 0.5488 + }, + { + "start": 6988.52, + "end": 6989.24, + "probability": 0.6007 + }, + { + "start": 6991.68, + "end": 6992.72, + "probability": 0.6013 + }, + { + "start": 6993.36, + "end": 6993.5, + "probability": 0.0149 + }, + { + "start": 6993.5, + "end": 6994.08, + "probability": 0.604 + }, + { + "start": 6994.7, + "end": 6995.12, + "probability": 0.3071 + }, + { + "start": 6996.78, + "end": 6999.0, + "probability": 0.5319 + }, + { + "start": 6999.24, + "end": 7002.7, + "probability": 0.8308 + }, + { + "start": 7002.74, + "end": 7002.94, + "probability": 0.5234 + }, + { + "start": 7003.24, + "end": 7004.18, + "probability": 0.5624 + }, + { + "start": 7004.79, + "end": 7006.42, + "probability": 0.5871 + }, + { + "start": 7007.44, + "end": 7007.68, + "probability": 0.233 + }, + { + "start": 7007.68, + "end": 7007.68, + "probability": 0.1067 + }, + { + "start": 7007.68, + "end": 7007.68, + "probability": 0.065 + }, + { + "start": 7007.68, + "end": 7008.36, + "probability": 0.3391 + }, + { + "start": 7008.48, + "end": 7009.78, + "probability": 0.674 + }, + { + "start": 7009.9, + "end": 7011.58, + "probability": 0.4143 + }, + { + "start": 7011.92, + "end": 7012.52, + "probability": 0.493 + }, + { + "start": 7012.54, + "end": 7015.44, + "probability": 0.8782 + }, + { + "start": 7015.58, + "end": 7016.0, + "probability": 0.5592 + }, + { + "start": 7016.0, + "end": 7016.26, + "probability": 0.2513 + }, + { + "start": 7016.62, + "end": 7017.26, + "probability": 0.1286 + }, + { + "start": 7017.48, + "end": 7020.66, + "probability": 0.8518 + }, + { + "start": 7021.02, + "end": 7022.52, + "probability": 0.291 + }, + { + "start": 7022.6, + "end": 7025.22, + "probability": 0.4287 + }, + { + "start": 7025.46, + "end": 7026.4, + "probability": 0.0879 + }, + { + "start": 7026.4, + "end": 7027.16, + "probability": 0.2672 + }, + { + "start": 7027.16, + "end": 7027.86, + "probability": 0.7623 + }, + { + "start": 7028.04, + "end": 7031.28, + "probability": 0.906 + }, + { + "start": 7031.4, + "end": 7032.26, + "probability": 0.0529 + }, + { + "start": 7032.48, + "end": 7034.4, + "probability": 0.8211 + }, + { + "start": 7034.44, + "end": 7036.3, + "probability": 0.982 + }, + { + "start": 7037.38, + "end": 7038.32, + "probability": 0.6223 + }, + { + "start": 7038.62, + "end": 7039.08, + "probability": 0.1617 + }, + { + "start": 7044.72, + "end": 7045.14, + "probability": 0.4055 + }, + { + "start": 7045.22, + "end": 7051.68, + "probability": 0.9884 + }, + { + "start": 7052.68, + "end": 7054.76, + "probability": 0.9062 + }, + { + "start": 7055.24, + "end": 7056.5, + "probability": 0.8869 + }, + { + "start": 7056.8, + "end": 7057.82, + "probability": 0.9516 + }, + { + "start": 7059.24, + "end": 7060.2, + "probability": 0.9784 + }, + { + "start": 7061.34, + "end": 7064.08, + "probability": 0.8008 + }, + { + "start": 7064.56, + "end": 7065.24, + "probability": 0.6067 + }, + { + "start": 7073.78, + "end": 7075.18, + "probability": 0.6055 + }, + { + "start": 7075.58, + "end": 7077.4, + "probability": 0.9921 + }, + { + "start": 7077.4, + "end": 7080.06, + "probability": 0.7319 + }, + { + "start": 7080.06, + "end": 7082.92, + "probability": 0.9234 + }, + { + "start": 7083.42, + "end": 7087.38, + "probability": 0.9245 + }, + { + "start": 7087.58, + "end": 7090.48, + "probability": 0.5285 + }, + { + "start": 7090.82, + "end": 7092.8, + "probability": 0.9661 + }, + { + "start": 7093.04, + "end": 7094.22, + "probability": 0.9685 + }, + { + "start": 7094.28, + "end": 7094.77, + "probability": 0.5975 + }, + { + "start": 7094.94, + "end": 7095.64, + "probability": 0.7317 + }, + { + "start": 7096.24, + "end": 7099.66, + "probability": 0.9987 + }, + { + "start": 7099.7, + "end": 7100.3, + "probability": 0.4536 + }, + { + "start": 7100.58, + "end": 7100.78, + "probability": 0.8966 + }, + { + "start": 7101.16, + "end": 7101.4, + "probability": 0.9317 + }, + { + "start": 7101.62, + "end": 7102.34, + "probability": 0.7033 + }, + { + "start": 7102.5, + "end": 7104.16, + "probability": 0.9512 + }, + { + "start": 7104.26, + "end": 7108.8, + "probability": 0.9907 + }, + { + "start": 7108.84, + "end": 7109.06, + "probability": 0.6844 + }, + { + "start": 7109.48, + "end": 7115.18, + "probability": 0.9949 + }, + { + "start": 7115.7, + "end": 7116.02, + "probability": 0.8134 + }, + { + "start": 7116.12, + "end": 7116.6, + "probability": 0.7038 + }, + { + "start": 7116.62, + "end": 7117.22, + "probability": 0.6014 + }, + { + "start": 7117.3, + "end": 7119.06, + "probability": 0.878 + }, + { + "start": 7119.4, + "end": 