diff --git "a/42000/metadata.json" "b/42000/metadata.json" new file mode 100644--- /dev/null +++ "b/42000/metadata.json" @@ -0,0 +1,54322 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "42000", + "quality_score": 0.8637, + "per_segment_quality_scores": [ + { + "start": 107.08, + "end": 107.44, + "probability": 0.4853 + }, + { + "start": 107.94, + "end": 109.62, + "probability": 0.5963 + }, + { + "start": 112.2, + "end": 113.5, + "probability": 0.8806 + }, + { + "start": 113.62, + "end": 114.98, + "probability": 0.8904 + }, + { + "start": 115.06, + "end": 116.74, + "probability": 0.8805 + }, + { + "start": 117.26, + "end": 117.32, + "probability": 0.0002 + }, + { + "start": 124.26, + "end": 124.36, + "probability": 0.1041 + }, + { + "start": 124.36, + "end": 124.36, + "probability": 0.2819 + }, + { + "start": 124.36, + "end": 124.92, + "probability": 0.0081 + }, + { + "start": 125.48, + "end": 129.0, + "probability": 0.6538 + }, + { + "start": 131.38, + "end": 131.9, + "probability": 0.6467 + }, + { + "start": 131.96, + "end": 133.3, + "probability": 0.6591 + }, + { + "start": 133.46, + "end": 134.9, + "probability": 0.5306 + }, + { + "start": 135.48, + "end": 138.54, + "probability": 0.3298 + }, + { + "start": 140.38, + "end": 142.4, + "probability": 0.0456 + }, + { + "start": 147.68, + "end": 148.52, + "probability": 0.0222 + }, + { + "start": 149.32, + "end": 151.04, + "probability": 0.0127 + }, + { + "start": 151.82, + "end": 151.92, + "probability": 0.0561 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.0, + "end": 256.0, + "probability": 0.0 + }, + { + "start": 256.3, + "end": 260.62, + "probability": 0.0582 + }, + { + "start": 260.62, + "end": 262.18, + "probability": 0.0515 + }, + { + "start": 262.18, + "end": 262.3, + "probability": 0.138 + }, + { + "start": 262.3, + "end": 263.14, + "probability": 0.112 + }, + { + "start": 265.26, + "end": 265.38, + "probability": 0.0368 + }, + { + "start": 265.38, + "end": 265.38, + "probability": 0.071 + }, + { + "start": 265.38, + "end": 266.78, + "probability": 0.1315 + }, + { + "start": 267.36, + "end": 269.34, + "probability": 0.989 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.0, + "end": 377.0, + "probability": 0.0 + }, + { + "start": 377.37, + "end": 380.16, + "probability": 0.8 + }, + { + "start": 380.22, + "end": 382.2, + "probability": 0.8815 + }, + { + "start": 382.5, + "end": 388.38, + "probability": 0.9961 + }, + { + "start": 388.7, + "end": 389.48, + "probability": 0.7153 + }, + { + "start": 389.56, + "end": 389.88, + "probability": 0.9667 + }, + { + "start": 389.98, + "end": 392.25, + "probability": 0.8523 + }, + { + "start": 392.3, + "end": 395.26, + "probability": 0.9414 + }, + { + "start": 395.34, + "end": 396.56, + "probability": 0.9858 + }, + { + "start": 396.66, + "end": 397.99, + "probability": 0.9656 + }, + { + "start": 398.64, + "end": 400.0, + "probability": 0.9456 + }, + { + "start": 400.18, + "end": 405.54, + "probability": 0.989 + }, + { + "start": 405.66, + "end": 408.64, + "probability": 0.8448 + }, + { + "start": 408.96, + "end": 410.52, + "probability": 0.5557 + }, + { + "start": 411.1, + "end": 412.06, + "probability": 0.8298 + }, + { + "start": 412.34, + "end": 413.86, + "probability": 0.9951 + }, + { + "start": 413.98, + "end": 415.5, + "probability": 0.9722 + }, + { + "start": 415.74, + "end": 417.42, + "probability": 0.9805 + }, + { + "start": 418.4, + "end": 420.18, + "probability": 0.9792 + }, + { + "start": 420.36, + "end": 420.6, + "probability": 0.5869 + }, + { + "start": 422.46, + "end": 424.54, + "probability": 0.8701 + }, + { + "start": 425.04, + "end": 427.14, + "probability": 0.8951 + }, + { + "start": 430.88, + "end": 432.7, + "probability": 0.8792 + }, + { + "start": 433.12, + "end": 435.46, + "probability": 0.8495 + }, + { + "start": 436.44, + "end": 440.7, + "probability": 0.4435 + }, + { + "start": 441.56, + "end": 443.3, + "probability": 0.9743 + }, + { + "start": 443.42, + "end": 445.77, + "probability": 0.988 + }, + { + "start": 446.56, + "end": 447.88, + "probability": 0.9856 + }, + { + "start": 447.98, + "end": 448.66, + "probability": 0.7347 + }, + { + "start": 448.72, + "end": 450.84, + "probability": 0.984 + }, + { + "start": 452.0, + "end": 456.02, + "probability": 0.9976 + }, + { + "start": 456.84, + "end": 460.5, + "probability": 0.9867 + }, + { + "start": 461.64, + "end": 464.36, + "probability": 0.9958 + }, + { + "start": 465.3, + "end": 471.18, + "probability": 0.8053 + }, + { + "start": 471.28, + "end": 474.74, + "probability": 0.7442 + }, + { + "start": 475.44, + "end": 478.56, + "probability": 0.9339 + }, + { + "start": 479.56, + "end": 480.54, + "probability": 0.6683 + }, + { + "start": 480.58, + "end": 484.1, + "probability": 0.8818 + }, + { + "start": 485.46, + "end": 487.22, + "probability": 0.7123 + }, + { + "start": 487.46, + "end": 491.44, + "probability": 0.981 + }, + { + "start": 491.96, + "end": 494.92, + "probability": 0.9827 + }, + { + "start": 495.02, + "end": 498.52, + "probability": 0.9863 + }, + { + "start": 499.38, + "end": 502.54, + "probability": 0.9937 + }, + { + "start": 503.06, + "end": 503.82, + "probability": 0.7548 + }, + { + "start": 503.9, + "end": 506.66, + "probability": 0.823 + }, + { + "start": 507.0, + "end": 509.76, + "probability": 0.9942 + }, + { + "start": 510.26, + "end": 512.68, + "probability": 0.9909 + }, + { + "start": 513.78, + "end": 514.3, + "probability": 0.722 + }, + { + "start": 514.68, + "end": 515.46, + "probability": 0.668 + }, + { + "start": 516.06, + "end": 517.7, + "probability": 0.9575 + }, + { + "start": 518.52, + "end": 521.82, + "probability": 0.9889 + }, + { + "start": 522.38, + "end": 527.04, + "probability": 0.9863 + }, + { + "start": 527.3, + "end": 527.76, + "probability": 0.871 + }, + { + "start": 528.28, + "end": 530.36, + "probability": 0.9517 + }, + { + "start": 530.46, + "end": 533.94, + "probability": 0.8919 + }, + { + "start": 535.24, + "end": 535.88, + "probability": 0.6528 + }, + { + "start": 536.0, + "end": 537.0, + "probability": 0.5597 + }, + { + "start": 537.16, + "end": 539.12, + "probability": 0.9919 + }, + { + "start": 539.22, + "end": 540.26, + "probability": 0.8038 + }, + { + "start": 541.24, + "end": 543.6, + "probability": 0.9944 + }, + { + "start": 544.6, + "end": 547.64, + "probability": 0.8149 + }, + { + "start": 547.8, + "end": 550.0, + "probability": 0.9961 + }, + { + "start": 550.64, + "end": 552.44, + "probability": 0.8639 + }, + { + "start": 553.12, + "end": 554.2, + "probability": 0.9753 + }, + { + "start": 554.3, + "end": 559.58, + "probability": 0.9659 + }, + { + "start": 560.44, + "end": 563.7, + "probability": 0.9963 + }, + { + "start": 564.24, + "end": 565.28, + "probability": 0.9746 + }, + { + "start": 565.38, + "end": 566.63, + "probability": 0.9391 + }, + { + "start": 567.18, + "end": 570.8, + "probability": 0.8301 + }, + { + "start": 571.22, + "end": 573.48, + "probability": 0.8559 + }, + { + "start": 574.48, + "end": 580.74, + "probability": 0.9106 + }, + { + "start": 581.44, + "end": 583.9, + "probability": 0.9788 + }, + { + "start": 584.02, + "end": 584.64, + "probability": 0.6733 + }, + { + "start": 585.0, + "end": 585.8, + "probability": 0.978 + }, + { + "start": 585.92, + "end": 586.46, + "probability": 0.5171 + }, + { + "start": 586.84, + "end": 588.18, + "probability": 0.6898 + }, + { + "start": 588.68, + "end": 591.26, + "probability": 0.9432 + }, + { + "start": 591.92, + "end": 593.06, + "probability": 0.9694 + }, + { + "start": 593.62, + "end": 596.52, + "probability": 0.9071 + }, + { + "start": 596.64, + "end": 597.57, + "probability": 0.9487 + }, + { + "start": 597.76, + "end": 599.81, + "probability": 0.9525 + }, + { + "start": 601.27, + "end": 603.94, + "probability": 0.9775 + }, + { + "start": 603.94, + "end": 607.62, + "probability": 0.9857 + }, + { + "start": 607.84, + "end": 608.3, + "probability": 0.7352 + }, + { + "start": 608.4, + "end": 609.48, + "probability": 0.6069 + }, + { + "start": 609.5, + "end": 611.54, + "probability": 0.9312 + }, + { + "start": 611.54, + "end": 612.12, + "probability": 0.9854 + }, + { + "start": 612.32, + "end": 612.78, + "probability": 0.5712 + }, + { + "start": 612.8, + "end": 613.82, + "probability": 0.7853 + }, + { + "start": 614.36, + "end": 616.68, + "probability": 0.8342 + }, + { + "start": 616.96, + "end": 617.32, + "probability": 0.6429 + }, + { + "start": 617.32, + "end": 619.12, + "probability": 0.4735 + }, + { + "start": 621.02, + "end": 623.5, + "probability": 0.6189 + }, + { + "start": 625.7, + "end": 625.86, + "probability": 0.294 + }, + { + "start": 625.86, + "end": 625.86, + "probability": 0.4176 + }, + { + "start": 626.34, + "end": 627.52, + "probability": 0.7442 + }, + { + "start": 627.72, + "end": 635.3, + "probability": 0.9225 + }, + { + "start": 635.6, + "end": 637.3, + "probability": 0.6608 + }, + { + "start": 637.9, + "end": 641.4, + "probability": 0.8533 + }, + { + "start": 641.98, + "end": 643.45, + "probability": 0.9584 + }, + { + "start": 643.84, + "end": 645.34, + "probability": 0.9565 + }, + { + "start": 645.4, + "end": 650.9, + "probability": 0.9951 + }, + { + "start": 651.3, + "end": 655.36, + "probability": 0.9512 + }, + { + "start": 656.02, + "end": 660.26, + "probability": 0.9856 + }, + { + "start": 660.8, + "end": 664.32, + "probability": 0.9627 + }, + { + "start": 664.7, + "end": 670.08, + "probability": 0.989 + }, + { + "start": 670.4, + "end": 670.68, + "probability": 0.5847 + }, + { + "start": 671.27, + "end": 673.22, + "probability": 0.6446 + }, + { + "start": 673.26, + "end": 673.74, + "probability": 0.6861 + }, + { + "start": 673.84, + "end": 675.46, + "probability": 0.7621 + }, + { + "start": 675.84, + "end": 677.06, + "probability": 0.7627 + }, + { + "start": 677.12, + "end": 678.02, + "probability": 0.9385 + }, + { + "start": 678.18, + "end": 683.24, + "probability": 0.9713 + }, + { + "start": 684.2, + "end": 687.6, + "probability": 0.6676 + }, + { + "start": 688.56, + "end": 689.98, + "probability": 0.9689 + }, + { + "start": 691.74, + "end": 694.06, + "probability": 0.846 + }, + { + "start": 694.62, + "end": 699.9, + "probability": 0.8657 + }, + { + "start": 700.28, + "end": 701.74, + "probability": 0.4327 + }, + { + "start": 702.32, + "end": 708.02, + "probability": 0.9826 + }, + { + "start": 708.68, + "end": 712.32, + "probability": 0.9105 + }, + { + "start": 712.44, + "end": 714.26, + "probability": 0.8695 + }, + { + "start": 714.4, + "end": 716.92, + "probability": 0.917 + }, + { + "start": 717.32, + "end": 718.7, + "probability": 0.6074 + }, + { + "start": 719.28, + "end": 723.72, + "probability": 0.6926 + }, + { + "start": 724.04, + "end": 725.32, + "probability": 0.8204 + }, + { + "start": 725.4, + "end": 727.44, + "probability": 0.7009 + }, + { + "start": 727.8, + "end": 730.4, + "probability": 0.9326 + }, + { + "start": 730.82, + "end": 735.3, + "probability": 0.9846 + }, + { + "start": 735.52, + "end": 737.9, + "probability": 0.9901 + }, + { + "start": 738.1, + "end": 740.22, + "probability": 0.9821 + }, + { + "start": 740.44, + "end": 747.4, + "probability": 0.9635 + }, + { + "start": 748.04, + "end": 754.76, + "probability": 0.9873 + }, + { + "start": 755.08, + "end": 756.76, + "probability": 0.7243 + }, + { + "start": 757.0, + "end": 758.74, + "probability": 0.8567 + }, + { + "start": 759.28, + "end": 764.84, + "probability": 0.9863 + }, + { + "start": 765.2, + "end": 767.86, + "probability": 0.995 + }, + { + "start": 767.88, + "end": 768.1, + "probability": 0.3078 + }, + { + "start": 768.16, + "end": 769.7, + "probability": 0.895 + }, + { + "start": 769.98, + "end": 774.5, + "probability": 0.8237 + }, + { + "start": 774.6, + "end": 774.86, + "probability": 0.8743 + }, + { + "start": 774.88, + "end": 775.5, + "probability": 0.9603 + }, + { + "start": 775.72, + "end": 778.24, + "probability": 0.9857 + }, + { + "start": 778.64, + "end": 780.66, + "probability": 0.8606 + }, + { + "start": 780.8, + "end": 784.48, + "probability": 0.9479 + }, + { + "start": 784.6, + "end": 787.64, + "probability": 0.8772 + }, + { + "start": 787.74, + "end": 789.22, + "probability": 0.7809 + }, + { + "start": 789.86, + "end": 794.08, + "probability": 0.9113 + }, + { + "start": 794.76, + "end": 795.3, + "probability": 0.3238 + }, + { + "start": 795.3, + "end": 797.86, + "probability": 0.846 + }, + { + "start": 798.24, + "end": 799.92, + "probability": 0.7808 + }, + { + "start": 800.5, + "end": 802.96, + "probability": 0.8516 + }, + { + "start": 803.0, + "end": 803.96, + "probability": 0.8968 + }, + { + "start": 804.04, + "end": 804.86, + "probability": 0.9746 + }, + { + "start": 804.98, + "end": 805.86, + "probability": 0.6709 + }, + { + "start": 806.46, + "end": 807.92, + "probability": 0.7309 + }, + { + "start": 808.74, + "end": 809.92, + "probability": 0.0159 + }, + { + "start": 810.02, + "end": 812.82, + "probability": 0.8097 + }, + { + "start": 812.92, + "end": 813.42, + "probability": 0.3988 + }, + { + "start": 813.48, + "end": 814.02, + "probability": 0.3664 + }, + { + "start": 814.2, + "end": 815.82, + "probability": 0.8337 + }, + { + "start": 815.92, + "end": 817.08, + "probability": 0.9797 + }, + { + "start": 817.08, + "end": 817.62, + "probability": 0.214 + }, + { + "start": 817.7, + "end": 818.84, + "probability": 0.6371 + }, + { + "start": 819.04, + "end": 823.28, + "probability": 0.9331 + }, + { + "start": 823.28, + "end": 828.84, + "probability": 0.9417 + }, + { + "start": 829.0, + "end": 830.48, + "probability": 0.4861 + }, + { + "start": 831.28, + "end": 834.1, + "probability": 0.8361 + }, + { + "start": 834.7, + "end": 836.86, + "probability": 0.3601 + }, + { + "start": 837.18, + "end": 838.94, + "probability": 0.8144 + }, + { + "start": 839.22, + "end": 840.91, + "probability": 0.7028 + }, + { + "start": 842.02, + "end": 844.76, + "probability": 0.6652 + }, + { + "start": 845.58, + "end": 847.88, + "probability": 0.5108 + }, + { + "start": 848.36, + "end": 849.78, + "probability": 0.9762 + }, + { + "start": 849.86, + "end": 850.68, + "probability": 0.729 + }, + { + "start": 851.02, + "end": 851.74, + "probability": 0.4196 + }, + { + "start": 851.98, + "end": 855.76, + "probability": 0.6787 + }, + { + "start": 856.83, + "end": 859.92, + "probability": 0.7979 + }, + { + "start": 860.62, + "end": 862.82, + "probability": 0.9561 + }, + { + "start": 863.34, + "end": 865.74, + "probability": 0.8246 + }, + { + "start": 866.04, + "end": 868.02, + "probability": 0.9446 + }, + { + "start": 868.86, + "end": 870.78, + "probability": 0.2545 + }, + { + "start": 871.54, + "end": 872.24, + "probability": 0.8793 + }, + { + "start": 872.32, + "end": 873.32, + "probability": 0.905 + }, + { + "start": 873.66, + "end": 881.0, + "probability": 0.8157 + }, + { + "start": 881.42, + "end": 885.06, + "probability": 0.9884 + }, + { + "start": 885.46, + "end": 889.94, + "probability": 0.9683 + }, + { + "start": 890.06, + "end": 891.64, + "probability": 0.5558 + }, + { + "start": 892.16, + "end": 893.02, + "probability": 0.615 + }, + { + "start": 893.52, + "end": 901.04, + "probability": 0.8448 + }, + { + "start": 901.5, + "end": 902.88, + "probability": 0.9292 + }, + { + "start": 903.12, + "end": 903.99, + "probability": 0.9697 + }, + { + "start": 904.48, + "end": 904.96, + "probability": 0.249 + }, + { + "start": 905.24, + "end": 907.9, + "probability": 0.5746 + }, + { + "start": 908.42, + "end": 911.16, + "probability": 0.9789 + }, + { + "start": 911.32, + "end": 912.54, + "probability": 0.6431 + }, + { + "start": 912.86, + "end": 914.46, + "probability": 0.966 + }, + { + "start": 914.72, + "end": 916.06, + "probability": 0.8434 + }, + { + "start": 916.26, + "end": 917.04, + "probability": 0.5322 + }, + { + "start": 917.22, + "end": 918.36, + "probability": 0.6223 + }, + { + "start": 918.48, + "end": 920.08, + "probability": 0.9078 + }, + { + "start": 920.12, + "end": 922.64, + "probability": 0.6727 + }, + { + "start": 923.06, + "end": 925.8, + "probability": 0.7442 + }, + { + "start": 926.02, + "end": 926.77, + "probability": 0.9095 + }, + { + "start": 927.14, + "end": 929.7, + "probability": 0.956 + }, + { + "start": 929.7, + "end": 932.38, + "probability": 0.9636 + }, + { + "start": 932.74, + "end": 932.8, + "probability": 0.242 + }, + { + "start": 932.8, + "end": 934.84, + "probability": 0.8754 + }, + { + "start": 934.98, + "end": 937.16, + "probability": 0.9673 + }, + { + "start": 937.72, + "end": 938.02, + "probability": 0.5903 + }, + { + "start": 938.04, + "end": 938.7, + "probability": 0.7898 + }, + { + "start": 938.92, + "end": 940.62, + "probability": 0.9607 + }, + { + "start": 940.78, + "end": 943.04, + "probability": 0.9142 + }, + { + "start": 943.26, + "end": 943.64, + "probability": 0.5857 + }, + { + "start": 943.98, + "end": 945.64, + "probability": 0.6758 + }, + { + "start": 945.72, + "end": 948.56, + "probability": 0.9016 + }, + { + "start": 949.04, + "end": 951.02, + "probability": 0.9309 + }, + { + "start": 957.18, + "end": 959.66, + "probability": 0.6891 + }, + { + "start": 960.66, + "end": 961.9, + "probability": 0.9355 + }, + { + "start": 962.14, + "end": 964.7, + "probability": 0.8915 + }, + { + "start": 964.76, + "end": 965.6, + "probability": 0.7119 + }, + { + "start": 966.82, + "end": 968.86, + "probability": 0.9575 + }, + { + "start": 969.4, + "end": 970.56, + "probability": 0.9004 + }, + { + "start": 970.8, + "end": 972.78, + "probability": 0.8764 + }, + { + "start": 972.88, + "end": 973.7, + "probability": 0.7509 + }, + { + "start": 973.94, + "end": 976.44, + "probability": 0.6694 + }, + { + "start": 976.86, + "end": 981.14, + "probability": 0.9041 + }, + { + "start": 981.74, + "end": 985.7, + "probability": 0.9819 + }, + { + "start": 986.06, + "end": 988.51, + "probability": 0.981 + }, + { + "start": 989.86, + "end": 991.98, + "probability": 0.7148 + }, + { + "start": 992.66, + "end": 994.68, + "probability": 0.8795 + }, + { + "start": 995.26, + "end": 998.6, + "probability": 0.8708 + }, + { + "start": 998.82, + "end": 1000.06, + "probability": 0.9248 + }, + { + "start": 1000.18, + "end": 1003.16, + "probability": 0.9681 + }, + { + "start": 1003.66, + "end": 1005.34, + "probability": 0.901 + }, + { + "start": 1005.38, + "end": 1006.12, + "probability": 0.941 + }, + { + "start": 1006.26, + "end": 1007.2, + "probability": 0.755 + }, + { + "start": 1007.48, + "end": 1009.7, + "probability": 0.8905 + }, + { + "start": 1009.82, + "end": 1010.66, + "probability": 0.9064 + }, + { + "start": 1011.2, + "end": 1014.04, + "probability": 0.6696 + }, + { + "start": 1014.06, + "end": 1017.06, + "probability": 0.9968 + }, + { + "start": 1017.32, + "end": 1021.84, + "probability": 0.806 + }, + { + "start": 1021.86, + "end": 1022.26, + "probability": 0.4686 + }, + { + "start": 1022.3, + "end": 1024.56, + "probability": 0.9009 + }, + { + "start": 1024.96, + "end": 1026.96, + "probability": 0.9953 + }, + { + "start": 1027.26, + "end": 1029.6, + "probability": 0.9419 + }, + { + "start": 1029.96, + "end": 1031.32, + "probability": 0.9375 + }, + { + "start": 1031.4, + "end": 1032.58, + "probability": 0.8359 + }, + { + "start": 1032.74, + "end": 1032.94, + "probability": 0.5532 + }, + { + "start": 1032.98, + "end": 1035.36, + "probability": 0.985 + }, + { + "start": 1035.44, + "end": 1037.34, + "probability": 0.8795 + }, + { + "start": 1037.72, + "end": 1038.26, + "probability": 0.1414 + }, + { + "start": 1038.26, + "end": 1038.26, + "probability": 0.017 + }, + { + "start": 1038.26, + "end": 1039.28, + "probability": 0.7343 + }, + { + "start": 1039.54, + "end": 1041.6, + "probability": 0.6836 + }, + { + "start": 1042.94, + "end": 1044.82, + "probability": 0.0084 + }, + { + "start": 1045.34, + "end": 1048.84, + "probability": 0.193 + }, + { + "start": 1048.84, + "end": 1051.28, + "probability": 0.2969 + }, + { + "start": 1051.28, + "end": 1053.82, + "probability": 0.1085 + }, + { + "start": 1054.28, + "end": 1055.96, + "probability": 0.2012 + }, + { + "start": 1057.0, + "end": 1057.42, + "probability": 0.065 + }, + { + "start": 1058.62, + "end": 1061.0, + "probability": 0.0765 + }, + { + "start": 1064.1, + "end": 1067.26, + "probability": 0.316 + }, + { + "start": 1070.3, + "end": 1073.26, + "probability": 0.2744 + }, + { + "start": 1074.12, + "end": 1075.36, + "probability": 0.0984 + }, + { + "start": 1075.52, + "end": 1075.52, + "probability": 0.0103 + }, + { + "start": 1076.16, + "end": 1076.76, + "probability": 0.1331 + }, + { + "start": 1076.82, + "end": 1078.5, + "probability": 0.1788 + }, + { + "start": 1078.88, + "end": 1082.94, + "probability": 0.2034 + }, + { + "start": 1083.42, + "end": 1084.0, + "probability": 0.0971 + }, + { + "start": 1084.06, + "end": 1085.74, + "probability": 0.3831 + }, + { + "start": 1085.76, + "end": 1087.13, + "probability": 0.0082 + }, + { + "start": 1087.88, + "end": 1088.4, + "probability": 0.1702 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.0, + "end": 1120.0, + "probability": 0.0 + }, + { + "start": 1120.8, + "end": 1122.84, + "probability": 0.1503 + }, + { + "start": 1123.06, + "end": 1125.08, + "probability": 0.0346 + }, + { + "start": 1126.38, + "end": 1126.4, + "probability": 0.1096 + }, + { + "start": 1126.4, + "end": 1129.68, + "probability": 0.0959 + }, + { + "start": 1130.28, + "end": 1133.75, + "probability": 0.2018 + }, + { + "start": 1136.16, + "end": 1136.88, + "probability": 0.1972 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.0, + "end": 1248.0, + "probability": 0.0 + }, + { + "start": 1248.14, + "end": 1248.24, + "probability": 0.0365 + }, + { + "start": 1248.24, + "end": 1250.02, + "probability": 0.3855 + }, + { + "start": 1250.12, + "end": 1251.54, + "probability": 0.8502 + }, + { + "start": 1251.8, + "end": 1254.3, + "probability": 0.7876 + }, + { + "start": 1254.4, + "end": 1254.92, + "probability": 0.6978 + }, + { + "start": 1256.86, + "end": 1257.64, + "probability": 0.8009 + }, + { + "start": 1257.82, + "end": 1260.54, + "probability": 0.9882 + }, + { + "start": 1261.1, + "end": 1266.14, + "probability": 0.8893 + }, + { + "start": 1266.26, + "end": 1267.48, + "probability": 0.6237 + }, + { + "start": 1268.16, + "end": 1270.56, + "probability": 0.9384 + }, + { + "start": 1270.82, + "end": 1276.24, + "probability": 0.7648 + }, + { + "start": 1276.8, + "end": 1279.62, + "probability": 0.997 + }, + { + "start": 1279.96, + "end": 1281.2, + "probability": 0.864 + }, + { + "start": 1281.24, + "end": 1281.82, + "probability": 0.7681 + }, + { + "start": 1281.98, + "end": 1283.61, + "probability": 0.9264 + }, + { + "start": 1284.06, + "end": 1286.14, + "probability": 0.9717 + }, + { + "start": 1287.14, + "end": 1288.64, + "probability": 0.7585 + }, + { + "start": 1288.72, + "end": 1291.52, + "probability": 0.9652 + }, + { + "start": 1291.7, + "end": 1292.42, + "probability": 0.7744 + }, + { + "start": 1292.58, + "end": 1293.7, + "probability": 0.7501 + }, + { + "start": 1294.1, + "end": 1297.12, + "probability": 0.9412 + }, + { + "start": 1297.54, + "end": 1302.04, + "probability": 0.9378 + }, + { + "start": 1302.42, + "end": 1303.8, + "probability": 0.8256 + }, + { + "start": 1303.86, + "end": 1306.64, + "probability": 0.8394 + }, + { + "start": 1306.76, + "end": 1308.0, + "probability": 0.9813 + }, + { + "start": 1308.28, + "end": 1309.38, + "probability": 0.9851 + }, + { + "start": 1309.64, + "end": 1311.94, + "probability": 0.9939 + }, + { + "start": 1312.66, + "end": 1315.58, + "probability": 0.9195 + }, + { + "start": 1315.66, + "end": 1320.44, + "probability": 0.9603 + }, + { + "start": 1320.56, + "end": 1322.36, + "probability": 0.831 + }, + { + "start": 1322.82, + "end": 1324.9, + "probability": 0.9956 + }, + { + "start": 1324.9, + "end": 1328.16, + "probability": 0.9673 + }, + { + "start": 1328.86, + "end": 1329.64, + "probability": 0.7198 + }, + { + "start": 1329.78, + "end": 1331.08, + "probability": 0.9271 + }, + { + "start": 1331.48, + "end": 1332.64, + "probability": 0.7532 + }, + { + "start": 1332.66, + "end": 1334.18, + "probability": 0.7697 + }, + { + "start": 1334.62, + "end": 1335.9, + "probability": 0.7842 + }, + { + "start": 1336.24, + "end": 1337.66, + "probability": 0.8744 + }, + { + "start": 1337.72, + "end": 1338.3, + "probability": 0.8672 + }, + { + "start": 1338.36, + "end": 1341.74, + "probability": 0.8094 + }, + { + "start": 1341.78, + "end": 1343.12, + "probability": 0.9323 + }, + { + "start": 1343.54, + "end": 1346.0, + "probability": 0.9803 + }, + { + "start": 1346.4, + "end": 1348.36, + "probability": 0.6232 + }, + { + "start": 1348.54, + "end": 1350.26, + "probability": 0.9452 + }, + { + "start": 1350.36, + "end": 1350.92, + "probability": 0.8382 + }, + { + "start": 1350.96, + "end": 1351.4, + "probability": 0.7194 + }, + { + "start": 1351.7, + "end": 1352.34, + "probability": 0.602 + }, + { + "start": 1352.4, + "end": 1353.46, + "probability": 0.99 + }, + { + "start": 1355.3, + "end": 1355.86, + "probability": 0.6723 + }, + { + "start": 1355.92, + "end": 1357.1, + "probability": 0.7101 + }, + { + "start": 1357.28, + "end": 1357.8, + "probability": 0.4161 + }, + { + "start": 1358.02, + "end": 1359.98, + "probability": 0.9648 + }, + { + "start": 1360.08, + "end": 1361.19, + "probability": 0.7279 + }, + { + "start": 1361.72, + "end": 1362.46, + "probability": 0.3618 + }, + { + "start": 1363.14, + "end": 1364.8, + "probability": 0.0547 + }, + { + "start": 1364.92, + "end": 1367.22, + "probability": 0.6899 + }, + { + "start": 1367.64, + "end": 1368.98, + "probability": 0.8947 + }, + { + "start": 1368.98, + "end": 1369.74, + "probability": 0.6875 + }, + { + "start": 1369.84, + "end": 1372.26, + "probability": 0.9243 + }, + { + "start": 1372.36, + "end": 1372.88, + "probability": 0.9802 + }, + { + "start": 1372.98, + "end": 1373.44, + "probability": 0.9471 + }, + { + "start": 1373.56, + "end": 1374.0, + "probability": 0.8282 + }, + { + "start": 1374.12, + "end": 1375.58, + "probability": 0.9443 + }, + { + "start": 1376.74, + "end": 1379.58, + "probability": 0.9893 + }, + { + "start": 1379.74, + "end": 1381.9, + "probability": 0.887 + }, + { + "start": 1381.98, + "end": 1382.92, + "probability": 0.9341 + }, + { + "start": 1383.58, + "end": 1385.72, + "probability": 0.9912 + }, + { + "start": 1386.18, + "end": 1386.78, + "probability": 0.7167 + }, + { + "start": 1388.24, + "end": 1388.68, + "probability": 0.6314 + }, + { + "start": 1389.32, + "end": 1389.82, + "probability": 0.1389 + }, + { + "start": 1390.22, + "end": 1391.3, + "probability": 0.6958 + }, + { + "start": 1391.92, + "end": 1392.96, + "probability": 0.5647 + }, + { + "start": 1394.28, + "end": 1398.7, + "probability": 0.9926 + }, + { + "start": 1400.06, + "end": 1404.4, + "probability": 0.9966 + }, + { + "start": 1405.26, + "end": 1408.94, + "probability": 0.9928 + }, + { + "start": 1409.26, + "end": 1410.16, + "probability": 0.9508 + }, + { + "start": 1410.78, + "end": 1413.34, + "probability": 0.8994 + }, + { + "start": 1413.78, + "end": 1418.38, + "probability": 0.998 + }, + { + "start": 1418.92, + "end": 1421.58, + "probability": 0.6121 + }, + { + "start": 1421.92, + "end": 1427.3, + "probability": 0.9873 + }, + { + "start": 1427.36, + "end": 1428.52, + "probability": 0.7995 + }, + { + "start": 1428.82, + "end": 1431.64, + "probability": 0.815 + }, + { + "start": 1432.08, + "end": 1434.46, + "probability": 0.986 + }, + { + "start": 1434.6, + "end": 1438.06, + "probability": 0.9976 + }, + { + "start": 1438.06, + "end": 1442.08, + "probability": 0.894 + }, + { + "start": 1442.42, + "end": 1443.14, + "probability": 0.6164 + }, + { + "start": 1444.56, + "end": 1445.96, + "probability": 0.8346 + }, + { + "start": 1446.1, + "end": 1447.62, + "probability": 0.715 + }, + { + "start": 1447.68, + "end": 1448.26, + "probability": 0.5272 + }, + { + "start": 1448.3, + "end": 1449.58, + "probability": 0.8283 + }, + { + "start": 1450.92, + "end": 1453.32, + "probability": 0.8285 + }, + { + "start": 1454.68, + "end": 1457.24, + "probability": 0.9894 + }, + { + "start": 1457.62, + "end": 1461.06, + "probability": 0.8725 + }, + { + "start": 1461.12, + "end": 1462.36, + "probability": 0.9077 + }, + { + "start": 1462.42, + "end": 1466.98, + "probability": 0.959 + }, + { + "start": 1467.52, + "end": 1469.76, + "probability": 0.9897 + }, + { + "start": 1470.32, + "end": 1471.62, + "probability": 0.9236 + }, + { + "start": 1472.58, + "end": 1475.38, + "probability": 0.7755 + }, + { + "start": 1476.0, + "end": 1477.38, + "probability": 0.9242 + }, + { + "start": 1477.54, + "end": 1480.16, + "probability": 0.9863 + }, + { + "start": 1480.96, + "end": 1482.36, + "probability": 0.8913 + }, + { + "start": 1482.72, + "end": 1485.42, + "probability": 0.9951 + }, + { + "start": 1486.22, + "end": 1489.68, + "probability": 0.9829 + }, + { + "start": 1489.76, + "end": 1492.04, + "probability": 0.5045 + }, + { + "start": 1492.92, + "end": 1494.66, + "probability": 0.8055 + }, + { + "start": 1495.52, + "end": 1506.38, + "probability": 0.935 + }, + { + "start": 1506.44, + "end": 1507.78, + "probability": 0.7928 + }, + { + "start": 1508.52, + "end": 1514.32, + "probability": 0.9798 + }, + { + "start": 1514.36, + "end": 1515.38, + "probability": 0.5329 + }, + { + "start": 1516.28, + "end": 1523.18, + "probability": 0.7462 + }, + { + "start": 1523.94, + "end": 1525.02, + "probability": 0.7484 + }, + { + "start": 1527.76, + "end": 1529.7, + "probability": 0.5384 + }, + { + "start": 1530.22, + "end": 1532.62, + "probability": 0.8704 + }, + { + "start": 1533.1, + "end": 1534.14, + "probability": 0.7121 + }, + { + "start": 1534.62, + "end": 1537.7, + "probability": 0.9576 + }, + { + "start": 1538.64, + "end": 1542.64, + "probability": 0.9763 + }, + { + "start": 1543.18, + "end": 1546.32, + "probability": 0.9425 + }, + { + "start": 1546.46, + "end": 1548.84, + "probability": 0.7738 + }, + { + "start": 1548.98, + "end": 1549.55, + "probability": 0.5203 + }, + { + "start": 1550.04, + "end": 1553.62, + "probability": 0.9549 + }, + { + "start": 1553.68, + "end": 1555.73, + "probability": 0.9932 + }, + { + "start": 1556.42, + "end": 1560.15, + "probability": 0.9746 + }, + { + "start": 1560.88, + "end": 1561.6, + "probability": 0.6543 + }, + { + "start": 1561.84, + "end": 1562.82, + "probability": 0.297 + }, + { + "start": 1562.9, + "end": 1566.26, + "probability": 0.9118 + }, + { + "start": 1567.1, + "end": 1567.76, + "probability": 0.051 + }, + { + "start": 1567.88, + "end": 1571.72, + "probability": 0.0483 + }, + { + "start": 1573.08, + "end": 1573.18, + "probability": 0.0427 + }, + { + "start": 1573.74, + "end": 1574.28, + "probability": 0.0178 + }, + { + "start": 1574.28, + "end": 1575.78, + "probability": 0.4394 + }, + { + "start": 1575.98, + "end": 1577.52, + "probability": 0.578 + }, + { + "start": 1577.62, + "end": 1578.0, + "probability": 0.4814 + }, + { + "start": 1578.04, + "end": 1578.28, + "probability": 0.6251 + }, + { + "start": 1578.3, + "end": 1579.0, + "probability": 0.7054 + }, + { + "start": 1579.38, + "end": 1580.52, + "probability": 0.5338 + }, + { + "start": 1581.92, + "end": 1583.66, + "probability": 0.7118 + }, + { + "start": 1583.74, + "end": 1584.7, + "probability": 0.7085 + }, + { + "start": 1585.2, + "end": 1588.45, + "probability": 0.8671 + }, + { + "start": 1589.14, + "end": 1592.16, + "probability": 0.9609 + }, + { + "start": 1592.63, + "end": 1595.24, + "probability": 0.7963 + }, + { + "start": 1595.76, + "end": 1598.0, + "probability": 0.7833 + }, + { + "start": 1598.88, + "end": 1599.94, + "probability": 0.9009 + }, + { + "start": 1600.48, + "end": 1601.2, + "probability": 0.5845 + }, + { + "start": 1601.28, + "end": 1603.74, + "probability": 0.6279 + }, + { + "start": 1603.78, + "end": 1604.54, + "probability": 0.9405 + }, + { + "start": 1604.74, + "end": 1606.24, + "probability": 0.9036 + }, + { + "start": 1607.04, + "end": 1609.44, + "probability": 0.9679 + }, + { + "start": 1609.44, + "end": 1613.02, + "probability": 0.7383 + }, + { + "start": 1614.18, + "end": 1616.04, + "probability": 0.88 + }, + { + "start": 1616.62, + "end": 1617.62, + "probability": 0.8685 + }, + { + "start": 1618.52, + "end": 1621.26, + "probability": 0.8696 + }, + { + "start": 1621.94, + "end": 1624.44, + "probability": 0.955 + }, + { + "start": 1624.98, + "end": 1626.14, + "probability": 0.9482 + }, + { + "start": 1626.46, + "end": 1627.18, + "probability": 0.9185 + }, + { + "start": 1627.38, + "end": 1630.64, + "probability": 0.88 + }, + { + "start": 1631.06, + "end": 1633.58, + "probability": 0.323 + }, + { + "start": 1634.28, + "end": 1639.8, + "probability": 0.9964 + }, + { + "start": 1639.8, + "end": 1642.98, + "probability": 0.8855 + }, + { + "start": 1643.54, + "end": 1646.14, + "probability": 0.8562 + }, + { + "start": 1646.54, + "end": 1647.12, + "probability": 0.7487 + }, + { + "start": 1647.38, + "end": 1648.32, + "probability": 0.497 + }, + { + "start": 1648.42, + "end": 1650.88, + "probability": 0.9126 + }, + { + "start": 1651.16, + "end": 1651.36, + "probability": 0.8369 + }, + { + "start": 1651.82, + "end": 1653.68, + "probability": 0.6273 + }, + { + "start": 1654.8, + "end": 1656.44, + "probability": 0.5941 + }, + { + "start": 1656.52, + "end": 1657.2, + "probability": 0.5607 + }, + { + "start": 1657.3, + "end": 1659.66, + "probability": 0.7118 + }, + { + "start": 1662.18, + "end": 1664.96, + "probability": 0.6214 + }, + { + "start": 1665.94, + "end": 1666.82, + "probability": 0.7966 + }, + { + "start": 1667.0, + "end": 1671.14, + "probability": 0.9753 + }, + { + "start": 1672.16, + "end": 1673.32, + "probability": 0.4895 + }, + { + "start": 1673.56, + "end": 1675.3, + "probability": 0.9736 + }, + { + "start": 1676.0, + "end": 1679.2, + "probability": 0.2535 + }, + { + "start": 1679.5, + "end": 1680.24, + "probability": 0.476 + }, + { + "start": 1680.94, + "end": 1683.8, + "probability": 0.7738 + }, + { + "start": 1684.22, + "end": 1687.28, + "probability": 0.9172 + }, + { + "start": 1688.36, + "end": 1690.02, + "probability": 0.926 + }, + { + "start": 1690.08, + "end": 1690.38, + "probability": 0.415 + }, + { + "start": 1690.42, + "end": 1691.46, + "probability": 0.722 + }, + { + "start": 1691.5, + "end": 1692.28, + "probability": 0.7341 + }, + { + "start": 1693.28, + "end": 1698.46, + "probability": 0.9899 + }, + { + "start": 1699.24, + "end": 1702.34, + "probability": 0.9932 + }, + { + "start": 1702.9, + "end": 1704.12, + "probability": 0.5596 + }, + { + "start": 1704.4, + "end": 1706.6, + "probability": 0.9211 + }, + { + "start": 1707.08, + "end": 1707.88, + "probability": 0.7821 + }, + { + "start": 1708.44, + "end": 1708.96, + "probability": 0.7464 + }, + { + "start": 1709.2, + "end": 1710.46, + "probability": 0.6684 + }, + { + "start": 1710.58, + "end": 1714.42, + "probability": 0.9021 + }, + { + "start": 1714.92, + "end": 1715.88, + "probability": 0.8667 + }, + { + "start": 1716.3, + "end": 1719.32, + "probability": 0.8275 + }, + { + "start": 1719.4, + "end": 1723.24, + "probability": 0.8855 + }, + { + "start": 1723.46, + "end": 1725.8, + "probability": 0.9937 + }, + { + "start": 1726.24, + "end": 1730.24, + "probability": 0.9702 + }, + { + "start": 1730.66, + "end": 1736.5, + "probability": 0.9765 + }, + { + "start": 1736.54, + "end": 1737.08, + "probability": 0.4702 + }, + { + "start": 1737.4, + "end": 1738.44, + "probability": 0.6782 + }, + { + "start": 1738.52, + "end": 1739.52, + "probability": 0.6852 + }, + { + "start": 1739.64, + "end": 1744.86, + "probability": 0.9575 + }, + { + "start": 1744.94, + "end": 1748.48, + "probability": 0.7917 + }, + { + "start": 1748.64, + "end": 1752.0, + "probability": 0.947 + }, + { + "start": 1752.44, + "end": 1752.86, + "probability": 0.6397 + }, + { + "start": 1753.38, + "end": 1755.38, + "probability": 0.9424 + }, + { + "start": 1755.46, + "end": 1755.84, + "probability": 0.8686 + }, + { + "start": 1756.16, + "end": 1759.36, + "probability": 0.9853 + }, + { + "start": 1759.36, + "end": 1762.92, + "probability": 0.9878 + }, + { + "start": 1763.18, + "end": 1764.74, + "probability": 0.4233 + }, + { + "start": 1765.12, + "end": 1765.82, + "probability": 0.8442 + }, + { + "start": 1765.98, + "end": 1768.06, + "probability": 0.9939 + }, + { + "start": 1768.14, + "end": 1770.88, + "probability": 0.7988 + }, + { + "start": 1770.98, + "end": 1774.64, + "probability": 0.8027 + }, + { + "start": 1775.4, + "end": 1775.4, + "probability": 0.3115 + }, + { + "start": 1775.4, + "end": 1776.24, + "probability": 0.6479 + }, + { + "start": 1776.38, + "end": 1776.76, + "probability": 0.7851 + }, + { + "start": 1776.82, + "end": 1777.1, + "probability": 0.7941 + }, + { + "start": 1777.2, + "end": 1777.92, + "probability": 0.5915 + }, + { + "start": 1778.36, + "end": 1780.28, + "probability": 0.9357 + }, + { + "start": 1781.06, + "end": 1782.06, + "probability": 0.7081 + }, + { + "start": 1782.16, + "end": 1783.1, + "probability": 0.8584 + }, + { + "start": 1783.2, + "end": 1785.64, + "probability": 0.98 + }, + { + "start": 1785.64, + "end": 1789.26, + "probability": 0.9115 + }, + { + "start": 1789.94, + "end": 1794.66, + "probability": 0.9961 + }, + { + "start": 1795.4, + "end": 1801.92, + "probability": 0.9528 + }, + { + "start": 1802.5, + "end": 1803.48, + "probability": 0.8195 + }, + { + "start": 1804.18, + "end": 1805.82, + "probability": 0.9688 + }, + { + "start": 1806.66, + "end": 1808.16, + "probability": 0.9041 + }, + { + "start": 1808.82, + "end": 1814.08, + "probability": 0.9751 + }, + { + "start": 1814.2, + "end": 1815.02, + "probability": 0.7376 + }, + { + "start": 1815.18, + "end": 1817.6, + "probability": 0.8617 + }, + { + "start": 1818.46, + "end": 1821.06, + "probability": 0.8785 + }, + { + "start": 1822.08, + "end": 1822.98, + "probability": 0.8379 + }, + { + "start": 1823.24, + "end": 1823.66, + "probability": 0.8826 + }, + { + "start": 1824.26, + "end": 1826.46, + "probability": 0.73 + }, + { + "start": 1826.48, + "end": 1828.38, + "probability": 0.9567 + }, + { + "start": 1828.68, + "end": 1829.76, + "probability": 0.91 + }, + { + "start": 1829.96, + "end": 1830.68, + "probability": 0.7484 + }, + { + "start": 1831.12, + "end": 1833.72, + "probability": 0.9849 + }, + { + "start": 1833.98, + "end": 1835.74, + "probability": 0.8982 + }, + { + "start": 1836.56, + "end": 1838.84, + "probability": 0.9703 + }, + { + "start": 1839.38, + "end": 1842.16, + "probability": 0.9554 + }, + { + "start": 1842.32, + "end": 1846.16, + "probability": 0.8922 + }, + { + "start": 1846.72, + "end": 1847.48, + "probability": 0.7752 + }, + { + "start": 1848.02, + "end": 1849.88, + "probability": 0.9689 + }, + { + "start": 1850.2, + "end": 1852.5, + "probability": 0.7733 + }, + { + "start": 1852.8, + "end": 1852.98, + "probability": 0.3277 + }, + { + "start": 1853.0, + "end": 1853.7, + "probability": 0.694 + }, + { + "start": 1854.06, + "end": 1862.38, + "probability": 0.9567 + }, + { + "start": 1862.66, + "end": 1863.04, + "probability": 0.2578 + }, + { + "start": 1863.06, + "end": 1864.12, + "probability": 0.6586 + }, + { + "start": 1864.2, + "end": 1866.06, + "probability": 0.8496 + }, + { + "start": 1866.52, + "end": 1867.24, + "probability": 0.6381 + }, + { + "start": 1867.28, + "end": 1869.5, + "probability": 0.7871 + }, + { + "start": 1875.74, + "end": 1876.8, + "probability": 0.6996 + }, + { + "start": 1876.88, + "end": 1880.12, + "probability": 0.6642 + }, + { + "start": 1880.2, + "end": 1883.2, + "probability": 0.7872 + }, + { + "start": 1884.24, + "end": 1889.76, + "probability": 0.967 + }, + { + "start": 1890.44, + "end": 1892.96, + "probability": 0.975 + }, + { + "start": 1893.72, + "end": 1895.6, + "probability": 0.9167 + }, + { + "start": 1896.12, + "end": 1898.72, + "probability": 0.2826 + }, + { + "start": 1898.82, + "end": 1898.86, + "probability": 0.2392 + }, + { + "start": 1898.86, + "end": 1898.86, + "probability": 0.3184 + }, + { + "start": 1898.86, + "end": 1899.61, + "probability": 0.4855 + }, + { + "start": 1902.1, + "end": 1902.28, + "probability": 0.6014 + }, + { + "start": 1902.28, + "end": 1902.7, + "probability": 0.4645 + }, + { + "start": 1902.72, + "end": 1902.72, + "probability": 0.0055 + }, + { + "start": 1902.72, + "end": 1902.72, + "probability": 0.5814 + }, + { + "start": 1902.72, + "end": 1903.47, + "probability": 0.8638 + }, + { + "start": 1904.06, + "end": 1905.16, + "probability": 0.7551 + }, + { + "start": 1905.18, + "end": 1907.62, + "probability": 0.6975 + }, + { + "start": 1907.72, + "end": 1912.08, + "probability": 0.7339 + }, + { + "start": 1912.26, + "end": 1913.02, + "probability": 0.9733 + }, + { + "start": 1914.39, + "end": 1916.22, + "probability": 0.8408 + }, + { + "start": 1916.22, + "end": 1916.84, + "probability": 0.7806 + }, + { + "start": 1916.98, + "end": 1918.82, + "probability": 0.4298 + }, + { + "start": 1918.86, + "end": 1920.2, + "probability": 0.5522 + }, + { + "start": 1922.42, + "end": 1923.04, + "probability": 0.0669 + }, + { + "start": 1923.32, + "end": 1923.4, + "probability": 0.0038 + }, + { + "start": 1923.4, + "end": 1925.3, + "probability": 0.0591 + }, + { + "start": 1926.38, + "end": 1926.6, + "probability": 0.0172 + }, + { + "start": 1926.6, + "end": 1926.62, + "probability": 0.1233 + }, + { + "start": 1926.62, + "end": 1928.1, + "probability": 0.2748 + }, + { + "start": 1928.5, + "end": 1929.64, + "probability": 0.1691 + }, + { + "start": 1929.86, + "end": 1930.14, + "probability": 0.0698 + }, + { + "start": 1930.36, + "end": 1930.72, + "probability": 0.3916 + }, + { + "start": 1930.94, + "end": 1931.98, + "probability": 0.111 + }, + { + "start": 1931.98, + "end": 1933.4, + "probability": 0.4484 + }, + { + "start": 1937.72, + "end": 1938.46, + "probability": 0.1365 + }, + { + "start": 1938.78, + "end": 1939.66, + "probability": 0.4968 + }, + { + "start": 1941.66, + "end": 1942.7, + "probability": 0.1174 + }, + { + "start": 1942.98, + "end": 1944.4, + "probability": 0.378 + }, + { + "start": 1944.9, + "end": 1947.5, + "probability": 0.6838 + }, + { + "start": 1947.68, + "end": 1948.68, + "probability": 0.0123 + }, + { + "start": 1949.74, + "end": 1951.9, + "probability": 0.1476 + }, + { + "start": 1952.3, + "end": 1953.5, + "probability": 0.0171 + }, + { + "start": 1953.5, + "end": 1953.66, + "probability": 0.0307 + }, + { + "start": 1953.66, + "end": 1955.8, + "probability": 0.1844 + }, + { + "start": 1955.84, + "end": 1960.46, + "probability": 0.1152 + }, + { + "start": 1960.98, + "end": 1960.98, + "probability": 0.1704 + }, + { + "start": 1961.14, + "end": 1961.87, + "probability": 0.0482 + }, + { + "start": 1966.3, + "end": 1968.08, + "probability": 0.0212 + }, + { + "start": 1968.3, + "end": 1970.44, + "probability": 0.0275 + }, + { + "start": 1974.26, + "end": 1975.09, + "probability": 0.051 + }, + { + "start": 1976.04, + "end": 1979.12, + "probability": 0.0069 + }, + { + "start": 1979.12, + "end": 1979.12, + "probability": 0.0277 + }, + { + "start": 1979.12, + "end": 1982.36, + "probability": 0.0625 + }, + { + "start": 1983.46, + "end": 1985.92, + "probability": 0.0722 + }, + { + "start": 1986.28, + "end": 1986.94, + "probability": 0.1218 + }, + { + "start": 1988.0, + "end": 1988.0, + "probability": 0.0 + }, + { + "start": 1988.0, + "end": 1988.0, + "probability": 0.0 + }, + { + "start": 1988.0, + "end": 1988.0, + "probability": 0.0 + }, + { + "start": 1988.0, + "end": 1988.0, + "probability": 0.0 + }, + { + "start": 1988.0, + "end": 1988.0, + "probability": 0.0 + }, + { + "start": 1988.0, + "end": 1988.0, + "probability": 0.0 + }, + { + "start": 1988.0, + "end": 1988.0, + "probability": 0.0 + }, + { + "start": 1988.0, + "end": 1988.0, + "probability": 0.0 + }, + { + "start": 1988.0, + "end": 1988.0, + "probability": 0.0 + }, + { + "start": 1988.0, + "end": 1988.0, + "probability": 0.0 + }, + { + "start": 1988.0, + "end": 1988.0, + "probability": 0.0 + }, + { + "start": 1988.0, + "end": 1988.0, + "probability": 0.0 + }, + { + "start": 1988.0, + "end": 1988.0, + "probability": 0.0 + }, + { + "start": 1988.0, + "end": 1988.0, + "probability": 0.0 + }, + { + "start": 1988.0, + "end": 1988.0, + "probability": 0.0 + }, + { + "start": 1988.0, + "end": 1988.0, + "probability": 0.0 + }, + { + "start": 1988.0, + "end": 1988.0, + "probability": 0.0 + }, + { + "start": 1988.0, + "end": 1988.0, + "probability": 0.0 + }, + { + "start": 1988.0, + "end": 1988.0, + "probability": 0.0 + }, + { + "start": 1988.14, + "end": 1988.4, + "probability": 0.0472 + }, + { + "start": 1988.4, + "end": 1988.4, + "probability": 0.0276 + }, + { + "start": 1988.4, + "end": 1988.4, + "probability": 0.1218 + }, + { + "start": 1988.4, + "end": 1990.06, + "probability": 0.9211 + }, + { + "start": 1990.06, + "end": 1991.87, + "probability": 0.9937 + }, + { + "start": 1992.57, + "end": 1994.25, + "probability": 0.987 + }, + { + "start": 1994.31, + "end": 1995.45, + "probability": 0.9949 + }, + { + "start": 1996.53, + "end": 1996.99, + "probability": 0.7572 + }, + { + "start": 1997.07, + "end": 1997.09, + "probability": 0.6755 + }, + { + "start": 1997.19, + "end": 1997.89, + "probability": 0.7119 + }, + { + "start": 1998.05, + "end": 1998.53, + "probability": 0.393 + }, + { + "start": 1998.59, + "end": 1999.33, + "probability": 0.8135 + }, + { + "start": 2000.31, + "end": 2005.13, + "probability": 0.8455 + }, + { + "start": 2005.21, + "end": 2006.91, + "probability": 0.9811 + }, + { + "start": 2007.03, + "end": 2008.35, + "probability": 0.9368 + }, + { + "start": 2008.95, + "end": 2012.47, + "probability": 0.9927 + }, + { + "start": 2012.89, + "end": 2013.47, + "probability": 0.765 + }, + { + "start": 2013.57, + "end": 2014.61, + "probability": 0.963 + }, + { + "start": 2014.67, + "end": 2016.23, + "probability": 0.9589 + }, + { + "start": 2016.53, + "end": 2018.35, + "probability": 0.7849 + }, + { + "start": 2018.79, + "end": 2020.55, + "probability": 0.7972 + }, + { + "start": 2021.03, + "end": 2023.69, + "probability": 0.9771 + }, + { + "start": 2023.85, + "end": 2025.45, + "probability": 0.9956 + }, + { + "start": 2025.55, + "end": 2027.11, + "probability": 0.8866 + }, + { + "start": 2027.15, + "end": 2027.53, + "probability": 0.1403 + }, + { + "start": 2027.55, + "end": 2028.27, + "probability": 0.8587 + }, + { + "start": 2028.37, + "end": 2029.15, + "probability": 0.5678 + }, + { + "start": 2029.25, + "end": 2029.51, + "probability": 0.0242 + }, + { + "start": 2030.15, + "end": 2031.57, + "probability": 0.5358 + }, + { + "start": 2031.57, + "end": 2032.69, + "probability": 0.7911 + }, + { + "start": 2032.69, + "end": 2035.42, + "probability": 0.8857 + }, + { + "start": 2035.81, + "end": 2035.81, + "probability": 0.0949 + }, + { + "start": 2035.81, + "end": 2037.43, + "probability": 0.0668 + }, + { + "start": 2038.13, + "end": 2038.71, + "probability": 0.169 + }, + { + "start": 2038.71, + "end": 2038.81, + "probability": 0.0573 + }, + { + "start": 2038.81, + "end": 2038.81, + "probability": 0.0214 + }, + { + "start": 2038.89, + "end": 2038.89, + "probability": 0.4506 + }, + { + "start": 2038.89, + "end": 2039.25, + "probability": 0.1007 + }, + { + "start": 2039.29, + "end": 2039.29, + "probability": 0.3525 + }, + { + "start": 2039.29, + "end": 2042.03, + "probability": 0.9571 + }, + { + "start": 2042.33, + "end": 2043.61, + "probability": 0.986 + }, + { + "start": 2043.77, + "end": 2045.85, + "probability": 0.5188 + }, + { + "start": 2046.55, + "end": 2048.35, + "probability": 0.7611 + }, + { + "start": 2048.39, + "end": 2049.49, + "probability": 0.5861 + }, + { + "start": 2049.59, + "end": 2050.29, + "probability": 0.6597 + }, + { + "start": 2050.51, + "end": 2053.23, + "probability": 0.747 + }, + { + "start": 2053.29, + "end": 2054.21, + "probability": 0.6935 + }, + { + "start": 2054.49, + "end": 2057.65, + "probability": 0.9961 + }, + { + "start": 2057.65, + "end": 2062.59, + "probability": 0.9959 + }, + { + "start": 2063.21, + "end": 2063.57, + "probability": 0.3781 + }, + { + "start": 2064.39, + "end": 2067.25, + "probability": 0.9858 + }, + { + "start": 2067.77, + "end": 2071.17, + "probability": 0.9974 + }, + { + "start": 2071.31, + "end": 2071.55, + "probability": 0.1017 + }, + { + "start": 2071.55, + "end": 2072.27, + "probability": 0.208 + }, + { + "start": 2072.27, + "end": 2072.53, + "probability": 0.4163 + }, + { + "start": 2072.73, + "end": 2074.37, + "probability": 0.4646 + }, + { + "start": 2074.43, + "end": 2074.56, + "probability": 0.0333 + }, + { + "start": 2074.61, + "end": 2075.75, + "probability": 0.464 + }, + { + "start": 2075.83, + "end": 2076.47, + "probability": 0.5538 + }, + { + "start": 2076.57, + "end": 2077.43, + "probability": 0.9243 + }, + { + "start": 2077.67, + "end": 2077.85, + "probability": 0.3522 + }, + { + "start": 2077.95, + "end": 2079.83, + "probability": 0.6295 + }, + { + "start": 2079.95, + "end": 2080.77, + "probability": 0.9526 + }, + { + "start": 2082.25, + "end": 2082.85, + "probability": 0.8588 + }, + { + "start": 2082.91, + "end": 2086.23, + "probability": 0.7529 + }, + { + "start": 2086.25, + "end": 2086.81, + "probability": 0.5971 + }, + { + "start": 2087.13, + "end": 2088.49, + "probability": 0.975 + }, + { + "start": 2089.49, + "end": 2092.77, + "probability": 0.9476 + }, + { + "start": 2093.35, + "end": 2095.15, + "probability": 0.7791 + }, + { + "start": 2095.95, + "end": 2100.27, + "probability": 0.77 + }, + { + "start": 2101.19, + "end": 2101.57, + "probability": 0.4852 + }, + { + "start": 2102.25, + "end": 2105.71, + "probability": 0.9332 + }, + { + "start": 2106.51, + "end": 2109.21, + "probability": 0.9869 + }, + { + "start": 2110.05, + "end": 2113.93, + "probability": 0.9239 + }, + { + "start": 2113.93, + "end": 2117.73, + "probability": 0.7362 + }, + { + "start": 2118.45, + "end": 2125.43, + "probability": 0.9858 + }, + { + "start": 2126.11, + "end": 2130.65, + "probability": 0.9962 + }, + { + "start": 2131.27, + "end": 2135.63, + "probability": 0.6779 + }, + { + "start": 2136.33, + "end": 2138.81, + "probability": 0.7443 + }, + { + "start": 2139.61, + "end": 2141.31, + "probability": 0.8244 + }, + { + "start": 2141.79, + "end": 2144.49, + "probability": 0.6545 + }, + { + "start": 2145.33, + "end": 2145.93, + "probability": 0.9078 + }, + { + "start": 2146.93, + "end": 2151.17, + "probability": 0.9921 + }, + { + "start": 2155.61, + "end": 2158.97, + "probability": 0.5295 + }, + { + "start": 2159.65, + "end": 2160.95, + "probability": 0.7658 + }, + { + "start": 2161.53, + "end": 2167.49, + "probability": 0.9587 + }, + { + "start": 2168.26, + "end": 2171.19, + "probability": 0.8696 + }, + { + "start": 2172.05, + "end": 2173.73, + "probability": 0.9941 + }, + { + "start": 2174.97, + "end": 2180.11, + "probability": 0.9786 + }, + { + "start": 2180.23, + "end": 2183.05, + "probability": 0.7758 + }, + { + "start": 2183.29, + "end": 2184.58, + "probability": 0.939 + }, + { + "start": 2184.75, + "end": 2186.41, + "probability": 0.4254 + }, + { + "start": 2186.41, + "end": 2187.49, + "probability": 0.7769 + }, + { + "start": 2188.45, + "end": 2194.57, + "probability": 0.9872 + }, + { + "start": 2194.97, + "end": 2197.39, + "probability": 0.9371 + }, + { + "start": 2198.07, + "end": 2199.33, + "probability": 0.661 + }, + { + "start": 2199.49, + "end": 2203.71, + "probability": 0.9153 + }, + { + "start": 2204.05, + "end": 2206.31, + "probability": 0.7768 + }, + { + "start": 2206.31, + "end": 2207.89, + "probability": 0.9325 + }, + { + "start": 2208.07, + "end": 2209.69, + "probability": 0.8701 + }, + { + "start": 2212.79, + "end": 2217.79, + "probability": 0.7308 + }, + { + "start": 2219.03, + "end": 2220.09, + "probability": 0.881 + }, + { + "start": 2220.15, + "end": 2221.67, + "probability": 0.5838 + }, + { + "start": 2221.81, + "end": 2222.27, + "probability": 0.8931 + }, + { + "start": 2222.77, + "end": 2224.67, + "probability": 0.9331 + }, + { + "start": 2224.69, + "end": 2225.65, + "probability": 0.9083 + }, + { + "start": 2226.47, + "end": 2228.67, + "probability": 0.9629 + }, + { + "start": 2228.83, + "end": 2230.17, + "probability": 0.9861 + }, + { + "start": 2230.35, + "end": 2232.89, + "probability": 0.9218 + }, + { + "start": 2233.23, + "end": 2234.11, + "probability": 0.8132 + }, + { + "start": 2235.01, + "end": 2238.29, + "probability": 0.984 + }, + { + "start": 2240.07, + "end": 2243.13, + "probability": 0.8366 + }, + { + "start": 2243.79, + "end": 2246.51, + "probability": 0.9878 + }, + { + "start": 2246.71, + "end": 2247.81, + "probability": 0.9692 + }, + { + "start": 2248.13, + "end": 2250.39, + "probability": 0.9914 + }, + { + "start": 2252.73, + "end": 2255.19, + "probability": 0.9196 + }, + { + "start": 2255.97, + "end": 2259.77, + "probability": 0.918 + }, + { + "start": 2261.31, + "end": 2263.13, + "probability": 0.9899 + }, + { + "start": 2263.93, + "end": 2267.13, + "probability": 0.9968 + }, + { + "start": 2268.01, + "end": 2271.17, + "probability": 0.9932 + }, + { + "start": 2271.83, + "end": 2272.29, + "probability": 0.0931 + }, + { + "start": 2272.61, + "end": 2274.95, + "probability": 0.9949 + }, + { + "start": 2274.95, + "end": 2279.35, + "probability": 0.8438 + }, + { + "start": 2280.35, + "end": 2281.45, + "probability": 0.9592 + }, + { + "start": 2282.25, + "end": 2284.95, + "probability": 0.9973 + }, + { + "start": 2284.95, + "end": 2288.85, + "probability": 0.999 + }, + { + "start": 2289.41, + "end": 2290.14, + "probability": 0.9268 + }, + { + "start": 2291.01, + "end": 2294.19, + "probability": 0.9814 + }, + { + "start": 2294.49, + "end": 2295.69, + "probability": 0.9834 + }, + { + "start": 2296.11, + "end": 2297.72, + "probability": 0.8242 + }, + { + "start": 2297.89, + "end": 2298.05, + "probability": 0.0786 + }, + { + "start": 2298.05, + "end": 2299.19, + "probability": 0.6936 + }, + { + "start": 2299.25, + "end": 2300.61, + "probability": 0.8202 + }, + { + "start": 2300.67, + "end": 2302.16, + "probability": 0.8384 + }, + { + "start": 2302.47, + "end": 2305.33, + "probability": 0.4139 + }, + { + "start": 2305.57, + "end": 2306.67, + "probability": 0.9246 + }, + { + "start": 2307.07, + "end": 2311.19, + "probability": 0.9967 + }, + { + "start": 2311.23, + "end": 2311.63, + "probability": 0.6344 + }, + { + "start": 2311.91, + "end": 2314.03, + "probability": 0.9551 + }, + { + "start": 2314.39, + "end": 2316.31, + "probability": 0.656 + }, + { + "start": 2316.39, + "end": 2317.91, + "probability": 0.8896 + }, + { + "start": 2324.97, + "end": 2326.01, + "probability": 0.4775 + }, + { + "start": 2328.47, + "end": 2332.47, + "probability": 0.9493 + }, + { + "start": 2332.99, + "end": 2334.81, + "probability": 0.9736 + }, + { + "start": 2338.15, + "end": 2340.25, + "probability": 0.9515 + }, + { + "start": 2341.91, + "end": 2346.87, + "probability": 0.9575 + }, + { + "start": 2348.17, + "end": 2350.15, + "probability": 0.8729 + }, + { + "start": 2351.19, + "end": 2353.67, + "probability": 0.9017 + }, + { + "start": 2354.53, + "end": 2355.95, + "probability": 0.886 + }, + { + "start": 2356.65, + "end": 2358.93, + "probability": 0.9807 + }, + { + "start": 2359.13, + "end": 2360.97, + "probability": 0.9678 + }, + { + "start": 2361.37, + "end": 2365.99, + "probability": 0.9697 + }, + { + "start": 2366.05, + "end": 2367.89, + "probability": 0.9232 + }, + { + "start": 2369.5, + "end": 2375.57, + "probability": 0.8833 + }, + { + "start": 2376.17, + "end": 2380.65, + "probability": 0.9828 + }, + { + "start": 2381.49, + "end": 2385.81, + "probability": 0.9893 + }, + { + "start": 2386.31, + "end": 2387.59, + "probability": 0.9746 + }, + { + "start": 2387.91, + "end": 2394.17, + "probability": 0.9323 + }, + { + "start": 2395.17, + "end": 2401.39, + "probability": 0.7656 + }, + { + "start": 2401.94, + "end": 2408.31, + "probability": 0.9908 + }, + { + "start": 2409.23, + "end": 2411.53, + "probability": 0.9631 + }, + { + "start": 2411.71, + "end": 2413.79, + "probability": 0.8565 + }, + { + "start": 2414.21, + "end": 2417.79, + "probability": 0.9385 + }, + { + "start": 2418.09, + "end": 2418.33, + "probability": 0.6897 + }, + { + "start": 2418.47, + "end": 2421.33, + "probability": 0.8083 + }, + { + "start": 2421.57, + "end": 2423.33, + "probability": 0.9922 + }, + { + "start": 2424.45, + "end": 2425.21, + "probability": 0.5946 + }, + { + "start": 2425.59, + "end": 2426.95, + "probability": 0.9954 + }, + { + "start": 2427.03, + "end": 2428.43, + "probability": 0.5656 + }, + { + "start": 2428.93, + "end": 2430.77, + "probability": 0.6726 + }, + { + "start": 2430.87, + "end": 2433.09, + "probability": 0.6658 + }, + { + "start": 2433.63, + "end": 2436.37, + "probability": 0.9021 + }, + { + "start": 2437.53, + "end": 2439.87, + "probability": 0.782 + }, + { + "start": 2441.61, + "end": 2445.23, + "probability": 0.7815 + }, + { + "start": 2445.89, + "end": 2448.43, + "probability": 0.9835 + }, + { + "start": 2449.35, + "end": 2453.95, + "probability": 0.9956 + }, + { + "start": 2454.51, + "end": 2456.97, + "probability": 0.7976 + }, + { + "start": 2457.87, + "end": 2460.61, + "probability": 0.8477 + }, + { + "start": 2461.17, + "end": 2461.43, + "probability": 0.9226 + }, + { + "start": 2462.17, + "end": 2463.49, + "probability": 0.9973 + }, + { + "start": 2464.11, + "end": 2466.93, + "probability": 0.921 + }, + { + "start": 2467.43, + "end": 2468.35, + "probability": 0.8183 + }, + { + "start": 2468.71, + "end": 2475.97, + "probability": 0.9966 + }, + { + "start": 2476.61, + "end": 2480.47, + "probability": 0.9515 + }, + { + "start": 2480.93, + "end": 2484.73, + "probability": 0.9838 + }, + { + "start": 2485.27, + "end": 2490.39, + "probability": 0.9932 + }, + { + "start": 2490.73, + "end": 2497.41, + "probability": 0.9875 + }, + { + "start": 2498.03, + "end": 2499.31, + "probability": 0.6929 + }, + { + "start": 2500.05, + "end": 2502.95, + "probability": 0.9285 + }, + { + "start": 2502.95, + "end": 2504.15, + "probability": 0.6871 + }, + { + "start": 2504.53, + "end": 2507.95, + "probability": 0.9207 + }, + { + "start": 2508.17, + "end": 2509.05, + "probability": 0.7993 + }, + { + "start": 2509.61, + "end": 2516.41, + "probability": 0.9806 + }, + { + "start": 2516.91, + "end": 2521.73, + "probability": 0.9691 + }, + { + "start": 2521.73, + "end": 2526.47, + "probability": 0.9979 + }, + { + "start": 2527.09, + "end": 2532.37, + "probability": 0.9943 + }, + { + "start": 2533.09, + "end": 2537.55, + "probability": 0.9731 + }, + { + "start": 2537.95, + "end": 2540.15, + "probability": 0.9609 + }, + { + "start": 2540.79, + "end": 2542.77, + "probability": 0.667 + }, + { + "start": 2543.29, + "end": 2545.81, + "probability": 0.8648 + }, + { + "start": 2546.17, + "end": 2546.81, + "probability": 0.5732 + }, + { + "start": 2546.99, + "end": 2548.65, + "probability": 0.9544 + }, + { + "start": 2549.91, + "end": 2552.35, + "probability": 0.9977 + }, + { + "start": 2552.49, + "end": 2556.03, + "probability": 0.9827 + }, + { + "start": 2556.55, + "end": 2560.11, + "probability": 0.9848 + }, + { + "start": 2560.67, + "end": 2564.11, + "probability": 0.9056 + }, + { + "start": 2564.51, + "end": 2566.58, + "probability": 0.8204 + }, + { + "start": 2567.01, + "end": 2573.71, + "probability": 0.8841 + }, + { + "start": 2574.69, + "end": 2577.37, + "probability": 0.989 + }, + { + "start": 2577.51, + "end": 2578.31, + "probability": 0.9371 + }, + { + "start": 2578.67, + "end": 2580.57, + "probability": 0.9878 + }, + { + "start": 2581.21, + "end": 2581.45, + "probability": 0.2122 + }, + { + "start": 2581.47, + "end": 2581.89, + "probability": 0.3881 + }, + { + "start": 2581.91, + "end": 2582.29, + "probability": 0.9193 + }, + { + "start": 2582.37, + "end": 2583.31, + "probability": 0.8594 + }, + { + "start": 2583.67, + "end": 2586.41, + "probability": 0.9561 + }, + { + "start": 2586.47, + "end": 2591.67, + "probability": 0.863 + }, + { + "start": 2592.19, + "end": 2595.51, + "probability": 0.999 + }, + { + "start": 2595.83, + "end": 2597.35, + "probability": 0.999 + }, + { + "start": 2597.35, + "end": 2599.57, + "probability": 0.96 + }, + { + "start": 2600.07, + "end": 2601.83, + "probability": 0.9446 + }, + { + "start": 2602.51, + "end": 2604.57, + "probability": 0.8082 + }, + { + "start": 2604.85, + "end": 2606.19, + "probability": 0.7776 + }, + { + "start": 2606.27, + "end": 2609.73, + "probability": 0.9639 + }, + { + "start": 2609.99, + "end": 2610.69, + "probability": 0.9134 + }, + { + "start": 2610.83, + "end": 2611.61, + "probability": 0.8904 + }, + { + "start": 2611.65, + "end": 2612.75, + "probability": 0.9528 + }, + { + "start": 2612.91, + "end": 2613.45, + "probability": 0.4846 + }, + { + "start": 2613.61, + "end": 2615.8, + "probability": 0.9919 + }, + { + "start": 2616.27, + "end": 2616.83, + "probability": 0.7216 + }, + { + "start": 2616.93, + "end": 2617.63, + "probability": 0.727 + }, + { + "start": 2617.75, + "end": 2618.61, + "probability": 0.8297 + }, + { + "start": 2618.69, + "end": 2621.01, + "probability": 0.9326 + }, + { + "start": 2621.23, + "end": 2624.51, + "probability": 0.9656 + }, + { + "start": 2624.51, + "end": 2628.81, + "probability": 0.9756 + }, + { + "start": 2629.05, + "end": 2630.37, + "probability": 0.7779 + }, + { + "start": 2630.69, + "end": 2631.59, + "probability": 0.7722 + }, + { + "start": 2631.73, + "end": 2635.19, + "probability": 0.992 + }, + { + "start": 2635.19, + "end": 2638.09, + "probability": 0.8832 + }, + { + "start": 2638.71, + "end": 2642.97, + "probability": 0.7952 + }, + { + "start": 2643.35, + "end": 2643.87, + "probability": 0.4859 + }, + { + "start": 2643.91, + "end": 2645.61, + "probability": 0.8611 + }, + { + "start": 2645.71, + "end": 2645.99, + "probability": 0.6542 + }, + { + "start": 2646.33, + "end": 2648.99, + "probability": 0.8117 + }, + { + "start": 2649.01, + "end": 2651.49, + "probability": 0.7963 + }, + { + "start": 2652.01, + "end": 2654.51, + "probability": 0.8531 + }, + { + "start": 2655.79, + "end": 2656.97, + "probability": 0.6295 + }, + { + "start": 2657.31, + "end": 2657.31, + "probability": 0.5622 + }, + { + "start": 2657.31, + "end": 2658.11, + "probability": 0.8319 + }, + { + "start": 2658.29, + "end": 2660.39, + "probability": 0.9917 + }, + { + "start": 2660.57, + "end": 2661.31, + "probability": 0.0527 + }, + { + "start": 2661.53, + "end": 2663.95, + "probability": 0.9783 + }, + { + "start": 2664.93, + "end": 2665.63, + "probability": 0.8436 + }, + { + "start": 2665.71, + "end": 2667.61, + "probability": 0.9641 + }, + { + "start": 2667.91, + "end": 2672.09, + "probability": 0.939 + }, + { + "start": 2672.73, + "end": 2675.83, + "probability": 0.9424 + }, + { + "start": 2676.53, + "end": 2678.91, + "probability": 0.9685 + }, + { + "start": 2678.99, + "end": 2685.13, + "probability": 0.7843 + }, + { + "start": 2685.21, + "end": 2685.45, + "probability": 0.8254 + }, + { + "start": 2685.57, + "end": 2686.23, + "probability": 0.7717 + }, + { + "start": 2686.73, + "end": 2688.13, + "probability": 0.98 + }, + { + "start": 2688.77, + "end": 2690.13, + "probability": 0.6565 + }, + { + "start": 2690.41, + "end": 2693.83, + "probability": 0.7479 + }, + { + "start": 2693.95, + "end": 2696.03, + "probability": 0.9891 + }, + { + "start": 2696.11, + "end": 2700.05, + "probability": 0.9818 + }, + { + "start": 2700.97, + "end": 2702.89, + "probability": 0.9875 + }, + { + "start": 2702.89, + "end": 2705.29, + "probability": 0.9963 + }, + { + "start": 2705.33, + "end": 2709.23, + "probability": 0.9771 + }, + { + "start": 2709.23, + "end": 2713.83, + "probability": 0.9706 + }, + { + "start": 2714.37, + "end": 2720.45, + "probability": 0.9833 + }, + { + "start": 2720.95, + "end": 2721.83, + "probability": 0.9112 + }, + { + "start": 2721.93, + "end": 2723.27, + "probability": 0.8111 + }, + { + "start": 2723.71, + "end": 2724.65, + "probability": 0.9814 + }, + { + "start": 2725.17, + "end": 2725.81, + "probability": 0.8242 + }, + { + "start": 2725.81, + "end": 2726.45, + "probability": 0.7002 + }, + { + "start": 2726.53, + "end": 2729.93, + "probability": 0.964 + }, + { + "start": 2730.11, + "end": 2730.95, + "probability": 0.8417 + }, + { + "start": 2731.33, + "end": 2732.55, + "probability": 0.7764 + }, + { + "start": 2732.61, + "end": 2737.77, + "probability": 0.9504 + }, + { + "start": 2737.93, + "end": 2738.25, + "probability": 0.5977 + }, + { + "start": 2738.61, + "end": 2741.91, + "probability": 0.998 + }, + { + "start": 2742.09, + "end": 2743.89, + "probability": 0.968 + }, + { + "start": 2743.91, + "end": 2744.15, + "probability": 0.8192 + }, + { + "start": 2744.79, + "end": 2747.73, + "probability": 0.9262 + }, + { + "start": 2749.43, + "end": 2752.51, + "probability": 0.9458 + }, + { + "start": 2752.51, + "end": 2753.17, + "probability": 0.5223 + }, + { + "start": 2753.21, + "end": 2754.61, + "probability": 0.7534 + }, + { + "start": 2764.79, + "end": 2765.81, + "probability": 0.7481 + }, + { + "start": 2766.11, + "end": 2769.93, + "probability": 0.9587 + }, + { + "start": 2770.33, + "end": 2773.05, + "probability": 0.985 + }, + { + "start": 2774.63, + "end": 2778.29, + "probability": 0.8593 + }, + { + "start": 2778.29, + "end": 2783.21, + "probability": 0.9971 + }, + { + "start": 2785.05, + "end": 2786.67, + "probability": 0.9046 + }, + { + "start": 2787.11, + "end": 2794.09, + "probability": 0.9717 + }, + { + "start": 2794.47, + "end": 2796.39, + "probability": 0.9499 + }, + { + "start": 2797.25, + "end": 2799.15, + "probability": 0.8169 + }, + { + "start": 2799.51, + "end": 2801.27, + "probability": 0.9157 + }, + { + "start": 2802.51, + "end": 2805.41, + "probability": 0.999 + }, + { + "start": 2805.41, + "end": 2808.51, + "probability": 0.8429 + }, + { + "start": 2809.07, + "end": 2812.21, + "probability": 0.9932 + }, + { + "start": 2812.21, + "end": 2815.07, + "probability": 0.9969 + }, + { + "start": 2815.25, + "end": 2819.85, + "probability": 0.9988 + }, + { + "start": 2820.45, + "end": 2826.13, + "probability": 0.9974 + }, + { + "start": 2826.19, + "end": 2827.1, + "probability": 0.8413 + }, + { + "start": 2827.71, + "end": 2831.09, + "probability": 0.9927 + }, + { + "start": 2831.21, + "end": 2832.43, + "probability": 0.8916 + }, + { + "start": 2832.53, + "end": 2833.03, + "probability": 0.827 + }, + { + "start": 2833.55, + "end": 2837.41, + "probability": 0.9515 + }, + { + "start": 2837.45, + "end": 2838.83, + "probability": 0.8717 + }, + { + "start": 2839.29, + "end": 2843.79, + "probability": 0.9961 + }, + { + "start": 2843.97, + "end": 2844.59, + "probability": 0.7937 + }, + { + "start": 2844.63, + "end": 2846.32, + "probability": 0.9456 + }, + { + "start": 2846.37, + "end": 2851.29, + "probability": 0.9978 + }, + { + "start": 2851.71, + "end": 2854.97, + "probability": 0.7476 + }, + { + "start": 2855.05, + "end": 2856.27, + "probability": 0.9288 + }, + { + "start": 2856.33, + "end": 2856.95, + "probability": 0.7625 + }, + { + "start": 2857.03, + "end": 2860.59, + "probability": 0.9985 + }, + { + "start": 2860.59, + "end": 2864.25, + "probability": 0.9995 + }, + { + "start": 2864.59, + "end": 2865.61, + "probability": 0.9925 + }, + { + "start": 2866.63, + "end": 2869.73, + "probability": 0.9974 + }, + { + "start": 2869.79, + "end": 2870.13, + "probability": 0.6943 + }, + { + "start": 2870.37, + "end": 2870.77, + "probability": 0.9113 + }, + { + "start": 2871.37, + "end": 2873.03, + "probability": 0.959 + }, + { + "start": 2873.09, + "end": 2873.97, + "probability": 0.769 + }, + { + "start": 2874.35, + "end": 2880.47, + "probability": 0.9882 + }, + { + "start": 2880.85, + "end": 2882.81, + "probability": 0.9752 + }, + { + "start": 2882.89, + "end": 2883.09, + "probability": 0.665 + }, + { + "start": 2884.01, + "end": 2885.95, + "probability": 0.946 + }, + { + "start": 2886.05, + "end": 2887.63, + "probability": 0.6809 + }, + { + "start": 2887.77, + "end": 2889.39, + "probability": 0.9656 + }, + { + "start": 2899.63, + "end": 2902.57, + "probability": 0.8402 + }, + { + "start": 2903.69, + "end": 2906.31, + "probability": 0.9417 + }, + { + "start": 2906.95, + "end": 2909.07, + "probability": 0.8524 + }, + { + "start": 2909.59, + "end": 2911.75, + "probability": 0.9911 + }, + { + "start": 2912.61, + "end": 2916.53, + "probability": 0.837 + }, + { + "start": 2917.15, + "end": 2918.23, + "probability": 0.8143 + }, + { + "start": 2918.81, + "end": 2920.61, + "probability": 0.9353 + }, + { + "start": 2921.27, + "end": 2924.85, + "probability": 0.9835 + }, + { + "start": 2925.01, + "end": 2926.79, + "probability": 0.928 + }, + { + "start": 2927.83, + "end": 2931.79, + "probability": 0.9834 + }, + { + "start": 2932.55, + "end": 2935.85, + "probability": 0.9948 + }, + { + "start": 2936.55, + "end": 2939.15, + "probability": 0.9951 + }, + { + "start": 2939.81, + "end": 2944.27, + "probability": 0.9545 + }, + { + "start": 2945.09, + "end": 2947.85, + "probability": 0.9722 + }, + { + "start": 2949.19, + "end": 2953.05, + "probability": 0.9799 + }, + { + "start": 2953.81, + "end": 2956.61, + "probability": 0.9895 + }, + { + "start": 2957.25, + "end": 2958.09, + "probability": 0.8456 + }, + { + "start": 2958.19, + "end": 2959.18, + "probability": 0.8906 + }, + { + "start": 2959.29, + "end": 2959.83, + "probability": 0.7473 + }, + { + "start": 2959.95, + "end": 2960.57, + "probability": 0.9097 + }, + { + "start": 2961.07, + "end": 2962.79, + "probability": 0.951 + }, + { + "start": 2963.37, + "end": 2964.39, + "probability": 0.9616 + }, + { + "start": 2964.97, + "end": 2966.25, + "probability": 0.903 + }, + { + "start": 2967.17, + "end": 2968.59, + "probability": 0.8976 + }, + { + "start": 2968.69, + "end": 2970.08, + "probability": 0.9423 + }, + { + "start": 2970.77, + "end": 2972.15, + "probability": 0.833 + }, + { + "start": 2973.47, + "end": 2977.33, + "probability": 0.9465 + }, + { + "start": 2978.39, + "end": 2981.13, + "probability": 0.8628 + }, + { + "start": 2982.05, + "end": 2985.35, + "probability": 0.9909 + }, + { + "start": 2986.09, + "end": 2987.91, + "probability": 0.528 + }, + { + "start": 2989.57, + "end": 2990.55, + "probability": 0.9761 + }, + { + "start": 2991.45, + "end": 2993.29, + "probability": 0.7568 + }, + { + "start": 2994.09, + "end": 2996.27, + "probability": 0.8069 + }, + { + "start": 2996.97, + "end": 2997.59, + "probability": 0.5949 + }, + { + "start": 2997.73, + "end": 2998.79, + "probability": 0.9425 + }, + { + "start": 2999.19, + "end": 3001.13, + "probability": 0.9905 + }, + { + "start": 3002.15, + "end": 3002.97, + "probability": 0.3816 + }, + { + "start": 3003.65, + "end": 3006.13, + "probability": 0.9438 + }, + { + "start": 3006.53, + "end": 3007.67, + "probability": 0.9544 + }, + { + "start": 3008.13, + "end": 3008.13, + "probability": 0.4754 + }, + { + "start": 3008.49, + "end": 3011.65, + "probability": 0.9862 + }, + { + "start": 3011.65, + "end": 3013.77, + "probability": 0.9357 + }, + { + "start": 3014.41, + "end": 3019.03, + "probability": 0.9816 + }, + { + "start": 3019.51, + "end": 3020.13, + "probability": 0.7912 + }, + { + "start": 3021.47, + "end": 3021.65, + "probability": 0.4203 + }, + { + "start": 3021.79, + "end": 3022.03, + "probability": 0.883 + }, + { + "start": 3022.11, + "end": 3025.75, + "probability": 0.9937 + }, + { + "start": 3025.95, + "end": 3026.23, + "probability": 0.5191 + }, + { + "start": 3026.33, + "end": 3027.81, + "probability": 0.9398 + }, + { + "start": 3028.39, + "end": 3031.53, + "probability": 0.8841 + }, + { + "start": 3032.07, + "end": 3033.49, + "probability": 0.9638 + }, + { + "start": 3034.15, + "end": 3036.21, + "probability": 0.8796 + }, + { + "start": 3036.29, + "end": 3037.11, + "probability": 0.9183 + }, + { + "start": 3037.19, + "end": 3039.21, + "probability": 0.9813 + }, + { + "start": 3039.41, + "end": 3040.67, + "probability": 0.9541 + }, + { + "start": 3041.27, + "end": 3043.91, + "probability": 0.9584 + }, + { + "start": 3044.25, + "end": 3044.51, + "probability": 0.7056 + }, + { + "start": 3044.81, + "end": 3046.45, + "probability": 0.5424 + }, + { + "start": 3046.47, + "end": 3048.75, + "probability": 0.8218 + }, + { + "start": 3048.97, + "end": 3049.73, + "probability": 0.6747 + }, + { + "start": 3050.45, + "end": 3051.61, + "probability": 0.9062 + }, + { + "start": 3059.61, + "end": 3061.91, + "probability": 0.5874 + }, + { + "start": 3063.61, + "end": 3069.09, + "probability": 0.9736 + }, + { + "start": 3069.09, + "end": 3074.47, + "probability": 0.9959 + }, + { + "start": 3074.67, + "end": 3076.17, + "probability": 0.9645 + }, + { + "start": 3076.35, + "end": 3079.07, + "probability": 0.995 + }, + { + "start": 3079.07, + "end": 3082.21, + "probability": 0.991 + }, + { + "start": 3082.57, + "end": 3083.25, + "probability": 0.457 + }, + { + "start": 3083.45, + "end": 3084.31, + "probability": 0.8243 + }, + { + "start": 3084.49, + "end": 3087.16, + "probability": 0.9922 + }, + { + "start": 3087.45, + "end": 3089.53, + "probability": 0.9907 + }, + { + "start": 3090.17, + "end": 3094.87, + "probability": 0.992 + }, + { + "start": 3094.87, + "end": 3098.93, + "probability": 0.9834 + }, + { + "start": 3099.65, + "end": 3103.29, + "probability": 0.964 + }, + { + "start": 3103.29, + "end": 3108.73, + "probability": 0.8557 + }, + { + "start": 3108.85, + "end": 3110.41, + "probability": 0.8456 + }, + { + "start": 3111.07, + "end": 3111.83, + "probability": 0.8044 + }, + { + "start": 3111.93, + "end": 3113.75, + "probability": 0.9706 + }, + { + "start": 3113.83, + "end": 3114.41, + "probability": 0.7742 + }, + { + "start": 3114.81, + "end": 3116.33, + "probability": 0.7259 + }, + { + "start": 3116.37, + "end": 3117.45, + "probability": 0.9478 + }, + { + "start": 3117.81, + "end": 3120.23, + "probability": 0.9556 + }, + { + "start": 3120.59, + "end": 3121.89, + "probability": 0.9375 + }, + { + "start": 3122.67, + "end": 3124.23, + "probability": 0.3585 + }, + { + "start": 3124.41, + "end": 3125.49, + "probability": 0.5515 + }, + { + "start": 3125.97, + "end": 3126.19, + "probability": 0.3756 + }, + { + "start": 3126.39, + "end": 3126.91, + "probability": 0.8346 + }, + { + "start": 3127.03, + "end": 3128.05, + "probability": 0.9775 + }, + { + "start": 3128.57, + "end": 3130.78, + "probability": 0.9884 + }, + { + "start": 3130.99, + "end": 3134.77, + "probability": 0.6649 + }, + { + "start": 3135.27, + "end": 3139.19, + "probability": 0.9956 + }, + { + "start": 3139.49, + "end": 3140.77, + "probability": 0.9185 + }, + { + "start": 3141.55, + "end": 3142.93, + "probability": 0.8235 + }, + { + "start": 3143.03, + "end": 3145.07, + "probability": 0.6019 + }, + { + "start": 3145.17, + "end": 3146.77, + "probability": 0.804 + }, + { + "start": 3150.63, + "end": 3153.03, + "probability": 0.7842 + }, + { + "start": 3153.77, + "end": 3156.99, + "probability": 0.9945 + }, + { + "start": 3156.99, + "end": 3159.91, + "probability": 0.7227 + }, + { + "start": 3161.21, + "end": 3165.85, + "probability": 0.9543 + }, + { + "start": 3167.47, + "end": 3174.27, + "probability": 0.8835 + }, + { + "start": 3174.85, + "end": 3178.91, + "probability": 0.8846 + }, + { + "start": 3180.01, + "end": 3182.19, + "probability": 0.9518 + }, + { + "start": 3183.07, + "end": 3184.21, + "probability": 0.9114 + }, + { + "start": 3184.91, + "end": 3187.25, + "probability": 0.9438 + }, + { + "start": 3188.11, + "end": 3190.23, + "probability": 0.9834 + }, + { + "start": 3190.89, + "end": 3195.13, + "probability": 0.9414 + }, + { + "start": 3196.05, + "end": 3198.09, + "probability": 0.8593 + }, + { + "start": 3198.93, + "end": 3202.99, + "probability": 0.9296 + }, + { + "start": 3203.75, + "end": 3204.29, + "probability": 0.2405 + }, + { + "start": 3204.41, + "end": 3206.67, + "probability": 0.8722 + }, + { + "start": 3206.79, + "end": 3208.99, + "probability": 0.9408 + }, + { + "start": 3209.37, + "end": 3211.43, + "probability": 0.9653 + }, + { + "start": 3212.01, + "end": 3220.31, + "probability": 0.7343 + }, + { + "start": 3221.19, + "end": 3222.05, + "probability": 0.5193 + }, + { + "start": 3223.13, + "end": 3228.73, + "probability": 0.979 + }, + { + "start": 3228.79, + "end": 3229.21, + "probability": 0.7347 + }, + { + "start": 3229.53, + "end": 3231.39, + "probability": 0.5641 + }, + { + "start": 3231.39, + "end": 3232.75, + "probability": 0.5943 + }, + { + "start": 3232.95, + "end": 3234.61, + "probability": 0.8067 + }, + { + "start": 3235.37, + "end": 3236.53, + "probability": 0.9135 + }, + { + "start": 3238.61, + "end": 3239.69, + "probability": 0.684 + }, + { + "start": 3239.77, + "end": 3239.77, + "probability": 0.2732 + }, + { + "start": 3239.77, + "end": 3242.45, + "probability": 0.5612 + }, + { + "start": 3242.69, + "end": 3247.05, + "probability": 0.8947 + }, + { + "start": 3247.13, + "end": 3248.39, + "probability": 0.8948 + }, + { + "start": 3248.49, + "end": 3249.13, + "probability": 0.3826 + }, + { + "start": 3249.49, + "end": 3251.63, + "probability": 0.9755 + }, + { + "start": 3251.73, + "end": 3256.19, + "probability": 0.9902 + }, + { + "start": 3256.29, + "end": 3257.23, + "probability": 0.846 + }, + { + "start": 3257.45, + "end": 3258.45, + "probability": 0.9683 + }, + { + "start": 3258.53, + "end": 3261.14, + "probability": 0.9905 + }, + { + "start": 3261.33, + "end": 3264.39, + "probability": 0.9893 + }, + { + "start": 3264.59, + "end": 3266.6, + "probability": 0.9854 + }, + { + "start": 3267.03, + "end": 3270.43, + "probability": 0.9958 + }, + { + "start": 3270.93, + "end": 3272.35, + "probability": 0.7076 + }, + { + "start": 3272.39, + "end": 3277.41, + "probability": 0.9787 + }, + { + "start": 3277.65, + "end": 3283.05, + "probability": 0.9984 + }, + { + "start": 3283.37, + "end": 3284.53, + "probability": 0.9949 + }, + { + "start": 3284.61, + "end": 3284.73, + "probability": 0.2767 + }, + { + "start": 3284.79, + "end": 3286.58, + "probability": 0.7965 + }, + { + "start": 3287.23, + "end": 3291.11, + "probability": 0.9803 + }, + { + "start": 3291.37, + "end": 3297.01, + "probability": 0.9806 + }, + { + "start": 3297.05, + "end": 3299.25, + "probability": 0.9816 + }, + { + "start": 3299.25, + "end": 3299.83, + "probability": 0.8934 + }, + { + "start": 3299.93, + "end": 3301.01, + "probability": 0.9338 + }, + { + "start": 3301.15, + "end": 3302.63, + "probability": 0.9822 + }, + { + "start": 3302.99, + "end": 3304.03, + "probability": 0.8496 + }, + { + "start": 3304.29, + "end": 3305.64, + "probability": 0.9909 + }, + { + "start": 3305.91, + "end": 3306.05, + "probability": 0.546 + }, + { + "start": 3306.09, + "end": 3306.23, + "probability": 0.7769 + }, + { + "start": 3306.41, + "end": 3308.79, + "probability": 0.9069 + }, + { + "start": 3308.81, + "end": 3309.73, + "probability": 0.6543 + }, + { + "start": 3310.01, + "end": 3310.01, + "probability": 0.2794 + }, + { + "start": 3310.01, + "end": 3311.41, + "probability": 0.5456 + }, + { + "start": 3311.73, + "end": 3313.82, + "probability": 0.6793 + }, + { + "start": 3314.05, + "end": 3319.33, + "probability": 0.9949 + }, + { + "start": 3319.61, + "end": 3319.61, + "probability": 0.6799 + }, + { + "start": 3319.69, + "end": 3320.87, + "probability": 0.8394 + }, + { + "start": 3321.33, + "end": 3322.61, + "probability": 0.8757 + }, + { + "start": 3323.33, + "end": 3324.57, + "probability": 0.4938 + }, + { + "start": 3325.17, + "end": 3325.17, + "probability": 0.5758 + }, + { + "start": 3325.17, + "end": 3325.17, + "probability": 0.4225 + }, + { + "start": 3325.17, + "end": 3329.56, + "probability": 0.8528 + }, + { + "start": 3330.35, + "end": 3333.83, + "probability": 0.9451 + }, + { + "start": 3334.23, + "end": 3336.25, + "probability": 0.7751 + }, + { + "start": 3336.37, + "end": 3338.45, + "probability": 0.7255 + }, + { + "start": 3340.67, + "end": 3341.71, + "probability": 0.5708 + }, + { + "start": 3342.59, + "end": 3344.81, + "probability": 0.6335 + }, + { + "start": 3345.77, + "end": 3349.78, + "probability": 0.9458 + }, + { + "start": 3350.93, + "end": 3353.01, + "probability": 0.8277 + }, + { + "start": 3353.45, + "end": 3354.75, + "probability": 0.9231 + }, + { + "start": 3354.99, + "end": 3356.67, + "probability": 0.6193 + }, + { + "start": 3356.77, + "end": 3359.39, + "probability": 0.9502 + }, + { + "start": 3359.45, + "end": 3361.81, + "probability": 0.7176 + }, + { + "start": 3362.91, + "end": 3367.07, + "probability": 0.984 + }, + { + "start": 3367.63, + "end": 3369.03, + "probability": 0.9904 + }, + { + "start": 3369.21, + "end": 3371.11, + "probability": 0.9837 + }, + { + "start": 3371.17, + "end": 3371.99, + "probability": 0.8857 + }, + { + "start": 3372.55, + "end": 3375.73, + "probability": 0.9576 + }, + { + "start": 3376.17, + "end": 3379.59, + "probability": 0.9382 + }, + { + "start": 3380.91, + "end": 3384.47, + "probability": 0.8746 + }, + { + "start": 3384.91, + "end": 3385.43, + "probability": 0.9172 + }, + { + "start": 3385.53, + "end": 3388.83, + "probability": 0.9879 + }, + { + "start": 3388.83, + "end": 3391.59, + "probability": 0.8379 + }, + { + "start": 3391.95, + "end": 3394.13, + "probability": 0.9825 + }, + { + "start": 3394.57, + "end": 3398.11, + "probability": 0.9471 + }, + { + "start": 3399.25, + "end": 3399.69, + "probability": 0.9237 + }, + { + "start": 3399.81, + "end": 3400.43, + "probability": 0.8232 + }, + { + "start": 3401.05, + "end": 3403.23, + "probability": 0.6292 + }, + { + "start": 3403.35, + "end": 3405.76, + "probability": 0.9948 + }, + { + "start": 3406.87, + "end": 3407.55, + "probability": 0.5905 + }, + { + "start": 3407.81, + "end": 3414.11, + "probability": 0.8628 + }, + { + "start": 3414.69, + "end": 3416.67, + "probability": 0.7866 + }, + { + "start": 3416.71, + "end": 3421.07, + "probability": 0.7742 + }, + { + "start": 3421.61, + "end": 3423.59, + "probability": 0.6311 + }, + { + "start": 3424.47, + "end": 3426.27, + "probability": 0.9128 + }, + { + "start": 3426.39, + "end": 3428.13, + "probability": 0.8652 + }, + { + "start": 3429.25, + "end": 3430.57, + "probability": 0.7736 + }, + { + "start": 3430.65, + "end": 3435.55, + "probability": 0.6299 + }, + { + "start": 3435.73, + "end": 3436.13, + "probability": 0.9193 + }, + { + "start": 3436.19, + "end": 3438.01, + "probability": 0.6844 + }, + { + "start": 3438.07, + "end": 3440.51, + "probability": 0.641 + }, + { + "start": 3440.87, + "end": 3443.51, + "probability": 0.7242 + }, + { + "start": 3443.85, + "end": 3446.49, + "probability": 0.8569 + }, + { + "start": 3446.63, + "end": 3447.61, + "probability": 0.752 + }, + { + "start": 3448.11, + "end": 3450.15, + "probability": 0.8772 + }, + { + "start": 3450.31, + "end": 3451.19, + "probability": 0.9678 + }, + { + "start": 3451.65, + "end": 3452.45, + "probability": 0.6883 + }, + { + "start": 3452.77, + "end": 3456.81, + "probability": 0.9425 + }, + { + "start": 3456.89, + "end": 3457.17, + "probability": 0.8036 + }, + { + "start": 3457.47, + "end": 3458.97, + "probability": 0.7539 + }, + { + "start": 3459.17, + "end": 3460.72, + "probability": 0.9242 + }, + { + "start": 3461.33, + "end": 3463.73, + "probability": 0.9943 + }, + { + "start": 3464.75, + "end": 3466.21, + "probability": 0.8643 + }, + { + "start": 3467.45, + "end": 3472.15, + "probability": 0.9968 + }, + { + "start": 3474.25, + "end": 3479.03, + "probability": 0.9849 + }, + { + "start": 3479.99, + "end": 3480.91, + "probability": 0.6417 + }, + { + "start": 3485.28, + "end": 3488.37, + "probability": 0.4666 + }, + { + "start": 3492.43, + "end": 3493.19, + "probability": 0.5272 + }, + { + "start": 3493.23, + "end": 3493.99, + "probability": 0.7691 + }, + { + "start": 3494.09, + "end": 3498.61, + "probability": 0.9102 + }, + { + "start": 3498.71, + "end": 3499.95, + "probability": 0.6189 + }, + { + "start": 3500.39, + "end": 3502.23, + "probability": 0.9855 + }, + { + "start": 3502.65, + "end": 3509.23, + "probability": 0.9873 + }, + { + "start": 3509.95, + "end": 3514.97, + "probability": 0.9568 + }, + { + "start": 3514.97, + "end": 3520.99, + "probability": 0.988 + }, + { + "start": 3521.85, + "end": 3524.33, + "probability": 0.7661 + }, + { + "start": 3524.65, + "end": 3528.35, + "probability": 0.7374 + }, + { + "start": 3528.51, + "end": 3530.35, + "probability": 0.5459 + }, + { + "start": 3530.51, + "end": 3533.45, + "probability": 0.9741 + }, + { + "start": 3533.77, + "end": 3535.35, + "probability": 0.8619 + }, + { + "start": 3535.71, + "end": 3538.95, + "probability": 0.9245 + }, + { + "start": 3539.33, + "end": 3543.41, + "probability": 0.8223 + }, + { + "start": 3543.67, + "end": 3548.43, + "probability": 0.7923 + }, + { + "start": 3548.83, + "end": 3549.65, + "probability": 0.7092 + }, + { + "start": 3550.43, + "end": 3552.39, + "probability": 0.7356 + }, + { + "start": 3552.53, + "end": 3554.67, + "probability": 0.4622 + }, + { + "start": 3555.31, + "end": 3557.45, + "probability": 0.7529 + }, + { + "start": 3557.53, + "end": 3563.25, + "probability": 0.6046 + }, + { + "start": 3563.35, + "end": 3564.35, + "probability": 0.9014 + }, + { + "start": 3564.91, + "end": 3567.33, + "probability": 0.8507 + }, + { + "start": 3567.83, + "end": 3569.97, + "probability": 0.9561 + }, + { + "start": 3570.45, + "end": 3573.31, + "probability": 0.5911 + }, + { + "start": 3573.41, + "end": 3574.33, + "probability": 0.2828 + }, + { + "start": 3574.37, + "end": 3575.07, + "probability": 0.7573 + }, + { + "start": 3575.29, + "end": 3578.69, + "probability": 0.6478 + }, + { + "start": 3579.45, + "end": 3582.73, + "probability": 