diff --git "a/73253/metadata.json" "b/73253/metadata.json" new file mode 100644--- /dev/null +++ "b/73253/metadata.json" @@ -0,0 +1,21932 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "73253", + "quality_score": 0.8853, + "per_segment_quality_scores": [ + { + "start": 13.7, + "end": 13.94, + "probability": 0.0505 + }, + { + "start": 13.94, + "end": 13.94, + "probability": 0.1796 + }, + { + "start": 13.94, + "end": 13.94, + "probability": 0.1079 + }, + { + "start": 13.94, + "end": 13.96, + "probability": 0.021 + }, + { + "start": 24.54, + "end": 26.62, + "probability": 0.2356 + }, + { + "start": 42.2, + "end": 44.08, + "probability": 0.5744 + }, + { + "start": 44.24, + "end": 48.9, + "probability": 0.972 + }, + { + "start": 49.6, + "end": 53.28, + "probability": 0.7432 + }, + { + "start": 53.62, + "end": 57.04, + "probability": 0.8684 + }, + { + "start": 57.88, + "end": 58.2, + "probability": 0.5015 + }, + { + "start": 58.74, + "end": 60.42, + "probability": 0.7987 + }, + { + "start": 61.62, + "end": 63.86, + "probability": 0.7734 + }, + { + "start": 64.36, + "end": 67.46, + "probability": 0.9544 + }, + { + "start": 67.72, + "end": 68.66, + "probability": 0.9824 + }, + { + "start": 68.74, + "end": 69.44, + "probability": 0.6373 + }, + { + "start": 70.2, + "end": 71.56, + "probability": 0.8659 + }, + { + "start": 72.74, + "end": 77.96, + "probability": 0.5995 + }, + { + "start": 78.74, + "end": 81.2, + "probability": 0.9823 + }, + { + "start": 81.74, + "end": 88.26, + "probability": 0.9247 + }, + { + "start": 91.02, + "end": 94.2, + "probability": 0.7503 + }, + { + "start": 96.74, + "end": 100.78, + "probability": 0.8376 + }, + { + "start": 101.84, + "end": 105.34, + "probability": 0.9958 + }, + { + "start": 105.92, + "end": 107.1, + "probability": 0.9437 + }, + { + "start": 107.2, + "end": 109.36, + "probability": 0.8364 + }, + { + "start": 110.2, + "end": 110.88, + "probability": 0.7232 + }, + { + "start": 111.48, + "end": 113.26, + "probability": 0.8334 + }, + { + "start": 114.08, + "end": 116.64, + "probability": 0.9524 + }, + { + "start": 117.08, + "end": 119.38, + "probability": 0.7671 + }, + { + "start": 119.5, + "end": 121.4, + "probability": 0.7892 + }, + { + "start": 122.42, + "end": 124.5, + "probability": 0.5677 + }, + { + "start": 124.76, + "end": 125.86, + "probability": 0.5869 + }, + { + "start": 126.66, + "end": 130.56, + "probability": 0.8248 + }, + { + "start": 131.72, + "end": 136.0, + "probability": 0.8897 + }, + { + "start": 136.8, + "end": 137.9, + "probability": 0.6638 + }, + { + "start": 138.74, + "end": 141.72, + "probability": 0.8916 + }, + { + "start": 142.26, + "end": 143.42, + "probability": 0.824 + }, + { + "start": 143.54, + "end": 146.48, + "probability": 0.7789 + }, + { + "start": 147.68, + "end": 152.43, + "probability": 0.9285 + }, + { + "start": 153.62, + "end": 155.64, + "probability": 0.9829 + }, + { + "start": 155.64, + "end": 158.44, + "probability": 0.9842 + }, + { + "start": 159.06, + "end": 162.32, + "probability": 0.9772 + }, + { + "start": 163.38, + "end": 164.38, + "probability": 0.6001 + }, + { + "start": 164.9, + "end": 170.88, + "probability": 0.4905 + }, + { + "start": 172.14, + "end": 174.4, + "probability": 0.6457 + }, + { + "start": 176.76, + "end": 180.48, + "probability": 0.9564 + }, + { + "start": 180.68, + "end": 181.32, + "probability": 0.8942 + }, + { + "start": 182.0, + "end": 184.9, + "probability": 0.8876 + }, + { + "start": 184.9, + "end": 188.5, + "probability": 0.8313 + }, + { + "start": 188.54, + "end": 190.72, + "probability": 0.5844 + }, + { + "start": 191.28, + "end": 192.16, + "probability": 0.8768 + }, + { + "start": 192.5, + "end": 195.3, + "probability": 0.9115 + }, + { + "start": 195.98, + "end": 198.5, + "probability": 0.7535 + }, + { + "start": 199.12, + "end": 201.96, + "probability": 0.9289 + }, + { + "start": 201.96, + "end": 205.36, + "probability": 0.9977 + }, + { + "start": 205.92, + "end": 206.36, + "probability": 0.5973 + }, + { + "start": 207.02, + "end": 210.1, + "probability": 0.7902 + }, + { + "start": 210.72, + "end": 211.5, + "probability": 0.6948 + }, + { + "start": 211.92, + "end": 212.62, + "probability": 0.7397 + }, + { + "start": 212.74, + "end": 216.34, + "probability": 0.8789 + }, + { + "start": 216.86, + "end": 218.14, + "probability": 0.7587 + }, + { + "start": 218.66, + "end": 220.42, + "probability": 0.9482 + }, + { + "start": 221.04, + "end": 223.0, + "probability": 0.9575 + }, + { + "start": 223.94, + "end": 224.98, + "probability": 0.5986 + }, + { + "start": 225.04, + "end": 228.28, + "probability": 0.8282 + }, + { + "start": 228.46, + "end": 228.88, + "probability": 0.929 + }, + { + "start": 229.68, + "end": 234.56, + "probability": 0.8511 + }, + { + "start": 237.43, + "end": 240.84, + "probability": 0.7517 + }, + { + "start": 241.28, + "end": 242.12, + "probability": 0.723 + }, + { + "start": 243.16, + "end": 244.54, + "probability": 0.7639 + }, + { + "start": 246.04, + "end": 248.64, + "probability": 0.9987 + }, + { + "start": 249.24, + "end": 252.76, + "probability": 0.9917 + }, + { + "start": 253.42, + "end": 254.42, + "probability": 0.6501 + }, + { + "start": 255.0, + "end": 257.56, + "probability": 0.9482 + }, + { + "start": 257.84, + "end": 258.33, + "probability": 0.8396 + }, + { + "start": 258.7, + "end": 259.58, + "probability": 0.9824 + }, + { + "start": 260.24, + "end": 262.84, + "probability": 0.9966 + }, + { + "start": 263.28, + "end": 265.72, + "probability": 0.9919 + }, + { + "start": 265.72, + "end": 268.1, + "probability": 0.9837 + }, + { + "start": 268.48, + "end": 268.78, + "probability": 0.5913 + }, + { + "start": 269.1, + "end": 270.62, + "probability": 0.544 + }, + { + "start": 270.62, + "end": 272.2, + "probability": 0.7541 + }, + { + "start": 272.64, + "end": 274.32, + "probability": 0.9664 + }, + { + "start": 275.08, + "end": 276.54, + "probability": 0.5017 + }, + { + "start": 281.9, + "end": 283.18, + "probability": 0.5973 + }, + { + "start": 283.52, + "end": 284.36, + "probability": 0.7408 + }, + { + "start": 285.06, + "end": 288.64, + "probability": 0.9531 + }, + { + "start": 289.02, + "end": 290.1, + "probability": 0.498 + }, + { + "start": 290.5, + "end": 291.94, + "probability": 0.9502 + }, + { + "start": 292.76, + "end": 294.14, + "probability": 0.5119 + }, + { + "start": 294.76, + "end": 298.76, + "probability": 0.9475 + }, + { + "start": 298.92, + "end": 300.86, + "probability": 0.5845 + }, + { + "start": 300.92, + "end": 303.07, + "probability": 0.9971 + }, + { + "start": 303.7, + "end": 308.2, + "probability": 0.9963 + }, + { + "start": 308.74, + "end": 309.48, + "probability": 0.9583 + }, + { + "start": 309.62, + "end": 311.58, + "probability": 0.9812 + }, + { + "start": 312.4, + "end": 314.14, + "probability": 0.86 + }, + { + "start": 315.17, + "end": 318.48, + "probability": 0.9858 + }, + { + "start": 319.38, + "end": 325.02, + "probability": 0.9622 + }, + { + "start": 325.6, + "end": 326.52, + "probability": 0.9612 + }, + { + "start": 327.44, + "end": 331.6, + "probability": 0.999 + }, + { + "start": 332.08, + "end": 332.4, + "probability": 0.8583 + }, + { + "start": 332.54, + "end": 334.0, + "probability": 0.886 + }, + { + "start": 334.96, + "end": 338.3, + "probability": 0.9893 + }, + { + "start": 338.3, + "end": 342.28, + "probability": 0.9827 + }, + { + "start": 342.76, + "end": 343.06, + "probability": 0.8035 + }, + { + "start": 343.46, + "end": 344.5, + "probability": 0.8301 + }, + { + "start": 345.04, + "end": 345.54, + "probability": 0.4487 + }, + { + "start": 345.6, + "end": 348.15, + "probability": 0.8334 + }, + { + "start": 348.8, + "end": 350.08, + "probability": 0.7825 + }, + { + "start": 352.36, + "end": 353.76, + "probability": 0.6181 + }, + { + "start": 353.88, + "end": 354.16, + "probability": 0.4624 + }, + { + "start": 354.28, + "end": 355.28, + "probability": 0.7321 + }, + { + "start": 356.14, + "end": 358.84, + "probability": 0.8418 + }, + { + "start": 359.84, + "end": 364.72, + "probability": 0.9834 + }, + { + "start": 364.92, + "end": 365.64, + "probability": 0.8224 + }, + { + "start": 365.78, + "end": 367.7, + "probability": 0.8524 + }, + { + "start": 368.54, + "end": 372.02, + "probability": 0.9714 + }, + { + "start": 372.6, + "end": 373.42, + "probability": 0.9844 + }, + { + "start": 373.52, + "end": 375.2, + "probability": 0.9927 + }, + { + "start": 376.28, + "end": 379.24, + "probability": 0.9915 + }, + { + "start": 379.82, + "end": 381.12, + "probability": 0.895 + }, + { + "start": 381.72, + "end": 384.68, + "probability": 0.9972 + }, + { + "start": 385.08, + "end": 388.42, + "probability": 0.9634 + }, + { + "start": 389.84, + "end": 390.86, + "probability": 0.7543 + }, + { + "start": 391.4, + "end": 393.1, + "probability": 0.5889 + }, + { + "start": 393.3, + "end": 398.76, + "probability": 0.7848 + }, + { + "start": 398.9, + "end": 400.26, + "probability": 0.9478 + }, + { + "start": 400.48, + "end": 401.44, + "probability": 0.8881 + }, + { + "start": 402.02, + "end": 403.48, + "probability": 0.9253 + }, + { + "start": 404.12, + "end": 407.72, + "probability": 0.8218 + }, + { + "start": 408.32, + "end": 408.62, + "probability": 0.7415 + }, + { + "start": 408.74, + "end": 417.78, + "probability": 0.9928 + }, + { + "start": 417.92, + "end": 419.27, + "probability": 0.9917 + }, + { + "start": 419.68, + "end": 422.08, + "probability": 0.7194 + }, + { + "start": 422.5, + "end": 423.66, + "probability": 0.9829 + }, + { + "start": 424.0, + "end": 425.36, + "probability": 0.6111 + }, + { + "start": 425.8, + "end": 427.82, + "probability": 0.871 + }, + { + "start": 428.26, + "end": 431.74, + "probability": 0.9904 + }, + { + "start": 431.78, + "end": 432.92, + "probability": 0.9416 + }, + { + "start": 433.28, + "end": 433.87, + "probability": 0.8158 + }, + { + "start": 434.18, + "end": 434.66, + "probability": 0.3374 + }, + { + "start": 434.7, + "end": 436.36, + "probability": 0.8928 + }, + { + "start": 436.52, + "end": 439.1, + "probability": 0.809 + }, + { + "start": 439.22, + "end": 440.5, + "probability": 0.5556 + }, + { + "start": 442.4, + "end": 443.0, + "probability": 0.185 + }, + { + "start": 444.2, + "end": 447.82, + "probability": 0.905 + }, + { + "start": 448.3, + "end": 450.27, + "probability": 0.9634 + }, + { + "start": 451.3, + "end": 452.82, + "probability": 0.9805 + }, + { + "start": 452.88, + "end": 454.38, + "probability": 0.941 + }, + { + "start": 454.56, + "end": 454.99, + "probability": 0.7835 + }, + { + "start": 455.62, + "end": 456.14, + "probability": 0.659 + }, + { + "start": 456.7, + "end": 457.1, + "probability": 0.4825 + }, + { + "start": 457.96, + "end": 458.9, + "probability": 0.6209 + }, + { + "start": 459.04, + "end": 465.52, + "probability": 0.7292 + }, + { + "start": 465.94, + "end": 466.66, + "probability": 0.3253 + }, + { + "start": 466.88, + "end": 469.83, + "probability": 0.9426 + }, + { + "start": 470.06, + "end": 471.84, + "probability": 0.7992 + }, + { + "start": 471.94, + "end": 472.92, + "probability": 0.7083 + }, + { + "start": 473.6, + "end": 474.36, + "probability": 0.7665 + }, + { + "start": 475.22, + "end": 478.22, + "probability": 0.5508 + }, + { + "start": 478.3, + "end": 479.28, + "probability": 0.5088 + }, + { + "start": 479.94, + "end": 482.32, + "probability": 0.561 + }, + { + "start": 482.84, + "end": 484.26, + "probability": 0.723 + }, + { + "start": 487.76, + "end": 488.82, + "probability": 0.7685 + }, + { + "start": 489.0, + "end": 491.9, + "probability": 0.6502 + }, + { + "start": 492.72, + "end": 493.14, + "probability": 0.6891 + }, + { + "start": 493.92, + "end": 494.5, + "probability": 0.4298 + }, + { + "start": 494.62, + "end": 497.18, + "probability": 0.697 + }, + { + "start": 498.52, + "end": 503.4, + "probability": 0.9675 + }, + { + "start": 503.64, + "end": 505.46, + "probability": 0.9662 + }, + { + "start": 505.74, + "end": 506.22, + "probability": 0.5176 + }, + { + "start": 506.28, + "end": 507.06, + "probability": 0.8752 + }, + { + "start": 507.28, + "end": 507.84, + "probability": 0.705 + }, + { + "start": 508.82, + "end": 511.0, + "probability": 0.8373 + }, + { + "start": 511.44, + "end": 512.08, + "probability": 0.8999 + }, + { + "start": 512.16, + "end": 512.5, + "probability": 0.8835 + }, + { + "start": 513.24, + "end": 516.68, + "probability": 0.8384 + }, + { + "start": 517.0, + "end": 517.82, + "probability": 0.5653 + }, + { + "start": 517.88, + "end": 518.2, + "probability": 0.7828 + }, + { + "start": 518.74, + "end": 520.54, + "probability": 0.9856 + }, + { + "start": 521.04, + "end": 524.78, + "probability": 0.6217 + }, + { + "start": 525.44, + "end": 528.14, + "probability": 0.9165 + }, + { + "start": 528.94, + "end": 533.4, + "probability": 0.9594 + }, + { + "start": 534.32, + "end": 536.7, + "probability": 0.9191 + }, + { + "start": 537.06, + "end": 538.6, + "probability": 0.7795 + }, + { + "start": 538.78, + "end": 543.84, + "probability": 0.9246 + }, + { + "start": 545.02, + "end": 546.24, + "probability": 0.0271 + }, + { + "start": 546.9, + "end": 547.46, + "probability": 0.0102 + }, + { + "start": 547.68, + "end": 549.92, + "probability": 0.6821 + }, + { + "start": 549.92, + "end": 553.46, + "probability": 0.9728 + }, + { + "start": 553.94, + "end": 555.12, + "probability": 0.9255 + }, + { + "start": 555.32, + "end": 558.26, + "probability": 0.9716 + }, + { + "start": 558.31, + "end": 562.02, + "probability": 0.9566 + }, + { + "start": 562.34, + "end": 564.69, + "probability": 0.9045 + }, + { + "start": 565.62, + "end": 566.84, + "probability": 0.6251 + }, + { + "start": 566.94, + "end": 571.04, + "probability": 0.7083 + }, + { + "start": 571.16, + "end": 572.06, + "probability": 0.4159 + }, + { + "start": 572.22, + "end": 575.26, + "probability": 0.9691 + }, + { + "start": 575.62, + "end": 576.03, + "probability": 0.5084 + }, + { + "start": 576.64, + "end": 579.28, + "probability": 0.9966 + }, + { + "start": 579.48, + "end": 579.76, + "probability": 0.6128 + }, + { + "start": 580.7, + "end": 582.04, + "probability": 0.9083 + }, + { + "start": 582.94, + "end": 584.4, + "probability": 0.9294 + }, + { + "start": 584.52, + "end": 588.44, + "probability": 0.6083 + }, + { + "start": 588.6, + "end": 589.26, + "probability": 0.6507 + }, + { + "start": 590.3, + "end": 592.92, + "probability": 0.8831 + }, + { + "start": 594.52, + "end": 595.88, + "probability": 0.7667 + }, + { + "start": 596.72, + "end": 597.94, + "probability": 0.9651 + }, + { + "start": 598.28, + "end": 598.83, + "probability": 0.71 + }, + { + "start": 599.16, + "end": 602.06, + "probability": 0.8114 + }, + { + "start": 603.7, + "end": 604.38, + "probability": 0.9554 + }, + { + "start": 605.3, + "end": 607.52, + "probability": 0.6659 + }, + { + "start": 608.08, + "end": 609.3, + "probability": 0.8984 + }, + { + "start": 610.18, + "end": 610.53, + "probability": 0.003 + }, + { + "start": 610.98, + "end": 611.2, + "probability": 0.6555 + }, + { + "start": 612.02, + "end": 613.32, + "probability": 0.9902 + }, + { + "start": 613.4, + "end": 614.12, + "probability": 0.9535 + }, + { + "start": 614.4, + "end": 616.84, + "probability": 0.4969 + }, + { + "start": 616.92, + "end": 617.98, + "probability": 0.8767 + }, + { + "start": 618.46, + "end": 620.3, + "probability": 0.9606 + }, + { + "start": 621.52, + "end": 622.92, + "probability": 0.8857 + }, + { + "start": 624.12, + "end": 625.7, + "probability": 0.9401 + }, + { + "start": 626.54, + "end": 628.12, + "probability": 0.8438 + }, + { + "start": 628.24, + "end": 630.06, + "probability": 0.8076 + }, + { + "start": 630.5, + "end": 635.24, + "probability": 0.8376 + }, + { + "start": 636.46, + "end": 638.92, + "probability": 0.685 + }, + { + "start": 639.9, + "end": 641.52, + "probability": 0.6821 + }, + { + "start": 642.18, + "end": 643.9, + "probability": 0.8171 + }, + { + "start": 644.44, + "end": 647.99, + "probability": 0.9924 + }, + { + "start": 648.9, + "end": 654.92, + "probability": 0.9436 + }, + { + "start": 655.52, + "end": 657.18, + "probability": 0.8716 + }, + { + "start": 657.3, + "end": 657.46, + "probability": 0.0453 + }, + { + "start": 657.46, + "end": 658.78, + "probability": 0.0435 + }, + { + "start": 659.06, + "end": 661.5, + "probability": 0.3084 + }, + { + "start": 661.74, + "end": 667.38, + "probability": 0.7743 + }, + { + "start": 667.42, + "end": 668.44, + "probability": 0.6525 + }, + { + "start": 668.96, + "end": 669.76, + "probability": 0.9889 + }, + { + "start": 670.46, + "end": 672.34, + "probability": 0.9253 + }, + { + "start": 672.58, + "end": 673.7, + "probability": 0.9451 + }, + { + "start": 673.74, + "end": 676.22, + "probability": 0.877 + }, + { + "start": 676.84, + "end": 680.0, + "probability": 0.4434 + }, + { + "start": 680.58, + "end": 683.14, + "probability": 0.7546 + }, + { + "start": 684.83, + "end": 688.04, + "probability": 0.741 + }, + { + "start": 688.04, + "end": 688.06, + "probability": 0.0756 + }, + { + "start": 688.06, + "end": 688.06, + "probability": 0.1172 + }, + { + "start": 688.06, + "end": 688.88, + "probability": 0.3707 + }, + { + "start": 689.22, + "end": 690.84, + "probability": 0.2727 + }, + { + "start": 691.04, + "end": 698.08, + "probability": 0.8267 + }, + { + "start": 698.1, + "end": 698.8, + "probability": 0.5672 + }, + { + "start": 699.66, + "end": 700.4, + "probability": 0.9399 + }, + { + "start": 700.78, + "end": 701.2, + "probability": 0.438 + }, + { + "start": 704.17, + "end": 706.12, + "probability": 0.4482 + }, + { + "start": 707.7, + "end": 709.76, + "probability": 0.748 + }, + { + "start": 710.38, + "end": 714.58, + "probability": 0.708 + }, + { + "start": 716.38, + "end": 717.94, + "probability": 0.633 + }, + { + "start": 718.7, + "end": 719.34, + "probability": 0.9128 + }, + { + "start": 720.4, + "end": 721.02, + "probability": 0.8055 + }, + { + "start": 722.84, + "end": 725.16, + "probability": 0.8107 + }, + { + "start": 726.78, + "end": 730.56, + "probability": 0.8955 + }, + { + "start": 731.12, + "end": 732.82, + "probability": 0.6538 + }, + { + "start": 733.56, + "end": 740.16, + "probability": 0.7498 + }, + { + "start": 740.82, + "end": 741.54, + "probability": 0.998 + }, + { + "start": 741.78, + "end": 742.34, + "probability": 0.791 + }, + { + "start": 744.68, + "end": 747.6, + "probability": 0.781 + }, + { + "start": 750.04, + "end": 751.16, + "probability": 0.7773 + }, + { + "start": 752.02, + "end": 754.08, + "probability": 0.773 + }, + { + "start": 754.48, + "end": 759.22, + "probability": 0.7834 + }, + { + "start": 759.66, + "end": 760.72, + "probability": 0.9098 + }, + { + "start": 760.98, + "end": 762.22, + "probability": 0.9702 + }, + { + "start": 763.68, + "end": 765.1, + "probability": 0.9974 + }, + { + "start": 766.02, + "end": 766.75, + "probability": 0.9814 + }, + { + "start": 767.96, + "end": 768.68, + "probability": 0.7994 + }, + { + "start": 769.69, + "end": 772.74, + "probability": 0.9822 + }, + { + "start": 774.1, + "end": 775.68, + "probability": 0.8636 + }, + { + "start": 777.2, + "end": 779.7, + "probability": 0.847 + }, + { + "start": 780.44, + "end": 780.92, + "probability": 0.5525 + }, + { + "start": 781.52, + "end": 781.98, + "probability": 0.4938 + }, + { + "start": 782.08, + "end": 785.12, + "probability": 0.9675 + }, + { + "start": 785.78, + "end": 788.04, + "probability": 0.4566 + }, + { + "start": 788.24, + "end": 788.62, + "probability": 0.7256 + }, + { + "start": 790.18, + "end": 791.62, + "probability": 0.5695 + }, + { + "start": 791.66, + "end": 792.66, + "probability": 0.9202 + }, + { + "start": 792.92, + "end": 796.64, + "probability": 0.9794 + }, + { + "start": 797.44, + "end": 799.76, + "probability": 0.6763 + }, + { + "start": 800.16, + "end": 802.8, + "probability": 0.9888 + }, + { + "start": 803.96, + "end": 807.58, + "probability": 0.9508 + }, + { + "start": 808.26, + "end": 810.86, + "probability": 0.7769 + }, + { + "start": 811.32, + "end": 813.5, + "probability": 0.2944 + }, + { + "start": 814.06, + "end": 817.1, + "probability": 0.5461 + }, + { + "start": 817.28, + "end": 818.46, + "probability": 0.8494 + }, + { + "start": 819.16, + "end": 821.36, + "probability": 0.9976 + }, + { + "start": 821.36, + "end": 824.14, + "probability": 0.9933 + }, + { + "start": 824.82, + "end": 825.67, + "probability": 0.7905 + }, + { + "start": 826.2, + "end": 828.06, + "probability": 0.981 + }, + { + "start": 828.7, + "end": 832.98, + "probability": 0.9832 + }, + { + "start": 834.0, + "end": 834.46, + "probability": 0.3209 + }, + { + "start": 834.98, + "end": 836.38, + "probability": 0.8578 + }, + { + "start": 837.76, + "end": 838.08, + "probability": 0.6874 + }, + { + "start": 839.06, + "end": 841.34, + "probability": 0.8012 + }, + { + "start": 842.02, + "end": 844.04, + "probability": 0.7721 + }, + { + "start": 844.72, + "end": 846.28, + "probability": 0.5402 + }, + { + "start": 847.36, + "end": 854.18, + "probability": 0.9451 + }, + { + "start": 855.28, + "end": 856.49, + "probability": 0.672 + }, + { + "start": 857.5, + "end": 859.06, + "probability": 0.8079 + }, + { + "start": 860.22, + "end": 863.54, + "probability": 0.9763 + }, + { + "start": 864.3, + "end": 867.34, + "probability": 0.9036 + }, + { + "start": 868.06, + "end": 868.46, + "probability": 0.9959 + }, + { + "start": 871.31, + "end": 877.0, + "probability": 0.9539 + }, + { + "start": 877.58, + "end": 879.18, + "probability": 0.9678 + }, + { + "start": 879.96, + "end": 883.44, + "probability": 0.9837 + }, + { + "start": 884.0, + "end": 887.46, + "probability": 0.9911 + }, + { + "start": 888.62, + "end": 892.4, + "probability": 0.9772 + }, + { + "start": 893.2, + "end": 897.74, + "probability": 0.9953 + }, + { + "start": 898.66, + "end": 902.44, + "probability": 0.9834 + }, + { + "start": 903.02, + "end": 903.77, + "probability": 0.5591 + }, + { + "start": 904.8, + "end": 905.12, + "probability": 0.5812 + }, + { + "start": 905.24, + "end": 907.04, + "probability": 0.8456 + }, + { + "start": 907.46, + "end": 908.98, + "probability": 0.6454 + }, + { + "start": 909.42, + "end": 915.36, + "probability": 0.9725 + }, + { + "start": 916.2, + "end": 918.98, + "probability": 0.9016 + }, + { + "start": 919.5, + "end": 921.12, + "probability": 0.957 + }, + { + "start": 921.78, + "end": 925.44, + "probability": 0.9512 + }, + { + "start": 926.04, + "end": 926.98, + "probability": 0.98 + }, + { + "start": 927.92, + "end": 932.34, + "probability": 0.9831 + }, + { + "start": 932.34, + "end": 938.98, + "probability": 0.9816 + }, + { + "start": 939.98, + "end": 941.64, + "probability": 0.6863 + }, + { + "start": 942.22, + "end": 944.86, + "probability": 0.9426 + }, + { + "start": 945.72, + "end": 947.48, + "probability": 0.7024 + }, + { + "start": 947.62, + "end": 949.0, + "probability": 0.4322 + }, + { + "start": 949.58, + "end": 950.1, + "probability": 0.943 + }, + { + "start": 951.06, + "end": 954.1, + "probability": 0.8474 + }, + { + "start": 955.16, + "end": 957.92, + "probability": 0.9791 + }, + { + "start": 957.98, + "end": 960.08, + "probability": 0.9795 + }, + { + "start": 960.18, + "end": 961.96, + "probability": 0.9707 + }, + { + "start": 962.0, + "end": 962.74, + "probability": 0.7797 + }, + { + "start": 962.82, + "end": 963.42, + "probability": 0.7708 + }, + { + "start": 963.96, + "end": 964.22, + "probability": 0.9683 + }, + { + "start": 965.1, + "end": 966.04, + "probability": 0.8525 + }, + { + "start": 966.6, + "end": 967.2, + "probability": 0.6575 + }, + { + "start": 967.22, + "end": 968.44, + "probability": 0.9325 + }, + { + "start": 968.46, + "end": 969.3, + "probability": 0.6602 + }, + { + "start": 970.6, + "end": 973.46, + "probability": 0.9727 + }, + { + "start": 973.64, + "end": 977.92, + "probability": 0.9779 + }, + { + "start": 978.5, + "end": 979.58, + "probability": 0.8465 + }, + { + "start": 979.7, + "end": 979.8, + "probability": 0.3773 + }, + { + "start": 979.84, + "end": 981.26, + "probability": 0.815 + }, + { + "start": 981.28, + "end": 982.32, + "probability": 0.831 + }, + { + "start": 982.38, + "end": 982.82, + "probability": 0.6003 + }, + { + "start": 983.22, + "end": 983.54, + "probability": 0.8557 + }, + { + "start": 983.56, + "end": 984.06, + "probability": 0.7971 + }, + { + "start": 984.18, + "end": 984.64, + "probability": 0.7997 + }, + { + "start": 985.04, + "end": 987.54, + "probability": 0.952 + }, + { + "start": 988.5, + "end": 991.06, + "probability": 0.9583 + }, + { + "start": 991.42, + "end": 991.58, + "probability": 0.8769 + }, + { + "start": 991.88, + "end": 995.84, + "probability": 0.9206 + }, + { + "start": 995.94, + "end": 996.34, + "probability": 0.6353 + }, + { + "start": 996.42, + "end": 997.1, + "probability": 0.9462 + }, + { + "start": 997.2, + "end": 997.78, + "probability": 0.8665 + }, + { + "start": 998.36, + "end": 998.78, + "probability": 0.9187 + }, + { + "start": 998.92, + "end": 1002.14, + "probability": 0.8231 + }, + { + "start": 1002.9, + "end": 1004.72, + "probability": 0.9819 + }, + { + "start": 1004.8, + "end": 1006.34, + "probability": 0.9839 + }, + { + "start": 1007.18, + "end": 1010.08, + "probability": 0.886 + }, + { + "start": 1010.08, + "end": 1013.54, + "probability": 0.9626 + }, + { + "start": 1013.56, + "end": 1014.8, + "probability": 0.9116 + }, + { + "start": 1014.82, + "end": 1015.32, + "probability": 0.8664 + }, + { + "start": 1015.74, + "end": 1017.44, + "probability": 0.8018 + }, + { + "start": 1017.5, + "end": 1017.5, + "probability": 0.0265 + }, + { + "start": 1017.5, + "end": 1021.42, + "probability": 0.7528 + }, + { + "start": 1021.56, + "end": 1022.2, + "probability": 0.4052 + }, + { + "start": 1022.24, + "end": 1022.4, + "probability": 0.7598 + }, + { + "start": 1022.52, + "end": 1024.88, + "probability": 0.939 + }, + { + "start": 1025.54, + "end": 1026.88, + "probability": 0.8083 + }, + { + "start": 1026.98, + "end": 1028.1, + "probability": 0.7714 + }, + { + "start": 1028.2, + "end": 1029.0, + "probability": 0.7319 + }, + { + "start": 1029.08, + "end": 1029.78, + "probability": 0.7641 + }, + { + "start": 1029.98, + "end": 1033.04, + "probability": 0.1119 + }, + { + "start": 1033.04, + "end": 1034.94, + "probability": 0.5427 + }, + { + "start": 1035.7, + "end": 1040.56, + "probability": 0.9662 + }, + { + "start": 1040.68, + "end": 1041.0, + "probability": 0.4413 + }, + { + "start": 1041.1, + "end": 1043.68, + "probability": 0.9779 + }, + { + "start": 1044.3, + "end": 1046.54, + "probability": 0.365 + }, + { + "start": 1047.0, + "end": 1048.35, + "probability": 0.7724 + }, + { + "start": 1048.56, + "end": 1049.62, + "probability": 0.6113 + }, + { + "start": 1050.18, + "end": 1051.7, + "probability": 0.968 + }, + { + "start": 1051.82, + "end": 1053.4, + "probability": 0.9901 + }, + { + "start": 1053.52, + "end": 1054.18, + "probability": 0.9136 + }, + { + "start": 1054.64, + "end": 1057.74, + "probability": 0.9849 + }, + { + "start": 1057.74, + "end": 1062.06, + "probability": 0.9805 + }, + { + "start": 1062.98, + "end": 1064.54, + "probability": 0.9187 + }, + { + "start": 1064.64, + "end": 1066.06, + "probability": 0.8084 + }, + { + "start": 1066.66, + "end": 1068.08, + "probability": 0.7162 + }, + { + "start": 1071.86, + "end": 1073.3, + "probability": 0.683 + }, + { + "start": 1074.02, + "end": 1074.92, + "probability": 0.9293 + }, + { + "start": 1075.84, + "end": 1077.72, + "probability": 0.9423 + }, + { + "start": 1078.3, + "end": 1081.52, + "probability": 0.9827 + }, + { + "start": 1081.52, + "end": 1084.44, + "probability": 0.9951 + }, + { + "start": 1084.98, + "end": 1086.54, + "probability": 0.9944 + }, + { + "start": 1087.42, + "end": 1090.98, + "probability": 0.98 + }, + { + "start": 1091.18, + "end": 1095.02, + "probability": 0.9884 + }, + { + "start": 1095.5, + "end": 1097.79, + "probability": 0.8875 + }, + { + "start": 1098.48, + "end": 1100.68, + "probability": 0.9683 + }, + { + "start": 1100.76, + "end": 1102.84, + "probability": 0.9844 + }, + { + "start": 1103.58, + "end": 1109.68, + "probability": 0.9583 + }, + { + "start": 1110.68, + "end": 1112.28, + "probability": 0.8835 + }, + { + "start": 1113.14, + "end": 1116.02, + "probability": 0.9966 + }, + { + "start": 1116.56, + "end": 1118.74, + "probability": 0.8556 + }, + { + "start": 1119.36, + "end": 1121.96, + "probability": 0.9335 + }, + { + "start": 1122.08, + "end": 1123.84, + "probability": 0.9878 + }, + { + "start": 1124.62, + "end": 1126.84, + "probability": 0.7131 + }, + { + "start": 1127.34, + "end": 1127.92, + "probability": 0.5769 + }, + { + "start": 1127.92, + "end": 1131.14, + "probability": 0.8572 + }, + { + "start": 1131.4, + "end": 1136.76, + "probability": 0.9563 + }, + { + "start": 1136.96, + "end": 1137.16, + "probability": 0.7524 + }, + { + "start": 1137.7, + "end": 1139.52, + "probability": 0.5866 + }, + { + "start": 1139.54, + "end": 1142.2, + "probability": 0.7467 + }, + { + "start": 1143.56, + "end": 1145.62, + "probability": 0.7542 + }, + { + "start": 1146.98, + "end": 1149.37, + "probability": 0.9422 + }, + { + "start": 1153.52, + "end": 1154.42, + "probability": 0.5701 + }, + { + "start": 1154.88, + "end": 1158.82, + "probability": 0.6916 + }, + { + "start": 1158.9, + "end": 1159.02, + "probability": 0.7742 + }, + { + "start": 1159.16, + "end": 1160.4, + "probability": 0.8229 + }, + { + "start": 1160.94, + "end": 1161.48, + "probability": 0.8789 + }, + { + "start": 1161.52, + "end": 1164.04, + "probability": 0.9102 + }, + { + "start": 1164.22, + "end": 1166.44, + "probability": 0.9749 + }, + { + "start": 1167.02, + "end": 1168.3, + "probability": 0.8899 + }, + { + "start": 1168.44, + "end": 1168.96, + "probability": 0.7666 + }, + { + "start": 1169.1, + "end": 1169.17, + "probability": 0.8872 + }, + { + "start": 1169.88, + "end": 1171.46, + "probability": 0.8008 + }, + { + "start": 1172.56, + "end": 1179.28, + "probability": 0.8851 + }, + { + "start": 1182.64, + "end": 1186.3, + "probability": 0.9919 + }, + { + "start": 1187.0, + "end": 1187.88, + "probability": 0.9527 + }, + { + "start": 1188.64, + "end": 1189.88, + "probability": 0.7974 + }, + { + "start": 1190.48, + "end": 1193.02, + "probability": 0.4814 + }, + { + "start": 1193.64, + "end": 1196.64, + "probability": 0.9842 + }, + { + "start": 1197.34, + "end": 1199.3, + "probability": 0.8439 + }, + { + "start": 1199.84, + "end": 1202.02, + "probability": 0.9618 + }, + { + "start": 1202.64, + "end": 1205.1, + "probability": 0.9853 + }, + { + "start": 1205.82, + "end": 1209.22, + "probability": 0.495 + }, + { + "start": 1210.87, + "end": 1214.44, + "probability": 0.9707 + }, + { + "start": 1214.44, + "end": 1217.68, + "probability": 0.9681 + }, + { + "start": 1218.32, + "end": 1223.52, + "probability": 0.9529 + }, + { + "start": 1223.56, + "end": 1228.02, + "probability": 0.8743 + }, + { + "start": 1228.86, + "end": 1229.4, + "probability": 0.6492 + }, + { + "start": 1229.7, + "end": 1230.26, + "probability": 0.8428 + }, + { + "start": 1230.96, + "end": 1232.12, + "probability": 0.9849 + }, + { + "start": 1233.1, + "end": 1235.26, + "probability": 0.7904 + }, + { + "start": 1236.5, + "end": 1238.18, + "probability": 0.8647 + }, + { + "start": 1238.84, + "end": 1241.02, + "probability": 0.9951 + }, + { + "start": 1241.72, + "end": 1246.97, + "probability": 0.9909 + }, + { + "start": 1247.6, + "end": 1249.38, + "probability": 0.927 + }, + { + "start": 1249.4, + "end": 1252.9, + "probability": 0.9662 + }, + { + "start": 1253.56, + "end": 1256.46, + "probability": 0.6377 + }, + { + "start": 1256.64, + "end": 1259.62, + "probability": 0.9591 + }, + { + "start": 1259.64, + "end": 1260.04, + "probability": 0.8335 + }, + { + "start": 1260.56, + "end": 1261.12, + "probability": 0.8415 + }, + { + "start": 1261.68, + "end": 1261.7, + "probability": 0.7805 + }, + { + "start": 1261.82, + "end": 1262.2, + "probability": 0.5579 + }, + { + "start": 1262.22, + "end": 1267.78, + "probability": 0.8472 + }, + { + "start": 1269.04, + "end": 1272.46, + "probability": 0.9722 + }, + { + "start": 1272.9, + "end": 1275.34, + "probability": 0.9852 + }, + { + "start": 1276.58, + "end": 1277.54, + "probability": 0.9545 + }, + { + "start": 1277.76, + "end": 1279.62, + "probability": 0.7991 + }, + { + "start": 1279.96, + "end": 1281.96, + "probability": 0.9809 + }, + { + "start": 1282.74, + "end": 1283.7, + "probability": 0.953 + }, + { + "start": 1284.24, + "end": 1287.54, + "probability": 0.9919 + }, + { + "start": 1287.54, + "end": 1290.78, + "probability": 0.999 + }, + { + "start": 1291.86, + "end": 1293.57, + "probability": 0.9788 + }, + { + "start": 1295.52, + "end": 1299.58, + "probability": 0.9882 + }, + { + "start": 1300.2, + "end": 1302.78, + "probability": 0.9636 + }, + { + "start": 1303.42, + "end": 1306.72, + "probability": 0.696 + }, + { + "start": 1306.78, + "end": 1308.67, + "probability": 0.7766 + }, + { + "start": 1309.92, + "end": 1311.76, + "probability": 0.9902 + }, + { + "start": 1312.46, + "end": 1315.72, + "probability": 0.9836 + }, + { + "start": 1315.92, + "end": 1316.42, + "probability": 0.5473 + }, + { + "start": 1316.44, + "end": 1317.58, + "probability": 0.9871 + }, + { + "start": 1318.48, + "end": 1319.66, + "probability": 0.8383 + }, + { + "start": 1320.38, + "end": 1321.1, + "probability": 0.8118 + }, + { + "start": 1321.82, + "end": 1322.94, + "probability": 0.7219 + }, + { + "start": 1322.98, + "end": 1323.44, + "probability": 0.8468 + }, + { + "start": 1323.82, + "end": 1326.0, + "probability": 0.8979 + }, + { + "start": 1326.08, + "end": 1326.56, + "probability": 0.285 + }, + { + "start": 1326.8, + "end": 1327.7, + "probability": 0.4374 + }, + { + "start": 1328.96, + "end": 1333.72, + "probability": 0.8881 + }, + { + "start": 1335.5, + "end": 1337.9, + "probability": 0.765 + }, + { + "start": 1340.52, + "end": 1344.58, + "probability": 0.829 + }, + { + "start": 1345.26, + "end": 1347.54, + "probability": 0.764 + }, + { + "start": 1347.6, + "end": 1353.22, + "probability": 0.988 + }, + { + "start": 1353.74, + "end": 1355.28, + "probability": 0.8497 + }, + { + "start": 1356.0, + "end": 1358.34, + "probability": 0.9946 + }, + { + "start": 1358.8, + "end": 1361.22, + "probability": 0.7799 + }, + { + "start": 1361.38, + "end": 1363.32, + "probability": 0.7654 + }, + { + "start": 1363.88, + "end": 1364.06, + "probability": 0.4747 + }, + { + "start": 1364.16, + "end": 1364.88, + "probability": 0.9144 + }, + { + "start": 1365.54, + "end": 1371.61, + "probability": 0.9382 + }, + { + "start": 1371.86, + "end": 1372.92, + "probability": 0.6244 + }, + { + "start": 1373.12, + "end": 1374.66, + "probability": 0.871 + }, + { + "start": 1375.22, + "end": 1377.0, + "probability": 0.649 + }, + { + "start": 1378.16, + "end": 1380.09, + "probability": 0.8418 + }, + { + "start": 1381.04, + "end": 1383.92, + "probability": 0.7253 + }, + { + "start": 1385.3, + "end": 1388.4, + "probability": 0.9665 + }, + { + "start": 1389.16, + "end": 1393.12, + "probability": 0.9034 + }, + { + "start": 1393.28, + "end": 1394.17, + "probability": 0.696 + }, + { + "start": 1394.82, + "end": 1398.36, + "probability": 0.9751 + }, + { + "start": 1398.7, + "end": 1403.14, + "probability": 0.9404 + }, + { + "start": 1403.14, + "end": 1406.32, + "probability": 0.9336 + }, + { + "start": 1407.1, + "end": 1407.26, + "probability": 0.6566 + }, + { + "start": 1407.46, + "end": 1407.96, + "probability": 0.7281 + }, + { + "start": 1408.14, + "end": 1408.7, + "probability": 0.5027 + }, + { + "start": 1409.2, + "end": 1411.5, + "probability": 0.978 + }, + { + "start": 1412.06, + "end": 1413.1, + "probability": 0.8802 + }, + { + "start": 1413.66, + "end": 1416.06, + "probability": 0.9924 + }, + { + "start": 1416.94, + "end": 1423.8, + "probability": 0.9564 + }, + { + "start": 1424.59, + "end": 1430.0, + "probability": 0.9618 + }, + { + "start": 1431.26, + "end": 1432.16, + "probability": 0.2958 + }, + { + "start": 1432.82, + "end": 1433.88, + "probability": 0.924 + }, + { + "start": 1434.24, + "end": 1434.66, + "probability": 0.5599 + }, + { + "start": 1434.76, + "end": 1435.62, + "probability": 0.7711 + }, + { + "start": 1435.88, + "end": 1437.99, + "probability": 0.9322 + }, + { + "start": 1439.04, + "end": 1442.02, + "probability": 0.5273 + }, + { + "start": 1442.56, + "end": 1448.42, + "probability": 0.9738 + }, + { + "start": 1448.62, + "end": 1451.08, + "probability": 0.9459 + }, + { + "start": 1451.84, + "end": 1452.76, + "probability": 0.9889 + }, + { + "start": 1453.32, + "end": 1454.94, + "probability": 0.9773 + }, + { + "start": 1455.28, + "end": 1456.04, + "probability": 0.9883 + }, + { + "start": 1456.66, + "end": 1459.84, + "probability": 0.7845 + }, + { + "start": 1460.36, + "end": 1464.2, + "probability": 0.9669 + }, + { + "start": 1464.64, + "end": 1467.8, + "probability": 0.8603 + }, + { + "start": 1468.32, + "end": 1470.76, + "probability": 0.6897 + }, + { + "start": 1470.76, + "end": 1473.98, + "probability": 0.9801 + }, + { + "start": 1474.56, + "end": 1476.64, + "probability": 0.9971 + }, + { + "start": 1476.98, + "end": 