7123.52, + "probability": 0.9922 + }, + { + "start": 7123.82, + "end": 7124.12, + "probability": 0.7309 + }, + { + "start": 7124.48, + "end": 7126.0, + "probability": 0.7497 + }, + { + "start": 7126.08, + "end": 7126.68, + "probability": 0.968 + }, + { + "start": 7127.12, + "end": 7129.68, + "probability": 0.939 + }, + { + "start": 7130.02, + "end": 7131.68, + "probability": 0.7987 + }, + { + "start": 7131.96, + "end": 7133.16, + "probability": 0.9919 + }, + { + "start": 7133.48, + "end": 7137.74, + "probability": 0.5724 + }, + { + "start": 7138.24, + "end": 7138.58, + "probability": 0.4951 + }, + { + "start": 7138.7, + "end": 7139.12, + "probability": 0.4289 + }, + { + "start": 7139.36, + "end": 7141.92, + "probability": 0.9137 + }, + { + "start": 7141.96, + "end": 7141.96, + "probability": 0.0578 + }, + { + "start": 7142.46, + "end": 7145.92, + "probability": 0.7921 + }, + { + "start": 7145.98, + "end": 7147.37, + "probability": 0.142 + }, + { + "start": 7147.58, + "end": 7148.28, + "probability": 0.9169 + }, + { + "start": 7148.94, + "end": 7149.12, + "probability": 0.1796 + }, + { + "start": 7149.12, + "end": 7149.12, + "probability": 0.2503 + }, + { + "start": 7149.12, + "end": 7149.26, + "probability": 0.3758 + }, + { + "start": 7149.86, + "end": 7150.26, + "probability": 0.629 + }, + { + "start": 7150.26, + "end": 7152.19, + "probability": 0.4588 + }, + { + "start": 7152.56, + "end": 7153.84, + "probability": 0.5925 + }, + { + "start": 7154.52, + "end": 7154.86, + "probability": 0.2992 + }, + { + "start": 7155.08, + "end": 7155.24, + "probability": 0.3649 + }, + { + "start": 7155.24, + "end": 7157.44, + "probability": 0.9839 + }, + { + "start": 7157.46, + "end": 7159.22, + "probability": 0.8163 + }, + { + "start": 7159.5, + "end": 7159.7, + "probability": 0.8218 + }, + { + "start": 7159.78, + "end": 7160.36, + "probability": 0.957 + }, + { + "start": 7160.44, + "end": 7162.06, + "probability": 0.9653 + }, + { + "start": 7163.24, + "end": 7164.5, + "probability": 0.1291 + }, + { + "start": 7164.82, + "end": 7167.74, + "probability": 0.8995 + }, + { + "start": 7168.08, + "end": 7170.48, + "probability": 0.9877 + }, + { + "start": 7170.54, + "end": 7171.76, + "probability": 0.9187 + }, + { + "start": 7172.1, + "end": 7173.18, + "probability": 0.9624 + }, + { + "start": 7173.58, + "end": 7175.38, + "probability": 0.9738 + }, + { + "start": 7175.84, + "end": 7177.2, + "probability": 0.8412 + }, + { + "start": 7177.88, + "end": 7178.52, + "probability": 0.9576 + }, + { + "start": 7178.92, + "end": 7180.02, + "probability": 0.999 + }, + { + "start": 7180.38, + "end": 7182.6, + "probability": 0.9846 + }, + { + "start": 7182.78, + "end": 7184.38, + "probability": 0.7554 + }, + { + "start": 7184.44, + "end": 7185.02, + "probability": 0.7448 + }, + { + "start": 7185.42, + "end": 7187.14, + "probability": 0.0901 + }, + { + "start": 7187.66, + "end": 7189.6, + "probability": 0.2945 + }, + { + "start": 7189.7, + "end": 7189.78, + "probability": 0.2058 + }, + { + "start": 7189.78, + "end": 7189.78, + "probability": 0.4107 + }, + { + "start": 7189.78, + "end": 7192.88, + "probability": 0.345 + }, + { + "start": 7192.88, + "end": 7194.0, + "probability": 0.9794 + }, + { + "start": 7194.02, + "end": 7194.04, + "probability": 0.3446 + }, + { + "start": 7194.04, + "end": 7194.04, + "probability": 0.518 + }, + { + "start": 7194.16, + "end": 7195.02, + "probability": 0.7365 + }, + { + "start": 7195.24, + "end": 7196.04, + "probability": 0.8398 + }, + { + "start": 7196.08, + "end": 7197.9, + "probability": 0.7762 + }, + { + "start": 7198.32, + "end": 7200.58, + "probability": 0.0586 + }, + { + "start": 7201.02, + "end": 7201.22, + "probability": 0.087 + }, + { + "start": 7201.22, + "end": 7201.5, + "probability": 0.0692 + }, + { + "start": 7201.5, + "end": 7201.52, + "probability": 0.1673 + }, + { + "start": 7201.52, + "end": 7202.71, + "probability": 0.6429 + }, + { + "start": 7202.94, + "end": 7203.44, + "probability": 0.4727 + }, + { + "start": 7203.44, + "end": 7204.54, + "probability": 0.6182 + }, + { + "start": 7204.56, + "end": 7205.08, + "probability": 0.4956 + }, + { + "start": 7205.8, + "end": 7208.2, + "probability": 0.8247 + }, + { + "start": 7208.88, + "end": 7216.14, + "probability": 0.9525 + }, + { + "start": 7216.64, + "end": 7219.04, + "probability": 0.9676 + }, + { + "start": 7219.16, + "end": 7219.66, + "probability": 0.7869 + }, + { + "start": 7219.8, + "end": 7221.8, + "probability": 0.8285 + }, + { + "start": 7222.18, + "end": 7222.78, + "probability": 0.24 + }, + { + "start": 