diff --git "a/124463/metadata.json" "b/124463/metadata.json" new file mode 100644--- /dev/null +++ "b/124463/metadata.json" @@ -0,0 +1,17362 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "124463", + "quality_score": 0.7715, + "per_segment_quality_scores": [ + { + "start": 0.12, + "end": 1.18, + "probability": 0.128 + }, + { + "start": 1.26, + "end": 1.54, + "probability": 0.0558 + }, + { + "start": 1.54, + "end": 2.34, + "probability": 0.0711 + }, + { + "start": 58.52, + "end": 59.38, + "probability": 0.0439 + }, + { + "start": 64.44, + "end": 65.52, + "probability": 0.4775 + }, + { + "start": 66.22, + "end": 71.42, + "probability": 0.873 + }, + { + "start": 72.24, + "end": 73.76, + "probability": 0.9603 + }, + { + "start": 73.98, + "end": 75.14, + "probability": 0.5069 + }, + { + "start": 75.36, + "end": 77.0, + "probability": 0.9821 + }, + { + "start": 77.36, + "end": 78.44, + "probability": 0.6327 + }, + { + "start": 79.06, + "end": 79.9, + "probability": 0.7331 + }, + { + "start": 80.76, + "end": 85.0, + "probability": 0.5084 + }, + { + "start": 85.74, + "end": 88.52, + "probability": 0.2035 + }, + { + "start": 89.64, + "end": 92.36, + "probability": 0.8262 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 205.0, + "end": 205.0, + "probability": 0.0 + }, + { + "start": 211.42, + "end": 215.38, + "probability": 0.0771 + }, + { + "start": 215.86, + "end": 216.4, + "probability": 0.045 + }, + { + "start": 216.68, + "end": 223.32, + "probability": 0.1329 + }, + { + "start": 224.02, + "end": 225.12, + "probability": 0.0563 + }, + { + "start": 225.66, + "end": 226.4, + "probability": 0.042 + }, + { + "start": 227.04, + "end": 227.9, + "probability": 0.0431 + }, + { + "start": 228.44, + "end": 231.52, + "probability": 0.2212 + }, + { + "start": 233.84, + "end": 234.86, + "probability": 0.0827 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.0, + "end": 327.0, + "probability": 0.0 + }, + { + "start": 327.28, + "end": 333.0, + "probability": 0.9858 + }, + { + "start": 333.32, + "end": 335.4, + "probability": 0.9984 + }, + { + "start": 335.68, + "end": 338.54, + "probability": 0.9831 + }, + { + "start": 338.82, + "end": 339.92, + "probability": 0.9915 + }, + { + "start": 340.78, + "end": 341.64, + "probability": 0.9834 + }, + { + "start": 342.2, + "end": 344.24, + "probability": 0.7451 + }, + { + "start": 344.58, + "end": 346.72, + "probability": 0.9359 + }, + { + "start": 347.2, + "end": 351.88, + "probability": 0.958 + }, + { + "start": 351.98, + "end": 354.08, + "probability": 0.9915 + }, + { + "start": 354.9, + "end": 358.88, + "probability": 0.9866 + }, + { + "start": 359.28, + "end": 360.48, + "probability": 0.7464 + }, + { + "start": 361.04, + "end": 363.74, + "probability": 0.7887 + }, + { + "start": 364.26, + "end": 365.16, + "probability": 0.8604 + }, + { + "start": 365.22, + "end": 367.52, + "probability": 0.9672 + }, + { + "start": 373.38, + "end": 374.42, + "probability": 0.738 + }, + { + "start": 374.52, + "end": 378.48, + "probability": 0.8623 + }, + { + "start": 379.68, + "end": 381.3, + "probability": 0.8958 + }, + { + "start": 381.34, + "end": 385.42, + "probability": 0.77 + }, + { + "start": 385.42, + "end": 389.24, + "probability": 0.9828 + }, + { + "start": 390.86, + "end": 391.48, + "probability": 0.5829 + }, + { + "start": 391.52, + "end": 392.96, + "probability": 0.7875 + }, + { + "start": 393.04, + "end": 393.66, + "probability": 0.8158 + }, + { + "start": 393.7, + "end": 395.38, + "probability": 0.9707 + }, + { + "start": 396.78, + "end": 400.82, + "probability": 0.6837 + }, + { + "start": 402.9, + "end": 404.26, + "probability": 0.8956 + }, + { + "start": 404.3, + "end": 406.28, + "probability": 0.9927 + }, + { + "start": 406.46, + "end": 407.56, + "probability": 0.3837 + }, + { + "start": 408.08, + "end": 409.14, + "probability": 0.8746 + }, + { + "start": 410.82, + "end": 412.3, + "probability": 0.8118 + }, + { + "start": 412.4, + "end": 415.18, + "probability": 0.9092 + }, + { + "start": 415.72, + "end": 415.78, + "probability": 0.0092 + }, + { + "start": 416.3, + "end": 420.42, + "probability": 0.9785 + }, + { + "start": 420.72, + "end": 422.36, + "probability": 0.8547 + }, + { + "start": 423.04, + "end": 424.0, + "probability": 0.8548 + }, + { + "start": 424.38, + "end": 427.44, + "probability": 0.9899 + }, + { + "start": 427.52, + "end": 429.38, + "probability": 0.9188 + }, + { + "start": 429.8, + "end": 434.5, + "probability": 0.9991 + }, + { + "start": 435.16, + "end": 442.02, + "probability": 0.9921 + }, + { + "start": 442.14, + "end": 444.66, + "probability": 0.9984 + }, + { + "start": 445.4, + "end": 451.88, + "probability": 0.9368 + }, + { + "start": 452.84, + "end": 453.34, + "probability": 0.4934 + }, + { + "start": 453.9, + "end": 457.04, + "probability": 0.9582 + }, + { + "start": 457.5, + "end": 460.47, + "probability": 0.9661 + }, + { + "start": 460.78, + "end": 466.26, + "probability": 0.9486 + }, + { + "start": 466.66, + "end": 467.6, + "probability": 0.8123 + }, + { + "start": 467.94, + "end": 469.22, + "probability": 0.8064 + }, + { + "start": 469.68, + "end": 470.8, + "probability": 0.9648 + }, + { + "start": 471.28, + "end": 475.6, + "probability": 0.9546 + }, + { + "start": 475.6, + "end": 481.2, + "probability": 0.9927 + }, + { + "start": 481.64, + "end": 483.63, + "probability": 0.8281 + }, + { + "start": 484.12, + "end": 484.64, + "probability": 0.9694 + }, + { + "start": 485.02, + "end": 488.22, + "probability": 0.9854 + }, + { + "start": 488.76, + "end": 493.2, + "probability": 0.9866 + }, + { + "start": 493.72, + "end": 496.66, + "probability": 0.9885 + }, + { + "start": 496.76, + "end": 498.86, + "probability": 0.9953 + }, + { + "start": 498.92, + "end": 499.4, + "probability": 0.7702 + }, + { + "start": 499.82, + "end": 501.41, + "probability": 0.8401 + }, + { + "start": 501.6, + "end": 502.32, + "probability": 0.6537 + }, + { + "start": 502.42, + "end": 504.14, + "probability": 0.845 + }, + { + "start": 510.96, + "end": 513.2, + "probability": 0.7935 + }, + { + "start": 514.12, + "end": 517.82, + "probability": 0.998 + }, + { + "start": 519.06, + "end": 520.14, + "probability": 0.8912 + }, + { + "start": 522.8, + "end": 527.4, + "probability": 0.9595 + }, + { + "start": 527.4, + "end": 527.44, + "probability": 0.1366 + }, + { + "start": 527.44, + "end": 527.96, + "probability": 0.3438 + }, + { + "start": 529.32, + "end": 531.52, + "probability": 0.8485 + }, + { + "start": 532.36, + "end": 534.76, + "probability": 0.5629 + }, + { + "start": 536.22, + "end": 536.64, + "probability": 0.8516 + }, + { + "start": 537.82, + "end": 538.5, + "probability": 0.9487 + }, + { + "start": 539.04, + "end": 541.88, + "probability": 0.8604 + }, + { + "start": 542.4, + "end": 543.04, + "probability": 0.6468 + }, + { + "start": 543.6, + "end": 545.08, + "probability": 0.9956 + }, + { + "start": 546.08, + "end": 547.1, + "probability": 0.5973 + }, + { + "start": 547.68, + "end": 549.28, + "probability": 0.6298 + }, + { + "start": 549.98, + "end": 550.84, + "probability": 0.9688 + }, + { + "start": 551.58, + "end": 552.64, + "probability": 0.8374 + }, + { + "start": 553.16, + "end": 554.14, + "probability": 0.7915 + }, + { + "start": 554.78, + "end": 557.9, + "probability": 0.9807 + }, + { + "start": 558.96, + "end": 561.16, + "probability": 0.9602 + }, + { + "start": 561.36, + "end": 563.54, + "probability": 0.9814 + }, + { + "start": 563.54, + "end": 568.32, + "probability": 0.9912 + }, + { + "start": 569.9, + "end": 573.1, + "probability": 0.8948 + }, + { + "start": 576.1, + "end": 576.58, + "probability": 0.5941 + }, + { + "start": 576.6, + "end": 576.96, + "probability": 0.8078 + }, + { + "start": 577.14, + "end": 579.68, + "probability": 0.8388 + }, + { + "start": 580.94, + "end": 583.46, + "probability": 0.8857 + }, + { + "start": 585.08, + "end": 586.74, + "probability": 0.8889 + }, + { + "start": 587.32, + "end": 589.86, + "probability": 0.9695 + }, + { + "start": 592.02, + "end": 593.72, + "probability": 0.9968 + }, + { + "start": 594.8, + "end": 595.78, + "probability": 0.8706 + }, + { + "start": 596.38, + "end": 597.38, + "probability": 0.9697 + }, + { + "start": 598.2, + "end": 599.98, + "probability": 0.8159 + }, + { + "start": 600.54, + "end": 603.24, + "probability": 0.9689 + }, + { + "start": 604.22, + "end": 607.16, + "probability": 0.9946 + }, + { + "start": 607.16, + "end": 610.0, + "probability": 0.9396 + }, + { + "start": 611.4, + "end": 614.1, + "probability": 0.9993 + }, + { + "start": 614.64, + "end": 616.32, + "probability": 0.6471 + }, + { + "start": 616.86, + "end": 617.12, + "probability": 0.6231 + }, + { + "start": 617.74, + "end": 618.56, + "probability": 0.5505 + }, + { + "start": 618.64, + "end": 620.22, + "probability": 0.8531 + }, + { + "start": 620.44, + "end": 622.12, + "probability": 0.8684 + }, + { + "start": 623.16, + "end": 625.26, + "probability": 0.967 + }, + { + "start": 627.82, + "end": 628.34, + "probability": 0.9375 + }, + { + "start": 629.24, + "end": 631.32, + "probability": 0.7934 + }, + { + "start": 632.24, + "end": 636.64, + "probability": 0.9862 + }, + { + "start": 637.78, + "end": 640.61, + "probability": 0.9983 + }, + { + "start": 641.4, + "end": 643.62, + "probability": 0.8515 + }, + { + "start": 644.64, + "end": 649.78, + "probability": 0.9902 + }, + { + "start": 650.58, + "end": 654.46, + "probability": 0.9738 + }, + { + "start": 654.8, + "end": 655.78, + "probability": 0.8238 + }, + { + "start": 656.34, + "end": 656.88, + "probability": 0.9646 + }, + { + "start": 657.4, + "end": 657.6, + "probability": 0.5004 + }, + { + "start": 657.78, + "end": 658.18, + "probability": 0.8765 + }, + { + "start": 658.26, + "end": 662.7, + "probability": 0.9883 + }, + { + "start": 663.34, + "end": 664.9, + "probability": 0.9575 + }, + { + "start": 665.58, + "end": 667.44, + "probability": 0.8237 + }, + { + "start": 667.44, + "end": 668.58, + "probability": 0.691 + }, + { + "start": 669.04, + "end": 670.37, + "probability": 0.7635 + }, + { + "start": 670.5, + "end": 672.68, + "probability": 0.9512 + }, + { + "start": 673.12, + "end": 673.52, + "probability": 0.4649 + }, + { + "start": 675.12, + "end": 675.81, + "probability": 0.9948 + }, + { + "start": 676.12, + "end": 676.36, + "probability": 0.9164 + }, + { + "start": 676.44, + "end": 676.91, + "probability": 0.9811 + }, + { + "start": 676.98, + "end": 677.82, + "probability": 0.9022 + }, + { + "start": 677.84, + "end": 678.28, + "probability": 0.8906 + }, + { + "start": 678.84, + "end": 679.33, + "probability": 0.959 + }, + { + "start": 680.9, + "end": 682.1, + "probability": 0.9838 + }, + { + "start": 684.7, + "end": 685.9, + "probability": 0.9099 + }, + { + "start": 686.02, + "end": 687.08, + "probability": 0.9854 + }, + { + "start": 687.12, + "end": 689.24, + "probability": 0.6655 + }, + { + "start": 692.24, + "end": 693.44, + "probability": 0.5815 + }, + { + "start": 695.2, + "end": 696.62, + "probability": 0.9419 + }, + { + "start": 699.12, + "end": 700.96, + "probability": 0.9228 + }, + { + "start": 703.39, + "end": 705.32, + "probability": 0.9574 + }, + { + "start": 705.32, + "end": 706.1, + "probability": 0.8007 + }, + { + "start": 707.32, + "end": 708.1, + "probability": 0.739 + }, + { + "start": 708.26, + "end": 709.18, + "probability": 0.7987 + }, + { + "start": 709.28, + "end": 713.54, + "probability": 0.9736 + }, + { + "start": 714.1, + "end": 715.3, + "probability": 0.9961 + }, + { + "start": 715.62, + "end": 716.83, + "probability": 0.9971 + }, + { + "start": 717.42, + "end": 719.68, + "probability": 0.9092 + }, + { + "start": 720.34, + "end": 724.58, + "probability": 0.9951 + }, + { + "start": 725.48, + "end": 729.2, + "probability": 0.9819 + }, + { + "start": 729.62, + "end": 730.78, + "probability": 0.9888 + }, + { + "start": 731.34, + "end": 731.86, + "probability": 0.9538 + }, + { + "start": 732.36, + "end": 732.56, + "probability": 0.505 + }, + { + "start": 732.7, + "end": 733.14, + "probability": 0.8966 + }, + { + "start": 733.24, + "end": 737.26, + "probability": 0.9884 + }, + { + "start": 737.98, + "end": 741.0, + "probability": 0.9978 + }, + { + "start": 741.4, + "end": 744.96, + "probability": 0.9958 + }, + { + "start": 745.1, + "end": 748.98, + "probability": 0.9692 + }, + { + "start": 749.5, + "end": 755.88, + "probability": 0.9906 + }, + { + "start": 756.48, + "end": 757.82, + "probability": 0.601 + }, + { + "start": 758.56, + "end": 763.68, + "probability": 0.9727 + }, + { + "start": 763.68, + "end": 768.88, + "probability": 0.9908 + }, + { + "start": 769.64, + "end": 772.34, + "probability": 0.895 + }, + { + "start": 772.34, + "end": 775.92, + "probability": 0.9397 + }, + { + "start": 776.94, + "end": 782.24, + "probability": 0.9927 + }, + { + "start": 782.9, + "end": 783.38, + "probability": 0.7239 + }, + { + "start": 783.44, + "end": 783.96, + "probability": 0.9626 + }, + { + "start": 784.3, + "end": 788.76, + "probability": 0.9706 + }, + { + "start": 789.34, + "end": 790.22, + "probability": 0.5856 + }, + { + "start": 790.28, + "end": 790.92, + "probability": 0.8097 + }, + { + "start": 790.98, + "end": 793.6, + "probability": 0.9492 + }, + { + "start": 795.18, + "end": 795.8, + "probability": 0.1008 + }, + { + "start": 823.22, + "end": 824.36, + "probability": 0.186 + }, + { + "start": 824.38, + "end": 826.3, + "probability": 0.6324 + }, + { + "start": 826.4, + "end": 828.2, + "probability": 0.3706 + }, + { + "start": 828.96, + "end": 830.66, + "probability": 0.7465 + }, + { + "start": 831.42, + "end": 833.78, + "probability": 0.9893 + }, + { + "start": 833.94, + "end": 836.3, + "probability": 0.9493 + }, + { + "start": 836.76, + "end": 837.88, + "probability": 0.9173 + }, + { + "start": 837.88, + "end": 838.6, + "probability": 0.7178 + }, + { + "start": 856.66, + "end": 859.92, + "probability": 0.6487 + }, + { + "start": 861.06, + "end": 863.86, + "probability": 0.9245 + }, + { + "start": 864.86, + "end": 868.04, + "probability": 0.9604 + }, + { + "start": 869.08, + "end": 872.02, + "probability": 0.8704 + }, + { + "start": 872.34, + "end": 874.34, + "probability": 0.9969 + }, + { + "start": 874.4, + "end": 876.1, + "probability": 0.9827 + }, + { + "start": 877.04, + "end": 878.98, + "probability": 0.4834 + }, + { + "start": 879.08, + "end": 879.38, + "probability": 0.9009 + }, + { + "start": 879.52, + "end": 880.68, + "probability": 0.8848 + }, + { + "start": 880.8, + "end": 881.8, + "probability": 0.937 + }, + { + "start": 883.14, + "end": 885.64, + "probability": 0.9469 + }, + { + "start": 887.1, + "end": 889.18, + "probability": 0.7424 + }, + { + "start": 890.02, + "end": 895.54, + "probability": 0.9907 + }, + { + "start": 896.38, + "end": 898.12, + "probability": 0.7715 + }, + { + "start": 899.12, + "end": 903.28, + "probability": 0.9937 + }, + { + "start": 903.34, + "end": 907.44, + "probability": 0.8639 + }, + { + "start": 908.5, + "end": 910.12, + "probability": 0.8195 + }, + { + "start": 910.8, + "end": 912.8, + "probability": 0.9239 + }, + { + "start": 914.12, + "end": 914.64, + "probability": 0.8571 + }, + { + "start": 914.72, + "end": 915.32, + "probability": 0.8975 + }, + { + "start": 915.42, + "end": 919.52, + "probability": 0.9926 + }, + { + "start": 921.24, + "end": 921.9, + "probability": 0.648 + }, + { + "start": 922.0, + "end": 925.46, + "probability": 0.9479 + }, + { + "start": 926.14, + "end": 928.74, + "probability": 0.6894 + }, + { + "start": 929.82, + "end": 931.18, + "probability": 0.7246 + }, + { + "start": 931.32, + "end": 934.26, + "probability": 0.2722 + }, + { + "start": 934.52, + "end": 936.0, + "probability": 0.9699 + }, + { + "start": 937.08, + "end": 939.7, + "probability": 0.998 + }, + { + "start": 940.4, + "end": 943.72, + "probability": 0.9565 + }, + { + "start": 944.42, + "end": 946.58, + "probability": 0.9772 + }, + { + "start": 946.6, + "end": 951.18, + "probability": 0.998 + }, + { + "start": 952.66, + "end": 956.16, + "probability": 0.6016 + }, + { + "start": 956.16, + "end": 959.72, + "probability": 0.9885 + }, + { + "start": 960.26, + "end": 961.81, + "probability": 0.6927 + }, + { + "start": 962.86, + "end": 967.42, + "probability": 0.881 + }, + { + "start": 968.18, + "end": 971.74, + "probability": 0.8477 + }, + { + "start": 972.46, + "end": 973.44, + "probability": 0.9657 + }, + { + "start": 974.22, + "end": 977.02, + "probability": 0.972 + }, + { + "start": 977.7, + "end": 981.36, + "probability": 0.9536 + }, + { + "start": 981.36, + "end": 984.72, + "probability": 0.9995 + }, + { + "start": 986.18, + "end": 988.76, + "probability": 0.9968 + }, + { + "start": 989.36, + "end": 993.14, + "probability": 0.9965 + }, + { + "start": 993.88, + "end": 997.18, + "probability": 0.9665 + }, + { + "start": 997.34, + "end": 1002.06, + "probability": 0.9154 + }, + { + "start": 1002.06, + "end": 1005.28, + "probability": 0.9753 + }, + { + "start": 1006.72, + "end": 1010.16, + "probability": 0.9901 + }, + { + "start": 1011.06, + "end": 1014.2, + "probability": 0.9894 + }, + { + "start": 1015.16, + "end": 1015.86, + "probability": 0.7454 + }, + { + "start": 1015.9, + "end": 1019.1, + "probability": 0.9816 + }, + { + "start": 1020.52, + "end": 1023.08, + "probability": 0.9035 + }, + { + "start": 1024.02, + "end": 1027.36, + "probability": 0.998 + }, + { + "start": 1028.12, + "end": 1031.42, + "probability": 0.9947 + }, + { + "start": 1031.42, + "end": 1035.6, + "probability": 0.9985 + }, + { + "start": 1038.82, + "end": 1045.74, + "probability": 0.9481 + }, + { + "start": 1045.9, + "end": 1046.42, + "probability": 0.2667 + }, + { + "start": 1046.56, + "end": 1047.14, + "probability": 0.7058 + }, + { + "start": 1048.02, + "end": 1052.28, + "probability": 0.9688 + }, + { + "start": 1052.98, + "end": 1054.64, + "probability": 0.9423 + }, + { + "start": 1054.76, + "end": 1056.5, + "probability": 0.9004 + }, + { + "start": 1057.28, + "end": 1062.74, + "probability": 0.9952 + }, + { + "start": 1064.86, + "end": 1068.26, + "probability": 0.9111 + }, + { + "start": 1068.26, + "end": 1072.12, + "probability": 0.9944 + }, + { + "start": 1072.52, + "end": 1074.26, + "probability": 0.9907 + }, + { + "start": 1074.96, + "end": 1079.8, + "probability": 0.9788 + }, + { + "start": 1079.82, + "end": 1080.22, + "probability": 0.434 + }, + { + "start": 1080.4, + "end": 1085.8, + "probability": 0.9685 + }, + { + "start": 1086.4, + "end": 1088.36, + "probability": 0.9893 + }, + { + "start": 1088.5, + "end": 1090.12, + "probability": 0.9783 + }, + { + "start": 1090.98, + "end": 1093.66, + "probability": 0.926 + }, + { + "start": 1093.84, + "end": 1098.6, + "probability": 0.9936 + }, + { + "start": 1100.0, + "end": 1101.66, + "probability": 0.9595 + }, + { + "start": 1102.74, + "end": 1107.98, + "probability": 0.9985 + }, + { + "start": 1108.1, + "end": 1109.72, + "probability": 0.7372 + }, + { + "start": 1111.08, + "end": 1114.88, + "probability": 0.9574 + }, + { + "start": 1115.88, + "end": 1117.22, + "probability": 0.9131 + }, + { + "start": 1118.6, + "end": 1121.48, + "probability": 0.85 + }, + { + "start": 1122.66, + "end": 1126.64, + "probability": 0.9884 + }, + { + "start": 1127.72, + "end": 1130.17, + "probability": 0.8106 + }, + { + "start": 1130.34, + "end": 1134.92, + "probability": 0.9833 + }, + { + "start": 1135.56, + "end": 1138.94, + "probability": 0.8502 + }, + { + "start": 1138.94, + "end": 1139.3, + "probability": 0.6809 + }, + { + "start": 1142.38, + "end": 1144.04, + "probability": 0.9635 + }, + { + "start": 1144.1, + "end": 1147.12, + "probability": 0.885 + }, + { + "start": 1151.03, + "end": 1157.76, + "probability": 0.7041 + }, + { + "start": 1158.28, + "end": 1159.18, + "probability": 0.2878 + }, + { + "start": 1159.18, + "end": 1159.18, + "probability": 0.5843 + }, + { + "start": 1159.18, + "end": 1159.6, + "probability": 0.792 + }, + { + "start": 1160.42, + "end": 1160.94, + "probability": 0.679 + }, + { + "start": 1161.54, + "end": 1163.32, + "probability": 0.9129 + }, + { + "start": 1164.2, + "end": 1165.58, + "probability": 0.8845 + }, + { + "start": 1166.5, + "end": 1167.22, + "probability": 0.9132 + }, + { + "start": 1175.35, + "end": 1176.06, + "probability": 0.0449 + }, + { + "start": 1176.06, + "end": 1176.06, + "probability": 0.1933 + }, + { + "start": 1176.06, + "end": 1178.94, + "probability": 0.4787 + }, + { + "start": 1178.94, + "end": 1182.02, + "probability": 0.772 + }, + { + "start": 1182.14, + "end": 1183.74, + "probability": 0.6009 + }, + { + "start": 1184.4, + "end": 1186.48, + "probability": 0.7969 + }, + { + "start": 1186.7, + "end": 1190.24, + "probability": 0.6267 + }, + { + "start": 1191.68, + "end": 1192.56, + "probability": 0.8755 + }, + { + "start": 1195.12, + "end": 1195.34, + "probability": 0.6809 + }, + { + "start": 1196.95, + "end": 1197.02, + "probability": 0.0002 + }, + { + "start": 1200.84, + "end": 1202.14, + "probability": 0.1034 + }, + { + "start": 1209.56, + "end": 1211.18, + "probability": 0.6562 + }, + { + "start": 1211.36, + "end": 1214.32, + "probability": 0.8601 + }, + { + "start": 1214.46, + "end": 1216.16, + "probability": 0.9104 + }, + { + "start": 1216.72, + "end": 1219.6, + "probability": 0.9595 + }, + { + "start": 1219.72, + "end": 1221.44, + "probability": 0.6478 + }, + { + "start": 1222.08, + "end": 1226.7, + "probability": 0.7221 + }, + { + "start": 1243.28, + "end": 1246.9, + "probability": 0.735 + }, + { + "start": 1247.18, + "end": 1249.14, + "probability": 0.7933 + }, + { + "start": 1249.7, + "end": 1251.06, + "probability": 0.4729 + }, + { + "start": 1252.0, + "end": 1253.17, + "probability": 0.741 + }, + { + "start": 1256.27, + "end": 1256.66, + "probability": 0.7012 + }, + { + "start": 1259.36, + "end": 1265.22, + "probability": 0.1588 + }, + { + "start": 1266.0, + "end": 1269.74, + "probability": 0.2924 + }, + { + "start": 1270.3, + "end": 1270.3, + "probability": 0.2451 + }, + { + "start": 1270.3, + "end": 1271.42, + "probability": 0.4626 + }, + { + "start": 1271.76, + "end": 1273.76, + "probability": 0.1193 + }, + { + "start": 1275.8, + "end": 1277.7, + "probability": 0.109 + }, + { + "start": 1289.62, + "end": 1291.26, + "probability": 0.0379 + }, + { + "start": 1292.1, + "end": 1295.24, + "probability": 0.3743 + }, + { + "start": 1295.88, + "end": 1296.08, + "probability": 0.0713 + }, + { + "start": 1296.08, + "end": 1300.9, + "probability": 0.884 + }, + { + "start": 1301.54, + "end": 1305.2, + "probability": 0.0443 + }, + { + "start": 1314.0, + "end": 1314.0, + "probability": 0.0 + }, + { + "start": 1314.0, + "end": 1314.0, + "probability": 0.0 + }, + { + "start": 1314.0, + "end": 1314.0, + "probability": 0.0 + }, + { + "start": 1314.0, + "end": 1314.0, + "probability": 0.0 + }, + { + "start": 1314.0, + "end": 1314.0, + "probability": 0.0 + }, + { + "start": 1314.0, + "end": 1314.0, + "probability": 0.0 + }, + { + "start": 1314.0, + "end": 1314.0, + "probability": 0.0 + }, + { + "start": 1314.0, + "end": 1314.0, + "probability": 0.0 + }, + { + "start": 1314.0, + "end": 1314.0, + "probability": 0.0 + }, + { + "start": 1314.0, + "end": 1314.0, + "probability": 0.0 + }, + { + "start": 1314.0, + "end": 1314.0, + "probability": 0.0 + }, + { + "start": 1314.0, + "end": 1314.0, + "probability": 0.0 + }, + { + "start": 1314.0, + "end": 1314.0, + "probability": 0.0 + }, + { + "start": 1314.0, + "end": 1314.0, + "probability": 0.0 + }, + { + "start": 1314.0, + "end": 1314.0, + "probability": 0.0 + }, + { + "start": 1314.0, + "end": 1314.0, + "probability": 0.0 + }, + { + "start": 1314.48, + "end": 1316.14, + "probability": 0.5918 + }, + { + "start": 1316.16, + "end": 1321.76, + "probability": 0.6091 + }, + { + "start": 1321.76, + "end": 1327.36, + "probability": 0.8627 + }, + { + "start": 1327.71, + "end": 1331.08, + "probability": 0.7778 + }, + { + "start": 1331.64, + "end": 1335.46, + "probability": 0.9929 + }, + { + "start": 1335.52, + "end": 1337.78, + "probability": 0.9271 + }, + { + "start": 1337.78, + "end": 1341.28, + "probability": 0.9793 + }, + { + "start": 1342.0, + "end": 1342.5, + "probability": 0.7151 + }, + { + "start": 1342.62, + "end": 1344.36, + "probability": 0.8646 + }, + { + "start": 1344.36, + "end": 1347.42, + "probability": 0.999 + }, + { + "start": 1347.64, + "end": 1348.27, + "probability": 0.6296 + }, + { + "start": 1349.0, + "end": 1354.7, + "probability": 0.9629 + }, + { + "start": 1355.3, + "end": 1360.06, + "probability": 0.9591 + }, + { + "start": 1360.08, + "end": 1365.66, + "probability": 0.9969 + }, + { + "start": 1366.12, + "end": 1366.84, + "probability": 0.8227 + }, + { + "start": 1367.04, + "end": 1369.34, + "probability": 0.0347 + }, + { + "start": 1369.34, + "end": 1370.9, + "probability": 0.2415 + }, + { + "start": 1370.9, + "end": 1375.68, + "probability": 0.9887 + }, + { + "start": 1376.04, + "end": 1379.4, + "probability": 0.8312 + }, + { + "start": 1379.56, + "end": 1384.46, + "probability": 0.6676 + }, + { + "start": 1384.46, + "end": 1387.18, + "probability": 0.9194 + }, + { + "start": 1387.32, + "end": 1390.48, + "probability": 0.9962 + }, + { + "start": 1390.48, + "end": 1393.78, + "probability": 0.9468 + }, + { + "start": 1393.9, + "end": 1397.36, + "probability": 0.8672 + }, + { + "start": 1397.48, + "end": 1399.82, + "probability": 0.9912 + }, + { + "start": 1400.38, + "end": 1402.74, + "probability": 0.9933 + }, + { + "start": 1402.74, + "end": 1405.84, + "probability": 0.9204 + }, + { + "start": 1406.48, + "end": 1408.32, + "probability": 0.9607 + }, + { + "start": 1408.32, + "end": 1410.46, + "probability": 0.99 + }, + { + "start": 1410.5, + "end": 1411.64, + "probability": 0.5067 + }, + { + "start": 1412.28, + "end": 1414.9, + "probability": 0.9266 + }, + { + "start": 1415.24, + "end": 1419.08, + "probability": 0.9115 + }, + { + "start": 1419.08, + "end": 1422.62, + "probability": 0.9827 + }, + { + "start": 1423.02, + "end": 1424.98, + "probability": 0.9893 + }, + { + "start": 1424.98, + "end": 1428.88, + "probability": 0.9904 + }, + { + "start": 1429.0, + "end": 1429.24, + "probability": 0.0354 + }, + { + "start": 1429.26, + "end": 1430.96, + "probability": 0.5817 + }, + { + "start": 1431.06, + "end": 1433.14, + "probability": 0.5737 + }, + { + "start": 1433.62, + "end": 1435.1, + "probability": 0.9779 + }, + { + "start": 1435.28, + "end": 1436.02, + "probability": 0.9824 + }, + { + "start": 1436.08, + "end": 1439.86, + "probability": 0.9852 + }, + { + "start": 1440.36, + "end": 1440.6, + "probability": 0.5579 + }, + { + "start": 1440.62, + "end": 1440.88, + "probability": 0.9849 + }, + { + "start": 1440.98, + "end": 1442.87, + "probability": 0.8244 + }, + { + "start": 1443.28, + "end": 1446.7, + "probability": 0.9832 + }, + { + "start": 1447.08, + "end": 1449.06, + "probability": 0.9261 + }, + { + "start": 1449.06, + "end": 1451.12, + "probability": 0.943 + }, + { + "start": 1451.16, + "end": 1455.68, + "probability": 0.9644 + }, + { + "start": 1457.96, + "end": 1459.42, + "probability": 0.8151 + }, + { + "start": 1459.58, + "end": 1460.82, + "probability": 0.9514 + }, + { + "start": 1461.68, + "end": 1464.12, + "probability": 0.9053 + }, + { + "start": 1465.68, + "end": 1466.32, + "probability": 0.7015 + }, + { + "start": 1467.22, + "end": 1468.26, + "probability": 0.6882 + }, + { + "start": 1469.04, + "end": 1469.66, + "probability": 0.6981 + }, + { + "start": 1470.64, + "end": 1471.68, + "probability": 0.977 + }, + { + "start": 1472.28, + "end": 1472.96, + "probability": 0.9681 + }, + { + "start": 1473.8, + "end": 1475.04, + "probability": 0.9494 + }, + { + "start": 1475.94, + "end": 1476.58, + "probability": 0.7415 + }, + { + "start": 1477.24, + "end": 1478.22, + "probability": 0.8037 + }, + { + "start": 1482.04, + "end": 1483.12, + "probability": 0.5995 + }, + { + "start": 1483.64, + "end": 1484.06, + "probability": 0.416 + }, + { + "start": 1485.14, + "end": 1485.37, + "probability": 0.0172 + }, + { + "start": 1497.12, + "end": 1498.14, + "probability": 0.6363 + }, + { + "start": 1498.58, + "end": 1501.46, + "probability": 0.9909 + }, + { + "start": 1501.94, + "end": 1503.48, + "probability": 0.9977 + }, + { + "start": 1504.06, + "end": 1504.85, + "probability": 0.9801 + }, + { + "start": 1505.14, + "end": 1505.92, + "probability": 0.957 + }, + { + "start": 1505.94, + "end": 1506.78, + "probability": 0.7927 + }, + { + "start": 1507.16, + "end": 1508.12, + "probability": 0.9834 + }, + { + "start": 1508.26, + "end": 1509.96, + "probability": 0.9653 + }, + { + "start": 1510.32, + "end": 1512.64, + "probability": 0.9977 + }, + { + "start": 1512.94, + "end": 1515.1, + "probability": 0.9452 + }, + { + "start": 1515.1, + "end": 1518.08, + "probability": 0.9779 + }, + { + "start": 1519.3, + "end": 1520.28, + "probability": 0.8848 + }, + { + "start": 1520.78, + "end": 1525.14, + "probability": 0.7975 + }, + { + "start": 1525.38, + "end": 1526.13, + "probability": 0.5129 + }, + { + "start": 1526.84, + "end": 1527.84, + "probability": 0.9635 + }, + { + "start": 1528.26, + "end": 1529.94, + "probability": 0.8159 + }, + { + "start": 1530.08, + "end": 1531.78, + "probability": 0.9937 + }, + { + "start": 1532.2, + "end": 1532.44, + "probability": 0.8375 + }, + { + "start": 1532.52, + "end": 1533.66, + "probability": 0.9437 + }, + { + "start": 1533.92, + "end": 1535.91, + "probability": 0.9699 + }, + { + "start": 1536.3, + "end": 1539.29, + "probability": 0.9565 + }, + { + "start": 1539.58, + "end": 1540.9, + "probability": 0.9373 + }, + { + "start": 1541.16, + "end": 1542.2, + "probability": 0.8804 + }, + { + "start": 1542.86, + "end": 1543.48, + "probability": 0.9243 + }, + { + "start": 1543.48, + "end": 1546.2, + "probability": 0.9632 + }, + { + "start": 1546.26, + "end": 1547.76, + "probability": 0.9842 + }, + { + "start": 1548.14, + "end": 1549.3, + "probability": 0.9734 + }, + { + "start": 1549.6, + "end": 1553.74, + "probability": 0.9692 + }, + { + "start": 1553.74, + "end": 1557.72, + "probability": 0.9034 + }, + { + "start": 1558.3, + "end": 1558.98, + "probability": 0.8432 + }, + { + "start": 1559.84, + "end": 1562.18, + "probability": 0.9779 + }, + { + "start": 1562.24, + "end": 1563.48, + "probability": 0.9986 + }, + { + "start": 1563.88, + "end": 1564.98, + "probability": 0.8713 + }, + { + "start": 1565.06, + "end": 1568.5, + "probability": 0.94 + }, + { + "start": 1568.66, + "end": 1570.4, + "probability": 0.9875 + }, + { + "start": 1570.9, + "end": 1571.16, + "probability": 0.8398 + }, + { + "start": 1571.82, + "end": 1574.44, + "probability": 0.9495 + }, + { + "start": 1575.06, + "end": 1576.94, + "probability": 0.9295 + }, + { + "start": 1577.4, + "end": 1583.56, + "probability": 0.9914 + }, + { + "start": 1583.68, + "end": 1586.28, + "probability": 0.9857 + }, + { + "start": 1586.28, + "end": 1589.08, + "probability": 0.9728 + }, + { + "start": 1589.44, + "end": 1591.18, + "probability": 0.9346 + }, + { + "start": 1591.28, + "end": 1593.26, + "probability": 0.7761 + }, + { + "start": 1593.56, + "end": 1597.04, + "probability": 0.9904 + }, + { + "start": 1597.42, + "end": 1599.24, + "probability": 0.8157 + }, + { + "start": 1599.68, + "end": 1601.53, + "probability": 0.9651 + }, + { + "start": 1602.12, + "end": 1606.28, + "probability": 0.9969 + }, + { + "start": 1606.62, + "end": 1607.28, + "probability": 0.6385 + }, + { + "start": 1607.4, + "end": 1610.36, + "probability": 0.916 + }, + { + "start": 1610.52, + "end": 1614.76, + "probability": 0.9757 + }, + { + "start": 1615.24, + "end": 1616.2, + "probability": 0.892 + }, + { + "start": 1616.3, + "end": 1618.94, + "probability": 0.7246 + }, + { + "start": 1619.36, + "end": 1619.92, + "probability": 0.7621 + }, + { + "start": 1620.42, + "end": 1621.66, + "probability": 0.9705 + }, + { + "start": 1621.74, + "end": 1623.58, + "probability": 0.9925 + }, + { + "start": 1623.84, + "end": 1624.72, + "probability": 0.96 + }, + { + "start": 1625.16, + "end": 1627.06, + "probability": 0.9966 + }, + { + "start": 1627.38, + "end": 1628.72, + "probability": 0.9536 + }, + { + "start": 1629.12, + "end": 1629.12, + "probability": 0.0671 + }, + { + "start": 1629.12, + "end": 1629.12, + "probability": 0.0666 + }, + { + "start": 1629.22, + "end": 1629.44, + "probability": 0.6508 + }, + { + "start": 1629.5, + "end": 1630.22, + "probability": 0.8513 + }, + { + "start": 1630.44, + "end": 1633.4, + "probability": 0.8397 + }, + { + "start": 1633.4, + "end": 1636.32, + "probability": 0.9953 + }, + { + "start": 1636.7, + "end": 1637.7, + "probability": 0.968 + }, + { + "start": 1638.24, + "end": 1640.9, + "probability": 0.9966 + }, + { + "start": 1641.98, + "end": 1644.56, + "probability": 0.9711 + }, + { + "start": 1644.68, + "end": 1644.74, + "probability": 0.7173 + }, + { + "start": 1644.84, + "end": 1645.82, + "probability": 0.9777 + }, + { + "start": 1646.2, + "end": 1648.68, + "probability": 0.8975 + }, + { + "start": 1648.96, + "end": 1649.96, + "probability": 0.9756 + }, + { + "start": 1650.26, + "end": 1652.72, + "probability": 0.9344 + }, + { + "start": 1653.1, + "end": 1655.34, + "probability": 0.9615 + }, + { + "start": 1655.44, + "end": 1656.48, + "probability": 0.8755 + }, + { + "start": 1656.64, + "end": 1658.18, + "probability": 0.7916 + }, + { + "start": 1658.44, + "end": 1659.81, + "probability": 0.9193 + }, + { + "start": 1660.32, + "end": 1662.1, + "probability": 0.8167 + }, + { + "start": 1662.64, + "end": 1666.58, + "probability": 0.8738 + }, + { + "start": 1666.88, + "end": 1667.86, + "probability": 0.9084 + }, + { + "start": 1667.92, + "end": 1671.14, + "probability": 0.9915 + }, + { + "start": 1671.48, + "end": 1672.54, + "probability": 0.8771 + }, + { + "start": 1672.88, + "end": 1675.08, + "probability": 0.9717 + }, + { + "start": 1675.08, + "end": 1676.72, + "probability": 0.9338 + }, + { + "start": 1677.12, + "end": 1678.92, + "probability": 0.8198 + }, + { + "start": 1678.98, + "end": 1680.08, + "probability": 0.9399 + }, + { + "start": 1680.16, + "end": 1680.56, + "probability": 0.4607 + }, + { + "start": 1680.9, + "end": 1683.38, + "probability": 0.9937 + }, + { + "start": 1683.54, + "end": 1684.92, + "probability": 0.9907 + }, + { + "start": 1685.14, + "end": 1685.14, + "probability": 0.2239 + }, + { + "start": 1685.22, + "end": 1687.36, + "probability": 0.7114 + }, + { + "start": 1687.62, + "end": 1688.26, + "probability": 0.7212 + }, + { + "start": 1688.74, + "end": 1692.32, + "probability": 0.9051 + }, + { + "start": 1692.42, + "end": 1694.94, + "probability": 0.986 + }, + { + "start": 1694.94, + "end": 1697.38, + "probability": 0.9795 + }, + { + "start": 1697.58, + "end": 1697.62, + "probability": 0.2996 + }, + { + "start": 1697.74, + "end": 1700.96, + "probability": 0.9817 + }, + { + "start": 1701.32, + "end": 1702.9, + "probability": 0.7814 + }, + { + "start": 1702.98, + "end": 1703.26, + "probability": 0.5985 + }, + { + "start": 1703.26, + "end": 1703.68, + "probability": 0.9112 + }, + { + "start": 1703.92, + "end": 1705.08, + "probability": 0.9559 + }, + { + "start": 1705.26, + "end": 1706.14, + "probability": 0.454 + }, + { + "start": 1706.2, + "end": 1706.56, + "probability": 0.5358 + }, + { + "start": 1706.84, + "end": 1711.52, + "probability": 0.9961 + }, + { + "start": 1711.62, + "end": 1714.1, + "probability": 0.9258 + }, + { + "start": 1714.2, + "end": 1714.64, + "probability": 0.7505 + }, + { + "start": 1716.06, + "end": 1718.04, + "probability": 0.6821 + }, + { + "start": 1720.66, + "end": 1721.58, + "probability": 0.4217 + }, + { + "start": 1721.58, + "end": 1721.58, + "probability": 0.2924 + }, + { + "start": 1721.58, + "end": 1721.79, + "probability": 0.7109 + }, + { + "start": 1722.78, + "end": 1724.66, + "probability": 0.8585 + }, + { + "start": 1725.08, + "end": 1726.48, + "probability": 0.9614 + }, + { + "start": 1726.7, + "end": 1727.38, + "probability": 0.9555 + }, + { + "start": 1727.68, + "end": 1729.12, + "probability": 0.8674 + }, + { + "start": 1729.18, + "end": 1729.76, + "probability": 0.8677 + }, + { + "start": 1735.74, + "end": 1736.4, + "probability": 0.3803 + }, + { + "start": 1736.4, + "end": 1736.4, + "probability": 0.3781 + }, + { + "start": 1736.4, + "end": 1736.5, + "probability": 0.4405 + }, + { + "start": 1736.5, + "end": 1736.5, + "probability": 0.3157 + }, + { + "start": 1736.5, + "end": 1736.92, + "probability": 0.7582 + }, + { + "start": 1737.74, + "end": 1738.26, + "probability": 0.5741 + }, + { + "start": 1739.0, + "end": 1740.14, + "probability": 0.8341 + }, + { + "start": 1740.8, + "end": 1741.38, + "probability": 0.4508 + }, + { + "start": 1741.92, + "end": 1743.76, + "probability": 0.6944 + }, + { + "start": 1744.34, + "end": 1745.14, + "probability": 0.8908 + }, + { + "start": 1764.48, + "end": 1767.34, + "probability": 0.6666 + }, + { + "start": 1768.74, + "end": 1773.94, + "probability": 0.9648 + }, + { + "start": 1775.34, + "end": 1779.94, + "probability": 0.948 + }, + { + "start": 1780.9, + "end": 1782.2, + "probability": 0.9852 + }, + { + "start": 1783.1, + "end": 1785.62, + "probability": 0.8253 + }, + { + "start": 1787.16, + "end": 1790.16, + "probability": 0.997 + }, + { + "start": 1791.02, + "end": 1796.22, + "probability": 0.9598 + }, + { + "start": 1797.62, + "end": 1803.96, + "probability": 0.9756 + }, + { + "start": 1804.96, + "end": 1809.02, + "probability": 0.9155 + }, + { + "start": 1810.6, + "end": 1813.74, + "probability": 0.8006 + }, + { + "start": 1813.8, + "end": 1815.68, + "probability": 0.8895 + }, + { + "start": 1815.86, + "end": 1817.92, + "probability": 0.7474 + }, + { + "start": 1819.54, + "end": 1820.84, + "probability": 0.5422 + }, + { + "start": 1822.7, + "end": 1825.88, + "probability": 0.9215 + }, + { + "start": 1828.3, + "end": 1831.26, + "probability": 0.9939 + }, + { + "start": 1833.04, + "end": 1833.86, + "probability": 0.5106 + }, + { + "start": 1835.18, + "end": 1842.54, + "probability": 0.9657 + }, + { + "start": 1843.36, + "end": 1845.86, + "probability": 0.7627 + }, + { + "start": 1849.28, + "end": 1851.0, + "probability": 0.8048 + }, + { + "start": 1852.68, + "end": 1855.62, + "probability": 0.9136 + }, + { + "start": 1855.82, + "end": 1857.0, + "probability": 0.9765 + }, + { + "start": 1857.34, + "end": 1859.74, + "probability": 0.9815 + }, + { + "start": 1860.2, + "end": 1863.69, + "probability": 0.9513 + }, + { + "start": 1865.18, + "end": 1867.84, + "probability": 0.9504 + }, + { + "start": 1869.54, + "end": 1873.28, + "probability": 0.9652 + }, + { + "start": 1874.3, + "end": 1876.62, + "probability": 0.4873 + }, + { + "start": 1878.46, + "end": 1882.4, + "probability": 0.9524 + }, + { + "start": 1883.64, + "end": 1891.9, + "probability": 0.9934 + }, + { + "start": 1893.38, + "end": 1895.54, + "probability": 0.7878 + }, + { + "start": 1896.56, + "end": 1899.92, + "probability": 0.9737 + }, + { + "start": 1900.64, + "end": 1901.62, + "probability": 0.7173 + }, + { + "start": 1902.22, + "end": 1902.94, + "probability": 0.4565 + }, + { + "start": 1905.6, + "end": 1907.16, + "probability": 0.7349 + }, + { + "start": 1908.38, + "end": 1912.22, + "probability": 0.6888 + }, + { + "start": 1913.24, + "end": 1914.5, + "probability": 0.9324 + }, + { + "start": 1915.62, + "end": 1917.66, + "probability": 0.7714 + }, + { + "start": 1919.52, + "end": 1921.06, + "probability": 0.7576 + }, + { + "start": 1922.34, + "end": 1924.04, + "probability": 0.9709 + }, + { + "start": 1925.3, + "end": 1926.68, + "probability": 0.993 + }, + { + "start": 1928.02, + "end": 1932.46, + "probability": 0.8589 + }, + { + "start": 1934.7, + "end": 1935.32, + "probability": 0.7314 + }, + { + "start": 1936.0, + "end": 1936.94, + "probability": 0.8688 + }, + { + "start": 1937.46, + "end": 1939.5, + "probability": 0.6335 + }, + { + "start": 1941.0, + "end": 1943.46, + "probability": 0.5804 + }, + { + "start": 1944.6, + "end": 1945.68, + "probability": 0.8433 + }, + { + "start": 1946.6, + "end": 1947.96, + "probability": 0.9324 + }, + { + "start": 1949.0, + "end": 1951.13, + "probability": 0.9121 + }, + { + "start": 1951.82, + "end": 1955.9, + "probability": 0.8726 + }, + { + "start": 1956.58, + "end": 1962.58, + "probability": 0.991 + }, + { + "start": 1963.18, + "end": 1965.38, + "probability": 0.6202 + }, + { + "start": 1966.02, + "end": 1966.42, + "probability": 0.2529 + }, + { + "start": 1966.68, + "end": 1968.5, + "probability": 0.6538 + }, + { + "start": 1968.94, + "end": 1974.84, + "probability": 0.9595 + }, + { + "start": 1975.54, + "end": 1976.52, + "probability": 0.4829 + }, + { + "start": 1978.74, + "end": 1979.22, + "probability": 0.349 + }, + { + "start": 1979.38, + "end": 1982.28, + "probability": 0.9159 + }, + { + "start": 1982.42, + "end": 1986.58, + "probability": 0.7557 + }, + { + "start": 1987.02, + "end": 1987.92, + "probability": 0.883 + }, + { + "start": 1988.34, + "end": 1992.42, + "probability": 0.9641 + }, + { + "start": 1992.66, + "end": 1995.02, + "probability": 0.9758 + }, + { + "start": 1995.34, + "end": 1995.54, + "probability": 0.7178 + }, + { + "start": 1995.62, + "end": 1996.12, + "probability": 0.759 + }, + { + "start": 2000.22, + "end": 2002.0, + "probability": 0.8612 + }, + { + "start": 2002.94, + "end": 2007.94, + "probability": 0.8803 + }, + { + "start": 2009.04, + "end": 2011.76, + "probability": 0.4415 + }, + { + "start": 2012.66, + "end": 2013.06, + "probability": 0.9309 + }, + { + "start": 2013.06, + "end": 2013.06, + "probability": 0.8851 + }, + { + "start": 2013.06, + "end": 2013.92, + "probability": 0.904 + }, + { + "start": 2016.28, + "end": 2018.36, + "probability": 0.9733 + }, + { + "start": 2018.88, + "end": 2019.48, + "probability": 0.7365 + }, + { + "start": 2034.36, + "end": 2036.26, + "probability": 0.6576 + }, + { + "start": 2037.66, + "end": 2040.52, + "probability": 0.0639 + }, + { + "start": 2042.62, + "end": 2043.32, + "probability": 0.0751 + }, + { + "start": 2043.32, + "end": 2043.32, + "probability": 0.1784 + }, + { + "start": 2043.32, + "end": 2045.3, + "probability": 0.7919 + }, + { + "start": 2045.4, + "end": 2045.94, + "probability": 0.5246 + }, + { + "start": 2046.98, + "end": 2050.08, + "probability": 0.757 + }, + { + "start": 2050.76, + "end": 2053.26, + "probability": 0.7197 + }, + { + "start": 2054.02, + "end": 2054.2, + "probability": 0.0449 + }, + { + "start": 2054.2, + "end": 2056.82, + "probability": 0.246 + }, + { + "start": 2060.04, + "end": 2067.08, + "probability": 0.1929 + }, + { + "start": 2067.5, + "end": 2068.2, + "probability": 0.099 + }, + { + "start": 2069.2, + "end": 2074.56, + "probability": 0.0747 + }, + { + "start": 2076.42, + "end": 2076.72, + "probability": 0.1348 + }, + { + "start": 2077.7, + "end": 2082.6, + "probability": 0.1302 + }, + { + "start": 2083.16, + "end": 2086.5, + "probability": 0.2307 + }, + { + "start": 2088.16, + "end": 2095.32, + "probability": 0.1211 + }, + { + "start": 2096.76, + "end": 2096.86, + "probability": 0.0255 + }, + { + "start": 2096.86, + "end": 2099.56, + "probability": 0.2772 + }, + { + "start": 2101.12, + "end": 2101.92, + "probability": 0.2848 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.0, + "end": 2290.0, + "probability": 0.0 + }, + { + "start": 2290.64, + "end": 2290.64, + "probability": 0.0186 + }, + { + "start": 2290.64, + "end": 2290.64, + "probability": 0.0169 + }, + { + "start": 2290.64, + "end": 2291.14, + "probability": 0.0478 + }, + { + "start": 2291.14, + "end": 2291.14, + "probability": 0.1561 + }, + { + "start": 2291.14, + "end": 2292.76, + "probability": 0.8938 + }, + { + "start": 2304.94, + "end": 2305.58, + "probability": 0.4009 + }, + { + "start": 2306.62, + "end": 2309.92, + "probability": 0.8856 + }, + { + "start": 2312.94, + "end": 2313.76, + "probability": 0.6302 + }, + { + "start": 2313.84, + "end": 2314.74, + "probability": 0.7398 + }, + { + "start": 2315.06, + "end": 2325.96, + "probability": 0.8574 + }, + { + "start": 2326.08, + "end": 2328.74, + "probability": 0.6121 + }, + { + "start": 2329.42, + "end": 2334.48, + "probability": 0.8859 + }, + { + "start": 2336.69, + "end": 2341.84, + "probability": 0.9854 + }, + { + "start": 2344.06, + "end": 2344.6, + "probability": 0.7786 + }, + { + "start": 2345.92, + "end": 2348.7, + "probability": 0.9948 + }, + { + "start": 2348.78, + "end": 2354.1, + "probability": 0.961 + }, + { + "start": 2354.18, + "end": 2356.06, + "probability": 0.9702 + }, + { + "start": 2358.36, + "end": 2359.54, + "probability": 0.5014 + }, + { + "start": 2360.36, + "end": 2362.0, + "probability": 0.922 + }, + { + "start": 2362.32, + "end": 2366.7, + "probability": 0.9579 + }, + { + "start": 2370.16, + "end": 2371.84, + "probability": 0.9921 + }, + { + "start": 2372.44, + "end": 2372.78, + "probability": 0.8119 + }, + { + "start": 2373.9, + "end": 2377.18, + "probability": 0.9819 + }, + { + "start": 2377.28, + "end": 2379.88, + "probability": 0.9655 + }, + { + "start": 2380.08, + "end": 2381.92, + "probability": 0.4988 + }, + { + "start": 2382.0, + "end": 2382.9, + "probability": 0.8005 + }, + { + "start": 2385.04, + "end": 2386.8, + "probability": 0.9838 + }, + { + "start": 2387.04, + "end": 2390.76, + "probability": 0.9742 + }, + { + "start": 2393.76, + "end": 2395.1, + "probability": 0.8945 + }, + { + "start": 2397.38, + "end": 2402.14, + "probability": 0.9811 + }, + { + "start": 2402.52, + "end": 2406.74, + "probability": 0.9907 + }, + { + "start": 2407.64, + "end": 2410.36, + "probability": 0.9059 + }, + { + "start": 2410.74, + "end": 2415.38, + "probability": 0.9954 + }, + { + "start": 2416.34, + "end": 2419.14, + "probability": 0.9567 + }, + { + "start": 2419.24, + "end": 2421.74, + "probability": 0.9423 + }, + { + "start": 2424.08, + "end": 2426.12, + "probability": 0.9841 + }, + { + "start": 2426.94, + "end": 2429.56, + "probability": 0.9752 + }, + { + "start": 2431.62, + "end": 2433.08, + "probability": 0.9836 + }, + { + "start": 2434.32, + "end": 2438.68, + "probability": 0.9678 + }, + { + "start": 2438.86, + "end": 2440.0, + "probability": 0.9364 + }, + { + "start": 2440.08, + "end": 2442.36, + "probability": 0.9605 + }, + { + "start": 2443.88, + "end": 2447.2, + "probability": 0.8385 + }, + { + "start": 2449.68, + "end": 2454.32, + "probability": 0.9973 + }, + { + "start": 2454.38, + "end": 2461.14, + "probability": 0.9916 + }, + { + "start": 2461.82, + "end": 2463.64, + "probability": 0.5656 + }, + { + "start": 2466.36, + "end": 2467.68, + "probability": 0.5058 + }, + { + "start": 2468.0, + "end": 2470.12, + "probability": 0.9785 + }, + { + "start": 2470.28, + "end": 2471.42, + "probability": 0.9636 + }, + { + "start": 2471.58, + "end": 2473.46, + "probability": 0.9272 + }, + { + "start": 2473.78, + "end": 2478.06, + "probability": 0.964 + }, + { + "start": 2478.2, + "end": 2479.28, + "probability": 0.9829 + }, + { + "start": 2479.42, + "end": 2480.0, + "probability": 0.6592 + }, + { + "start": 2481.26, + "end": 2484.92, + "probability": 0.998 + }, + { + "start": 2484.92, + "end": 2487.58, + "probability": 0.9989 + }, + { + "start": 2489.06, + "end": 2495.16, + "probability": 0.9859 + }, + { + "start": 2496.24, + "end": 2502.94, + "probability": 0.9916 + }, + { + "start": 2503.92, + "end": 2505.44, + "probability": 0.8684 + }, + { + "start": 2506.63, + "end": 2514.18, + "probability": 0.9983 + }, + { + "start": 2514.46, + "end": 2519.16, + "probability": 0.9961 + }, + { + "start": 2520.26, + "end": 2528.64, + "probability": 0.9937 + }, + { + "start": 2528.86, + "end": 2533.84, + "probability": 0.9885 + }, + { + "start": 2534.18, + "end": 2537.6, + "probability": 0.9728 + }, + { + "start": 2537.72, + "end": 2537.94, + "probability": 0.753 + }, + { + "start": 2539.04, + "end": 2539.54, + "probability": 0.7801 + }, + { + "start": 2541.02, + "end": 2543.02, + "probability": 0.9099 + }, + { + "start": 2543.14, + "end": 2544.28, + "probability": 0.9806 + }, + { + "start": 2544.42, + "end": 2545.84, + "probability": 0.8584 + }, + { + "start": 