1480.42, + "probability": 0.934 + }, + { + "start": 1480.86, + "end": 1483.74, + "probability": 0.9829 + }, + { + "start": 1484.32, + "end": 1485.38, + "probability": 0.9884 + }, + { + "start": 1485.48, + "end": 1487.12, + "probability": 0.8171 + }, + { + "start": 1487.22, + "end": 1487.8, + "probability": 0.8286 + }, + { + "start": 1487.82, + "end": 1488.54, + "probability": 0.7641 + }, + { + "start": 1489.45, + "end": 1492.98, + "probability": 0.9827 + }, + { + "start": 1494.42, + "end": 1496.34, + "probability": 0.7612 + }, + { + "start": 1496.42, + "end": 1497.22, + "probability": 0.7442 + }, + { + "start": 1497.36, + "end": 1498.2, + "probability": 0.8314 + }, + { + "start": 1499.16, + "end": 1502.36, + "probability": 0.9629 + }, + { + "start": 1503.14, + "end": 1505.7, + "probability": 0.9966 + }, + { + "start": 1505.84, + "end": 1506.62, + "probability": 0.738 + }, + { + "start": 1507.52, + "end": 1509.3, + "probability": 0.5123 + }, + { + "start": 1509.98, + "end": 1512.26, + "probability": 0.8711 + }, + { + "start": 1512.66, + "end": 1515.58, + "probability": 0.6807 + }, + { + "start": 1516.24, + "end": 1520.24, + "probability": 0.9825 + }, + { + "start": 1527.78, + "end": 1529.44, + "probability": 0.7817 + }, + { + "start": 1534.06, + "end": 1535.08, + "probability": 0.7256 + }, + { + "start": 1536.02, + "end": 1537.44, + "probability": 0.9488 + }, + { + "start": 1538.36, + "end": 1539.28, + "probability": 0.9271 + }, + { + "start": 1541.4, + "end": 1545.6, + "probability": 0.9966 + }, + { + "start": 1546.26, + "end": 1547.14, + "probability": 0.9386 + }, + { + "start": 1548.78, + "end": 1550.78, + "probability": 0.9977 + }, + { + "start": 1551.74, + "end": 1557.9, + "probability": 0.9912 + }, + { + "start": 1558.76, + "end": 1560.46, + "probability": 0.8946 + }, + { + "start": 1560.96, + "end": 1561.46, + "probability": 0.3031 + }, + { + "start": 1562.28, + "end": 1565.8, + "probability": 0.8273 + }, + { + "start": 1566.28, + "end": 1566.73, + "probability": 0.5888 + }, + { + "start": 1567.08, + "end": 1568.2, + "probability": 0.5293 + }, + { + "start": 1568.32, + "end": 1570.42, + "probability": 0.3313 + }, + { + "start": 1571.86, + "end": 1573.64, + "probability": 0.9941 + }, + { + "start": 1574.14, + "end": 1577.58, + "probability": 0.9835 + }, + { + "start": 1578.86, + "end": 1583.1, + "probability": 0.9953 + }, + { + "start": 1583.1, + "end": 1588.74, + "probability": 0.9652 + }, + { + "start": 1589.34, + "end": 1590.74, + "probability": 0.958 + }, + { + "start": 1592.0, + "end": 1594.74, + "probability": 0.998 + }, + { + "start": 1594.74, + "end": 1597.88, + "probability": 0.9989 + }, + { + "start": 1598.44, + "end": 1603.24, + "probability": 0.9995 + }, + { + "start": 1605.52, + "end": 1608.62, + "probability": 0.9123 + }, + { + "start": 1609.38, + "end": 1611.94, + "probability": 0.8501 + }, + { + "start": 1612.56, + "end": 1613.24, + "probability": 0.5818 + }, + { + "start": 1613.84, + "end": 1614.82, + "probability": 0.8487 + }, + { + "start": 1615.68, + "end": 1618.6, + "probability": 0.9803 + }, + { + "start": 1619.52, + "end": 1620.5, + "probability": 0.9813 + }, + { + "start": 1621.16, + "end": 1621.8, + "probability": 0.9874 + }, + { + "start": 1622.76, + "end": 1623.64, + "probability": 0.989 + }, + { + "start": 1623.8, + "end": 1627.38, + "probability": 0.9663 + }, + { + "start": 1628.76, + "end": 1631.02, + "probability": 0.9974 + }, + { + "start": 1631.82, + "end": 1633.82, + "probability": 0.7684 + }, + { + "start": 1634.54, + "end": 1639.64, + "probability": 0.9658 + }, + { + "start": 1640.42, + "end": 1643.88, + "probability": 0.9574 + }, + { + "start": 1645.2, + "end": 1647.04, + "probability": 0.9269 + }, + { + "start": 1648.44, + "end": 1650.34, + "probability": 0.6287 + }, + { + "start": 1651.02, + "end": 1652.72, + "probability": 0.9851 + }, + { + "start": 1653.4, + "end": 1657.84, + "probability": 0.9677 + }, + { + "start": 1659.46, + "end": 1661.14, + "probability": 0.9859 + }, + { + "start": 1661.86, + "end": 1663.48, + "probability": 0.8225 + }, + { + "start": 1663.98, + "end": 1667.4, + "probability": 0.8743 + }, + { + "start": 1667.96, + "end": 1669.52, + "probability": 0.8306 + }, + { + "start": 1670.34, + "end": 1673.58, + "probability": 0.936 + }, + { + "start": 1674.14, + "end": 1676.32, + "probability": 0.9323 + }, + { + "start": 1677.04, + "end": 1679.0, + "probability": 0.826 + }, + { + "start": 1680.64, + "end": 1681.8, + "probability": 0.7217 + }, + { + "start": 1682.38, + "end": 1683.88, + "probability": 0.9463 + }, + { + "start": 1684.66, + "end": 1688.3, + "probability": 0.8785 + }, + { + "start": 1689.0, + "end": 1690.94, + "probability": 0.9728 + }, + { + "start": 1691.4, + "end": 1694.46, + "probability": 0.9917 + }, + { + "start": 1695.24, + "end": 1700.56, + "probability": 0.9982 + }, + { + "start": 1700.72, + "end": 1703.32, + "probability": 0.9868 + }, + { + "start": 1704.56, + "end": 1707.18, + "probability": 0.9734 + }, + { + "start": 1707.28, + "end": 1708.24, + "probability": 0.9383 + }, + { + "start": 1708.42, + "end": 1708.94, + "probability": 0.9882 + }, + { + "start": 1709.02, + "end": 1709.46, + "probability": 0.778 + }, + { + "start": 1710.3, + "end": 1712.06, + "probability": 0.9423 + }, + { + "start": 1713.4, + "end": 1718.16, + "probability": 0.9452 + }, + { + "start": 1718.54, + "end": 1720.1, + "probability": 0.7402 + }, + { + "start": 1722.22, + "end": 1723.6, + "probability": 0.7595 + }, + { + "start": 1724.12, + "end": 1728.72, + "probability": 0.9451 + }, + { + "start": 1729.4, + "end": 1734.12, + "probability": 0.9959 + }, + { + "start": 1735.48, + "end": 1738.26, + "probability": 0.9972 + }, + { + "start": 1738.26, + "end": 1741.58, + "probability": 0.998 + }, + { + "start": 1742.48, + "end": 1745.44, + "probability": 0.991 + }, + { + "start": 1745.44, + "end": 1749.14, + "probability": 0.9978 + }, + { + "start": 1749.24, + "end": 1752.92, + "probability": 0.8984 + }, + { + "start": 1753.04, + "end": 1753.48, + "probability": 0.6419 + }, + { + "start": 1754.18, + "end": 1754.76, + "probability": 0.8647 + }, + { + "start": 1755.24, + "end": 1760.18, + "probability": 0.9857 + }, + { + "start": 1761.36, + "end": 1761.88, + "probability": 0.9283 + }, + { + "start": 1763.68, + "end": 1765.24, + "probability": 0.9966 + }, + { + "start": 1765.96, + "end": 1768.56, + "probability": 0.983 + }, + { + "start": 1770.16, + "end": 1773.16, + "probability": 0.9165 + }, + { + "start": 1773.92, + "end": 1778.1, + "probability": 0.9475 + }, + { + "start": 1778.45, + "end": 1778.86, + "probability": 0.825 + }, + { + "start": 1780.08, + "end": 1781.06, + "probability": 0.6385 + }, + { + "start": 1782.79, + "end": 1786.62, + "probability": 0.8733 + }, + { + "start": 1786.96, + "end": 1788.58, + "probability": 0.9473 + }, + { + "start": 1795.18, + "end": 1796.7, + "probability": 0.8001 + }, + { + "start": 1796.7, + "end": 1797.2, + "probability": 0.7926 + }, + { + "start": 1797.62, + "end": 1801.18, + "probability": 0.9943 + }, + { + "start": 1801.18, + "end": 1806.24, + "probability": 0.9738 + }, + { + "start": 1807.16, + "end": 1808.94, + "probability": 0.8916 + }, + { + "start": 1809.52, + "end": 1819.62, + "probability": 0.9854 + }, + { + "start": 1820.68, + "end": 1823.34, + "probability": 0.9727 + }, + { + "start": 1823.34, + "end": 1826.52, + "probability": 0.999 + }, + { + "start": 1827.42, + "end": 1828.78, + "probability": 0.9958 + }, + { + "start": 1829.34, + "end": 1830.74, + "probability": 0.9467 + }, + { + "start": 1831.34, + "end": 1832.94, + "probability": 0.9231 + }, + { + "start": 1833.48, + "end": 1837.92, + "probability": 0.9982 + }, + { + "start": 1839.08, + "end": 1844.46, + "probability": 0.7688 + }, + { + "start": 1845.22, + "end": 1846.68, + "probability": 0.9512 + }, + { + "start": 1847.22, + "end": 1849.38, + "probability": 0.7378 + }, + { + "start": 1849.76, + "end": 1852.14, + "probability": 0.9871 + }, + { + "start": 1852.58, + "end": 1854.62, + "probability": 0.7863 + }, + { + "start": 1855.06, + "end": 1856.04, + "probability": 0.9199 + }, + { + "start": 1856.34, + "end": 1858.86, + "probability": 0.9817 + }, + { + "start": 1859.42, + "end": 1860.3, + "probability": 0.7451 + }, + { + "start": 1861.72, + "end": 1864.64, + "probability": 0.993 + }, + { + "start": 1864.64, + "end": 1869.04, + "probability": 0.991 + }, + { + "start": 1869.7, + "end": 1872.6, + "probability": 0.9895 + }, + { + "start": 1872.94, + "end": 1877.08, + "probability": 0.9959 + }, + { + "start": 1879.5, + "end": 1882.94, + "probability": 0.6905 + }, + { + "start": 1883.08, + "end": 1884.88, + "probability": 0.943 + }, + { + "start": 1885.42, + "end": 1886.74, + "probability": 0.961 + }, + { + "start": 1886.88, + "end": 1888.5, + "probability": 0.8773 + }, + { + "start": 1888.68, + "end": 1889.04, + "probability": 0.8877 + }, + { + "start": 1889.52, + "end": 1896.6, + "probability": 0.9173 + }, + { + "start": 1897.1, + "end": 1897.58, + "probability": 0.7335 + }, + { + "start": 1898.42, + "end": 1902.76, + "probability": 0.9972 + }, + { + "start": 1903.46, + "end": 1906.26, + "probability": 0.9805 + }, + { + "start": 1906.72, + "end": 1907.76, + "probability": 0.7843 + }, + { + "start": 1907.94, + "end": 1908.26, + "probability": 0.8162 + }, + { + "start": 1908.84, + "end": 1913.14, + "probability": 0.915 + }, + { + "start": 1913.56, + "end": 1916.34, + "probability": 0.9873 + }, + { + "start": 1917.24, + "end": 1919.94, + "probability": 0.9923 + }, + { + "start": 1920.44, + "end": 1922.46, + "probability": 0.9622 + }, + { + "start": 1922.6, + "end": 1923.8, + "probability": 0.8021 + }, + { + "start": 1923.92, + "end": 1925.08, + "probability": 0.9095 + }, + { + "start": 1925.58, + "end": 1929.08, + "probability": 0.9597 + }, + { + "start": 1929.52, + "end": 1934.0, + "probability": 0.9198 + }, + { + "start": 1934.84, + "end": 1936.52, + "probability": 0.9594 + }, + { + "start": 1936.84, + "end": 1938.56, + "probability": 0.6932 + }, + { + "start": 1938.68, + "end": 1942.98, + "probability": 0.9935 + }, + { + "start": 1943.9, + "end": 1950.35, + "probability": 0.991 + }, + { + "start": 1950.82, + "end": 1955.28, + "probability": 0.9849 + }, + { + "start": 1955.28, + "end": 1959.3, + "probability": 0.998 + }, + { + "start": 1960.38, + "end": 1963.32, + "probability": 0.9478 + }, + { + "start": 1963.32, + "end": 1966.3, + "probability": 0.7773 + }, + { + "start": 1966.44, + "end": 1968.3, + "probability": 0.9506 + }, + { + "start": 1968.74, + "end": 1973.82, + "probability": 0.9983 + }, + { + "start": 1974.28, + "end": 1974.88, + "probability": 0.7437 + }, + { + "start": 1975.04, + "end": 1977.2, + "probability": 0.9062 + }, + { + "start": 1977.76, + "end": 1980.6, + "probability": 0.9286 + }, + { + "start": 1981.64, + "end": 1982.3, + "probability": 0.6604 + }, + { + "start": 1982.44, + "end": 1985.8, + "probability": 0.9395 + }, + { + "start": 1986.0, + "end": 1990.76, + "probability": 0.9853 + }, + { + "start": 1990.76, + "end": 1996.4, + "probability": 0.9891 + }, + { + "start": 1997.08, + "end": 2000.74, + "probability": 0.8364 + }, + { + "start": 2001.28, + "end": 2002.36, + "probability": 0.8895 + }, + { + "start": 2002.94, + "end": 2004.08, + "probability": 0.9655 + }, + { + "start": 2004.68, + "end": 2008.58, + "probability": 0.9688 + }, + { + "start": 2010.02, + "end": 2013.8, + "probability": 0.886 + }, + { + "start": 2014.28, + "end": 2018.06, + "probability": 0.9951 + }, + { + "start": 2018.64, + "end": 2021.44, + "probability": 0.9351 + }, + { + "start": 2022.8, + "end": 2025.62, + "probability": 0.8598 + }, + { + "start": 2025.62, + "end": 2028.26, + "probability": 0.7473 + }, + { + "start": 2028.8, + "end": 2030.6, + "probability": 0.9941 + }, + { + "start": 2031.48, + "end": 2035.58, + "probability": 0.988 + }, + { + "start": 2036.04, + "end": 2036.62, + "probability": 0.762 + }, + { + "start": 2036.7, + "end": 2037.32, + "probability": 0.8576 + }, + { + "start": 2037.74, + "end": 2040.58, + "probability": 0.8703 + }, + { + "start": 2041.1, + "end": 2046.26, + "probability": 0.9915 + }, + { + "start": 2046.74, + "end": 2047.51, + "probability": 0.958 + }, + { + "start": 2047.6, + "end": 2049.02, + "probability": 0.744 + }, + { + "start": 2049.4, + "end": 2052.34, + "probability": 0.9869 + }, + { + "start": 2052.86, + "end": 2053.18, + "probability": 0.7511 + }, + { + "start": 2053.76, + "end": 2055.92, + "probability": 0.7958 + }, + { + "start": 2056.18, + "end": 2060.68, + "probability": 0.7091 + }, + { + "start": 2062.2, + "end": 2065.0, + "probability": 0.3723 + }, + { + "start": 2068.26, + "end": 2073.96, + "probability": 0.0766 + }, + { + "start": 2089.68, + "end": 2091.86, + "probability": 0.3937 + }, + { + "start": 2093.48, + "end": 2099.48, + "probability": 0.9908 + }, + { + "start": 2100.54, + "end": 2102.78, + "probability": 0.5991 + }, + { + "start": 2103.4, + "end": 2105.78, + "probability": 0.8987 + }, + { + "start": 2108.78, + "end": 2112.78, + "probability": 0.995 + }, + { + "start": 2113.58, + "end": 2114.1, + "probability": 0.4245 + }, + { + "start": 2114.16, + "end": 2125.82, + "probability": 0.9769 + }, + { + "start": 2127.12, + "end": 2129.46, + "probability": 0.9857 + }, + { + "start": 2130.04, + "end": 2133.44, + "probability": 0.8985 + }, + { + "start": 2134.14, + "end": 2134.74, + "probability": 0.5307 + }, + { + "start": 2138.04, + "end": 2139.72, + "probability": 0.8094 + }, + { + "start": 2143.88, + "end": 2146.38, + "probability": 0.5902 + }, + { + "start": 2147.22, + "end": 2149.02, + "probability": 0.7753 + }, + { + "start": 2149.12, + "end": 2150.3, + "probability": 0.8362 + }, + { + "start": 2151.14, + "end": 2154.24, + "probability": 0.6277 + }, + { + "start": 2154.72, + "end": 2157.08, + "probability": 0.9598 + }, + { + "start": 2157.28, + "end": 2157.52, + "probability": 0.7522 + }, + { + "start": 2159.16, + "end": 2160.72, + "probability": 0.5787 + }, + { + "start": 2161.42, + "end": 2162.1, + "probability": 0.6656 + }, + { + "start": 2162.11, + "end": 2164.76, + "probability": 0.9757 + }, + { + "start": 2168.72, + "end": 2171.46, + "probability": 0.9963 + }, + { + "start": 2174.62, + "end": 2175.82, + "probability": 0.768 + }, + { + "start": 2176.66, + "end": 2181.32, + "probability": 0.7036 + }, + { + "start": 2181.46, + "end": 2185.16, + "probability": 0.8403 + }, + { + "start": 2187.6, + "end": 2192.94, + "probability": 0.9907 + }, + { + "start": 2194.26, + "end": 2196.14, + "probability": 0.8037 + }, + { + "start": 2197.46, + "end": 2197.96, + "probability": 0.8178 + }, + { + "start": 2199.3, + "end": 2202.98, + "probability": 0.8329 + }, + { + "start": 2204.06, + "end": 2205.5, + "probability": 0.9941 + }, + { + "start": 2205.6, + "end": 2209.26, + "probability": 0.9806 + }, + { + "start": 2210.64, + "end": 2212.36, + "probability": 0.969 + }, + { + "start": 2213.32, + "end": 2215.48, + "probability": 0.9197 + }, + { + "start": 2217.78, + "end": 2218.92, + "probability": 0.9497 + }, + { + "start": 2219.08, + "end": 2220.18, + "probability": 0.9429 + }, + { + "start": 2220.46, + "end": 2222.92, + "probability": 0.9968 + }, + { + "start": 2223.56, + "end": 2224.06, + "probability": 0.4406 + }, + { + "start": 2225.5, + "end": 2227.4, + "probability": 0.9969 + }, + { + "start": 2229.12, + "end": 2230.54, + "probability": 0.9022 + }, + { + "start": 2232.38, + "end": 2233.3, + "probability": 0.7417 + }, + { + "start": 2233.46, + "end": 2234.7, + "probability": 0.9514 + }, + { + "start": 2235.1, + "end": 2237.28, + "probability": 0.8698 + }, + { + "start": 2238.06, + "end": 2239.2, + "probability": 0.5216 + }, + { + "start": 2239.78, + "end": 2240.86, + "probability": 0.9706 + }, + { + "start": 2240.92, + "end": 2241.82, + "probability": 0.9307 + }, + { + "start": 2241.92, + "end": 2243.12, + "probability": 0.9504 + }, + { + "start": 2243.86, + "end": 2250.48, + "probability": 0.8299 + }, + { + "start": 2251.16, + "end": 2254.06, + "probability": 0.9252 + }, + { + "start": 2255.04, + "end": 2256.16, + "probability": 0.8981 + }, + { + "start": 2257.06, + "end": 2259.32, + "probability": 0.4975 + }, + { + "start": 2260.6, + "end": 2265.46, + "probability": 0.6846 + }, + { + "start": 2266.2, + "end": 2269.44, + "probability": 0.8049 + }, + { + "start": 2269.94, + "end": 2272.55, + "probability": 0.4098 + }, + { + "start": 2274.06, + "end": 2276.28, + "probability": 0.1442 + }, + { + "start": 2276.28, + "end": 2277.63, + "probability": 0.2037 + }, + { + "start": 2277.9, + "end": 2279.58, + "probability": 0.2111 + }, + { + "start": 2279.82, + "end": 2279.84, + "probability": 0.0665 + }, + { + "start": 2279.84, + "end": 2280.9, + "probability": 0.5029 + }, + { + "start": 2280.96, + "end": 2281.91, + "probability": 0.4053 + }, + { + "start": 2282.24, + "end": 2283.39, + "probability": 0.4074 + }, + { + "start": 2288.22, + "end": 2291.46, + "probability": 0.6635 + }, + { + "start": 2292.3, + "end": 2295.18, + "probability": 0.7761 + }, + { + "start": 2295.84, + "end": 2296.6, + "probability": 0.9941 + }, + { + "start": 2297.74, + "end": 2300.2, + "probability": 0.9641 + }, + { + "start": 2300.96, + "end": 2302.92, + "probability": 0.9568 + }, + { + "start": 2304.1, + "end": 2306.7, + "probability": 0.8515 + }, + { + "start": 2307.46, + "end": 2309.02, + "probability": 0.8484 + }, + { + "start": 2310.48, + "end": 2312.12, + "probability": 0.9274 + }, + { + "start": 2312.24, + "end": 2314.42, + "probability": 0.8312 + }, + { + "start": 2314.82, + "end": 2315.98, + "probability": 0.5987 + }, + { + "start": 2317.32, + "end": 2319.64, + "probability": 0.8178 + }, + { + "start": 2320.54, + "end": 2322.54, + "probability": 0.8486 + }, + { + "start": 2323.3, + "end": 2325.3, + "probability": 0.926 + }, + { + "start": 2327.12, + "end": 2330.26, + "probability": 0.8231 + }, + { + "start": 2331.12, + "end": 2332.64, + "probability": 0.993 + }, + { + "start": 2335.51, + "end": 2337.82, + "probability": 0.9917 + }, + { + "start": 2338.9, + "end": 2339.22, + "probability": 0.5953 + }, + { + "start": 2340.68, + "end": 2341.74, + "probability": 0.7795 + }, + { + "start": 2341.88, + "end": 2342.88, + "probability": 0.835 + }, + { + "start": 2342.92, + "end": 2345.1, + "probability": 0.9899 + }, + { + "start": 2347.06, + "end": 2348.56, + "probability": 0.9817 + }, + { + "start": 2349.16, + "end": 2351.12, + "probability": 0.6282 + }, + { + "start": 2351.68, + "end": 2352.46, + "probability": 0.9368 + }, + { + "start": 2352.98, + "end": 2360.54, + "probability": 0.84 + }, + { + "start": 2360.54, + "end": 2364.94, + "probability": 0.9966 + }, + { + "start": 2367.06, + "end": 2368.82, + "probability": 0.9928 + }, + { + "start": 2370.38, + "end": 2371.98, + "probability": 0.9547 + }, + { + "start": 2373.4, + "end": 2373.84, + "probability": 0.6353 + }, + { + "start": 2374.52, + "end": 2379.5, + "probability": 0.9558 + }, + { + "start": 2381.92, + "end": 2383.42, + "probability": 0.9166 + }, + { + "start": 2384.28, + "end": 2385.08, + "probability": 0.9097 + }, + { + "start": 2388.38, + "end": 2391.92, + "probability": 0.9016 + }, + { + "start": 2393.02, + "end": 2394.34, + "probability": 0.9641 + }, + { + "start": 2395.22, + "end": 2396.76, + "probability": 0.9897 + }, + { + "start": 2396.76, + "end": 2398.6, + "probability": 0.5966 + }, + { + "start": 2399.44, + "end": 2400.64, + "probability": 0.4615 + }, + { + "start": 2400.78, + "end": 2401.34, + "probability": 0.8478 + }, + { + "start": 2402.26, + "end": 2405.0, + "probability": 0.9698 + }, + { + "start": 2405.94, + "end": 2407.04, + "probability": 0.9425 + }, + { + "start": 2408.32, + "end": 2409.74, + "probability": 0.9869 + }, + { + "start": 2411.14, + "end": 2414.74, + "probability": 0.9346 + }, + { + "start": 2415.28, + "end": 2419.64, + "probability": 0.878 + }, + { + "start": 2419.9, + "end": 2420.64, + "probability": 0.4852 + }, + { + "start": 2420.74, + "end": 2421.31, + "probability": 0.6674 + }, + { + "start": 2422.04, + "end": 2426.14, + "probability": 0.9233 + }, + { + "start": 2426.94, + "end": 2428.96, + "probability": 0.6861 + }, + { + "start": 2430.2, + "end": 2431.68, + "probability": 0.5948 + }, + { + "start": 2432.9, + "end": 2433.1, + "probability": 0.2821 + }, + { + "start": 2433.28, + "end": 2434.86, + "probability": 0.9912 + }, + { + "start": 2434.96, + "end": 2435.64, + "probability": 0.7406 + }, + { + "start": 2435.7, + "end": 2436.2, + "probability": 0.9821 + }, + { + "start": 2436.28, + "end": 2436.84, + "probability": 0.9803 + }, + { + "start": 2437.2, + "end": 2438.12, + "probability": 0.9836 + }, + { + "start": 2438.2, + "end": 2438.56, + "probability": 0.9828 + }, + { + "start": 2440.72, + "end": 2443.58, + "probability": 0.7637 + }, + { + "start": 2444.4, + "end": 2448.48, + "probability": 0.9517 + }, + { + "start": 2450.0, + "end": 2452.16, + "probability": 0.9884 + }, + { + "start": 2453.62, + "end": 2457.3, + "probability": 0.9761 + }, + { + "start": 2460.1, + "end": 2464.94, + "probability": 0.989 + }, + { + "start": 2466.84, + "end": 2469.18, + "probability": 0.9793 + }, + { + "start": 2469.4, + "end": 2471.8, + "probability": 0.8424 + }, + { + "start": 2472.66, + "end": 2479.24, + "probability": 0.8084 + }, + { + "start": 2479.58, + "end": 2483.38, + "probability": 0.5693 + }, + { + "start": 2484.12, + "end": 2486.06, + "probability": 0.9976 + }, + { + "start": 2487.09, + "end": 2490.48, + "probability": 0.9438 + }, + { + "start": 2491.12, + "end": 2496.82, + "probability": 0.8996 + }, + { + "start": 2498.84, + "end": 2501.96, + "probability": 0.9929 + }, + { + "start": 2502.4, + "end": 2505.24, + "probability": 0.9854 + }, + { + "start": 2505.88, + "end": 2508.26, + "probability": 0.9889 + }, + { + "start": 2508.76, + "end": 2509.2, + "probability": 0.6388 + }, + { + "start": 2509.24, + "end": 2509.24, + "probability": 0.5138 + }, + { + "start": 2509.54, + "end": 2512.96, + "probability": 0.9243 + }, + { + "start": 2513.52, + "end": 2516.68, + "probability": 0.993 + }, + { + "start": 2516.98, + "end": 2520.3, + "probability": 0.9697 + }, + { + "start": 2520.88, + "end": 2525.16, + "probability": 0.9791 + }, + { + "start": 2525.18, + "end": 2526.58, + "probability": 0.8138 + }, + { + "start": 2526.72, + "end": 2529.62, + "probability": 0.0903 + }, + { + "start": 2529.7, + "end": 2531.84, + "probability": 0.7519 + }, + { + "start": 2532.16, + "end": 2535.9, + "probability": 0.4864 + }, + { + "start": 2536.5, + "end": 2537.16, + "probability": 0.698 + }, + { + "start": 2537.62, + "end": 2538.4, + "probability": 0.7531 + }, + { + "start": 2539.6, + "end": 2540.12, + "probability": 0.7439 + }, + { + "start": 2540.86, + "end": 2546.04, + "probability": 0.0347 + }, + { + "start": 2557.76, + "end": 2558.26, + "probability": 0.0041 + }, + { + "start": 2558.26, + "end": 2558.5, + "probability": 0.0612 + }, + { + "start": 2558.5, + "end": 2558.68, + "probability": 0.0193 + }, + { + "start": 2558.68, + "end": 2558.68, + "probability": 0.6326 + }, + { + "start": 2558.68, + "end": 2558.68, + "probability": 0.799 + }, + { + "start": 2558.68, + "end": 2559.28, + "probability": 0.2395 + }, + { + "start": 2560.2, + "end": 2562.44, + "probability": 0.9114 + }, + { + "start": 2562.74, + "end": 2567.88, + "probability": 0.8018 + }, + { + "start": 2568.4, + "end": 2569.54, + "probability": 0.661 + }, + { + "start": 2570.16, + "end": 2572.0, + "probability": 0.9573 + }, + { + "start": 2573.96, + "end": 2574.24, + "probability": 0.0428 + }, + { + "start": 2575.26, + "end": 2579.74, + "probability": 0.9697 + }, + { + "start": 2580.32, + "end": 2582.84, + "probability": 0.8144 + }, + { + "start": 2584.15, + "end": 2588.74, + "probability": 0.9279 + }, + { + "start": 2590.06, + "end": 2592.76, + "probability": 0.9824 + }, + { + "start": 2593.44, + "end": 2594.78, + "probability": 0.375 + }, + { + "start": 2595.84, + "end": 2600.02, + "probability": 0.7781 + }, + { + "start": 2600.12, + "end": 2601.96, + "probability": 0.6668 + }, + { + "start": 2603.86, + "end": 2608.2, + "probability": 0.9621 + }, + { + "start": 2609.8, + "end": 2612.88, + "probability": 0.912 + }, + { + "start": 2613.56, + "end": 2618.6, + "probability": 0.9865 + }, + { + "start": 2618.6, + "end": 2621.44, + "probability": 0.9229 + }, + { + "start": 2623.02, + "end": 2632.96, + "probability": 0.5459 + }, + { + "start": 2633.96, + "end": 2636.06, + "probability": 0.9522 + }, + { + "start": 2637.92, + "end": 2641.68, + "probability": 0.9971 + }, + { + "start": 2641.78, + "end": 2644.84, + "probability": 0.9828 + }, + { + "start": 2646.02, + "end": 2650.08, + "probability": 0.9836 + }, + { + "start": 2650.8, + "end": 2651.72, + "probability": 0.9929 + }, + { + "start": 2652.3, + "end": 2654.5, + "probability": 0.9752 + }, + { + "start": 2655.2, + "end": 2656.16, + "probability": 0.8987 + }, + { + "start": 2657.4, + "end": 2657.85, + "probability": 0.9543 + }, + { + "start": 2664.34, + "end": 2665.84, + "probability": 0.6914 + }, + { + "start": 2667.02, + "end": 2670.76, + "probability": 0.9498 + }, + { + "start": 2672.1, + "end": 2673.94, + "probability": 0.9471 + }, + { + "start": 2674.82, + "end": 2676.2, + "probability": 0.948 + }, + { + "start": 2676.66, + "end": 2679.24, + "probability": 0.9277 + }, + { + "start": 2679.48, + "end": 2680.68, + "probability": 0.7392 + }, + { + "start": 2681.06, + "end": 2682.72, + "probability": 0.8125 + }, + { + "start": 2683.38, + "end": 2685.86, + "probability": 0.7933 + }, + { + "start": 2686.76, + "end": 2688.98, + "probability": 0.8428 + }, + { + "start": 2689.7, + "end": 2691.78, + "probability": 0.9875 + }, + { + "start": 2691.86, + "end": 2696.9, + "probability": 0.6803 + }, + { + "start": 2698.32, + "end": 2700.26, + "probability": 0.9688 + }, + { + "start": 2701.38, + "end": 2704.26, + "probability": 0.9286 + }, + { + "start": 2705.62, + "end": 2707.78, + "probability": 0.7051 + }, + { + "start": 2708.78, + "end": 2713.38, + "probability": 0.9757 + }, + { + "start": 2714.22, + "end": 2717.29, + "probability": 0.8898 + }, + { + "start": 2717.44, + "end": 2718.38, + "probability": 0.9371 + }, + { + "start": 2719.76, + "end": 2721.68, + "probability": 0.734 + }, + { + "start": 2721.78, + "end": 2722.16, + "probability": 0.778 + }, + { + "start": 2723.56, + "end": 2725.58, + "probability": 0.845 + }, + { + "start": 2725.72, + "end": 2726.54, + "probability": 0.7476 + }, + { + "start": 2727.68, + "end": 2728.64, + "probability": 0.9498 + }, + { + "start": 2728.82, + "end": 2730.5, + "probability": 0.9934 + }, + { + "start": 2730.5, + "end": 2731.86, + "probability": 0.8869 + }, + { + "start": 2733.69, + "end": 2736.94, + "probability": 0.2955 + }, + { + "start": 2737.7, + "end": 2739.18, + "probability": 0.964 + }, + { + "start": 2739.78, + "end": 2741.92, + "probability": 0.9958 + }, + { + "start": 2741.94, + "end": 2743.2, + "probability": 0.7434 + }, + { + "start": 2743.74, + "end": 2746.06, + "probability": 0.5291 + }, + { + "start": 2746.56, + "end": 2749.15, + "probability": 0.6689 + }, + { + "start": 2749.26, + "end": 2752.52, + "probability": 0.9719 + }, + { + "start": 2753.24, + "end": 2757.64, + "probability": 0.9891 + }, + { + "start": 2758.42, + "end": 2759.32, + "probability": 0.9299 + }, + { + "start": 2759.54, + "end": 2760.92, + "probability": 0.7305 + }, + { + "start": 2760.98, + "end": 2761.48, + "probability": 0.8555 + }, + { + "start": 2761.84, + "end": 2764.04, + "probability": 0.8765 + }, + { + "start": 2764.48, + "end": 2765.46, + "probability": 0.871 + }, + { + "start": 2766.24, + "end": 2767.44, + "probability": 0.9537 + }, + { + "start": 2767.96, + "end": 2769.66, + "probability": 0.7668 + }, + { + "start": 2771.02, + "end": 2773.14, + "probability": 0.9125 + }, + { + "start": 2773.76, + "end": 2777.46, + "probability": 0.9812 + }, + { + "start": 2777.62, + "end": 2780.82, + "probability": 0.9649 + }, + { + "start": 2781.7, + "end": 2783.36, + "probability": 0.9978 + }, + { + "start": 2784.18, + "end": 2786.4, + "probability": 0.8264 + }, + { + "start": 2787.1, + "end": 2791.82, + "probability": 0.9249 + }, + { + "start": 2791.82, + "end": 2794.56, + "probability": 0.8538 + }, + { + "start": 2796.3, + "end": 2798.88, + "probability": 0.974 + }, + { + "start": 2798.98, + "end": 2800.84, + "probability": 0.8928 + }, + { + "start": 2802.38, + "end": 2803.8, + "probability": 0.9223 + }, + { + "start": 2803.88, + "end": 2805.88, + "probability": 0.8065 + }, + { + "start": 2806.0, + "end": 2806.4, + "probability": 0.6948 + }, + { + "start": 2806.96, + "end": 2809.04, + "probability": 0.8929 + }, + { + "start": 2809.24, + "end": 2810.74, + "probability": 0.9012 + }, + { + "start": 2811.74, + "end": 2814.36, + "probability": 0.9731 + }, + { + "start": 2815.56, + "end": 2819.6, + "probability": 0.9659 + }, + { + "start": 2820.22, + "end": 2824.9, + "probability": 0.9771 + }, + { + "start": 2825.08, + "end": 2826.08, + "probability": 0.9347 + }, + { + "start": 2826.1, + "end": 2826.88, + "probability": 0.6432 + }, + { + "start": 2827.5, + "end": 2830.54, + "probability": 0.9658 + }, + { + "start": 2831.42, + "end": 2832.2, + "probability": 0.7821 + }, + { + "start": 2832.36, + "end": 2835.12, + "probability": 0.5458 + }, + { + "start": 2835.2, + "end": 2836.04, + "probability": 0.3342 + }, + { + "start": 2836.28, + "end": 2839.28, + "probability": 0.9521 + }, + { + "start": 2839.72, + "end": 2840.9, + "probability": 0.9954 + }, + { + "start": 2841.14, + "end": 2842.14, + "probability": 0.2423 + }, + { + "start": 2842.4, + "end": 2844.08, + "probability": 0.5852 + }, + { + "start": 2844.28, + "end": 2845.24, + "probability": 0.9159 + }, + { + "start": 2845.72, + "end": 2846.28, + "probability": 0.8069 + }, + { + "start": 2848.54, + "end": 2854.42, + "probability": 0.997 + }, + { + "start": 2854.58, + "end": 2856.74, + "probability": 0.8794 + }, + { + "start": 2856.78, + "end": 2857.4, + "probability": 0.7496 + }, + { + "start": 2858.16, + "end": 2861.6, + "probability": 0.9733 + }, + { + "start": 2861.6, + "end": 2863.96, + "probability": 0.9797 + }, + { + "start": 2864.46, + "end": 2866.62, + "probability": 0.7607 + }, + { + "start": 2867.3, + "end": 2868.09, + "probability": 0.8936 + }, + { + "start": 2868.9, + "end": 2870.0, + "probability": 0.972 + }, + { + "start": 2870.54, + "end": 2872.66, + "probability": 0.8329 + }, + { + "start": 2872.78, + "end": 2873.96, + "probability": 0.9717 + }, + { + "start": 2874.54, + "end": 2876.42, + "probability": 0.9885 + }, + { + "start": 2876.98, + "end": 2879.52, + "probability": 0.9478 + }, + { + "start": 2880.22, + "end": 2881.72, + "probability": 0.9656 + }, + { + "start": 2882.06, + "end": 2884.04, + "probability": 0.9933 + }, + { + "start": 2884.22, + "end": 2885.34, + "probability": 0.707 + }, + { + "start": 2885.9, + "end": 2887.58, + "probability": 0.6679 + }, + { + "start": 2887.66, + "end": 2888.5, + "probability": 0.9001 + }, + { + "start": 2888.88, + "end": 2890.38, + "probability": 0.9834 + }, + { + "start": 2890.54, + "end": 2891.92, + "probability": 0.9971 + }, + { + "start": 2892.82, + "end": 2894.88, + "probability": 0.959 + }, + { + "start": 2894.92, + "end": 2895.96, + "probability": 0.8986 + }, + { + "start": 2896.44, + "end": 2897.36, + "probability": 0.6458 + }, + { + "start": 2898.24, + "end": 2898.56, + "probability": 0.2989 + }, + { + "start": 2899.42, + "end": 2902.56, + "probability": 0.935 + }, + { + "start": 2902.66, + "end": 2903.02, + "probability": 0.7487 + }, + { + "start": 2903.72, + "end": 2905.96, + "probability": 0.9893 + }, + { + "start": 2906.82, + "end": 2907.46, + "probability": 0.8989 + }, + { + "start": 2907.52, + "end": 2909.44, + "probability": 0.8465 + }, + { + "start": 2910.02, + "end": 2911.32, + "probability": 0.9801 + }, + { + "start": 2911.36, + "end": 2914.6, + "probability": 0.9927 + }, + { + "start": 2914.72, + "end": 2916.44, + "probability": 0.8928 + }, + { + "start": 2917.96, + "end": 2920.06, + "probability": 0.9165 + }, + { + "start": 2920.76, + "end": 2926.54, + "probability": 0.947 + }, + { + "start": 2927.48, + "end": 2929.2, + "probability": 0.9377 + }, + { + "start": 2929.72, + "end": 2932.46, + "probability": 0.6872 + }, + { + "start": 2933.32, + "end": 2940.02, + "probability": 0.7525 + }, + { + "start": 2940.66, + "end": 2941.92, + "probability": 0.9125 + }, + { + "start": 2942.48, + "end": 2944.8, + "probability": 0.9915 + }, + { + "start": 2945.44, + "end": 2948.56, + "probability": 0.7056 + }, + { + "start": 2949.58, + "end": 2952.24, + "probability": 0.9802 + }, + { + "start": 2952.24, + "end": 2953.64, + "probability": 0.9893 + }, + { + "start": 2954.02, + "end": 2954.82, + "probability": 0.899 + }, + { + "start": 2954.92, + "end": 2955.68, + "probability": 0.7465 + }, + { + "start": 2956.1, + "end": 2958.3, + "probability": 0.7485 + }, + { + "start": 2958.46, + "end": 2961.44, + "probability": 0.9873 + }, + { + "start": 2961.6, + "end": 2962.29, + "probability": 0.7549 + }, + { + "start": 2963.12, + "end": 2964.56, + "probability": 0.9235 + }, + { + "start": 2964.66, + "end": 2965.04, + "probability": 0.8672 + }, + { + "start": 2966.52, + "end": 2970.06, + "probability": 0.995 + }, + { + "start": 2970.06, + "end": 2972.96, + "probability": 0.9128 + }, + { + "start": 2973.54, + "end": 2975.08, + "probability": 0.8798 + }, + { + "start": 2975.66, + "end": 2979.14, + "probability": 0.9877 + }, + { + "start": 2980.06, + "end": 2981.38, + "probability": 0.8729 + }, + { + "start": 2982.08, + "end": 2983.46, + "probability": 0.9788 + }, + { + "start": 2984.2, + "end": 2988.5, + "probability": 0.9469 + }, + { + "start": 2988.9, + "end": 2990.12, + "probability": 0.9864 + }, + { + "start": 2990.3, + "end": 2991.62, + "probability": 0.8556 + }, + { + "start": 2992.46, + "end": 2996.64, + "probability": 0.9694 + }, + { + "start": 2996.64, + "end": 2999.72, + "probability": 0.8593 + }, + { + "start": 3000.14, + "end": 3000.75, + "probability": 0.5698 + }, + { + "start": 3001.62, + "end": 3004.3, + "probability": 0.8541 + }, + { + "start": 3004.98, + "end": 3007.5, + "probability": 0.7175 + }, + { + "start": 3008.2, + "end": 3009.5, + "probability": 0.9542 + }, + { + "start": 3010.14, + "end": 3013.42, + "probability": 0.9864 + }, + { + "start": 3013.88, + "end": 3014.46, + "probability": 0.9927 + }, + { + "start": 3015.22, + "end": 3016.96, + "probability": 0.9985 + }, + { + "start": 3017.0, + "end": 3019.0, + "probability": 0.9951 + }, + { + "start": 3019.7, + "end": 3022.32, + "probability": 0.9504 + }, + { + "start": 3022.84, + "end": 3028.84, + "probability": 0.9965 + }, + { + "start": 3028.92, + "end": 3030.11, + "probability": 0.9829 + }, + { + "start": 3030.86, + "end": 3032.66, + "probability": 0.9722 + }, + { + "start": 3033.4, + "end": 3033.84, + "probability": 0.9261 + }, + { + "start": 3033.88, + "end": 3035.0, + "probability": 0.9602 + }, + { + "start": 3035.86, + "end": 3038.78, + "probability": 0.9373 + }, + { + "start": 3038.94, + "end": 3039.88, + "probability": 0.7809 + }, + { + "start": 3040.28, + "end": 3042.24, + "probability": 0.9551 + }, + { + "start": 3042.82, + "end": 3045.1, + "probability": 0.9536 + }, + { + "start": 3046.12, + "end": 3050.76, + "probability": 0.9524 + }, + { + "start": 3051.44, + "end": 3051.82, + "probability": 0.3386 + }, + { + "start": 3051.9, + "end": 3052.7, + "probability": 0.8923 + }, + { + "start": 3053.14, + "end": 3055.62, + "probability": 0.9926 + }, + { + "start": 3055.76, + "end": 3059.46, + "probability": 0.7456 + }, + { + "start": 3059.86, + "end": 3060.66, + "probability": 0.8161 + }, + { + "start": 3061.3, + "end": 3062.68, + "probability": 0.9305 + }, + { + "start": 3063.2, + "end": 3064.56, + "probability": 0.752 + }, + { + "start": 3065.24, + "end": 3068.84, + "probability": 0.7785 + }, + { + "start": 3069.26, + "end": 3071.46, + "probability": 0.7461 + }, + { + "start": 3072.16, + "end": 3074.2, + "probability": 0.9444 + }, + { + "start": 3074.2, + "end": 3077.36, + "probability": 0.9966 + }, + { + "start": 3077.86, + "end": 3079.82, + "probability": 0.8627 + }, + { + "start": 3080.36, + "end": 3083.54, + "probability": 0.8497 + }, + { + "start": 3083.78, + "end": 3084.1, + "probability": 0.5265 + }, + { + "start": 3084.92, + "end": 3086.76, + "probability": 0.6125 + }, + { + "start": 3087.94, + "end": 3089.2, + "probability": 0.8878 + }, + { + "start": 3089.62, + "end": 3091.6, + "probability": 0.7327 + }, + { + "start": 3091.68, + "end": 3093.62, + "probability": 0.8572 + }, + { + "start": 3095.14, + "end": 3097.64, + "probability": 0.9237 + }, + { + "start": 3102.1, + "end": 3104.06, + "probability": 0.6285 + }, + { + "start": 3104.94, + "end": 3105.95, + "probability": 0.9658 + }, + { + "start": 3106.54, + "end": 3106.82, + "probability": 0.692 + }, + { + "start": 3107.64, + "end": 3108.66, + "probability": 0.7321 + }, + { + "start": 3108.76, + "end": 3110.52, + "probability": 0.9275 + }, + { + "start": 3111.82, + "end": 3112.56, + "probability": 0.7606 + }, + { + "start": 3112.64, + "end": 