diff --git "a/10139/metadata.json" "b/10139/metadata.json" new file mode 100644--- /dev/null +++ "b/10139/metadata.json" @@ -0,0 +1,34817 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "10139", + "quality_score": 0.9055, + "per_segment_quality_scores": [ + { + "start": 64.16, + "end": 65.16, + "probability": 0.9713 + }, + { + "start": 67.54, + "end": 68.82, + "probability": 0.7919 + }, + { + "start": 68.98, + "end": 70.34, + "probability": 0.8874 + }, + { + "start": 70.46, + "end": 71.92, + "probability": 0.8371 + }, + { + "start": 72.08, + "end": 75.84, + "probability": 0.9602 + }, + { + "start": 75.84, + "end": 80.32, + "probability": 0.8726 + }, + { + "start": 80.86, + "end": 82.62, + "probability": 0.3113 + }, + { + "start": 82.84, + "end": 85.3, + "probability": 0.6553 + }, + { + "start": 85.56, + "end": 87.58, + "probability": 0.9547 + }, + { + "start": 88.42, + "end": 91.54, + "probability": 0.9955 + }, + { + "start": 91.54, + "end": 95.9, + "probability": 0.9608 + }, + { + "start": 96.4, + "end": 98.2, + "probability": 0.4785 + }, + { + "start": 98.32, + "end": 100.3, + "probability": 0.6729 + }, + { + "start": 100.8, + "end": 102.54, + "probability": 0.9745 + }, + { + "start": 103.02, + "end": 103.22, + "probability": 0.7731 + }, + { + "start": 103.98, + "end": 105.88, + "probability": 0.9494 + }, + { + "start": 106.78, + "end": 106.92, + "probability": 0.6417 + }, + { + "start": 107.02, + "end": 111.14, + "probability": 0.9838 + }, + { + "start": 111.92, + "end": 116.06, + "probability": 0.9731 + }, + { + "start": 120.64, + "end": 123.86, + "probability": 0.7382 + }, + { + "start": 124.48, + "end": 126.98, + "probability": 0.9229 + }, + { + "start": 127.0, + "end": 127.0, + "probability": 0.0 + }, + { + "start": 127.22, + "end": 127.42, + "probability": 0.0005 + }, + { + "start": 128.14, + "end": 133.32, + "probability": 0.9819 + }, + { + "start": 133.92, + "end": 136.96, + "probability": 0.6646 + }, + { + "start": 137.54, + "end": 140.64, + "probability": 0.9949 + }, + { + "start": 141.48, + "end": 142.08, + "probability": 0.6415 + }, + { + "start": 142.44, + "end": 143.48, + "probability": 0.8181 + }, + { + "start": 143.92, + "end": 146.56, + "probability": 0.9548 + }, + { + "start": 147.42, + "end": 150.14, + "probability": 0.8434 + }, + { + "start": 151.18, + "end": 153.36, + "probability": 0.8874 + }, + { + "start": 153.98, + "end": 154.4, + "probability": 0.7787 + }, + { + "start": 154.56, + "end": 156.52, + "probability": 0.8337 + }, + { + "start": 156.76, + "end": 157.68, + "probability": 0.9925 + }, + { + "start": 158.08, + "end": 161.1, + "probability": 0.9695 + }, + { + "start": 161.62, + "end": 164.0, + "probability": 0.9518 + }, + { + "start": 164.12, + "end": 165.04, + "probability": 0.6656 + }, + { + "start": 165.44, + "end": 167.82, + "probability": 0.7733 + }, + { + "start": 168.48, + "end": 172.24, + "probability": 0.9652 + }, + { + "start": 172.66, + "end": 175.4, + "probability": 0.9084 + }, + { + "start": 175.92, + "end": 177.28, + "probability": 0.9969 + }, + { + "start": 178.12, + "end": 179.78, + "probability": 0.8958 + }, + { + "start": 179.86, + "end": 180.58, + "probability": 0.547 + }, + { + "start": 180.86, + "end": 181.22, + "probability": 0.7671 + }, + { + "start": 181.24, + "end": 183.14, + "probability": 0.7373 + }, + { + "start": 183.2, + "end": 183.94, + "probability": 0.946 + }, + { + "start": 184.06, + "end": 188.58, + "probability": 0.9924 + }, + { + "start": 188.62, + "end": 189.56, + "probability": 0.6406 + }, + { + "start": 191.11, + "end": 193.14, + "probability": 0.5337 + }, + { + "start": 193.86, + "end": 196.78, + "probability": 0.9811 + }, + { + "start": 198.16, + "end": 201.86, + "probability": 0.9864 + }, + { + "start": 202.6, + "end": 205.6, + "probability": 0.996 + }, + { + "start": 206.66, + "end": 210.36, + "probability": 0.8392 + }, + { + "start": 211.12, + "end": 213.8, + "probability": 0.965 + }, + { + "start": 215.04, + "end": 216.94, + "probability": 0.6814 + }, + { + "start": 219.74, + "end": 220.9, + "probability": 0.4362 + }, + { + "start": 221.36, + "end": 225.52, + "probability": 0.6691 + }, + { + "start": 226.12, + "end": 227.22, + "probability": 0.58 + }, + { + "start": 227.52, + "end": 228.06, + "probability": 0.6812 + }, + { + "start": 228.38, + "end": 230.2, + "probability": 0.8129 + }, + { + "start": 231.72, + "end": 232.36, + "probability": 0.9583 + }, + { + "start": 233.32, + "end": 234.1, + "probability": 0.7106 + }, + { + "start": 234.28, + "end": 234.74, + "probability": 0.6847 + }, + { + "start": 234.84, + "end": 235.62, + "probability": 0.8774 + }, + { + "start": 236.0, + "end": 238.26, + "probability": 0.8973 + }, + { + "start": 238.64, + "end": 239.74, + "probability": 0.6731 + }, + { + "start": 240.7, + "end": 242.24, + "probability": 0.8729 + }, + { + "start": 244.28, + "end": 246.92, + "probability": 0.9833 + }, + { + "start": 247.74, + "end": 250.3, + "probability": 0.9944 + }, + { + "start": 250.92, + "end": 252.54, + "probability": 0.9954 + }, + { + "start": 253.26, + "end": 257.46, + "probability": 0.9725 + }, + { + "start": 258.3, + "end": 260.22, + "probability": 0.8261 + }, + { + "start": 261.06, + "end": 262.42, + "probability": 0.7757 + }, + { + "start": 263.08, + "end": 264.86, + "probability": 0.9974 + }, + { + "start": 265.86, + "end": 266.04, + "probability": 0.7952 + }, + { + "start": 266.44, + "end": 266.76, + "probability": 0.5775 + }, + { + "start": 266.82, + "end": 268.94, + "probability": 0.8795 + }, + { + "start": 269.98, + "end": 273.34, + "probability": 0.9468 + }, + { + "start": 274.58, + "end": 276.96, + "probability": 0.9874 + }, + { + "start": 277.48, + "end": 279.28, + "probability": 0.8735 + }, + { + "start": 279.92, + "end": 282.0, + "probability": 0.8888 + }, + { + "start": 282.74, + "end": 287.48, + "probability": 0.9283 + }, + { + "start": 287.98, + "end": 289.52, + "probability": 0.8952 + }, + { + "start": 289.98, + "end": 291.62, + "probability": 0.9723 + }, + { + "start": 292.58, + "end": 293.2, + "probability": 0.7449 + }, + { + "start": 293.68, + "end": 299.14, + "probability": 0.9984 + }, + { + "start": 299.72, + "end": 302.2, + "probability": 0.1207 + }, + { + "start": 303.08, + "end": 305.82, + "probability": 0.9165 + }, + { + "start": 307.34, + "end": 307.44, + "probability": 0.5157 + }, + { + "start": 308.08, + "end": 309.82, + "probability": 0.0619 + }, + { + "start": 310.3, + "end": 312.2, + "probability": 0.7012 + }, + { + "start": 312.86, + "end": 313.66, + "probability": 0.9142 + }, + { + "start": 314.14, + "end": 315.18, + "probability": 0.1985 + }, + { + "start": 315.58, + "end": 316.28, + "probability": 0.8795 + }, + { + "start": 316.44, + "end": 317.48, + "probability": 0.9487 + }, + { + "start": 317.82, + "end": 320.36, + "probability": 0.6683 + }, + { + "start": 321.46, + "end": 325.36, + "probability": 0.9942 + }, + { + "start": 325.56, + "end": 327.44, + "probability": 0.9961 + }, + { + "start": 328.78, + "end": 331.72, + "probability": 0.4289 + }, + { + "start": 332.84, + "end": 336.32, + "probability": 0.799 + }, + { + "start": 336.4, + "end": 338.46, + "probability": 0.7898 + }, + { + "start": 339.12, + "end": 341.94, + "probability": 0.8414 + }, + { + "start": 342.02, + "end": 344.3, + "probability": 0.9754 + }, + { + "start": 344.74, + "end": 346.07, + "probability": 0.2913 + }, + { + "start": 346.76, + "end": 349.64, + "probability": 0.7523 + }, + { + "start": 350.06, + "end": 353.54, + "probability": 0.7747 + }, + { + "start": 354.84, + "end": 358.58, + "probability": 0.8649 + }, + { + "start": 359.56, + "end": 361.34, + "probability": 0.5125 + }, + { + "start": 361.52, + "end": 362.92, + "probability": 0.9619 + }, + { + "start": 364.12, + "end": 366.42, + "probability": 0.7164 + }, + { + "start": 366.64, + "end": 368.64, + "probability": 0.9596 + }, + { + "start": 368.64, + "end": 372.2, + "probability": 0.9634 + }, + { + "start": 373.51, + "end": 378.76, + "probability": 0.6738 + }, + { + "start": 380.22, + "end": 383.68, + "probability": 0.8647 + }, + { + "start": 384.78, + "end": 386.0, + "probability": 0.6826 + }, + { + "start": 386.08, + "end": 387.0, + "probability": 0.446 + }, + { + "start": 387.08, + "end": 390.58, + "probability": 0.9044 + }, + { + "start": 391.22, + "end": 392.52, + "probability": 0.838 + }, + { + "start": 392.66, + "end": 395.34, + "probability": 0.5381 + }, + { + "start": 395.96, + "end": 396.7, + "probability": 0.8705 + }, + { + "start": 397.32, + "end": 397.86, + "probability": 0.6767 + }, + { + "start": 398.28, + "end": 401.82, + "probability": 0.9757 + }, + { + "start": 402.7, + "end": 404.96, + "probability": 0.8543 + }, + { + "start": 404.96, + "end": 408.74, + "probability": 0.9719 + }, + { + "start": 409.6, + "end": 412.54, + "probability": 0.9416 + }, + { + "start": 412.54, + "end": 415.9, + "probability": 0.902 + }, + { + "start": 416.68, + "end": 421.42, + "probability": 0.89 + }, + { + "start": 422.24, + "end": 425.98, + "probability": 0.9445 + }, + { + "start": 426.62, + "end": 428.24, + "probability": 0.8908 + }, + { + "start": 429.2, + "end": 432.26, + "probability": 0.8952 + }, + { + "start": 432.26, + "end": 434.2, + "probability": 0.759 + }, + { + "start": 434.32, + "end": 436.6, + "probability": 0.9113 + }, + { + "start": 437.3, + "end": 440.06, + "probability": 0.9924 + }, + { + "start": 440.74, + "end": 443.68, + "probability": 0.7598 + }, + { + "start": 444.74, + "end": 445.12, + "probability": 0.8951 + }, + { + "start": 446.28, + "end": 448.3, + "probability": 0.7521 + }, + { + "start": 448.38, + "end": 448.62, + "probability": 0.2301 + }, + { + "start": 448.68, + "end": 449.74, + "probability": 0.8593 + }, + { + "start": 449.92, + "end": 451.52, + "probability": 0.8103 + }, + { + "start": 452.24, + "end": 454.63, + "probability": 0.9497 + }, + { + "start": 455.38, + "end": 456.78, + "probability": 0.6303 + }, + { + "start": 456.86, + "end": 459.52, + "probability": 0.6311 + }, + { + "start": 460.18, + "end": 460.66, + "probability": 0.5072 + }, + { + "start": 460.78, + "end": 462.84, + "probability": 0.8042 + }, + { + "start": 462.92, + "end": 463.48, + "probability": 0.7424 + }, + { + "start": 463.62, + "end": 464.38, + "probability": 0.6319 + }, + { + "start": 466.04, + "end": 466.47, + "probability": 0.6562 + }, + { + "start": 466.84, + "end": 469.1, + "probability": 0.4402 + }, + { + "start": 469.94, + "end": 470.7, + "probability": 0.2629 + }, + { + "start": 472.36, + "end": 475.54, + "probability": 0.8142 + }, + { + "start": 475.7, + "end": 479.7, + "probability": 0.8713 + }, + { + "start": 479.7, + "end": 482.72, + "probability": 0.9645 + }, + { + "start": 483.34, + "end": 485.72, + "probability": 0.9602 + }, + { + "start": 485.9, + "end": 488.5, + "probability": 0.7549 + }, + { + "start": 489.08, + "end": 490.48, + "probability": 0.089 + }, + { + "start": 490.8, + "end": 492.12, + "probability": 0.665 + }, + { + "start": 492.9, + "end": 493.92, + "probability": 0.4827 + }, + { + "start": 494.26, + "end": 495.18, + "probability": 0.6879 + }, + { + "start": 495.36, + "end": 499.01, + "probability": 0.9063 + }, + { + "start": 499.68, + "end": 500.8, + "probability": 0.5929 + }, + { + "start": 500.9, + "end": 503.38, + "probability": 0.7634 + }, + { + "start": 504.92, + "end": 506.6, + "probability": 0.8668 + }, + { + "start": 506.78, + "end": 511.18, + "probability": 0.8742 + }, + { + "start": 511.32, + "end": 511.84, + "probability": 0.567 + }, + { + "start": 512.54, + "end": 516.26, + "probability": 0.9134 + }, + { + "start": 517.02, + "end": 517.86, + "probability": 0.7746 + }, + { + "start": 517.94, + "end": 521.76, + "probability": 0.7434 + }, + { + "start": 521.88, + "end": 522.36, + "probability": 0.8925 + }, + { + "start": 522.96, + "end": 525.22, + "probability": 0.9928 + }, + { + "start": 526.66, + "end": 527.58, + "probability": 0.7266 + }, + { + "start": 527.62, + "end": 529.12, + "probability": 0.6034 + }, + { + "start": 529.2, + "end": 530.2, + "probability": 0.9186 + }, + { + "start": 530.4, + "end": 531.42, + "probability": 0.4393 + }, + { + "start": 531.46, + "end": 531.74, + "probability": 0.3102 + }, + { + "start": 531.82, + "end": 532.2, + "probability": 0.5803 + }, + { + "start": 532.22, + "end": 533.12, + "probability": 0.634 + }, + { + "start": 533.88, + "end": 535.94, + "probability": 0.9628 + }, + { + "start": 537.54, + "end": 540.46, + "probability": 0.3276 + }, + { + "start": 540.58, + "end": 542.97, + "probability": 0.6431 + }, + { + "start": 543.78, + "end": 544.08, + "probability": 0.7872 + }, + { + "start": 544.86, + "end": 545.91, + "probability": 0.6665 + }, + { + "start": 546.26, + "end": 547.39, + "probability": 0.9739 + }, + { + "start": 547.8, + "end": 552.52, + "probability": 0.9129 + }, + { + "start": 552.62, + "end": 552.94, + "probability": 0.8483 + }, + { + "start": 553.0, + "end": 553.72, + "probability": 0.5665 + }, + { + "start": 553.72, + "end": 557.6, + "probability": 0.548 + }, + { + "start": 558.1, + "end": 560.32, + "probability": 0.9739 + }, + { + "start": 560.42, + "end": 562.86, + "probability": 0.9182 + }, + { + "start": 562.94, + "end": 566.66, + "probability": 0.9463 + }, + { + "start": 567.52, + "end": 569.26, + "probability": 0.7968 + }, + { + "start": 570.1, + "end": 574.72, + "probability": 0.9834 + }, + { + "start": 575.1, + "end": 577.38, + "probability": 0.7407 + }, + { + "start": 578.08, + "end": 579.96, + "probability": 0.645 + }, + { + "start": 580.58, + "end": 582.76, + "probability": 0.3694 + }, + { + "start": 582.92, + "end": 583.34, + "probability": 0.4989 + }, + { + "start": 583.74, + "end": 584.88, + "probability": 0.964 + }, + { + "start": 585.04, + "end": 587.0, + "probability": 0.704 + }, + { + "start": 587.08, + "end": 587.08, + "probability": 0.5756 + }, + { + "start": 587.18, + "end": 588.32, + "probability": 0.7056 + }, + { + "start": 588.5, + "end": 591.64, + "probability": 0.6006 + }, + { + "start": 591.8, + "end": 592.32, + "probability": 0.2331 + }, + { + "start": 592.64, + "end": 593.52, + "probability": 0.5671 + }, + { + "start": 593.6, + "end": 595.52, + "probability": 0.7432 + }, + { + "start": 596.16, + "end": 600.24, + "probability": 0.8162 + }, + { + "start": 600.62, + "end": 601.28, + "probability": 0.6376 + }, + { + "start": 601.28, + "end": 603.74, + "probability": 0.6902 + }, + { + "start": 604.64, + "end": 605.42, + "probability": 0.7641 + }, + { + "start": 605.44, + "end": 606.28, + "probability": 0.1376 + }, + { + "start": 606.36, + "end": 607.86, + "probability": 0.9907 + }, + { + "start": 610.3, + "end": 610.3, + "probability": 0.0685 + }, + { + "start": 610.3, + "end": 611.22, + "probability": 0.9424 + }, + { + "start": 611.22, + "end": 613.48, + "probability": 0.7951 + }, + { + "start": 614.18, + "end": 617.5, + "probability": 0.5246 + }, + { + "start": 617.86, + "end": 619.04, + "probability": 0.6096 + }, + { + "start": 619.14, + "end": 620.44, + "probability": 0.8594 + }, + { + "start": 620.72, + "end": 623.82, + "probability": 0.9016 + }, + { + "start": 623.82, + "end": 624.16, + "probability": 0.5321 + }, + { + "start": 624.3, + "end": 626.8, + "probability": 0.9185 + }, + { + "start": 627.32, + "end": 627.58, + "probability": 0.5268 + }, + { + "start": 627.64, + "end": 628.0, + "probability": 0.7343 + }, + { + "start": 628.1, + "end": 628.74, + "probability": 0.8331 + }, + { + "start": 628.84, + "end": 631.9, + "probability": 0.9744 + }, + { + "start": 632.02, + "end": 632.44, + "probability": 0.3815 + }, + { + "start": 633.02, + "end": 635.22, + "probability": 0.9803 + }, + { + "start": 635.7, + "end": 636.4, + "probability": 0.9146 + }, + { + "start": 636.9, + "end": 637.72, + "probability": 0.5948 + }, + { + "start": 637.84, + "end": 638.02, + "probability": 0.8429 + }, + { + "start": 639.0, + "end": 640.11, + "probability": 0.9574 + }, + { + "start": 640.62, + "end": 642.5, + "probability": 0.8581 + }, + { + "start": 646.3, + "end": 647.2, + "probability": 0.6842 + }, + { + "start": 647.56, + "end": 650.5, + "probability": 0.6683 + }, + { + "start": 650.56, + "end": 650.92, + "probability": 0.8646 + }, + { + "start": 651.16, + "end": 651.66, + "probability": 0.8887 + }, + { + "start": 651.8, + "end": 655.2, + "probability": 0.8084 + }, + { + "start": 655.2, + "end": 657.3, + "probability": 0.395 + }, + { + "start": 658.08, + "end": 659.76, + "probability": 0.8976 + }, + { + "start": 660.14, + "end": 660.82, + "probability": 0.7151 + }, + { + "start": 660.92, + "end": 661.82, + "probability": 0.9449 + }, + { + "start": 661.96, + "end": 662.75, + "probability": 0.5554 + }, + { + "start": 663.92, + "end": 664.52, + "probability": 0.9524 + }, + { + "start": 665.82, + "end": 667.74, + "probability": 0.891 + }, + { + "start": 668.06, + "end": 670.56, + "probability": 0.7964 + }, + { + "start": 670.64, + "end": 671.24, + "probability": 0.8716 + }, + { + "start": 671.42, + "end": 672.34, + "probability": 0.8739 + }, + { + "start": 673.9, + "end": 675.18, + "probability": 0.9195 + }, + { + "start": 675.75, + "end": 678.22, + "probability": 0.9829 + }, + { + "start": 679.34, + "end": 683.58, + "probability": 0.9951 + }, + { + "start": 683.96, + "end": 685.24, + "probability": 0.6248 + }, + { + "start": 686.42, + "end": 687.06, + "probability": 0.5789 + }, + { + "start": 687.94, + "end": 691.74, + "probability": 0.5804 + }, + { + "start": 691.88, + "end": 697.04, + "probability": 0.9722 + }, + { + "start": 698.26, + "end": 701.12, + "probability": 0.886 + }, + { + "start": 701.32, + "end": 701.94, + "probability": 0.8417 + }, + { + "start": 702.68, + "end": 704.24, + "probability": 0.8411 + }, + { + "start": 704.82, + "end": 707.12, + "probability": 0.9893 + }, + { + "start": 708.36, + "end": 709.22, + "probability": 0.8503 + }, + { + "start": 709.28, + "end": 709.69, + "probability": 0.9131 + }, + { + "start": 709.86, + "end": 710.24, + "probability": 0.2848 + }, + { + "start": 710.44, + "end": 710.72, + "probability": 0.8069 + }, + { + "start": 710.8, + "end": 711.72, + "probability": 0.6703 + }, + { + "start": 711.86, + "end": 713.84, + "probability": 0.9197 + }, + { + "start": 713.94, + "end": 714.64, + "probability": 0.7491 + }, + { + "start": 715.12, + "end": 716.9, + "probability": 0.8438 + }, + { + "start": 718.1, + "end": 719.12, + "probability": 0.8372 + }, + { + "start": 719.81, + "end": 722.86, + "probability": 0.7174 + }, + { + "start": 722.9, + "end": 725.14, + "probability": 0.7398 + }, + { + "start": 725.2, + "end": 727.72, + "probability": 0.893 + }, + { + "start": 730.81, + "end": 733.22, + "probability": 0.7839 + }, + { + "start": 733.58, + "end": 734.9, + "probability": 0.9968 + }, + { + "start": 735.86, + "end": 738.48, + "probability": 0.8441 + }, + { + "start": 739.4, + "end": 740.9, + "probability": 0.8132 + }, + { + "start": 741.58, + "end": 742.78, + "probability": 0.936 + }, + { + "start": 742.88, + "end": 746.48, + "probability": 0.9935 + }, + { + "start": 747.34, + "end": 747.6, + "probability": 0.549 + }, + { + "start": 747.66, + "end": 747.92, + "probability": 0.8114 + }, + { + "start": 748.34, + "end": 749.44, + "probability": 0.5802 + }, + { + "start": 750.46, + "end": 753.48, + "probability": 0.9514 + }, + { + "start": 754.3, + "end": 755.5, + "probability": 0.965 + }, + { + "start": 755.58, + "end": 759.72, + "probability": 0.9346 + }, + { + "start": 760.22, + "end": 762.8, + "probability": 0.9907 + }, + { + "start": 768.5, + "end": 770.98, + "probability": 0.9981 + }, + { + "start": 771.1, + "end": 771.66, + "probability": 0.6507 + }, + { + "start": 771.8, + "end": 772.56, + "probability": 0.9613 + }, + { + "start": 773.22, + "end": 776.08, + "probability": 0.9762 + }, + { + "start": 776.22, + "end": 779.52, + "probability": 0.8523 + }, + { + "start": 780.82, + "end": 781.81, + "probability": 0.9558 + }, + { + "start": 782.1, + "end": 783.45, + "probability": 0.9202 + }, + { + "start": 783.94, + "end": 788.08, + "probability": 0.9377 + }, + { + "start": 788.08, + "end": 790.08, + "probability": 0.6304 + }, + { + "start": 790.66, + "end": 794.58, + "probability": 0.9819 + }, + { + "start": 795.02, + "end": 797.3, + "probability": 0.653 + }, + { + "start": 797.78, + "end": 799.92, + "probability": 0.9741 + }, + { + "start": 800.4, + "end": 800.75, + "probability": 0.8959 + }, + { + "start": 801.16, + "end": 802.7, + "probability": 0.8554 + }, + { + "start": 803.06, + "end": 803.32, + "probability": 0.8497 + }, + { + "start": 803.72, + "end": 805.58, + "probability": 0.8558 + }, + { + "start": 805.7, + "end": 808.0, + "probability": 0.9922 + }, + { + "start": 808.0, + "end": 810.08, + "probability": 0.8662 + }, + { + "start": 810.7, + "end": 814.62, + "probability": 0.9642 + }, + { + "start": 815.4, + "end": 815.56, + "probability": 0.7395 + }, + { + "start": 815.64, + "end": 816.32, + "probability": 0.9079 + }, + { + "start": 816.42, + "end": 819.22, + "probability": 0.9828 + }, + { + "start": 819.36, + "end": 821.68, + "probability": 0.9887 + }, + { + "start": 822.36, + "end": 824.5, + "probability": 0.5801 + }, + { + "start": 824.52, + "end": 825.44, + "probability": 0.7676 + }, + { + "start": 825.6, + "end": 826.74, + "probability": 0.9903 + }, + { + "start": 826.96, + "end": 828.4, + "probability": 0.7646 + }, + { + "start": 829.18, + "end": 831.2, + "probability": 0.7134 + }, + { + "start": 831.4, + "end": 833.4, + "probability": 0.9026 + }, + { + "start": 834.18, + "end": 836.22, + "probability": 0.7822 + }, + { + "start": 836.22, + "end": 839.22, + "probability": 0.9971 + }, + { + "start": 839.38, + "end": 842.12, + "probability": 0.8923 + }, + { + "start": 842.24, + "end": 843.36, + "probability": 0.6929 + }, + { + "start": 843.9, + "end": 850.36, + "probability": 0.9303 + }, + { + "start": 850.6, + "end": 851.4, + "probability": 0.6105 + }, + { + "start": 851.72, + "end": 852.58, + "probability": 0.9266 + }, + { + "start": 852.74, + "end": 853.52, + "probability": 0.9219 + }, + { + "start": 853.62, + "end": 857.54, + "probability": 0.9427 + }, + { + "start": 858.06, + "end": 858.82, + "probability": 0.7526 + }, + { + "start": 859.22, + "end": 859.9, + "probability": 0.9344 + }, + { + "start": 860.0, + "end": 860.6, + "probability": 0.751 + }, + { + "start": 861.08, + "end": 863.16, + "probability": 0.8816 + }, + { + "start": 864.16, + "end": 865.24, + "probability": 0.6818 + }, + { + "start": 865.38, + "end": 865.64, + "probability": 0.4591 + }, + { + "start": 865.64, + "end": 866.3, + "probability": 0.8157 + }, + { + "start": 867.12, + "end": 868.62, + "probability": 0.6788 + }, + { + "start": 868.72, + "end": 870.18, + "probability": 0.2176 + }, + { + "start": 872.96, + "end": 873.2, + "probability": 0.0759 + }, + { + "start": 873.2, + "end": 873.2, + "probability": 0.0303 + }, + { + "start": 873.2, + "end": 873.2, + "probability": 0.0752 + }, + { + "start": 873.2, + "end": 873.78, + "probability": 0.1094 + }, + { + "start": 873.84, + "end": 873.96, + "probability": 0.1318 + }, + { + "start": 874.22, + "end": 876.92, + "probability": 0.5914 + }, + { + "start": 877.88, + "end": 878.08, + "probability": 0.362 + }, + { + "start": 878.08, + "end": 879.68, + "probability": 0.1709 + }, + { + "start": 880.16, + "end": 881.98, + "probability": 0.9259 + }, + { + "start": 882.18, + "end": 883.0, + "probability": 0.8772 + }, + { + "start": 884.28, + "end": 886.98, + "probability": 0.9093 + }, + { + "start": 888.36, + "end": 888.46, + "probability": 0.0561 + }, + { + "start": 888.46, + "end": 890.31, + "probability": 0.6392 + }, + { + "start": 890.9, + "end": 893.18, + "probability": 0.6782 + }, + { + "start": 893.26, + "end": 893.58, + "probability": 0.1842 + }, + { + "start": 893.58, + "end": 893.9, + "probability": 0.6903 + }, + { + "start": 894.0, + "end": 896.46, + "probability": 0.7386 + }, + { + "start": 897.2, + "end": 898.46, + "probability": 0.4872 + }, + { + "start": 898.84, + "end": 899.71, + "probability": 0.9683 + }, + { + "start": 900.24, + "end": 901.16, + "probability": 0.0101 + }, + { + "start": 901.16, + "end": 902.46, + "probability": 0.4845 + }, + { + "start": 902.5, + "end": 904.98, + "probability": 0.5613 + }, + { + "start": 905.06, + "end": 905.26, + "probability": 0.0764 + }, + { + "start": 905.28, + "end": 906.98, + "probability": 0.5521 + }, + { + "start": 907.06, + "end": 907.14, + "probability": 0.6174 + }, + { + "start": 907.22, + "end": 910.58, + "probability": 0.9035 + }, + { + "start": 910.74, + "end": 913.18, + "probability": 0.5805 + }, + { + "start": 913.96, + "end": 915.82, + "probability": 0.6269 + }, + { + "start": 916.12, + "end": 917.52, + "probability": 0.7124 + }, + { + "start": 919.86, + "end": 922.12, + "probability": 0.7998 + }, + { + "start": 922.66, + "end": 926.36, + "probability": 0.967 + }, + { + "start": 926.92, + "end": 929.52, + "probability": 0.9979 + }, + { + "start": 930.34, + "end": 933.66, + "probability": 0.8993 + }, + { + "start": 933.78, + "end": 934.04, + "probability": 0.8351 + }, + { + "start": 934.1, + "end": 937.66, + "probability": 0.9907 + }, + { + "start": 938.06, + "end": 943.68, + "probability": 0.9767 + }, + { + "start": 943.88, + "end": 944.52, + "probability": 0.8742 + }, + { + "start": 944.78, + "end": 946.36, + "probability": 0.9767 + }, + { + "start": 946.66, + "end": 948.34, + "probability": 0.6269 + }, + { + "start": 948.48, + "end": 951.15, + "probability": 0.9893 + }, + { + "start": 951.6, + "end": 955.1, + "probability": 0.8869 + }, + { + "start": 955.72, + "end": 957.16, + "probability": 0.9946 + }, + { + "start": 957.36, + "end": 958.02, + "probability": 0.497 + }, + { + "start": 958.24, + "end": 959.62, + "probability": 0.7402 + }, + { + "start": 959.76, + "end": 960.84, + "probability": 0.8803 + }, + { + "start": 961.52, + "end": 963.74, + "probability": 0.9239 + }, + { + "start": 964.7, + "end": 965.72, + "probability": 0.752 + }, + { + "start": 966.6, + "end": 967.42, + "probability": 0.7757 + }, + { + "start": 967.48, + "end": 968.76, + "probability": 0.6706 + }, + { + "start": 968.82, + "end": 968.92, + "probability": 0.7588 + }, + { + "start": 969.0, + "end": 969.72, + "probability": 0.8158 + }, + { + "start": 969.9, + "end": 970.76, + "probability": 0.5288 + }, + { + "start": 970.78, + "end": 971.08, + "probability": 0.3386 + }, + { + "start": 971.5, + "end": 972.52, + "probability": 0.6335 + }, + { + "start": 972.52, + "end": 973.96, + "probability": 0.9526 + }, + { + "start": 973.96, + "end": 974.96, + "probability": 0.4868 + }, + { + "start": 975.04, + "end": 976.48, + "probability": 0.7792 + }, + { + "start": 976.68, + "end": 977.69, + "probability": 0.5411 + }, + { + "start": 980.5, + "end": 983.62, + "probability": 0.4117 + }, + { + "start": 984.42, + "end": 986.64, + "probability": 0.8682 + }, + { + "start": 986.7, + "end": 988.42, + "probability": 0.8321 + }, + { + "start": 989.21, + "end": 991.54, + "probability": 0.7341 + }, + { + "start": 991.9, + "end": 994.26, + "probability": 0.9944 + }, + { + "start": 994.62, + "end": 996.94, + "probability": 0.9941 + }, + { + "start": 997.72, + "end": 1000.62, + "probability": 0.9713 + }, + { + "start": 1000.62, + "end": 1002.98, + "probability": 0.9975 + }, + { + "start": 1003.36, + "end": 1006.78, + "probability": 0.9963 + }, + { + "start": 1007.12, + "end": 1012.0, + "probability": 0.9865 + }, + { + "start": 1012.48, + "end": 1014.6, + "probability": 0.9949 + }, + { + "start": 1014.6, + "end": 1017.96, + "probability": 0.9961 + }, + { + "start": 1018.48, + "end": 1019.4, + "probability": 0.5833 + }, + { + "start": 1019.54, + "end": 1020.88, + "probability": 0.7342 + }, + { + "start": 1020.98, + "end": 1023.28, + "probability": 0.9642 + }, + { + "start": 1023.46, + "end": 1023.68, + "probability": 0.5257 + }, + { + "start": 1024.04, + "end": 1024.22, + "probability": 0.2522 + }, + { + "start": 1024.22, + "end": 1026.42, + "probability": 0.9373 + }, + { + "start": 1026.62, + "end": 1027.06, + "probability": 0.7365 + }, + { + "start": 1028.24, + "end": 1030.48, + "probability": 0.7303 + }, + { + "start": 1032.52, + "end": 1034.44, + "probability": 0.9165 + }, + { + "start": 1034.8, + "end": 1036.42, + "probability": 0.8884 + }, + { + "start": 1037.02, + "end": 1038.92, + "probability": 0.9635 + }, + { + "start": 1038.96, + "end": 1041.18, + "probability": 0.8327 + }, + { + "start": 1042.24, + "end": 1045.04, + "probability": 0.974 + }, + { + "start": 1046.12, + "end": 1049.0, + "probability": 0.8039 + }, + { + "start": 1049.0, + "end": 1052.5, + "probability": 0.872 + }, + { + "start": 1053.2, + "end": 1055.36, + "probability": 0.7794 + }, + { + "start": 1055.94, + "end": 1058.1, + "probability": 0.9604 + }, + { + "start": 1059.22, + "end": 1061.4, + "probability": 0.9788 + }, + { + "start": 1061.92, + "end": 1067.74, + "probability": 0.7347 + }, + { + "start": 1067.78, + "end": 1068.18, + "probability": 0.4542 + }, + { + "start": 1068.58, + "end": 1069.44, + "probability": 0.7478 + }, + { + "start": 1069.92, + "end": 1072.84, + "probability": 0.8618 + }, + { + "start": 1073.2, + "end": 1075.16, + "probability": 0.9858 + }, + { + "start": 1075.68, + "end": 1079.82, + "probability": 0.9395 + }, + { + "start": 1080.7, + "end": 1081.56, + "probability": 0.6474 + }, + { + "start": 1081.82, + "end": 1081.98, + "probability": 0.1305 + }, + { + "start": 1081.98, + "end": 1082.02, + "probability": 0.3821 + }, + { + "start": 1082.02, + "end": 1084.66, + "probability": 0.674 + }, + { + "start": 1084.78, + "end": 1087.06, + "probability": 0.0452 + }, + { + "start": 1087.2, + "end": 1087.74, + "probability": 0.1949 + }, + { + "start": 1087.74, + "end": 1089.12, + "probability": 0.9861 + }, + { + "start": 1089.94, + "end": 1093.22, + "probability": 0.957 + }, + { + "start": 1093.78, + "end": 1096.96, + "probability": 0.802 + }, + { + "start": 1099.41, + "end": 1106.12, + "probability": 0.7645 + }, + { + "start": 1106.12, + "end": 1112.84, + "probability": 0.8279 + }, + { + "start": 1113.48, + "end": 1115.48, + "probability": 0.8088 + }, + { + "start": 1115.68, + "end": 1116.86, + "probability": 0.8635 + }, + { + "start": 1117.26, + "end": 1117.82, + "probability": 0.6482 + }, + { + "start": 1118.36, + "end": 1119.6, + "probability": 0.9586 + }, + { + "start": 1120.48, + "end": 1122.86, + "probability": 0.7144 + }, + { + "start": 1123.34, + "end": 1125.86, + "probability": 0.5033 + }, + { + "start": 1126.02, + "end": 1126.02, + "probability": 0.6593 + }, + { + "start": 1126.02, + "end": 1127.02, + "probability": 0.7818 + }, + { + "start": 1127.22, + "end": 1128.86, + "probability": 0.8731 + }, + { + "start": 1129.04, + "end": 1131.44, + "probability": 0.8381 + }, + { + "start": 1131.82, + "end": 1133.04, + "probability": 0.953 + }, + { + "start": 1134.2, + "end": 1135.28, + "probability": 0.8479 + }, + { + "start": 1135.78, + "end": 1139.82, + "probability": 0.9761 + }, + { + "start": 1139.82, + "end": 1145.16, + "probability": 0.9836 + }, + { + "start": 1145.86, + "end": 1148.5, + "probability": 0.8257 + }, + { + "start": 1148.82, + "end": 1152.27, + "probability": 0.8197 + }, + { + "start": 1153.0, + "end": 1156.36, + "probability": 0.4962 + }, + { + "start": 1156.78, + "end": 1162.26, + "probability": 0.9779 + }, + { + "start": 1162.44, + "end": 1163.2, + "probability": 0.5047 + }, + { + "start": 1163.26, + "end": 1164.23, + "probability": 0.9304 + }, + { + "start": 1164.74, + "end": 1165.54, + "probability": 0.8477 + }, + { + "start": 1166.12, + "end": 1167.04, + "probability": 0.7245 + }, + { + "start": 1167.74, + "end": 1172.4, + "probability": 0.9324 + }, + { + "start": 1172.4, + "end": 1175.5, + "probability": 0.9782 + }, + { + "start": 1175.6, + "end": 1176.24, + "probability": 0.6457 + }, + { + "start": 1177.38, + "end": 1179.72, + "probability": 0.7841 + }, + { + "start": 1180.9, + "end": 1182.22, + "probability": 0.9324 + }, + { + "start": 1182.54, + "end": 1183.3, + "probability": 0.4763 + }, + { + "start": 1183.5, + "end": 1183.72, + "probability": 0.5858 + }, + { + "start": 1183.82, + "end": 1184.5, + "probability": 0.8965 + }, + { + "start": 1184.58, + "end": 1185.12, + "probability": 0.4977 + }, + { + "start": 1185.24, + "end": 1190.28, + "probability": 0.9865 + }, + { + "start": 1190.38, + "end": 1191.76, + "probability": 0.9827 + }, + { + "start": 1191.94, + "end": 1192.46, + "probability": 0.8776 + }, + { + "start": 1193.48, + "end": 1198.34, + "probability": 0.9575 + }, + { + "start": 1198.46, + "end": 1200.34, + "probability": 0.9357 + }, + { + "start": 1200.76, + "end": 1205.46, + "probability": 0.9346 + }, + { + "start": 1205.8, + "end": 1206.98, + "probability": 0.5365 + }, + { + "start": 1207.26, + "end": 1209.04, + "probability": 0.8996 + }, + { + "start": 1209.14, + "end": 1210.04, + "probability": 0.771 + }, + { + "start": 1210.48, + "end": 1212.14, + "probability": 0.9128 + }, + { + "start": 1212.56, + "end": 1214.22, + "probability": 0.9089 + }, + { + "start": 1214.66, + "end": 1216.58, + "probability": 0.8782 + }, + { + "start": 1216.6, + "end": 1216.98, + "probability": 0.7566 + }, + { + "start": 1218.12, + "end": 1224.5, + "probability": 0.4976 + }, + { + "start": 1224.5, + "end": 1227.96, + "probability": 0.6962 + }, + { + "start": 1228.0, + "end": 1228.48, + "probability": 0.3327 + }, + { + "start": 1232.04, + "end": 1233.96, + "probability": 0.9842 + }, + { + "start": 1234.72, + "end": 1238.22, + "probability": 0.9902 + }, + { + "start": 1239.0, + "end": 1241.66, + "probability": 0.6677 + }, + { + "start": 1241.74, + "end": 1245.0, + "probability": 0.9812 + }, + { + "start": 1245.62, + "end": 1247.4, + "probability": 0.7279 + }, + { + "start": 1248.7, + "end": 1252.9, + "probability": 0.956 + }, + { + "start": 1252.9, + "end": 1256.7, + "probability": 0.9628 + }, + { + "start": 1257.5, + "end": 1259.8, + "probability": 0.8678 + }, + { + "start": 1260.9, + "end": 1263.8, + "probability": 0.839 + }, + { + "start": 1264.44, + "end": 1266.44, + "probability": 0.9434 + }, + { + "start": 1267.06, + "end": 1269.74, + "probability": 0.9966 + }, + { + "start": 1270.28, + "end": 1271.26, + "probability": 0.6612 + }, + { + "start": 1275.66, + "end": 1279.14, + "probability": 0.9865 + }, + { + "start": 1279.72, + "end": 1280.72, + "probability": 0.8616 + }, + { + "start": 1281.24, + "end": 1281.34, + "probability": 0.6045 + }, + { + "start": 1282.18, + "end": 1282.98, + "probability": 0.9917 + }, + { + "start": 1283.92, + "end": 1290.6, + "probability": 0.9617 + }, + { + "start": 1291.12, + "end": 1293.08, + "probability": 0.4653 + }, + { + "start": 1294.82, + "end": 1299.2, + "probability": 0.9818 + }, + { + "start": 1299.82, + "end": 1302.1, + "probability": 0.7932 + }, + { + "start": 1302.24, + "end": 1303.02, + "probability": 0.8548 + }, + { + "start": 1304.18, + "end": 1305.28, + "probability": 0.9662 + }, + { + "start": 1306.58, + "end": 1309.63, + "probability": 0.9917 + }, + { + "start": 1310.48, + "end": 1312.0, + "probability": 0.8266 + }, + { + "start": 1313.04, + "end": 1315.78, + "probability": 0.995 + }, + { + "start": 1316.46, + "end": 1319.36, + "probability": 0.9435 + }, + { + "start": 1320.12, + "end": 1324.98, + "probability": 0.9844 + }, + { + "start": 1325.48, + "end": 1327.0, + "probability": 0.9858 + }, + { + "start": 1327.18, + "end": 1328.34, + "probability": 0.7552 + }, + { + "start": 1329.6, + "end": 1332.5, + "probability": 0.958 + }, + { + "start": 1332.5, + "end": 1335.12, + "probability": 0.9794 + }, + { + "start": 1336.64, + "end": 1338.02, + "probability": 0.4505 + }, + { + "start": 1338.96, + "end": 1342.84, + "probability": 0.9966 + }, + { + "start": 1342.84, + "end": 1348.42, + "probability": 0.9819 + }, + { + "start": 1349.46, + "end": 1352.4, + "probability": 0.9971 + }, + { + "start": 1353.36, + "end": 1355.22, + "probability": 0.8157 + }, + { + "start": 1355.86, + "end": 1358.33, + "probability": 0.9679 + }, + { + "start": 1358.92, + "end": 1361.24, + "probability": 0.8782 + }, + { + "start": 1361.6, + "end": 1363.1, + "probability": 0.9502 + }, + { + "start": 1364.48, + "end": 1367.78, + "probability": 0.887 + }, + { + "start": 1367.94, + "end": 1368.88, + "probability": 0.989 + }, + { + "start": 1369.5, + "end": 1372.22, + "probability": 0.9656 + }, + { + "start": 1372.3, + "end": 1375.16, + "probability": 0.9874 + }, + { + "start": 1375.96, + "end": 1378.0, + "probability": 0.9615 + }, + { + "start": 1379.42, + "end": 1381.86, + "probability": 0.7911 + }, + { + "start": 1382.54, + "end": 1387.92, + "probability": 0.9802 + }, + { + "start": 1388.54, + "end": 1394.9, + "probability": 0.8639 + }, + { + "start": 1395.94, + "end": 1400.38, + "probability": 0.9074 + }, + { + "start": 1401.6, + "end": 1401.84, + "probability": 0.0087 + }, + { + "start": 1402.56, + "end": 1406.42, + "probability": 0.9389 + }, + { + "start": 1406.62, + "end": 1409.68, + "probability": 0.9757 + }, + { + "start": 1410.46, + "end": 1416.76, + "probability": 0.9893 + }, + { + "start": 1416.76, + "end": 1423.07, + "probability": 0.9987 + }, + { + "start": 1423.6, + "end": 1429.24, + "probability": 0.9889 + }, + { + "start": 1430.32, + "end": 1430.62, + "probability": 0.0004 + }, + { + "start": 1431.5, + "end": 1436.12, + "probability": 0.9899 + }, + { + "start": 1436.74, + "end": 1441.9, + "probability": 0.9984 + }, + { + "start": 1442.54, + "end": 1447.68, + "probability": 0.9077 + }, + { + "start": 1448.54, + "end": 1448.68, + "probability": 0.3005 + }, + { + "start": 1448.86, + "end": 1452.14, + "probability": 0.9775 + }, + { + "start": 1452.14, + "end": 1456.34, + "probability": 0.9956 + }, + { + "start": 1456.34, + "end": 1461.52, + "probability": 0.9863 + }, + { + "start": 1461.68, + "end": 1462.38, + "probability": 0.8334 + }, + { + "start": 1462.5, + "end": 1464.56, + "probability": 0.941 + }, + { + "start": 1465.12, + "end": 1471.02, + "probability": 0.9714 + }, + { + "start": 1472.4, + "end": 1476.66, + "probability": 0.9696 + }, + { + "start": 1477.44, + "end": 1480.1, + "probability": 0.9648 + }, + { + "start": 1481.06, + "end": 1485.54, + "probability": 0.9811 + }, + { + "start": 1486.4, + "end": 1489.82, + "probability": 0.998 + }, + { + "start": 1489.9, + "end": 1493.91, + "probability": 0.9856 + }, + { + "start": 1494.88, + "end": 1497.94, + "probability": 0.9911 + }, + { + "start": 1497.94, + "end": 1502.08, + "probability": 0.9847 + }, + { + "start": 1503.08, + "end": 1505.96, + "probability": 0.9781 + }, + { + "start": 1506.24, + "end": 1510.34, + "probability": 0.961 + }, + { + "start": 1513.69, + "end": 1515.48, + "probability": 0.8977 + }, + { + "start": 1516.66, + "end": 1520.92, + "probability": 0.8281 + }, + { + "start": 1520.92, + "end": 1524.04, + "probability": 0.9988 + }, + { + "start": 1524.8, + "end": 1525.16, + "probability": 0.0217 + }, + { + "start": 1526.02, + "end": 1526.56, + "probability": 0.765 + }, + { + "start": 1526.66, + "end": 1530.86, + "probability": 0.9843 + }, + { + "start": 1532.06, + "end": 1533.54, + "probability": 0.8273 + }, + { + "start": 1533.7, + "end": 1537.6, + "probability": 0.9652 + }, + { + "start": 1538.32, + "end": 1539.78, + "probability": 0.7907 + }, + { + "start": 1539.84, + "end": 1543.58, + "probability": 0.9802 + }, + { + "start": 1543.58, + "end": 1546.36, + "probability": 0.9961 + }, + { + "start": 1547.18, + "end": 1547.36, + "probability": 0.0032 + }, + { + "start": 1548.06, + "end": 1550.86, + "probability": 0.8462 + }, + { + "start": 1550.86, + "end": 1553.82, + "probability": 0.9969 + }, + { + "start": 1554.54, + "end": 1559.62, + "probability": 0.9476 + }, + { + "start": 1559.98, + "end": 1563.26, + "probability": 0.884 + }, + { + "start": 1563.26, + "end": 1567.82, + "probability": 0.881 + }, + { + "start": 1568.8, + "end": 1569.56, + "probability": 0.5634 + }, + { + "start": 1571.78, + "end": 1572.48, + "probability": 0.0481 + }, + { + "start": 1572.48, + "end": 1575.1, + "probability": 0.6007 + }, + { + "start": 1575.46, + "end": 1578.45, + "probability": 0.3899 + }, + { + "start": 1580.97, + "end": 1583.58, + "probability": 0.9912 + }, + { + "start": 1584.26, + "end": 1589.16, + "probability": 0.8135 + }, + { + "start": 1590.02, + "end": 1590.4, + "probability": 0.0078 + }, + { + "start": 1590.94, + "end": 1591.58, + "probability": 0.6582 + }, + { + "start": 1592.1, + "end": 1596.56, + "probability": 0.9896 + }, + { + "start": 1597.04, + "end": 1599.96, + "probability": 0.9886 + }, + { + "start": 1600.06, + "end": 1603.54, + "probability": 0.9918 + }, + { + "start": 1604.4, + "end": 1604.7, + "probability": 0.0028 + }, + { + "start": 1605.1, + "end": 1606.16, + "probability": 0.6691 + }, + { + "start": 1606.38, + "end": 1606.84, + "probability": 0.7273 + }, + { + "start": 1607.26, + "end": 1608.1, + "probability": 0.5794 + }, + { + "start": 1608.3, + "end": 1609.22, + "probability": 0.6121 + }, + { + "start": 1609.78, + "end": 1611.0, + "probability": 0.5758 + }, + { + "start": 1611.16, + "end": 1613.16, + "probability": 0.3338 + }, + { + "start": 1613.56, + "end": 1616.54, + "probability": 0.4778 + }, + { + "start": 1616.54, + "end": 1619.32, + "probability": 0.927 + }, + { + "start": 1619.54, + "end": 1622.0, + "probability": 0.6692 + }, + { + "start": 1622.0, + "end": 1626.22, + "probability": 0.806 + }, + { + "start": 1627.0, + "end": 1635.26, + "probability": 0.9694 + }, + { + "start": 1635.74, + "end": 1637.5, + "probability": 0.9875 + }, + { + "start": 1637.96, + "end": 1639.76, + "probability": 0.9797 + }, + { + "start": 1639.82, + "end": 1643.34, + "probability": 0.9098 + }, + { + "start": 1643.34, + "end": 1646.56, + "probability": 0.9448 + }, + { + "start": 1646.62, + "end": 1647.22, + "probability": 0.9395 + }, + { + "start": 1647.58, + "end": 1651.46, + "probability": 0.9873 + }, + { + "start": 1651.86, + "end": 1652.6, + "probability": 0.6874 + }, + { + "start": 1652.7, + "end": 1653.72, + "probability": 0.6411 + }, + { + "start": 1654.0, + "end": 1654.88, + "probability": 0.7614 + }, + { + "start": 1655.2, + "end": 1655.63, + "probability": 0.9792 + }, + { + "start": 1655.84, + "end": 1657.09, + "probability": 0.9382 + }, + { + "start": 1657.48, + "end": 1663.54, + "probability": 0.9882 + }, + { + "start": 1664.0, + "end": 1666.18, + "probability": 0.9895 + }, + { + "start": 1666.54, + "end": 1669.9, + "probability": 0.9982 + }, + { + "start": 1670.32, + "end": 1674.3, + "probability": 0.9994 + }, + { + "start": 1674.76, + "end": 1675.76, + "probability": 0.4874 + }, + { + "start": 1676.58, + "end": 1678.36, + "probability": 0.5476 + }, + { + "start": 1678.78, + "end": 1682.76, + "probability": 0.9541 + }, + { + "start": 1683.22, + "end": 1687.44, + "probability": 0.981 + }, + { + "start": 1687.82, + "end": 1692.78, + "probability": 0.9966 + }, + { + "start": 1693.06, + "end": 1694.28, + "probability": 0.7219 + }, + { + "start": 1694.74, + "end": 1697.96, + "probability": 0.9937 + }, + { + "start": 1698.42, + "end": 1699.88, + "probability": 0.9954 + }, + { + "start": 1700.44, + "end": 1701.96, + "probability": 0.9413 + }, + { + "start": 1703.36, + "end": 1706.0, + "probability": 0.907 + }, + { + "start": 1706.38, + "end": 1708.54, + "probability": 0.811 + }, + { + "start": 1709.14, + "end": 1712.84, + "probability": 0.7658 + }, + { + "start": 1713.64, + "end": 1717.28, + "probability": 0.9381 + }, + { + "start": 1717.82, + "end": 1719.06, + "probability": 0.973 + }, + { + "start": 1719.14, + "end": 1721.36, + "probability": 0.7868 + }, + { + "start": 1722.24, + "end": 1726.08, + "probability": 0.7315 + }, + { + "start": 1726.62, + "end": 1728.14, + "probability": 0.8403 + }, + { + "start": 1728.44, + "end": 1729.28, + "probability": 0.9862 + }, + { + "start": 1729.36, + "end": 1730.49, + "probability": 0.989 + }, + { + "start": 1730.8, + "end": 1731.68, + "probability": 0.9668 + }, + { + "start": 1732.38, + "end": 1734.29, + "probability": 0.9028 + }, + { + "start": 1734.72, + "end": 1735.54, + "probability": 0.8007 + }, + { + "start": 1735.86, + "end": 1736.56, + "probability": 0.544 + }, + { + "start": 1736.82, + "end": 1737.92, + "probability": 0.9117 + }, + { + "start": 1738.36, + "end": 1740.68, + "probability": 0.875 + }, + { + "start": 1741.16, + "end": 1745.72, + "probability": 0.9628 + }, + { + "start": 1745.78, + "end": 1747.34, + "probability": 0.8624 + }, + { + "start": 1747.94, + "end": 1749.98, + "probability": 0.9358 + }, + { + "start": 1750.68, + "end": 1752.06, + "probability": 0.32 + }, + { + "start": 1752.5, + "end": 1755.1, + "probability": 0.6947 + }, + { + "start": 1755.34, + "end": 1756.87, + "probability": 0.5914 + }, + { + "start": 1757.56, + "end": 1757.72, + "probability": 0.6207 + }, + { + "start": 1757.72, + "end": 1757.98, + "probability": 0.3338 + }, + { + "start": 1758.1, + "end": 1759.42, + "probability": 0.9697 + }, + { + "start": 1759.66, + "end": 1762.74, + "probability": 0.9827 + }, + { + "start": 1763.02, + "end": 1766.62, + "probability": 0.9573 + }, + { + "start": 1766.62, + "end": 1769.38, + "probability": 0.974 + }, + { + "start": 1769.9, + "end": 1774.84, + "probability": 0.7158 + }, + { + "start": 1774.92, + "end": 1776.36, + "probability": 0.7454 + }, + { + "start": 1776.72, + "end": 1781.54, + "probability": 0.9543 + }, + { + "start": 1782.1, + "end": 1782.86, + "probability": 0.7521 + }, + { + "start": 1784.02, + "end": 1784.02, + "probability": 0.1289 + }, + { + "start": 1784.02, + "end": 1784.76, + "probability": 0.5015 + }, + { + "start": 1784.9, + "end": 1786.58, + "probability": 0.88 + }, + { + "start": 1786.8, + "end": 1789.09, + "probability": 0.2828 + }, + { + "start": 1790.51, + "end": 1794.84, + "probability": 0.7344 + }, + { + "start": 1795.38, + "end": 1797.16, + "probability": 0.8511 + }, + { + "start": 1798.2, + "end": 1799.04, + "probability": 0.8972 + }, + { + "start": 1800.06, + "end": 1800.28, + "probability": 0.5395 + }, + { + "start": 1800.82, + "end": 1801.02, + "probability": 0.578 + }, + { + "start": 1801.44, + "end": 1806.08, + "probability": 0.7244 + }, + { + "start": 1806.6, + "end": 1807.62, + "probability": 0.6997 + }, + { + "start": 1807.92, + "end": 1811.8, + "probability": 0.931 + }, + { + "start": 1813.15, + "end": 1816.16, + "probability": 0.8152 + }, + { + "start": 1816.8, + "end": 1817.3, + "probability": 0.4881 + }, + { + "start": 1817.44, + "end": 1821.3, + "probability": 0.9275 + }, + { + "start": 1821.4, + "end": 1823.46, + "probability": 0.9385 + }, + { + "start": 1823.68, + "end": 1826.62, + "probability": 0.5727 + }, + { + "start": 1827.12, + "end": 1829.82, + "probability": 0.9798 + }, + { + "start": 1830.6, + "end": 1834.23, + "probability": 0.9958 + }, + { + "start": 1834.96, + "end": 1836.5, + "probability": 0.9375 + }, + { + "start": 1836.72, + "end": 1839.64, + "probability": 0.664 + }, + { + "start": 1840.5, + "end": 1843.28, + "probability": 0.9786 + }, + { + "start": 1843.44, + "end": 1844.08, + "probability": 0.5581 + }, + { + "start": 1844.98, + "end": 1848.7, + "probability": 0.9182 + }, + { + "start": 1848.7, + "end": 1854.0, + "probability": 0.9971 + }, + { + "start": 1854.04, + "end": 1856.06, + "probability": 0.9265 + }, + { + "start": 1856.96, + "end": 1858.84, + "probability": 0.7396 + }, + { + "start": 1858.84, + "end": 1861.28, + "probability": 0.9094 + }, + { + "start": 1863.28, + "end": 1867.0, + "probability": 0.1157 + }, + { + "start": 1867.96, + "end": 1868.32, + "probability": 0.0539 + }, + { + "start": 1868.92, + "end": 1869.2, + "probability": 0.3868 + }, + { + "start": 1869.84, + "end": 1870.5, + "probability": 0.0737 + }, + { + "start": 1871.66, + "end": 1873.88, + "probability": 0.0608 + }, + { + "start": 1874.0, + "end": 1874.66, + "probability": 0.0581 + }, + { + "start": 1874.94, + "end": 1874.96, + "probability": 0.0168 + }, + { + "start": 1875.03, + "end": 1875.1, + "probability": 0.0382 + }, + { + "start": 1875.1, + "end": 1877.04, + "probability": 0.2819 + }, + { + "start": 1880.42, + "end": 1882.56, + "probability": 0.1961 + }, + { + "start": 1885.1, + "end": 1886.73, + "probability": 0.1746 + }, + { + "start": 1890.85, + "end": 1891.06, + "probability": 0.0003 + }, + { + "start": 1891.06, + "end": 1891.88, + "probability": 0.0509 + }, + { + "start": 1891.88, + "end": 1895.34, + "probability": 0.0925 + }, + { + "start": 1899.2, + "end": 1901.0, + "probability": 0.1188 + }, + { + "start": 1902.42, + "end": 1904.72, + "probability": 0.0572 + }, + { + "start": 1904.84, + "end": 1907.24, + "probability": 0.2014 + }, + { + "start": 1909.38, + "end": 1910.32, + "probability": 0.0523 + }, + { + "start": 1910.38, + "end": 1910.38, + "probability": 0.1389 + }, + { + "start": 1910.38, + "end": 1911.92, + "probability": 0.4697 + }, + { + "start": 1913.58, + "end": 1915.71, + "probability": 0.2515 + }, + { + "start": 1916.9, + "end": 1920.2, + "probability": 0.0383 + }, + { + "start": 1922.78, + "end": 1925.6, + "probability": 0.0411 + }, + { + "start": 1933.0, + "end": 1933.0, + "probability": 0.0 + }, + { + "start": 1933.0, + "end": 1933.0, + "probability": 0.0 + }, + { + "start": 1933.0, + "end": 1933.0, + "probability": 0.0 + }, + { + "start": 1933.0, + "end": 1933.0, + "probability": 0.0 + }, + { + "start": 1933.0, + "end": 1933.0, + "probability": 0.0 + }, + { + "start": 1933.0, + "end": 1933.0, + "probability": 0.0 + }, + { + "start": 1933.0, + "end": 1933.0, + "probability": 0.0 + }, + { + "start": 1933.0, + "end": 1933.0, + "probability": 0.0 + }, + { + "start": 1933.0, + "end": 1933.0, + "probability": 0.0 + }, + { + "start": 1933.0, + "end": 1933.0, + "probability": 0.0 + }, + { + "start": 1933.0, + "end": 1933.0, + "probability": 0.0 + }, + { + "start": 1933.0, + "end": 1933.0, + "probability": 0.0 + }, + { + "start": 1933.0, + "end": 1933.0, + "probability": 0.0 + }, + { + "start": 1933.0, + "end": 1933.0, + "probability": 0.0 + }, + { + "start": 1933.0, + "end": 1933.0, + "probability": 0.0 + }, + { + "start": 1933.0, + "end": 1933.0, + "probability": 0.0 + }, + { + "start": 1933.0, + "end": 1933.0, + "probability": 0.0 + }, + { + "start": 1933.0, + "end": 1933.0, + "probability": 0.0 + }, + { + "start": 1933.0, + "end": 1933.0, + "probability": 0.0 + }, + { + "start": 1933.0, + "end": 1933.0, + "probability": 0.0 + }, + { + "start": 1937.22, + "end": 1938.56, + "probability": 0.5323 + }, + { + "start": 1938.7, + "end": 1940.46, + "probability": 0.8111 + }, + { + "start": 1940.64, + "end": 1943.98, + "probability": 0.9285 + }, + { + "start": 1943.98, + "end": 1947.8, + "probability": 0.8203 + }, + { + "start": 1948.06, + "end": 1950.08, + "probability": 0.8209 + }, + { + "start": 1950.16, + "end": 1951.24, + "probability": 0.841 + }, + { + "start": 1951.28, + "end": 1954.04, + "probability": 0.9722 + }, + { + "start": 1954.6, + "end": 1954.94, + "probability": 0.4989 + }, + { + "start": 1955.97, + "end": 1957.5, + "probability": 0.6221 + }, + { + "start": 1958.22, + "end": 1959.16, + "probability": 0.7037 + }, + { + "start": 1959.18, + "end": 1962.68, + "probability": 0.8901 + }, + { + "start": 1963.28, + "end": 1964.44, + "probability": 0.9333 + }, + { + "start": 1964.6, + "end": 1965.94, + "probability": 0.8075 + }, + { + "start": 1966.72, + "end": 1971.38, + "probability": 0.6179 + }, + { + "start": 1972.89, + "end": 1979.06, + "probability": 0.9163 + }, + { + "start": 1979.7, + "end": 1981.28, + "probability": 0.9653 + }, + { + "start": 1982.62, + "end": 1984.94, + "probability": 0.9728 + }, + { + "start": 1985.58, + "end": 1988.56, + "probability": 0.9983 + }, + { + "start": 1989.0, + "end": 1991.64, + "probability": 0.9664 + }, + { + "start": 1992.0, + "end": 1993.7, + "probability": 0.9549 + }, + { + "start": 1994.4, + "end": 1996.18, + "probability": 0.604 + }, + { + "start": 1996.84, + "end": 1997.64, + "probability": 0.5249 + }, + { + "start": 1997.76, + "end": 2000.28, + "probability": 0.9224 + }, + { + "start": 2002.28, + "end": 2004.56, + "probability": 0.7745 + }, + { + "start": 2004.76, + "end": 2009.04, + "probability": 0.9431 + }, + { + "start": 2010.24, + "end": 2012.1, + "probability": 0.4253 + }, + { + "start": 2012.66, + "end": 2013.54, + "probability": 0.8226 + }, + { + "start": 2014.4, + "end": 2016.74, + "probability": 0.964 + }, + { + "start": 2017.26, + "end": 2019.13, + "probability": 0.9682 + }, + { + "start": 2019.84, + "end": 2021.52, + "probability": 0.9961 + }, + { + "start": 2023.13, + "end": 2023.9, + "probability": 0.8716 + }, + { + "start": 2024.48, + "end": 2025.02, + "probability": 0.9883 + }, + { + "start": 2025.9, + "end": 2026.92, + "probability": 0.854 + }, + { + "start": 2027.6, + "end": 2029.52, + "probability": 0.9256 + }, + { + "start": 2030.1, + "end": 2031.46, + "probability": 0.9927 + }, + { + "start": 2032.54, + "end": 2035.18, + "probability": 0.9902 + }, + { + "start": 2035.28, + "end": 2037.87, + "probability": 0.9966 + }, + { + "start": 2038.72, + "end": 2041.16, + "probability": 0.84 + }, + { + "start": 2041.96, + "end": 2044.04, + "probability": 0.7773 + }, + { + "start": 2044.96, + "end": 2046.06, + "probability": 0.8988 + }, + { + "start": 2046.78, + "end": 2052.6, + "probability": 0.9446 + }, + { + "start": 2052.9, + "end": 2053.56, + "probability": 0.6158 + }, + { + "start": 2055.22, + "end": 2059.8, + "probability": 0.9931 + }, + { + "start": 2059.88, + "end": 2061.12, + "probability": 0.9878 + }, + { + "start": 2061.28, + "end": 2062.43, + "probability": 0.978 + }, + { + "start": 2062.62, + "end": 2065.58, + "probability": 0.6211 + }, + { + "start": 2065.7, + "end": 2066.64, + "probability": 0.767 + }, + { + "start": 2066.96, + "end": 2068.32, + "probability": 0.9517 + }, + { + "start": 2068.9, + "end": 2070.64, + "probability": 0.7393 + }, + { + "start": 2071.2, + "end": 2075.14, + "probability": 0.9868 + }, + { + "start": 2076.02, + "end": 2077.22, + "probability": 0.6699 + }, + { + "start": 2077.5, + "end": 2079.92, + "probability": 0.8319 + }, + { + "start": 2080.02, + "end": 2081.12, + "probability": 0.9116 + }, + { + "start": 2081.42, + "end": 2082.26, + "probability": 0.6372 + }, + { + "start": 2082.34, + "end": 2084.04, + "probability": 0.8116 + }, + { + "start": 2084.12, + "end": 2085.0, + "probability": 0.7268 + }, + { + "start": 2085.48, + "end": 2087.0, + "probability": 0.9482 + }, + { + "start": 2087.92, + "end": 2091.5, + "probability": 0.9515 + }, + { + "start": 2091.74, + "end": 2092.5, + "probability": 0.7244 + }, + { + "start": 2093.62, + "end": 2095.06, + "probability": 0.604 + }, + { + "start": 2095.98, + "end": 2099.22, + "probability": 0.991 + }, + { + "start": 2099.32, + "end": 2100.22, + "probability": 0.854 + }, + { + "start": 2100.28, + "end": 2100.88, + "probability": 0.6555 + }, + { + "start": 2100.98, + "end": 2102.84, + "probability": 0.9285 + }, + { + "start": 2103.3, + "end": 2105.68, + "probability": 0.9499 + }, + { + "start": 2106.3, + "end": 2108.6, + "probability": 0.6319 + }, + { + "start": 2108.66, + "end": 2111.08, + "probability": 0.994 + }, + { + "start": 2111.24, + "end": 2112.54, + "probability": 0.8943 + }, + { + "start": 2112.84, + "end": 2115.52, + "probability": 0.9199 + }, + { + "start": 2116.06, + "end": 2117.94, + "probability": 0.9771 + }, + { + "start": 2118.6, + "end": 2122.16, + "probability": 0.9984 + }, + { + "start": 2122.58, + "end": 2125.94, + "probability": 0.9984 + }, + { + "start": 2126.88, + "end": 2128.5, + "probability": 0.8086 + }, + { + "start": 2128.76, + "end": 2132.72, + "probability": 0.9917 + }, + { + "start": 2132.72, + "end": 2137.1, + "probability": 0.9969 + }, + { + "start": 2137.3, + "end": 2138.32, + "probability": 0.3593 + }, + { + "start": 2138.7, + "end": 2141.38, + "probability": 0.9946 + }, + { + "start": 2141.78, + "end": 2143.12, + "probability": 0.982 + }, + { + "start": 2143.24, + "end": 2143.82, + "probability": 0.5284 + }, + { + "start": 2143.84, + "end": 2144.9, + "probability": 0.7187 + }, + { + "start": 2145.02, + "end": 2147.7, + "probability": 0.9941 + }, + { + "start": 2148.38, + "end": 2150.82, + "probability": 0.6223 + }, + { + "start": 2151.16, + "end": 2151.96, + "probability": 0.5343 + }, + { + "start": 2152.12, + "end": 2152.74, + "probability": 0.6637 + }, + { + "start": 2152.96, + "end": 2154.76, + "probability": 0.5734 + }, + { + "start": 2154.84, + "end": 2156.05, + "probability": 0.6137 + }, + { + "start": 2156.66, + "end": 2161.24, + "probability": 0.8927 + }, + { + "start": 2161.34, + "end": 2162.64, + "probability": 0.8997 + }, + { + "start": 2162.8, + "end": 2163.3, + "probability": 0.8152 + }, + { + "start": 2163.72, + "end": 2166.18, + "probability": 0.8763 + }, + { + "start": 2167.7, + "end": 2170.02, + "probability": 0.7348 + }, + { + "start": 2170.02, + "end": 2173.34, + "probability": 0.7819 + }, + { + "start": 2173.34, + "end": 2173.84, + "probability": 0.4158 + }, + { + "start": 2174.24, + "end": 2176.16, + "probability": 0.5124 + }, + { + "start": 2176.6, + "end": 2177.98, + "probability": 0.411 + }, + { + "start": 2178.38, + "end": 2179.72, + "probability": 0.5017 + }, + { + "start": 2179.78, + "end": 2183.3, + "probability": 0.2741 + }, + { + "start": 2184.04, + "end": 2184.84, + "probability": 0.3787 + }, + { + "start": 2185.68, + "end": 2186.48, + "probability": 0.4753 + }, + { + "start": 2186.68, + "end": 2188.6, + "probability": 0.2994 + }, + { + "start": 2188.6, + "end": 2190.18, + "probability": 0.1515 + }, + { + "start": 2190.3, + "end": 2191.12, + "probability": 0.2553 + }, + { + "start": 2191.14, + "end": 2191.49, + "probability": 0.2334 + }, + { + "start": 2192.0, + "end": 2192.81, + "probability": 0.762 + }, + { + "start": 2193.08, + "end": 2197.14, + "probability": 0.089 + }, + { + "start": 2197.98, + "end": 2203.64, + "probability": 0.0319 + }, + { + "start": 2203.86, + "end": 2206.02, + "probability": 0.2705 + }, + { + "start": 2206.08, + "end": 2207.24, + "probability": 0.2348 + }, + { + "start": 2207.38, + "end": 2210.12, + "probability": 0.7157 + }, + { + "start": 2211.15, + "end": 2214.82, + "probability": 0.5828 + }, + { + "start": 2215.06, + "end": 2217.6, + "probability": 0.6321 + }, + { + "start": 2219.28, + "end": 2220.14, + "probability": 0.6711 + }, + { + "start": 2220.28, + "end": 2222.18, + "probability": 0.6109 + }, + { + "start": 2222.4, + "end": 2223.35, + "probability": 0.4879 + }, + { + "start": 2223.8, + "end": 2224.34, + "probability": 0.5781 + }, + { + "start": 2224.44, + "end": 2225.62, + "probability": 0.1015 + }, + { + "start": 2226.4, + "end": 2228.22, + "probability": 0.6343 + }, + { + "start": 2228.64, + "end": 2234.32, + "probability": 0.4642 + }, + { + "start": 2234.36, + "end": 2237.46, + "probability": 0.4921 + }, + { + "start": 2237.6, + "end": 2240.1, + "probability": 0.7434 + }, + { + "start": 2240.14, + "end": 2240.94, + "probability": 0.8275 + }, + { + "start": 2241.04, + "end": 2243.5, + "probability": 0.8543 + }, + { + "start": 2244.0, + "end": 2245.1, + "probability": 0.6313 + }, + { + "start": 2245.18, + "end": 2247.5, + "probability": 0.4863 + }, + { + "start": 2247.68, + "end": 2248.1, + "probability": 0.1065 + }, + { + "start": 2248.76, + "end": 2251.28, + "probability": 0.0836 + }, + { + "start": 2251.44, + "end": 2255.26, + "probability": 0.1908 + }, + { + "start": 2255.42, + "end": 2258.06, + "probability": 0.1015 + }, + { + "start": 2258.34, + "end": 2266.1, + "probability": 0.7917 + }, + { + "start": 2267.36, + "end": 2269.05, + "probability": 0.8247 + }, + { + "start": 2269.66, + "end": 2270.33, + "probability": 0.9773 + }, + { + "start": 2270.44, + "end": 2271.14, + "probability": 0.9918 + }, + { + "start": 2271.22, + "end": 2272.82, + "probability": 0.9281 + }, + { + "start": 2273.46, + "end": 2276.04, + "probability": 0.8809 + }, + { + "start": 2276.22, + "end": 2278.1, + "probability": 0.5387 + }, + { + "start": 2278.18, + "end": 2279.59, + "probability": 0.8743 + }, + { + "start": 2280.38, + "end": 2283.06, + "probability": 0.8291 + }, + { + "start": 2284.3, + "end": 2285.48, + "probability": 0.8358 + }, + { + "start": 2286.18, + "end": 2288.61, + "probability": 0.9568 + }, + { + "start": 2288.94, + "end": 2290.98, + "probability": 0.775 + }, + { + "start": 2291.14, + "end": 2292.34, + "probability": 0.8127 + }, + { + "start": 2292.46, + "end": 2293.76, + "probability": 0.988 + }, + { + "start": 2294.76, + "end": 2297.2, + "probability": 0.6674 + }, + { + "start": 2298.32, + "end": 2301.12, + "probability": 0.1781 + }, + { + "start": 2301.38, + "end": 2304.12, + "probability": 0.9816 + }, + { + "start": 2306.72, + "end": 2309.22, + "probability": 0.7448 + }, + { + "start": 2309.4, + "end": 2310.44, + "probability": 0.5691 + }, + { + "start": 2311.34, + "end": 2314.68, + "probability": 0.1758 + }, + { + "start": 2315.44, + "end": 2315.44, + "probability": 0.1144 + }, + { + "start": 2315.76, + "end": 2316.34, + "probability": 0.104 + }, + { + "start": 2316.56, + "end": 2318.14, + "probability": 0.6626 + }, + { + "start": 2319.98, + "end": 2324.14, + "probability": 0.8592 + }, + { + "start": 2324.28, + "end": 2324.86, + "probability": 0.5669 + }, + { + "start": 2324.94, + "end": 2325.32, + "probability": 0.7142 + }, + { + "start": 2325.32, + "end": 2326.14, + "probability": 0.7646 + }, + { + "start": 2326.2, + "end": 2326.76, + "probability": 0.9194 + }, + { + "start": 2328.06, + "end": 2329.84, + "probability": 0.6659 + }, + { + "start": 2329.84, + "end": 2331.3, + "probability": 0.9611 + }, + { + "start": 2331.34, + "end": 2332.07, + "probability": 0.9791 + }, + { + "start": 2332.44, + "end": 2334.14, + "probability": 0.5512 + }, + { + "start": 2334.26, + "end": 2335.3, + "probability": 0.4912 + }, + { + "start": 2335.5, + "end": 2339.62, + "probability": 0.1432 + }, + { + "start": 2340.08, + "end": 2344.1, + "probability": 0.6489 + }, + { + "start": 2344.76, + "end": 2347.86, + "probability": 0.045 + }, + { + "start": 2348.56, + "end": 2350.3, + "probability": 