diff --git "a/67339/metadata.json" "b/67339/metadata.json" new file mode 100644--- /dev/null +++ "b/67339/metadata.json" @@ -0,0 +1,53017 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "67339", + "quality_score": 0.8952, + "per_segment_quality_scores": [ + { + "start": 57.76, + "end": 60.26, + "probability": 0.8645 + }, + { + "start": 60.46, + "end": 62.88, + "probability": 0.6874 + }, + { + "start": 64.3, + "end": 66.58, + "probability": 0.9824 + }, + { + "start": 68.28, + "end": 71.92, + "probability": 0.9361 + }, + { + "start": 72.54, + "end": 75.84, + "probability": 0.8298 + }, + { + "start": 76.7, + "end": 82.28, + "probability": 0.9734 + }, + { + "start": 83.24, + "end": 85.72, + "probability": 0.7449 + }, + { + "start": 85.84, + "end": 89.64, + "probability": 0.9729 + }, + { + "start": 95.32, + "end": 97.9, + "probability": 0.756 + }, + { + "start": 98.98, + "end": 102.3, + "probability": 0.9147 + }, + { + "start": 102.3, + "end": 106.64, + "probability": 0.9817 + }, + { + "start": 107.34, + "end": 110.56, + "probability": 0.9468 + }, + { + "start": 111.6, + "end": 113.12, + "probability": 0.7705 + }, + { + "start": 113.66, + "end": 113.96, + "probability": 0.8784 + }, + { + "start": 114.04, + "end": 116.96, + "probability": 0.9381 + }, + { + "start": 117.1, + "end": 118.42, + "probability": 0.7388 + }, + { + "start": 119.1, + "end": 119.62, + "probability": 0.7225 + }, + { + "start": 119.78, + "end": 123.44, + "probability": 0.8679 + }, + { + "start": 124.0, + "end": 126.12, + "probability": 0.9821 + }, + { + "start": 126.36, + "end": 126.46, + "probability": 0.7634 + }, + { + "start": 127.34, + "end": 127.96, + "probability": 0.6641 + }, + { + "start": 129.86, + "end": 131.22, + "probability": 0.7003 + }, + { + "start": 132.36, + "end": 135.48, + "probability": 0.8236 + }, + { + "start": 137.54, + "end": 142.7, + "probability": 0.9843 + }, + { + "start": 145.12, + "end": 145.36, + "probability": 0.5144 + }, + { + "start": 146.24, + "end": 148.94, + "probability": 0.9947 + }, + { + "start": 150.22, + "end": 152.17, + "probability": 0.999 + }, + { + "start": 154.44, + "end": 154.88, + "probability": 0.74 + }, + { + "start": 156.14, + "end": 161.2, + "probability": 0.985 + }, + { + "start": 164.22, + "end": 167.92, + "probability": 0.9571 + }, + { + "start": 170.18, + "end": 170.34, + "probability": 0.0173 + }, + { + "start": 172.42, + "end": 173.14, + "probability": 0.9723 + }, + { + "start": 174.28, + "end": 181.68, + "probability": 0.9924 + }, + { + "start": 183.68, + "end": 184.5, + "probability": 0.981 + }, + { + "start": 186.14, + "end": 190.06, + "probability": 0.9539 + }, + { + "start": 191.4, + "end": 192.74, + "probability": 0.8337 + }, + { + "start": 193.8, + "end": 196.72, + "probability": 0.8879 + }, + { + "start": 197.64, + "end": 198.63, + "probability": 0.3066 + }, + { + "start": 199.26, + "end": 199.96, + "probability": 0.8824 + }, + { + "start": 201.02, + "end": 202.98, + "probability": 0.8914 + }, + { + "start": 204.02, + "end": 207.36, + "probability": 0.9775 + }, + { + "start": 210.26, + "end": 211.6, + "probability": 0.5361 + }, + { + "start": 212.72, + "end": 215.72, + "probability": 0.8813 + }, + { + "start": 216.76, + "end": 218.52, + "probability": 0.9217 + }, + { + "start": 218.86, + "end": 220.1, + "probability": 0.8354 + }, + { + "start": 220.22, + "end": 222.32, + "probability": 0.9924 + }, + { + "start": 223.06, + "end": 226.38, + "probability": 0.9861 + }, + { + "start": 227.64, + "end": 230.6, + "probability": 0.9887 + }, + { + "start": 231.2, + "end": 232.8, + "probability": 0.8891 + }, + { + "start": 233.5, + "end": 236.69, + "probability": 0.9606 + }, + { + "start": 237.5, + "end": 240.94, + "probability": 0.884 + }, + { + "start": 241.44, + "end": 243.36, + "probability": 0.8481 + }, + { + "start": 243.44, + "end": 248.2, + "probability": 0.7194 + }, + { + "start": 250.88, + "end": 252.54, + "probability": 0.048 + }, + { + "start": 253.12, + "end": 257.58, + "probability": 0.9912 + }, + { + "start": 259.04, + "end": 260.24, + "probability": 0.8794 + }, + { + "start": 260.44, + "end": 260.88, + "probability": 0.9187 + }, + { + "start": 261.9, + "end": 262.32, + "probability": 0.5045 + }, + { + "start": 263.46, + "end": 263.9, + "probability": 0.7844 + }, + { + "start": 265.8, + "end": 267.2, + "probability": 0.4017 + }, + { + "start": 267.32, + "end": 267.38, + "probability": 0.0571 + }, + { + "start": 267.38, + "end": 268.1, + "probability": 0.2973 + }, + { + "start": 268.62, + "end": 269.02, + "probability": 0.6102 + }, + { + "start": 273.78, + "end": 274.62, + "probability": 0.8737 + }, + { + "start": 274.68, + "end": 278.12, + "probability": 0.9762 + }, + { + "start": 278.48, + "end": 281.04, + "probability": 0.8615 + }, + { + "start": 281.08, + "end": 283.02, + "probability": 0.897 + }, + { + "start": 283.76, + "end": 285.58, + "probability": 0.9752 + }, + { + "start": 285.84, + "end": 289.48, + "probability": 0.9495 + }, + { + "start": 289.98, + "end": 293.38, + "probability": 0.9445 + }, + { + "start": 293.38, + "end": 298.24, + "probability": 0.9856 + }, + { + "start": 298.36, + "end": 299.16, + "probability": 0.5647 + }, + { + "start": 299.6, + "end": 304.34, + "probability": 0.8746 + }, + { + "start": 305.1, + "end": 306.84, + "probability": 0.5824 + }, + { + "start": 307.16, + "end": 311.38, + "probability": 0.9785 + }, + { + "start": 311.76, + "end": 313.15, + "probability": 0.6958 + }, + { + "start": 314.04, + "end": 315.6, + "probability": 0.9902 + }, + { + "start": 315.6, + "end": 318.02, + "probability": 0.9717 + }, + { + "start": 318.14, + "end": 319.06, + "probability": 0.7792 + }, + { + "start": 319.32, + "end": 320.24, + "probability": 0.6561 + }, + { + "start": 320.52, + "end": 322.24, + "probability": 0.9142 + }, + { + "start": 323.6, + "end": 325.54, + "probability": 0.987 + }, + { + "start": 326.62, + "end": 329.6, + "probability": 0.9897 + }, + { + "start": 329.9, + "end": 330.3, + "probability": 0.1741 + }, + { + "start": 330.3, + "end": 331.26, + "probability": 0.2743 + }, + { + "start": 331.68, + "end": 332.64, + "probability": 0.9048 + }, + { + "start": 332.92, + "end": 333.94, + "probability": 0.9551 + }, + { + "start": 334.16, + "end": 335.02, + "probability": 0.8542 + }, + { + "start": 335.48, + "end": 336.14, + "probability": 0.8951 + }, + { + "start": 336.46, + "end": 336.66, + "probability": 0.6286 + }, + { + "start": 337.86, + "end": 338.36, + "probability": 0.8278 + }, + { + "start": 338.52, + "end": 343.22, + "probability": 0.9847 + }, + { + "start": 343.38, + "end": 344.28, + "probability": 0.5469 + }, + { + "start": 344.52, + "end": 348.34, + "probability": 0.9124 + }, + { + "start": 351.37, + "end": 351.74, + "probability": 0.0186 + }, + { + "start": 352.86, + "end": 352.86, + "probability": 0.0319 + }, + { + "start": 352.86, + "end": 352.86, + "probability": 0.1477 + }, + { + "start": 352.86, + "end": 353.4, + "probability": 0.398 + }, + { + "start": 353.4, + "end": 354.5, + "probability": 0.3864 + }, + { + "start": 355.28, + "end": 358.02, + "probability": 0.8237 + }, + { + "start": 358.02, + "end": 361.64, + "probability": 0.9207 + }, + { + "start": 362.44, + "end": 367.22, + "probability": 0.9471 + }, + { + "start": 367.84, + "end": 373.18, + "probability": 0.7941 + }, + { + "start": 373.18, + "end": 377.38, + "probability": 0.8818 + }, + { + "start": 377.78, + "end": 380.76, + "probability": 0.8204 + }, + { + "start": 381.96, + "end": 384.48, + "probability": 0.045 + }, + { + "start": 384.48, + "end": 386.62, + "probability": 0.741 + }, + { + "start": 387.2, + "end": 390.4, + "probability": 0.8823 + }, + { + "start": 390.82, + "end": 392.1, + "probability": 0.9579 + }, + { + "start": 392.9, + "end": 393.72, + "probability": 0.6441 + }, + { + "start": 393.94, + "end": 397.0, + "probability": 0.0041 + }, + { + "start": 399.88, + "end": 400.0, + "probability": 0.1141 + }, + { + "start": 400.0, + "end": 400.0, + "probability": 0.0301 + }, + { + "start": 400.0, + "end": 400.34, + "probability": 0.1695 + }, + { + "start": 401.16, + "end": 407.22, + "probability": 0.9351 + }, + { + "start": 407.4, + "end": 409.84, + "probability": 0.889 + }, + { + "start": 410.52, + "end": 411.3, + "probability": 0.5101 + }, + { + "start": 413.9, + "end": 415.1, + "probability": 0.9297 + }, + { + "start": 415.3, + "end": 417.02, + "probability": 0.9505 + }, + { + "start": 417.04, + "end": 418.81, + "probability": 0.835 + }, + { + "start": 419.38, + "end": 424.42, + "probability": 0.886 + }, + { + "start": 424.48, + "end": 428.14, + "probability": 0.7517 + }, + { + "start": 429.52, + "end": 432.46, + "probability": 0.5646 + }, + { + "start": 432.76, + "end": 435.6, + "probability": 0.9543 + }, + { + "start": 435.94, + "end": 438.38, + "probability": 0.5326 + }, + { + "start": 439.4, + "end": 441.64, + "probability": 0.5863 + }, + { + "start": 442.78, + "end": 446.1, + "probability": 0.8844 + }, + { + "start": 446.64, + "end": 449.48, + "probability": 0.9698 + }, + { + "start": 449.64, + "end": 450.56, + "probability": 0.974 + }, + { + "start": 450.64, + "end": 451.58, + "probability": 0.8799 + }, + { + "start": 452.04, + "end": 453.02, + "probability": 0.3977 + }, + { + "start": 453.8, + "end": 457.56, + "probability": 0.9956 + }, + { + "start": 457.6, + "end": 459.44, + "probability": 0.973 + }, + { + "start": 461.51, + "end": 463.98, + "probability": 0.9763 + }, + { + "start": 464.08, + "end": 464.3, + "probability": 0.8651 + }, + { + "start": 464.36, + "end": 465.46, + "probability": 0.967 + }, + { + "start": 465.8, + "end": 468.6, + "probability": 0.0463 + }, + { + "start": 469.2, + "end": 469.56, + "probability": 0.0003 + }, + { + "start": 470.28, + "end": 470.74, + "probability": 0.0055 + }, + { + "start": 470.74, + "end": 471.56, + "probability": 0.3789 + }, + { + "start": 474.02, + "end": 474.74, + "probability": 0.0312 + }, + { + "start": 475.24, + "end": 477.98, + "probability": 0.9562 + }, + { + "start": 479.46, + "end": 479.96, + "probability": 0.0719 + }, + { + "start": 479.98, + "end": 481.02, + "probability": 0.0752 + }, + { + "start": 481.56, + "end": 484.06, + "probability": 0.5342 + }, + { + "start": 485.28, + "end": 485.28, + "probability": 0.027 + }, + { + "start": 485.28, + "end": 489.12, + "probability": 0.6162 + }, + { + "start": 493.6, + "end": 494.26, + "probability": 0.8201 + }, + { + "start": 494.32, + "end": 495.14, + "probability": 0.7454 + }, + { + "start": 495.54, + "end": 498.3, + "probability": 0.9009 + }, + { + "start": 498.32, + "end": 500.44, + "probability": 0.7665 + }, + { + "start": 501.06, + "end": 502.58, + "probability": 0.9641 + }, + { + "start": 502.78, + "end": 504.43, + "probability": 0.9253 + }, + { + "start": 504.82, + "end": 506.88, + "probability": 0.0005 + }, + { + "start": 506.88, + "end": 506.88, + "probability": 0.0915 + }, + { + "start": 506.88, + "end": 507.12, + "probability": 0.693 + }, + { + "start": 507.22, + "end": 508.82, + "probability": 0.8613 + }, + { + "start": 508.92, + "end": 509.36, + "probability": 0.438 + }, + { + "start": 509.48, + "end": 511.88, + "probability": 0.8193 + }, + { + "start": 512.86, + "end": 513.62, + "probability": 0.6363 + }, + { + "start": 513.98, + "end": 515.04, + "probability": 0.2945 + }, + { + "start": 515.56, + "end": 515.78, + "probability": 0.035 + }, + { + "start": 515.9, + "end": 518.78, + "probability": 0.7011 + }, + { + "start": 518.82, + "end": 519.46, + "probability": 0.7632 + }, + { + "start": 519.56, + "end": 519.92, + "probability": 0.8131 + }, + { + "start": 526.1, + "end": 529.04, + "probability": 0.9836 + }, + { + "start": 530.82, + "end": 532.62, + "probability": 0.8584 + }, + { + "start": 532.8, + "end": 536.22, + "probability": 0.9751 + }, + { + "start": 537.14, + "end": 538.56, + "probability": 0.3237 + }, + { + "start": 538.56, + "end": 539.36, + "probability": 0.9106 + }, + { + "start": 540.16, + "end": 542.52, + "probability": 0.791 + }, + { + "start": 545.04, + "end": 545.64, + "probability": 0.5538 + }, + { + "start": 546.5, + "end": 547.28, + "probability": 0.4684 + }, + { + "start": 547.46, + "end": 548.84, + "probability": 0.8777 + }, + { + "start": 548.92, + "end": 552.94, + "probability": 0.9039 + }, + { + "start": 553.12, + "end": 554.38, + "probability": 0.7473 + }, + { + "start": 562.48, + "end": 564.74, + "probability": 0.7373 + }, + { + "start": 566.94, + "end": 568.92, + "probability": 0.9762 + }, + { + "start": 568.94, + "end": 570.78, + "probability": 0.7641 + }, + { + "start": 571.68, + "end": 576.3, + "probability": 0.7501 + }, + { + "start": 576.3, + "end": 579.5, + "probability": 0.8838 + }, + { + "start": 580.12, + "end": 582.32, + "probability": 0.2069 + }, + { + "start": 582.82, + "end": 587.48, + "probability": 0.7522 + }, + { + "start": 587.74, + "end": 590.14, + "probability": 0.7366 + }, + { + "start": 590.78, + "end": 596.08, + "probability": 0.869 + }, + { + "start": 596.08, + "end": 596.36, + "probability": 0.4932 + }, + { + "start": 597.38, + "end": 598.48, + "probability": 0.6328 + }, + { + "start": 599.9, + "end": 602.98, + "probability": 0.6897 + }, + { + "start": 603.58, + "end": 604.4, + "probability": 0.5477 + }, + { + "start": 604.48, + "end": 605.82, + "probability": 0.881 + }, + { + "start": 606.38, + "end": 606.86, + "probability": 0.2619 + }, + { + "start": 607.34, + "end": 608.74, + "probability": 0.6786 + }, + { + "start": 609.31, + "end": 615.22, + "probability": 0.8939 + }, + { + "start": 616.44, + "end": 621.32, + "probability": 0.6296 + }, + { + "start": 621.9, + "end": 625.7, + "probability": 0.9731 + }, + { + "start": 626.32, + "end": 629.16, + "probability": 0.9326 + }, + { + "start": 630.71, + "end": 636.78, + "probability": 0.9605 + }, + { + "start": 637.32, + "end": 641.96, + "probability": 0.9893 + }, + { + "start": 642.44, + "end": 643.58, + "probability": 0.5003 + }, + { + "start": 644.0, + "end": 646.2, + "probability": 0.8084 + }, + { + "start": 647.26, + "end": 651.72, + "probability": 0.6991 + }, + { + "start": 651.72, + "end": 656.6, + "probability": 0.9609 + }, + { + "start": 656.96, + "end": 658.44, + "probability": 0.9198 + }, + { + "start": 658.56, + "end": 659.08, + "probability": 0.2191 + }, + { + "start": 660.64, + "end": 661.84, + "probability": 0.7852 + }, + { + "start": 661.88, + "end": 663.7, + "probability": 0.5352 + }, + { + "start": 663.88, + "end": 665.42, + "probability": 0.8438 + }, + { + "start": 665.98, + "end": 668.92, + "probability": 0.7825 + }, + { + "start": 669.04, + "end": 671.1, + "probability": 0.638 + }, + { + "start": 674.56, + "end": 676.92, + "probability": 0.9739 + }, + { + "start": 677.22, + "end": 680.54, + "probability": 0.994 + }, + { + "start": 681.1, + "end": 682.12, + "probability": 0.6677 + }, + { + "start": 682.24, + "end": 682.9, + "probability": 0.5116 + }, + { + "start": 683.28, + "end": 687.84, + "probability": 0.9532 + }, + { + "start": 687.9, + "end": 691.74, + "probability": 0.9795 + }, + { + "start": 691.86, + "end": 694.4, + "probability": 0.9844 + }, + { + "start": 694.72, + "end": 695.06, + "probability": 0.8634 + }, + { + "start": 695.08, + "end": 696.7, + "probability": 0.4381 + }, + { + "start": 696.76, + "end": 700.7, + "probability": 0.9554 + }, + { + "start": 701.72, + "end": 703.7, + "probability": 0.7791 + }, + { + "start": 703.82, + "end": 704.8, + "probability": 0.8901 + }, + { + "start": 705.6, + "end": 706.66, + "probability": 0.4507 + }, + { + "start": 707.0, + "end": 708.62, + "probability": 0.9523 + }, + { + "start": 709.06, + "end": 710.06, + "probability": 0.5578 + }, + { + "start": 710.08, + "end": 712.96, + "probability": 0.9562 + }, + { + "start": 713.62, + "end": 714.32, + "probability": 0.6612 + }, + { + "start": 714.42, + "end": 716.22, + "probability": 0.9858 + }, + { + "start": 716.56, + "end": 718.34, + "probability": 0.9858 + }, + { + "start": 719.98, + "end": 720.72, + "probability": 0.8448 + }, + { + "start": 721.4, + "end": 723.62, + "probability": 0.8361 + }, + { + "start": 724.36, + "end": 729.88, + "probability": 0.8561 + }, + { + "start": 730.22, + "end": 731.46, + "probability": 0.9635 + }, + { + "start": 731.72, + "end": 735.92, + "probability": 0.9897 + }, + { + "start": 736.54, + "end": 737.08, + "probability": 0.6455 + }, + { + "start": 737.72, + "end": 739.52, + "probability": 0.9976 + }, + { + "start": 740.14, + "end": 743.2, + "probability": 0.9624 + }, + { + "start": 743.74, + "end": 746.02, + "probability": 0.8214 + }, + { + "start": 747.88, + "end": 751.74, + "probability": 0.3405 + }, + { + "start": 752.28, + "end": 757.82, + "probability": 0.9958 + }, + { + "start": 758.5, + "end": 762.16, + "probability": 0.9598 + }, + { + "start": 762.72, + "end": 763.62, + "probability": 0.9817 + }, + { + "start": 764.34, + "end": 765.04, + "probability": 0.7776 + }, + { + "start": 766.06, + "end": 766.92, + "probability": 0.856 + }, + { + "start": 767.3, + "end": 768.4, + "probability": 0.9141 + }, + { + "start": 768.88, + "end": 771.72, + "probability": 0.865 + }, + { + "start": 772.5, + "end": 773.24, + "probability": 0.544 + }, + { + "start": 773.36, + "end": 774.56, + "probability": 0.8394 + }, + { + "start": 774.84, + "end": 776.32, + "probability": 0.5491 + }, + { + "start": 776.66, + "end": 778.14, + "probability": 0.6885 + }, + { + "start": 778.74, + "end": 782.9, + "probability": 0.8014 + }, + { + "start": 782.9, + "end": 787.1, + "probability": 0.9052 + }, + { + "start": 787.28, + "end": 787.68, + "probability": 0.5107 + }, + { + "start": 788.22, + "end": 791.84, + "probability": 0.9121 + }, + { + "start": 792.76, + "end": 797.36, + "probability": 0.9674 + }, + { + "start": 797.78, + "end": 801.18, + "probability": 0.7272 + }, + { + "start": 801.36, + "end": 806.92, + "probability": 0.8882 + }, + { + "start": 807.8, + "end": 812.2, + "probability": 0.9116 + }, + { + "start": 812.2, + "end": 814.66, + "probability": 0.9184 + }, + { + "start": 814.94, + "end": 816.5, + "probability": 0.6387 + }, + { + "start": 816.98, + "end": 818.6, + "probability": 0.9595 + }, + { + "start": 819.34, + "end": 820.6, + "probability": 0.5529 + }, + { + "start": 821.02, + "end": 822.56, + "probability": 0.8427 + }, + { + "start": 822.68, + "end": 827.28, + "probability": 0.7961 + }, + { + "start": 827.72, + "end": 828.84, + "probability": 0.7469 + }, + { + "start": 829.18, + "end": 831.56, + "probability": 0.7728 + }, + { + "start": 831.92, + "end": 839.98, + "probability": 0.6199 + }, + { + "start": 840.52, + "end": 844.42, + "probability": 0.8693 + }, + { + "start": 845.52, + "end": 849.16, + "probability": 0.7388 + }, + { + "start": 849.9, + "end": 853.82, + "probability": 0.6607 + }, + { + "start": 854.78, + "end": 855.56, + "probability": 0.5694 + }, + { + "start": 855.64, + "end": 858.62, + "probability": 0.7864 + }, + { + "start": 859.46, + "end": 860.86, + "probability": 0.6343 + }, + { + "start": 860.94, + "end": 864.28, + "probability": 0.685 + }, + { + "start": 864.28, + "end": 867.5, + "probability": 0.9901 + }, + { + "start": 869.64, + "end": 870.86, + "probability": 0.6821 + }, + { + "start": 870.96, + "end": 871.0, + "probability": 0.3547 + }, + { + "start": 871.22, + "end": 873.92, + "probability": 0.9761 + }, + { + "start": 878.58, + "end": 883.12, + "probability": 0.9945 + }, + { + "start": 883.3, + "end": 883.6, + "probability": 0.4493 + }, + { + "start": 883.72, + "end": 884.32, + "probability": 0.6722 + }, + { + "start": 885.08, + "end": 887.3, + "probability": 0.9104 + }, + { + "start": 887.88, + "end": 890.22, + "probability": 0.8779 + }, + { + "start": 891.04, + "end": 892.48, + "probability": 0.9792 + }, + { + "start": 892.66, + "end": 894.44, + "probability": 0.9359 + }, + { + "start": 894.9, + "end": 895.84, + "probability": 0.2686 + }, + { + "start": 895.96, + "end": 898.6, + "probability": 0.9909 + }, + { + "start": 899.36, + "end": 903.24, + "probability": 0.9761 + }, + { + "start": 904.12, + "end": 906.7, + "probability": 0.9868 + }, + { + "start": 907.28, + "end": 909.06, + "probability": 0.9867 + }, + { + "start": 909.54, + "end": 911.12, + "probability": 0.92 + }, + { + "start": 911.58, + "end": 917.92, + "probability": 0.9791 + }, + { + "start": 918.44, + "end": 918.84, + "probability": 0.64 + }, + { + "start": 919.3, + "end": 920.92, + "probability": 0.8359 + }, + { + "start": 921.36, + "end": 922.0, + "probability": 0.895 + }, + { + "start": 922.5, + "end": 923.1, + "probability": 0.8194 + }, + { + "start": 923.42, + "end": 923.7, + "probability": 0.0311 + }, + { + "start": 924.02, + "end": 928.66, + "probability": 0.9927 + }, + { + "start": 928.96, + "end": 929.22, + "probability": 0.0052 + }, + { + "start": 929.92, + "end": 936.0, + "probability": 0.9901 + }, + { + "start": 936.0, + "end": 940.44, + "probability": 0.98 + }, + { + "start": 940.72, + "end": 943.46, + "probability": 0.9753 + }, + { + "start": 943.7, + "end": 945.08, + "probability": 0.5785 + }, + { + "start": 945.08, + "end": 946.22, + "probability": 0.9879 + }, + { + "start": 946.48, + "end": 948.54, + "probability": 0.8685 + }, + { + "start": 948.78, + "end": 954.23, + "probability": 0.6953 + }, + { + "start": 955.14, + "end": 956.16, + "probability": 0.6654 + }, + { + "start": 956.28, + "end": 957.35, + "probability": 0.9836 + }, + { + "start": 957.72, + "end": 961.44, + "probability": 0.8049 + }, + { + "start": 961.5, + "end": 962.06, + "probability": 0.49 + }, + { + "start": 962.26, + "end": 963.26, + "probability": 0.9512 + }, + { + "start": 963.52, + "end": 964.36, + "probability": 0.2222 + }, + { + "start": 964.42, + "end": 964.86, + "probability": 0.3145 + }, + { + "start": 965.1, + "end": 966.76, + "probability": 0.2327 + }, + { + "start": 967.04, + "end": 967.78, + "probability": 0.7566 + }, + { + "start": 968.04, + "end": 970.36, + "probability": 0.8824 + }, + { + "start": 970.36, + "end": 972.62, + "probability": 0.9501 + }, + { + "start": 973.44, + "end": 976.74, + "probability": 0.6992 + }, + { + "start": 977.26, + "end": 977.54, + "probability": 0.683 + }, + { + "start": 978.3, + "end": 980.68, + "probability": 0.7122 + }, + { + "start": 980.86, + "end": 982.47, + "probability": 0.988 + }, + { + "start": 982.82, + "end": 984.08, + "probability": 0.501 + }, + { + "start": 984.32, + "end": 985.6, + "probability": 0.9438 + }, + { + "start": 985.68, + "end": 986.1, + "probability": 0.5372 + }, + { + "start": 986.12, + "end": 986.36, + "probability": 0.4083 + }, + { + "start": 986.46, + "end": 989.6, + "probability": 0.8209 + }, + { + "start": 993.06, + "end": 994.38, + "probability": 0.7491 + }, + { + "start": 994.54, + "end": 997.02, + "probability": 0.9805 + }, + { + "start": 997.02, + "end": 1000.62, + "probability": 0.9806 + }, + { + "start": 1000.82, + "end": 1005.26, + "probability": 0.9631 + }, + { + "start": 1005.88, + "end": 1010.7, + "probability": 0.958 + }, + { + "start": 1012.02, + "end": 1014.3, + "probability": 0.6448 + }, + { + "start": 1014.44, + "end": 1017.24, + "probability": 0.8993 + }, + { + "start": 1018.38, + "end": 1019.06, + "probability": 0.5749 + }, + { + "start": 1019.16, + "end": 1020.62, + "probability": 0.7698 + }, + { + "start": 1020.7, + "end": 1023.38, + "probability": 0.8569 + }, + { + "start": 1023.56, + "end": 1026.24, + "probability": 0.9409 + }, + { + "start": 1026.44, + "end": 1028.08, + "probability": 0.9268 + }, + { + "start": 1028.66, + "end": 1029.14, + "probability": 0.7092 + }, + { + "start": 1029.8, + "end": 1031.46, + "probability": 0.6122 + }, + { + "start": 1031.62, + "end": 1032.5, + "probability": 0.7593 + }, + { + "start": 1034.11, + "end": 1038.02, + "probability": 0.9446 + }, + { + "start": 1038.02, + "end": 1044.34, + "probability": 0.4346 + }, + { + "start": 1045.5, + "end": 1046.02, + "probability": 0.0691 + }, + { + "start": 1046.02, + "end": 1050.26, + "probability": 0.7807 + }, + { + "start": 1050.36, + "end": 1053.83, + "probability": 0.795 + }, + { + "start": 1055.84, + "end": 1060.04, + "probability": 0.8787 + }, + { + "start": 1060.04, + "end": 1066.44, + "probability": 0.5837 + }, + { + "start": 1068.16, + "end": 1072.98, + "probability": 0.9284 + }, + { + "start": 1073.36, + "end": 1077.44, + "probability": 0.9467 + }, + { + "start": 1077.44, + "end": 1080.48, + "probability": 0.8291 + }, + { + "start": 1080.88, + "end": 1084.86, + "probability": 0.8036 + }, + { + "start": 1084.92, + "end": 1089.34, + "probability": 0.7865 + }, + { + "start": 1090.62, + "end": 1092.12, + "probability": 0.5319 + }, + { + "start": 1093.86, + "end": 1099.0, + "probability": 0.6968 + }, + { + "start": 1099.44, + "end": 1103.94, + "probability": 0.8047 + }, + { + "start": 1104.36, + "end": 1104.66, + "probability": 0.462 + }, + { + "start": 1104.82, + "end": 1109.48, + "probability": 0.8936 + }, + { + "start": 1109.98, + "end": 1111.82, + "probability": 0.781 + }, + { + "start": 1111.96, + "end": 1117.16, + "probability": 0.7896 + }, + { + "start": 1117.72, + "end": 1123.64, + "probability": 0.8796 + }, + { + "start": 1125.08, + "end": 1130.04, + "probability": 0.7261 + }, + { + "start": 1130.84, + "end": 1138.6, + "probability": 0.6308 + }, + { + "start": 1138.62, + "end": 1142.76, + "probability": 0.884 + }, + { + "start": 1143.1, + "end": 1147.58, + "probability": 0.9717 + }, + { + "start": 1147.58, + "end": 1150.52, + "probability": 0.7923 + }, + { + "start": 1151.12, + "end": 1156.56, + "probability": 0.8916 + }, + { + "start": 1157.06, + "end": 1162.22, + "probability": 0.622 + }, + { + "start": 1162.58, + "end": 1168.64, + "probability": 0.9442 + }, + { + "start": 1169.32, + "end": 1172.5, + "probability": 0.6332 + }, + { + "start": 1172.7, + "end": 1175.14, + "probability": 0.9839 + }, + { + "start": 1175.3, + "end": 1176.3, + "probability": 0.6906 + }, + { + "start": 1177.02, + "end": 1180.8, + "probability": 0.8234 + }, + { + "start": 1181.04, + "end": 1184.42, + "probability": 0.8568 + }, + { + "start": 1185.02, + "end": 1188.72, + "probability": 0.9124 + }, + { + "start": 1189.3, + "end": 1193.86, + "probability": 0.7382 + }, + { + "start": 1194.42, + "end": 1199.12, + "probability": 0.8893 + }, + { + "start": 1199.12, + "end": 1204.66, + "probability": 0.9839 + }, + { + "start": 1204.66, + "end": 1211.6, + "probability": 0.828 + }, + { + "start": 1212.28, + "end": 1215.82, + "probability": 0.7106 + }, + { + "start": 1215.82, + "end": 1220.15, + "probability": 0.9775 + }, + { + "start": 1221.86, + "end": 1226.54, + "probability": 0.8224 + }, + { + "start": 1228.26, + "end": 1229.18, + "probability": 0.5531 + }, + { + "start": 1229.2, + "end": 1230.16, + "probability": 0.722 + }, + { + "start": 1230.76, + "end": 1231.18, + "probability": 0.7129 + }, + { + "start": 1231.54, + "end": 1232.46, + "probability": 0.8744 + }, + { + "start": 1232.62, + "end": 1235.38, + "probability": 0.6429 + }, + { + "start": 1235.96, + "end": 1238.06, + "probability": 0.4572 + }, + { + "start": 1238.4, + "end": 1244.41, + "probability": 0.9541 + }, + { + "start": 1245.26, + "end": 1248.0, + "probability": 0.939 + }, + { + "start": 1252.08, + "end": 1255.74, + "probability": 0.9727 + }, + { + "start": 1255.74, + "end": 1258.7, + "probability": 0.9956 + }, + { + "start": 1258.94, + "end": 1259.46, + "probability": 0.7951 + }, + { + "start": 1259.72, + "end": 1260.84, + "probability": 0.9147 + }, + { + "start": 1261.26, + "end": 1265.62, + "probability": 0.9899 + }, + { + "start": 1266.2, + "end": 1271.24, + "probability": 0.9574 + }, + { + "start": 1271.74, + "end": 1272.16, + "probability": 0.5323 + }, + { + "start": 1272.26, + "end": 1273.06, + "probability": 0.7682 + }, + { + "start": 1274.14, + "end": 1279.2, + "probability": 0.862 + }, + { + "start": 1280.42, + "end": 1281.22, + "probability": 0.5435 + }, + { + "start": 1281.92, + "end": 1282.96, + "probability": 0.6493 + }, + { + "start": 1283.08, + "end": 1284.44, + "probability": 0.8556 + }, + { + "start": 1284.7, + "end": 1287.21, + "probability": 0.9458 + }, + { + "start": 1287.72, + "end": 1291.6, + "probability": 0.8739 + }, + { + "start": 1292.38, + "end": 1294.84, + "probability": 0.9889 + }, + { + "start": 1294.84, + "end": 1298.64, + "probability": 0.9692 + }, + { + "start": 1298.88, + "end": 1301.28, + "probability": 0.8553 + }, + { + "start": 1301.4, + "end": 1305.92, + "probability": 0.9815 + }, + { + "start": 1306.56, + "end": 1311.7, + "probability": 0.8537 + }, + { + "start": 1311.7, + "end": 1317.5, + "probability": 0.9132 + }, + { + "start": 1318.3, + "end": 1320.96, + "probability": 0.078 + }, + { + "start": 1321.26, + "end": 1327.06, + "probability": 0.8638 + }, + { + "start": 1327.06, + "end": 1331.72, + "probability": 0.9913 + }, + { + "start": 1331.72, + "end": 1337.38, + "probability": 0.981 + }, + { + "start": 1338.58, + "end": 1339.06, + "probability": 0.4902 + }, + { + "start": 1339.16, + "end": 1341.36, + "probability": 0.9935 + }, + { + "start": 1346.06, + "end": 1348.64, + "probability": 0.8086 + }, + { + "start": 1349.94, + "end": 1352.24, + "probability": 0.9349 + }, + { + "start": 1352.34, + "end": 1353.41, + "probability": 0.9597 + }, + { + "start": 1354.68, + "end": 1360.32, + "probability": 0.9575 + }, + { + "start": 1360.74, + "end": 1363.2, + "probability": 0.5178 + }, + { + "start": 1363.26, + "end": 1365.8, + "probability": 0.8417 + }, + { + "start": 1366.42, + "end": 1368.44, + "probability": 0.3299 + }, + { + "start": 1370.5, + "end": 1374.34, + "probability": 0.9937 + }, + { + "start": 1377.14, + "end": 1378.6, + "probability": 0.9398 + }, + { + "start": 1379.26, + "end": 1379.98, + "probability": 0.7964 + }, + { + "start": 1381.28, + "end": 1385.3, + "probability": 0.9829 + }, + { + "start": 1385.64, + "end": 1385.94, + "probability": 0.2578 + }, + { + "start": 1386.3, + "end": 1387.68, + "probability": 0.687 + }, + { + "start": 1387.7, + "end": 1389.92, + "probability": 0.6251 + }, + { + "start": 1390.04, + "end": 1391.13, + "probability": 0.9404 + }, + { + "start": 1392.32, + "end": 1392.7, + "probability": 0.7501 + }, + { + "start": 1392.8, + "end": 1392.94, + "probability": 0.6183 + }, + { + "start": 1393.08, + "end": 1397.66, + "probability": 0.7296 + }, + { + "start": 1397.7, + "end": 1398.26, + "probability": 0.8166 + }, + { + "start": 1398.26, + "end": 1402.28, + "probability": 0.9565 + }, + { + "start": 1403.74, + "end": 1407.11, + "probability": 0.9751 + }, + { + "start": 1408.32, + "end": 1412.6, + "probability": 0.9982 + }, + { + "start": 1412.74, + "end": 1414.04, + "probability": 0.8894 + }, + { + "start": 1414.14, + "end": 1414.9, + "probability": 0.6223 + }, + { + "start": 1416.06, + "end": 1419.46, + "probability": 0.8486 + }, + { + "start": 1419.56, + "end": 1420.3, + "probability": 0.9141 + }, + { + "start": 1421.12, + "end": 1423.76, + "probability": 0.967 + }, + { + "start": 1424.94, + "end": 1426.24, + "probability": 0.4804 + }, + { + "start": 1426.24, + "end": 1427.28, + "probability": 0.7479 + }, + { + "start": 1427.88, + "end": 1428.58, + "probability": 0.0025 + }, + { + "start": 1428.64, + "end": 1428.82, + "probability": 0.0428 + }, + { + "start": 1428.82, + "end": 1429.46, + "probability": 0.391 + }, + { + "start": 1429.82, + "end": 1430.58, + "probability": 0.8167 + }, + { + "start": 1430.74, + "end": 1436.12, + "probability": 0.8168 + }, + { + "start": 1436.78, + "end": 1437.84, + "probability": 0.8703 + }, + { + "start": 1439.18, + "end": 1443.06, + "probability": 0.9509 + }, + { + "start": 1443.58, + "end": 1445.7, + "probability": 0.974 + }, + { + "start": 1447.0, + "end": 1450.3, + "probability": 0.9421 + }, + { + "start": 1450.95, + "end": 1456.34, + "probability": 0.9473 + }, + { + "start": 1456.56, + "end": 1462.46, + "probability": 0.8143 + }, + { + "start": 1463.28, + "end": 1464.42, + "probability": 0.4946 + }, + { + "start": 1464.6, + "end": 1466.94, + "probability": 0.8571 + }, + { + "start": 1466.94, + "end": 1469.94, + "probability": 0.929 + }, + { + "start": 1470.06, + "end": 1470.5, + "probability": 0.295 + }, + { + "start": 1471.4, + "end": 1474.64, + "probability": 0.2875 + }, + { + "start": 1474.73, + "end": 1475.84, + "probability": 0.2664 + }, + { + "start": 1476.66, + "end": 1480.66, + "probability": 0.84 + }, + { + "start": 1480.66, + "end": 1483.54, + "probability": 0.7636 + }, + { + "start": 1486.24, + "end": 1487.82, + "probability": 0.6588 + }, + { + "start": 1487.9, + "end": 1488.2, + "probability": 0.5396 + }, + { + "start": 1488.64, + "end": 1489.8, + "probability": 0.6612 + }, + { + "start": 1490.28, + "end": 1491.5, + "probability": 0.6791 + }, + { + "start": 1493.78, + "end": 1494.66, + "probability": 0.2646 + }, + { + "start": 1494.74, + "end": 1498.8, + "probability": 0.808 + }, + { + "start": 1505.84, + "end": 1506.98, + "probability": 0.7551 + }, + { + "start": 1507.94, + "end": 1511.6, + "probability": 0.9955 + }, + { + "start": 1512.12, + "end": 1513.36, + "probability": 0.7749 + }, + { + "start": 1514.16, + "end": 1516.28, + "probability": 0.9976 + }, + { + "start": 1517.2, + "end": 1521.66, + "probability": 0.9984 + }, + { + "start": 1522.6, + "end": 1526.14, + "probability": 0.5307 + }, + { + "start": 1526.6, + "end": 1527.08, + "probability": 0.1721 + }, + { + "start": 1527.22, + "end": 1529.02, + "probability": 0.7544 + }, + { + "start": 1529.54, + "end": 1531.92, + "probability": 0.9263 + }, + { + "start": 1533.42, + "end": 1534.7, + "probability": 0.665 + }, + { + "start": 1535.3, + "end": 1535.98, + "probability": 0.2223 + }, + { + "start": 1536.22, + "end": 1537.22, + "probability": 0.9946 + }, + { + "start": 1537.8, + "end": 1538.57, + "probability": 0.4833 + }, + { + "start": 1539.48, + "end": 1540.96, + "probability": 0.9609 + }, + { + "start": 1541.66, + "end": 1543.12, + "probability": 0.3403 + }, + { + "start": 1543.82, + "end": 1547.18, + "probability": 0.993 + }, + { + "start": 1548.02, + "end": 1549.4, + "probability": 0.5123 + }, + { + "start": 1549.46, + "end": 1550.4, + "probability": 0.764 + }, + { + "start": 1550.74, + "end": 1551.96, + "probability": 0.5736 + }, + { + "start": 1552.18, + "end": 1554.28, + "probability": 0.9542 + }, + { + "start": 1554.46, + "end": 1555.44, + "probability": 0.8491 + }, + { + "start": 1555.9, + "end": 1556.7, + "probability": 0.5634 + }, + { + "start": 1556.78, + "end": 1560.46, + "probability": 0.96 + }, + { + "start": 1561.16, + "end": 1562.56, + "probability": 0.6199 + }, + { + "start": 1562.7, + "end": 1566.04, + "probability": 0.7521 + }, + { + "start": 1566.52, + "end": 1569.18, + "probability": 0.9681 + }, + { + "start": 1569.18, + "end": 1572.02, + "probability": 0.5588 + }, + { + "start": 1572.46, + "end": 1574.28, + "probability": 0.7316 + }, + { + "start": 1575.26, + "end": 1580.04, + "probability": 0.8706 + }, + { + "start": 1580.34, + "end": 1582.38, + "probability": 0.7488 + }, + { + "start": 1582.46, + "end": 1583.12, + "probability": 0.6738 + }, + { + "start": 1583.6, + "end": 1585.28, + "probability": 0.5007 + }, + { + "start": 1585.54, + "end": 1589.6, + "probability": 0.8416 + }, + { + "start": 1590.0, + "end": 1590.52, + "probability": 0.6093 + }, + { + "start": 1590.8, + "end": 1595.58, + "probability": 0.9793 + }, + { + "start": 1596.14, + "end": 1599.33, + "probability": 0.8311 + }, + { + "start": 1599.66, + "end": 1602.76, + "probability": 0.9837 + }, + { + "start": 1602.84, + "end": 1604.88, + "probability": 0.865 + }, + { + "start": 1605.59, + "end": 1608.36, + "probability": 0.7137 + }, + { + "start": 1608.36, + "end": 1614.34, + "probability": 0.6148 + }, + { + "start": 1614.84, + "end": 1616.74, + "probability": 0.9341 + }, + { + "start": 1616.82, + "end": 1617.6, + "probability": 0.6975 + }, + { + "start": 1618.96, + "end": 1621.14, + "probability": 0.9888 + }, + { + "start": 1621.24, + "end": 1622.06, + "probability": 0.6259 + }, + { + "start": 1628.52, + "end": 1629.38, + "probability": 0.638 + }, + { + "start": 1629.46, + "end": 1629.96, + "probability": 0.8 + }, + { + "start": 1630.0, + "end": 1631.66, + "probability": 0.9372 + }, + { + "start": 1632.1, + "end": 1632.58, + "probability": 0.8325 + }, + { + "start": 1632.66, + "end": 1637.82, + "probability": 0.9258 + }, + { + "start": 1638.18, + "end": 1640.74, + "probability": 0.9917 + }, + { + "start": 1641.18, + "end": 1642.58, + "probability": 0.9371 + }, + { + "start": 1642.66, + "end": 1643.98, + "probability": 0.9867 + }, + { + "start": 1644.58, + "end": 1645.34, + "probability": 0.7679 + }, + { + "start": 1645.5, + "end": 1650.9, + "probability": 0.9631 + }, + { + "start": 1651.22, + "end": 1652.52, + "probability": 0.9409 + }, + { + "start": 1653.1, + "end": 1658.38, + "probability": 0.8588 + }, + { + "start": 1658.92, + "end": 1659.98, + "probability": 0.8483 + }, + { + "start": 1660.08, + "end": 1660.96, + "probability": 0.8125 + }, + { + "start": 1661.3, + "end": 1664.08, + "probability": 0.9043 + }, + { + "start": 1664.74, + "end": 1666.4, + "probability": 0.666 + }, + { + "start": 1667.22, + "end": 1669.06, + "probability": 0.787 + }, + { + "start": 1669.1, + "end": 1673.84, + "probability": 0.9902 + }, + { + "start": 1674.3, + "end": 1678.32, + "probability": 0.881 + }, + { + "start": 1679.18, + "end": 1685.84, + "probability": 0.7524 + }, + { + "start": 1685.84, + "end": 1689.78, + "probability": 0.994 + }, + { + "start": 1690.34, + "end": 1693.56, + "probability": 0.876 + }, + { + "start": 1693.7, + "end": 1694.2, + "probability": 0.9024 + }, + { + "start": 1694.74, + "end": 1697.62, + "probability": 0.8416 + }, + { + "start": 1698.16, + "end": 1699.16, + "probability": 0.9707 + }, + { + "start": 1699.5, + "end": 1701.92, + "probability": 0.9352 + }, + { + "start": 1702.16, + "end": 1705.7, + "probability": 0.9997 + }, + { + "start": 1705.86, + "end": 1711.28, + "probability": 0.9912 + }, + { + "start": 1711.34, + "end": 1716.28, + "probability": 0.9917 + }, + { + "start": 1716.28, + "end": 1721.18, + "probability": 0.9793 + }, + { + "start": 1721.8, + "end": 1725.06, + "probability": 0.87 + }, + { + "start": 1725.18, + "end": 1726.16, + "probability": 0.3907 + }, + { + "start": 1727.04, + "end": 1731.42, + "probability": 0.9884 + }, + { + "start": 1732.02, + "end": 1734.2, + "probability": 0.8118 + }, + { + "start": 1734.56, + "end": 1739.32, + "probability": 0.9614 + }, + { + "start": 1739.46, + "end": 1746.5, + "probability": 0.9902 + }, + { + "start": 1746.5, + "end": 1753.18, + "probability": 0.9932 + }, + { + "start": 1753.26, + "end": 1757.94, + "probability": 0.9222 + }, + { + "start": 1758.62, + "end": 1762.34, + "probability": 0.9972 + }, + { + "start": 1762.34, + "end": 1766.12, + "probability": 0.9739 + }, + { + "start": 1766.58, + "end": 1769.02, + "probability": 0.987 + }, + { + "start": 1769.4, + "end": 1770.18, + "probability": 0.4606 + }, + { + "start": 1770.24, + "end": 1771.08, + "probability": 0.4868 + }, + { + "start": 1771.94, + "end": 1774.9, + "probability": 0.6569 + }, + { + "start": 1775.08, + "end": 1776.86, + "probability": 0.4052 + }, + { + "start": 1778.48, + "end": 1779.16, + "probability": 0.8071 + }, + { + "start": 1779.78, + "end": 1782.6, + "probability": 0.886 + }, + { + "start": 1783.4, + "end": 1787.58, + "probability": 0.7842 + }, + { + "start": 1787.72, + "end": 1789.16, + "probability": 0.9978 + }, + { + "start": 1790.33, + "end": 1792.26, + "probability": 0.8354 + }, + { + "start": 1792.26, + "end": 1792.48, + "probability": 0.3093 + }, + { + "start": 1792.58, + "end": 1793.62, + "probability": 0.8765 + }, + { + "start": 1793.74, + "end": 1795.98, + "probability": 0.988 + }, + { + "start": 1796.42, + "end": 1796.88, + "probability": 0.9052 + }, + { + "start": 1797.14, + "end": 1797.78, + "probability": 0.518 + }, + { + "start": 1798.2, + "end": 1800.86, + "probability": 0.6055 + }, + { + "start": 1801.38, + "end": 1805.32, + "probability": 0.7692 + }, + { + "start": 1805.4, + "end": 1808.06, + "probability": 0.9604 + }, + { + "start": 1808.46, + "end": 1808.92, + "probability": 0.7139 + }, + { + "start": 1815.96, + "end": 1819.46, + "probability": 0.8025 + }, + { + "start": 1820.28, + "end": 1822.72, + "probability": 0.9812 + }, + { + "start": 1822.72, + "end": 1825.78, + "probability": 0.8983 + }, + { + "start": 1825.92, + "end": 1827.94, + "probability": 0.9214 + }, + { + "start": 1828.0, + "end": 1829.16, + "probability": 0.902 + }, + { + "start": 1829.94, + "end": 1830.68, + "probability": 0.6488 + }, + { + "start": 1831.28, + "end": 1834.34, + "probability": 0.9663 + }, + { + "start": 1835.08, + "end": 1838.26, + "probability": 0.9954 + }, + { + "start": 1838.26, + "end": 1842.18, + "probability": 0.9888 + }, + { + "start": 1842.82, + "end": 1843.64, + "probability": 0.6275 + }, + { + "start": 1844.36, + "end": 1845.1, + "probability": 0.4612 + }, + { + "start": 1845.1, + "end": 1845.84, + "probability": 0.5766 + }, + { + "start": 1846.1, + "end": 1847.3, + "probability": 0.6439 + }, + { + "start": 1847.76, + "end": 1851.84, + "probability": 0.6265 + }, + { + "start": 1851.9, + "end": 1855.92, + "probability": 0.9915 + }, + { + "start": 1856.42, + "end": 1857.34, + "probability": 0.9855 + }, + { + "start": 1857.92, + "end": 1858.88, + "probability": 0.7326 + }, + { + "start": 1858.98, + "end": 1861.74, + "probability": 0.9584 + }, + { + "start": 1861.74, + "end": 1864.92, + "probability": 0.9018 + }, + { + "start": 1865.28, + "end": 1867.2, + "probability": 0.9663 + }, + { + "start": 1867.46, + "end": 1868.5, + "probability": 0.8711 + }, + { + "start": 1869.0, + "end": 1869.56, + "probability": 0.635 + }, + { + "start": 1869.7, + "end": 1870.96, + "probability": 0.7878 + }, + { + "start": 1871.32, + "end": 1872.44, + "probability": 0.6599 + }, + { + "start": 1872.86, + "end": 1877.3, + "probability": 0.95 + }, + { + "start": 1880.08, + "end": 1883.04, + "probability": 0.9758 + }, + { + "start": 1883.62, + "end": 1885.18, + "probability": 0.9292 + }, + { + "start": 1885.24, + "end": 1888.58, + "probability": 0.9128 + }, + { + "start": 1889.68, + "end": 1890.72, + "probability": 0.6321 + }, + { + "start": 1891.0, + "end": 1895.34, + "probability": 0.9432 + }, + { + "start": 1900.54, + "end": 1901.04, + "probability": 0.9395 + }, + { + "start": 1901.12, + "end": 1901.88, + "probability": 0.7901 + }, + { + "start": 1902.18, + "end": 1902.6, + "probability": 0.6498 + }, + { + "start": 1902.74, + "end": 1904.66, + "probability": 0.896 + }, + { + "start": 1905.24, + "end": 1909.5, + "probability": 0.9584 + }, + { + "start": 1910.48, + "end": 1913.53, + "probability": 0.9883 + }, + { + "start": 1914.24, + "end": 1916.12, + "probability": 0.7624 + }, + { + "start": 1916.7, + "end": 1919.44, + "probability": 0.7565 + }, + { + "start": 1920.26, + "end": 1921.48, + "probability": 0.7166 + }, + { + "start": 1922.06, + "end": 1925.72, + "probability": 0.9803 + }, + { + "start": 1926.24, + "end": 1931.64, + "probability": 0.9079 + }, + { + "start": 1932.54, + "end": 1936.0, + "probability": 0.9896 + }, + { + "start": 1936.12, + "end": 1937.92, + "probability": 0.7653 + }, + { + "start": 1938.34, + "end": 1939.22, + "probability": 0.7211 + }, + { + "start": 1939.32, + "end": 1941.7, + "probability": 0.9866 + }, + { + "start": 1941.7, + "end": 1945.44, + "probability": 0.9922 + }, + { + "start": 1945.68, + "end": 1946.72, + "probability": 0.9972 + }, + { + "start": 1947.18, + "end": 1947.92, + "probability": 0.3925 + }, + { + "start": 1947.98, + "end": 1949.4, + "probability": 0.9189 + }, + { + "start": 1949.96, + "end": 1950.92, + "probability": 0.5771 + }, + { + "start": 1951.16, + "end": 1956.04, + "probability": 0.8555 + }, + { + "start": 1956.58, + "end": 1958.72, + "probability": 0.884 + }, + { + "start": 1959.16, + "end": 1960.1, + "probability": 0.7821 + }, + { + "start": 1960.24, + "end": 1962.9, + "probability": 0.9913 + }, + { + "start": 1962.98, + "end": 1963.68, + "probability": 0.8329 + }, + { + "start": 1964.88, + "end": 1969.72, + "probability": 0.6304 + }, + { + "start": 1970.84, + "end": 1973.16, + "probability": 0.5021 + }, + { + "start": 1973.24, + "end": 1973.91, + "probability": 0.1331 + }, + { + "start": 1974.22, + "end": 1975.54, + "probability": 0.0347 + }, + { + "start": 1975.88, + "end": 1976.92, + "probability": 0.4925 + }, + { + "start": 1980.16, + "end": 1984.04, + "probability": 0.2605 + }, + { + "start": 1984.22, + "end": 1984.72, + "probability": 0.8127 + }, + { + "start": 1985.44, + "end": 1987.12, + "probability": 0.776 + }, + { + "start": 1988.79, + "end": 1991.24, + "probability": 0.1037 + }, + { + "start": 2001.18, + "end": 2001.74, + "probability": 0.7357 + }, + { + "start": 2003.79, + "end": 2005.0, + "probability": 0.5854 + }, + { + "start": 2005.68, + "end": 2005.96, + "probability": 0.0207 + }, + { + "start": 2006.76, + "end": 2007.84, + "probability": 0.3568 + }, + { + "start": 2008.42, + "end": 2014.72, + "probability": 0.2369 + }, + { + "start": 2014.76, + "end": 2016.06, + "probability": 0.6962 + }, + { + "start": 2016.26, + "end": 2017.62, + "probability": 0.4113 + }, + { + "start": 2017.76, + "end": 2020.82, + "probability": 0.7487 + }, + { + "start": 2021.4, + "end": 2023.78, + "probability": 0.9761 + }, + { + "start": 2024.78, + "end": 2031.46, + "probability": 0.6463 + }, + { + "start": 2031.54, + "end": 2034.54, + "probability": 0.9367 + }, + { + "start": 2034.68, + "end": 2036.88, + "probability": 0.9132 + }, + { + "start": 2038.7, + "end": 2040.14, + "probability": 0.8748 + }, + { + "start": 2040.34, + "end": 2041.18, + "probability": 0.6228 + }, + { + "start": 2041.96, + "end": 2048.34, + "probability": 0.9877 + }, + { + "start": 2048.34, + "end": 2053.66, + "probability": 0.9986 + }, + { + "start": 2054.28, + "end": 2057.3, + "probability": 0.4826 + }, + { + "start": 2057.36, + "end": 2060.66, + "probability": 0.9521 + }, + { + "start": 2061.3, + "end": 2062.88, + "probability": 0.2516 + }, + { + "start": 2063.56, + "end": 2066.58, + "probability": 0.9545 + }, + { + "start": 2067.06, + "end": 2069.66, + "probability": 0.7356 + }, + { + "start": 2069.96, + "end": 2073.02, + "probability": 0.9106 + }, + { + "start": 2073.58, + "end": 2074.34, + "probability": 0.4093 + }, + { + "start": 2074.48, + "end": 2075.5, + "probability": 0.7539 + }, + { + "start": 2075.66, + "end": 2077.62, + "probability": 0.6593 + }, + { + "start": 2078.02, + "end": 2080.56, + "probability": 0.7955 + }, + { + "start": 2081.34, + "end": 2086.7, + "probability": 0.9565 + }, + { + "start": 2086.86, + "end": 2088.0, + "probability": 0.7584 + }, + { + "start": 2088.48, + "end": 2092.1, + "probability": 0.9731 + }, + { + "start": 2092.1, + "end": 2095.86, + "probability": 0.906 + }, + { + "start": 2096.96, + "end": 2100.46, + "probability": 0.9889 + }, + { + "start": 2102.2, + "end": 2107.0, + "probability": 0.9386 + }, + { + "start": 2107.02, + "end": 2108.16, + "probability": 0.8239 + }, + { + "start": 2109.1, + "end": 2112.3, + "probability": 0.7487 + }, + { + "start": 2112.74, + "end": 2118.82, + "probability": 0.9287 + }, + { + "start": 2120.4, + "end": 2123.66, + "probability": 0.5737 + }, + { + "start": 2123.68, + "end": 2125.28, + "probability": 0.7324 + }, + { + "start": 2125.86, + "end": 2127.34, + "probability": 0.7828 + }, + { + "start": 2127.86, + "end": 2130.02, + "probability": 0.952 + }, + { + "start": 2131.46, + "end": 2136.32, + "probability": 0.8403 + }, + { + "start": 2136.44, + "end": 2137.84, + "probability": 0.7385 + }, + { + "start": 2138.38, + "end": 2145.08, + "probability": 0.9839 + }, + { + "start": 2145.6, + "end": 2148.02, + "probability": 0.8107 + }, + { + "start": 2149.56, + "end": 2150.3, + "probability": 0.4784 + }, + { + "start": 2150.52, + "end": 2152.44, + "probability": 0.5002 + }, + { + "start": 2152.44, + "end": 2152.5, + "probability": 0.6735 + }, + { + "start": 2152.72, + "end": 2155.36, + "probability": 0.8149 + }, + { + "start": 2155.56, + "end": 2156.84, + "probability": 0.8611 + }, + { + "start": 2157.08, + "end": 2159.86, + "probability": 0.9277 + }, + { + "start": 2159.94, + "end": 2160.74, + "probability": 0.6647 + }, + { + "start": 2160.74, + "end": 2161.68, + "probability": 0.7642 + }, + { + "start": 2161.98, + "end": 2162.62, + "probability": 0.7726 + }, + { + "start": 2162.74, + "end": 2164.08, + "probability": 0.6913 + }, + { + "start": 2164.63, + "end": 2171.42, + "probability": 0.9812 + }, + { + "start": 2172.46, + "end": 2177.4, + "probability": 0.9824 + }, + { + "start": 2177.5, + "end": 2178.04, + "probability": 0.5993 + }, + { + "start": 2178.5, + "end": 2181.44, + "probability": 0.9898 + }, + { + "start": 2182.06, + "end": 2182.68, + "probability": 0.8864 + }, + { + "start": 2182.82, + "end": 2183.58, + "probability": 0.6312 + }, + { + "start": 2183.64, + "end": 2184.79, + "probability": 0.8295 + }, + { + "start": 2184.92, + "end": 2186.24, + "probability": 0.7886 + }, + { + "start": 2186.74, + "end": 2190.12, + "probability": 0.9712 + }, + { + "start": 2190.64, + "end": 2194.48, + "probability": 0.8879 + }, + { + "start": 2194.96, + "end": 2197.18, + "probability": 0.9164 + }, + { + "start": 2197.48, + "end": 2199.2, + "probability": 0.9929 + }, + { + "start": 2200.26, + "end": 2202.04, + "probability": 0.7194 + }, + { + "start": 2202.1, + "end": 2205.88, + "probability": 0.864 + }, + { + "start": 2206.04, + "end": 2206.42, + "probability": 0.6009 + }, + { + "start": 2207.2, + "end": 2209.94, + "probability": 0.8911 + }, + { + "start": 2210.26, + "end": 2210.68, + "probability": 0.8064 + }, + { + "start": 2211.24, + "end": 2215.92, + "probability": 0.929 + }, + { + "start": 2216.56, + "end": 2217.54, + "probability": 0.8735 + }, + { + "start": 2217.74, + "end": 2221.62, + "probability": 0.9154 + }, + { + "start": 2222.12, + "end": 2222.19, + "probability": 0.598 + }, + { + "start": 2223.75, + "end": 2225.46, + "probability": 0.7661 + }, + { + "start": 2225.64, + "end": 2226.97, + "probability": 0.8649 + }, + { + "start": 2227.46, + "end": 2229.76, + "probability": 0.9645 + }, + { + "start": 2245.08, + "end": 2247.1, + "probability": 0.5752 + }, + { + "start": 2247.32, + "end": 2250.48, + "probability": 0.9611 + }, + { + "start": 2251.12, + "end": 2255.84, + "probability": 0.6715 + }, + { + "start": 2256.48, + "end": 2258.46, + "probability": 0.9671 + }, + { + "start": 2259.62, + "end": 2266.3, + "probability": 0.9905 + }, + { + "start": 2266.8, + "end": 2267.54, + "probability": 0.7706 + }, + { + "start": 2267.6, + "end": 2269.36, + "probability": 0.9443 + }, + { + "start": 2269.44, + "end": 2270.77, + "probability": 0.9933 + }, + { + "start": 2274.88, + "end": 2275.46, + "probability": 0.6374 + }, + { + "start": 2276.02, + "end": 2278.84, + "probability": 0.9652 + }, + { + "start": 2279.72, + "end": 2282.88, + "probability": 0.7064 + }, + { + "start": 2283.62, + "end": 2285.2, + "probability": 0.9921 + }, + { + "start": 2285.8, + "end": 2289.84, + "probability": 0.9801 + }, + { + "start": 2289.84, + "end": 2294.46, + "probability": 0.999 + }, + { + "start": 2295.1, + "end": 2298.86, + "probability": 0.7731 + }, + { + "start": 2299.64, + "end": 2300.5, + "probability": 0.5005 + }, + { + "start": 2300.6, + "end": 2301.66, + "probability": 0.663 + }, + { + "start": 2302.8, + "end": 2305.04, + "probability": 0.8685 + }, + { + "start": 2305.32, + "end": 2306.8, + "probability": 0.698 + }, + { + "start": 2306.9, + "end": 2307.86, + "probability": 0.9678 + }, + { + "start": 2308.86, + "end": 2310.24, + "probability": 0.8979 + }, + { + "start": 2310.34, + "end": 2313.34, + "probability": 0.8289 + }, + { + "start": 2314.32, + "end": 2320.06, + "probability": 0.8617 + }, + { + "start": 2321.04, + "end": 2322.58, + "probability": 0.9146 + }, + { + "start": 2322.68, + "end": 2323.52, + "probability": 0.712 + }, + { + "start": 2323.6, + "end": 2327.18, + "probability": 0.7863 + }, + { + "start": 2327.9, + "end": 2335.96, + "probability": 0.9702 + }, + { + "start": 2336.14, + "end": 2339.8, + "probability": 0.9614 + }, + { + "start": 2340.62, + "end": 2344.18, + "probability": 0.9863 + }, + { + "start": 2344.18, + "end": 2349.54, + "probability": 0.9983 + }, + { + "start": 2350.72, + "end": 2355.62, + "probability": 0.7414 + }, + { + "start": 2356.44, + "end": 2357.6, + "probability": 0.8166 + }, + { + "start": 2357.86, + "end": 2359.12, + "probability": 0.6263 + }, + { + "start": 2359.36, + "end": 2363.62, + "probability": 0.8999 + }, + { + "start": 2363.92, + "end": 2368.36, + "probability": 0.9918 + }, + { + "start": 2369.5, + "end": 2375.12, + "probability": 0.9963 + }, + { + "start": 2375.32, + "end": 2375.64, + "probability": 0.6334 + }, + { + "start": 2376.96, + "end": 2378.0, + "probability": 0.6598 + }, + { + "start": 2378.08, + "end": 2381.28, + "probability": 0.9208 + }, + { + "start": 2382.48, + "end": 2385.32, + "probability": 0.9686 + }, + { + "start": 2386.8, + "end": 2390.94, + "probability": 0.9834 + }, + { + "start": 2391.12, + "end": 2391.86, + "probability": 0.6478 + }, + { + "start": 2392.02, + "end": 2394.74, + "probability": 0.9113 + }, + { + "start": 2394.92, + "end": 2397.74, + "probability": 0.8169 + }, + { + "start": 2398.2, + "end": 2400.32, + "probability": 0.7681 + }, + { + "start": 2400.36, + "end": 2404.2, + "probability": 0.9873 + }, + { + "start": 2404.28, + "end": 2404.8, + "probability": 0.8813 + }, + { + "start": 2404.88, + "end": 2405.26, + "probability": 0.5062 + }, + { + "start": 2405.32, + "end": 2405.7, + "probability": 0.9891 + }, + { + "start": 2406.44, + "end": 2407.86, + "probability": 0.8872 + }, + { + "start": 2407.94, + "end": 2408.8, + "probability": 0.7399 + }, + { + "start": 2408.98, + "end": 2410.07, + "probability": 0.8332 + }, + { + "start": 2410.5, + "end": 2410.84, + "probability": 0.687 + }, + { + "start": 2410.92, + "end": 2411.26, + "probability": 0.9764 + }, + { + "start": 2411.34, + "end": 2413.22, + "probability": 0.9763 + }, + { + "start": 2413.68, + "end": 2417.06, + "probability": 0.7568 + }, + { + "start": 2417.14, + "end": 2418.09, + "probability": 0.9875 + }, + { + "start": 2418.74, + "end": 2421.22, + "probability": 0.9966 + }, + { + "start": 2421.8, + "end": 2423.06, + "probability": 0.5348 + }, + { + "start": 2423.16, + "end": 2430.46, + "probability": 0.9575 + }, + { + "start": 2430.54, + "end": 2431.8, + "probability": 0.8789 + }, + { + "start": 2432.08, + "end": 2436.58, + "probability": 0.9878 + }, + { + "start": 2436.7, + "end": 2437.32, + "probability": 0.5546 + }, + { + "start": 2437.64, + "end": 2439.36, + "probability": 0.9595 + }, + { + "start": 2439.74, + "end": 2440.78, + "probability": 0.8696 + }, + { + "start": 2440.9, + "end": 2442.78, + "probability": 0.9956 + }, + { + "start": 2442.98, + "end": 2444.12, + "probability": 0.9535 + }, + { + "start": 2444.42, + "end": 2445.78, + "probability": 0.9791 + }, + { + "start": 2446.04, + "end": 2446.14, + "probability": 0.6626 + }, + { + "start": 2446.96, + "end": 2448.38, + "probability": 0.9136 + }, + { + "start": 2448.8, + "end": 2452.84, + "probability": 0.9637 + }, + { + "start": 2452.92, + "end": 2455.8, + "probability": 0.9985 + }, + { + "start": 2456.28, + "end": 2459.08, + "probability": 0.9711 + }, + { + "start": 2459.34, + "end": 2463.3, + "probability": 0.9872 + }, + { + "start": 2463.6, + "end": 2464.3, + "probability": 0.8252 + }, + { + "start": 2464.54, + "end": 2464.98, + "probability": 0.7767 + }, + { + "start": 2465.02, + "end": 2467.1, + "probability": 0.4573 + }, + { + "start": 2467.2, + "end": 2468.26, + "probability": 0.9057 + }, + { + "start": 2468.34, + "end": 2470.48, + "probability": 0.8761 + }, + { + "start": 2471.24, + "end": 2471.82, + "probability": 0.4757 + }, + { + "start": 2472.18, + "end": 2475.06, + "probability": 0.9061 + }, + { + "start": 2482.38, + "end": 2483.92, + "probability": 0.6918 + }, + { + "start": 2484.5, + "end": 2485.04, + "probability": 0.8927 + }, + { + "start": 2485.22, + "end": 2490.08, + "probability": 0.9938 + }, + { + "start": 2491.08, + "end": 2492.68, + "probability": 0.9465 + }, + { + "start": 2493.38, + "end": 2494.58, + "probability": 0.9711 + }, + { + "start": 2496.08, + "end": 2499.08, + "probability": 0.9491 + }, + { + "start": 2499.08, + "end": 2502.08, + "probability": 0.9865 + }, + { + "start": 2502.24, + "end": 2503.41, + "probability": 0.9553 + }, + { + "start": 2504.18, + "end": 2507.56, + "probability": 0.9418 + }, + { + "start": 2508.84, + "end": 2511.64, + "probability": 0.9995 + }, + { + "start": 2512.32, + "end": 2513.64, + "probability": 0.8145 + }, + { + "start": 2513.84, + "end": 2519.22, + "probability": 0.9312 + }, + { + "start": 2519.66, + "end": 2520.8, + "probability": 0.8842 + }, + { + "start": 2521.42, + "end": 2523.46, + "probability": 0.9282 + }, + { + "start": 2523.84, + "end": 2526.48, + "probability": 0.988 + }, + { + "start": 2527.16, + "end": 2532.6, + "probability": 0.9913 + }, + { + "start": 2532.68, + "end": 2534.06, + "probability": 0.9963 + }, + { + "start": 2534.14, + "end": 2536.8, + "probability": 0.8846 + }, + { + "start": 2537.08, + "end": 2538.74, + "probability": 0.9839 + }, + { + "start": 2539.46, + "end": 2541.94, + "probability": 0.9434 + }, + { + "start": 2542.44, + "end": 2546.64, + "probability": 0.9909 + }, + { + "start": 2547.2, + "end": 2549.7, + "probability": 0.9976 + }, + { + "start": 2550.04, + "end": 2551.34, + "probability": 0.9809 + }, + { + "start": 2551.74, + "end": 2552.78, + "probability": 0.8671 + }, + { + "start": 2552.96, + "end": 2553.66, + "probability": 0.7566 + }, + { + "start": 2553.98, + "end": 2554.8, + "probability": 0.9373 + }, + { + "start": 2555.18, + "end": 2559.5, + "probability": 0.9839 + }, + { + "start": 2560.72, + "end": 2561.52, + "probability": 0.549 + }, + { + "start": 2561.6, + "end": 2562.96, + "probability": 0.8226 + }, + { + "start": 2564.4, + "end": 2565.3, + "probability": 0.7491 + }, + { + "start": 2565.96, + "end": 2568.0, + "probability": 0.9639 + }, + { + "start": 2569.22, + "end": 2571.22, + "probability": 0.937 + }, + { + "start": 2571.84, + "end": 2575.44, + "probability": 0.9599 + }, + { + "start": 2575.96, + "end": 2578.2, + "probability": 0.8383 + }, + { + "start": 2578.46, + "end": 2578.58, + "probability": 0.0714 + }, + { + "start": 2578.58, + "end": 2578.58, + "probability": 0.0346 + }, + { + "start": 2578.58, + "end": 2579.41, + "probability": 0.5125 + }, + { + "start": 2579.84, + "end": 2581.5, + "probability": 0.7315 + }, + { + "start": 2582.26, + "end": 2582.96, + "probability": 0.8509 + }, + { + "start": 2583.22, + "end": 2585.44, + "probability": 0.9858 + }, + { + "start": 2585.64, + "end": 2586.06, + "probability": 0.6874 + }, + { + "start": 2586.22, + "end": 2586.88, + "probability": 0.9265 + }, + { + "start": 2586.98, + "end": 2587.5, + "probability": 0.8098 + }, + { + "start": 2588.52, + "end": 2589.52, + "probability": 0.7391 + }, + { + "start": 2589.82, + "end": 2591.94, + "probability": 0.5275 + }, + { + "start": 2592.02, + "end": 2593.21, + "probability": 0.8867 + }, + { + "start": 2594.34, + "end": 2595.76, + "probability": 0.8844 + }, + { + "start": 2597.29, + "end": 2599.94, + "probability": 0.7568 + }, + { + "start": 2600.42, + "end": 2603.04, + "probability": 0.7151 + }, + { + "start": 2603.64, + "end": 2605.6, + "probability": 0.9694 + }, + { + "start": 2605.84, + "end": 2606.58, + "probability": 0.6431 + }, + { + "start": 2606.66, + "end": 2607.62, + "probability": 0.5864 + }, + { + "start": 2607.72, + "end": 2608.84, + "probability": 0.7564 + }, + { + "start": 2609.42, + "end": 2611.54, + "probability": 0.54 + }, + { + "start": 2612.24, + "end": 2614.04, + "probability": 0.8922 + }, + { + "start": 2614.84, + "end": 2617.4, + "probability": 0.8728 + }, + { + "start": 2617.7, + "end": 2619.22, + "probability": 0.0213 + }, + { + "start": 2619.22, + "end": 2622.04, + "probability": 0.0422 + }, + { + "start": 2622.76, + "end": 2625.06, + "probability": 0.076 + }, + { + "start": 2625.06, + "end": 2627.3, + "probability": 0.3572 + }, + { + "start": 2627.44, + "end": 2628.1, + "probability": 0.0389 + }, + { + "start": 2628.82, + "end": 2631.74, + "probability": 0.1904 + }, + { + "start": 2633.26, + "end": 2633.3, + "probability": 0.1071 + }, + { + "start": 2633.3, + "end": 2634.3, + "probability": 0.887 + }, + { + "start": 2635.38, + "end": 2637.86, + "probability": 0.8669 + }, + { + "start": 2638.16, + "end": 2639.1, + "probability": 0.73 + }, + { + "start": 2639.32, + "end": 2642.66, + "probability": 0.9811 + }, + { + "start": 2643.38, + "end": 2645.68, + "probability": 0.7716 + }, + { + "start": 2645.74, + "end": 2646.76, + "probability": 0.7305 + }, + { + "start": 2647.16, + "end": 2648.08, + "probability": 0.0252 + }, + { + "start": 2648.08, + "end": 2648.36, + "probability": 0.0689 + }, + { + "start": 2648.58, + "end": 2648.84, + "probability": 0.5452 + }, + { + "start": 2648.96, + "end": 2649.32, + "probability": 0.4261 + }, + { + "start": 2649.4, + "end": 2649.78, + "probability": 0.2516 + }, + { + "start": 2649.86, + "end": 2650.94, + "probability": 0.5683 + }, + { + "start": 2650.94, + "end": 2653.26, + "probability": 0.7566 + }, + { + "start": 2653.32, + "end": 2654.84, + "probability": 0.689 + }, + { + "start": 2654.9, + "end": 2655.3, + "probability": 0.0898 + }, + { + "start": 2657.58, + "end": 2658.34, + "probability": 0.0175 + }, + { + "start": 2658.72, + "end": 2662.34, + "probability": 0.5548 + }, + { + "start": 2662.56, + "end": 2664.2, + "probability": 0.9874 + }, + { + "start": 2664.62, + "end": 2666.38, + "probability": 0.967 + }, + { + "start": 2667.64, + "end": 2671.14, + "probability": 0.9883 + }, + { + "start": 2671.26, + "end": 2672.84, + "probability": 0.9273 + }, + { + "start": 2672.88, + "end": 2673.1, + "probability": 0.2914 + }, + { + "start": 2673.14, + "end": 2673.86, + "probability": 0.6314 + }, + { + "start": 2673.86, + "end": 2674.4, + "probability": 0.6084 + }, + { + "start": 2674.62, + "end": 2674.9, + "probability": 0.3573 + }, + { + "start": 2675.26, + "end": 2676.0, + "probability": 0.3619 + }, + { + "start": 2677.04, + "end": 2679.16, + "probability": 0.9814 + }, + { + "start": 2679.26, + "end": 2680.34, + "probability": 0.9509 + }, + { + "start": 2680.86, + "end": 2682.54, + "probability": 0.8627 + }, + { + "start": 2683.04, + "end": 2685.6, + "probability": 0.8957 + }, + { + "start": 2685.66, + "end": 2687.01, + "probability": 0.9057 + }, + { + "start": 2688.06, + "end": 2690.66, + "probability": 0.6001 + }, + { + "start": 2690.88, + "end": 2691.56, + "probability": 0.6304 + }, + { + "start": 2691.7, + "end": 2694.1, + "probability": 0.7729 + }, + { + "start": 2694.46, + "end": 2695.02, + "probability": 0.8163 + }, + { + "start": 2695.66, + "end": 2697.04, + "probability": 0.9551 + }, + { + "start": 2697.18, + "end": 2699.08, + "probability": 0.9136 + }, + { + "start": 2699.24, + "end": 2701.8, + "probability": 0.0136 + }, + { + "start": 2703.28, + "end": 2704.44, + "probability": 0.0571 + }, + { + "start": 2704.5, + "end": 2704.6, + "probability": 0.2833 + }, + { + "start": 2704.6, + "end": 2704.6, + "probability": 0.026 + }, + { + "start": 2704.6, + "end": 2707.4, + "probability": 0.7273 + }, + { + "start": 2707.52, + "end": 2709.66, + "probability": 0.6698 + }, + { + "start": 2709.8, + "end": 2711.12, + "probability": 0.6498 + }, + { + "start": 2711.3, + "end": 2711.64, + "probability": 0.5526 + }, + { + "start": 2712.68, + "end": 2714.14, + "probability": 0.9128 + }, + { + "start": 2714.32, + "end": 2716.2, + "probability": 0.9858 + }, + { + "start": 2716.86, + "end": 2719.64, + "probability": 0.5879 + }, + { + "start": 2720.92, + "end": 2721.42, + "probability": 0.6364 + }, + { + "start": 2722.2, + "end": 2725.58, + "probability": 0.9512 + }, + { + "start": 2725.6, + "end": 2726.86, + "probability": 0.0987 + }, + { + "start": 2726.86, + "end": 2727.54, + "probability": 0.155 + }, + { + "start": 2727.54, + "end": 2732.74, + "probability": 0.5716 + }, + { + "start": 2733.36, + "end": 2735.05, + "probability": 0.8202 + }, + { + "start": 2735.18, + "end": 2737.96, + "probability": 0.9595 + }, + { + "start": 2738.6, + "end": 2738.76, + "probability": 0.7224 + }, + { + "start": 2738.82, + "end": 2742.6, + "probability": 0.9744 + }, + { + "start": 2742.76, + "end": 2743.16, + "probability": 0.8877 + }, + { + "start": 2743.26, + "end": 2744.64, + "probability": 0.6055 + }, + { + "start": 2745.2, + "end": 2746.22, + "probability": 0.861 + }, + { + "start": 2746.78, + "end": 2750.3, + "probability": 0.5839 + }, + { + "start": 2751.28, + "end": 2755.16, + "probability": 0.9963 + }, + { + "start": 2755.7, + "end": 2758.06, + "probability": 0.7524 + }, + { + "start": 2758.6, + "end": 2759.46, + "probability": 0.5389 + }, + { + "start": 2759.74, + "end": 2760.44, + "probability": 0.9189 + }, + { + "start": 2760.54, + "end": 2760.86, + "probability": 0.3905 + }, + { + "start": 2760.88, + "end": 2761.48, + "probability": 0.8135 + }, + { + "start": 2761.94, + "end": 2763.7, + "probability": 0.9541 + }, + { + "start": 2763.8, + "end": 2768.18, + "probability": 0.9585 + }, + { + "start": 2768.7, + "end": 2770.12, + "probability": 0.8599 + }, + { + "start": 2770.92, + "end": 2771.72, + "probability": 0.6626 + }, + { + "start": 2772.46, + "end": 2774.48, + "probability": 0.9313 + }, + { + "start": 2774.7, + "end": 2776.84, + "probability": 0.8923 + }, + { + "start": 2776.92, + "end": 2778.04, + "probability": 0.7861 + }, + { + "start": 2778.3, + "end": 2779.06, + "probability": 0.8078 + }, + { + "start": 2779.66, + "end": 2784.22, + "probability": 0.9683 + }, + { + "start": 2784.22, + "end": 2788.9, + "probability": 0.7808 + }, + { + "start": 2789.48, + "end": 2792.42, + "probability": 0.9653 + }, + { + "start": 2792.5, + "end": 2793.04, + "probability": 0.7654 + }, + { + "start": 2793.46, + "end": 2795.44, + "probability": 0.8008 + }, + { + "start": 2795.72, + "end": 2797.24, + "probability": 0.8463 + }, + { + "start": 2797.82, + "end": 2800.28, + "probability": 0.9911 + }, + { + "start": 2800.38, + "end": 2802.1, + "probability": 0.9169 + }, + { + "start": 2805.0, + "end": 2809.1, + "probability": 0.5632 + }, + { + "start": 2810.06, + "end": 2811.42, + "probability": 0.9806 + }, + { + "start": 2812.58, + "end": 2815.34, + "probability": 0.8704 + }, + { + "start": 2816.24, + "end": 2820.12, + "probability": 0.9878 + }, + { + "start": 2820.31, + "end": 2824.38, + "probability": 0.84 + }, + { + "start": 2824.42, + "end": 2827.04, + "probability": 0.7264 + }, + { + "start": 2828.34, + "end": 2830.4, + "probability": 0.8063 + }, + { + "start": 2830.74, + "end": 2831.82, + "probability": 0.9432 + }, + { + "start": 2831.88, + "end": 2833.33, + "probability": 0.986 + }, + { + "start": 2834.4, + "end": 2835.5, + "probability": 0.756 + }, + { + "start": 2835.88, + "end": 2837.7, + "probability": 0.9557 + }, + { + "start": 2837.94, + "end": 2838.56, + "probability": 0.5256 + }, + { + "start": 2839.36, + "end": 2840.84, + "probability": 0.4129 + }, + { + "start": 2840.92, + "end": 2842.56, + "probability": 0.9677 + }, + { + "start": 2842.94, + "end": 2844.14, + "probability": 0.9027 + }, + { + "start": 2844.16, + "end": 2849.44, + "probability": 0.8734 + }, + { + "start": 2849.98, + "end": 2851.56, + "probability": 0.8651 + }, + { + "start": 2852.46, + "end": 2853.68, + "probability": 0.772 + }, + { + "start": 2854.92, + "end": 2862.94, + "probability": 0.758 + }, + { + "start": 2864.08, + "end": 2867.56, + "probability": 0.9888 + }, + { + "start": 2868.3, + "end": 2872.42, + "probability": 0.9756 + }, + { + "start": 2873.48, + "end": 2873.64, + "probability": 0.5773 + }, + { + "start": 2874.0, + "end": 2874.78, + "probability": 0.4885 + }, + { + "start": 2874.84, + "end": 2875.48, + "probability": 0.6349 + }, + { + "start": 2876.64, + "end": 2878.13, + "probability": 0.8305 + }, + { + "start": 2878.4, + "end": 2879.72, + "probability": 0.9311 + }, + { + "start": 2879.8, + "end": 2881.28, + "probability": 0.8005 + }, + { + "start": 2881.28, + "end": 2883.0, + "probability": 0.9359 + }, + { + "start": 2883.54, + "end": 2886.5, + "probability": 0.9535 + }, + { + "start": 2886.5, + "end": 2889.9, + "probability": 0.9589 + }, + { + "start": 2889.94, + "end": 2892.24, + "probability": 0.978 + }, + { + "start": 2892.48, + "end": 2896.34, + "probability": 0.8823 + }, + { + "start": 2898.88, + "end": 2904.32, + "probability": 0.9921 + }, + { + "start": 2904.56, + "end": 2905.76, + "probability": 0.6734 + }, + { + "start": 2905.86, + "end": 2906.22, + "probability": 0.8609 + }, + { + "start": 2906.28, + "end": 2912.34, + "probability": 0.9504 + }, + { + "start": 2912.52, + "end": 2912.98, + "probability": 0.7928 + }, + { + "start": 2913.02, + "end": 2917.42, + "probability": 0.9932 + }, + { + "start": 2918.06, + "end": 2922.76, + "probability": 0.6437 + }, + { + "start": 2923.16, + "end": 2927.22, + "probability": 0.9837 + }, + { + "start": 2927.36, + "end": 2931.84, + "probability": 0.9897 + }, + { + "start": 2932.26, + "end": 2939.1, + "probability": 0.9505 + }, + { + "start": 2939.2, + "end": 2940.02, + "probability": 0.8632 + }, + { + "start": 2941.98, + "end": 2945.06, + "probability": 0.7665 + }, + { + "start": 2945.24, + "end": 2945.88, + "probability": 0.8604 + }, + { + "start": 2945.88, + "end": 2948.0, + "probability": 0.8002 + }, + { + "start": 2948.1, + "end": 2948.94, + "probability": 0.671 + }, + { + "start": 2949.2, + "end": 2951.94, + "probability": 0.9622 + }, + { + "start": 2952.42, + "end": 2956.42, + "probability": 0.942 + }, + { + "start": 2957.52, + "end": 2960.78, + "probability": 0.8667 + }, + { + "start": 2960.9, + "end": 2964.42, + "probability": 0.9949 + }, + { + "start": 2964.92, + "end": 2967.7, + "probability": 0.7549 + }, + { + "start": 2971.54, + "end": 2973.38, + "probability": 0.9043 + }, + { + "start": 2973.46, + "end": 2976.38, + "probability": 0.8068 + }, + { + "start": 2976.38, + "end": 2980.8, + "probability": 0.9902 + }, + { + "start": 2981.3, + "end": 2985.16, + "probability": 0.9875 + }, + { + "start": 2985.32, + "end": 2987.52, + "probability": 0.6861 + }, + { + "start": 2988.34, + "end": 2990.02, + "probability": 0.897 + }, + { + "start": 2990.66, + "end": 2991.36, + "probability": 0.551 + }, + { + "start": 2991.48, + "end": 2994.9, + "probability": 0.9749 + }, + { + "start": 2994.9, + "end": 3000.06, + "probability": 0.9951 + }, + { + "start": 3000.1, + "end": 3004.06, + "probability": 0.9884 + }, + { + "start": 3004.12, + "end": 3006.26, + "probability": 0.9459 + }, + { + "start": 3008.42, + "end": 3009.18, + "probability": 0.5779 + }, + { + "start": 3009.36, + "end": 3011.72, + "probability": 0.9915 + }, + { + "start": 3011.9, + "end": 3015.16, + "probability": 0.6651 + }, + { + "start": 3015.82, + "end": 3018.0, + "probability": 0.9143 + }, + { + "start": 3018.78, + "end": 3022.72, + "probability": 0.8918 + }, + { + "start": 3022.92, + "end": 3027.06, + "probability": 0.876 + }, + { + "start": 3027.24, + "end": 3029.98, + "probability": 0.9286 + }, + { + "start": 3030.42, + "end": 3030.66, + "probability": 0.3741 + }, + { + "start": 3030.98, + "end": 3033.44, + "probability": 0.5314 + }, + { + "start": 3033.48, + "end": 3035.6, + "probability": 0.7361 + }, + { + "start": 3035.72, + "end": 3037.23, + "probability": 0.978 + }, + { + "start": 3037.49, + "end": 3039.32, + "probability": 0.8735 + }, + { + "start": 3039.85, + "end": 3044.71, + "probability": 0.9917 + }, + { + "start": 3045.21, + "end": 3047.03, + "probability": 0.9926 + }, + { + "start": 3047.45, + "end": 3048.33, + "probability": 0.948 + }, + { + "start": 3048.65, + "end": 3050.71, + "probability": 0.9696 + }, + { + "start": 3050.97, + "end": 3051.62, + "probability": 0.857 + }, + { + "start": 3052.27, + "end": 3053.11, + "probability": 0.6112 + }, + { + "start": 3054.13, + "end": 3055.17, + "probability": 0.9735 + }, + { + "start": 3055.17, + "end": 3055.17, + "probability": 0.1624 + }, + { + "start": 3055.17, + "end": 3055.4, + "probability": 0.7493 + }, + { + "start": 3056.43, + "end": 3061.55, + "probability": 0.9844 + }, + { + "start": 3062.11, + "end": 3066.71, + "probability": 0.9754 + }, + { + "start": 3067.55, + "end": 3067.63, + "probability": 0.1983 + }, + { + "start": 3067.77, + "end": 3068.21, + "probability": 0.6171 + }, + { + "start": 3068.27, + "end": 3068.91, + "probability": 0.6704 + }, + { + "start": 3069.19, + "end": 3072.53, + "probability": 0.9058 + }, + { + "start": 3073.17, + "end": 3075.81, + "probability": 0.7114 + }, + { + "start": 3076.11, + "end": 3078.65, + "probability": 0.9611 + }, + { + "start": 3078.89, + "end": 3079.93, + "probability": 0.9434 + }, + { + "start": 3080.51, + "end": 3083.15, + "probability": 0.8539 + }, + { + "start": 3083.37, + "end": 3089.25, + "probability": 0.9319 + }, + { + "start": 3089.39, + "end": 3091.19, + "probability": 0.7431 + }, + { + "start": 3091.29, + "end": 3098.37, + "probability": 0.9371 + }, + { + "start": 3098.75, + "end": 3098.83, + "probability": 0.0434 + }, + { + "start": 3098.83, + "end": 3098.83, + "probability": 0.3636 + }, + { + "start": 3098.83, + "end": 3099.43, + "probability": 0.5907 + }, + { + "start": 3099.49, + "end": 3103.41, + "probability": 0.9854 + }, + { + "start": 3103.49, + "end": 3104.05, + "probability": 0.4739 + }, + { + "start": 3104.29, + "end": 3104.75, + "probability": 0.5804 + }, + { + "start": 3104.75, + "end": 3108.41, + "probability": 0.7571 + }, + { + "start": 3108.71, + "end": 3111.05, + "probability": 0.5877 + }, + { + "start": 3111.39, + "end": 3113.67, + "probability": 0.2266 + }, + { + "start": 3113.67, + "end": 3115.01, + "probability": 0.0707 + }, + { + "start": 3115.13, + "end": 3116.25, + "probability": 0.3217 + }, + { + "start": 3116.47, + "end": 3118.84, + "probability": 0.8413 + }, + { + "start": 3119.55, + "end": 3121.77, + "probability": 0.8081 + }, + { + "start": 3122.03, + "end": 3124.13, + "probability": 0.8346 + }, + { + "start": 3124.53, + "end": 3125.11, + "probability": 0.7387 + }, + { + "start": 3133.17, + "end": 3134.02, + "probability": 0.5209 + }, + { + "start": 3134.95, + "end": 3135.63, + "probability": 0.8544 + }, + { + "start": 3135.67, + "end": 3139.65, + "probability": 0.8484 + }, + { + "start": 3139.65, + "end": 3143.31, + "probability": 0.9867 + }, + { + "start": 3143.91, + "end": 3147.15, + "probability": 0.7715 + }, + { + "start": 3147.27, + "end": 3153.29, + "probability": 0.9963 + }, + { + "start": 3153.77, + "end": 3155.05, + "probability": 0.9951 + }, + { + "start": 3155.55, + "end": 3157.19, + "probability": 0.7923 + }, + { + "start": 3157.57, + "end": 3160.21, + "probability": 0.9879 + }, + { + "start": 3160.29, + "end": 3160.53, + "probability": 0.7348 + }, + { + "start": 3160.99, + "end": 3163.08, + "probability": 0.533 + }, + { + "start": 3163.97, + "end": 3165.94, + "probability": 0.6254 + }, + { + "start": 3167.77, + "end": 3169.21, + "probability": 0.7685 + }, + { + "start": 3169.39, + "end": 3170.09, + "probability": 0.9091 + }, + { + "start": 3170.65, + "end": 3173.87, + "probability": 0.9412 + }, + { + "start": 3174.49, + "end": 3180.43, + "probability": 0.9819 + }, + { + "start": 3180.43, + "end": 3182.91, + "probability": 0.9909 + }, + { + "start": 3183.71, + "end": 3187.07, + "probability": 0.7084 + }, + { + "start": 3187.07, + "end": 3189.45, + "probability": 0.9988 + }, + { + "start": 3190.11, + "end": 3193.42, + "probability": 0.9321 + }, + { + "start": 3193.43, + "end": 3196.97, + "probability": 0.9988 + }, + { + "start": 3197.45, + "end": 3201.05, + "probability": 0.7782 + }, + { + "start": 3201.11, + "end": 3201.59, + "probability": 0.7238 + }, + { + "start": 3201.79, + "end": 3202.43, + "probability": 0.7363 + }, + { + "start": 3202.43, + "end": 3202.97, + "probability": 0.6504 + }, + { + "start": 3203.91, + "end": 3204.91, + "probability": 0.9266 + }, + { + "start": 3205.39, + "end": 3206.96, + "probability": 0.915 + }, + { + "start": 3207.19, + "end": 3210.31, + "probability": 0.9869 + }, + { + "start": 3210.31, + "end": 3212.55, + "probability": 0.993 + }, + { + "start": 3213.05, + "end": 3215.33, + "probability": 0.9569 + }, + { + "start": 3215.33, + "end": 3218.67, + "probability": 0.976 + }, + { + "start": 3219.07, + "end": 3219.07, + "probability": 0.2729 + }, + { + "start": 3219.07, + "end": 3220.73, + "probability": 0.8238 + }, + { + "start": 3220.87, + "end": 3223.95, + "probability": 0.9917 + }, + { + "start": 3224.13, + "end": 3224.37, + "probability": 0.4242 + }, + { + "start": 3224.37, + "end": 3226.27, + "probability": 0.5327 + }, + { + "start": 3226.43, + "end": 3232.25, + "probability": 0.8892 + }, + { + "start": 3232.31, + "end": 3234.31, + "probability": 0.7473 + }, + { + "start": 3235.03, + "end": 3237.11, + "probability": 0.8976 + }, + { + "start": 3237.23, + "end": 3241.23, + "probability": 0.9949 + }, + { + "start": 3241.81, + "end": 3242.21, + "probability": 0.6935 + }, + { + "start": 3242.99, + "end": 3242.99, + "probability": 0.1468 + }, + { + "start": 3242.99, + "end": 3244.57, + "probability": 0.6286 + }, + { + "start": 3245.27, + "end": 3249.37, + "probability": 0.951 + }, + { + "start": 3250.13, + "end": 3254.03, + "probability": 0.9351 + }, + { + "start": 3254.25, + "end": 3255.87, + "probability": 0.9092 + }, + { + "start": 3256.45, + "end": 3261.25, + "probability": 0.9981 + }, + { + "start": 3261.93, + "end": 3263.85, + "probability": 0.9017 + }, + { + "start": 3263.99, + "end": 3267.91, + "probability": 0.9905 + }, + { + "start": 3268.01, + "end": 3268.99, + "probability": 0.891 + }, + { + "start": 3269.37, + "end": 3270.25, + "probability": 0.6458 + }, + { + "start": 3270.35, + "end": 3272.65, + "probability": 0.951 + }, + { + "start": 3273.09, + "end": 3275.55, + "probability": 0.7284 + }, + { + "start": 3275.67, + "end": 3276.25, + "probability": 0.6778 + }, + { + "start": 3276.35, + "end": 3278.99, + "probability": 0.7864 + }, + { + "start": 3281.35, + "end": 3284.75, + "probability": 0.9545 + }, + { + "start": 3285.71, + "end": 3287.08, + "probability": 0.5482 + }, + { + "start": 3287.81, + "end": 3290.01, + "probability": 0.928 + }, + { + "start": 3290.33, + "end": 3292.13, + "probability": 0.9709 + }, + { + "start": 3292.87, + "end": 3295.85, + "probability": 0.7348 + }, + { + "start": 3295.97, + "end": 3297.47, + "probability": 0.9695 + }, + { + "start": 3298.05, + "end": 3300.11, + "probability": 0.7889 + }, + { + "start": 3300.47, + "end": 3303.13, + "probability": 0.9934 + }, + { + "start": 3303.27, + "end": 3304.27, + "probability": 0.7456 + }, + { + "start": 3304.33, + "end": 3305.29, + "probability": 0.8651 + }, + { + "start": 3305.43, + "end": 3309.23, + "probability": 0.9952 + }, + { + "start": 3310.27, + "end": 3312.77, + "probability": 0.9932 + }, + { + "start": 3313.71, + "end": 3318.63, + "probability": 0.9977 + }, + { + "start": 3318.63, + "end": 3323.87, + "probability": 0.9958 + }, + { + "start": 3324.49, + "end": 3327.85, + "probability": 0.9919 + }, + { + "start": 3327.85, + "end": 3331.33, + "probability": 0.9986 + }, + { + "start": 3331.41, + "end": 3331.85, + "probability": 0.4726 + }, + { + "start": 3332.03, + "end": 3332.59, + "probability": 0.7804 + }, + { + "start": 3333.21, + "end": 3335.67, + "probability": 0.9849 + }, + { + "start": 3335.95, + "end": 3339.09, + "probability": 0.9845 + }, + { + "start": 3339.09, + "end": 3342.45, + "probability": 0.9542 + }, + { + "start": 3342.93, + "end": 3343.73, + "probability": 0.9302 + }, + { + "start": 3343.81, + "end": 3344.71, + "probability": 0.887 + }, + { + "start": 3345.25, + "end": 3348.81, + "probability": 0.9932 + }, + { + "start": 3349.55, + "end": 3353.39, + "probability": 0.9516 + }, + { + "start": 3354.21, + "end": 3358.11, + "probability": 0.9938 + }, + { + "start": 3358.19, + "end": 3362.91, + "probability": 0.9982 + }, + { + "start": 3363.09, + "end": 3367.17, + "probability": 0.8312 + }, + { + "start": 3367.29, + "end": 3368.85, + "probability": 0.9645 + }, + { + "start": 3369.13, + "end": 3371.87, + "probability": 0.8737 + }, + { + "start": 3372.03, + "end": 3373.46, + "probability": 0.7719 + }, + { + "start": 3373.59, + "end": 3374.85, + "probability": 0.9089 + }, + { + "start": 3375.05, + "end": 3375.27, + "probability": 0.2357 + }, + { + "start": 3375.29, + "end": 3378.35, + "probability": 0.9197 + }, + { + "start": 3378.79, + "end": 3382.97, + "probability": 0.9508 + }, + { + "start": 3382.97, + "end": 3385.27, + "probability": 0.9941 + }, + { + "start": 3385.33, + "end": 3385.73, + "probability": 0.4502 + }, + { + "start": 3385.89, + "end": 3386.99, + "probability": 0.9679 + }, + { + "start": 3387.07, + "end": 3387.85, + "probability": 0.8412 + }, + { + "start": 3388.47, + "end": 3388.71, + "probability": 0.4814 + }, + { + "start": 3388.75, + "end": 3391.79, + "probability": 0.9595 + }, + { + "start": 3391.95, + "end": 3394.73, + "probability": 0.9173 + }, + { + "start": 3394.85, + "end": 3396.71, + "probability": 0.966 + }, + { + "start": 3397.37, + "end": 3400.21, + "probability": 0.8915 + }, + { + "start": 3400.43, + "end": 3405.43, + "probability": 0.9692 + }, + { + "start": 3406.41, + "end": 3407.83, + "probability": 0.7394 + }, + { + "start": 3407.87, + "end": 3411.91, + "probability": 0.9829 + }, + { + "start": 3412.69, + "end": 3415.95, + "probability": 0.5012 + }, + { + "start": 3416.03, + "end": 3417.67, + "probability": 0.9927 + }, + { + "start": 3417.77, + "end": 3419.55, + "probability": 0.9904 + }, + { + "start": 3420.61, + "end": 3425.77, + "probability": 0.76 + }, + { + "start": 3425.87, + "end": 3429.01, + "probability": 0.9861 + }, + { + "start": 3429.55, + "end": 3433.71, + "probability": 0.9971 + }, + { + "start": 3434.99, + "end": 3436.05, + "probability": 0.7871 + }, + { + "start": 3436.25, + "end": 3438.27, + "probability": 0.9151 + }, + { + "start": 3438.55, + "end": 3439.91, + "probability": 0.9516 + }, + { + "start": 3439.97, + "end": 3440.77, + "probability": 0.9945 + }, + { + "start": 3441.41, + "end": 3444.27, + "probability": 0.9756 + }, + { + "start": 3444.71, + "end": 3446.93, + "probability": 0.8837 + }, + { + "start": 3447.37, + "end": 3449.79, + "probability": 0.7142 + }, + { + "start": 3450.49, + "end": 3454.49, + "probability": 0.8306 + }, + { + "start": 3456.39, + "end": 3459.01, + "probability": 0.9152 + }, + { + "start": 3459.57, + "end": 3463.33, + "probability": 0.941 + }, + { + "start": 3463.39, + "end": 3464.75, + "probability": 0.7873 + }, + { + "start": 3465.45, + "end": 3471.25, + "probability": 0.9032 + }, + { + "start": 3471.77, + "end": 3472.31, + "probability": 0.5952 + }, + { + "start": 3472.41, + "end": 3474.85, + "probability": 0.986 + }, + { + "start": 3475.03, + "end": 3476.25, + "probability": 0.9585 + }, + { + "start": 3476.29, + "end": 3476.81, + "probability": 0.6259 + }, + { + "start": 3477.19, + "end": 3479.07, + "probability": 0.9658 + }, + { + "start": 3479.95, + "end": 3485.91, + "probability": 0.8393 + }, + { + "start": 3485.91, + "end": 3489.65, + "probability": 0.9808 + }, + { + "start": 3489.79, + "end": 3491.11, + "probability": 0.798 + }, + { + "start": 3491.45, + "end": 3494.39, + "probability": 0.8153 + }, + { + "start": 3495.21, + "end": 3497.33, + "probability": 0.9845 + }, + { + "start": 3497.45, + "end": 3500.67, + "probability": 0.6564 + }, + { + "start": 3501.15, + "end": 3504.25, + "probability": 0.976 + }, + { + "start": 3504.31, + "end": 3505.91, + "probability": 0.9119 + }, + { + "start": 3506.03, + "end": 3506.7, + "probability": 0.7588 + }, + { + "start": 3507.69, + "end": 3508.65, + "probability": 0.8577 + }, + { + "start": 3509.15, + "end": 3514.09, + "probability": 0.9741 + }, + { + "start": 3514.67, + "end": 3515.59, + "probability": 0.7588 + }, + { + "start": 3515.75, + "end": 3518.23, + "probability": 0.91 + }, + { + "start": 3518.31, + "end": 3520.61, + "probability": 0.9966 + }, + { + "start": 3521.47, + "end": 3522.93, + "probability": 0.7344 + }, + { + "start": 3523.13, + "end": 3528.99, + "probability": 0.9578 + }, + { + "start": 3529.11, + "end": 3530.95, + "probability": 0.9677 + }, + { + "start": 3531.41, + "end": 3533.31, + "probability": 0.999 + }, + { + "start": 3534.09, + "end": 3537.25, + "probability": 0.998 + }, + { + "start": 3537.91, + "end": 3543.41, + "probability": 0.9893 + }, + { + "start": 3544.09, + "end": 3548.19, + "probability": 0.9979 + }, + { + "start": 3548.31, + "end": 3550.59, + "probability": 0.9153 + }, + { + "start": 3551.79, + "end": 3552.35, + "probability": 0.991 + }, + { + "start": 3552.87, + "end": 3554.77, + "probability": 0.7169 + }, + { + "start": 3554.91, + "end": 3556.85, + "probability": 0.6351 + }, + { + "start": 3556.95, + "end": 3560.77, + "probability": 0.9956 + }, + { + "start": 3560.93, + "end": 3562.83, + "probability": 0.6806 + }, + { + "start": 3563.43, + "end": 3563.67, + "probability": 0.2851 + }, + { + "start": 3563.73, + "end": 3568.45, + "probability": 0.9961 + }, + { + "start": 3569.53, + "end": 3571.45, + "probability": 0.7159 + }, + { + "start": 3571.63, + "end": 3573.33, + "probability": 0.9915 + }, + { + "start": 3573.69, + "end": 3576.11, + "probability": 0.9873 + }, + { + "start": 3576.25, + "end": 3579.43, + "probability": 0.6983 + }, + { + "start": 3579.49, + "end": 3582.81, + "probability": 0.9795 + }, + { + "start": 3582.97, + "end": 3583.9, + "probability": 0.4502 + }, + { + "start": 3584.97, + "end": 3585.61, + "probability": 0.4071 + }, + { + "start": 3587.05, + "end": 3591.27, + "probability": 0.9691 + }, + { + "start": 3591.71, + "end": 3593.19, + "probability": 0.9982 + }, + { + "start": 3593.49, + "end": 3595.29, + "probability": 0.4648 + }, + { + "start": 3595.39, + "end": 3596.16, + "probability": 0.9269 + }, + { + "start": 3596.29, + "end": 3598.46, + "probability": 0.8407 + }, + { + "start": 3599.21, + "end": 3600.43, + "probability": 0.929 + }, + { + "start": 3601.31, + "end": 3605.05, + "probability": 0.981 + }, + { + "start": 3605.17, + "end": 3607.03, + "probability": 0.9685 + }, + { + "start": 3607.39, + "end": 3612.75, + "probability": 0.9841 + }, + { + "start": 3612.97, + "end": 3615.11, + "probability": 0.8804 + }, + { + "start": 3615.89, + "end": 3619.73, + "probability": 0.9462 + }, + { + "start": 3620.57, + "end": 3625.23, + "probability": 0.9856 + }, + { + "start": 3625.37, + "end": 3626.67, + "probability": 0.9951 + }, + { + "start": 3627.17, + "end": 3627.49, + "probability": 0.9181 + }, + { + "start": 3627.63, + "end": 3627.97, + "probability": 0.5102 + }, + { + "start": 3628.37, + "end": 3629.65, + "probability": 0.9216 + }, + { + "start": 3630.21, + "end": 3633.07, + "probability": 0.8234 + }, + { + "start": 3633.11, + "end": 3635.83, + "probability": 0.9497 + }, + { + "start": 3635.95, + "end": 3638.83, + "probability": 0.9891 + }, + { + "start": 3638.99, + "end": 3641.67, + "probability": 0.9514 + }, + { + "start": 3641.67, + "end": 3643.23, + "probability": 0.9993 + }, + { + "start": 3643.47, + "end": 3644.83, + "probability": 0.9736 + }, + { + "start": 3645.49, + "end": 3646.63, + "probability": 0.7717 + }, + { + "start": 3646.85, + "end": 3647.53, + "probability": 0.79 + }, + { + "start": 3648.01, + "end": 3649.52, + "probability": 0.9001 + }, + { + "start": 3649.99, + "end": 3652.93, + "probability": 0.901 + }, + { + "start": 3653.47, + "end": 3654.08, + "probability": 0.4969 + }, + { + "start": 3654.49, + "end": 3654.59, + "probability": 0.2546 + }, + { + "start": 3654.73, + "end": 3655.69, + "probability": 0.9082 + }, + { + "start": 3655.83, + "end": 3657.21, + "probability": 0.8879 + }, + { + "start": 3657.25, + "end": 3660.81, + "probability": 0.9697 + }, + { + "start": 3661.33, + "end": 3664.76, + "probability": 0.9421 + }, + { + "start": 3664.79, + "end": 3665.93, + "probability": 0.8001 + }, + { + "start": 3666.93, + "end": 3668.91, + "probability": 0.9959 + }, + { + "start": 3669.11, + "end": 3669.67, + "probability": 0.576 + }, + { + "start": 3669.73, + "end": 3671.13, + "probability": 0.9249 + }, + { + "start": 3671.35, + "end": 3673.65, + "probability": 0.8837 + }, + { + "start": 3674.21, + "end": 3676.53, + "probability": 0.9819 + }, + { + "start": 3676.55, + "end": 3677.07, + "probability": 0.9128 + }, + { + "start": 3678.25, + "end": 3678.79, + "probability": 0.4324 + }, + { + "start": 3679.49, + "end": 3681.73, + "probability": 0.7046 + }, + { + "start": 3682.01, + "end": 3682.87, + "probability": 0.0341 + }, + { + "start": 3683.83, + "end": 3684.73, + "probability": 0.0308 + }, + { + "start": 3684.73, + "end": 3686.05, + "probability": 0.0862 + }, + { + "start": 3686.81, + "end": 3686.83, + "probability": 0.1461 + }, + { + "start": 3686.83, + "end": 3686.83, + "probability": 0.0101 + }, + { + "start": 3686.83, + "end": 3691.67, + "probability": 0.3128 + }, + { + "start": 3692.73, + "end": 3697.33, + "probability": 0.2845 + }, + { + "start": 3697.57, + "end": 3702.29, + "probability": 0.5014 + }, + { + "start": 3702.49, + "end": 3705.33, + "probability": 0.5819 + }, + { + "start": 3705.45, + "end": 3707.79, + "probability": 0.8373 + }, + { + "start": 3708.13, + "end": 3711.03, + "probability": 0.9991 + }, + { + "start": 3711.25, + "end": 3711.71, + "probability": 0.6074 + }, + { + "start": 3711.85, + "end": 3712.53, + "probability": 0.9195 + }, + { + "start": 3712.67, + "end": 3716.95, + "probability": 0.9976 + }, + { + "start": 3717.11, + "end": 3721.03, + "probability": 0.9767 + }, + { + "start": 3721.19, + "end": 3723.77, + "probability": 0.9722 + }, + { + "start": 3723.77, + "end": 3726.51, + "probability": 0.9716 + }, + { + "start": 3726.75, + "end": 3728.13, + "probability": 0.8915 + }, + { + "start": 3728.19, + "end": 3728.21, + "probability": 0.4845 + }, + { + "start": 3728.67, + "end": 3731.67, + "probability": 0.623 + }, + { + "start": 3731.91, + "end": 3737.12, + "probability": 0.0075 + }, + { + "start": 3737.75, + "end": 3737.75, + "probability": 0.2091 + }, + { + "start": 3737.75, + "end": 3738.33, + "probability": 0.019 + }, + { + "start": 3738.33, + "end": 3741.58, + "probability": 0.3011 + }, + { + "start": 3741.87, + "end": 3743.61, + "probability": 0.7591 + }, + { + "start": 3744.47, + "end": 3749.69, + "probability": 0.9309 + }, + { + "start": 3750.69, + "end": 3754.27, + "probability": 0.5199 + }, + { + "start": 3754.61, + "end": 3754.61, + "probability": 0.6876 + }, + { + "start": 3755.63, + "end": 3759.59, + "probability": 0.9704 + }, + { + "start": 3762.15, + "end": 3762.87, + "probability": 0.729 + }, + { + "start": 3763.03, + "end": 3767.23, + "probability": 0.9809 + }, + { + "start": 3767.71, + "end": 3769.19, + "probability": 0.6137 + }, + { + "start": 3770.21, + "end": 3771.11, + "probability": 0.6988 + }, + { + "start": 3771.81, + "end": 3774.15, + "probability": 0.85 + }, + { + "start": 3774.89, + "end": 3777.81, + "probability": 0.6452 + }, + { + "start": 3778.19, + "end": 3781.25, + "probability": 0.9808 + }, + { + "start": 3781.71, + "end": 3782.71, + "probability": 0.822 + }, + { + "start": 3783.51, + "end": 3783.95, + "probability": 0.3388 + }, + { + "start": 3784.11, + "end": 3785.05, + "probability": 0.5017 + }, + { + "start": 3785.11, + "end": 3785.75, + "probability": 0.6395 + }, + { + "start": 3786.31, + "end": 3787.17, + "probability": 0.7705 + }, + { + "start": 3787.17, + "end": 3792.43, + "probability": 0.9862 + }, + { + "start": 3792.63, + "end": 3794.31, + "probability": 0.82 + }, + { + "start": 3794.77, + "end": 3795.57, + "probability": 0.8547 + }, + { + "start": 3796.17, + "end": 3797.13, + "probability": 0.9031 + }, + { + "start": 3797.31, + "end": 3800.13, + "probability": 0.9815 + }, + { + "start": 3800.19, + "end": 3801.77, + "probability": 0.0949 + }, + { + "start": 3802.25, + "end": 3805.83, + "probability": 0.9349 + }, + { + "start": 3806.03, + "end": 3807.87, + "probability": 0.8331 + }, + { + "start": 3807.95, + "end": 3811.87, + "probability": 0.8914 + }, + { + "start": 3811.91, + "end": 3814.11, + "probability": 0.9864 + }, + { + "start": 3814.23, + "end": 3815.99, + "probability": 0.9342 + }, + { + "start": 3816.31, + "end": 3817.89, + "probability": 0.9547 + }, + { + "start": 3818.51, + "end": 3823.11, + "probability": 0.9855 + }, + { + "start": 3823.53, + "end": 3828.45, + "probability": 0.5811 + }, + { + "start": 3828.61, + "end": 3830.21, + "probability": 0.9497 + }, + { + "start": 3830.39, + "end": 3834.27, + "probability": 0.9855 + }, + { + "start": 3834.33, + "end": 3835.03, + "probability": 0.9615 + }, + { + "start": 3836.78, + "end": 3838.99, + "probability": 0.5441 + }, + { + "start": 3839.65, + "end": 3844.15, + "probability": 0.9897 + }, + { + "start": 3844.17, + "end": 3847.69, + "probability": 0.9622 + }, + { + "start": 3848.17, + "end": 3850.55, + "probability": 0.9937 + }, + { + "start": 3850.55, + "end": 3855.21, + "probability": 0.7488 + }, + { + "start": 3855.27, + "end": 3856.51, + "probability": 0.9679 + }, + { + "start": 3857.01, + "end": 3860.35, + "probability": 0.9983 + }, + { + "start": 3860.83, + "end": 3863.51, + "probability": 0.9019 + }, + { + "start": 3863.91, + "end": 3868.17, + "probability": 0.9513 + }, + { + "start": 3868.91, + "end": 3869.13, + "probability": 0.8635 + }, + { + "start": 3869.33, + "end": 3871.83, + "probability": 0.9186 + }, + { + "start": 3871.85, + "end": 3875.05, + "probability": 0.9966 + }, + { + "start": 3875.43, + "end": 3877.73, + "probability": 0.995 + }, + { + "start": 3878.81, + "end": 3881.89, + "probability": 0.9077 + }, + { + "start": 3882.87, + "end": 3883.35, + "probability": 0.7268 + }, + { + "start": 3883.41, + "end": 3887.03, + "probability": 0.8759 + }, + { + "start": 3887.37, + "end": 3889.33, + "probability": 0.9976 + }, + { + "start": 3889.61, + "end": 3890.87, + "probability": 0.8252 + }, + { + "start": 3891.19, + "end": 3896.11, + "probability": 0.8649 + }, + { + "start": 3896.83, + "end": 3897.29, + "probability": 0.4391 + }, + { + "start": 3897.31, + "end": 3901.29, + "probability": 0.9871 + }, + { + "start": 3901.29, + "end": 3905.45, + "probability": 0.9991 + }, + { + "start": 3906.15, + "end": 3910.25, + "probability": 0.9924 + }, + { + "start": 3910.51, + "end": 3915.35, + "probability": 0.8426 + }, + { + "start": 