7223.04, + "end": 7224.3, + "probability": 0.1039 + }, + { + "start": 7224.3, + "end": 7224.3, + "probability": 0.334 + }, + { + "start": 7224.3, + "end": 7224.88, + "probability": 0.6755 + }, + { + "start": 7224.88, + "end": 7227.06, + "probability": 0.5934 + }, + { + "start": 7227.12, + "end": 7228.28, + "probability": 0.7048 + }, + { + "start": 7228.54, + "end": 7231.76, + "probability": 0.8066 + }, + { + "start": 7231.78, + "end": 7232.75, + "probability": 0.916 + }, + { + "start": 7233.12, + "end": 7234.73, + "probability": 0.9656 + }, + { + "start": 7235.34, + "end": 7236.62, + "probability": 0.5913 + }, + { + "start": 7236.62, + "end": 7237.22, + "probability": 0.4875 + }, + { + "start": 7237.82, + "end": 7239.28, + "probability": 0.8452 + }, + { + "start": 7239.62, + "end": 7241.66, + "probability": 0.9139 + }, + { + "start": 7242.4, + "end": 7242.46, + "probability": 0.0092 + }, + { + "start": 7242.46, + "end": 7244.01, + "probability": 0.9479 + }, + { + "start": 7244.42, + "end": 7245.94, + "probability": 0.7096 + }, + { + "start": 7246.06, + "end": 7249.14, + "probability": 0.7621 + }, + { + "start": 7249.36, + "end": 7251.12, + "probability": 0.8394 + }, + { + "start": 7251.92, + "end": 7253.8, + "probability": 0.5679 + }, + { + "start": 7253.8, + "end": 7255.5, + "probability": 0.7415 + }, + { + "start": 7255.5, + "end": 7256.88, + "probability": 0.9948 + }, + { + "start": 7257.62, + "end": 7261.14, + "probability": 0.959 + }, + { + "start": 7261.52, + "end": 7261.96, + "probability": 0.6848 + }, + { + "start": 7261.96, + "end": 7261.96, + "probability": 0.5706 + }, + { + "start": 7262.16, + "end": 7262.64, + "probability": 0.4288 + }, + { + "start": 7262.64, + "end": 7262.9, + "probability": 0.4467 + }, + { + "start": 7262.94, + "end": 7263.64, + "probability": 0.7933 + }, + { + "start": 7263.96, + "end": 7264.3, + "probability": 0.6411 + }, + { + "start": 7264.3, + "end": 7265.24, + "probability": 0.9719 + }, + { + "start": 7265.46, + "end": 7265.68, + "probability": 0.5155 + }, + { + "start": 7265.76, + "end": 7267.02, + "probability": 0.9341 + }, + { + "start": 7268.52, + "end": 7271.34, + "probability": 0.9723 + }, + { + "start": 7271.94, + "end": 7272.78, + "probability": 0.8267 + }, + { + "start": 7272.8, + "end": 7274.46, + "probability": 0.8329 + }, + { + "start": 7274.88, + "end": 7276.44, + "probability": 0.7485 + }, + { + "start": 7278.88, + "end": 7280.28, + "probability": 0.8132 + }, + { + "start": 7281.14, + "end": 7281.94, + "probability": 0.6851 + }, + { + "start": 7282.6, + "end": 7283.64, + "probability": 0.9784 + }, + { + "start": 7283.64, + "end": 7284.92, + "probability": 0.8401 + }, + { + "start": 7285.02, + "end": 7287.08, + "probability": 0.9435 + }, + { + "start": 7288.02, + "end": 7288.72, + "probability": 0.9929 + }, + { + "start": 7288.78, + "end": 7289.28, + "probability": 0.9872 + }, + { + "start": 7289.4, + "end": 7292.62, + "probability": 0.8507 + }, + { + "start": 7293.34, + "end": 7293.94, + "probability": 0.8851 + }, + { + "start": 7294.32, + "end": 7294.96, + "probability": 0.9907 + }, + { + "start": 7295.24, + "end": 7295.88, + "probability": 0.8179 + }, + { + "start": 7296.48, + "end": 7297.48, + "probability": 0.992 + }, + { + "start": 7297.56, + "end": 7298.22, + "probability": 0.518 + }, + { + "start": 7298.26, + "end": 7299.04, + "probability": 0.8369 + }, + { + "start": 7299.74, + "end": 7300.94, + "probability": 0.964 + }, + { + "start": 7301.58, + "end": 7303.78, + "probability": 0.9011 + }, + { + "start": 7304.04, + "end": 7305.64, + "probability": 0.9934 + }, + { + "start": 7305.76, + "end": 7306.68, + "probability": 0.9679 + }, + { + "start": 7307.04, + "end": 7308.17, + "probability": 0.9897 + }, + { + "start": 7308.36, + "end": 7309.7, + "probability": 0.9897 + }, + { + "start": 7310.64, + "end": 7311.46, + "probability": 0.6355 + }, + { + "start": 7312.0, + "end": 7314.88, + "probability": 0.991 + }, + { + "start": 7314.98, + "end": 7318.74, + "probability": 0.5313 + }, + { + "start": 7318.78, + "end": 7319.9, + "probability": 0.9535 + }, + { + "start": 7321.51, + "end": 7323.08, + "probability": 0.9917 + }, + { + "start": 7323.16, + "end": 7324.43, + "probability": 0.9765 + }, + { + "start": 7324.66, + "end": 7325.3, + "probability": 0.7595 + }, + { + "start": 7325.82, + "end": 7327.3, + "probability": 0.9354 + }, + { + "start": 7327.9, + "end": 7328.96, + "probability": 0.9626 + }, + { + "start": 7329.1, + "end": 7331.76, + "probability": 0.9792 + }, + { + "start": 7332.28, + "end": 7334.24, + "probability": 