0.9963 + }, + { + "start": 3583.69, + "end": 3588.41, + "probability": 0.749 + }, + { + "start": 3588.93, + "end": 3590.05, + "probability": 0.5844 + }, + { + "start": 3590.65, + "end": 3594.07, + "probability": 0.9627 + }, + { + "start": 3594.57, + "end": 3601.35, + "probability": 0.9806 + }, + { + "start": 3601.87, + "end": 3605.79, + "probability": 0.904 + }, + { + "start": 3606.67, + "end": 3609.45, + "probability": 0.326 + }, + { + "start": 3609.93, + "end": 3609.95, + "probability": 0.4875 + }, + { + "start": 3609.95, + "end": 3611.89, + "probability": 0.9494 + }, + { + "start": 3611.97, + "end": 3617.69, + "probability": 0.9785 + }, + { + "start": 3617.85, + "end": 3622.63, + "probability": 0.9454 + }, + { + "start": 3623.05, + "end": 3626.63, + "probability": 0.9967 + }, + { + "start": 3627.29, + "end": 3628.45, + "probability": 0.0856 + }, + { + "start": 3629.35, + "end": 3633.65, + "probability": 0.9477 + }, + { + "start": 3633.75, + "end": 3634.21, + "probability": 0.1443 + }, + { + "start": 3634.45, + "end": 3638.53, + "probability": 0.6163 + }, + { + "start": 3638.77, + "end": 3641.23, + "probability": 0.4676 + }, + { + "start": 3641.33, + "end": 3642.31, + "probability": 0.6764 + }, + { + "start": 3642.59, + "end": 3644.37, + "probability": 0.6969 + }, + { + "start": 3644.53, + "end": 3648.05, + "probability": 0.9388 + }, + { + "start": 3648.05, + "end": 3650.51, + "probability": 0.6702 + }, + { + "start": 3652.15, + "end": 3657.87, + "probability": 0.7099 + }, + { + "start": 3658.05, + "end": 3659.09, + "probability": 0.6831 + }, + { + "start": 3659.19, + "end": 3660.91, + "probability": 0.8364 + }, + { + "start": 3661.29, + "end": 3662.71, + "probability": 0.9602 + }, + { + "start": 3662.71, + "end": 3664.73, + "probability": 0.8422 + }, + { + "start": 3665.05, + "end": 3665.39, + "probability": 0.4733 + }, + { + "start": 3665.39, + "end": 3666.67, + "probability": 0.708 + }, + { + "start": 3666.75, + "end": 3670.45, + "probability": 0.8759 + }, + { + "start": 3673.47, + "end": 3675.63, + "probability": 0.7166 + }, + { + "start": 3675.77, + "end": 3678.09, + "probability": 0.8501 + }, + { + "start": 3678.35, + "end": 3680.47, + "probability": 0.9215 + }, + { + "start": 3681.51, + "end": 3682.15, + "probability": 0.8449 + }, + { + "start": 3683.39, + "end": 3685.53, + "probability": 0.7513 + }, + { + "start": 3685.79, + "end": 3689.15, + "probability": 0.8419 + }, + { + "start": 3689.83, + "end": 3691.07, + "probability": 0.9888 + }, + { + "start": 3691.07, + "end": 3692.11, + "probability": 0.6897 + }, + { + "start": 3692.31, + "end": 3699.09, + "probability": 0.9944 + }, + { + "start": 3700.15, + "end": 3705.53, + "probability": 0.3264 + }, + { + "start": 3705.53, + "end": 3705.63, + "probability": 0.0739 + }, + { + "start": 3706.03, + "end": 3707.95, + "probability": 0.045 + }, + { + "start": 3708.43, + "end": 3708.93, + "probability": 0.3473 + }, + { + "start": 3708.99, + "end": 3710.01, + "probability": 0.7397 + }, + { + "start": 3710.31, + "end": 3711.01, + "probability": 0.9121 + }, + { + "start": 3711.73, + "end": 3712.45, + "probability": 0.4016 + }, + { + "start": 3713.25, + "end": 3714.05, + "probability": 0.0106 + }, + { + "start": 3716.27, + "end": 3719.97, + "probability": 0.0292 + }, + { + "start": 3720.69, + "end": 3721.53, + "probability": 0.4006 + }, + { + "start": 3721.67, + "end": 3722.75, + "probability": 0.6674 + }, + { + "start": 3723.19, + "end": 3724.99, + "probability": 0.8354 + }, + { + "start": 3725.13, + "end": 3725.57, + "probability": 0.0778 + }, + { + "start": 3725.77, + "end": 3728.35, + "probability": 0.8127 + }, + { + "start": 3728.55, + "end": 3729.89, + "probability": 0.9128 + }, + { + "start": 3730.11, + "end": 3732.59, + "probability": 0.8375 + }, + { + "start": 3733.05, + "end": 3735.43, + "probability": 0.8339 + }, + { + "start": 3736.05, + "end": 3737.01, + "probability": 0.9432 + }, + { + "start": 3737.11, + "end": 3737.69, + "probability": 0.5922 + }, + { + "start": 3737.81, + "end": 3738.67, + "probability": 0.8542 + }, + { + "start": 3739.07, + "end": 3741.73, + "probability": 0.9619 + }, + { + "start": 3741.77, + "end": 3743.85, + "probability": 0.9259 + }, + { + "start": 3744.75, + "end": 3748.15, + "probability": 0.9668 + }, + { + "start": 3748.59, + "end": 3751.67, + "probability": 0.6661 + }, + { + "start": 3751.69, + "end": 3753.15, + "probability": 0.1113 + }, + { + "start": 3753.29, + "end": 3753.29, + "probability": 0.3803 + }, + { + "start": 3753.29, + "end": 3754.37, + "probability": 0.712 + }, + { + "start": 3755.37, + "end": 3760.73, + "probability": 0.5327 + }, + { + "start": 3761.75, + "end": 3764.11, + "probability": 0.6949 + }, + { + "start": 3764.13, + "end": 3764.35, + "probability": 0.6088 + }, + { + "start": 3764.41, + "end": 3765.93, + "probability": 0.889 + }, + { + "start": 3765.93, + "end": 3768.47, + "probability": 0.9761 + }, + { + "start": 3768.47, + "end": 3769.95, + "probability": 0.5756 + }, + { + "start": 3771.83, + "end": 3775.85, + "probability": 0.5981 + }, + { + "start": 3775.89, + "end": 3778.33, + "probability": 0.7412 + }, + { + "start": 3778.39, + "end": 3779.25, + "probability": 0.6953 + }, + { + "start": 3779.55, + "end": 3780.03, + "probability": 0.4674 + }, + { + "start": 3780.07, + "end": 3781.33, + "probability": 0.8089 + }, + { + "start": 3781.49, + "end": 3782.73, + "probability": 0.9829 + }, + { + "start": 3782.81, + "end": 3786.15, + "probability": 0.7559 + }, + { + "start": 3786.21, + "end": 3788.58, + "probability": 0.8154 + }, + { + "start": 3789.57, + "end": 3795.15, + "probability": 0.9643 + }, + { + "start": 3795.31, + "end": 3796.69, + "probability": 0.8332 + }, + { + "start": 3797.01, + "end": 3802.51, + "probability": 0.9849 + }, + { + "start": 3802.83, + "end": 3806.05, + "probability": 0.6878 + }, + { + "start": 3807.01, + "end": 3809.43, + "probability": 0.4083 + }, + { + "start": 3810.23, + "end": 3812.27, + "probability": 0.5025 + }, + { + "start": 3812.37, + "end": 3813.57, + "probability": 0.6848 + }, + { + "start": 3813.77, + "end": 3815.65, + "probability": 0.849 + }, + { + "start": 3815.89, + "end": 3816.66, + "probability": 0.9619 + }, + { + "start": 3817.21, + "end": 3819.34, + "probability": 0.9853 + }, + { + "start": 3819.81, + "end": 3821.29, + "probability": 0.5207 + }, + { + "start": 3821.57, + "end": 3823.89, + "probability": 0.6136 + }, + { + "start": 3825.37, + "end": 3825.65, + "probability": 0.1829 + }, + { + "start": 3825.65, + "end": 3826.89, + "probability": 0.8235 + }, + { + "start": 3827.29, + "end": 3830.47, + "probability": 0.802 + }, + { + "start": 3830.85, + "end": 3831.91, + "probability": 0.9072 + }, + { + "start": 3832.07, + "end": 3833.03, + "probability": 0.9337 + }, + { + "start": 3833.21, + "end": 3840.23, + "probability": 0.6847 + }, + { + "start": 3841.15, + "end": 3843.17, + "probability": 0.0082 + }, + { + "start": 3844.11, + "end": 3851.33, + "probability": 0.5938 + }, + { + "start": 3851.33, + "end": 3851.33, + "probability": 0.0562 + }, + { + "start": 3851.43, + "end": 3852.65, + "probability": 0.8723 + }, + { + "start": 3852.85, + "end": 3856.61, + "probability": 0.8737 + }, + { + "start": 3857.05, + "end": 3858.31, + "probability": 0.0335 + }, + { + "start": 3859.07, + "end": 3860.23, + "probability": 0.2479 + }, + { + "start": 3860.23, + "end": 3860.81, + "probability": 0.6833 + }, + { + "start": 3860.95, + "end": 3862.21, + "probability": 0.9251 + }, + { + "start": 3862.57, + "end": 3865.57, + "probability": 0.9371 + }, + { + "start": 3865.71, + "end": 3866.27, + "probability": 0.5034 + }, + { + "start": 3866.43, + "end": 3867.01, + "probability": 0.738 + }, + { + "start": 3867.01, + "end": 3867.01, + "probability": 0.6171 + }, + { + "start": 3867.05, + "end": 3867.97, + "probability": 0.6181 + }, + { + "start": 3868.09, + "end": 3871.71, + "probability": 0.9931 + }, + { + "start": 3871.71, + "end": 3875.87, + "probability": 0.999 + }, + { + "start": 3876.07, + "end": 3880.23, + "probability": 0.6965 + }, + { + "start": 3881.17, + "end": 3881.91, + "probability": 0.8275 + }, + { + "start": 3882.49, + "end": 3883.49, + "probability": 0.925 + }, + { + "start": 3884.15, + "end": 3886.11, + "probability": 0.64 + }, + { + "start": 3887.29, + "end": 3888.19, + "probability": 0.7032 + }, + { + "start": 3888.27, + "end": 3889.05, + "probability": 0.8013 + }, + { + "start": 3889.43, + "end": 3892.35, + "probability": 0.8978 + }, + { + "start": 3892.41, + "end": 3893.85, + "probability": 0.8781 + }, + { + "start": 3894.54, + "end": 3898.45, + "probability": 0.8025 + }, + { + "start": 3899.59, + "end": 3900.25, + "probability": 0.3257 + }, + { + "start": 3900.55, + "end": 3902.25, + "probability": 0.0498 + }, + { + "start": 3911.53, + "end": 3912.35, + "probability": 0.0444 + }, + { + "start": 3912.35, + "end": 3912.35, + "probability": 0.156 + }, + { + "start": 3912.35, + "end": 3912.35, + "probability": 0.1212 + }, + { + "start": 3912.35, + "end": 3912.35, + "probability": 0.0212 + }, + { + "start": 3912.35, + "end": 3917.17, + "probability": 0.3697 + }, + { + "start": 3917.75, + "end": 3919.63, + "probability": 0.648 + }, + { + "start": 3919.65, + "end": 3920.93, + "probability": 0.7651 + }, + { + "start": 3920.93, + "end": 3924.65, + "probability": 0.891 + }, + { + "start": 3924.69, + "end": 3926.73, + "probability": 0.8329 + }, + { + "start": 3926.75, + "end": 3929.29, + "probability": 0.8817 + }, + { + "start": 3929.93, + "end": 3932.75, + "probability": 0.9116 + }, + { + "start": 3932.99, + "end": 3936.67, + "probability": 0.9827 + }, + { + "start": 3936.73, + "end": 3936.97, + "probability": 0.8341 + }, + { + "start": 3937.01, + "end": 3937.29, + "probability": 0.8081 + }, + { + "start": 3937.57, + "end": 3939.03, + "probability": 0.9927 + }, + { + "start": 3939.43, + "end": 3941.09, + "probability": 0.9543 + }, + { + "start": 3941.89, + "end": 3944.31, + "probability": 0.9768 + }, + { + "start": 3944.45, + "end": 3945.13, + "probability": 0.5073 + }, + { + "start": 3945.47, + "end": 3948.25, + "probability": 0.8031 + }, + { + "start": 3948.77, + "end": 3949.69, + "probability": 0.423 + }, + { + "start": 3950.87, + "end": 3953.21, + "probability": 0.3272 + }, + { + "start": 3953.21, + "end": 3953.21, + "probability": 0.1615 + }, + { + "start": 3953.21, + "end": 3956.57, + "probability": 0.7834 + }, + { + "start": 3956.61, + "end": 3958.49, + "probability": 0.8675 + }, + { + "start": 3958.91, + "end": 3960.09, + "probability": 0.9316 + }, + { + "start": 3960.21, + "end": 3961.47, + "probability": 0.7214 + }, + { + "start": 3961.83, + "end": 3963.01, + "probability": 0.9282 + }, + { + "start": 3963.47, + "end": 3965.63, + "probability": 0.9598 + }, + { + "start": 3966.09, + "end": 3968.49, + "probability": 0.8498 + }, + { + "start": 3968.57, + "end": 3969.45, + "probability": 0.0325 + }, + { + "start": 3969.47, + "end": 3970.59, + "probability": 0.8026 + }, + { + "start": 3974.95, + "end": 3982.11, + "probability": 0.4715 + }, + { + "start": 3982.75, + "end": 3986.25, + "probability": 0.9741 + }, + { + "start": 3986.45, + "end": 3987.26, + "probability": 0.9811 + }, + { + "start": 3988.31, + "end": 3989.35, + "probability": 0.2869 + }, + { + "start": 3989.47, + "end": 3990.77, + "probability": 0.8895 + }, + { + "start": 3991.01, + "end": 3992.33, + "probability": 0.7188 + }, + { + "start": 3992.57, + "end": 3995.1, + "probability": 0.6533 + }, + { + "start": 3995.55, + "end": 3997.95, + "probability": 0.1337 + }, + { + "start": 3998.71, + "end": 4000.95, + "probability": 0.0265 + }, + { + "start": 4000.95, + "end": 4001.59, + "probability": 0.2064 + }, + { + "start": 4001.87, + "end": 4002.75, + "probability": 0.0678 + }, + { + "start": 4002.75, + "end": 4004.59, + "probability": 0.085 + }, + { + "start": 4004.59, + "end": 4006.69, + "probability": 0.562 + }, + { + "start": 4006.99, + "end": 4007.83, + "probability": 0.5173 + }, + { + "start": 4008.23, + "end": 4012.31, + "probability": 0.157 + }, + { + "start": 4013.07, + "end": 4015.11, + "probability": 0.1021 + }, + { + "start": 4015.21, + "end": 4016.59, + "probability": 0.6545 + }, + { + "start": 4016.77, + "end": 4017.31, + "probability": 0.7109 + }, + { + "start": 4017.39, + "end": 4018.23, + "probability": 0.7315 + }, + { + "start": 4018.33, + "end": 4021.37, + "probability": 0.7744 + }, + { + "start": 4022.11, + "end": 4022.21, + "probability": 0.55 + }, + { + "start": 4022.29, + "end": 4025.15, + "probability": 0.8337 + }, + { + "start": 4025.27, + "end": 4027.61, + "probability": 0.5797 + }, + { + "start": 4027.75, + "end": 4028.79, + "probability": 0.8583 + }, + { + "start": 4028.93, + "end": 4029.97, + "probability": 0.9564 + }, + { + "start": 4030.25, + "end": 4031.97, + "probability": 0.9946 + }, + { + "start": 4032.25, + "end": 4036.39, + "probability": 0.896 + }, + { + "start": 4036.65, + "end": 4037.65, + "probability": 0.8131 + }, + { + "start": 4038.03, + "end": 4039.61, + "probability": 0.9387 + }, + { + "start": 4039.69, + "end": 4040.95, + "probability": 0.7408 + }, + { + "start": 4041.25, + "end": 4044.41, + "probability": 0.9266 + }, + { + "start": 4045.17, + "end": 4047.03, + "probability": 0.9954 + }, + { + "start": 4047.49, + "end": 4048.66, + "probability": 0.7907 + }, + { + "start": 4048.89, + "end": 4050.04, + "probability": 0.9431 + }, + { + "start": 4050.67, + "end": 4052.03, + "probability": 0.9172 + }, + { + "start": 4052.35, + "end": 4052.87, + "probability": 0.8779 + }, + { + "start": 4052.99, + "end": 4055.02, + "probability": 0.8731 + }, + { + "start": 4055.35, + "end": 4059.27, + "probability": 0.7588 + }, + { + "start": 4059.54, + "end": 4061.59, + "probability": 0.7445 + }, + { + "start": 4061.77, + "end": 4062.83, + "probability": 0.827 + }, + { + "start": 4062.93, + "end": 4065.87, + "probability": 0.9182 + }, + { + "start": 4066.81, + "end": 4068.79, + "probability": 0.8611 + }, + { + "start": 4068.89, + "end": 4070.25, + "probability": 0.8589 + }, + { + "start": 4070.37, + "end": 4071.43, + "probability": 0.6739 + }, + { + "start": 4071.55, + "end": 4073.39, + "probability": 0.8524 + }, + { + "start": 4073.53, + "end": 4074.99, + "probability": 0.9697 + }, + { + "start": 4075.65, + "end": 4078.01, + "probability": 0.1695 + }, + { + "start": 4079.07, + "end": 4081.83, + "probability": 0.4978 + }, + { + "start": 4081.99, + "end": 4082.63, + "probability": 0.7612 + }, + { + "start": 4082.69, + "end": 4083.63, + "probability": 0.6079 + }, + { + "start": 4083.75, + "end": 4085.19, + "probability": 0.5004 + }, + { + "start": 4085.65, + "end": 4087.65, + "probability": 0.4453 + }, + { + "start": 4087.77, + "end": 4090.62, + "probability": 0.9762 + }, + { + "start": 4091.41, + "end": 4093.47, + "probability": 0.8813 + }, + { + "start": 4093.47, + "end": 4094.83, + "probability": 0.9888 + }, + { + "start": 4094.85, + "end": 4095.69, + "probability": 0.4082 + }, + { + "start": 4095.75, + "end": 4097.15, + "probability": 0.5412 + }, + { + "start": 4097.72, + "end": 4098.49, + "probability": 0.8149 + }, + { + "start": 4098.51, + "end": 4099.53, + "probability": 0.8653 + }, + { + "start": 4099.75, + "end": 4100.67, + "probability": 0.9033 + }, + { + "start": 4101.39, + "end": 4102.77, + "probability": 0.7987 + }, + { + "start": 4103.87, + "end": 4107.03, + "probability": 0.9224 + }, + { + "start": 4107.95, + "end": 4108.29, + "probability": 0.5438 + }, + { + "start": 4108.29, + "end": 4111.55, + "probability": 0.8436 + }, + { + "start": 4111.61, + "end": 4113.43, + "probability": 0.4854 + }, + { + "start": 4114.11, + "end": 4117.25, + "probability": 0.8215 + }, + { + "start": 4118.25, + "end": 4119.47, + "probability": 0.9501 + }, + { + "start": 4120.07, + "end": 4121.33, + "probability": 0.8045 + }, + { + "start": 4121.93, + "end": 4123.91, + "probability": 0.9774 + }, + { + "start": 4127.17, + "end": 4129.53, + "probability": 0.9299 + }, + { + "start": 4130.47, + "end": 4131.23, + "probability": 0.6244 + }, + { + "start": 4131.37, + "end": 4132.29, + "probability": 0.8122 + }, + { + "start": 4132.37, + "end": 4134.27, + "probability": 0.8396 + }, + { + "start": 4134.51, + "end": 4136.07, + "probability": 0.8965 + }, + { + "start": 4136.17, + "end": 4138.07, + "probability": 0.8683 + }, + { + "start": 4138.15, + "end": 4139.99, + "probability": 0.6166 + }, + { + "start": 4140.49, + "end": 4143.84, + "probability": 0.9004 + }, + { + "start": 4144.13, + "end": 4144.13, + "probability": 0.036 + }, + { + "start": 4144.13, + "end": 4146.99, + "probability": 0.0271 + }, + { + "start": 4148.29, + "end": 4150.73, + "probability": 0.1206 + }, + { + "start": 4150.77, + "end": 4152.73, + "probability": 0.3985 + }, + { + "start": 4152.73, + "end": 4154.05, + "probability": 0.077 + }, + { + "start": 4157.57, + "end": 4160.19, + "probability": 0.0182 + }, + { + "start": 4161.25, + "end": 4162.33, + "probability": 0.7213 + }, + { + "start": 4162.51, + "end": 4164.53, + "probability": 0.9412 + }, + { + "start": 4164.71, + "end": 4167.25, + "probability": 0.9679 + }, + { + "start": 4167.45, + "end": 4168.28, + "probability": 0.9883 + }, + { + "start": 4168.59, + "end": 4170.14, + "probability": 0.9967 + }, + { + "start": 4170.85, + "end": 4171.47, + "probability": 0.0073 + }, + { + "start": 4171.73, + "end": 4173.61, + "probability": 0.5288 + }, + { + "start": 4173.83, + "end": 4174.51, + "probability": 0.9429 + }, + { + "start": 4174.53, + "end": 4175.55, + "probability": 0.8506 + }, + { + "start": 4175.77, + "end": 4176.85, + "probability": 0.9448 + }, + { + "start": 4177.39, + "end": 4178.13, + "probability": 0.9456 + }, + { + "start": 4178.25, + "end": 4179.57, + "probability": 0.9926 + }, + { + "start": 4179.87, + "end": 4183.69, + "probability": 0.9769 + }, + { + "start": 4184.05, + "end": 4188.59, + "probability": 0.9565 + }, + { + "start": 4196.15, + "end": 4199.15, + "probability": 0.6978 + }, + { + "start": 4199.31, + "end": 4200.39, + "probability": 0.4265 + }, + { + "start": 4200.39, + "end": 4208.97, + "probability": 0.6965 + }, + { + "start": 4209.09, + "end": 4211.19, + "probability": 0.0436 + }, + { + "start": 4212.09, + "end": 4213.45, + "probability": 0.0215 + }, + { + "start": 4213.45, + "end": 4213.85, + "probability": 0.1688 + }, + { + "start": 4214.09, + "end": 4215.21, + "probability": 0.6765 + }, + { + "start": 4217.13, + "end": 4220.83, + "probability": 0.7408 + }, + { + "start": 4221.01, + "end": 4221.59, + "probability": 0.7283 + }, + { + "start": 4221.99, + "end": 4223.03, + "probability": 0.8652 + }, + { + "start": 4223.49, + "end": 4224.57, + "probability": 0.8538 + }, + { + "start": 4225.09, + "end": 4225.95, + "probability": 0.9619 + }, + { + "start": 4227.31, + "end": 4230.83, + "probability": 0.728 + }, + { + "start": 4231.18, + "end": 4234.73, + "probability": 0.2669 + }, + { + "start": 4234.79, + "end": 4234.79, + "probability": 0.0099 + }, + { + "start": 4234.85, + "end": 4236.11, + "probability": 0.4265 + }, + { + "start": 4236.19, + "end": 4236.49, + "probability": 0.1663 + }, + { + "start": 4236.49, + "end": 4237.29, + "probability": 0.2717 + }, + { + "start": 4238.01, + "end": 4239.23, + "probability": 0.2455 + }, + { + "start": 4239.39, + "end": 4244.23, + "probability": 0.9581 + }, + { + "start": 4244.89, + "end": 4248.15, + "probability": 0.8226 + }, + { + "start": 4248.39, + "end": 4250.61, + "probability": 0.8772 + }, + { + "start": 4251.27, + "end": 4253.39, + "probability": 0.4153 + }, + { + "start": 4253.39, + "end": 4253.95, + "probability": 0.3105 + }, + { + "start": 4253.95, + "end": 4257.49, + "probability": 0.7881 + }, + { + "start": 4258.21, + "end": 4264.49, + "probability": 0.8924 + }, + { + "start": 4264.71, + "end": 4265.83, + "probability": 0.7697 + }, + { + "start": 4266.31, + "end": 4267.69, + "probability": 0.7739 + }, + { + "start": 4267.69, + "end": 4269.23, + "probability": 0.4695 + }, + { + "start": 4269.23, + "end": 4270.65, + "probability": 0.0134 + }, + { + "start": 4270.65, + "end": 4271.73, + "probability": 0.4515 + }, + { + "start": 4271.79, + "end": 4272.41, + "probability": 0.2026 + }, + { + "start": 4272.41, + "end": 4273.43, + "probability": 0.6448 + }, + { + "start": 4273.61, + "end": 4275.03, + "probability": 0.6621 + }, + { + "start": 4275.05, + "end": 4275.91, + "probability": 0.0073 + }, + { + "start": 4276.87, + "end": 4276.97, + "probability": 0.0624 + }, + { + "start": 4276.97, + "end": 4276.97, + "probability": 0.0111 + }, + { + "start": 4276.97, + "end": 4276.97, + "probability": 0.0366 + }, + { + "start": 4276.97, + "end": 4276.97, + "probability": 0.0373 + }, + { + "start": 4276.97, + "end": 4278.63, + "probability": 0.6424 + }, + { + "start": 4278.83, + "end": 4285.23, + "probability": 0.976 + }, + { + "start": 4285.23, + "end": 4290.49, + "probability": 0.9588 + }, + { + "start": 4291.11, + "end": 4291.11, + "probability": 0.0008 + }, + { + "start": 4291.11, + "end": 4297.15, + "probability": 0.707 + }, + { + "start": 4297.61, + "end": 4302.45, + "probability": 0.9543 + }, + { + "start": 4302.85, + "end": 4304.95, + "probability": 0.4009 + }, + { + "start": 4305.93, + "end": 4307.03, + "probability": 0.3194 + }, + { + "start": 4307.82, + "end": 4308.59, + "probability": 0.0151 + }, + { + "start": 4308.59, + "end": 4309.25, + "probability": 0.4918 + }, + { + "start": 4309.51, + "end": 4309.51, + "probability": 0.3088 + }, + { + "start": 4309.51, + "end": 4310.55, + "probability": 0.7833 + }, + { + "start": 4311.01, + "end": 4311.95, + "probability": 0.447 + }, + { + "start": 4312.15, + "end": 4317.33, + "probability": 0.856 + }, + { + "start": 4317.47, + "end": 4321.59, + "probability": 0.9082 + }, + { + "start": 4321.69, + "end": 4326.37, + "probability": 0.9805 + }, + { + "start": 4326.47, + "end": 4329.63, + "probability": 0.9954 + }, + { + "start": 4329.73, + "end": 4332.07, + "probability": 0.828 + }, + { + "start": 4332.77, + "end": 4336.09, + "probability": 0.6929 + }, + { + "start": 4336.73, + "end": 4337.85, + "probability": 0.9479 + }, + { + "start": 4337.91, + "end": 4339.01, + "probability": 0.9222 + }, + { + "start": 4339.19, + "end": 4341.67, + "probability": 0.9276 + }, + { + "start": 4341.69, + "end": 4342.18, + "probability": 0.8773 + }, + { + "start": 4342.63, + "end": 4343.18, + "probability": 0.936 + }, + { + "start": 4344.19, + "end": 4349.01, + "probability": 0.9341 + }, + { + "start": 4349.11, + "end": 4352.45, + "probability": 0.9333 + }, + { + "start": 4352.71, + "end": 4353.83, + "probability": 0.8022 + }, + { + "start": 4354.39, + "end": 4355.11, + "probability": 0.8628 + }, + { + "start": 4356.51, + "end": 4358.73, + "probability": 0.6663 + }, + { + "start": 4359.45, + "end": 4360.79, + "probability": 0.9441 + }, + { + "start": 4362.23, + "end": 4363.49, + "probability": 0.5003 + }, + { + "start": 4363.57, + "end": 4365.18, + "probability": 0.5139 + }, + { + "start": 4365.69, + "end": 4367.43, + "probability": 0.2029 + }, + { + "start": 4367.53, + "end": 4368.01, + "probability": 0.342 + }, + { + "start": 4368.13, + "end": 4368.87, + "probability": 0.708 + }, + { + "start": 4368.97, + "end": 4370.89, + "probability": 0.5811 + }, + { + "start": 4370.89, + "end": 4372.97, + "probability": 0.6146 + }, + { + "start": 4373.31, + "end": 4374.65, + "probability": 0.968 + }, + { + "start": 4374.71, + "end": 4379.3, + "probability": 0.9335 + }, + { + "start": 4380.01, + "end": 4380.77, + "probability": 0.8814 + }, + { + "start": 4380.85, + "end": 4381.39, + "probability": 0.59 + }, + { + "start": 4381.47, + "end": 4381.83, + "probability": 0.6434 + }, + { + "start": 4382.87, + "end": 4384.65, + "probability": 0.9615 + }, + { + "start": 4384.79, + "end": 4385.09, + "probability": 0.6618 + }, + { + "start": 4385.21, + "end": 4385.77, + "probability": 0.8962 + }, + { + "start": 4386.21, + "end": 4387.07, + "probability": 0.9621 + }, + { + "start": 4387.13, + "end": 4388.71, + "probability": 0.8411 + }, + { + "start": 4389.15, + "end": 4391.23, + "probability": 0.0014 + }, + { + "start": 4391.23, + "end": 4391.29, + "probability": 0.0693 + }, + { + "start": 4391.29, + "end": 4392.31, + "probability": 0.3213 + }, + { + "start": 4392.45, + "end": 4396.55, + "probability": 0.4427 + }, + { + "start": 4396.61, + "end": 4397.37, + "probability": 0.7837 + }, + { + "start": 4397.85, + "end": 4399.95, + "probability": 0.4108 + }, + { + "start": 4400.05, + "end": 4401.66, + "probability": 0.2182 + }, + { + "start": 4401.81, + "end": 4403.05, + "probability": 0.2098 + }, + { + "start": 4403.35, + "end": 4406.19, + "probability": 0.5298 + }, + { + "start": 4406.19, + "end": 4409.01, + "probability": 0.3456 + }, + { + "start": 4409.51, + "end": 4410.09, + "probability": 0.4281 + }, + { + "start": 4410.09, + "end": 4410.23, + "probability": 0.0473 + }, + { + "start": 4410.33, + "end": 4411.79, + "probability": 0.0356 + }, + { + "start": 4412.19, + "end": 4413.29, + "probability": 0.0517 + }, + { + "start": 4413.29, + "end": 4414.23, + "probability": 0.8422 + }, + { + "start": 4414.29, + "end": 4414.57, + "probability": 0.9187 + }, + { + "start": 4414.77, + "end": 4415.53, + "probability": 0.7236 + }, + { + "start": 4415.71, + "end": 4417.89, + "probability": 0.9496 + }, + { + "start": 4418.07, + "end": 4420.07, + "probability": 0.8562 + }, + { + "start": 4420.41, + "end": 4421.23, + "probability": 0.8827 + }, + { + "start": 4421.47, + "end": 4425.33, + "probability": 0.8828 + }, + { + "start": 4425.33, + "end": 4427.91, + "probability": 0.9033 + }, + { + "start": 4427.93, + "end": 4430.85, + "probability": 0.8593 + }, + { + "start": 4431.49, + "end": 4432.63, + "probability": 0.7749 + }, + { + "start": 4433.27, + "end": 4434.67, + "probability": 0.5661 + }, + { + "start": 4435.09, + "end": 4436.89, + "probability": 0.8971 + }, + { + "start": 4436.97, + "end": 4439.01, + "probability": 0.981 + }, + { + "start": 4439.15, + "end": 4439.87, + "probability": 0.5246 + }, + { + "start": 4440.21, + "end": 4444.85, + "probability": 0.9864 + }, + { + "start": 4445.17, + "end": 4445.8, + "probability": 0.5071 + }, + { + "start": 4446.07, + "end": 4446.07, + "probability": 0.0354 + }, + { + "start": 4446.07, + "end": 4446.07, + "probability": 0.1274 + }, + { + "start": 4446.07, + "end": 4446.91, + "probability": 0.7833 + }, + { + "start": 4447.21, + "end": 4449.15, + "probability": 0.8283 + }, + { + "start": 4449.15, + "end": 4452.57, + "probability": 0.9761 + }, + { + "start": 4453.01, + "end": 4453.89, + "probability": 0.8392 + }, + { + "start": 4454.41, + "end": 4458.03, + "probability": 0.9956 + }, + { + "start": 4458.37, + "end": 4459.75, + "probability": 0.66 + }, + { + "start": 4460.03, + "end": 4460.21, + "probability": 0.4313 + }, + { + "start": 4460.35, + "end": 4461.33, + "probability": 0.697 + }, + { + "start": 4461.55, + "end": 4462.47, + "probability": 0.7815 + }, + { + "start": 4464.29, + "end": 4466.07, + "probability": 0.0558 + }, + { + "start": 4468.41, + "end": 4469.41, + "probability": 0.0099 + }, + { + "start": 4469.71, + "end": 4471.17, + "probability": 0.2201 + }, + { + "start": 4471.61, + "end": 4471.61, + "probability": 0.0054 + }, + { + "start": 4472.23, + "end": 4472.85, + "probability": 0.035 + }, + { + "start": 4472.85, + "end": 4472.85, + "probability": 0.4788 + }, + { + "start": 4472.85, + "end": 4472.85, + "probability": 0.0312 + }, + { + "start": 4472.85, + "end": 4472.85, + "probability": 0.0162 + }, + { + "start": 4472.85, + "end": 4475.59, + "probability": 0.4032 + }, + { + "start": 4477.41, + "end": 4479.87, + "probability": 0.6423 + }, + { + "start": 4480.03, + "end": 4480.95, + "probability": 0.4573 + }, + { + "start": 4481.03, + "end": 4482.83, + "probability": 0.9611 + }, + { + "start": 4483.07, + "end": 4484.87, + "probability": 0.8795 + }, + { + "start": 4485.51, + "end": 4487.65, + "probability": 0.9796 + }, + { + "start": 4487.91, + "end": 4490.43, + "probability": 0.5999 + }, + { + "start": 4490.91, + "end": 4492.01, + "probability": 0.8354 + }, + { + "start": 4492.15, + "end": 4492.75, + "probability": 0.6205 + }, + { + "start": 4492.93, + "end": 4495.17, + "probability": 0.991 + }, + { + "start": 4495.17, + "end": 4495.99, + "probability": 0.9488 + }, + { + "start": 4497.43, + "end": 4501.35, + "probability": 0.9552 + }, + { + "start": 4501.45, + "end": 4503.51, + "probability": 0.9078 + }, + { + "start": 4503.65, + "end": 4504.67, + "probability": 0.8481 + }, + { + "start": 4505.37, + "end": 4506.49, + "probability": 0.8341 + }, + { + "start": 4507.01, + "end": 4510.53, + "probability": 0.9886 + }, + { + "start": 4510.63, + "end": 4511.71, + "probability": 0.7469 + }, + { + "start": 4511.81, + "end": 4514.67, + "probability": 0.8841 + }, + { + "start": 4514.67, + "end": 4517.07, + "probability": 0.9929 + }, + { + "start": 4517.57, + "end": 4520.27, + "probability": 0.9719 + }, + { + "start": 4521.05, + "end": 4522.59, + "probability": 0.9661 + }, + { + "start": 4522.67, + "end": 4523.91, + "probability": 0.9827 + }, + { + "start": 4523.97, + "end": 4525.39, + "probability": 0.9182 + }, + { + "start": 4525.49, + "end": 4526.57, + "probability": 0.8315 + }, + { + "start": 4527.31, + "end": 4528.99, + "probability": 0.88 + }, + { + "start": 4529.07, + "end": 4531.29, + "probability": 0.9751 + }, + { + "start": 4532.07, + "end": 4535.83, + "probability": 0.963 + }, + { + "start": 4536.83, + "end": 4540.29, + "probability": 0.9948 + }, + { + "start": 4540.29, + "end": 4545.01, + "probability": 0.7464 + }, + { + "start": 4545.87, + "end": 4549.91, + "probability": 0.8654 + }, + { + "start": 4550.93, + "end": 4555.49, + "probability": 0.959 + }, + { + "start": 4555.67, + "end": 4557.12, + "probability": 0.841 + }, + { + "start": 4557.63, + "end": 4558.49, + "probability": 0.7608 + }, + { + "start": 4559.05, + "end": 4560.05, + "probability": 0.7762 + }, + { + "start": 4560.05, + "end": 4561.47, + "probability": 0.9419 + }, + { + "start": 4561.55, + "end": 4562.39, + "probability": 0.9749 + }, + { + "start": 4562.47, + "end": 4564.79, + "probability": 0.972 + }, + { + "start": 4565.35, + "end": 4569.53, + "probability": 0.9924 + }, + { + "start": 4569.81, + "end": 4571.47, + "probability": 0.9893 + }, + { + "start": 4571.55, + "end": 4574.31, + "probability": 0.9937 + }, + { + "start": 4574.47, + "end": 4576.99, + "probability": 0.8625 + }, + { + "start": 4577.19, + "end": 4579.39, + "probability": 0.9776 + }, + { + "start": 4579.47, + "end": 4579.85, + "probability": 0.9519 + }, + { + "start": 4580.11, + "end": 4581.23, + "probability": 0.6172 + }, + { + "start": 4584.75, + "end": 4585.86, + "probability": 0.1586 + }, + { + "start": 4587.49, + "end": 4591.43, + "probability": 0.7624 + }, + { + "start": 4592.83, + "end": 4593.83, + "probability": 0.9668 + }, + { + "start": 4593.91, + "end": 4595.91, + "probability": 0.919 + }, + { + "start": 4596.95, + "end": 4598.41, + "probability": 0.0679 + }, + { + "start": 4598.41, + "end": 4598.41, + "probability": 0.0915 + }, + { + "start": 4598.41, + "end": 4601.01, + "probability": 0.7406 + }, + { + "start": 4601.55, + "end": 4601.83, + "probability": 0.4606 + }, + { + "start": 4601.83, + "end": 4601.83, + "probability": 0.2717 + }, + { + "start": 4601.83, + "end": 4601.83, + "probability": 0.0597 + }, + { + "start": 4601.83, + "end": 4603.69, + "probability": 0.5669 + }, + { + "start": 4603.95, + "end": 4603.95, + "probability": 0.0715 + }, + { + "start": 4603.95, + "end": 4604.93, + "probability": 0.4289 + }, + { + "start": 4605.75, + "end": 4608.85, + "probability": 0.082 + }, + { + "start": 4609.23, + "end": 4610.25, + "probability": 0.3577 + }, + { + "start": 4610.69, + "end": 4611.85, + "probability": 0.3983 + }, + { + "start": 4613.33, + "end": 4613.55, + "probability": 0.4542 + }, + { + "start": 4613.55, + "end": 4614.39, + "probability": 0.1383 + }, + { + "start": 4615.85, + "end": 4618.13, + "probability": 0.0863 + }, + { + "start": 4618.13, + "end": 4618.71, + "probability": 0.0587 + }, + { + "start": 4619.78, + "end": 4622.12, + "probability": 0.1786 + }, + { + "start": 4622.69, + "end": 4623.87, + "probability": 0.1086 + }, + { + "start": 4627.65, + "end": 4629.25, + "probability": 0.2606 + }, + { + "start": 4629.25, + "end": 4629.85, + "probability": 0.2912 + }, + { + "start": 4630.01, + "end": 4630.57, + "probability": 0.7241 + }, + { + "start": 4630.84, + "end": 4634.84, + "probability": 0.6023 + }, + { + "start": 4635.31, + "end": 4636.03, + "probability": 0.824 + }, + { + "start": 4636.23, + "end": 4636.97, + "probability": 0.4551 + }, + { + "start": 4637.71, + "end": 4638.61, + "probability": 0.4838 + }, + { + "start": 4639.11, + "end": 4640.61, + "probability": 0.1152 + }, + { + "start": 4640.93, + "end": 4641.01, + "probability": 0.1293 + }, + { + "start": 4641.01, + "end": 4642.33, + "probability": 0.24 + }, + { + "start": 4642.39, + "end": 4643.27, + "probability": 0.1481 + }, + { + "start": 4644.73, + "end": 4644.85, + "probability": 0.0718 + }, + { + "start": 4644.85, + "end": 4644.85, + "probability": 0.13 + }, + { + "start": 4644.85, + "end": 4649.63, + "probability": 0.121 + }, + { + "start": 4649.63, + "end": 4649.63, + "probability": 0.0359 + }, + { + "start": 4650.61, + "end": 4652.25, + "probability": 0.3632 + }, + { + "start": 4652.63, + "end": 4653.83, + "probability": 0.5731 + }, + { + "start": 4656.69, + "end": 4657.75, + "probability": 0.3396 + }, + { + "start": 4657.75, + "end": 4658.03, + "probability": 0.4409 + }, + { + "start": 4658.19, + "end": 4659.51, + "probability": 0.4737 + }, + { + "start": 4659.51, + "end": 4663.33, + "probability": 0.4906 + }, + { + "start": 4663.99, + "end": 4665.21, + "probability": 0.8988 + }, + { + "start": 4666.57, + "end": 4669.01, + "probability": 0.9778 + }, + { + "start": 4669.01, + "end": 4672.27, + "probability": 0.9719 + }, + { + "start": 4672.41, + "end": 4673.37, + "probability": 0.5341 + }, + { + "start": 4673.87, + "end": 4674.15, + "probability": 0.77 + }, + { + "start": 4674.25, + "end": 4677.71, + "probability": 0.9036 + }, + { + "start": 4677.93, + "end": 4680.53, + "probability": 0.7699 + }, + { + "start": 4681.35, + "end": 4685.05, + "probability": 0.608 + }, + { + "start": 4685.61, + "end": 4687.61, + "probability": 0.8168 + }, + { + "start": 4688.77, + "end": 4694.43, + "probability": 0.9332 + }, + { + "start": 4694.69, + "end": 4696.49, + "probability": 0.9866 + }, + { + "start": 4697.11, + "end": 4698.97, + "probability": 0.5178 + }, + { + "start": 4699.05, + "end": 4701.03, + "probability": 0.5645 + }, + { + "start": 4701.13, + "end": 4702.13, + "probability": 0.4941 + }, + { + "start": 4702.67, + "end": 4707.85, + "probability": 0.8083 + }, + { + "start": 4709.29, + "end": 4709.79, + "probability": 0.8199 + }, + { + "start": 4709.89, + "end": 4710.1, + "probability": 0.0414 + }, + { + "start": 4710.37, + "end": 4711.57, + "probability": 0.8937 + }, + { + "start": 4711.69, + "end": 4714.09, + "probability": 0.7607 + }, + { + "start": 4714.23, + "end": 4715.17, + "probability": 0.8117 + }, + { + "start": 4715.43, + "end": 4715.77, + "probability": 0.7389 + }, + { + "start": 4715.87, + "end": 4719.53, + "probability": 0.9437 + }, + { + "start": 4719.65, + "end": 4720.97, + "probability": 0.9146 + }, + { + "start": 4721.03, + "end": 4723.34, + "probability": 0.9823 + }, + { + "start": 4723.97, + "end": 4726.17, + "probability": 0.3854 + }, + { + "start": 4726.27, + "end": 4727.17, + "probability": 0.835 + }, + { + "start": 4727.45, + "end": 4729.89, + "probability": 0.9893 + }, + { + "start": 4729.99, + "end": 4732.69, + "probability": 0.955 + }, + { + "start": 4733.53, + "end": 4734.49, + "probability": 0.9031 + }, + { + "start": 4734.61, + "end": 4734.87, + "probability": 0.5252 + }, + { + "start": 4734.93, + "end": 4736.67, + "probability": 0.7419 + }, + { + "start": 4737.03, + "end": 4740.15, + "probability": 0.9824 + }, + { + "start": 4740.15, + "end": 4742.87, + "probability": 0.9962 + }, + { + "start": 4743.93, + "end": 4744.68, + "probability": 0.621 + }, + { + "start": 4745.37, + "end": 4747.97, + "probability": 0.9941 + }, + { + "start": 4748.25, + "end": 4750.75, + "probability": 0.9924 + }, + { + "start": 4751.95, + "end": 4756.11, + "probability": 0.9933 + }, + { + "start": 4756.11, + "end": 4759.61, + "probability": 0.9962 + }, + { + "start": 4761.27, + "end": 4763.65, + "probability": 0.9973 + }, + { + "start": 4764.51, + "end": 4766.22, + "probability": 0.7614 + }, + { + "start": 4766.35, + "end": 4769.23, + "probability": 0.9386 + }, + { + "start": 4769.53, + "end": 4771.29, + "probability": 0.9723 + }, + { + "start": 4771.53, + "end": 4774.83, + "probability": 0.8875 + }, + { + "start": 4775.65, + "end": 4788.77, + "probability": 0.1942 + }, + { + "start": 4788.77, + "end": 4788.77, + "probability": 0.0014 + }, + { + "start": 4788.77, + "end": 4788.77, + "probability": 0.1014 + }, + { + "start": 4788.77, + "end": 4788.77, + "probability": 0.0187 + }, + { + "start": 4788.77, + "end": 4789.33, + "probability": 0.3388 + }, + { + "start": 4790.09, + "end": 4791.33, + "probability": 0.3364 + }, + { + "start": 4791.85, + "end": 4793.13, + "probability": 0.7002 + }, + { + "start": 4795.21, + "end": 4795.21, + "probability": 0.4937 + }, + { + "start": 4795.21, + "end": 4796.99, + "probability": 0.5731 + }, + { + "start": 4799.01, + "end": 4800.87, + "probability": 0.8302 + }, + { + "start": 4800.99, + "end": 4802.83, + "probability": 0.8269 + }, + { + "start": 4802.95, + "end": 4805.57, + "probability": 0.883 + }, + { + "start": 4806.05, + "end": 4809.23, + "probability": 0.6986 + }, + { + "start": 4821.15, + "end": 4822.43, + "probability": 0.5801 + }, + { + "start": 4823.07, + "end": 4823.71, + "probability": 0.4169 + }, + { + "start": 4824.55, + "end": 4826.73, + "probability": 0.8757 + }, + { + "start": 4827.51, + "end": 4828.59, + "probability": 0.9973 + }, + { + "start": 4829.11, + "end": 4831.41, + "probability": 0.9808 + }, + { + "start": 4831.67, + "end": 4836.83, + "probability": 0.9957 + }, + { + "start": 4837.07, + "end": 4837.77, + "probability": 0.5671 + }, + { + "start": 4837.89, + "end": 4838.91, + "probability": 0.8683 + }, + { + "start": 4839.43, + "end": 4841.2, + "probability": 0.9639 + }, + { + "start": 4841.37, + "end": 4841.89, + "probability": 0.4417 + }, + { + "start": 4842.07, + "end": 4843.33, + "probability": 0.936 + }, + { + "start": 4843.41, + "end": 4845.95, + "probability": 0.8859 + }, + { + "start": 4846.13, + "end": 4847.93, + "probability": 0.9956 + }, + { + "start": 4848.39, + "end": 4848.65, + "probability": 0.6599 + }, + { + "start": 4848.89, + "end": 4848.89, + "probability": 0.3708 + }, + { + "start": 4849.07, + "end": 4851.53, + "probability": 0.941 + }, + { + "start": 4851.53, + "end": 4853.27, + "probability": 0.8327 + }, + { + "start": 4853.91, + "end": 4857.35, + "probability": 0.7835 + }, + { + "start": 4857.41, + "end": 4862.47, + "probability": 0.9663 + }, + { + "start": 4862.79, + "end": 4866.05, + "probability": 0.9149 + }, + { + "start": 4866.41, + "end": 4872.21, + "probability": 0.9772 + }, + { + "start": 4872.35, + "end": 4872.91, + "probability": 0.842 + }, + { + "start": 4872.99, + "end": 4873.75, + "probability": 0.7337 + }, + { + "start": 4873.79, + "end": 4876.37, + "probability": 0.8936 + }, + { + "start": 4876.87, + "end": 4877.45, + "probability": 0.9347 + }, + { + "start": 4878.35, + "end": 4880.47, + "probability": 0.9 + }, + { + "start": 4881.63, + "end": 4883.41, + "probability": 0.9917 + }, + { + "start": 4883.51, + "end": 4884.95, + "probability": 0.9884 + }, + { + "start": 4885.13, + "end": 4887.09, + "probability": 0.7727 + }, + { + "start": 4887.85, + "end": 4889.31, + "probability": 0.9865 + }, + { + "start": 4889.63, + "end": 4894.11, + "probability": 0.8596 + }, + { + "start": 4895.59, + "end": 4898.67, + "probability": 0.9907 + }, + { + "start": 4898.79, + "end": 4904.67, + "probability": 0.8978 + }, + { + "start": 4905.61, + "end": 4910.27, + "probability": 0.9817 + }, + { + "start": 4910.71, + "end": 4911.47, + "probability": 0.9767 + }, + { + "start": 4911.73, + "end": 4914.55, + "probability": 0.7622 + }, + { + "start": 4914.67, + "end": 4916.11, + "probability": 0.7637 + }, + { + "start": 4916.37, + "end": 4920.87, + "probability": 0.9873 + }, + { + "start": 4922.07, + "end": 4926.67, + "probability": 0.9674 + }, + { + "start": 4927.23, + "end": 4932.11, + "probability": 0.9928 + }, + { + "start": 4932.11, + "end": 4935.85, + "probability": 0.9846 + }, + { + "start": 4936.41, + "end": 4939.29, + "probability": 0.9937 + }, + { + "start": 4940.85, + "end": 4941.75, + "probability": 0.9639 + }, + { + "start": 4941.91, + "end": 4943.77, + "probability": 0.9767 + }, + { + "start": 4944.67, + "end": 4946.25, + "probability": 0.8684 + }, + { + "start": 4947.29, + "end": 4951.39, + "probability": 0.9911 + }, + { + "start": 4951.39, + "end": 4953.69, + "probability": 0.9512 + }, + { + "start": 4955.15, + "end": 4959.65, + "probability": 0.9521 + }, + { + "start": 4959.73, + "end": 4960.29, + "probability": 0.7544 + }, + { + "start": 4960.31, + "end": 4960.95, + "probability": 0.8898 + }, + { + "start": 4960.95, + "end": 4961.13, + "probability": 0.4536 + }, + { + "start": 4961.37, + "end": 4965.27, + "probability": 0.9646 + }, + { + "start": 4965.27, + "end": 4971.33, + "probability": 0.9857 + }, + { + "start": 4972.71, + "end": 4973.97, + "probability": 0.811 + }, + { + "start": 4974.63, + "end": 4975.35, + "probability": 0.9235 + }, + { + "start": 4976.51, + "end": 4977.23, + "probability": 0.9777 + }, + { + "start": 4978.29, + "end": 4978.63, + "probability": 0.9504 + }, + { + "start": 4978.73, + "end": 4983.09, + "probability": 0.9885 + }, + { + "start": 4983.61, + "end": 4985.55, + "probability": 0.9893 + }, + { + "start": 4987.19, + "end": 4988.33, + "probability": 0.9482 + }, + { + "start": 4989.67, + "end": 4994.09, + "probability": 0.9821 + }, + { + "start": 4994.09, + "end": 4998.07, + "probability": 0.9911 + }, + { + "start": 4998.75, + "end": 4999.59, + "probability": 0.8072 + }, + { + "start": 5000.81, + "end": 5003.31, + "probability": 0.729 + }, + { + "start": 5003.31, + "end": 5008.97, + "probability": 0.8982 + }, + { + "start": 5009.15, + "end": 5009.15, + "probability": 0.2233 + }, + { + "start": 5009.39, + "end": 5015.67, + "probability": 0.9802 + }, + { + "start": 5015.67, + "end": 5020.07, + "probability": 0.9656 + }, + { + "start": 5020.07, + "end": 5024.11, + "probability": 0.9923 + }, + { + "start": 5024.23, + "end": 5024.23, + "probability": 0.0027 + }, + { + "start": 5024.23, + "end": 5025.27, + "probability": 0.8333 + }, + { + "start": 5025.35, + "end": 5026.19, + "probability": 0.7697 + }, + { + "start": 5026.31, + "end": 5030.29, + "probability": 0.9929 + }, + { + "start": 5030.71, + "end": 5031.79, + "probability": 0.8011 + }, + { + "start": 5031.89, + "end": 5032.09, + "probability": 0.7953 + }, + { + "start": 5032.23, + "end": 5033.81, + "probability": 0.4934 + }, + { + "start": 5036.04, + "end": 5037.59, + "probability": 0.9761 + }, + { + "start": 5053.85, + "end": 5053.93, + "probability": 0.0208 + }, + { + "start": 5053.93, + "end": 5053.93, + "probability": 0.0771 + }, + { + "start": 5053.93, + "end": 5057.02, + "probability": 0.8609 + }, + { + "start": 5057.71, + "end": 5062.27, + "probability": 0.8733 + }, + { + "start": 5062.79, + "end": 5065.03, + "probability": 0.9976 + }, + { + "start": 5065.85, + "end": 5067.25, + "probability": 0.6656 + }, + { + "start": 5067.29, + "end": 5068.6, + "probability": 0.7919 + }, + { + "start": 5069.17, + "end": 5071.91, + "probability": 0.9883 + }, + { + "start": 5071.91, + "end": 5075.63, + "probability": 0.9562 + }, + { + "start": 5075.81, + "end": 5077.11, + "probability": 0.8841 + }, + { + "start": 5077.47, + "end": 5080.19, + "probability": 0.9897 + }, + { + "start": 5080.31, + "end": 5080.97, + "probability": 0.5257 + }, + { + "start": 5081.07, + "end": 5084.32, + "probability": 0.9536 + }, + { + "start": 5084.77, + "end": 5089.41, + "probability": 0.9955 + }, + { + "start": 5089.59, + "end": 5089.83, + "probability": 0.8424 + }, + { + "start": 5089.97, + "end": 5092.21, + "probability": 0.9109 + }, + { + "start": 5092.35, + "end": 5094.25, + "probability": 0.9727 + }, + { + "start": 5094.43, + "end": 5096.45, + "probability": 0.952 + }, + { + "start": 5096.65, + "end": 5097.93, + "probability": 0.9941 + }, + { + "start": 5098.01, + "end": 5103.03, + "probability": 0.743 + }, + { + "start": 5103.27, + "end": 5103.85, + "probability": 0.8826 + }, + { + "start": 5104.45, + "end": 5105.79, + "probability": 0.7458 + }, + { + "start": 5106.27, + "end": 5107.75, + "probability": 0.926 + }, + { + "start": 5108.11, + "end": 5109.37, + "probability": 0.9805 + }, + { + "start": 5109.47, + "end": 5114.81, + "probability": 0.9598 + }, + { + "start": 5115.03, + "end": 5116.37, + "probability": 0.9072 + }, + { + "start": 5116.51, + "end": 5118.21, + "probability": 0.9739 + }, + { + "start": 5118.39, + "end": 5118.89, + "probability": 0.8339 + }, + { + "start": 5118.93, + "end": 5120.27, + "probability": 0.9051 + }, + { + "start": 5120.37, + "end": 5121.27, + "probability": 0.9633 + }, + { + "start": 5121.31, + "end": 5122.89, + "probability": 0.8967 + }, + { + "start": 5123.17, + "end": 5125.63, + "probability": 0.918 + }, + { + "start": 5126.45, + "end": 5127.59, + "probability": 0.9679 + }, + { + "start": 5127.75, + "end": 5128.59, + "probability": 0.9116 + }, + { + "start": 5128.67, + "end": 5130.75, + "probability": 0.9144 + }, + { + "start": 5130.97, + "end": 5132.19, + "probability": 0.9644 + }, + { + "start": 5132.29, + "end": 5133.81, + "probability": 0.9372 + }, + { + "start": 5134.27, + "end": 5134.57, + "probability": 0.5007 + }, + { + "start": 5134.65, + "end": 5135.17, + "probability": 0.9185 + }, + { + "start": 5135.23, + "end": 5136.41, + "probability": 0.8488 + }, + { + "start": 5136.71, + "end": 5137.81, + "probability": 0.8421 + }, + { + "start": 5137.89, + "end": 5143.05, + "probability": 0.9848 + }, + { + "start": 5143.31, + "end": 5143.91, + "probability": 0.7628 + }, + { + "start": 5144.73, + "end": 5148.51, + "probability": 0.9505 + }, + { + "start": 5148.79, + "end": 5154.81, + "probability": 0.998 + }, + { + "start": 5154.93, + "end": 5158.57, + "probability": 0.9415 + }, + { + "start": 5158.99, + "end": 5159.21, + "probability": 0.6066 + }, + { + "start": 5159.47, + "end": 5159.87, + "probability": 0.452 + }, + { + "start": 5159.89, + "end": 5161.45, + "probability": 0.9557 + }, + { + "start": 5161.61, + "end": 5163.01, + "probability": 0.9771 + }, + { + "start": 5163.29, + "end": 5164.97, + "probability": 0.9521 + }, + { + "start": 5165.01, + "end": 5168.29, + "probability": 0.974 + }, + { + "start": 5168.49, + "end": 5175.47, + "probability": 0.9789 + }, + { + "start": 5175.75, + "end": 5179.65, + "probability": 0.9916 + }, + { + "start": 5180.13, + "end": 5182.89, + "probability": 0.9954 + }, + { + "start": 5182.97, + "end": 5186.15, + "probability": 0.8894 + }, + { + "start": 5186.41, + "end": 5187.01, + "probability": 0.9579 + }, + { + "start": 5187.63, + "end": 5188.32, + "probability": 0.8947 + }, + { + "start": 5188.49, + "end": 5192.23, + "probability": 0.9766 + }, + { + "start": 5192.47, + "end": 5193.17, + "probability": 0.4248 + }, + { + "start": 5193.21, + "end": 5198.03, + "probability": 0.9885 + }, + { + "start": 5198.57, + "end": 5201.23, + "probability": 0.9833 + }, + { + "start": 5201.59, + "end": 5205.71, + "probability": 0.9878 + }, + { + "start": 5206.25, + "end": 5206.79, + "probability": 0.3474 + }, + { + "start": 5207.17, + "end": 5208.39, + "probability": 0.8874 + }, + { + "start": 5208.61, + "end": 5210.05, + "probability": 0.9462 + }, + { + "start": 5210.17, + "end": 5214.15, + "probability": 0.9872 + }, + { + "start": 5214.25, + "end": 5214.47, + "probability": 0.6913 + }, + { + "start": 5215.23, + "end": 5216.59, + "probability": 0.6065 + }, + { + "start": 5216.67, + "end": 5218.77, + "probability": 0.9244 + }, + { + "start": 5219.19, + "end": 5220.77, + "probability": 0.9519 + }, + { + "start": 5228.77, + "end": 5231.87, + "probability": 0.6962 + }, + { + "start": 5233.07, + "end": 5234.61, + "probability": 0.9067 + }, + { + "start": 5236.73, + "end": 5238.65, + "probability": 0.9259 + }, + { + "start": 5239.41, + "end": 5240.61, + "probability": 0.9454 + }, + { + "start": 5241.35, + "end": 5245.89, + "probability": 0.9977 + }, + { + "start": 5247.21, + "end": 5248.19, + "probability": 0.7504 + }, + { + "start": 5248.37, + "end": 5249.17, + "probability": 0.6837 + }, + { + "start": 5249.25, + "end": 5253.75, + "probability": 0.9977 + }, + { + "start": 5254.53, + "end": 5259.15, + "probability": 0.9925 + }, + { + "start": 5260.65, + "end": 5264.53, + "probability": 0.9944 + }, + { + "start": 5265.19, + "end": 5265.85, + "probability": 0.9123 + }, + { + "start": 5267.49, + "end": 5271.05, + "probability": 0.9959 + }, + { + "start": 5271.83, + "end": 5272.73, + "probability": 0.9878 + }, + { + "start": 5273.39, + "end": 5275.77, + "probability": 0.9935 + }, + { + "start": 5276.27, + "end": 5277.83, + "probability": 0.7159 + }, + { + "start": 5278.97, + "end": 5280.59, + "probability": 0.9963 + }, + { + "start": 5281.65, + "end": 5286.97, + "probability": 0.9991 + }, + { + "start": 5287.21, + "end": 5290.95, + "probability": 0.9977 + }, + { + "start": 5291.73, + "end": 5292.23, + "probability": 0.8416 + }, + { + "start": 5293.51, + "end": 5295.97, + "probability": 0.6791 + }, + { + "start": 5296.55, + "end": 5300.61, + "probability": 0.599 + }, + { + "start": 5300.99, + "end": 5301.57, + "probability": 0.8939 + }, + { + "start": 5302.17, + "end": 5307.55, + "probability": 0.9818 + }, + { + "start": 5308.25, + "end": 5310.05, + "probability": 0.9957 + }, + { + "start": 5310.71, + "end": 5312.45, + "probability": 0.8116 + }, + { + "start": 5313.15, + "end": 5314.63, + "probability": 0.9571 + }, + { + "start": 5315.23, + "end": 5316.89, + "probability": 0.9882 + }, + { + "start": 5317.25, + "end": 5318.71, + "probability": 0.9842 + }, + { + "start": 5319.05, + "end": 5320.45, + "probability": 0.9945 + }, + { + "start": 5320.71, + "end": 5323.09, + "probability": 0.9985 + }, + { + "start": 5323.47, + "end": 5327.35, + "probability": 0.9763 + }, + { + "start": 5328.09, + "end": 5331.69, + "probability": 0.9948 + }, + { + "start": 5332.21, + "end": 5334.15, + "probability": 0.9907 + }, + { + "start": 5334.57, + "end": 5337.09, + "probability": 0.9714 + }, + { + "start": 5337.67, + "end": 5343.07, + "probability": 0.9138 + }, + { + "start": 5343.59, + "end": 5346.65, + "probability": 0.9927 + }, + { + "start": 5347.51, + "end": 5350.49, + "probability": 0.9919 + }, + { + "start": 5350.81, + "end": 5353.31, + "probability": 0.9978 + }, + { + "start": 5354.13, + "end": 5357.17, + "probability": 0.966 + }, + { + "start": 5357.69, + "end": 5359.17, + "probability": 0.9707 + }, + { + "start": 5359.85, + "end": 5362.73, + "probability": 0.9946 + }, + { + "start": 5364.25, + "end": 5369.31, + "probability": 0.9885 + }, + { + "start": 5370.21, + "end": 5373.39, + "probability": 0.999 + }, + { + "start": 5373.39, + "end": 5377.75, + "probability": 0.9997 + }, + { + "start": 5378.77, + "end": 5380.61, + "probability": 0.9163 + }, + { + "start": 5380.87, + "end": 5381.27, + "probability": 0.8405 + }, + { + "start": 5381.37, + "end": 5381.67, + "probability": 0.8649 + }, + { + "start": 5381.81, + "end": 5382.11, + "probability": 0.945 + }, + { + "start": 5382.15, + "end": 5382.63, + "probability": 0.6704 + }, + { + "start": 5383.07, + "end": 5386.63, + "probability": 0.9863 + }, + { + "start": 5387.59, + "end": 5389.69, + "probability": 0.9699 + }, + { + "start": 5390.21, + "end": 5392.93, + "probability": 0.9078 + }, + { + "start": 5393.77, + "end": 5395.47, + "probability": 0.843 + }, + { + "start": 5396.11, + "end": 5397.29, + "probability": 0.7734 + }, + { + "start": 5398.01, + "end": 5401.79, + "probability": 0.9469 + }, + { + "start": 5402.25, + "end": 5402.67, + "probability": 0.7963 + }, + { + "start": 5403.83, + "end": 5405.51, + "probability": 0.7937 + }, + { + "start": 5405.51, + "end": 5407.59, + "probability": 0.7814 + }, + { + "start": 5407.79, + "end": 5410.35, + "probability": 0.929 + }, + { + "start": 5412.83, + "end": 5413.11, + "probability": 0.5382 + }, + { + "start": 5420.21, + "end": 5420.65, + "probability": 0.2235 + }, + { + "start": 5420.65, + "end": 5420.93, + "probability": 0.4443 + }, + { + "start": 5421.39, + "end": 5426.21, + "probability": 0.9871 + }, + { + "start": 5426.35, + "end": 5428.51, + "probability": 0.9087 + }, + { + "start": 5429.75, + "end": 5430.48, + "probability": 0.9966 + }, + { + "start": 5431.93, + "end": 5435.29, + "probability": 0.9918 + }, + { + "start": 5436.67, + "end": 5438.65, + "probability": 0.6096 + }, + { + "start": 5438.85, + "end": 5440.95, + "probability": 0.8748 + }, + { + "start": 5441.37, + "end": 5443.63, + "probability": 0.8343 + }, + { + "start": 5444.47, + "end": 5447.15, + "probability": 0.9759 + }, + { + "start": 5448.05, + "end": 5450.98, + "probability": 0.8325 + }, + { + "start": 5451.15, + "end": 5452.52, + "probability": 0.9653 + }, + { + "start": 5452.93, + "end": 5455.17, + "probability": 0.9668 + }, + { + "start": 5455.45, + "end": 5456.93, + "probability": 0.9946 + }, + { + "start": 5457.29, + "end": 5460.55, + "probability": 0.9941 + }, + { + "start": 5461.39, + "end": 5462.57, + "probability": 0.9712 + }, + { + "start": 5463.47, + "end": 5464.43, + "probability": 0.9816 + }, + { + "start": 5464.99, + "end": 5469.77, + "probability": 0.9973 + }, + { + "start": 5469.85, + "end": 5471.13, + "probability": 0.9704 + }, + { + "start": 5471.83, + "end": 5480.37, + "probability": 0.967 + }, + { + "start": 5481.11, + "end": 5486.75, + "probability": 0.9202 + }, + { + "start": 5487.15, + "end": 5491.05, + "probability": 0.8744 + }, + { + "start": 5491.59, + "end": 5496.53, + "probability": 0.9856 + }, + { + "start": 5497.09, + "end": 5499.83, + "probability": 0.9277 + }, + { + "start": 5500.65, + "end": 5501.95, + "probability": 0.7324 + }, + { + "start": 5502.07, + "end": 5507.85, + "probability": 0.7864 + }, + { + "start": 5508.15, + "end": 5513.17, + "probability": 0.9868 + }, + { + "start": 5513.71, + "end": 5519.61, + "probability": 0.9956 + }, + { + "start": 5520.21, + "end": 5522.35, + "probability": 0.915 + }, + { + "start": 5522.69, + "end": 5524.83, + "probability": 0.9824 + }, + { + "start": 5525.21, + "end": 5526.25, + "probability": 0.9778 + }, + { + "start": 5526.53, + "end": 5527.39, + "probability": 0.7941 + }, + { + "start": 5527.61, + "end": 5529.33, + "probability": 0.9784 + }, + { + "start": 5529.73, + "end": 5531.87, + "probability": 0.9946 + }, + { + "start": 5533.23, + "end": 5537.97, + "probability": 0.7534 + }, + { + "start": 5538.37, + "end": 5545.25, + "probability": 0.9806 + }, + { + "start": 5545.35, + "end": 5549.47, + "probability": 0.8849 + }, + { + "start": 5549.93, + "end": 5552.19, + "probability": 0.6038 + }, + { + "start": 5553.25, + "end": 5555.39, + "probability": 0.7188 + }, + { + "start": 5556.01, + "end": 5558.75, + "probability": 0.9159 + }, + { + "start": 5559.37, + "end": 5561.97, + "probability": 0.7601 + }, + { + "start": 5562.69, + "end": 5563.35, + "probability": 0.7616 + }, + { + "start": 5563.41, + "end": 5565.43, + "probability": 0.9842 + }, + { + "start": 5565.63, + "end": 5566.37, + "probability": 0.856 + }, + { + "start": 5566.53, + "end": 5569.05, + "probability": 0.9797 + }, + { + "start": 5569.47, + "end": 5573.17, + "probability": 0.9982 + }, + { + "start": 5573.75, + "end": 5575.43, + "probability": 0.8864 + }, + { + "start": 5575.55, + "end": 5577.27, + "probability": 0.9725 + }, + { + "start": 5577.75, + "end": 5580.63, + "probability": 0.9922 + }, + { + "start": 5581.51, + "end": 5583.75, + "probability": 0.9747 + }, + { + "start": 5584.19, + "end": 5584.49, + "probability": 0.7816 + }, + { + "start": 5585.13, + "end": 5585.65, + "probability": 0.8908 + }, + { + "start": 5586.13, + "end": 5591.15, + "probability": 0.9355 + }, + { + "start": 5591.15, + "end": 5595.21, + "probability": 0.998 + }, + { + "start": 5595.63, + "end": 5600.59, + "probability": 0.9224 + }, + { + "start": 5600.71, + "end": 5600.79, + "probability": 0.0072 + }, + { + "start": 5600.79, + "end": 5603.59, + "probability": 0.9565 + }, + { + "start": 5603.81, + "end": 5608.11, + "probability": 0.6003 + }, + { + "start": 5608.49, + "end": 5609.29, + "probability": 0.9539 + }, + { + "start": 5609.61, + "end": 5610.37, + "probability": 0.7983 + }, + { + "start": 5610.51, + "end": 5613.29, + "probability": 0.4516 + }, + { + "start": 5613.31, + "end": 5615.12, + "probability": 0.6444 + }, + { + "start": 5615.31, + "end": 5617.63, + "probability": 0.8271 + }, + { + "start": 5617.67, + "end": 5622.15, + "probability": 0.9575 + }, + { + "start": 5623.01, + "end": 5629.11, + "probability": 0.9716 + }, + { + "start": 5629.91, + "end": 5633.67, + "probability": 0.9924 + }, + { + "start": 5634.45, + "end": 5639.53, + "probability": 0.9759 + }, + { + "start": 5639.97, + "end": 5640.27, + "probability": 0.9272 + }, + { + "start": 5641.02, + "end": 5647.33, + "probability": 0.0457 + }, + { + "start": 5647.33, + "end": 5647.95, + "probability": 0.2426 + }, + { + "start": 5648.25, + "end": 5648.37, + "probability": 0.1448 + }, + { + "start": 5648.37, + "end": 5648.37, + "probability": 0.318 + }, + { + "start": 5648.37, + "end": 5648.37, + "probability": 0.0843 + }, + { + "start": 5648.37, + "end": 5648.37, + "probability": 0.1272 + }, + { + "start": 5648.37, + "end": 5648.37, + "probability": 0.0426 + }, + { + "start": 5648.37, + "end": 5656.81, + "probability": 0.9369 + }, + { + "start": 5657.15, + "end": 5659.21, + "probability": 0.9558 + }, + { + "start": 5659.21, + "end": 5662.71, + "probability": 0.9044 + }, + { + "start": 5662.81, + "end": 5664.44, + "probability": 0.7979 + }, + { + "start": 5665.33, + "end": 5667.25, + "probability": 0.7791 + }, + { + "start": 5668.61, + "end": 5669.77, + "probability": 0.8904 + }, + { + "start": 5673.13, + "end": 5673.77, + "probability": 0.5759 + }, + { + "start": 5673.97, + "end": 5677.11, + "probability": 0.9956 + }, + { + "start": 5678.33, + "end": 5680.53, + "probability": 0.9909 + }, + { + "start": 5680.61, + "end": 5681.31, + "probability": 0.9849 + }, + { + "start": 5681.39, + "end": 5682.69, + "probability": 0.9451 + }, + { + "start": 5684.05, + "end": 5687.51, + "probability": 0.8615 + }, + { + "start": 5687.59, + "end": 5689.53, + "probability": 0.8158 + }, + { + "start": 5690.45, + "end": 5692.95, + "probability": 0.7891 + }, + { + "start": 5693.47, + "end": 5698.31, + "probability": 0.9937 + }, + { + "start": 5698.95, + "end": 5701.45, + "probability": 0.9966 + }, + { + "start": 5702.79, + "end": 5707.15, + "probability": 0.9253 + }, + { + "start": 5708.15, + "end": 5709.65, + "probability": 0.976 + }, + { + "start": 5709.75, + "end": 5709.89, + "probability": 0.9366 + }, + { + "start": 5709.91, + "end": 5712.27, + "probability": 0.9484 + }, + { + "start": 5712.81, + "end": 5714.07, + "probability": 0.9033 + }, + { + "start": 5714.13, + "end": 5715.89, + "probability": 0.7361 + }, + { + "start": 5715.99, + "end": 5716.89, + "probability": 0.3696 + }, + { + "start": 5717.51, + "end": 5719.93, + "probability": 0.9979 + }, + { + "start": 5720.87, + "end": 5722.03, + "probability": 0.99 + }, + { + "start": 5722.37, + "end": 5727.03, + "probability": 0.9714 + }, + { + "start": 5727.85, + "end": 5728.71, + "probability": 0.9868 + }, + { + "start": 5728.81, + "end": 5729.41, + "probability": 0.8788 + }, + { + "start": 5729.81, + "end": 5731.73, + "probability": 0.9899 + }, + { + "start": 5732.33, + "end": 5734.35, + "probability": 0.9955 + }, + { + "start": 5734.71, + "end": 5734.91, + "probability": 0.6098 + }, + { + "start": 5735.01, + "end": 5737.17, + "probability": 0.969 + }, + { + "start": 5737.83, + "end": 5739.88, + "probability": 0.9902 + }, + { + "start": 5741.19, + "end": 5743.41, + "probability": 0.742 + }, + { + "start": 5744.45, + "end": 5747.55, + "probability": 0.9552 + }, + { + "start": 5748.29, + "end": 5752.61, + "probability": 0.9894 + }, + { + "start": 5753.31, + "end": 5756.01, + "probability": 0.9872 + }, + { + "start": 5756.01, + "end": 5759.65, + "probability": 0.9951 + }, + { + "start": 5760.87, + "end": 5761.93, + "probability": 0.6824 + }, + { + "start": 5762.01, + "end": 5762.67, + "probability": 0.8893 + }, + { + "start": 5762.77, + "end": 5763.65, + "probability": 0.6524 + }, + { + "start": 5764.53, + "end": 5767.05, + "probability": 0.9979 + }, + { + "start": 5767.97, + "end": 5771.27, + "probability": 0.9932 + }, + { + "start": 5771.39, + "end": 5772.75, + "probability": 0.9332 + }, + { + "start": 5772.79, + "end": 5773.47, + "probability": 0.7518 + }, + { + "start": 5773.95, + "end": 5777.49, + "probability": 0.9064 + }, + { + "start": 5777.95, + "end": 5779.67, + "probability": 0.9915 + }, + { + "start": 5779.83, + "end": 5781.87, + "probability": 0.9946 + }, + { + "start": 5781.99, + "end": 5782.85, + "probability": 0.7517 + }, + { + "start": 5783.99, + "end": 5785.83, + "probability": 0.819 + }, + { + "start": 5786.59, + "end": 5790.27, + "probability": 0.9961 + }, + { + "start": 5790.27, + "end": 5793.29, + "probability": 0.9993 + }, + { + "start": 5794.84, + "end": 5799.93, + "probability": 0.9907 + }, + { + "start": 5800.37, + "end": 5801.49, + "probability": 0.8239 + }, + { + "start": 5801.89, + "end": 5806.09, + "probability": 0.9867 + }, + { + "start": 5806.75, + "end": 5809.19, + "probability": 0.9951 + }, + { + "start": 5809.53, + "end": 5810.93, + "probability": 0.7556 + }, + { + "start": 5811.45, + "end": 5812.63, + "probability": 0.8647 + }, + { + "start": 5813.03, + "end": 5817.39, + "probability": 0.9863 + }, + { + "start": 5818.03, + "end": 5818.37, + "probability": 0.7832 + }, + { + "start": 5818.47, + "end": 5821.05, + "probability": 0.9782 + }, + { + "start": 5821.55, + "end": 5822.49, + "probability": 0.9395 + }, + { + "start": 5822.83, + "end": 5823.87, + "probability": 0.9578 + }, + { + "start": 5824.67, + "end": 5825.6, + "probability": 0.9584 + }, + { + "start": 5826.51, + "end": 5828.39, + "probability": 0.9183 + }, + { + "start": 5828.87, + "end": 5830.65, + "probability": 0.882 + }, + { + "start": 5830.77, + "end": 5833.49, + "probability": 0.9408 + }, + { + "start": 5833.99, + "end": 5835.01, + "probability": 0.9618 + }, + { + "start": 5835.53, + "end": 5839.25, + "probability": 0.771 + }, + { + "start": 5840.03, + "end": 5842.97, + "probability": 0.9988 + }, + { + "start": 5842.99, + "end": 5843.79, + "probability": 0.87 + }, + { + "start": 5843.97, + "end": 5844.95, + "probability": 0.9271 + }, + { + "start": 5845.27, + "end": 5845.97, + "probability": 0.92 + }, + { + "start": 5846.37, + "end": 5850.15, + "probability": 0.6657 + }, + { + "start": 5850.83, + "end": 5853.97, + "probability": 0.9609 + }, + { + "start": 5854.45, + "end": 5858.07, + "probability": 0.7644 + }, + { + "start": 5859.07, + "end": 5861.23, + "probability": 0.7107 + }, + { + "start": 5861.83, + "end": 5863.87, + "probability": 0.9961 + }, + { + "start": 5864.55, + "end": 5866.93, + "probability": 0.998 + }, + { + "start": 5867.19, + "end": 5867.57, + "probability": 0.7362 + }, + { + "start": 5869.61, + "end": 5871.85, + "probability": 0.7539 + }, + { + "start": 5872.23, + "end": 5874.47, + "probability": 0.5333 + }, + { + "start": 5875.05, + "end": 5875.61, + "probability": 0.591 + }, + { + "start": 5883.87, + "end": 5886.41, + "probability": 0.6889 + }, + { + "start": 5887.37, + "end": 5891.09, + "probability": 0.9221 + }, + { + "start": 5891.25, + "end": 5892.03, + "probability": 0.9805 + }, + { + "start": 5892.53, + "end": 5893.86, + "probability": 0.9902 + }, + { + "start": 5894.73, + "end": 5895.81, + "probability": 0.7554 + }, + { + "start": 5896.15, + "end": 5896.87, + "probability": 0.8261 + }, + { + "start": 5897.19, + "end": 5899.09, + "probability": 0.8851 + }, + { + "start": 5899.47, + "end": 5900.69, + "probability": 0.9062 + }, + { + "start": 5900.73, + "end": 5902.39, + "probability": 0.8003 + }, + { + "start": 5902.81, + "end": 5903.13, + "probability": 0.6389 + }, + { + "start": 5903.21, + "end": 5904.71, + "probability": 0.9308 + }, + { + "start": 5905.11, + "end": 5907.35, + "probability": 0.8066 + }, + { + "start": 5907.75, + "end": 5910.45, + "probability": 0.9872 + }, + { + "start": 5910.77, + "end": 5912.75, + "probability": 0.9658 + }, + { + "start": 5913.09, + "end": 5916.07, + "probability": 0.9609 + }, + { + "start": 5916.61, + "end": 5917.97, + "probability": 0.7848 + }, + { + "start": 5918.31, + "end": 5919.71, + "probability": 0.9951 + }, + { + "start": 5920.05, + "end": 5920.53, + "probability": 0.4072 + }, + { + "start": 5920.67, + "end": 5921.09, + "probability": 0.5739 + }, + { + "start": 5921.21, + "end": 5924.49, + "probability": 0.6757 + }, + { + "start": 5924.77, + "end": 5925.07, + "probability": 0.8043 + }, + { + "start": 5925.15, + "end": 5926.31, + "probability": 0.8502 + }, + { + "start": 5926.61, + "end": 5928.99, + "probability": 0.8346 + }, + { + "start": 5929.43, + "end": 5931.75, + "probability": 0.9946 + }, + { + "start": 5932.37, + "end": 5932.93, + "probability": 0.8867 + }, + { + "start": 5933.73, + "end": 5938.77, + "probability": 0.9877 + }, + { + "start": 5939.19, + "end": 5942.61, + "probability": 0.8472 + }, + { + "start": 5942.91, + "end": 5945.63, + "probability": 0.8665 + }, + { + "start": 5945.85, + "end": 5947.75, + "probability": 0.8326 + }, + { + "start": 5948.03, + "end": 5953.75, + "probability": 0.9211 + }, + { + "start": 5953.85, + "end": 5956.21, + "probability": 0.8892 + }, + { + "start": 5956.51, + "end": 5958.11, + "probability": 0.94 + }, + { + "start": 5958.45, + "end": 5960.55, + "probability": 0.9084 + }, + { + "start": 5960.81, + "end": 5962.37, + "probability": 0.7842 + }, + { + "start": 5962.57, + "end": 5963.67, + "probability": 0.9318 + }, + { + "start": 5963.79, + "end": 5965.05, + "probability": 0.945 + }, + { + "start": 5965.51, + "end": 5968.16, + "probability": 0.961 + }, + { + "start": 5968.25, + "end": 5969.93, + "probability": 0.9792 + }, + { + "start": 5970.23, + "end": 5973.07, + "probability": 0.9772 + }, + { + "start": 5973.17, + "end": 5974.53, + "probability": 0.9674 + }, + { + "start": 5974.87, + "end": 5979.95, + "probability": 0.9151 + }, + { + "start": 5980.35, + "end": 5982.17, + "probability": 0.7603 + }, + { + "start": 5982.57, + "end": 5983.61, + "probability": 0.7486 + }, + { + "start": 5983.75, + "end": 5984.39, + "probability": 0.4761 + }, + { + "start": 5984.65, + "end": 5985.49, + "probability": 0.1315 + }, + { + "start": 5986.27, + "end": 5986.77, + "probability": 0.0225 + }, + { + "start": 5986.77, + "end": 5986.77, + "probability": 0.2511 + }, + { + "start": 5986.77, + "end": 5986.77, + "probability": 0.2389 + }, + { + "start": 5986.77, + "end": 5987.49, + "probability": 0.4464 + }, + { + "start": 5987.49, + "end": 5987.69, + "probability": 0.53 + }, + { + "start": 5987.83, + "end": 5989.81, + "probability": 0.0187 + }, + { + "start": 5990.13, + "end": 5993.19, + "probability": 0.0703 + }, + { + "start": 5993.19, + "end": 5993.75, + "probability": 0.0091 + }, + { + "start": 5993.87, + "end": 5995.27, + "probability": 0.5192 + }, + { + "start": 5995.29, + "end": 5995.51, + "probability": 0.6394 + }, + { + "start": 5995.57, + "end": 5997.01, + "probability": 0.8199 + }, + { + "start": 5997.65, + "end": 5997.69, + "probability": 0.1081 + }, + { + "start": 5997.69, + "end": 6001.39, + "probability": 0.8232 + }, + { + "start": 6001.43, + "end": 6005.31, + "probability": 0.9941 + }, + { + "start": 6005.39, + "end": 6007.34, + "probability": 0.9888 + }, + { + "start": 6007.89, + "end": 6009.57, + "probability": 0.8398 + }, + { + "start": 6009.75, + "end": 6011.29, + "probability": 0.8849 + }, + { + "start": 6011.65, + "end": 6012.15, + "probability": 0.8367 + }, + { + "start": 6012.19, + "end": 6016.31, + "probability": 0.9543 + }, + { + "start": 6016.79, + "end": 6018.78, + "probability": 0.9734 + }, + { + "start": 6019.17, + "end": 6020.95, + "probability": 0.9918 + }, + { + "start": 6021.31, + "end": 6022.67, + "probability": 0.9917 + }, + { + "start": 6023.19, + "end": 6026.15, + "probability": 0.9328 + }, + { + "start": 6026.15, + "end": 6029.57, + "probability": 0.9786 + }, + { + "start": 6029.79, + "end": 6030.57, + "probability": 0.8151 + }, + { + "start": 6030.81, + "end": 6032.07, + "probability": 0.7534 + }, + { + "start": 6032.29, + "end": 6033.17, + "probability": 0.9108 + }, + { + "start": 6033.33, + "end": 6036.31, + "probability": 0.9884 + }, + { + "start": 6036.61, + "end": 6038.95, + "probability": 0.9945 + }, + { + "start": 6039.11, + "end": 6040.49, + "probability": 0.9855 + }, + { + "start": 6040.55, + "end": 6041.95, + "probability": 0.9208 + }, + { + "start": 6042.27, + "end": 6043.85, + "probability": 0.7601 + }, + { + "start": 6044.01, + "end": 6046.05, + "probability": 0.97 + }, + { + "start": 6046.23, + "end": 6047.62, + "probability": 0.9746 + }, + { + "start": 6048.09, + "end": 6051.13, + "probability": 0.9966 + }, + { + "start": 6051.35, + "end": 6052.11, + "probability": 0.8284 + }, + { + "start": 6052.19, + "end": 6052.71, + "probability": 0.8074 + }, + { + "start": 6053.43, + "end": 6057.15, + "probability": 0.8264 + }, + { + "start": 6057.43, + "end": 6060.19, + "probability": 0.749 + }, + { + "start": 6067.79, + "end": 6070.81, + "probability": 0.7311 + }, + { + "start": 6070.97, + "end": 6071.65, + "probability": 0.8269 + }, + { + "start": 6072.71, + "end": 6075.23, + "probability": 0.8608 + }, + { + "start": 6076.03, + "end": 6076.73, + "probability": 0.9791 + }, + { + "start": 6078.19, + "end": 6080.31, + "probability": 0.7654 + }, + { + "start": 6081.07, + "end": 6084.13, + "probability": 0.7278 + }, + { + "start": 6085.37, + "end": 6085.71, + "probability": 0.886 + }, + { + "start": 6085.79, + "end": 6087.86, + "probability": 0.9883 + }, + { + "start": 6088.35, + "end": 6091.67, + "probability": 0.9863 + }, + { + "start": 6092.43, + "end": 6093.77, + "probability": 0.8661 + }, + { + "start": 6093.81, + "end": 6094.29, + "probability": 0.7635 + }, + { + "start": 6094.39, + "end": 6094.77, + "probability": 0.8903 + }, + { + "start": 6094.93, + "end": 6095.93, + "probability": 0.9377 + }, + { + "start": 6096.69, + "end": 6099.21, + "probability": 0.8927 + }, + { + "start": 6099.97, + "end": 6101.15, + "probability": 0.877 + }, + { + "start": 6102.07, + "end": 6103.57, + "probability": 0.7785 + }, + { + "start": 6103.63, + "end": 6108.64, + "probability": 0.824 + }, + { + "start": 6110.01, + "end": 6111.33, + "probability": 0.8288 + }, + { + "start": 6111.85, + "end": 6115.75, + "probability": 0.9502 + }, + { + "start": 6116.37, + "end": 6120.88, + "probability": 0.9896 + }, + { + "start": 6121.65, + "end": 6123.53, + "probability": 0.9007 + }, + { + "start": 6124.01, + "end": 6125.02, + "probability": 0.847 + }, + { + "start": 6126.43, + "end": 6127.99, + "probability": 0.7355 + }, + { + "start": 6129.21, + "end": 6130.73, + "probability": 0.9951 + }, + { + "start": 6131.39, + "end": 6132.43, + "probability": 0.5128 + }, + { + "start": 6132.91, + "end": 6138.25, + "probability": 0.9563 + }, + { + "start": 6138.87, + "end": 6141.95, + "probability": 0.7609 + }, + { + "start": 6142.53, + "end": 6145.05, + "probability": 0.9064 + }, + { + "start": 6145.71, + "end": 6146.11, + "probability": 0.8531 + }, + { + "start": 6146.23, + "end": 6150.55, + "probability": 0.975 + }, + { + "start": 6151.01, + "end": 6153.35, + "probability": 0.9922 + }, + { + "start": 6154.11, + "end": 6157.18, + "probability": 0.9874 + }, + { + "start": 6157.99, + "end": 6160.35, + "probability": 0.9834 + }, + { + "start": 6160.89, + "end": 6162.27, + "probability": 0.9402 + }, + { + "start": 6162.97, + "end": 6164.14, + "probability": 0.981 + }, + { + "start": 6164.97, + "end": 6167.79, + "probability": 0.9951 + }, + { + "start": 6168.27, + "end": 6170.36, + "probability": 0.9998 + }, + { + "start": 6171.11, + "end": 6174.91, + "probability": 0.9399 + }, + { + "start": 6175.47, + "end": 6175.65, + "probability": 0.5907 + }, + { + "start": 6176.17, + "end": 6177.09, + "probability": 0.9441 + }, + { + "start": 6178.35, + "end": 6180.25, + "probability": 0.9932 + }, + { + "start": 6180.95, + "end": 6182.23, + "probability": 0.9417 + }, + { + "start": 6182.47, + "end": 6182.97, + "probability": 0.8577 + }, + { + "start": 6183.47, + "end": 6184.71, + "probability": 0.9453 + }, + { + "start": 6185.07, + "end": 6186.24, + "probability": 0.9829 + }, + { + "start": 6186.43, + "end": 6186.81, + "probability": 0.922 + }, + { + "start": 6188.25, + "end": 6190.31, + "probability": 0.7588 + }, + { + "start": 6191.09, + "end": 6196.91, + "probability": 0.9165 + }, + { + "start": 6197.73, + "end": 6200.11, + "probability": 0.9423 + }, + { + "start": 6200.83, + "end": 6205.41, + "probability": 0.9655 + }, + { + "start": 6205.93, + "end": 6208.53, + "probability": 0.9972 + }, + { + "start": 6209.59, + "end": 6211.05, + "probability": 0.5543 + }, + { + "start": 6211.47, + "end": 6215.59, + "probability": 0.9506 + }, + { + "start": 6216.29, + "end": 6219.27, + "probability": 0.9199 + }, + { + "start": 6219.59, + "end": 6221.49, + "probability": 0.8756 + }, + { + "start": 6221.97, + "end": 6222.45, + "probability": 0.6079 + }, + { + "start": 6222.63, + "end": 6224.51, + "probability": 0.9764 + }, + { + "start": 6225.13, + "end": 6226.73, + "probability": 0.8909 + }, + { + "start": 6227.33, + "end": 6230.13, + "probability": 0.9873 + }, + { + "start": 6230.13, + "end": 6235.7, + "probability": 0.9415 + }, + { + "start": 6236.75, + "end": 6238.09, + "probability": 0.6302 + }, + { + "start": 6238.83, + "end": 6241.61, + "probability": 0.9954 + }, + { + "start": 6242.65, + "end": 6245.23, + "probability": 0.8549 + }, + { + "start": 6245.87, + "end": 6249.79, + "probability": 0.9432 + }, + { + "start": 6250.39, + "end": 6252.19, + "probability": 0.7198 + }, + { + "start": 6253.15, + "end": 6255.27, + "probability": 0.9152 + }, + { + "start": 6256.09, + "end": 6260.33, + "probability": 0.9958 + }, + { + "start": 6261.19, + "end": 6262.25, + "probability": 0.9294 + }, + { + "start": 6263.67, + "end": 6270.43, + "probability": 0.9048 + }, + { + "start": 6270.57, + "end": 6270.57, + "probability": 0.2787 + }, + { + "start": 6270.57, + "end": 6271.49, + "probability": 0.7185 + }, + { + "start": 6272.61, + "end": 6275.13, + "probability": 0.8786 + }, + { + "start": 6275.73, + "end": 6277.09, + "probability": 0.8975 + }, + { + "start": 6277.47, + "end": 6280.78, + "probability": 0.8481 + }, + { + "start": 6281.67, + "end": 6283.03, + "probability": 0.2714 + }, + { + "start": 6283.87, + "end": 6288.69, + "probability": 0.9918 + }, + { + "start": 6289.19, + "end": 6290.69, + "probability": 0.9224 + }, + { + "start": 6291.07, + "end": 6292.95, + "probability": 0.9694 + }, + { + "start": 6294.07, + "end": 6294.59, + "probability": 0.7098 + }, + { + "start": 6294.93, + "end": 6296.91, + "probability": 0.7086 + }, + { + "start": 6297.03, + "end": 6299.71, + "probability": 0.7893 + }, + { + "start": 6300.91, + "end": 6301.57, + "probability": 0.7299 + }, + { + "start": 6302.37, + "end": 6306.01, + "probability": 0.9338 + }, + { + "start": 6309.43, + "end": 6310.31, + "probability": 0.9153 + }, + { + "start": 6311.03, + "end": 6311.55, + "probability": 0.8745 + }, + { + "start": 6312.05, + "end": 6312.41, + "probability": 0.8665 + }, + { + "start": 6317.09, + "end": 6318.21, + "probability": 0.7488 + }, + { + "start": 6318.93, + "end": 6319.81, + "probability": 0.6781 + }, + { + "start": 6320.43, + "end": 6325.86, + "probability": 0.9954 + }, + { + "start": 6325.99, + "end": 6327.37, + "probability": 0.9425 + }, + { + "start": 6330.03, + "end": 6333.61, + "probability": 0.9086 + }, + { + "start": 6334.81, + "end": 6336.75, + "probability": 0.9736 + }, + { + "start": 6338.41, + "end": 6341.25, + "probability": 0.8398 + }, + { + "start": 6342.65, + "end": 6345.85, + "probability": 0.6905 + }, + { + "start": 6345.99, + "end": 6347.95, + "probability": 0.8556 + }, + { + "start": 6348.51, + "end": 6350.99, + "probability": 0.9285 + }, + { + "start": 6352.53, + "end": 6354.49, + "probability": 0.8869 + }, + { + "start": 6355.79, + "end": 6358.31, + "probability": 0.9742 + }, + { + "start": 6359.87, + "end": 6361.29, + "probability": 0.6414 + }, + { + "start": 6362.89, + "end": 6365.63, + "probability": 0.9422 + }, + { + "start": 6366.43, + "end": 6370.27, + "probability": 0.8931 + }, + { + "start": 6370.81, + "end": 6371.33, + "probability": 0.7988 + }, + { + "start": 6371.89, + "end": 6372.65, + "probability": 0.8308 + }, + { + "start": 6373.75, + "end": 6377.65, + "probability": 0.8962 + }, + { + "start": 6377.79, + "end": 6378.39, + "probability": 0.8735 + }, + { + "start": 6379.03, + "end": 6381.06, + "probability": 0.9814 + }, + { + "start": 6382.13, + "end": 6383.1, + "probability": 0.3728 + }, + { + "start": 6384.01, + "end": 6386.77, + "probability": 0.967 + }, + { + "start": 6387.17, + "end": 6389.81, + "probability": 0.9823 + }, + { + "start": 6390.21, + "end": 6391.41, + "probability": 0.9528 + }, + { + "start": 6391.79, + "end": 6393.52, + "probability": 0.981 + }, + { + "start": 6395.25, + "end": 6395.59, + "probability": 0.9838 + }, + { + "start": 6395.73, + "end": 6397.53, + "probability": 0.8416 + }, + { + "start": 6397.67, + "end": 6398.81, + "probability": 0.6748 + }, + { + "start": 6398.91, + "end": 6400.13, + "probability": 0.7443 + }, + { + "start": 6401.07, + "end": 6406.45, + "probability": 0.9091 + }, + { + "start": 6407.15, + "end": 6410.17, + "probability": 0.9622 + }, + { + "start": 6410.17, + "end": 6414.62, + "probability": 0.7935 + }, + { + "start": 6415.51, + "end": 6419.17, + "probability": 0.9272 + }, + { + "start": 6419.47, + "end": 6420.45, + "probability": 0.8188 + }, + { + "start": 6420.61, + "end": 6422.77, + "probability": 0.8886 + }, + { + "start": 6424.77, + "end": 6430.23, + "probability": 0.8641 + }, + { + "start": 6430.39, + "end": 6437.93, + "probability": 0.9429 + }, + { + "start": 6438.77, + "end": 6439.47, + "probability": 0.3714 + }, + { + "start": 6439.81, + "end": 6441.69, + "probability": 0.938 + }, + { + "start": 6442.13, + "end": 6443.97, + "probability": 0.814 + }, + { + "start": 6444.47, + "end": 6445.59, + "probability": 0.9457 + }, + { + "start": 6446.27, + "end": 6447.77, + "probability": 0.9802 + }, + { + "start": 6447.93, + "end": 6453.83, + "probability": 0.9765 + }, + { + "start": 6453.89, + "end": 6454.87, + "probability": 0.6337 + }, + { + "start": 6455.93, + "end": 6459.31, + "probability": 0.9624 + }, + { + "start": 6459.97, + "end": 6463.48, + "probability": 0.9495 + }, + { + "start": 6473.21, + "end": 6473.79, + "probability": 0.4363 + }, + { + "start": 6474.07, + "end": 6474.63, + "probability": 0.6723 + }, + { + "start": 6474.69, + "end": 6475.29, + "probability": 0.8831 + }, + { + "start": 6475.45, + "end": 6480.77, + "probability": 0.8481 + }, + { + "start": 6482.05, + "end": 6484.01, + "probability": 0.5346 + }, + { + "start": 6485.09, + "end": 6486.09, + "probability": 0.9686 + }, + { + "start": 6486.23, + "end": 6491.29, + "probability": 0.9894 + }, + { + "start": 6492.13, + "end": 6496.41, + "probability": 0.9963 + }, + { + "start": 6496.97, + "end": 6498.37, + "probability": 0.8183 + }, + { + "start": 6498.83, + "end": 6500.21, + "probability": 0.9764 + }, + { + "start": 6500.33, + "end": 6501.43, + "probability": 0.9218 + }, + { + "start": 6502.83, + "end": 6503.64, + "probability": 0.8246 + }, + { + "start": 6504.91, + "end": 6506.71, + "probability": 0.7378 + }, + { + "start": 6506.77, + "end": 6509.49, + "probability": 0.9638 + }, + { + "start": 6510.37, + "end": 6511.67, + "probability": 0.9146 + }, + { + "start": 6512.79, + "end": 6516.17, + "probability": 0.8 + }, + { + "start": 6516.17, + "end": 6520.33, + "probability": 0.9993 + }, + { + "start": 6520.41, + "end": 6521.55, + "probability": 0.9912 + }, + { + "start": 6523.41, + "end": 6524.77, + "probability": 0.9775 + }, + { + "start": 6526.8, + "end": 6530.17, + "probability": 0.5085 + }, + { + "start": 6530.21, + "end": 6530.53, + "probability": 0.6295 + }, + { + "start": 6530.61, + "end": 6531.43, + "probability": 0.8896 + }, + { + "start": 6531.49, + "end": 6532.55, + "probability": 0.8996 + }, + { + "start": 6533.57, + "end": 6534.89, + "probability": 0.4293 + }, + { + "start": 6535.03, + "end": 6537.45, + "probability": 0.7742 + }, + { + "start": 6537.57, + "end": 6539.39, + "probability": 0.8992 + }, + { + "start": 6540.11, + "end": 6543.25, + "probability": 0.9245 + }, + { + "start": 6543.93, + "end": 6545.15, + "probability": 0.8323 + }, + { + "start": 6545.55, + "end": 6547.03, + "probability": 0.9526 + }, + { + "start": 6547.61, + "end": 6548.25, + "probability": 0.8258 + }, + { + "start": 6550.95, + "end": 6552.09, + "probability": 0.6766 + }, + { + "start": 6552.15, + "end": 6554.85, + "probability": 0.9927 + }, + { + "start": 6555.53, + "end": 6559.09, + "probability": 0.7994 + }, + { + "start": 6559.83, + "end": 6561.59, + "probability": 0.9487 + }, + { + "start": 6562.09, + "end": 6563.91, + "probability": 0.6929 + }, + { + "start": 6564.51, + "end": 6568.11, + "probability": 0.97 + }, + { + "start": 6568.59, + "end": 6570.79, + "probability": 0.9473 + }, + { + "start": 6571.43, + "end": 6573.81, + "probability": 0.9924 + }, + { + "start": 6573.97, + "end": 6574.45, + "probability": 0.7408 + }, + { + "start": 6574.51, + "end": 6575.73, + "probability": 0.7275 + }, + { + "start": 6576.17, + "end": 6576.97, + "probability": 0.6477 + }, + { + "start": 6577.27, + "end": 6578.23, + "probability": 0.9574 + }, + { + "start": 6578.31, + "end": 6579.17, + "probability": 0.9752 + }, + { + "start": 6579.25, + "end": 6579.81, + "probability": 0.9631 + }, + { + "start": 6579.81, + "end": 6582.31, + "probability": 0.7881 + }, + { + "start": 6582.81, + "end": 6584.17, + "probability": 0.7865 + }, + { + "start": 6584.23, + "end": 6587.09, + "probability": 0.9862 + }, + { + "start": 6587.09, + "end": 6589.81, + "probability": 0.999 + }, + { + "start": 6590.33, + "end": 6593.55, + "probability": 0.9841 + }, + { + "start": 6593.85, + "end": 6594.51, + "probability": 0.7596 + }, + { + "start": 6594.75, + "end": 6598.05, + "probability": 0.9585 + }, + { + "start": 6598.51, + "end": 6599.45, + "probability": 0.7335 + }, + { + "start": 6599.47, + "end": 6599.83, + "probability": 0.7176 + }, + { + "start": 6601.71, + "end": 6607.07, + "probability": 0.877 + }, + { + "start": 6608.25, + "end": 6609.25, + "probability": 0.5801 + }, + { + "start": 6612.99, + "end": 6614.81, + "probability": 0.6346 + }, + { + "start": 6614.89, + "end": 6617.19, + "probability": 0.7728 + }, + { + "start": 6617.53, + "end": 6618.75, + "probability": 0.6717 + }, + { + "start": 6619.53, + "end": 6620.79, + "probability": 0.8609 + }, + { + "start": 6621.77, + "end": 6622.31, + "probability": 0.9099 + }, + { + "start": 6624.61, + "end": 6626.55, + "probability": 0.821 + }, + { + "start": 6627.61, + "end": 6632.83, + "probability": 0.8883 + }, + { + "start": 6633.75, + "end": 6637.23, + "probability": 0.9951 + }, + { + "start": 6638.31, + "end": 6639.08, + "probability": 0.513 + }, + { + "start": 6639.71, + "end": 6642.23, + "probability": 0.7637 + }, + { + "start": 6642.89, + "end": 6644.61, + "probability": 0.9834 + }, + { + "start": 6645.19, + "end": 6647.85, + "probability": 0.9932 + }, + { + "start": 6649.33, + "end": 6655.53, + "probability": 0.7508 + }, + { + "start": 6656.87, + "end": 6659.81, + "probability": 0.9933 + }, + { + "start": 6659.81, + "end": 6664.51, + "probability": 0.9946 + }, + { + "start": 6665.53, + "end": 6667.43, + "probability": 0.9931 + }, + { + "start": 6668.41, + "end": 6669.47, + "probability": 0.7337 + }, + { + "start": 6670.01, + "end": 6673.25, + "probability": 0.9935 + }, + { + "start": 6673.25, + "end": 6676.41, + "probability": 0.9985 + }, + { + "start": 6676.95, + "end": 6678.95, + "probability": 0.9766 + }, + { + "start": 6679.91, + "end": 6681.53, + "probability": 0.9821 + }, + { + "start": 6682.19, + "end": 6685.13, + "probability": 0.9341 + }, + { + "start": 6686.03, + "end": 6688.29, + "probability": 0.9534 + }, + { + "start": 6688.83, + "end": 6692.37, + "probability": 0.9818 + }, + { + "start": 6692.53, + "end": 6693.83, + "probability": 0.9329 + }, + { + "start": 6694.13, + "end": 6694.83, + "probability": 0.8506 + }, + { + "start": 6695.67, + "end": 6697.57, + "probability": 0.7096 + }, + { + "start": 6699.03, + "end": 6699.77, + "probability": 0.7474 + }, + { + "start": 6699.89, + "end": 6700.79, + "probability": 0.6165 + }, + { + "start": 6700.93, + "end": 6701.53, + "probability": 0.8044 + }, + { + "start": 6701.75, + "end": 6703.45, + "probability": 0.8524 + }, + { + "start": 6703.63, + "end": 6705.33, + "probability": 0.8042 + }, + { + "start": 6705.43, + "end": 6706.57, + "probability": 0.7111 + }, + { + "start": 6707.05, + "end": 6708.55, + "probability": 0.8412 + }, + { + "start": 6709.37, + "end": 6710.25, + "probability": 0.8833 + }, + { + "start": 