3113.84, + "probability": 0.9022 + }, + { + "start": 3114.28, + "end": 3117.5, + "probability": 0.9404 + }, + { + "start": 3117.96, + "end": 3119.68, + "probability": 0.8727 + }, + { + "start": 3119.74, + "end": 3122.72, + "probability": 0.9807 + }, + { + "start": 3123.28, + "end": 3124.74, + "probability": 0.6677 + }, + { + "start": 3125.64, + "end": 3128.76, + "probability": 0.924 + }, + { + "start": 3129.54, + "end": 3131.64, + "probability": 0.7609 + }, + { + "start": 3133.0, + "end": 3134.2, + "probability": 0.358 + }, + { + "start": 3135.96, + "end": 3140.18, + "probability": 0.9785 + }, + { + "start": 3140.74, + "end": 3142.1, + "probability": 0.5386 + }, + { + "start": 3142.1, + "end": 3142.92, + "probability": 0.7465 + }, + { + "start": 3143.4, + "end": 3145.38, + "probability": 0.8385 + }, + { + "start": 3145.92, + "end": 3148.8, + "probability": 0.9771 + }, + { + "start": 3149.3, + "end": 3152.0, + "probability": 0.7993 + }, + { + "start": 3153.9, + "end": 3154.66, + "probability": 0.7639 + }, + { + "start": 3156.3, + "end": 3158.5, + "probability": 0.9891 + }, + { + "start": 3159.2, + "end": 3162.24, + "probability": 0.8862 + }, + { + "start": 3162.24, + "end": 3166.82, + "probability": 0.9937 + }, + { + "start": 3167.34, + "end": 3169.0, + "probability": 0.725 + }, + { + "start": 3169.74, + "end": 3170.64, + "probability": 0.5822 + }, + { + "start": 3170.84, + "end": 3173.02, + "probability": 0.9878 + }, + { + "start": 3173.52, + "end": 3174.56, + "probability": 0.7956 + }, + { + "start": 3175.28, + "end": 3176.48, + "probability": 0.8499 + }, + { + "start": 3176.56, + "end": 3177.6, + "probability": 0.8673 + }, + { + "start": 3177.62, + "end": 3179.5, + "probability": 0.7859 + }, + { + "start": 3179.64, + "end": 3181.04, + "probability": 0.4243 + }, + { + "start": 3181.24, + "end": 3184.56, + "probability": 0.6796 + }, + { + "start": 3184.78, + "end": 3185.52, + "probability": 0.9732 + }, + { + "start": 3186.68, + "end": 3187.94, + "probability": 0.9826 + }, + { + "start": 3189.56, + "end": 3190.32, + "probability": 0.7212 + }, + { + "start": 3191.32, + "end": 3192.68, + "probability": 0.842 + }, + { + "start": 3196.72, + "end": 3197.62, + "probability": 0.9509 + }, + { + "start": 3198.6, + "end": 3199.85, + "probability": 0.9366 + }, + { + "start": 3201.12, + "end": 3202.44, + "probability": 0.9584 + }, + { + "start": 3202.46, + "end": 3206.32, + "probability": 0.9197 + }, + { + "start": 3206.32, + "end": 3211.08, + "probability": 0.879 + }, + { + "start": 3212.38, + "end": 3212.98, + "probability": 0.6358 + }, + { + "start": 3216.76, + "end": 3217.84, + "probability": 0.5159 + }, + { + "start": 3217.94, + "end": 3220.11, + "probability": 0.998 + }, + { + "start": 3220.52, + "end": 3223.48, + "probability": 0.9937 + }, + { + "start": 3223.56, + "end": 3224.82, + "probability": 0.6652 + }, + { + "start": 3225.22, + "end": 3227.8, + "probability": 0.9537 + }, + { + "start": 3228.6, + "end": 3230.4, + "probability": 0.9489 + }, + { + "start": 3230.5, + "end": 3233.34, + "probability": 0.6819 + }, + { + "start": 3233.38, + "end": 3235.72, + "probability": 0.8366 + }, + { + "start": 3235.85, + "end": 3239.84, + "probability": 0.9802 + }, + { + "start": 3240.38, + "end": 3241.12, + "probability": 0.8802 + }, + { + "start": 3242.08, + "end": 3243.72, + "probability": 0.702 + }, + { + "start": 3244.08, + "end": 3248.28, + "probability": 0.8051 + }, + { + "start": 3248.68, + "end": 3251.56, + "probability": 0.9662 + }, + { + "start": 3251.84, + "end": 3251.98, + "probability": 0.7573 + }, + { + "start": 3252.37, + "end": 3255.48, + "probability": 0.6183 + }, + { + "start": 3255.58, + "end": 3256.0, + "probability": 0.7781 + }, + { + "start": 3256.78, + "end": 3257.8, + "probability": 0.6942 + }, + { + "start": 3258.5, + "end": 3260.9, + "probability": 0.8633 + }, + { + "start": 3263.56, + "end": 3264.36, + "probability": 0.7274 + }, + { + "start": 3265.28, + "end": 3266.02, + "probability": 0.8873 + }, + { + "start": 3278.66, + "end": 3280.35, + "probability": 0.9193 + }, + { + "start": 3281.94, + "end": 3282.68, + "probability": 0.8134 + }, + { + "start": 3282.74, + "end": 3283.78, + "probability": 0.6803 + }, + { + "start": 3283.78, + "end": 3284.58, + "probability": 0.4959 + }, + { + "start": 3285.74, + "end": 3287.62, + "probability": 0.7829 + }, + { + "start": 3289.76, + "end": 3290.78, + "probability": 0.9568 + }, + { + "start": 3294.96, + "end": 3296.3, + "probability": 0.5356 + }, + { + "start": 3298.24, + "end": 3299.72, + "probability": 0.5271 + }, + { + "start": 3303.5, + "end": 3306.06, + "probability": 0.9995 + }, + { + "start": 3306.78, + "end": 3308.48, + "probability": 0.9604 + }, + { + "start": 3308.62, + "end": 3309.4, + "probability": 0.2984 + }, + { + "start": 3309.42, + "end": 3309.96, + "probability": 0.3868 + }, + { + "start": 3310.1, + "end": 3310.7, + "probability": 0.8927 + }, + { + "start": 3311.56, + "end": 3312.24, + "probability": 0.8281 + }, + { + "start": 3312.9, + "end": 3314.76, + "probability": 0.7726 + }, + { + "start": 3315.0, + "end": 3318.48, + "probability": 0.6935 + }, + { + "start": 3318.58, + "end": 3321.1, + "probability": 0.8859 + }, + { + "start": 3321.9, + "end": 3324.4, + "probability": 0.8284 + }, + { + "start": 3324.94, + "end": 3327.4, + "probability": 0.7865 + }, + { + "start": 3328.1, + "end": 3329.82, + "probability": 0.7413 + }, + { + "start": 3330.62, + "end": 3334.28, + "probability": 0.7984 + }, + { + "start": 3334.34, + "end": 3337.44, + "probability": 0.9321 + }, + { + "start": 3337.44, + "end": 3339.68, + "probability": 0.9928 + }, + { + "start": 3340.6, + "end": 3341.2, + "probability": 0.4449 + }, + { + "start": 3341.36, + "end": 3341.84, + "probability": 0.6835 + }, + { + "start": 3341.9, + "end": 3345.6, + "probability": 0.9 + }, + { + "start": 3345.72, + "end": 3346.32, + "probability": 0.6756 + }, + { + "start": 3347.16, + "end": 3348.6, + "probability": 0.8014 + }, + { + "start": 3349.04, + "end": 3353.18, + "probability": 0.8486 + }, + { + "start": 3354.14, + "end": 3357.48, + "probability": 0.9833 + }, + { + "start": 3357.84, + "end": 3360.56, + "probability": 0.9863 + }, + { + "start": 3360.82, + "end": 3362.15, + "probability": 0.9908 + }, + { + "start": 3362.64, + "end": 3362.94, + "probability": 0.9557 + }, + { + "start": 3363.48, + "end": 3364.35, + "probability": 0.9167 + }, + { + "start": 3364.82, + "end": 3366.1, + "probability": 0.9395 + }, + { + "start": 3366.5, + "end": 3367.98, + "probability": 0.961 + }, + { + "start": 3368.9, + "end": 3372.62, + "probability": 0.9209 + }, + { + "start": 3372.84, + "end": 3375.5, + "probability": 0.8882 + }, + { + "start": 3376.2, + "end": 3380.88, + "probability": 0.9846 + }, + { + "start": 3381.06, + "end": 3383.82, + "probability": 0.9824 + }, + { + "start": 3384.76, + "end": 3385.24, + "probability": 0.7381 + }, + { + "start": 3385.42, + "end": 3388.06, + "probability": 0.9702 + }, + { + "start": 3389.1, + "end": 3389.66, + "probability": 0.9211 + }, + { + "start": 3389.86, + "end": 3394.68, + "probability": 0.8743 + }, + { + "start": 3397.48, + "end": 3401.28, + "probability": 0.9985 + }, + { + "start": 3402.72, + "end": 3404.92, + "probability": 0.9933 + }, + { + "start": 3405.42, + "end": 3409.1, + "probability": 0.848 + }, + { + "start": 3409.64, + "end": 3414.98, + "probability": 0.9375 + }, + { + "start": 3415.3, + "end": 3418.84, + "probability": 0.9966 + }, + { + "start": 3418.88, + "end": 3420.0, + "probability": 0.9533 + }, + { + "start": 3420.64, + "end": 3420.78, + "probability": 0.3761 + }, + { + "start": 3420.88, + "end": 3423.9, + "probability": 0.8904 + }, + { + "start": 3424.76, + "end": 3426.04, + "probability": 0.9644 + }, + { + "start": 3426.86, + "end": 3426.98, + "probability": 0.4556 + }, + { + "start": 3427.08, + "end": 3429.79, + "probability": 0.9525 + }, + { + "start": 3430.92, + "end": 3431.88, + "probability": 0.5275 + }, + { + "start": 3432.36, + "end": 3432.92, + "probability": 0.789 + }, + { + "start": 3433.14, + "end": 3433.98, + "probability": 0.9656 + }, + { + "start": 3434.6, + "end": 3436.44, + "probability": 0.9852 + }, + { + "start": 3436.58, + "end": 3437.42, + "probability": 0.6402 + }, + { + "start": 3437.54, + "end": 3440.54, + "probability": 0.9143 + }, + { + "start": 3441.02, + "end": 3441.6, + "probability": 0.866 + }, + { + "start": 3441.7, + "end": 3445.14, + "probability": 0.9847 + }, + { + "start": 3445.14, + "end": 3447.44, + "probability": 0.9215 + }, + { + "start": 3448.42, + "end": 3448.78, + "probability": 0.6078 + }, + { + "start": 3449.12, + "end": 3452.84, + "probability": 0.9536 + }, + { + "start": 3453.36, + "end": 3455.42, + "probability": 0.755 + }, + { + "start": 3455.8, + "end": 3456.54, + "probability": 0.7542 + }, + { + "start": 3459.46, + "end": 3460.26, + "probability": 0.772 + }, + { + "start": 3467.88, + "end": 3469.28, + "probability": 0.6264 + }, + { + "start": 3469.54, + "end": 3472.36, + "probability": 0.4141 + }, + { + "start": 3475.64, + "end": 3477.66, + "probability": 0.9662 + }, + { + "start": 3478.92, + "end": 3479.34, + "probability": 0.6046 + }, + { + "start": 3481.55, + "end": 3483.6, + "probability": 0.0682 + }, + { + "start": 3484.12, + "end": 3487.98, + "probability": 0.3259 + }, + { + "start": 3489.09, + "end": 3489.46, + "probability": 0.012 + }, + { + "start": 3493.7, + "end": 3494.42, + "probability": 0.0071 + }, + { + "start": 3496.34, + "end": 3501.22, + "probability": 0.8279 + }, + { + "start": 3501.88, + "end": 3503.92, + "probability": 0.9639 + }, + { + "start": 3504.46, + "end": 3505.9, + "probability": 0.9917 + }, + { + "start": 3506.5, + "end": 3507.84, + "probability": 0.6531 + }, + { + "start": 3508.26, + "end": 3508.98, + "probability": 0.9067 + }, + { + "start": 3509.54, + "end": 3511.66, + "probability": 0.938 + }, + { + "start": 3512.18, + "end": 3514.4, + "probability": 0.6157 + }, + { + "start": 3514.76, + "end": 3516.58, + "probability": 0.8989 + }, + { + "start": 3516.9, + "end": 3519.0, + "probability": 0.9011 + }, + { + "start": 3520.1, + "end": 3522.4, + "probability": 0.7592 + }, + { + "start": 3522.46, + "end": 3523.34, + "probability": 0.871 + }, + { + "start": 3524.62, + "end": 3527.34, + "probability": 0.9697 + }, + { + "start": 3528.26, + "end": 3531.42, + "probability": 0.9805 + }, + { + "start": 3531.48, + "end": 3534.66, + "probability": 0.9678 + }, + { + "start": 3535.36, + "end": 3537.4, + "probability": 0.3676 + }, + { + "start": 3537.92, + "end": 3539.56, + "probability": 0.7834 + }, + { + "start": 3540.14, + "end": 3541.78, + "probability": 0.6711 + }, + { + "start": 3542.78, + "end": 3543.6, + "probability": 0.5337 + }, + { + "start": 3543.8, + "end": 3544.6, + "probability": 0.2507 + }, + { + "start": 3544.6, + "end": 3546.46, + "probability": 0.7328 + }, + { + "start": 3573.18, + "end": 3576.1, + "probability": 0.0296 + }, + { + "start": 3576.72, + "end": 3576.72, + "probability": 0.0334 + }, + { + "start": 3576.72, + "end": 3576.72, + "probability": 0.0877 + }, + { + "start": 3576.72, + "end": 3580.54, + "probability": 0.7422 + }, + { + "start": 3583.24, + "end": 3583.44, + "probability": 0.0097 + }, + { + "start": 3592.18, + "end": 3592.28, + "probability": 0.0236 + }, + { + "start": 3592.28, + "end": 3592.28, + "probability": 0.0755 + }, + { + "start": 3592.28, + "end": 3592.28, + "probability": 0.0729 + }, + { + "start": 3592.28, + "end": 3593.0, + "probability": 0.2617 + }, + { + "start": 3593.0, + "end": 3593.28, + "probability": 0.6687 + }, + { + "start": 3594.06, + "end": 3595.6, + "probability": 0.7347 + }, + { + "start": 3596.26, + "end": 3597.3, + "probability": 0.4474 + }, + { + "start": 3597.96, + "end": 3599.36, + "probability": 0.9902 + }, + { + "start": 3601.9, + "end": 3606.7, + "probability": 0.9269 + }, + { + "start": 3606.92, + "end": 3608.42, + "probability": 0.5446 + }, + { + "start": 3609.1, + "end": 3611.28, + "probability": 0.739 + }, + { + "start": 3611.8, + "end": 3613.98, + "probability": 0.78 + }, + { + "start": 3614.6, + "end": 3617.86, + "probability": 0.9159 + }, + { + "start": 3619.24, + "end": 3632.04, + "probability": 0.8728 + }, + { + "start": 3635.62, + "end": 3636.44, + "probability": 0.9489 + }, + { + "start": 3636.84, + "end": 3637.62, + "probability": 0.7211 + }, + { + "start": 3638.82, + "end": 3642.58, + "probability": 0.9718 + }, + { + "start": 3643.2, + "end": 3645.22, + "probability": 0.9724 + }, + { + "start": 3645.66, + "end": 3648.96, + "probability": 0.7494 + }, + { + "start": 3649.76, + "end": 3650.44, + "probability": 0.9814 + }, + { + "start": 3650.54, + "end": 3653.72, + "probability": 0.953 + }, + { + "start": 3654.5, + "end": 3656.14, + "probability": 0.9711 + }, + { + "start": 3658.02, + "end": 3658.82, + "probability": 0.9183 + }, + { + "start": 3660.86, + "end": 3662.82, + "probability": 0.8805 + }, + { + "start": 3663.04, + "end": 3664.42, + "probability": 0.9795 + }, + { + "start": 3669.46, + "end": 3674.32, + "probability": 0.8505 + }, + { + "start": 3676.62, + "end": 3678.26, + "probability": 0.9946 + }, + { + "start": 3679.6, + "end": 3680.38, + "probability": 0.9382 + }, + { + "start": 3681.48, + "end": 3683.8, + "probability": 0.9854 + }, + { + "start": 3684.2, + "end": 3685.18, + "probability": 0.9822 + }, + { + "start": 3685.68, + "end": 3690.48, + "probability": 0.9929 + }, + { + "start": 3691.92, + "end": 3696.0, + "probability": 0.9971 + }, + { + "start": 3696.32, + "end": 3697.78, + "probability": 0.923 + }, + { + "start": 3697.88, + "end": 3698.74, + "probability": 0.8909 + }, + { + "start": 3699.02, + "end": 3700.08, + "probability": 0.9515 + }, + { + "start": 3700.1, + "end": 3701.22, + "probability": 0.9887 + }, + { + "start": 3701.32, + "end": 3702.3, + "probability": 0.702 + }, + { + "start": 3702.4, + "end": 3704.16, + "probability": 0.9842 + }, + { + "start": 3704.92, + "end": 3707.9, + "probability": 0.8725 + }, + { + "start": 3708.68, + "end": 3712.78, + "probability": 0.9812 + }, + { + "start": 3713.64, + "end": 3721.28, + "probability": 0.988 + }, + { + "start": 3721.88, + "end": 3727.5, + "probability": 0.9924 + }, + { + "start": 3729.02, + "end": 3730.22, + "probability": 0.9962 + }, + { + "start": 3731.42, + "end": 3732.12, + "probability": 0.9754 + }, + { + "start": 3734.1, + "end": 3735.78, + "probability": 0.9842 + }, + { + "start": 3737.04, + "end": 3739.86, + "probability": 0.9956 + }, + { + "start": 3740.76, + "end": 3740.86, + "probability": 0.3481 + }, + { + "start": 3741.06, + "end": 3745.16, + "probability": 0.9209 + }, + { + "start": 3746.02, + "end": 3746.22, + "probability": 0.4413 + }, + { + "start": 3746.54, + "end": 3747.56, + "probability": 0.0148 + }, + { + "start": 3748.32, + "end": 3749.1, + "probability": 0.5902 + }, + { + "start": 3749.16, + "end": 3752.24, + "probability": 0.8957 + }, + { + "start": 3752.24, + "end": 3752.92, + "probability": 0.6406 + }, + { + "start": 3753.02, + "end": 3757.98, + "probability": 0.5548 + }, + { + "start": 3758.0, + "end": 3759.24, + "probability": 0.6005 + }, + { + "start": 3760.04, + "end": 3767.6, + "probability": 0.8741 + }, + { + "start": 3769.2, + "end": 3773.26, + "probability": 0.696 + }, + { + "start": 3774.92, + "end": 3778.94, + "probability": 0.9907 + }, + { + "start": 3780.92, + "end": 3781.8, + "probability": 0.9246 + }, + { + "start": 3782.72, + "end": 3787.74, + "probability": 0.9192 + }, + { + "start": 3788.58, + "end": 3792.22, + "probability": 0.9836 + }, + { + "start": 3793.54, + "end": 3794.68, + "probability": 0.1748 + }, + { + "start": 3795.22, + "end": 3795.82, + "probability": 0.3276 + }, + { + "start": 3798.76, + "end": 3803.12, + "probability": 0.1057 + }, + { + "start": 3804.08, + "end": 3810.6, + "probability": 0.9768 + }, + { + "start": 3811.34, + "end": 3815.42, + "probability": 0.9725 + }, + { + "start": 3816.2, + "end": 3821.04, + "probability": 0.9103 + }, + { + "start": 3822.34, + "end": 3823.8, + "probability": 0.7574 + }, + { + "start": 3825.12, + "end": 3825.22, + "probability": 0.3219 + }, + { + "start": 3825.46, + "end": 3827.92, + "probability": 0.9571 + }, + { + "start": 3828.04, + "end": 3830.16, + "probability": 0.9849 + }, + { + "start": 3831.38, + "end": 3834.48, + "probability": 0.8945 + }, + { + "start": 3835.0, + "end": 3837.04, + "probability": 0.8161 + }, + { + "start": 3838.64, + "end": 3839.13, + "probability": 0.9582 + }, + { + "start": 3840.58, + "end": 3841.92, + "probability": 0.9919 + }, + { + "start": 3842.92, + "end": 3847.86, + "probability": 0.9878 + }, + { + "start": 3849.12, + "end": 3851.1, + "probability": 0.5396 + }, + { + "start": 3852.04, + "end": 3853.38, + "probability": 0.944 + }, + { + "start": 3853.64, + "end": 3855.1, + "probability": 0.9797 + }, + { + "start": 3855.28, + "end": 3856.62, + "probability": 0.9731 + }, + { + "start": 3857.62, + "end": 3860.0, + "probability": 0.9824 + }, + { + "start": 3860.92, + "end": 3866.16, + "probability": 0.9685 + }, + { + "start": 3867.94, + "end": 3870.26, + "probability": 0.6774 + }, + { + "start": 3871.16, + "end": 3871.82, + "probability": 0.701 + }, + { + "start": 3872.5, + "end": 3874.04, + "probability": 0.6445 + }, + { + "start": 3874.82, + "end": 3879.16, + "probability": 0.9958 + }, + { + "start": 3880.12, + "end": 3881.34, + "probability": 0.9792 + }, + { + "start": 3882.74, + "end": 3886.06, + "probability": 0.9547 + }, + { + "start": 3886.84, + "end": 3889.04, + "probability": 0.9873 + }, + { + "start": 3889.94, + "end": 3892.16, + "probability": 0.9946 + }, + { + "start": 3893.06, + "end": 3895.08, + "probability": 0.9972 + }, + { + "start": 3895.94, + "end": 3896.0, + "probability": 0.4723 + }, + { + "start": 3896.1, + "end": 3896.34, + "probability": 0.8925 + }, + { + "start": 3896.58, + "end": 3896.96, + "probability": 0.4984 + }, + { + "start": 3897.02, + "end": 3898.66, + "probability": 0.9671 + }, + { + "start": 3898.82, + "end": 3903.2, + "probability": 0.9851 + }, + { + "start": 3904.04, + "end": 3906.4, + "probability": 0.9768 + }, + { + "start": 3906.6, + "end": 3909.1, + "probability": 0.9989 + }, + { + "start": 3909.68, + "end": 3911.84, + "probability": 0.7306 + }, + { + "start": 3912.16, + "end": 3913.1, + "probability": 0.9944 + }, + { + "start": 3913.98, + "end": 3916.94, + "probability": 0.9904 + }, + { + "start": 3917.88, + "end": 3918.8, + "probability": 0.9795 + }, + { + "start": 3919.54, + "end": 3923.38, + "probability": 0.9829 + }, + { + "start": 3924.4, + "end": 3925.92, + "probability": 0.811 + }, + { + "start": 3926.7, + "end": 3929.28, + "probability": 0.985 + }, + { + "start": 3930.2, + "end": 3931.43, + "probability": 0.6175 + }, + { + "start": 3932.0, + "end": 3933.68, + "probability": 0.9873 + }, + { + "start": 3934.0, + "end": 3935.12, + "probability": 0.9626 + }, + { + "start": 3935.22, + "end": 3936.04, + "probability": 0.9902 + }, + { + "start": 3937.86, + "end": 3939.8, + "probability": 0.9811 + }, + { + "start": 3940.18, + "end": 3942.58, + "probability": 0.9507 + }, + { + "start": 3943.0, + "end": 3945.56, + "probability": 0.9902 + }, + { + "start": 3946.92, + "end": 3948.18, + "probability": 0.9349 + }, + { + "start": 3948.58, + "end": 3952.5, + "probability": 0.9904 + }, + { + "start": 3952.98, + "end": 3957.48, + "probability": 0.8351 + }, + { + "start": 3957.74, + "end": 3958.3, + "probability": 0.735 + }, + { + "start": 3958.98, + "end": 3961.0, + "probability": 0.9691 + }, + { + "start": 3962.22, + "end": 3965.5, + "probability": 0.9561 + }, + { + "start": 3967.22, + "end": 3968.42, + "probability": 0.9706 + }, + { + "start": 3968.56, + "end": 3969.44, + "probability": 0.9777 + }, + { + "start": 3969.66, + "end": 3970.46, + "probability": 0.8947 + }, + { + "start": 3970.9, + "end": 3971.78, + "probability": 0.868 + }, + { + "start": 3972.24, + "end": 3973.2, + "probability": 0.811 + }, + { + "start": 3974.26, + "end": 3975.72, + "probability": 0.5913 + }, + { + "start": 3976.94, + "end": 3980.82, + "probability": 0.9634 + }, + { + "start": 3981.42, + "end": 3982.22, + "probability": 0.9802 + }, + { + "start": 3983.94, + "end": 3987.48, + "probability": 0.9889 + }, + { + "start": 3987.74, + "end": 3989.33, + "probability": 0.9447 + }, + { + "start": 3990.32, + "end": 3994.42, + "probability": 0.9911 + }, + { + "start": 3995.04, + "end": 3996.16, + "probability": 0.5911 + }, + { + "start": 3996.7, + "end": 3998.58, + "probability": 0.7415 + }, + { + "start": 3999.52, + "end": 4001.74, + "probability": 0.9888 + }, + { + "start": 4003.16, + "end": 4004.74, + "probability": 0.9928 + }, + { + "start": 4006.52, + "end": 4008.42, + "probability": 0.9567 + }, + { + "start": 4008.96, + "end": 4012.52, + "probability": 0.8735 + }, + { + "start": 4013.02, + "end": 4015.05, + "probability": 0.9971 + }, + { + "start": 4016.12, + "end": 4020.26, + "probability": 0.9956 + }, + { + "start": 4020.92, + "end": 4025.68, + "probability": 0.9667 + }, + { + "start": 4027.66, + "end": 4033.26, + "probability": 0.9407 + }, + { + "start": 4034.84, + "end": 4035.96, + "probability": 0.636 + }, + { + "start": 4037.76, + "end": 4038.58, + "probability": 0.4525 + }, + { + "start": 4042.16, + "end": 4045.3, + "probability": 0.8373 + }, + { + "start": 4045.88, + "end": 4048.16, + "probability": 0.9811 + }, + { + "start": 4048.58, + "end": 4052.74, + "probability": 0.9884 + }, + { + "start": 4054.36, + "end": 4055.96, + "probability": 0.9973 + }, + { + "start": 4056.84, + "end": 4062.24, + "probability": 0.9198 + }, + { + "start": 4062.82, + "end": 4065.3, + "probability": 0.9704 + }, + { + "start": 4066.78, + "end": 4073.06, + "probability": 0.9955 + }, + { + "start": 4074.14, + "end": 4077.96, + "probability": 0.9963 + }, + { + "start": 4077.96, + "end": 4082.22, + "probability": 0.9965 + }, + { + "start": 4082.82, + "end": 4087.38, + "probability": 0.9443 + }, + { + "start": 4088.2, + "end": 4093.04, + "probability": 0.99 + }, + { + "start": 4094.8, + "end": 4098.98, + "probability": 0.951 + }, + { + "start": 4099.52, + "end": 4105.34, + "probability": 0.9946 + }, + { + "start": 4105.94, + "end": 4107.5, + "probability": 0.8389 + }, + { + "start": 4108.18, + "end": 4110.62, + "probability": 0.9013 + }, + { + "start": 4110.98, + "end": 4111.74, + "probability": 0.8423 + }, + { + "start": 4111.82, + "end": 4112.48, + "probability": 0.8966 + }, + { + "start": 4112.86, + "end": 4120.3, + "probability": 0.9966 + }, + { + "start": 4120.42, + "end": 4122.18, + "probability": 0.9812 + }, + { + "start": 4122.72, + "end": 4126.82, + "probability": 0.9897 + }, + { + "start": 4127.4, + "end": 4130.52, + "probability": 0.6413 + }, + { + "start": 4130.98, + "end": 4134.0, + "probability": 0.9961 + }, + { + "start": 4134.88, + "end": 4136.19, + "probability": 0.9338 + }, + { + "start": 4137.66, + "end": 4142.55, + "probability": 0.8992 + }, + { + "start": 4143.32, + "end": 4145.86, + "probability": 0.9935 + }, + { + "start": 4147.28, + "end": 4149.46, + "probability": 0.8955 + }, + { + "start": 4150.0, + "end": 4155.59, + "probability": 0.9993 + }, + { + "start": 4155.68, + "end": 4160.72, + "probability": 0.9756 + }, + { + "start": 4161.3, + "end": 4163.66, + "probability": 0.9685 + }, + { + "start": 4164.32, + "end": 4167.0, + "probability": 0.9966 + }, + { + "start": 4167.4, + "end": 4168.76, + "probability": 0.998 + }, + { + "start": 4169.42, + "end": 4173.28, + "probability": 0.9663 + }, + { + "start": 4173.62, + "end": 4174.88, + "probability": 0.957 + }, + { + "start": 4175.44, + "end": 4177.08, + "probability": 0.9641 + }, + { + "start": 4177.56, + "end": 4182.56, + "probability": 0.9884 + }, + { + "start": 4182.56, + "end": 4186.51, + "probability": 0.9458 + }, + { + "start": 4187.74, + "end": 4189.55, + "probability": 0.9985 + }, + { + "start": 4190.54, + "end": 4193.12, + "probability": 0.9967 + }, + { + "start": 4193.7, + "end": 4194.36, + "probability": 0.7247 + }, + { + "start": 4194.66, + "end": 4195.62, + "probability": 0.788 + }, + { + "start": 4196.32, + "end": 4200.33, + "probability": 0.9791 + }, + { + "start": 4201.16, + "end": 4204.46, + "probability": 0.9924 + }, + { + "start": 4204.5, + "end": 4207.0, + "probability": 0.995 + }, + { + "start": 4207.44, + "end": 4209.44, + "probability": 0.9935 + }, + { + "start": 4209.86, + "end": 4211.02, + "probability": 0.9989 + }, + { + "start": 4212.08, + "end": 4216.36, + "probability": 0.9944 + }, + { + "start": 4218.06, + "end": 4222.7, + "probability": 0.9597 + }, + { + "start": 4223.26, + "end": 4224.08, + "probability": 0.8808 + }, + { + "start": 4224.74, + "end": 4227.42, + "probability": 0.9407 + }, + { + "start": 4227.66, + "end": 4228.44, + "probability": 0.6109 + }, + { + "start": 4228.92, + "end": 4232.7, + "probability": 0.9982 + }, + { + "start": 4233.16, + "end": 4238.43, + "probability": 0.9956 + }, + { + "start": 4239.2, + "end": 4239.7, + "probability": 0.5694 + }, + { + "start": 4240.14, + "end": 4240.14, + "probability": 0.0631 + }, + { + "start": 4240.14, + "end": 4241.22, + "probability": 0.9593 + }, + { + "start": 4241.78, + "end": 4243.74, + "probability": 0.9307 + }, + { + "start": 4244.7, + "end": 4245.68, + "probability": 0.9172 + }, + { + "start": 4246.14, + "end": 4250.52, + "probability": 0.9932 + }, + { + "start": 4251.04, + "end": 4252.42, + "probability": 0.9957 + }, + { + "start": 4252.68, + "end": 4256.0, + "probability": 0.9761 + }, + { + "start": 4256.16, + "end": 4257.0, + "probability": 0.8141 + }, + { + "start": 4257.52, + "end": 4258.52, + "probability": 0.978 + }, + { + "start": 4258.9, + "end": 4260.66, + "probability": 0.9979 + }, + { + "start": 4260.78, + "end": 4264.24, + "probability": 0.9607 + }, + { + "start": 4265.98, + "end": 4268.96, + "probability": 0.9811 + }, + { + "start": 4269.32, + "end": 4270.68, + "probability": 0.9802 + }, + { + "start": 4271.06, + "end": 4275.6, + "probability": 0.9939 + }, + { + "start": 4275.6, + "end": 4280.52, + "probability": 0.9966 + }, + { + "start": 4281.12, + "end": 4283.0, + "probability": 0.9994 + }, + { + "start": 4283.38, + "end": 4288.48, + "probability": 0.9346 + }, + { + "start": 4288.48, + "end": 4292.48, + "probability": 0.8938 + }, + { + "start": 4293.42, + "end": 4295.28, + "probability": 0.9451 + }, + { + "start": 4295.6, + "end": 4296.82, + "probability": 0.7744 + }, + { + "start": 4297.1, + "end": 4300.76, + "probability": 0.8802 + }, + { + "start": 4301.06, + "end": 4301.22, + "probability": 0.5782 + }, + { + "start": 4301.34, + "end": 4303.9, + "probability": 0.5822 + }, + { + "start": 4304.76, + "end": 4307.55, + "probability": 0.2412 + }, + { + "start": 4309.44, + "end": 4312.38, + "probability": 0.5577 + }, + { + "start": 4312.9, + "end": 4315.74, + "probability": 0.7567 + }, + { + "start": 4316.28, + "end": 4321.28, + "probability": 0.2916 + }, + { + "start": 4321.58, + "end": 4321.62, + "probability": 0.0666 + }, + { + "start": 4321.62, + "end": 4321.62, + "probability": 0.2286 + }, + { + "start": 4321.62, + "end": 4323.86, + "probability": 0.8965 + }, + { + "start": 4324.34, + "end": 4325.18, + "probability": 0.9757 + }, + { + "start": 4326.26, + "end": 4327.08, + "probability": 0.1167 + }, + { + "start": 4327.24, + "end": 4328.44, + "probability": 0.5348 + }, + { + "start": 4328.56, + "end": 4331.94, + "probability": 0.9123 + }, + { + "start": 4332.6, + "end": 4333.6, + "probability": 0.9222 + }, + { + "start": 4333.78, + "end": 4334.38, + "probability": 0.8442 + }, + { + "start": 4334.48, + "end": 4338.44, + "probability": 0.9683 + }, + { + "start": 4338.86, + "end": 4341.86, + "probability": 0.8739 + }, + { + "start": 4342.4, + "end": 4344.14, + "probability": 0.8013 + }, + { + "start": 4344.38, + "end": 4346.68, + "probability": 0.9042 + }, + { + "start": 4346.86, + "end": 4347.68, + "probability": 0.4561 + }, + { + "start": 4347.76, + "end": 4349.02, + "probability": 0.8647 + }, + { + "start": 4349.82, + "end": 4351.86, + "probability": 0.9853 + }, + { + "start": 4352.3, + "end": 4353.52, + "probability": 0.9602 + }, + { + "start": 4353.7, + "end": 4355.65, + "probability": 0.4565 + }, + { + "start": 4356.28, + "end": 4358.43, + "probability": 0.295 + }, + { + "start": 4359.66, + "end": 4361.34, + "probability": 0.6608 + }, + { + "start": 4362.0, + "end": 4364.73, + "probability": 0.8314 + }, + { + "start": 4365.66, + "end": 4368.2, + "probability": 0.3401 + }, + { + "start": 4368.54, + "end": 4369.58, + "probability": 0.8007 + }, + { + "start": 4369.66, + "end": 4370.72, + "probability": 0.9913 + }, + { + "start": 4371.08, + "end": 4374.3, + "probability": 0.7264 + }, + { + "start": 4374.8, + "end": 4375.82, + "probability": 0.517 + }, + { + "start": 4375.98, + "end": 4376.62, + "probability": 0.0828 + }, + { + "start": 4376.62, + "end": 4378.1, + "probability": 0.0846 + }, + { + "start": 4378.4, + "end": 4379.3, + "probability": 0.1987 + }, + { + "start": 4379.4, + "end": 4381.26, + "probability": 0.687 + }, + { + "start": 4381.4, + "end": 4382.68, + "probability": 0.0721 + }, + { + "start": 4382.94, + "end": 4383.01, + "probability": 0.2476 + }, + { + "start": 4384.0, + "end": 4386.1, + "probability": 0.8304 + }, + { + "start": 4386.84, + "end": 4388.86, + "probability": 0.9878 + }, + { + "start": 4388.94, + "end": 4389.86, + "probability": 0.8376 + }, + { + "start": 4389.98, + "end": 4392.66, + "probability": 0.9907 + }, + { + "start": 4392.74, + "end": 4393.43, + "probability": 0.9873 + }, + { + "start": 4394.06, + "end": 4394.56, + "probability": 0.9628 + }, + { + "start": 4394.74, + "end": 4398.74, + "probability": 0.9717 + }, + { + "start": 4398.78, + "end": 4400.72, + "probability": 0.9686 + }, + { + "start": 4400.72, + "end": 4404.98, + "probability": 0.9653 + }, + { + "start": 4405.24, + "end": 4406.06, + "probability": 0.5988 + }, + { + "start": 4406.18, + "end": 4406.56, + "probability": 0.2454 + }, + { + "start": 4406.74, + "end": 4407.04, + "probability": 0.6767 + }, + { + "start": 4407.08, + "end": 4407.58, + "probability": 0.5071 + }, + { + "start": 4407.58, + "end": 4410.18, + "probability": 0.8693 + }, + { + "start": 4411.04, + "end": 4411.98, + "probability": 0.7431 + }, + { + "start": 4412.66, + "end": 4417.8, + "probability": 0.9493 + }, + { + "start": 4418.5, + "end": 4422.04, + "probability": 0.5155 + }, + { + "start": 4422.87, + "end": 4427.66, + "probability": 0.9546 + }, + { + "start": 4427.86, + "end": 4433.14, + "probability": 0.6831 + }, + { + "start": 4433.38, + "end": 4440.66, + "probability": 0.679 + }, + { + "start": 4441.2, + "end": 4442.42, + "probability": 0.7676 + }, + { + "start": 4442.58, + "end": 4445.02, + "probability": 0.9928 + }, + { + "start": 4445.3, + "end": 4447.54, + "probability": 0.7681 + }, + { + "start": 4449.52, + "end": 4451.56, + "probability": 0.6673 + }, + { + "start": 4452.96, + "end": 4454.26, + "probability": 0.5928 + }, + { + "start": 4454.9, + "end": 4454.94, + "probability": 0.0634 + }, + { + "start": 4455.54, + "end": 4456.17, + "probability": 0.4323 + }, + { + "start": 4456.32, + "end": 4457.22, + "probability": 0.2261 + }, + { + "start": 4457.94, + "end": 4459.54, + "probability": 0.6466 + }, + { + "start": 4459.66, + "end": 4461.28, + "probability": 0.097 + }, + { + "start": 4463.08, + "end": 4465.68, + "probability": 0.1231 + }, + { + "start": 4465.84, + "end": 4467.06, + "probability": 0.7441 + }, + { + "start": 4467.14, + "end": 4470.46, + "probability": 0.554 + }, + { + "start": 4470.58, + "end": 4473.24, + "probability": 0.8089 + }, + { + "start": 4473.8, + "end": 4475.61, + "probability": 0.9191 + }, + { + "start": 4477.06, + "end": 4480.48, + "probability": 0.7795 + }, + { + "start": 4481.5, + "end": 4482.84, + "probability": 0.8705 + }, + { + "start": 4482.96, + "end": 4486.29, + "probability": 0.9814 + }, + { + "start": 4486.32, + "end": 4491.02, + "probability": 0.8945 + }, + { + "start": 4491.2, + "end": 4492.28, + "probability": 0.1733 + }, + { + "start": 4493.18, + "end": 4495.82, + "probability": 0.4526 + }, + { + "start": 4496.02, + "end": 4496.78, + "probability": 0.0159 + }, + { + "start": 4504.4, + "end": 4504.96, + "probability": 0.0608 + }, + { + "start": 4504.96, + "end": 4504.96, + "probability": 0.1392 + }, + { + "start": 4504.96, + "end": 4505.0, + "probability": 0.1177 + }, + { + "start": 4505.0, + "end": 4505.0, + "probability": 0.1242 + }, + { + "start": 4505.0, + "end": 4505.0, + "probability": 0.0789 + }, + { + "start": 4505.0, + "end": 4505.0, + "probability": 0.017 + }, + { + "start": 4505.0, + "end": 4506.58, + "probability": 0.7584 + }, + { + "start": 4507.3, + "end": 4509.08, + "probability": 0.3849 + }, + { + "start": 4509.88, + "end": 4510.46, + "probability": 0.4032 + }, + { + "start": 4510.7, + "end": 4512.04, + "probability": 0.8826 + }, + { + "start": 4512.52, + "end": 4513.78, + "probability": 0.8865 + }, + { + "start": 4514.08, + "end": 4514.58, + "probability": 0.2238 + }, + { + "start": 4518.2, + "end": 4521.08, + "probability": 0.7701 + }, + { + "start": 4521.97, + "end": 4525.34, + "probability": 0.8224 + }, + { + "start": 4526.34, + "end": 4527.2, + "probability": 0.3806 + }, + { + "start": 4527.34, + "end": 4528.24, + "probability": 0.7482 + }, + { + "start": 4528.5, + "end": 4530.5, + "probability": 0.9725 + }, + { + "start": 4530.64, + "end": 4533.24, + "probability": 0.5836 + }, + { + "start": 4533.26, + "end": 4534.98, + "probability": 0.9473 + }, + { + "start": 4534.98, + "end": 4535.8, + "probability": 0.1171 + }, + { + "start": 4535.9, + "end": 4537.56, + "probability": 0.9701 + }, + { + "start": 4537.88, + "end": 4538.53, + "probability": 0.9355 + }, + { + "start": 4538.68, + "end": 4540.0, + "probability": 0.4697 + }, + { + "start": 4544.01, + "end": 4547.46, + "probability": 0.2457 + }, + { + "start": 4547.62, + "end": 4548.28, + "probability": 0.166 + }, + { + "start": 4548.44, + "end": 4548.58, + "probability": 0.4707 + }, + { + "start": 4549.0, + "end": 4549.3, + "probability": 0.1917 + }, + { + "start": 4549.84, + "end": 4551.56, + "probability": 0.3416 + }, + { + "start": 4551.62, + "end": 4553.58, + "probability": 0.7663 + }, + { + "start": 4554.42, + "end": 4555.92, + "probability": 0.9965 + }, + { + "start": 4555.96, + "end": 4556.6, + "probability": 0.9199 + }, + { + "start": 4556.88, + "end": 4558.07, + "probability": 0.9976 + }, + { + "start": 4558.26, + "end": 4558.76, + "probability": 0.8374 + }, + { + "start": 4558.84, + "end": 4559.27, + "probability": 0.7931 + }, + { + "start": 4559.74, + "end": 4560.64, + "probability": 0.6039 + }, + { + "start": 4561.18, + "end": 4564.5, + "probability": 0.9512 + }, + { + "start": 4564.78, + "end": 4565.16, + "probability": 0.477 + }, + { + "start": 4565.38, + "end": 4565.72, + "probability": 0.9616 + }, + { + "start": 4566.05, + "end": 4568.92, + "probability": 0.9299 + }, + { + "start": 4569.72, + "end": 4575.64, + "probability": 0.6813 + }, + { + "start": 4576.4, + "end": 4579.7, + "probability": 0.9237 + }, + { + "start": 4580.06, + "end": 4582.9, + "probability": 0.9839 + }, + { + "start": 4591.7, + "end": 4593.7, + "probability": 0.9225 + }, + { + "start": 4593.92, + "end": 4598.2, + "probability": 0.5508 + }, + { + "start": 4598.67, + "end": 4601.54, + "probability": 0.8827 + }, + { + "start": 4601.8, + "end": 4602.66, + "probability": 0.5861 + }, + { + "start": 4602.68, + "end": 4606.38, + "probability": 0.9659 + }, + { + "start": 4606.6, + "end": 4607.02, + "probability": 0.2786 + }, + { + "start": 4607.26, + "end": 4607.56, + "probability": 0.4137 + }, + { + "start": 4607.66, + "end": 4608.21, + "probability": 0.7571 + }, + { + "start": 4608.64, + "end": 4609.58, + "probability": 0.7563 + }, + { + "start": 4609.9, + "end": 4609.96, + "probability": 0.4904 + }, + { + "start": 4609.96, + "end": 4610.5, + "probability": 0.6373 + }, + { + "start": 4610.76, + "end": 4612.29, + "probability": 0.9499 + }, + { + "start": 4612.42, + "end": 4615.0, + "probability": 0.7987 + }, + { + "start": 4617.54, + "end": 4619.18, + "probability": 0.8608 + }, + { + "start": 4619.24, + "end": 4619.48, + "probability": 0.6562 + }, + { + "start": 4619.56, + "end": 4619.98, + "probability": 0.5494 + }, + { + "start": 4620.08, + "end": 4620.72, + "probability": 0.4272 + }, + { + "start": 4620.72, + "end": 4623.32, + "probability": 0.5854 + }, + { + "start": 4623.46, + "end": 4624.98, + "probability": 0.7972 + }, + { + "start": 4625.84, + "end": 4627.9, + "probability": 0.9528 + }, + { + "start": 4627.9, + "end": 4629.5, + "probability": 0.9219 + }, + { + "start": 4629.58, + "end": 4632.76, + "probability": 0.9927 + }, + { + "start": 4632.88, + "end": 4634.67, + "probability": 0.9604 + }, + { + "start": 4636.1, + "end": 4638.86, + "probability": 0.9674 + }, + { + "start": 4638.86, + "end": 4643.56, + "probability": 0.9453 + }, + { + "start": 4644.26, + "end": 4648.06, + "probability": 0.953 + }, + { + "start": 4648.7, + "end": 4652.56, + "probability": 0.8919 + }, + { + "start": 4653.1, + "end": 4657.72, + "probability": 0.8152 + }, + { + "start": 4658.66, + "end": 