0.9026 + }, + { + "start": 7334.36, + "end": 7335.34, + "probability": 0.846 + }, + { + "start": 7336.08, + "end": 7337.58, + "probability": 0.7898 + }, + { + "start": 7337.84, + "end": 7338.7, + "probability": 0.9228 + }, + { + "start": 7338.78, + "end": 7340.66, + "probability": 0.925 + }, + { + "start": 7340.68, + "end": 7340.94, + "probability": 0.7675 + }, + { + "start": 7341.02, + "end": 7341.94, + "probability": 0.8828 + }, + { + "start": 7342.5, + "end": 7343.38, + "probability": 0.9587 + }, + { + "start": 7344.02, + "end": 7346.52, + "probability": 0.9464 + }, + { + "start": 7346.64, + "end": 7347.52, + "probability": 0.6774 + }, + { + "start": 7347.94, + "end": 7350.12, + "probability": 0.9938 + }, + { + "start": 7350.28, + "end": 7351.82, + "probability": 0.951 + }, + { + "start": 7352.24, + "end": 7354.76, + "probability": 0.9805 + }, + { + "start": 7354.92, + "end": 7355.41, + "probability": 0.7866 + }, + { + "start": 7355.52, + "end": 7355.98, + "probability": 0.9041 + }, + { + "start": 7356.1, + "end": 7357.6, + "probability": 0.7938 + }, + { + "start": 7357.76, + "end": 7359.86, + "probability": 0.9798 + }, + { + "start": 7359.86, + "end": 7359.94, + "probability": 0.2944 + }, + { + "start": 7360.16, + "end": 7360.62, + "probability": 0.8495 + }, + { + "start": 7360.68, + "end": 7361.42, + "probability": 0.9495 + }, + { + "start": 7361.74, + "end": 7363.04, + "probability": 0.8329 + }, + { + "start": 7363.08, + "end": 7363.44, + "probability": 0.8182 + }, + { + "start": 7363.54, + "end": 7363.94, + "probability": 0.9766 + }, + { + "start": 7364.36, + "end": 7365.08, + "probability": 0.966 + }, + { + "start": 7365.18, + "end": 7366.38, + "probability": 0.714 + }, + { + "start": 7366.66, + "end": 7367.52, + "probability": 0.7625 + }, + { + "start": 7368.06, + "end": 7370.56, + "probability": 0.9309 + }, + { + "start": 7371.12, + "end": 7373.2, + "probability": 0.9947 + }, + { + "start": 7373.58, + "end": 7374.12, + "probability": 0.965 + }, + { + "start": 7374.22, + "end": 7375.06, + "probability": 0.9176 + }, + { + "start": 7375.52, + "end": 7376.6, + "probability": 0.99 + }, + { + "start": 7376.76, + "end": 7377.66, + "probability": 0.867 + }, + { + "start": 7378.28, + "end": 7379.28, + "probability": 0.9989 + }, + { + "start": 7379.38, + "end": 7380.24, + "probability": 0.9607 + }, + { + "start": 7380.58, + "end": 7383.42, + "probability": 0.9956 + }, + { + "start": 7383.54, + "end": 7385.86, + "probability": 0.9558 + }, + { + "start": 7386.0, + "end": 7387.68, + "probability": 0.9946 + }, + { + "start": 7388.14, + "end": 7389.3, + "probability": 0.6495 + }, + { + "start": 7389.36, + "end": 7391.22, + "probability": 0.9694 + }, + { + "start": 7391.3, + "end": 7391.3, + "probability": 0.6747 + }, + { + "start": 7391.56, + "end": 7392.8, + "probability": 0.9085 + }, + { + "start": 7393.16, + "end": 7393.68, + "probability": 0.8712 + }, + { + "start": 7393.68, + "end": 7396.44, + "probability": 0.9624 + }, + { + "start": 7396.58, + "end": 7398.26, + "probability": 0.9897 + }, + { + "start": 7398.36, + "end": 7401.1, + "probability": 0.7546 + }, + { + "start": 7401.7, + "end": 7402.9, + "probability": 0.9409 + }, + { + "start": 7403.26, + "end": 7404.6, + "probability": 0.9117 + }, + { + "start": 7405.18, + "end": 7405.98, + "probability": 0.4018 + }, + { + "start": 7407.22, + "end": 7409.16, + "probability": 0.9509 + }, + { + "start": 7414.88, + "end": 7416.26, + "probability": 0.757 + }, + { + "start": 7416.68, + "end": 7417.88, + "probability": 0.687 + }, + { + "start": 7418.34, + "end": 7420.28, + "probability": 0.8152 + }, + { + "start": 7420.3, + "end": 7420.6, + "probability": 0.9272 + }, + { + "start": 7420.68, + "end": 7425.64, + "probability": 0.9873 + }, + { + "start": 7426.26, + "end": 7430.09, + "probability": 0.9956 + }, + { + "start": 7430.78, + "end": 7431.08, + "probability": 0.1652 + }, + { + "start": 7431.24, + "end": 7436.08, + "probability": 0.8246 + }, + { + "start": 7436.2, + "end": 7436.98, + "probability": 0.9573 + }, + { + "start": 7437.14, + "end": 7440.76, + "probability": 0.9826 + }, + { + "start": 7441.28, + "end": 7442.9, + "probability": 0.9692 + }, + { + "start": 7443.82, + "end": 7446.74, + "probability": 0.8608 + }, + { + "start": 7447.36, + "end": 7452.76, + "probability": 0.972 + }, + { + "start": 7453.42, + "end": 7455.14, + "probability": 0.9106 + }, + { + "start": 7455.48, + "end": 7459.94, + "probability": 0.9405 + }, + { + "start": 7459.94, + "end": 7464.6, + "probability": 0.9878 + }, + { + "start": 