6711.43, + "end": 6715.11, + "probability": 0.7495 + }, + { + "start": 6715.99, + "end": 6717.79, + "probability": 0.8289 + }, + { + "start": 6718.37, + "end": 6718.59, + "probability": 0.74 + }, + { + "start": 6719.57, + "end": 6722.83, + "probability": 0.9914 + }, + { + "start": 6723.57, + "end": 6726.15, + "probability": 0.9902 + }, + { + "start": 6726.93, + "end": 6727.65, + "probability": 0.9835 + }, + { + "start": 6728.21, + "end": 6729.66, + "probability": 0.8909 + }, + { + "start": 6730.59, + "end": 6737.45, + "probability": 0.9905 + }, + { + "start": 6739.17, + "end": 6742.51, + "probability": 0.7876 + }, + { + "start": 6743.29, + "end": 6744.37, + "probability": 0.9569 + }, + { + "start": 6745.23, + "end": 6747.55, + "probability": 0.8084 + }, + { + "start": 6748.15, + "end": 6753.91, + "probability": 0.9212 + }, + { + "start": 6754.75, + "end": 6756.61, + "probability": 0.8877 + }, + { + "start": 6757.01, + "end": 6760.23, + "probability": 0.9277 + }, + { + "start": 6761.51, + "end": 6765.55, + "probability": 0.979 + }, + { + "start": 6766.07, + "end": 6768.19, + "probability": 0.9397 + }, + { + "start": 6768.73, + "end": 6771.17, + "probability": 0.8779 + }, + { + "start": 6772.15, + "end": 6774.43, + "probability": 0.6417 + }, + { + "start": 6775.09, + "end": 6776.63, + "probability": 0.9111 + }, + { + "start": 6777.23, + "end": 6782.23, + "probability": 0.8969 + }, + { + "start": 6782.65, + "end": 6785.65, + "probability": 0.8453 + }, + { + "start": 6786.21, + "end": 6789.03, + "probability": 0.9836 + }, + { + "start": 6789.63, + "end": 6790.93, + "probability": 0.706 + }, + { + "start": 6791.81, + "end": 6793.05, + "probability": 0.6446 + }, + { + "start": 6793.69, + "end": 6795.65, + "probability": 0.9582 + }, + { + "start": 6796.53, + "end": 6800.67, + "probability": 0.8587 + }, + { + "start": 6801.39, + "end": 6805.49, + "probability": 0.9703 + }, + { + "start": 6806.05, + "end": 6807.49, + "probability": 0.8354 + }, + { + "start": 6808.13, + "end": 6808.75, + "probability": 0.4756 + }, + { + "start": 6809.37, + "end": 6810.05, + "probability": 0.7381 + }, + { + "start": 6810.65, + "end": 6814.91, + "probability": 0.9938 + }, + { + "start": 6815.69, + "end": 6817.87, + "probability": 0.9885 + }, + { + "start": 6817.95, + "end": 6818.87, + "probability": 0.6712 + }, + { + "start": 6819.41, + "end": 6822.27, + "probability": 0.9949 + }, + { + "start": 6822.27, + "end": 6825.73, + "probability": 0.9976 + }, + { + "start": 6826.39, + "end": 6827.61, + "probability": 0.5078 + }, + { + "start": 6827.97, + "end": 6831.53, + "probability": 0.879 + }, + { + "start": 6831.85, + "end": 6836.71, + "probability": 0.9984 + }, + { + "start": 6836.71, + "end": 6842.51, + "probability": 0.9609 + }, + { + "start": 6842.81, + "end": 6846.15, + "probability": 0.949 + }, + { + "start": 6846.63, + "end": 6847.69, + "probability": 0.8319 + }, + { + "start": 6847.83, + "end": 6848.69, + "probability": 0.6043 + }, + { + "start": 6849.13, + "end": 6851.01, + "probability": 0.7598 + }, + { + "start": 6851.31, + "end": 6854.45, + "probability": 0.9709 + }, + { + "start": 6854.53, + "end": 6854.83, + "probability": 0.6728 + }, + { + "start": 6855.07, + "end": 6856.83, + "probability": 0.7664 + }, + { + "start": 6857.07, + "end": 6859.55, + "probability": 0.6612 + }, + { + "start": 6860.09, + "end": 6862.31, + "probability": 0.9351 + }, + { + "start": 6862.65, + "end": 6865.13, + "probability": 0.9141 + }, + { + "start": 6875.01, + "end": 6875.75, + "probability": 0.5943 + }, + { + "start": 6876.91, + "end": 6879.11, + "probability": 0.7711 + }, + { + "start": 6880.47, + "end": 6884.09, + "probability": 0.9252 + }, + { + "start": 6884.75, + "end": 6889.15, + "probability": 0.901 + }, + { + "start": 6889.71, + "end": 6894.47, + "probability": 0.5563 + }, + { + "start": 6894.47, + "end": 6899.18, + "probability": 0.7126 + }, + { + "start": 6900.07, + "end": 6901.69, + "probability": 0.7388 + }, + { + "start": 6902.37, + "end": 6906.57, + "probability": 0.9421 + }, + { + "start": 6907.67, + "end": 6911.25, + "probability": 0.9707 + }, + { + "start": 6911.99, + "end": 6912.87, + "probability": 0.9463 + }, + { + "start": 6913.61, + "end": 6914.57, + "probability": 0.8618 + }, + { + "start": 6915.21, + "end": 6915.55, + "probability": 0.3804 + }, + { + "start": 6916.33, + "end": 6919.7, + "probability": 0.9058 + }, + { + "start": 6920.85, + "end": 6922.81, + "probability": 0.9139 + }, + { + "start": 6923.37, + "end": 6925.37, + "probability": 0.9775 + }, + { + "start": 6926.17, + "end": 6928.01, + "probability": 0.9561 + }, + { + "start": 6928.59, + "end": 6930.57, + "probability": 0.9821 + }, + { + "start": 6932.43, + "end": 6933.85, + "probability": 0.7851 + }, + { + "start": 6934.53, + "end": 6936.35, + "probability": 0.9792 + }, + { + "start": 6936.97, + "end": 6937.4, + "probability": 0.807 + }, + { + "start": 6938.29, + "end": 6938.55, + "probability": 0.8057 + }, + { + "start": 6939.27, + "end": 6940.13, + "probability": 0.9374 + }, + { + "start": 6940.43, + "end": 6943.45, + "probability": 0.9879 + }, + { + "start": 6944.59, + "end": 6946.63, + "probability": 0.9042 + }, + { + "start": 6946.97, + "end": 6948.75, + "probability": 0.8239 + }, + { + "start": 6949.47, + "end": 6953.59, + "probability": 0.7476 + }, + { + "start": 6954.05, + "end": 6956.2, + "probability": 0.8867 + }, + { + "start": 6956.35, + "end": 6957.57, + "probability": 0.9024 + }, + { + "start": 6957.93, + "end": 6958.39, + "probability": 0.34 + }, + { + "start": 6958.43, + "end": 6960.21, + "probability": 0.7508 + }, + { + "start": 6960.41, + "end": 6961.79, + "probability": 0.9091 + }, + { + "start": 6962.17, + "end": 6963.77, + "probability": 0.9917 + }, + { + "start": 6964.09, + "end": 6965.51, + "probability": 0.8755 + }, + { + "start": 6966.17, + "end": 6968.15, + "probability": 0.9966 + }, + { + "start": 6968.91, + "end": 6972.79, + "probability": 0.7986 + }, + { + "start": 6973.29, + "end": 6975.63, + "probability": 0.9401 + }, + { + "start": 6976.37, + "end": 6980.49, + "probability": 0.8911 + }, + { + "start": 6980.49, + "end": 6985.25, + "probability": 0.9055 + }, + { + "start": 6985.89, + "end": 6989.01, + "probability": 0.8032 + }, + { + "start": 6989.85, + "end": 6992.87, + "probability": 0.9144 + }, + { + "start": 6993.11, + "end": 6995.34, + "probability": 0.9834 + }, + { + "start": 6995.89, + "end": 6998.07, + "probability": 0.967 + }, + { + "start": 6998.17, + "end": 6999.21, + "probability": 0.9297 + }, + { + "start": 6999.91, + "end": 7002.93, + "probability": 0.9813 + }, + { + "start": 7003.41, + "end": 7006.19, + "probability": 0.8861 + }, + { + "start": 7006.81, + "end": 7009.67, + "probability": 0.8532 + }, + { + "start": 7010.11, + "end": 7014.67, + "probability": 0.7324 + }, + { + "start": 7015.31, + "end": 7015.91, + "probability": 0.6942 + }, + { + "start": 7016.27, + "end": 7020.03, + "probability": 0.9904 + }, + { + "start": 7020.65, + "end": 7023.77, + "probability": 0.9919 + }, + { + "start": 7023.83, + "end": 7024.91, + "probability": 0.6614 + }, + { + "start": 7025.25, + "end": 7026.93, + "probability": 0.9412 + }, + { + "start": 7027.17, + "end": 7029.99, + "probability": 0.9302 + }, + { + "start": 7030.33, + "end": 7030.63, + "probability": 0.772 + }, + { + "start": 7031.91, + "end": 7033.83, + "probability": 0.9839 + }, + { + "start": 7033.97, + "end": 7036.37, + "probability": 0.9058 + }, + { + "start": 7036.49, + "end": 7036.91, + "probability": 0.5839 + }, + { + "start": 7038.83, + "end": 7040.45, + "probability": 0.5097 + }, + { + "start": 7040.45, + "end": 7041.11, + "probability": 0.2683 + }, + { + "start": 7050.99, + "end": 7055.59, + "probability": 0.6515 + }, + { + "start": 7055.73, + "end": 7056.41, + "probability": 0.6604 + }, + { + "start": 7056.61, + "end": 7058.01, + "probability": 0.8663 + }, + { + "start": 7062.31, + "end": 7063.31, + "probability": 0.5402 + }, + { + "start": 7063.43, + "end": 7065.45, + "probability": 0.9673 + }, + { + "start": 7066.19, + "end": 7066.85, + "probability": 0.8318 + }, + { + "start": 7068.05, + "end": 7072.47, + "probability": 0.9908 + }, + { + "start": 7073.03, + "end": 7074.29, + "probability": 0.8546 + }, + { + "start": 7074.89, + "end": 7075.45, + "probability": 0.3866 + }, + { + "start": 7075.99, + "end": 7080.17, + "probability": 0.9861 + }, + { + "start": 7080.91, + "end": 7082.11, + "probability": 0.7819 + }, + { + "start": 7083.37, + "end": 7091.17, + "probability": 0.9706 + }, + { + "start": 7092.03, + "end": 7093.15, + "probability": 0.8655 + }, + { + "start": 7094.35, + "end": 7098.71, + "probability": 0.9646 + }, + { + "start": 7099.19, + "end": 7101.41, + "probability": 0.82 + }, + { + "start": 7103.83, + "end": 7110.35, + "probability": 0.988 + }, + { + "start": 7111.47, + "end": 7115.39, + "probability": 0.9994 + }, + { + "start": 7120.33, + "end": 7123.61, + "probability": 0.9061 + }, + { + "start": 7124.91, + "end": 7126.65, + "probability": 0.9611 + }, + { + "start": 7129.53, + "end": 7131.55, + "probability": 0.9165 + }, + { + "start": 7132.61, + "end": 7137.21, + "probability": 0.8 + }, + { + "start": 7141.89, + "end": 7143.47, + "probability": 0.5146 + }, + { + "start": 7145.43, + "end": 7146.03, + "probability": 0.9384 + }, + { + "start": 7147.85, + "end": 7149.31, + "probability": 0.8988 + }, + { + "start": 7149.33, + "end": 7150.33, + "probability": 0.9706 + }, + { + "start": 7150.41, + "end": 7151.71, + "probability": 0.9724 + }, + { + "start": 7154.67, + "end": 7155.97, + "probability": 0.8102 + }, + { + "start": 7156.65, + "end": 7158.63, + "probability": 0.9738 + }, + { + "start": 7158.73, + "end": 7160.61, + "probability": 0.7939 + }, + { + "start": 7161.45, + "end": 7163.27, + "probability": 0.7687 + }, + { + "start": 7164.93, + "end": 7167.85, + "probability": 0.8945 + }, + { + "start": 7168.13, + "end": 7168.65, + "probability": 0.9408 + }, + { + "start": 7170.17, + "end": 7171.13, + "probability": 0.896 + }, + { + "start": 7171.55, + "end": 7174.63, + "probability": 0.9961 + }, + { + "start": 7176.21, + "end": 7180.77, + "probability": 0.8567 + }, + { + "start": 7181.29, + "end": 7182.35, + "probability": 0.7562 + }, + { + "start": 7183.67, + "end": 7185.03, + "probability": 0.3419 + }, + { + "start": 7185.21, + "end": 7185.77, + "probability": 0.8965 + }, + { + "start": 7186.47, + "end": 7187.71, + "probability": 0.9116 + }, + { + "start": 7188.51, + "end": 7189.79, + "probability": 0.9871 + }, + { + "start": 7189.89, + "end": 7192.09, + "probability": 0.8396 + }, + { + "start": 7192.31, + "end": 7194.43, + "probability": 0.98 + }, + { + "start": 7195.81, + "end": 7196.13, + "probability": 0.522 + }, + { + "start": 7197.6, + "end": 7200.37, + "probability": 0.8381 + }, + { + "start": 7202.25, + "end": 7205.19, + "probability": 0.1463 + }, + { + "start": 7205.27, + "end": 7205.95, + "probability": 0.0141 + }, + { + "start": 7208.61, + "end": 7209.43, + "probability": 0.0297 + }, + { + "start": 7209.97, + "end": 7212.89, + "probability": 0.5332 + }, + { + "start": 7214.15, + "end": 7218.99, + "probability": 0.9038 + }, + { + "start": 7219.69, + "end": 7219.69, + "probability": 0.4265 + }, + { + "start": 7220.33, + "end": 7220.45, + "probability": 0.1555 + }, + { + "start": 7220.45, + "end": 7221.12, + "probability": 0.5928 + }, + { + "start": 7222.73, + "end": 7222.81, + "probability": 0.1695 + }, + { + "start": 7222.81, + "end": 7223.35, + "probability": 0.615 + }, + { + "start": 7223.71, + "end": 7227.43, + "probability": 0.7361 + }, + { + "start": 7227.73, + "end": 7231.91, + "probability": 0.5692 + }, + { + "start": 7234.01, + "end": 7235.19, + "probability": 0.5646 + }, + { + "start": 7235.25, + "end": 7236.23, + "probability": 0.6781 + }, + { + "start": 7236.27, + "end": 7237.11, + "probability": 0.8506 + }, + { + "start": 7237.15, + "end": 7237.95, + "probability": 0.9135 + }, + { + "start": 7238.03, + "end": 7239.73, + "probability": 0.8937 + }, + { + "start": 7239.83, + "end": 7241.13, + "probability": 0.9414 + }, + { + "start": 7241.25, + "end": 7241.77, + "probability": 0.6194 + }, + { + "start": 7241.85, + "end": 7242.33, + "probability": 0.3061 + }, + { + "start": 7242.37, + "end": 7242.53, + "probability": 0.5977 + }, + { + "start": 7242.89, + "end": 7244.26, + "probability": 0.6645 + }, + { + "start": 7244.73, + "end": 7245.97, + "probability": 0.9639 + }, + { + "start": 7246.03, + "end": 7247.67, + "probability": 0.929 + }, + { + "start": 7247.91, + "end": 7248.73, + "probability": 0.0461 + }, + { + "start": 7248.75, + "end": 7252.61, + "probability": 0.8333 + }, + { + "start": 7252.61, + "end": 7253.15, + "probability": 0.4324 + }, + { + "start": 7253.43, + "end": 7254.73, + "probability": 0.2478 + }, + { + "start": 7255.35, + "end": 7255.81, + "probability": 0.0252 + }, + { + "start": 7256.75, + "end": 7257.91, + "probability": 0.0009 + }, + { + "start": 7260.47, + "end": 7260.63, + "probability": 0.03 + }, + { + "start": 7260.63, + "end": 7260.63, + "probability": 0.111 + }, + { + "start": 7260.63, + "end": 7260.63, + "probability": 0.4326 + }, + { + "start": 7260.63, + "end": 7260.63, + "probability": 0.545 + }, + { + "start": 7260.63, + "end": 7260.63, + "probability": 0.0712 + }, + { + "start": 7260.63, + "end": 7260.63, + "probability": 0.148 + }, + { + "start": 7260.63, + "end": 7263.2, + "probability": 0.3878 + }, + { + "start": 7263.61, + "end": 7265.65, + "probability": 0.9521 + }, + { + "start": 7266.99, + "end": 7268.59, + "probability": 0.8953 + }, + { + "start": 7269.91, + "end": 7273.27, + "probability": 0.8035 + }, + { + "start": 7274.27, + "end": 7277.19, + "probability": 0.9265 + }, + { + "start": 7277.85, + "end": 7279.69, + "probability": 0.8687 + }, + { + "start": 7279.69, + "end": 7281.01, + "probability": 0.9207 + }, + { + "start": 7281.51, + "end": 7283.55, + "probability": 0.8105 + }, + { + "start": 7283.85, + "end": 7284.55, + "probability": 0.4897 + }, + { + "start": 7284.63, + "end": 7285.35, + "probability": 0.6754 + }, + { + "start": 7285.59, + "end": 7285.59, + "probability": 0.4803 + }, + { + "start": 7285.59, + "end": 7287.97, + "probability": 0.5923 + }, + { + "start": 7288.45, + "end": 7290.29, + "probability": 0.6624 + }, + { + "start": 7290.47, + "end": 7290.61, + "probability": 0.1637 + }, + { + "start": 7290.61, + "end": 7291.79, + "probability": 0.8231 + }, + { + "start": 7292.75, + "end": 7294.59, + "probability": 0.9292 + }, + { + "start": 7294.65, + "end": 7295.45, + "probability": 0.6498 + }, + { + "start": 7298.49, + "end": 7298.69, + "probability": 0.1552 + }, + { + "start": 7298.69, + "end": 7300.55, + "probability": 0.1787 + }, + { + "start": 7300.61, + "end": 7302.97, + "probability": 0.5314 + }, + { + "start": 7303.37, + "end": 7308.77, + "probability": 0.7067 + }, + { + "start": 7310.81, + "end": 7310.83, + "probability": 0.1719 + }, + { + "start": 7310.83, + "end": 7310.83, + "probability": 0.054 + }, + { + "start": 7310.83, + "end": 7310.83, + "probability": 0.2018 + }, + { + "start": 7310.83, + "end": 7312.39, + "probability": 0.6481 + }, + { + "start": 7313.97, + "end": 7315.15, + "probability": 0.7555 + }, + { + "start": 7316.33, + "end": 7319.94, + "probability": 0.9604 + }, + { + "start": 7320.83, + "end": 7324.85, + "probability": 0.9645 + }, + { + "start": 7325.77, + "end": 7326.15, + "probability": 0.7581 + }, + { + "start": 7326.27, + "end": 7327.09, + "probability": 0.9754 + }, + { + "start": 7327.23, + "end": 7328.53, + "probability": 0.9907 + }, + { + "start": 7331.13, + "end": 7333.41, + "probability": 0.6707 + }, + { + "start": 7333.57, + "end": 7336.33, + "probability": 0.9307 + }, + { + "start": 7336.41, + "end": 7338.41, + "probability": 0.9364 + }, + { + "start": 7339.91, + "end": 7340.91, + "probability": 0.7905 + }, + { + "start": 7341.15, + "end": 7344.85, + "probability": 0.9197 + }, + { + "start": 7345.05, + "end": 7349.25, + "probability": 0.9444 + }, + { + "start": 7350.68, + "end": 7352.51, + "probability": 0.8929 + }, + { + "start": 7352.57, + "end": 7353.43, + "probability": 0.7491 + }, + { + "start": 7353.43, + "end": 7354.21, + "probability": 0.7475 + }, + { + "start": 7355.09, + "end": 7356.51, + "probability": 0.9919 + }, + { + "start": 7357.33, + "end": 7357.59, + "probability": 0.3927 + }, + { + "start": 7357.65, + "end": 7358.61, + "probability": 0.9243 + }, + { + "start": 7358.87, + "end": 7361.59, + "probability": 0.9658 + }, + { + "start": 7361.63, + "end": 7361.93, + "probability": 0.135 + }, + { + "start": 7363.21, + "end": 7365.31, + "probability": 0.9829 + }, + { + "start": 7366.63, + "end": 7368.41, + "probability": 0.7002 + }, + { + "start": 7368.47, + "end": 7370.01, + "probability": 0.9906 + }, + { + "start": 7370.07, + "end": 7374.69, + "probability": 0.9023 + }, + { + "start": 7375.23, + "end": 7376.19, + "probability": 0.7263 + }, + { + "start": 7377.25, + "end": 7378.65, + "probability": 0.7617 + }, + { + "start": 7379.59, + "end": 7383.53, + "probability": 0.9538 + }, + { + "start": 7384.31, + "end": 7385.39, + "probability": 0.8728 + }, + { + "start": 7386.33, + "end": 7387.05, + "probability": 0.728 + }, + { + "start": 7387.17, + "end": 7390.45, + "probability": 0.9906 + }, + { + "start": 7390.45, + "end": 7394.23, + "probability": 0.9606 + }, + { + "start": 7394.35, + "end": 7394.69, + "probability": 0.7938 + }, + { + "start": 7394.99, + "end": 7395.39, + "probability": 0.9692 + }, + { + "start": 7395.51, + "end": 7396.31, + "probability": 0.7028 + }, + { + "start": 7396.41, + "end": 7397.45, + "probability": 0.8809 + }, + { + "start": 7398.03, + "end": 7399.67, + "probability": 0.9537 + }, + { + "start": 7399.91, + "end": 7403.25, + "probability": 0.9812 + }, + { + "start": 7403.25, + "end": 7405.49, + "probability": 0.9561 + }, + { + "start": 7405.57, + "end": 7406.29, + "probability": 0.9369 + }, + { + "start": 7407.13, + "end": 7407.85, + "probability": 0.9238 + }, + { + "start": 7408.33, + "end": 7409.53, + "probability": 0.6675 + }, + { + "start": 7409.83, + "end": 7411.19, + "probability": 0.9335 + }, + { + "start": 7411.41, + "end": 7414.65, + "probability": 0.9565 + }, + { + "start": 7415.05, + "end": 7416.19, + "probability": 0.7622 + }, + { + "start": 7416.71, + "end": 7419.97, + "probability": 0.9261 + }, + { + "start": 7420.21, + "end": 7420.83, + "probability": 0.8715 + }, + { + "start": 7421.91, + "end": 7422.69, + "probability": 0.7357 + }, + { + "start": 7423.83, + "end": 7426.51, + "probability": 0.9058 + }, + { + "start": 7426.99, + "end": 7429.47, + "probability": 0.9174 + }, + { + "start": 7431.89, + "end": 7433.37, + "probability": 0.7966 + }, + { + "start": 7435.03, + "end": 7435.49, + "probability": 0.7711 + }, + { + "start": 7435.59, + "end": 7438.73, + "probability": 0.972 + }, + { + "start": 7439.23, + "end": 7441.27, + "probability": 0.9715 + }, + { + "start": 7442.61, + "end": 7446.59, + "probability": 0.9879 + }, + { + "start": 7446.77, + "end": 7448.21, + "probability": 0.9861 + }, + { + "start": 7448.39, + "end": 7449.31, + "probability": 0.8525 + }, + { + "start": 7449.37, + "end": 7449.95, + "probability": 0.6409 + }, + { + "start": 7450.03, + "end": 7452.05, + "probability": 0.9612 + }, + { + "start": 7452.17, + "end": 7452.73, + "probability": 0.8005 + }, + { + "start": 7453.69, + "end": 7454.35, + "probability": 0.6103 + }, + { + "start": 7454.41, + "end": 7456.71, + "probability": 0.9351 + }, + { + "start": 7458.05, + "end": 7458.31, + "probability": 0.0302 + }, + { + "start": 7458.31, + "end": 7460.05, + "probability": 0.3238 + }, + { + "start": 7460.83, + "end": 7461.53, + "probability": 0.4459 + }, + { + "start": 7461.59, + "end": 7463.37, + "probability": 0.8513 + }, + { + "start": 7473.83, + "end": 7474.53, + "probability": 0.6403 + }, + { + "start": 7474.69, + "end": 7474.69, + "probability": 0.4488 + }, + { + "start": 7474.69, + "end": 7475.8, + "probability": 0.6572 + }, + { + "start": 7476.13, + "end": 7477.99, + "probability": 0.8986 + }, + { + "start": 7478.63, + "end": 7478.97, + "probability": 0.7362 + }, + { + "start": 7479.01, + "end": 7482.53, + "probability": 0.9529 + }, + { + "start": 7482.63, + "end": 7484.36, + "probability": 0.984 + }, + { + "start": 7486.53, + "end": 7486.53, + "probability": 0.2059 + }, + { + "start": 7486.73, + "end": 7488.95, + "probability": 0.9406 + }, + { + "start": 7489.57, + "end": 7493.61, + "probability": 0.9725 + }, + { + "start": 7494.33, + "end": 7497.81, + "probability": 0.8982 + }, + { + "start": 7498.41, + "end": 7501.23, + "probability": 0.9864 + }, + { + "start": 7501.91, + "end": 7504.47, + "probability": 0.9968 + }, + { + "start": 7505.71, + "end": 7507.37, + "probability": 0.5614 + }, + { + "start": 7507.37, + "end": 7508.93, + "probability": 0.9885 + }, + { + "start": 7509.03, + "end": 7513.63, + "probability": 0.9307 + }, + { + "start": 7514.15, + "end": 7515.61, + "probability": 0.9114 + }, + { + "start": 7516.33, + "end": 7518.83, + "probability": 0.9824 + }, + { + "start": 7519.23, + "end": 7519.77, + "probability": 0.4008 + }, + { + "start": 7519.83, + "end": 7520.21, + "probability": 0.6009 + }, + { + "start": 7522.17, + "end": 7525.69, + "probability": 0.6357 + }, + { + "start": 7526.15, + "end": 7528.28, + "probability": 0.9775 + }, + { + "start": 7528.51, + "end": 7531.95, + "probability": 0.9395 + }, + { + "start": 7532.01, + "end": 7532.85, + "probability": 0.8889 + }, + { + "start": 7533.41, + "end": 7536.61, + "probability": 0.9177 + }, + { + "start": 7537.15, + "end": 7540.29, + "probability": 0.9253 + }, + { + "start": 7540.79, + "end": 7544.19, + "probability": 0.8961 + }, + { + "start": 7544.73, + "end": 7546.63, + "probability": 0.9838 + }, + { + "start": 7546.91, + "end": 7554.17, + "probability": 0.7522 + }, + { + "start": 7555.21, + "end": 7557.47, + "probability": 0.9887 + }, + { + "start": 7558.33, + "end": 7559.29, + "probability": 0.6425 + }, + { + "start": 7560.39, + "end": 7564.91, + "probability": 0.97 + }, + { + "start": 7565.85, + "end": 7567.43, + "probability": 0.9214 + }, + { + "start": 7568.49, + "end": 7569.99, + "probability": 0.9912 + }, + { + "start": 7571.03, + "end": 7572.33, + "probability": 0.9098 + }, + { + "start": 7573.33, + "end": 7574.17, + "probability": 0.5887 + }, + { + "start": 7574.99, + "end": 7579.57, + "probability": 0.9568 + }, + { + "start": 7579.75, + "end": 7583.73, + "probability": 0.8227 + }, + { + "start": 7584.55, + "end": 7585.43, + "probability": 0.9729 + }, + { + "start": 7585.91, + "end": 7590.23, + "probability": 0.951 + }, + { + "start": 7590.83, + "end": 7592.59, + "probability": 0.9701 + }, + { + "start": 7593.11, + "end": 7595.63, + "probability": 0.7721 + }, + { + "start": 7595.71, + "end": 7596.69, + "probability": 0.5661 + }, + { + "start": 7597.29, + "end": 7604.73, + "probability": 0.9631 + }, + { + "start": 7605.67, + "end": 7606.95, + "probability": 0.9943 + }, + { + "start": 7607.01, + "end": 7608.13, + "probability": 0.9916 + }, + { + "start": 7608.61, + "end": 7610.85, + "probability": 0.9899 + }, + { + "start": 7611.41, + "end": 7613.69, + "probability": 0.3056 + }, + { + "start": 7613.81, + "end": 7615.09, + "probability": 0.6702 + }, + { + "start": 7615.17, + "end": 7615.57, + "probability": 0.5579 + }, + { + "start": 7615.57, + "end": 7616.83, + "probability": 0.2861 + }, + { + "start": 7617.68, + "end": 7619.99, + "probability": 0.9386 + }, + { + "start": 7620.77, + "end": 7623.17, + "probability": 0.5489 + }, + { + "start": 7623.81, + "end": 7626.35, + "probability": 0.994 + }, + { + "start": 7627.01, + "end": 7627.97, + "probability": 0.7568 + }, + { + "start": 7628.03, + "end": 7629.95, + "probability": 0.9987 + }, + { + "start": 7630.47, + "end": 7632.37, + "probability": 0.8482 + }, + { + "start": 7632.53, + "end": 7633.69, + "probability": 0.9185 + }, + { + "start": 7633.75, + "end": 7636.43, + "probability": 0.9941 + }, + { + "start": 7636.51, + "end": 7637.53, + "probability": 0.664 + }, + { + "start": 7637.73, + "end": 7638.85, + "probability": 0.6917 + }, + { + "start": 7639.15, + "end": 7640.56, + "probability": 0.8209 + }, + { + "start": 7640.89, + "end": 7646.67, + "probability": 0.9899 + }, + { + "start": 7647.37, + "end": 7648.45, + "probability": 0.9414 + }, + { + "start": 7648.97, + "end": 7649.79, + "probability": 0.7872 + }, + { + "start": 7650.51, + "end": 7653.07, + "probability": 0.9968 + }, + { + "start": 7653.71, + "end": 7655.11, + "probability": 0.9744 + }, + { + "start": 7655.67, + "end": 7659.49, + "probability": 0.9036 + }, + { + "start": 7660.05, + "end": 7662.41, + "probability": 0.8932 + }, + { + "start": 7663.21, + "end": 7666.93, + "probability": 0.9733 + }, + { + "start": 7667.15, + "end": 7667.37, + "probability": 0.603 + }, + { + "start": 7668.43, + "end": 7671.33, + "probability": 0.7003 + }, + { + "start": 7671.97, + "end": 7673.31, + "probability": 0.8768 + }, + { + "start": 7673.99, + "end": 7674.63, + "probability": 0.7285 + }, + { + "start": 7678.39, + "end": 7681.09, + "probability": 0.4977 + }, + { + "start": 7682.35, + "end": 7684.27, + "probability": 0.6851 + }, + { + "start": 7693.93, + "end": 7695.11, + "probability": 0.5432 + }, + { + "start": 7695.45, + "end": 7696.93, + "probability": 0.1919 + }, + { + "start": 7696.95, + "end": 7697.07, + "probability": 0.4629 + }, + { + "start": 7697.27, + "end": 7698.41, + "probability": 0.9074 + }, + { + "start": 7698.49, + "end": 7703.97, + "probability": 0.9047 + }, + { + "start": 7704.71, + "end": 7707.31, + "probability": 0.9119 + }, + { + "start": 7708.07, + "end": 7711.87, + "probability": 0.9919 + }, + { + "start": 7712.05, + "end": 7712.69, + "probability": 0.7617 + }, + { + "start": 7712.81, + "end": 7717.27, + "probability": 0.9956 + }, + { + "start": 7717.89, + "end": 7721.19, + "probability": 0.9955 + }, + { + "start": 7721.19, + "end": 7724.85, + "probability": 0.9772 + }, + { + "start": 7725.31, + "end": 7727.35, + "probability": 0.9147 + }, + { + "start": 7728.19, + "end": 7728.85, + "probability": 0.6866 + }, + { + "start": 7729.13, + "end": 7731.85, + "probability": 0.9819 + }, + { + "start": 7732.33, + "end": 7733.63, + "probability": 0.9564 + }, + { + "start": 7733.97, + "end": 7735.41, + "probability": 0.9824 + }, + { + "start": 7735.81, + "end": 7737.65, + "probability": 0.9544 + }, + { + "start": 7738.25, + "end": 7741.11, + "probability": 0.9805 + }, + { + "start": 7741.83, + "end": 7744.73, + "probability": 0.9879 + }, + { + "start": 7745.47, + "end": 7745.83, + "probability": 0.5138 + }, + { + "start": 7745.95, + "end": 7747.11, + "probability": 0.9784 + }, + { + "start": 7747.27, + "end": 7748.43, + "probability": 0.712 + }, + { + "start": 7749.23, + "end": 7749.73, + "probability": 0.913 + }, + { + "start": 7749.91, + "end": 7754.23, + "probability": 0.9592 + }, + { + "start": 7754.23, + "end": 7759.31, + "probability": 0.988 + }, + { + "start": 7759.93, + "end": 7761.13, + "probability": 0.8552 + }, + { + "start": 7761.61, + "end": 7764.49, + "probability": 0.8659 + }, + { + "start": 7764.97, + "end": 7767.53, + "probability": 0.8296 + }, + { + "start": 7768.31, + "end": 7770.31, + "probability": 0.9448 + }, + { + "start": 7770.71, + "end": 7773.03, + "probability": 0.9086 + }, + { + "start": 7773.47, + "end": 7775.35, + "probability": 0.9888 + }, + { + "start": 7775.81, + "end": 7778.35, + "probability": 0.8306 + }, + { + "start": 7778.63, + "end": 7780.15, + "probability": 0.9095 + }, + { + "start": 7780.35, + "end": 7781.75, + "probability": 0.9707 + }, + { + "start": 7782.21, + "end": 7783.07, + "probability": 0.8521 + }, + { + "start": 7783.53, + "end": 7785.03, + "probability": 0.9329 + }, + { + "start": 7785.63, + "end": 7788.09, + "probability": 0.9896 + }, + { + "start": 7788.81, + "end": 7791.87, + "probability": 0.9746 + }, + { + "start": 7792.45, + "end": 7796.71, + "probability": 0.9971 + }, + { + "start": 7797.09, + "end": 7800.59, + "probability": 0.9967 + }, + { + "start": 7800.93, + "end": 7804.13, + "probability": 0.8913 + }, + { + "start": 7804.55, + "end": 7807.45, + "probability": 0.9973 + }, + { + "start": 7807.45, + "end": 7811.25, + "probability": 0.9971 + }, + { + "start": 7812.11, + "end": 7812.61, + "probability": 0.654 + }, + { + "start": 7812.71, + "end": 7814.57, + "probability": 0.8783 + }, + { + "start": 7815.07, + "end": 7820.63, + "probability": 0.9247 + }, + { + "start": 7821.13, + "end": 7821.67, + "probability": 0.8818 + }, + { + "start": 7821.79, + "end": 7823.41, + "probability": 0.9976 + }, + { + "start": 7823.83, + "end": 7825.13, + "probability": 0.7652 + }, + { + "start": 7825.45, + "end": 7826.23, + "probability": 0.8024 + }, + { + "start": 7826.47, + "end": 7828.55, + "probability": 0.9449 + }, + { + "start": 7828.93, + "end": 7833.67, + "probability": 0.955 + }, + { + "start": 7833.87, + "end": 7835.15, + "probability": 0.9147 + }, + { + "start": 7835.85, + "end": 7838.91, + "probability": 0.8894 + }, + { + "start": 7839.47, + "end": 7844.91, + "probability": 0.9934 + }, + { + "start": 7845.87, + "end": 7847.15, + "probability": 0.9373 + }, + { + "start": 7847.83, + "end": 7849.05, + "probability": 0.9756 + }, + { + "start": 7849.05, + "end": 7849.51, + "probability": 0.732 + }, + { + "start": 7849.59, + "end": 7853.25, + "probability": 0.9976 + }, + { + "start": 7853.25, + "end": 7856.17, + "probability": 0.999 + }, + { + "start": 7856.83, + "end": 7858.6, + "probability": 0.9536 + }, + { + "start": 7858.95, + "end": 7860.91, + "probability": 0.9855 + }, + { + "start": 7861.03, + "end": 7863.25, + "probability": 0.5473 + }, + { + "start": 7863.57, + "end": 7866.03, + "probability": 0.9797 + }, + { + "start": 7866.83, + "end": 7870.53, + "probability": 0.9512 + }, + { + "start": 7871.51, + "end": 7872.97, + "probability": 0.9399 + }, + { + "start": 7873.93, + "end": 7877.81, + "probability": 0.9938 + }, + { + "start": 7878.35, + "end": 7879.87, + "probability": 0.6575 + }, + { + "start": 7879.87, + "end": 7880.09, + "probability": 0.6325 + }, + { + "start": 7880.09, + "end": 7881.07, + "probability": 0.7861 + }, + { + "start": 7881.67, + "end": 7886.03, + "probability": 0.9351 + }, + { + "start": 7886.55, + "end": 7888.21, + "probability": 0.9551 + }, + { + "start": 7888.57, + "end": 7890.73, + "probability": 0.9839 + }, + { + "start": 7891.03, + "end": 7892.61, + "probability": 0.9919 + }, + { + "start": 7893.17, + "end": 7894.87, + "probability": 0.9868 + }, + { + "start": 7895.27, + "end": 7897.35, + "probability": 0.9595 + }, + { + "start": 7897.85, + "end": 7898.01, + "probability": 0.6359 + }, + { + "start": 7898.23, + "end": 7900.09, + "probability": 0.9931 + }, + { + "start": 7900.17, + "end": 7900.65, + "probability": 0.7949 + }, + { + "start": 7900.73, + "end": 7901.25, + "probability": 0.6781 + }, + { + "start": 7901.25, + "end": 7903.99, + "probability": 0.9 + }, + { + "start": 7905.27, + "end": 7907.21, + "probability": 0.8144 + }, + { + "start": 7917.95, + "end": 7918.07, + "probability": 0.8407 + }, + { + "start": 7919.99, + "end": 7920.61, + "probability": 0.564 + }, + { + "start": 7921.97, + "end": 7922.85, + "probability": 0.9142 + }, + { + "start": 7924.27, + "end": 7924.63, + "probability": 0.5916 + }, + { + "start": 7924.63, + "end": 7927.66, + "probability": 0.9897 + }, + { + "start": 7927.95, + "end": 7928.57, + "probability": 0.9226 + }, + { + "start": 7930.83, + "end": 7931.77, + "probability": 0.536 + }, + { + "start": 7932.47, + "end": 7936.19, + "probability": 0.9923 + }, + { + "start": 7936.19, + "end": 7939.57, + "probability": 0.9982 + }, + { + "start": 7940.27, + "end": 7943.25, + "probability": 0.9983 + }, + { + "start": 7943.25, + "end": 7949.11, + "probability": 0.9868 + }, + { + "start": 7950.15, + "end": 7951.81, + "probability": 0.686 + }, + { + "start": 7952.05, + "end": 7953.31, + "probability": 0.9756 + }, + { + "start": 7953.43, + "end": 7954.53, + "probability": 0.9813 + }, + { + "start": 7954.97, + "end": 7957.27, + "probability": 0.8177 + }, + { + "start": 7957.45, + "end": 7958.27, + "probability": 0.5552 + }, + { + "start": 7958.67, + "end": 7958.89, + "probability": 0.5815 + }, + { + "start": 7958.95, + "end": 7959.91, + "probability": 0.925 + }, + { + "start": 7960.11, + "end": 7961.93, + "probability": 0.9451 + }, + { + "start": 7962.65, + "end": 7967.29, + "probability": 0.9455 + }, + { + "start": 7967.29, + "end": 7971.55, + "probability": 0.9893 + }, + { + "start": 7974.77, + "end": 7977.95, + "probability": 0.9937 + }, + { + "start": 7978.03, + "end": 7978.85, + "probability": 0.8751 + }, + { + "start": 7978.95, + "end": 7980.77, + "probability": 0.9413 + }, + { + "start": 7980.87, + "end": 7981.45, + "probability": 0.4024 + }, + { + "start": 7981.65, + "end": 7982.91, + "probability": 0.7882 + }, + { + "start": 7983.07, + "end": 7984.63, + "probability": 0.9752 + }, + { + "start": 7985.19, + "end": 7989.03, + "probability": 0.9531 + }, + { + "start": 7989.79, + "end": 7992.75, + "probability": 0.9729 + }, + { + "start": 7993.51, + "end": 7995.85, + "probability": 0.8057 + }, + { + "start": 7996.09, + "end": 7999.33, + "probability": 0.9224 + }, + { + "start": 7999.41, + "end": 8001.77, + "probability": 0.7531 + }, + { + "start": 8002.07, + "end": 8002.77, + "probability": 0.8368 + }, + { + "start": 8002.79, + "end": 8005.45, + "probability": 0.9948 + }, + { + "start": 8005.47, + "end": 8008.37, + "probability": 0.9983 + }, + { + "start": 8011.33, + "end": 8014.03, + "probability": 0.98 + }, + { + "start": 8014.03, + "end": 8017.63, + "probability": 0.9729 + }, + { + "start": 8018.15, + "end": 8018.35, + "probability": 0.968 + }, + { + "start": 8019.93, + "end": 8022.61, + "probability": 0.9951 + }, + { + "start": 8022.61, + "end": 8025.59, + "probability": 0.959 + }, + { + "start": 8026.15, + "end": 8028.57, + "probability": 0.9918 + }, + { + "start": 8028.85, + "end": 8029.69, + "probability": 0.4943 + }, + { + "start": 8030.03, + "end": 8031.73, + "probability": 0.9271 + }, + { + "start": 8032.37, + "end": 8036.45, + "probability": 0.9592 + }, + { + "start": 8036.99, + "end": 8037.43, + "probability": 0.4542 + }, + { + "start": 8037.43, + "end": 8040.69, + "probability": 0.9575 + }, + { + "start": 8041.55, + "end": 8042.57, + "probability": 0.8779 + }, + { + "start": 8042.73, + "end": 8046.41, + "probability": 0.9873 + }, + { + "start": 8046.91, + "end": 8050.11, + "probability": 0.9685 + }, + { + "start": 8051.77, + "end": 8052.71, + "probability": 0.7849 + }, + { + "start": 8053.75, + "end": 8056.57, + "probability": 0.9215 + }, + { + "start": 8056.71, + "end": 8059.01, + "probability": 0.9741 + }, + { + "start": 8059.47, + "end": 8061.59, + "probability": 0.981 + }, + { + "start": 8062.33, + "end": 8068.39, + "probability": 0.7251 + }, + { + "start": 8069.01, + "end": 8072.63, + "probability": 0.9606 + }, + { + "start": 8073.19, + "end": 8077.81, + "probability": 0.9743 + }, + { + "start": 8077.81, + "end": 8082.77, + "probability": 0.9928 + }, + { + "start": 8083.41, + "end": 8086.79, + "probability": 0.9533 + }, + { + "start": 8087.39, + "end": 8087.99, + "probability": 0.4965 + }, + { + "start": 8088.43, + "end": 8089.31, + "probability": 0.9605 + }, + { + "start": 8089.41, + "end": 8091.73, + "probability": 0.9776 + }, + { + "start": 8091.77, + "end": 8093.81, + "probability": 0.8828 + }, + { + "start": 8094.21, + "end": 8094.75, + "probability": 0.8096 + }, + { + "start": 8096.93, + "end": 8099.27, + "probability": 0.8504 + }, + { + "start": 8099.61, + "end": 8100.67, + "probability": 0.9589 + }, + { + "start": 8101.79, + "end": 8102.79, + "probability": 0.7266 + }, + { + "start": 8104.05, + "end": 8104.61, + "probability": 0.3909 + }, + { + "start": 8104.63, + "end": 8106.45, + "probability": 0.8454 + }, + { + "start": 8106.79, + "end": 8107.21, + "probability": 0.4852 + }, + { + "start": 8107.23, + "end": 8108.99, + "probability": 0.8571 + }, + { + "start": 8109.89, + "end": 8110.81, + "probability": 0.8961 + }, + { + "start": 8117.27, + "end": 8119.41, + "probability": 0.3576 + }, + { + "start": 8119.43, + "end": 8120.71, + "probability": 0.7573 + }, + { + "start": 8122.13, + "end": 8125.43, + "probability": 0.8259 + }, + { + "start": 8127.05, + "end": 8131.49, + "probability": 0.7625 + }, + { + "start": 8132.89, + "end": 8135.51, + "probability": 0.9456 + }, + { + "start": 8136.77, + "end": 8142.39, + "probability": 0.7235 + }, + { + "start": 8142.43, + "end": 8143.33, + "probability": 0.6144 + }, + { + "start": 8143.77, + "end": 8146.89, + "probability": 0.9949 + }, + { + "start": 8146.89, + "end": 8149.41, + "probability": 0.9861 + }, + { + "start": 8149.63, + "end": 8151.83, + "probability": 0.9341 + }, + { + "start": 8152.09, + "end": 8159.91, + "probability": 0.994 + }, + { + "start": 8160.01, + "end": 8160.91, + "probability": 0.8689 + }, + { + "start": 8162.23, + "end": 8164.89, + "probability": 0.9678 + }, + { + "start": 8165.43, + "end": 8168.71, + "probability": 0.9687 + }, + { + "start": 8168.83, + "end": 8169.63, + "probability": 0.9044 + }, + { + "start": 8170.27, + "end": 8174.99, + "probability": 0.998 + }, + { + "start": 8175.61, + "end": 8180.75, + "probability": 0.9452 + }, + { + "start": 8181.19, + "end": 8183.83, + "probability": 0.9106 + }, + { + "start": 8185.69, + "end": 8187.37, + "probability": 0.969 + }, + { + "start": 8187.73, + "end": 8191.19, + "probability": 0.9977 + }, + { + "start": 8191.87, + "end": 8194.35, + "probability": 0.9323 + }, + { + "start": 8194.69, + "end": 8194.95, + "probability": 0.381 + }, + { + "start": 8195.11, + "end": 8195.63, + "probability": 0.7479 + }, + { + "start": 8196.71, + "end": 8198.12, + "probability": 0.6299 + }, + { + "start": 8198.95, + "end": 8207.71, + "probability": 0.9529 + }, + { + "start": 8208.21, + "end": 8208.51, + "probability": 0.8345 + }, + { + "start": 8208.53, + "end": 8215.19, + "probability": 0.9902 + }, + { + "start": 8215.55, + "end": 8220.03, + "probability": 0.9944 + }, + { + "start": 8220.33, + "end": 8225.21, + "probability": 0.9963 + }, + { + "start": 8226.77, + "end": 8236.79, + "probability": 0.9041 + }, + { + "start": 8237.07, + "end": 8242.09, + "probability": 0.866 + }, + { + "start": 8243.63, + "end": 8251.49, + "probability": 0.9766 + }, + { + "start": 8251.67, + "end": 8253.49, + "probability": 0.9143 + }, + { + "start": 8255.71, + "end": 8255.99, + "probability": 0.501 + }, + { + "start": 8256.09, + "end": 8259.35, + "probability": 0.9844 + }, + { + "start": 8259.43, + "end": 8261.51, + "probability": 0.9255 + }, + { + "start": 8262.29, + "end": 8269.97, + "probability": 0.991 + }, + { + "start": 8271.81, + "end": 8276.55, + "probability": 0.9946 + }, + { + "start": 8276.55, + "end": 8279.95, + "probability": 0.9946 + }, + { + "start": 8280.75, + "end": 8287.05, + "probability": 0.9395 + }, + { + "start": 8288.73, + "end": 8290.57, + "probability": 0.999 + }, + { + "start": 8290.57, + "end": 8292.95, + "probability": 0.9985 + }, + { + "start": 8293.61, + "end": 8299.09, + "probability": 0.9735 + }, + { + "start": 8300.41, + "end": 8304.11, + "probability": 0.923 + }, + { + "start": 8304.11, + "end": 8307.59, + "probability": 0.8883 + }, + { + "start": 8308.37, + "end": 8309.43, + "probability": 0.9489 + }, + { + "start": 8309.89, + "end": 8312.48, + "probability": 0.9483 + }, + { + "start": 8312.59, + "end": 8315.99, + "probability": 0.8415 + }, + { + "start": 8316.33, + "end": 8316.35, + "probability": 0.2355 + }, + { + "start": 8316.35, + "end": 8317.59, + "probability": 0.9006 + }, + { + "start": 8317.73, + "end": 8318.39, + "probability": 0.4721 + }, + { + "start": 8318.57, + "end": 8319.65, + "probability": 0.6299 + }, + { + "start": 8319.93, + "end": 8321.77, + "probability": 0.7727 + }, + { + "start": 8322.23, + "end": 8328.16, + "probability": 0.9803 + }, + { + "start": 8328.37, + "end": 8332.07, + "probability": 0.9904 + }, + { + "start": 8332.07, + "end": 8335.85, + "probability": 0.6888 + }, + { + "start": 8336.41, + "end": 8340.59, + "probability": 0.7258 + }, + { + "start": 8340.63, + "end": 8340.63, + "probability": 0.2542 + }, + { + "start": 8340.63, + "end": 8342.93, + "probability": 0.7484 + }, + { + "start": 8343.01, + "end": 8343.33, + "probability": 0.6293 + }, + { + "start": 8343.33, + "end": 8345.27, + "probability": 0.6643 + }, + { + "start": 8345.79, + "end": 8347.03, + "probability": 0.9918 + }, + { + "start": 8350.23, + "end": 8352.25, + "probability": 0.5551 + }, + { + "start": 8352.59, + "end": 8352.89, + "probability": 0.5813 + }, + { + "start": 8353.13, + "end": 8355.79, + "probability": 0.6687 + }, + { + "start": 8356.27, + "end": 8356.71, + "probability": 0.9115 + }, + { + "start": 8363.29, + "end": 8363.29, + "probability": 0.0762 + }, + { + "start": 8363.29, + "end": 8363.29, + "probability": 0.0529 + }, + { + "start": 8363.29, + "end": 8363.33, + "probability": 0.0999 + }, + { + "start": 8363.35, + "end": 8363.35, + "probability": 0.2704 + }, + { + "start": 8373.29, + "end": 8374.35, + "probability": 0.5001 + }, + { + "start": 8392.61, + "end": 8393.19, + "probability": 0.2282 + }, + { + "start": 8394.83, + "end": 8396.65, + "probability": 0.8576 + }, + { + "start": 8398.25, + "end": 8400.37, + "probability": 0.9099 + }, + { + "start": 8400.49, + "end": 8401.51, + "probability": 0.7125 + }, + { + "start": 8401.97, + "end": 8404.11, + "probability": 0.7911 + }, + { + "start": 8406.13, + "end": 8410.77, + "probability": 0.9187 + }, + { + "start": 8412.77, + "end": 8413.65, + "probability": 0.4354 + }, + { + "start": 8415.23, + "end": 8416.21, + "probability": 0.7847 + }, + { + "start": 8419.33, + "end": 8420.07, + "probability": 0.4588 + }, + { + "start": 8420.59, + "end": 8422.13, + "probability": 0.8085 + }, + { + "start": 8423.47, + "end": 8425.1, + "probability": 0.96 + }, + { + "start": 8425.91, + "end": 8429.55, + "probability": 0.9249 + }, + { + "start": 8430.33, + "end": 8433.15, + "probability": 0.9268 + }, + { + "start": 8434.05, + "end": 8435.75, + "probability": 0.9253 + }, + { + "start": 8437.53, + "end": 8440.79, + "probability": 0.9154 + }, + { + "start": 8442.05, + "end": 8446.27, + "probability": 0.692 + }, + { + "start": 8448.05, + "end": 8449.27, + "probability": 0.7808 + }, + { + "start": 8450.07, + "end": 8453.47, + "probability": 0.5168 + }, + { + "start": 8454.15, + "end": 8458.23, + "probability": 0.9083 + }, + { + "start": 8459.89, + "end": 8461.57, + "probability": 0.9395 + }, + { + "start": 8462.33, + "end": 8463.79, + "probability": 0.9382 + }, + { + "start": 8466.45, + "end": 8467.17, + "probability": 0.9267 + }, + { + "start": 8467.91, + "end": 8469.93, + "probability": 0.9943 + }, + { + "start": 8470.69, + "end": 8471.87, + "probability": 0.7068 + }, + { + "start": 8472.83, + "end": 8475.81, + "probability": 0.8152 + }, + { + "start": 8476.91, + "end": 8481.53, + "probability": 0.9543 + }, + { + "start": 8482.35, + "end": 8488.53, + "probability": 0.8879 + }, + { + "start": 8489.81, + "end": 8492.37, + "probability": 0.8978 + }, + { + "start": 8493.65, + "end": 8496.93, + "probability": 0.9862 + }, + { + "start": 8497.01, + "end": 8497.83, + "probability": 0.686 + }, + { + "start": 8499.99, + "end": 8503.53, + "probability": 0.897 + }, + { + "start": 8505.51, + "end": 8509.51, + "probability": 0.9732 + }, + { + "start": 8509.71, + "end": 8513.67, + "probability": 0.8887 + }, + { + "start": 8513.85, + "end": 8516.39, + "probability": 0.9897 + }, + { + "start": 8516.59, + "end": 8517.39, + "probability": 0.8969 + }, + { + "start": 8517.87, + "end": 8520.45, + "probability": 0.9941 + }, + { + "start": 8522.81, + "end": 8524.21, + "probability": 0.8032 + }, + { + "start": 8524.33, + "end": 8524.91, + "probability": 0.7529 + }, + { + "start": 8524.93, + "end": 8533.63, + "probability": 0.9263 + }, + { + "start": 8534.63, + "end": 8536.25, + "probability": 0.9887 + }, + { + "start": 8537.55, + "end": 8539.27, + "probability": 0.9769 + }, + { + "start": 8539.53, + "end": 8541.65, + "probability": 0.9375 + }, + { + "start": 8541.69, + "end": 8543.85, + "probability": 0.9927 + }, + { + "start": 8544.35, + "end": 8548.61, + "probability": 0.8747 + }, + { + "start": 8549.99, + "end": 8551.75, + "probability": 0.9365 + }, + { + "start": 8552.57, + "end": 8555.91, + "probability": 0.9645 + }, + { + "start": 8557.15, + "end": 8557.65, + "probability": 0.4921 + }, + { + "start": 8559.61, + "end": 8563.71, + "probability": 0.9368 + }, + { + "start": 8564.31, + "end": 8568.67, + "probability": 0.9736 + }, + { + "start": 8568.67, + "end": 8574.39, + "probability": 0.9833 + }, + { + "start": 8574.97, + "end": 8577.17, + "probability": 0.9954 + }, + { + "start": 8577.31, + "end": 8577.85, + "probability": 0.7922 + }, + { + "start": 8580.07, + "end": 8582.35, + "probability": 0.9596 + }, + { + "start": 8582.55, + "end": 8584.99, + "probability": 0.6127 + }, + { + "start": 8585.85, + "end": 8587.47, + "probability": 0.8711 + }, + { + "start": 8589.87, + "end": 8592.39, + "probability": 0.9405 + }, + { + "start": 8596.11, + "end": 8596.37, + "probability": 0.7913 + }, + { + "start": 8599.81, + "end": 8602.65, + "probability": 0.718 + }, + { + "start": 8604.99, + "end": 8607.23, + "probability": 0.5302 + }, + { + "start": 8607.39, + "end": 8608.63, + "probability": 0.8111 + }, + { + "start": 8609.25, + "end": 8610.45, + "probability": 0.7539 + }, + { + "start": 8611.45, + "end": 8616.97, + "probability": 0.9578 + }, + { + "start": 8617.77, + "end": 8620.13, + "probability": 0.9963 + }, + { + "start": 8621.89, + "end": 8632.29, + "probability": 0.9854 + }, + { + "start": 8633.83, + "end": 8636.35, + "probability": 0.2021 + }, + { + "start": 8636.89, + "end": 8644.79, + "probability": 0.9699 + }, + { + "start": 8646.01, + "end": 8653.12, + "probability": 0.9814 + }, + { + "start": 8654.89, + "end": 8656.21, + "probability": 0.917 + }, + { + "start": 8658.33, + "end": 8666.23, + "probability": 0.98 + }, + { + "start": 8668.09, + "end": 8674.21, + "probability": 0.9961 + }, + { + "start": 8676.93, + "end": 8680.91, + "probability": 0.998 + }, + { + "start": 8682.51, + "end": 8683.43, + "probability": 0.6665 + }, + { + "start": 8683.53, + "end": 8687.01, + "probability": 0.9871 + }, + { + "start": 8689.83, + "end": 8691.51, + "probability": 0.8582 + }, + { + "start": 8691.61, + "end": 8692.55, + "probability": 0.8456 + }, + { + "start": 8692.91, + "end": 8695.87, + "probability": 0.6938 + }, + { + "start": 8697.15, + "end": 8700.15, + "probability": 0.9977 + }, + { + "start": 8700.15, + "end": 8707.79, + "probability": 0.9673 + }, + { + "start": 8708.61, + "end": 8711.43, + "probability": 0.7075 + }, + { + "start": 8712.53, + "end": 8716.21, + "probability": 0.7647 + }, + { + "start": 8717.55, + "end": 8719.83, + "probability": 0.9017 + }, + { + "start": 8721.49, + "end": 8723.11, + "probability": 0.8922 + }, + { + "start": 8724.33, + "end": 8730.57, + "probability": 0.7007 + }, + { + "start": 8731.11, + "end": 8739.64, + "probability": 0.9836 + }, + { + "start": 8741.21, + "end": 8743.79, + "probability": 0.9805 + }, + { + "start": 8745.09, + "end": 8752.67, + "probability": 0.8746 + }, + { + "start": 8753.91, + "end": 8760.63, + "probability": 0.9903 + }, + { + "start": 8763.57, + "end": 8766.47, + "probability": 0.8023 + }, + { + "start": 8767.53, + "end": 8768.51, + "probability": 0.6315 + }, + { + "start": 8769.75, + "end": 8777.49, + "probability": 0.9856 + }, + { + "start": 8778.11, + "end": 8778.61, + "probability": 0.0588 + }, + { + "start": 8779.69, + "end": 8781.53, + "probability": 0.1545 + }, + { + "start": 8781.53, + "end": 8784.03, + "probability": 0.5792 + }, + { + "start": 8784.55, + "end": 8785.71, + "probability": 0.0572 + }, + { + "start": 8785.73, + "end": 8787.81, + "probability": 0.3761 + }, + { + "start": 8788.41, + "end": 8788.73, + "probability": 0.0162 + }, + { + "start": 8788.73, + "end": 8794.59, + "probability": 0.215 + }, + { + "start": 8794.59, + "end": 8800.39, + "probability": 0.9637 + }, + { + "start": 8801.23, + "end": 8803.39, + "probability": 0.8302 + }, + { + "start": 8803.55, + "end": 8804.17, + "probability": 0.4978 + }, + { + "start": 8805.39, + "end": 8808.2, + "probability": 0.8877 + }, + { + "start": 8809.07, + "end": 8810.01, + "probability": 0.3799 + }, + { + "start": 8810.67, + "end": 8812.85, + "probability": 0.8722 + }, + { + "start": 8814.09, + "end": 8818.01, + "probability": 0.9557 + }, + { + "start": 8818.59, + "end": 8819.61, + "probability": 0.8778 + }, + { + "start": 8819.69, + "end": 8821.65, + "probability": 0.9126 + }, + { + "start": 8821.93, + "end": 8823.41, + "probability": 0.916 + }, + { + "start": 8823.47, + "end": 8824.03, + "probability": 0.8546 + }, + { + "start": 8825.15, + "end": 8828.17, + "probability": 0.875 + }, + { + "start": 8829.01, + "end": 8829.57, + "probability": 0.5659 + }, + { + "start": 8829.79, + "end": 8830.87, + "probability": 0.6938 + }, + { + "start": 8830.95, + "end": 8831.47, + "probability": 0.4811 + }, + { + "start": 8831.67, + "end": 8832.99, + "probability": 0.874 + }, + { + "start": 8834.05, + "end": 8834.73, + "probability": 0.9087 + }, + { + "start": 8848.87, + "end": 8849.77, + "probability": 0.6781 + }, + { + "start": 8849.85, + "end": 8851.31, + "probability": 0.6859 + }, + { + "start": 8851.37, + "end": 8853.61, + "probability": 0.9034 + }, + { + "start": 8854.31, + "end": 8856.35, + "probability": 0.8746 + }, + { + "start": 8856.89, + "end": 8859.85, + "probability": 0.8232 + }, + { + "start": 8862.47, + "end": 8865.13, + "probability": 0.7712 + }, + { + "start": 8865.59, + "end": 8868.39, + "probability": 0.9844 + }, + { + "start": 8868.83, + "end": 8869.81, + "probability": 0.8485 + }, + { + "start": 8871.41, + "end": 8875.03, + "probability": 0.9919 + }, + { + "start": 8875.27, + "end": 8877.83, + "probability": 0.9788 + }, + { + "start": 8878.73, + "end": 8884.99, + "probability": 0.9503 + }, + { + "start": 8884.99, + "end": 8891.85, + "probability": 0.9219 + }, + { + "start": 8891.85, + "end": 8897.67, + "probability": 0.9866 + }, + { + "start": 8898.11, + "end": 8903.89, + "probability": 0.9953 + }, + { + "start": 8904.17, + "end": 8907.69, + "probability": 0.9978 + }, + { + "start": 8907.69, + "end": 8911.01, + "probability": 0.9948 + }, + { + "start": 8912.27, + "end": 8915.47, + "probability": 0.9976 + }, + { + "start": 8915.47, + "end": 8919.27, + "probability": 0.9988 + }, + { + "start": 8919.75, + "end": 8921.95, + "probability": 0.8906 + }, + { + "start": 8923.13, + "end": 8925.37, + "probability": 0.9938 + }, + { + "start": 8926.11, + "end": 8927.67, + "probability": 0.8764 + }, + { + "start": 8927.85, + "end": 8929.33, + "probability": 0.9822 + }, + { + "start": 8929.51, + "end": 8933.45, + "probability": 0.9878 + }, + { + "start": 8933.65, + "end": 8935.13, + "probability": 0.9963 + }, + { + "start": 8936.13, + "end": 8939.15, + "probability": 0.9961 + }, + { + "start": 8939.15, + "end": 8942.89, + "probability": 0.9958 + }, + { + "start": 8943.21, + "end": 8944.81, + "probability": 0.5991 + }, + { + "start": 8945.41, + "end": 8947.98, + "probability": 0.9536 + }, + { + "start": 8948.09, + "end": 8950.21, + "probability": 0.9424 + }, + { + "start": 8950.49, + "end": 8955.77, + "probability": 0.9556 + }, + { + "start": 8955.85, + "end": 8958.09, + "probability": 0.5598 + }, + { + "start": 8958.09, + "end": 8959.17, + "probability": 0.0179 + }, + { + "start": 8959.45, + "end": 8963.19, + "probability": 0.8915 + }, + { + "start": 8964.49, + "end": 8964.65, + "probability": 0.4828 + }, + { + "start": 8964.65, + "end": 8967.43, + "probability": 0.9933 + }, + { + "start": 8967.43, + "end": 8969.85, + "probability": 0.9694 + }, + { + "start": 8970.19, + "end": 8971.59, + "probability": 0.6272 + }, + { + "start": 8972.03, + "end": 8973.67, + "probability": 0.8979 + }, + { + "start": 8974.39, + "end": 8975.05, + "probability": 0.8156 + }, + { + "start": 8975.27, + "end": 8977.69, + "probability": 0.9937 + }, + { + "start": 8977.75, + "end": 8978.35, + "probability": 0.6861 + }, + { + "start": 8978.55, + "end": 8979.99, + "probability": 0.7094 + }, + { + "start": 8980.41, + "end": 8981.65, + "probability": 0.9707 + }, + { + "start": 8981.97, + "end": 8984.17, + "probability": 0.9896 + }, + { + "start": 8984.17, + "end": 8986.73, + "probability": 0.9102 + }, + { + "start": 8987.33, + "end": 8990.07, + "probability": 0.9839 + }, + { + "start": 8990.07, + "end": 8993.11, + "probability": 0.9995 + }, + { + "start": 8994.35, + "end": 8998.89, + "probability": 0.998 + }, + { + "start": 8998.89, + "end": 9003.31, + "probability": 0.9942 + }, + { + "start": 9003.73, + "end": 9005.11, + "probability": 0.8627 + }, + { + "start": 9005.55, + "end": 9005.95, + "probability": 0.69 + }, + { + "start": 9006.27, + "end": 9006.99, + "probability": 0.6451 + }, + { + "start": 9007.39, + "end": 9011.35, + "probability": 0.9606 + }, + { + "start": 9011.35, + "end": 9016.01, + "probability": 0.9922 + }, + { + "start": 9016.45, + "end": 9021.43, + "probability": 0.9891 + }, + { + "start": 9021.51, + "end": 9023.49, + "probability": 0.7962 + }, + { + "start": 9023.67, + "end": 9026.37, + "probability": 0.9983 + }, + { + "start": 9026.53, + "end": 9031.27, + "probability": 0.7397 + }, + { + "start": 9031.99, + "end": 9034.31, + "probability": 0.3095 + }, + { + "start": 9034.31, + "end": 9034.31, + "probability": 0.0761 + }, + { + "start": 9034.31, + "end": 9034.61, + "probability": 0.4408 + }, + { + "start": 9034.67, + "end": 9036.77, + "probability": 0.8552 + }, + { + "start": 9036.77, + "end": 9037.07, + "probability": 0.7793 + }, + { + "start": 9037.89, + "end": 9038.95, + "probability": 0.8632 + }, + { + "start": 9040.17, + "end": 9043.09, + "probability": 0.989 + }, + { + "start": 9043.65, + "end": 9046.47, + "probability": 0.8311 + }, + { + "start": 9046.83, + "end": 9049.25, + "probability": 0.9896 + }, + { + "start": 9049.31, + "end": 9051.75, + "probability": 0.9004 + }, + { + "start": 9052.21, + "end": 9055.49, + "probability": 0.9956 + }, + { + "start": 9055.91, + "end": 9058.61, + "probability": 0.9347 + }, + { + "start": 9059.05, + "end": 9061.61, + "probability": 0.9858 + }, + { + "start": 9062.05, + "end": 9065.45, + "probability": 0.9973 + }, + { + "start": 9065.79, + "end": 9066.27, + "probability": 0.763 + }, + { + "start": 9066.43, + "end": 9068.13, + "probability": 0.8792 + }, + { + "start": 9068.31, + "end": 9069.83, + "probability": 0.9474 + }, + { + "start": 9070.85, + "end": 9072.31, + "probability": 0.998 + }, + { + "start": 9073.27, + "end": 9074.95, + "probability": 0.8875 + }, + { + "start": 9079.37, + "end": 9079.37, + "probability": 0.3529 + }, + { + "start": 9079.37, + "end": 9080.81, + "probability": 0.708 + }, + { + "start": 9090.09, + "end": 9091.15, + "probability": 0.4952 + }, + { + "start": 9091.17, + "end": 9091.91, + "probability": 0.8678 + }, + { + "start": 9092.21, + "end": 9093.89, + "probability": 0.7214 + }, + { + "start": 9094.35, + "end": 9094.37, + "probability": 0.3562 + }, + { + "start": 9094.39, + "end": 9098.77, + "probability": 0.6152 + }, + { + "start": 9099.01, + "end": 9100.59, + "probability": 0.4889 + }, + { + "start": 9100.77, + "end": 9101.31, + "probability": 0.9377 + }, + { + "start": 9101.93, + "end": 9106.79, + "probability": 0.9902 + }, + { + "start": 9107.65, + "end": 9112.91, + "probability": 0.7869 + }, + { + "start": 9113.81, + "end": 9117.05, + "probability": 0.8928 + }, + { + "start": 9117.23, + "end": 9119.91, + "probability": 0.9702 + }, + { + "start": 9120.59, + "end": 9123.29, + "probability": 0.7399 + }, + { + "start": 9123.39, + "end": 9128.85, + "probability": 0.9785 + }, + { + "start": 9129.85, + "end": 9132.35, + "probability": 0.8922 + }, + { + "start": 9133.15, + "end": 9137.35, + "probability": 0.7104 + }, + { + "start": 9137.53, + "end": 9138.83, + "probability": 0.9889 + }, + { + "start": 9138.95, + "end": 9139.61, + "probability": 0.8979 + }, + { + "start": 9139.75, + "end": 9140.71, + "probability": 0.82 + }, + { + "start": 9141.07, + "end": 9148.01, + "probability": 0.9685 + }, + { + "start": 9148.53, + "end": 9149.31, + "probability": 0.0373 + }, + { + "start": 9150.25, + "end": 9150.37, + "probability": 0.118 + }, + { + "start": 9150.43, + "end": 9152.29, + "probability": 0.8325 + }, + { + "start": 9152.45, + "end": 9155.51, + "probability": 0.9177 + }, + { + "start": 9156.07, + "end": 9156.99, + "probability": 0.8267 + }, + { + "start": 9157.61, + "end": 9160.33, + "probability": 0.7734 + }, + { + "start": 9160.37, + "end": 9163.69, + "probability": 0.9694 + }, + { + "start": 9164.23, + "end": 9167.83, + "probability": 0.9181 + }, + { + "start": 9167.83, + "end": 9171.17, + "probability": 0.9967 + }, + { + "start": 9171.81, + "end": 9174.27, + "probability": 0.7514 + }, + { + "start": 9174.57, + "end": 9177.51, + "probability": 0.9209 + }, + { + "start": 9177.95, + "end": 9179.93, + "probability": 0.9692 + }, + { + "start": 9180.29, + "end": 9184.11, + "probability": 0.9687 + }, + { + "start": 9184.61, + "end": 9185.63, + "probability": 0.9023 + }, + { + "start": 9185.73, + "end": 9186.99, + "probability": 0.9629 + }, + { + "start": 9187.05, + "end": 9187.98, + "probability": 0.9506 + }, + { + "start": 9188.53, + "end": 9190.77, + "probability": 0.988 + }, + { + "start": 9191.07, + "end": 9193.83, + "probability": 0.9723 + }, + { + "start": 9194.61, + "end": 9197.89, + "probability": 0.9924 + }, + { + "start": 9198.11, + "end": 9201.37, + "probability": 0.9912 + }, + { + "start": 9201.37, + "end": 9206.87, + "probability": 0.9888 + }, + { + "start": 9207.51, + "end": 9212.07, + "probability": 0.9364 + }, + { + "start": 9213.39, + "end": 9218.27, + "probability": 0.9924 + }, + { + "start": 9218.75, + "end": 9222.35, + "probability": 0.9935 + }, + { + "start": 9222.41, + "end": 9224.11, + "probability": 0.8006 + }, + { + "start": 9224.61, + "end": 9226.21, + "probability": 0.7369 + }, + { + "start": 9226.95, + "end": 9230.37, + "probability": 0.7899 + }, + { + "start": 9230.65, + "end": 9233.85, + "probability": 0.8867 + }, + { + "start": 9233.85, + "end": 9237.47, + "probability": 0.8985 + }, + { + "start": 9238.07, + "end": 9239.27, + "probability": 0.6516 + }, + { + "start": 9239.73, + "end": 9241.19, + "probability": 0.9774 + }, + { + "start": 9241.37, + "end": 9242.25, + "probability": 0.832 + }, + { + "start": 9242.63, + "end": 9243.31, + "probability": 0.8131 + }, + { + "start": 9243.49, + "end": 9246.85, + "probability": 0.925 + }, + { + "start": 9246.93, + "end": 9250.41, + "probability": 0.9863 + }, + { + "start": 9251.05, + "end": 9255.19, + "probability": 0.9769 + }, + { + "start": 9255.63, + "end": 9258.07, + "probability": 0.9199 + }, + { + "start": 9258.63, + "end": 9261.47, + "probability": 0.967 + }, + { + "start": 9262.05, + "end": 9263.59, + "probability": 0.9844 + }, + { + "start": 9263.67, + "end": 9265.75, + "probability": 0.9905 + }, + { + "start": 9265.85, + "end": 9267.15, + "probability": 0.8985 + }, + { + "start": 9267.73, + "end": 9271.77, + "probability": 0.9365 + }, + { + "start": 9272.39, + "end": 9272.97, + "probability": 0.7153 + }, + { + "start": 9273.23, + "end": 9274.32, + "probability": 0.9516 + }, + { + "start": 9274.55, + "end": 9277.15, + "probability": 0.8926 + }, + { + "start": 9277.71, + "end": 9279.91, + "probability": 0.9757 + }, + { + "start": 9279.91, + "end": 9284.21, + "probability": 0.8573 + }, + { + "start": 9284.45, + "end": 9289.99, + "probability": 0.9575 + }, + { + "start": 9290.59, + "end": 9292.87, + "probability": 0.9973 + }, + { + "start": 9292.87, + "end": 9298.71, + "probability": 0.9589 + }, + { + "start": 9299.15, + "end": 9299.15, + "probability": 0.1822 + }, + { + "start": 9299.15, + "end": 9302.87, + "probability": 0.9912 + }, + { + "start": 9303.15, + "end": 9304.29, + "probability": 0.9684 + }, + { + "start": 9304.75, + "end": 9308.55, + "probability": 0.9537 + }, + { + "start": 9308.67, + "end": 9308.95, + "probability": 0.6717 + }, + { + "start": 9309.15, + "end": 9309.89, + "probability": 0.8369 + }, + { + "start": 9309.99, + "end": 9313.63, + "probability": 0.9547 + }, + { + "start": 9313.91, + "end": 9315.07, + "probability": 0.6666 + }, + { + "start": 9315.33, + "end": 9317.43, + "probability": 0.9268 + }, + { + "start": 9317.47, + "end": 9318.11, + "probability": 0.9196 + }, + { + "start": 9318.21, + "end": 9319.67, + "probability": 0.9692 + }, + { + "start": 9319.83, + "end": 9323.51, + "probability": 0.9744 + }, + { + "start": 9323.89, + "end": 9328.41, + "probability": 0.9217 + }, + { + "start": 9328.45, + "end": 9333.21, + "probability": 0.9883 + }, + { + "start": 9333.59, + "end": 9334.71, + "probability": 0.7375 + }, + { + "start": 9334.89, + "end": 9336.7, + "probability": 0.7747 + }, + { + "start": 9337.77, + "end": 9339.63, + "probability": 0.706 + }, + { + "start": 9339.89, + "end": 9342.67, + "probability": 0.703 + }, + { + "start": 9343.37, + "end": 9344.53, + "probability": 0.3747 + }, + { + "start": 9345.05, + "end": 9346.39, + "probability": 0.9454 + }, + { + "start": 9347.77, + "end": 9348.11, + "probability": 0.1805 + }, + { + "start": 9348.99, + "end": 9349.75, + "probability": 0.7133 + }, + { + "start": 9351.13, + "end": 9351.23, + "probability": 0.6613 + }, + { + "start": 9351.23, + "end": 9352.83, + "probability": 0.592 + }, + { + "start": 9353.63, + "end": 9354.03, + "probability": 0.3272 + }, + { + "start": 9354.03, + "end": 9354.09, + "probability": 0.256 + }, + { + "start": 9354.09, + "end": 9354.49, + "probability": 0.712 + }, + { + "start": 9355.15, + "end": 9357.63, + "probability": 0.5029 + }, + { + "start": 9358.35, + "end": 9361.67, + "probability": 0.8796 + }, + { + "start": 9361.87, + "end": 9362.89, + "probability": 0.2852 + }, + { + "start": 9363.31, + "end": 9364.37, + "probability": 0.567 + }, + { + "start": 9365.01, + "end": 9365.89, + "probability": 0.8644 + }, + { + "start": 9366.81, + "end": 9369.73, + "probability": 0.8793 + }, + { + "start": 9370.47, + "end": 9371.39, + "probability": 0.8451 + }, + { + "start": 9372.43, + "end": 9373.55, + "probability": 0.7739 + }, + { + "start": 9373.85, + "end": 9377.45, + "probability": 0.9785 + }, + { + "start": 9378.41, + "end": 9380.71, + "probability": 0.9202 + }, + { + "start": 9381.89, + "end": 9381.89, + "probability": 0.0208 + }, + { + "start": 9381.89, + "end": 9384.77, + "probability": 0.8091 + }, + { + "start": 9385.45, + "end": 9389.17, + "probability": 0.981 + }, + { + "start": 9389.23, + "end": 9389.99, + "probability": 0.8716 + }, + { + "start": 9390.69, + "end": 9391.71, + "probability": 0.9927 + }, + { + "start": 9392.67, + "end": 9393.07, + "probability": 0.8073 + }, + { + "start": 9393.19, + "end": 9399.23, + "probability": 0.9951 + }, + { + "start": 9400.21, + "end": 9402.37, + "probability": 0.8787 + }, + { + "start": 9404.21, + "end": 9406.83, + "probability": 0.8208 + }, + { + "start": 9408.27, + "end": 9412.09, + "probability": 0.9937 + }, + { + "start": 9414.97, + "end": 9415.97, + "probability": 0.9727 + }, + { + "start": 9417.15, + "end": 9418.63, + "probability": 0.996 + }, + { + "start": 9419.97, + "end": 9420.97, + "probability": 0.5912 + }, + { + "start": 9422.01, + "end": 9427.55, + "probability": 0.9292 + }, + { + "start": 9427.71, + "end": 9429.53, + "probability": 0.9347 + }, + { + "start": 9430.19, + "end": 9432.71, + "probability": 0.8333 + }, + { + "start": 9433.93, + "end": 9435.45, + "probability": 0.9384 + }, + { + "start": 9436.57, + "end": 9440.77, + "probability": 0.9783 + }, + { + "start": 9442.09, + "end": 9444.13, + "probability": 0.9791 + }, + { + "start": 9444.99, + "end": 9449.93, + "probability": 0.9835 + }, + { + "start": 9451.61, + "end": 9452.83, + "probability": 0.9868 + }, + { + "start": 9453.15, + "end": 9454.39, + "probability": 0.9573 + }, + { + "start": 9454.55, + "end": 9455.09, + "probability": 0.7845 + }, + { + "start": 9455.49, + "end": 9456.23, + "probability": 0.7766 + }, + { + "start": 9458.27, + "end": 9461.97, + "probability": 0.9546 + }, + { + "start": 9462.77, + "end": 9468.55, + "probability": 0.8869 + }, + { + "start": 9468.71, + "end": 9469.89, + "probability": 0.9016 + }, + { + "start": 9470.55, + "end": 9472.05, + "probability": 0.991 + }, + { + "start": 9472.21, + "end": 9473.37, + "probability": 0.988 + }, + { + "start": 9473.61, + "end": 9474.81, + "probability": 0.9231 + }, + { + "start": 9475.47, + "end": 9477.57, + "probability": 0.6869 + }, + { + "start": 9478.95, + "end": 9481.07, + "probability": 0.8813 + }, + { + "start": 9482.09, + "end": 9485.23, + "probability": 0.9598 + }, + { + "start": 9486.89, + "end": 9493.57, + "probability": 0.9878 + }, + { + "start": 9494.87, + "end": 9496.73, + "probability": 0.7362 + }, + { + "start": 9498.03, + "end": 9502.67, + "probability": 0.9976 + }, + { + "start": 9503.91, + "end": 9506.03, + "probability": 0.0587 + }, + { + "start": 9506.87, + "end": 9509.69, + "probability": 0.9548 + }, + { + "start": 9510.47, + "end": 9515.37, + "probability": 0.9824 + }, + { + "start": 9515.81, + "end": 9517.67, + "probability": 0.572 + }, + { + "start": 9517.93, + "end": 9520.21, + "probability": 0.9362 + }, + { + "start": 9521.01, + "end": 9523.64, + "probability": 0.8169 + }, + { + "start": 9524.39, + "end": 9524.87, + "probability": 0.9557 + }, + { + "start": 9525.83, + "end": 9528.19, + "probability": 0.9448 + }, + { + "start": 9528.89, + "end": 9529.83, + "probability": 0.3579 + }, + { + "start": 9530.65, + "end": 9532.73, + "probability": 0.9312 + }, + { + "start": 9533.79, + "end": 9534.69, + "probability": 0.9133 + }, + { + "start": 9534.71, + "end": 9537.17, + "probability": 0.932 + }, + { + "start": 9537.75, + "end": 9539.57, + "probability": 0.8429 + }, + { + "start": 9540.33, + "end": 9541.49, + "probability": 0.5135 + }, + { + "start": 9542.79, + "end": 9542.97, + "probability": 0.4948 + }, + { + "start": 9543.05, + "end": 9543.83, + "probability": 0.787 + }, + { + "start": 9543.89, + "end": 9546.57, + "probability": 0.9005 + }, + { + "start": 9547.35, + "end": 9549.25, + "probability": 0.9896 + }, + { + "start": 9549.79, + "end": 9550.97, + "probability": 0.9868 + }, + { + "start": 9551.77, + "end": 9554.99, + "probability": 0.7841 + }, + { + "start": 9555.73, + "end": 9556.23, + "probability": 0.9539 + }, + { + "start": 9557.05, + "end": 9560.47, + "probability": 0.9833 + }, + { + "start": 9561.05, + "end": 9562.07, + "probability": 0.8487 + }, + { + "start": 9562.91, + "end": 9564.21, + "probability": 0.9611 + }, + { + "start": 9565.15, + "end": 9569.49, + "probability": 0.7974 + }, + { + "start": 9570.17, + "end": 9576.03, + "probability": 0.9572 + }, + { + "start": 9576.85, + "end": 9580.41, + "probability": 0.9696 + }, + { + "start": 9581.03, + "end": 9583.37, + "probability": 0.9334 + }, + { + "start": 9584.11, + "end": 9586.55, + "probability": 0.9216 + }, + { + "start": 9587.27, + "end": 9588.35, + "probability": 0.6385 + }, + { + "start": 9589.19, + "end": 9590.05, + "probability": 0.865 + }, + { + "start": 9590.73, + "end": 9594.19, + "probability": 0.9902 + }, + { + "start": 9594.83, + "end": 9595.27, + "probability": 0.8921 + }, + { + "start": 9596.99, + "end": 9598.09, + "probability": 0.897 + }, + { + "start": 9599.57, + "end": 9600.69, + "probability": 0.8966 + }, + { + "start": 9601.51, + "end": 9603.25, + "probability": 0.8875 + }, + { + "start": 9603.93, + "end": 9607.11, + "probability": 0.9868 + }, + { + "start": 9607.61, + "end": 9608.87, + "probability": 0.9139 + }, + { + "start": 9609.53, + "end": 9610.93, + "probability": 0.8837 + }, + { + "start": 9611.51, + "end": 9613.59, + "probability": 0.9762 + }, + { + "start": 9613.91, + "end": 9619.45, + "probability": 0.9774 + }, + { + "start": 9619.87, + "end": 9620.8, + "probability": 0.7468 + }, + { + "start": 9621.85, + "end": 9622.77, + "probability": 0.8008 + }, + { + "start": 9622.77, + "end": 9622.87, + "probability": 0.6954 + }, + { + "start": 9623.17, + "end": 9626.69, + "probability": 0.8201 + }, + { + "start": 9627.85, + "end": 9631.93, + "probability": 0.8653 + }, + { + "start": 9633.37, + "end": 9634.47, + "probability": 0.3888 + }, + { + "start": 9634.49, + "end": 9636.31, + "probability": 0.7862 + }, + { + "start": 9636.35, + "end": 9636.73, + "probability": 0.763 + }, + { + "start": 9636.79, + "end": 9638.41, + "probability": 0.8488 + }, + { + "start": 9640.96, + "end": 9644.15, + "probability": 0.9922 + }, + { + "start": 9644.25, + "end": 9644.69, + "probability": 0.7434 + }, + { + "start": 9644.79, + "end": 9645.45, + "probability": 0.5838 + }, + { + "start": 9645.61, + "end": 9651.69, + "probability": 0.9854 + }, + { + "start": 9652.55, + "end": 9656.29, + "probability": 0.9811 + }, + { + "start": 9656.61, + "end": 9658.01, + "probability": 0.7498 + }, + { + "start": 9658.03, + "end": 9661.03, + "probability": 0.8058 + }, + { + "start": 9661.09, + "end": 9663.67, + "probability": 0.7928 + }, + { + "start": 9664.27, + "end": 9667.17, + "probability": 0.9858 + }, + { + "start": 9667.17, + "end": 9672.11, + "probability": 0.6664 + }, + { + "start": 9672.39, + "end": 9674.06, + "probability": 0.5433 + }, + { + "start": 9674.95, + "end": 9676.97, + "probability": 0.9929 + }, + { + "start": 9677.09, + "end": 9678.51, + "probability": 0.9978 + }, + { + "start": 9678.95, + "end": 9684.21, + "probability": 0.9893 + }, + { + "start": 9684.61, + "end": 9686.71, + "probability": 0.9939 + }, + { + "start": 9687.39, + "end": 9689.83, + "probability": 0.9064 + }, + { + "start": 9690.27, + "end": 9693.37, + "probability": 0.9175 + }, + { + "start": 9693.85, + "end": 9697.99, + "probability": 0.9003 + }, + { + "start": 9698.49, + "end": 9700.85, + "probability": 0.9587 + }, + { + "start": 9701.47, + "end": 9702.85, + "probability": 0.9988 + }, + { + "start": 9702.87, + "end": 9704.19, + "probability": 0.8938 + }, + { + "start": 9704.25, + "end": 9710.15, + "probability": 0.8234 + }, + { + "start": 9710.67, + "end": 9714.45, + "probability": 0.9423 + }, + { + "start": 9715.01, + "end": 9715.73, + "probability": 0.8119 + }, + { + "start": 9715.89, + "end": 9720.51, + "probability": 0.7956 + }, + { + "start": 9720.51, + "end": 9724.2, + "probability": 0.9974 + }, + { + "start": 9724.85, + "end": 9725.99, + "probability": 0.8945 + }, + { + "start": 9726.11, + "end": 9728.15, + "probability": 0.9355 + }, + { + "start": 9728.23, + "end": 9730.63, + "probability": 0.9896 + }, + { + "start": 9731.49, + "end": 9732.07, + "probability": 0.7201 + }, + { + "start": 9732.33, + "end": 9733.13, + "probability": 0.9402 + }, + { + "start": 9733.21, + "end": 9734.59, + "probability": 0.8602 + }, + { + "start": 9734.65, + "end": 9735.91, + "probability": 0.3494 + }, + { + "start": 9736.35, + "end": 9738.49, + "probability": 0.9198 + }, + { + "start": 9738.55, + "end": 9739.03, + "probability": 0.8112 + }, + { + "start": 9739.47, + "end": 9744.01, + "probability": 0.7273 + }, + { + "start": 9744.55, + "end": 9747.97, + "probability": 0.5182 + }, + { + "start": 9748.77, + "end": 9749.44, + "probability": 0.9175 + }, + { + "start": 9749.63, + "end": 9752.17, + "probability": 0.9783 + }, + { + "start": 9752.39, + "end": 9752.85, + "probability": 0.7195 + }, + { + "start": 9753.33, + "end": 9755.29, + "probability": 0.9733 + }, + { + "start": 9755.61, + "end": 9758.11, + "probability": 0.9705 + }, + { + "start": 9758.17, + "end": 9759.49, + "probability": 0.9973 + }, + { + "start": 9760.09, + "end": 9760.85, + "probability": 0.8115 + }, + { + "start": 9761.23, + "end": 9763.75, + "probability": 0.9019 + }, + { + "start": 9763.87, + "end": 9764.61, + "probability": 0.7202 + }, + { + "start": 9764.67, + "end": 9764.97, + "probability": 0.8398 + }, + { + "start": 9765.19, + "end": 9769.91, + "probability": 0.9596 + }, + { + "start": 9769.91, + "end": 9774.33, + "probability": 0.9676 + }, + { + "start": 9774.69, + "end": 9774.87, + "probability": 0.6422 + }, + { + "start": 9775.85, + "end": 9779.59, + "probability": 0.756 + }, + { + "start": 9779.69, + "end": 9781.79, + "probability": 0.9062 + }, + { + "start": 9782.47, + "end": 9783.85, + "probability": 0.3633 + }, + { + "start": 9784.37, + "end": 9785.09, + "probability": 0.8683 + }, + { + "start": 9785.67, + "end": 9786.64, + "probability": 0.8877 + }, + { + "start": 9787.07, + "end": 9789.21, + "probability": 0.6799 + }, + { + "start": 9789.77, + "end": 9791.29, + "probability": 0.6698 + }, + { + "start": 9791.45, + "end": 9791.57, + "probability": 0.3157 + }, + { + "start": 9792.27, + "end": 9792.67, + "probability": 0.8435 + }, + { + "start": 9793.63, + "end": 9794.15, + "probability": 0.4172 + }, + { + "start": 9794.43, + "end": 9794.64, + "probability": 0.4422 + }, + { + "start": 9796.01, + "end": 9796.65, + "probability": 0.4365 + }, + { + "start": 9799.09, + "end": 9799.51, + "probability": 0.2854 + }, + { + "start": 9800.09, + "end": 9801.17, + "probability": 0.4006 + }, + { + "start": 9801.27, + "end": 9803.65, + "probability": 0.7993 + }, + { + "start": 9804.21, + "end": 9807.29, + "probability": 0.5843 + }, + { + "start": 9807.29, + "end": 9811.39, + "probability": 0.865 + }, + { + "start": 9812.73, + "end": 9814.81, + "probability": 0.7994 + }, + { + "start": 9815.89, + "end": 9818.75, + "probability": 0.9796 + }, + { + "start": 9819.67, + "end": 9822.73, + "probability": 0.4757 + }, + { + "start": 9823.45, + "end": 9825.71, + "probability": 0.9963 + }, + { + "start": 9825.79, + "end": 9827.07, + "probability": 0.5444 + }, + { + "start": 9827.77, + "end": 9828.21, + "probability": 0.9321 + }, + { + "start": 9828.75, + "end": 9831.29, + "probability": 0.9958 + }, + { + "start": 9832.13, + "end": 9833.34, + "probability": 0.9341 + }, + { + "start": 9833.75, + "end": 9834.53, + "probability": 0.9868 + }, + { + "start": 9834.93, + "end": 9835.73, + "probability": 0.9922 + }, + { + "start": 9836.25, + "end": 9837.15, + "probability": 0.708 + }, + { + "start": 9837.47, + "end": 9840.51, + "probability": 0.9513 + }, + { + "start": 9840.87, + "end": 9841.37, + "probability": 0.79 + }, + { + "start": 9842.31, + "end": 9843.67, + "probability": 0.8127 + }, + { + "start": 9844.35, + "end": 9848.24, + "probability": 0.8479 + }, + { + "start": 9849.25, + "end": 9850.95, + "probability": 0.8981 + }, + { + "start": 9851.81, + "end": 9855.89, + "probability": 0.9627 + }, + { + "start": 9856.57, + "end": 9857.15, + "probability": 0.5692 + }, + { + "start": 9857.89, + "end": 9858.97, + "probability": 0.9951 + }, + { + "start": 9860.49, + "end": 9861.47, + "probability": 0.9363 + }, + { + "start": 9861.75, + "end": 9865.61, + "probability": 0.981 + }, + { + "start": 9866.61, + "end": 9868.23, + "probability": 0.988 + }, + { + "start": 9868.69, + "end": 9870.03, + "probability": 0.9818 + }, + { + "start": 9870.15, + "end": 9870.93, + "probability": 0.9469 + }, + { + "start": 9871.37, + "end": 9872.21, + "probability": 0.7415 + }, + { + "start": 9872.27, + "end": 9873.07, + "probability": 0.979 + }, + { + "start": 9873.85, + "end": 9878.55, + "probability": 0.9946 + }, + { + "start": 9878.73, + "end": 9879.19, + "probability": 0.8349 + }, + { + "start": 9879.25, + "end": 9880.13, + "probability": 0.8461 + }, + { + "start": 9880.21, + "end": 9882.13, + "probability": 0.5435 + }, + { + "start": 9883.01, + "end": 9885.15, + "probability": 0.5994 + }, + { + "start": 9885.95, + "end": 9889.21, + "probability": 0.7056 + }, + { + "start": 9889.29, + "end": 9892.53, + "probability": 0.7687 + }, + { + "start": 9893.27, + "end": 9895.83, + "probability": 0.6977 + }, + { + "start": 9896.75, + "end": 9898.25, + "probability": 0.671 + }, + { + "start": 9899.17, + "end": 9903.37, + "probability": 0.9229 + }, + { + "start": 9904.27, + "end": 9906.31, + "probability": 0.9069 + }, + { + "start": 9906.83, + "end": 9907.01, + "probability": 0.8062 + }, + { + "start": 9908.43, + "end": 9911.02, + "probability": 0.877 + }, + { + "start": 9911.95, + "end": 9914.17, + "probability": 0.7603 + }, + { + "start": 9914.73, + "end": 9915.25, + "probability": 0.5749 + }, + { + "start": 9915.95, + "end": 9917.93, + "probability": 0.5725 + }, + { + "start": 9921.31, + "end": 9928.19, + "probability": 0.8425 + }, + { + "start": 9929.89, + "end": 9930.55, + "probability": 0.753 + }, + { + "start": 9930.81, + "end": 9931.55, + "probability": 0.8521 + }, + { + "start": 9931.87, + "end": 9936.09, + "probability": 0.9789 + }, + { + "start": 9936.09, + "end": 9941.51, + "probability": 0.8834 + }, + { + "start": 9942.87, + "end": 9944.87, + "probability": 0.965 + }, + { + "start": 9945.71, + "end": 9946.23, + "probability": 0.666 + }, + { + "start": 9947.21, + "end": 9954.45, + "probability": 0.9705 + }, + { + "start": 9955.05, + "end": 9955.82, + "probability": 0.9677 + }, + { + "start": 9956.23, + "end": 9957.03, + "probability": 0.1266 + }, + { + "start": 9957.23, + "end": 9958.37, + "probability": 0.8871 + }, + { + "start": 9958.81, + "end": 9959.95, + "probability": 0.8341 + }, + { + "start": 9960.05, + "end": 9961.99, + "probability": 0.6269 + }, + { + "start": 9964.39, + "end": 9965.71, + "probability": 0.3139 + }, + { + "start": 9965.71, + "end": 9969.14, + "probability": 0.9985 + }, + { + "start": 9969.75, + "end": 9971.19, + "probability": 0.6953 + }, + { + "start": 9971.93, + "end": 9975.25, + "probability": 0.9111 + }, + { + "start": 9976.15, + "end": 9980.39, + "probability": 0.9465 + }, + { + "start": 9980.99, + "end": 9983.05, + "probability": 0.9966 + }, + { + "start": 9983.93, + "end": 9987.15, + "probability": 0.72 + }, + { + "start": 9987.75, + "end": 9989.91, + "probability": 0.8005 + }, + { + "start": 9990.39, + "end": 9992.15, + "probability": 0.9839 + }, + { + "start": 9992.25, + "end": 9993.69, + "probability": 0.886 + }, + { + "start": 9994.29, + "end": 9998.37, + "probability": 0.9601 + }, + { + "start": 9998.85, + "end": 10001.01, + "probability": 0.9894 + }, + { + "start": 10001.37, + "end": 10003.75, + "probability": 0.6501 + }, + { + "start": 10004.23, + "end": 10008.77, + "probability": 0.863 + }, + { + "start": 10008.91, + "end": 10010.72, + "probability": 0.9141 + }, + { + "start": 10011.25, + "end": 10013.05, + "probability": 0.7721 + }, + { + "start": 10013.09, + "end": 10016.32, + "probability": 0.9939 + }, + { + "start": 10016.33, + "end": 10019.93, + "probability": 0.9137 + }, + { + "start": 10020.49, + "end": 10026.11, + "probability": 0.9887 + }, + { + "start": 10026.79, + "end": 10028.41, + "probability": 0.7705 + }, + { + "start": 10028.99, + "end": 10032.67, + "probability": 0.8991 + }, + { + "start": 10032.67, + "end": 10038.83, + "probability": 0.9771 + }, + { + "start": 10039.49, + "end": 10041.35, + "probability": 0.574 + }, + { + "start": 10041.53, + "end": 10043.79, + "probability": 0.7423 + }, + { + "start": 10044.29, + "end": 10047.84, + "probability": 0.9871 + }, + { + "start": 10048.09, + "end": 10050.55, + "probability": 0.9758 + }, + { + "start": 10050.89, + "end": 10051.51, + "probability": 0.9619 + }, + { + "start": 10051.63, + "end": 10055.35, + "probability": 0.9051 + }, + { + "start": 10055.81, + "end": 10056.67, + "probability": 0.4491 + }, + { + "start": 10057.05, + "end": 10058.95, + "probability": 0.9614 + }, + { + "start": 10059.37, + "end": 10060.63, + "probability": 0.9191 + }, + { + "start": 10060.91, + "end": 10061.33, + "probability": 0.6216 + }, + { + "start": 10061.43, + "end": 10062.33, + "probability": 0.9601 + }, + { + "start": 10062.61, + "end": 10067.17, + "probability": 0.993 + }, + { + "start": 10067.89, + "end": 10069.09, + "probability": 0.7146 + }, + { + "start": 10069.19, + "end": 10070.05, + "probability": 0.8285 + }, + { + "start": 10070.29, + "end": 10073.85, + "probability": 0.5711 + }, + { + "start": 10074.17, + "end": 10076.25, + "probability": 0.8599 + }, + { + "start": 10077.09, + "end": 10081.47, + "probability": 0.9874 + }, + { + "start": 10081.85, + "end": 10082.87, + "probability": 0.9784 + }, + { + "start": 10082.87, + "end": 10083.25, + "probability": 0.9724 + }, + { + "start": 10083.39, + "end": 10084.19, + "probability": 0.7356 + }, + { + "start": 10084.43, + "end": 10085.39, + "probability": 0.987 + }, + { + "start": 10085.71, + "end": 10086.63, + "probability": 0.979 + }, + { + "start": 10086.97, + "end": 10088.19, + "probability": 0.8668 + }, + { + "start": 10088.49, + "end": 10089.99, + "probability": 0.7218 + }, + { + "start": 10090.31, + "end": 10091.05, + "probability": 0.7353 + }, + { + "start": 10091.39, + "end": 10094.33, + "probability": 0.936 + }, + { + "start": 10095.19, + "end": 10098.65, + "probability": 0.9958 + }, + { + "start": 10098.97, + "end": 10102.33, + "probability": 0.9927 + }, + { + "start": 10103.01, + "end": 10109.31, + "probability": 0.9969 + }, + { + "start": 10109.87, + "end": 10111.0, + "probability": 0.7514 + }, + { + "start": 10111.63, + "end": 10114.57, + "probability": 0.8699 + }, + { + "start": 10115.09, + "end": 10117.67, + "probability": 0.9875 + }, + { + "start": 10118.27, + "end": 10119.81, + "probability": 0.9946 + }, + { + "start": 10119.95, + "end": 10122.45, + "probability": 0.5823 + }, + { + "start": 10122.87, + "end": 10125.81, + "probability": 0.7598 + }, + { + "start": 10126.29, + "end": 10127.03, + "probability": 0.7438 + }, + { + "start": 10127.21, + "end": 10128.43, + "probability": 0.9247 + }, + { + "start": 10129.09, + "end": 10130.81, + "probability": 0.7724 + }, + { + "start": 10131.15, + "end": 10132.35, + "probability": 0.6991 + }, + { + "start": 10132.81, + "end": 10134.63, + "probability": 0.9394 + }, + { + "start": 10134.97, + "end": 10140.19, + "probability": 0.6936 + }, + { + "start": 10140.21, + "end": 10141.79, + "probability": 0.7935 + }, + { + "start": 10141.99, + "end": 10142.93, + "probability": 0.7101 + }, + { + "start": 10143.09, + "end": 10144.07, + "probability": 0.8147 + }, + { + "start": 10144.67, + "end": 10147.55, + "probability": 0.9685 + }, + { + "start": 10147.97, + "end": 10149.39, + "probability": 0.9982 + }, + { + "start": 10149.67, + "end": 10150.99, + "probability": 0.9951 + }, + { + "start": 10151.31, + "end": 10153.45, + "probability": 0.9085 + }, + { + "start": 10153.47, + "end": 10155.29, + "probability": 0.8291 + }, + { + "start": 10155.29, + "end": 10156.45, + "probability": 0.8412 + }, + { + "start": 10156.59, + "end": 10158.31, + "probability": 0.9953 + }, + { + "start": 10158.75, + "end": 10160.81, + "probability": 0.8984 + }, + { + "start": 10161.13, + "end": 10161.35, + "probability": 0.5861 + }, + { + "start": 10161.35, + "end": 10164.05, + "probability": 0.9924 + }, + { + "start": 10164.37, + "end": 10165.25, + "probability": 0.4228 + }, + { + "start": 10165.35, + "end": 10167.23, + "probability": 0.9836 + }, + { + "start": 10167.29, + "end": 10167.61, + "probability": 0.8383 + }, + { + "start": 10168.13, + "end": 10170.3, + "probability": 0.835 + }, + { + "start": 10170.41, + "end": 10171.75, + "probability": 0.8678 + }, + { + "start": 10172.75, + "end": 10173.75, + "probability": 0.8042 + }, + { + "start": 10173.87, + "end": 10175.09, + "probability": 0.9614 + }, + { + "start": 10175.87, + "end": 10176.27, + "probability": 0.8386 + }, + { + "start": 10177.09, + "end": 10177.71, + "probability": 0.7731 + }, + { + "start": 10178.59, + "end": 10180.15, + "probability": 0.7175 + }, + { + "start": 10181.55, + "end": 10183.09, + "probability": 0.9093 + }, + { + "start": 10185.21, + "end": 10195.63, + "probability": 0.7497 + }, + { + "start": 10196.79, + "end": 10197.17, + "probability": 0.5099 + }, + { + "start": 10197.97, + "end": 10198.27, + "probability": 0.6456 + }, + { + "start": 10202.21, + "end": 10202.95, + "probability": 0.8334 + }, + { + "start": 10203.03, + "end": 10203.77, + "probability": 0.9039 + }, + { + "start": 10204.13, + "end": 10207.85, + "probability": 0.9893 + }, + { + "start": 10209.03, + "end": 10210.77, + "probability": 0.7876 + }, + { + "start": 10211.69, + "end": 10213.95, + "probability": 0.981 + }, + { + "start": 10214.95, + "end": 10215.47, + "probability": 0.9722 + }, + { + "start": 10215.99, + "end": 10216.81, + "probability": 0.6717 + }, + { + "start": 10216.91, + "end": 10218.41, + "probability": 0.8052 + }, + { + "start": 10220.13, + "end": 10222.35, + "probability": 0.7563 + }, + { + "start": 10223.77, + "end": 10225.05, + "probability": 0.8455 + }, + { + "start": 10226.53, + "end": 10229.67, + "probability": 0.8968 + }, + { + "start": 10230.45, + "end": 10231.21, + "probability": 0.7756 + }, + { + "start": 10232.27, + "end": 10234.65, + "probability": 0.9424 + }, + { + "start": 10235.67, + "end": 10237.81, + "probability": 0.7102 + }, + { + "start": 10237.89, + "end": 10238.19, + "probability": 0.8687 + }, + { + "start": 10238.29, + "end": 10240.49, + "probability": 0.8866 + }, + { + "start": 10241.21, + "end": 10243.09, + "probability": 0.9082 + }, + { + "start": 10243.89, + "end": 10245.11, + "probability": 0.8622 + }, + { + "start": 10245.63, + "end": 10246.63, + "probability": 0.6205 + }, + { + "start": 10247.13, + "end": 10248.09, + "probability": 0.9794 + }, + { + "start": 10248.55, + "end": 10249.51, + "probability": 0.9875 + }, + { + "start": 10249.81, + "end": 10252.93, + "probability": 0.7051 + }, + { + "start": 10253.39, + "end": 10253.61, + "probability": 0.5064 + }, + { + "start": 10253.61, + "end": 10253.61, + "probability": 0.8382 + }, + { + "start": 10253.61, + "end": 10254.21, + "probability": 0.9569 + }, + { + "start": 10254.73, + "end": 10255.61, + "probability": 0.9576 + }, + { + "start": 10256.71, + "end": 10263.83, + "probability": 0.8711 + }, + { + "start": 10265.19, + "end": 10265.19, + "probability": 0.0127 + }, + { + "start": 10265.19, + "end": 10265.19, + "probability": 0.048 + }, + { + "start": 10265.19, + "end": 10265.19, + "probability": 0.0795 + }, + { + "start": 10265.19, + "end": 10265.19, + "probability": 0.0672 + }, + { + "start": 10265.19, + "end": 10271.85, + "probability": 0.723 + }, + { + "start": 10274.79, + "end": 10274.97, + "probability": 0.0211 + }, + { + "start": 10274.97, + "end": 10274.97, + "probability": 0.1811 + }, + { + "start": 10274.97, + "end": 10280.15, + "probability": 0.7228 + }, + { + "start": 10280.73, + "end": 10285.31, + "probability": 0.7869 + }, + { + "start": 10285.31, + "end": 10287.65, + "probability": 0.9922 + }, + { + "start": 10287.85, + "end": 10291.43, + "probability": 0.9707 + }, + { + "start": 10291.79, + "end": 10293.54, + "probability": 0.5392 + }, + { + "start": 10294.65, + "end": 10296.57, + "probability": 0.8881 + }, + { + "start": 10297.87, + "end": 10298.57, + "probability": 0.5457 + }, + { + "start": 10299.51, + "end": 10301.47, + "probability": 0.9824 + }, + { + "start": 10302.33, + "end": 10304.61, + "probability": 0.8315 + }, + { + "start": 10305.37, + "end": 10306.55, + "probability": 0.7265 + }, + { + "start": 10307.21, + "end": 10310.51, + "probability": 0.9588 + }, + { + "start": 10311.59, + "end": 10312.87, + "probability": 0.8843 + }, + { + "start": 10313.63, + "end": 10315.25, + "probability": 0.8693 + }, + { + "start": 10315.77, + "end": 10316.91, + "probability": 0.9718 + }, + { + "start": 10317.79, + "end": 10321.75, + "probability": 0.9908 + }, + { + "start": 10322.04, + "end": 10325.85, + "probability": 0.9979 + }, + { + "start": 10330.01, + "end": 10330.89, + "probability": 0.6674 + }, + { + "start": 10330.99, + "end": 10331.75, + "probability": 0.6726 + }, + { + "start": 10331.81, + "end": 10336.55, + "probability": 0.9427 + }, + { + "start": 10337.09, + "end": 10338.15, + "probability": 0.9719 + }, + { + "start": 10338.83, + "end": 10339.49, + "probability": 0.8653 + }, + { + "start": 10340.05, + "end": 10340.85, + "probability": 0.6551 + }, + { + "start": 10341.59, + "end": 10342.57, + "probability": 0.8421 + }, + { + "start": 10343.25, + "end": 10344.43, + "probability": 0.9038 + }, + { + "start": 10345.35, + "end": 10346.01, + "probability": 0.6444 + }, + { + "start": 10347.27, + "end": 10349.49, + "probability": 0.9437 + }, + { + "start": 10349.79, + "end": 10351.53, + "probability": 0.9357 + }, + { + "start": 10351.95, + "end": 10354.95, + "probability": 0.9647 + }, + { + "start": 10356.39, + "end": 10358.95, + "probability": 0.993 + }, + { + "start": 10360.69, + "end": 10360.97, + "probability": 0.8789 + }, + { + "start": 10361.07, + "end": 10366.57, + "probability": 0.9968 + }, + { + "start": 10366.65, + "end": 10368.39, + "probability": 0.998 + }, + { + "start": 10368.57, + "end": 10369.77, + "probability": 0.9932 + }, + { + "start": 10371.19, + "end": 10377.15, + "probability": 0.9966 + }, + { + "start": 10378.01, + "end": 10381.69, + "probability": 0.9862 + }, + { + "start": 10382.25, + "end": 10382.63, + "probability": 0.8975 + }, + { + "start": 10383.21, + "end": 10386.45, + "probability": 0.9871 + }, + { + "start": 10386.95, + "end": 10388.65, + "probability": 0.9921 + }, + { + "start": 10389.29, + "end": 10390.03, + "probability": 0.9612 + }, + { + "start": 10395.83, + "end": 10398.49, + "probability": 0.9803 + }, + { + "start": 10398.49, + "end": 10403.31, + "probability": 0.9315 + }, + { + "start": 10405.25, + "end": 10405.95, + "probability": 0.6633 + }, + { + "start": 10406.05, + "end": 10407.59, + "probability": 0.7658 + }, + { + "start": 10407.69, + "end": 10408.41, + "probability": 0.4409 + }, + { + "start": 10408.53, + "end": 10410.69, + "probability": 0.7194 + }, + { + "start": 10411.47, + "end": 10418.69, + "probability": 0.9844 + }, + { + "start": 10419.35, + "end": 10422.01, + "probability": 0.959 + }, + { + "start": 10422.43, + "end": 10425.77, + "probability": 0.9609 + }, + { + "start": 10426.33, + "end": 10430.53, + "probability": 0.9785 + }, + { + "start": 10430.85, + "end": 10434.07, + "probability": 0.9877 + }, + { + "start": 10434.21, + "end": 10434.45, + "probability": 0.8525 + }, + { + "start": 10434.99, + "end": 10437.05, + "probability": 0.7817 + }, + { + "start": 10437.27, + "end": 10439.78, + "probability": 0.6889 + }, + { + "start": 10440.13, + "end": 10442.83, + "probability": 0.9868 + }, + { + "start": 10453.09, + "end": 10453.19, + "probability": 0.4724 + }, + { + "start": 10453.71, + "end": 10453.79, + "probability": 0.5056 + }, + { + "start": 10454.31, + "end": 10454.45, + "probability": 0.5499 + }, + { + "start": 10454.67, + "end": 10455.41, + "probability": 0.6093 + }, + { + "start": 10455.43, + "end": 10456.33, + "probability": 0.8267 + }, + { + "start": 10456.49, + "end": 10459.73, + "probability": 0.5872 + }, + { + "start": 10461.49, + "end": 10464.07, + "probability": 0.9861 + }, + { + "start": 10464.19, + "end": 10465.83, + "probability": 0.9289 + }, + { + "start": 10466.17, + "end": 10470.31, + "probability": 0.9835 + }, + { + "start": 10470.87, + "end": 10475.07, + "probability": 0.966 + }, + { + "start": 10476.05, + "end": 10479.15, + "probability": 0.9705 + }, + { + "start": 10479.73, + "end": 10482.01, + "probability": 0.9956 + }, + { + "start": 10482.63, + "end": 10484.81, + "probability": 0.9778 + }, + { + "start": 10484.81, + "end": 10489.29, + "probability": 0.9889 + }, + { + "start": 10489.41, + "end": 10491.11, + "probability": 0.8589 + }, + { + "start": 10491.21, + "end": 10493.33, + "probability": 0.9953 + }, + { + "start": 10493.93, + "end": 10496.03, + "probability": 0.7712 + }, + { + "start": 10496.15, + "end": 10497.54, + "probability": 0.8277 + }, + { + "start": 10499.07, + "end": 10500.45, + "probability": 0.8974 + }, + { + "start": 10501.01, + "end": 10502.43, + "probability": 0.5973 + }, + { + "start": 10502.77, + "end": 10506.87, + "probability": 0.9854 + }, + { + "start": 10506.87, + "end": 10510.31, + "probability": 0.9894 + }, + { + "start": 10510.99, + "end": 10515.01, + "probability": 0.9976 + }, + { + "start": 10515.77, + "end": 10519.95, + "probability": 0.9966 + }, + { + "start": 10519.95, + "end": 10524.79, + "probability": 0.9161 + }, + { + "start": 10524.95, + "end": 10526.15, + "probability": 0.6901 + }, + { + "start": 10526.27, + "end": 10531.43, + "probability": 0.7351 + }, + { + "start": 10534.81, + "end": 10537.25, + "probability": 0.6066 + }, + { + "start": 10538.45, + "end": 10542.95, + "probability": 0.9913 + }, + { + "start": 10543.23, + "end": 10548.07, + "probability": 0.9293 + }, + { + "start": 10548.07, + "end": 10550.49, + "probability": 0.9976 + }, + { + "start": 10550.59, + "end": 10551.09, + "probability": 0.8228 + }, + { + "start": 10551.91, + "end": 10554.03, + "probability": 0.9893 + }, + { + "start": 10555.01, + "end": 10559.11, + "probability": 0.928 + }, + { + "start": 10561.71, + "end": 10565.09, + "probability": 0.7469 + }, + { + "start": 10565.13, + "end": 10566.01, + "probability": 0.7492 + }, + { + "start": 10566.03, + "end": 10568.97, + "probability": 0.9646 + }, + { + "start": 10569.05, + "end": 10570.41, + "probability": 0.7372 + }, + { + "start": 10570.47, + "end": 10573.15, + "probability": 0.9921 + }, + { + "start": 10574.74, + "end": 10579.89, + "probability": 0.9971 + }, + { + "start": 10580.93, + "end": 10582.23, + "probability": 0.8856 + }, + { + "start": 10582.91, + "end": 10585.15, + "probability": 0.9902 + }, + { + "start": 10586.13, + "end": 10587.39, + "probability": 0.8486 + }, + { + "start": 10587.55, + "end": 10591.65, + "probability": 0.9898 + }, + { + "start": 10592.27, + "end": 10596.01, + "probability": 0.9953 + }, + { + "start": 10596.01, + "end": 10600.53, + "probability": 0.9949 + }, + { + "start": 10601.41, + "end": 10605.61, + "probability": 0.9877 + }, + { + "start": 10605.79, + "end": 10607.05, + "probability": 0.9793 + }, + { + "start": 10607.95, + "end": 10608.31, + "probability": 0.9805 + }, + { + "start": 10608.91, + "end": 10609.92, + "probability": 0.605 + }, + { + "start": 10611.65, + "end": 10612.57, + "probability": 0.7599 + }, + { + "start": 10612.61, + "end": 10618.01, + "probability": 0.9905 + }, + { + "start": 10618.67, + "end": 10622.03, + "probability": 0.9985 + }, + { + "start": 10623.33, + "end": 10625.04, + "probability": 0.7634 + }, + { + "start": 10625.17, + "end": 10627.13, + "probability": 0.9565 + }, + { + "start": 10627.75, + "end": 10629.02, + "probability": 0.9844 + }, + { + "start": 10630.17, + "end": 10632.39, + "probability": 0.9877 + }, + { + "start": 10633.41, + "end": 10636.31, + "probability": 0.9936 + }, + { + "start": 10637.69, + "end": 10641.99, + "probability": 0.9849 + }, + { + "start": 10642.29, + "end": 10644.83, + "probability": 0.996 + }, + { + "start": 10645.01, + "end": 10647.03, + "probability": 0.9937 + }, + { + "start": 10647.43, + "end": 10651.89, + "probability": 0.9961 + }, + { + "start": 10652.07, + "end": 10652.65, + "probability": 0.4418 + }, + { + "start": 10652.81, + "end": 10655.75, + "probability": 0.9748 + }, + { + "start": 10655.91, + "end": 10657.61, + "probability": 0.9954 + }, + { + "start": 10658.29, + "end": 10663.17, + "probability": 0.9954 + }, + { + "start": 10663.93, + "end": 10667.43, + "probability": 0.9833 + }, + { + "start": 10667.99, + "end": 10669.19, + "probability": 0.925 + }, + { + "start": 10670.57, + "end": 10675.73, + "probability": 0.9993 + }, + { + "start": 10676.69, + "end": 10679.25, + "probability": 0.9987 + }, + { + "start": 10680.05, + "end": 10683.39, + "probability": 0.9985 + }, + { + "start": 10684.23, + "end": 10686.23, + "probability": 0.9836 + }, + { + "start": 10686.27, + "end": 10688.55, + "probability": 0.9512 + }, + { + "start": 10689.03, + "end": 10691.29, + "probability": 0.9971 + }, + { + "start": 10691.41, + "end": 10692.03, + "probability": 0.7852 + }, + { + "start": 10693.09, + "end": 10694.35, + "probability": 0.9773 + }, + { + "start": 10695.37, + "end": 10696.77, + "probability": 0.9356 + }, + { + "start": 10697.19, + "end": 10700.37, + "probability": 0.9927 + }, + { + "start": 10702.15, + "end": 10703.93, + "probability": 0.9907 + }, + { + "start": 10705.21, + "end": 10708.23, + "probability": 0.9827 + }, + { + "start": 10708.9, + "end": 10711.21, + "probability": 0.7252 + }, + { + "start": 10712.55, + "end": 10714.07, + "probability": 0.9889 + }, + { + "start": 10714.53, + "end": 10715.51, + "probability": 0.7965 + }, + { + "start": 10715.97, + "end": 10719.71, + "probability": 0.9894 + }, + { + "start": 10719.83, + "end": 10722.31, + "probability": 0.881 + }, + { + "start": 10723.53, + "end": 10723.95, + "probability": 0.6357 + }, + { + "start": 10724.05, + "end": 10729.33, + "probability": 0.9259 + }, + { + "start": 10730.31, + "end": 10732.67, + "probability": 0.9878 + }, + { + "start": 10734.49, + "end": 10737.87, + "probability": 0.7215 + }, + { + "start": 10738.05, + "end": 10740.87, + "probability": 0.9994 + }, + { + "start": 10741.61, + "end": 10743.49, + "probability": 0.9989 + }, + { + "start": 10744.77, + "end": 10746.19, + "probability": 0.9431 + }, + { + "start": 10746.79, + "end": 10748.91, + "probability": 0.9971 + }, + { + "start": 10749.37, + "end": 10751.57, + "probability": 0.9978 + }, + { + "start": 10752.89, + "end": 10758.83, + "probability": 0.9854 + }, + { + "start": 10758.91, + "end": 10760.27, + "probability": 0.9873 + }, + { + "start": 10760.37, + "end": 10761.31, + "probability": 0.9437 + }, + { + "start": 10763.21, + "end": 10765.81, + "probability": 0.911 + }, + { + "start": 10766.09, + "end": 10769.81, + "probability": 0.7878 + }, + { + "start": 10771.23, + "end": 10771.73, + "probability": 0.7954 + }, + { + "start": 10772.87, + "end": 10774.35, + "probability": 0.8543 + }, + { + "start": 10775.55, + "end": 10777.23, + "probability": 0.8599 + }, + { + "start": 10787.65, + "end": 10789.09, + "probability": 0.767 + }, + { + "start": 10790.57, + "end": 10792.51, + "probability": 0.0151 + }, + { + "start": 10793.07, + "end": 10793.17, + "probability": 0.0543 + }, + { + "start": 10793.17, + "end": 10794.53, + "probability": 0.3378 + }, + { + "start": 10795.01, + "end": 10800.25, + "probability": 0.9822 + }, + { + "start": 10800.87, + "end": 10801.59, + "probability": 0.7759 + }, + { + "start": 10802.75, + "end": 10804.21, + "probability": 0.8076 + }, + { + "start": 10804.83, + "end": 10806.51, + "probability": 0.9875 + }, + { + "start": 10807.27, + "end": 10808.85, + "probability": 0.99 + }, + { + "start": 10810.17, + "end": 10811.17, + "probability": 0.7056 + }, + { + "start": 10811.61, + "end": 10814.85, + "probability": 0.9056 + }, + { + "start": 10815.43, + "end": 10818.01, + "probability": 0.9771 + }, + { + "start": 10818.61, + "end": 10823.17, + "probability": 0.9033 + }, + { + "start": 10823.59, + "end": 10824.71, + "probability": 0.9865 + }, + { + "start": 10825.33, + "end": 10828.33, + "probability": 0.9111 + }, + { + "start": 10830.75, + "end": 10832.15, + "probability": 0.8234 + }, + { + "start": 10832.41, + "end": 10835.49, + "probability": 0.9907 + }, + { + "start": 10835.49, + "end": 10839.05, + "probability": 0.9908 + }, + { + "start": 10841.17, + "end": 10842.11, + "probability": 0.7068 + }, + { + "start": 10843.69, + "end": 10850.85, + "probability": 0.981 + }, + { + "start": 10851.03, + "end": 10858.01, + "probability": 0.9543 + }, + { + "start": 10860.37, + "end": 10861.43, + "probability": 0.5526 + }, + { + "start": 10863.07, + "end": 10870.51, + "probability": 0.9288 + }, + { + "start": 10870.51, + "end": 10874.63, + "probability": 0.9979 + }, + { + "start": 10875.53, + "end": 10881.93, + "probability": 0.6476 + }, + { + "start": 10881.93, + "end": 10884.77, + "probability": 0.7908 + }, + { + "start": 10886.37, + "end": 10886.79, + "probability": 0.4795 + }, + { + "start": 10887.09, + "end": 10890.43, + "probability": 0.9941 + }, + { + "start": 10891.79, + "end": 10892.93, + "probability": 0.7825 + }, + { + "start": 10893.61, + "end": 10894.45, + "probability": 0.4809 + }, + { + "start": 10895.05, + "end": 10897.77, + "probability": 0.9014 + }, + { + "start": 10898.93, + "end": 10901.91, + "probability": 0.9905 + }, + { + "start": 10902.65, + "end": 10904.29, + "probability": 0.9903 + }, + { + "start": 10905.13, + "end": 10906.45, + "probability": 0.9659 + }, + { + "start": 10907.05, + "end": 10911.21, + "probability": 0.9682 + }, + { + "start": 10911.41, + "end": 10912.09, + "probability": 0.8221 + }, + { + "start": 10913.99, + "end": 10919.35, + "probability": 0.8349 + }, + { + "start": 10920.45, + "end": 10926.55, + "probability": 0.9385 + }, + { + "start": 10928.13, + "end": 10929.09, + "probability": 0.7341 + }, + { + "start": 10929.61, + "end": 10930.45, + "probability": 0.7396 + }, + { + "start": 10930.73, + "end": 10934.97, + "probability": 0.9369 + }, + { + "start": 10935.49, + "end": 10936.51, + "probability": 0.9783 + }, + { + "start": 10938.71, + "end": 10942.69, + "probability": 0.9811 + }, + { + "start": 10942.69, + "end": 10947.49, + "probability": 0.9846 + }, + { + "start": 10947.49, + "end": 10951.31, + "probability": 0.9961 + }, + { + "start": 10952.97, + "end": 10953.69, + "probability": 0.6409 + }, + { + "start": 10954.09, + "end": 10955.83, + "probability": 0.6299 + }, + { + "start": 10955.97, + "end": 10957.04, + "probability": 0.8478 + }, + { + "start": 10957.27, + "end": 10962.35, + "probability": 0.9907 + }, + { + "start": 10963.55, + "end": 10965.07, + "probability": 0.9784 + }, + { + "start": 10966.13, + "end": 10973.11, + "probability": 0.937 + }, + { + "start": 10973.73, + "end": 10977.79, + "probability": 0.8156 + }, + { + "start": 10978.03, + "end": 10980.89, + "probability": 0.775 + }, + { + "start": 10981.53, + "end": 10984.13, + "probability": 0.9395 + }, + { + "start": 10984.57, + "end": 10986.03, + "probability": 0.865 + }, + { + "start": 10986.17, + "end": 10986.93, + "probability": 0.4448 + }, + { + "start": 10987.11, + "end": 10987.93, + "probability": 0.4951 + }, + { + "start": 10988.31, + "end": 10989.51, + "probability": 0.974 + }, + { + "start": 10990.19, + "end": 10993.41, + "probability": 0.6045 + }, + { + "start": 10994.11, + "end": 10996.69, + "probability": 0.9366 + }, + { + "start": 11007.51, + "end": 11009.09, + "probability": 0.8028 + }, + { + "start": 11009.87, + "end": 11011.47, + "probability": 0.7008 + }, + { + "start": 11012.37, + "end": 11016.13, + "probability": 0.9873 + }, + { + "start": 11016.63, + "end": 11018.19, + "probability": 0.7815 + }, + { + "start": 11018.61, + "end": 11021.99, + "probability": 0.9436 + }, + { + "start": 11022.79, + "end": 11024.93, + "probability": 0.9897 + }, + { + "start": 11025.81, + "end": 11029.51, + "probability": 0.8889 + }, + { + "start": 11030.73, + "end": 11034.09, + "probability": 0.9873 + }, + { + "start": 11034.09, + "end": 11037.89, + "probability": 0.9577 + }, + { + "start": 11038.91, + "end": 11044.09, + "probability": 0.9333 + }, + { + "start": 11044.33, + "end": 11045.13, + "probability": 0.8623 + }, + { + "start": 11045.43, + "end": 11049.87, + "probability": 0.9297 + }, + { + "start": 11050.83, + "end": 11052.41, + "probability": 0.9827 + }, + { + "start": 11054.05, + "end": 11056.97, + "probability": 0.5953 + }, + { + "start": 11057.33, + "end": 11058.07, + "probability": 0.3004 + }, + { + "start": 11058.61, + "end": 11059.45, + "probability": 0.8297 + }, + { + "start": 11059.51, + "end": 11061.11, + "probability": 0.7992 + }, + { + "start": 11061.83, + "end": 11063.05, + "probability": 0.8069 + }, + { + "start": 11063.51, + "end": 11066.43, + "probability": 0.94 + }, + { + "start": 11067.11, + "end": 11070.37, + "probability": 0.6382 + }, + { + "start": 11071.01, + "end": 11074.47, + "probability": 0.7903 + }, + { + "start": 11074.63, + "end": 11075.47, + "probability": 0.9374 + }, + { + "start": 11078.47, + "end": 11082.07, + "probability": 0.9863 + }, + { + "start": 11085.55, + "end": 11086.67, + "probability": 0.8969 + }, + { + "start": 11087.07, + "end": 11088.35, + "probability": 0.821 + }, + { + "start": 11088.41, + "end": 11091.07, + "probability": 0.8984 + }, + { + "start": 11091.46, + "end": 11094.33, + "probability": 0.5254 + }, + { + "start": 11095.61, + "end": 11097.59, + "probability": 0.9082 + }, + { + "start": 11097.79, + "end": 11100.73, + "probability": 0.8416 + }, + { + "start": 11101.11, + "end": 11103.15, + "probability": 0.977 + }, + { + "start": 11103.59, + "end": 11105.27, + "probability": 0.8861 + }, + { + "start": 11107.17, + "end": 11111.11, + "probability": 0.7721 + }, + { + "start": 11111.41, + "end": 11113.43, + "probability": 0.8211 + }, + { + "start": 11113.93, + "end": 11115.31, + "probability": 0.5485 + }, + { + "start": 11115.65, + "end": 11116.2, + "probability": 0.8657 + }, + { + "start": 11116.97, + "end": 11120.45, + "probability": 0.7791 + }, + { + "start": 11122.91, + "end": 11124.98, + "probability": 0.884 + }, + { + "start": 11126.93, + "end": 11129.37, + "probability": 0.8726 + }, + { + "start": 11129.77, + "end": 11130.83, + "probability": 0.8532 + }, + { + "start": 11132.69, + "end": 11133.97, + "probability": 0.6711 + }, + { + "start": 11134.39, + "end": 11138.29, + "probability": 0.9736 + }, + { + "start": 11138.73, + "end": 11139.73, + "probability": 0.8846 + }, + { + "start": 11139.93, + "end": 11140.45, + "probability": 0.9414 + }, + { + "start": 11140.51, + "end": 11142.36, + "probability": 0.9705 + }, + { + "start": 11142.77, + "end": 11144.11, + "probability": 0.8667 + }, + { + "start": 11144.55, + "end": 11146.89, + "probability": 0.4507 + }, + { + "start": 11147.07, + "end": 11148.09, + "probability": 0.58 + }, + { + "start": 11148.49, + "end": 11149.13, + "probability": 0.8697 + }, + { + "start": 11149.49, + "end": 11151.39, + "probability": 0.9442 + }, + { + "start": 11152.95, + "end": 11156.97, + "probability": 0.9771 + }, + { + "start": 11157.45, + "end": 11158.89, + "probability": 0.544 + }, + { + "start": 11159.55, + "end": 11160.89, + "probability": 0.4275 + }, + { + "start": 11161.19, + "end": 11162.35, + "probability": 0.9436 + }, + { + "start": 11162.63, + "end": 11163.97, + "probability": 0.8485 + }, + { + "start": 11164.51, + "end": 11166.39, + "probability": 0.9049 + }, + { + "start": 11166.79, + "end": 11169.35, + "probability": 0.9712 + }, + { + "start": 11170.11, + "end": 11173.09, + "probability": 0.8151 + }, + { + "start": 11173.49, + "end": 11174.11, + "probability": 0.8818 + }, + { + "start": 11174.27, + "end": 11177.75, + "probability": 0.6358 + }, + { + "start": 11178.19, + "end": 11178.39, + "probability": 0.6844 + }, + { + "start": 11178.73, + "end": 11181.31, + "probability": 0.86 + }, + { + "start": 11181.37, + "end": 11183.61, + "probability": 0.9905 + }, + { + "start": 11184.61, + "end": 11187.45, + "probability": 0.7653 + }, + { + "start": 11189.31, + "end": 11190.37, + "probability": 0.8987 + }, + { + "start": 11199.73, + "end": 11202.69, + "probability": 0.8136 + }, + { + "start": 11206.41, + "end": 11208.17, + "probability": 0.6821 + }, + { + "start": 11208.43, + "end": 11209.67, + "probability": 0.7445 + }, + { + "start": 11210.03, + "end": 11210.73, + "probability": 0.8913 + }, + { + "start": 11210.83, + "end": 11211.93, + "probability": 0.6552 + }, + { + "start": 11214.07, + "end": 11214.67, + "probability": 0.695 + }, + { + "start": 11215.97, + "end": 11220.93, + "probability": 0.9553 + }, + { + "start": 11221.05, + "end": 11221.47, + "probability": 0.2418 + }, + { + "start": 11222.35, + "end": 11224.21, + "probability": 0.913 + }, + { + "start": 11225.25, + "end": 11227.71, + "probability": 0.6793 + }, + { + "start": 11228.21, + "end": 11229.93, + "probability": 0.5855 + }, + { + "start": 11231.53, + "end": 11233.45, + "probability": 0.9858 + }, + { + "start": 11234.57, + "end": 11238.99, + "probability": 0.9907 + }, + { + "start": 11239.93, + "end": 11242.41, + "probability": 0.8623 + }, + { + "start": 11243.37, + "end": 11244.21, + "probability": 0.8467 + }, + { + "start": 11245.45, + "end": 11246.97, + "probability": 0.8697 + }, + { + "start": 11247.07, + "end": 11249.09, + "probability": 0.8433 + }, + { + "start": 11249.73, + "end": 11252.81, + "probability": 0.7223 + }, + { + "start": 11254.19, + "end": 11257.13, + "probability": 0.9433 + }, + { + "start": 11257.97, + "end": 11258.13, + "probability": 0.5114 + }, + { + "start": 11258.79, + "end": 11259.09, + "probability": 0.7028 + }, + { + "start": 11260.33, + "end": 11261.99, + "probability": 0.856 + }, + { + "start": 11262.53, + "end": 11267.11, + "probability": 0.917 + }, + { + "start": 11268.53, + "end": 11268.53, + "probability": 0.0222 + }, + { + "start": 11268.53, + "end": 11269.57, + "probability": 0.5653 + }, + { + "start": 11269.77, + "end": 11273.45, + "probability": 0.5657 + }, + { + "start": 11273.91, + "end": 11274.59, + "probability": 0.556 + }, + { + "start": 11275.01, + "end": 11276.67, + "probability": 0.8232 + }, + { + "start": 11279.59, + "end": 11281.19, + "probability": 0.9929 + }, + { + "start": 11281.55, + "end": 11282.65, + "probability": 0.7323 + }, + { + "start": 11282.65, + "end": 11283.53, + "probability": 0.7279 + }, + { + "start": 11284.93, + "end": 11287.03, + "probability": 0.9615 + }, + { + "start": 11287.63, + "end": 11288.33, + "probability": 0.7677 + }, + { + "start": 11289.05, + "end": 11290.3, + "probability": 0.9645 + }, + { + "start": 11291.07, + "end": 11293.54, + "probability": 0.925 + }, + { + "start": 11294.67, + "end": 11296.13, + "probability": 0.6059 + }, + { + "start": 11296.89, + "end": 11297.89, + "probability": 0.9495 + }, + { + "start": 11297.93, + "end": 11299.07, + "probability": 0.9817 + }, + { + "start": 11299.11, + "end": 11300.27, + "probability": 0.8935 + }, + { + "start": 11300.57, + "end": 11302.35, + "probability": 0.9716 + }, + { + "start": 11303.51, + "end": 11304.49, + "probability": 0.6094 + }, + { + "start": 11304.59, + "end": 11306.43, + "probability": 0.9722 + }, + { + "start": 11306.77, + "end": 11307.11, + "probability": 0.7072 + }, + { + "start": 11308.03, + "end": 11310.31, + "probability": 0.8325 + }, + { + "start": 11311.73, + "end": 11314.19, + "probability": 0.9146 + }, + { + "start": 11314.33, + "end": 11316.67, + "probability": 0.9285 + }, + { + "start": 11316.93, + "end": 11318.37, + "probability": 0.8569 + }, + { + "start": 11318.75, + "end": 11319.57, + "probability": 0.8716 + }, + { + "start": 11321.61, + "end": 11322.69, + "probability": 0.8491 + }, + { + "start": 11323.41, + "end": 11326.3, + "probability": 0.9136 + }, + { + "start": 11326.97, + "end": 11329.69, + "probability": 0.8745 + }, + { + "start": 11329.79, + "end": 11330.65, + "probability": 0.4698 + }, + { + "start": 11331.73, + "end": 11332.43, + "probability": 0.8096 + }, + { + "start": 11333.73, + "end": 11338.03, + "probability": 0.8285 + }, + { + "start": 11338.73, + "end": 11340.97, + "probability": 0.7925 + }, + { + "start": 11341.69, + "end": 11343.85, + "probability": 0.8564 + }, + { + "start": 11344.63, + "end": 11347.65, + "probability": 0.8119 + }, + { + "start": 11348.53, + "end": 11351.15, + "probability": 0.9673 + }, + { + "start": 11352.01, + "end": 11353.33, + "probability": 0.9534 + }, + { + "start": 11353.67, + "end": 11356.13, + "probability": 0.5278 + }, + { + "start": 11356.29, + "end": 11356.93, + "probability": 0.7605 + }, + { + "start": 11357.03, + "end": 11358.91, + "probability": 0.6772 + }, + { + "start": 11359.95, + "end": 11361.15, + "probability": 0.9753 + }, + { + "start": 11362.09, + "end": 11365.21, + "probability": 0.9113 + }, + { + "start": 11365.53, + "end": 11366.27, + "probability": 0.8726 + }, + { + "start": 11366.37, + "end": 11368.83, + "probability": 0.8576 + }, + { + "start": 11369.33, + "end": 11370.21, + "probability": 0.974 + }, + { + "start": 11370.35, + "end": 11370.91, + "probability": 0.9346 + }, + { + "start": 11382.13, + "end": 11386.01, + "probability": 0.0732 + }, + { + "start": 11386.01, + "end": 11386.87, + "probability": 0.071 + }, + { + "start": 11386.89, + "end": 11386.89, + "probability": 0.0475 + }, + { + "start": 11386.89, + "end": 11390.59, + "probability": 0.2145 + }, + { + "start": 11390.69, + "end": 11393.65, + "probability": 0.6621 + }, + { + "start": 11394.15, + "end": 11395.19, + "probability": 0.6887 + }, + { + "start": 11395.85, + "end": 11397.85, + "probability": 0.8194 + }, + { + "start": 11398.73, + "end": 11399.51, + "probability": 0.4979 + }, + { + "start": 11400.85, + "end": 11402.31, + "probability": 0.9482 + }, + { + "start": 11403.01, + "end": 11405.89, + "probability": 0.8191 + }, + { + "start": 11406.87, + "end": 11407.65, + "probability": 0.8591 + }, + { + "start": 11408.67, + "end": 11411.53, + "probability": 0.9911 + }, + { + "start": 11412.35, + "end": 11413.33, + "probability": 0.9528 + }, + { + "start": 11415.11, + "end": 11418.35, + "probability": 0.6997 + }, + { + "start": 11419.05, + "end": 11420.17, + "probability": 0.7363 + }, + { + "start": 11420.33, + "end": 11422.27, + "probability": 0.5224 + }, + { + "start": 11422.27, + "end": 11422.91, + "probability": 0.5981 + }, + { + "start": 11423.03, + "end": 11423.33, + "probability": 0.4018 + }, + { + "start": 11423.37, + "end": 11423.43, + "probability": 0.0151 + }, + { + "start": 11423.43, + "end": 11423.43, + "probability": 0.1291 + }, + { + "start": 11423.43, + "end": 11423.79, + "probability": 0.2999 + }, + { + "start": 11423.87, + "end": 11424.19, + "probability": 0.612 + }, + { + "start": 11424.21, + "end": 11425.79, + "probability": 0.86 + }, + { + "start": 11425.99, + "end": 11428.05, + "probability": 0.7976 + }, + { + "start": 11428.89, + "end": 11431.75, + "probability": 0.1316 + }, + { + "start": 11431.75, + "end": 11433.51, + "probability": 0.3506 + }, + { + "start": 11434.47, + "end": 11434.93, + "probability": 0.088 + }, + { + "start": 11435.01, + "end": 11436.71, + "probability": 0.5046 + }, + { + "start": 11436.99, + "end": 11438.17, + "probability": 0.8257 + }, + { + "start": 11438.65, + "end": 11441.55, + "probability": 0.9543 + }, + { + "start": 11444.77, + "end": 11446.69, + "probability": 0.6877 + }, + { + "start": 11446.77, + "end": 11448.93, + "probability": 0.834 + }, + { + "start": 11449.67, + "end": 11450.41, + "probability": 0.5362 + }, + { + "start": 11450.45, + "end": 11452.13, + "probability": 0.9232 + }, + { + "start": 11452.73, + "end": 11455.65, + "probability": 0.9775 + }, + { + "start": 11455.95, + "end": 11457.79, + "probability": 0.8917 + }, + { + "start": 11457.87, + "end": 11458.69, + "probability": 0.4422 + }, + { + "start": 11458.83, + "end": 11460.21, + "probability": 0.9897 + }, + { + "start": 11460.57, + "end": 11462.09, + "probability": 0.7305 + }, + { + "start": 11462.21, + "end": 11464.31, + "probability": 0.9368 + }, + { + "start": 11464.99, + "end": 11465.77, + "probability": 0.3804 + }, + { + "start": 11465.83, + "end": 11466.21, + "probability": 0.7574 + }, + { + "start": 11466.55, + "end": 11469.41, + "probability": 0.9277 + }, + { + "start": 11469.49, + "end": 11472.53, + "probability": 0.9334 + }, + { + "start": 11473.05, + "end": 11479.07, + "probability": 0.7373 + }, + { + "start": 11481.61, + "end": 11482.57, + "probability": 0.7289 + }, + { + "start": 11482.85, + "end": 11483.05, + "probability": 0.0576 + }, + { + "start": 11483.83, + "end": 11486.75, + "probability": 0.4337 + }, + { + "start": 11487.97, + "end": 11487.97, + "probability": 0.1096 + }, + { + "start": 11487.97, + "end": 11490.53, + "probability": 0.5864 + }, + { + "start": 11496.73, + "end": 11497.93, + "probability": 0.4474 + }, + { + "start": 11501.45, + "end": 11503.61, + "probability": 0.9852 + }, + { + "start": 11505.69, + "end": 11506.57, + "probability": 0.8831 + }, + { + "start": 11506.73, + "end": 11508.03, + "probability": 0.9941 + }, + { + "start": 11508.33, + "end": 11510.03, + "probability": 0.9447 + }, + { + "start": 11510.53, + "end": 11514.73, + "probability": 0.9744 + }, + { + "start": 11515.71, + "end": 11519.59, + "probability": 0.9979 + }, + { + "start": 11520.93, + "end": 11524.33, + "probability": 0.9866 + }, + { + "start": 11526.31, + "end": 11530.03, + "probability": 0.9348 + }, + { + "start": 11530.17, + "end": 11531.17, + "probability": 0.8707 + }, + { + "start": 11531.29, + "end": 11532.81, + "probability": 0.9875 + }, + { + "start": 11534.05, + "end": 11534.93, + "probability": 0.9752 + }, + { + "start": 11535.03, + "end": 11535.79, + "probability": 0.8444 + }, + { + "start": 11535.91, + "end": 11540.81, + "probability": 0.9951 + }, + { + "start": 11541.47, + "end": 11547.07, + "probability": 0.7836 + }, + { + "start": 11547.27, + "end": 11551.09, + "probability": 0.9006 + }, + { + "start": 11551.13, + "end": 11551.99, + "probability": 0.9946 + }, + { + "start": 11553.37, + "end": 11554.87, + "probability": 0.7598 + }, + { + "start": 11555.01, + "end": 11556.97, + "probability": 0.9476 + }, + { + "start": 11557.21, + "end": 11559.79, + "probability": 0.963 + }, + { + "start": 11559.81, + "end": 11563.85, + "probability": 0.9969 + }, + { + "start": 11564.35, + "end": 11566.35, + "probability": 0.9339 + }, + { + "start": 11566.43, + "end": 11568.13, + "probability": 0.9873 + }, + { + "start": 11568.37, + "end": 11568.65, + "probability": 0.4388 + }, + { + "start": 11568.75, + "end": 11568.93, + "probability": 0.8701 + }, + { + "start": 11569.03, + "end": 11571.39, + "probability": 0.9816 + }, + { + "start": 11571.59, + "end": 11576.01, + "probability": 0.8958 + }, + { + "start": 11576.51, + "end": 11577.29, + "probability": 0.515 + }, + { + "start": 11577.45, + "end": 11578.17, + "probability": 0.121 + }, + { + "start": 11578.17, + "end": 11579.35, + "probability": 0.8992 + }, + { + "start": 11579.63, + "end": 11581.61, + "probability": 0.8911 + }, + { + "start": 11581.89, + "end": 11583.03, + "probability": 0.9606 + }, + { + "start": 11583.07, + "end": 11583.81, + "probability": 0.9723 + }, + { + "start": 11583.87, + "end": 11584.69, + "probability": 0.89 + }, + { + "start": 11584.69, + "end": 11589.23, + "probability": 0.9873 + }, + { + "start": 11589.55, + "end": 11593.53, + "probability": 0.9906 + }, + { + "start": 11594.01, + "end": 11598.55, + "probability": 0.9714 + }, + { + "start": 11598.89, + "end": 11599.89, + "probability": 0.9375 + }, + { + "start": 11600.55, + "end": 11604.07, + "probability": 0.9901 + }, + { + "start": 11604.29, + "end": 11606.33, + "probability": 0.8408 + }, + { + "start": 11606.39, + "end": 11607.29, + "probability": 0.9661 + }, + { + "start": 11607.39, + "end": 11608.47, + "probability": 0.8849 + }, + { + "start": 11608.57, + "end": 11609.65, + "probability": 0.864 + }, + { + "start": 11609.83, + "end": 11610.65, + "probability": 0.7342 + }, + { + "start": 11611.27, + "end": 11615.17, + "probability": 0.9922 + }, + { + "start": 11615.17, + "end": 11618.69, + "probability": 0.9854 + }, + { + "start": 11619.01, + "end": 11622.34, + "probability": 0.9952 + }, + { + "start": 11622.79, + "end": 11624.73, + "probability": 0.777 + }, + { + "start": 11624.81, + "end": 11627.19, + "probability": 0.7031 + }, + { + "start": 11627.43, + "end": 11629.91, + "probability": 0.8938 + }, + { + "start": 11630.07, + "end": 11631.63, + "probability": 0.8313 + }, + { + "start": 11631.95, + "end": 11634.31, + "probability": 0.9921 + }, + { + "start": 11634.87, + "end": 11638.61, + "probability": 0.9976 + }, + { + "start": 11638.93, + "end": 11643.57, + "probability": 0.9354 + }, + { + "start": 11643.57, + "end": 11647.91, + "probability": 0.999 + }, + { + "start": 11647.91, + "end": 11652.03, + "probability": 0.9275 + }, + { + "start": 11653.17, + "end": 11655.62, + "probability": 0.9407 + }, + { + "start": 11656.49, + "end": 11659.67, + "probability": 0.9985 + }, + { + "start": 11659.77, + "end": 11661.13, + "probability": 0.9995 + }, + { + "start": 11661.71, + "end": 11663.75, + "probability": 0.8342 + }, + { + "start": 11663.75, + "end": 11665.87, + "probability": 0.9581 + }, + { + "start": 11665.87, + "end": 11669.23, + "probability": 0.7533 + }, + { + "start": 11669.83, + "end": 11672.55, + "probability": 0.9571 + }, + { + "start": 11673.59, + "end": 11675.06, + "probability": 0.9247 + }, + { + "start": 11676.21, + "end": 11679.43, + "probability": 0.9911 + }, + { + "start": 11679.49, + "end": 11680.81, + "probability": 0.9435 + }, + { + "start": 11680.91, + "end": 11682.23, + "probability": 0.9404 + }, + { + "start": 11682.49, + "end": 11685.69, + "probability": 0.9804 + }, + { + "start": 11685.69, + "end": 11688.97, + "probability": 0.9973 + }, + { + "start": 11689.31, + "end": 11689.97, + "probability": 0.7985 + }, + { + "start": 11690.03, + "end": 11691.17, + "probability": 0.9506 + }, + { + "start": 11691.25, + "end": 11692.73, + "probability": 0.9473 + }, + { + "start": 11693.09, + "end": 11696.63, + "probability": 0.9548 + }, + { + "start": 11696.71, + "end": 11700.81, + "probability": 0.9922 + }, + { + "start": 11701.17, + "end": 11703.31, + "probability": 0.991 + }, + { + "start": 11703.31, + "end": 11706.07, + "probability": 0.9858 + }, + { + "start": 11706.07, + "end": 11706.17, + "probability": 0.2845 + }, + { + "start": 11706.33, + "end": 11708.43, + "probability": 0.9966 + }, + { + "start": 11708.55, + "end": 11709.94, + "probability": 0.9019 + }, + { + "start": 11710.37, + "end": 11712.85, + "probability": 0.9878 + }, + { + "start": 11713.15, + "end": 11715.37, + "probability": 0.9944 + }, + { + "start": 11715.37, + "end": 11719.55, + "probability": 0.9943 + }, + { + "start": 11719.93, + "end": 11720.17, + "probability": 0.4017 + }, + { + "start": 11720.17, + "end": 11721.43, + "probability": 0.9797 + }, + { + "start": 11722.17, + "end": 11723.11, + "probability": 0.5854 + }, + { + "start": 11723.27, + "end": 11726.27, + "probability": 0.7649 + }, + { + "start": 11727.07, + "end": 11729.21, + "probability": 0.9633 + }, + { + "start": 11735.39, + "end": 11735.97, + "probability": 0.6987 + }, + { + "start": 11742.33, + "end": 11744.65, + "probability": 0.7372 + }, + { + "start": 11747.55, + "end": 11751.85, + "probability": 0.7983 + }, + { + "start": 11752.49, + "end": 11754.15, + "probability": 0.9829 + }, + { + "start": 11755.07, + "end": 11756.47, + "probability": 0.8582 + }, + { + "start": 11759.59, + "end": 11761.81, + "probability": 0.8927 + }, + { + "start": 11763.03, + "end": 11768.69, + "probability": 0.8025 + }, + { + "start": 11770.19, + "end": 11771.33, + "probability": 0.6751 + }, + { + "start": 11771.99, + "end": 11775.02, + "probability": 0.9657 + }, + { + "start": 11776.03, + "end": 11779.31, + "probability": 0.9304 + }, + { + "start": 11779.93, + "end": 11781.62, + "probability": 0.9762 + }, + { + "start": 11781.77, + "end": 11782.73, + "probability": 0.5498 + }, + { + "start": 11784.09, + "end": 11785.47, + "probability": 0.9559 + }, + { + "start": 11787.01, + "end": 11794.63, + "probability": 0.9683 + }, + { + "start": 11794.99, + "end": 11795.69, + "probability": 0.9068 + }, + { + "start": 11796.23, + "end": 11803.67, + "probability": 0.9313 + }, + { + "start": 11805.13, + "end": 11806.63, + "probability": 0.6841 + }, + { + "start": 11806.77, + "end": 11808.93, + "probability": 0.9856 + }, + { + "start": 11809.53, + "end": 11813.99, + "probability": 0.8888 + }, + { + "start": 11814.65, + "end": 11818.15, + "probability": 0.9865 + }, + { + "start": 11818.99, + "end": 11820.59, + "probability": 0.9722 + }, + { + "start": 11821.23, + "end": 11824.79, + "probability": 0.9934 + }, + { + "start": 11825.79, + "end": 11828.75, + "probability": 0.9624 + }, + { + "start": 11829.43, + "end": 11830.33, + "probability": 0.9728 + }, + { + "start": 11830.57, + "end": 11831.37, + "probability": 0.9524 + }, + { + "start": 11831.45, + "end": 11832.37, + "probability": 0.7944 + }, + { + "start": 11832.47, + "end": 11833.59, + "probability": 0.9985 + }, + { + "start": 11836.13, + "end": 11837.19, + "probability": 0.9459 + }, + { + "start": 11838.17, + "end": 11843.25, + "probability": 0.9977 + }, + { + "start": 11843.25, + "end": 11846.71, + "probability": 0.9995 + }, + { + "start": 11849.23, + "end": 11851.64, + "probability": 0.9965 + }, + { + "start": 11851.95, + "end": 11853.72, + "probability": 0.999 + }, + { + "start": 11854.47, + "end": 11855.49, + "probability": 0.5996 + }, + { + "start": 11856.19, + "end": 11859.69, + "probability": 0.9644 + }, + { + "start": 11860.55, + "end": 11863.43, + "probability": 0.9888 + }, + { + "start": 11864.71, + "end": 11869.15, + "probability": 0.9734 + }, + { + "start": 11869.85, + "end": 11875.17, + "probability": 0.9963 + }, + { + "start": 11875.65, + "end": 11878.41, + "probability": 0.864 + }, + { + "start": 11879.51, + "end": 11881.31, + "probability": 0.9829 + }, + { + "start": 11883.29, + "end": 11885.07, + "probability": 0.9974 + }, + { + "start": 11885.13, + "end": 11887.17, + "probability": 0.9868 + }, + { + "start": 11888.09, + "end": 11889.01, + "probability": 0.8498 + }, + { + "start": 11889.71, + "end": 11890.85, + "probability": 0.9673 + }, + { + "start": 11891.55, + "end": 11893.09, + "probability": 0.9652 + }, + { + "start": 11894.43, + "end": 11897.59, + "probability": 0.9144 + }, + { + "start": 11901.99, + "end": 11903.97, + "probability": 0.9935 + }, + { + "start": 11904.29, + "end": 11905.17, + "probability": 0.8016 + }, + { + "start": 11906.79, + "end": 11908.29, + "probability": 0.9985 + }, + { + "start": 11909.23, + "end": 11911.87, + "probability": 0.9976 + }, + { + "start": 11911.91, + "end": 11914.33, + "probability": 0.9179 + }, + { + "start": 11915.31, + "end": 11916.69, + "probability": 0.9647 + }, + { + "start": 11916.79, + "end": 11917.59, + "probability": 0.852 + }, + { + "start": 11917.87, + "end": 11921.01, + "probability": 0.9985 + }, + { + "start": 11922.45, + "end": 11925.39, + "probability": 0.9841 + }, + { + "start": 11925.53, + "end": 11927.73, + "probability": 0.9901 + }, + { + "start": 11927.79, + "end": 11929.05, + "probability": 0.9394 + }, + { + "start": 11930.07, + "end": 11933.61, + "probability": 0.9971 + }, + { + "start": 11935.57, + "end": 11936.57, + "probability": 0.9729 + }, + { + "start": 11936.83, + "end": 11937.93, + "probability": 0.9456 + }, + { + "start": 11938.05, + "end": 11940.27, + "probability": 0.972 + }, + { + "start": 11940.79, + "end": 11942.43, + "probability": 0.9673 + }, + { + "start": 11946.11, + "end": 11948.61, + "probability": 0.9658 + }, + { + "start": 11949.99, + "end": 11955.81, + "probability": 0.9932 + }, + { + "start": 11956.33, + "end": 11956.68, + "probability": 0.546 + }, + { + "start": 11957.09, + "end": 11958.23, + "probability": 0.9825 + }, + { + "start": 11958.31, + "end": 11959.16, + "probability": 0.8911 + }, + { + "start": 11962.18, + "end": 11966.23, + "probability": 0.492 + }, + { + "start": 11966.33, + "end": 11968.43, + "probability": 0.9861 + }, + { + "start": 11969.23, + "end": 11972.25, + "probability": 0.8964 + }, + { + "start": 11978.21, + "end": 11980.35, + "probability": 0.9563 + }, + { + "start": 11980.51, + "end": 11984.17, + "probability": 0.813 + }, + { + "start": 11985.59, + "end": 11986.25, + "probability": 0.6849 + }, + { + "start": 11986.91, + "end": 11991.15, + "probability": 0.7992 + }, + { + "start": 11992.35, + "end": 11999.13, + "probability": 0.9884 + }, + { + "start": 11999.41, + "end": 12000.07, + "probability": 0.6225 + }, + { + "start": 12000.19, + "end": 12001.29, + "probability": 0.8954 + }, + { + "start": 12001.77, + "end": 12002.01, + "probability": 0.8182 + }, + { + "start": 12002.49, + "end": 12002.77, + "probability": 0.7891 + }, + { + "start": 12003.29, + "end": 12005.99, + "probability": 0.6714 + }, + { + "start": 12006.31, + "end": 12007.47, + "probability": 0.9907 + }, + { + "start": 12008.07, + "end": 12012.33, + "probability": 0.95 + }, + { + "start": 12012.77, + "end": 12013.31, + "probability": 0.9805 + }, + { + "start": 12013.95, + "end": 12015.65, + "probability": 0.9083 + }, + { + "start": 12015.79, + "end": 12017.09, + "probability": 0.9113 + }, + { + "start": 12017.13, + "end": 12017.83, + "probability": 0.7793 + }, + { + "start": 12017.93, + "end": 12020.53, + "probability": 0.7012 + }, + { + "start": 12022.09, + "end": 12022.83, + "probability": 0.7289 + }, + { + "start": 12023.63, + "end": 12026.97, + "probability": 0.9755 + }, + { + "start": 12028.09, + "end": 12030.01, + "probability": 0.9652 + }, + { + "start": 12030.71, + "end": 12033.97, + "probability": 0.9651 + }, + { + "start": 12035.43, + "end": 12039.65, + "probability": 0.9736 + }, + { + "start": 12039.95, + "end": 12040.37, + "probability": 0.6767 + }, + { + "start": 12041.39, + "end": 12045.87, + "probability": 0.9533 + }, + { + "start": 12046.25, + "end": 12046.73, + "probability": 0.8167 + }, + { + "start": 12046.81, + "end": 12046.95, + "probability": 0.7185 + }, + { + "start": 12047.09, + "end": 12047.71, + "probability": 0.917 + }, + { + "start": 12048.45, + "end": 12051.73, + "probability": 0.9956 + }, + { + "start": 12051.95, + "end": 12055.05, + "probability": 0.999 + }, + { + "start": 12056.31, + "end": 12057.35, + "probability": 0.8252 + }, + { + "start": 12057.57, + "end": 12058.69, + "probability": 0.5873 + }, + { + "start": 12058.73, + "end": 12062.27, + "probability": 0.8055 + }, + { + "start": 12062.97, + "end": 12064.11, + "probability": 0.8524 + }, + { + "start": 12064.89, + "end": 12068.35, + "probability": 0.9915 + }, + { + "start": 12069.15, + "end": 12070.02, + "probability": 0.9338 + }, + { + "start": 12070.39, + "end": 12071.17, + "probability": 0.9924 + }, + { + "start": 12071.45, + "end": 12072.97, + "probability": 0.8701 + }, + { + "start": 12073.23, + "end": 12074.87, + "probability": 0.9927 + }, + { + "start": 12075.47, + "end": 12078.45, + "probability": 0.7491 + }, + { + "start": 12078.99, + "end": 12084.53, + "probability": 0.9885 + }, + { + "start": 12085.17, + "end": 12085.95, + "probability": 0.9567 + }, + { + "start": 12086.13, + "end": 12086.81, + "probability": 0.9856 + }, + { + "start": 12086.87, + "end": 12087.59, + "probability": 0.7439 + }, + { + "start": 12087.63, + "end": 12088.53, + "probability": 0.7042 + }, + { + "start": 12088.91, + "end": 12090.15, + "probability": 0.6568 + }, + { + "start": 12091.19, + "end": 12092.63, + "probability": 0.9476 + }, + { + "start": 12093.13, + "end": 12094.99, + "probability": 0.9961 + }, + { + "start": 12095.07, + "end": 12096.39, + "probability": 0.9268 + }, + { + "start": 12096.43, + "end": 12098.53, + "probability": 0.9917 + }, + { + "start": 12098.95, + "end": 12103.31, + "probability": 0.9688 + }, + { + "start": 12104.01, + "end": 12106.93, + "probability": 0.705 + }, + { + "start": 12107.27, + "end": 12109.79, + "probability": 0.9365 + }, + { + "start": 12109.91, + "end": 12110.61, + "probability": 0.6255 + }, + { + "start": 12111.09, + "end": 12114.69, + "probability": 0.9878 + }, + { + "start": 12115.45, + "end": 12117.21, + "probability": 0.994 + }, + { + "start": 12117.83, + "end": 12119.27, + "probability": 0.7669 + }, + { + "start": 12119.81, + "end": 12122.89, + "probability": 0.7739 + }, + { + "start": 12123.47, + "end": 12124.07, + "probability": 0.7128 + }, + { + "start": 12124.23, + "end": 12125.63, + "probability": 0.9215 + }, + { + "start": 12125.75, + "end": 12127.03, + "probability": 0.942 + }, + { + "start": 12127.11, + "end": 12127.69, + "probability": 0.7527 + }, + { + "start": 12127.95, + "end": 12128.97, + "probability": 0.7567 + }, + { + "start": 12129.01, + "end": 12130.22, + "probability": 0.9966 + }, + { + "start": 12130.77, + "end": 12134.99, + "probability": 0.908 + }, + { + "start": 12135.77, + "end": 12136.79, + "probability": 0.7492 + }, + { + "start": 12137.05, + "end": 12138.08, + "probability": 0.9723 + }, + { + "start": 12138.43, + "end": 12139.65, + "probability": 0.979 + }, + { + "start": 12140.05, + "end": 12143.37, + "probability": 0.9948 + }, + { + "start": 12143.95, + "end": 12145.71, + "probability": 0.8696 + }, + { + "start": 12146.33, + "end": 12148.19, + "probability": 0.848 + }, + { + "start": 12148.19, + "end": 12148.69, + "probability": 0.6841 + }, + { + "start": 12149.15, + "end": 12152.31, + "probability": 0.9951 + }, + { + "start": 12152.73, + "end": 12155.47, + "probability": 0.655 + }, + { + "start": 12155.99, + "end": 12157.39, + "probability": 0.9757 + }, + { + "start": 12157.75, + "end": 12162.45, + "probability": 0.9929 + }, + { + "start": 12162.87, + "end": 12163.91, + "probability": 0.9453 + }, + { + "start": 12164.19, + "end": 12164.79, + "probability": 0.9954 + }, + { + "start": 12165.47, + "end": 12167.31, + "probability": 0.9005 + }, + { + "start": 12167.91, + "end": 12171.31, + "probability": 0.9536 + }, + { + "start": 12171.35, + "end": 12173.73, + "probability": 0.9971 + }, + { + "start": 12174.01, + "end": 12174.41, + "probability": 0.8165 + }, + { + "start": 12174.67, + "end": 12176.99, + "probability": 0.9774 + }, + { + "start": 12177.97, + "end": 12180.53, + "probability": 0.9393 + }, + { + "start": 12180.71, + "end": 12181.57, + "probability": 0.443 + }, + { + "start": 12182.17, + "end": 12185.61, + "probability": 0.8322 + }, + { + "start": 12187.93, + "end": 12188.83, + "probability": 0.941 + }, + { + "start": 12189.63, + "end": 12192.11, + "probability": 0.9211 + }, + { + "start": 12201.41, + "end": 12203.51, + "probability": 0.5974 + }, + { + "start": 12205.53, + "end": 12206.09, + "probability": 0.9718 + }, + { + "start": 12206.77, + "end": 12208.33, + "probability": 0.9884 + }, + { + "start": 12209.67, + "end": 12211.71, + "probability": 0.931 + }, + { + "start": 12213.11, + "end": 12216.51, + "probability": 0.8719 + }, + { + "start": 12218.09, + "end": 12220.05, + "probability": 0.873 + }, + { + "start": 12220.63, + "end": 12222.87, + "probability": 0.8787 + }, + { + "start": 12224.15, + "end": 12225.13, + "probability": 0.9971 + }, + { + "start": 12226.65, + "end": 12230.81, + "probability": 0.7169 + }, + { + "start": 12232.91, + "end": 12236.2, + "probability": 0.9971 + }, + { + "start": 12237.59, + "end": 12240.47, + "probability": 0.9212 + }, + { + "start": 12242.39, + "end": 12243.67, + "probability": 0.938 + }, + { + "start": 12244.19, + "end": 12244.47, + "probability": 0.7007 + }, + { + "start": 12245.97, + "end": 12249.57, + "probability": 0.9995 + }, + { + "start": 12251.55, + "end": 12256.79, + "probability": 0.9814 + }, + { + "start": 12258.95, + "end": 12263.29, + "probability": 0.9869 + }, + { + "start": 12264.91, + "end": 12266.47, + "probability": 0.9824 + }, + { + "start": 12268.33, + "end": 12270.35, + "probability": 0.9028 + }, + { + "start": 12272.71, + "end": 12276.33, + "probability": 0.8923 + }, + { + "start": 12277.57, + "end": 12278.99, + "probability": 0.7766 + }, + { + "start": 12280.67, + "end": 12281.59, + "probability": 0.6898 + }, + { + "start": 12283.15, + "end": 12284.99, + "probability": 0.8864 + }, + { + "start": 12288.11, + "end": 12290.13, + "probability": 0.9438 + }, + { + "start": 12291.97, + "end": 12293.97, + "probability": 0.7612 + }, + { + "start": 12294.59, + "end": 12296.39, + "probability": 0.8593 + }, + { + "start": 12298.41, + "end": 12303.19, + "probability": 0.896 + }, + { + "start": 12304.35, + "end": 12305.07, + "probability": 0.8452 + }, + { + "start": 12306.11, + "end": 12307.09, + "probability": 0.908 + }, + { + "start": 12308.81, + "end": 12317.81, + "probability": 0.9515 + }, + { + "start": 12320.07, + "end": 12321.73, + "probability": 0.616 + }, + { + "start": 12322.73, + "end": 12323.15, + "probability": 0.7183 + }, + { + "start": 12324.21, + "end": 12327.15, + "probability": 0.9465 + }, + { + "start": 12328.17, + "end": 12331.37, + "probability": 0.653 + }, + { + "start": 12333.41, + "end": 12334.89, + "probability": 0.609 + }, + { + "start": 12335.49, + "end": 12340.41, + "probability": 0.755 + }, + { + "start": 12340.79, + "end": 12342.15, + "probability": 0.9057 + }, + { + "start": 12343.15, + "end": 12344.89, + "probability": 0.9228 + }, + { + "start": 12345.87, + "end": 12349.79, + "probability": 0.863 + }, + { + "start": 12352.75, + "end": 12356.45, + "probability": 0.6399 + }, + { + "start": 12358.05, + "end": 12361.59, + "probability": 0.9751 + }, + { + "start": 12362.17, + "end": 12364.07, + "probability": 0.7472 + }, + { + "start": 12365.87, + "end": 12368.51, + "probability": 0.9932 + }, + { + "start": 12369.91, + "end": 12370.63, + "probability": 0.5722 + }, + { + "start": 12371.25, + "end": 12372.67, + "probability": 0.6874 + }, + { + "start": 12373.83, + "end": 12376.13, + "probability": 0.9756 + }, + { + "start": 12376.93, + "end": 12381.39, + "probability": 0.7747 + }, + { + "start": 12383.35, + "end": 12384.95, + "probability": 0.8528 + }, + { + "start": 12385.61, + "end": 12388.65, + "probability": 0.9933 + }, + { + "start": 12388.97, + "end": 12390.19, + "probability": 0.5545 + }, + { + "start": 12390.35, + "end": 12392.95, + "probability": 0.514 + }, + { + "start": 12393.29, + "end": 12399.59, + "probability": 0.9482 + }, + { + "start": 12399.97, + "end": 12401.59, + "probability": 0.9344 + }, + { + "start": 12402.05, + "end": 12404.07, + "probability": 0.9902 + }, + { + "start": 12404.23, + "end": 12407.61, + "probability": 0.9731 + }, + { + "start": 12407.71, + "end": 12408.23, + "probability": 0.5753 + }, + { + "start": 12408.65, + "end": 12409.31, + "probability": 0.8001 + }, + { + "start": 12409.85, + "end": 12411.85, + "probability": 0.9203 + }, + { + "start": 12412.81, + "end": 12416.69, + "probability": 0.8411 + }, + { + "start": 12417.72, + "end": 12420.61, + "probability": 0.4993 + }, + { + "start": 12420.61, + "end": 12427.59, + "probability": 0.8981 + }, + { + "start": 12427.75, + "end": 12429.77, + "probability": 0.8131 + }, + { + "start": 12430.21, + "end": 12430.85, + "probability": 0.3793 + }, + { + "start": 12431.53, + "end": 12432.19, + "probability": 0.8701 + }, + { + "start": 12432.79, + "end": 12433.31, + "probability": 0.6115 + }, + { + "start": 12433.81, + "end": 12436.21, + "probability": 0.8954 + }, + { + "start": 12436.67, + "end": 12438.53, + "probability": 0.9282 + }, + { + "start": 12439.35, + "end": 12441.17, + "probability": 0.6649 + }, + { + "start": 12446.03, + "end": 12448.17, + "probability": 0.9614 + }, + { + "start": 12453.41, + "end": 12454.19, + "probability": 0.5553 + }, + { + "start": 12455.69, + "end": 12462.23, + "probability": 0.8916 + }, + { + "start": 12463.69, + "end": 12465.23, + "probability": 0.2903 + }, + { + "start": 12465.41, + "end": 12468.47, + "probability": 0.9813 + }, + { + "start": 12468.47, + "end": 12474.79, + "probability": 0.9502 + }, + { + "start": 12475.75, + "end": 12480.35, + "probability": 0.9584 + }, + { + "start": 12480.85, + "end": 12482.93, + "probability": 0.998 + }, + { + "start": 12483.11, + "end": 12485.43, + "probability": 0.9893 + }, + { + "start": 12486.71, + "end": 12489.73, + "probability": 0.8085 + }, + { + "start": 12490.71, + "end": 12490.99, + "probability": 0.0141 + }, + { + "start": 12491.29, + "end": 12492.25, + "probability": 0.7512 + }, + { + "start": 12492.35, + "end": 12494.29, + "probability": 0.9449 + }, + { + "start": 12495.01, + "end": 12497.37, + "probability": 0.8119 + }, + { + "start": 12497.43, + "end": 12500.49, + "probability": 0.9894 + }, + { + "start": 12501.29, + "end": 12504.31, + "probability": 0.9863 + }, + { + "start": 12504.51, + "end": 12505.13, + "probability": 0.908 + }, + { + "start": 12505.19, + "end": 12507.27, + "probability": 0.9505 + }, + { + "start": 12507.49, + "end": 12513.97, + "probability": 0.9736 + }, + { + "start": 12514.17, + "end": 12518.31, + "probability": 0.6736 + }, + { + "start": 12518.39, + "end": 12519.29, + "probability": 0.5491 + }, + { + "start": 12519.45, + "end": 12520.91, + "probability": 0.8639 + }, + { + "start": 12521.67, + "end": 12525.17, + "probability": 0.9829 + }, + { + "start": 12525.21, + "end": 12527.19, + "probability": 0.9834 + }, + { + "start": 12528.07, + "end": 12531.01, + "probability": 0.979 + }, + { + "start": 12531.01, + "end": 12536.89, + "probability": 0.888 + }, + { + "start": 12537.01, + "end": 12540.45, + "probability": 0.8973 + }, + { + "start": 12540.59, + "end": 12544.21, + "probability": 0.9744 + }, + { + "start": 12544.59, + "end": 12545.11, + "probability": 0.7264 + }, + { + "start": 12545.87, + "end": 12550.27, + "probability": 0.9811 + }, + { + "start": 12550.91, + "end": 12554.01, + "probability": 0.9426 + }, + { + "start": 12554.83, + "end": 12560.29, + "probability": 0.9053 + }, + { + "start": 12560.85, + "end": 12562.81, + "probability": 0.721 + }, + { + "start": 12563.03, + "end": 12575.09, + "probability": 0.9818 + }, + { + "start": 12576.93, + "end": 12578.21, + "probability": 0.9425 + }, + { + "start": 12578.65, + "end": 12579.19, + "probability": 0.1185 + }, + { + "start": 12579.23, + "end": 12582.31, + "probability": 0.9055 + }, + { + "start": 12583.21, + "end": 12583.61, + "probability": 0.4727 + }, + { + "start": 12584.01, + "end": 12587.65, + "probability": 0.6573 + }, + { + "start": 12588.25, + "end": 12590.57, + "probability": 0.9936 + }, + { + "start": 12591.33, + "end": 12594.11, + "probability": 0.9535 + }, + { + "start": 12594.23, + "end": 12599.17, + "probability": 0.9652 + }, + { + "start": 12600.85, + "end": 12604.13, + "probability": 0.998 + }, + { + "start": 12604.13, + "end": 12607.33, + "probability": 0.9951 + }, + { + "start": 12607.47, + "end": 12607.79, + "probability": 0.5762 + }, + { + "start": 12608.37, + "end": 12610.53, + "probability": 0.8881 + }, + { + "start": 12611.27, + "end": 12615.93, + "probability": 0.9105 + }, + { + "start": 12616.55, + "end": 12620.25, + "probability": 0.9761 + }, + { + "start": 12621.29, + "end": 12627.35, + "probability": 0.9843 + }, + { + "start": 12628.01, + "end": 12629.47, + "probability": 0.7654 + }, + { + "start": 12630.21, + "end": 12631.79, + "probability": 0.9932 + }, + { + "start": 12632.31, + "end": 12632.55, + "probability": 0.7778 + }, + { + "start": 12632.59, + "end": 12636.21, + "probability": 0.9966 + }, + { + "start": 12636.89, + "end": 12638.25, + "probability": 0.9772 + }, + { + "start": 12638.31, + "end": 12640.41, + "probability": 0.9479 + }, + { + "start": 12640.45, + "end": 12642.31, + "probability": 0.8427 + }, + { + "start": 12643.13, + "end": 12643.89, + "probability": 0.3062 + }, + { + "start": 12644.01, + "end": 12652.95, + "probability": 0.8848 + }, + { + "start": 12653.33, + "end": 12656.19, + "probability": 0.9535 + }, + { + "start": 12656.19, + "end": 12660.39, + "probability": 0.8652 + }, + { + "start": 12660.51, + "end": 12664.39, + "probability": 0.9666 + }, + { + "start": 12664.39, + "end": 12668.67, + "probability": 0.9995 + }, + { + "start": 12668.77, + "end": 12670.83, + "probability": 0.9919 + }, + { + "start": 12671.21, + "end": 12671.49, + "probability": 0.5138 + }, + { + "start": 12672.35, + "end": 12675.75, + "probability": 0.6698 + }, + { + "start": 12675.87, + "end": 12678.07, + "probability": 0.8646 + }, + { + "start": 12678.47, + "end": 12679.43, + "probability": 0.4239 + }, + { + "start": 12679.79, + "end": 12681.97, + "probability": 0.8523 + }, + { + "start": 12686.21, + "end": 12690.65, + "probability": 0.8283 + }, + { + "start": 12693.73, + "end": 12695.99, + "probability": 0.7567 + }, + { + "start": 12699.09, + "end": 12701.93, + "probability": 0.7608 + }, + { + "start": 12702.35, + "end": 12704.49, + "probability": 0.8862 + }, + { + "start": 12705.19, + "end": 12709.39, + "probability": 0.9816 + }, + { + "start": 12709.39, + "end": 12714.97, + "probability": 0.9819 + }, + { + "start": 12715.67, + "end": 12716.99, + "probability": 0.9792 + }, + { + "start": 12718.17, + "end": 12722.81, + "probability": 0.9941 + }, + { + "start": 12722.81, + "end": 12729.05, + "probability": 0.9694 + }, + { + "start": 12730.33, + "end": 12736.51, + "probability": 0.999 + }, + { + "start": 12737.03, + "end": 12737.97, + "probability": 0.9229 + }, + { + "start": 12738.99, + "end": 12740.55, + "probability": 0.9973 + }, + { + "start": 12741.93, + "end": 12743.97, + "probability": 0.6622 + }, + { + "start": 12744.61, + "end": 12747.03, + "probability": 0.967 + }, + { + "start": 12747.77, + "end": 12750.23, + "probability": 0.8866 + }, + { + "start": 12750.83, + "end": 12752.17, + "probability": 0.5879 + }, + { + "start": 12753.09, + "end": 12757.07, + "probability": 0.9843 + }, + { + "start": 12757.95, + "end": 12759.17, + "probability": 0.9773 + }, + { + "start": 12760.03, + "end": 12764.13, + "probability": 0.9823 + }, + { + "start": 12765.07, + "end": 12766.87, + "probability": 0.9312 + }, + { + "start": 12767.47, + "end": 12770.59, + "probability": 0.9839 + }, + { + "start": 12771.63, + "end": 12773.17, + "probability": 0.9691 + }, + { + "start": 12774.27, + "end": 12775.69, + "probability": 0.605 + }, + { + "start": 12776.33, + "end": 12777.33, + "probability": 0.8644 + }, + { + "start": 12777.89, + "end": 12780.61, + "probability": 0.7795 + }, + { + "start": 12781.49, + "end": 12784.27, + "probability": 0.9776 + }, + { + "start": 12785.01, + "end": 12785.77, + "probability": 0.8214 + }, + { + "start": 12786.49, + "end": 12787.75, + "probability": 0.6635 + }, + { + "start": 12789.35, + "end": 12791.63, + "probability": 0.8723 + }, + { + "start": 12792.53, + "end": 12793.09, + "probability": 0.7368 + }, + { + "start": 12793.79, + "end": 12794.44, + "probability": 0.9248 + }, + { + "start": 12795.19, + "end": 12796.21, + "probability": 0.9807 + }, + { + "start": 12797.13, + "end": 12800.13, + "probability": 0.7536 + }, + { + "start": 12800.85, + "end": 12802.47, + "probability": 0.9969 + }, + { + "start": 12803.61, + "end": 12805.69, + "probability": 0.8975 + }, + { + "start": 12807.93, + "end": 12809.53, + "probability": 0.9843 + }, + { + "start": 12810.15, + "end": 12810.81, + "probability": 0.44 + }, + { + "start": 12811.75, + "end": 12814.03, + "probability": 0.9438 + }, + { + "start": 12814.93, + "end": 12818.33, + "probability": 0.9756 + }, + { + "start": 12818.69, + "end": 12820.01, + "probability": 0.8477 + }, + { + "start": 12820.69, + "end": 12826.45, + "probability": 0.9876 + }, + { + "start": 12827.13, + "end": 12830.31, + "probability": 0.9353 + }, + { + "start": 12831.25, + "end": 12833.09, + "probability": 0.8635 + }, + { + "start": 12834.49, + "end": 12838.77, + "probability": 0.9811 + }, + { + "start": 12839.45, + "end": 12842.21, + "probability": 0.0946 + }, + { + "start": 12842.27, + "end": 12842.99, + "probability": 0.2775 + }, + { + "start": 12843.27, + "end": 12844.59, + "probability": 0.7989 + }, + { + "start": 12845.91, + "end": 12848.89, + "probability": 0.7213 + }, + { + "start": 12849.71, + "end": 12850.91, + "probability": 0.683 + }, + { + "start": 12851.89, + "end": 12855.13, + "probability": 0.8525 + }, + { + "start": 12855.85, + "end": 12858.89, + "probability": 0.1962 + }, + { + "start": 12859.23, + "end": 12861.39, + "probability": 0.7885 + }, + { + "start": 12861.41, + "end": 12862.81, + "probability": 0.5285 + }, + { + "start": 12863.31, + "end": 12868.59, + "probability": 0.9724 + }, + { + "start": 12868.61, + "end": 12870.43, + "probability": 0.9885 + }, + { + "start": 12871.19, + "end": 12873.77, + "probability": 0.9969 + }, + { + "start": 12874.83, + "end": 12876.21, + "probability": 0.9128 + }, + { + "start": 12877.97, + "end": 12881.66, + "probability": 0.9949 + }, + { + "start": 12882.19, + "end": 12883.32, + "probability": 0.967 + }, + { + "start": 12884.51, + "end": 12884.59, + "probability": 0.4409 + }, + { + "start": 12884.69, + "end": 12889.03, + "probability": 0.9987 + }, + { + "start": 12889.89, + "end": 12891.23, + "probability": 0.9562 + }, + { + "start": 12892.21, + "end": 12895.33, + "probability": 0.998 + }, + { + "start": 12896.07, + "end": 12900.55, + "probability": 0.998 + }, + { + "start": 12900.83, + "end": 12902.57, + "probability": 0.9141 + }, + { + "start": 12903.61, + "end": 12906.67, + "probability": 0.7371 + }, + { + "start": 12906.77, + "end": 12908.71, + "probability": 0.9946 + }, + { + "start": 12910.29, + "end": 12913.89, + "probability": 0.9961 + }, + { + "start": 12914.99, + "end": 12918.05, + "probability": 0.941 + }, + { + "start": 12919.15, + "end": 12919.97, + "probability": 0.7747 + }, + { + "start": 12920.79, + "end": 12921.31, + "probability": 0.7142 + }, + { + "start": 12921.37, + "end": 12924.41, + "probability": 0.9834 + }, + { + "start": 12924.47, + "end": 12925.05, + "probability": 0.7628 + }, + { + "start": 12925.25, + "end": 12926.57, + "probability": 0.4478 + }, + { + "start": 12927.03, + "end": 12927.99, + "probability": 0.6828 + }, + { + "start": 12928.47, + "end": 12930.55, + "probability": 0.9824 + }, + { + "start": 12931.77, + "end": 12936.79, + "probability": 0.9516 + }, + { + "start": 12937.31, + "end": 12938.79, + "probability": 0.9863 + }, + { + "start": 12939.55, + "end": 12941.91, + "probability": 0.9976 + }, + { + "start": 12942.45, + "end": 12948.15, + "probability": 0.978 + }, + { + "start": 12948.65, + "end": 12950.11, + "probability": 0.8951 + }, + { + "start": 12950.43, + "end": 12952.03, + "probability": 0.9644 + }, + { + "start": 12952.13, + "end": 12952.63, + "probability": 0.8362 + }, + { + "start": 12952.79, + "end": 12953.87, + "probability": 0.8661 + }, + { + "start": 12954.15, + "end": 12955.51, + "probability": 0.9615 + }, + { + "start": 12955.69, + "end": 12955.69, + "probability": 0.2431 + }, + { + "start": 12955.69, + "end": 12959.41, + "probability": 0.7628 + }, + { + "start": 12959.43, + "end": 12960.21, + "probability": 0.8857 + }, + { + "start": 12960.75, + "end": 12963.15, + "probability": 0.8018 + }, + { + "start": 12963.49, + "end": 12966.35, + "probability": 0.7762 + }, + { + "start": 12966.35, + "end": 12970.09, + "probability": 0.9683 + }, + { + "start": 12970.09, + "end": 12973.53, + "probability": 0.9224 + }, + { + "start": 12973.73, + "end": 12973.73, + "probability": 0.3021 + }, + { + "start": 12973.73, + "end": 12976.21, + "probability": 0.999 + }, + { + "start": 12976.27, + "end": 12978.2, + "probability": 0.8882 + }, + { + "start": 12978.98, + "end": 12983.75, + "probability": 0.7143 + }, + { + "start": 12984.07, + "end": 12984.77, + "probability": 0.4329 + }, + { + "start": 12984.85, + "end": 12987.47, + "probability": 0.8471 + }, + { + "start": 12990.61, + "end": 12990.61, + "probability": 0.5834 + }, + { + "start": 12990.61, + "end": 12994.73, + "probability": 0.7058 + }, + { + "start": 12995.51, + "end": 12998.93, + "probability": 0.98 + }, + { + "start": 12998.93, + "end": 13001.88, + "probability": 0.6798 + }, + { + "start": 13002.95, + "end": 13005.07, + "probability": 0.7293 + }, + { + "start": 13005.99, + "end": 13010.95, + "probability": 0.9866 + }, + { + "start": 13011.65, + "end": 13015.85, + "probability": 0.998 + }, + { + "start": 13016.09, + "end": 13016.77, + "probability": 0.8851 + }, + { + "start": 13016.85, + "end": 13017.95, + "probability": 0.9758 + }, + { + "start": 13018.11, + "end": 13020.47, + "probability": 0.8704 + }, + { + "start": 13020.97, + "end": 13022.97, + "probability": 0.6819 + }, + { + "start": 13023.61, + "end": 13027.29, + "probability": 0.9862 + }, + { + "start": 13027.29, + "end": 13031.75, + "probability": 0.9958 + }, + { + "start": 13031.85, + "end": 13032.65, + "probability": 0.9208 + }, + { + "start": 13032.95, + "end": 13038.59, + "probability": 0.9937 + }, + { + "start": 13039.93, + "end": 13040.53, + "probability": 0.3484 + }, + { + "start": 13041.43, + "end": 13048.87, + "probability": 0.9971 + }, + { + "start": 13049.41, + "end": 13051.27, + "probability": 0.9713 + }, + { + "start": 13051.91, + "end": 13053.69, + "probability": 0.9925 + }, + { + "start": 13054.17, + "end": 13058.39, + "probability": 0.9106 + }, + { + "start": 13059.11, + "end": 13060.57, + "probability": 0.9289 + }, + { + "start": 13061.31, + "end": 13063.17, + "probability": 0.7754 + }, + { + "start": 13063.63, + "end": 13065.81, + "probability": 0.9883 + }, + { + "start": 13066.21, + "end": 13068.68, + "probability": 0.9087 + }, + { + "start": 13069.39, + "end": 13074.95, + "probability": 0.9803 + }, + { + "start": 13075.63, + "end": 13076.75, + "probability": 0.9736 + }, + { + "start": 13077.55, + "end": 13079.59, + "probability": 0.9717 + }, + { + "start": 13080.51, + "end": 13081.61, + "probability": 0.4929 + }, + { + "start": 13082.59, + "end": 13084.99, + "probability": 0.9893 + }, + { + "start": 13085.31, + "end": 13085.73, + "probability": 0.1202 + }, + { + "start": 13085.83, + "end": 13086.71, + "probability": 0.9476 + }, + { + "start": 13086.83, + "end": 13088.75, + "probability": 0.8423 + }, + { + "start": 13089.31, + "end": 13090.45, + "probability": 0.9322 + }, + { + "start": 13091.23, + "end": 13094.77, + "probability": 0.6936 + }, + { + "start": 13095.73, + "end": 13097.06, + "probability": 0.9753 + }, + { + "start": 13098.15, + "end": 13104.85, + "probability": 0.9897 + }, + { + "start": 13106.09, + "end": 13107.95, + "probability": 0.9845 + }, + { + "start": 13108.61, + "end": 13114.43, + "probability": 0.993 + }, + { + "start": 13114.91, + "end": 13117.79, + "probability": 0.9661 + }, + { + "start": 13118.41, + "end": 13122.81, + "probability": 0.9905 + }, + { + "start": 13122.81, + "end": 13126.55, + "probability": 0.9723 + }, + { + "start": 13127.53, + "end": 13132.59, + "probability": 0.9989 + }, + { + "start": 13133.43, + "end": 13133.89, + "probability": 0.7572 + }, + { + "start": 13134.39, + "end": 13135.03, + "probability": 0.553 + }, + { + "start": 13137.09, + "end": 13139.83, + "probability": 0.9465 + }, + { + "start": 13140.51, + "end": 13141.11, + "probability": 0.8252 + }, + { + "start": 13141.49, + "end": 13145.93, + "probability": 0.9213 + }, + { + "start": 13146.19, + "end": 13148.13, + "probability": 0.9761 + }, + { + "start": 13148.63, + "end": 13151.21, + "probability": 0.7573 + }, + { + "start": 13151.83, + "end": 13153.87, + "probability": 0.8556 + }, + { + "start": 13154.31, + "end": 13155.25, + "probability": 0.9073 + }, + { + "start": 13155.41, + "end": 13156.95, + "probability": 0.8893 + }, + { + "start": 13157.13, + "end": 13157.81, + "probability": 0.8506 + }, + { + "start": 13158.03, + "end": 13159.37, + "probability": 0.9565 + }, + { + "start": 13159.47, + "end": 13161.09, + "probability": 0.853 + }, + { + "start": 13161.39, + "end": 13162.35, + "probability": 0.8831 + }, + { + "start": 13163.15, + "end": 13165.99, + "probability": 0.9089 + }, + { + "start": 13166.85, + "end": 13168.95, + "probability": 0.6246 + }, + { + "start": 13169.79, + "end": 13170.73, + "probability": 0.7017 + }, + { + "start": 13171.53, + "end": 13173.07, + "probability": 0.6672 + }, + { + "start": 13173.61, + "end": 13175.68, + "probability": 0.9963 + }, + { + "start": 13176.33, + "end": 13178.91, + "probability": 0.9648 + }, + { + "start": 13179.29, + "end": 13180.14, + "probability": 0.8934 + }, + { + "start": 13180.65, + "end": 13181.09, + "probability": 0.4854 + }, + { + "start": 13181.17, + "end": 13181.81, + "probability": 0.8081 + }, + { + "start": 13181.87, + "end": 13182.47, + "probability": 0.9163 + }, + { + "start": 13182.49, + "end": 13183.25, + "probability": 0.8848 + }, + { + "start": 13183.75, + "end": 13184.31, + "probability": 0.907 + }, + { + "start": 13184.59, + "end": 13184.97, + "probability": 0.9685 + }, + { + "start": 13185.13, + "end": 13185.65, + "probability": 0.4318 + }, + { + "start": 13185.79, + "end": 13187.18, + "probability": 0.6813 + }, + { + "start": 13187.65, + "end": 13188.09, + "probability": 0.9087 + }, + { + "start": 13188.15, + "end": 13189.52, + "probability": 0.9683 + }, + { + "start": 13190.09, + "end": 13190.61, + "probability": 0.5095 + }, + { + "start": 13190.63, + "end": 13191.39, + "probability": 0.8755 + }, + { + "start": 13191.51, + "end": 13192.19, + "probability": 0.9727 + }, + { + "start": 13192.21, + "end": 13194.89, + "probability": 0.8858 + }, + { + "start": 13195.67, + "end": 13201.55, + "probability": 0.9944 + }, + { + "start": 13202.01, + "end": 13203.01, + "probability": 0.2934 + }, + { + "start": 13204.23, + "end": 13206.27, + "probability": 0.7348 + }, + { + "start": 13206.39, + "end": 13213.53, + "probability": 0.9872 + }, + { + "start": 13214.29, + "end": 13217.89, + "probability": 0.9982 + }, + { + "start": 13218.95, + "end": 13219.69, + "probability": 0.9775 + }, + { + "start": 13220.21, + "end": 13222.39, + "probability": 0.8857 + }, + { + "start": 13222.85, + "end": 13225.83, + "probability": 0.999 + }, + { + "start": 13225.83, + "end": 13231.53, + "probability": 0.9994 + }, + { + "start": 13231.97, + "end": 13233.91, + "probability": 0.999 + }, + { + "start": 13234.47, + "end": 13236.61, + "probability": 0.9561 + }, + { + "start": 13236.67, + "end": 13238.35, + "probability": 0.6732 + }, + { + "start": 13239.19, + "end": 13242.39, + "probability": 0.8569 + }, + { + "start": 13242.53, + "end": 13244.69, + "probability": 0.8747 + }, + { + "start": 13245.49, + "end": 13251.19, + "probability": 0.9679 + }, + { + "start": 13251.83, + "end": 13256.93, + "probability": 0.9917 + }, + { + "start": 13257.49, + "end": 13258.63, + "probability": 0.8301 + }, + { + "start": 13259.01, + "end": 13262.91, + "probability": 0.9309 + }, + { + "start": 13263.39, + "end": 13267.32, + "probability": 0.9962 + }, + { + "start": 13267.73, + "end": 13270.17, + "probability": 0.8267 + }, + { + "start": 13271.11, + "end": 13274.23, + "probability": 0.8236 + }, + { + "start": 13274.93, + "end": 13277.95, + "probability": 0.9785 + }, + { + "start": 13279.97, + "end": 13282.43, + "probability": 0.9623 + }, + { + "start": 13282.53, + "end": 13283.95, + "probability": 0.8296 + }, + { + "start": 13285.43, + "end": 13289.29, + "probability": 0.6693 + }, + { + "start": 13290.35, + "end": 13291.07, + "probability": 0.8979 + }, + { + "start": 13291.67, + "end": 13293.61, + "probability": 0.981 + }, + { + "start": 13293.67, + "end": 13294.81, + "probability": 0.5083 + }, + { + "start": 13294.83, + "end": 13296.53, + "probability": 0.959 + }, + { + "start": 13296.61, + "end": 13297.43, + "probability": 0.9619 + }, + { + "start": 13297.53, + "end": 13298.21, + "probability": 0.9971 + }, + { + "start": 13299.29, + "end": 13301.23, + "probability": 0.7253 + }, + { + "start": 13301.79, + "end": 13302.53, + "probability": 0.8714 + }, + { + "start": 13303.75, + "end": 13306.41, + "probability": 0.9354 + }, + { + "start": 13306.57, + "end": 13307.31, + "probability": 0.5465 + }, + { + "start": 13308.57, + "end": 13313.79, + "probability": 0.922 + }, + { + "start": 13315.07, + "end": 13316.43, + "probability": 0.9553 + }, + { + "start": 13316.45, + "end": 13320.81, + "probability": 0.9519 + }, + { + "start": 13322.27, + "end": 13323.5, + "probability": 0.9932 + }, + { + "start": 13324.75, + "end": 13325.79, + "probability": 0.8748 + }, + { + "start": 13326.69, + "end": 13327.87, + "probability": 0.9458 + }, + { + "start": 13329.55, + "end": 13331.17, + "probability": 0.6958 + }, + { + "start": 13331.45, + "end": 13337.71, + "probability": 0.9871 + }, + { + "start": 13338.57, + "end": 13340.25, + "probability": 0.7799 + }, + { + "start": 13340.33, + "end": 13343.47, + "probability": 0.9547 + }, + { + "start": 13344.39, + "end": 13347.91, + "probability": 0.8781 + }, + { + "start": 13348.99, + "end": 13353.99, + "probability": 0.9853 + }, + { + "start": 13356.69, + "end": 13359.33, + "probability": 0.9971 + }, + { + "start": 13360.21, + "end": 13361.49, + "probability": 0.9976 + }, + { + "start": 13362.05, + "end": 13363.93, + "probability": 0.9907 + }, + { + "start": 13364.53, + "end": 13367.03, + "probability": 0.8141 + }, + { + "start": 13370.15, + "end": 13374.17, + "probability": 0.991 + }, + { + "start": 13374.57, + "end": 13377.17, + "probability": 0.9964 + }, + { + "start": 13378.23, + "end": 13378.97, + "probability": 0.8616 + }, + { + "start": 13380.17, + "end": 13382.89, + "probability": 0.9556 + }, + { + "start": 13383.89, + "end": 13385.49, + "probability": 0.7851 + }, + { + "start": 13387.55, + "end": 13390.89, + "probability": 0.8479 + }, + { + "start": 13392.91, + "end": 13395.23, + "probability": 0.6582 + }, + { + "start": 13396.49, + "end": 13396.93, + "probability": 0.4321 + }, + { + "start": 13396.95, + "end": 13397.93, + "probability": 0.9414 + }, + { + "start": 13398.01, + "end": 13400.0, + "probability": 0.9355 + }, + { + "start": 13400.35, + "end": 13400.35, + "probability": 0.0019 + }, + { + "start": 13400.35, + "end": 13401.9, + "probability": 0.6724 + }, + { + "start": 13402.53, + "end": 13403.73, + "probability": 0.5424 + }, + { + "start": 13404.31, + "end": 13406.69, + "probability": 0.7409 + }, + { + "start": 13409.19, + "end": 13412.97, + "probability": 0.4097 + }, + { + "start": 13413.47, + "end": 13413.81, + "probability": 0.0062 + }, + { + "start": 13413.81, + "end": 13413.81, + "probability": 0.0363 + }, + { + "start": 13413.81, + "end": 13414.59, + "probability": 0.3813 + }, + { + "start": 13417.61, + "end": 13420.47, + "probability": 0.9863 + }, + { + "start": 13420.75, + "end": 13423.08, + "probability": 0.8123 + }, + { + "start": 13423.97, + "end": 13424.01, + "probability": 0.1666 + }, + { + "start": 13424.07, + "end": 13429.53, + "probability": 0.9955 + }, + { + "start": 13429.53, + "end": 13431.68, + "probability": 0.9163 + }, + { + "start": 13433.07, + "end": 13441.27, + "probability": 0.9919 + }, + { + "start": 13441.79, + "end": 13445.13, + "probability": 0.9479 + }, + { + "start": 13445.57, + "end": 13450.11, + "probability": 0.9561 + }, + { + "start": 13450.11, + "end": 13454.87, + "probability": 0.9224 + }, + { + "start": 13455.09, + "end": 13455.9, + "probability": 0.4221 + }, + { + "start": 13456.73, + "end": 13458.27, + "probability": 0.7611 + }, + { + "start": 13458.57, + "end": 13460.51, + "probability": 0.8903 + }, + { + "start": 13460.83, + "end": 13462.03, + "probability": 0.9243 + }, + { + "start": 13462.57, + "end": 13464.11, + "probability": 0.756 + }, + { + "start": 13464.41, + "end": 13465.83, + "probability": 0.7927 + }, + { + "start": 13466.97, + "end": 13468.41, + "probability": 0.967 + }, + { + "start": 13468.87, + "end": 13474.27, + "probability": 0.9799 + }, + { + "start": 13474.51, + "end": 13474.93, + "probability": 0.8781 + }, + { + "start": 13475.21, + "end": 13477.03, + "probability": 0.6655 + }, + { + "start": 13477.09, + "end": 13478.06, + "probability": 0.9014 + }, + { + "start": 13478.59, + "end": 13483.43, + "probability": 0.6264 + }, + { + "start": 13490.87, + "end": 13495.85, + "probability": 0.28 + }, + { + "start": 13496.59, + "end": 13496.59, + "probability": 0.2536 + }, + { + "start": 13496.59, + "end": 13499.03, + "probability": 0.224 + }, + { + "start": 13499.17, + "end": 13503.43, + "probability": 0.9796 + }, + { + "start": 13504.25, + "end": 13509.61, + "probability": 0.8632 + }, + { + "start": 13510.33, + "end": 13511.79, + "probability": 0.9936 + }, + { + "start": 13512.97, + "end": 13515.83, + "probability": 0.9941 + }, + { + "start": 13516.87, + "end": 13519.89, + "probability": 0.9566 + }, + { + "start": 13520.41, + "end": 13521.65, + "probability": 0.9712 + }, + { + "start": 13522.85, + "end": 13525.03, + "probability": 0.9732 + }, + { + "start": 13525.93, + "end": 13527.53, + "probability": 0.9906 + }, + { + "start": 13528.39, + "end": 13533.55, + "probability": 0.6997 + }, + { + "start": 13534.19, + "end": 13534.93, + "probability": 0.6671 + }, + { + "start": 13536.09, + "end": 13536.53, + "probability": 0.8041 + }, + { + "start": 13538.13, + "end": 13540.43, + "probability": 0.9904 + }, + { + "start": 13541.37, + "end": 13546.03, + "probability": 0.9844 + }, + { + "start": 13547.03, + "end": 13548.16, + "probability": 0.9438 + }, + { + "start": 13549.21, + "end": 13553.03, + "probability": 0.9846 + }, + { + "start": 13553.03, + "end": 13559.93, + "probability": 0.9926 + }, + { + "start": 13561.39, + "end": 13563.27, + "probability": 0.9925 + }, + { + "start": 13566.19, + "end": 13568.23, + "probability": 0.9985 + }, + { + "start": 13569.33, + "end": 13571.69, + "probability": 0.9726 + }, + { + "start": 13573.09, + "end": 13576.85, + "probability": 0.9966 + }, + { + "start": 13577.63, + "end": 13579.53, + "probability": 0.8073 + }, + { + "start": 13581.27, + "end": 13583.23, + "probability": 0.9287 + }, + { + "start": 13584.45, + "end": 13584.93, + "probability": 0.5699 + }, + { + "start": 13585.49, + "end": 13588.59, + "probability": 0.7782 + }, + { + "start": 13590.63, + "end": 13593.09, + "probability": 0.9978 + }, + { + "start": 13593.97, + "end": 13596.67, + "probability": 0.74 + }, + { + "start": 13597.59, + "end": 13598.99, + "probability": 0.8019 + }, + { + "start": 13600.01, + "end": 13600.73, + "probability": 0.985 + }, + { + "start": 13601.77, + "end": 13603.71, + "probability": 0.8515 + }, + { + "start": 13605.83, + "end": 13609.71, + "probability": 0.7211 + }, + { + "start": 13610.55, + "end": 13612.47, + "probability": 0.9544 + }, + { + "start": 13612.51, + "end": 13614.29, + "probability": 0.9474 + }, + { + "start": 13614.89, + "end": 13616.99, + "probability": 0.8808 + }, + { + "start": 13618.71, + "end": 13622.21, + "probability": 0.8484 + }, + { + "start": 13622.37, + "end": 13624.09, + "probability": 0.9456 + }, + { + "start": 13624.53, + "end": 13628.33, + "probability": 0.9957 + }, + { + "start": 13628.39, + "end": 13629.13, + "probability": 0.6409 + }, + { + "start": 13629.25, + "end": 13631.21, + "probability": 0.9603 + }, + { + "start": 13633.17, + "end": 13635.65, + "probability": 0.9153 + }, + { + "start": 13636.63, + "end": 13637.43, + "probability": 0.9741 + }, + { + "start": 13638.95, + "end": 13643.69, + "probability": 0.9366 + }, + { + "start": 13645.21, + "end": 13647.45, + "probability": 0.7297 + }, + { + "start": 13649.11, + "end": 13653.61, + "probability": 0.9833 + }, + { + "start": 13655.19, + "end": 13660.39, + "probability": 0.8875 + }, + { + "start": 13660.45, + "end": 13661.61, + "probability": 0.8852 + }, + { + "start": 13662.35, + "end": 13664.55, + "probability": 0.7786 + }, + { + "start": 13665.89, + "end": 13670.95, + "probability": 0.9961 + }, + { + "start": 13671.47, + "end": 13674.39, + "probability": 0.9455 + }, + { + "start": 13675.69, + "end": 13676.67, + "probability": 0.9077 + }, + { + "start": 13677.37, + "end": 13679.15, + "probability": 0.9882 + }, + { + "start": 13680.03, + "end": 13681.79, + "probability": 0.998 + }, + { + "start": 13682.63, + "end": 13684.9, + "probability": 0.8291 + }, + { + "start": 13685.11, + "end": 13688.53, + "probability": 0.998 + }, + { + "start": 13689.43, + "end": 13689.73, + "probability": 0.3701 + }, + { + "start": 13689.81, + "end": 13693.97, + "probability": 0.9719 + }, + { + "start": 13694.65, + "end": 13695.35, + "probability": 0.6662 + }, + { + "start": 13695.41, + "end": 13696.57, + "probability": 0.9287 + }, + { + "start": 13697.09, + "end": 13698.09, + "probability": 0.9772 + }, + { + "start": 13698.43, + "end": 13700.79, + "probability": 0.9377 + }, + { + "start": 13700.91, + "end": 13703.17, + "probability": 0.8486 + }, + { + "start": 13705.05, + "end": 13710.05, + "probability": 0.6263 + }, + { + "start": 13712.86, + "end": 13713.77, + "probability": 0.0091 + }, + { + "start": 13714.79, + "end": 13716.21, + "probability": 0.2621 + }, + { + "start": 13716.23, + "end": 13720.17, + "probability": 0.5722 + }, + { + "start": 13720.37, + "end": 13723.99, + "probability": 0.7682 + }, + { + "start": 13723.99, + "end": 13724.79, + "probability": 0.4011 + }, + { + "start": 13725.65, + "end": 13726.47, + "probability": 0.8644 + }, + { + "start": 13726.53, + "end": 13727.11, + "probability": 0.9571 + }, + { + "start": 13727.31, + "end": 13727.41, + "probability": 0.252 + }, + { + "start": 13727.43, + "end": 13730.47, + "probability": 0.9136 + }, + { + "start": 13730.65, + "end": 13731.27, + "probability": 0.8065 + }, + { + "start": 13731.43, + "end": 13731.91, + "probability": 0.9061 + }, + { + "start": 13731.97, + "end": 13733.05, + "probability": 0.6672 + }, + { + "start": 13733.05, + "end": 13735.07, + "probability": 0.8333 + }, + { + "start": 13735.27, + "end": 13735.79, + "probability": 0.5371 + }, + { + "start": 13736.19, + "end": 13739.92, + "probability": 0.9891 + }, + { + "start": 13741.11, + "end": 13744.95, + "probability": 0.9932 + }, + { + "start": 13745.21, + "end": 13747.01, + "probability": 0.9647 + }, + { + "start": 13747.69, + "end": 13749.59, + "probability": 0.9961 + }, + { + "start": 13750.33, + "end": 13753.61, + "probability": 0.993 + }, + { + "start": 13754.43, + "end": 13756.19, + "probability": 0.7681 + }, + { + "start": 13756.97, + "end": 13757.27, + "probability": 0.8245 + }, + { + "start": 13757.33, + "end": 13758.52, + "probability": 0.9946 + }, + { + "start": 13758.69, + "end": 13760.29, + "probability": 0.7395 + }, + { + "start": 13760.37, + "end": 13761.38, + "probability": 0.9766 + }, + { + "start": 13761.57, + "end": 13762.58, + "probability": 0.8706 + }, + { + "start": 13763.49, + "end": 13764.05, + "probability": 0.7737 + }, + { + "start": 13764.05, + "end": 13764.55, + "probability": 0.6868 + }, + { + "start": 13764.69, + "end": 13766.93, + "probability": 0.9232 + }, + { + "start": 13767.11, + "end": 13767.41, + "probability": 0.327 + }, + { + "start": 13767.45, + "end": 13767.75, + "probability": 0.6761 + }, + { + "start": 13767.79, + "end": 13768.35, + "probability": 0.8247 + }, + { + "start": 13768.43, + "end": 13772.05, + "probability": 0.7691 + }, + { + "start": 13772.07, + "end": 13772.77, + "probability": 0.8086 + }, + { + "start": 13773.77, + "end": 13774.17, + "probability": 0.8258 + }, + { + "start": 13774.27, + "end": 13777.99, + "probability": 0.9944 + }, + { + "start": 13779.21, + "end": 13780.59, + "probability": 0.9751 + }, + { + "start": 13780.83, + "end": 13782.48, + "probability": 0.8763 + }, + { + "start": 13783.31, + "end": 13784.47, + "probability": 0.3715 + }, + { + "start": 13784.47, + "end": 13785.17, + "probability": 0.6953 + }, + { + "start": 13785.27, + "end": 13785.97, + "probability": 0.6814 + }, + { + "start": 13786.09, + "end": 13789.63, + "probability": 0.9718 + }, + { + "start": 13790.17, + "end": 13793.17, + "probability": 0.5737 + }, + { + "start": 13793.17, + "end": 13794.77, + "probability": 0.9751 + }, + { + "start": 13794.89, + "end": 13795.61, + "probability": 0.7651 + }, + { + "start": 13796.01, + "end": 13796.35, + "probability": 0.8193 + }, + { + "start": 13797.15, + "end": 13797.15, + "probability": 0.5769 + }, + { + "start": 13797.25, + "end": 13800.55, + "probability": 0.8901 + }, + { + "start": 13801.07, + "end": 13804.41, + "probability": 0.8945 + }, + { + "start": 13804.69, + "end": 13805.63, + "probability": 0.2705 + }, + { + "start": 13806.19, + "end": 13810.21, + "probability": 0.8396 + }, + { + "start": 13810.63, + "end": 13810.91, + "probability": 0.3016 + }, + { + "start": 13811.01, + "end": 13811.91, + "probability": 0.5492 + }, + { + "start": 13811.91, + "end": 13815.31, + "probability": 0.7088 + }, + { + "start": 13815.39, + "end": 