0.2723 + }, + { + "start": 2350.3, + "end": 2354.68, + "probability": 0.772 + }, + { + "start": 2355.5, + "end": 2358.28, + "probability": 0.8989 + }, + { + "start": 2358.38, + "end": 2358.9, + "probability": 0.8682 + }, + { + "start": 2358.94, + "end": 2361.42, + "probability": 0.9915 + }, + { + "start": 2361.42, + "end": 2367.32, + "probability": 0.9939 + }, + { + "start": 2368.14, + "end": 2370.46, + "probability": 0.719 + }, + { + "start": 2370.8, + "end": 2371.43, + "probability": 0.9175 + }, + { + "start": 2373.22, + "end": 2376.3, + "probability": 0.3495 + }, + { + "start": 2377.04, + "end": 2380.48, + "probability": 0.9192 + }, + { + "start": 2381.4, + "end": 2382.82, + "probability": 0.9438 + }, + { + "start": 2384.04, + "end": 2387.56, + "probability": 0.9159 + }, + { + "start": 2388.6, + "end": 2392.0, + "probability": 0.8907 + }, + { + "start": 2393.2, + "end": 2395.74, + "probability": 0.9585 + }, + { + "start": 2396.56, + "end": 2398.26, + "probability": 0.6364 + }, + { + "start": 2398.26, + "end": 2399.22, + "probability": 0.4236 + }, + { + "start": 2399.26, + "end": 2405.0, + "probability": 0.9774 + }, + { + "start": 2405.5, + "end": 2405.9, + "probability": 0.8542 + }, + { + "start": 2405.98, + "end": 2406.32, + "probability": 0.3944 + }, + { + "start": 2406.4, + "end": 2406.96, + "probability": 0.7011 + }, + { + "start": 2406.98, + "end": 2407.72, + "probability": 0.9132 + }, + { + "start": 2408.22, + "end": 2409.1, + "probability": 0.8024 + }, + { + "start": 2409.14, + "end": 2409.74, + "probability": 0.9751 + }, + { + "start": 2409.82, + "end": 2410.58, + "probability": 0.9655 + }, + { + "start": 2410.92, + "end": 2413.24, + "probability": 0.9239 + }, + { + "start": 2415.16, + "end": 2419.52, + "probability": 0.985 + }, + { + "start": 2419.62, + "end": 2420.34, + "probability": 0.4844 + }, + { + "start": 2420.56, + "end": 2421.36, + "probability": 0.6066 + }, + { + "start": 2421.98, + "end": 2423.04, + "probability": 0.6533 + }, + { + "start": 2423.84, + "end": 2424.04, + "probability": 0.5801 + }, + { + "start": 2424.66, + "end": 2429.54, + "probability": 0.9846 + }, + { + "start": 2430.36, + "end": 2432.68, + "probability": 0.9679 + }, + { + "start": 2433.18, + "end": 2434.01, + "probability": 0.9448 + }, + { + "start": 2435.24, + "end": 2435.36, + "probability": 0.5633 + }, + { + "start": 2435.56, + "end": 2435.7, + "probability": 0.6935 + }, + { + "start": 2435.76, + "end": 2436.6, + "probability": 0.9031 + }, + { + "start": 2436.62, + "end": 2436.94, + "probability": 0.7396 + }, + { + "start": 2437.08, + "end": 2438.48, + "probability": 0.6255 + }, + { + "start": 2438.58, + "end": 2439.36, + "probability": 0.9602 + }, + { + "start": 2440.42, + "end": 2443.56, + "probability": 0.8831 + }, + { + "start": 2443.62, + "end": 2445.66, + "probability": 0.9062 + }, + { + "start": 2445.82, + "end": 2446.24, + "probability": 0.3914 + }, + { + "start": 2446.32, + "end": 2446.81, + "probability": 0.8508 + }, + { + "start": 2447.08, + "end": 2448.28, + "probability": 0.849 + }, + { + "start": 2449.38, + "end": 2452.14, + "probability": 0.7363 + }, + { + "start": 2452.32, + "end": 2452.52, + "probability": 0.6353 + }, + { + "start": 2452.98, + "end": 2455.28, + "probability": 0.8918 + }, + { + "start": 2456.46, + "end": 2458.14, + "probability": 0.7589 + }, + { + "start": 2458.18, + "end": 2458.84, + "probability": 0.6461 + }, + { + "start": 2459.16, + "end": 2460.15, + "probability": 0.9205 + }, + { + "start": 2460.46, + "end": 2461.08, + "probability": 0.8605 + }, + { + "start": 2461.5, + "end": 2462.76, + "probability": 0.7937 + }, + { + "start": 2463.86, + "end": 2465.86, + "probability": 0.6817 + }, + { + "start": 2466.14, + "end": 2466.88, + "probability": 0.8434 + }, + { + "start": 2467.1, + "end": 2469.5, + "probability": 0.9336 + }, + { + "start": 2471.06, + "end": 2472.98, + "probability": 0.8884 + }, + { + "start": 2473.5, + "end": 2474.34, + "probability": 0.8931 + }, + { + "start": 2475.18, + "end": 2475.76, + "probability": 0.6975 + }, + { + "start": 2476.68, + "end": 2478.12, + "probability": 0.7098 + }, + { + "start": 2478.84, + "end": 2479.82, + "probability": 0.7431 + }, + { + "start": 2479.86, + "end": 2480.14, + "probability": 0.7862 + }, + { + "start": 2480.18, + "end": 2480.5, + "probability": 0.895 + }, + { + "start": 2480.68, + "end": 2482.52, + "probability": 0.8303 + }, + { + "start": 2482.88, + "end": 2483.18, + "probability": 0.7506 + }, + { + "start": 2483.34, + "end": 2484.64, + "probability": 0.8475 + }, + { + "start": 2484.9, + "end": 2485.48, + "probability": 0.0781 + }, + { + "start": 2485.48, + "end": 2486.32, + "probability": 0.0104 + }, + { + "start": 2488.48, + "end": 2489.52, + "probability": 0.0915 + }, + { + "start": 2489.62, + "end": 2489.86, + "probability": 0.165 + }, + { + "start": 2489.86, + "end": 2489.86, + "probability": 0.0594 + }, + { + "start": 2489.86, + "end": 2491.44, + "probability": 0.1331 + }, + { + "start": 2491.96, + "end": 2492.64, + "probability": 0.0735 + }, + { + "start": 2492.64, + "end": 2496.06, + "probability": 0.1666 + }, + { + "start": 2496.2, + "end": 2496.66, + "probability": 0.2282 + }, + { + "start": 2497.55, + "end": 2497.84, + "probability": 0.0238 + }, + { + "start": 2497.84, + "end": 2497.84, + "probability": 0.0644 + }, + { + "start": 2497.84, + "end": 2498.28, + "probability": 0.1361 + }, + { + "start": 2498.38, + "end": 2498.96, + "probability": 0.6428 + }, + { + "start": 2499.22, + "end": 2499.34, + "probability": 0.4243 + }, + { + "start": 2499.54, + "end": 2499.84, + "probability": 0.2419 + }, + { + "start": 2499.94, + "end": 2500.38, + "probability": 0.5533 + }, + { + "start": 2500.56, + "end": 2501.16, + "probability": 0.1233 + }, + { + "start": 2501.58, + "end": 2503.5, + "probability": 0.7922 + }, + { + "start": 2504.54, + "end": 2507.18, + "probability": 0.7917 + }, + { + "start": 2507.44, + "end": 2508.7, + "probability": 0.404 + }, + { + "start": 2508.98, + "end": 2509.36, + "probability": 0.6331 + }, + { + "start": 2509.68, + "end": 2510.2, + "probability": 0.7335 + }, + { + "start": 2510.28, + "end": 2512.8, + "probability": 0.9759 + }, + { + "start": 2512.96, + "end": 2515.34, + "probability": 0.5628 + }, + { + "start": 2515.48, + "end": 2515.66, + "probability": 0.446 + }, + { + "start": 2515.66, + "end": 2517.22, + "probability": 0.7904 + }, + { + "start": 2517.24, + "end": 2517.86, + "probability": 0.1055 + }, + { + "start": 2518.22, + "end": 2520.0, + "probability": 0.9254 + }, + { + "start": 2521.26, + "end": 2522.62, + "probability": 0.9476 + }, + { + "start": 2522.96, + "end": 2523.44, + "probability": 0.4714 + }, + { + "start": 2523.92, + "end": 2523.92, + "probability": 0.4912 + }, + { + "start": 2523.92, + "end": 2525.6, + "probability": 0.6099 + }, + { + "start": 2525.64, + "end": 2526.94, + "probability": 0.9692 + }, + { + "start": 2527.0, + "end": 2527.62, + "probability": 0.2652 + }, + { + "start": 2529.18, + "end": 2529.66, + "probability": 0.4689 + }, + { + "start": 2529.66, + "end": 2531.88, + "probability": 0.7689 + }, + { + "start": 2532.02, + "end": 2532.86, + "probability": 0.8819 + }, + { + "start": 2534.73, + "end": 2536.66, + "probability": 0.1741 + }, + { + "start": 2537.15, + "end": 2537.27, + "probability": 0.1309 + }, + { + "start": 2537.28, + "end": 2537.28, + "probability": 0.0268 + }, + { + "start": 2537.28, + "end": 2537.54, + "probability": 0.4809 + }, + { + "start": 2537.88, + "end": 2540.24, + "probability": 0.3967 + }, + { + "start": 2540.42, + "end": 2541.06, + "probability": 0.4758 + }, + { + "start": 2541.68, + "end": 2542.66, + "probability": 0.6464 + }, + { + "start": 2543.86, + "end": 2545.04, + "probability": 0.4758 + }, + { + "start": 2545.68, + "end": 2546.46, + "probability": 0.4806 + }, + { + "start": 2547.24, + "end": 2547.74, + "probability": 0.5559 + }, + { + "start": 2547.86, + "end": 2550.14, + "probability": 0.8086 + }, + { + "start": 2550.92, + "end": 2553.72, + "probability": 0.9164 + }, + { + "start": 2553.86, + "end": 2555.38, + "probability": 0.9747 + }, + { + "start": 2555.5, + "end": 2557.56, + "probability": 0.5213 + }, + { + "start": 2558.66, + "end": 2559.32, + "probability": 0.8044 + }, + { + "start": 2560.12, + "end": 2561.18, + "probability": 0.8833 + }, + { + "start": 2562.4, + "end": 2565.38, + "probability": 0.9839 + }, + { + "start": 2565.54, + "end": 2568.2, + "probability": 0.8704 + }, + { + "start": 2568.5, + "end": 2569.4, + "probability": 0.8101 + }, + { + "start": 2570.38, + "end": 2570.54, + "probability": 0.5354 + }, + { + "start": 2571.08, + "end": 2573.86, + "probability": 0.9819 + }, + { + "start": 2573.9, + "end": 2575.34, + "probability": 0.822 + }, + { + "start": 2575.5, + "end": 2577.82, + "probability": 0.9501 + }, + { + "start": 2579.04, + "end": 2579.63, + "probability": 0.9403 + }, + { + "start": 2579.76, + "end": 2580.88, + "probability": 0.8228 + }, + { + "start": 2580.96, + "end": 2582.58, + "probability": 0.9061 + }, + { + "start": 2583.04, + "end": 2583.68, + "probability": 0.7343 + }, + { + "start": 2583.8, + "end": 2584.46, + "probability": 0.9421 + }, + { + "start": 2584.84, + "end": 2586.28, + "probability": 0.9373 + }, + { + "start": 2586.34, + "end": 2587.08, + "probability": 0.6287 + }, + { + "start": 2587.56, + "end": 2589.4, + "probability": 0.8607 + }, + { + "start": 2590.0, + "end": 2590.84, + "probability": 0.9616 + }, + { + "start": 2591.04, + "end": 2592.56, + "probability": 0.4286 + }, + { + "start": 2593.82, + "end": 2595.38, + "probability": 0.1732 + }, + { + "start": 2596.04, + "end": 2598.9, + "probability": 0.0643 + }, + { + "start": 2600.82, + "end": 2602.94, + "probability": 0.8378 + }, + { + "start": 2603.04, + "end": 2604.62, + "probability": 0.8797 + }, + { + "start": 2605.36, + "end": 2606.62, + "probability": 0.3691 + }, + { + "start": 2606.68, + "end": 2611.52, + "probability": 0.1869 + }, + { + "start": 2611.52, + "end": 2612.5, + "probability": 0.297 + }, + { + "start": 2618.12, + "end": 2619.88, + "probability": 0.8172 + }, + { + "start": 2620.04, + "end": 2622.64, + "probability": 0.7115 + }, + { + "start": 2627.32, + "end": 2629.0, + "probability": 0.0157 + }, + { + "start": 2633.84, + "end": 2636.96, + "probability": 0.099 + }, + { + "start": 2638.35, + "end": 2639.28, + "probability": 0.118 + }, + { + "start": 2640.6, + "end": 2643.36, + "probability": 0.0689 + }, + { + "start": 2643.36, + "end": 2646.44, + "probability": 0.0963 + }, + { + "start": 2647.5, + "end": 2647.5, + "probability": 0.0044 + }, + { + "start": 2647.5, + "end": 2647.5, + "probability": 0.1978 + }, + { + "start": 2647.5, + "end": 2648.5, + "probability": 0.1158 + }, + { + "start": 2649.36, + "end": 2653.18, + "probability": 0.017 + }, + { + "start": 2658.06, + "end": 2658.98, + "probability": 0.0933 + }, + { + "start": 2661.43, + "end": 2666.04, + "probability": 0.0428 + }, + { + "start": 2666.34, + "end": 2668.54, + "probability": 0.2778 + }, + { + "start": 2668.54, + "end": 2671.6, + "probability": 0.0275 + }, + { + "start": 2671.68, + "end": 2672.77, + "probability": 0.0105 + }, + { + "start": 2673.82, + "end": 2679.74, + "probability": 0.0426 + }, + { + "start": 2680.65, + "end": 2681.35, + "probability": 0.0497 + }, + { + "start": 2682.0, + "end": 2682.0, + "probability": 0.0 + }, + { + "start": 2682.0, + "end": 2682.0, + "probability": 0.0 + }, + { + "start": 2682.0, + "end": 2682.0, + "probability": 0.0 + }, + { + "start": 2682.0, + "end": 2682.0, + "probability": 0.0 + }, + { + "start": 2682.0, + "end": 2682.0, + "probability": 0.0 + }, + { + "start": 2682.0, + "end": 2682.0, + "probability": 0.0 + }, + { + "start": 2682.0, + "end": 2682.0, + "probability": 0.0 + }, + { + "start": 2682.0, + "end": 2682.0, + "probability": 0.0 + }, + { + "start": 2682.0, + "end": 2682.0, + "probability": 0.0 + }, + { + "start": 2682.0, + "end": 2682.0, + "probability": 0.0 + }, + { + "start": 2682.0, + "end": 2682.0, + "probability": 0.0 + }, + { + "start": 2682.1, + "end": 2683.16, + "probability": 0.0842 + }, + { + "start": 2684.88, + "end": 2686.44, + "probability": 0.0232 + }, + { + "start": 2691.98, + "end": 2693.04, + "probability": 0.024 + }, + { + "start": 2695.54, + "end": 2695.88, + "probability": 0.4992 + }, + { + "start": 2698.2, + "end": 2700.6, + "probability": 0.0136 + }, + { + "start": 2700.62, + "end": 2702.84, + "probability": 0.0727 + }, + { + "start": 2702.84, + "end": 2714.14, + "probability": 0.0208 + }, + { + "start": 2717.48, + "end": 2718.86, + "probability": 0.0103 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2814.0, + "end": 2814.0, + "probability": 0.0 + }, + { + "start": 2817.34, + "end": 2819.62, + "probability": 0.8117 + }, + { + "start": 2820.36, + "end": 2824.12, + "probability": 0.9972 + }, + { + "start": 2824.44, + "end": 2825.38, + "probability": 0.9756 + }, + { + "start": 2826.64, + "end": 2829.32, + "probability": 0.8835 + }, + { + "start": 2829.48, + "end": 2832.04, + "probability": 0.8009 + }, + { + "start": 2832.14, + "end": 2832.96, + "probability": 0.5304 + }, + { + "start": 2833.7, + "end": 2835.66, + "probability": 0.8685 + }, + { + "start": 2835.8, + "end": 2837.86, + "probability": 0.9933 + }, + { + "start": 2839.18, + "end": 2842.56, + "probability": 0.9715 + }, + { + "start": 2842.78, + "end": 2845.99, + "probability": 0.9199 + }, + { + "start": 2846.78, + "end": 2848.48, + "probability": 0.8322 + }, + { + "start": 2848.74, + "end": 2853.66, + "probability": 0.9432 + }, + { + "start": 2854.5, + "end": 2857.22, + "probability": 0.9978 + }, + { + "start": 2857.72, + "end": 2859.1, + "probability": 0.9553 + }, + { + "start": 2859.72, + "end": 2864.06, + "probability": 0.9723 + }, + { + "start": 2865.0, + "end": 2867.62, + "probability": 0.9924 + }, + { + "start": 2867.74, + "end": 2870.16, + "probability": 0.9753 + }, + { + "start": 2870.68, + "end": 2872.0, + "probability": 0.9219 + }, + { + "start": 2873.34, + "end": 2874.1, + "probability": 0.6202 + }, + { + "start": 2874.16, + "end": 2876.38, + "probability": 0.9222 + }, + { + "start": 2876.64, + "end": 2879.2, + "probability": 0.8602 + }, + { + "start": 2879.74, + "end": 2881.88, + "probability": 0.9658 + }, + { + "start": 2882.64, + "end": 2883.12, + "probability": 0.5739 + }, + { + "start": 2883.2, + "end": 2883.58, + "probability": 0.9483 + }, + { + "start": 2883.78, + "end": 2886.08, + "probability": 0.9957 + }, + { + "start": 2887.38, + "end": 2890.46, + "probability": 0.966 + }, + { + "start": 2890.52, + "end": 2891.72, + "probability": 0.9889 + }, + { + "start": 2892.58, + "end": 2895.64, + "probability": 0.9989 + }, + { + "start": 2896.32, + "end": 2898.58, + "probability": 0.9891 + }, + { + "start": 2899.48, + "end": 2905.02, + "probability": 0.8302 + }, + { + "start": 2905.02, + "end": 2908.02, + "probability": 0.7692 + }, + { + "start": 2909.92, + "end": 2911.24, + "probability": 0.4763 + }, + { + "start": 2912.34, + "end": 2914.24, + "probability": 0.992 + }, + { + "start": 2914.38, + "end": 2916.36, + "probability": 0.9689 + }, + { + "start": 2916.78, + "end": 2917.06, + "probability": 0.4766 + }, + { + "start": 2917.44, + "end": 2917.84, + "probability": 0.5106 + }, + { + "start": 2917.94, + "end": 2921.44, + "probability": 0.9811 + }, + { + "start": 2922.8, + "end": 2924.82, + "probability": 0.9758 + }, + { + "start": 2925.44, + "end": 2926.66, + "probability": 0.9495 + }, + { + "start": 2926.98, + "end": 2929.66, + "probability": 0.9987 + }, + { + "start": 2929.82, + "end": 2931.68, + "probability": 0.9809 + }, + { + "start": 2933.82, + "end": 2934.6, + "probability": 0.7789 + }, + { + "start": 2934.66, + "end": 2937.04, + "probability": 0.7428 + }, + { + "start": 2937.04, + "end": 2939.46, + "probability": 0.9983 + }, + { + "start": 2940.02, + "end": 2943.08, + "probability": 0.9955 + }, + { + "start": 2946.3, + "end": 2949.62, + "probability": 0.9845 + }, + { + "start": 2949.72, + "end": 2951.1, + "probability": 0.7499 + }, + { + "start": 2951.12, + "end": 2951.82, + "probability": 0.889 + }, + { + "start": 2952.52, + "end": 2954.28, + "probability": 0.9937 + }, + { + "start": 2955.14, + "end": 2955.46, + "probability": 0.8372 + }, + { + "start": 2959.16, + "end": 2962.62, + "probability": 0.8902 + }, + { + "start": 2963.74, + "end": 2968.84, + "probability": 0.8825 + }, + { + "start": 2969.0, + "end": 2970.3, + "probability": 0.8874 + }, + { + "start": 2970.42, + "end": 2972.44, + "probability": 0.9714 + }, + { + "start": 2972.56, + "end": 2974.04, + "probability": 0.9836 + }, + { + "start": 2974.82, + "end": 2975.8, + "probability": 0.9536 + }, + { + "start": 2976.08, + "end": 2979.24, + "probability": 0.9941 + }, + { + "start": 2980.34, + "end": 2982.7, + "probability": 0.9633 + }, + { + "start": 2983.54, + "end": 2988.3, + "probability": 0.9677 + }, + { + "start": 2988.58, + "end": 2990.51, + "probability": 0.9858 + }, + { + "start": 2990.82, + "end": 2993.46, + "probability": 0.9872 + }, + { + "start": 2997.94, + "end": 2998.42, + "probability": 0.5617 + }, + { + "start": 2998.72, + "end": 2999.54, + "probability": 0.4716 + }, + { + "start": 2999.54, + "end": 3000.12, + "probability": 0.3902 + }, + { + "start": 3000.14, + "end": 3002.31, + "probability": 0.752 + }, + { + "start": 3003.48, + "end": 3006.22, + "probability": 0.4609 + }, + { + "start": 3006.24, + "end": 3007.32, + "probability": 0.7687 + }, + { + "start": 3008.82, + "end": 3009.02, + "probability": 0.4135 + }, + { + "start": 3009.22, + "end": 3010.76, + "probability": 0.8952 + }, + { + "start": 3011.22, + "end": 3012.74, + "probability": 0.9586 + }, + { + "start": 3012.74, + "end": 3013.34, + "probability": 0.5668 + }, + { + "start": 3014.36, + "end": 3015.36, + "probability": 0.7848 + }, + { + "start": 3016.56, + "end": 3019.99, + "probability": 0.9966 + }, + { + "start": 3020.34, + "end": 3021.36, + "probability": 0.4971 + }, + { + "start": 3022.16, + "end": 3025.6, + "probability": 0.782 + }, + { + "start": 3027.12, + "end": 3032.76, + "probability": 0.9043 + }, + { + "start": 3033.54, + "end": 3035.82, + "probability": 0.3918 + }, + { + "start": 3036.94, + "end": 3041.48, + "probability": 0.9762 + }, + { + "start": 3042.46, + "end": 3044.68, + "probability": 0.7977 + }, + { + "start": 3045.4, + "end": 3048.34, + "probability": 0.9958 + }, + { + "start": 3049.24, + "end": 3056.0, + "probability": 0.9943 + }, + { + "start": 3056.74, + "end": 3058.26, + "probability": 0.7287 + }, + { + "start": 3061.3, + "end": 3061.8, + "probability": 0.5766 + }, + { + "start": 3062.34, + "end": 3065.22, + "probability": 0.0429 + }, + { + "start": 3066.56, + "end": 3068.48, + "probability": 0.9187 + }, + { + "start": 3069.28, + "end": 3072.46, + "probability": 0.9819 + }, + { + "start": 3072.5, + "end": 3075.3, + "probability": 0.8264 + }, + { + "start": 3075.62, + "end": 3076.46, + "probability": 0.7754 + }, + { + "start": 3076.52, + "end": 3077.01, + "probability": 0.591 + }, + { + "start": 3077.92, + "end": 3079.28, + "probability": 0.9917 + }, + { + "start": 3079.44, + "end": 3079.88, + "probability": 0.5658 + }, + { + "start": 3080.08, + "end": 3080.92, + "probability": 0.6241 + }, + { + "start": 3080.92, + "end": 3085.4, + "probability": 0.9421 + }, + { + "start": 3086.3, + "end": 3087.68, + "probability": 0.7139 + }, + { + "start": 3089.2, + "end": 3091.2, + "probability": 0.9767 + }, + { + "start": 3092.2, + "end": 3094.84, + "probability": 0.8413 + }, + { + "start": 3095.28, + "end": 3098.52, + "probability": 0.9375 + }, + { + "start": 3098.68, + "end": 3103.5, + "probability": 0.971 + }, + { + "start": 3103.62, + "end": 3104.58, + "probability": 0.6905 + }, + { + "start": 3105.02, + "end": 3108.64, + "probability": 0.9902 + }, + { + "start": 3108.7, + "end": 3115.12, + "probability": 0.8909 + }, + { + "start": 3115.98, + "end": 3119.74, + "probability": 0.9923 + }, + { + "start": 3119.86, + "end": 3122.4, + "probability": 0.8472 + }, + { + "start": 3123.2, + "end": 3124.98, + "probability": 0.8658 + }, + { + "start": 3125.0, + "end": 3128.5, + "probability": 0.981 + }, + { + "start": 3128.78, + "end": 3129.92, + "probability": 0.9682 + }, + { + "start": 3130.56, + "end": 3131.02, + "probability": 0.287 + }, + { + "start": 3131.16, + "end": 3134.46, + "probability": 0.8654 + }, + { + "start": 3135.0, + "end": 3138.3, + "probability": 0.9777 + }, + { + "start": 3138.72, + "end": 3142.68, + "probability": 0.9154 + }, + { + "start": 3142.78, + "end": 3145.48, + "probability": 0.9855 + }, + { + "start": 3146.14, + "end": 3148.14, + "probability": 0.9812 + }, + { + "start": 3148.28, + "end": 3150.66, + "probability": 0.9008 + }, + { + "start": 3150.78, + "end": 3152.99, + "probability": 0.9909 + }, + { + "start": 3153.58, + "end": 3155.54, + "probability": 0.9966 + }, + { + "start": 3156.46, + "end": 3158.02, + "probability": 0.8713 + }, + { + "start": 3158.14, + "end": 3160.94, + "probability": 0.9253 + }, + { + "start": 3161.36, + "end": 3163.16, + "probability": 0.9777 + }, + { + "start": 3163.34, + "end": 3168.28, + "probability": 0.6297 + }, + { + "start": 3168.72, + "end": 3169.84, + "probability": 0.8009 + }, + { + "start": 3173.44, + "end": 3177.1, + "probability": 0.8986 + }, + { + "start": 3177.88, + "end": 3182.36, + "probability": 0.9907 + }, + { + "start": 3182.36, + "end": 3187.56, + "probability": 0.9976 + }, + { + "start": 3188.18, + "end": 3188.32, + "probability": 0.4138 + }, + { + "start": 3188.32, + "end": 3192.06, + "probability": 0.9544 + }, + { + "start": 3192.84, + "end": 3195.06, + "probability": 0.9427 + }, + { + "start": 3195.9, + "end": 3199.42, + "probability": 0.9751 + }, + { + "start": 3199.94, + "end": 3202.68, + "probability": 0.9621 + }, + { + "start": 3202.76, + "end": 3203.25, + "probability": 0.9345 + }, + { + "start": 3203.36, + "end": 3204.38, + "probability": 0.9416 + }, + { + "start": 3205.08, + "end": 3208.12, + "probability": 0.9604 + }, + { + "start": 3208.8, + "end": 3211.86, + "probability": 0.9897 + }, + { + "start": 3212.0, + "end": 3213.34, + "probability": 0.9442 + }, + { + "start": 3214.32, + "end": 3216.1, + "probability": 0.9536 + }, + { + "start": 3216.22, + "end": 3216.98, + "probability": 0.7945 + }, + { + "start": 3217.12, + "end": 3217.72, + "probability": 0.8122 + }, + { + "start": 3217.78, + "end": 3220.48, + "probability": 0.9037 + }, + { + "start": 3221.04, + "end": 3222.04, + "probability": 0.8681 + }, + { + "start": 3222.22, + "end": 3224.52, + "probability": 0.9661 + }, + { + "start": 3224.62, + "end": 3225.74, + "probability": 0.926 + }, + { + "start": 3225.92, + "end": 3226.7, + "probability": 0.9156 + }, + { + "start": 3227.08, + "end": 3230.06, + "probability": 0.9922 + }, + { + "start": 3230.94, + "end": 3232.32, + "probability": 0.9714 + }, + { + "start": 3232.52, + "end": 3233.94, + "probability": 0.9917 + }, + { + "start": 3234.08, + "end": 3235.32, + "probability": 0.998 + }, + { + "start": 3235.4, + "end": 3237.24, + "probability": 0.9628 + }, + { + "start": 3237.76, + "end": 3239.12, + "probability": 0.8389 + }, + { + "start": 3239.22, + "end": 3239.4, + "probability": 0.2373 + }, + { + "start": 3239.44, + "end": 3240.38, + "probability": 0.7184 + }, + { + "start": 3240.48, + "end": 3240.86, + "probability": 0.8643 + }, + { + "start": 3240.96, + "end": 3241.16, + "probability": 0.35 + }, + { + "start": 3241.3, + "end": 3241.76, + "probability": 0.9113 + }, + { + "start": 3242.1, + "end": 3242.72, + "probability": 0.4694 + }, + { + "start": 3243.22, + "end": 3246.24, + "probability": 0.9967 + }, + { + "start": 3246.36, + "end": 3247.0, + "probability": 0.8107 + }, + { + "start": 3247.06, + "end": 3247.78, + "probability": 0.9584 + }, + { + "start": 3247.86, + "end": 3253.7, + "probability": 0.984 + }, + { + "start": 3254.28, + "end": 3257.08, + "probability": 0.9955 + }, + { + "start": 3258.2, + "end": 3260.58, + "probability": 0.97 + }, + { + "start": 3260.58, + "end": 3263.08, + "probability": 0.9248 + }, + { + "start": 3263.22, + "end": 3265.02, + "probability": 0.9958 + }, + { + "start": 3266.16, + "end": 3266.83, + "probability": 0.5954 + }, + { + "start": 3266.96, + "end": 3267.5, + "probability": 0.8032 + }, + { + "start": 3267.56, + "end": 3271.08, + "probability": 0.9824 + }, + { + "start": 3271.88, + "end": 3274.02, + "probability": 0.9922 + }, + { + "start": 3274.88, + "end": 3276.18, + "probability": 0.9916 + }, + { + "start": 3276.36, + "end": 3277.2, + "probability": 0.9567 + }, + { + "start": 3277.34, + "end": 3279.3, + "probability": 0.9659 + }, + { + "start": 3280.08, + "end": 3285.76, + "probability": 0.9777 + }, + { + "start": 3285.76, + "end": 3289.2, + "probability": 0.9991 + }, + { + "start": 3289.26, + "end": 3291.68, + "probability": 0.9094 + }, + { + "start": 3292.32, + "end": 3295.68, + "probability": 0.9984 + }, + { + "start": 3296.2, + "end": 3298.06, + "probability": 0.9394 + }, + { + "start": 3298.86, + "end": 3300.46, + "probability": 0.9515 + }, + { + "start": 3300.96, + "end": 3302.38, + "probability": 0.7793 + }, + { + "start": 3302.5, + "end": 3304.58, + "probability": 0.9932 + }, + { + "start": 3304.66, + "end": 3307.4, + "probability": 0.9949 + }, + { + "start": 3307.54, + "end": 3310.78, + "probability": 0.9805 + }, + { + "start": 3311.82, + "end": 3313.68, + "probability": 0.8281 + }, + { + "start": 3314.06, + "end": 3314.98, + "probability": 0.9096 + }, + { + "start": 3315.12, + "end": 3316.01, + "probability": 0.8799 + }, + { + "start": 3316.16, + "end": 3317.32, + "probability": 0.9735 + }, + { + "start": 3317.7, + "end": 3319.3, + "probability": 0.9758 + }, + { + "start": 3319.36, + "end": 3319.8, + "probability": 0.8577 + }, + { + "start": 3320.2, + "end": 3320.94, + "probability": 0.9406 + }, + { + "start": 3321.6, + "end": 3321.62, + "probability": 0.8989 + }, + { + "start": 3322.26, + "end": 3323.32, + "probability": 0.5475 + }, + { + "start": 3323.76, + "end": 3324.84, + "probability": 0.9177 + }, + { + "start": 3325.18, + "end": 3329.18, + "probability": 0.9788 + }, + { + "start": 3329.7, + "end": 3333.78, + "probability": 0.9669 + }, + { + "start": 3334.08, + "end": 3336.36, + "probability": 0.9937 + }, + { + "start": 3336.9, + "end": 3337.2, + "probability": 0.6197 + }, + { + "start": 3338.01, + "end": 3339.48, + "probability": 0.5007 + }, + { + "start": 3340.8, + "end": 3342.36, + "probability": 0.6772 + }, + { + "start": 3343.84, + "end": 3346.24, + "probability": 0.7611 + }, + { + "start": 3347.98, + "end": 3348.74, + "probability": 0.7309 + }, + { + "start": 3348.88, + "end": 3353.44, + "probability": 0.9779 + }, + { + "start": 3353.9, + "end": 3356.16, + "probability": 0.7303 + }, + { + "start": 3356.22, + "end": 3357.0, + "probability": 0.982 + }, + { + "start": 3357.9, + "end": 3360.52, + "probability": 0.8136 + }, + { + "start": 3360.98, + "end": 3362.68, + "probability": 0.9917 + }, + { + "start": 3363.14, + "end": 3364.1, + "probability": 0.9713 + }, + { + "start": 3364.44, + "end": 3368.0, + "probability": 0.9826 + }, + { + "start": 3370.88, + "end": 3372.69, + "probability": 0.027 + }, + { + "start": 3373.52, + "end": 3375.86, + "probability": 0.4524 + }, + { + "start": 3376.46, + "end": 3376.48, + "probability": 0.4753 + }, + { + "start": 3376.48, + "end": 3385.48, + "probability": 0.978 + }, + { + "start": 3386.8, + "end": 3387.78, + "probability": 0.9659 + }, + { + "start": 3388.72, + "end": 3389.74, + "probability": 0.7778 + }, + { + "start": 3391.12, + "end": 3392.38, + "probability": 0.7698 + }, + { + "start": 3392.6, + "end": 3395.62, + "probability": 0.9696 + }, + { + "start": 3396.22, + "end": 3397.56, + "probability": 0.8954 + }, + { + "start": 3398.32, + "end": 3398.98, + "probability": 0.9799 + }, + { + "start": 3399.12, + "end": 3400.56, + "probability": 0.8817 + }, + { + "start": 3401.34, + "end": 3402.4, + "probability": 0.8761 + }, + { + "start": 3403.14, + "end": 3406.12, + "probability": 0.9887 + }, + { + "start": 3406.64, + "end": 3407.6, + "probability": 0.9443 + }, + { + "start": 3407.66, + "end": 3408.64, + "probability": 0.9884 + }, + { + "start": 3408.88, + "end": 3410.01, + "probability": 0.824 + }, + { + "start": 3411.62, + "end": 3413.04, + "probability": 0.9482 + }, + { + "start": 3413.22, + "end": 3413.7, + "probability": 0.7287 + }, + { + "start": 3413.82, + "end": 3416.58, + "probability": 0.9495 + }, + { + "start": 3419.44, + "end": 3419.82, + "probability": 0.5283 + }, + { + "start": 3419.82, + "end": 3421.56, + "probability": 0.5802 + }, + { + "start": 3421.96, + "end": 3422.9, + "probability": 0.7268 + }, + { + "start": 3422.96, + "end": 3423.36, + "probability": 0.4342 + }, + { + "start": 3423.4, + "end": 3426.14, + "probability": 0.5693 + }, + { + "start": 3426.18, + "end": 3426.82, + "probability": 0.7548 + }, + { + "start": 3427.3, + "end": 3428.88, + "probability": 0.9268 + }, + { + "start": 3429.2, + "end": 3431.36, + "probability": 0.4773 + }, + { + "start": 3431.8, + "end": 3432.08, + "probability": 0.5766 + }, + { + "start": 3432.42, + "end": 3433.62, + "probability": 0.7624 + }, + { + "start": 3433.72, + "end": 3434.85, + "probability": 0.9609 + }, + { + "start": 3436.22, + "end": 3437.06, + "probability": 0.7259 + }, + { + "start": 3438.12, + "end": 3440.16, + "probability": 0.958 + }, + { + "start": 3440.34, + "end": 3442.06, + "probability": 0.6775 + }, + { + "start": 3442.16, + "end": 3442.34, + "probability": 0.41 + }, + { + "start": 3443.36, + "end": 3447.02, + "probability": 0.9677 + }, + { + "start": 3448.56, + "end": 3449.48, + "probability": 0.6494 + }, + { + "start": 3450.68, + "end": 3453.0, + "probability": 0.6635 + }, + { + "start": 3453.44, + "end": 3453.98, + "probability": 0.91 + }, + { + "start": 3454.72, + "end": 3455.42, + "probability": 0.9406 + }, + { + "start": 3456.62, + "end": 3460.62, + "probability": 0.9196 + }, + { + "start": 3460.7, + "end": 3461.68, + "probability": 0.9733 + }, + { + "start": 3462.24, + "end": 3464.94, + "probability": 0.9663 + }, + { + "start": 3466.48, + "end": 3468.02, + "probability": 0.7953 + }, + { + "start": 3468.06, + "end": 3469.4, + "probability": 0.871 + }, + { + "start": 3470.06, + "end": 3474.1, + "probability": 0.9944 + }, + { + "start": 3474.62, + "end": 3476.14, + "probability": 0.9394 + }, + { + "start": 3477.36, + "end": 3482.42, + "probability": 0.9607 + }, + { + "start": 3483.72, + "end": 3486.46, + "probability": 0.7824 + }, + { + "start": 3487.0, + "end": 3490.68, + "probability": 0.9402 + }, + { + "start": 3491.56, + "end": 3493.32, + "probability": 0.7329 + }, + { + "start": 3493.84, + "end": 3495.01, + "probability": 0.7924 + }, + { + "start": 3495.1, + "end": 3497.94, + "probability": 0.9641 + }, + { + "start": 3498.8, + "end": 3500.78, + "probability": 0.9715 + }, + { + "start": 3501.34, + "end": 3502.74, + "probability": 0.9136 + }, + { + "start": 3502.88, + "end": 3504.22, + "probability": 0.9978 + }, + { + "start": 3504.3, + "end": 3504.46, + "probability": 0.5156 + }, + { + "start": 3505.46, + "end": 3508.84, + "probability": 0.9526 + }, + { + "start": 3509.48, + "end": 3511.2, + "probability": 0.7744 + }, + { + "start": 3512.88, + "end": 3513.54, + "probability": 0.7932 + }, + { + "start": 3514.42, + "end": 3516.26, + "probability": 0.9839 + }, + { + "start": 3517.02, + "end": 3518.0, + "probability": 0.3606 + }, + { + "start": 3518.64, + "end": 3521.62, + "probability": 0.9961 + }, + { + "start": 3523.3, + "end": 3524.3, + "probability": 0.7609 + }, + { + "start": 3524.4, + "end": 3527.68, + "probability": 0.9856 + }, + { + "start": 3528.66, + "end": 3531.44, + "probability": 0.9799 + }, + { + "start": 3532.2, + "end": 3534.58, + "probability": 0.7425 + }, + { + "start": 3536.04, + "end": 3537.62, + "probability": 0.9968 + }, + { + "start": 3537.78, + "end": 3539.5, + "probability": 0.8501 + }, + { + "start": 3540.66, + "end": 3546.02, + "probability": 0.9792 + }, + { + "start": 3546.36, + "end": 3549.24, + "probability": 0.9773 + }, + { + "start": 3550.38, + "end": 3553.72, + "probability": 0.9888 + }, + { + "start": 3554.98, + "end": 3555.79, + "probability": 0.9009 + }, + { + "start": 3555.88, + "end": 3559.26, + "probability": 0.9728 + }, + { + "start": 3560.02, + "end": 3560.12, + "probability": 0.8613 + }, + { + "start": 3562.4, + "end": 3564.84, + "probability": 0.8306 + }, + { + "start": 3565.2, + "end": 3567.03, + "probability": 0.8948 + }, + { + "start": 3567.42, + "end": 3568.14, + "probability": 0.912 + }, + { + "start": 3569.1, + "end": 3570.02, + "probability": 0.9611 + }, + { + "start": 3571.22, + "end": 3576.48, + "probability": 0.9476 + }, + { + "start": 3576.78, + "end": 3577.2, + "probability": 0.7805 + }, + { + "start": 3577.72, + "end": 3579.78, + "probability": 0.9427 + }, + { + "start": 3581.34, + "end": 3582.46, + "probability": 0.9839 + }, + { + "start": 3583.36, + "end": 3584.86, + "probability": 0.9801 + }, + { + "start": 3584.98, + "end": 3590.86, + "probability": 0.9777 + }, + { + "start": 3592.16, + "end": 3594.22, + "probability": 0.9753 + }, + { + "start": 3594.4, + "end": 3596.08, + "probability": 0.9282 + }, + { + "start": 3596.7, + "end": 3598.02, + "probability": 0.9409 + }, + { + "start": 3598.12, + "end": 3599.08, + "probability": 0.9657 + }, + { + "start": 3599.2, + "end": 3599.86, + "probability": 0.9873 + }, + { + "start": 3600.6, + "end": 3605.94, + "probability": 0.984 + }, + { + "start": 3606.48, + "end": 3608.06, + "probability": 0.9299 + }, + { + "start": 3608.22, + "end": 3609.22, + "probability": 0.9737 + }, + { + "start": 3609.64, + "end": 3615.52, + "probability": 0.9966 + }, + { + "start": 3615.9, + "end": 3616.76, + "probability": 0.9707 + }, + { + "start": 3617.26, + "end": 3619.84, + "probability": 0.111 + }, + { + "start": 3620.06, + "end": 3625.46, + "probability": 0.7463 + }, + { + "start": 3625.52, + "end": 3626.7, + "probability": 0.9893 + }, + { + "start": 3628.18, + "end": 3629.96, + "probability": 0.5045 + }, + { + "start": 3630.66, + "end": 3631.38, + "probability": 0.4085 + }, + { + "start": 3632.28, + "end": 3632.82, + "probability": 0.7334 + }, + { + "start": 3632.96, + "end": 3634.16, + "probability": 0.7865 + }, + { + "start": 3636.39, + "end": 3638.6, + "probability": 0.9767 + }, + { + "start": 3638.98, + "end": 3641.06, + "probability": 0.8446 + }, + { + "start": 3641.22, + "end": 3643.06, + "probability": 0.5076 + }, + { + "start": 3643.14, + "end": 3645.4, + "probability": 0.8963 + }, + { + "start": 3646.12, + "end": 3647.22, + "probability": 0.6765 + }, + { + "start": 3647.6, + "end": 3648.08, + "probability": 0.0063 + }, + { + "start": 3648.08, + "end": 3651.28, + "probability": 0.8955 + }, + { + "start": 3651.72, + "end": 3653.08, + "probability": 0.9702 + }, + { + "start": 3654.1, + "end": 3654.92, + "probability": 0.9369 + }, + { + "start": 3655.56, + "end": 3657.34, + "probability": 0.957 + }, + { + "start": 3658.86, + "end": 3661.34, + "probability": 0.9252 + }, + { + "start": 3661.92, + "end": 3666.2, + "probability": 0.9912 + }, + { + "start": 3667.1, + "end": 3668.24, + "probability": 0.5124 + }, + { + "start": 3668.8, + "end": 3669.06, + "probability": 0.7935 + }, + { + "start": 3670.26, + "end": 3673.52, + "probability": 0.8234 + }, + { + "start": 3673.52, + "end": 3676.22, + "probability": 0.895 + }, + { + "start": 3676.22, + "end": 3676.24, + "probability": 0.2563 + }, + { + "start": 3676.34, + "end": 3681.66, + "probability": 0.7769 + }, + { + "start": 3681.66, + "end": 3682.7, + "probability": 0.5023 + }, + { + "start": 3682.84, + "end": 3683.78, + "probability": 0.3931 + }, + { + "start": 3684.28, + "end": 3685.22, + "probability": 0.6285 + }, + { + "start": 3685.32, + "end": 3685.94, + "probability": 0.6836 + }, + { + "start": 3686.32, + "end": 3688.9, + "probability": 0.8534 + }, + { + "start": 3689.18, + "end": 3689.72, + "probability": 0.6276 + }, + { + "start": 3689.74, + "end": 3692.08, + "probability": 0.8075 + }, + { + "start": 3692.88, + "end": 3693.74, + "probability": 0.8828 + }, + { + "start": 3694.82, + "end": 3698.78, + "probability": 0.7817 + }, + { + "start": 3699.64, + "end": 3704.16, + "probability": 0.6666 + }, + { + "start": 3704.76, + "end": 3707.4, + "probability": 0.8299 + }, + { + "start": 3708.3, + "end": 3712.44, + "probability": 0.9256 + }, + { + "start": 3712.92, + "end": 3715.02, + "probability": 0.9097 + }, + { + "start": 3715.44, + "end": 3716.3, + "probability": 0.9521 + }, + { + "start": 3716.38, + "end": 3717.25, + "probability": 0.5809 + }, + { + "start": 3717.82, + "end": 3720.0, + "probability": 0.981 + }, + { + "start": 3720.46, + "end": 3723.72, + "probability": 0.9347 + }, + { + "start": 3723.8, + "end": 3727.64, + "probability": 0.9594 + }, + { + "start": 3727.92, + "end": 3728.26, + "probability": 0.6895 + }, + { + "start": 3728.26, + "end": 3733.28, + "probability": 0.8153 + }, + { + "start": 3733.28, + "end": 3735.94, + "probability": 0.9637 + }, + { + "start": 3736.22, + "end": 3736.66, + "probability": 0.6569 + }, + { + "start": 3736.76, + "end": 3737.62, + "probability": 0.6062 + }, + { + "start": 3738.46, + "end": 3741.24, + "probability": 0.7588 + }, + { + "start": 3741.74, + "end": 3745.78, + "probability": 0.772 + }, + { + "start": 3745.84, + "end": 3747.1, + "probability": 0.9288 + }, + { + "start": 3747.54, + "end": 3750.44, + "probability": 0.9744 + }, + { + "start": 3750.62, + "end": 3752.7, + "probability": 0.9863 + }, + { + "start": 3753.1, + "end": 3753.84, + "probability": 0.581 + }, + { + "start": 3754.36, + "end": 3755.42, + "probability": 0.7448 + }, + { + "start": 3755.58, + "end": 3756.4, + "probability": 0.6913 + }, + { + "start": 3756.82, + "end": 3758.78, + "probability": 0.6961 + }, + { + "start": 3759.2, + "end": 3761.38, + "probability": 0.875 + }, + { + "start": 3761.98, + "end": 3763.22, + "probability": 0.8723 + }, + { + "start": 3769.7, + "end": 3769.7, + "probability": 0.163 + }, + { + "start": 3769.7, + "end": 3774.64, + "probability": 0.8293 + }, + { + "start": 3775.64, + "end": 3778.26, + "probability": 0.3997 + }, + { + "start": 3778.26, + "end": 3778.64, + "probability": 0.4537 + }, + { + "start": 3778.98, + "end": 3780.98, + "probability": 0.9469 + }, + { + "start": 3781.36, + "end": 3785.32, + "probability": 0.8127 + }, + { + "start": 3785.42, + "end": 3786.88, + "probability": 0.5122 + }, + { + "start": 3788.12, + "end": 3790.56, + "probability": 0.8474 + }, + { + "start": 3791.28, + "end": 3792.3, + "probability": 0.6147 + }, + { + "start": 3795.92, + "end": 3796.96, + "probability": 0.2035 + }, + { + "start": 3798.64, + "end": 3799.82, + "probability": 0.4329 + }, + { + "start": 3800.26, + "end": 3803.6, + "probability": 0.7524 + }, + { + "start": 3803.6, + "end": 3807.14, + "probability": 0.9937 + }, + { + "start": 3808.3, + "end": 3811.52, + "probability": 0.7831 + }, + { + "start": 3813.0, + "end": 3816.56, + "probability": 0.8544 + }, + { + "start": 3817.42, + "end": 3819.84, + "probability": 0.9756 + }, + { + "start": 3820.7, + "end": 3821.72, + "probability": 0.8689 + }, + { + "start": 3822.78, + "end": 3824.14, + "probability": 0.983 + }, + { + "start": 3824.68, + "end": 3827.92, + "probability": 0.978 + }, + { + "start": 3828.82, + "end": 3829.66, + "probability": 0.9542 + }, + { + "start": 3831.06, + "end": 3834.26, + "probability": 0.8098 + }, + { + "start": 3834.28, + "end": 3834.84, + "probability": 0.7159 + }, + { + "start": 3834.98, + "end": 3836.48, + "probability": 0.537 + }, + { + "start": 3836.62, + "end": 3837.86, + "probability": 0.7711 + }, + { + "start": 3838.68, + "end": 3840.78, + "probability": 0.8682 + }, + { + "start": 3840.78, + "end": 3841.14, + "probability": 0.6348 + }, + { + "start": 3841.3, + "end": 3846.92, + "probability": 0.9842 + }, + { + "start": 3847.0, + "end": 3847.44, + "probability": 0.4347 + }, + { + "start": 3848.02, + "end": 3848.58, + "probability": 0.325 + }, + { + "start": 3848.62, + "end": 3851.1, + "probability": 0.9395 + }, + { + "start": 3851.2, + "end": 3853.84, + "probability": 0.9902 + }, + { + "start": 3853.92, + "end": 3854.86, + "probability": 0.7588 + }, + { + "start": 3856.54, + "end": 3858.42, + "probability": 0.974 + }, + { + "start": 3858.5, + "end": 3859.2, + "probability": 0.9927 + }, + { + "start": 3859.86, + "end": 3860.6, + "probability": 0.1492 + }, + { + "start": 3861.12, + "end": 3861.68, + "probability": 0.5182 + }, + { + "start": 3861.8, + "end": 3862.48, + "probability": 0.7094 + }, + { + "start": 3863.16, + "end": 3867.66, + "probability": 0.9883 + }, + { + "start": 3867.84, + "end": 3872.72, + "probability": 0.9836 + }, + { + "start": 3873.52, + "end": 3876.2, + "probability": 0.9805 + }, + { + "start": 3877.6, + "end": 3881.78, + "probability": 0.9685 + }, + { + "start": 3881.82, + "end": 3885.78, + "probability": 0.9014 + }, + { + "start": 3887.82, + "end": 3889.6, + "probability": 0.1923 + }, + { + "start": 3893.56, + "end": 3895.68, + "probability": 0.2148 + }, + { + "start": 3900.84, + "end": 3904.48, + "probability": 0.4041 + }, + { + "start": 3904.48, + "end": 3907.8, + "probability": 0.957 + }, + { + "start": 3908.04, + "end": 3910.72, + "probability": 0.886 + }, + { + "start": 3913.01, + "end": 3915.84, + "probability": 0.9399 + }, + { + "start": 3915.94, + "end": 3918.82, + "probability": 0.992 + }, + { + "start": 3920.22, + "end": 3923.62, + "probability": 0.9982 + }, + { + "start": 3923.78, + "end": 3926.62, + "probability": 0.9937 + }, + { + "start": 3926.66, + "end": 3929.04, + "probability": 0.8713 + }, + { + "start": 3930.04, + "end": 3937.66, + "probability": 0.9445 + }, + { + "start": 3938.5, + "end": 3945.4, + "probability": 0.9827 + }, + { + "start": 3945.98, + "end": 3950.86, + "probability": 0.9897 + }, + { + "start": 3950.88, + "end": 3951.36, + "probability": 0.9098 + }, + { + "start": 3951.98, + "end": 3953.9, + "probability": 0.9714 + }, + { + "start": 3954.46, + "end": 3956.82, + "probability": 0.998 + }, + { + "start": 3957.52, + "end": 3957.8, + "probability": 0.8813 + }, + { + "start": 3957.86, + "end": 3962.84, + "probability": 0.9681 + }, + { + "start": 3962.84, + "end": 3964.96, + "probability": 0.9224 + }, + { + "start": 3966.14, + "end": 3970.96, + "probability": 0.9929 + }, + { + "start": 3971.84, + "end": 3974.66, + "probability": 0.8053 + }, + { + "start": 3975.54, + "end": 3980.78, + "probability": 0.8199 + }, + { + "start": 3981.56, + "end": 3982.76, + "probability": 0.8238 + }, + { + "start": 3982.8, + "end": 3986.76, + "probability": 0.9962 + }, + { + "start": 3987.6, + "end": 3993.86, + "probability": 0.8576 + }, + { + "start": 3999.08, + "end": 4002.12, + "probability": 0.902 + }, + { + "start": 4002.42, + "end": 4005.74, + "probability": 0.9729 + }, + { + "start": 4007.16, + "end": 4012.0, + "probability": 0.986 + }, + { + "start": 4012.06, + "end": 4013.92, + "probability": 0.9967 + }, + { + "start": 4014.78, + "end": 4020.12, + "probability": 0.947 + }, + { + "start": 4020.28, + "end": 4021.9, + "probability": 0.988 + }, + { + "start": 4022.08, + "end": 4022.29, + "probability": 0.2217 + }, + { + "start": 4023.02, + "end": 4028.82, + "probability": 0.9973 + }, + { + "start": 4029.66, + "end": 4034.26, + "probability": 0.8884 + }, + { + "start": 4034.34, + "end": 4035.74, + "probability": 0.9847 + }, + { + "start": 4035.96, + "end": 4041.46, + "probability": 0.9941 + }, + { + "start": 4041.54, + "end": 4044.96, + "probability": 0.9845 + }, + { + "start": 4045.14, + "end": 4047.46, + "probability": 0.9504 + }, + { + "start": 4048.02, + "end": 4049.18, + "probability": 0.9467 + }, + { + "start": 4055.6, + "end": 4055.7, + "probability": 0.1439 + }, + { + "start": 4056.22, + "end": 4057.46, + "probability": 0.1603 + }, + { + "start": 4058.9, + "end": 4062.46, + "probability": 0.2401 + }, + { + "start": 4063.34, + "end": 4067.44, + "probability": 0.0854 + }, + { + "start": 4067.44, + "end": 4071.7, + "probability": 0.1462 + }, + { + "start": 4072.26, + "end": 4077.65, + "probability": 0.0344 + }, + { + "start": 4080.0, + "end": 4080.84, + "probability": 0.2845 + }, + { + "start": 4081.46, + "end": 4085.1, + "probability": 0.1126 + }, + { + "start": 4093.56, + "end": 4094.32, + "probability": 0.1807 + }, + { + "start": 4094.52, + "end": 4094.98, + "probability": 0.0073 + }, + { + "start": 4096.45, + "end": 4097.98, + "probability": 0.5287 + }, + { + "start": 4098.64, + "end": 4099.44, + "probability": 0.0815 + }, + { + "start": 4099.5, + "end": 4101.38, + "probability": 0.5842 + }, + { + "start": 4103.22, + "end": 4103.78, + "probability": 0.1013 + }, + { + "start": 4103.94, + "end": 4104.0, + "probability": 0.0673 + }, + { + "start": 4104.0, + "end": 4104.0, + "probability": 0.148 + }, + { + "start": 4104.0, + "end": 4104.0, + "probability": 0.1593 + }, + { + "start": 4104.0, + "end": 4104.1, + "probability": 0.1167 + }, + { + "start": 4104.1, + "end": 4104.34, + "probability": 0.5237 + }, + { + "start": 4107.46, + "end": 4112.7, + "probability": 0.9863 + }, + { + "start": 4114.83, + "end": 4119.36, + "probability": 0.7472 + }, + { + "start": 4121.5, + "end": 4123.74, + "probability": 0.9129 + }, + { + "start": 4124.4, + "end": 4125.12, + "probability": 0.8852 + }, + { + "start": 4126.18, + "end": 4131.24, + "probability": 0.3739 + }, + { + "start": 4132.16, + "end": 4132.38, + "probability": 0.6453 + }, + { + "start": 4133.94, + "end": 4135.56, + "probability": 0.9973 + }, + { + "start": 4136.74, + "end": 4139.94, + "probability": 0.7786 + }, + { + "start": 4140.12, + "end": 4140.76, + "probability": 0.5995 + }, + { + "start": 4141.04, + "end": 4144.62, + "probability": 0.9316 + }, + { + "start": 4144.86, + "end": 4147.2, + "probability": 0.8275 + }, + { + "start": 4148.22, + "end": 4150.62, + "probability": 0.8821 + }, + { + "start": 4151.54, + "end": 4156.1, + "probability": 0.9579 + }, + { + "start": 4156.76, + "end": 4158.8, + "probability": 0.9335 + }, + { + "start": 4159.34, + "end": 4164.64, + "probability": 0.7282 + }, + { + "start": 4164.84, + "end": 4165.92, + "probability": 0.0752 + }, + { + "start": 4166.88, + "end": 4174.82, + "probability": 0.9753 + }, + { + "start": 4175.24, + "end": 4176.5, + "probability": 0.7701 + }, + { + "start": 4176.68, + "end": 4177.52, + "probability": 0.9473 + }, + { + "start": 4178.5, + "end": 4180.05, + "probability": 0.9617 + }, + { + "start": 4181.44, + "end": 4183.26, + "probability": 0.6195 + }, + { + "start": 4183.44, + "end": 4186.34, + "probability": 0.4007 + }, + { + "start": 4186.46, + "end": 4187.52, + "probability": 0.9407 + }, + { + "start": 4187.6, + "end": 4193.44, + "probability": 0.9082 + }, + { + "start": 4193.54, + "end": 4198.22, + "probability": 0.7993 + }, + { + "start": 4198.88, + "end": 4204.67, + "probability": 0.9643 + }, + { + "start": 4206.54, + "end": 4207.58, + "probability": 0.7224 + }, + { + "start": 4208.64, + "end": 4211.5, + "probability": 0.9619 + }, + { + "start": 4212.5, + "end": 4215.62, + "probability": 0.7259 + }, + { + "start": 4219.0, + "end": 4219.46, + "probability": 0.1113 + }, + { + "start": 4221.14, + "end": 4223.7, + "probability": 0.969 + }, + { + "start": 4224.54, + "end": 4225.94, + "probability": 0.7573 + }, + { + "start": 4226.92, + "end": 4231.02, + "probability": 0.9691 + }, + { + "start": 4231.58, + "end": 4235.28, + "probability": 0.994 + }, + { + "start": 4235.88, + "end": 4236.2, + "probability": 0.9507 + }, + { + "start": 4237.48, + "end": 4238.3, + "probability": 0.8601 + }, + { + "start": 4244.3, + "end": 4252.52, + "probability": 0.3296 + }, + { + "start": 4252.82, + "end": 4256.1, + "probability": 0.3456 + }, + { + "start": 4256.9, + "end": 4257.5, + "probability": 0.5588 + }, + { + "start": 4257.94, + "end": 4260.6, + "probability": 0.5767 + }, + { + "start": 4261.26, + "end": 4262.4, + "probability": 0.917 + }, + { + "start": 4262.85, + "end": 4270.16, + "probability": 0.8334 + }, + { + "start": 4270.82, + "end": 4272.2, + "probability": 0.6926 + }, + { + "start": 4272.98, + "end": 4274.92, + "probability": 0.9961 + }, + { + "start": 4275.14, + "end": 4280.28, + "probability": 0.998 + }, + { + "start": 4281.08, + "end": 4282.02, + "probability": 0.7151 + }, + { + "start": 4282.9, + "end": 4285.46, + "probability": 0.999 + }, + { + "start": 4286.44, + "end": 4288.04, + "probability": 0.9294 + }, + { + "start": 4288.74, + "end": 4292.36, + "probability": 0.5078 + }, + { + "start": 4292.76, + "end": 4293.89, + "probability": 0.781 + }, + { + "start": 4294.66, + "end": 4300.48, + "probability": 0.8094 + }, + { + "start": 4301.18, + "end": 4302.9, + "probability": 0.8158 + }, + { + "start": 4303.62, + "end": 4304.72, + "probability": 0.6074 + }, + { + "start": 4305.14, + "end": 4306.5, + "probability": 0.8782 + }, + { + "start": 4306.6, + "end": 4308.32, + "probability": 0.9616 + }, + { + "start": 4308.48, + "end": 4309.02, + "probability": 0.7348 + }, + { + "start": 4309.08, + "end": 4310.22, + "probability": 0.9933 + }, + { + "start": 4312.64, + "end": 4318.26, + "probability": 0.975 + }, + { + "start": 4318.26, + "end": 4326.12, + "probability": 0.9982 + }, + { + "start": 4326.66, + "end": 4332.9, + "probability": 0.9881 + }, + { + "start": 4333.44, + "end": 4336.84, + "probability": 0.8541 + }, + { + "start": 4337.36, + "end": 4340.24, + "probability": 0.9971 + }, + { + "start": 4341.32, + "end": 4348.46, + "probability": 0.9968 + }, + { + "start": 4349.02, + "end": 4360.82, + "probability": 0.9912 + }, + { + "start": 4363.63, + "end": 4368.74, + "probability": 0.658 + }, + { + "start": 4369.7, + "end": 4373.85, + "probability": 0.9714 + }, + { + "start": 4374.26, + "end": 4377.62, + "probability": 0.9663 + }, + { + "start": 4378.56, + "end": 4382.94, + "probability": 0.9984 + }, + { + "start": 4384.26, + "end": 4386.88, + "probability": 0.4867 + }, + { + "start": 4387.76, + "end": 4388.44, + "probability": 0.8606 + }, + { + "start": 4388.64, + "end": 4397.42, + "probability": 0.694 + }, + { + "start": 4398.16, + "end": 4400.12, + "probability": 0.9495 + }, + { + "start": 4400.3, + "end": 4405.72, + "probability": 0.9076 + }, + { + "start": 4406.34, + "end": 4409.1, + "probability": 0.7649 + }, + { + "start": 4411.08, + "end": 4414.66, + "probability": 0.946 + }, + { + "start": 4415.74, + "end": 4420.2, + "probability": 0.9882 + }, + { + "start": 4420.34, + "end": 4420.74, + "probability": 0.7978 + }, + { + "start": 4421.64, + "end": 4425.64, + "probability": 0.9709 + }, + { + "start": 4426.34, + "end": 4431.36, + "probability": 0.9338 + }, + { + "start": 4431.36, + "end": 4435.32, + "probability": 0.958 + }, + { + "start": 4435.94, + "end": 4438.32, + "probability": 0.9285 + }, + { + "start": 4438.88, + "end": 4440.38, + "probability": 0.9349 + }, + { + "start": 4440.78, + "end": 4443.08, + "probability": 0.8161 + }, + { + "start": 4443.62, + "end": 4445.46, + "probability": 0.7776 + }, + { + "start": 4446.24, + "end": 4448.78, + "probability": 0.9273 + }, + { + "start": 4449.02, + "end": 4450.56, + "probability": 0.9842 + }, + { + "start": 4450.68, + "end": 4451.8, + "probability": 0.7365 + }, + { + "start": 4451.92, + "end": 4453.6, + "probability": 0.8521 + }, + { + "start": 4454.18, + "end": 4458.6, + "probability": 0.778 + }, + { + "start": 4459.6, + "end": 4464.34, + "probability": 0.9878 + }, + { + "start": 4464.46, + "end": 4465.18, + "probability": 0.8945 + }, + { + "start": 4465.24, + "end": 4465.5, + "probability": 0.8799 + }, + { + "start": 4466.88, + "end": 4470.22, + "probability": 0.7665 + }, + { + "start": 4470.9, + "end": 4474.64, + "probability": 0.889 + }, + { + "start": 4475.08, + "end": 4480.26, + "probability": 0.8403 + }, + { + "start": 4480.6, + "end": 4481.9, + "probability": 0.991 + }, + { + "start": 4483.44, + "end": 4484.18, + "probability": 0.4846 + }, + { + "start": 4484.34, + "end": 4488.82, + "probability": 0.4688 + }, + { + "start": 4490.26, + "end": 4491.34, + "probability": 0.5662 + }, + { + "start": 4493.12, + "end": 4494.56, + "probability": 0.9877 + }, + { + "start": 4495.74, + "end": 4496.35, + "probability": 0.8809 + }, + { + "start": 4497.38, + "end": 4498.64, + "probability": 0.8318 + }, + { + "start": 4499.48, + "end": 4505.46, + "probability": 0.9689 + }, + { + "start": 4505.58, + "end": 4506.56, + "probability": 0.9626 + }, + { + "start": 4507.3, + "end": 4515.88, + "probability": 0.9961 + }, + { + "start": 4516.34, + "end": 4517.24, + "probability": 0.7824 + }, + { + "start": 4517.84, + "end": 4522.22, + "probability": 0.9889 + }, + { + "start": 4522.22, + "end": 4527.08, + "probability": 0.9194 + }, + { + "start": 4527.14, + "end": 4528.06, + "probability": 0.7061 + }, + { + "start": 4528.8, + "end": 4532.88, + "probability": 0.9632 + }, + { + "start": 4533.68, + "end": 4535.54, + "probability": 0.9971 + }, + { + "start": 4537.52, + "end": 4539.38, + "probability": 0.948 + }, + { + "start": 4540.24, + "end": 4541.34, + "probability": 0.9971 + }, + { + "start": 4542.3, + "end": 4544.86, + "probability": 0.9941 + }, + { + "start": 4545.48, + "end": 4549.9, + "probability": 0.9497 + }, + { + "start": 4551.04, + "end": 4553.42, + "probability": 0.6769 + }, + { + "start": 4554.6, + "end": 4558.88, + "probability": 0.9971 + }, + { + "start": 4559.7, + "end": 4561.97, + "probability": 0.8799 + }, + { + "start": 4563.14, + "end": 4565.94, + "probability": 0.833 + }, + { + "start": 4566.94, + "end": 4571.82, + "probability": 0.8472 + }, + { + "start": 4571.98, + "end": 4572.54, + "probability": 0.601 + }, + { + "start": 4574.67, + "end": 4580.6, + "probability": 0.9733 + }, + { + "start": 4581.48, + "end": 4583.8, + "probability": 0.9966 + }, + { + "start": 4585.88, + "end": 4590.24, + "probability": 0.5601 + }, + { + "start": 4591.19, + "end": 4596.96, + "probability": 0.8939 + }, + { + "start": 4601.1, + "end": 4604.88, + "probability": 0.9957 + }, + { + "start": 4605.56, + "end": 4607.82, + "probability": 0.9937 + }, + { + "start": 4608.48, + "end": 4612.36, + "probability": 0.9741 + }, + { + "start": 4613.94, + "end": 4618.6, + "probability": 0.9941 + }, + { + "start": 4619.78, + "end": 4620.7, + "probability": 0.9456 + }, + { + "start": 4621.26, + "end": 4623.0, + "probability": 0.9712 + }, + { + "start": 4623.68, + "end": 4626.44, + "probability": 0.9966 + }, + { + "start": 4627.22, + "end": 4628.66, + "probability": 0.9924 + }, + { + "start": 4628.88, + "end": 4629.16, + "probability": 0.7605 + }, + { + "start": 4630.32, + "end": 4633.74, + "probability": 0.696 + }, + { + "start": 4635.61, + "end": 4642.66, + "probability": 0.9263 + }, + { + "start": 4642.66, + "end": 4644.48, + "probability": 0.673 + }, + { + "start": 4645.62, + "end": 4652.31, + "probability": 0.9951 + }, + { + "start": 4653.2, + "end": 4653.98, + "probability": 0.8253 + }, + { + "start": 4654.38, + "end": 4654.72, + "probability": 0.9108 + }, + { + "start": 4655.52, + "end": 4656.58, + "probability": 0.6111 + }, + { + "start": 4656.62, + "end": 4657.68, + "probability": 0.4636 + }, + { + "start": 4657.76, + "end": 4660.22, + "probability": 0.9286 + }, + { + "start": 4660.9, + "end": 4662.27, + "probability": 0.877 + }, + { + "start": 4663.02, + "end": 4665.2, + "probability": 0.809 + }, + { + "start": 4665.62, + "end": 4666.42, + "probability": 0.8789 + }, + { + "start": 4666.88, + "end": 4667.36, + "probability": 0.9365 + }, + { + "start": 4668.24, + "end": 4669.38, + "probability": 0.9935 + }, + { + "start": 4670.86, + "end": 4673.12, + "probability": 0.8588 + }, + { + "start": 4674.14, + "end": 4677.82, + "probability": 0.82 + }, + { + "start": 4677.9, + "end": 4681.06, + "probability": 0.7897 + }, + { + "start": 4682.64, + "end": 4688.4, + "probability": 0.9559 + }, + { + "start": 4688.54, + "end": 4690.88, + "probability": 0.7618 + }, + { + "start": 4691.94, + "end": 4693.76, + "probability": 0.5159 + }, + { + "start": 4694.62, + "end": 4696.22, + "probability": 0.7681 + }, + { + "start": 4696.7, + "end": 4699.56, + "probability": 0.8848 + }, + { + "start": 4699.66, + "end": 4700.86, + "probability": 0.9937 + }, + { + "start": 4701.42, + "end": 4704.62, + "probability": 0.8888 + }, + { + "start": 4705.64, + "end": 4707.58, + "probability": 0.9973 + }, + { + "start": 4707.74, + "end": 4708.68, + "probability": 0.7412 + }, + { + "start": 4709.88, + "end": 4711.98, + "probability": 0.7994 + }, + { + "start": 4712.62, + "end": 4714.16, + "probability": 0.8994 + }, + { + "start": 4714.28, + "end": 4718.46, + "probability": 0.8647 + }, + { + "start": 4718.54, + "end": 4727.26, + "probability": 0.7462 + }, + { + "start": 4727.68, + "end": 4731.4, + "probability": 0.8759 + }, + { + "start": 4732.16, + "end": 4733.16, + "probability": 0.9649 + }, + { + "start": 4734.92, + "end": 4739.04, + "probability": 0.859 + }, + { + "start": 4739.14, + "end": 4747.5, + "probability": 0.9856 + }, + { + "start": 4748.46, + "end": 4748.7, + "probability": 0.9766 + }, + { + "start": 4748.76, + "end": 4752.0, + "probability": 0.9008 + }, + { + "start": 4753.66, + "end": 4756.2, + "probability": 0.6239 + }, + { + "start": 4756.28, + "end": 4758.66, + "probability": 0.9703 + }, + { + "start": 4759.66, + "end": 4762.78, + "probability": 0.9582 + }, + { + "start": 4762.96, + "end": 4765.1, + "probability": 0.9985 + }, + { + "start": 4765.64, + "end": 4767.22, + "probability": 0.7934 + }, + { + "start": 4767.34, + "end": 4769.46, + "probability": 0.9878 + }, + { + "start": 4769.62, + "end": 4770.62, + "probability": 0.9507 + }, + { + "start": 4771.5, + "end": 4776.12, + "probability": 0.9875 + }, + { + "start": 4776.97, + "end": 4779.62, + "probability": 0.83 + }, + { + "start": 4780.08, + "end": 4782.44, + "probability": 0.9472 + }, + { + "start": 4782.62, + "end": 4783.58, + "probability": 0.6947 + }, + { + "start": 4783.62, + "end": 4784.46, + "probability": 0.9387 + }, + { + "start": 4784.82, + "end": 4785.46, + "probability": 0.4438 + }, + { + "start": 4786.02, + "end": 4793.58, + "probability": 0.986 + }, + { + "start": 4794.68, + "end": 4795.04, + "probability": 0.7405 + }, + { + "start": 4795.88, + "end": 4798.32, + "probability": 0.9662 + }, + { + "start": 4798.36, + "end": 4799.22, + "probability": 0.9041 + }, + { + "start": 4799.36, + "end": 4800.06, + "probability": 0.8685 + }, + { + "start": 4800.98, + "end": 4803.28, + "probability": 0.9641 + }, + { + "start": 4804.36, + "end": 4809.0, + "probability": 0.9964 + }, + { + "start": 4809.6, + "end": 4812.28, + "probability": 0.9631 + }, + { + "start": 4813.06, + "end": 4816.12, + "probability": 0.9786 + }, + { + "start": 4816.28, + "end": 4821.32, + "probability": 0.9975 + }, + { + "start": 4821.66, + "end": 4823.32, + "probability": 0.7209 + }, + { + "start": 4823.84, + "end": 4824.06, + "probability": 0.6755 + }, + { + "start": 4824.7, + "end": 4827.52, + "probability": 0.2637 + }, + { + "start": 4827.94, + "end": 4830.06, + "probability": 0.9132 + }, + { + "start": 4830.82, + "end": 4834.84, + "probability": 0.9955 + }, + { + "start": 4835.4, + "end": 4836.64, + "probability": 0.8254 + }, + { + "start": 4850.5, + "end": 4851.38, + "probability": 0.5794 + }, + { + "start": 4851.56, + "end": 4852.4, + "probability": 0.6604 + }, + { + "start": 4852.56, + "end": 4855.12, + "probability": 0.7856 + }, + { + "start": 4855.12, + "end": 4857.54, + "probability": 0.9405 + }, + { + "start": 4857.98, + "end": 4859.58, + "probability": 0.9321 + }, + { + "start": 4860.79, + "end": 4863.42, + "probability": 0.817 + }, + { + "start": 4864.22, + "end": 4866.4, + "probability": 0.9605 + }, + { + "start": 4866.64, + "end": 4869.82, + "probability": 0.6982 + }, + { + "start": 4869.84, + "end": 4870.32, + "probability": 0.7073 + }, + { + "start": 4870.44, + "end": 4871.4, + "probability": 0.855 + }, + { + "start": 4871.8, + "end": 4873.76, + "probability": 0.8494 + }, + { + "start": 4873.98, + "end": 4877.18, + "probability": 0.7437 + }, + { + "start": 4877.3, + "end": 4878.09, + "probability": 0.1584 + }, + { + "start": 4878.86, + "end": 4881.96, + "probability": 0.3799 + }, + { + "start": 4883.98, + "end": 4884.14, + "probability": 0.3604 + }, + { + "start": 4884.14, + "end": 4885.06, + "probability": 0.5549 + }, + { + "start": 4885.58, + "end": 4889.14, + "probability": 0.9981 + }, + { + "start": 4889.3, + "end": 4890.87, + "probability": 0.9248 + }, + { + "start": 4892.13, + "end": 4893.44, + "probability": 0.9344 + }, + { + "start": 4895.02, + "end": 4896.94, + "probability": 0.8466 + }, + { + "start": 4898.08, + "end": 4899.54, + "probability": 0.7539 + }, + { + "start": 4900.42, + "end": 4901.88, + "probability": 0.955 + }, + { + "start": 4901.96, + "end": 4904.78, + "probability": 0.9906 + }, + { + "start": 4905.8, + "end": 4910.02, + "probability": 0.8574 + }, + { + "start": 4910.16, + "end": 4911.48, + "probability": 0.7643 + }, + { + "start": 4912.54, + "end": 4917.1, + "probability": 0.9949 + }, + { + "start": 4917.18, + "end": 4918.04, + "probability": 0.9642 + }, + { + "start": 4919.02, + "end": 4920.3, + "probability": 0.9253 + }, + { + "start": 4920.92, + "end": 4922.32, + "probability": 0.8628 + }, + { + "start": 4922.48, + "end": 4924.58, + "probability": 0.9189 + }, + { + "start": 4925.42, + "end": 4928.48, + "probability": 0.7803 + }, + { + "start": 4928.62, + "end": 4931.85, + "probability": 0.9929 + }, + { + "start": 4934.26, + "end": 4935.8, + "probability": 0.8524 + }, + { + "start": 4936.9, + "end": 4941.14, + "probability": 0.9976 + }, + { + "start": 4942.78, + "end": 4945.6, + "probability": 0.9398 + }, + { + "start": 4946.1, + "end": 4948.48, + "probability": 0.9791 + }, + { + "start": 4950.42, + "end": 4957.16, + "probability": 0.9747 + }, + { + "start": 4958.1, + "end": 4960.72, + "probability": 0.9874 + }, + { + "start": 4962.64, + "end": 4963.54, + "probability": 0.6118 + }, + { + "start": 4965.18, + "end": 4966.92, + "probability": 0.8263 + }, + { + "start": 4968.42, + "end": 4970.54, + "probability": 0.9905 + }, + { + "start": 