2546.36, + "end": 2547.06, + "probability": 0.3498 + }, + { + "start": 2547.64, + "end": 2548.54, + "probability": 0.7737 + }, + { + "start": 2548.58, + "end": 2549.3, + "probability": 0.9027 + }, + { + "start": 2549.46, + "end": 2550.4, + "probability": 0.8198 + }, + { + "start": 2550.54, + "end": 2552.2, + "probability": 0.9392 + }, + { + "start": 2552.92, + "end": 2555.3, + "probability": 0.9939 + }, + { + "start": 2555.3, + "end": 2556.58, + "probability": 0.623 + }, + { + "start": 2556.66, + "end": 2557.52, + "probability": 0.9358 + }, + { + "start": 2558.26, + "end": 2559.92, + "probability": 0.9658 + }, + { + "start": 2560.04, + "end": 2560.94, + "probability": 0.8331 + }, + { + "start": 2561.0, + "end": 2562.5, + "probability": 0.9967 + }, + { + "start": 2565.24, + "end": 2568.68, + "probability": 0.8418 + }, + { + "start": 2572.84, + "end": 2573.76, + "probability": 0.5236 + }, + { + "start": 2573.88, + "end": 2574.48, + "probability": 0.4717 + }, + { + "start": 2574.68, + "end": 2575.86, + "probability": 0.8068 + }, + { + "start": 2575.86, + "end": 2575.86, + "probability": 0.7273 + }, + { + "start": 2575.86, + "end": 2576.46, + "probability": 0.9675 + }, + { + "start": 2576.62, + "end": 2577.22, + "probability": 0.6045 + }, + { + "start": 2577.66, + "end": 2579.32, + "probability": 0.9589 + }, + { + "start": 2601.56, + "end": 2604.96, + "probability": 0.6977 + }, + { + "start": 2605.74, + "end": 2609.88, + "probability": 0.9209 + }, + { + "start": 2610.04, + "end": 2614.04, + "probability": 0.9833 + }, + { + "start": 2616.8, + "end": 2617.7, + "probability": 0.4401 + }, + { + "start": 2619.08, + "end": 2624.04, + "probability": 0.9926 + }, + { + "start": 2625.38, + "end": 2626.96, + "probability": 0.9587 + }, + { + "start": 2627.64, + "end": 2629.3, + "probability": 0.9262 + }, + { + "start": 2629.92, + "end": 2631.14, + "probability": 0.7343 + }, + { + "start": 2631.78, + "end": 2634.66, + "probability": 0.9442 + }, + { + "start": 2634.66, + "end": 2640.4, + "probability": 0.9659 + }, + { + "start": 2640.48, + "end": 2643.06, + "probability": 0.8112 + }, + { + "start": 2643.16, + "end": 2648.18, + "probability": 0.9977 + }, + { + "start": 2649.14, + "end": 2649.72, + "probability": 0.1535 + }, + { + "start": 2649.9, + "end": 2651.66, + "probability": 0.6231 + }, + { + "start": 2652.68, + "end": 2656.94, + "probability": 0.9844 + }, + { + "start": 2657.88, + "end": 2660.74, + "probability": 0.5309 + }, + { + "start": 2660.84, + "end": 2666.34, + "probability": 0.9645 + }, + { + "start": 2666.5, + "end": 2667.84, + "probability": 0.9097 + }, + { + "start": 2668.46, + "end": 2673.06, + "probability": 0.9691 + }, + { + "start": 2674.56, + "end": 2677.54, + "probability": 0.9071 + }, + { + "start": 2677.62, + "end": 2681.44, + "probability": 0.7933 + }, + { + "start": 2681.56, + "end": 2682.22, + "probability": 0.8418 + }, + { + "start": 2683.1, + "end": 2685.86, + "probability": 0.995 + }, + { + "start": 2685.86, + "end": 2689.62, + "probability": 0.7641 + }, + { + "start": 2690.14, + "end": 2691.86, + "probability": 0.8853 + }, + { + "start": 2692.4, + "end": 2694.9, + "probability": 0.979 + }, + { + "start": 2695.54, + "end": 2697.94, + "probability": 0.9956 + }, + { + "start": 2698.42, + "end": 2700.42, + "probability": 0.9893 + }, + { + "start": 2701.74, + "end": 2703.6, + "probability": 0.7928 + }, + { + "start": 2704.26, + "end": 2706.72, + "probability": 0.9859 + }, + { + "start": 2707.22, + "end": 2711.86, + "probability": 0.9984 + }, + { + "start": 2711.86, + "end": 2718.68, + "probability": 0.9946 + }, + { + "start": 2720.28, + "end": 2721.26, + "probability": 0.6321 + }, + { + "start": 2721.42, + "end": 2724.52, + "probability": 0.9932 + }, + { + "start": 2724.52, + "end": 2728.14, + "probability": 0.9838 + }, + { + "start": 2728.2, + "end": 2728.6, + "probability": 0.5527 + }, + { + "start": 2728.7, + "end": 2729.7, + "probability": 0.8519 + }, + { + "start": 2729.76, + "end": 2730.54, + "probability": 0.7978 + }, + { + "start": 2730.64, + "end": 2731.72, + "probability": 0.8439 + }, + { + "start": 2731.84, + "end": 2732.78, + "probability": 0.8431 + }, + { + "start": 2733.4, + "end": 2734.34, + "probability": 0.6238 + }, + { + "start": 2735.02, + "end": 2737.46, + "probability": 0.9761 + }, + { + "start": 2738.78, + "end": 2741.0, + "probability": 0.9965 + }, + { + "start": 2742.48, + "end": 2744.62, + "probability": 0.998 + }, + { + "start": 2745.56, + "end": 2750.02, + "probability": 0.9958 + }, + { + "start": 2750.02, + "end": 2753.38, + "probability": 0.9978 + }, + { + "start": 2754.72, + "end": 2758.08, + "probability": 0.9941 + }, + { + "start": 2758.94, + "end": 2760.32, + "probability": 0.9985 + }, + { + "start": 2761.8, + "end": 2765.62, + "probability": 0.9963 + }, + { + "start": 2766.36, + "end": 2766.9, + "probability": 0.5377 + }, + { + "start": 2768.02, + "end": 2770.62, + "probability": 0.9648 + }, + { + "start": 2770.63, + "end": 2774.54, + "probability": 0.9837 + }, + { + "start": 2775.18, + "end": 2778.48, + "probability": 0.9507 + }, + { + "start": 2779.36, + "end": 2784.28, + "probability": 0.8921 + }, + { + "start": 2785.0, + "end": 2791.12, + "probability": 0.9902 + }, + { + "start": 2792.98, + "end": 2795.44, + "probability": 0.7941 + }, + { + "start": 2796.28, + "end": 2798.2, + "probability": 0.9783 + }, + { + "start": 2799.24, + "end": 2801.52, + "probability": 0.9875 + }, + { + "start": 2802.32, + "end": 2806.76, + "probability": 0.9573 + }, + { + "start": 2806.76, + "end": 2811.56, + "probability": 0.9282 + }, + { + "start": 2812.08, + "end": 2816.9, + "probability": 0.9624 + }, + { + "start": 2817.62, + "end": 2819.38, + "probability": 0.8468 + }, + { + "start": 2821.01, + "end": 2823.24, + "probability": 0.9952 + }, + { + "start": 2823.84, + "end": 2824.28, + "probability": 0.5857 + }, + { + "start": 2825.32, + "end": 2826.86, + "probability": 0.8769 + }, + { + "start": 2827.02, + "end": 2831.26, + "probability": 0.9838 + }, + { + "start": 2831.88, + "end": 2833.4, + "probability": 0.7575 + }, + { + "start": 2834.0, + "end": 2835.96, + "probability": 0.9974 + }, + { + "start": 2836.98, + "end": 2837.42, + "probability": 0.8773 + }, + { + "start": 2839.18, + "end": 2842.54, + "probability": 0.901 + }, + { + "start": 2842.54, + "end": 2847.38, + "probability": 0.9905 + }, + { + "start": 2848.1, + "end": 2851.22, + "probability": 0.9332 + }, + { + "start": 2852.16, + "end": 2855.52, + "probability": 0.9919 + }, + { + "start": 2855.84, + "end": 2858.58, + "probability": 0.9715 + }, + { + "start": 2859.34, + "end": 2860.54, + "probability": 0.958 + }, + { + "start": 2861.3, + "end": 2863.61, + "probability": 0.9941 + }, + { + "start": 2864.31, + "end": 2867.05, + "probability": 0.9596 + }, + { + "start": 2867.51, + "end": 2870.45, + "probability": 0.9988 + }, + { + "start": 2871.45, + "end": 2873.97, + "probability": 0.9996 + }, + { + "start": 2874.57, + "end": 2879.15, + "probability": 0.9826 + }, + { + "start": 2879.77, + "end": 2883.37, + "probability": 0.9912 + }, + { + "start": 2883.65, + "end": 2884.11, + "probability": 0.3694 + }, + { + "start": 2885.71, + "end": 2890.71, + "probability": 0.8948 + }, + { + "start": 2891.57, + "end": 2892.17, + "probability": 0.5745 + }, + { + "start": 2892.65, + "end": 2896.01, + "probability": 0.9823 + }, + { + "start": 2896.05, + "end": 2896.45, + "probability": 0.7623 + }, + { + "start": 2897.51, + "end": 2898.05, + "probability": 0.9473 + }, + { + "start": 2900.17, + "end": 2901.01, + "probability": 0.6487 + }, + { + "start": 2902.21, + "end": 2903.33, + "probability": 0.8837 + }, + { + "start": 2903.37, + "end": 2907.29, + "probability": 0.8911 + }, + { + "start": 2907.37, + "end": 2907.93, + "probability": 0.7552 + }, + { + "start": 2908.03, + "end": 2910.97, + "probability": 0.593 + }, + { + "start": 2911.09, + "end": 2911.63, + "probability": 0.8078 + }, + { + "start": 2911.71, + "end": 2913.47, + "probability": 0.6928 + }, + { + "start": 2914.17, + "end": 2915.05, + "probability": 0.8945 + }, + { + "start": 2918.85, + "end": 2919.23, + "probability": 0.7629 + }, + { + "start": 2921.19, + "end": 2922.25, + "probability": 0.1876 + }, + { + "start": 2933.31, + "end": 2939.27, + "probability": 0.15 + }, + { + "start": 2939.39, + "end": 2939.89, + "probability": 0.7259 + }, + { + "start": 2939.97, + "end": 2941.85, + "probability": 0.6516 + }, + { + "start": 2942.49, + "end": 2943.13, + "probability": 0.5566 + }, + { + "start": 2943.23, + "end": 2943.85, + "probability": 0.7005 + }, + { + "start": 2943.97, + "end": 2945.07, + "probability": 0.5095 + }, + { + "start": 2945.35, + "end": 2947.43, + "probability": 0.7513 + }, + { + "start": 2948.11, + "end": 2948.85, + "probability": 0.5363 + }, + { + "start": 2953.43, + "end": 2953.69, + "probability": 0.0244 + }, + { + "start": 2955.21, + "end": 2958.13, + "probability": 0.0842 + }, + { + "start": 2966.47, + "end": 2966.69, + "probability": 0.1116 + }, + { + "start": 2968.75, + "end": 2974.87, + "probability": 0.0276 + }, + { + "start": 2974.87, + "end": 2975.41, + "probability": 0.0494 + }, + { + "start": 2978.31, + "end": 2980.51, + "probability": 0.0492 + }, + { + "start": 2982.16, + "end": 2982.89, + "probability": 0.0207 + }, + { + "start": 2988.45, + "end": 2990.49, + "probability": 0.0262 + }, + { + "start": 2991.09, + "end": 2993.21, + "probability": 0.0445 + }, + { + "start": 2993.21, + "end": 2994.23, + "probability": 0.0759 + }, + { + "start": 2994.23, + "end": 2994.23, + "probability": 0.0526 + }, + { + "start": 2994.23, + "end": 2995.01, + "probability": 0.3993 + }, + { + "start": 2996.65, + "end": 2997.85, + "probability": 0.0287 + }, + { + "start": 2998.0, + "end": 2998.0, + "probability": 0.0 + }, + { + "start": 2998.0, + "end": 2998.0, + "probability": 0.0 + }, + { + "start": 2998.0, + "end": 2998.0, + "probability": 0.0 + }, + { + "start": 2998.0, + "end": 2998.0, + "probability": 0.0 + }, + { + "start": 2998.0, + "end": 2998.0, + "probability": 0.0 + }, + { + "start": 2998.0, + "end": 2998.0, + "probability": 0.0 + }, + { + "start": 2998.0, + "end": 2998.0, + "probability": 0.0 + }, + { + "start": 2998.0, + "end": 2998.0, + "probability": 0.0 + }, + { + "start": 2998.0, + "end": 2998.0, + "probability": 0.0 + }, + { + "start": 2998.0, + "end": 2998.0, + "probability": 0.0 + }, + { + "start": 2998.04, + "end": 3000.18, + "probability": 0.459 + }, + { + "start": 3000.78, + "end": 3002.76, + "probability": 0.7408 + }, + { + "start": 3003.64, + "end": 3004.3, + "probability": 0.1748 + }, + { + "start": 3004.44, + "end": 3005.06, + "probability": 0.5666 + }, + { + "start": 3006.76, + "end": 3007.96, + "probability": 0.5617 + }, + { + "start": 3008.54, + "end": 3011.42, + "probability": 0.8828 + }, + { + "start": 3011.42, + "end": 3015.54, + "probability": 0.7997 + }, + { + "start": 3015.98, + "end": 3020.9, + "probability": 0.9883 + }, + { + "start": 3022.04, + "end": 3022.56, + "probability": 0.7062 + }, + { + "start": 3031.76, + "end": 3034.66, + "probability": 0.7041 + }, + { + "start": 3036.24, + "end": 3036.88, + "probability": 0.5029 + }, + { + "start": 3040.46, + "end": 3042.84, + "probability": 0.7245 + }, + { + "start": 3044.04, + "end": 3044.7, + "probability": 0.4334 + }, + { + "start": 3046.02, + "end": 3047.66, + "probability": 0.9589 + }, + { + "start": 3055.16, + "end": 3055.54, + "probability": 0.5647 + }, + { + "start": 3062.68, + "end": 3065.42, + "probability": 0.3146 + }, + { + "start": 3065.42, + "end": 3066.0, + "probability": 0.0328 + }, + { + "start": 3075.96, + "end": 3077.12, + "probability": 0.5027 + }, + { + "start": 3077.8, + "end": 3082.78, + "probability": 0.9909 + }, + { + "start": 3083.54, + "end": 3087.14, + "probability": 0.9871 + }, + { + "start": 3087.32, + "end": 3090.7, + "probability": 0.9594 + }, + { + "start": 3092.2, + "end": 3098.06, + "probability": 0.9939 + }, + { + "start": 3098.1, + "end": 3099.98, + "probability": 0.9505 + }, + { + "start": 3100.02, + "end": 3101.6, + "probability": 0.8407 + }, + { + "start": 3102.14, + "end": 3103.72, + "probability": 0.8928 + }, + { + "start": 3104.14, + "end": 3109.02, + "probability": 0.9541 + }, + { + "start": 3109.48, + "end": 3113.3, + "probability": 0.9661 + }, + { + "start": 3113.94, + "end": 3120.3, + "probability": 0.9869 + }, + { + "start": 3121.04, + "end": 3123.78, + "probability": 0.9972 + }, + { + "start": 3124.5, + "end": 3128.58, + "probability": 0.9995 + }, + { + "start": 3129.7, + "end": 3130.86, + "probability": 0.8613 + }, + { + "start": 3131.06, + "end": 3132.6, + "probability": 0.9896 + }, + { + "start": 3132.66, + "end": 3136.52, + "probability": 0.9603 + }, + { + "start": 3137.12, + "end": 3141.52, + "probability": 0.9559 + }, + { + "start": 3141.78, + "end": 3142.84, + "probability": 0.9985 + }, + { + "start": 3143.54, + "end": 3145.84, + "probability": 0.9995 + }, + { + "start": 3145.92, + "end": 3149.32, + "probability": 0.9977 + }, + { + "start": 3150.6, + "end": 3152.78, + "probability": 0.9608 + }, + { + "start": 3153.06, + "end": 3159.18, + "probability": 0.9964 + }, + { + "start": 3159.3, + "end": 3160.58, + "probability": 0.9841 + }, + { + "start": 3161.72, + "end": 3165.06, + "probability": 0.9881 + }, + { + "start": 3165.22, + "end": 3169.5, + "probability": 0.9965 + }, + { + "start": 3169.88, + "end": 3174.42, + "probability": 0.9591 + }, + { + "start": 3175.16, + "end": 3179.18, + "probability": 0.8686 + }, + { + "start": 3180.14, + "end": 3182.16, + "probability": 0.9311 + }, + { + "start": 3182.6, + "end": 3184.3, + "probability": 0.9651 + }, + { + "start": 3185.38, + "end": 3185.92, + "probability": 0.7419 + }, + { + "start": 3186.7, + "end": 3189.36, + "probability": 0.9951 + }, + { + "start": 3189.5, + "end": 3190.66, + "probability": 0.947 + }, + { + "start": 3191.12, + "end": 3192.14, + "probability": 0.7104 + }, + { + "start": 3192.6, + "end": 3195.32, + "probability": 0.9921 + }, + { + "start": 3195.96, + "end": 3200.12, + "probability": 0.9868 + }, + { + "start": 3200.5, + "end": 3201.92, + "probability": 0.9993 + }, + { + "start": 3202.26, + "end": 3204.5, + "probability": 0.9984 + }, + { + "start": 3204.9, + "end": 3206.04, + "probability": 0.7458 + }, + { + "start": 3206.68, + "end": 3208.9, + "probability": 0.996 + }, + { + "start": 3209.28, + "end": 3214.78, + "probability": 0.9917 + }, + { + "start": 3215.6, + "end": 3218.02, + "probability": 0.8889 + }, + { + "start": 3218.34, + "end": 3218.9, + "probability": 0.7161 + }, + { + "start": 3220.4, + "end": 3220.94, + "probability": 0.7244 + }, + { + "start": 3222.04, + "end": 3224.44, + "probability": 0.7021 + }, + { + "start": 3225.04, + "end": 3226.13, + "probability": 0.6875 + }, + { + "start": 3238.74, + "end": 3242.16, + "probability": 0.9995 + }, + { + "start": 3242.52, + "end": 3243.22, + "probability": 0.7731 + }, + { + "start": 3244.46, + "end": 3247.42, + "probability": 0.9755 + }, + { + "start": 3247.42, + "end": 3250.92, + "probability": 0.9818 + }, + { + "start": 3251.52, + "end": 3252.08, + "probability": 0.7686 + }, + { + "start": 3252.2, + "end": 3253.7, + "probability": 0.9951 + }, + { + "start": 3254.16, + "end": 3258.36, + "probability": 0.9963 + }, + { + "start": 3258.82, + "end": 3260.47, + "probability": 0.9785 + }, + { + "start": 3261.24, + "end": 3264.72, + "probability": 0.9971 + }, + { + "start": 3265.14, + "end": 3266.26, + "probability": 0.9896 + }, + { + "start": 3266.9, + "end": 3270.58, + "probability": 0.9795 + }, + { + "start": 3270.58, + "end": 3276.34, + "probability": 0.9884 + }, + { + "start": 3276.82, + "end": 3278.72, + "probability": 0.8907 + }, + { + "start": 3278.84, + "end": 3282.72, + "probability": 0.937 + }, + { + "start": 3283.34, + "end": 3283.68, + "probability": 0.883 + }, + { + "start": 3283.8, + "end": 3284.34, + "probability": 0.8329 + }, + { + "start": 3284.44, + "end": 3285.35, + "probability": 0.9648 + }, + { + "start": 3285.48, + "end": 3288.26, + "probability": 0.9309 + }, + { + "start": 3288.52, + "end": 3291.04, + "probability": 0.9985 + }, + { + "start": 3291.18, + "end": 3291.5, + "probability": 0.4309 + }, + { + "start": 3291.74, + "end": 3292.35, + "probability": 0.7827 + }, + { + "start": 3292.6, + "end": 3293.03, + "probability": 0.9976 + }, + { + "start": 3293.46, + "end": 3295.62, + "probability": 0.7747 + }, + { + "start": 3295.68, + "end": 3296.08, + "probability": 0.9118 + }, + { + "start": 3296.2, + "end": 3297.12, + "probability": 0.9527 + }, + { + "start": 3297.56, + "end": 3299.58, + "probability": 0.9025 + }, + { + "start": 3299.64, + "end": 3301.24, + "probability": 0.8921 + }, + { + "start": 3301.64, + "end": 3302.48, + "probability": 0.9913 + }, + { + "start": 3302.6, + "end": 3304.6, + "probability": 0.9642 + }, + { + "start": 3304.86, + "end": 3305.74, + "probability": 0.9803 + }, + { + "start": 3305.84, + "end": 3306.72, + "probability": 0.9845 + }, + { + "start": 3306.78, + "end": 3307.78, + "probability": 0.7493 + }, + { + "start": 3308.52, + "end": 3313.12, + "probability": 0.8715 + }, + { + "start": 3313.54, + "end": 3315.52, + "probability": 0.715 + }, + { + "start": 3318.38, + "end": 3320.86, + "probability": 0.5518 + }, + { + "start": 3321.04, + "end": 3323.0, + "probability": 0.8606 + }, + { + "start": 3323.34, + "end": 3326.12, + "probability": 0.9941 + }, + { + "start": 3326.12, + "end": 3328.92, + "probability": 0.9202 + }, + { + "start": 3329.44, + "end": 3330.78, + "probability": 0.8911 + }, + { + "start": 3331.08, + "end": 3333.64, + "probability": 0.9756 + }, + { + "start": 3334.64, + "end": 3337.4, + "probability": 0.7809 + }, + { + "start": 3337.68, + "end": 3338.28, + "probability": 0.8972 + }, + { + "start": 3338.82, + "end": 3339.48, + "probability": 0.6875 + }, + { + "start": 3339.64, + "end": 3341.84, + "probability": 0.8147 + }, + { + "start": 3342.1, + "end": 3344.3, + "probability": 0.9406 + }, + { + "start": 3344.64, + "end": 3347.01, + "probability": 0.9968 + }, + { + "start": 3347.16, + "end": 3348.92, + "probability": 0.9862 + }, + { + "start": 3349.28, + "end": 3350.86, + "probability": 0.977 + }, + { + "start": 3351.2, + "end": 3354.0, + "probability": 0.9946 + }, + { + "start": 3354.62, + "end": 3356.14, + "probability": 0.899 + }, + { + "start": 3356.56, + "end": 3357.16, + "probability": 0.538 + }, + { + "start": 3357.26, + "end": 3358.0, + "probability": 0.7119 + }, + { + "start": 3358.08, + "end": 3361.94, + "probability": 0.8461 + }, + { + "start": 3362.24, + "end": 3362.84, + "probability": 0.4411 + }, + { + "start": 3362.84, + "end": 3363.56, + "probability": 0.7781 + }, + { + "start": 3363.56, + "end": 3364.08, + "probability": 0.5747 + }, + { + "start": 3364.08, + "end": 3364.82, + "probability": 0.9798 + }, + { + "start": 3365.04, + "end": 3368.18, + "probability": 0.9861 + }, + { + "start": 3368.6, + "end": 3372.92, + "probability": 0.8423 + }, + { + "start": 3373.3, + "end": 3375.54, + "probability": 0.9678 + }, + { + "start": 3376.26, + "end": 3377.92, + "probability": 0.9944 + }, + { + "start": 3378.0, + "end": 3379.68, + "probability": 0.9314 + }, + { + "start": 3379.78, + "end": 3381.16, + "probability": 0.9478 + }, + { + "start": 3381.38, + "end": 3381.94, + "probability": 0.3046 + }, + { + "start": 3382.12, + "end": 3384.22, + "probability": 0.9092 + }, + { + "start": 3384.46, + "end": 3385.4, + "probability": 0.7744 + }, + { + "start": 3385.48, + "end": 3386.48, + "probability": 0.9282 + }, + { + "start": 3386.48, + "end": 3386.96, + "probability": 0.7199 + }, + { + "start": 3387.0, + "end": 3389.76, + "probability": 0.8672 + }, + { + "start": 3390.22, + "end": 3390.96, + "probability": 0.8927 + }, + { + "start": 3391.54, + "end": 3393.38, + "probability": 0.8418 + }, + { + "start": 3393.52, + "end": 3395.98, + "probability": 0.9918 + }, + { + "start": 3396.5, + "end": 3397.62, + "probability": 0.7803 + }, + { + "start": 3398.12, + "end": 3399.88, + "probability": 0.6792 + }, + { + "start": 3400.34, + "end": 3401.64, + "probability": 0.9158 + }, + { + "start": 3401.72, + "end": 3405.32, + "probability": 0.9755 + }, + { + "start": 3405.58, + "end": 3407.86, + "probability": 0.9634 + }, + { + "start": 3408.18, + "end": 3410.95, + "probability": 0.9971 + }, + { + "start": 3411.44, + "end": 3411.66, + "probability": 0.8604 + }, + { + "start": 3411.78, + "end": 3412.98, + "probability": 0.8033 + }, + { + "start": 3413.0, + "end": 3413.26, + "probability": 0.2769 + }, + { + "start": 3413.36, + "end": 3413.6, + "probability": 0.351 + }, + { + "start": 3413.76, + "end": 3413.98, + "probability": 0.6251 + }, + { + "start": 3414.5, + "end": 3417.1, + "probability": 0.9862 + }, + { + "start": 3417.24, + "end": 3417.56, + "probability": 0.1438 + }, + { + "start": 3417.56, + "end": 3417.9, + "probability": 0.2595 + }, + { + "start": 3418.04, + "end": 3418.62, + "probability": 0.4764 + }, + { + "start": 3419.14, + "end": 3421.94, + "probability": 0.9604 + }, + { + "start": 3421.94, + "end": 3424.54, + "probability": 0.9899 + }, + { + "start": 3424.84, + "end": 3425.62, + "probability": 0.8604 + }, + { + "start": 3426.34, + "end": 3428.16, + "probability": 0.9951 + }, + { + "start": 3428.9, + "end": 3430.66, + "probability": 0.8165 + }, + { + "start": 3431.26, + "end": 3432.12, + "probability": 0.6153 + }, + { + "start": 3432.62, + "end": 3433.15, + "probability": 0.821 + }, + { + "start": 3433.46, + "end": 3435.26, + "probability": 0.9292 + }, + { + "start": 3435.64, + "end": 3437.29, + "probability": 0.9868 + }, + { + "start": 3437.66, + "end": 3438.78, + "probability": 0.7674 + }, + { + "start": 3439.32, + "end": 3440.34, + "probability": 0.9512 + }, + { + "start": 3440.8, + "end": 3444.5, + "probability": 0.959 + }, + { + "start": 3444.84, + "end": 3446.99, + "probability": 0.9983 + }, + { + "start": 3447.68, + "end": 3449.6, + "probability": 0.9971 + }, + { + "start": 3449.94, + "end": 3452.34, + "probability": 0.9983 + }, + { + "start": 3452.42, + "end": 3454.08, + "probability": 0.9973 + }, + { + "start": 3454.2, + "end": 3454.82, + "probability": 0.9173 + }, + { + "start": 3455.14, + "end": 3456.84, + "probability": 0.8682 + }, + { + "start": 3456.94, + "end": 3458.22, + "probability": 0.9801 + }, + { + "start": 3458.68, + "end": 3459.32, + "probability": 0.8553 + }, + { + "start": 3461.48, + "end": 3462.48, + "probability": 0.56 + }, + { + "start": 3462.74, + "end": 3467.4, + "probability": 0.6415 + }, + { + "start": 3467.56, + "end": 3471.22, + "probability": 0.9856 + }, + { + "start": 3471.54, + "end": 3472.52, + "probability": 0.7771 + }, + { + "start": 3472.88, + "end": 3473.8, + "probability": 0.9458 + }, + { + "start": 3474.2, + "end": 3477.1, + "probability": 0.8127 + }, + { + "start": 3477.58, + "end": 3479.79, + "probability": 0.8427 + }, + { + "start": 3480.52, + "end": 3481.4, + "probability": 0.9564 + }, + { + "start": 3481.54, + "end": 3481.8, + "probability": 0.7058 + }, + { + "start": 3482.2, + "end": 3482.28, + "probability": 0.5769 + }, + { + "start": 3482.3, + "end": 3482.54, + "probability": 0.5089 + }, + { + "start": 3482.64, + "end": 3484.42, + "probability": 0.7592 + }, + { + "start": 3484.66, + "end": 3484.76, + "probability": 0.1607 + }, + { + "start": 3484.76, + "end": 3487.26, + "probability": 0.8631 + }, + { + "start": 3488.1, + "end": 3490.02, + "probability": 0.9615 + }, + { + "start": 3490.34, + "end": 3490.97, + "probability": 0.9719 + }, + { + "start": 3491.28, + "end": 3492.31, + "probability": 0.9889 + }, + { + "start": 3492.78, + "end": 3494.08, + "probability": 0.954 + }, + { + "start": 3494.3, + "end": 3495.22, + "probability": 0.5333 + }, + { + "start": 3495.32, + "end": 3497.72, + "probability": 0.7174 + }, + { + "start": 3497.86, + "end": 3498.84, + "probability": 0.5452 + }, + { + "start": 3499.14, + "end": 3499.98, + "probability": 0.9502 + }, + { + "start": 3500.46, + "end": 3501.02, + "probability": 0.7397 + }, + { + "start": 3501.64, + "end": 