13816.65, + "probability": 0.7135 + }, + { + "start": 13816.71, + "end": 13818.01, + "probability": 0.8662 + }, + { + "start": 13818.81, + "end": 13821.55, + "probability": 0.7074 + }, + { + "start": 13822.71, + "end": 13823.55, + "probability": 0.5544 + }, + { + "start": 13824.47, + "end": 13826.95, + "probability": 0.9518 + }, + { + "start": 13827.49, + "end": 13829.95, + "probability": 0.927 + }, + { + "start": 13830.13, + "end": 13833.41, + "probability": 0.9208 + }, + { + "start": 13835.17, + "end": 13838.95, + "probability": 0.9871 + }, + { + "start": 13839.13, + "end": 13840.82, + "probability": 0.7238 + }, + { + "start": 13841.69, + "end": 13842.55, + "probability": 0.958 + }, + { + "start": 13842.91, + "end": 13844.59, + "probability": 0.8405 + }, + { + "start": 13845.19, + "end": 13846.3, + "probability": 0.9775 + }, + { + "start": 13846.65, + "end": 13848.07, + "probability": 0.9778 + }, + { + "start": 13848.33, + "end": 13850.19, + "probability": 0.9811 + }, + { + "start": 13850.41, + "end": 13851.04, + "probability": 0.9724 + }, + { + "start": 13851.75, + "end": 13854.75, + "probability": 0.9849 + }, + { + "start": 13855.09, + "end": 13856.3, + "probability": 0.998 + }, + { + "start": 13856.67, + "end": 13860.18, + "probability": 0.9953 + }, + { + "start": 13861.19, + "end": 13862.47, + "probability": 0.9822 + }, + { + "start": 13862.69, + "end": 13865.07, + "probability": 0.986 + }, + { + "start": 13865.49, + "end": 13869.65, + "probability": 0.96 + }, + { + "start": 13869.71, + "end": 13871.24, + "probability": 0.998 + }, + { + "start": 13871.69, + "end": 13873.93, + "probability": 0.7514 + }, + { + "start": 13874.53, + "end": 13878.23, + "probability": 0.9828 + }, + { + "start": 13878.25, + "end": 13880.05, + "probability": 0.9186 + }, + { + "start": 13880.67, + "end": 13881.01, + "probability": 0.7372 + }, + { + "start": 13881.05, + "end": 13883.13, + "probability": 0.9408 + }, + { + "start": 13883.17, + "end": 13884.27, + "probability": 0.9312 + }, + { + "start": 13884.77, + "end": 13885.93, + "probability": 0.1082 + }, + { + "start": 13886.99, + "end": 13887.45, + "probability": 0.6589 + }, + { + "start": 13887.45, + "end": 13887.83, + "probability": 0.4553 + }, + { + "start": 13887.93, + "end": 13888.09, + "probability": 0.9141 + }, + { + "start": 13888.15, + "end": 13888.53, + "probability": 0.8964 + }, + { + "start": 13888.59, + "end": 13890.01, + "probability": 0.8726 + }, + { + "start": 13890.39, + "end": 13891.57, + "probability": 0.798 + }, + { + "start": 13891.65, + "end": 13895.17, + "probability": 0.9976 + }, + { + "start": 13895.69, + "end": 13896.71, + "probability": 0.9638 + }, + { + "start": 13897.01, + "end": 13898.41, + "probability": 0.8715 + }, + { + "start": 13898.61, + "end": 13901.57, + "probability": 0.9692 + }, + { + "start": 13901.65, + "end": 13902.57, + "probability": 0.9694 + }, + { + "start": 13902.77, + "end": 13904.71, + "probability": 0.939 + }, + { + "start": 13905.59, + "end": 13908.14, + "probability": 0.8022 + }, + { + "start": 13908.35, + "end": 13908.73, + "probability": 0.8424 + }, + { + "start": 13908.87, + "end": 13909.77, + "probability": 0.9108 + }, + { + "start": 13910.05, + "end": 13910.92, + "probability": 0.9945 + }, + { + "start": 13911.25, + "end": 13913.79, + "probability": 0.9517 + }, + { + "start": 13913.85, + "end": 13917.49, + "probability": 0.9862 + }, + { + "start": 13917.75, + "end": 13919.85, + "probability": 0.9906 + }, + { + "start": 13919.97, + "end": 13924.47, + "probability": 0.9945 + }, + { + "start": 13924.85, + "end": 13925.23, + "probability": 0.267 + }, + { + "start": 13925.61, + "end": 13928.75, + "probability": 0.996 + }, + { + "start": 13929.43, + "end": 13930.37, + "probability": 0.9834 + }, + { + "start": 13930.49, + "end": 13932.01, + "probability": 0.7937 + }, + { + "start": 13932.17, + "end": 13934.13, + "probability": 0.9913 + }, + { + "start": 13934.55, + "end": 13937.97, + "probability": 0.9944 + }, + { + "start": 13938.27, + "end": 13943.27, + "probability": 0.9966 + }, + { + "start": 13943.69, + "end": 13945.9, + "probability": 0.9764 + }, + { + "start": 13946.17, + "end": 13947.49, + "probability": 0.9909 + }, + { + "start": 13947.87, + "end": 13949.29, + "probability": 0.9829 + }, + { + "start": 13949.61, + "end": 13950.71, + "probability": 0.9927 + }, + { + "start": 13950.73, + "end": 13953.21, + "probability": 0.7637 + }, + { + "start": 13953.31, + "end": 13956.57, + "probability": 0.9096 + }, + { + "start": 13956.69, + "end": 13958.67, + "probability": 0.9814 + }, + { + "start": 13958.75, + "end": 13959.25, + "probability": 0.8677 + }, + { + "start": 13959.47, + "end": 13961.43, + "probability": 0.6611 + }, + { + "start": 13961.71, + "end": 13963.33, + "probability": 0.8487 + }, + { + "start": 13964.65, + "end": 13967.15, + "probability": 0.8078 + }, + { + "start": 13976.25, + "end": 13977.23, + "probability": 0.7139 + }, + { + "start": 13978.75, + "end": 13979.75, + "probability": 0.7128 + }, + { + "start": 13983.05, + "end": 13984.03, + "probability": 0.8295 + }, + { + "start": 13985.82, + "end": 13988.25, + "probability": 0.957 + }, + { + "start": 13990.79, + "end": 13991.43, + "probability": 0.1663 + }, + { + "start": 13992.65, + "end": 13993.11, + "probability": 0.8502 + }, + { + "start": 13994.79, + "end": 13995.11, + "probability": 0.58 + }, + { + "start": 13995.51, + "end": 13996.49, + "probability": 0.9694 + }, + { + "start": 13996.61, + "end": 13997.39, + "probability": 0.978 + }, + { + "start": 13997.47, + "end": 13998.67, + "probability": 0.9734 + }, + { + "start": 13998.89, + "end": 13999.35, + "probability": 0.8549 + }, + { + "start": 14001.07, + "end": 14007.59, + "probability": 0.8564 + }, + { + "start": 14009.07, + "end": 14010.27, + "probability": 0.9524 + }, + { + "start": 14012.85, + "end": 14015.17, + "probability": 0.9644 + }, + { + "start": 14016.05, + "end": 14018.73, + "probability": 0.8847 + }, + { + "start": 14019.37, + "end": 14021.59, + "probability": 0.9702 + }, + { + "start": 14022.13, + "end": 14024.07, + "probability": 0.9888 + }, + { + "start": 14024.83, + "end": 14026.89, + "probability": 0.943 + }, + { + "start": 14028.21, + "end": 14030.33, + "probability": 0.8906 + }, + { + "start": 14031.51, + "end": 14032.83, + "probability": 0.9331 + }, + { + "start": 14034.17, + "end": 14035.23, + "probability": 0.6569 + }, + { + "start": 14038.15, + "end": 14039.39, + "probability": 0.7866 + }, + { + "start": 14041.33, + "end": 14042.93, + "probability": 0.9152 + }, + { + "start": 14043.87, + "end": 14047.83, + "probability": 0.8617 + }, + { + "start": 14048.47, + "end": 14049.62, + "probability": 0.9854 + }, + { + "start": 14050.33, + "end": 14051.25, + "probability": 0.9639 + }, + { + "start": 14051.83, + "end": 14052.91, + "probability": 0.981 + }, + { + "start": 14053.09, + "end": 14059.69, + "probability": 0.989 + }, + { + "start": 14059.69, + "end": 14062.25, + "probability": 0.918 + }, + { + "start": 14064.55, + "end": 14071.63, + "probability": 0.9702 + }, + { + "start": 14074.05, + "end": 14074.91, + "probability": 0.9956 + }, + { + "start": 14076.53, + "end": 14078.49, + "probability": 0.9671 + }, + { + "start": 14079.67, + "end": 14082.75, + "probability": 0.9928 + }, + { + "start": 14083.57, + "end": 14086.43, + "probability": 0.8876 + }, + { + "start": 14087.21, + "end": 14090.05, + "probability": 0.995 + }, + { + "start": 14090.53, + "end": 14091.41, + "probability": 0.9242 + }, + { + "start": 14092.59, + "end": 14092.59, + "probability": 0.9404 + }, + { + "start": 14093.85, + "end": 14097.41, + "probability": 0.5719 + }, + { + "start": 14098.03, + "end": 14100.08, + "probability": 0.7469 + }, + { + "start": 14100.81, + "end": 14103.85, + "probability": 0.9805 + }, + { + "start": 14104.51, + "end": 14105.49, + "probability": 0.959 + }, + { + "start": 14106.09, + "end": 14110.71, + "probability": 0.9071 + }, + { + "start": 14111.19, + "end": 14112.79, + "probability": 0.7063 + }, + { + "start": 14113.29, + "end": 14114.87, + "probability": 0.8104 + }, + { + "start": 14116.69, + "end": 14119.17, + "probability": 0.6702 + }, + { + "start": 14119.69, + "end": 14122.71, + "probability": 0.9614 + }, + { + "start": 14124.45, + "end": 14126.15, + "probability": 0.9508 + }, + { + "start": 14126.61, + "end": 14126.79, + "probability": 0.2874 + }, + { + "start": 14127.23, + "end": 14127.85, + "probability": 0.7277 + }, + { + "start": 14127.97, + "end": 14129.57, + "probability": 0.5903 + }, + { + "start": 14130.31, + "end": 14131.85, + "probability": 0.9512 + }, + { + "start": 14133.15, + "end": 14135.99, + "probability": 0.9644 + }, + { + "start": 14136.09, + "end": 14138.73, + "probability": 0.991 + }, + { + "start": 14142.25, + "end": 14145.37, + "probability": 0.865 + }, + { + "start": 14145.43, + "end": 14146.97, + "probability": 0.7076 + }, + { + "start": 14147.19, + "end": 14147.59, + "probability": 0.8828 + }, + { + "start": 14147.73, + "end": 14148.55, + "probability": 0.8566 + }, + { + "start": 14148.71, + "end": 14150.33, + "probability": 0.9531 + }, + { + "start": 14150.43, + "end": 14150.73, + "probability": 0.5682 + }, + { + "start": 14151.83, + "end": 14154.59, + "probability": 0.9885 + }, + { + "start": 14154.59, + "end": 14157.53, + "probability": 0.9637 + }, + { + "start": 14158.37, + "end": 14161.51, + "probability": 0.9258 + }, + { + "start": 14161.55, + "end": 14163.57, + "probability": 0.9915 + }, + { + "start": 14163.59, + "end": 14164.35, + "probability": 0.6418 + }, + { + "start": 14164.69, + "end": 14167.15, + "probability": 0.8531 + }, + { + "start": 14167.69, + "end": 14172.09, + "probability": 0.9906 + }, + { + "start": 14172.15, + "end": 14173.51, + "probability": 0.9873 + }, + { + "start": 14174.49, + "end": 14176.17, + "probability": 0.9941 + }, + { + "start": 14181.73, + "end": 14182.53, + "probability": 0.9097 + }, + { + "start": 14182.63, + "end": 14183.71, + "probability": 0.9771 + }, + { + "start": 14183.81, + "end": 14190.31, + "probability": 0.9701 + }, + { + "start": 14191.13, + "end": 14194.33, + "probability": 0.979 + }, + { + "start": 14194.37, + "end": 14195.45, + "probability": 0.8982 + }, + { + "start": 14195.61, + "end": 14198.15, + "probability": 0.987 + }, + { + "start": 14198.57, + "end": 14200.97, + "probability": 0.7978 + }, + { + "start": 14202.65, + "end": 14205.45, + "probability": 0.9554 + }, + { + "start": 14207.31, + "end": 14210.71, + "probability": 0.7959 + }, + { + "start": 14210.91, + "end": 14218.75, + "probability": 0.9717 + }, + { + "start": 14219.93, + "end": 14221.03, + "probability": 0.7081 + }, + { + "start": 14221.37, + "end": 14223.93, + "probability": 0.9669 + }, + { + "start": 14223.93, + "end": 14224.47, + "probability": 0.3945 + }, + { + "start": 14224.47, + "end": 14224.89, + "probability": 0.8335 + }, + { + "start": 14225.57, + "end": 14226.61, + "probability": 0.953 + }, + { + "start": 14226.75, + "end": 14228.75, + "probability": 0.8529 + }, + { + "start": 14229.39, + "end": 14234.31, + "probability": 0.9798 + }, + { + "start": 14234.57, + "end": 14236.53, + "probability": 0.8468 + }, + { + "start": 14236.61, + "end": 14237.11, + "probability": 0.6186 + }, + { + "start": 14237.39, + "end": 14237.85, + "probability": 0.3781 + }, + { + "start": 14237.93, + "end": 14239.85, + "probability": 0.9849 + }, + { + "start": 14239.85, + "end": 14242.39, + "probability": 0.9963 + }, + { + "start": 14242.45, + "end": 14244.61, + "probability": 0.8705 + }, + { + "start": 14245.99, + "end": 14247.77, + "probability": 0.4865 + }, + { + "start": 14262.31, + "end": 14263.37, + "probability": 0.6729 + }, + { + "start": 14264.33, + "end": 14265.43, + "probability": 0.7749 + }, + { + "start": 14266.83, + "end": 14275.29, + "probability": 0.7955 + }, + { + "start": 14276.71, + "end": 14279.51, + "probability": 0.9929 + }, + { + "start": 14280.83, + "end": 14281.29, + "probability": 0.8755 + }, + { + "start": 14282.63, + "end": 14287.73, + "probability": 0.7939 + }, + { + "start": 14287.73, + "end": 14291.39, + "probability": 0.7184 + }, + { + "start": 14292.43, + "end": 14295.13, + "probability": 0.9159 + }, + { + "start": 14295.23, + "end": 14296.39, + "probability": 0.2647 + }, + { + "start": 14296.83, + "end": 14297.91, + "probability": 0.55 + }, + { + "start": 14298.65, + "end": 14304.47, + "probability": 0.9862 + }, + { + "start": 14304.59, + "end": 14307.43, + "probability": 0.8629 + }, + { + "start": 14308.45, + "end": 14311.55, + "probability": 0.9905 + }, + { + "start": 14311.93, + "end": 14316.89, + "probability": 0.9192 + }, + { + "start": 14317.01, + "end": 14317.93, + "probability": 0.8504 + }, + { + "start": 14318.91, + "end": 14319.31, + "probability": 0.9407 + }, + { + "start": 14319.41, + "end": 14322.49, + "probability": 0.9863 + }, + { + "start": 14322.49, + "end": 14326.91, + "probability": 0.9858 + }, + { + "start": 14327.83, + "end": 14330.77, + "probability": 0.9849 + }, + { + "start": 14332.03, + "end": 14335.99, + "probability": 0.7751 + }, + { + "start": 14336.73, + "end": 14338.07, + "probability": 0.6641 + }, + { + "start": 14338.67, + "end": 14339.59, + "probability": 0.818 + }, + { + "start": 14341.05, + "end": 14342.13, + "probability": 0.8018 + }, + { + "start": 14343.37, + "end": 14349.07, + "probability": 0.8975 + }, + { + "start": 14349.23, + "end": 14349.93, + "probability": 0.6557 + }, + { + "start": 14350.59, + "end": 14354.47, + "probability": 0.9611 + }, + { + "start": 14355.09, + "end": 14356.97, + "probability": 0.9724 + }, + { + "start": 14357.33, + "end": 14359.65, + "probability": 0.8873 + }, + { + "start": 14360.57, + "end": 14361.69, + "probability": 0.7463 + }, + { + "start": 14362.17, + "end": 14365.33, + "probability": 0.9938 + }, + { + "start": 14365.75, + "end": 14368.81, + "probability": 0.7581 + }, + { + "start": 14370.01, + "end": 14376.93, + "probability": 0.5373 + }, + { + "start": 14376.93, + "end": 14377.71, + "probability": 0.9143 + }, + { + "start": 14377.87, + "end": 14378.51, + "probability": 0.8587 + }, + { + "start": 14378.69, + "end": 14379.59, + "probability": 0.6123 + }, + { + "start": 14379.83, + "end": 14380.25, + "probability": 0.0606 + }, + { + "start": 14380.25, + "end": 14381.03, + "probability": 0.0098 + }, + { + "start": 14381.03, + "end": 14381.03, + "probability": 0.0347 + }, + { + "start": 14381.03, + "end": 14381.69, + "probability": 0.2393 + }, + { + "start": 14381.99, + "end": 14385.25, + "probability": 0.9578 + }, + { + "start": 14385.61, + "end": 14386.75, + "probability": 0.8201 + }, + { + "start": 14387.01, + "end": 14388.45, + "probability": 0.8473 + }, + { + "start": 14388.89, + "end": 14390.29, + "probability": 0.8564 + }, + { + "start": 14390.43, + "end": 14391.45, + "probability": 0.7027 + }, + { + "start": 14392.19, + "end": 14396.31, + "probability": 0.937 + }, + { + "start": 14396.39, + "end": 14397.53, + "probability": 0.9275 + }, + { + "start": 14398.33, + "end": 14399.97, + "probability": 0.0354 + }, + { + "start": 14400.59, + "end": 14403.35, + "probability": 0.8133 + }, + { + "start": 14404.13, + "end": 14408.41, + "probability": 0.8939 + }, + { + "start": 14409.59, + "end": 14413.45, + "probability": 0.9365 + }, + { + "start": 14414.01, + "end": 14416.89, + "probability": 0.9886 + }, + { + "start": 14417.09, + "end": 14418.31, + "probability": 0.9184 + }, + { + "start": 14418.97, + "end": 14422.03, + "probability": 0.5175 + }, + { + "start": 14422.87, + "end": 14424.63, + "probability": 0.9772 + }, + { + "start": 14425.27, + "end": 14429.13, + "probability": 0.9856 + }, + { + "start": 14430.56, + "end": 14434.09, + "probability": 0.0627 + }, + { + "start": 14434.83, + "end": 14435.11, + "probability": 0.1285 + }, + { + "start": 14435.11, + "end": 14435.11, + "probability": 0.0459 + }, + { + "start": 14435.11, + "end": 14438.77, + "probability": 0.7193 + }, + { + "start": 14439.11, + "end": 14440.69, + "probability": 0.8811 + }, + { + "start": 14441.39, + "end": 14442.73, + "probability": 0.8428 + }, + { + "start": 14443.07, + "end": 14446.75, + "probability": 0.9427 + }, + { + "start": 14446.87, + "end": 14448.29, + "probability": 0.4165 + }, + { + "start": 14448.29, + "end": 14449.45, + "probability": 0.4899 + }, + { + "start": 14449.89, + "end": 14451.91, + "probability": 0.6289 + }, + { + "start": 14452.07, + "end": 14454.77, + "probability": 0.8516 + }, + { + "start": 14457.17, + "end": 14458.09, + "probability": 0.0289 + }, + { + "start": 14459.85, + "end": 14461.01, + "probability": 0.0224 + }, + { + "start": 14461.33, + "end": 14461.63, + "probability": 0.201 + }, + { + "start": 14461.63, + "end": 14461.63, + "probability": 0.1274 + }, + { + "start": 14461.63, + "end": 14463.87, + "probability": 0.0494 + }, + { + "start": 14465.29, + "end": 14466.21, + "probability": 0.6011 + }, + { + "start": 14466.41, + "end": 14469.39, + "probability": 0.7005 + }, + { + "start": 14469.99, + "end": 14470.62, + "probability": 0.0444 + }, + { + "start": 14472.93, + "end": 14475.81, + "probability": 0.702 + }, + { + "start": 14475.99, + "end": 14476.33, + "probability": 0.8103 + }, + { + "start": 14476.49, + "end": 14478.77, + "probability": 0.8211 + }, + { + "start": 14479.75, + "end": 14482.82, + "probability": 0.9946 + }, + { + "start": 14485.59, + "end": 14485.81, + "probability": 0.0101 + }, + { + "start": 14485.81, + "end": 14487.45, + "probability": 0.7461 + }, + { + "start": 14487.85, + "end": 14488.77, + "probability": 0.8925 + }, + { + "start": 14489.49, + "end": 14493.27, + "probability": 0.9878 + }, + { + "start": 14493.27, + "end": 14497.91, + "probability": 0.9985 + }, + { + "start": 14498.73, + "end": 14500.21, + "probability": 0.9993 + }, + { + "start": 14501.51, + "end": 14503.07, + "probability": 0.7705 + }, + { + "start": 14503.97, + "end": 14507.73, + "probability": 0.895 + }, + { + "start": 14507.99, + "end": 14508.33, + "probability": 0.9114 + }, + { + "start": 14508.41, + "end": 14511.59, + "probability": 0.9059 + }, + { + "start": 14512.65, + "end": 14519.45, + "probability": 0.9716 + }, + { + "start": 14520.27, + "end": 14523.29, + "probability": 0.9578 + }, + { + "start": 14523.33, + "end": 14525.35, + "probability": 0.8813 + }, + { + "start": 14525.57, + "end": 14526.1, + "probability": 0.9645 + }, + { + "start": 14526.75, + "end": 14527.39, + "probability": 0.9884 + }, + { + "start": 14527.89, + "end": 14529.89, + "probability": 0.9878 + }, + { + "start": 14530.09, + "end": 14530.58, + "probability": 0.9648 + }, + { + "start": 14531.67, + "end": 14532.06, + "probability": 0.9854 + }, + { + "start": 14533.91, + "end": 14536.65, + "probability": 0.9614 + }, + { + "start": 14537.01, + "end": 14537.4, + "probability": 0.9937 + }, + { + "start": 14538.95, + "end": 14541.18, + "probability": 0.9102 + }, + { + "start": 14541.53, + "end": 14545.99, + "probability": 0.9906 + }, + { + "start": 14546.05, + "end": 14548.35, + "probability": 0.998 + }, + { + "start": 14549.93, + "end": 14551.95, + "probability": 0.6448 + }, + { + "start": 14552.03, + "end": 14554.47, + "probability": 0.9852 + }, + { + "start": 14554.63, + "end": 14555.23, + "probability": 0.9915 + }, + { + "start": 14555.33, + "end": 14556.12, + "probability": 0.9181 + }, + { + "start": 14556.53, + "end": 14560.47, + "probability": 0.9876 + }, + { + "start": 14560.47, + "end": 14565.27, + "probability": 0.8758 + }, + { + "start": 14565.47, + "end": 14566.25, + "probability": 0.6899 + }, + { + "start": 14566.31, + "end": 14568.11, + "probability": 0.9244 + }, + { + "start": 14568.23, + "end": 14568.97, + "probability": 0.9263 + }, + { + "start": 14569.09, + "end": 14569.73, + "probability": 0.726 + }, + { + "start": 14570.05, + "end": 14574.53, + "probability": 0.5339 + }, + { + "start": 14574.61, + "end": 14578.89, + "probability": 0.9963 + }, + { + "start": 14578.89, + "end": 14580.91, + "probability": 0.9692 + }, + { + "start": 14581.37, + "end": 14583.01, + "probability": 0.9937 + }, + { + "start": 14583.71, + "end": 14584.99, + "probability": 0.7501 + }, + { + "start": 14586.05, + "end": 14589.25, + "probability": 0.9865 + }, + { + "start": 14590.39, + "end": 14591.96, + "probability": 0.9893 + }, + { + "start": 14592.49, + "end": 14597.63, + "probability": 0.9959 + }, + { + "start": 14598.01, + "end": 14599.83, + "probability": 0.9622 + }, + { + "start": 14601.41, + "end": 14603.09, + "probability": 0.9921 + }, + { + "start": 14603.29, + "end": 14605.09, + "probability": 0.9877 + }, + { + "start": 14605.11, + "end": 14606.25, + "probability": 0.9778 + }, + { + "start": 14609.72, + "end": 14612.37, + "probability": 0.9229 + }, + { + "start": 14612.47, + "end": 14613.01, + "probability": 0.7407 + }, + { + "start": 14613.43, + "end": 14615.81, + "probability": 0.7691 + }, + { + "start": 14616.75, + "end": 14618.87, + "probability": 0.9165 + }, + { + "start": 14619.13, + "end": 14624.09, + "probability": 0.9776 + }, + { + "start": 14624.09, + "end": 14627.65, + "probability": 0.9886 + }, + { + "start": 14627.73, + "end": 14628.71, + "probability": 0.8746 + }, + { + "start": 14629.23, + "end": 14633.03, + "probability": 0.9517 + }, + { + "start": 14633.17, + "end": 14637.73, + "probability": 0.9593 + }, + { + "start": 14637.79, + "end": 14638.59, + "probability": 0.8128 + }, + { + "start": 14638.69, + "end": 14639.71, + "probability": 0.5567 + }, + { + "start": 14640.13, + "end": 14640.43, + "probability": 0.8906 + }, + { + "start": 14640.47, + "end": 14644.13, + "probability": 0.8155 + }, + { + "start": 14644.75, + "end": 14645.61, + "probability": 0.7456 + }, + { + "start": 14646.05, + "end": 14649.97, + "probability": 0.9978 + }, + { + "start": 14650.55, + "end": 14654.69, + "probability": 0.8932 + }, + { + "start": 14655.15, + "end": 14656.83, + "probability": 0.8437 + }, + { + "start": 14658.96, + "end": 14661.75, + "probability": 0.8744 + }, + { + "start": 14661.93, + "end": 14663.15, + "probability": 0.8799 + }, + { + "start": 14663.61, + "end": 14665.59, + "probability": 0.9824 + }, + { + "start": 14665.63, + "end": 14666.55, + "probability": 0.9578 + }, + { + "start": 14666.63, + "end": 14669.35, + "probability": 0.9984 + }, + { + "start": 14669.37, + "end": 14672.27, + "probability": 0.8719 + }, + { + "start": 14672.33, + "end": 14673.25, + "probability": 0.6535 + }, + { + "start": 14673.93, + "end": 14675.71, + "probability": 0.9404 + }, + { + "start": 14676.11, + "end": 14678.79, + "probability": 0.9304 + }, + { + "start": 14679.03, + "end": 14680.81, + "probability": 0.6434 + }, + { + "start": 14683.11, + "end": 14683.65, + "probability": 0.6185 + }, + { + "start": 14683.67, + "end": 14684.47, + "probability": 0.5893 + }, + { + "start": 14684.79, + "end": 14685.96, + "probability": 0.853 + }, + { + "start": 14686.13, + "end": 14686.47, + "probability": 0.6767 + }, + { + "start": 14686.73, + "end": 14687.51, + "probability": 0.9521 + }, + { + "start": 14691.75, + "end": 14692.61, + "probability": 0.8521 + }, + { + "start": 14692.77, + "end": 14693.57, + "probability": 0.9475 + }, + { + "start": 14693.83, + "end": 14696.57, + "probability": 0.9497 + }, + { + "start": 14696.71, + "end": 14697.71, + "probability": 0.776 + }, + { + "start": 14698.45, + "end": 14703.27, + "probability": 0.9027 + }, + { + "start": 14703.31, + "end": 14704.45, + "probability": 0.8984 + }, + { + "start": 14704.49, + "end": 14705.39, + "probability": 0.8384 + }, + { + "start": 14705.57, + "end": 14706.21, + "probability": 0.6884 + }, + { + "start": 14706.57, + "end": 14707.73, + "probability": 0.9785 + }, + { + "start": 14707.85, + "end": 14709.53, + "probability": 0.7887 + }, + { + "start": 14710.27, + "end": 14715.27, + "probability": 0.9699 + }, + { + "start": 14715.27, + "end": 14719.81, + "probability": 0.3988 + }, + { + "start": 14720.23, + "end": 14720.33, + "probability": 0.0012 + }, + { + "start": 14722.13, + "end": 14722.13, + "probability": 0.0024 + }, + { + "start": 14722.13, + "end": 14722.39, + "probability": 0.3145 + }, + { + "start": 14723.33, + "end": 14726.69, + "probability": 0.9985 + }, + { + "start": 14726.69, + "end": 14730.09, + "probability": 0.9978 + }, + { + "start": 14730.47, + "end": 14732.61, + "probability": 0.912 + }, + { + "start": 14733.03, + "end": 14735.59, + "probability": 0.7495 + }, + { + "start": 14735.67, + "end": 14738.51, + "probability": 0.9395 + }, + { + "start": 14738.73, + "end": 14741.47, + "probability": 0.8292 + }, + { + "start": 14741.95, + "end": 14742.87, + "probability": 0.2516 + }, + { + "start": 14744.07, + "end": 14744.55, + "probability": 0.0167 + }, + { + "start": 14744.55, + "end": 14744.65, + "probability": 0.0341 + }, + { + "start": 14744.65, + "end": 14744.65, + "probability": 0.3533 + }, + { + "start": 14744.65, + "end": 14744.99, + "probability": 0.0568 + }, + { + "start": 14745.17, + "end": 14746.23, + "probability": 0.6402 + }, + { + "start": 14746.71, + "end": 14747.53, + "probability": 0.8544 + }, + { + "start": 14747.63, + "end": 14751.79, + "probability": 0.9791 + }, + { + "start": 14754.07, + "end": 14754.65, + "probability": 0.0126 + }, + { + "start": 14754.65, + "end": 14756.63, + "probability": 0.5859 + }, + { + "start": 14756.79, + "end": 14758.25, + "probability": 0.3418 + }, + { + "start": 14758.91, + "end": 14759.51, + "probability": 0.0422 + }, + { + "start": 14759.51, + "end": 14760.81, + "probability": 0.1036 + }, + { + "start": 14762.29, + "end": 14764.69, + "probability": 0.2387 + }, + { + "start": 14764.91, + "end": 14767.53, + "probability": 0.8021 + }, + { + "start": 14768.19, + "end": 14768.59, + "probability": 0.0485 + }, + { + "start": 14768.59, + "end": 14769.69, + "probability": 0.0915 + }, + { + "start": 14769.69, + "end": 14769.69, + "probability": 0.109 + }, + { + "start": 14769.69, + "end": 14769.69, + "probability": 0.2132 + }, + { + "start": 14769.69, + "end": 14772.27, + "probability": 0.3816 + }, + { + "start": 14772.61, + "end": 14774.57, + "probability": 0.7974 + }, + { + "start": 14775.77, + "end": 14778.11, + "probability": 0.7247 + }, + { + "start": 14778.79, + "end": 14780.51, + "probability": 0.8338 + }, + { + "start": 14780.53, + "end": 14781.03, + "probability": 0.4906 + }, + { + "start": 14781.39, + "end": 14782.13, + "probability": 0.3596 + }, + { + "start": 14782.15, + "end": 14782.27, + "probability": 0.0711 + }, + { + "start": 14782.27, + "end": 14782.27, + "probability": 0.004 + }, + { + "start": 14782.27, + "end": 14783.09, + "probability": 0.5404 + }, + { + "start": 14783.31, + "end": 14784.21, + "probability": 0.1652 + }, + { + "start": 14784.99, + "end": 14789.29, + "probability": 0.2533 + }, + { + "start": 14789.29, + "end": 14790.35, + "probability": 0.5647 + }, + { + "start": 14790.75, + "end": 14793.73, + "probability": 0.9902 + }, + { + "start": 14793.75, + "end": 14794.85, + "probability": 0.7859 + }, + { + "start": 14795.39, + "end": 14796.09, + "probability": 0.8934 + }, + { + "start": 14796.15, + "end": 14796.49, + "probability": 0.7231 + }, + { + "start": 14796.62, + "end": 14798.15, + "probability": 0.5782 + }, + { + "start": 14798.21, + "end": 14800.47, + "probability": 0.7996 + }, + { + "start": 14801.03, + "end": 14804.05, + "probability": 0.9019 + }, + { + "start": 14804.53, + "end": 14805.07, + "probability": 0.7639 + }, + { + "start": 14805.29, + "end": 14806.31, + "probability": 0.7343 + }, + { + "start": 14806.45, + "end": 14808.75, + "probability": 0.9958 + }, + { + "start": 14809.25, + "end": 14815.67, + "probability": 0.8797 + }, + { + "start": 14816.01, + "end": 14816.81, + "probability": 0.5987 + }, + { + "start": 14817.25, + "end": 14821.73, + "probability": 0.9902 + }, + { + "start": 14822.05, + "end": 14826.97, + "probability": 0.9968 + }, + { + "start": 14827.47, + "end": 14828.03, + "probability": 0.4436 + }, + { + "start": 14828.09, + "end": 14829.99, + "probability": 0.9436 + }, + { + "start": 14830.33, + "end": 14832.59, + "probability": 0.6479 + }, + { + "start": 14832.69, + "end": 14834.01, + "probability": 0.6397 + }, + { + "start": 14834.87, + "end": 14838.29, + "probability": 0.9868 + }, + { + "start": 14838.29, + "end": 14841.85, + "probability": 0.9333 + }, + { + "start": 14842.23, + "end": 14842.65, + "probability": 0.7454 + }, + { + "start": 14842.99, + "end": 14846.99, + "probability": 0.9644 + }, + { + "start": 14847.17, + "end": 14847.65, + "probability": 0.632 + }, + { + "start": 14848.29, + "end": 14851.15, + "probability": 0.8148 + }, + { + "start": 14851.23, + "end": 14853.75, + "probability": 0.9658 + }, + { + "start": 14854.01, + "end": 14856.37, + "probability": 0.9373 + }, + { + "start": 14857.51, + "end": 14859.89, + "probability": 0.9045 + }, + { + "start": 14860.29, + "end": 14862.07, + "probability": 0.8215 + }, + { + "start": 14862.17, + "end": 14862.43, + "probability": 0.8727 + }, + { + "start": 14870.69, + "end": 14871.69, + "probability": 0.7469 + }, + { + "start": 14872.51, + "end": 14874.11, + "probability": 0.821 + }, + { + "start": 14875.27, + "end": 14876.97, + "probability": 0.892 + }, + { + "start": 14878.41, + "end": 14882.17, + "probability": 0.9691 + }, + { + "start": 14884.05, + "end": 14887.29, + "probability": 0.8239 + }, + { + "start": 14888.33, + "end": 14889.61, + "probability": 0.9331 + }, + { + "start": 14890.73, + "end": 14892.39, + "probability": 0.9768 + }, + { + "start": 14893.23, + "end": 14893.79, + "probability": 0.8064 + }, + { + "start": 14895.37, + "end": 14900.09, + "probability": 0.9941 + }, + { + "start": 14900.09, + "end": 14906.83, + "probability": 0.9974 + }, + { + "start": 14907.73, + "end": 14909.09, + "probability": 0.9952 + }, + { + "start": 14909.95, + "end": 14911.19, + "probability": 0.9627 + }, + { + "start": 14912.69, + "end": 14915.35, + "probability": 0.9433 + }, + { + "start": 14916.23, + "end": 14917.57, + "probability": 0.9707 + }, + { + "start": 14917.75, + "end": 14919.35, + "probability": 0.9816 + }, + { + "start": 14919.75, + "end": 14920.55, + "probability": 0.8788 + }, + { + "start": 14921.49, + "end": 14922.69, + "probability": 0.9945 + }, + { + "start": 14923.53, + "end": 14927.73, + "probability": 0.6672 + }, + { + "start": 14928.33, + "end": 14928.89, + "probability": 0.9154 + }, + { + "start": 14930.41, + "end": 14933.75, + "probability": 0.9666 + }, + { + "start": 14934.67, + "end": 14937.13, + "probability": 0.8898 + }, + { + "start": 14938.17, + "end": 14939.65, + "probability": 0.9331 + }, + { + "start": 14940.61, + "end": 14943.17, + "probability": 0.9957 + }, + { + "start": 14943.87, + "end": 14945.77, + "probability": 0.9766 + }, + { + "start": 14946.61, + "end": 14947.27, + "probability": 0.5638 + }, + { + "start": 14948.35, + "end": 14955.69, + "probability": 0.973 + }, + { + "start": 14956.75, + "end": 14957.72, + "probability": 0.9976 + }, + { + "start": 14958.87, + "end": 14961.39, + "probability": 0.9972 + }, + { + "start": 14961.97, + "end": 14962.59, + "probability": 0.989 + }, + { + "start": 14964.15, + "end": 14968.09, + "probability": 0.485 + }, + { + "start": 14968.69, + "end": 14971.99, + "probability": 0.9021 + }, + { + "start": 14972.37, + "end": 14973.13, + "probability": 0.8 + }, + { + "start": 14974.47, + "end": 14978.21, + "probability": 0.9929 + }, + { + "start": 14978.55, + "end": 14980.67, + "probability": 0.897 + }, + { + "start": 14981.09, + "end": 14982.51, + "probability": 0.9611 + }, + { + "start": 14982.77, + "end": 14983.71, + "probability": 0.8078 + }, + { + "start": 14985.57, + "end": 14990.73, + "probability": 0.9827 + }, + { + "start": 14991.43, + "end": 14992.39, + "probability": 0.9189 + }, + { + "start": 14993.25, + "end": 14994.41, + "probability": 0.9709 + }, + { + "start": 14997.95, + "end": 15003.23, + "probability": 0.8785 + }, + { + "start": 15003.55, + "end": 15004.17, + "probability": 0.8012 + }, + { + "start": 15005.43, + "end": 15007.89, + "probability": 0.9932 + }, + { + "start": 15008.45, + "end": 15009.23, + "probability": 0.7086 + }, + { + "start": 15009.93, + "end": 15012.51, + "probability": 0.9969 + }, + { + "start": 15013.09, + "end": 15014.59, + "probability": 0.9855 + }, + { + "start": 15016.19, + "end": 15017.99, + "probability": 0.9423 + }, + { + "start": 15018.79, + "end": 15021.75, + "probability": 0.999 + }, + { + "start": 15022.73, + "end": 15023.81, + "probability": 0.7791 + }, + { + "start": 15024.55, + "end": 15029.53, + "probability": 0.973 + }, + { + "start": 15030.37, + "end": 15030.95, + "probability": 0.7189 + }, + { + "start": 15032.23, + "end": 15035.61, + "probability": 0.9851 + }, + { + "start": 15036.17, + "end": 15036.85, + "probability": 0.7533 + }, + { + "start": 15037.41, + "end": 15038.23, + "probability": 0.9654 + }, + { + "start": 15039.29, + "end": 15040.35, + "probability": 0.8061 + }, + { + "start": 15041.97, + "end": 15044.23, + "probability": 0.9403 + }, + { + "start": 15044.49, + "end": 15044.85, + "probability": 0.8692 + }, + { + "start": 15045.91, + "end": 15048.69, + "probability": 0.8469 + }, + { + "start": 15048.77, + "end": 15050.01, + "probability": 0.9493 + }, + { + "start": 15050.09, + "end": 15050.39, + "probability": 0.3833 + }, + { + "start": 15050.51, + "end": 15051.67, + "probability": 0.9643 + }, + { + "start": 15065.69, + "end": 15067.37, + "probability": 0.6974 + }, + { + "start": 15068.75, + "end": 15070.71, + "probability": 0.4989 + }, + { + "start": 15071.01, + "end": 15072.11, + "probability": 0.6636 + }, + { + "start": 15072.85, + "end": 15074.31, + "probability": 0.891 + }, + { + "start": 15075.49, + "end": 15078.19, + "probability": 0.9296 + }, + { + "start": 15079.01, + "end": 15079.99, + "probability": 0.8517 + }, + { + "start": 15080.77, + "end": 15083.61, + "probability": 0.9902 + }, + { + "start": 15084.47, + "end": 15086.29, + "probability": 0.7681 + }, + { + "start": 15086.47, + "end": 15090.21, + "probability": 0.9124 + }, + { + "start": 15090.81, + "end": 15093.89, + "probability": 0.8156 + }, + { + "start": 15094.45, + "end": 15097.49, + "probability": 0.9438 + }, + { + "start": 15098.07, + "end": 15099.93, + "probability": 0.9808 + }, + { + "start": 15100.45, + "end": 15100.79, + "probability": 0.5512 + }, + { + "start": 15100.89, + "end": 15103.23, + "probability": 0.7052 + }, + { + "start": 15103.77, + "end": 15104.51, + "probability": 0.9369 + }, + { + "start": 15104.77, + "end": 15106.61, + "probability": 0.9569 + }, + { + "start": 15107.31, + "end": 15112.21, + "probability": 0.9837 + }, + { + "start": 15112.21, + "end": 15113.33, + "probability": 0.9641 + }, + { + "start": 15113.59, + "end": 15117.01, + "probability": 0.9954 + }, + { + "start": 15117.01, + "end": 15119.49, + "probability": 0.9574 + }, + { + "start": 15119.61, + "end": 15121.87, + "probability": 0.8752 + }, + { + "start": 15122.03, + "end": 15122.29, + "probability": 0.4077 + }, + { + "start": 15122.49, + "end": 15125.29, + "probability": 0.8367 + }, + { + "start": 15125.65, + "end": 15125.75, + "probability": 0.5723 + }, + { + "start": 15126.95, + "end": 15129.93, + "probability": 0.7915 + }, + { + "start": 15130.77, + "end": 15132.59, + "probability": 0.7754 + }, + { + "start": 15132.59, + "end": 15132.59, + "probability": 0.5818 + }, + { + "start": 15132.59, + "end": 15133.08, + "probability": 0.9293 + }, + { + "start": 15133.61, + "end": 15136.19, + "probability": 0.9832 + }, + { + "start": 15137.07, + "end": 15138.63, + "probability": 0.9331 + }, + { + "start": 15139.39, + "end": 15140.85, + "probability": 0.9927 + }, + { + "start": 15141.45, + "end": 15142.39, + "probability": 0.8696 + }, + { + "start": 15142.79, + "end": 15143.77, + "probability": 0.9652 + }, + { + "start": 15144.57, + "end": 15148.85, + "probability": 0.7508 + }, + { + "start": 15149.49, + "end": 15153.01, + "probability": 0.8639 + }, + { + "start": 15154.37, + "end": 15159.11, + "probability": 0.9844 + }, + { + "start": 15159.77, + "end": 15161.55, + "probability": 0.9934 + }, + { + "start": 15162.09, + "end": 15165.11, + "probability": 0.9922 + }, + { + "start": 15165.57, + "end": 15168.71, + "probability": 0.9954 + }, + { + "start": 15169.29, + "end": 15171.11, + "probability": 0.9043 + }, + { + "start": 15172.17, + "end": 15176.41, + "probability": 0.9893 + }, + { + "start": 15176.77, + "end": 15180.45, + "probability": 0.95 + }, + { + "start": 15181.17, + "end": 15183.31, + "probability": 0.9912 + }, + { + "start": 15183.85, + "end": 15186.39, + "probability": 0.958 + }, + { + "start": 15186.91, + "end": 15188.69, + "probability": 0.8658 + }, + { + "start": 15189.17, + "end": 15190.87, + "probability": 0.6976 + }, + { + "start": 15191.01, + "end": 15192.03, + "probability": 0.5924 + }, + { + "start": 15192.41, + "end": 15193.85, + "probability": 0.9324 + }, + { + "start": 15193.95, + "end": 15196.47, + "probability": 0.9697 + }, + { + "start": 15197.65, + "end": 15203.29, + "probability": 0.9807 + }, + { + "start": 15203.85, + "end": 15205.17, + "probability": 0.7611 + }, + { + "start": 15206.21, + "end": 15210.93, + "probability": 0.9938 + }, + { + "start": 15211.73, + "end": 15215.03, + "probability": 0.7823 + }, + { + "start": 15215.93, + "end": 15216.63, + "probability": 0.8866 + }, + { + "start": 15216.85, + "end": 15218.43, + "probability": 0.2777 + }, + { + "start": 15219.07, + "end": 15220.15, + "probability": 0.82 + }, + { + "start": 15220.23, + "end": 15224.61, + "probability": 0.9959 + }, + { + "start": 15224.61, + "end": 15229.33, + "probability": 0.9925 + }, + { + "start": 15230.43, + "end": 15231.99, + "probability": 0.7748 + }, + { + "start": 15232.05, + "end": 15232.95, + "probability": 0.7256 + }, + { + "start": 15233.01, + "end": 15235.25, + "probability": 0.9984 + }, + { + "start": 15235.57, + "end": 15238.33, + "probability": 0.9973 + }, + { + "start": 15238.33, + "end": 15240.93, + "probability": 0.9988 + }, + { + "start": 15241.27, + "end": 15243.47, + "probability": 0.7456 + }, + { + "start": 15243.85, + "end": 15248.57, + "probability": 0.9921 + }, + { + "start": 15248.91, + "end": 15249.81, + "probability": 0.9587 + }, + { + "start": 15250.03, + "end": 15251.09, + "probability": 0.8337 + }, + { + "start": 15252.19, + "end": 15253.31, + "probability": 0.8326 + }, + { + "start": 15254.87, + "end": 15256.43, + "probability": 0.6871 + }, + { + "start": 15257.49, + "end": 15259.67, + "probability": 0.9648 + }, + { + "start": 15260.47, + "end": 15261.49, + "probability": 0.7156 + }, + { + "start": 15262.57, + "end": 15265.09, + "probability": 0.9838 + }, + { + "start": 15265.19, + "end": 15265.61, + "probability": 0.6954 + }, + { + "start": 15265.83, + "end": 15268.13, + "probability": 0.8623 + }, + { + "start": 15268.61, + "end": 15269.73, + "probability": 0.8601 + }, + { + "start": 15270.17, + "end": 15271.81, + "probability": 0.8206 + }, + { + "start": 15272.39, + "end": 15274.89, + "probability": 0.7582 + }, + { + "start": 15276.01, + "end": 15278.49, + "probability": 0.9131 + }, + { + "start": 15279.69, + "end": 15280.65, + "probability": 0.9749 + }, + { + "start": 15281.33, + "end": 15283.03, + "probability": 0.9835 + }, + { + "start": 15283.55, + "end": 15285.67, + "probability": 0.8366 + }, + { + "start": 15286.25, + "end": 15292.07, + "probability": 0.9545 + }, + { + "start": 15292.99, + "end": 15296.95, + "probability": 0.911 + }, + { + "start": 15297.59, + "end": 15299.89, + "probability": 0.8883 + }, + { + "start": 15301.23, + "end": 15304.19, + "probability": 0.4808 + }, + { + "start": 15305.59, + "end": 15306.63, + "probability": 0.7265 + }, + { + "start": 15306.79, + "end": 15310.87, + "probability": 0.9097 + }, + { + "start": 15310.95, + "end": 15311.97, + "probability": 0.6014 + }, + { + "start": 15312.01, + "end": 15314.07, + "probability": 0.5905 + }, + { + "start": 15315.25, + "end": 15315.93, + "probability": 0.9514 + }, + { + "start": 15316.55, + "end": 15322.97, + "probability": 0.9943 + }, + { + "start": 15323.51, + "end": 15328.31, + "probability": 0.9915 + }, + { + "start": 15329.21, + "end": 15330.87, + "probability": 0.7874 + }, + { + "start": 15331.35, + "end": 15331.89, + "probability": 0.8608 + }, + { + "start": 15332.25, + "end": 15334.19, + "probability": 0.5023 + }, + { + "start": 15334.55, + "end": 15336.95, + "probability": 0.7605 + }, + { + "start": 15336.95, + "end": 15339.35, + "probability": 0.9544 + }, + { + "start": 15340.97, + "end": 15343.71, + "probability": 0.4145 + }, + { + "start": 15344.27, + "end": 15345.05, + "probability": 0.9114 + }, + { + "start": 15345.11, + "end": 15346.55, + "probability": 0.1725 + }, + { + "start": 15346.55, + "end": 15349.37, + "probability": 0.9951 + }, + { + "start": 15349.49, + "end": 15350.71, + "probability": 0.4103 + }, + { + "start": 15350.85, + "end": 15351.69, + "probability": 0.7288 + }, + { + "start": 15351.83, + "end": 15353.55, + "probability": 0.68 + }, + { + "start": 15353.61, + "end": 15355.01, + "probability": 0.7514 + }, + { + "start": 15355.51, + "end": 15358.83, + "probability": 0.2773 + }, + { + "start": 15359.03, + "end": 15361.17, + "probability": 0.6806 + }, + { + "start": 15361.65, + "end": 15365.67, + "probability": 0.8781 + }, + { + "start": 15366.35, + "end": 15368.45, + "probability": 0.4746 + }, + { + "start": 15368.45, + "end": 15368.51, + "probability": 0.4313 + }, + { + "start": 15368.61, + "end": 15368.71, + "probability": 0.3434 + }, + { + "start": 15368.71, + "end": 15369.37, + "probability": 0.5285 + }, + { + "start": 15370.2, + "end": 15373.19, + "probability": 0.6959 + }, + { + "start": 15373.45, + "end": 15377.09, + "probability": 0.9413 + }, + { + "start": 15377.47, + "end": 15381.97, + "probability": 0.9347 + }, + { + "start": 15382.59, + "end": 15383.31, + "probability": 0.4821 + }, + { + "start": 15383.39, + "end": 15387.35, + "probability": 0.9967 + }, + { + "start": 15387.47, + "end": 15388.19, + "probability": 0.6478 + }, + { + "start": 15388.19, + "end": 15388.89, + "probability": 0.4647 + }, + { + "start": 15389.07, + "end": 15391.59, + "probability": 0.846 + }, + { + "start": 15391.73, + "end": 15392.09, + "probability": 0.0884 + }, + { + "start": 15392.09, + "end": 15392.53, + "probability": 0.734 + }, + { + "start": 15392.77, + "end": 15393.23, + "probability": 0.7059 + }, + { + "start": 15393.37, + "end": 15394.99, + "probability": 0.8767 + }, + { + "start": 15395.11, + "end": 15396.88, + "probability": 0.7285 + }, + { + "start": 15396.91, + "end": 15397.25, + "probability": 0.517 + }, + { + "start": 15400.65, + "end": 15404.23, + "probability": 0.6383 + }, + { + "start": 15404.83, + "end": 15408.19, + "probability": 0.9591 + }, + { + "start": 15408.85, + "end": 15410.81, + "probability": 0.7823 + }, + { + "start": 15411.99, + "end": 15414.65, + "probability": 0.9242 + }, + { + "start": 15415.57, + "end": 15417.23, + "probability": 0.9696 + }, + { + "start": 15418.11, + "end": 15420.69, + "probability": 0.8683 + }, + { + "start": 15421.87, + "end": 15423.95, + "probability": 0.722 + }, + { + "start": 15424.61, + "end": 15427.03, + "probability": 0.973 + }, + { + "start": 15428.31, + "end": 15429.19, + "probability": 0.8005 + }, + { + "start": 15429.81, + "end": 15432.03, + "probability": 0.8869 + }, + { + "start": 15433.29, + "end": 15435.49, + "probability": 0.9561 + }, + { + "start": 15436.91, + "end": 15440.21, + "probability": 0.9753 + }, + { + "start": 15441.33, + "end": 15442.59, + "probability": 0.926 + }, + { + "start": 15443.51, + "end": 15449.27, + "probability": 0.9945 + }, + { + "start": 15450.09, + "end": 15452.91, + "probability": 0.9782 + }, + { + "start": 15453.59, + "end": 15459.91, + "probability": 0.9932 + }, + { + "start": 15460.63, + "end": 15462.41, + "probability": 0.8212 + }, + { + "start": 15463.23, + "end": 15470.19, + "probability": 0.9635 + }, + { + "start": 15470.73, + "end": 15478.01, + "probability": 0.9965 + }, + { + "start": 15479.15, + "end": 15480.21, + "probability": 0.6166 + }, + { + "start": 15481.51, + "end": 15487.41, + "probability": 0.9732 + }, + { + "start": 15488.15, + "end": 15488.95, + "probability": 0.459 + }, + { + "start": 15489.09, + "end": 15489.95, + "probability": 0.9207 + }, + { + "start": 15490.23, + "end": 15491.05, + "probability": 0.6271 + }, + { + "start": 15491.19, + "end": 15494.71, + "probability": 0.8718 + }, + { + "start": 15495.37, + "end": 15500.95, + "probability": 0.9296 + }, + { + "start": 15502.03, + "end": 15503.91, + "probability": 0.7553 + }, + { + "start": 15504.07, + "end": 15507.82, + "probability": 0.9669 + }, + { + "start": 15508.53, + "end": 15510.21, + "probability": 0.9496 + }, + { + "start": 15510.33, + "end": 15513.21, + "probability": 0.9704 + }, + { + "start": 15514.17, + "end": 15517.09, + "probability": 0.9845 + }, + { + "start": 15518.25, + "end": 15522.69, + "probability": 0.9791 + }, + { + "start": 15522.81, + "end": 15524.63, + "probability": 0.6737 + }, + { + "start": 15525.21, + "end": 15532.43, + "probability": 0.9851 + }, + { + "start": 15533.23, + "end": 15537.09, + "probability": 0.9913 + }, + { + "start": 15537.97, + "end": 15545.03, + "probability": 0.9944 + }, + { + "start": 15545.61, + "end": 15549.95, + "probability": 0.7707 + }, + { + "start": 15550.09, + "end": 15554.33, + "probability": 0.9614 + }, + { + "start": 15554.65, + "end": 15555.71, + "probability": 0.9686 + }, + { + "start": 15556.29, + "end": 15560.41, + "probability": 0.895 + }, + { + "start": 15560.67, + "end": 15562.73, + "probability": 0.9726 + }, + { + "start": 15563.21, + "end": 15563.79, + "probability": 0.8192 + }, + { + "start": 15566.19, + "end": 15567.35, + "probability": 0.7422 + }, + { + "start": 15567.81, + "end": 15572.15, + "probability": 0.9792 + }, + { + "start": 15572.73, + "end": 15575.59, + "probability": 0.962 + }, + { + "start": 15575.65, + "end": 15576.81, + "probability": 0.7765 + }, + { + "start": 15577.15, + "end": 15578.25, + "probability": 0.9219 + }, + { + "start": 15578.67, + "end": 15583.91, + "probability": 0.9926 + }, + { + "start": 15584.79, + "end": 15589.06, + "probability": 0.9953 + }, + { + "start": 15589.45, + "end": 15595.33, + "probability": 0.6937 + }, + { + "start": 15595.83, + "end": 15599.77, + "probability": 0.9893 + }, + { + "start": 15600.21, + "end": 15600.47, + "probability": 0.2886 + }, + { + "start": 15600.47, + "end": 15600.71, + "probability": 0.5377 + }, + { + "start": 15600.79, + "end": 15601.19, + "probability": 0.7852 + }, + { + "start": 15601.27, + "end": 15601.87, + "probability": 0.7452 + }, + { + "start": 15601.95, + "end": 15602.45, + "probability": 0.9421 + }, + { + "start": 15602.53, + "end": 15603.61, + "probability": 0.8716 + }, + { + "start": 15604.17, + "end": 15605.91, + "probability": 0.8198 + }, + { + "start": 15606.07, + "end": 15608.39, + "probability": 0.88 + }, + { + "start": 15608.55, + "end": 15609.29, + "probability": 0.7423 + }, + { + "start": 15609.71, + "end": 15613.12, + "probability": 0.9473 + }, + { + "start": 15613.25, + "end": 15613.81, + "probability": 0.669 + }, + { + "start": 15615.21, + "end": 15616.57, + "probability": 0.7411 + }, + { + "start": 15616.69, + "end": 15618.75, + "probability": 0.5397 + }, + { + "start": 15618.81, + "end": 15623.07, + "probability": 0.8742 + }, + { + "start": 15623.47, + "end": 15628.35, + "probability": 0.9191 + }, + { + "start": 15628.67, + "end": 15630.97, + "probability": 0.9648 + }, + { + "start": 15631.31, + "end": 15638.11, + "probability": 0.9535 + }, + { + "start": 15638.11, + "end": 15642.97, + "probability": 0.9907 + }, + { + "start": 15643.11, + "end": 15646.01, + "probability": 0.9872 + }, + { + "start": 15646.13, + "end": 15651.69, + "probability": 0.9561 + }, + { + "start": 15652.21, + "end": 15653.39, + "probability": 0.9797 + }, + { + "start": 15654.37, + "end": 15657.09, + "probability": 0.9444 + }, + { + "start": 15657.47, + "end": 15658.55, + "probability": 0.808 + }, + { + "start": 15658.65, + "end": 15665.81, + "probability": 0.9701 + }, + { + "start": 15665.85, + "end": 15672.35, + "probability": 0.901 + }, + { + "start": 15672.35, + "end": 15672.35, + "probability": 0.3638 + }, + { + "start": 15672.37, + "end": 15673.43, + "probability": 0.8208 + }, + { + "start": 15673.87, + "end": 15674.99, + "probability": 0.6217 + }, + { + "start": 15675.03, + "end": 15677.65, + "probability": 0.6904 + }, + { + "start": 15677.69, + "end": 15679.83, + "probability": 0.8414 + }, + { + "start": 15680.27, + "end": 15682.13, + "probability": 0.8744 + }, + { + "start": 15682.43, + "end": 15686.03, + "probability": 0.9878 + }, + { + "start": 15686.47, + "end": 15690.17, + "probability": 0.9917 + }, + { + "start": 15690.71, + "end": 15695.57, + "probability": 0.9836 + }, + { + "start": 15696.07, + "end": 15699.83, + "probability": 0.9902 + }, + { + "start": 15700.25, + "end": 15701.71, + "probability": 0.9976 + }, + { + "start": 15702.27, + "end": 15703.79, + "probability": 0.9728 + }, + { + "start": 15705.32, + "end": 15707.14, + "probability": 0.5154 + }, + { + "start": 15707.59, + "end": 15708.49, + "probability": 0.7379 + }, + { + "start": 15708.75, + "end": 15713.11, + "probability": 0.8133 + }, + { + "start": 15714.11, + "end": 15716.35, + "probability": 0.5801 + }, + { + "start": 15716.65, + "end": 15717.11, + "probability": 0.762 + }, + { + "start": 15718.57, + "end": 15722.63, + "probability": 0.9663 + }, + { + "start": 15722.73, + "end": 15724.33, + "probability": 0.9648 + }, + { + "start": 15724.59, + "end": 15728.03, + "probability": 0.9957 + }, + { + "start": 15728.21, + "end": 15730.49, + "probability": 0.812 + }, + { + "start": 15731.95, + "end": 15733.77, + "probability": 0.7435 + }, + { + "start": 15734.59, + "end": 15736.4, + "probability": 0.9841 + }, + { + "start": 15737.81, + "end": 15741.3, + "probability": 0.9942 + }, + { + "start": 15742.87, + "end": 15744.93, + "probability": 0.9867 + }, + { + "start": 15745.95, + "end": 15748.31, + "probability": 0.9946 + }, + { + "start": 15749.87, + "end": 15750.35, + "probability": 0.8779 + }, + { + "start": 15751.11, + "end": 15753.81, + "probability": 0.9924 + }, + { + "start": 15754.83, + "end": 15758.05, + "probability": 0.8858 + }, + { + "start": 15759.35, + "end": 15762.07, + "probability": 0.9679 + }, + { + "start": 15762.97, + "end": 15765.1, + "probability": 0.9796 + }, + { + "start": 15765.37, + "end": 15767.31, + "probability": 0.9888 + }, + { + "start": 15768.41, + "end": 15777.23, + "probability": 0.9419 + }, + { + "start": 15777.75, + "end": 15783.25, + "probability": 0.6587 + }, + { + "start": 15783.79, + "end": 15787.27, + "probability": 0.9655 + }, + { + "start": 15788.51, + "end": 15792.71, + "probability": 0.9634 + }, + { + "start": 15793.31, + "end": 15795.15, + "probability": 0.9786 + }, + { + "start": 15795.85, + "end": 15798.05, + "probability": 0.8437 + }, + { + "start": 15799.77, + "end": 15801.29, + "probability": 0.982 + }, + { + "start": 15802.05, + "end": 15802.27, + "probability": 0.9124 + }, + { + "start": 15803.19, + "end": 15806.07, + "probability": 0.8818 + }, + { + "start": 15806.53, + "end": 15808.5, + "probability": 0.9955 + }, + { + "start": 15808.73, + "end": 15811.33, + "probability": 0.9645 + }, + { + "start": 15812.15, + "end": 15814.15, + "probability": 0.9929 + }, + { + "start": 15814.99, + "end": 15816.73, + "probability": 0.4181 + }, + { + "start": 15817.39, + "end": 15822.93, + "probability": 0.994 + }, + { + "start": 15823.55, + "end": 15825.93, + "probability": 0.9631 + }, + { + "start": 15826.75, + "end": 15830.61, + "probability": 0.9838 + }, + { + "start": 15831.21, + "end": 15833.55, + "probability": 0.962 + }, + { + "start": 15834.53, + "end": 15836.83, + "probability": 0.9247 + }, + { + "start": 15837.45, + "end": 15842.47, + "probability": 0.9944 + }, + { + "start": 15842.99, + "end": 15843.59, + "probability": 0.7296 + }, + { + "start": 15844.29, + "end": 15846.45, + "probability": 0.9926 + }, + { + "start": 15847.21, + "end": 15851.79, + "probability": 0.9683 + }, + { + "start": 15851.79, + "end": 15853.89, + "probability": 0.0251 + }, + { + "start": 15853.89, + "end": 15856.39, + "probability": 0.8906 + }, + { + "start": 15857.15, + "end": 15859.63, + "probability": 0.9412 + }, + { + "start": 15860.21, + "end": 15861.77, + "probability": 0.518 + }, + { + "start": 15862.41, + "end": 15864.69, + "probability": 0.7293 + }, + { + "start": 15865.27, + "end": 15870.75, + "probability": 0.9941 + }, + { + "start": 15871.33, + "end": 15873.37, + "probability": 0.989 + }, + { + "start": 15873.95, + "end": 15875.03, + "probability": 0.9333 + }, + { + "start": 15875.55, + "end": 15879.95, + "probability": 0.9833 + }, + { + "start": 15881.53, + "end": 15885.33, + "probability": 0.5156 + }, + { + "start": 15886.03, + "end": 15889.91, + "probability": 0.7421 + }, + { + "start": 15890.43, + "end": 15893.41, + "probability": 0.6112 + }, + { + "start": 15893.95, + "end": 15896.19, + "probability": 0.949 + }, + { + "start": 15896.91, + "end": 15901.73, + "probability": 0.8127 + }, + { + "start": 15902.23, + "end": 15903.47, + "probability": 0.9164 + }, + { + "start": 15903.95, + "end": 15905.55, + "probability": 0.9373 + }, + { + "start": 15906.23, + "end": 15909.19, + "probability": 0.8551 + }, + { + "start": 15909.61, + "end": 15911.85, + "probability": 0.9128 + }, + { + "start": 15912.25, + "end": 15914.44, + "probability": 0.8609 + }, + { + "start": 15915.69, + "end": 15917.35, + "probability": 0.4983 + }, + { + "start": 15918.11, + "end": 15919.77, + "probability": 0.9653 + }, + { + "start": 15920.31, + "end": 15922.81, + "probability": 0.5135 + }, + { + "start": 15923.43, + "end": 15925.63, + "probability": 0.6676 + }, + { + "start": 15926.33, + "end": 15931.51, + "probability": 0.8041 + }, + { + "start": 15932.13, + "end": 15934.25, + "probability": 0.9738 + }, + { + "start": 15935.33, + "end": 15936.79, + "probability": 0.8805 + }, + { + "start": 15937.61, + "end": 15939.79, + "probability": 0.9525 + }, + { + "start": 15940.45, + "end": 15943.71, + "probability": 0.9874 + }, + { + "start": 15943.81, + "end": 15945.01, + "probability": 0.9088 + }, + { + "start": 15945.79, + "end": 15948.21, + "probability": 0.9841 + }, + { + "start": 15948.77, + "end": 15951.43, + "probability": 0.8835 + }, + { + "start": 15952.11, + "end": 15954.27, + "probability": 0.9334 + }, + { + "start": 15954.75, + "end": 15956.93, + "probability": 0.9987 + }, + { + "start": 15957.05, + "end": 15960.91, + "probability": 0.8189 + }, + { + "start": 15961.31, + "end": 15965.59, + "probability": 0.9869 + }, + { + "start": 15966.07, + "end": 15966.37, + "probability": 0.4559 + }, + { + "start": 15966.67, + "end": 15968.37, + "probability": 0.8936 + }, + { + "start": 15968.51, + "end": 15970.37, + "probability": 0.8729 + }, + { + "start": 15970.81, + "end": 15972.53, + "probability": 0.9043 + }, + { + "start": 15989.03, + "end": 15990.27, + "probability": 0.8038 + }, + { + "start": 15990.97, + "end": 15991.67, + "probability": 0.6296 + }, + { + "start": 15996.2, + "end": 15998.31, + "probability": 0.8281 + }, + { + "start": 15999.49, + "end": 16004.81, + "probability": 0.8676 + }, + { + "start": 16005.19, + "end": 16005.83, + "probability": 0.4631 + }, + { + "start": 16005.87, + "end": 16006.95, + "probability": 0.9426 + }, + { + "start": 16007.55, + "end": 16010.81, + "probability": 0.9276 + }, + { + "start": 16012.33, + "end": 16013.49, + "probability": 0.8466 + }, + { + "start": 16014.01, + "end": 16016.29, + "probability": 0.9229 + }, + { + "start": 16016.29, + "end": 16019.61, + "probability": 0.9858 + }, + { + "start": 16020.31, + "end": 16024.29, + "probability": 0.9078 + }, + { + "start": 16025.05, + "end": 16025.85, + "probability": 0.9806 + }, + { + "start": 16026.97, + "end": 16027.45, + "probability": 0.6401 + }, + { + "start": 16027.55, + "end": 16028.53, + "probability": 0.5174 + }, + { + "start": 16028.57, + "end": 16030.33, + "probability": 0.9306 + }, + { + "start": 16030.41, + "end": 16030.81, + "probability": 0.7692 + }, + { + "start": 16031.81, + "end": 16033.05, + "probability": 0.872 + }, + { + "start": 16033.91, + "end": 16037.89, + "probability": 0.9255 + }, + { + "start": 16038.47, + "end": 16040.47, + "probability": 0.7205 + }, + { + "start": 16041.95, + "end": 16044.37, + "probability": 0.8832 + }, + { + "start": 16044.45, + "end": 16045.24, + "probability": 0.9109 + }, + { + "start": 16045.45, + "end": 16050.71, + "probability": 0.9507 + }, + { + "start": 16050.93, + "end": 16052.41, + "probability": 0.6152 + }, + { + "start": 16053.01, + "end": 16059.87, + "probability": 0.9564 + }, + { + "start": 16060.81, + "end": 16061.45, + "probability": 0.7415 + }, + { + "start": 16061.55, + "end": 16063.17, + "probability": 0.7565 + }, + { + "start": 16063.25, + "end": 16064.07, + "probability": 0.7565 + }, + { + "start": 16064.91, + "end": 16068.05, + "probability": 0.9946 + }, + { + "start": 16068.05, + "end": 16072.63, + "probability": 0.9717 + }, + { + "start": 16073.99, + "end": 16074.69, + "probability": 0.8262 + }, + { + "start": 16075.21, + "end": 16075.23, + "probability": 0.0713 + }, + { + "start": 16075.23, + "end": 16076.04, + "probability": 0.7405 + }, + { + "start": 16076.15, + "end": 16077.17, + "probability": 0.7759 + }, + { + "start": 16077.27, + "end": 16082.43, + "probability": 0.7945 + }, + { + "start": 16083.29, + "end": 16087.81, + "probability": 0.9793 + }, + { + "start": 16089.03, + "end": 16089.27, + "probability": 0.36 + }, + { + "start": 16089.37, + "end": 16093.05, + "probability": 0.9507 + }, + { + "start": 16093.63, + "end": 16095.81, + "probability": 0.8916 + }, + { + "start": 16096.65, + "end": 16100.05, + "probability": 0.9937 + }, + { + "start": 16101.45, + "end": 16102.03, + "probability": 0.8369 + }, + { + "start": 16102.17, + "end": 16102.93, + "probability": 0.8708 + }, + { + "start": 16103.11, + "end": 16103.97, + "probability": 0.804 + }, + { + "start": 16104.09, + "end": 16106.45, + "probability": 0.9621 + }, + { + "start": 16106.97, + "end": 16108.03, + "probability": 0.6544 + }, + { + "start": 16109.07, + "end": 16111.31, + "probability": 0.9093 + }, + { + "start": 16112.15, + "end": 16114.93, + "probability": 0.946 + }, + { + "start": 16115.51, + "end": 16116.99, + "probability": 0.8778 + }, + { + "start": 16117.05, + "end": 16120.65, + "probability": 0.8978 + }, + { + "start": 16121.57, + "end": 16124.51, + "probability": 0.9878 + }, + { + "start": 16124.51, + "end": 16129.47, + "probability": 0.9431 + }, + { + "start": 16130.59, + "end": 16132.75, + "probability": 0.9449 + }, + { + "start": 16132.83, + "end": 16133.63, + "probability": 0.8314 + }, + { + "start": 16133.73, + "end": 16136.49, + "probability": 0.8221 + }, + { + "start": 16136.79, + "end": 16137.93, + "probability": 0.9304 + }, + { + "start": 16138.11, + "end": 16139.19, + "probability": 0.7884 + }, + { + "start": 16139.41, + "end": 16141.33, + "probability": 0.7891 + }, + { + "start": 16142.11, + "end": 16145.57, + "probability": 0.9214 + }, + { + "start": 16145.57, + "end": 16149.79, + "probability": 0.9937 + }, + { + "start": 16150.99, + "end": 16153.43, + "probability": 0.9948 + }, + { + "start": 16154.17, + "end": 16156.61, + "probability": 0.9946 + }, + { + "start": 16157.39, + "end": 16158.61, + "probability": 0.773 + }, + { + "start": 16159.11, + "end": 16160.59, + "probability": 0.9907 + }, + { + "start": 16161.47, + "end": 16162.23, + "probability": 0.9419 + }, + { + "start": 16163.03, + "end": 16163.69, + "probability": 0.9796 + }, + { + "start": 16164.57, + "end": 16166.51, + "probability": 0.8493 + }, + { + "start": 16167.35, + "end": 16168.48, + "probability": 0.9219 + }, + { + "start": 16169.25, + "end": 16170.67, + "probability": 0.8549 + }, + { + "start": 16171.49, + "end": 16172.01, + "probability": 0.7111 + }, + { + "start": 16172.09, + "end": 16172.37, + "probability": 0.8419 + }, + { + "start": 16172.41, + "end": 16175.95, + "probability": 0.9933 + }, + { + "start": 16176.73, + "end": 16177.63, + "probability": 0.8921 + }, + { + "start": 16178.53, + "end": 16181.0, + "probability": 0.8362 + }, + { + "start": 16181.33, + "end": 16182.57, + "probability": 0.9535 + }, + { + "start": 16182.99, + "end": 16183.99, + "probability": 0.8196 + }, + { + "start": 16184.11, + "end": 16189.25, + "probability": 0.9774 + }, + { + "start": 16191.25, + "end": 16192.41, + "probability": 0.9941 + }, + { + "start": 16193.19, + "end": 16195.01, + "probability": 0.995 + }, + { + "start": 16195.37, + "end": 16197.75, + "probability": 0.8059 + }, + { + "start": 16198.55, + "end": 16199.41, + "probability": 0.5607 + }, + { + "start": 16200.33, + "end": 16202.55, + "probability": 0.8961 + }, + { + "start": 16203.11, + "end": 16206.09, + "probability": 0.9421 + }, + { + "start": 16206.17, + "end": 16206.79, + "probability": 0.8924 + }, + { + "start": 16207.75, + "end": 16208.57, + "probability": 0.9129 + }, + { + "start": 16209.15, + "end": 16211.05, + "probability": 0.9927 + }, + { + "start": 16211.77, + "end": 16213.89, + "probability": 0.9056 + }, + { + "start": 16214.09, + "end": 16214.37, + "probability": 0.7975 + }, + { + "start": 16214.79, + "end": 16217.35, + "probability": 0.978 + }, + { + "start": 16217.89, + "end": 16219.91, + "probability": 0.8179 + }, + { + "start": 16220.39, + "end": 16221.13, + "probability": 0.3962 + }, + { + "start": 16221.19, + "end": 16223.73, + "probability": 0.9802 + }, + { + "start": 16231.91, + "end": 16234.17, + "probability": 0.7225 + }, + { + "start": 16244.29, + "end": 16245.29, + "probability": 0.7493 + }, + { + "start": 16246.43, + "end": 16247.59, + "probability": 0.776 + }, + { + "start": 16247.79, + "end": 16249.97, + "probability": 0.9904 + }, + { + "start": 16250.07, + "end": 16253.15, + "probability": 0.9888 + }, + { + "start": 16254.24, + "end": 16257.37, + "probability": 0.9893 + }, + { + "start": 16257.75, + "end": 16259.15, + "probability": 0.8765 + }, + { + "start": 16259.77, + "end": 16262.39, + "probability": 0.6791 + }, + { + "start": 16263.23, + "end": 16265.33, + "probability": 0.9521 + }, + { + "start": 16266.03, + "end": 16266.87, + "probability": 0.7566 + }, + { + "start": 16267.67, + "end": 16268.61, + "probability": 0.9272 + }, + { + "start": 16269.11, + "end": 16272.11, + "probability": 0.9756 + }, + { + "start": 16272.41, + "end": 16272.89, + "probability": 0.8862 + }, + { + "start": 16273.39, + "end": 16274.51, + "probability": 0.9851 + }, + { + "start": 16274.97, + "end": 16278.07, + "probability": 0.9952 + }, + { + "start": 16278.07, + "end": 16282.45, + "probability": 0.9995 + }, + { + "start": 16282.59, + "end": 16283.79, + "probability": 0.998 + }, + { + "start": 16283.89, + "end": 16286.33, + "probability": 0.6691 + }, + { + "start": 16286.47, + "end": 16287.37, + "probability": 0.9852 + }, + { + "start": 16287.69, + "end": 16289.31, + "probability": 0.044 + }, + { + "start": 16290.73, + "end": 16294.53, + "probability": 0.795 + }, + { + "start": 16295.81, + "end": 16297.15, + "probability": 0.81 + }, + { + "start": 16297.47, + "end": 16299.15, + "probability": 0.9933 + }, + { + "start": 16299.87, + "end": 16302.81, + "probability": 0.9749 + }, + { + "start": 16302.91, + "end": 16305.49, + "probability": 0.9959 + }, + { + "start": 16305.97, + "end": 16310.17, + "probability": 0.9899 + }, + { + "start": 16310.23, + "end": 16311.03, + "probability": 0.8037 + }, + { + "start": 16311.05, + "end": 16312.03, + "probability": 0.8633 + }, + { + "start": 16313.49, + "end": 16317.74, + "probability": 0.9213 + }, + { + "start": 16319.77, + "end": 16324.35, + "probability": 0.9906 + }, + { + "start": 16325.45, + "end": 16327.99, + "probability": 0.5964 + }, + { + "start": 16328.09, + "end": 16328.99, + "probability": 0.7635 + }, + { + "start": 16329.43, + "end": 16330.02, + "probability": 0.9644 + }, + { + "start": 16331.33, + "end": 16333.09, + "probability": 0.9727 + }, + { + "start": 16333.59, + "end": 16336.53, + "probability": 0.876 + }, + { + "start": 16337.71, + "end": 16338.31, + "probability": 0.9272 + }, + { + "start": 16338.95, + "end": 16341.21, + "probability": 0.8486 + }, + { + "start": 16342.07, + "end": 16342.79, + "probability": 0.4384 + }, + { + "start": 16343.13, + "end": 16345.22, + "probability": 0.9796 + }, + { + "start": 16345.75, + "end": 16346.11, + "probability": 0.7784 + }, + { + "start": 16346.19, + "end": 16347.43, + "probability": 0.8927 + }, + { + "start": 16347.55, + "end": 16348.4, + "probability": 0.9573 + }, + { + "start": 16349.23, + "end": 16350.06, + "probability": 0.9596 + }, + { + "start": 16351.31, + "end": 16352.21, + "probability": 0.9417 + }, + { + "start": 16353.09, + "end": 16356.14, + "probability": 0.9919 + }, + { + "start": 16358.81, + "end": 16360.91, + "probability": 0.8535 + }, + { + "start": 16361.51, + "end": 16363.49, + "probability": 0.1716 + }, + { + "start": 16364.41, + "end": 16365.55, + "probability": 0.6665 + }, + { + "start": 16365.67, + "end": 16366.41, + "probability": 0.8597 + }, + { + "start": 16366.81, + "end": 16367.6, + "probability": 0.9199 + }, + { + "start": 16367.69, + "end": 16369.03, + "probability": 0.9707 + }, + { + "start": 16369.21, + "end": 16370.17, + "probability": 0.8247 + }, + { + "start": 16370.81, + "end": 16371.29, + "probability": 0.6433 + }, + { + "start": 16372.23, + "end": 16372.65, + "probability": 0.016 + }, + { + "start": 16372.65, + "end": 16372.65, + "probability": 0.6063 + }, + { + "start": 16372.65, + "end": 16373.23, + "probability": 0.4464 + }, + { + "start": 16374.33, + "end": 16375.47, + "probability": 0.9846 + }, + { + "start": 16375.57, + "end": 16378.75, + "probability": 0.9378 + }, + { + "start": 16379.53, + "end": 16382.99, + "probability": 0.8753 + }, + { + "start": 16382.99, + "end": 16386.43, + "probability": 0.9714 + }, + { + "start": 16387.29, + "end": 16389.19, + "probability": 0.6412 + }, + { + "start": 16389.33, + "end": 16390.79, + "probability": 0.8449 + }, + { + "start": 16390.89, + "end": 16392.89, + "probability": 0.576 + }, + { + "start": 16392.89, + "end": 16394.63, + "probability": 0.3258 + }, + { + "start": 16394.77, + "end": 16396.93, + "probability": 0.9878 + }, + { + "start": 16397.23, + "end": 16399.17, + "probability": 0.3445 + }, + { + "start": 16399.57, + "end": 16400.18, + "probability": 0.9678 + }, + { + "start": 16401.37, + "end": 16402.15, + "probability": 0.7528 + }, + { + "start": 16402.27, + "end": 16403.37, + "probability": 0.5067 + }, + { + "start": 16404.45, + "end": 16407.21, + "probability": 0.9958 + }, + { + "start": 16408.19, + "end": 16410.05, + "probability": 0.7902 + }, + { + "start": 16410.27, + "end": 16414.15, + "probability": 0.997 + }, + { + "start": 16414.95, + "end": 16418.21, + "probability": 0.9858 + }, + { + "start": 16419.53, + "end": 16420.67, + "probability": 0.8721 + }, + { + "start": 16420.75, + "end": 16421.39, + "probability": 0.7048 + }, + { + "start": 16421.59, + "end": 16424.35, + "probability": 0.9955 + }, + { + "start": 16425.23, + "end": 16425.65, + "probability": 0.8683 + }, + { + "start": 16425.67, + "end": 16428.73, + "probability": 0.996 + }, + { + "start": 16428.73, + "end": 16433.73, + "probability": 0.9414 + }, + { + "start": 16434.41, + "end": 16436.05, + "probability": 0.9741 + }, + { + "start": 16436.61, + "end": 16440.35, + "probability": 0.9775 + }, + { + "start": 16440.51, + "end": 16441.95, + "probability": 0.6269 + }, + { + "start": 16442.01, + "end": 16444.65, + "probability": 0.881 + }, + { + "start": 16444.99, + "end": 16445.73, + "probability": 0.7056 + }, + { + "start": 16445.79, + "end": 16446.73, + "probability": 0.4825 + }, + { + "start": 16446.75, + "end": 16449.43, + "probability": 0.9792 + }, + { + "start": 16450.6, + "end": 16451.44, + "probability": 0.1146 + }, + { + "start": 16452.83, + "end": 16452.83, + "probability": 0.0874 + }, + { + "start": 16452.83, + "end": 16454.19, + "probability": 0.9114 + }, + { + "start": 16454.43, + "end": 16455.61, + "probability": 0.883 + }, + { + "start": 16456.09, + "end": 16458.67, + "probability": 0.7938 + }, + { + "start": 16458.81, + "end": 16459.09, + "probability": 0.5642 + }, + { + "start": 16459.19, + "end": 16461.05, + "probability": 0.9429 + }, + { + "start": 16461.93, + "end": 16467.07, + "probability": 0.9325 + }, + { + "start": 16467.13, + "end": 16469.09, + "probability": 0.828 + }, + { + "start": 16469.15, + "end": 16470.29, + "probability": 0.4835 + }, + { + "start": 16470.29, + "end": 16471.53, + "probability": 0.6564 + }, + { + "start": 16472.73, + "end": 16474.19, + "probability": 0.9504 + }, + { + "start": 16474.89, + "end": 16477.05, + "probability": 0.8418 + }, + { + "start": 16477.37, + "end": 16477.51, + "probability": 0.0891 + }, + { + "start": 16478.13, + "end": 16481.03, + "probability": 0.9781 + }, + { + "start": 16481.29, + "end": 16483.67, + "probability": 0.7005 + }, + { + "start": 16484.29, + "end": 16486.73, + "probability": 0.8062 + }, + { + "start": 16489.57, + "end": 16492.83, + "probability": 0.6958 + }, + { + "start": 16493.51, + "end": 16499.89, + "probability": 0.8987 + }, + { + "start": 16500.86, + "end": 16505.19, + "probability": 0.964 + }, + { + "start": 16506.03, + "end": 16508.73, + "probability": 0.9985 + }, + { + "start": 16509.41, + "end": 16513.43, + "probability": 0.9571 + }, + { + "start": 16513.95, + "end": 16519.13, + "probability": 0.9722 + }, + { + "start": 16519.97, + "end": 16520.93, + "probability": 0.7754 + }, + { + "start": 16521.59, + "end": 16522.39, + "probability": 0.8935 + }, + { + "start": 16522.87, + "end": 16524.39, + "probability": 0.7808 + }, + { + "start": 16524.83, + "end": 16528.03, + "probability": 0.9726 + }, + { + "start": 16529.98, + "end": 16535.19, + "probability": 0.9943 + }, + { + "start": 16535.89, + "end": 16538.51, + "probability": 0.9751 + }, + { + "start": 16538.65, + "end": 16541.99, + "probability": 0.8015 + }, + { + "start": 16542.27, + "end": 16542.67, + "probability": 0.8608 + }, + { + "start": 16543.57, + "end": 16545.84, + "probability": 0.899 + }, + { + "start": 16546.49, + "end": 16547.16, + "probability": 0.9741 + }, + { + "start": 16547.69, + "end": 16550.13, + "probability": 0.9917 + }, + { + "start": 16550.59, + "end": 16553.87, + "probability": 0.9146 + }, + { + "start": 16554.47, + "end": 16556.87, + "probability": 0.9839 + }, + { + "start": 16557.31, + "end": 16558.39, + "probability": 0.9584 + }, + { + "start": 16558.51, + "end": 16561.85, + "probability": 0.967 + }, + { + "start": 16562.39, + "end": 16565.51, + "probability": 0.9011 + }, + { + "start": 16566.15, + "end": 16567.05, + "probability": 0.8185 + }, + { + "start": 16567.57, + "end": 16569.51, + "probability": 0.9644 + }, + { + "start": 16570.01, + "end": 16572.47, + "probability": 0.7359 + }, + { + "start": 16573.65, + "end": 16579.33, + "probability": 0.7885 + }, + { + "start": 16579.99, + "end": 16583.57, + "probability": 0.9559 + }, + { + "start": 16584.13, + "end": 16590.43, + "probability": 0.9632 + }, + { + "start": 16590.91, + "end": 16591.87, + "probability": 0.856 + }, + { + "start": 16592.73, + "end": 16598.05, + "probability": 0.8555 + }, + { + "start": 16599.23, + "end": 16605.55, + "probability": 0.8663 + }, + { + "start": 16606.51, + "end": 16606.87, + "probability": 0.7361 + }, + { + "start": 16606.93, + "end": 16608.49, + "probability": 0.7979 + }, + { + "start": 16608.97, + "end": 16609.35, + "probability": 0.2916 + }, + { + "start": 16609.67, + "end": 16616.79, + "probability": 0.9202 + }, + { + "start": 16616.93, + "end": 16620.49, + "probability": 0.9471 + }, + { + "start": 16621.47, + "end": 16624.61, + "probability": 0.8147 + }, + { + "start": 16625.85, + "end": 16629.13, + "probability": 0.9868 + }, + { + "start": 16629.75, + "end": 16634.55, + "probability": 0.9463 + }, + { + "start": 16635.47, + "end": 16636.67, + "probability": 0.8456 + }, + { + "start": 16636.85, + "end": 16637.17, + "probability": 0.7864 + }, + { + "start": 16637.27, + "end": 16640.1, + "probability": 0.8076 + }, + { + "start": 16640.79, + "end": 16641.77, + "probability": 0.9558 + }, + { + "start": 16642.91, + "end": 16646.77, + "probability": 0.9971 + }, + { + "start": 16647.19, + "end": 16650.55, + "probability": 0.999 + }, + { + "start": 16651.35, + "end": 16655.81, + "probability": 0.9115 + }, + { + "start": 16656.91, + "end": 16658.41, + "probability": 0.9734 + }, + { + "start": 16658.99, + "end": 16663.25, + "probability": 0.9035 + }, + { + "start": 16663.89, + "end": 16665.13, + "probability": 0.9102 + }, + { + "start": 16665.63, + "end": 16666.55, + "probability": 0.8892 + }, + { + "start": 16667.13, + "end": 16669.15, + "probability": 0.9019 + }, + { + "start": 16669.77, + "end": 16673.31, + "probability": 0.9868 + }, + { + "start": 16673.91, + "end": 16674.47, + "probability": 0.5085 + }, + { + "start": 16674.57, + "end": 16676.15, + "probability": 0.9689 + }, + { + "start": 16676.23, + "end": 16678.31, + "probability": 0.6843 + }, + { + "start": 16678.67, + "end": 16680.51, + "probability": 0.8489 + }, + { + "start": 16680.57, + "end": 16682.01, + "probability": 0.9297 + }, + { + "start": 16682.47, + "end": 16684.25, + "probability": 0.9698 + }, + { + "start": 16684.39, + "end": 16686.15, + "probability": 0.8753 + }, + { + "start": 16686.83, + "end": 16689.35, + "probability": 0.3943 + }, + { + "start": 16690.17, + "end": 16693.45, + "probability": 0.6667 + }, + { + "start": 16693.93, + "end": 16696.67, + "probability": 0.9749 + }, + { + "start": 16697.13, + "end": 16697.41, + "probability": 0.7753 + }, + { + "start": 16697.69, + "end": 16700.59, + "probability": 0.9609 + }, + { + "start": 16700.71, + "end": 16704.47, + "probability": 0.989 + }, + { + "start": 16705.01, + "end": 16705.29, + "probability": 0.4628 + }, + { + "start": 16705.37, + "end": 16708.33, + "probability": 0.614 + }, + { + "start": 16708.51, + "end": 16709.39, + "probability": 0.8353 + }, + { + "start": 16710.11, + "end": 16712.89, + "probability": 0.9495 + }, + { + "start": 16712.97, + "end": 16716.21, + "probability": 0.8902 + }, + { + "start": 16716.85, + "end": 16717.87, + "probability": 0.9411 + }, + { + "start": 16726.49, + "end": 16728.7, + "probability": 0.8008 + }, + { + "start": 16730.79, + "end": 16731.65, + "probability": 0.6924 + }, + { + "start": 16731.75, + "end": 16732.69, + "probability": 0.8529 + }, + { + "start": 16732.91, + "end": 16735.63, + "probability": 0.9644 + }, + { + "start": 16738.51, + "end": 16738.87, + "probability": 0.8609 + }, + { + "start": 16738.97, + "end": 16740.07, + "probability": 0.9469 + }, + { + "start": 16740.15, + "end": 16740.63, + "probability": 0.9304 + }, + { + "start": 16740.95, + "end": 16743.77, + "probability": 0.9823 + }, + { + "start": 16744.83, + "end": 16745.95, + "probability": 0.6942 + }, + { + "start": 16748.29, + "end": 16749.53, + "probability": 0.7821 + }, + { + "start": 16751.03, + "end": 16751.57, + "probability": 0.5342 + }, + { + "start": 16753.17, + "end": 16755.1, + "probability": 0.9214 + }, + { + "start": 16756.01, + "end": 16758.41, + "probability": 0.46 + }, + { + "start": 16760.29, + "end": 16761.41, + "probability": 0.98 + }, + { + "start": 16762.87, + "end": 16764.95, + "probability": 0.6726 + }, + { + "start": 16765.83, + "end": 16767.89, + "probability": 0.91 + }, + { + "start": 16768.43, + "end": 16770.76, + "probability": 0.9833 + }, + { + "start": 16772.01, + "end": 16774.08, + "probability": 0.691 + }, + { + "start": 16774.53, + "end": 16775.38, + "probability": 0.8664 + }, + { + "start": 16776.25, + "end": 16777.35, + "probability": 0.8714 + }, + { + "start": 16778.31, + "end": 16779.81, + "probability": 0.9949 + }, + { + "start": 16780.47, + "end": 16782.85, + "probability": 0.9853 + }, + { + "start": 16783.79, + "end": 16784.72, + "probability": 0.9603 + }, + { + "start": 16785.69, + "end": 16786.87, + "probability": 0.9346 + }, + { + "start": 16787.33, + "end": 16788.89, + "probability": 0.9991 + }, + { + "start": 16790.53, + "end": 16793.67, + "probability": 0.8104 + }, + { + "start": 16794.53, + "end": 16795.57, + "probability": 0.8678 + }, + { + "start": 16796.31, + "end": 16798.59, + "probability": 0.8877 + }, + { + "start": 16799.51, + "end": 16801.19, + "probability": 0.6972 + }, + { + "start": 16801.33, + "end": 16803.23, + "probability": 0.8172 + }, + { + "start": 16803.93, + "end": 16804.99, + "probability": 0.9605 + }, + { + "start": 16805.73, + "end": 16806.99, + "probability": 0.9508 + }, + { + "start": 16809.01, + "end": 16810.21, + "probability": 0.9935 + }, + { + "start": 16811.87, + "end": 16812.87, + "probability": 0.9834 + }, + { + "start": 16814.21, + "end": 16816.63, + "probability": 0.9821 + }, + { + "start": 16817.19, + "end": 16818.59, + "probability": 0.9775 + }, + { + "start": 16819.97, + "end": 16822.81, + "probability": 0.9765 + }, + { + "start": 16824.17, + "end": 16827.15, + "probability": 0.8612 + }, + { + "start": 16827.43, + "end": 16827.86, + "probability": 0.9858 + }, + { + "start": 16829.05, + "end": 16830.31, + "probability": 0.9751 + }, + { + "start": 16831.01, + "end": 16831.99, + "probability": 0.8048 + }, + { + "start": 16833.09, + "end": 16833.86, + "probability": 0.8299 + }, + { + "start": 16834.55, + "end": 16835.55, + "probability": 0.8696 + }, + { + "start": 16836.45, + "end": 16837.83, + "probability": 0.9854 + }, + { + "start": 16838.17, + "end": 16839.08, + "probability": 0.9892 + }, + { + "start": 16839.25, + "end": 16839.67, + "probability": 0.7244 + }, + { + "start": 16839.99, + "end": 16844.25, + "probability": 0.9702 + }, + { + "start": 16845.55, + "end": 16846.59, + "probability": 0.935 + }, + { + "start": 16848.13, + "end": 16849.55, + "probability": 0.9937 + }, + { + "start": 16850.77, + "end": 16852.23, + "probability": 0.9062 + }, + { + "start": 16854.13, + "end": 16855.67, + "probability": 0.8252 + }, + { + "start": 16856.33, + "end": 16859.37, + "probability": 0.7775 + }, + { + "start": 16859.37, + "end": 16861.53, + "probability": 0.9974 + }, + { + "start": 16862.85, + "end": 16866.07, + "probability": 0.9986 + }, + { + "start": 16866.77, + "end": 16868.56, + "probability": 0.9775 + }, + { + "start": 16869.39, + "end": 16872.93, + "probability": 0.9927 + }, + { + "start": 16872.93, + "end": 16877.91, + "probability": 0.9955 + }, + { + "start": 16879.23, + "end": 16881.21, + "probability": 0.9961 + }, + { + "start": 16881.95, + "end": 16884.31, + "probability": 0.9902 + }, + { + "start": 16886.25, + "end": 16888.25, + "probability": 0.9772 + }, + { + "start": 16889.15, + "end": 16890.51, + "probability": 0.9402 + }, + { + "start": 16891.57, + "end": 16893.53, + "probability": 0.9474 + }, + { + "start": 16894.33, + "end": 16895.89, + "probability": 0.9387 + }, + { + "start": 16896.51, + "end": 16897.83, + "probability": 0.9509 + }, + { + "start": 16898.21, + "end": 16900.11, + "probability": 0.9724 + }, + { + "start": 16900.15, + "end": 16901.05, + "probability": 0.9633 + }, + { + "start": 16901.25, + "end": 16902.11, + "probability": 0.9181 + }, + { + "start": 16903.37, + "end": 16906.41, + "probability": 0.9351 + }, + { + "start": 16906.99, + "end": 16910.67, + "probability": 0.9761 + }, + { + "start": 16911.01, + "end": 16911.47, + "probability": 0.8433 + }, + { + "start": 16912.31, + "end": 16914.05, + "probability": 0.7318 + }, + { + "start": 16914.15, + "end": 16916.31, + "probability": 0.9731 + }, + { + "start": 16916.49, + "end": 16917.23, + "probability": 0.3998 + }, + { + "start": 16918.03, + "end": 16920.59, + "probability": 0.9547 + }, + { + "start": 16926.97, + "end": 16928.39, + "probability": 0.9824 + }, + { + "start": 16929.57, + "end": 16932.75, + "probability": 0.8862 + }, + { + "start": 16941.15, + "end": 16942.63, + "probability": 0.513 + }, + { + "start": 16944.59, + "end": 16948.45, + "probability": 0.9154 + }, + { + "start": 16949.33, + "end": 16951.87, + "probability": 0.9273 + }, + { + "start": 16952.05, + "end": 16956.17, + "probability": 0.9941 + }, + { + "start": 16956.27, + "end": 16958.13, + "probability": 0.8142 + }, + { + "start": 16958.15, + "end": 16959.13, + "probability": 0.9006 + }, + { + "start": 16964.79, + "end": 16967.17, + "probability": 0.8931 + }, + { + "start": 16967.21, + "end": 16969.95, + "probability": 0.8201 + }, + { + "start": 16970.25, + "end": 16971.23, + "probability": 0.6238 + }, + { + "start": 16971.85, + "end": 16972.99, + "probability": 0.5386 + }, + { + "start": 16972.99, + "end": 16973.19, + "probability": 0.5537 + }, + { + "start": 16973.43, + "end": 16973.89, + "probability": 0.8723 + }, + { + "start": 16973.97, + "end": 16976.35, + "probability": 0.9715 + }, + { + "start": 16976.75, + "end": 16976.75, + "probability": 0.0001 + }, + { + "start": 16977.91, + "end": 16978.91, + "probability": 0.1588 + }, + { + "start": 16978.91, + "end": 16980.52, + "probability": 0.6608 + }, + { + "start": 16981.35, + "end": 16982.67, + "probability": 0.8785 + }, + { + "start": 16982.69, + "end": 16983.35, + "probability": 0.8203 + }, + { + "start": 16983.75, + "end": 16985.23, + "probability": 0.8563 + }, + { + "start": 16986.45, + "end": 16987.81, + "probability": 0.9683 + }, + { + "start": 16988.01, + "end": 16989.01, + "probability": 0.9287 + }, + { + "start": 16989.15, + "end": 16990.55, + "probability": 0.8866 + }, + { + "start": 16991.31, + "end": 16992.53, + "probability": 0.8137 + }, + { + "start": 16992.73, + "end": 16995.43, + "probability": 0.9579 + }, + { + "start": 16995.63, + "end": 16996.49, + "probability": 0.6094 + }, + { + "start": 16997.97, + "end": 16999.33, + "probability": 0.9741 + }, + { + "start": 17000.31, + "end": 17001.49, + "probability": 0.9604 + }, + { + "start": 17001.55, + "end": 17003.69, + "probability": 0.8113 + }, + { + "start": 17003.75, + "end": 17005.53, + "probability": 0.6177 + }, + { + "start": 17005.73, + "end": 17009.97, + "probability": 0.9889 + }, + { + "start": 17010.31, + "end": 17011.31, + "probability": 0.59 + }, + { + "start": 17011.49, + "end": 17012.27, + "probability": 0.5317 + }, + { + "start": 17012.45, + "end": 17013.35, + "probability": 0.7463 + }, + { + "start": 17013.37, + "end": 17014.93, + "probability": 0.9863 + }, + { + "start": 17014.97, + "end": 17016.43, + "probability": 0.769 + }, + { + "start": 17016.65, + "end": 17017.65, + "probability": 0.5194 + }, + { + "start": 17017.73, + "end": 17018.73, + "probability": 0.9046 + }, + { + "start": 17019.09, + "end": 17019.29, + "probability": 0.307 + }, + { + "start": 17019.37, + "end": 17019.79, + "probability": 0.3365 + }, + { + "start": 17019.79, + "end": 17020.93, + "probability": 0.8535 + }, + { + "start": 17020.99, + "end": 17021.71, + "probability": 0.8138 + }, + { + "start": 17021.87, + "end": 17023.11, + "probability": 0.6651 + }, + { + "start": 17023.33, + "end": 17023.77, + "probability": 0.6001 + }, + { + "start": 17024.47, + "end": 17025.39, + "probability": 0.5194 + }, + { + "start": 17026.97, + "end": 17028.23, + "probability": 0.5326 + }, + { + "start": 17029.53, + "end": 17029.53, + "probability": 0.0682 + }, + { + "start": 17029.53, + "end": 17029.53, + "probability": 0.1876 + }, + { + "start": 17029.53, + "end": 17029.53, + "probability": 0.6847 + }, + { + "start": 17029.53, + "end": 17030.51, + "probability": 0.6506 + }, + { + "start": 17030.55, + "end": 17033.09, + "probability": 0.9956 + }, + { + "start": 17034.47, + "end": 17037.67, + "probability": 0.8711 + }, + { + "start": 17038.23, + "end": 17039.29, + "probability": 0.8531 + }, + { + "start": 17039.99, + "end": 17041.65, + "probability": 0.8914 + }, + { + "start": 17042.57, + "end": 17045.19, + "probability": 0.9924 + }, + { + "start": 17046.69, + "end": 17051.07, + "probability": 0.8818 + }, + { + "start": 17051.25, + "end": 17052.83, + "probability": 0.9895 + }, + { + "start": 17053.61, + "end": 17055.49, + "probability": 0.959 + }, + { + "start": 17056.62, + "end": 17060.39, + "probability": 0.9253 + }, + { + "start": 17061.19, + "end": 17063.33, + "probability": 0.9629 + }, + { + "start": 17063.51, + "end": 17064.57, + "probability": 0.6848 + }, + { + "start": 17064.61, + "end": 17068.17, + "probability": 0.9725 + }, + { + "start": 17069.97, + "end": 17072.61, + "probability": 0.9243 + }, + { + "start": 17072.67, + "end": 17073.26, + "probability": 0.8951 + }, + { + "start": 17073.47, + "end": 17073.97, + "probability": 0.8827 + }, + { + "start": 17074.53, + "end": 17075.12, + "probability": 0.921 + }, + { + "start": 17075.71, + "end": 17076.52, + "probability": 0.9048 + }, + { + "start": 17077.15, + "end": 17078.43, + "probability": 0.9885 + }, + { + "start": 17078.49, + "end": 17081.13, + "probability": 0.9565 + }, + { + "start": 17082.17, + "end": 17082.73, + "probability": 0.9795 + }, + { + "start": 17084.94, + "end": 17088.91, + "probability": 0.7488 + }, + { + "start": 17089.75, + "end": 17093.67, + "probability": 0.9847 + }, + { + "start": 17093.69, + "end": 17096.23, + "probability": 0.7933 + }, + { + "start": 17096.89, + "end": 17097.44, + "probability": 0.9797 + }, + { + "start": 17098.63, + "end": 17099.15, + "probability": 0.8398 + }, + { + "start": 17099.23, + "end": 17100.36, + "probability": 0.9838 + }, + { + "start": 17100.49, + "end": 17101.77, + "probability": 0.8953 + }, + { + "start": 17102.37, + "end": 17103.79, + "probability": 0.8528 + }, + { + "start": 17103.89, + "end": 17105.03, + "probability": 0.8818 + }, + { + "start": 17105.39, + "end": 17106.41, + "probability": 0.991 + }, + { + "start": 