3915.85, + "end": 3918.97, + "probability": 0.9826 + }, + { + "start": 3919.07, + "end": 3920.19, + "probability": 0.7262 + }, + { + "start": 3920.35, + "end": 3922.85, + "probability": 0.9324 + }, + { + "start": 3923.47, + "end": 3927.29, + "probability": 0.9685 + }, + { + "start": 3927.62, + "end": 3933.71, + "probability": 0.9963 + }, + { + "start": 3933.99, + "end": 3936.13, + "probability": 0.741 + }, + { + "start": 3936.13, + "end": 3937.43, + "probability": 0.8192 + }, + { + "start": 3937.53, + "end": 3938.59, + "probability": 0.9073 + }, + { + "start": 3939.13, + "end": 3940.51, + "probability": 0.9466 + }, + { + "start": 3941.11, + "end": 3944.39, + "probability": 0.9552 + }, + { + "start": 3944.75, + "end": 3945.61, + "probability": 0.9316 + }, + { + "start": 3945.69, + "end": 3946.35, + "probability": 0.9031 + }, + { + "start": 3946.41, + "end": 3947.03, + "probability": 0.8815 + }, + { + "start": 3949.49, + "end": 3952.01, + "probability": 0.96 + }, + { + "start": 3952.11, + "end": 3955.79, + "probability": 0.8838 + }, + { + "start": 3955.85, + "end": 3960.23, + "probability": 0.8363 + }, + { + "start": 3960.95, + "end": 3965.27, + "probability": 0.9775 + }, + { + "start": 3965.43, + "end": 3968.25, + "probability": 0.9523 + }, + { + "start": 3970.91, + "end": 3974.15, + "probability": 0.9434 + }, + { + "start": 3974.15, + "end": 3978.13, + "probability": 0.9926 + }, + { + "start": 3978.13, + "end": 3981.05, + "probability": 0.9937 + }, + { + "start": 3981.69, + "end": 3986.69, + "probability": 0.9904 + }, + { + "start": 3987.15, + "end": 3987.97, + "probability": 0.8423 + }, + { + "start": 3989.03, + "end": 3992.21, + "probability": 0.9304 + }, + { + "start": 3992.31, + "end": 3994.53, + "probability": 0.7611 + }, + { + "start": 3995.53, + "end": 3998.31, + "probability": 0.9858 + }, + { + "start": 3999.03, + "end": 4003.83, + "probability": 0.9876 + }, + { + "start": 4003.83, + "end": 4006.19, + "probability": 0.9982 + }, + { + "start": 4006.69, + "end": 4011.79, + "probability": 0.9209 + }, + { + "start": 4012.17, + "end": 4016.89, + "probability": 0.9941 + }, + { + "start": 4018.04, + "end": 4024.07, + "probability": 0.9183 + }, + { + "start": 4024.57, + "end": 4028.33, + "probability": 0.9602 + }, + { + "start": 4028.33, + "end": 4032.65, + "probability": 0.9922 + }, + { + "start": 4032.65, + "end": 4036.13, + "probability": 0.9896 + }, + { + "start": 4036.89, + "end": 4044.89, + "probability": 0.9424 + }, + { + "start": 4045.91, + "end": 4047.73, + "probability": 0.7211 + }, + { + "start": 4047.95, + "end": 4050.33, + "probability": 0.9702 + }, + { + "start": 4050.33, + "end": 4052.99, + "probability": 0.9207 + }, + { + "start": 4053.55, + "end": 4057.71, + "probability": 0.9857 + }, + { + "start": 4057.81, + "end": 4062.07, + "probability": 0.8371 + }, + { + "start": 4062.07, + "end": 4065.65, + "probability": 0.9929 + }, + { + "start": 4066.33, + "end": 4068.85, + "probability": 0.969 + }, + { + "start": 4068.85, + "end": 4071.77, + "probability": 0.9197 + }, + { + "start": 4072.25, + "end": 4075.05, + "probability": 0.6611 + }, + { + "start": 4075.59, + "end": 4078.23, + "probability": 0.9874 + }, + { + "start": 4078.53, + "end": 4078.55, + "probability": 0.7325 + }, + { + "start": 4078.71, + "end": 4079.49, + "probability": 0.7978 + }, + { + "start": 4079.59, + "end": 4079.99, + "probability": 0.9705 + }, + { + "start": 4080.09, + "end": 4080.83, + "probability": 0.6243 + }, + { + "start": 4081.39, + "end": 4081.85, + "probability": 0.8438 + }, + { + "start": 4081.91, + "end": 4084.93, + "probability": 0.9692 + }, + { + "start": 4085.11, + "end": 4088.43, + "probability": 0.9111 + }, + { + "start": 4089.37, + "end": 4090.01, + "probability": 0.4264 + }, + { + "start": 4090.07, + "end": 4093.69, + "probability": 0.9863 + }, + { + "start": 4094.07, + "end": 4097.15, + "probability": 0.9176 + }, + { + "start": 4097.15, + "end": 4099.47, + "probability": 0.712 + }, + { + "start": 4100.09, + "end": 4102.21, + "probability": 0.8633 + }, + { + "start": 4102.29, + "end": 4104.27, + "probability": 0.8161 + }, + { + "start": 4104.67, + "end": 4105.51, + "probability": 0.7308 + }, + { + "start": 4105.77, + "end": 4108.49, + "probability": 0.9539 + }, + { + "start": 4109.21, + "end": 4109.75, + "probability": 0.9021 + }, + { + "start": 4110.39, + "end": 4112.41, + "probability": 0.9871 + }, + { + "start": 4113.23, + "end": 4116.59, + "probability": 0.9917 + }, + { + "start": 4117.11, + "end": 4118.69, + "probability": 0.9995 + }, + { + "start": 4119.27, + "end": 4123.79, + "probability": 0.8799 + }, + { + "start": 4124.53, + "end": 4125.59, + "probability": 0.6579 + }, + { + "start": 4125.79, + "end": 4126.25, + "probability": 0.3657 + }, + { + "start": 4126.43, + "end": 4129.77, + "probability": 0.9914 + }, + { + "start": 4129.97, + "end": 4134.71, + "probability": 0.9955 + }, + { + "start": 4135.07, + "end": 4140.21, + "probability": 0.9811 + }, + { + "start": 4140.27, + "end": 4140.87, + "probability": 0.7494 + }, + { + "start": 4141.27, + "end": 4145.02, + "probability": 0.938 + }, + { + "start": 4145.65, + "end": 4149.37, + "probability": 0.9456 + }, + { + "start": 4149.37, + "end": 4152.39, + "probability": 0.9982 + }, + { + "start": 4152.39, + "end": 4158.31, + "probability": 0.9068 + }, + { + "start": 4158.61, + "end": 4161.67, + "probability": 0.9174 + }, + { + "start": 4162.21, + "end": 4164.19, + "probability": 0.8928 + }, + { + "start": 4164.65, + "end": 4168.65, + "probability": 0.9559 + }, + { + "start": 4169.19, + "end": 4169.49, + "probability": 0.7096 + }, + { + "start": 4170.05, + "end": 4170.85, + "probability": 0.6595 + }, + { + "start": 4171.01, + "end": 4171.35, + "probability": 0.8135 + }, + { + "start": 4178.39, + "end": 4179.01, + "probability": 0.79 + }, + { + "start": 4179.07, + "end": 4180.78, + "probability": 0.9291 + }, + { + "start": 4181.15, + "end": 4181.65, + "probability": 0.8899 + }, + { + "start": 4181.69, + "end": 4184.51, + "probability": 0.7381 + }, + { + "start": 4185.03, + "end": 4186.79, + "probability": 0.8168 + }, + { + "start": 4187.53, + "end": 4190.93, + "probability": 0.9824 + }, + { + "start": 4191.39, + "end": 4194.19, + "probability": 0.9573 + }, + { + "start": 4194.23, + "end": 4194.77, + "probability": 0.2713 + }, + { + "start": 4194.77, + "end": 4198.61, + "probability": 0.5781 + }, + { + "start": 4198.89, + "end": 4199.99, + "probability": 0.8185 + }, + { + "start": 4200.05, + "end": 4201.73, + "probability": 0.7454 + }, + { + "start": 4201.91, + "end": 4203.63, + "probability": 0.6974 + }, + { + "start": 4203.73, + "end": 4204.99, + "probability": 0.743 + }, + { + "start": 4205.55, + "end": 4208.01, + "probability": 0.7537 + }, + { + "start": 4208.09, + "end": 4208.91, + "probability": 0.6543 + }, + { + "start": 4209.03, + "end": 4212.48, + "probability": 0.9218 + }, + { + "start": 4213.27, + "end": 4216.11, + "probability": 0.8189 + }, + { + "start": 4217.35, + "end": 4219.44, + "probability": 0.875 + }, + { + "start": 4221.27, + "end": 4222.47, + "probability": 0.7966 + }, + { + "start": 4223.07, + "end": 4224.31, + "probability": 0.4865 + }, + { + "start": 4225.03, + "end": 4226.89, + "probability": 0.7801 + }, + { + "start": 4226.91, + "end": 4230.39, + "probability": 0.6744 + }, + { + "start": 4231.25, + "end": 4235.05, + "probability": 0.8605 + }, + { + "start": 4235.45, + "end": 4237.17, + "probability": 0.9288 + }, + { + "start": 4237.61, + "end": 4239.49, + "probability": 0.895 + }, + { + "start": 4240.19, + "end": 4245.77, + "probability": 0.7363 + }, + { + "start": 4246.71, + "end": 4249.61, + "probability": 0.9551 + }, + { + "start": 4249.93, + "end": 4250.87, + "probability": 0.8562 + }, + { + "start": 4251.09, + "end": 4252.41, + "probability": 0.9736 + }, + { + "start": 4253.05, + "end": 4254.83, + "probability": 0.9355 + }, + { + "start": 4255.35, + "end": 4259.31, + "probability": 0.9722 + }, + { + "start": 4260.05, + "end": 4262.19, + "probability": 0.9643 + }, + { + "start": 4262.35, + "end": 4264.93, + "probability": 0.9203 + }, + { + "start": 4265.31, + "end": 4267.01, + "probability": 0.9929 + }, + { + "start": 4267.29, + "end": 4269.05, + "probability": 0.9954 + }, + { + "start": 4269.19, + "end": 4271.53, + "probability": 0.7212 + }, + { + "start": 4272.13, + "end": 4276.13, + "probability": 0.914 + }, + { + "start": 4276.81, + "end": 4278.93, + "probability": 0.7217 + }, + { + "start": 4279.53, + "end": 4281.11, + "probability": 0.8102 + }, + { + "start": 4282.25, + "end": 4287.83, + "probability": 0.8791 + }, + { + "start": 4288.97, + "end": 4290.15, + "probability": 0.6874 + }, + { + "start": 4290.51, + "end": 4291.83, + "probability": 0.7448 + }, + { + "start": 4291.93, + "end": 4292.43, + "probability": 0.6109 + }, + { + "start": 4292.67, + "end": 4295.22, + "probability": 0.9883 + }, + { + "start": 4295.75, + "end": 4297.01, + "probability": 0.7515 + }, + { + "start": 4297.09, + "end": 4298.71, + "probability": 0.2285 + }, + { + "start": 4299.21, + "end": 4299.33, + "probability": 0.1874 + }, + { + "start": 4299.43, + "end": 4300.01, + "probability": 0.7732 + }, + { + "start": 4300.09, + "end": 4304.61, + "probability": 0.8975 + }, + { + "start": 4304.61, + "end": 4307.93, + "probability": 0.8731 + }, + { + "start": 4308.15, + "end": 4308.65, + "probability": 0.5697 + }, + { + "start": 4308.79, + "end": 4309.79, + "probability": 0.6824 + }, + { + "start": 4319.53, + "end": 4321.93, + "probability": 0.7212 + }, + { + "start": 4322.79, + "end": 4326.21, + "probability": 0.9923 + }, + { + "start": 4326.35, + "end": 4327.43, + "probability": 0.9482 + }, + { + "start": 4328.17, + "end": 4333.11, + "probability": 0.9941 + }, + { + "start": 4333.77, + "end": 4340.91, + "probability": 0.7914 + }, + { + "start": 4341.55, + "end": 4345.55, + "probability": 0.8551 + }, + { + "start": 4346.31, + "end": 4349.15, + "probability": 0.9794 + }, + { + "start": 4349.37, + "end": 4350.19, + "probability": 0.9899 + }, + { + "start": 4350.21, + "end": 4351.15, + "probability": 0.9692 + }, + { + "start": 4351.51, + "end": 4356.43, + "probability": 0.9916 + }, + { + "start": 4356.51, + "end": 4358.79, + "probability": 0.9966 + }, + { + "start": 4359.69, + "end": 4361.99, + "probability": 0.7629 + }, + { + "start": 4362.67, + "end": 4366.95, + "probability": 0.9841 + }, + { + "start": 4367.33, + "end": 4370.13, + "probability": 0.9575 + }, + { + "start": 4370.87, + "end": 4372.51, + "probability": 0.9854 + }, + { + "start": 4373.15, + "end": 4378.41, + "probability": 0.9931 + }, + { + "start": 4379.01, + "end": 4381.03, + "probability": 0.9022 + }, + { + "start": 4381.21, + "end": 4385.67, + "probability": 0.7109 + }, + { + "start": 4386.09, + "end": 4388.49, + "probability": 0.9499 + }, + { + "start": 4389.17, + "end": 4389.85, + "probability": 0.8813 + }, + { + "start": 4389.93, + "end": 4390.61, + "probability": 0.8751 + }, + { + "start": 4390.69, + "end": 4392.19, + "probability": 0.6791 + }, + { + "start": 4392.53, + "end": 4393.99, + "probability": 0.9942 + }, + { + "start": 4394.13, + "end": 4395.09, + "probability": 0.7592 + }, + { + "start": 4395.49, + "end": 4397.11, + "probability": 0.9863 + }, + { + "start": 4397.69, + "end": 4400.43, + "probability": 0.9699 + }, + { + "start": 4400.53, + "end": 4401.63, + "probability": 0.9866 + }, + { + "start": 4402.23, + "end": 4404.73, + "probability": 0.9844 + }, + { + "start": 4404.75, + "end": 4405.31, + "probability": 0.681 + }, + { + "start": 4405.31, + "end": 4405.69, + "probability": 0.8019 + }, + { + "start": 4405.91, + "end": 4407.33, + "probability": 0.9105 + }, + { + "start": 4413.59, + "end": 4414.83, + "probability": 0.6557 + }, + { + "start": 4414.95, + "end": 4418.21, + "probability": 0.8641 + }, + { + "start": 4418.93, + "end": 4426.83, + "probability": 0.8483 + }, + { + "start": 4426.83, + "end": 4432.49, + "probability": 0.9854 + }, + { + "start": 4433.39, + "end": 4438.93, + "probability": 0.8361 + }, + { + "start": 4439.47, + "end": 4442.23, + "probability": 0.9772 + }, + { + "start": 4443.77, + "end": 4446.57, + "probability": 0.9504 + }, + { + "start": 4446.83, + "end": 4447.89, + "probability": 0.4765 + }, + { + "start": 4448.15, + "end": 4451.21, + "probability": 0.5157 + }, + { + "start": 4451.61, + "end": 4452.97, + "probability": 0.8278 + }, + { + "start": 4453.67, + "end": 4460.59, + "probability": 0.9298 + }, + { + "start": 4460.63, + "end": 4461.59, + "probability": 0.7561 + }, + { + "start": 4461.99, + "end": 4469.49, + "probability": 0.9786 + }, + { + "start": 4469.87, + "end": 4474.43, + "probability": 0.9907 + }, + { + "start": 4474.43, + "end": 4477.25, + "probability": 0.9614 + }, + { + "start": 4477.67, + "end": 4477.85, + "probability": 0.3991 + }, + { + "start": 4477.93, + "end": 4478.47, + "probability": 0.747 + }, + { + "start": 4478.91, + "end": 4481.95, + "probability": 0.8917 + }, + { + "start": 4482.59, + "end": 4483.47, + "probability": 0.7778 + }, + { + "start": 4483.71, + "end": 4484.25, + "probability": 0.8518 + }, + { + "start": 4484.53, + "end": 4485.29, + "probability": 0.8165 + }, + { + "start": 4485.29, + "end": 4492.19, + "probability": 0.9917 + }, + { + "start": 4492.47, + "end": 4498.51, + "probability": 0.8318 + }, + { + "start": 4498.59, + "end": 4499.65, + "probability": 0.8218 + }, + { + "start": 4500.65, + "end": 4503.55, + "probability": 0.916 + }, + { + "start": 4504.25, + "end": 4508.85, + "probability": 0.9737 + }, + { + "start": 4508.99, + "end": 4510.27, + "probability": 0.9551 + }, + { + "start": 4511.07, + "end": 4512.99, + "probability": 0.4714 + }, + { + "start": 4513.09, + "end": 4513.37, + "probability": 0.7497 + }, + { + "start": 4513.51, + "end": 4514.73, + "probability": 0.6357 + }, + { + "start": 4514.77, + "end": 4515.85, + "probability": 0.9873 + }, + { + "start": 4515.91, + "end": 4519.51, + "probability": 0.979 + }, + { + "start": 4519.59, + "end": 4523.43, + "probability": 0.9867 + }, + { + "start": 4523.51, + "end": 4525.6, + "probability": 0.9729 + }, + { + "start": 4526.15, + "end": 4527.17, + "probability": 0.6896 + }, + { + "start": 4527.21, + "end": 4528.51, + "probability": 0.5588 + }, + { + "start": 4528.69, + "end": 4531.73, + "probability": 0.9741 + }, + { + "start": 4531.85, + "end": 4532.85, + "probability": 0.8157 + }, + { + "start": 4532.93, + "end": 4534.05, + "probability": 0.9916 + }, + { + "start": 4535.47, + "end": 4536.31, + "probability": 0.9651 + }, + { + "start": 4536.87, + "end": 4540.07, + "probability": 0.8403 + }, + { + "start": 4540.11, + "end": 4541.65, + "probability": 0.7376 + }, + { + "start": 4542.07, + "end": 4545.07, + "probability": 0.95 + }, + { + "start": 4545.81, + "end": 4548.93, + "probability": 0.9819 + }, + { + "start": 4549.03, + "end": 4553.19, + "probability": 0.8257 + }, + { + "start": 4553.19, + "end": 4556.35, + "probability": 0.9633 + }, + { + "start": 4556.39, + "end": 4561.67, + "probability": 0.9977 + }, + { + "start": 4562.11, + "end": 4563.55, + "probability": 0.9517 + }, + { + "start": 4563.65, + "end": 4565.61, + "probability": 0.9795 + }, + { + "start": 4566.27, + "end": 4570.03, + "probability": 0.986 + }, + { + "start": 4570.51, + "end": 4571.97, + "probability": 0.7683 + }, + { + "start": 4571.97, + "end": 4574.75, + "probability": 0.7279 + }, + { + "start": 4575.37, + "end": 4580.81, + "probability": 0.9893 + }, + { + "start": 4581.47, + "end": 4582.93, + "probability": 0.7866 + }, + { + "start": 4583.03, + "end": 4587.53, + "probability": 0.9806 + }, + { + "start": 4587.53, + "end": 4590.65, + "probability": 0.9863 + }, + { + "start": 4591.51, + "end": 4596.61, + "probability": 0.8733 + }, + { + "start": 4598.19, + "end": 4600.95, + "probability": 0.9343 + }, + { + "start": 4602.81, + "end": 4606.21, + "probability": 0.9952 + }, + { + "start": 4606.21, + "end": 4610.03, + "probability": 0.9857 + }, + { + "start": 4610.17, + "end": 4611.47, + "probability": 0.9932 + }, + { + "start": 4611.97, + "end": 4616.49, + "probability": 0.9653 + }, + { + "start": 4616.49, + "end": 4619.89, + "probability": 0.831 + }, + { + "start": 4619.99, + "end": 4622.83, + "probability": 0.9944 + }, + { + "start": 4623.85, + "end": 4626.17, + "probability": 0.8605 + }, + { + "start": 4626.61, + "end": 4629.23, + "probability": 0.9987 + }, + { + "start": 4629.77, + "end": 4630.19, + "probability": 0.5854 + }, + { + "start": 4630.37, + "end": 4630.81, + "probability": 0.3734 + }, + { + "start": 4631.09, + "end": 4632.17, + "probability": 0.9127 + }, + { + "start": 4632.23, + "end": 4633.13, + "probability": 0.8578 + }, + { + "start": 4633.31, + "end": 4635.71, + "probability": 0.9642 + }, + { + "start": 4636.19, + "end": 4641.99, + "probability": 0.9545 + }, + { + "start": 4642.47, + "end": 4646.07, + "probability": 0.9728 + }, + { + "start": 4646.07, + "end": 4649.79, + "probability": 0.9658 + }, + { + "start": 4650.79, + "end": 4652.71, + "probability": 0.9649 + }, + { + "start": 4657.35, + "end": 4658.97, + "probability": 0.512 + }, + { + "start": 4659.01, + "end": 4659.43, + "probability": 0.6138 + }, + { + "start": 4659.67, + "end": 4661.81, + "probability": 0.9186 + }, + { + "start": 4661.93, + "end": 4663.93, + "probability": 0.9565 + }, + { + "start": 4664.45, + "end": 4667.93, + "probability": 0.9893 + }, + { + "start": 4667.99, + "end": 4670.37, + "probability": 0.9333 + }, + { + "start": 4670.83, + "end": 4672.47, + "probability": 0.9932 + }, + { + "start": 4672.73, + "end": 4674.56, + "probability": 0.99 + }, + { + "start": 4674.89, + "end": 4677.33, + "probability": 0.9335 + }, + { + "start": 4677.51, + "end": 4678.61, + "probability": 0.5857 + }, + { + "start": 4678.69, + "end": 4682.37, + "probability": 0.8097 + }, + { + "start": 4682.79, + "end": 4686.99, + "probability": 0.9913 + }, + { + "start": 4687.29, + "end": 4688.48, + "probability": 0.9045 + }, + { + "start": 4688.67, + "end": 4690.31, + "probability": 0.9972 + }, + { + "start": 4690.55, + "end": 4692.39, + "probability": 0.1754 + }, + { + "start": 4692.39, + "end": 4692.39, + "probability": 0.3576 + }, + { + "start": 4692.39, + "end": 4695.51, + "probability": 0.62 + }, + { + "start": 4695.53, + "end": 4698.67, + "probability": 0.8479 + }, + { + "start": 4698.83, + "end": 4701.57, + "probability": 0.9951 + }, + { + "start": 4701.99, + "end": 4703.79, + "probability": 0.985 + }, + { + "start": 4704.33, + "end": 4705.93, + "probability": 0.9973 + }, + { + "start": 4706.11, + "end": 4706.63, + "probability": 0.651 + }, + { + "start": 4706.73, + "end": 4711.75, + "probability": 0.762 + }, + { + "start": 4712.13, + "end": 4713.91, + "probability": 0.8 + }, + { + "start": 4713.97, + "end": 4716.31, + "probability": 0.9607 + }, + { + "start": 4716.63, + "end": 4721.51, + "probability": 0.9946 + }, + { + "start": 4722.41, + "end": 4724.09, + "probability": 0.9971 + }, + { + "start": 4724.27, + "end": 4726.25, + "probability": 0.9912 + }, + { + "start": 4726.55, + "end": 4731.45, + "probability": 0.9974 + }, + { + "start": 4731.65, + "end": 4732.59, + "probability": 0.6978 + }, + { + "start": 4732.83, + "end": 4733.49, + "probability": 0.1446 + }, + { + "start": 4733.49, + "end": 4733.69, + "probability": 0.0281 + }, + { + "start": 4733.69, + "end": 4734.15, + "probability": 0.1532 + }, + { + "start": 4734.15, + "end": 4735.61, + "probability": 0.7354 + }, + { + "start": 4735.77, + "end": 4736.99, + "probability": 0.3847 + }, + { + "start": 4737.09, + "end": 4737.79, + "probability": 0.7411 + }, + { + "start": 4739.26, + "end": 4739.85, + "probability": 0.5783 + }, + { + "start": 4740.83, + "end": 4744.33, + "probability": 0.9765 + }, + { + "start": 4744.53, + "end": 4747.31, + "probability": 0.9673 + }, + { + "start": 4748.17, + "end": 4748.67, + "probability": 0.5095 + }, + { + "start": 4748.79, + "end": 4749.73, + "probability": 0.964 + }, + { + "start": 4750.07, + "end": 4752.65, + "probability": 0.7921 + }, + { + "start": 4752.73, + "end": 4754.89, + "probability": 0.926 + }, + { + "start": 4755.07, + "end": 4755.59, + "probability": 0.7811 + }, + { + "start": 4756.21, + "end": 4757.67, + "probability": 0.8204 + }, + { + "start": 4758.13, + "end": 4760.33, + "probability": 0.7575 + }, + { + "start": 4760.57, + "end": 4764.41, + "probability": 0.9722 + }, + { + "start": 4764.63, + "end": 4765.61, + "probability": 0.9661 + }, + { + "start": 4765.75, + "end": 4766.07, + "probability": 0.7581 + }, + { + "start": 4766.23, + "end": 4768.29, + "probability": 0.9558 + }, + { + "start": 4768.67, + "end": 4771.33, + "probability": 0.9762 + }, + { + "start": 4772.23, + "end": 4774.63, + "probability": 0.998 + }, + { + "start": 4774.87, + "end": 4779.77, + "probability": 0.9951 + }, + { + "start": 4779.83, + "end": 4784.29, + "probability": 0.9797 + }, + { + "start": 4784.75, + "end": 4788.89, + "probability": 0.7809 + }, + { + "start": 4789.67, + "end": 4791.41, + "probability": 0.9934 + }, + { + "start": 4791.49, + "end": 4793.07, + "probability": 0.9907 + }, + { + "start": 4793.47, + "end": 4797.13, + "probability": 0.9507 + }, + { + "start": 4797.57, + "end": 4799.65, + "probability": 0.9473 + }, + { + "start": 4800.41, + "end": 4801.95, + "probability": 0.7618 + }, + { + "start": 4802.25, + "end": 4806.49, + "probability": 0.9927 + }, + { + "start": 4806.57, + "end": 4807.51, + "probability": 0.8174 + }, + { + "start": 4808.23, + "end": 4810.67, + "probability": 0.927 + }, + { + "start": 4810.77, + "end": 4812.13, + "probability": 0.9009 + }, + { + "start": 4812.21, + "end": 4813.25, + "probability": 0.9995 + }, + { + "start": 4814.31, + "end": 4815.43, + "probability": 0.7483 + }, + { + "start": 4815.49, + "end": 4817.23, + "probability": 0.7775 + }, + { + "start": 4817.37, + "end": 4819.1, + "probability": 0.9805 + }, + { + "start": 4820.27, + "end": 4821.43, + "probability": 0.6637 + }, + { + "start": 4821.47, + "end": 4822.71, + "probability": 0.6049 + }, + { + "start": 4822.87, + "end": 4824.27, + "probability": 0.723 + }, + { + "start": 4824.39, + "end": 4825.61, + "probability": 0.8953 + }, + { + "start": 4826.31, + "end": 4829.71, + "probability": 0.9077 + }, + { + "start": 4829.83, + "end": 4830.46, + "probability": 0.9746 + }, + { + "start": 4831.15, + "end": 4831.91, + "probability": 0.8926 + }, + { + "start": 4832.13, + "end": 4833.33, + "probability": 0.936 + }, + { + "start": 4833.53, + "end": 4839.13, + "probability": 0.996 + }, + { + "start": 4839.13, + "end": 4844.93, + "probability": 0.9763 + }, + { + "start": 4845.25, + "end": 4852.53, + "probability": 0.9949 + }, + { + "start": 4852.93, + "end": 4854.83, + "probability": 0.9658 + }, + { + "start": 4854.99, + "end": 4855.57, + "probability": 0.5348 + }, + { + "start": 4855.67, + "end": 4860.63, + "probability": 0.9751 + }, + { + "start": 4861.09, + "end": 4862.59, + "probability": 0.9828 + }, + { + "start": 4863.01, + "end": 4864.65, + "probability": 0.9453 + }, + { + "start": 4864.83, + "end": 4867.33, + "probability": 0.9954 + }, + { + "start": 4867.49, + "end": 4868.31, + "probability": 0.9709 + }, + { + "start": 4868.45, + "end": 4870.35, + "probability": 0.9965 + }, + { + "start": 4870.35, + "end": 4870.53, + "probability": 0.761 + }, + { + "start": 4870.59, + "end": 4871.03, + "probability": 0.6664 + }, + { + "start": 4871.17, + "end": 4872.31, + "probability": 0.9061 + }, + { + "start": 4872.57, + "end": 4875.3, + "probability": 0.9988 + }, + { + "start": 4875.53, + "end": 4878.01, + "probability": 0.9911 + }, + { + "start": 4878.61, + "end": 4882.69, + "probability": 0.9869 + }, + { + "start": 4882.93, + "end": 4885.43, + "probability": 0.9741 + }, + { + "start": 4885.51, + "end": 4889.53, + "probability": 0.9523 + }, + { + "start": 4889.67, + "end": 4890.27, + "probability": 0.5322 + }, + { + "start": 4890.47, + "end": 4891.38, + "probability": 0.7844 + }, + { + "start": 4892.85, + "end": 4894.31, + "probability": 0.8556 + }, + { + "start": 4894.47, + "end": 4897.58, + "probability": 0.6114 + }, + { + "start": 4898.75, + "end": 4900.77, + "probability": 0.8346 + }, + { + "start": 4900.93, + "end": 4903.47, + "probability": 0.1307 + }, + { + "start": 4903.77, + "end": 4904.9, + "probability": 0.9526 + }, + { + "start": 4905.65, + "end": 4906.97, + "probability": 0.966 + }, + { + "start": 4907.37, + "end": 4908.7, + "probability": 0.9373 + }, + { + "start": 4910.73, + "end": 4913.49, + "probability": 0.6706 + }, + { + "start": 4913.95, + "end": 4914.69, + "probability": 0.768 + }, + { + "start": 4915.09, + "end": 4918.01, + "probability": 0.6788 + }, + { + "start": 4918.59, + "end": 4923.69, + "probability": 0.9934 + }, + { + "start": 4924.17, + "end": 4924.87, + "probability": 0.4254 + }, + { + "start": 4924.99, + "end": 4927.6, + "probability": 0.9473 + }, + { + "start": 4928.09, + "end": 4935.49, + "probability": 0.9796 + }, + { + "start": 4935.97, + "end": 4936.97, + "probability": 0.8135 + }, + { + "start": 4937.35, + "end": 4940.45, + "probability": 0.8743 + }, + { + "start": 4940.69, + "end": 4941.19, + "probability": 0.6407 + }, + { + "start": 4941.31, + "end": 4943.39, + "probability": 0.957 + }, + { + "start": 4943.91, + "end": 4946.59, + "probability": 0.8669 + }, + { + "start": 4947.29, + "end": 4948.07, + "probability": 0.7341 + }, + { + "start": 4948.15, + "end": 4949.23, + "probability": 0.9751 + }, + { + "start": 4949.71, + "end": 4951.45, + "probability": 0.9971 + }, + { + "start": 4952.35, + "end": 4956.81, + "probability": 0.9504 + }, + { + "start": 4956.91, + "end": 4957.69, + "probability": 0.5163 + }, + { + "start": 4958.23, + "end": 4960.07, + "probability": 0.8916 + }, + { + "start": 4960.33, + "end": 4965.61, + "probability": 0.941 + }, + { + "start": 4965.79, + "end": 4966.37, + "probability": 0.7833 + }, + { + "start": 4966.61, + "end": 4968.25, + "probability": 0.9832 + }, + { + "start": 4968.61, + "end": 4971.27, + "probability": 0.9573 + }, + { + "start": 4971.45, + "end": 4973.85, + "probability": 0.7494 + }, + { + "start": 4974.35, + "end": 4977.71, + "probability": 0.9788 + }, + { + "start": 4977.77, + "end": 4979.11, + "probability": 0.8932 + }, + { + "start": 4979.45, + "end": 4979.91, + "probability": 0.4957 + }, + { + "start": 4979.97, + "end": 4982.63, + "probability": 0.925 + }, + { + "start": 4983.37, + "end": 4984.55, + "probability": 0.6405 + }, + { + "start": 4985.01, + "end": 4985.63, + "probability": 0.5451 + }, + { + "start": 4985.71, + "end": 4988.47, + "probability": 0.8836 + }, + { + "start": 4988.77, + "end": 4991.85, + "probability": 0.9756 + }, + { + "start": 4991.85, + "end": 4996.17, + "probability": 0.9283 + }, + { + "start": 4996.41, + "end": 4996.85, + "probability": 0.8067 + }, + { + "start": 4996.95, + "end": 5000.13, + "probability": 0.797 + }, + { + "start": 5000.47, + "end": 5001.73, + "probability": 0.9897 + }, + { + "start": 5002.17, + "end": 5002.63, + "probability": 0.5378 + }, + { + "start": 5002.65, + "end": 5005.51, + "probability": 0.9961 + }, + { + "start": 5005.51, + "end": 5009.75, + "probability": 0.9921 + }, + { + "start": 5010.01, + "end": 5014.27, + "probability": 0.9553 + }, + { + "start": 5014.27, + "end": 5017.99, + "probability": 0.9945 + }, + { + "start": 5018.37, + "end": 5019.57, + "probability": 0.9838 + }, + { + "start": 5019.99, + "end": 5020.25, + "probability": 0.5383 + }, + { + "start": 5020.33, + "end": 5023.65, + "probability": 0.8176 + }, + { + "start": 5023.77, + "end": 5024.13, + "probability": 0.7794 + }, + { + "start": 5024.23, + "end": 5024.75, + "probability": 0.7025 + }, + { + "start": 5024.77, + "end": 5026.3, + "probability": 0.6421 + }, + { + "start": 5026.79, + "end": 5028.01, + "probability": 0.7872 + }, + { + "start": 5028.11, + "end": 5029.95, + "probability": 0.9452 + }, + { + "start": 5030.05, + "end": 5031.95, + "probability": 0.5922 + }, + { + "start": 5031.95, + "end": 5032.47, + "probability": 0.593 + }, + { + "start": 5033.39, + "end": 5034.09, + "probability": 0.8883 + }, + { + "start": 5034.17, + "end": 5036.61, + "probability": 0.9717 + }, + { + "start": 5036.67, + "end": 5037.94, + "probability": 0.924 + }, + { + "start": 5038.65, + "end": 5041.43, + "probability": 0.9972 + }, + { + "start": 5041.53, + "end": 5044.61, + "probability": 0.8963 + }, + { + "start": 5044.73, + "end": 5045.41, + "probability": 0.8599 + }, + { + "start": 5045.85, + "end": 5047.47, + "probability": 0.8762 + }, + { + "start": 5047.75, + "end": 5051.57, + "probability": 0.8962 + }, + { + "start": 5051.57, + "end": 5054.41, + "probability": 0.8392 + }, + { + "start": 5054.49, + "end": 5054.83, + "probability": 0.8101 + }, + { + "start": 5054.97, + "end": 5056.35, + "probability": 0.739 + }, + { + "start": 5056.37, + "end": 5057.19, + "probability": 0.9014 + }, + { + "start": 5057.19, + "end": 5057.53, + "probability": 0.7548 + }, + { + "start": 5057.79, + "end": 5060.61, + "probability": 0.7141 + }, + { + "start": 5073.85, + "end": 5074.93, + "probability": 0.6725 + }, + { + "start": 5075.51, + "end": 5076.73, + "probability": 0.7443 + }, + { + "start": 5078.89, + "end": 5083.57, + "probability": 0.8746 + }, + { + "start": 5084.29, + "end": 5086.65, + "probability": 0.7791 + }, + { + "start": 5087.51, + "end": 5090.25, + "probability": 0.8063 + }, + { + "start": 5092.01, + "end": 5095.55, + "probability": 0.9058 + }, + { + "start": 5098.81, + "end": 5101.91, + "probability": 0.9555 + }, + { + "start": 5101.91, + "end": 5105.29, + "probability": 0.9274 + }, + { + "start": 5106.11, + "end": 5106.63, + "probability": 0.391 + }, + { + "start": 5107.15, + "end": 5109.17, + "probability": 0.9312 + }, + { + "start": 5109.47, + "end": 5113.03, + "probability": 0.8726 + }, + { + "start": 5114.77, + "end": 5115.69, + "probability": 0.1125 + }, + { + "start": 5115.85, + "end": 5116.21, + "probability": 0.0261 + }, + { + "start": 5116.21, + "end": 5116.84, + "probability": 0.7183 + }, + { + "start": 5117.47, + "end": 5118.41, + "probability": 0.1563 + }, + { + "start": 5119.15, + "end": 5120.53, + "probability": 0.6552 + }, + { + "start": 5120.99, + "end": 5122.61, + "probability": 0.6777 + }, + { + "start": 5123.83, + "end": 5124.73, + "probability": 0.4414 + }, + { + "start": 5124.73, + "end": 5126.78, + "probability": 0.0999 + }, + { + "start": 5127.07, + "end": 5127.49, + "probability": 0.7898 + }, + { + "start": 5129.55, + "end": 5132.27, + "probability": 0.5552 + }, + { + "start": 5132.33, + "end": 5136.05, + "probability": 0.824 + }, + { + "start": 5136.05, + "end": 5139.93, + "probability": 0.8156 + }, + { + "start": 5140.45, + "end": 5146.53, + "probability": 0.9105 + }, + { + "start": 5147.19, + "end": 5150.29, + "probability": 0.8761 + }, + { + "start": 5150.29, + "end": 5153.39, + "probability": 0.9681 + }, + { + "start": 5154.29, + "end": 5154.85, + "probability": 0.35 + }, + { + "start": 5155.47, + "end": 5157.73, + "probability": 0.9961 + }, + { + "start": 5158.11, + "end": 5162.03, + "probability": 0.9297 + }, + { + "start": 5162.89, + "end": 5168.75, + "probability": 0.9904 + }, + { + "start": 5168.75, + "end": 5175.85, + "probability": 0.9951 + }, + { + "start": 5176.69, + "end": 5182.53, + "probability": 0.9551 + }, + { + "start": 5182.53, + "end": 5187.65, + "probability": 0.8538 + }, + { + "start": 5189.19, + "end": 5191.79, + "probability": 0.628 + }, + { + "start": 5193.01, + "end": 5197.69, + "probability": 0.9509 + }, + { + "start": 5198.21, + "end": 5201.59, + "probability": 0.8579 + }, + { + "start": 5202.21, + "end": 5205.39, + "probability": 0.8312 + }, + { + "start": 5205.53, + "end": 5214.05, + "probability": 0.9912 + }, + { + "start": 5214.15, + "end": 5214.73, + "probability": 0.7099 + }, + { + "start": 5214.79, + "end": 5219.15, + "probability": 0.5482 + }, + { + "start": 5219.27, + "end": 5220.36, + "probability": 0.9744 + }, + { + "start": 5221.47, + "end": 5222.15, + "probability": 0.8932 + }, + { + "start": 5222.65, + "end": 5225.81, + "probability": 0.8684 + }, + { + "start": 5226.47, + "end": 5226.91, + "probability": 0.4858 + }, + { + "start": 5227.73, + "end": 5230.59, + "probability": 0.6748 + }, + { + "start": 5230.69, + "end": 5233.21, + "probability": 0.8068 + }, + { + "start": 5233.57, + "end": 5235.61, + "probability": 0.46 + }, + { + "start": 5235.75, + "end": 5237.53, + "probability": 0.8135 + }, + { + "start": 5238.05, + "end": 5239.33, + "probability": 0.9358 + }, + { + "start": 5240.21, + "end": 5242.59, + "probability": 0.8344 + }, + { + "start": 5242.59, + "end": 5246.25, + "probability": 0.8356 + }, + { + "start": 5246.49, + "end": 5247.99, + "probability": 0.578 + }, + { + "start": 5248.05, + "end": 5249.23, + "probability": 0.6188 + }, + { + "start": 5249.59, + "end": 5251.29, + "probability": 0.6559 + }, + { + "start": 5252.45, + "end": 5255.27, + "probability": 0.8198 + }, + { + "start": 5255.87, + "end": 5262.35, + "probability": 0.7756 + }, + { + "start": 5262.71, + "end": 5263.33, + "probability": 0.8788 + }, + { + "start": 5263.39, + "end": 5267.87, + "probability": 0.7903 + }, + { + "start": 5268.49, + "end": 5269.69, + "probability": 0.7158 + }, + { + "start": 5271.63, + "end": 5273.32, + "probability": 0.9502 + }, + { + "start": 5274.37, + "end": 5277.49, + "probability": 0.897 + }, + { + "start": 5279.51, + "end": 5283.77, + "probability": 0.9498 + }, + { + "start": 5284.57, + "end": 5286.49, + "probability": 0.9951 + }, + { + "start": 5286.61, + "end": 5289.61, + "probability": 0.6326 + }, + { + "start": 5290.75, + "end": 5292.87, + "probability": 0.9653 + }, + { + "start": 5293.55, + "end": 5299.05, + "probability": 0.4695 + }, + { + "start": 5299.61, + "end": 5301.85, + "probability": 0.1734 + }, + { + "start": 5302.13, + "end": 5305.37, + "probability": 0.5267 + }, + { + "start": 5305.67, + "end": 5306.67, + "probability": 0.7496 + }, + { + "start": 5306.73, + "end": 5308.03, + "probability": 0.6769 + }, + { + "start": 5308.09, + "end": 5310.21, + "probability": 0.8162 + }, + { + "start": 5310.21, + "end": 5313.8, + "probability": 0.258 + }, + { + "start": 5314.53, + "end": 5316.83, + "probability": 0.4103 + }, + { + "start": 5319.65, + "end": 5321.65, + "probability": 0.703 + }, + { + "start": 5322.73, + "end": 5325.33, + "probability": 0.7935 + }, + { + "start": 5326.51, + "end": 5327.17, + "probability": 0.9699 + }, + { + "start": 5327.87, + "end": 5329.23, + "probability": 0.8405 + }, + { + "start": 5329.69, + "end": 5332.17, + "probability": 0.8623 + }, + { + "start": 5332.57, + "end": 5334.31, + "probability": 0.9778 + }, + { + "start": 5334.89, + "end": 5335.55, + "probability": 0.8259 + }, + { + "start": 5335.83, + "end": 5337.11, + "probability": 0.9158 + }, + { + "start": 5337.75, + "end": 5338.65, + "probability": 0.5622 + }, + { + "start": 5339.35, + "end": 5339.81, + "probability": 0.7568 + }, + { + "start": 5340.57, + "end": 5340.89, + "probability": 0.4656 + }, + { + "start": 5341.59, + "end": 5341.85, + "probability": 0.3361 + }, + { + "start": 5342.75, + "end": 5345.17, + "probability": 0.9321 + }, + { + "start": 5345.31, + "end": 5345.96, + "probability": 0.6831 + }, + { + "start": 5346.27, + "end": 5347.23, + "probability": 0.8811 + }, + { + "start": 5347.33, + "end": 5350.29, + "probability": 0.8638 + }, + { + "start": 5350.35, + "end": 5351.81, + "probability": 0.9937 + }, + { + "start": 5352.41, + "end": 5355.91, + "probability": 0.9829 + }, + { + "start": 5356.29, + "end": 5361.25, + "probability": 0.4927 + }, + { + "start": 5363.29, + "end": 5364.59, + "probability": 0.7421 + }, + { + "start": 5365.51, + "end": 5366.63, + "probability": 0.6895 + }, + { + "start": 5366.71, + "end": 5370.39, + "probability": 0.7046 + }, + { + "start": 5370.95, + "end": 5373.23, + "probability": 0.9383 + }, + { + "start": 5373.65, + "end": 5374.53, + "probability": 0.4503 + }, + { + "start": 5374.84, + "end": 5376.85, + "probability": 0.7919 + }, + { + "start": 5378.05, + "end": 5381.15, + "probability": 0.9892 + }, + { + "start": 5381.53, + "end": 5386.83, + "probability": 0.9702 + }, + { + "start": 5387.31, + "end": 5391.69, + "probability": 0.9951 + }, + { + "start": 5392.21, + "end": 5396.53, + "probability": 0.7669 + }, + { + "start": 5396.53, + "end": 5398.25, + "probability": 0.8142 + }, + { + "start": 5399.05, + "end": 5399.75, + "probability": 0.4489 + }, + { + "start": 5399.81, + "end": 5403.23, + "probability": 0.9204 + }, + { + "start": 5403.65, + "end": 5405.15, + "probability": 0.5256 + }, + { + "start": 5405.27, + "end": 5405.99, + "probability": 0.7868 + }, + { + "start": 5406.27, + "end": 5408.25, + "probability": 0.9867 + }, + { + "start": 5408.45, + "end": 5410.37, + "probability": 0.9679 + }, + { + "start": 5410.81, + "end": 5411.31, + "probability": 0.7726 + }, + { + "start": 5411.39, + "end": 5412.09, + "probability": 0.8149 + }, + { + "start": 5412.39, + "end": 5414.53, + "probability": 0.6674 + }, + { + "start": 5414.69, + "end": 5416.73, + "probability": 0.9641 + }, + { + "start": 5422.25, + "end": 5424.29, + "probability": 0.8282 + }, + { + "start": 5426.55, + "end": 5427.99, + "probability": 0.7346 + }, + { + "start": 5428.07, + "end": 5429.15, + "probability": 0.8778 + }, + { + "start": 5429.41, + "end": 5431.47, + "probability": 0.8883 + }, + { + "start": 5431.59, + "end": 5434.57, + "probability": 0.9966 + }, + { + "start": 5435.53, + "end": 5438.45, + "probability": 0.9447 + }, + { + "start": 5438.85, + "end": 5443.29, + "probability": 0.9719 + }, + { + "start": 5443.51, + "end": 5444.01, + "probability": 0.3905 + }, + { + "start": 5444.57, + "end": 5450.19, + "probability": 0.8067 + }, + { + "start": 5450.71, + "end": 5457.97, + "probability": 0.9957 + }, + { + "start": 5458.13, + "end": 5461.95, + "probability": 0.9493 + }, + { + "start": 5462.55, + "end": 5468.23, + "probability": 0.9984 + }, + { + "start": 5468.35, + "end": 5470.61, + "probability": 0.9928 + }, + { + "start": 5470.67, + "end": 5471.79, + "probability": 0.6451 + }, + { + "start": 5472.39, + "end": 5478.43, + "probability": 0.9966 + }, + { + "start": 5478.87, + "end": 5483.95, + "probability": 0.9971 + }, + { + "start": 5484.39, + "end": 5488.81, + "probability": 0.9645 + }, + { + "start": 5489.35, + "end": 5491.03, + "probability": 0.9678 + }, + { + "start": 5491.49, + "end": 5495.39, + "probability": 0.5242 + }, + { + "start": 5495.83, + "end": 5497.91, + "probability": 0.9583 + }, + { + "start": 5498.81, + "end": 5498.99, + "probability": 0.5641 + }, + { + "start": 5499.43, + "end": 5500.14, + "probability": 0.908 + }, + { + "start": 5500.29, + "end": 5501.29, + "probability": 0.9192 + }, + { + "start": 5501.43, + "end": 5504.13, + "probability": 0.9639 + }, + { + "start": 5504.63, + "end": 5505.67, + "probability": 0.958 + }, + { + "start": 5506.01, + "end": 5509.11, + "probability": 0.9771 + }, + { + "start": 5509.17, + "end": 5511.51, + "probability": 0.5199 + }, + { + "start": 5511.95, + "end": 5516.79, + "probability": 0.9712 + }, + { + "start": 5517.17, + "end": 5518.01, + "probability": 0.8729 + }, + { + "start": 5518.47, + "end": 5520.41, + "probability": 0.9744 + }, + { + "start": 5520.83, + "end": 5521.49, + "probability": 0.8452 + }, + { + "start": 5521.81, + "end": 5524.45, + "probability": 0.976 + }, + { + "start": 5524.47, + "end": 5528.79, + "probability": 0.9993 + }, + { + "start": 5529.15, + "end": 5531.51, + "probability": 0.9001 + }, + { + "start": 5531.87, + "end": 5537.25, + "probability": 0.9785 + }, + { + "start": 5537.35, + "end": 5540.05, + "probability": 0.9723 + }, + { + "start": 5540.05, + "end": 5543.69, + "probability": 0.9727 + }, + { + "start": 5544.17, + "end": 5548.39, + "probability": 0.9945 + }, + { + "start": 5549.05, + "end": 5553.63, + "probability": 0.9902 + }, + { + "start": 5553.63, + "end": 5558.51, + "probability": 0.9893 + }, + { + "start": 5558.95, + "end": 5560.37, + "probability": 0.978 + }, + { + "start": 5560.77, + "end": 5561.77, + "probability": 0.763 + }, + { + "start": 5562.21, + "end": 5566.51, + "probability": 0.9526 + }, + { + "start": 5566.59, + "end": 5569.01, + "probability": 0.8267 + }, + { + "start": 5569.75, + "end": 5574.33, + "probability": 0.8462 + }, + { + "start": 5574.67, + "end": 5575.95, + "probability": 0.9827 + }, + { + "start": 5576.21, + "end": 5581.29, + "probability": 0.9617 + }, + { + "start": 5581.65, + "end": 5585.35, + "probability": 0.9915 + }, + { + "start": 5585.85, + "end": 5588.21, + "probability": 0.8235 + }, + { + "start": 5588.33, + "end": 5588.77, + "probability": 0.5826 + }, + { + "start": 5589.03, + "end": 5591.35, + "probability": 0.9889 + }, + { + "start": 5591.55, + "end": 5591.81, + "probability": 0.6377 + }, + { + "start": 5592.21, + "end": 5594.17, + "probability": 0.8993 + }, + { + "start": 5595.54, + "end": 5597.97, + "probability": 0.8636 + }, + { + "start": 5598.13, + "end": 5598.45, + "probability": 0.2503 + }, + { + "start": 5598.45, + "end": 5598.45, + "probability": 0.3023 + }, + { + "start": 5598.45, + "end": 5598.45, + "probability": 0.1666 + }, + { + "start": 5598.69, + "end": 5600.43, + "probability": 0.7148 + }, + { + "start": 5600.73, + "end": 5601.39, + "probability": 0.955 + }, + { + "start": 5601.77, + "end": 5602.71, + "probability": 0.856 + }, + { + "start": 5603.05, + "end": 5604.39, + "probability": 0.7758 + }, + { + "start": 5604.47, + "end": 5607.58, + "probability": 0.8871 + }, + { + "start": 5609.01, + "end": 5609.75, + "probability": 0.3732 + }, + { + "start": 5610.43, + "end": 5611.53, + "probability": 0.7325 + }, + { + "start": 5619.91, + "end": 5620.01, + "probability": 0.046 + }, + { + "start": 5620.01, + "end": 5624.97, + "probability": 0.0156 + }, + { + "start": 5626.99, + "end": 5627.45, + "probability": 0.1199 + }, + { + "start": 5627.45, + "end": 5628.97, + "probability": 0.0163 + }, + { + "start": 5629.07, + "end": 5629.07, + "probability": 0.1417 + }, + { + "start": 5629.07, + "end": 5632.25, + "probability": 0.586 + }, + { + "start": 5632.41, + "end": 5633.39, + "probability": 0.6724 + }, + { + "start": 5634.55, + "end": 5640.43, + "probability": 0.9776 + }, + { + "start": 5641.35, + "end": 5643.93, + "probability": 0.1079 + }, + { + "start": 5644.05, + "end": 5645.01, + "probability": 0.4686 + }, + { + "start": 5645.31, + "end": 5645.41, + "probability": 0.4386 + }, + { + "start": 5645.55, + "end": 5647.6, + "probability": 0.9794 + }, + { + "start": 5648.33, + "end": 5650.6, + "probability": 0.9051 + }, + { + "start": 5652.59, + "end": 5655.05, + "probability": 0.7564 + }, + { + "start": 5657.89, + "end": 5660.79, + "probability": 0.9841 + }, + { + "start": 5660.91, + "end": 5663.51, + "probability": 0.8717 + }, + { + "start": 5663.65, + "end": 5665.79, + "probability": 0.7492 + }, + { + "start": 5671.19, + "end": 5672.07, + "probability": 0.7182 + }, + { + "start": 5672.31, + "end": 5673.01, + "probability": 0.7935 + }, + { + "start": 5673.33, + "end": 5675.19, + "probability": 0.9712 + }, + { + "start": 5677.71, + "end": 5680.13, + "probability": 0.5809 + }, + { + "start": 5680.81, + "end": 5682.47, + "probability": 0.8487 + }, + { + "start": 5682.53, + "end": 5684.62, + "probability": 0.883 + }, + { + "start": 5685.07, + "end": 5687.27, + "probability": 0.1267 + }, + { + "start": 5688.35, + "end": 5690.2, + "probability": 0.8966 + }, + { + "start": 5690.69, + "end": 5691.27, + "probability": 0.7892 + }, + { + "start": 5694.21, + "end": 5695.33, + "probability": 0.8005 + }, + { + "start": 5700.64, + "end": 5702.47, + "probability": 0.9434 + }, + { + "start": 5704.15, + "end": 5706.25, + "probability": 0.998 + }, + { + "start": 5707.87, + "end": 5709.47, + "probability": 0.8677 + }, + { + "start": 5709.51, + "end": 5712.69, + "probability": 0.7299 + }, + { + "start": 5713.47, + "end": 5716.59, + "probability": 0.6568 + }, + { + "start": 5717.43, + "end": 5719.31, + "probability": 0.9517 + }, + { + "start": 5719.37, + "end": 5719.91, + "probability": 0.6056 + }, + { + "start": 5720.73, + "end": 5721.93, + "probability": 0.6091 + }, + { + "start": 5722.55, + "end": 5725.03, + "probability": 0.82 + }, + { + "start": 5725.31, + "end": 5727.77, + "probability": 0.917 + }, + { + "start": 5728.17, + "end": 5735.41, + "probability": 0.9878 + }, + { + "start": 5736.01, + "end": 5738.01, + "probability": 0.8368 + }, + { + "start": 5738.67, + "end": 5744.79, + "probability": 0.981 + }, + { + "start": 5745.45, + "end": 5747.77, + "probability": 0.9689 + }, + { + "start": 5748.65, + "end": 5750.29, + "probability": 0.984 + }, + { + "start": 5751.11, + "end": 5753.25, + "probability": 0.5481 + }, + { + "start": 5753.77, + "end": 5754.47, + "probability": 0.5355 + }, + { + "start": 5754.89, + "end": 5755.67, + "probability": 0.506 + }, + { + "start": 5756.19, + "end": 5757.89, + "probability": 0.9548 + }, + { + "start": 5758.63, + "end": 5759.63, + "probability": 0.6189 + }, + { + "start": 5760.59, + "end": 5762.77, + "probability": 0.9622 + }, + { + "start": 5762.91, + "end": 5763.07, + "probability": 0.7314 + }, + { + "start": 5763.15, + "end": 5764.2, + "probability": 0.9971 + }, + { + "start": 5766.27, + "end": 5767.11, + "probability": 0.88 + }, + { + "start": 5767.23, + "end": 5769.45, + "probability": 0.9973 + }, + { + "start": 5769.53, + "end": 5771.62, + "probability": 0.9633 + }, + { + "start": 5775.27, + "end": 5776.61, + "probability": 0.5983 + }, + { + "start": 5778.29, + "end": 5779.11, + "probability": 0.7083 + }, + { + "start": 5780.03, + "end": 5780.95, + "probability": 0.8765 + }, + { + "start": 5783.01, + "end": 5785.03, + "probability": 0.9746 + }, + { + "start": 5788.87, + "end": 5790.85, + "probability": 0.6448 + }, + { + "start": 5791.85, + "end": 5794.07, + "probability": 0.9976 + }, + { + "start": 5794.63, + "end": 5798.09, + "probability": 0.9548 + }, + { + "start": 5798.69, + "end": 5801.61, + "probability": 0.9608 + }, + { + "start": 5802.65, + "end": 5802.93, + "probability": 0.7174 + }, + { + "start": 5803.01, + "end": 5804.23, + "probability": 0.9756 + }, + { + "start": 5804.57, + "end": 5807.09, + "probability": 0.9697 + }, + { + "start": 5807.45, + "end": 5808.17, + "probability": 0.6408 + }, + { + "start": 5808.81, + "end": 5810.67, + "probability": 0.7986 + }, + { + "start": 5811.19, + "end": 5815.11, + "probability": 0.9928 + }, + { + "start": 5815.83, + "end": 5817.73, + "probability": 0.9204 + }, + { + "start": 5818.41, + "end": 5822.81, + "probability": 0.9549 + }, + { + "start": 5822.81, + "end": 5827.17, + "probability": 0.9971 + }, + { + "start": 5827.91, + "end": 5830.79, + "probability": 0.9863 + }, + { + "start": 5831.29, + "end": 5837.01, + "probability": 0.9834 + }, + { + "start": 5837.49, + "end": 5840.25, + "probability": 0.9913 + }, + { + "start": 5840.73, + "end": 5844.31, + "probability": 0.9902 + }, + { + "start": 5844.89, + "end": 5847.71, + "probability": 0.9735 + }, + { + "start": 5848.43, + "end": 5852.05, + "probability": 0.8384 + }, + { + "start": 5852.67, + "end": 5853.07, + "probability": 0.3692 + }, + { + "start": 5853.07, + "end": 5853.29, + "probability": 0.9485 + }, + { + "start": 5853.87, + "end": 5855.0, + "probability": 0.9382 + }, + { + "start": 5855.35, + "end": 5856.47, + "probability": 0.9409 + }, + { + "start": 5856.71, + "end": 5859.23, + "probability": 0.8547 + }, + { + "start": 5859.23, + "end": 5861.31, + "probability": 0.6542 + }, + { + "start": 5862.31, + "end": 5864.11, + "probability": 0.9264 + }, + { + "start": 5865.79, + "end": 5867.65, + "probability": 0.7939 + }, + { + "start": 5868.29, + "end": 5870.49, + "probability": 0.907 + }, + { + "start": 5871.31, + "end": 5873.1, + "probability": 0.3573 + }, + { + "start": 5877.25, + "end": 5879.71, + "probability": 0.9955 + }, + { + "start": 5880.15, + "end": 5883.25, + "probability": 0.9738 + }, + { + "start": 5883.59, + "end": 5889.39, + "probability": 0.9788 + }, + { + "start": 5889.77, + "end": 5893.97, + "probability": 0.9288 + }, + { + "start": 5894.37, + "end": 5896.67, + "probability": 0.9344 + }, + { + "start": 5897.07, + "end": 5897.73, + "probability": 0.571 + }, + { + "start": 5897.85, + "end": 5900.1, + "probability": 0.9937 + }, + { + "start": 5900.71, + "end": 5904.83, + "probability": 0.9835 + }, + { + "start": 5904.83, + "end": 5908.61, + "probability": 0.9846 + }, + { + "start": 5908.79, + "end": 5909.85, + "probability": 0.99 + }, + { + "start": 5910.31, + "end": 5912.07, + "probability": 0.8787 + }, + { + "start": 5912.11, + "end": 5914.03, + "probability": 0.9811 + }, + { + "start": 5914.29, + "end": 5920.43, + "probability": 0.9916 + }, + { + "start": 5920.91, + "end": 5923.05, + "probability": 0.9896 + }, + { + "start": 5923.23, + "end": 5929.05, + "probability": 0.9869 + }, + { + "start": 5929.59, + "end": 5933.73, + "probability": 0.9798 + }, + { + "start": 5933.73, + "end": 5937.93, + "probability": 0.9924 + }, + { + "start": 5938.37, + "end": 5944.73, + "probability": 0.9967 + }, + { + "start": 5945.35, + "end": 5950.11, + "probability": 0.9941 + }, + { + "start": 5950.11, + "end": 5955.77, + "probability": 0.9972 + }, + { + "start": 5956.25, + "end": 5960.73, + "probability": 0.9966 + }, + { + "start": 5961.19, + "end": 5961.39, + "probability": 0.2439 + }, + { + "start": 5961.63, + "end": 5969.39, + "probability": 0.9307 + }, + { + "start": 5969.39, + "end": 5975.79, + "probability": 0.986 + }, + { + "start": 5976.55, + "end": 5978.25, + "probability": 0.9813 + }, + { + "start": 5978.89, + "end": 5983.35, + "probability": 0.9933 + }, + { + "start": 5983.83, + "end": 5986.05, + "probability": 0.7424 + }, + { + "start": 5986.73, + "end": 5992.35, + "probability": 0.9758 + }, + { + "start": 5992.35, + "end": 5997.19, + "probability": 0.9983 + }, + { + "start": 5997.29, + "end": 5999.39, + "probability": 0.9907 + }, + { + "start": 5999.93, + "end": 6002.93, + "probability": 0.994 + }, + { + "start": 6003.41, + "end": 6005.87, + "probability": 0.993 + }, + { + "start": 6005.87, + "end": 6009.11, + "probability": 0.9984 + }, + { + "start": 6009.25, + "end": 6012.03, + "probability": 0.9968 + }, + { + "start": 6012.77, + "end": 6015.85, + "probability": 0.9202 + }, + { + "start": 6016.59, + "end": 6021.25, + "probability": 0.9975 + }, + { + "start": 6021.53, + "end": 6023.97, + "probability": 0.9985 + }, + { + "start": 6024.49, + "end": 6027.55, + "probability": 0.9891 + }, + { + "start": 6027.65, + "end": 6030.65, + "probability": 0.9182 + }, + { + "start": 6030.95, + "end": 6032.95, + "probability": 0.9981 + }, + { + "start": 6033.43, + "end": 6035.23, + "probability": 0.9902 + }, + { + "start": 6035.47, + "end": 6038.99, + "probability": 0.9938 + }, + { + "start": 6039.25, + "end": 6042.31, + "probability": 0.9519 + }, + { + "start": 6042.81, + "end": 6046.45, + "probability": 0.9963 + }, + { + "start": 6046.71, + "end": 6047.47, + "probability": 0.8881 + }, + { + "start": 6047.77, + "end": 6049.19, + "probability": 0.9769 + }, + { + "start": 6049.69, + "end": 6052.09, + "probability": 0.9969 + }, + { + "start": 6052.77, + "end": 6054.15, + "probability": 0.9881 + }, + { + "start": 6054.81, + "end": 6056.75, + "probability": 0.9648 + }, + { + "start": 6057.45, + "end": 6059.69, + "probability": 0.7413 + }, + { + "start": 6059.91, + "end": 6063.97, + "probability": 0.8379 + }, + { + "start": 6064.67, + "end": 6065.35, + "probability": 0.6418 + }, + { + "start": 6066.63, + "end": 6072.41, + "probability": 0.9069 + }, + { + "start": 6072.91, + "end": 6074.43, + "probability": 0.9526 + }, + { + "start": 6074.95, + "end": 6076.08, + "probability": 0.9507 + }, + { + "start": 6076.91, + "end": 6082.39, + "probability": 0.995 + }, + { + "start": 6083.01, + "end": 6087.05, + "probability": 0.9985 + }, + { + "start": 6087.33, + "end": 6089.63, + "probability": 0.9877 + }, + { + "start": 6090.05, + "end": 6091.95, + "probability": 0.9465 + }, + { + "start": 6092.17, + "end": 6093.25, + "probability": 0.9659 + }, + { + "start": 6093.39, + "end": 6093.85, + "probability": 0.8185 + }, + { + "start": 6093.95, + "end": 6094.47, + "probability": 0.8822 + }, + { + "start": 6094.61, + "end": 6095.35, + "probability": 0.7961 + }, + { + "start": 6095.55, + "end": 6100.79, + "probability": 0.9907 + }, + { + "start": 6101.45, + "end": 6102.03, + "probability": 0.9397 + }, + { + "start": 6102.09, + "end": 6103.29, + "probability": 0.9678 + }, + { + "start": 6103.51, + "end": 6105.71, + "probability": 0.9822 + }, + { + "start": 6106.17, + "end": 6108.57, + "probability": 0.9097 + }, + { + "start": 6108.93, + "end": 6111.41, + "probability": 0.7247 + }, + { + "start": 6111.75, + "end": 6114.55, + "probability": 0.9951 + }, + { + "start": 6114.81, + "end": 6117.79, + "probability": 0.9891 + }, + { + "start": 6117.79, + "end": 6120.95, + "probability": 0.9963 + }, + { + "start": 6121.79, + "end": 6125.81, + "probability": 0.9658 + }, + { + "start": 6126.39, + "end": 6126.95, + "probability": 0.806 + }, + { + "start": 6127.37, + "end": 6132.23, + "probability": 0.9986 + }, + { + "start": 6132.23, + "end": 6136.95, + "probability": 0.9979 + }, + { + "start": 6137.41, + "end": 6138.45, + "probability": 0.6262 + }, + { + "start": 6138.95, + "end": 6139.71, + "probability": 0.6026 + }, + { + "start": 6139.75, + "end": 6140.59, + "probability": 0.9023 + }, + { + "start": 6140.71, + "end": 6142.53, + "probability": 0.9111 + }, + { + "start": 6142.67, + "end": 6146.29, + "probability": 0.8084 + }, + { + "start": 6146.61, + "end": 6148.33, + "probability": 0.9708 + }, + { + "start": 6148.53, + "end": 6152.33, + "probability": 0.9893 + }, + { + "start": 6152.33, + "end": 6154.99, + "probability": 0.9836 + }, + { + "start": 6155.63, + "end": 6159.53, + "probability": 0.9893 + }, + { + "start": 6160.25, + "end": 6160.91, + "probability": 0.6912 + }, + { + "start": 6161.31, + "end": 6164.65, + "probability": 0.9749 + }, + { + "start": 6165.11, + "end": 6168.77, + "probability": 0.7357 + }, + { + "start": 6169.43, + "end": 6170.83, + "probability": 0.8989 + }, + { + "start": 6170.87, + "end": 6171.79, + "probability": 0.6299 + }, + { + "start": 6172.21, + "end": 6174.95, + "probability": 0.9917 + }, + { + "start": 6175.59, + "end": 6179.17, + "probability": 0.9702 + }, + { + "start": 6179.49, + "end": 6181.67, + "probability": 0.8822 + }, + { + "start": 6182.25, + "end": 6185.05, + "probability": 0.9684 + }, + { + "start": 6185.67, + "end": 6186.31, + "probability": 0.9294 + }, + { + "start": 6186.91, + "end": 6190.59, + "probability": 0.9288 + }, + { + "start": 6190.93, + "end": 6196.07, + "probability": 0.9937 + }, + { + "start": 6197.55, + "end": 6201.81, + "probability": 0.9907 + }, + { + "start": 6202.51, + "end": 6209.89, + "probability": 0.9989 + }, + { + "start": 6210.43, + "end": 6215.77, + "probability": 0.9719 + }, + { + "start": 6216.31, + "end": 6219.27, + "probability": 0.9849 + }, + { + "start": 6219.69, + "end": 6222.85, + "probability": 0.8678 + }, + { + "start": 6223.15, + "end": 6226.99, + "probability": 0.9224 + }, + { + "start": 6227.15, + "end": 6232.79, + "probability": 0.9531 + }, + { + "start": 6233.03, + "end": 6238.21, + "probability": 0.9985 + }, + { + "start": 6238.85, + "end": 6244.81, + "probability": 0.9969 + }, + { + "start": 6245.03, + "end": 6246.29, + "probability": 0.7894 + }, + { + "start": 6246.67, + "end": 6249.77, + "probability": 0.9087 + }, + { + "start": 6249.91, + "end": 6250.69, + "probability": 0.9713 + }, + { + "start": 6250.91, + "end": 6251.99, + "probability": 0.6462 + }, + { + "start": 6252.49, + "end": 6257.69, + "probability": 0.9379 + }, + { + "start": 6257.79, + "end": 6260.71, + "probability": 0.9368 + }, + { + "start": 6263.37, + "end": 6267.01, + "probability": 0.8308 + }, + { + "start": 6267.01, + "end": 6272.29, + "probability": 0.9937 + }, + { + "start": 6272.41, + "end": 6273.67, + "probability": 0.8098 + }, + { + "start": 6274.13, + "end": 6279.57, + "probability": 0.984 + }, + { + "start": 6279.77, + "end": 6282.97, + "probability": 0.8335 + }, + { + "start": 6283.43, + "end": 6287.47, + "probability": 0.8814 + }, + { + "start": 6287.75, + "end": 6290.37, + "probability": 0.9843 + }, + { + "start": 6290.67, + "end": 6291.07, + "probability": 0.7526 + }, + { + "start": 6291.19, + "end": 6292.11, + "probability": 0.7971 + }, + { + "start": 6292.51, + "end": 6294.59, + "probability": 0.6667 + }, + { + "start": 6295.11, + "end": 6297.95, + "probability": 0.98 + }, + { + "start": 6298.37, + "end": 6302.77, + "probability": 0.5924 + }, + { + "start": 6303.07, + "end": 6303.65, + "probability": 0.6556 + }, + { + "start": 6303.75, + "end": 6304.57, + "probability": 0.9575 + }, + { + "start": 6304.97, + "end": 6308.41, + "probability": 0.9564 + }, + { + "start": 6308.95, + "end": 6311.79, + "probability": 0.9612 + }, + { + "start": 6312.19, + "end": 6315.89, + "probability": 0.9973 + }, + { + "start": 6315.89, + "end": 6319.63, + "probability": 0.9816 + }, + { + "start": 6319.73, + "end": 6320.23, + "probability": 0.8545 + }, + { + "start": 6320.85, + "end": 6321.43, + "probability": 0.6879 + }, + { + "start": 6322.23, + "end": 6324.59, + "probability": 0.796 + }, + { + "start": 6325.07, + "end": 6325.45, + "probability": 0.9387 + }, + { + "start": 6338.29, + "end": 6339.01, + "probability": 0.5345 + }, + { + "start": 6341.55, + "end": 6342.97, + "probability": 0.6412 + }, + { + "start": 6343.55, + "end": 6345.07, + "probability": 0.7828 + }, + { + "start": 6346.21, + "end": 6349.17, + "probability": 0.9681 + }, + { + "start": 6349.25, + "end": 6351.67, + "probability": 0.9491 + }, + { + "start": 6352.31, + "end": 6354.43, + "probability": 0.4646 + }, + { + "start": 6355.57, + "end": 6357.19, + "probability": 0.8724 + }, + { + "start": 6357.47, + "end": 6362.91, + "probability": 0.9455 + }, + { + "start": 6363.55, + "end": 6364.57, + "probability": 0.9195 + }, + { + "start": 6365.83, + "end": 6369.35, + "probability": 0.9683 + }, + { + "start": 6369.35, + "end": 6372.83, + "probability": 0.8117 + }, + { + "start": 6373.95, + "end": 6377.43, + "probability": 0.9969 + }, + { + "start": 6377.51, + "end": 6377.95, + "probability": 0.4308 + }, + { + "start": 6378.53, + "end": 6381.25, + "probability": 0.8321 + }, + { + "start": 6381.39, + "end": 6387.11, + "probability": 0.9939 + }, + { + "start": 6387.93, + "end": 6390.53, + "probability": 0.9827 + }, + { + "start": 6390.65, + "end": 6393.59, + "probability": 0.9775 + }, + { + "start": 6394.13, + "end": 6396.41, + "probability": 0.7975 + }, + { + "start": 6397.25, + "end": 6397.79, + "probability": 0.3756 + }, + { + "start": 6397.83, + "end": 6401.73, + "probability": 0.8202 + }, + { + "start": 6402.25, + "end": 6403.15, + "probability": 0.8026 + }, + { + "start": 6403.71, + "end": 6406.09, + "probability": 0.973 + }, + { + "start": 6406.75, + "end": 6408.51, + "probability": 0.7497 + }, + { + "start": 6408.51, + "end": 6410.69, + "probability": 0.9849 + }, + { + "start": 6410.69, + "end": 6415.35, + "probability": 0.9886 + }, + { + "start": 6415.87, + "end": 6416.99, + "probability": 0.2445 + }, + { + "start": 6417.79, + "end": 6418.97, + "probability": 0.5972 + }, + { + "start": 6419.87, + "end": 6425.25, + "probability": 0.3664 + }, + { + "start": 6426.49, + "end": 6427.91, + "probability": 0.1439 + }, + { + "start": 6428.53, + "end": 6433.49, + "probability": 0.852 + }, + { + "start": 6434.29, + "end": 6434.75, + "probability": 0.412 + }, + { + "start": 6434.93, + "end": 6440.27, + "probability": 0.8174 + }, + { + "start": 6441.78, + "end": 6446.79, + "probability": 0.8821 + }, + { + "start": 6446.87, + "end": 6448.41, + "probability": 0.8184 + }, + { + "start": 6449.35, + "end": 6453.83, + "probability": 0.7291 + }, + { + "start": 6453.83, + "end": 6460.09, + "probability": 0.8917 + }, + { + "start": 6462.27, + "end": 6465.89, + "probability": 0.8759 + }, + { + "start": 6466.43, + "end": 6468.07, + "probability": 0.5786 + }, + { + "start": 6468.87, + "end": 6470.87, + "probability": 0.5239 + }, + { + "start": 6471.11, + "end": 6472.91, + "probability": 0.967 + }, + { + "start": 6473.05, + "end": 6478.99, + "probability": 0.9741 + }, + { + "start": 6478.99, + "end": 6484.53, + "probability": 0.9975 + }, + { + "start": 6484.59, + "end": 6486.19, + "probability": 0.6411 + }, + { + "start": 6486.61, + "end": 6488.97, + "probability": 0.7723 + }, + { + "start": 6489.09, + "end": 6489.47, + "probability": 0.7219 + }, + { + "start": 6490.87, + "end": 6491.61, + "probability": 0.7252 + }, + { + "start": 6492.33, + "end": 6494.21, + "probability": 0.6088 + }, + { + "start": 6495.05, + "end": 6495.59, + "probability": 0.3168 + }, + { + "start": 6495.85, + "end": 6496.82, + "probability": 0.9756 + }, + { + "start": 6497.43, + "end": 6498.35, + "probability": 0.4563 + }, + { + "start": 6499.65, + "end": 6499.79, + "probability": 0.2679 + }, + { + "start": 6499.79, + "end": 6499.79, + "probability": 0.0401 + }, + { + "start": 6499.79, + "end": 6501.8, + "probability": 0.6841 + }, + { + "start": 6502.89, + "end": 6507.57, + "probability": 0.1399 + }, + { + "start": 6508.89, + "end": 6509.81, + "probability": 0.0415 + }, + { + "start": 6513.75, + "end": 6514.65, + "probability": 0.0875 + }, + { + "start": 6522.27, + "end": 6525.13, + "probability": 0.5911 + }, + { + "start": 6525.25, + "end": 6527.25, + "probability": 0.7 + }, + { + "start": 6527.25, + "end": 6529.89, + "probability": 0.9355 + }, + { + "start": 6531.77, + "end": 6532.63, + "probability": 0.9422 + }, + { + "start": 6534.73, + "end": 6537.99, + "probability": 0.7892 + }, + { + "start": 6538.59, + "end": 6542.39, + "probability": 0.4487 + }, + { + "start": 6543.13, + "end": 6544.75, + "probability": 0.6586 + }, + { + "start": 6545.11, + "end": 6545.41, + "probability": 0.7708 + }, + { + "start": 6547.95, + "end": 6549.85, + "probability": 0.0252 + }, + { + "start": 6557.23, + "end": 6559.55, + "probability": 0.4475 + }, + { + "start": 6567.21, + "end": 6569.19, + "probability": 0.5461 + }, + { + "start": 6570.75, + "end": 6574.05, + "probability": 0.3715 + }, + { + "start": 6576.07, + "end": 6581.51, + "probability": 0.7169 + }, + { + "start": 6582.33, + "end": 6583.57, + "probability": 0.8314 + }, + { + "start": 6584.61, + "end": 6587.65, + "probability": 0.9941 + }, + { + "start": 6587.65, + "end": 6592.23, + "probability": 0.996 + }, + { + "start": 6593.27, + "end": 6598.95, + "probability": 0.8561 + }, + { + "start": 6599.03, + "end": 6603.01, + "probability": 0.8853 + }, + { + "start": 6603.05, + "end": 6604.03, + "probability": 0.9813 + }, + { + "start": 6604.17, + "end": 6606.57, + "probability": 0.7243 + }, + { + "start": 6607.99, + "end": 6611.61, + "probability": 0.9655 + }, + { + "start": 6612.13, + "end": 6619.49, + "probability": 0.9894 + }, + { + "start": 6619.49, + "end": 6626.49, + "probability": 0.9973 + }, + { + "start": 6627.39, + "end": 6630.51, + "probability": 0.9957 + }, + { + "start": 6630.51, + "end": 6635.07, + "probability": 0.9964 + }, + { + "start": 6638.61, + "end": 6642.31, + "probability": 0.9359 + }, + { + "start": 6642.63, + "end": 6647.41, + "probability": 0.9856 + }, + { + "start": 6647.93, + "end": 6651.35, + "probability": 0.8488 + }, + { + "start": 6652.07, + "end": 6656.49, + "probability": 0.9855 + }, + { + "start": 6657.09, + "end": 6658.09, + "probability": 0.8108 + }, + { + "start": 6658.55, + "end": 6659.87, + "probability": 0.9191 + }, + { + "start": 6660.35, + "end": 6662.41, + "probability": 0.7378 + }, + { + "start": 6662.97, + "end": 6668.05, + "probability": 0.9966 + }, + { + "start": 6668.05, + "end": 6672.91, + "probability": 0.9985 + }, + { + "start": 6675.87, + "end": 6677.17, + "probability": 0.81 + }, + { + "start": 6678.15, + "end": 6680.69, + "probability": 0.9961 + }, + { + "start": 6681.11, + "end": 6681.83, + "probability": 0.6039 + }, + { + "start": 6682.25, + "end": 6685.25, + "probability": 0.9009 + }, + { + "start": 6686.07, + "end": 6688.51, + "probability": 0.6454 + }, + { + "start": 6688.69, + "end": 6689.25, + "probability": 0.4761 + }, + { + "start": 6691.47, + "end": 6692.87, + "probability": 0.6953 + }, + { + "start": 6694.77, + "end": 6697.77, + "probability": 0.7991 + }, + { + "start": 6698.41, + "end": 6700.37, + "probability": 0.2951 + }, + { + "start": 6701.54, + "end": 6703.97, + "probability": 0.8914 + }, + { + "start": 6704.81, + "end": 6705.49, + "probability": 0.9323 + }, + { + "start": 6705.77, + "end": 6706.19, + "probability": 0.8829 + }, + { + "start": 6710.41, + "end": 6714.23, + "probability": 0.9552 + }, + { + "start": 6714.75, + "end": 6720.67, + "probability": 0.9805 + }, + { + "start": 6721.73, + "end": 6725.91, + "probability": 0.9834 + }, + { + "start": 6726.79, + "end": 6728.01, + "probability": 0.9838 + }, + { + "start": 6728.49, + "end": 6732.17, + "probability": 0.9139 + }, + { + "start": 6733.47, + "end": 6736.87, + "probability": 0.9896 + }, + { + "start": 6737.31, + "end": 6738.31, + "probability": 0.8311 + }, + { + "start": 6738.61, + "end": 6740.25, + "probability": 0.993 + }, + { + "start": 6740.31, + "end": 6744.11, + "probability": 0.9908 + }, + { + "start": 6744.61, + "end": 6745.77, + "probability": 0.989 + }, + { + "start": 6746.13, + "end": 6748.57, + "probability": 0.9009 + }, + { + "start": 6749.39, + "end": 6752.81, + "probability": 0.9153 + }, + { + "start": 6752.81, + "end": 6757.55, + "probability": 0.749 + }, + { + "start": 6758.05, + "end": 6762.07, + "probability": 0.9646 + }, + { + "start": 6762.51, + "end": 6767.21, + "probability": 0.9869 + }, + { + "start": 6768.63, + "end": 6774.43, + "probability": 0.9393 + }, + { + "start": 6774.99, + "end": 6780.09, + "probability": 0.9879 + }, + { + "start": 6780.57, + "end": 6782.23, + "probability": 0.9467 + }, + { + "start": 6784.23, + "end": 6788.55, + "probability": 0.9922 + }, + { + "start": 6788.55, + "end": 6792.07, + "probability": 0.9641 + }, + { + "start": 6792.91, + "end": 6795.65, + "probability": 0.9126 + }, + { + "start": 6795.65, + "end": 6799.11, + "probability": 0.9993 + }, + { + "start": 6799.63, + "end": 6802.47, + "probability": 0.9484 + }, + { + "start": 6802.99, + "end": 6804.97, + "probability": 0.7635 + }, + { + "start": 6805.41, + "end": 6808.85, + "probability": 0.9121 + }, + { + "start": 6809.03, + "end": 6813.91, + "probability": 0.9386 + }, + { + "start": 6814.57, + "end": 6818.93, + "probability": 0.9907 + }, + { + "start": 6819.77, + "end": 6825.67, + "probability": 0.9834 + }, + { + "start": 6826.93, + "end": 6828.85, + "probability": 0.9463 + }, + { + "start": 6829.19, + "end": 6835.83, + "probability": 0.9709 + }, + { + "start": 6836.71, + "end": 6843.03, + "probability": 0.9518 + }, + { + "start": 6843.03, + "end": 6847.87, + "probability": 0.9972 + }, + { + "start": 6848.97, + "end": 6852.47, + "probability": 0.9977 + }, + { + "start": 6852.47, + "end": 6855.95, + "probability": 0.9966 + }, + { + "start": 6856.67, + "end": 6860.57, + "probability": 0.9013 + }, + { + "start": 6861.49, + "end": 6862.29, + "probability": 0.9533 + }, + { + "start": 6862.73, + "end": 6866.93, + "probability": 0.9855 + }, + { + "start": 6867.39, + "end": 6871.63, + "probability": 0.9955 + }, + { + "start": 6872.09, + "end": 6873.81, + "probability": 0.9786 + }, + { + "start": 6875.71, + "end": 6878.29, + "probability": 0.9238 + }, + { + "start": 6878.61, + "end": 6879.59, + "probability": 0.9664 + }, + { + "start": 6879.69, + "end": 6881.17, + "probability": 0.9969 + }, + { + "start": 6881.25, + "end": 6884.57, + "probability": 0.9686 + }, + { + "start": 6885.37, + "end": 6890.73, + "probability": 0.9971 + }, + { + "start": 6890.99, + "end": 6895.27, + "probability": 0.9871 + }, + { + "start": 6896.07, + "end": 6897.84, + "probability": 0.9554 + }, + { + "start": 6898.59, + "end": 6904.33, + "probability": 0.9778 + }, + { + "start": 6905.07, + "end": 6906.03, + "probability": 0.7511 + }, + { + "start": 6906.25, + "end": 6909.83, + "probability": 0.9495 + }, + { + "start": 6910.76, + "end": 6911.33, + "probability": 0.3352 + }, + { + "start": 6911.33, + "end": 6914.29, + "probability": 0.9956 + }, + { + "start": 6914.29, + "end": 6918.17, + "probability": 0.9925 + }, + { + "start": 6919.49, + "end": 6920.07, + "probability": 0.8241 + }, + { + "start": 6920.49, + "end": 6923.73, + "probability": 0.9886 + }, + { + "start": 6924.21, + "end": 6927.43, + "probability": 0.9967 + }, + { + "start": 6927.43, + "end": 6930.95, + "probability": 0.998 + }, + { + "start": 6931.69, + "end": 6936.89, + "probability": 0.9968 + }, + { + "start": 6936.89, + "end": 6942.73, + "probability": 0.9603 + }, + { + "start": 6943.73, + "end": 6944.59, + "probability": 0.737 + }, + { + "start": 6944.97, + "end": 6946.87, + "probability": 0.982 + }, + { + "start": 6946.99, + "end": 6949.39, + "probability": 0.863 + }, + { + "start": 6949.85, + "end": 6953.51, + "probability": 0.9834 + }, + { + "start": 6953.51, + "end": 6956.68, + "probability": 0.9996 + }, + { + "start": 6957.03, + "end": 6960.73, + "probability": 0.9419 + }, + { + "start": 6960.95, + "end": 6962.21, + "probability": 0.9596 + }, + { + "start": 6962.99, + "end": 6969.33, + "probability": 0.9942 + }, + { + "start": 6969.89, + "end": 6971.09, + "probability": 0.8807 + }, + { + "start": 6971.51, + "end": 6977.21, + "probability": 0.9853 + }, + { + "start": 6978.19, + "end": 6978.97, + "probability": 0.3773 + }, + { + "start": 6978.97, + "end": 6984.55, + "probability": 0.9507 + }, + { + "start": 6984.85, + "end": 6988.01, + "probability": 0.9962 + }, + { + "start": 6989.07, + "end": 6992.47, + "probability": 0.9797 + }, + { + "start": 6992.47, + "end": 6995.55, + "probability": 0.9785 + }, + { + "start": 6996.11, + "end": 6997.15, + "probability": 0.627 + }, + { + "start": 6997.69, + "end": 7000.01, + "probability": 0.9979 + }, + { + "start": 7000.01, + "end": 7002.85, + "probability": 0.9619 + }, + { + "start": 7003.81, + "end": 7007.91, + "probability": 0.9912 + }, + { + "start": 7007.97, + "end": 7008.89, + "probability": 0.6259 + }, + { + "start": 7009.51, + "end": 7014.13, + "probability": 0.9943 + }, + { + "start": 7014.13, + "end": 7020.47, + "probability": 0.9969 + }, + { + "start": 7021.51, + "end": 7026.33, + "probability": 0.9857 + }, + { + "start": 7026.33, + "end": 7032.57, + "probability": 0.9991 + }, + { + "start": 7032.97, + "end": 7036.81, + "probability": 0.9989 + }, + { + "start": 7036.81, + "end": 7041.15, + "probability": 0.9581 + }, + { + "start": 7042.55, + "end": 7046.63, + "probability": 0.9878 + }, + { + "start": 7047.17, + "end": 7053.79, + "probability": 0.9978 + }, + { + "start": 7054.57, + "end": 7059.67, + "probability": 0.9944 + }, + { + "start": 7060.19, + "end": 7065.09, + "probability": 0.9951 + }, + { + "start": 7065.53, + "end": 7066.87, + "probability": 0.8225 + }, + { + "start": 7067.39, + "end": 7068.91, + "probability": 0.8353 + }, + { + "start": 7069.73, + "end": 7073.03, + "probability": 0.9953 + }, + { + "start": 7073.87, + "end": 7074.93, + "probability": 0.8104 + }, + { + "start": 7075.73, + "end": 7078.03, + "probability": 0.9869 + }, + { + "start": 7078.03, + "end": 7081.29, + "probability": 0.9956 + }, + { + "start": 7081.71, + "end": 7085.77, + "probability": 0.9908 + }, + { + "start": 7085.77, + "end": 7089.77, + "probability": 0.9069 + }, + { + "start": 7090.57, + "end": 7091.41, + "probability": 0.5446 + }, + { + "start": 7091.81, + "end": 7096.47, + "probability": 0.979 + }, + { + "start": 7096.47, + "end": 7100.87, + "probability": 0.9989 + }, + { + "start": 7101.67, + "end": 7104.23, + "probability": 0.9546 + }, + { + "start": 7104.69, + "end": 7105.43, + "probability": 0.8658 + }, + { + "start": 7107.27, + "end": 7107.93, + "probability": 0.6571 + }, + { + "start": 7108.29, + "end": 7108.59, + "probability": 0.7676 + }, + { + "start": 7109.49, + "end": 7110.81, + "probability": 0.7415 + }, + { + "start": 7112.47, + "end": 7113.09, + "probability": 0.425 + }, + { + "start": 7133.81, + "end": 7136.05, + "probability": 0.8378 + }, + { + "start": 7137.63, + "end": 7142.09, + "probability": 0.7861 + }, + { + "start": 7144.59, + "end": 7150.57, + "probability": 0.9084 + }, + { + "start": 7150.57, + "end": 7154.13, + "probability": 0.9981 + }, + { + "start": 7154.13, + "end": 7157.87, + "probability": 0.9725 + }, + { + "start": 7158.05, + "end": 7162.13, + "probability": 0.9563 + }, + { + "start": 7162.13, + "end": 7165.99, + "probability": 0.9807 + }, + { + "start": 7165.99, + "end": 7170.09, + "probability": 0.9906 + }, + { + "start": 7170.51, + "end": 7171.19, + "probability": 0.7985 + }, + { + "start": 7171.35, + "end": 7172.85, + "probability": 0.7255 + }, + { + "start": 7173.23, + "end": 7175.39, + "probability": 0.9773 + }, + { + "start": 7175.39, + "end": 7179.59, + "probability": 0.9871 + }, + { + "start": 7180.29, + "end": 7184.77, + "probability": 0.8882 + }, + { + "start": 7184.95, + "end": 7189.66, + "probability": 0.0724 + }, + { + "start": 7190.67, + "end": 7191.63, + "probability": 0.7494 + }, + { + "start": 7191.63, + "end": 7191.63, + "probability": 0.7608 + }, + { + "start": 7191.63, + "end": 7192.09, + "probability": 0.1928 + }, + { + "start": 7192.11, + "end": 7193.45, + "probability": 0.2112 + }, + { + "start": 7193.59, + "end": 7194.99, + "probability": 0.9839 + }, + { + "start": 7195.57, + "end": 7196.75, + "probability": 0.8503 + }, + { + "start": 7197.13, + "end": 7203.07, + "probability": 0.9052 + }, + { + "start": 7203.07, + "end": 7209.11, + "probability": 0.9971 + }, + { + "start": 7209.21, + "end": 7210.97, + "probability": 0.7639 + }, + { + "start": 7211.65, + "end": 7212.85, + "probability": 0.8732 + }, + { + "start": 7213.53, + "end": 7213.57, + "probability": 0.0918 + }, + { + "start": 7213.57, + "end": 7213.61, + "probability": 0.4126 + }, + { + "start": 7213.61, + "end": 7213.61, + "probability": 0.0478 + }, + { + "start": 7213.61, + "end": 7213.61, + "probability": 0.0155 + }, + { + "start": 7213.61, + "end": 7214.93, + "probability": 0.5598 + }, + { + "start": 7215.07, + "end": 7216.33, + "probability": 0.6954 + }, + { + "start": 7216.35, + "end": 7219.13, + "probability": 0.9539 + }, + { + "start": 7219.27, + "end": 7220.87, + "probability": 0.7415 + }, + { + "start": 7220.99, + "end": 7222.21, + "probability": 0.8689 + }, + { + "start": 7222.61, + "end": 7223.45, + "probability": 0.8877 + }, + { + "start": 7223.57, + "end": 7224.39, + "probability": 0.9107 + }, + { + "start": 7224.87, + "end": 7226.01, + "probability": 0.8311 + }, + { + "start": 7226.01, + "end": 7228.35, + "probability": 0.8522 + }, + { + "start": 7228.77, + "end": 7229.79, + "probability": 0.6266 + }, + { + "start": 7230.93, + "end": 7232.51, + "probability": 0.632 + }, + { + "start": 7232.73, + "end": 7234.94, + "probability": 0.9036 + }, + { + "start": 7235.83, + "end": 7237.11, + "probability": 0.815 + }, + { + "start": 7237.35, + "end": 7241.15, + "probability": 0.9451 + }, + { + "start": 7241.15, + "end": 7245.17, + "probability": 0.9967 + }, + { + "start": 7245.76, + "end": 7246.45, + "probability": 0.0589 + }, + { + "start": 7246.45, + "end": 7246.45, + "probability": 0.0768 + }, + { + "start": 7246.45, + "end": 7246.97, + "probability": 0.311 + }, + { + "start": 7246.97, + "end": 7248.43, + "probability": 0.9363 + }, + { + "start": 7248.77, + "end": 7253.29, + "probability": 0.7085 + }, + { + "start": 7254.3, + "end": 7256.85, + "probability": 0.8276 + }, + { + "start": 7257.47, + "end": 7258.81, + "probability": 0.9192 + }, + { + "start": 7259.23, + "end": 7262.27, + "probability": 0.999 + }, + { + "start": 7262.27, + "end": 7265.75, + "probability": 0.9997 + }, + { + "start": 7266.13, + "end": 7266.89, + "probability": 0.6552 + }, + { + "start": 7266.99, + "end": 7268.03, + "probability": 0.8788 + }, + { + "start": 7268.13, + "end": 7269.21, + "probability": 0.7598 + }, + { + "start": 7269.31, + "end": 7271.19, + "probability": 0.8696 + }, + { + "start": 7271.51, + "end": 7273.15, + "probability": 0.9886 + }, + { + "start": 7273.59, + "end": 7276.73, + "probability": 0.9334 + }, + { + "start": 7276.77, + "end": 7277.87, + "probability": 0.9548 + }, + { + "start": 7277.97, + "end": 7278.67, + "probability": 0.8519 + }, + { + "start": 7279.05, + "end": 7280.93, + "probability": 0.9929 + }, + { + "start": 7281.63, + "end": 7285.51, + "probability": 0.7669 + }, + { + "start": 7286.07, + "end": 7292.65, + "probability": 0.9956 + }, + { + "start": 7293.09, + "end": 7296.51, + "probability": 0.9808 + }, + { + "start": 7297.13, + "end": 7306.83, + "probability": 0.4481 + }, + { + "start": 7306.83, + "end": 7308.03, + "probability": 0.1606 + }, + { + "start": 7308.25, + "end": 7309.83, + "probability": 0.0207 + }, + { + "start": 7309.99, + "end": 7309.99, + "probability": 0.0189 + }, + { + "start": 7310.21, + "end": 7312.87, + "probability": 0.1289 + }, + { + "start": 7313.17, + "end": 7315.53, + "probability": 0.1764 + }, + { + "start": 7316.67, + "end": 7319.69, + "probability": 0.3254 + }, + { + "start": 7321.15, + "end": 7322.79, + "probability": 0.0713 + }, + { + "start": 7322.89, + "end": 7323.59, + "probability": 0.4488 + }, + { + "start": 7324.63, + "end": 7327.55, + "probability": 0.2656 + }, + { + "start": 7328.27, + "end": 7329.15, + "probability": 0.0616 + }, + { + "start": 7330.62, + "end": 7331.33, + "probability": 0.011 + }, + { + "start": 7331.33, + "end": 7333.47, + "probability": 0.1116 + }, + { + "start": 7333.49, + "end": 7334.53, + "probability": 0.0093 + }, + { + "start": 7336.05, + "end": 7338.15, + "probability": 0.0316 + }, + { + "start": 7338.25, + "end": 7339.73, + "probability": 0.1146 + }, + { + "start": 7339.75, + "end": 7341.67, + "probability": 0.1249 + }, + { + "start": 7342.49, + "end": 7344.19, + "probability": 0.0869 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.0, + "end": 7391.0, + "probability": 0.0 + }, + { + "start": 7391.12, + "end": 7392.08, + "probability": 0.1326 + }, + { + "start": 7392.08, + "end": 7392.99, + "probability": 0.4939 + }, + { + "start": 7393.0, + "end": 7393.58, + "probability": 0.2589 + }, + { + "start": 7394.5, + "end": 7399.16, + "probability": 0.7176 + }, + { + "start": 7399.3, + "end": 7400.02, + "probability": 0.8142 + }, + { + "start": 7400.32, + "end": 7401.09, + "probability": 0.9331 + }, + { + "start": 7401.92, + "end": 7402.7, + "probability": 0.6853 + }, + { + "start": 7402.86, + "end": 7403.0, + "probability": 0.2031 + }, + { + "start": 7403.0, + "end": 7403.74, + "probability": 0.4874 + }, + { + "start": 7403.94, + "end": 7406.22, + "probability": 0.7032 + }, + { + "start": 7406.34, + "end": 7407.28, + "probability": 0.7939 + }, + { + "start": 7407.56, + "end": 7407.82, + "probability": 0.733 + }, + { + "start": 7407.86, + "end": 7408.92, + "probability": 0.9944 + }, + { + "start": 7409.16, + "end": 7410.4, + "probability": 0.9753 + }, + { + "start": 7410.94, + "end": 7412.94, + "probability": 0.8977 + }, + { + "start": 7413.56, + "end": 7415.4, + "probability": 0.9165 + }, + { + "start": 7415.96, + "end": 7418.62, + "probability": 0.9811 + }, + { + "start": 7419.5, + "end": 7423.82, + "probability": 0.9746 + }, + { + "start": 7424.32, + "end": 7430.26, + "probability": 0.9905 + }, + { + "start": 7430.64, + "end": 7432.18, + "probability": 0.9755 + }, + { + "start": 7432.5, + "end": 7434.58, + "probability": 0.8608 + }, + { + "start": 7434.86, + "end": 7435.72, + "probability": 0.6387 + }, + { + "start": 7435.96, + "end": 7436.6, + "probability": 0.1718 + }, + { + "start": 7436.6, + "end": 7438.0, + "probability": 0.4848 + }, + { + "start": 7438.48, + "end": 7439.98, + "probability": 0.4588 + }, + { + "start": 7440.24, + "end": 7441.94, + "probability": 0.9923 + }, + { + "start": 7441.94, + "end": 7447.36, + "probability": 0.9854 + }, + { + "start": 7447.52, + "end": 7448.88, + "probability": 0.37 + }, + { + "start": 7449.0, + "end": 7449.8, + "probability": 0.4771 + }, + { + "start": 7449.82, + "end": 7452.92, + "probability": 0.8273 + }, + { + "start": 7452.98, + "end": 7455.28, + "probability": 0.8989 + }, + { + "start": 7456.36, + "end": 7456.56, + "probability": 0.3668 + }, + { + "start": 7456.56, + "end": 7457.22, + "probability": 0.4394 + }, + { + "start": 7457.3, + "end": 7459.59, + "probability": 0.8647 + }, + { + "start": 7461.14, + "end": 7464.42, + "probability": 0.9625 + }, + { + "start": 7464.9, + "end": 7465.26, + "probability": 0.3267 + }, + { + "start": 7465.46, + "end": 7465.6, + "probability": 0.2553 + }, + { + "start": 7465.6, + "end": 7467.5, + "probability": 0.8226 + }, + { + "start": 7467.96, + "end": 7469.84, + "probability": 0.938 + }, + { + "start": 7470.26, + "end": 7472.7, + "probability": 0.0424 + }, + { + "start": 7472.74, + "end": 7475.4, + "probability": 0.4812 + }, + { + "start": 7475.4, + "end": 7476.06, + "probability": 0.1179 + }, + { + "start": 7476.06, + "end": 7479.6, + "probability": 0.3218 + }, + { + "start": 7480.16, + "end": 7481.48, + "probability": 0.9407 + }, + { + "start": 7481.7, + "end": 7482.76, + "probability": 0.782 + }, + { + "start": 7482.88, + "end": 7486.18, + "probability": 0.9797 + }, + { + "start": 7486.18, + "end": 7489.32, + "probability": 0.9917 + }, + { + "start": 7489.44, + "end": 7490.88, + "probability": 0.9735 + }, + { + "start": 7491.0, + "end": 7491.92, + "probability": 0.9266 + }, + { + "start": 7491.94, + "end": 7492.36, + "probability": 0.4136 + }, + { + "start": 7492.6, + "end": 7495.84, + "probability": 0.8299 + }, + { + "start": 7496.42, + "end": 7496.94, + "probability": 0.1043 + }, + { + "start": 7496.94, + "end": 7497.16, + "probability": 0.1765 + }, + { + "start": 7497.16, + "end": 7497.44, + "probability": 0.5116 + }, + { + "start": 7497.52, + "end": 7502.42, + "probability": 0.672 + }, + { + "start": 7502.84, + "end": 7503.66, + "probability": 0.8332 + }, + { + "start": 7503.74, + "end": 7504.98, + "probability": 0.5395 + }, + { + "start": 7505.06, + "end": 7508.35, + "probability": 0.92 + }, + { + "start": 7508.74, + "end": 7510.27, + "probability": 0.6255 + }, + { + "start": 7510.42, + "end": 7510.64, + "probability": 0.624 + }, + { + "start": 7510.66, + "end": 7511.94, + "probability": 0.0321 + }, + { + "start": 7512.74, + "end": 7514.64, + "probability": 0.1223 + }, + { + "start": 7514.64, + "end": 7514.64, + "probability": 0.0986 + }, + { + "start": 7514.64, + "end": 7514.64, + "probability": 0.3244 + }, + { + "start": 7514.64, + "end": 7516.27, + "probability": 0.2499 + }, + { + "start": 7516.52, + "end": 7517.74, + "probability": 0.1248 + }, + { + "start": 7517.76, + "end": 7520.7, + "probability": 0.6754 + }, + { + "start": 7520.96, + "end": 7521.24, + "probability": 0.8943 + }, + { + "start": 7521.38, + "end": 7526.52, + "probability": 0.9631 + }, + { + "start": 7526.82, + "end": 7529.54, + "probability": 0.9979 + }, + { + "start": 7529.98, + "end": 7531.82, + "probability": 0.8687 + }, + { + "start": 7531.92, + "end": 7532.82, + "probability": 0.4667 + }, + { + "start": 7533.26, + "end": 7535.06, + "probability": 0.9585 + }, + { + "start": 7535.1, + "end": 7536.17, + "probability": 0.9735 + }, + { + "start": 7536.34, + "end": 7538.88, + "probability": 0.9896 + }, + { + "start": 7539.16, + "end": 7540.16, + "probability": 0.6577 + }, + { + "start": 7540.22, + "end": 7541.3, + "probability": 0.1278 + }, + { + "start": 7541.3, + "end": 7542.06, + "probability": 0.6712 + }, + { + "start": 7542.48, + "end": 7546.42, + "probability": 0.5806 + }, + { + "start": 7546.62, + "end": 7548.14, + "probability": 0.3198 + }, + { + "start": 7548.14, + "end": 7548.42, + "probability": 0.2706 + }, + { + "start": 7548.64, + "end": 7549.97, + "probability": 0.9829 + }, + { + "start": 7550.22, + "end": 7552.5, + "probability": 0.5898 + }, + { + "start": 7552.7, + "end": 7554.16, + "probability": 0.9829 + }, + { + "start": 7554.18, + "end": 7554.57, + "probability": 0.2746 + }, + { + "start": 7554.94, + "end": 7556.0, + "probability": 0.6364 + }, + { + "start": 7556.04, + "end": 7556.77, + "probability": 0.5183 + }, + { + "start": 7557.0, + "end": 7561.9, + "probability": 0.9313 + }, + { + "start": 7561.9, + "end": 7563.32, + "probability": 0.6541 + }, + { + "start": 7563.32, + "end": 7563.4, + "probability": 0.2047 + }, + { + "start": 7563.4, + "end": 7565.56, + "probability": 0.8346 + }, + { + "start": 7566.3, + "end": 7569.14, + "probability": 0.998 + }, + { + "start": 7569.72, + "end": 7571.54, + "probability": 0.999 + }, + { + "start": 7572.0, + "end": 7573.89, + "probability": 0.9963 + }, + { + "start": 7574.36, + "end": 7574.84, + "probability": 0.5865 + }, + { + "start": 7575.1, + "end": 7575.66, + "probability": 0.7577 + }, + { + "start": 7576.04, + "end": 7577.54, + "probability": 0.4206 + }, + { + "start": 7577.62, + "end": 7579.54, + "probability": 0.4757 + }, + { + "start": 7579.54, + "end": 7583.22, + "probability": 0.9822 + }, + { + "start": 7584.44, + "end": 7587.98, + "probability": 0.8958 + }, + { + "start": 7588.54, + "end": 7588.78, + "probability": 0.353 + }, + { + "start": 7588.78, + "end": 7588.78, + "probability": 0.286 + }, + { + "start": 7588.78, + "end": 7589.36, + "probability": 0.3368 + }, + { + "start": 7589.36, + "end": 7589.46, + "probability": 0.4825 + }, + { + "start": 7589.46, + "end": 7590.28, + "probability": 0.0826 + }, + { + "start": 7590.48, + "end": 7594.48, + "probability": 0.2353 + }, + { + "start": 7594.98, + "end": 7597.56, + "probability": 0.9707 + }, + { + "start": 7597.88, + "end": 7599.24, + "probability": 0.9786 + }, + { + "start": 7599.3, + "end": 7600.34, + "probability": 0.7404 + }, + { + "start": 7600.48, + "end": 7602.18, + "probability": 0.9517 + }, + { + "start": 7602.74, + "end": 7603.34, + "probability": 0.7042 + }, + { + "start": 7603.78, + "end": 7606.7, + "probability": 0.979 + }, + { + "start": 7606.82, + "end": 7608.38, + "probability": 0.9232 + }, + { + "start": 7608.56, + "end": 7609.5, + "probability": 0.7652 + }, + { + "start": 7609.76, + "end": 7611.04, + "probability": 0.8913 + }, + { + "start": 7611.14, + "end": 7612.46, + "probability": 0.9897 + }, + { + "start": 7612.48, + "end": 7613.44, + "probability": 0.5956 + }, + { + "start": 7613.66, + "end": 7613.92, + "probability": 0.2425 + }, + { + "start": 7614.08, + "end": 7615.08, + "probability": 0.8256 + }, + { + "start": 7615.28, + "end": 7615.79, + "probability": 0.5294 + }, + { + "start": 7616.56, + "end": 7618.5, + "probability": 0.6108 + }, + { + "start": 7618.84, + "end": 7621.06, + "probability": 0.8548 + }, + { + "start": 7621.22, + "end": 7622.1, + "probability": 0.9382 + }, + { + "start": 7622.26, + "end": 7624.24, + "probability": 0.9751 + }, + { + "start": 7624.42, + "end": 7626.22, + "probability": 0.5188 + }, + { + "start": 7626.52, + "end": 7627.22, + "probability": 0.5957 + }, + { + "start": 7627.6, + "end": 7631.24, + "probability": 0.9489 + }, + { + "start": 7631.54, + "end": 7632.64, + "probability": 0.5067 + }, + { + "start": 7632.76, + "end": 7636.03, + "probability": 0.8142 + }, + { + "start": 7636.42, + "end": 7638.38, + "probability": 0.6643 + }, + { + "start": 7638.86, + "end": 7641.22, + "probability": 0.7185 + }, + { + "start": 7641.5, + "end": 7643.02, + "probability": 0.9671 + }, + { + "start": 7643.56, + "end": 7644.1, + "probability": 0.6005 + }, + { + "start": 7644.56, + "end": 7645.56, + "probability": 0.8133 + }, + { + "start": 7646.54, + "end": 7648.58, + "probability": 0.6895 + }, + { + "start": 7648.64, + "end": 7649.52, + "probability": 0.9052 + }, + { + "start": 7649.64, + "end": 7650.51, + "probability": 0.8843 + }, + { + "start": 7651.28, + "end": 7653.64, + "probability": 0.9702 + }, + { + "start": 7654.54, + "end": 7657.2, + "probability": 0.8572 + }, + { + "start": 7657.3, + "end": 7659.14, + "probability": 0.9388 + }, + { + "start": 7659.7, + "end": 7662.14, + "probability": 0.325 + }, + { + "start": 7663.22, + "end": 7664.2, + "probability": 0.6283 + }, + { + "start": 7664.38, + "end": 7668.07, + "probability": 0.0909 + }, + { + "start": 7668.98, + "end": 7670.36, + "probability": 0.5541 + }, + { + "start": 7670.88, + "end": 7673.39, + "probability": 0.5674 + }, + { + "start": 7675.08, + "end": 7678.4, + "probability": 0.4176 + }, + { + "start": 7680.94, + "end": 7683.62, + "probability": 0.7428 + }, + { + "start": 7684.4, + "end": 7685.32, + "probability": 0.6474 + }, + { + "start": 7685.52, + "end": 7687.1, + "probability": 0.8548 + }, + { + "start": 7687.5, + "end": 7689.7, + "probability": 0.3242 + }, + { + "start": 7689.9, + "end": 7689.97, + "probability": 0.0355 + }, + { + "start": 7691.42, + "end": 7694.1, + "probability": 0.9023 + }, + { + "start": 7694.42, + "end": 7695.08, + "probability": 0.6285 + }, + { + "start": 7695.2, + "end": 7696.18, + "probability": 0.6974 + }, + { + "start": 7696.88, + "end": 7697.44, + "probability": 0.5464 + }, + { + "start": 7697.44, + "end": 7699.42, + "probability": 0.7033 + }, + { + "start": 7699.46, + "end": 7700.84, + "probability": 0.224 + }, + { + "start": 7700.9, + "end": 7702.96, + "probability": 0.3408 + }, + { + "start": 7703.14, + "end": 7704.88, + "probability": 0.5916 + }, + { + "start": 7705.52, + "end": 7707.0, + "probability": 0.7109 + }, + { + "start": 7707.16, + "end": 7708.9, + "probability": 0.8398 + }, + { + "start": 7708.9, + "end": 7710.32, + "probability": 0.8329 + }, + { + "start": 7710.89, + "end": 7714.0, + "probability": 0.6886 + }, + { + "start": 7714.36, + "end": 7717.1, + "probability": 0.9681 + }, + { + "start": 7717.28, + "end": 7719.24, + "probability": 0.9167 + }, + { + "start": 7719.36, + "end": 7723.1, + "probability": 0.9854 + }, + { + "start": 7723.1, + "end": 7727.54, + "probability": 0.9484 + }, + { + "start": 7728.9, + "end": 7730.22, + "probability": 0.0395 + }, + { + "start": 7730.22, + "end": 7733.28, + "probability": 0.4855 + }, + { + "start": 7733.64, + "end": 7739.48, + "probability": 0.6362 + }, + { + "start": 7739.66, + "end": 7741.7, + "probability": 0.5274 + }, + { + "start": 7742.28, + "end": 7745.58, + "probability": 0.0172 + }, + { + "start": 7745.7, + "end": 7745.7, + "probability": 0.0572 + }, + { + "start": 7745.7, + "end": 7747.58, + "probability": 0.6093 + }, + { + "start": 7747.58, + "end": 7747.66, + "probability": 0.6049 + }, + { + "start": 7748.38, + "end": 7749.98, + "probability": 0.5039 + }, + { + "start": 7750.64, + "end": 7751.74, + "probability": 0.1176 + }, + { + "start": 7751.74, + "end": 7751.94, + "probability": 0.2996 + }, + { + "start": 7752.44, + "end": 7752.56, + "probability": 0.3925 + }, + { + "start": 7753.24, + "end": 7755.36, + "probability": 0.0854 + }, + { + "start": 7755.76, + "end": 7757.14, + "probability": 0.1995 + }, + { + "start": 7757.14, + "end": 7757.81, + "probability": 0.5318 + }, + { + "start": 7758.84, + "end": 7760.91, + "probability": 0.1144 + }, + { + "start": 7761.88, + "end": 7764.36, + "probability": 0.0306 + }, + { + "start": 7766.82, + "end": 7769.48, + "probability": 0.1622 + }, + { + "start": 7770.22, + "end": 7770.34, + "probability": 0.1038 + }, + { + "start": 7790.92, + "end": 7792.32, + "probability": 0.1637 + }, + { + "start": 7792.32, + "end": 7795.26, + "probability": 0.0128 + }, + { + "start": 7796.86, + "end": 7797.6, + "probability": 0.0365 + }, + { + "start": 7797.6, + "end": 7797.6, + "probability": 0.0505 + }, + { + "start": 7797.6, + "end": 7804.34, + "probability": 0.0334 + }, + { + "start": 7808.4, + "end": 7811.58, + "probability": 0.1208 + }, + { + "start": 7829.0, + "end": 7829.0, + "probability": 0.0 + }, + { + "start": 7829.0, + "end": 7829.0, + "probability": 0.0 + }, + { + "start": 7829.0, + "end": 7829.0, + "probability": 0.0 + }, + { + "start": 7829.0, + "end": 7829.0, + "probability": 0.0 + }, + { + "start": 7829.0, + "end": 7829.0, + "probability": 0.0 + }, + { + "start": 7829.0, + "end": 7829.0, + "probability": 0.0 + }, + { + "start": 7829.0, + "end": 7829.0, + "probability": 0.0 + }, + { + "start": 7829.0, + "end": 7829.0, + "probability": 0.0 + }, + { + "start": 7829.0, + "end": 7829.0, + "probability": 0.0 + }, + { + "start": 7829.0, + "end": 7829.0, + "probability": 0.0 + }, + { + "start": 7829.0, + "end": 7829.0, + "probability": 0.0 + }, + { + "start": 7829.0, + "end": 7829.0, + "probability": 0.0 + }, + { + "start": 7829.0, + "end": 7829.0, + "probability": 0.0 + }, + { + "start": 7829.0, + "end": 7829.0, + "probability": 0.0 + }, + { + "start": 7829.0, + "end": 7829.0, + "probability": 0.0 + }, + { + "start": 7829.34, + "end": 7829.36, + "probability": 0.0662 + }, + { + "start": 7829.36, + "end": 7829.36, + "probability": 0.0312 + }, + { + "start": 7829.36, + "end": 7829.66, + "probability": 0.2654 + }, + { + "start": 7830.38, + "end": 7836.54, + "probability": 0.6913 + }, + { + "start": 7837.08, + "end": 7841.14, + "probability": 0.8158 + }, + { + "start": 7841.22, + "end": 7849.86, + "probability": 0.9954 + }, + { + "start": 7850.36, + "end": 7856.68, + "probability": 0.9857 + }, + { + "start": 7857.28, + "end": 7858.2, + "probability": 0.8293 + }, + { + "start": 7858.82, + "end": 7861.48, + "probability": 0.9963 + }, + { + "start": 7861.88, + "end": 7866.46, + "probability": 0.5329 + }, + { + "start": 7866.98, + "end": 7870.34, + "probability": 0.7715 + }, + { + "start": 7870.74, + "end": 7873.36, + "probability": 0.9104 + }, + { + "start": 7873.4, + "end": 7874.58, + "probability": 0.8715 + }, + { + "start": 7875.22, + "end": 7879.88, + "probability": 0.7155 + }, + { + "start": 7880.34, + "end": 7880.98, + "probability": 0.5182 + }, + { + "start": 7881.1, + "end": 7881.88, + "probability": 0.6484 + }, + { + "start": 7881.96, + "end": 7882.98, + "probability": 0.938 + }, + { + "start": 7883.62, + "end": 7886.72, + "probability": 0.8696 + }, + { + "start": 7887.66, + "end": 7888.38, + "probability": 0.5374 + }, + { + "start": 7888.96, + "end": 7889.7, + "probability": 0.5988 + }, + { + "start": 7889.84, + "end": 7892.06, + "probability": 0.9788 + }, + { + "start": 7892.7, + "end": 7893.36, + "probability": 0.8193 + }, + { + "start": 7893.68, + "end": 7895.2, + "probability": 0.9943 + }, + { + "start": 7895.6, + "end": 7896.84, + "probability": 0.9938 + }, + { + "start": 7896.9, + "end": 7898.9, + "probability": 0.9936 + }, + { + "start": 7899.92, + "end": 7905.92, + "probability": 0.9558 + }, + { + "start": 7906.56, + "end": 7911.68, + "probability": 0.9948 + }, + { + "start": 7912.3, + "end": 7917.22, + "probability": 0.969 + }, + { + "start": 7918.46, + "end": 7919.56, + "probability": 0.9391 + }, + { + "start": 7920.08, + "end": 7921.2, + "probability": 0.9189 + }, + { + "start": 7921.74, + "end": 7924.5, + "probability": 0.9703 + }, + { + "start": 7925.36, + "end": 7926.48, + "probability": 0.8745 + }, + { + "start": 7927.04, + "end": 7930.02, + "probability": 0.8986 + }, + { + "start": 7930.44, + "end": 7936.1, + "probability": 0.979 + }, + { + "start": 7936.76, + "end": 7940.08, + "probability": 0.2243 + }, + { + "start": 7941.0, + "end": 7941.24, + "probability": 0.2325 + }, + { + "start": 7941.34, + "end": 7942.04, + "probability": 0.772 + }, + { + "start": 7942.12, + "end": 7949.2, + "probability": 0.7526 + }, + { + "start": 7949.34, + "end": 7949.9, + "probability": 0.7106 + }, + { + "start": 7950.54, + "end": 7952.66, + "probability": 0.9912 + }, + { + "start": 7952.68, + "end": 7956.58, + "probability": 0.7245 + }, + { + "start": 7957.34, + "end": 7960.74, + "probability": 0.9336 + }, + { + "start": 7961.16, + "end": 7966.47, + "probability": 0.9242 + }, + { + "start": 7966.8, + "end": 7968.36, + "probability": 0.5762 + }, + { + "start": 7968.88, + "end": 7971.96, + "probability": 0.9165 + }, + { + "start": 7972.44, + "end": 7976.26, + "probability": 0.9966 + }, + { + "start": 7976.76, + "end": 7978.14, + "probability": 0.9392 + }, + { + "start": 7978.5, + "end": 7980.28, + "probability": 0.8614 + }, + { + "start": 7980.74, + "end": 7982.98, + "probability": 0.8586 + }, + { + "start": 7983.1, + "end": 7983.12, + "probability": 0.6686 + }, + { + "start": 7983.12, + "end": 7983.34, + "probability": 0.6489 + }, + { + "start": 7983.54, + "end": 7985.68, + "probability": 0.9697 + }, + { + "start": 7985.92, + "end": 7986.68, + "probability": 0.9026 + }, + { + "start": 7987.2, + "end": 7988.98, + "probability": 0.908 + }, + { + "start": 8000.02, + "end": 8001.36, + "probability": 0.8379 + }, + { + "start": 8002.14, + "end": 8002.72, + "probability": 0.8512 + }, + { + "start": 8003.86, + "end": 8004.38, + "probability": 0.761 + }, + { + "start": 8004.76, + "end": 8006.4, + "probability": 0.9815 + }, + { + "start": 8006.72, + "end": 8007.44, + "probability": 0.8925 + }, + { + "start": 8007.74, + "end": 8008.12, + "probability": 0.9089 + }, + { + "start": 8008.18, + "end": 8009.62, + "probability": 0.9564 + }, + { + "start": 8009.72, + "end": 8012.28, + "probability": 0.9689 + }, + { + "start": 8012.72, + "end": 8014.48, + "probability": 0.3582 + }, + { + "start": 8015.12, + "end": 8016.38, + "probability": 0.4648 + }, + { + "start": 8017.34, + "end": 8019.62, + "probability": 0.1184 + }, + { + "start": 8020.32, + "end": 8021.18, + "probability": 0.0742 + }, + { + "start": 8021.18, + "end": 8021.98, + "probability": 0.2309 + }, + { + "start": 8022.26, + "end": 8023.59, + "probability": 0.3335 + }, + { + "start": 8024.2, + "end": 8025.63, + "probability": 0.3196 + }, + { + "start": 8025.7, + "end": 8027.02, + "probability": 0.2081 + }, + { + "start": 8027.04, + "end": 8030.42, + "probability": 0.4728 + }, + { + "start": 8032.0, + "end": 8032.63, + "probability": 0.0331 + }, + { + "start": 8033.6, + "end": 8033.96, + "probability": 0.1444 + }, + { + "start": 8033.96, + "end": 8034.72, + "probability": 0.4469 + }, + { + "start": 8035.2, + "end": 8037.18, + "probability": 0.4714 + }, + { + "start": 8037.42, + "end": 8038.04, + "probability": 0.3524 + }, + { + "start": 8038.04, + "end": 8038.1, + "probability": 0.5343 + }, + { + "start": 8038.1, + "end": 8039.14, + "probability": 0.3324 + }, + { + "start": 8039.94, + "end": 8040.98, + "probability": 0.1547 + }, + { + "start": 8041.8, + "end": 8045.64, + "probability": 0.241 + }, + { + "start": 8046.68, + "end": 8046.76, + "probability": 0.0677 + }, + { + "start": 8046.76, + "end": 8049.72, + "probability": 0.8384 + }, + { + "start": 8050.12, + "end": 8050.8, + "probability": 0.6534 + }, + { + "start": 8051.14, + "end": 8054.4, + "probability": 0.9196 + }, + { + "start": 8054.64, + "end": 8055.6, + "probability": 0.5444 + }, + { + "start": 8056.38, + "end": 8057.44, + "probability": 0.3154 + }, + { + "start": 8057.64, + "end": 8059.07, + "probability": 0.7933 + }, + { + "start": 8061.5, + "end": 8063.82, + "probability": 0.444 + }, + { + "start": 8065.11, + "end": 8065.5, + "probability": 0.4403 + }, + { + "start": 8066.7, + "end": 8068.2, + "probability": 0.3798 + }, + { + "start": 8069.02, + "end": 8069.3, + "probability": 0.1294 + }, + { + "start": 8069.96, + "end": 8070.24, + "probability": 0.3626 + }, + { + "start": 8070.24, + "end": 8070.76, + "probability": 0.1552 + }, + { + "start": 8071.0, + "end": 8071.12, + "probability": 0.4139 + }, + { + "start": 8071.12, + "end": 8071.14, + "probability": 0.3202 + }, + { + "start": 8071.14, + "end": 8074.07, + "probability": 0.493 + }, + { + "start": 8074.64, + "end": 8079.04, + "probability": 0.8816 + }, + { + "start": 8079.82, + "end": 8083.42, + "probability": 0.7935 + }, + { + "start": 8083.88, + "end": 8085.14, + "probability": 0.5549 + }, + { + "start": 8085.2, + "end": 8086.06, + "probability": 0.7821 + }, + { + "start": 8086.14, + "end": 8087.6, + "probability": 0.6586 + }, + { + "start": 8087.84, + "end": 8091.86, + "probability": 0.8022 + }, + { + "start": 8092.16, + "end": 8094.72, + "probability": 0.9152 + }, + { + "start": 8094.88, + "end": 8099.4, + "probability": 0.1532 + }, + { + "start": 8101.24, + "end": 8103.38, + "probability": 0.6233 + }, + { + "start": 8111.3, + "end": 8113.68, + "probability": 0.0294 + }, + { + "start": 8114.92, + "end": 8115.08, + "probability": 0.0244 + }, + { + "start": 8115.12, + "end": 8116.02, + "probability": 0.0393 + }, + { + "start": 8116.04, + "end": 8117.12, + "probability": 0.6139 + }, + { + "start": 8122.22, + "end": 8125.54, + "probability": 0.3749 + }, + { + "start": 8126.66, + "end": 8126.66, + "probability": 0.0368 + }, + { + "start": 8126.66, + "end": 8126.66, + "probability": 0.0418 + }, + { + "start": 8126.66, + "end": 8126.66, + "probability": 0.0772 + }, + { + "start": 8126.66, + "end": 8129.2, + "probability": 0.4799 + }, + { + "start": 8129.3, + "end": 8133.16, + "probability": 0.8317 + }, + { + "start": 8142.32, + "end": 8142.36, + "probability": 0.3152 + }, + { + "start": 8142.36, + "end": 8143.8, + "probability": 0.7009 + }, + { + "start": 8145.54, + "end": 8147.8, + "probability": 0.69 + }, + { + "start": 8148.78, + "end": 8151.64, + "probability": 0.0484 + }, + { + "start": 8152.32, + "end": 8153.64, + "probability": 0.6375 + }, + { + "start": 8153.64, + "end": 8155.16, + "probability": 0.7204 + }, + { + "start": 8156.3, + "end": 8159.64, + "probability": 0.7721 + }, + { + "start": 8161.84, + "end": 8162.62, + "probability": 0.9475 + }, + { + "start": 8163.28, + "end": 8166.3, + "probability": 0.9492 + }, + { + "start": 8166.48, + "end": 8168.74, + "probability": 0.9718 + }, + { + "start": 8170.46, + "end": 8172.24, + "probability": 0.9712 + }, + { + "start": 8173.02, + "end": 8177.12, + "probability": 0.9919 + }, + { + "start": 8177.6, + "end": 8181.42, + "probability": 0.9944 + }, + { + "start": 8183.09, + "end": 8183.64, + "probability": 0.1972 + }, + { + "start": 8183.64, + "end": 8186.84, + "probability": 0.9661 + }, + { + "start": 8187.46, + "end": 8189.1, + "probability": 0.9199 + }, + { + "start": 8190.04, + "end": 8192.12, + "probability": 0.9807 + }, + { + "start": 8193.14, + "end": 8194.78, + "probability": 0.9564 + }, + { + "start": 8195.38, + "end": 8197.64, + "probability": 0.9043 + }, + { + "start": 8199.18, + "end": 8200.5, + "probability": 0.9787 + }, + { + "start": 8201.82, + "end": 8204.08, + "probability": 0.2286 + }, + { + "start": 8205.18, + "end": 8205.18, + "probability": 0.0675 + }, + { + "start": 8205.18, + "end": 8206.5, + "probability": 0.8866 + }, + { + "start": 8206.62, + "end": 8207.8, + "probability": 0.7588 + }, + { + "start": 8208.02, + "end": 8212.28, + "probability": 0.9756 + }, + { + "start": 8212.88, + "end": 8216.86, + "probability": 0.993 + }, + { + "start": 8216.86, + "end": 8220.64, + "probability": 0.9979 + }, + { + "start": 8221.56, + "end": 8223.98, + "probability": 0.8802 + }, + { + "start": 8225.1, + "end": 8226.18, + "probability": 0.7925 + }, + { + "start": 8227.56, + "end": 8229.54, + "probability": 0.853 + }, + { + "start": 8230.36, + "end": 8232.78, + "probability": 0.9915 + }, + { + "start": 8233.64, + "end": 8235.69, + "probability": 0.9795 + }, + { + "start": 8236.66, + "end": 8240.24, + "probability": 0.9878 + }, + { + "start": 8241.36, + "end": 8246.74, + "probability": 0.949 + }, + { + "start": 8247.28, + "end": 8247.64, + "probability": 0.1416 + }, + { + "start": 8247.64, + "end": 8247.64, + "probability": 0.1176 + }, + { + "start": 8247.64, + "end": 8250.16, + "probability": 0.9209 + }, + { + "start": 8250.52, + "end": 8250.52, + "probability": 0.2025 + }, + { + "start": 8250.52, + "end": 8253.4, + "probability": 0.6393 + }, + { + "start": 8253.68, + "end": 8255.88, + "probability": 0.8355 + }, + { + "start": 8256.58, + "end": 8259.34, + "probability": 0.6027 + }, + { + "start": 8259.34, + "end": 8262.68, + "probability": 0.689 + }, + { + "start": 8262.68, + "end": 8264.18, + "probability": 0.7419 + }, + { + "start": 8264.48, + "end": 8266.04, + "probability": 0.4424 + }, + { + "start": 8266.34, + "end": 8268.06, + "probability": 0.3101 + }, + { + "start": 8268.14, + "end": 8268.98, + "probability": 0.4358 + }, + { + "start": 8269.44, + "end": 8275.16, + "probability": 0.8203 + }, + { + "start": 8275.7, + "end": 8281.06, + "probability": 0.9902 + }, + { + "start": 8282.1, + "end": 8285.8, + "probability": 0.9888 + }, + { + "start": 8287.2, + "end": 8291.2, + "probability": 0.9863 + }, + { + "start": 8291.2, + "end": 8296.08, + "probability": 0.9932 + }, + { + "start": 8296.16, + "end": 8296.44, + "probability": 0.5979 + }, + { + "start": 8296.56, + "end": 8296.76, + "probability": 0.9253 + }, + { + "start": 8296.82, + "end": 8300.5, + "probability": 0.9871 + }, + { + "start": 8301.14, + "end": 8302.68, + "probability": 0.8245 + }, + { + "start": 8303.6, + "end": 8308.2, + "probability": 0.994 + }, + { + "start": 8308.2, + "end": 8312.52, + "probability": 0.991 + }, + { + "start": 8313.32, + "end": 8318.68, + "probability": 0.9932 + }, + { + "start": 8319.3, + "end": 8321.02, + "probability": 0.8601 + }, + { + "start": 8321.64, + "end": 8326.88, + "probability": 0.9796 + }, + { + "start": 8326.88, + "end": 8331.94, + "probability": 0.9838 + }, + { + "start": 8332.46, + "end": 8334.05, + "probability": 0.9922 + }, + { + "start": 8334.52, + "end": 8339.56, + "probability": 0.9857 + }, + { + "start": 8340.86, + "end": 8345.44, + "probability": 0.8369 + }, + { + "start": 8347.12, + "end": 8352.42, + "probability": 0.9155 + }, + { + "start": 8353.0, + "end": 8358.58, + "probability": 0.9103 + }, + { + "start": 8358.86, + "end": 8360.82, + "probability": 0.6692 + }, + { + "start": 8361.42, + "end": 8363.54, + "probability": 0.8193 + }, + { + "start": 8363.72, + "end": 8366.62, + "probability": 0.8254 + }, + { + "start": 8368.22, + "end": 8369.28, + "probability": 0.8474 + }, + { + "start": 8369.44, + "end": 8370.02, + "probability": 0.5516 + }, + { + "start": 8370.26, + "end": 8371.0, + "probability": 0.7311 + }, + { + "start": 8371.2, + "end": 8373.62, + "probability": 0.8339 + }, + { + "start": 8375.18, + "end": 8376.8, + "probability": 0.8538 + }, + { + "start": 8377.4, + "end": 8378.84, + "probability": 0.5845 + }, + { + "start": 8380.16, + "end": 8387.1, + "probability": 0.9803 + }, + { + "start": 8388.02, + "end": 8395.64, + "probability": 0.9946 + }, + { + "start": 8396.6, + "end": 8398.18, + "probability": 0.9141 + }, + { + "start": 8398.94, + "end": 8406.6, + "probability": 0.9915 + }, + { + "start": 8407.62, + "end": 8409.54, + "probability": 0.8104 + }, + { + "start": 8410.24, + "end": 8413.28, + "probability": 0.8695 + }, + { + "start": 8413.7, + "end": 8415.9, + "probability": 0.7509 + }, + { + "start": 8416.94, + "end": 8420.46, + "probability": 0.9236 + }, + { + "start": 8420.46, + "end": 8423.92, + "probability": 0.9968 + }, + { + "start": 8425.16, + "end": 8431.88, + "probability": 0.9968 + }, + { + "start": 8432.5, + "end": 8436.56, + "probability": 0.9978 + }, + { + "start": 8436.58, + "end": 8438.92, + "probability": 0.9949 + }, + { + "start": 8439.04, + "end": 8443.66, + "probability": 0.9673 + }, + { + "start": 8443.66, + "end": 8448.62, + "probability": 0.99 + }, + { + "start": 8449.86, + "end": 8450.79, + "probability": 0.8166 + }, + { + "start": 8452.12, + "end": 8455.3, + "probability": 0.9897 + }, + { + "start": 8456.54, + "end": 8459.56, + "probability": 0.9849 + }, + { + "start": 8459.56, + "end": 8463.62, + "probability": 0.9972 + }, + { + "start": 8464.36, + "end": 8465.7, + "probability": 0.9611 + }, + { + "start": 8466.72, + "end": 8469.16, + "probability": 0.9932 + }, + { + "start": 8469.94, + "end": 8475.28, + "probability": 0.9891 + }, + { + "start": 8476.06, + "end": 8477.24, + "probability": 0.8928 + }, + { + "start": 8478.34, + "end": 8481.02, + "probability": 0.9971 + }, + { + "start": 8481.36, + "end": 8481.78, + "probability": 0.7788 + }, + { + "start": 8481.82, + "end": 8482.78, + "probability": 0.9211 + }, + { + "start": 8482.86, + "end": 8487.22, + "probability": 0.998 + }, + { + "start": 8488.32, + "end": 8492.46, + "probability": 0.999 + }, + { + "start": 8493.22, + "end": 8494.98, + "probability": 0.9136 + }, + { + "start": 8495.78, + "end": 8497.86, + "probability": 0.9956 + }, + { + "start": 8498.62, + "end": 8500.62, + "probability": 0.9925 + }, + { + "start": 8501.62, + "end": 8502.9, + "probability": 0.6964 + }, + { + "start": 8503.08, + "end": 8503.92, + "probability": 0.8529 + }, + { + "start": 8504.06, + "end": 8505.36, + "probability": 0.9671 + }, + { + "start": 8506.42, + "end": 8507.86, + "probability": 0.9196 + }, + { + "start": 8508.78, + "end": 8510.34, + "probability": 0.8029 + }, + { + "start": 8511.5, + "end": 8514.02, + "probability": 0.9586 + }, + { + "start": 8514.9, + "end": 8521.88, + "probability": 0.6411 + }, + { + "start": 8522.18, + "end": 8522.34, + "probability": 0.0143 + }, + { + "start": 8522.34, + "end": 8522.34, + "probability": 0.2493 + }, + { + "start": 8522.34, + "end": 8522.34, + "probability": 0.1865 + }, + { + "start": 8522.34, + "end": 8522.34, + "probability": 0.2433 + }, + { + "start": 8522.34, + "end": 8524.98, + "probability": 0.638 + }, + { + "start": 8525.6, + "end": 8527.38, + "probability": 0.8759 + }, + { + "start": 8528.18, + "end": 8533.42, + "probability": 0.9673 + }, + { + "start": 8533.96, + "end": 8537.2, + "probability": 0.8733 + }, + { + "start": 8538.08, + "end": 8540.78, + "probability": 0.9976 + }, + { + "start": 8541.36, + "end": 8542.64, + "probability": 0.9775 + }, + { + "start": 8543.66, + "end": 8545.56, + "probability": 0.9755 + }, + { + "start": 8546.16, + "end": 8548.02, + "probability": 0.9295 + }, + { + "start": 8548.58, + "end": 8549.54, + "probability": 0.9629 + }, + { + "start": 8550.46, + "end": 8551.78, + "probability": 0.7956 + }, + { + "start": 8552.38, + "end": 8556.68, + "probability": 0.9923 + }, + { + "start": 8556.76, + "end": 8558.3, + "probability": 0.9887 + }, + { + "start": 8558.84, + "end": 8559.62, + "probability": 0.9626 + }, + { + "start": 8560.3, + "end": 8563.14, + "probability": 0.8212 + }, + { + "start": 8563.72, + "end": 8566.08, + "probability": 0.7781 + }, + { + "start": 8566.7, + "end": 8568.38, + "probability": 0.9347 + }, + { + "start": 8568.78, + "end": 8569.96, + "probability": 0.9487 + }, + { + "start": 8570.46, + "end": 8571.38, + "probability": 0.98 + }, + { + "start": 8572.88, + "end": 8575.98, + "probability": 0.9808 + }, + { + "start": 8576.76, + "end": 8577.3, + "probability": 0.7548 + }, + { + "start": 8578.34, + "end": 8582.24, + "probability": 0.7309 + }, + { + "start": 8582.72, + "end": 8585.48, + "probability": 0.9382 + }, + { + "start": 8586.64, + "end": 8587.98, + "probability": 0.9492 + }, + { + "start": 8588.56, + "end": 8589.28, + "probability": 0.8082 + }, + { + "start": 8589.9, + "end": 8591.54, + "probability": 0.977 + }, + { + "start": 8592.72, + "end": 8593.18, + "probability": 0.7191 + }, + { + "start": 8593.88, + "end": 8594.42, + "probability": 0.6977 + }, + { + "start": 8594.96, + "end": 8596.92, + "probability": 0.8896 + }, + { + "start": 8597.52, + "end": 8599.24, + "probability": 0.999 + }, + { + "start": 8599.7, + "end": 8603.0, + "probability": 0.994 + }, + { + "start": 8603.14, + "end": 8603.88, + "probability": 0.4174 + }, + { + "start": 8604.06, + "end": 8605.76, + "probability": 0.7168 + }, + { + "start": 8606.54, + "end": 8607.48, + "probability": 0.0415 + }, + { + "start": 8610.18, + "end": 8610.5, + "probability": 0.0442 + }, + { + "start": 8610.5, + "end": 8610.78, + "probability": 0.1624 + }, + { + "start": 8610.78, + "end": 8611.61, + "probability": 0.4842 + }, + { + "start": 8612.7, + "end": 8612.72, + "probability": 0.2266 + }, + { + "start": 8612.72, + "end": 8613.49, + "probability": 0.5212 + }, + { + "start": 8614.24, + "end": 8616.74, + "probability": 0.1258 + }, + { + "start": 8617.08, + "end": 8618.68, + "probability": 0.4714 + }, + { + "start": 8618.68, + "end": 8621.6, + "probability": 0.9931 + }, + { + "start": 8622.4, + "end": 8624.6, + "probability": 0.9868 + }, + { + "start": 8625.66, + "end": 8627.06, + "probability": 0.9028 + }, + { + "start": 8628.16, + "end": 8630.72, + "probability": 0.8534 + }, + { + "start": 8630.9, + "end": 8635.1, + "probability": 0.9792 + }, + { + "start": 8635.76, + "end": 8636.7, + "probability": 0.7726 + }, + { + "start": 8637.04, + "end": 8637.1, + "probability": 0.3789 + }, + { + "start": 8637.1, + "end": 8637.1, + "probability": 0.0861 + }, + { + "start": 8637.1, + "end": 8641.62, + "probability": 0.9894 + }, + { + "start": 8641.62, + "end": 8642.71, + "probability": 0.5152 + }, + { + "start": 8642.86, + "end": 8643.22, + "probability": 0.007 + }, + { + "start": 8643.22, + "end": 8644.66, + "probability": 0.4444 + }, + { + "start": 8645.3, + "end": 8645.82, + "probability": 0.0149 + }, + { + "start": 8645.82, + "end": 8646.74, + "probability": 0.9807 + }, + { + "start": 8646.86, + "end": 8647.36, + "probability": 0.4434 + }, + { + "start": 8647.5, + "end": 8648.61, + "probability": 0.9598 + }, + { + "start": 8648.94, + "end": 8650.9, + "probability": 0.9846 + }, + { + "start": 8651.48, + "end": 8655.54, + "probability": 0.9855 + }, + { + "start": 8656.04, + "end": 8661.3, + "probability": 0.9952 + }, + { + "start": 8662.78, + "end": 8665.78, + "probability": 0.9733 + }, + { + "start": 8666.32, + "end": 8668.04, + "probability": 0.9815 + }, + { + "start": 8668.74, + "end": 8670.12, + "probability": 0.7434 + }, + { + "start": 8670.52, + "end": 8675.1, + "probability": 0.989 + }, + { + "start": 8675.9, + "end": 8678.68, + "probability": 0.9955 + }, + { + "start": 8679.46, + "end": 8682.8, + "probability": 0.8011 + }, + { + "start": 8684.04, + "end": 8684.38, + "probability": 0.4949 + }, + { + "start": 8685.84, + "end": 8686.58, + "probability": 0.6611 + }, + { + "start": 8686.98, + "end": 8687.06, + "probability": 0.102 + }, + { + "start": 8687.06, + "end": 8687.06, + "probability": 0.1921 + }, + { + "start": 8687.06, + "end": 8689.36, + "probability": 0.2529 + }, + { + "start": 8689.94, + "end": 8691.2, + "probability": 0.2856 + }, + { + "start": 8691.2, + "end": 8691.2, + "probability": 0.4354 + }, + { + "start": 8691.2, + "end": 8695.5, + "probability": 0.514 + }, + { + "start": 8696.94, + "end": 8696.98, + "probability": 0.0718 + }, + { + "start": 8696.98, + "end": 8703.14, + "probability": 0.7957 + }, + { + "start": 8703.3, + "end": 8705.66, + "probability": 0.8833 + }, + { + "start": 8705.92, + "end": 8708.0, + "probability": 0.281 + }, + { + "start": 8708.42, + "end": 8709.16, + "probability": 0.7511 + }, + { + "start": 8709.8, + "end": 8710.28, + "probability": 0.6986 + }, + { + "start": 8710.8, + "end": 8714.1, + "probability": 0.964 + }, + { + "start": 8714.6, + "end": 8715.6, + "probability": 0.8658 + }, + { + "start": 8716.14, + "end": 8721.1, + "probability": 0.9943 + }, + { + "start": 8721.76, + "end": 8725.68, + "probability": 0.9842 + }, + { + "start": 8727.06, + "end": 8727.52, + "probability": 0.5646 + }, + { + "start": 8728.1, + "end": 8732.12, + "probability": 0.9844 + }, + { + "start": 8733.46, + "end": 8733.9, + "probability": 0.7899 + }, + { + "start": 8733.94, + "end": 8735.74, + "probability": 0.9775 + }, + { + "start": 8736.2, + "end": 8738.88, + "probability": 0.9851 + }, + { + "start": 8739.26, + "end": 8740.16, + "probability": 0.0596 + }, + { + "start": 8740.24, + "end": 8742.92, + "probability": 0.886 + }, + { + "start": 8743.44, + "end": 8743.56, + "probability": 0.1868 + }, + { + "start": 8743.56, + "end": 8744.32, + "probability": 0.3843 + }, + { + "start": 8744.34, + "end": 8745.52, + "probability": 0.4444 + }, + { + "start": 8745.84, + "end": 8752.4, + "probability": 0.9746 + }, + { + "start": 8752.8, + "end": 8756.2, + "probability": 0.9983 + }, + { + "start": 8756.7, + "end": 8758.34, + "probability": 0.7383 + }, + { + "start": 8758.38, + "end": 8758.9, + "probability": 0.0479 + }, + { + "start": 8759.46, + "end": 8760.9, + "probability": 0.0843 + }, + { + "start": 8760.9, + "end": 8760.9, + "probability": 0.2623 + }, + { + "start": 8760.9, + "end": 8762.14, + "probability": 0.953 + }, + { + "start": 8762.36, + "end": 8766.64, + "probability": 0.9297 + }, + { + "start": 8766.64, + "end": 8770.26, + "probability": 0.9795 + }, + { + "start": 8771.22, + "end": 8777.0, + "probability": 0.9966 + }, + { + "start": 8777.72, + "end": 8780.74, + "probability": 0.9783 + }, + { + "start": 8781.4, + "end": 8784.22, + "probability": 0.8992 + }, + { + "start": 8784.86, + "end": 8788.46, + "probability": 0.9961 + }, + { + "start": 8789.12, + "end": 8789.28, + "probability": 0.6312 + }, + { + "start": 8789.56, + "end": 8790.1, + "probability": 0.4745 + }, + { + "start": 8790.32, + "end": 8792.02, + "probability": 0.7069 + }, + { + "start": 8792.1, + "end": 8793.68, + "probability": 0.8029 + }, + { + "start": 8805.32, + "end": 8805.39, + "probability": 0.5385 + }, + { + "start": 8805.66, + "end": 8806.46, + "probability": 0.2499 + }, + { + "start": 8806.78, + "end": 8807.64, + "probability": 0.5834 + }, + { + "start": 8809.44, + "end": 8810.81, + "probability": 0.9609 + }, + { + "start": 8811.78, + "end": 8813.54, + "probability": 0.7913 + }, + { + "start": 8813.88, + "end": 8814.88, + "probability": 0.7952 + }, + { + "start": 8815.46, + "end": 8816.26, + "probability": 0.936 + }, + { + "start": 8816.86, + "end": 8817.94, + "probability": 0.9859 + }, + { + "start": 8821.22, + "end": 8822.8, + "probability": 0.6811 + }, + { + "start": 8823.52, + "end": 8824.86, + "probability": 0.6962 + }, + { + "start": 8825.54, + "end": 8827.72, + "probability": 0.8292 + }, + { + "start": 8828.52, + "end": 8831.06, + "probability": 0.9801 + }, + { + "start": 8831.42, + "end": 8833.22, + "probability": 0.9544 + }, + { + "start": 8833.56, + "end": 8838.32, + "probability": 0.9961 + }, + { + "start": 8838.32, + "end": 8843.76, + "probability": 0.9915 + }, + { + "start": 8844.08, + "end": 8847.22, + "probability": 0.9945 + }, + { + "start": 8848.16, + "end": 8848.5, + "probability": 0.6196 + }, + { + "start": 8848.64, + "end": 8849.32, + "probability": 0.989 + }, + { + "start": 8849.36, + "end": 8853.08, + "probability": 0.9976 + }, + { + "start": 8853.08, + "end": 8856.76, + "probability": 0.9946 + }, + { + "start": 8857.54, + "end": 8860.36, + "probability": 0.9946 + }, + { + "start": 8860.88, + "end": 8863.04, + "probability": 0.7307 + }, + { + "start": 8864.14, + "end": 8864.54, + "probability": 0.3311 + }, + { + "start": 8864.54, + "end": 8864.7, + "probability": 0.1981 + }, + { + "start": 8864.7, + "end": 8865.4, + "probability": 0.6472 + }, + { + "start": 8865.5, + "end": 8866.42, + "probability": 0.9178 + }, + { + "start": 8866.9, + "end": 8866.9, + "probability": 0.1703 + }, + { + "start": 8867.06, + "end": 8869.44, + "probability": 0.9713 + }, + { + "start": 8869.52, + "end": 8870.18, + "probability": 0.9583 + }, + { + "start": 8870.42, + "end": 8871.12, + "probability": 0.8199 + }, + { + "start": 8872.5, + "end": 8872.6, + "probability": 0.5347 + }, + { + "start": 8872.6, + "end": 8873.6, + "probability": 0.7871 + }, + { + "start": 8873.72, + "end": 8874.12, + "probability": 0.6986 + }, + { + "start": 8874.18, + "end": 8875.84, + "probability": 0.9602 + }, + { + "start": 8876.08, + "end": 8876.8, + "probability": 0.9492 + }, + { + "start": 8876.88, + "end": 8877.56, + "probability": 0.9356 + }, + { + "start": 8877.9, + "end": 8879.66, + "probability": 0.9482 + }, + { + "start": 8879.96, + "end": 8879.96, + "probability": 0.2442 + }, + { + "start": 8879.96, + "end": 8883.84, + "probability": 0.9072 + }, + { + "start": 8883.92, + "end": 8885.18, + "probability": 0.7607 + }, + { + "start": 8885.18, + "end": 8885.74, + "probability": 0.1358 + }, + { + "start": 8885.74, + "end": 8889.3, + "probability": 0.7345 + }, + { + "start": 8889.44, + "end": 8892.4, + "probability": 0.8048 + }, + { + "start": 8892.98, + "end": 8896.06, + "probability": 0.5735 + }, + { + "start": 8898.6, + "end": 8898.92, + "probability": 0.1529 + }, + { + "start": 8898.92, + "end": 8900.1, + "probability": 0.6577 + }, + { + "start": 8900.14, + "end": 8900.18, + "probability": 0.4829 + }, + { + "start": 8900.18, + "end": 8902.0, + "probability": 0.5593 + }, + { + "start": 8902.34, + "end": 8904.24, + "probability": 0.9038 + }, + { + "start": 8904.6, + "end": 8909.74, + "probability": 0.9517 + }, + { + "start": 8910.28, + "end": 8911.02, + "probability": 0.286 + }, + { + "start": 8911.26, + "end": 8912.14, + "probability": 0.57 + }, + { + "start": 8912.5, + "end": 8913.08, + "probability": 0.8353 + }, + { + "start": 8913.3, + "end": 8916.3, + "probability": 0.9938 + }, + { + "start": 8916.42, + "end": 8918.66, + "probability": 0.9238 + }, + { + "start": 8918.88, + "end": 8919.84, + "probability": 0.9728 + }, + { + "start": 8920.76, + "end": 8922.0, + "probability": 0.7402 + }, + { + "start": 8922.14, + "end": 8923.12, + "probability": 0.8848 + }, + { + "start": 8923.14, + "end": 8927.9, + "probability": 0.986 + }, + { + "start": 8927.94, + "end": 8931.22, + "probability": 0.9375 + }, + { + "start": 8931.66, + "end": 8933.88, + "probability": 0.6903 + }, + { + "start": 8934.32, + "end": 8936.68, + "probability": 0.9047 + }, + { + "start": 8936.76, + "end": 8937.44, + "probability": 0.779 + }, + { + "start": 8937.7, + "end": 8940.06, + "probability": 0.9886 + }, + { + "start": 8940.38, + "end": 8942.98, + "probability": 0.9467 + }, + { + "start": 8943.26, + "end": 8946.54, + "probability": 0.9194 + }, + { + "start": 8946.88, + "end": 8947.92, + "probability": 0.5659 + }, + { + "start": 8948.02, + "end": 8951.56, + "probability": 0.8452 + }, + { + "start": 8951.56, + "end": 8953.26, + "probability": 0.6432 + }, + { + "start": 8953.58, + "end": 8956.32, + "probability": 0.8667 + }, + { + "start": 8956.4, + "end": 8958.04, + "probability": 0.8572 + }, + { + "start": 8959.06, + "end": 8960.22, + "probability": 0.9563 + }, + { + "start": 8960.3, + "end": 8961.84, + "probability": 0.6371 + }, + { + "start": 8962.22, + "end": 8963.76, + "probability": 0.7799 + }, + { + "start": 8963.9, + "end": 8965.04, + "probability": 0.9064 + }, + { + "start": 8965.22, + "end": 8965.26, + "probability": 0.1077 + }, + { + "start": 8965.26, + "end": 8965.26, + "probability": 0.3414 + }, + { + "start": 8965.26, + "end": 8965.42, + "probability": 0.3746 + }, + { + "start": 8965.56, + "end": 8967.58, + "probability": 0.8203 + }, + { + "start": 8968.0, + "end": 8968.8, + "probability": 0.9251 + }, + { + "start": 8968.88, + "end": 8970.74, + "probability": 0.9881 + }, + { + "start": 8971.16, + "end": 8974.82, + "probability": 0.9954 + }, + { + "start": 8975.26, + "end": 8979.28, + "probability": 0.9581 + }, + { + "start": 8980.7, + "end": 8985.44, + "probability": 0.9948 + }, + { + "start": 8985.96, + "end": 8987.26, + "probability": 0.98 + }, + { + "start": 8988.06, + "end": 8989.44, + "probability": 0.7718 + }, + { + "start": 8989.92, + "end": 8990.52, + "probability": 0.8313 + }, + { + "start": 8990.62, + "end": 8991.1, + "probability": 0.4613 + }, + { + "start": 8991.2, + "end": 8992.86, + "probability": 0.2911 + }, + { + "start": 8993.08, + "end": 8993.22, + "probability": 0.1154 + }, + { + "start": 8993.24, + "end": 8998.32, + "probability": 0.9963 + }, + { + "start": 8998.84, + "end": 9003.82, + "probability": 0.9822 + }, + { + "start": 9004.14, + "end": 9009.5, + "probability": 0.9939 + }, + { + "start": 9010.4, + "end": 9012.34, + "probability": 0.1386 + }, + { + "start": 9012.34, + "end": 9013.02, + "probability": 0.0972 + }, + { + "start": 9013.24, + "end": 9015.96, + "probability": 0.7734 + }, + { + "start": 9016.1, + "end": 9018.52, + "probability": 0.9983 + }, + { + "start": 9018.52, + "end": 9022.1, + "probability": 0.9884 + }, + { + "start": 9022.12, + "end": 9025.8, + "probability": 0.9871 + }, + { + "start": 9026.36, + "end": 9026.58, + "probability": 0.5309 + }, + { + "start": 9026.72, + "end": 9027.76, + "probability": 0.7573 + }, + { + "start": 9027.9, + "end": 9028.76, + "probability": 0.7722 + }, + { + "start": 9029.08, + "end": 9031.02, + "probability": 0.9956 + }, + { + "start": 9031.56, + "end": 9032.22, + "probability": 0.9641 + }, + { + "start": 9032.22, + "end": 9036.88, + "probability": 0.994 + }, + { + "start": 9037.58, + "end": 9039.82, + "probability": 0.5551 + }, + { + "start": 9040.36, + "end": 9040.8, + "probability": 0.7314 + }, + { + "start": 9041.28, + "end": 9042.88, + "probability": 0.9977 + }, + { + "start": 9043.36, + "end": 9045.26, + "probability": 0.8434 + }, + { + "start": 9045.28, + "end": 9046.06, + "probability": 0.6152 + }, + { + "start": 9046.16, + "end": 9047.96, + "probability": 0.9504 + }, + { + "start": 9048.08, + "end": 9048.22, + "probability": 0.0446 + }, + { + "start": 9048.22, + "end": 9049.8, + "probability": 0.2533 + }, + { + "start": 9049.94, + "end": 9050.72, + "probability": 0.7368 + }, + { + "start": 9050.74, + "end": 9051.68, + "probability": 0.699 + }, + { + "start": 9051.7, + "end": 9052.66, + "probability": 0.5181 + }, + { + "start": 9053.32, + "end": 9053.42, + "probability": 0.0969 + }, + { + "start": 9053.42, + "end": 9054.84, + "probability": 0.9337 + }, + { + "start": 9055.18, + "end": 9055.6, + "probability": 0.8989 + }, + { + "start": 9055.7, + "end": 9057.14, + "probability": 0.9094 + }, + { + "start": 9057.4, + "end": 9059.12, + "probability": 0.8985 + }, + { + "start": 9059.24, + "end": 9060.75, + "probability": 0.9802 + }, + { + "start": 9061.02, + "end": 9064.06, + "probability": 0.9891 + }, + { + "start": 9064.52, + "end": 9065.62, + "probability": 0.6014 + }, + { + "start": 9066.06, + "end": 9066.26, + "probability": 0.3331 + }, + { + "start": 9066.26, + "end": 9066.28, + "probability": 0.2815 + }, + { + "start": 9066.28, + "end": 9066.32, + "probability": 0.0114 + }, + { + "start": 9066.4, + "end": 9067.12, + "probability": 0.752 + }, + { + "start": 9067.12, + "end": 9068.66, + "probability": 0.7097 + }, + { + "start": 9068.68, + "end": 9069.84, + "probability": 0.6617 + }, + { + "start": 9069.9, + "end": 9070.44, + "probability": 0.2893 + }, + { + "start": 9070.46, + "end": 9070.52, + "probability": 0.2553 + }, + { + "start": 9070.52, + "end": 9072.0, + "probability": 0.1302 + }, + { + "start": 9072.0, + "end": 9076.24, + "probability": 0.1568 + }, + { + "start": 9076.24, + "end": 9076.42, + "probability": 0.2122 + }, + { + "start": 9076.58, + "end": 9077.22, + "probability": 0.8645 + }, + { + "start": 9077.43, + "end": 9078.99, + "probability": 0.0714 + }, + { + "start": 9079.66, + "end": 9082.22, + "probability": 0.6729 + }, + { + "start": 9082.26, + "end": 9082.36, + "probability": 0.3366 + }, + { + "start": 9082.48, + "end": 9082.48, + "probability": 0.0429 + }, + { + "start": 9082.48, + "end": 9084.14, + "probability": 0.4081 + }, + { + "start": 9085.12, + "end": 9085.54, + "probability": 0.0503 + }, + { + "start": 9085.54, + "end": 9086.32, + "probability": 0.0853 + }, + { + "start": 9086.38, + "end": 9090.18, + "probability": 0.9664 + }, + { + "start": 9090.18, + "end": 9094.1, + "probability": 0.9919 + }, + { + "start": 9094.3, + "end": 9094.68, + "probability": 0.7637 + }, + { + "start": 9094.72, + "end": 9102.8, + "probability": 0.9928 + }, + { + "start": 9102.96, + "end": 9102.96, + "probability": 0.0227 + }, + { + "start": 9102.96, + "end": 9104.64, + "probability": 0.3099 + }, + { + "start": 9104.96, + "end": 9104.98, + "probability": 0.6802 + }, + { + "start": 9104.98, + "end": 9108.02, + "probability": 0.8937 + }, + { + "start": 9108.16, + "end": 9108.7, + "probability": 0.0406 + }, + { + "start": 9108.7, + "end": 9109.36, + "probability": 0.4678 + }, + { + "start": 9109.58, + "end": 9111.32, + "probability": 0.9749 + }, + { + "start": 9111.5, + "end": 9112.62, + "probability": 0.8014 + }, + { + "start": 9112.82, + "end": 9114.74, + "probability": 0.7829 + }, + { + "start": 9114.9, + "end": 9114.9, + "probability": 0.1978 + }, + { + "start": 9115.14, + "end": 9115.14, + "probability": 0.1136 + }, + { + "start": 9115.14, + "end": 9116.24, + "probability": 0.8695 + }, + { + "start": 9118.58, + "end": 9118.92, + "probability": 0.116 + }, + { + "start": 9118.98, + "end": 9118.98, + "probability": 0.3319 + }, + { + "start": 9118.98, + "end": 9120.26, + "probability": 0.7961 + }, + { + "start": 9120.32, + "end": 9120.4, + "probability": 0.0988 + }, + { + "start": 9120.4, + "end": 9122.52, + "probability": 0.4884 + }, + { + "start": 9122.78, + "end": 9123.96, + "probability": 0.9603 + }, + { + "start": 9124.04, + "end": 9125.88, + "probability": 0.5799 + }, + { + "start": 9126.38, + "end": 9126.54, + "probability": 0.0514 + }, + { + "start": 9126.54, + "end": 9126.54, + "probability": 0.2893 + }, + { + "start": 9126.54, + "end": 9127.68, + "probability": 0.3714 + }, + { + "start": 9127.74, + "end": 9129.18, + "probability": 0.7559 + }, + { + "start": 9129.6, + "end": 9129.92, + "probability": 0.6802 + }, + { + "start": 9130.06, + "end": 9130.67, + "probability": 0.9514 + }, + { + "start": 9130.96, + "end": 9131.72, + "probability": 0.9159 + }, + { + "start": 9132.26, + "end": 9132.68, + "probability": 0.6876 + }, + { + "start": 9132.8, + "end": 9133.26, + "probability": 0.554 + }, + { + "start": 9133.28, + "end": 9137.7, + "probability": 0.9302 + }, + { + "start": 9137.86, + "end": 9140.56, + "probability": 0.9739 + }, + { + "start": 9140.74, + "end": 9143.46, + "probability": 0.8748 + }, + { + "start": 9143.54, + "end": 9145.74, + "probability": 0.9741 + }, + { + "start": 9146.56, + "end": 9148.56, + "probability": 0.9302 + }, + { + "start": 9148.76, + "end": 9148.76, + "probability": 0.0318 + }, + { + "start": 9148.76, + "end": 9154.02, + "probability": 0.9955 + }, + { + "start": 9154.02, + "end": 9158.88, + "probability": 0.9948 + }, + { + "start": 9158.98, + "end": 9160.63, + "probability": 0.7852 + }, + { + "start": 9160.86, + "end": 9160.9, + "probability": 0.0265 + }, + { + "start": 9160.9, + "end": 9161.62, + "probability": 0.2996 + }, + { + "start": 9161.9, + "end": 9162.6, + "probability": 0.6843 + }, + { + "start": 9162.86, + "end": 9165.04, + "probability": 0.9669 + }, + { + "start": 9165.54, + "end": 9165.9, + "probability": 0.3995 + }, + { + "start": 9165.9, + "end": 9165.97, + "probability": 0.3796 + }, + { + "start": 9166.46, + "end": 9166.54, + "probability": 0.4711 + }, + { + "start": 9166.64, + "end": 9166.66, + "probability": 0.3997 + }, + { + "start": 9166.76, + "end": 9168.32, + "probability": 0.998 + }, + { + "start": 9168.4, + "end": 9170.4, + "probability": 0.9368 + }, + { + "start": 9170.82, + "end": 9172.96, + "probability": 0.9824 + }, + { + "start": 9173.84, + "end": 9175.62, + "probability": 0.9226 + }, + { + "start": 9175.96, + "end": 9179.84, + "probability": 0.8398 + }, + { + "start": 9180.02, + "end": 9182.92, + "probability": 0.4875 + }, + { + "start": 9183.02, + "end": 9185.08, + "probability": 0.9819 + }, + { + "start": 9185.12, + "end": 9185.16, + "probability": 0.2892 + }, + { + "start": 9185.34, + "end": 9185.74, + "probability": 0.5554 + }, + { + "start": 9185.78, + "end": 9186.22, + "probability": 0.9668 + }, + { + "start": 9188.86, + "end": 9190.03, + "probability": 0.3254 + }, + { + "start": 9190.74, + "end": 9191.22, + "probability": 0.7667 + }, + { + "start": 9192.06, + "end": 9192.56, + "probability": 0.1193 + }, + { + "start": 9192.56, + "end": 9194.6, + "probability": 0.734 + }, + { + "start": 9194.8, + "end": 9195.4, + "probability": 0.3855 + }, + { + "start": 9195.4, + "end": 9197.74, + "probability": 0.9529 + }, + { + "start": 9197.74, + "end": 9199.86, + "probability": 0.4676 + }, + { + "start": 9200.42, + "end": 9202.92, + "probability": 0.1809 + }, + { + "start": 9203.02, + "end": 9203.88, + "probability": 0.2678 + }, + { + "start": 9203.88, + "end": 9205.94, + "probability": 0.8459 + }, + { + "start": 9206.04, + "end": 9206.88, + "probability": 0.406 + }, + { + "start": 9206.98, + "end": 9208.88, + "probability": 0.4185 + }, + { + "start": 9208.98, + "end": 9210.28, + "probability": 0.739 + }, + { + "start": 9210.28, + "end": 9211.9, + "probability": 0.7364 + }, + { + "start": 9211.9, + "end": 9211.9, + "probability": 0.0765 + }, + { + "start": 9211.9, + "end": 9214.79, + "probability": 0.4497 + }, + { + "start": 9214.96, + "end": 9215.22, + "probability": 0.1285 + }, + { + "start": 9215.38, + "end": 9217.02, + "probability": 0.7656 + }, + { + "start": 9217.06, + "end": 9218.36, + "probability": 0.866 + }, + { + "start": 9218.8, + "end": 9221.7, + "probability": 0.9849 + }, + { + "start": 9221.76, + "end": 9225.52, + "probability": 0.9956 + }, + { + "start": 9225.82, + "end": 9232.52, + "probability": 0.9981 + }, + { + "start": 9232.58, + "end": 9233.5, + "probability": 0.8223 + }, + { + "start": 9233.66, + "end": 9236.32, + "probability": 0.96 + }, + { + "start": 9236.7, + "end": 9238.3, + "probability": 0.8014 + }, + { + "start": 9238.42, + "end": 9238.48, + "probability": 0.2132 + }, + { + "start": 9238.48, + "end": 9241.64, + "probability": 0.9594 + }, + { + "start": 9241.92, + "end": 9248.58, + "probability": 0.9871 + }, + { + "start": 9248.66, + "end": 9250.36, + "probability": 0.9946 + }, + { + "start": 9250.72, + "end": 9251.98, + "probability": 0.8882 + }, + { + "start": 9252.08, + "end": 9252.62, + "probability": 0.5497 + }, + { + "start": 9252.66, + "end": 9254.6, + "probability": 0.7354 + }, + { + "start": 9254.72, + "end": 9255.26, + "probability": 0.9484 + }, + { + "start": 9255.62, + "end": 9257.18, + "probability": 0.7575 + }, + { + "start": 9257.36, + "end": 9259.03, + "probability": 0.9504 + }, + { + "start": 9260.62, + "end": 9262.92, + "probability": 0.1528 + }, + { + "start": 9262.92, + "end": 9264.57, + "probability": 0.699 + }, + { + "start": 9265.1, + "end": 9265.96, + "probability": 0.7637 + }, + { + "start": 9266.1, + "end": 9268.34, + "probability": 0.2868 + }, + { + "start": 9268.5, + "end": 9270.4, + "probability": 0.664 + }, + { + "start": 9270.4, + "end": 9271.24, + "probability": 0.0205 + }, + { + "start": 9272.16, + "end": 9274.98, + "probability": 0.88 + }, + { + "start": 9275.32, + "end": 9276.06, + "probability": 0.5955 + }, + { + "start": 9276.18, + "end": 9280.3, + "probability": 0.9746 + }, + { + "start": 9280.5, + "end": 9282.53, + "probability": 0.998 + }, + { + "start": 9283.12, + "end": 9284.83, + "probability": 0.8341 + }, + { + "start": 9285.12, + "end": 9289.18, + "probability": 0.9976 + }, + { + "start": 9289.37, + "end": 9292.12, + "probability": 0.9993 + }, + { + "start": 9292.68, + "end": 9293.0, + "probability": 0.4454 + }, + { + "start": 9293.0, + "end": 9295.03, + "probability": 0.795 + }, + { + "start": 9295.54, + "end": 9301.22, + "probability": 0.9818 + }, + { + "start": 9301.22, + "end": 9304.26, + "probability": 0.9842 + }, + { + "start": 9304.54, + "end": 9305.18, + "probability": 0.651 + }, + { + "start": 9305.18, + "end": 9306.94, + "probability": 0.9651 + }, + { + "start": 9307.22, + "end": 9308.72, + "probability": 0.9883 + }, + { + "start": 9309.48, + "end": 9310.68, + "probability": 0.7004 + }, + { + "start": 9310.74, + "end": 9312.26, + "probability": 0.798 + }, + { + "start": 9312.3, + "end": 9312.3, + "probability": 0.6634 + }, + { + "start": 9312.42, + "end": 9313.26, + "probability": 0.8166 + }, + { + "start": 9313.52, + "end": 9315.12, + "probability": 0.6056 + }, + { + "start": 9315.28, + "end": 9315.66, + "probability": 0.4566 + }, + { + "start": 9315.68, + "end": 9316.58, + "probability": 0.4803 + }, + { + "start": 9316.7, + "end": 9318.72, + "probability": 0.8939 + }, + { + "start": 9318.72, + "end": 9321.36, + "probability": 0.9881 + }, + { + "start": 9321.7, + "end": 9322.68, + "probability": 0.9353 + }, + { + "start": 9322.84, + "end": 9324.5, + "probability": 0.9211 + }, + { + "start": 9324.54, + "end": 9325.04, + "probability": 0.5069 + }, + { + "start": 9325.22, + "end": 9327.24, + "probability": 0.9913 + }, + { + "start": 9327.6, + "end": 9328.98, + "probability": 0.6277 + }, + { + "start": 9329.3, + "end": 9329.67, + "probability": 0.6426 + }, + { + "start": 9329.92, + "end": 9330.84, + "probability": 0.8119 + }, + { + "start": 9331.02, + "end": 9332.3, + "probability": 0.9897 + }, + { + "start": 9332.68, + "end": 9335.68, + "probability": 0.9818 + }, + { + "start": 9335.9, + "end": 9341.62, + "probability": 0.9522 + }, + { + "start": 9342.18, + "end": 9344.86, + "probability": 0.6597 + }, + { + "start": 9345.02, + "end": 9348.94, + "probability": 0.976 + }, + { + "start": 9348.98, + "end": 9350.54, + "probability": 0.9289 + }, + { + "start": 9351.06, + "end": 9352.46, + "probability": 0.7385 + }, + { + "start": 9352.52, + "end": 9354.54, + "probability": 0.8885 + }, + { + "start": 9354.7, + "end": 9357.24, + "probability": 0.9789 + }, + { + "start": 9357.72, + "end": 9360.06, + "probability": 0.8442 + }, + { + "start": 9360.86, + "end": 9364.18, + "probability": 0.9937 + }, + { + "start": 9364.46, + "end": 9366.0, + "probability": 0.9388 + }, + { + "start": 9366.42, + "end": 9367.68, + "probability": 0.9863 + }, + { + "start": 9368.22, + "end": 9373.16, + "probability": 0.9727 + }, + { + "start": 9373.24, + "end": 9373.84, + "probability": 0.836 + }, + { + "start": 9374.0, + "end": 9374.86, + "probability": 0.6653 + }, + { + "start": 9375.1, + "end": 9376.72, + "probability": 0.9698 + }, + { + "start": 9377.14, + "end": 9378.9, + "probability": 0.9856 + }, + { + "start": 9379.24, + "end": 9381.67, + "probability": 0.9142 + }, + { + "start": 9382.98, + "end": 9384.12, + "probability": 0.895 + }, + { + "start": 9384.46, + "end": 9386.68, + "probability": 0.9847 + }, + { + "start": 9387.42, + "end": 9390.16, + "probability": 0.9971 + }, + { + "start": 9390.38, + "end": 9393.1, + "probability": 0.9854 + }, + { + "start": 9393.1, + "end": 9393.1, + "probability": 0.7025 + }, + { + "start": 9393.1, + "end": 9394.75, + "probability": 0.5794 + }, + { + "start": 9395.34, + "end": 9395.56, + "probability": 0.1962 + }, + { + "start": 9395.56, + "end": 9396.12, + "probability": 0.3341 + }, + { + "start": 9396.68, + "end": 9397.62, + "probability": 0.9636 + }, + { + "start": 9398.58, + "end": 9400.76, + "probability": 0.8519 + }, + { + "start": 9408.88, + "end": 9409.58, + "probability": 0.5853 + }, + { + "start": 9410.24, + "end": 9411.2, + "probability": 0.3138 + }, + { + "start": 9418.36, + "end": 9419.62, + "probability": 0.7798 + }, + { + "start": 9420.92, + "end": 9423.32, + "probability": 0.7799 + }, + { + "start": 9424.84, + "end": 9426.8, + "probability": 0.9587 + }, + { + "start": 9427.7, + "end": 9429.82, + "probability": 0.9575 + }, + { + "start": 9430.62, + "end": 9433.94, + "probability": 0.9937 + }, + { + "start": 9434.66, + "end": 9437.08, + "probability": 0.9844 + }, + { + "start": 9438.04, + "end": 9439.7, + "probability": 0.9897 + }, + { + "start": 9440.12, + "end": 9444.36, + "probability": 0.9773 + }, + { + "start": 9444.92, + "end": 9446.75, + "probability": 0.9884 + }, + { + "start": 9447.2, + "end": 9449.78, + "probability": 0.9808 + }, + { + "start": 9449.84, + "end": 9452.48, + "probability": 0.9907 + }, + { + "start": 9452.96, + "end": 9454.72, + "probability": 0.9961 + }, + { + "start": 9455.36, + "end": 9455.78, + "probability": 0.9443 + }, + { + "start": 9456.2, + "end": 9458.3, + "probability": 0.9808 + }, + { + "start": 9458.74, + "end": 9459.32, + "probability": 0.514 + }, + { + "start": 9459.8, + "end": 9462.38, + "probability": 0.9951 + }, + { + "start": 9463.3, + "end": 9464.3, + "probability": 0.9795 + }, + { + "start": 9464.8, + "end": 9468.42, + "probability": 0.9985 + }, + { + "start": 9469.04, + "end": 9470.38, + "probability": 0.7126 + }, + { + "start": 9471.08, + "end": 9472.4, + "probability": 0.9676 + }, + { + "start": 9473.28, + "end": 9474.62, + "probability": 0.98 + }, + { + "start": 9474.74, + "end": 9475.16, + "probability": 0.9912 + }, + { + "start": 9476.18, + "end": 9477.48, + "probability": 0.98 + }, + { + "start": 9477.68, + "end": 9480.72, + "probability": 0.9934 + }, + { + "start": 9481.04, + "end": 9482.54, + "probability": 0.7998 + }, + { + "start": 9483.12, + "end": 9484.36, + "probability": 0.7732 + }, + { + "start": 9484.38, + "end": 9485.24, + "probability": 0.8364 + }, + { + "start": 9485.62, + "end": 9486.7, + "probability": 0.9455 + }, + { + "start": 9486.76, + "end": 9487.18, + "probability": 0.8056 + }, + { + "start": 9487.32, + "end": 9488.62, + "probability": 0.9204 + }, + { + "start": 9489.3, + "end": 9490.8, + "probability": 0.8452 + }, + { + "start": 9491.58, + "end": 9495.0, + "probability": 0.9252 + }, + { + "start": 9495.08, + "end": 9498.46, + "probability": 0.9545 + }, + { + "start": 9499.58, + "end": 9503.18, + "probability": 0.9974 + }, + { + "start": 9503.72, + "end": 9504.78, + "probability": 0.7843 + }, + { + "start": 9505.26, + "end": 9508.88, + "probability": 0.9969 + }, + { + "start": 9509.68, + "end": 9512.06, + "probability": 0.9913 + }, + { + "start": 9512.18, + "end": 9513.24, + "probability": 0.6018 + }, + { + "start": 9513.72, + "end": 9515.74, + "probability": 0.9942 + }, + { + "start": 9516.26, + "end": 9517.68, + "probability": 0.9112 + }, + { + "start": 9518.2, + "end": 9520.76, + "probability": 0.943 + }, + { + "start": 9521.06, + "end": 9523.06, + "probability": 0.9668 + }, + { + "start": 9523.52, + "end": 9527.06, + "probability": 0.9207 + }, + { + "start": 9527.56, + "end": 9528.92, + "probability": 0.8308 + }, + { + "start": 9529.04, + "end": 9530.2, + "probability": 0.9573 + }, + { + "start": 9530.26, + "end": 9531.5, + "probability": 0.9299 + }, + { + "start": 9531.72, + "end": 9533.52, + "probability": 0.9973 + }, + { + "start": 9533.9, + "end": 9537.2, + "probability": 0.9926 + }, + { + "start": 9537.54, + "end": 9539.7, + "probability": 0.7252 + }, + { + "start": 9540.44, + "end": 9543.62, + "probability": 0.9874 + }, + { + "start": 9543.62, + "end": 9546.32, + "probability": 0.9322 + }, + { + "start": 9546.66, + "end": 9550.4, + "probability": 0.998 + }, + { + "start": 9550.74, + "end": 9556.44, + "probability": 0.9968 + }, + { + "start": 9556.82, + "end": 9558.0, + "probability": 0.9548 + }, + { + "start": 9558.42, + "end": 9559.76, + "probability": 0.813 + }, + { + "start": 9560.06, + "end": 9561.51, + "probability": 0.9788 + }, + { + "start": 9562.38, + "end": 9563.8, + "probability": 0.9585 + }, + { + "start": 9563.84, + "end": 9566.52, + "probability": 0.9906 + }, + { + "start": 9567.2, + "end": 9573.12, + "probability": 0.9675 + }, + { + "start": 9573.12, + "end": 9575.6, + "probability": 0.9981 + }, + { + "start": 9575.94, + "end": 9580.24, + "probability": 0.9756 + }, + { + "start": 9580.56, + "end": 9583.88, + "probability": 0.9946 + }, + { + "start": 9583.96, + "end": 9585.5, + "probability": 0.9808 + }, + { + "start": 9585.8, + "end": 9586.7, + "probability": 0.792 + }, + { + "start": 9587.0, + "end": 9590.72, + "probability": 0.9876 + }, + { + "start": 9591.26, + "end": 9592.06, + "probability": 0.9389 + }, + { + "start": 9592.48, + "end": 9593.22, + "probability": 0.6224 + }, + { + "start": 9593.64, + "end": 9594.36, + "probability": 0.9782 + }, + { + "start": 9594.42, + "end": 9594.84, + "probability": 0.8616 + }, + { + "start": 9595.14, + "end": 9597.68, + "probability": 0.9677 + }, + { + "start": 9598.1, + "end": 9599.76, + "probability": 0.9964 + }, + { + "start": 9599.94, + "end": 9602.92, + "probability": 0.9944 + }, + { + "start": 9603.4, + "end": 9604.14, + "probability": 0.9369 + }, + { + "start": 9604.26, + "end": 9607.72, + "probability": 0.9825 + }, + { + "start": 9608.38, + "end": 9608.54, + "probability": 0.5704 + }, + { + "start": 9608.62, + "end": 9609.2, + "probability": 0.6461 + }, + { + "start": 9609.3, + "end": 9610.34, + "probability": 0.6794 + }, + { + "start": 9611.58, + "end": 9612.64, + "probability": 0.916 + }, + { + "start": 9618.09, + "end": 9619.92, + "probability": 0.5915 + }, + { + "start": 9619.92, + "end": 9620.22, + "probability": 0.4692 + }, + { + "start": 9620.58, + "end": 9623.0, + "probability": 0.8703 + }, + { + "start": 9623.5, + "end": 9624.2, + "probability": 0.8995 + }, + { + "start": 9624.32, + "end": 9626.72, + "probability": 0.6583 + }, + { + "start": 9627.1, + "end": 9627.66, + "probability": 0.9344 + }, + { + "start": 9628.19, + "end": 9630.72, + "probability": 0.7865 + }, + { + "start": 9631.34, + "end": 9633.46, + "probability": 0.9916 + }, + { + "start": 9633.73, + "end": 9635.48, + "probability": 0.83 + }, + { + "start": 9635.54, + "end": 9636.68, + "probability": 0.5553 + }, + { + "start": 9636.84, + "end": 9641.58, + "probability": 0.9844 + }, + { + "start": 9641.8, + "end": 9642.77, + "probability": 0.8952 + }, + { + "start": 9643.66, + "end": 9643.66, + "probability": 0.005 + }, + { + "start": 9643.66, + "end": 9644.6, + "probability": 0.6641 + }, + { + "start": 9644.74, + "end": 9645.58, + "probability": 0.9327 + }, + { + "start": 9645.94, + "end": 9651.56, + "probability": 0.9852 + }, + { + "start": 9651.56, + "end": 9657.1, + "probability": 0.9902 + }, + { + "start": 9658.1, + "end": 9659.58, + "probability": 0.7722 + }, + { + "start": 9660.3, + "end": 9662.62, + "probability": 0.8942 + }, + { + "start": 9662.72, + "end": 9663.6, + "probability": 0.9081 + }, + { + "start": 9663.66, + "end": 9664.66, + "probability": 0.8061 + }, + { + "start": 9664.82, + "end": 9668.72, + "probability": 0.9561 + }, + { + "start": 9668.72, + "end": 9672.94, + "probability": 0.9702 + }, + { + "start": 9673.48, + "end": 9674.74, + "probability": 0.9771 + }, + { + "start": 9675.48, + "end": 9678.84, + "probability": 0.9883 + }, + { + "start": 9678.84, + "end": 9683.26, + "probability": 0.9502 + }, + { + "start": 9683.4, + "end": 9684.58, + "probability": 0.8474 + }, + { + "start": 9684.88, + "end": 9685.24, + "probability": 0.932 + }, + { + "start": 9685.3, + "end": 9685.98, + "probability": 0.7975 + }, + { + "start": 9686.28, + "end": 9687.5, + "probability": 0.8389 + }, + { + "start": 9687.52, + "end": 9689.24, + "probability": 0.8227 + }, + { + "start": 9689.6, + "end": 9690.5, + "probability": 0.809 + }, + { + "start": 9690.88, + "end": 9694.8, + "probability": 0.991 + }, + { + "start": 9695.2, + "end": 9695.88, + "probability": 0.9218 + }, + { + "start": 9696.86, + "end": 9697.84, + "probability": 0.8574 + }, + { + "start": 9698.06, + "end": 9699.9, + "probability": 0.9601 + }, + { + "start": 9700.04, + "end": 9700.72, + "probability": 0.97 + }, + { + "start": 9701.72, + "end": 9703.58, + "probability": 0.9932 + }, + { + "start": 9703.64, + "end": 9703.9, + "probability": 0.9113 + }, + { + "start": 9704.34, + "end": 9704.76, + "probability": 0.5954 + }, + { + "start": 9704.9, + "end": 9705.8, + "probability": 0.8467 + }, + { + "start": 9705.86, + "end": 9707.18, + "probability": 0.6942 + }, + { + "start": 9707.86, + "end": 9710.04, + "probability": 0.635 + }, + { + "start": 9711.0, + "end": 9712.72, + "probability": 0.853 + }, + { + "start": 9714.17, + "end": 9721.16, + "probability": 0.1107 + }, + { + "start": 9721.16, + "end": 9722.08, + "probability": 0.0179 + }, + { + "start": 9733.26, + "end": 9733.5, + "probability": 0.0161 + }, + { + "start": 9733.5, + "end": 9733.5, + "probability": 0.0197 + }, + { + "start": 9733.5, + "end": 9733.5, + "probability": 0.4748 + }, + { + "start": 9733.5, + "end": 9733.5, + "probability": 0.2855 + }, + { + "start": 9733.5, + "end": 9736.14, + "probability": 0.4205 + }, + { + "start": 9736.72, + "end": 9737.62, + "probability": 0.7293 + }, + { + "start": 9737.76, + "end": 9738.65, + "probability": 0.6454 + }, + { + "start": 9739.18, + "end": 9743.54, + "probability": 0.9236 + }, + { + "start": 9743.74, + "end": 9744.56, + "probability": 0.8643 + }, + { + "start": 9745.88, + "end": 9748.0, + "probability": 0.8676 + }, + { + "start": 9748.16, + "end": 9749.3, + "probability": 0.7903 + }, + { + "start": 9749.42, + "end": 9751.82, + "probability": 0.7923 + }, + { + "start": 9751.94, + "end": 9754.5, + "probability": 0.4223 + }, + { + "start": 9770.16, + "end": 9770.16, + "probability": 0.505 + }, + { + "start": 9770.16, + "end": 9771.44, + "probability": 0.7428 + }, + { + "start": 9772.14, + "end": 9773.82, + "probability": 0.771 + }, + { + "start": 9774.1, + "end": 9776.46, + "probability": 0.889 + }, + { + "start": 9777.68, + "end": 9781.68, + "probability": 0.9484 + }, + { + "start": 9781.68, + "end": 9787.76, + "probability": 0.9976 + }, + { + "start": 9789.16, + "end": 9791.62, + "probability": 0.7725 + }, + { + "start": 9791.78, + "end": 9793.31, + "probability": 0.8743 + }, + { + "start": 9793.52, + "end": 9796.92, + "probability": 0.9399 + }, + { + "start": 9798.3, + "end": 9802.06, + "probability": 0.9941 + }, + { + "start": 9802.06, + "end": 9807.36, + "probability": 0.9965 + }, + { + "start": 9808.2, + "end": 9808.96, + "probability": 0.4068 + }, + { + "start": 9809.1, + "end": 9812.62, + "probability": 0.9937 + }, + { + "start": 9813.54, + "end": 9816.18, + "probability": 0.9162 + }, + { + "start": 9817.06, + "end": 9818.08, + "probability": 0.6034 + }, + { + "start": 9818.1, + "end": 9822.42, + "probability": 0.9036 + }, + { + "start": 9822.42, + "end": 9827.48, + "probability": 0.9679 + }, + { + "start": 9828.3, + "end": 9829.42, + "probability": 0.5099 + }, + { + "start": 9830.72, + "end": 9833.4, + "probability": 0.9691 + }, + { + "start": 9833.4, + "end": 9838.62, + "probability": 0.9887 + }, + { + "start": 9838.62, + "end": 9843.22, + "probability": 0.991 + }, + { + "start": 9844.02, + "end": 9844.42, + "probability": 0.5301 + }, + { + "start": 9845.0, + "end": 9847.5, + "probability": 0.9895 + }, + { + "start": 9848.14, + "end": 9850.66, + "probability": 0.9565 + }, + { + "start": 9851.64, + "end": 9852.86, + "probability": 0.9823 + }, + { + "start": 9853.44, + "end": 9857.4, + "probability": 0.9189 + }, + { + "start": 9857.4, + "end": 9862.06, + "probability": 0.9171 + }, + { + "start": 9863.06, + "end": 9866.62, + "probability": 0.9873 + }, + { + "start": 9866.62, + "end": 9872.18, + "probability": 0.9558 + }, + { + "start": 9872.86, + "end": 9875.86, + "probability": 0.987 + }, + { + "start": 9875.86, + "end": 9878.84, + "probability": 0.9939 + }, + { + "start": 9879.52, + "end": 9884.34, + "probability": 0.995 + }, + { + "start": 9884.34, + "end": 9891.84, + "probability": 0.9297 + }, + { + "start": 9892.1, + "end": 9893.32, + "probability": 0.8646 + }, + { + "start": 9893.86, + "end": 9899.04, + "probability": 0.9884 + }, + { + "start": 9899.04, + "end": 9902.64, + "probability": 0.9976 + }, + { + "start": 9903.24, + "end": 9905.57, + "probability": 0.9927 + }, + { + "start": 9907.28, + "end": 9911.36, + "probability": 0.961 + }, + { + "start": 9912.08, + "end": 9914.52, + "probability": 0.8597 + }, + { + "start": 9915.06, + "end": 9918.82, + "probability": 0.9976 + }, + { + "start": 9919.34, + "end": 9921.74, + "probability": 0.9745 + }, + { + "start": 9922.5, + "end": 9927.3, + "probability": 0.9956 + }, + { + "start": 9927.3, + "end": 9932.26, + "probability": 0.9903 + }, + { + "start": 9932.26, + "end": 9937.98, + "probability": 0.9981 + }, + { + "start": 9938.88, + "end": 9944.48, + "probability": 0.7882 + }, + { + "start": 9945.74, + "end": 9947.2, + "probability": 0.7968 + }, + { + "start": 9947.64, + "end": 9950.22, + "probability": 0.9438 + }, + { + "start": 9950.68, + "end": 9953.76, + "probability": 0.9914 + }, + { + "start": 9954.4, + "end": 9957.04, + "probability": 0.9861 + }, + { + "start": 9957.72, + "end": 9960.1, + "probability": 0.9817 + }, + { + "start": 9960.7, + "end": 9962.38, + "probability": 0.9766 + }, + { + "start": 9962.48, + "end": 9965.62, + "probability": 0.9966 + }, + { + "start": 9966.22, + "end": 9968.94, + "probability": 0.9932 + }, + { + "start": 9968.94, + "end": 9971.32, + "probability": 0.9989 + }, + { + "start": 9971.8, + "end": 9975.76, + "probability": 0.9977 + }, + { + "start": 9975.76, + "end": 9979.38, + "probability": 0.9969 + }, + { + "start": 9979.44, + "end": 9982.04, + "probability": 0.9381 + }, + { + "start": 9982.92, + "end": 9987.1, + "probability": 0.8231 + }, + { + "start": 9987.8, + "end": 9994.48, + "probability": 0.8439 + }, + { + "start": 9994.48, + "end": 9999.9, + "probability": 0.9856 + }, + { + "start": 10001.02, + "end": 10001.8, + "probability": 0.7796 + }, + { + "start": 10002.5, + "end": 10008.64, + "probability": 0.9932 + }, + { + "start": 10008.64, + "end": 10014.6, + "probability": 0.9896 + }, + { + "start": 10015.34, + "end": 10020.26, + "probability": 0.9819 + }, + { + "start": 10021.12, + "end": 10023.68, + "probability": 0.9325 + }, + { + "start": 10024.32, + "end": 10029.0, + "probability": 0.8713 + }, + { + "start": 10029.8, + "end": 10034.58, + "probability": 0.9875 + }, + { + "start": 10034.58, + "end": 10040.36, + "probability": 0.9957 + }, + { + "start": 10040.88, + "end": 10043.68, + "probability": 0.9814 + }, + { + "start": 10044.24, + "end": 10047.48, + "probability": 0.9162 + }, + { + "start": 10047.64, + "end": 10053.48, + "probability": 0.9915 + }, + { + "start": 10054.74, + "end": 10059.7, + "probability": 0.9582 + }, + { + "start": 10060.22, + "end": 10062.32, + "probability": 0.9456 + }, + { + "start": 10063.26, + "end": 10064.18, + "probability": 0.8666 + }, + { + "start": 10064.86, + "end": 10067.38, + "probability": 0.9852 + }, + { + "start": 10068.48, + "end": 10072.62, + "probability": 0.9954 + }, + { + "start": 10072.62, + "end": 10077.2, + "probability": 0.9984 + }, + { + "start": 10078.04, + "end": 10079.68, + "probability": 0.8921 + }, + { + "start": 10080.14, + "end": 10080.46, + "probability": 0.7916 + }, + { + "start": 10080.5, + "end": 10080.94, + "probability": 0.6016 + }, + { + "start": 10081.08, + "end": 10083.62, + "probability": 0.7961 + }, + { + "start": 10095.26, + "end": 10097.46, + "probability": 0.7413 + }, + { + "start": 10098.44, + "end": 10101.5, + "probability": 0.9446 + }, + { + "start": 10102.96, + "end": 10104.84, + "probability": 0.9263 + }, + { + "start": 10105.44, + "end": 10108.42, + "probability": 0.7895 + }, + { + "start": 10108.8, + "end": 10111.08, + "probability": 0.9634 + }, + { + "start": 10112.14, + "end": 10114.08, + "probability": 0.4404 + }, + { + "start": 10114.8, + "end": 10116.04, + "probability": 0.8648 + }, + { + "start": 10116.88, + "end": 10119.32, + "probability": 0.9071 + }, + { + "start": 10119.44, + "end": 10124.16, + "probability": 0.9067 + }, + { + "start": 10124.16, + "end": 10128.56, + "probability": 0.9889 + }, + { + "start": 10129.86, + "end": 10133.72, + "probability": 0.9805 + }, + { + "start": 10135.04, + "end": 10137.98, + "probability": 0.9957 + }, + { + "start": 10138.88, + "end": 10142.2, + "probability": 0.849 + }, + { + "start": 10143.22, + "end": 10148.88, + "probability": 0.9937 + }, + { + "start": 10149.94, + "end": 10152.0, + "probability": 0.9053 + }, + { + "start": 10152.56, + "end": 10155.7, + "probability": 0.9955 + }, + { + "start": 10156.82, + "end": 10158.34, + "probability": 0.7186 + }, + { + "start": 10168.14, + "end": 10170.02, + "probability": 0.7629 + }, + { + "start": 10171.5, + "end": 10173.72, + "probability": 0.9768 + }, + { + "start": 10174.96, + "end": 10181.89, + "probability": 0.9641 + }, + { + "start": 10182.7, + "end": 10184.4, + "probability": 0.9948 + }, + { + "start": 10185.98, + "end": 10187.4, + "probability": 0.9371 + }, + { + "start": 10187.5, + "end": 10190.08, + "probability": 0.8411 + }, + { + "start": 10191.1, + "end": 10195.62, + "probability": 0.9626 + }, + { + "start": 10197.06, + "end": 10197.54, + "probability": 0.6214 + }, + { + "start": 10197.6, + "end": 10200.54, + "probability": 0.9567 + }, + { + "start": 10200.54, + "end": 10203.62, + "probability": 0.9926 + }, + { + "start": 10205.04, + "end": 10206.88, + "probability": 0.9601 + }, + { + "start": 10207.62, + "end": 10212.2, + "probability": 0.7585 + }, + { + "start": 10212.8, + "end": 10215.78, + "probability": 0.9878 + }, + { + "start": 10217.82, + "end": 10221.24, + "probability": 0.9894 + }, + { + "start": 10221.24, + "end": 10226.62, + "probability": 0.9929 + }, + { + "start": 10227.98, + "end": 10230.64, + "probability": 0.9769 + }, + { + "start": 10231.48, + "end": 10236.2, + "probability": 0.9989 + }, + { + "start": 10237.52, + "end": 10238.14, + "probability": 0.9989 + }, + { + "start": 10239.24, + "end": 10248.04, + "probability": 0.848 + }, + { + "start": 10250.96, + "end": 10253.96, + "probability": 0.8684 + }, + { + "start": 10255.64, + "end": 10258.54, + "probability": 0.9448 + }, + { + "start": 10259.12, + "end": 10262.86, + "probability": 0.8633 + }, + { + "start": 10267.72, + "end": 10273.56, + "probability": 0.9928 + }, + { + "start": 10275.82, + "end": 10280.62, + "probability": 0.9525 + }, + { + "start": 10280.62, + "end": 10286.14, + "probability": 0.9976 + }, + { + "start": 10288.06, + "end": 10289.58, + "probability": 0.8215 + }, + { + "start": 10293.1, + "end": 10295.22, + "probability": 0.7477 + }, + { + "start": 10296.0, + "end": 10298.28, + "probability": 0.9858 + }, + { + "start": 10299.56, + "end": 10300.72, + "probability": 0.7049 + }, + { + "start": 10301.52, + "end": 10303.08, + "probability": 0.9563 + }, + { + "start": 10303.7, + "end": 10304.38, + "probability": 0.9252 + }, + { + "start": 10306.04, + "end": 10307.06, + "probability": 0.6477 + }, + { + "start": 10308.04, + "end": 10309.04, + "probability": 0.9966 + }, + { + "start": 10309.62, + "end": 10310.82, + "probability": 0.9694 + }, + { + "start": 10312.5, + "end": 10313.26, + "probability": 0.7509 + }, + { + "start": 10315.22, + "end": 10316.24, + "probability": 0.3117 + }, + { + "start": 10317.42, + "end": 10318.94, + "probability": 0.9844 + }, + { + "start": 10320.82, + "end": 10324.49, + "probability": 0.9866 + }, + { + "start": 10326.34, + "end": 10328.0, + "probability": 0.9463 + }, + { + "start": 10329.66, + "end": 10330.92, + "probability": 0.9631 + }, + { + "start": 10332.36, + "end": 10334.48, + "probability": 0.6968 + }, + { + "start": 10335.3, + "end": 10340.64, + "probability": 0.951 + }, + { + "start": 10342.48, + "end": 10342.96, + "probability": 0.9001 + }, + { + "start": 10343.94, + "end": 10345.0, + "probability": 0.6324 + }, + { + "start": 10346.16, + "end": 10349.98, + "probability": 0.9932 + }, + { + "start": 10351.0, + "end": 10353.56, + "probability": 0.958 + }, + { + "start": 10354.44, + "end": 10359.06, + "probability": 0.9858 + }, + { + "start": 10359.8, + "end": 10362.84, + "probability": 0.8678 + }, + { + "start": 10363.96, + "end": 10367.92, + "probability": 0.9928 + }, + { + "start": 10368.66, + "end": 10373.84, + "probability": 0.993 + }, + { + "start": 10374.82, + "end": 10377.7, + "probability": 0.9956 + }, + { + "start": 10377.7, + "end": 10380.32, + "probability": 0.994 + }, + { + "start": 10381.3, + "end": 10384.22, + "probability": 0.7898 + }, + { + "start": 10385.08, + "end": 10385.76, + "probability": 0.7815 + }, + { + "start": 10387.22, + "end": 10389.74, + "probability": 0.5849 + }, + { + "start": 10390.62, + "end": 10392.1, + "probability": 0.9674 + }, + { + "start": 10393.52, + "end": 10394.82, + "probability": 0.8064 + }, + { + "start": 10398.02, + "end": 10402.44, + "probability": 0.9316 + }, + { + "start": 10404.89, + "end": 10407.66, + "probability": 0.9081 + }, + { + "start": 10408.38, + "end": 10414.32, + "probability": 0.9908 + }, + { + "start": 10416.9, + "end": 10420.38, + "probability": 0.8143 + }, + { + "start": 10422.62, + "end": 10427.58, + "probability": 0.8064 + }, + { + "start": 10429.74, + "end": 10432.1, + "probability": 0.9879 + }, + { + "start": 10432.92, + "end": 10436.88, + "probability": 0.9701 + }, + { + "start": 10437.94, + "end": 10441.72, + "probability": 0.8465 + }, + { + "start": 10442.48, + "end": 10444.3, + "probability": 0.7437 + }, + { + "start": 10445.42, + "end": 10446.18, + "probability": 0.7308 + }, + { + "start": 10447.42, + "end": 10453.32, + "probability": 0.9142 + }, + { + "start": 10455.24, + "end": 10456.04, + "probability": 0.9983 + }, + { + "start": 10457.18, + "end": 10458.92, + "probability": 0.982 + }, + { + "start": 10459.9, + "end": 10461.5, + "probability": 0.7363 + }, + { + "start": 10462.44, + "end": 10469.36, + "probability": 0.9851 + }, + { + "start": 10470.82, + "end": 10474.12, + "probability": 0.2211 + }, + { + "start": 10474.14, + "end": 10474.18, + "probability": 0.2657 + }, + { + "start": 10478.88, + "end": 10480.36, + "probability": 0.4344 + }, + { + "start": 10482.06, + "end": 10483.42, + "probability": 0.7783 + }, + { + "start": 10485.14, + "end": 10486.7, + "probability": 0.4316 + }, + { + "start": 10488.96, + "end": 10491.82, + "probability": 0.5855 + }, + { + "start": 10492.56, + "end": 10497.46, + "probability": 0.7575 + }, + { + "start": 10502.3, + "end": 10503.5, + "probability": 0.649 + }, + { + "start": 10503.62, + "end": 10506.64, + "probability": 0.9828 + }, + { + "start": 10506.78, + "end": 10507.44, + "probability": 0.1476 + }, + { + "start": 10517.96, + "end": 10518.78, + "probability": 0.3135 + }, + { + "start": 10520.1, + "end": 10520.1, + "probability": 0.7998 + }, + { + "start": 10520.1, + "end": 10520.1, + "probability": 0.739 + }, + { + "start": 10520.1, + "end": 10520.1, + "probability": 0.6358 + }, + { + "start": 10520.12, + "end": 10520.84, + "probability": 0.8297 + }, + { + "start": 10521.02, + "end": 10522.48, + "probability": 0.917 + }, + { + "start": 10522.76, + "end": 10523.46, + "probability": 0.9413 + }, + { + "start": 10525.48, + "end": 10530.04, + "probability": 0.9909 + }, + { + "start": 10530.7, + "end": 10531.04, + "probability": 0.0084 + }, + { + "start": 10533.58, + "end": 10533.74, + "probability": 0.2198 + }, + { + "start": 10533.74, + "end": 10536.68, + "probability": 0.9838 + }, + { + "start": 10537.1, + "end": 10538.24, + "probability": 0.6215 + }, + { + "start": 10538.68, + "end": 10541.7, + "probability": 0.7983 + }, + { + "start": 10541.76, + "end": 10542.28, + "probability": 0.7668 + }, + { + "start": 10542.36, + "end": 10544.06, + "probability": 0.7537 + }, + { + "start": 10549.26, + "end": 10550.46, + "probability": 0.607 + }, + { + "start": 10551.12, + "end": 10552.66, + "probability": 0.8921 + }, + { + "start": 10553.0, + "end": 10553.7, + "probability": 0.2134 + }, + { + "start": 10555.54, + "end": 10558.24, + "probability": 0.4393 + }, + { + "start": 10563.42, + "end": 10564.14, + "probability": 0.6092 + }, + { + "start": 10564.3, + "end": 10565.86, + "probability": 0.8873 + }, + { + "start": 10565.86, + "end": 10568.02, + "probability": 0.786 + }, + { + "start": 10570.04, + "end": 10574.54, + "probability": 0.9966 + }, + { + "start": 10575.3, + "end": 10577.82, + "probability": 0.9546 + }, + { + "start": 10578.7, + "end": 10583.62, + "probability": 0.9922 + }, + { + "start": 10584.3, + "end": 10586.0, + "probability": 0.9164 + }, + { + "start": 10586.66, + "end": 10588.44, + "probability": 0.8959 + }, + { + "start": 10589.64, + "end": 10591.7, + "probability": 0.7549 + }, + { + "start": 10592.5, + "end": 10593.96, + "probability": 0.9913 + }, + { + "start": 10594.08, + "end": 10594.74, + "probability": 0.9108 + }, + { + "start": 10594.82, + "end": 10595.3, + "probability": 0.9656 + }, + { + "start": 10595.36, + "end": 10596.12, + "probability": 0.9775 + }, + { + "start": 10596.2, + "end": 10596.92, + "probability": 0.7321 + }, + { + "start": 10597.92, + "end": 10603.8, + "probability": 0.9961 + }, + { + "start": 10603.8, + "end": 10609.18, + "probability": 0.9995 + }, + { + "start": 10609.74, + "end": 10613.02, + "probability": 0.9983 + }, + { + "start": 10613.9, + "end": 10614.48, + "probability": 0.7345 + }, + { + "start": 10617.28, + "end": 10619.54, + "probability": 0.3867 + }, + { + "start": 10619.84, + "end": 10625.16, + "probability": 0.9814 + }, + { + "start": 10626.24, + "end": 10627.8, + "probability": 0.9961 + }, + { + "start": 10627.88, + "end": 10633.34, + "probability": 0.9844 + }, + { + "start": 10634.12, + "end": 10637.06, + "probability": 0.9888 + }, + { + "start": 10637.16, + "end": 10641.48, + "probability": 0.9976 + }, + { + "start": 10641.48, + "end": 10646.74, + "probability": 0.9992 + }, + { + "start": 10647.0, + "end": 10647.28, + "probability": 0.0326 + }, + { + "start": 10647.82, + "end": 10655.56, + "probability": 0.078 + }, + { + "start": 10657.3, + "end": 10658.36, + "probability": 0.8184 + }, + { + "start": 10658.52, + "end": 10661.9, + "probability": 0.8005 + }, + { + "start": 10662.66, + "end": 10664.52, + "probability": 0.9963 + }, + { + "start": 10665.32, + "end": 10667.36, + "probability": 0.7837 + }, + { + "start": 10667.42, + "end": 10671.78, + "probability": 0.4865 + }, + { + "start": 10672.44, + "end": 10673.72, + "probability": 0.0577 + }, + { + "start": 10673.72, + "end": 10676.02, + "probability": 0.6157 + }, + { + "start": 10676.5, + "end": 10679.98, + "probability": 0.818 + }, + { + "start": 10680.84, + "end": 10685.2, + "probability": 0.874 + }, + { + "start": 10686.12, + "end": 10687.74, + "probability": 0.9219 + }, + { + "start": 10688.5, + "end": 10692.44, + "probability": 0.9703 + }, + { + "start": 10692.76, + "end": 10696.64, + "probability": 0.0414 + }, + { + "start": 10697.42, + "end": 10699.81, + "probability": 0.5945 + }, + { + "start": 10702.06, + "end": 10704.72, + "probability": 0.9976 + }, + { + "start": 10704.86, + "end": 10706.84, + "probability": 0.9053 + }, + { + "start": 10707.32, + "end": 10708.76, + "probability": 0.6707 + }, + { + "start": 10709.04, + "end": 10709.7, + "probability": 0.9794 + }, + { + "start": 10709.88, + "end": 10710.8, + "probability": 0.8236 + }, + { + "start": 10710.86, + "end": 10712.78, + "probability": 0.9341 + }, + { + "start": 10713.3, + "end": 10717.18, + "probability": 0.9897 + }, + { + "start": 10717.92, + "end": 10720.64, + "probability": 0.9544 + }, + { + "start": 10720.76, + "end": 10723.12, + "probability": 0.9598 + }, + { + "start": 10723.82, + "end": 10723.96, + "probability": 0.4022 + }, + { + "start": 10724.1, + "end": 10728.36, + "probability": 0.9521 + }, + { + "start": 10728.44, + "end": 10728.92, + "probability": 0.7808 + }, + { + "start": 10728.98, + "end": 10729.64, + "probability": 0.7284 + }, + { + "start": 10730.54, + "end": 10731.46, + "probability": 0.9502 + }, + { + "start": 10731.8, + "end": 10732.59, + "probability": 0.5449 + }, + { + "start": 10734.34, + "end": 10735.32, + "probability": 0.7502 + }, + { + "start": 10735.36, + "end": 10739.36, + "probability": 0.5871 + }, + { + "start": 10753.08, + "end": 10759.68, + "probability": 0.3286 + }, + { + "start": 10759.96, + "end": 10760.58, + "probability": 0.0093 + }, + { + "start": 10760.58, + "end": 10760.58, + "probability": 0.0559 + }, + { + "start": 10760.58, + "end": 10760.58, + "probability": 0.0459 + }, + { + "start": 10760.58, + "end": 10761.62, + "probability": 0.4377 + }, + { + "start": 10761.62, + "end": 10764.65, + "probability": 0.4245 + }, + { + "start": 10768.78, + "end": 10769.44, + "probability": 0.0813 + }, + { + "start": 10770.18, + "end": 10771.52, + "probability": 0.1912 + }, + { + "start": 10773.61, + "end": 10777.14, + "probability": 0.1067 + }, + { + "start": 10777.16, + "end": 10777.28, + "probability": 0.0524 + }, + { + "start": 10778.26, + "end": 10778.82, + "probability": 0.1603 + }, + { + "start": 10780.96, + "end": 10781.86, + "probability": 0.3549 + }, + { + "start": 10782.28, + "end": 10782.58, + "probability": 0.415 + }, + { + "start": 10782.58, + "end": 10782.94, + "probability": 0.4304 + }, + { + "start": 10782.98, + "end": 10784.03, + "probability": 0.978 + }, + { + "start": 10784.54, + "end": 10785.54, + "probability": 0.7139 + }, + { + "start": 10786.26, + "end": 10786.84, + "probability": 0.6099 + }, + { + "start": 10788.4, + "end": 10790.5, + "probability": 0.6873 + }, + { + "start": 10792.76, + "end": 10793.8, + "probability": 0.508 + }, + { + "start": 10793.8, + "end": 10794.22, + "probability": 0.5272 + }, + { + "start": 10803.06, + "end": 10804.32, + "probability": 0.5351 + }, + { + "start": 10804.4, + "end": 10805.14, + "probability": 0.8573 + }, + { + "start": 10805.2, + "end": 10808.04, + "probability": 0.9542 + }, + { + "start": 10808.74, + "end": 10810.5, + "probability": 0.7852 + }, + { + "start": 10810.96, + "end": 10813.48, + "probability": 0.7074 + }, + { + "start": 10813.66, + "end": 10813.96, + "probability": 0.2083 + }, + { + "start": 10815.12, + "end": 10816.06, + "probability": 0.728 + }, + { + "start": 10818.2, + "end": 10820.82, + "probability": 0.7343 + }, + { + "start": 10820.88, + "end": 10821.14, + "probability": 0.9067 + }, + { + "start": 10822.1, + "end": 10822.12, + "probability": 0.0437 + }, + { + "start": 10822.12, + "end": 10822.12, + "probability": 0.2153 + }, + { + "start": 10822.12, + "end": 10823.44, + "probability": 0.7146 + }, + { + "start": 10823.64, + "end": 10825.68, + "probability": 0.6846 + }, + { + "start": 10827.41, + "end": 10829.9, + "probability": 0.2084 + }, + { + "start": 10831.38, + "end": 10832.64, + "probability": 0.9344 + }, + { + "start": 10832.68, + "end": 10834.84, + "probability": 0.8616 + }, + { + "start": 10835.54, + "end": 10836.02, + "probability": 0.7698 + }, + { + "start": 10836.92, + "end": 10839.0, + "probability": 0.738 + }, + { + "start": 10839.04, + "end": 10839.78, + "probability": 0.8588 + }, + { + "start": 10840.6, + "end": 10842.3, + "probability": 0.5797 + }, + { + "start": 10843.74, + "end": 10845.26, + "probability": 0.1522 + }, + { + "start": 10847.2, + "end": 10849.42, + "probability": 0.9092 + }, + { + "start": 10849.54, + "end": 10849.92, + "probability": 0.8743 + }, + { + "start": 10851.68, + "end": 10852.5, + "probability": 0.3363 + }, + { + "start": 10853.4, + "end": 10856.4, + "probability": 0.5747 + }, + { + "start": 10857.18, + "end": 10858.8, + "probability": 0.5984 + }, + { + "start": 10859.64, + "end": 10860.33, + "probability": 0.6181 + }, + { + "start": 10861.4, + "end": 10863.42, + "probability": 0.8704 + }, + { + "start": 10864.36, + "end": 10865.94, + "probability": 0.8558 + }, + { + "start": 10866.06, + "end": 10866.46, + "probability": 0.7733 + }, + { + "start": 10869.64, + "end": 10873.98, + "probability": 0.0848 + }, + { + "start": 10875.84, + "end": 10877.3, + "probability": 0.9276 + }, + { + "start": 10877.9, + "end": 10878.98, + "probability": 0.9617 + }, + { + "start": 10879.3, + "end": 10881.26, + "probability": 0.9956 + }, + { + "start": 10881.48, + "end": 10883.08, + "probability": 0.9599 + }, + { + "start": 10883.56, + "end": 10884.12, + "probability": 0.5357 + }, + { + "start": 10884.7, + "end": 10886.94, + "probability": 0.5049 + }, + { + "start": 10887.6, + "end": 10889.04, + "probability": 0.9421 + }, + { + "start": 10890.28, + "end": 10893.32, + "probability": 0.656 + }, + { + "start": 10893.38, + "end": 10894.66, + "probability": 0.762 + }, + { + "start": 10894.82, + "end": 10899.56, + "probability": 0.8713 + }, + { + "start": 10900.0, + "end": 10902.8, + "probability": 0.81 + }, + { + "start": 10903.34, + "end": 10906.42, + "probability": 0.2965 + }, + { + "start": 10906.44, + "end": 10908.84, + "probability": 0.9912 + }, + { + "start": 10908.92, + "end": 10910.8, + "probability": 0.9929 + }, + { + "start": 10911.5, + "end": 10913.24, + "probability": 0.9658 + }, + { + "start": 10913.26, + "end": 10914.78, + "probability": 0.8503 + }, + { + "start": 10915.8, + "end": 10920.1, + "probability": 0.9834 + }, + { + "start": 10920.14, + "end": 10921.2, + "probability": 0.9173 + }, + { + "start": 10923.11, + "end": 10928.84, + "probability": 0.8792 + }, + { + "start": 10929.02, + "end": 10929.98, + "probability": 0.5955 + }, + { + "start": 10931.28, + "end": 10936.26, + "probability": 0.9829 + }, + { + "start": 10936.32, + "end": 10938.8, + "probability": 0.8855 + }, + { + "start": 10939.9, + "end": 10947.96, + "probability": 0.9004 + }, + { + "start": 10948.88, + "end": 10951.32, + "probability": 0.7957 + }, + { + "start": 10952.16, + "end": 10956.52, + "probability": 0.9873 + }, + { + "start": 10956.62, + "end": 10956.92, + "probability": 0.6092 + }, + { + "start": 10956.94, + "end": 10958.58, + "probability": 0.9214 + }, + { + "start": 10958.72, + "end": 10959.21, + "probability": 0.9813 + }, + { + "start": 10960.0, + "end": 10962.8, + "probability": 0.9785 + }, + { + "start": 10962.96, + "end": 10967.32, + "probability": 0.8679 + }, + { + "start": 10968.72, + "end": 10972.1, + "probability": 0.9531 + }, + { + "start": 10972.4, + "end": 10973.66, + "probability": 0.4362 + }, + { + "start": 10973.88, + "end": 10974.92, + "probability": 0.7879 + }, + { + "start": 10975.88, + "end": 10978.4, + "probability": 0.9788 + }, + { + "start": 10979.0, + "end": 10982.2, + "probability": 0.9805 + }, + { + "start": 10983.12, + "end": 10983.9, + "probability": 0.8818 + }, + { + "start": 10984.46, + "end": 10987.76, + "probability": 0.991 + }, + { + "start": 10988.32, + "end": 10988.66, + "probability": 0.6605 + }, + { + "start": 10988.72, + "end": 10990.32, + "probability": 0.9858 + }, + { + "start": 10990.78, + "end": 10992.84, + "probability": 0.9738 + }, + { + "start": 10994.19, + "end": 10997.18, + "probability": 0.9673 + }, + { + "start": 10998.18, + "end": 11000.22, + "probability": 0.9873 + }, + { + "start": 11000.22, + "end": 11000.8, + "probability": 0.9019 + }, + { + "start": 11001.44, + "end": 11002.48, + "probability": 0.8237 + }, + { + "start": 11003.04, + "end": 11003.38, + "probability": 0.9246 + }, + { + "start": 11003.54, + "end": 11005.9, + "probability": 0.6682 + }, + { + "start": 11006.06, + "end": 11007.78, + "probability": 0.7821 + }, + { + "start": 11008.56, + "end": 11009.2, + "probability": 0.3896 + }, + { + "start": 11009.22, + "end": 11009.86, + "probability": 0.817 + }, + { + "start": 11009.92, + "end": 11012.74, + "probability": 0.9638 + }, + { + "start": 11013.52, + "end": 11014.46, + "probability": 0.9352 + }, + { + "start": 11015.4, + "end": 11020.44, + "probability": 0.7458 + }, + { + "start": 11020.46, + "end": 11020.96, + "probability": 0.7021 + }, + { + "start": 11021.1, + "end": 11023.92, + "probability": 0.8759 + }, + { + "start": 11025.36, + "end": 11025.56, + "probability": 0.3934 + }, + { + "start": 11025.56, + "end": 11026.53, + "probability": 0.6738 + }, + { + "start": 11026.86, + "end": 11028.28, + "probability": 0.9158 + }, + { + "start": 11028.94, + "end": 11032.2, + "probability": 0.7713 + }, + { + "start": 11032.28, + "end": 11036.38, + "probability": 0.7688 + }, + { + "start": 11036.44, + "end": 11039.04, + "probability": 0.5356 + }, + { + "start": 11039.5, + "end": 11042.4, + "probability": 0.8474 + }, + { + "start": 11042.58, + "end": 11046.18, + "probability": 0.7437 + }, + { + "start": 11046.2, + "end": 11047.42, + "probability": 0.6483 + }, + { + "start": 11047.44, + "end": 11047.7, + "probability": 0.6274 + }, + { + "start": 11047.78, + "end": 11049.5, + "probability": 0.9961 + }, + { + "start": 11049.5, + "end": 11051.24, + "probability": 0.9726 + }, + { + "start": 11051.28, + "end": 11051.92, + "probability": 0.5432 + }, + { + "start": 11052.48, + "end": 11054.3, + "probability": 0.9174 + }, + { + "start": 11055.22, + "end": 11058.54, + "probability": 0.9985 + }, + { + "start": 11058.66, + "end": 11060.19, + "probability": 0.9951 + }, + { + "start": 11060.36, + "end": 11060.76, + "probability": 0.8079 + }, + { + "start": 11060.84, + "end": 11061.16, + "probability": 0.585 + }, + { + "start": 11061.24, + "end": 11061.84, + "probability": 0.9628 + }, + { + "start": 11061.96, + "end": 11063.02, + "probability": 0.7759 + }, + { + "start": 11063.16, + "end": 11064.58, + "probability": 0.6267 + }, + { + "start": 11064.74, + "end": 11065.16, + "probability": 0.6039 + }, + { + "start": 11065.92, + "end": 11068.06, + "probability": 0.808 + }, + { + "start": 11068.14, + "end": 11069.18, + "probability": 0.7972 + }, + { + "start": 11069.86, + "end": 11071.02, + "probability": 0.3989 + }, + { + "start": 11073.12, + "end": 11075.86, + "probability": 0.8138 + }, + { + "start": 11076.68, + "end": 11078.88, + "probability": 0.847 + }, + { + "start": 11079.06, + "end": 11080.72, + "probability": 0.8748 + }, + { + "start": 11081.12, + "end": 11085.08, + "probability": 0.9263 + }, + { + "start": 11085.7, + "end": 11086.34, + "probability": 0.8285 + }, + { + "start": 11086.92, + "end": 11088.44, + "probability": 0.994 + }, + { + "start": 11089.54, + "end": 11089.96, + "probability": 0.7456 + }, + { + "start": 11090.08, + "end": 11090.72, + "probability": 0.7956 + }, + { + "start": 11090.76, + "end": 11091.13, + "probability": 0.5058 + }, + { + "start": 11091.78, + "end": 11094.08, + "probability": 0.365 + }, + { + "start": 11094.66, + "end": 11099.04, + "probability": 0.9438 + }, + { + "start": 11100.32, + "end": 11101.48, + "probability": 0.7047 + }, + { + "start": 11101.58, + "end": 11102.64, + "probability": 0.7957 + }, + { + "start": 11102.74, + "end": 11107.06, + "probability": 0.9965 + }, + { + "start": 11107.68, + "end": 11109.1, + "probability": 0.8069 + }, + { + "start": 11109.9, + "end": 11111.28, + "probability": 0.7706 + }, + { + "start": 11112.0, + "end": 11113.54, + "probability": 0.4924 + }, + { + "start": 11113.63, + "end": 11117.94, + "probability": 0.9714 + }, + { + "start": 11119.16, + "end": 11122.6, + "probability": 0.9487 + }, + { + "start": 11122.74, + "end": 11123.56, + "probability": 0.8744 + }, + { + "start": 11123.6, + "end": 11124.74, + "probability": 0.978 + }, + { + "start": 11127.29, + "end": 11128.6, + "probability": 0.1475 + }, + { + "start": 11129.46, + "end": 11131.98, + "probability": 0.4826 + }, + { + "start": 11132.92, + "end": 11133.44, + "probability": 0.201 + }, + { + "start": 11134.18, + "end": 11134.72, + "probability": 0.943 + }, + { + "start": 11135.82, + "end": 11137.74, + "probability": 0.8611 + }, + { + "start": 11137.74, + "end": 11140.32, + "probability": 0.9137 + }, + { + "start": 11140.74, + "end": 11141.7, + "probability": 0.749 + }, + { + "start": 11142.17, + "end": 11142.68, + "probability": 0.0839 + }, + { + "start": 11142.68, + "end": 11142.68, + "probability": 0.5567 + }, + { + "start": 11142.68, + "end": 11142.68, + "probability": 0.345 + }, + { + "start": 11142.68, + "end": 11142.68, + "probability": 0.057 + }, + { + "start": 11142.68, + "end": 11142.76, + "probability": 0.2788 + }, + { + "start": 11142.76, + "end": 11145.98, + "probability": 0.9743 + }, + { + "start": 11146.06, + "end": 11148.91, + "probability": 0.916 + }, + { + "start": 11149.31, + "end": 11152.22, + "probability": 0.9619 + }, + { + "start": 11152.3, + "end": 11152.64, + "probability": 0.3945 + }, + { + "start": 11152.82, + "end": 11153.7, + "probability": 0.6213 + }, + { + "start": 11153.9, + "end": 11155.18, + "probability": 0.8014 + }, + { + "start": 11155.52, + "end": 11156.24, + "probability": 0.6006 + }, + { + "start": 11156.36, + "end": 11157.75, + "probability": 0.8821 + }, + { + "start": 11158.42, + "end": 11161.08, + "probability": 0.979 + }, + { + "start": 11161.16, + "end": 11163.32, + "probability": 0.9829 + }, + { + "start": 11163.56, + "end": 11165.1, + "probability": 0.9269 + }, + { + "start": 11165.26, + "end": 11166.38, + "probability": 0.8082 + }, + { + "start": 11169.0, + "end": 11170.38, + "probability": 0.7545 + }, + { + "start": 11171.08, + "end": 11172.42, + "probability": 0.9847 + }, + { + "start": 11173.38, + "end": 11175.84, + "probability": 0.9638 + }, + { + "start": 11176.42, + "end": 11177.14, + "probability": 0.8771 + }, + { + "start": 11177.3, + "end": 11177.78, + "probability": 0.914 + }, + { + "start": 11178.7, + "end": 11179.82, + "probability": 0.4073 + }, + { + "start": 11180.36, + "end": 11181.68, + "probability": 0.8789 + }, + { + "start": 11182.4, + "end": 11184.92, + "probability": 0.9326 + }, + { + "start": 11185.56, + "end": 11186.84, + "probability": 0.9483 + }, + { + "start": 11186.88, + "end": 11187.16, + "probability": 0.745 + }, + { + "start": 11187.26, + "end": 11187.85, + "probability": 0.9055 + }, + { + "start": 11188.02, + "end": 11189.7, + "probability": 0.9449 + }, + { + "start": 11190.46, + "end": 11191.51, + "probability": 0.9666 + }, + { + "start": 11192.54, + "end": 11193.2, + "probability": 0.786 + }, + { + "start": 11193.68, + "end": 11194.92, + "probability": 0.8397 + }, + { + "start": 11196.16, + "end": 11196.66, + "probability": 0.6944 + }, + { + "start": 11197.46, + "end": 11198.4, + "probability": 0.7428 + }, + { + "start": 11199.08, + "end": 11201.08, + "probability": 0.659 + }, + { + "start": 11201.62, + "end": 11202.66, + "probability": 0.8971 + }, + { + "start": 11203.28, + "end": 11203.86, + "probability": 0.5123 + }, + { + "start": 11204.5, + "end": 11205.0, + "probability": 0.9911 + }, + { + "start": 11205.84, + "end": 11210.84, + "probability": 0.6032 + }, + { + "start": 11210.92, + "end": 11212.04, + "probability": 0.7931 + }, + { + "start": 11212.34, + "end": 11216.72, + "probability": 0.9141 + }, + { + "start": 11216.82, + "end": 11218.64, + "probability": 0.9843 + }, + { + "start": 11219.08, + "end": 11221.2, + "probability": 0.9962 + }, + { + "start": 11221.28, + "end": 11222.68, + "probability": 0.98 + }, + { + "start": 11223.32, + "end": 11225.58, + "probability": 0.9507 + }, + { + "start": 11226.3, + "end": 11231.46, + "probability": 0.9541 + }, + { + "start": 11231.52, + "end": 11233.46, + "probability": 0.8911 + }, + { + "start": 11233.78, + "end": 11235.01, + "probability": 0.568 + }, + { + "start": 11235.3, + "end": 11235.98, + "probability": 0.7996 + }, + { + "start": 11236.4, + "end": 11238.26, + "probability": 0.9009 + }, + { + "start": 11238.66, + "end": 11239.6, + "probability": 0.8799 + }, + { + "start": 11239.76, + "end": 11240.4, + "probability": 0.8009 + }, + { + "start": 11240.82, + "end": 11242.04, + "probability": 0.8697 + }, + { + "start": 11242.04, + "end": 11243.56, + "probability": 0.6248 + }, + { + "start": 11243.58, + "end": 11244.02, + "probability": 0.4885 + }, + { + "start": 11244.1, + "end": 11246.42, + "probability": 0.9844 + }, + { + "start": 11247.22, + "end": 11248.46, + "probability": 0.5538 + }, + { + "start": 11248.52, + "end": 11250.98, + "probability": 0.9938 + }, + { + "start": 11251.36, + "end": 11254.36, + "probability": 0.904 + }, + { + "start": 11254.54, + "end": 11255.12, + "probability": 0.708 + }, + { + "start": 11255.66, + "end": 11257.7, + "probability": 0.7513 + }, + { + "start": 11258.6, + "end": 11261.18, + "probability": 0.8887 + }, + { + "start": 11261.7, + "end": 11263.52, + "probability": 0.5527 + }, + { + "start": 11264.2, + "end": 11266.34, + "probability": 0.8561 + }, + { + "start": 11266.64, + "end": 11268.16, + "probability": 0.938 + }, + { + "start": 11268.3, + "end": 11268.94, + "probability": 0.4452 + }, + { + "start": 11270.14, + "end": 11271.04, + "probability": 0.8402 + }, + { + "start": 11271.6, + "end": 11276.51, + "probability": 0.986 + }, + { + "start": 11277.52, + "end": 11277.92, + "probability": 0.8944 + }, + { + "start": 11278.02, + "end": 11281.13, + "probability": 0.9768 + }, + { + "start": 11282.84, + "end": 11284.02, + "probability": 0.7575 + }, + { + "start": 11284.08, + "end": 11285.84, + "probability": 0.8085 + }, + { + "start": 11286.68, + "end": 11287.22, + "probability": 0.8245 + }, + { + "start": 11287.36, + "end": 11290.56, + "probability": 0.994 + }, + { + "start": 11291.2, + "end": 11293.68, + "probability": 0.926 + }, + { + "start": 11294.54, + "end": 11297.96, + "probability": 0.9671 + }, + { + "start": 11298.64, + "end": 11300.62, + "probability": 0.8666 + }, + { + "start": 11300.76, + "end": 11301.14, + "probability": 0.6174 + }, + { + "start": 11301.48, + "end": 11302.66, + "probability": 0.3166 + }, + { + "start": 11303.36, + "end": 11306.02, + "probability": 0.9072 + }, + { + "start": 11306.68, + "end": 11310.01, + "probability": 0.787 + }, + { + "start": 11311.08, + "end": 11312.32, + "probability": 0.9518 + }, + { + "start": 11312.48, + "end": 11314.21, + "probability": 0.998 + }, + { + "start": 11315.96, + "end": 11316.7, + "probability": 0.8622 + }, + { + "start": 11316.8, + "end": 11318.68, + "probability": 0.9868 + }, + { + "start": 11319.1, + "end": 11321.4, + "probability": 0.9646 + }, + { + "start": 11321.92, + "end": 11322.14, + "probability": 0.2205 + }, + { + "start": 11322.5, + "end": 11324.22, + "probability": 0.4629 + }, + { + "start": 11324.28, + "end": 11325.28, + "probability": 0.4939 + }, + { + "start": 11325.9, + "end": 11329.8, + "probability": 0.4893 + }, + { + "start": 11329.86, + "end": 11330.9, + "probability": 0.1453 + }, + { + "start": 11330.9, + "end": 11330.9, + "probability": 0.1422 + }, + { + "start": 11330.9, + "end": 11334.04, + "probability": 0.6443 + }, + { + "start": 11334.04, + "end": 11336.36, + "probability": 0.9914 + }, + { + "start": 11336.5, + "end": 11337.78, + "probability": 0.7288 + }, + { + "start": 11337.86, + "end": 11338.86, + "probability": 0.8024 + }, + { + "start": 11338.98, + "end": 11339.0, + "probability": 0.1075 + }, + { + "start": 11339.0, + "end": 11341.62, + "probability": 0.2578 + }, + { + "start": 11341.76, + "end": 11344.14, + "probability": 0.958 + }, + { + "start": 11344.42, + "end": 11346.28, + "probability": 0.9496 + }, + { + "start": 11346.68, + "end": 11349.66, + "probability": 0.927 + }, + { + "start": 11349.82, + "end": 11351.93, + "probability": 0.9653 + }, + { + "start": 11352.46, + "end": 11354.8, + "probability": 0.7936 + }, + { + "start": 11354.86, + "end": 11356.14, + "probability": 0.9116 + }, + { + "start": 11356.32, + "end": 11356.62, + "probability": 0.9393 + }, + { + "start": 11356.7, + "end": 11357.87, + "probability": 0.9326 + }, + { + "start": 11358.18, + "end": 11358.3, + "probability": 0.511 + }, + { + "start": 11358.48, + "end": 11358.98, + "probability": 0.7982 + }, + { + "start": 11359.28, + "end": 11361.76, + "probability": 0.834 + }, + { + "start": 11361.84, + "end": 11362.5, + "probability": 0.6227 + }, + { + "start": 11362.62, + "end": 11363.14, + "probability": 0.6279 + }, + { + "start": 11363.34, + "end": 11364.16, + "probability": 0.8302 + }, + { + "start": 11364.36, + "end": 11367.03, + "probability": 0.9871 + }, + { + "start": 11367.9, + "end": 11368.1, + "probability": 0.4901 + }, + { + "start": 11368.26, + "end": 11371.64, + "probability": 0.8872 + }, + { + "start": 11372.3, + "end": 11373.54, + "probability": 0.7417 + }, + { + "start": 11373.7, + "end": 11374.62, + "probability": 0.7655 + }, + { + "start": 11375.06, + "end": 11376.92, + "probability": 0.8906 + }, + { + "start": 11377.14, + "end": 11380.1, + "probability": 0.9918 + }, + { + "start": 11380.4, + "end": 11382.12, + "probability": 0.6953 + }, + { + "start": 11382.18, + "end": 11382.56, + "probability": 0.6172 + }, + { + "start": 11382.64, + "end": 11386.83, + "probability": 0.9834 + }, + { + "start": 11387.28, + "end": 11388.72, + "probability": 0.5834 + }, + { + "start": 11390.1, + "end": 11390.42, + "probability": 0.1293 + }, + { + "start": 11390.44, + "end": 11391.88, + "probability": 0.0293 + }, + { + "start": 11391.88, + "end": 11392.46, + "probability": 0.1595 + }, + { + "start": 11392.62, + "end": 11393.16, + "probability": 0.698 + }, + { + "start": 11393.32, + "end": 11395.36, + "probability": 0.9729 + }, + { + "start": 11395.86, + "end": 11398.48, + "probability": 0.823 + }, + { + "start": 11398.8, + "end": 11400.46, + "probability": 0.9077 + }, + { + "start": 11401.24, + "end": 11402.48, + "probability": 0.8144 + }, + { + "start": 11403.0, + "end": 11403.18, + "probability": 0.4479 + }, + { + "start": 11403.34, + "end": 11403.76, + "probability": 0.722 + }, + { + "start": 11403.82, + "end": 11405.18, + "probability": 0.775 + }, + { + "start": 11405.62, + "end": 11406.52, + "probability": 0.8683 + }, + { + "start": 11406.66, + "end": 11408.32, + "probability": 0.9839 + }, + { + "start": 11408.96, + "end": 11409.26, + "probability": 0.7533 + }, + { + "start": 11409.3, + "end": 11409.56, + "probability": 0.8495 + }, + { + "start": 11409.6, + "end": 11411.02, + "probability": 0.8472 + }, + { + "start": 11411.36, + "end": 11412.86, + "probability": 0.9924 + }, + { + "start": 11413.02, + "end": 11414.4, + "probability": 0.9615 + }, + { + "start": 11414.58, + "end": 11416.16, + "probability": 0.7381 + }, + { + "start": 11416.7, + "end": 11420.7, + "probability": 0.8788 + }, + { + "start": 11421.24, + "end": 11423.24, + "probability": 0.9802 + }, + { + "start": 11423.4, + "end": 11426.12, + "probability": 0.9622 + }, + { + "start": 11426.28, + "end": 11427.14, + "probability": 0.9989 + }, + { + "start": 11428.32, + "end": 11428.6, + "probability": 0.4786 + }, + { + "start": 11428.62, + "end": 11433.32, + "probability": 0.9946 + }, + { + "start": 