3501.96, + "probability": 0.5202 + }, + { + "start": 3502.02, + "end": 3503.18, + "probability": 0.9941 + }, + { + "start": 3503.36, + "end": 3504.36, + "probability": 0.9914 + }, + { + "start": 3504.66, + "end": 3506.47, + "probability": 0.8726 + }, + { + "start": 3507.36, + "end": 3507.9, + "probability": 0.9596 + }, + { + "start": 3508.0, + "end": 3511.2, + "probability": 0.792 + }, + { + "start": 3511.46, + "end": 3513.12, + "probability": 0.8445 + }, + { + "start": 3513.38, + "end": 3514.84, + "probability": 0.9839 + }, + { + "start": 3515.16, + "end": 3518.61, + "probability": 0.8721 + }, + { + "start": 3519.22, + "end": 3519.22, + "probability": 0.4967 + }, + { + "start": 3519.22, + "end": 3520.38, + "probability": 0.7653 + }, + { + "start": 3520.74, + "end": 3521.7, + "probability": 0.8124 + }, + { + "start": 3522.14, + "end": 3523.2, + "probability": 0.8765 + }, + { + "start": 3523.48, + "end": 3524.0, + "probability": 0.5273 + }, + { + "start": 3524.28, + "end": 3526.18, + "probability": 0.902 + }, + { + "start": 3526.6, + "end": 3526.6, + "probability": 0.5943 + }, + { + "start": 3527.48, + "end": 3529.64, + "probability": 0.8403 + }, + { + "start": 3531.6, + "end": 3533.32, + "probability": 0.6733 + }, + { + "start": 3534.14, + "end": 3535.58, + "probability": 0.7043 + }, + { + "start": 3543.82, + "end": 3544.54, + "probability": 0.5374 + }, + { + "start": 3556.98, + "end": 3557.24, + "probability": 0.8345 + }, + { + "start": 3562.19, + "end": 3565.66, + "probability": 0.6026 + }, + { + "start": 3565.86, + "end": 3566.92, + "probability": 0.9381 + }, + { + "start": 3568.22, + "end": 3570.28, + "probability": 0.9116 + }, + { + "start": 3570.82, + "end": 3573.04, + "probability": 0.8853 + }, + { + "start": 3574.4, + "end": 3575.5, + "probability": 0.9258 + }, + { + "start": 3579.06, + "end": 3583.02, + "probability": 0.8447 + }, + { + "start": 3585.58, + "end": 3586.66, + "probability": 0.7876 + }, + { + "start": 3588.02, + "end": 3590.76, + "probability": 0.9745 + }, + { + "start": 3591.76, + "end": 3594.62, + "probability": 0.7746 + }, + { + "start": 3595.28, + "end": 3598.54, + "probability": 0.9941 + }, + { + "start": 3599.72, + "end": 3602.56, + "probability": 0.976 + }, + { + "start": 3603.06, + "end": 3604.48, + "probability": 0.9703 + }, + { + "start": 3605.41, + "end": 3610.46, + "probability": 0.9956 + }, + { + "start": 3611.16, + "end": 3613.22, + "probability": 0.6528 + }, + { + "start": 3614.36, + "end": 3615.48, + "probability": 0.8964 + }, + { + "start": 3616.0, + "end": 3617.63, + "probability": 0.8112 + }, + { + "start": 3618.08, + "end": 3618.58, + "probability": 0.5751 + }, + { + "start": 3618.62, + "end": 3619.34, + "probability": 0.7781 + }, + { + "start": 3619.76, + "end": 3621.7, + "probability": 0.7735 + }, + { + "start": 3621.7, + "end": 3622.7, + "probability": 0.7163 + }, + { + "start": 3622.84, + "end": 3623.5, + "probability": 0.8407 + }, + { + "start": 3624.08, + "end": 3626.72, + "probability": 0.9115 + }, + { + "start": 3626.72, + "end": 3629.74, + "probability": 0.974 + }, + { + "start": 3630.82, + "end": 3632.18, + "probability": 0.8817 + }, + { + "start": 3632.62, + "end": 3634.16, + "probability": 0.9951 + }, + { + "start": 3634.24, + "end": 3637.32, + "probability": 0.952 + }, + { + "start": 3639.94, + "end": 3640.42, + "probability": 0.0803 + }, + { + "start": 3640.42, + "end": 3640.77, + "probability": 0.2374 + }, + { + "start": 3641.12, + "end": 3643.46, + "probability": 0.8599 + }, + { + "start": 3644.78, + "end": 3644.88, + "probability": 0.5661 + }, + { + "start": 3644.98, + "end": 3645.64, + "probability": 0.7343 + }, + { + "start": 3645.86, + "end": 3649.83, + "probability": 0.9183 + }, + { + "start": 3651.08, + "end": 3651.46, + "probability": 0.9675 + }, + { + "start": 3651.52, + "end": 3653.8, + "probability": 0.9666 + }, + { + "start": 3653.88, + "end": 3654.76, + "probability": 0.7764 + }, + { + "start": 3655.38, + "end": 3656.84, + "probability": 0.9284 + }, + { + "start": 3657.7, + "end": 3658.38, + "probability": 0.9089 + }, + { + "start": 3659.24, + "end": 3661.14, + "probability": 0.8488 + }, + { + "start": 3662.48, + "end": 3664.86, + "probability": 0.7496 + }, + { + "start": 3665.86, + "end": 3666.26, + "probability": 0.9535 + }, + { + "start": 3666.72, + "end": 3668.1, + "probability": 0.9092 + }, + { + "start": 3669.16, + "end": 3671.56, + "probability": 0.9692 + }, + { + "start": 3672.42, + "end": 3675.72, + "probability": 0.9927 + }, + { + "start": 3675.82, + "end": 3677.18, + "probability": 0.9915 + }, + { + "start": 3677.26, + "end": 3680.08, + "probability": 0.8955 + }, + { + "start": 3680.4, + "end": 3682.2, + "probability": 0.993 + }, + { + "start": 3682.5, + "end": 3686.06, + "probability": 0.7824 + }, + { + "start": 3686.84, + "end": 3690.62, + "probability": 0.8637 + }, + { + "start": 3690.62, + "end": 3694.78, + "probability": 0.7677 + }, + { + "start": 3695.18, + "end": 3696.56, + "probability": 0.8117 + }, + { + "start": 3697.72, + "end": 3698.56, + "probability": 0.9666 + }, + { + "start": 3700.18, + "end": 3702.12, + "probability": 0.9257 + }, + { + "start": 3703.04, + "end": 3703.74, + "probability": 0.8794 + }, + { + "start": 3706.32, + "end": 3707.44, + "probability": 0.98 + }, + { + "start": 3708.76, + "end": 3711.66, + "probability": 0.8062 + }, + { + "start": 3712.62, + "end": 3715.84, + "probability": 0.9022 + }, + { + "start": 3716.82, + "end": 3718.86, + "probability": 0.9707 + }, + { + "start": 3718.86, + "end": 3719.74, + "probability": 0.7417 + }, + { + "start": 3719.8, + "end": 3720.48, + "probability": 0.9294 + }, + { + "start": 3720.64, + "end": 3721.86, + "probability": 0.2566 + }, + { + "start": 3722.06, + "end": 3723.26, + "probability": 0.974 + }, + { + "start": 3723.62, + "end": 3725.04, + "probability": 0.8709 + }, + { + "start": 3726.02, + "end": 3726.66, + "probability": 0.7297 + }, + { + "start": 3728.1, + "end": 3729.18, + "probability": 0.6659 + }, + { + "start": 3729.74, + "end": 3732.72, + "probability": 0.842 + }, + { + "start": 3733.3, + "end": 3736.16, + "probability": 0.9702 + }, + { + "start": 3736.78, + "end": 3739.02, + "probability": 0.7633 + }, + { + "start": 3739.52, + "end": 3741.98, + "probability": 0.9552 + }, + { + "start": 3742.4, + "end": 3746.72, + "probability": 0.897 + }, + { + "start": 3747.52, + "end": 3749.0, + "probability": 0.9685 + }, + { + "start": 3749.7, + "end": 3750.9, + "probability": 0.9786 + }, + { + "start": 3752.14, + "end": 3753.84, + "probability": 0.9939 + }, + { + "start": 3754.6, + "end": 3757.22, + "probability": 0.9695 + }, + { + "start": 3757.52, + "end": 3757.96, + "probability": 0.8091 + }, + { + "start": 3758.18, + "end": 3758.66, + "probability": 0.7387 + }, + { + "start": 3759.74, + "end": 3762.2, + "probability": 0.6528 + }, + { + "start": 3763.0, + "end": 3765.66, + "probability": 0.832 + }, + { + "start": 3766.36, + "end": 3768.7, + "probability": 0.9803 + }, + { + "start": 3769.58, + "end": 3772.34, + "probability": 0.9603 + }, + { + "start": 3780.32, + "end": 3784.3, + "probability": 0.772 + }, + { + "start": 3785.02, + "end": 3787.06, + "probability": 0.6707 + }, + { + "start": 3787.68, + "end": 3792.76, + "probability": 0.9766 + }, + { + "start": 3792.76, + "end": 3800.32, + "probability": 0.9302 + }, + { + "start": 3800.84, + "end": 3801.6, + "probability": 0.8555 + }, + { + "start": 3802.88, + "end": 3808.32, + "probability": 0.7896 + }, + { + "start": 3808.96, + "end": 3811.82, + "probability": 0.8923 + }, + { + "start": 3811.82, + "end": 3814.94, + "probability": 0.9865 + }, + { + "start": 3815.86, + "end": 3820.12, + "probability": 0.9338 + }, + { + "start": 3821.02, + "end": 3825.56, + "probability": 0.9725 + }, + { + "start": 3826.6, + "end": 3826.82, + "probability": 0.1972 + }, + { + "start": 3826.94, + "end": 3828.24, + "probability": 0.9589 + }, + { + "start": 3828.28, + "end": 3829.1, + "probability": 0.8862 + }, + { + "start": 3829.2, + "end": 3829.9, + "probability": 0.976 + }, + { + "start": 3829.94, + "end": 3830.9, + "probability": 0.882 + }, + { + "start": 3831.42, + "end": 3833.02, + "probability": 0.9661 + }, + { + "start": 3833.6, + "end": 3835.44, + "probability": 0.8475 + }, + { + "start": 3836.06, + "end": 3838.54, + "probability": 0.9476 + }, + { + "start": 3839.5, + "end": 3840.56, + "probability": 0.8782 + }, + { + "start": 3841.26, + "end": 3844.7, + "probability": 0.96 + }, + { + "start": 3845.6, + "end": 3847.18, + "probability": 0.9888 + }, + { + "start": 3847.7, + "end": 3849.16, + "probability": 0.9851 + }, + { + "start": 3850.24, + "end": 3850.58, + "probability": 0.5556 + }, + { + "start": 3851.2, + "end": 3854.96, + "probability": 0.9539 + }, + { + "start": 3855.28, + "end": 3858.02, + "probability": 0.9907 + }, + { + "start": 3858.92, + "end": 3859.72, + "probability": 0.8842 + }, + { + "start": 3859.8, + "end": 3860.94, + "probability": 0.8595 + }, + { + "start": 3861.06, + "end": 3865.82, + "probability": 0.9513 + }, + { + "start": 3866.44, + "end": 3869.44, + "probability": 0.8279 + }, + { + "start": 3870.0, + "end": 3874.2, + "probability": 0.9709 + }, + { + "start": 3875.32, + "end": 3876.48, + "probability": 0.6736 + }, + { + "start": 3877.28, + "end": 3881.82, + "probability": 0.9464 + }, + { + "start": 3882.42, + "end": 3884.94, + "probability": 0.891 + }, + { + "start": 3885.68, + "end": 3892.06, + "probability": 0.9915 + }, + { + "start": 3893.12, + "end": 3894.72, + "probability": 0.8391 + }, + { + "start": 3896.12, + "end": 3898.18, + "probability": 0.6603 + }, + { + "start": 3899.32, + "end": 3899.9, + "probability": 0.9102 + }, + { + "start": 3900.52, + "end": 3903.14, + "probability": 0.8369 + }, + { + "start": 3903.66, + "end": 3905.16, + "probability": 0.8714 + }, + { + "start": 3905.9, + "end": 3910.54, + "probability": 0.786 + }, + { + "start": 3910.54, + "end": 3913.84, + "probability": 0.9878 + }, + { + "start": 3914.76, + "end": 3918.0, + "probability": 0.9639 + }, + { + "start": 3918.66, + "end": 3921.44, + "probability": 0.9311 + }, + { + "start": 3921.96, + "end": 3923.86, + "probability": 0.7858 + }, + { + "start": 3924.48, + "end": 3928.96, + "probability": 0.9982 + }, + { + "start": 3929.96, + "end": 3932.1, + "probability": 0.9951 + }, + { + "start": 3932.32, + "end": 3933.6, + "probability": 0.8519 + }, + { + "start": 3934.2, + "end": 3934.98, + "probability": 0.5735 + }, + { + "start": 3935.96, + "end": 3936.78, + "probability": 0.8613 + }, + { + "start": 3937.9, + "end": 3939.62, + "probability": 0.9764 + }, + { + "start": 3940.44, + "end": 3943.74, + "probability": 0.9893 + }, + { + "start": 3944.24, + "end": 3945.12, + "probability": 0.9372 + }, + { + "start": 3945.36, + "end": 3945.84, + "probability": 0.5139 + }, + { + "start": 3946.66, + "end": 3949.9, + "probability": 0.9801 + }, + { + "start": 3951.22, + "end": 3955.12, + "probability": 0.7527 + }, + { + "start": 3955.76, + "end": 3955.98, + "probability": 0.5163 + }, + { + "start": 3955.98, + "end": 3958.8, + "probability": 0.9764 + }, + { + "start": 3959.38, + "end": 3960.14, + "probability": 0.9749 + }, + { + "start": 3960.88, + "end": 3961.54, + "probability": 0.9866 + }, + { + "start": 3962.26, + "end": 3963.2, + "probability": 0.8623 + }, + { + "start": 3963.88, + "end": 3966.02, + "probability": 0.9914 + }, + { + "start": 3966.64, + "end": 3967.5, + "probability": 0.779 + }, + { + "start": 3967.54, + "end": 3971.7, + "probability": 0.994 + }, + { + "start": 3972.72, + "end": 3975.0, + "probability": 0.3115 + }, + { + "start": 3975.0, + "end": 3976.34, + "probability": 0.5999 + }, + { + "start": 3976.84, + "end": 3979.52, + "probability": 0.7157 + }, + { + "start": 3979.94, + "end": 3980.36, + "probability": 0.7026 + }, + { + "start": 3982.22, + "end": 3983.54, + "probability": 0.7579 + }, + { + "start": 3984.34, + "end": 3985.02, + "probability": 0.3383 + }, + { + "start": 3985.84, + "end": 3987.28, + "probability": 0.0302 + }, + { + "start": 3987.42, + "end": 3987.96, + "probability": 0.4926 + }, + { + "start": 3989.66, + "end": 3991.54, + "probability": 0.8892 + }, + { + "start": 3992.7, + "end": 3993.46, + "probability": 0.8074 + }, + { + "start": 3993.8, + "end": 3996.02, + "probability": 0.6875 + }, + { + "start": 4014.94, + "end": 4016.9, + "probability": 0.8936 + }, + { + "start": 4018.1, + "end": 4019.2, + "probability": 0.6417 + }, + { + "start": 4020.4, + "end": 4026.84, + "probability": 0.7031 + }, + { + "start": 4028.68, + "end": 4029.92, + "probability": 0.9703 + }, + { + "start": 4031.32, + "end": 4032.82, + "probability": 0.6892 + }, + { + "start": 4033.16, + "end": 4035.68, + "probability": 0.9961 + }, + { + "start": 4036.84, + "end": 4038.86, + "probability": 0.9917 + }, + { + "start": 4039.0, + "end": 4041.18, + "probability": 0.8693 + }, + { + "start": 4043.7, + "end": 4044.6, + "probability": 0.9087 + }, + { + "start": 4045.38, + "end": 4046.68, + "probability": 0.9543 + }, + { + "start": 4047.34, + "end": 4050.42, + "probability": 0.9754 + }, + { + "start": 4051.4, + "end": 4053.98, + "probability": 0.6782 + }, + { + "start": 4055.4, + "end": 4059.4, + "probability": 0.788 + }, + { + "start": 4060.24, + "end": 4062.3, + "probability": 0.7319 + }, + { + "start": 4062.44, + "end": 4063.12, + "probability": 0.4952 + }, + { + "start": 4063.94, + "end": 4065.58, + "probability": 0.9421 + }, + { + "start": 4068.86, + "end": 4070.54, + "probability": 0.7312 + }, + { + "start": 4071.48, + "end": 4072.38, + "probability": 0.9102 + }, + { + "start": 4077.24, + "end": 4080.1, + "probability": 0.0654 + }, + { + "start": 4084.26, + "end": 4086.22, + "probability": 0.1138 + }, + { + "start": 4087.18, + "end": 4092.28, + "probability": 0.0064 + }, + { + "start": 4092.28, + "end": 4092.92, + "probability": 0.0672 + }, + { + "start": 4093.28, + "end": 4097.48, + "probability": 0.3687 + }, + { + "start": 4099.02, + "end": 4099.02, + "probability": 0.06 + }, + { + "start": 4100.12, + "end": 4109.66, + "probability": 0.1411 + }, + { + "start": 4110.68, + "end": 4112.8, + "probability": 0.2819 + }, + { + "start": 4117.58, + "end": 4121.76, + "probability": 0.2767 + }, + { + "start": 4122.89, + "end": 4124.32, + "probability": 0.0852 + }, + { + "start": 4127.8, + "end": 4130.98, + "probability": 0.0193 + }, + { + "start": 4131.54, + "end": 4131.54, + "probability": 0.2209 + }, + { + "start": 4132.7, + "end": 4133.64, + "probability": 0.0594 + }, + { + "start": 4133.96, + "end": 4140.8, + "probability": 0.1626 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.0, + "end": 4273.0, + "probability": 0.0 + }, + { + "start": 4273.38, + "end": 4273.4, + "probability": 0.0 + }, + { + "start": 4273.4, + "end": 4277.7, + "probability": 0.8791 + }, + { + "start": 4281.14, + "end": 4282.7, + "probability": 0.672 + }, + { + "start": 4284.1, + "end": 4285.68, + "probability": 0.9796 + }, + { + "start": 4287.92, + "end": 4293.14, + "probability": 0.9976 + }, + { + "start": 4294.46, + "end": 4296.92, + "probability": 0.9159 + }, + { + "start": 4297.76, + "end": 4298.82, + "probability": 0.9712 + }, + { + "start": 4300.02, + "end": 4304.0, + "probability": 0.9987 + }, + { + "start": 4305.52, + "end": 4310.02, + "probability": 0.8944 + }, + { + "start": 4310.9, + "end": 4312.04, + "probability": 0.9868 + }, + { + "start": 4312.58, + "end": 4313.68, + "probability": 0.9972 + }, + { + "start": 4314.78, + "end": 4316.46, + "probability": 0.9688 + }, + { + "start": 4317.26, + "end": 4318.44, + "probability": 0.8756 + }, + { + "start": 4318.58, + "end": 4322.64, + "probability": 0.9979 + }, + { + "start": 4323.66, + "end": 4326.72, + "probability": 0.9621 + }, + { + "start": 4327.76, + "end": 4328.5, + "probability": 0.7477 + }, + { + "start": 4329.04, + "end": 4330.62, + "probability": 0.972 + }, + { + "start": 4331.9, + "end": 4332.1, + "probability": 0.6865 + }, + { + "start": 4332.36, + "end": 4333.84, + "probability": 0.7469 + }, + { + "start": 4333.98, + "end": 4335.98, + "probability": 0.9962 + }, + { + "start": 4336.46, + "end": 4339.7, + "probability": 0.9839 + }, + { + "start": 4340.68, + "end": 4345.46, + "probability": 0.8857 + }, + { + "start": 4347.58, + "end": 4349.03, + "probability": 0.759 + }, + { + "start": 4350.62, + "end": 4351.94, + "probability": 0.9175 + }, + { + "start": 4352.86, + "end": 4355.52, + "probability": 0.9173 + }, + { + "start": 4356.42, + "end": 4358.58, + "probability": 0.978 + }, + { + "start": 4359.4, + "end": 4361.1, + "probability": 0.4955 + }, + { + "start": 4361.62, + "end": 4364.46, + "probability": 0.8882 + }, + { + "start": 4365.98, + "end": 4367.08, + "probability": 0.998 + }, + { + "start": 4367.76, + "end": 4370.38, + "probability": 0.9974 + }, + { + "start": 4371.48, + "end": 4377.7, + "probability": 0.9751 + }, + { + "start": 4379.12, + "end": 4383.54, + "probability": 0.9852 + }, + { + "start": 4384.58, + "end": 4388.84, + "probability": 0.9951 + }, + { + "start": 4390.12, + "end": 4391.14, + "probability": 0.884 + }, + { + "start": 4393.78, + "end": 4401.1, + "probability": 0.9755 + }, + { + "start": 4402.62, + "end": 4406.14, + "probability": 0.9937 + }, + { + "start": 4406.3, + "end": 4408.14, + "probability": 0.8585 + }, + { + "start": 4409.14, + "end": 4410.22, + "probability": 0.999 + }, + { + "start": 4410.86, + "end": 4413.98, + "probability": 0.9905 + }, + { + "start": 4414.54, + "end": 4415.08, + "probability": 0.8163 + }, + { + "start": 4417.32, + "end": 4417.9, + "probability": 0.6952 + }, + { + "start": 4418.5, + "end": 4419.62, + "probability": 0.9428 + }, + { + "start": 4420.6, + "end": 4421.3, + "probability": 0.528 + }, + { + "start": 4421.82, + "end": 4423.68, + "probability": 0.9875 + }, + { + "start": 4424.3, + "end": 4426.18, + "probability": 0.7459 + }, + { + "start": 4428.54, + "end": 4430.02, + "probability": 0.8811 + }, + { + "start": 4431.3, + "end": 4432.12, + "probability": 0.9702 + }, + { + "start": 4432.78, + "end": 4434.98, + "probability": 0.9348 + }, + { + "start": 4435.42, + "end": 4436.54, + "probability": 0.9915 + }, + { + "start": 4437.36, + "end": 4437.92, + "probability": 0.955 + }, + { + "start": 4441.36, + "end": 4441.58, + "probability": 0.9973 + }, + { + "start": 4442.14, + "end": 4442.58, + "probability": 0.0284 + }, + { + "start": 4442.58, + "end": 4442.58, + "probability": 0.2989 + }, + { + "start": 4442.58, + "end": 4443.36, + "probability": 0.527 + }, + { + "start": 4444.52, + "end": 4445.16, + "probability": 0.6937 + }, + { + "start": 4446.16, + "end": 4447.34, + "probability": 0.7275 + }, + { + "start": 4448.5, + "end": 4449.18, + "probability": 0.8127 + }, + { + "start": 4450.04, + "end": 4451.16, + "probability": 0.9612 + }, + { + "start": 4451.16, + "end": 4451.84, + "probability": 0.8835 + }, + { + "start": 4452.18, + "end": 4453.98, + "probability": 0.6918 + }, + { + "start": 4454.08, + "end": 4454.72, + "probability": 0.4122 + }, + { + "start": 4455.92, + "end": 4457.32, + "probability": 0.9676 + }, + { + "start": 4457.94, + "end": 4458.68, + "probability": 0.8569 + }, + { + "start": 4459.44, + "end": 4460.9, + "probability": 0.9899 + }, + { + "start": 4460.92, + "end": 4461.6, + "probability": 0.9669 + }, + { + "start": 4461.68, + "end": 4462.34, + "probability": 0.9127 + }, + { + "start": 4462.74, + "end": 4463.34, + "probability": 0.9755 + }, + { + "start": 4463.5, + "end": 4463.98, + "probability": 0.6942 + }, + { + "start": 4464.72, + "end": 4465.58, + "probability": 0.8626 + }, + { + "start": 4466.6, + "end": 4467.22, + "probability": 0.6133 + }, + { + "start": 4468.0, + "end": 4471.34, + "probability": 0.9714 + }, + { + "start": 4500.9, + "end": 4504.94, + "probability": 0.7463 + }, + { + "start": 4505.96, + "end": 4510.9, + "probability": 0.9945 + }, + { + "start": 4511.68, + "end": 4513.24, + "probability": 0.9983 + }, + { + "start": 4513.88, + "end": 4514.8, + "probability": 0.7759 + }, + { + "start": 4516.22, + "end": 4519.04, + "probability": 0.9214 + }, + { + "start": 4520.16, + "end": 4521.98, + "probability": 0.9954 + }, + { + "start": 4522.22, + "end": 4523.31, + "probability": 0.8191 + }, + { + "start": 4523.8, + "end": 4525.22, + "probability": 0.734 + }, + { + "start": 4525.9, + "end": 4527.66, + "probability": 0.7737 + }, + { + "start": 4527.8, + "end": 4529.82, + "probability": 0.9651 + }, + { + "start": 4530.74, + "end": 4532.36, + "probability": 0.8145 + }, + { + "start": 4532.94, + "end": 4535.12, + "probability": 0.926 + }, + { + "start": 4535.96, + "end": 4537.78, + "probability": 0.9984 + }, + { + "start": 4538.52, + "end": 4542.22, + "probability": 0.9965 + }, + { + "start": 4542.54, + "end": 4543.12, + "probability": 0.7994 + }, + { + "start": 4543.32, + "end": 4544.24, + "probability": 0.6324 + }, + { + "start": 4544.72, + "end": 4549.72, + "probability": 0.9808 + }, + { + "start": 4550.3, + "end": 4551.7, + "probability": 0.9617 + }, + { + "start": 4551.92, + "end": 4552.94, + "probability": 0.7203 + }, + { + "start": 4553.28, + "end": 4554.72, + "probability": 0.9787 + }, + { + "start": 4554.76, + "end": 4556.0, + "probability": 0.7852 + }, + { + "start": 4556.52, + "end": 4560.58, + "probability": 0.815 + }, + { + "start": 4560.64, + "end": 4563.02, + "probability": 0.7122 + }, + { + "start": 4563.5, + "end": 4564.56, + "probability": 0.9341 + }, + { + "start": 4564.96, + "end": 4567.12, + "probability": 0.9607 + }, + { + "start": 4567.84, + "end": 4571.76, + "probability": 0.9907 + }, + { + "start": 4572.38, + "end": 4574.62, + "probability": 0.6826 + }, + { + "start": 4574.92, + "end": 4579.36, + "probability": 0.9852 + }, + { + "start": 4579.52, + "end": 4582.68, + "probability": 0.9962 + }, + { + "start": 4583.08, + "end": 4583.46, + "probability": 0.7456 + }, + { + "start": 4583.58, + "end": 4587.14, + "probability": 0.981 + }, + { + "start": 4587.18, + "end": 4588.14, + "probability": 0.4277 + }, + { + "start": 4588.4, + "end": 4590.82, + "probability": 0.9915 + }, + { + "start": 4591.54, + "end": 4591.8, + "probability": 0.7582 + }, + { + "start": 4592.5, + "end": 4594.1, + "probability": 0.9882 + }, + { + "start": 4594.2, + "end": 4596.56, + "probability": 0.9761 + }, + { + "start": 4598.12, + "end": 4599.72, + "probability": 0.7795 + }, + { + "start": 4599.78, + "end": 4602.14, + "probability": 0.9749 + }, + { + "start": 4602.28, + "end": 4603.28, + "probability": 0.9665 + }, + { + "start": 4603.32, + "end": 4604.34, + "probability": 0.8116 + }, + { + "start": 4604.88, + "end": 4606.06, + "probability": 0.8423 + }, + { + "start": 4606.38, + "end": 4608.16, + "probability": 0.9788 + }, + { + "start": 4608.62, + "end": 4610.88, + "probability": 0.9426 + }, + { + "start": 4611.5, + "end": 4611.9, + "probability": 0.6631 + }, + { + "start": 4612.6, + "end": 4613.14, + "probability": 0.6369 + }, + { + "start": 4613.2, + "end": 4615.92, + "probability": 0.9047 + }, + { + "start": 4615.92, + "end": 4618.94, + "probability": 0.8126 + }, + { + "start": 4618.94, + "end": 4619.8, + "probability": 0.5436 + }, + { + "start": 4620.27, + "end": 4623.62, + "probability": 0.9953 + }, + { + "start": 4623.9, + "end": 4625.4, + "probability": 0.8374 + }, + { + "start": 4625.8, + "end": 4628.54, + "probability": 0.9854 + }, + { + "start": 4628.98, + "end": 4630.26, + "probability": 0.9867 + }, + { + "start": 4630.44, + "end": 4631.28, + "probability": 0.9565 + }, + { + "start": 4631.82, + "end": 4635.58, + "probability": 0.9383 + }, + { + "start": 4636.24, + "end": 4639.68, + "probability": 0.9432 + }, + { + "start": 4640.26, + "end": 4642.14, + "probability": 0.7158 + }, + { + "start": 4642.14, + "end": 4644.46, + "probability": 0.9865 + }, + { + "start": 4645.18, + "end": 4646.5, + "probability": 0.9728 + }, + { + "start": 4646.6, + "end": 4649.62, + "probability": 0.9766 + }, + { + "start": 4650.06, + "end": 4652.14, + "probability": 0.8434 + }, + { + "start": 4652.68, + "end": 4654.12, + "probability": 0.9508 + }, + { + "start": 