17107.53, + "end": 17108.67, + "probability": 0.986 + }, + { + "start": 17109.75, + "end": 17111.35, + "probability": 0.9663 + }, + { + "start": 17112.63, + "end": 17114.49, + "probability": 0.9888 + }, + { + "start": 17114.57, + "end": 17116.05, + "probability": 0.9888 + }, + { + "start": 17116.11, + "end": 17117.29, + "probability": 0.9874 + }, + { + "start": 17117.79, + "end": 17120.03, + "probability": 0.9574 + }, + { + "start": 17120.95, + "end": 17121.55, + "probability": 0.9868 + }, + { + "start": 17123.83, + "end": 17126.37, + "probability": 0.9323 + }, + { + "start": 17127.29, + "end": 17128.43, + "probability": 0.9615 + }, + { + "start": 17129.41, + "end": 17131.31, + "probability": 0.9954 + }, + { + "start": 17132.69, + "end": 17134.93, + "probability": 0.9944 + }, + { + "start": 17135.45, + "end": 17136.51, + "probability": 0.8947 + }, + { + "start": 17137.53, + "end": 17138.26, + "probability": 0.8677 + }, + { + "start": 17139.39, + "end": 17140.93, + "probability": 0.9753 + }, + { + "start": 17141.01, + "end": 17141.79, + "probability": 0.8177 + }, + { + "start": 17141.91, + "end": 17142.81, + "probability": 0.8949 + }, + { + "start": 17143.15, + "end": 17145.35, + "probability": 0.8584 + }, + { + "start": 17145.99, + "end": 17146.87, + "probability": 0.925 + }, + { + "start": 17147.65, + "end": 17149.79, + "probability": 0.8466 + }, + { + "start": 17162.41, + "end": 17163.33, + "probability": 0.2572 + }, + { + "start": 17164.27, + "end": 17167.69, + "probability": 0.2161 + }, + { + "start": 17171.67, + "end": 17175.15, + "probability": 0.0108 + }, + { + "start": 17175.15, + "end": 17176.59, + "probability": 0.4224 + }, + { + "start": 17176.61, + "end": 17177.53, + "probability": 0.048 + }, + { + "start": 17180.17, + "end": 17181.43, + "probability": 0.0334 + }, + { + "start": 17181.55, + "end": 17183.63, + "probability": 0.1864 + }, + { + "start": 17183.63, + "end": 17185.23, + "probability": 0.1455 + }, + { + "start": 17186.59, + "end": 17186.59, + "probability": 0.0257 + }, + { + "start": 17186.59, + "end": 17186.59, + "probability": 0.0676 + }, + { + "start": 17186.59, + "end": 17186.59, + "probability": 0.1383 + }, + { + "start": 17186.59, + "end": 17186.59, + "probability": 0.2364 + }, + { + "start": 17186.59, + "end": 17188.49, + "probability": 0.4948 + }, + { + "start": 17189.21, + "end": 17193.75, + "probability": 0.9359 + }, + { + "start": 17194.63, + "end": 17199.57, + "probability": 0.9745 + }, + { + "start": 17199.57, + "end": 17204.91, + "probability": 0.9915 + }, + { + "start": 17205.73, + "end": 17208.23, + "probability": 0.9749 + }, + { + "start": 17209.25, + "end": 17213.23, + "probability": 0.9404 + }, + { + "start": 17213.23, + "end": 17215.91, + "probability": 0.9302 + }, + { + "start": 17215.97, + "end": 17218.12, + "probability": 0.9907 + }, + { + "start": 17218.43, + "end": 17219.35, + "probability": 0.6613 + }, + { + "start": 17219.91, + "end": 17221.29, + "probability": 0.9536 + }, + { + "start": 17221.43, + "end": 17223.39, + "probability": 0.6948 + }, + { + "start": 17223.65, + "end": 17223.83, + "probability": 0.4956 + }, + { + "start": 17224.33, + "end": 17224.85, + "probability": 0.9698 + }, + { + "start": 17224.97, + "end": 17227.73, + "probability": 0.9781 + }, + { + "start": 17228.05, + "end": 17233.71, + "probability": 0.927 + }, + { + "start": 17233.79, + "end": 17235.85, + "probability": 0.9949 + }, + { + "start": 17237.27, + "end": 17238.25, + "probability": 0.0127 + }, + { + "start": 17238.25, + "end": 17239.01, + "probability": 0.3395 + }, + { + "start": 17239.07, + "end": 17239.77, + "probability": 0.7877 + }, + { + "start": 17240.19, + "end": 17241.21, + "probability": 0.563 + }, + { + "start": 17241.69, + "end": 17246.79, + "probability": 0.9163 + }, + { + "start": 17247.37, + "end": 17247.43, + "probability": 0.037 + }, + { + "start": 17247.43, + "end": 17250.27, + "probability": 0.4884 + }, + { + "start": 17250.67, + "end": 17254.01, + "probability": 0.7264 + }, + { + "start": 17254.37, + "end": 17256.99, + "probability": 0.9921 + }, + { + "start": 17257.89, + "end": 17261.37, + "probability": 0.9883 + }, + { + "start": 17261.65, + "end": 17263.77, + "probability": 0.9629 + }, + { + "start": 17263.77, + "end": 17264.19, + "probability": 0.3853 + }, + { + "start": 17264.23, + "end": 17264.87, + "probability": 0.6818 + }, + { + "start": 17265.77, + "end": 17267.47, + "probability": 0.9958 + }, + { + "start": 17267.95, + "end": 17271.99, + "probability": 0.8753 + }, + { + "start": 17272.59, + "end": 17276.73, + "probability": 0.9594 + }, + { + "start": 17277.21, + "end": 17282.01, + "probability": 0.995 + }, + { + "start": 17282.01, + "end": 17288.81, + "probability": 0.9855 + }, + { + "start": 17288.81, + "end": 17293.23, + "probability": 0.9932 + }, + { + "start": 17295.67, + "end": 17298.37, + "probability": 0.54 + }, + { + "start": 17299.37, + "end": 17300.15, + "probability": 0.0453 + }, + { + "start": 17300.15, + "end": 17301.41, + "probability": 0.1731 + }, + { + "start": 17301.41, + "end": 17302.01, + "probability": 0.3915 + }, + { + "start": 17302.13, + "end": 17303.27, + "probability": 0.4169 + }, + { + "start": 17303.93, + "end": 17305.99, + "probability": 0.0719 + }, + { + "start": 17306.57, + "end": 17307.41, + "probability": 0.1568 + }, + { + "start": 17308.41, + "end": 17308.77, + "probability": 0.0157 + }, + { + "start": 17309.17, + "end": 17309.91, + "probability": 0.1445 + }, + { + "start": 17309.91, + "end": 17309.91, + "probability": 0.1617 + }, + { + "start": 17309.91, + "end": 17309.91, + "probability": 0.1078 + }, + { + "start": 17310.09, + "end": 17311.11, + "probability": 0.1459 + }, + { + "start": 17311.11, + "end": 17313.21, + "probability": 0.1495 + }, + { + "start": 17315.69, + "end": 17319.87, + "probability": 0.3796 + }, + { + "start": 17320.17, + "end": 17323.87, + "probability": 0.019 + }, + { + "start": 17323.87, + "end": 17325.45, + "probability": 0.1185 + }, + { + "start": 17326.13, + "end": 17329.63, + "probability": 0.0211 + }, + { + "start": 17329.75, + "end": 17329.83, + "probability": 0.3965 + }, + { + "start": 17330.05, + "end": 17330.81, + "probability": 0.1043 + }, + { + "start": 17331.87, + "end": 17332.57, + "probability": 0.052 + }, + { + "start": 17332.57, + "end": 17334.01, + "probability": 0.0682 + }, + { + "start": 17334.85, + "end": 17334.85, + "probability": 0.0631 + }, + { + "start": 17334.85, + "end": 17334.85, + "probability": 0.2429 + }, + { + "start": 17334.85, + "end": 17334.85, + "probability": 0.1856 + }, + { + "start": 17334.85, + "end": 17340.13, + "probability": 0.9075 + }, + { + "start": 17341.95, + "end": 17348.33, + "probability": 0.9951 + }, + { + "start": 17349.33, + "end": 17349.67, + "probability": 0.8632 + }, + { + "start": 17349.83, + "end": 17351.35, + "probability": 0.9098 + }, + { + "start": 17351.41, + "end": 17352.53, + "probability": 0.8577 + }, + { + "start": 17352.61, + "end": 17355.68, + "probability": 0.9973 + }, + { + "start": 17356.27, + "end": 17358.61, + "probability": 0.981 + }, + { + "start": 17359.77, + "end": 17359.93, + "probability": 0.1474 + }, + { + "start": 17359.93, + "end": 17360.31, + "probability": 0.4722 + }, + { + "start": 17360.43, + "end": 17366.79, + "probability": 0.8399 + }, + { + "start": 17367.09, + "end": 17367.97, + "probability": 0.0008 + }, + { + "start": 17367.97, + "end": 17369.77, + "probability": 0.9282 + }, + { + "start": 17370.51, + "end": 17371.67, + "probability": 0.8074 + }, + { + "start": 17373.49, + "end": 17373.73, + "probability": 0.1322 + }, + { + "start": 17373.73, + "end": 17373.73, + "probability": 0.1775 + }, + { + "start": 17373.73, + "end": 17375.37, + "probability": 0.7949 + }, + { + "start": 17375.51, + "end": 17376.69, + "probability": 0.1728 + }, + { + "start": 17376.69, + "end": 17379.09, + "probability": 0.5662 + }, + { + "start": 17379.13, + "end": 17379.95, + "probability": 0.3299 + }, + { + "start": 17384.57, + "end": 17386.57, + "probability": 0.0013 + }, + { + "start": 17386.57, + "end": 17387.43, + "probability": 0.1019 + }, + { + "start": 17387.53, + "end": 17387.59, + "probability": 0.1106 + }, + { + "start": 17387.59, + "end": 17389.31, + "probability": 0.3925 + }, + { + "start": 17389.61, + "end": 17390.51, + "probability": 0.2409 + }, + { + "start": 17390.99, + "end": 17391.83, + "probability": 0.3355 + }, + { + "start": 17393.15, + "end": 17395.23, + "probability": 0.1461 + }, + { + "start": 17397.37, + "end": 17399.33, + "probability": 0.044 + }, + { + "start": 17399.35, + "end": 17400.23, + "probability": 0.072 + }, + { + "start": 17400.31, + "end": 17400.77, + "probability": 0.8729 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17474.0, + "end": 17474.0, + "probability": 0.0 + }, + { + "start": 17476.07, + "end": 17480.0, + "probability": 0.337 + }, + { + "start": 17480.96, + "end": 17484.78, + "probability": 0.6859 + }, + { + "start": 17485.04, + "end": 17491.52, + "probability": 0.9962 + }, + { + "start": 17491.52, + "end": 17496.6, + "probability": 0.998 + }, + { + "start": 17497.44, + "end": 17500.15, + "probability": 0.9587 + }, + { + "start": 17501.28, + "end": 17506.0, + "probability": 0.8647 + }, + { + "start": 17506.36, + "end": 17506.94, + "probability": 0.8265 + }, + { + "start": 17507.6, + "end": 17511.28, + "probability": 0.9197 + }, + { + "start": 17511.56, + "end": 17514.46, + "probability": 0.9962 + }, + { + "start": 17515.02, + "end": 17516.02, + "probability": 0.4931 + }, + { + "start": 17516.64, + "end": 17519.84, + "probability": 0.9917 + }, + { + "start": 17519.94, + "end": 17524.46, + "probability": 0.8484 + }, + { + "start": 17524.56, + "end": 17525.76, + "probability": 0.9793 + }, + { + "start": 17526.2, + "end": 17526.8, + "probability": 0.8955 + }, + { + "start": 17526.9, + "end": 17528.52, + "probability": 0.8209 + }, + { + "start": 17528.66, + "end": 17529.84, + "probability": 0.6413 + }, + { + "start": 17530.6, + "end": 17531.89, + "probability": 0.8682 + }, + { + "start": 17533.76, + "end": 17539.3, + "probability": 0.9888 + }, + { + "start": 17539.54, + "end": 17543.3, + "probability": 0.9486 + }, + { + "start": 17544.38, + "end": 17546.34, + "probability": 0.9822 + }, + { + "start": 17548.3, + "end": 17550.36, + "probability": 0.8875 + }, + { + "start": 17550.76, + "end": 17552.82, + "probability": 0.7965 + }, + { + "start": 17553.48, + "end": 17554.1, + "probability": 0.7835 + }, + { + "start": 17555.64, + "end": 17559.12, + "probability": 0.8823 + }, + { + "start": 17559.56, + "end": 17564.3, + "probability": 0.9533 + }, + { + "start": 17564.86, + "end": 17567.72, + "probability": 0.9944 + }, + { + "start": 17567.86, + "end": 17571.3, + "probability": 0.6089 + }, + { + "start": 17571.82, + "end": 17574.64, + "probability": 0.9915 + }, + { + "start": 17576.68, + "end": 17578.0, + "probability": 0.749 + }, + { + "start": 17578.0, + "end": 17581.32, + "probability": 0.8646 + }, + { + "start": 17581.52, + "end": 17583.46, + "probability": 0.9929 + }, + { + "start": 17583.64, + "end": 17587.4, + "probability": 0.9321 + }, + { + "start": 17587.96, + "end": 17588.74, + "probability": 0.9761 + }, + { + "start": 17590.12, + "end": 17591.62, + "probability": 0.7979 + }, + { + "start": 17591.74, + "end": 17593.22, + "probability": 0.7514 + }, + { + "start": 17593.24, + "end": 17594.96, + "probability": 0.5624 + }, + { + "start": 17595.1, + "end": 17596.73, + "probability": 0.4472 + }, + { + "start": 17598.93, + "end": 17601.36, + "probability": 0.4877 + }, + { + "start": 17601.36, + "end": 17601.36, + "probability": 0.2191 + }, + { + "start": 17601.36, + "end": 17601.44, + "probability": 0.3905 + }, + { + "start": 17601.44, + "end": 17601.92, + "probability": 0.074 + }, + { + "start": 17602.38, + "end": 17603.86, + "probability": 0.9268 + }, + { + "start": 17603.98, + "end": 17606.2, + "probability": 0.5015 + }, + { + "start": 17606.62, + "end": 17613.28, + "probability": 0.9766 + }, + { + "start": 17613.94, + "end": 17616.11, + "probability": 0.9946 + }, + { + "start": 17616.4, + "end": 17616.78, + "probability": 0.2441 + }, + { + "start": 17616.78, + "end": 17619.18, + "probability": 0.702 + }, + { + "start": 17619.34, + "end": 17619.86, + "probability": 0.0462 + }, + { + "start": 17619.98, + "end": 17622.08, + "probability": 0.1854 + }, + { + "start": 17622.08, + "end": 17623.9, + "probability": 0.4842 + }, + { + "start": 17624.24, + "end": 17626.26, + "probability": 0.3089 + }, + { + "start": 17626.48, + "end": 17629.5, + "probability": 0.0174 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.0, + "end": 17739.0, + "probability": 0.0 + }, + { + "start": 17739.46, + "end": 17739.48, + "probability": 0.031 + }, + { + "start": 17740.36, + "end": 17748.88, + "probability": 0.1214 + }, + { + "start": 17749.32, + "end": 17750.12, + "probability": 0.2506 + }, + { + "start": 17750.34, + "end": 17750.82, + "probability": 0.3548 + }, + { + "start": 17750.82, + "end": 17751.26, + "probability": 0.2105 + }, + { + "start": 17751.26, + "end": 17751.46, + "probability": 0.0879 + }, + { + "start": 17751.46, + "end": 17754.38, + "probability": 0.9432 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.0, + "end": 17869.0, + "probability": 0.0 + }, + { + "start": 17869.2, + "end": 17870.12, + "probability": 0.0299 + }, + { + "start": 17870.12, + "end": 17873.72, + "probability": 0.3461 + }, + { + "start": 17873.82, + "end": 17876.11, + "probability": 0.72 + }, + { + "start": 17876.96, + "end": 17882.46, + "probability": 0.4925 + }, + { + "start": 17882.76, + "end": 17884.46, + "probability": 0.7356 + }, + { + "start": 17884.52, + "end": 17886.04, + "probability": 0.7622 + }, + { + "start": 17886.08, + "end": 17889.88, + "probability": 0.7499 + }, + { + "start": 17890.54, + "end": 17891.54, + "probability": 0.8492 + }, + { + "start": 17891.68, + "end": 17893.31, + "probability": 0.9111 + }, + { + "start": 17893.7, + "end": 17895.84, + "probability": 0.9754 + }, + { + "start": 17897.14, + "end": 17899.4, + "probability": 0.9828 + }, + { + "start": 17900.96, + "end": 17901.96, + "probability": 0.999 + }, + { + "start": 17902.68, + "end": 17904.7, + "probability": 0.9987 + }, + { + "start": 17905.32, + "end": 17910.12, + "probability": 0.9955 + }, + { + "start": 17911.84, + "end": 17913.5, + "probability": 0.9826 + }, + { + "start": 17913.66, + "end": 17914.84, + "probability": 0.9677 + }, + { + "start": 17915.32, + "end": 17917.0, + "probability": 0.8804 + }, + { + "start": 17918.94, + "end": 17920.32, + "probability": 0.9164 + }, + { + "start": 17921.44, + "end": 17922.14, + "probability": 0.7661 + }, + { + "start": 17922.24, + "end": 17922.86, + "probability": 0.8725 + }, + { + "start": 17922.94, + "end": 17924.52, + "probability": 0.9414 + }, + { + "start": 17925.3, + "end": 17926.6, + "probability": 0.9603 + }, + { + "start": 17926.78, + "end": 17930.82, + "probability": 0.8961 + }, + { + "start": 17931.6, + "end": 17935.28, + "probability": 0.9613 + }, + { + "start": 17936.24, + "end": 17939.22, + "probability": 0.138 + }, + { + "start": 17949.18, + "end": 17950.4, + "probability": 0.5222 + }, + { + "start": 17950.54, + "end": 17950.82, + "probability": 0.0178 + }, + { + "start": 17950.82, + "end": 17950.82, + "probability": 0.1046 + }, + { + "start": 17950.82, + "end": 17951.4, + "probability": 0.051 + }, + { + "start": 17951.94, + "end": 17954.94, + "probability": 0.7703 + }, + { + "start": 17955.0, + "end": 17955.46, + "probability": 0.3856 + }, + { + "start": 17955.46, + "end": 17956.7, + "probability": 0.6898 + }, + { + "start": 17956.76, + "end": 17957.64, + "probability": 0.4828 + }, + { + "start": 17957.8, + "end": 17959.94, + "probability": 0.8645 + }, + { + "start": 17960.48, + "end": 17961.74, + "probability": 0.6291 + }, + { + "start": 17961.82, + "end": 17962.34, + "probability": 0.7324 + }, + { + "start": 17962.42, + "end": 17964.16, + "probability": 0.9876 + }, + { + "start": 17964.52, + "end": 17965.8, + "probability": 0.8636 + }, + { + "start": 17965.9, + "end": 17971.76, + "probability": 0.8637 + }, + { + "start": 17971.76, + "end": 17974.24, + "probability": 0.8777 + }, + { + "start": 17975.06, + "end": 17976.58, + "probability": 0.8446 + }, + { + "start": 17977.02, + "end": 17977.92, + "probability": 0.8951 + }, + { + "start": 17978.1, + "end": 17979.46, + "probability": 0.7383 + }, + { + "start": 17979.48, + "end": 17980.16, + "probability": 0.8557 + }, + { + "start": 17980.54, + "end": 17983.16, + "probability": 0.9914 + }, + { + "start": 17983.7, + "end": 17984.75, + "probability": 0.5507 + }, + { + "start": 17985.6, + "end": 17987.14, + "probability": 0.501 + }, + { + "start": 17987.14, + "end": 17987.14, + "probability": 0.0013 + }, + { + "start": 17987.14, + "end": 17987.14, + "probability": 0.0535 + }, + { + "start": 17987.14, + "end": 17988.26, + "probability": 0.4314 + }, + { + "start": 17988.5, + "end": 17989.42, + "probability": 0.7507 + }, + { + "start": 17989.64, + "end": 17992.96, + "probability": 0.8799 + }, + { + "start": 17992.98, + "end": 17997.76, + "probability": 0.9292 + }, + { + "start": 17998.34, + "end": 18000.32, + "probability": 0.8665 + }, + { + "start": 18000.92, + "end": 18001.8, + "probability": 0.7802 + }, + { + "start": 18002.22, + "end": 18003.2, + "probability": 0.7838 + }, + { + "start": 18003.34, + "end": 18007.0, + "probability": 0.9537 + }, + { + "start": 18007.08, + "end": 18010.58, + "probability": 0.6977 + }, + { + "start": 18010.98, + "end": 18012.68, + "probability": 0.933 + }, + { + "start": 18012.94, + "end": 18014.06, + "probability": 0.9458 + }, + { + "start": 18015.36, + "end": 18016.12, + "probability": 0.9739 + }, + { + "start": 18016.66, + "end": 18017.7, + "probability": 0.745 + }, + { + "start": 18018.52, + "end": 18020.78, + "probability": 0.6368 + }, + { + "start": 18021.06, + "end": 18022.04, + "probability": 0.8788 + }, + { + "start": 18022.12, + "end": 18023.38, + "probability": 0.9403 + }, + { + "start": 18023.9, + "end": 18024.22, + "probability": 0.9211 + }, + { + "start": 18024.3, + "end": 18025.52, + "probability": 0.7621 + }, + { + "start": 18025.7, + "end": 18032.76, + "probability": 0.9368 + }, + { + "start": 18033.28, + "end": 18037.36, + "probability": 0.9644 + }, + { + "start": 18037.52, + "end": 18038.62, + "probability": 0.9062 + }, + { + "start": 18039.32, + "end": 18042.32, + "probability": 0.8246 + }, + { + "start": 18042.94, + "end": 18046.27, + "probability": 0.9858 + }, + { + "start": 18047.78, + "end": 18052.28, + "probability": 0.9537 + }, + { + "start": 18052.56, + "end": 18052.98, + "probability": 0.6197 + }, + { + "start": 18053.16, + "end": 18055.64, + "probability": 0.9718 + }, + { + "start": 18056.14, + "end": 18057.6, + "probability": 0.8855 + }, + { + "start": 18057.78, + "end": 18058.54, + "probability": 0.108 + }, + { + "start": 18058.54, + "end": 18059.2, + "probability": 0.4607 + }, + { + "start": 18059.3, + "end": 18059.72, + "probability": 0.5064 + }, + { + "start": 18060.06, + "end": 18063.66, + "probability": 0.4297 + }, + { + "start": 18064.0, + "end": 18064.95, + "probability": 0.6946 + }, + { + "start": 18066.84, + "end": 18068.94, + "probability": 0.7444 + }, + { + "start": 18069.54, + "end": 18069.96, + "probability": 0.0129 + }, + { + "start": 18070.42, + "end": 18070.76, + "probability": 0.2253 + }, + { + "start": 18071.3, + "end": 18072.78, + "probability": 0.3449 + }, + { + "start": 18072.84, + "end": 18073.84, + "probability": 0.9291 + }, + { + "start": 18073.9, + "end": 18075.56, + "probability": 0.8263 + }, + { + "start": 18075.62, + "end": 18077.92, + "probability": 0.6802 + }, + { + "start": 18078.58, + "end": 18079.96, + "probability": 0.9932 + }, + { + "start": 18080.66, + "end": 18081.04, + "probability": 0.3202 + }, + { + "start": 18081.82, + "end": 18084.0, + "probability": 0.8935 + }, + { + "start": 18084.06, + "end": 18086.0, + "probability": 0.6674 + }, + { + "start": 18086.2, + "end": 18092.14, + "probability": 0.956 + }, + { + "start": 18092.96, + "end": 18097.34, + "probability": 0.7492 + }, + { + "start": 18097.48, + "end": 18101.62, + "probability": 0.5088 + }, + { + "start": 18102.06, + "end": 18103.38, + "probability": 0.7601 + }, + { + "start": 18104.1, + "end": 18106.38, + "probability": 0.6248 + }, + { + "start": 18107.24, + "end": 18110.78, + "probability": 0.9719 + }, + { + "start": 18111.58, + "end": 18112.98, + "probability": 0.9104 + }, + { + "start": 18113.84, + "end": 18114.6, + "probability": 0.947 + }, + { + "start": 18114.68, + "end": 18119.66, + "probability": 0.9446 + }, + { + "start": 18119.66, + "end": 18123.98, + "probability": 0.9991 + }, + { + "start": 18124.58, + "end": 18126.92, + "probability": 0.8178 + }, + { + "start": 18127.64, + "end": 18128.54, + "probability": 0.8789 + }, + { + "start": 18128.68, + "end": 18129.32, + "probability": 0.8626 + }, + { + "start": 18129.66, + "end": 18130.88, + "probability": 0.8306 + }, + { + "start": 18130.98, + "end": 18132.54, + "probability": 0.9904 + }, + { + "start": 18133.6, + "end": 18139.36, + "probability": 0.9001 + }, + { + "start": 18139.72, + "end": 18140.1, + "probability": 0.1801 + }, + { + "start": 18140.4, + "end": 18142.78, + "probability": 0.7531 + }, + { + "start": 18142.78, + "end": 18145.56, + "probability": 0.9703 + }, + { + "start": 18145.86, + "end": 18150.38, + "probability": 0.7498 + }, + { + "start": 18150.78, + "end": 18151.32, + "probability": 0.0288 + }, + { + "start": 18151.32, + "end": 18152.16, + "probability": 0.2142 + }, + { + "start": 18152.28, + "end": 18156.06, + "probability": 0.9512 + }, + { + "start": 18156.06, + "end": 18162.66, + "probability": 0.6746 + }, + { + "start": 18163.44, + "end": 18167.18, + "probability": 0.1371 + }, + { + "start": 18167.64, + "end": 18170.5, + "probability": 0.7738 + }, + { + "start": 18170.64, + "end": 18171.82, + "probability": 0.7915 + }, + { + "start": 18172.1, + "end": 18173.5, + "probability": 0.9126 + }, + { + "start": 18173.64, + "end": 18175.04, + "probability": 0.9058 + }, + { + "start": 18178.96, + "end": 18181.86, + "probability": 0.6559 + }, + { + "start": 18182.08, + "end": 18184.86, + "probability": 0.9943 + }, + { + "start": 18184.96, + "end": 18185.84, + "probability": 0.8224 + }, + { + "start": 18185.9, + "end": 18186.72, + "probability": 0.4427 + }, + { + "start": 18186.84, + "end": 18188.9, + "probability": 0.7993 + }, + { + "start": 18189.1, + "end": 18190.12, + "probability": 0.9922 + }, + { + "start": 18190.18, + "end": 18190.88, + "probability": 0.9026 + }, + { + "start": 18190.9, + "end": 18191.48, + "probability": 0.8965 + }, + { + "start": 18191.74, + "end": 18195.58, + "probability": 0.7471 + }, + { + "start": 18195.88, + "end": 18197.0, + "probability": 0.5724 + }, + { + "start": 18197.32, + "end": 18198.4, + "probability": 0.8578 + }, + { + "start": 18198.62, + "end": 18200.26, + "probability": 0.7422 + }, + { + "start": 18200.4, + "end": 18201.86, + "probability": 0.6983 + }, + { + "start": 18202.06, + "end": 18203.28, + "probability": 0.9611 + }, + { + "start": 18203.46, + "end": 18206.0, + "probability": 0.8106 + }, + { + "start": 18207.4, + "end": 18210.82, + "probability": 0.4833 + }, + { + "start": 18211.24, + "end": 18212.98, + "probability": 0.9969 + }, + { + "start": 18213.68, + "end": 18215.4, + "probability": 0.9128 + }, + { + "start": 18215.74, + "end": 18217.77, + "probability": 0.9917 + }, + { + "start": 18218.08, + "end": 18221.26, + "probability": 0.9618 + }, + { + "start": 18221.26, + "end": 18225.84, + "probability": 0.9093 + }, + { + "start": 18226.26, + "end": 18228.42, + "probability": 0.5334 + }, + { + "start": 18228.78, + "end": 18230.24, + "probability": 0.7967 + }, + { + "start": 18230.46, + "end": 18232.14, + "probability": 0.1702 + }, + { + "start": 18232.6, + "end": 18232.88, + "probability": 0.3312 + }, + { + "start": 18232.94, + "end": 18232.94, + "probability": 0.1466 + }, + { + "start": 18232.96, + "end": 18234.56, + "probability": 0.986 + }, + { + "start": 18234.56, + "end": 18235.58, + "probability": 0.0951 + }, + { + "start": 18235.94, + "end": 18242.14, + "probability": 0.2556 + }, + { + "start": 18242.14, + "end": 18242.14, + "probability": 0.1711 + }, + { + "start": 18242.14, + "end": 18245.8, + "probability": 0.3475 + }, + { + "start": 18246.44, + "end": 18248.62, + "probability": 0.8589 + }, + { + "start": 18248.92, + "end": 18251.08, + "probability": 0.9805 + }, + { + "start": 18251.44, + "end": 18254.44, + "probability": 0.0905 + }, + { + "start": 18254.44, + "end": 18255.16, + "probability": 0.0514 + }, + { + "start": 18255.96, + "end": 18256.56, + "probability": 0.1846 + }, + { + "start": 18256.56, + "end": 18259.26, + "probability": 0.656 + }, + { + "start": 18259.36, + "end": 18261.7, + "probability": 0.8839 + }, + { + "start": 18261.86, + "end": 18263.82, + "probability": 0.4091 + }, + { + "start": 18264.92, + "end": 18265.88, + "probability": 0.3249 + }, + { + "start": 18265.88, + "end": 18268.82, + "probability": 0.512 + }, + { + "start": 18269.04, + "end": 18272.38, + "probability": 0.8285 + }, + { + "start": 18272.42, + "end": 18275.12, + "probability": 0.7795 + }, + { + "start": 18275.82, + "end": 18276.43, + "probability": 0.0352 + }, + { + "start": 18277.32, + "end": 18285.8, + "probability": 0.0496 + }, + { + "start": 18287.32, + "end": 18289.94, + "probability": 0.4189 + }, + { + "start": 18290.76, + "end": 18294.56, + "probability": 0.0586 + }, + { + "start": 18294.66, + "end": 18295.36, + "probability": 0.1111 + }, + { + "start": 18296.72, + "end": 18298.14, + "probability": 0.0219 + }, + { + "start": 18298.28, + "end": 18303.18, + "probability": 0.2746 + }, + { + "start": 18304.04, + "end": 18308.94, + "probability": 0.0619 + }, + { + "start": 18308.94, + "end": 18309.74, + "probability": 0.0919 + }, + { + "start": 18309.9, + "end": 18311.58, + "probability": 0.0723 + }, + { + "start": 18312.9, + "end": 18313.54, + "probability": 0.0211 + }, + { + "start": 18315.2, + "end": 18316.12, + "probability": 0.2176 + }, + { + "start": 18316.12, + "end": 18316.52, + "probability": 0.0391 + }, + { + "start": 18319.06, + "end": 18321.02, + "probability": 0.0299 + }, + { + "start": 18321.02, + "end": 18322.34, + "probability": 0.0665 + }, + { + "start": 18322.34, + "end": 18323.98, + "probability": 0.1286 + }, + { + "start": 18325.62, + "end": 18326.04, + "probability": 0.0422 + }, + { + "start": 18328.0, + "end": 18328.0, + "probability": 0.0 + }, + { + "start": 18328.0, + "end": 18328.0, + "probability": 0.0 + }, + { + "start": 18328.0, + "end": 18328.0, + "probability": 0.0 + }, + { + "start": 18328.0, + "end": 18328.0, + "probability": 0.0 + }, + { + "start": 18328.0, + "end": 18328.0, + "probability": 0.0 + }, + { + "start": 18328.0, + "end": 18328.0, + "probability": 0.0 + }, + { + "start": 18328.0, + "end": 18328.0, + "probability": 0.0 + }, + { + "start": 18328.0, + "end": 18328.0, + "probability": 0.0 + }, + { + "start": 18328.0, + "end": 18328.0, + "probability": 0.0 + }, + { + "start": 18328.0, + "end": 18328.0, + "probability": 0.0 + }, + { + "start": 18328.46, + "end": 18329.32, + "probability": 0.0942 + }, + { + "start": 18330.2, + "end": 18330.9, + "probability": 0.4369 + }, + { + "start": 18353.86, + "end": 18355.36, + "probability": 0.5618 + }, + { + "start": 18355.44, + "end": 18356.98, + "probability": 0.9016 + }, + { + "start": 18358.02, + "end": 18364.11, + "probability": 0.9533 + }, + { + "start": 18365.06, + "end": 18368.6, + "probability": 0.6577 + }, + { + "start": 18370.38, + "end": 18373.32, + "probability": 0.8625 + }, + { + "start": 18373.36, + "end": 18373.84, + "probability": 0.7998 + }, + { + "start": 18374.8, + "end": 18378.6, + "probability": 0.989 + }, + { + "start": 18379.18, + "end": 18380.2, + "probability": 0.8593 + }, + { + "start": 18380.94, + "end": 18384.82, + "probability": 0.7871 + }, + { + "start": 18384.96, + "end": 18387.03, + "probability": 0.9954 + }, + { + "start": 18387.9, + "end": 18395.1, + "probability": 0.9643 + }, + { + "start": 18396.12, + "end": 18396.76, + "probability": 0.4796 + }, + { + "start": 18397.0, + "end": 18398.34, + "probability": 0.7748 + }, + { + "start": 18398.94, + "end": 18399.74, + "probability": 0.7563 + }, + { + "start": 18400.1, + "end": 18402.98, + "probability": 0.5144 + }, + { + "start": 18403.06, + "end": 18403.48, + "probability": 0.7287 + }, + { + "start": 18403.58, + "end": 18406.06, + "probability": 0.8762 + }, + { + "start": 18406.56, + "end": 18410.78, + "probability": 0.9512 + }, + { + "start": 18411.2, + "end": 18413.22, + "probability": 0.9914 + }, + { + "start": 18413.42, + "end": 18414.0, + "probability": 0.7482 + }, + { + "start": 18414.62, + "end": 18416.82, + "probability": 0.8202 + }, + { + "start": 18417.4, + "end": 18419.1, + "probability": 0.951 + }, + { + "start": 18419.22, + "end": 18421.98, + "probability": 0.9665 + }, + { + "start": 18422.16, + "end": 18425.98, + "probability": 0.7373 + }, + { + "start": 18426.24, + "end": 18428.26, + "probability": 0.9753 + }, + { + "start": 18428.94, + "end": 18429.76, + "probability": 0.7632 + }, + { + "start": 18430.62, + "end": 18433.08, + "probability": 0.4748 + }, + { + "start": 18434.24, + "end": 18438.44, + "probability": 0.7994 + }, + { + "start": 18439.02, + "end": 18445.9, + "probability": 0.8269 + }, + { + "start": 18446.84, + "end": 18448.58, + "probability": 0.9475 + }, + { + "start": 18449.38, + "end": 18454.44, + "probability": 0.9685 + }, + { + "start": 18454.98, + "end": 18459.06, + "probability": 0.7539 + }, + { + "start": 18460.08, + "end": 18462.26, + "probability": 0.7055 + }, + { + "start": 18463.32, + "end": 18465.78, + "probability": 0.8839 + }, + { + "start": 18466.52, + "end": 18468.4, + "probability": 0.9267 + }, + { + "start": 18469.26, + "end": 18473.82, + "probability": 0.9707 + }, + { + "start": 18474.54, + "end": 18479.38, + "probability": 0.9878 + }, + { + "start": 18480.08, + "end": 18481.98, + "probability": 0.5339 + }, + { + "start": 18482.44, + "end": 18484.84, + "probability": 0.8346 + }, + { + "start": 18485.34, + "end": 18487.64, + "probability": 0.9416 + }, + { + "start": 18487.86, + "end": 18490.46, + "probability": 0.963 + }, + { + "start": 18490.8, + "end": 18493.32, + "probability": 0.981 + }, + { + "start": 18493.62, + "end": 18496.2, + "probability": 0.8704 + }, + { + "start": 18496.38, + "end": 18498.76, + "probability": 0.9851 + }, + { + "start": 18499.12, + "end": 18501.28, + "probability": 0.967 + }, + { + "start": 18501.28, + "end": 18504.38, + "probability": 0.9077 + }, + { + "start": 18504.72, + "end": 18507.46, + "probability": 0.7334 + }, + { + "start": 18507.7, + "end": 18510.16, + "probability": 0.9353 + }, + { + "start": 18510.16, + "end": 18512.66, + "probability": 0.8069 + }, + { + "start": 18513.0, + "end": 18515.2, + "probability": 0.9176 + }, + { + "start": 18515.82, + "end": 18519.22, + "probability": 0.9118 + }, + { + "start": 18519.68, + "end": 18522.06, + "probability": 0.7653 + }, + { + "start": 18522.24, + "end": 18524.9, + "probability": 0.9386 + }, + { + "start": 18525.08, + "end": 18527.64, + "probability": 0.9607 + }, + { + "start": 18527.84, + "end": 18530.94, + "probability": 0.6753 + }, + { + "start": 18531.2, + "end": 18535.5, + "probability": 0.7913 + }, + { + "start": 18535.84, + "end": 18538.66, + "probability": 0.8872 + }, + { + "start": 18538.66, + "end": 18541.76, + "probability": 0.7536 + }, + { + "start": 18542.36, + "end": 18547.32, + "probability": 0.9782 + }, + { + "start": 18547.92, + "end": 18553.1, + "probability": 0.9084 + }, + { + "start": 18553.72, + "end": 18556.42, + "probability": 0.9058 + }, + { + "start": 18556.8, + "end": 18559.24, + "probability": 0.6531 + }, + { + "start": 18559.34, + "end": 18562.02, + "probability": 0.7814 + }, + { + "start": 18562.52, + "end": 18564.98, + "probability": 0.9478 + }, + { + "start": 18565.32, + "end": 18569.04, + "probability": 0.9795 + }, + { + "start": 18569.88, + "end": 18572.16, + "probability": 0.8674 + }, + { + "start": 18573.12, + "end": 18575.46, + "probability": 0.8265 + }, + { + "start": 18576.44, + "end": 18578.76, + "probability": 0.8822 + }, + { + "start": 18579.36, + "end": 18585.22, + "probability": 0.797 + }, + { + "start": 18586.18, + "end": 18590.8, + "probability": 0.9552 + }, + { + "start": 18591.66, + "end": 18593.48, + "probability": 0.9589 + }, + { + "start": 18594.36, + "end": 18596.14, + "probability": 0.8846 + }, + { + "start": 18596.86, + "end": 18599.14, + "probability": 0.9892 + }, + { + "start": 18600.02, + "end": 18602.42, + "probability": 0.9661 + }, + { + "start": 18603.14, + "end": 18605.24, + "probability": 0.9686 + }, + { + "start": 18605.48, + "end": 18607.82, + "probability": 0.9718 + }, + { + "start": 18608.3, + "end": 18610.94, + "probability": 0.45 + }, + { + "start": 18611.26, + "end": 18613.88, + "probability": 0.9212 + }, + { + "start": 18614.12, + "end": 18616.58, + "probability": 0.7529 + }, + { + "start": 18617.2, + "end": 18619.5, + "probability": 0.8875 + }, + { + "start": 18620.3, + "end": 18622.04, + "probability": 0.9358 + }, + { + "start": 18623.34, + "end": 18625.48, + "probability": 0.9817 + }, + { + "start": 18626.44, + "end": 18628.26, + "probability": 0.9702 + }, + { + "start": 18629.06, + "end": 18631.14, + "probability": 0.9704 + }, + { + "start": 18631.8, + "end": 18633.62, + "probability": 0.9778 + }, + { + "start": 18634.42, + "end": 18636.04, + "probability": 0.9873 + }, + { + "start": 18636.72, + "end": 18638.26, + "probability": 0.63 + }, + { + "start": 18639.24, + "end": 18641.08, + "probability": 0.9331 + }, + { + "start": 18641.86, + "end": 18643.12, + "probability": 0.9715 + }, + { + "start": 18643.84, + "end": 18645.1, + "probability": 0.9395 + }, + { + "start": 18645.82, + "end": 18647.7, + "probability": 0.9797 + }, + { + "start": 18648.76, + "end": 18656.82, + "probability": 0.9861 + }, + { + "start": 18657.34, + "end": 18659.56, + "probability": 0.9633 + }, + { + "start": 18660.26, + "end": 18662.36, + "probability": 0.6772 + }, + { + "start": 18663.44, + "end": 18663.74, + "probability": 0.8053 + }, + { + "start": 18664.72, + "end": 18665.66, + "probability": 0.7992 + }, + { + "start": 18666.46, + "end": 18668.96, + "probability": 0.9583 + }, + { + "start": 18669.88, + "end": 18675.46, + "probability": 0.9458 + }, + { + "start": 18676.06, + "end": 18678.84, + "probability": 0.9844 + }, + { + "start": 18679.9, + "end": 18681.74, + "probability": 0.9258 + }, + { + "start": 18682.38, + "end": 18684.48, + "probability": 0.9939 + }, + { + "start": 18685.16, + "end": 18687.62, + "probability": 0.9745 + }, + { + "start": 18688.28, + "end": 18690.2, + "probability": 0.9873 + }, + { + "start": 18690.74, + "end": 18693.38, + "probability": 0.5554 + }, + { + "start": 18693.8, + "end": 18697.1, + "probability": 0.875 + }, + { + "start": 18697.56, + "end": 18699.92, + "probability": 0.9526 + }, + { + "start": 18700.76, + "end": 18706.54, + "probability": 0.8025 + }, + { + "start": 18707.14, + "end": 18709.78, + "probability": 0.9281 + }, + { + "start": 18709.84, + "end": 18712.68, + "probability": 0.9265 + }, + { + "start": 18712.9, + "end": 18716.48, + "probability": 0.6068 + }, + { + "start": 18717.76, + "end": 18719.68, + "probability": 0.9143 + }, + { + "start": 18720.7, + "end": 18722.68, + "probability": 0.959 + }, + { + "start": 18723.36, + "end": 18725.52, + "probability": 0.9366 + }, + { + "start": 18726.54, + "end": 18729.0, + "probability": 0.9624 + }, + { + "start": 18729.7, + "end": 18730.26, + "probability": 0.9873 + }, + { + "start": 18730.86, + "end": 18734.88, + "probability": 0.9478 + }, + { + "start": 18735.48, + "end": 18737.48, + "probability": 0.9131 + }, + { + "start": 18738.3, + "end": 18743.34, + "probability": 0.829 + }, + { + "start": 18743.98, + "end": 18746.12, + "probability": 0.879 + }, + { + "start": 18747.3, + "end": 18749.66, + "probability": 0.9066 + }, + { + "start": 18750.5, + "end": 18753.02, + "probability": 0.9646 + }, + { + "start": 18753.9, + "end": 18760.32, + "probability": 0.954 + }, + { + "start": 18761.16, + "end": 18762.86, + "probability": 0.9637 + }, + { + "start": 18763.74, + "end": 18765.56, + "probability": 0.8882 + }, + { + "start": 18766.48, + "end": 18768.92, + "probability": 0.8092 + }, + { + "start": 18772.66, + "end": 18775.16, + "probability": 0.8351 + }, + { + "start": 18778.24, + "end": 18780.68, + "probability": 0.9045 + }, + { + "start": 18781.36, + "end": 18783.66, + "probability": 0.7751 + }, + { + "start": 18783.92, + "end": 18786.36, + "probability": 0.9583 + }, + { + "start": 18786.76, + "end": 18789.12, + "probability": 0.9858 + }, + { + "start": 18789.46, + "end": 18792.1, + "probability": 0.9894 + }, + { + "start": 18792.64, + "end": 18797.38, + "probability": 0.9655 + }, + { + "start": 18798.28, + "end": 18800.36, + "probability": 0.7021 + }, + { + "start": 18800.88, + "end": 18803.92, + "probability": 0.8603 + }, + { + "start": 18804.94, + "end": 18805.36, + "probability": 0.9806 + }, + { + "start": 18811.84, + "end": 18812.06, + "probability": 0.1343 + }, + { + "start": 18812.06, + "end": 18812.48, + "probability": 0.7046 + }, + { + "start": 18812.6, + "end": 18813.28, + "probability": 0.161 + }, + { + "start": 18813.28, + "end": 18816.96, + "probability": 0.9634 + }, + { + "start": 18817.5, + "end": 18820.14, + "probability": 0.8588 + }, + { + "start": 18820.64, + "end": 18826.38, + "probability": 0.9692 + }, + { + "start": 18829.56, + "end": 18831.7, + "probability": 0.1834 + }, + { + "start": 18836.32, + "end": 18837.26, + "probability": 0.0222 + }, + { + "start": 18843.48, + "end": 18846.62, + "probability": 0.0922 + }, + { + "start": 18857.54, + "end": 18857.98, + "probability": 0.0351 + }, + { + "start": 18858.31, + "end": 18859.64, + "probability": 0.1528 + }, + { + "start": 18870.52, + "end": 18875.08, + "probability": 0.3846 + }, + { + "start": 18885.64, + "end": 18887.04, + "probability": 0.8191 + }, + { + "start": 18887.68, + "end": 18892.92, + "probability": 0.6576 + }, + { + "start": 18892.98, + "end": 18893.94, + "probability": 0.8257 + }, + { + "start": 18894.62, + "end": 18899.68, + "probability": 0.9392 + }, + { + "start": 18900.48, + "end": 18901.14, + "probability": 0.7974 + }, + { + "start": 18901.44, + "end": 18906.76, + "probability": 0.9902 + }, + { + "start": 18908.08, + "end": 18908.66, + "probability": 0.1745 + }, + { + "start": 18908.66, + "end": 18908.96, + "probability": 0.3712 + }, + { + "start": 18908.96, + "end": 18911.08, + "probability": 0.7328 + }, + { + "start": 18912.18, + "end": 18917.3, + "probability": 0.8613 + }, + { + "start": 18917.3, + "end": 18921.04, + "probability": 0.9814 + }, + { + "start": 18921.06, + "end": 18922.08, + "probability": 0.1295 + }, + { + "start": 18923.04, + "end": 18924.2, + "probability": 0.3245 + }, + { + "start": 18924.26, + "end": 18930.36, + "probability": 0.7427 + }, + { + "start": 18931.99, + "end": 18935.56, + "probability": 0.6337 + }, + { + "start": 18936.06, + "end": 18940.36, + "probability": 0.8022 + }, + { + "start": 18940.36, + "end": 18946.26, + "probability": 0.9929 + }, + { + "start": 18946.26, + "end": 18952.82, + "probability": 0.9682 + }, + { + "start": 18953.68, + "end": 18956.38, + "probability": 0.9904 + }, + { + "start": 18956.5, + "end": 18957.66, + "probability": 0.8628 + }, + { + "start": 18957.74, + "end": 18961.12, + "probability": 0.9968 + }, + { + "start": 18961.5, + "end": 18964.18, + "probability": 0.5803 + }, + { + "start": 18964.38, + "end": 18969.04, + "probability": 0.9653 + }, + { + "start": 18969.04, + "end": 18969.88, + "probability": 0.4275 + }, + { + "start": 18970.24, + "end": 18973.96, + "probability": 0.8688 + }, + { + "start": 18975.26, + "end": 18978.3, + "probability": 0.979 + }, + { + "start": 18978.3, + "end": 18982.38, + "probability": 0.8964 + }, + { + "start": 18983.12, + "end": 18984.82, + "probability": 0.7636 + }, + { + "start": 18984.88, + "end": 18988.66, + "probability": 0.9724 + }, + { + "start": 18988.8, + "end": 18990.38, + "probability": 0.6342 + }, + { + "start": 18990.9, + "end": 18995.8, + "probability": 0.9285 + }, + { + "start": 18996.98, + "end": 18997.34, + "probability": 0.5896 + }, + { + "start": 18998.81, + "end": 19000.96, + "probability": 0.4254 + }, + { + "start": 19001.16, + "end": 19001.16, + "probability": 0.1156 + }, + { + "start": 19001.16, + "end": 19005.02, + "probability": 0.8928 + }, + { + "start": 19005.02, + "end": 19008.1, + "probability": 0.9788 + }, + { + "start": 19008.4, + "end": 19011.08, + "probability": 0.9331 + }, + { + "start": 19011.08, + "end": 19015.88, + "probability": 0.6289 + }, + { + "start": 19016.6, + "end": 19018.76, + "probability": 0.9316 + }, + { + "start": 19018.92, + "end": 19021.04, + "probability": 0.8043 + }, + { + "start": 19021.28, + "end": 19022.96, + "probability": 0.9774 + }, + { + "start": 19022.96, + "end": 19025.84, + "probability": 0.9961 + }, + { + "start": 19027.22, + "end": 19028.69, + "probability": 0.9714 + }, + { + "start": 19028.84, + "end": 19033.89, + "probability": 0.9961 + }, + { + "start": 19034.32, + "end": 19038.02, + "probability": 0.9268 + }, + { + "start": 19038.32, + "end": 19040.98, + "probability": 0.9763 + }, + { + "start": 19042.3, + "end": 19044.98, + "probability": 0.5892 + }, + { + "start": 19046.9, + "end": 19050.36, + "probability": 0.9045 + }, + { + "start": 19050.46, + "end": 19054.52, + "probability": 0.6708 + }, + { + "start": 19055.28, + "end": 19057.9, + "probability": 0.8562 + }, + { + "start": 19058.02, + "end": 19058.36, + "probability": 0.7238 + }, + { + "start": 19058.44, + "end": 19059.48, + "probability": 0.7521 + }, + { + "start": 19059.56, + "end": 19061.17, + "probability": 0.8898 + }, + { + "start": 19061.5, + "end": 19062.48, + "probability": 0.9714 + }, + { + "start": 19065.92, + "end": 19066.66, + "probability": 0.6169 + }, + { + "start": 19073.52, + "end": 19074.24, + "probability": 0.5373 + }, + { + "start": 19074.72, + "end": 19075.88, + "probability": 0.6491 + }, + { + "start": 19076.04, + "end": 19077.2, + "probability": 0.5298 + }, + { + "start": 19077.26, + "end": 19079.0, + "probability": 0.7777 + }, + { + "start": 19079.38, + "end": 19081.56, + "probability": 0.9893 + }, + { + "start": 19081.56, + "end": 19083.8, + "probability": 0.7029 + }, + { + "start": 19083.96, + "end": 19085.98, + "probability": 0.9133 + }, + { + "start": 19086.04, + "end": 19089.32, + "probability": 0.7967 + }, + { + "start": 19089.44, + "end": 19092.64, + "probability": 0.6486 + }, + { + "start": 19092.86, + "end": 19097.08, + "probability": 0.9941 + }, + { + "start": 19097.08, + "end": 19100.44, + "probability": 0.545 + }, + { + "start": 19100.96, + "end": 19102.26, + "probability": 0.8833 + }, + { + "start": 19102.5, + "end": 19105.66, + "probability": 0.6088 + }, + { + "start": 19105.76, + "end": 19107.3, + "probability": 0.7884 + }, + { + "start": 19107.64, + "end": 19108.54, + "probability": 0.665 + }, + { + "start": 19108.58, + "end": 19109.73, + "probability": 0.7382 + }, + { + "start": 19110.32, + "end": 19111.62, + "probability": 0.8197 + }, + { + "start": 19112.06, + "end": 19113.6, + "probability": 0.8642 + }, + { + "start": 19113.96, + "end": 19114.82, + "probability": 0.7977 + }, + { + "start": 19114.86, + "end": 19116.08, + "probability": 0.9636 + }, + { + "start": 19116.32, + "end": 19117.24, + "probability": 0.8841 + }, + { + "start": 19119.44, + "end": 19120.5, + "probability": 0.583 + }, + { + "start": 19120.5, + "end": 19120.5, + "probability": 0.1087 + }, + { + "start": 19120.5, + "end": 19120.99, + "probability": 0.6207 + }, + { + "start": 19121.46, + "end": 19122.08, + "probability": 0.4773 + }, + { + "start": 19122.12, + "end": 19123.2, + "probability": 0.9736 + }, + { + "start": 19123.26, + "end": 19124.18, + "probability": 0.7538 + }, + { + "start": 19124.3, + "end": 19125.54, + "probability": 0.9674 + }, + { + "start": 19125.98, + "end": 19126.74, + "probability": 0.4972 + }, + { + "start": 19128.8, + "end": 19129.16, + "probability": 0.3714 + }, + { + "start": 19129.16, + "end": 19129.16, + "probability": 0.022 + }, + { + "start": 19129.16, + "end": 19129.44, + "probability": 0.6307 + }, + { + "start": 19130.76, + "end": 19132.78, + "probability": 0.8351 + }, + { + "start": 19132.8, + "end": 19134.76, + "probability": 0.8406 + }, + { + "start": 19135.6, + "end": 19138.62, + "probability": 0.6628 + }, + { + "start": 19139.3, + "end": 19139.78, + "probability": 0.7059 + }, + { + "start": 19139.84, + "end": 19141.8, + "probability": 0.8087 + }, + { + "start": 19141.88, + "end": 19145.92, + "probability": 0.9612 + }, + { + "start": 19146.48, + "end": 19147.3, + "probability": 0.7534 + }, + { + "start": 19148.06, + "end": 19152.52, + "probability": 0.9941 + }, + { + "start": 19153.56, + "end": 19155.24, + "probability": 0.9854 + }, + { + "start": 19155.4, + "end": 19157.62, + "probability": 0.9673 + }, + { + "start": 19157.96, + "end": 19162.0, + "probability": 0.9816 + }, + { + "start": 19162.0, + "end": 19164.64, + "probability": 0.7385 + }, + { + "start": 19166.12, + "end": 19167.9, + "probability": 0.7884 + }, + { + "start": 19169.16, + "end": 19171.72, + "probability": 0.9797 + }, + { + "start": 19172.02, + "end": 19172.44, + "probability": 0.5564 + }, + { + "start": 19172.48, + "end": 19172.7, + "probability": 0.3987 + }, + { + "start": 19173.78, + "end": 19174.64, + "probability": 0.6715 + }, + { + "start": 19175.26, + "end": 19176.06, + "probability": 0.9807 + }, + { + "start": 19179.06, + "end": 19182.5, + "probability": 0.7282 + }, + { + "start": 19183.1, + "end": 19185.98, + "probability": 0.6899 + }, + { + "start": 19186.28, + "end": 19188.64, + "probability": 0.9436 + }, + { + "start": 19189.08, + "end": 19190.56, + "probability": 0.9943 + }, + { + "start": 19193.96, + "end": 19194.2, + "probability": 0.5501 + }, + { + "start": 19204.96, + "end": 19205.06, + "probability": 0.545 + }, + { + "start": 19207.94, + "end": 19209.02, + "probability": 0.9495 + }, + { + "start": 19210.64, + "end": 19212.12, + "probability": 0.7539 + }, + { + "start": 19213.64, + "end": 19216.04, + "probability": 0.9729 + }, + { + "start": 19216.92, + "end": 19224.0, + "probability": 0.9954 + }, + { + "start": 19224.96, + "end": 19228.66, + "probability": 0.9873 + }, + { + "start": 19228.66, + "end": 19232.1, + "probability": 0.9978 + }, + { + "start": 19232.62, + "end": 19234.86, + "probability": 0.6841 + }, + { + "start": 19234.94, + "end": 19235.48, + "probability": 0.9739 + }, + { + "start": 19237.36, + "end": 19241.8, + "probability": 0.9346 + }, + { + "start": 19242.3, + "end": 19246.64, + "probability": 0.9973 + }, + { + "start": 19246.86, + "end": 19248.26, + "probability": 0.7909 + }, + { + "start": 19248.72, + "end": 19255.7, + "probability": 0.9448 + }, + { + "start": 19257.06, + "end": 19257.46, + "probability": 0.9556 + }, + { + "start": 19257.98, + "end": 19262.9, + "probability": 0.9989 + }, + { + "start": 19264.06, + "end": 19270.14, + "probability": 0.9438 + }, + { + "start": 19270.36, + "end": 19271.12, + "probability": 0.855 + }, + { + "start": 19271.28, + "end": 19271.86, + "probability": 0.5537 + }, + { + "start": 19272.02, + "end": 19277.96, + "probability": 0.908 + }, + { + "start": 19278.1, + "end": 19279.58, + "probability": 0.7595 + }, + { + "start": 19280.38, + "end": 19284.82, + "probability": 0.9077 + }, + { + "start": 19285.56, + "end": 19288.62, + "probability": 0.9969 + }, + { + "start": 19288.62, + "end": 19293.22, + "probability": 0.9959 + }, + { + "start": 19293.38, + "end": 19295.23, + "probability": 0.7118 + }, + { + "start": 19295.94, + "end": 19298.16, + "probability": 0.9958 + }, + { + "start": 19298.16, + "end": 19301.7, + "probability": 0.9786 + }, + { + "start": 19302.32, + "end": 19304.68, + "probability": 0.9907 + }, + { + "start": 19304.88, + "end": 19307.94, + "probability": 0.8459 + }, + { + "start": 19308.18, + "end": 19312.89, + "probability": 0.9858 + }, + { + "start": 19313.06, + "end": 19313.85, + "probability": 0.8135 + }, + { + "start": 19314.64, + "end": 19315.9, + "probability": 0.9351 + }, + { + "start": 19316.38, + "end": 19318.52, + "probability": 0.9684 + }, + { + "start": 19318.62, + "end": 19319.96, + "probability": 0.8804 + }, + { + "start": 19320.12, + "end": 19323.36, + "probability": 0.9697 + }, + { + "start": 19323.82, + "end": 19328.38, + "probability": 0.9111 + }, + { + "start": 19328.58, + "end": 19329.64, + "probability": 0.2922 + }, + { + "start": 19329.78, + "end": 19334.44, + "probability": 0.9769 + }, + { + "start": 19335.16, + "end": 19339.49, + "probability": 0.9146 + }, + { + "start": 19340.34, + "end": 19345.08, + "probability": 0.9945 + }, + { + "start": 19345.08, + "end": 19350.42, + "probability": 0.9341 + }, + { + "start": 19350.76, + "end": 19353.16, + "probability": 0.8639 + }, + { + "start": 19353.42, + "end": 19354.22, + "probability": 0.7423 + }, + { + "start": 19354.32, + "end": 19357.0, + "probability": 0.859 + }, + { + "start": 19357.72, + "end": 19361.84, + "probability": 0.9875 + }, + { + "start": 19361.84, + "end": 19365.4, + "probability": 0.9501 + }, + { + "start": 19366.96, + "end": 19369.54, + "probability": 0.814 + }, + { + "start": 19370.42, + "end": 19373.1, + "probability": 0.9867 + }, + { + "start": 19373.26, + "end": 19377.96, + "probability": 0.9277 + }, + { + "start": 19378.64, + "end": 19382.52, + "probability": 0.9922 + }, + { + "start": 19383.14, + "end": 19388.96, + "probability": 0.8708 + }, + { + "start": 19390.9, + "end": 19392.84, + "probability": 0.7433 + }, + { + "start": 19393.24, + "end": 19396.16, + "probability": 0.8972 + }, + { + "start": 19396.5, + "end": 19400.45, + "probability": 0.9812 + }, + { + "start": 19400.96, + "end": 19403.02, + "probability": 0.9741 + }, + { + "start": 19403.02, + "end": 19405.66, + "probability": 0.9985 + }, + { + "start": 19406.5, + "end": 19408.34, + "probability": 0.9683 + }, + { + "start": 19409.26, + "end": 19412.12, + "probability": 0.9966 + }, + { + "start": 19412.92, + "end": 19414.82, + "probability": 0.9453 + }, + { + "start": 19415.14, + "end": 19415.64, + "probability": 0.8882 + }, + { + "start": 19415.86, + "end": 19417.2, + "probability": 0.5243 + }, + { + "start": 19417.26, + "end": 19421.24, + "probability": 0.9047 + }, + { + "start": 19421.42, + "end": 19422.56, + "probability": 0.6243 + }, + { + "start": 19423.26, + "end": 19427.62, + "probability": 0.7915 + }, + { + "start": 19428.82, + "end": 19431.02, + "probability": 0.757 + }, + { + "start": 19431.62, + "end": 19433.0, + "probability": 0.777 + }, + { + "start": 19433.06, + "end": 19434.84, + "probability": 0.9704 + }, + { + "start": 19435.4, + "end": 19436.6, + "probability": 0.9569 + }, + { + "start": 19436.72, + "end": 19438.81, + "probability": 0.8687 + }, + { + "start": 19439.47, + "end": 19443.16, + "probability": 0.8553 + }, + { + "start": 19443.32, + "end": 19445.44, + "probability": 0.9799 + }, + { + "start": 19445.96, + "end": 19447.6, + "probability": 0.8471 + }, + { + "start": 19447.68, + "end": 19448.94, + "probability": 0.6452 + }, + { + "start": 19449.16, + "end": 19450.14, + "probability": 0.8432 + }, + { + "start": 19450.48, + "end": 19452.7, + "probability": 0.9217 + }, + { + "start": 19453.38, + "end": 19455.84, + "probability": 0.9622 + }, + { + "start": 19456.18, + "end": 19462.9, + "probability": 0.9554 + }, + { + "start": 19463.46, + "end": 19463.46, + "probability": 0.4437 + }, + { + "start": 19463.46, + "end": 19466.7, + "probability": 0.9882 + }, + { + "start": 19466.7, + "end": 19470.26, + "probability": 0.9756 + }, + { + "start": 19470.86, + "end": 19473.98, + "probability": 0.7922 + }, + { + "start": 19475.16, + "end": 19478.04, + "probability": 0.959 + }, + { + "start": 19478.04, + "end": 19481.4, + "probability": 0.9894 + }, + { + "start": 19481.68, + "end": 19482.5, + "probability": 0.608 + }, + { + "start": 19482.56, + "end": 19484.56, + "probability": 0.8897 + }, + { + "start": 19484.56, + "end": 19487.22, + "probability": 0.9924 + }, + { + "start": 19487.58, + "end": 19489.06, + "probability": 0.7841 + }, + { + "start": 19489.18, + "end": 19491.48, + "probability": 0.7389 + }, + { + "start": 19491.9, + "end": 19493.96, + "probability": 0.8047 + }, + { + "start": 19509.24, + "end": 19510.68, + "probability": 0.9458 + }, + { + "start": 19513.6, + "end": 19514.56, + "probability": 0.5214 + }, + { + "start": 19515.44, + "end": 19516.44, + "probability": 0.7805 + }, + { + "start": 19517.54, + "end": 19520.73, + "probability": 0.8343 + }, + { + "start": 19521.54, + "end": 19522.38, + "probability": 0.9591 + }, + { + "start": 19522.8, + "end": 19528.22, + "probability": 0.9643 + }, + { + "start": 19528.22, + "end": 19530.98, + "probability": 0.7181 + }, + { + "start": 19533.02, + "end": 19534.98, + "probability": 0.8864 + }, + { + "start": 19535.6, + "end": 19537.6, + "probability": 0.9976 + }, + { + "start": 19538.24, + "end": 19542.14, + "probability": 0.949 + }, + { + "start": 19542.14, + "end": 19546.24, + "probability": 0.8329 + }, + { + "start": 19546.84, + "end": 19549.74, + "probability": 0.9919 + }, + { + "start": 19550.74, + "end": 19554.64, + "probability": 0.988 + }, + { + "start": 19555.84, + "end": 19561.9, + "probability": 0.9448 + }, + { + "start": 19562.5, + "end": 19563.46, + "probability": 0.7788 + }, + { + "start": 19564.06, + "end": 19568.44, + "probability": 0.9867 + }, + { + "start": 19568.9, + "end": 19570.18, + "probability": 0.9328 + }, + { + "start": 19570.34, + "end": 19573.8, + "probability": 0.9906 + }, + { + "start": 19573.86, + "end": 19578.12, + "probability": 0.9961 + }, + { + "start": 19579.24, + "end": 19584.58, + "probability": 0.9658 + }, + { + "start": 19585.0, + "end": 19588.03, + "probability": 0.9647 + }, + { + "start": 19588.39, + "end": 19590.59, + "probability": 0.9866 + }, + { + "start": 19590.94, + "end": 19592.6, + "probability": 0.8551 + }, + { + "start": 19593.18, + "end": 19599.32, + "probability": 0.9651 + }, + { + "start": 19599.58, + "end": 19601.4, + "probability": 0.9951 + }, + { + "start": 19601.44, + "end": 19601.7, + "probability": 0.8677 + }, + { + "start": 19612.94, + "end": 19613.98, + "probability": 0.5708 + }, + { + "start": 19615.12, + "end": 19616.56, + "probability": 0.8826 + }, + { + "start": 19617.24, + "end": 19618.76, + "probability": 0.7164 + }, + { + "start": 19618.84, + "end": 19621.28, + "probability": 0.9099 + }, + { + "start": 19632.76, + "end": 19633.68, + "probability": 0.574 + }, + { + "start": 19633.78, + "end": 19634.34, + "probability": 0.6781 + }, + { + "start": 19634.64, + "end": 19637.64, + "probability": 0.6392 + }, + { + "start": 19637.82, + "end": 19639.72, + "probability": 0.8193 + }, + { + "start": 19640.0, + "end": 19642.48, + "probability": 0.9857 + }, + { + "start": 19643.9, + "end": 19648.3, + "probability": 0.9385 + }, + { + "start": 19648.88, + "end": 19651.86, + "probability": 0.9785 + }, + { + "start": 19653.34, + "end": 19658.36, + "probability": 0.5876 + }, + { + "start": 19659.12, + "end": 19665.22, + "probability": 0.9951 + }, + { + "start": 19665.22, + "end": 19669.74, + "probability": 0.9939 + }, + { + "start": 19670.84, + "end": 19677.66, + "probability": 0.9758 + }, + { + "start": 19678.16, + "end": 19679.52, + "probability": 0.8903 + }, + { + "start": 19680.44, + "end": 19681.98, + "probability": 0.774 + }, + { + "start": 19682.62, + "end": 19686.32, + "probability": 0.8394 + }, + { + "start": 19687.8, + "end": 19689.3, + "probability": 0.9698 + }, + { + "start": 19689.78, + "end": 19694.54, + "probability": 0.9739 + }, + { + "start": 19694.96, + "end": 19695.4, + "probability": 0.9404 + }, + { + "start": 19697.76, + "end": 19700.54, + "probability": 0.8745 + }, + { + "start": 19700.74, + "end": 19701.76, + "probability": 0.9562 + }, + { + "start": 19701.9, + "end": 19703.44, + "probability": 0.9718 + }, + { + "start": 19704.1, + "end": 19707.65, + "probability": 0.814 + }, + { + "start": 19708.84, + "end": 19711.14, + "probability": 0.9588 + }, + { + "start": 19711.62, + "end": 19716.24, + "probability": 0.9844 + }, + { + "start": 19716.92, + "end": 19718.25, + "probability": 0.9722 + }, + { + "start": 19719.6, + "end": 19722.22, + "probability": 0.7894 + }, + { + "start": 19722.44, + "end": 19726.54, + "probability": 0.9832 + }, + { + "start": 19727.3, + "end": 19728.62, + "probability": 0.525 + }, + { + "start": 19729.38, + "end": 19731.08, + "probability": 0.6649 + }, + { + "start": 19731.6, + "end": 19733.02, + "probability": 0.881 + }, + { + "start": 19733.36, + "end": 19737.32, + "probability": 0.9823 + }, + { + "start": 19737.78, + "end": 19739.5, + "probability": 0.9698 + }, + { + "start": 19740.0, + "end": 19740.8, + "probability": 0.7162 + }, + { + "start": 19740.84, + "end": 19741.42, + "probability": 0.9119 + }, + { + "start": 19742.76, + "end": 19749.18, + "probability": 0.9554 + }, + { + "start": 19749.38, + "end": 19750.56, + "probability": 0.9158 + }, + { + "start": 19751.46, + "end": 19752.94, + "probability": 0.7977 + }, + { + "start": 19753.5, + "end": 19758.04, + "probability": 0.6865 + }, + { + "start": 19758.56, + "end": 19760.02, + "probability": 0.8644 + }, + { + "start": 19760.82, + "end": 19769.92, + "probability": 0.8525 + }, + { + "start": 19770.34, + "end": 19772.94, + "probability": 0.7853 + }, + { + "start": 19773.56, + "end": 19777.64, + "probability": 0.9128 + }, + { + "start": 19778.06, + "end": 19780.52, + "probability": 0.576 + }, + { + "start": 19780.86, + "end": 19782.24, + "probability": 0.9323 + }, + { + "start": 19782.36, + "end": 19787.42, + "probability": 0.9772 + }, + { + "start": 19787.76, + "end": 19790.08, + "probability": 0.8701 + }, + { + "start": 19790.64, + "end": 19795.34, + "probability": 0.9855 + }, + { + "start": 19795.58, + "end": 19797.16, + "probability": 0.5902 + }, + { + "start": 19797.4, + "end": 19800.16, + "probability": 0.7926 + }, + { + "start": 19800.54, + "end": 19803.02, + "probability": 0.9756 + }, + { + "start": 19803.32, + "end": 19804.2, + "probability": 0.688 + }, + { + "start": 19804.44, + "end": 19804.48, + "probability": 0.2222 + }, + { + "start": 19804.48, + "end": 19805.12, + "probability": 0.7743 + }, + { + "start": 19805.42, + "end": 19807.92, + "probability": 0.924 + }, + { + "start": 19808.08, + "end": 19811.54, + "probability": 0.8356 + }, + { + "start": 19811.86, + "end": 19814.18, + "probability": 0.9014 + }, + { + "start": 19814.6, + "end": 19816.22, + "probability": 0.7887 + }, + { + "start": 19816.4, + "end": 19818.66, + "probability": 0.7817 + }, + { + "start": 19819.3, + "end": 19820.88, + "probability": 0.7833 + }, + { + "start": 19821.04, + "end": 19824.78, + "probability": 0.923 + }, + { + "start": 19825.24, + "end": 19826.7, + "probability": 0.9941 + }, + { + "start": 19826.96, + "end": 19829.0, + "probability": 0.9614 + }, + { + "start": 19830.49, + "end": 19830.56, + "probability": 0.0679 + }, + { + "start": 19830.56, + "end": 19831.26, + "probability": 0.6795 + }, + { + "start": 19831.68, + "end": 19833.35, + "probability": 0.8491 + }, + { + "start": 19833.8, + "end": 19834.64, + "probability": 0.607 + }, + { + "start": 19835.16, + "end": 19839.68, + "probability": 0.9756 + }, + { + "start": 19840.08, + "end": 19841.16, + "probability": 0.983 + }, + { + "start": 19841.44, + "end": 19842.25, + "probability": 0.832 + }, + { + "start": 19842.86, + "end": 19843.78, + "probability": 0.9904 + }, + { + "start": 19844.02, + "end": 19847.06, + "probability": 0.9309 + }, + { + "start": 19847.46, + "end": 19849.76, + "probability": 0.6783 + }, + { + "start": 19850.3, + "end": 19853.52, + "probability": 0.6133 + }, + { + "start": 19853.8, + "end": 19858.72, + "probability": 0.6169 + }, + { + "start": 19859.2, + "end": 19864.67, + "probability": 0.2608 + }, + { + "start": 19865.26, + "end": 19871.06, + "probability": 0.7502 + }, + { + "start": 19871.24, + "end": 19872.36, + "probability": 0.5314 + }, + { + "start": 19872.5, + "end": 19873.8, + "probability": 0.8983 + }, + { + "start": 19875.04, + "end": 19879.46, + "probability": 0.8918 + }, + { + "start": 19880.88, + "end": 19881.58, + "probability": 0.4155 + }, + { + "start": 19881.64, + "end": 19881.64, + "probability": 0.4949 + }, + { + "start": 19881.64, + "end": 19883.22, + "probability": 0.5886 + }, + { + "start": 19883.34, + "end": 19886.36, + "probability": 0.8097 + }, + { + "start": 19886.48, + "end": 19887.38, + "probability": 0.7849 + }, + { + "start": 19887.94, + "end": 19891.89, + "probability": 0.8241 + }, + { + "start": 19893.24, + "end": 19894.32, + "probability": 0.9859 + }, + { + "start": 19894.7, + "end": 19895.18, + "probability": 0.9646 + }, + { + "start": 19895.7, + "end": 19895.94, + "probability": 0.6946 + }, + { + "start": 19896.4, + "end": 19897.92, + "probability": 0.8955 + }, + { + "start": 19899.06, + "end": 19901.02, + "probability": 0.9337 + }, + { + "start": 19901.14, + "end": 19902.3, + "probability": 0.8927 + }, + { + "start": 19903.62, + "end": 19906.76, + "probability": 0.9713 + }, + { + "start": 19907.28, + "end": 19908.3, + "probability": 0.7882 + }, + { + "start": 19908.46, + "end": 19909.48, + "probability": 0.9341 + }, + { + "start": 19909.6, + "end": 19911.26, + "probability": 0.7198 + }, + { + "start": 19912.06, + "end": 19912.74, + "probability": 0.4507 + }, + { + "start": 19913.74, + "end": 19916.84, + "probability": 0.945 + }, + { + "start": 19917.7, + "end": 19919.42, + "probability": 0.9895 + }, + { + "start": 19919.52, + "end": 19920.28, + "probability": 0.4224 + }, + { + "start": 19920.98, + "end": 19925.66, + "probability": 0.9376 + }, + { + "start": 19928.1, + "end": 19928.1, + "probability": 0.0094 + }, + { + "start": 19928.1, + "end": 19928.56, + "probability": 0.3693 + }, + { + "start": 19928.7, + "end": 19929.96, + "probability": 0.7259 + }, + { + "start": 19930.48, + "end": 19932.44, + "probability": 0.7653 + }, + { + "start": 19932.44, + "end": 19935.8, + "probability": 0.6208 + }, + { + "start": 19936.2, + "end": 19936.2, + "probability": 0.5339 + }, + { + "start": 19936.2, + "end": 19936.2, + "probability": 0.6266 + }, + { + "start": 19936.2, + "end": 19936.42, + "probability": 0.5364 + }, + { + "start": 19936.48, + "end": 19937.5, + "probability": 0.9452 + }, + { + "start": 19938.18, + "end": 19938.48, + "probability": 0.8962 + }, + { + "start": 19938.92, + "end": 19942.9, + "probability": 0.8261 + }, + { + "start": 19943.08, + "end": 19943.84, + "probability": 0.497 + }, + { + "start": 19944.32, + "end": 19945.22, + "probability": 0.7176 + }, + { + "start": 19945.38, + "end": 19951.14, + "probability": 0.9597 + }, + { + "start": 19952.36, + "end": 19956.12, + "probability": 0.9924 + }, + { + "start": 19957.46, + "end": 19961.24, + "probability": 0.9968 + }, + { + "start": 19961.24, + "end": 19963.32, + "probability": 0.7576 + }, + { + "start": 19963.5, + "end": 19964.53, + "probability": 0.6409 + }, + { + "start": 19965.5, + "end": 19968.72, + "probability": 0.9907 + }, + { + "start": 19969.38, + "end": 19974.06, + "probability": 0.8959 + }, + { + "start": 19974.06, + "end": 19978.82, + "probability": 0.9902 + }, + { + "start": 19980.34, + "end": 19983.12, + "probability": 0.9931 + }, + { + "start": 19983.4, + "end": 19988.7, + "probability": 0.9968 + }, + { + "start": 19989.14, + "end": 19990.6, + "probability": 0.9688 + }, + { + "start": 19991.5, + "end": 19992.18, + "probability": 0.4066 + }, + { + "start": 19992.94, + "end": 19995.1, + "probability": 0.9261 + }, + { + "start": 19995.78, + "end": 19997.18, + "probability": 0.8988 + }, + { + "start": 19997.8, + "end": 20001.36, + "probability": 0.8767 + }, + { + "start": 20002.06, + "end": 20003.64, + "probability": 0.9598 + }, + { + "start": 20004.42, + "end": 20006.26, + "probability": 0.9391 + }, + { + "start": 20006.8, + "end": 20006.9, + "probability": 0.4511 + }, + { + "start": 20007.0, + "end": 20008.7, + "probability": 0.8343 + }, + { + "start": 20009.2, + "end": 20011.9, + "probability": 0.9507 + }, + { + "start": 20013.44, + "end": 20016.74, + "probability": 0.9907 + }, + { + "start": 20018.62, + "end": 20022.3, + "probability": 0.9663 + }, + { + "start": 20022.3, + "end": 20026.5, + "probability": 0.5836 + }, + { + "start": 20028.22, + "end": 20030.62, + "probability": 0.9857 + }, + { + "start": 20031.18, + "end": 20036.24, + "probability": 0.9881 + }, + { + "start": 20037.04, + "end": 20040.94, + "probability": 0.9349 + }, + { + "start": 20040.94, + "end": 20046.14, + "probability": 0.9986 + }, + { + "start": 20047.0, + "end": 20049.86, + "probability": 0.9902 + }, + { + "start": 20049.96, + "end": 20051.26, + "probability": 0.9718 + }, + { + "start": 20052.0, + "end": 20054.64, + "probability": 0.798 + }, + { + "start": 20055.88, + "end": 20057.34, + "probability": 0.9662 + }, + { + "start": 20058.46, + "end": 20061.92, + "probability": 0.9851 + }, + { + "start": 20061.92, + "end": 20066.5, + "probability": 0.9891 + }, + { + "start": 20067.4, + "end": 20075.76, + "probability": 0.986 + }, + { + "start": 20075.82, + "end": 20079.0, + "probability": 0.9985 + }, + { + "start": 20079.0, + "end": 20082.18, + "probability": 0.9946 + }, + { + "start": 20082.44, + "end": 20089.72, + "probability": 0.995 + }, + { + "start": 20090.04, + "end": 20097.14, + "probability": 0.9983 + }, + { + "start": 20097.14, + "end": 20100.46, + "probability": 0.9968 + }, + { + "start": 20101.1, + "end": 20105.12, + "probability": 0.9954 + }, + { + "start": 20105.12, + "end": 20107.42, + "probability": 0.9534 + }, + { + "start": 20108.04, + "end": 20111.8, + "probability": 0.9638 + }, + { + "start": 20111.94, + "end": 20112.24, + "probability": 0.3896 + }, + { + "start": 20114.36, + "end": 20116.46, + "probability": 0.8616 + }, + { + "start": 20117.02, + "end": 20119.08, + "probability": 0.8076 + }, + { + "start": 20119.58, + "end": 20119.96, + "probability": 0.5931 + }, + { + "start": 20120.02, + "end": 20121.94, + "probability": 0.7475 + }, + { + "start": 20122.42, + "end": 20123.1, + "probability": 0.6235 + }, + { + "start": 20123.12, + "end": 20124.42, + "probability": 0.9207 + }, + { + "start": 20135.3, + "end": 20136.32, + "probability": 0.7675 + }, + { + "start": 20136.42, + "end": 20137.28, + "probability": 0.7609 + }, + { + "start": 20137.36, + "end": 20139.1, + "probability": 0.7437 + }, + { + "start": 20139.24, + "end": 20140.96, + "probability": 0.6641 + }, + { + "start": 20142.06, + "end": 20144.84, + "probability": 0.7422 + }, + { + "start": 20145.5, + "end": 20149.16, + "probability": 0.9803 + }, + { + "start": 20152.3, + "end": 20152.88, + "probability": 0.3082 + }, + { + "start": 20154.32, + "end": 20157.86, + "probability": 0.9696 + }, + { + "start": 20158.6, + "end": 20163.42, + "probability": 0.9598 + }, + { + "start": 20163.7, + "end": 20165.38, + "probability": 0.8748 + }, + { + "start": 20165.48, + "end": 20166.52, + "probability": 0.8081 + }, + { + "start": 20166.6, + "end": 20167.24, + "probability": 0.7647 + }, + { + "start": 20168.88, + "end": 20170.96, + "probability": 0.9985 + }, + { + "start": 20173.5, + "end": 20175.2, + "probability": 0.3847 + }, + { + "start": 20175.42, + "end": 20176.08, + "probability": 0.489 + }, + { + "start": 20176.22, + "end": 20176.9, + "probability": 0.8233 + }, + { + "start": 20177.22, + "end": 20179.96, + "probability": 0.9851 + }, + { + "start": 20181.04, + "end": 20185.32, + "probability": 0.6613 + }, + { + "start": 20185.86, + "end": 20186.07, + "probability": 0.4915 + }, + { + "start": 20187.7, + "end": 20192.02, + "probability": 0.9814 + }, + { + "start": 20192.48, + "end": 20193.46, + "probability": 0.7737 + }, + { + "start": 20193.56, + "end": 20194.7, + "probability": 0.9912 + }, + { + "start": 20197.34, + "end": 20198.24, + "probability": 0.6876 + }, + { + "start": 20199.0, + "end": 20201.12, + "probability": 0.7709 + }, + { + "start": 20201.7, + "end": 20207.72, + "probability": 0.9565 + }, + { + "start": 20207.96, + "end": 20214.82, + "probability": 0.9066 + }, + { + "start": 20215.26, + "end": 20216.86, + "probability": 0.8114 + }, + { + "start": 20217.27, + "end": 20219.34, + "probability": 0.653 + }, + { + "start": 20219.58, + "end": 20223.22, + "probability": 0.9952 + }, + { + "start": 20223.32, + "end": 20233.18, + "probability": 0.9651 + }, + { + "start": 20233.4, + "end": 20235.74, + "probability": 0.9903 + }, + { + "start": 20237.22, + "end": 20244.64, + "probability": 0.9872 + }, + { + "start": 20245.49, + "end": 20250.96, + "probability": 0.9871 + }, + { + "start": 20250.96, + "end": 20255.66, + "probability": 0.968 + }, + { + "start": 20256.36, + "end": 20261.3, + "probability": 0.9538 + }, + { + "start": 20262.0, + "end": 20262.46, + "probability": 0.261 + }, + { + "start": 20263.02, + "end": 20268.9, + "probability": 0.9587 + }, + { + "start": 20269.11, + "end": 20272.72, + "probability": 0.9993 + }, + { + "start": 20272.78, + "end": 20277.88, + "probability": 0.8334 + }, + { + "start": 20278.06, + "end": 20279.18, + "probability": 0.4814 + }, + { + "start": 20279.92, + "end": 20283.36, + "probability": 0.7521 + }, + { + "start": 20283.5, + "end": 20284.16, + "probability": 0.3642 + }, + { + "start": 20284.22, + "end": 20288.1, + "probability": 0.9711 + }, + { + "start": 20289.0, + "end": 20290.66, + "probability": 0.8316 + }, + { + "start": 20291.0, + "end": 20294.34, + "probability": 0.9932 + }, + { + "start": 20295.18, + "end": 20295.68, + "probability": 0.258 + }, + { + "start": 20295.78, + "end": 20296.88, + "probability": 0.8657 + }, + { + "start": 20297.02, + "end": 20298.64, + "probability": 0.9927 + }, + { + "start": 20298.7, + "end": 20299.24, + "probability": 0.9189 + }, + { + "start": 20299.32, + "end": 20300.32, + "probability": 0.5943 + }, + { + "start": 20300.32, + "end": 20305.84, + "probability": 0.9402 + }, + { + "start": 20306.88, + "end": 20310.49, + "probability": 0.9049 + }, + { + "start": 20310.68, + "end": 20319.22, + "probability": 0.8315 + }, + { + "start": 20319.64, + "end": 20320.98, + "probability": 0.8146 + }, + { + "start": 20321.16, + "end": 20321.38, + "probability": 0.7239 + }, + { + "start": 20323.14, + "end": 20326.3, + "probability": 0.9016 + }, + { + "start": 20326.88, + "end": 20328.62, + "probability": 0.8413 + }, + { + "start": 20328.8, + "end": 20331.56, + "probability": 0.8336 + }, + { + "start": 20332.16, + "end": 20335.86, + "probability": 0.7736 + }, + { + "start": 20337.24, + "end": 20338.06, + "probability": 0.918 + }, + { + "start": 20341.92, + "end": 20342.7, + "probability": 0.5998 + }, + { + "start": 20342.76, + "end": 20343.34, + "probability": 0.8275 + }, + { + "start": 20343.44, + "end": 20345.71, + "probability": 0.9921 + }, + { + "start": 20345.8, + "end": 20347.04, + "probability": 0.9278 + }, + { + "start": 20347.18, + "end": 20348.06, + "probability": 0.9642 + }, + { + "start": 20349.26, + "end": 20351.5, + "probability": 0.792 + }, + { + "start": 20351.56, + "end": 20355.82, + "probability": 0.9368 + }, + { + "start": 20356.38, + "end": 20358.72, + "probability": 0.9301 + }, + { + "start": 20358.84, + "end": 20359.96, + "probability": 0.99 + }, + { + "start": 20360.02, + "end": 20361.32, + "probability": 0.9362 + }, + { + "start": 20361.78, + "end": 20364.84, + "probability": 0.8875 + }, + { + "start": 20365.5, + "end": 20367.76, + "probability": 0.7398 + }, + { + "start": 20368.38, + "end": 20372.24, + "probability": 0.9674 + }, + { + "start": 20372.36, + "end": 20374.32, + "probability": 0.9939 + }, + { + "start": 20374.76, + "end": 20375.38, + "probability": 0.8935 + }, + { + "start": 20375.64, + "end": 20377.2, + "probability": 0.9836 + }, + { + "start": 20377.3, + "end": 20379.76, + "probability": 0.9943 + }, + { + "start": 20379.9, + "end": 20380.77, + "probability": 0.6752 + }, + { + "start": 20381.56, + "end": 20385.44, + "probability": 0.9844 + }, + { + "start": 20385.52, + "end": 20388.24, + "probability": 0.9321 + }, + { + "start": 20388.42, + "end": 20389.1, + "probability": 0.6216 + }, + { + "start": 20389.14, + "end": 20391.26, + "probability": 0.9409 + }, + { + "start": 20391.34, + "end": 20392.86, + "probability": 0.901 + }, + { + "start": 20393.02, + "end": 20393.9, + "probability": 0.5838 + }, + { + "start": 20394.54, + "end": 20398.16, + "probability": 0.9568 + }, + { + "start": 20398.24, + "end": 20401.88, + "probability": 0.9934 + }, + { + "start": 20402.4, + "end": 20404.76, + "probability": 0.7434 + }, + { + "start": 20404.76, + "end": 20406.24, + "probability": 0.801 + }, + { + "start": 20406.68, + "end": 20408.54, + "probability": 0.662 + }, + { + "start": 20408.72, + "end": 20410.92, + "probability": 0.995 + }, + { + "start": 20411.0, + "end": 20412.76, + "probability": 0.864 + }, + { + "start": 20412.9, + "end": 20414.5, + "probability": 0.905 + }, + { + "start": 20414.66, + "end": 20418.88, + "probability": 0.8931 + }, + { + "start": 20418.98, + "end": 20421.26, + "probability": 0.9956 + }, + { + "start": 20421.42, + "end": 20422.08, + "probability": 0.7255 + }, + { + "start": 20422.12, + "end": 20422.76, + "probability": 0.8597 + }, + { + "start": 20422.88, + "end": 20424.9, + "probability": 0.5264 + }, + { + "start": 20426.06, + "end": 20426.76, + "probability": 0.9556 + }, + { + "start": 20427.4, + "end": 20429.66, + "probability": 0.9346 + }, + { + "start": 20429.86, + "end": 20430.81, + "probability": 0.7054 + }, + { + "start": 20431.9, + "end": 20433.2, + "probability": 0.6647 + }, + { + "start": 20435.06, + "end": 20438.24, + "probability": 0.3935 + }, + { + "start": 20438.24, + "end": 20439.74, + "probability": 0.0689 + }, + { + "start": 20439.8, + "end": 20440.29, + "probability": 0.539 + }, + { + "start": 20440.7, + "end": 20440.86, + "probability": 0.9019 + }, + { + "start": 20440.9, + "end": 20443.38, + "probability": 0.8076 + }, + { + "start": 20444.56, + "end": 20445.0, + "probability": 0.6711 + }, + { + "start": 20445.04, + "end": 20446.1, + "probability": 0.7853 + }, + { + "start": 20446.24, + "end": 20449.74, + "probability": 0.9896 + }, + { + "start": 20449.92, + "end": 20451.74, + "probability": 0.689 + }, + { + "start": 20451.84, + "end": 20455.0, + "probability": 0.5681 + }, + { + "start": 20455.1, + "end": 20458.21, + "probability": 0.936 + }, + { + "start": 20458.32, + "end": 20461.64, + "probability": 0.9556 + }, + { + "start": 20461.72, + "end": 20466.3, + "probability": 0.7952 + }, + { + "start": 20466.58, + "end": 20467.94, + "probability": 0.9907 + }, + { + "start": 20468.2, + "end": 20469.09, + "probability": 0.4264 + }, + { + "start": 20470.54, + "end": 20473.08, + "probability": 0.9844 + }, + { + "start": 20473.26, + "end": 20473.7, + "probability": 0.9368 + }, + { + "start": 20473.76, + "end": 20479.42, + "probability": 0.9974 + }, + { + "start": 20479.78, + "end": 20480.5, + "probability": 0.5622 + }, + { + "start": 20480.74, + "end": 20481.42, + "probability": 0.7568 + }, + { + "start": 20481.48, + "end": 20482.08, + "probability": 0.9287 + }, + { + "start": 20483.4, + "end": 20487.32, + "probability": 0.7647 + }, + { + "start": 20487.9, + "end": 20489.8, + "probability": 0.5508 + }, + { + "start": 20490.38, + "end": 20492.26, + "probability": 0.6522 + }, + { + "start": 20499.8, + "end": 20499.92, + "probability": 0.3147 + }, + { + "start": 20504.18, + "end": 20508.6, + "probability": 0.644 + }, + { + "start": 20512.78, + "end": 20514.08, + "probability": 0.6893 + }, + { + "start": 20514.64, + "end": 20515.26, + "probability": 0.9166 + }, + { + "start": 20516.28, + "end": 20517.6, + "probability": 0.6225 + }, + { + "start": 20518.7, + "end": 20521.92, + "probability": 0.8971 + }, + { + "start": 20522.46, + "end": 20523.06, + "probability": 0.7109 + }, + { + "start": 20524.08, + "end": 20525.36, + "probability": 0.7691 + }, + { + "start": 20526.4, + "end": 20532.88, + "probability": 0.9341 + }, + { + "start": 20533.76, + "end": 20538.0, + "probability": 0.9941 + }, + { + "start": 20539.66, + "end": 20541.1, + "probability": 0.9331 + }, + { + "start": 20542.28, + "end": 20544.82, + "probability": 0.9883 + }, + { + "start": 20545.98, + "end": 20548.0, + "probability": 0.9624 + }, + { + "start": 20549.08, + "end": 20549.92, + "probability": 0.9919 + }, + { + "start": 20551.02, + "end": 20552.4, + "probability": 0.9608 + }, + { + "start": 20553.28, + "end": 20555.74, + "probability": 0.9117 + }, + { + "start": 20556.46, + "end": 20557.66, + "probability": 0.9438 + }, + { + "start": 20558.38, + "end": 20561.74, + "probability": 0.9674 + }, + { + "start": 20563.22, + "end": 20566.3, + "probability": 0.9839 + }, + { + "start": 20567.3, + "end": 20569.76, + "probability": 0.7982 + }, + { + "start": 20570.58, + "end": 20574.46, + "probability": 0.9774 + }, + { + "start": 20575.32, + "end": 20575.9, + "probability": 0.7106 + }, + { + "start": 20576.94, + "end": 20577.4, + "probability": 0.9565 + }, + { + "start": 20577.5, + "end": 20578.98, + "probability": 0.9951 + }, + { + "start": 20580.62, + "end": 20581.14, + "probability": 0.7662 + }, + { + "start": 20582.64, + "end": 20583.78, + "probability": 0.8552 + }, + { + "start": 20584.7, + "end": 20588.94, + "probability": 0.9966 + }, + { + "start": 20588.94, + "end": 20592.96, + "probability": 0.9473 + }, + { + "start": 20593.6, + "end": 20594.02, + "probability": 0.7121 + }, + { + "start": 20597.2, + "end": 20599.46, + "probability": 0.7224 + }, + { + "start": 20600.14, + "end": 20601.36, + "probability": 0.7473 + }, + { + "start": 20601.56, + "end": 20603.0, + "probability": 0.8041 + }, + { + "start": 20603.18, + "end": 20604.4, + "probability": 0.82 + }, + { + "start": 20604.78, + "end": 20608.56, + "probability": 0.7147 + }, + { + "start": 20608.64, + "end": 20608.92, + "probability": 0.8995 + }, + { + "start": 20610.44, + "end": 20612.88, + "probability": 0.9671 + }, + { + "start": 20614.26, + "end": 20615.8, + "probability": 0.9426 + }, + { + "start": 20616.58, + "end": 20618.26, + "probability": 0.73 + }, + { + "start": 20619.98, + "end": 20621.66, + "probability": 0.7559 + }, + { + "start": 20623.42, + "end": 20626.06, + "probability": 0.9993 + }, + { + "start": 20627.34, + "end": 20629.5, + "probability": 0.6981 + }, + { + "start": 20629.68, + "end": 20631.38, + "probability": 0.9665 + }, + { + "start": 20632.02, + "end": 20634.26, + "probability": 0.6514 + }, + { + "start": 20634.92, + "end": 20637.98, + "probability": 0.9041 + }, + { + "start": 20639.28, + "end": 20639.64, + "probability": 0.9548 + }, + { + "start": 20640.22, + "end": 20641.94, + "probability": 0.9873 + }, + { + "start": 20642.2, + "end": 20645.74, + "probability": 0.9955 + }, + { + "start": 20645.78, + "end": 20647.92, + "probability": 0.9758 + }, + { + "start": 20648.44, + "end": 20649.44, + "probability": 0.6669 + }, + { + "start": 20649.54, + "end": 20650.76, + "probability": 0.9868 + }, + { + "start": 20650.8, + "end": 20651.96, + "probability": 0.9173 + }, + { + "start": 20652.5, + "end": 20653.68, + "probability": 0.8885 + }, + { + "start": 20654.38, + "end": 20658.34, + "probability": 0.7446 + }, + { + "start": 20658.48, + "end": 20660.26, + "probability": 0.9927 + }, + { + "start": 20661.24, + "end": 20664.76, + "probability": 0.9968 + }, + { + "start": 20665.2, + "end": 20670.72, + "probability": 0.9622 + }, + { + "start": 20671.2, + "end": 20675.76, + "probability": 0.9019 + }, + { + "start": 20676.14, + "end": 20680.26, + "probability": 0.9346 + }, + { + "start": 20680.34, + "end": 20683.29, + "probability": 0.8821 + }, + { + "start": 20684.3, + "end": 20687.72, + "probability": 0.9443 + }, + { + "start": 20688.22, + "end": 20692.6, + "probability": 0.9748 + }, + { + "start": 20692.68, + "end": 20694.0, + "probability": 0.8399 + }, + { + "start": 20694.72, + "end": 20696.74, + "probability": 0.9201 + }, + { + "start": 20696.9, + "end": 20698.3, + "probability": 0.4309 + }, + { + "start": 20698.64, + "end": 20701.7, + "probability": 0.8829 + }, + { + "start": 20702.16, + "end": 20705.7, + "probability": 0.7736 + }, + { + "start": 20705.74, + "end": 20711.02, + "probability": 0.9005 + }, + { + "start": 20711.22, + "end": 20713.0, + "probability": 0.9966 + }, + { + "start": 20713.36, + "end": 20716.62, + "probability": 0.9768 + }, + { + "start": 20716.62, + "end": 20720.1, + "probability": 0.9787 + }, + { + "start": 20720.28, + "end": 20721.2, + "probability": 0.999 + }, + { + "start": 20721.94, + "end": 20726.26, + "probability": 0.9932 + }, + { + "start": 20727.72, + "end": 20728.7, + "probability": 0.606 + }, + { + "start": 20729.54, + "end": 20731.84, + "probability": 0.9583 + }, + { + "start": 20734.28, + "end": 20735.64, + "probability": 0.8406 + }, + { + "start": 20736.06, + "end": 20740.2, + "probability": 0.9769 + }, + { + "start": 20740.42, + "end": 20741.12, + "probability": 0.6393 + }, + { + "start": 20741.58, + "end": 20742.76, + "probability": 0.9961 + }, + { + "start": 20743.34, + "end": 20746.46, + "probability": 0.9864 + }, + { + "start": 20746.86, + "end": 20747.88, + "probability": 0.8595 + }, + { + "start": 20748.38, + "end": 20750.4, + "probability": 0.8658 + }, + { + "start": 20750.98, + "end": 20753.36, + "probability": 0.9616 + }, + { + "start": 20755.32, + "end": 20759.34, + "probability": 0.9363 + }, + { + "start": 20759.6, + "end": 20760.62, + "probability": 0.9775 + }, + { + "start": 20760.94, + "end": 20762.0, + "probability": 0.706 + }, + { + "start": 20762.3, + "end": 20764.82, + "probability": 0.9939 + }, + { + "start": 20765.9, + "end": 20770.02, + "probability": 0.9901 + }, + { + "start": 20771.9, + "end": 20774.72, + "probability": 0.9902 + }, + { + "start": 20775.24, + "end": 20778.66, + "probability": 0.9956 + }, + { + "start": 20778.88, + "end": 20779.84, + "probability": 0.8276 + }, + { + "start": 20780.12, + "end": 20781.54, + "probability": 0.9448 + }, + { + "start": 20781.82, + "end": 20785.6, + "probability": 0.998 + }, + { + "start": 20785.6, + "end": 20787.82, + "probability": 0.9791 + }, + { + "start": 20788.14, + "end": 20789.46, + "probability": 0.969 + }, + { + "start": 20791.18, + "end": 20795.92, + "probability": 0.9636 + }, + { + "start": 20796.14, + "end": 20797.52, + "probability": 0.9346 + }, + { + "start": 20797.76, + "end": 20800.54, + "probability": 0.9214 + }, + { + "start": 20800.88, + "end": 20806.14, + "probability": 0.9727 + }, + { + "start": 20806.2, + "end": 20810.9, + "probability": 0.7034 + }, + { + "start": 20811.52, + "end": 20814.4, + "probability": 0.998 + }, + { + "start": 20814.46, + "end": 20815.38, + "probability": 0.9656 + }, + { + "start": 20815.72, + "end": 20816.52, + "probability": 0.9799 + }, + { + "start": 20816.66, + "end": 20817.54, + "probability": 0.9355 + }, + { + "start": 20818.0, + "end": 20820.42, + "probability": 0.9971 + }, + { + "start": 20820.56, + "end": 20824.94, + "probability": 0.993 + }, + { + "start": 20825.48, + "end": 20828.84, + "probability": 0.9985 + }, + { + "start": 20829.56, + "end": 20833.12, + "probability": 0.9989 + }, + { + "start": 20833.12, + "end": 20837.62, + "probability": 0.9972 + }, + { + "start": 20837.8, + "end": 20840.1, + "probability": 0.9658 + }, + { + "start": 20840.5, + "end": 20842.7, + "probability": 0.7076 + }, + { + "start": 20842.8, + "end": 20847.7, + "probability": 0.9601 + }, + { + "start": 20847.84, + "end": 20849.86, + "probability": 0.976 + }, + { + "start": 20850.28, + "end": 20850.66, + "probability": 0.806 + }, + { + "start": 20851.46, + "end": 20853.4, + "probability": 0.8153 + }, + { + "start": 20854.56, + "end": 20855.02, + "probability": 0.7175 + }, + { + "start": 20856.7, + "end": 20857.86, + "probability": 0.9078 + }, + { + "start": 20858.84, + "end": 20860.84, + "probability": 0.675 + }, + { + "start": 20861.46, + "end": 20861.74, + "probability": 0.4975 + }, + { + "start": 20861.82, + "end": 20862.78, + "probability": 0.7369 + }, + { + "start": 20862.94, + "end": 20863.14, + "probability": 0.5057 + }, + { + "start": 20863.28, + "end": 20864.5, + "probability": 0.5564 + }, + { + "start": 20864.62, + "end": 20866.82, + "probability": 0.928 + }, + { + "start": 20873.32, + "end": 20874.9, + "probability": 0.6798 + }, + { + "start": 20875.34, + "end": 20879.08, + "probability": 0.9966 + }, + { + "start": 20879.22, + "end": 20881.24, + "probability": 0.9761 + }, + { + "start": 20882.18, + "end": 20885.96, + "probability": 0.9867 + }, + { + "start": 20886.42, + "end": 20889.94, + "probability": 0.9967 + }, + { + "start": 20890.84, + "end": 20893.38, + "probability": 0.9854 + }, + { + "start": 20893.88, + "end": 20900.28, + "probability": 0.9738 + }, + { + "start": 20900.28, + "end": 20906.0, + "probability": 0.9941 + }, + { + "start": 20906.34, + "end": 20913.92, + "probability": 0.9886 + }, + { + "start": 20914.92, + "end": 20916.22, + "probability": 0.566 + }, + { + "start": 20916.84, + "end": 20918.48, + "probability": 0.7925 + }, + { + "start": 20919.32, + "end": 20919.6, + "probability": 0.5216 + }, + { + "start": 20920.18, + "end": 20928.94, + "probability": 0.9678 + }, + { + "start": 20929.44, + "end": 20930.36, + "probability": 0.6887 + }, + { + "start": 20930.68, + "end": 20931.72, + "probability": 0.703 + }, + { + "start": 20931.9, + "end": 20935.28, + "probability": 0.979 + }, + { + "start": 20935.42, + "end": 20940.62, + "probability": 