4972.96, + "end": 4974.65, + "probability": 0.9878 + }, + { + "start": 4974.9, + "end": 4975.46, + "probability": 0.8571 + }, + { + "start": 4975.68, + "end": 4975.98, + "probability": 0.7948 + }, + { + "start": 4980.64, + "end": 4984.86, + "probability": 0.9146 + }, + { + "start": 4985.24, + "end": 4986.66, + "probability": 0.7143 + }, + { + "start": 4986.72, + "end": 4988.46, + "probability": 0.9756 + }, + { + "start": 4989.52, + "end": 4994.88, + "probability": 0.9673 + }, + { + "start": 4994.88, + "end": 4998.58, + "probability": 0.968 + }, + { + "start": 4999.6, + "end": 5006.4, + "probability": 0.9096 + }, + { + "start": 5006.78, + "end": 5014.68, + "probability": 0.9964 + }, + { + "start": 5015.52, + "end": 5018.11, + "probability": 0.9893 + }, + { + "start": 5020.0, + "end": 5023.52, + "probability": 0.949 + }, + { + "start": 5023.76, + "end": 5027.04, + "probability": 0.9997 + }, + { + "start": 5027.06, + "end": 5027.54, + "probability": 0.6755 + }, + { + "start": 5028.7, + "end": 5029.6, + "probability": 0.8872 + }, + { + "start": 5032.96, + "end": 5037.06, + "probability": 0.8431 + }, + { + "start": 5038.06, + "end": 5043.76, + "probability": 0.9182 + }, + { + "start": 5044.4, + "end": 5044.92, + "probability": 0.8261 + }, + { + "start": 5045.56, + "end": 5047.34, + "probability": 0.887 + }, + { + "start": 5048.2, + "end": 5049.65, + "probability": 0.9635 + }, + { + "start": 5049.9, + "end": 5051.14, + "probability": 0.9995 + }, + { + "start": 5051.74, + "end": 5054.2, + "probability": 0.8615 + }, + { + "start": 5054.72, + "end": 5057.8, + "probability": 0.9883 + }, + { + "start": 5057.98, + "end": 5061.2, + "probability": 0.7896 + }, + { + "start": 5061.3, + "end": 5061.7, + "probability": 0.8384 + }, + { + "start": 5062.32, + "end": 5065.54, + "probability": 0.8199 + }, + { + "start": 5066.22, + "end": 5070.08, + "probability": 0.9864 + }, + { + "start": 5073.06, + "end": 5077.0, + "probability": 0.8839 + }, + { + "start": 5077.46, + "end": 5079.68, + "probability": 0.968 + }, + { + "start": 5080.66, + "end": 5082.3, + "probability": 0.8528 + }, + { + "start": 5083.0, + "end": 5086.86, + "probability": 0.9873 + }, + { + "start": 5087.0, + "end": 5087.4, + "probability": 0.8074 + }, + { + "start": 5088.8, + "end": 5090.56, + "probability": 0.6011 + }, + { + "start": 5091.54, + "end": 5092.62, + "probability": 0.8919 + }, + { + "start": 5092.84, + "end": 5094.38, + "probability": 0.9178 + }, + { + "start": 5094.46, + "end": 5095.72, + "probability": 0.9764 + }, + { + "start": 5096.82, + "end": 5097.46, + "probability": 0.8752 + }, + { + "start": 5097.66, + "end": 5102.4, + "probability": 0.9928 + }, + { + "start": 5103.46, + "end": 5104.18, + "probability": 0.7786 + }, + { + "start": 5107.2, + "end": 5110.86, + "probability": 0.9974 + }, + { + "start": 5111.66, + "end": 5115.4, + "probability": 0.7846 + }, + { + "start": 5116.5, + "end": 5119.88, + "probability": 0.9966 + }, + { + "start": 5120.38, + "end": 5124.68, + "probability": 0.8153 + }, + { + "start": 5124.68, + "end": 5127.36, + "probability": 0.9631 + }, + { + "start": 5128.58, + "end": 5130.58, + "probability": 0.9946 + }, + { + "start": 5131.22, + "end": 5135.04, + "probability": 0.8645 + }, + { + "start": 5137.1, + "end": 5138.96, + "probability": 0.9827 + }, + { + "start": 5139.94, + "end": 5140.62, + "probability": 0.989 + }, + { + "start": 5141.2, + "end": 5142.2, + "probability": 0.8941 + }, + { + "start": 5142.32, + "end": 5143.93, + "probability": 0.833 + }, + { + "start": 5145.66, + "end": 5146.94, + "probability": 0.8456 + }, + { + "start": 5149.16, + "end": 5152.46, + "probability": 0.8876 + }, + { + "start": 5153.4, + "end": 5156.48, + "probability": 0.65 + }, + { + "start": 5156.7, + "end": 5157.02, + "probability": 0.5959 + }, + { + "start": 5157.48, + "end": 5158.62, + "probability": 0.7291 + }, + { + "start": 5159.58, + "end": 5164.78, + "probability": 0.7756 + }, + { + "start": 5165.98, + "end": 5166.9, + "probability": 0.8394 + }, + { + "start": 5168.48, + "end": 5170.1, + "probability": 0.9983 + }, + { + "start": 5171.66, + "end": 5174.26, + "probability": 0.8657 + }, + { + "start": 5175.48, + "end": 5176.6, + "probability": 0.9471 + }, + { + "start": 5177.54, + "end": 5178.66, + "probability": 0.9132 + }, + { + "start": 5179.82, + "end": 5182.54, + "probability": 0.8403 + }, + { + "start": 5183.18, + "end": 5187.58, + "probability": 0.9904 + }, + { + "start": 5188.1, + "end": 5188.62, + "probability": 0.894 + }, + { + "start": 5190.08, + "end": 5190.86, + "probability": 0.2653 + }, + { + "start": 5193.44, + "end": 5193.44, + "probability": 0.0089 + }, + { + "start": 5195.52, + "end": 5196.7, + "probability": 0.9997 + }, + { + "start": 5198.64, + "end": 5202.34, + "probability": 0.9927 + }, + { + "start": 5204.3, + "end": 5204.84, + "probability": 0.4586 + }, + { + "start": 5205.08, + "end": 5206.46, + "probability": 0.9832 + }, + { + "start": 5206.48, + "end": 5211.78, + "probability": 0.9825 + }, + { + "start": 5211.92, + "end": 5212.44, + "probability": 0.671 + }, + { + "start": 5213.08, + "end": 5214.32, + "probability": 0.9731 + }, + { + "start": 5214.94, + "end": 5216.24, + "probability": 0.9984 + }, + { + "start": 5217.0, + "end": 5218.98, + "probability": 0.9984 + }, + { + "start": 5220.1, + "end": 5220.74, + "probability": 0.9265 + }, + { + "start": 5222.7, + "end": 5223.3, + "probability": 0.915 + }, + { + "start": 5224.92, + "end": 5228.6, + "probability": 0.9688 + }, + { + "start": 5229.18, + "end": 5233.32, + "probability": 0.9677 + }, + { + "start": 5233.78, + "end": 5238.64, + "probability": 0.984 + }, + { + "start": 5240.96, + "end": 5242.2, + "probability": 0.9968 + }, + { + "start": 5242.32, + "end": 5244.08, + "probability": 0.8618 + }, + { + "start": 5244.62, + "end": 5245.26, + "probability": 0.8137 + }, + { + "start": 5245.42, + "end": 5246.46, + "probability": 0.6992 + }, + { + "start": 5246.52, + "end": 5247.54, + "probability": 0.9087 + }, + { + "start": 5247.6, + "end": 5249.04, + "probability": 0.7357 + }, + { + "start": 5249.04, + "end": 5250.58, + "probability": 0.865 + }, + { + "start": 5251.0, + "end": 5251.7, + "probability": 0.6154 + }, + { + "start": 5252.52, + "end": 5254.82, + "probability": 0.5776 + }, + { + "start": 5259.4, + "end": 5264.14, + "probability": 0.9442 + }, + { + "start": 5265.24, + "end": 5271.62, + "probability": 0.7516 + }, + { + "start": 5272.9, + "end": 5273.82, + "probability": 0.7842 + }, + { + "start": 5273.86, + "end": 5277.78, + "probability": 0.9952 + }, + { + "start": 5280.24, + "end": 5283.8, + "probability": 0.9979 + }, + { + "start": 5285.1, + "end": 5287.64, + "probability": 0.8378 + }, + { + "start": 5288.9, + "end": 5289.82, + "probability": 0.9483 + }, + { + "start": 5290.58, + "end": 5292.06, + "probability": 0.7838 + }, + { + "start": 5292.14, + "end": 5292.58, + "probability": 0.3847 + }, + { + "start": 5294.04, + "end": 5295.06, + "probability": 0.9919 + }, + { + "start": 5295.14, + "end": 5299.16, + "probability": 0.9941 + }, + { + "start": 5300.82, + "end": 5302.46, + "probability": 0.9765 + }, + { + "start": 5302.52, + "end": 5303.4, + "probability": 0.6716 + }, + { + "start": 5304.08, + "end": 5308.6, + "probability": 0.9902 + }, + { + "start": 5309.0, + "end": 5309.74, + "probability": 0.992 + }, + { + "start": 5312.66, + "end": 5316.44, + "probability": 0.9868 + }, + { + "start": 5317.02, + "end": 5318.2, + "probability": 0.7178 + }, + { + "start": 5318.98, + "end": 5319.88, + "probability": 0.446 + }, + { + "start": 5320.78, + "end": 5323.3, + "probability": 0.9852 + }, + { + "start": 5324.1, + "end": 5324.92, + "probability": 0.9684 + }, + { + "start": 5325.68, + "end": 5326.58, + "probability": 0.9302 + }, + { + "start": 5335.46, + "end": 5336.4, + "probability": 0.9987 + }, + { + "start": 5339.3, + "end": 5340.44, + "probability": 0.999 + }, + { + "start": 5341.22, + "end": 5344.24, + "probability": 0.9988 + }, + { + "start": 5345.42, + "end": 5345.88, + "probability": 0.9409 + }, + { + "start": 5347.48, + "end": 5349.71, + "probability": 0.9365 + }, + { + "start": 5351.2, + "end": 5356.64, + "probability": 0.9831 + }, + { + "start": 5356.76, + "end": 5359.34, + "probability": 0.7981 + }, + { + "start": 5361.01, + "end": 5361.46, + "probability": 0.8353 + }, + { + "start": 5362.04, + "end": 5362.38, + "probability": 0.8643 + }, + { + "start": 5363.62, + "end": 5364.84, + "probability": 0.7781 + }, + { + "start": 5365.38, + "end": 5368.02, + "probability": 0.9922 + }, + { + "start": 5369.02, + "end": 5370.78, + "probability": 0.899 + }, + { + "start": 5370.92, + "end": 5372.28, + "probability": 0.7784 + }, + { + "start": 5372.3, + "end": 5373.04, + "probability": 0.8381 + }, + { + "start": 5373.92, + "end": 5378.04, + "probability": 0.9047 + }, + { + "start": 5378.24, + "end": 5379.36, + "probability": 0.6855 + }, + { + "start": 5379.36, + "end": 5379.68, + "probability": 0.2151 + }, + { + "start": 5379.8, + "end": 5380.76, + "probability": 0.7416 + }, + { + "start": 5381.3, + "end": 5384.26, + "probability": 0.9053 + }, + { + "start": 5384.7, + "end": 5385.78, + "probability": 0.9297 + }, + { + "start": 5385.78, + "end": 5386.46, + "probability": 0.709 + }, + { + "start": 5388.04, + "end": 5391.3, + "probability": 0.9277 + }, + { + "start": 5393.52, + "end": 5396.66, + "probability": 0.9894 + }, + { + "start": 5398.42, + "end": 5400.84, + "probability": 0.9169 + }, + { + "start": 5401.52, + "end": 5403.9, + "probability": 0.9368 + }, + { + "start": 5404.62, + "end": 5407.76, + "probability": 0.9203 + }, + { + "start": 5408.88, + "end": 5411.86, + "probability": 0.9992 + }, + { + "start": 5413.53, + "end": 5415.82, + "probability": 0.9878 + }, + { + "start": 5417.06, + "end": 5418.42, + "probability": 0.7613 + }, + { + "start": 5420.86, + "end": 5422.84, + "probability": 0.9373 + }, + { + "start": 5422.96, + "end": 5423.88, + "probability": 0.9189 + }, + { + "start": 5425.04, + "end": 5425.6, + "probability": 0.8582 + }, + { + "start": 5426.52, + "end": 5427.18, + "probability": 0.9897 + }, + { + "start": 5427.5, + "end": 5428.0, + "probability": 0.9545 + }, + { + "start": 5428.38, + "end": 5429.0, + "probability": 0.9789 + }, + { + "start": 5431.42, + "end": 5433.08, + "probability": 0.8402 + }, + { + "start": 5434.36, + "end": 5434.94, + "probability": 0.5192 + }, + { + "start": 5435.1, + "end": 5435.7, + "probability": 0.7579 + }, + { + "start": 5435.84, + "end": 5436.78, + "probability": 0.8919 + }, + { + "start": 5438.42, + "end": 5439.46, + "probability": 0.6775 + }, + { + "start": 5441.08, + "end": 5444.16, + "probability": 0.9161 + }, + { + "start": 5444.18, + "end": 5445.04, + "probability": 0.8302 + }, + { + "start": 5445.42, + "end": 5445.91, + "probability": 0.8862 + }, + { + "start": 5446.6, + "end": 5449.4, + "probability": 0.9806 + }, + { + "start": 5450.56, + "end": 5451.44, + "probability": 0.0029 + }, + { + "start": 5453.42, + "end": 5454.5, + "probability": 0.7993 + }, + { + "start": 5456.9, + "end": 5457.6, + "probability": 0.984 + }, + { + "start": 5458.82, + "end": 5459.98, + "probability": 0.9978 + }, + { + "start": 5460.18, + "end": 5461.12, + "probability": 0.8903 + }, + { + "start": 5461.94, + "end": 5463.32, + "probability": 0.6953 + }, + { + "start": 5464.12, + "end": 5465.68, + "probability": 0.9966 + }, + { + "start": 5467.78, + "end": 5469.16, + "probability": 0.9855 + }, + { + "start": 5469.52, + "end": 5470.38, + "probability": 0.8213 + }, + { + "start": 5471.2, + "end": 5472.26, + "probability": 0.9937 + }, + { + "start": 5473.86, + "end": 5474.34, + "probability": 0.5909 + }, + { + "start": 5474.44, + "end": 5476.16, + "probability": 0.7473 + }, + { + "start": 5476.26, + "end": 5477.28, + "probability": 0.7406 + }, + { + "start": 5477.68, + "end": 5478.3, + "probability": 0.5948 + }, + { + "start": 5478.78, + "end": 5481.62, + "probability": 0.9282 + }, + { + "start": 5482.46, + "end": 5484.3, + "probability": 0.9985 + }, + { + "start": 5484.9, + "end": 5485.64, + "probability": 0.9767 + }, + { + "start": 5486.72, + "end": 5487.22, + "probability": 0.6856 + }, + { + "start": 5487.32, + "end": 5487.96, + "probability": 0.7397 + }, + { + "start": 5488.06, + "end": 5488.58, + "probability": 0.5396 + }, + { + "start": 5488.62, + "end": 5490.36, + "probability": 0.8894 + }, + { + "start": 5490.42, + "end": 5490.8, + "probability": 0.5803 + }, + { + "start": 5490.82, + "end": 5492.48, + "probability": 0.6923 + }, + { + "start": 5492.68, + "end": 5495.24, + "probability": 0.7153 + }, + { + "start": 5496.46, + "end": 5500.28, + "probability": 0.9813 + }, + { + "start": 5500.38, + "end": 5503.56, + "probability": 0.7695 + }, + { + "start": 5503.66, + "end": 5503.84, + "probability": 0.3038 + }, + { + "start": 5503.84, + "end": 5503.84, + "probability": 0.4453 + }, + { + "start": 5503.84, + "end": 5507.96, + "probability": 0.9749 + }, + { + "start": 5508.16, + "end": 5508.88, + "probability": 0.5528 + }, + { + "start": 5509.12, + "end": 5511.36, + "probability": 0.986 + }, + { + "start": 5512.08, + "end": 5514.9, + "probability": 0.9783 + }, + { + "start": 5515.2, + "end": 5516.78, + "probability": 0.9973 + }, + { + "start": 5517.5, + "end": 5518.26, + "probability": 0.8945 + }, + { + "start": 5521.12, + "end": 5523.22, + "probability": 0.9972 + }, + { + "start": 5526.5, + "end": 5527.68, + "probability": 0.7432 + }, + { + "start": 5527.82, + "end": 5530.86, + "probability": 0.7768 + }, + { + "start": 5531.02, + "end": 5533.8, + "probability": 0.9971 + }, + { + "start": 5534.34, + "end": 5535.32, + "probability": 0.3555 + }, + { + "start": 5535.44, + "end": 5535.44, + "probability": 0.4497 + }, + { + "start": 5535.44, + "end": 5538.6, + "probability": 0.9103 + }, + { + "start": 5539.38, + "end": 5540.6, + "probability": 0.9976 + }, + { + "start": 5541.54, + "end": 5544.12, + "probability": 0.7886 + }, + { + "start": 5545.98, + "end": 5545.98, + "probability": 0.2922 + }, + { + "start": 5545.98, + "end": 5547.92, + "probability": 0.8266 + }, + { + "start": 5548.4, + "end": 5548.4, + "probability": 0.2077 + }, + { + "start": 5548.4, + "end": 5549.1, + "probability": 0.8588 + }, + { + "start": 5549.18, + "end": 5549.32, + "probability": 0.4034 + }, + { + "start": 5549.56, + "end": 5551.0, + "probability": 0.7126 + }, + { + "start": 5551.0, + "end": 5551.32, + "probability": 0.765 + }, + { + "start": 5552.84, + "end": 5553.62, + "probability": 0.6376 + }, + { + "start": 5553.72, + "end": 5555.38, + "probability": 0.1955 + }, + { + "start": 5555.6, + "end": 5559.56, + "probability": 0.9901 + }, + { + "start": 5559.56, + "end": 5563.18, + "probability": 0.9365 + }, + { + "start": 5563.96, + "end": 5567.94, + "probability": 0.9595 + }, + { + "start": 5568.18, + "end": 5572.18, + "probability": 0.649 + }, + { + "start": 5572.5, + "end": 5577.26, + "probability": 0.6854 + }, + { + "start": 5577.94, + "end": 5585.76, + "probability": 0.8511 + }, + { + "start": 5585.88, + "end": 5587.31, + "probability": 0.1394 + }, + { + "start": 5588.74, + "end": 5595.98, + "probability": 0.9904 + }, + { + "start": 5596.7, + "end": 5600.48, + "probability": 0.9835 + }, + { + "start": 5602.4, + "end": 5603.04, + "probability": 0.9636 + }, + { + "start": 5605.24, + "end": 5607.35, + "probability": 0.9946 + }, + { + "start": 5607.74, + "end": 5611.22, + "probability": 0.9951 + }, + { + "start": 5611.42, + "end": 5612.84, + "probability": 0.9875 + }, + { + "start": 5613.18, + "end": 5614.76, + "probability": 0.9749 + }, + { + "start": 5615.5, + "end": 5616.4, + "probability": 0.9707 + }, + { + "start": 5618.38, + "end": 5623.64, + "probability": 0.9656 + }, + { + "start": 5623.84, + "end": 5627.6, + "probability": 0.9977 + }, + { + "start": 5628.84, + "end": 5630.4, + "probability": 0.9897 + }, + { + "start": 5631.14, + "end": 5633.63, + "probability": 0.8314 + }, + { + "start": 5634.16, + "end": 5635.16, + "probability": 0.9777 + }, + { + "start": 5636.02, + "end": 5637.32, + "probability": 0.8054 + }, + { + "start": 5639.32, + "end": 5640.68, + "probability": 0.9373 + }, + { + "start": 5645.24, + "end": 5647.18, + "probability": 0.5901 + }, + { + "start": 5647.34, + "end": 5649.5, + "probability": 0.9685 + }, + { + "start": 5649.72, + "end": 5650.18, + "probability": 0.767 + }, + { + "start": 5650.26, + "end": 5650.52, + "probability": 0.7279 + }, + { + "start": 5651.66, + "end": 5653.26, + "probability": 0.9696 + }, + { + "start": 5654.9, + "end": 5658.72, + "probability": 0.9699 + }, + { + "start": 5659.86, + "end": 5661.64, + "probability": 0.8048 + }, + { + "start": 5661.74, + "end": 5663.2, + "probability": 0.7517 + }, + { + "start": 5663.3, + "end": 5664.69, + "probability": 0.7594 + }, + { + "start": 5665.16, + "end": 5666.2, + "probability": 0.849 + }, + { + "start": 5666.28, + "end": 5667.84, + "probability": 0.7927 + }, + { + "start": 5668.56, + "end": 5670.96, + "probability": 0.7199 + }, + { + "start": 5671.9, + "end": 5672.32, + "probability": 0.3139 + }, + { + "start": 5672.6, + "end": 5673.32, + "probability": 0.4462 + }, + { + "start": 5673.36, + "end": 5673.84, + "probability": 0.5756 + }, + { + "start": 5673.94, + "end": 5676.44, + "probability": 0.4874 + }, + { + "start": 5676.44, + "end": 5676.44, + "probability": 0.1625 + }, + { + "start": 5676.44, + "end": 5677.66, + "probability": 0.6284 + }, + { + "start": 5679.86, + "end": 5681.54, + "probability": 0.7435 + }, + { + "start": 5681.64, + "end": 5683.12, + "probability": 0.9863 + }, + { + "start": 5683.3, + "end": 5686.3, + "probability": 0.9867 + }, + { + "start": 5686.7, + "end": 5690.14, + "probability": 0.9901 + }, + { + "start": 5690.64, + "end": 5691.56, + "probability": 0.9365 + }, + { + "start": 5691.98, + "end": 5694.08, + "probability": 0.9064 + }, + { + "start": 5694.66, + "end": 5700.14, + "probability": 0.9882 + }, + { + "start": 5700.54, + "end": 5701.82, + "probability": 0.9867 + }, + { + "start": 5702.94, + "end": 5705.94, + "probability": 0.9937 + }, + { + "start": 5706.06, + "end": 5712.46, + "probability": 0.9918 + }, + { + "start": 5714.0, + "end": 5717.82, + "probability": 0.8612 + }, + { + "start": 5717.9, + "end": 5718.76, + "probability": 0.8684 + }, + { + "start": 5718.82, + "end": 5720.06, + "probability": 0.8878 + }, + { + "start": 5720.5, + "end": 5722.16, + "probability": 0.9767 + }, + { + "start": 5723.0, + "end": 5724.62, + "probability": 0.7921 + }, + { + "start": 5724.88, + "end": 5727.32, + "probability": 0.7141 + }, + { + "start": 5727.4, + "end": 5728.37, + "probability": 0.9945 + }, + { + "start": 5729.6, + "end": 5732.84, + "probability": 0.9185 + }, + { + "start": 5734.06, + "end": 5736.58, + "probability": 0.9459 + }, + { + "start": 5737.74, + "end": 5740.56, + "probability": 0.9958 + }, + { + "start": 5740.56, + "end": 5743.24, + "probability": 0.6805 + }, + { + "start": 5744.34, + "end": 5747.68, + "probability": 0.9919 + }, + { + "start": 5747.74, + "end": 5749.64, + "probability": 0.8638 + }, + { + "start": 5750.48, + "end": 5751.08, + "probability": 0.8313 + }, + { + "start": 5752.08, + "end": 5752.88, + "probability": 0.5919 + }, + { + "start": 5754.42, + "end": 5757.18, + "probability": 0.9724 + }, + { + "start": 5757.32, + "end": 5760.52, + "probability": 0.9928 + }, + { + "start": 5761.54, + "end": 5763.74, + "probability": 0.9872 + }, + { + "start": 5763.74, + "end": 5767.08, + "probability": 0.9959 + }, + { + "start": 5768.68, + "end": 5772.22, + "probability": 0.8459 + }, + { + "start": 5772.78, + "end": 5775.18, + "probability": 0.7049 + }, + { + "start": 5775.88, + "end": 5780.8, + "probability": 0.9749 + }, + { + "start": 5782.16, + "end": 5785.96, + "probability": 0.9734 + }, + { + "start": 5786.22, + "end": 5787.2, + "probability": 0.7725 + }, + { + "start": 5788.22, + "end": 5790.96, + "probability": 0.9281 + }, + { + "start": 5791.34, + "end": 5794.08, + "probability": 0.9783 + }, + { + "start": 5794.08, + "end": 5797.32, + "probability": 0.9087 + }, + { + "start": 5797.84, + "end": 5798.56, + "probability": 0.6645 + }, + { + "start": 5799.44, + "end": 5803.98, + "probability": 0.9839 + }, + { + "start": 5806.92, + "end": 5807.44, + "probability": 0.6976 + }, + { + "start": 5807.6, + "end": 5808.12, + "probability": 0.8221 + }, + { + "start": 5808.24, + "end": 5810.68, + "probability": 0.9948 + }, + { + "start": 5811.68, + "end": 5817.82, + "probability": 0.9897 + }, + { + "start": 5818.34, + "end": 5821.52, + "probability": 0.9731 + }, + { + "start": 5822.16, + "end": 5823.12, + "probability": 0.5372 + }, + { + "start": 5823.44, + "end": 5823.89, + "probability": 0.9616 + }, + { + "start": 5824.46, + "end": 5827.21, + "probability": 0.9521 + }, + { + "start": 5828.7, + "end": 5829.42, + "probability": 0.9329 + }, + { + "start": 5830.44, + "end": 5837.28, + "probability": 0.9292 + }, + { + "start": 5837.44, + "end": 5841.48, + "probability": 0.9946 + }, + { + "start": 5842.72, + "end": 5849.34, + "probability": 0.9961 + }, + { + "start": 5849.38, + "end": 5850.58, + "probability": 0.735 + }, + { + "start": 5851.08, + "end": 5855.86, + "probability": 0.8877 + }, + { + "start": 5856.52, + "end": 5859.56, + "probability": 0.9186 + }, + { + "start": 5859.64, + "end": 5863.7, + "probability": 0.9847 + }, + { + "start": 5863.82, + "end": 5864.66, + "probability": 0.9868 + }, + { + "start": 5865.46, + "end": 5866.96, + "probability": 0.9226 + }, + { + "start": 5867.54, + "end": 5870.22, + "probability": 0.9764 + }, + { + "start": 5870.52, + "end": 5872.98, + "probability": 0.9754 + }, + { + "start": 5873.5, + "end": 5875.26, + "probability": 0.7958 + }, + { + "start": 5875.36, + "end": 5876.6, + "probability": 0.6621 + }, + { + "start": 5877.08, + "end": 5878.78, + "probability": 0.887 + }, + { + "start": 5878.84, + "end": 5883.36, + "probability": 0.9741 + }, + { + "start": 5883.46, + "end": 5885.54, + "probability": 0.8861 + }, + { + "start": 5886.22, + "end": 5887.74, + "probability": 0.8441 + }, + { + "start": 5888.0, + "end": 5891.34, + "probability": 0.9758 + }, + { + "start": 5891.5, + "end": 5893.76, + "probability": 0.9825 + }, + { + "start": 5893.78, + "end": 5894.58, + "probability": 0.7878 + }, + { + "start": 5894.84, + "end": 5896.64, + "probability": 0.8875 + }, + { + "start": 5897.26, + "end": 5897.85, + "probability": 0.5561 + }, + { + "start": 5898.52, + "end": 5898.62, + "probability": 0.1191 + }, + { + "start": 5898.74, + "end": 5901.34, + "probability": 0.8124 + }, + { + "start": 5903.52, + "end": 5907.2, + "probability": 0.8658 + }, + { + "start": 5908.48, + "end": 5912.6, + "probability": 0.693 + }, + { + "start": 5912.74, + "end": 5915.24, + "probability": 0.6322 + }, + { + "start": 5915.24, + "end": 5916.48, + "probability": 0.5353 + }, + { + "start": 5917.52, + "end": 5920.24, + "probability": 0.8804 + }, + { + "start": 5920.28, + "end": 5922.04, + "probability": 0.8999 + }, + { + "start": 5922.2, + "end": 5923.76, + "probability": 0.6986 + }, + { + "start": 5924.36, + "end": 5927.46, + "probability": 0.7685 + }, + { + "start": 5928.08, + "end": 5929.38, + "probability": 0.2554 + }, + { + "start": 5930.63, + "end": 5933.48, + "probability": 0.9785 + }, + { + "start": 5933.58, + "end": 5933.74, + "probability": 0.2933 + }, + { + "start": 5933.94, + "end": 5935.09, + "probability": 0.554 + }, + { + "start": 5936.06, + "end": 5939.24, + "probability": 0.9002 + }, + { + "start": 5939.78, + "end": 5940.84, + "probability": 0.8192 + }, + { + "start": 5941.98, + "end": 5943.47, + "probability": 0.5753 + }, + { + "start": 5943.9, + "end": 5945.94, + "probability": 0.8173 + }, + { + "start": 5946.76, + "end": 5947.56, + "probability": 0.7903 + }, + { + "start": 5947.68, + "end": 5950.22, + "probability": 0.8104 + }, + { + "start": 5950.98, + "end": 5953.42, + "probability": 0.9038 + }, + { + "start": 5954.24, + "end": 5956.3, + "probability": 0.9828 + }, + { + "start": 5956.52, + "end": 5958.42, + "probability": 0.937 + }, + { + "start": 5959.6, + "end": 5960.26, + "probability": 0.4309 + }, + { + "start": 5960.78, + "end": 5966.82, + "probability": 0.8452 + }, + { + "start": 5967.44, + "end": 5973.22, + "probability": 0.9751 + }, + { + "start": 5973.92, + "end": 5979.0, + "probability": 0.9627 + }, + { + "start": 5979.68, + "end": 5980.06, + "probability": 0.5296 + }, + { + "start": 5980.14, + "end": 5980.8, + "probability": 0.6966 + }, + { + "start": 5980.92, + "end": 5983.78, + "probability": 0.8709 + }, + { + "start": 5984.52, + "end": 5987.58, + "probability": 0.9797 + }, + { + "start": 5987.82, + "end": 5988.58, + "probability": 0.9263 + }, + { + "start": 5988.84, + "end": 5989.74, + "probability": 0.864 + }, + { + "start": 5990.02, + "end": 5993.3, + "probability": 0.9341 + }, + { + "start": 5993.68, + "end": 5994.38, + "probability": 0.7176 + }, + { + "start": 5995.18, + "end": 5996.8, + "probability": 0.864 + }, + { + "start": 5997.24, + "end": 5998.8, + "probability": 0.9984 + }, + { + "start": 5999.36, + "end": 6001.64, + "probability": 0.7133 + }, + { + "start": 6002.52, + "end": 6006.5, + "probability": 0.9878 + }, + { + "start": 6006.6, + "end": 6007.1, + "probability": 0.7488 + }, + { + "start": 6008.18, + "end": 6009.52, + "probability": 0.4058 + }, + { + "start": 6010.46, + "end": 6011.24, + "probability": 0.7281 + }, + { + "start": 6011.66, + "end": 6014.8, + "probability": 0.6599 + }, + { + "start": 6014.98, + "end": 6017.8, + "probability": 0.9678 + }, + { + "start": 6017.96, + "end": 6018.71, + "probability": 0.8577 + }, + { + "start": 6018.95, + "end": 6023.76, + "probability": 0.8308 + }, + { + "start": 6024.36, + "end": 6028.4, + "probability": 0.7369 + }, + { + "start": 6028.42, + "end": 6028.88, + "probability": 0.6741 + }, + { + "start": 6029.54, + "end": 6032.43, + "probability": 0.9463 + }, + { + "start": 6035.18, + "end": 6035.64, + "probability": 0.2622 + }, + { + "start": 6035.64, + "end": 6038.06, + "probability": 0.6072 + }, + { + "start": 6038.86, + "end": 6039.8, + "probability": 0.9702 + }, + { + "start": 6039.98, + "end": 6043.34, + "probability": 0.8836 + }, + { + "start": 6044.66, + "end": 6050.5, + "probability": 0.8192 + }, + { + "start": 6050.86, + "end": 6055.5, + "probability": 0.9303 + }, + { + "start": 6055.8, + "end": 6055.9, + "probability": 0.5013 + }, + { + "start": 6057.14, + "end": 6058.26, + "probability": 0.6385 + }, + { + "start": 6059.17, + "end": 6065.06, + "probability": 0.8741 + }, + { + "start": 6066.08, + "end": 6069.12, + "probability": 0.934 + }, + { + "start": 6069.86, + "end": 6072.04, + "probability": 0.9485 + }, + { + "start": 6072.44, + "end": 6075.48, + "probability": 0.9876 + }, + { + "start": 6075.48, + "end": 6078.44, + "probability": 0.9948 + }, + { + "start": 6078.76, + "end": 6081.14, + "probability": 0.6358 + }, + { + "start": 6081.6, + "end": 6085.0, + "probability": 0.9585 + }, + { + "start": 6085.46, + "end": 6088.16, + "probability": 0.9503 + }, + { + "start": 6088.52, + "end": 6091.44, + "probability": 0.9913 + }, + { + "start": 6091.66, + "end": 6097.84, + "probability": 0.9976 + }, + { + "start": 6098.0, + "end": 6098.94, + "probability": 0.8417 + }, + { + "start": 6099.24, + "end": 6100.56, + "probability": 0.7683 + }, + { + "start": 6100.64, + "end": 6100.96, + "probability": 0.889 + }, + { + "start": 6101.06, + "end": 6101.3, + "probability": 0.5615 + }, + { + "start": 6101.34, + "end": 6102.92, + "probability": 0.9605 + }, + { + "start": 6103.54, + "end": 6105.08, + "probability": 0.8457 + }, + { + "start": 6105.64, + "end": 6108.64, + "probability": 0.9893 + }, + { + "start": 6108.98, + "end": 6111.88, + "probability": 0.9197 + }, + { + "start": 6111.98, + "end": 6114.2, + "probability": 0.9773 + }, + { + "start": 6114.76, + "end": 6116.76, + "probability": 0.8828 + }, + { + "start": 6116.9, + "end": 6117.88, + "probability": 0.9585 + }, + { + "start": 6118.36, + "end": 6120.52, + "probability": 0.9952 + }, + { + "start": 6120.62, + "end": 6123.52, + "probability": 0.897 + }, + { + "start": 6123.94, + "end": 6124.98, + "probability": 0.9385 + }, + { + "start": 6125.44, + "end": 6126.52, + "probability": 0.7344 + }, + { + "start": 6126.68, + "end": 6127.52, + "probability": 0.9051 + }, + { + "start": 6127.9, + "end": 6128.98, + "probability": 0.944 + }, + { + "start": 6129.26, + "end": 6129.54, + "probability": 0.8391 + }, + { + "start": 6129.6, + "end": 6133.55, + "probability": 0.9712 + }, + { + "start": 6134.2, + "end": 6139.54, + "probability": 0.9722 + }, + { + "start": 6139.58, + "end": 6140.18, + "probability": 0.8441 + }, + { + "start": 6140.26, + "end": 6143.18, + "probability": 0.9857 + }, + { + "start": 6143.43, + "end": 6145.76, + "probability": 0.5146 + }, + { + "start": 6145.76, + "end": 6146.42, + "probability": 0.3041 + }, + { + "start": 6146.74, + "end": 6148.18, + "probability": 0.8548 + }, + { + "start": 6148.66, + "end": 6153.56, + "probability": 0.9864 + }, + { + "start": 6153.84, + "end": 6155.14, + "probability": 0.9366 + }, + { + "start": 6155.44, + "end": 6157.32, + "probability": 0.9931 + }, + { + "start": 6157.7, + "end": 6158.82, + "probability": 0.9151 + }, + { + "start": 6159.18, + "end": 6159.98, + "probability": 0.6805 + }, + { + "start": 6160.04, + "end": 6160.92, + "probability": 0.9404 + }, + { + "start": 6161.44, + "end": 6164.38, + "probability": 0.7366 + }, + { + "start": 6164.42, + "end": 6166.24, + "probability": 0.741 + }, + { + "start": 6166.68, + "end": 6170.44, + "probability": 0.9275 + }, + { + "start": 6171.0, + "end": 6173.82, + "probability": 0.7335 + }, + { + "start": 6176.68, + "end": 6178.6, + "probability": 0.6666 + }, + { + "start": 6178.7, + "end": 6182.6, + "probability": 0.9692 + }, + { + "start": 6183.1, + "end": 6185.12, + "probability": 0.8867 + }, + { + "start": 6185.66, + "end": 6189.28, + "probability": 0.9307 + }, + { + "start": 6189.82, + "end": 6193.68, + "probability": 0.6578 + }, + { + "start": 6194.64, + "end": 6199.9, + "probability": 0.7822 + }, + { + "start": 6199.9, + "end": 6202.32, + "probability": 0.9819 + }, + { + "start": 6202.72, + "end": 6205.34, + "probability": 0.6687 + }, + { + "start": 6206.0, + "end": 6206.42, + "probability": 0.5717 + }, + { + "start": 6206.42, + "end": 6208.98, + "probability": 0.8193 + }, + { + "start": 6209.42, + "end": 6213.52, + "probability": 0.726 + }, + { + "start": 6213.66, + "end": 6214.62, + "probability": 0.8462 + }, + { + "start": 6215.16, + "end": 6215.46, + "probability": 0.2897 + }, + { + "start": 6215.54, + "end": 6223.64, + "probability": 0.8033 + }, + { + "start": 6224.38, + "end": 6225.38, + "probability": 0.9882 + }, + { + "start": 6225.42, + "end": 6225.74, + "probability": 0.4242 + }, + { + "start": 6225.92, + "end": 6227.32, + "probability": 0.6604 + }, + { + "start": 6227.96, + "end": 6229.9, + "probability": 0.5009 + }, + { + "start": 6234.9, + "end": 6242.78, + "probability": 0.6453 + }, + { + "start": 6244.02, + "end": 6246.92, + "probability": 0.9976 + }, + { + "start": 6248.18, + "end": 6251.1, + "probability": 0.9857 + }, + { + "start": 6252.0, + "end": 6254.2, + "probability": 0.9975 + }, + { + "start": 6255.78, + "end": 6258.96, + "probability": 0.884 + }, + { + "start": 6259.62, + "end": 6262.8, + "probability": 0.9221 + }, + { + "start": 6263.82, + "end": 6265.24, + "probability": 0.9985 + }, + { + "start": 6266.94, + "end": 6267.92, + "probability": 0.6233 + }, + { + "start": 6268.44, + "end": 6270.54, + "probability": 0.8125 + }, + { + "start": 6271.14, + "end": 6271.72, + "probability": 0.9207 + }, + { + "start": 6272.42, + "end": 6274.1, + "probability": 0.9914 + }, + { + "start": 6274.76, + "end": 6278.14, + "probability": 0.5896 + }, + { + "start": 6278.68, + "end": 6283.54, + "probability": 0.96 + }, + { + "start": 6284.96, + "end": 6287.58, + "probability": 0.9927 + }, + { + "start": 6288.66, + "end": 6294.2, + "probability": 0.9478 + }, + { + "start": 6294.72, + "end": 6296.64, + "probability": 0.9971 + }, + { + "start": 6297.86, + "end": 6302.56, + "probability": 0.8013 + }, + { + "start": 6302.9, + "end": 6305.38, + "probability": 0.8218 + }, + { + "start": 6306.24, + "end": 6307.54, + "probability": 0.9486 + }, + { + "start": 6308.12, + "end": 6311.18, + "probability": 0.8628 + }, + { + "start": 6311.82, + "end": 6317.66, + "probability": 0.98 + }, + { + "start": 6317.66, + "end": 6320.36, + "probability": 0.996 + }, + { + "start": 6321.1, + "end": 6325.18, + "probability": 0.9681 + }, + { + "start": 6325.24, + "end": 6327.86, + "probability": 0.8282 + }, + { + "start": 6328.02, + "end": 6332.02, + "probability": 0.7371 + }, + { + "start": 6332.72, + "end": 6334.6, + "probability": 0.9689 + }, + { + "start": 6335.36, + "end": 6337.2, + "probability": 0.9063 + }, + { + "start": 6337.86, + "end": 6341.04, + "probability": 0.9688 + }, + { + "start": 6341.94, + "end": 6343.28, + "probability": 0.89 + }, + { + "start": 6343.76, + "end": 6346.24, + "probability": 0.9344 + }, + { + "start": 6346.66, + "end": 6350.28, + "probability": 0.91 + }, + { + "start": 6350.28, + "end": 6356.24, + "probability": 0.9286 + }, + { + "start": 6356.64, + "end": 6358.39, + "probability": 0.4609 + }, + { + "start": 6359.42, + "end": 6360.58, + "probability": 0.4761 + }, + { + "start": 6361.08, + "end": 6363.48, + "probability": 0.9956 + }, + { + "start": 6363.54, + "end": 6364.28, + "probability": 0.7636 + }, + { + "start": 6364.38, + "end": 6364.64, + "probability": 0.8179 + }, + { + "start": 6366.3, + "end": 6367.31, + "probability": 0.9111 + }, + { + "start": 6368.24, + "end": 6369.12, + "probability": 0.8282 + }, + { + "start": 6377.32, + "end": 6380.54, + "probability": 0.8332 + }, + { + "start": 6380.72, + "end": 6382.44, + "probability": 0.9624 + }, + { + "start": 6396.32, + "end": 6398.42, + "probability": 0.7715 + }, + { + "start": 6399.12, + "end": 6400.08, + "probability": 0.859 + }, + { + "start": 6400.56, + "end": 6401.46, + "probability": 0.2722 + }, + { + "start": 6401.92, + "end": 6403.78, + "probability": 0.4249 + }, + { + "start": 6403.78, + "end": 6404.7, + "probability": 0.7 + }, + { + "start": 6405.02, + "end": 6408.66, + "probability": 0.882 + }, + { + "start": 6409.02, + "end": 6410.0, + "probability": 0.1079 + }, + { + "start": 6410.16, + "end": 6410.88, + "probability": 0.6979 + }, + { + "start": 6410.94, + "end": 6411.6, + "probability": 0.9466 + }, + { + "start": 6412.3, + "end": 6414.24, + "probability": 0.6575 + }, + { + "start": 6415.34, + "end": 6415.78, + "probability": 0.9653 + }, + { + "start": 6416.0, + "end": 6420.32, + "probability": 0.9755 + }, + { + "start": 6420.32, + "end": 6423.84, + "probability": 0.9672 + }, + { + "start": 6424.1, + "end": 6427.62, + "probability": 0.8688 + }, + { + "start": 6427.66, + "end": 6428.65, + "probability": 0.8286 + }, + { + "start": 6428.94, + "end": 6430.48, + "probability": 0.8602 + }, + { + "start": 6430.62, + "end": 6431.04, + "probability": 0.9617 + }, + { + "start": 6432.42, + "end": 6433.74, + "probability": 0.8458 + }, + { + "start": 6434.44, + "end": 6438.0, + "probability": 0.8315 + }, + { + "start": 6438.24, + "end": 6438.58, + "probability": 0.2292 + }, + { + "start": 6447.22, + "end": 6448.68, + "probability": 0.6864 + }, + { + "start": 6448.68, + "end": 6450.32, + "probability": 0.0152 + }, + { + "start": 6450.46, + "end": 6451.6, + "probability": 0.0471 + }, + { + "start": 6455.48, + "end": 6458.12, + "probability": 0.0584 + }, + { + "start": 6460.78, + "end": 6463.66, + "probability": 0.8038 + }, + { + "start": 6468.01, + "end": 6472.04, + "probability": 0.5174 + }, + { + "start": 6472.08, + "end": 6477.74, + "probability": 0.7968 + }, + { + "start": 6477.92, + "end": 6479.98, + "probability": 0.7512 + }, + { + "start": 6480.3, + "end": 6481.1, + "probability": 0.3355 + }, + { + "start": 6481.56, + "end": 6482.38, + "probability": 0.9932 + }, + { + "start": 6482.94, + "end": 6489.68, + "probability": 0.9868 + }, + { + "start": 6491.02, + "end": 6491.74, + "probability": 0.639 + }, + { + "start": 6495.12, + "end": 6499.66, + "probability": 0.6741 + }, + { + "start": 6499.74, + "end": 6501.54, + "probability": 0.7802 + }, + { + "start": 6502.36, + "end": 6503.0, + "probability": 0.8987 + }, + { + "start": 6503.3, + "end": 6507.18, + "probability": 0.9277 + }, + { + "start": 6507.66, + "end": 6509.02, + "probability": 0.8668 + }, + { + "start": 6509.56, + "end": 6510.06, + "probability": 0.5891 + }, + { + "start": 6510.06, + "end": 6510.66, + "probability": 0.7773 + }, + { + "start": 6513.7, + "end": 6514.54, + "probability": 0.4598 + }, + { + "start": 6516.96, + "end": 6518.88, + "probability": 0.2653 + }, + { + "start": 6519.28, + "end": 6519.28, + "probability": 0.5355 + }, + { + "start": 6519.28, + "end": 6519.78, + "probability": 0.7435 + }, + { + "start": 6519.86, + "end": 6520.56, + "probability": 0.6902 + }, + { + "start": 6521.68, + "end": 6522.16, + "probability": 0.9277 + }, + { + "start": 6522.26, + "end": 6528.0, + "probability": 0.991 + }, + { + "start": 6528.0, + "end": 6533.12, + "probability": 0.9909 + }, + { + "start": 6533.84, + "end": 6536.32, + "probability": 0.9818 + }, + { + "start": 6537.08, + "end": 6538.88, + "probability": 0.963 + }, + { + "start": 6540.2, + "end": 6543.82, + "probability": 0.9831 + }, + { + "start": 6543.94, + "end": 6546.96, + "probability": 0.991 + }, + { + "start": 6547.4, + "end": 6551.32, + "probability": 0.988 + }, + { + "start": 6551.32, + "end": 6554.5, + "probability": 0.996 + }, + { + "start": 6555.2, + "end": 6555.98, + "probability": 0.7154 + }, + { + "start": 6556.04, + "end": 6556.64, + "probability": 0.9706 + }, + { + "start": 6556.78, + "end": 6563.7, + "probability": 0.9893 + }, + { + "start": 6563.76, + "end": 6565.0, + "probability": 0.8663 + }, + { + "start": 6566.16, + "end": 6569.48, + "probability": 0.9121 + }, + { + "start": 6570.08, + "end": 6577.62, + "probability": 0.9832 + }, + { + "start": 6577.74, + "end": 6579.18, + "probability": 0.9823 + }, + { + "start": 6580.65, + "end": 6587.0, + "probability": 0.9443 + }, + { + "start": 6587.0, + "end": 6590.42, + "probability": 0.9984 + }, + { + "start": 6591.12, + "end": 6598.68, + "probability": 0.9972 + }, + { + "start": 6598.84, + "end": 6601.56, + "probability": 0.9941 + }, + { + "start": 6601.56, + "end": 6604.26, + "probability": 0.9829 + }, + { + "start": 6604.46, + "end": 6605.64, + "probability": 0.7744 + }, + { + "start": 6606.74, + "end": 6608.59, + "probability": 0.3439 + }, + { + "start": 6608.74, + "end": 6609.32, + "probability": 0.5464 + }, + { + "start": 6609.46, + "end": 6615.44, + "probability": 0.8706 + }, + { + "start": 6615.48, + "end": 6617.54, + "probability": 0.9507 + }, + { + "start": 6618.59, + "end": 6625.34, + "probability": 0.9982 + }, + { + "start": 6625.5, + "end": 6626.88, + "probability": 0.9662 + }, + { + "start": 6627.28, + "end": 6627.72, + "probability": 0.4798 + }, + { + "start": 6627.94, + "end": 6628.52, + "probability": 0.642 + }, + { + "start": 6628.64, + "end": 6630.36, + "probability": 0.9692 + }, + { + "start": 6630.52, + "end": 6631.64, + "probability": 0.8518 + }, + { + "start": 6632.08, + "end": 6634.4, + "probability": 0.785 + }, + { + "start": 6634.44, + "end": 6639.26, + "probability": 0.9685 + }, + { + "start": 6639.26, + "end": 6643.56, + "probability": 0.9897 + }, + { + "start": 6643.56, + "end": 6649.14, + "probability": 0.9954 + }, + { + "start": 6649.68, + "end": 6652.28, + "probability": 0.9761 + }, + { + "start": 6652.64, + "end": 6652.86, + "probability": 0.7809 + }, + { + "start": 6653.76, + "end": 6656.18, + "probability": 0.8464 + }, + { + "start": 6658.66, + "end": 6663.2, + "probability": 0.9894 + }, + { + "start": 6663.22, + "end": 6663.96, + "probability": 0.9466 + }, + { + "start": 6681.36, + "end": 6681.82, + "probability": 0.6469 + }, + { + "start": 6683.56, + "end": 6685.82, + "probability": 0.7431 + }, + { + "start": 6688.46, + "end": 6691.44, + "probability": 0.9674 + }, + { + "start": 6692.76, + "end": 6695.24, + "probability": 0.1935 + }, + { + "start": 6696.62, + "end": 6699.48, + "probability": 0.9426 + }, + { + "start": 6700.7, + "end": 6705.76, + "probability": 0.884 + }, + { + "start": 6707.04, + "end": 6710.72, + "probability": 0.9131 + }, + { + "start": 6711.16, + "end": 6715.14, + "probability": 0.996 + }, + { + "start": 6716.1, + "end": 6717.72, + "probability": 0.9768 + }, + { + "start": 6718.8, + "end": 6722.04, + "probability": 0.9906 + }, + { + "start": 6722.98, + "end": 6724.8, + "probability": 0.4968 + }, + { + "start": 6724.88, + "end": 6728.56, + "probability": 0.7953 + }, + { + "start": 6728.56, + "end": 6731.86, + "probability": 0.9857 + }, + { + "start": 6733.16, + "end": 6736.86, + "probability": 0.9844 + }, + { + "start": 6737.44, + "end": 6739.96, + "probability": 0.9833 + }, + { + "start": 6740.62, + "end": 6742.64, + "probability": 0.952 + }, + { + "start": 6743.46, + "end": 6745.9, + "probability": 0.7924 + }, + { + "start": 6749.96, + "end": 6752.04, + "probability": 0.8972 + }, + { + "start": 6752.22, + "end": 6753.46, + "probability": 0.7219 + }, + { + "start": 6753.52, + "end": 6755.14, + "probability": 0.9268 + }, + { + "start": 6755.56, + "end": 6756.36, + "probability": 0.7481 + }, + { + "start": 6756.4, + "end": 6757.35, + "probability": 0.3227 + }, + { + "start": 6757.36, + "end": 6758.04, + "probability": 0.8972 + }, + { + "start": 6785.78, + "end": 6789.16, + "probability": 0.5325 + }, + { + "start": 6789.44, + "end": 6791.78, + "probability": 0.9483 + }, + { + "start": 6791.94, + "end": 6792.76, + "probability": 0.3062 + }, + { + "start": 6799.2, + "end": 6801.68, + "probability": 0.2249 + }, + { + "start": 6802.38, + "end": 6803.24, + "probability": 0.2842 + }, + { + "start": 6832.98, + "end": 6833.74, + "probability": 0.1121 + }, + { + "start": 6833.74, + "end": 6835.08, + "probability": 0.0329 + }, + { + "start": 6836.42, + "end": 6838.36, + "probability": 0.1535 + }, + { + "start": 6839.88, + "end": 6845.44, + "probability": 0.0222 + }, + { + "start": 6845.44, + "end": 6847.12, + "probability": 0.1379 + }, + { + "start": 6853.0, + "end": 6853.0, + "probability": 0.0 + }, + { + "start": 6853.0, + "end": 6853.0, + "probability": 0.0 + }, + { + "start": 6853.0, + "end": 6853.0, + "probability": 0.0 + }, + { + "start": 6853.0, + "end": 6853.0, + "probability": 0.0 + }, + { + "start": 6853.0, + "end": 6853.0, + "probability": 0.0 + }, + { + "start": 6853.0, + "end": 6853.0, + "probability": 0.0 + }, + { + "start": 6853.0, + "end": 6853.0, + "probability": 0.0 + }, + { + "start": 6853.0, + "end": 6853.0, + "probability": 0.0 + }, + { + "start": 6853.0, + "end": 6853.0, + "probability": 0.0 + }, + { + "start": 6853.0, + "end": 6853.0, + "probability": 0.0 + }, + { + "start": 6853.0, + "end": 6853.0, + "probability": 0.0 + }, + { + "start": 6853.0, + "end": 6853.0, + "probability": 0.0 + }, + { + "start": 6853.0, + "end": 6853.0, + "probability": 0.0 + }, + { + "start": 6853.0, + "end": 6853.0, + "probability": 0.0 + }, + { + "start": 6853.0, + "end": 6853.0, + "probability": 0.0 + }, + { + "start": 6853.0, + "end": 6853.0, + "probability": 0.0 + }, + { + "start": 6853.0, + "end": 6853.0, + "probability": 0.0 + }, + { + "start": 6853.0, + "end": 6853.0, + "probability": 0.0 + }, + { + "start": 6853.0, + "end": 6853.0, + "probability": 0.0 + }, + { + "start": 6853.34, + "end": 6853.34, + "probability": 0.0001 + }, + { + "start": 6853.8, + "end": 6854.14, + "probability": 0.0241 + }, + { + "start": 6854.14, + "end": 6854.14, + "probability": 0.0485 + }, + { + "start": 6854.14, + "end": 6858.96, + "probability": 0.9214 + }, + { + "start": 6859.2, + "end": 6860.84, + "probability": 0.9685 + }, + { + "start": 6861.62, + "end": 6863.32, + "probability": 0.5088 + }, + { + "start": 6864.48, + "end": 6866.32, + "probability": 0.7715 + }, + { + "start": 6866.84, + "end": 6868.92, + "probability": 0.9499 + }, + { + "start": 6869.18, + "end": 6874.12, + "probability": 0.8356 + }, + { + "start": 6874.26, + "end": 6875.05, + "probability": 0.8693 + }, + { + "start": 6875.16, + "end": 6879.66, + "probability": 0.9811 + }, + { + "start": 6880.02, + "end": 6882.4, + "probability": 0.9832 + }, + { + "start": 6882.48, + "end": 6885.58, + "probability": 0.7089 + }, + { + "start": 6887.02, + "end": 6888.98, + "probability": 0.9951 + }, + { + "start": 6889.12, + "end": 6891.08, + "probability": 0.9563 + }, + { + "start": 6891.56, + "end": 6892.32, + "probability": 0.0453 + }, + { + "start": 6892.34, + "end": 6893.24, + "probability": 0.4529 + }, + { + "start": 6893.6, + "end": 6895.88, + "probability": 0.9938 + }, + { + "start": 6897.16, + "end": 6898.98, + "probability": 0.9937 + }, + { + "start": 6899.14, + "end": 6900.53, + "probability": 0.7325 + }, + { + "start": 6901.16, + "end": 6905.2, + "probability": 0.9849 + }, + { + "start": 6905.2, + "end": 6910.38, + "probability": 0.5508 + }, + { + "start": 6910.62, + "end": 6913.2, + "probability": 0.8905 + }, + { + "start": 6913.66, + "end": 6915.68, + "probability": 0.8719 + }, + { + "start": 6915.98, + "end": 6919.18, + "probability": 0.9542 + }, + { + "start": 6919.22, + "end": 6919.74, + "probability": 0.9124 + }, + { + "start": 6919.78, + "end": 6920.2, + "probability": 0.7754 + }, + { + "start": 6920.2, + "end": 6920.72, + "probability": 0.7661 + }, + { + "start": 6921.08, + "end": 6921.34, + "probability": 0.8646 + }, + { + "start": 6921.74, + "end": 6923.95, + "probability": 0.6665 + }, + { + "start": 6924.92, + "end": 6927.2, + "probability": 0.6001 + }, + { + "start": 6927.78, + "end": 6929.28, + "probability": 0.7809 + }, + { + "start": 6929.36, + "end": 6930.4, + "probability": 0.733 + }, + { + "start": 6930.5, + "end": 6932.74, + "probability": 0.897 + }, + { + "start": 6933.2, + "end": 6933.98, + "probability": 0.5081 + }, + { + "start": 6933.98, + "end": 6934.58, + "probability": 0.6331 + }, + { + "start": 6935.2, + "end": 6936.59, + "probability": 0.9428 + }, + { + "start": 6937.68, + "end": 6940.0, + "probability": 0.5751 + }, + { + "start": 6940.5, + "end": 6942.64, + "probability": 0.9296 + }, + { + "start": 6943.08, + "end": 6945.24, + "probability": 0.4322 + }, + { + "start": 6946.16, + "end": 6947.74, + "probability": 0.6875 + }, + { + "start": 6947.74, + "end": 6949.96, + "probability": 0.9328 + }, + { + "start": 6950.08, + "end": 6951.12, + "probability": 0.6984 + }, + { + "start": 6951.86, + "end": 6952.92, + "probability": 0.6848 + }, + { + "start": 6953.52, + "end": 6956.88, + "probability": 0.7611 + }, + { + "start": 6957.44, + "end": 6959.44, + "probability": 0.2332 + }, + { + "start": 6959.44, + "end": 6959.44, + "probability": 0.4453 + }, + { + "start": 6959.44, + "end": 6959.44, + "probability": 0.4857 + }, + { + "start": 6959.44, + "end": 6959.44, + "probability": 0.5713 + }, + { + "start": 6959.44, + "end": 6959.44, + "probability": 0.5679 + }, + { + "start": 6959.44, + "end": 6959.44, + "probability": 0.134 + }, + { + "start": 6959.44, + "end": 6959.76, + "probability": 0.0131 + }, + { + "start": 6959.76, + "end": 6962.06, + "probability": 0.411 + }, + { + "start": 6976.82, + "end": 6976.88, + "probability": 0.6936 + }, + { + "start": 6976.88, + "end": 6979.06, + "probability": 0.6075 + }, + { + "start": 6980.12, + "end": 6981.48, + "probability": 0.4843 + }, + { + "start": 6981.72, + "end": 6981.74, + "probability": 0.3948 + }, + { + "start": 6981.8, + "end": 6982.3, + "probability": 0.7275 + }, + { + "start": 6982.48, + "end": 6983.58, + "probability": 0.8124 + }, + { + "start": 6984.9, + "end": 6988.12, + "probability": 0.9324 + }, + { + "start": 6988.98, + "end": 6993.0, + "probability": 0.918 + }, + { + "start": 6993.7, + "end": 6995.38, + "probability": 0.8281 + }, + { + "start": 6996.62, + "end": 7001.84, + "probability": 0.94 + }, + { + "start": 7002.16, + "end": 7002.84, + "probability": 0.9823 + }, + { + "start": 7004.9, + "end": 7008.3, + "probability": 0.8708 + }, + { + "start": 7008.3, + "end": 7011.78, + "probability": 0.9918 + }, + { + "start": 7011.92, + "end": 7013.72, + "probability": 0.8546 + }, + { + "start": 7014.8, + "end": 7017.56, + "probability": 0.8684 + }, + { + "start": 7018.22, + "end": 7022.54, + "probability": 0.9917 + }, + { + "start": 7023.02, + "end": 7026.82, + "probability": 0.9927 + }, + { + "start": 7028.18, + "end": 7031.32, + "probability": 0.9978 + }, + { + "start": 7031.62, + "end": 7032.86, + "probability": 0.6826 + }, + { + "start": 7033.46, + "end": 7035.46, + "probability": 0.6721 + }, + { + "start": 7035.52, + "end": 7036.42, + "probability": 0.9481 + }, + { + "start": 7036.56, + "end": 7037.32, + "probability": 0.6346 + }, + { + "start": 7037.82, + "end": 7044.18, + "probability": 0.7198 + }, + { + "start": 7045.82, + "end": 7048.42, + "probability": 0.9624 + }, + { + "start": 7049.16, + "end": 7051.98, + "probability": 0.9906 + }, + { + "start": 7052.14, + "end": 7055.58, + "probability": 0.9854 + }, + { + "start": 7055.58, + "end": 7059.02, + "probability": 0.948 + }, + { + "start": 7060.5, + "end": 7062.04, + "probability": 0.9518 + }, + { + "start": 7063.16, + "end": 7065.38, + "probability": 0.1648 + }, + { + "start": 7065.38, + "end": 7068.46, + "probability": 0.5854 + }, + { + "start": 7070.08, + "end": 7073.14, + "probability": 0.9811 + }, + { + "start": 7073.14, + "end": 7076.9, + "probability": 0.9921 + }, + { + "start": 7078.6, + "end": 7082.16, + "probability": 0.9904 + }, + { + "start": 7082.16, + "end": 7082.18, + "probability": 0.9663 + }, + { + "start": 7082.18, + "end": 7082.6, + "probability": 0.2689 + }, + { + "start": 7082.92, + "end": 7085.06, + "probability": 0.9629 + }, + { + "start": 7085.06, + "end": 7089.12, + "probability": 0.9589 + }, + { + "start": 7089.44, + "end": 7090.2, + "probability": 0.3723 + }, + { + "start": 7090.2, + "end": 7090.62, + "probability": 0.7012 + }, + { + "start": 7091.14, + "end": 7091.92, + "probability": 0.1962 + }, + { + "start": 7092.18, + "end": 7094.42, + "probability": 0.845 + }, + { + "start": 7094.64, + "end": 7096.13, + "probability": 0.0593 + }, + { + "start": 7097.08, + "end": 7098.88, + "probability": 0.811 + }, + { + "start": 7099.18, + "end": 7100.06, + "probability": 0.9888 + }, + { + "start": 7101.02, + "end": 7104.1, + "probability": 0.9892 + }, + { + "start": 7104.22, + "end": 7108.11, + "probability": 0.9639 + }, + { + "start": 7108.24, + "end": 7108.5, + "probability": 0.1716 + }, + { + "start": 7108.5, + "end": 7108.5, + "probability": 0.1706 + }, + { + "start": 7108.5, + "end": 7108.5, + "probability": 0.3372 + }, + { + "start": 7108.5, + "end": 7110.0, + "probability": 0.828 + }, + { + "start": 7110.08, + "end": 7114.44, + "probability": 0.9199 + }, + { + "start": 7115.14, + "end": 7116.42, + "probability": 0.2651 + }, + { + "start": 7116.64, + "end": 7118.26, + "probability": 0.3439 + }, + { + "start": 7118.84, + "end": 7121.26, + "probability": 0.5943 + }, + { + "start": 7121.26, + "end": 7123.6, + "probability": 0.9973 + }, + { + "start": 7125.34, + "end": 7125.76, + "probability": 0.7222 + }, + { + "start": 7126.12, + "end": 7126.4, + "probability": 0.9263 + }, + { + "start": 7127.16, + "end": 7131.78, + "probability": 0.9817 + }, + { + "start": 7132.04, + "end": 7136.78, + "probability": 0.8956 + }, + { + "start": 7136.88, + "end": 7137.64, + "probability": 0.7024 + }, + { + "start": 7138.94, + "end": 7139.43, + "probability": 0.8735 + }, + { + "start": 7139.7, + "end": 7141.52, + "probability": 0.9619 + }, + { + "start": 7142.84, + "end": 7144.44, + "probability": 0.8401 + }, + { + "start": 7144.5, + "end": 7146.98, + "probability": 0.7077 + }, + { + "start": 7147.5, + "end": 7150.36, + "probability": 0.73 + }, + { + "start": 7150.66, + "end": 7156.24, + "probability": 0.9944 + }, + { + "start": 7156.24, + "end": 7160.22, + "probability": 0.9509 + }, + { + "start": 7160.22, + "end": 7163.86, + "probability": 0.9985 + }, + { + "start": 7164.58, + "end": 7165.76, + "probability": 0.5265 + }, + { + "start": 7168.0, + "end": 7170.74, + "probability": 0.9676 + }, + { + "start": 7170.74, + "end": 7174.82, + "probability": 0.9776 + }, + { + "start": 7175.12, + "end": 7179.36, + "probability": 0.9919 + }, + { + "start": 7179.96, + "end": 7183.68, + "probability": 0.977 + }, + { + "start": 7185.62, + "end": 7186.25, + "probability": 0.5141 + }, + { + "start": 7186.52, + "end": 7187.92, + "probability": 0.5376 + }, + { + "start": 7188.42, + "end": 7190.92, + "probability": 0.99 + }, + { + "start": 7191.54, + "end": 7194.26, + "probability": 0.9639 + }, + { + "start": 7194.7, + "end": 7199.08, + "probability": 0.9448 + }, + { + "start": 7200.02, + "end": 7203.54, + "probability": 0.9358 + }, + { + "start": 7204.16, + "end": 7206.14, + "probability": 0.996 + }, + { + "start": 7206.66, + "end": 7211.22, + "probability": 0.9394 + }, + { + "start": 7212.04, + "end": 7217.32, + "probability": 0.8384 + }, + { + "start": 7218.82, + "end": 7223.28, + "probability": 0.9792 + }, + { + "start": 7223.64, + "end": 7224.28, + "probability": 0.5042 + }, + { + "start": 7224.44, + "end": 7226.8, + "probability": 0.8555 + }, + { + "start": 7227.82, + "end": 7230.94, + "probability": 0.9888 + }, + { + "start": 7231.86, + "end": 7234.5, + "probability": 0.9805 + }, + { + "start": 7235.68, + "end": 7238.4, + "probability": 0.7371 + }, + { + "start": 7238.8, + "end": 7241.3, + "probability": 0.936 + }, + { + "start": 7241.3, + "end": 7244.94, + "probability": 0.987 + }, + { + "start": 7245.42, + "end": 7246.86, + "probability": 0.984 + }, + { + "start": 7247.36, + "end": 7249.48, + "probability": 0.9902 + }, + { + "start": 7250.9, + "end": 7254.46, + "probability": 0.8677 + }, + { + "start": 7255.34, + "end": 7260.36, + "probability": 0.9822 + }, + { + "start": 7260.66, + "end": 7263.14, + "probability": 0.9941 + }, + { + "start": 7263.5, + "end": 7266.96, + "probability": 0.9957 + }, + { + "start": 7267.26, + "end": 7269.3, + "probability": 0.9976 + }, + { + "start": 7270.1, + "end": 7272.82, + "probability": 0.9986 + }, + { + "start": 7274.76, + "end": 7276.58, + "probability": 0.7577 + }, + { + "start": 7276.62, + "end": 7282.32, + "probability": 0.9937 + }, + { + "start": 7282.34, + "end": 7283.64, + "probability": 0.891 + }, + { + "start": 7284.06, + "end": 7285.46, + "probability": 0.9861 + }, + { + "start": 7285.56, + "end": 7286.76, + "probability": 0.9843 + }, + { + "start": 7286.84, + "end": 7287.26, + "probability": 0.6549 + }, + { + "start": 7287.7, + "end": 7287.82, + "probability": 0.2925 + }, + { + "start": 7288.0, + "end": 7290.4, + "probability": 0.9705 + }, + { + "start": 7291.52, + "end": 7297.34, + "probability": 0.9943 + }, + { + "start": 7298.02, + "end": 7302.7, + "probability": 0.9035 + }, + { + "start": 7303.78, + "end": 7306.22, + "probability": 0.9968 + }, + { + "start": 7306.9, + "end": 7309.14, + "probability": 0.9455 + }, + { + "start": 7309.74, + "end": 7310.1, + "probability": 0.7441 + }, + { + "start": 7310.44, + "end": 7312.06, + "probability": 0.7891 + }, + { + "start": 7312.26, + "end": 7315.0, + "probability": 0.9111 + }, + { + "start": 7326.22, + "end": 7327.84, + "probability": 0.6446 + }, + { + "start": 7328.02, + "end": 7328.64, + "probability": 0.8802 + }, + { + "start": 7328.84, + "end": 7329.34, + "probability": 0.3208 + }, + { + "start": 7330.62, + "end": 7331.96, + "probability": 0.7406 + }, + { + "start": 7333.28, + "end": 7335.42, + "probability": 0.9591 + }, + { + "start": 7336.6, + "end": 7337.84, + "probability": 0.973 + }, + { + "start": 7338.4, + "end": 7339.04, + "probability": 0.9162 + }, + { + "start": 7340.64, + "end": 7342.53, + "probability": 0.9867 + }, + { + "start": 7342.72, + "end": 7347.52, + "probability": 0.884 + }, + { + "start": 7347.64, + "end": 7348.12, + "probability": 0.928 + }, + { + "start": 7349.18, + "end": 7349.63, + "probability": 0.9097 + }, + { + "start": 7350.62, + "end": 7354.34, + "probability": 0.9413 + }, + { + "start": 7355.12, + "end": 7356.46, + "probability": 0.7977 + }, + { + "start": 7356.52, + "end": 7358.16, + "probability": 0.9846 + }, + { + "start": 7358.8, + "end": 7363.5, + "probability": 0.9635 + }, + { + "start": 7363.5, + "end": 7365.92, + "probability": 0.9525 + }, + { + "start": 7367.62, + "end": 7368.35, + "probability": 0.9294 + }, + { + "start": 7368.5, + "end": 7369.36, + "probability": 0.9806 + }, + { + "start": 7369.6, + "end": 7370.54, + "probability": 0.802 + }, + { + "start": 7370.7, + "end": 7372.62, + "probability": 0.9363 + }, + { + "start": 7373.18, + "end": 7376.8, + "probability": 0.9324 + }, + { + "start": 7376.92, + "end": 7377.7, + "probability": 0.9126 + }, + { + "start": 7378.5, + "end": 7382.92, + "probability": 0.9661 + }, + { + "start": 7384.28, + "end": 7384.94, + "probability": 0.5538 + }, + { + "start": 7386.2, + "end": 7387.98, + "probability": 0.4036 + }, + { + "start": 7388.06, + "end": 7392.82, + "probability": 0.9889 + }, + { + "start": 7392.94, + "end": 7396.82, + "probability": 0.9828 + }, + { + "start": 7397.56, + "end": 7404.88, + "probability": 0.8045 + }, + { + "start": 7405.2, + "end": 7407.34, + "probability": 0.5473 + }, + { + "start": 7407.88, + "end": 7409.64, + "probability": 0.7329 + }, + { + "start": 7411.16, + "end": 7414.86, + "probability": 0.6301 + }, + { + "start": 7415.44, + "end": 7415.94, + "probability": 0.8327 + }, + { + "start": 7416.14, + "end": 7418.63, + "probability": 0.8245 + }, + { + "start": 7418.94, + "end": 7421.48, + "probability": 0.9851 + }, + { + "start": 7422.12, + "end": 7425.58, + "probability": 0.7218 + }, + { + "start": 7425.92, + "end": 7426.8, + "probability": 0.6317 + }, + { + "start": 7427.81, + "end": 7430.26, + "probability": 0.9953 + }, + { + "start": 7430.82, + "end": 7431.06, + "probability": 0.9351 + }, + { + "start": 7431.9, + "end": 7433.72, + "probability": 0.7878 + }, + { + "start": 7434.12, + "end": 7436.02, + "probability": 0.9941 + }, + { + "start": 7436.22, + "end": 7436.56, + "probability": 0.908 + }, + { + "start": 7437.2, + "end": 7437.42, + "probability": 0.6954 + }, + { + "start": 7437.52, + "end": 7440.26, + "probability": 0.9845 + }, + { + "start": 7440.66, + "end": 7442.0, + "probability": 0.9601 + }, + { + "start": 7442.14, + "end": 7442.42, + "probability": 0.7065 + }, + { + "start": 7443.42, + "end": 7445.52, + "probability": 0.7881 + }, + { + "start": 7446.32, + "end": 7447.08, + "probability": 0.9838 + }, + { + "start": 7447.4, + "end": 7451.86, + "probability": 0.9832 + }, + { + "start": 7452.36, + "end": 7454.62, + "probability": 0.9941 + }, + { + "start": 7454.96, + "end": 7457.44, + "probability": 0.9033 + }, + { + "start": 7457.68, + "end": 7459.36, + "probability": 0.9578 + }, + { + "start": 7459.66, + "end": 7461.24, + "probability": 0.9736 + }, + { + "start": 7461.8, + "end": 7464.24, + "probability": 0.938 + }, + { + "start": 7464.36, + "end": 7464.92, + "probability": 0.5538 + }, + { + "start": 7465.34, + "end": 7469.34, + "probability": 0.8754 + }, + { + "start": 7469.38, + "end": 7471.16, + "probability": 0.9166 + }, + { + "start": 7472.52, + "end": 7474.62, + "probability": 0.439 + }, + { + "start": 7475.9, + "end": 7476.96, + "probability": 0.9501 + }, + { + "start": 7478.3, + "end": 7480.42, + "probability": 0.995 + }, + { + "start": 7480.42, + "end": 7482.94, + "probability": 0.8991 + }, + { + "start": 7483.66, + "end": 7485.5, + "probability": 0.8066 + }, + { + "start": 7486.24, + "end": 7489.9, + "probability": 0.9829 + }, + { + "start": 7489.9, + "end": 7494.22, + "probability": 0.9958 + }, + { + "start": 7494.66, + "end": 7495.7, + "probability": 0.9482 + }, + { + "start": 7496.74, + "end": 7497.56, + "probability": 0.9529 + }, + { + "start": 7497.66, + "end": 7498.55, + "probability": 0.9661 + }, + { + "start": 7499.2, + "end": 7500.16, + "probability": 0.9276 + }, + { + "start": 7500.22, + "end": 7500.42, + "probability": 0.617 + }, + { + "start": 7501.38, + "end": 7502.4, + "probability": 0.9675 + }, + { + "start": 7503.02, + "end": 7503.81, + "probability": 0.9678 + }, + { + "start": 7504.04, + "end": 7506.38, + "probability": 0.8701 + }, + { + "start": 7506.86, + "end": 7508.86, + "probability": 0.9819 + }, + { + "start": 7509.06, + "end": 7512.92, + "probability": 0.9939 + }, + { + "start": 7513.7, + "end": 7516.16, + "probability": 0.9025 + }, + { + "start": 7516.68, + "end": 7517.08, + "probability": 0.8484 + }, + { + "start": 7517.74, + "end": 7519.95, + "probability": 0.8595 + }, + { + "start": 7520.42, + "end": 7524.72, + "probability": 0.9536 + }, + { + "start": 7533.2, + "end": 7535.18, + "probability": 0.5289 + }, + { + "start": 7538.9, + "end": 7540.06, + "probability": 0.6351 + }, + { + "start": 7540.64, + "end": 7542.16, + "probability": 0.703 + }, + { + "start": 7544.72, + "end": 7549.32, + "probability": 0.9262 + }, + { + "start": 7551.04, + "end": 7552.3, + "probability": 0.999 + }, + { + "start": 7553.7, + "end": 7554.32, + "probability": 0.4768 + }, + { + "start": 7556.64, + "end": 7559.89, + "probability": 0.8179 + }, + { + "start": 7562.04, + "end": 7565.22, + "probability": 0.997 + }, + { + "start": 7567.54, + "end": 7570.5, + "probability": 0.9557 + }, + { + "start": 7571.74, + "end": 7573.45, + "probability": 0.975 + }, + { + "start": 7574.74, + "end": 7578.54, + "probability": 0.9262 + }, + { + "start": 7579.48, + "end": 7580.02, + "probability": 0.8936 + }, + { + "start": 7581.2, + "end": 7585.36, + "probability": 0.8834 + }, + { + "start": 7586.06, + "end": 7587.92, + "probability": 0.9053 + }, + { + "start": 7589.06, + "end": 7590.3, + "probability": 0.8351 + }, + { + "start": 7591.5, + "end": 7593.2, + "probability": 0.8766 + }, + { + "start": 7594.52, + "end": 7595.26, + "probability": 0.727 + }, + { + "start": 7595.34, + "end": 7596.64, + "probability": 0.9805 + }, + { + "start": 7597.1, + "end": 7598.64, + "probability": 0.9651 + }, + { + "start": 7601.44, + "end": 7603.21, + "probability": 