11433.4, + "end": 11434.68, + "probability": 0.9096 + }, + { + "start": 11435.02, + "end": 11436.0, + "probability": 0.9177 + }, + { + "start": 11437.44, + "end": 11439.33, + "probability": 0.9954 + }, + { + "start": 11439.96, + "end": 11445.76, + "probability": 0.9852 + }, + { + "start": 11446.56, + "end": 11447.78, + "probability": 0.6706 + }, + { + "start": 11448.36, + "end": 11451.1, + "probability": 0.9388 + }, + { + "start": 11451.64, + "end": 11453.98, + "probability": 0.9818 + }, + { + "start": 11454.84, + "end": 11457.38, + "probability": 0.9683 + }, + { + "start": 11457.9, + "end": 11459.6, + "probability": 0.9897 + }, + { + "start": 11460.28, + "end": 11460.86, + "probability": 0.4557 + }, + { + "start": 11461.12, + "end": 11462.9, + "probability": 0.9641 + }, + { + "start": 11462.94, + "end": 11463.5, + "probability": 0.7234 + }, + { + "start": 11464.26, + "end": 11465.92, + "probability": 0.995 + }, + { + "start": 11466.8, + "end": 11467.22, + "probability": 0.2546 + }, + { + "start": 11467.72, + "end": 11469.22, + "probability": 0.498 + }, + { + "start": 11469.38, + "end": 11470.15, + "probability": 0.1482 + }, + { + "start": 11470.7, + "end": 11472.18, + "probability": 0.9016 + }, + { + "start": 11472.2, + "end": 11472.38, + "probability": 0.6867 + }, + { + "start": 11472.7, + "end": 11473.76, + "probability": 0.9639 + }, + { + "start": 11474.62, + "end": 11475.6, + "probability": 0.6147 + }, + { + "start": 11476.54, + "end": 11480.74, + "probability": 0.9907 + }, + { + "start": 11481.12, + "end": 11482.54, + "probability": 0.9224 + }, + { + "start": 11482.94, + "end": 11484.54, + "probability": 0.835 + }, + { + "start": 11485.26, + "end": 11485.62, + "probability": 0.7848 + }, + { + "start": 11485.7, + "end": 11487.06, + "probability": 0.9351 + }, + { + "start": 11487.2, + "end": 11489.26, + "probability": 0.996 + }, + { + "start": 11489.92, + "end": 11493.38, + "probability": 0.9131 + }, + { + "start": 11494.12, + "end": 11496.6, + "probability": 0.9458 + }, + { + "start": 11497.14, + "end": 11499.12, + "probability": 0.879 + }, + { + "start": 11499.36, + "end": 11500.48, + "probability": 0.6573 + }, + { + "start": 11500.8, + "end": 11501.53, + "probability": 0.1256 + }, + { + "start": 11502.56, + "end": 11503.04, + "probability": 0.6807 + }, + { + "start": 11503.04, + "end": 11503.34, + "probability": 0.4118 + }, + { + "start": 11503.34, + "end": 11504.76, + "probability": 0.4662 + }, + { + "start": 11505.08, + "end": 11506.61, + "probability": 0.7523 + }, + { + "start": 11507.08, + "end": 11508.26, + "probability": 0.9526 + }, + { + "start": 11508.58, + "end": 11509.02, + "probability": 0.7488 + }, + { + "start": 11509.22, + "end": 11510.68, + "probability": 0.8047 + }, + { + "start": 11510.74, + "end": 11511.58, + "probability": 0.4772 + }, + { + "start": 11512.02, + "end": 11513.76, + "probability": 0.8176 + }, + { + "start": 11514.14, + "end": 11515.28, + "probability": 0.9873 + }, + { + "start": 11516.52, + "end": 11517.78, + "probability": 0.9341 + }, + { + "start": 11518.8, + "end": 11520.98, + "probability": 0.978 + }, + { + "start": 11521.12, + "end": 11523.12, + "probability": 0.8336 + }, + { + "start": 11523.32, + "end": 11524.37, + "probability": 0.9902 + }, + { + "start": 11524.9, + "end": 11530.32, + "probability": 0.9746 + }, + { + "start": 11530.68, + "end": 11533.18, + "probability": 0.9993 + }, + { + "start": 11533.38, + "end": 11536.06, + "probability": 0.2927 + }, + { + "start": 11538.28, + "end": 11541.66, + "probability": 0.2854 + }, + { + "start": 11541.66, + "end": 11541.98, + "probability": 0.0955 + }, + { + "start": 11542.06, + "end": 11542.16, + "probability": 0.1773 + }, + { + "start": 11542.76, + "end": 11543.16, + "probability": 0.1042 + }, + { + "start": 11543.16, + "end": 11543.16, + "probability": 0.0174 + }, + { + "start": 11543.16, + "end": 11543.18, + "probability": 0.088 + }, + { + "start": 11543.18, + "end": 11543.18, + "probability": 0.0792 + }, + { + "start": 11543.18, + "end": 11543.18, + "probability": 0.0887 + }, + { + "start": 11543.18, + "end": 11544.46, + "probability": 0.6248 + }, + { + "start": 11544.64, + "end": 11544.76, + "probability": 0.5689 + }, + { + "start": 11544.88, + "end": 11546.02, + "probability": 0.5343 + }, + { + "start": 11546.84, + "end": 11549.46, + "probability": 0.4211 + }, + { + "start": 11550.28, + "end": 11553.3, + "probability": 0.9663 + }, + { + "start": 11553.4, + "end": 11555.78, + "probability": 0.5857 + }, + { + "start": 11556.12, + "end": 11556.82, + "probability": 0.5148 + }, + { + "start": 11557.3, + "end": 11562.92, + "probability": 0.9917 + }, + { + "start": 11563.46, + "end": 11565.36, + "probability": 0.9967 + }, + { + "start": 11565.72, + "end": 11569.78, + "probability": 0.9963 + }, + { + "start": 11570.62, + "end": 11575.08, + "probability": 0.9832 + }, + { + "start": 11575.22, + "end": 11575.5, + "probability": 0.7061 + }, + { + "start": 11575.64, + "end": 11577.54, + "probability": 0.9905 + }, + { + "start": 11577.56, + "end": 11578.16, + "probability": 0.6413 + }, + { + "start": 11578.28, + "end": 11578.76, + "probability": 0.4837 + }, + { + "start": 11579.0, + "end": 11579.36, + "probability": 0.5304 + }, + { + "start": 11579.36, + "end": 11579.38, + "probability": 0.2306 + }, + { + "start": 11579.66, + "end": 11581.94, + "probability": 0.8117 + }, + { + "start": 11582.12, + "end": 11583.76, + "probability": 0.8908 + }, + { + "start": 11584.18, + "end": 11586.4, + "probability": 0.9792 + }, + { + "start": 11586.46, + "end": 11588.34, + "probability": 0.9475 + }, + { + "start": 11588.94, + "end": 11590.22, + "probability": 0.9381 + }, + { + "start": 11590.54, + "end": 11591.14, + "probability": 0.7678 + }, + { + "start": 11591.2, + "end": 11593.5, + "probability": 0.8337 + }, + { + "start": 11593.5, + "end": 11596.55, + "probability": 0.771 + }, + { + "start": 11597.8, + "end": 11598.16, + "probability": 0.49 + }, + { + "start": 11598.16, + "end": 11600.67, + "probability": 0.5282 + }, + { + "start": 11600.8, + "end": 11601.6, + "probability": 0.6274 + }, + { + "start": 11601.66, + "end": 11602.32, + "probability": 0.6287 + }, + { + "start": 11602.32, + "end": 11603.18, + "probability": 0.5105 + }, + { + "start": 11603.38, + "end": 11604.26, + "probability": 0.534 + }, + { + "start": 11605.02, + "end": 11605.94, + "probability": 0.1154 + }, + { + "start": 11606.62, + "end": 11606.94, + "probability": 0.5217 + }, + { + "start": 11607.12, + "end": 11607.12, + "probability": 0.6789 + }, + { + "start": 11607.12, + "end": 11610.74, + "probability": 0.8876 + }, + { + "start": 11611.4, + "end": 11612.16, + "probability": 0.6577 + }, + { + "start": 11612.28, + "end": 11614.52, + "probability": 0.9434 + }, + { + "start": 11614.76, + "end": 11618.06, + "probability": 0.5335 + }, + { + "start": 11618.18, + "end": 11621.16, + "probability": 0.785 + }, + { + "start": 11621.34, + "end": 11622.06, + "probability": 0.6244 + }, + { + "start": 11622.06, + "end": 11622.74, + "probability": 0.6262 + }, + { + "start": 11622.88, + "end": 11623.42, + "probability": 0.4546 + }, + { + "start": 11624.68, + "end": 11625.46, + "probability": 0.7155 + }, + { + "start": 11625.6, + "end": 11626.52, + "probability": 0.8618 + }, + { + "start": 11626.6, + "end": 11627.9, + "probability": 0.7454 + }, + { + "start": 11628.88, + "end": 11632.48, + "probability": 0.7953 + }, + { + "start": 11635.14, + "end": 11635.78, + "probability": 0.7719 + }, + { + "start": 11635.8, + "end": 11638.96, + "probability": 0.905 + }, + { + "start": 11639.14, + "end": 11640.68, + "probability": 0.7591 + }, + { + "start": 11641.12, + "end": 11642.58, + "probability": 0.9076 + }, + { + "start": 11642.76, + "end": 11644.86, + "probability": 0.4007 + }, + { + "start": 11645.06, + "end": 11647.12, + "probability": 0.7618 + }, + { + "start": 11647.34, + "end": 11649.08, + "probability": 0.5434 + }, + { + "start": 11649.53, + "end": 11653.12, + "probability": 0.9743 + }, + { + "start": 11653.62, + "end": 11655.16, + "probability": 0.6391 + }, + { + "start": 11655.16, + "end": 11655.76, + "probability": 0.331 + }, + { + "start": 11655.86, + "end": 11656.86, + "probability": 0.9561 + }, + { + "start": 11658.31, + "end": 11660.66, + "probability": 0.4004 + }, + { + "start": 11660.66, + "end": 11662.38, + "probability": 0.5735 + }, + { + "start": 11663.02, + "end": 11665.44, + "probability": 0.5473 + }, + { + "start": 11665.44, + "end": 11669.08, + "probability": 0.6975 + }, + { + "start": 11669.16, + "end": 11670.86, + "probability": 0.849 + }, + { + "start": 11671.82, + "end": 11673.32, + "probability": 0.7993 + }, + { + "start": 11673.34, + "end": 11675.4, + "probability": 0.1441 + }, + { + "start": 11677.6, + "end": 11677.68, + "probability": 0.2209 + }, + { + "start": 11677.68, + "end": 11677.68, + "probability": 0.041 + }, + { + "start": 11677.68, + "end": 11678.44, + "probability": 0.16 + }, + { + "start": 11678.88, + "end": 11678.88, + "probability": 0.0368 + }, + { + "start": 11678.88, + "end": 11678.88, + "probability": 0.3361 + }, + { + "start": 11678.88, + "end": 11682.0, + "probability": 0.3494 + }, + { + "start": 11682.56, + "end": 11688.9, + "probability": 0.6709 + }, + { + "start": 11689.04, + "end": 11690.33, + "probability": 0.4573 + }, + { + "start": 11690.76, + "end": 11691.67, + "probability": 0.7871 + }, + { + "start": 11692.5, + "end": 11695.36, + "probability": 0.9256 + }, + { + "start": 11696.14, + "end": 11700.52, + "probability": 0.9072 + }, + { + "start": 11700.86, + "end": 11701.34, + "probability": 0.111 + }, + { + "start": 11702.82, + "end": 11703.6, + "probability": 0.0886 + }, + { + "start": 11703.6, + "end": 11707.68, + "probability": 0.756 + }, + { + "start": 11708.26, + "end": 11711.28, + "probability": 0.9639 + }, + { + "start": 11712.14, + "end": 11714.34, + "probability": 0.6415 + }, + { + "start": 11714.4, + "end": 11715.1, + "probability": 0.384 + }, + { + "start": 11715.18, + "end": 11715.38, + "probability": 0.0914 + }, + { + "start": 11715.38, + "end": 11717.06, + "probability": 0.9849 + }, + { + "start": 11717.1, + "end": 11719.9, + "probability": 0.8242 + }, + { + "start": 11720.58, + "end": 11722.82, + "probability": 0.9962 + }, + { + "start": 11723.52, + "end": 11726.62, + "probability": 0.6412 + }, + { + "start": 11726.74, + "end": 11728.89, + "probability": 0.9912 + }, + { + "start": 11729.52, + "end": 11735.6, + "probability": 0.9726 + }, + { + "start": 11735.66, + "end": 11737.69, + "probability": 0.2668 + }, + { + "start": 11738.02, + "end": 11739.52, + "probability": 0.6622 + }, + { + "start": 11740.65, + "end": 11742.84, + "probability": 0.613 + }, + { + "start": 11743.72, + "end": 11747.56, + "probability": 0.7326 + }, + { + "start": 11747.56, + "end": 11750.76, + "probability": 0.8643 + }, + { + "start": 11752.86, + "end": 11753.32, + "probability": 0.2864 + }, + { + "start": 11755.42, + "end": 11757.6, + "probability": 0.116 + }, + { + "start": 11758.84, + "end": 11759.7, + "probability": 0.0452 + }, + { + "start": 11759.7, + "end": 11761.26, + "probability": 0.0977 + }, + { + "start": 11763.52, + "end": 11766.88, + "probability": 0.3918 + }, + { + "start": 11768.9, + "end": 11770.16, + "probability": 0.0308 + }, + { + "start": 11771.26, + "end": 11772.48, + "probability": 0.2451 + }, + { + "start": 11772.48, + "end": 11772.48, + "probability": 0.0257 + }, + { + "start": 11772.48, + "end": 11772.48, + "probability": 0.1079 + }, + { + "start": 11772.48, + "end": 11772.68, + "probability": 0.0573 + }, + { + "start": 11772.68, + "end": 11773.16, + "probability": 0.0195 + }, + { + "start": 11774.14, + "end": 11776.2, + "probability": 0.7942 + }, + { + "start": 11776.36, + "end": 11776.76, + "probability": 0.2974 + }, + { + "start": 11776.96, + "end": 11777.86, + "probability": 0.5404 + }, + { + "start": 11778.06, + "end": 11779.76, + "probability": 0.5948 + }, + { + "start": 11779.76, + "end": 11780.28, + "probability": 0.1317 + }, + { + "start": 11780.54, + "end": 11781.57, + "probability": 0.4498 + }, + { + "start": 11782.08, + "end": 11783.98, + "probability": 0.4599 + }, + { + "start": 11784.08, + "end": 11784.16, + "probability": 0.1966 + }, + { + "start": 11784.24, + "end": 11785.58, + "probability": 0.3246 + }, + { + "start": 11785.62, + "end": 11786.8, + "probability": 0.9424 + }, + { + "start": 11786.92, + "end": 11787.32, + "probability": 0.8807 + }, + { + "start": 11787.94, + "end": 11789.34, + "probability": 0.9955 + }, + { + "start": 11790.04, + "end": 11792.38, + "probability": 0.932 + }, + { + "start": 11792.56, + "end": 11793.04, + "probability": 0.8931 + }, + { + "start": 11794.54, + "end": 11798.56, + "probability": 0.0942 + }, + { + "start": 11798.56, + "end": 11803.2, + "probability": 0.6228 + }, + { + "start": 11803.3, + "end": 11804.28, + "probability": 0.7585 + }, + { + "start": 11804.42, + "end": 11805.66, + "probability": 0.8397 + }, + { + "start": 11806.56, + "end": 11809.24, + "probability": 0.9811 + }, + { + "start": 11809.42, + "end": 11814.94, + "probability": 0.9585 + }, + { + "start": 11815.08, + "end": 11816.76, + "probability": 0.6073 + }, + { + "start": 11817.52, + "end": 11818.62, + "probability": 0.9974 + }, + { + "start": 11819.72, + "end": 11822.92, + "probability": 0.8896 + }, + { + "start": 11822.98, + "end": 11824.28, + "probability": 0.9731 + }, + { + "start": 11824.86, + "end": 11828.9, + "probability": 0.8938 + }, + { + "start": 11830.08, + "end": 11830.66, + "probability": 0.8723 + }, + { + "start": 11830.84, + "end": 11831.42, + "probability": 0.9521 + }, + { + "start": 11831.52, + "end": 11832.38, + "probability": 0.7526 + }, + { + "start": 11832.52, + "end": 11833.41, + "probability": 0.9897 + }, + { + "start": 11834.52, + "end": 11835.72, + "probability": 0.8466 + }, + { + "start": 11836.98, + "end": 11841.72, + "probability": 0.9863 + }, + { + "start": 11842.46, + "end": 11845.86, + "probability": 0.9875 + }, + { + "start": 11846.54, + "end": 11848.54, + "probability": 0.9795 + }, + { + "start": 11849.2, + "end": 11852.84, + "probability": 0.994 + }, + { + "start": 11853.6, + "end": 11855.64, + "probability": 0.8071 + }, + { + "start": 11856.46, + "end": 11857.46, + "probability": 0.5934 + }, + { + "start": 11857.56, + "end": 11861.66, + "probability": 0.98 + }, + { + "start": 11861.8, + "end": 11866.46, + "probability": 0.8033 + }, + { + "start": 11868.66, + "end": 11871.5, + "probability": 0.9672 + }, + { + "start": 11872.24, + "end": 11874.86, + "probability": 0.7002 + }, + { + "start": 11875.58, + "end": 11882.5, + "probability": 0.8436 + }, + { + "start": 11883.86, + "end": 11886.48, + "probability": 0.8121 + }, + { + "start": 11887.18, + "end": 11889.5, + "probability": 0.8168 + }, + { + "start": 11890.34, + "end": 11890.8, + "probability": 0.018 + }, + { + "start": 11894.22, + "end": 11896.78, + "probability": 0.9235 + }, + { + "start": 11896.88, + "end": 11899.62, + "probability": 0.9429 + }, + { + "start": 11901.42, + "end": 11905.46, + "probability": 0.9668 + }, + { + "start": 11905.46, + "end": 11910.36, + "probability": 0.9912 + }, + { + "start": 11911.44, + "end": 11915.12, + "probability": 0.724 + }, + { + "start": 11916.0, + "end": 11919.66, + "probability": 0.9816 + }, + { + "start": 11921.5, + "end": 11921.82, + "probability": 0.2938 + }, + { + "start": 11921.82, + "end": 11924.78, + "probability": 0.7294 + }, + { + "start": 11925.44, + "end": 11929.06, + "probability": 0.2892 + }, + { + "start": 11930.06, + "end": 11930.06, + "probability": 0.0943 + }, + { + "start": 11930.06, + "end": 11930.16, + "probability": 0.0547 + }, + { + "start": 11930.16, + "end": 11931.61, + "probability": 0.7952 + }, + { + "start": 11932.76, + "end": 11933.78, + "probability": 0.9646 + }, + { + "start": 11934.6, + "end": 11936.82, + "probability": 0.8218 + }, + { + "start": 11937.22, + "end": 11940.36, + "probability": 0.7926 + }, + { + "start": 11940.48, + "end": 11943.66, + "probability": 0.5993 + }, + { + "start": 11943.7, + "end": 11944.34, + "probability": 0.4666 + }, + { + "start": 11944.48, + "end": 11947.34, + "probability": 0.8967 + }, + { + "start": 11948.2, + "end": 11951.46, + "probability": 0.5695 + }, + { + "start": 11952.36, + "end": 11953.52, + "probability": 0.685 + }, + { + "start": 11953.58, + "end": 11954.2, + "probability": 0.3178 + }, + { + "start": 11955.2, + "end": 11957.2, + "probability": 0.6016 + }, + { + "start": 11957.48, + "end": 11959.62, + "probability": 0.7685 + }, + { + "start": 11960.5, + "end": 11962.5, + "probability": 0.9707 + }, + { + "start": 11962.58, + "end": 11963.68, + "probability": 0.964 + }, + { + "start": 11964.42, + "end": 11966.61, + "probability": 0.9891 + }, + { + "start": 11967.98, + "end": 11968.68, + "probability": 0.9384 + }, + { + "start": 11968.96, + "end": 11972.06, + "probability": 0.786 + }, + { + "start": 11972.66, + "end": 11976.1, + "probability": 0.9655 + }, + { + "start": 11977.25, + "end": 11978.8, + "probability": 0.2545 + }, + { + "start": 11978.8, + "end": 11979.68, + "probability": 0.7162 + }, + { + "start": 11979.8, + "end": 11981.32, + "probability": 0.5075 + }, + { + "start": 11981.52, + "end": 11983.04, + "probability": 0.3802 + }, + { + "start": 11983.04, + "end": 11983.28, + "probability": 0.4232 + }, + { + "start": 11983.44, + "end": 11983.68, + "probability": 0.3937 + }, + { + "start": 11983.88, + "end": 11986.22, + "probability": 0.9814 + }, + { + "start": 11986.34, + "end": 11987.08, + "probability": 0.3027 + }, + { + "start": 11987.4, + "end": 11991.22, + "probability": 0.927 + }, + { + "start": 11991.34, + "end": 11992.16, + "probability": 0.682 + }, + { + "start": 11992.28, + "end": 11992.66, + "probability": 0.7421 + }, + { + "start": 11992.68, + "end": 11994.98, + "probability": 0.8531 + }, + { + "start": 11995.0, + "end": 11996.12, + "probability": 0.139 + }, + { + "start": 11996.56, + "end": 11997.9, + "probability": 0.7488 + }, + { + "start": 11997.9, + "end": 11998.04, + "probability": 0.0532 + }, + { + "start": 12001.46, + "end": 12002.52, + "probability": 0.0662 + }, + { + "start": 12002.52, + "end": 12004.32, + "probability": 0.4239 + }, + { + "start": 12005.18, + "end": 12008.32, + "probability": 0.0208 + }, + { + "start": 12008.62, + "end": 12011.66, + "probability": 0.0728 + }, + { + "start": 12012.34, + "end": 12015.16, + "probability": 0.9829 + }, + { + "start": 12015.32, + "end": 12016.84, + "probability": 0.1831 + }, + { + "start": 12016.84, + "end": 12016.84, + "probability": 0.1506 + }, + { + "start": 12016.84, + "end": 12016.84, + "probability": 0.0967 + }, + { + "start": 12016.84, + "end": 12016.84, + "probability": 0.0288 + }, + { + "start": 12016.84, + "end": 12018.32, + "probability": 0.1471 + }, + { + "start": 12019.2, + "end": 12021.96, + "probability": 0.8385 + }, + { + "start": 12022.9, + "end": 12026.28, + "probability": 0.9161 + }, + { + "start": 12027.14, + "end": 12031.04, + "probability": 0.9761 + }, + { + "start": 12031.04, + "end": 12036.11, + "probability": 0.5863 + }, + { + "start": 12037.38, + "end": 12043.08, + "probability": 0.9102 + }, + { + "start": 12044.66, + "end": 12046.36, + "probability": 0.585 + }, + { + "start": 12046.54, + "end": 12049.7, + "probability": 0.9678 + }, + { + "start": 12050.5, + "end": 12054.16, + "probability": 0.9914 + }, + { + "start": 12055.02, + "end": 12058.98, + "probability": 0.9042 + }, + { + "start": 12059.6, + "end": 12060.59, + "probability": 0.5866 + }, + { + "start": 12060.72, + "end": 12062.82, + "probability": 0.9965 + }, + { + "start": 12063.08, + "end": 12064.4, + "probability": 0.8696 + }, + { + "start": 12064.52, + "end": 12066.6, + "probability": 0.963 + }, + { + "start": 12067.64, + "end": 12068.24, + "probability": 0.9583 + }, + { + "start": 12068.92, + "end": 12072.8, + "probability": 0.7862 + }, + { + "start": 12072.8, + "end": 12077.48, + "probability": 0.5318 + }, + { + "start": 12078.4, + "end": 12079.14, + "probability": 0.4727 + }, + { + "start": 12079.48, + "end": 12083.98, + "probability": 0.8187 + }, + { + "start": 12084.96, + "end": 12088.56, + "probability": 0.976 + }, + { + "start": 12089.02, + "end": 12090.78, + "probability": 0.5118 + }, + { + "start": 12090.88, + "end": 12093.2, + "probability": 0.9707 + }, + { + "start": 12094.02, + "end": 12099.48, + "probability": 0.9545 + }, + { + "start": 12100.9, + "end": 12101.0, + "probability": 0.0644 + }, + { + "start": 12101.0, + "end": 12101.0, + "probability": 0.4172 + }, + { + "start": 12101.0, + "end": 12105.68, + "probability": 0.5433 + }, + { + "start": 12105.68, + "end": 12106.08, + "probability": 0.0239 + }, + { + "start": 12106.08, + "end": 12106.1, + "probability": 0.16 + }, + { + "start": 12106.1, + "end": 12111.76, + "probability": 0.8024 + }, + { + "start": 12111.84, + "end": 12116.6, + "probability": 0.9869 + }, + { + "start": 12116.9, + "end": 12117.82, + "probability": 0.8222 + }, + { + "start": 12118.06, + "end": 12120.46, + "probability": 0.9901 + }, + { + "start": 12121.06, + "end": 12123.88, + "probability": 0.9977 + }, + { + "start": 12124.22, + "end": 12125.48, + "probability": 0.0231 + }, + { + "start": 12126.0, + "end": 12126.04, + "probability": 0.4308 + }, + { + "start": 12126.04, + "end": 12126.04, + "probability": 0.6902 + }, + { + "start": 12126.04, + "end": 12126.04, + "probability": 0.3294 + }, + { + "start": 12126.04, + "end": 12126.73, + "probability": 0.2714 + }, + { + "start": 12127.04, + "end": 12129.0, + "probability": 0.7194 + }, + { + "start": 12129.3, + "end": 12131.1, + "probability": 0.6096 + }, + { + "start": 12132.04, + "end": 12133.14, + "probability": 0.7871 + }, + { + "start": 12133.44, + "end": 12134.9, + "probability": 0.0274 + }, + { + "start": 12135.44, + "end": 12136.18, + "probability": 0.5069 + }, + { + "start": 12136.56, + "end": 12137.1, + "probability": 0.6641 + }, + { + "start": 12137.26, + "end": 12140.26, + "probability": 0.667 + }, + { + "start": 12140.64, + "end": 12142.32, + "probability": 0.9245 + }, + { + "start": 12142.72, + "end": 12144.08, + "probability": 0.0259 + }, + { + "start": 12144.26, + "end": 12144.26, + "probability": 0.2663 + }, + { + "start": 12144.26, + "end": 12144.76, + "probability": 0.3961 + }, + { + "start": 12144.94, + "end": 12145.8, + "probability": 0.5664 + }, + { + "start": 12145.98, + "end": 12147.92, + "probability": 0.9966 + }, + { + "start": 12148.12, + "end": 12148.58, + "probability": 0.628 + }, + { + "start": 12148.6, + "end": 12149.22, + "probability": 0.2897 + }, + { + "start": 12149.24, + "end": 12150.78, + "probability": 0.8493 + }, + { + "start": 12151.0, + "end": 12151.4, + "probability": 0.3359 + }, + { + "start": 12151.52, + "end": 12154.88, + "probability": 0.7525 + }, + { + "start": 12155.42, + "end": 12156.48, + "probability": 0.9521 + }, + { + "start": 12156.56, + "end": 12157.98, + "probability": 0.998 + }, + { + "start": 12158.36, + "end": 12160.28, + "probability": 0.9353 + }, + { + "start": 12161.28, + "end": 12163.09, + "probability": 0.9827 + }, + { + "start": 12163.94, + "end": 12165.48, + "probability": 0.5929 + }, + { + "start": 12165.8, + "end": 12166.14, + "probability": 0.009 + }, + { + "start": 12166.26, + "end": 12169.72, + "probability": 0.2392 + }, + { + "start": 12169.72, + "end": 12169.86, + "probability": 0.327 + }, + { + "start": 12169.86, + "end": 12169.86, + "probability": 0.8129 + }, + { + "start": 12169.86, + "end": 12170.82, + "probability": 0.1176 + }, + { + "start": 12171.14, + "end": 12171.14, + "probability": 0.7281 + }, + { + "start": 12171.14, + "end": 12171.76, + "probability": 0.6445 + }, + { + "start": 12172.06, + "end": 12172.36, + "probability": 0.5336 + }, + { + "start": 12172.36, + "end": 12175.64, + "probability": 0.4416 + }, + { + "start": 12175.64, + "end": 12178.4, + "probability": 0.9912 + }, + { + "start": 12178.4, + "end": 12178.84, + "probability": 0.581 + }, + { + "start": 12179.04, + "end": 12180.14, + "probability": 0.8232 + }, + { + "start": 12180.2, + "end": 12182.36, + "probability": 0.7752 + }, + { + "start": 12182.42, + "end": 12183.06, + "probability": 0.1526 + }, + { + "start": 12183.3, + "end": 12183.72, + "probability": 0.6348 + }, + { + "start": 12183.72, + "end": 12184.06, + "probability": 0.4026 + }, + { + "start": 12184.64, + "end": 12184.99, + "probability": 0.3429 + }, + { + "start": 12185.14, + "end": 12186.34, + "probability": 0.5083 + }, + { + "start": 12186.36, + "end": 12186.38, + "probability": 0.1359 + }, + { + "start": 12186.38, + "end": 12186.94, + "probability": 0.6669 + }, + { + "start": 12187.06, + "end": 12187.72, + "probability": 0.2874 + }, + { + "start": 12187.74, + "end": 12188.12, + "probability": 0.1087 + }, + { + "start": 12188.14, + "end": 12190.84, + "probability": 0.676 + }, + { + "start": 12192.52, + "end": 12192.66, + "probability": 0.0783 + }, + { + "start": 12192.66, + "end": 12192.66, + "probability": 0.613 + }, + { + "start": 12192.66, + "end": 12195.42, + "probability": 0.7988 + }, + { + "start": 12195.84, + "end": 12196.76, + "probability": 0.6647 + }, + { + "start": 12197.1, + "end": 12198.26, + "probability": 0.2003 + }, + { + "start": 12198.42, + "end": 12201.66, + "probability": 0.3577 + }, + { + "start": 12202.08, + "end": 12204.12, + "probability": 0.8583 + }, + { + "start": 12204.36, + "end": 12209.86, + "probability": 0.9917 + }, + { + "start": 12209.86, + "end": 12210.21, + "probability": 0.0953 + }, + { + "start": 12210.64, + "end": 12213.24, + "probability": 0.4573 + }, + { + "start": 12213.26, + "end": 12214.28, + "probability": 0.5002 + }, + { + "start": 12214.3, + "end": 12219.0, + "probability": 0.4023 + }, + { + "start": 12219.82, + "end": 12220.12, + "probability": 0.004 + }, + { + "start": 12220.12, + "end": 12220.3, + "probability": 0.1693 + }, + { + "start": 12220.5, + "end": 12220.56, + "probability": 0.3212 + }, + { + "start": 12220.56, + "end": 12220.8, + "probability": 0.071 + }, + { + "start": 12220.8, + "end": 12220.8, + "probability": 0.1398 + }, + { + "start": 12220.8, + "end": 12222.83, + "probability": 0.0709 + }, + { + "start": 12224.32, + "end": 12228.08, + "probability": 0.3541 + }, + { + "start": 12228.08, + "end": 12228.08, + "probability": 0.0618 + }, + { + "start": 12228.08, + "end": 12228.08, + "probability": 0.056 + }, + { + "start": 12228.08, + "end": 12228.08, + "probability": 0.147 + }, + { + "start": 12228.08, + "end": 12231.86, + "probability": 0.489 + }, + { + "start": 12232.24, + "end": 12232.48, + "probability": 0.1299 + }, + { + "start": 12232.52, + "end": 12232.8, + "probability": 0.3473 + }, + { + "start": 12234.66, + "end": 12235.0, + "probability": 0.1027 + }, + { + "start": 12235.0, + "end": 12235.58, + "probability": 0.1688 + }, + { + "start": 12235.62, + "end": 12239.14, + "probability": 0.9575 + }, + { + "start": 12239.54, + "end": 12242.16, + "probability": 0.907 + }, + { + "start": 12242.5, + "end": 12243.88, + "probability": 0.8906 + }, + { + "start": 12244.0, + "end": 12244.68, + "probability": 0.5386 + }, + { + "start": 12245.3, + "end": 12246.36, + "probability": 0.7488 + }, + { + "start": 12246.92, + "end": 12250.72, + "probability": 0.8681 + }, + { + "start": 12250.84, + "end": 12251.62, + "probability": 0.3733 + }, + { + "start": 12251.76, + "end": 12252.62, + "probability": 0.4868 + }, + { + "start": 12252.68, + "end": 12253.59, + "probability": 0.546 + }, + { + "start": 12253.72, + "end": 12255.56, + "probability": 0.8028 + }, + { + "start": 12255.68, + "end": 12257.42, + "probability": 0.1693 + }, + { + "start": 12257.56, + "end": 12258.14, + "probability": 0.471 + }, + { + "start": 12258.14, + "end": 12258.96, + "probability": 0.4672 + }, + { + "start": 12276.0, + "end": 12276.0, + "probability": 0.0 + }, + { + "start": 12276.0, + "end": 12276.0, + "probability": 0.0 + }, + { + "start": 12276.0, + "end": 12276.0, + "probability": 0.0 + }, + { + "start": 12276.0, + "end": 12276.0, + "probability": 0.0 + }, + { + "start": 12276.0, + "end": 12276.0, + "probability": 0.0 + }, + { + "start": 12276.0, + "end": 12276.0, + "probability": 0.0 + }, + { + "start": 12276.0, + "end": 12276.0, + "probability": 0.0 + }, + { + "start": 12276.0, + "end": 12276.0, + "probability": 0.0 + }, + { + "start": 12276.0, + "end": 12276.0, + "probability": 0.0 + }, + { + "start": 12276.22, + "end": 12276.22, + "probability": 0.0376 + }, + { + "start": 12276.22, + "end": 12277.07, + "probability": 0.3643 + }, + { + "start": 12277.76, + "end": 12279.92, + "probability": 0.9557 + }, + { + "start": 12280.24, + "end": 12283.6, + "probability": 0.979 + }, + { + "start": 12283.92, + "end": 12286.21, + "probability": 0.5969 + }, + { + "start": 12286.9, + "end": 12289.36, + "probability": 0.936 + }, + { + "start": 12289.48, + "end": 12290.54, + "probability": 0.6075 + }, + { + "start": 12290.86, + "end": 12292.82, + "probability": 0.9727 + }, + { + "start": 12293.0, + "end": 12298.14, + "probability": 0.9976 + }, + { + "start": 12298.62, + "end": 12299.18, + "probability": 0.3683 + }, + { + "start": 12299.34, + "end": 12302.58, + "probability": 0.7471 + }, + { + "start": 12303.16, + "end": 12304.64, + "probability": 0.9968 + }, + { + "start": 12305.02, + "end": 12307.28, + "probability": 0.7268 + }, + { + "start": 12307.66, + "end": 12309.1, + "probability": 0.9974 + }, + { + "start": 12309.64, + "end": 12310.96, + "probability": 0.9077 + }, + { + "start": 12311.16, + "end": 12313.96, + "probability": 0.9987 + }, + { + "start": 12314.28, + "end": 12315.88, + "probability": 0.9493 + }, + { + "start": 12316.3, + "end": 12318.24, + "probability": 0.9121 + }, + { + "start": 12318.32, + "end": 12319.36, + "probability": 0.8869 + }, + { + "start": 12319.88, + "end": 12321.6, + "probability": 0.8799 + }, + { + "start": 12322.04, + "end": 12323.78, + "probability": 0.7345 + }, + { + "start": 12324.18, + "end": 12324.84, + "probability": 0.7959 + }, + { + "start": 12325.58, + "end": 12327.36, + "probability": 0.8986 + }, + { + "start": 12327.82, + "end": 12329.18, + "probability": 0.0522 + }, + { + "start": 12329.18, + "end": 12329.48, + "probability": 0.3997 + }, + { + "start": 12329.64, + "end": 12330.14, + "probability": 0.7768 + }, + { + "start": 12330.18, + "end": 12331.22, + "probability": 0.8839 + }, + { + "start": 12331.24, + "end": 12332.16, + "probability": 0.7806 + }, + { + "start": 12332.28, + "end": 12334.64, + "probability": 0.3915 + }, + { + "start": 12334.91, + "end": 12335.08, + "probability": 0.1208 + }, + { + "start": 12335.08, + "end": 12336.24, + "probability": 0.3546 + }, + { + "start": 12336.24, + "end": 12338.5, + "probability": 0.2526 + }, + { + "start": 12338.5, + "end": 12338.86, + "probability": 0.2634 + }, + { + "start": 12339.02, + "end": 12340.54, + "probability": 0.5199 + }, + { + "start": 12340.66, + "end": 12341.22, + "probability": 0.3624 + }, + { + "start": 12341.84, + "end": 12341.84, + "probability": 0.8941 + }, + { + "start": 12341.84, + "end": 12343.86, + "probability": 0.4782 + }, + { + "start": 12343.86, + "end": 12344.14, + "probability": 0.7537 + }, + { + "start": 12344.14, + "end": 12344.82, + "probability": 0.2324 + }, + { + "start": 12344.92, + "end": 12345.44, + "probability": 0.2769 + }, + { + "start": 12345.44, + "end": 12346.44, + "probability": 0.3305 + }, + { + "start": 12346.6, + "end": 12347.66, + "probability": 0.8119 + }, + { + "start": 12347.88, + "end": 12348.68, + "probability": 0.7866 + }, + { + "start": 12349.16, + "end": 12353.1, + "probability": 0.9917 + }, + { + "start": 12353.1, + "end": 12353.1, + "probability": 0.2343 + }, + { + "start": 12353.18, + "end": 12354.7, + "probability": 0.9911 + }, + { + "start": 12355.62, + "end": 12356.32, + "probability": 0.7863 + }, + { + "start": 12356.46, + "end": 12356.58, + "probability": 0.6746 + }, + { + "start": 12356.68, + "end": 12360.14, + "probability": 0.8748 + }, + { + "start": 12360.3, + "end": 12361.1, + "probability": 0.5997 + }, + { + "start": 12361.1, + "end": 12362.68, + "probability": 0.6347 + }, + { + "start": 12362.98, + "end": 12364.72, + "probability": 0.6364 + }, + { + "start": 12364.76, + "end": 12366.24, + "probability": 0.2643 + }, + { + "start": 12366.26, + "end": 12368.9, + "probability": 0.7163 + }, + { + "start": 12369.04, + "end": 12370.02, + "probability": 0.331 + }, + { + "start": 12370.02, + "end": 12370.02, + "probability": 0.3 + }, + { + "start": 12370.02, + "end": 12370.84, + "probability": 0.7697 + }, + { + "start": 12371.22, + "end": 12372.06, + "probability": 0.6559 + }, + { + "start": 12381.62, + "end": 12381.96, + "probability": 0.1572 + }, + { + "start": 12382.58, + "end": 12383.22, + "probability": 0.3279 + }, + { + "start": 12383.38, + "end": 12383.73, + "probability": 0.6978 + }, + { + "start": 12384.78, + "end": 12388.34, + "probability": 0.3681 + }, + { + "start": 12389.02, + "end": 12391.46, + "probability": 0.9985 + }, + { + "start": 12392.02, + "end": 12393.16, + "probability": 0.2564 + }, + { + "start": 12393.48, + "end": 12395.36, + "probability": 0.9692 + }, + { + "start": 12395.48, + "end": 12397.36, + "probability": 0.7047 + }, + { + "start": 12397.44, + "end": 12398.84, + "probability": 0.9777 + }, + { + "start": 12398.94, + "end": 12399.48, + "probability": 0.413 + }, + { + "start": 12399.82, + "end": 12401.78, + "probability": 0.9677 + }, + { + "start": 12401.98, + "end": 12403.79, + "probability": 0.7681 + }, + { + "start": 12403.98, + "end": 12405.14, + "probability": 0.9546 + }, + { + "start": 12405.28, + "end": 12408.92, + "probability": 0.8892 + }, + { + "start": 12409.06, + "end": 12409.54, + "probability": 0.7717 + }, + { + "start": 12409.9, + "end": 12413.14, + "probability": 0.5447 + }, + { + "start": 12413.24, + "end": 12413.24, + "probability": 0.0535 + }, + { + "start": 12413.24, + "end": 12413.24, + "probability": 0.0628 + }, + { + "start": 12413.24, + "end": 12413.24, + "probability": 0.2781 + }, + { + "start": 12413.26, + "end": 12417.48, + "probability": 0.9923 + }, + { + "start": 12418.06, + "end": 12418.14, + "probability": 0.1513 + }, + { + "start": 12418.2, + "end": 12419.0, + "probability": 0.7996 + }, + { + "start": 12419.38, + "end": 12422.52, + "probability": 0.9832 + }, + { + "start": 12423.0, + "end": 12425.22, + "probability": 0.5142 + }, + { + "start": 12425.56, + "end": 12427.42, + "probability": 0.4869 + }, + { + "start": 12428.0, + "end": 12430.84, + "probability": 0.2357 + }, + { + "start": 12430.84, + "end": 12431.73, + "probability": 0.1072 + }, + { + "start": 12432.06, + "end": 12433.54, + "probability": 0.1258 + }, + { + "start": 12434.16, + "end": 12437.68, + "probability": 0.0623 + }, + { + "start": 12438.16, + "end": 12440.1, + "probability": 0.1077 + }, + { + "start": 12443.42, + "end": 12443.76, + "probability": 0.0865 + }, + { + "start": 12443.76, + "end": 12443.76, + "probability": 0.0364 + }, + { + "start": 12443.76, + "end": 12443.76, + "probability": 0.056 + }, + { + "start": 12443.76, + "end": 12445.08, + "probability": 0.4968 + }, + { + "start": 12445.6, + "end": 12448.42, + "probability": 0.423 + }, + { + "start": 12450.88, + "end": 12454.86, + "probability": 0.9668 + }, + { + "start": 12455.58, + "end": 12457.56, + "probability": 0.7824 + }, + { + "start": 12457.76, + "end": 12459.14, + "probability": 0.0378 + }, + { + "start": 12459.48, + "end": 12459.84, + "probability": 0.73 + }, + { + "start": 12460.68, + "end": 12461.88, + "probability": 0.9182 + }, + { + "start": 12473.06, + "end": 12476.16, + "probability": 0.0599 + }, + { + "start": 12476.68, + "end": 12476.68, + "probability": 0.638 + }, + { + "start": 12476.68, + "end": 12476.68, + "probability": 0.6953 + }, + { + "start": 12476.68, + "end": 12478.22, + "probability": 0.8451 + }, + { + "start": 12481.92, + "end": 12484.52, + "probability": 0.8853 + }, + { + "start": 12484.82, + "end": 12487.34, + "probability": 0.6826 + }, + { + "start": 12487.78, + "end": 12488.16, + "probability": 0.1465 + }, + { + "start": 12494.16, + "end": 12494.6, + "probability": 0.4133 + }, + { + "start": 12494.6, + "end": 12494.7, + "probability": 0.0814 + }, + { + "start": 12494.7, + "end": 12495.78, + "probability": 0.5732 + }, + { + "start": 12498.28, + "end": 12501.24, + "probability": 0.8939 + }, + { + "start": 12502.14, + "end": 12506.38, + "probability": 0.7896 + }, + { + "start": 12507.72, + "end": 12513.5, + "probability": 0.3186 + }, + { + "start": 12514.28, + "end": 12514.42, + "probability": 0.1143 + }, + { + "start": 12514.42, + "end": 12514.42, + "probability": 0.0716 + }, + { + "start": 12514.42, + "end": 12518.94, + "probability": 0.8745 + }, + { + "start": 12519.1, + "end": 12520.62, + "probability": 0.9919 + }, + { + "start": 12521.68, + "end": 12523.34, + "probability": 0.0892 + }, + { + "start": 12523.52, + "end": 12523.7, + "probability": 0.3246 + }, + { + "start": 12523.7, + "end": 12524.04, + "probability": 0.7521 + }, + { + "start": 12524.1, + "end": 12528.32, + "probability": 0.7393 + }, + { + "start": 12529.08, + "end": 12530.44, + "probability": 0.4447 + }, + { + "start": 12531.52, + "end": 12531.54, + "probability": 0.38 + }, + { + "start": 12531.54, + "end": 12534.44, + "probability": 0.9508 + }, + { + "start": 12534.74, + "end": 12535.46, + "probability": 0.4387 + }, + { + "start": 12539.38, + "end": 12541.38, + "probability": 0.1037 + }, + { + "start": 12547.5, + "end": 12549.08, + "probability": 0.1474 + }, + { + "start": 12551.97, + "end": 12556.46, + "probability": 0.6399 + }, + { + "start": 12556.7, + "end": 12559.44, + "probability": 0.7617 + }, + { + "start": 12569.18, + "end": 12573.32, + "probability": 0.704 + }, + { + "start": 12573.54, + "end": 12580.26, + "probability": 0.6045 + }, + { + "start": 12585.95, + "end": 12589.42, + "probability": 0.6139 + }, + { + "start": 12589.52, + "end": 12594.1, + "probability": 0.0133 + }, + { + "start": 12594.74, + "end": 12594.74, + "probability": 0.0694 + }, + { + "start": 12594.74, + "end": 12594.74, + "probability": 0.1216 + }, + { + "start": 12594.74, + "end": 12595.66, + "probability": 0.6847 + }, + { + "start": 12595.92, + "end": 12596.54, + "probability": 0.5834 + }, + { + "start": 12596.54, + "end": 12598.94, + "probability": 0.7761 + }, + { + "start": 12599.44, + "end": 12602.14, + "probability": 0.5555 + }, + { + "start": 12602.68, + "end": 12603.38, + "probability": 0.4762 + }, + { + "start": 12604.86, + "end": 12605.4, + "probability": 0.3615 + }, + { + "start": 12606.36, + "end": 12607.8, + "probability": 0.7393 + }, + { + "start": 12608.48, + "end": 12611.18, + "probability": 0.9536 + }, + { + "start": 12611.86, + "end": 12613.1, + "probability": 0.9851 + }, + { + "start": 12613.18, + "end": 12615.0, + "probability": 0.9214 + }, + { + "start": 12615.38, + "end": 12617.32, + "probability": 0.9912 + }, + { + "start": 12617.32, + "end": 12619.96, + "probability": 0.9969 + }, + { + "start": 12620.04, + "end": 12621.22, + "probability": 0.738 + }, + { + "start": 12622.2, + "end": 12625.5, + "probability": 0.9578 + }, + { + "start": 12626.36, + "end": 12626.78, + "probability": 0.8964 + }, + { + "start": 12626.8, + "end": 12628.72, + "probability": 0.9975 + }, + { + "start": 12629.36, + "end": 12630.48, + "probability": 0.9582 + }, + { + "start": 12631.08, + "end": 12633.1, + "probability": 0.9725 + }, + { + "start": 12633.22, + "end": 12634.5, + "probability": 0.7915 + }, + { + "start": 12634.76, + "end": 12636.35, + "probability": 0.674 + }, + { + "start": 12638.58, + "end": 12643.93, + "probability": 0.3486 + }, + { + "start": 12644.96, + "end": 12644.96, + "probability": 0.0656 + }, + { + "start": 12644.96, + "end": 12645.26, + "probability": 0.0132 + }, + { + "start": 12645.26, + "end": 12645.26, + "probability": 0.0395 + }, + { + "start": 12645.26, + "end": 12649.22, + "probability": 0.8759 + }, + { + "start": 12650.32, + "end": 12656.0, + "probability": 0.8075 + }, + { + "start": 12656.0, + "end": 12660.98, + "probability": 0.9937 + }, + { + "start": 12661.74, + "end": 12663.32, + "probability": 0.7502 + }, + { + "start": 12663.9, + "end": 12666.72, + "probability": 0.9368 + }, + { + "start": 12667.28, + "end": 12670.86, + "probability": 0.8502 + }, + { + "start": 12671.44, + "end": 12677.32, + "probability": 0.9929 + }, + { + "start": 12678.02, + "end": 12680.39, + "probability": 0.9889 + }, + { + "start": 12681.04, + "end": 12685.08, + "probability": 0.9951 + }, + { + "start": 12685.94, + "end": 12685.98, + "probability": 0.0249 + }, + { + "start": 12685.98, + "end": 12690.22, + "probability": 0.9958 + }, + { + "start": 12690.88, + "end": 12690.88, + "probability": 0.08 + }, + { + "start": 12690.92, + "end": 12690.96, + "probability": 0.0923 + }, + { + "start": 12690.96, + "end": 12693.57, + "probability": 0.9692 + }, + { + "start": 12694.36, + "end": 12695.6, + "probability": 0.0861 + }, + { + "start": 12695.6, + "end": 12696.04, + "probability": 0.1856 + }, + { + "start": 12696.34, + "end": 12696.46, + "probability": 0.2659 + }, + { + "start": 12696.5, + "end": 12702.88, + "probability": 0.9709 + }, + { + "start": 12703.02, + "end": 12703.98, + "probability": 0.4825 + }, + { + "start": 12704.54, + "end": 12711.56, + "probability": 0.9786 + }, + { + "start": 12711.96, + "end": 12715.36, + "probability": 0.9927 + }, + { + "start": 12715.5, + "end": 12716.42, + "probability": 0.7366 + }, + { + "start": 12716.94, + "end": 12721.78, + "probability": 0.9862 + }, + { + "start": 12722.48, + "end": 12729.36, + "probability": 0.7659 + }, + { + "start": 12730.08, + "end": 12737.18, + "probability": 0.9385 + }, + { + "start": 12737.26, + "end": 12740.08, + "probability": 0.9506 + }, + { + "start": 12740.3, + "end": 12742.3, + "probability": 0.5008 + }, + { + "start": 12746.22, + "end": 12753.08, + "probability": 0.8728 + }, + { + "start": 12753.08, + "end": 12758.02, + "probability": 0.8243 + }, + { + "start": 12758.92, + "end": 12758.92, + "probability": 0.1021 + }, + { + "start": 12758.92, + "end": 12760.4, + "probability": 0.5035 + }, + { + "start": 12760.55, + "end": 12760.9, + "probability": 0.5162 + }, + { + "start": 12760.9, + "end": 12768.48, + "probability": 0.991 + }, + { + "start": 12768.98, + "end": 12772.82, + "probability": 0.9562 + }, + { + "start": 12773.48, + "end": 12774.38, + "probability": 0.3865 + }, + { + "start": 12774.72, + "end": 12779.92, + "probability": 0.9526 + }, + { + "start": 12780.6, + "end": 12787.22, + "probability": 0.9656 + }, + { + "start": 12787.22, + "end": 12792.14, + "probability": 0.9893 + }, + { + "start": 12792.66, + "end": 12793.48, + "probability": 0.8535 + }, + { + "start": 12793.96, + "end": 12795.04, + "probability": 0.8519 + }, + { + "start": 12795.22, + "end": 12795.83, + "probability": 0.741 + }, + { + "start": 12796.58, + "end": 12800.08, + "probability": 0.5568 + }, + { + "start": 12800.74, + "end": 12806.44, + "probability": 0.9332 + }, + { + "start": 12807.2, + "end": 12812.12, + "probability": 0.9344 + }, + { + "start": 12812.9, + "end": 12816.94, + "probability": 0.972 + }, + { + "start": 12817.44, + "end": 12819.9, + "probability": 0.9946 + }, + { + "start": 12821.04, + "end": 12825.1, + "probability": 0.9846 + }, + { + "start": 12825.6, + "end": 12826.26, + "probability": 0.8525 + }, + { + "start": 12826.82, + "end": 12830.76, + "probability": 0.9989 + }, + { + "start": 12830.76, + "end": 12835.46, + "probability": 0.9849 + }, + { + "start": 12836.06, + "end": 12838.78, + "probability": 0.978 + }, + { + "start": 12839.3, + "end": 12842.05, + "probability": 0.8716 + }, + { + "start": 12842.72, + "end": 12848.56, + "probability": 0.9673 + }, + { + "start": 12848.8, + "end": 12848.98, + "probability": 0.0504 + }, + { + "start": 12849.3, + "end": 12849.3, + "probability": 0.2425 + }, + { + "start": 12849.3, + "end": 12852.06, + "probability": 0.9854 + }, + { + "start": 12852.4, + "end": 12856.34, + "probability": 0.8953 + }, + { + "start": 12856.76, + "end": 12859.8, + "probability": 0.6736 + }, + { + "start": 12859.8, + "end": 12861.82, + "probability": 0.5394 + }, + { + "start": 12861.86, + "end": 12861.94, + "probability": 0.5947 + }, + { + "start": 12861.94, + "end": 12865.8, + "probability": 0.9813 + }, + { + "start": 12866.32, + "end": 12868.04, + "probability": 0.6884 + }, + { + "start": 12868.06, + "end": 12869.36, + "probability": 0.9603 + }, + { + "start": 12869.46, + "end": 12869.56, + "probability": 0.3764 + }, + { + "start": 12869.78, + "end": 12871.54, + "probability": 0.6414 + }, + { + "start": 12871.82, + "end": 12875.48, + "probability": 0.9536 + }, + { + "start": 12875.6, + "end": 12877.34, + "probability": 0.6965 + }, + { + "start": 12877.62, + "end": 12877.72, + "probability": 0.5452 + }, + { + "start": 12877.8, + "end": 12878.48, + "probability": 0.7872 + }, + { + "start": 12878.98, + "end": 12880.92, + "probability": 0.8325 + }, + { + "start": 12881.04, + "end": 12884.54, + "probability": 0.9667 + }, + { + "start": 12884.54, + "end": 12885.38, + "probability": 0.4338 + }, + { + "start": 12885.46, + "end": 12887.06, + "probability": 0.9894 + }, + { + "start": 12887.84, + "end": 12891.16, + "probability": 0.8831 + }, + { + "start": 12891.22, + "end": 12893.26, + "probability": 0.8248 + }, + { + "start": 12893.6, + "end": 12894.7, + "probability": 0.6752 + }, + { + "start": 12894.96, + "end": 12896.16, + "probability": 0.8064 + }, + { + "start": 12898.71, + "end": 12900.54, + "probability": 0.7923 + }, + { + "start": 12901.87, + "end": 12905.9, + "probability": 0.2838 + }, + { + "start": 12906.56, + "end": 12910.44, + "probability": 0.9774 + }, + { + "start": 12910.94, + "end": 12911.64, + "probability": 0.5735 + }, + { + "start": 12911.66, + "end": 12912.9, + "probability": 0.7856 + }, + { + "start": 12913.44, + "end": 12913.56, + "probability": 0.0803 + }, + { + "start": 12913.56, + "end": 12914.62, + "probability": 0.601 + }, + { + "start": 12914.7, + "end": 12915.64, + "probability": 0.272 + }, + { + "start": 12917.09, + "end": 12918.98, + "probability": 0.429 + }, + { + "start": 12919.2, + "end": 12919.36, + "probability": 0.3197 + }, + { + "start": 12919.36, + "end": 12920.4, + "probability": 0.5645 + }, + { + "start": 12920.46, + "end": 12923.5, + "probability": 0.7914 + }, + { + "start": 12923.94, + "end": 12925.98, + "probability": 0.0091 + }, + { + "start": 12932.72, + "end": 12934.96, + "probability": 0.5738 + }, + { + "start": 12937.82, + "end": 12938.34, + "probability": 0.8491 + }, + { + "start": 12940.64, + "end": 12941.24, + "probability": 0.7691 + }, + { + "start": 12947.0, + "end": 12950.04, + "probability": 0.6237 + }, + { + "start": 12950.78, + "end": 12953.08, + "probability": 0.9497 + }, + { + "start": 12954.86, + "end": 12958.98, + "probability": 0.8264 + }, + { + "start": 12959.86, + "end": 12960.36, + "probability": 0.9751 + }, + { + "start": 12961.14, + "end": 12962.7, + "probability": 0.9368 + }, + { + "start": 12963.4, + "end": 12965.72, + "probability": 0.983 + }, + { + "start": 12966.6, + "end": 12970.38, + "probability": 0.9788 + }, + { + "start": 12971.72, + "end": 12974.9, + "probability": 0.6015 + }, + { + "start": 12975.82, + "end": 12978.36, + "probability": 0.6066 + }, + { + "start": 12979.14, + "end": 12981.96, + "probability": 0.9653 + }, + { + "start": 12982.8, + "end": 12985.22, + "probability": 0.9513 + }, + { + "start": 12985.76, + "end": 12993.04, + "probability": 0.9695 + }, + { + "start": 12995.4, + "end": 13000.14, + "probability": 0.7059 + }, + { + "start": 13001.46, + "end": 13005.84, + "probability": 0.6446 + }, + { + "start": 13006.54, + "end": 13009.08, + "probability": 0.9388 + }, + { + "start": 13012.62, + "end": 13012.72, + "probability": 0.3493 + }, + { + "start": 13013.42, + "end": 13014.58, + "probability": 0.18 + }, + { + "start": 13014.58, + "end": 13018.68, + "probability": 0.1665 + }, + { + "start": 13020.3, + "end": 13021.12, + "probability": 0.9401 + }, + { + "start": 13023.46, + "end": 13024.46, + "probability": 0.5221 + }, + { + "start": 13025.42, + "end": 13025.82, + "probability": 0.9353 + }, + { + "start": 13026.8, + "end": 13027.14, + "probability": 0.6587 + }, + { + "start": 13028.14, + "end": 13028.88, + "probability": 0.5719 + }, + { + "start": 13029.64, + "end": 13030.6, + "probability": 0.7842 + }, + { + "start": 13031.4, + "end": 13031.82, + "probability": 0.953 + }, + { + "start": 13032.42, + "end": 13033.32, + "probability": 0.9173 + }, + { + "start": 13035.34, + "end": 13038.58, + "probability": 0.7151 + }, + { + "start": 13039.46, + "end": 13039.94, + "probability": 0.9333 + }, + { + "start": 13041.7, + "end": 13042.68, + "probability": 0.9363 + }, + { + "start": 13043.8, + "end": 13044.1, + "probability": 0.9768 + }, + { + "start": 13045.2, + "end": 13046.44, + "probability": 0.9342 + }, + { + "start": 13047.26, + "end": 13047.72, + "probability": 0.9974 + }, + { + "start": 13048.52, + "end": 13049.28, + "probability": 0.926 + }, + { + "start": 13050.56, + "end": 13052.66, + "probability": 0.9216 + }, + { + "start": 13053.54, + "end": 13053.9, + "probability": 0.9915 + }, + { + "start": 13055.62, + "end": 13056.46, + "probability": 0.8828 + }, + { + "start": 13057.3, + "end": 13057.66, + "probability": 0.7914 + }, + { + "start": 13058.34, + "end": 13059.22, + "probability": 0.6866 + }, + { + "start": 13059.98, + "end": 13060.44, + "probability": 0.9886 + }, + { + "start": 13061.02, + "end": 13061.92, + "probability": 0.9827 + }, + { + "start": 13062.7, + "end": 13063.12, + "probability": 0.9094 + }, + { + "start": 13063.88, + "end": 13065.06, + "probability": 0.8864 + }, + { + "start": 13066.8, + "end": 13068.78, + "probability": 0.9729 + }, + { + "start": 13071.16, + "end": 13071.72, + "probability": 0.8973 + }, + { + "start": 13072.54, + "end": 13073.2, + "probability": 0.8846 + }, + { + "start": 13074.08, + "end": 13074.5, + "probability": 0.9722 + }, + { + "start": 13075.26, + "end": 13076.0, + "probability": 0.9745 + }, + { + "start": 13077.22, + "end": 13077.62, + "probability": 0.9475 + }, + { + "start": 13078.52, + "end": 13079.42, + "probability": 0.9378 + }, + { + "start": 13080.76, + "end": 13081.6, + "probability": 0.9869 + }, + { + "start": 13082.14, + "end": 13083.06, + "probability": 0.7158 + }, + { + "start": 13084.82, + "end": 13086.82, + "probability": 0.7939 + }, + { + "start": 13088.49, + "end": 13090.8, + "probability": 0.5164 + }, + { + "start": 13091.76, + "end": 13092.12, + "probability": 0.888 + }, + { + "start": 13093.1, + "end": 13093.8, + "probability": 0.9207 + }, + { + "start": 13094.78, + "end": 13095.26, + "probability": 0.9685 + }, + { + "start": 13095.94, + "end": 13096.8, + "probability": 0.8104 + }, + { + "start": 13100.38, + "end": 13100.82, + "probability": 0.8557 + }, + { + "start": 13101.94, + "end": 13102.9, + "probability": 0.9843 + }, + { + "start": 13104.04, + "end": 13104.58, + "probability": 0.984 + }, + { + "start": 13105.46, + "end": 13106.3, + "probability": 0.6883 + }, + { + "start": 13107.8, + "end": 13108.86, + "probability": 0.9905 + }, + { + "start": 13109.7, + "end": 13110.9, + "probability": 0.9786 + }, + { + "start": 13112.74, + "end": 13113.74, + "probability": 0.6361 + }, + { + "start": 13114.8, + "end": 13115.94, + "probability": 0.588 + }, + { + "start": 13117.22, + "end": 13118.56, + "probability": 0.9119 + }, + { + "start": 13119.64, + "end": 13120.7, + "probability": 0.8853 + }, + { + "start": 13121.84, + "end": 13122.18, + "probability": 0.9259 + }, + { + "start": 13123.22, + "end": 13124.42, + "probability": 0.7844 + }, + { + "start": 13125.62, + "end": 13127.6, + "probability": 0.9413 + }, + { + "start": 13129.28, + "end": 13129.84, + "probability": 0.9935 + }, + { + "start": 13131.08, + "end": 13132.44, + "probability": 0.775 + }, + { + "start": 13133.24, + "end": 13133.68, + "probability": 0.9946 + }, + { + "start": 13134.96, + "end": 13135.84, + "probability": 0.7873 + }, + { + "start": 13137.3, + "end": 13139.04, + "probability": 0.9797 + }, + { + "start": 13143.66, + "end": 13145.96, + "probability": 0.4134 + }, + { + "start": 13147.08, + "end": 13147.6, + "probability": 0.8828 + }, + { + "start": 13148.14, + "end": 13149.68, + "probability": 0.7003 + }, + { + "start": 13150.66, + "end": 13151.9, + "probability": 0.9275 + }, + { + "start": 13152.9, + "end": 13153.54, + "probability": 0.9548 + }, + { + "start": 13155.19, + "end": 13156.98, + "probability": 0.9308 + }, + { + "start": 13158.68, + "end": 13160.4, + "probability": 0.9539 + }, + { + "start": 13162.72, + "end": 13163.22, + "probability": 0.5818 + }, + { + "start": 13165.48, + "end": 13166.06, + "probability": 0.6321 + }, + { + "start": 13168.56, + "end": 13169.3, + "probability": 0.9129 + }, + { + "start": 13169.98, + "end": 13170.94, + "probability": 0.275 + }, + { + "start": 13172.94, + "end": 13173.32, + "probability": 0.9132 + }, + { + "start": 13176.24, + "end": 13176.88, + "probability": 0.5595 + }, + { + "start": 13178.08, + "end": 13180.32, + "probability": 0.7808 + }, + { + "start": 13181.76, + "end": 13183.42, + "probability": 0.9274 + }, + { + "start": 13187.74, + "end": 13188.02, + "probability": 0.5904 + }, + { + "start": 13188.64, + "end": 13189.3, + "probability": 0.8433 + }, + { + "start": 13190.26, + "end": 13190.6, + "probability": 0.8948 + }, + { + "start": 13191.18, + "end": 13191.82, + "probability": 0.7697 + }, + { + "start": 13192.52, + "end": 13192.92, + "probability": 0.9251 + }, + { + "start": 13193.64, + "end": 13194.56, + "probability": 0.7111 + }, + { + "start": 13195.48, + "end": 13197.12, + "probability": 0.9736 + }, + { + "start": 13198.16, + "end": 13199.68, + "probability": 0.961 + }, + { + "start": 13200.98, + "end": 13202.54, + "probability": 0.9017 + }, + { + "start": 13204.24, + "end": 13204.72, + "probability": 0.9009 + }, + { + "start": 13205.38, + "end": 13206.12, + "probability": 0.8164 + }, + { + "start": 13207.42, + "end": 13208.24, + "probability": 0.9866 + }, + { + "start": 13209.0, + "end": 13210.12, + "probability": 0.8347 + }, + { + "start": 13212.0, + "end": 13213.5, + "probability": 0.7029 + }, + { + "start": 13215.06, + "end": 13215.5, + "probability": 0.6332 + }, + { + "start": 13216.2, + "end": 13217.08, + "probability": 0.8588 + }, + { + "start": 13218.22, + "end": 13218.64, + "probability": 0.9079 + }, + { + "start": 13219.46, + "end": 13220.34, + "probability": 0.9385 + }, + { + "start": 13221.4, + "end": 13223.38, + "probability": 0.949 + }, + { + "start": 13227.02, + "end": 13229.08, + "probability": 0.7624 + }, + { + "start": 13232.7, + "end": 13233.66, + "probability": 0.59 + }, + { + "start": 13234.62, + "end": 13235.38, + "probability": 0.7493 + }, + { + "start": 13237.3, + "end": 13239.06, + "probability": 0.8978 + }, + { + "start": 13240.64, + "end": 13241.94, + "probability": 0.9832 + }, + { + "start": 13242.96, + "end": 13245.54, + "probability": 0.8918 + }, + { + "start": 13246.54, + "end": 13248.92, + "probability": 0.9542 + }, + { + "start": 13251.6, + "end": 13254.98, + "probability": 0.8382 + }, + { + "start": 13257.8, + "end": 13258.68, + "probability": 0.9029 + }, + { + "start": 13259.38, + "end": 13260.58, + "probability": 0.5702 + }, + { + "start": 13261.38, + "end": 13264.12, + "probability": 0.7158 + }, + { + "start": 13264.86, + "end": 13266.72, + "probability": 0.9811 + }, + { + "start": 13267.64, + "end": 13269.9, + "probability": 0.9878 + }, + { + "start": 13270.97, + "end": 13273.52, + "probability": 0.9861 + }, + { + "start": 13274.6, + "end": 13274.9, + "probability": 0.967 + }, + { + "start": 13275.78, + "end": 13276.82, + "probability": 0.9001 + }, + { + "start": 13277.7, + "end": 13280.28, + "probability": 0.912 + }, + { + "start": 13281.32, + "end": 13281.74, + "probability": 0.9557 + }, + { + "start": 13282.42, + "end": 13284.1, + "probability": 0.8507 + }, + { + "start": 13285.0, + "end": 13285.68, + "probability": 0.8575 + }, + { + "start": 13286.34, + "end": 13287.44, + "probability": 0.7384 + }, + { + "start": 13289.28, + "end": 13289.58, + "probability": 0.8547 + }, + { + "start": 13291.18, + "end": 13292.08, + "probability": 0.6554 + }, + { + "start": 13293.38, + "end": 13295.72, + "probability": 0.8938 + }, + { + "start": 13296.86, + "end": 13297.3, + "probability": 0.7373 + }, + { + "start": 13298.16, + "end": 13300.42, + "probability": 0.7277 + }, + { + "start": 13301.38, + "end": 13302.3, + "probability": 0.6523 + }, + { + "start": 13304.68, + "end": 13308.28, + "probability": 0.936 + }, + { + "start": 13309.92, + "end": 13310.26, + "probability": 0.9705 + }, + { + "start": 13312.24, + "end": 13312.78, + "probability": 0.7153 + }, + { + "start": 13318.28, + "end": 13319.1, + "probability": 0.7043 + }, + { + "start": 13319.92, + "end": 13322.48, + "probability": 0.3923 + }, + { + "start": 13323.96, + "end": 13330.2, + "probability": 0.6889 + }, + { + "start": 13332.4, + "end": 13334.06, + "probability": 0.8154 + }, + { + "start": 13336.88, + "end": 13338.08, + "probability": 0.4963 + }, + { + "start": 13339.08, + "end": 13343.42, + "probability": 0.839 + }, + { + "start": 13344.17, + "end": 13346.98, + "probability": 0.9314 + }, + { + "start": 13347.78, + "end": 13350.34, + "probability": 0.8267 + }, + { + "start": 13351.12, + "end": 13353.96, + "probability": 0.976 + }, + { + "start": 13355.14, + "end": 13358.24, + "probability": 0.9663 + }, + { + "start": 13359.74, + "end": 13363.52, + "probability": 0.763 + }, + { + "start": 13368.14, + "end": 13369.42, + "probability": 0.376 + }, + { + "start": 13370.26, + "end": 13373.34, + "probability": 0.6471 + }, + { + "start": 13376.2, + "end": 13379.12, + "probability": 0.8095 + }, + { + "start": 13379.92, + "end": 13381.72, + "probability": 0.9484 + }, + { + "start": 13383.6, + "end": 13386.14, + "probability": 0.959 + }, + { + "start": 13386.92, + "end": 13387.32, + "probability": 0.9878 + }, + { + "start": 13388.18, + "end": 13389.3, + "probability": 0.9492 + }, + { + "start": 13390.44, + "end": 13390.92, + "probability": 0.9941 + }, + { + "start": 13391.6, + "end": 13392.74, + "probability": 0.9432 + }, + { + "start": 13393.4, + "end": 13393.76, + "probability": 0.9463 + }, + { + "start": 13394.54, + "end": 13398.38, + "probability": 0.8577 + }, + { + "start": 13399.04, + "end": 13399.46, + "probability": 0.567 + }, + { + "start": 13400.48, + "end": 13401.72, + "probability": 0.725 + }, + { + "start": 13403.14, + "end": 13405.32, + "probability": 0.9399 + }, + { + "start": 13405.86, + "end": 13406.8, + "probability": 0.9209 + }, + { + "start": 13408.4, + "end": 13408.82, + "probability": 0.9881 + }, + { + "start": 13409.86, + "end": 13410.72, + "probability": 0.9342 + }, + { + "start": 13411.32, + "end": 13411.78, + "probability": 0.9461 + }, + { + "start": 13412.42, + "end": 13413.34, + "probability": 0.7427 + }, + { + "start": 13415.27, + "end": 13418.16, + "probability": 0.9868 + }, + { + "start": 13418.84, + "end": 13419.38, + "probability": 0.9222 + }, + { + "start": 13420.06, + "end": 13420.92, + "probability": 0.9624 + }, + { + "start": 13422.08, + "end": 13424.3, + "probability": 0.9715 + }, + { + "start": 13425.48, + "end": 13427.64, + "probability": 0.6625 + }, + { + "start": 13428.52, + "end": 13434.9, + "probability": 0.9421 + }, + { + "start": 13435.94, + "end": 13436.8, + "probability": 0.0121 + }, + { + "start": 13443.26, + "end": 13444.34, + "probability": 0.5819 + }, + { + "start": 13445.86, + "end": 13446.74, + "probability": 0.9452 + }, + { + "start": 13447.5, + "end": 13448.48, + "probability": 0.8089 + }, + { + "start": 13449.92, + "end": 13451.98, + "probability": 0.9234 + }, + { + "start": 13452.76, + "end": 13453.52, + "probability": 0.9502 + }, + { + "start": 13454.9, + "end": 13455.74, + "probability": 0.875 + }, + { + "start": 13456.48, + "end": 13458.6, + "probability": 0.9275 + }, + { + "start": 13459.94, + "end": 13460.7, + "probability": 0.9879 + }, + { + "start": 13461.4, + "end": 13462.4, + "probability": 0.8087 + }, + { + "start": 13463.3, + "end": 13465.36, + "probability": 0.949 + }, + { + "start": 13466.38, + "end": 13467.2, + "probability": 0.9061 + }, + { + "start": 13467.78, + "end": 13468.62, + "probability": 0.7996 + }, + { + "start": 13470.36, + "end": 13471.04, + "probability": 0.9783 + }, + { + "start": 13471.94, + "end": 13473.04, + "probability": 0.8785 + }, + { + "start": 13475.8, + "end": 13476.64, + "probability": 0.8264 + }, + { + "start": 13477.86, + "end": 13478.9, + "probability": 0.9572 + }, + { + "start": 13481.22, + "end": 13485.02, + "probability": 0.9307 + }, + { + "start": 13486.5, + "end": 13489.1, + "probability": 0.9834 + }, + { + "start": 13489.86, + "end": 13490.74, + "probability": 0.9683 + }, + { + "start": 13492.24, + "end": 13494.08, + "probability": 0.7215 + }, + { + "start": 13494.9, + "end": 13497.66, + "probability": 0.74 + }, + { + "start": 13498.76, + "end": 13500.34, + "probability": 0.9295 + }, + { + "start": 13503.22, + "end": 13505.06, + "probability": 0.5644 + }, + { + "start": 13505.72, + "end": 13506.6, + "probability": 0.7664 + }, + { + "start": 13507.72, + "end": 13510.84, + "probability": 0.8575 + }, + { + "start": 13511.62, + "end": 13513.96, + "probability": 0.6416 + }, + { + "start": 13514.8, + "end": 13517.52, + "probability": 0.8906 + }, + { + "start": 13518.24, + "end": 13519.08, + "probability": 0.9755 + }, + { + "start": 13519.78, + "end": 13521.06, + "probability": 0.7165 + }, + { + "start": 13522.2, + "end": 13522.88, + "probability": 0.9618 + }, + { + "start": 13523.42, + "end": 13524.38, + "probability": 0.7827 + }, + { + "start": 13525.6, + "end": 13529.5, + "probability": 0.8432 + }, + { + "start": 13532.88, + "end": 13534.16, + "probability": 0.8717 + }, + { + "start": 13535.18, + "end": 13535.96, + "probability": 0.8204 + }, + { + "start": 13537.5, + "end": 13538.3, + "probability": 0.946 + }, + { + "start": 13539.08, + "end": 13539.88, + "probability": 0.8155 + }, + { + "start": 13540.5, + "end": 13542.72, + "probability": 0.9574 + }, + { + "start": 13543.86, + "end": 13546.4, + "probability": 0.5391 + }, + { + "start": 13547.52, + "end": 13548.34, + "probability": 0.9862 + }, + { + "start": 13549.14, + "end": 13551.98, + "probability": 0.9144 + }, + { + "start": 13552.84, + "end": 13555.12, + "probability": 0.8625 + }, + { + "start": 13555.48, + "end": 13556.88, + "probability": 0.741 + }, + { + "start": 13556.88, + "end": 13560.18, + "probability": 0.5931 + }, + { + "start": 13560.18, + "end": 13561.76, + "probability": 0.9715 + }, + { + "start": 13562.38, + "end": 13564.7, + "probability": 0.8707 + }, + { + "start": 13566.0, + "end": 13566.28, + "probability": 0.2976 + }, + { + "start": 13566.38, + "end": 13567.3, + "probability": 0.782 + }, + { + "start": 13567.62, + "end": 13568.26, + "probability": 0.9464 + }, + { + "start": 13568.92, + "end": 13568.94, + "probability": 0.0682 + }, + { + "start": 13673.38, + "end": 13673.5, + "probability": 0.0699 + }, + { + "start": 13673.5, + "end": 13673.5, + "probability": 0.0837 + }, + { + "start": 13673.5, + "end": 13674.22, + "probability": 0.1886 + }, + { + "start": 13674.36, + "end": 13675.44, + "probability": 0.8254 + }, + { + "start": 13676.48, + "end": 13676.74, + "probability": 0.2629 + }, + { + "start": 13676.82, + "end": 13677.16, + "probability": 0.8062 + }, + { + "start": 13677.22, + "end": 13679.34, + "probability": 0.8401 + }, + { + "start": 13679.34, + "end": 13682.42, + "probability": 0.6861 + }, + { + "start": 13682.5, + "end": 13684.02, + "probability": 0.0487 + }, + { + "start": 13684.44, + "end": 13687.5, + "probability": 0.8352 + }, + { + "start": 13687.52, + "end": 13688.58, + "probability": 0.6355 + }, + { + "start": 13691.33, + "end": 13693.22, + "probability": 0.9849 + }, + { + "start": 13693.66, + "end": 13694.14, + "probability": 0.1493 + }, + { + "start": 13698.24, + "end": 13700.52, + "probability": 0.3505 + }, + { + "start": 13702.66, + "end": 13704.1, + "probability": 0.3771 + }, + { + "start": 13704.2, + "end": 13706.94, + "probability": 0.8245 + }, + { + "start": 13707.34, + "end": 13708.82, + "probability": 0.9253 + }, + { + "start": 13710.0, + "end": 13713.06, + "probability": 0.6723 + }, + { + "start": 13713.78, + "end": 13716.02, + "probability": 0.9854 + }, + { + "start": 13717.16, + "end": 13718.32, + "probability": 0.8845 + }, + { + "start": 13718.94, + "end": 13722.48, + "probability": 0.9686 + }, + { + "start": 13722.92, + "end": 13724.46, + "probability": 0.9736 + }, + { + "start": 13725.44, + "end": 13726.38, + "probability": 0.7662 + }, + { + "start": 13726.94, + "end": 13728.26, + "probability": 0.9922 + }, + { + "start": 13728.76, + "end": 13729.72, + "probability": 0.8674 + }, + { + "start": 13731.02, + "end": 13732.6, + "probability": 0.9898 + }, + { + "start": 13732.74, + "end": 13734.48, + "probability": 0.9989 + }, + { + "start": 13734.56, + "end": 13736.8, + "probability": 0.9739 + }, + { + "start": 13737.66, + "end": 13738.74, + "probability": 0.8924 + }, + { + "start": 13739.74, + "end": 13741.86, + "probability": 0.7514 + }, + { + "start": 13742.92, + "end": 13745.34, + "probability": 0.9901 + }, + { + "start": 13746.16, + "end": 13749.54, + "probability": 0.9646 + }, + { + "start": 13749.66, + "end": 13751.0, + "probability": 0.8773 + }, + { + "start": 13752.06, + "end": 13756.96, + "probability": 0.9538 + }, + { + "start": 13757.6, + "end": 13761.38, + "probability": 0.9792 + }, + { + "start": 13762.86, + "end": 13766.6, + "probability": 0.9943 + }, + { + "start": 13766.82, + "end": 13767.62, + "probability": 0.8907 + }, + { + "start": 13768.4, + "end": 13771.74, + "probability": 0.7383 + }, + { + "start": 13771.74, + "end": 13774.54, + "probability": 0.9924 + }, + { + "start": 13774.56, + "end": 13775.16, + "probability": 0.8935 + }, + { + "start": 13775.96, + "end": 13778.12, + "probability": 0.929 + }, + { + "start": 13779.66, + "end": 13780.24, + "probability": 0.9393 + }, + { + "start": 13781.58, + "end": 13784.04, + "probability": 0.9946 + }, + { + "start": 13785.38, + "end": 13786.26, + "probability": 0.9795 + }, + { + "start": 13787.42, + "end": 13789.08, + "probability": 0.9878 + }, + { + "start": 13789.78, + "end": 13790.5, + "probability": 0.936 + }, + { + "start": 13790.58, + "end": 13791.67, + "probability": 0.833 + }, + { + "start": 13792.46, + "end": 13793.93, + "probability": 0.7349 + }, + { + "start": 13794.28, + "end": 13795.61, + "probability": 0.9507 + }, + { + "start": 13796.0, + "end": 13797.81, + "probability": 0.869 + }, + { + "start": 13798.06, + "end": 13799.99, + "probability": 0.9447 + }, + { + "start": 13800.22, + "end": 13802.26, + "probability": 0.9648 + }, + { + "start": 13804.16, + "end": 13805.24, + "probability": 0.6925 + }, + { + "start": 13806.62, + "end": 13807.46, + "probability": 0.9254 + }, + { + "start": 13807.52, + "end": 13809.56, + "probability": 0.973 + }, + { + "start": 13809.58, + "end": 13810.5, + "probability": 0.9294 + }, + { + "start": 13811.08, + "end": 13811.62, + "probability": 0.8684 + }, + { + "start": 13812.96, + "end": 13814.22, + "probability": 0.9766 + }, + { + "start": 13815.16, + "end": 13818.46, + "probability": 0.9781 + }, + { + "start": 13818.82, + "end": 13820.48, + "probability": 0.9995 + }, + { + "start": 13821.48, + "end": 13823.1, + "probability": 0.8292 + }, + { + "start": 13824.02, + "end": 13826.64, + "probability": 0.9937 + }, + { + "start": 13827.48, + "end": 13830.57, + "probability": 0.9951 + }, + { + "start": 13831.34, + "end": 13832.22, + "probability": 0.9355 + }, + { + "start": 13833.22, + "end": 13835.74, + "probability": 0.79 + }, + { + "start": 13836.32, + "end": 13837.88, + "probability": 0.8223 + }, + { + "start": 13838.56, + "end": 13839.4, + "probability": 0.968 + }, + { + "start": 13840.2, + "end": 13841.31, + "probability": 0.9858 + }, + { + "start": 13841.56, + "end": 13842.6, + "probability": 0.9834 + }, + { + "start": 13843.06, + "end": 13845.21, + "probability": 0.9617 + }, + { + "start": 13846.78, + "end": 13851.0, + "probability": 0.9946 + }, + { + "start": 13851.74, + "end": 13854.47, + "probability": 0.9944 + }, + { + "start": 13856.1, + "end": 13856.61, + "probability": 0.7787 + }, + { + "start": 13858.12, + "end": 13858.7, + "probability": 0.8984 + }, + { + "start": 13860.18, + "end": 13862.32, + "probability": 0.9765 + }, + { + "start": 13863.28, + "end": 13867.28, + "probability": 0.9958 + }, + { + "start": 13867.78, + "end": 13869.16, + "probability": 0.9067 + }, + { + "start": 13870.42, + "end": 13872.64, + "probability": 0.9409 + }, + { + "start": 13874.28, + "end": 13875.5, + "probability": 0.9678 + }, + { + "start": 13876.04, + "end": 13876.46, + "probability": 0.8547 + }, + { + "start": 13877.48, + "end": 13878.86, + "probability": 0.9901 + }, + { + "start": 13879.76, + "end": 13884.14, + "probability": 0.9795 + }, + { + "start": 13885.26, + "end": 13890.22, + "probability": 0.9634 + }, + { + "start": 13890.3, + "end": 13892.5, + "probability": 0.7948 + }, + { + "start": 13893.58, + "end": 13896.28, + "probability": 0.9695 + }, + { + "start": 13897.2, + "end": 13899.96, + "probability": 0.71 + }, + { + "start": 13899.98, + "end": 13901.13, + "probability": 0.9858 + }, + { + "start": 13903.76, + "end": 13906.06, + "probability": 0.9891 + }, + { + "start": 13906.28, + "end": 13910.86, + "probability": 0.9913 + }, + { + "start": 13911.94, + "end": 13914.78, + "probability": 0.8763 + }, + { + "start": 13915.46, + "end": 13916.82, + "probability": 0.2536 + }, + { + "start": 13917.76, + "end": 13918.76, + "probability": 0.9788 + }, + { + "start": 13919.68, + "end": 13920.88, + "probability": 0.8516 + }, + { + "start": 13920.92, + "end": 13921.62, + "probability": 0.8303 + }, + { + "start": 13921.7, + "end": 13924.08, + "probability": 0.8744 + }, + { + "start": 13924.38, + "end": 13926.48, + "probability": 0.9958 + }, + { + "start": 13927.06, + "end": 13928.58, + "probability": 0.9865 + }, + { + "start": 13928.64, + "end": 13930.11, + "probability": 0.8251 + }, + { + "start": 13931.34, + "end": 13931.82, + "probability": 0.8215 + }, + { + "start": 13932.7, + "end": 13934.22, + "probability": 0.9963 + }, + { + "start": 13935.6, + "end": 13938.64, + "probability": 0.9995 + }, + { + "start": 13939.44, + "end": 13941.92, + "probability": 0.9906 + }, + { + "start": 13942.82, + "end": 13946.3, + "probability": 0.958 + }, + { + "start": 13947.16, + "end": 13950.24, + "probability": 0.9587 + }, + { + "start": 13950.68, + "end": 13953.16, + "probability": 0.9971 + }, + { + "start": 13953.66, + "end": 13957.02, + "probability": 0.9857 + }, + { + "start": 13957.02, + "end": 13959.82, + "probability": 0.9644 + }, + { + "start": 13961.46, + "end": 13964.2, + "probability": 0.9976 + }, + { + "start": 13964.38, + "end": 13965.0, + "probability": 0.9697 + }, + { + "start": 13966.08, + "end": 13966.68, + "probability": 0.8772 + }, + { + "start": 13967.44, + "end": 13969.68, + "probability": 0.8307 + }, + { + "start": 13970.5, + "end": 13972.18, + "probability": 0.7733 + }, + { + "start": 13972.82, + "end": 13973.96, + "probability": 0.9349 + }, + { + "start": 13974.66, + "end": 13976.36, + "probability": 0.9392 + }, + { + "start": 13976.92, + "end": 13979.24, + "probability": 0.9839 + }, + { + "start": 13980.26, + "end": 13982.54, + "probability": 0.9977 + }, + { + "start": 13982.82, + "end": 13985.02, + "probability": 0.9362 + }, + { + "start": 13986.02, + "end": 13987.12, + "probability": 0.9882 + }, + { + "start": 13988.8, + "end": 13990.86, + "probability": 0.9364 + }, + { + "start": 13991.0, + "end": 13992.02, + "probability": 0.962 + }, + { + "start": 13992.7, + "end": 13994.04, + "probability": 0.9078 + }, + { + "start": 13995.48, + "end": 13997.16, + "probability": 0.3506 + }, + { + "start": 13997.24, + "end": 13999.2, + "probability": 0.9831 + }, + { + "start": 13999.26, + "end": 14000.02, + "probability": 0.979 + }, + { + "start": 14001.14, + "end": 14003.92, + "probability": 0.996 + }, + { + "start": 14004.36, + "end": 14005.7, + "probability": 0.7766 + }, + { + "start": 14005.74, + "end": 14006.5, + "probability": 0.9597 + }, + { + "start": 14007.28, + "end": 14009.98, + "probability": 0.9976 + }, + { + "start": 14011.34, + "end": 14013.44, + "probability": 0.9974 + }, + { + "start": 14013.44, + "end": 14016.34, + "probability": 0.9987 + }, + { + "start": 14017.02, + "end": 14018.06, + "probability": 0.8748 + }, + { + "start": 14018.38, + "end": 14021.46, + "probability": 0.9976 + }, + { + "start": 14022.66, + "end": 14023.18, + "probability": 0.804 + }, + { + "start": 14023.84, + "end": 14025.88, + "probability": 0.998 + }, + { + "start": 14026.56, + "end": 14029.2, + "probability": 0.9709 + }, + { + "start": 14029.96, + "end": 14030.36, + "probability": 0.9119 + }, + { + "start": 14032.16, + "end": 14034.54, + "probability": 0.8963 + }, + { + "start": 14034.64, + "end": 14038.4, + "probability": 0.8799 + }, + { + "start": 14038.96, + "end": 14040.28, + "probability": 0.6452 + }, + { + "start": 14040.3, + "end": 14042.22, + "probability": 0.7797 + }, + { + "start": 14043.96, + "end": 14045.04, + "probability": 0.791 + }, + { + "start": 14045.68, + "end": 14046.36, + "probability": 0.9343 + }, + { + "start": 14046.98, + "end": 14049.6, + "probability": 0.4782 + }, + { + "start": 14049.68, + "end": 14050.74, + "probability": 0.987 + }, + { + "start": 14050.8, + "end": 14051.58, + "probability": 0.6048 + }, + { + "start": 14051.58, + "end": 14051.86, + "probability": 0.429 + }, + { + "start": 14051.86, + "end": 14053.1, + "probability": 0.7041 + }, + { + "start": 14053.2, + "end": 14053.85, + "probability": 0.799 + }, + { + "start": 14054.02, + "end": 14056.52, + "probability": 0.9826 + }, + { + "start": 14057.24, + "end": 14060.88, + "probability": 0.9565 + }, + { + "start": 14061.02, + "end": 14062.26, + "probability": 0.8456 + }, + { + "start": 14062.3, + "end": 14063.4, + "probability": 0.3515 + }, + { + "start": 14063.44, + "end": 14065.96, + "probability": 0.9492 + }, + { + "start": 14066.36, + "end": 14069.66, + "probability": 0.9369 + }, + { + "start": 14069.66, + "end": 14073.28, + "probability": 0.827 + }, + { + "start": 14073.76, + "end": 14076.38, + "probability": 0.7751 + }, + { + "start": 14077.66, + "end": 14081.42, + "probability": 0.9833 + }, + { + "start": 14081.42, + "end": 14086.0, + "probability": 0.9347 + }, + { + "start": 14086.98, + "end": 14087.12, + "probability": 0.8323 + }, + { + "start": 14087.9, + "end": 14090.12, + "probability": 0.9951 + }, + { + "start": 14090.68, + "end": 14092.14, + "probability": 0.9801 + }, + { + "start": 14092.54, + "end": 14094.94, + "probability": 0.9727 + }, + { + "start": 14095.56, + "end": 14099.0, + "probability": 0.9521 + }, + { + "start": 14099.44, + "end": 14100.52, + "probability": 0.856 + }, + { + "start": 14101.44, + "end": 14103.36, + "probability": 0.974 + }, + { + "start": 14103.9, + "end": 14105.42, + "probability": 0.9949 + }, + { + "start": 14106.2, + "end": 14106.66, + "probability": 0.532 + }, + { + "start": 14108.12, + "end": 14108.56, + "probability": 0.9821 + }, + { + "start": 14109.44, + "end": 14109.54, + "probability": 0.982 + }, + { + "start": 14110.94, + "end": 14112.24, + "probability": 0.8184 + }, + { + "start": 14113.36, + "end": 14114.9, + "probability": 0.6542 + }, + { + "start": 14116.32, + "end": 14119.9, + "probability": 0.9961 + }, + { + "start": 14120.42, + "end": 14121.08, + "probability": 0.4925 + }, + { + "start": 14121.98, + "end": 14123.48, + "probability": 0.8052 + }, + { + "start": 14124.02, + "end": 14124.6, + "probability": 0.8644 + }, + { + "start": 14126.22, + "end": 14128.24, + "probability": 0.9691 + }, + { + "start": 14128.32, + "end": 14129.58, + "probability": 0.9753 + }, + { + "start": 14129.98, + "end": 14131.28, + "probability": 0.0948 + }, + { + "start": 14132.18, + "end": 14132.34, + "probability": 0.8126 + }, + { + "start": 14132.44, + "end": 14136.34, + "probability": 0.9811 + }, + { + "start": 14137.18, + "end": 14137.66, + "probability": 0.7561 + }, + { + "start": 14137.74, + "end": 14140.96, + "probability": 0.9745 + }, + { + "start": 14142.08, + "end": 14142.48, + "probability": 0.9645 + }, + { + "start": 14143.22, + "end": 14144.18, + "probability": 0.8394 + }, + { + "start": 14144.66, + "end": 14145.48, + "probability": 0.9156 + }, + { + "start": 14146.32, + "end": 14148.06, + "probability": 0.7216 + }, + { + "start": 14151.12, + "end": 14152.94, + "probability": 0.5913 + }, + { + "start": 14153.36, + "end": 14156.02, + "probability": 0.6725 + }, + { + "start": 14156.38, + "end": 14156.84, + "probability": 0.8715 + }, + { + "start": 14164.58, + "end": 14165.38, + "probability": 0.5936 + }, + { + "start": 14165.96, + "end": 14166.28, + "probability": 0.3443 + }, + { + "start": 14166.28, + "end": 14167.02, + "probability": 0.6938 + }, + { + "start": 14168.58, + "end": 14169.28, + "probability": 0.9455 + }, + { + "start": 14169.66, + "end": 14170.26, + "probability": 0.6798 + }, + { + "start": 14170.34, + "end": 14171.56, + "probability": 0.6733 + }, + { + "start": 14172.48, + "end": 14174.32, + "probability": 0.8948 + }, + { + "start": 14174.38, + "end": 14174.64, + "probability": 0.9727 + }, + { + "start": 14176.36, + "end": 14178.38, + "probability": 0.9595 + }, + { + "start": 14179.6, + "end": 14181.84, + "probability": 0.9978 + }, + { + "start": 14182.48, + "end": 14183.5, + "probability": 0.9946 + }, + { + "start": 14184.26, + "end": 14185.64, + "probability": 0.9689 + }, + { + "start": 14185.8, + "end": 14187.2, + "probability": 0.6419 + }, + { + "start": 14187.3, + "end": 14190.9, + "probability": 0.7424 + }, + { + "start": 14191.3, + "end": 14192.6, + "probability": 0.0594 + }, + { + "start": 14193.0, + "end": 14193.02, + "probability": 0.0484 + }, + { + "start": 14193.02, + "end": 14193.02, + "probability": 0.1025 + }, + { + "start": 14193.02, + "end": 14194.52, + "probability": 0.9399 + }, + { + "start": 14194.52, + "end": 14196.06, + "probability": 0.9242 + }, + { + "start": 14196.14, + "end": 14196.99, + "probability": 0.9827 + }, + { + "start": 14197.26, + "end": 14200.96, + "probability": 0.9421 + }, + { + "start": 14200.96, + "end": 14202.34, + "probability": 0.0682 + }, + { + "start": 14202.34, + "end": 14202.34, + "probability": 0.0173 + }, + { + "start": 14202.34, + "end": 14202.5, + "probability": 0.5938 + }, + { + "start": 14202.64, + "end": 14203.22, + "probability": 0.8879 + }, + { + "start": 14203.32, + "end": 14206.79, + "probability": 0.9885 + }, + { + "start": 14207.43, + "end": 14209.36, + "probability": 0.9629 + }, + { + "start": 14210.44, + "end": 14212.02, + "probability": 0.8898 + }, + { + "start": 14212.72, + "end": 14214.28, + "probability": 0.8636 + }, + { + "start": 14214.74, + "end": 14216.18, + "probability": 0.8838 + }, + { + "start": 14217.08, + "end": 14222.6, + "probability": 0.9683 + }, + { + "start": 14223.26, + "end": 14227.16, + "probability": 0.8751 + }, + { + "start": 14227.8, + "end": 14230.5, + "probability": 0.9939 + }, + { + "start": 14231.08, + "end": 14233.6, + "probability": 0.9003 + }, + { + "start": 14234.4, + "end": 14235.66, + "probability": 0.8569 + }, + { + "start": 14236.62, + "end": 14237.52, + "probability": 0.7467 + }, + { + "start": 14238.88, + "end": 14240.56, + "probability": 0.9707 + }, + { + "start": 14241.2, + "end": 14242.94, + "probability": 0.9556 + }, + { + "start": 14243.46, + "end": 14245.82, + "probability": 0.8689 + }, + { + "start": 14246.72, + "end": 14247.26, + "probability": 0.4528 + }, + { + "start": 14248.58, + "end": 14250.1, + "probability": 0.8844 + }, + { + "start": 14250.46, + "end": 14254.16, + "probability": 0.5015 + }, + { + "start": 14254.34, + "end": 14254.56, + "probability": 0.0226 + }, + { + "start": 14254.64, + "end": 14255.4, + "probability": 0.5998 + }, + { + "start": 14255.62, + "end": 14258.76, + "probability": 0.9707 + }, + { + "start": 14258.96, + "end": 14261.72, + "probability": 0.9397 + }, + { + "start": 14262.16, + "end": 14262.32, + "probability": 0.7429 + }, + { + "start": 14262.38, + "end": 14264.48, + "probability": 0.8794 + }, + { + "start": 14264.84, + "end": 14266.88, + "probability": 0.9914 + }, + { + "start": 14267.42, + "end": 14270.86, + "probability": 0.9609 + }, + { + "start": 14270.86, + "end": 14271.32, + "probability": 0.5677 + }, + { + "start": 14271.52, + "end": 14272.64, + "probability": 0.9536 + }, + { + "start": 14272.8, + "end": 14273.38, + "probability": 0.4577 + }, + { + "start": 14273.58, + "end": 14274.32, + "probability": 0.7677 + }, + { + "start": 14274.74, + "end": 14275.42, + "probability": 0.6979 + }, + { + "start": 14275.54, + "end": 14276.46, + "probability": 0.9526 + }, + { + "start": 14276.54, + "end": 14278.78, + "probability": 0.8204 + }, + { + "start": 14278.84, + "end": 14281.68, + "probability": 0.9722 + }, + { + "start": 14282.28, + "end": 14287.56, + "probability": 0.9294 + }, + { + "start": 14287.62, + "end": 14289.59, + "probability": 0.7968 + }, + { + "start": 14290.16, + "end": 14293.82, + "probability": 0.7195 + }, + { + "start": 14294.04, + "end": 14298.26, + "probability": 0.9008 + }, + { + "start": 14298.38, + "end": 14299.4, + "probability": 0.8654 + }, + { + "start": 14299.84, + "end": 14303.45, + "probability": 0.9597 + }, + { + "start": 14304.74, + "end": 14307.32, + "probability": 0.56 + }, + { + "start": 14307.5, + "end": 14310.7, + "probability": 0.8784 + }, + { + "start": 14311.1, + "end": 14312.84, + "probability": 0.992 + }, + { + "start": 14313.12, + "end": 14314.7, + "probability": 0.8928 + }, + { + "start": 14315.02, + "end": 14316.24, + "probability": 0.9171 + }, + { + "start": 14316.6, + "end": 14319.2, + "probability": 0.8747 + }, + { + "start": 14319.38, + "end": 14321.42, + "probability": 0.9744 + }, + { + "start": 14321.56, + "end": 14322.57, + "probability": 0.0534 + }, + { + "start": 14323.18, + "end": 14324.8, + "probability": 0.3104 + }, + { + "start": 14325.24, + "end": 14325.26, + "probability": 0.0035 + }, + { + "start": 14326.38, + "end": 14326.68, + "probability": 0.0196 + }, + { + "start": 14326.68, + "end": 14327.32, + "probability": 0.3307 + }, + { + "start": 14327.32, + "end": 14329.42, + "probability": 0.4056 + }, + { + "start": 14329.8, + "end": 14330.86, + "probability": 0.5578 + }, + { + "start": 14332.98, + "end": 14333.62, + "probability": 0.318 + }, + { + "start": 14333.62, + "end": 14333.62, + "probability": 0.0474 + }, + { + "start": 14333.62, + "end": 14333.62, + "probability": 0.2645 + }, + { + "start": 14333.62, + "end": 14333.62, + "probability": 0.109 + }, + { + "start": 14333.62, + "end": 14333.62, + "probability": 0.0325 + }, + { + "start": 14333.62, + "end": 14334.53, + "probability": 0.1439 + }, + { + "start": 14334.94, + "end": 14337.2, + "probability": 0.4102 + }, + { + "start": 14337.52, + "end": 14339.3, + "probability": 0.6494 + }, + { + "start": 14339.46, + "end": 14342.68, + "probability": 0.9805 + }, + { + "start": 14343.06, + "end": 14343.96, + "probability": 0.9406 + }, + { + "start": 14344.42, + "end": 14347.12, + "probability": 0.9819 + }, + { + "start": 14347.4, + "end": 14352.8, + "probability": 0.9841 + }, + { + "start": 14353.14, + "end": 14353.28, + "probability": 0.0244 + }, + { + "start": 14353.28, + "end": 14354.54, + "probability": 0.576 + }, + { + "start": 14354.96, + "end": 14356.61, + "probability": 0.895 + }, + { + "start": 14357.0, + "end": 14359.78, + "probability": 0.9612 + }, + { + "start": 14360.06, + "end": 14362.08, + "probability": 0.937 + }, + { + "start": 14362.66, + "end": 14364.34, + "probability": 0.6826 + }, + { + "start": 14364.78, + "end": 14365.64, + "probability": 0.957 + }, + { + "start": 14366.04, + "end": 14368.56, + "probability": 0.6108 + }, + { + "start": 14368.68, + "end": 14370.08, + "probability": 0.0119 + }, + { + "start": 14370.08, + "end": 14370.14, + "probability": 0.1957 + }, + { + "start": 14370.22, + "end": 14371.94, + "probability": 0.537 + }, + { + "start": 14372.42, + "end": 14374.16, + "probability": 0.7119 + }, + { + "start": 14374.4, + "end": 14374.42, + "probability": 0.3592 + }, + { + "start": 14374.42, + "end": 14374.42, + "probability": 0.042 + }, + { + "start": 14374.42, + "end": 14374.42, + "probability": 0.2472 + }, + { + "start": 14374.42, + "end": 14375.92, + "probability": 0.5216 + }, + { + "start": 14376.1, + "end": 14377.1, + "probability": 0.1233 + }, + { + "start": 14377.1, + "end": 14377.12, + "probability": 0.3074 + }, + { + "start": 14377.28, + "end": 14377.72, + "probability": 0.4683 + }, + { + "start": 14378.96, + "end": 14379.4, + "probability": 0.076 + }, + { + "start": 14379.4, + "end": 14379.4, + "probability": 0.2158 + }, + { + "start": 14379.4, + "end": 14380.06, + "probability": 0.5365 + }, + { + "start": 14380.4, + "end": 14380.42, + "probability": 0.0118 + }, + { + "start": 14380.42, + "end": 14382.0, + "probability": 0.4314 + }, + { + "start": 14382.0, + "end": 14385.1, + "probability": 0.8958 + }, + { + "start": 14385.3, + "end": 14386.92, + "probability": 0.7906 + }, + { + "start": 14387.36, + "end": 14388.28, + "probability": 0.3752 + }, + { + "start": 14388.38, + "end": 14390.5, + "probability": 0.8247 + }, + { + "start": 14390.82, + "end": 14391.56, + "probability": 0.7886 + }, + { + "start": 14392.24, + "end": 14393.6, + "probability": 0.8788 + }, + { + "start": 14393.66, + "end": 14395.34, + "probability": 0.6181 + }, + { + "start": 14398.96, + "end": 14401.82, + "probability": 0.6744 + }, + { + "start": 14402.04, + "end": 14404.12, + "probability": 0.7968 + }, + { + "start": 14404.24, + "end": 14405.8, + "probability": 0.9853 + }, + { + "start": 14405.82, + "end": 14408.92, + "probability": 0.994 + }, + { + "start": 14409.28, + "end": 14413.4, + "probability": 0.9896 + }, + { + "start": 14413.58, + "end": 14414.47, + "probability": 0.9922 + }, + { + "start": 14414.92, + "end": 14415.64, + "probability": 0.9482 + }, + { + "start": 14416.36, + "end": 14418.38, + "probability": 0.9876 + }, + { + "start": 14418.64, + "end": 14420.46, + "probability": 0.9987 + }, + { + "start": 14420.78, + "end": 14422.76, + "probability": 0.999 + }, + { + "start": 14423.02, + "end": 14424.24, + "probability": 0.9746 + }, + { + "start": 14424.4, + "end": 14428.78, + "probability": 0.9932 + }, + { + "start": 14429.22, + "end": 14430.2, + "probability": 0.7426 + }, + { + "start": 14430.48, + "end": 14431.4, + "probability": 0.9755 + }, + { + "start": 14431.56, + "end": 14433.06, + "probability": 0.9858 + }, + { + "start": 14433.24, + "end": 14434.25, + "probability": 0.9142 + }, + { + "start": 14434.74, + "end": 14435.48, + "probability": 0.8423 + }, + { + "start": 14435.58, + "end": 14438.25, + "probability": 0.9875 + }, + { + "start": 14438.6, + "end": 14441.08, + "probability": 0.969 + }, + { + "start": 14441.08, + "end": 14444.54, + "probability": 0.9753 + }, + { + "start": 14445.04, + "end": 14446.36, + "probability": 0.5388 + }, + { + "start": 14446.36, + "end": 14446.36, + "probability": 0.5471 + }, + { + "start": 14446.36, + "end": 14448.0, + "probability": 0.8909 + }, + { + "start": 14448.32, + "end": 14449.58, + "probability": 0.9946 + }, + { + "start": 14449.84, + "end": 14450.04, + "probability": 0.3971 + }, + { + "start": 14450.14, + "end": 14452.58, + "probability": 0.9314 + }, + { + "start": 14452.84, + "end": 14452.86, + "probability": 0.1876 + }, + { + "start": 14452.86, + "end": 14454.14, + "probability": 0.8952 + }, + { + "start": 14454.16, + "end": 14455.1, + "probability": 0.884 + }, + { + "start": 14455.52, + "end": 14457.08, + "probability": 0.9886 + }, + { + "start": 14457.16, + "end": 14460.32, + "probability": 0.683 + }, + { + "start": 14460.6, + "end": 14461.98, + "probability": 0.7648 + }, + { + "start": 14462.5, + "end": 14462.86, + "probability": 0.4673 + }, + { + "start": 14462.98, + "end": 14463.96, + "probability": 0.9121 + }, + { + "start": 14464.2, + "end": 14465.42, + "probability": 0.8703 + }, + { + "start": 14465.5, + "end": 14467.34, + "probability": 0.8977 + }, + { + "start": 14467.72, + "end": 14472.84, + "probability": 0.9963 + }, + { + "start": 14473.14, + "end": 14474.86, + "probability": 0.999 + }, + { + "start": 14474.86, + "end": 14477.74, + "probability": 0.9991 + }, + { + "start": 14478.22, + "end": 14480.8, + "probability": 0.9862 + }, + { + "start": 14481.32, + "end": 14482.46, + "probability": 0.9968 + }, + { + "start": 14482.76, + "end": 14485.7, + "probability": 0.9958 + }, + { + "start": 14485.9, + "end": 14488.44, + "probability": 0.9582 + }, + { + "start": 14488.72, + "end": 14491.38, + "probability": 0.9413 + }, + { + "start": 14491.5, + "end": 14493.12, + "probability": 0.991 + }, + { + "start": 14493.22, + "end": 14493.66, + "probability": 0.3837 + }, + { + "start": 14493.92, + "end": 14494.22, + "probability": 0.4513 + }, + { + "start": 14494.26, + "end": 14495.86, + "probability": 0.9907 + }, + { + "start": 14496.2, + "end": 14497.92, + "probability": 0.9538 + }, + { + "start": 14498.04, + "end": 14501.58, + "probability": 0.3709 + }, + { + "start": 14501.58, + "end": 14502.7, + "probability": 0.7581 + }, + { + "start": 14502.8, + "end": 14503.69, + "probability": 0.8989 + }, + { + "start": 14504.64, + "end": 14506.77, + "probability": 0.8999 + }, + { + "start": 14508.4, + "end": 14510.96, + "probability": 0.979 + }, + { + "start": 14511.64, + "end": 14512.64, + "probability": 0.8202 + }, + { + "start": 14514.38, + "end": 14515.32, + "probability": 0.6152 + }, + { + "start": 14516.44, + "end": 14522.0, + "probability": 0.7993 + }, + { + "start": 14522.12, + "end": 14523.7, + "probability": 0.0877 + }, + { + "start": 14523.82, + "end": 14526.14, + "probability": 0.8569 + }, + { + "start": 14526.48, + "end": 14527.44, + "probability": 0.7036 + }, + { + "start": 14527.62, + "end": 14528.48, + "probability": 0.6759 + }, + { + "start": 14528.54, + "end": 14529.64, + "probability": 0.8038 + }, + { + "start": 14530.08, + "end": 14533.06, + "probability": 0.746 + }, + { + "start": 14533.16, + "end": 14534.94, + "probability": 0.7362 + }, + { + "start": 14536.41, + "end": 14538.96, + "probability": 0.9922 + }, + { + "start": 14538.98, + "end": 14539.46, + "probability": 0.2869 + }, + { + "start": 14541.74, + "end": 14541.88, + "probability": 0.1313 + }, + { + "start": 14541.88, + "end": 14544.12, + "probability": 0.4064 + }, + { + "start": 14544.44, + "end": 14545.95, + "probability": 0.9249 + }, + { + "start": 14546.5, + "end": 14547.22, + "probability": 0.6017 + }, + { + "start": 14547.34, + "end": 14548.14, + "probability": 0.7661 + }, + { + "start": 14553.04, + "end": 14555.1, + "probability": 0.4133 + }, + { + "start": 14555.15, + "end": 14557.8, + "probability": 0.9927 + }, + { + "start": 14558.08, + "end": 14559.28, + "probability": 0.907 + }, + { + "start": 14560.08, + "end": 14561.42, + "probability": 0.008 + }, + { + "start": 14562.66, + "end": 14563.58, + "probability": 0.0101 + }, + { + "start": 14566.34, + "end": 14566.78, + "probability": 0.1755 + }, + { + "start": 14570.51, + "end": 14572.8, + "probability": 0.5953 + }, + { + "start": 14574.12, + "end": 14576.07, + "probability": 0.8008 + }, + { + "start": 14577.64, + "end": 14579.56, + "probability": 0.9276 + }, + { + "start": 14583.4, + "end": 14586.26, + "probability": 0.3699 + }, + { + "start": 14590.68, + "end": 14592.86, + "probability": 0.1094 + }, + { + "start": 14592.86, + "end": 14593.66, + "probability": 0.2022 + }, + { + "start": 14593.74, + "end": 14598.3, + "probability": 0.309 + }, + { + "start": 14598.31, + "end": 14600.54, + "probability": 0.0128 + }, + { + "start": 14606.39, + "end": 14610.32, + "probability": 0.6232 + }, + { + "start": 14610.92, + "end": 14611.76, + "probability": 0.8067 + }, + { + "start": 14612.56, + "end": 14615.28, + "probability": 0.782 + }, + { + "start": 14616.44, + "end": 14618.32, + "probability": 0.9248 + }, + { + "start": 14619.36, + "end": 14621.06, + "probability": 0.9691 + }, + { + "start": 14621.96, + "end": 14623.6, + "probability": 0.8332 + }, + { + "start": 14624.42, + "end": 14626.16, + "probability": 0.7916 + }, + { + "start": 14628.18, + "end": 14628.6, + "probability": 0.9845 + }, + { + "start": 14630.16, + "end": 14631.0, + "probability": 0.7178 + }, + { + "start": 14631.84, + "end": 14632.18, + "probability": 0.9624 + }, + { + "start": 14632.84, + "end": 14633.82, + "probability": 0.8076 + }, + { + "start": 14634.74, + "end": 14635.2, + "probability": 0.6069 + }, + { + "start": 14635.88, + "end": 14636.72, + "probability": 0.7176 + }, + { + "start": 14638.44, + "end": 14640.32, + "probability": 0.8267 + }, + { + "start": 14644.06, + "end": 14647.0, + "probability": 0.8651 + }, + { + "start": 14649.24, + "end": 14653.18, + "probability": 0.959 + }, + { + "start": 14655.04, + "end": 14656.84, + "probability": 0.888 + }, + { + "start": 14659.32, + "end": 14660.66, + "probability": 0.9365 + }, + { + "start": 14661.36, + "end": 14662.74, + "probability": 0.9275 + }, + { + "start": 14664.72, + "end": 14668.84, + "probability": 0.7754 + }, + { + "start": 14669.8, + "end": 14672.02, + "probability": 0.7799 + }, + { + "start": 14672.83, + "end": 14675.1, + "probability": 0.5686 + }, + { + "start": 14677.88, + "end": 14681.76, + "probability": 0.9674 + }, + { + "start": 14682.88, + "end": 14683.4, + "probability": 0.9287 + }, + { + "start": 14683.98, + "end": 14685.34, + "probability": 0.9269 + }, + { + "start": 14686.04, + "end": 14686.52, + "probability": 0.7283 + }, + { + "start": 14687.48, + "end": 14688.34, + "probability": 0.9705 + }, + { + "start": 14689.52, + "end": 14691.88, + "probability": 0.8768 + }, + { + "start": 14692.72, + "end": 14693.0, + "probability": 0.6745 + }, + { + "start": 14693.68, + "end": 14694.56, + "probability": 0.7679 + }, + { + "start": 14697.42, + "end": 14699.9, + "probability": 0.9637 + }, + { + "start": 14700.52, + "end": 14700.98, + "probability": 0.8918 + }, + { + "start": 14701.56, + "end": 14702.64, + "probability": 0.9294 + }, + { + "start": 14704.1, + "end": 14706.54, + "probability": 0.8152 + }, + { + "start": 14707.2, + "end": 14707.72, + "probability": 0.9736 + }, + { + "start": 14709.28, + "end": 14710.34, + "probability": 