4654.44, + "end": 4655.74, + "probability": 0.9281 + }, + { + "start": 4656.58, + "end": 4657.7, + "probability": 0.9716 + }, + { + "start": 4657.78, + "end": 4658.46, + "probability": 0.845 + }, + { + "start": 4658.54, + "end": 4659.26, + "probability": 0.6228 + }, + { + "start": 4659.38, + "end": 4661.18, + "probability": 0.9126 + }, + { + "start": 4662.04, + "end": 4665.74, + "probability": 0.8875 + }, + { + "start": 4666.9, + "end": 4668.32, + "probability": 0.9036 + }, + { + "start": 4668.38, + "end": 4670.0, + "probability": 0.9895 + }, + { + "start": 4670.12, + "end": 4671.68, + "probability": 0.9472 + }, + { + "start": 4672.28, + "end": 4673.36, + "probability": 0.8534 + }, + { + "start": 4673.88, + "end": 4676.76, + "probability": 0.9971 + }, + { + "start": 4676.96, + "end": 4680.34, + "probability": 0.6723 + }, + { + "start": 4680.94, + "end": 4682.52, + "probability": 0.9866 + }, + { + "start": 4682.98, + "end": 4683.42, + "probability": 0.1422 + }, + { + "start": 4683.42, + "end": 4686.48, + "probability": 0.765 + }, + { + "start": 4687.22, + "end": 4688.22, + "probability": 0.7738 + }, + { + "start": 4688.32, + "end": 4690.6, + "probability": 0.833 + }, + { + "start": 4691.4, + "end": 4693.26, + "probability": 0.8778 + }, + { + "start": 4693.38, + "end": 4695.26, + "probability": 0.9091 + }, + { + "start": 4695.68, + "end": 4698.24, + "probability": 0.859 + }, + { + "start": 4698.82, + "end": 4700.3, + "probability": 0.9672 + }, + { + "start": 4701.44, + "end": 4702.34, + "probability": 0.9314 + }, + { + "start": 4703.6, + "end": 4703.88, + "probability": 0.3455 + }, + { + "start": 4703.92, + "end": 4705.66, + "probability": 0.7538 + }, + { + "start": 4705.8, + "end": 4706.64, + "probability": 0.7405 + }, + { + "start": 4707.18, + "end": 4708.0, + "probability": 0.802 + }, + { + "start": 4708.1, + "end": 4709.08, + "probability": 0.7509 + }, + { + "start": 4709.9, + "end": 4711.04, + "probability": 0.8564 + }, + { + "start": 4711.68, + "end": 4713.7, + "probability": 0.9329 + }, + { + "start": 4713.78, + "end": 4716.68, + "probability": 0.9971 + }, + { + "start": 4717.76, + "end": 4720.98, + "probability": 0.9236 + }, + { + "start": 4721.1, + "end": 4722.02, + "probability": 0.6619 + }, + { + "start": 4722.12, + "end": 4724.08, + "probability": 0.9962 + }, + { + "start": 4724.68, + "end": 4727.8, + "probability": 0.9764 + }, + { + "start": 4728.24, + "end": 4729.46, + "probability": 0.9989 + }, + { + "start": 4729.5, + "end": 4730.06, + "probability": 0.9264 + }, + { + "start": 4730.08, + "end": 4731.26, + "probability": 0.9117 + }, + { + "start": 4731.94, + "end": 4732.54, + "probability": 0.6681 + }, + { + "start": 4732.64, + "end": 4734.24, + "probability": 0.9699 + }, + { + "start": 4734.78, + "end": 4739.18, + "probability": 0.9971 + }, + { + "start": 4739.84, + "end": 4742.42, + "probability": 0.9176 + }, + { + "start": 4742.7, + "end": 4745.26, + "probability": 0.9924 + }, + { + "start": 4745.42, + "end": 4747.2, + "probability": 0.9969 + }, + { + "start": 4747.82, + "end": 4748.26, + "probability": 0.5657 + }, + { + "start": 4748.82, + "end": 4750.14, + "probability": 0.9318 + }, + { + "start": 4750.2, + "end": 4754.02, + "probability": 0.9326 + }, + { + "start": 4754.52, + "end": 4754.74, + "probability": 0.8279 + }, + { + "start": 4755.44, + "end": 4755.92, + "probability": 0.7793 + }, + { + "start": 4756.98, + "end": 4758.44, + "probability": 0.9233 + }, + { + "start": 4764.36, + "end": 4766.76, + "probability": 0.9022 + }, + { + "start": 4766.88, + "end": 4770.26, + "probability": 0.9775 + }, + { + "start": 4770.7, + "end": 4771.66, + "probability": 0.6901 + }, + { + "start": 4772.08, + "end": 4774.26, + "probability": 0.9955 + }, + { + "start": 4774.4, + "end": 4775.48, + "probability": 0.9097 + }, + { + "start": 4776.2, + "end": 4777.78, + "probability": 0.8587 + }, + { + "start": 4778.78, + "end": 4780.94, + "probability": 0.6521 + }, + { + "start": 4781.18, + "end": 4782.3, + "probability": 0.671 + }, + { + "start": 4783.72, + "end": 4788.62, + "probability": 0.995 + }, + { + "start": 4790.14, + "end": 4793.5, + "probability": 0.9941 + }, + { + "start": 4794.46, + "end": 4797.62, + "probability": 0.9907 + }, + { + "start": 4798.7, + "end": 4800.55, + "probability": 0.6495 + }, + { + "start": 4801.26, + "end": 4803.62, + "probability": 0.9777 + }, + { + "start": 4804.2, + "end": 4807.06, + "probability": 0.8099 + }, + { + "start": 4807.96, + "end": 4809.58, + "probability": 0.9729 + }, + { + "start": 4809.94, + "end": 4811.8, + "probability": 0.9963 + }, + { + "start": 4812.5, + "end": 4814.1, + "probability": 0.9001 + }, + { + "start": 4815.08, + "end": 4817.3, + "probability": 0.7728 + }, + { + "start": 4817.64, + "end": 4821.3, + "probability": 0.9373 + }, + { + "start": 4821.7, + "end": 4823.02, + "probability": 0.8489 + }, + { + "start": 4824.38, + "end": 4828.6, + "probability": 0.9959 + }, + { + "start": 4829.22, + "end": 4831.22, + "probability": 0.9877 + }, + { + "start": 4831.7, + "end": 4832.9, + "probability": 0.8055 + }, + { + "start": 4833.06, + "end": 4834.8, + "probability": 0.9927 + }, + { + "start": 4835.28, + "end": 4839.6, + "probability": 0.9749 + }, + { + "start": 4840.36, + "end": 4842.84, + "probability": 0.9778 + }, + { + "start": 4843.34, + "end": 4847.92, + "probability": 0.9553 + }, + { + "start": 4848.4, + "end": 4850.62, + "probability": 0.9291 + }, + { + "start": 4851.14, + "end": 4857.98, + "probability": 0.9076 + }, + { + "start": 4858.38, + "end": 4860.58, + "probability": 0.9607 + }, + { + "start": 4861.16, + "end": 4862.52, + "probability": 0.9886 + }, + { + "start": 4863.34, + "end": 4864.16, + "probability": 0.4451 + }, + { + "start": 4864.88, + "end": 4865.76, + "probability": 0.4821 + }, + { + "start": 4866.8, + "end": 4866.82, + "probability": 0.0072 + }, + { + "start": 4867.7, + "end": 4868.98, + "probability": 0.9976 + }, + { + "start": 4869.66, + "end": 4871.6, + "probability": 0.711 + }, + { + "start": 4872.12, + "end": 4873.52, + "probability": 0.8178 + }, + { + "start": 4873.68, + "end": 4874.1, + "probability": 0.3622 + }, + { + "start": 4874.7, + "end": 4875.49, + "probability": 0.3428 + }, + { + "start": 4876.67, + "end": 4878.82, + "probability": 0.8448 + }, + { + "start": 4878.9, + "end": 4880.04, + "probability": 0.8489 + }, + { + "start": 4880.16, + "end": 4881.62, + "probability": 0.6673 + }, + { + "start": 4881.73, + "end": 4883.78, + "probability": 0.4047 + }, + { + "start": 4885.26, + "end": 4885.36, + "probability": 0.07 + }, + { + "start": 4885.36, + "end": 4885.86, + "probability": 0.7617 + }, + { + "start": 4886.22, + "end": 4887.36, + "probability": 0.8853 + }, + { + "start": 4888.78, + "end": 4891.4, + "probability": 0.7601 + }, + { + "start": 4891.92, + "end": 4892.54, + "probability": 0.7919 + }, + { + "start": 4892.96, + "end": 4898.39, + "probability": 0.9958 + }, + { + "start": 4898.82, + "end": 4900.52, + "probability": 0.6192 + }, + { + "start": 4901.56, + "end": 4903.46, + "probability": 0.8677 + }, + { + "start": 4904.46, + "end": 4906.88, + "probability": 0.7445 + }, + { + "start": 4907.0, + "end": 4907.6, + "probability": 0.6929 + }, + { + "start": 4907.68, + "end": 4908.12, + "probability": 0.6141 + }, + { + "start": 4908.28, + "end": 4909.62, + "probability": 0.9639 + }, + { + "start": 4910.36, + "end": 4913.94, + "probability": 0.8707 + }, + { + "start": 4913.94, + "end": 4917.98, + "probability": 0.9829 + }, + { + "start": 4918.64, + "end": 4922.1, + "probability": 0.6361 + }, + { + "start": 4923.12, + "end": 4926.78, + "probability": 0.9408 + }, + { + "start": 4927.44, + "end": 4932.2, + "probability": 0.9888 + }, + { + "start": 4933.02, + "end": 4934.88, + "probability": 0.9399 + }, + { + "start": 4935.4, + "end": 4939.7, + "probability": 0.9786 + }, + { + "start": 4939.98, + "end": 4940.89, + "probability": 0.5037 + }, + { + "start": 4941.8, + "end": 4943.82, + "probability": 0.9155 + }, + { + "start": 4944.2, + "end": 4945.86, + "probability": 0.986 + }, + { + "start": 4946.16, + "end": 4949.42, + "probability": 0.997 + }, + { + "start": 4950.48, + "end": 4955.76, + "probability": 0.9776 + }, + { + "start": 4956.42, + "end": 4959.26, + "probability": 0.9937 + }, + { + "start": 4959.56, + "end": 4963.68, + "probability": 0.995 + }, + { + "start": 4964.38, + "end": 4968.34, + "probability": 0.7369 + }, + { + "start": 4968.5, + "end": 4969.02, + "probability": 0.7034 + }, + { + "start": 4969.72, + "end": 4974.18, + "probability": 0.8719 + }, + { + "start": 4974.8, + "end": 4977.56, + "probability": 0.9009 + }, + { + "start": 4977.84, + "end": 4980.64, + "probability": 0.7583 + }, + { + "start": 4980.9, + "end": 4981.1, + "probability": 0.4988 + }, + { + "start": 4981.18, + "end": 4982.3, + "probability": 0.9701 + }, + { + "start": 4982.68, + "end": 4983.12, + "probability": 0.3706 + }, + { + "start": 4983.4, + "end": 4987.01, + "probability": 0.9965 + }, + { + "start": 4987.38, + "end": 4989.26, + "probability": 0.8542 + }, + { + "start": 4989.8, + "end": 4992.26, + "probability": 0.96 + }, + { + "start": 4993.12, + "end": 4994.88, + "probability": 0.979 + }, + { + "start": 4994.96, + "end": 4999.14, + "probability": 0.9854 + }, + { + "start": 4999.42, + "end": 5002.9, + "probability": 0.9961 + }, + { + "start": 5003.5, + "end": 5005.28, + "probability": 0.9277 + }, + { + "start": 5005.82, + "end": 5007.08, + "probability": 0.8959 + }, + { + "start": 5007.58, + "end": 5010.7, + "probability": 0.89 + }, + { + "start": 5011.06, + "end": 5014.22, + "probability": 0.9812 + }, + { + "start": 5014.68, + "end": 5017.9, + "probability": 0.9844 + }, + { + "start": 5018.24, + "end": 5020.6, + "probability": 0.5559 + }, + { + "start": 5021.42, + "end": 5023.98, + "probability": 0.9954 + }, + { + "start": 5024.72, + "end": 5029.32, + "probability": 0.9727 + }, + { + "start": 5029.9, + "end": 5033.26, + "probability": 0.9953 + }, + { + "start": 5033.26, + "end": 5037.64, + "probability": 0.9905 + }, + { + "start": 5038.26, + "end": 5039.28, + "probability": 0.9249 + }, + { + "start": 5040.1, + "end": 5041.06, + "probability": 0.958 + }, + { + "start": 5041.32, + "end": 5043.52, + "probability": 0.9499 + }, + { + "start": 5043.74, + "end": 5044.58, + "probability": 0.801 + }, + { + "start": 5044.86, + "end": 5045.32, + "probability": 0.9036 + }, + { + "start": 5046.58, + "end": 5047.08, + "probability": 0.4235 + }, + { + "start": 5047.28, + "end": 5049.16, + "probability": 0.9596 + }, + { + "start": 5051.8, + "end": 5052.5, + "probability": 0.2745 + }, + { + "start": 5059.86, + "end": 5060.22, + "probability": 0.2476 + }, + { + "start": 5063.18, + "end": 5064.34, + "probability": 0.0396 + }, + { + "start": 5065.3, + "end": 5068.28, + "probability": 0.4499 + }, + { + "start": 5069.2, + "end": 5071.66, + "probability": 0.993 + }, + { + "start": 5072.62, + "end": 5073.64, + "probability": 0.7483 + }, + { + "start": 5074.92, + "end": 5078.2, + "probability": 0.9932 + }, + { + "start": 5082.36, + "end": 5084.84, + "probability": 0.8394 + }, + { + "start": 5086.42, + "end": 5089.08, + "probability": 0.9106 + }, + { + "start": 5089.24, + "end": 5091.04, + "probability": 0.9593 + }, + { + "start": 5091.16, + "end": 5091.72, + "probability": 0.4145 + }, + { + "start": 5092.94, + "end": 5096.46, + "probability": 0.9991 + }, + { + "start": 5097.16, + "end": 5100.46, + "probability": 0.9907 + }, + { + "start": 5101.24, + "end": 5103.52, + "probability": 0.9595 + }, + { + "start": 5104.06, + "end": 5106.96, + "probability": 0.9861 + }, + { + "start": 5108.0, + "end": 5109.34, + "probability": 0.7545 + }, + { + "start": 5109.46, + "end": 5109.72, + "probability": 0.5974 + }, + { + "start": 5109.8, + "end": 5110.74, + "probability": 0.3998 + }, + { + "start": 5110.78, + "end": 5111.74, + "probability": 0.251 + }, + { + "start": 5112.06, + "end": 5117.26, + "probability": 0.7894 + }, + { + "start": 5117.38, + "end": 5117.4, + "probability": 0.4587 + }, + { + "start": 5117.4, + "end": 5119.14, + "probability": 0.8418 + }, + { + "start": 5119.3, + "end": 5122.52, + "probability": 0.9915 + }, + { + "start": 5122.76, + "end": 5123.74, + "probability": 0.6132 + }, + { + "start": 5124.16, + "end": 5124.74, + "probability": 0.9359 + }, + { + "start": 5124.88, + "end": 5129.12, + "probability": 0.9787 + }, + { + "start": 5131.84, + "end": 5136.16, + "probability": 0.9975 + }, + { + "start": 5137.28, + "end": 5137.7, + "probability": 0.9712 + }, + { + "start": 5138.38, + "end": 5139.58, + "probability": 0.017 + }, + { + "start": 5139.58, + "end": 5139.64, + "probability": 0.7048 + }, + { + "start": 5139.72, + "end": 5140.66, + "probability": 0.9554 + }, + { + "start": 5140.84, + "end": 5145.16, + "probability": 0.9937 + }, + { + "start": 5147.26, + "end": 5147.26, + "probability": 0.0352 + }, + { + "start": 5147.26, + "end": 5147.26, + "probability": 0.1743 + }, + { + "start": 5147.26, + "end": 5147.26, + "probability": 0.096 + }, + { + "start": 5147.26, + "end": 5147.26, + "probability": 0.2716 + }, + { + "start": 5147.26, + "end": 5150.8, + "probability": 0.7897 + }, + { + "start": 5151.52, + "end": 5151.58, + "probability": 0.2575 + }, + { + "start": 5151.58, + "end": 5151.58, + "probability": 0.0657 + }, + { + "start": 5151.58, + "end": 5152.38, + "probability": 0.2922 + }, + { + "start": 5154.82, + "end": 5154.84, + "probability": 0.1229 + }, + { + "start": 5154.84, + "end": 5154.84, + "probability": 0.3584 + }, + { + "start": 5154.84, + "end": 5154.84, + "probability": 0.2105 + }, + { + "start": 5154.84, + "end": 5154.84, + "probability": 0.0802 + }, + { + "start": 5154.84, + "end": 5154.84, + "probability": 0.0228 + }, + { + "start": 5154.84, + "end": 5154.84, + "probability": 0.3042 + }, + { + "start": 5154.84, + "end": 5156.93, + "probability": 0.9917 + }, + { + "start": 5157.92, + "end": 5161.82, + "probability": 0.7546 + }, + { + "start": 5162.6, + "end": 5163.44, + "probability": 0.053 + }, + { + "start": 5163.44, + "end": 5163.44, + "probability": 0.1864 + }, + { + "start": 5163.44, + "end": 5163.44, + "probability": 0.1566 + }, + { + "start": 5163.44, + "end": 5166.64, + "probability": 0.8613 + }, + { + "start": 5167.32, + "end": 5170.44, + "probability": 0.987 + }, + { + "start": 5170.58, + "end": 5172.12, + "probability": 0.7148 + }, + { + "start": 5172.56, + "end": 5174.22, + "probability": 0.9842 + }, + { + "start": 5174.44, + "end": 5174.46, + "probability": 0.0642 + }, + { + "start": 5174.46, + "end": 5174.46, + "probability": 0.0185 + }, + { + "start": 5174.46, + "end": 5176.5, + "probability": 0.5694 + }, + { + "start": 5176.86, + "end": 5177.63, + "probability": 0.0309 + }, + { + "start": 5178.5, + "end": 5184.42, + "probability": 0.3211 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5295.0, + "end": 5295.0, + "probability": 0.0 + }, + { + "start": 5296.04, + "end": 5296.4, + "probability": 0.0797 + }, + { + "start": 5296.4, + "end": 5300.9, + "probability": 0.3278 + }, + { + "start": 5301.86, + "end": 5303.62, + "probability": 0.6663 + }, + { + "start": 5303.8, + "end": 5304.18, + "probability": 0.3752 + }, + { + "start": 5304.18, + "end": 5305.2, + "probability": 0.4973 + }, + { + "start": 5305.98, + "end": 5307.24, + "probability": 0.0229 + }, + { + "start": 5307.4, + "end": 5307.86, + "probability": 0.2524 + }, + { + "start": 5308.52, + "end": 5309.08, + "probability": 0.5176 + }, + { + "start": 5309.18, + "end": 5310.82, + "probability": 0.8189 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.0, + "end": 5415.0, + "probability": 0.0 + }, + { + "start": 5415.64, + "end": 5417.5, + "probability": 0.3019 + }, + { + "start": 5417.72, + "end": 5421.18, + "probability": 0.2749 + }, + { + "start": 5421.38, + "end": 5422.92, + "probability": 0.367 + }, + { + "start": 5422.92, + "end": 5423.44, + "probability": 0.2908 + }, + { + "start": 5423.9, + "end": 5424.08, + "probability": 0.5388 + }, + { + "start": 5424.34, + "end": 5425.96, + "probability": 0.8816 + }, + { + "start": 5426.0, + "end": 5426.72, + "probability": 0.4501 + }, + { + "start": 5426.92, + "end": 5427.86, + "probability": 0.3671 + }, + { + "start": 5428.02, + "end": 5428.16, + "probability": 0.1619 + }, + { + "start": 5429.1, + "end": 5429.74, + "probability": 0.5454 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.0, + "end": 5540.0, + "probability": 0.0 + }, + { + "start": 5540.1, + "end": 5540.1, + "probability": 0.0847 + }, + { + "start": 5540.1, + "end": 5540.1, + "probability": 0.0137 + }, + { + "start": 5540.1, + "end": 5540.66, + "probability": 0.0489 + }, + { + "start": 5541.64, + "end": 5542.6, + "probability": 0.2529 + }, + { + "start": 5542.79, + "end": 5543.52, + "probability": 0.5225 + }, + { + "start": 5543.74, + "end": 5545.1, + "probability": 0.7534 + }, + { + "start": 5545.5, + "end": 5549.66, + "probability": 0.9841 + }, + { + "start": 5550.12, + "end": 5553.76, + "probability": 0.9763 + }, + { + "start": 5554.0, + "end": 5555.12, + "probability": 0.4969 + }, + { + "start": 5555.22, + "end": 5556.86, + "probability": 0.9246 + }, + { + "start": 5557.46, + "end": 5558.32, + "probability": 0.8535 + }, + { + "start": 5558.54, + "end": 5560.06, + "probability": 0.7411 + }, + { + "start": 5560.18, + "end": 5560.8, + "probability": 0.4654 + }, + { + "start": 5560.94, + "end": 5563.24, + "probability": 0.0225 + }, + { + "start": 5563.24, + "end": 5563.3, + "probability": 0.0633 + }, + { + "start": 5563.3, + "end": 5563.6, + "probability": 0.0227 + }, + { + "start": 5563.72, + "end": 5566.58, + "probability": 0.9666 + }, + { + "start": 5567.68, + "end": 5570.82, + "probability": 0.9816 + }, + { + "start": 5571.28, + "end": 5573.82, + "probability": 0.9305 + }, + { + "start": 5574.3, + "end": 5576.54, + "probability": 0.9591 + }, + { + "start": 5576.8, + "end": 5579.52, + "probability": 0.9002 + }, + { + "start": 5580.2, + "end": 5580.78, + "probability": 0.8718 + }, + { + "start": 5581.48, + "end": 5586.66, + "probability": 0.9565 + }, + { + "start": 5586.96, + "end": 5589.64, + "probability": 0.9943 + }, + { + "start": 5589.96, + "end": 5591.26, + "probability": 0.9606 + }, + { + "start": 5591.92, + "end": 5592.78, + "probability": 0.9763 + }, + { + "start": 5592.88, + "end": 5595.08, + "probability": 0.7439 + }, + { + "start": 5595.08, + "end": 5596.92, + "probability": 0.1352 + }, + { + "start": 5596.92, + "end": 5600.22, + "probability": 0.7913 + }, + { + "start": 5600.58, + "end": 5603.44, + "probability": 0.9905 + }, + { + "start": 5603.44, + "end": 5604.56, + "probability": 0.4734 + }, + { + "start": 5604.56, + "end": 5606.2, + "probability": 0.8092 + }, + { + "start": 5606.77, + "end": 5607.88, + "probability": 0.0525 + }, + { + "start": 5607.9, + "end": 5612.12, + "probability": 0.9606 + }, + { + "start": 5612.2, + "end": 5613.36, + "probability": 0.7288 + }, + { + "start": 5613.5, + "end": 5617.86, + "probability": 0.8507 + }, + { + "start": 5619.28, + "end": 5622.78, + "probability": 0.7442 + }, + { + "start": 5623.22, + "end": 5624.18, + "probability": 0.6464 + }, + { + "start": 5624.74, + "end": 5627.68, + "probability": 0.9442 + }, + { + "start": 5627.74, + "end": 5628.62, + "probability": 0.8466 + }, + { + "start": 5629.68, + "end": 5632.22, + "probability": 0.6487 + }, + { + "start": 5632.36, + "end": 5633.01, + "probability": 0.9064 + }, + { + "start": 5633.76, + "end": 5635.28, + "probability": 0.7794 + }, + { + "start": 5635.3, + "end": 5636.8, + "probability": 0.957 + }, + { + "start": 5636.9, + "end": 5640.44, + "probability": 0.8941 + }, + { + "start": 5640.6, + "end": 5641.22, + "probability": 0.0017 + }, + { + "start": 5641.32, + "end": 5641.32, + "probability": 0.1465 + }, + { + "start": 5641.32, + "end": 5642.6, + "probability": 0.4395 + }, + { + "start": 5643.14, + "end": 5645.54, + "probability": 0.9648 + }, + { + "start": 5647.36, + "end": 5648.14, + "probability": 0.3861 + }, + { + "start": 5649.24, + "end": 5649.78, + "probability": 0.8659 + }, + { + "start": 5650.7, + "end": 5651.68, + "probability": 0.9748 + }, + { + "start": 5652.06, + "end": 5654.72, + "probability": 0.9592 + }, + { + "start": 5655.88, + "end": 5656.0, + "probability": 0.8242 + }, + { + "start": 5657.22, + "end": 5659.9, + "probability": 0.9899 + }, + { + "start": 5661.1, + "end": 5661.84, + "probability": 0.9788 + }, + { + "start": 5664.06, + "end": 5665.36, + "probability": 0.9583 + }, + { + "start": 5665.98, + "end": 5666.94, + "probability": 0.9362 + }, + { + "start": 5667.72, + "end": 5670.32, + "probability": 0.9897 + }, + { + "start": 5670.76, + "end": 5671.12, + "probability": 0.0386 + }, + { + "start": 5671.3, + "end": 5671.74, + "probability": 0.205 + }, + { + "start": 5672.1, + "end": 5673.5, + "probability": 0.2984 + }, + { + "start": 5674.14, + "end": 5675.6, + "probability": 0.7695 + }, + { + "start": 5676.78, + "end": 5679.94, + "probability": 0.9905 + }, + { + "start": 5681.48, + "end": 5682.26, + "probability": 0.097 + }, + { + "start": 5682.64, + "end": 5683.28, + "probability": 0.481 + }, + { + "start": 5683.6, + "end": 5686.3, + "probability": 0.9941 + }, + { + "start": 5686.56, + "end": 5687.28, + "probability": 0.2411 + }, + { + "start": 5687.34, + "end": 5689.48, + "probability": 0.8532 + }, + { + "start": 5689.92, + "end": 5692.72, + "probability": 0.1001 + }, + { + "start": 5692.72, + "end": 5696.16, + "probability": 0.8707 + }, + { + "start": 5696.16, + "end": 5698.89, + "probability": 0.9817 + }, + { + "start": 5699.34, + "end": 5699.74, + "probability": 0.8233 + }, + { + "start": 5700.0, + "end": 5702.66, + "probability": 0.8149 + }, + { + "start": 5703.06, + "end": 5705.08, + "probability": 0.9824 + }, + { + "start": 5705.94, + "end": 5707.32, + "probability": 0.1999 + }, + { + "start": 5708.06, + "end": 5708.2, + "probability": 0.1234 + }, + { + "start": 5709.14, + "end": 5712.46, + "probability": 0.7127 + }, + { + "start": 5713.22, + "end": 5713.42, + "probability": 0.1099 + }, + { + "start": 5713.42, + "end": 5716.26, + "probability": 0.7368 + }, + { + "start": 5717.3, + "end": 5719.1, + "probability": 0.9892 + }, + { + "start": 5719.18, + "end": 5721.92, + "probability": 0.6553 + }, + { + "start": 5722.5, + "end": 5723.62, + "probability": 0.2055 + }, + { + "start": 5724.02, + "end": 5724.76, + "probability": 0.1171 + }, + { + "start": 5725.32, + "end": 5729.92, + "probability": 0.2613 + }, + { + "start": 5729.94, + "end": 5730.46, + "probability": 0.1303 + }, + { + "start": 5731.84, + "end": 5733.3, + "probability": 0.6138 + }, + { + "start": 5733.4, + "end": 5734.97, + "probability": 0.2643 + }, + { + "start": 5735.02, + "end": 5736.22, + "probability": 0.5025 + }, + { + "start": 5736.38, + "end": 5737.76, + "probability": 0.1041 + }, + { + "start": 5738.1, + "end": 5739.16, + "probability": 0.3993 + }, + { + "start": 5740.36, + "end": 5741.22, + "probability": 0.107 + }, + { + "start": 5741.82, + "end": 5741.98, + "probability": 0.2159 + }, + { + "start": 5741.98, + "end": 5743.51, + "probability": 0.0873 + }, + { + "start": 5743.98, + "end": 5745.5, + "probability": 0.7568 + }, + { + "start": 5745.94, + "end": 5748.26, + "probability": 0.221 + }, + { + "start": 5748.26, + "end": 5748.26, + "probability": 0.141 + }, + { + "start": 5748.26, + "end": 5749.24, + "probability": 0.1411 + }, + { + "start": 5749.98, + "end": 5750.12, + "probability": 0.2401 + }, + { + "start": 5750.12, + "end": 5751.26, + "probability": 0.165 + }, + { + "start": 5751.42, + "end": 5753.13, + "probability": 0.32 + }, + { + "start": 5753.56, + "end": 5753.56, + "probability": 0.0922 + }, + { + "start": 5753.56, + "end": 5755.14, + "probability": 0.9333 + }, + { + "start": 5755.34, + "end": 5756.4, + "probability": 0.7737 + }, + { + "start": 5757.5, + "end": 5760.68, + "probability": 0.9507 + }, + { + "start": 5761.72, + "end": 5766.62, + "probability": 0.739 + }, + { + "start": 5767.16, + "end": 5768.66, + "probability": 0.9329 + }, + { + "start": 5769.24, + "end": 