0.4405 + }, + { + "start": 7604.32, + "end": 7606.04, + "probability": 0.9836 + }, + { + "start": 7607.22, + "end": 7610.32, + "probability": 0.9741 + }, + { + "start": 7612.64, + "end": 7616.42, + "probability": 0.9827 + }, + { + "start": 7617.98, + "end": 7625.76, + "probability": 0.9544 + }, + { + "start": 7626.72, + "end": 7627.98, + "probability": 0.9331 + }, + { + "start": 7629.76, + "end": 7631.52, + "probability": 0.9633 + }, + { + "start": 7632.48, + "end": 7636.74, + "probability": 0.9956 + }, + { + "start": 7638.14, + "end": 7643.24, + "probability": 0.9985 + }, + { + "start": 7644.76, + "end": 7646.86, + "probability": 0.9989 + }, + { + "start": 7646.98, + "end": 7647.9, + "probability": 0.7673 + }, + { + "start": 7648.02, + "end": 7648.97, + "probability": 0.9614 + }, + { + "start": 7649.26, + "end": 7649.7, + "probability": 0.7238 + }, + { + "start": 7650.16, + "end": 7651.16, + "probability": 0.8327 + }, + { + "start": 7651.72, + "end": 7653.2, + "probability": 0.4991 + }, + { + "start": 7653.96, + "end": 7656.54, + "probability": 0.9585 + }, + { + "start": 7656.86, + "end": 7657.72, + "probability": 0.9825 + }, + { + "start": 7658.36, + "end": 7659.9, + "probability": 0.9684 + }, + { + "start": 7660.24, + "end": 7661.48, + "probability": 0.98 + }, + { + "start": 7663.42, + "end": 7664.56, + "probability": 0.8228 + }, + { + "start": 7664.88, + "end": 7666.72, + "probability": 0.9512 + }, + { + "start": 7667.34, + "end": 7667.97, + "probability": 0.675 + }, + { + "start": 7669.7, + "end": 7672.88, + "probability": 0.9856 + }, + { + "start": 7673.74, + "end": 7675.42, + "probability": 0.9609 + }, + { + "start": 7676.74, + "end": 7677.66, + "probability": 0.9871 + }, + { + "start": 7678.02, + "end": 7678.42, + "probability": 0.6681 + }, + { + "start": 7678.48, + "end": 7679.18, + "probability": 0.9103 + }, + { + "start": 7679.5, + "end": 7680.32, + "probability": 0.8091 + }, + { + "start": 7681.26, + "end": 7682.46, + "probability": 0.9917 + }, + { + "start": 7683.18, + "end": 7685.0, + "probability": 0.7249 + }, + { + "start": 7686.16, + "end": 7688.48, + "probability": 0.9956 + }, + { + "start": 7689.56, + "end": 7692.14, + "probability": 0.8632 + }, + { + "start": 7693.78, + "end": 7695.52, + "probability": 0.9762 + }, + { + "start": 7695.66, + "end": 7699.36, + "probability": 0.843 + }, + { + "start": 7699.74, + "end": 7700.17, + "probability": 0.9327 + }, + { + "start": 7701.46, + "end": 7702.09, + "probability": 0.9668 + }, + { + "start": 7702.5, + "end": 7704.78, + "probability": 0.624 + }, + { + "start": 7706.06, + "end": 7707.1, + "probability": 0.7829 + }, + { + "start": 7707.86, + "end": 7709.6, + "probability": 0.8618 + }, + { + "start": 7710.19, + "end": 7711.5, + "probability": 0.9844 + }, + { + "start": 7712.56, + "end": 7714.94, + "probability": 0.7222 + }, + { + "start": 7715.06, + "end": 7715.92, + "probability": 0.7561 + }, + { + "start": 7716.08, + "end": 7717.6, + "probability": 0.8121 + }, + { + "start": 7719.34, + "end": 7719.38, + "probability": 0.1762 + }, + { + "start": 7719.38, + "end": 7719.56, + "probability": 0.1257 + }, + { + "start": 7719.56, + "end": 7720.36, + "probability": 0.4481 + }, + { + "start": 7720.78, + "end": 7721.54, + "probability": 0.8727 + }, + { + "start": 7721.72, + "end": 7722.26, + "probability": 0.8458 + }, + { + "start": 7723.54, + "end": 7724.07, + "probability": 0.5506 + }, + { + "start": 7726.28, + "end": 7729.2, + "probability": 0.9925 + }, + { + "start": 7730.38, + "end": 7731.68, + "probability": 0.8008 + }, + { + "start": 7732.58, + "end": 7737.12, + "probability": 0.9907 + }, + { + "start": 7738.2, + "end": 7740.38, + "probability": 0.8113 + }, + { + "start": 7740.92, + "end": 7742.08, + "probability": 0.9863 + }, + { + "start": 7743.1, + "end": 7744.2, + "probability": 0.9457 + }, + { + "start": 7744.88, + "end": 7746.7, + "probability": 0.8647 + }, + { + "start": 7747.26, + "end": 7749.72, + "probability": 0.6665 + }, + { + "start": 7750.08, + "end": 7751.04, + "probability": 0.9211 + }, + { + "start": 7751.74, + "end": 7752.33, + "probability": 0.9258 + }, + { + "start": 7752.74, + "end": 7754.8, + "probability": 0.9257 + }, + { + "start": 7755.28, + "end": 7756.58, + "probability": 0.825 + }, + { + "start": 7757.22, + "end": 7758.53, + "probability": 0.9049 + }, + { + "start": 7759.28, + "end": 7763.3, + "probability": 0.7445 + }, + { + "start": 7763.76, + "end": 7765.54, + "probability": 0.9729 + }, + { + "start": 7765.66, + "end": 7765.94, + "probability": 0.7566 + }, + { + "start": 7766.12, + "end": 7766.58, + "probability": 0.7744 + }, + { + "start": 7767.42, + "end": 7769.44, + "probability": 0.6857 + }, + { + "start": 7769.78, + "end": 7770.4, + "probability": 0.477 + }, + { + "start": 7780.28, + "end": 7781.15, + "probability": 0.5332 + }, + { + "start": 7781.28, + "end": 7782.18, + "probability": 0.8576 + }, + { + "start": 7785.58, + "end": 7787.04, + "probability": 0.4509 + }, + { + "start": 7788.0, + "end": 7790.2, + "probability": 0.7958 + }, + { + "start": 7791.86, + "end": 7795.48, + "probability": 0.9968 + }, + { + "start": 7796.16, + "end": 7798.58, + "probability": 0.9197 + }, + { + "start": 7799.48, + "end": 7802.8, + "probability": 0.9981 + }, + { + "start": 7803.68, + "end": 7806.4, + "probability": 0.8795 + }, + { + "start": 7807.08, + "end": 7813.02, + "probability": 0.9545 + }, + { + "start": 7813.1, + "end": 7816.69, + "probability": 0.9967 + }, + { + "start": 7817.04, + "end": 7818.08, + "probability": 0.7329 + }, + { + "start": 7818.52, + "end": 7819.98, + "probability": 0.9111 + }, + { + "start": 7820.86, + "end": 7826.24, + "probability": 0.9961 + }, + { + "start": 7826.38, + "end": 7828.1, + "probability": 0.9941 + }, + { + "start": 7828.58, + "end": 7829.57, + "probability": 0.7166 + }, + { + "start": 7829.86, + "end": 7833.36, + "probability": 0.9863 + }, + { + "start": 7834.2, + "end": 7835.79, + "probability": 0.9567 + }, + { + "start": 7836.16, + "end": 7839.0, + "probability": 0.9985 + }, + { + "start": 7839.0, + "end": 7845.16, + "probability": 0.9916 + }, + { + "start": 7845.92, + "end": 7848.84, + "probability": 0.9937 + }, + { + "start": 7849.9, + "end": 7851.82, + "probability": 1.0 + }, + { + "start": 7852.96, + "end": 7858.24, + "probability": 0.9969 + }, + { + "start": 7858.84, + "end": 7860.64, + "probability": 0.998 + }, + { + "start": 7861.58, + "end": 7863.06, + "probability": 0.9797 + }, + { + "start": 7863.14, + "end": 7865.44, + "probability": 0.9662 + }, + { + "start": 7865.74, + "end": 7868.64, + "probability": 0.9829 + }, + { + "start": 7869.24, + "end": 7874.68, + "probability": 0.9906 + }, + { + "start": 7874.98, + "end": 7876.94, + "probability": 0.9535 + }, + { + "start": 7878.66, + "end": 7882.4, + "probability": 0.9692 + }, + { + "start": 7882.9, + "end": 7884.06, + "probability": 0.9313 + }, + { + "start": 7884.52, + "end": 7886.1, + "probability": 0.9669 + }, + { + "start": 7886.6, + "end": 7890.04, + "probability": 0.9602 + }, + { + "start": 7890.68, + "end": 7892.36, + "probability": 0.9688 + }, + { + "start": 7893.5, + "end": 7896.76, + "probability": 0.8927 + }, + { + "start": 7897.2, + "end": 7899.46, + "probability": 0.7615 + }, + { + "start": 7900.0, + "end": 7906.3, + "probability": 0.972 + }, + { + "start": 7906.94, + "end": 7908.06, + "probability": 0.9746 + }, + { + "start": 7908.82, + "end": 7914.8, + "probability": 0.9252 + }, + { + "start": 7915.64, + "end": 7917.8, + "probability": 0.7603 + }, + { + "start": 7918.8, + "end": 7921.32, + "probability": 0.9303 + }, + { + "start": 7921.82, + "end": 7922.3, + "probability": 0.7969 + }, + { + "start": 7923.08, + "end": 7928.88, + "probability": 0.9801 + }, + { + "start": 7929.36, + "end": 7932.0, + "probability": 0.9753 + }, + { + "start": 7932.0, + "end": 7935.0, + "probability": 0.9032 + }, + { + "start": 7935.66, + "end": 7938.86, + "probability": 0.9536 + }, + { + "start": 7939.04, + "end": 7939.16, + "probability": 0.3755 + }, + { + "start": 7939.38, + "end": 7945.18, + "probability": 0.9832 + }, + { + "start": 7945.54, + "end": 7946.54, + "probability": 0.8139 + }, + { + "start": 7946.62, + "end": 7947.86, + "probability": 0.9826 + }, + { + "start": 7948.7, + "end": 7950.08, + "probability": 0.8145 + }, + { + "start": 7950.72, + "end": 7952.6, + "probability": 0.867 + }, + { + "start": 7953.24, + "end": 7954.0, + "probability": 0.9241 + }, + { + "start": 7954.26, + "end": 7956.3, + "probability": 0.9218 + }, + { + "start": 7956.62, + "end": 7959.08, + "probability": 0.971 + }, + { + "start": 7959.12, + "end": 7960.56, + "probability": 0.8019 + }, + { + "start": 7960.62, + "end": 7963.1, + "probability": 0.7981 + }, + { + "start": 7963.8, + "end": 7965.22, + "probability": 0.6815 + }, + { + "start": 7966.0, + "end": 7966.28, + "probability": 0.7994 + }, + { + "start": 7966.8, + "end": 7972.64, + "probability": 0.9614 + }, + { + "start": 7972.82, + "end": 7974.32, + "probability": 0.9746 + }, + { + "start": 7974.7, + "end": 7976.03, + "probability": 0.9826 + }, + { + "start": 7976.32, + "end": 7979.54, + "probability": 0.9924 + }, + { + "start": 7979.54, + "end": 7982.04, + "probability": 0.9258 + }, + { + "start": 7982.48, + "end": 7985.27, + "probability": 0.9831 + }, + { + "start": 7985.86, + "end": 7986.32, + "probability": 0.5291 + }, + { + "start": 7986.42, + "end": 7987.91, + "probability": 0.8032 + }, + { + "start": 7988.64, + "end": 7992.2, + "probability": 0.8453 + }, + { + "start": 7992.32, + "end": 7992.82, + "probability": 0.7437 + }, + { + "start": 7993.34, + "end": 7997.56, + "probability": 0.9413 + }, + { + "start": 7997.56, + "end": 8000.62, + "probability": 0.9985 + }, + { + "start": 8000.98, + "end": 8002.78, + "probability": 0.6497 + }, + { + "start": 8003.12, + "end": 8005.54, + "probability": 0.9814 + }, + { + "start": 8005.96, + "end": 8007.14, + "probability": 0.9588 + }, + { + "start": 8007.38, + "end": 8009.36, + "probability": 0.7176 + }, + { + "start": 8009.7, + "end": 8010.32, + "probability": 0.981 + }, + { + "start": 8010.62, + "end": 8011.82, + "probability": 0.9648 + }, + { + "start": 8011.86, + "end": 8013.38, + "probability": 0.9745 + }, + { + "start": 8013.64, + "end": 8015.92, + "probability": 0.9971 + }, + { + "start": 8015.92, + "end": 8017.76, + "probability": 0.8804 + }, + { + "start": 8018.36, + "end": 8018.66, + "probability": 0.27 + }, + { + "start": 8018.96, + "end": 8020.4, + "probability": 0.6024 + }, + { + "start": 8020.48, + "end": 8021.92, + "probability": 0.9255 + }, + { + "start": 8037.84, + "end": 8038.02, + "probability": 0.7101 + }, + { + "start": 8038.02, + "end": 8038.72, + "probability": 0.493 + }, + { + "start": 8039.22, + "end": 8040.46, + "probability": 0.7887 + }, + { + "start": 8042.1, + "end": 8043.0, + "probability": 0.5079 + }, + { + "start": 8044.06, + "end": 8044.88, + "probability": 0.8819 + }, + { + "start": 8045.02, + "end": 8050.64, + "probability": 0.8796 + }, + { + "start": 8050.64, + "end": 8056.8, + "probability": 0.9734 + }, + { + "start": 8057.64, + "end": 8059.12, + "probability": 0.9743 + }, + { + "start": 8060.22, + "end": 8064.88, + "probability": 0.8434 + }, + { + "start": 8064.98, + "end": 8065.76, + "probability": 0.7962 + }, + { + "start": 8067.18, + "end": 8069.8, + "probability": 0.7122 + }, + { + "start": 8070.76, + "end": 8075.06, + "probability": 0.9913 + }, + { + "start": 8076.56, + "end": 8076.62, + "probability": 0.5888 + }, + { + "start": 8076.74, + "end": 8077.84, + "probability": 0.9311 + }, + { + "start": 8077.92, + "end": 8079.44, + "probability": 0.9348 + }, + { + "start": 8080.36, + "end": 8081.52, + "probability": 0.9191 + }, + { + "start": 8082.7, + "end": 8084.72, + "probability": 0.9738 + }, + { + "start": 8084.9, + "end": 8085.9, + "probability": 0.7472 + }, + { + "start": 8086.18, + "end": 8087.48, + "probability": 0.5229 + }, + { + "start": 8088.2, + "end": 8089.42, + "probability": 0.9407 + }, + { + "start": 8090.44, + "end": 8092.6, + "probability": 0.9668 + }, + { + "start": 8093.18, + "end": 8097.2, + "probability": 0.9616 + }, + { + "start": 8098.44, + "end": 8101.2, + "probability": 0.9592 + }, + { + "start": 8102.28, + "end": 8102.98, + "probability": 0.8848 + }, + { + "start": 8103.84, + "end": 8104.44, + "probability": 0.8992 + }, + { + "start": 8105.68, + "end": 8106.72, + "probability": 0.9608 + }, + { + "start": 8107.6, + "end": 8108.46, + "probability": 0.9554 + }, + { + "start": 8109.34, + "end": 8110.49, + "probability": 0.9648 + }, + { + "start": 8111.18, + "end": 8112.44, + "probability": 0.9147 + }, + { + "start": 8113.58, + "end": 8114.9, + "probability": 0.9629 + }, + { + "start": 8117.78, + "end": 8121.06, + "probability": 0.9895 + }, + { + "start": 8121.72, + "end": 8122.38, + "probability": 0.6516 + }, + { + "start": 8123.22, + "end": 8125.28, + "probability": 0.9701 + }, + { + "start": 8126.02, + "end": 8128.54, + "probability": 0.9465 + }, + { + "start": 8129.46, + "end": 8132.67, + "probability": 0.9617 + }, + { + "start": 8133.36, + "end": 8134.58, + "probability": 0.9464 + }, + { + "start": 8134.74, + "end": 8135.26, + "probability": 0.7327 + }, + { + "start": 8135.32, + "end": 8137.86, + "probability": 0.4574 + }, + { + "start": 8137.86, + "end": 8137.86, + "probability": 0.0524 + }, + { + "start": 8137.86, + "end": 8137.86, + "probability": 0.4287 + }, + { + "start": 8137.86, + "end": 8138.22, + "probability": 0.0413 + }, + { + "start": 8140.46, + "end": 8141.6, + "probability": 0.7759 + }, + { + "start": 8142.72, + "end": 8144.82, + "probability": 0.8983 + }, + { + "start": 8149.82, + "end": 8151.34, + "probability": 0.7888 + }, + { + "start": 8153.1, + "end": 8154.02, + "probability": 0.6931 + }, + { + "start": 8154.68, + "end": 8156.22, + "probability": 0.9657 + }, + { + "start": 8156.52, + "end": 8157.91, + "probability": 0.9122 + }, + { + "start": 8158.4, + "end": 8159.5, + "probability": 0.8528 + }, + { + "start": 8160.68, + "end": 8161.86, + "probability": 0.2882 + }, + { + "start": 8163.0, + "end": 8165.66, + "probability": 0.9546 + }, + { + "start": 8165.84, + "end": 8165.86, + "probability": 0.405 + }, + { + "start": 8165.98, + "end": 8166.88, + "probability": 0.7014 + }, + { + "start": 8166.92, + "end": 8168.42, + "probability": 0.9686 + }, + { + "start": 8169.22, + "end": 8171.68, + "probability": 0.9353 + }, + { + "start": 8171.86, + "end": 8175.96, + "probability": 0.9038 + }, + { + "start": 8177.44, + "end": 8181.0, + "probability": 0.9132 + }, + { + "start": 8183.02, + "end": 8184.55, + "probability": 0.9971 + }, + { + "start": 8186.5, + "end": 8195.04, + "probability": 0.9891 + }, + { + "start": 8195.58, + "end": 8197.92, + "probability": 0.9941 + }, + { + "start": 8199.54, + "end": 8200.06, + "probability": 0.8989 + }, + { + "start": 8200.7, + "end": 8200.94, + "probability": 0.6527 + }, + { + "start": 8201.56, + "end": 8202.36, + "probability": 0.8519 + }, + { + "start": 8202.48, + "end": 8202.9, + "probability": 0.6099 + }, + { + "start": 8202.9, + "end": 8203.18, + "probability": 0.7382 + }, + { + "start": 8203.24, + "end": 8204.38, + "probability": 0.9634 + }, + { + "start": 8205.92, + "end": 8206.87, + "probability": 0.9655 + }, + { + "start": 8207.36, + "end": 8207.56, + "probability": 0.5365 + }, + { + "start": 8208.34, + "end": 8208.62, + "probability": 0.92 + }, + { + "start": 8208.7, + "end": 8209.14, + "probability": 0.9465 + }, + { + "start": 8209.2, + "end": 8210.24, + "probability": 0.6587 + }, + { + "start": 8210.24, + "end": 8210.58, + "probability": 0.3099 + }, + { + "start": 8210.6, + "end": 8217.02, + "probability": 0.9355 + }, + { + "start": 8218.0, + "end": 8220.16, + "probability": 0.7471 + }, + { + "start": 8221.06, + "end": 8223.0, + "probability": 0.5638 + }, + { + "start": 8224.44, + "end": 8225.7, + "probability": 0.6544 + }, + { + "start": 8225.86, + "end": 8226.52, + "probability": 0.3954 + }, + { + "start": 8226.74, + "end": 8227.96, + "probability": 0.8025 + }, + { + "start": 8228.32, + "end": 8229.58, + "probability": 0.9032 + }, + { + "start": 8241.76, + "end": 8242.22, + "probability": 0.8961 + }, + { + "start": 8242.95, + "end": 8243.02, + "probability": 0.0132 + }, + { + "start": 8243.02, + "end": 8243.02, + "probability": 0.0208 + }, + { + "start": 8243.02, + "end": 8243.02, + "probability": 0.2324 + }, + { + "start": 8243.02, + "end": 8243.02, + "probability": 0.0341 + }, + { + "start": 8243.02, + "end": 8243.02, + "probability": 0.1077 + }, + { + "start": 8243.02, + "end": 8244.75, + "probability": 0.3938 + }, + { + "start": 8245.78, + "end": 8247.84, + "probability": 0.7461 + }, + { + "start": 8249.38, + "end": 8251.64, + "probability": 0.7333 + }, + { + "start": 8252.66, + "end": 8253.86, + "probability": 0.9309 + }, + { + "start": 8254.38, + "end": 8256.04, + "probability": 0.7333 + }, + { + "start": 8256.64, + "end": 8258.32, + "probability": 0.8927 + }, + { + "start": 8259.64, + "end": 8261.44, + "probability": 0.9816 + }, + { + "start": 8263.0, + "end": 8263.92, + "probability": 0.655 + }, + { + "start": 8266.1, + "end": 8266.52, + "probability": 0.0542 + }, + { + "start": 8266.52, + "end": 8266.52, + "probability": 0.204 + }, + { + "start": 8266.52, + "end": 8266.52, + "probability": 0.1574 + }, + { + "start": 8266.52, + "end": 8267.72, + "probability": 0.1873 + }, + { + "start": 8268.14, + "end": 8270.28, + "probability": 0.9089 + }, + { + "start": 8270.62, + "end": 8271.6, + "probability": 0.8503 + }, + { + "start": 8272.04, + "end": 8272.72, + "probability": 0.3873 + }, + { + "start": 8273.92, + "end": 8274.56, + "probability": 0.7473 + }, + { + "start": 8275.5, + "end": 8276.18, + "probability": 0.903 + }, + { + "start": 8276.88, + "end": 8277.68, + "probability": 0.6403 + }, + { + "start": 8278.16, + "end": 8279.36, + "probability": 0.779 + }, + { + "start": 8280.4, + "end": 8285.22, + "probability": 0.9153 + }, + { + "start": 8286.48, + "end": 8289.06, + "probability": 0.7862 + }, + { + "start": 8289.8, + "end": 8292.42, + "probability": 0.7314 + }, + { + "start": 8293.48, + "end": 8295.18, + "probability": 0.8075 + }, + { + "start": 8296.16, + "end": 8297.62, + "probability": 0.9873 + }, + { + "start": 8299.4, + "end": 8301.64, + "probability": 0.9854 + }, + { + "start": 8301.68, + "end": 8302.29, + "probability": 0.1169 + }, + { + "start": 8304.28, + "end": 8307.2, + "probability": 0.9549 + }, + { + "start": 8307.52, + "end": 8308.4, + "probability": 0.8887 + }, + { + "start": 8309.9, + "end": 8311.9, + "probability": 0.9971 + }, + { + "start": 8313.12, + "end": 8317.7, + "probability": 0.9194 + }, + { + "start": 8318.76, + "end": 8319.8, + "probability": 0.8844 + }, + { + "start": 8320.64, + "end": 8321.38, + "probability": 0.8976 + }, + { + "start": 8321.64, + "end": 8322.79, + "probability": 0.1514 + }, + { + "start": 8324.43, + "end": 8326.2, + "probability": 0.5439 + }, + { + "start": 8326.34, + "end": 8328.52, + "probability": 0.7735 + }, + { + "start": 8328.79, + "end": 8333.56, + "probability": 0.6552 + }, + { + "start": 8333.68, + "end": 8335.54, + "probability": 0.1292 + }, + { + "start": 8335.86, + "end": 8336.38, + "probability": 0.0403 + }, + { + "start": 8336.38, + "end": 8337.08, + "probability": 0.028 + }, + { + "start": 8337.24, + "end": 8340.98, + "probability": 0.4866 + }, + { + "start": 8342.06, + "end": 8342.76, + "probability": 0.569 + }, + { + "start": 8343.72, + "end": 8346.6, + "probability": 0.8749 + }, + { + "start": 8347.82, + "end": 8349.9, + "probability": 0.9691 + }, + { + "start": 8350.12, + "end": 8353.16, + "probability": 0.9979 + }, + { + "start": 8353.8, + "end": 8355.62, + "probability": 0.8483 + }, + { + "start": 8356.29, + "end": 8360.94, + "probability": 0.8665 + }, + { + "start": 8365.52, + "end": 8365.64, + "probability": 0.025 + }, + { + "start": 8365.94, + "end": 8370.9, + "probability": 0.859 + }, + { + "start": 8371.08, + "end": 8371.88, + "probability": 0.87 + }, + { + "start": 8371.96, + "end": 8375.2, + "probability": 0.9931 + }, + { + "start": 8380.1, + "end": 8383.24, + "probability": 0.6005 + }, + { + "start": 8383.32, + "end": 8384.54, + "probability": 0.7334 + }, + { + "start": 8385.6, + "end": 8386.66, + "probability": 0.2434 + }, + { + "start": 8387.18, + "end": 8388.08, + "probability": 0.736 + }, + { + "start": 8390.56, + "end": 8396.5, + "probability": 0.9909 + }, + { + "start": 8397.46, + "end": 8399.78, + "probability": 0.9887 + }, + { + "start": 8400.64, + "end": 8402.98, + "probability": 0.8066 + }, + { + "start": 8404.56, + "end": 8408.12, + "probability": 0.9972 + }, + { + "start": 8409.64, + "end": 8411.9, + "probability": 0.9993 + }, + { + "start": 8412.56, + "end": 8415.28, + "probability": 0.9554 + }, + { + "start": 8416.7, + "end": 8417.36, + "probability": 0.2665 + }, + { + "start": 8418.52, + "end": 8419.84, + "probability": 0.9867 + }, + { + "start": 8421.3, + "end": 8422.74, + "probability": 0.8369 + }, + { + "start": 8423.52, + "end": 8426.0, + "probability": 0.9965 + }, + { + "start": 8426.72, + "end": 8429.08, + "probability": 0.9989 + }, + { + "start": 8429.96, + "end": 8433.66, + "probability": 0.993 + }, + { + "start": 8434.36, + "end": 8434.98, + "probability": 0.8689 + }, + { + "start": 8435.8, + "end": 8438.1, + "probability": 0.9748 + }, + { + "start": 8439.7, + "end": 8440.58, + "probability": 0.8132 + }, + { + "start": 8441.94, + "end": 8446.58, + "probability": 0.9941 + }, + { + "start": 8447.16, + "end": 8450.92, + "probability": 0.9588 + }, + { + "start": 8451.86, + "end": 8455.48, + "probability": 0.9801 + }, + { + "start": 8456.82, + "end": 8458.28, + "probability": 0.903 + }, + { + "start": 8459.18, + "end": 8462.18, + "probability": 0.9956 + }, + { + "start": 8463.04, + "end": 8464.3, + "probability": 0.9946 + }, + { + "start": 8464.98, + "end": 8468.5, + "probability": 0.9365 + }, + { + "start": 8468.5, + "end": 8472.82, + "probability": 0.9149 + }, + { + "start": 8474.04, + "end": 8475.6, + "probability": 0.9023 + }, + { + "start": 8475.7, + "end": 8476.8, + "probability": 0.8645 + }, + { + "start": 8476.92, + "end": 8480.08, + "probability": 0.6514 + }, + { + "start": 8480.08, + "end": 8481.12, + "probability": 0.8439 + }, + { + "start": 8481.22, + "end": 8482.6, + "probability": 0.8524 + }, + { + "start": 8484.02, + "end": 8484.6, + "probability": 0.9185 + }, + { + "start": 8485.34, + "end": 8486.0, + "probability": 0.9626 + }, + { + "start": 8487.32, + "end": 8489.38, + "probability": 0.7847 + }, + { + "start": 8490.36, + "end": 8494.38, + "probability": 0.9841 + }, + { + "start": 8494.76, + "end": 8498.26, + "probability": 0.9573 + }, + { + "start": 8499.42, + "end": 8501.86, + "probability": 0.8434 + }, + { + "start": 8502.5, + "end": 8505.84, + "probability": 0.9069 + }, + { + "start": 8507.22, + "end": 8507.32, + "probability": 0.1148 + }, + { + "start": 8507.32, + "end": 8510.72, + "probability": 0.689 + }, + { + "start": 8510.86, + "end": 8511.56, + "probability": 0.9686 + }, + { + "start": 8511.84, + "end": 8514.16, + "probability": 0.9048 + }, + { + "start": 8514.56, + "end": 8516.24, + "probability": 0.8546 + }, + { + "start": 8516.88, + "end": 8517.88, + "probability": 0.8575 + }, + { + "start": 8518.48, + "end": 8518.98, + "probability": 0.7586 + }, + { + "start": 8519.12, + "end": 8520.16, + "probability": 0.9458 + }, + { + "start": 8521.1, + "end": 8521.86, + "probability": 0.6494 + }, + { + "start": 8522.48, + "end": 8524.32, + "probability": 0.8593 + }, + { + "start": 8524.76, + "end": 8525.76, + "probability": 0.5242 + }, + { + "start": 8525.88, + "end": 8527.26, + "probability": 0.8471 + }, + { + "start": 8528.38, + "end": 8529.92, + "probability": 0.7373 + }, + { + "start": 8530.62, + "end": 8532.5, + "probability": 0.8905 + }, + { + "start": 8532.6, + "end": 8532.8, + "probability": 0.4529 + }, + { + "start": 8532.9, + "end": 8533.32, + "probability": 0.8947 + }, + { + "start": 8533.5, + "end": 8533.95, + "probability": 0.7476 + }, + { + "start": 8534.36, + "end": 8534.98, + "probability": 0.3651 + }, + { + "start": 8535.4, + "end": 8536.14, + "probability": 0.9754 + }, + { + "start": 8536.34, + "end": 8536.6, + "probability": 0.4083 + }, + { + "start": 8536.98, + "end": 8539.64, + "probability": 0.7862 + }, + { + "start": 8540.44, + "end": 8541.26, + "probability": 0.5754 + }, + { + "start": 8542.14, + "end": 8543.94, + "probability": 0.8905 + }, + { + "start": 8544.2, + "end": 8546.22, + "probability": 0.9805 + }, + { + "start": 8547.14, + "end": 8549.62, + "probability": 0.9806 + }, + { + "start": 8550.9, + "end": 8555.08, + "probability": 0.7565 + }, + { + "start": 8556.32, + "end": 8560.9, + "probability": 0.9874 + }, + { + "start": 8561.4, + "end": 8563.04, + "probability": 0.9651 + }, + { + "start": 8563.98, + "end": 8564.98, + "probability": 0.8687 + }, + { + "start": 8566.4, + "end": 8570.48, + "probability": 0.9585 + }, + { + "start": 8571.46, + "end": 8572.6, + "probability": 0.8028 + }, + { + "start": 8573.62, + "end": 8575.38, + "probability": 0.9832 + }, + { + "start": 8576.18, + "end": 8580.48, + "probability": 0.9949 + }, + { + "start": 8581.66, + "end": 8583.54, + "probability": 0.9379 + }, + { + "start": 8584.58, + "end": 8585.02, + "probability": 0.6296 + }, + { + "start": 8585.2, + "end": 8586.14, + "probability": 0.8393 + }, + { + "start": 8586.28, + "end": 8589.6, + "probability": 0.9712 + }, + { + "start": 8590.7, + "end": 8592.28, + "probability": 0.964 + }, + { + "start": 8592.9, + "end": 8597.26, + "probability": 0.9973 + }, + { + "start": 8597.98, + "end": 8599.48, + "probability": 0.8684 + }, + { + "start": 8600.28, + "end": 8602.24, + "probability": 0.9969 + }, + { + "start": 8603.42, + "end": 8605.84, + "probability": 0.9808 + }, + { + "start": 8606.56, + "end": 8608.6, + "probability": 0.98 + }, + { + "start": 8609.76, + "end": 8610.66, + "probability": 0.8416 + }, + { + "start": 8611.42, + "end": 8616.16, + "probability": 0.9916 + }, + { + "start": 8617.7, + "end": 8621.02, + "probability": 0.949 + }, + { + "start": 8621.84, + "end": 8623.06, + "probability": 0.9108 + }, + { + "start": 8623.98, + "end": 8628.22, + "probability": 0.9594 + }, + { + "start": 8629.16, + "end": 8634.22, + "probability": 0.9808 + }, + { + "start": 8634.82, + "end": 8635.96, + "probability": 0.5306 + }, + { + "start": 8636.54, + "end": 8641.76, + "probability": 0.9648 + }, + { + "start": 8644.66, + "end": 8645.76, + "probability": 0.6545 + }, + { + "start": 8647.1, + "end": 8648.98, + "probability": 0.9941 + }, + { + "start": 8649.2, + "end": 8651.66, + "probability": 0.875 + }, + { + "start": 8652.34, + "end": 8654.12, + "probability": 0.8022 + }, + { + "start": 8654.44, + "end": 8655.29, + "probability": 0.9168 + }, + { + "start": 8657.6, + "end": 8658.06, + "probability": 0.8074 + }, + { + "start": 8659.16, + "end": 8660.74, + "probability": 0.8482 + }, + { + "start": 8661.72, + "end": 8663.18, + "probability": 0.9811 + }, + { + "start": 8664.28, + "end": 8669.4, + "probability": 0.7174 + }, + { + "start": 8670.4, + "end": 8674.8, + "probability": 0.8631 + }, + { + "start": 8675.52, + "end": 8677.6, + "probability": 0.9872 + }, + { + "start": 8679.44, + "end": 8683.8, + "probability": 0.9888 + }, + { + "start": 8683.8, + "end": 8688.02, + "probability": 0.9785 + }, + { + "start": 8688.52, + "end": 8689.4, + "probability": 0.9462 + }, + { + "start": 8690.02, + "end": 8691.82, + "probability": 0.9889 + }, + { + "start": 8692.39, + "end": 8695.64, + "probability": 0.8571 + }, + { + "start": 8696.06, + "end": 8699.1, + "probability": 0.9906 + }, + { + "start": 8699.28, + "end": 8702.88, + "probability": 0.9468 + }, + { + "start": 8703.16, + "end": 8703.8, + "probability": 0.8544 + }, + { + "start": 8704.82, + "end": 8706.24, + "probability": 0.9934 + }, + { + "start": 8707.32, + "end": 8710.7, + "probability": 0.9259 + }, + { + "start": 8711.56, + "end": 8712.64, + "probability": 0.7593 + }, + { + "start": 8712.82, + "end": 8715.56, + "probability": 0.7726 + }, + { + "start": 8716.04, + "end": 8716.54, + "probability": 0.5336 + }, + { + "start": 8716.66, + "end": 8717.16, + "probability": 0.8503 + }, + { + "start": 8718.38, + "end": 8720.34, + "probability": 0.9463 + }, + { + "start": 8720.76, + "end": 8724.4, + "probability": 0.8929 + }, + { + "start": 8725.28, + "end": 8726.3, + "probability": 0.9398 + }, + { + "start": 8726.8, + "end": 8729.98, + "probability": 0.8989 + }, + { + "start": 8730.46, + "end": 8732.68, + "probability": 0.993 + }, + { + "start": 8733.02, + "end": 8733.3, + "probability": 0.7476 + }, + { + "start": 8733.64, + "end": 8735.14, + "probability": 0.8137 + }, + { + "start": 8735.42, + "end": 8737.58, + "probability": 0.9514 + }, + { + "start": 8754.2, + "end": 8754.2, + "probability": 0.5538 + }, + { + "start": 8754.22, + "end": 8755.66, + "probability": 0.5831 + }, + { + "start": 8755.8, + "end": 8756.16, + "probability": 0.7283 + }, + { + "start": 8756.2, + "end": 8756.2, + "probability": 0.3947 + }, + { + "start": 8756.26, + "end": 8757.4, + "probability": 0.5234 + }, + { + "start": 8758.16, + "end": 8760.24, + "probability": 0.8672 + }, + { + "start": 8761.38, + "end": 8763.0, + "probability": 0.7095 + }, + { + "start": 8763.2, + "end": 8768.2, + "probability": 0.9595 + }, + { + "start": 8768.32, + "end": 8769.42, + "probability": 0.41 + }, + { + "start": 8769.42, + "end": 8772.48, + "probability": 0.8359 + }, + { + "start": 8773.24, + "end": 8778.26, + "probability": 0.9846 + }, + { + "start": 8779.22, + "end": 8782.58, + "probability": 0.9512 + }, + { + "start": 8784.52, + "end": 8787.24, + "probability": 0.6054 + }, + { + "start": 8787.36, + "end": 8788.26, + "probability": 0.6534 + }, + { + "start": 8788.8, + "end": 8790.26, + "probability": 0.9646 + }, + { + "start": 8790.88, + "end": 8793.18, + "probability": 0.4793 + }, + { + "start": 8793.28, + "end": 8795.9, + "probability": 0.5416 + }, + { + "start": 8798.98, + "end": 8799.66, + "probability": 0.0131 + }, + { + "start": 8799.66, + "end": 8799.66, + "probability": 0.0287 + }, + { + "start": 8799.66, + "end": 8800.08, + "probability": 0.3717 + }, + { + "start": 8800.2, + "end": 8802.1, + "probability": 0.2405 + }, + { + "start": 8802.1, + "end": 8802.12, + "probability": 0.2244 + }, + { + "start": 8802.12, + "end": 8804.1, + "probability": 0.3816 + }, + { + "start": 8804.2, + "end": 8806.23, + "probability": 0.5222 + }, + { + "start": 8806.84, + "end": 8807.96, + "probability": 0.2248 + }, + { + "start": 8807.96, + "end": 8810.22, + "probability": 0.2083 + }, + { + "start": 8810.44, + "end": 8813.74, + "probability": 0.5241 + }, + { + "start": 8813.76, + "end": 8814.8, + "probability": 0.887 + }, + { + "start": 8814.82, + "end": 8815.64, + "probability": 0.7795 + }, + { + "start": 8815.74, + "end": 8817.3, + "probability": 0.6169 + }, + { + "start": 8817.84, + "end": 8822.64, + "probability": 0.2628 + }, + { + "start": 8822.74, + "end": 8823.85, + "probability": 0.9917 + }, + { + "start": 8824.42, + "end": 8825.38, + "probability": 0.4814 + }, + { + "start": 8825.8, + "end": 8828.16, + "probability": 0.729 + }, + { + "start": 8829.06, + "end": 8832.18, + "probability": 0.9814 + }, + { + "start": 8832.22, + "end": 8835.8, + "probability": 0.9924 + }, + { + "start": 8835.82, + "end": 8839.0, + "probability": 0.953 + }, + { + "start": 8839.8, + "end": 8844.56, + "probability": 0.9926 + }, + { + "start": 8844.7, + "end": 8845.82, + "probability": 0.9547 + }, + { + "start": 8846.52, + "end": 8849.58, + "probability": 0.9892 + }, + { + "start": 8850.46, + "end": 8851.72, + "probability": 0.7051 + }, + { + "start": 8851.82, + "end": 8852.58, + "probability": 0.8556 + }, + { + "start": 8853.04, + "end": 8853.92, + "probability": 0.9873 + }, + { + "start": 8854.78, + "end": 8856.1, + "probability": 0.3692 + }, + { + "start": 8856.18, + "end": 8857.12, + "probability": 0.9714 + }, + { + "start": 8857.28, + "end": 8859.58, + "probability": 0.9528 + }, + { + "start": 8859.76, + "end": 8861.4, + "probability": 0.9576 + }, + { + "start": 8861.9, + "end": 8862.7, + "probability": 0.9626 + }, + { + "start": 8863.04, + "end": 8866.54, + "probability": 0.9695 + }, + { + "start": 8866.58, + "end": 8868.98, + "probability": 0.9857 + }, + { + "start": 8869.14, + "end": 8869.64, + "probability": 0.4451 + }, + { + "start": 8870.12, + "end": 8871.18, + "probability": 0.8094 + }, + { + "start": 8871.32, + "end": 8874.74, + "probability": 0.9941 + }, + { + "start": 8874.74, + "end": 8877.48, + "probability": 0.9694 + }, + { + "start": 8877.72, + "end": 8880.08, + "probability": 0.7589 + }, + { + "start": 8880.14, + "end": 8883.2, + "probability": 0.9065 + }, + { + "start": 8883.62, + "end": 8885.12, + "probability": 0.4326 + }, + { + "start": 8885.14, + "end": 8889.2, + "probability": 0.8374 + }, + { + "start": 8889.5, + "end": 8891.53, + "probability": 0.0497 + }, + { + "start": 8892.16, + "end": 8892.42, + "probability": 0.4819 + }, + { + "start": 8892.83, + "end": 8895.24, + "probability": 0.2869 + }, + { + "start": 8895.74, + "end": 8900.89, + "probability": 0.2539 + }, + { + "start": 8902.52, + "end": 8903.86, + "probability": 0.4917 + }, + { + "start": 8905.22, + "end": 8907.22, + "probability": 0.1153 + }, + { + "start": 8907.24, + "end": 8908.29, + "probability": 0.4329 + }, + { + "start": 8908.66, + "end": 8912.28, + "probability": 0.515 + }, + { + "start": 8912.64, + "end": 8915.68, + "probability": 0.1602 + }, + { + "start": 8916.36, + "end": 8917.9, + "probability": 0.5795 + }, + { + "start": 8917.92, + "end": 8920.86, + "probability": 0.9971 + }, + { + "start": 8920.92, + "end": 8921.82, + "probability": 0.7397 + }, + { + "start": 8921.9, + "end": 8922.78, + "probability": 0.8344 + }, + { + "start": 8923.1, + "end": 8926.66, + "probability": 0.9564 + }, + { + "start": 8926.66, + "end": 8929.72, + "probability": 0.9902 + }, + { + "start": 8929.82, + "end": 8930.82, + "probability": 0.9961 + }, + { + "start": 8933.0, + "end": 8934.96, + "probability": 0.7655 + }, + { + "start": 8934.98, + "end": 8936.74, + "probability": 0.5111 + }, + { + "start": 8937.22, + "end": 8941.04, + "probability": 0.5144 + }, + { + "start": 8941.76, + "end": 8943.68, + "probability": 0.2793 + }, + { + "start": 8943.94, + "end": 8950.48, + "probability": 0.1174 + }, + { + "start": 8950.9, + "end": 8951.22, + "probability": 0.3502 + }, + { + "start": 8951.54, + "end": 8952.8, + "probability": 0.0176 + }, + { + "start": 8952.8, + "end": 8955.86, + "probability": 0.4602 + }, + { + "start": 8956.52, + "end": 8959.16, + "probability": 0.9743 + }, + { + "start": 8959.9, + "end": 8963.6, + "probability": 0.9143 + }, + { + "start": 8963.74, + "end": 8964.56, + "probability": 0.6637 + }, + { + "start": 8964.7, + "end": 8965.62, + "probability": 0.8156 + }, + { + "start": 8965.8, + "end": 8967.3, + "probability": 0.9906 + }, + { + "start": 8967.5, + "end": 8968.74, + "probability": 0.9529 + }, + { + "start": 8968.92, + "end": 8970.84, + "probability": 0.7525 + }, + { + "start": 8971.0, + "end": 8972.62, + "probability": 0.9697 + }, + { + "start": 8972.72, + "end": 8973.92, + "probability": 0.998 + }, + { + "start": 8975.59, + "end": 8980.47, + "probability": 0.7215 + }, + { + "start": 8980.84, + "end": 8982.54, + "probability": 0.0672 + }, + { + "start": 8982.7, + "end": 8984.78, + "probability": 0.0559 + }, + { + "start": 8984.82, + "end": 8987.5, + "probability": 0.8378 + }, + { + "start": 8987.7, + "end": 8991.46, + "probability": 0.7979 + }, + { + "start": 8991.7, + "end": 8993.86, + "probability": 0.8593 + }, + { + "start": 8994.0, + "end": 8995.45, + "probability": 0.9308 + }, + { + "start": 8995.76, + "end": 8996.14, + "probability": 0.681 + }, + { + "start": 8996.22, + "end": 8998.72, + "probability": 0.7524 + }, + { + "start": 8999.1, + "end": 8999.94, + "probability": 0.6598 + }, + { + "start": 9000.4, + "end": 9001.82, + "probability": 0.9032 + }, + { + "start": 9001.96, + "end": 9003.64, + "probability": 0.7819 + }, + { + "start": 9004.12, + "end": 9008.04, + "probability": 0.9977 + }, + { + "start": 9008.16, + "end": 9008.76, + "probability": 0.9775 + }, + { + "start": 9009.32, + "end": 9009.88, + "probability": 0.9008 + }, + { + "start": 9010.62, + "end": 9011.68, + "probability": 0.941 + }, + { + "start": 9012.9, + "end": 9013.76, + "probability": 0.514 + }, + { + "start": 9013.9, + "end": 9014.5, + "probability": 0.846 + }, + { + "start": 9014.76, + "end": 9016.38, + "probability": 0.8275 + }, + { + "start": 9016.42, + "end": 9019.2, + "probability": 0.9823 + }, + { + "start": 9019.9, + "end": 9021.92, + "probability": 0.9551 + }, + { + "start": 9022.66, + "end": 9024.06, + "probability": 0.9199 + }, + { + "start": 9024.1, + "end": 9025.88, + "probability": 0.9668 + }, + { + "start": 9026.0, + "end": 9027.68, + "probability": 0.9958 + }, + { + "start": 9027.7, + "end": 9029.82, + "probability": 0.9957 + }, + { + "start": 9030.16, + "end": 9033.14, + "probability": 0.973 + }, + { + "start": 9033.58, + "end": 9034.14, + "probability": 0.7841 + }, + { + "start": 9034.36, + "end": 9036.04, + "probability": 0.991 + }, + { + "start": 9036.04, + "end": 9039.58, + "probability": 0.9738 + }, + { + "start": 9039.66, + "end": 9040.32, + "probability": 0.611 + }, + { + "start": 9040.58, + "end": 9041.1, + "probability": 0.6041 + }, + { + "start": 9041.32, + "end": 9044.22, + "probability": 0.9575 + }, + { + "start": 9044.88, + "end": 9045.66, + "probability": 0.2274 + }, + { + "start": 9045.66, + "end": 9047.4, + "probability": 0.872 + }, + { + "start": 9047.46, + "end": 9049.08, + "probability": 0.9473 + }, + { + "start": 9049.28, + "end": 9050.12, + "probability": 0.9152 + }, + { + "start": 9050.4, + "end": 9051.94, + "probability": 0.8525 + }, + { + "start": 9052.14, + "end": 9052.76, + "probability": 0.6216 + }, + { + "start": 9053.18, + "end": 9054.6, + "probability": 0.9575 + }, + { + "start": 9055.14, + "end": 9059.98, + "probability": 0.8249 + }, + { + "start": 9060.1, + "end": 9061.37, + "probability": 0.9649 + }, + { + "start": 9063.12, + "end": 9065.16, + "probability": 0.884 + }, + { + "start": 9065.16, + "end": 9065.64, + "probability": 0.3714 + }, + { + "start": 9066.32, + "end": 9067.1, + "probability": 0.663 + }, + { + "start": 9067.4, + "end": 9067.72, + "probability": 0.9277 + }, + { + "start": 9067.82, + "end": 9070.08, + "probability": 0.9941 + }, + { + "start": 9070.52, + "end": 9072.34, + "probability": 0.8403 + }, + { + "start": 9072.34, + "end": 9072.52, + "probability": 0.3678 + }, + { + "start": 9073.56, + "end": 9074.02, + "probability": 0.1016 + }, + { + "start": 9074.34, + "end": 9077.1, + "probability": 0.2777 + }, + { + "start": 9079.88, + "end": 9080.18, + "probability": 0.2137 + }, + { + "start": 9080.18, + "end": 9080.18, + "probability": 0.0371 + }, + { + "start": 9080.18, + "end": 9081.85, + "probability": 0.5543 + }, + { + "start": 9082.26, + "end": 9084.41, + "probability": 0.8696 + }, + { + "start": 9084.76, + "end": 9088.96, + "probability": 0.9476 + }, + { + "start": 9089.26, + "end": 9091.42, + "probability": 0.7623 + }, + { + "start": 9091.48, + "end": 9093.54, + "probability": 0.9062 + }, + { + "start": 9093.9, + "end": 9094.84, + "probability": 0.5038 + }, + { + "start": 9095.68, + "end": 9100.54, + "probability": 0.98 + }, + { + "start": 9100.76, + "end": 9101.86, + "probability": 0.8147 + }, + { + "start": 9102.18, + "end": 9102.72, + "probability": 0.7433 + }, + { + "start": 9102.96, + "end": 9103.86, + "probability": 0.7443 + }, + { + "start": 9103.9, + "end": 9104.46, + "probability": 0.9195 + }, + { + "start": 9104.5, + "end": 9104.98, + "probability": 0.9648 + }, + { + "start": 9105.88, + "end": 9108.38, + "probability": 0.8428 + }, + { + "start": 9108.94, + "end": 9111.76, + "probability": 0.7526 + }, + { + "start": 9111.86, + "end": 9112.52, + "probability": 0.7534 + }, + { + "start": 9112.68, + "end": 9113.74, + "probability": 0.9089 + }, + { + "start": 9114.26, + "end": 9116.0, + "probability": 0.9722 + }, + { + "start": 9116.06, + "end": 9117.1, + "probability": 0.9646 + }, + { + "start": 9117.38, + "end": 9120.3, + "probability": 0.7723 + }, + { + "start": 9120.84, + "end": 9121.64, + "probability": 0.6364 + }, + { + "start": 9121.84, + "end": 9122.16, + "probability": 0.3364 + }, + { + "start": 9122.26, + "end": 9125.02, + "probability": 0.9547 + }, + { + "start": 9125.1, + "end": 9127.18, + "probability": 0.9256 + }, + { + "start": 9127.82, + "end": 9130.1, + "probability": 0.9718 + }, + { + "start": 9130.26, + "end": 9132.62, + "probability": 0.4411 + }, + { + "start": 9132.8, + "end": 9134.9, + "probability": 0.5709 + }, + { + "start": 9134.98, + "end": 9134.98, + "probability": 0.2253 + }, + { + "start": 9134.98, + "end": 9134.98, + "probability": 0.0823 + }, + { + "start": 9134.98, + "end": 9136.8, + "probability": 0.7412 + }, + { + "start": 9136.92, + "end": 9139.78, + "probability": 0.9943 + }, + { + "start": 9139.86, + "end": 9140.44, + "probability": 0.8822 + }, + { + "start": 9140.5, + "end": 9141.73, + "probability": 0.9917 + }, + { + "start": 9142.02, + "end": 9144.2, + "probability": 0.9459 + }, + { + "start": 9144.3, + "end": 9145.82, + "probability": 0.9411 + }, + { + "start": 9146.48, + "end": 9146.52, + "probability": 0.0258 + }, + { + "start": 9146.52, + "end": 9149.22, + "probability": 0.9305 + }, + { + "start": 9149.4, + "end": 9150.52, + "probability": 0.95 + }, + { + "start": 9150.56, + "end": 9151.26, + "probability": 0.7355 + }, + { + "start": 9151.28, + "end": 9154.76, + "probability": 0.7126 + }, + { + "start": 9155.04, + "end": 9156.54, + "probability": 0.9619 + }, + { + "start": 9156.7, + "end": 9157.74, + "probability": 0.8311 + }, + { + "start": 9157.84, + "end": 9159.52, + "probability": 0.9601 + }, + { + "start": 9159.6, + "end": 9162.33, + "probability": 0.9714 + }, + { + "start": 9162.56, + "end": 9164.88, + "probability": 0.9588 + }, + { + "start": 9164.96, + "end": 9166.34, + "probability": 0.9886 + }, + { + "start": 9166.82, + "end": 9172.84, + "probability": 0.9944 + }, + { + "start": 9173.2, + "end": 9175.16, + "probability": 0.9892 + }, + { + "start": 9175.56, + "end": 9176.24, + "probability": 0.9268 + }, + { + "start": 9176.48, + "end": 9177.28, + "probability": 0.5596 + }, + { + "start": 9177.4, + "end": 9178.52, + "probability": 0.5148 + }, + { + "start": 9178.76, + "end": 9181.16, + "probability": 0.6855 + }, + { + "start": 9181.16, + "end": 9184.5, + "probability": 0.974 + }, + { + "start": 9185.3, + "end": 9189.08, + "probability": 0.8051 + }, + { + "start": 9190.44, + "end": 9191.16, + "probability": 0.9066 + }, + { + "start": 9191.18, + "end": 9192.22, + "probability": 0.8967 + }, + { + "start": 9192.88, + "end": 9193.52, + "probability": 0.6655 + }, + { + "start": 9193.68, + "end": 9195.28, + "probability": 0.8029 + }, + { + "start": 9195.38, + "end": 9196.36, + "probability": 0.6278 + }, + { + "start": 9196.54, + "end": 9198.08, + "probability": 0.7876 + }, + { + "start": 9198.7, + "end": 9199.84, + "probability": 0.429 + }, + { + "start": 9200.28, + "end": 9202.38, + "probability": 0.6399 + }, + { + "start": 9202.42, + "end": 9205.98, + "probability": 0.9144 + }, + { + "start": 9206.04, + "end": 9207.8, + "probability": 0.9785 + }, + { + "start": 9207.96, + "end": 9208.42, + "probability": 0.9563 + }, + { + "start": 9209.18, + "end": 9211.44, + "probability": 0.211 + }, + { + "start": 9212.1, + "end": 9213.06, + "probability": 0.1482 + }, + { + "start": 9213.14, + "end": 9213.96, + "probability": 0.235 + }, + { + "start": 9213.96, + "end": 9215.36, + "probability": 0.8588 + }, + { + "start": 9216.39, + "end": 9218.88, + "probability": 0.4207 + }, + { + "start": 9218.9, + "end": 9221.46, + "probability": 0.2249 + }, + { + "start": 9222.16, + "end": 9222.67, + "probability": 0.7743 + }, + { + "start": 9224.01, + "end": 9231.14, + "probability": 0.9067 + }, + { + "start": 9231.16, + "end": 9231.68, + "probability": 0.038 + }, + { + "start": 9231.88, + "end": 9233.76, + "probability": 0.9215 + }, + { + "start": 9234.12, + "end": 9235.36, + "probability": 0.4308 + }, + { + "start": 9235.42, + "end": 9238.4, + "probability": 0.9759 + }, + { + "start": 9238.8, + "end": 9240.95, + "probability": 0.804 + }, + { + "start": 9241.1, + "end": 9241.72, + "probability": 0.733 + }, + { + "start": 9242.62, + "end": 9243.86, + "probability": 0.2495 + }, + { + "start": 9243.98, + "end": 9244.64, + "probability": 0.8484 + }, + { + "start": 9244.94, + "end": 9246.28, + "probability": 0.9888 + }, + { + "start": 9246.34, + "end": 9249.02, + "probability": 0.8589 + }, + { + "start": 9249.4, + "end": 9252.12, + "probability": 0.9091 + }, + { + "start": 9252.26, + "end": 9254.18, + "probability": 0.8613 + }, + { + "start": 9254.56, + "end": 9256.12, + "probability": 0.9805 + }, + { + "start": 9256.38, + "end": 9258.56, + "probability": 0.415 + }, + { + "start": 9260.38, + "end": 9261.62, + "probability": 0.0277 + }, + { + "start": 9261.8, + "end": 9262.16, + "probability": 0.7055 + }, + { + "start": 9263.14, + "end": 9267.08, + "probability": 0.5014 + }, + { + "start": 9268.74, + "end": 9273.28, + "probability": 0.7361 + }, + { + "start": 9274.0, + "end": 9278.78, + "probability": 0.7336 + }, + { + "start": 9278.9, + "end": 9282.3, + "probability": 0.9844 + }, + { + "start": 9282.3, + "end": 9283.21, + "probability": 0.2351 + }, + { + "start": 9283.36, + "end": 9285.64, + "probability": 0.7271 + }, + { + "start": 9286.2, + "end": 9290.14, + "probability": 0.8933 + }, + { + "start": 9290.62, + "end": 9292.86, + "probability": 0.9465 + }, + { + "start": 9293.16, + "end": 9298.18, + "probability": 0.8089 + }, + { + "start": 9298.32, + "end": 9301.66, + "probability": 0.9971 + }, + { + "start": 9302.44, + "end": 9305.06, + "probability": 0.6145 + }, + { + "start": 9305.64, + "end": 9309.18, + "probability": 0.975 + }, + { + "start": 9309.18, + "end": 9311.88, + "probability": 0.9827 + }, + { + "start": 9312.8, + "end": 9319.5, + "probability": 0.9908 + }, + { + "start": 9320.52, + "end": 9327.22, + "probability": 0.9949 + }, + { + "start": 9327.98, + "end": 9330.7, + "probability": 0.9957 + }, + { + "start": 9331.58, + "end": 9334.44, + "probability": 0.8962 + }, + { + "start": 9335.5, + "end": 9337.76, + "probability": 0.9941 + }, + { + "start": 9339.12, + "end": 9339.62, + "probability": 0.4807 + }, + { + "start": 9340.9, + "end": 9342.38, + "probability": 0.0362 + }, + { + "start": 9342.38, + "end": 9343.84, + "probability": 0.0779 + }, + { + "start": 9343.84, + "end": 9347.3, + "probability": 0.8387 + }, + { + "start": 9348.3, + "end": 9352.2, + "probability": 0.9648 + }, + { + "start": 9352.78, + "end": 9353.82, + "probability": 0.9431 + }, + { + "start": 9353.86, + "end": 9360.6, + "probability": 0.9855 + }, + { + "start": 9362.1, + "end": 9364.62, + "probability": 0.8567 + }, + { + "start": 9364.7, + "end": 9365.8, + "probability": 0.8555 + }, + { + "start": 9365.86, + "end": 9370.42, + "probability": 0.9949 + }, + { + "start": 9370.46, + "end": 9375.48, + "probability": 0.9807 + }, + { + "start": 9377.79, + "end": 9380.2, + "probability": 0.9917 + }, + { + "start": 9380.64, + "end": 9382.18, + "probability": 0.2336 + }, + { + "start": 9383.34, + "end": 9383.94, + "probability": 0.4273 + }, + { + "start": 9383.94, + "end": 9387.42, + "probability": 0.991 + }, + { + "start": 9388.72, + "end": 9388.76, + "probability": 0.0568 + }, + { + "start": 9388.76, + "end": 9388.76, + "probability": 0.0663 + }, + { + "start": 9388.76, + "end": 9390.02, + "probability": 0.1134 + }, + { + "start": 9390.42, + "end": 9393.58, + "probability": 0.647 + }, + { + "start": 9393.92, + "end": 9396.9, + "probability": 0.9612 + }, + { + "start": 9397.28, + "end": 9401.96, + "probability": 0.9932 + }, + { + "start": 9402.9, + "end": 9405.32, + "probability": 0.5659 + }, + { + "start": 9406.46, + "end": 9415.82, + "probability": 0.9397 + }, + { + "start": 9415.82, + "end": 9420.22, + "probability": 0.9674 + }, + { + "start": 9420.68, + "end": 9425.96, + "probability": 0.9653 + }, + { + "start": 9426.82, + "end": 9431.56, + "probability": 0.9778 + }, + { + "start": 9431.68, + "end": 9433.08, + "probability": 0.9353 + }, + { + "start": 9433.2, + "end": 9433.88, + "probability": 0.6221 + }, + { + "start": 9436.65, + "end": 9440.3, + "probability": 0.9033 + }, + { + "start": 9440.32, + "end": 9444.1, + "probability": 0.958 + }, + { + "start": 9444.26, + "end": 9445.38, + "probability": 0.6963 + }, + { + "start": 9446.06, + "end": 9448.14, + "probability": 0.9127 + }, + { + "start": 9448.14, + "end": 9451.53, + "probability": 0.9956 + }, + { + "start": 9452.26, + "end": 9452.92, + "probability": 0.5129 + }, + { + "start": 9453.06, + "end": 9454.82, + "probability": 0.9854 + }, + { + "start": 9455.12, + "end": 9457.16, + "probability": 0.8255 + }, + { + "start": 9457.5, + "end": 9460.62, + "probability": 0.9965 + }, + { + "start": 9461.06, + "end": 9464.22, + "probability": 0.9453 + }, + { + "start": 9464.86, + "end": 9468.54, + "probability": 0.8543 + }, + { + "start": 9469.3, + "end": 9470.46, + "probability": 0.9409 + }, + { + "start": 9471.14, + "end": 9476.84, + "probability": 0.9917 + }, + { + "start": 9477.24, + "end": 9479.49, + "probability": 0.876 + }, + { + "start": 9479.96, + "end": 9483.82, + "probability": 0.9902 + }, + { + "start": 9484.58, + "end": 9487.72, + "probability": 0.9578 + }, + { + "start": 9488.32, + "end": 9493.24, + "probability": 0.9082 + }, + { + "start": 9495.1, + "end": 9497.6, + "probability": 0.954 + }, + { + "start": 9498.5, + "end": 9502.34, + "probability": 0.9934 + }, + { + "start": 9502.34, + "end": 9506.18, + "probability": 0.9961 + }, + { + "start": 9507.14, + "end": 9508.96, + "probability": 0.9849 + }, + { + "start": 9509.5, + "end": 9510.36, + "probability": 0.8285 + }, + { + "start": 9510.8, + "end": 9511.3, + "probability": 0.7221 + }, + { + "start": 9511.36, + "end": 9511.6, + "probability": 0.543 + }, + { + "start": 9511.76, + "end": 9513.1, + "probability": 0.9492 + }, + { + "start": 9513.26, + "end": 9514.18, + "probability": 0.8121 + }, + { + "start": 9515.98, + "end": 9516.44, + "probability": 0.5101 + }, + { + "start": 9516.62, + "end": 9518.46, + "probability": 0.7319 + }, + { + "start": 9519.06, + "end": 9522.67, + "probability": 0.9408 + }, + { + "start": 9522.98, + "end": 9523.88, + "probability": 0.9308 + }, + { + "start": 9524.0, + "end": 9526.48, + "probability": 0.9764 + }, + { + "start": 9526.6, + "end": 9528.8, + "probability": 0.7423 + }, + { + "start": 9529.98, + "end": 9536.28, + "probability": 0.9836 + }, + { + "start": 9536.32, + "end": 9537.6, + "probability": 0.7852 + }, + { + "start": 9537.9, + "end": 9539.2, + "probability": 0.5579 + }, + { + "start": 9539.48, + "end": 9540.22, + "probability": 0.6097 + }, + { + "start": 9540.88, + "end": 9545.92, + "probability": 0.7864 + }, + { + "start": 9546.04, + "end": 9547.36, + "probability": 0.5548 + }, + { + "start": 9547.62, + "end": 9548.14, + "probability": 0.3792 + }, + { + "start": 9548.18, + "end": 9550.36, + "probability": 0.073 + }, + { + "start": 9550.58, + "end": 9554.18, + "probability": 0.6375 + }, + { + "start": 9554.64, + "end": 9557.22, + "probability": 0.96 + }, + { + "start": 9558.0, + "end": 9564.56, + "probability": 0.9563 + }, + { + "start": 9564.56, + "end": 9569.18, + "probability": 0.8947 + }, + { + "start": 9570.24, + "end": 9572.13, + "probability": 0.8661 + }, + { + "start": 9572.26, + "end": 9573.4, + "probability": 0.7145 + }, + { + "start": 9573.58, + "end": 9575.52, + "probability": 0.9573 + }, + { + "start": 9576.26, + "end": 9581.14, + "probability": 0.9823 + }, + { + "start": 9581.18, + "end": 9583.84, + "probability": 0.8463 + }, + { + "start": 9583.92, + "end": 9584.9, + "probability": 0.7279 + }, + { + "start": 9584.98, + "end": 9585.74, + "probability": 0.9147 + }, + { + "start": 9585.8, + "end": 9588.64, + "probability": 0.9778 + }, + { + "start": 9589.22, + "end": 9592.46, + "probability": 0.999 + }, + { + "start": 9592.46, + "end": 9598.22, + "probability": 0.9863 + }, + { + "start": 9598.54, + "end": 9601.44, + "probability": 0.9717 + }, + { + "start": 9601.64, + "end": 9603.62, + "probability": 0.8728 + }, + { + "start": 9604.34, + "end": 9607.36, + "probability": 0.7412 + }, + { + "start": 9608.96, + "end": 9613.59, + "probability": 0.9465 + }, + { + "start": 9614.18, + "end": 9618.86, + "probability": 0.9863 + }, + { + "start": 9619.42, + "end": 9620.84, + "probability": 0.8903 + }, + { + "start": 9620.98, + "end": 9621.38, + "probability": 0.1516 + }, + { + "start": 9621.6, + "end": 9625.34, + "probability": 0.8336 + }, + { + "start": 9629.52, + "end": 9636.18, + "probability": 0.7724 + }, + { + "start": 9636.98, + "end": 9638.7, + "probability": 0.968 + }, + { + "start": 9638.92, + "end": 9644.12, + "probability": 0.9962 + }, + { + "start": 9644.74, + "end": 9645.72, + "probability": 0.799 + }, + { + "start": 9645.94, + "end": 9647.34, + "probability": 0.9887 + }, + { + "start": 9647.74, + "end": 9650.54, + "probability": 0.9332 + }, + { + "start": 9652.7, + "end": 9653.58, + "probability": 0.8006 + }, + { + "start": 9654.0, + "end": 9654.82, + "probability": 0.9312 + }, + { + "start": 9654.86, + "end": 9657.66, + "probability": 0.9756 + }, + { + "start": 9658.26, + "end": 9658.74, + "probability": 0.7675 + }, + { + "start": 9659.42, + "end": 9662.64, + "probability": 0.9891 + }, + { + "start": 9662.94, + "end": 9664.16, + "probability": 0.8882 + }, + { + "start": 9664.22, + "end": 9670.96, + "probability": 0.2586 + }, + { + "start": 9673.24, + "end": 9676.48, + "probability": 0.8154 + }, + { + "start": 9677.48, + "end": 9678.22, + "probability": 0.7245 + }, + { + "start": 9678.32, + "end": 9680.88, + "probability": 0.8687 + }, + { + "start": 9680.88, + "end": 9682.16, + "probability": 0.1525 + }, + { + "start": 9682.54, + "end": 9683.4, + "probability": 0.3743 + }, + { + "start": 9684.26, + "end": 9685.34, + "probability": 0.1885 + }, + { + "start": 9686.6, + "end": 9689.88, + "probability": 0.3893 + }, + { + "start": 9689.94, + "end": 9692.48, + "probability": 0.9032 + }, + { + "start": 9692.48, + "end": 9694.34, + "probability": 0.9985 + }, + { + "start": 9695.1, + "end": 9698.0, + "probability": 0.7128 + }, + { + "start": 9699.58, + "end": 9700.06, + "probability": 0.2105 + }, + { + "start": 9700.16, + "end": 9700.18, + "probability": 0.3921 + }, + { + "start": 9700.52, + "end": 9701.54, + "probability": 0.411 + }, + { + "start": 9702.0, + "end": 9703.46, + "probability": 0.7432 + }, + { + "start": 9703.64, + "end": 9704.8, + "probability": 0.9414 + }, + { + "start": 9705.86, + "end": 9706.65, + "probability": 0.4849 + }, + { + "start": 9706.9, + "end": 9710.44, + "probability": 0.9091 + }, + { + "start": 9710.66, + "end": 9713.0, + "probability": 0.8357 + }, + { + "start": 9713.9, + "end": 9718.06, + "probability": 0.9222 + }, + { + "start": 9718.94, + "end": 9719.34, + "probability": 0.9151 + }, + { + "start": 9719.86, + "end": 9720.64, + "probability": 0.8682 + }, + { + "start": 9720.78, + "end": 9721.36, + "probability": 0.8782 + }, + { + "start": 9721.42, + "end": 9722.64, + "probability": 0.952 + }, + { + "start": 9722.74, + "end": 9728.42, + "probability": 0.9716 + }, + { + "start": 9728.6, + "end": 9731.28, + "probability": 0.9233 + }, + { + "start": 9734.82, + "end": 9737.92, + "probability": 0.7786 + }, + { + "start": 9738.12, + "end": 9740.6, + "probability": 0.8097 + }, + { + "start": 9741.08, + "end": 9743.02, + "probability": 0.6665 + }, + { + "start": 9743.26, + "end": 9746.5, + "probability": 0.9756 + }, + { + "start": 9747.66, + "end": 9750.74, + "probability": 0.9649 + }, + { + "start": 9750.86, + "end": 9751.84, + "probability": 0.7965 + }, + { + "start": 9752.08, + "end": 9753.0, + "probability": 0.9646 + }, + { + "start": 9753.8, + "end": 9756.95, + "probability": 0.9912 + }, + { + "start": 9757.46, + "end": 9760.22, + "probability": 0.9757 + }, + { + "start": 9760.22, + "end": 9763.2, + "probability": 0.9847 + }, + { + "start": 9764.04, + "end": 9765.22, + "probability": 0.8745 + }, + { + "start": 9765.3, + "end": 9767.66, + "probability": 0.9575 + }, + { + "start": 9767.74, + "end": 9768.76, + "probability": 0.9009 + }, + { + "start": 9769.04, + "end": 9771.46, + "probability": 0.9593 + }, + { + "start": 9772.06, + "end": 9773.72, + "probability": 0.9621 + }, + { + "start": 9776.22, + "end": 9778.08, + "probability": 0.9707 + }, + { + "start": 9779.48, + "end": 9783.98, + "probability": 0.4847 + }, + { + "start": 9784.9, + "end": 9787.18, + "probability": 0.8662 + }, + { + "start": 9788.12, + "end": 9789.64, + "probability": 0.491 + }, + { + "start": 9790.24, + "end": 9793.0, + "probability": 0.8946 + }, + { + "start": 9794.2, + "end": 9796.59, + "probability": 0.9927 + }, + { + "start": 9796.84, + "end": 9798.3, + "probability": 0.9402 + }, + { + "start": 9798.74, + "end": 9800.56, + "probability": 0.9989 + }, + { + "start": 9802.14, + "end": 9803.34, + "probability": 0.8222 + }, + { + "start": 9803.6, + "end": 9804.94, + "probability": 0.9769 + }, + { + "start": 9805.12, + "end": 9807.84, + "probability": 0.7702 + }, + { + "start": 9807.84, + "end": 9810.78, + "probability": 0.7872 + }, + { + "start": 9812.14, + "end": 9820.34, + "probability": 0.8638 + }, + { + "start": 9820.98, + "end": 9826.52, + "probability": 0.942 + }, + { + "start": 9826.52, + "end": 9832.0, + "probability": 0.9879 + }, + { + "start": 9832.88, + "end": 9834.48, + "probability": 0.9655 + }, + { + "start": 9834.92, + "end": 9836.28, + "probability": 0.9184 + }, + { + "start": 9836.96, + "end": 9837.44, + "probability": 0.5425 + }, + { + "start": 9837.6, + "end": 9841.48, + "probability": 0.9365 + }, + { + "start": 9841.98, + "end": 9847.46, + "probability": 0.9904 + }, + { + "start": 9848.18, + "end": 9849.6, + "probability": 0.7971 + }, + { + "start": 9850.06, + "end": 9852.72, + "probability": 0.9381 + }, + { + "start": 9853.22, + "end": 9856.68, + "probability": 0.9957 + }, + { + "start": 9856.78, + "end": 9857.74, + "probability": 0.942 + }, + { + "start": 9857.88, + "end": 9862.2, + "probability": 0.9893 + }, + { + "start": 9862.2, + "end": 9868.58, + "probability": 0.9985 + }, + { + "start": 9870.64, + "end": 9875.0, + "probability": 0.9812 + }, + { + "start": 9875.54, + "end": 9878.02, + "probability": 0.6811 + }, + { + "start": 9878.64, + "end": 9879.9, + "probability": 0.8692 + }, + { + "start": 9880.44, + "end": 9881.97, + "probability": 0.8886 + }, + { + "start": 9882.26, + "end": 9883.94, + "probability": 0.8472 + }, + { + "start": 9884.18, + "end": 9884.56, + "probability": 0.7831 + }, + { + "start": 9884.8, + "end": 9886.04, + "probability": 0.9658 + }, + { + "start": 9886.16, + "end": 9887.02, + "probability": 0.7205 + }, + { + "start": 9887.94, + "end": 9889.66, + "probability": 0.8852 + }, + { + "start": 9889.76, + "end": 9890.36, + "probability": 0.9782 + }, + { + "start": 9890.64, + "end": 9893.96, + "probability": 0.9696 + }, + { + "start": 9894.46, + "end": 9897.28, + "probability": 0.2142 + }, + { + "start": 9897.68, + "end": 9902.02, + "probability": 0.9965 + }, + { + "start": 9902.04, + "end": 9903.36, + "probability": 0.5037 + }, + { + "start": 9903.5, + "end": 9911.12, + "probability": 0.9349 + }, + { + "start": 9913.02, + "end": 9915.44, + "probability": 0.9541 + }, + { + "start": 9915.56, + "end": 9917.37, + "probability": 0.9954 + }, + { + "start": 9918.24, + "end": 9921.26, + "probability": 0.7657 + }, + { + "start": 9921.66, + "end": 9925.12, + "probability": 0.9727 + }, + { + "start": 9925.2, + "end": 9927.22, + "probability": 0.9177 + }, + { + "start": 9927.28, + "end": 9928.28, + "probability": 0.7869 + }, + { + "start": 9928.56, + "end": 9930.68, + "probability": 0.9067 + }, + { + "start": 9930.82, + "end": 9932.96, + "probability": 0.9705 + }, + { + "start": 9934.22, + "end": 9935.98, + "probability": 0.7344 + }, + { + "start": 9936.1, + "end": 9937.94, + "probability": 0.9273 + }, + { + "start": 9938.36, + "end": 9939.88, + "probability": 0.7919 + }, + { + "start": 9939.92, + "end": 9940.83, + "probability": 0.9893 + }, + { + "start": 9941.62, + "end": 9947.7, + "probability": 0.9928 + }, + { + "start": 9947.7, + "end": 9951.6, + "probability": 0.9951 + }, + { + "start": 9951.6, + "end": 9955.24, + "probability": 0.9893 + }, + { + "start": 9956.06, + "end": 9956.9, + "probability": 0.7193 + }, + { + "start": 9957.94, + "end": 9964.54, + "probability": 0.9435 + }, + { + "start": 9964.62, + "end": 9966.82, + "probability": 0.9962 + }, + { + "start": 9967.22, + "end": 9970.61, + "probability": 0.9912 + }, + { + "start": 9971.68, + "end": 9977.84, + "probability": 0.9921 + }, + { + "start": 9977.98, + "end": 9981.58, + "probability": 0.8478 + }, + { + "start": 9981.86, + "end": 9982.92, + "probability": 0.8693 + }, + { + "start": 9983.76, + "end": 9985.4, + "probability": 0.9841 + }, + { + "start": 9986.14, + "end": 9989.66, + "probability": 0.8374 + }, + { + "start": 9989.86, + "end": 9990.86, + "probability": 0.6732 + }, + { + "start": 9991.44, + "end": 9994.09, + "probability": 0.9691 + }, + { + "start": 9995.54, + "end": 9997.36, + "probability": 0.9441 + }, + { + "start": 9997.44, + "end": 9999.08, + "probability": 0.9646 + }, + { + "start": 9999.16, + "end": 10005.5, + "probability": 0.9775 + }, + { + "start": 10005.58, + "end": 10006.46, + "probability": 0.8634 + }, + { + "start": 10006.6, + "end": 10007.18, + "probability": 0.319 + }, + { + "start": 10007.78, + "end": 10010.6, + "probability": 0.9962 + }, + { + "start": 10012.18, + "end": 10012.44, + "probability": 0.6172 + }, + { + "start": 10013.2, + "end": 10014.26, + "probability": 0.9907 + }, + { + "start": 10014.4, + "end": 10015.08, + "probability": 0.936 + }, + { + "start": 10015.74, + "end": 10018.56, + "probability": 0.9207 + }, + { + "start": 