0.9964 + }, + { + "start": 20940.83, + "end": 20946.76, + "probability": 0.9906 + }, + { + "start": 20946.86, + "end": 20949.2, + "probability": 0.8575 + }, + { + "start": 20949.44, + "end": 20952.1, + "probability": 0.9865 + }, + { + "start": 20952.52, + "end": 20957.5, + "probability": 0.847 + }, + { + "start": 20958.04, + "end": 20962.76, + "probability": 0.9827 + }, + { + "start": 20962.86, + "end": 20965.8, + "probability": 0.9966 + }, + { + "start": 20966.48, + "end": 20967.36, + "probability": 0.8101 + }, + { + "start": 20967.54, + "end": 20969.96, + "probability": 0.9584 + }, + { + "start": 20970.02, + "end": 20973.4, + "probability": 0.8336 + }, + { + "start": 20973.96, + "end": 20974.96, + "probability": 0.9013 + }, + { + "start": 20975.68, + "end": 20978.08, + "probability": 0.9758 + }, + { + "start": 20979.26, + "end": 20982.19, + "probability": 0.9893 + }, + { + "start": 20983.36, + "end": 20985.02, + "probability": 0.9881 + }, + { + "start": 20985.42, + "end": 20986.34, + "probability": 0.9432 + }, + { + "start": 20986.34, + "end": 20991.12, + "probability": 0.9716 + }, + { + "start": 20991.38, + "end": 20992.44, + "probability": 0.9819 + }, + { + "start": 20993.04, + "end": 20996.24, + "probability": 0.9348 + }, + { + "start": 20996.82, + "end": 20997.74, + "probability": 0.8044 + }, + { + "start": 20998.32, + "end": 21001.86, + "probability": 0.9894 + }, + { + "start": 21002.16, + "end": 21006.02, + "probability": 0.9909 + }, + { + "start": 21006.8, + "end": 21012.1, + "probability": 0.9836 + }, + { + "start": 21012.1, + "end": 21015.16, + "probability": 0.9988 + }, + { + "start": 21015.3, + "end": 21017.62, + "probability": 0.9142 + }, + { + "start": 21018.42, + "end": 21019.18, + "probability": 0.5787 + }, + { + "start": 21019.62, + "end": 21022.9, + "probability": 0.879 + }, + { + "start": 21023.02, + "end": 21026.5, + "probability": 0.9883 + }, + { + "start": 21026.5, + "end": 21030.74, + "probability": 0.9949 + }, + { + "start": 21030.96, + "end": 21033.06, + "probability": 0.8554 + }, + { + "start": 21033.48, + "end": 21033.62, + "probability": 0.5464 + }, + { + "start": 21033.66, + "end": 21034.5, + "probability": 0.766 + }, + { + "start": 21034.54, + "end": 21035.9, + "probability": 0.7676 + }, + { + "start": 21035.96, + "end": 21038.76, + "probability": 0.9707 + }, + { + "start": 21038.98, + "end": 21042.48, + "probability": 0.9816 + }, + { + "start": 21042.52, + "end": 21043.6, + "probability": 0.9895 + }, + { + "start": 21043.76, + "end": 21044.86, + "probability": 0.8646 + }, + { + "start": 21044.86, + "end": 21045.8, + "probability": 0.9878 + }, + { + "start": 21045.96, + "end": 21047.14, + "probability": 0.5981 + }, + { + "start": 21047.56, + "end": 21049.34, + "probability": 0.9379 + }, + { + "start": 21049.4, + "end": 21053.16, + "probability": 0.8874 + }, + { + "start": 21053.42, + "end": 21054.56, + "probability": 0.9809 + }, + { + "start": 21054.62, + "end": 21055.06, + "probability": 0.754 + }, + { + "start": 21056.6, + "end": 21059.52, + "probability": 0.9292 + }, + { + "start": 21059.7, + "end": 21060.98, + "probability": 0.8258 + }, + { + "start": 21061.14, + "end": 21062.75, + "probability": 0.8964 + }, + { + "start": 21063.68, + "end": 21065.0, + "probability": 0.7186 + }, + { + "start": 21074.42, + "end": 21076.56, + "probability": 0.6778 + }, + { + "start": 21077.92, + "end": 21081.52, + "probability": 0.9136 + }, + { + "start": 21081.64, + "end": 21084.98, + "probability": 0.8747 + }, + { + "start": 21086.26, + "end": 21087.74, + "probability": 0.987 + }, + { + "start": 21089.0, + "end": 21091.52, + "probability": 0.9924 + }, + { + "start": 21092.26, + "end": 21096.8, + "probability": 0.9925 + }, + { + "start": 21097.74, + "end": 21100.54, + "probability": 0.8961 + }, + { + "start": 21101.66, + "end": 21102.88, + "probability": 0.9531 + }, + { + "start": 21104.74, + "end": 21108.72, + "probability": 0.5607 + }, + { + "start": 21109.32, + "end": 21110.22, + "probability": 0.8668 + }, + { + "start": 21110.66, + "end": 21111.73, + "probability": 0.74 + }, + { + "start": 21112.36, + "end": 21115.24, + "probability": 0.9766 + }, + { + "start": 21116.78, + "end": 21118.3, + "probability": 0.9924 + }, + { + "start": 21119.32, + "end": 21121.86, + "probability": 0.9702 + }, + { + "start": 21125.46, + "end": 21126.3, + "probability": 0.376 + }, + { + "start": 21126.58, + "end": 21127.14, + "probability": 0.8914 + }, + { + "start": 21127.24, + "end": 21130.2, + "probability": 0.9861 + }, + { + "start": 21131.74, + "end": 21133.4, + "probability": 0.6451 + }, + { + "start": 21134.32, + "end": 21135.68, + "probability": 0.5154 + }, + { + "start": 21136.44, + "end": 21139.68, + "probability": 0.9813 + }, + { + "start": 21140.16, + "end": 21141.68, + "probability": 0.4999 + }, + { + "start": 21142.55, + "end": 21147.24, + "probability": 0.8593 + }, + { + "start": 21147.65, + "end": 21151.06, + "probability": 0.9973 + }, + { + "start": 21151.84, + "end": 21152.96, + "probability": 0.7326 + }, + { + "start": 21153.98, + "end": 21155.12, + "probability": 0.9722 + }, + { + "start": 21157.52, + "end": 21160.74, + "probability": 0.979 + }, + { + "start": 21161.4, + "end": 21165.42, + "probability": 0.9887 + }, + { + "start": 21166.08, + "end": 21167.64, + "probability": 0.9983 + }, + { + "start": 21168.56, + "end": 21170.26, + "probability": 0.9242 + }, + { + "start": 21171.54, + "end": 21175.6, + "probability": 0.9706 + }, + { + "start": 21176.68, + "end": 21178.54, + "probability": 0.998 + }, + { + "start": 21179.18, + "end": 21180.88, + "probability": 0.9565 + }, + { + "start": 21181.46, + "end": 21183.48, + "probability": 0.9846 + }, + { + "start": 21185.02, + "end": 21188.7, + "probability": 0.9165 + }, + { + "start": 21190.64, + "end": 21191.66, + "probability": 0.5087 + }, + { + "start": 21196.72, + "end": 21197.58, + "probability": 0.5603 + }, + { + "start": 21197.76, + "end": 21200.64, + "probability": 0.9709 + }, + { + "start": 21200.64, + "end": 21205.21, + "probability": 0.9348 + }, + { + "start": 21207.06, + "end": 21213.96, + "probability": 0.9958 + }, + { + "start": 21215.0, + "end": 21221.06, + "probability": 0.9819 + }, + { + "start": 21221.16, + "end": 21222.82, + "probability": 0.9025 + }, + { + "start": 21223.74, + "end": 21228.6, + "probability": 0.9883 + }, + { + "start": 21230.06, + "end": 21233.64, + "probability": 0.998 + }, + { + "start": 21234.6, + "end": 21236.32, + "probability": 0.8372 + }, + { + "start": 21237.5, + "end": 21238.8, + "probability": 0.4944 + }, + { + "start": 21238.8, + "end": 21240.0, + "probability": 0.9759 + }, + { + "start": 21241.98, + "end": 21243.56, + "probability": 0.9973 + }, + { + "start": 21243.84, + "end": 21246.28, + "probability": 0.8972 + }, + { + "start": 21247.2, + "end": 21250.92, + "probability": 0.9939 + }, + { + "start": 21250.92, + "end": 21254.46, + "probability": 0.9956 + }, + { + "start": 21255.24, + "end": 21258.64, + "probability": 0.8435 + }, + { + "start": 21259.62, + "end": 21261.98, + "probability": 0.9839 + }, + { + "start": 21262.02, + "end": 21267.38, + "probability": 0.9694 + }, + { + "start": 21268.3, + "end": 21274.98, + "probability": 0.9639 + }, + { + "start": 21275.72, + "end": 21277.58, + "probability": 0.9966 + }, + { + "start": 21278.32, + "end": 21279.96, + "probability": 0.7533 + }, + { + "start": 21280.94, + "end": 21283.68, + "probability": 0.7866 + }, + { + "start": 21285.14, + "end": 21287.58, + "probability": 0.7596 + }, + { + "start": 21287.84, + "end": 21288.08, + "probability": 0.615 + }, + { + "start": 21288.6, + "end": 21291.16, + "probability": 0.6601 + }, + { + "start": 21292.1, + "end": 21292.1, + "probability": 0.0268 + }, + { + "start": 21292.84, + "end": 21293.78, + "probability": 0.1092 + }, + { + "start": 21294.32, + "end": 21296.28, + "probability": 0.0443 + }, + { + "start": 21296.4, + "end": 21296.56, + "probability": 0.2315 + }, + { + "start": 21296.56, + "end": 21296.56, + "probability": 0.0043 + }, + { + "start": 21296.56, + "end": 21296.56, + "probability": 0.0109 + }, + { + "start": 21296.56, + "end": 21296.72, + "probability": 0.1497 + }, + { + "start": 21296.8, + "end": 21297.38, + "probability": 0.5965 + }, + { + "start": 21297.52, + "end": 21298.29, + "probability": 0.6559 + }, + { + "start": 21299.6, + "end": 21302.02, + "probability": 0.6551 + }, + { + "start": 21302.24, + "end": 21304.7, + "probability": 0.6524 + }, + { + "start": 21304.98, + "end": 21309.12, + "probability": 0.6736 + }, + { + "start": 21309.32, + "end": 21312.18, + "probability": 0.3754 + }, + { + "start": 21312.76, + "end": 21314.02, + "probability": 0.5987 + }, + { + "start": 21315.65, + "end": 21317.82, + "probability": 0.4613 + }, + { + "start": 21319.08, + "end": 21323.08, + "probability": 0.8374 + }, + { + "start": 21327.81, + "end": 21330.52, + "probability": 0.7576 + }, + { + "start": 21330.92, + "end": 21332.18, + "probability": 0.5053 + }, + { + "start": 21332.3, + "end": 21333.94, + "probability": 0.9683 + }, + { + "start": 21336.0, + "end": 21337.52, + "probability": 0.6904 + }, + { + "start": 21337.6, + "end": 21340.68, + "probability": 0.9784 + }, + { + "start": 21341.34, + "end": 21344.8, + "probability": 0.8512 + }, + { + "start": 21346.56, + "end": 21348.98, + "probability": 0.5282 + }, + { + "start": 21349.06, + "end": 21351.24, + "probability": 0.9902 + }, + { + "start": 21351.44, + "end": 21353.3, + "probability": 0.9798 + }, + { + "start": 21353.44, + "end": 21355.66, + "probability": 0.9727 + }, + { + "start": 21356.42, + "end": 21357.39, + "probability": 0.979 + }, + { + "start": 21357.56, + "end": 21359.56, + "probability": 0.9034 + }, + { + "start": 21360.1, + "end": 21362.5, + "probability": 0.9941 + }, + { + "start": 21362.78, + "end": 21367.2, + "probability": 0.9894 + }, + { + "start": 21367.72, + "end": 21367.88, + "probability": 0.7004 + }, + { + "start": 21368.12, + "end": 21369.14, + "probability": 0.8931 + }, + { + "start": 21369.28, + "end": 21369.64, + "probability": 0.9338 + }, + { + "start": 21369.76, + "end": 21370.96, + "probability": 0.6087 + }, + { + "start": 21371.52, + "end": 21375.04, + "probability": 0.9399 + }, + { + "start": 21375.04, + "end": 21377.92, + "probability": 0.8594 + }, + { + "start": 21379.06, + "end": 21381.12, + "probability": 0.953 + }, + { + "start": 21381.12, + "end": 21384.56, + "probability": 0.9909 + }, + { + "start": 21385.18, + "end": 21386.56, + "probability": 0.8586 + }, + { + "start": 21387.18, + "end": 21389.68, + "probability": 0.9276 + }, + { + "start": 21390.56, + "end": 21393.1, + "probability": 0.8311 + }, + { + "start": 21393.6, + "end": 21395.7, + "probability": 0.8735 + }, + { + "start": 21396.58, + "end": 21399.9, + "probability": 0.954 + }, + { + "start": 21400.72, + "end": 21402.08, + "probability": 0.9844 + }, + { + "start": 21402.58, + "end": 21405.4, + "probability": 0.9961 + }, + { + "start": 21406.0, + "end": 21408.04, + "probability": 0.9902 + }, + { + "start": 21408.58, + "end": 21412.78, + "probability": 0.9897 + }, + { + "start": 21412.88, + "end": 21417.12, + "probability": 0.9966 + }, + { + "start": 21417.6, + "end": 21419.38, + "probability": 0.9982 + }, + { + "start": 21419.38, + "end": 21421.1, + "probability": 0.9783 + }, + { + "start": 21421.88, + "end": 21423.06, + "probability": 0.989 + }, + { + "start": 21423.1, + "end": 21425.76, + "probability": 0.9619 + }, + { + "start": 21426.34, + "end": 21428.3, + "probability": 0.9802 + }, + { + "start": 21428.76, + "end": 21431.74, + "probability": 0.9876 + }, + { + "start": 21431.98, + "end": 21434.18, + "probability": 0.4699 + }, + { + "start": 21434.36, + "end": 21434.64, + "probability": 0.7075 + }, + { + "start": 21434.72, + "end": 21436.46, + "probability": 0.9957 + }, + { + "start": 21437.47, + "end": 21439.44, + "probability": 0.915 + }, + { + "start": 21439.58, + "end": 21441.18, + "probability": 0.9852 + }, + { + "start": 21441.84, + "end": 21445.18, + "probability": 0.7743 + }, + { + "start": 21445.96, + "end": 21447.26, + "probability": 0.9774 + }, + { + "start": 21447.82, + "end": 21451.78, + "probability": 0.9398 + }, + { + "start": 21451.78, + "end": 21454.46, + "probability": 0.9963 + }, + { + "start": 21455.56, + "end": 21458.74, + "probability": 0.9946 + }, + { + "start": 21459.76, + "end": 21461.22, + "probability": 0.758 + }, + { + "start": 21461.72, + "end": 21464.02, + "probability": 0.9768 + }, + { + "start": 21465.5, + "end": 21466.3, + "probability": 0.8962 + }, + { + "start": 21466.48, + "end": 21470.02, + "probability": 0.9437 + }, + { + "start": 21470.58, + "end": 21476.34, + "probability": 0.9991 + }, + { + "start": 21476.7, + "end": 21479.83, + "probability": 0.9512 + }, + { + "start": 21481.76, + "end": 21483.48, + "probability": 0.9269 + }, + { + "start": 21483.84, + "end": 21486.33, + "probability": 0.9893 + }, + { + "start": 21486.86, + "end": 21489.74, + "probability": 0.9836 + }, + { + "start": 21490.26, + "end": 21494.66, + "probability": 0.9287 + }, + { + "start": 21494.84, + "end": 21495.2, + "probability": 0.7581 + }, + { + "start": 21496.52, + "end": 21498.26, + "probability": 0.7896 + }, + { + "start": 21498.38, + "end": 21500.8, + "probability": 0.8643 + }, + { + "start": 21502.24, + "end": 21502.8, + "probability": 0.5227 + }, + { + "start": 21502.8, + "end": 21503.8, + "probability": 0.6249 + }, + { + "start": 21504.64, + "end": 21505.64, + "probability": 0.6833 + }, + { + "start": 21513.3, + "end": 21514.4, + "probability": 0.779 + }, + { + "start": 21515.96, + "end": 21518.86, + "probability": 0.9902 + }, + { + "start": 21520.78, + "end": 21521.2, + "probability": 0.959 + }, + { + "start": 21521.88, + "end": 21522.94, + "probability": 0.9493 + }, + { + "start": 21523.58, + "end": 21525.14, + "probability": 0.9189 + }, + { + "start": 21530.38, + "end": 21532.4, + "probability": 0.6549 + }, + { + "start": 21533.48, + "end": 21534.6, + "probability": 0.9012 + }, + { + "start": 21535.66, + "end": 21537.22, + "probability": 0.5196 + }, + { + "start": 21538.18, + "end": 21540.08, + "probability": 0.6691 + }, + { + "start": 21547.22, + "end": 21548.3, + "probability": 0.6571 + }, + { + "start": 21549.44, + "end": 21551.02, + "probability": 0.9121 + }, + { + "start": 21553.3, + "end": 21554.9, + "probability": 0.991 + }, + { + "start": 21555.76, + "end": 21560.84, + "probability": 0.998 + }, + { + "start": 21561.86, + "end": 21564.96, + "probability": 0.957 + }, + { + "start": 21565.14, + "end": 21566.36, + "probability": 0.9305 + }, + { + "start": 21567.22, + "end": 21575.06, + "probability": 0.9966 + }, + { + "start": 21575.8, + "end": 21578.84, + "probability": 0.9906 + }, + { + "start": 21580.64, + "end": 21584.52, + "probability": 0.9773 + }, + { + "start": 21585.18, + "end": 21591.42, + "probability": 0.9704 + }, + { + "start": 21591.56, + "end": 21594.54, + "probability": 0.959 + }, + { + "start": 21595.74, + "end": 21598.02, + "probability": 0.999 + }, + { + "start": 21598.66, + "end": 21601.5, + "probability": 0.9946 + }, + { + "start": 21602.04, + "end": 21604.6, + "probability": 0.998 + }, + { + "start": 21605.32, + "end": 21606.56, + "probability": 0.7026 + }, + { + "start": 21607.64, + "end": 21607.74, + "probability": 0.7424 + }, + { + "start": 21608.4, + "end": 21611.42, + "probability": 0.9977 + }, + { + "start": 21612.28, + "end": 21614.62, + "probability": 0.9883 + }, + { + "start": 21616.6, + "end": 21620.76, + "probability": 0.9902 + }, + { + "start": 21620.94, + "end": 21623.62, + "probability": 0.9488 + }, + { + "start": 21625.1, + "end": 21629.32, + "probability": 0.9627 + }, + { + "start": 21631.66, + "end": 21633.72, + "probability": 0.9159 + }, + { + "start": 21634.4, + "end": 21635.5, + "probability": 0.9786 + }, + { + "start": 21636.42, + "end": 21642.96, + "probability": 0.9525 + }, + { + "start": 21643.36, + "end": 21650.22, + "probability": 0.9631 + }, + { + "start": 21650.92, + "end": 21652.84, + "probability": 0.9183 + }, + { + "start": 21654.58, + "end": 21661.46, + "probability": 0.9966 + }, + { + "start": 21661.46, + "end": 21666.12, + "probability": 0.9984 + }, + { + "start": 21666.62, + "end": 21671.18, + "probability": 0.9983 + }, + { + "start": 21672.1, + "end": 21675.44, + "probability": 0.9512 + }, + { + "start": 21675.88, + "end": 21681.46, + "probability": 0.984 + }, + { + "start": 21682.24, + "end": 21682.94, + "probability": 0.8682 + }, + { + "start": 21683.1, + "end": 21684.02, + "probability": 0.7577 + }, + { + "start": 21684.48, + "end": 21687.2, + "probability": 0.9938 + }, + { + "start": 21687.8, + "end": 21688.6, + "probability": 0.9698 + }, + { + "start": 21690.74, + "end": 21695.64, + "probability": 0.9176 + }, + { + "start": 21696.32, + "end": 21699.32, + "probability": 0.9959 + }, + { + "start": 21700.18, + "end": 21701.56, + "probability": 0.9927 + }, + { + "start": 21702.38, + "end": 21706.34, + "probability": 0.9132 + }, + { + "start": 21707.42, + "end": 21709.78, + "probability": 0.8653 + }, + { + "start": 21710.5, + "end": 21712.06, + "probability": 0.9745 + }, + { + "start": 21712.82, + "end": 21713.22, + "probability": 0.8022 + }, + { + "start": 21713.88, + "end": 21717.74, + "probability": 0.9421 + }, + { + "start": 21718.18, + "end": 21718.42, + "probability": 0.8452 + }, + { + "start": 21718.9, + "end": 21724.66, + "probability": 0.8082 + }, + { + "start": 21724.86, + "end": 21725.1, + "probability": 0.3844 + }, + { + "start": 21725.18, + "end": 21726.68, + "probability": 0.6789 + }, + { + "start": 21727.06, + "end": 21727.36, + "probability": 0.457 + }, + { + "start": 21727.64, + "end": 21728.34, + "probability": 0.3565 + }, + { + "start": 21728.44, + "end": 21728.86, + "probability": 0.8253 + }, + { + "start": 21729.26, + "end": 21729.92, + "probability": 0.4141 + }, + { + "start": 21743.04, + "end": 21744.06, + "probability": 0.6834 + }, + { + "start": 21745.44, + "end": 21746.68, + "probability": 0.7133 + }, + { + "start": 21747.24, + "end": 21747.9, + "probability": 0.7224 + }, + { + "start": 21749.36, + "end": 21751.62, + "probability": 0.925 + }, + { + "start": 21753.12, + "end": 21755.2, + "probability": 0.9878 + }, + { + "start": 21756.0, + "end": 21756.8, + "probability": 0.769 + }, + { + "start": 21758.38, + "end": 21759.8, + "probability": 0.9604 + }, + { + "start": 21760.5, + "end": 21762.2, + "probability": 0.9808 + }, + { + "start": 21763.24, + "end": 21766.2, + "probability": 0.9988 + }, + { + "start": 21767.2, + "end": 21770.3, + "probability": 0.9424 + }, + { + "start": 21770.9, + "end": 21774.52, + "probability": 0.9346 + }, + { + "start": 21774.8, + "end": 21775.36, + "probability": 0.8553 + }, + { + "start": 21775.48, + "end": 21777.1, + "probability": 0.9136 + }, + { + "start": 21778.18, + "end": 21779.42, + "probability": 0.9283 + }, + { + "start": 21780.3, + "end": 21781.26, + "probability": 0.9679 + }, + { + "start": 21781.94, + "end": 21783.22, + "probability": 0.9919 + }, + { + "start": 21785.52, + "end": 21786.14, + "probability": 0.5008 + }, + { + "start": 21786.74, + "end": 21788.69, + "probability": 0.9924 + }, + { + "start": 21788.88, + "end": 21791.18, + "probability": 0.6807 + }, + { + "start": 21791.56, + "end": 21793.4, + "probability": 0.7187 + }, + { + "start": 21793.7, + "end": 21794.82, + "probability": 0.9866 + }, + { + "start": 21795.32, + "end": 21795.88, + "probability": 0.9336 + }, + { + "start": 21797.06, + "end": 21802.92, + "probability": 0.9722 + }, + { + "start": 21803.84, + "end": 21807.46, + "probability": 0.9967 + }, + { + "start": 21807.58, + "end": 21808.84, + "probability": 0.5466 + }, + { + "start": 21809.7, + "end": 21814.18, + "probability": 0.9865 + }, + { + "start": 21815.14, + "end": 21821.9, + "probability": 0.9884 + }, + { + "start": 21822.86, + "end": 21826.46, + "probability": 0.9119 + }, + { + "start": 21826.56, + "end": 21827.74, + "probability": 0.9663 + }, + { + "start": 21827.78, + "end": 21829.9, + "probability": 0.7419 + }, + { + "start": 21830.28, + "end": 21834.64, + "probability": 0.9478 + }, + { + "start": 21835.46, + "end": 21836.22, + "probability": 0.7358 + }, + { + "start": 21836.94, + "end": 21838.42, + "probability": 0.9734 + }, + { + "start": 21839.14, + "end": 21842.82, + "probability": 0.9974 + }, + { + "start": 21843.86, + "end": 21845.14, + "probability": 0.7611 + }, + { + "start": 21845.68, + "end": 21847.6, + "probability": 0.9226 + }, + { + "start": 21848.18, + "end": 21850.8, + "probability": 0.9598 + }, + { + "start": 21851.98, + "end": 21857.02, + "probability": 0.9808 + }, + { + "start": 21857.4, + "end": 21862.98, + "probability": 0.9755 + }, + { + "start": 21863.68, + "end": 21868.72, + "probability": 0.9764 + }, + { + "start": 21868.72, + "end": 21873.28, + "probability": 0.9956 + }, + { + "start": 21873.54, + "end": 21875.32, + "probability": 0.9827 + }, + { + "start": 21876.62, + "end": 21878.47, + "probability": 0.8438 + }, + { + "start": 21879.26, + "end": 21882.52, + "probability": 0.9375 + }, + { + "start": 21882.68, + "end": 21883.36, + "probability": 0.3709 + }, + { + "start": 21884.16, + "end": 21888.62, + "probability": 0.9902 + }, + { + "start": 21889.32, + "end": 21894.38, + "probability": 0.9464 + }, + { + "start": 21894.7, + "end": 21898.1, + "probability": 0.8968 + }, + { + "start": 21898.64, + "end": 21902.64, + "probability": 0.9665 + }, + { + "start": 21902.88, + "end": 21903.16, + "probability": 0.5512 + }, + { + "start": 21904.94, + "end": 21906.82, + "probability": 0.6398 + }, + { + "start": 21907.4, + "end": 21909.78, + "probability": 0.791 + }, + { + "start": 21910.18, + "end": 21911.5, + "probability": 0.5812 + }, + { + "start": 21912.14, + "end": 21913.04, + "probability": 0.7842 + }, + { + "start": 21936.94, + "end": 21940.04, + "probability": 0.665 + }, + { + "start": 21941.3, + "end": 21947.2, + "probability": 0.853 + }, + { + "start": 21948.16, + "end": 21952.1, + "probability": 0.9966 + }, + { + "start": 21952.7, + "end": 21954.66, + "probability": 0.9955 + }, + { + "start": 21955.44, + "end": 21956.47, + "probability": 0.9603 + }, + { + "start": 21956.72, + "end": 21961.98, + "probability": 0.9943 + }, + { + "start": 21962.66, + "end": 21964.78, + "probability": 0.9412 + }, + { + "start": 21966.3, + "end": 21969.84, + "probability": 0.996 + }, + { + "start": 21969.84, + "end": 21974.22, + "probability": 0.9979 + }, + { + "start": 21975.22, + "end": 21978.08, + "probability": 0.8636 + }, + { + "start": 21978.84, + "end": 21980.78, + "probability": 0.9044 + }, + { + "start": 21981.42, + "end": 21983.94, + "probability": 0.7076 + }, + { + "start": 21984.58, + "end": 21986.74, + "probability": 0.9698 + }, + { + "start": 21987.42, + "end": 21990.66, + "probability": 0.9767 + }, + { + "start": 21992.96, + "end": 21994.5, + "probability": 0.8729 + }, + { + "start": 21995.1, + "end": 21996.32, + "probability": 0.9888 + }, + { + "start": 21997.04, + "end": 22000.5, + "probability": 0.973 + }, + { + "start": 22001.4, + "end": 22003.41, + "probability": 0.9789 + }, + { + "start": 22004.76, + "end": 22011.68, + "probability": 0.9952 + }, + { + "start": 22013.3, + "end": 22015.86, + "probability": 0.96 + }, + { + "start": 22015.98, + "end": 22016.82, + "probability": 0.7353 + }, + { + "start": 22018.36, + "end": 22021.2, + "probability": 0.9456 + }, + { + "start": 22022.0, + "end": 22023.82, + "probability": 0.7136 + }, + { + "start": 22024.36, + "end": 22025.98, + "probability": 0.9456 + }, + { + "start": 22026.98, + "end": 22027.86, + "probability": 0.7353 + }, + { + "start": 22027.94, + "end": 22029.76, + "probability": 0.9839 + }, + { + "start": 22030.24, + "end": 22031.96, + "probability": 0.9948 + }, + { + "start": 22032.32, + "end": 22035.44, + "probability": 0.9888 + }, + { + "start": 22036.08, + "end": 22039.44, + "probability": 0.9797 + }, + { + "start": 22041.54, + "end": 22044.28, + "probability": 0.7877 + }, + { + "start": 22044.74, + "end": 22046.5, + "probability": 0.9921 + }, + { + "start": 22048.02, + "end": 22053.44, + "probability": 0.9922 + }, + { + "start": 22054.58, + "end": 22054.84, + "probability": 0.9241 + }, + { + "start": 22055.42, + "end": 22056.99, + "probability": 0.7 + }, + { + "start": 22057.78, + "end": 22059.08, + "probability": 0.8478 + }, + { + "start": 22059.68, + "end": 22061.3, + "probability": 0.8665 + }, + { + "start": 22061.34, + "end": 22063.16, + "probability": 0.6738 + }, + { + "start": 22063.9, + "end": 22065.44, + "probability": 0.5482 + }, + { + "start": 22066.7, + "end": 22068.9, + "probability": 0.9336 + }, + { + "start": 22069.46, + "end": 22072.42, + "probability": 0.988 + }, + { + "start": 22073.9, + "end": 22074.67, + "probability": 0.9417 + }, + { + "start": 22075.52, + "end": 22078.64, + "probability": 0.9866 + }, + { + "start": 22079.28, + "end": 22084.98, + "probability": 0.7802 + }, + { + "start": 22085.62, + "end": 22093.62, + "probability": 0.986 + }, + { + "start": 22093.62, + "end": 22098.94, + "probability": 0.9949 + }, + { + "start": 22099.2, + "end": 22099.58, + "probability": 0.7385 + }, + { + "start": 22100.86, + "end": 22103.76, + "probability": 0.6467 + }, + { + "start": 22104.08, + "end": 22106.18, + "probability": 0.7635 + }, + { + "start": 22106.84, + "end": 22107.28, + "probability": 0.7516 + }, + { + "start": 22107.52, + "end": 22108.95, + "probability": 0.9281 + }, + { + "start": 22109.42, + "end": 22109.86, + "probability": 0.8481 + }, + { + "start": 22109.92, + "end": 22110.7, + "probability": 0.978 + }, + { + "start": 22112.86, + "end": 22113.7, + "probability": 0.8667 + }, + { + "start": 22131.48, + "end": 22132.16, + "probability": 0.6536 + }, + { + "start": 22132.2, + "end": 22133.26, + "probability": 0.8882 + }, + { + "start": 22133.5, + "end": 22139.68, + "probability": 0.9974 + }, + { + "start": 22140.32, + "end": 22141.3, + "probability": 0.9274 + }, + { + "start": 22142.78, + "end": 22145.96, + "probability": 0.9767 + }, + { + "start": 22146.92, + "end": 22147.26, + "probability": 0.6191 + }, + { + "start": 22147.88, + "end": 22148.48, + "probability": 0.9558 + }, + { + "start": 22150.04, + "end": 22150.66, + "probability": 0.5989 + }, + { + "start": 22153.24, + "end": 22157.44, + "probability": 0.795 + }, + { + "start": 22157.98, + "end": 22158.86, + "probability": 0.0233 + }, + { + "start": 22158.98, + "end": 22161.34, + "probability": 0.7266 + }, + { + "start": 22162.38, + "end": 22167.18, + "probability": 0.9927 + }, + { + "start": 22169.08, + "end": 22170.76, + "probability": 0.9866 + }, + { + "start": 22170.82, + "end": 22172.34, + "probability": 0.9897 + }, + { + "start": 22173.24, + "end": 22174.96, + "probability": 0.9473 + }, + { + "start": 22176.36, + "end": 22177.06, + "probability": 0.9077 + }, + { + "start": 22177.88, + "end": 22178.92, + "probability": 0.9474 + }, + { + "start": 22179.72, + "end": 22182.72, + "probability": 0.9862 + }, + { + "start": 22182.82, + "end": 22184.56, + "probability": 0.9962 + }, + { + "start": 22185.18, + "end": 22186.18, + "probability": 0.4549 + }, + { + "start": 22186.52, + "end": 22188.58, + "probability": 0.8794 + }, + { + "start": 22188.96, + "end": 22190.0, + "probability": 0.9193 + }, + { + "start": 22190.9, + "end": 22192.1, + "probability": 0.8064 + }, + { + "start": 22192.68, + "end": 22194.84, + "probability": 0.9392 + }, + { + "start": 22194.96, + "end": 22195.94, + "probability": 0.9504 + }, + { + "start": 22196.04, + "end": 22196.72, + "probability": 0.8822 + }, + { + "start": 22196.8, + "end": 22198.2, + "probability": 0.9163 + }, + { + "start": 22198.28, + "end": 22199.16, + "probability": 0.5731 + }, + { + "start": 22199.22, + "end": 22200.64, + "probability": 0.9763 + }, + { + "start": 22202.08, + "end": 22204.58, + "probability": 0.9423 + }, + { + "start": 22206.94, + "end": 22211.1, + "probability": 0.9962 + }, + { + "start": 22211.1, + "end": 22215.08, + "probability": 0.9968 + }, + { + "start": 22215.7, + "end": 22220.8, + "probability": 0.9515 + }, + { + "start": 22220.8, + "end": 22225.18, + "probability": 0.9926 + }, + { + "start": 22226.26, + "end": 22229.98, + "probability": 0.9667 + }, + { + "start": 22230.02, + "end": 22232.4, + "probability": 0.9558 + }, + { + "start": 22233.2, + "end": 22236.82, + "probability": 0.8079 + }, + { + "start": 22237.72, + "end": 22239.8, + "probability": 0.9651 + }, + { + "start": 22240.56, + "end": 22243.4, + "probability": 0.8645 + }, + { + "start": 22244.12, + "end": 22245.7, + "probability": 0.9211 + }, + { + "start": 22246.04, + "end": 22247.02, + "probability": 0.9826 + }, + { + "start": 22247.5, + "end": 22249.06, + "probability": 0.875 + }, + { + "start": 22249.24, + "end": 22254.74, + "probability": 0.981 + }, + { + "start": 22256.62, + "end": 22259.48, + "probability": 0.774 + }, + { + "start": 22260.04, + "end": 22263.46, + "probability": 0.9965 + }, + { + "start": 22263.46, + "end": 22268.44, + "probability": 0.9551 + }, + { + "start": 22269.12, + "end": 22271.44, + "probability": 0.9985 + }, + { + "start": 22271.78, + "end": 22272.78, + "probability": 0.8496 + }, + { + "start": 22272.9, + "end": 22274.02, + "probability": 0.6307 + }, + { + "start": 22274.34, + "end": 22275.22, + "probability": 0.6167 + }, + { + "start": 22276.8, + "end": 22277.92, + "probability": 0.7837 + }, + { + "start": 22278.94, + "end": 22279.79, + "probability": 0.8389 + }, + { + "start": 22280.62, + "end": 22280.92, + "probability": 0.8414 + }, + { + "start": 22282.5, + "end": 22284.48, + "probability": 0.9115 + }, + { + "start": 22284.7, + "end": 22286.84, + "probability": 0.8743 + }, + { + "start": 22297.62, + "end": 22299.38, + "probability": 0.5886 + }, + { + "start": 22300.04, + "end": 22302.48, + "probability": 0.9908 + }, + { + "start": 22303.12, + "end": 22306.38, + "probability": 0.9673 + }, + { + "start": 22307.48, + "end": 22309.34, + "probability": 0.9589 + }, + { + "start": 22310.3, + "end": 22310.8, + "probability": 0.9867 + }, + { + "start": 22312.0, + "end": 22317.82, + "probability": 0.9983 + }, + { + "start": 22319.32, + "end": 22320.97, + "probability": 0.843 + }, + { + "start": 22322.72, + "end": 22326.18, + "probability": 0.936 + }, + { + "start": 22327.24, + "end": 22331.66, + "probability": 0.9953 + }, + { + "start": 22332.51, + "end": 22334.22, + "probability": 0.9422 + }, + { + "start": 22334.64, + "end": 22334.78, + "probability": 0.42 + }, + { + "start": 22335.34, + "end": 22336.96, + "probability": 0.9974 + }, + { + "start": 22337.68, + "end": 22345.72, + "probability": 0.9541 + }, + { + "start": 22345.86, + "end": 22350.4, + "probability": 0.6813 + }, + { + "start": 22351.1, + "end": 22356.18, + "probability": 0.9936 + }, + { + "start": 22357.24, + "end": 22359.64, + "probability": 0.9946 + }, + { + "start": 22359.64, + "end": 22362.98, + "probability": 0.9938 + }, + { + "start": 22363.04, + "end": 22363.68, + "probability": 0.5244 + }, + { + "start": 22363.88, + "end": 22365.36, + "probability": 0.9424 + }, + { + "start": 22365.8, + "end": 22366.83, + "probability": 0.9824 + }, + { + "start": 22367.86, + "end": 22368.7, + "probability": 0.8594 + }, + { + "start": 22368.96, + "end": 22370.46, + "probability": 0.928 + }, + { + "start": 22370.56, + "end": 22375.52, + "probability": 0.9881 + }, + { + "start": 22376.14, + "end": 22377.48, + "probability": 0.9294 + }, + { + "start": 22377.66, + "end": 22380.14, + "probability": 0.9937 + }, + { + "start": 22380.66, + "end": 22382.38, + "probability": 0.9638 + }, + { + "start": 22382.86, + "end": 22384.48, + "probability": 0.9924 + }, + { + "start": 22385.68, + "end": 22388.14, + "probability": 0.8932 + }, + { + "start": 22388.96, + "end": 22391.04, + "probability": 0.9855 + }, + { + "start": 22391.12, + "end": 22392.4, + "probability": 0.9944 + }, + { + "start": 22393.44, + "end": 22395.6, + "probability": 0.9696 + }, + { + "start": 22396.42, + "end": 22400.7, + "probability": 0.8965 + }, + { + "start": 22401.44, + "end": 22405.58, + "probability": 0.9316 + }, + { + "start": 22406.3, + "end": 22406.48, + "probability": 0.421 + }, + { + "start": 22407.14, + "end": 22409.8, + "probability": 0.7849 + }, + { + "start": 22410.5, + "end": 22414.04, + "probability": 0.8479 + }, + { + "start": 22414.44, + "end": 22415.5, + "probability": 0.9717 + }, + { + "start": 22416.4, + "end": 22416.48, + "probability": 0.4566 + }, + { + "start": 22419.34, + "end": 22419.48, + "probability": 0.4404 + }, + { + "start": 22419.48, + "end": 22419.78, + "probability": 0.054 + }, + { + "start": 22419.84, + "end": 22420.52, + "probability": 0.6275 + }, + { + "start": 22422.18, + "end": 22423.3, + "probability": 0.9272 + }, + { + "start": 22423.98, + "end": 22425.22, + "probability": 0.9874 + }, + { + "start": 22426.46, + "end": 22430.14, + "probability": 0.8982 + }, + { + "start": 22430.72, + "end": 22433.6, + "probability": 0.7855 + }, + { + "start": 22435.0, + "end": 22438.48, + "probability": 0.9061 + }, + { + "start": 22438.54, + "end": 22439.86, + "probability": 0.9834 + }, + { + "start": 22440.3, + "end": 22441.5, + "probability": 0.845 + }, + { + "start": 22442.3, + "end": 22443.9, + "probability": 0.9933 + }, + { + "start": 22444.0, + "end": 22445.42, + "probability": 0.8534 + }, + { + "start": 22445.9, + "end": 22447.82, + "probability": 0.7737 + }, + { + "start": 22448.74, + "end": 22449.98, + "probability": 0.9926 + }, + { + "start": 22450.34, + "end": 22451.78, + "probability": 0.9919 + }, + { + "start": 22452.06, + "end": 22455.0, + "probability": 0.9908 + }, + { + "start": 22455.16, + "end": 22455.84, + "probability": 0.984 + }, + { + "start": 22456.62, + "end": 22457.0, + "probability": 0.3909 + }, + { + "start": 22457.0, + "end": 22457.32, + "probability": 0.6094 + }, + { + "start": 22457.98, + "end": 22459.06, + "probability": 0.6674 + }, + { + "start": 22460.94, + "end": 22461.86, + "probability": 0.3733 + }, + { + "start": 22462.12, + "end": 22464.88, + "probability": 0.8007 + }, + { + "start": 22465.14, + "end": 22465.34, + "probability": 0.5084 + }, + { + "start": 22465.62, + "end": 22466.78, + "probability": 0.733 + }, + { + "start": 22467.12, + "end": 22467.46, + "probability": 0.3423 + }, + { + "start": 22467.88, + "end": 22469.53, + "probability": 0.7409 + }, + { + "start": 22474.08, + "end": 22474.74, + "probability": 0.5128 + }, + { + "start": 22474.86, + "end": 22475.28, + "probability": 0.5328 + }, + { + "start": 22475.4, + "end": 22481.5, + "probability": 0.8923 + }, + { + "start": 22481.6, + "end": 22485.98, + "probability": 0.6745 + }, + { + "start": 22485.98, + "end": 22486.58, + "probability": 0.7102 + }, + { + "start": 22487.3, + "end": 22488.22, + "probability": 0.7637 + }, + { + "start": 22488.58, + "end": 22491.86, + "probability": 0.9109 + }, + { + "start": 22492.74, + "end": 22493.83, + "probability": 0.9779 + }, + { + "start": 22494.16, + "end": 22496.11, + "probability": 0.7771 + }, + { + "start": 22496.17, + "end": 22498.15, + "probability": 0.9834 + }, + { + "start": 22498.35, + "end": 22499.59, + "probability": 0.4197 + }, + { + "start": 22499.93, + "end": 22501.14, + "probability": 0.6155 + }, + { + "start": 22502.33, + "end": 22503.57, + "probability": 0.5764 + }, + { + "start": 22504.99, + "end": 22505.51, + "probability": 0.485 + }, + { + "start": 22505.51, + "end": 22505.51, + "probability": 0.5146 + }, + { + "start": 22505.51, + "end": 22506.75, + "probability": 0.602 + }, + { + "start": 22506.81, + "end": 22511.47, + "probability": 0.9636 + }, + { + "start": 22511.57, + "end": 22512.53, + "probability": 0.2681 + }, + { + "start": 22513.05, + "end": 22513.05, + "probability": 0.1978 + }, + { + "start": 22513.09, + "end": 22513.61, + "probability": 0.2401 + }, + { + "start": 22513.73, + "end": 22517.25, + "probability": 0.9239 + }, + { + "start": 22517.41, + "end": 22519.59, + "probability": 0.9668 + }, + { + "start": 22519.71, + "end": 22520.55, + "probability": 0.93 + }, + { + "start": 22520.75, + "end": 22521.63, + "probability": 0.1971 + }, + { + "start": 22521.89, + "end": 22522.21, + "probability": 0.0261 + }, + { + "start": 22522.33, + "end": 22523.11, + "probability": 0.3118 + }, + { + "start": 22523.63, + "end": 22523.83, + "probability": 0.4752 + }, + { + "start": 22523.91, + "end": 22524.77, + "probability": 0.0729 + }, + { + "start": 22524.83, + "end": 22525.61, + "probability": 0.4589 + }, + { + "start": 22526.27, + "end": 22526.93, + "probability": 0.719 + }, + { + "start": 22528.05, + "end": 22529.45, + "probability": 0.0953 + }, + { + "start": 22529.97, + "end": 22531.81, + "probability": 0.215 + }, + { + "start": 22532.21, + "end": 22533.27, + "probability": 0.1436 + }, + { + "start": 22533.63, + "end": 22534.97, + "probability": 0.226 + }, + { + "start": 22535.03, + "end": 22535.81, + "probability": 0.9167 + }, + { + "start": 22535.91, + "end": 22536.15, + "probability": 0.3991 + }, + { + "start": 22536.21, + "end": 22539.44, + "probability": 0.4224 + }, + { + "start": 22541.97, + "end": 22542.86, + "probability": 0.3125 + }, + { + "start": 22543.05, + "end": 22543.59, + "probability": 0.2426 + }, + { + "start": 22543.81, + "end": 22544.03, + "probability": 0.0238 + }, + { + "start": 22544.33, + "end": 22545.33, + "probability": 0.4379 + }, + { + "start": 22545.49, + "end": 22545.49, + "probability": 0.0245 + }, + { + "start": 22545.49, + "end": 22546.6, + "probability": 0.5293 + }, + { + "start": 22547.71, + "end": 22552.01, + "probability": 0.8205 + }, + { + "start": 22552.31, + "end": 22553.25, + "probability": 0.7757 + }, + { + "start": 22553.35, + "end": 22554.57, + "probability": 0.6949 + }, + { + "start": 22554.67, + "end": 22555.67, + "probability": 0.7316 + }, + { + "start": 22555.83, + "end": 22556.99, + "probability": 0.6179 + }, + { + "start": 22557.01, + "end": 22558.53, + "probability": 0.8979 + }, + { + "start": 22558.75, + "end": 22559.11, + "probability": 0.9269 + }, + { + "start": 22560.05, + "end": 22563.79, + "probability": 0.9828 + }, + { + "start": 22565.17, + "end": 22566.55, + "probability": 0.9946 + }, + { + "start": 22567.55, + "end": 22568.39, + "probability": 0.7528 + }, + { + "start": 22569.25, + "end": 22570.51, + "probability": 0.0642 + }, + { + "start": 22570.51, + "end": 22570.57, + "probability": 0.3726 + }, + { + "start": 22570.57, + "end": 22571.05, + "probability": 0.6137 + }, + { + "start": 22571.21, + "end": 22571.67, + "probability": 0.5137 + }, + { + "start": 22571.85, + "end": 22571.85, + "probability": 0.4149 + }, + { + "start": 22571.91, + "end": 22572.53, + "probability": 0.6062 + }, + { + "start": 22572.59, + "end": 22573.25, + "probability": 0.364 + }, + { + "start": 22573.35, + "end": 22573.81, + "probability": 0.0345 + }, + { + "start": 22573.89, + "end": 22575.25, + "probability": 0.4815 + }, + { + "start": 22575.45, + "end": 22576.22, + "probability": 0.5401 + }, + { + "start": 22576.65, + "end": 22577.63, + "probability": 0.0515 + }, + { + "start": 22577.75, + "end": 22577.83, + "probability": 0.484 + }, + { + "start": 22577.83, + "end": 22579.49, + "probability": 0.7604 + }, + { + "start": 22579.61, + "end": 22582.25, + "probability": 0.8138 + }, + { + "start": 22582.65, + "end": 22583.95, + "probability": 0.0884 + }, + { + "start": 22584.81, + "end": 22585.27, + "probability": 0.1462 + }, + { + "start": 22594.69, + "end": 22596.03, + "probability": 0.2256 + }, + { + "start": 22597.33, + "end": 22597.51, + "probability": 0.1778 + }, + { + "start": 22597.63, + "end": 22598.39, + "probability": 0.2276 + }, + { + "start": 22598.53, + "end": 22599.35, + "probability": 0.2231 + }, + { + "start": 22599.83, + "end": 22600.85, + "probability": 0.0351 + }, + { + "start": 22600.85, + "end": 22602.19, + "probability": 0.0506 + }, + { + "start": 22602.19, + "end": 22604.87, + "probability": 0.092 + }, + { + "start": 22607.05, + "end": 22609.45, + "probability": 0.0643 + }, + { + "start": 22609.47, + "end": 22610.35, + "probability": 0.2653 + }, + { + "start": 22611.09, + "end": 22612.39, + "probability": 0.1502 + }, + { + "start": 22612.43, + "end": 22615.19, + "probability": 0.0546 + }, + { + "start": 22616.07, + "end": 22616.07, + "probability": 0.0203 + }, + { + "start": 22616.09, + "end": 22616.09, + "probability": 0.1008 + }, + { + "start": 22616.09, + "end": 22616.09, + "probability": 0.0711 + }, + { + "start": 22616.09, + "end": 22616.25, + "probability": 0.0748 + }, + { + "start": 22616.25, + "end": 22616.37, + "probability": 0.3458 + }, + { + "start": 22616.37, + "end": 22618.39, + "probability": 0.0425 + }, + { + "start": 22620.01, + "end": 22620.87, + "probability": 0.0867 + }, + { + "start": 22622.0, + "end": 22622.0, + "probability": 0.0 + }, + { + "start": 22622.0, + "end": 22622.0, + "probability": 0.0 + }, + { + "start": 22622.0, + "end": 22622.0, + "probability": 0.0 + }, + { + "start": 22622.0, + "end": 22622.0, + "probability": 0.0 + }, + { + "start": 22622.0, + "end": 22622.0, + "probability": 0.0 + }, + { + "start": 22622.0, + "end": 22622.0, + "probability": 0.0 + }, + { + "start": 22622.0, + "end": 22622.0, + "probability": 0.0 + }, + { + "start": 22622.12, + "end": 22622.16, + "probability": 0.1251 + }, + { + "start": 22622.16, + "end": 22622.16, + "probability": 0.0744 + }, + { + "start": 22622.16, + "end": 22622.5, + "probability": 0.2243 + }, + { + "start": 22622.5, + "end": 22625.84, + "probability": 0.9934 + }, + { + "start": 22625.96, + "end": 22626.22, + "probability": 0.5808 + }, + { + "start": 22626.32, + "end": 22627.96, + "probability": 0.9376 + }, + { + "start": 22628.04, + "end": 22631.28, + "probability": 0.9128 + }, + { + "start": 22631.4, + "end": 22633.38, + "probability": 0.6481 + }, + { + "start": 22633.38, + "end": 22633.58, + "probability": 0.7186 + }, + { + "start": 22633.62, + "end": 22635.6, + "probability": 0.9885 + }, + { + "start": 22636.15, + "end": 22637.62, + "probability": 0.797 + }, + { + "start": 22637.68, + "end": 22640.9, + "probability": 0.9761 + }, + { + "start": 22641.1, + "end": 22641.95, + "probability": 0.3475 + }, + { + "start": 22642.54, + "end": 22644.46, + "probability": 0.8055 + }, + { + "start": 22645.0, + "end": 22649.04, + "probability": 0.8916 + }, + { + "start": 22649.58, + "end": 22651.31, + "probability": 0.9966 + }, + { + "start": 22652.48, + "end": 22653.48, + "probability": 0.7663 + }, + { + "start": 22654.18, + "end": 22654.9, + "probability": 0.6781 + }, + { + "start": 22656.14, + "end": 22656.58, + "probability": 0.8613 + }, + { + "start": 22657.68, + "end": 22658.68, + "probability": 0.7661 + }, + { + "start": 22659.26, + "end": 22659.74, + "probability": 0.9126 + }, + { + "start": 22661.28, + "end": 22661.92, + "probability": 0.8291 + }, + { + "start": 22662.62, + "end": 22664.92, + "probability": 0.9849 + }, + { + "start": 22665.62, + "end": 22668.14, + "probability": 0.9888 + }, + { + "start": 22669.34, + "end": 22671.52, + "probability": 0.9899 + }, + { + "start": 22671.58, + "end": 22672.74, + "probability": 0.7264 + }, + { + "start": 22672.96, + "end": 22673.14, + "probability": 0.8339 + }, + { + "start": 22673.14, + "end": 22676.11, + "probability": 0.8478 + }, + { + "start": 22676.8, + "end": 22678.38, + "probability": 0.9961 + }, + { + "start": 22678.42, + "end": 22679.61, + "probability": 0.9372 + }, + { + "start": 22680.2, + "end": 22683.18, + "probability": 0.8685 + }, + { + "start": 22683.32, + "end": 22685.28, + "probability": 0.9956 + }, + { + "start": 22685.76, + "end": 22689.54, + "probability": 0.9715 + }, + { + "start": 22689.58, + "end": 22692.26, + "probability": 0.9995 + }, + { + "start": 22692.86, + "end": 22693.26, + "probability": 0.7471 + }, + { + "start": 22694.04, + "end": 22695.49, + "probability": 0.0086 + }, + { + "start": 22696.04, + "end": 22697.98, + "probability": 0.1785 + }, + { + "start": 22698.1, + "end": 22698.4, + "probability": 0.1292 + }, + { + "start": 22698.48, + "end": 22698.86, + "probability": 0.3785 + }, + { + "start": 22698.92, + "end": 22699.33, + "probability": 0.1597 + }, + { + "start": 22699.74, + "end": 22701.36, + "probability": 0.7629 + }, + { + "start": 22701.68, + "end": 22704.4, + "probability": 0.8993 + }, + { + "start": 22704.96, + "end": 22705.42, + "probability": 0.6891 + }, + { + "start": 22705.58, + "end": 22706.4, + "probability": 0.758 + }, + { + "start": 22706.68, + "end": 22707.51, + "probability": 0.1325 + }, + { + "start": 22707.84, + "end": 22709.38, + "probability": 0.4788 + }, + { + "start": 22709.52, + "end": 22711.38, + "probability": 0.6636 + }, + { + "start": 22711.6, + "end": 22713.46, + "probability": 0.0246 + }, + { + "start": 22713.8, + "end": 22715.56, + "probability": 0.0905 + }, + { + "start": 22715.74, + "end": 22716.66, + "probability": 0.0713 + }, + { + "start": 22716.7, + "end": 22717.24, + "probability": 0.3787 + }, + { + "start": 22717.26, + "end": 22717.54, + "probability": 0.0047 + }, + { + "start": 22718.12, + "end": 22718.12, + "probability": 0.0604 + }, + { + "start": 22718.2, + "end": 22718.2, + "probability": 0.1095 + }, + { + "start": 22718.2, + "end": 22719.38, + "probability": 0.5966 + }, + { + "start": 22720.0, + "end": 22720.94, + "probability": 0.3671 + }, + { + "start": 22721.22, + "end": 22722.46, + "probability": 0.0349 + }, + { + "start": 22723.9, + "end": 22725.82, + "probability": 0.1771 + }, + { + "start": 22741.24, + "end": 22741.31, + "probability": 0.2527 + }, + { + "start": 22741.84, + "end": 22742.8, + "probability": 0.1675 + }, + { + "start": 22742.8, + "end": 22743.22, + "probability": 0.4538 + }, + { + "start": 22743.3, + "end": 22744.44, + "probability": 0.5194 + }, + { + "start": 22744.68, + "end": 22744.8, + "probability": 0.0753 + }, + { + "start": 22745.04, + "end": 22745.1, + "probability": 0.1598 + }, + { + "start": 22745.1, + "end": 22746.0, + "probability": 0.1527 + }, + { + "start": 22746.08, + "end": 22746.1, + "probability": 0.0746 + }, + { + "start": 22746.1, + "end": 22746.44, + "probability": 0.0592 + }, + { + "start": 22749.22, + "end": 22750.36, + "probability": 0.1166 + }, + { + "start": 22750.54, + "end": 22750.82, + "probability": 0.0696 + }, + { + "start": 22750.99, + "end": 22751.62, + "probability": 0.0252 + }, + { + "start": 22751.62, + "end": 22752.78, + "probability": 0.0986 + }, + { + "start": 22752.84, + "end": 22755.52, + "probability": 0.1522 + }, + { + "start": 22755.62, + "end": 22755.76, + "probability": 0.1065 + }, + { + "start": 22755.76, + "end": 22757.76, + "probability": 0.1655 + }, + { + "start": 22757.76, + "end": 22759.3, + "probability": 0.2064 + }, + { + "start": 22759.94, + "end": 22760.92, + "probability": 0.0344 + }, + { + "start": 22760.92, + "end": 22760.94, + "probability": 0.0298 + }, + { + "start": 22760.94, + "end": 22760.94, + "probability": 0.0873 + }, + { + "start": 22760.94, + "end": 22760.94, + "probability": 0.0322 + }, + { + "start": 22760.94, + "end": 22760.94, + "probability": 0.1004 + }, + { + "start": 22760.94, + "end": 22760.94, + "probability": 0.0544 + }, + { + "start": 22760.94, + "end": 22760.98, + "probability": 0.0359 + }, + { + "start": 22761.0, + "end": 22761.0, + "probability": 0.0 + }, + { + "start": 22761.0, + "end": 22761.0, + "probability": 0.0 + }, + { + "start": 22761.0, + "end": 22761.0, + "probability": 0.0 + }, + { + "start": 22761.0, + "end": 22761.0, + "probability": 0.0 + }, + { + "start": 22761.0, + "end": 22761.0, + "probability": 0.0 + }, + { + "start": 22761.0, + "end": 22761.0, + "probability": 0.0 + }, + { + "start": 22761.0, + "end": 22761.0, + "probability": 0.0 + }, + { + "start": 22761.0, + "end": 22761.0, + "probability": 0.0 + }, + { + "start": 22761.1, + "end": 22761.44, + "probability": 0.028 + }, + { + "start": 22761.54, + "end": 22761.72, + "probability": 0.0959 + }, + { + "start": 22761.72, + "end": 22761.72, + "probability": 0.0805 + }, + { + "start": 22761.72, + "end": 22762.8, + "probability": 0.6479 + }, + { + "start": 22762.98, + "end": 22765.25, + "probability": 0.9174 + }, + { + "start": 22765.7, + "end": 22767.68, + "probability": 0.9666 + }, + { + "start": 22780.1, + "end": 22781.64, + "probability": 0.0585 + }, + { + "start": 22781.64, + "end": 22781.68, + "probability": 0.0324 + }, + { + "start": 22781.68, + "end": 22782.24, + "probability": 0.0529 + }, + { + "start": 22784.76, + "end": 22785.56, + "probability": 0.1168 + }, + { + "start": 22786.6, + "end": 22786.6, + "probability": 0.1334 + }, + { + "start": 22787.14, + "end": 22790.04, + "probability": 0.2082 + }, + { + "start": 22791.87, + "end": 22793.18, + "probability": 0.1257 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.0, + "end": 22886.0, + "probability": 0.0 + }, + { + "start": 22886.16, + "end": 22886.16, + "probability": 0.0241 + }, + { + "start": 22886.16, + "end": 22886.16, + "probability": 0.121 + }, + { + "start": 22886.16, + "end": 22886.2, + "probability": 0.079 + }, + { + "start": 22886.2, + "end": 22886.2, + "probability": 0.0824 + }, + { + "start": 22886.2, + "end": 22886.92, + "probability": 0.0164 + }, + { + "start": 22886.92, + "end": 22888.9, + "probability": 0.7971 + }, + { + "start": 22888.9, + "end": 22889.88, + "probability": 0.6564 + }, + { + "start": 22890.02, + "end": 22890.96, + "probability": 0.8205 + }, + { + "start": 22890.98, + "end": 22891.08, + "probability": 0.91 + }, + { + "start": 22892.24, + "end": 22893.04, + "probability": 0.9534 + }, + { + "start": 22893.48, + "end": 22897.92, + "probability": 0.9901 + }, + { + "start": 22897.92, + "end": 22902.14, + "probability": 0.9356 + }, + { + "start": 22903.08, + "end": 22903.24, + "probability": 0.515 + }, + { + "start": 22903.9, + "end": 22907.36, + "probability": 0.9581 + }, + { + "start": 22908.5, + "end": 22911.5, + "probability": 0.9951 + }, + { + "start": 22911.5, + "end": 22915.4, + "probability": 0.9869 + }, + { + "start": 22915.44, + "end": 22917.44, + "probability": 0.7798 + }, + { + "start": 22918.56, + "end": 22920.98, + "probability": 0.8049 + }, + { + "start": 22921.84, + "end": 22924.54, + "probability": 0.8921 + }, + { + "start": 22925.16, + "end": 22929.52, + "probability": 0.8793 + }, + { + "start": 22930.08, + "end": 22933.02, + "probability": 0.9733 + }, + { + "start": 22933.8, + "end": 22936.84, + "probability": 0.9575 + }, + { + "start": 22937.18, + "end": 22938.96, + "probability": 0.6695 + }, + { + "start": 22939.18, + "end": 22941.9, + "probability": 0.9333 + }, + { + "start": 22942.74, + "end": 22945.84, + "probability": 0.9363 + }, + { + "start": 22946.4, + "end": 22950.4, + "probability": 0.9766 + }, + { + "start": 22952.08, + "end": 22955.78, + "probability": 0.9836 + }, + { + "start": 22956.5, + "end": 22958.88, + "probability": 0.9683 + }, + { + "start": 22959.12, + "end": 22960.82, + "probability": 0.7226 + }, + { + "start": 22961.36, + "end": 22962.0, + "probability": 0.7744 + }, + { + "start": 22962.72, + "end": 22964.2, + "probability": 0.9371 + }, + { + "start": 22964.78, + "end": 22968.28, + "probability": 0.9691 + }, + { + "start": 22969.2, + "end": 22974.32, + "probability": 0.9201 + }, + { + "start": 22974.54, + "end": 22975.08, + "probability": 0.8758 + }, + { + "start": 22975.42, + "end": 22979.58, + "probability": 0.9928 + }, + { + "start": 22980.4, + "end": 22986.44, + "probability": 0.8506 + }, + { + "start": 22987.0, + "end": 22991.36, + "probability": 0.9773 + }, + { + "start": 22992.36, + "end": 22996.3, + "probability": 0.9954 + }, + { + "start": 22996.3, + "end": 23001.72, + "probability": 0.9796 + }, + { + "start": 23002.7, + "end": 23004.32, + "probability": 0.5929 + }, + { + "start": 23004.36, + "end": 23010.64, + "probability": 0.9282 + }, + { + "start": 23011.22, + "end": 23013.72, + "probability": 0.9983 + }, + { + "start": 23014.14, + "end": 23017.1, + "probability": 0.9901 + }, + { + "start": 23017.76, + "end": 23019.92, + "probability": 0.7015 + }, + { + "start": 23020.62, + "end": 23021.68, + "probability": 0.8164 + }, + { + "start": 23022.34, + "end": 23026.48, + "probability": 0.8456 + }, + { + "start": 23027.12, + "end": 23028.0, + "probability": 0.8241 + }, + { + "start": 23028.42, + "end": 23029.1, + "probability": 0.991 + }, + { + "start": 23029.78, + "end": 23033.8, + "probability": 0.9959 + }, + { + "start": 23034.38, + "end": 23036.06, + "probability": 0.8111 + }, + { + "start": 23036.14, + "end": 23039.2, + "probability": 0.9824 + }, + { + "start": 23039.76, + "end": 23041.02, + "probability": 0.9813 + }, + { + "start": 23041.08, + "end": 23041.22, + "probability": 0.2496 + }, + { + "start": 23041.22, + "end": 23042.94, + "probability": 0.9224 + }, + { + "start": 23043.5, + "end": 23048.28, + "probability": 0.9912 + }, + { + "start": 23048.84, + "end": 23050.58, + "probability": 0.986 + }, + { + "start": 23050.64, + "end": 23051.98, + "probability": 0.922 + }, + { + "start": 23052.06, + "end": 23053.44, + "probability": 0.9309 + }, + { + "start": 23053.52, + "end": 23055.32, + "probability": 0.9558 + }, + { + "start": 23055.74, + "end": 23055.78, + "probability": 0.0646 + }, + { + "start": 23055.78, + "end": 23056.64, + "probability": 0.8181 + }, + { + "start": 23057.36, + "end": 23057.96, + "probability": 0.7146 + }, + { + "start": 23058.0, + "end": 23061.14, + "probability": 0.8964 + }, + { + "start": 23061.6, + "end": 23062.72, + "probability": 0.7301 + }, + { + "start": 23062.78, + "end": 23065.18, + "probability": 0.796 + }, + { + "start": 23065.54, + "end": 23066.78, + "probability": 0.5201 + }, + { + "start": 23066.98, + "end": 23067.28, + "probability": 0.5496 + }, + { + "start": 23067.88, + "end": 23069.62, + "probability": 0.7807 + }, + { + "start": 23069.9, + "end": 23070.38, + "probability": 0.4896 + }, + { + "start": 23070.42, + "end": 23071.48, + "probability": 0.6108 + }, + { + "start": 23072.92, + "end": 23073.64, + "probability": 0.789 + }, + { + "start": 23084.18, + "end": 23085.22, + "probability": 0.73 + }, + { + "start": 23086.58, + "end": 23088.16, + "probability": 0.9084 + }, + { + "start": 23089.56, + "end": 23095.86, + "probability": 0.9745 + }, + { + "start": 23098.6, + "end": 23102.28, + "probability": 0.9946 + }, + { + "start": 23102.48, + "end": 23104.22, + "probability": 0.9176 + }, + { + "start": 23104.98, + "end": 23107.34, + "probability": 0.8535 + }, + { + "start": 23109.08, + "end": 23115.18, + "probability": 0.9305 + }, + { + "start": 23115.88, + "end": 23121.74, + "probability": 0.9278 + }, + { + "start": 23122.36, + "end": 23126.42, + "probability": 0.9521 + }, + { + "start": 23128.4, + "end": 23133.9, + "probability": 0.8859 + }, + { + "start": 23134.9, + "end": 23135.5, + "probability": 0.6651 + }, + { + "start": 23136.34, + "end": 23139.46, + "probability": 0.9082 + }, + { + "start": 23140.44, + "end": 23141.34, + "probability": 0.9462 + }, + { + "start": 23142.92, + "end": 23145.42, + "probability": 0.7779 + }, + { + "start": 23146.58, + "end": 23149.06, + "probability": 0.7751 + }, + { + "start": 23149.68, + "end": 23155.42, + "probability": 0.9469 + }, + { + "start": 23156.7, + "end": 23159.56, + "probability": 0.8014 + }, + { + "start": 23160.44, + "end": 23160.98, + "probability": 0.946 + }, + { + "start": 23161.96, + "end": 23163.64, + "probability": 0.8432 + }, + { + "start": 23164.28, + "end": 23165.62, + "probability": 0.9113 + }, + { + "start": 23166.36, + "end": 23166.7, + "probability": 0.1883 + }, + { + "start": 23166.98, + "end": 23167.8, + "probability": 0.6643 + }, + { + "start": 23168.5, + "end": 23170.28, + "probability": 0.9757 + }, + { + "start": 23171.0, + "end": 23172.3, + "probability": 0.9667 + }, + { + "start": 23172.88, + "end": 23173.62, + "probability": 0.9754 + }, + { + "start": 23174.76, + "end": 23179.44, + "probability": 0.9918 + }, + { + "start": 23179.6, + "end": 23180.76, + "probability": 0.7924 + }, + { + "start": 23181.44, + "end": 23185.98, + "probability": 0.9699 + }, + { + "start": 23187.06, + "end": 23188.26, + "probability": 0.7485 + }, + { + "start": 23189.08, + "end": 23189.83, + "probability": 0.7333 + }, + { + "start": 23190.72, + "end": 23195.54, + "probability": 0.9786 + }, + { + "start": 23195.54, + "end": 23200.6, + "probability": 0.9748 + }, + { + "start": 23201.6, + "end": 23207.56, + "probability": 0.9924 + }, + { + "start": 23207.56, + "end": 23214.48, + "probability": 0.9957 + }, + { + "start": 23215.62, + "end": 23217.94, + "probability": 0.7269 + }, + { + "start": 23218.92, + "end": 23219.54, + "probability": 0.6015 + }, + { + "start": 23220.08, + "end": 23224.02, + "probability": 0.908 + }, + { + "start": 23224.94, + "end": 23226.3, + "probability": 0.9622 + }, + { + "start": 23226.62, + "end": 23228.34, + "probability": 0.9796 + }, + { + "start": 23228.42, + "end": 23229.96, + "probability": 0.6094 + }, + { + "start": 23230.98, + "end": 23233.64, + "probability": 0.9907 + }, + { + "start": 23234.62, + "end": 23240.94, + "probability": 0.9535 + }, + { + "start": 23241.96, + "end": 23244.92, + "probability": 0.9888 + }, + { + "start": 23245.52, + "end": 23249.58, + "probability": 0.9733 + }, + { + "start": 23250.12, + "end": 23253.94, + "probability": 0.9834 + }, + { + "start": 23255.6, + "end": 23258.84, + "probability": 0.9816 + }, + { + "start": 23259.52, + "end": 23262.92, + "probability": 0.6242 + }, + { + "start": 23263.68, + "end": 23265.2, + "probability": 0.669 + }, + { + "start": 23268.24, + "end": 23271.42, + "probability": 0.9313 + }, + { + "start": 23273.02, + "end": 23277.8, + "probability": 0.9863 + }, + { + "start": 23278.68, + "end": 23282.1, + "probability": 0.8953 + }, + { + "start": 23283.24, + "end": 23284.75, + "probability": 0.7788 + }, + { + "start": 23285.98, + "end": 23287.0, + "probability": 0.9569 + }, + { + "start": 23287.88, + "end": 23293.78, + "probability": 0.9712 + }, + { + "start": 23294.14, + "end": 23296.74, + "probability": 0.7277 + }, + { + "start": 23298.4, + "end": 23299.0, + "probability": 0.9733 + }, + { + "start": 23301.18, + "end": 23302.72, + "probability": 0.6408 + }, + { + "start": 23302.78, + "end": 23303.58, + "probability": 0.8458 + }, + { + "start": 23303.82, + "end": 23304.14, + "probability": 0.4199 + }, + { + "start": 23304.36, + "end": 23305.28, + "probability": 0.6886 + }, + { + "start": 23306.12, + "end": 23308.0, + "probability": 0.6849 + }, + { + "start": 23310.34, + "end": 23315.58, + "probability": 0.9216 + }, + { + "start": 23324.8, + "end": 23326.66, + "probability": 0.711 + }, + { + "start": 23327.66, + "end": 23331.24, + "probability": 0.9858 + }, + { + "start": 23331.24, + "end": 23335.12, + "probability": 0.9966 + }, + { + "start": 23336.12, + "end": 23340.72, + "probability": 0.8247 + }, + { + "start": 23341.57, + "end": 23345.16, + "probability": 0.9983 + }, + { + "start": 23345.36, + "end": 23346.84, + "probability": 0.854 + }, + { + "start": 23347.26, + "end": 23352.66, + "probability": 0.9792 + }, + { + "start": 23354.28, + "end": 23357.94, + "probability": 0.905 + }, + { + "start": 23358.02, + "end": 23363.08, + "probability": 0.9932 + }, + { + "start": 23363.14, + "end": 23366.02, + "probability": 0.8007 + }, + { + "start": 23366.4, + "end": 23368.68, + "probability": 0.9937 + }, + { + "start": 23368.68, + "end": 23373.4, + "probability": 0.9873 + }, + { + "start": 23374.4, + "end": 23376.2, + "probability": 0.9777 + }, + { + "start": 23376.54, + "end": 23380.68, + "probability": 0.9736 + }, + { + "start": 23381.46, + "end": 23385.36, + "probability": 0.9282 + }, + { + "start": 23385.52, + "end": 23387.16, + "probability": 0.9228 + }, + { + "start": 23387.6, + "end": 23392.44, + "probability": 0.448 + }, + { + "start": 23393.26, + "end": 23393.84, + "probability": 0.3997 + }, + { + "start": 23393.92, + "end": 23397.69, + "probability": 0.9255 + }, + { + "start": 23398.1, + "end": 23400.6, + "probability": 0.5723 + }, + { + "start": 23400.68, + "end": 23403.62, + "probability": 0.8483 + }, + { + "start": 23404.1, + "end": 23405.28, + "probability": 0.8701 + }, + { + "start": 23405.52, + "end": 23407.4, + "probability": 0.902 + }, + { + "start": 23408.74, + "end": 23411.18, + "probability": 0.9543 + }, + { + "start": 23411.6, + "end": 23414.78, + "probability": 0.6169 + }, + { + "start": 23414.82, + "end": 23421.04, + "probability": 0.9038 + }, + { + "start": 23421.22, + "end": 23422.76, + "probability": 0.5626 + }, + { + "start": 23422.88, + "end": 23423.58, + "probability": 0.7222 + }, + { + "start": 23423.86, + "end": 23425.22, + "probability": 0.962 + }, + { + "start": 23425.82, + "end": 23429.24, + "probability": 0.8818 + }, + { + "start": 23429.32, + "end": 23430.88, + "probability": 0.8588 + }, + { + "start": 23430.9, + "end": 23432.4, + "probability": 0.9099 + }, + { + "start": 23432.62, + "end": 23434.7, + "probability": 0.7038 + }, + { + "start": 23435.36, + "end": 23439.02, + "probability": 0.9567 + }, + { + "start": 23439.78, + "end": 23444.9, + "probability": 0.9867 + }, + { + "start": 23445.04, + "end": 23448.52, + "probability": 0.9922 + }, + { + "start": 23448.52, + "end": 23453.06, + "probability": 0.9971 + }, + { + "start": 23453.16, + "end": 23455.44, + "probability": 0.9116 + }, + { + "start": 23455.68, + "end": 23458.16, + "probability": 0.9436 + }, + { + "start": 23458.58, + "end": 23460.58, + "probability": 0.9266 + }, + { + "start": 23460.74, + "end": 23461.86, + "probability": 0.9958 + }, + { + "start": 23462.3, + "end": 23464.39, + "probability": 0.9974 + }, + { + "start": 23464.82, + "end": 23466.04, + "probability": 0.9946 + }, + { + "start": 23466.34, + "end": 23467.88, + "probability": 0.9784 + }, + { + "start": 23468.06, + "end": 23468.22, + "probability": 0.5656 + }, + { + "start": 23468.4, + "end": 23469.72, + "probability": 0.8484 + }, + { + "start": 23470.2, + "end": 23475.06, + "probability": 0.9501 + }, + { + "start": 23475.18, + "end": 23475.92, + "probability": 0.8122 + }, + { + "start": 23476.08, + "end": 23476.86, + "probability": 0.5479 + }, + { + "start": 23477.14, + "end": 23480.44, + "probability": 0.9859 + }, + { + "start": 23480.44, + "end": 23485.82, + "probability": 0.9871 + }, + { + "start": 23486.3, + "end": 23488.06, + "probability": 0.6676 + }, + { + "start": 23488.36, + "end": 23489.2, + "probability": 0.8748 + }, + { + "start": 23489.48, + "end": 23491.06, + "probability": 0.8992 + }, + { + "start": 23491.46, + "end": 23493.62, + "probability": 0.8433 + }, + { + "start": 23493.82, + "end": 23496.52, + "probability": 0.9246 + }, + { + "start": 23496.6, + "end": 23497.56, + "probability": 0.9068 + }, + { + "start": 23497.84, + "end": 23500.52, + "probability": 0.9852 + }, + { + "start": 23501.08, + "end": 23505.16, + "probability": 0.9762 + }, + { + "start": 23505.7, + "end": 23508.06, + "probability": 0.762 + }, + { + "start": 23508.16, + "end": 23511.06, + "probability": 0.9896 + }, + { + "start": 23511.12, + "end": 23513.32, + "probability": 0.9683 + }, + { + "start": 23513.6, + "end": 23516.76, + "probability": 0.9736 + }, + { + "start": 23517.08, + "end": 23518.12, + "probability": 0.954 + }, + { + "start": 23518.18, + "end": 23519.98, + "probability": 0.9951 + }, + { + "start": 23520.94, + "end": 23522.32, + "probability": 0.8897 + }, + { + "start": 23522.74, + "end": 23528.14, + "probability": 0.8917 + }, + { + "start": 23528.46, + "end": 23530.48, + "probability": 0.5502 + }, + { + "start": 23530.9, + "end": 23531.32, + "probability": 0.3508 + }, + { + "start": 23531.34, + "end": 23533.04, + "probability": 0.9384 + }, + { + "start": 23533.14, + "end": 23533.34, + "probability": 0.7183 + }, + { + "start": 23534.62, + "end": 23536.52, + "probability": 0.9824 + }, + { + "start": 23536.58, + "end": 23538.1, + "probability": 0.8257 + }, + { + "start": 23539.44, + "end": 23539.84, + "probability": 0.2069 + }, + { + "start": 23539.9, + "end": 23540.84, + "probability": 0.2779 + }, + { + "start": 23541.06, + "end": 23541.52, + "probability": 0.5129 + }, + { + "start": 23541.8, + "end": 23543.06, + "probability": 0.7434 + }, + { + "start": 23543.8, + "end": 23544.04, + "probability": 0.5432 + }, + { + "start": 23544.3, + "end": 23544.74, + "probability": 0.9685 + }, + { + "start": 23564.5, + "end": 23565.66, + "probability": 0.6446 + }, + { + "start": 23565.86, + "end": 23565.86, + "probability": 0.3879 + }, + { + "start": 23565.86, + "end": 23566.36, + "probability": 0.7875 + }, + { + "start": 23566.44, + "end": 23567.44, + "probability": 0.763 + }, + { + "start": 23568.02, + "end": 23569.28, + "probability": 0.9413 + }, + { + "start": 23569.96, + "end": 23573.0, + "probability": 0.912 + }, + { + "start": 23573.64, + "end": 23577.24, + "probability": 0.9944 + }, + { + "start": 23578.4, + "end": 23583.98, + "probability": 0.9787 + }, + { + "start": 23584.58, + "end": 23587.36, + "probability": 0.6842 + }, + { + "start": 23588.04, + "end": 23591.78, + "probability": 0.9456 + }, + { + "start": 23592.48, + "end": 23594.9, + "probability": 0.9965 + }, + { + "start": 23595.88, + "end": 23597.52, + "probability": 0.9784 + }, + { + "start": 23597.94, + "end": 23598.76, + "probability": 0.9661 + }, + { + "start": 23598.84, + "end": 23600.38, + "probability": 0.9856 + }, + { + "start": 23600.46, + "end": 23604.64, + "probability": 0.9763 + }, + { + "start": 23606.1, + "end": 23610.06, + "probability": 0.9987 + }, + { + "start": 23611.02, + "end": 23612.72, + "probability": 0.973 + }, + { + "start": 23613.32, + "end": 23621.14, + "probability": 0.9826 + }, + { + "start": 23621.9, + "end": 23624.7, + "probability": 0.9925 + }, + { + "start": 23624.74, + "end": 23628.82, + "probability": 0.9967 + }, + { + "start": 23629.5, + "end": 23632.22, + "probability": 0.9667 + }, + { + "start": 23633.08, + "end": 23636.1, + "probability": 0.9695 + }, + { + "start": 23636.82, + "end": 23642.24, + "probability": 0.9966 + }, + { + "start": 23643.16, + "end": 23648.24, + "probability": 0.9995 + }, + { + "start": 23648.74, + "end": 23651.66, + "probability": 0.8848 + }, + { + "start": 23652.26, + "end": 23654.12, + "probability": 0.8264 + }, + { + "start": 23655.08, + "end": 23658.5, + "probability": 0.978 + }, + { + "start": 23658.5, + "end": 23663.2, + "probability": 0.9163 + }, + { + "start": 23663.86, + "end": 23665.7, + "probability": 0.9987 + }, + { + "start": 23666.34, + "end": 23671.2, + "probability": 0.994 + }, + { + "start": 23672.82, + "end": 23674.64, + "probability": 0.9276 + }, + { + "start": 23674.8, + "end": 23675.48, + "probability": 0.9697 + }, + { + "start": 23675.56, + "end": 23676.36, + "probability": 0.5524 + }, + { + "start": 23676.82, + "end": 23678.5, + "probability": 0.8006 + }, + { + "start": 23678.56, + "end": 23679.98, + "probability": 0.9658 + }, + { + "start": 23681.02, + "end": 23682.12, + "probability": 0.6649 + }, + { + "start": 23682.2, + "end": 23683.2, + "probability": 0.9237 + }, + { + "start": 23683.34, + "end": 23689.22, + "probability": 0.9049 + }, + { + "start": 23689.22, + "end": 23693.32, + "probability": 0.9954 + }, + { + "start": 23693.7, + "end": 23695.24, + "probability": 0.998 + }, + { + "start": 23696.0, + "end": 23698.2, + "probability": 0.9907 + }, + { + "start": 23699.36, + "end": 23700.12, + "probability": 0.6391 + }, + { + "start": 23700.26, + "end": 23703.7, + "probability": 0.9956 + }, + { + "start": 23704.24, + "end": 23707.26, + "probability": 0.9852 + }, + { + "start": 23708.06, + "end": 23714.36, + "probability": 0.9874 + }, + { + "start": 23714.84, + "end": 23715.74, + "probability": 0.5902 + }, + { + "start": 23716.22, + "end": 23719.38, + "probability": 0.998 + }, + { + "start": 23719.38, + "end": 23723.4, + "probability": 0.9397 + }, + { + "start": 23724.56, + "end": 23728.66, + "probability": 0.9546 + }, + { + "start": 23729.24, + "end": 23731.96, + "probability": 0.9971 + }, + { + "start": 23732.74, + "end": 23734.64, + "probability": 0.9826 + }, + { + "start": 23735.02, + "end": 23739.78, + "probability": 0.9673 + }, + { + "start": 23740.58, + "end": 23743.56, + "probability": 0.9871 + }, + { + "start": 23744.36, + "end": 23747.04, + "probability": 0.9837 + }, + { + "start": 23747.44, + "end": 23750.98, + "probability": 0.9919 + }, + { + "start": 23751.64, + "end": 23754.2, + "probability": 0.9977 + }, + { + "start": 23754.3, + "end": 23755.16, + "probability": 0.9608 + }, + { + "start": 23755.48, + "end": 23757.34, + "probability": 0.9861 + }, + { + "start": 23758.18, + "end": 23763.9, + "probability": 0.9872 + }, + { + "start": 23763.92, + "end": 23764.34, + "probability": 0.702 + }, + { + "start": 23764.94, + "end": 23765.52, + "probability": 0.9254 + }, + { + "start": 23765.92, + "end": 23766.34, + "probability": 0.7684 + }, + { + "start": 23766.56, + "end": 23768.38, + "probability": 0.5241 + }, + { + "start": 23769.0, + "end": 23771.06, + "probability": 0.8734 + }, + { + "start": 23772.14, + "end": 23772.54, + "probability": 0.5506 + }, + { + "start": 23772.58, + "end": 23774.52, + "probability": 0.8074 + }, + { + "start": 23774.78, + "end": 23775.34, + "probability": 0.5722 + }, + { + "start": 23775.4, + "end": 23778.0, + "probability": 0.7243 + }, + { + "start": 23785.76, + "end": 23790.0, + "probability": 0.6868 + }, + { + "start": 23791.08, + "end": 23795.6, + "probability": 0.8232 + }, + { + "start": 23796.62, + "end": 23797.9, + "probability": 0.868 + }, + { + "start": 23798.94, + "end": 23799.56, + "probability": 0.9493 + }, + { + "start": 23800.36, + "end": 23802.1, + "probability": 0.9888 + }, + { + "start": 23803.7, + "end": 23804.76, + "probability": 0.9937 + }, + { + "start": 23804.96, + "end": 23806.14, + "probability": 0.8333 + }, + { + "start": 23806.5, + "end": 23807.98, + "probability": 0.9773 + }, + { + "start": 23809.32, + "end": 23812.38, + "probability": 0.8706 + }, + { + "start": 23812.96, + "end": 23815.84, + "probability": 0.9956 + }, + { + "start": 23816.06, + "end": 23817.38, + "probability": 0.5913 + }, + { + "start": 23818.28, + "end": 23823.92, + "probability": 0.7243 + }, + { + "start": 23824.38, + "end": 23824.64, + "probability": 0.4794 + }, + { + "start": 23825.2, + "end": 23825.92, + "probability": 0.4747 + }, + { + "start": 23826.78, + "end": 23831.12, + "probability": 0.9819 + }, + { + "start": 23831.9, + "end": 23832.36, + "probability": 0.5464 + }, + { + "start": 23833.2, + "end": 23833.44, + "probability": 0.7106 + }, + { + "start": 23833.48, + "end": 23840.64, + "probability": 0.9903 + }, + { + "start": 23841.48, + "end": 23844.3, + "probability": 0.9278 + }, + { + "start": 23844.88, + "end": 23845.27, + "probability": 0.9519 + }, + { + "start": 23846.24, + "end": 23846.65, + "probability": 0.9575 + }, + { + "start": 23847.36, + "end": 23848.84, + "probability": 0.9228 + }, + { + "start": 23849.52, + "end": 23851.16, + "probability": 0.6025 + }, + { + "start": 23851.64, + "end": 23851.98, + "probability": 0.7052 + }, + { + "start": 23852.92, + "end": 23854.42, + "probability": 0.8867 + }, + { + "start": 23854.56, + "end": 23855.56, + "probability": 0.8063 + }, + { + "start": 23855.88, + "end": 23859.0, + "probability": 0.9561 + }, + { + "start": 23859.1, + "end": 23860.98, + "probability": 0.7253 + }, + { + "start": 23861.26, + "end": 23863.46, + "probability": 0.1823 + }, + { + "start": 23863.46, + "end": 23864.44, + "probability": 0.3634 + }, + { + "start": 23865.34, + "end": 23866.4, + "probability": 0.5808 + }, + { + "start": 23867.92, + "end": 23869.62, + "probability": 0.4813 + }, + { + "start": 23870.92, + "end": 23871.64, + "probability": 0.8932 + }, + { + "start": 23872.44, + "end": 23874.54, + "probability": 0.7101 + }, + { + "start": 23874.64, + "end": 23875.88, + "probability": 0.9155 + }, + { + "start": 23876.86, + "end": 23879.1, + "probability": 0.9891 + }, + { + "start": 23880.32, + "end": 23881.06, + "probability": 0.6103 + }, + { + "start": 23881.2, + "end": 23881.56, + "probability": 0.788 + }, + { + "start": 23881.8, + "end": 23883.6, + "probability": 0.9113 + }, + { + "start": 23884.2, + "end": 23884.8, + "probability": 0.8403 + }, + { + "start": 23885.16, + "end": 23885.74, + "probability": 0.7323 + }, + { + "start": 23886.58, + "end": 23886.92, + "probability": 0.8895 + }, + { + "start": 23888.14, + "end": 23890.82, + "probability": 0.4756 + }, + { + "start": 23891.56, + "end": 23895.38, + "probability": 0.8636 + }, + { + "start": 23895.86, + "end": 23896.52, + "probability": 0.9082 + }, + { + "start": 23897.88, + "end": 23899.9, + "probability": 0.8717 + }, + { + "start": 23900.5, + "end": 23901.15, + "probability": 0.4984 + }, + { + "start": 23901.62, + "end": 23902.34, + "probability": 0.5137 + }, + { + "start": 23902.86, + "end": 23903.04, + "probability": 0.6906 + }, + { + "start": 23903.14, + "end": 23903.14, + "probability": 0.5437 + }, + { + "start": 23903.32, + "end": 23903.7, + "probability": 0.9268 + }, + { + "start": 23904.2, + "end": 23905.4, + "probability": 0.9813 + }, + { + "start": 23905.86, + "end": 23906.8, + "probability": 0.9933 + }, + { + "start": 23907.18, + "end": 23908.24, + "probability": 0.9199 + }, + { + "start": 23908.66, + "end": 23909.9, + "probability": 0.9956 + }, + { + "start": 23910.24, + "end": 23910.9, + "probability": 0.9941 + }, + { + "start": 23911.4, + "end": 23915.64, + "probability": 0.8905 + }, + { + "start": 23916.2, + "end": 23916.34, + "probability": 0.0096 + }, + { + "start": 23917.74, + "end": 23919.74, + "probability": 0.4714 + }, + { + "start": 23920.08, + "end": 23920.94, + "probability": 0.8402 + }, + { + "start": 23921.22, + "end": 23921.74, + "probability": 0.5893 + }, + { + "start": 23922.1, + "end": 23924.0, + "probability": 0.9442 + }, + { + "start": 23924.42, + "end": 23927.32, + "probability": 0.8745 + }, + { + "start": 23928.12, + "end": 23929.54, + "probability": 0.8523 + }, + { + "start": 23930.5, + "end": 23932.61, + "probability": 0.947 + }, + { + "start": 23933.36, + "end": 23934.28, + "probability": 0.8851 + }, + { + "start": 23934.72, + "end": 23939.94, + "probability": 0.9718 + }, + { + "start": 23940.34, + "end": 23942.9, + "probability": 0.9702 + }, + { + "start": 23943.7, + "end": 23951.38, + "probability": 0.996 + }, + { + "start": 23954.44, + "end": 23956.8, + "probability": 0.3269 + }, + { + "start": 23957.72, + "end": 23958.9, + "probability": 0.9211 + }, + { + "start": 23961.12, + "end": 23963.16, + "probability": 0.9068 + }, + { + "start": 23963.98, + "end": 23967.02, + "probability": 0.988 + }, + { + "start": 23967.62, + "end": 23970.92, + "probability": 0.9057 + }, + { + "start": 23971.4, + "end": 23972.68, + "probability": 0.9715 + }, + { + "start": 23973.32, + "end": 23975.42, + "probability": 0.7179 + }, + { + "start": 23975.84, + "end": 23977.98, + "probability": 0.9946 + }, + { + "start": 23978.5, + "end": 23981.38, + "probability": 0.946 + }, + { + "start": 23981.76, + "end": 23983.02, + "probability": 0.8165 + }, + { + "start": 23985.06, + "end": 23988.7, + "probability": 0.9521 + }, + { + "start": 23989.2, + "end": 23992.42, + "probability": 0.9946 + }, + { + "start": 23992.74, + "end": 23992.92, + "probability": 0.5729 + }, + { + "start": 23993.44, + "end": 23994.2, + "probability": 0.5847 + }, + { + "start": 23995.12, + "end": 23997.8, + "probability": 0.7422 + }, + { + "start": 23998.44, + "end": 23998.82, + "probability": 0.7055 + }, + { + "start": 23999.32, + "end": 23999.84, + "probability": 0.5696 + }, + { + "start": 24000.24, + "end": 24000.64, + "probability": 0.5131 + }, + { + "start": 24000.92, + "end": 24001.62, + "probability": 0.5907 + }, + { + "start": 24001.62, + "end": 24001.98, + "probability": 0.6223 + }, + { + "start": 24002.04, + "end": 24003.26, + "probability": 0.7656 + }, + { + "start": 24003.94, + "end": 24006.12, + "probability": 0.7988 + }, + { + "start": 24009.96, + "end": 24010.36, + "probability": 0.462 + }, + { + "start": 24010.94, + "end": 24011.18, + "probability": 0.795 + }, + { + "start": 24023.46, + "end": 24024.4, + "probability": 0.6768 + }, + { + "start": 24027.3, + "end": 24027.92, + "probability": 0.6069 + }, + { + "start": 24028.98, + "end": 24031.5, + "probability": 0.9592 + }, + { + "start": 24032.18, + "end": 24033.4, + "probability": 0.7498 + }, + { + "start": 24035.1, + "end": 24037.96, + "probability": 0.9833 + }, + { + "start": 24038.48, + "end": 24040.06, + "probability": 0.968 + }, + { + "start": 24040.9, + "end": 24043.52, + "probability": 0.9563 + }, + { + "start": 24048.26, + "end": 24048.74, + "probability": 0.5011 + }, + { + "start": 24049.22, + "end": 24053.14, + "probability": 0.9784 + }, + { + "start": 24053.66, + "end": 24056.54, + "probability": 0.9894 + }, + { + "start": 24057.06, + "end": 24057.96, + "probability": 0.9689 + }, + { + "start": 24060.24, + "end": 24065.32, + "probability": 0.9523 + }, + { + "start": 24065.32, + "end": 24069.44, + "probability": 0.8772 + }, + { + "start": 24070.4, + "end": 24073.14, + "probability": 0.9844 + }, + { + "start": 24073.4, + "end": 24074.54, + "probability": 0.741 + }, + { + "start": 24074.6, + "end": 24074.98, + "probability": 0.7498 + }, + { + "start": 24075.6, + "end": 24078.44, + "probability": 0.8412 + }, + { + "start": 24079.54, + "end": 24082.78, + "probability": 0.971 + }, + { + "start": 24082.78, + "end": 24087.07, + "probability": 0.9675 + }, + { + "start": 24088.41, + "end": 24094.56, + "probability": 0.9919 + }, + { + "start": 24096.2, + "end": 24097.46, + "probability": 0.9949 + }, + { + "start": 24098.34, + "end": 24099.28, + "probability": 0.6097 + }, + { + "start": 24100.18, + "end": 24102.84, + "probability": 0.9867 + }, + { + "start": 24102.84, + "end": 24106.12, + "probability": 0.9887 + }, + { + "start": 24106.66, + "end": 24109.4, + "probability": 0.9433 + }, + { + "start": 24110.5, + "end": 24110.74, + "probability": 0.6015 + }, + { + "start": 24112.06, + "end": 24113.94, + "probability": 0.9983 + }, + { + "start": 24114.68, + "end": 24117.68, + "probability": 0.9856 + }, + { + "start": 24118.24, + "end": 24119.52, + "probability": 0.9697 + }, + { + "start": 24121.58, + "end": 24122.6, + "probability": 0.9978 + }, + { + "start": 24123.44, + "end": 24125.88, + "probability": 0.9451 + }, + { + "start": 24126.52, + "end": 24129.48, + "probability": 0.9275 + }, + { + "start": 24131.04, + "end": 24131.94, + "probability": 0.7707 + }, + { + "start": 24133.26, + "end": 24135.78, + "probability": 0.9557 + }, + { + "start": 24135.78, + "end": 24140.16, + "probability": 0.9941 + }, + { + "start": 24140.18, + "end": 24142.24, + "probability": 0.989 + }, + { + "start": 24143.78, + "end": 24145.86, + "probability": 0.9082 + }, + { + "start": 24146.76, + "end": 24149.76, + "probability": 0.7242 + }, + { + "start": 24151.2, + "end": 24151.94, + "probability": 0.9067 + }, + { + "start": 24152.74, + "end": 24154.54, + "probability": 0.8625 + }, + { + "start": 24155.42, + "end": 24156.74, + "probability": 0.95 + }, + { + "start": 24157.48, + "end": 24159.52, + "probability": 0.7683 + }, + { + "start": 24159.96, + "end": 24160.92, + "probability": 0.896 + }, + { + "start": 24161.38, + "end": 24164.14, + "probability": 0.9009 + }, + { + "start": 24164.52, + "end": 24166.98, + "probability": 0.91 + }, + { + "start": 24168.1, + "end": 24172.83, + "probability": 0.9797 + }, + { + "start": 24174.68, + "end": 24176.62, + "probability": 0.9277 + }, + { + "start": 24177.06, + "end": 24178.5, + "probability": 0.8622 + }, + { + "start": 24178.74, + "end": 24182.18, + "probability": 0.9642 + }, + { + "start": 24182.6, + "end": 24182.86, + "probability": 0.2994 + }, + { + "start": 24183.28, + "end": 24183.92, + "probability": 0.6444 + }, + { + "start": 24184.18, + "end": 24184.9, + "probability": 0.623 + }, + { + "start": 24185.68, + "end": 24185.76, + "probability": 0.6271 + }, + { + "start": 24186.28, + "end": 24187.92, + "probability": 0.7752 + }, + { + "start": 24188.2, + "end": 24190.6, + "probability": 0.5116 + }, + { + "start": 24191.24, + "end": 24193.52, + "probability": 0.6344 + }, + { + "start": 24200.08, + "end": 24202.82, + "probability": 0.8648 + }, + { + "start": 24202.88, + "end": 24204.1, + "probability": 0.9331 + }, + { + "start": 24204.42, + "end": 24206.02, + "probability": 0.6214 + }, + { + "start": 24207.1, + "end": 24209.28, + "probability": 0.7356 + }, + { + "start": 24209.74, + "end": 24210.86, + "probability": 0.8221 + }, + { + "start": 24210.86, + "end": 24211.4, + "probability": 0.5523 + }, + { + "start": 24211.46, + "end": 24212.82, + "probability": 0.8623 + }, + { + "start": 24212.94, + "end": 24214.22, + "probability": 0.3405 + }, + { + "start": 24214.38, + "end": 24215.28, + "probability": 0.4587 + }, + { + "start": 24215.4, + "end": 24215.84, + "probability": 0.3932 + }, + { + "start": 24216.68, + "end": 24217.66, + "probability": 0.9609 + }, + { + "start": 24217.76, + "end": 24218.58, + "probability": 0.8639 + }, + { + "start": 24218.64, + "end": 24218.86, + "probability": 0.7578 + }, + { + "start": 24218.96, + "end": 24221.5, + "probability": 0.9893 + }, + { + "start": 24221.94, + "end": 24223.24, + "probability": 0.9366 + }, + { + "start": 24224.02, + "end": 24225.06, + "probability": 0.9897 + }, + { + "start": 24225.84, + "end": 24226.44, + "probability": 0.9827 + }, + { + "start": 24226.54, + "end": 24228.12, + "probability": 0.9806 + }, + { + "start": 24228.66, + "end": 24229.12, + "probability": 0.291 + }, + { + "start": 24229.4, + "end": 24232.36, + "probability": 0.9843 + }, + { + "start": 24232.72, + "end": 24233.1, + "probability": 0.636 + }, + { + "start": 24233.28, + "end": 24234.26, + "probability": 0.8945 + }, + { + "start": 24234.32, + "end": 24234.84, + "probability": 0.8076 + }, + { + "start": 24234.88, + "end": 24235.52, + "probability": 0.667 + }, + { + "start": 24235.62, + "end": 24235.97, + "probability": 0.5567 + }, + { + "start": 24237.28, + "end": 24239.5, + "probability": 0.7513 + }, + { + "start": 24239.7, + "end": 24243.64, + "probability": 0.5042 + }, + { + "start": 24243.9, + "end": 24245.18, + "probability": 0.9133 + }, + { + "start": 24245.66, + "end": 24248.02, + "probability": 0.8999 + }, + { + "start": 24248.9, + "end": 24251.48, + "probability": 0.9849 + }, + { + "start": 24252.04, + "end": 24253.72, + "probability": 0.9453 + }, + { + "start": 24253.9, + "end": 24255.18, + "probability": 0.9909 + }, + { + "start": 24255.6, + "end": 24259.08, + "probability": 0.8789 + }, + { + "start": 24259.38, + "end": 24259.88, + "probability": 0.8671 + }, + { + "start": 24261.26, + "end": 24262.34, + "probability": 0.9841 + }, + { + "start": 24262.92, + "end": 24264.26, + "probability": 0.9435 + }, + { + "start": 24264.7, + "end": 24266.08, + "probability": 0.9885 + }, + { + "start": 24266.4, + "end": 24268.12, + "probability": 0.8961 + }, + { + "start": 24268.5, + "end": 24269.76, + "probability": 0.8998 + }, + { + "start": 24270.26, + "end": 24271.84, + "probability": 0.9596 + }, + { + "start": 24272.28, + "end": 24275.88, + "probability": 0.9946 + }, + { + "start": 24276.48, + "end": 24277.9, + "probability": 0.991 + }, + { + "start": 24278.02, + "end": 24278.58, + "probability": 0.9102 + }, + { + "start": 24278.66, + "end": 24280.18, + "probability": 0.8799 + }, + { + "start": 24280.74, + "end": 24282.6, + "probability": 0.9069 + }, + { + "start": 24283.8, + "end": 24284.26, + "probability": 0.4064 + }, + { + "start": 24284.54, + "end": 24285.2, + "probability": 0.4127 + }, + { + "start": 24285.32, + "end": 24285.92, + "probability": 0.7059 + }, + { + "start": 24286.08, + "end": 24288.24, + "probability": 0.9775 + }, + { + "start": 24289.22, + "end": 24289.92, + "probability": 0.5703 + }, + { + "start": 24290.08, + "end": 24290.1, + "probability": 0.0025 + }, + { + "start": 24290.12, + "end": 24291.17, + "probability": 0.7245 + }, + { + "start": 24291.66, + "end": 24292.32, + "probability": 0.8729 + }, + { + "start": 24292.4, + "end": 24293.06, + "probability": 0.9896 + }, + { + "start": 24293.18, + "end": 24296.28, + "probability": 0.9704 + }, + { + "start": 24296.28, + "end": 24299.58, + "probability": 0.7074 + }, + { + "start": 24300.78, + "end": 24303.46, + "probability": 0.9681 + }, + { + "start": 24303.88, + "end": 24305.58, + "probability": 0.9772 + }, + { + "start": 24307.12, + "end": 24307.76, + "probability": 0.1969 + }, + { + "start": 24307.76, + "end": 24307.76, + "probability": 0.4084 + }, + { + "start": 24307.76, + "end": 24308.5, + "probability": 0.2424 + }, + { + "start": 24308.86, + "end": 24310.92, + "probability": 0.8838 + }, + { + "start": 24311.22, + "end": 24314.16, + "probability": 0.8833 + }, + { + "start": 24314.22, + "end": 24315.68, + "probability": 0.7058 + }, + { + "start": 24315.76, + "end": 24315.92, + "probability": 0.6969 + }, + { + "start": 24316.04, + "end": 24317.58, + "probability": 0.9067 + }, + { + "start": 24318.16, + "end": 24320.02, + "probability": 0.9539 + }, + { + "start": 24320.66, + "end": 24322.72, + "probability": 0.8783 + }, + { + "start": 24322.72, + "end": 24325.02, + "probability": 0.3743 + }, + { + "start": 24325.31, + "end": 24326.04, + "probability": 0.2732 + }, + { + "start": 24326.06, + "end": 24333.54, + "probability": 0.9774 + }, + { + "start": 24333.65, + "end": 24335.82, + "probability": 0.1399 + }, + { + "start": 24335.82, + "end": 24336.42, + "probability": 0.6536 + }, + { + "start": 24336.62, + "end": 24337.89, + "probability": 0.9866 + }, + { + "start": 24339.0, + "end": 24339.82, + "probability": 0.3703 + }, + { + "start": 24339.9, + "end": 24343.0, + "probability": 0.973 + }, + { + "start": 24343.3, + "end": 24346.24, + "probability": 