4659.12, + "probability": 0.9189 + }, + { + "start": 4659.34, + "end": 4667.44, + "probability": 0.9868 + }, + { + "start": 4667.5, + "end": 4673.46, + "probability": 0.9922 + }, + { + "start": 4673.56, + "end": 4674.65, + "probability": 0.9414 + }, + { + "start": 4675.54, + "end": 4678.92, + "probability": 0.9653 + }, + { + "start": 4679.6, + "end": 4683.1, + "probability": 0.9278 + }, + { + "start": 4683.1, + "end": 4686.74, + "probability": 0.9937 + }, + { + "start": 4688.16, + "end": 4688.52, + "probability": 0.9242 + }, + { + "start": 4689.12, + "end": 4691.34, + "probability": 0.967 + }, + { + "start": 4691.72, + "end": 4698.92, + "probability": 0.9143 + }, + { + "start": 4699.52, + "end": 4702.38, + "probability": 0.6999 + }, + { + "start": 4703.24, + "end": 4707.42, + "probability": 0.9897 + }, + { + "start": 4708.14, + "end": 4711.39, + "probability": 0.9971 + }, + { + "start": 4712.54, + "end": 4715.9, + "probability": 0.9901 + }, + { + "start": 4716.02, + "end": 4720.3, + "probability": 0.8796 + }, + { + "start": 4720.92, + "end": 4724.54, + "probability": 0.8915 + }, + { + "start": 4724.68, + "end": 4731.2, + "probability": 0.9935 + }, + { + "start": 4731.2, + "end": 4739.8, + "probability": 0.9815 + }, + { + "start": 4740.4, + "end": 4742.46, + "probability": 0.75 + }, + { + "start": 4742.64, + "end": 4743.84, + "probability": 0.7468 + }, + { + "start": 4744.34, + "end": 4749.1, + "probability": 0.9954 + }, + { + "start": 4749.64, + "end": 4754.1, + "probability": 0.9751 + }, + { + "start": 4754.72, + "end": 4763.9, + "probability": 0.9039 + }, + { + "start": 4765.22, + "end": 4767.06, + "probability": 0.9713 + }, + { + "start": 4767.18, + "end": 4769.86, + "probability": 0.8826 + }, + { + "start": 4770.26, + "end": 4770.74, + "probability": 0.8381 + }, + { + "start": 4771.82, + "end": 4772.68, + "probability": 0.9425 + }, + { + "start": 4773.44, + "end": 4777.62, + "probability": 0.9043 + }, + { + "start": 4778.34, + "end": 4779.5, + "probability": 0.4117 + }, + { + "start": 4779.5, + "end": 4784.96, + "probability": 0.9438 + }, + { + "start": 4785.06, + "end": 4787.66, + "probability": 0.6917 + }, + { + "start": 4788.56, + "end": 4788.62, + "probability": 0.4368 + }, + { + "start": 4789.56, + "end": 4793.2, + "probability": 0.9947 + }, + { + "start": 4793.4, + "end": 4793.72, + "probability": 0.8235 + }, + { + "start": 4794.66, + "end": 4795.25, + "probability": 0.8358 + }, + { + "start": 4796.34, + "end": 4799.51, + "probability": 0.9536 + }, + { + "start": 4800.06, + "end": 4803.74, + "probability": 0.9984 + }, + { + "start": 4804.14, + "end": 4809.12, + "probability": 0.9862 + }, + { + "start": 4809.78, + "end": 4810.84, + "probability": 0.7549 + }, + { + "start": 4811.28, + "end": 4812.18, + "probability": 0.7481 + }, + { + "start": 4812.3, + "end": 4815.68, + "probability": 0.9803 + }, + { + "start": 4816.14, + "end": 4818.38, + "probability": 0.941 + }, + { + "start": 4818.86, + "end": 4819.62, + "probability": 0.9194 + }, + { + "start": 4819.88, + "end": 4823.64, + "probability": 0.984 + }, + { + "start": 4824.0, + "end": 4829.02, + "probability": 0.98 + }, + { + "start": 4829.88, + "end": 4830.02, + "probability": 0.8758 + }, + { + "start": 4830.96, + "end": 4831.84, + "probability": 0.9279 + }, + { + "start": 4832.18, + "end": 4834.22, + "probability": 0.924 + }, + { + "start": 4834.6, + "end": 4839.62, + "probability": 0.9738 + }, + { + "start": 4839.92, + "end": 4845.66, + "probability": 0.9824 + }, + { + "start": 4845.66, + "end": 4850.96, + "probability": 0.9975 + }, + { + "start": 4850.96, + "end": 4856.3, + "probability": 0.9899 + }, + { + "start": 4856.7, + "end": 4861.52, + "probability": 0.9941 + }, + { + "start": 4862.0, + "end": 4864.84, + "probability": 0.9969 + }, + { + "start": 4865.1, + "end": 4869.2, + "probability": 0.9746 + }, + { + "start": 4870.9, + "end": 4874.6, + "probability": 0.9946 + }, + { + "start": 4874.6, + "end": 4878.9, + "probability": 0.9995 + }, + { + "start": 4879.52, + "end": 4882.72, + "probability": 0.8483 + }, + { + "start": 4883.3, + "end": 4885.26, + "probability": 0.9232 + }, + { + "start": 4885.7, + "end": 4886.88, + "probability": 0.9966 + }, + { + "start": 4887.32, + "end": 4888.93, + "probability": 0.9626 + }, + { + "start": 4889.42, + "end": 4892.44, + "probability": 0.9629 + }, + { + "start": 4892.82, + "end": 4893.48, + "probability": 0.9807 + }, + { + "start": 4893.56, + "end": 4896.73, + "probability": 0.9968 + }, + { + "start": 4897.22, + "end": 4899.94, + "probability": 0.8487 + }, + { + "start": 4900.02, + "end": 4901.84, + "probability": 0.9922 + }, + { + "start": 4902.2, + "end": 4903.56, + "probability": 0.9873 + }, + { + "start": 4903.88, + "end": 4904.48, + "probability": 0.9773 + }, + { + "start": 4905.24, + "end": 4905.68, + "probability": 0.6681 + }, + { + "start": 4906.56, + "end": 4907.88, + "probability": 0.957 + }, + { + "start": 4908.08, + "end": 4911.14, + "probability": 0.9871 + }, + { + "start": 4911.28, + "end": 4912.88, + "probability": 0.9886 + }, + { + "start": 4913.5, + "end": 4916.2, + "probability": 0.9823 + }, + { + "start": 4916.34, + "end": 4917.32, + "probability": 0.5925 + }, + { + "start": 4918.12, + "end": 4919.52, + "probability": 0.8762 + }, + { + "start": 4919.92, + "end": 4922.12, + "probability": 0.9491 + }, + { + "start": 4922.58, + "end": 4927.88, + "probability": 0.9872 + }, + { + "start": 4928.36, + "end": 4930.8, + "probability": 0.8121 + }, + { + "start": 4931.2, + "end": 4933.46, + "probability": 0.9897 + }, + { + "start": 4933.98, + "end": 4937.8, + "probability": 0.7327 + }, + { + "start": 4938.46, + "end": 4939.54, + "probability": 0.9233 + }, + { + "start": 4940.02, + "end": 4944.94, + "probability": 0.9294 + }, + { + "start": 4945.36, + "end": 4945.82, + "probability": 0.8896 + }, + { + "start": 4946.2, + "end": 4949.54, + "probability": 0.9805 + }, + { + "start": 4949.96, + "end": 4951.28, + "probability": 0.7978 + }, + { + "start": 4951.92, + "end": 4954.76, + "probability": 0.9618 + }, + { + "start": 4955.3, + "end": 4958.88, + "probability": 0.9871 + }, + { + "start": 4959.02, + "end": 4961.64, + "probability": 0.9937 + }, + { + "start": 4961.64, + "end": 4964.44, + "probability": 0.5925 + }, + { + "start": 4964.58, + "end": 4965.46, + "probability": 0.4744 + }, + { + "start": 4965.66, + "end": 4966.62, + "probability": 0.9976 + }, + { + "start": 4967.14, + "end": 4968.26, + "probability": 0.999 + }, + { + "start": 4968.4, + "end": 4969.76, + "probability": 0.9755 + }, + { + "start": 4970.66, + "end": 4973.01, + "probability": 0.9534 + }, + { + "start": 4973.5, + "end": 4978.16, + "probability": 0.9619 + }, + { + "start": 4978.88, + "end": 4982.8, + "probability": 0.9952 + }, + { + "start": 4983.34, + "end": 4985.05, + "probability": 0.9946 + }, + { + "start": 4985.3, + "end": 4986.9, + "probability": 0.9389 + }, + { + "start": 4987.4, + "end": 4989.26, + "probability": 0.9883 + }, + { + "start": 4989.78, + "end": 4992.2, + "probability": 0.9957 + }, + { + "start": 4992.56, + "end": 4994.21, + "probability": 0.9974 + }, + { + "start": 4994.9, + "end": 4995.78, + "probability": 0.9846 + }, + { + "start": 4995.9, + "end": 4997.14, + "probability": 0.9646 + }, + { + "start": 4997.58, + "end": 4998.74, + "probability": 0.9898 + }, + { + "start": 4999.24, + "end": 5002.52, + "probability": 0.9484 + }, + { + "start": 5003.1, + "end": 5004.64, + "probability": 0.9656 + }, + { + "start": 5004.7, + "end": 5007.04, + "probability": 0.8498 + }, + { + "start": 5007.04, + "end": 5007.4, + "probability": 0.6458 + }, + { + "start": 5007.9, + "end": 5008.88, + "probability": 0.5703 + }, + { + "start": 5009.18, + "end": 5010.0, + "probability": 0.9902 + }, + { + "start": 5011.06, + "end": 5011.62, + "probability": 0.8348 + }, + { + "start": 5012.22, + "end": 5014.0, + "probability": 0.998 + }, + { + "start": 5014.8, + "end": 5016.88, + "probability": 0.9868 + }, + { + "start": 5017.68, + "end": 5020.7, + "probability": 0.984 + }, + { + "start": 5021.28, + "end": 5024.46, + "probability": 0.9497 + }, + { + "start": 5025.42, + "end": 5027.08, + "probability": 0.9469 + }, + { + "start": 5027.56, + "end": 5029.12, + "probability": 0.8543 + }, + { + "start": 5029.32, + "end": 5031.98, + "probability": 0.6534 + }, + { + "start": 5032.22, + "end": 5033.3, + "probability": 0.7165 + }, + { + "start": 5035.88, + "end": 5035.88, + "probability": 0.0009 + }, + { + "start": 5037.02, + "end": 5037.02, + "probability": 0.6733 + }, + { + "start": 5037.02, + "end": 5037.02, + "probability": 0.1638 + }, + { + "start": 5037.02, + "end": 5037.02, + "probability": 0.1526 + }, + { + "start": 5037.02, + "end": 5039.68, + "probability": 0.7101 + }, + { + "start": 5039.96, + "end": 5041.58, + "probability": 0.7275 + }, + { + "start": 5042.04, + "end": 5047.56, + "probability": 0.9883 + }, + { + "start": 5048.14, + "end": 5049.22, + "probability": 0.6094 + }, + { + "start": 5049.78, + "end": 5052.76, + "probability": 0.9309 + }, + { + "start": 5052.86, + "end": 5056.28, + "probability": 0.8185 + }, + { + "start": 5056.28, + "end": 5060.24, + "probability": 0.6344 + }, + { + "start": 5060.34, + "end": 5060.7, + "probability": 0.5297 + }, + { + "start": 5060.82, + "end": 5061.24, + "probability": 0.0733 + }, + { + "start": 5061.24, + "end": 5063.04, + "probability": 0.1552 + }, + { + "start": 5063.58, + "end": 5066.42, + "probability": 0.8506 + }, + { + "start": 5066.56, + "end": 5067.42, + "probability": 0.8337 + }, + { + "start": 5067.42, + "end": 5071.44, + "probability": 0.8267 + }, + { + "start": 5071.92, + "end": 5071.92, + "probability": 0.0837 + }, + { + "start": 5071.92, + "end": 5071.92, + "probability": 0.0402 + }, + { + "start": 5071.92, + "end": 5073.02, + "probability": 0.8682 + }, + { + "start": 5073.9, + "end": 5074.38, + "probability": 0.7873 + }, + { + "start": 5075.22, + "end": 5076.3, + "probability": 0.5446 + }, + { + "start": 5080.06, + "end": 5080.84, + "probability": 0.5478 + }, + { + "start": 5080.84, + "end": 5080.84, + "probability": 0.0552 + }, + { + "start": 5080.84, + "end": 5080.84, + "probability": 0.0521 + }, + { + "start": 5080.84, + "end": 5080.84, + "probability": 0.1763 + }, + { + "start": 5080.84, + "end": 5080.84, + "probability": 0.2473 + }, + { + "start": 5080.84, + "end": 5082.12, + "probability": 0.7604 + }, + { + "start": 5082.32, + "end": 5082.62, + "probability": 0.69 + }, + { + "start": 5083.04, + "end": 5084.0, + "probability": 0.932 + }, + { + "start": 5084.34, + "end": 5085.44, + "probability": 0.6826 + }, + { + "start": 5085.44, + "end": 5086.99, + "probability": 0.6392 + }, + { + "start": 5087.06, + "end": 5088.48, + "probability": 0.8971 + }, + { + "start": 5088.52, + "end": 5089.3, + "probability": 0.8169 + }, + { + "start": 5089.48, + "end": 5090.11, + "probability": 0.8664 + }, + { + "start": 5090.86, + "end": 5094.92, + "probability": 0.8209 + }, + { + "start": 5095.02, + "end": 5096.79, + "probability": 0.9788 + }, + { + "start": 5097.32, + "end": 5098.45, + "probability": 0.9646 + }, + { + "start": 5098.96, + "end": 5100.1, + "probability": 0.7623 + }, + { + "start": 5100.48, + "end": 5103.7, + "probability": 0.9736 + }, + { + "start": 5103.88, + "end": 5105.06, + "probability": 0.7504 + }, + { + "start": 5105.06, + "end": 5106.24, + "probability": 0.7032 + }, + { + "start": 5106.5, + "end": 5106.88, + "probability": 0.8643 + }, + { + "start": 5106.96, + "end": 5108.1, + "probability": 0.7432 + }, + { + "start": 5108.46, + "end": 5110.08, + "probability": 0.754 + }, + { + "start": 5110.16, + "end": 5111.28, + "probability": 0.9102 + }, + { + "start": 5111.68, + "end": 5113.56, + "probability": 0.9004 + }, + { + "start": 5113.62, + "end": 5116.78, + "probability": 0.9236 + }, + { + "start": 5116.84, + "end": 5117.26, + "probability": 0.6816 + }, + { + "start": 5117.4, + "end": 5117.72, + "probability": 0.4405 + }, + { + "start": 5118.12, + "end": 5119.24, + "probability": 0.873 + }, + { + "start": 5119.78, + "end": 5121.24, + "probability": 0.9868 + }, + { + "start": 5121.44, + "end": 5124.1, + "probability": 0.7717 + }, + { + "start": 5124.32, + "end": 5125.48, + "probability": 0.5114 + }, + { + "start": 5126.22, + "end": 5126.64, + "probability": 0.7906 + }, + { + "start": 5126.98, + "end": 5127.58, + "probability": 0.8971 + }, + { + "start": 5127.78, + "end": 5131.42, + "probability": 0.9969 + }, + { + "start": 5131.78, + "end": 5134.58, + "probability": 0.9485 + }, + { + "start": 5134.9, + "end": 5136.78, + "probability": 0.8389 + }, + { + "start": 5137.88, + "end": 5137.88, + "probability": 0.2601 + }, + { + "start": 5137.88, + "end": 5138.52, + "probability": 0.4958 + }, + { + "start": 5138.52, + "end": 5139.12, + "probability": 0.561 + }, + { + "start": 5139.52, + "end": 5140.4, + "probability": 0.8613 + }, + { + "start": 5140.5, + "end": 5140.94, + "probability": 0.7282 + }, + { + "start": 5141.04, + "end": 5141.48, + "probability": 0.7275 + }, + { + "start": 5141.76, + "end": 5143.36, + "probability": 0.9779 + }, + { + "start": 5143.94, + "end": 5145.72, + "probability": 0.532 + }, + { + "start": 5146.36, + "end": 5147.26, + "probability": 0.9761 + }, + { + "start": 5147.38, + "end": 5150.32, + "probability": 0.9031 + }, + { + "start": 5150.68, + "end": 5152.24, + "probability": 0.9949 + }, + { + "start": 5152.68, + "end": 5153.0, + "probability": 0.5389 + }, + { + "start": 5153.08, + "end": 5153.9, + "probability": 0.9834 + }, + { + "start": 5153.92, + "end": 5155.4, + "probability": 0.8794 + }, + { + "start": 5155.82, + "end": 5156.84, + "probability": 0.9824 + }, + { + "start": 5157.34, + "end": 5158.04, + "probability": 0.905 + }, + { + "start": 5158.36, + "end": 5159.22, + "probability": 0.9337 + }, + { + "start": 5159.3, + "end": 5160.3, + "probability": 0.9358 + }, + { + "start": 5160.68, + "end": 5161.0, + "probability": 0.6957 + }, + { + "start": 5161.12, + "end": 5161.6, + "probability": 0.9687 + }, + { + "start": 5161.74, + "end": 5161.96, + "probability": 0.6342 + }, + { + "start": 5162.22, + "end": 5162.72, + "probability": 0.8894 + }, + { + "start": 5163.04, + "end": 5164.9, + "probability": 0.9915 + }, + { + "start": 5165.0, + "end": 5167.68, + "probability": 0.8974 + }, + { + "start": 5168.62, + "end": 5172.9, + "probability": 0.9865 + }, + { + "start": 5173.1, + "end": 5174.5, + "probability": 0.8442 + }, + { + "start": 5174.66, + "end": 5177.34, + "probability": 0.9963 + }, + { + "start": 5177.66, + "end": 5178.42, + "probability": 0.5179 + }, + { + "start": 5178.74, + "end": 5179.4, + "probability": 0.9042 + }, + { + "start": 5179.42, + "end": 5182.38, + "probability": 0.9153 + }, + { + "start": 5182.72, + "end": 5183.96, + "probability": 0.912 + }, + { + "start": 5184.24, + "end": 5184.54, + "probability": 0.5256 + }, + { + "start": 5184.62, + "end": 5185.0, + "probability": 0.4868 + }, + { + "start": 5185.14, + "end": 5185.92, + "probability": 0.9468 + }, + { + "start": 5186.02, + "end": 5187.32, + "probability": 0.6761 + }, + { + "start": 5187.76, + "end": 5188.44, + "probability": 0.4891 + }, + { + "start": 5188.54, + "end": 5189.5, + "probability": 0.8507 + }, + { + "start": 5190.08, + "end": 5192.64, + "probability": 0.9385 + }, + { + "start": 5193.08, + "end": 5193.9, + "probability": 0.6158 + }, + { + "start": 5194.06, + "end": 5195.8, + "probability": 0.9462 + }, + { + "start": 5196.26, + "end": 5197.34, + "probability": 0.8235 + }, + { + "start": 5197.36, + "end": 5197.36, + "probability": 0.6719 + }, + { + "start": 5197.56, + "end": 5197.96, + "probability": 0.6029 + }, + { + "start": 5198.02, + "end": 5198.68, + "probability": 0.7149 + }, + { + "start": 5198.76, + "end": 5199.72, + "probability": 0.8389 + }, + { + "start": 5199.94, + "end": 5203.14, + "probability": 0.9902 + }, + { + "start": 5203.14, + "end": 5206.26, + "probability": 0.9976 + }, + { + "start": 5206.56, + "end": 5209.0, + "probability": 0.864 + }, + { + "start": 5209.56, + "end": 5211.1, + "probability": 0.76 + }, + { + "start": 5211.1, + "end": 5213.14, + "probability": 0.7028 + }, + { + "start": 5213.24, + "end": 5214.14, + "probability": 0.9791 + }, + { + "start": 5214.78, + "end": 5216.56, + "probability": 0.9825 + }, + { + "start": 5216.72, + "end": 5217.59, + "probability": 0.993 + }, + { + "start": 5218.14, + "end": 5222.88, + "probability": 0.9983 + }, + { + "start": 5222.96, + "end": 5225.78, + "probability": 0.9889 + }, + { + "start": 5226.2, + "end": 5227.38, + "probability": 0.8766 + }, + { + "start": 5227.48, + "end": 5230.56, + "probability": 0.9712 + }, + { + "start": 5230.72, + "end": 5231.28, + "probability": 0.7565 + }, + { + "start": 5231.4, + "end": 5232.3, + "probability": 0.7701 + }, + { + "start": 5232.74, + "end": 5234.38, + "probability": 0.9445 + }, + { + "start": 5234.52, + "end": 5237.0, + "probability": 0.9437 + }, + { + "start": 5237.0, + "end": 5237.26, + "probability": 0.6476 + }, + { + "start": 5237.44, + "end": 5237.44, + "probability": 0.463 + }, + { + "start": 5237.44, + "end": 5238.24, + "probability": 0.8856 + }, + { + "start": 5238.36, + "end": 5242.04, + "probability": 0.6875 + }, + { + "start": 5242.74, + "end": 5243.62, + "probability": 0.9629 + }, + { + "start": 5243.96, + "end": 5247.3, + "probability": 0.9751 + }, + { + "start": 5247.42, + "end": 5248.9, + "probability": 0.9844 + }, + { + "start": 5249.0, + "end": 5249.58, + "probability": 0.9047 + }, + { + "start": 5249.9, + "end": 5251.28, + "probability": 0.6146 + }, + { + "start": 5251.86, + "end": 5254.34, + "probability": 0.7847 + }, + { + "start": 5255.0, + "end": 5256.34, + "probability": 0.7651 + }, + { + "start": 5256.42, + "end": 5260.42, + "probability": 0.9745 + }, + { + "start": 5260.82, + "end": 5261.66, + "probability": 0.7615 + }, + { + "start": 5261.96, + "end": 5262.52, + "probability": 0.5744 + }, + { + "start": 5262.6, + "end": 5268.15, + "probability": 0.9809 + }, + { + "start": 5268.48, + "end": 5272.8, + "probability": 0.8978 + }, + { + "start": 5273.26, + "end": 5275.88, + "probability": 0.983 + }, + { + "start": 5276.06, + "end": 5278.12, + "probability": 0.9741 + }, + { + "start": 5278.34, + "end": 5279.88, + "probability": 0.7863 + }, + { + "start": 5279.9, + "end": 5280.54, + "probability": 0.6627 + }, + { + "start": 5280.64, + "end": 5282.13, + "probability": 0.5125 + }, + { + "start": 5282.82, + "end": 5284.82, + "probability": 0.7946 + }, + { + "start": 5286.06, + "end": 5287.68, + "probability": 0.7631 + }, + { + "start": 5287.82, + "end": 5290.9, + "probability": 0.9705 + }, + { + "start": 5300.48, + "end": 5302.82, + "probability": 0.6779 + }, + { + "start": 5304.08, + "end": 5306.82, + "probability": 0.7936 + }, + { + "start": 5307.56, + "end": 5309.34, + "probability": 0.9696 + }, + { + "start": 5309.82, + "end": 5313.24, + "probability": 0.9536 + }, + { + "start": 5314.02, + "end": 5316.16, + "probability": 0.0362 + }, + { + "start": 5316.26, + "end": 5320.12, + "probability": 0.7474 + }, + { + "start": 5322.34, + "end": 5325.5, + "probability": 0.9429 + }, + { + "start": 5325.84, + "end": 5328.92, + "probability": 0.9958 + }, + { + "start": 5329.9, + "end": 5334.74, + "probability": 0.8695 + }, + { + "start": 5335.54, + "end": 5339.6, + "probability": 0.9775 + }, + { + "start": 5340.32, + "end": 5342.88, + "probability": 0.9301 + }, + { + "start": 5343.44, + "end": 5345.52, + "probability": 0.9492 + }, + { + "start": 5345.62, + "end": 5347.62, + "probability": 0.9479 + }, + { + "start": 5349.58, + "end": 5353.1, + "probability": 0.978 + }, + { + "start": 5353.88, + "end": 5356.34, + "probability": 0.9951 + }, + { + "start": 5356.46, + "end": 5359.76, + "probability": 0.8717 + }, + { + "start": 5360.28, + "end": 5362.0, + "probability": 0.8584 + }, + { + "start": 5362.52, + "end": 5364.18, + "probability": 0.9602 + }, + { + "start": 5365.16, + "end": 5371.78, + "probability": 0.9925 + }, + { + "start": 5371.78, + "end": 5378.62, + "probability": 0.9969 + }, + { + "start": 5379.06, + "end": 5380.82, + "probability": 0.5785 + }, + { + "start": 5380.92, + "end": 5382.58, + "probability": 0.9836 + }, + { + "start": 5389.28, + "end": 5392.24, + "probability": 0.9749 + }, + { + "start": 5392.8, + "end": 5397.04, + "probability": 0.918 + }, + { + "start": 5397.46, + "end": 5402.58, + "probability": 0.9826 + }, + { + "start": 5403.64, + "end": 5408.78, + "probability": 0.8661 + }, + { + "start": 5410.0, + "end": 5413.32, + "probability": 0.9961 + }, + { + "start": 5414.2, + "end": 5416.28, + "probability": 0.9827 + }, + { + "start": 5417.08, + "end": 5420.74, + "probability": 0.9523 + }, + { + "start": 5421.02, + "end": 5423.84, + "probability": 0.8776 + }, + { + "start": 5425.22, + "end": 5426.24, + "probability": 0.1356 + }, + { + "start": 5427.3, + "end": 5428.48, + "probability": 0.2327 + }, + { + "start": 5428.56, + "end": 5429.3, + "probability": 0.6355 + }, + { + "start": 5429.74, + "end": 5432.68, + "probability": 0.8394 + }, + { + "start": 5432.82, + "end": 5432.92, + "probability": 0.0548 + }, + { + "start": 5432.92, + "end": 5433.08, + "probability": 0.0304 + }, + { + "start": 5433.16, + "end": 5433.83, + "probability": 0.9106 + }, + { + "start": 5434.1, + "end": 5435.36, + "probability": 0.6456 + }, + { + "start": 5435.9, + "end": 5439.76, + "probability": 0.9767 + }, + { + "start": 5440.32, + "end": 5442.2, + "probability": 0.8493 + }, + { + "start": 5442.8, + "end": 5444.24, + "probability": 0.8906 + }, + { + "start": 5444.54, + "end": 5446.74, + "probability": 0.9668 + }, + { + "start": 5446.88, + "end": 5447.52, + "probability": 0.8643 + }, + { + "start": 5447.64, + "end": 5448.66, + "probability": 0.7305 + }, + { + "start": 5448.9, + "end": 5451.76, + "probability": 0.9846 + }, + { + "start": 5452.38, + "end": 5455.62, + "probability": 0.9873 + }, + { + "start": 5457.56, + "end": 5458.86, + "probability": 0.901 + }, + { + "start": 5459.86, + "end": 5463.48, + "probability": 0.9927 + }, + { + "start": 5463.48, + "end": 5467.8, + "probability": 0.7035 + }, + { + "start": 5468.22, + "end": 5470.76, + "probability": 0.918 + }, + { + "start": 5471.24, + "end": 5473.22, + "probability": 0.1487 + }, + { + "start": 5473.22, + "end": 5474.12, + "probability": 0.1177 + }, + { + "start": 5474.12, + "end": 5475.08, + "probability": 0.618 + }, + { + "start": 5475.22, + "end": 5479.1, + "probability": 0.9126 + }, + { + "start": 5480.33, + "end": 5480.7, + "probability": 0.4848 + }, + { + "start": 5480.76, + "end": 5482.8, + "probability": 0.6091 + }, + { + "start": 5483.8, + "end": 5485.7, + "probability": 0.8056 + }, + { + "start": 5486.02, + "end": 5490.92, + "probability": 0.9596 + }, + { + "start": 5492.54, + "end": 5492.64, + "probability": 0.097 + }, + { + "start": 5494.92, + "end": 5495.58, + "probability": 0.1891 + }, + { + "start": 5495.6, + "end": 5500.48, + "probability": 0.6558 + }, + { + "start": 5500.94, + "end": 5501.52, + "probability": 0.5552 + }, + { + "start": 5501.56, + "end": 5504.52, + "probability": 0.9868 + }, + { + "start": 5504.68, + "end": 5507.08, + "probability": 0.8472 + }, + { + "start": 5507.44, + "end": 5508.32, + "probability": 0.9523 + }, + { + "start": 5508.8, + "end": 5510.74, + "probability": 0.9948 + }, + { + "start": 5511.44, + "end": 5513.8, + "probability": 0.5832 + }, + { + "start": 5514.58, + "end": 5518.08, + "probability": 0.9976 + }, + { + "start": 5518.08, + "end": 5521.9, + "probability": 0.964 + }, + { + "start": 5522.34, + "end": 5523.06, + "probability": 0.7456 + }, + { + "start": 5523.24, + "end": 5526.6, + "probability": 0.9692 + }, + { + "start": 5526.62, + "end": 5530.02, + "probability": 0.9924 + }, + { + "start": 5531.54, + "end": 5532.6, + "probability": 0.7498 + }, + { + "start": 5534.92, + "end": 5537.76, + "probability": 0.9596 + }, + { + "start": 5537.76, + "end": 5540.96, + "probability": 0.9949 + }, + { + "start": 5541.54, + "end": 5546.46, + "probability": 0.7639 + }, + { + "start": 5547.04, + "end": 5549.18, + "probability": 0.9954 + }, + { + "start": 5549.72, + "end": 5554.4, + "probability": 0.9638 + }, + { + "start": 5558.54, + "end": 5561.12, + "probability": 0.9971 + }, + { + "start": 5562.16, + "end": 5567.04, + "probability": 0.9993 + }, + { + "start": 5567.64, + "end": 5569.34, + "probability": 0.999 + }, + { + "start": 5570.2, + "end": 5575.88, + "probability": 0.9759 + }, + { + "start": 5576.34, + "end": 5582.1, + "probability": 0.9894 + }, + { + "start": 5583.06, + "end": 5585.04, + "probability": 0.9305 + }, + { + "start": 5585.74, + "end": 5586.44, + "probability": 0.6525 + }, + { + "start": 5587.34, + "end": 5588.02, + "probability": 0.6168 + }, + { + "start": 5588.36, + "end": 5591.8, + "probability": 0.9905 + }, + { + "start": 5592.82, + "end": 5597.0, + "probability": 0.9921 + }, + { + "start": 5597.0, + "end": 5601.34, + "probability": 0.9973 + }, + { + "start": 5602.76, + "end": 5605.26, + "probability": 0.9937 + }, + { + "start": 5607.02, + "end": 5611.54, + "probability": 0.9964 + }, + { + "start": 5613.14, + "end": 5613.42, + "probability": 0.8523 + }, + { + "start": 5613.96, + "end": 5617.66, + "probability": 0.985 + }, + { + "start": 5618.78, + "end": 5623.02, + "probability": 0.9849 + }, + { + "start": 5623.02, + "end": 5626.6, + "probability": 0.9758 + }, + { + "start": 5628.08, + "end": 5628.08, + "probability": 0.0411 + }, + { + "start": 5628.08, + "end": 5629.38, + "probability": 0.5794 + }, + { + "start": 5629.44, + "end": 5631.14, + "probability": 0.8936 + }, + { + "start": 5631.54, + "end": 5635.72, + "probability": 0.9584 + }, + { + "start": 5636.2, + "end": 5636.58, + "probability": 0.8251 + }, + { + "start": 5636.84, + "end": 5639.1, + "probability": 0.9697 + }, + { + "start": 5639.5, + "end": 5641.82, + "probability": 0.7968 + }, + { + "start": 5642.12, + "end": 5643.68, + "probability": 0.9035 + }, + { + "start": 5644.44, + "end": 5645.72, + "probability": 0.9912 + }, + { + "start": 5646.62, + "end": 5649.74, + "probability": 0.9719 + }, + { + "start": 5656.52, + "end": 5659.48, + "probability": 0.7976 + }, + { + "start": 5659.56, + "end": 5661.08, + "probability": 0.9911 + }, + { + "start": 5661.71, + "end": 5664.21, + "probability": 0.9755 + }, + { + "start": 5665.12, + "end": 5668.78, + "probability": 0.7604 + }, + { + "start": 5669.14, + "end": 5670.88, + "probability": 0.8852 + }, + { + "start": 5671.04, + "end": 5671.4, + "probability": 0.9845 + }, + { + "start": 5671.92, + "end": 5672.4, + "probability": 0.6734 + }, + { + "start": 5673.14, + "end": 5678.6, + "probability": 0.9814 + }, + { + "start": 5678.7, + "end": 5683.3, + "probability": 0.9976 + }, + { + "start": 5683.82, + "end": 5687.68, + "probability": 0.9578 + }, + { + "start": 5687.88, + "end": 5688.84, + "probability": 0.6458 + }, + { + "start": 5689.44, + "end": 5689.74, + "probability": 0.6149 + }, + { + "start": 5689.98, + "end": 5690.36, + "probability": 0.8848 + }, + { + "start": 5690.76, + "end": 5691.9, + "probability": 0.9053 + }, + { + "start": 5692.0, + "end": 5694.1, + "probability": 0.9492 + }, + { + "start": 5694.86, + "end": 5695.86, + "probability": 0.7699 + }, + { + "start": 5697.14, + "end": 5698.82, + "probability": 0.311 + }, + { + "start": 5698.88, + "end": 5702.2, + "probability": 0.2124 + }, + { + "start": 5702.24, + "end": 5706.08, + "probability": 0.4794 + }, + { + "start": 5706.54, + "end": 5711.72, + "probability": 0.9936 + }, + { + "start": 5712.02, + "end": 5712.12, + "probability": 0.7351 + }, + { + "start": 5712.6, + "end": 5713.36, + "probability": 0.2784 + }, + { + "start": 5714.16, + "end": 5717.38, + "probability": 0.668 + }, + { + "start": 5717.76, + "end": 5718.86, + "probability": 0.822 + }, + { + "start": 5719.44, + "end": 5722.09, + "probability": 0.9973 + }, + { + "start": 5722.74, + "end": 5723.06, + "probability": 0.6861 + }, + { + "start": 5723.26, + "end": 5723.88, + "probability": 0.8756 + }, + { + "start": 5724.34, + "end": 5726.32, + "probability": 0.6062 + }, + { + "start": 5726.7, + "end": 5728.42, + "probability": 0.9973 + }, + { + "start": 5728.82, + "end": 5730.26, + "probability": 0.9602 + }, + { + "start": 5730.34, + "end": 5731.0, + "probability": 0.7278 + }, + { + "start": 5731.32, + "end": 5732.48, + "probability": 0.8788 + }, + { + "start": 5732.88, + "end": 5733.74, + "probability": 0.9653 + }, + { + "start": 5734.12, + "end": 5735.28, + "probability": 0.8997 + }, + { + "start": 5735.62, + "end": 5736.32, + "probability": 0.8115 + }, + { + "start": 5736.7, + "end": 5738.18, + "probability": 0.96 + }, + { + "start": 5738.54, + "end": 5739.7, + "probability": 0.9725 + }, + { + "start": 5740.98, + "end": 5742.54, + "probability": 0.5775 + }, + { + "start": 5742.64, + "end": 5742.64, + "probability": 0.2024 + }, + { + "start": 5742.64, + "end": 5745.48, + "probability": 0.952 + }, + { + "start": 5745.86, + "end": 5746.88, + "probability": 0.9614 + }, + { + "start": 5747.02, + "end": 5750.03, + "probability": 0.8168 + }, + { + "start": 5750.58, + "end": 5751.07, + "probability": 0.9141 + }, + { + "start": 5751.96, + "end": 5754.04, + "probability": 0.9884 + }, + { + "start": 5754.5, + "end": 5755.37, + "probability": 0.9243 + }, + { + "start": 5756.22, + "end": 5761.38, + "probability": 0.8055 + }, + { + "start": 5761.5, + "end": 5761.94, + "probability": 0.739 + }, + { + "start": 5762.26, + "end": 5763.34, + "probability": 0.9738 + }, + { + "start": 5763.8, + "end": 5764.72, + "probability": 0.8835 + }, + { + "start": 5765.24, + "end": 5767.34, + "probability": 0.9437 + }, + { + "start": 5767.9, + "end": 5768.88, + "probability": 0.9967 + }, + { + "start": 5769.48, + "end": 5771.74, + "probability": 0.9619 + }, + { + "start": 5772.36, + "end": 5776.42, + "probability": 0.9602 + }, + { + "start": 5776.74, + "end": 5779.2, + "probability": 0.9895 + }, + { + "start": 5779.58, + "end": 5780.64, + "probability": 0.9384 + }, + { + "start": 5781.22, + "end": 5782.66, + "probability": 0.9863 + }, + { + "start": 5783.14, + "end": 5783.52, + "probability": 0.9733 + }, + { + "start": 5783.68, + "end": 5788.9, + "probability": 0.9911 + }, + { + "start": 5789.32, + "end": 5789.96, + "probability": 0.7093 + }, + { + "start": 5790.6, + "end": 5793.74, + "probability": 0.9789 + }, + { + "start": 5793.74, + "end": 5798.18, + "probability": 0.9925 + }, + { + "start": 5798.62, + "end": 5800.38, + "probability": 0.9863 + }, + { + "start": 5800.84, + "end": 5801.64, + "probability": 0.5779 + }, + { + "start": 5801.78, + "end": 5802.7, + "probability": 0.6417 + }, + { + "start": 5803.16, + "end": 5805.4, + "probability": 0.8195 + }, + { + "start": 5805.9, + "end": 5806.62, + "probability": 0.8323 + }, + { + "start": 5807.24, + "end": 5809.72, + "probability": 0.9481 + }, + { + "start": 5810.02, + "end": 5814.02, + "probability": 0.9558 + }, + { + "start": 5814.36, + "end": 5815.88, + "probability": 0.9657 + }, + { + "start": 5816.32, + "end": 5818.98, + "probability": 0.9849 + }, + { + "start": 5819.58, + "end": 5820.24, + "probability": 0.9258 + }, + { + "start": 5820.32, + "end": 5821.18, + "probability": 0.7959 + }, + { + "start": 5821.42, + "end": 5822.66, + "probability": 0.9919 + }, + { + "start": 5822.82, + "end": 5823.28, + "probability": 0.7255 + }, + { + "start": 5823.36, + "end": 5823.52, + "probability": 0.4952 + }, + { + "start": 5824.26, + "end": 5827.46, + "probability": 0.9877 + }, + { + "start": 5828.12, + "end": 5829.78, + "probability": 0.8091 + }, + { + "start": 5829.84, + "end": 5833.88, + "probability": 0.9966 + }, + { + "start": 5834.36, + "end": 5834.74, + "probability": 0.4362 + }, + { + "start": 5835.06, + "end": 5836.76, + "probability": 0.7963 + }, + { + "start": 5837.98, + "end": 5838.4, + "probability": 0.8829 + }, + { + "start": 5838.46, + "end": 5842.26, + "probability": 0.8562 + }, + { + "start": 5842.7, + "end": 5844.5, + "probability": 0.9766 + }, + { + "start": 5844.64, + "end": 5847.6, + "probability": 0.5132 + }, + { + "start": 5848.32, + "end": 5849.94, + "probability": 0.5536 + }, + { + "start": 5850.51, + "end": 5851.02, + "probability": 0.3566 + }, + { + "start": 5851.02, + "end": 5853.04, + "probability": 0.7877 + }, + { + "start": 5853.26, + "end": 5855.32, + "probability": 0.7533 + }, + { + "start": 5856.24, + "end": 5857.56, + "probability": 0.7568 + }, + { + "start": 5857.78, + "end": 5858.48, + "probability": 0.6444 + }, + { + "start": 5858.58, + "end": 5860.2, + "probability": 0.9531 + }, + { + "start": 5860.24, + "end": 5862.76, + "probability": 0.8862 + }, + { + "start": 5863.36, + "end": 5865.78, + "probability": 0.9872 + }, + { + "start": 5866.48, + "end": 5869.52, + "probability": 0.8953 + }, + { + "start": 5869.62, + "end": 5870.58, + "probability": 0.9385 + }, + { + "start": 5871.36, + "end": 5873.0, + "probability": 0.9971 + }, + { + "start": 5873.46, + "end": 5875.6, + "probability": 0.8007 + }, + { + "start": 5876.74, + "end": 5878.72, + "probability": 0.4049 + }, + { + "start": 5878.92, + "end": 5879.2, + "probability": 0.6673 + }, + { + "start": 5879.42, + "end": 5880.72, + "probability": 0.9299 + }, + { + "start": 5881.24, + "end": 5886.14, + "probability": 0.9883 + }, + { + "start": 5886.94, + "end": 5888.4, + "probability": 0.7842 + }, + { + "start": 5888.68, + "end": 5890.74, + "probability": 0.9722 + }, + { + "start": 5891.96, + "end": 5892.8, + "probability": 0.4161 + }, + { + "start": 5893.44, + "end": 5895.6, + "probability": 0.7423 + }, + { + "start": 5895.62, + "end": 5896.6, + "probability": 0.4767 + }, + { + "start": 5896.72, + "end": 5900.4, + "probability": 0.8417 + }, + { + "start": 5900.48, + "end": 5901.38, + "probability": 0.5453 + }, + { + "start": 5901.38, + "end": 5903.26, + "probability": 0.2962 + }, + { + "start": 5904.46, + "end": 5905.32, + "probability": 0.0669 + }, + { + "start": 5905.62, + "end": 5907.46, + "probability": 0.086 + }, + { + "start": 5908.02, + "end": 5908.86, + "probability": 0.0168 + }, + { + "start": 5909.34, + "end": 5910.62, + "probability": 0.1918 + }, + { + "start": 5910.74, + "end": 5914.08, + "probability": 0.4712 + }, + { + "start": 5915.62, + "end": 5917.1, + "probability": 0.0353 + }, + { + "start": 5919.4, + "end": 5919.4, + "probability": 0.0607 + }, + { + "start": 5919.4, + "end": 5919.98, + "probability": 0.4969 + }, + { + "start": 5920.26, + "end": 5925.66, + "probability": 0.7639 + }, + { + "start": 5925.66, + "end": 5930.74, + "probability": 0.5529 + }, + { + "start": 5931.16, + "end": 5932.52, + "probability": 0.3996 + }, + { + "start": 5933.22, + "end": 5936.52, + "probability": 0.904 + }, + { + "start": 5936.88, + "end": 5937.6, + "probability": 0.5234 + }, + { + "start": 5937.94, + "end": 5938.74, + "probability": 0.3508 + }, + { + "start": 5938.74, + "end": 5940.4, + "probability": 0.7678 + }, + { + "start": 5942.5, + "end": 5947.26, + "probability": 0.0659 + }, + { + "start": 5948.34, + "end": 5949.3, + "probability": 0.0615 + }, + { + "start": 5949.62, + "end": 5951.96, + "probability": 0.0445 + }, + { + "start": 5953.84, + "end": 5953.84, + "probability": 0.0025 + }, + { + "start": 5957.68, + "end": 5958.4, + "probability": 0.2542 + }, + { + "start": 5958.9, + "end": 5961.06, + "probability": 0.3488 + }, + { + "start": 5961.9, + "end": 5963.18, + "probability": 0.7635 + }, + { + "start": 5963.94, + "end": 5964.9, + "probability": 0.7296 + }, + { + "start": 5965.74, + "end": 5967.36, + "probability": 0.9637 + }, + { + "start": 5967.86, + "end": 5971.86, + "probability": 0.9889 + }, + { + "start": 5972.26, + "end": 5973.84, + "probability": 0.7771 + }, + { + "start": 5974.36, + "end": 5975.0, + "probability": 0.4513 + }, + { + "start": 5976.94, + "end": 5981.0, + "probability": 0.9973 + }, + { + "start": 5981.1, + "end": 5981.86, + "probability": 0.6466 + }, + { + "start": 5982.84, + "end": 5984.6, + "probability": 0.9428 + }, + { + "start": 5985.28, + "end": 5986.0, + "probability": 0.5658 + }, + { + "start": 5986.3, + "end": 5987.72, + "probability": 0.9568 + }, + { + "start": 5987.84, + "end": 5988.48, + "probability": 0.7884 + }, + { + "start": 5988.8, + "end": 5989.66, + "probability": 0.9541 + }, + { + "start": 5990.08, + "end": 5991.8, + "probability": 0.8848 + }, + { + "start": 5991.9, + "end": 5994.68, + "probability": 0.6669 + }, + { + "start": 5995.8, + "end": 5999.34, + "probability": 0.5725 + }, + { + "start": 5999.74, + "end": 6003.18, + "probability": 0.6197 + }, + { + "start": 6003.7, + "end": 6007.3, + "probability": 0.9755 + }, + { + "start": 6008.2, + "end": 6011.96, + "probability": 0.9347 + }, + { + "start": 6012.8, + "end": 6014.44, + "probability": 0.708 + }, + { + "start": 6015.04, + "end": 6018.1, + "probability": 0.997 + }, + { + "start": 6019.74, + "end": 6021.4, + "probability": 0.8851 + }, + { + "start": 6022.54, + "end": 6024.12, + "probability": 0.8026 + }, + { + "start": 6024.2, + "end": 6026.52, + "probability": 0.8368 + }, + { + "start": 6026.64, + "end": 6028.16, + "probability": 0.9893 + }, + { + "start": 6028.44, + "end": 6029.1, + "probability": 0.6925 + }, + { + "start": 6030.04, + "end": 6030.56, + "probability": 