diff --git "a/4300/metadata.json" "b/4300/metadata.json" new file mode 100644--- /dev/null +++ "b/4300/metadata.json" @@ -0,0 +1,44712 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "4300", + "quality_score": 0.8296, + "per_segment_quality_scores": [ + { + "start": 38.44, + "end": 42.06, + "probability": 0.8294 + }, + { + "start": 42.96, + "end": 45.02, + "probability": 0.7969 + }, + { + "start": 45.82, + "end": 48.28, + "probability": 0.5294 + }, + { + "start": 49.24, + "end": 53.41, + "probability": 0.8574 + }, + { + "start": 53.9, + "end": 55.6, + "probability": 0.9855 + }, + { + "start": 56.92, + "end": 58.62, + "probability": 0.8694 + }, + { + "start": 59.24, + "end": 61.89, + "probability": 0.9583 + }, + { + "start": 62.38, + "end": 65.2, + "probability": 0.7003 + }, + { + "start": 65.38, + "end": 66.2, + "probability": 0.8712 + }, + { + "start": 66.74, + "end": 69.5, + "probability": 0.9202 + }, + { + "start": 71.06, + "end": 72.0, + "probability": 0.795 + }, + { + "start": 72.68, + "end": 77.89, + "probability": 0.7996 + }, + { + "start": 79.22, + "end": 81.06, + "probability": 0.9651 + }, + { + "start": 81.74, + "end": 86.94, + "probability": 0.9688 + }, + { + "start": 87.9, + "end": 90.84, + "probability": 0.9227 + }, + { + "start": 91.52, + "end": 92.23, + "probability": 0.5439 + }, + { + "start": 93.84, + "end": 98.36, + "probability": 0.9395 + }, + { + "start": 99.4, + "end": 101.36, + "probability": 0.6587 + }, + { + "start": 101.44, + "end": 102.4, + "probability": 0.5288 + }, + { + "start": 102.4, + "end": 105.46, + "probability": 0.9097 + }, + { + "start": 105.52, + "end": 108.54, + "probability": 0.9235 + }, + { + "start": 108.54, + "end": 113.0, + "probability": 0.7855 + }, + { + "start": 113.62, + "end": 116.38, + "probability": 0.9656 + }, + { + "start": 117.12, + "end": 120.44, + "probability": 0.9742 + }, + { + "start": 120.56, + "end": 121.9, + "probability": 0.9544 + }, + { + "start": 122.56, + "end": 123.44, + "probability": 0.6427 + }, + { + "start": 124.18, + "end": 128.96, + "probability": 0.9902 + }, + { + "start": 129.58, + "end": 129.98, + "probability": 0.5118 + }, + { + "start": 130.06, + "end": 130.66, + "probability": 0.379 + }, + { + "start": 130.96, + "end": 132.28, + "probability": 0.9311 + }, + { + "start": 132.72, + "end": 136.54, + "probability": 0.9756 + }, + { + "start": 136.82, + "end": 139.54, + "probability": 0.5 + }, + { + "start": 139.54, + "end": 141.22, + "probability": 0.4077 + }, + { + "start": 142.56, + "end": 145.18, + "probability": 0.7029 + }, + { + "start": 146.14, + "end": 150.82, + "probability": 0.8129 + }, + { + "start": 151.74, + "end": 153.54, + "probability": 0.8517 + }, + { + "start": 154.96, + "end": 159.56, + "probability": 0.9568 + }, + { + "start": 159.78, + "end": 161.84, + "probability": 0.8221 + }, + { + "start": 162.84, + "end": 166.44, + "probability": 0.8644 + }, + { + "start": 167.06, + "end": 170.72, + "probability": 0.9946 + }, + { + "start": 172.58, + "end": 177.26, + "probability": 0.851 + }, + { + "start": 178.38, + "end": 182.04, + "probability": 0.9888 + }, + { + "start": 182.72, + "end": 184.56, + "probability": 0.8124 + }, + { + "start": 184.78, + "end": 188.48, + "probability": 