10019.08, + "end": 10022.64, + "probability": 0.9795 + }, + { + "start": 10022.7, + "end": 10024.36, + "probability": 0.9912 + }, + { + "start": 10024.4, + "end": 10027.3, + "probability": 0.9797 + }, + { + "start": 10028.32, + "end": 10033.06, + "probability": 0.9059 + }, + { + "start": 10033.72, + "end": 10034.34, + "probability": 0.9404 + }, + { + "start": 10035.7, + "end": 10041.42, + "probability": 0.9971 + }, + { + "start": 10041.72, + "end": 10044.5, + "probability": 0.9995 + }, + { + "start": 10045.08, + "end": 10046.52, + "probability": 0.8911 + }, + { + "start": 10047.16, + "end": 10047.98, + "probability": 0.8149 + }, + { + "start": 10048.56, + "end": 10050.06, + "probability": 0.8539 + }, + { + "start": 10050.06, + "end": 10052.32, + "probability": 0.7385 + }, + { + "start": 10052.4, + "end": 10053.48, + "probability": 0.7028 + }, + { + "start": 10053.86, + "end": 10055.42, + "probability": 0.7262 + }, + { + "start": 10055.88, + "end": 10062.32, + "probability": 0.9962 + }, + { + "start": 10062.72, + "end": 10064.06, + "probability": 0.8582 + }, + { + "start": 10064.1, + "end": 10065.0, + "probability": 0.7827 + }, + { + "start": 10065.64, + "end": 10069.42, + "probability": 0.7932 + }, + { + "start": 10069.92, + "end": 10069.94, + "probability": 0.8252 + }, + { + "start": 10072.86, + "end": 10075.18, + "probability": 0.871 + }, + { + "start": 10078.38, + "end": 10081.96, + "probability": 0.9441 + }, + { + "start": 10082.28, + "end": 10083.5, + "probability": 0.5867 + }, + { + "start": 10083.64, + "end": 10084.12, + "probability": 0.7027 + }, + { + "start": 10084.24, + "end": 10085.74, + "probability": 0.7527 + }, + { + "start": 10085.94, + "end": 10088.1, + "probability": 0.8448 + }, + { + "start": 10088.9, + "end": 10090.04, + "probability": 0.9724 + }, + { + "start": 10090.1, + "end": 10091.54, + "probability": 0.9717 + }, + { + "start": 10091.92, + "end": 10093.82, + "probability": 0.9573 + }, + { + "start": 10094.5, + "end": 10094.74, + "probability": 0.2028 + }, + { + "start": 10095.6, + "end": 10097.76, + "probability": 0.8408 + }, + { + "start": 10098.84, + "end": 10101.2, + "probability": 0.9786 + }, + { + "start": 10101.3, + "end": 10103.06, + "probability": 0.9935 + }, + { + "start": 10103.4, + "end": 10105.18, + "probability": 0.9966 + }, + { + "start": 10105.32, + "end": 10110.58, + "probability": 0.9785 + }, + { + "start": 10111.5, + "end": 10112.71, + "probability": 0.9229 + }, + { + "start": 10113.36, + "end": 10115.9, + "probability": 0.9539 + }, + { + "start": 10116.38, + "end": 10119.5, + "probability": 0.9888 + }, + { + "start": 10120.02, + "end": 10120.92, + "probability": 0.7925 + }, + { + "start": 10122.02, + "end": 10123.12, + "probability": 0.9895 + }, + { + "start": 10123.64, + "end": 10127.16, + "probability": 0.9465 + }, + { + "start": 10128.08, + "end": 10130.76, + "probability": 0.9137 + }, + { + "start": 10131.3, + "end": 10132.2, + "probability": 0.889 + }, + { + "start": 10132.34, + "end": 10133.38, + "probability": 0.9931 + }, + { + "start": 10133.44, + "end": 10134.78, + "probability": 0.9516 + }, + { + "start": 10135.2, + "end": 10140.38, + "probability": 0.9956 + }, + { + "start": 10141.58, + "end": 10143.08, + "probability": 0.7598 + }, + { + "start": 10143.4, + "end": 10145.6, + "probability": 0.7433 + }, + { + "start": 10146.28, + "end": 10151.18, + "probability": 0.9736 + }, + { + "start": 10151.3, + "end": 10152.06, + "probability": 0.9338 + }, + { + "start": 10153.06, + "end": 10154.41, + "probability": 0.9849 + }, + { + "start": 10155.04, + "end": 10158.34, + "probability": 0.9545 + }, + { + "start": 10158.92, + "end": 10162.88, + "probability": 0.9884 + }, + { + "start": 10163.42, + "end": 10164.52, + "probability": 0.9683 + }, + { + "start": 10165.18, + "end": 10165.95, + "probability": 0.9473 + }, + { + "start": 10166.5, + "end": 10170.46, + "probability": 0.9696 + }, + { + "start": 10170.46, + "end": 10174.08, + "probability": 0.9989 + }, + { + "start": 10175.58, + "end": 10177.66, + "probability": 0.8263 + }, + { + "start": 10180.06, + "end": 10182.36, + "probability": 0.8518 + }, + { + "start": 10183.22, + "end": 10188.92, + "probability": 0.981 + }, + { + "start": 10189.02, + "end": 10191.8, + "probability": 0.9761 + }, + { + "start": 10192.76, + "end": 10194.88, + "probability": 0.9968 + }, + { + "start": 10195.16, + "end": 10199.56, + "probability": 0.6903 + }, + { + "start": 10200.18, + "end": 10202.93, + "probability": 0.9977 + }, + { + "start": 10202.96, + "end": 10205.48, + "probability": 0.8234 + }, + { + "start": 10206.08, + "end": 10207.96, + "probability": 0.9905 + }, + { + "start": 10208.14, + "end": 10210.48, + "probability": 0.9256 + }, + { + "start": 10210.94, + "end": 10213.29, + "probability": 0.9299 + }, + { + "start": 10214.16, + "end": 10216.2, + "probability": 0.8439 + }, + { + "start": 10217.06, + "end": 10219.26, + "probability": 0.3752 + }, + { + "start": 10219.92, + "end": 10221.14, + "probability": 0.9045 + }, + { + "start": 10221.86, + "end": 10223.16, + "probability": 0.731 + }, + { + "start": 10223.24, + "end": 10226.38, + "probability": 0.9758 + }, + { + "start": 10226.46, + "end": 10230.6, + "probability": 0.9888 + }, + { + "start": 10230.74, + "end": 10231.08, + "probability": 0.4465 + }, + { + "start": 10231.08, + "end": 10231.16, + "probability": 0.1917 + }, + { + "start": 10231.16, + "end": 10236.34, + "probability": 0.9787 + }, + { + "start": 10237.92, + "end": 10239.62, + "probability": 0.225 + }, + { + "start": 10239.7, + "end": 10243.88, + "probability": 0.5903 + }, + { + "start": 10244.82, + "end": 10245.64, + "probability": 0.6282 + }, + { + "start": 10246.06, + "end": 10246.6, + "probability": 0.597 + }, + { + "start": 10246.6, + "end": 10248.9, + "probability": 0.7517 + }, + { + "start": 10249.08, + "end": 10250.32, + "probability": 0.7444 + }, + { + "start": 10250.38, + "end": 10251.18, + "probability": 0.8245 + }, + { + "start": 10251.56, + "end": 10252.24, + "probability": 0.5733 + }, + { + "start": 10252.28, + "end": 10253.7, + "probability": 0.7071 + }, + { + "start": 10259.88, + "end": 10262.16, + "probability": 0.5121 + }, + { + "start": 10262.4, + "end": 10262.86, + "probability": 0.3721 + }, + { + "start": 10262.86, + "end": 10263.86, + "probability": 0.7577 + }, + { + "start": 10263.96, + "end": 10265.06, + "probability": 0.741 + }, + { + "start": 10266.02, + "end": 10266.62, + "probability": 0.9008 + }, + { + "start": 10266.74, + "end": 10272.22, + "probability": 0.9821 + }, + { + "start": 10272.74, + "end": 10273.68, + "probability": 0.9277 + }, + { + "start": 10273.76, + "end": 10277.1, + "probability": 0.9398 + }, + { + "start": 10277.72, + "end": 10279.22, + "probability": 0.959 + }, + { + "start": 10280.22, + "end": 10282.72, + "probability": 0.7003 + }, + { + "start": 10283.98, + "end": 10288.24, + "probability": 0.9789 + }, + { + "start": 10289.0, + "end": 10296.1, + "probability": 0.9856 + }, + { + "start": 10296.68, + "end": 10298.76, + "probability": 0.9483 + }, + { + "start": 10299.84, + "end": 10303.22, + "probability": 0.8121 + }, + { + "start": 10303.76, + "end": 10305.48, + "probability": 0.9666 + }, + { + "start": 10305.68, + "end": 10307.83, + "probability": 0.9796 + }, + { + "start": 10308.24, + "end": 10310.12, + "probability": 0.9003 + }, + { + "start": 10311.38, + "end": 10312.38, + "probability": 0.9268 + }, + { + "start": 10312.9, + "end": 10315.52, + "probability": 0.8672 + }, + { + "start": 10315.7, + "end": 10317.84, + "probability": 0.9369 + }, + { + "start": 10318.06, + "end": 10320.82, + "probability": 0.9735 + }, + { + "start": 10321.36, + "end": 10322.26, + "probability": 0.9647 + }, + { + "start": 10322.54, + "end": 10323.33, + "probability": 0.9087 + }, + { + "start": 10324.0, + "end": 10326.88, + "probability": 0.9727 + }, + { + "start": 10327.66, + "end": 10328.44, + "probability": 0.4241 + }, + { + "start": 10328.54, + "end": 10329.36, + "probability": 0.7214 + }, + { + "start": 10329.58, + "end": 10334.5, + "probability": 0.965 + }, + { + "start": 10335.32, + "end": 10338.46, + "probability": 0.9181 + }, + { + "start": 10339.28, + "end": 10340.14, + "probability": 0.9475 + }, + { + "start": 10340.2, + "end": 10341.28, + "probability": 0.7072 + }, + { + "start": 10341.4, + "end": 10342.38, + "probability": 0.8311 + }, + { + "start": 10343.08, + "end": 10346.0, + "probability": 0.5571 + }, + { + "start": 10346.0, + "end": 10347.6, + "probability": 0.436 + }, + { + "start": 10347.86, + "end": 10349.12, + "probability": 0.5806 + }, + { + "start": 10349.74, + "end": 10351.68, + "probability": 0.9202 + }, + { + "start": 10352.22, + "end": 10353.36, + "probability": 0.605 + }, + { + "start": 10354.1, + "end": 10355.78, + "probability": 0.6576 + }, + { + "start": 10355.92, + "end": 10359.4, + "probability": 0.9146 + }, + { + "start": 10359.4, + "end": 10362.76, + "probability": 0.9994 + }, + { + "start": 10363.46, + "end": 10366.16, + "probability": 0.9902 + }, + { + "start": 10366.34, + "end": 10369.22, + "probability": 0.8322 + }, + { + "start": 10369.3, + "end": 10369.64, + "probability": 0.482 + }, + { + "start": 10369.82, + "end": 10371.6, + "probability": 0.6929 + }, + { + "start": 10372.14, + "end": 10373.34, + "probability": 0.7998 + }, + { + "start": 10373.5, + "end": 10378.84, + "probability": 0.9159 + }, + { + "start": 10379.12, + "end": 10380.22, + "probability": 0.7792 + }, + { + "start": 10380.78, + "end": 10381.28, + "probability": 0.7896 + }, + { + "start": 10381.3, + "end": 10382.5, + "probability": 0.909 + }, + { + "start": 10382.6, + "end": 10384.86, + "probability": 0.9941 + }, + { + "start": 10385.18, + "end": 10386.9, + "probability": 0.6759 + }, + { + "start": 10387.04, + "end": 10387.6, + "probability": 0.9203 + }, + { + "start": 10387.68, + "end": 10388.86, + "probability": 0.9308 + }, + { + "start": 10388.96, + "end": 10389.68, + "probability": 0.7294 + }, + { + "start": 10389.88, + "end": 10390.82, + "probability": 0.9744 + }, + { + "start": 10391.02, + "end": 10391.5, + "probability": 0.0267 + }, + { + "start": 10393.75, + "end": 10395.98, + "probability": 0.8211 + }, + { + "start": 10396.68, + "end": 10397.2, + "probability": 0.8928 + }, + { + "start": 10398.1, + "end": 10400.26, + "probability": 0.3394 + }, + { + "start": 10400.3, + "end": 10401.46, + "probability": 0.921 + }, + { + "start": 10401.52, + "end": 10403.84, + "probability": 0.9252 + }, + { + "start": 10404.33, + "end": 10406.68, + "probability": 0.7401 + }, + { + "start": 10406.8, + "end": 10411.18, + "probability": 0.3689 + }, + { + "start": 10411.36, + "end": 10411.44, + "probability": 0.5346 + }, + { + "start": 10412.76, + "end": 10415.02, + "probability": 0.0467 + }, + { + "start": 10415.88, + "end": 10419.22, + "probability": 0.9644 + }, + { + "start": 10419.5, + "end": 10423.0, + "probability": 0.8459 + }, + { + "start": 10423.9, + "end": 10425.26, + "probability": 0.7313 + }, + { + "start": 10425.98, + "end": 10428.48, + "probability": 0.9764 + }, + { + "start": 10429.06, + "end": 10432.3, + "probability": 0.9822 + }, + { + "start": 10432.7, + "end": 10433.26, + "probability": 0.6641 + }, + { + "start": 10434.2, + "end": 10437.22, + "probability": 0.6795 + }, + { + "start": 10438.0, + "end": 10439.86, + "probability": 0.5801 + }, + { + "start": 10441.22, + "end": 10444.48, + "probability": 0.47 + }, + { + "start": 10444.98, + "end": 10452.52, + "probability": 0.9573 + }, + { + "start": 10452.54, + "end": 10453.38, + "probability": 0.5221 + }, + { + "start": 10453.6, + "end": 10454.9, + "probability": 0.6603 + }, + { + "start": 10455.16, + "end": 10456.45, + "probability": 0.9818 + }, + { + "start": 10457.2, + "end": 10458.76, + "probability": 0.9575 + }, + { + "start": 10458.9, + "end": 10459.48, + "probability": 0.745 + }, + { + "start": 10460.44, + "end": 10463.14, + "probability": 0.6329 + }, + { + "start": 10463.2, + "end": 10467.82, + "probability": 0.9817 + }, + { + "start": 10468.64, + "end": 10469.86, + "probability": 0.9917 + }, + { + "start": 10470.4, + "end": 10472.75, + "probability": 0.9192 + }, + { + "start": 10473.38, + "end": 10474.39, + "probability": 0.6046 + }, + { + "start": 10474.54, + "end": 10476.06, + "probability": 0.8094 + }, + { + "start": 10476.08, + "end": 10476.48, + "probability": 0.4075 + }, + { + "start": 10476.56, + "end": 10478.24, + "probability": 0.9048 + }, + { + "start": 10478.4, + "end": 10478.68, + "probability": 0.6838 + }, + { + "start": 10479.5, + "end": 10487.76, + "probability": 0.767 + }, + { + "start": 10488.78, + "end": 10490.26, + "probability": 0.9812 + }, + { + "start": 10490.82, + "end": 10493.98, + "probability": 0.8523 + }, + { + "start": 10494.34, + "end": 10495.96, + "probability": 0.7519 + }, + { + "start": 10496.2, + "end": 10497.06, + "probability": 0.7365 + }, + { + "start": 10497.18, + "end": 10497.6, + "probability": 0.7576 + }, + { + "start": 10497.82, + "end": 10499.32, + "probability": 0.9703 + }, + { + "start": 10499.66, + "end": 10500.56, + "probability": 0.8823 + }, + { + "start": 10500.92, + "end": 10503.76, + "probability": 0.7849 + }, + { + "start": 10504.14, + "end": 10506.44, + "probability": 0.9939 + }, + { + "start": 10506.5, + "end": 10511.18, + "probability": 0.9756 + }, + { + "start": 10511.6, + "end": 10513.98, + "probability": 0.7869 + }, + { + "start": 10514.14, + "end": 10515.61, + "probability": 0.5379 + }, + { + "start": 10515.8, + "end": 10517.26, + "probability": 0.4713 + }, + { + "start": 10517.42, + "end": 10520.52, + "probability": 0.5636 + }, + { + "start": 10520.72, + "end": 10520.72, + "probability": 0.6202 + }, + { + "start": 10520.72, + "end": 10522.46, + "probability": 0.6475 + }, + { + "start": 10522.74, + "end": 10523.56, + "probability": 0.302 + }, + { + "start": 10525.82, + "end": 10529.8, + "probability": 0.3805 + }, + { + "start": 10530.0, + "end": 10531.2, + "probability": 0.5728 + }, + { + "start": 10531.38, + "end": 10534.34, + "probability": 0.0304 + }, + { + "start": 10534.34, + "end": 10537.8, + "probability": 0.9714 + }, + { + "start": 10537.88, + "end": 10539.34, + "probability": 0.9458 + }, + { + "start": 10539.4, + "end": 10540.65, + "probability": 0.9956 + }, + { + "start": 10541.0, + "end": 10542.48, + "probability": 0.614 + }, + { + "start": 10542.6, + "end": 10544.04, + "probability": 0.8973 + }, + { + "start": 10545.22, + "end": 10547.16, + "probability": 0.6052 + }, + { + "start": 10549.22, + "end": 10550.6, + "probability": 0.6631 + }, + { + "start": 10551.34, + "end": 10553.2, + "probability": 0.735 + }, + { + "start": 10553.74, + "end": 10556.02, + "probability": 0.9575 + }, + { + "start": 10556.7, + "end": 10558.9, + "probability": 0.9307 + }, + { + "start": 10559.26, + "end": 10560.83, + "probability": 0.9771 + }, + { + "start": 10561.2, + "end": 10561.92, + "probability": 0.6134 + }, + { + "start": 10562.54, + "end": 10565.82, + "probability": 0.9752 + }, + { + "start": 10566.76, + "end": 10567.82, + "probability": 0.9522 + }, + { + "start": 10568.04, + "end": 10568.66, + "probability": 0.731 + }, + { + "start": 10568.76, + "end": 10569.68, + "probability": 0.9622 + }, + { + "start": 10570.22, + "end": 10572.08, + "probability": 0.9604 + }, + { + "start": 10572.26, + "end": 10574.84, + "probability": 0.9922 + }, + { + "start": 10575.62, + "end": 10578.08, + "probability": 0.0592 + }, + { + "start": 10578.16, + "end": 10578.5, + "probability": 0.7404 + }, + { + "start": 10578.66, + "end": 10579.48, + "probability": 0.9229 + }, + { + "start": 10579.74, + "end": 10580.52, + "probability": 0.9418 + }, + { + "start": 10580.72, + "end": 10583.74, + "probability": 0.9877 + }, + { + "start": 10583.78, + "end": 10586.74, + "probability": 0.9941 + }, + { + "start": 10587.06, + "end": 10589.5, + "probability": 0.9472 + }, + { + "start": 10589.68, + "end": 10590.52, + "probability": 0.9307 + }, + { + "start": 10590.68, + "end": 10591.4, + "probability": 0.7783 + }, + { + "start": 10592.88, + "end": 10594.66, + "probability": 0.9974 + }, + { + "start": 10594.8, + "end": 10595.72, + "probability": 0.6761 + }, + { + "start": 10595.8, + "end": 10596.42, + "probability": 0.5783 + }, + { + "start": 10596.42, + "end": 10597.48, + "probability": 0.511 + }, + { + "start": 10597.7, + "end": 10598.11, + "probability": 0.7743 + }, + { + "start": 10599.02, + "end": 10600.78, + "probability": 0.9982 + }, + { + "start": 10601.48, + "end": 10604.52, + "probability": 0.996 + }, + { + "start": 10604.52, + "end": 10609.26, + "probability": 0.8426 + }, + { + "start": 10609.38, + "end": 10610.18, + "probability": 0.7854 + }, + { + "start": 10610.54, + "end": 10611.2, + "probability": 0.6656 + }, + { + "start": 10611.26, + "end": 10612.42, + "probability": 0.7014 + }, + { + "start": 10612.6, + "end": 10613.74, + "probability": 0.5036 + }, + { + "start": 10613.9, + "end": 10615.03, + "probability": 0.6585 + }, + { + "start": 10615.26, + "end": 10615.52, + "probability": 0.1629 + }, + { + "start": 10615.54, + "end": 10615.82, + "probability": 0.1907 + }, + { + "start": 10615.82, + "end": 10616.34, + "probability": 0.6852 + }, + { + "start": 10616.44, + "end": 10617.33, + "probability": 0.4265 + }, + { + "start": 10617.44, + "end": 10618.0, + "probability": 0.7277 + }, + { + "start": 10618.1, + "end": 10619.34, + "probability": 0.8096 + }, + { + "start": 10620.36, + "end": 10621.88, + "probability": 0.9482 + }, + { + "start": 10621.96, + "end": 10623.83, + "probability": 0.9602 + }, + { + "start": 10624.0, + "end": 10626.14, + "probability": 0.6587 + }, + { + "start": 10626.22, + "end": 10627.12, + "probability": 0.8801 + }, + { + "start": 10627.42, + "end": 10628.1, + "probability": 0.7743 + }, + { + "start": 10628.54, + "end": 10632.28, + "probability": 0.9933 + }, + { + "start": 10633.0, + "end": 10633.62, + "probability": 0.5574 + }, + { + "start": 10633.9, + "end": 10635.0, + "probability": 0.7553 + }, + { + "start": 10635.52, + "end": 10637.26, + "probability": 0.907 + }, + { + "start": 10644.12, + "end": 10644.88, + "probability": 0.2642 + }, + { + "start": 10644.96, + "end": 10647.57, + "probability": 0.8612 + }, + { + "start": 10648.22, + "end": 10648.82, + "probability": 0.4365 + }, + { + "start": 10648.9, + "end": 10650.62, + "probability": 0.8862 + }, + { + "start": 10651.42, + "end": 10652.12, + "probability": 0.8947 + }, + { + "start": 10652.26, + "end": 10656.24, + "probability": 0.939 + }, + { + "start": 10656.42, + "end": 10657.64, + "probability": 0.9437 + }, + { + "start": 10657.78, + "end": 10659.12, + "probability": 0.7559 + }, + { + "start": 10659.28, + "end": 10661.3, + "probability": 0.7975 + }, + { + "start": 10661.88, + "end": 10664.84, + "probability": 0.8893 + }, + { + "start": 10664.9, + "end": 10667.06, + "probability": 0.7757 + }, + { + "start": 10667.66, + "end": 10672.98, + "probability": 0.9943 + }, + { + "start": 10673.28, + "end": 10676.24, + "probability": 0.998 + }, + { + "start": 10676.82, + "end": 10679.46, + "probability": 0.9918 + }, + { + "start": 10679.56, + "end": 10682.78, + "probability": 0.8543 + }, + { + "start": 10683.24, + "end": 10686.0, + "probability": 0.9976 + }, + { + "start": 10686.0, + "end": 10689.68, + "probability": 0.9572 + }, + { + "start": 10690.3, + "end": 10693.74, + "probability": 0.976 + }, + { + "start": 10694.42, + "end": 10698.2, + "probability": 0.9914 + }, + { + "start": 10698.2, + "end": 10701.74, + "probability": 0.9972 + }, + { + "start": 10702.34, + "end": 10708.02, + "probability": 0.9951 + }, + { + "start": 10708.22, + "end": 10709.46, + "probability": 0.8523 + }, + { + "start": 10709.82, + "end": 10711.8, + "probability": 0.9136 + }, + { + "start": 10712.28, + "end": 10715.18, + "probability": 0.9932 + }, + { + "start": 10715.42, + "end": 10716.16, + "probability": 0.9681 + }, + { + "start": 10716.32, + "end": 10717.62, + "probability": 0.9576 + }, + { + "start": 10718.02, + "end": 10719.14, + "probability": 0.979 + }, + { + "start": 10719.28, + "end": 10720.64, + "probability": 0.8289 + }, + { + "start": 10721.14, + "end": 10724.06, + "probability": 0.9871 + }, + { + "start": 10724.06, + "end": 10726.9, + "probability": 0.9808 + }, + { + "start": 10727.32, + "end": 10728.86, + "probability": 0.934 + }, + { + "start": 10728.96, + "end": 10729.68, + "probability": 0.9025 + }, + { + "start": 10729.72, + "end": 10731.98, + "probability": 0.8561 + }, + { + "start": 10732.34, + "end": 10734.42, + "probability": 0.9838 + }, + { + "start": 10734.54, + "end": 10736.32, + "probability": 0.9459 + }, + { + "start": 10737.0, + "end": 10741.32, + "probability": 0.884 + }, + { + "start": 10741.48, + "end": 10744.64, + "probability": 0.9962 + }, + { + "start": 10745.5, + "end": 10747.4, + "probability": 0.39 + }, + { + "start": 10747.48, + "end": 10751.06, + "probability": 0.8379 + }, + { + "start": 10751.42, + "end": 10751.74, + "probability": 0.8206 + }, + { + "start": 10751.86, + "end": 10754.51, + "probability": 0.9477 + }, + { + "start": 10754.86, + "end": 10756.7, + "probability": 0.5169 + }, + { + "start": 10756.74, + "end": 10758.28, + "probability": 0.8029 + }, + { + "start": 10759.1, + "end": 10761.66, + "probability": 0.2365 + }, + { + "start": 10776.5, + "end": 10776.68, + "probability": 0.0407 + }, + { + "start": 10776.68, + "end": 10779.21, + "probability": 0.56 + }, + { + "start": 10779.24, + "end": 10783.86, + "probability": 0.9608 + }, + { + "start": 10784.4, + "end": 10785.1, + "probability": 0.8177 + }, + { + "start": 10785.38, + "end": 10788.14, + "probability": 0.8644 + }, + { + "start": 10788.74, + "end": 10794.16, + "probability": 0.8628 + }, + { + "start": 10794.16, + "end": 10797.88, + "probability": 0.8371 + }, + { + "start": 10798.04, + "end": 10798.72, + "probability": 0.4907 + }, + { + "start": 10799.0, + "end": 10799.94, + "probability": 0.8376 + }, + { + "start": 10800.4, + "end": 10802.98, + "probability": 0.995 + }, + { + "start": 10803.44, + "end": 10807.04, + "probability": 0.9849 + }, + { + "start": 10807.04, + "end": 10811.18, + "probability": 0.9995 + }, + { + "start": 10811.24, + "end": 10812.12, + "probability": 0.7291 + }, + { + "start": 10812.88, + "end": 10813.22, + "probability": 0.6238 + }, + { + "start": 10813.6, + "end": 10815.76, + "probability": 0.7729 + }, + { + "start": 10816.8, + "end": 10819.7, + "probability": 0.9088 + }, + { + "start": 10820.42, + "end": 10821.38, + "probability": 0.0867 + }, + { + "start": 10821.38, + "end": 10821.38, + "probability": 0.2909 + }, + { + "start": 10821.38, + "end": 10821.38, + "probability": 0.4906 + }, + { + "start": 10821.38, + "end": 10821.38, + "probability": 0.4843 + }, + { + "start": 10821.38, + "end": 10821.38, + "probability": 0.5148 + }, + { + "start": 10821.38, + "end": 10821.38, + "probability": 0.0993 + }, + { + "start": 10821.38, + "end": 10823.76, + "probability": 0.5043 + }, + { + "start": 10841.52, + "end": 10842.08, + "probability": 0.2487 + }, + { + "start": 10842.72, + "end": 10843.54, + "probability": 0.7526 + }, + { + "start": 10844.08, + "end": 10846.96, + "probability": 0.8008 + }, + { + "start": 10847.78, + "end": 10848.08, + "probability": 0.6928 + }, + { + "start": 10848.18, + "end": 10849.32, + "probability": 0.9816 + }, + { + "start": 10849.56, + "end": 10850.22, + "probability": 0.8972 + }, + { + "start": 10850.3, + "end": 10851.64, + "probability": 0.9672 + }, + { + "start": 10852.54, + "end": 10854.02, + "probability": 0.9464 + }, + { + "start": 10854.6, + "end": 10858.3, + "probability": 0.9957 + }, + { + "start": 10859.38, + "end": 10860.16, + "probability": 0.6952 + }, + { + "start": 10860.3, + "end": 10865.8, + "probability": 0.9856 + }, + { + "start": 10866.56, + "end": 10868.46, + "probability": 0.9951 + }, + { + "start": 10869.08, + "end": 10872.18, + "probability": 0.9951 + }, + { + "start": 10872.28, + "end": 10873.19, + "probability": 0.777 + }, + { + "start": 10874.62, + "end": 10877.06, + "probability": 0.9619 + }, + { + "start": 10877.66, + "end": 10878.62, + "probability": 0.9312 + }, + { + "start": 10878.72, + "end": 10880.86, + "probability": 0.9695 + }, + { + "start": 10881.2, + "end": 10882.44, + "probability": 0.9965 + }, + { + "start": 10883.18, + "end": 10883.8, + "probability": 0.9756 + }, + { + "start": 10885.18, + "end": 10888.0, + "probability": 0.673 + }, + { + "start": 10888.88, + "end": 10891.32, + "probability": 0.7984 + }, + { + "start": 10891.32, + "end": 10894.22, + "probability": 0.9963 + }, + { + "start": 10895.92, + "end": 10899.83, + "probability": 0.9694 + }, + { + "start": 10900.54, + "end": 10903.28, + "probability": 0.9716 + }, + { + "start": 10904.1, + "end": 10907.42, + "probability": 0.9888 + }, + { + "start": 10907.62, + "end": 10908.54, + "probability": 0.7661 + }, + { + "start": 10909.04, + "end": 10911.2, + "probability": 0.9137 + }, + { + "start": 10911.5, + "end": 10913.4, + "probability": 0.9785 + }, + { + "start": 10913.64, + "end": 10916.62, + "probability": 0.7832 + }, + { + "start": 10917.18, + "end": 10917.78, + "probability": 0.9787 + }, + { + "start": 10919.94, + "end": 10923.08, + "probability": 0.9419 + }, + { + "start": 10923.34, + "end": 10926.04, + "probability": 0.998 + }, + { + "start": 10927.78, + "end": 10930.7, + "probability": 0.9913 + }, + { + "start": 10930.88, + "end": 10931.7, + "probability": 0.4854 + }, + { + "start": 10932.02, + "end": 10935.3, + "probability": 0.9952 + }, + { + "start": 10936.04, + "end": 10938.44, + "probability": 0.9888 + }, + { + "start": 10938.8, + "end": 10941.34, + "probability": 0.9315 + }, + { + "start": 10942.26, + "end": 10944.24, + "probability": 0.6794 + }, + { + "start": 10944.78, + "end": 10946.32, + "probability": 0.6519 + }, + { + "start": 10946.38, + "end": 10949.42, + "probability": 0.9856 + }, + { + "start": 10950.16, + "end": 10954.12, + "probability": 0.5217 + }, + { + "start": 10954.14, + "end": 10954.64, + "probability": 0.7812 + }, + { + "start": 10954.68, + "end": 10956.26, + "probability": 0.7462 + }, + { + "start": 10956.88, + "end": 10959.5, + "probability": 0.9395 + }, + { + "start": 10959.58, + "end": 10961.64, + "probability": 0.8879 + }, + { + "start": 10961.8, + "end": 10963.16, + "probability": 0.54 + }, + { + "start": 10963.26, + "end": 10964.98, + "probability": 0.9928 + }, + { + "start": 10965.32, + "end": 10966.24, + "probability": 0.9462 + }, + { + "start": 10966.36, + "end": 10969.4, + "probability": 0.9967 + }, + { + "start": 10969.8, + "end": 10970.14, + "probability": 0.7047 + }, + { + "start": 10970.4, + "end": 10971.06, + "probability": 0.9712 + }, + { + "start": 10971.3, + "end": 10971.98, + "probability": 0.983 + }, + { + "start": 10973.7, + "end": 10977.6, + "probability": 0.9961 + }, + { + "start": 10978.38, + "end": 10980.68, + "probability": 0.9966 + }, + { + "start": 10981.56, + "end": 10983.32, + "probability": 0.8804 + }, + { + "start": 10984.66, + "end": 10987.88, + "probability": 0.9969 + }, + { + "start": 10988.86, + "end": 10991.86, + "probability": 0.9833 + }, + { + "start": 10992.38, + "end": 10993.5, + "probability": 0.796 + }, + { + "start": 10993.66, + "end": 10994.15, + "probability": 0.9481 + }, + { + "start": 10994.36, + "end": 10994.8, + "probability": 0.4813 + }, + { + "start": 10994.9, + "end": 10995.14, + "probability": 0.8228 + }, + { + "start": 10995.2, + "end": 10996.06, + "probability": 0.916 + }, + { + "start": 10996.36, + "end": 10999.4, + "probability": 0.988 + }, + { + "start": 10999.68, + "end": 11000.66, + "probability": 0.8563 + }, + { + "start": 11001.72, + "end": 11003.06, + "probability": 0.5442 + }, + { + "start": 11003.78, + "end": 11006.84, + "probability": 0.9099 + }, + { + "start": 11007.42, + "end": 11009.98, + "probability": 0.8341 + }, + { + "start": 11010.44, + "end": 11011.74, + "probability": 0.9372 + }, + { + "start": 11012.52, + "end": 11013.98, + "probability": 0.9893 + }, + { + "start": 11014.12, + "end": 11015.82, + "probability": 0.994 + }, + { + "start": 11016.36, + "end": 11018.57, + "probability": 0.9961 + }, + { + "start": 11019.56, + "end": 11019.88, + "probability": 0.8248 + }, + { + "start": 11020.0, + "end": 11021.46, + "probability": 0.9377 + }, + { + "start": 11021.62, + "end": 11024.44, + "probability": 0.8926 + }, + { + "start": 11025.06, + "end": 11027.8, + "probability": 0.9871 + }, + { + "start": 11027.92, + "end": 11031.14, + "probability": 0.6597 + }, + { + "start": 11031.14, + "end": 11033.52, + "probability": 0.9937 + }, + { + "start": 11034.82, + "end": 11035.6, + "probability": 0.4271 + }, + { + "start": 11035.68, + "end": 11037.08, + "probability": 0.931 + }, + { + "start": 11037.3, + "end": 11037.84, + "probability": 0.833 + }, + { + "start": 11037.86, + "end": 11038.44, + "probability": 0.9521 + }, + { + "start": 11038.78, + "end": 11040.36, + "probability": 0.9421 + }, + { + "start": 11040.48, + "end": 11040.8, + "probability": 0.4121 + }, + { + "start": 11041.38, + "end": 11042.01, + "probability": 0.9419 + }, + { + "start": 11042.9, + "end": 11045.1, + "probability": 0.9699 + }, + { + "start": 11046.26, + "end": 11048.42, + "probability": 0.9626 + }, + { + "start": 11048.56, + "end": 11049.22, + "probability": 0.7635 + }, + { + "start": 11049.58, + "end": 11052.88, + "probability": 0.9953 + }, + { + "start": 11052.88, + "end": 11057.5, + "probability": 0.9928 + }, + { + "start": 11058.34, + "end": 11059.1, + "probability": 0.7929 + }, + { + "start": 11059.26, + "end": 11060.9, + "probability": 0.8024 + }, + { + "start": 11061.28, + "end": 11062.08, + "probability": 0.915 + }, + { + "start": 11062.26, + "end": 11063.46, + "probability": 0.9755 + }, + { + "start": 11063.6, + "end": 11064.11, + "probability": 0.6533 + }, + { + "start": 11065.04, + "end": 11065.74, + "probability": 0.9519 + }, + { + "start": 11066.02, + "end": 11066.1, + "probability": 0.5482 + }, + { + "start": 11066.2, + "end": 11066.88, + "probability": 0.9361 + }, + { + "start": 11066.96, + "end": 11067.72, + "probability": 0.8655 + }, + { + "start": 11068.36, + "end": 11070.66, + "probability": 0.9104 + }, + { + "start": 11071.18, + "end": 11072.94, + "probability": 0.9541 + }, + { + "start": 11073.38, + "end": 11076.78, + "probability": 0.9881 + }, + { + "start": 11077.3, + "end": 11079.12, + "probability": 0.7333 + }, + { + "start": 11079.98, + "end": 11083.28, + "probability": 0.9971 + }, + { + "start": 11084.0, + "end": 11089.6, + "probability": 0.9964 + }, + { + "start": 11089.82, + "end": 11093.1, + "probability": 0.9906 + }, + { + "start": 11093.76, + "end": 11096.36, + "probability": 0.9826 + }, + { + "start": 11096.4, + "end": 11098.12, + "probability": 0.8472 + }, + { + "start": 11098.46, + "end": 11101.14, + "probability": 0.9961 + }, + { + "start": 11101.32, + "end": 11103.04, + "probability": 0.7575 + }, + { + "start": 11103.16, + "end": 11106.44, + "probability": 0.9225 + }, + { + "start": 11125.18, + "end": 11126.1, + "probability": 0.5994 + }, + { + "start": 11126.8, + "end": 11127.46, + "probability": 0.9133 + }, + { + "start": 11127.54, + "end": 11127.58, + "probability": 0.2762 + }, + { + "start": 11127.58, + "end": 11129.16, + "probability": 0.745 + }, + { + "start": 11130.32, + "end": 11131.06, + "probability": 0.721 + }, + { + "start": 11131.62, + "end": 11135.46, + "probability": 0.9854 + }, + { + "start": 11135.46, + "end": 11140.66, + "probability": 0.9758 + }, + { + "start": 11141.78, + "end": 11143.78, + "probability": 0.8285 + }, + { + "start": 11144.38, + "end": 11147.06, + "probability": 0.9197 + }, + { + "start": 11147.76, + "end": 11149.02, + "probability": 0.9812 + }, + { + "start": 11149.5, + "end": 11151.02, + "probability": 0.966 + }, + { + "start": 11151.48, + "end": 11153.52, + "probability": 0.9402 + }, + { + "start": 11154.88, + "end": 11158.28, + "probability": 0.9505 + }, + { + "start": 11158.42, + "end": 11158.92, + "probability": 0.9505 + }, + { + "start": 11159.26, + "end": 11160.16, + "probability": 0.9095 + }, + { + "start": 11160.82, + "end": 11163.88, + "probability": 0.9049 + }, + { + "start": 11164.58, + "end": 11165.94, + "probability": 0.5631 + }, + { + "start": 11166.7, + "end": 11168.16, + "probability": 0.9257 + }, + { + "start": 11168.22, + "end": 11169.56, + "probability": 0.8836 + }, + { + "start": 11170.02, + "end": 11171.04, + "probability": 0.9445 + }, + { + "start": 11171.14, + "end": 11174.16, + "probability": 0.7352 + }, + { + "start": 11175.0, + "end": 11177.08, + "probability": 0.9912 + }, + { + "start": 11177.66, + "end": 11181.96, + "probability": 0.828 + }, + { + "start": 11182.52, + "end": 11185.02, + "probability": 0.697 + }, + { + "start": 11185.56, + "end": 11186.0, + "probability": 0.8669 + }, + { + "start": 11186.36, + "end": 11186.8, + "probability": 0.8779 + }, + { + "start": 11186.88, + "end": 11188.14, + "probability": 0.9943 + }, + { + "start": 11188.6, + "end": 11190.88, + "probability": 0.9854 + }, + { + "start": 11191.1, + "end": 11191.92, + "probability": 0.8687 + }, + { + "start": 11192.46, + "end": 11194.28, + "probability": 0.9683 + }, + { + "start": 11195.18, + "end": 11195.84, + "probability": 0.4653 + }, + { + "start": 11195.96, + "end": 11200.28, + "probability": 0.9909 + }, + { + "start": 11201.22, + "end": 11202.66, + "probability": 0.9512 + }, + { + "start": 11203.26, + "end": 11205.1, + "probability": 0.9691 + }, + { + "start": 11205.44, + "end": 11207.96, + "probability": 0.9461 + }, + { + "start": 11207.96, + "end": 11211.16, + "probability": 0.9929 + }, + { + "start": 11211.52, + "end": 11212.16, + "probability": 0.7681 + }, + { + "start": 11212.98, + "end": 11214.06, + "probability": 0.878 + }, + { + "start": 11214.22, + "end": 11215.74, + "probability": 0.8969 + }, + { + "start": 11215.82, + "end": 11218.32, + "probability": 0.7818 + }, + { + "start": 11218.32, + "end": 11220.88, + "probability": 0.9757 + }, + { + "start": 11221.44, + "end": 11226.85, + "probability": 0.7252 + }, + { + "start": 11228.08, + "end": 11228.76, + "probability": 0.6531 + }, + { + "start": 11228.82, + "end": 11231.4, + "probability": 0.8806 + }, + { + "start": 11231.4, + "end": 11233.98, + "probability": 0.9958 + }, + { + "start": 11234.32, + "end": 11235.34, + "probability": 0.5537 + }, + { + "start": 11235.4, + "end": 11239.16, + "probability": 0.7362 + }, + { + "start": 11239.84, + "end": 11242.02, + "probability": 0.9609 + }, + { + "start": 11242.12, + "end": 11244.19, + "probability": 0.9874 + }, + { + "start": 11244.72, + "end": 11246.68, + "probability": 0.9808 + }, + { + "start": 11247.28, + "end": 11249.58, + "probability": 0.953 + }, + { + "start": 11250.22, + "end": 11254.18, + "probability": 0.9844 + }, + { + "start": 11254.88, + "end": 11256.82, + "probability": 0.9229 + }, + { + "start": 11257.5, + "end": 11259.22, + "probability": 0.9702 + }, + { + "start": 11259.28, + "end": 11260.34, + "probability": 0.9561 + }, + { + "start": 11260.38, + "end": 11261.36, + "probability": 0.939 + }, + { + "start": 11261.44, + "end": 11262.84, + "probability": 0.95 + }, + { + "start": 11263.28, + "end": 11264.36, + "probability": 0.95 + }, + { + "start": 11264.56, + "end": 11266.08, + "probability": 0.8788 + }, + { + "start": 11266.74, + "end": 11269.54, + "probability": 0.7829 + }, + { + "start": 11269.54, + "end": 11272.64, + "probability": 0.9365 + }, + { + "start": 11272.7, + "end": 11274.26, + "probability": 0.9357 + }, + { + "start": 11274.32, + "end": 11275.18, + "probability": 0.6826 + }, + { + "start": 11275.6, + "end": 11279.46, + "probability": 0.9562 + }, + { + "start": 11279.9, + "end": 11281.98, + "probability": 0.8516 + }, + { + "start": 11282.16, + "end": 11282.96, + "probability": 0.8454 + }, + { + "start": 11283.64, + "end": 11286.72, + "probability": 0.9678 + }, + { + "start": 11286.72, + "end": 11290.78, + "probability": 0.9963 + }, + { + "start": 11290.78, + "end": 11294.78, + "probability": 0.9983 + }, + { + "start": 11295.4, + "end": 11297.88, + "probability": 0.9559 + }, + { + "start": 11298.32, + "end": 11299.42, + "probability": 0.7935 + }, + { + "start": 11299.82, + "end": 11302.48, + "probability": 0.8763 + }, + { + "start": 11303.02, + "end": 11306.28, + "probability": 0.9944 + }, + { + "start": 11306.64, + "end": 11308.12, + "probability": 0.8646 + }, + { + "start": 11308.72, + "end": 11312.14, + "probability": 0.8906 + }, + { + "start": 11312.24, + "end": 11314.98, + "probability": 0.728 + }, + { + "start": 11315.56, + "end": 11317.96, + "probability": 0.7578 + }, + { + "start": 11318.68, + "end": 11320.2, + "probability": 0.6902 + }, + { + "start": 11320.68, + "end": 11323.3, + "probability": 0.9946 + }, + { + "start": 11323.66, + "end": 11327.04, + "probability": 0.8469 + }, + { + "start": 11330.82, + "end": 11335.7, + "probability": 0.9228 + }, + { + "start": 11336.4, + "end": 11338.11, + "probability": 0.9222 + }, + { + "start": 11338.54, + "end": 11339.02, + "probability": 0.8704 + }, + { + "start": 11339.34, + "end": 11341.02, + "probability": 0.9651 + }, + { + "start": 11341.44, + "end": 11342.58, + "probability": 0.8954 + }, + { + "start": 11342.82, + "end": 11345.81, + "probability": 0.8515 + }, + { + "start": 11346.76, + "end": 11350.02, + "probability": 0.9629 + }, + { + "start": 11350.8, + "end": 11351.06, + "probability": 0.4057 + }, + { + "start": 11351.14, + "end": 11352.58, + "probability": 0.7733 + }, + { + "start": 11352.7, + "end": 11353.7, + "probability": 0.9568 + }, + { + "start": 11353.78, + "end": 11355.99, + "probability": 0.8627 + }, + { + "start": 11356.48, + "end": 11358.22, + "probability": 0.8768 + }, + { + "start": 11358.28, + "end": 11359.16, + "probability": 0.9084 + }, + { + "start": 11360.26, + "end": 11362.66, + "probability": 0.8989 + }, + { + "start": 11362.88, + "end": 11365.48, + "probability": 0.9897 + }, + { + "start": 11366.02, + "end": 11366.9, + "probability": 0.9497 + }, + { + "start": 11367.0, + "end": 11368.44, + "probability": 0.9795 + }, + { + "start": 11368.58, + "end": 11369.3, + "probability": 0.5134 + }, + { + "start": 11369.58, + "end": 11370.84, + "probability": 0.5827 + }, + { + "start": 11370.84, + "end": 11373.34, + "probability": 0.9888 + }, + { + "start": 11373.66, + "end": 11374.88, + "probability": 0.9514 + }, + { + "start": 11374.9, + "end": 11376.7, + "probability": 0.9077 + }, + { + "start": 11377.2, + "end": 11378.76, + "probability": 0.9558 + }, + { + "start": 11379.34, + "end": 11380.34, + "probability": 0.9095 + }, + { + "start": 11380.9, + "end": 11381.5, + "probability": 0.9688 + }, + { + "start": 11381.54, + "end": 11385.42, + "probability": 0.9631 + }, + { + "start": 11385.8, + "end": 11389.24, + "probability": 0.991 + }, + { + "start": 11389.82, + "end": 11391.78, + "probability": 0.9726 + }, + { + "start": 11391.78, + "end": 11394.56, + "probability": 0.997 + }, + { + "start": 11394.72, + "end": 11396.04, + "probability": 0.8045 + }, + { + "start": 11396.62, + "end": 11398.42, + "probability": 0.9684 + }, + { + "start": 11398.64, + "end": 11401.62, + "probability": 0.9526 + }, + { + "start": 11401.62, + "end": 11403.74, + "probability": 0.9972 + }, + { + "start": 11404.1, + "end": 11405.5, + "probability": 0.9278 + }, + { + "start": 11407.08, + "end": 11410.71, + "probability": 0.9971 + }, + { + "start": 11411.24, + "end": 11411.42, + "probability": 0.3238 + }, + { + "start": 11411.56, + "end": 11412.68, + "probability": 0.7316 + }, + { + "start": 11412.72, + "end": 11414.38, + "probability": 0.9253 + }, + { + "start": 11414.96, + "end": 11418.02, + "probability": 0.9108 + }, + { + "start": 11418.18, + "end": 11419.96, + "probability": 0.9919 + }, + { + "start": 11420.1, + "end": 11424.74, + "probability": 0.9915 + }, + { + "start": 11425.3, + "end": 11426.54, + "probability": 0.7536 + }, + { + "start": 11426.72, + "end": 11428.12, + "probability": 0.986 + }, + { + "start": 11428.54, + "end": 11430.6, + "probability": 0.4937 + }, + { + "start": 11430.7, + "end": 11431.24, + "probability": 0.7647 + }, + { + "start": 11431.28, + "end": 11432.94, + "probability": 0.9715 + }, + { + "start": 11433.22, + "end": 11435.68, + "probability": 0.8885 + }, + { + "start": 11435.98, + "end": 11438.54, + "probability": 0.9655 + }, + { + "start": 11438.54, + "end": 11441.64, + "probability": 0.9412 + }, + { + "start": 11442.3, + "end": 11444.48, + "probability": 0.8145 + }, + { + "start": 11444.6, + "end": 11447.26, + "probability": 0.9336 + }, + { + "start": 11447.32, + "end": 11447.94, + "probability": 0.4918 + }, + { + "start": 11461.1, + "end": 11462.1, + "probability": 0.2634 + }, + { + "start": 11462.1, + "end": 11462.92, + "probability": 0.4912 + }, + { + "start": 11468.96, + "end": 11470.06, + "probability": 0.5527 + }, + { + "start": 11470.88, + "end": 11471.86, + "probability": 0.8222 + }, + { + "start": 11472.48, + "end": 11473.16, + "probability": 0.6381 + }, + { + "start": 11474.32, + "end": 11480.24, + "probability": 0.994 + }, + { + "start": 11480.9, + "end": 11485.02, + "probability": 0.9723 + }, + { + "start": 11485.9, + "end": 11487.26, + "probability": 0.9522 + }, + { + "start": 11488.16, + "end": 11493.36, + "probability": 0.9522 + }, + { + "start": 11493.94, + "end": 11497.72, + "probability": 0.9748 + }, + { + "start": 11499.08, + "end": 11503.06, + "probability": 0.9632 + }, + { + "start": 11503.58, + "end": 11509.56, + "probability": 0.8244 + }, + { + "start": 11509.56, + "end": 11514.46, + "probability": 0.8338 + }, + { + "start": 11515.42, + "end": 11518.54, + "probability": 0.9961 + }, + { + "start": 11519.28, + "end": 11526.1, + "probability": 0.9858 + }, + { + "start": 11526.8, + "end": 11528.99, + "probability": 0.9306 + }, + { + "start": 11529.8, + "end": 11532.14, + "probability": 0.7386 + }, + { + "start": 11532.36, + "end": 11535.56, + "probability": 0.9901 + }, + { + "start": 11535.56, + "end": 11540.16, + "probability": 0.9206 + }, + { + "start": 11540.88, + "end": 11543.66, + "probability": 0.737 + }, + { + "start": 11543.66, + "end": 11547.36, + "probability": 0.7753 + }, + { + "start": 11548.34, + "end": 11549.34, + "probability": 0.688 + }, + { + "start": 11549.9, + "end": 11552.98, + "probability": 0.1123 + }, + { + "start": 11553.54, + "end": 11562.1, + "probability": 0.9338 + }, + { + "start": 11562.1, + "end": 11563.64, + "probability": 0.5854 + }, + { + "start": 11564.42, + "end": 11565.86, + "probability": 0.9756 + }, + { + "start": 11566.42, + "end": 11569.58, + "probability": 0.7868 + }, + { + "start": 11570.08, + "end": 11572.94, + "probability": 0.9672 + }, + { + "start": 11573.76, + "end": 11576.16, + "probability": 0.9842 + }, + { + "start": 11576.86, + "end": 11582.98, + "probability": 0.9862 + }, + { + "start": 11583.46, + "end": 11586.12, + "probability": 0.9763 + }, + { + "start": 11586.78, + "end": 11591.26, + "probability": 0.9587 + }, + { + "start": 11592.06, + "end": 11593.06, + "probability": 0.8709 + }, + { + "start": 11593.78, + "end": 11596.04, + "probability": 0.7795 + }, + { + "start": 11596.74, + "end": 11601.6, + "probability": 0.8634 + }, + { + "start": 11602.46, + "end": 11608.58, + "probability": 0.7738 + }, + { + "start": 11610.1, + "end": 11614.26, + "probability": 0.6516 + }, + { + "start": 11614.98, + "end": 11617.38, + "probability": 0.7285 + }, + { + "start": 11618.52, + "end": 11621.42, + "probability": 0.9061 + }, + { + "start": 11622.16, + "end": 11626.24, + "probability": 0.9583 + }, + { + "start": 11626.86, + "end": 11628.3, + "probability": 0.9276 + }, + { + "start": 11628.9, + "end": 11629.02, + "probability": 0.9609 + }, + { + "start": 11632.0, + "end": 11633.7, + "probability": 0.9561 + }, + { + "start": 11634.22, + "end": 11638.1, + "probability": 0.8653 + }, + { + "start": 11640.3, + "end": 11641.06, + "probability": 0.6943 + }, + { + "start": 11641.44, + "end": 11645.22, + "probability": 0.9585 + }, + { + "start": 11645.22, + "end": 11648.46, + "probability": 0.9978 + }, + { + "start": 11649.44, + "end": 11651.24, + "probability": 0.9905 + }, + { + "start": 11651.76, + "end": 11654.16, + "probability": 0.8378 + }, + { + "start": 11654.74, + "end": 11658.38, + "probability": 0.679 + }, + { + "start": 11658.76, + "end": 11665.86, + "probability": 0.9359 + }, + { + "start": 11666.36, + "end": 11667.02, + "probability": 0.7693 + }, + { + "start": 11667.98, + "end": 11670.92, + "probability": 0.9673 + }, + { + "start": 11670.92, + "end": 11677.84, + "probability": 0.8192 + }, + { + "start": 11678.54, + "end": 11679.18, + "probability": 0.7922 + }, + { + "start": 11679.74, + "end": 11687.24, + "probability": 0.938 + }, + { + "start": 11687.6, + "end": 11694.56, + "probability": 0.6926 + }, + { + "start": 11695.0, + "end": 11699.8, + "probability": 0.7552 + }, + { + "start": 11700.7, + "end": 11705.62, + "probability": 0.9876 + }, + { + "start": 11705.8, + "end": 11710.78, + "probability": 0.9869 + }, + { + "start": 11711.72, + "end": 11715.6, + "probability": 0.8676 + }, + { + "start": 11716.4, + "end": 11719.5, + "probability": 0.5571 + }, + { + "start": 11720.22, + "end": 11722.36, + "probability": 0.6849 + }, + { + "start": 11722.98, + "end": 11726.34, + "probability": 0.9447 + }, + { + "start": 11726.98, + "end": 11732.2, + "probability": 0.9854 + }, + { + "start": 11733.24, + "end": 11737.2, + "probability": 0.8623 + }, + { + "start": 11738.14, + "end": 11738.8, + "probability": 0.645 + }, + { + "start": 11739.4, + "end": 11741.94, + "probability": 0.9634 + }, + { + "start": 11742.84, + "end": 11743.76, + "probability": 0.649 + }, + { + "start": 11744.42, + "end": 11748.6, + "probability": 0.8232 + }, + { + "start": 11749.02, + "end": 11751.24, + "probability": 0.9824 + }, + { + "start": 11751.62, + "end": 11754.28, + "probability": 0.9084 + }, + { + "start": 11754.5, + "end": 11756.06, + "probability": 0.9964 + }, + { + "start": 11757.98, + "end": 11759.02, + "probability": 0.7408 + }, + { + "start": 11759.42, + "end": 11759.98, + "probability": 0.9872 + }, + { + "start": 11760.52, + "end": 11762.64, + "probability": 0.8633 + }, + { + "start": 11762.78, + "end": 11764.84, + "probability": 0.9509 + }, + { + "start": 11781.66, + "end": 11781.68, + "probability": 0.695 + }, + { + "start": 11781.68, + "end": 11783.08, + "probability": 0.6933 + }, + { + "start": 11786.46, + "end": 11787.56, + "probability": 0.4027 + }, + { + "start": 11788.9, + "end": 11791.04, + "probability": 0.6481 + }, + { + "start": 11791.52, + "end": 11793.06, + "probability": 0.9827 + }, + { + "start": 11795.06, + "end": 11795.84, + "probability": 0.8566 + }, + { + "start": 11798.24, + "end": 11802.84, + "probability": 0.5194 + }, + { + "start": 11803.92, + "end": 11805.16, + "probability": 0.9333 + }, + { + "start": 11805.86, + "end": 11807.2, + "probability": 0.5624 + }, + { + "start": 11808.2, + "end": 11809.84, + "probability": 0.9579 + }, + { + "start": 11812.2, + "end": 11814.66, + "probability": 0.9287 + }, + { + "start": 11815.8, + "end": 11818.34, + "probability": 0.6678 + }, + { + "start": 11818.98, + "end": 11820.02, + "probability": 0.742 + }, + { + "start": 11821.06, + "end": 11821.9, + "probability": 0.9182 + }, + { + "start": 11822.96, + "end": 11826.84, + "probability": 0.9453 + }, + { + "start": 11827.52, + "end": 11828.34, + "probability": 0.5936 + }, + { + "start": 11829.56, + "end": 11832.06, + "probability": 0.9736 + }, + { + "start": 11832.56, + "end": 11834.42, + "probability": 0.8497 + }, + { + "start": 11835.04, + "end": 11836.54, + "probability": 0.9648 + }, + { + "start": 11837.94, + "end": 11839.94, + "probability": 0.9845 + }, + { + "start": 11840.78, + "end": 11841.9, + "probability": 0.7259 + }, + { + "start": 11842.9, + "end": 11846.8, + "probability": 0.6884 + }, + { + "start": 11847.54, + "end": 11848.12, + "probability": 0.777 + }, + { + "start": 11849.34, + "end": 11850.2, + "probability": 0.8099 + }, + { + "start": 11851.8, + "end": 11853.92, + "probability": 0.9733 + }, + { + "start": 11855.14, + "end": 11856.22, + "probability": 0.8973 + }, + { + "start": 11857.76, + "end": 11862.48, + "probability": 0.985 + }, + { + "start": 11862.58, + "end": 11862.9, + "probability": 0.5144 + }, + { + "start": 11863.84, + "end": 11866.66, + "probability": 0.7352 + }, + { + "start": 11867.24, + "end": 11868.9, + "probability": 0.9506 + }, + { + "start": 11869.1, + "end": 11870.3, + "probability": 0.9902 + }, + { + "start": 11870.48, + "end": 11871.66, + "probability": 0.7954 + }, + { + "start": 11873.14, + "end": 11875.36, + "probability": 0.8914 + }, + { + "start": 11876.84, + "end": 11879.16, + "probability": 0.9651 + }, + { + "start": 11880.52, + "end": 11881.26, + "probability": 0.9927 + }, + { + "start": 11881.38, + "end": 11882.36, + "probability": 0.8968 + }, + { + "start": 11884.24, + "end": 11885.92, + "probability": 0.9463 + }, + { + "start": 11887.94, + "end": 11893.08, + "probability": 0.9628 + }, + { + "start": 11893.12, + "end": 11897.44, + "probability": 0.9413 + }, + { + "start": 11899.24, + "end": 11902.36, + "probability": 0.8962 + }, + { + "start": 11902.72, + "end": 11903.72, + "probability": 0.9052 + }, + { + "start": 11903.8, + "end": 11904.92, + "probability": 0.8453 + }, + { + "start": 11905.38, + "end": 11906.44, + "probability": 0.8435 + }, + { + "start": 11906.64, + "end": 11908.26, + "probability": 0.6389 + }, + { + "start": 11908.32, + "end": 11909.8, + "probability": 0.8122 + }, + { + "start": 11910.5, + "end": 11912.88, + "probability": 0.9207 + }, + { + "start": 11913.36, + "end": 11913.42, + "probability": 0.7761 + }, + { + "start": 11913.5, + "end": 11915.82, + "probability": 0.9889 + }, + { + "start": 11916.04, + "end": 11917.16, + "probability": 0.9345 + }, + { + "start": 11917.5, + "end": 11918.46, + "probability": 0.7817 + }, + { + "start": 11918.74, + "end": 11919.5, + "probability": 0.8928 + }, + { + "start": 11920.96, + "end": 11922.44, + "probability": 0.9829 + }, + { + "start": 11925.1, + "end": 11926.54, + "probability": 0.9858 + }, + { + "start": 11927.82, + "end": 11929.38, + "probability": 0.7159 + }, + { + "start": 11930.64, + "end": 11933.11, + "probability": 0.9927 + }, + { + "start": 11934.2, + "end": 11936.14, + "probability": 0.6649 + }, + { + "start": 11936.5, + "end": 11937.84, + "probability": 0.98 + }, + { + "start": 11939.42, + "end": 11940.81, + "probability": 0.9797 + }, + { + "start": 11941.14, + "end": 11944.62, + "probability": 0.8116 + }, + { + "start": 11945.5, + "end": 11947.44, + "probability": 0.8955 + }, + { + "start": 11948.36, + "end": 11949.91, + "probability": 0.8531 + }, + { + "start": 11951.26, + "end": 11955.72, + "probability": 0.9978 + }, + { + "start": 11956.2, + "end": 11957.0, + "probability": 0.6354 + }, + { + "start": 11957.34, + "end": 11963.76, + "probability": 0.988 + }, + { + "start": 11964.18, + "end": 11968.21, + "probability": 0.9974 + }, + { + "start": 11968.96, + "end": 11972.56, + "probability": 0.9567 + }, + { + "start": 11973.18, + "end": 11974.02, + "probability": 0.7468 + }, + { + "start": 11974.76, + "end": 11975.93, + "probability": 0.5453 + }, + { + "start": 11975.94, + "end": 11978.76, + "probability": 0.8652 + }, + { + "start": 11979.2, + "end": 11984.76, + "probability": 0.9818 + }, + { + "start": 11984.98, + "end": 11986.54, + "probability": 0.9958 + }, + { + "start": 11986.76, + "end": 11990.1, + "probability": 0.9955 + }, + { + "start": 11991.24, + "end": 11992.12, + "probability": 0.9385 + }, + { + "start": 11992.18, + "end": 11994.32, + "probability": 0.9512 + }, + { + "start": 11995.12, + "end": 11999.24, + "probability": 0.9751 + }, + { + "start": 11999.42, + "end": 12003.58, + "probability": 0.8668 + }, + { + "start": 12003.84, + "end": 12006.86, + "probability": 0.9943 + }, + { + "start": 12006.86, + "end": 12009.88, + "probability": 0.8817 + }, + { + "start": 12010.54, + "end": 12014.98, + "probability": 0.9965 + }, + { + "start": 12015.68, + "end": 12018.34, + "probability": 0.2181 + }, + { + "start": 12018.72, + "end": 12023.54, + "probability": 0.7409 + }, + { + "start": 12023.76, + "end": 12024.18, + "probability": 0.4768 + }, + { + "start": 12024.22, + "end": 12024.8, + "probability": 0.3098 + }, + { + "start": 12025.14, + "end": 12027.47, + "probability": 0.5868 + }, + { + "start": 12031.4, + "end": 12033.84, + "probability": 0.0358 + }, + { + "start": 12033.84, + "end": 12033.84, + "probability": 0.0893 + }, + { + "start": 12033.84, + "end": 12033.84, + "probability": 0.1762 + }, + { + "start": 12033.84, + "end": 12035.22, + "probability": 0.0631 + }, + { + "start": 12035.44, + "end": 12036.36, + "probability": 0.7779 + }, + { + "start": 12036.74, + "end": 12037.48, + "probability": 0.7682 + }, + { + "start": 12037.62, + "end": 12038.34, + "probability": 0.9434 + }, + { + "start": 12040.02, + "end": 12040.62, + "probability": 0.0264 + }, + { + "start": 12040.62, + "end": 12040.98, + "probability": 0.1768 + }, + { + "start": 12041.0, + "end": 12041.0, + "probability": 0.2054 + }, + { + "start": 12041.06, + "end": 12041.7, + "probability": 0.662 + }, + { + "start": 12042.4, + "end": 12045.06, + "probability": 0.8468 + }, + { + "start": 12055.6, + "end": 12057.84, + "probability": 0.8659 + }, + { + "start": 12058.5, + "end": 12060.76, + "probability": 0.9761 + }, + { + "start": 12061.22, + "end": 12062.98, + "probability": 0.813 + }, + { + "start": 12063.22, + "end": 12064.72, + "probability": 0.5619 + }, + { + "start": 12064.82, + "end": 12066.46, + "probability": 0.0362 + }, + { + "start": 12067.16, + "end": 12069.94, + "probability": 0.5098 + }, + { + "start": 12072.82, + "end": 12077.58, + "probability": 0.9171 + }, + { + "start": 12078.58, + "end": 12083.46, + "probability": 0.9608 + }, + { + "start": 12084.52, + "end": 12086.22, + "probability": 0.7059 + }, + { + "start": 12087.18, + "end": 12090.58, + "probability": 0.9864 + }, + { + "start": 12090.58, + "end": 12093.72, + "probability": 0.9511 + }, + { + "start": 12094.88, + "end": 12095.78, + "probability": 0.7852 + }, + { + "start": 12097.14, + "end": 12102.04, + "probability": 0.9812 + }, + { + "start": 12103.06, + "end": 12106.32, + "probability": 0.9243 + }, + { + "start": 12107.28, + "end": 12111.5, + "probability": 0.9188 + }, + { + "start": 12112.1, + "end": 12115.14, + "probability": 0.7936 + }, + { + "start": 12115.14, + "end": 12117.9, + "probability": 0.9836 + }, + { + "start": 12119.0, + "end": 12120.46, + "probability": 0.8043 + }, + { + "start": 12121.6, + "end": 12123.9, + "probability": 0.7358 + }, + { + "start": 12125.04, + "end": 12129.68, + "probability": 0.9771 + }, + { + "start": 12130.5, + "end": 12131.7, + "probability": 0.8117 + }, + { + "start": 12133.02, + "end": 12135.98, + "probability": 0.98 + }, + { + "start": 12135.98, + "end": 12136.62, + "probability": 0.3901 + }, + { + "start": 12137.7, + "end": 12141.68, + "probability": 0.802 + }, + { + "start": 12144.0, + "end": 12146.42, + "probability": 0.8725 + }, + { + "start": 12147.54, + "end": 12149.04, + "probability": 0.8542 + }, + { + "start": 12149.2, + "end": 12153.44, + "probability": 0.937 + }, + { + "start": 12153.54, + "end": 12156.92, + "probability": 0.9824 + }, + { + "start": 12157.9, + "end": 12159.26, + "probability": 0.9617 + }, + { + "start": 12160.08, + "end": 12163.3, + "probability": 0.7496 + }, + { + "start": 12163.34, + "end": 12168.2, + "probability": 0.9827 + }, + { + "start": 12169.5, + "end": 12171.32, + "probability": 0.8159 + }, + { + "start": 12172.62, + "end": 12174.32, + "probability": 0.9544 + }, + { + "start": 12175.72, + "end": 12178.08, + "probability": 0.4882 + }, + { + "start": 12178.82, + "end": 12182.34, + "probability": 0.9922 + }, + { + "start": 12183.82, + "end": 12188.44, + "probability": 0.5995 + }, + { + "start": 12189.3, + "end": 12191.88, + "probability": 0.8667 + }, + { + "start": 12192.99, + "end": 12195.9, + "probability": 0.9017 + }, + { + "start": 12196.58, + "end": 12199.82, + "probability": 0.9849 + }, + { + "start": 12200.96, + "end": 12204.3, + "probability": 0.9679 + }, + { + "start": 12204.34, + "end": 12206.56, + "probability": 0.9356 + }, + { + "start": 12208.04, + "end": 12210.92, + "probability": 0.9449 + }, + { + "start": 12211.02, + "end": 12212.18, + "probability": 0.6949 + }, + { + "start": 12212.96, + "end": 12215.7, + "probability": 0.8647 + }, + { + "start": 12216.92, + "end": 12219.82, + "probability": 0.9271 + }, + { + "start": 12220.96, + "end": 12223.98, + "probability": 0.9362 + }, + { + "start": 12223.98, + "end": 12226.84, + "probability": 0.999 + }, + { + "start": 12227.4, + "end": 12231.34, + "probability": 0.9921 + }, + { + "start": 12232.52, + "end": 12235.7, + "probability": 0.9551 + }, + { + "start": 12235.7, + "end": 12239.9, + "probability": 0.9164 + }, + { + "start": 12240.6, + "end": 12243.3, + "probability": 0.9966 + }, + { + "start": 12244.48, + "end": 12245.96, + "probability": 0.8324 + }, + { + "start": 12245.98, + "end": 12248.56, + "probability": 0.9031 + }, + { + "start": 12249.2, + "end": 12251.2, + "probability": 0.9119 + }, + { + "start": 12252.1, + "end": 12254.68, + "probability": 0.8849 + }, + { + "start": 12255.5, + "end": 12257.68, + "probability": 0.9261 + }, + { + "start": 12258.32, + "end": 12260.0, + "probability": 0.8829 + }, + { + "start": 12260.24, + "end": 12261.28, + "probability": 0.6086 + }, + { + "start": 12262.76, + "end": 12266.38, + "probability": 0.9552 + }, + { + "start": 12266.5, + "end": 12268.64, + "probability": 0.9769 + }, + { + "start": 12268.72, + "end": 12269.74, + "probability": 0.9979 + }, + { + "start": 12270.44, + "end": 12272.96, + "probability": 0.9922 + }, + { + "start": 12273.48, + "end": 12276.68, + "probability": 0.9913 + }, + { + "start": 12277.68, + "end": 12278.76, + "probability": 0.9923 + }, + { + "start": 12279.6, + "end": 12279.84, + "probability": 0.7458 + }, + { + "start": 12280.66, + "end": 12282.48, + "probability": 0.7939 + }, + { + "start": 12282.82, + "end": 12285.24, + "probability": 0.7583 + }, + { + "start": 12285.32, + "end": 12285.7, + "probability": 0.8722 + }, + { + "start": 12292.48, + "end": 12297.26, + "probability": 0.9761 + }, + { + "start": 12297.54, + "end": 12298.32, + "probability": 0.6027 + }, + { + "start": 12298.5, + "end": 12300.92, + "probability": 0.8995 + }, + { + "start": 12301.6, + "end": 12303.8, + "probability": 0.9852 + }, + { + "start": 12304.68, + "end": 12307.28, + "probability": 0.9563 + }, + { + "start": 12308.92, + "end": 12309.18, + "probability": 0.2349 + }, + { + "start": 12310.08, + "end": 12310.92, + "probability": 0.5384 + }, + { + "start": 12312.34, + "end": 12313.32, + "probability": 0.0092 + }, + { + "start": 12314.02, + "end": 12314.8, + "probability": 0.593 + }, + { + "start": 12314.9, + "end": 12315.74, + "probability": 0.9583 + }, + { + "start": 12316.08, + "end": 12317.26, + "probability": 0.9966 + }, + { + "start": 12317.96, + "end": 12319.52, + "probability": 0.7397 + }, + { + "start": 12323.86, + "end": 12327.32, + "probability": 0.9927 + }, + { + "start": 12328.26, + "end": 12331.68, + "probability": 0.9976 + }, + { + "start": 12333.26, + "end": 12334.94, + "probability": 0.9551 + }, + { + "start": 12335.92, + "end": 12339.3, + "probability": 0.9348 + }, + { + "start": 12341.34, + "end": 12345.62, + "probability": 0.9897 + }, + { + "start": 12345.62, + "end": 12349.82, + "probability": 0.9706 + }, + { + "start": 12351.1, + "end": 12352.28, + "probability": 0.8845 + }, + { + "start": 12353.76, + "end": 12356.1, + "probability": 0.987 + }, + { + "start": 12356.96, + "end": 12360.7, + "probability": 0.8363 + }, + { + "start": 12361.74, + "end": 12364.42, + "probability": 0.956 + }, + { + "start": 12364.82, + "end": 12365.7, + "probability": 0.7764 + }, + { + "start": 12366.04, + "end": 12366.28, + "probability": 0.4768 + }, + { + "start": 12366.36, + "end": 12366.64, + "probability": 0.6199 + }, + { + "start": 12367.02, + "end": 12370.22, + "probability": 0.9371 + }, + { + "start": 12370.52, + "end": 12372.3, + "probability": 0.9873 + }, + { + "start": 12372.6, + "end": 12372.82, + "probability": 0.3866 + }, + { + "start": 12372.92, + "end": 12373.12, + "probability": 0.0906 + }, + { + "start": 12374.44, + "end": 12374.96, + "probability": 0.2595 + }, + { + "start": 12374.96, + "end": 12375.48, + "probability": 0.6412 + }, + { + "start": 12376.18, + "end": 12376.88, + "probability": 0.1946 + }, + { + "start": 12380.42, + "end": 12380.56, + "probability": 0.0601 + }, + { + "start": 12380.56, + "end": 12381.52, + "probability": 0.2016 + }, + { + "start": 12382.4, + "end": 12382.54, + "probability": 0.1789 + }, + { + "start": 12382.58, + "end": 12385.32, + "probability": 0.9465 + }, + { + "start": 12385.52, + "end": 12387.56, + "probability": 0.9755 + }, + { + "start": 12387.62, + "end": 12389.68, + "probability": 0.6246 + }, + { + "start": 12389.78, + "end": 12389.78, + "probability": 0.3154 + }, + { + "start": 12389.98, + "end": 12393.76, + "probability": 0.9984 + }, + { + "start": 12393.93, + "end": 12396.24, + "probability": 0.9733 + }, + { + "start": 12397.44, + "end": 12400.18, + "probability": 0.9916 + }, + { + "start": 12402.12, + "end": 12405.2, + "probability": 0.7521 + }, + { + "start": 12405.7, + "end": 12407.02, + "probability": 0.9993 + }, + { + "start": 12408.02, + "end": 12408.98, + "probability": 0.7978 + }, + { + "start": 12409.58, + "end": 12410.31, + "probability": 0.8169 + }, + { + "start": 12411.18, + "end": 12413.58, + "probability": 0.5894 + }, + { + "start": 12414.5, + "end": 12415.66, + "probability": 0.501 + }, + { + "start": 12416.32, + "end": 12420.56, + "probability": 0.6168 + }, + { + "start": 12421.32, + "end": 12421.52, + "probability": 0.0859 + }, + { + "start": 12421.52, + "end": 12421.52, + "probability": 0.1847 + }, + { + "start": 12421.52, + "end": 12422.36, + "probability": 0.4893 + }, + { + "start": 12422.5, + "end": 12423.07, + "probability": 0.9352 + }, + { + "start": 12423.38, + "end": 12424.78, + "probability": 