5774.36, + "probability": 0.9661 + }, + { + "start": 5774.96, + "end": 5775.56, + "probability": 0.9408 + }, + { + "start": 5776.32, + "end": 5779.92, + "probability": 0.9077 + }, + { + "start": 5780.48, + "end": 5781.54, + "probability": 0.957 + }, + { + "start": 5781.78, + "end": 5783.76, + "probability": 0.9554 + }, + { + "start": 5783.78, + "end": 5784.7, + "probability": 0.4849 + }, + { + "start": 5784.7, + "end": 5788.4, + "probability": 0.7988 + }, + { + "start": 5791.1, + "end": 5795.44, + "probability": 0.793 + }, + { + "start": 5796.7, + "end": 5797.62, + "probability": 0.9951 + }, + { + "start": 5797.84, + "end": 5800.86, + "probability": 0.9893 + }, + { + "start": 5801.5, + "end": 5801.84, + "probability": 0.3028 + }, + { + "start": 5802.7, + "end": 5802.7, + "probability": 0.104 + }, + { + "start": 5802.7, + "end": 5803.22, + "probability": 0.1563 + }, + { + "start": 5804.22, + "end": 5804.28, + "probability": 0.2811 + }, + { + "start": 5804.28, + "end": 5804.28, + "probability": 0.0724 + }, + { + "start": 5804.28, + "end": 5804.28, + "probability": 0.6588 + }, + { + "start": 5804.28, + "end": 5808.34, + "probability": 0.8933 + }, + { + "start": 5808.72, + "end": 5810.34, + "probability": 0.9345 + }, + { + "start": 5810.52, + "end": 5811.54, + "probability": 0.8284 + }, + { + "start": 5811.96, + "end": 5815.02, + "probability": 0.5844 + }, + { + "start": 5815.16, + "end": 5815.64, + "probability": 0.8601 + }, + { + "start": 5816.08, + "end": 5816.7, + "probability": 0.8545 + }, + { + "start": 5816.72, + "end": 5818.02, + "probability": 0.7151 + }, + { + "start": 5819.32, + "end": 5822.82, + "probability": 0.9095 + }, + { + "start": 5822.84, + "end": 5824.76, + "probability": 0.8502 + }, + { + "start": 5825.0, + "end": 5828.26, + "probability": 0.9976 + }, + { + "start": 5828.48, + "end": 5828.82, + "probability": 0.033 + }, + { + "start": 5828.82, + "end": 5829.08, + "probability": 0.2147 + }, + { + "start": 5830.24, + "end": 5830.78, + "probability": 0.437 + }, + { + "start": 5830.9, + "end": 5831.6, + "probability": 0.7909 + }, + { + "start": 5832.72, + "end": 5834.5, + "probability": 0.9609 + }, + { + "start": 5834.6, + "end": 5835.36, + "probability": 0.8588 + }, + { + "start": 5835.56, + "end": 5837.7, + "probability": 0.9965 + }, + { + "start": 5838.36, + "end": 5840.84, + "probability": 0.9427 + }, + { + "start": 5841.64, + "end": 5843.74, + "probability": 0.7414 + }, + { + "start": 5844.34, + "end": 5845.92, + "probability": 0.5092 + }, + { + "start": 5846.0, + "end": 5846.6, + "probability": 0.7893 + }, + { + "start": 5847.36, + "end": 5848.26, + "probability": 0.8972 + }, + { + "start": 5849.38, + "end": 5850.42, + "probability": 0.7955 + }, + { + "start": 5850.96, + "end": 5852.94, + "probability": 0.8965 + }, + { + "start": 5853.4, + "end": 5857.58, + "probability": 0.9902 + }, + { + "start": 5858.83, + "end": 5860.52, + "probability": 0.0018 + }, + { + "start": 5860.52, + "end": 5860.52, + "probability": 0.2651 + }, + { + "start": 5860.52, + "end": 5861.66, + "probability": 0.3212 + }, + { + "start": 5861.8, + "end": 5865.38, + "probability": 0.9989 + }, + { + "start": 5865.52, + "end": 5866.06, + "probability": 0.7538 + }, + { + "start": 5866.32, + "end": 5867.06, + "probability": 0.8961 + }, + { + "start": 5867.74, + "end": 5872.34, + "probability": 0.783 + }, + { + "start": 5873.18, + "end": 5878.3, + "probability": 0.6938 + }, + { + "start": 5879.14, + "end": 5879.4, + "probability": 0.0747 + }, + { + "start": 5879.72, + "end": 5879.72, + "probability": 0.2444 + }, + { + "start": 5879.72, + "end": 5885.24, + "probability": 0.7343 + }, + { + "start": 5885.56, + "end": 5887.96, + "probability": 0.9956 + }, + { + "start": 5888.68, + "end": 5888.86, + "probability": 0.1267 + }, + { + "start": 5888.86, + "end": 5888.86, + "probability": 0.0668 + }, + { + "start": 5888.86, + "end": 5888.86, + "probability": 0.058 + }, + { + "start": 5888.86, + "end": 5889.4, + "probability": 0.2997 + }, + { + "start": 5889.94, + "end": 5890.22, + "probability": 0.7555 + }, + { + "start": 5891.34, + "end": 5893.1, + "probability": 0.9508 + }, + { + "start": 5893.66, + "end": 5896.86, + "probability": 0.8217 + }, + { + "start": 5897.28, + "end": 5904.45, + "probability": 0.0609 + }, + { + "start": 5904.86, + "end": 5905.0, + "probability": 0.0151 + }, + { + "start": 5905.0, + "end": 5905.0, + "probability": 0.2325 + }, + { + "start": 5905.0, + "end": 5905.0, + "probability": 0.0742 + }, + { + "start": 5905.0, + "end": 5905.0, + "probability": 0.2308 + }, + { + "start": 5905.0, + "end": 5905.0, + "probability": 0.1966 + }, + { + "start": 5905.0, + "end": 5906.16, + "probability": 0.1948 + }, + { + "start": 5906.88, + "end": 5909.2, + "probability": 0.5533 + }, + { + "start": 5910.58, + "end": 5911.98, + "probability": 0.6891 + }, + { + "start": 5912.68, + "end": 5914.64, + "probability": 0.7337 + }, + { + "start": 5915.14, + "end": 5920.08, + "probability": 0.9918 + }, + { + "start": 5920.22, + "end": 5921.22, + "probability": 0.7571 + }, + { + "start": 5922.1, + "end": 5924.66, + "probability": 0.9937 + }, + { + "start": 5924.7, + "end": 5928.98, + "probability": 0.9591 + }, + { + "start": 5929.86, + "end": 5932.46, + "probability": 0.894 + }, + { + "start": 5933.34, + "end": 5934.68, + "probability": 0.6997 + }, + { + "start": 5934.82, + "end": 5937.52, + "probability": 0.8861 + }, + { + "start": 5938.08, + "end": 5940.56, + "probability": 0.8455 + }, + { + "start": 5941.36, + "end": 5942.16, + "probability": 0.6867 + }, + { + "start": 5942.48, + "end": 5943.2, + "probability": 0.8608 + }, + { + "start": 5943.74, + "end": 5945.12, + "probability": 0.9729 + }, + { + "start": 5945.74, + "end": 5948.6, + "probability": 0.9736 + }, + { + "start": 5950.12, + "end": 5951.02, + "probability": 0.9062 + }, + { + "start": 5952.18, + "end": 5953.08, + "probability": 0.9349 + }, + { + "start": 5953.18, + "end": 5958.54, + "probability": 0.9668 + }, + { + "start": 5958.68, + "end": 5964.84, + "probability": 0.9499 + }, + { + "start": 5965.9, + "end": 5966.04, + "probability": 0.5516 + }, + { + "start": 5966.12, + "end": 5966.54, + "probability": 0.7949 + }, + { + "start": 5966.64, + "end": 5974.46, + "probability": 0.8457 + }, + { + "start": 5974.5, + "end": 5977.46, + "probability": 0.9955 + }, + { + "start": 5978.64, + "end": 5983.78, + "probability": 0.8161 + }, + { + "start": 5985.04, + "end": 5986.46, + "probability": 0.9956 + }, + { + "start": 5987.2, + "end": 5990.58, + "probability": 0.9482 + }, + { + "start": 5994.46, + "end": 5995.44, + "probability": 0.5141 + }, + { + "start": 5995.84, + "end": 5999.64, + "probability": 0.8031 + }, + { + "start": 5999.74, + "end": 6001.02, + "probability": 0.9868 + }, + { + "start": 6002.14, + "end": 6004.4, + "probability": 0.9954 + }, + { + "start": 6004.54, + "end": 6006.96, + "probability": 0.9665 + }, + { + "start": 6007.88, + "end": 6008.98, + "probability": 0.7777 + }, + { + "start": 6009.16, + "end": 6012.08, + "probability": 0.9849 + }, + { + "start": 6013.12, + "end": 6014.46, + "probability": 0.9336 + }, + { + "start": 6015.58, + "end": 6020.1, + "probability": 0.9553 + }, + { + "start": 6020.18, + "end": 6020.92, + "probability": 0.5687 + }, + { + "start": 6021.58, + "end": 6025.46, + "probability": 0.96 + }, + { + "start": 6026.34, + "end": 6028.5, + "probability": 0.8916 + }, + { + "start": 6029.64, + "end": 6030.16, + "probability": 0.7642 + }, + { + "start": 6031.74, + "end": 6032.94, + "probability": 0.8098 + }, + { + "start": 6033.6, + "end": 6034.04, + "probability": 0.7269 + }, + { + "start": 6034.06, + "end": 6037.5, + "probability": 0.9503 + }, + { + "start": 6037.58, + "end": 6042.36, + "probability": 0.4567 + }, + { + "start": 6042.5, + "end": 6044.54, + "probability": 0.5026 + }, + { + "start": 6045.06, + "end": 6045.9, + "probability": 0.836 + }, + { + "start": 6046.84, + "end": 6047.68, + "probability": 0.8659 + }, + { + "start": 6049.16, + "end": 6049.84, + "probability": 0.7682 + }, + { + "start": 6050.5, + "end": 6052.68, + "probability": 0.0179 + }, + { + "start": 6053.64, + "end": 6056.76, + "probability": 0.054 + }, + { + "start": 6064.84, + "end": 6068.22, + "probability": 0.0501 + }, + { + "start": 6069.34, + "end": 6069.34, + "probability": 0.0926 + }, + { + "start": 6069.34, + "end": 6071.2, + "probability": 0.6166 + }, + { + "start": 6072.32, + "end": 6074.99, + "probability": 0.9663 + }, + { + "start": 6075.92, + "end": 6078.64, + "probability": 0.7472 + }, + { + "start": 6078.68, + "end": 6080.82, + "probability": 0.7551 + }, + { + "start": 6081.34, + "end": 6081.9, + "probability": 0.3622 + }, + { + "start": 6082.52, + "end": 6082.66, + "probability": 0.3939 + }, + { + "start": 6083.22, + "end": 6084.1, + "probability": 0.5769 + }, + { + "start": 6084.5, + "end": 6087.16, + "probability": 0.9567 + }, + { + "start": 6087.16, + "end": 6089.7, + "probability": 0.9674 + }, + { + "start": 6092.54, + "end": 6093.18, + "probability": 0.7104 + }, + { + "start": 6093.3, + "end": 6094.66, + "probability": 0.8633 + }, + { + "start": 6094.8, + "end": 6098.44, + "probability": 0.8004 + }, + { + "start": 6098.54, + "end": 6102.04, + "probability": 0.8884 + }, + { + "start": 6102.04, + "end": 6106.0, + "probability": 0.9653 + }, + { + "start": 6106.9, + "end": 6107.88, + "probability": 0.7911 + }, + { + "start": 6109.4, + "end": 6110.1, + "probability": 0.8145 + }, + { + "start": 6111.24, + "end": 6114.2, + "probability": 0.9608 + }, + { + "start": 6114.78, + "end": 6115.9, + "probability": 0.9351 + }, + { + "start": 6121.54, + "end": 6122.54, + "probability": 0.576 + }, + { + "start": 6123.92, + "end": 6124.96, + "probability": 0.962 + }, + { + "start": 6125.92, + "end": 6126.84, + "probability": 0.7983 + }, + { + "start": 6133.94, + "end": 6135.7, + "probability": 0.8861 + }, + { + "start": 6136.38, + "end": 6137.38, + "probability": 0.6458 + }, + { + "start": 6138.92, + "end": 6140.1, + "probability": 0.7476 + }, + { + "start": 6140.2, + "end": 6140.64, + "probability": 0.8755 + }, + { + "start": 6143.82, + "end": 6144.6, + "probability": 0.2282 + }, + { + "start": 6144.92, + "end": 6149.56, + "probability": 0.5338 + }, + { + "start": 6149.84, + "end": 6150.86, + "probability": 0.028 + }, + { + "start": 6151.38, + "end": 6151.91, + "probability": 0.006 + }, + { + "start": 6152.66, + "end": 6153.64, + "probability": 0.2755 + }, + { + "start": 6155.08, + "end": 6156.42, + "probability": 0.6082 + }, + { + "start": 6157.46, + "end": 6160.46, + "probability": 0.9881 + }, + { + "start": 6161.16, + "end": 6163.68, + "probability": 0.7577 + }, + { + "start": 6164.16, + "end": 6167.32, + "probability": 0.9921 + }, + { + "start": 6168.28, + "end": 6171.2, + "probability": 0.8068 + }, + { + "start": 6171.84, + "end": 6172.98, + "probability": 0.8041 + }, + { + "start": 6173.9, + "end": 6180.02, + "probability": 0.967 + }, + { + "start": 6180.94, + "end": 6183.48, + "probability": 0.9449 + }, + { + "start": 6184.16, + "end": 6185.36, + "probability": 0.9438 + }, + { + "start": 6186.08, + "end": 6186.78, + "probability": 0.8724 + }, + { + "start": 6187.38, + "end": 6188.64, + "probability": 0.9702 + }, + { + "start": 6189.12, + "end": 6189.82, + "probability": 0.946 + }, + { + "start": 6190.24, + "end": 6192.02, + "probability": 0.8757 + }, + { + "start": 6192.46, + "end": 6195.34, + "probability": 0.9731 + }, + { + "start": 6195.74, + "end": 6197.12, + "probability": 0.9519 + }, + { + "start": 6198.16, + "end": 6201.08, + "probability": 0.9291 + }, + { + "start": 6201.96, + "end": 6206.38, + "probability": 0.979 + }, + { + "start": 6206.94, + "end": 6213.14, + "probability": 0.9963 + }, + { + "start": 6214.12, + "end": 6217.0, + "probability": 0.9993 + }, + { + "start": 6217.62, + "end": 6221.5, + "probability": 0.9922 + }, + { + "start": 6222.64, + "end": 6230.06, + "probability": 0.9946 + }, + { + "start": 6230.48, + "end": 6231.14, + "probability": 0.9808 + }, + { + "start": 6231.52, + "end": 6233.46, + "probability": 0.9789 + }, + { + "start": 6233.98, + "end": 6236.9, + "probability": 0.9832 + }, + { + "start": 6237.7, + "end": 6242.2, + "probability": 0.9943 + }, + { + "start": 6242.2, + "end": 6243.29, + "probability": 0.2996 + }, + { + "start": 6244.4, + "end": 6249.38, + "probability": 0.825 + }, + { + "start": 6249.9, + "end": 6258.3, + "probability": 0.9287 + }, + { + "start": 6259.14, + "end": 6259.76, + "probability": 0.8416 + }, + { + "start": 6260.46, + "end": 6265.68, + "probability": 0.9942 + }, + { + "start": 6265.68, + "end": 6270.36, + "probability": 0.9978 + }, + { + "start": 6271.14, + "end": 6276.64, + "probability": 0.9605 + }, + { + "start": 6277.26, + "end": 6280.14, + "probability": 0.9931 + }, + { + "start": 6281.16, + "end": 6281.72, + "probability": 0.8734 + }, + { + "start": 6282.84, + "end": 6288.02, + "probability": 0.9926 + }, + { + "start": 6288.62, + "end": 6289.66, + "probability": 0.6335 + }, + { + "start": 6289.72, + "end": 6294.36, + "probability": 0.9912 + }, + { + "start": 6295.18, + "end": 6299.98, + "probability": 0.9946 + }, + { + "start": 6300.82, + "end": 6305.08, + "probability": 0.9932 + }, + { + "start": 6305.8, + "end": 6307.64, + "probability": 0.956 + }, + { + "start": 6308.54, + "end": 6311.18, + "probability": 0.9634 + }, + { + "start": 6311.82, + "end": 6313.08, + "probability": 0.9824 + }, + { + "start": 6313.8, + "end": 6317.68, + "probability": 0.9694 + }, + { + "start": 6318.4, + "end": 6320.08, + "probability": 0.9859 + }, + { + "start": 6320.76, + "end": 6321.84, + "probability": 0.96 + }, + { + "start": 6322.5, + "end": 6323.58, + "probability": 0.7898 + }, + { + "start": 6324.14, + "end": 6326.2, + "probability": 0.9946 + }, + { + "start": 6326.72, + "end": 6329.32, + "probability": 0.9556 + }, + { + "start": 6330.0, + "end": 6332.1, + "probability": 0.9953 + }, + { + "start": 6332.68, + "end": 6335.36, + "probability": 0.936 + }, + { + "start": 6336.76, + "end": 6337.66, + "probability": 0.8602 + }, + { + "start": 6338.4, + "end": 6340.16, + "probability": 0.9788 + }, + { + "start": 6340.82, + "end": 6343.9, + "probability": 0.9977 + }, + { + "start": 6345.02, + "end": 6349.12, + "probability": 0.9512 + }, + { + "start": 6349.96, + "end": 6354.5, + "probability": 0.9788 + }, + { + "start": 6355.24, + "end": 6355.8, + "probability": 0.8904 + }, + { + "start": 6356.38, + "end": 6358.64, + "probability": 0.8647 + }, + { + "start": 6359.64, + "end": 6361.74, + "probability": 0.9998 + }, + { + "start": 6362.58, + "end": 6364.08, + "probability": 0.922 + }, + { + "start": 6364.68, + "end": 6365.93, + "probability": 0.9885 + }, + { + "start": 6366.82, + "end": 6368.66, + "probability": 0.9408 + }, + { + "start": 6369.6, + "end": 6370.42, + "probability": 0.6635 + }, + { + "start": 6371.22, + "end": 6372.34, + "probability": 0.5156 + }, + { + "start": 6373.04, + "end": 6377.04, + "probability": 0.9755 + }, + { + "start": 6377.92, + "end": 6379.26, + "probability": 0.7926 + }, + { + "start": 6380.52, + "end": 6383.0, + "probability": 0.9204 + }, + { + "start": 6383.1, + "end": 6383.78, + "probability": 0.9377 + }, + { + "start": 6384.26, + "end": 6384.78, + "probability": 0.714 + }, + { + "start": 6385.42, + "end": 6386.92, + "probability": 0.9536 + }, + { + "start": 6387.56, + "end": 6390.48, + "probability": 0.9634 + }, + { + "start": 6390.48, + "end": 6393.94, + "probability": 0.9976 + }, + { + "start": 6394.68, + "end": 6399.04, + "probability": 0.9946 + }, + { + "start": 6400.14, + "end": 6402.24, + "probability": 0.9725 + }, + { + "start": 6402.8, + "end": 6404.22, + "probability": 0.8373 + }, + { + "start": 6404.64, + "end": 6409.72, + "probability": 0.9848 + }, + { + "start": 6410.56, + "end": 6413.92, + "probability": 0.9131 + }, + { + "start": 6414.06, + "end": 6418.34, + "probability": 0.9766 + }, + { + "start": 6418.78, + "end": 6421.63, + "probability": 0.9912 + }, + { + "start": 6422.48, + "end": 6424.38, + "probability": 0.9608 + }, + { + "start": 6425.12, + "end": 6426.26, + "probability": 0.964 + }, + { + "start": 6427.4, + "end": 6433.4, + "probability": 0.959 + }, + { + "start": 6434.24, + "end": 6435.38, + "probability": 0.999 + }, + { + "start": 6435.98, + "end": 6441.58, + "probability": 0.987 + }, + { + "start": 6442.28, + "end": 6442.64, + "probability": 0.5725 + }, + { + "start": 6443.2, + "end": 6445.24, + "probability": 0.9722 + }, + { + "start": 6445.78, + "end": 6448.48, + "probability": 0.9967 + }, + { + "start": 6448.94, + "end": 6452.39, + "probability": 0.9969 + }, + { + "start": 6452.46, + "end": 6455.18, + "probability": 0.9984 + }, + { + "start": 6456.4, + "end": 6457.04, + "probability": 0.3316 + }, + { + "start": 6457.78, + "end": 6460.78, + "probability": 0.987 + }, + { + "start": 6461.42, + "end": 6464.86, + "probability": 0.9346 + }, + { + "start": 6465.5, + "end": 6468.68, + "probability": 0.991 + }, + { + "start": 6469.48, + "end": 6472.42, + "probability": 0.9927 + }, + { + "start": 6473.06, + "end": 6476.94, + "probability": 0.5394 + }, + { + "start": 6477.7, + "end": 6481.96, + "probability": 0.9858 + }, + { + "start": 6482.66, + "end": 6485.84, + "probability": 0.9754 + }, + { + "start": 6485.92, + "end": 6490.24, + "probability": 0.9843 + }, + { + "start": 6490.4, + "end": 6491.9, + "probability": 0.5492 + }, + { + "start": 6491.92, + "end": 6493.22, + "probability": 0.9775 + }, + { + "start": 6493.84, + "end": 6496.08, + "probability": 0.9941 + }, + { + "start": 6496.8, + "end": 6498.18, + "probability": 0.9685 + }, + { + "start": 6498.86, + "end": 6503.64, + "probability": 0.9834 + }, + { + "start": 6504.44, + "end": 6505.08, + "probability": 0.853 + }, + { + "start": 6505.64, + "end": 6509.56, + "probability": 0.9969 + }, + { + "start": 6510.2, + "end": 6512.44, + "probability": 0.8868 + }, + { + "start": 6513.12, + "end": 6514.52, + "probability": 0.9818 + }, + { + "start": 6515.02, + "end": 6520.04, + "probability": 0.9016 + }, + { + "start": 6520.84, + "end": 6526.44, + "probability": 0.9845 + }, + { + "start": 6526.5, + "end": 6534.4, + "probability": 0.9888 + }, + { + "start": 6534.92, + "end": 6537.23, + "probability": 0.968 + }, + { + "start": 6537.88, + "end": 6540.32, + "probability": 0.9829 + }, + { + "start": 6541.38, + "end": 6541.92, + "probability": 0.7589 + }, + { + "start": 6542.58, + "end": 6546.76, + "probability": 0.9748 + }, + { + "start": 6547.34, + "end": 6548.76, + "probability": 0.9708 + }, + { + "start": 6549.66, + "end": 6550.62, + "probability": 0.8088 + }, + { + "start": 6551.36, + "end": 6554.04, + "probability": 0.9796 + }, + { + "start": 6554.62, + "end": 6555.22, + "probability": 0.868 + }, + { + "start": 6556.0, + "end": 6559.88, + "probability": 0.936 + }, + { + "start": 6560.35, + "end": 6562.56, + "probability": 0.6251 + }, + { + "start": 6563.4, + "end": 6564.3, + "probability": 0.8482 + }, + { + "start": 6565.14, + "end": 6567.36, + "probability": 0.8188 + }, + { + "start": 6567.96, + "end": 6571.26, + "probability": 0.9893 + }, + { + "start": 6571.88, + "end": 6578.26, + "probability": 0.9394 + }, + { + "start": 6578.42, + "end": 6579.94, + "probability": 0.8781 + }, + { + "start": 6580.24, + "end": 6582.6, + "probability": 0.9636 + }, + { + "start": 6583.16, + "end": 6585.3, + "probability": 0.7499 + }, + { + "start": 6585.34, + "end": 6588.28, + "probability": 0.7862 + }, + { + "start": 6589.04, + "end": 6591.48, + "probability": 0.9934 + }, + { + "start": 6591.56, + "end": 6592.72, + "probability": 0.9166 + }, + { + "start": 6593.34, + "end": 6595.12, + "probability": 0.6675 + }, + { + "start": 6595.88, + "end": 6596.7, + "probability": 0.5912 + }, + { + "start": 6601.69, + "end": 6603.8, + "probability": 0.5514 + }, + { + "start": 6604.42, + "end": 6605.66, + "probability": 0.5197 + }, + { + "start": 6605.74, + "end": 6606.5, + "probability": 0.9338 + }, + { + "start": 6606.8, + "end": 6608.52, + "probability": 0.9775 + }, + { + "start": 6608.96, + "end": 6609.98, + "probability": 0.5585 + }, + { + "start": 6610.5, + "end": 6611.3, + "probability": 0.9616 + }, + { + "start": 6613.38, + "end": 6613.98, + "probability": 0.7822 + }, + { + "start": 6615.44, + "end": 6617.36, + "probability": 0.897 + }, + { + "start": 6620.1, + "end": 6622.82, + "probability": 0.8791 + }, + { + "start": 6622.92, + "end": 6623.26, + "probability": 0.8179 + }, + { + "start": 6623.58, + "end": 6624.74, + "probability": 0.7665 + }, + { + "start": 6624.88, + "end": 6626.16, + "probability": 0.5936 + }, + { + "start": 6626.24, + "end": 6627.9, + "probability": 0.9099 + }, + { + "start": 6628.42, + "end": 6630.3, + "probability": 0.9863 + }, + { + "start": 6630.3, + "end": 6632.88, + "probability": 0.9947 + }, + { + "start": 6633.68, + "end": 6635.08, + "probability": 0.6589 + }, + { + "start": 6635.36, + "end": 6637.3, + "probability": 0.9902 + }, + { + "start": 6637.54, + "end": 6641.32, + "probability": 0.9897 + }, + { + "start": 6641.32, + "end": 6645.16, + "probability": 0.9679 + }, + { + "start": 6645.32, + "end": 6646.58, + "probability": 0.6532 + }, + { + "start": 6647.26, + "end": 6649.44, + "probability": 0.9761 + }, + { + "start": 6650.02, + "end": 6654.28, + "probability": 0.8983 + }, + { + "start": 6654.46, + "end": 6656.5, + "probability": 0.9611 + }, + { + "start": 6656.78, + "end": 6657.92, + "probability": 0.9917 + }, + { + "start": 6658.02, + "end": 6658.32, + "probability": 0.786 + }, + { + "start": 6659.5, + "end": 6660.04, + "probability": 0.6883 + }, + { + "start": 6661.12, + "end": 6663.38, + "probability": 0.9116 + }, + { + "start": 6667.62, + "end": 6670.24, + "probability": 0.7881 + }, + { + "start": 6671.1, + "end": 6672.26, + "probability": 0.9591 + }, + { + "start": 6673.08, + "end": 6675.74, + "probability": 0.9507 + }, + { + "start": 6676.36, + "end": 6678.1, + "probability": 0.9261 + }, + { + "start": 6678.56, + "end": 6683.3, + "probability": 0.9926 + }, + { + "start": 6684.06, + "end": 6685.64, + "probability": 0.9087 + }, + { + "start": 6685.74, + "end": 6686.16, + "probability": 0.965 + }, + { + "start": 6687.06, + "end": 6688.58, + "probability": 0.9686 + }, + { + "start": 6689.62, + "end": 6690.96, + "probability": 0.8435 + }, + { + "start": 6691.08, + "end": 6691.6, + "probability": 0.8356 + }, + { + "start": 6691.7, + "end": 6692.44, + "probability": 0.8924 + }, + { + "start": 6692.9, + "end": 6696.24, + "probability": 0.9409 + }, + { + "start": 6697.52, + "end": 6698.5, + "probability": 0.6027 + }, + { + "start": 6698.6, + "end": 6699.46, + "probability": 0.8166 + }, + { + "start": 6699.52, + "end": 6700.45, + "probability": 0.9775 + }, + { + "start": 6701.5, + "end": 6703.16, + "probability": 0.9917 + }, + { + "start": 6703.24, + "end": 6704.32, + "probability": 0.9178 + }, + { + "start": 6704.58, + "end": 6709.96, + "probability": 0.9849 + }, + { + "start": 6710.48, + "end": 6713.12, + "probability": 0.8663 + }, + { + "start": 6713.4, + "end": 6714.3, + "probability": 0.6196 + }, + { + "start": 6714.38, + "end": 6715.26, + "probability": 0.8161 + }, + { + "start": 6715.64, + "end": 6717.42, + "probability": 0.8264 + }, + { + "start": 6717.9, + "end": 6722.38, + "probability": 0.9688 + }, + { + "start": 6722.5, + "end": 6724.32, + "probability": 0.9805 + }, + { + "start": 6725.38, + "end": 6726.51, + "probability": 0.9165 + }, + { + "start": 6727.12, + "end": 6728.39, + "probability": 0.1088 + }, + { + "start": 6729.26, + "end": 6730.32, + "probability": 0.7591 + }, + { + "start": 6730.6, + "end": 6735.78, + "probability": 0.9136 + }, + { + "start": 6736.04, + "end": 6737.2, + "probability": 0.1346 + }, + { + "start": 6737.22, + "end": 6737.32, + "probability": 0.3139 + }, + { + "start": 6737.32, + "end": 6737.32, + "probability": 0.0274 + }, + { + "start": 6737.32, + "end": 6737.84, + "probability": 0.332 + }, + { + "start": 6739.12, + "end": 6740.38, + "probability": 0.7508 + }, + { + "start": 6740.48, + "end": 