0.9764 + }, + { + "start": 14711.58, + "end": 14711.98, + "probability": 0.9939 + }, + { + "start": 14712.62, + "end": 14714.76, + "probability": 0.9287 + }, + { + "start": 14715.4, + "end": 14716.26, + "probability": 0.9832 + }, + { + "start": 14717.0, + "end": 14717.46, + "probability": 0.9691 + }, + { + "start": 14718.78, + "end": 14719.88, + "probability": 0.7838 + }, + { + "start": 14720.84, + "end": 14722.84, + "probability": 0.7615 + }, + { + "start": 14725.08, + "end": 14725.66, + "probability": 0.511 + }, + { + "start": 14727.28, + "end": 14728.16, + "probability": 0.7036 + }, + { + "start": 14730.9, + "end": 14732.8, + "probability": 0.9219 + }, + { + "start": 14736.56, + "end": 14740.18, + "probability": 0.6805 + }, + { + "start": 14741.02, + "end": 14743.12, + "probability": 0.9088 + }, + { + "start": 14744.58, + "end": 14747.38, + "probability": 0.9636 + }, + { + "start": 14748.0, + "end": 14748.46, + "probability": 0.9777 + }, + { + "start": 14749.72, + "end": 14750.56, + "probability": 0.3429 + }, + { + "start": 14751.66, + "end": 14754.34, + "probability": 0.844 + }, + { + "start": 14755.34, + "end": 14756.36, + "probability": 0.9899 + }, + { + "start": 14756.96, + "end": 14757.98, + "probability": 0.7179 + }, + { + "start": 14761.38, + "end": 14764.5, + "probability": 0.9581 + }, + { + "start": 14771.66, + "end": 14776.58, + "probability": 0.6372 + }, + { + "start": 14778.68, + "end": 14779.08, + "probability": 0.9012 + }, + { + "start": 14783.0, + "end": 14784.06, + "probability": 0.6359 + }, + { + "start": 14786.7, + "end": 14790.62, + "probability": 0.8563 + }, + { + "start": 14801.24, + "end": 14805.44, + "probability": 0.7574 + }, + { + "start": 14806.8, + "end": 14807.64, + "probability": 0.9196 + }, + { + "start": 14808.22, + "end": 14809.24, + "probability": 0.6398 + }, + { + "start": 14810.12, + "end": 14812.5, + "probability": 0.9028 + }, + { + "start": 14815.02, + "end": 14815.62, + "probability": 0.8652 + }, + { + "start": 14816.14, + "end": 14817.76, + "probability": 0.5933 + }, + { + "start": 14818.5, + "end": 14824.22, + "probability": 0.913 + }, + { + "start": 14826.38, + "end": 14830.1, + "probability": 0.7629 + }, + { + "start": 14831.04, + "end": 14833.82, + "probability": 0.9062 + }, + { + "start": 14834.68, + "end": 14838.32, + "probability": 0.9188 + }, + { + "start": 14841.64, + "end": 14841.92, + "probability": 0.6288 + }, + { + "start": 14844.7, + "end": 14845.22, + "probability": 0.7056 + }, + { + "start": 14846.86, + "end": 14849.0, + "probability": 0.9595 + }, + { + "start": 14850.76, + "end": 14852.48, + "probability": 0.9263 + }, + { + "start": 14854.64, + "end": 14855.66, + "probability": 0.4995 + }, + { + "start": 14858.8, + "end": 14862.5, + "probability": 0.5606 + }, + { + "start": 14866.1, + "end": 14869.98, + "probability": 0.6785 + }, + { + "start": 14870.84, + "end": 14872.4, + "probability": 0.7988 + }, + { + "start": 14874.88, + "end": 14876.6, + "probability": 0.8377 + }, + { + "start": 14878.52, + "end": 14880.68, + "probability": 0.9422 + }, + { + "start": 14881.36, + "end": 14883.6, + "probability": 0.8006 + }, + { + "start": 14884.2, + "end": 14886.38, + "probability": 0.9167 + }, + { + "start": 14888.76, + "end": 14892.1, + "probability": 0.8732 + }, + { + "start": 14893.22, + "end": 14899.4, + "probability": 0.6786 + }, + { + "start": 14900.36, + "end": 14901.24, + "probability": 0.9272 + }, + { + "start": 14902.12, + "end": 14903.36, + "probability": 0.8983 + }, + { + "start": 14904.14, + "end": 14906.12, + "probability": 0.9557 + }, + { + "start": 14906.76, + "end": 14908.78, + "probability": 0.9391 + }, + { + "start": 14912.3, + "end": 14913.84, + "probability": 0.9412 + }, + { + "start": 14914.86, + "end": 14919.32, + "probability": 0.7969 + }, + { + "start": 14921.82, + "end": 14921.82, + "probability": 0.0212 + }, + { + "start": 14921.82, + "end": 14922.22, + "probability": 0.0602 + }, + { + "start": 14923.46, + "end": 14923.8, + "probability": 0.7698 + }, + { + "start": 14924.92, + "end": 14926.24, + "probability": 0.6336 + }, + { + "start": 14927.34, + "end": 14930.54, + "probability": 0.8729 + }, + { + "start": 14931.18, + "end": 14933.8, + "probability": 0.8141 + }, + { + "start": 14938.3, + "end": 14940.06, + "probability": 0.7973 + }, + { + "start": 14943.48, + "end": 14944.7, + "probability": 0.841 + }, + { + "start": 14945.82, + "end": 14946.86, + "probability": 0.366 + }, + { + "start": 14947.48, + "end": 14949.38, + "probability": 0.9054 + }, + { + "start": 14950.46, + "end": 14955.6, + "probability": 0.9523 + }, + { + "start": 14955.96, + "end": 14960.72, + "probability": 0.7278 + }, + { + "start": 14961.72, + "end": 14962.06, + "probability": 0.9834 + }, + { + "start": 14962.94, + "end": 14964.02, + "probability": 0.7207 + }, + { + "start": 14964.84, + "end": 14965.3, + "probability": 0.7453 + }, + { + "start": 14966.1, + "end": 14967.08, + "probability": 0.6489 + }, + { + "start": 14969.52, + "end": 14973.08, + "probability": 0.8448 + }, + { + "start": 14973.82, + "end": 14977.66, + "probability": 0.6645 + }, + { + "start": 14978.5, + "end": 14981.22, + "probability": 0.8845 + }, + { + "start": 14981.74, + "end": 14984.22, + "probability": 0.7886 + }, + { + "start": 14985.14, + "end": 14987.16, + "probability": 0.8537 + }, + { + "start": 14988.18, + "end": 14991.38, + "probability": 0.6593 + }, + { + "start": 14992.86, + "end": 14993.92, + "probability": 0.014 + }, + { + "start": 14995.42, + "end": 14999.38, + "probability": 0.3819 + }, + { + "start": 15000.18, + "end": 15004.4, + "probability": 0.6769 + }, + { + "start": 15005.44, + "end": 15008.24, + "probability": 0.6447 + }, + { + "start": 15013.08, + "end": 15017.58, + "probability": 0.3573 + }, + { + "start": 15018.16, + "end": 15018.6, + "probability": 0.0269 + }, + { + "start": 15019.88, + "end": 15021.98, + "probability": 0.1395 + }, + { + "start": 15038.24, + "end": 15039.16, + "probability": 0.5027 + }, + { + "start": 15040.62, + "end": 15045.46, + "probability": 0.0946 + }, + { + "start": 15046.84, + "end": 15047.76, + "probability": 0.0909 + }, + { + "start": 15049.73, + "end": 15051.8, + "probability": 0.1261 + }, + { + "start": 15052.74, + "end": 15053.04, + "probability": 0.1665 + }, + { + "start": 15139.0, + "end": 15139.0, + "probability": 0.0 + }, + { + "start": 15139.0, + "end": 15139.0, + "probability": 0.0 + }, + { + "start": 15139.0, + "end": 15139.0, + "probability": 0.0 + }, + { + "start": 15139.0, + "end": 15139.0, + "probability": 0.0 + }, + { + "start": 15139.0, + "end": 15139.0, + "probability": 0.0 + }, + { + "start": 15139.0, + "end": 15139.0, + "probability": 0.0 + }, + { + "start": 15139.0, + "end": 15139.0, + "probability": 0.0 + }, + { + "start": 15139.0, + "end": 15139.0, + "probability": 0.0 + }, + { + "start": 15139.0, + "end": 15139.0, + "probability": 0.0 + }, + { + "start": 15139.0, + "end": 15139.0, + "probability": 0.0 + }, + { + "start": 15139.0, + "end": 15139.0, + "probability": 0.0 + }, + { + "start": 15139.0, + "end": 15139.0, + "probability": 0.0 + }, + { + "start": 15139.0, + "end": 15139.0, + "probability": 0.0 + }, + { + "start": 15139.0, + "end": 15139.0, + "probability": 0.0 + }, + { + "start": 15139.12, + "end": 15140.22, + "probability": 0.0762 + }, + { + "start": 15140.86, + "end": 15144.06, + "probability": 0.4372 + }, + { + "start": 15144.56, + "end": 15146.6, + "probability": 0.7397 + }, + { + "start": 15147.8, + "end": 15149.96, + "probability": 0.7731 + }, + { + "start": 15154.5, + "end": 15155.38, + "probability": 0.2217 + }, + { + "start": 15155.38, + "end": 15155.48, + "probability": 0.4476 + }, + { + "start": 15156.04, + "end": 15156.58, + "probability": 0.1496 + }, + { + "start": 15156.58, + "end": 15157.96, + "probability": 0.6642 + }, + { + "start": 15159.62, + "end": 15160.9, + "probability": 0.0132 + }, + { + "start": 15165.18, + "end": 15168.96, + "probability": 0.5425 + }, + { + "start": 15170.4, + "end": 15171.04, + "probability": 0.9739 + }, + { + "start": 15171.9, + "end": 15172.8, + "probability": 0.7961 + }, + { + "start": 15173.76, + "end": 15175.48, + "probability": 0.9845 + }, + { + "start": 15176.46, + "end": 15178.34, + "probability": 0.9806 + }, + { + "start": 15184.64, + "end": 15184.92, + "probability": 0.6801 + }, + { + "start": 15186.48, + "end": 15187.6, + "probability": 0.6457 + }, + { + "start": 15188.22, + "end": 15190.74, + "probability": 0.8677 + }, + { + "start": 15191.48, + "end": 15195.0, + "probability": 0.9073 + }, + { + "start": 15199.5, + "end": 15201.74, + "probability": 0.6749 + }, + { + "start": 15202.5, + "end": 15204.32, + "probability": 0.8171 + }, + { + "start": 15204.84, + "end": 15207.22, + "probability": 0.8786 + }, + { + "start": 15207.9, + "end": 15210.16, + "probability": 0.8095 + }, + { + "start": 15210.84, + "end": 15212.72, + "probability": 0.8487 + }, + { + "start": 15213.12, + "end": 15214.7, + "probability": 0.9751 + }, + { + "start": 15215.0, + "end": 15216.76, + "probability": 0.8249 + }, + { + "start": 15218.2, + "end": 15219.66, + "probability": 0.8371 + }, + { + "start": 15221.72, + "end": 15222.62, + "probability": 0.6713 + }, + { + "start": 15223.86, + "end": 15226.3, + "probability": 0.8595 + }, + { + "start": 15227.52, + "end": 15228.38, + "probability": 0.8525 + }, + { + "start": 15229.02, + "end": 15230.36, + "probability": 0.879 + }, + { + "start": 15230.38, + "end": 15232.28, + "probability": 0.8525 + }, + { + "start": 15232.68, + "end": 15234.24, + "probability": 0.8815 + }, + { + "start": 15235.0, + "end": 15235.9, + "probability": 0.9872 + }, + { + "start": 15236.76, + "end": 15238.24, + "probability": 0.9142 + }, + { + "start": 15239.6, + "end": 15241.72, + "probability": 0.783 + }, + { + "start": 15242.5, + "end": 15243.16, + "probability": 0.8055 + }, + { + "start": 15244.88, + "end": 15245.88, + "probability": 0.4838 + }, + { + "start": 15246.5, + "end": 15248.34, + "probability": 0.8962 + }, + { + "start": 15249.34, + "end": 15252.52, + "probability": 0.8595 + }, + { + "start": 15256.36, + "end": 15258.86, + "probability": 0.9692 + }, + { + "start": 15259.26, + "end": 15261.66, + "probability": 0.8588 + }, + { + "start": 15262.14, + "end": 15264.8, + "probability": 0.4877 + }, + { + "start": 15265.72, + "end": 15268.2, + "probability": 0.8665 + }, + { + "start": 15269.0, + "end": 15272.08, + "probability": 0.9728 + }, + { + "start": 15272.34, + "end": 15274.2, + "probability": 0.9117 + }, + { + "start": 15274.56, + "end": 15276.32, + "probability": 0.9742 + }, + { + "start": 15277.04, + "end": 15278.72, + "probability": 0.6828 + }, + { + "start": 15278.72, + "end": 15279.84, + "probability": 0.0142 + }, + { + "start": 15281.26, + "end": 15283.32, + "probability": 0.7637 + }, + { + "start": 15283.9, + "end": 15285.42, + "probability": 0.908 + }, + { + "start": 15286.88, + "end": 15288.9, + "probability": 0.7432 + }, + { + "start": 15289.52, + "end": 15292.2, + "probability": 0.0926 + }, + { + "start": 15294.66, + "end": 15297.25, + "probability": 0.9964 + }, + { + "start": 15297.38, + "end": 15298.84, + "probability": 0.9195 + }, + { + "start": 15299.64, + "end": 15299.76, + "probability": 0.014 + }, + { + "start": 15299.76, + "end": 15302.38, + "probability": 0.2836 + }, + { + "start": 15302.44, + "end": 15305.64, + "probability": 0.9688 + }, + { + "start": 15307.58, + "end": 15309.88, + "probability": 0.6917 + }, + { + "start": 15319.86, + "end": 15321.74, + "probability": 0.1193 + }, + { + "start": 15334.32, + "end": 15334.32, + "probability": 0.0981 + }, + { + "start": 15334.32, + "end": 15336.06, + "probability": 0.039 + }, + { + "start": 15338.65, + "end": 15341.1, + "probability": 0.0488 + }, + { + "start": 15341.1, + "end": 15342.94, + "probability": 0.0303 + }, + { + "start": 15343.1, + "end": 15347.38, + "probability": 0.0524 + }, + { + "start": 15348.06, + "end": 15349.16, + "probability": 0.0118 + }, + { + "start": 15362.46, + "end": 15363.6, + "probability": 0.0134 + }, + { + "start": 15363.6, + "end": 15365.96, + "probability": 0.1772 + }, + { + "start": 15367.54, + "end": 15372.34, + "probability": 0.0284 + }, + { + "start": 15374.6, + "end": 15374.6, + "probability": 0.181 + }, + { + "start": 15374.64, + "end": 15374.92, + "probability": 0.17 + }, + { + "start": 15374.92, + "end": 15375.28, + "probability": 0.1317 + }, + { + "start": 15375.28, + "end": 15376.16, + "probability": 0.1854 + }, + { + "start": 15377.14, + "end": 15377.76, + "probability": 0.0636 + }, + { + "start": 15377.82, + "end": 15377.98, + "probability": 0.0044 + }, + { + "start": 15463.28, + "end": 15464.34, + "probability": 0.4291 + }, + { + "start": 15464.34, + "end": 15470.18, + "probability": 0.7874 + }, + { + "start": 15470.26, + "end": 15472.22, + "probability": 0.9198 + }, + { + "start": 15472.64, + "end": 15474.78, + "probability": 0.9043 + }, + { + "start": 15475.08, + "end": 15478.76, + "probability": 0.9664 + }, + { + "start": 15478.78, + "end": 15479.1, + "probability": 0.5501 + }, + { + "start": 15481.58, + "end": 15485.48, + "probability": 0.8469 + }, + { + "start": 15491.14, + "end": 15492.42, + "probability": 0.428 + }, + { + "start": 15493.08, + "end": 15495.98, + "probability": 0.2566 + }, + { + "start": 15498.02, + "end": 15499.08, + "probability": 0.0147 + }, + { + "start": 15507.64, + "end": 15509.22, + "probability": 0.5932 + }, + { + "start": 15510.26, + "end": 15512.92, + "probability": 0.8347 + }, + { + "start": 15513.7, + "end": 15515.48, + "probability": 0.8869 + }, + { + "start": 15516.42, + "end": 15516.76, + "probability": 0.9858 + }, + { + "start": 15518.38, + "end": 15519.48, + "probability": 0.805 + }, + { + "start": 15522.88, + "end": 15527.66, + "probability": 0.9087 + }, + { + "start": 15528.52, + "end": 15530.54, + "probability": 0.9941 + }, + { + "start": 15531.74, + "end": 15532.72, + "probability": 0.7051 + }, + { + "start": 15533.4, + "end": 15537.0, + "probability": 0.8423 + }, + { + "start": 15538.2, + "end": 15538.68, + "probability": 0.9476 + }, + { + "start": 15539.78, + "end": 15541.08, + "probability": 0.8698 + }, + { + "start": 15541.72, + "end": 15542.5, + "probability": 0.9938 + }, + { + "start": 15543.16, + "end": 15544.1, + "probability": 0.7218 + }, + { + "start": 15545.22, + "end": 15546.98, + "probability": 0.7318 + }, + { + "start": 15549.48, + "end": 15551.3, + "probability": 0.908 + }, + { + "start": 15552.24, + "end": 15552.72, + "probability": 0.991 + }, + { + "start": 15553.62, + "end": 15554.58, + "probability": 0.9803 + }, + { + "start": 15557.28, + "end": 15562.06, + "probability": 0.6619 + }, + { + "start": 15563.0, + "end": 15563.96, + "probability": 0.6137 + }, + { + "start": 15564.36, + "end": 15568.14, + "probability": 0.1446 + }, + { + "start": 15568.4, + "end": 15574.34, + "probability": 0.4457 + }, + { + "start": 15574.96, + "end": 15575.96, + "probability": 0.9624 + }, + { + "start": 15577.32, + "end": 15578.16, + "probability": 0.618 + }, + { + "start": 15578.28, + "end": 15581.56, + "probability": 0.7769 + }, + { + "start": 15581.56, + "end": 15581.8, + "probability": 0.4303 + }, + { + "start": 15581.86, + "end": 15582.34, + "probability": 0.7404 + }, + { + "start": 15582.38, + "end": 15583.72, + "probability": 0.1719 + }, + { + "start": 15583.72, + "end": 15584.96, + "probability": 0.4922 + }, + { + "start": 15584.98, + "end": 15585.44, + "probability": 0.5353 + }, + { + "start": 15585.56, + "end": 15586.48, + "probability": 0.5729 + }, + { + "start": 15586.6, + "end": 15587.66, + "probability": 0.853 + }, + { + "start": 15587.84, + "end": 15588.58, + "probability": 0.9036 + }, + { + "start": 15589.86, + "end": 15590.8, + "probability": 0.0991 + }, + { + "start": 15591.62, + "end": 15592.24, + "probability": 0.9643 + }, + { + "start": 15593.14, + "end": 15593.96, + "probability": 0.6719 + }, + { + "start": 15594.92, + "end": 15596.84, + "probability": 0.7928 + }, + { + "start": 15598.88, + "end": 15600.82, + "probability": 0.7762 + }, + { + "start": 15602.58, + "end": 15603.38, + "probability": 0.9467 + }, + { + "start": 15605.36, + "end": 15607.44, + "probability": 0.9618 + }, + { + "start": 15609.96, + "end": 15613.52, + "probability": 0.9604 + }, + { + "start": 15614.08, + "end": 15617.16, + "probability": 0.8206 + }, + { + "start": 15620.32, + "end": 15620.72, + "probability": 0.7676 + }, + { + "start": 15622.12, + "end": 15622.12, + "probability": 0.3289 + }, + { + "start": 15625.74, + "end": 15627.12, + "probability": 0.5406 + }, + { + "start": 15627.96, + "end": 15629.0, + "probability": 0.6321 + }, + { + "start": 15632.9, + "end": 15640.86, + "probability": 0.8864 + }, + { + "start": 15643.22, + "end": 15646.62, + "probability": 0.8424 + }, + { + "start": 15647.58, + "end": 15649.4, + "probability": 0.9483 + }, + { + "start": 15650.2, + "end": 15650.62, + "probability": 0.9766 + }, + { + "start": 15652.0, + "end": 15653.27, + "probability": 0.9904 + }, + { + "start": 15654.85, + "end": 15660.56, + "probability": 0.9583 + }, + { + "start": 15662.84, + "end": 15665.58, + "probability": 0.794 + }, + { + "start": 15668.3, + "end": 15674.46, + "probability": 0.6609 + }, + { + "start": 15678.82, + "end": 15680.16, + "probability": 0.6666 + }, + { + "start": 15681.92, + "end": 15682.84, + "probability": 0.6119 + }, + { + "start": 15685.42, + "end": 15687.88, + "probability": 0.7768 + }, + { + "start": 15689.58, + "end": 15691.66, + "probability": 0.8618 + }, + { + "start": 15693.6, + "end": 15696.88, + "probability": 0.9292 + }, + { + "start": 15697.92, + "end": 15700.3, + "probability": 0.9605 + }, + { + "start": 15701.42, + "end": 15703.32, + "probability": 0.9365 + }, + { + "start": 15703.92, + "end": 15705.68, + "probability": 0.8189 + }, + { + "start": 15707.9, + "end": 15710.4, + "probability": 0.5973 + }, + { + "start": 15711.52, + "end": 15716.42, + "probability": 0.7099 + }, + { + "start": 15720.7, + "end": 15723.42, + "probability": 0.6687 + }, + { + "start": 15723.54, + "end": 15726.78, + "probability": 0.9079 + }, + { + "start": 15726.84, + "end": 15728.78, + "probability": 0.7692 + }, + { + "start": 15729.74, + "end": 15731.18, + "probability": 0.1575 + }, + { + "start": 15732.08, + "end": 15734.78, + "probability": 0.8715 + }, + { + "start": 15735.32, + "end": 15741.8, + "probability": 0.8713 + }, + { + "start": 15742.98, + "end": 15745.64, + "probability": 0.9731 + }, + { + "start": 15747.88, + "end": 15753.16, + "probability": 0.8685 + }, + { + "start": 15754.44, + "end": 15755.92, + "probability": 0.8361 + }, + { + "start": 15757.68, + "end": 15760.46, + "probability": 0.7297 + }, + { + "start": 15761.04, + "end": 15762.22, + "probability": 0.937 + }, + { + "start": 15766.96, + "end": 15767.9, + "probability": 0.5243 + }, + { + "start": 15768.48, + "end": 15772.56, + "probability": 0.7111 + }, + { + "start": 15773.5, + "end": 15775.72, + "probability": 0.7514 + }, + { + "start": 15776.56, + "end": 15778.6, + "probability": 0.9466 + }, + { + "start": 15781.34, + "end": 15784.12, + "probability": 0.9519 + }, + { + "start": 15785.56, + "end": 15788.14, + "probability": 0.9524 + }, + { + "start": 15788.96, + "end": 15791.16, + "probability": 0.9691 + }, + { + "start": 15794.78, + "end": 15795.64, + "probability": 0.6033 + }, + { + "start": 15796.58, + "end": 15798.42, + "probability": 0.7718 + }, + { + "start": 15799.78, + "end": 15801.86, + "probability": 0.8982 + }, + { + "start": 15803.02, + "end": 15805.4, + "probability": 0.8861 + }, + { + "start": 15808.32, + "end": 15811.88, + "probability": 0.6476 + }, + { + "start": 15812.76, + "end": 15815.0, + "probability": 0.9321 + }, + { + "start": 15815.94, + "end": 15816.18, + "probability": 0.5508 + }, + { + "start": 15816.74, + "end": 15817.7, + "probability": 0.8904 + }, + { + "start": 15818.6, + "end": 15820.3, + "probability": 0.9593 + }, + { + "start": 15821.94, + "end": 15825.2, + "probability": 0.8151 + }, + { + "start": 15825.96, + "end": 15830.08, + "probability": 0.8835 + }, + { + "start": 15831.08, + "end": 15834.66, + "probability": 0.7878 + }, + { + "start": 15835.32, + "end": 15836.32, + "probability": 0.9515 + }, + { + "start": 15837.26, + "end": 15841.68, + "probability": 0.9418 + }, + { + "start": 15844.22, + "end": 15846.0, + "probability": 0.8448 + }, + { + "start": 15846.7, + "end": 15848.74, + "probability": 0.9765 + }, + { + "start": 15852.3, + "end": 15855.08, + "probability": 0.5433 + }, + { + "start": 15855.84, + "end": 15856.18, + "probability": 0.9533 + }, + { + "start": 15857.0, + "end": 15860.88, + "probability": 0.9796 + }, + { + "start": 15861.78, + "end": 15863.88, + "probability": 0.9622 + }, + { + "start": 15865.3, + "end": 15867.66, + "probability": 0.8095 + }, + { + "start": 15869.52, + "end": 15871.38, + "probability": 0.981 + }, + { + "start": 15876.0, + "end": 15879.0, + "probability": 0.983 + }, + { + "start": 15880.76, + "end": 15885.68, + "probability": 0.6643 + }, + { + "start": 15886.64, + "end": 15888.46, + "probability": 0.9493 + }, + { + "start": 15889.06, + "end": 15889.64, + "probability": 0.9725 + }, + { + "start": 15890.26, + "end": 15891.4, + "probability": 0.689 + }, + { + "start": 15892.04, + "end": 15894.14, + "probability": 0.911 + }, + { + "start": 15894.74, + "end": 15897.34, + "probability": 0.953 + }, + { + "start": 15898.08, + "end": 15900.32, + "probability": 0.9715 + }, + { + "start": 15901.08, + "end": 15903.22, + "probability": 0.9771 + }, + { + "start": 15903.76, + "end": 15904.16, + "probability": 0.9915 + }, + { + "start": 15905.06, + "end": 15908.9, + "probability": 0.7646 + }, + { + "start": 15909.58, + "end": 15912.58, + "probability": 0.8758 + }, + { + "start": 15916.64, + "end": 15916.64, + "probability": 0.0154 + }, + { + "start": 15917.74, + "end": 15918.78, + "probability": 0.1279 + }, + { + "start": 15918.78, + "end": 15923.54, + "probability": 0.3916 + }, + { + "start": 15923.94, + "end": 15927.0, + "probability": 0.701 + }, + { + "start": 15928.1, + "end": 15931.46, + "probability": 0.6682 + }, + { + "start": 15932.56, + "end": 15935.06, + "probability": 0.695 + }, + { + "start": 15936.16, + "end": 15936.46, + "probability": 0.7505 + }, + { + "start": 15937.92, + "end": 15941.8, + "probability": 0.7152 + }, + { + "start": 15942.38, + "end": 15945.5, + "probability": 0.7953 + }, + { + "start": 15948.58, + "end": 15951.08, + "probability": 0.9497 + }, + { + "start": 15952.48, + "end": 15955.78, + "probability": 0.8348 + }, + { + "start": 15957.0, + "end": 15961.26, + "probability": 0.9431 + }, + { + "start": 15962.34, + "end": 15962.64, + "probability": 0.9917 + }, + { + "start": 15964.12, + "end": 15968.68, + "probability": 0.6368 + }, + { + "start": 15969.46, + "end": 15972.44, + "probability": 0.9349 + }, + { + "start": 15973.84, + "end": 15976.56, + "probability": 0.9823 + }, + { + "start": 15977.32, + "end": 15977.72, + "probability": 0.972 + }, + { + "start": 15978.66, + "end": 15979.92, + "probability": 0.9695 + }, + { + "start": 15981.46, + "end": 15982.46, + "probability": 0.9502 + }, + { + "start": 15983.28, + "end": 15984.3, + "probability": 0.8009 + }, + { + "start": 15987.14, + "end": 15990.12, + "probability": 0.6733 + }, + { + "start": 15990.82, + "end": 15993.22, + "probability": 0.7671 + }, + { + "start": 15995.03, + "end": 15997.22, + "probability": 0.8101 + }, + { + "start": 15997.38, + "end": 15999.02, + "probability": 0.8885 + }, + { + "start": 15999.44, + "end": 16001.0, + "probability": 0.8831 + }, + { + "start": 16003.76, + "end": 16005.38, + "probability": 0.8952 + }, + { + "start": 16007.8, + "end": 16009.58, + "probability": 0.9451 + }, + { + "start": 16010.58, + "end": 16010.92, + "probability": 0.9473 + }, + { + "start": 16011.82, + "end": 16012.92, + "probability": 0.9814 + }, + { + "start": 16013.58, + "end": 16013.82, + "probability": 0.5525 + }, + { + "start": 16014.52, + "end": 16015.92, + "probability": 0.6505 + }, + { + "start": 16016.58, + "end": 16018.8, + "probability": 0.797 + }, + { + "start": 16020.32, + "end": 16020.92, + "probability": 0.9785 + }, + { + "start": 16021.48, + "end": 16022.48, + "probability": 0.8641 + }, + { + "start": 16023.3, + "end": 16025.62, + "probability": 0.9752 + }, + { + "start": 16031.16, + "end": 16034.36, + "probability": 0.6993 + }, + { + "start": 16035.4, + "end": 16040.36, + "probability": 0.8273 + }, + { + "start": 16042.78, + "end": 16048.24, + "probability": 0.9687 + }, + { + "start": 16048.9, + "end": 16051.44, + "probability": 0.7909 + }, + { + "start": 16051.96, + "end": 16052.74, + "probability": 0.977 + }, + { + "start": 16055.74, + "end": 16059.28, + "probability": 0.9555 + }, + { + "start": 16059.84, + "end": 16061.78, + "probability": 0.3909 + }, + { + "start": 16061.78, + "end": 16064.12, + "probability": 0.8694 + }, + { + "start": 16065.26, + "end": 16066.88, + "probability": 0.921 + }, + { + "start": 16068.56, + "end": 16070.38, + "probability": 0.8394 + }, + { + "start": 16072.46, + "end": 16073.58, + "probability": 0.5469 + }, + { + "start": 16074.7, + "end": 16076.96, + "probability": 0.6745 + }, + { + "start": 16080.84, + "end": 16081.18, + "probability": 0.7622 + }, + { + "start": 16083.6, + "end": 16084.54, + "probability": 0.8318 + }, + { + "start": 16086.33, + "end": 16088.42, + "probability": 0.6664 + }, + { + "start": 16089.92, + "end": 16091.78, + "probability": 0.9818 + }, + { + "start": 16093.3, + "end": 16094.36, + "probability": 0.899 + }, + { + "start": 16097.5, + "end": 16098.86, + "probability": 0.5815 + }, + { + "start": 16098.86, + "end": 16099.06, + "probability": 0.3197 + }, + { + "start": 16099.16, + "end": 16099.92, + "probability": 0.7005 + }, + { + "start": 16113.46, + "end": 16114.96, + "probability": 0.5592 + }, + { + "start": 16116.18, + "end": 16117.54, + "probability": 0.8179 + }, + { + "start": 16118.9, + "end": 16120.18, + "probability": 0.7989 + }, + { + "start": 16121.54, + "end": 16126.66, + "probability": 0.8678 + }, + { + "start": 16127.32, + "end": 16130.56, + "probability": 0.6727 + }, + { + "start": 16131.26, + "end": 16133.88, + "probability": 0.1647 + }, + { + "start": 16133.88, + "end": 16134.7, + "probability": 0.2372 + }, + { + "start": 16136.2, + "end": 16136.96, + "probability": 0.7334 + }, + { + "start": 16140.02, + "end": 16141.28, + "probability": 0.7581 + }, + { + "start": 16142.38, + "end": 16144.08, + "probability": 0.7524 + }, + { + "start": 16146.82, + "end": 16149.8, + "probability": 0.8246 + }, + { + "start": 16151.44, + "end": 16153.26, + "probability": 0.8618 + }, + { + "start": 16154.16, + "end": 16157.02, + "probability": 0.9618 + }, + { + "start": 16158.74, + "end": 16163.28, + "probability": 0.9492 + }, + { + "start": 16164.16, + "end": 16166.4, + "probability": 0.9082 + }, + { + "start": 16166.92, + "end": 16169.26, + "probability": 0.6746 + }, + { + "start": 16178.16, + "end": 16178.46, + "probability": 0.656 + }, + { + "start": 16179.2, + "end": 16180.2, + "probability": 0.6168 + }, + { + "start": 16180.8, + "end": 16182.74, + "probability": 0.9363 + }, + { + "start": 16183.78, + "end": 16184.44, + "probability": 0.9881 + }, + { + "start": 16184.96, + "end": 16186.26, + "probability": 0.9374 + }, + { + "start": 16187.04, + "end": 16187.78, + "probability": 0.9854 + }, + { + "start": 16188.32, + "end": 16188.9, + "probability": 0.9646 + }, + { + "start": 16190.06, + "end": 16192.64, + "probability": 0.9835 + }, + { + "start": 16193.24, + "end": 16194.52, + "probability": 0.9943 + }, + { + "start": 16195.08, + "end": 16196.0, + "probability": 0.9525 + }, + { + "start": 16197.3, + "end": 16198.92, + "probability": 0.9753 + }, + { + "start": 16199.86, + "end": 16201.42, + "probability": 0.9559 + }, + { + "start": 16202.44, + "end": 16205.98, + "probability": 0.6866 + }, + { + "start": 16207.0, + "end": 16208.78, + "probability": 0.6601 + }, + { + "start": 16210.42, + "end": 16213.42, + "probability": 0.9172 + }, + { + "start": 16214.42, + "end": 16218.5, + "probability": 0.3818 + }, + { + "start": 16219.86, + "end": 16220.82, + "probability": 0.9778 + }, + { + "start": 16221.82, + "end": 16223.08, + "probability": 0.9057 + }, + { + "start": 16223.54, + "end": 16225.48, + "probability": 0.8981 + }, + { + "start": 16225.86, + "end": 16228.26, + "probability": 0.9367 + }, + { + "start": 16228.88, + "end": 16229.56, + "probability": 0.9937 + }, + { + "start": 16230.3, + "end": 16231.4, + "probability": 0.7275 + }, + { + "start": 16232.04, + "end": 16239.26, + "probability": 0.9822 + }, + { + "start": 16241.73, + "end": 16244.48, + "probability": 0.6512 + }, + { + "start": 16246.48, + "end": 16246.92, + "probability": 0.8564 + }, + { + "start": 16248.72, + "end": 16249.6, + "probability": 0.3892 + }, + { + "start": 16250.18, + "end": 16251.86, + "probability": 0.791 + }, + { + "start": 16252.2, + "end": 16253.96, + "probability": 0.9391 + }, + { + "start": 16254.44, + "end": 16256.74, + "probability": 0.7621 + }, + { + "start": 16257.16, + "end": 16259.29, + "probability": 0.9534 + }, + { + "start": 16260.32, + "end": 16263.78, + "probability": 0.9192 + }, + { + "start": 16264.04, + "end": 16264.98, + "probability": 0.0278 + }, + { + "start": 16266.1, + "end": 16267.54, + "probability": 0.6991 + }, + { + "start": 16267.74, + "end": 16272.88, + "probability": 0.9023 + }, + { + "start": 16274.24, + "end": 16276.9, + "probability": 0.9008 + }, + { + "start": 16316.72, + "end": 16316.72, + "probability": 0.0041 + }, + { + "start": 16350.12, + "end": 16353.14, + "probability": 0.6007 + }, + { + "start": 16353.7, + "end": 16355.46, + "probability": 0.8735 + }, + { + "start": 16356.26, + "end": 16356.56, + "probability": 0.5754 + }, + { + "start": 16356.62, + "end": 16356.92, + "probability": 0.8621 + }, + { + "start": 16356.98, + "end": 16359.46, + "probability": 0.8464 + }, + { + "start": 16359.46, + "end": 16361.56, + "probability": 0.8093 + }, + { + "start": 16362.18, + "end": 16365.54, + "probability": 0.4233 + }, + { + "start": 16366.24, + "end": 16367.72, + "probability": 0.8863 + }, + { + "start": 16368.8, + "end": 16370.52, + "probability": 0.6866 + }, + { + "start": 16370.62, + "end": 16371.46, + "probability": 0.9598 + }, + { + "start": 16371.48, + "end": 16371.7, + "probability": 0.7377 + }, + { + "start": 16371.8, + "end": 16373.45, + "probability": 0.8695 + }, + { + "start": 16374.28, + "end": 16376.26, + "probability": 0.8733 + }, + { + "start": 16378.86, + "end": 16384.4, + "probability": 0.9595 + }, + { + "start": 16385.57, + "end": 16385.92, + "probability": 0.2106 + }, + { + "start": 16385.92, + "end": 16385.92, + "probability": 0.5662 + }, + { + "start": 16385.92, + "end": 16386.82, + "probability": 0.6038 + }, + { + "start": 16386.96, + "end": 16389.62, + "probability": 0.9844 + }, + { + "start": 16390.14, + "end": 16391.66, + "probability": 0.9639 + }, + { + "start": 16392.72, + "end": 16393.32, + "probability": 0.6363 + }, + { + "start": 16393.32, + "end": 16393.8, + "probability": 0.7885 + }, + { + "start": 16394.04, + "end": 16395.06, + "probability": 0.9148 + }, + { + "start": 16395.56, + "end": 16398.98, + "probability": 0.938 + }, + { + "start": 16399.76, + "end": 16401.16, + "probability": 0.7992 + }, + { + "start": 16401.66, + "end": 16406.52, + "probability": 0.9762 + }, + { + "start": 16407.52, + "end": 16412.58, + "probability": 0.9906 + }, + { + "start": 16413.26, + "end": 16416.2, + "probability": 0.9785 + }, + { + "start": 16417.22, + "end": 16419.74, + "probability": 0.9912 + }, + { + "start": 16420.28, + "end": 16424.06, + "probability": 0.9863 + }, + { + "start": 16424.64, + "end": 16430.76, + "probability": 0.9552 + }, + { + "start": 16431.82, + "end": 16434.98, + "probability": 0.9869 + }, + { + "start": 16434.98, + "end": 16438.26, + "probability": 0.9577 + }, + { + "start": 16438.9, + "end": 16440.5, + "probability": 0.9838 + }, + { + "start": 16440.84, + "end": 16443.68, + "probability": 0.7888 + }, + { + "start": 16444.18, + "end": 16445.3, + "probability": 0.9354 + }, + { + "start": 16445.82, + "end": 16449.8, + "probability": 0.968 + }, + { + "start": 16451.0, + "end": 16455.3, + "probability": 0.9767 + }, + { + "start": 16455.3, + "end": 16459.6, + "probability": 0.9912 + }, + { + "start": 16459.6, + "end": 16463.62, + "probability": 0.978 + }, + { + "start": 16464.48, + "end": 16465.0, + "probability": 0.8231 + }, + { + "start": 16465.62, + "end": 16468.96, + "probability": 0.9869 + }, + { + "start": 16469.52, + "end": 16470.96, + "probability": 0.8423 + }, + { + "start": 16471.44, + "end": 16474.52, + "probability": 0.9891 + }, + { + "start": 16475.12, + "end": 16476.46, + "probability": 0.9642 + }, + { + "start": 16477.12, + "end": 16482.14, + "probability": 0.7268 + }, + { + "start": 16482.52, + "end": 16482.96, + "probability": 0.6032 + }, + { + "start": 16483.98, + "end": 16487.42, + "probability": 0.9349 + }, + { + "start": 16487.84, + "end": 16489.5, + "probability": 0.9023 + }, + { + "start": 16489.88, + "end": 16491.12, + "probability": 0.9707 + }, + { + "start": 16492.1, + "end": 16495.42, + "probability": 0.7422 + }, + { + "start": 16495.98, + "end": 16497.7, + "probability": 0.8593 + }, + { + "start": 16498.14, + "end": 16500.48, + "probability": 0.9744 + }, + { + "start": 16500.9, + "end": 16503.52, + "probability": 0.9643 + }, + { + "start": 16503.66, + "end": 16505.34, + "probability": 0.9764 + }, + { + "start": 16506.38, + "end": 16507.6, + "probability": 0.9556 + }, + { + "start": 16508.6, + "end": 16512.18, + "probability": 0.974 + }, + { + "start": 16513.56, + "end": 16516.3, + "probability": 0.8321 + }, + { + "start": 16517.02, + "end": 16517.52, + "probability": 0.7026 + }, + { + "start": 16517.6, + "end": 16520.76, + "probability": 0.9825 + }, + { + "start": 16520.76, + "end": 16522.88, + "probability": 0.9718 + }, + { + "start": 16523.54, + "end": 16526.1, + "probability": 0.9984 + }, + { + "start": 16526.1, + "end": 16529.26, + "probability": 0.9382 + }, + { + "start": 16530.16, + "end": 16530.36, + "probability": 0.2679 + }, + { + "start": 16530.48, + "end": 16534.36, + "probability": 0.9867 + }, + { + "start": 16535.26, + "end": 16537.56, + "probability": 0.9941 + }, + { + "start": 16538.06, + "end": 16541.14, + "probability": 0.8028 + }, + { + "start": 16542.36, + "end": 16543.48, + "probability": 0.8921 + }, + { + "start": 16544.04, + "end": 16548.24, + "probability": 0.9937 + }, + { + "start": 16548.82, + "end": 16553.8, + "probability": 0.918 + }, + { + "start": 16555.18, + "end": 16556.08, + "probability": 0.6713 + }, + { + "start": 16556.38, + "end": 16559.08, + "probability": 0.9863 + }, + { + "start": 16559.24, + "end": 16560.54, + "probability": 0.7087 + }, + { + "start": 16561.12, + "end": 16566.12, + "probability": 0.9914 + }, + { + "start": 16567.4, + "end": 16571.24, + "probability": 0.9043 + }, + { + "start": 16572.08, + "end": 16575.74, + "probability": 0.8685 + }, + { + "start": 16576.2, + "end": 16578.32, + "probability": 0.9034 + }, + { + "start": 16579.12, + "end": 16581.56, + "probability": 0.867 + }, + { + "start": 16582.16, + "end": 16582.42, + "probability": 0.4439 + }, + { + "start": 16583.06, + "end": 16583.84, + "probability": 0.833 + }, + { + "start": 16584.16, + "end": 16584.88, + "probability": 0.9188 + }, + { + "start": 16585.76, + "end": 16589.06, + "probability": 0.9904 + }, + { + "start": 16589.56, + "end": 16590.1, + "probability": 0.8917 + }, + { + "start": 16590.74, + "end": 16593.32, + "probability": 0.991 + }, + { + "start": 16593.9, + "end": 16597.42, + "probability": 0.8753 + }, + { + "start": 16597.42, + "end": 16600.84, + "probability": 0.9977 + }, + { + "start": 16601.4, + "end": 16604.46, + "probability": 0.9126 + }, + { + "start": 16605.46, + "end": 16609.32, + "probability": 0.8501 + }, + { + "start": 16609.94, + "end": 16614.42, + "probability": 0.9963 + }, + { + "start": 16615.28, + "end": 16616.68, + "probability": 0.9045 + }, + { + "start": 16617.78, + "end": 16620.18, + "probability": 0.9914 + }, + { + "start": 16620.44, + "end": 16621.36, + "probability": 0.8092 + }, + { + "start": 16621.9, + "end": 16624.22, + "probability": 0.9136 + }, + { + "start": 16625.06, + "end": 16625.96, + "probability": 0.565 + }, + { + "start": 16625.98, + "end": 16626.56, + "probability": 0.8554 + }, + { + "start": 16626.66, + "end": 16627.98, + "probability": 0.7774 + }, + { + "start": 16628.78, + "end": 16631.04, + "probability": 0.8217 + }, + { + "start": 16631.4, + "end": 16633.0, + "probability": 0.4719 + }, + { + "start": 16633.0, + "end": 16633.77, + "probability": 0.6728 + }, + { + "start": 16634.1, + "end": 16637.34, + "probability": 0.9515 + }, + { + "start": 16637.9, + "end": 16640.18, + "probability": 0.7869 + }, + { + "start": 16641.4, + "end": 16643.06, + "probability": 0.7878 + }, + { + "start": 16643.24, + "end": 16646.88, + "probability": 0.8174 + }, + { + "start": 16647.26, + "end": 16648.12, + "probability": 0.6681 + }, + { + "start": 16648.26, + "end": 16649.78, + "probability": 0.8367 + }, + { + "start": 16650.28, + "end": 16653.92, + "probability": 0.9976 + }, + { + "start": 16654.36, + "end": 16657.1, + "probability": 0.947 + }, + { + "start": 16657.54, + "end": 16660.06, + "probability": 0.9966 + }, + { + "start": 16660.06, + "end": 16663.3, + "probability": 0.9993 + }, + { + "start": 16663.88, + "end": 16664.86, + "probability": 0.7511 + }, + { + "start": 16665.34, + "end": 16666.66, + "probability": 0.8251 + }, + { + "start": 16666.84, + "end": 16668.62, + "probability": 0.9305 + }, + { + "start": 16668.96, + "end": 16671.1, + "probability": 0.9604 + }, + { + "start": 16671.3, + "end": 16672.84, + "probability": 0.9399 + }, + { + "start": 16673.46, + "end": 16674.7, + "probability": 0.9901 + }, + { + "start": 16674.78, + "end": 16678.3, + "probability": 0.9722 + }, + { + "start": 16681.2, + "end": 16683.48, + "probability": 0.5311 + }, + { + "start": 16683.58, + "end": 16684.9, + "probability": 0.853 + }, + { + "start": 16685.72, + "end": 16688.54, + "probability": 0.7017 + }, + { + "start": 16688.58, + "end": 16689.34, + "probability": 0.7153 + }, + { + "start": 16693.56, + "end": 16696.4, + "probability": 0.769 + }, + { + "start": 16697.32, + "end": 16698.9, + "probability": 0.9615 + }, + { + "start": 16704.46, + "end": 16704.98, + "probability": 0.027 + }, + { + "start": 16708.24, + "end": 16709.6, + "probability": 0.7309 + }, + { + "start": 16710.16, + "end": 16711.66, + "probability": 0.8024 + }, + { + "start": 16712.66, + "end": 16716.12, + "probability": 0.8309 + }, + { + "start": 16717.22, + "end": 16719.84, + "probability": 0.9941 + }, + { + "start": 16719.84, + "end": 16722.54, + "probability": 0.9903 + }, + { + "start": 16723.18, + "end": 16724.48, + "probability": 0.8879 + }, + { + "start": 16725.04, + "end": 16726.28, + "probability": 0.3982 + }, + { + "start": 16726.86, + "end": 16730.18, + "probability": 0.8924 + }, + { + "start": 16730.9, + "end": 16735.28, + "probability": 0.9304 + }, + { + "start": 16735.66, + "end": 16737.58, + "probability": 0.7245 + }, + { + "start": 16738.3, + "end": 16741.38, + "probability": 0.9922 + }, + { + "start": 16742.08, + "end": 16744.6, + "probability": 0.974 + }, + { + "start": 16745.14, + "end": 16749.44, + "probability": 0.9215 + }, + { + "start": 16749.9, + "end": 16751.12, + "probability": 0.7949 + }, + { + "start": 16751.58, + "end": 16753.66, + "probability": 0.9284 + }, + { + "start": 16754.1, + "end": 16756.55, + "probability": 0.9862 + }, + { + "start": 16757.32, + "end": 16758.8, + "probability": 0.8163 + }, + { + "start": 16759.38, + "end": 16764.25, + "probability": 0.9048 + }, + { + "start": 16764.28, + "end": 16768.28, + "probability": 0.9881 + }, + { + "start": 16768.8, + "end": 16774.42, + "probability": 0.9454 + }, + { + "start": 16774.94, + "end": 16776.44, + "probability": 0.9865 + }, + { + "start": 16776.56, + "end": 16778.0, + "probability": 0.9586 + }, + { + "start": 16778.5, + "end": 16782.56, + "probability": 0.9858 + }, + { + "start": 16783.2, + "end": 16783.96, + "probability": 0.6662 + }, + { + "start": 16784.24, + "end": 16787.34, + "probability": 0.8872 + }, + { + "start": 16787.42, + "end": 16789.18, + "probability": 0.833 + }, + { + "start": 16789.82, + "end": 16791.06, + "probability": 0.9042 + }, + { + "start": 16791.36, + "end": 16795.08, + "probability": 0.9318 + }, + { + "start": 16795.64, + "end": 16797.88, + "probability": 0.9853 + }, + { + "start": 16798.52, + "end": 16801.26, + "probability": 0.8044 + }, + { + "start": 16801.26, + "end": 16803.66, + "probability": 0.9648 + }, + { + "start": 16804.28, + "end": 16804.42, + "probability": 0.7475 + }, + { + "start": 16804.52, + "end": 16808.76, + "probability": 0.9878 + }, + { + "start": 16809.34, + "end": 16812.6, + "probability": 0.9965 + }, + { + "start": 16813.32, + "end": 16819.98, + "probability": 0.83 + }, + { + "start": 16820.08, + "end": 16823.46, + "probability": 0.9929 + }, + { + "start": 16823.54, + "end": 16824.8, + "probability": 0.9987 + }, + { + "start": 16825.32, + "end": 16826.64, + "probability": 0.9888 + }, + { + "start": 16827.12, + "end": 16828.0, + "probability": 0.916 + }, + { + "start": 16828.12, + "end": 16831.8, + "probability": 0.9622 + }, + { + "start": 16832.36, + "end": 16832.8, + "probability": 0.7366 + }, + { + "start": 16832.88, + "end": 16836.8, + "probability": 0.9985 + }, + { + "start": 16836.8, + "end": 16839.64, + "probability": 0.9994 + }, + { + "start": 16840.16, + "end": 16845.48, + "probability": 0.9357 + }, + { + "start": 16846.0, + "end": 16848.62, + "probability": 0.9706 + }, + { + "start": 16849.08, + "end": 16850.54, + "probability": 0.9502 + }, + { + "start": 16851.2, + "end": 16851.82, + "probability": 0.5393 + }, + { + "start": 16852.4, + "end": 16853.16, + "probability": 0.6294 + }, + { + "start": 16853.46, + "end": 16856.62, + "probability": 0.9801 + }, + { + "start": 16857.12, + "end": 16859.68, + "probability": 0.9868 + }, + { + "start": 16859.78, + "end": 16861.7, + "probability": 0.9862 + }, + { + "start": 16862.36, + "end": 16864.54, + "probability": 0.927 + }, + { + "start": 16866.06, + "end": 16868.72, + "probability": 0.8618 + }, + { + "start": 16869.34, + "end": 16873.14, + "probability": 0.9969 + }, + { + "start": 16873.72, + "end": 16877.02, + "probability": 0.9969 + }, + { + "start": 16877.72, + "end": 16879.38, + "probability": 0.9968 + }, + { + "start": 16879.5, + "end": 16883.02, + "probability": 0.9425 + }, + { + "start": 16883.74, + "end": 16884.84, + "probability": 0.6649 + }, + { + "start": 16884.96, + "end": 16890.42, + "probability": 0.8865 + }, + { + "start": 16890.86, + "end": 16890.86, + "probability": 0.0608 + }, + { + "start": 16890.86, + "end": 16891.96, + "probability": 0.838 + }, + { + "start": 16892.08, + "end": 16894.28, + "probability": 0.4244 + }, + { + "start": 16894.36, + "end": 16897.2, + "probability": 0.9302 + }, + { + "start": 16897.98, + "end": 16899.56, + "probability": 0.5775 + }, + { + "start": 16900.38, + "end": 16903.32, + "probability": 0.7389 + }, + { + "start": 16903.66, + "end": 16904.22, + "probability": 0.5672 + }, + { + "start": 16904.24, + "end": 16904.9, + "probability": 0.9483 + }, + { + "start": 16904.92, + "end": 16911.34, + "probability": 0.9888 + }, + { + "start": 16911.74, + "end": 16914.3, + "probability": 0.9863 + }, + { + "start": 16914.74, + "end": 16917.1, + "probability": 0.9965 + }, + { + "start": 16917.56, + "end": 16921.7, + "probability": 0.9575 + }, + { + "start": 16922.12, + "end": 16924.2, + "probability": 0.7974 + }, + { + "start": 16924.72, + "end": 16925.6, + "probability": 0.917 + }, + { + "start": 16926.3, + "end": 16928.9, + "probability": 0.9371 + }, + { + "start": 16929.46, + "end": 16930.02, + "probability": 0.7139 + }, + { + "start": 16930.08, + "end": 16931.94, + "probability": 0.916 + }, + { + "start": 16931.94, + "end": 16935.52, + "probability": 0.969 + }, + { + "start": 16936.1, + "end": 16940.62, + "probability": 0.9842 + }, + { + "start": 16941.02, + "end": 16944.42, + "probability": 0.9711 + }, + { + "start": 16944.54, + "end": 16946.58, + "probability": 0.9946 + }, + { + "start": 16947.14, + "end": 16951.92, + "probability": 0.9943 + }, + { + "start": 16952.6, + "end": 16956.34, + "probability": 0.9779 + }, + { + "start": 16956.96, + "end": 16959.9, + "probability": 0.9663 + }, + { + "start": 16960.62, + "end": 16962.1, + "probability": 0.8116 + }, + { + "start": 16962.8, + "end": 16965.94, + "probability": 0.871 + }, + { + "start": 16966.42, + "end": 16969.84, + "probability": 0.9657 + }, + { + "start": 16969.9, + "end": 16970.98, + "probability": 0.8342 + }, + { + "start": 16971.56, + "end": 16973.64, + "probability": 0.6274 + }, + { + "start": 16974.2, + "end": 16975.7, + "probability": 0.9301 + }, + { + "start": 16976.08, + "end": 16977.49, + "probability": 0.7595 + }, + { + "start": 16977.78, + "end": 16981.66, + "probability": 0.9182 + }, + { + "start": 16982.1, + "end": 16986.4, + "probability": 0.9333 + }, + { + "start": 16986.6, + "end": 16987.89, + "probability": 0.7275 + }, + { + "start": 16988.78, + "end": 16989.5, + "probability": 0.968 + }, + { + "start": 16989.58, + "end": 16990.56, + "probability": 0.9203 + }, + { + "start": 16991.1, + "end": 16994.06, + "probability": 0.9082 + }, + { + "start": 16994.24, + "end": 16996.44, + "probability": 0.9642 + }, + { + "start": 16997.14, + "end": 17001.14, + "probability": 0.9106 + }, + { + "start": 17001.66, + "end": 17003.08, + "probability": 0.6041 + }, + { + "start": 17003.62, + "end": 17005.16, + "probability": 0.8116 + }, + { + "start": 17005.58, + "end": 17007.66, + "probability": 0.9684 + }, + { + "start": 17008.52, + "end": 17010.3, + "probability": 0.8073 + }, + { + "start": 17010.9, + "end": 17016.98, + "probability": 0.9984 + }, + { + "start": 17017.46, + "end": 17019.46, + "probability": 0.7428 + }, + { + "start": 17020.12, + "end": 17021.32, + "probability": 0.5605 + }, + { + "start": 17021.72, + "end": 17022.82, + "probability": 0.9006 + }, + { + "start": 17023.28, + "end": 17025.98, + "probability": 0.9912 + }, + { + "start": 17026.7, + "end": 17030.96, + "probability": 0.9179 + }, + { + "start": 17031.68, + "end": 17036.02, + "probability": 0.9329 + }, + { + "start": 17036.66, + "end": 17039.3, + "probability": 0.9342 + }, + { + "start": 17039.38, + "end": 17040.5, + "probability": 0.916 + }, + { + "start": 17042.76, + "end": 17044.18, + "probability": 0.9419 + }, + { + "start": 17045.46, + "end": 17050.62, + "probability": 0.9954 + }, + { + "start": 17051.12, + "end": 17054.68, + "probability": 0.9912 + }, + { + "start": 17056.72, + "end": 17057.22, + "probability": 0.6711 + }, + { + "start": 17061.06, + "end": 17063.1, + "probability": 0.5036 + }, + { + "start": 17064.06, + "end": 17068.88, + "probability": 0.94 + }, + { + "start": 17069.34, + "end": 17074.1, + "probability": 0.9719 + }, + { + "start": 17074.1, + "end": 17079.24, + "probability": 0.9983 + }, + { + "start": 17080.24, + "end": 17082.04, + "probability": 0.5981 + }, + { + "start": 17082.8, + "end": 17087.36, + "probability": 0.9708 + }, + { + "start": 17087.92, + "end": 17097.34, + "probability": 0.8577 + }, + { + "start": 17097.82, + "end": 17100.3, + "probability": 0.9652 + }, + { + "start": 17101.0, + "end": 17101.54, + "probability": 0.6153 + }, + { + "start": 17102.08, + "end": 17104.1, + "probability": 0.9948 + }, + { + "start": 17104.9, + "end": 17108.24, + "probability": 0.8841 + }, + { + "start": 17108.34, + "end": 17109.28, + "probability": 0.6116 + }, + { + "start": 17109.62, + "end": 17112.74, + "probability": 0.8039 + }, + { + "start": 17113.42, + "end": 17120.14, + "probability": 0.9963 + }, + { + "start": 17120.64, + "end": 17121.7, + "probability": 0.9982 + }, + { + "start": 17122.16, + "end": 17124.09, + "probability": 0.9929 + }, + { + "start": 17124.72, + "end": 17126.06, + "probability": 0.908 + }, + { + "start": 17126.4, + "end": 17127.38, + "probability": 0.0687 + }, + { + "start": 17127.94, + "end": 17129.06, + "probability": 0.6314 + }, + { + "start": 17131.78, + "end": 17131.9, + "probability": 0.0273 + }, + { + "start": 17131.9, + "end": 17131.9, + "probability": 0.1382 + }, + { + "start": 17131.9, + "end": 17131.9, + "probability": 0.1084 + }, + { + "start": 17131.9, + "end": 17131.9, + "probability": 0.0256 + }, + { + "start": 17131.9, + "end": 17131.9, + "probability": 0.4035 + }, + { + "start": 17131.9, + "end": 17132.67, + "probability": 0.4469 + }, + { + "start": 17132.9, + "end": 17133.59, + "probability": 0.8888 + }, + { + "start": 17133.72, + "end": 17136.22, + "probability": 0.799 + }, + { + "start": 17136.52, + "end": 17142.36, + "probability": 0.8569 + }, + { + "start": 17143.18, + "end": 17148.22, + "probability": 0.7366 + }, + { + "start": 17148.3, + "end": 17150.04, + "probability": 0.9941 + }, + { + "start": 17150.24, + "end": 17150.66, + "probability": 0.6301 + }, + { + "start": 17150.66, + "end": 17151.42, + "probability": 0.8295 + }, + { + "start": 17151.82, + "end": 17152.08, + "probability": 0.1791 + }, + { + "start": 17152.08, + "end": 17152.42, + "probability": 0.6784 + }, + { + "start": 17153.2, + "end": 17154.5, + "probability": 0.8446 + }, + { + "start": 17155.06, + "end": 17157.18, + "probability": 0.9226 + }, + { + "start": 17157.56, + "end": 17160.45, + "probability": 0.7758 + }, + { + "start": 17161.0, + "end": 17165.28, + "probability": 0.9951 + }, + { + "start": 17165.28, + "end": 17169.18, + "probability": 0.9984 + }, + { + "start": 17169.6, + "end": 17172.06, + "probability": 0.9977 + }, + { + "start": 17172.14, + "end": 17172.72, + "probability": 0.7104 + }, + { + "start": 17174.02, + "end": 17175.06, + "probability": 0.6173 + }, + { + "start": 17175.22, + "end": 17176.24, + "probability": 0.6604 + }, + { + "start": 17176.34, + "end": 17176.62, + "probability": 0.5182 + }, + { + "start": 17176.72, + "end": 17180.38, + "probability": 0.9263 + }, + { + "start": 17180.38, + "end": 17182.3, + "probability": 0.9539 + }, + { + "start": 17184.88, + "end": 17187.53, + "probability": 0.8911 + }, + { + "start": 17187.66, + "end": 17190.7, + "probability": 0.9271 + }, + { + "start": 17191.34, + "end": 17194.36, + "probability": 0.8946 + }, + { + "start": 17195.06, + "end": 17197.2, + "probability": 0.6579 + }, + { + "start": 17197.2, + "end": 17198.74, + "probability": 0.9473 + }, + { + "start": 17199.54, + "end": 17202.66, + "probability": 0.9194 + }, + { + "start": 17203.34, + "end": 17207.08, + "probability": 0.9773 + }, + { + "start": 17207.08, + "end": 17213.16, + "probability": 0.9607 + }, + { + "start": 17213.16, + "end": 17218.78, + "probability": 0.9993 + }, + { + "start": 17219.18, + "end": 17223.54, + "probability": 0.8054 + }, + { + "start": 17223.54, + "end": 17230.22, + "probability": 0.9956 + }, + { + "start": 17230.76, + "end": 17233.21, + "probability": 0.9964 + }, + { + "start": 17234.0, + "end": 17234.28, + "probability": 0.4837 + }, + { + "start": 17234.32, + "end": 17235.42, + "probability": 0.6658 + }, + { + "start": 17235.82, + "end": 17237.32, + "probability": 0.8446 + }, + { + "start": 17237.56, + "end": 17239.66, + "probability": 0.9068 + }, + { + "start": 17240.08, + "end": 17241.22, + "probability": 0.9204 + }, + { + "start": 17241.34, + "end": 17246.48, + "probability": 0.9642 + }, + { + "start": 17246.48, + "end": 17249.68, + "probability": 0.9058 + }, + { + "start": 17250.14, + "end": 17252.4, + "probability": 0.9419 + }, + { + "start": 17252.78, + "end": 17255.88, + "probability": 0.7388 + }, + { + "start": 17256.0, + "end": 17256.86, + "probability": 0.658 + }, + { + "start": 17256.9, + "end": 17258.51, + "probability": 0.9343 + }, + { + "start": 17258.72, + "end": 17259.98, + "probability": 0.8539 + }, + { + "start": 17260.16, + "end": 17261.74, + "probability": 0.7926 + }, + { + "start": 17262.74, + "end": 17266.14, + "probability": 0.924 + }, + { + "start": 17266.5, + "end": 17271.74, + "probability": 0.8309 + }, + { + "start": 17272.14, + "end": 17275.55, + "probability": 0.9974 + }, + { + "start": 17275.9, + "end": 17277.9, + "probability": 0.9976 + }, + { + "start": 17278.34, + "end": 17279.88, + "probability": 0.9955 + }, + { + "start": 17280.24, + "end": 17283.54, + "probability": 0.9415 + }, + { + "start": 17283.7, + "end": 17284.38, + "probability": 0.8479 + }, + { + "start": 17284.44, + "end": 17285.0, + "probability": 0.9888 + }, + { + "start": 17285.44, + "end": 17286.9, + "probability": 0.981 + }, + { + "start": 17287.1, + "end": 17287.96, + "probability": 0.9783 + }, + { + "start": 17288.34, + "end": 17289.9, + "probability": 0.9568 + }, + { + "start": 17290.04, + "end": 17290.26, + "probability": 0.4712 + }, + { + "start": 17290.3, + "end": 17291.54, + "probability": 0.96 + }, + { + "start": 17292.24, + "end": 17295.9, + "probability": 0.9774 + }, + { + "start": 17295.96, + "end": 17297.42, + "probability": 0.8522 + }, + { + "start": 17297.9, + "end": 17299.6, + "probability": 0.8209 + }, + { + "start": 17299.74, + "end": 17301.64, + "probability": 0.8641 + }, + { + "start": 17301.64, + "end": 17306.16, + "probability": 0.9091 + }, + { + "start": 17306.4, + "end": 17307.88, + "probability": 0.907 + }, + { + "start": 17309.3, + "end": 17309.74, + "probability": 0.7442 + }, + { + "start": 17309.82, + "end": 17311.52, + "probability": 0.7033 + }, + { + "start": 17312.24, + "end": 17312.44, + "probability": 0.2659 + }, + { + "start": 17312.56, + "end": 17314.9, + "probability": 0.9912 + }, + { + "start": 17315.32, + "end": 17317.66, + "probability": 0.7021 + }, + { + "start": 17318.58, + "end": 17319.06, + "probability": 0.7485 + }, + { + "start": 17319.68, + "end": 17319.9, + "probability": 0.204 + }, + { + "start": 17319.9, + "end": 17321.92, + "probability": 0.9618 + }, + { + "start": 17322.72, + "end": 17324.06, + "probability": 0.4756 + }, + { + "start": 17324.22, + "end": 17324.98, + "probability": 0.8707 + }, + { + "start": 17325.78, + "end": 17327.5, + "probability": 0.9825 + }, + { + "start": 17327.58, + "end": 17330.26, + "probability": 0.9131 + }, + { + "start": 17335.92, + "end": 17335.94, + "probability": 0.1287 + }, + { + "start": 17335.94, + "end": 17335.94, + "probability": 0.1164 + }, + { + "start": 17335.94, + "end": 17339.38, + "probability": 0.7996 + }, + { + "start": 17339.48, + "end": 17342.04, + "probability": 0.7605 + }, + { + "start": 17342.14, + "end": 17343.26, + "probability": 0.8021 + }, + { + "start": 17343.9, + "end": 17347.44, + "probability": 0.9767 + }, + { + "start": 17347.52, + "end": 17349.9, + "probability": 0.8371 + }, + { + "start": 17350.04, + "end": 17351.8, + "probability": 0.0424 + }, + { + "start": 17352.38, + "end": 17354.18, + "probability": 0.9316 + }, + { + "start": 17354.86, + "end": 17357.36, + "probability": 0.9948 + }, + { + "start": 17357.48, + "end": 17358.06, + "probability": 0.6444 + }, + { + "start": 17358.24, + "end": 17358.94, + "probability": 0.8813 + }, + { + "start": 17362.86, + "end": 17365.94, + "probability": 0.0171 + }, + { + "start": 17370.44, + "end": 17371.68, + "probability": 0.1286 + }, + { + "start": 17375.28, + "end": 17377.48, + "probability": 0.0316 + }, + { + "start": 17387.98, + "end": 17392.21, + "probability": 0.6919 + }, + { + "start": 17393.68, + "end": 17393.78, + "probability": 0.4653 + }, + { + "start": 17395.62, + "end": 17399.14, + "probability": 0.8945 + }, + { + "start": 17399.22, + "end": 17402.58, + "probability": 0.8794 + }, + { + "start": 17403.64, + "end": 17406.74, + "probability": 0.9392 + }, + { + "start": 17427.82, + "end": 17429.12, + "probability": 0.2811 + }, + { + "start": 17430.6, + "end": 17431.22, + "probability": 0.6759 + }, + { + "start": 17433.53, + "end": 17435.64, + "probability": 0.5098 + }, + { + "start": 17439.8, + "end": 17442.02, + "probability": 0.7356 + }, + { + "start": 17442.2, + "end": 17442.87, + "probability": 0.7852 + }, + { + "start": 17443.12, + "end": 17445.47, + "probability": 0.6845 + }, + { + "start": 17446.08, + "end": 17446.88, + "probability": 0.8353 + }, + { + "start": 17446.96, + "end": 17449.62, + "probability": 0.0785 + }, + { + "start": 17450.62, + "end": 17453.06, + "probability": 0.8427 + }, + { + "start": 17453.14, + "end": 17454.82, + "probability": 0.9343 + }, + { + "start": 17455.4, + "end": 17456.68, + "probability": 0.7296 + }, + { + "start": 17456.82, + "end": 17457.04, + "probability": 0.2782 + }, + { + "start": 17457.12, + "end": 17457.42, + "probability": 0.7815 + }, + { + "start": 17457.48, + "end": 17458.3, + "probability": 0.6517 + }, + { + "start": 17458.4, + "end": 17459.8, + "probability": 0.745 + }, + { + "start": 17459.8, + "end": 17462.33, + "probability": 0.4544 + }, + { + "start": 17463.06, + "end": 17464.78, + "probability": 0.3996 + }, + { + "start": 17465.54, + "end": 17467.68, + "probability": 0.9041 + }, + { + "start": 17468.96, + "end": 17469.62, + "probability": 0.9955 + }, + { + "start": 17473.08, + "end": 17474.88, + "probability": 0.2343 + }, + { + "start": 17475.6, + "end": 17477.12, + "probability": 0.6942 + }, + { + "start": 17477.96, + "end": 17484.22, + "probability": 0.6289 + }, + { + "start": 17485.24, + "end": 17489.7, + "probability": 0.8068 + }, + { + "start": 17494.1, + "end": 17495.74, + "probability": 0.9154 + }, + { + "start": 17496.64, + "end": 17497.92, + "probability": 0.9231 + }, + { + "start": 17500.02, + "end": 17501.84, + "probability": 0.8138 + }, + { + "start": 17501.9, + "end": 17503.16, + "probability": 0.8586 + }, + { + "start": 17503.18, + "end": 17503.74, + "probability": 0.8851 + }, + { + "start": 17504.44, + "end": 17507.2, + "probability": 0.578 + }, + { + "start": 17507.3, + "end": 17507.94, + "probability": 0.8093 + }, + { + "start": 17508.04, + "end": 17509.22, + "probability": 0.8411 + }, + { + "start": 17509.58, + "end": 17514.9, + "probability": 0.9797 + }, + { + "start": 17515.76, + "end": 17520.24, + "probability": 0.9794 + }, + { + "start": 17520.92, + "end": 17524.64, + "probability": 0.9493 + }, + { + "start": 17524.64, + "end": 17526.08, + "probability": 0.5329 + }, + { + "start": 17526.08, + "end": 17530.18, + "probability": 0.9027 + }, + { + "start": 17530.8, + "end": 17533.06, + "probability": 0.9233 + }, + { + "start": 17533.06, + "end": 17535.44, + "probability": 0.958 + }, + { + "start": 17535.96, + "end": 17541.12, + "probability": 0.9699 + }, + { + "start": 17541.26, + "end": 17542.26, + "probability": 0.7822 + }, + { + "start": 17543.08, + "end": 17544.92, + "probability": 0.8819 + }, + { + "start": 17545.24, + "end": 17548.66, + "probability": 0.9794 + }, + { + "start": 17548.66, + "end": 17551.94, + "probability": 0.9897 + }, + { + "start": 17551.94, + "end": 17555.68, + "probability": 0.999 + }, + { + "start": 17556.48, + "end": 17559.7, + "probability": 0.9811 + }, + { + "start": 17559.98, + "end": 17562.38, + "probability": 0.7822 + }, + { + "start": 17562.74, + "end": 17563.2, + "probability": 0.8197 + }, + { + "start": 17564.38, + "end": 17564.8, + "probability": 0.7605 + }, + { + "start": 17565.9, + "end": 17566.94, + "probability": 0.9159 + }, + { + "start": 17567.22, + "end": 17568.34, + "probability": 0.8696 + }, + { + "start": 17568.6, + "end": 17573.28, + "probability": 0.7781 + }, + { + "start": 17574.42, + "end": 17576.52, + "probability": 0.9195 + }, + { + "start": 17576.52, + "end": 17578.04, + "probability": 0.9285 + }, + { + "start": 17578.72, + "end": 17579.6, + "probability": 0.6902 + }, + { + "start": 17579.84, + "end": 17584.32, + "probability": 0.6399 + }, + { + "start": 17584.46, + "end": 17588.37, + "probability": 0.8254 + }, + { + "start": 17590.2, + "end": 17595.04, + "probability": 0.9963 + }, + { + "start": 17595.14, + "end": 17597.9, + "probability": 0.9578 + }, + { + "start": 17598.66, + "end": 17602.26, + "probability": 0.9434 + }, + { + "start": 17603.0, + "end": 17609.04, + "probability": 0.7691 + }, + { + "start": 17609.04, + "end": 17616.8, + "probability": 0.9951 + }, + { + "start": 17618.22, + "end": 17618.26, + "probability": 0.4223 + }, + { + "start": 17618.42, + "end": 17620.44, + "probability": 0.9964 + }, + { + "start": 17620.56, + "end": 17627.5, + "probability": 0.9974 + }, + { + "start": 17627.56, + "end": 17632.42, + "probability": 0.9945 + }, + { + "start": 17632.58, + "end": 17633.33, + "probability": 0.7102 + }, + { + "start": 17633.88, + "end": 17634.5, + "probability": 0.8918 + }, + { + "start": 17635.86, + "end": 17639.48, + "probability": 0.9707 + }, + { + "start": 17640.86, + "end": 17644.5, + "probability": 0.9951 + }, + { + "start": 17645.3, + "end": 17649.7, + "probability": 0.9957 + }, + { + "start": 17649.7, + "end": 17654.06, + "probability": 0.968 + }, + { + "start": 17654.18, + "end": 17657.58, + "probability": 0.9977 + }, + { + "start": 17657.58, + "end": 17661.28, + "probability": 0.9871 + }, + { + "start": 17662.14, + "end": 17667.8, + "probability": 0.9751 + }, + { + "start": 17669.14, + "end": 17670.88, + "probability": 0.9926 + }, + { + "start": 17671.82, + "end": 17672.76, + "probability": 0.7813 + }, + { + "start": 17673.44, + "end": 17675.14, + "probability": 0.6001 + }, + { + "start": 17676.1, + "end": 17679.32, + "probability": 0.3833 + }, + { + "start": 17681.76, + "end": 17684.3, + "probability": 0.6783 + }, + { + "start": 17685.16, + "end": 17686.44, + "probability": 0.9405 + }, + { + "start": 17686.5, + "end": 17686.92, + "probability": 0.9418 + }, + { + "start": 17687.02, + "end": 17689.8, + "probability": 0.9173 + }, + { + "start": 17690.02, + "end": 17692.8, + "probability": 0.8221 + }, + { + "start": 17693.76, + "end": 17698.22, + "probability": 0.9611 + }, + { + "start": 17698.38, + "end": 17699.78, + "probability": 0.6701 + }, + { + "start": 17700.98, + "end": 17706.62, + "probability": 0.9953 + }, + { + "start": 17707.52, + "end": 17710.36, + "probability": 0.9909 + }, + { + "start": 17711.0, + "end": 17718.26, + "probability": 0.9896 + }, + { + "start": 17719.38, + "end": 17722.12, + "probability": 0.9978 + }, + { + "start": 17723.92, + "end": 17726.76, + "probability": 0.9948 + }, + { + "start": 17726.76, + "end": 17732.22, + "probability": 0.9943 + }, + { + "start": 17733.2, + "end": 17737.84, + "probability": 0.9819 + }, + { + "start": 17738.0, + "end": 17741.34, + "probability": 0.6832 + }, + { + "start": 17741.9, + "end": 17747.16, + "probability": 0.9395 + }, + { + "start": 17747.54, + "end": 17749.04, + "probability": 0.9829 + }, + { + "start": 17749.46, + "end": 17750.5, + "probability": 0.7464 + }, + { + "start": 17751.02, + "end": 17753.58, + "probability": 0.8291 + }, + { + "start": 17754.66, + "end": 17758.02, + "probability": 0.9928 + }, + { + "start": 17758.9, + "end": 17762.04, + "probability": 0.9868 + }, + { + "start": 17762.04, + "end": 17765.24, + "probability": 0.9911 + }, + { + "start": 17766.12, + "end": 17770.48, + "probability": 0.9755 + }, + { + "start": 17771.02, + "end": 17773.18, + "probability": 0.8403 + }, + { + "start": 17773.66, + "end": 17778.46, + "probability": 0.9933 + }, + { + "start": 17778.88, + "end": 17780.52, + "probability": 0.9538 + }, + { + "start": 17781.22, + "end": 17784.88, + "probability": 0.9155 + }, + { + "start": 17785.16, + "end": 17788.26, + "probability": 0.949 + }, + { + "start": 17788.66, + "end": 17790.4, + "probability": 0.3504 + }, + { + "start": 17790.5, + "end": 17791.04, + "probability": 0.7723 + }, + { + "start": 17791.58, + "end": 17793.3, + "probability": 0.7568 + }, + { + "start": 17793.64, + "end": 17798.04, + "probability": 0.8701 + }, + { + "start": 17798.1, + "end": 17799.9, + "probability": 0.9604 + }, + { + "start": 17807.8, + "end": 17808.92, + "probability": 0.532 + }, + { + "start": 17809.08, + "end": 17811.2, + "probability": 0.8257 + }, + { + "start": 17812.36, + "end": 17815.02, + "probability": 0.9575 + }, + { + "start": 17815.18, + "end": 17818.14, + "probability": 0.8685 + }, + { + "start": 17818.72, + "end": 17822.34, + "probability": 0.7216 + }, + { + "start": 17822.78, + "end": 17825.19, + "probability": 0.9056 + }, + { + "start": 17825.5, + "end": 17826.34, + "probability": 0.7402 + }, + { + "start": 17826.36, + "end": 17828.48, + "probability": 0.8787 + }, + { + "start": 17829.62, + "end": 17831.42, + "probability": 0.4672 + }, + { + "start": 17832.04, + "end": 17834.44, + "probability": 0.6293 + }, + { + "start": 17835.22, + "end": 17837.0, + "probability": 0.8955 + }, + { + "start": 17837.86, + "end": 17838.24, + "probability": 0.9889 + }, + { + "start": 17839.64, + "end": 17840.4, + "probability": 0.865 + }, + { + "start": 17842.58, + "end": 17844.78, + "probability": 0.7561 + }, + { + "start": 17845.66, + "end": 17847.56, + "probability": 0.834 + }, + { + "start": 17848.78, + "end": 17850.8, + "probability": 0.9472 + }, + { + "start": 17851.56, + "end": 17854.18, + "probability": 0.9766 + }, + { + "start": 17854.88, + "end": 17855.3, + "probability": 0.9878 + }, + { + "start": 17856.1, + "end": 17856.82, + "probability": 0.4922 + }, + { + "start": 17858.14, + "end": 17858.56, + "probability": 0.8372 + }, + { + "start": 17859.3, + "end": 17863.34, + "probability": 0.7205 + }, + { + "start": 17865.04, + "end": 17866.22, + "probability": 0.9905 + }, + { + "start": 17866.92, + "end": 17868.68, + "probability": 0.8931 + }, + { + "start": 17870.98, + "end": 17873.26, + "probability": 0.9002 + }, + { + "start": 17875.4, + "end": 17879.54, + "probability": 0.9312 + }, + { + "start": 17880.76, + "end": 17882.58, + "probability": 0.9945 + }, + { + "start": 17883.8, + "end": 17887.34, + "probability": 0.7743 + }, + { + "start": 17888.26, + "end": 17889.5, + "probability": 0.8067 + }, + { + "start": 17890.98, + "end": 17893.0, + "probability": 0.8237 + }, + { + "start": 17894.5, + "end": 17896.48, + "probability": 0.6511 + }, + { + "start": 17897.36, + "end": 17897.86, + "probability": 0.987 + }, + { + "start": 17898.46, + "end": 17899.54, + "probability": 0.9355 + }, + { + "start": 17900.64, + "end": 17901.1, + "probability": 0.9964 + }, + { + "start": 17901.64, + "end": 17902.9, + "probability": 0.8252 + }, + { + "start": 17903.78, + "end": 17904.22, + "probability": 0.5636 + }, + { + "start": 17905.7, + "end": 17906.6, + "probability": 0.9445 + }, + { + "start": 17908.06, + "end": 17911.56, + "probability": 0.8233 + }, + { + "start": 17912.22, + "end": 17914.68, + "probability": 0.7002 + }, + { + "start": 17915.76, + "end": 17916.12, + "probability": 0.9767 + }, + { + "start": 17916.86, + "end": 17917.9, + "probability": 0.9512 + }, + { + "start": 17918.42, + "end": 17920.36, + "probability": 0.9375 + }, + { + "start": 17920.52, + "end": 17922.52, + "probability": 0.7782 + }, + { + "start": 17925.26, + "end": 17927.38, + "probability": 0.9569 + }, + { + "start": 17929.46, + "end": 17931.36, + "probability": 0.8747 + }, + { + "start": 17931.88, + "end": 17933.76, + "probability": 0.9846 + }, + { + "start": 17935.58, + "end": 17936.56, + "probability": 0.992 + }, + { + "start": 17937.74, + "end": 17938.86, + "probability": 0.9407 + }, + { + "start": 17939.56, + "end": 17943.3, + "probability": 0.5709 + }, + { + "start": 17945.12, + "end": 17945.88, + "probability": 0.6729 + }, + { + "start": 17946.76, + "end": 17948.4, + "probability": 0.9641 + }, + { + "start": 17949.32, + "end": 17951.14, + "probability": 0.9639 + }, + { + "start": 17951.96, + "end": 17953.76, + "probability": 0.865 + }, + { + "start": 17954.56, + "end": 17956.38, + "probability": 0.9449 + }, + { + "start": 17958.22, + "end": 17960.82, + "probability": 0.6571 + }, + { + "start": 17965.96, + "end": 17966.26, + "probability": 0.5369 + }, + { + "start": 17969.7, + "end": 17971.56, + "probability": 0.5723 + }, + { + "start": 17972.6, + "end": 17973.14, + "probability": 0.9678 + }, + { + "start": 17974.22, + "end": 17975.16, + "probability": 0.7068 + }, + { + "start": 17976.52, + "end": 17978.56, + "probability": 0.986 + }, + { + "start": 17981.62, + "end": 17982.24, + "probability": 0.9495 + }, + { + "start": 17982.88, + "end": 17983.74, + "probability": 0.7252 + }, + { + "start": 17984.84, + "end": 17985.32, + "probability": 0.9945 + }, + { + "start": 17986.18, + "end": 17987.04, + "probability": 0.8395 + }, + { + "start": 17990.14, + "end": 17992.02, + "probability": 0.9487 + }, + { + "start": 17992.96, + "end": 17994.1, + "probability": 0.7104 + }, + { + "start": 17997.6, + "end": 17999.44, + "probability": 0.8036 + }, + { + "start": 18000.18, + "end": 18002.72, + "probability": 0.8696 + }, + { + "start": 18004.04, + "end": 18005.82, + "probability": 0.9254 + }, + { + "start": 18010.66, + "end": 18013.08, + "probability": 0.6481 + }, + { + "start": 18013.62, + "end": 18018.64, + "probability": 0.9565 + }, + { + "start": 18021.16, + "end": 18022.98, + "probability": 0.937 + }, + { + "start": 18024.26, + "end": 18026.42, + "probability": 0.9435 + }, + { + "start": 18027.44, + "end": 18027.92, + "probability": 0.9829 + }, + { + "start": 18028.86, + "end": 18029.8, + "probability": 0.9385 + }, + { + "start": 18031.26, + "end": 18035.14, + "probability": 0.9573 + }, + { + "start": 18035.8, + "end": 18035.88, + "probability": 0.5419 + }, + { + "start": 18043.06, + "end": 18044.34, + "probability": 0.6483 + }, + { + "start": 18045.08, + "end": 18047.74, + "probability": 0.7279 + }, + { + "start": 18048.8, + "end": 18051.7, + "probability": 0.5122 + }, + { + "start": 18053.94, + "end": 18056.52, + "probability": 0.9102 + }, + { + "start": 18059.96, + "end": 18062.28, + "probability": 0.92 + }, + { + "start": 18063.4, + "end": 18065.02, + "probability": 0.9473 + }, + { + "start": 18065.52, + "end": 18065.52, + "probability": 0.4123 + }, + { + "start": 18065.52, + "end": 18065.52, + "probability": 0.4689 + }, + { + "start": 18080.26, + "end": 18081.17, + "probability": 0.5168 + }, + { + "start": 18082.42, + "end": 18083.88, + "probability": 0.9373 + }, + { + "start": 18084.7, + "end": 18085.52, + "probability": 0.8483 + }, + { + "start": 18086.42, + "end": 18088.48, + "probability": 0.9375 + }, + { + "start": 18089.02, + "end": 18090.86, + "probability": 0.8924 + }, + { + "start": 18091.6, + "end": 18094.78, + "probability": 0.9654 + }, + { + "start": 18095.36, + "end": 18096.62, + "probability": 0.9712 + }, + { + "start": 18097.86, + "end": 18098.3, + "probability": 0.9548 + }, + { + "start": 18099.26, + "end": 18100.06, + "probability": 0.851 + }, + { + "start": 18100.76, + "end": 18102.64, + "probability": 0.9759 + }, + { + "start": 18106.26, + "end": 18107.98, + "probability": 0.7099 + }, + { + "start": 18109.88, + "end": 18112.64, + "probability": 0.8597 + }, + { + "start": 18113.74, + "end": 18115.6, + "probability": 0.8542 + }, + { + "start": 18116.16, + "end": 18117.02, + "probability": 0.5602 + }, + { + "start": 18118.68, + "end": 18120.22, + "probability": 0.9383 + }, + { + "start": 18121.7, + "end": 18124.42, + "probability": 0.9651 + }, + { + "start": 18126.9, + "end": 18130.04, + "probability": 0.8178 + }, + { + "start": 18131.76, + "end": 18134.94, + "probability": 0.897 + }, + { + "start": 18137.14, + "end": 18137.77, + "probability": 0.6605 + }, + { + "start": 18138.9, + "end": 18140.84, + "probability": 0.7498 + }, + { + "start": 18142.42, + "end": 18146.92, + "probability": 0.9654 + }, + { + "start": 18147.6, + "end": 18149.78, + "probability": 0.971 + }, + { + "start": 18150.84, + "end": 18151.16, + "probability": 0.9058 + }, + { + "start": 18151.9, + "end": 18152.78, + "probability": 0.9804 + }, + { + "start": 18153.78, + "end": 18154.32, + "probability": 0.9963 + }, + { + "start": 18155.0, + "end": 18157.34, + "probability": 0.9811 + }, + { + "start": 18158.18, + "end": 18159.1, + "probability": 0.9249 + }, + { + "start": 18159.76, + "end": 18161.02, + "probability": 0.9678 + }, + { + "start": 18161.74, + "end": 18163.14, + "probability": 0.8299 + }, + { + "start": 18164.38, + "end": 18166.66, + "probability": 0.8676 + }, + { + "start": 18167.3, + "end": 18169.0, + "probability": 0.8864 + }, + { + "start": 18169.7, + "end": 18170.6, + "probability": 0.7849 + }, + { + "start": 18171.14, + "end": 18172.02, + "probability": 0.7065 + }, + { + "start": 18172.84, + "end": 18174.74, + "probability": 0.9044 + }, + { + "start": 18176.5, + "end": 18177.0, + "probability": 0.9661 + }, + { + "start": 18178.7, + "end": 18182.3, + "probability": 0.7419 + }, + { + "start": 18184.02, + "end": 18187.02, + "probability": 0.6305 + }, + { + "start": 18188.38, + "end": 18189.04, + "probability": 0.7666 + }, + { + "start": 18189.76, + "end": 18190.96, + "probability": 0.7783 + }, + { + "start": 18194.96, + "end": 18197.26, + "probability": 0.7281 + }, + { + "start": 18198.42, + "end": 18200.34, + "probability": 0.6023 + }, + { + "start": 18201.24, + "end": 18203.34, + "probability": 0.9341 + }, + { + "start": 18204.24, + "end": 18204.7, + "probability": 0.8713 + }, + { + "start": 18205.56, + "end": 18206.64, + "probability": 0.9065 + }, + { + "start": 18208.4, + "end": 18209.28, + "probability": 0.9894 + }, + { + "start": 18210.22, + "end": 18211.22, + "probability": 0.9246 + }, + { + "start": 18212.36, + "end": 18214.36, + "probability": 0.9624 + }, + { + "start": 18216.96, + "end": 18219.3, + "probability": 0.9221 + }, + { + "start": 18220.62, + "end": 18220.92, + "probability": 0.1708 + }, + { + "start": 18222.74, + "end": 18223.88, + "probability": 0.342 + }, + { + "start": 18224.8, + "end": 18225.1, + "probability": 0.5189 + }, + { + "start": 18225.86, + "end": 18227.0, + "probability": 0.5971 + }, + { + "start": 18228.34, + "end": 18231.48, + "probability": 0.8654 + }, + { + "start": 18232.58, + "end": 18233.14, + "probability": 0.973 + }, + { + "start": 18233.76, + "end": 18234.62, + "probability": 0.9047 + }, + { + "start": 18234.92, + "end": 18236.56, + "probability": 0.8234 + }, + { + "start": 18237.06, + "end": 18238.84, + "probability": 0.9455 + }, + { + "start": 18241.9, + "end": 18247.32, + "probability": 0.9712 + }, + { + "start": 18248.0, + "end": 18248.48, + "probability": 0.8213 + }, + { + "start": 18249.16, + "end": 18250.36, + "probability": 0.9355 + }, + { + "start": 18251.56, + "end": 18253.42, + "probability": 0.677 + }, + { + "start": 18254.34, + "end": 18256.3, + "probability": 0.8683 + }, + { + "start": 18260.14, + "end": 18263.12, + "probability": 0.8767 + }, + { + "start": 18264.02, + "end": 18264.5, + "probability": 0.9468 + }, + { + "start": 18265.46, + "end": 18266.62, + "probability": 0.8629 + }, + { + "start": 18268.94, + "end": 18271.26, + "probability": 0.9439 + }, + { + "start": 18273.34, + "end": 18275.82, + "probability": 0.9232 + }, + { + "start": 18277.7, + "end": 18277.94, + "probability": 0.2277 + }, + { + "start": 18288.48, + "end": 18289.76, + "probability": 0.4341 + }, + { + "start": 18290.86, + "end": 18292.98, + "probability": 0.5932 + }, + { + "start": 18293.02, + "end": 18295.22, + "probability": 0.8429 + }, + { + "start": 18295.3, + "end": 18297.06, + "probability": 0.8135 + }, + { + "start": 18297.24, + "end": 18297.94, + "probability": 0.8276 + }, + { + "start": 18298.6, + "end": 18302.4, + "probability": 0.9206 + }, + { + "start": 18303.24, + "end": 18304.66, + "probability": 0.4192 + }, + { + "start": 18305.4, + "end": 18307.24, + "probability": 0.8841 + }, + { + "start": 18307.38, + "end": 18309.28, + "probability": 0.9512 + }, + { + "start": 18310.02, + "end": 18312.58, + "probability": 0.9026 + }, + { + "start": 18313.28, + "end": 18315.5, + "probability": 0.9121 + }, + { + "start": 18316.6, + "end": 18318.26, + "probability": 0.7784 + }, + { + "start": 18319.12, + "end": 18320.46, + "probability": 0.875 + }, + { + "start": 18321.3, + "end": 18322.2, + "probability": 0.805 + }, + { + "start": 18323.36, + "end": 18325.54, + "probability": 0.9798 + }, + { + "start": 18327.78, + "end": 18330.08, + "probability": 0.896 + }, + { + "start": 18331.14, + "end": 18333.22, + "probability": 0.9888 + }, + { + "start": 18334.4, + "end": 18337.24, + "probability": 0.944 + }, + { + "start": 18343.24, + "end": 18344.32, + "probability": 0.28 + }, + { + "start": 18345.14, + "end": 18345.9, + "probability": 0.9648 + }, + { + "start": 18346.58, + "end": 18347.26, + "probability": 0.6576 + }, + { + "start": 18348.0, + "end": 18349.42, + "probability": 0.8992 + }, + { + "start": 18352.58, + "end": 18354.2, + "probability": 0.9517 + }, + { + "start": 18354.9, + "end": 18355.88, + "probability": 0.7322 + }, + { + "start": 18356.74, + "end": 18358.64, + "probability": 0.9274 + }, + { + "start": 18359.16, + "end": 18361.28, + "probability": 0.9585 + }, + { + "start": 18362.9, + "end": 18364.72, + "probability": 0.642 + }, + { + "start": 18365.24, + "end": 18367.28, + "probability": 0.859 + }, + { + "start": 18367.68, + "end": 18369.7, + "probability": 0.9019 + }, + { + "start": 18369.86, + "end": 18371.76, + "probability": 0.9933 + }, + { + "start": 18373.36, + "end": 18376.54, + "probability": 0.9471 + }, + { + "start": 18378.64, + "end": 18382.92, + "probability": 0.9672 + }, + { + "start": 18384.26, + "end": 18387.38, + "probability": 0.6689 + }, + { + "start": 18388.94, + "end": 18391.36, + "probability": 0.8683 + }, + { + "start": 18392.44, + "end": 18395.94, + "probability": 0.873 + }, + { + "start": 18396.52, + "end": 18398.34, + "probability": 0.9571 + }, + { + "start": 18399.44, + "end": 18400.38, + "probability": 0.9938 + }, + { + "start": 18401.22, + "end": 18401.76, + "probability": 0.9585 + }, + { + "start": 18405.38, + "end": 18406.5, + "probability": 0.3904 + }, + { + "start": 18407.04, + "end": 18407.46, + "probability": 0.6788 + }, + { + "start": 18408.56, + "end": 18409.62, + "probability": 0.7408 + }, + { + "start": 18410.86, + "end": 18412.56, + "probability": 0.8745 + }, + { + "start": 18413.72, + "end": 18416.36, + "probability": 0.6323 + }, + { + "start": 18417.3, + "end": 18423.6, + "probability": 0.8392 + }, + { + "start": 18424.26, + "end": 18426.28, + "probability": 0.9344 + }, + { + "start": 18427.02, + "end": 18428.78, + "probability": 0.8286 + }, + { + "start": 18429.42, + "end": 18431.56, + "probability": 0.976 + }, + { + "start": 18432.84, + "end": 18435.36, + "probability": 0.5297 + }, + { + "start": 18435.88, + "end": 18437.78, + "probability": 0.8152 + }, + { + "start": 18438.94, + "end": 18441.18, + "probability": 0.9549 + }, + { + "start": 18441.72, + "end": 18442.48, + "probability": 0.967 + }, + { + "start": 18443.22, + "end": 18444.62, + "probability": 0.9132 + }, + { + "start": 18444.78, + "end": 18448.76, + "probability": 0.8825 + }, + { + "start": 18449.68, + "end": 18451.8, + "probability": 0.934 + }, + { + "start": 18453.04, + "end": 18454.7, + "probability": 0.953 + }, + { + "start": 18454.74, + "end": 18456.26, + "probability": 0.9215 + }, + { + "start": 18456.58, + "end": 18458.26, + "probability": 0.9719 + }, + { + "start": 18458.7, + "end": 18460.52, + "probability": 0.6597 + }, + { + "start": 18460.6, + "end": 18461.28, + "probability": 0.7472 + }, + { + "start": 18462.09, + "end": 18466.58, + "probability": 0.8488 + }, + { + "start": 18466.6, + "end": 18468.0, + "probability": 0.0579 + }, + { + "start": 18468.12, + "end": 18468.2, + "probability": 0.3775 + }, + { + "start": 18468.2, + "end": 18469.65, + "probability": 0.3008 + }, + { + "start": 18471.92, + "end": 18472.14, + "probability": 0.9463 + }, + { + "start": 18476.26, + "end": 18477.92, + "probability": 0.6174 + }, + { + "start": 18478.78, + "end": 18482.1, + "probability": 0.7847 + }, + { + "start": 18483.98, + "end": 18484.71, + "probability": 0.0171 + }, + { + "start": 18485.8, + "end": 18487.24, + "probability": 0.8413 + }, + { + "start": 18487.76, + "end": 18491.36, + "probability": 0.9005 + }, + { + "start": 18492.9, + "end": 18495.76, + "probability": 0.9988 + }, + { + "start": 18496.52, + "end": 18498.18, + "probability": 0.4455 + }, + { + "start": 18498.26, + "end": 18499.44, + "probability": 0.7984 + }, + { + "start": 18500.84, + "end": 18503.16, + "probability": 0.059 + }, + { + "start": 18504.86, + "end": 18507.28, + "probability": 0.1101 + }, + { + "start": 18507.86, + "end": 18510.7, + "probability": 0.0241 + }, + { + "start": 18511.26, + "end": 18511.82, + "probability": 0.1018 + }, + { + "start": 18521.92, + "end": 18522.22, + "probability": 0.3426 + }, + { + "start": 18526.4, + "end": 18527.16, + "probability": 0.0423 + }, + { + "start": 18572.48, + "end": 18572.82, + "probability": 0.0739 + }, + { + "start": 18573.38, + "end": 18576.1, + "probability": 0.5296 + }, + { + "start": 18579.0, + "end": 18582.08, + "probability": 0.7038 + }, + { + "start": 18582.82, + "end": 18584.32, + "probability": 0.0939 + }, + { + "start": 18584.36, + "end": 18587.72, + "probability": 0.9099 + }, + { + "start": 18588.8, + "end": 18591.04, + "probability": 0.9816 + }, + { + "start": 18592.36, + "end": 18594.7, + "probability": 0.958 + }, + { + "start": 18596.8, + "end": 18598.44, + "probability": 0.6649 + }, + { + "start": 18600.36, + "end": 18601.8, + "probability": 0.6763 + }, + { + "start": 18603.32, + "end": 18604.1, + "probability": 0.5519 + }, + { + "start": 18604.18, + "end": 18605.34, + "probability": 0.8762 + }, + { + "start": 18605.4, + "end": 18607.0, + "probability": 0.8899 + }, + { + "start": 18607.6, + "end": 18610.0, + "probability": 0.8274 + }, + { + "start": 18615.76, + "end": 18617.66, + "probability": 0.7574 + }, + { + "start": 18629.42, + "end": 18630.4, + "probability": 0.0407 + }, + { + "start": 18630.56, + "end": 18634.04, + "probability": 0.6656 + }, + { + "start": 18635.42, + "end": 18637.64, + "probability": 0.7744 + }, + { + "start": 18638.78, + "end": 18646.82, + "probability": 0.9964 + }, + { + "start": 18647.56, + "end": 18650.42, + "probability": 0.9847 + }, + { + "start": 18651.84, + "end": 18652.74, + "probability": 0.7925 + }, + { + "start": 18654.38, + "end": 18658.24, + "probability": 0.926 + }, + { + "start": 18659.16, + "end": 18660.38, + "probability": 0.9654 + }, + { + "start": 18662.18, + "end": 18666.52, + "probability": 0.9583 + }, + { + "start": 18667.24, + "end": 18669.14, + "probability": 0.8889 + }, + { + "start": 18669.66, + "end": 18673.32, + "probability": 0.9549 + }, + { + "start": 18674.28, + "end": 18678.38, + "probability": 0.9156 + }, + { + "start": 18679.12, + "end": 18683.18, + "probability": 0.9619 + }, + { + "start": 18684.08, + "end": 18684.64, + "probability": 0.7256 + }, + { + "start": 18685.44, + "end": 18687.28, + "probability": 0.9976 + }, + { + "start": 18688.4, + "end": 18690.34, + "probability": 0.9948 + }, + { + "start": 18691.08, + "end": 18696.72, + "probability": 0.9514 + }, + { + "start": 18697.54, + "end": 18701.5, + "probability": 0.9632 + }, + { + "start": 18702.44, + "end": 18705.26, + "probability": 0.9353 + }, + { + "start": 18705.86, + "end": 18707.18, + "probability": 0.6862 + }, + { + "start": 18710.6, + "end": 18712.7, + "probability": 0.9864 + }, + { + "start": 18713.54, + "end": 18715.04, + "probability": 0.9969 + }, + { + "start": 18716.06, + "end": 18722.36, + "probability": 0.96 + }, + { + "start": 18723.56, + "end": 18727.46, + "probability": 0.9801 + }, + { + "start": 18728.32, + "end": 18730.09, + "probability": 0.9935 + }, + { + "start": 18730.92, + "end": 18732.36, + "probability": 0.7943 + }, + { + "start": 18733.44, + "end": 18735.46, + "probability": 0.8144 + }, + { + "start": 18736.14, + "end": 18738.51, + "probability": 0.9148 + }, + { + "start": 18740.1, + "end": 18742.07, + "probability": 0.9048 + }, + { + "start": 18742.94, + "end": 18744.08, + "probability": 0.9735 + }, + { + "start": 18744.96, + "end": 18749.62, + "probability": 0.9919 + }, + { + "start": 18750.06, + "end": 18753.22, + "probability": 0.9151 + }, + { + "start": 18754.1, + "end": 18756.3, + "probability": 0.8376 + }, + { + "start": 18757.0, + "end": 18758.5, + "probability": 0.9742 + }, + { + "start": 18759.48, + "end": 18762.2, + "probability": 0.9749 + }, + { + "start": 18763.26, + "end": 18765.42, + "probability": 0.9884 + }, + { + "start": 18766.2, + "end": 18767.2, + "probability": 0.9814 + }, + { + "start": 18768.18, + "end": 18768.99, + "probability": 0.8192 + }, + { + "start": 18770.38, + "end": 18774.26, + "probability": 0.9938 + }, + { + "start": 18775.36, + "end": 18777.04, + "probability": 0.989 + }, + { + "start": 18777.7, + "end": 18778.84, + "probability": 0.8621 + }, + { + "start": 18779.76, + "end": 18784.06, + "probability": 0.9957 + }, + { + "start": 18785.0, + "end": 18786.78, + "probability": 0.6004 + }, + { + "start": 18788.22, + "end": 18790.14, + "probability": 0.995 + }, + { + "start": 18791.14, + "end": 18792.3, + "probability": 0.9392 + }, + { + "start": 18794.24, + "end": 18795.96, + "probability": 0.9992 + }, + { + "start": 18796.64, + "end": 18798.18, + "probability": 0.9984 + }, + { + "start": 18799.02, + "end": 18801.12, + "probability": 0.9982 + }, + { + "start": 18802.1, + "end": 18804.04, + "probability": 0.9292 + }, + { + "start": 18806.82, + "end": 18808.62, + "probability": 0.808 + }, + { + "start": 18810.28, + "end": 18810.4, + "probability": 0.5185 + }, + { + "start": 18814.34, + "end": 18815.12, + "probability": 0.7778 + }, + { + "start": 18816.28, + "end": 18817.5, + "probability": 0.9987 + }, + { + "start": 18818.06, + "end": 18819.72, + "probability": 0.9355 + }, + { + "start": 18821.06, + "end": 18822.34, + "probability": 0.8988 + }, + { + "start": 18823.24, + "end": 18825.36, + "probability": 0.9644 + }, + { + "start": 18826.72, + "end": 18830.1, + "probability": 0.9924 + }, + { + "start": 18831.06, + "end": 18832.98, + "probability": 0.9875 + }, + { + "start": 18834.18, + "end": 18834.74, + "probability": 0.8302 + }, + { + "start": 18835.62, + "end": 18836.5, + "probability": 0.873 + }, + { + "start": 18837.18, + "end": 18840.32, + "probability": 0.7057 + }, + { + "start": 18841.2, + "end": 18842.06, + "probability": 0.6224 + }, + { + "start": 18843.14, + "end": 18845.0, + "probability": 0.9868 + }, + { + "start": 18845.78, + "end": 18846.66, + "probability": 0.9628 + }, + { + "start": 18847.52, + "end": 18848.38, + "probability": 0.9149 + }, + { + "start": 18849.14, + "end": 18850.38, + "probability": 0.6161 + }, + { + "start": 18851.44, + "end": 18853.12, + "probability": 0.974 + }, + { + "start": 18853.66, + "end": 18855.52, + "probability": 0.9316 + }, + { + "start": 18856.74, + "end": 18859.82, + "probability": 0.9705 + }, + { + "start": 18861.52, + "end": 18863.01, + "probability": 0.9965 + }, + { + "start": 18863.68, + "end": 18865.26, + "probability": 0.8697 + }, + { + "start": 18866.06, + "end": 18867.08, + "probability": 0.6349 + }, + { + "start": 18868.5, + "end": 18870.04, + "probability": 0.97 + }, + { + "start": 18871.68, + "end": 18872.72, + "probability": 0.943 + }, + { + "start": 18873.48, + "end": 18874.42, + "probability": 0.7956 + }, + { + "start": 18875.18, + "end": 18876.1, + "probability": 0.9828 + }, + { + "start": 18876.7, + "end": 18878.9, + "probability": 0.9947 + }, + { + "start": 18880.16, + "end": 18885.72, + "probability": 0.9802 + }, + { + "start": 18886.54, + "end": 18887.74, + "probability": 0.9878 + }, + { + "start": 18888.92, + "end": 18890.58, + "probability": 0.7847 + }, + { + "start": 18892.1, + "end": 18893.7, + "probability": 0.8501 + }, + { + "start": 18894.42, + "end": 18895.42, + "probability": 0.892 + }, + { + "start": 18896.66, + "end": 18901.3, + "probability": 0.9834 + }, + { + "start": 18902.14, + "end": 18904.52, + "probability": 0.8823 + }, + { + "start": 18905.16, + "end": 18907.18, + "probability": 0.9951 + }, + { + "start": 18908.98, + "end": 18910.98, + "probability": 0.9684 + }, + { + "start": 18911.86, + "end": 18913.14, + "probability": 0.8592 + }, + { + "start": 18914.12, + "end": 18917.82, + "probability": 0.9731 + }, + { + "start": 18919.32, + "end": 18921.36, + "probability": 0.9022 + }, + { + "start": 18922.5, + "end": 18923.9, + "probability": 0.5023 + }, + { + "start": 18924.68, + "end": 18926.68, + "probability": 0.9596 + }, + { + "start": 18928.52, + "end": 18930.38, + "probability": 0.9729 + }, + { + "start": 18932.0, + "end": 18933.48, + "probability": 0.9843 + }, + { + "start": 18934.52, + "end": 18939.74, + "probability": 0.9945 + }, + { + "start": 18940.54, + "end": 18941.28, + "probability": 0.8032 + }, + { + "start": 18942.0, + "end": 18942.72, + "probability": 0.8946 + }, + { + "start": 18944.82, + "end": 18950.86, + "probability": 0.9978 + }, + { + "start": 18951.44, + "end": 18952.38, + "probability": 0.7663 + }, + { + "start": 18952.92, + "end": 18953.74, + "probability": 0.7112 + }, + { + "start": 18954.9, + "end": 18956.58, + "probability": 0.981 + }, + { + "start": 18957.16, + "end": 18958.72, + "probability": 0.9868 + }, + { + "start": 18959.64, + "end": 18961.8, + "probability": 0.9185 + }, + { + "start": 18962.9, + "end": 18964.82, + "probability": 0.9985 + }, + { + "start": 18965.62, + "end": 18966.3, + "probability": 0.6736 + }, + { + "start": 18967.51, + "end": 18971.74, + "probability": 0.9923 + }, + { + "start": 18972.34, + "end": 18974.26, + "probability": 0.654 + }, + { + "start": 18975.34, + "end": 18979.12, + "probability": 0.9409 + }, + { + "start": 18981.72, + "end": 18983.14, + "probability": 0.9868 + }, + { + "start": 18984.34, + "end": 18985.16, + "probability": 0.6476 + }, + { + "start": 18985.9, + "end": 18990.94, + "probability": 0.9497 + }, + { + "start": 18991.82, + "end": 18998.68, + "probability": 0.9953 + }, + { + "start": 18999.7, + "end": 19000.68, + "probability": 0.8647 + }, + { + "start": 19001.52, + "end": 19002.2, + "probability": 0.6186 + }, + { + "start": 19003.38, + "end": 19003.92, + "probability": 0.3129 + }, + { + "start": 19005.56, + "end": 19010.36, + "probability": 0.9786 + }, + { + "start": 19011.48, + "end": 19013.62, + "probability": 0.9718 + }, + { + "start": 19014.96, + "end": 19016.23, + "probability": 0.9702 + }, + { + "start": 19017.16, + "end": 19018.54, + "probability": 0.9867 + }, + { + "start": 19019.2, + "end": 19020.42, + "probability": 0.9489 + }, + { + "start": 19021.04, + "end": 19022.16, + "probability": 0.9317 + }, + { + "start": 19023.08, + "end": 19024.72, + "probability": 0.7499 + }, + { + "start": 19025.98, + "end": 19027.99, + "probability": 0.9953 + }, + { + "start": 19028.68, + "end": 19030.18, + "probability": 0.9729 + }, + { + "start": 19030.8, + "end": 19032.3, + "probability": 0.9521 + }, + { + "start": 19034.88, + "end": 19036.92, + "probability": 0.9684 + }, + { + "start": 19037.78, + "end": 19039.3, + "probability": 0.8586 + }, + { + "start": 19040.0, + "end": 19041.69, + "probability": 0.9854 + }, + { + "start": 19043.46, + "end": 19045.95, + "probability": 0.9816 + }, + { + "start": 19047.16, + "end": 19047.9, + "probability": 0.9337 + }, + { + "start": 19049.02, + "end": 19052.04, + "probability": 0.8981 + }, + { + "start": 19052.88, + "end": 19053.48, + "probability": 0.9485 + }, + { + "start": 19055.98, + "end": 19061.32, + "probability": 0.9983 + }, + { + "start": 19063.0, + "end": 19063.38, + "probability": 0.921 + }, + { + "start": 19064.22, + "end": 19067.36, + "probability": 0.9104 + }, + { + "start": 19068.14, + "end": 19069.78, + "probability": 0.9926 + }, + { + "start": 19071.36, + "end": 19071.96, + "probability": 0.6663 + }, + { + "start": 19072.84, + "end": 19074.44, + "probability": 0.9894 + }, + { + "start": 19075.6, + "end": 19076.98, + "probability": 0.8325 + }, + { + "start": 19079.2, + "end": 19079.5, + "probability": 0.9295 + }, + { + "start": 19081.98, + "end": 19084.8, + "probability": 0.7 + }, + { + "start": 19085.5, + "end": 19086.32, + "probability": 0.9075 + }, + { + "start": 19087.28, + "end": 19088.92, + "probability": 0.9559 + }, + { + "start": 19091.02, + "end": 19094.06, + "probability": 0.9829 + }, + { + "start": 19095.68, + "end": 19095.9, + "probability": 0.7448 + }, + { + "start": 19096.6, + "end": 19098.08, + "probability": 0.8521 + }, + { + "start": 19100.54, + "end": 19105.18, + "probability": 0.9909 + }, + { + "start": 19105.98, + "end": 19110.72, + "probability": 0.9832 + }, + { + "start": 19111.4, + "end": 19113.52, + "probability": 0.9834 + }, + { + "start": 19114.68, + "end": 19119.4, + "probability": 0.8807 + }, + { + "start": 19120.54, + "end": 19125.66, + "probability": 0.9669 + }, + { + "start": 19126.5, + "end": 19130.7, + "probability": 0.9648 + }, + { + "start": 19131.82, + "end": 19132.92, + "probability": 0.8635 + }, + { + "start": 19134.64, + "end": 19136.88, + "probability": 0.9792 + }, + { + "start": 19137.34, + "end": 19139.26, + "probability": 0.8096 + }, + { + "start": 19140.02, + "end": 19140.62, + "probability": 0.5207 + }, + { + "start": 19141.24, + "end": 19147.62, + "probability": 0.9375 + }, + { + "start": 19148.28, + "end": 19151.06, + "probability": 0.9569 + }, + { + "start": 19152.02, + "end": 19153.96, + "probability": 0.9114 + }, + { + "start": 19154.76, + "end": 19156.1, + "probability": 0.979 + }, + { + "start": 19156.92, + "end": 19159.88, + "probability": 0.9781 + }, + { + "start": 19160.58, + "end": 19160.78, + "probability": 0.2103 + }, + { + "start": 19160.98, + "end": 19162.18, + "probability": 0.9248 + }, + { + "start": 19163.22, + "end": 19167.16, + "probability": 0.9536 + }, + { + "start": 19168.14, + "end": 19169.16, + "probability": 0.8998 + }, + { + "start": 19169.78, + "end": 19172.49, + "probability": 0.9775 + }, + { + "start": 19173.74, + "end": 19176.1, + "probability": 0.8999 + }, + { + "start": 19176.8, + "end": 19177.56, + "probability": 0.6693 + }, + { + "start": 19179.1, + "end": 19179.78, + "probability": 0.987 + }, + { + "start": 19181.6, + "end": 19185.04, + "probability": 0.4177 + }, + { + "start": 19187.02, + "end": 19188.54, + "probability": 0.9907 + }, + { + "start": 19190.8, + "end": 19192.44, + "probability": 0.9213 + }, + { + "start": 19193.08, + "end": 19195.28, + "probability": 0.9487 + }, + { + "start": 19196.54, + "end": 19197.48, + "probability": 0.9722 + }, + { + "start": 19199.14, + "end": 19201.02, + "probability": 0.9985 + }, + { + "start": 19202.16, + "end": 19203.5, + "probability": 0.9955 + }, + { + "start": 19203.52, + "end": 19204.36, + "probability": 0.7952 + }, + { + "start": 19206.0, + "end": 19207.72, + "probability": 0.9966 + }, + { + "start": 19208.42, + "end": 19212.28, + "probability": 0.9461 + }, + { + "start": 19213.08, + "end": 19214.7, + "probability": 0.9863 + }, + { + "start": 19215.62, + "end": 19216.96, + "probability": 0.9501 + }, + { + "start": 19218.0, + "end": 19220.06, + "probability": 0.9888 + }, + { + "start": 19221.14, + "end": 19223.22, + "probability": 0.9961 + }, + { + "start": 19225.12, + "end": 19226.18, + "probability": 0.9727 + }, + { + "start": 19227.08, + "end": 19229.08, + "probability": 0.9899 + }, + { + "start": 19230.68, + "end": 19232.76, + "probability": 0.853 + }, + { + "start": 19233.88, + "end": 19238.28, + "probability": 0.979 + }, + { + "start": 19239.16, + "end": 19240.72, + "probability": 0.9801 + }, + { + "start": 19241.6, + "end": 19244.98, + "probability": 0.9952 + }, + { + "start": 19245.28, + "end": 19248.18, + "probability": 0.9971 + }, + { + "start": 19248.72, + "end": 19252.18, + "probability": 0.8774 + }, + { + "start": 19252.98, + "end": 19254.27, + "probability": 0.8599 + }, + { + "start": 19255.1, + "end": 19256.86, + "probability": 0.9971 + }, + { + "start": 19257.64, + "end": 19257.92, + "probability": 0.8008 + }, + { + "start": 19258.82, + "end": 19259.72, + "probability": 0.8201 + }, + { + "start": 19260.48, + "end": 19265.1, + "probability": 0.9788 + }, + { + "start": 19265.7, + "end": 19267.16, + "probability": 0.9961 + }, + { + "start": 19267.92, + "end": 19270.76, + "probability": 0.7722 + }, + { + "start": 19271.3, + "end": 19274.9, + "probability": 0.6967 + }, + { + "start": 19286.2, + "end": 19287.16, + "probability": 0.94 + }, + { + "start": 19293.94, + "end": 19294.85, + "probability": 0.6743 + }, + { + "start": 19297.02, + "end": 19297.92, + "probability": 0.6879 + }, + { + "start": 19299.41, + "end": 19302.5, + "probability": 0.9978 + }, + { + "start": 19303.44, + "end": 19306.62, + "probability": 0.999 + }, + { + "start": 19307.8, + "end": 19311.68, + "probability": 0.9924 + }, + { + "start": 19311.8, + "end": 19315.58, + "probability": 0.9976 + }, + { + "start": 19316.7, + "end": 19320.0, + "probability": 0.9951 + }, + { + "start": 19320.74, + "end": 19327.82, + "probability": 0.9988 + }, + { + "start": 19328.02, + "end": 19331.56, + "probability": 0.9968 + }, + { + "start": 19332.24, + "end": 19336.84, + "probability": 0.9645 + }, + { + "start": 19337.62, + "end": 19340.92, + "probability": 0.998 + }, + { + "start": 19341.62, + "end": 19344.7, + "probability": 0.9938 + }, + { + "start": 19344.88, + "end": 19346.42, + "probability": 0.8268 + }, + { + "start": 19349.16, + "end": 19350.32, + "probability": 0.7036 + }, + { + "start": 19350.48, + "end": 19350.7, + "probability": 0.7488 + }, + { + "start": 19350.86, + "end": 19352.88, + "probability": 0.8247 + }, + { + "start": 19353.74, + "end": 19355.94, + "probability": 0.9917 + }, + { + "start": 19356.74, + "end": 19358.78, + "probability": 0.928 + }, + { + "start": 19358.94, + "end": 19361.12, + "probability": 0.9733 + }, + { + "start": 19361.2, + "end": 19366.3, + "probability": 0.9804 + }, + { + "start": 19367.14, + "end": 19368.62, + "probability": 0.9956 + }, + { + "start": 19368.74, + "end": 19371.82, + "probability": 0.9933 + }, + { + "start": 19372.44, + "end": 19373.7, + "probability": 0.7648 + }, + { + "start": 19374.22, + "end": 19377.68, + "probability": 0.8552 + }, + { + "start": 19378.32, + "end": 19382.04, + "probability": 0.9828 + }, + { + "start": 19382.52, + "end": 19389.24, + "probability": 0.984 + }, + { + "start": 19390.84, + "end": 19392.15, + "probability": 0.8345 + }, + { + "start": 19393.46, + "end": 19395.78, + "probability": 0.7352 + }, + { + "start": 19395.9, + "end": 19398.94, + "probability": 0.9927 + }, + { + "start": 19400.14, + "end": 19401.62, + "probability": 0.9202 + }, + { + "start": 19402.3, + "end": 19404.27, + "probability": 0.9983 + }, + { + "start": 19405.5, + "end": 19408.48, + "probability": 0.966 + }, + { + "start": 19408.58, + "end": 19410.19, + "probability": 0.8186 + }, + { + "start": 19410.72, + "end": 19414.1, + "probability": 0.8776 + }, + { + "start": 19414.1, + "end": 19418.98, + "probability": 0.9429 + }, + { + "start": 19419.86, + "end": 19421.02, + "probability": 0.9873 + }, + { + "start": 19421.9, + "end": 19426.8, + "probability": 0.9844 + }, + { + "start": 19427.62, + "end": 19429.48, + "probability": 0.6756 + }, + { + "start": 19430.66, + "end": 19431.94, + "probability": 0.895 + }, + { + "start": 19432.7, + "end": 19435.6, + "probability": 0.8549 + }, + { + "start": 19438.52, + "end": 19438.52, + "probability": 0.0147 + }, + { + "start": 19438.52, + "end": 19439.02, + "probability": 0.1341 + }, + { + "start": 19439.72, + "end": 19440.68, + "probability": 0.8036 + }, + { + "start": 19441.44, + "end": 19445.54, + "probability": 0.679 + }, + { + "start": 19446.84, + "end": 19449.38, + "probability": 0.9824 + }, + { + "start": 19449.92, + "end": 19452.77, + "probability": 0.9971 + }, + { + "start": 19453.5, + "end": 19455.28, + "probability": 0.9758 + }, + { + "start": 19456.34, + "end": 19458.37, + "probability": 0.9834 + }, + { + "start": 19458.58, + "end": 19459.12, + "probability": 0.9398 + }, + { + "start": 19460.48, + "end": 19465.3, + "probability": 0.9951 + }, + { + "start": 19466.54, + "end": 19471.34, + "probability": 0.9858 + }, + { + "start": 19471.36, + "end": 19477.06, + "probability": 0.9937 + }, + { + "start": 19479.02, + "end": 19482.4, + "probability": 0.9724 + }, + { + "start": 19482.52, + "end": 19482.52, + "probability": 0.1557 + }, + { + "start": 19482.52, + "end": 19487.32, + "probability": 0.9891 + }, + { + "start": 19488.2, + "end": 19491.64, + "probability": 0.9838 + }, + { + "start": 19492.2, + "end": 19493.22, + "probability": 0.8431 + }, + { + "start": 19493.28, + "end": 19493.96, + "probability": 0.9242 + }, + { + "start": 19494.56, + "end": 19496.2, + "probability": 0.987 + }, + { + "start": 19496.32, + "end": 19497.34, + "probability": 0.7355 + }, + { + "start": 19497.74, + "end": 19500.46, + "probability": 0.9958 + }, + { + "start": 19500.82, + "end": 19501.3, + "probability": 0.7318 + }, + { + "start": 19501.36, + "end": 19503.1, + "probability": 0.99 + }, + { + "start": 19503.92, + "end": 19505.46, + "probability": 0.9608 + }, + { + "start": 19505.82, + "end": 19507.18, + "probability": 0.7978 + }, + { + "start": 19507.34, + "end": 19509.02, + "probability": 0.9346 + }, + { + "start": 19509.86, + "end": 19510.96, + "probability": 0.7761 + }, + { + "start": 19510.98, + "end": 19512.2, + "probability": 0.3419 + }, + { + "start": 19512.28, + "end": 19513.8, + "probability": 0.7168 + }, + { + "start": 19513.8, + "end": 19515.3, + "probability": 0.7423 + }, + { + "start": 19515.92, + "end": 19516.41, + "probability": 0.927 + }, + { + "start": 19517.56, + "end": 19518.5, + "probability": 0.8457 + }, + { + "start": 19519.04, + "end": 19521.84, + "probability": 0.9572 + }, + { + "start": 19523.16, + "end": 19524.7, + "probability": 0.9911 + }, + { + "start": 19525.48, + "end": 19527.56, + "probability": 0.98 + }, + { + "start": 19528.16, + "end": 19533.32, + "probability": 0.985 + }, + { + "start": 19533.32, + "end": 19537.28, + "probability": 0.9148 + }, + { + "start": 19537.34, + "end": 19537.7, + "probability": 0.52 + }, + { + "start": 19538.04, + "end": 19540.56, + "probability": 0.9685 + }, + { + "start": 19541.02, + "end": 19544.9, + "probability": 0.8047 + }, + { + "start": 19544.9, + "end": 19547.76, + "probability": 0.9916 + }, + { + "start": 19548.44, + "end": 19549.84, + "probability": 0.4833 + }, + { + "start": 19550.4, + "end": 19550.9, + "probability": 0.8811 + }, + { + "start": 19551.9, + "end": 19555.54, + "probability": 0.9719 + }, + { + "start": 19556.22, + "end": 19556.32, + "probability": 0.4107 + }, + { + "start": 19557.12, + "end": 19557.88, + "probability": 0.8052 + }, + { + "start": 19558.8, + "end": 19559.14, + "probability": 0.6212 + }, + { + "start": 19559.28, + "end": 19562.98, + "probability": 0.9722 + }, + { + "start": 19563.74, + "end": 19566.12, + "probability": 0.9559 + }, + { + "start": 19567.04, + "end": 19568.56, + "probability": 0.9302 + }, + { + "start": 19569.82, + "end": 19571.94, + "probability": 0.9395 + }, + { + "start": 19583.54, + "end": 19585.0, + "probability": 0.4618 + }, + { + "start": 19585.18, + "end": 19588.06, + "probability": 0.873 + }, + { + "start": 19588.68, + "end": 19594.82, + "probability": 0.9094 + }, + { + "start": 19595.84, + "end": 19598.32, + "probability": 0.5694 + }, + { + "start": 19599.46, + "end": 19603.66, + "probability": 0.9494 + }, + { + "start": 19604.58, + "end": 19605.76, + "probability": 0.0756 + }, + { + "start": 19606.46, + "end": 19609.64, + "probability": 0.7005 + }, + { + "start": 19609.76, + "end": 19614.32, + "probability": 0.9865 + }, + { + "start": 19615.0, + "end": 19617.96, + "probability": 0.9829 + }, + { + "start": 19618.92, + "end": 19622.96, + "probability": 0.9802 + }, + { + "start": 19623.12, + "end": 19626.72, + "probability": 0.9755 + }, + { + "start": 19626.84, + "end": 19632.08, + "probability": 0.9919 + }, + { + "start": 19632.12, + "end": 19634.74, + "probability": 0.8093 + }, + { + "start": 19636.04, + "end": 19636.8, + "probability": 0.7898 + }, + { + "start": 19637.82, + "end": 19641.08, + "probability": 0.9956 + }, + { + "start": 19641.08, + "end": 19647.52, + "probability": 0.9933 + }, + { + "start": 19648.78, + "end": 19651.92, + "probability": 0.7445 + }, + { + "start": 19652.78, + "end": 19654.3, + "probability": 0.9131 + }, + { + "start": 19655.36, + "end": 19656.88, + "probability": 0.6044 + }, + { + "start": 19657.52, + "end": 19659.86, + "probability": 0.681 + }, + { + "start": 19660.86, + "end": 19661.8, + "probability": 0.3016 + }, + { + "start": 19662.76, + "end": 19664.66, + "probability": 0.7878 + }, + { + "start": 19665.08, + "end": 19666.1, + "probability": 0.9197 + }, + { + "start": 19666.95, + "end": 19670.73, + "probability": 0.8494 + }, + { + "start": 19670.96, + "end": 19672.52, + "probability": 0.7728 + }, + { + "start": 19673.26, + "end": 19674.92, + "probability": 0.8871 + }, + { + "start": 19677.78, + "end": 19681.74, + "probability": 0.9956 + }, + { + "start": 19681.74, + "end": 19686.1, + "probability": 0.9976 + }, + { + "start": 19687.16, + "end": 19688.5, + "probability": 0.9578 + }, + { + "start": 19689.32, + "end": 19691.84, + "probability": 0.7004 + }, + { + "start": 19691.92, + "end": 19694.54, + "probability": 0.962 + }, + { + "start": 19695.52, + "end": 19696.7, + "probability": 0.9142 + }, + { + "start": 19700.18, + "end": 19700.96, + "probability": 0.6382 + }, + { + "start": 19701.1, + "end": 19704.0, + "probability": 0.9169 + }, + { + "start": 19704.82, + "end": 19706.4, + "probability": 0.6877 + }, + { + "start": 19706.48, + "end": 19708.84, + "probability": 0.9217 + }, + { + "start": 19711.35, + "end": 19715.16, + "probability": 0.0183 + }, + { + "start": 19717.06, + "end": 19718.74, + "probability": 0.1935 + }, + { + "start": 19720.16, + "end": 19721.08, + "probability": 0.0507 + }, + { + "start": 19721.32, + "end": 19723.96, + "probability": 0.065 + }, + { + "start": 19723.96, + "end": 19723.96, + "probability": 0.0087 + }, + { + "start": 19727.7, + "end": 19732.32, + "probability": 0.0296 + }, + { + "start": 19733.54, + "end": 19733.88, + "probability": 0.2199 + }, + { + "start": 19734.54, + "end": 19740.34, + "probability": 0.386 + }, + { + "start": 19741.38, + "end": 19743.18, + "probability": 0.3904 + }, + { + "start": 19743.5, + "end": 19746.52, + "probability": 0.0704 + }, + { + "start": 19746.84, + "end": 19748.3, + "probability": 0.0706 + }, + { + "start": 19748.36, + "end": 19749.72, + "probability": 0.1037 + }, + { + "start": 19756.58, + "end": 19757.72, + "probability": 0.0047 + }, + { + "start": 19757.84, + "end": 19758.94, + "probability": 0.0229 + }, + { + "start": 19758.94, + "end": 19759.78, + "probability": 0.3211 + }, + { + "start": 19761.8, + "end": 19764.36, + "probability": 0.1356 + }, + { + "start": 19764.36, + "end": 19768.38, + "probability": 0.0449 + }, + { + "start": 19768.38, + "end": 19769.54, + "probability": 0.0212 + }, + { + "start": 19769.62, + "end": 19772.18, + "probability": 0.1899 + }, + { + "start": 19772.18, + "end": 19772.18, + "probability": 0.0828 + }, + { + "start": 19772.36, + "end": 19773.26, + "probability": 0.0964 + }, + { + "start": 19774.0, + "end": 19774.0, + "probability": 0.0 + }, + { + "start": 19786.26, + "end": 19790.28, + "probability": 0.7594 + }, + { + "start": 19790.82, + "end": 19794.52, + "probability": 0.9884 + }, + { + "start": 19795.2, + "end": 19798.48, + "probability": 0.9888 + }, + { + "start": 19799.8, + "end": 19799.92, + "probability": 0.0008 + }, + { + "start": 19802.18, + "end": 19802.32, + "probability": 0.0021 + }, + { + "start": 19805.68, + "end": 19809.02, + "probability": 0.0343 + }, + { + "start": 19809.04, + "end": 19809.62, + "probability": 0.1718 + }, + { + "start": 19817.4, + "end": 19817.66, + "probability": 0.0733 + }, + { + "start": 19820.12, + "end": 19820.68, + "probability": 0.064 + }, + { + "start": 19820.94, + "end": 19820.94, + "probability": 0.085 + }, + { + "start": 19821.82, + "end": 19821.82, + "probability": 0.1529 + }, + { + "start": 19823.82, + "end": 19824.78, + "probability": 0.2218 + }, + { + "start": 19827.24, + "end": 19828.22, + "probability": 0.0233 + }, + { + "start": 19828.56, + "end": 19828.84, + "probability": 0.1086 + }, + { + "start": 19828.84, + "end": 19835.44, + "probability": 0.1029 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.0, + "end": 19898.0, + "probability": 0.0 + }, + { + "start": 19898.36, + "end": 19899.5, + "probability": 0.2037 + }, + { + "start": 19900.51, + "end": 19901.02, + "probability": 0.0487 + }, + { + "start": 19901.02, + "end": 19901.76, + "probability": 0.0395 + }, + { + "start": 19901.96, + "end": 19902.3, + "probability": 0.2338 + }, + { + "start": 19902.8, + "end": 19903.32, + "probability": 0.4612 + }, + { + "start": 19904.88, + "end": 19905.3, + "probability": 0.0891 + }, + { + "start": 19905.56, + "end": 19906.49, + "probability": 0.0642 + }, + { + "start": 19907.02, + "end": 19907.1, + "probability": 0.1498 + }, + { + "start": 19907.1, + "end": 19911.72, + "probability": 0.1609 + }, + { + "start": 19911.84, + "end": 19912.9, + "probability": 0.4979 + }, + { + "start": 19913.2, + "end": 19914.5, + "probability": 0.063 + }, + { + "start": 19914.66, + "end": 19915.88, + "probability": 0.4355 + }, + { + "start": 19915.9, + "end": 19917.18, + "probability": 0.0113 + }, + { + "start": 19917.18, + "end": 19917.86, + "probability": 0.3831 + }, + { + "start": 19918.18, + "end": 19918.88, + "probability": 0.3315 + }, + { + "start": 19919.36, + "end": 19921.56, + "probability": 0.4196 + }, + { + "start": 19922.18, + "end": 19922.68, + "probability": 0.2087 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.0, + "end": 20026.0, + "probability": 0.0 + }, + { + "start": 20026.16, + "end": 20026.36, + "probability": 0.0315 + }, + { + "start": 20026.36, + "end": 20027.7, + "probability": 0.0867 + }, + { + "start": 20027.84, + "end": 20030.84, + "probability": 0.9689 + }, + { + "start": 20031.36, + "end": 20034.88, + "probability": 0.9805 + }, + { + "start": 20034.88, + "end": 20039.12, + "probability": 0.9702 + }, + { + "start": 20039.9, + "end": 20044.24, + "probability": 0.8591 + }, + { + "start": 20044.8, + "end": 20046.96, + "probability": 0.9801 + }, + { + "start": 20046.96, + "end": 20050.8, + "probability": 0.988 + }, + { + "start": 20050.86, + "end": 20055.76, + "probability": 0.9128 + }, + { + "start": 20056.34, + "end": 20057.7, + "probability": 0.8928 + }, + { + "start": 20057.78, + "end": 20059.9, + "probability": 0.8786 + }, + { + "start": 20059.98, + "end": 20063.14, + "probability": 0.9941 + }, + { + "start": 20063.28, + "end": 20066.04, + "probability": 0.9246 + }, + { + "start": 20066.14, + "end": 20068.13, + "probability": 0.6749 + }, + { + "start": 20068.9, + "end": 20070.78, + "probability": 0.9507 + }, + { + "start": 20071.62, + "end": 20076.4, + "probability": 0.9951 + }, + { + "start": 20076.4, + "end": 20081.58, + "probability": 0.999 + }, + { + "start": 20082.36, + "end": 20085.68, + "probability": 0.981 + }, + { + "start": 20086.54, + "end": 20089.72, + "probability": 0.9548 + }, + { + "start": 20090.24, + "end": 20094.0, + "probability": 0.7277 + }, + { + "start": 20094.08, + "end": 20095.72, + "probability": 0.6686 + }, + { + "start": 20097.42, + "end": 20097.7, + "probability": 0.0851 + }, + { + "start": 20097.7, + "end": 20100.54, + "probability": 0.8333 + }, + { + "start": 20100.8, + "end": 20103.48, + "probability": 0.4097 + }, + { + "start": 20103.48, + "end": 20105.34, + "probability": 0.6353 + }, + { + "start": 20105.4, + "end": 20106.04, + "probability": 0.5574 + }, + { + "start": 20106.18, + "end": 20107.64, + "probability": 0.5632 + }, + { + "start": 20108.02, + "end": 20111.06, + "probability": 0.7985 + }, + { + "start": 20111.08, + "end": 20112.48, + "probability": 0.8276 + }, + { + "start": 20112.52, + "end": 20113.04, + "probability": 0.6168 + }, + { + "start": 20113.2, + "end": 20115.54, + "probability": 0.6945 + }, + { + "start": 20115.6, + "end": 20118.72, + "probability": 0.0091 + }, + { + "start": 20120.66, + "end": 20122.1, + "probability": 0.2647 + }, + { + "start": 20122.22, + "end": 20122.58, + "probability": 0.1386 + }, + { + "start": 20124.3, + "end": 20125.0, + "probability": 0.0307 + }, + { + "start": 20125.08, + "end": 20127.66, + "probability": 0.5612 + }, + { + "start": 20127.78, + "end": 20129.58, + "probability": 0.8014 + }, + { + "start": 20129.78, + "end": 20131.96, + "probability": 0.8953 + }, + { + "start": 20134.7, + "end": 20138.06, + "probability": 0.5402 + }, + { + "start": 20143.02, + "end": 20144.5, + "probability": 0.7858 + }, + { + "start": 20149.8, + "end": 20151.78, + "probability": 0.8221 + }, + { + "start": 20152.52, + "end": 20153.0, + "probability": 0.6872 + }, + { + "start": 20154.32, + "end": 20159.0, + "probability": 0.9905 + }, + { + "start": 20159.54, + "end": 20166.1, + "probability": 0.9921 + }, + { + "start": 20166.6, + "end": 20171.16, + "probability": 0.9521 + }, + { + "start": 20171.62, + "end": 20174.12, + "probability": 0.9933 + }, + { + "start": 20174.74, + "end": 20176.28, + "probability": 0.8643 + }, + { + "start": 20176.92, + "end": 20179.64, + "probability": 0.9749 + }, + { + "start": 20180.16, + "end": 20181.04, + "probability": 0.8989 + }, + { + "start": 20181.1, + "end": 20181.8, + "probability": 0.9813 + }, + { + "start": 20182.26, + "end": 20184.9, + "probability": 0.9958 + }, + { + "start": 20185.5, + "end": 20188.86, + "probability": 0.9308 + }, + { + "start": 20189.9, + "end": 20190.04, + "probability": 0.1105 + }, + { + "start": 20190.04, + "end": 20190.28, + "probability": 0.0481 + }, + { + "start": 20190.46, + "end": 20191.61, + "probability": 0.6313 + }, + { + "start": 20192.24, + "end": 20194.72, + "probability": 0.8932 + }, + { + "start": 20195.18, + "end": 20201.16, + "probability": 0.9353 + }, + { + "start": 20202.4, + "end": 20204.02, + "probability": 0.9502 + }, + { + "start": 20204.64, + "end": 20206.24, + "probability": 0.8726 + }, + { + "start": 20206.64, + "end": 20211.06, + "probability": 0.9552 + }, + { + "start": 20211.66, + "end": 20212.32, + "probability": 0.7466 + }, + { + "start": 20213.16, + "end": 20214.6, + "probability": 0.9075 + }, + { + "start": 20215.14, + "end": 20217.22, + "probability": 0.9937 + }, + { + "start": 20217.72, + "end": 20221.66, + "probability": 0.9569 + }, + { + "start": 20222.16, + "end": 20224.42, + "probability": 0.9441 + }, + { + "start": 20224.84, + "end": 20226.84, + "probability": 0.9484 + }, + { + "start": 20227.26, + "end": 20228.8, + "probability": 0.9985 + }, + { + "start": 20231.8, + "end": 20233.68, + "probability": 0.7214 + }, + { + "start": 20233.74, + "end": 20237.86, + "probability": 0.9809 + }, + { + "start": 20241.52, + "end": 20242.44, + "probability": 0.93 + }, + { + "start": 20243.1, + "end": 20244.1, + "probability": 0.7063 + }, + { + "start": 20251.32, + "end": 20253.5, + "probability": 0.8372 + }, + { + "start": 20253.77, + "end": 20255.38, + "probability": 0.7585 + }, + { + "start": 20255.46, + "end": 20257.01, + "probability": 0.7791 + }, + { + "start": 20257.56, + "end": 20258.24, + "probability": 0.6334 + }, + { + "start": 20258.74, + "end": 20261.66, + "probability": 0.8293 + }, + { + "start": 20262.14, + "end": 20263.24, + "probability": 0.7242 + }, + { + "start": 20263.56, + "end": 20264.9, + "probability": 0.9963 + }, + { + "start": 20265.5, + "end": 20267.98, + "probability": 0.9953 + }, + { + "start": 20268.18, + "end": 20269.08, + "probability": 0.9712 + }, + { + "start": 20269.28, + "end": 20270.46, + "probability": 0.9907 + }, + { + "start": 20270.68, + "end": 20272.06, + "probability": 0.9753 + }, + { + "start": 20272.4, + "end": 20272.76, + "probability": 0.7981 + }, + { + "start": 20272.86, + "end": 20273.68, + "probability": 0.7305 + }, + { + "start": 20274.44, + "end": 20274.9, + "probability": 0.7937 + }, + { + "start": 20275.0, + "end": 20278.26, + "probability": 0.9976 + }, + { + "start": 20278.48, + "end": 20280.36, + "probability": 0.4267 + }, + { + "start": 20280.36, + "end": 20281.5, + "probability": 0.3085 + }, + { + "start": 20282.22, + "end": 20283.66, + "probability": 0.9567 + }, + { + "start": 20283.72, + "end": 20284.66, + "probability": 0.985 + }, + { + "start": 20286.18, + "end": 20288.92, + "probability": 0.8643 + }, + { + "start": 20289.18, + "end": 20295.04, + "probability": 0.8447 + }, + { + "start": 20295.14, + "end": 20297.68, + "probability": 0.9323 + }, + { + "start": 20298.06, + "end": 20299.36, + "probability": 0.9341 + }, + { + "start": 20299.38, + "end": 20302.7, + "probability": 0.9202 + }, + { + "start": 20303.96, + "end": 20307.62, + "probability": 0.6203 + }, + { + "start": 20308.44, + "end": 20311.46, + "probability": 0.9341 + }, + { + "start": 20311.84, + "end": 20313.52, + "probability": 0.9398 + }, + { + "start": 20313.66, + "end": 20314.33, + "probability": 0.7634 + }, + { + "start": 20315.02, + "end": 20315.94, + "probability": 0.5396 + }, + { + "start": 20315.96, + "end": 20317.19, + "probability": 0.7445 + }, + { + "start": 20317.72, + "end": 20318.82, + "probability": 0.7555 + }, + { + "start": 20318.96, + "end": 20322.32, + "probability": 0.9562 + }, + { + "start": 20322.44, + "end": 20324.08, + "probability": 0.9762 + }, + { + "start": 20324.74, + "end": 20327.96, + "probability": 0.9968 + }, + { + "start": 20328.44, + "end": 20332.0, + "probability": 0.9963 + }, + { + "start": 20332.46, + "end": 20334.5, + "probability": 0.924 + }, + { + "start": 20334.64, + "end": 20336.04, + "probability": 0.9966 + }, + { + "start": 20336.46, + "end": 20338.9, + "probability": 0.9943 + }, + { + "start": 20339.26, + "end": 20340.8, + "probability": 0.9663 + }, + { + "start": 20341.18, + "end": 20345.55, + "probability": 0.9897 + }, + { + "start": 20346.58, + "end": 20348.12, + "probability": 0.7036 + }, + { + "start": 20348.78, + "end": 20350.32, + "probability": 0.754 + }, + { + "start": 20350.68, + "end": 20351.44, + "probability": 0.7282 + }, + { + "start": 20351.58, + "end": 20353.02, + "probability": 0.9451 + }, + { + "start": 20353.08, + "end": 20356.5, + "probability": 0.7001 + }, + { + "start": 20357.26, + "end": 20358.86, + "probability": 0.7841 + }, + { + "start": 20359.18, + "end": 20360.46, + "probability": 0.5721 + }, + { + "start": 20360.82, + "end": 20362.5, + "probability": 0.9755 + }, + { + "start": 20362.64, + "end": 20365.4, + "probability": 0.8757 + }, + { + "start": 20365.7, + "end": 20367.62, + "probability": 0.9464 + }, + { + "start": 20368.46, + "end": 20369.4, + "probability": 0.917 + }, + { + "start": 20369.48, + "end": 20369.8, + "probability": 0.3664 + }, + { + "start": 20369.9, + "end": 20374.78, + "probability": 0.9766 + }, + { + "start": 20375.4, + "end": 20379.38, + "probability": 0.9868 + }, + { + "start": 20379.88, + "end": 20384.66, + "probability": 0.8052 + }, + { + "start": 20384.78, + "end": 20386.68, + "probability": 0.8868 + }, + { + "start": 20387.14, + "end": 20390.28, + "probability": 0.9548 + }, + { + "start": 20391.08, + "end": 20392.55, + "probability": 0.892 + }, + { + "start": 20393.34, + "end": 20393.84, + "probability": 0.982 + }, + { + "start": 20394.6, + "end": 20396.12, + "probability": 0.9798 + }, + { + "start": 20396.38, + "end": 20398.62, + "probability": 0.9165 + }, + { + "start": 20399.04, + "end": 20399.99, + "probability": 0.9961 + }, + { + "start": 20400.22, + "end": 20404.62, + "probability": 0.9932 + }, + { + "start": 20404.62, + "end": 20409.54, + "probability": 0.9939 + }, + { + "start": 20410.84, + "end": 20417.36, + "probability": 0.8352 + }, + { + "start": 20417.92, + "end": 20419.2, + "probability": 0.7924 + }, + { + "start": 20419.26, + "end": 20421.06, + "probability": 0.9609 + }, + { + "start": 20421.3, + "end": 20423.96, + "probability": 0.8994 + }, + { + "start": 20424.52, + "end": 20425.82, + "probability": 0.7067 + }, + { + "start": 20426.38, + "end": 20427.75, + "probability": 0.9884 + }, + { + "start": 20428.52, + "end": 20432.18, + "probability": 0.9919 + }, + { + "start": 20432.74, + "end": 20434.24, + "probability": 0.9774 + }, + { + "start": 20434.64, + "end": 20437.43, + "probability": 0.9862 + }, + { + "start": 20437.76, + "end": 20438.92, + "probability": 0.8022 + }, + { + "start": 20440.48, + "end": 20443.48, + "probability": 0.8007 + }, + { + "start": 20444.08, + "end": 20445.86, + "probability": 0.8281 + }, + { + "start": 20447.08, + "end": 20447.46, + "probability": 0.9508 + }, + { + "start": 20447.54, + "end": 20449.06, + "probability": 0.9454 + }, + { + "start": 20449.14, + "end": 20451.78, + "probability": 0.7503 + }, + { + "start": 20455.78, + "end": 20458.72, + "probability": 0.8088 + }, + { + "start": 20458.98, + "end": 20460.62, + "probability": 0.8832 + }, + { + "start": 20461.08, + "end": 20463.06, + "probability": 0.9231 + }, + { + "start": 20464.34, + "end": 20466.22, + "probability": 0.7468 + }, + { + "start": 20468.88, + "end": 20470.8, + "probability": 0.8111 + }, + { + "start": 20472.6, + "end": 20473.04, + "probability": 0.9386 + }, + { + "start": 20473.14, + "end": 20476.12, + "probability": 0.9542 + }, + { + "start": 20476.28, + "end": 20481.22, + "probability": 0.9574 + }, + { + "start": 20481.49, + "end": 20486.9, + "probability": 0.997 + }, + { + "start": 20487.48, + "end": 20490.94, + "probability": 0.8259 + }, + { + "start": 20491.24, + "end": 20493.92, + "probability": 0.9958 + }, + { + "start": 20494.83, + "end": 20496.36, + "probability": 0.1118 + }, + { + "start": 20496.78, + "end": 20498.44, + "probability": 0.644 + }, + { + "start": 20498.86, + "end": 20503.8, + "probability": 0.9838 + }, + { + "start": 20504.18, + "end": 20505.56, + "probability": 0.509 + }, + { + "start": 20506.22, + "end": 20509.46, + "probability": 0.9049 + }, + { + "start": 20509.94, + "end": 20510.78, + "probability": 0.7386 + }, + { + "start": 20534.23, + "end": 20537.16, + "probability": 0.5238 + }, + { + "start": 20544.22, + "end": 20553.48, + "probability": 0.1505 + }, + { + "start": 20553.74, + "end": 20556.98, + "probability": 0.0757 + }, + { + "start": 20558.44, + "end": 20559.46, + "probability": 0.0081 + }, + { + "start": 20562.96, + "end": 20566.86, + "probability": 0.0925 + }, + { + "start": 20570.46, + "end": 20571.2, + "probability": 0.4084 + }, + { + "start": 20571.56, + "end": 20575.52, + "probability": 0.7643 + }, + { + "start": 20576.95, + "end": 20584.66, + "probability": 0.0473 + }, + { + "start": 20585.4, + "end": 20586.94, + "probability": 0.0281 + }, + { + "start": 20590.96, + "end": 20593.72, + "probability": 0.045 + }, + { + "start": 20594.18, + "end": 20600.18, + "probability": 0.6167 + }, + { + "start": 20600.64, + "end": 20605.62, + "probability": 0.7328 + }, + { + "start": 20606.6, + "end": 20607.08, + "probability": 0.7855 + }, + { + "start": 20607.1, + "end": 20609.02, + "probability": 0.9114 + }, + { + "start": 20609.16, + "end": 20613.1, + "probability": 0.8114 + }, + { + "start": 20613.98, + "end": 20616.4, + "probability": 0.9691 + }, + { + "start": 20616.86, + "end": 20619.64, + "probability": 0.9956 + }, + { + "start": 20619.76, + "end": 20622.98, + "probability": 0.6387 + }, + { + "start": 20623.54, + "end": 20627.1, + "probability": 0.9648 + }, + { + "start": 20627.58, + "end": 20628.94, + "probability": 0.5249 + }, + { + "start": 20629.54, + "end": 20632.3, + "probability": 0.9647 + }, + { + "start": 20632.86, + "end": 20633.96, + "probability": 0.8872 + }, + { + "start": 20656.35, + "end": 20658.84, + "probability": 0.6617 + }, + { + "start": 20659.42, + "end": 20664.56, + "probability": 0.8913 + }, + { + "start": 20666.18, + "end": 20667.38, + "probability": 0.2147 + }, + { + "start": 20668.24, + "end": 20673.05, + "probability": 0.0334 + }, + { + "start": 20674.48, + "end": 20676.3, + "probability": 0.0168 + }, + { + "start": 20677.04, + "end": 20677.92, + "probability": 0.0293 + }, + { + "start": 20690.04, + "end": 20690.98, + "probability": 0.1306 + }, + { + "start": 20695.42, + "end": 20699.88, + "probability": 0.3854 + }, + { + "start": 20700.4, + "end": 20702.56, + "probability": 0.7869 + }, + { + "start": 20702.78, + "end": 20704.52, + "probability": 0.9014 + }, + { + "start": 20706.24, + "end": 20710.34, + "probability": 0.9832 + }, + { + "start": 20710.46, + "end": 20712.56, + "probability": 0.6639 + }, + { + "start": 20713.0, + "end": 20715.04, + "probability": 0.5282 + }, + { + "start": 20715.74, + "end": 20718.36, + "probability": 0.9912 + }, + { + "start": 20718.36, + "end": 20722.46, + "probability": 0.9396 + }, + { + "start": 20723.82, + "end": 20725.26, + "probability": 0.9048 + }, + { + "start": 20739.84, + "end": 20743.7, + "probability": 0.8781 + }, + { + "start": 20744.24, + "end": 20747.0, + "probability": 0.861 + }, + { + "start": 20747.06, + "end": 20749.0, + "probability": 0.4903 + }, + { + "start": 20749.22, + "end": 20749.98, + "probability": 0.7808 + }, + { + "start": 20750.46, + "end": 20755.42, + "probability": 0.9725 + }, + { + "start": 20758.04, + "end": 20758.9, + "probability": 0.7548 + }, + { + "start": 20760.74, + "end": 20764.48, + "probability": 0.9819 + }, + { + "start": 20765.88, + "end": 20769.74, + "probability": 0.9965 + }, + { + "start": 20770.02, + "end": 20772.81, + "probability": 0.9487 + }, + { + "start": 20775.46, + "end": 20777.92, + "probability": 0.7784 + }, + { + "start": 20777.98, + "end": 20778.84, + "probability": 0.988 + }, + { + "start": 20778.98, + "end": 20784.04, + "probability": 0.9668 + }, + { + "start": 20784.22, + "end": 20789.42, + "probability": 0.9413 + }, + { + "start": 20790.36, + "end": 20793.38, + "probability": 0.7512 + }, + { + "start": 20795.94, + "end": 20797.94, + "probability": 0.9949 + }, + { + "start": 20798.4, + "end": 20800.72, + "probability": 0.9929 + }, + { + "start": 20801.28, + "end": 20804.12, + "probability": 0.6584 + }, + { + "start": 20804.22, + "end": 20807.28, + "probability": 0.9331 + }, + { + "start": 20807.66, + "end": 20810.94, + "probability": 0.9949 + }, + { + "start": 20811.08, + "end": 20812.22, + "probability": 0.7434 + }, + { + "start": 20813.6, + "end": 20818.69, + "probability": 0.9974 + }, + { + "start": 20819.0, + "end": 20819.48, + "probability": 0.8754 + }, + { + "start": 20819.58, + "end": 20820.52, + "probability": 0.6617 + }, + { + "start": 20820.68, + "end": 20821.28, + "probability": 0.7716 + }, + { + "start": 20822.5, + "end": 20823.38, + "probability": 0.9854 + }, + { + "start": 20825.08, + "end": 20826.05, + "probability": 0.9417 + }, + { + "start": 20826.16, + "end": 20831.62, + "probability": 0.9933 + }, + { + "start": 20831.78, + "end": 20836.54, + "probability": 0.8416 + }, + { + "start": 20838.12, + "end": 20841.08, + "probability": 0.7178 + }, + { + "start": 20841.2, + "end": 20844.53, + "probability": 0.877 + }, + { + "start": 20846.1, + "end": 20849.18, + "probability": 0.9954 + }, + { + "start": 20849.5, + "end": 20851.68, + "probability": 0.9635 + }, + { + "start": 20852.1, + "end": 20852.74, + "probability": 0.8535 + }, + { + "start": 20853.0, + "end": 20853.82, + "probability": 0.6535 + }, + { + "start": 20854.88, + "end": 20858.6, + "probability": 0.8332 + }, + { + "start": 20859.42, + "end": 20860.44, + "probability": 0.9943 + }, + { + "start": 20863.16, + "end": 20865.36, + "probability": 0.8312 + }, + { + "start": 20867.04, + "end": 20869.0, + "probability": 0.8626 + }, + { + "start": 20870.82, + "end": 20871.36, + "probability": 0.7544 + }, + { + "start": 20872.64, + "end": 20874.14, + "probability": 0.6699 + }, + { + "start": 20874.56, + "end": 20877.12, + "probability": 0.9501 + }, + { + "start": 20878.34, + "end": 20883.42, + "probability": 0.952 + }, + { + "start": 20886.36, + "end": 20887.42, + "probability": 0.5289 + }, + { + "start": 20888.74, + "end": 20890.48, + "probability": 0.9674 + }, + { + "start": 20890.6, + "end": 20891.8, + "probability": 0.945 + }, + { + "start": 20891.94, + "end": 20892.94, + "probability": 0.9405 + }, + { + "start": 20893.08, + "end": 20894.6, + "probability": 0.9587 + }, + { + "start": 20896.5, + "end": 20898.34, + "probability": 0.9729 + }, + { + "start": 20900.36, + "end": 20902.26, + "probability": 0.9948 + }, + { + "start": 20904.16, + "end": 20906.22, + "probability": 0.9178 + }, + { + "start": 20908.22, + "end": 20909.08, + "probability": 0.7327 + }, + { + "start": 20909.88, + "end": 20913.14, + "probability": 0.9902 + }, + { + "start": 20913.14, + "end": 20918.24, + "probability": 0.9987 + }, + { + "start": 20919.18, + "end": 20923.0, + "probability": 0.9553 + }, + { + "start": 20923.24, + "end": 20924.26, + "probability": 0.8582 + }, + { + "start": 20924.36, + "end": 20925.86, + "probability": 0.8595 + }, + { + "start": 20926.44, + "end": 20926.98, + "probability": 0.2871 + }, + { + "start": 20927.06, + "end": 20930.86, + "probability": 0.6888 + }, + { + "start": 20930.94, + "end": 20931.91, + "probability": 0.9943 + }, + { + "start": 20933.3, + "end": 20935.58, + "probability": 0.7547 + }, + { + "start": 20935.74, + "end": 20936.56, + "probability": 0.9885 + }, + { + "start": 20938.34, + "end": 20940.72, + "probability": 0.9775 + }, + { + "start": 20943.6, + "end": 20948.26, + "probability": 0.7999 + }, + { + "start": 20948.68, + "end": 20949.36, + "probability": 0.5054 + }, + { + "start": 20949.44, + "end": 20953.68, + "probability": 0.9688 + }, + { + "start": 20955.92, + "end": 20958.72, + "probability": 0.8115 + }, + { + "start": 20959.62, + "end": 20962.38, + "probability": 0.6846 + }, + { + "start": 20963.74, + "end": 20964.96, + "probability": 0.8784 + }, + { + "start": 20965.48, + "end": 20967.14, + "probability": 0.9284 + }, + { + "start": 20968.88, + "end": 20970.34, + "probability": 0.5064 + }, + { + "start": 20971.64, + "end": 20976.34, + "probability": 0.9379 + }, + { + "start": 20976.64, + "end": 20978.86, + "probability": 0.9544 + }, + { + "start": 20980.12, + "end": 20980.62, + "probability": 0.725 + }, + { + "start": 20980.7, + "end": 20981.02, + "probability": 0.6086 + }, + { + "start": 20981.04, + "end": 20984.66, + "probability": 0.9041 + }, + { + "start": 20986.88, + "end": 20988.44, + "probability": 0.6218 + }, + { + "start": 20989.74, + "end": 20990.76, + "probability": 0.814 + }, + { + "start": 20990.88, + "end": 20991.42, + "probability": 0.6005 + }, + { + "start": 20991.5, + "end": 20992.5, + "probability": 0.1653 + }, + { + "start": 20992.52, + "end": 20994.74, + "probability": 0.727 + }, + { + "start": 20995.44, + "end": 20997.76, + "probability": 0.9957 + }, + { + "start": 21000.28, + "end": 21001.38, + "probability": 0.9887 + }, + { + "start": 21002.86, + "end": 21003.88, + "probability": 0.6721 + }, + { + "start": 21005.52, + "end": 21010.5, + "probability": 0.8591 + }, + { + "start": 21011.1, + "end": 21012.92, + "probability": 0.9766 + }, + { + "start": 21014.5, + "end": 21017.16, + "probability": 0.9854 + }, + { + "start": 21018.46, + "end": 21019.32, + "probability": 0.4828 + }, + { + "start": 21019.86, + "end": 21021.76, + "probability": 0.7624 + }, + { + "start": 21024.34, + "end": 21028.48, + "probability": 0.9799 + }, + { + "start": 21030.28, + "end": 21033.64, + "probability": 0.9855 + }, + { + "start": 21033.9, + "end": 21034.8, + "probability": 0.5661 + }, + { + "start": 21034.8, + "end": 21036.52, + "probability": 0.571 + }, + { + "start": 21036.54, + "end": 21037.14, + "probability": 0.6385 + }, + { + "start": 21038.38, + "end": 21041.24, + "probability": 0.9858 + }, + { + "start": 21044.04, + "end": 21046.8, + "probability": 0.9935 + }, + { + "start": 21046.8, + "end": 21051.04, + "probability": 0.7906 + }, + { + "start": 21051.36, + "end": 21055.36, + "probability": 0.9662 + }, + { + "start": 21056.08, + "end": 21056.08, + "probability": 0.0207 + }, + { + "start": 21056.08, + "end": 21056.51, + "probability": 0.712 + }, + { + "start": 21059.62, + "end": 21062.78, + "probability": 0.9157 + }, + { + "start": 21065.76, + "end": 21069.98, + "probability": 0.9408 + }, + { + "start": 21070.06, + "end": 21071.04, + "probability": 0.9731 + }, + { + "start": 21072.28, + "end": 21074.28, + "probability": 0.9627 + }, + { + "start": 21076.44, + "end": 21082.26, + "probability": 0.6592 + }, + { + "start": 21082.32, + "end": 21087.1, + "probability": 0.9265 + }, + { + "start": 21087.6, + "end": 21088.5, + "probability": 0.9517 + }, + { + "start": 21092.5, + "end": 21093.82, + "probability": 0.7843 + }, + { + "start": 21094.48, + "end": 21094.98, + "probability": 0.4584 + }, + { + "start": 21095.38, + "end": 21095.38, + "probability": 0.0004 + }, + { + "start": 21096.3, + "end": 21097.4, + "probability": 0.9315 + }, + { + "start": 21097.74, + "end": 21099.46, + "probability": 0.7514 + }, + { + "start": 21099.48, + "end": 21100.52, + "probability": 0.9887 + }, + { + "start": 21102.58, + "end": 21103.74, + "probability": 0.926 + }, + { + "start": 21103.86, + "end": 21106.72, + "probability": 0.9812 + }, + { + "start": 21106.74, + "end": 21108.44, + "probability": 0.8544 + }, + { + "start": 21109.46, + "end": 21111.66, + "probability": 0.9604 + }, + { + "start": 21113.14, + "end": 21120.5, + "probability": 0.9701 + }, + { + "start": 21121.62, + "end": 21122.66, + "probability": 0.9622 + }, + { + "start": 21122.74, + "end": 21125.06, + "probability": 0.5893 + }, + { + "start": 21126.0, + "end": 21127.84, + "probability": 0.9482 + }, + { + "start": 21128.0, + "end": 21131.52, + "probability": 0.9597 + }, + { + "start": 21133.34, + "end": 21135.16, + "probability": 0.8635 + }, + { + "start": 21135.28, + "end": 21136.02, + "probability": 0.9932 + }, + { + "start": 21137.1, + "end": 21140.82, + "probability": 0.993 + }, + { + "start": 21143.42, + "end": 21145.28, + "probability": 0.9927 + }, + { + "start": 21146.24, + "end": 21148.04, + "probability": 0.9732 + }, + { + "start": 21148.14, + "end": 21150.96, + "probability": 0.7733 + }, + { + "start": 21151.98, + "end": 21152.86, + "probability": 0.7739 + }, + { + "start": 21155.72, + "end": 21156.74, + "probability": 0.9675 + }, + { + "start": 21156.78, + "end": 21157.28, + "probability": 0.9558 + }, + { + "start": 21157.38, + "end": 21162.1, + "probability": 0.8718 + }, + { + "start": 21163.44, + "end": 21164.26, + "probability": 0.6824 + }, + { + "start": 21166.2, + "end": 21167.02, + "probability": 0.8193 + }, + { + "start": 21167.1, + "end": 21168.32, + "probability": 0.814 + }, + { + "start": 21168.64, + "end": 21169.42, + "probability": 0.3566 + }, + { + "start": 21169.5, + "end": 21170.06, + "probability": 0.4919 + }, + { + "start": 21170.16, + "end": 21170.54, + "probability": 0.5293 + }, + { + "start": 21171.38, + "end": 21174.7, + "probability": 0.8781 + }, + { + "start": 21175.86, + "end": 21177.36, + "probability": 0.9888 + }, + { + "start": 21177.45, + "end": 21180.56, + "probability": 0.8198 + }, + { + "start": 21180.62, + "end": 21181.6, + "probability": 0.8156 + }, + { + "start": 21182.14, + "end": 21184.08, + "probability": 0.9891 + }, + { + "start": 21184.24, + "end": 21185.08, + "probability": 0.9403 + }, + { + "start": 21185.56, + "end": 21187.33, + "probability": 0.8564 + }, + { + "start": 21188.6, + "end": 21190.5, + "probability": 0.8176 + }, + { + "start": 21192.44, + "end": 21194.04, + "probability": 0.9146 + }, + { + "start": 21195.1, + "end": 21196.48, + "probability": 0.9835 + }, + { + "start": 21197.62, + "end": 21202.0, + "probability": 0.9954 + }, + { + "start": 21202.12, + "end": 21203.84, + "probability": 0.9956 + }, + { + "start": 21203.94, + "end": 21204.89, + "probability": 0.1741 + }, + { + "start": 21205.64, + "end": 21207.02, + "probability": 0.6929 + }, + { + "start": 21207.18, + "end": 21213.5, + "probability": 0.8386 + }, + { + "start": 21213.66, + "end": 21214.57, + "probability": 0.8436 + }, + { + "start": 21214.68, + "end": 21215.12, + "probability": 0.8518 + }, + { + "start": 21215.26, + "end": 21215.78, + "probability": 0.6043 + }, + { + "start": 21216.54, + "end": 21218.12, + "probability": 0.9793 + }, + { + "start": 21219.16, + "end": 21220.72, + "probability": 0.892 + }, + { + "start": 21220.96, + "end": 21221.92, + "probability": 0.8967 + }, + { + "start": 21222.34, + "end": 21223.66, + "probability": 0.9902 + }, + { + "start": 21223.86, + "end": 21224.52, + "probability": 0.6208 + }, + { + "start": 21225.5, + "end": 21227.21, + "probability": 0.1245 + }, + { + "start": 21227.82, + "end": 21228.74, + "probability": 0.2998 + }, + { + "start": 21229.42, + "end": 21231.28, + "probability": 0.9438 + }, + { + "start": 21231.4, + "end": 21231.88, + "probability": 0.8991 + }, + { + "start": 21232.06, + "end": 21235.98, + "probability": 0.6746 + }, + { + "start": 21236.32, + "end": 21238.32, + "probability": 0.7964 + }, + { + "start": 21238.38, + "end": 21239.12, + "probability": 0.6464 + }, + { + "start": 21239.18, + "end": 21241.24, + "probability": 0.8986 + }, + { + "start": 21241.4, + "end": 21242.54, + "probability": 0.2022 + }, + { + "start": 21242.94, + "end": 21245.44, + "probability": 0.7578 + }, + { + "start": 21245.46, + "end": 21245.98, + "probability": 0.5586 + }, + { + "start": 21245.98, + "end": 21248.62, + "probability": 0.8483 + }, + { + "start": 21249.02, + "end": 21249.86, + "probability": 0.5861 + }, + { + "start": 21250.02, + "end": 21252.0, + "probability": 0.97 + }, + { + "start": 21252.44, + "end": 21255.46, + "probability": 0.8486 + }, + { + "start": 21257.58, + "end": 21259.68, + "probability": 0.9788 + }, + { + "start": 21259.74, + "end": 21261.04, + "probability": 0.796 + }, + { + "start": 21262.48, + "end": 21265.51, + "probability": 0.9239 + }, + { + "start": 21266.18, + "end": 21269.41, + "probability": 0.8926 + }, + { + "start": 21269.72, + "end": 21270.84, + "probability": 0.9553 + }, + { + "start": 21270.92, + "end": 21275.34, + "probability": 0.9919 + }, + { + "start": 21275.86, + "end": 21278.2, + "probability": 0.9768 + }, + { + "start": 21278.44, + "end": 21279.88, + "probability": 0.8964 + }, + { + "start": 21280.42, + "end": 21283.2, + "probability": 0.9823 + }, + { + "start": 21284.12, + "end": 21286.38, + "probability": 0.9187 + }, + { + "start": 21286.7, + "end": 21291.22, + "probability": 0.9934 + }, + { + "start": 21291.22, + "end": 21294.07, + "probability": 0.9217 + }, + { + "start": 21294.72, + "end": 21295.58, + "probability": 0.1011 + }, + { + "start": 21295.62, + "end": 21297.18, + "probability": 0.0306 + }, + { + "start": 21297.88, + "end": 21298.8, + "probability": 0.51 + }, + { + "start": 21298.96, + "end": 21299.32, + "probability": 0.0155 + }, + { + "start": 21299.92, + "end": 21300.2, + "probability": 0.069 + }, + { + "start": 21300.5, + "end": 21301.54, + "probability": 0.4906 + }, + { + "start": 21301.68, + "end": 21304.22, + "probability": 0.8774 + }, + { + "start": 21305.18, + "end": 21308.28, + "probability": 0.7938 + }, + { + "start": 21308.36, + "end": 21309.48, + "probability": 0.8411 + }, + { + "start": 21310.48, + "end": 21311.19, + "probability": 0.8445 + }, + { + "start": 21312.34, + "end": 21314.72, + "probability": 0.8379 + }, + { + "start": 21316.75, + "end": 21319.04, + "probability": 0.9961 + }, + { + "start": 21319.04, + "end": 21320.93, + "probability": 0.6428 + }, + { + "start": 21321.28, + "end": 21323.12, + "probability": 0.8065 + }, + { + "start": 21323.28, + "end": 21326.12, + "probability": 0.9678 + }, + { + "start": 21326.3, + "end": 21326.64, + "probability": 0.4565 + }, + { + "start": 21326.64, + "end": 21330.08, + "probability": 0.989 + }, + { + "start": 21330.42, + "end": 21331.56, + "probability": 0.6796 + }, + { + "start": 21331.58, + "end": 21334.15, + "probability": 0.9855 + }, + { + "start": 21334.78, + "end": 21337.84, + "probability": 0.9175 + }, + { + "start": 21337.92, + "end": 21338.86, + "probability": 0.6662 + }, + { + "start": 21338.92, + "end": 21339.48, + "probability": 0.7717 + }, + { + "start": 21339.54, + "end": 21340.06, + "probability": 0.428 + }, + { + "start": 21340.24, + "end": 21343.28, + "probability": 0.9772 + }, + { + "start": 21345.1, + "end": 21347.28, + "probability": 0.7498 + }, + { + "start": 21348.8, + "end": 21350.7, + "probability": 0.9953 + }, + { + "start": 21351.36, + "end": 21352.86, + "probability": 0.9738 + }, + { + "start": 21353.68, + "end": 21359.28, + "probability": 0.9156 + }, + { + "start": 21360.34, + "end": 21362.24, + "probability": 0.5974 + }, + { + "start": 21362.88, + "end": 21365.72, + "probability": 0.9745 + }, + { + "start": 21366.6, + "end": 21368.82, + "probability": 0.6829 + }, + { + "start": 21373.76, + "end": 21380.0, + "probability": 0.9797 + }, + { + "start": 21380.0, + "end": 21381.74, + "probability": 0.772 + }, + { + "start": 21381.86, + "end": 21384.18, + "probability": 0.4346 + }, + { + "start": 21384.82, + "end": 21389.04, + "probability": 0.9828 + }, + { + "start": 21389.42, + "end": 21390.16, + "probability": 0.4372 + }, + { + "start": 21393.78, + "end": 21396.32, + "probability": 0.8898 + }, + { + "start": 21406.44, + "end": 21407.79, + "probability": 0.6611 + }, + { + "start": 21409.64, + "end": 21415.5, + "probability": 0.9959 + }, + { + "start": 21416.78, + "end": 21420.16, + "probability": 0.9797 + }, + { + "start": 21421.54, + "end": 21423.72, + "probability": 0.7835 + }, + { + "start": 21424.82, + "end": 21427.7, + "probability": 0.9989 + }, + { + "start": 21427.7, + "end": 21431.56, + "probability": 0.9993 + }, + { + "start": 21432.26, + "end": 21436.99, + "probability": 0.7506 + }, + { + "start": 21438.06, + "end": 21442.5, + "probability": 0.9855 + }, + { + "start": 21444.0, + "end": 21447.28, + "probability": 0.9961 + }, + { + "start": 21448.22, + "end": 21450.66, + "probability": 0.9951 + }, + { + "start": 21452.66, + "end": 21455.96, + "probability": 0.9937 + }, + { + "start": 21456.12, + "end": 21457.06, + "probability": 0.7187 + }, + { + "start": 21457.12, + "end": 21457.72, + "probability": 0.4699 + }, + { + "start": 21458.88, + "end": 21460.16, + "probability": 0.6519 + }, + { + "start": 21461.6, + "end": 21467.0, + "probability": 0.9756 + }, + { + "start": 21468.68, + "end": 21469.8, + "probability": 0.9252 + }, + { + "start": 21469.92, + "end": 21471.04, + "probability": 0.1278 + }, + { + "start": 21472.01, + "end": 21477.51, + "probability": 0.8062 + }, + { + "start": 21479.28, + "end": 21480.64, + "probability": 0.7399 + }, + { + "start": 21480.68, + "end": 21487.88, + "probability": 0.9421 + }, + { + "start": 21489.66, + "end": 21491.66, + "probability": 0.8208 + }, + { + "start": 21492.98, + "end": 21499.22, + "probability": 0.9469 + }, + { + "start": 21500.28, + "end": 21503.34, + "probability": 0.9842 + }, + { + "start": 21504.8, + "end": 21509.56, + "probability": 0.9597 + }, + { + "start": 21510.32, + "end": 21511.58, + "probability": 0.7708 + }, + { + "start": 21513.3, + "end": 21519.4, + "probability": 0.9945 + }, + { + "start": 21520.28, + "end": 21524.54, + "probability": 0.9897 + }, + { + "start": 21525.64, + "end": 21526.78, + "probability": 0.8634 + }, + { + "start": 21526.98, + "end": 21529.64, + "probability": 0.9955 + }, + { + "start": 21530.48, + "end": 21537.44, + "probability": 0.9908 + }, + { + "start": 21538.58, + "end": 21539.74, + "probability": 0.832 + }, + { + "start": 21540.66, + "end": 21541.0, + "probability": 0.6633 + }, + { + "start": 21541.06, + "end": 21542.18, + "probability": 0.7224 + }, + { + "start": 21542.32, + "end": 21543.26, + "probability": 0.938 + }, + { + "start": 21543.34, + "end": 21544.52, + "probability": 0.8369 + }, + { + "start": 21545.72, + "end": 21547.06, + "probability": 0.8188 + }, + { + "start": 21547.12, + "end": 21550.18, + "probability": 0.9503 + }, + { + "start": 21550.74, + "end": 21552.82, + "probability": 0.9928 + }, + { + "start": 21555.22, + "end": 21558.3, + "probability": 0.9262 + }, + { + "start": 21558.54, + "end": 21559.8, + "probability": 0.7189 + }, + { + "start": 21559.94, + "end": 21566.42, + "probability": 0.9684 + }, + { + "start": 21566.42, + "end": 21570.14, + "probability": 0.9827 + }, + { + "start": 21571.26, + "end": 21576.12, + "probability": 0.5883 + }, + { + "start": 21576.94, + "end": 21581.46, + "probability": 0.667 + }, + { + "start": 21582.2, + "end": 21587.28, + "probability": 0.9812 + }, + { + "start": 21587.28, + "end": 21591.38, + "probability": 0.9933 + }, + { + "start": 21592.14, + "end": 21595.54, + "probability": 0.998 + }, + { + "start": 21595.54, + "end": 21600.78, + "probability": 0.9751 + }, + { + "start": 21600.82, + "end": 21602.62, + "probability": 0.5295 + }, + { + "start": 21603.04, + "end": 21603.76, + "probability": 0.0326 + }, + { + "start": 21603.76, + "end": 21606.5, + "probability": 0.9407 + }, + { + "start": 21607.08, + "end": 21608.76, + "probability": 0.999 + }, + { + "start": 21609.52, + "end": 21612.38, + "probability": 0.9514 + }, + { + "start": 21612.44, + "end": 21615.24, + "probability": 0.8493 + }, + { + "start": 21615.8, + "end": 21618.54, + "probability": 0.9964 + }, + { + "start": 21619.2, + "end": 21624.16, + "probability": 0.9811 + }, + { + "start": 21624.38, + "end": 21625.3, + "probability": 0.8989 + }, + { + "start": 21625.36, + "end": 21626.22, + "probability": 0.7925 + }, + { + "start": 21626.72, + "end": 21628.28, + "probability": 0.9941 + }, + { + "start": 21628.74, + "end": 21632.96, + "probability": 0.9922 + }, + { + "start": 21633.04, + "end": 21633.52, + "probability": 0.7325 + }, + { + "start": 21634.06, + "end": 21635.02, + "probability": 0.8278 + }, + { + "start": 21636.42, + "end": 21639.3, + "probability": 0.8039 + }, + { + "start": 21641.66, + "end": 21643.22, + "probability": 0.1371 + }, + { + "start": 21643.88, + "end": 21646.5, + "probability": 0.1208 + }, + { + "start": 21646.68, + "end": 21647.86, + "probability": 0.703 + }, + { + "start": 21665.08, + "end": 21665.08, + "probability": 0.0413 + }, + { + "start": 21665.08, + "end": 21665.08, + "probability": 0.2162 + }, + { + "start": 21665.08, + "end": 21665.08, + "probability": 0.0991 + }, + { + "start": 21665.08, + "end": 21665.08, + "probability": 0.0285 + }, + { + "start": 21665.08, + "end": 21666.46, + "probability": 0.7826 + }, + { + "start": 21666.68, + "end": 21669.96, + "probability": 0.9648 + }, + { + "start": 21670.58, + "end": 21670.88, + "probability": 0.696 + }, + { + "start": 21671.28, + "end": 21673.18, + "probability": 0.0943 + }, + { + "start": 21679.06, + "end": 21680.28, + "probability": 0.8215 + }, + { + "start": 21682.44, + "end": 21683.4, + "probability": 0.999 + }, + { + "start": 21684.84, + "end": 21687.8, + "probability": 0.5319 + }, + { + "start": 21687.8, + "end": 21688.4, + "probability": 0.1888 + }, + { + "start": 21688.44, + "end": 21689.12, + "probability": 0.5621 + }, + { + "start": 21689.26, + "end": 21689.56, + "probability": 0.4976 + }, + { + "start": 21689.86, + "end": 21696.46, + "probability": 0.9803 + }, + { + "start": 21696.46, + "end": 21702.66, + "probability": 0.8229 + }, + { + "start": 21703.62, + "end": 21706.06, + "probability": 0.603 + }, + { + "start": 21706.68, + "end": 21709.02, + "probability": 0.9978 + }, + { + "start": 21709.02, + "end": 21712.82, + "probability": 0.8873 + }, + { + "start": 21712.9, + "end": 21713.62, + "probability": 0.6556 + }, + { + "start": 21714.42, + "end": 21714.79, + "probability": 0.9184 + }, + { + "start": 21715.48, + "end": 21717.22, + "probability": 0.2424 + }, + { + "start": 21717.42, + "end": 21718.12, + "probability": 0.134 + }, + { + "start": 21718.12, + "end": 21718.26, + "probability": 0.2424 + }, + { + "start": 21718.26, + "end": 21719.54, + "probability": 0.5525 + }, + { + "start": 21719.54, + "end": 21720.38, + "probability": 0.8109 + }, + { + "start": 21723.38, + "end": 21723.38, + "probability": 0.0587 + }, + { + "start": 21723.38, + "end": 21724.06, + "probability": 0.8298 + }, + { + "start": 21728.42, + "end": 21732.2, + "probability": 0.4406 + }, + { + "start": 21732.58, + "end": 21733.86, + "probability": 0.3154 + }, + { + "start": 21734.08, + "end": 21734.88, + "probability": 0.6021 + }, + { + "start": 21735.24, + "end": 21735.8, + "probability": 0.6943 + }, + { + "start": 21735.88, + "end": 21739.32, + "probability": 0.7252 + }, + { + "start": 21739.34, + "end": 21742.62, + "probability": 0.2831 + }, + { + "start": 21742.62, + "end": 21742.92, + "probability": 0.0203 + }, + { + "start": 21742.96, + "end": 21743.3, + "probability": 0.0175 + }, + { + "start": 21743.92, + "end": 21744.54, + "probability": 0.1428 + }, + { + "start": 21745.08, + "end": 21745.1, + "probability": 0.0694 + }, + { + "start": 21745.1, + "end": 21745.1, + "probability": 0.2006 + }, + { + "start": 21745.1, + "end": 21745.1, + "probability": 0.0137 + }, + { + "start": 21745.1, + "end": 21748.2, + "probability": 0.591 + }, + { + "start": 21748.32, + "end": 21749.0, + "probability": 0.4352 + }, + { + "start": 21749.96, + "end": 21750.22, + "probability": 0.6137 + }, + { + "start": 21750.34, + "end": 21754.14, + "probability": 0.6215 + }, + { + "start": 21754.22, + "end": 21762.38, + "probability": 0.5602 + }, + { + "start": 21762.52, + "end": 21763.0, + "probability": 0.3666 + }, + { + "start": 21763.1, + "end": 21763.32, + "probability": 0.8354 + }, + { + "start": 21763.44, + "end": 21764.28, + "probability": 0.9014 + }, + { + "start": 21764.36, + "end": 21765.5, + "probability": 0.7507 + }, + { + "start": 21765.52, + "end": 21766.88, + "probability": 0.3517 + }, + { + "start": 21767.52, + "end": 21770.16, + "probability": 0.3874 + }, + { + "start": 21770.64, + "end": 21772.04, + "probability": 0.3755 + }, + { + "start": 21772.14, + "end": 21773.18, + "probability": 0.59 + }, + { + "start": 21775.24, + "end": 21775.54, + "probability": 0.001 + }, + { + "start": 21779.0, + "end": 21779.68, + "probability": 0.1868 + }, + { + "start": 21780.82, + "end": 21784.24, + "probability": 0.672 + }, + { + "start": 21784.66, + "end": 21786.24, + "probability": 0.3821 + }, + { + "start": 21786.5, + "end": 21787.48, + "probability": 0.3211 + }, + { + "start": 21787.76, + "end": 21789.74, + "probability": 0.0995 + }, + { + "start": 21789.74, + "end": 21790.23, + "probability": 0.0071 + }, + { + "start": 21790.56, + "end": 21794.62, + "probability": 0.9263 + }, + { + "start": 21794.62, + "end": 21795.64, + "probability": 0.7419 + }, + { + "start": 21796.68, + "end": 21797.32, + "probability": 0.5423 + }, + { + "start": 21797.4, + "end": 21798.0, + "probability": 0.3686 + }, + { + "start": 21800.07, + "end": 21802.76, + "probability": 0.6441 + }, + { + "start": 21803.34, + "end": 21804.28, + "probability": 0.8003 + }, + { + "start": 21810.54, + "end": 21812.28, + "probability": 0.8436 + }, + { + "start": 21813.1, + "end": 21815.3, + "probability": 0.5493 + }, + { + "start": 21815.36, + "end": 21818.26, + "probability": 0.2221 + }, + { + "start": 21818.6, + "end": 21820.08, + "probability": 0.8417 + }, + { + "start": 21820.2, + "end": 21823.72, + "probability": 0.8549 + }, + { + "start": 21825.18, + "end": 21828.8, + "probability": 0.9656 + }, + { + "start": 21830.82, + "end": 21832.32, + "probability": 0.9215 + }, + { + "start": 21833.88, + "end": 21838.01, + "probability": 0.918 + }, + { + "start": 21838.1, + "end": 21840.36, + "probability": 0.132 + }, + { + "start": 21840.42, + "end": 21841.54, + "probability": 0.4566 + }, + { + "start": 21842.26, + "end": 21842.74, + "probability": 0.6731 + }, + { + "start": 21843.54, + "end": 21843.64, + "probability": 0.0759 + }, + { + "start": 21843.64, + "end": 21843.64, + "probability": 0.4156 + }, + { + "start": 21843.64, + "end": 21844.7, + "probability": 0.461 + }, + { + "start": 21844.96, + "end": 21845.62, + "probability": 0.5683 + }, + { + "start": 21845.68, + "end": 21846.52, + "probability": 0.5701 + }, + { + "start": 21846.64, + "end": 21847.32, + "probability": 0.6672 + }, + { + "start": 21848.62, + "end": 21850.16, + "probability": 0.7342 + }, + { + "start": 21850.54, + "end": 21850.96, + "probability": 0.7314 + }, + { + "start": 21851.1, + "end": 21852.5, + "probability": 0.0805 + }, + { + "start": 21852.5, + "end": 21855.66, + "probability": 0.487 + }, + { + "start": 21855.66, + "end": 21858.32, + "probability": 0.3559 + }, + { + "start": 21858.32, + "end": 21858.66, + "probability": 0.7087 + }, + { + "start": 21859.04, + "end": 21859.46, + "probability": 0.5551 + }, + { + "start": 21859.86, + "end": 21861.32, + "probability": 0.3629 + }, + { + "start": 21861.58, + "end": 21862.4, + "probability": 0.5958 + }, + { + "start": 21862.42, + "end": 21865.1, + "probability": 0.7074 + }, + { + "start": 21865.6, + "end": 21867.48, + "probability": 0.6642 + }, + { + "start": 21867.84, + "end": 21871.32, + "probability": 0.9419 + }, + { + "start": 21871.46, + "end": 21872.3, + "probability": 0.3535 + }, + { + "start": 21872.88, + "end": 21873.96, + "probability": 0.9695 + }, + { + "start": 21874.04, + "end": 21874.86, + "probability": 0.6494 + }, + { + "start": 21874.96, + "end": 21875.98, + "probability": 0.3059 + }, + { + "start": 21876.38, + "end": 21878.56, + "probability": 0.8877 + }, + { + "start": 21878.64, + "end": 21881.48, + "probability": 0.7961 + }, + { + "start": 21882.86, + "end": 21886.04, + "probability": 0.7019 + }, + { + "start": 21886.42, + "end": 21889.5, + "probability": 0.5453 + }, + { + "start": 21889.5, + "end": 21890.83, + "probability": 0.6619 + }, + { + "start": 21891.74, + "end": 21893.3, + "probability": 0.8337 + }, + { + "start": 21893.42, + "end": 21899.6, + "probability": 0.7113 + }, + { + "start": 21899.68, + "end": 21900.61, + "probability": 0.7525 + }, + { + "start": 21901.14, + "end": 21902.24, + "probability": 0.5245 + }, + { + "start": 21902.86, + "end": 21909.0, + "probability": 0.7992 + }, + { + "start": 21910.92, + "end": 21910.92, + "probability": 0.148 + }, + { + "start": 21910.92, + "end": 21915.68, + "probability": 0.8314 + }, + { + "start": 21915.68, + "end": 21918.3, + "probability": 0.9227 + }, + { + "start": 21919.86, + "end": 21920.46, + "probability": 0.8696 + }, + { + "start": 21921.58, + "end": 21924.56, + "probability": 0.9792 + }, + { + "start": 21924.56, + "end": 21927.94, + "probability": 0.7392 + }, + { + "start": 21928.56, + "end": 21930.46, + "probability": 0.7987 + }, + { + "start": 21930.88, + "end": 21935.34, + "probability": 0.7907 + }, + { + "start": 21936.48, + "end": 21938.12, + "probability": 0.5821 + }, + { + "start": 21939.48, + "end": 21941.44, + "probability": 0.9936 + }, + { + "start": 21941.44, + "end": 21943.74, + "probability": 0.6832 + }, + { + "start": 21943.76, + "end": 21945.42, + "probability": 0.5511 + }, + { + "start": 21945.92, + "end": 21946.58, + "probability": 0.6339 + }, + { + "start": 21946.66, + "end": 21951.4, + "probability": 0.7289 + }, + { + "start": 21952.24, + "end": 21955.0, + "probability": 0.7822 + }, + { + "start": 21955.1, + "end": 21955.54, + "probability": 0.8036 + }, + { + "start": 21955.82, + "end": 21956.62, + "probability": 0.7081 + }, + { + "start": 21957.52, + "end": 21960.06, + "probability": 0.7173 + }, + { + "start": 21960.18, + "end": 21962.44, + "probability": 0.9121 + }, + { + "start": 21963.24, + "end": 21964.96, + "probability": 0.8896 + }, + { + "start": 21964.96, + "end": 21967.62, + "probability": 0.8883 + }, + { + "start": 21967.92, + "end": 21968.86, + "probability": 0.9711 + }, + { + "start": 21969.36, + "end": 21972.16, + "probability": 0.9418 + }, + { + "start": 21974.58, + "end": 21978.42, + "probability": 0.9364 + }, + { + "start": 21978.42, + "end": 21981.14, + "probability": 0.9734 + }, + { + "start": 21982.0, + "end": 21984.65, + "probability": 0.5015 + }, + { + "start": 21985.12, + "end": 21989.54, + "probability": 0.9849 + }, + { + "start": 21989.54, + "end": 21993.2, + "probability": 0.6248 + }, + { + "start": 21994.06, + "end": 21995.36, + "probability": 0.5093 + }, + { + "start": 21997.34, + "end": 22000.88, + "probability": 0.6822 + }, + { + "start": 22001.48, + "end": 22002.79, + "probability": 0.5295 + }, + { + "start": 22004.7, + "end": 22005.12, + "probability": 0.5474 + }, + { + "start": 22005.12, + "end": 22005.58, + "probability": 0.397 + }, + { + "start": 22005.58, + "end": 22006.65, + "probability": 0.758 + }, + { + "start": 22006.88, + "end": 22007.32, + "probability": 0.5426 + }, + { + "start": 22007.58, + "end": 22009.34, + "probability": 0.9229 + }, + { + "start": 22009.48, + "end": 22010.66, + "probability": 0.6444 + }, + { + "start": 22011.2, + "end": 22014.42, + "probability": 0.6609 + }, + { + "start": 22014.42, + "end": 22016.74, + "probability": 0.5649 + }, + { + "start": 22017.24, + "end": 22020.48, + "probability": 0.5496 + }, + { + "start": 22021.51, + "end": 22023.96, + "probability": 0.5444 + }, + { + "start": 22023.96, + "end": 22026.56, + "probability": 0.8479 + }, + { + "start": 22027.04, + "end": 22029.7, + "probability": 0.9089 + }, + { + "start": 22030.62, + "end": 22036.12, + "probability": 0.807 + }, + { + "start": 22036.6, + "end": 22039.54, + "probability": 0.6388 + }, + { + "start": 22040.16, + "end": 22042.16, + "probability": 0.8451 + }, + { + "start": 22042.24, + "end": 22045.72, + "probability": 0.7114 + }, + { + "start": 22047.5, + "end": 22048.44, + "probability": 0.7332 + }, + { + "start": 22048.6, + "end": 22049.88, + "probability": 0.3051 + }, + { + "start": 22050.12, + "end": 22052.84, + "probability": 0.7435 + }, + { + "start": 22053.5, + "end": 22055.56, + "probability": 0.9629 + }, + { + "start": 22060.38, + "end": 22063.4, + "probability": 0.72 + }, + { + "start": 22063.42, + "end": 22064.42, + "probability": 0.8284 + }, + { + "start": 22065.56, + "end": 22069.26, + "probability": 0.5114 + }, + { + "start": 22069.26, + "end": 22072.76, + "probability": 0.7311 + }, + { + "start": 22073.54, + "end": 22075.7, + "probability": 0.9543 + }, + { + "start": 22076.32, + "end": 22076.56, + "probability": 0.4907 + }, + { + "start": 22076.72, + "end": 22077.6, + "probability": 0.4447 + }, + { + "start": 22077.76, + "end": 22080.86, + "probability": 0.5566 + }, + { + "start": 22080.92, + "end": 22081.52, + "probability": 0.4393 + }, + { + "start": 22082.54, + "end": 22086.12, + "probability": 0.9214 + }, + { + "start": 22087.16, + "end": 22089.78, + "probability": 0.7239 + }, + { + "start": 22089.78, + "end": 22092.06, + "probability": 0.5305 + }, + { + "start": 22092.12, + "end": 22094.48, + "probability": 0.7847 + }, + { + "start": 22094.48, + "end": 22096.76, + "probability": 0.3514 + }, + { + "start": 22096.9, + "end": 22101.86, + "probability": 0.539 + }, + { + "start": 22102.82, + "end": 22105.54, + "probability": 0.4934 + }, + { + "start": 22105.54, + "end": 22106.02, + "probability": 0.4043 + }, + { + "start": 22106.1, + "end": 22109.56, + "probability": 0.8965 + }, + { + "start": 22110.28, + "end": 22110.56, + "probability": 0.5284 + }, + { + "start": 22111.42, + "end": 22112.18, + "probability": 0.9204 + }, + { + "start": 22112.28, + "end": 22112.96, + "probability": 0.9507 + }, + { + "start": 22113.04, + "end": 22113.96, + "probability": 0.6836 + }, + { + "start": 22115.36, + "end": 22117.62, + "probability": 0.4278 + }, + { + "start": 22118.76, + "end": 22119.14, + "probability": 0.0399 + }, + { + "start": 22119.32, + "end": 22123.04, + "probability": 0.4738 + }, + { + "start": 22125.46, + "end": 22129.0, + "probability": 0.2654 + }, + { + "start": 22129.14, + "end": 22130.51, + "probability": 0.9088 + }, + { + "start": 22131.06, + "end": 22133.74, + "probability": 0.807 + }, + { + "start": 22133.86, + "end": 22136.46, + "probability": 0.7612 + }, + { + "start": 22136.64, + "end": 22140.18, + "probability": 0.8333 + }, + { + "start": 22140.72, + "end": 22143.84, + "probability": 0.8805 + }, + { + "start": 22144.46, + "end": 22151.36, + "probability": 0.9561 + }, + { + "start": 22151.42, + "end": 22152.28, + "probability": 0.9231 + }, + { + "start": 22153.06, + "end": 22156.68, + "probability": 0.895 + }, + { + "start": 22158.24, + "end": 22158.6, + "probability": 0.7773 + }, + { + "start": 22158.64, + "end": 22164.1, + "probability": 0.9974 + }, + { + "start": 22164.44, + "end": 22166.68, + "probability": 0.9657 + }, + { + "start": 22167.26, + "end": 22172.22, + "probability": 0.7008 + }, + { + "start": 22172.82, + "end": 22173.72, + "probability": 0.9707 + }, + { + "start": 22197.04, + "end": 22197.42, + "probability": 0.7386 + }, + { + "start": 22200.94, + "end": 22201.66, + "probability": 0.9055 + }, + { + "start": 22203.62, + "end": 22204.16, + "probability": 0.6427 + }, + { + "start": 22204.32, + "end": 22205.16, + "probability": 0.8404 + }, + { + "start": 22206.82, + "end": 22212.64, + "probability": 0.8553 + }, + { + "start": 22214.74, + "end": 22216.94, + "probability": 0.1064 + }, + { + "start": 22219.28, + "end": 22220.58, + "probability": 0.139 + }, + { + "start": 22222.94, + "end": 22224.54, + "probability": 0.0324 + }, + { + "start": 22225.31, + "end": 22225.62, + "probability": 0.006 + }, + { + "start": 22226.81, + "end": 22226.88, + "probability": 0.2818 + }, + { + "start": 22229.1, + "end": 22230.58, + "probability": 0.0917 + }, + { + "start": 22231.88, + "end": 22232.62, + "probability": 0.152 + }, + { + "start": 22233.26, + "end": 22235.16, + "probability": 0.5865 + }, + { + "start": 22236.12, + "end": 22238.04, + "probability": 0.867 + }, + { + "start": 22239.1, + "end": 22240.06, + "probability": 0.8502 + }, + { + "start": 22240.66, + "end": 22242.11, + "probability": 0.9312 + }, + { + "start": 22242.84, + "end": 22247.4, + "probability": 0.9887 + }, + { + "start": 22247.4, + "end": 22250.9, + "probability": 0.8061 + }, + { + "start": 22251.22, + "end": 22253.14, + "probability": 0.7997 + }, + { + "start": 22253.42, + "end": 22255.1, + "probability": 0.286 + }, + { + "start": 22255.78, + "end": 22259.02, + "probability": 0.9378 + }, + { + "start": 22259.2, + "end": 22259.64, + "probability": 0.5462 + }, + { + "start": 22259.76, + "end": 22260.52, + "probability": 0.9041 + }, + { + "start": 22261.1, + "end": 22261.4, + "probability": 0.3709 + }, + { + "start": 22264.88, + "end": 22266.0, + "probability": 0.0506 + }, + { + "start": 22285.94, + "end": 22287.66, + "probability": 0.1163 + }, + { + "start": 22288.84, + "end": 22291.42, + "probability": 0.6583 + }, + { + "start": 22297.92, + "end": 22299.44, + "probability": 0.637 + }, + { + "start": 22314.96, + "end": 22315.78, + "probability": 0.7077 + }, + { + "start": 22317.18, + "end": 22318.0, + "probability": 0.9302 + }, + { + "start": 22318.84, + "end": 22318.84, + "probability": 0.0308 + }, + { + "start": 22318.84, + "end": 22318.84, + "probability": 0.0405 + }, + { + "start": 22318.84, + "end": 22318.84, + "probability": 0.0888 + }, + { + "start": 22318.84, + "end": 22318.84, + "probability": 0.2376 + }, + { + "start": 22318.84, + "end": 22320.98, + "probability": 0.2909 + }, + { + "start": 22321.66, + "end": 22324.64, + "probability": 0.7834 + }, + { + "start": 22325.28, + "end": 22327.0, + "probability": 0.8362 + }, + { + "start": 22327.88, + "end": 22331.52, + "probability": 0.734 + }, + { + "start": 22331.52, + "end": 22334.8, + "probability": 0.8791 + }, + { + "start": 22334.8, + "end": 22336.42, + "probability": 0.4958 + }, + { + "start": 22337.22, + "end": 22341.18, + "probability": 0.975 + }, + { + "start": 22341.4, + "end": 22342.12, + "probability": 0.6557 + }, + { + "start": 22342.86, + "end": 22344.22, + "probability": 0.9658 + }, + { + "start": 22345.02, + "end": 22346.44, + "probability": 0.8452 + }, + { + "start": 22351.34, + "end": 22352.77, + "probability": 0.8472 + }, + { + "start": 22355.34, + "end": 22356.08, + "probability": 0.9027 + }, + { + "start": 22358.96, + "end": 22362.34, + "probability": 0.7036 + }, + { + "start": 22366.46, + "end": 22370.48, + "probability": 0.9739 + }, + { + "start": 22370.82, + "end": 22374.36, + "probability": 0.8483 + }, + { + "start": 22376.92, + "end": 22379.04, + "probability": 0.8107 + }, + { + "start": 22379.28, + "end": 22380.34, + "probability": 0.9619 + }, + { + "start": 22382.24, + "end": 22385.26, + "probability": 0.6334 + }, + { + "start": 22385.36, + "end": 22386.76, + "probability": 0.7903 + }, + { + "start": 22386.84, + "end": 22388.42, + "probability": 0.8959 + }, + { + "start": 22389.0, + "end": 22392.26, + "probability": 0.8403 + }, + { + "start": 22392.88, + "end": 22394.1, + "probability": 0.6478 + }, + { + "start": 22394.18, + "end": 22398.0, + "probability": 0.8264 + }, + { + "start": 22399.02, + "end": 22402.32, + "probability": 0.9077 + }, + { + "start": 22403.64, + "end": 22406.92, + "probability": 0.6073 + }, + { + "start": 22408.24, + "end": 22413.04, + "probability": 0.7591 + }, + { + "start": 22414.9, + "end": 22416.42, + "probability": 0.868 + }, + { + "start": 22417.32, + "end": 22419.54, + "probability": 0.9529 + }, + { + "start": 22420.48, + "end": 22423.68, + "probability": 0.5955 + }, + { + "start": 22424.56, + "end": 22426.08, + "probability": 0.8879 + }, + { + "start": 22426.98, + "end": 22428.82, + "probability": 0.9307 + }, + { + "start": 22429.72, + "end": 22431.52, + "probability": 0.9929 + }, + { + "start": 22432.02, + "end": 22436.24, + "probability": 0.9577 + }, + { + "start": 22436.9, + "end": 22440.28, + "probability": 0.6719 + }, + { + "start": 22441.24, + "end": 22442.34, + "probability": 0.9464 + }, + { + "start": 22444.74, + "end": 22445.62, + "probability": 0.986 + }, + { + "start": 22448.82, + "end": 22449.76, + "probability": 0.9712 + }, + { + "start": 22451.24, + "end": 22452.95, + "probability": 0.843 + }, + { + "start": 22454.38, + "end": 22455.36, + "probability": 0.9169 + }, + { + "start": 22457.14, + "end": 22460.16, + "probability": 0.986 + }, + { + "start": 22462.42, + "end": 22465.68, + "probability": 0.8757 + }, + { + "start": 22467.6, + "end": 22471.22, + "probability": 0.9925 + }, + { + "start": 22472.46, + "end": 22475.02, + "probability": 0.9919 + }, + { + "start": 22475.02, + "end": 22477.7, + "probability": 0.9868 + }, + { + "start": 22479.24, + "end": 22481.5, + "probability": 0.9972 + }, + { + "start": 22482.56, + "end": 22486.26, + "probability": 0.8869 + }, + { + "start": 22487.52, + "end": 22488.5, + "probability": 0.9045 + }, + { + "start": 22490.6, + "end": 22491.34, + "probability": 0.6825 + }, + { + "start": 22491.58, + "end": 22494.96, + "probability": 0.986 + }, + { + "start": 22496.2, + "end": 22499.14, + "probability": 0.98 + }, + { + "start": 22500.94, + "end": 22503.36, + "probability": 0.9934 + }, + { + "start": 22505.18, + "end": 22505.98, + "probability": 0.3548 + }, + { + "start": 22506.12, + "end": 22507.64, + "probability": 0.9355 + }, + { + "start": 22508.06, + "end": 22508.66, + "probability": 0.8466 + }, + { + "start": 22508.8, + "end": 22511.94, + "probability": 0.8521 + }, + { + "start": 22511.94, + "end": 22515.24, + "probability": 0.9203 + }, + { + "start": 22516.0, + "end": 22517.26, + "probability": 0.8481 + }, + { + "start": 22518.1, + "end": 22519.0, + "probability": 0.8503 + }, + { + "start": 22520.18, + "end": 22523.56, + "probability": 0.9932 + }, + { + "start": 22525.18, + "end": 22528.4, + "probability": 0.9414 + }, + { + "start": 22528.52, + "end": 22529.21, + "probability": 0.7208 + }, + { + "start": 22530.24, + "end": 22532.24, + "probability": 0.8408 + }, + { + "start": 22533.46, + "end": 22536.04, + "probability": 0.9224 + }, + { + "start": 22537.84, + "end": 22539.92, + "probability": 0.9829 + }, + { + "start": 22541.22, + "end": 22542.56, + "probability": 0.4441 + }, + { + "start": 22543.18, + "end": 22543.74, + "probability": 0.7178 + }, + { + "start": 22543.98, + "end": 22545.34, + "probability": 0.4468 + }, + { + "start": 22545.38, + "end": 22546.48, + "probability": 0.9949 + }, + { + "start": 22546.74, + "end": 22547.86, + "probability": 0.8754 + }, + { + "start": 22548.24, + "end": 22552.22, + "probability": 0.9099 + }, + { + "start": 22552.34, + "end": 22552.88, + "probability": 0.7734 + }, + { + "start": 22553.38, + "end": 22554.0, + "probability": 0.7134 + }, + { + "start": 22554.58, + "end": 22557.08, + "probability": 0.9801 + }, + { + "start": 22559.64, + "end": 22562.2, + "probability": 0.9132 + }, + { + "start": 22562.82, + "end": 22563.14, + "probability": 0.9185 + }, + { + "start": 22563.6, + "end": 22564.0, + "probability": 0.7687 + }, + { + "start": 22564.04, + "end": 22565.58, + "probability": 0.9531 + }, + { + "start": 22566.02, + "end": 22566.82, + "probability": 0.6732 + }, + { + "start": 22566.92, + "end": 22568.36, + "probability": 0.8606 + }, + { + "start": 22568.42, + "end": 22569.24, + "probability": 0.4661 + }, + { + "start": 22569.42, + "end": 22569.7, + "probability": 0.2414 + }, + { + "start": 22570.0, + "end": 22570.98, + "probability": 0.2335 + }, + { + "start": 22571.1, + "end": 22572.0, + "probability": 0.4221 + }, + { + "start": 22572.52, + "end": 22572.96, + "probability": 0.8342 + }, + { + "start": 22574.04, + "end": 22575.76, + "probability": 0.9268 + }, + { + "start": 22580.54, + "end": 22581.46, + "probability": 0.7106 + }, + { + "start": 22582.84, + "end": 22583.46, + "probability": 0.5765 + }, + { + "start": 22585.04, + "end": 22586.6, + "probability": 0.8813 + }, + { + "start": 22588.16, + "end": 22590.28, + "probability": 0.9908 + }, + { + "start": 22591.48, + "end": 22592.52, + "probability": 0.9988 + }, + { + "start": 22593.36, + "end": 22597.08, + "probability": 0.9966 + }, + { + "start": 22598.08, + "end": 22601.68, + "probability": 0.7842 + }, + { + "start": 22601.7, + "end": 22601.98, + "probability": 0.1695 + }, + { + "start": 22602.6, + "end": 22605.9, + "probability": 0.8708 + }, + { + "start": 22606.0, + "end": 22606.91, + "probability": 0.8483 + }, + { + "start": 22607.76, + "end": 22609.35, + "probability": 0.8474 + }, + { + "start": 22610.04, + "end": 22613.74, + "probability": 0.9419 + }, + { + "start": 22613.88, + "end": 22615.48, + "probability": 0.9541 + }, + { + "start": 22616.12, + "end": 22617.8, + "probability": 0.8765 + }, + { + "start": 22617.92, + "end": 22619.44, + "probability": 0.9612 + }, + { + "start": 22620.04, + "end": 22621.33, + "probability": 0.9671 + }, + { + "start": 22622.36, + "end": 22626.58, + "probability": 0.9845 + }, + { + "start": 22627.66, + "end": 22632.1, + "probability": 0.9927 + }, + { + "start": 22632.14, + "end": 22632.84, + "probability": 0.6746 + }, + { + "start": 22633.02, + "end": 22633.44, + "probability": 0.6654 + }, + { + "start": 22633.6, + "end": 22634.38, + "probability": 0.9546 + }, + { + "start": 22634.5, + "end": 22637.98, + "probability": 0.6964 + }, + { + "start": 22638.74, + "end": 22641.5, + "probability": 0.9579 + }, + { + "start": 22642.94, + "end": 22645.96, + "probability": 0.7822 + }, + { + "start": 22646.98, + "end": 22650.64, + "probability": 0.9297 + }, + { + "start": 22650.64, + "end": 22655.24, + "probability": 0.9792 + }, + { + "start": 22656.32, + "end": 22657.71, + "probability": 0.9912 + }, + { + "start": 22658.46, + "end": 22661.38, + "probability": 0.9927 + }, + { + "start": 22661.66, + "end": 22663.06, + "probability": 0.9768 + }, + { + "start": 22663.48, + "end": 22666.14, + "probability": 0.6087 + }, + { + "start": 22666.68, + "end": 22671.26, + "probability": 0.9795 + }, + { + "start": 22671.4, + "end": 22672.68, + "probability": 0.8654 + }, + { + "start": 22672.68, + "end": 22673.14, + "probability": 0.6256 + }, + { + "start": 22673.2, + "end": 22674.44, + "probability": 0.7947 + }, + { + "start": 22674.7, + "end": 22677.1, + "probability": 0.1822 + }, + { + "start": 22677.1, + "end": 22677.66, + "probability": 0.3674 + }, + { + "start": 22677.66, + "end": 22677.84, + "probability": 0.6733 + }, + { + "start": 22677.96, + "end": 22678.56, + "probability": 0.6299 + }, + { + "start": 22678.96, + "end": 22680.21, + "probability": 0.9829 + }, + { + "start": 22680.96, + "end": 22682.84, + "probability": 0.9609 + }, + { + "start": 22683.0, + "end": 22683.0, + "probability": 0.4702 + }, + { + "start": 22683.0, + "end": 22683.56, + "probability": 0.4578 + }, + { + "start": 22684.14, + "end": 22689.76, + "probability": 0.9493 + }, + { + "start": 22690.6, + "end": 22691.24, + "probability": 0.4448 + }, + { + "start": 22691.36, + "end": 22691.66, + "probability": 0.4305 + }, + { + "start": 22691.7, + "end": 22692.57, + "probability": 0.9302 + }, + { + "start": 22692.9, + "end": 22693.5, + "probability": 0.802 + }, + { + "start": 22694.86, + "end": 22695.98, + "probability": 0.597 + }, + { + "start": 22696.4, + "end": 22696.86, + "probability": 0.7238 + }, + { + "start": 22698.36, + "end": 22698.36, + "probability": 0.7533 + }, + { + "start": 22698.36, + "end": 22699.68, + "probability": 0.9766 + }, + { + "start": 22699.8, + "end": 22702.02, + "probability": 0.9937 + }, + { + "start": 22702.54, + "end": 22704.5, + "probability": 0.9684 + }, + { + "start": 22704.92, + "end": 22707.84, + "probability": 0.9968 + }, + { + "start": 22708.18, + "end": 22709.98, + "probability": 0.9857 + }, + { + "start": 22710.54, + "end": 22712.7, + "probability": 0.9902 + }, + { + "start": 22713.72, + "end": 22714.62, + "probability": 0.9844 + }, + { + "start": 22715.48, + "end": 22716.13, + "probability": 0.9629 + }, + { + "start": 22716.66, + "end": 22721.76, + "probability": 0.879 + }, + { + "start": 22721.9, + "end": 22722.88, + "probability": 0.822 + }, + { + "start": 22723.66, + "end": 22724.72, + "probability": 0.9888 + }, + { + "start": 22724.94, + "end": 22726.22, + "probability": 0.9941 + }, + { + "start": 22727.38, + "end": 22729.92, + "probability": 0.3574 + }, + { + "start": 22730.18, + "end": 22731.16, + "probability": 0.8366 + }, + { + "start": 22731.26, + "end": 22732.2, + "probability": 0.4818 + }, + { + "start": 22732.34, + "end": 22733.5, + "probability": 0.2177 + }, + { + "start": 22733.5, + "end": 22735.78, + "probability": 0.1592 + }, + { + "start": 22735.88, + "end": 22740.02, + "probability": 0.8453 + }, + { + "start": 22740.16, + "end": 22741.6, + "probability": 0.9685 + }, + { + "start": 22741.6, + "end": 22742.08, + "probability": 0.5698 + }, + { + "start": 22742.46, + "end": 22743.44, + "probability": 0.7701 + }, + { + "start": 22744.92, + "end": 22746.02, + "probability": 0.8472 + }, + { + "start": 22746.76, + "end": 22747.26, + "probability": 0.5627 + }, + { + "start": 22748.24, + "end": 22750.22, + "probability": 0.9911 + }, + { + "start": 22750.78, + "end": 22751.8, + "probability": 0.7494 + }, + { + "start": 22752.92, + "end": 22755.48, + "probability": 0.9893 + }, + { + "start": 22756.42, + "end": 22758.56, + "probability": 0.9671 + }, + { + "start": 22758.6, + "end": 22762.72, + "probability": 0.9966 + }, + { + "start": 22762.72, + "end": 22768.18, + "probability": 0.9751 + }, + { + "start": 22768.94, + "end": 22771.18, + "probability": 0.7996 + }, + { + "start": 22771.88, + "end": 22775.37, + "probability": 0.9761 + }, + { + "start": 22775.94, + "end": 22777.16, + "probability": 0.8154 + }, + { + "start": 22777.36, + "end": 22778.24, + "probability": 0.9268 + }, + { + "start": 22778.98, + "end": 22780.54, + "probability": 0.9238 + }, + { + "start": 22781.1, + "end": 22781.56, + "probability": 0.5545 + }, + { + "start": 22782.22, + "end": 22783.68, + "probability": 0.9967 + }, + { + "start": 22784.56, + "end": 22785.87, + "probability": 0.834 + }, + { + "start": 22786.88, + "end": 22788.4, + "probability": 0.7654 + }, + { + "start": 22788.46, + "end": 22789.5, + "probability": 0.989 + }, + { + "start": 22790.6, + "end": 22794.3, + "probability": 0.9633 + }, + { + "start": 22795.78, + "end": 22796.1, + "probability": 0.4657 + }, + { + "start": 22796.28, + "end": 22800.88, + "probability": 0.9456 + }, + { + "start": 22801.7, + "end": 22803.32, + "probability": 0.8418 + }, + { + "start": 22803.5, + "end": 22804.18, + "probability": 0.7035 + }, + { + "start": 22804.66, + "end": 22805.5, + "probability": 0.983 + }, + { + "start": 22806.04, + "end": 22807.02, + "probability": 0.9407 + }, + { + "start": 22807.86, + "end": 22809.26, + "probability": 0.734 + }, + { + "start": 22809.38, + "end": 22810.38, + "probability": 0.9472 + }, + { + "start": 22810.74, + "end": 22813.02, + "probability": 0.9368 + }, + { + "start": 22813.06, + "end": 22815.82, + "probability": 0.8593 + }, + { + "start": 22815.9, + "end": 22816.76, + "probability": 0.6841 + }, + { + "start": 22816.9, + "end": 22818.23, + "probability": 0.7291 + }, + { + "start": 22818.92, + "end": 22820.12, + "probability": 0.8955 + }, + { + "start": 22820.72, + "end": 22821.16, + "probability": 0.9495 + }, + { + "start": 22821.64, + "end": 22823.88, + "probability": 0.9894 + }, + { + "start": 22824.7, + "end": 22825.66, + "probability": 0.906 + }, + { + "start": 22825.84, + "end": 22827.96, + "probability": 0.9591 + }, + { + "start": 22828.4, + "end": 22830.54, + "probability": 0.9694 + }, + { + "start": 22831.3, + "end": 22832.98, + "probability": 0.9887 + }, + { + "start": 22833.38, + "end": 22834.44, + "probability": 0.8207 + }, + { + "start": 22834.72, + "end": 22836.82, + "probability": 0.988 + }, + { + "start": 22837.2, + "end": 22840.38, + "probability": 0.968 + }, + { + "start": 22840.96, + "end": 22841.66, + "probability": 0.8412 + }, + { + "start": 22842.16, + "end": 22844.06, + "probability": 0.9686 + }, + { + "start": 22844.18, + "end": 22844.64, + "probability": 0.7076 + }, + { + "start": 22844.74, + "end": 22845.32, + "probability": 0.7807 + }, + { + "start": 22845.42, + "end": 22845.9, + "probability": 0.6936 + }, + { + "start": 22846.3, + "end": 22847.21, + "probability": 0.9102 + }, + { + "start": 22848.2, + "end": 22849.36, + "probability": 0.9937 + }, + { + "start": 22849.94, + "end": 22850.86, + "probability": 0.8941 + }, + { + "start": 22851.58, + "end": 22851.98, + "probability": 0.9719 + }, + { + "start": 22852.6, + "end": 22852.7, + "probability": 0.4203 + }, + { + "start": 22852.7, + "end": 22853.12, + "probability": 0.7766 + }, + { + "start": 22853.38, + "end": 22853.88, + "probability": 0.3955 + }, + { + "start": 22853.9, + "end": 22854.42, + "probability": 0.7066 + }, + { + "start": 22854.54, + "end": 22855.12, + "probability": 0.7129 + }, + { + "start": 22855.62, + "end": 22856.85, + "probability": 0.978 + }, + { + "start": 22857.12, + "end": 22857.92, + "probability": 0.961 + }, + { + "start": 22858.42, + "end": 22860.82, + "probability": 0.9956 + }, + { + "start": 22861.48, + "end": 22862.92, + "probability": 0.981 + }, + { + "start": 22863.1, + "end": 22864.92, + "probability": 0.9839 + }, + { + "start": 22865.1, + "end": 22867.26, + "probability": 0.9934 + }, + { + "start": 22867.26, + "end": 22869.36, + "probability": 0.9431 + }, + { + "start": 22869.82, + "end": 22871.14, + "probability": 0.9092 + }, + { + "start": 22871.42, + "end": 22873.39, + "probability": 0.9468 + }, + { + "start": 22873.78, + "end": 22876.11, + "probability": 0.6816 + }, + { + "start": 22876.82, + "end": 22878.3, + "probability": 0.895 + }, + { + "start": 22879.0, + "end": 22879.91, + "probability": 0.9927 + }, + { + "start": 22880.66, + "end": 22881.17, + "probability": 0.8754 + }, + { + "start": 22882.36, + "end": 22885.8, + "probability": 0.9634 + }, + { + "start": 22886.22, + "end": 22887.22, + "probability": 0.8652 + }, + { + "start": 22888.3, + "end": 22889.78, + "probability": 0.9442 + }, + { + "start": 22890.6, + "end": 22892.22, + "probability": 0.9533 + }, + { + "start": 22892.78, + "end": 22895.29, + "probability": 0.6865 + }, + { + "start": 22895.48, + "end": 22895.74, + "probability": 0.7938 + }, + { + "start": 22896.68, + "end": 22898.36, + "probability": 0.9863 + }, + { + "start": 22898.88, + "end": 22900.58, + "probability": 0.5583 + }, + { + "start": 22900.64, + "end": 22901.42, + "probability": 0.9717 + }, + { + "start": 22902.62, + "end": 22907.08, + "probability": 0.9763 + }, + { + "start": 22908.12, + "end": 22912.14, + "probability": 0.9164 + }, + { + "start": 22913.02, + "end": 22915.64, + "probability": 0.8813 + }, + { + "start": 22916.78, + "end": 22918.86, + "probability": 0.863 + }, + { + "start": 22919.1, + "end": 22920.5, + "probability": 0.9738 + }, + { + "start": 22920.72, + "end": 22922.04, + "probability": 0.7884 + }, + { + "start": 22922.48, + "end": 22925.08, + "probability": 0.891 + }, + { + "start": 22926.26, + "end": 22929.32, + "probability": 0.9963 + }, + { + "start": 22930.46, + "end": 22930.94, + "probability": 0.8684 + }, + { + "start": 22931.02, + "end": 22933.86, + "probability": 0.898 + }, + { + "start": 22934.62, + "end": 22935.26, + "probability": 0.9487 + }, + { + "start": 22935.36, + "end": 22938.74, + "probability": 0.9795 + }, + { + "start": 22939.82, + "end": 22940.18, + "probability": 0.3347 + }, + { + "start": 22940.76, + "end": 22941.94, + "probability": 0.2444 + }, + { + "start": 22942.46, + "end": 22943.34, + "probability": 0.0484 + }, + { + "start": 22943.46, + "end": 22944.74, + "probability": 0.7389 + }, + { + "start": 22945.12, + "end": 22945.9, + "probability": 0.5283 + }, + { + "start": 22945.94, + "end": 22947.02, + "probability": 0.9252 + }, + { + "start": 22947.1, + "end": 22947.49, + "probability": 0.143 + }, + { + "start": 22948.36, + "end": 22949.52, + "probability": 0.8809 + }, + { + "start": 22949.98, + "end": 22952.7, + "probability": 0.953 + }, + { + "start": 22952.84, + "end": 22953.9, + "probability": 0.7621 + }, + { + "start": 22958.48, + "end": 22961.04, + "probability": 0.9739 + }, + { + "start": 22963.04, + "end": 22965.18, + "probability": 0.7833 + }, + { + "start": 22966.26, + "end": 22967.3, + "probability": 0.9743 + }, + { + "start": 22967.46, + "end": 22968.65, + "probability": 0.2204 + }, + { + "start": 22969.14, + "end": 22970.44, + "probability": 0.9915 + }, + { + "start": 22970.92, + "end": 22974.0, + "probability": 0.9747 + }, + { + "start": 22974.58, + "end": 22976.14, + "probability": 0.5085 + }, + { + "start": 22976.39, + "end": 22979.2, + "probability": 0.9885 + }, + { + "start": 22979.58, + "end": 22980.34, + "probability": 0.7072 + }, + { + "start": 22980.34, + "end": 22981.04, + "probability": 0.9901 + }, + { + "start": 22981.76, + "end": 22982.78, + "probability": 0.9312 + }, + { + "start": 22983.54, + "end": 22985.74, + "probability": 0.8911 + }, + { + "start": 22988.06, + "end": 22988.68, + "probability": 0.8873 + }, + { + "start": 22988.94, + "end": 22990.52, + "probability": 0.6105 + }, + { + "start": 22991.36, + "end": 22992.0, + "probability": 0.5497 + }, + { + "start": 22992.28, + "end": 22994.52, + "probability": 0.9805 + }, + { + "start": 22995.06, + "end": 22995.56, + "probability": 0.5409 + }, + { + "start": 22995.64, + "end": 22996.13, + "probability": 0.8071 + }, + { + "start": 22997.18, + "end": 22998.78, + "probability": 0.9598 + }, + { + "start": 22998.84, + "end": 23000.2, + "probability": 0.9751 + }, + { + "start": 23000.44, + "end": 23000.56, + "probability": 0.0909 + }, + { + "start": 23000.86, + "end": 23001.78, + "probability": 0.2285 + }, + { + "start": 23003.14, + "end": 23003.28, + "probability": 0.2771 + }, + { + "start": 23003.4, + "end": 23004.82, + "probability": 0.3657 + }, + { + "start": 23005.76, + "end": 23007.54, + "probability": 0.1007 + }, + { + "start": 23007.9, + "end": 23008.88, + "probability": 0.9832 + }, + { + "start": 23009.0, + "end": 23010.04, + "probability": 0.7965 + }, + { + "start": 23010.1, + "end": 23011.56, + "probability": 0.6917 + }, + { + "start": 23011.72, + "end": 23013.08, + "probability": 0.9091 + }, + { + "start": 23014.82, + "end": 23015.96, + "probability": 0.9712 + }, + { + "start": 23016.54, + "end": 23016.86, + "probability": 0.6831 + }, + { + "start": 23016.94, + "end": 23018.1, + "probability": 0.9848 + }, + { + "start": 23018.84, + "end": 23019.7, + "probability": 0.8585 + }, + { + "start": 23019.76, + "end": 23021.82, + "probability": 0.9189 + }, + { + "start": 23022.24, + "end": 23022.68, + "probability": 0.5764 + }, + { + "start": 23023.12, + "end": 23023.46, + "probability": 0.9405 + }, + { + "start": 23023.46, + "end": 23024.08, + "probability": 0.9161 + }, + { + "start": 23024.18, + "end": 23024.62, + "probability": 0.8132 + }, + { + "start": 23024.66, + "end": 23025.24, + "probability": 0.4295 + }, + { + "start": 23025.7, + "end": 23027.83, + "probability": 0.9563 + }, + { + "start": 23030.02, + "end": 23030.16, + "probability": 0.356 + }, + { + "start": 23030.16, + "end": 23030.3, + "probability": 0.1157 + }, + { + "start": 23031.2, + "end": 23032.27, + "probability": 0.4952 + }, + { + "start": 23032.92, + "end": 23034.42, + "probability": 0.4173 + }, + { + "start": 23034.42, + "end": 23038.94, + "probability": 0.9173 + }, + { + "start": 23038.98, + "end": 23039.12, + "probability": 0.6881 + }, + { + "start": 23039.22, + "end": 23040.9, + "probability": 0.6978 + }, + { + "start": 23041.48, + "end": 23045.57, + "probability": 0.7405 + }, + { + "start": 23046.04, + "end": 23046.28, + "probability": 0.4128 + }, + { + "start": 23046.28, + "end": 23047.34, + "probability": 0.5272 + }, + { + "start": 23047.44, + "end": 23051.74, + "probability": 0.6205 + }, + { + "start": 23051.74, + "end": 23056.24, + "probability": 0.5826 + }, + { + "start": 23057.12, + "end": 23059.66, + "probability": 0.0593 + }, + { + "start": 23059.7, + "end": 23060.4, + "probability": 0.5395 + }, + { + "start": 23060.56, + "end": 23061.98, + "probability": 0.7756 + }, + { + "start": 23062.24, + "end": 23064.78, + "probability": 0.8723 + }, + { + "start": 23064.98, + "end": 23066.2, + "probability": 0.3892 + }, + { + "start": 23066.3, + "end": 23067.82, + "probability": 0.9513 + }, + { + "start": 23068.22, + "end": 23069.08, + "probability": 0.8141 + }, + { + "start": 23069.1, + "end": 23070.48, + "probability": 0.4076 + }, + { + "start": 23070.6, + "end": 23072.42, + "probability": 0.9954 + }, + { + "start": 23072.52, + "end": 23073.4, + "probability": 0.7486 + }, + { + "start": 23073.48, + "end": 23075.16, + "probability": 0.8924 + }, + { + "start": 23075.48, + "end": 23078.14, + "probability": 0.9656 + }, + { + "start": 23079.41, + "end": 23084.98, + "probability": 0.8624 + }, + { + "start": 23088.55, + "end": 23090.18, + "probability": 0.0451 + }, + { + "start": 23090.18, + "end": 23090.18, + "probability": 0.1321 + }, + { + "start": 23090.18, + "end": 23091.6, + "probability": 0.0323 + }, + { + "start": 23092.52, + "end": 23094.36, + "probability": 0.1773 + }, + { + "start": 23094.4, + "end": 23095.1, + "probability": 0.6116 + }, + { + "start": 23095.1, + "end": 23096.82, + "probability": 0.6655 + }, + { + "start": 23096.92, + "end": 23097.48, + "probability": 0.178 + }, + { + "start": 23097.56, + "end": 23098.19, + "probability": 0.7855 + }, + { + "start": 23098.84, + "end": 23101.26, + "probability": 0.3704 + }, + { + "start": 23101.42, + "end": 23101.76, + "probability": 0.6973 + }, + { + "start": 23101.86, + "end": 23102.74, + "probability": 0.7835 + }, + { + "start": 23102.94, + "end": 23104.2, + "probability": 0.4332 + }, + { + "start": 23104.76, + "end": 23107.04, + "probability": 0.7332 + }, + { + "start": 23107.16, + "end": 23107.94, + "probability": 0.5271 + }, + { + "start": 23108.1, + "end": 23109.62, + "probability": 0.9678 + }, + { + "start": 23109.94, + "end": 23110.16, + "probability": 0.5528 + }, + { + "start": 23110.16, + "end": 23111.58, + "probability": 0.5022 + }, + { + "start": 23111.7, + "end": 23112.93, + "probability": 0.9971 + }, + { + "start": 23113.64, + "end": 23117.78, + "probability": 0.9985 + }, + { + "start": 23117.94, + "end": 23120.42, + "probability": 0.995 + }, + { + "start": 23121.38, + "end": 23121.7, + "probability": 0.5794 + }, + { + "start": 23122.38, + "end": 23123.72, + "probability": 0.7106 + }, + { + "start": 23124.36, + "end": 23126.62, + "probability": 0.943 + }, + { + "start": 23127.84, + "end": 23128.66, + "probability": 0.9463 + }, + { + "start": 23129.88, + "end": 23134.48, + "probability": 0.991 + }, + { + "start": 23135.74, + "end": 23138.6, + "probability": 0.8334 + }, + { + "start": 23139.44, + "end": 23140.24, + "probability": 0.8254 + }, + { + "start": 23140.32, + "end": 23140.72, + "probability": 0.1861 + }, + { + "start": 23141.3, + "end": 23141.52, + "probability": 0.1376 + }, + { + "start": 23141.52, + "end": 23141.52, + "probability": 0.0623 + }, + { + "start": 23141.52, + "end": 23141.52, + "probability": 0.0908 + }, + { + "start": 23141.52, + "end": 23142.24, + "probability": 0.5765 + }, + { + "start": 23142.26, + "end": 23143.46, + "probability": 0.5625 + }, + { + "start": 23143.68, + "end": 23145.54, + "probability": 0.8906 + }, + { + "start": 23146.24, + "end": 23147.9, + "probability": 0.7101 + }, + { + "start": 23148.06, + "end": 23148.42, + "probability": 0.724 + }, + { + "start": 23148.44, + "end": 23150.24, + "probability": 0.9495 + }, + { + "start": 23150.34, + "end": 23152.08, + "probability": 0.9847 + }, + { + "start": 23152.14, + "end": 23155.02, + "probability": 0.9894 + }, + { + "start": 23155.18, + "end": 23156.88, + "probability": 