7464.92, + "end": 7466.82, + "probability": 0.9961 + }, + { + "start": 7467.28, + "end": 7470.7, + "probability": 0.9918 + }, + { + "start": 7470.8, + "end": 7471.18, + "probability": 0.8447 + }, + { + "start": 7471.3, + "end": 7471.78, + "probability": 0.8518 + }, + { + "start": 7471.84, + "end": 7474.14, + "probability": 0.982 + }, + { + "start": 7474.24, + "end": 7476.66, + "probability": 0.9952 + }, + { + "start": 7476.72, + "end": 7477.82, + "probability": 0.9695 + }, + { + "start": 7478.14, + "end": 7480.24, + "probability": 0.9518 + }, + { + "start": 7480.9, + "end": 7481.86, + "probability": 0.6892 + }, + { + "start": 7482.1, + "end": 7483.32, + "probability": 0.8724 + }, + { + "start": 7483.8, + "end": 7484.62, + "probability": 0.9277 + }, + { + "start": 7484.8, + "end": 7486.08, + "probability": 0.9812 + }, + { + "start": 7486.76, + "end": 7490.0, + "probability": 0.802 + }, + { + "start": 7490.54, + "end": 7492.25, + "probability": 0.9844 + }, + { + "start": 7492.4, + "end": 7493.96, + "probability": 0.7069 + }, + { + "start": 7494.18, + "end": 7494.32, + "probability": 0.5209 + }, + { + "start": 7494.46, + "end": 7495.6, + "probability": 0.8283 + }, + { + "start": 7496.38, + "end": 7500.88, + "probability": 0.9175 + }, + { + "start": 7501.06, + "end": 7506.98, + "probability": 0.9511 + }, + { + "start": 7507.32, + "end": 7507.42, + "probability": 0.7669 + }, + { + "start": 7508.1, + "end": 7510.54, + "probability": 0.8854 + }, + { + "start": 7510.92, + "end": 7511.9, + "probability": 0.9649 + }, + { + "start": 7512.04, + "end": 7513.04, + "probability": 0.9603 + }, + { + "start": 7513.46, + "end": 7514.16, + "probability": 0.9246 + }, + { + "start": 7514.46, + "end": 7517.46, + "probability": 0.9946 + }, + { + "start": 7517.92, + "end": 7520.28, + "probability": 0.9985 + }, + { + "start": 7520.36, + "end": 7521.42, + "probability": 0.8284 + }, + { + "start": 7521.66, + "end": 7523.84, + "probability": 0.9785 + }, + { + "start": 7524.22, + "end": 7530.12, + "probability": 0.987 + }, + { + "start": 7530.5, + "end": 7531.3, + "probability": 0.6485 + }, + { + "start": 7531.6, + "end": 7532.54, + "probability": 0.5388 + }, + { + "start": 7532.62, + "end": 7532.86, + "probability": 0.7081 + }, + { + "start": 7533.0, + "end": 7536.02, + "probability": 0.9751 + }, + { + "start": 7536.68, + "end": 7536.88, + "probability": 0.7543 + }, + { + "start": 7537.06, + "end": 7538.32, + "probability": 0.5487 + }, + { + "start": 7538.4, + "end": 7540.5, + "probability": 0.8779 + }, + { + "start": 7540.98, + "end": 7543.06, + "probability": 0.5306 + }, + { + "start": 7544.44, + "end": 7545.48, + "probability": 0.5735 + }, + { + "start": 7546.62, + "end": 7550.0, + "probability": 0.9462 + }, + { + "start": 7550.42, + "end": 7556.06, + "probability": 0.8914 + }, + { + "start": 7556.26, + "end": 7559.9, + "probability": 0.9529 + }, + { + "start": 7560.54, + "end": 7564.2, + "probability": 0.5924 + }, + { + "start": 7564.8, + "end": 7568.12, + "probability": 0.9613 + }, + { + "start": 7568.96, + "end": 7573.46, + "probability": 0.9441 + }, + { + "start": 7574.12, + "end": 7574.76, + "probability": 0.6212 + }, + { + "start": 7575.54, + "end": 7577.96, + "probability": 0.9512 + }, + { + "start": 7578.9, + "end": 7580.18, + "probability": 0.9793 + }, + { + "start": 7580.64, + "end": 7581.86, + "probability": 0.963 + }, + { + "start": 7582.06, + "end": 7582.66, + "probability": 0.8851 + }, + { + "start": 7583.4, + "end": 7587.4, + "probability": 0.9609 + }, + { + "start": 7588.78, + "end": 7588.8, + "probability": 0.0917 + }, + { + "start": 7588.8, + "end": 7589.74, + "probability": 0.0069 + }, + { + "start": 7589.96, + "end": 7590.24, + "probability": 0.2054 + }, + { + "start": 7591.89, + "end": 7594.4, + "probability": 0.0533 + }, + { + "start": 7595.62, + "end": 7596.44, + "probability": 0.0099 + }, + { + "start": 7598.0, + "end": 7599.24, + "probability": 0.0089 + }, + { + "start": 7601.46, + "end": 7602.8, + "probability": 0.0902 + }, + { + "start": 7603.34, + "end": 7605.66, + "probability": 0.0477 + }, + { + "start": 7606.4, + "end": 7609.62, + "probability": 0.0795 + }, + { + "start": 7609.9, + "end": 7612.84, + "probability": 0.0879 + }, + { + "start": 7614.14, + "end": 7620.3, + "probability": 0.4953 + }, + { + "start": 7620.98, + "end": 7625.02, + "probability": 0.2538 + }, + { + "start": 7625.54, + "end": 7629.6, + "probability": 0.04 + }, + { + "start": 7630.78, + "end": 7632.24, + "probability": 0.0913 + }, + { + "start": 7633.6, + "end": 7635.1, + "probability": 0.2969 + }, + { + "start": 7635.94, + "end": 7637.44, + "probability": 0.2072 + }, + { + "start": 7637.68, + "end": 7638.22, + "probability": 0.0542 + }, + { + "start": 7638.22, + "end": 7638.22, + "probability": 0.1593 + }, + { + "start": 7638.22, + "end": 7639.53, + "probability": 0.2116 + }, + { + "start": 7640.24, + "end": 7642.36, + "probability": 0.1835 + }, + { + "start": 7643.04, + "end": 7645.9, + "probability": 0.108 + }, + { + "start": 7646.56, + "end": 7648.62, + "probability": 0.1052 + }, + { + "start": 7649.54, + "end": 7650.98, + "probability": 0.2843 + }, + { + "start": 7651.0, + "end": 7651.0, + "probability": 0.0 + }, + { + "start": 7651.0, + "end": 7651.0, + "probability": 0.0 + }, + { + "start": 7651.18, + "end": 7652.08, + "probability": 0.0152 + }, + { + "start": 7652.36, + "end": 7656.02, + "probability": 0.0333 + }, + { + "start": 7658.34, + "end": 7663.44, + "probability": 0.2186 + }, + { + "start": 7663.56, + "end": 7664.92, + "probability": 0.2676 + }, + { + "start": 7665.44, + "end": 7667.96, + "probability": 0.0369 + }, + { + "start": 7668.24, + "end": 7669.62, + "probability": 0.078 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.0, + "end": 7781.0, + "probability": 0.0 + }, + { + "start": 7781.46, + "end": 7784.52, + "probability": 0.041 + }, + { + "start": 7784.82, + "end": 7786.7, + "probability": 0.0341 + }, + { + "start": 7787.52, + "end": 7788.54, + "probability": 0.0648 + }, + { + "start": 7789.12, + "end": 7792.96, + "probability": 0.0917 + }, + { + "start": 7800.54, + "end": 7800.66, + "probability": 0.0066 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.0, + "end": 7912.0, + "probability": 0.0 + }, + { + "start": 7912.36, + "end": 7912.72, + "probability": 0.0087 + }, + { + "start": 7912.72, + "end": 7912.88, + "probability": 0.145 + }, + { + "start": 7912.88, + "end": 7912.88, + "probability": 0.0071 + }, + { + "start": 7912.88, + "end": 7915.58, + "probability": 0.1658 + }, + { + "start": 7915.58, + "end": 7919.74, + "probability": 0.6365 + }, + { + "start": 7920.22, + "end": 7920.86, + "probability": 0.6087 + }, + { + "start": 7921.16, + "end": 7921.32, + "probability": 0.6502 + }, + { + "start": 7921.42, + "end": 7922.02, + "probability": 0.8085 + }, + { + "start": 7922.7, + "end": 7925.12, + "probability": 0.9532 + }, + { + "start": 7925.14, + "end": 7925.24, + "probability": 0.2895 + }, + { + "start": 7925.36, + "end": 7926.34, + "probability": 0.7826 + }, + { + "start": 7926.34, + "end": 7928.64, + "probability": 0.9253 + }, + { + "start": 7928.78, + "end": 7930.32, + "probability": 0.9807 + }, + { + "start": 7930.44, + "end": 7930.8, + "probability": 0.2518 + }, + { + "start": 7931.56, + "end": 7933.24, + "probability": 0.5962 + }, + { + "start": 7933.44, + "end": 7935.28, + "probability": 0.8328 + }, + { + "start": 7936.36, + "end": 7936.84, + "probability": 0.7861 + }, + { + "start": 7940.08, + "end": 7940.98, + "probability": 0.5287 + }, + { + "start": 7941.78, + "end": 7944.48, + "probability": 0.9623 + }, + { + "start": 7944.48, + "end": 7948.94, + "probability": 0.984 + }, + { + "start": 7948.96, + "end": 7950.42, + "probability": 0.8354 + }, + { + "start": 7951.08, + "end": 7955.16, + "probability": 0.8175 + }, + { + "start": 7957.06, + "end": 7961.56, + "probability": 0.9224 + }, + { + "start": 7962.22, + "end": 7966.32, + "probability": 0.7554 + }, + { + "start": 7966.92, + "end": 7971.44, + "probability": 0.9222 + }, + { + "start": 7971.8, + "end": 7976.88, + "probability": 0.9822 + }, + { + "start": 7976.88, + "end": 7981.46, + "probability": 0.8102 + }, + { + "start": 7982.02, + "end": 7985.28, + "probability": 0.9789 + }, + { + "start": 7985.38, + "end": 7989.34, + "probability": 0.7517 + }, + { + "start": 7989.96, + "end": 7994.26, + "probability": 0.9331 + }, + { + "start": 7994.94, + "end": 7999.08, + "probability": 0.5789 + }, + { + "start": 7999.8, + "end": 8000.8, + "probability": 0.5479 + }, + { + "start": 8001.0, + "end": 8001.76, + "probability": 0.8615 + }, + { + "start": 8002.0, + "end": 8004.62, + "probability": 0.7776 + }, + { + "start": 8004.68, + "end": 8007.32, + "probability": 0.9141 + }, + { + "start": 8007.7, + "end": 8010.68, + "probability": 0.918 + }, + { + "start": 8011.1, + "end": 8016.0, + "probability": 0.9971 + }, + { + "start": 8016.6, + "end": 8023.88, + "probability": 0.9382 + }, + { + "start": 8024.12, + "end": 8024.86, + "probability": 0.3989 + }, + { + "start": 8024.86, + "end": 8026.92, + "probability": 0.5597 + }, + { + "start": 8026.92, + "end": 8028.26, + "probability": 0.6867 + }, + { + "start": 8029.2, + "end": 8029.2, + "probability": 0.0078 + }, + { + "start": 8029.2, + "end": 8031.54, + "probability": 0.9868 + }, + { + "start": 8031.54, + "end": 8035.52, + "probability": 0.9822 + }, + { + "start": 8035.68, + "end": 8036.46, + "probability": 0.8449 + }, + { + "start": 8036.94, + "end": 8037.62, + "probability": 0.9084 + }, + { + "start": 8037.76, + "end": 8038.44, + "probability": 0.9694 + }, + { + "start": 8038.46, + "end": 8038.94, + "probability": 0.722 + }, + { + "start": 8039.64, + "end": 8041.38, + "probability": 0.677 + }, + { + "start": 8041.64, + "end": 8047.32, + "probability": 0.9969 + }, + { + "start": 8047.82, + "end": 8050.22, + "probability": 0.9678 + }, + { + "start": 8050.36, + "end": 8053.9, + "probability": 0.9731 + }, + { + "start": 8054.14, + "end": 8054.68, + "probability": 0.777 + }, + { + "start": 8054.94, + "end": 8056.38, + "probability": 0.8051 + }, + { + "start": 8056.52, + "end": 8058.12, + "probability": 0.6571 + }, + { + "start": 8058.82, + "end": 8061.14, + "probability": 0.8876 + }, + { + "start": 8062.5, + "end": 8064.64, + "probability": 0.7406 + }, + { + "start": 8066.34, + "end": 8067.98, + "probability": 0.6286 + }, + { + "start": 8068.34, + "end": 8071.62, + "probability": 0.5552 + }, + { + "start": 8071.88, + "end": 8073.68, + "probability": 0.8787 + }, + { + "start": 8073.76, + "end": 8076.64, + "probability": 0.889 + }, + { + "start": 8076.88, + "end": 8077.72, + "probability": 0.9697 + }, + { + "start": 8078.68, + "end": 8080.98, + "probability": 0.9856 + }, + { + "start": 8081.08, + "end": 8083.48, + "probability": 0.9915 + }, + { + "start": 8083.76, + "end": 8084.48, + "probability": 0.9838 + }, + { + "start": 8085.32, + "end": 8087.54, + "probability": 0.9337 + }, + { + "start": 8087.72, + "end": 8090.6, + "probability": 0.9885 + }, + { + "start": 8091.84, + "end": 8093.72, + "probability": 0.9886 + }, + { + "start": 8093.86, + "end": 8094.45, + "probability": 0.9578 + }, + { + "start": 8094.78, + "end": 8095.19, + "probability": 0.9287 + }, + { + "start": 8095.28, + "end": 8098.22, + "probability": 0.9966 + }, + { + "start": 8098.62, + "end": 8101.8, + "probability": 0.7166 + }, + { + "start": 8102.12, + "end": 8103.7, + "probability": 0.8967 + }, + { + "start": 8104.22, + "end": 8104.36, + "probability": 0.8516 + }, + { + "start": 8104.94, + "end": 8107.9, + "probability": 0.9902 + }, + { + "start": 8108.3, + "end": 8110.1, + "probability": 0.9927 + }, + { + "start": 8110.1, + "end": 8112.86, + "probability": 0.9973 + }, + { + "start": 8113.42, + "end": 8113.58, + "probability": 0.4728 + }, + { + "start": 8114.18, + "end": 8119.34, + "probability": 0.9896 + }, + { + "start": 8119.42, + "end": 8123.04, + "probability": 0.9849 + }, + { + "start": 8123.66, + "end": 8125.9, + "probability": 0.9863 + }, + { + "start": 8125.94, + "end": 8126.82, + "probability": 0.6386 + }, + { + "start": 8126.92, + "end": 8128.13, + "probability": 0.7509 + }, + { + "start": 8128.82, + "end": 8133.22, + "probability": 0.9915 + }, + { + "start": 8133.64, + "end": 8136.64, + "probability": 0.9699 + }, + { + "start": 8136.82, + "end": 8140.04, + "probability": 0.9946 + }, + { + "start": 8140.04, + "end": 8142.9, + "probability": 0.9975 + }, + { + "start": 8143.36, + "end": 8143.6, + "probability": 0.5378 + }, + { + "start": 8143.7, + "end": 8146.82, + "probability": 0.9321 + }, + { + "start": 8146.86, + "end": 8150.44, + "probability": 0.9963 + }, + { + "start": 8151.08, + "end": 8152.66, + "probability": 0.9215 + }, + { + "start": 8152.9, + "end": 8153.2, + "probability": 0.7758 + }, + { + "start": 8153.74, + "end": 8155.7, + "probability": 0.6784 + }, + { + "start": 8156.39, + "end": 8158.44, + "probability": 0.8531 + }, + { + "start": 8158.86, + "end": 8159.8, + "probability": 0.7338 + }, + { + "start": 8163.32, + "end": 8165.32, + "probability": 0.5943 + }, + { + "start": 8166.34, + "end": 8168.94, + "probability": 0.9307 + }, + { + "start": 8169.5, + "end": 8171.68, + "probability": 0.9578 + }, + { + "start": 8172.64, + "end": 8174.12, + "probability": 0.972 + }, + { + "start": 8174.24, + "end": 8177.84, + "probability": 0.985 + }, + { + "start": 8177.96, + "end": 8179.32, + "probability": 0.9496 + }, + { + "start": 8179.82, + "end": 8181.76, + "probability": 0.8692 + }, + { + "start": 8182.32, + "end": 8184.78, + "probability": 0.9882 + }, + { + "start": 8185.54, + "end": 8188.44, + "probability": 0.9897 + }, + { + "start": 8188.52, + "end": 8189.74, + "probability": 0.9172 + }, + { + "start": 8190.16, + "end": 