0.6353 + }, + { + "start": 6030.58, + "end": 6031.96, + "probability": 0.9472 + }, + { + "start": 6032.46, + "end": 6034.66, + "probability": 0.9052 + }, + { + "start": 6035.14, + "end": 6036.6, + "probability": 0.9062 + }, + { + "start": 6037.2, + "end": 6039.74, + "probability": 0.9991 + }, + { + "start": 6040.6, + "end": 6042.72, + "probability": 0.9884 + }, + { + "start": 6043.44, + "end": 6046.64, + "probability": 0.992 + }, + { + "start": 6048.16, + "end": 6050.4, + "probability": 0.7744 + }, + { + "start": 6051.28, + "end": 6055.02, + "probability": 0.9647 + }, + { + "start": 6055.28, + "end": 6057.12, + "probability": 0.9503 + }, + { + "start": 6057.76, + "end": 6060.26, + "probability": 0.9947 + }, + { + "start": 6060.54, + "end": 6061.52, + "probability": 0.9399 + }, + { + "start": 6061.66, + "end": 6062.98, + "probability": 0.916 + }, + { + "start": 6063.24, + "end": 6064.28, + "probability": 0.958 + }, + { + "start": 6065.22, + "end": 6066.25, + "probability": 0.9156 + }, + { + "start": 6066.96, + "end": 6070.62, + "probability": 0.9813 + }, + { + "start": 6071.06, + "end": 6072.4, + "probability": 0.7897 + }, + { + "start": 6072.48, + "end": 6073.18, + "probability": 0.6269 + }, + { + "start": 6074.22, + "end": 6075.36, + "probability": 0.8685 + }, + { + "start": 6076.32, + "end": 6078.35, + "probability": 0.9912 + }, + { + "start": 6079.42, + "end": 6080.58, + "probability": 0.8405 + }, + { + "start": 6080.64, + "end": 6081.64, + "probability": 0.7129 + }, + { + "start": 6081.76, + "end": 6085.5, + "probability": 0.9773 + }, + { + "start": 6085.84, + "end": 6087.26, + "probability": 0.7679 + }, + { + "start": 6087.26, + "end": 6088.1, + "probability": 0.2818 + }, + { + "start": 6088.1, + "end": 6090.28, + "probability": 0.7767 + }, + { + "start": 6091.04, + "end": 6092.94, + "probability": 0.4559 + }, + { + "start": 6092.94, + "end": 6096.08, + "probability": 0.9666 + }, + { + "start": 6096.3, + "end": 6098.62, + "probability": 0.9185 + }, + { + "start": 6098.68, + "end": 6098.94, + "probability": 0.3457 + }, + { + "start": 6098.94, + "end": 6100.78, + "probability": 0.1113 + }, + { + "start": 6100.92, + "end": 6102.1, + "probability": 0.2473 + }, + { + "start": 6102.94, + "end": 6106.04, + "probability": 0.5885 + }, + { + "start": 6107.18, + "end": 6112.34, + "probability": 0.8868 + }, + { + "start": 6112.68, + "end": 6113.26, + "probability": 0.9005 + }, + { + "start": 6113.38, + "end": 6113.96, + "probability": 0.6952 + }, + { + "start": 6114.24, + "end": 6114.95, + "probability": 0.9663 + }, + { + "start": 6115.36, + "end": 6115.88, + "probability": 0.3756 + }, + { + "start": 6116.04, + "end": 6116.18, + "probability": 0.5737 + }, + { + "start": 6116.18, + "end": 6118.46, + "probability": 0.9803 + }, + { + "start": 6118.46, + "end": 6119.1, + "probability": 0.4942 + }, + { + "start": 6119.1, + "end": 6120.07, + "probability": 0.7639 + }, + { + "start": 6120.28, + "end": 6121.4, + "probability": 0.7232 + }, + { + "start": 6121.4, + "end": 6121.42, + "probability": 0.3449 + }, + { + "start": 6121.42, + "end": 6122.64, + "probability": 0.6724 + }, + { + "start": 6124.55, + "end": 6129.7, + "probability": 0.7387 + }, + { + "start": 6130.06, + "end": 6130.64, + "probability": 0.7821 + }, + { + "start": 6131.2, + "end": 6133.78, + "probability": 0.8694 + }, + { + "start": 6134.28, + "end": 6134.48, + "probability": 0.252 + }, + { + "start": 6134.64, + "end": 6138.4, + "probability": 0.9624 + }, + { + "start": 6139.08, + "end": 6139.62, + "probability": 0.5858 + }, + { + "start": 6139.7, + "end": 6140.22, + "probability": 0.5844 + }, + { + "start": 6140.32, + "end": 6141.14, + "probability": 0.8508 + }, + { + "start": 6141.4, + "end": 6141.7, + "probability": 0.6898 + }, + { + "start": 6142.16, + "end": 6142.94, + "probability": 0.8867 + }, + { + "start": 6143.08, + "end": 6144.56, + "probability": 0.9473 + }, + { + "start": 6144.62, + "end": 6145.0, + "probability": 0.6994 + }, + { + "start": 6145.3, + "end": 6146.73, + "probability": 0.9583 + }, + { + "start": 6148.16, + "end": 6148.88, + "probability": 0.939 + }, + { + "start": 6149.56, + "end": 6150.5, + "probability": 0.9385 + }, + { + "start": 6151.56, + "end": 6155.32, + "probability": 0.9318 + }, + { + "start": 6155.68, + "end": 6157.28, + "probability": 0.9954 + }, + { + "start": 6157.46, + "end": 6159.88, + "probability": 0.8228 + }, + { + "start": 6160.36, + "end": 6161.69, + "probability": 0.118 + }, + { + "start": 6163.34, + "end": 6163.6, + "probability": 0.0808 + }, + { + "start": 6163.6, + "end": 6165.13, + "probability": 0.4112 + }, + { + "start": 6165.52, + "end": 6166.78, + "probability": 0.2635 + }, + { + "start": 6166.88, + "end": 6168.04, + "probability": 0.566 + }, + { + "start": 6168.06, + "end": 6169.94, + "probability": 0.7845 + }, + { + "start": 6170.06, + "end": 6170.64, + "probability": 0.5522 + }, + { + "start": 6170.64, + "end": 6172.12, + "probability": 0.6382 + }, + { + "start": 6172.12, + "end": 6172.62, + "probability": 0.1469 + }, + { + "start": 6173.1, + "end": 6176.92, + "probability": 0.0604 + }, + { + "start": 6176.92, + "end": 6177.63, + "probability": 0.5137 + }, + { + "start": 6178.22, + "end": 6183.5, + "probability": 0.4106 + }, + { + "start": 6183.5, + "end": 6186.46, + "probability": 0.2351 + }, + { + "start": 6186.46, + "end": 6191.2, + "probability": 0.8063 + }, + { + "start": 6191.62, + "end": 6194.12, + "probability": 0.9421 + }, + { + "start": 6194.98, + "end": 6197.16, + "probability": 0.958 + }, + { + "start": 6198.0, + "end": 6200.96, + "probability": 0.925 + }, + { + "start": 6202.14, + "end": 6203.41, + "probability": 0.9307 + }, + { + "start": 6203.54, + "end": 6206.1, + "probability": 0.976 + }, + { + "start": 6206.1, + "end": 6208.58, + "probability": 0.5096 + }, + { + "start": 6208.94, + "end": 6210.76, + "probability": 0.9989 + }, + { + "start": 6211.7, + "end": 6214.44, + "probability": 0.9971 + }, + { + "start": 6214.58, + "end": 6215.58, + "probability": 0.6824 + }, + { + "start": 6216.8, + "end": 6218.5, + "probability": 0.999 + }, + { + "start": 6220.32, + "end": 6223.84, + "probability": 0.9977 + }, + { + "start": 6224.48, + "end": 6225.86, + "probability": 0.9985 + }, + { + "start": 6226.18, + "end": 6227.1, + "probability": 0.7166 + }, + { + "start": 6227.28, + "end": 6229.22, + "probability": 0.9971 + }, + { + "start": 6229.56, + "end": 6232.35, + "probability": 0.9941 + }, + { + "start": 6232.46, + "end": 6233.48, + "probability": 0.9753 + }, + { + "start": 6233.58, + "end": 6234.76, + "probability": 0.9934 + }, + { + "start": 6235.24, + "end": 6240.22, + "probability": 0.991 + }, + { + "start": 6240.64, + "end": 6240.96, + "probability": 0.7812 + }, + { + "start": 6241.86, + "end": 6242.36, + "probability": 0.4448 + }, + { + "start": 6242.94, + "end": 6244.72, + "probability": 0.8779 + }, + { + "start": 6244.8, + "end": 6248.38, + "probability": 0.9466 + }, + { + "start": 6258.36, + "end": 6258.98, + "probability": 0.279 + }, + { + "start": 6262.92, + "end": 6265.16, + "probability": 0.9908 + }, + { + "start": 6265.86, + "end": 6266.82, + "probability": 0.7916 + }, + { + "start": 6267.18, + "end": 6269.52, + "probability": 0.6715 + }, + { + "start": 6269.8, + "end": 6270.6, + "probability": 0.9455 + }, + { + "start": 6271.4, + "end": 6274.36, + "probability": 0.9087 + }, + { + "start": 6275.58, + "end": 6276.0, + "probability": 0.9982 + }, + { + "start": 6276.78, + "end": 6279.46, + "probability": 0.85 + }, + { + "start": 6279.98, + "end": 6280.61, + "probability": 0.4997 + }, + { + "start": 6281.66, + "end": 6283.86, + "probability": 0.9258 + }, + { + "start": 6284.0, + "end": 6290.1, + "probability": 0.9911 + }, + { + "start": 6290.78, + "end": 6291.88, + "probability": 0.964 + }, + { + "start": 6292.4, + "end": 6293.8, + "probability": 0.9565 + }, + { + "start": 6293.88, + "end": 6294.49, + "probability": 0.99 + }, + { + "start": 6295.24, + "end": 6296.62, + "probability": 0.9404 + }, + { + "start": 6296.72, + "end": 6298.86, + "probability": 0.9949 + }, + { + "start": 6299.54, + "end": 6303.7, + "probability": 0.9406 + }, + { + "start": 6303.7, + "end": 6308.58, + "probability": 0.991 + }, + { + "start": 6309.22, + "end": 6312.56, + "probability": 0.8977 + }, + { + "start": 6313.12, + "end": 6314.26, + "probability": 0.6176 + }, + { + "start": 6314.44, + "end": 6314.94, + "probability": 0.271 + }, + { + "start": 6315.04, + "end": 6315.52, + "probability": 0.1221 + }, + { + "start": 6315.52, + "end": 6316.66, + "probability": 0.7493 + }, + { + "start": 6317.1, + "end": 6318.6, + "probability": 0.8413 + }, + { + "start": 6319.02, + "end": 6322.88, + "probability": 0.9662 + }, + { + "start": 6323.52, + "end": 6323.98, + "probability": 0.923 + }, + { + "start": 6324.5, + "end": 6330.22, + "probability": 0.9614 + }, + { + "start": 6331.14, + "end": 6332.58, + "probability": 0.993 + }, + { + "start": 6333.16, + "end": 6334.06, + "probability": 0.6864 + }, + { + "start": 6334.76, + "end": 6339.04, + "probability": 0.9982 + }, + { + "start": 6339.04, + "end": 6342.62, + "probability": 0.9603 + }, + { + "start": 6342.98, + "end": 6343.5, + "probability": 0.8783 + }, + { + "start": 6344.0, + "end": 6345.34, + "probability": 0.9702 + }, + { + "start": 6345.78, + "end": 6349.25, + "probability": 0.9644 + }, + { + "start": 6349.52, + "end": 6353.58, + "probability": 0.8968 + }, + { + "start": 6353.74, + "end": 6355.2, + "probability": 0.9966 + }, + { + "start": 6355.82, + "end": 6359.06, + "probability": 0.9723 + }, + { + "start": 6359.28, + "end": 6360.2, + "probability": 0.7126 + }, + { + "start": 6360.26, + "end": 6360.42, + "probability": 0.3621 + }, + { + "start": 6361.26, + "end": 6362.58, + "probability": 0.9561 + }, + { + "start": 6363.24, + "end": 6364.72, + "probability": 0.9236 + }, + { + "start": 6365.36, + "end": 6366.92, + "probability": 0.9095 + }, + { + "start": 6367.54, + "end": 6370.9, + "probability": 0.9968 + }, + { + "start": 6371.0, + "end": 6371.74, + "probability": 0.741 + }, + { + "start": 6372.2, + "end": 6375.54, + "probability": 0.9945 + }, + { + "start": 6375.54, + "end": 6380.08, + "probability": 0.9965 + }, + { + "start": 6380.8, + "end": 6383.22, + "probability": 0.9593 + }, + { + "start": 6383.76, + "end": 6385.44, + "probability": 0.8853 + }, + { + "start": 6386.4, + "end": 6392.5, + "probability": 0.9828 + }, + { + "start": 6393.06, + "end": 6399.12, + "probability": 0.9985 + }, + { + "start": 6399.12, + "end": 6402.6, + "probability": 0.991 + }, + { + "start": 6403.34, + "end": 6405.32, + "probability": 0.9004 + }, + { + "start": 6406.76, + "end": 6408.06, + "probability": 0.7926 + }, + { + "start": 6408.64, + "end": 6412.14, + "probability": 0.9538 + }, + { + "start": 6412.14, + "end": 6416.8, + "probability": 0.9976 + }, + { + "start": 6417.4, + "end": 6420.82, + "probability": 0.9505 + }, + { + "start": 6421.28, + "end": 6425.7, + "probability": 0.9923 + }, + { + "start": 6425.86, + "end": 6428.66, + "probability": 0.9962 + }, + { + "start": 6429.36, + "end": 6433.32, + "probability": 0.9312 + }, + { + "start": 6434.0, + "end": 6436.36, + "probability": 0.9327 + }, + { + "start": 6436.52, + "end": 6438.6, + "probability": 0.9315 + }, + { + "start": 6439.04, + "end": 6442.9, + "probability": 0.9535 + }, + { + "start": 6443.24, + "end": 6447.36, + "probability": 0.9995 + }, + { + "start": 6448.36, + "end": 6450.78, + "probability": 0.8746 + }, + { + "start": 6451.44, + "end": 6455.4, + "probability": 0.9163 + }, + { + "start": 6455.54, + "end": 6456.92, + "probability": 0.835 + }, + { + "start": 6457.48, + "end": 6463.26, + "probability": 0.9557 + }, + { + "start": 6463.3, + "end": 6466.1, + "probability": 0.9883 + }, + { + "start": 6466.78, + "end": 6471.9, + "probability": 0.9741 + }, + { + "start": 6472.0, + "end": 6475.04, + "probability": 0.9991 + }, + { + "start": 6475.6, + "end": 6476.92, + "probability": 0.9572 + }, + { + "start": 6477.28, + "end": 6483.96, + "probability": 0.9763 + }, + { + "start": 6484.1, + "end": 6488.26, + "probability": 0.8408 + }, + { + "start": 6488.9, + "end": 6490.28, + "probability": 0.8179 + }, + { + "start": 6490.82, + "end": 6491.96, + "probability": 0.9692 + }, + { + "start": 6492.04, + "end": 6493.16, + "probability": 0.9723 + }, + { + "start": 6493.82, + "end": 6498.28, + "probability": 0.9487 + }, + { + "start": 6498.88, + "end": 6501.04, + "probability": 0.866 + }, + { + "start": 6501.4, + "end": 6503.42, + "probability": 0.9288 + }, + { + "start": 6503.48, + "end": 6506.9, + "probability": 0.9548 + }, + { + "start": 6507.52, + "end": 6507.92, + "probability": 0.7612 + }, + { + "start": 6508.6, + "end": 6510.16, + "probability": 0.9102 + }, + { + "start": 6510.84, + "end": 6512.52, + "probability": 0.7971 + }, + { + "start": 6513.18, + "end": 6517.56, + "probability": 0.984 + }, + { + "start": 6518.2, + "end": 6521.52, + "probability": 0.9886 + }, + { + "start": 6522.46, + "end": 6525.44, + "probability": 0.9864 + }, + { + "start": 6525.96, + "end": 6531.84, + "probability": 0.9915 + }, + { + "start": 6532.58, + "end": 6534.72, + "probability": 0.9829 + }, + { + "start": 6535.36, + "end": 6539.64, + "probability": 0.9385 + }, + { + "start": 6540.1, + "end": 6542.34, + "probability": 0.9872 + }, + { + "start": 6542.98, + "end": 6544.44, + "probability": 0.9498 + }, + { + "start": 6544.98, + "end": 6551.86, + "probability": 0.9875 + }, + { + "start": 6552.7, + "end": 6557.02, + "probability": 0.9951 + }, + { + "start": 6557.68, + "end": 6561.31, + "probability": 0.9917 + }, + { + "start": 6562.12, + "end": 6563.62, + "probability": 0.6334 + }, + { + "start": 6564.14, + "end": 6564.73, + "probability": 0.9623 + }, + { + "start": 6565.58, + "end": 6570.86, + "probability": 0.9949 + }, + { + "start": 6571.2, + "end": 6574.54, + "probability": 0.9901 + }, + { + "start": 6575.08, + "end": 6575.54, + "probability": 0.731 + }, + { + "start": 6576.68, + "end": 6577.88, + "probability": 0.8785 + }, + { + "start": 6578.54, + "end": 6582.72, + "probability": 0.9858 + }, + { + "start": 6583.28, + "end": 6585.14, + "probability": 0.9912 + }, + { + "start": 6585.5, + "end": 6588.54, + "probability": 0.8991 + }, + { + "start": 6589.64, + "end": 6592.04, + "probability": 0.8281 + }, + { + "start": 6592.28, + "end": 6594.84, + "probability": 0.9841 + }, + { + "start": 6595.7, + "end": 6598.78, + "probability": 0.7982 + }, + { + "start": 6598.78, + "end": 6600.42, + "probability": 0.7208 + }, + { + "start": 6601.08, + "end": 6607.28, + "probability": 0.5702 + }, + { + "start": 6607.42, + "end": 6608.78, + "probability": 0.931 + }, + { + "start": 6612.96, + "end": 6613.74, + "probability": 0.7257 + }, + { + "start": 6614.98, + "end": 6615.3, + "probability": 0.7525 + }, + { + "start": 6616.02, + "end": 6617.38, + "probability": 0.9508 + }, + { + "start": 6618.0, + "end": 6619.62, + "probability": 0.9363 + }, + { + "start": 6619.88, + "end": 6620.5, + "probability": 0.9244 + }, + { + "start": 6620.96, + "end": 6622.76, + "probability": 0.9949 + }, + { + "start": 6623.96, + "end": 6627.9, + "probability": 0.9713 + }, + { + "start": 6628.8, + "end": 6629.4, + "probability": 0.981 + }, + { + "start": 6629.56, + "end": 6630.88, + "probability": 0.9956 + }, + { + "start": 6632.79, + "end": 6633.28, + "probability": 0.0483 + }, + { + "start": 6633.28, + "end": 6634.18, + "probability": 0.7165 + }, + { + "start": 6634.5, + "end": 6635.38, + "probability": 0.8357 + }, + { + "start": 6635.54, + "end": 6636.4, + "probability": 0.8645 + }, + { + "start": 6636.88, + "end": 6640.6, + "probability": 0.9175 + }, + { + "start": 6640.6, + "end": 6643.84, + "probability": 0.8983 + }, + { + "start": 6644.38, + "end": 6646.0, + "probability": 0.9672 + }, + { + "start": 6646.58, + "end": 6649.9, + "probability": 0.9707 + }, + { + "start": 6650.36, + "end": 6650.82, + "probability": 0.4443 + }, + { + "start": 6651.12, + "end": 6652.44, + "probability": 0.9195 + }, + { + "start": 6653.44, + "end": 6656.9, + "probability": 0.9909 + }, + { + "start": 6656.9, + "end": 6659.82, + "probability": 0.9995 + }, + { + "start": 6660.26, + "end": 6663.58, + "probability": 0.9552 + }, + { + "start": 6664.28, + "end": 6664.52, + "probability": 0.7231 + }, + { + "start": 6664.68, + "end": 6669.58, + "probability": 0.937 + }, + { + "start": 6671.08, + "end": 6671.92, + "probability": 0.7591 + }, + { + "start": 6672.6, + "end": 6676.06, + "probability": 0.9482 + }, + { + "start": 6676.72, + "end": 6682.26, + "probability": 0.9921 + }, + { + "start": 6683.5, + "end": 6684.7, + "probability": 0.9971 + }, + { + "start": 6685.3, + "end": 6687.02, + "probability": 0.9997 + }, + { + "start": 6687.74, + "end": 6689.62, + "probability": 0.9009 + }, + { + "start": 6690.94, + "end": 6695.36, + "probability": 0.9995 + }, + { + "start": 6695.4, + "end": 6699.98, + "probability": 0.9993 + }, + { + "start": 6700.2, + "end": 6703.44, + "probability": 0.9993 + }, + { + "start": 6703.44, + "end": 6707.83, + "probability": 0.9771 + }, + { + "start": 6708.2, + "end": 6708.86, + "probability": 0.7425 + }, + { + "start": 6709.0, + "end": 6709.48, + "probability": 0.6941 + }, + { + "start": 6710.72, + "end": 6711.82, + "probability": 0.8754 + }, + { + "start": 6713.2, + "end": 6718.44, + "probability": 0.9927 + }, + { + "start": 6718.96, + "end": 6722.6, + "probability": 0.9485 + }, + { + "start": 6723.28, + "end": 6725.7, + "probability": 0.9915 + }, + { + "start": 6726.08, + "end": 6729.18, + "probability": 0.8819 + }, + { + "start": 6730.78, + "end": 6735.66, + "probability": 0.8574 + }, + { + "start": 6736.2, + "end": 6739.42, + "probability": 0.9894 + }, + { + "start": 6739.52, + "end": 6740.25, + "probability": 0.9644 + }, + { + "start": 6741.2, + "end": 6743.62, + "probability": 0.9955 + }, + { + "start": 6744.3, + "end": 6745.18, + "probability": 0.6452 + }, + { + "start": 6745.84, + "end": 6750.34, + "probability": 0.9916 + }, + { + "start": 6750.34, + "end": 6752.7, + "probability": 0.9473 + }, + { + "start": 6753.76, + "end": 6754.3, + "probability": 0.5998 + }, + { + "start": 6754.94, + "end": 6758.18, + "probability": 0.9885 + }, + { + "start": 6758.7, + "end": 6762.32, + "probability": 0.9934 + }, + { + "start": 6762.52, + "end": 6765.14, + "probability": 0.9949 + }, + { + "start": 6765.8, + "end": 6769.44, + "probability": 0.9965 + }, + { + "start": 6769.56, + "end": 6772.88, + "probability": 0.7781 + }, + { + "start": 6773.2, + "end": 6777.05, + "probability": 0.8078 + }, + { + "start": 6777.88, + "end": 6778.88, + "probability": 0.8704 + }, + { + "start": 6778.94, + "end": 6781.04, + "probability": 0.865 + }, + { + "start": 6781.08, + "end": 6783.5, + "probability": 0.9592 + }, + { + "start": 6783.86, + "end": 6784.44, + "probability": 0.4546 + }, + { + "start": 6784.54, + "end": 6785.9, + "probability": 0.9068 + }, + { + "start": 6786.52, + "end": 6788.92, + "probability": 0.967 + }, + { + "start": 6789.44, + "end": 6792.88, + "probability": 0.9817 + }, + { + "start": 6792.94, + "end": 6794.06, + "probability": 0.8929 + }, + { + "start": 6794.68, + "end": 6796.16, + "probability": 0.9231 + }, + { + "start": 6796.24, + "end": 6798.04, + "probability": 0.9925 + }, + { + "start": 6798.08, + "end": 6799.3, + "probability": 0.9224 + }, + { + "start": 6799.66, + "end": 6800.96, + "probability": 0.9504 + }, + { + "start": 6801.04, + "end": 6802.99, + "probability": 0.982 + }, + { + "start": 6803.68, + "end": 6807.1, + "probability": 0.9804 + }, + { + "start": 6807.58, + "end": 6811.7, + "probability": 0.9976 + }, + { + "start": 6811.7, + "end": 6816.14, + "probability": 0.9835 + }, + { + "start": 6816.56, + "end": 6818.2, + "probability": 0.9994 + }, + { + "start": 6818.38, + "end": 6820.74, + "probability": 0.9956 + }, + { + "start": 6821.1, + "end": 6823.14, + "probability": 0.8014 + }, + { + "start": 6823.22, + "end": 6824.06, + "probability": 0.8053 + }, + { + "start": 6824.18, + "end": 6825.26, + "probability": 0.8591 + }, + { + "start": 6825.54, + "end": 6827.68, + "probability": 0.8991 + }, + { + "start": 6828.18, + "end": 6830.58, + "probability": 0.9592 + }, + { + "start": 6830.58, + "end": 6834.34, + "probability": 0.9956 + }, + { + "start": 6834.52, + "end": 6839.26, + "probability": 0.9983 + }, + { + "start": 6839.58, + "end": 6839.8, + "probability": 0.7245 + }, + { + "start": 6840.62, + "end": 6843.44, + "probability": 0.7968 + }, + { + "start": 6844.38, + "end": 6846.38, + "probability": 0.9048 + }, + { + "start": 6847.5, + "end": 6851.31, + "probability": 0.3092 + }, + { + "start": 6851.42, + "end": 6851.78, + "probability": 0.5358 + }, + { + "start": 6851.78, + "end": 6853.95, + "probability": 0.7675 + }, + { + "start": 6854.54, + "end": 6856.04, + "probability": 0.9961 + }, + { + "start": 6856.2, + "end": 6857.54, + "probability": 0.7182 + }, + { + "start": 6858.24, + "end": 6861.58, + "probability": 0.946 + }, + { + "start": 6861.96, + "end": 6863.52, + "probability": 0.917 + }, + { + "start": 6863.52, + "end": 6865.7, + "probability": 0.9384 + }, + { + "start": 6866.96, + "end": 6871.26, + "probability": 0.8827 + }, + { + "start": 6872.52, + "end": 6875.24, + "probability": 0.9747 + }, + { + "start": 6884.12, + "end": 6885.26, + "probability": 0.5797 + }, + { + "start": 6885.26, + "end": 6886.86, + "probability": 0.8438 + }, + { + "start": 6887.36, + "end": 6889.14, + "probability": 0.4422 + }, + { + "start": 6889.28, + "end": 6891.3, + "probability": 0.8704 + }, + { + "start": 6891.3, + "end": 6894.58, + "probability": 0.887 + }, + { + "start": 6895.42, + "end": 6897.86, + "probability": 0.9906 + }, + { + "start": 6898.82, + "end": 6900.4, + "probability": 0.1581 + }, + { + "start": 6902.12, + "end": 6902.12, + "probability": 0.2172 + }, + { + "start": 6902.12, + "end": 6905.62, + "probability": 0.8139 + }, + { + "start": 6906.2, + "end": 6908.72, + "probability": 0.9263 + }, + { + "start": 6909.24, + "end": 6911.52, + "probability": 0.8341 + }, + { + "start": 6911.94, + "end": 6914.74, + "probability": 0.9343 + }, + { + "start": 6914.88, + "end": 6916.58, + "probability": 0.9641 + }, + { + "start": 6917.36, + "end": 6919.54, + "probability": 0.7867 + }, + { + "start": 6921.42, + "end": 6922.2, + "probability": 0.9341 + }, + { + "start": 6924.28, + "end": 6927.96, + "probability": 0.9522 + }, + { + "start": 6928.74, + "end": 6933.04, + "probability": 0.9839 + }, + { + "start": 6933.44, + "end": 6935.64, + "probability": 0.9882 + }, + { + "start": 6936.9, + "end": 6939.66, + "probability": 0.6805 + }, + { + "start": 6939.78, + "end": 6944.42, + "probability": 0.2535 + }, + { + "start": 6945.66, + "end": 6947.56, + "probability": 0.2104 + }, + { + "start": 6947.84, + "end": 6948.04, + "probability": 0.4302 + }, + { + "start": 6948.4, + "end": 6949.04, + "probability": 0.4437 + }, + { + "start": 6950.46, + "end": 6951.58, + "probability": 0.7066 + }, + { + "start": 6952.46, + "end": 6953.76, + "probability": 0.5751 + }, + { + "start": 6954.02, + "end": 6955.6, + "probability": 0.3271 + }, + { + "start": 6957.07, + "end": 6959.52, + "probability": 0.7813 + }, + { + "start": 6960.54, + "end": 6961.8, + "probability": 0.3222 + }, + { + "start": 6962.12, + "end": 6963.78, + "probability": 0.7437 + }, + { + "start": 6964.66, + "end": 6966.6, + "probability": 0.8777 + }, + { + "start": 6966.84, + "end": 6968.02, + "probability": 0.8989 + }, + { + "start": 6968.36, + "end": 6971.58, + "probability": 0.986 + }, + { + "start": 6974.45, + "end": 6977.2, + "probability": 0.9064 + }, + { + "start": 6977.92, + "end": 6984.98, + "probability": 0.9891 + }, + { + "start": 6986.28, + "end": 6988.1, + "probability": 0.985 + }, + { + "start": 6988.7, + "end": 6989.28, + "probability": 0.7964 + }, + { + "start": 6991.2, + "end": 6992.48, + "probability": 0.6045 + }, + { + "start": 6993.58, + "end": 6997.88, + "probability": 0.9961 + }, + { + "start": 6998.36, + "end": 6999.16, + "probability": 0.9072 + }, + { + "start": 6999.56, + "end": 7001.04, + "probability": 0.8688 + }, + { + "start": 7002.22, + "end": 7007.06, + "probability": 0.2319 + }, + { + "start": 7007.44, + "end": 7011.62, + "probability": 0.9302 + }, + { + "start": 7011.62, + "end": 7015.2, + "probability": 0.9746 + }, + { + "start": 7016.84, + "end": 7019.82, + "probability": 0.9831 + }, + { + "start": 7020.36, + "end": 7022.68, + "probability": 0.639 + }, + { + "start": 7023.28, + "end": 7024.66, + "probability": 0.7259 + }, + { + "start": 7026.3, + "end": 7029.14, + "probability": 0.99 + }, + { + "start": 7029.74, + "end": 7035.46, + "probability": 0.9376 + }, + { + "start": 7036.98, + "end": 7038.44, + "probability": 0.0485 + }, + { + "start": 7041.74, + "end": 7046.38, + "probability": 0.9137 + }, + { + "start": 7047.1, + "end": 7051.28, + "probability": 0.9398 + }, + { + "start": 7051.76, + "end": 7053.38, + "probability": 0.9113 + }, + { + "start": 7053.98, + "end": 7056.06, + "probability": 0.8746 + }, + { + "start": 7057.14, + "end": 7058.48, + "probability": 0.95 + }, + { + "start": 7058.84, + "end": 7060.4, + "probability": 0.9937 + }, + { + "start": 7060.9, + "end": 7065.9, + "probability": 0.9758 + }, + { + "start": 7067.22, + "end": 7069.42, + "probability": 0.8056 + }, + { + "start": 7069.78, + "end": 7073.32, + "probability": 0.9052 + }, + { + "start": 7074.1, + "end": 7074.92, + "probability": 0.6304 + }, + { + "start": 7075.02, + "end": 7078.8, + "probability": 0.7788 + }, + { + "start": 7079.1, + "end": 7080.76, + "probability": 0.835 + }, + { + "start": 7081.12, + "end": 7081.72, + "probability": 0.0118 + }, + { + "start": 7082.28, + "end": 7083.76, + "probability": 0.8189 + }, + { + "start": 7096.38, + "end": 7096.78, + "probability": 0.5277 + }, + { + "start": 7098.22, + "end": 7099.34, + "probability": 0.4953 + }, + { + "start": 7099.98, + "end": 7101.94, + "probability": 0.9626 + }, + { + "start": 7103.76, + "end": 7105.26, + "probability": 0.8475 + }, + { + "start": 7106.18, + "end": 7111.0, + "probability": 0.2742 + }, + { + "start": 7111.12, + "end": 7112.98, + "probability": 0.3686 + }, + { + "start": 7113.44, + "end": 7117.36, + "probability": 0.8655 + }, + { + "start": 7119.18, + "end": 7124.18, + "probability": 0.9964 + }, + { + "start": 7125.02, + "end": 7129.46, + "probability": 0.9929 + }, + { + "start": 7130.12, + "end": 7130.2, + "probability": 0.9062 + }, + { + "start": 7130.8, + "end": 7132.96, + "probability": 0.5748 + }, + { + "start": 7134.0, + "end": 7135.4, + "probability": 0.9877 + }, + { + "start": 7135.74, + "end": 7137.08, + "probability": 0.8898 + }, + { + "start": 7138.3, + "end": 7141.56, + "probability": 0.1104 + }, + { + "start": 7142.04, + "end": 7142.64, + "probability": 0.8274 + }, + { + "start": 7142.84, + "end": 7145.08, + "probability": 0.7031 + }, + { + "start": 7145.48, + "end": 7149.28, + "probability": 0.2969 + }, + { + "start": 7149.78, + "end": 7150.24, + "probability": 0.6425 + }, + { + "start": 7150.42, + "end": 7150.84, + "probability": 0.5212 + }, + { + "start": 7150.98, + "end": 7152.02, + "probability": 0.7667 + }, + { + "start": 7152.1, + "end": 7153.96, + "probability": 0.827 + }, + { + "start": 7155.5, + "end": 7157.08, + "probability": 0.8934 + }, + { + "start": 7157.26, + "end": 7161.56, + "probability": 0.9059 + }, + { + "start": 7161.94, + "end": 7162.92, + "probability": 0.2106 + }, + { + "start": 7163.54, + "end": 7165.52, + "probability": 0.0966 + }, + { + "start": 7165.82, + "end": 7168.66, + "probability": 0.2717 + }, + { + "start": 7170.9, + "end": 7174.22, + "probability": 0.034 + }, + { + "start": 7175.34, + "end": 7175.7, + "probability": 0.0397 + }, + { + "start": 7175.7, + "end": 7175.7, + "probability": 0.3003 + }, + { + "start": 7175.7, + "end": 7176.06, + "probability": 0.4315 + }, + { + "start": 7176.06, + "end": 7176.06, + "probability": 0.5439 + }, + { + "start": 7176.06, + "end": 7176.06, + "probability": 0.546 + }, + { + "start": 7176.06, + "end": 7177.78, + "probability": 0.6063 + }, + { + "start": 7179.22, + "end": 7181.1, + "probability": 0.8011 + }, + { + "start": 7183.28, + "end": 7191.64, + "probability": 0.645 + }, + { + "start": 7191.66, + "end": 7192.88, + "probability": 0.7604 + }, + { + "start": 7193.14, + "end": 7194.34, + "probability": 0.4331 + }, + { + "start": 7195.62, + "end": 7199.48, + "probability": 0.985 + }, + { + "start": 7199.76, + "end": 7200.76, + "probability": 0.6772 + }, + { + "start": 7200.78, + "end": 7201.3, + "probability": 0.5918 + }, + { + "start": 7201.36, + "end": 7202.48, + "probability": 0.524 + }, + { + "start": 7206.24, + "end": 7213.48, + "probability": 0.0125 + }, + { + "start": 7215.52, + "end": 7218.6, + "probability": 0.0871 + }, + { + "start": 7219.72, + "end": 7220.22, + "probability": 0.192 + }, + { + "start": 7220.22, + "end": 7222.26, + "probability": 0.6553 + }, + { + "start": 7222.46, + "end": 7225.0, + "probability": 0.9245 + }, + { + "start": 7225.36, + "end": 7228.35, + "probability": 0.8928 + }, + { + "start": 7228.82, + "end": 7230.78, + "probability": 0.8621 + }, + { + "start": 7230.78, + "end": 7232.24, + "probability": 0.7465 + }, + { + "start": 7232.38, + "end": 7232.98, + "probability": 0.2884 + }, + { + "start": 7233.46, + "end": 7236.42, + "probability": 0.8013 + }, + { + "start": 7237.06, + "end": 7237.8, + "probability": 0.6403 + }, + { + "start": 7237.92, + "end": 7238.64, + "probability": 0.6021 + }, + { + "start": 7240.28, + "end": 7244.42, + "probability": 0.0455 + }, + { + "start": 7244.42, + "end": 7244.42, + "probability": 0.0936 + }, + { + "start": 7244.72, + "end": 7246.22, + "probability": 0.207 + }, + { + "start": 7261.02, + "end": 7262.64, + "probability": 0.2922 + }, + { + "start": 7264.78, + "end": 7269.72, + "probability": 0.5529 + }, + { + "start": 7270.14, + "end": 7271.71, + "probability": 0.7835 + }, + { + "start": 7272.36, + "end": 7278.34, + "probability": 0.9624 + }, + { + "start": 7279.18, + "end": 7280.02, + "probability": 0.6785 + }, + { + "start": 7280.84, + "end": 7281.86, + "probability": 0.8632 + }, + { + "start": 7292.42, + "end": 7293.54, + "probability": 0.7518 + }, + { + "start": 7294.14, + "end": 7294.86, + "probability": 0.7471 + }, + { + "start": 7295.92, + "end": 7298.44, + "probability": 0.9925 + }, + { + "start": 7299.16, + "end": 7303.76, + "probability": 0.9897 + }, + { + "start": 7303.76, + "end": 7305.38, + "probability": 0.834 + }, + { + "start": 7305.46, + "end": 7306.5, + "probability": 0.87 + }, + { + "start": 7307.18, + "end": 7308.2, + "probability": 0.8687 + }, + { + "start": 7308.5, + "end": 7310.94, + "probability": 0.9802 + }, + { + "start": 7311.38, + "end": 7313.0, + "probability": 0.9571 + }, + { + "start": 7313.44, + "end": 7316.66, + "probability": 0.9922 + }, + { + "start": 7316.66, + "end": 7319.16, + "probability": 0.9157 + }, + { + "start": 7319.64, + "end": 7323.7, + "probability": 0.9517 + }, + { + "start": 7324.08, + "end": 7328.06, + "probability": 0.8433 + }, + { + "start": 7328.6, + "end": 7331.56, + "probability": 0.8605 + }, + { + "start": 7332.34, + "end": 7333.86, + "probability": 0.7294 + }, + { + "start": 7334.22, + "end": 7337.02, + "probability": 0.9927 + }, + { + "start": 7337.74, + "end": 7340.56, + "probability": 0.8273 + }, + { + "start": 7341.18, + "end": 7342.36, + "probability": 0.8804 + }, + { + "start": 7342.72, + "end": 7345.76, + "probability": 0.9944 + }, + { + "start": 7345.84, + "end": 7346.9, + "probability": 0.9873 + }, + { + "start": 7346.9, + "end": 7350.86, + "probability": 0.9904 + }, + { + "start": 7351.42, + "end": 7354.32, + "probability": 0.9987 + }, + { + "start": 7354.32, + "end": 7356.92, + "probability": 0.9978 + }, + { + "start": 7357.76, + "end": 7360.06, + "probability": 0.8267 + }, + { + "start": 7360.18, + "end": 7361.94, + "probability": 0.9985 + }, + { + "start": 7362.62, + "end": 7366.04, + "probability": 0.9839 + }, + { + "start": 7366.04, + "end": 7369.62, + "probability": 0.9478 + }, + { + "start": 7370.12, + "end": 7373.8, + "probability": 0.9829 + }, + { + "start": 7374.0, + "end": 7376.8, + "probability": 0.9363 + }, + { + "start": 7377.3, + "end": 7378.34, + "probability": 0.9507 + }, + { + "start": 7378.94, + "end": 7380.9, + "probability": 0.8163 + }, + { + "start": 7381.22, + "end": 7382.97, + "probability": 0.8456 + }, + { + "start": 7383.62, + "end": 7383.98, + "probability": 0.8241 + }, + { + "start": 7384.66, + "end": 7390.2, + "probability": 0.9907 + }, + { + "start": 7390.36, + "end": 7391.12, + "probability": 0.5349 + }, + { + "start": 7391.12, + "end": 7392.38, + "probability": 0.989 + }, + { + "start": 7392.8, + "end": 7394.14, + "probability": 0.9895 + }, + { + "start": 7394.32, + "end": 7394.32, + "probability": 0.0045 + }, + { + "start": 7394.32, + "end": 7395.72, + "probability": 0.9839 + }, + { + "start": 7395.72, + "end": 7396.5, + "probability": 0.6507 + }, + { + "start": 7396.56, + "end": 7396.79, + "probability": 0.5082 + }, + { + "start": 7397.14, + "end": 7398.78, + "probability": 0.8259 + }, + { + "start": 7399.22, + "end": 7399.94, + "probability": 0.5982 + }, + { + "start": 7400.34, + "end": 7401.46, + "probability": 0.9633 + }, + { + "start": 7401.76, + "end": 7403.88, + "probability": 0.9831 + }, + { + "start": 7404.32, + "end": 7405.6, + "probability": 0.9954 + }, + { + "start": 7406.1, + "end": 7407.8, + "probability": 0.9622 + }, + { + "start": 7408.04, + "end": 7410.14, + "probability": 0.9954 + }, + { + "start": 7410.3, + "end": 7412.06, + "probability": 0.9956 + }, + { + "start": 7412.44, + "end": 7413.5, + "probability": 0.9878 + }, + { + "start": 7413.6, + "end": 7414.56, + "probability": 0.9091 + }, + { + "start": 7414.96, + "end": 7415.74, + "probability": 0.889 + }, + { + "start": 7415.8, + "end": 7417.12, + "probability": 0.8501 + }, + { + "start": 7417.54, + "end": 7420.78, + "probability": 0.9946 + }, + { + "start": 7421.2, + "end": 7422.2, + "probability": 0.6464 + }, + { + "start": 7422.86, + "end": 7424.76, + "probability": 0.9976 + }, + { + "start": 7425.06, + "end": 7426.21, + "probability": 0.9829 + }, + { + "start": 7426.98, + "end": 7427.94, + "probability": 0.0036 + }, + { + "start": 7428.0, + "end": 7429.58, + "probability": 0.2871 + }, + { + "start": 7429.58, + "end": 7429.58, + "probability": 0.244 + }, + { + "start": 7429.58, + "end": 7429.58, + "probability": 0.1105 + }, + { + "start": 7429.58, + "end": 7433.36, + "probability": 0.4363 + }, + { + "start": 7435.12, + "end": 7435.88, + "probability": 0.0286 + }, + { + "start": 7435.88, + "end": 7438.22, + "probability": 0.2605 + }, + { + "start": 7438.68, + "end": 7441.98, + "probability": 0.9948 + }, + { + "start": 7442.6, + "end": 7443.9, + "probability": 0.8903 + }, + { + "start": 7444.42, + "end": 7445.36, + "probability": 0.9727 + }, + { + "start": 7445.92, + "end": 7448.26, + "probability": 0.9923 + }, + { + "start": 7448.5, + "end": 7450.68, + "probability": 0.9988 + }, + { + "start": 7451.24, + "end": 7454.2, + "probability": 0.9286 + }, + { + "start": 7454.9, + "end": 7459.52, + "probability": 0.9909 + }, + { + "start": 7460.4, + "end": 7463.08, + "probability": 0.9977 + }, + { + "start": 7463.54, + "end": 7464.64, + "probability": 0.91 + }, + { + "start": 7465.3, + "end": 7465.7, + "probability": 0.499 + }, + { + "start": 7465.8, + "end": 7468.2, + "probability": 0.9688 + }, + { + "start": 7468.3, + "end": 7469.42, + "probability": 0.8506 + }, + { + "start": 7469.9, + "end": 7472.7, + "probability": 0.9966 + }, + { + "start": 7473.16, + "end": 7474.82, + "probability": 0.9506 + }, + { + "start": 7475.14, + "end": 7476.52, + "probability": 0.9854 + }, + { + "start": 7476.74, + "end": 7478.06, + "probability": 0.9625 + }, + { + "start": 7478.38, + "end": 7479.86, + "probability": 0.9875 + }, + { + "start": 7480.8, + "end": 7483.44, + "probability": 0.9375 + }, + { + "start": 7483.44, + "end": 7485.41, + "probability": 0.9971 + }, + { + "start": 7485.84, + "end": 7487.64, + "probability": 0.9886 + }, + { + "start": 7488.86, + "end": 7490.4, + "probability": 0.8218 + }, + { + "start": 7490.4, + "end": 7491.1, + "probability": 0.2386 + }, + { + "start": 7491.76, + "end": 7496.14, + "probability": 0.9976 + }, + { + "start": 7496.24, + "end": 7501.02, + "probability": 0.9957 + }, + { + "start": 7501.14, + "end": 7501.6, + "probability": 0.7845 + }, + { + "start": 7501.82, + "end": 7503.5, + "probability": 0.7814 + }, + { + "start": 7504.3, + "end": 7506.02, + "probability": 0.8766 + }, + { + "start": 7506.22, + "end": 7507.44, + "probability": 0.9898 + }, + { + "start": 7508.5, + "end": 7511.32, + "probability": 0.9766 + }, + { + "start": 7514.0, + "end": 7517.12, + "probability": 0.9941 + }, + { + "start": 7517.12, + "end": 7520.44, + "probability": 0.9962 + }, + { + "start": 7521.06, + "end": 7524.58, + "probability": 0.7007 + }, + { + "start": 7525.26, + "end": 7527.38, + "probability": 0.7834 + }, + { + "start": 7527.88, + "end": 7531.58, + "probability": 0.8847 + }, + { + "start": 7532.34, + "end": 7533.52, + "probability": 0.6296 + }, + { + "start": 7533.66, + "end": 7535.52, + "probability": 0.9932 + }, + { + "start": 7536.58, + "end": 7538.7, + "probability": 0.8647 + }, + { + "start": 7538.88, + "end": 7540.84, + "probability": 0.9973 + }, + { + "start": 7541.38, + "end": 7544.92, + "probability": 0.9984 + }, + { + "start": 7544.92, + "end": 7549.04, + "probability": 0.9904 + }, + { + "start": 7549.94, + "end": 7554.26, + "probability": 0.8881 + }, + { + "start": 7554.76, + "end": 7557.48, + "probability": 0.8353 + }, + { + "start": 7557.48, + "end": 7560.96, + "probability": 0.9951 + }, + { + "start": 7561.62, + "end": 7562.76, + "probability": 0.8796 + }, + { + "start": 7562.82, + "end": 7566.52, + "probability": 0.9904 + }, + { + "start": 7566.58, + "end": 7568.36, + "probability": 0.0076 + }, + { + "start": 7568.74, + "end": 7569.56, + "probability": 0.6745 + }, + { + "start": 7569.9, + "end": 7571.2, + "probability": 0.7921 + }, + { + "start": 7571.32, + "end": 7572.28, + "probability": 0.8129 + }, + { + "start": 7572.3, + "end": 7572.88, + "probability": 0.8946 + }, + { + "start": 7573.22, + "end": 7573.66, + "probability": 0.8593 + }, + { + "start": 7577.3, + "end": 7578.8, + "probability": 0.2502 + }, + { + "start": 7579.92, + "end": 7581.78, + "probability": 0.662 + }, + { + "start": 7585.74, + "end": 7586.66, + "probability": 0.6868 + }, + { + "start": 7606.0, + "end": 7606.82, + "probability": 0.0378 + }, + { + "start": 7606.82, + "end": 7606.82, + "probability": 0.0446 + }, + { + "start": 7606.82, + "end": 7606.82, + "probability": 0.0514 + }, + { + "start": 7606.82, + "end": 7606.82, + "probability": 0.0428 + }, + { + "start": 7606.82, + "end": 7608.48, + "probability": 0.495 + }, + { + "start": 7608.78, + "end": 7609.8, + "probability": 0.7348 + }, + { + "start": 7611.99, + "end": 7615.02, + "probability": 0.9475 + }, + { + "start": 7615.67, + "end": 7617.38, + "probability": 0.5947 + }, + { + "start": 7619.22, + "end": 7621.12, + "probability": 0.958 + }, + { + "start": 7622.78, + "end": 7623.38, + "probability": 0.6396 + }, + { + "start": 7624.04, + "end": 7629.08, + "probability": 0.9479 + }, + { + "start": 7630.12, + "end": 7632.4, + "probability": 0.996 + }, + { + "start": 7632.4, + "end": 7634.22, + "probability": 0.9751 + }, + { + "start": 7635.42, + "end": 7636.42, + "probability": 0.9883 + }, + { + "start": 7637.06, + "end": 7639.1, + "probability": 0.9951 + }, + { + "start": 7639.66, + "end": 7640.58, + "probability": 0.9983 + }, + { + "start": 7641.18, + "end": 7642.64, + "probability": 0.9529 + }, + { + "start": 7643.16, + "end": 7644.12, + "probability": 0.9639 + }, + { + "start": 7644.68, + "end": 7646.12, + "probability": 0.9824 + }, + { + "start": 7646.28, + "end": 7648.64, + "probability": 0.9843 + }, + { + "start": 7650.24, + "end": 7650.8, + "probability": 0.5374 + }, + { + "start": 7650.9, + "end": 7651.96, + "probability": 0.8343 + }, + { + "start": 7652.02, + "end": 7656.36, + "probability": 0.9756 + }, + { + "start": 7656.36, + "end": 7657.26, + "probability": 0.8141 + }, + { + "start": 7657.96, + "end": 7660.88, + "probability": 0.566 + }, + { + "start": 7660.88, + "end": 7660.92, + "probability": 0.065 + }, + { + "start": 7660.96, + "end": 7662.12, + "probability": 0.3571 + }, + { + "start": 7662.82, + "end": 7664.38, + "probability": 0.8982 + }, + { + "start": 7664.92, + "end": 7669.34, + "probability": 0.7003 + }, + { + "start": 7669.34, + "end": 7672.04, + "probability": 0.8298 + }, + { + "start": 7675.6, + "end": 7677.34, + "probability": 0.81 + }, + { + "start": 7678.08, + "end": 7679.01, + "probability": 0.5745 + }, + { + "start": 7680.78, + "end": 7685.4, + "probability": 0.79 + }, + { + "start": 7685.74, + "end": 7687.62, + "probability": 0.8887 + }, + { + "start": 7687.7, + "end": 7691.12, + "probability": 0.965 + }, + { + "start": 7691.4, + "end": 7692.18, + "probability": 0.6878 + }, + { + "start": 7693.4, + "end": 7694.52, + "probability": 0.7774 + }, + { + "start": 7694.86, + "end": 7698.38, + "probability": 0.9961 + }, + { + "start": 7698.6, + "end": 7700.96, + "probability": 0.9075 + }, + { + "start": 7701.54, + "end": 7704.88, + "probability": 0.6621 + }, + { + "start": 7706.14, + "end": 7707.66, + "probability": 0.1794 + }, + { + "start": 7707.8, + "end": 7710.06, + "probability": 0.9412 + }, + { + "start": 7710.06, + "end": 7713.24, + "probability": 0.7596 + }, + { + "start": 7713.36, + "end": 7714.4, + "probability": 0.554 + }, + { + "start": 7715.06, + "end": 7718.64, + "probability": 0.808 + }, + { + "start": 7719.08, + "end": 7723.66, + "probability": 0.9966 + }, + { + "start": 7723.88, + "end": 7727.92, + "probability": 0.9768 + }, + { + "start": 7728.36, + "end": 7729.62, + "probability": 0.9764 + }, + { + "start": 7730.66, + "end": 7732.48, + "probability": 0.7317 + }, + { + "start": 7735.04, + "end": 7736.08, + "probability": 0.8613 + }, + { + "start": 7737.0, + "end": 7737.5, + "probability": 0.9247 + }, + { + "start": 7738.72, + "end": 7739.6, + "probability": 0.8875 + }, + { + "start": 7746.62, + "end": 7746.62, + "probability": 0.0506 + }, + { + "start": 7746.62, + "end": 7746.62, + "probability": 0.3034 + }, + { + "start": 7746.62, + "end": 7746.62, + "probability": 0.0299 + }, + { + "start": 7755.56, + "end": 7756.26, + "probability": 0.0514 + }, + { + "start": 7756.26, + "end": 7756.26, + "probability": 0.0453 + }, + { + "start": 7756.26, + "end": 7756.26, + "probability": 0.0527 + }, + { + "start": 7756.26, + "end": 7758.48, + "probability": 0.1797 + }, + { + "start": 7760.56, + "end": 7761.68, + "probability": 0.5781 + }, + { + "start": 7762.58, + "end": 7765.48, + "probability": 0.607 + }, + { + "start": 7765.76, + "end": 7767.4, + "probability": 0.0465 + }, + { + "start": 7767.74, + "end": 7771.98, + "probability": 0.9615 + }, + { + "start": 7771.98, + "end": 7777.04, + "probability": 0.9213 + }, + { + "start": 7777.18, + "end": 7777.96, + "probability": 0.8006 + }, + { + "start": 7778.52, + "end": 7781.24, + "probability": 0.9456 + }, + { + "start": 7781.26, + "end": 7783.46, + "probability": 0.9617 + }, + { + "start": 7784.1, + "end": 7786.1, + "probability": 0.9804 + }, + { + "start": 7786.78, + "end": 7787.18, + "probability": 0.7271 + }, + { + "start": 7787.94, + "end": 7789.02, + "probability": 0.5646 + }, + { + "start": 7793.28, + "end": 7798.38, + "probability": 0.8436 + }, + { + "start": 7800.78, + "end": 7803.64, + "probability": 0.2513 + }, + { + "start": 7809.04, + "end": 7809.44, + "probability": 0.0279 + }, + { + "start": 7815.14, + "end": 7816.2, + "probability": 0.2754 + }, + { + "start": 7816.72, + "end": 7824.6, + "probability": 0.2055 + }, + { + "start": 7845.46, + "end": 7849.0, + "probability": 0.0897 + }, + { + "start": 7849.0, + "end": 7849.0, + "probability": 0.0 + }, + { + "start": 7849.0, + "end": 7849.0, + "probability": 0.0 + }, + { + "start": 7849.0, + "end": 7849.0, + "probability": 0.0 + }, + { + "start": 7849.0, + "end": 7849.0, + "probability": 0.0 + }, + { + "start": 7849.0, + "end": 7849.0, + "probability": 0.0 + }, + { + "start": 7852.12, + "end": 7853.44, + "probability": 0.1755 + }, + { + "start": 7855.4, + "end": 7860.36, + "probability": 0.0271 + }, + { + "start": 7862.42, + "end": 7862.62, + "probability": 0.1414 + }, + { + "start": 7865.18, + "end": 7866.67, + "probability": 0.0573 + }, + { + "start": 7867.52, + "end": 7872.46, + "probability": 0.1137 + }, + { + "start": 7872.46, + "end": 7874.02, + "probability": 0.2111 + }, + { + "start": 7874.02, + "end": 7874.28, + "probability": 0.0762 + }, + { + "start": 7875.7, + "end": 7875.76, + "probability": 0.3162 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7978.0, + "end": 7978.0, + "probability": 0.0 + }, + { + "start": 7991.55, + "end": 7993.13, + "probability": 0.0329 + }, + { + "start": 7994.96, + "end": 7996.78, + "probability": 0.1049 + }, + { + "start": 7997.54, + "end": 7999.46, + "probability": 0.0477 + }, + { + "start": 8000.85, + "end": 8003.46, + "probability": 0.1969 + }, + { + "start": 8007.76, + "end": 8007.98, + "probability": 0.056 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8101.0, + "end": 8101.0, + "probability": 0.0 + }, + { + "start": 8117.74, + "end": 8120.42, + "probability": 0.037 + }, + { + "start": 8121.86, + "end": 8125.0, + "probability": 0.0597 + }, + { + "start": 8125.32, + "end": 8125.46, + "probability": 0.0582 + }, + { + "start": 8125.46, + "end": 8125.46, + "probability": 0.2094 + }, + { + "start": 8125.46, + "end": 8125.57, + "probability": 0.0263 + }, + { + "start": 8125.82, + "end": 8125.92, + "probability": 0.0827 + }, + { + "start": 8125.92, + "end": 8130.98, + "probability": 0.0854 + }, + { + "start": 8385.0, + "end": 8385.0, + "probability": 0.0 + }, + { + "start": 8385.0, + "end": 8385.0, + "probability": 0.0 + }, + { + "start": 8385.0, + "end": 8385.0, + "probability": 0.0 + }, + { + "start": 8385.0, + "end": 8385.0, + "probability": 0.0 + }, + { + "start": 8385.0, + "end": 8385.0, + "probability": 0.0 + }, + { + "start": 8385.0, + "end": 8385.0, + "probability": 0.0 + }, + { + "start": 8385.0, + "end": 8385.0, + "probability": 0.0 + }, + { + "start": 8385.0, + "end": 8385.0, + "probability": 0.0 + }, + { + "start": 8385.0, + "end": 8385.0, + "probability": 0.0 + }, + { + "start": 8385.0, + "end": 8385.0, + "probability": 0.0 + }, + { + "start": 8385.0, + "end": 8385.0, + "probability": 0.0 + }, + { + "start": 8385.0, + "end": 8385.0, + "probability": 0.0 + }, + { + "start": 8385.0, + "end": 8385.0, + "probability": 0.0 + }, + { + "start": 8385.16, + "end": 8385.74, + "probability": 0.0342 + }, + { + "start": 8386.08, + "end": 8387.82, + "probability": 0.6836 + }, + { + "start": 8388.22, + "end": 8391.56, + "probability": 0.8982 + }, + { + "start": 8393.02, + "end": 8393.98, + "probability": 0.9163 + }, + { + "start": 8394.36, + "end": 8396.66, + "probability": 0.9869 + }, + { + "start": 8397.02, + "end": 8400.82, + "probability": 0.8835 + }, + { + "start": 8401.24, + "end": 8402.76, + "probability": 0.9663 + }, + { + "start": 8403.16, + "end": 8406.22, + "probability": 0.7817 + }, + { + "start": 8407.4, + "end": 8411.45, + "probability": 0.9912 + }, + { + "start": 8411.96, + "end": 8413.4, + "probability": 0.9548 + }, + { + "start": 8413.82, + "end": 8415.02, + "probability": 0.7765 + }, + { + "start": 8415.66, + "end": 8418.82, + "probability": 0.8983 + }, + { + "start": 8419.52, + "end": 8422.74, + "probability": 0.9494 + }, + { + "start": 8423.16, + "end": 8428.2, + "probability": 0.9924 + }, + { + "start": 8428.48, + "end": 8430.02, + "probability": 0.9755 + }, + { + "start": 8430.38, + "end": 8431.58, + "probability": 0.8273 + }, + { + "start": 8432.3, + "end": 8433.36, + "probability": 0.7049 + }, + { + "start": 8434.26, + "end": 8440.42, + "probability": 0.9414 + }, + { + "start": 8440.58, + "end": 8441.6, + "probability": 0.9492 + }, + { + "start": 8442.73, + "end": 8443.18, + "probability": 0.9478 + }, + { + "start": 8443.68, + "end": 8444.48, + "probability": 0.6062 + }, + { + "start": 8444.5, + "end": 8446.86, + "probability": 0.547 + }, + { + "start": 8447.22, + "end": 8447.22, + "probability": 0.0996 + }, + { + "start": 8447.22, + "end": 8449.4, + "probability": 0.5743 + }, + { + "start": 8449.4, + "end": 8451.24, + "probability": 0.7782 + }, + { + "start": 8452.88, + "end": 8454.4, + "probability": 0.8697 + }, + { + "start": 8454.4, + "end": 8454.82, + "probability": 0.0457 + }, + { + "start": 8455.12, + "end": 8455.12, + "probability": 0.0435 + }, + { + "start": 8455.12, + "end": 8455.12, + "probability": 0.0429 + }, + { + "start": 8455.14, + "end": 8456.87, + "probability": 0.6628 + }, + { + "start": 8457.6, + "end": 8460.38, + "probability": 0.7417 + }, + { + "start": 8460.44, + "end": 8460.6, + "probability": 0.6193 + }, + { + "start": 8460.68, + "end": 8461.34, + "probability": 0.0741 + }, + { + "start": 8461.34, + "end": 8466.18, + "probability": 0.3146 + }, + { + "start": 8466.28, + "end": 8466.36, + "probability": 0.1721 + }, + { + "start": 8466.36, + "end": 8466.98, + "probability": 0.7594 + }, + { + "start": 8467.02, + "end": 8467.78, + "probability": 0.6465 + }, + { + "start": 8469.22, + "end": 8469.58, + "probability": 0.148 + }, + { + "start": 8469.58, + "end": 8469.76, + "probability": 0.1534 + }, + { + "start": 8470.02, + "end": 8470.02, + "probability": 0.0822 + }, + { + "start": 8470.02, + "end": 8470.02, + "probability": 0.0752 + }, + { + "start": 8470.02, + "end": 8470.58, + "probability": 0.4067 + }, + { + "start": 8470.72, + "end": 8472.0, + "probability": 0.5504 + }, + { + "start": 8472.54, + "end": 8472.9, + "probability": 0.648 + }, + { + "start": 8473.46, + "end": 8477.32, + "probability": 0.8645 + }, + { + "start": 8477.9, + "end": 8478.81, + "probability": 0.9624 + }, + { + "start": 8481.54, + "end": 8481.76, + "probability": 0.0525 + }, + { + "start": 8481.76, + "end": 8482.46, + "probability": 0.4598 + }, + { + "start": 8484.5, + "end": 8484.54, + "probability": 0.048 + }, + { + "start": 8484.54, + "end": 8484.54, + "probability": 0.0377 + }, + { + "start": 8484.54, + "end": 8484.54, + "probability": 0.5539 + }, + { + "start": 8484.54, + "end": 8485.94, + "probability": 0.5579 + }, + { + "start": 8486.24, + "end": 8487.0, + "probability": 0.1927 + }, + { + "start": 8487.1, + "end": 8488.82, + "probability": 0.8771 + }, + { + "start": 8489.12, + "end": 8490.04, + "probability": 0.733 + }, + { + "start": 8490.18, + "end": 8491.02, + "probability": 0.3658 + }, + { + "start": 8491.38, + "end": 8495.32, + "probability": 0.9273 + }, + { + "start": 8495.32, + "end": 8496.06, + "probability": 0.4134 + }, + { + "start": 8496.66, + "end": 8497.74, + "probability": 0.5909 + }, + { + "start": 8498.48, + "end": 8498.86, + "probability": 0.8464 + }, + { + "start": 8499.24, + "end": 8500.74, + "probability": 0.8955 + }, + { + "start": 8501.16, + "end": 8502.4, + "probability": 0.0906 + }, + { + "start": 8503.12, + "end": 8505.48, + "probability": 0.6836 + }, + { + "start": 8505.76, + "end": 8506.86, + "probability": 0.8288 + }, + { + "start": 8507.22, + "end": 8508.84, + "probability": 0.7943 + }, + { + "start": 8510.52, + "end": 8512.28, + "probability": 0.6744 + }, + { + "start": 8512.32, + "end": 8515.02, + "probability": 0.943 + }, + { + "start": 8515.58, + "end": 8516.5, + "probability": 0.9513 + }, + { + "start": 8516.86, + "end": 8518.02, + "probability": 0.9634 + }, + { + "start": 8518.38, + "end": 8518.4, + "probability": 0.402 + }, + { + "start": 8518.4, + "end": 8520.28, + "probability": 0.8708 + }, + { + "start": 8521.44, + "end": 8522.26, + "probability": 0.7021 + }, + { + "start": 8522.98, + "end": 8524.36, + "probability": 0.9309 + }, + { + "start": 8525.18, + "end": 8525.54, + "probability": 0.823 + }, + { + "start": 8530.66, + "end": 8531.76, + "probability": 0.5316 + }, + { + "start": 8532.08, + "end": 8532.08, + "probability": 0.075 + }, + { + "start": 8532.08, + "end": 8532.36, + "probability": 0.0873 + }, + { + "start": 8532.36, + "end": 8532.74, + "probability": 0.579 + }, + { + "start": 8533.62, + "end": 8536.0, + "probability": 0.5284 + }, + { + "start": 8536.8, + "end": 8538.54, + "probability": 0.099 + }, + { + "start": 8540.56, + "end": 8541.37, + "probability": 0.1683 + }, + { + "start": 8547.84, + "end": 8550.02, + "probability": 0.1737 + }, + { + "start": 8550.86, + "end": 8551.78, + "probability": 0.0275 + }, + { + "start": 8555.58, + "end": 8556.14, + "probability": 0.1597 + }, + { + "start": 8556.14, + "end": 8557.52, + "probability": 0.0729 + }, + { + "start": 8558.2, + "end": 8558.62, + "probability": 0.3393 + }, + { + "start": 8558.62, + "end": 8558.92, + "probability": 0.1829 + }, + { + "start": 8559.02, + "end": 8559.5, + "probability": 0.5656 + }, + { + "start": 8560.8, + "end": 8561.6, + "probability": 0.2455 + }, + { + "start": 8565.92, + "end": 8566.96, + "probability": 0.1184 + }, + { + "start": 8567.98, + "end": 8569.0, + "probability": 0.0079 + }, + { + "start": 8569.12, + "end": 8570.6, + "probability": 0.0057 + }, + { + "start": 8570.83, + "end": 8571.18, + "probability": 0.0671 + }, + { + "start": 8571.48, + "end": 8572.38, + "probability": 0.0842 + }, + { + "start": 8572.88, + "end": 8573.18, + "probability": 0.0227 + }, + { + "start": 8573.44, + "end": 8573.54, + "probability": 0.1098 + }, + { + "start": 8573.68, + "end": 8573.68, + "probability": 0.0704 + }, + { + "start": 8573.9, + "end": 8575.46, + "probability": 0.1295 + }, + { + "start": 8575.62, + "end": 8578.38, + "probability": 0.0341 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.0, + "end": 8627.0, + "probability": 0.0 + }, + { + "start": 8627.14, + "end": 8628.94, + "probability": 0.0468 + }, + { + "start": 8628.94, + "end": 8630.65, + "probability": 0.9806 + }, + { + "start": 8630.98, + "end": 8631.08, + "probability": 0.0669 + }, + { + "start": 8631.1, + "end": 8632.86, + "probability": 0.6914 + }, + { + "start": 8633.8, + "end": 8634.36, + "probability": 0.5633 + }, + { + "start": 8634.36, + "end": 8634.95, + "probability": 0.096 + }, + { + "start": 8636.38, + "end": 8636.38, + "probability": 0.1759 + }, + { + "start": 8636.38, + "end": 8636.38, + "probability": 0.0856 + }, + { + "start": 8636.38, + "end": 8636.38, + "probability": 0.1424 + }, + { + "start": 8636.38, + "end": 8636.52, + "probability": 0.7295 + }, + { + "start": 8638.84, + "end": 8639.41, + "probability": 0.6155 + }, + { + "start": 8640.04, + "end": 8641.78, + "probability": 0.8074 + }, + { + "start": 8642.84, + "end": 8643.4, + "probability": 0.4543 + }, + { + "start": 8643.4, + "end": 8643.56, + "probability": 0.3543 + }, + { + "start": 8643.9, + "end": 8644.9, + "probability": 0.8787 + }, + { + "start": 8645.28, + "end": 8647.6, + "probability": 0.9302 + }, + { + "start": 8647.98, + "end": 8649.8, + "probability": 0.9828 + }, + { + "start": 8650.14, + "end": 8654.04, + "probability": 0.9403 + }, + { + "start": 8654.38, + "end": 8656.81, + "probability": 0.9569 + }, + { + "start": 8657.14, + "end": 8659.54, + "probability": 0.9932 + }, + { + "start": 8659.92, + "end": 8665.82, + "probability": 0.9955 + }, + { + "start": 8666.82, + "end": 8669.58, + "probability": 0.9806 + }, + { + "start": 8670.04, + "end": 8672.24, + "probability": 0.6575 + }, + { + "start": 8672.64, + "end": 8678.3, + "probability": 0.9701 + }, + { + "start": 8678.62, + "end": 8681.24, + "probability": 0.9604 + }, + { + "start": 8681.66, + "end": 8685.68, + "probability": 0.9893 + }, + { + "start": 8686.2, + "end": 8686.8, + "probability": 0.7264 + }, + { + "start": 8687.28, + "end": 8688.86, + "probability": 0.8944 + }, + { + "start": 8689.74, + "end": 8690.78, + "probability": 0.3086 + }, + { + "start": 8691.2, + "end": 8691.48, + "probability": 0.1165 + }, + { + "start": 8691.48, + "end": 8694.16, + "probability": 0.9039 + }, + { + "start": 8694.54, + "end": 8695.4, + "probability": 0.6952 + }, + { + "start": 8695.84, + "end": 8697.99, + "probability": 0.7265 + }, + { + "start": 8699.22, + "end": 8700.6, + "probability": 0.8106 + }, + { + "start": 8700.92, + "end": 8703.36, + "probability": 0.9624 + }, + { + "start": 8703.78, + "end": 8704.82, + "probability": 0.9597 + }, + { + "start": 8705.24, + "end": 8706.36, + "probability": 0.9371 + }, + { + "start": 8706.7, + "end": 8708.5, + "probability": 0.8344 + }, + { + "start": 8708.74, + "end": 8708.82, + "probability": 0.3415 + }, + { + "start": 8708.82, + "end": 8710.14, + "probability": 0.7338 + }, + { + "start": 8711.52, + "end": 8712.42, + "probability": 0.7465 + }, + { + "start": 8713.06, + "end": 8713.84, + "probability": 0.6468 + }, + { + "start": 8715.32, + "end": 8716.12, + "probability": 0.0053 + }, + { + "start": 8717.98, + "end": 8719.28, + "probability": 0.076 + }, + { + "start": 8719.28, + "end": 8719.54, + "probability": 0.2129 + }, + { + "start": 8720.08, + "end": 8721.2, + "probability": 0.4663 + }, + { + "start": 8721.32, + "end": 8722.27, + "probability": 0.3979 + }, + { + "start": 8723.38, + "end": 8725.9, + "probability": 0.8311 + }, + { + "start": 8727.78, + "end": 8732.14, + "probability": 0.5856 + }, + { + "start": 8733.38, + "end": 8734.22, + "probability": 0.9159 + }, + { + "start": 8734.82, + "end": 8736.1, + "probability": 0.288 + }, + { + "start": 8736.1, + "end": 8737.17, + "probability": 0.7597 + }, + { + "start": 8737.76, + "end": 8738.36, + "probability": 0.4908 + }, + { + "start": 8738.6, + "end": 8738.6, + "probability": 0.0095 + }, + { + "start": 8740.36, + "end": 8741.94, + "probability": 0.4473 + }, + { + "start": 8742.38, + "end": 8743.31, + "probability": 0.7097 + }, + { + "start": 8744.12, + "end": 8745.42, + "probability": 0.4277 + }, + { + "start": 8745.6, + "end": 8746.76, + "probability": 0.5452 + }, + { + "start": 8747.08, + "end": 8748.92, + "probability": 0.2819 + }, + { + "start": 8748.94, + "end": 8750.56, + "probability": 0.513 + }, + { + "start": 8750.78, + "end": 8752.53, + "probability": 0.8677 + }, + { + "start": 8752.92, + "end": 8753.4, + "probability": 0.7368 + }, + { + "start": 8753.46, + "end": 8755.02, + "probability": 0.7261 + }, + { + "start": 8755.16, + "end": 8755.82, + "probability": 0.3323 + }, + { + "start": 8756.28, + "end": 8757.44, + "probability": 0.8293 + }, + { + "start": 8757.64, + "end": 8758.08, + "probability": 0.5592 + }, + { + "start": 8758.82, + "end": 8759.02, + "probability": 0.3397 + }, + { + "start": 8760.24, + "end": 8761.98, + "probability": 0.7883 + }, + { + "start": 8762.14, + "end": 8763.74, + "probability": 0.8207 + }, + { + "start": 8763.84, + "end": 8765.94, + "probability": 0.6387 + }, + { + "start": 8766.93, + "end": 8768.82, + "probability": 0.5605 + }, + { + "start": 8768.9, + "end": 8770.08, + "probability": 0.7128 + }, + { + "start": 8770.16, + "end": 8771.02, + "probability": 0.5023 + }, + { + "start": 8771.62, + "end": 8773.6, + "probability": 0.8363 + }, + { + "start": 8773.86, + "end": 8776.32, + "probability": 0.8651 + }, + { + "start": 8778.08, + "end": 8782.28, + "probability": 0.8779 + }, + { + "start": 8782.34, + "end": 8783.04, + "probability": 0.7711 + }, + { + "start": 8783.28, + "end": 8784.32, + "probability": 0.9465 + }, + { + "start": 8784.98, + "end": 8787.56, + "probability": 0.8926 + }, + { + "start": 8787.82, + "end": 8788.02, + "probability": 0.6723 + }, + { + "start": 8788.02, + "end": 8789.36, + "probability": 0.7408 + }, + { + "start": 8792.28, + "end": 8795.24, + "probability": 0.9915 + }, + { + "start": 8795.58, + "end": 8797.36, + "probability": 0.8457 + }, + { + "start": 8797.58, + "end": 8799.24, + "probability": 0.9806 + }, + { + "start": 8799.62, + "end": 8800.88, + "probability": 0.9811 + }, + { + "start": 8801.04, + "end": 8804.51, + "probability": 0.9984 + }, + { + "start": 8805.12, + "end": 8806.16, + "probability": 0.9792 + }, + { + "start": 8806.28, + "end": 8807.12, + "probability": 0.8723 + }, + { + "start": 8807.28, + "end": 8808.1, + "probability": 0.8624 + }, + { + "start": 8808.42, + "end": 8809.36, + "probability": 0.938 + }, + { + "start": 8810.0, + "end": 8811.1, + "probability": 0.9442 + }, + { + "start": 8811.74, + "end": 8813.58, + "probability": 0.9474 + }, + { + "start": 8814.7, + "end": 8815.52, + "probability": 0.8408 + }, + { + "start": 8816.36, + "end": 8819.36, + "probability": 0.9609 + }, + { + "start": 8819.68, + "end": 8820.28, + "probability": 0.8021 + }, + { + "start": 8821.18, + "end": 8825.24, + "probability": 0.9902 + }, + { + "start": 8826.1, + "end": 8827.38, + "probability": 0.9489 + }, + { + "start": 8828.08, + "end": 8829.4, + "probability": 0.9335 + }, + { + "start": 8829.86, + "end": 8831.86, + "probability": 0.9985 + }, + { + "start": 8833.02, + "end": 8834.64, + "probability": 0.8258 + }, + { + "start": 8834.92, + "end": 8835.48, + "probability": 0.8842 + }, + { + "start": 8835.6, + "end": 8838.76, + "probability": 0.7497 + }, + { + "start": 8838.9, + "end": 8840.7, + "probability": 0.8906 + }, + { + "start": 8841.74, + "end": 8845.3, + "probability": 0.9686 + }, + { + "start": 8845.92, + "end": 8850.78, + "probability": 0.9968 + }, + { + "start": 8851.48, + "end": 8856.14, + "probability": 0.991 + }, + { + "start": 8856.86, + "end": 8857.94, + "probability": 0.9967 + }, + { + "start": 8858.76, + "end": 8859.88, + "probability": 0.7238 + }, + { + "start": 8860.28, + "end": 8862.04, + "probability": 0.9984 + }, + { + "start": 8862.52, + "end": 8863.42, + "probability": 0.9352 + }, + { + "start": 8863.62, + "end": 8864.2, + "probability": 0.4742 + }, + { + "start": 8864.68, + "end": 8871.06, + "probability": 0.9929 + }, + { + "start": 8871.6, + "end": 8873.1, + "probability": 0.9966 + }, + { + "start": 8873.4, + "end": 8878.2, + "probability": 0.9969 + }, + { + "start": 8878.72, + "end": 8884.8, + "probability": 0.9983 + }, + { + "start": 8886.08, + "end": 8888.88, + "probability": 0.9138 + }, + { + "start": 8889.62, + "end": 8893.28, + "probability": 0.9551 + }, + { + "start": 8893.74, + "end": 8899.16, + "probability": 0.9832 + }, + { + "start": 8899.58, + "end": 8904.16, + "probability": 0.9546 + }, + { + "start": 8904.16, + "end": 8909.3, + "probability": 0.9957 + }, + { + "start": 8910.26, + "end": 8915.74, + "probability": 0.998 + }, + { + "start": 8916.82, + "end": 8919.24, + "probability": 0.8997 + }, + { + "start": 8919.28, + "end": 8919.92, + "probability": 0.827 + }, + { + "start": 8920.28, + "end": 8923.88, + "probability": 0.9825 + }, + { + "start": 8924.48, + "end": 8926.32, + "probability": 0.9017 + }, + { + "start": 8926.74, + "end": 8930.72, + "probability": 0.9923 + }, + { + "start": 8930.8, + "end": 8931.48, + "probability": 0.96 + }, + { + "start": 8931.52, + "end": 8932.74, + "probability": 0.9955 + }, + { + "start": 8933.1, + "end": 8938.62, + "probability": 0.992 + }, + { + "start": 8939.0, + "end": 8940.72, + "probability": 0.8561 + }, + { + "start": 8941.28, + "end": 8945.16, + "probability": 0.9882 + }, + { + "start": 8946.24, + "end": 8950.06, + "probability": 0.9905 + }, + { + "start": 8950.06, + "end": 8953.84, + "probability": 0.9987 + }, + { + "start": 8954.38, + "end": 8955.2, + "probability": 0.8247 + }, + { + "start": 8955.62, + "end": 8961.4, + "probability": 0.9888 + }, + { + "start": 8962.8, + "end": 8963.86, + "probability": 0.8934 + }, + { + "start": 8964.62, + "end": 8968.6, + "probability": 0.9926 + }, + { + "start": 8969.04, + "end": 8969.66, + "probability": 0.3893 + }, + { + "start": 8970.42, + "end": 8973.84, + "probability": 0.9968 + }, + { + "start": 8973.84, + "end": 8978.34, + "probability": 0.9429 + }, + { + "start": 8978.98, + "end": 8984.44, + "probability": 0.9868 + }, + { + "start": 8985.6, + "end": 8987.28, + "probability": 0.9858 + }, + { + "start": 8987.68, + "end": 8988.96, + "probability": 0.9141 + }, + { + "start": 8989.02, + "end": 8992.94, + "probability": 0.8825 + }, + { + "start": 8993.06, + "end": 8994.24, + "probability": 0.6718 + }, + { + "start": 8994.98, + "end": 8997.72, + "probability": 0.9495 + }, + { + "start": 8998.28, + "end": 9001.74, + "probability": 0.9339 + }, + { + "start": 9002.18, + "end": 9004.12, + "probability": 0.9751 + }, + { + "start": 9004.46, + "end": 9007.26, + "probability": 0.9047 + }, + { + "start": 9007.66, + "end": 9010.38, + "probability": 0.9747 + }, + { + "start": 9011.04, + "end": 9013.4, + "probability": 0.897 + }, + { + "start": 9013.84, + "end": 9017.44, + "probability": 0.988 + }, + { + "start": 9018.48, + "end": 9019.06, + "probability": 0.7519 + }, + { + "start": 9019.96, + "end": 9022.18, + "probability": 0.9377 + }, + { + "start": 9023.26, + "end": 9024.6, + "probability": 0.9889 + }, + { + "start": 9026.68, + "end": 9029.06, + "probability": 0.3417 + }, + { + "start": 9030.8, + "end": 9031.58, + "probability": 0.7183 + }, + { + "start": 9032.14, + "end": 9033.18, + "probability": 0.7939 + }, + { + "start": 9036.48, + "end": 9036.88, + "probability": 0.9056 + }, + { + "start": 9037.98, + "end": 9039.32, + "probability": 0.9945 + }, + { + "start": 9040.4, + "end": 9042.96, + "probability": 0.9852 + }, + { + "start": 9044.88, + "end": 9049.1, + "probability": 0.9716 + }, + { + "start": 9049.68, + "end": 9051.22, + "probability": 0.7351 + }, + { + "start": 9051.9, + "end": 9052.65, + "probability": 0.8666 + }, + { + "start": 9053.94, + "end": 9057.06, + "probability": 0.9739 + }, + { + "start": 9057.06, + "end": 9061.34, + "probability": 0.9976 + }, + { + "start": 9062.78, + "end": 9064.62, + "probability": 0.7479 + }, + { + "start": 9065.16, + "end": 9066.8, + "probability": 0.7724 + }, + { + "start": 9067.52, + "end": 9071.16, + "probability": 0.9988 + }, + { + "start": 9071.16, + "end": 9074.78, + "probability": 0.9987 + }, + { + "start": 9075.24, + "end": 9076.66, + "probability": 0.948 + }, + { + "start": 9076.84, + "end": 9078.61, + "probability": 0.9973 + }, + { + "start": 9079.32, + "end": 9080.72, + "probability": 0.9994 + }, + { + "start": 9081.33, + "end": 9084.92, + "probability": 0.989 + }, + { + "start": 9086.0, + "end": 9087.52, + "probability": 0.7829 + }, + { + "start": 9088.04, + "end": 9088.52, + "probability": 0.9098 + }, + { + "start": 9089.52, + "end": 9091.36, + "probability": 0.9977 + }, + { + "start": 9091.94, + "end": 9095.14, + "probability": 0.782 + }, + { + "start": 9095.72, + "end": 9101.12, + "probability": 0.9849 + }, + { + "start": 9101.86, + "end": 9103.7, + "probability": 0.9937 + }, + { + "start": 9104.44, + "end": 9106.32, + "probability": 0.9995 + }, + { + "start": 9106.72, + "end": 9108.16, + "probability": 0.9291 + }, + { + "start": 9108.62, + "end": 9109.92, + "probability": 0.791 + }, + { + "start": 9110.06, + "end": 9110.86, + "probability": 0.9752 + }, + { + "start": 9110.92, + "end": 9114.12, + "probability": 0.9946 + }, + { + "start": 9114.32, + "end": 9115.54, + "probability": 0.6657 + }, + { + "start": 9115.64, + "end": 9118.26, + "probability": 0.9968 + }, + { + "start": 9118.26, + "end": 9121.3, + "probability": 0.9981 + }, + { + "start": 9121.68, + "end": 9122.22, + "probability": 0.8572 + }, + { + "start": 9122.48, + "end": 9124.7, + "probability": 0.9956 + }, + { + "start": 9125.26, + "end": 9126.54, + "probability": 0.994 + }, + { + "start": 9127.48, + "end": 9128.12, + "probability": 0.933 + }, + { + "start": 9128.68, + "end": 9130.44, + "probability": 0.9054 + }, + { + "start": 9130.64, + "end": 9133.3, + "probability": 0.9805 + }, + { + "start": 9133.72, + "end": 9137.02, + "probability": 0.869 + }, + { + "start": 9137.18, + "end": 9137.4, + "probability": 0.6191 + }, + { + "start": 9137.54, + "end": 9138.08, + "probability": 0.6162 + }, + { + "start": 9138.24, + "end": 9139.16, + "probability": 0.8627 + }, + { + "start": 9139.92, + "end": 9141.5, + "probability": 0.4847 + }, + { + "start": 9144.98, + "end": 9147.86, + "probability": 0.9021 + }, + { + "start": 9157.45, + "end": 9159.56, + "probability": 0.2983 + }, + { + "start": 9162.32, + "end": 9163.96, + "probability": 0.0492 + }, + { + "start": 9164.12, + "end": 9164.54, + "probability": 0.1757 + }, + { + "start": 9165.38, + "end": 9166.56, + "probability": 0.5821 + }, + { + "start": 9167.12, + "end": 9169.4, + "probability": 0.4251 + }, + { + "start": 9169.64, + "end": 9171.3, + "probability": 0.2801 + }, + { + "start": 9171.88, + "end": 9172.86, + "probability": 0.4736 + }, + { + "start": 9174.96, + "end": 9175.6, + "probability": 0.3983 + }, + { + "start": 9176.8, + "end": 9178.1, + "probability": 0.6481 + }, + { + "start": 9183.5, + "end": 9184.62, + "probability": 0.8291 + }, + { + "start": 9185.48, + "end": 9191.02, + "probability": 0.6904 + }, + { + "start": 9191.78, + "end": 9194.94, + "probability": 0.5372 + }, + { + "start": 9224.76, + "end": 9227.06, + "probability": 0.0531 + }, + { + "start": 9227.06, + "end": 9228.84, + "probability": 0.6482 + }, + { + "start": 9229.78, + "end": 9229.98, + "probability": 0.0506 + }, + { + "start": 9229.98, + "end": 9233.02, + "probability": 0.9087 + }, + { + "start": 9233.96, + "end": 9235.96, + "probability": 0.8335 + }, + { + "start": 9237.04, + "end": 9237.98, + "probability": 0.9185 + }, + { + "start": 9257.06, + "end": 9257.46, + "probability": 0.3815 + }, + { + "start": 9257.58, + "end": 9258.09, + "probability": 0.7448 + }, + { + "start": 9259.28, + "end": 9260.64, + "probability": 0.7324 + }, + { + "start": 9260.94, + "end": 9262.4, + "probability": 0.7678 + }, + { + "start": 9263.64, + "end": 9268.08, + "probability": 0.8638 + }, + { + "start": 9268.58, + "end": 9271.08, + "probability": 0.881 + }, + { + "start": 9271.08, + "end": 9274.18, + "probability": 0.8402 + }, + { + "start": 9274.7, + "end": 9275.18, + "probability": 0.748 + }, + { + "start": 9276.06, + "end": 9278.0, + "probability": 0.9019 + }, + { + "start": 9278.04, + "end": 9280.28, + "probability": 0.9309 + }, + { + "start": 9280.38, + "end": 9284.67, + "probability": 0.9717 + }, + { + "start": 9285.06, + "end": 9285.98, + "probability": 0.7678 + }, + { + "start": 9287.64, + "end": 9295.1, + "probability": 0.8728 + }, + { + "start": 9295.42, + "end": 9296.84, + "probability": 0.9744 + }, + { + "start": 9297.86, + "end": 9301.6, + "probability": 0.9047 + }, + { + "start": 9302.46, + "end": 9305.02, + "probability": 0.9781 + }, + { + "start": 9305.9, + "end": 9308.54, + "probability": 0.9793 + }, + { + "start": 9309.14, + "end": 9311.26, + "probability": 0.9766 + }, + { + "start": 9312.68, + "end": 9313.22, + "probability": 0.7172 + }, + { + "start": 9313.32, + "end": 9313.96, + "probability": 0.8494 + }, + { + "start": 9314.46, + "end": 9315.08, + "probability": 0.8866 + }, + { + "start": 9315.24, + "end": 9316.75, + "probability": 0.8431 + }, + { + "start": 9317.56, + "end": 9323.14, + "probability": 0.9904 + }, + { + "start": 9323.7, + "end": 9325.2, + "probability": 0.7315 + }, + { + "start": 9326.06, + "end": 9328.56, + "probability": 0.5284 + }, + { + "start": 9329.4, + "end": 9333.26, + "probability": 0.9824 + }, + { + "start": 9333.36, + "end": 9337.0, + "probability": 0.9636 + }, + { + "start": 9337.36, + "end": 9337.6, + "probability": 0.8127 + }, + { + "start": 9337.68, + "end": 9340.98, + "probability": 0.9954 + }, + { + "start": 9341.02, + "end": 9344.18, + "probability": 0.9316 + }, + { + "start": 9345.3, + "end": 9351.9, + "probability": 0.9945 + }, + { + "start": 9352.06, + "end": 9352.76, + "probability": 0.8683 + }, + { + "start": 9353.26, + "end": 9354.68, + "probability": 0.9344 + }, + { + "start": 9355.3, + "end": 9358.58, + "probability": 0.9507 + }, + { + "start": 9358.58, + "end": 9362.12, + "probability": 0.9863 + }, + { + "start": 9363.16, + "end": 9364.52, + "probability": 0.9067 + }, + { + "start": 9365.1, + "end": 9368.1, + "probability": 0.9759 + }, + { + "start": 9369.2, + "end": 9371.36, + "probability": 0.988 + }, + { + "start": 9372.14, + "end": 9377.08, + "probability": 0.9647 + }, + { + "start": 9377.96, + "end": 9379.1, + "probability": 0.9873 + }, + { + "start": 9381.65, + "end": 9383.88, + "probability": 0.8657 + }, + { + "start": 9385.06, + "end": 9391.42, + "probability": 0.9806 + }, + { + "start": 9392.54, + "end": 9393.9, + "probability": 0.9116 + }, + { + "start": 9394.42, + "end": 9395.16, + "probability": 0.4149 + }, + { + "start": 9395.3, + "end": 9397.65, + "probability": 0.9349 + }, + { + "start": 9398.04, + "end": 9399.29, + "probability": 0.9531 + }, + { + "start": 9399.8, + "end": 9399.8, + "probability": 0.2545 + }, + { + "start": 9399.8, + "end": 9401.9, + "probability": 0.9261 + }, + { + "start": 9402.38, + "end": 9406.54, + "probability": 0.9936 + }, + { + "start": 9406.72, + "end": 9409.96, + "probability": 0.8333 + }, + { + "start": 9410.48, + "end": 9413.04, + "probability": 0.9878 + }, + { + "start": 9413.68, + "end": 9414.5, + "probability": 0.7944 + }, + { + "start": 9414.8, + "end": 9414.94, + "probability": 0.2441 + }, + { + "start": 9415.92, + "end": 9419.22, + "probability": 0.8093 + }, + { + "start": 9420.5, + "end": 9422.0, + "probability": 0.9953 + }, + { + "start": 9422.52, + "end": 9422.66, + "probability": 0.9641 + }, + { + "start": 9424.04, + "end": 9431.56, + "probability": 0.9941 + }, + { + "start": 9432.3, + "end": 9435.3, + "probability": 0.989 + }, + { + "start": 9435.89, + "end": 9439.08, + "probability": 0.7898 + }, + { + "start": 9440.34, + "end": 9443.56, + "probability": 0.9237 + }, + { + "start": 9443.56, + "end": 9446.12, + "probability": 0.988 + }, + { + "start": 9446.64, + "end": 9449.46, + "probability": 0.9816 + }, + { + "start": 9450.42, + "end": 9452.58, + "probability": 0.7422 + }, + { + "start": 9452.98, + "end": 9456.62, + "probability": 0.8296 + }, + { + "start": 9457.24, + "end": 9458.0, + "probability": 0.8467 + }, + { + "start": 9458.1, + "end": 9458.58, + "probability": 0.9076 + }, + { + "start": 9458.68, + "end": 9458.84, + "probability": 0.6911 + }, + { + "start": 9458.92, + "end": 9461.62, + "probability": 0.9713 + }, + { + "start": 9462.28, + "end": 9464.58, + "probability": 0.9249 + }, + { + "start": 9465.8, + "end": 9466.98, + "probability": 0.602 + }, + { + "start": 9468.71, + "end": 9475.3, + "probability": 