0.8461 + }, + { + "start": 12425.12, + "end": 12428.14, + "probability": 0.9626 + }, + { + "start": 12428.2, + "end": 12428.72, + "probability": 0.7436 + }, + { + "start": 12429.54, + "end": 12432.08, + "probability": 0.7436 + }, + { + "start": 12432.34, + "end": 12435.29, + "probability": 0.9939 + }, + { + "start": 12436.48, + "end": 12439.06, + "probability": 0.983 + }, + { + "start": 12439.42, + "end": 12441.24, + "probability": 0.9773 + }, + { + "start": 12441.54, + "end": 12446.5, + "probability": 0.9459 + }, + { + "start": 12447.34, + "end": 12448.44, + "probability": 0.8959 + }, + { + "start": 12449.08, + "end": 12452.8, + "probability": 0.9832 + }, + { + "start": 12453.44, + "end": 12461.22, + "probability": 0.9977 + }, + { + "start": 12461.78, + "end": 12462.78, + "probability": 0.96 + }, + { + "start": 12462.84, + "end": 12463.86, + "probability": 0.9102 + }, + { + "start": 12464.3, + "end": 12465.54, + "probability": 0.2263 + }, + { + "start": 12465.68, + "end": 12466.06, + "probability": 0.4175 + }, + { + "start": 12466.06, + "end": 12466.47, + "probability": 0.7359 + }, + { + "start": 12467.3, + "end": 12469.18, + "probability": 0.213 + }, + { + "start": 12469.3, + "end": 12472.28, + "probability": 0.0507 + }, + { + "start": 12472.56, + "end": 12474.68, + "probability": 0.9238 + }, + { + "start": 12474.74, + "end": 12477.0, + "probability": 0.8485 + }, + { + "start": 12477.12, + "end": 12477.72, + "probability": 0.7316 + }, + { + "start": 12478.44, + "end": 12479.58, + "probability": 0.7397 + }, + { + "start": 12479.66, + "end": 12482.1, + "probability": 0.9758 + }, + { + "start": 12482.18, + "end": 12482.82, + "probability": 0.916 + }, + { + "start": 12483.02, + "end": 12485.22, + "probability": 0.99 + }, + { + "start": 12486.28, + "end": 12486.66, + "probability": 0.6591 + }, + { + "start": 12487.94, + "end": 12489.48, + "probability": 0.8697 + }, + { + "start": 12489.64, + "end": 12490.3, + "probability": 0.9323 + }, + { + "start": 12490.78, + "end": 12491.42, + "probability": 0.1992 + }, + { + "start": 12491.56, + "end": 12491.98, + "probability": 0.7218 + }, + { + "start": 12492.24, + "end": 12494.0, + "probability": 0.9712 + }, + { + "start": 12494.24, + "end": 12495.24, + "probability": 0.9399 + }, + { + "start": 12495.8, + "end": 12498.94, + "probability": 0.8157 + }, + { + "start": 12499.62, + "end": 12500.3, + "probability": 0.7562 + }, + { + "start": 12500.48, + "end": 12500.96, + "probability": 0.9401 + }, + { + "start": 12501.04, + "end": 12502.84, + "probability": 0.9739 + }, + { + "start": 12503.62, + "end": 12504.6, + "probability": 0.9698 + }, + { + "start": 12505.7, + "end": 12506.28, + "probability": 0.779 + }, + { + "start": 12506.3, + "end": 12507.98, + "probability": 0.8565 + }, + { + "start": 12508.76, + "end": 12514.4, + "probability": 0.9893 + }, + { + "start": 12516.54, + "end": 12517.8, + "probability": 0.9155 + }, + { + "start": 12518.68, + "end": 12519.8, + "probability": 0.9633 + }, + { + "start": 12520.4, + "end": 12524.94, + "probability": 0.9467 + }, + { + "start": 12525.12, + "end": 12525.76, + "probability": 0.8365 + }, + { + "start": 12526.2, + "end": 12527.34, + "probability": 0.9822 + }, + { + "start": 12528.7, + "end": 12530.64, + "probability": 0.9863 + }, + { + "start": 12531.02, + "end": 12531.46, + "probability": 0.9495 + }, + { + "start": 12531.56, + "end": 12531.98, + "probability": 0.2296 + }, + { + "start": 12532.16, + "end": 12533.58, + "probability": 0.9747 + }, + { + "start": 12533.84, + "end": 12535.48, + "probability": 0.9765 + }, + { + "start": 12536.04, + "end": 12540.82, + "probability": 0.9465 + }, + { + "start": 12541.1, + "end": 12541.92, + "probability": 0.9902 + }, + { + "start": 12542.06, + "end": 12543.38, + "probability": 0.9592 + }, + { + "start": 12545.08, + "end": 12546.44, + "probability": 0.8942 + }, + { + "start": 12547.6, + "end": 12549.0, + "probability": 0.5542 + }, + { + "start": 12549.8, + "end": 12552.32, + "probability": 0.9336 + }, + { + "start": 12552.82, + "end": 12554.3, + "probability": 0.9488 + }, + { + "start": 12554.42, + "end": 12554.84, + "probability": 0.75 + }, + { + "start": 12555.04, + "end": 12555.3, + "probability": 0.9631 + }, + { + "start": 12555.84, + "end": 12556.5, + "probability": 0.8814 + }, + { + "start": 12557.18, + "end": 12559.34, + "probability": 0.9704 + }, + { + "start": 12559.92, + "end": 12563.82, + "probability": 0.9808 + }, + { + "start": 12564.36, + "end": 12565.54, + "probability": 0.9219 + }, + { + "start": 12566.5, + "end": 12569.8, + "probability": 0.9389 + }, + { + "start": 12570.08, + "end": 12570.7, + "probability": 0.9548 + }, + { + "start": 12571.48, + "end": 12573.24, + "probability": 0.6987 + }, + { + "start": 12574.38, + "end": 12575.38, + "probability": 0.8911 + }, + { + "start": 12575.86, + "end": 12577.22, + "probability": 0.7816 + }, + { + "start": 12577.78, + "end": 12578.92, + "probability": 0.9984 + }, + { + "start": 12579.44, + "end": 12581.1, + "probability": 0.9844 + }, + { + "start": 12581.16, + "end": 12583.92, + "probability": 0.9774 + }, + { + "start": 12584.68, + "end": 12586.44, + "probability": 0.9713 + }, + { + "start": 12586.46, + "end": 12588.28, + "probability": 0.9131 + }, + { + "start": 12588.34, + "end": 12588.84, + "probability": 0.8495 + }, + { + "start": 12589.16, + "end": 12589.78, + "probability": 0.9101 + }, + { + "start": 12589.86, + "end": 12591.71, + "probability": 0.9161 + }, + { + "start": 12596.56, + "end": 12599.0, + "probability": 0.696 + }, + { + "start": 12600.08, + "end": 12601.06, + "probability": 0.8584 + }, + { + "start": 12601.34, + "end": 12601.9, + "probability": 0.4382 + }, + { + "start": 12601.98, + "end": 12602.58, + "probability": 0.2219 + }, + { + "start": 12602.74, + "end": 12604.58, + "probability": 0.7793 + }, + { + "start": 12604.58, + "end": 12604.68, + "probability": 0.574 + }, + { + "start": 12605.64, + "end": 12608.9, + "probability": 0.6332 + }, + { + "start": 12609.46, + "end": 12609.56, + "probability": 0.0785 + }, + { + "start": 12610.26, + "end": 12610.46, + "probability": 0.3576 + }, + { + "start": 12610.46, + "end": 12610.46, + "probability": 0.3064 + }, + { + "start": 12610.46, + "end": 12611.64, + "probability": 0.9283 + }, + { + "start": 12612.26, + "end": 12613.7, + "probability": 0.6961 + }, + { + "start": 12613.78, + "end": 12616.1, + "probability": 0.9119 + }, + { + "start": 12630.66, + "end": 12631.68, + "probability": 0.4936 + }, + { + "start": 12632.86, + "end": 12634.46, + "probability": 0.402 + }, + { + "start": 12634.46, + "end": 12634.46, + "probability": 0.8304 + }, + { + "start": 12634.46, + "end": 12636.06, + "probability": 0.4747 + }, + { + "start": 12639.87, + "end": 12641.88, + "probability": 0.3265 + }, + { + "start": 12642.0, + "end": 12643.54, + "probability": 0.3437 + }, + { + "start": 12643.6, + "end": 12644.52, + "probability": 0.883 + }, + { + "start": 12645.24, + "end": 12646.18, + "probability": 0.3192 + }, + { + "start": 12646.78, + "end": 12650.1, + "probability": 0.9888 + }, + { + "start": 12651.26, + "end": 12654.94, + "probability": 0.8802 + }, + { + "start": 12655.12, + "end": 12657.04, + "probability": 0.6252 + }, + { + "start": 12657.84, + "end": 12659.14, + "probability": 0.8885 + }, + { + "start": 12659.24, + "end": 12660.42, + "probability": 0.8851 + }, + { + "start": 12660.6, + "end": 12662.86, + "probability": 0.9814 + }, + { + "start": 12663.62, + "end": 12665.16, + "probability": 0.9852 + }, + { + "start": 12665.82, + "end": 12669.32, + "probability": 0.9907 + }, + { + "start": 12669.42, + "end": 12671.36, + "probability": 0.9937 + }, + { + "start": 12672.52, + "end": 12674.92, + "probability": 0.8 + }, + { + "start": 12674.98, + "end": 12675.88, + "probability": 0.8571 + }, + { + "start": 12676.0, + "end": 12676.76, + "probability": 0.8732 + }, + { + "start": 12677.52, + "end": 12678.8, + "probability": 0.8802 + }, + { + "start": 12679.74, + "end": 12680.8, + "probability": 0.969 + }, + { + "start": 12680.94, + "end": 12683.8, + "probability": 0.9884 + }, + { + "start": 12684.74, + "end": 12688.8, + "probability": 0.9786 + }, + { + "start": 12690.21, + "end": 12691.6, + "probability": 0.8948 + }, + { + "start": 12692.46, + "end": 12695.4, + "probability": 0.7773 + }, + { + "start": 12696.62, + "end": 12697.87, + "probability": 0.981 + }, + { + "start": 12700.0, + "end": 12701.37, + "probability": 0.9286 + }, + { + "start": 12702.96, + "end": 12707.96, + "probability": 0.9941 + }, + { + "start": 12709.36, + "end": 12709.96, + "probability": 0.8657 + }, + { + "start": 12710.76, + "end": 12713.44, + "probability": 0.9961 + }, + { + "start": 12714.6, + "end": 12716.18, + "probability": 0.685 + }, + { + "start": 12716.72, + "end": 12718.86, + "probability": 0.6368 + }, + { + "start": 12719.46, + "end": 12721.34, + "probability": 0.7677 + }, + { + "start": 12721.44, + "end": 12722.36, + "probability": 0.9156 + }, + { + "start": 12722.66, + "end": 12723.55, + "probability": 0.8413 + }, + { + "start": 12724.78, + "end": 12727.9, + "probability": 0.8945 + }, + { + "start": 12728.1, + "end": 12731.32, + "probability": 0.6788 + }, + { + "start": 12732.1, + "end": 12735.46, + "probability": 0.9769 + }, + { + "start": 12736.24, + "end": 12737.96, + "probability": 0.9712 + }, + { + "start": 12738.16, + "end": 12738.61, + "probability": 0.4985 + }, + { + "start": 12740.3, + "end": 12742.4, + "probability": 0.8923 + }, + { + "start": 12744.22, + "end": 12747.56, + "probability": 0.5366 + }, + { + "start": 12747.64, + "end": 12748.22, + "probability": 0.8086 + }, + { + "start": 12748.94, + "end": 12750.9, + "probability": 0.9324 + }, + { + "start": 12751.94, + "end": 12754.34, + "probability": 0.999 + }, + { + "start": 12755.38, + "end": 12755.9, + "probability": 0.9306 + }, + { + "start": 12756.46, + "end": 12757.96, + "probability": 0.9323 + }, + { + "start": 12758.64, + "end": 12760.31, + "probability": 0.9821 + }, + { + "start": 12760.5, + "end": 12762.98, + "probability": 0.7526 + }, + { + "start": 12764.1, + "end": 12767.44, + "probability": 0.7782 + }, + { + "start": 12767.98, + "end": 12769.68, + "probability": 0.9331 + }, + { + "start": 12770.82, + "end": 12774.84, + "probability": 0.982 + }, + { + "start": 12775.58, + "end": 12776.36, + "probability": 0.6542 + }, + { + "start": 12777.2, + "end": 12778.06, + "probability": 0.6258 + }, + { + "start": 12778.1, + "end": 12779.6, + "probability": 0.9116 + }, + { + "start": 12781.16, + "end": 12782.9, + "probability": 0.8519 + }, + { + "start": 12783.76, + "end": 12784.24, + "probability": 0.7237 + }, + { + "start": 12784.32, + "end": 12787.57, + "probability": 0.9834 + }, + { + "start": 12788.02, + "end": 12789.22, + "probability": 0.8329 + }, + { + "start": 12789.24, + "end": 12790.04, + "probability": 0.7957 + }, + { + "start": 12790.04, + "end": 12791.56, + "probability": 0.6294 + }, + { + "start": 12791.78, + "end": 12794.16, + "probability": 0.8773 + }, + { + "start": 12794.9, + "end": 12796.38, + "probability": 0.8135 + }, + { + "start": 12797.12, + "end": 12798.32, + "probability": 0.8589 + }, + { + "start": 12799.16, + "end": 12800.86, + "probability": 0.9613 + }, + { + "start": 12801.06, + "end": 12805.32, + "probability": 0.8608 + }, + { + "start": 12806.58, + "end": 12808.26, + "probability": 0.987 + }, + { + "start": 12808.28, + "end": 12808.46, + "probability": 0.4586 + }, + { + "start": 12808.5, + "end": 12810.56, + "probability": 0.9478 + }, + { + "start": 12810.6, + "end": 12811.08, + "probability": 0.8093 + }, + { + "start": 12811.8, + "end": 12812.17, + "probability": 0.43 + }, + { + "start": 12812.9, + "end": 12815.46, + "probability": 0.9918 + }, + { + "start": 12817.0, + "end": 12819.74, + "probability": 0.9831 + }, + { + "start": 12820.72, + "end": 12821.88, + "probability": 0.5923 + }, + { + "start": 12822.18, + "end": 12823.26, + "probability": 0.8581 + }, + { + "start": 12824.72, + "end": 12826.02, + "probability": 0.8452 + }, + { + "start": 12826.7, + "end": 12828.16, + "probability": 0.9913 + }, + { + "start": 12829.1, + "end": 12831.56, + "probability": 0.9915 + }, + { + "start": 12832.66, + "end": 12835.44, + "probability": 0.7605 + }, + { + "start": 12836.12, + "end": 12837.76, + "probability": 0.9335 + }, + { + "start": 12838.78, + "end": 12840.6, + "probability": 0.8822 + }, + { + "start": 12841.04, + "end": 12844.02, + "probability": 0.9648 + }, + { + "start": 12844.14, + "end": 12845.54, + "probability": 0.9233 + }, + { + "start": 12846.06, + "end": 12850.92, + "probability": 0.9432 + }, + { + "start": 12851.48, + "end": 12853.18, + "probability": 0.9536 + }, + { + "start": 12853.54, + "end": 12853.94, + "probability": 0.6698 + }, + { + "start": 12853.96, + "end": 12854.4, + "probability": 0.7649 + }, + { + "start": 12854.96, + "end": 12858.34, + "probability": 0.5997 + }, + { + "start": 12858.34, + "end": 12858.66, + "probability": 0.0354 + }, + { + "start": 12858.66, + "end": 12859.92, + "probability": 0.4791 + }, + { + "start": 12860.18, + "end": 12860.88, + "probability": 0.7957 + }, + { + "start": 12861.26, + "end": 12863.4, + "probability": 0.9575 + }, + { + "start": 12863.44, + "end": 12864.61, + "probability": 0.8151 + }, + { + "start": 12868.82, + "end": 12871.08, + "probability": 0.7254 + }, + { + "start": 12871.96, + "end": 12874.52, + "probability": 0.6496 + }, + { + "start": 12876.6, + "end": 12877.08, + "probability": 0.494 + }, + { + "start": 12877.16, + "end": 12878.38, + "probability": 0.8946 + }, + { + "start": 12879.1, + "end": 12880.08, + "probability": 0.9854 + }, + { + "start": 12880.4, + "end": 12881.14, + "probability": 0.7149 + }, + { + "start": 12881.6, + "end": 12883.54, + "probability": 0.9595 + }, + { + "start": 12884.58, + "end": 12885.66, + "probability": 0.9315 + }, + { + "start": 12886.46, + "end": 12886.72, + "probability": 0.7266 + }, + { + "start": 12886.96, + "end": 12887.8, + "probability": 0.9659 + }, + { + "start": 12887.94, + "end": 12888.44, + "probability": 0.7994 + }, + { + "start": 12888.52, + "end": 12889.31, + "probability": 0.6362 + }, + { + "start": 12889.76, + "end": 12890.4, + "probability": 0.7007 + }, + { + "start": 12891.22, + "end": 12894.14, + "probability": 0.738 + }, + { + "start": 12894.44, + "end": 12895.34, + "probability": 0.7959 + }, + { + "start": 12895.48, + "end": 12896.08, + "probability": 0.8218 + }, + { + "start": 12896.56, + "end": 12897.34, + "probability": 0.9832 + }, + { + "start": 12897.56, + "end": 12898.2, + "probability": 0.5401 + }, + { + "start": 12898.32, + "end": 12898.94, + "probability": 0.8987 + }, + { + "start": 12899.02, + "end": 12899.56, + "probability": 0.7583 + }, + { + "start": 12900.12, + "end": 12901.98, + "probability": 0.9789 + }, + { + "start": 12902.54, + "end": 12904.76, + "probability": 0.708 + }, + { + "start": 12904.76, + "end": 12907.12, + "probability": 0.8107 + }, + { + "start": 12907.22, + "end": 12907.9, + "probability": 0.7724 + }, + { + "start": 12908.02, + "end": 12909.42, + "probability": 0.7802 + }, + { + "start": 12909.6, + "end": 12909.6, + "probability": 0.1172 + }, + { + "start": 12909.6, + "end": 12909.6, + "probability": 0.6604 + }, + { + "start": 12909.6, + "end": 12909.6, + "probability": 0.0928 + }, + { + "start": 12909.6, + "end": 12909.72, + "probability": 0.3654 + }, + { + "start": 12910.02, + "end": 12911.36, + "probability": 0.3712 + }, + { + "start": 12911.38, + "end": 12912.16, + "probability": 0.6883 + }, + { + "start": 12912.48, + "end": 12912.82, + "probability": 0.6407 + }, + { + "start": 12912.88, + "end": 12916.46, + "probability": 0.9761 + }, + { + "start": 12916.82, + "end": 12919.26, + "probability": 0.8198 + }, + { + "start": 12919.68, + "end": 12921.08, + "probability": 0.6635 + }, + { + "start": 12921.46, + "end": 12925.32, + "probability": 0.8374 + }, + { + "start": 12925.48, + "end": 12926.4, + "probability": 0.8481 + }, + { + "start": 12926.7, + "end": 12928.56, + "probability": 0.8931 + }, + { + "start": 12928.92, + "end": 12934.31, + "probability": 0.846 + }, + { + "start": 12934.88, + "end": 12935.3, + "probability": 0.6597 + }, + { + "start": 12935.4, + "end": 12936.72, + "probability": 0.6761 + }, + { + "start": 12936.84, + "end": 12940.56, + "probability": 0.8579 + }, + { + "start": 12940.88, + "end": 12943.32, + "probability": 0.4943 + }, + { + "start": 12943.82, + "end": 12944.48, + "probability": 0.676 + }, + { + "start": 12944.72, + "end": 12946.38, + "probability": 0.9988 + }, + { + "start": 12946.96, + "end": 12947.5, + "probability": 0.8745 + }, + { + "start": 12948.76, + "end": 12950.2, + "probability": 0.941 + }, + { + "start": 12951.14, + "end": 12951.7, + "probability": 0.9412 + }, + { + "start": 12953.22, + "end": 12954.02, + "probability": 0.9579 + }, + { + "start": 12959.74, + "end": 12962.18, + "probability": 0.7616 + }, + { + "start": 12963.68, + "end": 12967.22, + "probability": 0.99 + }, + { + "start": 12967.6, + "end": 12968.64, + "probability": 0.5054 + }, + { + "start": 12970.22, + "end": 12973.16, + "probability": 0.8544 + }, + { + "start": 12974.22, + "end": 12978.19, + "probability": 0.9797 + }, + { + "start": 12979.22, + "end": 12982.12, + "probability": 0.9194 + }, + { + "start": 12983.1, + "end": 12986.72, + "probability": 0.9207 + }, + { + "start": 12988.89, + "end": 12989.66, + "probability": 0.0732 + }, + { + "start": 12989.66, + "end": 12990.01, + "probability": 0.2799 + }, + { + "start": 12990.94, + "end": 12991.78, + "probability": 0.9445 + }, + { + "start": 12994.28, + "end": 13000.08, + "probability": 0.7527 + }, + { + "start": 13001.0, + "end": 13001.76, + "probability": 0.7184 + }, + { + "start": 13002.36, + "end": 13003.12, + "probability": 0.9634 + }, + { + "start": 13005.26, + "end": 13009.6, + "probability": 0.9946 + }, + { + "start": 13011.1, + "end": 13012.24, + "probability": 0.8253 + }, + { + "start": 13013.14, + "end": 13014.22, + "probability": 0.845 + }, + { + "start": 13015.98, + "end": 13019.16, + "probability": 0.8686 + }, + { + "start": 13020.34, + "end": 13021.04, + "probability": 0.1192 + }, + { + "start": 13023.58, + "end": 13024.54, + "probability": 0.8659 + }, + { + "start": 13025.44, + "end": 13028.64, + "probability": 0.9349 + }, + { + "start": 13028.82, + "end": 13029.78, + "probability": 0.9802 + }, + { + "start": 13030.52, + "end": 13032.66, + "probability": 0.7063 + }, + { + "start": 13033.72, + "end": 13035.24, + "probability": 0.8454 + }, + { + "start": 13036.58, + "end": 13040.42, + "probability": 0.9914 + }, + { + "start": 13041.2, + "end": 13042.04, + "probability": 0.9512 + }, + { + "start": 13043.32, + "end": 13045.74, + "probability": 0.7894 + }, + { + "start": 13045.94, + "end": 13048.0, + "probability": 0.8687 + }, + { + "start": 13048.62, + "end": 13051.32, + "probability": 0.9282 + }, + { + "start": 13051.92, + "end": 13053.0, + "probability": 0.9916 + }, + { + "start": 13054.16, + "end": 13055.06, + "probability": 0.466 + }, + { + "start": 13056.4, + "end": 13060.06, + "probability": 0.9408 + }, + { + "start": 13060.84, + "end": 13063.56, + "probability": 0.8996 + }, + { + "start": 13064.44, + "end": 13066.26, + "probability": 0.9174 + }, + { + "start": 13066.88, + "end": 13068.34, + "probability": 0.87 + }, + { + "start": 13070.1, + "end": 13070.98, + "probability": 0.9614 + }, + { + "start": 13071.86, + "end": 13072.42, + "probability": 0.7524 + }, + { + "start": 13073.0, + "end": 13078.02, + "probability": 0.9855 + }, + { + "start": 13078.96, + "end": 13080.06, + "probability": 0.9132 + }, + { + "start": 13081.14, + "end": 13082.64, + "probability": 0.8075 + }, + { + "start": 13083.86, + "end": 13084.8, + "probability": 0.2245 + }, + { + "start": 13084.8, + "end": 13088.72, + "probability": 0.9915 + }, + { + "start": 13089.4, + "end": 13091.62, + "probability": 0.9738 + }, + { + "start": 13093.6, + "end": 13094.46, + "probability": 0.5981 + }, + { + "start": 13094.64, + "end": 13097.22, + "probability": 0.9839 + }, + { + "start": 13097.28, + "end": 13099.22, + "probability": 0.9276 + }, + { + "start": 13099.7, + "end": 13101.16, + "probability": 0.9885 + }, + { + "start": 13102.1, + "end": 13106.5, + "probability": 0.9518 + }, + { + "start": 13107.2, + "end": 13111.3, + "probability": 0.602 + }, + { + "start": 13112.44, + "end": 13114.68, + "probability": 0.8616 + }, + { + "start": 13116.7, + "end": 13119.68, + "probability": 0.957 + }, + { + "start": 13119.78, + "end": 13121.16, + "probability": 0.8917 + }, + { + "start": 13121.78, + "end": 13123.86, + "probability": 0.9603 + }, + { + "start": 13126.3, + "end": 13134.0, + "probability": 0.9868 + }, + { + "start": 13134.7, + "end": 13138.28, + "probability": 0.9214 + }, + { + "start": 13139.5, + "end": 13139.98, + "probability": 0.6964 + }, + { + "start": 13139.98, + "end": 13145.28, + "probability": 0.9321 + }, + { + "start": 13145.82, + "end": 13147.82, + "probability": 0.9987 + }, + { + "start": 13148.04, + "end": 13149.13, + "probability": 0.6087 + }, + { + "start": 13149.78, + "end": 13150.58, + "probability": 0.9331 + }, + { + "start": 13151.44, + "end": 13152.28, + "probability": 0.9136 + }, + { + "start": 13152.42, + "end": 13155.0, + "probability": 0.9845 + }, + { + "start": 13155.6, + "end": 13159.42, + "probability": 0.4991 + }, + { + "start": 13160.46, + "end": 13161.26, + "probability": 0.7137 + }, + { + "start": 13162.77, + "end": 13167.52, + "probability": 0.9875 + }, + { + "start": 13167.62, + "end": 13170.34, + "probability": 0.9014 + }, + { + "start": 13170.6, + "end": 13172.3, + "probability": 0.9967 + }, + { + "start": 13172.98, + "end": 13177.2, + "probability": 0.9885 + }, + { + "start": 13177.88, + "end": 13179.42, + "probability": 0.9822 + }, + { + "start": 13180.48, + "end": 13182.73, + "probability": 0.9919 + }, + { + "start": 13183.64, + "end": 13186.04, + "probability": 0.9728 + }, + { + "start": 13186.62, + "end": 13189.77, + "probability": 0.885 + }, + { + "start": 13190.38, + "end": 13192.98, + "probability": 0.96 + }, + { + "start": 13194.48, + "end": 13195.02, + "probability": 0.4009 + }, + { + "start": 13195.56, + "end": 13198.1, + "probability": 0.8899 + }, + { + "start": 13198.34, + "end": 13198.56, + "probability": 0.7106 + }, + { + "start": 13200.08, + "end": 13201.46, + "probability": 0.7608 + }, + { + "start": 13201.54, + "end": 13203.08, + "probability": 0.868 + }, + { + "start": 13203.2, + "end": 13205.26, + "probability": 0.584 + }, + { + "start": 13205.26, + "end": 13206.66, + "probability": 0.5351 + }, + { + "start": 13207.7, + "end": 13209.88, + "probability": 0.8605 + }, + { + "start": 13211.5, + "end": 13215.4, + "probability": 0.9646 + }, + { + "start": 13215.48, + "end": 13216.0, + "probability": 0.4618 + }, + { + "start": 13216.08, + "end": 13216.72, + "probability": 0.8466 + }, + { + "start": 13216.8, + "end": 13217.82, + "probability": 0.6419 + }, + { + "start": 13220.66, + "end": 13222.44, + "probability": 0.6719 + }, + { + "start": 13222.48, + "end": 13223.06, + "probability": 0.5591 + }, + { + "start": 13223.14, + "end": 13224.89, + "probability": 0.649 + }, + { + "start": 13225.12, + "end": 13229.96, + "probability": 0.9855 + }, + { + "start": 13229.96, + "end": 13234.42, + "probability": 0.9868 + }, + { + "start": 13234.98, + "end": 13237.38, + "probability": 0.9933 + }, + { + "start": 13237.56, + "end": 13240.64, + "probability": 0.9902 + }, + { + "start": 13241.34, + "end": 13245.22, + "probability": 0.9923 + }, + { + "start": 13246.0, + "end": 13247.28, + "probability": 0.9888 + }, + { + "start": 13248.28, + "end": 13249.42, + "probability": 0.7721 + }, + { + "start": 13249.46, + "end": 13250.52, + "probability": 0.7911 + }, + { + "start": 13250.76, + "end": 13251.86, + "probability": 0.0524 + }, + { + "start": 13252.26, + "end": 13252.38, + "probability": 0.0519 + }, + { + "start": 13252.46, + "end": 13254.6, + "probability": 0.9884 + }, + { + "start": 13255.54, + "end": 13258.72, + "probability": 0.9779 + }, + { + "start": 13259.64, + "end": 13261.94, + "probability": 0.9161 + }, + { + "start": 13262.78, + "end": 13265.16, + "probability": 0.9762 + }, + { + "start": 13265.42, + "end": 13269.46, + "probability": 0.992 + }, + { + "start": 13269.94, + "end": 13273.0, + "probability": 0.9967 + }, + { + "start": 13273.52, + "end": 13275.84, + "probability": 0.9961 + }, + { + "start": 13276.38, + "end": 13278.12, + "probability": 0.9739 + }, + { + "start": 13278.98, + "end": 13283.16, + "probability": 0.828 + }, + { + "start": 13284.92, + "end": 13285.06, + "probability": 0.1812 + }, + { + "start": 13285.06, + "end": 13287.18, + "probability": 0.9758 + }, + { + "start": 13287.78, + "end": 13290.66, + "probability": 0.9785 + }, + { + "start": 13290.66, + "end": 13293.58, + "probability": 0.8853 + }, + { + "start": 13294.06, + "end": 13297.12, + "probability": 0.9656 + }, + { + "start": 13297.94, + "end": 13299.78, + "probability": 0.9872 + }, + { + "start": 13299.78, + "end": 13299.94, + "probability": 0.2142 + }, + { + "start": 13300.68, + "end": 13301.06, + "probability": 0.7877 + }, + { + "start": 13301.1, + "end": 13301.96, + "probability": 0.6547 + }, + { + "start": 13302.1, + "end": 13305.86, + "probability": 0.957 + }, + { + "start": 13306.22, + "end": 13308.88, + "probability": 0.9699 + }, + { + "start": 13309.5, + "end": 13311.12, + "probability": 0.6881 + }, + { + "start": 13311.24, + "end": 13312.84, + "probability": 0.9721 + }, + { + "start": 13315.92, + "end": 13319.12, + "probability": 0.381 + }, + { + "start": 13320.1, + "end": 13320.6, + "probability": 0.3774 + }, + { + "start": 13320.6, + "end": 13321.5, + "probability": 0.8211 + }, + { + "start": 13321.58, + "end": 13326.46, + "probability": 0.9785 + }, + { + "start": 13326.56, + "end": 13328.28, + "probability": 0.9758 + }, + { + "start": 13328.82, + "end": 13331.18, + "probability": 0.8635 + }, + { + "start": 13331.84, + "end": 13332.78, + "probability": 0.538 + }, + { + "start": 13333.84, + "end": 13336.62, + "probability": 0.9237 + }, + { + "start": 13336.68, + "end": 13337.48, + "probability": 0.4792 + }, + { + "start": 13338.32, + "end": 13342.26, + "probability": 0.6359 + }, + { + "start": 13343.12, + "end": 13345.16, + "probability": 0.7604 + }, + { + "start": 13346.16, + "end": 13347.66, + "probability": 0.8879 + }, + { + "start": 13347.78, + "end": 13348.22, + "probability": 0.8231 + }, + { + "start": 13348.38, + "end": 13351.28, + "probability": 0.4398 + }, + { + "start": 13352.18, + "end": 13354.3, + "probability": 0.4118 + }, + { + "start": 13354.57, + "end": 13357.67, + "probability": 0.9255 + }, + { + "start": 13359.22, + "end": 13364.1, + "probability": 0.9667 + }, + { + "start": 13364.78, + "end": 13367.38, + "probability": 0.8797 + }, + { + "start": 13367.58, + "end": 13369.78, + "probability": 0.996 + }, + { + "start": 13370.02, + "end": 13372.52, + "probability": 0.953 + }, + { + "start": 13372.64, + "end": 13373.0, + "probability": 0.8756 + }, + { + "start": 13373.1, + "end": 13373.5, + "probability": 0.4036 + }, + { + "start": 13374.1, + "end": 13378.18, + "probability": 0.9691 + }, + { + "start": 13378.38, + "end": 13379.66, + "probability": 0.9627 + }, + { + "start": 13380.32, + "end": 13382.74, + "probability": 0.9038 + }, + { + "start": 13384.3, + "end": 13385.88, + "probability": 0.2513 + }, + { + "start": 13386.0, + "end": 13386.42, + "probability": 0.4714 + }, + { + "start": 13386.86, + "end": 13388.94, + "probability": 0.9435 + }, + { + "start": 13389.14, + "end": 13390.16, + "probability": 0.5041 + }, + { + "start": 13391.14, + "end": 13392.96, + "probability": 0.3978 + }, + { + "start": 13394.98, + "end": 13396.6, + "probability": 0.779 + }, + { + "start": 13396.68, + "end": 13397.62, + "probability": 0.4916 + }, + { + "start": 13397.64, + "end": 13398.72, + "probability": 0.9197 + }, + { + "start": 13398.88, + "end": 13399.76, + "probability": 0.6358 + }, + { + "start": 13400.26, + "end": 13403.5, + "probability": 0.9905 + }, + { + "start": 13403.66, + "end": 13404.78, + "probability": 0.9844 + }, + { + "start": 13405.22, + "end": 13406.12, + "probability": 0.9124 + }, + { + "start": 13406.2, + "end": 13407.32, + "probability": 0.9705 + }, + { + "start": 13407.38, + "end": 13408.28, + "probability": 0.9017 + }, + { + "start": 13408.6, + "end": 13410.68, + "probability": 0.9353 + }, + { + "start": 13411.06, + "end": 13412.58, + "probability": 0.7659 + }, + { + "start": 13412.94, + "end": 13414.28, + "probability": 0.7871 + }, + { + "start": 13414.84, + "end": 13418.32, + "probability": 0.9906 + }, + { + "start": 13418.38, + "end": 13421.68, + "probability": 0.9956 + }, + { + "start": 13422.02, + "end": 13423.44, + "probability": 0.92 + }, + { + "start": 13424.04, + "end": 13426.96, + "probability": 0.9642 + }, + { + "start": 13427.12, + "end": 13427.78, + "probability": 0.4197 + }, + { + "start": 13429.0, + "end": 13429.04, + "probability": 0.5027 + }, + { + "start": 13429.04, + "end": 13429.3, + "probability": 0.7502 + }, + { + "start": 13429.36, + "end": 13430.6, + "probability": 0.9656 + }, + { + "start": 13430.72, + "end": 13431.6, + "probability": 0.9877 + }, + { + "start": 13431.72, + "end": 13432.08, + "probability": 0.8909 + }, + { + "start": 13432.18, + "end": 13433.02, + "probability": 0.8076 + }, + { + "start": 13433.36, + "end": 13434.52, + "probability": 0.9581 + }, + { + "start": 13434.92, + "end": 13435.56, + "probability": 0.7744 + }, + { + "start": 13435.88, + "end": 13436.48, + "probability": 0.4399 + }, + { + "start": 13436.88, + "end": 13438.5, + "probability": 0.7788 + }, + { + "start": 13438.56, + "end": 13442.58, + "probability": 0.9709 + }, + { + "start": 13445.34, + "end": 13447.02, + "probability": 0.337 + }, + { + "start": 13447.18, + "end": 13448.36, + "probability": 0.2594 + }, + { + "start": 13448.98, + "end": 13449.44, + "probability": 0.8531 + }, + { + "start": 13449.52, + "end": 13451.12, + "probability": 0.475 + }, + { + "start": 13451.2, + "end": 13453.44, + "probability": 0.6244 + }, + { + "start": 13453.5, + "end": 13454.7, + "probability": 0.6975 + }, + { + "start": 13454.8, + "end": 13456.92, + "probability": 0.981 + }, + { + "start": 13456.92, + "end": 13460.26, + "probability": 0.8597 + }, + { + "start": 13460.8, + "end": 13464.26, + "probability": 0.8525 + }, + { + "start": 13465.36, + "end": 13467.06, + "probability": 0.8276 + }, + { + "start": 13467.12, + "end": 13468.48, + "probability": 0.9821 + }, + { + "start": 13468.58, + "end": 13468.98, + "probability": 0.7498 + }, + { + "start": 13469.26, + "end": 13473.84, + "probability": 0.9867 + }, + { + "start": 13474.0, + "end": 13474.72, + "probability": 0.9087 + }, + { + "start": 13475.1, + "end": 13478.2, + "probability": 0.916 + }, + { + "start": 13478.96, + "end": 13482.74, + "probability": 0.9904 + }, + { + "start": 13482.78, + "end": 13483.86, + "probability": 0.8706 + }, + { + "start": 13485.04, + "end": 13486.14, + "probability": 0.7359 + }, + { + "start": 13486.36, + "end": 13489.26, + "probability": 0.8011 + }, + { + "start": 13489.76, + "end": 13493.46, + "probability": 0.9843 + }, + { + "start": 13494.46, + "end": 13500.1, + "probability": 0.8618 + }, + { + "start": 13500.84, + "end": 13504.08, + "probability": 0.7128 + }, + { + "start": 13504.24, + "end": 13506.36, + "probability": 0.8369 + }, + { + "start": 13506.42, + "end": 13507.52, + "probability": 0.8898 + }, + { + "start": 13507.54, + "end": 13508.86, + "probability": 0.9524 + }, + { + "start": 13508.98, + "end": 13509.5, + "probability": 0.9279 + }, + { + "start": 13510.8, + "end": 13513.5, + "probability": 0.6925 + }, + { + "start": 13514.28, + "end": 13514.62, + "probability": 0.7017 + }, + { + "start": 13515.14, + "end": 13519.32, + "probability": 0.9819 + }, + { + "start": 13519.36, + "end": 13523.44, + "probability": 0.9949 + }, + { + "start": 13523.44, + "end": 13524.18, + "probability": 0.9429 + }, + { + "start": 13525.64, + "end": 13528.6, + "probability": 0.2168 + }, + { + "start": 13529.14, + "end": 13529.38, + "probability": 0.0311 + }, + { + "start": 13529.38, + "end": 13529.38, + "probability": 0.0619 + }, + { + "start": 13529.38, + "end": 13529.38, + "probability": 0.0277 + }, + { + "start": 13529.38, + "end": 13529.96, + "probability": 0.2072 + }, + { + "start": 13529.96, + "end": 13532.98, + "probability": 0.9879 + }, + { + "start": 13533.08, + "end": 13537.6, + "probability": 0.9366 + }, + { + "start": 13537.6, + "end": 13543.84, + "probability": 0.9956 + }, + { + "start": 13544.04, + "end": 13544.86, + "probability": 0.7124 + }, + { + "start": 13546.12, + "end": 13548.76, + "probability": 0.8206 + }, + { + "start": 13549.12, + "end": 13552.54, + "probability": 0.9082 + }, + { + "start": 13552.68, + "end": 13553.38, + "probability": 0.8846 + }, + { + "start": 13554.24, + "end": 13555.7, + "probability": 0.7873 + }, + { + "start": 13555.78, + "end": 13559.15, + "probability": 0.9436 + }, + { + "start": 13559.84, + "end": 13561.84, + "probability": 0.7087 + }, + { + "start": 13562.3, + "end": 13563.3, + "probability": 0.9194 + }, + { + "start": 13563.46, + "end": 13564.54, + "probability": 0.9607 + }, + { + "start": 13565.0, + "end": 13565.62, + "probability": 0.9576 + }, + { + "start": 13565.7, + "end": 13566.74, + "probability": 0.7671 + }, + { + "start": 13567.54, + "end": 13568.56, + "probability": 0.9248 + }, + { + "start": 13570.78, + "end": 13570.9, + "probability": 0.0238 + }, + { + "start": 13570.9, + "end": 13571.46, + "probability": 0.1693 + }, + { + "start": 13571.52, + "end": 13572.53, + "probability": 0.4754 + }, + { + "start": 13572.64, + "end": 13573.5, + "probability": 0.5363 + }, + { + "start": 13574.74, + "end": 13578.72, + "probability": 0.5733 + }, + { + "start": 13578.72, + "end": 13582.48, + "probability": 0.8274 + }, + { + "start": 13582.48, + "end": 13584.26, + "probability": 0.1455 + }, + { + "start": 13584.26, + "end": 13585.43, + "probability": 0.511 + }, + { + "start": 13585.44, + "end": 13588.6, + "probability": 0.9471 + }, + { + "start": 13588.62, + "end": 13591.14, + "probability": 0.9844 + }, + { + "start": 13591.56, + "end": 13595.96, + "probability": 0.6042 + }, + { + "start": 13596.74, + "end": 13597.66, + "probability": 0.9395 + }, + { + "start": 13598.42, + "end": 13601.08, + "probability": 0.9846 + }, + { + "start": 13601.08, + "end": 13604.74, + "probability": 0.9964 + }, + { + "start": 13604.88, + "end": 13606.76, + "probability": 0.578 + }, + { + "start": 13607.02, + "end": 13607.74, + "probability": 0.1888 + }, + { + "start": 13607.86, + "end": 13607.96, + "probability": 0.6597 + }, + { + "start": 13608.06, + "end": 13608.12, + "probability": 0.4288 + }, + { + "start": 13608.28, + "end": 13609.92, + "probability": 0.9642 + }, + { + "start": 13609.96, + "end": 13611.08, + "probability": 0.9018 + }, + { + "start": 13612.48, + "end": 13614.14, + "probability": 0.8119 + }, + { + "start": 13614.38, + "end": 13619.04, + "probability": 0.8599 + }, + { + "start": 13619.34, + "end": 13625.28, + "probability": 0.9897 + }, + { + "start": 13626.43, + "end": 13630.24, + "probability": 0.9288 + }, + { + "start": 13630.44, + "end": 13631.3, + "probability": 0.7662 + }, + { + "start": 13632.0, + "end": 13632.8, + "probability": 0.4682 + }, + { + "start": 13632.88, + "end": 13632.9, + "probability": 0.4636 + }, + { + "start": 13632.9, + "end": 13635.14, + "probability": 0.9131 + }, + { + "start": 13636.34, + "end": 13637.42, + "probability": 0.8719 + }, + { + "start": 13638.92, + "end": 13643.24, + "probability": 0.8953 + }, + { + "start": 13643.28, + "end": 13643.8, + "probability": 0.7607 + }, + { + "start": 13643.96, + "end": 13645.04, + "probability": 0.5901 + }, + { + "start": 13645.12, + "end": 13645.34, + "probability": 0.3598 + }, + { + "start": 13645.38, + "end": 13646.24, + "probability": 0.3269 + }, + { + "start": 13646.28, + "end": 13646.58, + "probability": 0.7304 + }, + { + "start": 13646.62, + "end": 13647.6, + "probability": 0.499 + }, + { + "start": 13657.78, + "end": 13659.0, + "probability": 0.3325 + }, + { + "start": 13661.9, + "end": 13663.2, + "probability": 0.2643 + }, + { + "start": 13664.44, + "end": 13666.26, + "probability": 0.2535 + }, + { + "start": 13666.9, + "end": 13669.98, + "probability": 0.5986 + }, + { + "start": 13670.04, + "end": 13675.28, + "probability": 0.9401 + }, + { + "start": 13675.36, + "end": 13677.44, + "probability": 0.9172 + }, + { + "start": 13678.42, + "end": 13679.68, + "probability": 0.7807 + }, + { + "start": 13679.74, + "end": 13681.04, + "probability": 0.8179 + }, + { + "start": 13681.18, + "end": 13684.66, + "probability": 0.9214 + }, + { + "start": 13686.78, + "end": 13689.84, + "probability": 0.0874 + }, + { + "start": 13690.04, + "end": 13690.9, + "probability": 0.0839 + }, + { + "start": 13690.9, + "end": 13693.04, + "probability": 0.8298 + }, + { + "start": 13693.73, + "end": 13696.03, + "probability": 0.4818 + }, + { + "start": 13696.46, + "end": 13697.16, + "probability": 0.4587 + }, + { + "start": 13697.94, + "end": 13701.26, + "probability": 0.8477 + }, + { + "start": 13716.32, + "end": 13718.68, + "probability": 0.8117 + }, + { + "start": 13722.34, + "end": 13723.46, + "probability": 0.5797 + }, + { + "start": 13724.9, + "end": 13727.06, + "probability": 0.8576 + }, + { + "start": 13728.38, + "end": 13728.72, + "probability": 0.522 + }, + { + "start": 13728.82, + "end": 13730.78, + "probability": 0.9858 + }, + { + "start": 13731.12, + "end": 13733.82, + "probability": 0.9928 + }, + { + "start": 13735.14, + "end": 13737.36, + "probability": 0.5803 + }, + { + "start": 13738.72, + "end": 13739.34, + "probability": 0.2986 + }, + { + "start": 13739.38, + "end": 13741.34, + "probability": 0.9927 + }, + { + "start": 13741.34, + "end": 13743.6, + "probability": 0.988 + }, + { + "start": 13744.86, + "end": 13747.64, + "probability": 0.4303 + }, + { + "start": 13748.3, + "end": 13751.12, + "probability": 0.9658 + }, + { + "start": 13752.08, + "end": 13756.76, + "probability": 0.9825 + }, + { + "start": 13756.84, + "end": 13757.6, + "probability": 0.9527 + }, + { + "start": 13758.22, + "end": 13762.98, + "probability": 0.9808 + }, + { + "start": 13763.12, + "end": 13764.06, + "probability": 0.627 + }, + { + "start": 13764.88, + "end": 13766.12, + "probability": 0.9876 + }, + { + "start": 13766.98, + "end": 13768.8, + "probability": 0.9915 + }, + { + "start": 13769.92, + "end": 13770.52, + "probability": 0.1712 + }, + { + "start": 13770.52, + "end": 13773.16, + "probability": 0.9943 + }, + { + "start": 13773.9, + "end": 13778.3, + "probability": 0.9948 + }, + { + "start": 13778.3, + "end": 13781.48, + "probability": 0.9942 + }, + { + "start": 13782.4, + "end": 13784.74, + "probability": 0.9841 + }, + { + "start": 13784.9, + "end": 13786.4, + "probability": 0.8051 + }, + { + "start": 13787.1, + "end": 13789.72, + "probability": 0.9846 + }, + { + "start": 13790.26, + "end": 13793.74, + "probability": 0.9495 + }, + { + "start": 13795.38, + "end": 13798.54, + "probability": 0.9543 + }, + { + "start": 13798.7, + "end": 13799.52, + "probability": 0.5378 + }, + { + "start": 13799.56, + "end": 13800.18, + "probability": 0.9572 + }, + { + "start": 13800.26, + "end": 13802.38, + "probability": 0.8576 + }, + { + "start": 13803.08, + "end": 13806.45, + "probability": 0.9945 + }, + { + "start": 13806.73, + "end": 13810.52, + "probability": 0.9908 + }, + { + "start": 13812.1, + "end": 13816.02, + "probability": 0.9823 + }, + { + "start": 13816.34, + "end": 13819.38, + "probability": 0.9104 + }, + { + "start": 13819.38, + "end": 13819.78, + "probability": 0.4162 + }, + { + "start": 13820.8, + "end": 13823.16, + "probability": 0.9858 + }, + { + "start": 13824.28, + "end": 13826.74, + "probability": 0.9837 + }, + { + "start": 13826.78, + "end": 13828.6, + "probability": 0.9723 + }, + { + "start": 13828.6, + "end": 13830.86, + "probability": 0.9954 + }, + { + "start": 13832.32, + "end": 13833.1, + "probability": 0.8355 + }, + { + "start": 13833.2, + "end": 13835.4, + "probability": 0.9719 + }, + { + "start": 13836.96, + "end": 13840.72, + "probability": 0.8877 + }, + { + "start": 13841.38, + "end": 13844.22, + "probability": 0.9677 + }, + { + "start": 13844.36, + "end": 13845.76, + "probability": 0.9897 + }, + { + "start": 13847.22, + "end": 13848.96, + "probability": 0.7367 + }, + { + "start": 13849.08, + "end": 13853.3, + "probability": 0.9351 + }, + { + "start": 13854.28, + "end": 13855.46, + "probability": 0.8863 + }, + { + "start": 13856.82, + "end": 13858.09, + "probability": 0.9987 + }, + { + "start": 13859.1, + "end": 13861.02, + "probability": 0.8962 + }, + { + "start": 13861.88, + "end": 13865.56, + "probability": 0.8787 + }, + { + "start": 13865.56, + "end": 13867.84, + "probability": 0.9862 + }, + { + "start": 13869.24, + "end": 13869.7, + "probability": 0.5453 + }, + { + "start": 13869.8, + "end": 13875.76, + "probability": 0.9883 + }, + { + "start": 13876.7, + "end": 13879.1, + "probability": 0.9982 + }, + { + "start": 13880.96, + "end": 13883.44, + "probability": 0.4731 + }, + { + "start": 13883.56, + "end": 13885.6, + "probability": 0.7886 + }, + { + "start": 13885.9, + "end": 13886.2, + "probability": 0.722 + }, + { + "start": 13887.88, + "end": 13893.97, + "probability": 0.9545 + }, + { + "start": 13894.56, + "end": 13895.36, + "probability": 0.795 + }, + { + "start": 13895.9, + "end": 13896.46, + "probability": 0.8695 + }, + { + "start": 13897.36, + "end": 13903.2, + "probability": 0.9736 + }, + { + "start": 13903.42, + "end": 13903.46, + "probability": 0.2531 + }, + { + "start": 13903.56, + "end": 13904.04, + "probability": 0.7156 + }, + { + "start": 13904.2, + "end": 13906.9, + "probability": 0.8334 + }, + { + "start": 13907.72, + "end": 13911.6, + "probability": 0.9824 + }, + { + "start": 13913.58, + "end": 13914.74, + "probability": 0.9885 + }, + { + "start": 13914.86, + "end": 13918.08, + "probability": 0.9835 + }, + { + "start": 13918.76, + "end": 13919.84, + "probability": 0.979 + }, + { + "start": 13919.98, + "end": 13920.7, + "probability": 0.4392 + }, + { + "start": 13920.88, + "end": 13923.36, + "probability": 0.8215 + }, + { + "start": 13923.8, + "end": 13924.4, + "probability": 0.9893 + }, + { + "start": 13926.2, + "end": 13930.28, + "probability": 0.9805 + }, + { + "start": 13930.48, + "end": 13931.5, + "probability": 0.5985 + }, + { + "start": 13932.4, + "end": 13938.38, + "probability": 0.9404 + }, + { + "start": 13940.46, + "end": 13941.22, + "probability": 0.8274 + }, + { + "start": 13941.7, + "end": 13947.68, + "probability": 0.8993 + }, + { + "start": 13948.26, + "end": 13951.7, + "probability": 0.9306 + }, + { + "start": 13952.12, + "end": 13954.39, + "probability": 0.9961 + }, + { + "start": 13955.06, + "end": 13955.92, + "probability": 0.9516 + }, + { + "start": 13957.64, + "end": 13957.9, + "probability": 0.7266 + }, + { + "start": 13958.06, + "end": 13959.36, + "probability": 0.926 + }, + { + "start": 13959.64, + "end": 13966.05, + "probability": 0.9819 + }, + { + "start": 13966.1, + "end": 13970.0, + "probability": 0.985 + }, + { + "start": 13970.52, + "end": 13971.8, + "probability": 0.8698 + }, + { + "start": 13972.56, + "end": 13975.12, + "probability": 0.9627 + }, + { + "start": 13975.7, + "end": 13981.3, + "probability": 0.9977 + }, + { + "start": 13981.7, + "end": 13985.64, + "probability": 0.9939 + }, + { + "start": 13986.1, + "end": 13987.48, + "probability": 0.868 + }, + { + "start": 13987.54, + "end": 13988.36, + "probability": 0.8648 + }, + { + "start": 13988.8, + "end": 13989.96, + "probability": 0.9326 + }, + { + "start": 13990.4, + "end": 13993.08, + "probability": 0.882 + }, + { + "start": 13993.24, + "end": 13993.54, + "probability": 0.1062 + }, + { + "start": 13994.22, + "end": 13995.28, + "probability": 0.1575 + }, + { + "start": 13995.3, + "end": 13998.5, + "probability": 0.8955 + }, + { + "start": 13998.86, + "end": 14004.32, + "probability": 0.9846 + }, + { + "start": 14004.86, + "end": 14009.96, + "probability": 0.9834 + }, + { + "start": 14010.74, + "end": 14015.22, + "probability": 0.9997 + }, + { + "start": 14015.8, + "end": 14022.06, + "probability": 0.9717 + }, + { + "start": 14022.52, + "end": 14023.06, + "probability": 0.9274 + }, + { + "start": 14023.22, + "end": 14025.28, + "probability": 0.9446 + }, + { + "start": 14025.96, + "end": 14027.0, + "probability": 0.8524 + }, + { + "start": 14028.04, + "end": 14032.14, + "probability": 0.9832 + }, + { + "start": 14032.54, + "end": 14033.9, + "probability": 0.9521 + }, + { + "start": 14034.74, + "end": 14036.78, + "probability": 0.9937 + }, + { + "start": 14037.42, + "end": 14038.4, + "probability": 0.8644 + }, + { + "start": 14038.92, + "end": 14039.59, + "probability": 0.8311 + }, + { + "start": 14040.26, + "end": 14040.96, + "probability": 0.927 + }, + { + "start": 14041.54, + "end": 14047.58, + "probability": 0.8431 + }, + { + "start": 14048.18, + "end": 14053.2, + "probability": 0.9397 + }, + { + "start": 14053.34, + "end": 14055.18, + "probability": 0.9883 + }, + { + "start": 14055.74, + "end": 14059.34, + "probability": 0.9915 + }, + { + "start": 14059.68, + "end": 14063.0, + "probability": 0.9984 + }, + { + "start": 14063.18, + "end": 14065.12, + "probability": 0.9812 + }, + { + "start": 14065.94, + "end": 14068.38, + "probability": 0.8976 + }, + { + "start": 14068.46, + "end": 14070.58, + "probability": 0.9951 + }, + { + "start": 14070.94, + "end": 14073.24, + "probability": 0.9911 + }, + { + "start": 14073.24, + "end": 14076.16, + "probability": 0.9976 + }, + { + "start": 14076.26, + "end": 14077.82, + "probability": 0.989 + }, + { + "start": 14078.62, + "end": 14081.56, + "probability": 0.9924 + }, + { + "start": 14081.66, + "end": 14083.7, + "probability": 0.987 + }, + { + "start": 14084.4, + "end": 14087.72, + "probability": 0.9731 + }, + { + "start": 14088.68, + "end": 14088.98, + "probability": 0.6653 + }, + { + "start": 14089.06, + "end": 14091.48, + "probability": 0.979 + }, + { + "start": 14091.66, + "end": 14093.38, + "probability": 0.9303 + }, + { + "start": 14093.68, + "end": 14098.48, + "probability": 0.9753 + }, + { + "start": 14099.02, + "end": 14099.64, + "probability": 0.9873 + }, + { + "start": 14101.91, + "end": 14106.5, + "probability": 0.9987 + }, + { + "start": 14107.4, + "end": 14110.88, + "probability": 0.9956 + }, + { + "start": 14111.08, + "end": 14112.24, + "probability": 0.7121 + }, + { + "start": 14113.26, + "end": 14119.72, + "probability": 0.9964 + }, + { + "start": 14119.72, + "end": 14123.98, + "probability": 0.9963 + }, + { + "start": 14124.48, + "end": 14127.36, + "probability": 0.9955 + }, + { + "start": 14127.36, + "end": 14130.5, + "probability": 0.9922 + }, + { + "start": 14130.86, + "end": 14133.76, + "probability": 0.9662 + }, + { + "start": 14133.76, + "end": 14139.1, + "probability": 0.8178 + }, + { + "start": 14139.98, + "end": 14141.14, + "probability": 0.8977 + }, + { + "start": 14141.48, + "end": 14143.02, + "probability": 0.9745 + }, + { + "start": 14143.16, + "end": 14144.82, + "probability": 0.9212 + }, + { + "start": 14145.14, + "end": 14147.06, + "probability": 0.9677 + }, + { + "start": 14147.86, + "end": 14151.26, + "probability": 0.9901 + }, + { + "start": 14151.6, + "end": 14155.74, + "probability": 0.9836 + }, + { + "start": 14156.82, + "end": 14158.4, + "probability": 0.7081 + }, + { + "start": 14158.46, + "end": 14161.19, + "probability": 0.6184 + }, + { + "start": 14161.36, + "end": 14163.4, + "probability": 0.7888 + }, + { + "start": 14164.54, + "end": 14166.22, + "probability": 0.863 + }, + { + "start": 14166.3, + "end": 14169.18, + "probability": 0.6814 + }, + { + "start": 14169.18, + "end": 14172.62, + "probability": 0.9697 + }, + { + "start": 14172.88, + "end": 14176.32, + "probability": 0.966 + }, + { + "start": 14176.48, + "end": 14177.36, + "probability": 0.9492 + }, + { + "start": 14177.4, + "end": 14182.38, + "probability": 0.998 + }, + { + "start": 14184.56, + "end": 14186.46, + "probability": 0.8889 + }, + { + "start": 14188.8, + "end": 14189.64, + "probability": 0.2683 + }, + { + "start": 14190.86, + "end": 14195.8, + "probability": 0.606 + }, + { + "start": 14198.9, + "end": 14199.48, + "probability": 0.6736 + }, + { + "start": 14200.88, + "end": 14203.1, + "probability": 0.9932 + }, + { + "start": 14203.54, + "end": 14205.4, + "probability": 0.8892 + }, + { + "start": 14206.72, + "end": 14207.18, + "probability": 0.6926 + }, + { + "start": 14208.72, + "end": 14213.34, + "probability": 0.9814 + }, + { + "start": 14213.96, + "end": 14215.42, + "probability": 0.9882 + }, + { + "start": 14218.94, + "end": 14220.54, + "probability": 0.8241 + }, + { + "start": 14223.16, + "end": 14224.86, + "probability": 0.7754 + }, + { + "start": 14225.68, + "end": 14229.74, + "probability": 0.8705 + }, + { + "start": 14231.76, + "end": 14236.74, + "probability": 0.9878 + }, + { + "start": 14237.68, + "end": 14240.98, + "probability": 0.9558 + }, + { + "start": 14242.06, + "end": 14244.54, + "probability": 0.4747 + }, + { + "start": 14245.94, + "end": 14246.66, + "probability": 0.8784 + }, + { + "start": 14248.24, + "end": 14249.64, + "probability": 0.4882 + }, + { + "start": 14249.66, + "end": 14250.14, + "probability": 0.8377 + }, + { + "start": 14250.3, + "end": 14252.72, + "probability": 0.7474 + }, + { + "start": 14253.78, + "end": 14254.66, + "probability": 0.4436 + }, + { + "start": 14254.72, + "end": 14258.44, + "probability": 0.9105 + }, + { + "start": 14259.02, + "end": 14262.56, + "probability": 0.9873 + }, + { + "start": 14263.64, + "end": 14265.52, + "probability": 0.7478 + }, + { + "start": 14265.98, + "end": 14266.22, + "probability": 0.4947 + }, + { + "start": 14267.14, + "end": 14270.44, + "probability": 0.981 + }, + { + "start": 14271.64, + "end": 14273.4, + "probability": 0.8121 + }, + { + "start": 14273.5, + "end": 14275.62, + "probability": 0.9294 + }, + { + "start": 14276.38, + "end": 14279.32, + "probability": 0.9901 + }, + { + "start": 14280.08, + "end": 14281.64, + "probability": 0.8906 + }, + { + "start": 14282.16, + "end": 14282.7, + "probability": 0.9355 + }, + { + "start": 14283.3, + "end": 14285.66, + "probability": 0.9351 + }, + { + "start": 14286.64, + "end": 14288.14, + "probability": 0.9041 + }, + { + "start": 14289.16, + "end": 14291.52, + "probability": 0.9528 + }, + { + "start": 14292.44, + "end": 14295.87, + "probability": 0.9637 + }, + { + "start": 14296.48, + "end": 14300.78, + "probability": 0.98 + }, + { + "start": 14300.78, + "end": 14304.86, + "probability": 0.9375 + }, + { + "start": 14306.7, + "end": 14308.2, + "probability": 0.7037 + }, + { + "start": 14308.58, + "end": 14311.66, + "probability": 0.7742 + }, + { + "start": 14312.46, + "end": 14313.24, + "probability": 0.7326 + }, + { + "start": 14314.14, + "end": 14316.06, + "probability": 0.9702 + }, + { + "start": 14316.32, + "end": 14319.88, + "probability": 0.9112 + }, + { + "start": 14319.96, + "end": 14320.6, + "probability": 0.7065 + }, + { + "start": 14321.14, + "end": 14323.12, + "probability": 0.9104 + }, + { + "start": 14323.66, + "end": 14324.87, + "probability": 0.9971 + }, + { + "start": 14325.8, + "end": 14326.0, + "probability": 0.0507 + }, + { + "start": 14326.04, + "end": 14327.72, + "probability": 0.6513 + }, + { + "start": 14328.34, + "end": 14330.08, + "probability": 0.9417 + }, + { + "start": 14331.04, + "end": 14331.88, + "probability": 0.9491 + }, + { + "start": 14332.74, + "end": 14333.72, + "probability": 0.993 + }, + { + "start": 14334.66, + "end": 14336.44, + "probability": 0.6029 + }, + { + "start": 14336.84, + "end": 14339.02, + "probability": 0.7747 + }, + { + "start": 14340.0, + "end": 14341.62, + "probability": 0.9207 + }, + { + "start": 14341.88, + "end": 14346.18, + "probability": 0.9789 + }, + { + "start": 14347.08, + "end": 14347.78, + "probability": 0.9663 + }, + { + "start": 14349.12, + "end": 14351.7, + "probability": 0.9989 + }, + { + "start": 14352.1, + "end": 14355.06, + "probability": 0.9485 + }, + { + "start": 14355.52, + "end": 14356.32, + "probability": 0.8289 + }, + { + "start": 14356.86, + "end": 14362.1, + "probability": 0.9532 + }, + { + "start": 14363.0, + "end": 14364.78, + "probability": 0.9476 + }, + { + "start": 14365.1, + "end": 14369.68, + "probability": 0.9684 + }, + { + "start": 14370.22, + "end": 14370.82, + "probability": 0.2539 + }, + { + "start": 14371.64, + "end": 14372.24, + "probability": 0.5899 + }, + { + "start": 14372.34, + "end": 14376.6, + "probability": 0.9667 + }, + { + "start": 14377.14, + "end": 14379.5, + "probability": 0.7834 + }, + { + "start": 14380.02, + "end": 14381.42, + "probability": 0.7896 + }, + { + "start": 14381.98, + "end": 14382.9, + "probability": 0.8837 + }, + { + "start": 14385.38, + "end": 14386.24, + "probability": 0.9916 + }, + { + "start": 14386.3, + "end": 14386.98, + "probability": 0.9232 + }, + { + "start": 14387.48, + "end": 14388.28, + "probability": 0.8768 + }, + { + "start": 14388.3, + "end": 14389.92, + "probability": 0.9545 + }, + { + "start": 14390.02, + "end": 14391.78, + "probability": 0.9312 + }, + { + "start": 14391.92, + "end": 14392.7, + "probability": 0.6149 + }, + { + "start": 14393.34, + "end": 14395.16, + "probability": 0.5983 + }, + { + "start": 14396.12, + "end": 14397.46, + "probability": 0.6869 + }, + { + "start": 14398.36, + "end": 14401.16, + "probability": 0.9863 + }, + { + "start": 14401.74, + "end": 14403.6, + "probability": 0.97 + }, + { + "start": 14404.08, + "end": 14405.98, + "probability": 0.9221 + }, + { + "start": 14406.18, + "end": 14407.28, + "probability": 0.9385 + }, + { + "start": 14407.42, + "end": 14411.12, + "probability": 0.8884 + }, + { + "start": 14412.26, + "end": 14414.16, + "probability": 0.915 + }, + { + "start": 14414.24, + "end": 14415.72, + "probability": 0.8397 + }, + { + "start": 14416.44, + "end": 14417.88, + "probability": 0.5117 + }, + { + "start": 14417.96, + "end": 14418.88, + "probability": 0.955 + }, + { + "start": 14418.88, + "end": 14419.44, + "probability": 0.5974 + }, + { + "start": 14419.86, + "end": 14420.9, + "probability": 0.8887 + }, + { + "start": 14421.36, + "end": 14422.7, + "probability": 0.7614 + }, + { + "start": 14423.42, + "end": 14425.34, + "probability": 0.7669 + }, + { + "start": 14427.04, + "end": 14428.46, + "probability": 0.9333 + }, + { + "start": 14428.98, + "end": 14429.96, + "probability": 0.6637 + }, + { + "start": 14430.02, + "end": 14433.5, + "probability": 0.9473 + }, + { + "start": 14434.08, + "end": 14438.86, + "probability": 0.9519 + }, + { + "start": 14439.44, + "end": 14442.22, + "probability": 0.7376 + }, + { + "start": 14442.3, + "end": 14444.44, + "probability": 0.6171 + }, + { + "start": 14444.64, + "end": 14448.78, + "probability": 0.9624 + }, + { + "start": 14449.44, + "end": 14451.94, + "probability": 0.9904 + }, + { + "start": 14452.1, + "end": 14454.06, + "probability": 0.7426 + }, + { + "start": 14455.78, + "end": 14459.0, + "probability": 0.9029 + }, + { + "start": 14459.92, + "end": 14465.94, + "probability": 0.9818 + }, + { + "start": 14465.94, + "end": 14470.56, + "probability": 0.8765 + }, + { + "start": 14470.68, + "end": 14471.14, + "probability": 0.6711 + }, + { + "start": 14471.76, + "end": 14472.84, + "probability": 0.8594 + }, + { + "start": 14473.66, + "end": 14477.46, + "probability": 0.9795 + }, + { + "start": 14480.52, + "end": 14483.06, + "probability": 0.777 + }, + { + "start": 14483.32, + "end": 14483.94, + "probability": 0.5051 + }, + { + "start": 14484.02, + "end": 14485.78, + "probability": 0.8823 + }, + { + "start": 14486.04, + "end": 14487.0, + "probability": 0.6903 + }, + { + "start": 14487.08, + "end": 14488.41, + "probability": 0.591 + }, + { + "start": 14488.68, + "end": 14490.1, + "probability": 0.9429 + }, + { + "start": 14490.7, + "end": 14493.7, + "probability": 0.8916 + }, + { + "start": 14495.22, + "end": 14496.2, + "probability": 0.7565 + }, + { + "start": 14496.8, + "end": 14497.92, + "probability": 0.9723 + }, + { + "start": 14498.8, + "end": 14501.58, + "probability": 0.9904 + }, + { + "start": 14501.96, + "end": 14503.52, + "probability": 0.6958 + }, + { + "start": 14503.64, + "end": 14504.24, + "probability": 0.8904 + }, + { + "start": 14504.84, + "end": 14506.46, + "probability": 0.86 + }, + { + "start": 14506.58, + "end": 14508.98, + "probability": 0.9491 + }, + { + "start": 14509.34, + "end": 14510.46, + "probability": 0.7551 + }, + { + "start": 14511.4, + "end": 14513.3, + "probability": 0.4611 + }, + { + "start": 14513.58, + "end": 14515.62, + "probability": 0.7085 + }, + { + "start": 14517.71, + "end": 14520.6, + "probability": 0.6252 + }, + { + "start": 14521.3, + "end": 14522.44, + "probability": 0.7319 + }, + { + "start": 14524.08, + "end": 14525.34, + "probability": 0.9937 + }, + { + "start": 14525.78, + "end": 14527.7, + "probability": 0.9254 + }, + { + "start": 14528.34, + "end": 14530.74, + "probability": 0.9984 + }, + { + "start": 14532.88, + "end": 14536.8, + "probability": 0.75 + }, + { + "start": 14537.2, + "end": 14540.54, + "probability": 0.9644 + }, + { + "start": 14541.68, + "end": 14543.04, + "probability": 0.9344 + }, + { + "start": 14543.76, + "end": 14544.3, + "probability": 0.8592 + }, + { + "start": 14545.08, + "end": 14545.78, + "probability": 0.8308 + }, + { + "start": 14546.66, + "end": 14548.65, + "probability": 0.9104 + }, + { + "start": 14549.02, + "end": 14550.12, + "probability": 0.9451 + }, + { + "start": 14550.96, + "end": 14554.18, + "probability": 0.9559 + }, + { + "start": 14554.88, + "end": 14555.46, + "probability": 0.8722 + }, + { + "start": 14555.56, + "end": 14555.94, + "probability": 0.8146 + }, + { + "start": 14556.12, + "end": 14556.48, + "probability": 0.7642 + }, + { + "start": 14556.58, + "end": 14556.98, + "probability": 0.8383 + }, + { + "start": 14557.24, + "end": 14558.46, + "probability": 0.8308 + }, + { + "start": 14558.58, + "end": 14561.12, + "probability": 0.9453 + }, + { + "start": 14562.12, + "end": 14563.58, + "probability": 0.9521 + }, + { + "start": 14565.0, + "end": 14566.76, + "probability": 0.7039 + }, + { + "start": 14570.52, + "end": 14573.18, + "probability": 0.7692 + }, + { + "start": 14574.46, + "end": 14579.28, + "probability": 0.8533 + }, + { + "start": 14580.12, + "end": 14583.62, + "probability": 0.9565 + }, + { + "start": 14583.76, + "end": 14584.76, + "probability": 0.7237 + }, + { + "start": 14585.6, + "end": 14585.96, + "probability": 0.3231 + }, + { + "start": 14586.08, + "end": 14587.08, + "probability": 0.8817 + }, + { + "start": 14587.32, + "end": 14589.78, + "probability": 0.9661 + }, + { + "start": 14589.9, + "end": 14591.56, + "probability": 0.8476 + }, + { + "start": 14592.42, + "end": 14593.06, + "probability": 0.6053 + }, + { + "start": 14593.96, + "end": 14599.84, + "probability": 0.6845 + }, + { + "start": 14600.34, + "end": 14602.12, + "probability": 0.2307 + }, + { + "start": 14603.58, + "end": 14605.06, + "probability": 0.3661 + }, + { + "start": 14605.06, + "end": 14610.6, + "probability": 0.997 + }, + { + "start": 14610.96, + "end": 14611.72, + "probability": 0.6338 + }, + { + "start": 14611.88, + "end": 14613.34, + "probability": 0.9374 + }, + { + "start": 14613.52, + "end": 14614.28, + "probability": 0.9161 + }, + { + "start": 14615.14, + "end": 14616.18, + "probability": 0.6527 + }, + { + "start": 14617.16, + "end": 14617.84, + "probability": 0.7288 + }, + { + "start": 14618.04, + "end": 14619.64, + "probability": 0.8266 + }, + { + "start": 14620.36, + "end": 14620.88, + "probability": 0.3444 + }, + { + "start": 14621.18, + "end": 14625.86, + "probability": 0.8193 + }, + { + "start": 14626.6, + "end": 14629.92, + "probability": 0.5836 + }, + { + "start": 14630.0, + "end": 14630.84, + "probability": 0.7818 + }, + { + "start": 14631.86, + "end": 14634.58, + "probability": 0.9673 + }, + { + "start": 14635.38, + "end": 14638.6, + "probability": 0.9857 + }, + { + "start": 14638.6, + "end": 14642.42, + "probability": 0.9038 + }, + { + "start": 14643.28, + "end": 14648.18, + "probability": 0.8729 + }, + { + "start": 14651.16, + "end": 14656.02, + "probability": 0.8944 + }, + { + "start": 14656.02, + "end": 14659.8, + "probability": 0.9858 + }, + { + "start": 14660.46, + "end": 14663.02, + "probability": 0.998 + }, + { + "start": 14664.06, + "end": 14667.52, + "probability": 0.8073 + }, + { + "start": 14668.1, + "end": 14671.04, + "probability": 0.8127 + }, + { + "start": 14671.86, + "end": 14674.54, + "probability": 0.9404 + }, + { + "start": 14675.2, + "end": 14676.58, + "probability": 0.7918 + }, + { + "start": 14676.68, + "end": 14678.18, + "probability": 0.9937 + }, + { + "start": 14679.12, + "end": 14682.14, + "probability": 0.9307 + }, + { + "start": 14682.48, + "end": 14683.5, + "probability": 0.9878 + }, + { + "start": 14684.34, + "end": 14686.64, + "probability": 0.8006 + }, + { + "start": 14687.28, + "end": 14687.6, + "probability": 0.2199 + }, + { + "start": 14688.14, + "end": 14688.3, + "probability": 0.5457 + }, + { + "start": 14689.56, + "end": 14690.45, + "probability": 0.9467 + }, + { + "start": 14691.74, + "end": 14692.72, + "probability": 0.9229 + }, + { + "start": 14692.92, + "end": 14696.5, + "probability": 0.6878 + }, + { + "start": 14696.54, + "end": 14696.88, + "probability": 0.4602 + }, + { + "start": 14697.1, + "end": 14698.7, + "probability": 0.8679 + }, + { + "start": 14702.52, + "end": 14703.24, + "probability": 0.1579 + }, + { + "start": 14704.54, + "end": 14706.68, + "probability": 0.9569 + }, + { + "start": 14707.56, + "end": 14713.0, + "probability": 0.9036 + }, + { + "start": 14726.0, + "end": 14727.0, + "probability": 0.3785 + }, + { + "start": 14727.72, + "end": 14728.8, + "probability": 0.7856 + }, + { + "start": 14731.92, + "end": 14736.86, + "probability": 0.9165 + }, + { + "start": 