0.5606 + }, + { + "start": 23156.98, + "end": 23157.02, + "probability": 0.4876 + }, + { + "start": 23157.12, + "end": 23158.38, + "probability": 0.9946 + }, + { + "start": 23159.22, + "end": 23160.56, + "probability": 0.9651 + }, + { + "start": 23160.66, + "end": 23163.38, + "probability": 0.9862 + }, + { + "start": 23164.24, + "end": 23165.24, + "probability": 0.9814 + }, + { + "start": 23165.32, + "end": 23165.8, + "probability": 0.5691 + }, + { + "start": 23165.88, + "end": 23173.06, + "probability": 0.8827 + }, + { + "start": 23173.8, + "end": 23176.9, + "probability": 0.8448 + }, + { + "start": 23177.6, + "end": 23183.98, + "probability": 0.9923 + }, + { + "start": 23184.22, + "end": 23184.96, + "probability": 0.7305 + }, + { + "start": 23186.0, + "end": 23189.3, + "probability": 0.9199 + }, + { + "start": 23190.34, + "end": 23191.24, + "probability": 0.9773 + }, + { + "start": 23192.14, + "end": 23194.14, + "probability": 0.9819 + }, + { + "start": 23194.8, + "end": 23201.04, + "probability": 0.9777 + }, + { + "start": 23201.64, + "end": 23203.38, + "probability": 0.9579 + }, + { + "start": 23203.54, + "end": 23207.08, + "probability": 0.995 + }, + { + "start": 23207.08, + "end": 23210.76, + "probability": 0.9783 + }, + { + "start": 23211.84, + "end": 23212.8, + "probability": 0.934 + }, + { + "start": 23212.92, + "end": 23214.66, + "probability": 0.9824 + }, + { + "start": 23214.98, + "end": 23215.12, + "probability": 0.13 + }, + { + "start": 23215.12, + "end": 23215.74, + "probability": 0.9272 + }, + { + "start": 23215.9, + "end": 23216.88, + "probability": 0.9243 + }, + { + "start": 23216.96, + "end": 23219.5, + "probability": 0.6824 + }, + { + "start": 23219.64, + "end": 23221.4, + "probability": 0.9619 + }, + { + "start": 23221.66, + "end": 23228.38, + "probability": 0.9814 + }, + { + "start": 23229.86, + "end": 23231.26, + "probability": 0.8618 + }, + { + "start": 23231.92, + "end": 23234.2, + "probability": 0.9875 + }, + { + "start": 23234.66, + "end": 23238.88, + "probability": 0.9772 + }, + { + "start": 23239.64, + "end": 23241.04, + "probability": 0.846 + }, + { + "start": 23241.6, + "end": 23247.18, + "probability": 0.9818 + }, + { + "start": 23247.84, + "end": 23249.3, + "probability": 0.9877 + }, + { + "start": 23249.4, + "end": 23250.26, + "probability": 0.7968 + }, + { + "start": 23250.62, + "end": 23251.78, + "probability": 0.9694 + }, + { + "start": 23251.86, + "end": 23256.72, + "probability": 0.9587 + }, + { + "start": 23256.82, + "end": 23257.46, + "probability": 0.9016 + }, + { + "start": 23258.5, + "end": 23260.84, + "probability": 0.7858 + }, + { + "start": 23262.2, + "end": 23264.91, + "probability": 0.9814 + }, + { + "start": 23265.76, + "end": 23269.04, + "probability": 0.999 + }, + { + "start": 23269.1, + "end": 23270.8, + "probability": 0.9958 + }, + { + "start": 23270.92, + "end": 23271.58, + "probability": 0.8106 + }, + { + "start": 23272.12, + "end": 23273.5, + "probability": 0.8356 + }, + { + "start": 23274.34, + "end": 23275.79, + "probability": 0.8051 + }, + { + "start": 23276.38, + "end": 23278.22, + "probability": 0.994 + }, + { + "start": 23279.04, + "end": 23280.73, + "probability": 0.8851 + }, + { + "start": 23281.54, + "end": 23283.38, + "probability": 0.9142 + }, + { + "start": 23283.72, + "end": 23285.1, + "probability": 0.9749 + }, + { + "start": 23285.1, + "end": 23292.18, + "probability": 0.9606 + }, + { + "start": 23293.3, + "end": 23296.96, + "probability": 0.9932 + }, + { + "start": 23297.64, + "end": 23300.92, + "probability": 0.9397 + }, + { + "start": 23301.54, + "end": 23303.94, + "probability": 0.9204 + }, + { + "start": 23305.8, + "end": 23309.3, + "probability": 0.6714 + }, + { + "start": 23310.1, + "end": 23311.16, + "probability": 0.8377 + }, + { + "start": 23311.8, + "end": 23314.66, + "probability": 0.9897 + }, + { + "start": 23315.06, + "end": 23316.6, + "probability": 0.9428 + }, + { + "start": 23316.92, + "end": 23318.5, + "probability": 0.9421 + }, + { + "start": 23319.12, + "end": 23319.18, + "probability": 0.0105 + }, + { + "start": 23319.18, + "end": 23319.18, + "probability": 0.3541 + }, + { + "start": 23319.18, + "end": 23324.84, + "probability": 0.9644 + }, + { + "start": 23325.38, + "end": 23325.76, + "probability": 0.1099 + }, + { + "start": 23326.02, + "end": 23333.12, + "probability": 0.9403 + }, + { + "start": 23333.9, + "end": 23337.98, + "probability": 0.9887 + }, + { + "start": 23338.78, + "end": 23339.78, + "probability": 0.7424 + }, + { + "start": 23340.38, + "end": 23343.94, + "probability": 0.8325 + }, + { + "start": 23344.56, + "end": 23346.92, + "probability": 0.2251 + }, + { + "start": 23347.04, + "end": 23349.78, + "probability": 0.5213 + }, + { + "start": 23349.88, + "end": 23351.42, + "probability": 0.6725 + }, + { + "start": 23351.9, + "end": 23353.14, + "probability": 0.4217 + }, + { + "start": 23353.64, + "end": 23356.72, + "probability": 0.6999 + }, + { + "start": 23356.8, + "end": 23356.8, + "probability": 0.0219 + }, + { + "start": 23356.82, + "end": 23359.32, + "probability": 0.3279 + }, + { + "start": 23359.48, + "end": 23361.76, + "probability": 0.5809 + }, + { + "start": 23362.1, + "end": 23364.2, + "probability": 0.843 + }, + { + "start": 23364.22, + "end": 23366.38, + "probability": 0.8362 + }, + { + "start": 23367.02, + "end": 23373.44, + "probability": 0.9847 + }, + { + "start": 23373.88, + "end": 23379.36, + "probability": 0.9897 + }, + { + "start": 23379.5, + "end": 23383.12, + "probability": 0.9966 + }, + { + "start": 23383.56, + "end": 23386.67, + "probability": 0.9949 + }, + { + "start": 23386.84, + "end": 23388.12, + "probability": 0.5149 + }, + { + "start": 23388.2, + "end": 23389.74, + "probability": 0.2212 + }, + { + "start": 23390.1, + "end": 23390.22, + "probability": 0.3374 + }, + { + "start": 23390.22, + "end": 23391.54, + "probability": 0.9604 + }, + { + "start": 23391.68, + "end": 23391.92, + "probability": 0.0444 + }, + { + "start": 23392.02, + "end": 23392.82, + "probability": 0.7714 + }, + { + "start": 23393.02, + "end": 23394.86, + "probability": 0.3842 + }, + { + "start": 23395.0, + "end": 23396.12, + "probability": 0.8002 + }, + { + "start": 23396.12, + "end": 23398.84, + "probability": 0.9939 + }, + { + "start": 23398.98, + "end": 23400.14, + "probability": 0.9932 + }, + { + "start": 23400.28, + "end": 23400.82, + "probability": 0.9263 + }, + { + "start": 23400.82, + "end": 23401.6, + "probability": 0.9565 + }, + { + "start": 23402.46, + "end": 23403.66, + "probability": 0.8495 + }, + { + "start": 23403.86, + "end": 23407.28, + "probability": 0.9717 + }, + { + "start": 23407.38, + "end": 23409.34, + "probability": 0.947 + }, + { + "start": 23409.98, + "end": 23413.68, + "probability": 0.9632 + }, + { + "start": 23414.56, + "end": 23415.24, + "probability": 0.6488 + }, + { + "start": 23415.44, + "end": 23416.54, + "probability": 0.9707 + }, + { + "start": 23416.82, + "end": 23419.32, + "probability": 0.9517 + }, + { + "start": 23419.46, + "end": 23420.26, + "probability": 0.8285 + }, + { + "start": 23420.9, + "end": 23422.04, + "probability": 0.9915 + }, + { + "start": 23422.2, + "end": 23424.38, + "probability": 0.9961 + }, + { + "start": 23424.74, + "end": 23428.06, + "probability": 0.9795 + }, + { + "start": 23428.24, + "end": 23428.56, + "probability": 0.4644 + }, + { + "start": 23428.72, + "end": 23431.92, + "probability": 0.924 + }, + { + "start": 23432.32, + "end": 23434.12, + "probability": 0.9492 + }, + { + "start": 23434.5, + "end": 23436.94, + "probability": 0.7024 + }, + { + "start": 23437.46, + "end": 23442.64, + "probability": 0.9951 + }, + { + "start": 23442.92, + "end": 23444.7, + "probability": 0.8178 + }, + { + "start": 23444.94, + "end": 23446.82, + "probability": 0.9907 + }, + { + "start": 23447.28, + "end": 23449.58, + "probability": 0.9839 + }, + { + "start": 23449.88, + "end": 23451.4, + "probability": 0.9656 + }, + { + "start": 23451.56, + "end": 23453.16, + "probability": 0.1794 + }, + { + "start": 23453.3, + "end": 23455.26, + "probability": 0.9182 + }, + { + "start": 23455.7, + "end": 23458.66, + "probability": 0.9902 + }, + { + "start": 23458.86, + "end": 23459.9, + "probability": 0.5458 + }, + { + "start": 23459.9, + "end": 23460.88, + "probability": 0.832 + }, + { + "start": 23461.12, + "end": 23464.92, + "probability": 0.9495 + }, + { + "start": 23465.24, + "end": 23465.9, + "probability": 0.5406 + }, + { + "start": 23466.34, + "end": 23469.02, + "probability": 0.9674 + }, + { + "start": 23469.74, + "end": 23476.6, + "probability": 0.8995 + }, + { + "start": 23476.7, + "end": 23480.02, + "probability": 0.8712 + }, + { + "start": 23480.3, + "end": 23481.42, + "probability": 0.9765 + }, + { + "start": 23481.62, + "end": 23482.6, + "probability": 0.764 + }, + { + "start": 23482.86, + "end": 23485.84, + "probability": 0.8799 + }, + { + "start": 23500.48, + "end": 23502.54, + "probability": 0.9976 + }, + { + "start": 23504.8, + "end": 23509.54, + "probability": 0.9657 + }, + { + "start": 23511.0, + "end": 23512.18, + "probability": 0.5762 + }, + { + "start": 23512.3, + "end": 23512.79, + "probability": 0.7822 + }, + { + "start": 23513.46, + "end": 23516.74, + "probability": 0.9968 + }, + { + "start": 23516.94, + "end": 23518.44, + "probability": 0.9951 + }, + { + "start": 23519.94, + "end": 23522.02, + "probability": 0.9971 + }, + { + "start": 23523.74, + "end": 23525.26, + "probability": 0.9555 + }, + { + "start": 23526.24, + "end": 23527.98, + "probability": 0.5177 + }, + { + "start": 23528.16, + "end": 23531.46, + "probability": 0.9525 + }, + { + "start": 23532.5, + "end": 23538.62, + "probability": 0.9942 + }, + { + "start": 23539.58, + "end": 23541.52, + "probability": 0.9973 + }, + { + "start": 23541.56, + "end": 23543.48, + "probability": 0.823 + }, + { + "start": 23544.4, + "end": 23544.86, + "probability": 0.8279 + }, + { + "start": 23545.5, + "end": 23546.38, + "probability": 0.9543 + }, + { + "start": 23547.72, + "end": 23549.98, + "probability": 0.7579 + }, + { + "start": 23550.1, + "end": 23551.52, + "probability": 0.8508 + }, + { + "start": 23552.24, + "end": 23552.84, + "probability": 0.9502 + }, + { + "start": 23552.98, + "end": 23553.66, + "probability": 0.6038 + }, + { + "start": 23553.72, + "end": 23554.26, + "probability": 0.717 + }, + { + "start": 23554.84, + "end": 23559.94, + "probability": 0.7776 + }, + { + "start": 23559.94, + "end": 23562.26, + "probability": 0.9966 + }, + { + "start": 23563.32, + "end": 23566.64, + "probability": 0.953 + }, + { + "start": 23567.32, + "end": 23567.88, + "probability": 0.0765 + }, + { + "start": 23569.02, + "end": 23569.7, + "probability": 0.6813 + }, + { + "start": 23570.54, + "end": 23573.24, + "probability": 0.8241 + }, + { + "start": 23573.74, + "end": 23575.0, + "probability": 0.9426 + }, + { + "start": 23575.66, + "end": 23577.94, + "probability": 0.9832 + }, + { + "start": 23578.66, + "end": 23579.96, + "probability": 0.9976 + }, + { + "start": 23581.14, + "end": 23582.56, + "probability": 0.9983 + }, + { + "start": 23583.44, + "end": 23586.94, + "probability": 0.9693 + }, + { + "start": 23587.24, + "end": 23589.44, + "probability": 0.9137 + }, + { + "start": 23589.98, + "end": 23591.81, + "probability": 0.4284 + }, + { + "start": 23592.38, + "end": 23595.54, + "probability": 0.0339 + }, + { + "start": 23596.42, + "end": 23597.3, + "probability": 0.1428 + }, + { + "start": 23597.56, + "end": 23599.36, + "probability": 0.592 + }, + { + "start": 23599.68, + "end": 23602.14, + "probability": 0.7832 + }, + { + "start": 23602.46, + "end": 23603.92, + "probability": 0.8834 + }, + { + "start": 23604.14, + "end": 23606.12, + "probability": 0.9625 + }, + { + "start": 23606.22, + "end": 23607.34, + "probability": 0.8366 + }, + { + "start": 23607.62, + "end": 23608.88, + "probability": 0.99 + }, + { + "start": 23609.44, + "end": 23610.74, + "probability": 0.9851 + }, + { + "start": 23611.38, + "end": 23613.36, + "probability": 0.7072 + }, + { + "start": 23614.24, + "end": 23620.04, + "probability": 0.9947 + }, + { + "start": 23620.28, + "end": 23621.24, + "probability": 0.8369 + }, + { + "start": 23621.66, + "end": 23625.86, + "probability": 0.9923 + }, + { + "start": 23626.38, + "end": 23630.24, + "probability": 0.9827 + }, + { + "start": 23630.58, + "end": 23631.88, + "probability": 0.7883 + }, + { + "start": 23632.36, + "end": 23635.78, + "probability": 0.8931 + }, + { + "start": 23636.3, + "end": 23638.68, + "probability": 0.9676 + }, + { + "start": 23638.9, + "end": 23642.44, + "probability": 0.8771 + }, + { + "start": 23642.96, + "end": 23646.36, + "probability": 0.8613 + }, + { + "start": 23646.38, + "end": 23651.22, + "probability": 0.9946 + }, + { + "start": 23651.38, + "end": 23651.66, + "probability": 0.6236 + }, + { + "start": 23651.78, + "end": 23652.54, + "probability": 0.7846 + }, + { + "start": 23653.76, + "end": 23655.39, + "probability": 0.8406 + }, + { + "start": 23656.56, + "end": 23659.72, + "probability": 0.7483 + }, + { + "start": 23660.1, + "end": 23664.16, + "probability": 0.937 + }, + { + "start": 23665.48, + "end": 23667.86, + "probability": 0.952 + }, + { + "start": 23669.04, + "end": 23671.54, + "probability": 0.9873 + }, + { + "start": 23674.94, + "end": 23679.94, + "probability": 0.9917 + }, + { + "start": 23680.54, + "end": 23681.68, + "probability": 0.5585 + }, + { + "start": 23682.2, + "end": 23685.92, + "probability": 0.9776 + }, + { + "start": 23686.36, + "end": 23686.86, + "probability": 0.6195 + }, + { + "start": 23686.98, + "end": 23687.86, + "probability": 0.8375 + }, + { + "start": 23688.52, + "end": 23689.44, + "probability": 0.4411 + }, + { + "start": 23707.44, + "end": 23709.46, + "probability": 0.6485 + }, + { + "start": 23732.54, + "end": 23735.2, + "probability": 0.7203 + }, + { + "start": 23736.96, + "end": 23737.9, + "probability": 0.8654 + }, + { + "start": 23739.48, + "end": 23739.58, + "probability": 0.227 + }, + { + "start": 23739.58, + "end": 23739.58, + "probability": 0.062 + }, + { + "start": 23739.58, + "end": 23739.58, + "probability": 0.0667 + }, + { + "start": 23739.58, + "end": 23739.58, + "probability": 0.2928 + }, + { + "start": 23739.58, + "end": 23740.82, + "probability": 0.4853 + }, + { + "start": 23741.62, + "end": 23741.94, + "probability": 0.4119 + }, + { + "start": 23742.78, + "end": 23745.56, + "probability": 0.5598 + }, + { + "start": 23745.92, + "end": 23747.9, + "probability": 0.9199 + }, + { + "start": 23748.88, + "end": 23751.76, + "probability": 0.9302 + }, + { + "start": 23752.64, + "end": 23753.63, + "probability": 0.6632 + }, + { + "start": 23754.78, + "end": 23759.96, + "probability": 0.7878 + }, + { + "start": 23760.64, + "end": 23761.36, + "probability": 0.0296 + }, + { + "start": 23762.28, + "end": 23768.04, + "probability": 0.1623 + }, + { + "start": 23775.24, + "end": 23775.5, + "probability": 0.0152 + }, + { + "start": 23775.5, + "end": 23776.38, + "probability": 0.2152 + }, + { + "start": 23776.76, + "end": 23779.8, + "probability": 0.6715 + }, + { + "start": 23781.06, + "end": 23785.18, + "probability": 0.6321 + }, + { + "start": 23786.12, + "end": 23789.11, + "probability": 0.647 + }, + { + "start": 23790.16, + "end": 23791.5, + "probability": 0.5973 + }, + { + "start": 23792.34, + "end": 23793.36, + "probability": 0.4021 + }, + { + "start": 23793.38, + "end": 23796.36, + "probability": 0.5719 + }, + { + "start": 23797.76, + "end": 23799.2, + "probability": 0.9371 + }, + { + "start": 23800.22, + "end": 23803.24, + "probability": 0.9821 + }, + { + "start": 23803.24, + "end": 23807.1, + "probability": 0.9172 + }, + { + "start": 23807.92, + "end": 23812.47, + "probability": 0.9919 + }, + { + "start": 23813.96, + "end": 23818.46, + "probability": 0.822 + }, + { + "start": 23819.14, + "end": 23822.28, + "probability": 0.9161 + }, + { + "start": 23822.96, + "end": 23824.26, + "probability": 0.8548 + }, + { + "start": 23824.82, + "end": 23825.94, + "probability": 0.8208 + }, + { + "start": 23826.32, + "end": 23831.56, + "probability": 0.9893 + }, + { + "start": 23831.56, + "end": 23836.8, + "probability": 0.9915 + }, + { + "start": 23837.66, + "end": 23838.62, + "probability": 0.7932 + }, + { + "start": 23839.5, + "end": 23841.34, + "probability": 0.9946 + }, + { + "start": 23842.26, + "end": 23842.94, + "probability": 0.9607 + }, + { + "start": 23843.64, + "end": 23844.58, + "probability": 0.9797 + }, + { + "start": 23845.02, + "end": 23846.52, + "probability": 0.9956 + }, + { + "start": 23847.28, + "end": 23851.26, + "probability": 0.9272 + }, + { + "start": 23851.86, + "end": 23852.82, + "probability": 0.5535 + }, + { + "start": 23853.36, + "end": 23854.66, + "probability": 0.6036 + }, + { + "start": 23855.3, + "end": 23859.56, + "probability": 0.9951 + }, + { + "start": 23860.26, + "end": 23862.18, + "probability": 0.831 + }, + { + "start": 23862.76, + "end": 23865.54, + "probability": 0.9094 + }, + { + "start": 23866.24, + "end": 23870.28, + "probability": 0.9106 + }, + { + "start": 23871.04, + "end": 23875.7, + "probability": 0.9882 + }, + { + "start": 23876.24, + "end": 23881.72, + "probability": 0.8666 + }, + { + "start": 23882.64, + "end": 23885.74, + "probability": 0.9878 + }, + { + "start": 23886.62, + "end": 23887.02, + "probability": 0.0681 + }, + { + "start": 23887.16, + "end": 23887.94, + "probability": 0.837 + }, + { + "start": 23888.38, + "end": 23893.78, + "probability": 0.9962 + }, + { + "start": 23894.32, + "end": 23895.74, + "probability": 0.8348 + }, + { + "start": 23896.5, + "end": 23897.9, + "probability": 0.7489 + }, + { + "start": 23898.4, + "end": 23900.78, + "probability": 0.9931 + }, + { + "start": 23901.6, + "end": 23902.82, + "probability": 0.9688 + }, + { + "start": 23903.34, + "end": 23905.02, + "probability": 0.996 + }, + { + "start": 23905.5, + "end": 23906.02, + "probability": 0.4383 + }, + { + "start": 23906.16, + "end": 23907.38, + "probability": 0.5829 + }, + { + "start": 23908.06, + "end": 23913.26, + "probability": 0.9142 + }, + { + "start": 23914.0, + "end": 23917.42, + "probability": 0.9482 + }, + { + "start": 23918.82, + "end": 23924.0, + "probability": 0.9918 + }, + { + "start": 23924.76, + "end": 23930.02, + "probability": 0.9986 + }, + { + "start": 23930.58, + "end": 23936.68, + "probability": 0.9961 + }, + { + "start": 23937.54, + "end": 23940.96, + "probability": 0.8844 + }, + { + "start": 23941.02, + "end": 23941.28, + "probability": 0.4845 + }, + { + "start": 23941.76, + "end": 23944.02, + "probability": 0.69 + }, + { + "start": 23944.6, + "end": 23946.8, + "probability": 0.9188 + }, + { + "start": 23974.24, + "end": 23976.25, + "probability": 0.6205 + }, + { + "start": 23977.22, + "end": 23978.36, + "probability": 0.9538 + }, + { + "start": 23978.68, + "end": 23981.84, + "probability": 0.9966 + }, + { + "start": 23981.84, + "end": 23985.36, + "probability": 0.9257 + }, + { + "start": 23985.46, + "end": 23986.64, + "probability": 0.9012 + }, + { + "start": 23987.08, + "end": 23988.8, + "probability": 0.958 + }, + { + "start": 23990.42, + "end": 23991.26, + "probability": 0.9893 + }, + { + "start": 23992.68, + "end": 23994.73, + "probability": 0.9927 + }, + { + "start": 23994.9, + "end": 23995.58, + "probability": 0.3689 + }, + { + "start": 23995.8, + "end": 23997.16, + "probability": 0.2711 + }, + { + "start": 23999.18, + "end": 24000.64, + "probability": 0.8993 + }, + { + "start": 24001.66, + "end": 24005.74, + "probability": 0.9969 + }, + { + "start": 24006.62, + "end": 24012.58, + "probability": 0.9901 + }, + { + "start": 24013.66, + "end": 24019.16, + "probability": 0.9766 + }, + { + "start": 24020.02, + "end": 24022.98, + "probability": 0.9599 + }, + { + "start": 24023.3, + "end": 24026.68, + "probability": 0.9983 + }, + { + "start": 24027.64, + "end": 24031.24, + "probability": 0.9509 + }, + { + "start": 24032.34, + "end": 24036.58, + "probability": 0.9839 + }, + { + "start": 24037.18, + "end": 24040.66, + "probability": 0.9032 + }, + { + "start": 24041.58, + "end": 24042.16, + "probability": 0.9001 + }, + { + "start": 24042.98, + "end": 24046.86, + "probability": 0.9826 + }, + { + "start": 24047.44, + "end": 24048.18, + "probability": 0.881 + }, + { + "start": 24048.9, + "end": 24049.55, + "probability": 0.6959 + }, + { + "start": 24050.58, + "end": 24051.9, + "probability": 0.9658 + }, + { + "start": 24052.74, + "end": 24054.44, + "probability": 0.7956 + }, + { + "start": 24054.98, + "end": 24055.64, + "probability": 0.4763 + }, + { + "start": 24057.22, + "end": 24064.0, + "probability": 0.9739 + }, + { + "start": 24064.84, + "end": 24066.74, + "probability": 0.9841 + }, + { + "start": 24067.54, + "end": 24075.92, + "probability": 0.9615 + }, + { + "start": 24076.36, + "end": 24078.48, + "probability": 0.7438 + }, + { + "start": 24079.22, + "end": 24081.92, + "probability": 0.8452 + }, + { + "start": 24082.94, + "end": 24086.34, + "probability": 0.9465 + }, + { + "start": 24086.86, + "end": 24090.3, + "probability": 0.8544 + }, + { + "start": 24090.46, + "end": 24093.52, + "probability": 0.9475 + }, + { + "start": 24094.06, + "end": 24094.78, + "probability": 0.6031 + }, + { + "start": 24094.86, + "end": 24099.14, + "probability": 0.957 + }, + { + "start": 24099.86, + "end": 24101.82, + "probability": 0.7253 + }, + { + "start": 24102.42, + "end": 24103.44, + "probability": 0.9189 + }, + { + "start": 24103.52, + "end": 24104.12, + "probability": 0.9316 + }, + { + "start": 24104.14, + "end": 24106.62, + "probability": 0.7799 + }, + { + "start": 24107.26, + "end": 24109.98, + "probability": 0.9768 + }, + { + "start": 24110.16, + "end": 24113.48, + "probability": 0.7742 + }, + { + "start": 24114.18, + "end": 24116.74, + "probability": 0.9917 + }, + { + "start": 24117.38, + "end": 24118.74, + "probability": 0.9773 + }, + { + "start": 24120.16, + "end": 24122.04, + "probability": 0.9843 + }, + { + "start": 24122.64, + "end": 24124.79, + "probability": 0.9326 + }, + { + "start": 24125.38, + "end": 24129.32, + "probability": 0.9863 + }, + { + "start": 24129.8, + "end": 24135.93, + "probability": 0.983 + }, + { + "start": 24136.52, + "end": 24140.98, + "probability": 0.9869 + }, + { + "start": 24141.48, + "end": 24144.3, + "probability": 0.9946 + }, + { + "start": 24144.74, + "end": 24148.68, + "probability": 0.953 + }, + { + "start": 24149.52, + "end": 24154.04, + "probability": 0.8984 + }, + { + "start": 24154.2, + "end": 24155.46, + "probability": 0.9165 + }, + { + "start": 24156.0, + "end": 24159.4, + "probability": 0.9705 + }, + { + "start": 24159.4, + "end": 24162.98, + "probability": 0.9768 + }, + { + "start": 24163.04, + "end": 24164.48, + "probability": 0.8655 + }, + { + "start": 24165.1, + "end": 24169.08, + "probability": 0.9795 + }, + { + "start": 24169.5, + "end": 24171.36, + "probability": 0.8662 + }, + { + "start": 24171.5, + "end": 24172.28, + "probability": 0.5356 + }, + { + "start": 24172.82, + "end": 24178.56, + "probability": 0.9974 + }, + { + "start": 24178.96, + "end": 24181.12, + "probability": 0.9704 + }, + { + "start": 24182.4, + "end": 24186.36, + "probability": 0.8501 + }, + { + "start": 24186.56, + "end": 24188.1, + "probability": 0.8251 + }, + { + "start": 24189.2, + "end": 24193.64, + "probability": 0.9944 + }, + { + "start": 24194.34, + "end": 24199.36, + "probability": 0.986 + }, + { + "start": 24199.92, + "end": 24200.46, + "probability": 0.7113 + }, + { + "start": 24201.52, + "end": 24205.66, + "probability": 0.8803 + }, + { + "start": 24206.2, + "end": 24207.12, + "probability": 0.8623 + }, + { + "start": 24208.04, + "end": 24210.62, + "probability": 0.9245 + }, + { + "start": 24212.0, + "end": 24214.64, + "probability": 0.9901 + }, + { + "start": 24215.3, + "end": 24220.6, + "probability": 0.9897 + }, + { + "start": 24221.42, + "end": 24223.88, + "probability": 0.9888 + }, + { + "start": 24225.06, + "end": 24227.8, + "probability": 0.9651 + }, + { + "start": 24228.6, + "end": 24229.14, + "probability": 0.4975 + }, + { + "start": 24229.18, + "end": 24232.72, + "probability": 0.9921 + }, + { + "start": 24233.32, + "end": 24238.12, + "probability": 0.9545 + }, + { + "start": 24238.12, + "end": 24242.92, + "probability": 0.9966 + }, + { + "start": 24243.66, + "end": 24245.69, + "probability": 0.9702 + }, + { + "start": 24246.28, + "end": 24247.32, + "probability": 0.7978 + }, + { + "start": 24247.88, + "end": 24253.54, + "probability": 0.978 + }, + { + "start": 24254.24, + "end": 24257.0, + "probability": 0.9465 + }, + { + "start": 24257.06, + "end": 24259.79, + "probability": 0.5555 + }, + { + "start": 24260.16, + "end": 24260.54, + "probability": 0.8501 + }, + { + "start": 24260.76, + "end": 24261.78, + "probability": 0.95 + }, + { + "start": 24262.02, + "end": 24267.54, + "probability": 0.984 + }, + { + "start": 24267.58, + "end": 24274.92, + "probability": 0.9931 + }, + { + "start": 24275.58, + "end": 24276.56, + "probability": 0.7405 + }, + { + "start": 24276.62, + "end": 24278.2, + "probability": 0.8646 + }, + { + "start": 24278.36, + "end": 24280.3, + "probability": 0.9153 + }, + { + "start": 24280.72, + "end": 24282.08, + "probability": 0.8673 + }, + { + "start": 24282.6, + "end": 24285.38, + "probability": 0.9238 + }, + { + "start": 24285.94, + "end": 24287.88, + "probability": 0.9515 + }, + { + "start": 24288.5, + "end": 24292.24, + "probability": 0.931 + }, + { + "start": 24292.32, + "end": 24294.6, + "probability": 0.9493 + }, + { + "start": 24294.7, + "end": 24295.04, + "probability": 0.7367 + }, + { + "start": 24295.36, + "end": 24295.7, + "probability": 0.7891 + }, + { + "start": 24296.02, + "end": 24298.82, + "probability": 0.9075 + }, + { + "start": 24298.84, + "end": 24299.3, + "probability": 0.1104 + }, + { + "start": 24299.82, + "end": 24299.92, + "probability": 0.2714 + }, + { + "start": 24299.92, + "end": 24300.4, + "probability": 0.5283 + }, + { + "start": 24300.84, + "end": 24304.12, + "probability": 0.7397 + }, + { + "start": 24305.4, + "end": 24306.68, + "probability": 0.3376 + }, + { + "start": 24311.1, + "end": 24312.56, + "probability": 0.2062 + }, + { + "start": 24315.44, + "end": 24315.98, + "probability": 0.5537 + }, + { + "start": 24316.28, + "end": 24317.44, + "probability": 0.548 + }, + { + "start": 24318.76, + "end": 24319.08, + "probability": 0.793 + }, + { + "start": 24319.48, + "end": 24321.66, + "probability": 0.7381 + }, + { + "start": 24322.32, + "end": 24323.24, + "probability": 0.7131 + }, + { + "start": 24324.4, + "end": 24325.2, + "probability": 0.662 + }, + { + "start": 24325.7, + "end": 24330.98, + "probability": 0.9901 + }, + { + "start": 24331.86, + "end": 24333.76, + "probability": 0.9854 + }, + { + "start": 24334.94, + "end": 24339.82, + "probability": 0.9974 + }, + { + "start": 24340.34, + "end": 24341.38, + "probability": 0.7647 + }, + { + "start": 24343.86, + "end": 24348.82, + "probability": 0.9657 + }, + { + "start": 24351.04, + "end": 24353.46, + "probability": 0.9292 + }, + { + "start": 24353.92, + "end": 24356.56, + "probability": 0.7466 + }, + { + "start": 24357.32, + "end": 24358.4, + "probability": 0.909 + }, + { + "start": 24360.12, + "end": 24364.02, + "probability": 0.967 + }, + { + "start": 24364.98, + "end": 24367.34, + "probability": 0.9752 + }, + { + "start": 24368.24, + "end": 24370.58, + "probability": 0.9681 + }, + { + "start": 24371.96, + "end": 24372.2, + "probability": 0.4622 + }, + { + "start": 24373.52, + "end": 24374.52, + "probability": 0.7365 + }, + { + "start": 24374.68, + "end": 24375.12, + "probability": 0.4614 + }, + { + "start": 24375.26, + "end": 24375.76, + "probability": 0.5682 + }, + { + "start": 24375.88, + "end": 24376.8, + "probability": 0.6685 + }, + { + "start": 24378.02, + "end": 24379.42, + "probability": 0.987 + }, + { + "start": 24379.84, + "end": 24381.3, + "probability": 0.966 + }, + { + "start": 24381.9, + "end": 24383.84, + "probability": 0.9939 + }, + { + "start": 24384.92, + "end": 24388.24, + "probability": 0.9282 + }, + { + "start": 24389.18, + "end": 24390.16, + "probability": 0.8866 + }, + { + "start": 24390.34, + "end": 24393.54, + "probability": 0.9918 + }, + { + "start": 24394.44, + "end": 24396.74, + "probability": 0.9957 + }, + { + "start": 24397.65, + "end": 24401.16, + "probability": 0.8976 + }, + { + "start": 24402.74, + "end": 24403.96, + "probability": 0.9224 + }, + { + "start": 24404.06, + "end": 24404.94, + "probability": 0.8886 + }, + { + "start": 24404.94, + "end": 24405.11, + "probability": 0.5632 + }, + { + "start": 24408.22, + "end": 24412.56, + "probability": 0.8823 + }, + { + "start": 24414.22, + "end": 24416.06, + "probability": 0.8607 + }, + { + "start": 24416.58, + "end": 24419.1, + "probability": 0.9219 + }, + { + "start": 24419.84, + "end": 24421.52, + "probability": 0.8535 + }, + { + "start": 24422.26, + "end": 24424.46, + "probability": 0.9967 + }, + { + "start": 24426.34, + "end": 24428.04, + "probability": 0.865 + }, + { + "start": 24429.52, + "end": 24430.4, + "probability": 0.7372 + }, + { + "start": 24430.56, + "end": 24432.88, + "probability": 0.8403 + }, + { + "start": 24432.92, + "end": 24434.31, + "probability": 0.9985 + }, + { + "start": 24434.98, + "end": 24436.9, + "probability": 0.9945 + }, + { + "start": 24437.54, + "end": 24438.84, + "probability": 0.8917 + }, + { + "start": 24439.48, + "end": 24440.5, + "probability": 0.9449 + }, + { + "start": 24441.18, + "end": 24442.86, + "probability": 0.9959 + }, + { + "start": 24443.56, + "end": 24446.4, + "probability": 0.9692 + }, + { + "start": 24447.2, + "end": 24449.58, + "probability": 0.6759 + }, + { + "start": 24451.1, + "end": 24452.94, + "probability": 0.7592 + }, + { + "start": 24453.0, + "end": 24454.9, + "probability": 0.9783 + }, + { + "start": 24456.42, + "end": 24458.38, + "probability": 0.9643 + }, + { + "start": 24459.0, + "end": 24461.96, + "probability": 0.9922 + }, + { + "start": 24462.94, + "end": 24469.18, + "probability": 0.877 + }, + { + "start": 24469.18, + "end": 24472.3, + "probability": 0.9529 + }, + { + "start": 24473.06, + "end": 24475.04, + "probability": 0.9824 + }, + { + "start": 24475.86, + "end": 24478.12, + "probability": 0.8626 + }, + { + "start": 24478.94, + "end": 24483.14, + "probability": 0.9915 + }, + { + "start": 24483.44, + "end": 24484.0, + "probability": 0.6599 + }, + { + "start": 24484.7, + "end": 24488.98, + "probability": 0.9955 + }, + { + "start": 24490.26, + "end": 24493.76, + "probability": 0.9968 + }, + { + "start": 24494.34, + "end": 24495.52, + "probability": 0.6503 + }, + { + "start": 24496.2, + "end": 24498.8, + "probability": 0.8723 + }, + { + "start": 24498.9, + "end": 24499.9, + "probability": 0.7988 + }, + { + "start": 24500.14, + "end": 24500.78, + "probability": 0.9177 + }, + { + "start": 24501.64, + "end": 24502.88, + "probability": 0.9737 + }, + { + "start": 24504.64, + "end": 24506.92, + "probability": 0.978 + }, + { + "start": 24507.62, + "end": 24510.76, + "probability": 0.9784 + }, + { + "start": 24511.64, + "end": 24516.56, + "probability": 0.9485 + }, + { + "start": 24517.54, + "end": 24518.24, + "probability": 0.9445 + }, + { + "start": 24519.06, + "end": 24520.48, + "probability": 0.2553 + }, + { + "start": 24520.48, + "end": 24521.74, + "probability": 0.6252 + }, + { + "start": 24522.18, + "end": 24524.26, + "probability": 0.9813 + }, + { + "start": 24525.48, + "end": 24528.74, + "probability": 0.8692 + }, + { + "start": 24528.86, + "end": 24529.1, + "probability": 0.706 + }, + { + "start": 24529.78, + "end": 24530.54, + "probability": 0.8854 + }, + { + "start": 24531.02, + "end": 24532.66, + "probability": 0.9572 + }, + { + "start": 24536.48, + "end": 24537.42, + "probability": 0.3032 + }, + { + "start": 24539.46, + "end": 24543.26, + "probability": 0.4576 + }, + { + "start": 24544.82, + "end": 24546.85, + "probability": 0.2865 + }, + { + "start": 24547.52, + "end": 24549.24, + "probability": 0.433 + }, + { + "start": 24551.4, + "end": 24555.52, + "probability": 0.4142 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.0, + "end": 24658.0, + "probability": 0.0 + }, + { + "start": 24658.12, + "end": 24658.56, + "probability": 0.2938 + }, + { + "start": 24658.56, + "end": 24660.38, + "probability": 0.246 + }, + { + "start": 24661.74, + "end": 24665.01, + "probability": 0.66 + }, + { + "start": 24666.34, + "end": 24672.82, + "probability": 0.9323 + }, + { + "start": 24673.54, + "end": 24674.35, + "probability": 0.0003 + }, + { + "start": 24677.62, + "end": 24677.84, + "probability": 0.0286 + }, + { + "start": 24677.84, + "end": 24678.94, + "probability": 0.8979 + }, + { + "start": 24686.64, + "end": 24691.16, + "probability": 0.7832 + }, + { + "start": 24694.1, + "end": 24695.41, + "probability": 0.9897 + }, + { + "start": 24699.6, + "end": 24700.66, + "probability": 0.9536 + }, + { + "start": 24702.86, + "end": 24707.0, + "probability": 0.4627 + }, + { + "start": 24707.66, + "end": 24708.58, + "probability": 0.7693 + }, + { + "start": 24708.68, + "end": 24708.86, + "probability": 0.7935 + }, + { + "start": 24708.94, + "end": 24716.52, + "probability": 0.8826 + }, + { + "start": 24716.64, + "end": 24717.46, + "probability": 0.8374 + }, + { + "start": 24717.82, + "end": 24720.62, + "probability": 0.8957 + }, + { + "start": 24720.84, + "end": 24721.88, + "probability": 0.4786 + }, + { + "start": 24722.32, + "end": 24723.4, + "probability": 0.8026 + }, + { + "start": 24723.58, + "end": 24724.42, + "probability": 0.9695 + }, + { + "start": 24724.5, + "end": 24726.98, + "probability": 0.8555 + }, + { + "start": 24728.0, + "end": 24731.34, + "probability": 0.6772 + }, + { + "start": 24731.6, + "end": 24734.14, + "probability": 0.8714 + }, + { + "start": 24734.76, + "end": 24736.14, + "probability": 0.8427 + }, + { + "start": 24736.24, + "end": 24736.54, + "probability": 0.7818 + }, + { + "start": 24736.58, + "end": 24739.76, + "probability": 0.967 + }, + { + "start": 24739.76, + "end": 24744.46, + "probability": 0.9567 + }, + { + "start": 24745.72, + "end": 24745.78, + "probability": 0.5536 + }, + { + "start": 24745.88, + "end": 24751.86, + "probability": 0.9919 + }, + { + "start": 24752.5, + "end": 24754.68, + "probability": 0.9985 + }, + { + "start": 24755.42, + "end": 24757.8, + "probability": 0.9976 + }, + { + "start": 24758.82, + "end": 24759.42, + "probability": 0.7393 + }, + { + "start": 24759.46, + "end": 24760.12, + "probability": 0.8794 + }, + { + "start": 24760.22, + "end": 24764.62, + "probability": 0.9725 + }, + { + "start": 24765.22, + "end": 24769.16, + "probability": 0.6538 + }, + { + "start": 24770.0, + "end": 24772.84, + "probability": 0.6082 + }, + { + "start": 24773.16, + "end": 24777.82, + "probability": 0.678 + }, + { + "start": 24778.78, + "end": 24782.52, + "probability": 0.9778 + }, + { + "start": 24783.12, + "end": 24787.42, + "probability": 0.9884 + }, + { + "start": 24787.42, + "end": 24793.46, + "probability": 0.9934 + }, + { + "start": 24795.24, + "end": 24797.4, + "probability": 0.8655 + }, + { + "start": 24798.22, + "end": 24799.62, + "probability": 0.9281 + }, + { + "start": 24799.96, + "end": 24802.94, + "probability": 0.9985 + }, + { + "start": 24802.94, + "end": 24807.0, + "probability": 0.9982 + }, + { + "start": 24807.14, + "end": 24811.3, + "probability": 0.9968 + }, + { + "start": 24811.3, + "end": 24815.06, + "probability": 0.999 + }, + { + "start": 24815.92, + "end": 24816.28, + "probability": 0.4548 + }, + { + "start": 24818.14, + "end": 24818.56, + "probability": 0.1762 + }, + { + "start": 24818.56, + "end": 24819.1, + "probability": 0.7199 + }, + { + "start": 24819.2, + "end": 24821.5, + "probability": 0.9977 + }, + { + "start": 24823.24, + "end": 24826.06, + "probability": 0.616 + }, + { + "start": 24826.72, + "end": 24828.94, + "probability": 0.9908 + }, + { + "start": 24828.94, + "end": 24832.14, + "probability": 0.987 + }, + { + "start": 24832.66, + "end": 24833.12, + "probability": 0.6283 + }, + { + "start": 24833.68, + "end": 24839.64, + "probability": 0.9058 + }, + { + "start": 24839.64, + "end": 24843.26, + "probability": 0.9652 + }, + { + "start": 24843.7, + "end": 24846.2, + "probability": 0.9966 + }, + { + "start": 24846.34, + "end": 24848.4, + "probability": 0.9875 + }, + { + "start": 24848.94, + "end": 24851.48, + "probability": 0.6545 + }, + { + "start": 24853.82, + "end": 24857.08, + "probability": 0.8036 + }, + { + "start": 24858.26, + "end": 24863.74, + "probability": 0.8746 + }, + { + "start": 24863.74, + "end": 24867.5, + "probability": 0.8766 + }, + { + "start": 24868.44, + "end": 24872.96, + "probability": 0.9977 + }, + { + "start": 24872.96, + "end": 24878.72, + "probability": 0.9844 + }, + { + "start": 24879.84, + "end": 24879.84, + "probability": 0.0145 + }, + { + "start": 24879.84, + "end": 24880.2, + "probability": 0.563 + }, + { + "start": 24880.78, + "end": 24882.42, + "probability": 0.7618 + }, + { + "start": 24884.7, + "end": 24885.64, + "probability": 0.7246 + }, + { + "start": 24885.86, + "end": 24888.46, + "probability": 0.8103 + }, + { + "start": 24888.94, + "end": 24891.28, + "probability": 0.9339 + }, + { + "start": 24891.7, + "end": 24894.84, + "probability": 0.9763 + }, + { + "start": 24895.46, + "end": 24897.12, + "probability": 0.9893 + }, + { + "start": 24897.84, + "end": 24900.06, + "probability": 0.997 + }, + { + "start": 24900.5, + "end": 24901.24, + "probability": 0.8267 + }, + { + "start": 24902.18, + "end": 24905.56, + "probability": 0.9714 + }, + { + "start": 24907.34, + "end": 24907.9, + "probability": 0.6183 + }, + { + "start": 24908.64, + "end": 24910.48, + "probability": 0.8928 + }, + { + "start": 24910.86, + "end": 24911.64, + "probability": 0.8198 + }, + { + "start": 24911.76, + "end": 24912.0, + "probability": 0.8359 + }, + { + "start": 24912.06, + "end": 24916.96, + "probability": 0.9954 + }, + { + "start": 24918.06, + "end": 24918.72, + "probability": 0.1735 + }, + { + "start": 24919.38, + "end": 24921.6, + "probability": 0.9701 + }, + { + "start": 24921.98, + "end": 24924.64, + "probability": 0.9854 + }, + { + "start": 24925.52, + "end": 24927.7, + "probability": 0.9961 + }, + { + "start": 24928.24, + "end": 24929.42, + "probability": 0.9248 + }, + { + "start": 24929.82, + "end": 24929.92, + "probability": 0.4264 + }, + { + "start": 24930.36, + "end": 24932.86, + "probability": 0.8564 + }, + { + "start": 24933.18, + "end": 24933.54, + "probability": 0.3679 + }, + { + "start": 24933.54, + "end": 24933.76, + "probability": 0.5574 + }, + { + "start": 24934.74, + "end": 24936.28, + "probability": 0.823 + }, + { + "start": 24951.84, + "end": 24952.26, + "probability": 0.784 + }, + { + "start": 24952.56, + "end": 24955.6, + "probability": 0.8952 + }, + { + "start": 24956.68, + "end": 24961.52, + "probability": 0.937 + }, + { + "start": 24962.34, + "end": 24963.24, + "probability": 0.9875 + }, + { + "start": 24963.28, + "end": 24966.06, + "probability": 0.9944 + }, + { + "start": 24966.06, + "end": 24970.98, + "probability": 0.9969 + }, + { + "start": 24971.7, + "end": 24977.16, + "probability": 0.9817 + }, + { + "start": 24977.68, + "end": 24978.46, + "probability": 0.4596 + }, + { + "start": 24979.18, + "end": 24981.2, + "probability": 0.9851 + }, + { + "start": 24981.46, + "end": 24983.48, + "probability": 0.9941 + }, + { + "start": 24984.0, + "end": 24985.28, + "probability": 0.9814 + }, + { + "start": 24986.46, + "end": 24989.32, + "probability": 0.9904 + }, + { + "start": 24989.96, + "end": 24992.04, + "probability": 0.783 + }, + { + "start": 24992.5, + "end": 24993.62, + "probability": 0.8247 + }, + { + "start": 24993.76, + "end": 24996.16, + "probability": 0.9769 + }, + { + "start": 24996.48, + "end": 24998.79, + "probability": 0.9925 + }, + { + "start": 24999.59, + "end": 25002.48, + "probability": 0.807 + }, + { + "start": 25003.0, + "end": 25003.54, + "probability": 0.4626 + }, + { + "start": 25003.82, + "end": 25004.3, + "probability": 0.7956 + }, + { + "start": 25004.66, + "end": 25005.76, + "probability": 0.9645 + }, + { + "start": 25006.22, + "end": 25007.5, + "probability": 0.9623 + }, + { + "start": 25007.88, + "end": 25012.54, + "probability": 0.9854 + }, + { + "start": 25013.26, + "end": 25015.26, + "probability": 0.9951 + }, + { + "start": 25015.58, + "end": 25015.66, + "probability": 0.1141 + }, + { + "start": 25016.66, + "end": 25018.12, + "probability": 0.9525 + }, + { + "start": 25018.56, + "end": 25019.6, + "probability": 0.7012 + }, + { + "start": 25020.18, + "end": 25021.76, + "probability": 0.7467 + }, + { + "start": 25022.8, + "end": 25025.02, + "probability": 0.991 + }, + { + "start": 25025.08, + "end": 25029.54, + "probability": 0.9072 + }, + { + "start": 25029.96, + "end": 25031.4, + "probability": 0.9917 + }, + { + "start": 25032.8, + "end": 25034.48, + "probability": 0.9087 + }, + { + "start": 25034.8, + "end": 25036.14, + "probability": 0.9951 + }, + { + "start": 25036.72, + "end": 25039.64, + "probability": 0.9458 + }, + { + "start": 25040.14, + "end": 25043.76, + "probability": 0.9399 + }, + { + "start": 25044.2, + "end": 25045.26, + "probability": 0.7363 + }, + { + "start": 25045.78, + "end": 25048.18, + "probability": 0.9836 + }, + { + "start": 25048.88, + "end": 25050.46, + "probability": 0.9938 + }, + { + "start": 25050.54, + "end": 25051.44, + "probability": 0.7387 + }, + { + "start": 25051.92, + "end": 25054.56, + "probability": 0.8406 + }, + { + "start": 25055.98, + "end": 25061.16, + "probability": 0.9882 + }, + { + "start": 25061.7, + "end": 25063.14, + "probability": 0.8428 + }, + { + "start": 25063.48, + "end": 25064.76, + "probability": 0.8543 + }, + { + "start": 25065.2, + "end": 25069.62, + "probability": 0.9981 + }, + { + "start": 25070.56, + "end": 25074.92, + "probability": 0.8048 + }, + { + "start": 25075.02, + "end": 25078.16, + "probability": 0.8972 + }, + { + "start": 25078.58, + "end": 25080.2, + "probability": 0.7709 + }, + { + "start": 25080.24, + "end": 25081.86, + "probability": 0.9453 + }, + { + "start": 25082.56, + "end": 25084.82, + "probability": 0.8369 + }, + { + "start": 25085.24, + "end": 25088.18, + "probability": 0.9446 + }, + { + "start": 25088.88, + "end": 25094.28, + "probability": 0.9912 + }, + { + "start": 25094.28, + "end": 25099.0, + "probability": 0.9777 + }, + { + "start": 25099.06, + "end": 25102.14, + "probability": 0.9937 + }, + { + "start": 25102.14, + "end": 25105.52, + "probability": 0.9978 + }, + { + "start": 25105.94, + "end": 25109.62, + "probability": 0.9902 + }, + { + "start": 25111.1, + "end": 25111.74, + "probability": 0.6807 + }, + { + "start": 25112.38, + "end": 25114.56, + "probability": 0.9451 + }, + { + "start": 25114.6, + "end": 25115.82, + "probability": 0.9531 + }, + { + "start": 25116.06, + "end": 25117.2, + "probability": 0.8873 + }, + { + "start": 25117.72, + "end": 25119.2, + "probability": 0.8711 + }, + { + "start": 25119.72, + "end": 25121.38, + "probability": 0.9518 + }, + { + "start": 25121.44, + "end": 25122.8, + "probability": 0.9857 + }, + { + "start": 25123.2, + "end": 25124.86, + "probability": 0.9659 + }, + { + "start": 25125.54, + "end": 25129.36, + "probability": 0.9614 + }, + { + "start": 25130.04, + "end": 25131.44, + "probability": 0.9844 + }, + { + "start": 25131.66, + "end": 25133.86, + "probability": 0.9368 + }, + { + "start": 25134.24, + "end": 25136.03, + "probability": 0.9955 + }, + { + "start": 25136.38, + "end": 25139.46, + "probability": 0.8885 + }, + { + "start": 25139.82, + "end": 25141.88, + "probability": 0.9101 + }, + { + "start": 25142.58, + "end": 25144.02, + "probability": 0.8943 + }, + { + "start": 25144.32, + "end": 25145.94, + "probability": 0.996 + }, + { + "start": 25146.24, + "end": 25147.3, + "probability": 0.7395 + }, + { + "start": 25148.42, + "end": 25149.92, + "probability": 0.9462 + }, + { + "start": 25151.03, + "end": 25153.72, + "probability": 0.907 + }, + { + "start": 25154.06, + "end": 25156.98, + "probability": 0.9956 + }, + { + "start": 25158.08, + "end": 25159.58, + "probability": 0.9988 + }, + { + "start": 25159.6, + "end": 25162.82, + "probability": 0.9951 + }, + { + "start": 25164.12, + "end": 25166.88, + "probability": 0.7843 + }, + { + "start": 25167.62, + "end": 25170.28, + "probability": 0.9786 + }, + { + "start": 25170.86, + "end": 25171.6, + "probability": 0.5799 + }, + { + "start": 25172.1, + "end": 25176.7, + "probability": 0.9838 + }, + { + "start": 25177.46, + "end": 25183.68, + "probability": 0.8234 + }, + { + "start": 25184.04, + "end": 25185.0, + "probability": 0.9641 + }, + { + "start": 25185.44, + "end": 25187.34, + "probability": 0.998 + }, + { + "start": 25187.34, + "end": 25190.24, + "probability": 0.9659 + }, + { + "start": 25190.5, + "end": 25192.88, + "probability": 0.9357 + }, + { + "start": 25193.12, + "end": 25195.12, + "probability": 0.8774 + }, + { + "start": 25195.98, + "end": 25197.34, + "probability": 0.9634 + }, + { + "start": 25197.46, + "end": 25199.5, + "probability": 0.9821 + }, + { + "start": 25200.16, + "end": 25201.16, + "probability": 0.7207 + }, + { + "start": 25201.38, + "end": 25202.18, + "probability": 0.884 + }, + { + "start": 25202.94, + "end": 25205.6, + "probability": 0.9046 + }, + { + "start": 25206.16, + "end": 25206.44, + "probability": 0.4747 + }, + { + "start": 25206.44, + "end": 25206.88, + "probability": 0.72 + }, + { + "start": 25207.4, + "end": 25208.56, + "probability": 0.9801 + }, + { + "start": 25209.83, + "end": 25211.3, + "probability": 0.2337 + }, + { + "start": 25211.56, + "end": 25213.06, + "probability": 0.811 + }, + { + "start": 25213.68, + "end": 25216.94, + "probability": 0.9741 + }, + { + "start": 25222.26, + "end": 25223.3, + "probability": 0.8615 + }, + { + "start": 25223.54, + "end": 25227.08, + "probability": 0.897 + }, + { + "start": 25228.78, + "end": 25230.66, + "probability": 0.5226 + }, + { + "start": 25230.76, + "end": 25234.6, + "probability": 0.7498 + }, + { + "start": 25235.96, + "end": 25238.72, + "probability": 0.9924 + }, + { + "start": 25240.48, + "end": 25240.84, + "probability": 0.532 + }, + { + "start": 25241.36, + "end": 25243.1, + "probability": 0.86 + }, + { + "start": 25243.48, + "end": 25245.66, + "probability": 0.9824 + }, + { + "start": 25246.38, + "end": 25249.9, + "probability": 0.9464 + }, + { + "start": 25250.52, + "end": 25252.5, + "probability": 0.8066 + }, + { + "start": 25253.42, + "end": 25255.58, + "probability": 0.9734 + }, + { + "start": 25256.12, + "end": 25257.16, + "probability": 0.7532 + }, + { + "start": 25257.28, + "end": 25257.54, + "probability": 0.7147 + }, + { + "start": 25258.52, + "end": 25259.24, + "probability": 0.7687 + }, + { + "start": 25260.78, + "end": 25261.55, + "probability": 0.3097 + }, + { + "start": 25262.02, + "end": 25262.5, + "probability": 0.2539 + }, + { + "start": 25262.5, + "end": 25263.58, + "probability": 0.5665 + }, + { + "start": 25265.16, + "end": 25266.82, + "probability": 0.9404 + }, + { + "start": 25266.96, + "end": 25268.48, + "probability": 0.7671 + }, + { + "start": 25270.5, + "end": 25274.78, + "probability": 0.2677 + }, + { + "start": 25276.66, + "end": 25281.2, + "probability": 0.2267 + }, + { + "start": 25282.03, + "end": 25284.28, + "probability": 0.1572 + }, + { + "start": 25284.62, + "end": 25285.37, + "probability": 0.165 + }, + { + "start": 25287.26, + "end": 25289.94, + "probability": 0.0846 + }, + { + "start": 25289.94, + "end": 25290.58, + "probability": 0.652 + }, + { + "start": 25290.58, + "end": 25290.74, + "probability": 0.747 + }, + { + "start": 25291.14, + "end": 25291.58, + "probability": 0.2929 + }, + { + "start": 25291.68, + "end": 25292.72, + "probability": 0.751 + }, + { + "start": 25292.72, + "end": 25293.36, + "probability": 0.9626 + }, + { + "start": 25293.36, + "end": 25294.14, + "probability": 0.4417 + }, + { + "start": 25295.26, + "end": 25295.26, + "probability": 0.091 + }, + { + "start": 25295.26, + "end": 25295.26, + "probability": 0.3013 + }, + { + "start": 25295.26, + "end": 25295.26, + "probability": 0.5607 + }, + { + "start": 25295.26, + "end": 25295.26, + "probability": 0.088 + }, + { + "start": 25295.26, + "end": 25295.64, + "probability": 0.2775 + }, + { + "start": 25300.44, + "end": 25300.85, + "probability": 0.4057 + }, + { + "start": 25301.1, + "end": 25301.1, + "probability": 0.1254 + }, + { + "start": 25301.1, + "end": 25301.1, + "probability": 0.6647 + }, + { + "start": 25301.1, + "end": 25301.58, + "probability": 0.2876 + }, + { + "start": 25301.66, + "end": 25302.26, + "probability": 0.6167 + }, + { + "start": 25308.1, + "end": 25308.96, + "probability": 0.6382 + }, + { + "start": 25311.68, + "end": 25311.68, + "probability": 0.0664 + }, + { + "start": 25311.68, + "end": 25311.68, + "probability": 0.0439 + }, + { + "start": 25311.68, + "end": 25316.62, + "probability": 0.6719 + }, + { + "start": 25316.74, + "end": 25317.34, + "probability": 0.6394 + }, + { + "start": 25320.76, + "end": 25320.76, + "probability": 0.4695 + }, + { + "start": 25320.76, + "end": 25320.76, + "probability": 0.3022 + }, + { + "start": 25320.76, + "end": 25321.44, + "probability": 0.5993 + }, + { + "start": 25322.18, + "end": 25324.26, + "probability": 0.9042 + }, + { + "start": 25324.42, + "end": 25324.78, + "probability": 0.4221 + }, + { + "start": 25324.92, + "end": 25325.12, + "probability": 0.816 + }, + { + "start": 25326.48, + "end": 25327.34, + "probability": 0.9146 + }, + { + "start": 25327.98, + "end": 25331.02, + "probability": 0.8379 + }, + { + "start": 25331.02, + "end": 25335.84, + "probability": 0.994 + }, + { + "start": 25336.7, + "end": 25337.06, + "probability": 0.0001 + }, + { + "start": 25337.6, + "end": 25337.86, + "probability": 0.0965 + }, + { + "start": 25337.86, + "end": 25337.86, + "probability": 0.153 + }, + { + "start": 25362.98, + "end": 25363.22, + "probability": 0.2377 + }, + { + "start": 25363.22, + "end": 25365.0, + "probability": 0.5322 + }, + { + "start": 25366.22, + "end": 25369.02, + "probability": 0.7543 + }, + { + "start": 25369.82, + "end": 25372.54, + "probability": 0.9753 + }, + { + "start": 25372.9, + "end": 25376.1, + "probability": 0.9901 + }, + { + "start": 25376.62, + "end": 25379.96, + "probability": 0.9415 + }, + { + "start": 25380.66, + "end": 25381.74, + "probability": 0.5121 + }, + { + "start": 25382.82, + "end": 25385.52, + "probability": 0.6921 + }, + { + "start": 25386.1, + "end": 25388.26, + "probability": 0.9897 + }, + { + "start": 25388.26, + "end": 25391.34, + "probability": 0.9928 + }, + { + "start": 25392.12, + "end": 25393.5, + "probability": 0.8579 + }, + { + "start": 25394.02, + "end": 25394.75, + "probability": 0.9498 + }, + { + "start": 25395.28, + "end": 25396.42, + "probability": 0.9856 + }, + { + "start": 25396.68, + "end": 25397.58, + "probability": 0.7852 + }, + { + "start": 25398.6, + "end": 25401.62, + "probability": 0.8319 + }, + { + "start": 25402.24, + "end": 25404.0, + "probability": 0.9929 + }, + { + "start": 25404.7, + "end": 25406.78, + "probability": 0.9205 + }, + { + "start": 25407.12, + "end": 25410.18, + "probability": 0.9768 + }, + { + "start": 25411.08, + "end": 25414.36, + "probability": 0.9993 + }, + { + "start": 25415.38, + "end": 25416.88, + "probability": 0.8044 + }, + { + "start": 25417.02, + "end": 25417.78, + "probability": 0.8583 + }, + { + "start": 25417.84, + "end": 25422.02, + "probability": 0.9937 + }, + { + "start": 25423.18, + "end": 25425.04, + "probability": 0.9441 + }, + { + "start": 25425.18, + "end": 25427.2, + "probability": 0.9971 + }, + { + "start": 25428.78, + "end": 25430.42, + "probability": 0.9275 + }, + { + "start": 25431.34, + "end": 25433.24, + "probability": 0.9971 + }, + { + "start": 25434.3, + "end": 25435.9, + "probability": 0.6835 + }, + { + "start": 25436.0, + "end": 25437.28, + "probability": 0.8618 + }, + { + "start": 25438.24, + "end": 25440.38, + "probability": 0.9119 + }, + { + "start": 25440.52, + "end": 25441.28, + "probability": 0.8844 + }, + { + "start": 25441.38, + "end": 25441.92, + "probability": 0.6472 + }, + { + "start": 25442.4, + "end": 25443.28, + "probability": 0.766 + }, + { + "start": 25444.0, + "end": 25446.4, + "probability": 0.9941 + }, + { + "start": 25446.98, + "end": 25449.2, + "probability": 0.9932 + }, + { + "start": 25449.2, + "end": 25451.4, + "probability": 0.9958 + }, + { + "start": 25452.44, + "end": 25453.18, + "probability": 0.8737 + }, + { + "start": 25454.08, + "end": 25457.46, + "probability": 0.9869 + }, + { + "start": 25457.82, + "end": 25461.62, + "probability": 0.9958 + }, + { + "start": 25461.88, + "end": 25463.02, + "probability": 0.9332 + }, + { + "start": 25463.36, + "end": 25465.38, + "probability": 0.9868 + }, + { + "start": 25465.42, + "end": 25469.62, + "probability": 0.7555 + }, + { + "start": 25469.7, + "end": 25470.54, + "probability": 0.8578 + }, + { + "start": 25471.56, + "end": 25474.28, + "probability": 0.7832 + }, + { + "start": 25474.78, + "end": 25475.9, + "probability": 0.7338 + }, + { + "start": 25476.02, + "end": 25477.84, + "probability": 0.9146 + }, + { + "start": 25478.44, + "end": 25479.3, + "probability": 0.5773 + }, + { + "start": 25479.42, + "end": 25481.49, + "probability": 0.981 + }, + { + "start": 25481.54, + "end": 25485.74, + "probability": 0.9948 + }, + { + "start": 25485.74, + "end": 25489.26, + "probability": 0.9978 + }, + { + "start": 25489.84, + "end": 25493.82, + "probability": 0.951 + }, + { + "start": 25494.1, + "end": 25495.2, + "probability": 0.9419 + }, + { + "start": 25495.94, + "end": 25497.34, + "probability": 0.8867 + }, + { + "start": 25497.94, + "end": 25498.96, + "probability": 0.8758 + }, + { + "start": 25499.1, + "end": 25500.28, + "probability": 0.8208 + }, + { + "start": 25500.34, + "end": 25502.76, + "probability": 0.985 + }, + { + "start": 25502.76, + "end": 25506.32, + "probability": 0.973 + }, + { + "start": 25506.86, + "end": 25509.26, + "probability": 0.8723 + }, + { + "start": 25510.6, + "end": 25511.6, + "probability": 0.709 + }, + { + "start": 25512.64, + "end": 25512.76, + "probability": 0.5179 + }, + { + "start": 25512.86, + "end": 25516.6, + "probability": 0.9914 + }, + { + "start": 25516.68, + "end": 25517.48, + "probability": 0.4292 + }, + { + "start": 25518.22, + "end": 25520.48, + "probability": 0.9922 + }, + { + "start": 25521.04, + "end": 25521.66, + "probability": 0.8383 + }, + { + "start": 25521.66, + "end": 25521.88, + "probability": 0.3907 + }, + { + "start": 25521.96, + "end": 25522.96, + "probability": 0.933 + }, + { + "start": 25523.4, + "end": 25525.34, + "probability": 0.8569 + }, + { + "start": 25526.66, + "end": 25529.54, + "probability": 0.9461 + }, + { + "start": 25530.16, + "end": 25532.9, + "probability": 0.8897 + }, + { + "start": 25533.66, + "end": 25535.98, + "probability": 0.9717 + }, + { + "start": 25536.2, + "end": 25537.28, + "probability": 0.9758 + }, + { + "start": 25539.6, + "end": 25545.28, + "probability": 0.9875 + }, + { + "start": 25545.44, + "end": 25547.84, + "probability": 0.9971 + }, + { + "start": 25548.6, + "end": 25550.22, + "probability": 0.84 + }, + { + "start": 25550.78, + "end": 25555.64, + "probability": 0.9946 + }, + { + "start": 25556.06, + "end": 25558.58, + "probability": 0.9748 + }, + { + "start": 25559.54, + "end": 25560.06, + "probability": 0.5566 + }, + { + "start": 25560.16, + "end": 25563.58, + "probability": 0.9084 + }, + { + "start": 25564.14, + "end": 25565.42, + "probability": 0.9233 + }, + { + "start": 25565.48, + "end": 25568.82, + "probability": 0.9972 + }, + { + "start": 25568.82, + "end": 25571.9, + "probability": 0.9931 + }, + { + "start": 25572.2, + "end": 25574.06, + "probability": 0.95 + }, + { + "start": 25574.64, + "end": 25578.14, + "probability": 0.9966 + }, + { + "start": 25578.14, + "end": 25583.96, + "probability": 0.9939 + }, + { + "start": 25584.84, + "end": 25586.44, + "probability": 0.9521 + }, + { + "start": 25586.88, + "end": 25587.16, + "probability": 0.7483 + }, + { + "start": 25588.34, + "end": 25589.08, + "probability": 0.677 + }, + { + "start": 25589.72, + "end": 25592.14, + "probability": 0.9489 + }, + { + "start": 25606.58, + "end": 25609.82, + "probability": 0.6397 + }, + { + "start": 25610.72, + "end": 25611.82, + "probability": 0.5542 + }, + { + "start": 25612.34, + "end": 25613.51, + "probability": 0.0849 + }, + { + "start": 25614.28, + "end": 25614.92, + "probability": 0.8737 + }, + { + "start": 25615.28, + "end": 25616.22, + "probability": 0.6413 + }, + { + "start": 25616.38, + "end": 25616.8, + "probability": 0.7448 + }, + { + "start": 25621.24, + "end": 25621.5, + "probability": 0.28 + }, + { + "start": 25622.42, + "end": 25622.52, + "probability": 0.0956 + }, + { + "start": 25623.08, + "end": 25623.82, + "probability": 0.618 + }, + { + "start": 25623.9, + "end": 25624.06, + "probability": 0.4441 + }, + { + "start": 25624.06, + "end": 25625.14, + "probability": 0.5669 + }, + { + "start": 25625.74, + "end": 25625.88, + "probability": 0.313 + }, + { + "start": 25625.96, + "end": 25626.3, + "probability": 0.964 + }, + { + "start": 25626.42, + "end": 25631.78, + "probability": 0.9248 + }, + { + "start": 25632.02, + "end": 25632.94, + "probability": 0.7889 + }, + { + "start": 25634.12, + "end": 25635.24, + "probability": 0.3422 + }, + { + "start": 25635.94, + "end": 25636.3, + "probability": 0.3331 + }, + { + "start": 25636.94, + "end": 25637.78, + "probability": 0.5962 + }, + { + "start": 25639.89, + "end": 25644.02, + "probability": 0.8117 + }, + { + "start": 25644.58, + "end": 25645.26, + "probability": 0.8607 + }, + { + "start": 25646.1, + "end": 25646.96, + "probability": 0.8288 + }, + { + "start": 25647.28, + "end": 25651.26, + "probability": 0.9314 + }, + { + "start": 25651.4, + "end": 25653.16, + "probability": 0.9702 + }, + { + "start": 25653.34, + "end": 25654.56, + "probability": 0.8234 + }, + { + "start": 25654.68, + "end": 25654.9, + "probability": 0.89 + }, + { + "start": 25657.02, + "end": 25657.94, + "probability": 0.7197 + }, + { + "start": 25658.14, + "end": 25661.56, + "probability": 0.9771 + }, + { + "start": 25661.7, + "end": 25662.98, + "probability": 0.3256 + }, + { + "start": 25664.16, + "end": 25665.18, + "probability": 0.6757 + }, + { + "start": 25666.06, + "end": 25669.19, + "probability": 0.9697 + }, + { + "start": 25670.62, + "end": 25672.22, + "probability": 0.2102 + }, + { + "start": 25672.48, + "end": 25676.04, + "probability": 0.2029 + }, + { + "start": 25676.42, + "end": 25676.54, + "probability": 0.1662 + }, + { + "start": 25676.54, + "end": 25676.54, + "probability": 0.3888 + }, + { + "start": 25676.54, + "end": 25676.54, + "probability": 0.1273 + }, + { + "start": 25676.54, + "end": 25677.48, + "probability": 0.7217 + }, + { + "start": 25678.16, + "end": 25680.54, + "probability": 0.7501 + }, + { + "start": 25681.6, + "end": 25681.8, + "probability": 0.0439 + }, + { + "start": 25681.8, + "end": 25681.82, + "probability": 0.0841 + }, + { + "start": 25681.82, + "end": 25682.04, + "probability": 0.5383 + }, + { + "start": 25682.26, + "end": 25684.43, + "probability": 0.8496 + }, + { + "start": 25684.64, + "end": 25685.61, + "probability": 0.8799 + }, + { + "start": 25686.74, + "end": 25687.96, + "probability": 0.0398 + }, + { + "start": 25690.46, + "end": 25690.74, + "probability": 0.2451 + }, + { + "start": 25693.83, + "end": 25693.9, + "probability": 0.3593 + }, + { + "start": 25694.7, + "end": 25694.8, + "probability": 0.0725 + }, + { + "start": 25694.8, + "end": 25695.68, + "probability": 0.6272 + }, + { + "start": 25696.6, + "end": 25700.62, + "probability": 0.9806 + }, + { + "start": 25700.62, + "end": 25703.26, + "probability": 0.9897 + }, + { + "start": 25703.36, + "end": 25704.56, + "probability": 0.978 + }, + { + "start": 25704.84, + "end": 25705.4, + "probability": 0.9229 + }, + { + "start": 25705.96, + "end": 25706.92, + "probability": 0.0512 + }, + { + "start": 25708.36, + "end": 25709.86, + "probability": 0.1417 + }, + { + "start": 25710.02, + "end": 25711.6, + "probability": 0.0915 + }, + { + "start": 25713.79, + "end": 25715.2, + "probability": 0.5375 + }, + { + "start": 25715.28, + "end": 25716.06, + "probability": 0.8911 + }, + { + "start": 25718.09, + "end": 25720.76, + "probability": 0.8574 + }, + { + "start": 25721.88, + "end": 25723.88, + "probability": 0.993 + }, + { + "start": 25723.98, + "end": 25725.17, + "probability": 0.8477 + }, + { + "start": 25726.5, + "end": 25729.06, + "probability": 0.9894 + }, + { + "start": 25730.62, + "end": 25731.62, + "probability": 0.6431 + }, + { + "start": 25733.32, + "end": 25737.18, + "probability": 0.9989 + }, + { + "start": 25739.42, + "end": 25740.04, + "probability": 0.7736 + }, + { + "start": 25740.58, + "end": 25744.74, + "probability": 0.9818 + }, + { + "start": 25746.14, + "end": 25747.22, + "probability": 0.9956 + }, + { + "start": 25749.4, + "end": 25752.56, + "probability": 0.9485 + }, + { + "start": 25754.34, + "end": 25756.12, + "probability": 0.9494 + }, + { + "start": 25757.08, + "end": 25759.02, + "probability": 0.9848 + }, + { + "start": 25761.04, + "end": 25764.3, + "probability": 0.9185 + }, + { + "start": 25765.5, + "end": 25767.42, + "probability": 0.933 + }, + { + "start": 25770.4, + "end": 25771.52, + "probability": 0.7325 + }, + { + "start": 25771.74, + "end": 25772.9, + "probability": 0.9826 + }, + { + "start": 25774.3, + "end": 25776.56, + "probability": 0.8883 + }, + { + "start": 25777.26, + "end": 25777.52, + "probability": 0.8742 + }, + { + "start": 25777.6, + "end": 25777.7, + "probability": 0.8862 + }, + { + "start": 25778.26, + "end": 25780.3, + "probability": 0.9153 + }, + { + "start": 25781.06, + "end": 25782.36, + "probability": 0.9062 + }, + { + "start": 25783.52, + "end": 25784.98, + "probability": 0.3995 + }, + { + "start": 25785.26, + "end": 25786.02, + "probability": 0.3259 + }, + { + "start": 25789.88, + "end": 25791.66, + "probability": 0.1957 + }, + { + "start": 25792.92, + "end": 25794.56, + "probability": 0.6897 + }, + { + "start": 25794.76, + "end": 25795.28, + "probability": 0.2961 + }, + { + "start": 25795.32, + "end": 25798.02, + "probability": 0.9948 + }, + { + "start": 25799.44, + "end": 25801.4, + "probability": 0.8797 + }, + { + "start": 25802.28, + "end": 25806.7, + "probability": 0.9801 + }, + { + "start": 25807.48, + "end": 25809.34, + "probability": 0.8178 + }, + { + "start": 25809.5, + "end": 25810.66, + "probability": 0.8958 + }, + { + "start": 25811.88, + "end": 25813.58, + "probability": 0.4203 + }, + { + "start": 25814.35, + "end": 25816.2, + "probability": 0.9087 + }, + { + "start": 25817.12, + "end": 25818.58, + "probability": 0.9392 + }, + { + "start": 25819.1, + "end": 25819.74, + "probability": 0.9456 + }, + { + "start": 25819.86, + "end": 25822.6, + "probability": 0.9684 + }, + { + "start": 25823.38, + "end": 25828.48, + "probability": 0.9805 + }, + { + "start": 25829.64, + "end": 25830.56, + "probability": 0.8624 + }, + { + "start": 25831.4, + "end": 25831.68, + "probability": 0.9519 + }, + { + "start": 25831.8, + "end": 25834.8, + "probability": 0.8835 + }, + { + "start": 25835.14, + "end": 25836.94, + "probability": 0.9229 + }, + { + "start": 25838.04, + "end": 25839.38, + "probability": 0.8023 + }, + { + "start": 25839.94, + "end": 25842.68, + "probability": 0.8931 + }, + { + "start": 25849.62, + "end": 25849.66, + "probability": 0.3343 + }, + { + "start": 25849.66, + "end": 25853.84, + "probability": 0.5453 + }, + { + "start": 25854.7, + "end": 25856.66, + "probability": 0.1146 + }, + { + "start": 25856.84, + "end": 25857.76, + "probability": 0.4468 + }, + { + "start": 25857.96, + "end": 25860.64, + "probability": 0.9879 + }, + { + "start": 25861.72, + "end": 25862.44, + "probability": 0.7276 + }, + { + "start": 25863.76, + "end": 25866.18, + "probability": 0.9927 + }, + { + "start": 25867.22, + "end": 25871.24, + "probability": 0.9493 + }, + { + "start": 25871.92, + "end": 25872.74, + "probability": 0.9976 + }, + { + "start": 25873.5, + "end": 25881.67, + "probability": 0.9851 + }, + { + "start": 25882.46, + "end": 25883.96, + "probability": 0.9717 + }, + { + "start": 25884.06, + "end": 25886.02, + "probability": 0.9973 + }, + { + "start": 25886.36, + "end": 25889.99, + "probability": 0.9963 + }, + { + "start": 25890.68, + "end": 25891.48, + "probability": 0.9634 + }, + { + "start": 25891.52, + "end": 25892.98, + "probability": 0.9295 + }, + { + "start": 25894.18, + "end": 25896.54, + "probability": 0.8521 + }, + { + "start": 25897.57, + "end": 25900.13, + "probability": 0.7407 + }, + { + "start": 25900.72, + "end": 25902.6, + "probability": 0.9885 + }, + { + "start": 25902.98, + "end": 25903.78, + "probability": 0.8916 + }, + { + "start": 25905.64, + "end": 25907.78, + "probability": 0.9976 + }, + { + "start": 25907.88, + "end": 25908.3, + "probability": 0.6512 + }, + { + "start": 25908.36, + "end": 25909.42, + "probability": 0.7569 + }, + { + "start": 25910.2, + "end": 25910.98, + "probability": 0.7402 + }, + { + "start": 25911.56, + "end": 25916.6, + "probability": 0.8389 + }, + { + "start": 25916.6, + "end": 25917.9, + "probability": 0.3141 + }, + { + "start": 25917.9, + "end": 25917.9, + "probability": 0.0645 + }, + { + "start": 25917.9, + "end": 25917.9, + "probability": 0.046 + }, + { + "start": 25917.9, + "end": 25920.5, + "probability": 0.8533 + }, + { + "start": 25921.54, + "end": 25923.9, + "probability": 0.9861 + }, + { + "start": 25924.78, + "end": 25929.86, + "probability": 0.9375 + }, + { + "start": 25930.0, + "end": 25931.5, + "probability": 0.6673 + }, + { + "start": 25931.5, + "end": 25931.68, + "probability": 0.6995 + }, + { + "start": 25932.96, + "end": 25934.98, + "probability": 0.9325 + }, + { + "start": 25934.98, + "end": 25937.28, + "probability": 0.9844 + }, + { + "start": 25937.58, + "end": 25941.12, + "probability": 0.9882 + }, + { + "start": 25941.92, + "end": 25943.26, + "probability": 0.9106 + }, + { + "start": 25943.82, + "end": 25945.3, + "probability": 0.7267 + }, + { + "start": 25945.5, + "end": 25947.54, + "probability": 0.4817 + }, + { + "start": 25947.68, + "end": 25948.78, + "probability": 0.6926 + }, + { + "start": 25950.72, + "end": 25951.34, + "probability": 0.735 + }, + { + "start": 25952.16, + "end": 25953.0, + "probability": 0.1636 + }, + { + "start": 25953.26, + "end": 25956.38, + "probability": 0.8148 + }, + { + "start": 25967.2, + "end": 25967.68, + "probability": 0.3922 + }, + { + "start": 25968.1, + "end": 25968.4, + "probability": 0.2961 + }, + { + "start": 25968.48, + "end": 25970.5, + "probability": 0.77 + }, + { + "start": 25971.18, + "end": 25972.94, + "probability": 0.7273 + }, + { + "start": 25972.94, + "end": 25975.06, + "probability": 0.9247 + }, + { + "start": 25975.16, + "end": 25976.82, + "probability": 0.9655 + }, + { + "start": 25977.6, + "end": 25981.42, + "probability": 0.9766 + }, + { + "start": 25983.0, + "end": 25988.54, + "probability": 0.9958 + }, + { + "start": 25989.64, + "end": 25992.36, + "probability": 0.4936 + }, + { + "start": 25992.7, + "end": 25994.7, + "probability": 0.9512 + }, + { + "start": 25995.34, + "end": 25998.5, + "probability": 0.9316 + }, + { + "start": 25998.56, + "end": 26000.56, + "probability": 0.9892 + }, + { + "start": 26001.18, + "end": 26003.1, + "probability": 0.9033 + }, + { + "start": 26003.9, + "end": 26005.5, + "probability": 0.8211 + }, + { + "start": 26005.88, + "end": 26006.76, + "probability": 0.6635 + }, + { + "start": 26006.84, + "end": 26009.6, + "probability": 0.9711 + }, + { + "start": 26009.68, + "end": 26010.51, + "probability": 0.9434 + }, + { + "start": 26011.18, + "end": 26012.42, + "probability": 0.908 + }, + { + "start": 26012.98, + "end": 26013.8, + "probability": 0.7227 + }, + { + "start": 26014.68, + "end": 26017.5, + "probability": 0.9863 + }, + { + "start": 26018.16, + "end": 26019.24, + "probability": 0.8591 + }, + { + "start": 26019.64, + "end": 26020.48, + "probability": 0.66 + }, + { + "start": 26020.56, + "end": 26021.32, + "probability": 0.9232 + }, + { + "start": 26021.42, + "end": 26022.1, + "probability": 0.8448 + }, + { + "start": 26022.62, + "end": 26024.08, + "probability": 0.8118 + }, + { + "start": 26024.72, + "end": 26029.56, + "probability": 0.9326 + }, + { + "start": 26030.54, + "end": 26035.16, + "probability": 0.9933 + }, + { + "start": 26036.4, + "end": 26038.56, + "probability": 0.7327 + }, + { + "start": 26041.16, + "end": 26043.1, + "probability": 0.9481 + }, + { + "start": 26043.2, + "end": 26044.82, + "probability": 0.9181 + }, + { + "start": 26044.96, + "end": 26046.4, + "probability": 0.8796 + }, + { + "start": 26046.6, + "end": 26047.94, + "probability": 0.96 + }, + { + "start": 26048.84, + "end": 26051.78, + "probability": 0.9773 + }, + { + "start": 26053.02, + "end": 26055.26, + "probability": 0.9803 + }, + { + "start": 26055.36, + "end": 26056.5, + "probability": 0.7926 + }, + { + "start": 26057.86, + "end": 26061.26, + "probability": 0.9851 + }, + { + "start": 26061.76, + "end": 26062.96, + "probability": 0.9901 + }, + { + "start": 26063.06, + "end": 26067.0, + "probability": 0.9548 + }, + { + "start": 26071.24, + "end": 26072.26, + "probability": 0.4579 + }, + { + "start": 26072.26, + "end": 26073.96, + "probability": 0.7807 + }, + { + "start": 26076.3, + "end": 26080.88, + "probability": 0.855 + }, + { + "start": 26081.48, + "end": 26085.08, + "probability": 0.8859 + }, + { + "start": 26085.42, + "end": 26088.79, + "probability": 0.8958 + }, + { + "start": 26089.04, + "end": 26089.56, + "probability": 0.4603 + }, + { + "start": 26089.6, + "end": 26091.14, + "probability": 0.9011 + }, + { + "start": 26091.22, + "end": 26093.06, + "probability": 0.7996 + }, + { + "start": 26095.26, + "end": 26095.54, + "probability": 0.2662 + }, + { + "start": 26095.54, + "end": 26096.44, + "probability": 0.8572 + }, + { + "start": 26096.52, + "end": 26099.8, + "probability": 0.997 + }, + { + "start": 26099.85, + "end": 26104.44, + "probability": 0.986 + }, + { + "start": 26105.9, + "end": 26108.66, + "probability": 0.9966 + }, + { + "start": 26109.38, + "end": 26111.94, + "probability": 0.7745 + }, + { + "start": 26113.56, + "end": 26114.26, + "probability": 0.9596 + }, + { + "start": 26114.4, + "end": 26118.26, + "probability": 0.9947 + }, + { + "start": 26118.52, + "end": 26120.98, + "probability": 0.9076 + }, + { + "start": 26121.16, + "end": 26126.12, + "probability": 0.9564 + }, + { + "start": 26126.26, + "end": 26127.46, + "probability": 0.9031 + }, + { + "start": 26128.74, + "end": 26130.46, + "probability": 0.9409 + }, + { + "start": 26130.96, + "end": 26133.68, + "probability": 0.7979 + }, + { + "start": 26134.14, + "end": 26139.48, + "probability": 0.9878 + }, + { + "start": 26139.7, + "end": 26141.56, + "probability": 0.8047 + }, + { + "start": 26142.76, + "end": 26143.55, + "probability": 0.9601 + }, + { + "start": 26143.98, + "end": 26147.16, + "probability": 0.9878 + }, + { + "start": 26149.58, + "end": 26152.96, + "probability": 0.9912 + }, + { + "start": 26153.0, + "end": 26154.25, + "probability": 0.9709 + }, + { + "start": 26155.2, + "end": 26157.04, + "probability": 0.7195 + }, + { + "start": 26157.6, + "end": 26159.37, + "probability": 0.9866 + }, + { + "start": 26160.42, + "end": 26160.54, + "probability": 0.4165 + }, + { + "start": 26161.78, + "end": 26163.16, + "probability": 0.9232 + }, + { + "start": 26163.34, + "end": 26165.68, + "probability": 0.946 + }, + { + "start": 26166.24, + "end": 26171.31, + "probability": 0.948 + }, + { + "start": 26171.56, + "end": 26176.66, + "probability": 0.9932 + }, + { + "start": 26177.9, + "end": 26182.12, + "probability": 0.9759 + }, + { + "start": 26182.12, + "end": 26187.46, + "probability": 0.983 + }, + { + "start": 26188.06, + "end": 26192.08, + "probability": 0.8755 + }, + { + "start": 26192.98, + "end": 26195.98, + "probability": 0.7742 + }, + { + "start": 26196.7, + "end": 26198.8, + "probability": 0.9181 + }, + { + "start": 26199.16, + "end": 26199.36, + "probability": 0.712 + }, + { + "start": 26201.3, + "end": 26201.84, + "probability": 0.7557 + }, + { + "start": 26203.46, + "end": 26205.18, + "probability": 0.6131 + }, + { + "start": 26205.9, + "end": 26209.36, + "probability": 0.9745 + }, + { + "start": 26211.36, + "end": 26212.3, + "probability": 0.9244 + }, + { + "start": 26222.54, + "end": 26224.06, + "probability": 0.9775 + }, + { + "start": 26226.34, + "end": 26227.4, + "probability": 0.5841 + }, + { + "start": 26228.06, + "end": 26228.68, + "probability": 0.7947 + }, + { + "start": 26229.12, + "end": 26229.56, + "probability": 0.5007 + }, + { + "start": 26229.64, + "end": 26231.42, + "probability": 0.9001 + }, + { + "start": 26232.22, + "end": 26233.5, + "probability": 0.996 + }, + { + "start": 26234.2, + "end": 26236.26, + "probability": 0.52 + }, + { + "start": 26236.4, + "end": 26241.02, + "probability": 0.8081 + }, + { + "start": 26241.66, + "end": 26243.66, + "probability": 0.5008 + }, + { + "start": 26244.28, + "end": 26245.43, + "probability": 0.8919 + }, + { + "start": 26246.32, + "end": 26246.7, + "probability": 0.238 + }, + { + "start": 26246.7, + "end": 26247.25, + "probability": 0.7378 + }, + { + "start": 26247.46, + "end": 26251.88, + "probability": 0.8307 + }, + { + "start": 26252.08, + "end": 26253.9, + "probability": 0.9603 + }, + { + "start": 26254.96, + "end": 26256.62, + "probability": 0.9192 + }, + { + "start": 26256.76, + "end": 26258.2, + "probability": 0.6326 + }, + { + "start": 26258.6, + "end": 26260.92, + "probability": 0.5067 + }, + { + "start": 26261.3, + "end": 26262.96, + "probability": 0.5243 + }, + { + "start": 26263.1, + "end": 26264.1, + "probability": 0.2963 + }, + { + "start": 26264.1, + "end": 26264.26, + "probability": 0.467 + }, + { + "start": 26264.64, + "end": 26265.0, + "probability": 0.4735 + }, + { + "start": 26265.16, + "end": 26265.46, + "probability": 0.606 + }, + { + "start": 26265.68, + "end": 26265.86, + "probability": 0.486 + }, + { + "start": 26265.96, + "end": 26265.96, + "probability": 0.3817 + }, + { + "start": 26266.1, + "end": 26266.61, + "probability": 0.5894 + }, + { + "start": 26266.82, + "end": 26268.2, + "probability": 0.6104 + }, + { + "start": 26268.34, + "end": 26268.88, + "probability": 0.377 + }, + { + "start": 26268.96, + "end": 26269.74, + "probability": 0.5132 + }, + { + "start": 26269.88, + "end": 26272.62, + "probability": 0.4277 + }, + { + "start": 26273.0, + "end": 26278.46, + "probability": 0.8065 + }, + { + "start": 26278.62, + "end": 26279.32, + "probability": 0.4767 + }, + { + "start": 26280.08, + "end": 26280.56, + "probability": 0.0308 + }, + { + "start": 26280.8, + "end": 26281.22, + "probability": 0.3523 + }, + { + "start": 26281.36, + "end": 26281.94, + "probability": 0.4507 + }, + { + "start": 26282.38, + "end": 26283.14, + "probability": 0.8399 + }, + { + "start": 26283.28, + "end": 26284.72, + "probability": 0.7501 + }, + { + "start": 26284.98, + "end": 26286.28, + "probability": 0.7734 + }, + { + "start": 26286.66, + "end": 26288.01, + "probability": 0.5167 + }, + { + "start": 26288.2, + "end": 26289.04, + "probability": 0.8965 + }, + { + "start": 26289.98, + "end": 26291.5, + "probability": 0.7707 + }, + { + "start": 26292.28, + "end": 26294.62, + "probability": 0.6159 + }, + { + "start": 26295.06, + "end": 26295.8, + "probability": 0.1094 + }, + { + "start": 26296.62, + "end": 26299.9, + "probability": 0.9741 + }, + { + "start": 26301.22, + "end": 26302.08, + "probability": 0.7818 + }, + { + "start": 26302.22, + "end": 26302.46, + "probability": 0.5455 + }, + { + "start": 26302.58, + "end": 26305.2, + "probability": 0.9441 + }, + { + "start": 26305.22, + "end": 26308.46, + "probability": 0.9706 + }, + { + "start": 26309.12, + "end": 26313.6, + "probability": 0.805 + }, + { + "start": 26314.18, + "end": 26315.02, + "probability": 0.6578 + }, + { + "start": 26315.12, + "end": 26317.54, + "probability": 0.853 + }, + { + "start": 26317.78, + "end": 26318.48, + "probability": 0.5013 + }, + { + "start": 26320.6, + "end": 26324.06, + "probability": 0.701 + }, + { + "start": 26324.62, + "end": 26329.38, + "probability": 0.8347 + }, + { + "start": 26329.54, + "end": 26331.44, + "probability": 0.8407 + }, + { + "start": 26332.0, + "end": 26335.84, + "probability": 0.7631 + }, + { + "start": 26336.3, + "end": 26339.7, + "probability": 0.9546 + }, + { + "start": 26340.14, + "end": 26345.12, + "probability": 0.9816 + }, + { + "start": 26346.04, + "end": 26346.34, + "probability": 0.4011 + }, + { + "start": 26346.38, + "end": 26348.86, + "probability": 0.7641 + }, + { + "start": 26348.86, + "end": 26352.66, + "probability": 0.9208 + }, + { + "start": 26352.66, + "end": 26356.76, + "probability": 0.8585 + }, + { + "start": 26356.88, + "end": 26357.28, + "probability": 0.3798 + }, + { + "start": 26358.88, + "end": 26364.36, + "probability": 0.9365 + }, + { + "start": 26364.9, + "end": 26367.54, + "probability": 0.5547 + }, + { + "start": 26367.7, + "end": 26373.76, + "probability": 0.917 + }, + { + "start": 26374.28, + "end": 26376.84, + "probability": 0.7409 + }, + { + "start": 26377.44, + "end": 26378.28, + "probability": 0.5899 + }, + { + "start": 26378.66, + "end": 26381.42, + "probability": 0.9072 + }, + { + "start": 26382.34, + "end": 26386.22, + "probability": 0.5646 + }, + { + "start": 26386.32, + "end": 26388.26, + "probability": 0.6318 + }, + { + "start": 26388.38, + "end": 26391.96, + "probability": 0.9598 + }, + { + "start": 26392.7, + "end": 26395.54, + "probability": 0.8243 + }, + { + "start": 26395.62, + "end": 26397.57, + "probability": 0.7172 + }, + { + "start": 26397.86, + "end": 26398.7, + "probability": 0.6532 + }, + { + "start": 26398.82, + "end": 26401.3, + "probability": 0.8084 + }, + { + "start": 26401.96, + "end": 26402.94, + "probability": 0.8281 + }, + { + "start": 26403.9, + "end": 26408.24, + "probability": 0.7659 + }, + { + "start": 26408.24, + "end": 26413.38, + "probability": 0.9823 + }, + { + "start": 26413.52, + "end": 26420.5, + "probability": 0.7658 + }, + { + "start": 26420.68, + "end": 26422.44, + "probability": 0.5787 + }, + { + "start": 26422.84, + "end": 26423.4, + "probability": 0.7393 + }, + { + "start": 26423.66, + "end": 26424.5, + "probability": 0.4902 + }, + { + "start": 26424.6, + "end": 26427.3, + "probability": 0.8191 + }, + { + "start": 26427.38, + "end": 26428.18, + "probability": 0.7833 + }, + { + "start": 26428.24, + "end": 26429.68, + "probability": 0.8928 + }, + { + "start": 26430.32, + "end": 26431.2, + "probability": 0.8501 + }, + { + "start": 26431.74, + "end": 26434.04, + "probability": 0.8538 + }, + { + "start": 26434.04, + "end": 26436.58, + "probability": 0.7621 + }, + { + "start": 26436.96, + "end": 26437.84, + "probability": 0.6718 + }, + { + "start": 26438.02, + "end": 26438.68, + "probability": 0.7774 + }, + { + "start": 26438.92, + "end": 26441.38, + "probability": 0.9563 + }, + { + "start": 26441.54, + "end": 26442.5, + "probability": 0.947 + }, + { + "start": 26442.86, + "end": 26445.08, + "probability": 0.9447 + }, + { + "start": 26445.74, + "end": 26449.24, + "probability": 0.8259 + }, + { + "start": 26449.24, + "end": 26452.02, + "probability": 0.6608 + }, + { + "start": 26452.48, + "end": 26455.46, + "probability": 0.8357 + }, + { + "start": 26456.02, + "end": 26456.34, + "probability": 0.5751 + }, + { + "start": 26456.38, + "end": 26456.9, + "probability": 0.879 + }, + { + "start": 26456.98, + "end": 26458.48, + "probability": 0.9249 + }, + { + "start": 26458.68, + "end": 26459.92, + "probability": 0.7388 + }, + { + "start": 26460.6, + "end": 26465.14, + "probability": 0.7306 + }, + { + "start": 26465.56, + "end": 26468.8, + "probability": 0.7646 + }, + { + "start": 26468.99, + "end": 26475.03, + "probability": 0.7761 + }, + { + "start": 26475.84, + "end": 26477.86, + "probability": 0.8787 + }, + { + "start": 26478.36, + "end": 26480.92, + "probability": 0.8158 + }, + { + "start": 26481.0, + "end": 26485.06, + "probability": 0.9104 + }, + { + "start": 26485.46, + "end": 26488.26, + "probability": 0.5758 + }, + { + "start": 26488.6, + "end": 26493.7, + "probability": 0.8542 + }, + { + "start": 26493.86, + "end": 26496.28, + "probability": 0.8116 + }, + { + "start": 26496.78, + "end": 26497.24, + "probability": 0.8601 + }, + { + "start": 26497.34, + "end": 26498.2, + "probability": 0.2797 + }, + { + "start": 26498.42, + "end": 26499.0, + "probability": 0.4965 + }, + { + "start": 26499.1, + "end": 26499.9, + "probability": 0.9604 + }, + { + "start": 26500.2, + "end": 26503.02, + "probability": 0.9613 + }, + { + "start": 26503.02, + "end": 26506.22, + "probability": 0.6995 + }, + { + "start": 26506.76, + "end": 26511.7, + "probability": 0.8363 + }, + { + "start": 26512.28, + "end": 26512.72, + "probability": 0.3324 + }, + { + "start": 26512.9, + "end": 26513.5, + "probability": 0.8133 + }, + { + "start": 26513.68, + "end": 26514.52, + "probability": 0.6417 + }, + { + "start": 26514.74, + "end": 26517.64, + "probability": 0.8895 + }, + { + "start": 26518.52, + "end": 26523.78, + "probability": 0.8115 + }, + { + "start": 26524.24, + "end": 26527.14, + "probability": 0.9919 + }, + { + "start": 26527.24, + "end": 26529.54, + "probability": 0.9282 + }, + { + "start": 26530.56, + "end": 26531.94, + "probability": 0.9521 + }, + { + "start": 26532.46, + "end": 26532.84, + "probability": 0.6059 + }, + { + "start": 26532.88, + "end": 26536.22, + "probability": 0.9209 + }, + { + "start": 26536.9, + "end": 26538.52, + "probability": 0.8705 + }, + { + "start": 26539.56, + "end": 26540.78, + "probability": 0.9618 + }, + { + "start": 26540.88, + "end": 26544.72, + "probability": 0.8986 + }, + { + "start": 26544.76, + "end": 26546.82, + "probability": 0.7173 + }, + { + "start": 26546.86, + "end": 26550.9, + "probability": 0.7114 + }, + { + "start": 26551.68, + "end": 26554.66, + "probability": 0.5004 + }, + { + "start": 26555.3, + "end": 26556.75, + "probability": 0.7954 + }, + { + "start": 26558.54, + "end": 26563.82, + "probability": 0.9455 + }, + { + "start": 26563.92, + "end": 26564.88, + "probability": 0.9281 + }, + { + "start": 26565.75, + "end": 26567.9, + "probability": 0.7229 + }, + { + "start": 26568.74, + "end": 26570.34, + "probability": 0.856 + }, + { + "start": 26570.6, + "end": 26571.64, + "probability": 0.3891 + }, + { + "start": 26571.86, + "end": 26573.02, + "probability": 0.7808 + }, + { + "start": 26573.58, + "end": 26574.98, + "probability": 0.8828 + }, + { + "start": 26575.1, + "end": 26575.59, + "probability": 0.8931 + }, + { + "start": 26575.86, + "end": 26577.72, + "probability": 0.1252 + }, + { + "start": 26577.72, + "end": 26577.8, + "probability": 0.0155 + }, + { + "start": 26578.12, + "end": 26580.58, + "probability": 0.832 + }, + { + "start": 26581.9, + "end": 26585.64, + "probability": 0.9539 + }, + { + "start": 26586.32, + "end": 26589.28, + "probability": 0.7711 + }, + { + "start": 26589.58, + "end": 26590.94, + "probability": 0.3529 + }, + { + "start": 26590.94, + "end": 26591.26, + "probability": 0.626 + }, + { + "start": 26593.91, + "end": 26595.88, + "probability": 0.7838 + }, + { + "start": 26596.2, + "end": 26596.68, + "probability": 0.3377 + }, + { + "start": 26597.28, + "end": 26601.66, + "probability": 0.7667 + }, + { + "start": 26601.74, + "end": 26602.22, + "probability": 0.8227 + }, + { + "start": 26611.36, + "end": 26613.06, + "probability": 0.6937 + }, + { + "start": 26614.44, + "end": 26614.98, + "probability": 0.9355 + }, + { + "start": 26616.48, + "end": 26616.74, + "probability": 0.1941 + }, + { + "start": 26617.68, + "end": 26619.26, + "probability": 0.2518 + }, + { + "start": 26619.98, + "end": 26624.34, + "probability": 0.1128 + }, + { + "start": 26624.34, + "end": 26625.36, + "probability": 0.1113 + }, + { + "start": 26626.12, + "end": 26626.7, + "probability": 0.2686 + }, + { + "start": 26627.22, + "end": 26627.22, + "probability": 0.701 + }, + { + "start": 26628.86, + "end": 26630.5, + "probability": 0.5289 + }, + { + "start": 26631.52, + "end": 26631.8, + "probability": 0.0546 + }, + { + "start": 26632.94, + "end": 26632.94, + "probability": 0.0206 + }, + { + "start": 26632.94, + "end": 26632.94, + "probability": 0.0662 + }, + { + "start": 26632.94, + "end": 26632.94, + "probability": 0.0078 + }, + { + "start": 26632.94, + "end": 26632.94, + "probability": 0.0266 + }, + { + "start": 26632.94, + "end": 26634.12, + "probability": 0.3456 + }, + { + "start": 26636.34, + "end": 26638.06, + "probability": 0.2221 + }, + { + "start": 26645.72, + "end": 26645.82, + "probability": 0.0848 + }, + { + "start": 26645.82, + "end": 26645.96, + "probability": 0.0587 + }, + { + "start": 26645.96, + "end": 26645.96, + "probability": 0.1261 + }, + { + "start": 26653.46, + "end": 26653.68, + "probability": 0.2406 + }, + { + "start": 26653.68, + "end": 26653.68, + "probability": 0.2398 + }, + { + "start": 26653.68, + "end": 26653.68, + "probability": 0.039 + }, + { + "start": 26653.68, + "end": 26654.94, + "probability": 0.5386 + }, + { + "start": 26654.94, + "end": 26655.64, + "probability": 0.385 + }, + { + "start": 26655.82, + "end": 26657.13, + "probability": 0.2226 + }, + { + "start": 26658.76, + "end": 26660.2, + "probability": 0.6996 + }, + { + "start": 26661.14, + "end": 26663.04, + "probability": 0.9128 + }, + { + "start": 26664.08, + "end": 26665.26, + "probability": 0.7012 + }, + { + "start": 26666.46, + "end": 26667.58, + "probability": 0.6888 + }, + { + "start": 26668.66, + "end": 26670.12, + "probability": 0.9935 + }, + { + "start": 26671.54, + "end": 26675.44, + "probability": 0.9805 + }, + { + "start": 26677.56, + "end": 26679.24, + "probability": 0.9795 + }, + { + "start": 26680.78, + "end": 26681.4, + "probability": 0.8318 + }, + { + "start": 26682.8, + "end": 26684.5, + "probability": 0.9944 + }, + { + "start": 26685.58, + "end": 26686.32, + "probability": 0.765 + }, + { + "start": 26687.84, + "end": 26690.28, + "probability": 0.9431 + }, + { + "start": 26691.46, + "end": 26694.06, + "probability": 0.9611 + }, + { + "start": 26695.68, + "end": 26696.94, + "probability": 0.9901 + }, + { + "start": 26698.06, + "end": 26702.74, + "probability": 0.9944 + }, + { + "start": 26703.94, + "end": 26706.86, + "probability": 0.9175 + }, + { + "start": 26708.74, + "end": 26711.26, + "probability": 0.964 + }, + { + "start": 26713.12, + "end": 26714.1, + "probability": 0.5552 + }, + { + "start": 26714.9, + "end": 26717.36, + "probability": 0.8178 + }, + { + "start": 26718.12, + "end": 26718.78, + "probability": 0.6536 + }, + { + "start": 26720.88, + "end": 26721.87, + "probability": 0.99 + }, + { + "start": 26722.9, + "end": 26728.14, + "probability": 0.8136 + }, + { + "start": 26728.48, + "end": 26728.92, + "probability": 0.9158 + }, + { + "start": 26729.0, + "end": 26730.9, + "probability": 0.985 + }, + { + "start": 26732.26, + "end": 26733.2, + "probability": 0.8481 + }, + { + "start": 26733.86, + "end": 26735.94, + "probability": 0.954 + }, + { + "start": 26737.0, + "end": 26737.94, + "probability": 0.85 + }, + { + "start": 26738.96, + "end": 26740.55, + "probability": 0.9938 + }, + { + "start": 26741.52, + "end": 26744.96, + "probability": 0.9561 + }, + { + "start": 26756.28, + "end": 26756.78, + "probability": 0.0748 + }, + { + "start": 26756.78, + "end": 26756.78, + "probability": 0.0615 + }, + { + "start": 26756.78, + "end": 26756.78, + "probability": 0.1323 + }, + { + "start": 26756.78, + "end": 26756.78, + "probability": 0.1439 + }, + { + "start": 26756.78, + "end": 26759.74, + "probability": 0.1548 + }, + { + "start": 26760.3, + "end": 26762.74, + "probability": 0.9616 + }, + { + "start": 26762.84, + "end": 26764.72, + "probability": 0.9833 + }, + { + "start": 26765.54, + "end": 26766.12, + "probability": 0.7021 + }, + { + "start": 26767.84, + "end": 26770.82, + "probability": 0.9951 + }, + { + "start": 26770.82, + "end": 26773.46, + "probability": 0.9939 + }, + { + "start": 26775.48, + "end": 26775.5, + "probability": 0.2694 + }, + { + "start": 26775.68, + "end": 26781.04, + "probability": 0.9682 + }, + { + "start": 26782.38, + "end": 26782.42, + "probability": 0.3904 + }, + { + "start": 26782.52, + "end": 26782.6, + "probability": 0.8335 + }, + { + "start": 26782.68, + "end": 26783.26, + "probability": 0.7507 + }, + { + "start": 26783.26, + "end": 26783.82, + "probability": 0.7383 + }, + { + "start": 26783.88, + "end": 26786.96, + "probability": 0.9949 + }, + { + "start": 26787.02, + "end": 26787.64, + "probability": 0.9137 + }, + { + "start": 26788.26, + "end": 26789.92, + "probability": 0.9604 + }, + { + "start": 26790.64, + "end": 26791.76, + "probability": 0.9438 + }, + { + "start": 26792.74, + "end": 26793.76, + "probability": 0.9804 + }, + { + "start": 26795.7, + "end": 26796.92, + "probability": 0.8689 + }, + { + "start": 26798.12, + "end": 26798.52, + "probability": 0.938 + }, + { + "start": 26799.24, + "end": 26803.52, + "probability": 0.9763 + }, + { + "start": 26804.42, + "end": 26805.54, + "probability": 0.6944 + }, + { + "start": 26806.0, + "end": 26806.61, + "probability": 0.401 + }, + { + "start": 26807.86, + "end": 26811.74, + "probability": 0.9456 + }, + { + "start": 26812.36, + "end": 26813.67, + "probability": 0.9849 + }, + { + "start": 26814.28, + "end": 26815.84, + "probability": 0.849 + }, + { + "start": 26816.14, + "end": 26816.69, + "probability": 0.9185 + }, + { + "start": 26817.3, + "end": 26819.54, + "probability": 0.9741 + }, + { + "start": 26820.9, + "end": 26822.22, + "probability": 0.998 + }, + { + "start": 26823.26, + "end": 26826.14, + "probability": 0.9676 + }, + { + "start": 26826.14, + "end": 26829.12, + "probability": 0.9824 + }, + { + "start": 26829.24, + "end": 26830.4, + "probability": 0.8572 + }, + { + "start": 26830.4, + "end": 26830.98, + "probability": 0.5116 + }, + { + "start": 26831.52, + "end": 26833.08, + "probability": 0.8722 + }, + { + "start": 26834.48, + "end": 26836.74, + "probability": 0.8796 + }, + { + "start": 26837.98, + "end": 26841.64, + "probability": 0.9927 + }, + { + "start": 26842.6, + "end": 26843.94, + "probability": 0.9335 + }, + { + "start": 26844.9, + "end": 26846.12, + "probability": 0.9983 + }, + { + "start": 26847.26, + "end": 26848.57, + "probability": 0.9059 + }, + { + "start": 26848.96, + "end": 26851.2, + "probability": 0.9757 + }, + { + "start": 26851.88, + "end": 26853.8, + "probability": 0.8304 + }, + { + "start": 26854.66, + "end": 26856.04, + "probability": 0.9819 + }, + { + "start": 26856.54, + "end": 26856.92, + "probability": 0.6724 + }, + { + "start": 26857.04, + "end": 26857.8, + "probability": 0.7864 + }, + { + "start": 26857.96, + "end": 26862.34, + "probability": 0.9318 + }, + { + "start": 26863.1, + "end": 26863.72, + "probability": 0.993 + }, + { + "start": 26865.74, + "end": 26869.88, + "probability": 0.9991 + }, + { + "start": 26870.98, + "end": 26875.38, + "probability": 0.9621 + }, + { + "start": 26876.02, + "end": 26877.26, + "probability": 0.9514 + }, + { + "start": 26878.0, + "end": 26878.36, + "probability": 0.4927 + }, + { + "start": 26880.7, + "end": 26881.14, + "probability": 0.7086 + }, + { + "start": 26882.34, + "end": 26883.62, + "probability": 0.8868 + }, + { + "start": 26884.9, + "end": 26889.96, + "probability": 0.9463 + }, + { + "start": 26891.8, + "end": 26895.02, + "probability": 0.5569 + }, + { + "start": 26895.02, + "end": 26896.79, + "probability": 0.787 + }, + { + "start": 26897.64, + "end": 26898.66, + "probability": 0.7248 + }, + { + "start": 26898.72, + "end": 26899.61, + "probability": 0.8451 + }, + { + "start": 26901.08, + "end": 26903.08, + "probability": 0.8839 + }, + { + "start": 26903.66, + "end": 26909.16, + "probability": 0.9908 + }, + { + "start": 26909.16, + "end": 26913.34, + "probability": 0.9842 + }, + { + "start": 26913.88, + "end": 26917.38, + "probability": 0.9953 + }, + { + "start": 26917.38, + "end": 26919.06, + "probability": 0.6001 + }, + { + "start": 26919.12, + "end": 26921.24, + "probability": 0.5075 + }, + { + "start": 26922.94, + "end": 26925.74, + "probability": 0.8361 + }, + { + "start": 26925.74, + "end": 26926.66, + "probability": 0.7577 + }, + { + "start": 26926.74, + "end": 26928.54, + "probability": 0.7832 + }, + { + "start": 26929.8, + "end": 26934.92, + "probability": 0.9008 + }, + { + "start": 26939.88, + "end": 26940.36, + "probability": 0.6626 + }, + { + "start": 26953.22, + "end": 26953.91, + "probability": 0.4326 + }, + { + "start": 26954.56, + "end": 26955.44, + "probability": 0.3392 + }, + { + "start": 26957.02, + "end": 26959.98, + "probability": 0.9086 + }, + { + "start": 26960.1, + "end": 26961.0, + "probability": 0.8907 + }, + { + "start": 26962.36, + "end": 26964.74, + "probability": 0.8424 + }, + { + "start": 26966.04, + "end": 26967.66, + "probability": 0.8264 + }, + { + "start": 26968.34, + "end": 26969.62, + "probability": 0.853 + }, + { + "start": 26970.24, + "end": 26972.04, + "probability": 0.2051 + }, + { + "start": 26972.9, + "end": 26977.29, + "probability": 0.8032 + }, + { + "start": 26979.06, + "end": 26981.38, + "probability": 0.9697 + }, + { + "start": 26981.72, + "end": 26983.48, + "probability": 0.9901 + }, + { + "start": 26983.48, + "end": 26984.32, + "probability": 0.4263 + }, + { + "start": 26984.96, + "end": 26986.6, + "probability": 0.997 + }, + { + "start": 26987.22, + "end": 26988.84, + "probability": 0.9106 + }, + { + "start": 26990.16, + "end": 26990.8, + "probability": 0.8969 + }, + { + "start": 26991.56, + "end": 26992.14, + "probability": 0.9376 + }, + { + "start": 26993.16, + "end": 26994.98, + "probability": 0.692 + }, + { + "start": 26995.04, + "end": 26998.88, + "probability": 0.9795 + }, + { + "start": 26999.76, + "end": 27000.98, + "probability": 0.9277 + }, + { + "start": 27002.16, + "end": 27005.92, + "probability": 0.7216 + }, + { + "start": 27006.48, + "end": 27008.2, + "probability": 0.898 + }, + { + "start": 27010.08, + "end": 27013.98, + "probability": 0.8845 + }, + { + "start": 27015.38, + "end": 27017.92, + "probability": 0.8327 + }, + { + "start": 27018.02, + "end": 27019.59, + "probability": 0.4992 + }, + { + "start": 27019.66, + "end": 