0.9752 + }, + { + "start": 24346.24, + "end": 24349.58, + "probability": 0.884 + }, + { + "start": 24350.1, + "end": 24353.66, + "probability": 0.8978 + }, + { + "start": 24353.98, + "end": 24357.44, + "probability": 0.8857 + }, + { + "start": 24357.88, + "end": 24358.48, + "probability": 0.5258 + }, + { + "start": 24358.5, + "end": 24360.06, + "probability": 0.9197 + }, + { + "start": 24360.06, + "end": 24362.68, + "probability": 0.8752 + }, + { + "start": 24362.84, + "end": 24363.1, + "probability": 0.3387 + }, + { + "start": 24363.1, + "end": 24365.08, + "probability": 0.1428 + }, + { + "start": 24365.08, + "end": 24365.44, + "probability": 0.1688 + }, + { + "start": 24365.46, + "end": 24367.4, + "probability": 0.0888 + }, + { + "start": 24367.92, + "end": 24369.98, + "probability": 0.7555 + }, + { + "start": 24370.38, + "end": 24372.28, + "probability": 0.8827 + }, + { + "start": 24372.5, + "end": 24375.58, + "probability": 0.9436 + }, + { + "start": 24375.84, + "end": 24378.68, + "probability": 0.6475 + }, + { + "start": 24379.2, + "end": 24386.32, + "probability": 0.998 + }, + { + "start": 24386.78, + "end": 24387.82, + "probability": 0.9728 + }, + { + "start": 24388.94, + "end": 24389.62, + "probability": 0.9229 + }, + { + "start": 24389.98, + "end": 24391.24, + "probability": 0.9144 + }, + { + "start": 24391.42, + "end": 24393.2, + "probability": 0.8509 + }, + { + "start": 24393.86, + "end": 24396.4, + "probability": 0.9756 + }, + { + "start": 24396.92, + "end": 24398.3, + "probability": 0.9924 + }, + { + "start": 24398.42, + "end": 24400.54, + "probability": 0.3675 + }, + { + "start": 24400.86, + "end": 24402.06, + "probability": 0.9072 + }, + { + "start": 24403.12, + "end": 24405.18, + "probability": 0.9967 + }, + { + "start": 24405.68, + "end": 24406.26, + "probability": 0.6111 + }, + { + "start": 24406.3, + "end": 24407.38, + "probability": 0.7849 + }, + { + "start": 24407.82, + "end": 24408.82, + "probability": 0.9683 + }, + { + "start": 24409.1, + "end": 24411.54, + "probability": 0.9076 + }, + { + "start": 24411.54, + "end": 24412.7, + "probability": 0.6413 + }, + { + "start": 24412.72, + "end": 24417.22, + "probability": 0.9408 + }, + { + "start": 24417.34, + "end": 24418.42, + "probability": 0.9017 + }, + { + "start": 24418.5, + "end": 24419.66, + "probability": 0.9686 + }, + { + "start": 24420.04, + "end": 24422.38, + "probability": 0.9771 + }, + { + "start": 24422.46, + "end": 24423.43, + "probability": 0.9624 + }, + { + "start": 24423.78, + "end": 24425.86, + "probability": 0.8296 + }, + { + "start": 24426.02, + "end": 24429.4, + "probability": 0.8292 + }, + { + "start": 24429.78, + "end": 24430.71, + "probability": 0.1419 + }, + { + "start": 24432.2, + "end": 24435.6, + "probability": 0.5069 + }, + { + "start": 24435.64, + "end": 24436.38, + "probability": 0.1746 + }, + { + "start": 24436.72, + "end": 24438.8, + "probability": 0.2954 + }, + { + "start": 24439.02, + "end": 24442.9, + "probability": 0.7377 + }, + { + "start": 24443.34, + "end": 24443.96, + "probability": 0.767 + }, + { + "start": 24444.34, + "end": 24445.13, + "probability": 0.2666 + }, + { + "start": 24445.44, + "end": 24446.68, + "probability": 0.2745 + }, + { + "start": 24447.82, + "end": 24448.42, + "probability": 0.0462 + }, + { + "start": 24449.11, + "end": 24456.78, + "probability": 0.4976 + }, + { + "start": 24457.02, + "end": 24457.94, + "probability": 0.6434 + }, + { + "start": 24458.58, + "end": 24459.38, + "probability": 0.8737 + }, + { + "start": 24459.62, + "end": 24461.38, + "probability": 0.7778 + }, + { + "start": 24461.54, + "end": 24463.52, + "probability": 0.9283 + }, + { + "start": 24464.44, + "end": 24465.56, + "probability": 0.7577 + }, + { + "start": 24467.22, + "end": 24467.48, + "probability": 0.7644 + }, + { + "start": 24468.34, + "end": 24470.36, + "probability": 0.6272 + }, + { + "start": 24471.54, + "end": 24477.34, + "probability": 0.825 + }, + { + "start": 24478.26, + "end": 24479.44, + "probability": 0.6803 + }, + { + "start": 24479.48, + "end": 24484.58, + "probability": 0.9814 + }, + { + "start": 24484.66, + "end": 24486.24, + "probability": 0.7831 + }, + { + "start": 24486.64, + "end": 24489.62, + "probability": 0.9184 + }, + { + "start": 24490.86, + "end": 24491.83, + "probability": 0.9976 + }, + { + "start": 24492.18, + "end": 24495.64, + "probability": 0.9862 + }, + { + "start": 24496.8, + "end": 24503.4, + "probability": 0.9839 + }, + { + "start": 24504.48, + "end": 24507.06, + "probability": 0.9969 + }, + { + "start": 24507.22, + "end": 24515.02, + "probability": 0.9961 + }, + { + "start": 24515.98, + "end": 24519.46, + "probability": 0.9992 + }, + { + "start": 24520.34, + "end": 24522.4, + "probability": 0.6763 + }, + { + "start": 24523.26, + "end": 24528.24, + "probability": 0.9949 + }, + { + "start": 24529.06, + "end": 24532.16, + "probability": 0.9582 + }, + { + "start": 24532.9, + "end": 24536.58, + "probability": 0.9372 + }, + { + "start": 24537.7, + "end": 24538.66, + "probability": 0.7693 + }, + { + "start": 24539.84, + "end": 24540.32, + "probability": 0.5827 + }, + { + "start": 24540.82, + "end": 24543.16, + "probability": 0.8038 + }, + { + "start": 24544.66, + "end": 24548.46, + "probability": 0.9939 + }, + { + "start": 24548.46, + "end": 24552.94, + "probability": 0.9954 + }, + { + "start": 24554.68, + "end": 24559.04, + "probability": 0.9841 + }, + { + "start": 24560.58, + "end": 24563.48, + "probability": 0.9886 + }, + { + "start": 24564.2, + "end": 24564.98, + "probability": 0.8156 + }, + { + "start": 24565.0, + "end": 24565.52, + "probability": 0.8731 + }, + { + "start": 24566.02, + "end": 24567.06, + "probability": 0.9738 + }, + { + "start": 24567.3, + "end": 24569.94, + "probability": 0.9693 + }, + { + "start": 24570.4, + "end": 24572.76, + "probability": 0.9438 + }, + { + "start": 24573.52, + "end": 24575.14, + "probability": 0.6683 + }, + { + "start": 24575.46, + "end": 24578.04, + "probability": 0.9221 + }, + { + "start": 24578.14, + "end": 24579.08, + "probability": 0.8835 + }, + { + "start": 24579.7, + "end": 24580.38, + "probability": 0.7097 + }, + { + "start": 24580.5, + "end": 24582.46, + "probability": 0.9985 + }, + { + "start": 24582.88, + "end": 24585.82, + "probability": 0.9967 + }, + { + "start": 24586.28, + "end": 24586.94, + "probability": 0.5385 + }, + { + "start": 24587.04, + "end": 24588.14, + "probability": 0.8217 + }, + { + "start": 24588.64, + "end": 24592.62, + "probability": 0.9299 + }, + { + "start": 24593.28, + "end": 24598.4, + "probability": 0.9888 + }, + { + "start": 24598.7, + "end": 24600.1, + "probability": 0.9121 + }, + { + "start": 24600.28, + "end": 24606.2, + "probability": 0.9862 + }, + { + "start": 24606.6, + "end": 24609.0, + "probability": 0.9683 + }, + { + "start": 24609.24, + "end": 24610.68, + "probability": 0.6931 + }, + { + "start": 24610.88, + "end": 24612.12, + "probability": 0.685 + }, + { + "start": 24612.46, + "end": 24617.14, + "probability": 0.9639 + }, + { + "start": 24617.52, + "end": 24620.1, + "probability": 0.9771 + }, + { + "start": 24620.44, + "end": 24623.2, + "probability": 0.9978 + }, + { + "start": 24623.58, + "end": 24625.21, + "probability": 0.9957 + }, + { + "start": 24625.74, + "end": 24626.42, + "probability": 0.6226 + }, + { + "start": 24626.88, + "end": 24627.6, + "probability": 0.7842 + }, + { + "start": 24628.36, + "end": 24632.48, + "probability": 0.7232 + }, + { + "start": 24633.18, + "end": 24636.3, + "probability": 0.9417 + }, + { + "start": 24637.04, + "end": 24641.6, + "probability": 0.9946 + }, + { + "start": 24642.28, + "end": 24644.74, + "probability": 0.9971 + }, + { + "start": 24644.74, + "end": 24647.32, + "probability": 0.998 + }, + { + "start": 24648.12, + "end": 24651.08, + "probability": 0.9993 + }, + { + "start": 24651.58, + "end": 24654.76, + "probability": 0.9857 + }, + { + "start": 24655.58, + "end": 24655.98, + "probability": 0.4245 + }, + { + "start": 24658.18, + "end": 24661.12, + "probability": 0.7026 + }, + { + "start": 24661.16, + "end": 24663.58, + "probability": 0.3026 + }, + { + "start": 24684.82, + "end": 24686.7, + "probability": 0.5938 + }, + { + "start": 24687.36, + "end": 24688.46, + "probability": 0.9762 + }, + { + "start": 24689.14, + "end": 24692.74, + "probability": 0.9186 + }, + { + "start": 24693.3, + "end": 24693.44, + "probability": 0.0363 + }, + { + "start": 24705.38, + "end": 24706.44, + "probability": 0.1746 + }, + { + "start": 24707.04, + "end": 24708.28, + "probability": 0.6999 + }, + { + "start": 24708.66, + "end": 24710.04, + "probability": 0.6784 + }, + { + "start": 24711.46, + "end": 24714.96, + "probability": 0.9476 + }, + { + "start": 24720.96, + "end": 24723.4, + "probability": 0.8518 + }, + { + "start": 24724.4, + "end": 24724.78, + "probability": 0.5385 + }, + { + "start": 24725.5, + "end": 24727.94, + "probability": 0.9691 + }, + { + "start": 24729.22, + "end": 24731.38, + "probability": 0.9483 + }, + { + "start": 24732.6, + "end": 24735.88, + "probability": 0.9796 + }, + { + "start": 24737.28, + "end": 24740.3, + "probability": 0.854 + }, + { + "start": 24740.5, + "end": 24742.78, + "probability": 0.9783 + }, + { + "start": 24743.38, + "end": 24745.76, + "probability": 0.8158 + }, + { + "start": 24746.56, + "end": 24749.88, + "probability": 0.9243 + }, + { + "start": 24750.72, + "end": 24753.62, + "probability": 0.9739 + }, + { + "start": 24754.52, + "end": 24758.18, + "probability": 0.9919 + }, + { + "start": 24759.46, + "end": 24762.16, + "probability": 0.7462 + }, + { + "start": 24763.18, + "end": 24764.24, + "probability": 0.6312 + }, + { + "start": 24765.48, + "end": 24769.24, + "probability": 0.991 + }, + { + "start": 24769.82, + "end": 24771.34, + "probability": 0.9814 + }, + { + "start": 24773.2, + "end": 24774.18, + "probability": 0.6302 + }, + { + "start": 24774.62, + "end": 24776.0, + "probability": 0.9758 + }, + { + "start": 24776.62, + "end": 24777.96, + "probability": 0.9609 + }, + { + "start": 24778.6, + "end": 24781.88, + "probability": 0.8441 + }, + { + "start": 24783.36, + "end": 24784.55, + "probability": 0.9753 + }, + { + "start": 24786.12, + "end": 24788.34, + "probability": 0.9657 + }, + { + "start": 24788.38, + "end": 24789.04, + "probability": 0.6686 + }, + { + "start": 24789.12, + "end": 24792.14, + "probability": 0.8916 + }, + { + "start": 24792.14, + "end": 24795.28, + "probability": 0.9146 + }, + { + "start": 24796.14, + "end": 24798.82, + "probability": 0.9967 + }, + { + "start": 24799.9, + "end": 24803.54, + "probability": 0.9513 + }, + { + "start": 24803.64, + "end": 24808.1, + "probability": 0.9578 + }, + { + "start": 24808.98, + "end": 24813.66, + "probability": 0.9602 + }, + { + "start": 24814.66, + "end": 24818.44, + "probability": 0.9392 + }, + { + "start": 24818.46, + "end": 24820.08, + "probability": 0.332 + }, + { + "start": 24820.92, + "end": 24823.66, + "probability": 0.9851 + }, + { + "start": 24824.46, + "end": 24827.54, + "probability": 0.96 + }, + { + "start": 24828.22, + "end": 24832.46, + "probability": 0.9966 + }, + { + "start": 24833.44, + "end": 24834.16, + "probability": 0.7694 + }, + { + "start": 24834.9, + "end": 24837.94, + "probability": 0.9963 + }, + { + "start": 24838.84, + "end": 24842.28, + "probability": 0.9517 + }, + { + "start": 24842.56, + "end": 24847.78, + "probability": 0.9875 + }, + { + "start": 24847.94, + "end": 24850.0, + "probability": 0.8836 + }, + { + "start": 24851.04, + "end": 24853.1, + "probability": 0.9912 + }, + { + "start": 24854.44, + "end": 24856.48, + "probability": 0.9976 + }, + { + "start": 24857.24, + "end": 24858.7, + "probability": 0.9393 + }, + { + "start": 24859.42, + "end": 24863.78, + "probability": 0.9954 + }, + { + "start": 24864.32, + "end": 24869.56, + "probability": 0.998 + }, + { + "start": 24870.22, + "end": 24871.54, + "probability": 0.9351 + }, + { + "start": 24872.32, + "end": 24877.08, + "probability": 0.9423 + }, + { + "start": 24877.24, + "end": 24879.33, + "probability": 0.8853 + }, + { + "start": 24879.56, + "end": 24880.86, + "probability": 0.988 + }, + { + "start": 24881.64, + "end": 24884.68, + "probability": 0.9927 + }, + { + "start": 24885.24, + "end": 24887.38, + "probability": 0.9734 + }, + { + "start": 24887.78, + "end": 24890.17, + "probability": 0.9041 + }, + { + "start": 24892.68, + "end": 24892.68, + "probability": 0.0374 + }, + { + "start": 24892.68, + "end": 24897.05, + "probability": 0.8125 + }, + { + "start": 24897.54, + "end": 24901.06, + "probability": 0.9976 + }, + { + "start": 24902.08, + "end": 24904.74, + "probability": 0.5587 + }, + { + "start": 24906.38, + "end": 24908.8, + "probability": 0.7478 + }, + { + "start": 24908.84, + "end": 24910.92, + "probability": 0.69 + }, + { + "start": 24919.34, + "end": 24920.78, + "probability": 0.6395 + }, + { + "start": 24920.88, + "end": 24921.92, + "probability": 0.9308 + }, + { + "start": 24922.1, + "end": 24923.18, + "probability": 0.8702 + }, + { + "start": 24923.28, + "end": 24925.96, + "probability": 0.5707 + }, + { + "start": 24926.1, + "end": 24926.82, + "probability": 0.7429 + }, + { + "start": 24927.76, + "end": 24930.0, + "probability": 0.7421 + }, + { + "start": 24931.36, + "end": 24932.44, + "probability": 0.9881 + }, + { + "start": 24935.86, + "end": 24938.58, + "probability": 0.9929 + }, + { + "start": 24941.1, + "end": 24943.0, + "probability": 0.9902 + }, + { + "start": 24944.42, + "end": 24945.7, + "probability": 0.8181 + }, + { + "start": 24945.8, + "end": 24946.8, + "probability": 0.9779 + }, + { + "start": 24947.08, + "end": 24949.7, + "probability": 0.8696 + }, + { + "start": 24952.46, + "end": 24953.12, + "probability": 0.7439 + }, + { + "start": 24954.76, + "end": 24957.96, + "probability": 0.9634 + }, + { + "start": 24959.04, + "end": 24959.63, + "probability": 0.9806 + }, + { + "start": 24961.08, + "end": 24967.74, + "probability": 0.8513 + }, + { + "start": 24968.78, + "end": 24969.62, + "probability": 0.8772 + }, + { + "start": 24971.8, + "end": 24973.06, + "probability": 0.9692 + }, + { + "start": 24974.26, + "end": 24974.82, + "probability": 0.9578 + }, + { + "start": 24977.0, + "end": 24977.74, + "probability": 0.7709 + }, + { + "start": 24979.24, + "end": 24980.9, + "probability": 0.9313 + }, + { + "start": 24981.36, + "end": 24982.32, + "probability": 0.9406 + }, + { + "start": 24982.44, + "end": 24984.72, + "probability": 0.8005 + }, + { + "start": 24984.72, + "end": 24986.16, + "probability": 0.7931 + }, + { + "start": 24986.84, + "end": 24987.58, + "probability": 0.5582 + }, + { + "start": 24993.52, + "end": 24995.78, + "probability": 0.9447 + }, + { + "start": 24998.56, + "end": 24999.4, + "probability": 0.9222 + }, + { + "start": 25000.88, + "end": 25001.6, + "probability": 0.9462 + }, + { + "start": 25002.74, + "end": 25003.64, + "probability": 0.9399 + }, + { + "start": 25004.42, + "end": 25005.16, + "probability": 0.9972 + }, + { + "start": 25006.66, + "end": 25007.2, + "probability": 0.986 + }, + { + "start": 25008.78, + "end": 25009.66, + "probability": 0.9862 + }, + { + "start": 25012.5, + "end": 25015.18, + "probability": 0.8518 + }, + { + "start": 25015.28, + "end": 25017.4, + "probability": 0.9351 + }, + { + "start": 25017.44, + "end": 25018.4, + "probability": 0.9779 + }, + { + "start": 25018.62, + "end": 25019.68, + "probability": 0.9736 + }, + { + "start": 25020.6, + "end": 25023.36, + "probability": 0.9851 + }, + { + "start": 25025.68, + "end": 25032.02, + "probability": 0.8157 + }, + { + "start": 25032.1, + "end": 25033.76, + "probability": 0.7744 + }, + { + "start": 25034.46, + "end": 25036.56, + "probability": 0.2036 + }, + { + "start": 25036.72, + "end": 25037.67, + "probability": 0.4579 + }, + { + "start": 25038.22, + "end": 25040.72, + "probability": 0.0934 + }, + { + "start": 25040.96, + "end": 25044.02, + "probability": 0.2969 + }, + { + "start": 25044.18, + "end": 25044.92, + "probability": 0.5091 + }, + { + "start": 25045.14, + "end": 25046.8, + "probability": 0.9787 + }, + { + "start": 25047.46, + "end": 25051.7, + "probability": 0.6889 + }, + { + "start": 25051.7, + "end": 25053.72, + "probability": 0.8069 + }, + { + "start": 25054.04, + "end": 25055.79, + "probability": 0.3427 + }, + { + "start": 25056.2, + "end": 25058.36, + "probability": 0.6364 + }, + { + "start": 25058.36, + "end": 25060.2, + "probability": 0.2929 + }, + { + "start": 25061.26, + "end": 25067.16, + "probability": 0.8953 + }, + { + "start": 25067.58, + "end": 25068.36, + "probability": 0.479 + }, + { + "start": 25069.26, + "end": 25072.82, + "probability": 0.8391 + }, + { + "start": 25074.02, + "end": 25075.22, + "probability": 0.8823 + }, + { + "start": 25077.04, + "end": 25079.6, + "probability": 0.9385 + }, + { + "start": 25082.35, + "end": 25086.12, + "probability": 0.8753 + }, + { + "start": 25086.2, + "end": 25087.2, + "probability": 0.881 + }, + { + "start": 25087.4, + "end": 25091.44, + "probability": 0.981 + }, + { + "start": 25092.78, + "end": 25094.94, + "probability": 0.9984 + }, + { + "start": 25095.08, + "end": 25096.3, + "probability": 0.8523 + }, + { + "start": 25098.88, + "end": 25100.68, + "probability": 0.7011 + }, + { + "start": 25101.16, + "end": 25107.92, + "probability": 0.9425 + }, + { + "start": 25108.1, + "end": 25112.42, + "probability": 0.9288 + }, + { + "start": 25112.8, + "end": 25113.62, + "probability": 0.449 + }, + { + "start": 25115.1, + "end": 25115.72, + "probability": 0.8647 + }, + { + "start": 25115.82, + "end": 25123.2, + "probability": 0.8966 + }, + { + "start": 25123.76, + "end": 25124.96, + "probability": 0.7444 + }, + { + "start": 25125.72, + "end": 25129.34, + "probability": 0.9328 + }, + { + "start": 25129.34, + "end": 25132.5, + "probability": 0.9709 + }, + { + "start": 25133.44, + "end": 25135.26, + "probability": 0.8835 + }, + { + "start": 25136.62, + "end": 25140.18, + "probability": 0.9421 + }, + { + "start": 25140.84, + "end": 25141.62, + "probability": 0.6862 + }, + { + "start": 25141.82, + "end": 25144.1, + "probability": 0.9289 + }, + { + "start": 25144.96, + "end": 25147.74, + "probability": 0.9969 + }, + { + "start": 25147.92, + "end": 25149.88, + "probability": 0.6264 + }, + { + "start": 25150.74, + "end": 25153.3, + "probability": 0.7818 + }, + { + "start": 25165.1, + "end": 25166.24, + "probability": 0.7785 + }, + { + "start": 25167.28, + "end": 25168.46, + "probability": 0.7179 + }, + { + "start": 25170.66, + "end": 25177.1, + "probability": 0.9652 + }, + { + "start": 25178.58, + "end": 25183.0, + "probability": 0.9838 + }, + { + "start": 25185.16, + "end": 25189.64, + "probability": 0.983 + }, + { + "start": 25190.76, + "end": 25199.82, + "probability": 0.7774 + }, + { + "start": 25200.58, + "end": 25202.46, + "probability": 0.8458 + }, + { + "start": 25204.32, + "end": 25206.9, + "probability": 0.7425 + }, + { + "start": 25208.12, + "end": 25210.84, + "probability": 0.973 + }, + { + "start": 25211.86, + "end": 25214.56, + "probability": 0.7186 + }, + { + "start": 25215.54, + "end": 25220.62, + "probability": 0.9487 + }, + { + "start": 25224.6, + "end": 25230.4, + "probability": 0.964 + }, + { + "start": 25231.94, + "end": 25232.5, + "probability": 0.9718 + }, + { + "start": 25234.96, + "end": 25236.78, + "probability": 0.5108 + }, + { + "start": 25238.1, + "end": 25243.36, + "probability": 0.8704 + }, + { + "start": 25243.72, + "end": 25245.58, + "probability": 0.6055 + }, + { + "start": 25247.0, + "end": 25251.46, + "probability": 0.9842 + }, + { + "start": 25252.94, + "end": 25260.0, + "probability": 0.9673 + }, + { + "start": 25260.98, + "end": 25262.76, + "probability": 0.3735 + }, + { + "start": 25263.74, + "end": 25265.12, + "probability": 0.8594 + }, + { + "start": 25266.08, + "end": 25268.82, + "probability": 0.9257 + }, + { + "start": 25271.54, + "end": 25272.52, + "probability": 0.7167 + }, + { + "start": 25273.3, + "end": 25280.48, + "probability": 0.9933 + }, + { + "start": 25280.48, + "end": 25284.74, + "probability": 0.9141 + }, + { + "start": 25285.66, + "end": 25286.15, + "probability": 0.9639 + }, + { + "start": 25287.56, + "end": 25291.48, + "probability": 0.9778 + }, + { + "start": 25292.5, + "end": 25293.92, + "probability": 0.7415 + }, + { + "start": 25295.08, + "end": 25299.72, + "probability": 0.9829 + }, + { + "start": 25300.58, + "end": 25307.08, + "probability": 0.9183 + }, + { + "start": 25307.98, + "end": 25312.0, + "probability": 0.9791 + }, + { + "start": 25312.84, + "end": 25314.22, + "probability": 0.999 + }, + { + "start": 25314.98, + "end": 25315.82, + "probability": 0.9336 + }, + { + "start": 25316.8, + "end": 25323.3, + "probability": 0.9893 + }, + { + "start": 25324.56, + "end": 25325.2, + "probability": 0.9048 + }, + { + "start": 25325.8, + "end": 25327.95, + "probability": 0.8916 + }, + { + "start": 25329.36, + "end": 25330.24, + "probability": 0.6187 + }, + { + "start": 25331.1, + "end": 25335.62, + "probability": 0.7878 + }, + { + "start": 25336.44, + "end": 25340.38, + "probability": 0.9955 + }, + { + "start": 25341.68, + "end": 25347.4, + "probability": 0.9338 + }, + { + "start": 25348.34, + "end": 25352.86, + "probability": 0.9782 + }, + { + "start": 25353.84, + "end": 25356.34, + "probability": 0.4842 + }, + { + "start": 25356.8, + "end": 25358.34, + "probability": 0.7661 + }, + { + "start": 25359.04, + "end": 25364.98, + "probability": 0.9493 + }, + { + "start": 25365.18, + "end": 25366.82, + "probability": 0.7832 + }, + { + "start": 25367.02, + "end": 25368.12, + "probability": 0.7831 + }, + { + "start": 25368.52, + "end": 25370.86, + "probability": 0.9412 + }, + { + "start": 25371.28, + "end": 25371.56, + "probability": 0.5017 + }, + { + "start": 25371.7, + "end": 25372.02, + "probability": 0.8524 + }, + { + "start": 25372.06, + "end": 25373.92, + "probability": 0.9412 + }, + { + "start": 25374.32, + "end": 25375.7, + "probability": 0.8958 + }, + { + "start": 25376.02, + "end": 25376.84, + "probability": 0.7244 + }, + { + "start": 25377.4, + "end": 25382.62, + "probability": 0.9713 + }, + { + "start": 25382.64, + "end": 25383.3, + "probability": 0.835 + }, + { + "start": 25383.6, + "end": 25384.28, + "probability": 0.5948 + }, + { + "start": 25384.38, + "end": 25388.14, + "probability": 0.9786 + }, + { + "start": 25388.48, + "end": 25390.88, + "probability": 0.8172 + }, + { + "start": 25391.18, + "end": 25394.04, + "probability": 0.9399 + }, + { + "start": 25394.48, + "end": 25396.5, + "probability": 0.7938 + }, + { + "start": 25397.04, + "end": 25400.12, + "probability": 0.7295 + }, + { + "start": 25401.81, + "end": 25404.9, + "probability": 0.7749 + }, + { + "start": 25405.68, + "end": 25407.14, + "probability": 0.5794 + }, + { + "start": 25407.26, + "end": 25407.8, + "probability": 0.95 + }, + { + "start": 25408.32, + "end": 25409.12, + "probability": 0.8513 + }, + { + "start": 25410.04, + "end": 25411.38, + "probability": 0.8728 + }, + { + "start": 25413.22, + "end": 25415.14, + "probability": 0.2522 + }, + { + "start": 25426.28, + "end": 25428.48, + "probability": 0.6386 + }, + { + "start": 25431.32, + "end": 25434.62, + "probability": 0.9867 + }, + { + "start": 25434.89, + "end": 25438.66, + "probability": 0.9937 + }, + { + "start": 25438.66, + "end": 25445.06, + "probability": 0.9977 + }, + { + "start": 25445.48, + "end": 25448.48, + "probability": 0.9654 + }, + { + "start": 25449.28, + "end": 25452.24, + "probability": 0.9976 + }, + { + "start": 25452.58, + "end": 25453.42, + "probability": 0.9293 + }, + { + "start": 25453.78, + "end": 25457.82, + "probability": 0.9163 + }, + { + "start": 25458.32, + "end": 25463.18, + "probability": 0.9955 + }, + { + "start": 25463.7, + "end": 25465.74, + "probability": 0.9922 + }, + { + "start": 25466.12, + "end": 25466.66, + "probability": 0.7736 + }, + { + "start": 25466.72, + "end": 25467.36, + "probability": 0.6409 + }, + { + "start": 25467.54, + "end": 25471.78, + "probability": 0.9816 + }, + { + "start": 25472.22, + "end": 25473.92, + "probability": 0.7594 + }, + { + "start": 25475.04, + "end": 25480.36, + "probability": 0.7403 + }, + { + "start": 25480.36, + "end": 25482.6, + "probability": 0.6724 + }, + { + "start": 25483.98, + "end": 25485.58, + "probability": 0.9146 + }, + { + "start": 25486.22, + "end": 25488.9, + "probability": 0.7086 + }, + { + "start": 25489.08, + "end": 25490.66, + "probability": 0.7801 + }, + { + "start": 25491.22, + "end": 25494.28, + "probability": 0.9914 + }, + { + "start": 25494.74, + "end": 25497.24, + "probability": 0.9956 + }, + { + "start": 25497.8, + "end": 25498.32, + "probability": 0.8111 + }, + { + "start": 25498.66, + "end": 25500.18, + "probability": 0.6917 + }, + { + "start": 25500.38, + "end": 25501.48, + "probability": 0.958 + }, + { + "start": 25502.24, + "end": 25505.94, + "probability": 0.9772 + }, + { + "start": 25505.94, + "end": 25508.68, + "probability": 0.9946 + }, + { + "start": 25509.16, + "end": 25512.54, + "probability": 0.9875 + }, + { + "start": 25512.62, + "end": 25513.54, + "probability": 0.8219 + }, + { + "start": 25513.82, + "end": 25515.4, + "probability": 0.4296 + }, + { + "start": 25515.82, + "end": 25517.6, + "probability": 0.7934 + }, + { + "start": 25517.66, + "end": 25519.64, + "probability": 0.8686 + }, + { + "start": 25519.87, + "end": 25523.04, + "probability": 0.9727 + }, + { + "start": 25523.38, + "end": 25525.04, + "probability": 0.9901 + }, + { + "start": 25525.32, + "end": 25527.6, + "probability": 0.9896 + }, + { + "start": 25528.96, + "end": 25530.88, + "probability": 0.8999 + }, + { + "start": 25531.2, + "end": 25533.42, + "probability": 0.9917 + }, + { + "start": 25533.42, + "end": 25535.82, + "probability": 0.9971 + }, + { + "start": 25535.9, + "end": 25536.52, + "probability": 0.9028 + }, + { + "start": 25536.78, + "end": 25538.92, + "probability": 0.981 + }, + { + "start": 25539.28, + "end": 25541.1, + "probability": 0.9922 + }, + { + "start": 25541.38, + "end": 25542.86, + "probability": 0.993 + }, + { + "start": 25543.66, + "end": 25545.86, + "probability": 0.9296 + }, + { + "start": 25546.6, + "end": 25548.32, + "probability": 0.9735 + }, + { + "start": 25548.4, + "end": 25549.54, + "probability": 0.9529 + }, + { + "start": 25549.68, + "end": 25550.6, + "probability": 0.9651 + }, + { + "start": 25551.56, + "end": 25552.2, + "probability": 0.4992 + }, + { + "start": 25552.3, + "end": 25553.66, + "probability": 0.9738 + }, + { + "start": 25553.76, + "end": 25555.14, + "probability": 0.7508 + }, + { + "start": 25555.46, + "end": 25556.54, + "probability": 0.8903 + }, + { + "start": 25556.64, + "end": 25559.12, + "probability": 0.9001 + }, + { + "start": 25559.2, + "end": 25559.86, + "probability": 0.8071 + }, + { + "start": 25560.38, + "end": 25562.2, + "probability": 0.966 + }, + { + "start": 25562.6, + "end": 25563.8, + "probability": 0.9771 + }, + { + "start": 25564.44, + "end": 25565.56, + "probability": 0.9619 + }, + { + "start": 25565.92, + "end": 25568.74, + "probability": 0.9985 + }, + { + "start": 25570.42, + "end": 25572.02, + "probability": 0.945 + }, + { + "start": 25572.34, + "end": 25574.1, + "probability": 0.9491 + }, + { + "start": 25574.44, + "end": 25575.68, + "probability": 0.7723 + }, + { + "start": 25575.68, + "end": 25576.78, + "probability": 0.7279 + }, + { + "start": 25576.92, + "end": 25579.94, + "probability": 0.9761 + }, + { + "start": 25579.94, + "end": 25581.98, + "probability": 0.8044 + }, + { + "start": 25582.46, + "end": 25582.98, + "probability": 0.9276 + }, + { + "start": 25583.04, + "end": 25585.34, + "probability": 0.9849 + }, + { + "start": 25586.6, + "end": 25587.37, + "probability": 0.4716 + }, + { + "start": 25588.38, + "end": 25591.2, + "probability": 0.9941 + }, + { + "start": 25591.5, + "end": 25592.64, + "probability": 0.9793 + }, + { + "start": 25592.98, + "end": 25593.68, + "probability": 0.963 + }, + { + "start": 25593.78, + "end": 25594.64, + "probability": 0.9523 + }, + { + "start": 25594.66, + "end": 25596.32, + "probability": 0.6792 + }, + { + "start": 25596.5, + "end": 25597.94, + "probability": 0.566 + }, + { + "start": 25598.54, + "end": 25602.14, + "probability": 0.907 + }, + { + "start": 25602.56, + "end": 25604.18, + "probability": 0.9602 + }, + { + "start": 25604.66, + "end": 25604.84, + "probability": 0.6707 + }, + { + "start": 25604.92, + "end": 25605.44, + "probability": 0.6277 + }, + { + "start": 25605.74, + "end": 25608.02, + "probability": 0.7463 + }, + { + "start": 25610.36, + "end": 25612.42, + "probability": 0.9897 + }, + { + "start": 25614.9, + "end": 25615.46, + "probability": 0.8713 + }, + { + "start": 25615.56, + "end": 25615.92, + "probability": 0.831 + }, + { + "start": 25616.24, + "end": 25617.0, + "probability": 0.7739 + }, + { + "start": 25617.3, + "end": 25618.44, + "probability": 0.6094 + }, + { + "start": 25639.46, + "end": 25641.54, + "probability": 0.7243 + }, + { + "start": 25643.24, + "end": 25648.26, + "probability": 0.8942 + }, + { + "start": 25649.86, + "end": 25656.1, + "probability": 0.9505 + }, + { + "start": 25659.32, + "end": 25661.4, + "probability": 0.8248 + }, + { + "start": 25661.74, + "end": 25665.22, + "probability": 0.9878 + }, + { + "start": 25666.52, + "end": 25679.3, + "probability": 0.9862 + }, + { + "start": 25680.4, + "end": 25683.54, + "probability": 0.9716 + }, + { + "start": 25684.3, + "end": 25684.88, + "probability": 0.8927 + }, + { + "start": 25685.32, + "end": 25685.32, + "probability": 0.0162 + }, + { + "start": 25685.32, + "end": 25694.0, + "probability": 0.9713 + }, + { + "start": 25694.0, + "end": 25698.74, + "probability": 0.9739 + }, + { + "start": 25700.6, + "end": 25705.62, + "probability": 0.8915 + }, + { + "start": 25706.7, + "end": 25708.06, + "probability": 0.9426 + }, + { + "start": 25710.34, + "end": 25712.5, + "probability": 0.9344 + }, + { + "start": 25713.52, + "end": 25716.28, + "probability": 0.6543 + }, + { + "start": 25719.92, + "end": 25721.4, + "probability": 0.8956 + }, + { + "start": 25723.5, + "end": 25724.6, + "probability": 0.6036 + }, + { + "start": 25725.86, + "end": 25728.86, + "probability": 0.944 + }, + { + "start": 25729.96, + "end": 25733.22, + "probability": 0.9075 + }, + { + "start": 25734.36, + "end": 25735.1, + "probability": 0.6757 + }, + { + "start": 25736.58, + "end": 25738.62, + "probability": 0.9973 + }, + { + "start": 25740.32, + "end": 25741.8, + "probability": 0.7891 + }, + { + "start": 25744.64, + "end": 25747.94, + "probability": 0.9678 + }, + { + "start": 25750.38, + "end": 25751.24, + "probability": 0.6697 + }, + { + "start": 25752.94, + "end": 25754.74, + "probability": 0.2415 + }, + { + "start": 25755.84, + "end": 25757.18, + "probability": 0.7949 + }, + { + "start": 25758.92, + "end": 25759.78, + "probability": 0.5998 + }, + { + "start": 25762.73, + "end": 25764.36, + "probability": 0.9932 + }, + { + "start": 25767.26, + "end": 25769.14, + "probability": 0.9821 + }, + { + "start": 25770.7, + "end": 25774.32, + "probability": 0.9684 + }, + { + "start": 25775.92, + "end": 25778.22, + "probability": 0.9583 + }, + { + "start": 25779.46, + "end": 25781.92, + "probability": 0.4557 + }, + { + "start": 25784.06, + "end": 25785.74, + "probability": 0.5879 + }, + { + "start": 25785.98, + "end": 25786.44, + "probability": 0.6642 + }, + { + "start": 25786.64, + "end": 25788.36, + "probability": 0.9337 + }, + { + "start": 25788.44, + "end": 25789.45, + "probability": 0.8953 + }, + { + "start": 25790.24, + "end": 25794.82, + "probability": 0.9647 + }, + { + "start": 25795.76, + "end": 25797.33, + "probability": 0.9958 + }, + { + "start": 25798.46, + "end": 25800.32, + "probability": 0.9752 + }, + { + "start": 25800.76, + "end": 25801.76, + "probability": 0.9207 + }, + { + "start": 25801.84, + "end": 25804.22, + "probability": 0.9109 + }, + { + "start": 25805.48, + "end": 25806.96, + "probability": 0.9916 + }, + { + "start": 25807.52, + "end": 25809.7, + "probability": 0.703 + }, + { + "start": 25811.78, + "end": 25814.24, + "probability": 0.833 + }, + { + "start": 25814.36, + "end": 25817.92, + "probability": 0.9348 + }, + { + "start": 25818.64, + "end": 25819.08, + "probability": 0.6618 + }, + { + "start": 25819.62, + "end": 25820.84, + "probability": 0.7022 + }, + { + "start": 25820.88, + "end": 25825.36, + "probability": 0.9874 + }, + { + "start": 25825.88, + "end": 25826.56, + "probability": 0.9422 + }, + { + "start": 25827.7, + "end": 25828.52, + "probability": 0.9143 + }, + { + "start": 25829.66, + "end": 25831.6, + "probability": 0.7771 + }, + { + "start": 25832.14, + "end": 25835.72, + "probability": 0.8237 + }, + { + "start": 25836.22, + "end": 25836.64, + "probability": 0.682 + }, + { + "start": 25837.1, + "end": 25839.44, + "probability": 0.8008 + }, + { + "start": 25840.04, + "end": 25846.4, + "probability": 0.996 + }, + { + "start": 25846.52, + "end": 25847.16, + "probability": 0.7315 + }, + { + "start": 25847.32, + "end": 25849.52, + "probability": 0.9797 + }, + { + "start": 25850.71, + "end": 25852.3, + "probability": 0.9959 + }, + { + "start": 25862.76, + "end": 25864.02, + "probability": 0.6229 + }, + { + "start": 25864.4, + "end": 25873.76, + "probability": 0.9809 + }, + { + "start": 25873.98, + "end": 25874.52, + "probability": 0.8667 + }, + { + "start": 25874.64, + "end": 25877.1, + "probability": 0.9924 + }, + { + "start": 25878.1, + "end": 25886.44, + "probability": 0.9866 + }, + { + "start": 25887.8, + "end": 25888.84, + "probability": 0.8662 + }, + { + "start": 25889.26, + "end": 25889.83, + "probability": 0.8971 + }, + { + "start": 25890.44, + "end": 25894.32, + "probability": 0.8489 + }, + { + "start": 25894.7, + "end": 25895.34, + "probability": 0.9052 + }, + { + "start": 25895.74, + "end": 25896.48, + "probability": 0.8924 + }, + { + "start": 25897.18, + "end": 25902.56, + "probability": 0.9296 + }, + { + "start": 25903.84, + "end": 25911.04, + "probability": 0.9577 + }, + { + "start": 25911.04, + "end": 25917.04, + "probability": 0.9342 + }, + { + "start": 25918.58, + "end": 25923.7, + "probability": 0.9727 + }, + { + "start": 25924.7, + "end": 25930.66, + "probability": 0.9925 + }, + { + "start": 25931.28, + "end": 25933.26, + "probability": 0.7857 + }, + { + "start": 25934.24, + "end": 25939.22, + "probability": 0.9712 + }, + { + "start": 25939.5, + "end": 25940.52, + "probability": 0.9475 + }, + { + "start": 25941.06, + "end": 25943.3, + "probability": 0.8849 + }, + { + "start": 25944.02, + "end": 25948.02, + "probability": 0.9453 + }, + { + "start": 25948.54, + "end": 25949.04, + "probability": 0.4599 + }, + { + "start": 25949.6, + "end": 25956.2, + "probability": 0.936 + }, + { + "start": 25956.98, + "end": 25957.96, + "probability": 0.7538 + }, + { + "start": 25958.74, + "end": 25962.26, + "probability": 0.882 + }, + { + "start": 25962.56, + "end": 25965.88, + "probability": 0.8953 + }, + { + "start": 25966.46, + "end": 25970.96, + "probability": 0.9887 + }, + { + "start": 25971.58, + "end": 25973.68, + "probability": 0.8285 + }, + { + "start": 25973.82, + "end": 25976.33, + "probability": 0.8726 + }, + { + "start": 25976.78, + "end": 25977.74, + "probability": 0.9483 + }, + { + "start": 25978.12, + "end": 25983.04, + "probability": 0.9965 + }, + { + "start": 25983.6, + "end": 25988.26, + "probability": 0.9888 + }, + { + "start": 25989.5, + "end": 25991.92, + "probability": 0.9932 + }, + { + "start": 25992.68, + "end": 26001.5, + "probability": 0.6588 + }, + { + "start": 26001.82, + "end": 26007.16, + "probability": 0.932 + }, + { + "start": 26007.54, + "end": 26011.3, + "probability": 0.9711 + }, + { + "start": 26011.3, + "end": 26017.66, + "probability": 0.9452 + }, + { + "start": 26018.04, + "end": 26022.76, + "probability": 0.9975 + }, + { + "start": 26023.26, + "end": 26024.72, + "probability": 0.8903 + }, + { + "start": 26025.38, + "end": 26029.3, + "probability": 0.9363 + }, + { + "start": 26030.16, + "end": 26030.98, + "probability": 0.4588 + }, + { + "start": 26031.7, + "end": 26037.4, + "probability": 0.9838 + }, + { + "start": 26037.92, + "end": 26041.62, + "probability": 0.8879 + }, + { + "start": 26042.76, + "end": 26045.44, + "probability": 0.9851 + }, + { + "start": 26046.14, + "end": 26051.36, + "probability": 0.6478 + }, + { + "start": 26054.0, + "end": 26054.96, + "probability": 0.0191 + }, + { + "start": 26054.98, + "end": 26055.72, + "probability": 0.4935 + }, + { + "start": 26056.04, + "end": 26057.22, + "probability": 0.7228 + }, + { + "start": 26057.34, + "end": 26065.76, + "probability": 0.9576 + }, + { + "start": 26066.14, + "end": 26069.24, + "probability": 0.9045 + }, + { + "start": 26069.36, + "end": 26069.62, + "probability": 0.7009 + }, + { + "start": 26070.08, + "end": 26072.66, + "probability": 0.9817 + }, + { + "start": 26072.78, + "end": 26074.82, + "probability": 0.763 + }, + { + "start": 26076.04, + "end": 26079.76, + "probability": 0.9285 + }, + { + "start": 26080.44, + "end": 26082.78, + "probability": 0.6263 + }, + { + "start": 26083.6, + "end": 26085.04, + "probability": 0.7871 + }, + { + "start": 26086.28, + "end": 26086.28, + "probability": 0.0003 + }, + { + "start": 26088.32, + "end": 26089.2, + "probability": 0.2137 + }, + { + "start": 26089.96, + "end": 26089.98, + "probability": 0.7517 + }, + { + "start": 26090.16, + "end": 26091.84, + "probability": 0.6916 + }, + { + "start": 26091.94, + "end": 26092.84, + "probability": 0.4716 + }, + { + "start": 26094.6, + "end": 26095.02, + "probability": 0.4612 + }, + { + "start": 26095.22, + "end": 26095.8, + "probability": 0.3825 + }, + { + "start": 26095.9, + "end": 26097.08, + "probability": 0.3497 + }, + { + "start": 26097.42, + "end": 26097.66, + "probability": 0.0514 + }, + { + "start": 26098.24, + "end": 26099.2, + "probability": 0.9254 + }, + { + "start": 26100.08, + "end": 26102.16, + "probability": 0.854 + }, + { + "start": 26102.46, + "end": 26104.0, + "probability": 0.8141 + }, + { + "start": 26104.04, + "end": 26105.26, + "probability": 0.7503 + }, + { + "start": 26107.16, + "end": 26108.28, + "probability": 0.6342 + }, + { + "start": 26109.14, + "end": 26117.3, + "probability": 0.9966 + }, + { + "start": 26118.18, + "end": 26118.67, + "probability": 0.799 + }, + { + "start": 26118.8, + "end": 26119.38, + "probability": 0.6711 + }, + { + "start": 26119.48, + "end": 26120.96, + "probability": 0.9976 + }, + { + "start": 26121.64, + "end": 26124.98, + "probability": 0.7178 + }, + { + "start": 26126.0, + "end": 26128.95, + "probability": 0.9774 + }, + { + "start": 26129.76, + "end": 26135.06, + "probability": 0.9678 + }, + { + "start": 26136.1, + "end": 26136.1, + "probability": 0.3177 + }, + { + "start": 26136.1, + "end": 26136.9, + "probability": 0.176 + }, + { + "start": 26136.9, + "end": 26137.14, + "probability": 0.5784 + }, + { + "start": 26138.46, + "end": 26140.98, + "probability": 0.5635 + }, + { + "start": 26143.26, + "end": 26143.86, + "probability": 0.662 + }, + { + "start": 26144.84, + "end": 26146.9, + "probability": 0.8593 + }, + { + "start": 26147.54, + "end": 26151.6, + "probability": 0.7394 + }, + { + "start": 26152.52, + "end": 26156.96, + "probability": 0.8173 + }, + { + "start": 26157.22, + "end": 26160.74, + "probability": 0.8441 + }, + { + "start": 26161.06, + "end": 26162.31, + "probability": 0.1477 + }, + { + "start": 26162.92, + "end": 26169.14, + "probability": 0.7245 + }, + { + "start": 26169.6, + "end": 26170.16, + "probability": 0.9094 + }, + { + "start": 26171.12, + "end": 26171.42, + "probability": 0.4547 + }, + { + "start": 26171.42, + "end": 26173.78, + "probability": 0.9712 + }, + { + "start": 26173.9, + "end": 26176.32, + "probability": 0.9405 + }, + { + "start": 26176.66, + "end": 26179.04, + "probability": 0.9036 + }, + { + "start": 26179.26, + "end": 26186.54, + "probability": 0.8388 + }, + { + "start": 26187.16, + "end": 26188.0, + "probability": 0.174 + }, + { + "start": 26188.28, + "end": 26188.6, + "probability": 0.7455 + }, + { + "start": 26188.78, + "end": 26190.2, + "probability": 0.9792 + }, + { + "start": 26190.32, + "end": 26190.89, + "probability": 0.9489 + }, + { + "start": 26191.3, + "end": 26191.7, + "probability": 0.5551 + }, + { + "start": 26192.06, + "end": 26195.0, + "probability": 0.73 + }, + { + "start": 26195.0, + "end": 26196.16, + "probability": 0.9139 + }, + { + "start": 26196.22, + "end": 26198.22, + "probability": 0.8829 + }, + { + "start": 26199.02, + "end": 26202.35, + "probability": 0.9636 + }, + { + "start": 26202.88, + "end": 26203.14, + "probability": 0.4543 + }, + { + "start": 26203.28, + "end": 26204.8, + "probability": 0.7561 + }, + { + "start": 26205.14, + "end": 26207.94, + "probability": 0.9978 + }, + { + "start": 26208.9, + "end": 26212.76, + "probability": 0.8301 + }, + { + "start": 26213.36, + "end": 26213.96, + "probability": 0.79 + }, + { + "start": 26214.33, + "end": 26216.82, + "probability": 0.7075 + }, + { + "start": 26216.98, + "end": 26220.88, + "probability": 0.7238 + }, + { + "start": 26221.3, + "end": 26224.56, + "probability": 0.932 + }, + { + "start": 26224.86, + "end": 26226.2, + "probability": 0.8353 + }, + { + "start": 26226.64, + "end": 26227.26, + "probability": 0.848 + }, + { + "start": 26227.32, + "end": 26229.39, + "probability": 0.9753 + }, + { + "start": 26230.68, + "end": 26232.64, + "probability": 0.7983 + }, + { + "start": 26233.96, + "end": 26235.26, + "probability": 0.7913 + }, + { + "start": 26235.58, + "end": 26236.88, + "probability": 0.6029 + }, + { + "start": 26237.18, + "end": 26238.4, + "probability": 0.8742 + }, + { + "start": 26238.58, + "end": 26239.32, + "probability": 0.7784 + }, + { + "start": 26239.62, + "end": 26239.72, + "probability": 0.2078 + }, + { + "start": 26239.72, + "end": 26239.72, + "probability": 0.2752 + }, + { + "start": 26239.72, + "end": 26241.71, + "probability": 0.4124 + }, + { + "start": 26242.12, + "end": 26242.66, + "probability": 0.6772 + }, + { + "start": 26242.66, + "end": 26242.8, + "probability": 0.3151 + }, + { + "start": 26242.86, + "end": 26245.18, + "probability": 0.6559 + }, + { + "start": 26245.26, + "end": 26245.74, + "probability": 0.8486 + }, + { + "start": 26245.82, + "end": 26249.5, + "probability": 0.8293 + }, + { + "start": 26249.78, + "end": 26251.78, + "probability": 0.3942 + }, + { + "start": 26251.92, + "end": 26252.32, + "probability": 0.2738 + }, + { + "start": 26252.32, + "end": 26252.32, + "probability": 0.0845 + }, + { + "start": 26252.32, + "end": 26252.46, + "probability": 0.4942 + }, + { + "start": 26252.58, + "end": 26253.32, + "probability": 0.8616 + }, + { + "start": 26253.44, + "end": 26254.12, + "probability": 0.2354 + }, + { + "start": 26254.64, + "end": 26259.46, + "probability": 0.9855 + }, + { + "start": 26259.64, + "end": 26260.04, + "probability": 0.2099 + }, + { + "start": 26260.16, + "end": 26261.78, + "probability": 0.9978 + }, + { + "start": 26262.9, + "end": 26264.18, + "probability": 0.8923 + }, + { + "start": 26264.34, + "end": 26265.36, + "probability": 0.8752 + }, + { + "start": 26265.48, + "end": 26266.08, + "probability": 0.6761 + }, + { + "start": 26266.32, + "end": 26268.84, + "probability": 0.9927 + }, + { + "start": 26269.34, + "end": 26270.96, + "probability": 0.9591 + }, + { + "start": 26271.04, + "end": 26272.82, + "probability": 0.9955 + }, + { + "start": 26272.92, + "end": 26274.14, + "probability": 0.1634 + }, + { + "start": 26274.76, + "end": 26275.16, + "probability": 0.0835 + }, + { + "start": 26275.16, + "end": 26275.72, + "probability": 0.5368 + }, + { + "start": 26276.48, + "end": 26277.4, + "probability": 0.147 + }, + { + "start": 26277.4, + "end": 26277.9, + "probability": 0.2457 + }, + { + "start": 26277.9, + "end": 26278.34, + "probability": 0.2007 + }, + { + "start": 26278.34, + "end": 26278.84, + "probability": 0.7998 + }, + { + "start": 26279.08, + "end": 26280.4, + "probability": 0.6841 + }, + { + "start": 26280.52, + "end": 26281.76, + "probability": 0.8773 + }, + { + "start": 26281.76, + "end": 26282.28, + "probability": 0.6783 + }, + { + "start": 26283.32, + "end": 26284.72, + "probability": 0.9543 + }, + { + "start": 26285.56, + "end": 26287.64, + "probability": 0.9604 + }, + { + "start": 26288.26, + "end": 26290.52, + "probability": 0.997 + }, + { + "start": 26290.94, + "end": 26291.48, + "probability": 0.6384 + }, + { + "start": 26291.56, + "end": 26291.96, + "probability": 0.4839 + }, + { + "start": 26292.02, + "end": 26292.62, + "probability": 0.7091 + }, + { + "start": 26292.76, + "end": 26295.96, + "probability": 0.9927 + }, + { + "start": 26296.46, + "end": 26297.66, + "probability": 0.8821 + }, + { + "start": 26298.84, + "end": 26301.59, + "probability": 0.9463 + }, + { + "start": 26302.26, + "end": 26303.05, + "probability": 0.9775 + }, + { + "start": 26303.98, + "end": 26305.33, + "probability": 0.9829 + }, + { + "start": 26305.74, + "end": 26306.88, + "probability": 0.1176 + }, + { + "start": 26306.98, + "end": 26308.72, + "probability": 0.9146 + }, + { + "start": 26309.04, + "end": 26313.28, + "probability": 0.9977 + }, + { + "start": 26313.86, + "end": 26314.5, + "probability": 0.7917 + }, + { + "start": 26315.08, + "end": 26317.16, + "probability": 0.679 + }, + { + "start": 26317.18, + "end": 26320.08, + "probability": 0.822 + }, + { + "start": 26320.98, + "end": 26322.9, + "probability": 0.8917 + }, + { + "start": 26324.9, + "end": 26324.9, + "probability": 0.5143 + }, + { + "start": 26324.9, + "end": 26328.0, + "probability": 0.7764 + }, + { + "start": 26328.02, + "end": 26328.68, + "probability": 0.0192 + }, + { + "start": 26329.62, + "end": 26332.87, + "probability": 0.8174 + }, + { + "start": 26333.26, + "end": 26334.78, + "probability": 0.9151 + }, + { + "start": 26338.56, + "end": 26339.04, + "probability": 0.6099 + }, + { + "start": 26339.14, + "end": 26342.3, + "probability": 0.9771 + }, + { + "start": 26342.62, + "end": 26343.7, + "probability": 0.4617 + }, + { + "start": 26343.88, + "end": 26344.8, + "probability": 0.6413 + }, + { + "start": 26346.3, + "end": 26346.6, + "probability": 0.2426 + }, + { + "start": 26346.6, + "end": 26348.56, + "probability": 0.6353 + }, + { + "start": 26348.72, + "end": 26352.16, + "probability": 0.7867 + }, + { + "start": 26352.2, + "end": 26353.14, + "probability": 0.9395 + }, + { + "start": 26353.24, + "end": 26354.1, + "probability": 0.9756 + }, + { + "start": 26356.28, + "end": 26356.92, + "probability": 0.0481 + }, + { + "start": 26356.92, + "end": 26356.92, + "probability": 0.2775 + }, + { + "start": 26356.92, + "end": 26357.22, + "probability": 0.0883 + }, + { + "start": 26357.36, + "end": 26357.99, + "probability": 0.0718 + }, + { + "start": 26359.56, + "end": 26362.78, + "probability": 0.8963 + }, + { + "start": 26363.04, + "end": 26365.46, + "probability": 0.9786 + }, + { + "start": 26365.52, + "end": 26366.74, + "probability": 0.9102 + }, + { + "start": 26367.4, + "end": 26369.72, + "probability": 0.3114 + }, + { + "start": 26370.72, + "end": 26372.2, + "probability": 0.4815 + }, + { + "start": 26374.16, + "end": 26374.56, + "probability": 0.1505 + }, + { + "start": 26374.56, + "end": 26376.42, + "probability": 0.6563 + }, + { + "start": 26376.72, + "end": 26377.94, + "probability": 0.7711 + }, + { + "start": 26378.02, + "end": 26381.18, + "probability": 0.7232 + }, + { + "start": 26381.18, + "end": 26382.46, + "probability": 0.4741 + }, + { + "start": 26382.46, + "end": 26382.5, + "probability": 0.5502 + }, + { + "start": 26382.5, + "end": 26384.3, + "probability": 0.7183 + }, + { + "start": 26384.34, + "end": 26387.94, + "probability": 0.9271 + }, + { + "start": 26387.94, + "end": 26389.48, + "probability": 0.7173 + }, + { + "start": 26389.6, + "end": 26391.98, + "probability": 0.8722 + }, + { + "start": 26398.03, + "end": 26403.76, + "probability": 0.7948 + }, + { + "start": 26404.84, + "end": 26407.18, + "probability": 0.8523 + }, + { + "start": 26407.22, + "end": 26407.42, + "probability": 0.4814 + }, + { + "start": 26407.52, + "end": 26408.42, + "probability": 0.9054 + }, + { + "start": 26408.46, + "end": 26410.08, + "probability": 0.9572 + }, + { + "start": 26411.32, + "end": 26413.24, + "probability": 0.9766 + }, + { + "start": 26414.16, + "end": 26414.82, + "probability": 0.8231 + }, + { + "start": 26414.9, + "end": 26418.12, + "probability": 0.827 + }, + { + "start": 26418.22, + "end": 26418.34, + "probability": 0.3154 + }, + { + "start": 26418.38, + "end": 26419.8, + "probability": 0.9878 + }, + { + "start": 26420.6, + "end": 26424.96, + "probability": 0.9759 + }, + { + "start": 26426.24, + "end": 26427.34, + "probability": 0.9658 + }, + { + "start": 26429.42, + "end": 26430.98, + "probability": 0.6027 + }, + { + "start": 26431.1, + "end": 26435.06, + "probability": 0.9915 + }, + { + "start": 26435.36, + "end": 26439.22, + "probability": 0.8005 + }, + { + "start": 26439.86, + "end": 26443.3, + "probability": 0.6758 + }, + { + "start": 26444.22, + "end": 26448.28, + "probability": 0.9508 + }, + { + "start": 26448.88, + "end": 26449.5, + "probability": 0.752 + }, + { + "start": 26449.6, + "end": 26450.18, + "probability": 0.9668 + }, + { + "start": 26450.22, + "end": 26455.9, + "probability": 0.9844 + }, + { + "start": 26456.84, + "end": 26460.84, + "probability": 0.7112 + }, + { + "start": 26462.18, + "end": 26464.52, + "probability": 0.9873 + }, + { + "start": 26464.56, + "end": 26465.3, + "probability": 0.4096 + }, + { + "start": 26465.5, + "end": 26466.82, + "probability": 0.7253 + }, + { + "start": 26467.5, + "end": 26470.74, + "probability": 0.9514 + }, + { + "start": 26470.78, + "end": 26470.92, + "probability": 0.1652 + }, + { + "start": 26470.94, + "end": 26475.5, + "probability": 0.9458 + }, + { + "start": 26475.68, + "end": 26478.08, + "probability": 0.8391 + }, + { + "start": 26481.9, + "end": 26483.48, + "probability": 0.5102 + }, + { + "start": 26484.4, + "end": 26487.12, + "probability": 0.9669 + }, + { + "start": 26489.24, + "end": 26490.26, + "probability": 0.8153 + }, + { + "start": 26490.38, + "end": 26491.04, + "probability": 0.8413 + }, + { + "start": 26491.06, + "end": 26492.9, + "probability": 0.9087 + }, + { + "start": 26492.96, + "end": 26499.56, + "probability": 0.9418 + }, + { + "start": 26499.78, + "end": 26501.7, + "probability": 0.8521 + }, + { + "start": 26502.54, + "end": 26504.08, + "probability": 0.7231 + }, + { + "start": 26504.74, + "end": 26506.6, + "probability": 0.7618 + }, + { + "start": 26506.68, + "end": 26508.44, + "probability": 0.676 + }, + { + "start": 26508.62, + "end": 26510.58, + "probability": 0.5364 + }, + { + "start": 26510.78, + "end": 26511.42, + "probability": 0.745 + }, + { + "start": 26511.58, + "end": 26513.13, + "probability": 0.8633 + }, + { + "start": 26513.32, + "end": 26514.89, + "probability": 0.3195 + }, + { + "start": 26515.22, + "end": 26521.54, + "probability": 0.6625 + }, + { + "start": 26523.33, + "end": 26526.6, + "probability": 0.7135 + }, + { + "start": 26527.2, + "end": 26530.54, + "probability": 0.6445 + }, + { + "start": 26530.72, + "end": 26532.76, + "probability": 0.6385 + }, + { + "start": 26533.76, + "end": 26537.98, + "probability": 0.9912 + }, + { + "start": 26538.16, + "end": 26540.86, + "probability": 0.9711 + }, + { + "start": 26541.02, + "end": 26542.42, + "probability": 0.7748 + }, + { + "start": 26542.64, + "end": 26543.86, + "probability": 0.2123 + }, + { + "start": 26544.02, + "end": 26547.22, + "probability": 0.3482 + }, + { + "start": 26547.36, + "end": 26548.68, + "probability": 0.8127 + }, + { + "start": 26548.82, + "end": 26550.3, + "probability": 0.3321 + }, + { + "start": 26551.5, + "end": 26553.88, + "probability": 0.3597 + }, + { + "start": 26553.88, + "end": 26555.48, + "probability": 0.7404 + }, + { + "start": 26555.68, + "end": 26557.08, + "probability": 0.9318 + }, + { + "start": 26557.18, + "end": 26558.78, + "probability": 0.8641 + }, + { + "start": 26558.84, + "end": 26559.66, + "probability": 0.7015 + }, + { + "start": 26559.96, + "end": 26562.98, + "probability": 0.9323 + }, + { + "start": 26563.36, + "end": 26566.06, + "probability": 0.6869 + }, + { + "start": 26566.16, + "end": 26566.36, + "probability": 0.0065 + }, + { + "start": 26566.36, + "end": 26567.64, + "probability": 0.6389 + }, + { + "start": 26567.7, + "end": 26568.58, + "probability": 0.8428 + }, + { + "start": 26568.68, + "end": 26569.66, + "probability": 0.8838 + }, + { + "start": 26569.68, + "end": 26572.24, + "probability": 0.8945 + }, + { + "start": 26573.36, + "end": 26574.38, + "probability": 0.1697 + }, + { + "start": 26574.38, + "end": 26574.56, + "probability": 0.15 + }, + { + "start": 26574.66, + "end": 26575.22, + "probability": 0.5592 + }, + { + "start": 26576.16, + "end": 26578.6, + "probability": 0.9083 + }, + { + "start": 26580.14, + "end": 26582.26, + "probability": 0.8403 + }, + { + "start": 26582.7, + "end": 26583.48, + "probability": 0.439 + }, + { + "start": 26583.64, + "end": 26587.68, + "probability": 0.9829 + }, + { + "start": 26587.86, + "end": 26588.04, + "probability": 0.8905 + }, + { + "start": 26588.26, + "end": 26589.28, + "probability": 0.6002 + }, + { + "start": 26589.76, + "end": 26590.56, + "probability": 0.7009 + }, + { + "start": 26590.56, + "end": 26590.84, + "probability": 0.5283 + }, + { + "start": 26590.84, + "end": 26591.2, + "probability": 0.8559 + }, + { + "start": 26591.28, + "end": 26594.0, + "probability": 0.9033 + }, + { + "start": 26594.42, + "end": 26595.02, + "probability": 0.621 + }, + { + "start": 26595.14, + "end": 26595.98, + "probability": 0.2731 + }, + { + "start": 26595.98, + "end": 26597.72, + "probability": 0.9437 + }, + { + "start": 26598.54, + "end": 26599.24, + "probability": 0.9532 + }, + { + "start": 26605.88, + "end": 26607.21, + "probability": 0.9967 + }, + { + "start": 26609.56, + "end": 26611.66, + "probability": 0.8244 + }, + { + "start": 26611.76, + "end": 26615.04, + "probability": 0.9756 + }, + { + "start": 26615.46, + "end": 26617.54, + "probability": 0.9071 + }, + { + "start": 26617.68, + "end": 26618.78, + "probability": 0.7202 + }, + { + "start": 26618.86, + "end": 26619.9, + "probability": 0.7932 + }, + { + "start": 26620.04, + "end": 26620.95, + "probability": 0.9103 + }, + { + "start": 26621.46, + "end": 26622.98, + "probability": 0.8667 + }, + { + "start": 26623.12, + "end": 26624.68, + "probability": 0.9418 + }, + { + "start": 26624.86, + "end": 26625.83, + "probability": 0.6901 + }, + { + "start": 26626.46, + "end": 26627.66, + "probability": 0.4655 + }, + { + "start": 26627.66, + "end": 26629.29, + "probability": 0.0059 + }, + { + "start": 26629.76, + "end": 26633.06, + "probability": 0.6886 + }, + { + "start": 26633.22, + "end": 26634.76, + "probability": 0.791 + }, + { + "start": 26634.94, + "end": 26636.92, + "probability": 0.6295 + }, + { + "start": 26637.06, + "end": 26637.78, + "probability": 0.7469 + }, + { + "start": 26637.84, + "end": 26639.83, + "probability": 0.9644 + }, + { + "start": 26640.64, + "end": 26644.2, + "probability": 0.9495 + }, + { + "start": 26644.48, + "end": 26645.98, + "probability": 0.9934 + }, + { + "start": 26646.56, + "end": 26650.0, + "probability": 0.9924 + }, + { + "start": 26650.26, + "end": 26652.3, + "probability": 0.9982 + }, + { + "start": 26652.68, + "end": 26653.76, + "probability": 0.7267 + }, + { + "start": 26653.86, + "end": 26655.72, + "probability": 0.9647 + }, + { + "start": 26655.72, + "end": 26656.52, + "probability": 0.0399 + }, + { + "start": 26656.58, + "end": 26656.96, + "probability": 0.125 + }, + { + "start": 26657.2, + "end": 26657.5, + "probability": 0.6387 + }, + { + "start": 26658.08, + "end": 26658.7, + "probability": 0.2435 + }, + { + "start": 26658.76, + "end": 26660.44, + "probability": 0.8808 + }, + { + "start": 26660.66, + "end": 26665.22, + "probability": 0.9927 + }, + { + "start": 26665.28, + "end": 26668.22, + "probability": 0.8799 + }, + { + "start": 26668.4, + "end": 26670.18, + "probability": 0.8686 + }, + { + "start": 26670.24, + "end": 26673.96, + "probability": 0.8575 + }, + { + "start": 26673.96, + "end": 26676.62, + "probability": 0.7593 + }, + { + "start": 26677.06, + "end": 26679.0, + "probability": 0.8715 + }, + { + "start": 26679.1, + "end": 26681.28, + "probability": 0.2751 + }, + { + "start": 26681.9, + "end": 26684.1, + "probability": 0.8525 + }, + { + "start": 26684.26, + "end": 26689.52, + "probability": 0.9137 + }, + { + "start": 26689.66, + "end": 26692.63, + "probability": 0.9032 + }, + { + "start": 26693.92, + "end": 26697.27, + "probability": 0.9123 + }, + { + "start": 26699.12, + "end": 26704.26, + "probability": 0.7182 + }, + { + "start": 26705.26, + "end": 26706.36, + "probability": 0.2751 + }, + { + "start": 26707.57, + "end": 26710.86, + "probability": 0.6795 + }, + { + "start": 26711.04, + "end": 26711.84, + "probability": 0.4736 + }, + { + "start": 26711.98, + "end": 26713.38, + "probability": 0.3126 + }, + { + "start": 26713.4, + "end": 26715.02, + "probability": 0.8126 + }, + { + "start": 26715.6, + "end": 26716.86, + "probability": 0.9538 + }, + { + "start": 26718.46, + "end": 26719.04, + "probability": 0.9518 + }, + { + "start": 26720.14, + "end": 26722.75, + "probability": 0.9912 + }, + { + "start": 26723.3, + "end": 26725.18, + "probability": 0.9219 + }, + { + "start": 26725.8, + "end": 26727.78, + "probability": 0.9822 + }, + { + "start": 26728.53, + "end": 26731.96, + "probability": 0.8206 + }, + { + "start": 26732.04, + "end": 26733.01, + "probability": 0.9569 + }, + { + "start": 26733.74, + "end": 26735.32, + "probability": 0.9888 + }, + { + "start": 26736.16, + "end": 26737.94, + "probability": 0.9868 + }, + { + "start": 26738.16, + "end": 26741.32, + "probability": 0.9827 + }, + { + "start": 26741.44, + "end": 26742.2, + "probability": 0.5051 + }, + { + "start": 26742.24, + "end": 26744.38, + "probability": 0.6437 + }, + { + "start": 26744.44, + "end": 26746.5, + "probability": 0.6578 + }, + { + "start": 26747.36, + "end": 26748.94, + "probability": 0.98 + }, + { + "start": 26749.16, + "end": 26750.83, + "probability": 0.9524 + }, + { + "start": 26751.18, + "end": 26753.46, + "probability": 0.7871 + }, + { + "start": 26753.6, + "end": 26754.86, + "probability": 0.8081 + }, + { + "start": 26755.08, + "end": 26756.38, + "probability": 0.6897 + }, + { + "start": 26757.1, + "end": 26764.06, + "probability": 0.9109 + }, + { + "start": 26764.92, + "end": 26765.7, + "probability": 0.8599 + }, + { + "start": 26766.2, + "end": 26770.38, + "probability": 0.9961 + }, + { + "start": 26770.68, + "end": 26772.72, + "probability": 0.9233 + }, + { + "start": 26772.94, + "end": 26773.66, + "probability": 0.498 + }, + { + "start": 26773.72, + "end": 26775.46, + "probability": 0.985 + }, + { + "start": 26776.62, + "end": 26777.78, + "probability": 0.8577 + }, + { + "start": 26778.74, + "end": 26780.08, + "probability": 0.9536 + }, + { + "start": 26781.32, + "end": 26783.48, + "probability": 0.3989 + }, + { + "start": 26783.48, + "end": 26784.06, + "probability": 0.7236 + }, + { + "start": 26784.26, + "end": 26786.41, + "probability": 0.8378 + }, + { + "start": 26787.58, + "end": 26792.04, + "probability": 0.7122 + }, + { + "start": 26792.14, + "end": 26795.48, + "probability": 0.8965 + }, + { + "start": 26796.24, + "end": 26797.88, + "probability": 0.8617 + }, + { + "start": 26799.12, + "end": 26799.66, + "probability": 0.7371 + }, + { + "start": 26800.26, + "end": 26804.92, + "probability": 0.9025 + }, + { + "start": 26806.06, + "end": 26807.1, + "probability": 0.943 + }, + { + "start": 26807.52, + "end": 26808.08, + "probability": 0.3665 + }, + { + "start": 26808.12, + "end": 26809.14, + "probability": 0.8462 + }, + { + "start": 26809.4, + "end": 26809.72, + "probability": 0.1171 + }, + { + "start": 26810.12, + "end": 26811.28, + "probability": 0.729 + }, + { + "start": 26811.68, + "end": 26812.76, + "probability": 0.7334 + }, + { + "start": 26812.8, + "end": 26814.46, + "probability": 0.5371 + }, + { + "start": 26814.46, + "end": 26814.53, + "probability": 0.6375 + }, + { + "start": 26815.06, + "end": 26815.36, + "probability": 0.7604 + }, + { + "start": 26815.36, + "end": 26815.92, + "probability": 0.6898 + }, + { + "start": 26817.18, + "end": 26820.72, + "probability": 0.9277 + }, + { + "start": 26821.88, + "end": 26821.9, + "probability": 0.0224 + }, + { + "start": 26821.9, + "end": 26821.9, + "probability": 0.0195 + }, + { + "start": 26821.9, + "end": 26827.08, + "probability": 0.9028 + }, + { + "start": 26827.14, + "end": 26829.36, + "probability": 0.9884 + }, + { + "start": 26829.8, + "end": 26831.66, + "probability": 0.95 + }, + { + "start": 26832.98, + "end": 26833.92, + "probability": 0.8447 + }, + { + "start": 26834.16, + "end": 26838.5, + "probability": 0.6925 + }, + { + "start": 26838.6, + "end": 26839.88, + "probability": 0.9924 + }, + { + "start": 26840.18, + "end": 26840.36, + "probability": 0.3531 + }, + { + "start": 26840.36, + "end": 26841.58, + "probability": 0.466 + }, + { + "start": 26841.98, + "end": 26842.94, + "probability": 0.2993 + }, + { + "start": 26843.1, + "end": 26843.66, + "probability": 0.7238 + }, + { + "start": 26843.86, + "end": 26845.6, + "probability": 0.8523 + }, + { + "start": 26846.3, + "end": 26846.9, + "probability": 0.7424 + }, + { + "start": 26846.9, + "end": 26847.66, + "probability": 0.5507 + }, + { + "start": 26848.04, + "end": 26850.18, + "probability": 0.8779 + }, + { + "start": 26850.18, + "end": 26852.36, + "probability": 0.8381 + }, + { + "start": 26852.44, + "end": 26853.16, + "probability": 0.8203 + }, + { + "start": 26853.16, + "end": 26853.95, + "probability": 0.9701 + }, + { + "start": 26854.62, + "end": 26857.86, + "probability": 0.9812 + }, + { + "start": 26857.96, + "end": 26859.23, + "probability": 0.8752 + }, + { + "start": 26859.84, + "end": 26863.12, + "probability": 0.9829 + }, + { + "start": 26863.26, + "end": 26864.48, + "probability": 0.7333 + }, + { + "start": 26865.35, + "end": 26865.98, + "probability": 0.0864 + }, + { + "start": 26865.98, + "end": 26870.16, + "probability": 0.7954 + }, + { + "start": 26870.24, + "end": 26873.04, + "probability": 0.8169 + }, + { + "start": 26873.16, + "end": 26874.56, + "probability": 0.9241 + }, + { + "start": 26874.62, + "end": 26876.07, + "probability": 0.9958 + }, + { + "start": 26876.36, + "end": 26877.36, + "probability": 0.7221 + }, + { + "start": 26877.98, + "end": 26879.1, + "probability": 0.4243 + }, + { + "start": 26880.18, + "end": 26882.5, + "probability": 0.8457 + }, + { + "start": 26882.52, + "end": 26884.78, + "probability": 0.9849 + }, + { + "start": 26884.98, + "end": 26886.28, + "probability": 0.8004 + }, + { + "start": 26886.36, + "end": 26887.65, + "probability": 0.9852 + }, + { + "start": 26887.88, + "end": 26889.14, + "probability": 0.988 + }, + { + "start": 26889.48, + "end": 26890.92, + "probability": 0.839 + }, + { + "start": 26891.02, + "end": 26891.64, + "probability": 0.7321 + }, + { + "start": 26891.72, + "end": 26892.88, + "probability": 0.7833 + }, + { + "start": 26894.46, + "end": 26898.64, + "probability": 0.6326 + }, + { + "start": 26899.32, + "end": 26900.46, + "probability": 0.9033 + }, + { + "start": 26900.48, + "end": 26904.56, + "probability": 0.8983 + }, + { + "start": 26904.56, + "end": 26906.98, + "probability": 0.8079 + }, + { + "start": 26907.08, + "end": 26910.96, + "probability": 0.995 + }, + { + "start": 26911.34, + "end": 26915.38, + "probability": 0.8158 + }, + { + "start": 26915.42, + "end": 26916.33, + "probability": 0.8238 + }, + { + "start": 26916.8, + "end": 26919.2, + "probability": 0.8932 + }, + { + "start": 26919.8, + "end": 26921.79, + "probability": 0.9792 + }, + { + "start": 26922.32, + "end": 26927.88, + "probability": 0.9373 + }, + { + "start": 26928.58, + "end": 26931.12, + "probability": 0.9619 + }, + { + "start": 26931.18, + "end": 26932.66, + "probability": 0.8912 + }, + { + "start": 26932.72, + "end": 26933.86, + "probability": 0.6606 + }, + { + "start": 26933.96, + "end": 26935.78, + "probability": 0.9899 + }, + { + "start": 26936.68, + "end": 26940.56, + "probability": 0.4212 + }, + { + "start": 26940.56, + "end": 26941.76, + "probability": 0.5892 + }, + { + "start": 26941.76, + "end": 26944.54, + "probability": 0.5576 + }, + { + "start": 26944.54, + "end": 26945.71, + "probability": 0.9871 + }, + { + "start": 26946.38, + "end": 26950.06, + "probability": 0.581 + }, + { + "start": 26950.16, + "end": 26950.86, + "probability": 0.4664 + }, + { + "start": 26951.06, + "end": 26952.14, + "probability": 0.8838 + }, + { + "start": 26952.22, + "end": 26952.62, + "probability": 0.3028 + }, + { + "start": 26952.66, + "end": 26955.68, + "probability": 0.9355 + }, + { + "start": 26955.8, + "end": 26957.72, + "probability": 0.8751 + }, + { + "start": 26957.8, + "end": 26961.5, + "probability": 0.8545 + }, + { + "start": 26961.7, + "end": 26962.84, + "probability": 0.718 + }, + { + "start": 26963.2, + "end": 26965.26, + "probability": 0.9626 + }, + { + "start": 26965.4, + "end": 26966.6, + "probability": 0.6967 + }, + { + "start": 26966.88, + "end": 26968.6, + "probability": 0.9524 + }, + { + "start": 26969.5, + "end": 26970.26, + "probability": 0.6648 + }, + { + "start": 26972.55, + "end": 26978.64, + "probability": 0.8929 + }, + { + "start": 26978.8, + "end": 26980.34, + "probability": 0.8286 + }, + { + "start": 26980.58, + "end": 26982.34, + "probability": 0.8818 + }, + { + "start": 26982.82, + "end": 26984.54, + "probability": 0.9451 + }, + { + "start": 26985.32, + "end": 26985.64, + "probability": 0.6127 + }, + { + "start": 26985.72, + "end": 26989.18, + "probability": 0.9963 + }, + { + "start": 26989.34, + "end": 26991.78, + "probability": 0.974 + }, + { + "start": 26991.86, + "end": 26993.41, + "probability": 0.5931 + }, + { + "start": 26994.46, + "end": 26995.42, + "probability": 0.4229 + }, + { + "start": 26995.88, + "end": 26998.46, + "probability": 0.9489 + }, + { + "start": 26998.46, + "end": 26999.18, + "probability": 0.8739 + }, + { + "start": 26999.28, + "end": 26999.92, + "probability": 0.549 + }, + { + "start": 26999.92, + "end": 27000.54, + "probability": 0.8457 + }, + { + "start": 27000.76, + "end": 27001.26, + "probability": 0.8516 + }, + { + "start": 27003.04, + "end": 27005.9, + "probability": 0.9786 + }, + { + "start": 27006.44, + "end": 27010.64, + "probability": 0.8796 + }, + { + "start": 27011.36, + "end": 27014.85, + "probability": 0.5699 + }, + { + "start": 27015.48, + "end": 27018.64, + "probability": 0.9723 + }, + { + "start": 27018.8, + "end": 27022.48, + "probability": 0.6988 + }, + { + "start": 27022.66, + "end": 27028.46, + "probability": 0.9747 + }, + { + "start": 27028.72, + "end": 27030.64, + "probability": 0.593 + }, + { + "start": 27031.26, + "end": 27032.02, + "probability": 0.951 + }, + { + "start": 27032.1, + "end": 27034.02, + "probability": 0.895 + }, + { + "start": 27034.16, + "end": 27035.85, + "probability": 0.8872 + }, + { + "start": 27036.12, + "end": 27037.12, + "probability": 0.7919 + }, + { + "start": 27038.14, + "end": 27039.18, + "probability": 0.0164 + }, + { + "start": 27041.9, + "end": 27042.6, + "probability": 0.0949 + }, + { + "start": 27042.6, + "end": 27042.6, + "probability": 0.0281 + }, + { + "start": 27042.6, + "end": 27042.6, + "probability": 0.0363 + }, + { + "start": 27042.6, + "end": 27043.96, + "probability": 0.1065 + }, + { + "start": 27044.1, + "end": 27045.8, + "probability": 0.0328 + }, + { + "start": 27046.32, + "end": 27049.2, + "probability": 0.5149 + }, + { + "start": 27049.32, + "end": 27052.64, + "probability": 0.5735 + }, + { + "start": 27053.1, + "end": 27054.2, + "probability": 0.8085 + }, + { + "start": 27055.14, + "end": 27058.34, + "probability": 0.6756 + }, + { + "start": 27058.34, + "end": 27061.04, + "probability": 0.9651 + }, + { + "start": 27061.06, + "end": 27063.42, + "probability": 0.814 + }, + { + "start": 27064.8, + "end": 27066.94, + "probability": 0.0815 + }, + { + "start": 27066.94, + "end": 27066.94, + "probability": 0.1924 + }, + { + "start": 27066.94, + "end": 27066.94, + "probability": 0.2213 + }, + { + "start": 27066.94, + "end": 27067.32, + "probability": 0.339 + }, + { + "start": 27068.22, + "end": 27070.76, + "probability": 0.7548 + }, + { + "start": 27070.86, + "end": 27071.63, + "probability": 0.3043 + }, + { + "start": 27071.88, + "end": 27072.82, + "probability": 0.3065 + }, + { + "start": 27073.34, + "end": 27074.64, + "probability": 0.1295 + }, + { + "start": 27074.64, + "end": 27074.64, + "probability": 0.0565 + }, + { + "start": 27074.64, + "end": 27076.0, + "probability": 0.3255 + }, + { + "start": 27076.95, + "end": 27081.79, + "probability": 0.3674 + }, + { + "start": 27098.26, + "end": 27100.32, + "probability": 0.7527 + }, + { + "start": 27107.21, + "end": 27109.48, + "probability": 0.5597 + }, + { + "start": 27109.54, + "end": 27111.52, + "probability": 0.8949 + }, + { + "start": 27116.96, + "end": 27122.2, + "probability": 0.7577 + }, + { + "start": 27122.74, + "end": 27128.52, + "probability": 0.9901 + }, + { + "start": 27129.26, + "end": 27130.84, + "probability": 0.9929 + }, + { + "start": 27131.98, + "end": 27134.32, + "probability": 0.9875 + }, + { + "start": 27136.2, + "end": 27140.9, + "probability": 0.809 + }, + { + "start": 27141.12, + "end": 27145.0, + "probability": 0.8965 + }, + { + "start": 27145.0, + "end": 27147.98, + "probability": 0.9951 + }, + { + "start": 27148.44, + "end": 27148.81, + "probability": 0.3399 + }, + { + "start": 27149.36, + "end": 27150.9, + "probability": 0.4845 + }, + { + "start": 27150.94, + "end": 27152.34, + "probability": 0.7219 + }, + { + "start": 27152.44, + "end": 27154.36, + "probability": 0.8726 + }, + { + "start": 27154.46, + "end": 27155.79, + "probability": 0.821 + }, + { + "start": 27156.46, + "end": 27161.58, + "probability": 0.4724 + }, + { + "start": 27161.82, + "end": 27170.7, + "probability": 0.9267 + }, + { + "start": 27172.65, + "end": 27175.64, + "probability": 0.9785 + }, + { + "start": 27175.64, + "end": 27178.5, + "probability": 0.999 + }, + { + "start": 27181.72, + "end": 27185.52, + "probability": 0.9897 + }, + { + "start": 27185.52, + "end": 27188.6, + "probability": 0.9973 + }, + { + "start": 27189.74, + "end": 27195.42, + "probability": 0.9818 + }, + { + "start": 27195.9, + "end": 27203.0, + "probability": 0.9941 + }, + { + "start": 27203.1, + "end": 27204.96, + "probability": 0.7877 + }, + { + "start": 27205.52, + "end": 27208.64, + "probability": 0.9049 + }, + { + "start": 27208.64, + "end": 27211.5, + "probability": 0.9944 + }, + { + "start": 27211.72, + "end": 27215.1, + "probability": 0.9033 + }, + { + "start": 27215.74, + "end": 27216.62, + "probability": 0.7634 + }, + { + "start": 27217.7, + "end": 27220.88, + "probability": 0.5706 + }, + { + "start": 27221.34, + "end": 27224.56, + "probability": 0.8094 + }, + { + "start": 27224.7, + "end": 27227.72, + "probability": 0.3611 + }, + { + "start": 27228.08, + "end": 27229.4, + "probability": 0.8052 + }, + { + "start": 27229.46, + "end": 27231.0, + "probability": 0.7656 + }, + { + "start": 27231.08, + "end": 27238.68, + "probability": 0.9869 + }, + { + "start": 27238.68, + "end": 27240.4, + "probability": 0.9057 + }, + { + "start": 27240.54, + "end": 27241.68, + "probability": 0.886 + }, + { + "start": 27241.74, + "end": 27243.95, + "probability": 0.99 + }, + { + "start": 27244.26, + "end": 27245.58, + "probability": 0.6712 + }, + { + "start": 27245.58, + "end": 27245.6, + "probability": 0.1318 + }, + { + "start": 27245.88, + "end": 27246.78, + "probability": 0.8641 + }, + { + "start": 27246.78, + "end": 27247.78, + "probability": 0.2936 + }, + { + "start": 27248.16, + "end": 27249.54, + "probability": 0.3623 + }, + { + "start": 27249.7, + "end": 27251.18, + "probability": 0.8726 + }, + { + "start": 27251.6, + "end": 27254.5, + "probability": 0.7333 + }, + { + "start": 27254.58, + "end": 27255.22, + "probability": 0.7196 + }, + { + "start": 27255.52, + "end": 27256.26, + "probability": 0.2115 + }, + { + "start": 27256.42, + "end": 27256.98, + "probability": 0.9355 + }, + { + "start": 27257.04, + "end": 27260.96, + "probability": 0.9688 + }, + { + "start": 27261.56, + "end": 27262.58, + "probability": 0.9382 + }, + { + "start": 27263.04, + "end": 27267.28, + "probability": 0.8452 + }, + { + "start": 27267.72, + "end": 27269.88, + "probability": 0.9385 + }, + { + "start": 27270.12, + "end": 27271.52, + "probability": 0.7822 + }, + { + "start": 27271.6, + "end": 27272.6, + "probability": 0.785 + }, + { + "start": 27272.66, + "end": 27273.76, + "probability": 0.9254 + }, + { + "start": 27274.1, + "end": 27277.24, + "probability": 0.7896 + }, + { + "start": 27277.24, + "end": 27280.26, + "probability": 0.9378 + }, + { + "start": 27280.8, + "end": 27283.66, + "probability": 0.9709 + }, + { + "start": 27284.04, + "end": 27286.36, + "probability": 0.8326 + }, + { + "start": 27286.4, + "end": 27286.92, + "probability": 0.7598 + }, + { + "start": 27289.08, + "end": 27291.58, + "probability": 0.7638 + }, + { + "start": 27291.62, + "end": 27293.6, + "probability": 0.6464 + }, + { + "start": 27294.2, + "end": 27298.12, + "probability": 0.7946 + }, + { + "start": 27300.2, + "end": 27304.34, + "probability": 0.9623 + }, + { + "start": 27304.48, + "end": 27308.0, + "probability": 0.6492 + }, + { + "start": 27309.02, + "end": 27313.64, + "probability": 0.9651 + }, + { + "start": 27314.2, + "end": 27317.9, + "probability": 0.9385 + }, + { + "start": 27318.18, + "end": 27320.86, + "probability": 0.7918 + }, + { + "start": 27321.54, + "end": 27323.28, + "probability": 0.812 + }, + { + "start": 27323.86, + "end": 27324.78, + "probability": 0.7661 + }, + { + "start": 27337.73, + "end": 27341.28, + "probability": 0.6108 + }, + { + "start": 27341.6, + "end": 27345.48, + "probability": 0.9442 + }, + { + "start": 27345.48, + "end": 27347.35, + "probability": 0.4265 + }, + { + "start": 27349.18, + "end": 27353.3, + "probability": 0.9303 + }, + { + "start": 27354.1, + "end": 27358.3, + "probability": 0.6474 + }, + { + "start": 27360.06, + "end": 27363.08, + "probability": 0.9237 + }, + { + "start": 27363.76, + "end": 27365.94, + "probability": 0.9751 + }, + { + "start": 27366.92, + "end": 27368.78, + "probability": 0.9207 + }, + { + "start": 27369.54, + "end": 27371.7, + "probability": 0.6678 + }, + { + "start": 27372.6, + "end": 27377.16, + "probability": 0.8927 + }, + { + "start": 27379.62, + "end": 27381.32, + "probability": 0.927 + }, + { + "start": 27381.32, + "end": 27381.98, + "probability": 0.5026 + }, + { + "start": 27382.02, + "end": 27384.34, + "probability": 0.9001 + }, + { + "start": 27384.48, + "end": 27386.6, + "probability": 0.9795 + }, + { + "start": 27386.98, + "end": 27389.86, + "probability": 0.9591 + }, + { + "start": 27390.46, + "end": 27395.04, + "probability": 0.8251 + }, + { + "start": 27396.08, + "end": 27398.7, + "probability": 0.9775 + }, + { + "start": 27399.24, + "end": 27401.34, + "probability": 0.9747 + }, + { + "start": 27401.64, + "end": 27403.74, + "probability": 0.9377 + }, + { + "start": 27403.84, + "end": 27406.3, + "probability": 0.6034 + }, + { + "start": 27406.72, + "end": 27409.32, + "probability": 0.9729 + }, + { + "start": 27409.72, + "end": 27412.04, + "probability": 0.954 + }, + { + "start": 27412.2, + "end": 27414.7, + "probability": 0.9832 + }, + { + "start": 27415.38, + "end": 27418.36, + "probability": 0.8861 + }, + { + "start": 27419.1, + "end": 27420.88, + "probability": 0.988 + }, + { + "start": 27421.1, + "end": 27423.56, + "probability": 0.9183 + }, + { + "start": 27423.58, + "end": 27426.2, + "probability": 0.9907 + }, + { + "start": 27426.52, + "end": 27429.98, + "probability": 0.6789 + }, + { + "start": 27430.18, + "end": 27433.08, + "probability": 0.6746 + }, + { + "start": 27433.1, + "end": 27435.94, + "probability": 0.9621 + }, + { + "start": 27436.32, + "end": 27438.38, + "probability": 0.9762 + }, + { + "start": 27439.3, + "end": 27441.3, + "probability": 0.7876 + }, + { + "start": 27442.1, + "end": 27445.18, + "probability": 0.9883 + }, + { + "start": 27445.66, + "end": 27447.72, + "probability": 0.9844 + }, + { + "start": 27447.86, + "end": 27450.46, + "probability": 0.9639 + }, + { + "start": 27450.7, + "end": 27453.4, + "probability": 0.6262 + }, + { + "start": 27454.2, + "end": 27455.84, + "probability": 0.7932 + }, + { + "start": 27456.78, + "end": 27458.72, + "probability": 0.9718 + }, + { + "start": 27459.54, + "end": 27461.24, + "probability": 0.9565 + }, + { + "start": 27461.62, + "end": 27464.36, + "probability": 0.9736 + }, + { + "start": 27464.74, + "end": 27466.8, + "probability": 0.9836 + }, + { + "start": 27467.58, + "end": 27469.38, + "probability": 0.9902 + }, + { + "start": 27469.98, + "end": 27472.1, + "probability": 0.9921 + }, + { + "start": 27472.54, + "end": 27476.2, + "probability": 0.9603 + }, + { + "start": 27476.22, + "end": 27478.72, + "probability": 0.6786 + }, + { + "start": 27479.54, + "end": 27484.78, + "probability": 0.9054 + }, + { + "start": 27485.39, + "end": 27488.28, + "probability": 0.8529 + }, + { + "start": 27489.02, + "end": 27491.28, + "probability": 0.9705 + }, + { + "start": 27491.98, + "end": 27497.44, + "probability": 0.9812 + }, + { + "start": 27498.38, + "end": 27500.3, + "probability": 0.6801 + }, + { + "start": 27501.74, + "end": 27504.06, + "probability": 0.9702 + }, + { + "start": 27505.54, + "end": 27509.1, + "probability": 0.907 + }, + { + "start": 27509.36, + "end": 27511.9, + "probability": 0.9478 + }, + { + "start": 27512.38, + "end": 27514.28, + "probability": 0.8898 + }, + { + "start": 27515.0, + "end": 27517.06, + "probability": 0.5653 + }, + { + "start": 27517.88, + "end": 27523.1, + "probability": 0.9396 + }, + { + "start": 27523.64, + "end": 27528.24, + "probability": 0.7452 + }, + { + "start": 27529.02, + "end": 27530.76, + "probability": 0.9498 + }, + { + "start": 27531.7, + "end": 27538.18, + "probability": 0.9688 + }, + { + "start": 27541.34, + "end": 27545.84, + "probability": 0.4006 + }, + { + "start": 27545.84, + "end": 27547.79, + "probability": 0.0538 + }, + { + "start": 27548.08, + "end": 27550.44, + "probability": 0.0817 + }, + { + "start": 27550.44, + "end": 27552.04, + "probability": 0.0328 + }, + { + "start": 27571.14, + "end": 27573.94, + "probability": 0.0884 + }, + { + "start": 27575.82, + "end": 27581.02, + "probability": 0.7343 + }, + { + "start": 27582.26, + "end": 27585.02, + "probability": 0.944 + }, + { + "start": 27586.54, + "end": 27589.36, + "probability": 0.8928 + }, + { + "start": 27590.14, + "end": 27592.32, + "probability": 0.8423 + }, + { + "start": 27593.5, + "end": 27603.8, + "probability": 0.9626 + }, + { + "start": 27604.4, + "end": 27606.42, + "probability": 0.8914 + }, + { + "start": 27607.26, + "end": 27609.9, + "probability": 0.9655 + }, + { + "start": 27611.24, + "end": 27617.84, + "probability": 0.9668 + }, + { + "start": 27619.18, + "end": 27621.56, + "probability": 0.7094 + }, + { + "start": 27622.6, + "end": 27627.5, + "probability": 0.9216 + }, + { + "start": 27628.26, + "end": 27630.64, + "probability": 0.9835 + }, + { + "start": 27631.34, + "end": 27633.6, + "probability": 0.9653 + }, + { + "start": 27635.68, + "end": 27642.36, + "probability": 0.9443 + }, + { + "start": 27643.86, + "end": 27650.8, + "probability": 0.7271 + }, + { + "start": 27651.6, + "end": 27653.88, + "probability": 0.9227 + }, + { + "start": 27654.68, + "end": 27657.16, + "probability": 0.8121 + }, + { + "start": 27657.8, + "end": 27660.92, + "probability": 0.8397 + }, + { + "start": 27661.56, + "end": 27663.58, + "probability": 0.9144 + }, + { + "start": 27664.98, + "end": 27670.44, + "probability": 0.9174 + }, + { + "start": 27671.7, + "end": 27674.04, + "probability": 0.9606 + }, + { + "start": 27674.8, + "end": 27676.82, + "probability": 0.8097 + }, + { + "start": 27677.86, + "end": 27679.66, + "probability": 0.9541 + }, + { + "start": 27680.66, + "end": 27681.24, + "probability": 0.9803 + }, + { + "start": 27681.76, + "end": 27682.72, + "probability": 0.9578 + }, + { + "start": 27683.48, + "end": 27685.72, + "probability": 0.9553 + }, + { + "start": 27686.44, + "end": 27688.98, + "probability": 0.9601 + }, + { + "start": 27689.74, + "end": 27695.48, + "probability": 0.9744 + }, + { + "start": 27697.22, + "end": 27698.5, + "probability": 0.9769 + }, + { + "start": 27699.14, + "end": 27705.4, + "probability": 0.7359 + }, + { + "start": 27706.4, + "end": 27711.02, + "probability": 0.7389 + }, + { + "start": 27711.96, + "end": 27713.9, + "probability": 0.9793 + }, + { + "start": 27714.62, + "end": 27716.9, + "probability": 0.9831 + }, + { + "start": 27717.3, + "end": 27720.4, + "probability": 0.695 + }, + { + "start": 27721.14, + "end": 27723.5, + "probability": 0.8969 + }, + { + "start": 27724.14, + "end": 27726.84, + "probability": 0.8999 + }, + { + "start": 27727.7, + "end": 27729.86, + "probability": 0.9552 + }, + { + "start": 27730.6, + "end": 27732.74, + "probability": 0.9915 + }, + { + "start": 27733.64, + "end": 27735.74, + "probability": 0.9954 + }, + { + "start": 27736.32, + "end": 27736.82, + "probability": 0.966 + }, + { + "start": 27737.34, + "end": 27743.1, + "probability": 0.9743 + }, + { + "start": 27743.78, + "end": 27745.76, + "probability": 0.8326 + }, + { + "start": 27746.5, + "end": 27749.82, + "probability": 0.6188 + }, + { + "start": 27750.64, + "end": 27753.46, + "probability": 0.7796 + }, + { + "start": 27753.48, + "end": 27755.8, + "probability": 0.8058 + }, + { + "start": 27880.87, + "end": 27881.64, + "probability": 0.1428 + }, + { + "start": 27881.64, + "end": 27885.06, + "probability": 0.012 + }, + { + "start": 27885.06, + "end": 27885.06, + "probability": 0.0122 + }, + { + "start": 27885.06, + "end": 27885.06, + "probability": 0.0716 + }, + { + "start": 27885.06, + "end": 27885.06, + "probability": 0.0125 + }, + { + "start": 27916.58, + "end": 27917.56, + "probability": 0.0465 + }, + { + "start": 27917.56, + "end": 27918.62, + "probability": 0.0828 + }, + { + "start": 27919.54, + "end": 27923.14, + "probability": 0.0474 + }, + { + "start": 32133.0, + "end": 32133.0, + "probability": 0.0 + }, + { + "start": 32133.0, + "end": 32133.0, + "probability": 0.0 + }, + { + "start": 32133.0, + "end": 32133.0, + "probability": 0.0 + }, + { + "start": 32133.0, + "end": 32133.0, + "probability": 0.0 + }, + { + "start": 32133.0, + "end": 32133.0, + "probability": 0.0 + }, + { + "start": 32133.0, + "end": 32133.0, + "probability": 0.0 + }, + { + "start": 32133.0, + "end": 32133.0, + "probability": 0.0 + }, + { + "start": 32133.0, + "end": 32133.0, + "probability": 0.0 + }, + { + "start": 32133.0, + "end": 32133.0, + "probability": 0.0 + }, + { + "start": 32133.0, + "end": 32133.0, + "probability": 0.0 + }, + { + "start": 32133.0, + "end": 32133.0, + "probability": 0.0 + }, + { + "start": 32133.0, + "end": 32133.0, + "probability": 0.0 + }, + { + "start": 32133.49, + "end": 32134.74, + "probability": 0.088 + }, + { + "start": 32134.74, + "end": 32134.74, + "probability": 0.2496 + }, + { + "start": 32134.74, + "end": 32136.52, + "probability": 0.6555 + }, + { + "start": 32150.14, + "end": 32150.7, + "probability": 0.2438 + }, + { + "start": 32150.72, + "end": 32151.44, + "probability": 0.2976 + }, + { + "start": 32152.68, + "end": 32154.13, + "probability": 0.8085 + }, + { + "start": 32154.36, + "end": 32157.08, + "probability": 0.7809 + }, + { + "start": 32157.18, + "end": 32160.1, + "probability": 0.4398 + }, + { + "start": 32160.1, + "end": 32163.54, + "probability": 0.9067 + }, + { + "start": 32163.54, + "end": 32166.48, + "probability": 0.9974 + }, + { + "start": 32167.24, + "end": 32168.9, + "probability": 0.5091 + }, + { + "start": 32169.4, + "end": 32171.18, + "probability": 0.9635 + }, + { + "start": 32171.34, + "end": 32173.34, + "probability": 0.9888 + }, + { + "start": 32173.68, + "end": 32175.54, + "probability": 0.8784 + }, + { + "start": 32175.82, + "end": 32179.08, + "probability": 0.9723 + }, + { + "start": 32180.08, + "end": 32181.38, + "probability": 0.6988 + }, + { + "start": 32181.38, + "end": 32182.1, + "probability": 0.6176 + }, + { + "start": 32182.22, + "end": 32182.94, + "probability": 0.7978 + }, + { + "start": 32183.08, + "end": 32185.98, + "probability": 0.8881 + }, + { + "start": 32186.14, + "end": 32189.14, + "probability": 0.3336 + }, + { + "start": 32189.14, + "end": 32193.12, + "probability": 0.9592 + }, + { + "start": 32193.6, + "end": 32194.64, + "probability": 0.9368 + }, + { + "start": 32196.12, + "end": 32196.36, + "probability": 0.6658 + }, + { + "start": 32196.5, + "end": 32200.06, + "probability": 0.8793 + }, + { + "start": 32200.62, + "end": 32203.2, + "probability": 0.6723 + }, + { + "start": 32203.36, + "end": 32205.06, + "probability": 0.9742 + }, + { + "start": 32205.14, + "end": 32205.82, + "probability": 0.9122 + }, + { + "start": 32205.9, + "end": 32207.88, + "probability": 0.5097 + }, + { + "start": 32208.36, + "end": 32210.4, + "probability": 0.7861 + }, + { + "start": 32210.52, + "end": 32212.56, + "probability": 0.6855 + } + ], + "segments_count": 10861, + "words_count": 51607, + "avg_words_per_segment": 4.7516, + "avg_segment_duration": 1.8961, + "avg_words_per_minute": 96.0477, + "plenum_id": "42000", + "duration": 32238.37, + "title": null, + "plenum_date": "2015-05-11" +} \ No newline at end of file