14736.9, + "end": 14739.82, + "probability": 0.7341 + }, + { + "start": 14740.6, + "end": 14745.56, + "probability": 0.9326 + }, + { + "start": 14747.52, + "end": 14748.48, + "probability": 0.8868 + }, + { + "start": 14749.82, + "end": 14751.88, + "probability": 0.9951 + }, + { + "start": 14753.82, + "end": 14756.04, + "probability": 0.985 + }, + { + "start": 14757.0, + "end": 14759.62, + "probability": 0.8809 + }, + { + "start": 14761.12, + "end": 14762.78, + "probability": 0.8473 + }, + { + "start": 14763.62, + "end": 14765.86, + "probability": 0.7412 + }, + { + "start": 14767.38, + "end": 14770.72, + "probability": 0.9409 + }, + { + "start": 14772.02, + "end": 14773.52, + "probability": 0.9476 + }, + { + "start": 14773.58, + "end": 14775.26, + "probability": 0.7808 + }, + { + "start": 14777.14, + "end": 14781.72, + "probability": 0.8153 + }, + { + "start": 14783.2, + "end": 14786.32, + "probability": 0.7282 + }, + { + "start": 14788.42, + "end": 14792.2, + "probability": 0.8302 + }, + { + "start": 14793.58, + "end": 14795.36, + "probability": 0.7509 + }, + { + "start": 14796.56, + "end": 14798.52, + "probability": 0.8891 + }, + { + "start": 14799.62, + "end": 14801.37, + "probability": 0.7437 + }, + { + "start": 14801.8, + "end": 14804.82, + "probability": 0.8929 + }, + { + "start": 14805.22, + "end": 14806.16, + "probability": 0.7975 + }, + { + "start": 14807.38, + "end": 14809.54, + "probability": 0.9489 + }, + { + "start": 14810.42, + "end": 14811.18, + "probability": 0.5057 + }, + { + "start": 14812.48, + "end": 14815.42, + "probability": 0.9889 + }, + { + "start": 14816.24, + "end": 14818.42, + "probability": 0.7518 + }, + { + "start": 14819.48, + "end": 14821.92, + "probability": 0.9896 + }, + { + "start": 14822.62, + "end": 14826.3, + "probability": 0.8078 + }, + { + "start": 14827.2, + "end": 14828.02, + "probability": 0.6861 + }, + { + "start": 14829.1, + "end": 14831.6, + "probability": 0.9142 + }, + { + "start": 14832.66, + "end": 14836.46, + "probability": 0.921 + }, + { + "start": 14838.08, + "end": 14843.14, + "probability": 0.8956 + }, + { + "start": 14844.44, + "end": 14846.52, + "probability": 0.7886 + }, + { + "start": 14847.2, + "end": 14849.06, + "probability": 0.9977 + }, + { + "start": 14850.4, + "end": 14851.96, + "probability": 0.9319 + }, + { + "start": 14853.14, + "end": 14855.4, + "probability": 0.9586 + }, + { + "start": 14856.56, + "end": 14857.18, + "probability": 0.8849 + }, + { + "start": 14857.58, + "end": 14861.94, + "probability": 0.4956 + }, + { + "start": 14862.04, + "end": 14862.16, + "probability": 0.1638 + }, + { + "start": 14862.94, + "end": 14864.4, + "probability": 0.0205 + }, + { + "start": 14864.78, + "end": 14864.9, + "probability": 0.0415 + }, + { + "start": 14865.2, + "end": 14866.7, + "probability": 0.3703 + }, + { + "start": 14866.86, + "end": 14870.82, + "probability": 0.3309 + }, + { + "start": 14870.86, + "end": 14871.89, + "probability": 0.3822 + }, + { + "start": 14872.02, + "end": 14872.8, + "probability": 0.015 + }, + { + "start": 14874.66, + "end": 14875.3, + "probability": 0.1959 + }, + { + "start": 14875.3, + "end": 14879.66, + "probability": 0.7935 + }, + { + "start": 14880.1, + "end": 14881.94, + "probability": 0.9956 + }, + { + "start": 14882.52, + "end": 14883.62, + "probability": 0.9281 + }, + { + "start": 14883.88, + "end": 14884.98, + "probability": 0.9035 + }, + { + "start": 14885.5, + "end": 14886.02, + "probability": 0.7297 + }, + { + "start": 14887.36, + "end": 14893.5, + "probability": 0.7564 + }, + { + "start": 14893.82, + "end": 14895.96, + "probability": 0.9717 + }, + { + "start": 14896.08, + "end": 14897.0, + "probability": 0.988 + }, + { + "start": 14897.38, + "end": 14898.7, + "probability": 0.8312 + }, + { + "start": 14899.74, + "end": 14901.84, + "probability": 0.9651 + }, + { + "start": 14902.46, + "end": 14905.06, + "probability": 0.7717 + }, + { + "start": 14905.28, + "end": 14906.5, + "probability": 0.9253 + }, + { + "start": 14907.06, + "end": 14909.74, + "probability": 0.9226 + }, + { + "start": 14911.56, + "end": 14914.12, + "probability": 0.6066 + }, + { + "start": 14914.24, + "end": 14916.74, + "probability": 0.9097 + }, + { + "start": 14917.28, + "end": 14918.02, + "probability": 0.518 + }, + { + "start": 14918.64, + "end": 14919.64, + "probability": 0.8787 + }, + { + "start": 14920.2, + "end": 14925.46, + "probability": 0.9972 + }, + { + "start": 14926.18, + "end": 14930.98, + "probability": 0.9943 + }, + { + "start": 14931.5, + "end": 14932.24, + "probability": 0.7454 + }, + { + "start": 14933.02, + "end": 14934.23, + "probability": 0.7454 + }, + { + "start": 14934.76, + "end": 14936.28, + "probability": 0.9958 + }, + { + "start": 14939.18, + "end": 14941.7, + "probability": 0.7842 + }, + { + "start": 14942.9, + "end": 14946.26, + "probability": 0.544 + }, + { + "start": 14947.52, + "end": 14950.98, + "probability": 0.8553 + }, + { + "start": 14952.3, + "end": 14959.76, + "probability": 0.8484 + }, + { + "start": 14960.68, + "end": 14962.16, + "probability": 0.9149 + }, + { + "start": 14962.24, + "end": 14962.9, + "probability": 0.8145 + }, + { + "start": 14963.28, + "end": 14963.82, + "probability": 0.6137 + }, + { + "start": 14963.9, + "end": 14964.88, + "probability": 0.981 + }, + { + "start": 14966.24, + "end": 14973.16, + "probability": 0.9824 + }, + { + "start": 14973.5, + "end": 14974.54, + "probability": 0.6375 + }, + { + "start": 14975.22, + "end": 14977.44, + "probability": 0.9617 + }, + { + "start": 14977.56, + "end": 14981.42, + "probability": 0.8622 + }, + { + "start": 14981.5, + "end": 14983.62, + "probability": 0.9922 + }, + { + "start": 14983.7, + "end": 14984.06, + "probability": 0.3857 + }, + { + "start": 14984.2, + "end": 14984.9, + "probability": 0.7066 + }, + { + "start": 14986.4, + "end": 14988.34, + "probability": 0.9473 + }, + { + "start": 14989.48, + "end": 14990.0, + "probability": 0.9745 + }, + { + "start": 14990.6, + "end": 14993.06, + "probability": 0.964 + }, + { + "start": 14993.32, + "end": 14993.5, + "probability": 0.5153 + }, + { + "start": 14993.52, + "end": 14994.18, + "probability": 0.9609 + }, + { + "start": 14994.24, + "end": 14997.28, + "probability": 0.9823 + }, + { + "start": 14997.92, + "end": 15001.4, + "probability": 0.9297 + }, + { + "start": 15001.84, + "end": 15003.78, + "probability": 0.9809 + }, + { + "start": 15003.94, + "end": 15005.08, + "probability": 0.9823 + }, + { + "start": 15005.12, + "end": 15005.86, + "probability": 0.6789 + }, + { + "start": 15005.88, + "end": 15006.32, + "probability": 0.8068 + }, + { + "start": 15006.48, + "end": 15007.4, + "probability": 0.8265 + }, + { + "start": 15009.5, + "end": 15010.26, + "probability": 0.3725 + }, + { + "start": 15010.6, + "end": 15011.4, + "probability": 0.744 + }, + { + "start": 15012.64, + "end": 15014.96, + "probability": 0.9701 + }, + { + "start": 15015.74, + "end": 15019.92, + "probability": 0.9766 + }, + { + "start": 15020.6, + "end": 15022.12, + "probability": 0.6564 + }, + { + "start": 15022.46, + "end": 15024.34, + "probability": 0.9839 + }, + { + "start": 15025.14, + "end": 15029.24, + "probability": 0.9006 + }, + { + "start": 15029.88, + "end": 15034.64, + "probability": 0.653 + }, + { + "start": 15034.74, + "end": 15036.3, + "probability": 0.989 + }, + { + "start": 15036.3, + "end": 15037.24, + "probability": 0.3536 + }, + { + "start": 15037.28, + "end": 15039.32, + "probability": 0.8956 + }, + { + "start": 15039.36, + "end": 15040.18, + "probability": 0.8921 + }, + { + "start": 15040.64, + "end": 15043.02, + "probability": 0.7893 + }, + { + "start": 15043.12, + "end": 15043.96, + "probability": 0.9386 + }, + { + "start": 15045.5, + "end": 15048.24, + "probability": 0.9917 + }, + { + "start": 15048.44, + "end": 15052.36, + "probability": 0.9957 + }, + { + "start": 15052.5, + "end": 15053.3, + "probability": 0.8552 + }, + { + "start": 15053.4, + "end": 15054.06, + "probability": 0.4386 + }, + { + "start": 15054.82, + "end": 15055.96, + "probability": 0.9205 + }, + { + "start": 15056.68, + "end": 15057.12, + "probability": 0.6144 + }, + { + "start": 15058.12, + "end": 15059.9, + "probability": 0.9667 + }, + { + "start": 15060.56, + "end": 15063.52, + "probability": 0.9727 + }, + { + "start": 15064.52, + "end": 15066.8, + "probability": 0.9912 + }, + { + "start": 15067.16, + "end": 15069.3, + "probability": 0.9646 + }, + { + "start": 15069.38, + "end": 15071.6, + "probability": 0.873 + }, + { + "start": 15072.64, + "end": 15077.74, + "probability": 0.8618 + }, + { + "start": 15078.02, + "end": 15080.4, + "probability": 0.0786 + }, + { + "start": 15080.56, + "end": 15080.62, + "probability": 0.2468 + }, + { + "start": 15080.62, + "end": 15081.68, + "probability": 0.6472 + }, + { + "start": 15082.62, + "end": 15086.14, + "probability": 0.5248 + }, + { + "start": 15086.5, + "end": 15089.1, + "probability": 0.8909 + }, + { + "start": 15089.1, + "end": 15090.04, + "probability": 0.276 + }, + { + "start": 15091.46, + "end": 15095.84, + "probability": 0.9806 + }, + { + "start": 15095.84, + "end": 15097.64, + "probability": 0.8416 + }, + { + "start": 15098.9, + "end": 15103.02, + "probability": 0.9963 + }, + { + "start": 15104.0, + "end": 15105.0, + "probability": 0.5916 + }, + { + "start": 15105.02, + "end": 15108.72, + "probability": 0.3345 + }, + { + "start": 15110.5, + "end": 15113.06, + "probability": 0.7657 + }, + { + "start": 15113.06, + "end": 15114.3, + "probability": 0.4282 + }, + { + "start": 15115.58, + "end": 15116.88, + "probability": 0.8688 + }, + { + "start": 15117.1, + "end": 15118.52, + "probability": 0.8601 + }, + { + "start": 15119.34, + "end": 15119.86, + "probability": 0.3589 + }, + { + "start": 15119.86, + "end": 15124.34, + "probability": 0.4936 + }, + { + "start": 15125.84, + "end": 15126.86, + "probability": 0.1196 + }, + { + "start": 15127.34, + "end": 15132.6, + "probability": 0.5901 + }, + { + "start": 15149.46, + "end": 15150.02, + "probability": 0.2537 + }, + { + "start": 15150.02, + "end": 15152.25, + "probability": 0.7961 + }, + { + "start": 15152.4, + "end": 15154.7, + "probability": 0.7416 + }, + { + "start": 15156.0, + "end": 15157.54, + "probability": 0.3373 + }, + { + "start": 15158.64, + "end": 15158.78, + "probability": 0.0522 + }, + { + "start": 15158.78, + "end": 15159.74, + "probability": 0.4135 + }, + { + "start": 15161.02, + "end": 15164.84, + "probability": 0.7784 + }, + { + "start": 15164.9, + "end": 15165.84, + "probability": 0.7507 + }, + { + "start": 15166.04, + "end": 15167.72, + "probability": 0.7469 + }, + { + "start": 15168.46, + "end": 15170.0, + "probability": 0.8749 + }, + { + "start": 15170.46, + "end": 15170.62, + "probability": 0.0366 + }, + { + "start": 15170.62, + "end": 15170.62, + "probability": 0.3795 + }, + { + "start": 15170.62, + "end": 15170.62, + "probability": 0.5166 + }, + { + "start": 15170.62, + "end": 15170.62, + "probability": 0.5369 + }, + { + "start": 15170.62, + "end": 15170.62, + "probability": 0.0117 + }, + { + "start": 15170.62, + "end": 15170.62, + "probability": 0.0356 + }, + { + "start": 15170.62, + "end": 15171.78, + "probability": 0.2199 + }, + { + "start": 15181.32, + "end": 15181.38, + "probability": 0.4384 + }, + { + "start": 15189.22, + "end": 15189.7, + "probability": 0.7107 + }, + { + "start": 15189.82, + "end": 15190.04, + "probability": 0.8188 + }, + { + "start": 15190.1, + "end": 15190.54, + "probability": 0.9058 + }, + { + "start": 15190.98, + "end": 15193.52, + "probability": 0.9827 + }, + { + "start": 15193.76, + "end": 15195.14, + "probability": 0.6353 + }, + { + "start": 15195.22, + "end": 15198.64, + "probability": 0.9961 + }, + { + "start": 15199.34, + "end": 15201.18, + "probability": 0.8724 + }, + { + "start": 15201.58, + "end": 15202.18, + "probability": 0.6541 + }, + { + "start": 15202.2, + "end": 15205.54, + "probability": 0.4825 + }, + { + "start": 15205.56, + "end": 15207.28, + "probability": 0.6776 + }, + { + "start": 15207.44, + "end": 15208.72, + "probability": 0.6716 + }, + { + "start": 15209.0, + "end": 15211.42, + "probability": 0.7568 + }, + { + "start": 15212.86, + "end": 15215.96, + "probability": 0.6958 + }, + { + "start": 15217.08, + "end": 15221.36, + "probability": 0.9984 + }, + { + "start": 15221.94, + "end": 15225.16, + "probability": 0.8095 + }, + { + "start": 15225.78, + "end": 15226.52, + "probability": 0.9581 + }, + { + "start": 15227.08, + "end": 15228.1, + "probability": 0.9272 + }, + { + "start": 15229.22, + "end": 15231.48, + "probability": 0.998 + }, + { + "start": 15232.06, + "end": 15232.88, + "probability": 0.5565 + }, + { + "start": 15233.02, + "end": 15233.78, + "probability": 0.6525 + }, + { + "start": 15233.96, + "end": 15236.04, + "probability": 0.98 + }, + { + "start": 15236.48, + "end": 15236.98, + "probability": 0.9488 + }, + { + "start": 15237.36, + "end": 15238.7, + "probability": 0.9421 + }, + { + "start": 15240.02, + "end": 15242.5, + "probability": 0.7731 + }, + { + "start": 15243.16, + "end": 15245.6, + "probability": 0.9352 + }, + { + "start": 15247.0, + "end": 15250.7, + "probability": 0.9729 + }, + { + "start": 15250.84, + "end": 15253.0, + "probability": 0.7317 + }, + { + "start": 15253.02, + "end": 15256.16, + "probability": 0.9396 + }, + { + "start": 15257.76, + "end": 15261.26, + "probability": 0.9529 + }, + { + "start": 15261.82, + "end": 15263.24, + "probability": 0.9961 + }, + { + "start": 15264.76, + "end": 15268.46, + "probability": 0.9985 + }, + { + "start": 15268.76, + "end": 15269.28, + "probability": 0.875 + }, + { + "start": 15269.36, + "end": 15269.78, + "probability": 0.9777 + }, + { + "start": 15269.88, + "end": 15270.32, + "probability": 0.5088 + }, + { + "start": 15272.14, + "end": 15276.34, + "probability": 0.9982 + }, + { + "start": 15276.34, + "end": 15281.08, + "probability": 0.9942 + }, + { + "start": 15282.02, + "end": 15285.32, + "probability": 0.9356 + }, + { + "start": 15285.62, + "end": 15289.76, + "probability": 0.9937 + }, + { + "start": 15290.3, + "end": 15292.56, + "probability": 0.9883 + }, + { + "start": 15292.84, + "end": 15294.8, + "probability": 0.9493 + }, + { + "start": 15295.68, + "end": 15299.64, + "probability": 0.9905 + }, + { + "start": 15299.7, + "end": 15301.68, + "probability": 0.872 + }, + { + "start": 15303.3, + "end": 15306.58, + "probability": 0.9561 + }, + { + "start": 15307.36, + "end": 15307.88, + "probability": 0.8333 + }, + { + "start": 15308.42, + "end": 15312.02, + "probability": 0.9733 + }, + { + "start": 15313.48, + "end": 15314.2, + "probability": 0.8324 + }, + { + "start": 15314.54, + "end": 15317.12, + "probability": 0.9604 + }, + { + "start": 15318.1, + "end": 15322.02, + "probability": 0.8698 + }, + { + "start": 15323.96, + "end": 15329.04, + "probability": 0.9913 + }, + { + "start": 15329.82, + "end": 15330.99, + "probability": 0.8877 + }, + { + "start": 15332.34, + "end": 15335.2, + "probability": 0.9297 + }, + { + "start": 15336.98, + "end": 15340.9, + "probability": 0.8096 + }, + { + "start": 15341.44, + "end": 15342.54, + "probability": 0.8944 + }, + { + "start": 15344.92, + "end": 15346.02, + "probability": 0.8179 + }, + { + "start": 15346.58, + "end": 15349.16, + "probability": 0.9819 + }, + { + "start": 15350.9, + "end": 15357.6, + "probability": 0.9563 + }, + { + "start": 15358.22, + "end": 15358.92, + "probability": 0.8806 + }, + { + "start": 15359.2, + "end": 15360.42, + "probability": 0.7472 + }, + { + "start": 15360.48, + "end": 15365.98, + "probability": 0.7672 + }, + { + "start": 15366.68, + "end": 15370.42, + "probability": 0.9827 + }, + { + "start": 15370.92, + "end": 15372.16, + "probability": 0.9951 + }, + { + "start": 15372.92, + "end": 15379.52, + "probability": 0.9489 + }, + { + "start": 15380.38, + "end": 15384.62, + "probability": 0.9968 + }, + { + "start": 15384.62, + "end": 15390.62, + "probability": 0.9589 + }, + { + "start": 15391.86, + "end": 15393.28, + "probability": 0.932 + }, + { + "start": 15394.28, + "end": 15396.54, + "probability": 0.9646 + }, + { + "start": 15396.74, + "end": 15402.08, + "probability": 0.96 + }, + { + "start": 15402.58, + "end": 15406.52, + "probability": 0.8887 + }, + { + "start": 15407.06, + "end": 15410.88, + "probability": 0.9546 + }, + { + "start": 15412.18, + "end": 15417.16, + "probability": 0.7456 + }, + { + "start": 15417.64, + "end": 15418.44, + "probability": 0.7608 + }, + { + "start": 15419.14, + "end": 15420.36, + "probability": 0.9446 + }, + { + "start": 15420.94, + "end": 15422.98, + "probability": 0.95 + }, + { + "start": 15423.68, + "end": 15426.62, + "probability": 0.8655 + }, + { + "start": 15426.92, + "end": 15428.34, + "probability": 0.9066 + }, + { + "start": 15428.74, + "end": 15429.44, + "probability": 0.9907 + }, + { + "start": 15430.44, + "end": 15432.16, + "probability": 0.7738 + }, + { + "start": 15432.78, + "end": 15437.38, + "probability": 0.9541 + }, + { + "start": 15438.34, + "end": 15440.58, + "probability": 0.995 + }, + { + "start": 15441.2, + "end": 15443.34, + "probability": 0.9937 + }, + { + "start": 15444.22, + "end": 15444.9, + "probability": 0.8075 + }, + { + "start": 15444.94, + "end": 15445.7, + "probability": 0.7768 + }, + { + "start": 15445.84, + "end": 15449.44, + "probability": 0.9741 + }, + { + "start": 15450.24, + "end": 15455.16, + "probability": 0.7425 + }, + { + "start": 15456.54, + "end": 15459.2, + "probability": 0.9305 + }, + { + "start": 15460.12, + "end": 15463.84, + "probability": 0.9902 + }, + { + "start": 15464.5, + "end": 15468.38, + "probability": 0.9873 + }, + { + "start": 15469.14, + "end": 15472.16, + "probability": 0.97 + }, + { + "start": 15472.78, + "end": 15475.52, + "probability": 0.8097 + }, + { + "start": 15475.88, + "end": 15481.9, + "probability": 0.9713 + }, + { + "start": 15482.28, + "end": 15483.28, + "probability": 0.9253 + }, + { + "start": 15483.88, + "end": 15486.6, + "probability": 0.9789 + }, + { + "start": 15487.32, + "end": 15488.24, + "probability": 0.6645 + }, + { + "start": 15488.6, + "end": 15489.7, + "probability": 0.9764 + }, + { + "start": 15489.78, + "end": 15492.86, + "probability": 0.8194 + }, + { + "start": 15493.24, + "end": 15495.28, + "probability": 0.685 + }, + { + "start": 15495.7, + "end": 15496.72, + "probability": 0.662 + }, + { + "start": 15497.18, + "end": 15500.28, + "probability": 0.8876 + }, + { + "start": 15500.72, + "end": 15501.72, + "probability": 0.868 + }, + { + "start": 15502.22, + "end": 15506.06, + "probability": 0.9448 + }, + { + "start": 15506.52, + "end": 15509.82, + "probability": 0.9686 + }, + { + "start": 15509.82, + "end": 15511.26, + "probability": 0.7831 + }, + { + "start": 15511.74, + "end": 15514.1, + "probability": 0.9934 + }, + { + "start": 15514.72, + "end": 15517.38, + "probability": 0.9732 + }, + { + "start": 15517.82, + "end": 15522.14, + "probability": 0.9861 + }, + { + "start": 15522.18, + "end": 15523.66, + "probability": 0.5403 + }, + { + "start": 15524.0, + "end": 15525.0, + "probability": 0.955 + }, + { + "start": 15525.78, + "end": 15527.36, + "probability": 0.9775 + }, + { + "start": 15527.56, + "end": 15528.28, + "probability": 0.2746 + }, + { + "start": 15528.38, + "end": 15531.2, + "probability": 0.7108 + }, + { + "start": 15532.62, + "end": 15533.76, + "probability": 0.9352 + }, + { + "start": 15534.74, + "end": 15538.86, + "probability": 0.9375 + }, + { + "start": 15539.4, + "end": 15543.06, + "probability": 0.9922 + }, + { + "start": 15544.32, + "end": 15550.64, + "probability": 0.9789 + }, + { + "start": 15551.34, + "end": 15557.8, + "probability": 0.9883 + }, + { + "start": 15558.42, + "end": 15560.54, + "probability": 0.8345 + }, + { + "start": 15561.26, + "end": 15565.22, + "probability": 0.9902 + }, + { + "start": 15565.92, + "end": 15571.38, + "probability": 0.9987 + }, + { + "start": 15571.56, + "end": 15572.08, + "probability": 0.9418 + }, + { + "start": 15572.32, + "end": 15573.02, + "probability": 0.9382 + }, + { + "start": 15573.1, + "end": 15573.74, + "probability": 0.5132 + }, + { + "start": 15573.98, + "end": 15575.4, + "probability": 0.9894 + }, + { + "start": 15576.02, + "end": 15577.88, + "probability": 0.806 + }, + { + "start": 15578.16, + "end": 15579.92, + "probability": 0.8393 + }, + { + "start": 15596.06, + "end": 15596.42, + "probability": 0.2583 + }, + { + "start": 15596.68, + "end": 15598.64, + "probability": 0.6962 + }, + { + "start": 15602.06, + "end": 15603.32, + "probability": 0.5816 + }, + { + "start": 15604.0, + "end": 15604.74, + "probability": 0.6723 + }, + { + "start": 15605.72, + "end": 15606.74, + "probability": 0.8579 + }, + { + "start": 15607.66, + "end": 15607.84, + "probability": 0.6755 + }, + { + "start": 15607.92, + "end": 15608.82, + "probability": 0.9814 + }, + { + "start": 15608.86, + "end": 15609.6, + "probability": 0.8908 + }, + { + "start": 15609.74, + "end": 15612.16, + "probability": 0.9944 + }, + { + "start": 15613.0, + "end": 15616.94, + "probability": 0.9925 + }, + { + "start": 15617.7, + "end": 15622.1, + "probability": 0.9838 + }, + { + "start": 15622.1, + "end": 15625.34, + "probability": 0.9744 + }, + { + "start": 15625.92, + "end": 15626.54, + "probability": 0.9176 + }, + { + "start": 15629.28, + "end": 15632.5, + "probability": 0.952 + }, + { + "start": 15633.04, + "end": 15635.32, + "probability": 0.9557 + }, + { + "start": 15636.0, + "end": 15640.74, + "probability": 0.9506 + }, + { + "start": 15641.72, + "end": 15645.1, + "probability": 0.9693 + }, + { + "start": 15645.18, + "end": 15645.92, + "probability": 0.7164 + }, + { + "start": 15646.64, + "end": 15646.88, + "probability": 0.3778 + }, + { + "start": 15646.96, + "end": 15649.62, + "probability": 0.9438 + }, + { + "start": 15649.8, + "end": 15654.2, + "probability": 0.9894 + }, + { + "start": 15654.66, + "end": 15658.64, + "probability": 0.9399 + }, + { + "start": 15659.42, + "end": 15662.0, + "probability": 0.9946 + }, + { + "start": 15662.66, + "end": 15664.16, + "probability": 0.9109 + }, + { + "start": 15664.7, + "end": 15666.98, + "probability": 0.9366 + }, + { + "start": 15667.6, + "end": 15671.42, + "probability": 0.9707 + }, + { + "start": 15671.42, + "end": 15675.7, + "probability": 0.8271 + }, + { + "start": 15676.3, + "end": 15681.36, + "probability": 0.9949 + }, + { + "start": 15681.36, + "end": 15686.42, + "probability": 0.999 + }, + { + "start": 15686.94, + "end": 15688.24, + "probability": 0.8014 + }, + { + "start": 15689.14, + "end": 15693.2, + "probability": 0.9878 + }, + { + "start": 15693.8, + "end": 15694.02, + "probability": 0.4649 + }, + { + "start": 15694.74, + "end": 15697.7, + "probability": 0.9635 + }, + { + "start": 15698.62, + "end": 15700.78, + "probability": 0.996 + }, + { + "start": 15701.76, + "end": 15704.2, + "probability": 0.9954 + }, + { + "start": 15704.94, + "end": 15708.18, + "probability": 0.9899 + }, + { + "start": 15708.56, + "end": 15710.64, + "probability": 0.6568 + }, + { + "start": 15710.84, + "end": 15711.0, + "probability": 0.9316 + }, + { + "start": 15711.12, + "end": 15712.04, + "probability": 0.9875 + }, + { + "start": 15712.68, + "end": 15714.34, + "probability": 0.9614 + }, + { + "start": 15714.42, + "end": 15715.58, + "probability": 0.7461 + }, + { + "start": 15716.04, + "end": 15717.2, + "probability": 0.7908 + }, + { + "start": 15718.92, + "end": 15720.0, + "probability": 0.7032 + }, + { + "start": 15720.06, + "end": 15720.68, + "probability": 0.7249 + }, + { + "start": 15720.8, + "end": 15725.84, + "probability": 0.8608 + }, + { + "start": 15725.84, + "end": 15728.76, + "probability": 0.8661 + }, + { + "start": 15729.24, + "end": 15732.88, + "probability": 0.9377 + }, + { + "start": 15733.08, + "end": 15735.06, + "probability": 0.9884 + }, + { + "start": 15735.22, + "end": 15735.52, + "probability": 0.4788 + }, + { + "start": 15736.14, + "end": 15736.86, + "probability": 0.6267 + }, + { + "start": 15736.92, + "end": 15737.58, + "probability": 0.9489 + }, + { + "start": 15737.68, + "end": 15746.18, + "probability": 0.9326 + }, + { + "start": 15746.58, + "end": 15747.48, + "probability": 0.9224 + }, + { + "start": 15747.6, + "end": 15749.38, + "probability": 0.9751 + }, + { + "start": 15749.5, + "end": 15750.32, + "probability": 0.5499 + }, + { + "start": 15750.52, + "end": 15751.76, + "probability": 0.8231 + }, + { + "start": 15752.04, + "end": 15753.32, + "probability": 0.7305 + }, + { + "start": 15753.62, + "end": 15755.14, + "probability": 0.966 + }, + { + "start": 15755.2, + "end": 15758.24, + "probability": 0.8865 + }, + { + "start": 15758.72, + "end": 15762.62, + "probability": 0.8656 + }, + { + "start": 15763.5, + "end": 15763.58, + "probability": 0.3785 + }, + { + "start": 15763.78, + "end": 15766.3, + "probability": 0.9514 + }, + { + "start": 15766.3, + "end": 15769.58, + "probability": 0.9889 + }, + { + "start": 15770.14, + "end": 15771.14, + "probability": 0.7866 + }, + { + "start": 15771.18, + "end": 15771.62, + "probability": 0.7568 + }, + { + "start": 15771.72, + "end": 15772.6, + "probability": 0.7365 + }, + { + "start": 15772.7, + "end": 15776.82, + "probability": 0.9692 + }, + { + "start": 15777.3, + "end": 15780.94, + "probability": 0.9307 + }, + { + "start": 15781.5, + "end": 15784.48, + "probability": 0.994 + }, + { + "start": 15785.04, + "end": 15786.9, + "probability": 0.9989 + }, + { + "start": 15787.74, + "end": 15788.62, + "probability": 0.5021 + }, + { + "start": 15788.68, + "end": 15791.16, + "probability": 0.9405 + }, + { + "start": 15791.24, + "end": 15791.78, + "probability": 0.6432 + }, + { + "start": 15792.36, + "end": 15794.44, + "probability": 0.9941 + }, + { + "start": 15794.44, + "end": 15797.68, + "probability": 0.9822 + }, + { + "start": 15798.64, + "end": 15799.28, + "probability": 0.6652 + }, + { + "start": 15799.42, + "end": 15800.48, + "probability": 0.6954 + }, + { + "start": 15800.62, + "end": 15801.02, + "probability": 0.6661 + }, + { + "start": 15801.34, + "end": 15802.68, + "probability": 0.8725 + }, + { + "start": 15803.24, + "end": 15804.82, + "probability": 0.7381 + }, + { + "start": 15807.98, + "end": 15808.06, + "probability": 0.4062 + }, + { + "start": 15808.06, + "end": 15808.06, + "probability": 0.0279 + }, + { + "start": 15808.06, + "end": 15808.06, + "probability": 0.3785 + }, + { + "start": 15808.06, + "end": 15809.82, + "probability": 0.3936 + }, + { + "start": 15810.04, + "end": 15810.38, + "probability": 0.567 + }, + { + "start": 15810.5, + "end": 15812.58, + "probability": 0.8975 + }, + { + "start": 15813.06, + "end": 15813.72, + "probability": 0.7507 + }, + { + "start": 15813.88, + "end": 15817.62, + "probability": 0.699 + }, + { + "start": 15817.72, + "end": 15819.04, + "probability": 0.7162 + }, + { + "start": 15819.58, + "end": 15821.8, + "probability": 0.7746 + }, + { + "start": 15822.36, + "end": 15825.02, + "probability": 0.9238 + }, + { + "start": 15825.54, + "end": 15827.2, + "probability": 0.7128 + }, + { + "start": 15827.36, + "end": 15828.74, + "probability": 0.9905 + }, + { + "start": 15829.52, + "end": 15830.22, + "probability": 0.9341 + }, + { + "start": 15830.3, + "end": 15835.58, + "probability": 0.9863 + }, + { + "start": 15836.04, + "end": 15839.2, + "probability": 0.8381 + }, + { + "start": 15839.72, + "end": 15845.06, + "probability": 0.99 + }, + { + "start": 15845.24, + "end": 15845.42, + "probability": 0.7568 + }, + { + "start": 15845.94, + "end": 15847.36, + "probability": 0.7401 + }, + { + "start": 15847.44, + "end": 15847.94, + "probability": 0.8866 + }, + { + "start": 15848.02, + "end": 15849.0, + "probability": 0.9526 + }, + { + "start": 15849.22, + "end": 15850.74, + "probability": 0.3444 + }, + { + "start": 15850.9, + "end": 15851.48, + "probability": 0.4313 + }, + { + "start": 15851.62, + "end": 15852.78, + "probability": 0.5622 + }, + { + "start": 15854.08, + "end": 15856.21, + "probability": 0.8322 + }, + { + "start": 15873.32, + "end": 15873.7, + "probability": 0.4441 + }, + { + "start": 15873.7, + "end": 15875.19, + "probability": 0.7312 + }, + { + "start": 15876.92, + "end": 15878.08, + "probability": 0.4876 + }, + { + "start": 15879.68, + "end": 15882.2, + "probability": 0.8216 + }, + { + "start": 15883.9, + "end": 15885.38, + "probability": 0.7416 + }, + { + "start": 15887.76, + "end": 15889.09, + "probability": 0.9382 + }, + { + "start": 15890.24, + "end": 15894.82, + "probability": 0.9929 + }, + { + "start": 15895.62, + "end": 15900.26, + "probability": 0.9973 + }, + { + "start": 15901.26, + "end": 15906.04, + "probability": 0.9973 + }, + { + "start": 15906.12, + "end": 15908.75, + "probability": 0.9966 + }, + { + "start": 15910.0, + "end": 15910.98, + "probability": 0.965 + }, + { + "start": 15912.98, + "end": 15913.98, + "probability": 0.8853 + }, + { + "start": 15914.0, + "end": 15914.42, + "probability": 0.8347 + }, + { + "start": 15914.6, + "end": 15916.76, + "probability": 0.8932 + }, + { + "start": 15916.88, + "end": 15918.82, + "probability": 0.9514 + }, + { + "start": 15918.98, + "end": 15919.63, + "probability": 0.9447 + }, + { + "start": 15920.06, + "end": 15921.64, + "probability": 0.9594 + }, + { + "start": 15921.8, + "end": 15922.66, + "probability": 0.812 + }, + { + "start": 15923.28, + "end": 15924.86, + "probability": 0.9819 + }, + { + "start": 15926.44, + "end": 15929.48, + "probability": 0.8675 + }, + { + "start": 15930.28, + "end": 15937.1, + "probability": 0.8831 + }, + { + "start": 15937.58, + "end": 15939.1, + "probability": 0.6706 + }, + { + "start": 15940.32, + "end": 15941.68, + "probability": 0.9983 + }, + { + "start": 15942.86, + "end": 15946.42, + "probability": 0.9844 + }, + { + "start": 15947.34, + "end": 15949.78, + "probability": 0.9919 + }, + { + "start": 15950.4, + "end": 15951.1, + "probability": 0.9648 + }, + { + "start": 15951.88, + "end": 15952.76, + "probability": 0.7139 + }, + { + "start": 15953.4, + "end": 15954.84, + "probability": 0.9672 + }, + { + "start": 15955.02, + "end": 15960.52, + "probability": 0.9215 + }, + { + "start": 15961.58, + "end": 15964.24, + "probability": 0.9901 + }, + { + "start": 15964.8, + "end": 15965.44, + "probability": 0.7046 + }, + { + "start": 15967.04, + "end": 15967.72, + "probability": 0.8349 + }, + { + "start": 15967.9, + "end": 15970.78, + "probability": 0.9915 + }, + { + "start": 15970.82, + "end": 15971.34, + "probability": 0.8645 + }, + { + "start": 15972.04, + "end": 15973.56, + "probability": 0.9732 + }, + { + "start": 15973.56, + "end": 15975.06, + "probability": 0.9912 + }, + { + "start": 15975.92, + "end": 15978.58, + "probability": 0.9111 + }, + { + "start": 15979.28, + "end": 15980.96, + "probability": 0.9828 + }, + { + "start": 15982.54, + "end": 15984.36, + "probability": 0.7148 + }, + { + "start": 15984.88, + "end": 15986.76, + "probability": 0.9806 + }, + { + "start": 15987.24, + "end": 15988.26, + "probability": 0.9807 + }, + { + "start": 15988.32, + "end": 15990.04, + "probability": 0.9933 + }, + { + "start": 15990.92, + "end": 15991.54, + "probability": 0.6026 + }, + { + "start": 15991.56, + "end": 15994.96, + "probability": 0.8179 + }, + { + "start": 15995.06, + "end": 15997.16, + "probability": 0.8452 + }, + { + "start": 15997.16, + "end": 15999.98, + "probability": 0.9636 + }, + { + "start": 16000.16, + "end": 16000.84, + "probability": 0.6662 + }, + { + "start": 16001.08, + "end": 16002.04, + "probability": 0.9966 + }, + { + "start": 16003.16, + "end": 16004.1, + "probability": 0.9933 + }, + { + "start": 16004.64, + "end": 16005.52, + "probability": 0.4962 + }, + { + "start": 16005.68, + "end": 16009.96, + "probability": 0.9902 + }, + { + "start": 16009.96, + "end": 16014.98, + "probability": 0.9557 + }, + { + "start": 16015.64, + "end": 16019.18, + "probability": 0.9985 + }, + { + "start": 16020.18, + "end": 16022.4, + "probability": 0.6947 + }, + { + "start": 16023.46, + "end": 16027.48, + "probability": 0.9877 + }, + { + "start": 16027.48, + "end": 16030.12, + "probability": 0.994 + }, + { + "start": 16030.64, + "end": 16031.74, + "probability": 0.8992 + }, + { + "start": 16031.84, + "end": 16033.86, + "probability": 0.9629 + }, + { + "start": 16033.94, + "end": 16034.96, + "probability": 0.7379 + }, + { + "start": 16035.0, + "end": 16035.5, + "probability": 0.693 + }, + { + "start": 16035.58, + "end": 16036.54, + "probability": 0.661 + }, + { + "start": 16037.14, + "end": 16038.6, + "probability": 0.9392 + }, + { + "start": 16039.78, + "end": 16043.8, + "probability": 0.9663 + }, + { + "start": 16044.36, + "end": 16044.96, + "probability": 0.4462 + }, + { + "start": 16045.66, + "end": 16045.7, + "probability": 0.6406 + }, + { + "start": 16045.7, + "end": 16046.48, + "probability": 0.4363 + }, + { + "start": 16047.12, + "end": 16047.53, + "probability": 0.5392 + }, + { + "start": 16047.84, + "end": 16051.5, + "probability": 0.3825 + }, + { + "start": 16051.68, + "end": 16052.14, + "probability": 0.71 + }, + { + "start": 16052.14, + "end": 16053.7, + "probability": 0.3127 + }, + { + "start": 16053.84, + "end": 16056.94, + "probability": 0.4234 + }, + { + "start": 16056.94, + "end": 16057.0, + "probability": 0.0797 + }, + { + "start": 16057.0, + "end": 16058.12, + "probability": 0.4882 + }, + { + "start": 16058.5, + "end": 16059.18, + "probability": 0.2567 + }, + { + "start": 16059.56, + "end": 16061.16, + "probability": 0.015 + }, + { + "start": 16061.16, + "end": 16061.3, + "probability": 0.0364 + }, + { + "start": 16061.9, + "end": 16062.72, + "probability": 0.6085 + }, + { + "start": 16063.04, + "end": 16064.84, + "probability": 0.23 + }, + { + "start": 16065.02, + "end": 16065.72, + "probability": 0.8856 + }, + { + "start": 16066.04, + "end": 16068.3, + "probability": 0.995 + }, + { + "start": 16068.3, + "end": 16069.0, + "probability": 0.908 + }, + { + "start": 16069.14, + "end": 16070.02, + "probability": 0.9854 + }, + { + "start": 16070.34, + "end": 16073.18, + "probability": 0.9731 + }, + { + "start": 16073.3, + "end": 16075.04, + "probability": 0.8131 + }, + { + "start": 16075.36, + "end": 16076.7, + "probability": 0.7985 + }, + { + "start": 16076.76, + "end": 16079.16, + "probability": 0.8516 + }, + { + "start": 16079.72, + "end": 16081.86, + "probability": 0.9725 + }, + { + "start": 16082.38, + "end": 16085.62, + "probability": 0.8908 + }, + { + "start": 16085.7, + "end": 16088.5, + "probability": 0.9915 + }, + { + "start": 16088.66, + "end": 16090.42, + "probability": 0.5191 + }, + { + "start": 16091.12, + "end": 16093.3, + "probability": 0.9958 + }, + { + "start": 16093.44, + "end": 16095.4, + "probability": 0.9821 + }, + { + "start": 16095.62, + "end": 16097.42, + "probability": 0.8963 + }, + { + "start": 16097.7, + "end": 16097.94, + "probability": 0.5716 + }, + { + "start": 16098.04, + "end": 16101.7, + "probability": 0.9895 + }, + { + "start": 16101.7, + "end": 16105.56, + "probability": 0.9885 + }, + { + "start": 16105.94, + "end": 16107.84, + "probability": 0.8259 + }, + { + "start": 16107.92, + "end": 16108.61, + "probability": 0.0082 + }, + { + "start": 16110.56, + "end": 16111.02, + "probability": 0.9389 + }, + { + "start": 16111.14, + "end": 16112.7, + "probability": 0.652 + }, + { + "start": 16113.38, + "end": 16115.5, + "probability": 0.7405 + }, + { + "start": 16115.66, + "end": 16117.21, + "probability": 0.9814 + }, + { + "start": 16117.68, + "end": 16119.34, + "probability": 0.9683 + }, + { + "start": 16119.74, + "end": 16121.2, + "probability": 0.9576 + }, + { + "start": 16121.32, + "end": 16121.5, + "probability": 0.7607 + }, + { + "start": 16121.58, + "end": 16122.9, + "probability": 0.6459 + }, + { + "start": 16123.56, + "end": 16125.56, + "probability": 0.8223 + }, + { + "start": 16132.16, + "end": 16132.16, + "probability": 0.6068 + }, + { + "start": 16132.16, + "end": 16136.86, + "probability": 0.6488 + }, + { + "start": 16149.9, + "end": 16150.46, + "probability": 0.6577 + }, + { + "start": 16153.04, + "end": 16154.74, + "probability": 0.3566 + }, + { + "start": 16156.14, + "end": 16157.06, + "probability": 0.6659 + }, + { + "start": 16157.34, + "end": 16158.3, + "probability": 0.3849 + }, + { + "start": 16158.88, + "end": 16160.67, + "probability": 0.8861 + }, + { + "start": 16161.26, + "end": 16161.92, + "probability": 0.8327 + }, + { + "start": 16163.3, + "end": 16164.82, + "probability": 0.9564 + }, + { + "start": 16164.82, + "end": 16166.3, + "probability": 0.7391 + }, + { + "start": 16166.36, + "end": 16168.48, + "probability": 0.99 + }, + { + "start": 16168.7, + "end": 16168.94, + "probability": 0.4678 + }, + { + "start": 16169.02, + "end": 16169.44, + "probability": 0.9297 + }, + { + "start": 16169.56, + "end": 16170.98, + "probability": 0.983 + }, + { + "start": 16171.98, + "end": 16173.88, + "probability": 0.7062 + }, + { + "start": 16174.82, + "end": 16176.82, + "probability": 0.9042 + }, + { + "start": 16176.88, + "end": 16178.46, + "probability": 0.8672 + }, + { + "start": 16178.56, + "end": 16186.48, + "probability": 0.9949 + }, + { + "start": 16187.84, + "end": 16189.68, + "probability": 0.9181 + }, + { + "start": 16189.84, + "end": 16191.68, + "probability": 0.7496 + }, + { + "start": 16192.92, + "end": 16193.8, + "probability": 0.6104 + }, + { + "start": 16194.3, + "end": 16195.8, + "probability": 0.9559 + }, + { + "start": 16196.92, + "end": 16197.16, + "probability": 0.8042 + }, + { + "start": 16197.24, + "end": 16197.88, + "probability": 0.6293 + }, + { + "start": 16197.96, + "end": 16199.0, + "probability": 0.933 + }, + { + "start": 16199.32, + "end": 16202.06, + "probability": 0.9122 + }, + { + "start": 16202.24, + "end": 16202.96, + "probability": 0.9417 + }, + { + "start": 16203.88, + "end": 16205.28, + "probability": 0.7131 + }, + { + "start": 16205.92, + "end": 16207.63, + "probability": 0.9202 + }, + { + "start": 16207.9, + "end": 16208.49, + "probability": 0.5116 + }, + { + "start": 16209.24, + "end": 16211.32, + "probability": 0.9676 + }, + { + "start": 16212.0, + "end": 16213.2, + "probability": 0.9309 + }, + { + "start": 16213.94, + "end": 16215.72, + "probability": 0.9668 + }, + { + "start": 16215.88, + "end": 16217.06, + "probability": 0.6936 + }, + { + "start": 16217.5, + "end": 16218.23, + "probability": 0.8992 + }, + { + "start": 16218.46, + "end": 16221.14, + "probability": 0.9812 + }, + { + "start": 16222.82, + "end": 16226.56, + "probability": 0.7295 + }, + { + "start": 16227.08, + "end": 16229.24, + "probability": 0.9644 + }, + { + "start": 16229.52, + "end": 16230.6, + "probability": 0.9824 + }, + { + "start": 16231.82, + "end": 16233.4, + "probability": 0.8825 + }, + { + "start": 16233.94, + "end": 16236.38, + "probability": 0.8984 + }, + { + "start": 16237.18, + "end": 16238.58, + "probability": 0.9863 + }, + { + "start": 16238.96, + "end": 16240.2, + "probability": 0.9231 + }, + { + "start": 16240.64, + "end": 16241.98, + "probability": 0.9658 + }, + { + "start": 16242.46, + "end": 16243.02, + "probability": 0.8855 + }, + { + "start": 16243.12, + "end": 16247.18, + "probability": 0.985 + }, + { + "start": 16247.92, + "end": 16249.76, + "probability": 0.8893 + }, + { + "start": 16250.14, + "end": 16251.04, + "probability": 0.8949 + }, + { + "start": 16251.14, + "end": 16256.12, + "probability": 0.9783 + }, + { + "start": 16256.74, + "end": 16257.5, + "probability": 0.7438 + }, + { + "start": 16257.92, + "end": 16258.58, + "probability": 0.7186 + }, + { + "start": 16258.66, + "end": 16259.54, + "probability": 0.9797 + }, + { + "start": 16259.6, + "end": 16260.02, + "probability": 0.8961 + }, + { + "start": 16260.34, + "end": 16262.34, + "probability": 0.8315 + }, + { + "start": 16262.82, + "end": 16263.63, + "probability": 0.9207 + }, + { + "start": 16264.02, + "end": 16265.14, + "probability": 0.7607 + }, + { + "start": 16266.72, + "end": 16267.5, + "probability": 0.8497 + }, + { + "start": 16267.74, + "end": 16269.48, + "probability": 0.7236 + }, + { + "start": 16270.0, + "end": 16270.64, + "probability": 0.9543 + }, + { + "start": 16270.74, + "end": 16272.08, + "probability": 0.8802 + }, + { + "start": 16272.16, + "end": 16273.66, + "probability": 0.6649 + }, + { + "start": 16273.8, + "end": 16274.18, + "probability": 0.741 + }, + { + "start": 16274.26, + "end": 16274.56, + "probability": 0.9502 + }, + { + "start": 16274.68, + "end": 16278.34, + "probability": 0.9122 + }, + { + "start": 16279.44, + "end": 16280.59, + "probability": 0.9184 + }, + { + "start": 16283.76, + "end": 16285.06, + "probability": 0.5198 + }, + { + "start": 16285.2, + "end": 16285.48, + "probability": 0.4029 + }, + { + "start": 16285.84, + "end": 16285.94, + "probability": 0.2096 + }, + { + "start": 16285.94, + "end": 16286.5, + "probability": 0.4964 + }, + { + "start": 16286.54, + "end": 16287.04, + "probability": 0.3594 + }, + { + "start": 16287.36, + "end": 16288.08, + "probability": 0.2167 + }, + { + "start": 16289.14, + "end": 16291.88, + "probability": 0.119 + }, + { + "start": 16291.94, + "end": 16292.18, + "probability": 0.6592 + }, + { + "start": 16292.32, + "end": 16294.58, + "probability": 0.9883 + }, + { + "start": 16294.9, + "end": 16296.06, + "probability": 0.9285 + }, + { + "start": 16296.62, + "end": 16297.78, + "probability": 0.7162 + }, + { + "start": 16298.5, + "end": 16300.2, + "probability": 0.9039 + }, + { + "start": 16300.5, + "end": 16301.6, + "probability": 0.6354 + }, + { + "start": 16302.46, + "end": 16305.16, + "probability": 0.6 + }, + { + "start": 16305.84, + "end": 16307.04, + "probability": 0.9831 + }, + { + "start": 16307.16, + "end": 16309.77, + "probability": 0.985 + }, + { + "start": 16310.04, + "end": 16311.58, + "probability": 0.9525 + }, + { + "start": 16311.6, + "end": 16313.36, + "probability": 0.9994 + }, + { + "start": 16313.68, + "end": 16314.56, + "probability": 0.904 + }, + { + "start": 16315.14, + "end": 16318.32, + "probability": 0.9923 + }, + { + "start": 16318.32, + "end": 16322.84, + "probability": 0.9668 + }, + { + "start": 16323.0, + "end": 16325.26, + "probability": 0.7325 + }, + { + "start": 16325.42, + "end": 16330.44, + "probability": 0.9749 + }, + { + "start": 16331.04, + "end": 16332.54, + "probability": 0.8231 + }, + { + "start": 16332.9, + "end": 16334.48, + "probability": 0.9902 + }, + { + "start": 16334.68, + "end": 16335.7, + "probability": 0.9699 + }, + { + "start": 16335.8, + "end": 16338.08, + "probability": 0.9839 + }, + { + "start": 16338.24, + "end": 16340.78, + "probability": 0.9903 + }, + { + "start": 16341.04, + "end": 16343.98, + "probability": 0.9324 + }, + { + "start": 16344.02, + "end": 16344.96, + "probability": 0.8875 + }, + { + "start": 16345.12, + "end": 16346.06, + "probability": 0.7756 + }, + { + "start": 16346.34, + "end": 16347.8, + "probability": 0.8715 + }, + { + "start": 16348.46, + "end": 16352.28, + "probability": 0.9852 + }, + { + "start": 16352.5, + "end": 16357.34, + "probability": 0.9111 + }, + { + "start": 16357.82, + "end": 16358.64, + "probability": 0.8235 + }, + { + "start": 16359.06, + "end": 16365.76, + "probability": 0.9668 + }, + { + "start": 16366.22, + "end": 16367.28, + "probability": 0.687 + }, + { + "start": 16368.38, + "end": 16368.74, + "probability": 0.6937 + }, + { + "start": 16368.98, + "end": 16369.48, + "probability": 0.6697 + }, + { + "start": 16369.48, + "end": 16372.68, + "probability": 0.9646 + }, + { + "start": 16372.94, + "end": 16373.66, + "probability": 0.8585 + }, + { + "start": 16374.08, + "end": 16377.32, + "probability": 0.9907 + }, + { + "start": 16378.12, + "end": 16379.02, + "probability": 0.7891 + }, + { + "start": 16379.36, + "end": 16383.87, + "probability": 0.9431 + }, + { + "start": 16383.9, + "end": 16385.96, + "probability": 0.9702 + }, + { + "start": 16386.7, + "end": 16386.98, + "probability": 0.258 + }, + { + "start": 16386.98, + "end": 16388.24, + "probability": 0.8694 + }, + { + "start": 16388.52, + "end": 16393.38, + "probability": 0.9862 + }, + { + "start": 16394.06, + "end": 16397.72, + "probability": 0.9334 + }, + { + "start": 16397.8, + "end": 16399.06, + "probability": 0.9968 + }, + { + "start": 16400.18, + "end": 16400.88, + "probability": 0.7391 + }, + { + "start": 16400.98, + "end": 16401.91, + "probability": 0.9303 + }, + { + "start": 16402.16, + "end": 16404.76, + "probability": 0.9789 + }, + { + "start": 16405.8, + "end": 16407.93, + "probability": 0.9501 + }, + { + "start": 16408.16, + "end": 16408.82, + "probability": 0.5192 + }, + { + "start": 16408.9, + "end": 16413.08, + "probability": 0.9827 + }, + { + "start": 16413.38, + "end": 16414.7, + "probability": 0.9907 + }, + { + "start": 16414.92, + "end": 16417.08, + "probability": 0.7774 + }, + { + "start": 16417.78, + "end": 16418.7, + "probability": 0.518 + }, + { + "start": 16418.76, + "end": 16421.68, + "probability": 0.8394 + }, + { + "start": 16422.44, + "end": 16424.14, + "probability": 0.9858 + }, + { + "start": 16424.46, + "end": 16425.28, + "probability": 0.789 + }, + { + "start": 16425.28, + "end": 16425.8, + "probability": 0.7148 + }, + { + "start": 16426.26, + "end": 16427.58, + "probability": 0.978 + }, + { + "start": 16428.88, + "end": 16430.12, + "probability": 0.8647 + }, + { + "start": 16430.66, + "end": 16431.24, + "probability": 0.5366 + }, + { + "start": 16431.66, + "end": 16431.84, + "probability": 0.3872 + }, + { + "start": 16431.84, + "end": 16432.74, + "probability": 0.949 + }, + { + "start": 16432.82, + "end": 16433.14, + "probability": 0.0494 + }, + { + "start": 16433.2, + "end": 16434.52, + "probability": 0.9485 + }, + { + "start": 16435.08, + "end": 16436.62, + "probability": 0.9722 + }, + { + "start": 16437.04, + "end": 16438.82, + "probability": 0.9849 + }, + { + "start": 16438.82, + "end": 16440.44, + "probability": 0.9961 + }, + { + "start": 16441.42, + "end": 16441.78, + "probability": 0.2808 + }, + { + "start": 16441.88, + "end": 16442.66, + "probability": 0.6466 + }, + { + "start": 16442.8, + "end": 16445.14, + "probability": 0.9607 + }, + { + "start": 16445.26, + "end": 16446.44, + "probability": 0.9281 + }, + { + "start": 16446.82, + "end": 16447.88, + "probability": 0.7769 + }, + { + "start": 16448.2, + "end": 16448.74, + "probability": 0.5556 + }, + { + "start": 16448.82, + "end": 16449.34, + "probability": 0.8846 + }, + { + "start": 16449.36, + "end": 16454.4, + "probability": 0.9657 + }, + { + "start": 16454.52, + "end": 16455.98, + "probability": 0.8566 + }, + { + "start": 16456.3, + "end": 16458.94, + "probability": 0.829 + }, + { + "start": 16459.24, + "end": 16460.47, + "probability": 0.7839 + }, + { + "start": 16461.84, + "end": 16464.72, + "probability": 0.9404 + }, + { + "start": 16465.06, + "end": 16466.38, + "probability": 0.8979 + }, + { + "start": 16466.76, + "end": 16467.16, + "probability": 0.5879 + }, + { + "start": 16467.22, + "end": 16467.98, + "probability": 0.9651 + }, + { + "start": 16468.04, + "end": 16469.12, + "probability": 0.9374 + }, + { + "start": 16469.72, + "end": 16470.6, + "probability": 0.5019 + }, + { + "start": 16470.62, + "end": 16470.96, + "probability": 0.3057 + }, + { + "start": 16470.96, + "end": 16472.15, + "probability": 0.9531 + }, + { + "start": 16472.76, + "end": 16475.2, + "probability": 0.916 + }, + { + "start": 16475.52, + "end": 16479.36, + "probability": 0.7697 + }, + { + "start": 16480.02, + "end": 16483.96, + "probability": 0.9513 + }, + { + "start": 16485.06, + "end": 16486.06, + "probability": 0.7178 + }, + { + "start": 16486.8, + "end": 16489.62, + "probability": 0.95 + }, + { + "start": 16489.88, + "end": 16490.42, + "probability": 0.96 + }, + { + "start": 16490.7, + "end": 16493.46, + "probability": 0.8058 + }, + { + "start": 16494.08, + "end": 16495.14, + "probability": 0.9756 + }, + { + "start": 16495.22, + "end": 16495.8, + "probability": 0.9039 + }, + { + "start": 16496.02, + "end": 16498.12, + "probability": 0.9653 + }, + { + "start": 16498.3, + "end": 16502.84, + "probability": 0.9888 + }, + { + "start": 16503.24, + "end": 16503.8, + "probability": 0.9268 + }, + { + "start": 16504.12, + "end": 16505.5, + "probability": 0.928 + }, + { + "start": 16505.72, + "end": 16508.22, + "probability": 0.9923 + }, + { + "start": 16508.54, + "end": 16508.96, + "probability": 0.6917 + }, + { + "start": 16509.26, + "end": 16510.98, + "probability": 0.7495 + }, + { + "start": 16511.57, + "end": 16519.2, + "probability": 0.8157 + }, + { + "start": 16538.42, + "end": 16540.96, + "probability": 0.5034 + }, + { + "start": 16546.76, + "end": 16549.42, + "probability": 0.6558 + }, + { + "start": 16551.6, + "end": 16555.58, + "probability": 0.9897 + }, + { + "start": 16556.48, + "end": 16559.12, + "probability": 0.9811 + }, + { + "start": 16559.22, + "end": 16560.35, + "probability": 0.9316 + }, + { + "start": 16561.36, + "end": 16563.76, + "probability": 0.7336 + }, + { + "start": 16563.9, + "end": 16565.26, + "probability": 0.6229 + }, + { + "start": 16565.28, + "end": 16565.86, + "probability": 0.8555 + }, + { + "start": 16565.9, + "end": 16566.82, + "probability": 0.9683 + }, + { + "start": 16566.96, + "end": 16570.7, + "probability": 0.7041 + }, + { + "start": 16571.2, + "end": 16573.42, + "probability": 0.9863 + }, + { + "start": 16574.04, + "end": 16575.04, + "probability": 0.8077 + }, + { + "start": 16575.18, + "end": 16575.9, + "probability": 0.2658 + }, + { + "start": 16576.04, + "end": 16577.21, + "probability": 0.4516 + }, + { + "start": 16577.62, + "end": 16580.1, + "probability": 0.5601 + }, + { + "start": 16580.3, + "end": 16580.86, + "probability": 0.0944 + }, + { + "start": 16581.02, + "end": 16583.26, + "probability": 0.6238 + }, + { + "start": 16583.4, + "end": 16585.04, + "probability": 0.6278 + }, + { + "start": 16585.14, + "end": 16585.58, + "probability": 0.1328 + }, + { + "start": 16586.66, + "end": 16586.87, + "probability": 0.7708 + }, + { + "start": 16587.28, + "end": 16588.78, + "probability": 0.2698 + }, + { + "start": 16588.96, + "end": 16589.6, + "probability": 0.4702 + }, + { + "start": 16589.66, + "end": 16589.66, + "probability": 0.7246 + }, + { + "start": 16589.92, + "end": 16590.67, + "probability": 0.7147 + }, + { + "start": 16590.86, + "end": 16594.24, + "probability": 0.0244 + }, + { + "start": 16594.28, + "end": 16594.52, + "probability": 0.1824 + }, + { + "start": 16594.62, + "end": 16595.66, + "probability": 0.6329 + }, + { + "start": 16595.74, + "end": 16595.98, + "probability": 0.5256 + }, + { + "start": 16596.02, + "end": 16597.14, + "probability": 0.4779 + }, + { + "start": 16597.56, + "end": 16599.04, + "probability": 0.6031 + }, + { + "start": 16599.26, + "end": 16599.88, + "probability": 0.1731 + }, + { + "start": 16600.52, + "end": 16603.38, + "probability": 0.6965 + }, + { + "start": 16604.26, + "end": 16604.26, + "probability": 0.0982 + }, + { + "start": 16604.26, + "end": 16605.24, + "probability": 0.3923 + }, + { + "start": 16605.9, + "end": 16609.66, + "probability": 0.9948 + }, + { + "start": 16610.32, + "end": 16611.3, + "probability": 0.647 + }, + { + "start": 16612.26, + "end": 16616.12, + "probability": 0.43 + }, + { + "start": 16618.51, + "end": 16621.94, + "probability": 0.9917 + }, + { + "start": 16623.3, + "end": 16627.58, + "probability": 0.9805 + }, + { + "start": 16629.8, + "end": 16631.88, + "probability": 0.778 + }, + { + "start": 16631.88, + "end": 16634.96, + "probability": 0.9988 + }, + { + "start": 16636.1, + "end": 16636.52, + "probability": 0.6824 + }, + { + "start": 16636.96, + "end": 16640.28, + "probability": 0.9762 + }, + { + "start": 16641.78, + "end": 16642.52, + "probability": 0.6003 + }, + { + "start": 16642.6, + "end": 16644.2, + "probability": 0.6394 + }, + { + "start": 16644.34, + "end": 16647.2, + "probability": 0.8135 + }, + { + "start": 16648.38, + "end": 16654.02, + "probability": 0.9804 + }, + { + "start": 16654.42, + "end": 16654.86, + "probability": 0.8124 + }, + { + "start": 16655.02, + "end": 16656.18, + "probability": 0.9195 + }, + { + "start": 16657.7, + "end": 16660.86, + "probability": 0.9785 + }, + { + "start": 16661.48, + "end": 16664.48, + "probability": 0.9288 + }, + { + "start": 16664.48, + "end": 16668.54, + "probability": 0.9893 + }, + { + "start": 16669.22, + "end": 16672.74, + "probability": 0.7664 + }, + { + "start": 16673.3, + "end": 16676.62, + "probability": 0.9712 + }, + { + "start": 16677.42, + "end": 16680.56, + "probability": 0.9935 + }, + { + "start": 16680.56, + "end": 16684.74, + "probability": 0.9019 + }, + { + "start": 16686.1, + "end": 16687.86, + "probability": 0.8038 + }, + { + "start": 16687.86, + "end": 16690.24, + "probability": 0.9297 + }, + { + "start": 16690.38, + "end": 16692.56, + "probability": 0.8487 + }, + { + "start": 16692.7, + "end": 16694.38, + "probability": 0.8597 + }, + { + "start": 16694.38, + "end": 16694.88, + "probability": 0.6554 + }, + { + "start": 16695.36, + "end": 16696.12, + "probability": 0.9924 + }, + { + "start": 16697.18, + "end": 16699.16, + "probability": 0.8707 + }, + { + "start": 16699.24, + "end": 16700.1, + "probability": 0.5251 + }, + { + "start": 16700.2, + "end": 16703.73, + "probability": 0.9671 + }, + { + "start": 16703.74, + "end": 16707.58, + "probability": 0.9626 + }, + { + "start": 16708.9, + "end": 16710.58, + "probability": 0.7746 + }, + { + "start": 16711.88, + "end": 16712.12, + "probability": 0.0788 + }, + { + "start": 16712.22, + "end": 16717.38, + "probability": 0.9803 + }, + { + "start": 16717.78, + "end": 16718.41, + "probability": 0.8638 + }, + { + "start": 16719.08, + "end": 16724.66, + "probability": 0.9725 + }, + { + "start": 16725.4, + "end": 16729.62, + "probability": 0.8574 + }, + { + "start": 16731.88, + "end": 16733.82, + "probability": 0.0876 + }, + { + "start": 16734.88, + "end": 16736.36, + "probability": 0.7027 + }, + { + "start": 16736.44, + "end": 16738.68, + "probability": 0.9439 + }, + { + "start": 16738.68, + "end": 16742.8, + "probability": 0.8439 + }, + { + "start": 16744.34, + "end": 16744.92, + "probability": 0.369 + }, + { + "start": 16745.34, + "end": 16747.78, + "probability": 0.9634 + }, + { + "start": 16747.78, + "end": 16749.56, + "probability": 0.9192 + }, + { + "start": 16751.84, + "end": 16754.24, + "probability": 0.7503 + }, + { + "start": 16754.44, + "end": 16755.88, + "probability": 0.7864 + }, + { + "start": 16756.98, + "end": 16761.78, + "probability": 0.9921 + }, + { + "start": 16762.58, + "end": 16765.14, + "probability": 0.9808 + }, + { + "start": 16765.14, + "end": 16767.96, + "probability": 0.9255 + }, + { + "start": 16769.2, + "end": 16771.34, + "probability": 0.7498 + }, + { + "start": 16772.64, + "end": 16775.86, + "probability": 0.9696 + }, + { + "start": 16775.86, + "end": 16779.48, + "probability": 0.976 + }, + { + "start": 16779.48, + "end": 16782.7, + "probability": 0.8826 + }, + { + "start": 16783.82, + "end": 16787.94, + "probability": 0.9899 + }, + { + "start": 16788.0, + "end": 16789.96, + "probability": 0.7759 + }, + { + "start": 16790.56, + "end": 16795.02, + "probability": 0.9627 + }, + { + "start": 16796.9, + "end": 16800.24, + "probability": 0.7488 + }, + { + "start": 16800.34, + "end": 16802.82, + "probability": 0.9659 + }, + { + "start": 16802.82, + "end": 16806.68, + "probability": 0.9798 + }, + { + "start": 16807.82, + "end": 16809.92, + "probability": 0.9714 + }, + { + "start": 16809.92, + "end": 16812.92, + "probability": 0.9968 + }, + { + "start": 16813.5, + "end": 16817.84, + "probability": 0.9832 + }, + { + "start": 16818.7, + "end": 16819.38, + "probability": 0.704 + }, + { + "start": 16819.52, + "end": 16823.24, + "probability": 0.7353 + }, + { + "start": 16825.18, + "end": 16825.52, + "probability": 0.391 + }, + { + "start": 16825.66, + "end": 16828.95, + "probability": 0.8718 + }, + { + "start": 16829.14, + "end": 16830.02, + "probability": 0.7721 + }, + { + "start": 16830.56, + "end": 16831.98, + "probability": 0.7299 + }, + { + "start": 16832.6, + "end": 16834.68, + "probability": 0.7293 + }, + { + "start": 16834.78, + "end": 16837.14, + "probability": 0.8513 + }, + { + "start": 16837.14, + "end": 16839.96, + "probability": 0.8401 + }, + { + "start": 16840.5, + "end": 16842.3, + "probability": 0.7385 + }, + { + "start": 16842.9, + "end": 16845.94, + "probability": 0.9556 + }, + { + "start": 16846.34, + "end": 16849.02, + "probability": 0.9619 + }, + { + "start": 16849.88, + "end": 16853.34, + "probability": 0.9531 + }, + { + "start": 16853.96, + "end": 16855.54, + "probability": 0.9052 + }, + { + "start": 16855.8, + "end": 16858.38, + "probability": 0.9289 + }, + { + "start": 16859.04, + "end": 16862.12, + "probability": 0.6621 + }, + { + "start": 16862.64, + "end": 16864.48, + "probability": 0.9741 + }, + { + "start": 16864.52, + "end": 16866.8, + "probability": 0.8503 + }, + { + "start": 16867.38, + "end": 16868.32, + "probability": 0.8489 + }, + { + "start": 16869.58, + "end": 16870.14, + "probability": 0.4697 + }, + { + "start": 16870.22, + "end": 16874.38, + "probability": 0.9549 + }, + { + "start": 16874.38, + "end": 16878.26, + "probability": 0.9266 + }, + { + "start": 16878.26, + "end": 16883.42, + "probability": 0.9885 + }, + { + "start": 16883.42, + "end": 16888.06, + "probability": 0.992 + }, + { + "start": 16888.62, + "end": 16890.0, + "probability": 0.4574 + }, + { + "start": 16891.8, + "end": 16892.16, + "probability": 0.8051 + }, + { + "start": 16892.28, + "end": 16894.08, + "probability": 0.7536 + }, + { + "start": 16894.26, + "end": 16898.94, + "probability": 0.9116 + }, + { + "start": 16899.72, + "end": 16901.28, + "probability": 0.9642 + }, + { + "start": 16902.5, + "end": 16903.76, + "probability": 0.7331 + }, + { + "start": 16908.32, + "end": 16910.98, + "probability": 0.9699 + }, + { + "start": 16911.92, + "end": 16915.36, + "probability": 0.7891 + }, + { + "start": 16916.54, + "end": 16917.42, + "probability": 0.3664 + }, + { + "start": 16917.46, + "end": 16921.82, + "probability": 0.9601 + }, + { + "start": 16923.38, + "end": 16924.6, + "probability": 0.9729 + }, + { + "start": 16925.34, + "end": 16926.2, + "probability": 0.6695 + }, + { + "start": 16926.28, + "end": 16926.66, + "probability": 0.7519 + }, + { + "start": 16926.74, + "end": 16928.3, + "probability": 0.9849 + }, + { + "start": 16928.76, + "end": 16932.26, + "probability": 0.9932 + }, + { + "start": 16932.34, + "end": 16933.8, + "probability": 0.9151 + }, + { + "start": 16934.24, + "end": 16935.46, + "probability": 0.6152 + }, + { + "start": 16937.44, + "end": 16938.86, + "probability": 0.8133 + }, + { + "start": 16939.88, + "end": 16942.69, + "probability": 0.6687 + }, + { + "start": 16944.04, + "end": 16946.34, + "probability": 0.8701 + }, + { + "start": 16946.62, + "end": 16949.68, + "probability": 0.8892 + }, + { + "start": 16949.68, + "end": 16952.58, + "probability": 0.9585 + }, + { + "start": 16952.68, + "end": 16956.14, + "probability": 0.8765 + }, + { + "start": 16956.14, + "end": 16959.08, + "probability": 0.9943 + }, + { + "start": 16960.32, + "end": 16962.8, + "probability": 0.8621 + }, + { + "start": 16963.4, + "end": 16965.6, + "probability": 0.991 + }, + { + "start": 16966.42, + "end": 16968.77, + "probability": 0.9966 + }, + { + "start": 16969.2, + "end": 16971.64, + "probability": 0.8832 + }, + { + "start": 16973.18, + "end": 16974.04, + "probability": 0.8917 + }, + { + "start": 16974.26, + "end": 16979.1, + "probability": 0.7514 + }, + { + "start": 16980.46, + "end": 16982.58, + "probability": 0.7716 + }, + { + "start": 16983.42, + "end": 16984.32, + "probability": 0.9293 + }, + { + "start": 16985.68, + "end": 16989.33, + "probability": 0.99 + }, + { + "start": 16989.94, + "end": 16992.18, + "probability": 0.8754 + }, + { + "start": 16993.48, + "end": 16996.8, + "probability": 0.6504 + }, + { + "start": 16996.88, + "end": 16998.2, + "probability": 0.4251 + }, + { + "start": 16999.46, + "end": 17000.75, + "probability": 0.437 + }, + { + "start": 17001.5, + "end": 17003.9, + "probability": 0.3379 + }, + { + "start": 17003.9, + "end": 17006.0, + "probability": 0.4648 + }, + { + "start": 17007.28, + "end": 17008.14, + "probability": 0.5211 + }, + { + "start": 17008.24, + "end": 17009.36, + "probability": 0.8177 + }, + { + "start": 17011.78, + "end": 17012.08, + "probability": 0.3386 + }, + { + "start": 17012.2, + "end": 17013.16, + "probability": 0.8443 + }, + { + "start": 17013.32, + "end": 17015.72, + "probability": 0.8634 + }, + { + "start": 17015.72, + "end": 17018.84, + "probability": 0.8037 + }, + { + "start": 17019.44, + "end": 17021.82, + "probability": 0.8864 + }, + { + "start": 17021.94, + "end": 17024.68, + "probability": 0.969 + }, + { + "start": 17025.0, + "end": 17026.16, + "probability": 0.9321 + }, + { + "start": 17027.6, + "end": 17028.74, + "probability": 0.9695 + }, + { + "start": 17028.9, + "end": 17031.8, + "probability": 0.8276 + }, + { + "start": 17031.82, + "end": 17032.32, + "probability": 0.8077 + }, + { + "start": 17033.2, + "end": 17034.84, + "probability": 0.4514 + }, + { + "start": 17036.24, + "end": 17037.92, + "probability": 0.0144 + }, + { + "start": 17037.92, + "end": 17042.7, + "probability": 0.3047 + }, + { + "start": 17042.76, + "end": 17045.74, + "probability": 0.5823 + }, + { + "start": 17046.12, + "end": 17047.68, + "probability": 0.624 + }, + { + "start": 17047.88, + "end": 17048.72, + "probability": 0.4282 + }, + { + "start": 17048.8, + "end": 17050.15, + "probability": 0.6785 + }, + { + "start": 17051.16, + "end": 17055.9, + "probability": 0.9078 + }, + { + "start": 17057.0, + "end": 17060.92, + "probability": 0.8041 + }, + { + "start": 17061.9, + "end": 17064.3, + "probability": 0.6179 + }, + { + "start": 17064.92, + "end": 17068.92, + "probability": 0.9686 + }, + { + "start": 17068.96, + "end": 17069.92, + "probability": 0.7812 + }, + { + "start": 17070.4, + "end": 17071.36, + "probability": 0.7208 + }, + { + "start": 17072.32, + "end": 17075.44, + "probability": 0.6826 + }, + { + "start": 17075.72, + "end": 