27020.34, + "probability": 0.2544 + }, + { + "start": 27022.04, + "end": 27022.98, + "probability": 0.5436 + }, + { + "start": 27024.96, + "end": 27026.9, + "probability": 0.508 + }, + { + "start": 27027.64, + "end": 27028.68, + "probability": 0.8438 + }, + { + "start": 27028.84, + "end": 27029.78, + "probability": 0.4264 + }, + { + "start": 27029.92, + "end": 27032.46, + "probability": 0.668 + }, + { + "start": 27032.46, + "end": 27033.94, + "probability": 0.8898 + }, + { + "start": 27034.04, + "end": 27034.32, + "probability": 0.6284 + }, + { + "start": 27035.12, + "end": 27038.42, + "probability": 0.9897 + }, + { + "start": 27038.54, + "end": 27039.24, + "probability": 0.5075 + }, + { + "start": 27039.24, + "end": 27041.4, + "probability": 0.6582 + }, + { + "start": 27041.4, + "end": 27046.02, + "probability": 0.5733 + }, + { + "start": 27046.1, + "end": 27052.64, + "probability": 0.9547 + }, + { + "start": 27054.18, + "end": 27055.16, + "probability": 0.5961 + }, + { + "start": 27056.24, + "end": 27057.04, + "probability": 0.9207 + }, + { + "start": 27058.0, + "end": 27062.7, + "probability": 0.7876 + }, + { + "start": 27064.4, + "end": 27069.16, + "probability": 0.9271 + }, + { + "start": 27070.78, + "end": 27072.18, + "probability": 0.8398 + }, + { + "start": 27073.4, + "end": 27076.14, + "probability": 0.9589 + }, + { + "start": 27076.7, + "end": 27080.78, + "probability": 0.9469 + }, + { + "start": 27081.58, + "end": 27083.06, + "probability": 0.7823 + }, + { + "start": 27083.18, + "end": 27087.24, + "probability": 0.9937 + }, + { + "start": 27088.06, + "end": 27092.73, + "probability": 0.8594 + }, + { + "start": 27092.98, + "end": 27093.82, + "probability": 0.7617 + }, + { + "start": 27093.92, + "end": 27094.48, + "probability": 0.4827 + }, + { + "start": 27094.62, + "end": 27097.28, + "probability": 0.8278 + }, + { + "start": 27097.8, + "end": 27098.68, + "probability": 0.5331 + }, + { + "start": 27099.18, + "end": 27103.28, + "probability": 0.9071 + }, + { + "start": 27103.84, + "end": 27106.74, + "probability": 0.8614 + }, + { + "start": 27107.36, + "end": 27110.38, + "probability": 0.938 + }, + { + "start": 27111.16, + "end": 27113.42, + "probability": 0.8044 + }, + { + "start": 27113.88, + "end": 27116.34, + "probability": 0.8388 + }, + { + "start": 27116.78, + "end": 27119.2, + "probability": 0.918 + }, + { + "start": 27119.6, + "end": 27120.88, + "probability": 0.9497 + }, + { + "start": 27121.42, + "end": 27123.27, + "probability": 0.9893 + }, + { + "start": 27124.16, + "end": 27127.71, + "probability": 0.6431 + }, + { + "start": 27129.72, + "end": 27130.64, + "probability": 0.0833 + }, + { + "start": 27130.8, + "end": 27131.38, + "probability": 0.8641 + }, + { + "start": 27131.84, + "end": 27133.46, + "probability": 0.8212 + }, + { + "start": 27134.0, + "end": 27136.12, + "probability": 0.8671 + }, + { + "start": 27137.76, + "end": 27138.08, + "probability": 0.1434 + }, + { + "start": 27138.74, + "end": 27141.88, + "probability": 0.9829 + }, + { + "start": 27142.0, + "end": 27143.04, + "probability": 0.9688 + }, + { + "start": 27143.92, + "end": 27144.06, + "probability": 0.0472 + }, + { + "start": 27144.5, + "end": 27147.64, + "probability": 0.7763 + }, + { + "start": 27148.16, + "end": 27149.74, + "probability": 0.9627 + }, + { + "start": 27150.28, + "end": 27153.04, + "probability": 0.981 + }, + { + "start": 27153.84, + "end": 27157.73, + "probability": 0.9788 + }, + { + "start": 27158.34, + "end": 27162.08, + "probability": 0.9657 + }, + { + "start": 27162.3, + "end": 27163.24, + "probability": 0.7184 + }, + { + "start": 27163.3, + "end": 27163.88, + "probability": 0.6759 + }, + { + "start": 27165.2, + "end": 27166.56, + "probability": 0.864 + }, + { + "start": 27167.16, + "end": 27167.64, + "probability": 0.3665 + }, + { + "start": 27168.64, + "end": 27170.52, + "probability": 0.9961 + }, + { + "start": 27170.9, + "end": 27174.3, + "probability": 0.9568 + }, + { + "start": 27175.2, + "end": 27177.64, + "probability": 0.5703 + }, + { + "start": 27178.84, + "end": 27180.32, + "probability": 0.8076 + }, + { + "start": 27180.58, + "end": 27181.2, + "probability": 0.8639 + }, + { + "start": 27181.4, + "end": 27184.9, + "probability": 0.6738 + }, + { + "start": 27185.32, + "end": 27188.06, + "probability": 0.856 + }, + { + "start": 27189.56, + "end": 27190.14, + "probability": 0.7177 + }, + { + "start": 27190.74, + "end": 27191.72, + "probability": 0.9196 + }, + { + "start": 27192.34, + "end": 27193.54, + "probability": 0.995 + }, + { + "start": 27194.48, + "end": 27195.34, + "probability": 0.9324 + }, + { + "start": 27195.42, + "end": 27196.78, + "probability": 0.6306 + }, + { + "start": 27198.28, + "end": 27200.9, + "probability": 0.8344 + }, + { + "start": 27202.06, + "end": 27203.18, + "probability": 0.4483 + }, + { + "start": 27214.94, + "end": 27216.86, + "probability": 0.4795 + }, + { + "start": 27217.92, + "end": 27218.72, + "probability": 0.8608 + }, + { + "start": 27219.56, + "end": 27221.26, + "probability": 0.8752 + }, + { + "start": 27222.12, + "end": 27224.0, + "probability": 0.995 + }, + { + "start": 27224.72, + "end": 27228.58, + "probability": 0.9871 + }, + { + "start": 27229.1, + "end": 27230.12, + "probability": 0.9787 + }, + { + "start": 27231.4, + "end": 27232.64, + "probability": 0.8535 + }, + { + "start": 27233.1, + "end": 27236.68, + "probability": 0.9976 + }, + { + "start": 27237.22, + "end": 27238.38, + "probability": 0.9261 + }, + { + "start": 27238.86, + "end": 27239.98, + "probability": 0.9337 + }, + { + "start": 27240.46, + "end": 27241.92, + "probability": 0.9376 + }, + { + "start": 27242.32, + "end": 27242.96, + "probability": 0.862 + }, + { + "start": 27243.64, + "end": 27247.36, + "probability": 0.9907 + }, + { + "start": 27248.02, + "end": 27248.58, + "probability": 0.9805 + }, + { + "start": 27250.04, + "end": 27250.66, + "probability": 0.8674 + }, + { + "start": 27250.84, + "end": 27251.96, + "probability": 0.7351 + }, + { + "start": 27252.08, + "end": 27254.68, + "probability": 0.7202 + }, + { + "start": 27255.48, + "end": 27258.96, + "probability": 0.9379 + }, + { + "start": 27259.88, + "end": 27260.94, + "probability": 0.8519 + }, + { + "start": 27261.48, + "end": 27265.42, + "probability": 0.9613 + }, + { + "start": 27266.48, + "end": 27267.58, + "probability": 0.7942 + }, + { + "start": 27267.78, + "end": 27270.78, + "probability": 0.841 + }, + { + "start": 27271.8, + "end": 27273.24, + "probability": 0.7494 + }, + { + "start": 27273.6, + "end": 27275.82, + "probability": 0.6748 + }, + { + "start": 27276.7, + "end": 27279.16, + "probability": 0.7849 + }, + { + "start": 27280.06, + "end": 27285.2, + "probability": 0.9945 + }, + { + "start": 27285.82, + "end": 27289.06, + "probability": 0.8663 + }, + { + "start": 27290.32, + "end": 27293.88, + "probability": 0.7871 + }, + { + "start": 27294.42, + "end": 27296.44, + "probability": 0.9906 + }, + { + "start": 27297.54, + "end": 27300.97, + "probability": 0.9944 + }, + { + "start": 27301.6, + "end": 27306.9, + "probability": 0.9979 + }, + { + "start": 27307.94, + "end": 27314.94, + "probability": 0.9882 + }, + { + "start": 27315.32, + "end": 27315.74, + "probability": 0.4466 + }, + { + "start": 27315.88, + "end": 27319.22, + "probability": 0.9908 + }, + { + "start": 27320.36, + "end": 27321.64, + "probability": 0.9241 + }, + { + "start": 27322.22, + "end": 27325.72, + "probability": 0.9773 + }, + { + "start": 27326.28, + "end": 27328.56, + "probability": 0.9516 + }, + { + "start": 27329.38, + "end": 27331.38, + "probability": 0.9902 + }, + { + "start": 27332.46, + "end": 27337.62, + "probability": 0.9477 + }, + { + "start": 27337.62, + "end": 27342.52, + "probability": 0.9913 + }, + { + "start": 27343.48, + "end": 27347.28, + "probability": 0.9642 + }, + { + "start": 27347.82, + "end": 27349.83, + "probability": 0.9124 + }, + { + "start": 27350.96, + "end": 27352.46, + "probability": 0.4357 + }, + { + "start": 27352.78, + "end": 27356.68, + "probability": 0.9143 + }, + { + "start": 27357.8, + "end": 27363.03, + "probability": 0.999 + }, + { + "start": 27363.34, + "end": 27367.74, + "probability": 0.9815 + }, + { + "start": 27369.04, + "end": 27374.38, + "probability": 0.9636 + }, + { + "start": 27374.38, + "end": 27379.48, + "probability": 0.9983 + }, + { + "start": 27380.24, + "end": 27381.48, + "probability": 0.8096 + }, + { + "start": 27382.0, + "end": 27383.64, + "probability": 0.7482 + }, + { + "start": 27384.46, + "end": 27385.3, + "probability": 0.7876 + }, + { + "start": 27385.7, + "end": 27389.02, + "probability": 0.9682 + }, + { + "start": 27390.3, + "end": 27396.02, + "probability": 0.9529 + }, + { + "start": 27396.94, + "end": 27397.74, + "probability": 0.686 + }, + { + "start": 27398.52, + "end": 27400.46, + "probability": 0.9967 + }, + { + "start": 27401.3, + "end": 27403.06, + "probability": 0.9791 + }, + { + "start": 27403.72, + "end": 27404.22, + "probability": 0.6721 + }, + { + "start": 27405.22, + "end": 27411.14, + "probability": 0.9336 + }, + { + "start": 27411.9, + "end": 27415.24, + "probability": 0.9263 + }, + { + "start": 27415.24, + "end": 27418.86, + "probability": 0.998 + }, + { + "start": 27419.3, + "end": 27422.2, + "probability": 0.9963 + }, + { + "start": 27422.68, + "end": 27426.6, + "probability": 0.9971 + }, + { + "start": 27427.0, + "end": 27427.8, + "probability": 0.9678 + }, + { + "start": 27428.2, + "end": 27428.94, + "probability": 0.9272 + }, + { + "start": 27430.26, + "end": 27434.78, + "probability": 0.8993 + }, + { + "start": 27435.56, + "end": 27438.8, + "probability": 0.9563 + }, + { + "start": 27441.26, + "end": 27442.52, + "probability": 0.6269 + }, + { + "start": 27443.86, + "end": 27444.82, + "probability": 0.9316 + }, + { + "start": 27446.7, + "end": 27448.2, + "probability": 0.4305 + }, + { + "start": 27449.38, + "end": 27450.9, + "probability": 0.6166 + }, + { + "start": 27450.98, + "end": 27451.18, + "probability": 0.8755 + }, + { + "start": 27451.92, + "end": 27454.04, + "probability": 0.2812 + }, + { + "start": 27456.16, + "end": 27458.04, + "probability": 0.5543 + }, + { + "start": 27459.42, + "end": 27459.58, + "probability": 0.7271 + }, + { + "start": 27460.14, + "end": 27460.54, + "probability": 0.3084 + }, + { + "start": 27460.56, + "end": 27461.1, + "probability": 0.3812 + }, + { + "start": 27461.94, + "end": 27462.82, + "probability": 0.7834 + }, + { + "start": 27462.94, + "end": 27466.28, + "probability": 0.9868 + }, + { + "start": 27466.74, + "end": 27468.78, + "probability": 0.5966 + }, + { + "start": 27469.7, + "end": 27473.02, + "probability": 0.9476 + }, + { + "start": 27473.68, + "end": 27474.32, + "probability": 0.6849 + }, + { + "start": 27475.28, + "end": 27476.46, + "probability": 0.4992 + }, + { + "start": 27476.86, + "end": 27476.86, + "probability": 0.018 + }, + { + "start": 27476.86, + "end": 27476.86, + "probability": 0.0287 + }, + { + "start": 27476.86, + "end": 27480.88, + "probability": 0.9249 + }, + { + "start": 27481.72, + "end": 27484.34, + "probability": 0.5929 + }, + { + "start": 27484.36, + "end": 27485.58, + "probability": 0.8711 + }, + { + "start": 27486.18, + "end": 27488.28, + "probability": 0.7452 + }, + { + "start": 27488.74, + "end": 27490.42, + "probability": 0.8579 + }, + { + "start": 27491.02, + "end": 27492.06, + "probability": 0.4155 + }, + { + "start": 27492.64, + "end": 27493.5, + "probability": 0.9304 + }, + { + "start": 27494.02, + "end": 27496.56, + "probability": 0.9071 + }, + { + "start": 27496.7, + "end": 27497.8, + "probability": 0.86 + }, + { + "start": 27498.12, + "end": 27499.84, + "probability": 0.0027 + }, + { + "start": 27501.74, + "end": 27503.76, + "probability": 0.7619 + }, + { + "start": 27504.64, + "end": 27505.16, + "probability": 0.8896 + }, + { + "start": 27510.32, + "end": 27511.06, + "probability": 0.6394 + }, + { + "start": 27511.84, + "end": 27512.58, + "probability": 0.4115 + }, + { + "start": 27513.46, + "end": 27514.22, + "probability": 0.4852 + }, + { + "start": 27514.78, + "end": 27515.9, + "probability": 0.6705 + }, + { + "start": 27519.78, + "end": 27519.78, + "probability": 0.3767 + }, + { + "start": 27519.78, + "end": 27521.66, + "probability": 0.2844 + }, + { + "start": 27523.12, + "end": 27523.68, + "probability": 0.9431 + }, + { + "start": 27525.44, + "end": 27526.76, + "probability": 0.8235 + }, + { + "start": 27527.1, + "end": 27527.7, + "probability": 0.9292 + }, + { + "start": 27529.2, + "end": 27529.72, + "probability": 0.8054 + }, + { + "start": 27530.16, + "end": 27534.18, + "probability": 0.8026 + }, + { + "start": 27540.02, + "end": 27540.86, + "probability": 0.5954 + }, + { + "start": 27544.02, + "end": 27546.36, + "probability": 0.9587 + }, + { + "start": 27546.36, + "end": 27549.82, + "probability": 0.9927 + }, + { + "start": 27550.48, + "end": 27553.7, + "probability": 0.0413 + }, + { + "start": 27554.24, + "end": 27555.38, + "probability": 0.153 + }, + { + "start": 27561.78, + "end": 27562.12, + "probability": 0.02 + }, + { + "start": 27562.12, + "end": 27562.12, + "probability": 0.0633 + }, + { + "start": 27562.12, + "end": 27563.22, + "probability": 0.5551 + }, + { + "start": 27563.88, + "end": 27565.14, + "probability": 0.7653 + }, + { + "start": 27565.48, + "end": 27565.48, + "probability": 0.047 + }, + { + "start": 27565.54, + "end": 27565.54, + "probability": 0.1675 + }, + { + "start": 27565.64, + "end": 27565.74, + "probability": 0.2301 + }, + { + "start": 27565.92, + "end": 27567.52, + "probability": 0.7032 + }, + { + "start": 27567.78, + "end": 27569.26, + "probability": 0.7463 + }, + { + "start": 27569.92, + "end": 27571.38, + "probability": 0.9409 + }, + { + "start": 27572.12, + "end": 27578.12, + "probability": 0.9391 + }, + { + "start": 27578.12, + "end": 27584.96, + "probability": 0.9897 + }, + { + "start": 27585.06, + "end": 27585.7, + "probability": 0.8032 + }, + { + "start": 27586.52, + "end": 27589.2, + "probability": 0.9976 + }, + { + "start": 27589.2, + "end": 27592.94, + "probability": 0.944 + }, + { + "start": 27593.18, + "end": 27597.82, + "probability": 0.9974 + }, + { + "start": 27597.82, + "end": 27601.54, + "probability": 0.9927 + }, + { + "start": 27602.58, + "end": 27605.02, + "probability": 0.7173 + }, + { + "start": 27605.56, + "end": 27606.72, + "probability": 0.9229 + }, + { + "start": 27607.3, + "end": 27611.84, + "probability": 0.8894 + }, + { + "start": 27612.5, + "end": 27618.72, + "probability": 0.9771 + }, + { + "start": 27619.18, + "end": 27622.66, + "probability": 0.929 + }, + { + "start": 27622.72, + "end": 27624.72, + "probability": 0.8286 + }, + { + "start": 27625.76, + "end": 27631.18, + "probability": 0.98 + }, + { + "start": 27631.34, + "end": 27632.64, + "probability": 0.9587 + }, + { + "start": 27633.7, + "end": 27634.14, + "probability": 0.7935 + }, + { + "start": 27634.24, + "end": 27635.98, + "probability": 0.9499 + }, + { + "start": 27636.06, + "end": 27640.5, + "probability": 0.9917 + }, + { + "start": 27641.02, + "end": 27644.44, + "probability": 0.9902 + }, + { + "start": 27644.44, + "end": 27648.08, + "probability": 0.9962 + }, + { + "start": 27648.14, + "end": 27649.06, + "probability": 0.7393 + }, + { + "start": 27649.88, + "end": 27651.34, + "probability": 0.8976 + }, + { + "start": 27652.1, + "end": 27658.4, + "probability": 0.98 + }, + { + "start": 27658.6, + "end": 27660.72, + "probability": 0.7683 + }, + { + "start": 27661.32, + "end": 27663.26, + "probability": 0.6797 + }, + { + "start": 27664.42, + "end": 27667.02, + "probability": 0.9106 + }, + { + "start": 27667.16, + "end": 27668.75, + "probability": 0.9919 + }, + { + "start": 27669.44, + "end": 27671.76, + "probability": 0.8477 + }, + { + "start": 27672.12, + "end": 27673.46, + "probability": 0.5669 + }, + { + "start": 27673.58, + "end": 27676.6, + "probability": 0.9287 + }, + { + "start": 27676.68, + "end": 27679.9, + "probability": 0.9982 + }, + { + "start": 27679.9, + "end": 27683.14, + "probability": 0.9655 + }, + { + "start": 27683.24, + "end": 27687.06, + "probability": 0.9928 + }, + { + "start": 27687.14, + "end": 27688.8, + "probability": 0.9946 + }, + { + "start": 27688.88, + "end": 27690.82, + "probability": 0.919 + }, + { + "start": 27691.28, + "end": 27693.84, + "probability": 0.9746 + }, + { + "start": 27694.02, + "end": 27694.58, + "probability": 0.6925 + }, + { + "start": 27694.9, + "end": 27699.32, + "probability": 0.9092 + }, + { + "start": 27700.57, + "end": 27706.3, + "probability": 0.978 + }, + { + "start": 27706.42, + "end": 27707.62, + "probability": 0.7709 + }, + { + "start": 27708.58, + "end": 27711.12, + "probability": 0.9951 + }, + { + "start": 27711.4, + "end": 27717.84, + "probability": 0.9977 + }, + { + "start": 27718.38, + "end": 27723.14, + "probability": 0.9822 + }, + { + "start": 27723.96, + "end": 27726.2, + "probability": 0.9333 + }, + { + "start": 27727.18, + "end": 27731.84, + "probability": 0.9931 + }, + { + "start": 27731.88, + "end": 27732.88, + "probability": 0.6546 + }, + { + "start": 27733.02, + "end": 27734.22, + "probability": 0.3635 + }, + { + "start": 27734.4, + "end": 27736.46, + "probability": 0.7969 + }, + { + "start": 27736.92, + "end": 27741.9, + "probability": 0.9891 + }, + { + "start": 27742.08, + "end": 27746.16, + "probability": 0.9199 + }, + { + "start": 27747.16, + "end": 27747.74, + "probability": 0.6987 + }, + { + "start": 27747.84, + "end": 27752.7, + "probability": 0.936 + }, + { + "start": 27753.92, + "end": 27755.62, + "probability": 0.9669 + }, + { + "start": 27756.34, + "end": 27759.9, + "probability": 0.9337 + }, + { + "start": 27760.44, + "end": 27760.98, + "probability": 0.9448 + }, + { + "start": 27761.06, + "end": 27766.54, + "probability": 0.9909 + }, + { + "start": 27766.98, + "end": 27767.98, + "probability": 0.9575 + }, + { + "start": 27768.0, + "end": 27769.56, + "probability": 0.9871 + }, + { + "start": 27770.26, + "end": 27774.26, + "probability": 0.8805 + }, + { + "start": 27774.92, + "end": 27776.42, + "probability": 0.9003 + }, + { + "start": 27777.0, + "end": 27778.0, + "probability": 0.7466 + }, + { + "start": 27778.22, + "end": 27778.66, + "probability": 0.4961 + }, + { + "start": 27778.72, + "end": 27783.16, + "probability": 0.9135 + }, + { + "start": 27783.64, + "end": 27787.72, + "probability": 0.9875 + }, + { + "start": 27787.9, + "end": 27789.0, + "probability": 0.8744 + }, + { + "start": 27789.7, + "end": 27792.08, + "probability": 0.9973 + }, + { + "start": 27792.2, + "end": 27798.2, + "probability": 0.9856 + }, + { + "start": 27798.64, + "end": 27800.42, + "probability": 0.9946 + }, + { + "start": 27801.26, + "end": 27802.9, + "probability": 0.9819 + }, + { + "start": 27803.08, + "end": 27803.68, + "probability": 0.9606 + }, + { + "start": 27804.12, + "end": 27806.12, + "probability": 0.9672 + }, + { + "start": 27806.22, + "end": 27810.34, + "probability": 0.9932 + }, + { + "start": 27811.0, + "end": 27813.84, + "probability": 0.9894 + }, + { + "start": 27813.84, + "end": 27817.84, + "probability": 0.9987 + }, + { + "start": 27817.9, + "end": 27822.08, + "probability": 0.9601 + }, + { + "start": 27822.32, + "end": 27823.12, + "probability": 0.5889 + }, + { + "start": 27823.34, + "end": 27823.34, + "probability": 0.6904 + }, + { + "start": 27823.46, + "end": 27824.9, + "probability": 0.7292 + }, + { + "start": 27825.26, + "end": 27828.86, + "probability": 0.9079 + }, + { + "start": 27828.9, + "end": 27831.06, + "probability": 0.9752 + }, + { + "start": 27831.14, + "end": 27831.48, + "probability": 0.868 + }, + { + "start": 27831.5, + "end": 27832.02, + "probability": 0.7322 + }, + { + "start": 27833.56, + "end": 27834.5, + "probability": 0.8828 + }, + { + "start": 27853.22, + "end": 27853.22, + "probability": 0.0407 + }, + { + "start": 27860.18, + "end": 27860.18, + "probability": 0.2911 + }, + { + "start": 27860.18, + "end": 27861.82, + "probability": 0.6109 + }, + { + "start": 27863.54, + "end": 27869.44, + "probability": 0.9693 + }, + { + "start": 27870.78, + "end": 27872.88, + "probability": 0.9689 + }, + { + "start": 27873.56, + "end": 27876.4, + "probability": 0.9984 + }, + { + "start": 27877.92, + "end": 27879.92, + "probability": 0.7252 + }, + { + "start": 27880.5, + "end": 27881.24, + "probability": 0.8068 + }, + { + "start": 27881.86, + "end": 27883.88, + "probability": 0.9821 + }, + { + "start": 27885.14, + "end": 27887.52, + "probability": 0.9964 + }, + { + "start": 27887.52, + "end": 27889.72, + "probability": 0.9884 + }, + { + "start": 27890.56, + "end": 27892.74, + "probability": 0.9971 + }, + { + "start": 27893.96, + "end": 27896.76, + "probability": 0.9956 + }, + { + "start": 27897.38, + "end": 27899.68, + "probability": 0.9447 + }, + { + "start": 27901.46, + "end": 27905.74, + "probability": 0.9333 + }, + { + "start": 27907.3, + "end": 27907.94, + "probability": 0.8388 + }, + { + "start": 27909.04, + "end": 27911.58, + "probability": 0.9396 + }, + { + "start": 27912.52, + "end": 27915.3, + "probability": 0.8628 + }, + { + "start": 27916.7, + "end": 27921.06, + "probability": 0.9889 + }, + { + "start": 27922.38, + "end": 27929.02, + "probability": 0.8494 + }, + { + "start": 27930.86, + "end": 27933.02, + "probability": 0.9833 + }, + { + "start": 27933.68, + "end": 27936.48, + "probability": 0.9972 + }, + { + "start": 27938.34, + "end": 27940.9, + "probability": 0.9927 + }, + { + "start": 27941.7, + "end": 27947.04, + "probability": 0.9973 + }, + { + "start": 27948.78, + "end": 27949.92, + "probability": 0.9985 + }, + { + "start": 27950.74, + "end": 27951.82, + "probability": 0.9709 + }, + { + "start": 27953.08, + "end": 27955.34, + "probability": 0.383 + }, + { + "start": 27957.94, + "end": 27960.06, + "probability": 0.9963 + }, + { + "start": 27960.7, + "end": 27962.16, + "probability": 0.8422 + }, + { + "start": 27963.16, + "end": 27963.82, + "probability": 0.7783 + }, + { + "start": 27964.86, + "end": 27968.9, + "probability": 0.988 + }, + { + "start": 27970.56, + "end": 27976.22, + "probability": 0.9702 + }, + { + "start": 27977.02, + "end": 27979.25, + "probability": 0.9978 + }, + { + "start": 27980.8, + "end": 27981.6, + "probability": 0.9773 + }, + { + "start": 27982.16, + "end": 27982.82, + "probability": 0.9357 + }, + { + "start": 27983.56, + "end": 27984.96, + "probability": 0.9619 + }, + { + "start": 27985.84, + "end": 27988.76, + "probability": 0.9811 + }, + { + "start": 27989.08, + "end": 27993.56, + "probability": 0.9841 + }, + { + "start": 27994.08, + "end": 27997.24, + "probability": 0.9956 + }, + { + "start": 27997.24, + "end": 28000.06, + "probability": 0.9988 + }, + { + "start": 28000.94, + "end": 28002.72, + "probability": 0.3244 + }, + { + "start": 28002.84, + "end": 28004.9, + "probability": 0.8676 + }, + { + "start": 28004.96, + "end": 28006.62, + "probability": 0.953 + }, + { + "start": 28007.16, + "end": 28007.81, + "probability": 0.8491 + }, + { + "start": 28008.3, + "end": 28011.6, + "probability": 0.9585 + }, + { + "start": 28012.08, + "end": 28014.72, + "probability": 0.9723 + }, + { + "start": 28014.72, + "end": 28017.3, + "probability": 0.9995 + }, + { + "start": 28018.56, + "end": 28021.28, + "probability": 0.9863 + }, + { + "start": 28022.8, + "end": 28026.04, + "probability": 0.8751 + }, + { + "start": 28026.26, + "end": 28029.8, + "probability": 0.9961 + }, + { + "start": 28030.7, + "end": 28036.22, + "probability": 0.9971 + }, + { + "start": 28038.1, + "end": 28044.38, + "probability": 0.9946 + }, + { + "start": 28045.42, + "end": 28048.38, + "probability": 0.9963 + }, + { + "start": 28049.12, + "end": 28053.18, + "probability": 0.9854 + }, + { + "start": 28054.08, + "end": 28055.62, + "probability": 0.9254 + }, + { + "start": 28056.22, + "end": 28057.62, + "probability": 0.9692 + }, + { + "start": 28058.36, + "end": 28060.16, + "probability": 0.9935 + }, + { + "start": 28060.7, + "end": 28065.6, + "probability": 0.9955 + }, + { + "start": 28065.6, + "end": 28070.06, + "probability": 0.9924 + }, + { + "start": 28070.48, + "end": 28070.86, + "probability": 0.7287 + }, + { + "start": 28071.56, + "end": 28072.06, + "probability": 0.6709 + }, + { + "start": 28074.04, + "end": 28075.84, + "probability": 0.7732 + }, + { + "start": 28091.82, + "end": 28094.32, + "probability": 0.7214 + }, + { + "start": 28095.64, + "end": 28097.54, + "probability": 0.8013 + }, + { + "start": 28098.64, + "end": 28102.46, + "probability": 0.9861 + }, + { + "start": 28103.14, + "end": 28106.32, + "probability": 0.7399 + }, + { + "start": 28107.06, + "end": 28110.42, + "probability": 0.972 + }, + { + "start": 28111.36, + "end": 28113.72, + "probability": 0.9905 + }, + { + "start": 28114.26, + "end": 28115.06, + "probability": 0.3047 + }, + { + "start": 28116.04, + "end": 28120.62, + "probability": 0.7539 + }, + { + "start": 28120.76, + "end": 28121.68, + "probability": 0.9281 + }, + { + "start": 28122.84, + "end": 28125.52, + "probability": 0.998 + }, + { + "start": 28126.44, + "end": 28128.46, + "probability": 0.9946 + }, + { + "start": 28128.66, + "end": 28133.4, + "probability": 0.8957 + }, + { + "start": 28134.5, + "end": 28137.22, + "probability": 0.9924 + }, + { + "start": 28138.32, + "end": 28141.56, + "probability": 0.9213 + }, + { + "start": 28142.16, + "end": 28144.78, + "probability": 0.8196 + }, + { + "start": 28145.32, + "end": 28147.72, + "probability": 0.9782 + }, + { + "start": 28148.32, + "end": 28154.04, + "probability": 0.9541 + }, + { + "start": 28154.74, + "end": 28157.88, + "probability": 0.9515 + }, + { + "start": 28158.36, + "end": 28159.4, + "probability": 0.9345 + }, + { + "start": 28160.0, + "end": 28162.14, + "probability": 0.9027 + }, + { + "start": 28162.7, + "end": 28164.46, + "probability": 0.9176 + }, + { + "start": 28164.84, + "end": 28166.86, + "probability": 0.8802 + }, + { + "start": 28167.72, + "end": 28171.52, + "probability": 0.998 + }, + { + "start": 28171.52, + "end": 28173.48, + "probability": 0.9937 + }, + { + "start": 28174.28, + "end": 28176.26, + "probability": 0.9321 + }, + { + "start": 28177.02, + "end": 28180.76, + "probability": 0.8989 + }, + { + "start": 28181.52, + "end": 28183.5, + "probability": 0.9644 + }, + { + "start": 28184.06, + "end": 28186.94, + "probability": 0.9749 + }, + { + "start": 28187.7, + "end": 28189.34, + "probability": 0.9291 + }, + { + "start": 28189.6, + "end": 28193.08, + "probability": 0.8469 + }, + { + "start": 28193.2, + "end": 28194.68, + "probability": 0.9561 + }, + { + "start": 28195.46, + "end": 28197.98, + "probability": 0.981 + }, + { + "start": 28198.12, + "end": 28199.24, + "probability": 0.8137 + }, + { + "start": 28199.76, + "end": 28201.94, + "probability": 0.782 + }, + { + "start": 28202.26, + "end": 28204.54, + "probability": 0.9744 + }, + { + "start": 28205.08, + "end": 28206.44, + "probability": 0.8945 + }, + { + "start": 28206.62, + "end": 28209.1, + "probability": 0.9678 + }, + { + "start": 28209.52, + "end": 28211.04, + "probability": 0.9985 + }, + { + "start": 28211.46, + "end": 28212.98, + "probability": 0.8843 + }, + { + "start": 28213.14, + "end": 28217.8, + "probability": 0.9545 + }, + { + "start": 28218.58, + "end": 28223.8, + "probability": 0.9656 + }, + { + "start": 28224.4, + "end": 28228.68, + "probability": 0.4236 + }, + { + "start": 28228.68, + "end": 28233.42, + "probability": 0.8632 + }, + { + "start": 28233.48, + "end": 28236.54, + "probability": 0.9863 + }, + { + "start": 28236.92, + "end": 28238.5, + "probability": 0.9977 + }, + { + "start": 28238.64, + "end": 28241.18, + "probability": 0.9928 + }, + { + "start": 28241.76, + "end": 28242.5, + "probability": 0.8599 + }, + { + "start": 28242.5, + "end": 28245.94, + "probability": 0.9899 + }, + { + "start": 28246.32, + "end": 28248.58, + "probability": 0.8943 + }, + { + "start": 28248.98, + "end": 28250.28, + "probability": 0.9976 + }, + { + "start": 28250.78, + "end": 28250.88, + "probability": 0.599 + }, + { + "start": 28250.96, + "end": 28251.36, + "probability": 0.7181 + }, + { + "start": 28251.4, + "end": 28252.18, + "probability": 0.8087 + }, + { + "start": 28252.34, + "end": 28254.86, + "probability": 0.9233 + }, + { + "start": 28255.36, + "end": 28256.24, + "probability": 0.9097 + }, + { + "start": 28256.44, + "end": 28257.77, + "probability": 0.8466 + }, + { + "start": 28258.32, + "end": 28259.7, + "probability": 0.9625 + }, + { + "start": 28259.98, + "end": 28260.96, + "probability": 0.9286 + }, + { + "start": 28261.32, + "end": 28262.66, + "probability": 0.9807 + }, + { + "start": 28262.78, + "end": 28264.56, + "probability": 0.9908 + }, + { + "start": 28265.12, + "end": 28268.84, + "probability": 0.9185 + }, + { + "start": 28268.98, + "end": 28270.96, + "probability": 0.8993 + }, + { + "start": 28271.14, + "end": 28271.48, + "probability": 0.7388 + }, + { + "start": 28271.74, + "end": 28272.12, + "probability": 0.5619 + }, + { + "start": 28272.58, + "end": 28273.87, + "probability": 0.4769 + }, + { + "start": 28274.16, + "end": 28274.68, + "probability": 0.4288 + }, + { + "start": 28274.7, + "end": 28275.66, + "probability": 0.8146 + }, + { + "start": 28275.76, + "end": 28277.1, + "probability": 0.4652 + }, + { + "start": 28277.16, + "end": 28278.08, + "probability": 0.5676 + }, + { + "start": 28278.4, + "end": 28281.52, + "probability": 0.1677 + }, + { + "start": 28281.52, + "end": 28283.18, + "probability": 0.4243 + }, + { + "start": 28283.32, + "end": 28285.42, + "probability": 0.5369 + }, + { + "start": 28287.14, + "end": 28288.32, + "probability": 0.4333 + }, + { + "start": 28288.44, + "end": 28290.26, + "probability": 0.2968 + }, + { + "start": 28290.79, + "end": 28293.3, + "probability": 0.5182 + }, + { + "start": 28293.66, + "end": 28295.01, + "probability": 0.2375 + }, + { + "start": 28295.7, + "end": 28296.34, + "probability": 0.1144 + }, + { + "start": 28296.96, + "end": 28299.64, + "probability": 0.1815 + }, + { + "start": 28300.26, + "end": 28302.8, + "probability": 0.4658 + }, + { + "start": 28304.2, + "end": 28305.48, + "probability": 0.8038 + }, + { + "start": 28307.2, + "end": 28307.79, + "probability": 0.6346 + }, + { + "start": 28311.64, + "end": 28312.58, + "probability": 0.6616 + }, + { + "start": 28312.8, + "end": 28315.02, + "probability": 0.7817 + }, + { + "start": 28316.28, + "end": 28318.62, + "probability": 0.6115 + }, + { + "start": 28320.2, + "end": 28322.78, + "probability": 0.7029 + }, + { + "start": 28322.94, + "end": 28323.34, + "probability": 0.9535 + }, + { + "start": 28323.52, + "end": 28327.28, + "probability": 0.9897 + }, + { + "start": 28327.32, + "end": 28332.22, + "probability": 0.9333 + }, + { + "start": 28332.4, + "end": 28334.32, + "probability": 0.9617 + }, + { + "start": 28334.54, + "end": 28335.55, + "probability": 0.975 + }, + { + "start": 28336.56, + "end": 28341.24, + "probability": 0.979 + }, + { + "start": 28341.52, + "end": 28341.56, + "probability": 0.1903 + }, + { + "start": 28341.92, + "end": 28344.6, + "probability": 0.9749 + }, + { + "start": 28345.5, + "end": 28348.1, + "probability": 0.8314 + }, + { + "start": 28349.46, + "end": 28354.46, + "probability": 0.9699 + }, + { + "start": 28354.66, + "end": 28358.72, + "probability": 0.8693 + }, + { + "start": 28358.98, + "end": 28360.58, + "probability": 0.9982 + }, + { + "start": 28361.74, + "end": 28365.99, + "probability": 0.9163 + }, + { + "start": 28366.48, + "end": 28370.28, + "probability": 0.9893 + }, + { + "start": 28371.36, + "end": 28374.72, + "probability": 0.9247 + }, + { + "start": 28375.64, + "end": 28377.98, + "probability": 0.4362 + }, + { + "start": 28378.92, + "end": 28380.02, + "probability": 0.8662 + }, + { + "start": 28380.84, + "end": 28381.84, + "probability": 0.897 + }, + { + "start": 28382.54, + "end": 28385.0, + "probability": 0.8775 + }, + { + "start": 28386.08, + "end": 28387.48, + "probability": 0.8075 + }, + { + "start": 28388.48, + "end": 28389.5, + "probability": 0.6824 + }, + { + "start": 28390.32, + "end": 28392.36, + "probability": 0.9294 + }, + { + "start": 28392.52, + "end": 28394.88, + "probability": 0.7355 + }, + { + "start": 28395.64, + "end": 28397.98, + "probability": 0.9041 + }, + { + "start": 28398.94, + "end": 28400.66, + "probability": 0.8954 + }, + { + "start": 28401.82, + "end": 28404.54, + "probability": 0.9971 + }, + { + "start": 28405.5, + "end": 28407.18, + "probability": 0.9065 + }, + { + "start": 28407.26, + "end": 28409.78, + "probability": 0.9767 + }, + { + "start": 28409.92, + "end": 28410.56, + "probability": 0.6775 + }, + { + "start": 28411.14, + "end": 28411.6, + "probability": 0.7017 + }, + { + "start": 28411.7, + "end": 28414.62, + "probability": 0.9902 + }, + { + "start": 28414.68, + "end": 28416.38, + "probability": 0.9451 + }, + { + "start": 28417.32, + "end": 28417.84, + "probability": 0.4015 + }, + { + "start": 28418.32, + "end": 28421.76, + "probability": 0.9901 + }, + { + "start": 28421.8, + "end": 28423.14, + "probability": 0.9985 + }, + { + "start": 28423.92, + "end": 28426.38, + "probability": 0.9073 + }, + { + "start": 28427.32, + "end": 28428.66, + "probability": 0.9872 + }, + { + "start": 28429.84, + "end": 28431.88, + "probability": 0.9222 + }, + { + "start": 28433.76, + "end": 28435.8, + "probability": 0.8833 + }, + { + "start": 28436.4, + "end": 28439.22, + "probability": 0.8972 + }, + { + "start": 28440.5, + "end": 28445.88, + "probability": 0.9691 + }, + { + "start": 28446.66, + "end": 28450.96, + "probability": 0.9899 + }, + { + "start": 28450.96, + "end": 28455.96, + "probability": 0.985 + }, + { + "start": 28456.94, + "end": 28458.84, + "probability": 0.8328 + }, + { + "start": 28459.38, + "end": 28461.38, + "probability": 0.9221 + }, + { + "start": 28461.48, + "end": 28463.58, + "probability": 0.9419 + }, + { + "start": 28464.18, + "end": 28467.4, + "probability": 0.9259 + }, + { + "start": 28468.88, + "end": 28470.6, + "probability": 0.9751 + }, + { + "start": 28470.7, + "end": 28475.96, + "probability": 0.9907 + }, + { + "start": 28476.0, + "end": 28478.78, + "probability": 0.9367 + }, + { + "start": 28479.78, + "end": 28483.56, + "probability": 0.9946 + }, + { + "start": 28484.48, + "end": 28488.3, + "probability": 0.9989 + }, + { + "start": 28489.12, + "end": 28491.66, + "probability": 0.9989 + }, + { + "start": 28491.82, + "end": 28494.08, + "probability": 0.9915 + }, + { + "start": 28494.44, + "end": 28496.3, + "probability": 0.9961 + }, + { + "start": 28496.64, + "end": 28501.38, + "probability": 0.9976 + }, + { + "start": 28501.76, + "end": 28506.34, + "probability": 0.9697 + }, + { + "start": 28507.16, + "end": 28509.24, + "probability": 0.692 + }, + { + "start": 28509.36, + "end": 28511.08, + "probability": 0.9155 + }, + { + "start": 28511.14, + "end": 28514.24, + "probability": 0.9478 + }, + { + "start": 28514.78, + "end": 28516.92, + "probability": 0.9969 + }, + { + "start": 28517.11, + "end": 28521.08, + "probability": 0.9917 + }, + { + "start": 28521.82, + "end": 28522.82, + "probability": 0.8562 + }, + { + "start": 28523.38, + "end": 28525.46, + "probability": 0.9815 + }, + { + "start": 28526.16, + "end": 28527.42, + "probability": 0.9948 + }, + { + "start": 28528.54, + "end": 28533.88, + "probability": 0.9918 + }, + { + "start": 28533.92, + "end": 28535.82, + "probability": 0.8965 + }, + { + "start": 28536.38, + "end": 28537.55, + "probability": 0.9927 + }, + { + "start": 28538.04, + "end": 28539.32, + "probability": 0.9349 + }, + { + "start": 28539.36, + "end": 28539.76, + "probability": 0.894 + }, + { + "start": 28540.6, + "end": 28541.12, + "probability": 0.7499 + }, + { + "start": 28541.84, + "end": 28542.82, + "probability": 0.8134 + }, + { + "start": 28542.86, + "end": 28543.81, + "probability": 0.9187 + }, + { + "start": 28543.88, + "end": 28544.36, + "probability": 0.6886 + }, + { + "start": 28544.4, + "end": 28545.58, + "probability": 0.718 + }, + { + "start": 28546.02, + "end": 28551.18, + "probability": 0.9987 + }, + { + "start": 28551.18, + "end": 28556.74, + "probability": 0.9985 + }, + { + "start": 28556.88, + "end": 28557.95, + "probability": 0.9761 + }, + { + "start": 28558.48, + "end": 28559.36, + "probability": 0.8597 + }, + { + "start": 28559.52, + "end": 28560.56, + "probability": 0.8215 + }, + { + "start": 28560.66, + "end": 28561.7, + "probability": 0.5927 + }, + { + "start": 28561.82, + "end": 28563.12, + "probability": 0.0069 + }, + { + "start": 28563.66, + "end": 28565.18, + "probability": 0.8143 + }, + { + "start": 28565.34, + "end": 28566.42, + "probability": 0.4633 + }, + { + "start": 28566.94, + "end": 28567.64, + "probability": 0.9133 + }, + { + "start": 28567.64, + "end": 28568.9, + "probability": 0.5403 + }, + { + "start": 28569.02, + "end": 28571.24, + "probability": 0.7661 + }, + { + "start": 28571.34, + "end": 28573.82, + "probability": 0.9858 + }, + { + "start": 28574.54, + "end": 28578.08, + "probability": 0.9348 + }, + { + "start": 28578.54, + "end": 28582.62, + "probability": 0.9699 + }, + { + "start": 28582.72, + "end": 28583.62, + "probability": 0.9873 + }, + { + "start": 28583.72, + "end": 28585.3, + "probability": 0.8809 + }, + { + "start": 28585.7, + "end": 28586.38, + "probability": 0.6908 + }, + { + "start": 28586.94, + "end": 28588.62, + "probability": 0.9755 + }, + { + "start": 28589.4, + "end": 28591.08, + "probability": 0.8708 + }, + { + "start": 28591.24, + "end": 28592.12, + "probability": 0.777 + }, + { + "start": 28592.16, + "end": 28592.7, + "probability": 0.9857 + }, + { + "start": 28593.6, + "end": 28594.06, + "probability": 0.911 + }, + { + "start": 28598.02, + "end": 28600.4, + "probability": 0.8125 + }, + { + "start": 28601.56, + "end": 28603.12, + "probability": 0.0383 + }, + { + "start": 28620.34, + "end": 28621.76, + "probability": 0.051 + }, + { + "start": 28621.76, + "end": 28623.66, + "probability": 0.158 + }, + { + "start": 28623.66, + "end": 28624.6, + "probability": 0.0636 + }, + { + "start": 28624.6, + "end": 28629.44, + "probability": 0.0838 + }, + { + "start": 28629.44, + "end": 28630.38, + "probability": 0.0348 + }, + { + "start": 28632.0, + "end": 28632.76, + "probability": 0.0493 + }, + { + "start": 28662.42, + "end": 28665.12, + "probability": 0.665 + }, + { + "start": 28665.8, + "end": 28669.74, + "probability": 0.6278 + }, + { + "start": 28670.3, + "end": 28671.0, + "probability": 0.8561 + }, + { + "start": 28672.16, + "end": 28675.4, + "probability": 0.8364 + }, + { + "start": 28676.14, + "end": 28678.46, + "probability": 0.9941 + }, + { + "start": 28679.14, + "end": 28684.62, + "probability": 0.9822 + }, + { + "start": 28684.84, + "end": 28685.44, + "probability": 0.712 + }, + { + "start": 28685.54, + "end": 28690.2, + "probability": 0.7212 + }, + { + "start": 28692.02, + "end": 28692.34, + "probability": 0.0272 + }, + { + "start": 28692.34, + "end": 28692.34, + "probability": 0.1723 + }, + { + "start": 28692.34, + "end": 28697.14, + "probability": 0.9176 + }, + { + "start": 28697.72, + "end": 28701.12, + "probability": 0.8002 + }, + { + "start": 28701.76, + "end": 28706.96, + "probability": 0.9879 + }, + { + "start": 28707.66, + "end": 28711.3, + "probability": 0.9862 + }, + { + "start": 28712.94, + "end": 28714.58, + "probability": 0.7128 + }, + { + "start": 28714.82, + "end": 28719.82, + "probability": 0.9866 + }, + { + "start": 28720.0, + "end": 28724.08, + "probability": 0.9902 + }, + { + "start": 28724.08, + "end": 28727.16, + "probability": 0.9927 + }, + { + "start": 28727.96, + "end": 28730.5, + "probability": 0.9864 + }, + { + "start": 28732.5, + "end": 28738.58, + "probability": 0.9771 + }, + { + "start": 28739.9, + "end": 28741.96, + "probability": 0.999 + }, + { + "start": 28744.14, + "end": 28745.14, + "probability": 0.8018 + }, + { + "start": 28745.94, + "end": 28749.72, + "probability": 0.9878 + }, + { + "start": 28752.0, + "end": 28752.76, + "probability": 0.71 + }, + { + "start": 28753.98, + "end": 28757.4, + "probability": 0.7828 + }, + { + "start": 28757.98, + "end": 28759.9, + "probability": 0.8049 + }, + { + "start": 28760.48, + "end": 28763.94, + "probability": 0.994 + }, + { + "start": 28764.54, + "end": 28767.02, + "probability": 0.9851 + }, + { + "start": 28767.42, + "end": 28767.9, + "probability": 0.9391 + }, + { + "start": 28769.6, + "end": 28772.9, + "probability": 0.0134 + }, + { + "start": 28772.92, + "end": 28776.42, + "probability": 0.6501 + }, + { + "start": 28777.28, + "end": 28778.66, + "probability": 0.8961 + }, + { + "start": 28779.46, + "end": 28782.32, + "probability": 0.9628 + }, + { + "start": 28783.44, + "end": 28785.5, + "probability": 0.9961 + }, + { + "start": 28786.52, + "end": 28790.88, + "probability": 0.9621 + }, + { + "start": 28791.2, + "end": 28791.9, + "probability": 0.974 + }, + { + "start": 28792.82, + "end": 28795.88, + "probability": 0.9919 + }, + { + "start": 28796.14, + "end": 28798.14, + "probability": 0.9954 + }, + { + "start": 28798.56, + "end": 28801.36, + "probability": 0.9951 + }, + { + "start": 28802.58, + "end": 28806.12, + "probability": 0.9907 + }, + { + "start": 28806.66, + "end": 28809.16, + "probability": 0.9912 + }, + { + "start": 28809.16, + "end": 28813.94, + "probability": 0.9921 + }, + { + "start": 28814.28, + "end": 28817.8, + "probability": 0.9264 + }, + { + "start": 28818.4, + "end": 28819.02, + "probability": 0.8563 + }, + { + "start": 28819.62, + "end": 28822.24, + "probability": 0.9745 + }, + { + "start": 28822.76, + "end": 28825.2, + "probability": 0.9264 + }, + { + "start": 28825.56, + "end": 28829.38, + "probability": 0.9531 + }, + { + "start": 28829.94, + "end": 28835.24, + "probability": 0.9929 + }, + { + "start": 28835.72, + "end": 28843.04, + "probability": 0.9859 + }, + { + "start": 28843.77, + "end": 28851.74, + "probability": 0.956 + }, + { + "start": 28852.58, + "end": 28858.14, + "probability": 0.9849 + }, + { + "start": 28858.68, + "end": 28859.73, + "probability": 0.7492 + }, + { + "start": 28860.34, + "end": 28864.66, + "probability": 0.9963 + }, + { + "start": 28865.14, + "end": 28865.62, + "probability": 0.5003 + }, + { + "start": 28866.3, + "end": 28870.24, + "probability": 0.9713 + }, + { + "start": 28870.3, + "end": 28870.58, + "probability": 0.925 + }, + { + "start": 28871.22, + "end": 28871.76, + "probability": 0.6058 + }, + { + "start": 28873.08, + "end": 28874.42, + "probability": 0.7695 + }, + { + "start": 28874.54, + "end": 28876.46, + "probability": 0.9193 + }, + { + "start": 28877.4, + "end": 28878.58, + "probability": 0.9235 + }, + { + "start": 28879.82, + "end": 28879.82, + "probability": 0.4914 + }, + { + "start": 28879.82, + "end": 28880.76, + "probability": 0.5563 + }, + { + "start": 28880.9, + "end": 28881.44, + "probability": 0.8342 + }, + { + "start": 28882.77, + "end": 28885.32, + "probability": 0.9734 + }, + { + "start": 28885.46, + "end": 28887.32, + "probability": 0.669 + }, + { + "start": 28888.06, + "end": 28889.98, + "probability": 0.859 + }, + { + "start": 28891.28, + "end": 28891.86, + "probability": 0.512 + }, + { + "start": 28892.7, + "end": 28893.11, + "probability": 0.1803 + }, + { + "start": 28893.68, + "end": 28895.22, + "probability": 0.345 + }, + { + "start": 28895.32, + "end": 28896.08, + "probability": 0.4789 + }, + { + "start": 28897.1, + "end": 28898.32, + "probability": 0.5667 + }, + { + "start": 28898.4, + "end": 28898.94, + "probability": 0.74 + }, + { + "start": 28900.38, + "end": 28902.8, + "probability": 0.4922 + }, + { + "start": 28902.82, + "end": 28903.34, + "probability": 0.6599 + }, + { + "start": 28903.38, + "end": 28904.2, + "probability": 0.808 + }, + { + "start": 28904.86, + "end": 28905.44, + "probability": 0.9507 + }, + { + "start": 28907.1, + "end": 28908.64, + "probability": 0.7428 + }, + { + "start": 28910.53, + "end": 28910.74, + "probability": 0.4608 + }, + { + "start": 28910.74, + "end": 28911.82, + "probability": 0.9603 + }, + { + "start": 28913.8, + "end": 28913.94, + "probability": 0.0815 + }, + { + "start": 28913.94, + "end": 28914.4, + "probability": 0.2207 + }, + { + "start": 28917.02, + "end": 28918.42, + "probability": 0.5648 + }, + { + "start": 28919.08, + "end": 28919.96, + "probability": 0.6665 + }, + { + "start": 28920.54, + "end": 28921.7, + "probability": 0.9209 + }, + { + "start": 28922.3, + "end": 28922.38, + "probability": 0.1471 + }, + { + "start": 28922.38, + "end": 28924.83, + "probability": 0.95 + }, + { + "start": 28926.28, + "end": 28927.58, + "probability": 0.6395 + }, + { + "start": 28930.66, + "end": 28931.4, + "probability": 0.0055 + }, + { + "start": 28931.48, + "end": 28931.48, + "probability": 0.2519 + }, + { + "start": 28931.48, + "end": 28931.9, + "probability": 0.0615 + }, + { + "start": 28934.38, + "end": 28937.76, + "probability": 0.8317 + }, + { + "start": 28937.76, + "end": 28941.56, + "probability": 0.9862 + }, + { + "start": 28941.74, + "end": 28943.42, + "probability": 0.8325 + }, + { + "start": 28946.18, + "end": 28949.08, + "probability": 0.5732 + }, + { + "start": 28949.78, + "end": 28949.94, + "probability": 0.7044 + }, + { + "start": 28951.48, + "end": 28953.28, + "probability": 0.9241 + }, + { + "start": 28954.68, + "end": 28959.0, + "probability": 0.8274 + }, + { + "start": 28959.88, + "end": 28960.72, + "probability": 0.0184 + }, + { + "start": 28960.72, + "end": 28961.08, + "probability": 0.3052 + }, + { + "start": 28965.0, + "end": 28967.76, + "probability": 0.6312 + }, + { + "start": 28974.86, + "end": 28977.64, + "probability": 0.7292 + }, + { + "start": 28978.18, + "end": 28979.36, + "probability": 0.9802 + }, + { + "start": 28981.94, + "end": 28983.54, + "probability": 0.2103 + }, + { + "start": 28984.44, + "end": 28984.98, + "probability": 0.6696 + }, + { + "start": 28985.72, + "end": 28989.82, + "probability": 0.9143 + }, + { + "start": 28990.3, + "end": 28990.32, + "probability": 0.0693 + }, + { + "start": 28990.32, + "end": 28993.82, + "probability": 0.3835 + }, + { + "start": 28993.98, + "end": 28994.06, + "probability": 0.0951 + }, + { + "start": 28994.06, + "end": 28995.6, + "probability": 0.1727 + }, + { + "start": 28995.92, + "end": 28997.18, + "probability": 0.0849 + }, + { + "start": 28998.06, + "end": 29001.02, + "probability": 0.8915 + }, + { + "start": 29002.06, + "end": 29003.54, + "probability": 0.6985 + }, + { + "start": 29004.14, + "end": 29007.42, + "probability": 0.6925 + }, + { + "start": 29008.88, + "end": 29011.2, + "probability": 0.8329 + }, + { + "start": 29011.78, + "end": 29012.62, + "probability": 0.7585 + }, + { + "start": 29013.06, + "end": 29013.96, + "probability": 0.8729 + }, + { + "start": 29014.06, + "end": 29014.56, + "probability": 0.8428 + }, + { + "start": 29015.02, + "end": 29015.58, + "probability": 0.7908 + }, + { + "start": 29015.98, + "end": 29020.94, + "probability": 0.993 + }, + { + "start": 29021.74, + "end": 29025.04, + "probability": 0.9977 + }, + { + "start": 29025.04, + "end": 29030.78, + "probability": 0.9889 + }, + { + "start": 29030.78, + "end": 29031.1, + "probability": 0.7793 + }, + { + "start": 29031.8, + "end": 29032.0, + "probability": 0.4539 + }, + { + "start": 29032.06, + "end": 29035.66, + "probability": 0.9924 + }, + { + "start": 29035.8, + "end": 29040.4, + "probability": 0.9913 + }, + { + "start": 29040.9, + "end": 29044.82, + "probability": 0.9351 + }, + { + "start": 29045.8, + "end": 29050.58, + "probability": 0.9408 + }, + { + "start": 29051.18, + "end": 29054.04, + "probability": 0.9913 + }, + { + "start": 29054.04, + "end": 29058.22, + "probability": 0.9217 + }, + { + "start": 29058.82, + "end": 29061.41, + "probability": 0.9657 + }, + { + "start": 29062.4, + "end": 29065.36, + "probability": 0.9185 + }, + { + "start": 29066.52, + "end": 29072.16, + "probability": 0.9457 + }, + { + "start": 29072.16, + "end": 29078.82, + "probability": 0.9883 + }, + { + "start": 29079.48, + "end": 29082.24, + "probability": 0.6212 + }, + { + "start": 29082.98, + "end": 29086.32, + "probability": 0.9968 + }, + { + "start": 29086.54, + "end": 29087.8, + "probability": 0.9794 + }, + { + "start": 29088.64, + "end": 29094.04, + "probability": 0.8225 + }, + { + "start": 29094.8, + "end": 29095.38, + "probability": 0.0971 + }, + { + "start": 29095.92, + "end": 29097.6, + "probability": 0.9874 + }, + { + "start": 29097.9, + "end": 29100.82, + "probability": 0.9785 + }, + { + "start": 29100.82, + "end": 29104.94, + "probability": 0.9387 + }, + { + "start": 29105.14, + "end": 29111.12, + "probability": 0.9642 + }, + { + "start": 29111.92, + "end": 29118.98, + "probability": 0.9901 + }, + { + "start": 29119.12, + "end": 29119.94, + "probability": 0.8535 + }, + { + "start": 29121.14, + "end": 29124.18, + "probability": 0.9741 + }, + { + "start": 29125.0, + "end": 29130.26, + "probability": 0.9981 + }, + { + "start": 29130.26, + "end": 29135.32, + "probability": 0.9922 + }, + { + "start": 29136.22, + "end": 29139.44, + "probability": 0.8894 + }, + { + "start": 29140.14, + "end": 29143.64, + "probability": 0.9575 + }, + { + "start": 29144.66, + "end": 29148.48, + "probability": 0.8768 + }, + { + "start": 29149.22, + "end": 29151.64, + "probability": 0.9353 + }, + { + "start": 29152.1, + "end": 29154.0, + "probability": 0.8246 + }, + { + "start": 29154.58, + "end": 29157.54, + "probability": 0.9274 + }, + { + "start": 29158.8, + "end": 29160.4, + "probability": 0.4471 + }, + { + "start": 29160.72, + "end": 29161.2, + "probability": 0.8595 + }, + { + "start": 29161.32, + "end": 29162.64, + "probability": 0.4743 + }, + { + "start": 29162.7, + "end": 29166.36, + "probability": 0.9908 + }, + { + "start": 29166.74, + "end": 29168.8, + "probability": 0.9912 + }, + { + "start": 29169.14, + "end": 29171.28, + "probability": 0.8939 + }, + { + "start": 29171.48, + "end": 29172.88, + "probability": 0.9898 + }, + { + "start": 29173.22, + "end": 29175.24, + "probability": 0.8749 + }, + { + "start": 29175.44, + "end": 29178.74, + "probability": 0.9622 + }, + { + "start": 29180.06, + "end": 29180.69, + "probability": 0.5306 + }, + { + "start": 29181.3, + "end": 29183.24, + "probability": 0.8972 + }, + { + "start": 29183.56, + "end": 29184.66, + "probability": 0.9829 + }, + { + "start": 29184.82, + "end": 29188.8, + "probability": 0.9645 + }, + { + "start": 29190.14, + "end": 29192.96, + "probability": 0.9967 + }, + { + "start": 29192.96, + "end": 29195.38, + "probability": 0.9767 + }, + { + "start": 29196.04, + "end": 29197.1, + "probability": 0.8188 + }, + { + "start": 29197.9, + "end": 29201.48, + "probability": 0.9015 + }, + { + "start": 29202.3, + "end": 29206.42, + "probability": 0.9846 + }, + { + "start": 29206.48, + "end": 29208.06, + "probability": 0.9749 + }, + { + "start": 29208.52, + "end": 29211.87, + "probability": 0.8033 + }, + { + "start": 29212.36, + "end": 29214.3, + "probability": 0.9652 + }, + { + "start": 29214.38, + "end": 29214.84, + "probability": 0.9045 + }, + { + "start": 29214.92, + "end": 29215.22, + "probability": 0.5313 + }, + { + "start": 29215.22, + "end": 29217.24, + "probability": 0.7158 + }, + { + "start": 29217.26, + "end": 29218.7, + "probability": 0.8842 + }, + { + "start": 29219.3, + "end": 29223.3, + "probability": 0.9843 + }, + { + "start": 29223.78, + "end": 29226.9, + "probability": 0.484 + }, + { + "start": 29227.42, + "end": 29229.86, + "probability": 0.7428 + }, + { + "start": 29229.98, + "end": 29231.78, + "probability": 0.9932 + }, + { + "start": 29232.2, + "end": 29233.5, + "probability": 0.9813 + }, + { + "start": 29233.84, + "end": 29235.12, + "probability": 0.9526 + }, + { + "start": 29235.74, + "end": 29237.52, + "probability": 0.8162 + }, + { + "start": 29237.58, + "end": 29240.12, + "probability": 0.7133 + }, + { + "start": 29240.14, + "end": 29240.78, + "probability": 0.7665 + }, + { + "start": 29240.84, + "end": 29243.96, + "probability": 0.9565 + }, + { + "start": 29244.04, + "end": 29244.72, + "probability": 0.7784 + }, + { + "start": 29245.1, + "end": 29248.52, + "probability": 0.9979 + }, + { + "start": 29248.98, + "end": 29251.46, + "probability": 0.7708 + }, + { + "start": 29251.82, + "end": 29253.82, + "probability": 0.9422 + }, + { + "start": 29254.1, + "end": 29254.42, + "probability": 0.8656 + }, + { + "start": 29254.94, + "end": 29255.56, + "probability": 0.7302 + }, + { + "start": 29256.34, + "end": 29257.12, + "probability": 0.9021 + }, + { + "start": 29278.82, + "end": 29279.76, + "probability": 0.7435 + }, + { + "start": 29280.16, + "end": 29284.94, + "probability": 0.3533 + }, + { + "start": 29285.54, + "end": 29287.74, + "probability": 0.9827 + }, + { + "start": 29289.42, + "end": 29293.2, + "probability": 0.9392 + }, + { + "start": 29295.14, + "end": 29298.58, + "probability": 0.784 + }, + { + "start": 29298.58, + "end": 29301.64, + "probability": 0.9377 + }, + { + "start": 29302.26, + "end": 29307.36, + "probability": 0.7742 + }, + { + "start": 29307.4, + "end": 29309.96, + "probability": 0.9779 + }, + { + "start": 29310.06, + "end": 29312.64, + "probability": 0.6859 + }, + { + "start": 29314.06, + "end": 29316.0, + "probability": 0.3253 + }, + { + "start": 29316.54, + "end": 29319.5, + "probability": 0.7253 + }, + { + "start": 29319.6, + "end": 29322.14, + "probability": 0.9371 + }, + { + "start": 29322.14, + "end": 29325.8, + "probability": 0.8945 + }, + { + "start": 29326.24, + "end": 29329.94, + "probability": 0.9404 + }, + { + "start": 29329.94, + "end": 29335.72, + "probability": 0.7397 + }, + { + "start": 29335.72, + "end": 29339.38, + "probability": 0.695 + }, + { + "start": 29339.46, + "end": 29342.32, + "probability": 0.5197 + }, + { + "start": 29342.68, + "end": 29346.18, + "probability": 0.6821 + }, + { + "start": 29346.18, + "end": 29349.7, + "probability": 0.9841 + }, + { + "start": 29350.24, + "end": 29354.56, + "probability": 0.7648 + }, + { + "start": 29354.56, + "end": 29359.22, + "probability": 0.7405 + }, + { + "start": 29359.28, + "end": 29359.72, + "probability": 0.8388 + }, + { + "start": 29360.24, + "end": 29363.72, + "probability": 0.6653 + }, + { + "start": 29363.72, + "end": 29368.24, + "probability": 0.9917 + }, + { + "start": 29368.78, + "end": 29368.88, + "probability": 0.0532 + }, + { + "start": 29369.5, + "end": 29371.62, + "probability": 0.6779 + }, + { + "start": 29371.74, + "end": 29373.34, + "probability": 0.3841 + }, + { + "start": 29373.44, + "end": 29378.1, + "probability": 0.7466 + }, + { + "start": 29378.1, + "end": 29384.82, + "probability": 0.9641 + }, + { + "start": 29384.92, + "end": 29387.08, + "probability": 0.8549 + }, + { + "start": 29387.6, + "end": 29390.92, + "probability": 0.6649 + }, + { + "start": 29390.92, + "end": 29395.26, + "probability": 0.6507 + }, + { + "start": 29395.44, + "end": 29395.62, + "probability": 0.0965 + }, + { + "start": 29396.08, + "end": 29400.06, + "probability": 0.8673 + }, + { + "start": 29400.06, + "end": 29404.28, + "probability": 0.8646 + }, + { + "start": 29404.42, + "end": 29406.4, + "probability": 0.5532 + }, + { + "start": 29406.46, + "end": 29406.62, + "probability": 0.0277 + }, + { + "start": 29407.2, + "end": 29410.72, + "probability": 0.8665 + }, + { + "start": 29410.72, + "end": 29416.2, + "probability": 0.8533 + }, + { + "start": 29417.63, + "end": 29419.7, + "probability": 0.5027 + }, + { + "start": 29419.98, + "end": 29424.68, + "probability": 0.719 + }, + { + "start": 29425.48, + "end": 29426.4, + "probability": 0.6424 + }, + { + "start": 29426.48, + "end": 29430.26, + "probability": 0.7236 + }, + { + "start": 29430.38, + "end": 29432.78, + "probability": 0.6224 + }, + { + "start": 29433.78, + "end": 29434.68, + "probability": 0.4331 + }, + { + "start": 29435.32, + "end": 29439.54, + "probability": 0.8997 + }, + { + "start": 29439.54, + "end": 29443.84, + "probability": 0.7246 + }, + { + "start": 29443.84, + "end": 29449.22, + "probability": 0.7435 + }, + { + "start": 29449.78, + "end": 29452.66, + "probability": 0.5853 + }, + { + "start": 29452.66, + "end": 29456.28, + "probability": 0.9798 + }, + { + "start": 29456.54, + "end": 29460.48, + "probability": 0.9708 + }, + { + "start": 29461.28, + "end": 29461.38, + "probability": 0.3137 + }, + { + "start": 29461.64, + "end": 29467.5, + "probability": 0.8896 + }, + { + "start": 29467.9, + "end": 29469.36, + "probability": 0.8586 + }, + { + "start": 29469.48, + "end": 29473.02, + "probability": 0.8404 + }, + { + "start": 29473.02, + "end": 29476.88, + "probability": 0.8262 + }, + { + "start": 29476.88, + "end": 29480.38, + "probability": 0.8587 + }, + { + "start": 29481.4, + "end": 29484.18, + "probability": 0.5874 + }, + { + "start": 29485.32, + "end": 29486.44, + "probability": 0.9069 + }, + { + "start": 29487.28, + "end": 29494.8, + "probability": 0.4753 + }, + { + "start": 29495.74, + "end": 29500.29, + "probability": 0.6483 + }, + { + "start": 29500.48, + "end": 29501.46, + "probability": 0.2042 + }, + { + "start": 29502.56, + "end": 29504.92, + "probability": 0.6847 + }, + { + "start": 29505.22, + "end": 29507.18, + "probability": 0.7473 + }, + { + "start": 29507.32, + "end": 29507.98, + "probability": 0.7433 + }, + { + "start": 29508.48, + "end": 29509.82, + "probability": 0.7013 + }, + { + "start": 29512.86, + "end": 29513.06, + "probability": 0.061 + }, + { + "start": 29513.06, + "end": 29516.74, + "probability": 0.7794 + }, + { + "start": 29517.18, + "end": 29517.4, + "probability": 0.0001 + }, + { + "start": 29526.46, + "end": 29526.5, + "probability": 0.0479 + }, + { + "start": 29526.5, + "end": 29526.5, + "probability": 0.1573 + }, + { + "start": 29526.5, + "end": 29527.98, + "probability": 0.6118 + }, + { + "start": 29528.56, + "end": 29530.72, + "probability": 0.5853 + }, + { + "start": 29532.54, + "end": 29534.5, + "probability": 0.8775 + }, + { + "start": 29534.6, + "end": 29537.82, + "probability": 0.981 + }, + { + "start": 29538.71, + "end": 29543.02, + "probability": 0.982 + }, + { + "start": 29544.02, + "end": 29548.22, + "probability": 0.9211 + }, + { + "start": 29549.32, + "end": 29552.56, + "probability": 0.8786 + }, + { + "start": 29553.62, + "end": 29556.22, + "probability": 0.9972 + }, + { + "start": 29556.74, + "end": 29557.62, + "probability": 0.9188 + }, + { + "start": 29558.76, + "end": 29559.42, + "probability": 0.8987 + }, + { + "start": 29560.42, + "end": 29565.84, + "probability": 0.7975 + }, + { + "start": 29565.92, + "end": 29570.86, + "probability": 0.9962 + }, + { + "start": 29571.08, + "end": 29572.1, + "probability": 0.7367 + }, + { + "start": 29572.42, + "end": 29573.66, + "probability": 0.9099 + }, + { + "start": 29573.9, + "end": 29578.54, + "probability": 0.9856 + }, + { + "start": 29579.12, + "end": 29579.66, + "probability": 0.74 + }, + { + "start": 29580.1, + "end": 29583.48, + "probability": 0.9822 + }, + { + "start": 29584.3, + "end": 29587.44, + "probability": 0.9114 + }, + { + "start": 29588.04, + "end": 29589.16, + "probability": 0.9102 + }, + { + "start": 29589.56, + "end": 29593.6, + "probability": 0.8832 + }, + { + "start": 29593.72, + "end": 29594.46, + "probability": 0.9369 + }, + { + "start": 29594.54, + "end": 29596.56, + "probability": 0.8848 + }, + { + "start": 29597.18, + "end": 29598.42, + "probability": 0.9854 + }, + { + "start": 29599.1, + "end": 29601.16, + "probability": 0.9553 + }, + { + "start": 29601.58, + "end": 29604.76, + "probability": 0.9712 + }, + { + "start": 29604.94, + "end": 29608.66, + "probability": 0.9568 + }, + { + "start": 29609.2, + "end": 29610.84, + "probability": 0.9624 + }, + { + "start": 29611.36, + "end": 29617.36, + "probability": 0.9919 + }, + { + "start": 29618.04, + "end": 29619.08, + "probability": 0.9761 + }, + { + "start": 29619.14, + "end": 29620.0, + "probability": 0.7148 + }, + { + "start": 29620.0, + "end": 29622.1, + "probability": 0.9175 + }, + { + "start": 29622.88, + "end": 29630.96, + "probability": 0.9954 + }, + { + "start": 29631.9, + "end": 29633.12, + "probability": 0.8527 + }, + { + "start": 29633.34, + "end": 29639.88, + "probability": 0.9569 + }, + { + "start": 29640.54, + "end": 29646.14, + "probability": 0.985 + }, + { + "start": 29646.94, + "end": 29648.74, + "probability": 0.9883 + }, + { + "start": 29649.2, + "end": 29650.86, + "probability": 0.9011 + }, + { + "start": 29652.08, + "end": 29654.84, + "probability": 0.9921 + }, + { + "start": 29654.84, + "end": 29657.56, + "probability": 0.9922 + }, + { + "start": 29658.44, + "end": 29659.7, + "probability": 0.2897 + }, + { + "start": 29660.3, + "end": 29661.04, + "probability": 0.7646 + }, + { + "start": 29661.52, + "end": 29664.34, + "probability": 0.9957 + }, + { + "start": 29665.16, + "end": 29666.54, + "probability": 0.781 + }, + { + "start": 29666.62, + "end": 29671.14, + "probability": 0.9734 + }, + { + "start": 29672.06, + "end": 29678.48, + "probability": 0.6964 + }, + { + "start": 29679.64, + "end": 29684.44, + "probability": 0.9658 + }, + { + "start": 29684.44, + "end": 29691.58, + "probability": 0.9537 + }, + { + "start": 29692.1, + "end": 29692.22, + "probability": 0.6461 + }, + { + "start": 29692.4, + "end": 29695.48, + "probability": 0.96 + }, + { + "start": 29695.64, + "end": 29696.14, + "probability": 0.7533 + }, + { + "start": 29696.16, + "end": 29698.62, + "probability": 0.9363 + }, + { + "start": 29698.76, + "end": 29700.42, + "probability": 0.9861 + }, + { + "start": 29701.14, + "end": 29707.56, + "probability": 0.9714 + }, + { + "start": 29707.98, + "end": 29708.88, + "probability": 0.9765 + }, + { + "start": 29709.46, + "end": 29711.34, + "probability": 0.9604 + }, + { + "start": 29712.6, + "end": 29713.26, + "probability": 0.493 + }, + { + "start": 29713.42, + "end": 29714.28, + "probability": 0.8123 + }, + { + "start": 29714.68, + "end": 29717.22, + "probability": 0.8724 + }, + { + "start": 29717.78, + "end": 29719.62, + "probability": 0.9722 + }, + { + "start": 29720.6, + "end": 29722.34, + "probability": 0.7703 + }, + { + "start": 29723.36, + "end": 29726.9, + "probability": 0.9981 + }, + { + "start": 29726.9, + "end": 29731.44, + "probability": 0.9754 + }, + { + "start": 29732.54, + "end": 29733.72, + "probability": 0.5004 + }, + { + "start": 29734.54, + "end": 29734.54, + "probability": 0.1937 + }, + { + "start": 29734.54, + "end": 29735.16, + "probability": 0.511 + }, + { + "start": 29735.52, + "end": 29736.02, + "probability": 0.4481 + }, + { + "start": 29736.14, + "end": 29738.36, + "probability": 0.8442 + }, + { + "start": 29738.64, + "end": 29743.64, + "probability": 0.9456 + }, + { + "start": 29744.18, + "end": 29747.28, + "probability": 0.943 + }, + { + "start": 29748.36, + "end": 29753.6, + "probability": 0.8275 + }, + { + "start": 29753.7, + "end": 29757.42, + "probability": 0.9751 + }, + { + "start": 29758.22, + "end": 29759.8, + "probability": 0.989 + }, + { + "start": 29759.84, + "end": 29760.44, + "probability": 0.8862 + }, + { + "start": 29760.5, + "end": 29762.22, + "probability": 0.772 + }, + { + "start": 29762.74, + "end": 29764.78, + "probability": 0.9897 + }, + { + "start": 29765.46, + "end": 29765.8, + "probability": 0.4639 + }, + { + "start": 29765.8, + "end": 29766.8, + "probability": 0.9104 + }, + { + "start": 29766.8, + "end": 29767.06, + "probability": 0.2845 + }, + { + "start": 29767.14, + "end": 29767.52, + "probability": 0.7457 + }, + { + "start": 29767.6, + "end": 29768.12, + "probability": 0.4435 + }, + { + "start": 29768.7, + "end": 29770.88, + "probability": 0.6461 + }, + { + "start": 29771.56, + "end": 29775.98, + "probability": 0.9388 + }, + { + "start": 29776.28, + "end": 29777.4, + "probability": 0.8809 + }, + { + "start": 29777.64, + "end": 29778.78, + "probability": 0.4702 + }, + { + "start": 29778.98, + "end": 29778.98, + "probability": 0.3213 + }, + { + "start": 29779.24, + "end": 29779.73, + "probability": 0.7026 + }, + { + "start": 29780.3, + "end": 29781.44, + "probability": 0.9768 + }, + { + "start": 29781.84, + "end": 29786.16, + "probability": 0.9956 + }, + { + "start": 29786.16, + "end": 29792.36, + "probability": 0.9977 + }, + { + "start": 29793.6, + "end": 29795.28, + "probability": 0.9598 + }, + { + "start": 29795.4, + "end": 29796.54, + "probability": 0.863 + }, + { + "start": 29815.72, + "end": 29818.72, + "probability": 0.7339 + }, + { + "start": 29821.98, + "end": 29824.32, + "probability": 0.9949 + }, + { + "start": 29825.88, + "end": 29832.18, + "probability": 0.9186 + }, + { + "start": 29834.2, + "end": 29839.86, + "probability": 0.9919 + }, + { + "start": 29842.08, + "end": 29845.0, + "probability": 0.7088 + }, + { + "start": 29845.88, + "end": 29850.96, + "probability": 0.9795 + }, + { + "start": 29851.98, + "end": 29859.98, + "probability": 0.9751 + }, + { + "start": 29860.42, + "end": 29865.7, + "probability": 0.7714 + }, + { + "start": 29866.76, + "end": 29872.91, + "probability": 0.8328 + }, + { + "start": 29873.56, + "end": 29874.42, + "probability": 0.8588 + }, + { + "start": 29875.38, + "end": 29877.82, + "probability": 0.878 + }, + { + "start": 29879.4, + "end": 29880.74, + "probability": 0.9969 + }, + { + "start": 29881.32, + "end": 29881.78, + "probability": 0.8312 + }, + { + "start": 29883.6, + "end": 29883.86, + "probability": 0.9292 + }, + { + "start": 29886.62, + "end": 29891.2, + "probability": 0.9716 + }, + { + "start": 29891.46, + "end": 29892.56, + "probability": 0.7669 + }, + { + "start": 29894.1, + "end": 29896.76, + "probability": 0.9598 + }, + { + "start": 29898.44, + "end": 29899.78, + "probability": 0.1858 + }, + { + "start": 29901.82, + "end": 29902.26, + "probability": 0.704 + }, + { + "start": 29904.06, + "end": 29904.66, + "probability": 0.7163 + }, + { + "start": 29905.48, + "end": 29905.82, + "probability": 0.933 + }, + { + "start": 29907.78, + "end": 29911.68, + "probability": 0.9614 + }, + { + "start": 29912.96, + "end": 29912.96, + "probability": 0.0216 + }, + { + "start": 29912.96, + "end": 29912.96, + "probability": 0.1088 + }, + { + "start": 29912.96, + "end": 29912.96, + "probability": 0.1241 + }, + { + "start": 29912.96, + "end": 29914.62, + "probability": 0.0362 + }, + { + "start": 29916.74, + "end": 29921.62, + "probability": 0.6151 + }, + { + "start": 29922.74, + "end": 29924.38, + "probability": 0.7895 + }, + { + "start": 29926.32, + "end": 29929.34, + "probability": 0.4508 + }, + { + "start": 29929.74, + "end": 29932.52, + "probability": 0.8971 + }, + { + "start": 29933.64, + "end": 29935.28, + "probability": 0.9066 + }, + { + "start": 29938.22, + "end": 29940.2, + "probability": 0.8427 + }, + { + "start": 29941.02, + "end": 29947.12, + "probability": 0.9891 + }, + { + "start": 29948.14, + "end": 29949.58, + "probability": 0.8161 + }, + { + "start": 29950.3, + "end": 29957.08, + "probability": 0.9931 + }, + { + "start": 29957.6, + "end": 29959.78, + "probability": 0.7282 + }, + { + "start": 29960.96, + "end": 29962.32, + "probability": 0.9529 + }, + { + "start": 29963.4, + "end": 29967.14, + "probability": 0.9653 + }, + { + "start": 29967.64, + "end": 29968.38, + "probability": 0.8821 + }, + { + "start": 29969.16, + "end": 29970.89, + "probability": 0.9836 + }, + { + "start": 29972.38, + "end": 29974.34, + "probability": 0.9084 + }, + { + "start": 29974.98, + "end": 29975.42, + "probability": 0.5419 + }, + { + "start": 29976.68, + "end": 29978.68, + "probability": 0.6102 + }, + { + "start": 29981.0, + "end": 29982.4, + "probability": 0.619 + }, + { + "start": 29983.4, + "end": 29985.78, + "probability": 0.7823 + }, + { + "start": 29987.02, + "end": 29987.24, + "probability": 0.738 + }, + { + "start": 29987.26, + "end": 29990.9, + "probability": 0.9536 + }, + { + "start": 29990.9, + "end": 29995.44, + "probability": 0.9868 + }, + { + "start": 29995.58, + "end": 29997.02, + "probability": 0.9567 + }, + { + "start": 29997.38, + "end": 29998.44, + "probability": 0.8651 + }, + { + "start": 29998.88, + "end": 29999.26, + "probability": 0.8292 + }, + { + "start": 29999.38, + "end": 29999.74, + "probability": 0.7628 + }, + { + "start": 30000.82, + "end": 30002.56, + "probability": 0.7458 + }, + { + "start": 30003.58, + "end": 30005.92, + "probability": 0.9043 + }, + { + "start": 30007.82, + "end": 30009.52, + "probability": 0.9858 + }, + { + "start": 30009.6, + "end": 30011.38, + "probability": 0.9969 + }, + { + "start": 30012.14, + "end": 30013.86, + "probability": 0.98 + }, + { + "start": 30015.3, + "end": 30016.96, + "probability": 0.6154 + }, + { + "start": 30017.36, + "end": 30018.48, + "probability": 0.9413 + }, + { + "start": 30019.08, + "end": 30021.5, + "probability": 0.9739 + }, + { + "start": 30022.36, + "end": 30027.74, + "probability": 0.9574 + }, + { + "start": 30028.54, + "end": 30033.88, + "probability": 0.5168 + }, + { + "start": 30035.58, + "end": 30042.02, + "probability": 0.9653 + }, + { + "start": 30042.2, + "end": 30043.04, + "probability": 0.9026 + }, + { + "start": 30043.38, + "end": 30044.4, + "probability": 0.7102 + }, + { + "start": 30045.52, + "end": 30047.92, + "probability": 0.7811 + }, + { + "start": 30048.74, + "end": 30051.82, + "probability": 0.933 + }, + { + "start": 30051.9, + "end": 30055.44, + "probability": 0.9893 + }, + { + "start": 30055.44, + "end": 30057.34, + "probability": 0.9908 + }, + { + "start": 30058.04, + "end": 30058.58, + "probability": 0.7486 + }, + { + "start": 30059.1, + "end": 30059.26, + "probability": 0.6294 + }, + { + "start": 30059.42, + "end": 30060.68, + "probability": 0.7441 + }, + { + "start": 30062.23, + "end": 30069.08, + "probability": 0.9401 + }, + { + "start": 30069.9, + "end": 30070.42, + "probability": 0.9132 + }, + { + "start": 30070.76, + "end": 30071.08, + "probability": 0.6626 + }, + { + "start": 30071.7, + "end": 30072.5, + "probability": 0.4991 + }, + { + "start": 30072.54, + "end": 30073.86, + "probability": 0.9873 + }, + { + "start": 30086.96, + "end": 30089.3, + "probability": 0.1627 + }, + { + "start": 30089.3, + "end": 30092.64, + "probability": 0.0441 + }, + { + "start": 30106.46, + "end": 30106.7, + "probability": 0.0775 + }, + { + "start": 30110.52, + "end": 30116.26, + "probability": 0.9518 + }, + { + "start": 30116.82, + "end": 30117.98, + "probability": 0.7959 + }, + { + "start": 30119.12, + "end": 30121.66, + "probability": 0.9874 + }, + { + "start": 30121.76, + "end": 30122.76, + "probability": 0.9932 + }, + { + "start": 30123.54, + "end": 30125.56, + "probability": 0.6321 + }, + { + "start": 30125.56, + "end": 30126.9, + "probability": 0.9404 + }, + { + "start": 30128.38, + "end": 30131.93, + "probability": 0.9747 + }, + { + "start": 30133.24, + "end": 30138.58, + "probability": 0.9006 + }, + { + "start": 30138.58, + "end": 30142.44, + "probability": 0.9878 + }, + { + "start": 30142.46, + "end": 30143.5, + "probability": 0.9746 + }, + { + "start": 30144.8, + "end": 30144.8, + "probability": 0.0035 + }, + { + "start": 30144.86, + "end": 30147.86, + "probability": 0.9285 + }, + { + "start": 30148.88, + "end": 30150.77, + "probability": 0.8918 + }, + { + "start": 30151.18, + "end": 30155.04, + "probability": 0.9435 + }, + { + "start": 30155.04, + "end": 30158.48, + "probability": 0.8417 + }, + { + "start": 30159.6, + "end": 30162.48, + "probability": 0.9897 + }, + { + "start": 30162.64, + "end": 30163.24, + "probability": 0.985 + }, + { + "start": 30163.42, + "end": 30164.98, + "probability": 0.7165 + }, + { + "start": 30165.56, + "end": 30168.88, + "probability": 0.614 + }, + { + "start": 30169.02, + "end": 30173.92, + "probability": 0.9915 + }, + { + "start": 30174.0, + "end": 30176.54, + "probability": 0.9212 + }, + { + "start": 30177.14, + "end": 30178.12, + "probability": 0.998 + }, + { + "start": 30180.06, + "end": 30182.22, + "probability": 0.9983 + }, + { + "start": 30183.12, + "end": 30184.26, + "probability": 0.8181 + }, + { + "start": 30184.48, + "end": 30188.54, + "probability": 0.8134 + }, + { + "start": 30188.64, + "end": 30189.26, + "probability": 0.8569 + }, + { + "start": 30189.34, + "end": 30190.64, + "probability": 0.9856 + }, + { + "start": 30190.78, + "end": 30191.18, + "probability": 0.9345 + }, + { + "start": 30191.2, + "end": 30191.76, + "probability": 0.9789 + }, + { + "start": 30192.26, + "end": 30193.88, + "probability": 0.8945 + }, + { + "start": 30194.36, + "end": 30195.64, + "probability": 0.9525 + }, + { + "start": 30195.76, + "end": 30197.1, + "probability": 0.9315 + }, + { + "start": 30198.06, + "end": 30200.11, + "probability": 0.9753 + }, + { + "start": 30201.8, + "end": 30202.9, + "probability": 0.4844 + }, + { + "start": 30202.96, + "end": 30203.28, + "probability": 0.5541 + }, + { + "start": 30203.3, + "end": 30207.34, + "probability": 0.9463 + }, + { + "start": 30207.34, + "end": 30209.94, + "probability": 0.9705 + }, + { + "start": 30210.4, + "end": 30212.32, + "probability": 0.988 + }, + { + "start": 30212.86, + "end": 30215.56, + "probability": 0.9878 + }, + { + "start": 30215.64, + "end": 30218.5, + "probability": 0.8606 + }, + { + "start": 30218.68, + "end": 30221.68, + "probability": 0.9819 + }, + { + "start": 30222.3, + "end": 30225.34, + "probability": 0.9529 + }, + { + "start": 30225.78, + "end": 30228.12, + "probability": 0.9943 + }, + { + "start": 30228.42, + "end": 30229.6, + "probability": 0.9203 + }, + { + "start": 30230.08, + "end": 30234.52, + "probability": 0.9489 + }, + { + "start": 30234.82, + "end": 30235.32, + "probability": 0.7827 + }, + { + "start": 30235.44, + "end": 30236.26, + "probability": 0.7132 + }, + { + "start": 30236.76, + "end": 30239.92, + "probability": 0.9672 + }, + { + "start": 30240.28, + "end": 30241.42, + "probability": 0.8872 + }, + { + "start": 30241.48, + "end": 30242.76, + "probability": 0.7672 + }, + { + "start": 30242.78, + "end": 30247.64, + "probability": 0.9948 + }, + { + "start": 30248.44, + "end": 30250.97, + "probability": 0.864 + }, + { + "start": 30252.92, + "end": 30254.08, + "probability": 0.6527 + }, + { + "start": 30254.18, + "end": 30254.92, + "probability": 0.7599 + }, + { + "start": 30255.68, + "end": 30256.78, + "probability": 0.7509 + }, + { + "start": 30257.4, + "end": 30258.36, + "probability": 0.5362 + }, + { + "start": 30276.3, + "end": 30276.3, + "probability": 0.0615 + }, + { + "start": 30276.3, + "end": 30278.62, + "probability": 0.4999 + }, + { + "start": 30279.42, + "end": 30285.28, + "probability": 0.3836 + }, + { + "start": 30286.4, + "end": 30291.36, + "probability": 0.8452 + }, + { + "start": 30291.42, + "end": 30293.94, + "probability": 0.9007 + }, + { + "start": 30294.16, + "end": 30296.48, + "probability": 0.916 + }, + { + "start": 30296.92, + "end": 30299.7, + "probability": 0.9861 + }, + { + "start": 30300.44, + "end": 30303.58, + "probability": 0.6827 + }, + { + "start": 30304.98, + "end": 30307.71, + "probability": 0.1808 + }, + { + "start": 30310.34, + "end": 30314.8, + "probability": 0.8394 + }, + { + "start": 30315.34, + "end": 30319.68, + "probability": 0.9011 + }, + { + "start": 30320.34, + "end": 30322.78, + "probability": 0.9937 + }, + { + "start": 30323.08, + "end": 30326.44, + "probability": 0.8461 + }, + { + "start": 30327.08, + "end": 30330.2, + "probability": 0.8892 + }, + { + "start": 30330.72, + "end": 30331.16, + "probability": 0.7747 + }, + { + "start": 30331.58, + "end": 30332.16, + "probability": 0.7382 + }, + { + "start": 30332.76, + "end": 30333.5, + "probability": 0.4704 + }, + { + "start": 30333.66, + "end": 30334.9, + "probability": 0.8213 + }, + { + "start": 30335.34, + "end": 30335.8, + "probability": 0.6565 + }, + { + "start": 30336.42, + "end": 30337.48, + "probability": 0.7697 + }, + { + "start": 30337.62, + "end": 30339.12, + "probability": 0.3959 + }, + { + "start": 30340.12, + "end": 30342.42, + "probability": 0.9727 + }, + { + "start": 30346.32, + "end": 30346.88, + "probability": 0.3251 + }, + { + "start": 30346.88, + "end": 30347.14, + "probability": 0.2798 + }, + { + "start": 30348.62, + "end": 30348.82, + "probability": 0.3038 + }, + { + "start": 30348.82, + "end": 30353.98, + "probability": 0.8071 + }, + { + "start": 30353.98, + "end": 30354.12, + "probability": 0.2939 + }, + { + "start": 30355.04, + "end": 30356.24, + "probability": 0.8416 + }, + { + "start": 30357.06, + "end": 30359.72, + "probability": 0.937 + }, + { + "start": 30361.76, + "end": 30364.74, + "probability": 0.8208 + }, + { + "start": 30366.86, + "end": 30367.58, + "probability": 0.0368 + }, + { + "start": 30369.08, + "end": 30369.87, + "probability": 0.7144 + }, + { + "start": 30371.04, + "end": 30371.24, + "probability": 0.0333 + }, + { + "start": 30371.66, + "end": 30372.02, + "probability": 0.9243 + }, + { + "start": 30372.1, + "end": 30374.68, + "probability": 0.8284 + }, + { + "start": 30378.16, + "end": 30379.6, + "probability": 0.6327 + }, + { + "start": 30381.32, + "end": 30382.88, + "probability": 0.9526 + }, + { + "start": 30385.6, + "end": 30387.94, + "probability": 0.7531 + }, + { + "start": 30401.92, + "end": 30402.44, + "probability": 0.4743 + }, + { + "start": 30403.72, + "end": 30404.58, + "probability": 0.727 + }, + { + "start": 30408.38, + "end": 30410.24, + "probability": 0.0959 + }, + { + "start": 30410.82, + "end": 30412.58, + "probability": 0.6685 + }, + { + "start": 30413.08, + "end": 30414.48, + "probability": 0.8336 + }, + { + "start": 30419.08, + "end": 30420.04, + "probability": 0.5416 + }, + { + "start": 30421.16, + "end": 30422.28, + "probability": 0.9712 + }, + { + "start": 30422.68, + "end": 30425.32, + "probability": 0.9024 + }, + { + "start": 30425.38, + "end": 30426.42, + "probability": 0.785 + }, + { + "start": 30426.94, + "end": 30428.06, + "probability": 0.7449 + }, + { + "start": 30430.08, + "end": 30431.34, + "probability": 0.8148 + }, + { + "start": 30431.48, + "end": 30432.96, + "probability": 0.9603 + }, + { + "start": 30433.32, + "end": 30434.54, + "probability": 0.877 + }, + { + "start": 30435.34, + "end": 30438.0, + "probability": 0.8571 + }, + { + "start": 30440.08, + "end": 30440.86, + "probability": 0.8291 + }, + { + "start": 30440.94, + "end": 30443.04, + "probability": 0.9749 + }, + { + "start": 30444.0, + "end": 30446.1, + "probability": 0.7144 + }, + { + "start": 30446.32, + "end": 30450.8, + "probability": 0.7344 + }, + { + "start": 30451.98, + "end": 30455.71, + "probability": 0.9487 + }, + { + "start": 30456.18, + "end": 30458.18, + "probability": 0.9556 + }, + { + "start": 30458.62, + "end": 30459.8, + "probability": 0.9849 + }, + { + "start": 30459.88, + "end": 30460.83, + "probability": 0.8085 + }, + { + "start": 30461.4, + "end": 30462.5, + "probability": 0.977 + }, + { + "start": 30462.62, + "end": 30466.52, + "probability": 0.9842 + }, + { + "start": 30467.02, + "end": 30469.27, + "probability": 0.8669 + }, + { + "start": 30470.0, + "end": 30473.48, + "probability": 0.8522 + }, + { + "start": 30474.76, + "end": 30475.84, + "probability": 0.8685 + }, + { + "start": 30476.42, + "end": 30478.64, + "probability": 0.9101 + }, + { + "start": 30479.16, + "end": 30481.38, + "probability": 0.9914 + }, + { + "start": 30481.96, + "end": 30484.44, + "probability": 0.9862 + }, + { + "start": 30485.26, + "end": 30487.46, + "probability": 0.8784 + }, + { + "start": 30488.04, + "end": 30490.08, + "probability": 0.9602 + }, + { + "start": 30491.22, + "end": 30493.5, + "probability": 0.9901 + }, + { + "start": 30494.38, + "end": 30497.56, + "probability": 0.9321 + }, + { + "start": 30498.94, + "end": 30503.86, + "probability": 0.8769 + }, + { + "start": 30504.36, + "end": 30508.16, + "probability": 0.9927 + }, + { + "start": 30508.74, + "end": 30511.82, + "probability": 0.9823 + }, + { + "start": 30512.48, + "end": 30514.8, + "probability": 0.872 + }, + { + "start": 30515.44, + "end": 30516.94, + "probability": 0.9203 + }, + { + "start": 30517.66, + "end": 30518.62, + "probability": 0.9391 + }, + { + "start": 30519.5, + "end": 30521.26, + "probability": 0.9414 + }, + { + "start": 30522.38, + "end": 30524.8, + "probability": 0.9201 + }, + { + "start": 30525.24, + "end": 30526.18, + "probability": 0.4921 + }, + { + "start": 30526.26, + "end": 30528.82, + "probability": 0.9955 + }, + { + "start": 30529.82, + "end": 30533.34, + "probability": 0.9954 + }, + { + "start": 30533.72, + "end": 30535.48, + "probability": 0.8264 + }, + { + "start": 30535.96, + "end": 30538.86, + "probability": 0.8641 + }, + { + "start": 30539.56, + "end": 30541.64, + "probability": 0.9827 + }, + { + "start": 30541.96, + "end": 30544.22, + "probability": 0.9968 + }, + { + "start": 30544.74, + "end": 30545.9, + "probability": 0.7878 + }, + { + "start": 30546.08, + "end": 30547.52, + "probability": 0.9045 + }, + { + "start": 30547.98, + "end": 30548.92, + "probability": 0.9202 + }, + { + "start": 30550.52, + "end": 30556.06, + "probability": 0.928 + }, + { + "start": 30556.3, + "end": 30558.38, + "probability": 0.9834 + }, + { + "start": 30559.0, + "end": 30560.12, + "probability": 0.9897 + }, + { + "start": 30560.62, + "end": 30563.3, + "probability": 0.8461 + }, + { + "start": 30563.72, + "end": 30564.52, + "probability": 0.919 + }, + { + "start": 30564.88, + "end": 30566.04, + "probability": 0.8359 + }, + { + "start": 30568.37, + "end": 30572.78, + "probability": 0.7885 + }, + { + "start": 30573.0, + "end": 30573.62, + "probability": 0.7094 + }, + { + "start": 30573.92, + "end": 30575.62, + "probability": 0.9648 + }, + { + "start": 30576.14, + "end": 30580.8, + "probability": 0.9925 + }, + { + "start": 30581.54, + "end": 30583.75, + "probability": 0.9961 + }, + { + "start": 30584.0, + "end": 30586.3, + "probability": 0.8682 + }, + { + "start": 30586.36, + "end": 30587.44, + "probability": 0.912 + }, + { + "start": 30587.78, + "end": 30588.66, + "probability": 0.7908 + }, + { + "start": 30588.96, + "end": 30592.08, + "probability": 0.9531 + }, + { + "start": 30592.56, + "end": 30594.66, + "probability": 0.9916 + }, + { + "start": 30594.74, + "end": 30595.18, + "probability": 0.8017 + }, + { + "start": 30595.68, + "end": 30596.55, + "probability": 0.8538 + }, + { + "start": 30599.84, + "end": 30600.96, + "probability": 0.7389 + }, + { + "start": 30600.96, + "end": 30601.8, + "probability": 0.4738 + }, + { + "start": 30603.54, + "end": 30605.96, + "probability": 0.7508 + }, + { + "start": 30606.42, + "end": 30606.96, + "probability": 0.241 + }, + { + "start": 30607.4, + "end": 30607.54, + "probability": 0.9067 + }, + { + "start": 30611.3, + "end": 30611.86, + "probability": 0.7382 + }, + { + "start": 30613.8, + "end": 30615.58, + "probability": 0.9783 + }, + { + "start": 30618.1, + "end": 30618.62, + "probability": 0.8811 + }, + { + "start": 30619.46, + "end": 30620.52, + "probability": 0.1854 + }, + { + "start": 30623.93, + "end": 30625.62, + "probability": 0.0256 + }, + { + "start": 30626.26, + "end": 30626.26, + "probability": 0.2004 + }, + { + "start": 30626.26, + "end": 30626.26, + "probability": 0.1201 + }, + { + "start": 30626.26, + "end": 30626.28, + "probability": 0.0587 + }, + { + "start": 30626.28, + "end": 30626.28, + "probability": 0.2707 + }, + { + "start": 30626.28, + "end": 30627.36, + "probability": 0.1875 + }, + { + "start": 30628.82, + "end": 30632.48, + "probability": 0.9229 + }, + { + "start": 30633.98, + "end": 30636.5, + "probability": 0.1696 + }, + { + "start": 30638.82, + "end": 30639.86, + "probability": 0.6966 + }, + { + "start": 30640.08, + "end": 30640.36, + "probability": 0.1151 + }, + { + "start": 30640.42, + "end": 30642.2, + "probability": 0.3043 + }, + { + "start": 30644.48, + "end": 30645.66, + "probability": 0.6452 + }, + { + "start": 30646.5, + "end": 30647.3, + "probability": 0.7468 + }, + { + "start": 30647.74, + "end": 30647.94, + "probability": 0.7203 + }, + { + "start": 30648.0, + "end": 30648.84, + "probability": 0.9419 + }, + { + "start": 30648.88, + "end": 30649.3, + "probability": 0.9395 + }, + { + "start": 30649.4, + "end": 30650.18, + "probability": 0.9272 + }, + { + "start": 30651.06, + "end": 30653.44, + "probability": 0.8923 + }, + { + "start": 30655.18, + "end": 30659.54, + "probability": 0.9829 + }, + { + "start": 30659.54, + "end": 30662.2, + "probability": 0.9961 + }, + { + "start": 30662.8, + "end": 30664.82, + "probability": 0.9085 + }, + { + "start": 30666.4, + "end": 30666.7, + "probability": 0.6999 + }, + { + "start": 30666.72, + "end": 30668.6, + "probability": 0.9922 + }, + { + "start": 30669.02, + "end": 30669.96, + "probability": 0.8805 + }, + { + "start": 30671.24, + "end": 30671.94, + "probability": 0.914 + }, + { + "start": 30672.94, + "end": 30673.48, + "probability": 0.3592 + }, + { + "start": 30674.08, + "end": 30676.26, + "probability": 0.9744 + }, + { + "start": 30676.58, + "end": 30679.2, + "probability": 0.9604 + }, + { + "start": 30680.56, + "end": 30681.38, + "probability": 0.3658 + }, + { + "start": 30681.38, + "end": 30684.98, + "probability": 0.9372 + }, + { + "start": 30684.98, + "end": 30690.44, + "probability": 0.9735 + }, + { + "start": 30691.16, + "end": 30691.9, + "probability": 0.7938 + }, + { + "start": 30693.32, + "end": 30696.84, + "probability": 0.9345 + }, + { + "start": 30697.32, + "end": 30699.4, + "probability": 0.4814 + }, + { + "start": 30700.5, + "end": 30703.3, + "probability": 0.8933 + }, + { + "start": 30703.76, + "end": 30706.34, + "probability": 0.9299 + }, + { + "start": 30707.36, + "end": 30714.6, + "probability": 0.965 + }, + { + "start": 30715.48, + "end": 30717.64, + "probability": 0.7914 + }, + { + "start": 30717.66, + "end": 30718.22, + "probability": 0.844 + }, + { + "start": 30718.66, + "end": 30720.64, + "probability": 0.9761 + }, + { + "start": 30720.64, + "end": 30723.84, + "probability": 0.9187 + }, + { + "start": 30724.76, + "end": 30727.66, + "probability": 0.9689 + }, + { + "start": 30728.56, + "end": 30730.52, + "probability": 0.963 + }, + { + "start": 30731.06, + "end": 30735.54, + "probability": 0.6698 + }, + { + "start": 30735.72, + "end": 30736.12, + "probability": 0.7184 + }, + { + "start": 30736.88, + "end": 30740.46, + "probability": 0.9963 + }, + { + "start": 30740.46, + "end": 30745.04, + "probability": 0.9243 + }, + { + "start": 30745.92, + "end": 30745.92, + "probability": 0.0337 + }, + { + "start": 30745.92, + "end": 30747.96, + "probability": 0.9395 + }, + { + "start": 30748.82, + "end": 30753.88, + "probability": 0.9457 + }, + { + "start": 30754.94, + "end": 30758.9, + "probability": 0.9685 + }, + { + "start": 30759.22, + "end": 30762.66, + "probability": 0.9863 + }, + { + "start": 30763.72, + "end": 30767.08, + "probability": 0.9982 + }, + { + "start": 30767.6, + "end": 30770.86, + "probability": 0.8179 + }, + { + "start": 30771.7, + "end": 30775.04, + "probability": 0.9652 + }, + { + "start": 30775.04, + "end": 30779.56, + "probability": 0.9965 + }, + { + "start": 30779.82, + "end": 30781.0, + "probability": 0.5515 + }, + { + "start": 30781.38, + "end": 30783.34, + "probability": 0.8357 + }, + { + "start": 30783.54, + "end": 30784.0, + "probability": 0.684 + }, + { + "start": 30784.06, + "end": 30784.74, + "probability": 0.5914 + }, + { + "start": 30785.22, + "end": 30786.22, + "probability": 0.9722 + }, + { + "start": 30786.58, + "end": 30788.36, + "probability": 0.9756 + }, + { + "start": 30789.18, + "end": 30792.3, + "probability": 0.993 + }, + { + "start": 30792.3, + "end": 30795.22, + "probability": 0.813 + }, + { + "start": 30795.94, + "end": 30798.72, + "probability": 0.8022 + }, + { + "start": 30798.72, + "end": 30802.76, + "probability": 0.7685 + }, + { + "start": 30803.16, + "end": 30804.46, + "probability": 0.8353 + }, + { + "start": 30805.38, + "end": 30806.94, + "probability": 0.9705 + }, + { + "start": 30807.86, + "end": 30809.94, + "probability": 0.7433 + }, + { + "start": 30810.58, + "end": 30811.94, + "probability": 0.7845 + }, + { + "start": 30812.42, + "end": 30816.96, + "probability": 0.9695 + }, + { + "start": 30817.4, + "end": 30818.8, + "probability": 0.9673 + }, + { + "start": 30819.48, + "end": 30820.44, + "probability": 0.9885 + }, + { + "start": 30821.16, + "end": 30822.86, + "probability": 0.7479 + }, + { + "start": 30823.5, + "end": 30825.3, + "probability": 0.8527 + }, + { + "start": 30826.16, + "end": 30827.94, + "probability": 0.8555 + }, + { + "start": 30828.32, + "end": 30829.92, + "probability": 0.7708 + }, + { + "start": 30830.46, + "end": 30831.32, + "probability": 0.9862 + }, + { + "start": 30831.66, + "end": 30832.04, + "probability": 0.4876 + }, + { + "start": 30832.88, + "end": 30837.18, + "probability": 0.9365 + }, + { + "start": 30838.38, + "end": 30841.68, + "probability": 0.9974 + }, + { + "start": 30842.04, + "end": 30843.32, + "probability": 0.9781 + }, + { + "start": 30843.4, + "end": 30844.06, + "probability": 0.6969 + }, + { + "start": 30844.46, + "end": 30846.28, + "probability": 0.9395 + }, + { + "start": 30846.88, + "end": 30848.48, + "probability": 0.9945 + }, + { + "start": 30848.56, + "end": 30850.0, + "probability": 0.9707 + }, + { + "start": 30851.26, + "end": 30856.22, + "probability": 0.9966 + }, + { + "start": 30856.78, + "end": 30857.68, + "probability": 0.9375 + }, + { + "start": 30858.8, + "end": 30861.44, + "probability": 0.9912 + }, + { + "start": 30862.86, + "end": 30866.54, + "probability": 0.9712 + }, + { + "start": 30867.8, + "end": 30870.06, + "probability": 0.9276 + }, + { + "start": 30870.32, + "end": 30871.42, + "probability": 0.9713 + }, + { + "start": 30872.02, + "end": 30874.19, + "probability": 0.9819 + }, + { + "start": 30874.96, + "end": 30877.12, + "probability": 0.95 + }, + { + "start": 30878.12, + "end": 30879.56, + "probability": 0.9297 + }, + { + "start": 30880.06, + "end": 30880.96, + "probability": 0.9882 + }, + { + "start": 30881.04, + "end": 30882.44, + "probability": 0.9714 + }, + { + "start": 30882.62, + "end": 30883.8, + "probability": 0.895 + }, + { + "start": 30884.22, + "end": 30886.14, + "probability": 0.6963 + }, + { + "start": 30886.82, + "end": 30890.38, + "probability": 0.9893 + }, + { + "start": 30890.94, + "end": 30893.48, + "probability": 0.9964 + }, + { + "start": 30894.16, + "end": 30895.26, + "probability": 0.9953 + }, + { + "start": 30895.52, + "end": 30896.08, + "probability": 0.9561 + }, + { + "start": 30896.24, + "end": 30897.2, + "probability": 0.7739 + }, + { + "start": 30898.0, + "end": 30900.1, + "probability": 0.9939 + }, + { + "start": 30900.42, + "end": 30903.68, + "probability": 0.9357 + }, + { + "start": 30904.32, + "end": 30906.94, + "probability": 0.9899 + }, + { + "start": 30908.02, + "end": 30910.02, + "probability": 0.7983 + }, + { + "start": 30910.58, + "end": 30911.82, + "probability": 0.9088 + }, + { + "start": 30912.5, + "end": 30916.18, + "probability": 0.9952 + }, + { + "start": 30917.24, + "end": 30920.04, + "probability": 0.9431 + }, + { + "start": 30920.64, + "end": 30924.72, + "probability": 0.9626 + }, + { + "start": 30924.84, + "end": 30927.6, + "probability": 0.9219 + }, + { + "start": 30928.02, + "end": 30928.7, + "probability": 0.8784 + }, + { + "start": 30928.84, + "end": 30929.94, + "probability": 0.6069 + }, + { + "start": 30930.04, + "end": 30930.59, + "probability": 0.966 + }, + { + "start": 30930.84, + "end": 30933.13, + "probability": 0.9877 + }, + { + "start": 30933.56, + "end": 30933.96, + "probability": 0.8627 + }, + { + "start": 30934.26, + "end": 30936.56, + "probability": 0.7863 + }, + { + "start": 30937.5, + "end": 30939.38, + "probability": 0.8018 + }, + { + "start": 30940.44, + "end": 30946.0, + "probability": 0.9349 + }, + { + "start": 30947.08, + "end": 30948.76, + "probability": 0.857 + }, + { + "start": 30948.98, + "end": 30949.28, + "probability": 0.5145 + }, + { + "start": 30950.54, + "end": 30951.58, + "probability": 0.958 + }, + { + "start": 30952.06, + "end": 30953.6, + "probability": 0.9638 + }, + { + "start": 30954.94, + "end": 30955.26, + "probability": 0.7713 + }, + { + "start": 30956.18, + "end": 30956.52, + "probability": 0.8906 + }, + { + "start": 30957.12, + "end": 30958.6, + "probability": 0.7801 + }, + { + "start": 30959.24, + "end": 30960.18, + "probability": 0.8265 + }, + { + "start": 30961.08, + "end": 30963.46, + "probability": 0.9192 + }, + { + "start": 30963.9, + "end": 30968.04, + "probability": 0.9069 + }, + { + "start": 30969.88, + "end": 30971.16, + "probability": 0.5174 + }, + { + "start": 30971.16, + "end": 30971.16, + "probability": 0.0695 + }, + { + "start": 30971.16, + "end": 30971.16, + "probability": 0.0503 + }, + { + "start": 30971.16, + "end": 30971.84, + "probability": 0.4341 + }, + { + "start": 30972.24, + "end": 30975.3, + "probability": 0.4088 + }, + { + "start": 30977.06, + "end": 30978.4, + "probability": 0.3171 + }, + { + "start": 30978.4, + "end": 30979.98, + "probability": 0.3661 + }, + { + "start": 30980.84, + "end": 30981.62, + "probability": 0.8639 + }, + { + "start": 30982.34, + "end": 30986.06, + "probability": 0.8691 + }, + { + "start": 30986.16, + "end": 30988.28, + "probability": 0.9209 + }, + { + "start": 30988.5, + "end": 30988.74, + "probability": 0.7832 + }, + { + "start": 30989.2, + "end": 30990.3, + "probability": 0.7689 + }, + { + "start": 30991.48, + "end": 30994.58, + "probability": 0.7683 + }, + { + "start": 30995.36, + "end": 30998.06, + "probability": 0.8517 + }, + { + "start": 30998.54, + "end": 30999.28, + "probability": 0.7437 + }, + { + "start": 30999.32, + "end": 31002.66, + "probability": 0.6717 + }, + { + "start": 31003.2, + "end": 31006.3, + "probability": 0.7915 + }, + { + "start": 31006.84, + "end": 31007.8, + "probability": 0.3619 + }, + { + "start": 31008.08, + "end": 31011.2, + "probability": 0.9766 + }, + { + "start": 31011.72, + "end": 31014.96, + "probability": 0.7495 + }, + { + "start": 31016.08, + "end": 31018.76, + "probability": 0.9057 + }, + { + "start": 31019.24, + "end": 31020.24, + "probability": 0.3539 + }, + { + "start": 31020.52, + "end": 31022.02, + "probability": 0.9919 + }, + { + "start": 31022.4, + "end": 31024.42, + "probability": 0.8392 + }, + { + "start": 31025.22, + "end": 31025.62, + "probability": 0.0072 + } + ], + "segments_count": 10600, + "words_count": 51429, + "avg_words_per_segment": 4.8518, + "avg_segment_duration": 2.0996, + "avg_words_per_minute": 98.9734, + "plenum_id": "67339", + "duration": 31177.48, + "title": null, + "plenum_date": "2017-11-08" +} \ No newline at end of file