8190.88, + "probability": 0.9084 + }, + { + "start": 8191.4, + "end": 8192.31, + "probability": 0.7808 + }, + { + "start": 8194.04, + "end": 8198.44, + "probability": 0.9916 + }, + { + "start": 8198.86, + "end": 8199.26, + "probability": 0.8716 + }, + { + "start": 8199.96, + "end": 8201.22, + "probability": 0.9858 + }, + { + "start": 8201.34, + "end": 8202.2, + "probability": 0.0521 + }, + { + "start": 8202.22, + "end": 8203.0, + "probability": 0.9268 + }, + { + "start": 8203.42, + "end": 8204.86, + "probability": 0.9605 + }, + { + "start": 8205.68, + "end": 8207.28, + "probability": 0.9478 + }, + { + "start": 8207.46, + "end": 8209.02, + "probability": 0.9954 + }, + { + "start": 8209.5, + "end": 8211.78, + "probability": 0.9683 + }, + { + "start": 8212.18, + "end": 8214.02, + "probability": 0.9304 + }, + { + "start": 8214.58, + "end": 8217.14, + "probability": 0.8382 + }, + { + "start": 8217.58, + "end": 8223.1, + "probability": 0.9942 + }, + { + "start": 8223.42, + "end": 8227.6, + "probability": 0.9226 + }, + { + "start": 8227.98, + "end": 8229.42, + "probability": 0.855 + }, + { + "start": 8229.88, + "end": 8233.48, + "probability": 0.9557 + }, + { + "start": 8234.12, + "end": 8235.04, + "probability": 0.9299 + }, + { + "start": 8235.42, + "end": 8238.96, + "probability": 0.9369 + }, + { + "start": 8239.46, + "end": 8242.38, + "probability": 0.8932 + }, + { + "start": 8242.66, + "end": 8245.48, + "probability": 0.9669 + }, + { + "start": 8245.62, + "end": 8246.0, + "probability": 0.7682 + }, + { + "start": 8246.6, + "end": 8248.04, + "probability": 0.7503 + }, + { + "start": 8248.44, + "end": 8248.88, + "probability": 0.7773 + }, + { + "start": 8248.9, + "end": 8249.42, + "probability": 0.9449 + }, + { + "start": 8249.64, + "end": 8255.16, + "probability": 0.8921 + }, + { + "start": 8258.56, + "end": 8259.26, + "probability": 0.2842 + }, + { + "start": 8259.94, + "end": 8265.14, + "probability": 0.7443 + }, + { + "start": 8265.24, + "end": 8266.1, + "probability": 0.8056 + }, + { + "start": 8266.26, + "end": 8266.78, + "probability": 0.4232 + }, + { + "start": 8267.84, + "end": 8268.58, + "probability": 0.6661 + }, + { + "start": 8268.62, + "end": 8269.26, + "probability": 0.5382 + }, + { + "start": 8269.32, + "end": 8270.22, + "probability": 0.5528 + }, + { + "start": 8270.26, + "end": 8270.96, + "probability": 0.8892 + }, + { + "start": 8274.32, + "end": 8274.96, + "probability": 0.0916 + }, + { + "start": 8287.44, + "end": 8287.92, + "probability": 0.288 + }, + { + "start": 8287.92, + "end": 8291.06, + "probability": 0.9014 + }, + { + "start": 8291.44, + "end": 8294.18, + "probability": 0.5881 + }, + { + "start": 8294.38, + "end": 8294.96, + "probability": 0.76 + }, + { + "start": 8295.86, + "end": 8296.48, + "probability": 0.6449 + }, + { + "start": 8296.66, + "end": 8297.84, + "probability": 0.5153 + }, + { + "start": 8297.9, + "end": 8298.98, + "probability": 0.4731 + }, + { + "start": 8299.0, + "end": 8299.34, + "probability": 0.8267 + }, + { + "start": 8299.58, + "end": 8301.04, + "probability": 0.9459 + }, + { + "start": 8301.14, + "end": 8302.88, + "probability": 0.7095 + }, + { + "start": 8302.94, + "end": 8304.14, + "probability": 0.668 + }, + { + "start": 8306.92, + "end": 8307.16, + "probability": 0.3841 + }, + { + "start": 8308.44, + "end": 8309.52, + "probability": 0.8239 + }, + { + "start": 8310.88, + "end": 8312.44, + "probability": 0.6306 + }, + { + "start": 8312.44, + "end": 8313.7, + "probability": 0.5881 + }, + { + "start": 8313.86, + "end": 8315.46, + "probability": 0.9416 + }, + { + "start": 8315.66, + "end": 8319.84, + "probability": 0.7015 + }, + { + "start": 8320.28, + "end": 8322.04, + "probability": 0.2312 + }, + { + "start": 8322.24, + "end": 8324.38, + "probability": 0.979 + }, + { + "start": 8324.58, + "end": 8324.94, + "probability": 0.669 + }, + { + "start": 8325.4, + "end": 8326.12, + "probability": 0.6591 + }, + { + "start": 8327.0, + "end": 8329.2, + "probability": 0.7057 + }, + { + "start": 8329.34, + "end": 8331.32, + "probability": 0.9409 + }, + { + "start": 8331.4, + "end": 8333.12, + "probability": 0.5097 + }, + { + "start": 8333.22, + "end": 8335.6, + "probability": 0.8611 + }, + { + "start": 8335.62, + "end": 8336.89, + "probability": 0.919 + } + ], + "segments_count": 3089, + "words_count": 14877, + "avg_words_per_segment": 4.8161, + "avg_segment_duration": 1.8417, + "avg_words_per_minute": 103.9297, + "plenum_id": "66551", + "duration": 8588.69, + "title": null, + "plenum_date": "2017-09-18" +} \ No newline at end of file