6741.25, + "probability": 0.9132 + }, + { + "start": 6741.46, + "end": 6743.56, + "probability": 0.9556 + }, + { + "start": 6743.96, + "end": 6744.6, + "probability": 0.3108 + }, + { + "start": 6745.24, + "end": 6749.92, + "probability": 0.6512 + }, + { + "start": 6750.22, + "end": 6750.54, + "probability": 0.5668 + }, + { + "start": 6750.64, + "end": 6751.34, + "probability": 0.7957 + }, + { + "start": 6751.6, + "end": 6754.7, + "probability": 0.9743 + }, + { + "start": 6754.82, + "end": 6757.74, + "probability": 0.9419 + }, + { + "start": 6758.18, + "end": 6761.04, + "probability": 0.5806 + }, + { + "start": 6761.36, + "end": 6764.3, + "probability": 0.9531 + }, + { + "start": 6764.76, + "end": 6768.4, + "probability": 0.8771 + }, + { + "start": 6768.76, + "end": 6770.2, + "probability": 0.9939 + }, + { + "start": 6770.34, + "end": 6772.8, + "probability": 0.9391 + }, + { + "start": 6772.9, + "end": 6775.08, + "probability": 0.9958 + }, + { + "start": 6775.72, + "end": 6778.8, + "probability": 0.9209 + }, + { + "start": 6779.08, + "end": 6781.66, + "probability": 0.6014 + }, + { + "start": 6781.9, + "end": 6783.36, + "probability": 0.8463 + }, + { + "start": 6783.52, + "end": 6784.22, + "probability": 0.6824 + }, + { + "start": 6784.4, + "end": 6787.32, + "probability": 0.8494 + }, + { + "start": 6787.6, + "end": 6789.24, + "probability": 0.1674 + }, + { + "start": 6789.24, + "end": 6789.24, + "probability": 0.1724 + }, + { + "start": 6789.24, + "end": 6794.52, + "probability": 0.9479 + }, + { + "start": 6794.78, + "end": 6799.06, + "probability": 0.9842 + }, + { + "start": 6799.2, + "end": 6800.42, + "probability": 0.6516 + }, + { + "start": 6801.12, + "end": 6801.12, + "probability": 0.0074 + }, + { + "start": 6801.12, + "end": 6802.08, + "probability": 0.7008 + }, + { + "start": 6802.44, + "end": 6803.8, + "probability": 0.7201 + }, + { + "start": 6804.3, + "end": 6804.56, + "probability": 0.0359 + }, + { + "start": 6804.74, + "end": 6804.74, + "probability": 0.3102 + }, + { + "start": 6804.74, + "end": 6804.74, + "probability": 0.0037 + }, + { + "start": 6804.74, + "end": 6807.64, + "probability": 0.3378 + }, + { + "start": 6807.92, + "end": 6812.9, + "probability": 0.5458 + }, + { + "start": 6813.2, + "end": 6814.3, + "probability": 0.7196 + }, + { + "start": 6814.48, + "end": 6814.48, + "probability": 0.0235 + }, + { + "start": 6814.48, + "end": 6817.7, + "probability": 0.4827 + }, + { + "start": 6818.36, + "end": 6818.52, + "probability": 0.1324 + }, + { + "start": 6818.52, + "end": 6818.52, + "probability": 0.2259 + }, + { + "start": 6818.64, + "end": 6819.6, + "probability": 0.5451 + }, + { + "start": 6819.98, + "end": 6821.11, + "probability": 0.9691 + }, + { + "start": 6821.84, + "end": 6824.6, + "probability": 0.9397 + }, + { + "start": 6824.6, + "end": 6827.2, + "probability": 0.8197 + }, + { + "start": 6827.65, + "end": 6827.72, + "probability": 0.1746 + }, + { + "start": 6827.72, + "end": 6832.44, + "probability": 0.9468 + }, + { + "start": 6832.86, + "end": 6837.16, + "probability": 0.9807 + }, + { + "start": 6837.36, + "end": 6839.24, + "probability": 0.9187 + }, + { + "start": 6839.86, + "end": 6841.52, + "probability": 0.5483 + }, + { + "start": 6841.88, + "end": 6842.62, + "probability": 0.9449 + }, + { + "start": 6842.82, + "end": 6848.38, + "probability": 0.9587 + }, + { + "start": 6848.7, + "end": 6851.79, + "probability": 0.9675 + }, + { + "start": 6852.1, + "end": 6853.7, + "probability": 0.9497 + }, + { + "start": 6853.78, + "end": 6854.62, + "probability": 0.7521 + }, + { + "start": 6855.14, + "end": 6855.74, + "probability": 0.7693 + }, + { + "start": 6856.52, + "end": 6857.58, + "probability": 0.8941 + }, + { + "start": 6858.52, + "end": 6860.12, + "probability": 0.3852 + }, + { + "start": 6866.62, + "end": 6869.14, + "probability": 0.7046 + }, + { + "start": 6870.06, + "end": 6872.0, + "probability": 0.9081 + }, + { + "start": 6872.7, + "end": 6877.88, + "probability": 0.9955 + }, + { + "start": 6878.74, + "end": 6881.82, + "probability": 0.9899 + }, + { + "start": 6882.4, + "end": 6886.86, + "probability": 0.9293 + }, + { + "start": 6887.4, + "end": 6889.76, + "probability": 0.8657 + }, + { + "start": 6889.9, + "end": 6889.96, + "probability": 0.1032 + }, + { + "start": 6889.96, + "end": 6890.54, + "probability": 0.7245 + }, + { + "start": 6891.18, + "end": 6892.9, + "probability": 0.9723 + }, + { + "start": 6893.94, + "end": 6896.3, + "probability": 0.9575 + }, + { + "start": 6896.6, + "end": 6900.66, + "probability": 0.8993 + }, + { + "start": 6901.22, + "end": 6902.98, + "probability": 0.7858 + }, + { + "start": 6903.78, + "end": 6905.04, + "probability": 0.6442 + }, + { + "start": 6905.6, + "end": 6908.84, + "probability": 0.9592 + }, + { + "start": 6909.22, + "end": 6909.87, + "probability": 0.5206 + }, + { + "start": 6910.98, + "end": 6912.45, + "probability": 0.9775 + }, + { + "start": 6913.4, + "end": 6914.24, + "probability": 0.9217 + }, + { + "start": 6914.56, + "end": 6917.22, + "probability": 0.7446 + }, + { + "start": 6917.6, + "end": 6923.66, + "probability": 0.9836 + }, + { + "start": 6924.24, + "end": 6924.99, + "probability": 0.9745 + }, + { + "start": 6926.36, + "end": 6930.04, + "probability": 0.9757 + }, + { + "start": 6930.4, + "end": 6931.16, + "probability": 0.8047 + }, + { + "start": 6931.46, + "end": 6932.52, + "probability": 0.9875 + }, + { + "start": 6933.2, + "end": 6934.4, + "probability": 0.9479 + }, + { + "start": 6935.26, + "end": 6937.6, + "probability": 0.5305 + }, + { + "start": 6937.72, + "end": 6940.06, + "probability": 0.7949 + }, + { + "start": 6940.76, + "end": 6943.31, + "probability": 0.8268 + }, + { + "start": 6943.86, + "end": 6944.44, + "probability": 0.4896 + }, + { + "start": 6944.6, + "end": 6947.42, + "probability": 0.3904 + }, + { + "start": 6947.86, + "end": 6949.02, + "probability": 0.6972 + }, + { + "start": 6949.44, + "end": 6949.94, + "probability": 0.4081 + }, + { + "start": 6950.2, + "end": 6950.6, + "probability": 0.3148 + }, + { + "start": 6950.7, + "end": 6951.84, + "probability": 0.9919 + }, + { + "start": 6952.54, + "end": 6953.82, + "probability": 0.3926 + }, + { + "start": 6954.06, + "end": 6956.28, + "probability": 0.9702 + }, + { + "start": 6956.7, + "end": 6956.96, + "probability": 0.5517 + }, + { + "start": 6957.02, + "end": 6957.7, + "probability": 0.8619 + }, + { + "start": 6958.1, + "end": 6959.26, + "probability": 0.9769 + }, + { + "start": 6959.48, + "end": 6960.64, + "probability": 0.8574 + }, + { + "start": 6960.92, + "end": 6961.84, + "probability": 0.8151 + }, + { + "start": 6962.1, + "end": 6964.08, + "probability": 0.9893 + }, + { + "start": 6964.64, + "end": 6966.16, + "probability": 0.9795 + }, + { + "start": 6966.5, + "end": 6968.78, + "probability": 0.1849 + }, + { + "start": 6968.98, + "end": 6970.32, + "probability": 0.9536 + }, + { + "start": 6970.72, + "end": 6971.34, + "probability": 0.2807 + }, + { + "start": 6971.54, + "end": 6972.74, + "probability": 0.9683 + }, + { + "start": 6973.2, + "end": 6974.78, + "probability": 0.2396 + }, + { + "start": 6974.88, + "end": 6975.8, + "probability": 0.7742 + }, + { + "start": 6975.94, + "end": 6977.38, + "probability": 0.9303 + }, + { + "start": 6978.02, + "end": 6979.1, + "probability": 0.9041 + }, + { + "start": 6979.7, + "end": 6979.96, + "probability": 0.7572 + }, + { + "start": 6980.1, + "end": 6980.84, + "probability": 0.8875 + }, + { + "start": 6981.12, + "end": 6981.58, + "probability": 0.8613 + }, + { + "start": 6982.2, + "end": 6985.02, + "probability": 0.3613 + }, + { + "start": 6985.26, + "end": 6986.38, + "probability": 0.7437 + }, + { + "start": 6986.6, + "end": 6988.32, + "probability": 0.9675 + }, + { + "start": 6988.6, + "end": 6989.18, + "probability": 0.9086 + }, + { + "start": 6989.44, + "end": 6990.22, + "probability": 0.9386 + }, + { + "start": 6990.3, + "end": 6991.64, + "probability": 0.8663 + }, + { + "start": 6991.76, + "end": 6993.13, + "probability": 0.9638 + }, + { + "start": 6993.32, + "end": 6995.68, + "probability": 0.5168 + }, + { + "start": 6996.0, + "end": 6996.74, + "probability": 0.6993 + }, + { + "start": 6996.98, + "end": 6998.03, + "probability": 0.9382 + }, + { + "start": 6998.16, + "end": 6999.2, + "probability": 0.9795 + }, + { + "start": 6999.62, + "end": 7000.19, + "probability": 0.8922 + }, + { + "start": 7000.88, + "end": 7002.62, + "probability": 0.7227 + }, + { + "start": 7003.1, + "end": 7005.34, + "probability": 0.9204 + }, + { + "start": 7005.88, + "end": 7007.3, + "probability": 0.409 + }, + { + "start": 7007.32, + "end": 7008.4, + "probability": 0.9965 + }, + { + "start": 7009.2, + "end": 7011.06, + "probability": 0.8229 + }, + { + "start": 7011.14, + "end": 7011.6, + "probability": 0.4873 + }, + { + "start": 7011.64, + "end": 7012.8, + "probability": 0.7099 + }, + { + "start": 7012.9, + "end": 7014.28, + "probability": 0.9612 + }, + { + "start": 7014.66, + "end": 7016.1, + "probability": 0.9719 + }, + { + "start": 7016.54, + "end": 7019.74, + "probability": 0.6362 + }, + { + "start": 7020.32, + "end": 7024.06, + "probability": 0.9667 + }, + { + "start": 7024.52, + "end": 7026.91, + "probability": 0.9944 + }, + { + "start": 7027.4, + "end": 7028.18, + "probability": 0.8708 + }, + { + "start": 7028.46, + "end": 7028.94, + "probability": 0.8323 + }, + { + "start": 7029.8, + "end": 7031.08, + "probability": 0.8858 + }, + { + "start": 7031.36, + "end": 7031.96, + "probability": 0.7416 + }, + { + "start": 7032.04, + "end": 7033.27, + "probability": 0.8949 + }, + { + "start": 7034.0, + "end": 7037.16, + "probability": 0.9487 + }, + { + "start": 7037.7, + "end": 7038.08, + "probability": 0.2438 + }, + { + "start": 7038.2, + "end": 7040.9, + "probability": 0.8205 + }, + { + "start": 7041.18, + "end": 7042.9, + "probability": 0.8162 + }, + { + "start": 7043.26, + "end": 7046.41, + "probability": 0.9917 + }, + { + "start": 7047.34, + "end": 7047.94, + "probability": 0.8134 + }, + { + "start": 7048.16, + "end": 7048.38, + "probability": 0.5617 + }, + { + "start": 7048.38, + "end": 7048.4, + "probability": 0.275 + }, + { + "start": 7048.4, + "end": 7049.17, + "probability": 0.6472 + }, + { + "start": 7049.56, + "end": 7053.44, + "probability": 0.2643 + }, + { + "start": 7053.46, + "end": 7055.08, + "probability": 0.1696 + }, + { + "start": 7055.2, + "end": 7057.84, + "probability": 0.7082 + }, + { + "start": 7057.84, + "end": 7058.4, + "probability": 0.4633 + }, + { + "start": 7059.58, + "end": 7060.49, + "probability": 0.7633 + }, + { + "start": 7061.02, + "end": 7062.5, + "probability": 0.7817 + }, + { + "start": 7062.82, + "end": 7063.9, + "probability": 0.0364 + }, + { + "start": 7063.9, + "end": 7064.28, + "probability": 0.1435 + }, + { + "start": 7064.84, + "end": 7068.9, + "probability": 0.7372 + }, + { + "start": 7069.38, + "end": 7070.06, + "probability": 0.368 + }, + { + "start": 7070.32, + "end": 7070.62, + "probability": 0.019 + }, + { + "start": 7070.66, + "end": 7072.15, + "probability": 0.5622 + }, + { + "start": 7072.28, + "end": 7072.66, + "probability": 0.1654 + }, + { + "start": 7072.68, + "end": 7072.8, + "probability": 0.1254 + }, + { + "start": 7072.8, + "end": 7077.62, + "probability": 0.6296 + }, + { + "start": 7081.54, + "end": 7081.56, + "probability": 0.0555 + }, + { + "start": 7081.56, + "end": 7081.92, + "probability": 0.4376 + }, + { + "start": 7081.92, + "end": 7082.26, + "probability": 0.2554 + }, + { + "start": 7082.26, + "end": 7082.76, + "probability": 0.0397 + }, + { + "start": 7082.87, + "end": 7082.98, + "probability": 0.2278 + }, + { + "start": 7083.18, + "end": 7083.2, + "probability": 0.2073 + }, + { + "start": 7083.2, + "end": 7084.56, + "probability": 0.7656 + }, + { + "start": 7084.98, + "end": 7086.26, + "probability": 0.9582 + }, + { + "start": 7086.34, + "end": 7087.46, + "probability": 0.8359 + }, + { + "start": 7087.82, + "end": 7089.26, + "probability": 0.8932 + }, + { + "start": 7089.68, + "end": 7093.2, + "probability": 0.6534 + }, + { + "start": 7093.38, + "end": 7095.44, + "probability": 0.9893 + }, + { + "start": 7095.72, + "end": 7096.32, + "probability": 0.6946 + }, + { + "start": 7096.6, + "end": 7097.16, + "probability": 0.8352 + }, + { + "start": 7097.4, + "end": 7098.96, + "probability": 0.7504 + }, + { + "start": 7099.24, + "end": 7102.34, + "probability": 0.9697 + }, + { + "start": 7102.6, + "end": 7105.24, + "probability": 0.9985 + }, + { + "start": 7105.66, + "end": 7107.48, + "probability": 0.9932 + }, + { + "start": 7107.82, + "end": 7109.24, + "probability": 0.979 + }, + { + "start": 7109.68, + "end": 7110.94, + "probability": 0.7786 + }, + { + "start": 7111.6, + "end": 7112.88, + "probability": 0.9468 + }, + { + "start": 7113.22, + "end": 7116.9, + "probability": 0.9972 + }, + { + "start": 7118.08, + "end": 7118.42, + "probability": 0.6608 + }, + { + "start": 7120.42, + "end": 7120.78, + "probability": 0.2623 + }, + { + "start": 7121.4, + "end": 7122.54, + "probability": 0.6995 + }, + { + "start": 7122.8, + "end": 7124.28, + "probability": 0.9619 + }, + { + "start": 7125.26, + "end": 7127.4, + "probability": 0.092 + }, + { + "start": 7132.32, + "end": 7133.84, + "probability": 0.245 + }, + { + "start": 7133.96, + "end": 7135.94, + "probability": 0.8232 + }, + { + "start": 7136.0, + "end": 7137.82, + "probability": 0.6723 + }, + { + "start": 7137.92, + "end": 7138.58, + "probability": 0.6198 + }, + { + "start": 7138.9, + "end": 7138.98, + "probability": 0.1682 + }, + { + "start": 7138.98, + "end": 7139.94, + "probability": 0.3277 + }, + { + "start": 7140.04, + "end": 7140.86, + "probability": 0.134 + }, + { + "start": 7141.62, + "end": 7143.16, + "probability": 0.1687 + }, + { + "start": 7143.26, + "end": 7144.0, + "probability": 0.5381 + }, + { + "start": 7144.52, + "end": 7145.41, + "probability": 0.8164 + }, + { + "start": 7145.66, + "end": 7145.72, + "probability": 0.0139 + }, + { + "start": 7145.72, + "end": 7146.24, + "probability": 0.2721 + }, + { + "start": 7146.36, + "end": 7147.38, + "probability": 0.5704 + }, + { + "start": 7147.38, + "end": 7148.62, + "probability": 0.9824 + }, + { + "start": 7148.88, + "end": 7154.27, + "probability": 0.0317 + }, + { + "start": 7154.52, + "end": 7155.64, + "probability": 0.1911 + }, + { + "start": 7155.64, + "end": 7155.64, + "probability": 0.2683 + }, + { + "start": 7155.72, + "end": 7157.94, + "probability": 0.7041 + }, + { + "start": 7159.26, + "end": 7162.86, + "probability": 0.9219 + }, + { + "start": 7164.2, + "end": 7169.6, + "probability": 0.985 + }, + { + "start": 7171.38, + "end": 7173.74, + "probability": 0.9695 + }, + { + "start": 7174.28, + "end": 7174.96, + "probability": 0.8553 + }, + { + "start": 7176.42, + "end": 7179.84, + "probability": 0.9859 + }, + { + "start": 7180.46, + "end": 7181.84, + "probability": 0.9653 + }, + { + "start": 7182.7, + "end": 7184.02, + "probability": 0.9758 + }, + { + "start": 7185.12, + "end": 7187.66, + "probability": 0.9627 + }, + { + "start": 7188.46, + "end": 7188.86, + "probability": 0.8417 + }, + { + "start": 7189.5, + "end": 7192.04, + "probability": 0.9331 + }, + { + "start": 7192.32, + "end": 7192.76, + "probability": 0.802 + }, + { + "start": 7193.82, + "end": 7194.34, + "probability": 0.8749 + }, + { + "start": 7194.9, + "end": 7196.5, + "probability": 0.8998 + }, + { + "start": 7197.74, + "end": 7198.12, + "probability": 0.1469 + }, + { + "start": 7200.26, + "end": 7203.26, + "probability": 0.1314 + }, + { + "start": 7212.14, + "end": 7212.8, + "probability": 0.1335 + }, + { + "start": 7214.14, + "end": 7215.52, + "probability": 0.6791 + }, + { + "start": 7226.44, + "end": 7228.04, + "probability": 0.9304 + }, + { + "start": 7229.28, + "end": 7230.98, + "probability": 0.9556 + }, + { + "start": 7231.72, + "end": 7234.56, + "probability": 0.8846 + }, + { + "start": 7235.52, + "end": 7238.26, + "probability": 0.9062 + }, + { + "start": 7238.26, + "end": 7242.66, + "probability": 0.9259 + }, + { + "start": 7243.4, + "end": 7250.89, + "probability": 0.9854 + }, + { + "start": 7251.36, + "end": 7258.2, + "probability": 0.9977 + }, + { + "start": 7259.52, + "end": 7264.36, + "probability": 0.9492 + }, + { + "start": 7264.44, + "end": 7268.44, + "probability": 0.9946 + }, + { + "start": 7269.54, + "end": 7277.44, + "probability": 0.9631 + }, + { + "start": 7278.22, + "end": 7285.64, + "probability": 0.9871 + }, + { + "start": 7286.66, + "end": 7289.46, + "probability": 0.9805 + }, + { + "start": 7289.94, + "end": 7292.54, + "probability": 0.8712 + }, + { + "start": 7292.84, + "end": 7296.16, + "probability": 0.9961 + }, + { + "start": 7297.0, + "end": 7299.76, + "probability": 0.9979 + }, + { + "start": 7300.23, + "end": 7304.8, + "probability": 0.9892 + }, + { + "start": 7304.88, + "end": 7305.66, + "probability": 0.972 + }, + { + "start": 7305.82, + "end": 7306.68, + "probability": 0.6674 + }, + { + "start": 7307.6, + "end": 7308.8, + "probability": 0.9484 + }, + { + "start": 7309.93, + "end": 7313.09, + "probability": 0.7348 + }, + { + "start": 7314.14, + "end": 7316.68, + "probability": 0.8876 + }, + { + "start": 7316.98, + "end": 7322.32, + "probability": 0.9895 + }, + { + "start": 7322.9, + "end": 7325.22, + "probability": 0.9792 + }, + { + "start": 7326.86, + "end": 7328.98, + "probability": 0.9853 + }, + { + "start": 7329.6, + "end": 7331.14, + "probability": 0.9808 + }, + { + "start": 7331.88, + "end": 7334.82, + "probability": 0.9971 + }, + { + "start": 7334.88, + "end": 7335.36, + "probability": 0.9354 + }, + { + "start": 7335.46, + "end": 7336.5, + "probability": 0.9635 + }, + { + "start": 7337.22, + "end": 7342.97, + "probability": 0.9865 + }, + { + "start": 7343.02, + "end": 7346.06, + "probability": 0.8895 + }, + { + "start": 7346.14, + "end": 7346.98, + "probability": 0.9664 + }, + { + "start": 7347.14, + "end": 7347.8, + "probability": 0.6877 + }, + { + "start": 7347.88, + "end": 7348.94, + "probability": 0.9285 + }, + { + "start": 7349.32, + "end": 7350.78, + "probability": 0.884 + }, + { + "start": 7351.12, + "end": 7353.3, + "probability": 0.995 + }, + { + "start": 7354.52, + "end": 7356.71, + "probability": 0.9961 + }, + { + "start": 7357.2, + "end": 7359.2, + "probability": 0.9919 + }, + { + "start": 7359.7, + "end": 7363.88, + "probability": 0.9962 + }, + { + "start": 7363.96, + "end": 7364.66, + "probability": 0.8719 + }, + { + "start": 7364.76, + "end": 7365.36, + "probability": 0.4899 + }, + { + "start": 7365.42, + "end": 7368.62, + "probability": 0.9671 + }, + { + "start": 7369.06, + "end": 7373.9, + "probability": 0.968 + }, + { + "start": 7374.56, + "end": 7375.74, + "probability": 0.8953 + }, + { + "start": 7376.12, + "end": 7378.08, + "probability": 0.9987 + }, + { + "start": 7378.28, + "end": 7378.98, + "probability": 0.9304 + }, + { + "start": 7379.16, + "end": 7381.36, + "probability": 0.9958 + }, + { + "start": 7383.52, + "end": 7385.0, + "probability": 0.9803 + }, + { + "start": 7385.76, + "end": 7389.0, + "probability": 0.988 + }, + { + "start": 7389.06, + "end": 7390.74, + "probability": 0.9738 + }, + { + "start": 7390.84, + "end": 7392.18, + "probability": 0.7228 + }, + { + "start": 7392.64, + "end": 7394.3, + "probability": 0.8462 + }, + { + "start": 7394.42, + "end": 7402.74, + "probability": 0.9834 + }, + { + "start": 7403.52, + "end": 7405.14, + "probability": 0.8987 + }, + { + "start": 7405.2, + "end": 7406.42, + "probability": 0.8855 + }, + { + "start": 7406.42, + "end": 7407.2, + "probability": 0.6182 + }, + { + "start": 7408.1, + "end": 7409.28, + "probability": 0.7184 + }, + { + "start": 7410.5, + "end": 7413.24, + "probability": 0.819 + }, + { + "start": 7413.6, + "end": 7413.6, + "probability": 0.6435 + }, + { + "start": 7413.62, + "end": 7417.9, + "probability": 0.9779 + }, + { + "start": 7417.94, + "end": 7419.04, + "probability": 0.806 + }, + { + "start": 7419.78, + "end": 7424.08, + "probability": 0.9877 + }, + { + "start": 7424.26, + "end": 7426.54, + "probability": 0.9796 + }, + { + "start": 7428.44, + "end": 7428.86, + "probability": 0.7392 + }, + { + "start": 7430.58, + "end": 7431.8, + "probability": 0.9037 + }, + { + "start": 7433.9, + "end": 7434.38, + "probability": 0.2859 + }, + { + "start": 7434.6, + "end": 7434.98, + "probability": 0.2208 + }, + { + "start": 7437.54, + "end": 7438.36, + "probability": 0.8927 + }, + { + "start": 7440.12, + "end": 7442.01, + "probability": 0.3149 + }, + { + "start": 7445.52, + "end": 7445.64, + "probability": 0.3669 + }, + { + "start": 7445.64, + "end": 7445.71, + "probability": 0.5324 + }, + { + "start": 7446.62, + "end": 7447.12, + "probability": 0.8344 + }, + { + "start": 7447.36, + "end": 7447.95, + "probability": 0.7285 + }, + { + "start": 7449.1, + "end": 7449.26, + "probability": 0.0066 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.0, + "probability": 0.0 + }, + { + "start": 7555.0, + "end": 7555.22, + "probability": 0.0776 + }, + { + "start": 7555.22, + "end": 7555.4, + "probability": 0.0724 + }, + { + "start": 7555.4, + "end": 7555.86, + "probability": 0.5742 + }, + { + "start": 7556.5, + "end": 7556.68, + "probability": 0.2452 + }, + { + "start": 7556.68, + "end": 7556.68, + "probability": 0.0473 + }, + { + "start": 7556.68, + "end": 7556.68, + "probability": 0.1253 + }, + { + "start": 7556.68, + "end": 7559.92, + "probability": 0.3779 + }, + { + "start": 7560.2, + "end": 7566.86, + "probability": 0.9966 + }, + { + "start": 7567.3, + "end": 7568.86, + "probability": 0.9624 + }, + { + "start": 7569.2, + "end": 7569.52, + "probability": 0.5555 + }, + { + "start": 7570.0, + "end": 7572.14, + "probability": 0.8838 + }, + { + "start": 7572.8, + "end": 7573.76, + "probability": 0.9844 + }, + { + "start": 7574.3, + "end": 7578.96, + "probability": 0.274 + }, + { + "start": 7580.26, + "end": 7580.28, + "probability": 0.3306 + }, + { + "start": 7580.28, + "end": 7580.28, + "probability": 0.0846 + }, + { + "start": 7580.28, + "end": 7580.28, + "probability": 0.1432 + }, + { + "start": 7580.28, + "end": 7580.28, + "probability": 0.3047 + }, + { + "start": 7580.28, + "end": 7580.28, + "probability": 0.0449 + }, + { + "start": 7580.28, + "end": 7581.66, + "probability": 0.4051 + }, + { + "start": 7581.72, + "end": 7582.46, + "probability": 0.6594 + }, + { + "start": 7582.56, + "end": 7584.64, + "probability": 0.8989 + }, + { + "start": 7585.86, + "end": 7588.6, + "probability": 0.2289 + }, + { + "start": 7589.94, + "end": 7598.48, + "probability": 0.489 + }, + { + "start": 7599.13, + "end": 7600.1, + "probability": 0.0303 + }, + { + "start": 7600.1, + "end": 7604.24, + "probability": 0.0278 + }, + { + "start": 7605.38, + "end": 7605.44, + "probability": 0.1032 + }, + { + "start": 7605.56, + "end": 7605.86, + "probability": 0.1722 + }, + { + "start": 7605.86, + "end": 7608.14, + "probability": 0.0159 + }, + { + "start": 7608.36, + "end": 7611.7, + "probability": 0.1145 + }, + { + "start": 7612.34, + "end": 7615.16, + "probability": 0.1916 + }, + { + "start": 7615.6, + "end": 7617.26, + "probability": 0.0427 + }, + { + "start": 7619.46, + "end": 7620.92, + "probability": 0.1279 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.0, + "end": 7679.0, + "probability": 0.0 + }, + { + "start": 7679.36, + "end": 7679.58, + "probability": 0.0088 + }, + { + "start": 7679.58, + "end": 7679.58, + "probability": 0.0786 + }, + { + "start": 7679.58, + "end": 7679.58, + "probability": 0.3874 + }, + { + "start": 7679.58, + "end": 7679.58, + "probability": 0.0776 + }, + { + "start": 7679.58, + "end": 7680.42, + "probability": 0.0623 + }, + { + "start": 7680.5, + "end": 7681.64, + "probability": 0.8057 + }, + { + "start": 7684.0, + "end": 7684.38, + "probability": 0.0029 + }, + { + "start": 7684.38, + "end": 7684.38, + "probability": 0.1211 + }, + { + "start": 7684.38, + "end": 7684.38, + "probability": 0.0622 + }, + { + "start": 7684.38, + "end": 7684.38, + "probability": 0.0358 + }, + { + "start": 