0.8352 + }, + { + "start": 9475.96, + "end": 9480.7, + "probability": 0.9365 + }, + { + "start": 9481.98, + "end": 9485.5, + "probability": 0.964 + }, + { + "start": 9486.1, + "end": 9487.28, + "probability": 0.9237 + }, + { + "start": 9487.36, + "end": 9489.6, + "probability": 0.7103 + }, + { + "start": 9489.74, + "end": 9490.28, + "probability": 0.9159 + }, + { + "start": 9490.9, + "end": 9493.36, + "probability": 0.8549 + }, + { + "start": 9493.9, + "end": 9499.16, + "probability": 0.8233 + }, + { + "start": 9499.7, + "end": 9502.24, + "probability": 0.972 + }, + { + "start": 9502.28, + "end": 9505.74, + "probability": 0.9747 + }, + { + "start": 9506.42, + "end": 9510.6, + "probability": 0.9937 + }, + { + "start": 9510.94, + "end": 9515.36, + "probability": 0.9935 + }, + { + "start": 9515.88, + "end": 9522.38, + "probability": 0.9743 + }, + { + "start": 9522.98, + "end": 9525.46, + "probability": 0.9355 + }, + { + "start": 9525.98, + "end": 9530.26, + "probability": 0.7676 + }, + { + "start": 9530.48, + "end": 9531.34, + "probability": 0.5706 + }, + { + "start": 9531.82, + "end": 9532.34, + "probability": 0.9161 + }, + { + "start": 9532.86, + "end": 9536.18, + "probability": 0.9677 + }, + { + "start": 9537.0, + "end": 9537.9, + "probability": 0.8931 + }, + { + "start": 9538.52, + "end": 9539.4, + "probability": 0.7969 + }, + { + "start": 9540.14, + "end": 9546.14, + "probability": 0.9714 + }, + { + "start": 9547.3, + "end": 9553.8, + "probability": 0.9969 + }, + { + "start": 9554.06, + "end": 9554.34, + "probability": 0.7507 + }, + { + "start": 9555.7, + "end": 9556.24, + "probability": 0.7621 + }, + { + "start": 9557.3, + "end": 9559.08, + "probability": 0.9538 + }, + { + "start": 9560.04, + "end": 9561.0, + "probability": 0.7114 + }, + { + "start": 9562.34, + "end": 9563.74, + "probability": 0.7408 + }, + { + "start": 9565.7, + "end": 9567.76, + "probability": 0.8892 + }, + { + "start": 9588.04, + "end": 9591.42, + "probability": 0.5509 + }, + { + "start": 9593.98, + "end": 9598.26, + "probability": 0.9727 + }, + { + "start": 9599.32, + "end": 9603.18, + "probability": 0.9937 + }, + { + "start": 9604.84, + "end": 9605.5, + "probability": 0.934 + }, + { + "start": 9606.16, + "end": 9610.12, + "probability": 0.8459 + }, + { + "start": 9610.98, + "end": 9612.34, + "probability": 0.9309 + }, + { + "start": 9614.08, + "end": 9615.66, + "probability": 0.8282 + }, + { + "start": 9617.08, + "end": 9620.34, + "probability": 0.983 + }, + { + "start": 9620.56, + "end": 9622.8, + "probability": 0.9547 + }, + { + "start": 9623.64, + "end": 9625.58, + "probability": 0.9956 + }, + { + "start": 9626.58, + "end": 9627.7, + "probability": 0.7926 + }, + { + "start": 9628.64, + "end": 9629.68, + "probability": 0.5934 + }, + { + "start": 9630.2, + "end": 9631.96, + "probability": 0.9881 + }, + { + "start": 9632.76, + "end": 9637.0, + "probability": 0.998 + }, + { + "start": 9637.56, + "end": 9638.22, + "probability": 0.6736 + }, + { + "start": 9639.16, + "end": 9640.76, + "probability": 0.8749 + }, + { + "start": 9640.96, + "end": 9642.7, + "probability": 0.6405 + }, + { + "start": 9642.74, + "end": 9643.14, + "probability": 0.4004 + }, + { + "start": 9643.91, + "end": 9646.94, + "probability": 0.9829 + }, + { + "start": 9647.56, + "end": 9650.06, + "probability": 0.9962 + }, + { + "start": 9651.62, + "end": 9654.44, + "probability": 0.1948 + }, + { + "start": 9654.92, + "end": 9655.5, + "probability": 0.738 + }, + { + "start": 9655.58, + "end": 9661.36, + "probability": 0.857 + }, + { + "start": 9661.4, + "end": 9664.1, + "probability": 0.9849 + }, + { + "start": 9665.42, + "end": 9667.32, + "probability": 0.9349 + }, + { + "start": 9668.14, + "end": 9668.64, + "probability": 0.0396 + }, + { + "start": 9669.46, + "end": 9671.18, + "probability": 0.4106 + }, + { + "start": 9671.58, + "end": 9672.36, + "probability": 0.5864 + }, + { + "start": 9672.6, + "end": 9675.12, + "probability": 0.7572 + }, + { + "start": 9675.38, + "end": 9675.8, + "probability": 0.7562 + }, + { + "start": 9675.86, + "end": 9677.0, + "probability": 0.762 + }, + { + "start": 9677.0, + "end": 9679.4, + "probability": 0.8646 + }, + { + "start": 9679.5, + "end": 9680.29, + "probability": 0.98 + }, + { + "start": 9680.98, + "end": 9683.68, + "probability": 0.9839 + }, + { + "start": 9683.78, + "end": 9686.04, + "probability": 0.9252 + }, + { + "start": 9686.24, + "end": 9687.64, + "probability": 0.754 + }, + { + "start": 9687.88, + "end": 9688.6, + "probability": 0.3357 + }, + { + "start": 9688.68, + "end": 9689.34, + "probability": 0.237 + }, + { + "start": 9689.56, + "end": 9690.0, + "probability": 0.352 + }, + { + "start": 9690.02, + "end": 9690.04, + "probability": 0.4675 + }, + { + "start": 9690.04, + "end": 9691.7, + "probability": 0.8901 + }, + { + "start": 9692.08, + "end": 9692.16, + "probability": 0.4755 + }, + { + "start": 9692.26, + "end": 9694.1, + "probability": 0.9449 + }, + { + "start": 9694.32, + "end": 9696.44, + "probability": 0.8722 + }, + { + "start": 9696.44, + "end": 9697.08, + "probability": 0.2547 + }, + { + "start": 9697.46, + "end": 9698.27, + "probability": 0.7824 + }, + { + "start": 9699.28, + "end": 9702.44, + "probability": 0.845 + }, + { + "start": 9703.06, + "end": 9704.14, + "probability": 0.8557 + }, + { + "start": 9704.14, + "end": 9706.19, + "probability": 0.1854 + }, + { + "start": 9707.02, + "end": 9709.54, + "probability": 0.9912 + }, + { + "start": 9710.58, + "end": 9712.58, + "probability": 0.9952 + }, + { + "start": 9713.08, + "end": 9713.44, + "probability": 0.8909 + }, + { + "start": 9714.48, + "end": 9715.64, + "probability": 0.8975 + }, + { + "start": 9716.22, + "end": 9716.92, + "probability": 0.9932 + }, + { + "start": 9717.78, + "end": 9721.98, + "probability": 0.9909 + }, + { + "start": 9722.54, + "end": 9724.56, + "probability": 0.9345 + }, + { + "start": 9724.92, + "end": 9728.2, + "probability": 0.9924 + }, + { + "start": 9728.2, + "end": 9729.58, + "probability": 0.9981 + }, + { + "start": 9730.74, + "end": 9732.7, + "probability": 0.8106 + }, + { + "start": 9733.66, + "end": 9734.18, + "probability": 0.8366 + }, + { + "start": 9734.72, + "end": 9735.52, + "probability": 0.9478 + }, + { + "start": 9736.24, + "end": 9737.3, + "probability": 0.9622 + }, + { + "start": 9738.92, + "end": 9742.44, + "probability": 0.9043 + }, + { + "start": 9744.0, + "end": 9746.36, + "probability": 0.9435 + }, + { + "start": 9747.6, + "end": 9748.32, + "probability": 0.7067 + }, + { + "start": 9748.5, + "end": 9751.08, + "probability": 0.999 + }, + { + "start": 9751.2, + "end": 9753.98, + "probability": 0.9973 + }, + { + "start": 9753.98, + "end": 9756.78, + "probability": 0.9985 + }, + { + "start": 9757.68, + "end": 9759.44, + "probability": 0.7467 + }, + { + "start": 9759.48, + "end": 9759.78, + "probability": 0.2493 + }, + { + "start": 9759.78, + "end": 9760.58, + "probability": 0.6488 + }, + { + "start": 9761.31, + "end": 9766.78, + "probability": 0.9982 + }, + { + "start": 9767.76, + "end": 9770.68, + "probability": 0.6316 + }, + { + "start": 9771.26, + "end": 9773.69, + "probability": 0.94 + }, + { + "start": 9774.88, + "end": 9777.88, + "probability": 0.991 + }, + { + "start": 9778.64, + "end": 9781.82, + "probability": 0.949 + }, + { + "start": 9782.72, + "end": 9784.44, + "probability": 0.9914 + }, + { + "start": 9785.1, + "end": 9787.24, + "probability": 0.9985 + }, + { + "start": 9787.82, + "end": 9790.04, + "probability": 0.8993 + }, + { + "start": 9790.24, + "end": 9792.18, + "probability": 0.9765 + }, + { + "start": 9792.24, + "end": 9793.0, + "probability": 0.9784 + }, + { + "start": 9793.44, + "end": 9793.98, + "probability": 0.9085 + }, + { + "start": 9794.02, + "end": 9794.72, + "probability": 0.7536 + }, + { + "start": 9794.82, + "end": 9797.0, + "probability": 0.5159 + }, + { + "start": 9797.76, + "end": 9802.94, + "probability": 0.9952 + }, + { + "start": 9803.14, + "end": 9803.3, + "probability": 0.534 + }, + { + "start": 9803.4, + "end": 9804.28, + "probability": 0.676 + }, + { + "start": 9804.8, + "end": 9806.34, + "probability": 0.2024 + }, + { + "start": 9806.34, + "end": 9807.25, + "probability": 0.7245 + }, + { + "start": 9807.48, + "end": 9808.88, + "probability": 0.9913 + }, + { + "start": 9809.16, + "end": 9810.12, + "probability": 0.4504 + }, + { + "start": 9811.46, + "end": 9813.76, + "probability": 0.6669 + }, + { + "start": 9814.44, + "end": 9814.62, + "probability": 0.8104 + }, + { + "start": 9815.72, + "end": 9818.26, + "probability": 0.7198 + }, + { + "start": 9818.5, + "end": 9818.76, + "probability": 0.3471 + }, + { + "start": 9818.76, + "end": 9819.48, + "probability": 0.4745 + }, + { + "start": 9825.94, + "end": 9826.12, + "probability": 0.3651 + }, + { + "start": 9826.2, + "end": 9827.08, + "probability": 0.7397 + }, + { + "start": 9827.2, + "end": 9830.12, + "probability": 0.9509 + }, + { + "start": 9830.22, + "end": 9833.66, + "probability": 0.955 + }, + { + "start": 9834.9, + "end": 9835.24, + "probability": 0.5453 + }, + { + "start": 9835.36, + "end": 9836.36, + "probability": 0.7654 + }, + { + "start": 9836.42, + "end": 9837.08, + "probability": 0.6942 + }, + { + "start": 9837.42, + "end": 9838.0, + "probability": 0.1759 + }, + { + "start": 9838.12, + "end": 9839.5, + "probability": 0.8331 + }, + { + "start": 9861.26, + "end": 9863.36, + "probability": 0.3933 + }, + { + "start": 9864.12, + "end": 9864.6, + "probability": 0.368 + }, + { + "start": 9864.76, + "end": 9865.94, + "probability": 0.1798 + }, + { + "start": 9866.7, + "end": 9872.4, + "probability": 0.5546 + }, + { + "start": 9873.98, + "end": 9877.24, + "probability": 0.1643 + }, + { + "start": 9877.67, + "end": 9879.76, + "probability": 0.0169 + }, + { + "start": 9885.1, + "end": 9885.36, + "probability": 0.0115 + }, + { + "start": 9899.98, + "end": 9902.74, + "probability": 0.05 + }, + { + "start": 9905.02, + "end": 9905.22, + "probability": 0.0938 + }, + { + "start": 9906.18, + "end": 9906.78, + "probability": 0.1366 + }, + { + "start": 9909.7, + "end": 9910.14, + "probability": 0.0937 + }, + { + "start": 9912.42, + "end": 9914.4, + "probability": 0.0975 + }, + { + "start": 9914.9, + "end": 9917.4, + "probability": 0.1097 + }, + { + "start": 9917.68, + "end": 9919.46, + "probability": 0.0584 + }, + { + "start": 9919.84, + "end": 9920.02, + "probability": 0.1345 + }, + { + "start": 9920.02, + "end": 9920.02, + "probability": 0.2627 + }, + { + "start": 9920.02, + "end": 9920.02, + "probability": 0.0289 + }, + { + "start": 9920.02, + "end": 9921.43, + "probability": 0.0906 + }, + { + "start": 9924.5, + "end": 9927.46, + "probability": 0.1739 + }, + { + "start": 9929.36, + "end": 9929.62, + "probability": 0.1637 + }, + { + "start": 9930.0, + "end": 9930.0, + "probability": 0.0 + }, + { + "start": 9930.0, + "end": 9930.0, + "probability": 0.0 + }, + { + "start": 9930.0, + "end": 9930.0, + "probability": 0.0 + }, + { + "start": 9930.0, + "end": 9930.0, + "probability": 0.0 + }, + { + "start": 9930.0, + "end": 9930.0, + "probability": 0.0 + }, + { + "start": 9930.0, + "end": 9930.0, + "probability": 0.0 + }, + { + "start": 9930.38, + "end": 9930.5, + "probability": 0.0187 + }, + { + "start": 9930.5, + "end": 9930.5, + "probability": 0.1322 + }, + { + "start": 9930.5, + "end": 9931.92, + "probability": 0.52 + }, + { + "start": 9932.12, + "end": 9932.62, + "probability": 0.8889 + }, + { + "start": 9933.9, + "end": 9937.8, + "probability": 0.9525 + }, + { + "start": 9938.34, + "end": 9939.9, + "probability": 0.9669 + }, + { + "start": 9941.0, + "end": 9943.84, + "probability": 0.7745 + }, + { + "start": 9944.14, + "end": 9945.72, + "probability": 0.8582 + }, + { + "start": 9947.9, + "end": 9951.52, + "probability": 0.7743 + }, + { + "start": 9952.68, + "end": 9953.18, + "probability": 0.5718 + }, + { + "start": 9954.18, + "end": 9959.22, + "probability": 0.9874 + }, + { + "start": 9960.16, + "end": 9963.06, + "probability": 0.8825 + }, + { + "start": 9964.04, + "end": 9965.22, + "probability": 0.3273 + }, + { + "start": 9966.56, + "end": 9972.7, + "probability": 0.9384 + }, + { + "start": 9972.98, + "end": 9974.52, + "probability": 0.8095 + }, + { + "start": 9975.06, + "end": 9980.46, + "probability": 0.9946 + }, + { + "start": 9980.86, + "end": 9988.12, + "probability": 0.988 + }, + { + "start": 9988.82, + "end": 9989.04, + "probability": 0.3805 + }, + { + "start": 9989.72, + "end": 9994.3, + "probability": 0.9953 + }, + { + "start": 9994.4, + "end": 9996.24, + "probability": 0.7707 + }, + { + "start": 9996.46, + "end": 9997.5, + "probability": 0.9594 + }, + { + "start": 9998.62, + "end": 10000.74, + "probability": 0.9349 + }, + { + "start": 10001.92, + "end": 10007.66, + "probability": 0.9875 + }, + { + "start": 10008.52, + "end": 10010.12, + "probability": 0.9277 + }, + { + "start": 10011.42, + "end": 10018.24, + "probability": 0.9939 + }, + { + "start": 10019.26, + "end": 10021.72, + "probability": 0.9715 + }, + { + "start": 10021.78, + "end": 10025.5, + "probability": 0.8073 + }, + { + "start": 10025.76, + "end": 10026.28, + "probability": 0.4376 + }, + { + "start": 10028.2, + "end": 10032.4, + "probability": 0.9736 + }, + { + "start": 10033.06, + "end": 10035.6, + "probability": 0.9681 + }, + { + "start": 10036.28, + "end": 10037.38, + "probability": 0.635 + }, + { + "start": 10037.6, + "end": 10039.68, + "probability": 0.7 + }, + { + "start": 10039.8, + "end": 10041.02, + "probability": 0.9546 + }, + { + "start": 10042.0, + "end": 10046.2, + "probability": 0.9747 + }, + { + "start": 10046.76, + "end": 10052.36, + "probability": 0.9733 + }, + { + "start": 10053.3, + "end": 10056.32, + "probability": 0.9845 + }, + { + "start": 10057.36, + "end": 10059.1, + "probability": 0.9598 + }, + { + "start": 10059.68, + "end": 10060.98, + "probability": 0.9546 + }, + { + "start": 10062.06, + "end": 10063.6, + "probability": 0.9491 + }, + { + "start": 10064.4, + "end": 10067.84, + "probability": 0.9963 + }, + { + "start": 10068.08, + "end": 10072.56, + "probability": 0.9967 + }, + { + "start": 10073.46, + "end": 10075.16, + "probability": 0.6155 + }, + { + "start": 10075.66, + "end": 10078.42, + "probability": 0.9851 + }, + { + "start": 10078.72, + "end": 10081.72, + "probability": 0.973 + }, + { + "start": 10082.3, + "end": 10083.12, + "probability": 0.4763 + }, + { + "start": 10083.4, + "end": 10086.24, + "probability": 0.8281 + }, + { + "start": 10086.42, + "end": 10088.04, + "probability": 0.711 + }, + { + "start": 10089.35, + "end": 10092.06, + "probability": 0.8994 + }, + { + "start": 10092.24, + "end": 10099.42, + "probability": 0.9813 + }, + { + "start": 10100.58, + "end": 10105.8, + "probability": 0.9814 + }, + { + "start": 10105.8, + "end": 10110.44, + "probability": 0.9925 + }, + { + "start": 10111.38, + "end": 10112.32, + "probability": 0.6742 + }, + { + "start": 10112.94, + "end": 10114.96, + "probability": 0.9137 + }, + { + "start": 10115.02, + "end": 10117.64, + "probability": 0.791 + }, + { + "start": 10118.14, + "end": 10119.16, + "probability": 0.9142 + }, + { + "start": 10119.72, + "end": 10126.78, + "probability": 0.9269 + }, + { + "start": 10127.24, + "end": 10128.86, + "probability": 0.7466 + }, + { + "start": 10130.08, + "end": 10130.99, + "probability": 0.968 + }, + { + "start": 10131.74, + "end": 10136.0, + "probability": 0.9668 + }, + { + "start": 10136.0, + "end": 10140.24, + "probability": 0.9587 + }, + { + "start": 10141.08, + "end": 10142.66, + "probability": 0.9887 + }, + { + "start": 10143.34, + "end": 10145.83, + "probability": 0.9976 + }, + { + "start": 10146.46, + "end": 10149.52, + "probability": 0.9897 + }, + { + "start": 10149.88, + "end": 10153.92, + "probability": 0.9995 + }, + { + "start": 10154.62, + "end": 10156.28, + "probability": 0.9779 + }, + { + "start": 10157.78, + "end": 10159.92, + "probability": 0.7588 + }, + { + "start": 10160.12, + "end": 10166.14, + "probability": 0.9957 + }, + { + "start": 10166.96, + "end": 10170.24, + "probability": 0.9927 + }, + { + "start": 10170.24, + "end": 10174.8, + "probability": 0.9631 + }, + { + "start": 10175.08, + "end": 10175.64, + "probability": 0.7051 + }, + { + "start": 10176.8, + "end": 10179.66, + "probability": 0.995 + }, + { + "start": 10179.66, + "end": 10183.16, + "probability": 0.9846 + }, + { + "start": 10184.04, + "end": 10184.7, + "probability": 0.7137 + }, + { + "start": 10185.46, + "end": 10185.92, + "probability": 0.1632 + }, + { + "start": 10185.92, + "end": 10188.04, + "probability": 0.9795 + }, + { + "start": 10188.2, + "end": 10190.42, + "probability": 0.8053 + }, + { + "start": 10190.42, + "end": 10194.52, + "probability": 0.842 + }, + { + "start": 10194.66, + "end": 10198.78, + "probability": 0.9828 + }, + { + "start": 10200.44, + "end": 10202.46, + "probability": 0.788 + }, + { + "start": 10202.62, + "end": 10204.14, + "probability": 0.7372 + }, + { + "start": 10204.32, + "end": 10204.72, + "probability": 0.8811 + }, + { + "start": 10204.74, + "end": 10205.72, + "probability": 0.8942 + }, + { + "start": 10206.22, + "end": 10207.94, + "probability": 0.9561 + }, + { + "start": 10208.48, + "end": 10209.56, + "probability": 0.8371 + }, + { + "start": 10210.24, + "end": 10212.98, + "probability": 0.9451 + }, + { + "start": 10214.04, + "end": 10215.04, + "probability": 0.9864 + }, + { + "start": 10216.2, + "end": 10217.18, + "probability": 0.9907 + }, + { + "start": 10218.38, + "end": 10223.08, + "probability": 0.9928 + }, + { + "start": 10223.58, + "end": 10227.26, + "probability": 0.979 + }, + { + "start": 10227.54, + "end": 10228.3, + "probability": 0.8233 + }, + { + "start": 10228.62, + "end": 10228.82, + "probability": 0.8405 + }, + { + "start": 10229.6, + "end": 10230.16, + "probability": 0.7209 + }, + { + "start": 10231.62, + "end": 10232.62, + "probability": 0.9479 + }, + { + "start": 10233.3, + "end": 10234.22, + "probability": 0.8185 + }, + { + "start": 10234.96, + "end": 10238.49, + "probability": 0.7749 + }, + { + "start": 10261.6, + "end": 10263.34, + "probability": 0.5706 + }, + { + "start": 10264.54, + "end": 10264.74, + "probability": 0.9333 + }, + { + "start": 10264.9, + "end": 10265.1, + "probability": 0.8167 + }, + { + "start": 10265.32, + "end": 10267.22, + "probability": 0.9362 + }, + { + "start": 10268.3, + "end": 10269.76, + "probability": 0.8687 + }, + { + "start": 10270.42, + "end": 10272.02, + "probability": 0.9214 + }, + { + "start": 10272.12, + "end": 10273.1, + "probability": 0.6954 + }, + { + "start": 10273.28, + "end": 10274.67, + "probability": 0.8058 + }, + { + "start": 10275.08, + "end": 10278.02, + "probability": 0.8822 + }, + { + "start": 10278.38, + "end": 10278.78, + "probability": 0.822 + }, + { + "start": 10279.42, + "end": 10279.93, + "probability": 0.6483 + }, + { + "start": 10280.52, + "end": 10280.74, + "probability": 0.1073 + }, + { + "start": 10280.94, + "end": 10281.37, + "probability": 0.4877 + }, + { + "start": 10281.62, + "end": 10284.22, + "probability": 0.5486 + }, + { + "start": 10284.22, + "end": 10284.64, + "probability": 0.3347 + }, + { + "start": 10286.16, + "end": 10286.22, + "probability": 0.2209 + }, + { + "start": 10286.22, + "end": 10287.74, + "probability": 0.1339 + }, + { + "start": 10287.74, + "end": 10288.26, + "probability": 0.9202 + }, + { + "start": 10288.32, + "end": 10289.26, + "probability": 0.965 + }, + { + "start": 10289.4, + "end": 10290.04, + "probability": 0.4112 + }, + { + "start": 10290.14, + "end": 10290.14, + "probability": 0.0782 + }, + { + "start": 10290.14, + "end": 10291.41, + "probability": 0.6715 + }, + { + "start": 10292.52, + "end": 10292.54, + "probability": 0.0305 + }, + { + "start": 10292.54, + "end": 10295.48, + "probability": 0.7547 + }, + { + "start": 10295.48, + "end": 10295.64, + "probability": 0.2896 + }, + { + "start": 10295.64, + "end": 10297.1, + "probability": 0.2337 + }, + { + "start": 10297.1, + "end": 10298.08, + "probability": 0.0361 + }, + { + "start": 10298.24, + "end": 10300.76, + "probability": 0.2612 + }, + { + "start": 10301.42, + "end": 10301.42, + "probability": 0.1383 + }, + { + "start": 10301.42, + "end": 10301.42, + "probability": 0.0673 + }, + { + "start": 10301.42, + "end": 10301.42, + "probability": 0.2189 + }, + { + "start": 10301.42, + "end": 10301.42, + "probability": 0.4329 + }, + { + "start": 10301.42, + "end": 10302.54, + "probability": 0.45 + }, + { + "start": 10302.56, + "end": 10303.33, + "probability": 0.1119 + }, + { + "start": 10303.44, + "end": 10305.7, + "probability": 0.6301 + }, + { + "start": 10308.2, + "end": 10309.06, + "probability": 0.0435 + }, + { + "start": 10309.22, + "end": 10309.84, + "probability": 0.5733 + }, + { + "start": 10310.06, + "end": 10310.6, + "probability": 0.6615 + }, + { + "start": 10310.6, + "end": 10311.67, + "probability": 0.3467 + }, + { + "start": 10312.12, + "end": 10312.28, + "probability": 0.1354 + }, + { + "start": 10312.28, + "end": 10312.63, + "probability": 0.6602 + }, + { + "start": 10313.22, + "end": 10314.44, + "probability": 0.7631 + }, + { + "start": 10314.9, + "end": 10316.42, + "probability": 0.9041 + }, + { + "start": 10316.52, + "end": 10318.92, + "probability": 0.6837 + }, + { + "start": 10319.5, + "end": 10322.58, + "probability": 0.5273 + }, + { + "start": 10323.08, + "end": 10325.82, + "probability": 0.724 + }, + { + "start": 10325.88, + "end": 10326.42, + "probability": 0.9047 + }, + { + "start": 10326.68, + "end": 10327.04, + "probability": 0.0484 + }, + { + "start": 10327.22, + "end": 10329.06, + "probability": 0.8955 + }, + { + "start": 10329.22, + "end": 10330.98, + "probability": 0.7591 + }, + { + "start": 10331.68, + "end": 10334.32, + "probability": 0.0572 + }, + { + "start": 10334.32, + "end": 10334.32, + "probability": 0.0492 + }, + { + "start": 10334.32, + "end": 10334.6, + "probability": 0.1708 + }, + { + "start": 10335.62, + "end": 10337.08, + "probability": 0.323 + }, + { + "start": 10337.54, + "end": 10339.68, + "probability": 0.2086 + }, + { + "start": 10339.7, + "end": 10340.67, + "probability": 0.3659 + }, + { + "start": 10341.66, + "end": 10344.52, + "probability": 0.5134 + }, + { + "start": 10344.8, + "end": 10345.4, + "probability": 0.5984 + }, + { + "start": 10346.28, + "end": 10347.16, + "probability": 0.4965 + }, + { + "start": 10347.18, + "end": 10348.14, + "probability": 0.3969 + }, + { + "start": 10348.26, + "end": 10348.78, + "probability": 0.7897 + }, + { + "start": 10348.78, + "end": 10349.84, + "probability": 0.551 + }, + { + "start": 10350.48, + "end": 10354.2, + "probability": 0.036 + }, + { + "start": 10354.2, + "end": 10354.2, + "probability": 0.3402 + }, + { + "start": 10354.2, + "end": 10354.2, + "probability": 0.4004 + }, + { + "start": 10354.2, + "end": 10354.74, + "probability": 0.0852 + }, + { + "start": 10357.68, + "end": 10358.1, + "probability": 0.2131 + }, + { + "start": 10359.1, + "end": 10361.2, + "probability": 0.8557 + }, + { + "start": 10361.66, + "end": 10363.54, + "probability": 0.9272 + }, + { + "start": 10364.5, + "end": 10365.49, + "probability": 0.9031 + }, + { + "start": 10365.58, + "end": 10365.58, + "probability": 0.0012 + }, + { + "start": 10366.16, + "end": 10367.13, + "probability": 0.757 + }, + { + "start": 10367.46, + "end": 10367.94, + "probability": 0.5878 + }, + { + "start": 10368.04, + "end": 10368.2, + "probability": 0.6722 + }, + { + "start": 10368.8, + "end": 10369.42, + "probability": 0.9613 + }, + { + "start": 10369.5, + "end": 10369.96, + "probability": 0.529 + }, + { + "start": 10370.06, + "end": 10370.42, + "probability": 0.7935 + }, + { + "start": 10370.74, + "end": 10373.84, + "probability": 0.8795 + }, + { + "start": 10374.54, + "end": 10376.74, + "probability": 0.922 + }, + { + "start": 10376.74, + "end": 10379.02, + "probability": 0.7651 + }, + { + "start": 10379.96, + "end": 10382.6, + "probability": 0.8936 + }, + { + "start": 10383.98, + "end": 10384.58, + "probability": 0.4872 + }, + { + "start": 10384.66, + "end": 10384.66, + "probability": 0.5205 + }, + { + "start": 10384.66, + "end": 10387.18, + "probability": 0.9217 + }, + { + "start": 10387.22, + "end": 10389.86, + "probability": 0.5337 + }, + { + "start": 10390.7, + "end": 10391.98, + "probability": 0.9233 + }, + { + "start": 10392.84, + "end": 10393.5, + "probability": 0.7798 + }, + { + "start": 10393.92, + "end": 10394.74, + "probability": 0.7328 + }, + { + "start": 10395.32, + "end": 10395.57, + "probability": 0.4873 + }, + { + "start": 10395.94, + "end": 10396.82, + "probability": 0.6488 + }, + { + "start": 10397.08, + "end": 10397.16, + "probability": 0.567 + }, + { + "start": 10397.32, + "end": 10397.52, + "probability": 0.5806 + }, + { + "start": 10397.52, + "end": 10398.12, + "probability": 0.8107 + }, + { + "start": 10398.28, + "end": 10399.9, + "probability": 0.6396 + }, + { + "start": 10400.78, + "end": 10403.52, + "probability": 0.6811 + }, + { + "start": 10404.0, + "end": 10404.9, + "probability": 0.4599 + }, + { + "start": 10407.2, + "end": 10410.38, + "probability": 0.7171 + }, + { + "start": 10410.96, + "end": 10411.8, + "probability": 0.9712 + }, + { + "start": 10412.86, + "end": 10414.24, + "probability": 0.8548 + }, + { + "start": 10415.16, + "end": 10416.58, + "probability": 0.3749 + }, + { + "start": 10416.78, + "end": 10417.76, + "probability": 0.1887 + }, + { + "start": 10433.1, + "end": 10433.36, + "probability": 0.1939 + }, + { + "start": 10433.36, + "end": 10435.14, + "probability": 0.4119 + }, + { + "start": 10435.28, + "end": 10437.98, + "probability": 0.9242 + }, + { + "start": 10438.9, + "end": 10441.61, + "probability": 0.1238 + }, + { + "start": 10449.48, + "end": 10449.72, + "probability": 0.0002 + }, + { + "start": 10450.74, + "end": 10450.8, + "probability": 0.0972 + }, + { + "start": 10451.54, + "end": 10453.14, + "probability": 0.0561 + }, + { + "start": 10453.72, + "end": 10454.66, + "probability": 0.0627 + }, + { + "start": 10454.97, + "end": 10458.64, + "probability": 0.0698 + }, + { + "start": 10460.1, + "end": 10461.02, + "probability": 0.2051 + }, + { + "start": 10465.4, + "end": 10465.72, + "probability": 0.3893 + }, + { + "start": 10466.58, + "end": 10467.04, + "probability": 0.0293 + }, + { + "start": 10468.75, + "end": 10470.14, + "probability": 0.0364 + }, + { + "start": 10470.42, + "end": 10474.84, + "probability": 0.0521 + }, + { + "start": 10474.88, + "end": 10475.74, + "probability": 0.2929 + }, + { + "start": 10475.74, + "end": 10475.74, + "probability": 0.1977 + }, + { + "start": 10477.1, + "end": 10477.54, + "probability": 0.1351 + }, + { + "start": 10477.54, + "end": 10479.46, + "probability": 0.5965 + }, + { + "start": 10480.76, + "end": 10481.02, + "probability": 0.0826 + }, + { + "start": 10481.02, + "end": 10481.02, + "probability": 0.175 + }, + { + "start": 10481.02, + "end": 10481.02, + "probability": 0.2714 + }, + { + "start": 10481.02, + "end": 10482.52, + "probability": 0.0914 + }, + { + "start": 10483.16, + "end": 10484.16, + "probability": 0.691 + }, + { + "start": 10485.0, + "end": 10486.16, + "probability": 0.5051 + }, + { + "start": 10486.68, + "end": 10488.06, + "probability": 0.8195 + }, + { + "start": 10488.92, + "end": 10489.96, + "probability": 0.8817 + }, + { + "start": 10490.92, + "end": 10492.14, + "probability": 0.6865 + }, + { + "start": 10492.56, + "end": 10496.24, + "probability": 0.9695 + }, + { + "start": 10497.58, + "end": 10498.74, + "probability": 0.9973 + }, + { + "start": 10499.32, + "end": 10500.48, + "probability": 0.6729 + }, + { + "start": 10501.36, + "end": 10505.92, + "probability": 0.9907 + }, + { + "start": 10506.62, + "end": 10507.16, + "probability": 0.9753 + }, + { + "start": 10507.84, + "end": 10510.18, + "probability": 0.9991 + }, + { + "start": 10510.84, + "end": 10514.6, + "probability": 0.9832 + }, + { + "start": 10515.62, + "end": 10520.74, + "probability": 0.8491 + }, + { + "start": 10521.78, + "end": 10530.08, + "probability": 0.688 + }, + { + "start": 10530.64, + "end": 10534.14, + "probability": 0.8733 + }, + { + "start": 10535.22, + "end": 10536.79, + "probability": 0.9916 + }, + { + "start": 10538.22, + "end": 10539.88, + "probability": 0.9985 + }, + { + "start": 10540.78, + "end": 10542.32, + "probability": 0.8985 + }, + { + "start": 10543.36, + "end": 10548.9, + "probability": 0.9834 + }, + { + "start": 10549.7, + "end": 10550.55, + "probability": 0.8226 + }, + { + "start": 10551.66, + "end": 10554.2, + "probability": 0.8589 + }, + { + "start": 10555.38, + "end": 10558.94, + "probability": 0.8313 + }, + { + "start": 10559.68, + "end": 10562.46, + "probability": 0.9891 + }, + { + "start": 10563.06, + "end": 10566.62, + "probability": 0.9966 + }, + { + "start": 10567.8, + "end": 10573.28, + "probability": 0.9865 + }, + { + "start": 10574.8, + "end": 10575.88, + "probability": 0.9888 + }, + { + "start": 10577.04, + "end": 10578.24, + "probability": 0.922 + }, + { + "start": 10579.16, + "end": 10583.58, + "probability": 0.9948 + }, + { + "start": 10583.8, + "end": 10588.68, + "probability": 0.997 + }, + { + "start": 10589.38, + "end": 10590.84, + "probability": 0.9679 + }, + { + "start": 10591.4, + "end": 10592.66, + "probability": 0.747 + }, + { + "start": 10593.32, + "end": 10597.94, + "probability": 0.9954 + }, + { + "start": 10598.56, + "end": 10601.9, + "probability": 0.9987 + }, + { + "start": 10602.42, + "end": 10603.5, + "probability": 0.9919 + }, + { + "start": 10604.3, + "end": 10606.9, + "probability": 0.8143 + }, + { + "start": 10607.5, + "end": 10608.62, + "probability": 0.931 + }, + { + "start": 10609.24, + "end": 10611.3, + "probability": 0.9952 + }, + { + "start": 10611.82, + "end": 10614.52, + "probability": 0.9836 + }, + { + "start": 10615.8, + "end": 10621.68, + "probability": 0.9976 + }, + { + "start": 10622.82, + "end": 10624.58, + "probability": 0.877 + }, + { + "start": 10624.74, + "end": 10628.56, + "probability": 0.9816 + }, + { + "start": 10629.72, + "end": 10630.94, + "probability": 0.8485 + }, + { + "start": 10631.74, + "end": 10634.64, + "probability": 0.9821 + }, + { + "start": 10637.32, + "end": 10641.87, + "probability": 0.9562 + }, + { + "start": 10642.78, + "end": 10644.52, + "probability": 0.9272 + }, + { + "start": 10645.68, + "end": 10647.4, + "probability": 0.9816 + }, + { + "start": 10648.44, + "end": 10650.44, + "probability": 0.801 + }, + { + "start": 10651.2, + "end": 10653.72, + "probability": 0.9414 + }, + { + "start": 10654.4, + "end": 10658.32, + "probability": 0.981 + }, + { + "start": 10658.96, + "end": 10661.06, + "probability": 0.8932 + }, + { + "start": 10662.16, + "end": 10663.44, + "probability": 0.6843 + }, + { + "start": 10663.76, + "end": 10666.25, + "probability": 0.9087 + }, + { + "start": 10666.8, + "end": 10667.18, + "probability": 0.9595 + }, + { + "start": 10667.9, + "end": 10668.18, + "probability": 0.8232 + }, + { + "start": 10679.14, + "end": 10679.2, + "probability": 0.1433 + }, + { + "start": 10694.56, + "end": 10695.98, + "probability": 0.4277 + }, + { + "start": 10696.64, + "end": 10698.44, + "probability": 0.831 + }, + { + "start": 10705.54, + "end": 10706.68, + "probability": 0.683 + }, + { + "start": 10706.84, + "end": 10707.84, + "probability": 0.8467 + }, + { + "start": 10707.96, + "end": 10708.92, + "probability": 0.9296 + }, + { + "start": 10710.02, + "end": 10710.8, + "probability": 0.7245 + }, + { + "start": 10712.18, + "end": 10715.4, + "probability": 0.998 + }, + { + "start": 10716.34, + "end": 10720.54, + "probability": 0.9944 + }, + { + "start": 10721.6, + "end": 10724.54, + "probability": 0.9483 + }, + { + "start": 10725.38, + "end": 10727.22, + "probability": 0.9417 + }, + { + "start": 10728.32, + "end": 10729.7, + "probability": 0.9303 + }, + { + "start": 10730.76, + "end": 10733.32, + "probability": 0.7132 + }, + { + "start": 10734.48, + "end": 10736.76, + "probability": 0.9792 + }, + { + "start": 10738.0, + "end": 10738.28, + "probability": 0.283 + }, + { + "start": 10740.2, + "end": 10742.62, + "probability": 0.5878 + }, + { + "start": 10743.66, + "end": 10744.82, + "probability": 0.9836 + }, + { + "start": 10745.74, + "end": 10747.32, + "probability": 0.9478 + }, + { + "start": 10747.72, + "end": 10748.56, + "probability": 0.9688 + }, + { + "start": 10748.86, + "end": 10749.72, + "probability": 0.9823 + }, + { + "start": 10751.74, + "end": 10753.46, + "probability": 0.8407 + }, + { + "start": 10754.82, + "end": 10755.68, + "probability": 0.9908 + }, + { + "start": 10758.68, + "end": 10760.74, + "probability": 0.979 + }, + { + "start": 10761.92, + "end": 10766.06, + "probability": 0.8791 + }, + { + "start": 10766.86, + "end": 10772.18, + "probability": 0.5807 + }, + { + "start": 10772.3, + "end": 10773.84, + "probability": 0.9701 + }, + { + "start": 10775.08, + "end": 10776.3, + "probability": 0.7534 + }, + { + "start": 10777.62, + "end": 10778.64, + "probability": 0.9967 + }, + { + "start": 10782.18, + "end": 10786.02, + "probability": 0.9979 + }, + { + "start": 10786.26, + "end": 10786.86, + "probability": 0.9137 + }, + { + "start": 10787.62, + "end": 10790.03, + "probability": 0.9927 + }, + { + "start": 10790.44, + "end": 10791.7, + "probability": 0.5847 + }, + { + "start": 10793.22, + "end": 10799.34, + "probability": 0.9888 + }, + { + "start": 10800.4, + "end": 10803.1, + "probability": 0.8836 + }, + { + "start": 10804.52, + "end": 10805.9, + "probability": 0.5357 + }, + { + "start": 10806.58, + "end": 10808.6, + "probability": 0.6633 + }, + { + "start": 10811.42, + "end": 10812.0, + "probability": 0.7878 + }, + { + "start": 10814.02, + "end": 10819.54, + "probability": 0.9214 + }, + { + "start": 10820.56, + "end": 10822.34, + "probability": 0.8293 + }, + { + "start": 10823.38, + "end": 10824.22, + "probability": 0.8733 + }, + { + "start": 10825.14, + "end": 10826.12, + "probability": 0.5822 + }, + { + "start": 10828.38, + "end": 10829.28, + "probability": 0.8525 + }, + { + "start": 10831.88, + "end": 10837.52, + "probability": 0.8807 + }, + { + "start": 10838.04, + "end": 10840.16, + "probability": 0.7065 + }, + { + "start": 10841.2, + "end": 10841.92, + "probability": 0.9064 + }, + { + "start": 10844.02, + "end": 10846.82, + "probability": 0.998 + }, + { + "start": 10847.58, + "end": 10848.56, + "probability": 0.8306 + }, + { + "start": 10849.96, + "end": 10851.48, + "probability": 0.9165 + }, + { + "start": 10854.52, + "end": 10856.96, + "probability": 0.8791 + }, + { + "start": 10857.92, + "end": 10862.54, + "probability": 0.9146 + }, + { + "start": 10862.62, + "end": 10866.6, + "probability": 0.9844 + }, + { + "start": 10867.74, + "end": 10872.18, + "probability": 0.8314 + }, + { + "start": 10872.64, + "end": 10874.08, + "probability": 0.8535 + }, + { + "start": 10875.46, + "end": 10879.22, + "probability": 0.9949 + }, + { + "start": 10880.36, + "end": 10883.78, + "probability": 0.9211 + }, + { + "start": 10885.24, + "end": 10886.24, + "probability": 0.8869 + }, + { + "start": 10887.18, + "end": 10889.62, + "probability": 0.9977 + }, + { + "start": 10890.86, + "end": 10892.44, + "probability": 0.9876 + }, + { + "start": 10893.26, + "end": 10895.36, + "probability": 0.9458 + }, + { + "start": 10896.44, + "end": 10897.98, + "probability": 0.65 + }, + { + "start": 10898.64, + "end": 10900.74, + "probability": 0.9198 + }, + { + "start": 10901.84, + "end": 10904.14, + "probability": 0.9402 + }, + { + "start": 10904.94, + "end": 10908.19, + "probability": 0.9155 + }, + { + "start": 10909.1, + "end": 10909.98, + "probability": 0.8479 + }, + { + "start": 10910.06, + "end": 10912.64, + "probability": 0.8419 + }, + { + "start": 10914.24, + "end": 10920.58, + "probability": 0.926 + }, + { + "start": 10921.18, + "end": 10921.76, + "probability": 0.4833 + }, + { + "start": 10923.6, + "end": 10927.6, + "probability": 0.9572 + }, + { + "start": 10927.66, + "end": 10929.98, + "probability": 0.9756 + }, + { + "start": 10930.08, + "end": 10933.2, + "probability": 0.9771 + }, + { + "start": 10934.44, + "end": 10937.84, + "probability": 0.9962 + }, + { + "start": 10937.96, + "end": 10938.52, + "probability": 0.6654 + }, + { + "start": 10938.66, + "end": 10939.26, + "probability": 0.8394 + }, + { + "start": 10939.42, + "end": 10940.9, + "probability": 0.8937 + }, + { + "start": 10949.35, + "end": 10952.22, + "probability": 0.1992 + }, + { + "start": 10954.34, + "end": 10956.7, + "probability": 0.4821 + }, + { + "start": 10956.92, + "end": 10960.29, + "probability": 0.667 + }, + { + "start": 10963.17, + "end": 10965.05, + "probability": 0.7846 + }, + { + "start": 10966.07, + "end": 10967.57, + "probability": 0.4876 + }, + { + "start": 10967.67, + "end": 10968.43, + "probability": 0.7955 + }, + { + "start": 10968.55, + "end": 10969.35, + "probability": 0.6486 + }, + { + "start": 10969.45, + "end": 10970.66, + "probability": 0.5647 + }, + { + "start": 10971.19, + "end": 10971.42, + "probability": 0.7749 + }, + { + "start": 10971.51, + "end": 10972.23, + "probability": 0.7497 + }, + { + "start": 10972.59, + "end": 10974.61, + "probability": 