17076.94, + "probability": 0.8935 + }, + { + "start": 17076.98, + "end": 17078.22, + "probability": 0.6947 + }, + { + "start": 17078.82, + "end": 17081.88, + "probability": 0.8339 + }, + { + "start": 17082.48, + "end": 17086.22, + "probability": 0.817 + }, + { + "start": 17086.32, + "end": 17087.4, + "probability": 0.6998 + }, + { + "start": 17088.4, + "end": 17089.14, + "probability": 0.6322 + }, + { + "start": 17089.78, + "end": 17093.36, + "probability": 0.0628 + }, + { + "start": 17095.58, + "end": 17096.8, + "probability": 0.0945 + }, + { + "start": 17096.9, + "end": 17097.74, + "probability": 0.0812 + }, + { + "start": 17097.74, + "end": 17099.1, + "probability": 0.2085 + }, + { + "start": 17099.1, + "end": 17099.6, + "probability": 0.0451 + }, + { + "start": 17100.24, + "end": 17101.14, + "probability": 0.0959 + }, + { + "start": 17101.4, + "end": 17103.63, + "probability": 0.0762 + }, + { + "start": 17104.86, + "end": 17107.52, + "probability": 0.3298 + }, + { + "start": 17108.54, + "end": 17109.76, + "probability": 0.4986 + }, + { + "start": 17109.9, + "end": 17114.04, + "probability": 0.9893 + }, + { + "start": 17114.64, + "end": 17116.96, + "probability": 0.7904 + }, + { + "start": 17117.22, + "end": 17117.97, + "probability": 0.9748 + }, + { + "start": 17118.64, + "end": 17125.36, + "probability": 0.9465 + }, + { + "start": 17125.68, + "end": 17130.6, + "probability": 0.75 + }, + { + "start": 17130.76, + "end": 17133.46, + "probability": 0.9639 + }, + { + "start": 17134.18, + "end": 17138.08, + "probability": 0.979 + }, + { + "start": 17138.46, + "end": 17139.09, + "probability": 0.8042 + }, + { + "start": 17139.6, + "end": 17141.1, + "probability": 0.9875 + }, + { + "start": 17141.36, + "end": 17142.58, + "probability": 0.915 + }, + { + "start": 17142.68, + "end": 17143.22, + "probability": 0.7502 + }, + { + "start": 17144.54, + "end": 17144.62, + "probability": 0.4973 + }, + { + "start": 17144.62, + "end": 17144.62, + "probability": 0.0959 + }, + { + "start": 17144.62, + "end": 17145.11, + "probability": 0.5854 + }, + { + "start": 17145.92, + "end": 17149.12, + "probability": 0.8606 + }, + { + "start": 17149.58, + "end": 17150.66, + "probability": 0.962 + }, + { + "start": 17150.76, + "end": 17151.58, + "probability": 0.8152 + }, + { + "start": 17151.74, + "end": 17152.14, + "probability": 0.7946 + }, + { + "start": 17152.4, + "end": 17154.65, + "probability": 0.8329 + }, + { + "start": 17155.58, + "end": 17160.06, + "probability": 0.3125 + }, + { + "start": 17161.7, + "end": 17168.12, + "probability": 0.4242 + }, + { + "start": 17168.3, + "end": 17169.22, + "probability": 0.8303 + }, + { + "start": 17169.6, + "end": 17169.78, + "probability": 0.2089 + }, + { + "start": 17170.52, + "end": 17171.66, + "probability": 0.0102 + }, + { + "start": 17175.48, + "end": 17178.18, + "probability": 0.3661 + }, + { + "start": 17185.84, + "end": 17186.58, + "probability": 0.0473 + }, + { + "start": 17187.84, + "end": 17188.16, + "probability": 0.658 + }, + { + "start": 17188.26, + "end": 17189.34, + "probability": 0.4474 + }, + { + "start": 17189.5, + "end": 17190.84, + "probability": 0.5526 + }, + { + "start": 17190.84, + "end": 17193.16, + "probability": 0.6747 + }, + { + "start": 17193.48, + "end": 17195.36, + "probability": 0.6993 + }, + { + "start": 17195.5, + "end": 17197.58, + "probability": 0.8123 + }, + { + "start": 17198.4, + "end": 17200.06, + "probability": 0.6626 + }, + { + "start": 17200.14, + "end": 17204.45, + "probability": 0.7884 + }, + { + "start": 17204.72, + "end": 17205.68, + "probability": 0.0476 + }, + { + "start": 17205.68, + "end": 17205.68, + "probability": 0.1621 + }, + { + "start": 17205.68, + "end": 17205.68, + "probability": 0.0623 + }, + { + "start": 17205.68, + "end": 17207.69, + "probability": 0.9398 + }, + { + "start": 17208.1, + "end": 17210.44, + "probability": 0.6544 + }, + { + "start": 17210.48, + "end": 17213.92, + "probability": 0.9209 + }, + { + "start": 17214.32, + "end": 17215.3, + "probability": 0.5625 + }, + { + "start": 17215.6, + "end": 17216.18, + "probability": 0.5961 + }, + { + "start": 17227.14, + "end": 17229.24, + "probability": 0.5666 + }, + { + "start": 17230.94, + "end": 17234.04, + "probability": 0.7949 + }, + { + "start": 17235.48, + "end": 17237.98, + "probability": 0.7673 + }, + { + "start": 17238.06, + "end": 17238.82, + "probability": 0.8694 + }, + { + "start": 17239.18, + "end": 17240.22, + "probability": 0.7542 + }, + { + "start": 17240.3, + "end": 17241.42, + "probability": 0.7813 + }, + { + "start": 17241.44, + "end": 17242.22, + "probability": 0.7783 + }, + { + "start": 17242.34, + "end": 17243.54, + "probability": 0.7476 + }, + { + "start": 17244.56, + "end": 17248.02, + "probability": 0.9154 + }, + { + "start": 17248.36, + "end": 17248.96, + "probability": 0.7421 + }, + { + "start": 17249.08, + "end": 17249.64, + "probability": 0.9086 + }, + { + "start": 17250.46, + "end": 17255.56, + "probability": 0.9631 + }, + { + "start": 17256.06, + "end": 17259.14, + "probability": 0.9685 + }, + { + "start": 17260.12, + "end": 17262.04, + "probability": 0.9493 + }, + { + "start": 17262.78, + "end": 17267.86, + "probability": 0.8496 + }, + { + "start": 17267.86, + "end": 17272.78, + "probability": 0.9888 + }, + { + "start": 17273.72, + "end": 17276.42, + "probability": 0.9945 + }, + { + "start": 17277.12, + "end": 17281.36, + "probability": 0.9926 + }, + { + "start": 17282.06, + "end": 17285.28, + "probability": 0.9874 + }, + { + "start": 17285.74, + "end": 17287.06, + "probability": 0.9624 + }, + { + "start": 17287.52, + "end": 17292.48, + "probability": 0.9804 + }, + { + "start": 17292.98, + "end": 17295.06, + "probability": 0.9301 + }, + { + "start": 17296.12, + "end": 17298.12, + "probability": 0.7147 + }, + { + "start": 17299.22, + "end": 17302.2, + "probability": 0.997 + }, + { + "start": 17302.2, + "end": 17305.36, + "probability": 0.9873 + }, + { + "start": 17305.98, + "end": 17309.54, + "probability": 0.9976 + }, + { + "start": 17310.4, + "end": 17311.08, + "probability": 0.5001 + }, + { + "start": 17311.66, + "end": 17315.34, + "probability": 0.8508 + }, + { + "start": 17315.86, + "end": 17318.96, + "probability": 0.9785 + }, + { + "start": 17319.34, + "end": 17321.62, + "probability": 0.9937 + }, + { + "start": 17322.48, + "end": 17325.48, + "probability": 0.9935 + }, + { + "start": 17326.44, + "end": 17330.3, + "probability": 0.9839 + }, + { + "start": 17330.3, + "end": 17333.64, + "probability": 0.9983 + }, + { + "start": 17334.66, + "end": 17335.74, + "probability": 0.8544 + }, + { + "start": 17336.22, + "end": 17337.06, + "probability": 0.828 + }, + { + "start": 17337.44, + "end": 17340.06, + "probability": 0.996 + }, + { + "start": 17340.84, + "end": 17343.18, + "probability": 0.8283 + }, + { + "start": 17343.18, + "end": 17346.84, + "probability": 0.9779 + }, + { + "start": 17347.78, + "end": 17348.34, + "probability": 0.5406 + }, + { + "start": 17348.86, + "end": 17353.18, + "probability": 0.9934 + }, + { + "start": 17353.92, + "end": 17355.06, + "probability": 0.9008 + }, + { + "start": 17355.48, + "end": 17357.76, + "probability": 0.9975 + }, + { + "start": 17358.12, + "end": 17363.1, + "probability": 0.9937 + }, + { + "start": 17363.88, + "end": 17365.72, + "probability": 0.6969 + }, + { + "start": 17366.92, + "end": 17369.81, + "probability": 0.7886 + }, + { + "start": 17369.94, + "end": 17373.52, + "probability": 0.9921 + }, + { + "start": 17373.98, + "end": 17374.2, + "probability": 0.5937 + }, + { + "start": 17374.34, + "end": 17377.68, + "probability": 0.917 + }, + { + "start": 17377.78, + "end": 17379.24, + "probability": 0.9683 + }, + { + "start": 17379.44, + "end": 17379.6, + "probability": 0.6121 + }, + { + "start": 17379.74, + "end": 17382.11, + "probability": 0.9957 + }, + { + "start": 17383.16, + "end": 17388.48, + "probability": 0.9917 + }, + { + "start": 17389.38, + "end": 17395.04, + "probability": 0.9957 + }, + { + "start": 17395.72, + "end": 17397.76, + "probability": 0.786 + }, + { + "start": 17398.34, + "end": 17403.1, + "probability": 0.9916 + }, + { + "start": 17403.4, + "end": 17408.28, + "probability": 0.9914 + }, + { + "start": 17408.74, + "end": 17409.18, + "probability": 0.4973 + }, + { + "start": 17410.0, + "end": 17410.58, + "probability": 0.8929 + }, + { + "start": 17410.64, + "end": 17414.36, + "probability": 0.9771 + }, + { + "start": 17414.52, + "end": 17420.46, + "probability": 0.7917 + }, + { + "start": 17420.66, + "end": 17422.68, + "probability": 0.0813 + }, + { + "start": 17423.98, + "end": 17424.38, + "probability": 0.0253 + }, + { + "start": 17424.38, + "end": 17427.52, + "probability": 0.6073 + }, + { + "start": 17428.56, + "end": 17429.86, + "probability": 0.752 + }, + { + "start": 17430.14, + "end": 17433.48, + "probability": 0.9819 + }, + { + "start": 17434.34, + "end": 17437.68, + "probability": 0.9192 + }, + { + "start": 17437.68, + "end": 17442.0, + "probability": 0.9629 + }, + { + "start": 17442.4, + "end": 17444.62, + "probability": 0.9348 + }, + { + "start": 17445.28, + "end": 17449.26, + "probability": 0.9919 + }, + { + "start": 17449.7, + "end": 17450.24, + "probability": 0.9502 + }, + { + "start": 17450.3, + "end": 17457.32, + "probability": 0.9922 + }, + { + "start": 17458.26, + "end": 17461.12, + "probability": 0.9915 + }, + { + "start": 17461.12, + "end": 17465.42, + "probability": 0.9959 + }, + { + "start": 17466.04, + "end": 17468.12, + "probability": 0.9683 + }, + { + "start": 17468.5, + "end": 17470.78, + "probability": 0.9647 + }, + { + "start": 17471.52, + "end": 17472.12, + "probability": 0.2992 + }, + { + "start": 17472.32, + "end": 17473.28, + "probability": 0.7771 + }, + { + "start": 17473.74, + "end": 17476.3, + "probability": 0.889 + }, + { + "start": 17476.78, + "end": 17478.64, + "probability": 0.9846 + }, + { + "start": 17478.94, + "end": 17482.78, + "probability": 0.9738 + }, + { + "start": 17483.06, + "end": 17487.26, + "probability": 0.9929 + }, + { + "start": 17488.44, + "end": 17489.26, + "probability": 0.6141 + }, + { + "start": 17489.54, + "end": 17490.34, + "probability": 0.679 + }, + { + "start": 17490.5, + "end": 17493.06, + "probability": 0.9585 + }, + { + "start": 17493.38, + "end": 17494.96, + "probability": 0.9214 + }, + { + "start": 17495.46, + "end": 17497.4, + "probability": 0.9238 + }, + { + "start": 17498.4, + "end": 17500.52, + "probability": 0.9304 + }, + { + "start": 17500.82, + "end": 17502.07, + "probability": 0.0352 + }, + { + "start": 17502.78, + "end": 17505.7, + "probability": 0.9847 + }, + { + "start": 17506.38, + "end": 17510.84, + "probability": 0.8942 + }, + { + "start": 17511.42, + "end": 17514.72, + "probability": 0.9956 + }, + { + "start": 17515.18, + "end": 17516.26, + "probability": 0.6639 + }, + { + "start": 17516.38, + "end": 17517.74, + "probability": 0.8587 + }, + { + "start": 17518.58, + "end": 17519.82, + "probability": 0.9035 + }, + { + "start": 17519.92, + "end": 17521.16, + "probability": 0.9868 + }, + { + "start": 17521.2, + "end": 17521.96, + "probability": 0.9063 + }, + { + "start": 17522.8, + "end": 17525.78, + "probability": 0.9823 + }, + { + "start": 17525.78, + "end": 17530.32, + "probability": 0.7346 + }, + { + "start": 17530.36, + "end": 17533.8, + "probability": 0.9184 + }, + { + "start": 17533.9, + "end": 17537.9, + "probability": 0.9894 + }, + { + "start": 17538.02, + "end": 17540.52, + "probability": 0.9917 + }, + { + "start": 17541.84, + "end": 17543.24, + "probability": 0.8013 + }, + { + "start": 17543.34, + "end": 17546.41, + "probability": 0.9965 + }, + { + "start": 17546.82, + "end": 17550.2, + "probability": 0.985 + }, + { + "start": 17550.78, + "end": 17551.26, + "probability": 0.7676 + }, + { + "start": 17552.12, + "end": 17555.22, + "probability": 0.697 + }, + { + "start": 17557.0, + "end": 17558.34, + "probability": 0.4941 + }, + { + "start": 17573.6, + "end": 17576.72, + "probability": 0.6027 + }, + { + "start": 17579.48, + "end": 17580.46, + "probability": 0.109 + }, + { + "start": 17580.8, + "end": 17581.38, + "probability": 0.1083 + }, + { + "start": 17583.18, + "end": 17583.68, + "probability": 0.5727 + }, + { + "start": 17584.16, + "end": 17586.24, + "probability": 0.503 + }, + { + "start": 17587.22, + "end": 17589.84, + "probability": 0.919 + }, + { + "start": 17589.84, + "end": 17593.42, + "probability": 0.9635 + }, + { + "start": 17593.62, + "end": 17595.72, + "probability": 0.8737 + }, + { + "start": 17597.18, + "end": 17601.1, + "probability": 0.9014 + }, + { + "start": 17601.54, + "end": 17605.68, + "probability": 0.9161 + }, + { + "start": 17606.62, + "end": 17610.3, + "probability": 0.9618 + }, + { + "start": 17610.3, + "end": 17612.82, + "probability": 0.9378 + }, + { + "start": 17613.78, + "end": 17617.9, + "probability": 0.9109 + }, + { + "start": 17619.56, + "end": 17622.56, + "probability": 0.7964 + }, + { + "start": 17623.2, + "end": 17624.82, + "probability": 0.9628 + }, + { + "start": 17624.96, + "end": 17626.42, + "probability": 0.7638 + }, + { + "start": 17627.06, + "end": 17629.48, + "probability": 0.9906 + }, + { + "start": 17630.64, + "end": 17631.12, + "probability": 0.4095 + }, + { + "start": 17631.34, + "end": 17634.9, + "probability": 0.9062 + }, + { + "start": 17635.44, + "end": 17636.52, + "probability": 0.7451 + }, + { + "start": 17637.42, + "end": 17644.02, + "probability": 0.9542 + }, + { + "start": 17644.96, + "end": 17645.42, + "probability": 0.8488 + }, + { + "start": 17645.56, + "end": 17647.52, + "probability": 0.9691 + }, + { + "start": 17647.68, + "end": 17649.68, + "probability": 0.9921 + }, + { + "start": 17650.64, + "end": 17654.08, + "probability": 0.7736 + }, + { + "start": 17655.68, + "end": 17657.54, + "probability": 0.9336 + }, + { + "start": 17659.5, + "end": 17661.34, + "probability": 0.8818 + }, + { + "start": 17662.08, + "end": 17664.32, + "probability": 0.9504 + }, + { + "start": 17664.32, + "end": 17667.64, + "probability": 0.6984 + }, + { + "start": 17667.68, + "end": 17671.44, + "probability": 0.9868 + }, + { + "start": 17673.18, + "end": 17673.6, + "probability": 0.722 + }, + { + "start": 17673.72, + "end": 17676.24, + "probability": 0.9059 + }, + { + "start": 17676.36, + "end": 17677.26, + "probability": 0.8777 + }, + { + "start": 17678.02, + "end": 17679.18, + "probability": 0.8448 + }, + { + "start": 17680.06, + "end": 17680.38, + "probability": 0.472 + }, + { + "start": 17680.48, + "end": 17682.6, + "probability": 0.8305 + }, + { + "start": 17682.92, + "end": 17684.54, + "probability": 0.9371 + }, + { + "start": 17685.16, + "end": 17688.42, + "probability": 0.9985 + }, + { + "start": 17689.1, + "end": 17692.04, + "probability": 0.9841 + }, + { + "start": 17693.2, + "end": 17693.84, + "probability": 0.5349 + }, + { + "start": 17693.94, + "end": 17694.98, + "probability": 0.8696 + }, + { + "start": 17695.02, + "end": 17696.4, + "probability": 0.5876 + }, + { + "start": 17696.4, + "end": 17697.15, + "probability": 0.6208 + }, + { + "start": 17698.06, + "end": 17700.23, + "probability": 0.9819 + }, + { + "start": 17701.36, + "end": 17703.34, + "probability": 0.5951 + }, + { + "start": 17703.46, + "end": 17704.46, + "probability": 0.7139 + }, + { + "start": 17704.88, + "end": 17707.42, + "probability": 0.9128 + }, + { + "start": 17707.58, + "end": 17707.68, + "probability": 0.3405 + }, + { + "start": 17707.68, + "end": 17712.4, + "probability": 0.9965 + }, + { + "start": 17712.48, + "end": 17718.5, + "probability": 0.9938 + }, + { + "start": 17718.77, + "end": 17720.58, + "probability": 0.9498 + }, + { + "start": 17720.72, + "end": 17721.74, + "probability": 0.4697 + }, + { + "start": 17721.76, + "end": 17723.86, + "probability": 0.8771 + }, + { + "start": 17723.94, + "end": 17728.3, + "probability": 0.6604 + }, + { + "start": 17728.7, + "end": 17729.26, + "probability": 0.4234 + }, + { + "start": 17730.34, + "end": 17732.24, + "probability": 0.655 + }, + { + "start": 17732.24, + "end": 17734.04, + "probability": 0.6837 + }, + { + "start": 17734.86, + "end": 17735.92, + "probability": 0.659 + }, + { + "start": 17736.12, + "end": 17737.76, + "probability": 0.8697 + }, + { + "start": 17737.9, + "end": 17738.58, + "probability": 0.5041 + }, + { + "start": 17738.62, + "end": 17740.36, + "probability": 0.8014 + }, + { + "start": 17740.4, + "end": 17742.56, + "probability": 0.9145 + }, + { + "start": 17742.64, + "end": 17744.68, + "probability": 0.7403 + }, + { + "start": 17744.68, + "end": 17745.82, + "probability": 0.7216 + }, + { + "start": 17746.9, + "end": 17751.72, + "probability": 0.9897 + }, + { + "start": 17752.16, + "end": 17758.04, + "probability": 0.9541 + }, + { + "start": 17758.26, + "end": 17760.48, + "probability": 0.9784 + }, + { + "start": 17761.08, + "end": 17761.74, + "probability": 0.9081 + }, + { + "start": 17762.86, + "end": 17764.7, + "probability": 0.8686 + }, + { + "start": 17765.62, + "end": 17767.17, + "probability": 0.8978 + }, + { + "start": 17767.34, + "end": 17768.6, + "probability": 0.8238 + }, + { + "start": 17768.84, + "end": 17769.1, + "probability": 0.8146 + }, + { + "start": 17769.36, + "end": 17770.18, + "probability": 0.9406 + }, + { + "start": 17770.86, + "end": 17772.77, + "probability": 0.5676 + }, + { + "start": 17776.62, + "end": 17777.04, + "probability": 0.8502 + }, + { + "start": 17777.6, + "end": 17781.57, + "probability": 0.9303 + }, + { + "start": 17781.68, + "end": 17782.24, + "probability": 0.8226 + }, + { + "start": 17788.68, + "end": 17788.88, + "probability": 0.3518 + }, + { + "start": 17791.44, + "end": 17792.88, + "probability": 0.3191 + }, + { + "start": 17793.46, + "end": 17795.02, + "probability": 0.1159 + }, + { + "start": 17812.3, + "end": 17814.87, + "probability": 0.5706 + }, + { + "start": 17815.14, + "end": 17819.76, + "probability": 0.9637 + }, + { + "start": 17819.94, + "end": 17820.98, + "probability": 0.8272 + }, + { + "start": 17821.04, + "end": 17822.66, + "probability": 0.926 + }, + { + "start": 17824.94, + "end": 17826.66, + "probability": 0.8878 + }, + { + "start": 17827.87, + "end": 17832.0, + "probability": 0.8835 + }, + { + "start": 17832.26, + "end": 17833.2, + "probability": 0.0245 + }, + { + "start": 17834.32, + "end": 17834.78, + "probability": 0.1196 + }, + { + "start": 17839.36, + "end": 17839.38, + "probability": 0.0346 + }, + { + "start": 17839.38, + "end": 17839.38, + "probability": 0.1078 + }, + { + "start": 17839.38, + "end": 17839.38, + "probability": 0.1168 + }, + { + "start": 17839.38, + "end": 17845.82, + "probability": 0.8091 + }, + { + "start": 17846.02, + "end": 17848.26, + "probability": 0.8066 + }, + { + "start": 17849.48, + "end": 17849.94, + "probability": 0.1384 + }, + { + "start": 17850.0, + "end": 17851.5, + "probability": 0.0364 + }, + { + "start": 17851.5, + "end": 17851.96, + "probability": 0.3345 + }, + { + "start": 17852.16, + "end": 17853.56, + "probability": 0.0986 + }, + { + "start": 17855.92, + "end": 17856.3, + "probability": 0.0849 + }, + { + "start": 17856.3, + "end": 17857.0, + "probability": 0.1819 + }, + { + "start": 17857.24, + "end": 17859.18, + "probability": 0.131 + }, + { + "start": 17861.42, + "end": 17861.92, + "probability": 0.0513 + }, + { + "start": 17861.92, + "end": 17862.48, + "probability": 0.7367 + }, + { + "start": 17862.6, + "end": 17862.72, + "probability": 0.1949 + }, + { + "start": 17862.8, + "end": 17863.56, + "probability": 0.6765 + }, + { + "start": 17863.66, + "end": 17864.78, + "probability": 0.6881 + }, + { + "start": 17865.04, + "end": 17865.14, + "probability": 0.7179 + }, + { + "start": 17865.44, + "end": 17865.92, + "probability": 0.7168 + }, + { + "start": 17865.94, + "end": 17869.06, + "probability": 0.6735 + }, + { + "start": 17869.74, + "end": 17874.34, + "probability": 0.9567 + }, + { + "start": 17875.39, + "end": 17877.52, + "probability": 0.999 + }, + { + "start": 17878.26, + "end": 17878.98, + "probability": 0.9531 + }, + { + "start": 17879.1, + "end": 17881.32, + "probability": 0.9712 + }, + { + "start": 17882.24, + "end": 17883.56, + "probability": 0.9347 + }, + { + "start": 17884.38, + "end": 17886.8, + "probability": 0.9894 + }, + { + "start": 17887.12, + "end": 17888.26, + "probability": 0.9365 + }, + { + "start": 17888.26, + "end": 17891.24, + "probability": 0.2613 + }, + { + "start": 17891.24, + "end": 17893.1, + "probability": 0.9513 + }, + { + "start": 17893.14, + "end": 17894.34, + "probability": 0.6124 + }, + { + "start": 17895.1, + "end": 17895.4, + "probability": 0.4797 + }, + { + "start": 17895.42, + "end": 17895.9, + "probability": 0.6567 + }, + { + "start": 17896.32, + "end": 17897.04, + "probability": 0.9362 + }, + { + "start": 17897.14, + "end": 17897.98, + "probability": 0.7107 + }, + { + "start": 17898.28, + "end": 17899.9, + "probability": 0.4342 + }, + { + "start": 17900.12, + "end": 17900.5, + "probability": 0.5158 + }, + { + "start": 17900.62, + "end": 17902.9, + "probability": 0.8719 + }, + { + "start": 17902.96, + "end": 17903.92, + "probability": 0.9609 + }, + { + "start": 17904.44, + "end": 17905.24, + "probability": 0.0509 + }, + { + "start": 17906.08, + "end": 17906.08, + "probability": 0.0322 + }, + { + "start": 17906.08, + "end": 17906.08, + "probability": 0.0051 + }, + { + "start": 17906.08, + "end": 17907.5, + "probability": 0.8369 + }, + { + "start": 17907.56, + "end": 17910.3, + "probability": 0.8878 + }, + { + "start": 17910.34, + "end": 17911.24, + "probability": 0.6225 + }, + { + "start": 17913.3, + "end": 17914.15, + "probability": 0.0712 + }, + { + "start": 17914.98, + "end": 17915.16, + "probability": 0.102 + }, + { + "start": 17915.52, + "end": 17917.48, + "probability": 0.7988 + }, + { + "start": 17917.48, + "end": 17919.06, + "probability": 0.6715 + }, + { + "start": 17919.12, + "end": 17921.6, + "probability": 0.9182 + }, + { + "start": 17921.98, + "end": 17924.78, + "probability": 0.9956 + }, + { + "start": 17925.0, + "end": 17929.34, + "probability": 0.9986 + }, + { + "start": 17929.64, + "end": 17931.58, + "probability": 0.7578 + }, + { + "start": 17931.82, + "end": 17937.78, + "probability": 0.3248 + }, + { + "start": 17938.82, + "end": 17941.18, + "probability": 0.6948 + }, + { + "start": 17941.24, + "end": 17943.62, + "probability": 0.9917 + }, + { + "start": 17944.36, + "end": 17944.94, + "probability": 0.4061 + }, + { + "start": 17944.94, + "end": 17951.45, + "probability": 0.7411 + }, + { + "start": 17951.5, + "end": 17951.57, + "probability": 0.7494 + }, + { + "start": 17952.42, + "end": 17953.34, + "probability": 0.5818 + }, + { + "start": 17953.42, + "end": 17954.42, + "probability": 0.9099 + }, + { + "start": 17954.44, + "end": 17954.9, + "probability": 0.5816 + }, + { + "start": 17955.16, + "end": 17958.41, + "probability": 0.9936 + }, + { + "start": 17959.78, + "end": 17966.3, + "probability": 0.9917 + }, + { + "start": 17966.4, + "end": 17970.17, + "probability": 0.9701 + }, + { + "start": 17970.92, + "end": 17975.1, + "probability": 0.996 + }, + { + "start": 17975.18, + "end": 17975.86, + "probability": 0.7225 + }, + { + "start": 17977.04, + "end": 17979.18, + "probability": 0.5607 + }, + { + "start": 17979.28, + "end": 17983.26, + "probability": 0.9672 + }, + { + "start": 17984.16, + "end": 17984.2, + "probability": 0.0137 + }, + { + "start": 17984.28, + "end": 17987.04, + "probability": 0.9611 + }, + { + "start": 17987.28, + "end": 17987.98, + "probability": 0.8448 + }, + { + "start": 17988.2, + "end": 17989.86, + "probability": 0.8713 + }, + { + "start": 17990.08, + "end": 17991.88, + "probability": 0.903 + }, + { + "start": 17991.98, + "end": 17995.26, + "probability": 0.9363 + }, + { + "start": 17995.4, + "end": 17996.12, + "probability": 0.9231 + }, + { + "start": 17996.84, + "end": 17999.98, + "probability": 0.7872 + }, + { + "start": 17999.98, + "end": 18002.94, + "probability": 0.9591 + }, + { + "start": 18003.42, + "end": 18004.38, + "probability": 0.5175 + }, + { + "start": 18004.74, + "end": 18005.68, + "probability": 0.7662 + }, + { + "start": 18005.8, + "end": 18007.72, + "probability": 0.9775 + }, + { + "start": 18007.88, + "end": 18008.78, + "probability": 0.9976 + }, + { + "start": 18009.62, + "end": 18010.42, + "probability": 0.6865 + }, + { + "start": 18010.92, + "end": 18012.26, + "probability": 0.7919 + }, + { + "start": 18012.3, + "end": 18013.82, + "probability": 0.9029 + }, + { + "start": 18014.68, + "end": 18014.88, + "probability": 0.3352 + }, + { + "start": 18015.12, + "end": 18015.3, + "probability": 0.1402 + }, + { + "start": 18015.3, + "end": 18015.98, + "probability": 0.3601 + }, + { + "start": 18017.12, + "end": 18018.16, + "probability": 0.884 + }, + { + "start": 18018.68, + "end": 18024.0, + "probability": 0.9784 + }, + { + "start": 18025.14, + "end": 18025.63, + "probability": 0.0665 + }, + { + "start": 18026.52, + "end": 18026.52, + "probability": 0.279 + }, + { + "start": 18026.52, + "end": 18027.48, + "probability": 0.8061 + }, + { + "start": 18027.74, + "end": 18031.84, + "probability": 0.9637 + }, + { + "start": 18032.74, + "end": 18033.6, + "probability": 0.5902 + }, + { + "start": 18033.94, + "end": 18035.04, + "probability": 0.8735 + }, + { + "start": 18035.46, + "end": 18039.32, + "probability": 0.9795 + }, + { + "start": 18039.42, + "end": 18041.24, + "probability": 0.8062 + }, + { + "start": 18041.68, + "end": 18042.94, + "probability": 0.739 + }, + { + "start": 18043.38, + "end": 18045.58, + "probability": 0.9908 + }, + { + "start": 18045.88, + "end": 18048.64, + "probability": 0.9559 + }, + { + "start": 18048.64, + "end": 18050.44, + "probability": 0.9861 + }, + { + "start": 18050.56, + "end": 18053.78, + "probability": 0.9938 + }, + { + "start": 18054.26, + "end": 18057.06, + "probability": 0.9872 + }, + { + "start": 18057.52, + "end": 18058.34, + "probability": 0.965 + }, + { + "start": 18058.88, + "end": 18063.82, + "probability": 0.9438 + }, + { + "start": 18064.1, + "end": 18065.86, + "probability": 0.9821 + }, + { + "start": 18066.18, + "end": 18069.34, + "probability": 0.9927 + }, + { + "start": 18069.88, + "end": 18074.76, + "probability": 0.7784 + }, + { + "start": 18075.98, + "end": 18077.86, + "probability": 0.9951 + }, + { + "start": 18078.0, + "end": 18080.22, + "probability": 0.8505 + }, + { + "start": 18080.28, + "end": 18082.04, + "probability": 0.9888 + }, + { + "start": 18082.52, + "end": 18084.4, + "probability": 0.9286 + }, + { + "start": 18085.34, + "end": 18087.56, + "probability": 0.9155 + }, + { + "start": 18087.56, + "end": 18090.74, + "probability": 0.8873 + }, + { + "start": 18091.88, + "end": 18095.66, + "probability": 0.9874 + }, + { + "start": 18095.9, + "end": 18098.28, + "probability": 0.7384 + }, + { + "start": 18098.86, + "end": 18102.68, + "probability": 0.9685 + }, + { + "start": 18102.96, + "end": 18103.76, + "probability": 0.8765 + }, + { + "start": 18104.24, + "end": 18106.08, + "probability": 0.7488 + }, + { + "start": 18106.2, + "end": 18106.84, + "probability": 0.6606 + }, + { + "start": 18106.88, + "end": 18108.44, + "probability": 0.9562 + }, + { + "start": 18108.6, + "end": 18109.14, + "probability": 0.9681 + }, + { + "start": 18109.94, + "end": 18114.78, + "probability": 0.9985 + }, + { + "start": 18114.88, + "end": 18117.4, + "probability": 0.9738 + }, + { + "start": 18117.86, + "end": 18122.18, + "probability": 0.9974 + }, + { + "start": 18122.48, + "end": 18126.2, + "probability": 0.9961 + }, + { + "start": 18126.22, + "end": 18129.5, + "probability": 0.9336 + }, + { + "start": 18129.72, + "end": 18130.53, + "probability": 0.8755 + }, + { + "start": 18132.16, + "end": 18133.62, + "probability": 0.2568 + }, + { + "start": 18133.7, + "end": 18134.62, + "probability": 0.5645 + }, + { + "start": 18134.86, + "end": 18137.9, + "probability": 0.6063 + }, + { + "start": 18138.0, + "end": 18141.2, + "probability": 0.9509 + }, + { + "start": 18142.02, + "end": 18146.6, + "probability": 0.9968 + }, + { + "start": 18146.98, + "end": 18147.1, + "probability": 0.2523 + }, + { + "start": 18147.1, + "end": 18151.82, + "probability": 0.9691 + }, + { + "start": 18151.92, + "end": 18153.86, + "probability": 0.9987 + }, + { + "start": 18154.14, + "end": 18158.86, + "probability": 0.9969 + }, + { + "start": 18159.46, + "end": 18163.72, + "probability": 0.998 + }, + { + "start": 18164.14, + "end": 18166.04, + "probability": 0.9858 + }, + { + "start": 18166.48, + "end": 18167.28, + "probability": 0.8703 + }, + { + "start": 18167.66, + "end": 18169.16, + "probability": 0.9823 + }, + { + "start": 18169.5, + "end": 18170.68, + "probability": 0.9126 + }, + { + "start": 18171.4, + "end": 18171.94, + "probability": 0.5238 + }, + { + "start": 18171.94, + "end": 18172.84, + "probability": 0.4106 + }, + { + "start": 18173.0, + "end": 18176.92, + "probability": 0.8598 + }, + { + "start": 18194.84, + "end": 18196.52, + "probability": 0.4767 + }, + { + "start": 18196.78, + "end": 18197.28, + "probability": 0.1379 + }, + { + "start": 18200.0, + "end": 18200.94, + "probability": 0.5287 + }, + { + "start": 18203.0, + "end": 18204.86, + "probability": 0.9731 + }, + { + "start": 18206.14, + "end": 18206.86, + "probability": 0.6013 + }, + { + "start": 18208.34, + "end": 18209.72, + "probability": 0.9419 + }, + { + "start": 18211.24, + "end": 18212.68, + "probability": 0.9669 + }, + { + "start": 18213.44, + "end": 18217.28, + "probability": 0.5654 + }, + { + "start": 18220.24, + "end": 18225.02, + "probability": 0.5038 + }, + { + "start": 18226.76, + "end": 18232.2, + "probability": 0.8948 + }, + { + "start": 18234.0, + "end": 18236.34, + "probability": 0.6643 + }, + { + "start": 18237.64, + "end": 18242.36, + "probability": 0.9673 + }, + { + "start": 18244.0, + "end": 18245.14, + "probability": 0.9492 + }, + { + "start": 18245.98, + "end": 18246.76, + "probability": 0.5171 + }, + { + "start": 18247.48, + "end": 18249.5, + "probability": 0.5016 + }, + { + "start": 18251.7, + "end": 18254.2, + "probability": 0.9295 + }, + { + "start": 18256.92, + "end": 18259.3, + "probability": 0.9708 + }, + { + "start": 18259.82, + "end": 18266.52, + "probability": 0.9858 + }, + { + "start": 18267.86, + "end": 18270.42, + "probability": 0.8853 + }, + { + "start": 18271.8, + "end": 18278.26, + "probability": 0.7317 + }, + { + "start": 18279.56, + "end": 18280.28, + "probability": 0.8675 + }, + { + "start": 18280.8, + "end": 18281.56, + "probability": 0.0237 + }, + { + "start": 18282.66, + "end": 18282.82, + "probability": 0.2457 + }, + { + "start": 18282.82, + "end": 18285.36, + "probability": 0.99 + }, + { + "start": 18286.8, + "end": 18287.38, + "probability": 0.0813 + }, + { + "start": 18287.38, + "end": 18289.86, + "probability": 0.6948 + }, + { + "start": 18291.14, + "end": 18296.88, + "probability": 0.7866 + }, + { + "start": 18297.0, + "end": 18298.14, + "probability": 0.9387 + }, + { + "start": 18299.38, + "end": 18299.94, + "probability": 0.6605 + }, + { + "start": 18300.18, + "end": 18302.6, + "probability": 0.9917 + }, + { + "start": 18302.7, + "end": 18304.58, + "probability": 0.9703 + }, + { + "start": 18305.3, + "end": 18306.88, + "probability": 0.4262 + }, + { + "start": 18307.08, + "end": 18309.36, + "probability": 0.4039 + }, + { + "start": 18309.4, + "end": 18310.42, + "probability": 0.5971 + }, + { + "start": 18310.74, + "end": 18311.62, + "probability": 0.759 + }, + { + "start": 18312.14, + "end": 18313.78, + "probability": 0.8627 + }, + { + "start": 18314.98, + "end": 18315.98, + "probability": 0.9886 + }, + { + "start": 18316.74, + "end": 18317.72, + "probability": 0.5326 + }, + { + "start": 18320.82, + "end": 18321.96, + "probability": 0.9412 + }, + { + "start": 18322.92, + "end": 18323.86, + "probability": 0.8029 + }, + { + "start": 18324.5, + "end": 18327.16, + "probability": 0.9844 + }, + { + "start": 18327.16, + "end": 18331.18, + "probability": 0.9991 + }, + { + "start": 18331.78, + "end": 18337.98, + "probability": 0.9977 + }, + { + "start": 18338.68, + "end": 18340.22, + "probability": 0.7774 + }, + { + "start": 18341.56, + "end": 18344.5, + "probability": 0.9604 + }, + { + "start": 18345.0, + "end": 18352.56, + "probability": 0.9427 + }, + { + "start": 18353.32, + "end": 18356.06, + "probability": 0.7547 + }, + { + "start": 18356.68, + "end": 18365.76, + "probability": 0.9437 + }, + { + "start": 18367.34, + "end": 18371.8, + "probability": 0.8136 + }, + { + "start": 18372.82, + "end": 18378.78, + "probability": 0.9873 + }, + { + "start": 18380.14, + "end": 18384.78, + "probability": 0.9858 + }, + { + "start": 18384.78, + "end": 18390.42, + "probability": 0.737 + }, + { + "start": 18391.02, + "end": 18394.6, + "probability": 0.8632 + }, + { + "start": 18395.46, + "end": 18399.9, + "probability": 0.879 + }, + { + "start": 18400.46, + "end": 18403.58, + "probability": 0.7911 + }, + { + "start": 18405.5, + "end": 18408.36, + "probability": 0.896 + }, + { + "start": 18409.48, + "end": 18411.66, + "probability": 0.7556 + }, + { + "start": 18412.22, + "end": 18417.62, + "probability": 0.9885 + }, + { + "start": 18418.28, + "end": 18420.04, + "probability": 0.684 + }, + { + "start": 18421.0, + "end": 18422.8, + "probability": 0.808 + }, + { + "start": 18422.9, + "end": 18425.04, + "probability": 0.8099 + }, + { + "start": 18425.3, + "end": 18427.04, + "probability": 0.7131 + }, + { + "start": 18427.46, + "end": 18428.38, + "probability": 0.8739 + }, + { + "start": 18428.46, + "end": 18430.7, + "probability": 0.8931 + }, + { + "start": 18430.86, + "end": 18433.02, + "probability": 0.9875 + }, + { + "start": 18433.02, + "end": 18434.1, + "probability": 0.5775 + }, + { + "start": 18434.2, + "end": 18438.2, + "probability": 0.9658 + }, + { + "start": 18438.46, + "end": 18439.56, + "probability": 0.8751 + }, + { + "start": 18439.88, + "end": 18439.88, + "probability": 0.1265 + }, + { + "start": 18440.34, + "end": 18442.24, + "probability": 0.7398 + }, + { + "start": 18442.88, + "end": 18443.22, + "probability": 0.0751 + }, + { + "start": 18443.34, + "end": 18446.94, + "probability": 0.9639 + }, + { + "start": 18447.1, + "end": 18452.04, + "probability": 0.8966 + }, + { + "start": 18453.54, + "end": 18455.54, + "probability": 0.9855 + }, + { + "start": 18455.72, + "end": 18457.1, + "probability": 0.8746 + }, + { + "start": 18457.38, + "end": 18460.5, + "probability": 0.9508 + }, + { + "start": 18461.22, + "end": 18466.22, + "probability": 0.9209 + }, + { + "start": 18467.6, + "end": 18473.0, + "probability": 0.9854 + }, + { + "start": 18473.4, + "end": 18473.68, + "probability": 0.7315 + }, + { + "start": 18474.14, + "end": 18476.21, + "probability": 0.6643 + }, + { + "start": 18476.28, + "end": 18478.64, + "probability": 0.8978 + }, + { + "start": 18482.4, + "end": 18482.64, + "probability": 0.6524 + }, + { + "start": 18482.64, + "end": 18485.22, + "probability": 0.0918 + }, + { + "start": 18493.3, + "end": 18494.72, + "probability": 0.3964 + }, + { + "start": 18496.54, + "end": 18499.04, + "probability": 0.3934 + }, + { + "start": 18500.58, + "end": 18502.86, + "probability": 0.4509 + }, + { + "start": 18504.08, + "end": 18507.58, + "probability": 0.752 + }, + { + "start": 18508.48, + "end": 18508.48, + "probability": 0.5123 + }, + { + "start": 18508.48, + "end": 18509.84, + "probability": 0.9878 + }, + { + "start": 18509.92, + "end": 18511.34, + "probability": 0.7268 + }, + { + "start": 18512.44, + "end": 18512.48, + "probability": 0.2416 + }, + { + "start": 18512.48, + "end": 18513.5, + "probability": 0.9235 + }, + { + "start": 18513.56, + "end": 18514.34, + "probability": 0.6865 + }, + { + "start": 18514.98, + "end": 18519.08, + "probability": 0.7911 + }, + { + "start": 18519.62, + "end": 18520.78, + "probability": 0.622 + }, + { + "start": 18521.56, + "end": 18523.98, + "probability": 0.6004 + }, + { + "start": 18524.58, + "end": 18527.4, + "probability": 0.9556 + }, + { + "start": 18527.9, + "end": 18529.92, + "probability": 0.9351 + }, + { + "start": 18531.42, + "end": 18532.64, + "probability": 0.9937 + }, + { + "start": 18533.56, + "end": 18534.46, + "probability": 0.9966 + }, + { + "start": 18535.12, + "end": 18536.74, + "probability": 0.8765 + }, + { + "start": 18538.68, + "end": 18540.72, + "probability": 0.4384 + }, + { + "start": 18542.1, + "end": 18543.42, + "probability": 0.7764 + }, + { + "start": 18543.82, + "end": 18544.84, + "probability": 0.7096 + }, + { + "start": 18546.44, + "end": 18548.26, + "probability": 0.9709 + }, + { + "start": 18549.7, + "end": 18550.57, + "probability": 0.9724 + }, + { + "start": 18551.4, + "end": 18552.51, + "probability": 0.8813 + }, + { + "start": 18553.36, + "end": 18555.32, + "probability": 0.8784 + }, + { + "start": 18556.7, + "end": 18559.12, + "probability": 0.8846 + }, + { + "start": 18560.08, + "end": 18561.04, + "probability": 0.6975 + }, + { + "start": 18561.22, + "end": 18562.98, + "probability": 0.8097 + }, + { + "start": 18564.34, + "end": 18566.46, + "probability": 0.879 + }, + { + "start": 18568.7, + "end": 18570.98, + "probability": 0.8648 + }, + { + "start": 18572.14, + "end": 18576.36, + "probability": 0.9692 + }, + { + "start": 18577.46, + "end": 18578.44, + "probability": 0.9499 + }, + { + "start": 18580.8, + "end": 18582.36, + "probability": 0.9954 + }, + { + "start": 18583.66, + "end": 18588.74, + "probability": 0.998 + }, + { + "start": 18589.88, + "end": 18591.12, + "probability": 0.8401 + }, + { + "start": 18591.56, + "end": 18593.2, + "probability": 0.7258 + }, + { + "start": 18596.12, + "end": 18597.24, + "probability": 0.5638 + }, + { + "start": 18598.68, + "end": 18600.12, + "probability": 0.5058 + }, + { + "start": 18600.51, + "end": 18602.63, + "probability": 0.7137 + }, + { + "start": 18604.54, + "end": 18609.38, + "probability": 0.9873 + }, + { + "start": 18609.96, + "end": 18612.1, + "probability": 0.8621 + }, + { + "start": 18613.82, + "end": 18616.98, + "probability": 0.7409 + }, + { + "start": 18618.02, + "end": 18618.55, + "probability": 0.7523 + }, + { + "start": 18621.46, + "end": 18624.2, + "probability": 0.9354 + }, + { + "start": 18625.2, + "end": 18628.44, + "probability": 0.8275 + }, + { + "start": 18630.7, + "end": 18632.32, + "probability": 0.9673 + }, + { + "start": 18632.38, + "end": 18635.42, + "probability": 0.8295 + }, + { + "start": 18636.5, + "end": 18640.7, + "probability": 0.8087 + }, + { + "start": 18641.02, + "end": 18641.52, + "probability": 0.598 + }, + { + "start": 18642.0, + "end": 18643.64, + "probability": 0.7632 + }, + { + "start": 18645.04, + "end": 18646.68, + "probability": 0.8178 + }, + { + "start": 18647.44, + "end": 18649.46, + "probability": 0.8643 + }, + { + "start": 18650.1, + "end": 18652.09, + "probability": 0.998 + }, + { + "start": 18653.56, + "end": 18654.62, + "probability": 0.8058 + }, + { + "start": 18654.96, + "end": 18656.69, + "probability": 0.9941 + }, + { + "start": 18657.14, + "end": 18658.08, + "probability": 0.9437 + }, + { + "start": 18658.84, + "end": 18661.76, + "probability": 0.9938 + }, + { + "start": 18662.12, + "end": 18662.76, + "probability": 0.7768 + }, + { + "start": 18662.82, + "end": 18663.44, + "probability": 0.9404 + }, + { + "start": 18664.78, + "end": 18666.18, + "probability": 0.9475 + }, + { + "start": 18666.64, + "end": 18669.02, + "probability": 0.9756 + }, + { + "start": 18669.74, + "end": 18670.9, + "probability": 0.7243 + }, + { + "start": 18673.1, + "end": 18674.2, + "probability": 0.9442 + }, + { + "start": 18675.04, + "end": 18675.38, + "probability": 0.6172 + }, + { + "start": 18675.94, + "end": 18677.04, + "probability": 0.6627 + }, + { + "start": 18678.4, + "end": 18680.52, + "probability": 0.9622 + }, + { + "start": 18680.58, + "end": 18681.2, + "probability": 0.8456 + }, + { + "start": 18681.5, + "end": 18682.14, + "probability": 0.5619 + }, + { + "start": 18682.56, + "end": 18683.36, + "probability": 0.3712 + }, + { + "start": 18684.44, + "end": 18685.6, + "probability": 0.848 + }, + { + "start": 18686.68, + "end": 18687.42, + "probability": 0.8943 + }, + { + "start": 18687.72, + "end": 18688.14, + "probability": 0.5854 + }, + { + "start": 18688.3, + "end": 18688.84, + "probability": 0.8607 + }, + { + "start": 18688.9, + "end": 18692.16, + "probability": 0.9906 + }, + { + "start": 18693.92, + "end": 18696.1, + "probability": 0.9417 + }, + { + "start": 18697.02, + "end": 18699.36, + "probability": 0.8904 + }, + { + "start": 18700.76, + "end": 18704.86, + "probability": 0.994 + }, + { + "start": 18705.12, + "end": 18705.84, + "probability": 0.8997 + }, + { + "start": 18706.0, + "end": 18707.38, + "probability": 0.8978 + }, + { + "start": 18708.5, + "end": 18709.98, + "probability": 0.9722 + }, + { + "start": 18711.22, + "end": 18712.86, + "probability": 0.9985 + }, + { + "start": 18713.4, + "end": 18714.96, + "probability": 0.8264 + }, + { + "start": 18715.5, + "end": 18716.42, + "probability": 0.8983 + }, + { + "start": 18717.0, + "end": 18719.52, + "probability": 0.9883 + }, + { + "start": 18720.38, + "end": 18720.94, + "probability": 0.9557 + }, + { + "start": 18722.28, + "end": 18725.68, + "probability": 0.9775 + }, + { + "start": 18726.86, + "end": 18729.44, + "probability": 0.8772 + }, + { + "start": 18729.52, + "end": 18731.0, + "probability": 0.5229 + }, + { + "start": 18731.08, + "end": 18731.56, + "probability": 0.736 + }, + { + "start": 18732.12, + "end": 18733.82, + "probability": 0.9702 + }, + { + "start": 18734.86, + "end": 18736.62, + "probability": 0.815 + }, + { + "start": 18736.84, + "end": 18740.5, + "probability": 0.925 + }, + { + "start": 18742.36, + "end": 18743.7, + "probability": 0.1156 + }, + { + "start": 18745.28, + "end": 18745.98, + "probability": 0.3265 + }, + { + "start": 18745.98, + "end": 18747.5, + "probability": 0.7678 + }, + { + "start": 18747.6, + "end": 18748.7, + "probability": 0.7382 + }, + { + "start": 18748.78, + "end": 18752.16, + "probability": 0.6781 + }, + { + "start": 18752.74, + "end": 18752.74, + "probability": 0.6948 + }, + { + "start": 18752.74, + "end": 18755.06, + "probability": 0.6669 + }, + { + "start": 18755.76, + "end": 18756.02, + "probability": 0.0396 + }, + { + "start": 18756.82, + "end": 18760.84, + "probability": 0.1345 + }, + { + "start": 18761.12, + "end": 18761.3, + "probability": 0.7488 + }, + { + "start": 18766.44, + "end": 18767.96, + "probability": 0.7243 + }, + { + "start": 18768.06, + "end": 18768.54, + "probability": 0.92 + }, + { + "start": 18768.7, + "end": 18769.74, + "probability": 0.5707 + }, + { + "start": 18770.04, + "end": 18771.44, + "probability": 0.87 + }, + { + "start": 18771.92, + "end": 18772.8, + "probability": 0.8699 + }, + { + "start": 18772.92, + "end": 18775.5, + "probability": 0.8325 + }, + { + "start": 18775.72, + "end": 18778.42, + "probability": 0.9867 + }, + { + "start": 18778.52, + "end": 18782.34, + "probability": 0.9896 + }, + { + "start": 18782.7, + "end": 18783.6, + "probability": 0.9585 + }, + { + "start": 18784.02, + "end": 18786.24, + "probability": 0.9961 + }, + { + "start": 18786.72, + "end": 18790.28, + "probability": 0.9833 + }, + { + "start": 18790.38, + "end": 18791.22, + "probability": 0.9557 + }, + { + "start": 18791.38, + "end": 18792.74, + "probability": 0.9297 + }, + { + "start": 18792.88, + "end": 18795.08, + "probability": 0.9238 + }, + { + "start": 18795.78, + "end": 18799.46, + "probability": 0.9852 + }, + { + "start": 18799.98, + "end": 18803.96, + "probability": 0.9868 + }, + { + "start": 18804.14, + "end": 18807.52, + "probability": 0.9843 + }, + { + "start": 18808.14, + "end": 18808.88, + "probability": 0.065 + }, + { + "start": 18809.22, + "end": 18810.08, + "probability": 0.4842 + }, + { + "start": 18811.02, + "end": 18812.18, + "probability": 0.3761 + }, + { + "start": 18812.48, + "end": 18813.18, + "probability": 0.5037 + }, + { + "start": 18813.3, + "end": 18813.9, + "probability": 0.8249 + }, + { + "start": 18814.68, + "end": 18815.74, + "probability": 0.5559 + }, + { + "start": 18815.8, + "end": 18818.22, + "probability": 0.534 + }, + { + "start": 18818.76, + "end": 18823.36, + "probability": 0.6619 + }, + { + "start": 18824.46, + "end": 18829.06, + "probability": 0.8068 + }, + { + "start": 18829.2, + "end": 18830.06, + "probability": 0.9905 + }, + { + "start": 18830.42, + "end": 18833.22, + "probability": 0.9328 + }, + { + "start": 18834.08, + "end": 18836.28, + "probability": 0.9976 + }, + { + "start": 18836.44, + "end": 18839.42, + "probability": 0.9924 + }, + { + "start": 18839.48, + "end": 18840.98, + "probability": 0.7974 + }, + { + "start": 18841.68, + "end": 18842.49, + "probability": 0.875 + }, + { + "start": 18842.98, + "end": 18846.04, + "probability": 0.6575 + }, + { + "start": 18846.3, + "end": 18847.04, + "probability": 0.3443 + }, + { + "start": 18848.52, + "end": 18849.2, + "probability": 0.8207 + }, + { + "start": 18849.3, + "end": 18854.88, + "probability": 0.9991 + }, + { + "start": 18855.5, + "end": 18856.54, + "probability": 0.9092 + }, + { + "start": 18857.56, + "end": 18859.94, + "probability": 0.9693 + }, + { + "start": 18860.06, + "end": 18862.08, + "probability": 0.8805 + }, + { + "start": 18862.12, + "end": 18863.04, + "probability": 0.4116 + }, + { + "start": 18863.26, + "end": 18864.94, + "probability": 0.8374 + }, + { + "start": 18865.16, + "end": 18866.78, + "probability": 0.8913 + }, + { + "start": 18867.32, + "end": 18868.16, + "probability": 0.9646 + }, + { + "start": 18868.94, + "end": 18877.88, + "probability": 0.9524 + }, + { + "start": 18878.02, + "end": 18880.06, + "probability": 0.8149 + }, + { + "start": 18880.66, + "end": 18884.64, + "probability": 0.9366 + }, + { + "start": 18884.88, + "end": 18887.48, + "probability": 0.9432 + }, + { + "start": 18888.1, + "end": 18888.88, + "probability": 0.9585 + }, + { + "start": 18888.96, + "end": 18889.91, + "probability": 0.9946 + }, + { + "start": 18890.54, + "end": 18891.1, + "probability": 0.7388 + }, + { + "start": 18891.3, + "end": 18896.0, + "probability": 0.8643 + }, + { + "start": 18896.46, + "end": 18897.23, + "probability": 0.9287 + }, + { + "start": 18898.04, + "end": 18901.91, + "probability": 0.8929 + }, + { + "start": 18903.06, + "end": 18904.26, + "probability": 0.7149 + }, + { + "start": 18904.88, + "end": 18907.2, + "probability": 0.6084 + }, + { + "start": 18908.86, + "end": 18909.34, + "probability": 0.5667 + }, + { + "start": 18909.62, + "end": 18912.2, + "probability": 0.791 + }, + { + "start": 18912.36, + "end": 18914.34, + "probability": 0.8705 + }, + { + "start": 18914.96, + "end": 18920.88, + "probability": 0.9697 + }, + { + "start": 18921.36, + "end": 18925.06, + "probability": 0.995 + }, + { + "start": 18925.96, + "end": 18931.3, + "probability": 0.9938 + }, + { + "start": 18931.66, + "end": 18933.48, + "probability": 0.638 + }, + { + "start": 18933.9, + "end": 18934.1, + "probability": 0.68 + }, + { + "start": 18934.6, + "end": 18935.04, + "probability": 0.9121 + }, + { + "start": 18936.36, + "end": 18938.98, + "probability": 0.7764 + }, + { + "start": 18940.34, + "end": 18942.86, + "probability": 0.7981 + }, + { + "start": 18944.0, + "end": 18945.0, + "probability": 0.8383 + }, + { + "start": 18946.82, + "end": 18951.32, + "probability": 0.9664 + }, + { + "start": 18951.54, + "end": 18957.54, + "probability": 0.9915 + }, + { + "start": 18958.64, + "end": 18959.34, + "probability": 0.5681 + }, + { + "start": 18960.92, + "end": 18965.2, + "probability": 0.7435 + }, + { + "start": 18966.14, + "end": 18970.04, + "probability": 0.9043 + }, + { + "start": 18970.56, + "end": 18971.85, + "probability": 0.9711 + }, + { + "start": 18972.78, + "end": 18981.54, + "probability": 0.9812 + }, + { + "start": 18982.42, + "end": 18987.72, + "probability": 0.9756 + }, + { + "start": 18988.74, + "end": 18991.2, + "probability": 0.9937 + }, + { + "start": 18991.92, + "end": 18993.24, + "probability": 0.8301 + }, + { + "start": 18993.9, + "end": 18995.5, + "probability": 0.6088 + }, + { + "start": 18995.66, + "end": 18997.02, + "probability": 0.7898 + }, + { + "start": 18997.54, + "end": 18998.6, + "probability": 0.7833 + }, + { + "start": 18999.3, + "end": 19000.88, + "probability": 0.8247 + }, + { + "start": 19000.96, + "end": 19002.29, + "probability": 0.5964 + }, + { + "start": 19003.26, + "end": 19005.84, + "probability": 0.9866 + }, + { + "start": 19006.82, + "end": 19007.16, + "probability": 0.9749 + }, + { + "start": 19008.3, + "end": 19011.52, + "probability": 0.8986 + }, + { + "start": 19012.06, + "end": 19013.04, + "probability": 0.9985 + }, + { + "start": 19013.08, + "end": 19014.84, + "probability": 0.929 + }, + { + "start": 19015.38, + "end": 19016.64, + "probability": 0.9889 + }, + { + "start": 19017.32, + "end": 19020.92, + "probability": 0.8853 + }, + { + "start": 19021.32, + "end": 19024.12, + "probability": 0.9993 + }, + { + "start": 19025.0, + "end": 19027.12, + "probability": 0.708 + }, + { + "start": 19028.24, + "end": 19030.26, + "probability": 0.6909 + }, + { + "start": 19030.42, + "end": 19030.72, + "probability": 0.519 + }, + { + "start": 19030.93, + "end": 19033.54, + "probability": 0.6876 + }, + { + "start": 19033.64, + "end": 19036.38, + "probability": 0.9347 + }, + { + "start": 19036.44, + "end": 19037.12, + "probability": 0.8535 + }, + { + "start": 19037.6, + "end": 19038.28, + "probability": 0.8295 + }, + { + "start": 19039.08, + "end": 19042.16, + "probability": 0.7472 + }, + { + "start": 19042.46, + "end": 19043.1, + "probability": 0.9648 + }, + { + "start": 19043.2, + "end": 19043.72, + "probability": 0.9536 + }, + { + "start": 19043.84, + "end": 19044.6, + "probability": 0.97 + }, + { + "start": 19044.82, + "end": 19045.18, + "probability": 0.719 + }, + { + "start": 19045.3, + "end": 19045.76, + "probability": 0.3253 + }, + { + "start": 19045.84, + "end": 19046.26, + "probability": 0.6702 + }, + { + "start": 19046.34, + "end": 19047.7, + "probability": 0.7099 + }, + { + "start": 19049.17, + "end": 19051.58, + "probability": 0.9325 + }, + { + "start": 19051.86, + "end": 19053.07, + "probability": 0.8102 + }, + { + "start": 19053.32, + "end": 19054.4, + "probability": 0.7887 + }, + { + "start": 19055.06, + "end": 19057.16, + "probability": 0.9907 + }, + { + "start": 19057.22, + "end": 19058.48, + "probability": 0.9048 + }, + { + "start": 19058.56, + "end": 19059.6, + "probability": 0.7469 + }, + { + "start": 19059.72, + "end": 19060.66, + "probability": 0.8225 + }, + { + "start": 19062.22, + "end": 19067.0, + "probability": 0.9797 + }, + { + "start": 19067.32, + "end": 19068.62, + "probability": 0.9802 + }, + { + "start": 19068.7, + "end": 19071.0, + "probability": 0.986 + }, + { + "start": 19071.98, + "end": 19073.78, + "probability": 0.833 + }, + { + "start": 19074.32, + "end": 19075.06, + "probability": 0.8703 + }, + { + "start": 19075.2, + "end": 19075.68, + "probability": 0.8723 + }, + { + "start": 19075.72, + "end": 19076.48, + "probability": 0.8608 + }, + { + "start": 19076.94, + "end": 19078.88, + "probability": 0.8784 + }, + { + "start": 19079.4, + "end": 19081.54, + "probability": 0.9767 + }, + { + "start": 19082.36, + "end": 19083.76, + "probability": 0.9392 + }, + { + "start": 19084.52, + "end": 19088.3, + "probability": 0.984 + }, + { + "start": 19088.68, + "end": 19089.52, + "probability": 0.5994 + }, + { + "start": 19090.64, + "end": 19091.16, + "probability": 0.7967 + }, + { + "start": 19091.48, + "end": 19098.58, + "probability": 0.94 + }, + { + "start": 19099.3, + "end": 19100.44, + "probability": 0.7144 + }, + { + "start": 19100.88, + "end": 19103.08, + "probability": 0.991 + }, + { + "start": 19103.96, + "end": 19105.7, + "probability": 0.9928 + }, + { + "start": 19106.44, + "end": 19107.28, + "probability": 0.3746 + }, + { + "start": 19107.56, + "end": 19112.32, + "probability": 0.6135 + }, + { + "start": 19112.38, + "end": 19115.98, + "probability": 0.8114 + }, + { + "start": 19116.06, + "end": 19116.8, + "probability": 0.9908 + }, + { + "start": 19117.06, + "end": 19117.6, + "probability": 0.897 + }, + { + "start": 19118.48, + "end": 19123.24, + "probability": 0.579 + }, + { + "start": 19123.24, + "end": 19124.46, + "probability": 0.4083 + }, + { + "start": 19125.12, + "end": 19125.75, + "probability": 0.2461 + }, + { + "start": 19126.06, + "end": 19126.9, + "probability": 0.7467 + }, + { + "start": 19127.1, + "end": 19128.52, + "probability": 0.7465 + }, + { + "start": 19128.78, + "end": 19129.22, + "probability": 0.2717 + }, + { + "start": 19129.54, + "end": 19130.42, + "probability": 0.698 + }, + { + "start": 19130.52, + "end": 19131.28, + "probability": 0.2622 + }, + { + "start": 19131.28, + "end": 19133.98, + "probability": 0.8701 + }, + { + "start": 19134.34, + "end": 19136.88, + "probability": 0.6086 + }, + { + "start": 19137.76, + "end": 19139.44, + "probability": 0.9028 + }, + { + "start": 19140.44, + "end": 19142.12, + "probability": 0.6453 + }, + { + "start": 19142.84, + "end": 19143.46, + "probability": 0.5514 + }, + { + "start": 19143.56, + "end": 19147.54, + "probability": 0.9749 + }, + { + "start": 19148.66, + "end": 19152.34, + "probability": 0.9189 + }, + { + "start": 19153.78, + "end": 19154.54, + "probability": 0.6468 + }, + { + "start": 19155.94, + "end": 19157.14, + "probability": 0.671 + }, + { + "start": 19157.86, + "end": 19159.36, + "probability": 0.9285 + }, + { + "start": 19159.5, + "end": 19160.06, + "probability": 0.875 + }, + { + "start": 19161.24, + "end": 19163.04, + "probability": 0.916 + }, + { + "start": 19164.22, + "end": 19166.72, + "probability": 0.9784 + }, + { + "start": 19168.73, + "end": 19170.98, + "probability": 0.7984 + }, + { + "start": 19171.92, + "end": 19173.78, + "probability": 0.9271 + }, + { + "start": 19174.12, + "end": 19175.43, + "probability": 0.9682 + }, + { + "start": 19175.68, + "end": 19179.44, + "probability": 0.8797 + }, + { + "start": 19179.68, + "end": 19181.01, + "probability": 0.8667 + }, + { + "start": 19181.44, + "end": 19184.86, + "probability": 0.9764 + }, + { + "start": 19184.98, + "end": 19185.28, + "probability": 0.7729 + }, + { + "start": 19185.36, + "end": 19185.9, + "probability": 0.874 + }, + { + "start": 19186.32, + "end": 19190.42, + "probability": 0.8666 + }, + { + "start": 19191.14, + "end": 19194.7, + "probability": 0.9746 + }, + { + "start": 19194.74, + "end": 19195.44, + "probability": 0.6775 + }, + { + "start": 19195.5, + "end": 19196.32, + "probability": 0.8601 + }, + { + "start": 19196.32, + "end": 19197.36, + "probability": 0.7053 + }, + { + "start": 19198.04, + "end": 19200.32, + "probability": 0.9717 + }, + { + "start": 19200.42, + "end": 19201.16, + "probability": 0.3468 + }, + { + "start": 19201.36, + "end": 19202.76, + "probability": 0.7929 + }, + { + "start": 19203.3, + "end": 19207.6, + "probability": 0.9323 + }, + { + "start": 19207.64, + "end": 19207.64, + "probability": 0.4251 + }, + { + "start": 19207.64, + "end": 19209.34, + "probability": 0.6663 + }, + { + "start": 19209.72, + "end": 19210.98, + "probability": 0.2992 + }, + { + "start": 19211.06, + "end": 19212.26, + "probability": 0.4416 + }, + { + "start": 19213.5, + "end": 19214.02, + "probability": 0.2497 + }, + { + "start": 19214.02, + "end": 19214.02, + "probability": 0.2909 + }, + { + "start": 19214.02, + "end": 19214.02, + "probability": 0.1517 + }, + { + "start": 19214.02, + "end": 19214.85, + "probability": 0.3758 + }, + { + "start": 19215.9, + "end": 19218.3, + "probability": 0.4409 + }, + { + "start": 19218.62, + "end": 19220.36, + "probability": 0.7412 + }, + { + "start": 19220.7, + "end": 19221.38, + "probability": 0.8989 + }, + { + "start": 19221.44, + "end": 19224.9, + "probability": 0.9305 + }, + { + "start": 19225.26, + "end": 19226.1, + "probability": 0.9531 + }, + { + "start": 19227.67, + "end": 19232.74, + "probability": 0.8809 + }, + { + "start": 19233.38, + "end": 19233.92, + "probability": 0.7877 + }, + { + "start": 19234.44, + "end": 19236.2, + "probability": 0.9164 + }, + { + "start": 19238.04, + "end": 19240.44, + "probability": 0.9336 + }, + { + "start": 19241.44, + "end": 19243.08, + "probability": 0.8496 + }, + { + "start": 19244.3, + "end": 19246.52, + "probability": 0.8422 + }, + { + "start": 19246.94, + "end": 19249.72, + "probability": 0.9606 + }, + { + "start": 19250.68, + "end": 19252.14, + "probability": 0.8609 + }, + { + "start": 19252.58, + "end": 19257.38, + "probability": 0.8627 + }, + { + "start": 19258.14, + "end": 19261.1, + "probability": 0.8719 + }, + { + "start": 19261.22, + "end": 19263.18, + "probability": 0.8382 + }, + { + "start": 19263.6, + "end": 19267.6, + "probability": 0.9275 + }, + { + "start": 19267.82, + "end": 19269.38, + "probability": 0.9854 + }, + { + "start": 19270.34, + "end": 19272.06, + "probability": 0.7061 + }, + { + "start": 19272.68, + "end": 19275.74, + "probability": 0.9973 + }, + { + "start": 19276.66, + "end": 19277.54, + "probability": 0.6727 + }, + { + "start": 19280.1, + "end": 19283.62, + "probability": 0.9473 + }, + { + "start": 19283.72, + "end": 19286.64, + "probability": 0.8736 + }, + { + "start": 19286.74, + "end": 19287.36, + "probability": 0.5564 + }, + { + "start": 19287.42, + "end": 19288.08, + "probability": 0.5787 + }, + { + "start": 19288.16, + "end": 19288.28, + "probability": 0.267 + }, + { + "start": 19288.34, + "end": 19289.22, + "probability": 0.8537 + }, + { + "start": 19290.94, + "end": 19292.9, + "probability": 0.9426 + }, + { + "start": 19293.3, + "end": 19294.28, + "probability": 0.8081 + }, + { + "start": 19294.42, + "end": 19296.82, + "probability": 0.9849 + }, + { + "start": 19297.4, + "end": 19299.42, + "probability": 0.9778 + }, + { + "start": 19299.48, + "end": 19300.03, + "probability": 0.9653 + }, + { + "start": 19300.94, + "end": 19301.63, + "probability": 0.9819 + }, + { + "start": 19302.24, + "end": 19302.84, + "probability": 0.9189 + }, + { + "start": 19303.68, + "end": 19306.44, + "probability": 0.6709 + }, + { + "start": 19306.82, + "end": 19311.78, + "probability": 0.8969 + }, + { + "start": 19311.78, + "end": 19312.24, + "probability": 0.8243 + }, + { + "start": 19312.34, + "end": 19313.32, + "probability": 0.6332 + }, + { + "start": 19314.96, + "end": 19316.34, + "probability": 0.9621 + }, + { + "start": 19316.7, + "end": 19319.04, + "probability": 0.9705 + }, + { + "start": 19319.04, + "end": 19321.86, + "probability": 0.8618 + }, + { + "start": 19322.46, + "end": 19323.06, + "probability": 0.8058 + }, + { + "start": 19323.8, + "end": 19326.88, + "probability": 0.9047 + }, + { + "start": 19328.34, + "end": 19330.0, + "probability": 0.9156 + }, + { + "start": 19330.14, + "end": 19331.3, + "probability": 0.8538 + }, + { + "start": 19331.38, + "end": 19332.82, + "probability": 0.798 + }, + { + "start": 19333.46, + "end": 19335.12, + "probability": 0.8306 + }, + { + "start": 19335.26, + "end": 19335.56, + "probability": 0.814 + }, + { + "start": 19335.68, + "end": 19337.02, + "probability": 0.9284 + }, + { + "start": 19337.8, + "end": 19338.6, + "probability": 0.8675 + }, + { + "start": 19340.98, + "end": 19342.04, + "probability": 0.2833 + }, + { + "start": 19342.18, + "end": 19343.04, + "probability": 0.8708 + }, + { + "start": 19343.12, + "end": 19346.16, + "probability": 0.884 + }, + { + "start": 19347.34, + "end": 19349.24, + "probability": 0.4321 + }, + { + "start": 19349.38, + "end": 19351.3, + "probability": 0.6181 + }, + { + "start": 19351.4, + "end": 19352.58, + "probability": 0.6993 + }, + { + "start": 19352.88, + "end": 19357.7, + "probability": 0.9458 + }, + { + "start": 19358.1, + "end": 19360.2, + "probability": 0.0511 + }, + { + "start": 19360.2, + "end": 19364.26, + "probability": 0.9463 + }, + { + "start": 19364.38, + "end": 19365.3, + "probability": 0.7441 + }, + { + "start": 19365.84, + "end": 19368.46, + "probability": 0.9454 + }, + { + "start": 19368.68, + "end": 19371.0, + "probability": 0.9951 + }, + { + "start": 19371.0, + "end": 19373.6, + "probability": 0.9473 + }, + { + "start": 19373.66, + "end": 19374.46, + "probability": 0.759 + }, + { + "start": 19374.82, + "end": 19376.82, + "probability": 0.728 + }, + { + "start": 19376.84, + "end": 19378.5, + "probability": 0.9677 + }, + { + "start": 19379.38, + "end": 19382.7, + "probability": 0.9703 + }, + { + "start": 19384.44, + "end": 19385.02, + "probability": 0.4157 + }, + { + "start": 19385.5, + "end": 19386.48, + "probability": 0.5355 + }, + { + "start": 19386.6, + "end": 19387.07, + "probability": 0.9478 + }, + { + "start": 19387.44, + "end": 19388.55, + "probability": 0.996 + }, + { + "start": 19389.08, + "end": 19392.34, + "probability": 0.958 + }, + { + "start": 19392.36, + "end": 19393.4, + "probability": 0.702 + }, + { + "start": 19393.4, + "end": 19395.24, + "probability": 0.6137 + }, + { + "start": 19395.64, + "end": 19396.18, + "probability": 0.5324 + }, + { + "start": 19396.48, + "end": 19397.5, + "probability": 0.6614 + }, + { + "start": 19397.6, + "end": 19398.06, + "probability": 0.7649 + }, + { + "start": 19398.7, + "end": 19401.22, + "probability": 0.8836 + }, + { + "start": 19401.66, + "end": 19402.86, + "probability": 0.7433 + }, + { + "start": 19403.48, + "end": 19404.42, + "probability": 0.4853 + }, + { + "start": 19404.8, + "end": 19406.36, + "probability": 0.9875 + }, + { + "start": 19406.44, + "end": 19408.74, + "probability": 0.1523 + }, + { + "start": 19408.74, + "end": 19410.56, + "probability": 0.916 + }, + { + "start": 19411.04, + "end": 19413.68, + "probability": 0.6597 + }, + { + "start": 19413.76, + "end": 19414.1, + "probability": 0.7552 + }, + { + "start": 19415.46, + "end": 19415.8, + "probability": 0.0138 + } + ], + "segments_count": 6960, + "words_count": 35238, + "avg_words_per_segment": 5.0629, + "avg_segment_duration": 2.0842, + "avg_words_per_minute": 108.8431, + "plenum_id": "10139", + "duration": 19425.02, + "title": null, + "plenum_date": "2010-11-17" +} \ No newline at end of file