7684.38, + "end": 7684.9, + "probability": 0.2405 + }, + { + "start": 7685.22, + "end": 7685.74, + "probability": 0.4493 + }, + { + "start": 7686.0, + "end": 7688.88, + "probability": 0.8307 + }, + { + "start": 7689.54, + "end": 7690.1, + "probability": 0.6661 + }, + { + "start": 7690.18, + "end": 7696.08, + "probability": 0.9905 + }, + { + "start": 7696.1, + "end": 7697.4, + "probability": 0.938 + }, + { + "start": 7697.58, + "end": 7700.18, + "probability": 0.7495 + }, + { + "start": 7700.48, + "end": 7701.28, + "probability": 0.7921 + }, + { + "start": 7701.32, + "end": 7703.34, + "probability": 0.8346 + }, + { + "start": 7703.42, + "end": 7703.5, + "probability": 0.0257 + }, + { + "start": 7703.5, + "end": 7705.7, + "probability": 0.0915 + }, + { + "start": 7705.74, + "end": 7706.78, + "probability": 0.5439 + }, + { + "start": 7709.32, + "end": 7709.46, + "probability": 0.021 + }, + { + "start": 7709.46, + "end": 7710.82, + "probability": 0.0288 + }, + { + "start": 7711.16, + "end": 7711.5, + "probability": 0.6548 + }, + { + "start": 7712.1, + "end": 7715.14, + "probability": 0.7275 + }, + { + "start": 7715.34, + "end": 7716.3, + "probability": 0.7119 + }, + { + "start": 7716.44, + "end": 7717.78, + "probability": 0.9585 + }, + { + "start": 7718.02, + "end": 7721.02, + "probability": 0.7917 + }, + { + "start": 7721.3, + "end": 7722.7, + "probability": 0.9457 + }, + { + "start": 7722.86, + "end": 7723.96, + "probability": 0.6605 + }, + { + "start": 7724.26, + "end": 7724.68, + "probability": 0.7006 + }, + { + "start": 7726.0, + "end": 7726.52, + "probability": 0.8638 + }, + { + "start": 7727.42, + "end": 7729.78, + "probability": 0.8624 + }, + { + "start": 7730.04, + "end": 7730.82, + "probability": 0.1266 + }, + { + "start": 7730.82, + "end": 7731.56, + "probability": 0.2664 + }, + { + "start": 7732.2, + "end": 7734.68, + "probability": 0.2227 + }, + { + "start": 7735.98, + "end": 7735.98, + "probability": 0.1221 + }, + { + "start": 7735.98, + "end": 7735.98, + "probability": 0.3874 + }, + { + "start": 7735.98, + "end": 7735.98, + "probability": 0.1681 + }, + { + "start": 7735.98, + "end": 7735.98, + "probability": 0.0433 + }, + { + "start": 7735.98, + "end": 7737.06, + "probability": 0.5826 + }, + { + "start": 7737.18, + "end": 7737.72, + "probability": 0.2471 + }, + { + "start": 7737.82, + "end": 7738.9, + "probability": 0.6914 + }, + { + "start": 7739.42, + "end": 7741.6, + "probability": 0.7277 + }, + { + "start": 7742.16, + "end": 7743.0, + "probability": 0.8372 + }, + { + "start": 7743.78, + "end": 7745.24, + "probability": 0.1791 + }, + { + "start": 7745.52, + "end": 7745.68, + "probability": 0.0583 + }, + { + "start": 7745.68, + "end": 7745.68, + "probability": 0.2239 + }, + { + "start": 7745.68, + "end": 7747.26, + "probability": 0.6121 + }, + { + "start": 7747.44, + "end": 7748.87, + "probability": 0.2455 + }, + { + "start": 7748.96, + "end": 7749.38, + "probability": 0.4159 + }, + { + "start": 7749.46, + "end": 7751.02, + "probability": 0.2998 + }, + { + "start": 7751.12, + "end": 7753.28, + "probability": 0.8303 + }, + { + "start": 7753.6, + "end": 7753.66, + "probability": 0.0468 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.0, + "end": 7806.0, + "probability": 0.0 + }, + { + "start": 7806.64, + "end": 7807.62, + "probability": 0.1092 + }, + { + "start": 7807.74, + "end": 7808.02, + "probability": 0.0648 + }, + { + "start": 7808.02, + "end": 7817.96, + "probability": 0.0862 + }, + { + "start": 7818.78, + "end": 7819.46, + "probability": 0.0288 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.0, + "end": 7929.0, + "probability": 0.0 + }, + { + "start": 7929.46, + "end": 7929.86, + "probability": 0.095 + }, + { + "start": 7930.44, + "end": 7931.36, + "probability": 0.5194 + }, + { + "start": 7932.18, + "end": 7933.55, + "probability": 0.926 + }, + { + "start": 7934.88, + "end": 7936.16, + "probability": 0.876 + }, + { + "start": 7937.02, + "end": 7941.42, + "probability": 0.9796 + }, + { + "start": 7942.08, + "end": 7945.8, + "probability": 0.9812 + }, + { + "start": 7946.36, + "end": 7947.29, + "probability": 0.897 + }, + { + "start": 7949.14, + "end": 7951.08, + "probability": 0.9132 + }, + { + "start": 7951.52, + "end": 7952.34, + "probability": 0.9233 + }, + { + "start": 7952.44, + "end": 7953.1, + "probability": 0.968 + }, + { + "start": 7953.64, + "end": 7956.04, + "probability": 0.9321 + }, + { + "start": 7957.06, + "end": 7960.3, + "probability": 0.893 + }, + { + "start": 7961.0, + "end": 7963.88, + "probability": 0.9458 + }, + { + "start": 7964.74, + "end": 7965.98, + "probability": 0.989 + }, + { + "start": 7966.78, + "end": 7969.76, + "probability": 0.7977 + }, + { + "start": 7970.5, + "end": 7971.3, + "probability": 0.9253 + }, + { + "start": 7971.54, + "end": 7972.7, + "probability": 0.986 + }, + { + "start": 7973.88, + "end": 7975.22, + "probability": 0.8573 + }, + { + "start": 7976.48, + "end": 7978.76, + "probability": 0.9079 + }, + { + "start": 7979.62, + "end": 7983.58, + "probability": 0.9662 + }, + { + "start": 7984.04, + "end": 7989.9, + "probability": 0.8682 + }, + { + "start": 7990.6, + "end": 7993.28, + "probability": 0.6475 + }, + { + "start": 7993.58, + "end": 7994.66, + "probability": 0.8784 + }, + { + "start": 7996.68, + "end": 7999.9, + "probability": 0.9937 + }, + { + "start": 8000.68, + "end": 8004.46, + "probability": 0.9862 + }, + { + "start": 8004.9, + "end": 8006.22, + "probability": 0.9905 + }, + { + "start": 8006.34, + "end": 8006.84, + "probability": 0.6683 + }, + { + "start": 8011.56, + "end": 8013.34, + "probability": 0.7857 + }, + { + "start": 8040.2, + "end": 8041.42, + "probability": 0.6882 + }, + { + "start": 8042.46, + "end": 8043.3, + "probability": 0.8966 + }, + { + "start": 8044.7, + "end": 8045.9, + "probability": 0.6544 + }, + { + "start": 8047.82, + "end": 8050.38, + "probability": 0.9772 + }, + { + "start": 8051.9, + "end": 8054.02, + "probability": 0.9756 + }, + { + "start": 8055.18, + "end": 8056.3, + "probability": 0.9801 + }, + { + "start": 8057.42, + "end": 8060.32, + "probability": 0.969 + }, + { + "start": 8061.1, + "end": 8063.6, + "probability": 0.517 + }, + { + "start": 8064.14, + "end": 8064.82, + "probability": 0.89 + }, + { + "start": 8065.84, + "end": 8066.86, + "probability": 0.8486 + }, + { + "start": 8068.06, + "end": 8072.16, + "probability": 0.9375 + }, + { + "start": 8073.6, + "end": 8074.7, + "probability": 0.9786 + }, + { + "start": 8075.72, + "end": 8076.9, + "probability": 0.9782 + }, + { + "start": 8078.0, + "end": 8081.12, + "probability": 0.6644 + }, + { + "start": 8081.92, + "end": 8085.02, + "probability": 0.9338 + }, + { + "start": 8086.78, + "end": 8090.78, + "probability": 0.731 + }, + { + "start": 8092.98, + "end": 8094.16, + "probability": 0.5149 + }, + { + "start": 8094.48, + "end": 8094.88, + "probability": 0.3218 + }, + { + "start": 8094.88, + "end": 8096.76, + "probability": 0.8145 + }, + { + "start": 8097.14, + "end": 8097.67, + "probability": 0.2798 + }, + { + "start": 8098.68, + "end": 8100.04, + "probability": 0.401 + }, + { + "start": 8100.22, + "end": 8104.24, + "probability": 0.4915 + }, + { + "start": 8105.1, + "end": 8109.12, + "probability": 0.1313 + }, + { + "start": 8109.8, + "end": 8111.52, + "probability": 0.556 + }, + { + "start": 8112.56, + "end": 8115.36, + "probability": 0.7126 + }, + { + "start": 8116.8, + "end": 8118.22, + "probability": 0.7174 + }, + { + "start": 8118.24, + "end": 8119.2, + "probability": 0.7812 + }, + { + "start": 8120.18, + "end": 8124.7, + "probability": 0.7552 + }, + { + "start": 8126.1, + "end": 8127.3, + "probability": 0.9658 + }, + { + "start": 8127.82, + "end": 8129.0, + "probability": 0.1523 + }, + { + "start": 8129.62, + "end": 8131.62, + "probability": 0.6215 + }, + { + "start": 8132.94, + "end": 8134.1, + "probability": 0.9507 + }, + { + "start": 8134.58, + "end": 8138.06, + "probability": 0.874 + }, + { + "start": 8139.54, + "end": 8143.42, + "probability": 0.9424 + }, + { + "start": 8144.1, + "end": 8145.23, + "probability": 0.8502 + }, + { + "start": 8146.26, + "end": 8147.56, + "probability": 0.7538 + }, + { + "start": 8148.44, + "end": 8154.6, + "probability": 0.9909 + }, + { + "start": 8155.4, + "end": 8156.8, + "probability": 0.5463 + }, + { + "start": 8157.3, + "end": 8158.48, + "probability": 0.8445 + }, + { + "start": 8159.24, + "end": 8160.44, + "probability": 0.2543 + }, + { + "start": 8161.42, + "end": 8164.42, + "probability": 0.7183 + }, + { + "start": 8165.26, + "end": 8167.8, + "probability": 0.9457 + }, + { + "start": 8168.92, + "end": 8169.86, + "probability": 0.7007 + }, + { + "start": 8170.06, + "end": 8173.94, + "probability": 0.94 + }, + { + "start": 8174.4, + "end": 8175.28, + "probability": 0.8198 + }, + { + "start": 8175.5, + "end": 8175.68, + "probability": 0.4106 + }, + { + "start": 8176.64, + "end": 8178.04, + "probability": 0.8416 + }, + { + "start": 8178.04, + "end": 8180.28, + "probability": 0.5911 + }, + { + "start": 8180.94, + "end": 8182.74, + "probability": 0.9692 + }, + { + "start": 8183.06, + "end": 8186.15, + "probability": 0.9859 + }, + { + "start": 8187.04, + "end": 8189.18, + "probability": 0.9884 + }, + { + "start": 8189.64, + "end": 8196.96, + "probability": 0.8375 + }, + { + "start": 8198.08, + "end": 8200.84, + "probability": 0.6299 + }, + { + "start": 8201.44, + "end": 8204.2, + "probability": 0.7134 + }, + { + "start": 8204.66, + "end": 8206.62, + "probability": 0.9752 + }, + { + "start": 8207.68, + "end": 8208.18, + "probability": 0.6847 + }, + { + "start": 8209.7, + "end": 8210.86, + "probability": 0.9694 + }, + { + "start": 8211.6, + "end": 8213.22, + "probability": 0.9912 + }, + { + "start": 8213.92, + "end": 8217.46, + "probability": 0.9712 + }, + { + "start": 8218.24, + "end": 8219.62, + "probability": 0.7548 + }, + { + "start": 8220.42, + "end": 8221.48, + "probability": 0.9296 + }, + { + "start": 8221.56, + "end": 8223.82, + "probability": 0.9524 + }, + { + "start": 8224.2, + "end": 8226.0, + "probability": 0.9526 + }, + { + "start": 8226.52, + "end": 8230.18, + "probability": 0.9907 + }, + { + "start": 8230.74, + "end": 8231.7, + "probability": 0.9823 + }, + { + "start": 8232.42, + "end": 8234.32, + "probability": 0.9617 + }, + { + "start": 8235.14, + "end": 8237.89, + "probability": 0.9156 + }, + { + "start": 8238.84, + "end": 8239.82, + "probability": 0.9882 + }, + { + "start": 8240.18, + "end": 8243.84, + "probability": 0.8137 + }, + { + "start": 8244.08, + "end": 8246.4, + "probability": 0.8083 + }, + { + "start": 8246.8, + "end": 8247.68, + "probability": 0.9471 + }, + { + "start": 8248.06, + "end": 8250.5, + "probability": 0.9729 + }, + { + "start": 8250.94, + "end": 8251.58, + "probability": 0.792 + }, + { + "start": 8251.68, + "end": 8255.6, + "probability": 0.9505 + }, + { + "start": 8255.96, + "end": 8258.04, + "probability": 0.7806 + }, + { + "start": 8258.26, + "end": 8259.04, + "probability": 0.5317 + }, + { + "start": 8259.26, + "end": 8260.1, + "probability": 0.3541 + }, + { + "start": 8260.54, + "end": 8261.7, + "probability": 0.6356 + }, + { + "start": 8262.14, + "end": 8263.52, + "probability": 0.9565 + }, + { + "start": 8263.9, + "end": 8265.05, + "probability": 0.9604 + }, + { + "start": 8265.42, + "end": 8266.44, + "probability": 0.9917 + }, + { + "start": 8266.48, + "end": 8269.68, + "probability": 0.9513 + }, + { + "start": 8269.76, + "end": 8270.34, + "probability": 0.8509 + }, + { + "start": 8270.48, + "end": 8273.38, + "probability": 0.99 + }, + { + "start": 8273.9, + "end": 8277.82, + "probability": 0.9146 + }, + { + "start": 8278.12, + "end": 8278.88, + "probability": 0.9171 + }, + { + "start": 8279.28, + "end": 8279.8, + "probability": 0.8813 + }, + { + "start": 8280.14, + "end": 8281.18, + "probability": 0.9778 + }, + { + "start": 8281.58, + "end": 8282.78, + "probability": 0.899 + }, + { + "start": 8282.84, + "end": 8284.44, + "probability": 0.6632 + }, + { + "start": 8284.48, + "end": 8286.74, + "probability": 0.986 + }, + { + "start": 8289.82, + "end": 8290.18, + "probability": 0.6518 + }, + { + "start": 8290.26, + "end": 8292.92, + "probability": 0.9882 + }, + { + "start": 8294.16, + "end": 8294.84, + "probability": 0.2808 + }, + { + "start": 8295.3, + "end": 8295.94, + "probability": 0.8552 + }, + { + "start": 8296.64, + "end": 8298.4, + "probability": 0.7846 + }, + { + "start": 8298.72, + "end": 8302.26, + "probability": 0.8276 + }, + { + "start": 8302.4, + "end": 8305.5, + "probability": 0.8767 + }, + { + "start": 8306.52, + "end": 8309.1, + "probability": 0.9523 + }, + { + "start": 8309.74, + "end": 8311.82, + "probability": 0.8624 + }, + { + "start": 8312.56, + "end": 8313.58, + "probability": 0.8323 + }, + { + "start": 8314.48, + "end": 8315.04, + "probability": 0.6867 + }, + { + "start": 8330.24, + "end": 8334.02, + "probability": 0.4324 + }, + { + "start": 8334.16, + "end": 8337.58, + "probability": 0.8078 + }, + { + "start": 8337.58, + "end": 8341.66, + "probability": 0.9304 + }, + { + "start": 8341.7, + "end": 8342.7, + "probability": 0.5626 + }, + { + "start": 8343.83, + "end": 8346.82, + "probability": 0.9512 + }, + { + "start": 8347.84, + "end": 8348.14, + "probability": 0.0768 + }, + { + "start": 8348.14, + "end": 8349.04, + "probability": 0.1251 + }, + { + "start": 8351.96, + "end": 8354.54, + "probability": 0.1513 + }, + { + "start": 8355.8, + "end": 8358.08, + "probability": 0.0375 + }, + { + "start": 8358.86, + "end": 8359.16, + "probability": 0.0299 + }, + { + "start": 8361.52, + "end": 8362.94, + "probability": 0.106 + }, + { + "start": 8364.8, + "end": 8367.66, + "probability": 0.0444 + }, + { + "start": 8379.2, + "end": 8380.24, + "probability": 0.146 + }, + { + "start": 8384.92, + "end": 8386.52, + "probability": 0.0104 + }, + { + "start": 8388.08, + "end": 8389.88, + "probability": 0.1195 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8427.0, + "end": 8427.0, + "probability": 0.0 + }, + { + "start": 8431.06, + "end": 8432.66, + "probability": 0.8814 + }, + { + "start": 8433.18, + "end": 8437.78, + "probability": 0.8174 + }, + { + "start": 8439.46, + "end": 8441.22, + "probability": 0.8614 + }, + { + "start": 8441.22, + "end": 8443.3, + "probability": 0.9178 + }, + { + "start": 8443.4, + "end": 8444.36, + "probability": 0.8819 + }, + { + "start": 8444.92, + "end": 8445.64, + "probability": 0.6389 + }, + { + "start": 8446.0, + "end": 8448.16, + "probability": 0.3836 + }, + { + "start": 8448.32, + "end": 8450.38, + "probability": 0.8424 + }, + { + "start": 8451.04, + "end": 8452.32, + "probability": 0.9492 + }, + { + "start": 8452.4, + "end": 8453.44, + "probability": 0.8477 + }, + { + "start": 8453.58, + "end": 8454.68, + "probability": 0.9544 + }, + { + "start": 8454.76, + "end": 8456.42, + "probability": 0.5835 + }, + { + "start": 8457.1, + "end": 8458.64, + "probability": 0.4633 + }, + { + "start": 8459.36, + "end": 8462.36, + "probability": 0.9879 + }, + { + "start": 8462.56, + "end": 8463.2, + "probability": 0.7393 + }, + { + "start": 8463.58, + "end": 8465.04, + "probability": 0.726 + }, + { + "start": 8465.08, + "end": 8468.94, + "probability": 0.9712 + }, + { + "start": 8469.04, + "end": 8470.24, + "probability": 0.6118 + }, + { + "start": 8470.72, + "end": 8472.2, + "probability": 0.3704 + }, + { + "start": 8472.32, + "end": 8474.06, + "probability": 0.533 + }, + { + "start": 8474.9, + "end": 8478.06, + "probability": 0.9245 + }, + { + "start": 8478.14, + "end": 8479.22, + "probability": 0.8122 + }, + { + "start": 8479.32, + "end": 8481.58, + "probability": 0.9858 + }, + { + "start": 8481.58, + "end": 8484.4, + "probability": 0.9292 + }, + { + "start": 8484.48, + "end": 8485.54, + "probability": 0.5964 + }, + { + "start": 8485.72, + "end": 8487.44, + "probability": 0.261 + }, + { + "start": 8488.06, + "end": 8490.2, + "probability": 0.9902 + }, + { + "start": 8494.4, + "end": 8497.9, + "probability": 0.7604 + }, + { + "start": 8497.98, + "end": 8499.16, + "probability": 0.4436 + }, + { + "start": 8499.34, + "end": 8501.9, + "probability": 0.992 + }, + { + "start": 8502.46, + "end": 8503.9, + "probability": 0.9863 + }, + { + "start": 8504.04, + "end": 8505.46, + "probability": 0.6532 + }, + { + "start": 8505.6, + "end": 8506.7, + "probability": 0.277 + }, + { + "start": 8506.92, + "end": 8508.34, + "probability": 0.9697 + }, + { + "start": 8508.86, + "end": 8510.92, + "probability": 0.9404 + }, + { + "start": 8510.92, + "end": 8511.86, + "probability": 0.9426 + }, + { + "start": 8512.02, + "end": 8513.56, + "probability": 0.6967 + }, + { + "start": 8514.06, + "end": 8515.68, + "probability": 0.9902 + }, + { + "start": 8516.38, + "end": 8518.6, + "probability": 0.9975 + }, + { + "start": 8518.6, + "end": 8520.66, + "probability": 0.9895 + }, + { + "start": 8520.78, + "end": 8521.4, + "probability": 0.7694 + }, + { + "start": 8521.52, + "end": 8523.32, + "probability": 0.7515 + }, + { + "start": 8523.64, + "end": 8525.52, + "probability": 0.9678 + }, + { + "start": 8526.3, + "end": 8526.82, + "probability": 0.6934 + }, + { + "start": 8539.78, + "end": 8544.96, + "probability": 0.9827 + }, + { + "start": 8545.1, + "end": 8546.38, + "probability": 0.5898 + }, + { + "start": 8547.54, + "end": 8550.68, + "probability": 0.9544 + }, + { + "start": 8550.72, + "end": 8552.32, + "probability": 0.8527 + }, + { + "start": 8552.5, + "end": 8553.3, + "probability": 0.7942 + }, + { + "start": 8571.82, + "end": 8572.18, + "probability": 0.3072 + }, + { + "start": 8572.52, + "end": 8580.72, + "probability": 0.4204 + }, + { + "start": 8581.42, + "end": 8582.36, + "probability": 0.6476 + }, + { + "start": 8584.4, + "end": 8586.72, + "probability": 0.7684 + }, + { + "start": 8586.92, + "end": 8589.37, + "probability": 0.9294 + }, + { + "start": 8591.72, + "end": 8592.78, + "probability": 0.3483 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.0, + "end": 8674.0, + "probability": 0.0 + }, + { + "start": 8674.12, + "end": 8674.72, + "probability": 0.1433 + }, + { + "start": 8674.92, + "end": 8677.6, + "probability": 0.5154 + }, + { + "start": 8677.66, + "end": 8680.1, + "probability": 0.1448 + }, + { + "start": 8680.42, + "end": 8682.78, + "probability": 0.9703 + }, + { + "start": 8683.66, + "end": 8686.86, + "probability": 0.8816 + }, + { + "start": 8687.7, + "end": 8692.26, + "probability": 0.993 + }, + { + "start": 8692.32, + "end": 8696.42, + "probability": 0.9848 + }, + { + "start": 8697.0, + "end": 8699.48, + "probability": 0.9875 + }, + { + "start": 8699.48, + "end": 8702.79, + "probability": 0.9947 + }, + { + "start": 8703.42, + "end": 8705.18, + "probability": 0.9466 + }, + { + "start": 8706.28, + "end": 8711.11, + "probability": 0.9673 + }, + { + "start": 8711.6, + "end": 8712.38, + "probability": 0.9473 + }, + { + "start": 8712.96, + "end": 8715.9, + "probability": 0.9835 + }, + { + "start": 8716.12, + "end": 8720.44, + "probability": 0.9065 + }, + { + "start": 8720.5, + "end": 8722.9, + "probability": 0.7607 + }, + { + "start": 8723.36, + "end": 8725.41, + "probability": 0.843 + }, + { + "start": 8726.46, + "end": 8728.82, + "probability": 0.9566 + }, + { + "start": 8728.82, + "end": 8731.82, + "probability": 0.9826 + }, + { + "start": 8732.02, + "end": 8733.5, + "probability": 0.7781 + }, + { + "start": 8733.58, + "end": 8734.7, + "probability": 0.7839 + }, + { + "start": 8734.72, + "end": 8735.28, + "probability": 0.7667 + }, + { + "start": 8735.8, + "end": 8739.54, + "probability": 0.9747 + }, + { + "start": 8740.32, + "end": 8742.36, + "probability": 0.9811 + }, + { + "start": 8742.53, + "end": 8744.34, + "probability": 0.6593 + }, + { + "start": 8745.76, + "end": 8748.58, + "probability": 0.7128 + }, + { + "start": 8749.48, + "end": 8754.86, + "probability": 0.881 + }, + { + "start": 8755.06, + "end": 8755.38, + "probability": 0.7828 + }, + { + "start": 8756.08, + "end": 8760.2, + "probability": 0.9542 + }, + { + "start": 8760.2, + "end": 8765.0, + "probability": 0.9711 + }, + { + "start": 8765.72, + "end": 8768.6, + "probability": 0.9923 + }, + { + "start": 8768.6, + "end": 8771.38, + "probability": 0.9923 + }, + { + "start": 8771.5, + "end": 8771.88, + "probability": 0.8418 + }, + { + "start": 8772.66, + "end": 8777.94, + "probability": 0.8118 + }, + { + "start": 8777.94, + "end": 8781.28, + "probability": 0.7996 + }, + { + "start": 8781.72, + "end": 8782.54, + "probability": 0.9933 + }, + { + "start": 8783.1, + "end": 8785.66, + "probability": 0.4925 + }, + { + "start": 8785.7, + "end": 8788.32, + "probability": 0.9674 + }, + { + "start": 8788.98, + "end": 8791.8, + "probability": 0.8949 + }, + { + "start": 8792.97, + "end": 8794.56, + "probability": 0.856 + }, + { + "start": 8794.64, + "end": 8796.78, + "probability": 0.9775 + }, + { + "start": 8798.38, + "end": 8798.82, + "probability": 0.319 + }, + { + "start": 8799.9, + "end": 8800.44, + "probability": 0.727 + }, + { + "start": 8801.3, + "end": 8802.73, + "probability": 0.7339 + }, + { + "start": 8803.04, + "end": 8803.78, + "probability": 0.8998 + }, + { + "start": 8804.02, + "end": 8807.14, + "probability": 0.8986 + }, + { + "start": 8808.82, + "end": 8809.41, + "probability": 0.6323 + }, + { + "start": 8809.64, + "end": 8810.31, + "probability": 0.6666 + }, + { + "start": 8811.96, + "end": 8812.96, + "probability": 0.6175 + }, + { + "start": 8813.06, + "end": 8813.64, + "probability": 0.4682 + }, + { + "start": 8813.78, + "end": 8814.64, + "probability": 0.9265 + }, + { + "start": 8814.68, + "end": 8815.22, + "probability": 0.9045 + }, + { + "start": 8815.66, + "end": 8817.36, + "probability": 0.8592 + }, + { + "start": 8817.44, + "end": 8818.14, + "probability": 0.9007 + }, + { + "start": 8818.64, + "end": 8819.72, + "probability": 0.9931 + }, + { + "start": 8819.72, + "end": 8820.32, + "probability": 0.92 + }, + { + "start": 8822.02, + "end": 8824.42, + "probability": 0.4064 + }, + { + "start": 8828.12, + "end": 8828.54, + "probability": 0.7429 + }, + { + "start": 8828.6, + "end": 8832.28, + "probability": 0.9829 + }, + { + "start": 8832.28, + "end": 8837.04, + "probability": 0.7682 + }, + { + "start": 8837.66, + "end": 8839.96, + "probability": 0.8073 + }, + { + "start": 8856.16, + "end": 8856.16, + "probability": 0.5666 + }, + { + "start": 8856.16, + "end": 8856.16, + "probability": 0.0038 + }, + { + "start": 8856.16, + "end": 8857.58, + "probability": 0.6821 + }, + { + "start": 8857.68, + "end": 8860.02, + "probability": 0.9621 + }, + { + "start": 8860.38, + "end": 8863.52, + "probability": 0.9775 + }, + { + "start": 8864.22, + "end": 8868.14, + "probability": 0.8599 + }, + { + "start": 8869.12, + "end": 8874.12, + "probability": 0.567 + }, + { + "start": 8890.7, + "end": 8894.04, + "probability": 0.8719 + }, + { + "start": 8894.04, + "end": 8897.22, + "probability": 0.8627 + }, + { + "start": 8897.3, + "end": 8898.62, + "probability": 0.607 + }, + { + "start": 8909.42, + "end": 8910.76, + "probability": 0.1872 + }, + { + "start": 8911.42, + "end": 8915.96, + "probability": 0.138 + }, + { + "start": 8916.46, + "end": 8916.92, + "probability": 0.1417 + }, + { + "start": 8918.74, + "end": 8922.52, + "probability": 0.0226 + }, + { + "start": 8922.72, + "end": 8925.22, + "probability": 0.0302 + }, + { + "start": 8926.22, + "end": 8926.22, + "probability": 0.0118 + }, + { + "start": 8926.24, + "end": 8926.24, + "probability": 0.0392 + }, + { + "start": 8926.24, + "end": 8926.24, + "probability": 0.0506 + }, + { + "start": 8926.24, + "end": 8926.24, + "probability": 0.1298 + }, + { + "start": 8926.24, + "end": 8927.72, + "probability": 0.5419 + }, + { + "start": 8928.44, + "end": 8928.46, + "probability": 0.0086 + } + ], + "segments_count": 3469, + "words_count": 16369, + "avg_words_per_segment": 4.7187, + "avg_segment_duration": 1.5623, + "avg_words_per_minute": 108.0658, + "plenum_id": "124463", + "duration": 9088.35, + "title": null, + "plenum_date": "2024-02-26" +} \ No newline at end of file