0.58 + }, + { + "start": 10974.71, + "end": 10977.73, + "probability": 0.4567 + }, + { + "start": 10978.33, + "end": 10982.47, + "probability": 0.9762 + }, + { + "start": 10983.01, + "end": 10983.01, + "probability": 0.0121 + }, + { + "start": 10983.01, + "end": 10985.71, + "probability": 0.8 + }, + { + "start": 10986.31, + "end": 10987.39, + "probability": 0.6213 + }, + { + "start": 10987.67, + "end": 10990.43, + "probability": 0.7533 + }, + { + "start": 10990.47, + "end": 10991.99, + "probability": 0.978 + }, + { + "start": 10992.05, + "end": 10995.59, + "probability": 0.8026 + }, + { + "start": 10996.21, + "end": 10998.79, + "probability": 0.9889 + }, + { + "start": 10999.05, + "end": 11000.63, + "probability": 0.9287 + }, + { + "start": 11000.65, + "end": 11001.25, + "probability": 0.6034 + }, + { + "start": 11001.99, + "end": 11002.09, + "probability": 0.3654 + }, + { + "start": 11002.25, + "end": 11003.83, + "probability": 0.8741 + }, + { + "start": 11004.31, + "end": 11007.49, + "probability": 0.6769 + }, + { + "start": 11007.53, + "end": 11008.25, + "probability": 0.7684 + }, + { + "start": 11008.89, + "end": 11010.69, + "probability": 0.6696 + }, + { + "start": 11011.15, + "end": 11012.71, + "probability": 0.9604 + }, + { + "start": 11012.83, + "end": 11015.93, + "probability": 0.7696 + }, + { + "start": 11016.17, + "end": 11016.77, + "probability": 0.6036 + }, + { + "start": 11016.89, + "end": 11018.77, + "probability": 0.7971 + }, + { + "start": 11018.87, + "end": 11019.13, + "probability": 0.6491 + }, + { + "start": 11019.21, + "end": 11019.31, + "probability": 0.3316 + }, + { + "start": 11020.09, + "end": 11022.21, + "probability": 0.9595 + }, + { + "start": 11022.43, + "end": 11024.19, + "probability": 0.9409 + }, + { + "start": 11024.87, + "end": 11028.25, + "probability": 0.9672 + }, + { + "start": 11028.91, + "end": 11030.35, + "probability": 0.9705 + }, + { + "start": 11030.55, + "end": 11032.99, + "probability": 0.7772 + }, + { + "start": 11033.51, + "end": 11036.99, + "probability": 0.6395 + }, + { + "start": 11037.77, + "end": 11038.13, + "probability": 0.0146 + }, + { + "start": 11039.21, + "end": 11039.81, + "probability": 0.6593 + }, + { + "start": 11040.67, + "end": 11042.25, + "probability": 0.6744 + }, + { + "start": 11042.89, + "end": 11043.81, + "probability": 0.7075 + }, + { + "start": 11044.59, + "end": 11048.47, + "probability": 0.9014 + }, + { + "start": 11049.89, + "end": 11053.05, + "probability": 0.9502 + }, + { + "start": 11053.55, + "end": 11058.23, + "probability": 0.9082 + }, + { + "start": 11058.3, + "end": 11059.81, + "probability": 0.9608 + }, + { + "start": 11060.19, + "end": 11060.99, + "probability": 0.4682 + }, + { + "start": 11061.07, + "end": 11062.31, + "probability": 0.7209 + }, + { + "start": 11062.31, + "end": 11063.09, + "probability": 0.9517 + }, + { + "start": 11063.25, + "end": 11065.57, + "probability": 0.7166 + }, + { + "start": 11065.99, + "end": 11067.47, + "probability": 0.7155 + }, + { + "start": 11067.91, + "end": 11070.04, + "probability": 0.9932 + }, + { + "start": 11072.03, + "end": 11074.51, + "probability": 0.4055 + }, + { + "start": 11074.53, + "end": 11075.11, + "probability": 0.5372 + }, + { + "start": 11075.25, + "end": 11076.01, + "probability": 0.7359 + }, + { + "start": 11076.01, + "end": 11077.61, + "probability": 0.7618 + }, + { + "start": 11077.89, + "end": 11079.89, + "probability": 0.9438 + }, + { + "start": 11079.95, + "end": 11082.35, + "probability": 0.7435 + }, + { + "start": 11083.48, + "end": 11085.45, + "probability": 0.4626 + }, + { + "start": 11085.45, + "end": 11086.09, + "probability": 0.5089 + }, + { + "start": 11086.79, + "end": 11088.16, + "probability": 0.6141 + }, + { + "start": 11088.59, + "end": 11091.29, + "probability": 0.78 + }, + { + "start": 11091.33, + "end": 11092.33, + "probability": 0.8982 + }, + { + "start": 11093.15, + "end": 11093.69, + "probability": 0.838 + }, + { + "start": 11093.97, + "end": 11097.59, + "probability": 0.9612 + }, + { + "start": 11097.91, + "end": 11099.85, + "probability": 0.9619 + }, + { + "start": 11099.87, + "end": 11101.17, + "probability": 0.7546 + }, + { + "start": 11101.27, + "end": 11104.49, + "probability": 0.9192 + }, + { + "start": 11104.65, + "end": 11105.61, + "probability": 0.7572 + }, + { + "start": 11105.93, + "end": 11108.09, + "probability": 0.5085 + }, + { + "start": 11108.29, + "end": 11109.35, + "probability": 0.3933 + }, + { + "start": 11109.95, + "end": 11110.85, + "probability": 0.6293 + }, + { + "start": 11111.27, + "end": 11113.87, + "probability": 0.812 + }, + { + "start": 11114.33, + "end": 11118.61, + "probability": 0.7479 + }, + { + "start": 11119.45, + "end": 11120.75, + "probability": 0.6566 + }, + { + "start": 11121.47, + "end": 11122.65, + "probability": 0.828 + }, + { + "start": 11122.93, + "end": 11128.13, + "probability": 0.8533 + }, + { + "start": 11128.53, + "end": 11132.23, + "probability": 0.9795 + }, + { + "start": 11132.29, + "end": 11133.19, + "probability": 0.7481 + }, + { + "start": 11133.27, + "end": 11136.55, + "probability": 0.678 + }, + { + "start": 11137.09, + "end": 11141.85, + "probability": 0.9571 + }, + { + "start": 11142.09, + "end": 11142.99, + "probability": 0.66 + }, + { + "start": 11143.37, + "end": 11148.53, + "probability": 0.9907 + }, + { + "start": 11148.65, + "end": 11149.29, + "probability": 0.9917 + }, + { + "start": 11149.43, + "end": 11150.06, + "probability": 0.6654 + }, + { + "start": 11151.21, + "end": 11151.83, + "probability": 0.9277 + }, + { + "start": 11151.91, + "end": 11153.09, + "probability": 0.9784 + }, + { + "start": 11153.23, + "end": 11153.89, + "probability": 0.8651 + }, + { + "start": 11154.35, + "end": 11155.05, + "probability": 0.4905 + }, + { + "start": 11155.45, + "end": 11159.31, + "probability": 0.9359 + }, + { + "start": 11159.45, + "end": 11164.27, + "probability": 0.6732 + }, + { + "start": 11164.41, + "end": 11165.43, + "probability": 0.6714 + }, + { + "start": 11165.85, + "end": 11167.97, + "probability": 0.9734 + }, + { + "start": 11168.67, + "end": 11170.07, + "probability": 0.78 + }, + { + "start": 11170.25, + "end": 11170.99, + "probability": 0.675 + }, + { + "start": 11171.09, + "end": 11173.41, + "probability": 0.8468 + }, + { + "start": 11173.73, + "end": 11174.03, + "probability": 0.7336 + }, + { + "start": 11174.65, + "end": 11174.65, + "probability": 0.0998 + }, + { + "start": 11174.65, + "end": 11175.27, + "probability": 0.5385 + }, + { + "start": 11175.53, + "end": 11176.31, + "probability": 0.8239 + }, + { + "start": 11177.13, + "end": 11177.31, + "probability": 0.0013 + }, + { + "start": 11178.95, + "end": 11181.39, + "probability": 0.7766 + }, + { + "start": 11182.17, + "end": 11186.49, + "probability": 0.9795 + }, + { + "start": 11187.15, + "end": 11190.46, + "probability": 0.9379 + }, + { + "start": 11192.05, + "end": 11196.11, + "probability": 0.6926 + }, + { + "start": 11196.67, + "end": 11198.69, + "probability": 0.9394 + }, + { + "start": 11199.25, + "end": 11201.67, + "probability": 0.8495 + }, + { + "start": 11202.23, + "end": 11204.63, + "probability": 0.9616 + }, + { + "start": 11205.59, + "end": 11209.07, + "probability": 0.9668 + }, + { + "start": 11209.07, + "end": 11212.25, + "probability": 0.9837 + }, + { + "start": 11212.91, + "end": 11214.85, + "probability": 0.8663 + }, + { + "start": 11215.99, + "end": 11217.37, + "probability": 0.4316 + }, + { + "start": 11219.09, + "end": 11226.13, + "probability": 0.9845 + }, + { + "start": 11226.83, + "end": 11231.33, + "probability": 0.9759 + }, + { + "start": 11231.89, + "end": 11236.21, + "probability": 0.9891 + }, + { + "start": 11236.21, + "end": 11243.03, + "probability": 0.7344 + }, + { + "start": 11244.17, + "end": 11247.21, + "probability": 0.9979 + }, + { + "start": 11247.21, + "end": 11251.45, + "probability": 0.998 + }, + { + "start": 11251.93, + "end": 11252.41, + "probability": 0.4904 + }, + { + "start": 11253.01, + "end": 11253.33, + "probability": 0.363 + }, + { + "start": 11255.05, + "end": 11260.81, + "probability": 0.9645 + }, + { + "start": 11261.59, + "end": 11267.11, + "probability": 0.9728 + }, + { + "start": 11268.13, + "end": 11273.59, + "probability": 0.992 + }, + { + "start": 11274.55, + "end": 11276.63, + "probability": 0.9681 + }, + { + "start": 11277.19, + "end": 11279.95, + "probability": 0.9795 + }, + { + "start": 11280.51, + "end": 11282.13, + "probability": 0.9283 + }, + { + "start": 11282.89, + "end": 11283.17, + "probability": 0.7617 + }, + { + "start": 11288.29, + "end": 11289.53, + "probability": 0.4308 + }, + { + "start": 11292.03, + "end": 11294.49, + "probability": 0.5314 + }, + { + "start": 11294.49, + "end": 11294.49, + "probability": 0.1559 + }, + { + "start": 11294.49, + "end": 11296.93, + "probability": 0.6862 + }, + { + "start": 11297.71, + "end": 11298.35, + "probability": 0.5028 + }, + { + "start": 11299.01, + "end": 11299.55, + "probability": 0.7014 + }, + { + "start": 11302.57, + "end": 11303.89, + "probability": 0.7388 + }, + { + "start": 11311.41, + "end": 11312.17, + "probability": 0.0544 + }, + { + "start": 11315.01, + "end": 11316.81, + "probability": 0.8394 + }, + { + "start": 11318.79, + "end": 11319.27, + "probability": 0.47 + }, + { + "start": 11319.35, + "end": 11321.37, + "probability": 0.7614 + }, + { + "start": 11321.75, + "end": 11322.83, + "probability": 0.7678 + }, + { + "start": 11323.87, + "end": 11326.97, + "probability": 0.6359 + }, + { + "start": 11327.71, + "end": 11328.61, + "probability": 0.7866 + }, + { + "start": 11329.11, + "end": 11329.57, + "probability": 0.9322 + }, + { + "start": 11330.17, + "end": 11332.39, + "probability": 0.0815 + }, + { + "start": 11333.99, + "end": 11336.87, + "probability": 0.5694 + }, + { + "start": 11337.73, + "end": 11341.53, + "probability": 0.8707 + }, + { + "start": 11341.59, + "end": 11344.83, + "probability": 0.9587 + }, + { + "start": 11346.55, + "end": 11350.69, + "probability": 0.9985 + }, + { + "start": 11351.71, + "end": 11354.01, + "probability": 0.924 + }, + { + "start": 11355.63, + "end": 11357.81, + "probability": 0.9974 + }, + { + "start": 11357.81, + "end": 11360.51, + "probability": 0.9846 + }, + { + "start": 11361.61, + "end": 11364.19, + "probability": 0.965 + }, + { + "start": 11365.69, + "end": 11370.99, + "probability": 0.994 + }, + { + "start": 11371.65, + "end": 11374.12, + "probability": 0.9658 + }, + { + "start": 11376.19, + "end": 11377.94, + "probability": 0.5719 + }, + { + "start": 11378.77, + "end": 11382.27, + "probability": 0.7233 + }, + { + "start": 11384.49, + "end": 11388.67, + "probability": 0.9836 + }, + { + "start": 11389.57, + "end": 11391.79, + "probability": 0.998 + }, + { + "start": 11393.05, + "end": 11396.82, + "probability": 0.9873 + }, + { + "start": 11397.55, + "end": 11399.47, + "probability": 0.8767 + }, + { + "start": 11399.59, + "end": 11402.69, + "probability": 0.9752 + }, + { + "start": 11403.25, + "end": 11406.53, + "probability": 0.9916 + }, + { + "start": 11408.71, + "end": 11411.33, + "probability": 0.9955 + }, + { + "start": 11412.37, + "end": 11415.35, + "probability": 0.9987 + }, + { + "start": 11416.01, + "end": 11418.61, + "probability": 0.7836 + }, + { + "start": 11419.69, + "end": 11423.15, + "probability": 0.9961 + }, + { + "start": 11423.15, + "end": 11429.01, + "probability": 0.9803 + }, + { + "start": 11429.71, + "end": 11432.21, + "probability": 0.5115 + }, + { + "start": 11432.85, + "end": 11433.73, + "probability": 0.7644 + }, + { + "start": 11436.09, + "end": 11437.11, + "probability": 0.8692 + }, + { + "start": 11437.31, + "end": 11438.93, + "probability": 0.9967 + }, + { + "start": 11439.17, + "end": 11440.23, + "probability": 0.2367 + }, + { + "start": 11440.73, + "end": 11444.01, + "probability": 0.8395 + }, + { + "start": 11445.19, + "end": 11447.25, + "probability": 0.111 + }, + { + "start": 11450.15, + "end": 11452.35, + "probability": 0.7697 + }, + { + "start": 11452.43, + "end": 11454.63, + "probability": 0.9741 + }, + { + "start": 11454.63, + "end": 11457.23, + "probability": 0.9926 + }, + { + "start": 11458.15, + "end": 11459.11, + "probability": 0.9517 + }, + { + "start": 11460.37, + "end": 11462.75, + "probability": 0.9968 + }, + { + "start": 11462.75, + "end": 11466.57, + "probability": 0.6517 + }, + { + "start": 11467.09, + "end": 11473.06, + "probability": 0.9585 + }, + { + "start": 11473.29, + "end": 11473.99, + "probability": 0.4601 + }, + { + "start": 11474.47, + "end": 11479.71, + "probability": 0.9913 + }, + { + "start": 11480.53, + "end": 11482.29, + "probability": 0.9911 + }, + { + "start": 11483.15, + "end": 11486.29, + "probability": 0.7282 + }, + { + "start": 11487.07, + "end": 11489.91, + "probability": 0.9805 + }, + { + "start": 11490.25, + "end": 11492.59, + "probability": 0.7273 + }, + { + "start": 11492.63, + "end": 11495.85, + "probability": 0.8025 + }, + { + "start": 11496.39, + "end": 11496.81, + "probability": 0.7917 + }, + { + "start": 11497.55, + "end": 11501.05, + "probability": 0.7227 + }, + { + "start": 11502.17, + "end": 11502.9, + "probability": 0.9471 + }, + { + "start": 11504.05, + "end": 11504.31, + "probability": 0.4559 + }, + { + "start": 11504.51, + "end": 11507.11, + "probability": 0.9362 + }, + { + "start": 11507.21, + "end": 11508.17, + "probability": 0.8763 + }, + { + "start": 11508.25, + "end": 11508.87, + "probability": 0.4141 + }, + { + "start": 11509.87, + "end": 11511.67, + "probability": 0.999 + }, + { + "start": 11511.77, + "end": 11514.13, + "probability": 0.9712 + }, + { + "start": 11515.45, + "end": 11518.55, + "probability": 0.8896 + }, + { + "start": 11518.68, + "end": 11524.31, + "probability": 0.9966 + }, + { + "start": 11524.33, + "end": 11527.09, + "probability": 0.9071 + }, + { + "start": 11528.85, + "end": 11531.33, + "probability": 0.8073 + }, + { + "start": 11531.33, + "end": 11535.43, + "probability": 0.9317 + }, + { + "start": 11537.23, + "end": 11541.63, + "probability": 0.9544 + }, + { + "start": 11542.67, + "end": 11546.95, + "probability": 0.9689 + }, + { + "start": 11546.95, + "end": 11551.23, + "probability": 0.9951 + }, + { + "start": 11551.43, + "end": 11552.13, + "probability": 0.936 + }, + { + "start": 11553.19, + "end": 11554.33, + "probability": 0.9245 + }, + { + "start": 11555.05, + "end": 11555.81, + "probability": 0.6186 + }, + { + "start": 11556.51, + "end": 11558.95, + "probability": 0.9715 + }, + { + "start": 11559.01, + "end": 11563.09, + "probability": 0.9161 + }, + { + "start": 11563.57, + "end": 11567.61, + "probability": 0.9337 + }, + { + "start": 11568.85, + "end": 11573.05, + "probability": 0.8793 + }, + { + "start": 11573.65, + "end": 11578.83, + "probability": 0.9705 + }, + { + "start": 11578.83, + "end": 11581.79, + "probability": 0.9564 + }, + { + "start": 11582.85, + "end": 11586.25, + "probability": 0.9897 + }, + { + "start": 11586.25, + "end": 11588.96, + "probability": 0.9551 + }, + { + "start": 11589.73, + "end": 11591.21, + "probability": 0.9545 + }, + { + "start": 11592.09, + "end": 11595.13, + "probability": 0.79 + }, + { + "start": 11595.33, + "end": 11598.27, + "probability": 0.6505 + }, + { + "start": 11598.53, + "end": 11600.73, + "probability": 0.9609 + }, + { + "start": 11601.33, + "end": 11601.79, + "probability": 0.5127 + }, + { + "start": 11601.91, + "end": 11605.91, + "probability": 0.9202 + }, + { + "start": 11606.11, + "end": 11609.69, + "probability": 0.9861 + }, + { + "start": 11611.63, + "end": 11616.47, + "probability": 0.9932 + }, + { + "start": 11617.53, + "end": 11619.11, + "probability": 0.583 + }, + { + "start": 11620.05, + "end": 11624.53, + "probability": 0.9967 + }, + { + "start": 11627.21, + "end": 11627.43, + "probability": 0.1089 + }, + { + "start": 11627.43, + "end": 11627.53, + "probability": 0.0301 + }, + { + "start": 11627.53, + "end": 11627.53, + "probability": 0.0599 + }, + { + "start": 11627.53, + "end": 11627.53, + "probability": 0.1987 + }, + { + "start": 11627.53, + "end": 11627.89, + "probability": 0.4504 + }, + { + "start": 11627.89, + "end": 11628.21, + "probability": 0.4911 + }, + { + "start": 11628.27, + "end": 11628.75, + "probability": 0.2734 + }, + { + "start": 11628.85, + "end": 11629.27, + "probability": 0.7243 + }, + { + "start": 11629.59, + "end": 11630.35, + "probability": 0.874 + }, + { + "start": 11630.95, + "end": 11632.93, + "probability": 0.9361 + }, + { + "start": 11633.55, + "end": 11634.95, + "probability": 0.8707 + }, + { + "start": 11635.95, + "end": 11637.37, + "probability": 0.5476 + }, + { + "start": 11638.71, + "end": 11643.49, + "probability": 0.5905 + }, + { + "start": 11644.25, + "end": 11646.59, + "probability": 0.9852 + }, + { + "start": 11648.47, + "end": 11648.97, + "probability": 0.9499 + }, + { + "start": 11649.11, + "end": 11652.59, + "probability": 0.9637 + }, + { + "start": 11653.33, + "end": 11654.31, + "probability": 0.5218 + }, + { + "start": 11655.59, + "end": 11657.93, + "probability": 0.8646 + }, + { + "start": 11657.93, + "end": 11661.65, + "probability": 0.9917 + }, + { + "start": 11662.49, + "end": 11664.09, + "probability": 0.9842 + }, + { + "start": 11664.28, + "end": 11666.13, + "probability": 0.8812 + }, + { + "start": 11666.65, + "end": 11670.29, + "probability": 0.7881 + }, + { + "start": 11670.41, + "end": 11670.71, + "probability": 0.4876 + }, + { + "start": 11672.89, + "end": 11673.91, + "probability": 0.9049 + }, + { + "start": 11674.87, + "end": 11676.31, + "probability": 0.6451 + }, + { + "start": 11676.53, + "end": 11679.01, + "probability": 0.9306 + }, + { + "start": 11680.07, + "end": 11682.53, + "probability": 0.9905 + }, + { + "start": 11683.09, + "end": 11685.49, + "probability": 0.5644 + }, + { + "start": 11686.29, + "end": 11689.53, + "probability": 0.7868 + }, + { + "start": 11690.45, + "end": 11691.89, + "probability": 0.851 + }, + { + "start": 11691.99, + "end": 11693.93, + "probability": 0.9829 + }, + { + "start": 11695.25, + "end": 11695.35, + "probability": 0.0189 + }, + { + "start": 11695.67, + "end": 11696.67, + "probability": 0.3227 + }, + { + "start": 11697.81, + "end": 11701.69, + "probability": 0.982 + }, + { + "start": 11701.69, + "end": 11705.89, + "probability": 0.7846 + }, + { + "start": 11706.65, + "end": 11710.13, + "probability": 0.6747 + }, + { + "start": 11710.77, + "end": 11714.83, + "probability": 0.9728 + }, + { + "start": 11717.87, + "end": 11720.21, + "probability": 0.9521 + }, + { + "start": 11721.23, + "end": 11721.79, + "probability": 0.6217 + }, + { + "start": 11722.33, + "end": 11726.25, + "probability": 0.6974 + }, + { + "start": 11727.17, + "end": 11728.63, + "probability": 0.9311 + }, + { + "start": 11729.93, + "end": 11731.93, + "probability": 0.845 + }, + { + "start": 11732.73, + "end": 11734.35, + "probability": 0.9721 + }, + { + "start": 11735.09, + "end": 11736.43, + "probability": 0.9581 + }, + { + "start": 11737.23, + "end": 11740.07, + "probability": 0.8956 + }, + { + "start": 11741.63, + "end": 11745.05, + "probability": 0.9778 + }, + { + "start": 11746.25, + "end": 11746.67, + "probability": 0.9468 + }, + { + "start": 11747.25, + "end": 11750.25, + "probability": 0.9843 + }, + { + "start": 11750.25, + "end": 11752.33, + "probability": 0.7768 + }, + { + "start": 11753.57, + "end": 11756.25, + "probability": 0.0117 + }, + { + "start": 11756.41, + "end": 11759.05, + "probability": 0.8757 + }, + { + "start": 11759.69, + "end": 11759.87, + "probability": 0.1601 + }, + { + "start": 11759.87, + "end": 11761.75, + "probability": 0.984 + }, + { + "start": 11763.07, + "end": 11765.15, + "probability": 0.8895 + }, + { + "start": 11765.93, + "end": 11769.87, + "probability": 0.9055 + }, + { + "start": 11770.87, + "end": 11772.15, + "probability": 0.9021 + }, + { + "start": 11772.67, + "end": 11775.27, + "probability": 0.8665 + }, + { + "start": 11776.35, + "end": 11780.79, + "probability": 0.8493 + }, + { + "start": 11780.83, + "end": 11783.09, + "probability": 0.8854 + }, + { + "start": 11783.91, + "end": 11788.55, + "probability": 0.971 + }, + { + "start": 11789.09, + "end": 11794.61, + "probability": 0.797 + }, + { + "start": 11794.73, + "end": 11797.57, + "probability": 0.9932 + }, + { + "start": 11798.39, + "end": 11798.81, + "probability": 0.7814 + }, + { + "start": 11799.43, + "end": 11802.79, + "probability": 0.6086 + }, + { + "start": 11803.55, + "end": 11807.23, + "probability": 0.9941 + }, + { + "start": 11807.43, + "end": 11811.53, + "probability": 0.9557 + }, + { + "start": 11812.77, + "end": 11816.11, + "probability": 0.9449 + }, + { + "start": 11816.85, + "end": 11819.11, + "probability": 0.7838 + }, + { + "start": 11819.11, + "end": 11824.51, + "probability": 0.9322 + }, + { + "start": 11825.71, + "end": 11828.95, + "probability": 0.8928 + }, + { + "start": 11829.09, + "end": 11833.19, + "probability": 0.8234 + }, + { + "start": 11833.35, + "end": 11833.77, + "probability": 0.0565 + }, + { + "start": 11833.87, + "end": 11834.71, + "probability": 0.8115 + }, + { + "start": 11835.29, + "end": 11836.55, + "probability": 0.6572 + }, + { + "start": 11836.67, + "end": 11838.93, + "probability": 0.9859 + }, + { + "start": 11839.39, + "end": 11841.79, + "probability": 0.1377 + }, + { + "start": 11843.33, + "end": 11844.36, + "probability": 0.9895 + }, + { + "start": 11844.49, + "end": 11845.63, + "probability": 0.1724 + }, + { + "start": 11847.25, + "end": 11850.31, + "probability": 0.8086 + }, + { + "start": 11850.43, + "end": 11853.33, + "probability": 0.9905 + }, + { + "start": 11853.85, + "end": 11854.25, + "probability": 0.029 + }, + { + "start": 11854.25, + "end": 11856.75, + "probability": 0.7544 + }, + { + "start": 11856.75, + "end": 11860.26, + "probability": 0.9069 + }, + { + "start": 11860.97, + "end": 11862.17, + "probability": 0.947 + }, + { + "start": 11862.69, + "end": 11865.01, + "probability": 0.8667 + }, + { + "start": 11865.81, + "end": 11867.61, + "probability": 0.8062 + }, + { + "start": 11867.77, + "end": 11871.55, + "probability": 0.4445 + }, + { + "start": 11872.05, + "end": 11872.4, + "probability": 0.334 + }, + { + "start": 11873.79, + "end": 11874.75, + "probability": 0.7778 + }, + { + "start": 11874.89, + "end": 11878.27, + "probability": 0.5016 + }, + { + "start": 11879.11, + "end": 11882.55, + "probability": 0.9162 + }, + { + "start": 11882.55, + "end": 11886.87, + "probability": 0.5829 + }, + { + "start": 11886.89, + "end": 11887.55, + "probability": 0.8877 + }, + { + "start": 11888.51, + "end": 11888.97, + "probability": 0.425 + }, + { + "start": 11889.09, + "end": 11889.89, + "probability": 0.6012 + }, + { + "start": 11890.15, + "end": 11893.81, + "probability": 0.1911 + }, + { + "start": 11894.43, + "end": 11896.49, + "probability": 0.9855 + }, + { + "start": 11896.75, + "end": 11899.33, + "probability": 0.9252 + }, + { + "start": 11900.49, + "end": 11900.99, + "probability": 0.8853 + }, + { + "start": 11901.67, + "end": 11904.65, + "probability": 0.7535 + }, + { + "start": 11906.35, + "end": 11909.83, + "probability": 0.9899 + }, + { + "start": 11910.69, + "end": 11914.37, + "probability": 0.8087 + }, + { + "start": 11914.37, + "end": 11917.29, + "probability": 0.9583 + }, + { + "start": 11918.23, + "end": 11919.81, + "probability": 0.7379 + }, + { + "start": 11920.79, + "end": 11924.09, + "probability": 0.9338 + }, + { + "start": 11924.55, + "end": 11926.09, + "probability": 0.9854 + }, + { + "start": 11928.29, + "end": 11929.61, + "probability": 0.504 + }, + { + "start": 11929.61, + "end": 11929.99, + "probability": 0.9824 + }, + { + "start": 11930.39, + "end": 11931.71, + "probability": 0.2686 + }, + { + "start": 11932.07, + "end": 11933.57, + "probability": 0.8193 + }, + { + "start": 11934.23, + "end": 11939.47, + "probability": 0.5606 + }, + { + "start": 11939.91, + "end": 11941.17, + "probability": 0.4418 + }, + { + "start": 11941.25, + "end": 11941.57, + "probability": 0.2624 + }, + { + "start": 11941.57, + "end": 11941.99, + "probability": 0.128 + }, + { + "start": 11942.47, + "end": 11943.67, + "probability": 0.2902 + }, + { + "start": 11946.65, + "end": 11949.55, + "probability": 0.5985 + }, + { + "start": 11950.83, + "end": 11954.77, + "probability": 0.6751 + }, + { + "start": 11955.43, + "end": 11957.27, + "probability": 0.8328 + }, + { + "start": 11958.21, + "end": 11958.73, + "probability": 0.8302 + }, + { + "start": 11962.21, + "end": 11962.91, + "probability": 0.6564 + }, + { + "start": 11963.03, + "end": 11963.67, + "probability": 0.8089 + }, + { + "start": 11968.15, + "end": 11968.51, + "probability": 0.2247 + }, + { + "start": 11978.23, + "end": 11978.35, + "probability": 0.2058 + }, + { + "start": 11978.35, + "end": 11981.17, + "probability": 0.7524 + }, + { + "start": 11982.99, + "end": 11985.25, + "probability": 0.9939 + }, + { + "start": 11986.83, + "end": 11988.73, + "probability": 0.8063 + }, + { + "start": 11989.85, + "end": 11990.21, + "probability": 0.8636 + }, + { + "start": 11992.35, + "end": 11993.45, + "probability": 0.7715 + }, + { + "start": 11993.91, + "end": 11995.21, + "probability": 0.6452 + }, + { + "start": 11995.39, + "end": 11996.95, + "probability": 0.9669 + }, + { + "start": 11997.17, + "end": 11998.63, + "probability": 0.9781 + }, + { + "start": 11999.15, + "end": 12002.19, + "probability": 0.9539 + }, + { + "start": 12003.2, + "end": 12008.19, + "probability": 0.9462 + }, + { + "start": 12008.67, + "end": 12010.13, + "probability": 0.6625 + }, + { + "start": 12010.81, + "end": 12013.22, + "probability": 0.7065 + }, + { + "start": 12013.85, + "end": 12017.43, + "probability": 0.9733 + }, + { + "start": 12018.07, + "end": 12019.81, + "probability": 0.1615 + }, + { + "start": 12020.47, + "end": 12023.55, + "probability": 0.9882 + }, + { + "start": 12024.23, + "end": 12031.77, + "probability": 0.6368 + }, + { + "start": 12032.21, + "end": 12033.89, + "probability": 0.1188 + }, + { + "start": 12034.29, + "end": 12037.15, + "probability": 0.9714 + }, + { + "start": 12037.55, + "end": 12038.07, + "probability": 0.6544 + }, + { + "start": 12039.47, + "end": 12039.99, + "probability": 0.6471 + }, + { + "start": 12040.07, + "end": 12042.39, + "probability": 0.5551 + }, + { + "start": 12042.95, + "end": 12047.89, + "probability": 0.9627 + }, + { + "start": 12048.41, + "end": 12049.07, + "probability": 0.0003 + }, + { + "start": 12050.17, + "end": 12050.49, + "probability": 0.0351 + }, + { + "start": 12050.49, + "end": 12050.59, + "probability": 0.4981 + }, + { + "start": 12052.63, + "end": 12053.97, + "probability": 0.8502 + }, + { + "start": 12058.17, + "end": 12060.06, + "probability": 0.6906 + }, + { + "start": 12061.15, + "end": 12063.95, + "probability": 0.9307 + }, + { + "start": 12064.47, + "end": 12066.11, + "probability": 0.7205 + }, + { + "start": 12066.97, + "end": 12068.21, + "probability": 0.9744 + }, + { + "start": 12068.75, + "end": 12072.13, + "probability": 0.1227 + }, + { + "start": 12072.69, + "end": 12073.85, + "probability": 0.2994 + }, + { + "start": 12074.77, + "end": 12076.49, + "probability": 0.8555 + }, + { + "start": 12076.59, + "end": 12077.63, + "probability": 0.5942 + }, + { + "start": 12077.99, + "end": 12079.57, + "probability": 0.9731 + }, + { + "start": 12080.13, + "end": 12081.45, + "probability": 0.965 + }, + { + "start": 12081.51, + "end": 12088.29, + "probability": 0.9224 + }, + { + "start": 12088.95, + "end": 12092.85, + "probability": 0.7721 + }, + { + "start": 12092.85, + "end": 12098.23, + "probability": 0.961 + }, + { + "start": 12098.39, + "end": 12101.21, + "probability": 0.7382 + }, + { + "start": 12101.83, + "end": 12103.61, + "probability": 0.8327 + }, + { + "start": 12104.25, + "end": 12107.81, + "probability": 0.84 + }, + { + "start": 12108.85, + "end": 12108.99, + "probability": 0.8363 + }, + { + "start": 12109.57, + "end": 12111.25, + "probability": 0.0084 + }, + { + "start": 12112.11, + "end": 12117.49, + "probability": 0.9988 + }, + { + "start": 12117.99, + "end": 12120.51, + "probability": 0.7499 + }, + { + "start": 12120.65, + "end": 12121.75, + "probability": 0.5631 + }, + { + "start": 12122.49, + "end": 12124.93, + "probability": 0.9036 + }, + { + "start": 12125.57, + "end": 12126.25, + "probability": 0.8392 + }, + { + "start": 12127.23, + "end": 12128.03, + "probability": 0.8856 + }, + { + "start": 12128.77, + "end": 12130.35, + "probability": 0.9557 + }, + { + "start": 12131.27, + "end": 12133.51, + "probability": 0.9052 + }, + { + "start": 12134.17, + "end": 12138.43, + "probability": 0.9957 + }, + { + "start": 12138.43, + "end": 12142.33, + "probability": 0.9492 + }, + { + "start": 12143.07, + "end": 12147.27, + "probability": 0.9733 + }, + { + "start": 12147.37, + "end": 12147.85, + "probability": 0.8677 + }, + { + "start": 12148.11, + "end": 12148.99, + "probability": 0.8892 + }, + { + "start": 12149.73, + "end": 12153.07, + "probability": 0.9902 + }, + { + "start": 12153.07, + "end": 12156.99, + "probability": 0.9984 + }, + { + "start": 12157.91, + "end": 12162.19, + "probability": 0.9484 + }, + { + "start": 12163.21, + "end": 12165.69, + "probability": 0.9961 + }, + { + "start": 12166.51, + "end": 12169.09, + "probability": 0.9424 + }, + { + "start": 12169.81, + "end": 12171.62, + "probability": 0.8818 + }, + { + "start": 12172.33, + "end": 12173.43, + "probability": 0.9164 + }, + { + "start": 12173.51, + "end": 12175.15, + "probability": 0.993 + }, + { + "start": 12175.29, + "end": 12177.37, + "probability": 0.8693 + }, + { + "start": 12178.31, + "end": 12182.07, + "probability": 0.9823 + }, + { + "start": 12182.79, + "end": 12183.05, + "probability": 0.3882 + }, + { + "start": 12183.19, + "end": 12185.79, + "probability": 0.9953 + }, + { + "start": 12186.63, + "end": 12190.31, + "probability": 0.9758 + }, + { + "start": 12191.07, + "end": 12197.35, + "probability": 0.9622 + }, + { + "start": 12197.49, + "end": 12199.83, + "probability": 0.9847 + }, + { + "start": 12200.35, + "end": 12202.13, + "probability": 0.8332 + }, + { + "start": 12202.71, + "end": 12207.61, + "probability": 0.9292 + }, + { + "start": 12208.47, + "end": 12214.51, + "probability": 0.9922 + }, + { + "start": 12215.79, + "end": 12216.65, + "probability": 0.5274 + }, + { + "start": 12217.25, + "end": 12219.05, + "probability": 0.9961 + }, + { + "start": 12219.41, + "end": 12221.97, + "probability": 0.7556 + }, + { + "start": 12222.15, + "end": 12222.95, + "probability": 0.9716 + }, + { + "start": 12223.45, + "end": 12225.01, + "probability": 0.9655 + }, + { + "start": 12225.57, + "end": 12227.79, + "probability": 0.7416 + }, + { + "start": 12228.37, + "end": 12231.57, + "probability": 0.9858 + }, + { + "start": 12232.11, + "end": 12233.57, + "probability": 0.9136 + }, + { + "start": 12233.91, + "end": 12238.43, + "probability": 0.9899 + }, + { + "start": 12239.25, + "end": 12241.33, + "probability": 0.5128 + }, + { + "start": 12242.01, + "end": 12247.37, + "probability": 0.7687 + }, + { + "start": 12247.99, + "end": 12250.27, + "probability": 0.592 + }, + { + "start": 12250.89, + "end": 12253.47, + "probability": 0.9297 + }, + { + "start": 12253.47, + "end": 12255.83, + "probability": 0.5654 + }, + { + "start": 12255.97, + "end": 12262.83, + "probability": 0.9702 + }, + { + "start": 12264.13, + "end": 12267.23, + "probability": 0.913 + }, + { + "start": 12267.47, + "end": 12268.85, + "probability": 0.9903 + }, + { + "start": 12268.95, + "end": 12272.77, + "probability": 0.9829 + }, + { + "start": 12273.23, + "end": 12275.03, + "probability": 0.9978 + }, + { + "start": 12275.13, + "end": 12277.55, + "probability": 0.8978 + }, + { + "start": 12277.73, + "end": 12279.17, + "probability": 0.9475 + }, + { + "start": 12279.27, + "end": 12281.99, + "probability": 0.6967 + }, + { + "start": 12282.03, + "end": 12282.21, + "probability": 0.2778 + }, + { + "start": 12282.21, + "end": 12282.21, + "probability": 0.4944 + }, + { + "start": 12282.21, + "end": 12283.73, + "probability": 0.7065 + }, + { + "start": 12284.11, + "end": 12288.85, + "probability": 0.6987 + }, + { + "start": 12289.01, + "end": 12290.67, + "probability": 0.9694 + }, + { + "start": 12290.79, + "end": 12291.75, + "probability": 0.9292 + }, + { + "start": 12291.79, + "end": 12292.57, + "probability": 0.964 + }, + { + "start": 12292.99, + "end": 12293.99, + "probability": 0.7345 + }, + { + "start": 12294.47, + "end": 12295.81, + "probability": 0.9868 + }, + { + "start": 12297.03, + "end": 12297.77, + "probability": 0.9653 + }, + { + "start": 12298.33, + "end": 12299.25, + "probability": 0.7759 + }, + { + "start": 12301.43, + "end": 12302.61, + "probability": 0.5296 + }, + { + "start": 12302.73, + "end": 12302.73, + "probability": 0.2543 + }, + { + "start": 12302.73, + "end": 12303.75, + "probability": 0.9932 + }, + { + "start": 12304.17, + "end": 12307.53, + "probability": 0.9449 + }, + { + "start": 12307.69, + "end": 12308.23, + "probability": 0.467 + }, + { + "start": 12308.33, + "end": 12309.39, + "probability": 0.4188 + }, + { + "start": 12309.39, + "end": 12309.89, + "probability": 0.5018 + }, + { + "start": 12310.53, + "end": 12314.01, + "probability": 0.9727 + }, + { + "start": 12314.07, + "end": 12315.17, + "probability": 0.8839 + }, + { + "start": 12316.17, + "end": 12320.47, + "probability": 0.982 + }, + { + "start": 12320.93, + "end": 12327.85, + "probability": 0.9902 + }, + { + "start": 12328.81, + "end": 12333.34, + "probability": 0.9463 + }, + { + "start": 12333.81, + "end": 12339.11, + "probability": 0.9977 + }, + { + "start": 12340.09, + "end": 12343.23, + "probability": 0.9219 + }, + { + "start": 12343.41, + "end": 12344.63, + "probability": 0.8768 + }, + { + "start": 12344.87, + "end": 12347.89, + "probability": 0.8175 + }, + { + "start": 12349.57, + "end": 12352.21, + "probability": 0.5384 + }, + { + "start": 12352.81, + "end": 12354.67, + "probability": 0.9915 + }, + { + "start": 12355.07, + "end": 12357.75, + "probability": 0.991 + }, + { + "start": 12358.29, + "end": 12359.44, + "probability": 0.9521 + }, + { + "start": 12360.03, + "end": 12362.59, + "probability": 0.9903 + }, + { + "start": 12363.13, + "end": 12368.93, + "probability": 0.9285 + }, + { + "start": 12369.05, + "end": 12374.43, + "probability": 0.9614 + }, + { + "start": 12374.57, + "end": 12375.49, + "probability": 0.8927 + }, + { + "start": 12376.17, + "end": 12376.67, + "probability": 0.7395 + }, + { + "start": 12380.01, + "end": 12382.23, + "probability": 0.5266 + }, + { + "start": 12382.23, + "end": 12382.46, + "probability": 0.5002 + }, + { + "start": 12383.45, + "end": 12383.73, + "probability": 0.332 + }, + { + "start": 12384.27, + "end": 12385.95, + "probability": 0.7513 + }, + { + "start": 12386.11, + "end": 12387.19, + "probability": 0.4554 + }, + { + "start": 12387.69, + "end": 12388.47, + "probability": 0.5514 + }, + { + "start": 12389.85, + "end": 12390.99, + "probability": 0.4618 + }, + { + "start": 12390.99, + "end": 12391.23, + "probability": 0.3494 + }, + { + "start": 12391.33, + "end": 12392.21, + "probability": 0.8706 + }, + { + "start": 12392.55, + "end": 12394.97, + "probability": 0.7847 + }, + { + "start": 12394.97, + "end": 12396.25, + "probability": 0.6368 + }, + { + "start": 12397.29, + "end": 12398.15, + "probability": 0.761 + }, + { + "start": 12399.13, + "end": 12399.45, + "probability": 0.0678 + }, + { + "start": 12399.45, + "end": 12400.13, + "probability": 0.4775 + }, + { + "start": 12400.35, + "end": 12401.47, + "probability": 0.9578 + }, + { + "start": 12402.83, + "end": 12404.39, + "probability": 0.5981 + }, + { + "start": 12404.61, + "end": 12405.41, + "probability": 0.7911 + }, + { + "start": 12407.25, + "end": 12407.75, + "probability": 0.7607 + }, + { + "start": 12409.17, + "end": 12410.59, + "probability": 0.1563 + }, + { + "start": 12422.75, + "end": 12422.93, + "probability": 0.3696 + }, + { + "start": 12422.93, + "end": 12425.33, + "probability": 0.7275 + }, + { + "start": 12426.05, + "end": 12427.61, + "probability": 0.9911 + }, + { + "start": 12428.45, + "end": 12430.07, + "probability": 0.0742 + }, + { + "start": 12430.07, + "end": 12433.93, + "probability": 0.7977 + }, + { + "start": 12433.93, + "end": 12438.09, + "probability": 0.9846 + }, + { + "start": 12439.23, + "end": 12441.54, + "probability": 0.9868 + }, + { + "start": 12443.17, + "end": 12445.05, + "probability": 0.8116 + }, + { + "start": 12446.07, + "end": 12446.73, + "probability": 0.7031 + }, + { + "start": 12447.15, + "end": 12448.77, + "probability": 0.6763 + }, + { + "start": 12450.77, + "end": 12456.27, + "probability": 0.6206 + }, + { + "start": 12457.07, + "end": 12459.42, + "probability": 0.9858 + }, + { + "start": 12460.25, + "end": 12463.49, + "probability": 0.5258 + } + ], + "segments_count": 4383, + "words_count": 21998, + "avg_words_per_segment": 5.0189, + "avg_segment_duration": 2.0048, + "avg_words_per_minute": 105.2139, + "plenum_id": "73253", + "duration": 12544.73, + "title": null, + "plenum_date": "2018-05-16" +} \ No newline at end of file