0.9934 + }, + { + "start": 189.9, + "end": 193.6, + "probability": 0.9554 + }, + { + "start": 193.6, + "end": 196.94, + "probability": 0.9951 + }, + { + "start": 197.66, + "end": 198.86, + "probability": 0.975 + }, + { + "start": 199.9, + "end": 201.5, + "probability": 0.8034 + }, + { + "start": 202.0, + "end": 203.54, + "probability": 0.9299 + }, + { + "start": 203.72, + "end": 204.88, + "probability": 0.9333 + }, + { + "start": 205.88, + "end": 206.74, + "probability": 0.9432 + }, + { + "start": 207.56, + "end": 211.22, + "probability": 0.744 + }, + { + "start": 211.42, + "end": 214.34, + "probability": 0.9432 + }, + { + "start": 215.36, + "end": 219.52, + "probability": 0.994 + }, + { + "start": 220.88, + "end": 225.62, + "probability": 0.9321 + }, + { + "start": 225.72, + "end": 229.16, + "probability": 0.6722 + }, + { + "start": 230.5, + "end": 233.77, + "probability": 0.9328 + }, + { + "start": 234.52, + "end": 237.98, + "probability": 0.9943 + }, + { + "start": 238.94, + "end": 242.2, + "probability": 0.8432 + }, + { + "start": 243.16, + "end": 247.08, + "probability": 0.9856 + }, + { + "start": 247.74, + "end": 249.86, + "probability": 0.9954 + }, + { + "start": 250.46, + "end": 254.2, + "probability": 0.8 + }, + { + "start": 254.76, + "end": 258.22, + "probability": 0.9621 + }, + { + "start": 258.74, + "end": 260.68, + "probability": 0.8577 + }, + { + "start": 261.04, + "end": 261.3, + "probability": 0.7981 + }, + { + "start": 261.86, + "end": 262.16, + "probability": 0.3279 + }, + { + "start": 262.2, + "end": 263.94, + "probability": 0.7776 + }, + { + "start": 264.78, + "end": 266.56, + "probability": 0.967 + }, + { + "start": 267.06, + "end": 269.2, + "probability": 0.9465 + }, + { + "start": 270.66, + "end": 271.38, + "probability": 0.7473 + }, + { + "start": 272.36, + "end": 274.86, + "probability": 0.9885 + }, + { + "start": 275.36, + "end": 277.78, + "probability": 0.7583 + }, + { + "start": 279.0, + "end": 282.68, + "probability": 0.9642 + }, + { + "start": 283.82, + "end": 286.72, + "probability": 0.964 + }, + { + "start": 287.74, + "end": 290.02, + "probability": 0.6588 + }, + { + "start": 290.56, + "end": 293.58, + "probability": 0.8865 + }, + { + "start": 294.26, + "end": 296.93, + "probability": 0.7924 + }, + { + "start": 297.96, + "end": 298.22, + "probability": 0.7081 + }, + { + "start": 298.26, + "end": 304.74, + "probability": 0.9233 + }, + { + "start": 305.48, + "end": 309.12, + "probability": 0.7724 + }, + { + "start": 309.24, + "end": 314.86, + "probability": 0.3338 + }, + { + "start": 314.86, + "end": 320.82, + "probability": 0.7317 + }, + { + "start": 321.64, + "end": 324.06, + "probability": 0.7175 + }, + { + "start": 324.76, + "end": 330.19, + "probability": 0.571 + }, + { + "start": 330.98, + "end": 333.5, + "probability": 0.7367 + }, + { + "start": 334.14, + "end": 337.18, + "probability": 0.8044 + }, + { + "start": 337.7, + "end": 340.46, + "probability": 0.339 + }, + { + "start": 341.11, + "end": 341.18, + "probability": 0.2498 + }, + { + "start": 341.58, + "end": 344.96, + "probability": 0.9041 + }, + { + "start": 345.1, + "end": 345.58, + "probability": 0.3335 + }, + { + "start": 346.06, + "end": 347.8, + "probability": 0.8763 + }, + { + "start": 347.86, + "end": 348.7, + "probability": 0.6065 + }, + { + "start": 348.84, + "end": 350.16, + "probability": 0.9039 + }, + { + "start": 350.6, + "end": 352.28, + "probability": 0.6309 + }, + { + "start": 353.38, + "end": 355.18, + "probability": 0.7041 + }, + { + "start": 355.76, + "end": 359.16, + "probability": 0.5371 + }, + { + "start": 359.28, + "end": 360.32, + "probability": 0.5278 + }, + { + "start": 360.62, + "end": 361.68, + "probability": 0.8832 + }, + { + "start": 362.18, + "end": 365.86, + "probability": 0.9919 + }, + { + "start": 366.6, + "end": 368.56, + "probability": 0.8102 + }, + { + "start": 368.8, + "end": 369.66, + "probability": 0.6992 + }, + { + "start": 370.12, + "end": 370.62, + "probability": 0.3156 + }, + { + "start": 370.74, + "end": 371.86, + "probability": 0.9375 + }, + { + "start": 372.22, + "end": 378.84, + "probability": 0.9351 + }, + { + "start": 380.56, + "end": 383.54, + "probability": 0.7258 + }, + { + "start": 384.08, + "end": 384.82, + "probability": 0.6342 + }, + { + "start": 385.0, + "end": 387.06, + "probability": 0.9678 + }, + { + "start": 387.14, + "end": 391.44, + "probability": 0.9832 + }, + { + "start": 392.18, + "end": 394.86, + "probability": 0.9783 + }, + { + "start": 394.86, + "end": 399.7, + "probability": 0.7804 + }, + { + "start": 399.82, + "end": 400.88, + "probability": 0.7345 + }, + { + "start": 400.92, + "end": 401.8, + "probability": 0.8983 + }, + { + "start": 402.36, + "end": 402.56, + "probability": 0.8425 + }, + { + "start": 403.3, + "end": 404.96, + "probability": 0.5578 + }, + { + "start": 404.98, + "end": 407.58, + "probability": 0.9544 + }, + { + "start": 407.62, + "end": 408.07, + "probability": 0.6309 + }, + { + "start": 409.0, + "end": 410.14, + "probability": 0.7555 + }, + { + "start": 410.48, + "end": 412.86, + "probability": 0.9978 + }, + { + "start": 413.44, + "end": 416.42, + "probability": 0.9393 + }, + { + "start": 416.42, + "end": 419.22, + "probability": 0.7849 + }, + { + "start": 420.24, + "end": 423.26, + "probability": 0.7828 + }, + { + "start": 424.34, + "end": 427.96, + "probability": 0.9122 + }, + { + "start": 428.74, + "end": 433.46, + "probability": 0.9573 + }, + { + "start": 433.64, + "end": 438.14, + "probability": 0.8191 + }, + { + "start": 438.66, + "end": 440.0, + "probability": 0.8682 + }, + { + "start": 440.08, + "end": 442.22, + "probability": 0.9756 + }, + { + "start": 442.48, + "end": 444.36, + "probability": 0.9143 + }, + { + "start": 445.56, + "end": 447.88, + "probability": 0.7261 + }, + { + "start": 448.5, + "end": 453.9, + "probability": 0.9826 + }, + { + "start": 454.58, + "end": 458.42, + "probability": 0.9997 + }, + { + "start": 459.18, + "end": 462.55, + "probability": 0.7964 + }, + { + "start": 462.8, + "end": 464.98, + "probability": 0.9886 + }, + { + "start": 464.98, + "end": 468.88, + "probability": 0.9764 + }, + { + "start": 469.04, + "end": 472.62, + "probability": 0.9977 + }, + { + "start": 473.34, + "end": 474.72, + "probability": 0.4646 + }, + { + "start": 474.76, + "end": 477.16, + "probability": 0.4577 + }, + { + "start": 477.7, + "end": 478.2, + "probability": 0.6297 + }, + { + "start": 478.28, + "end": 479.34, + "probability": 0.566 + }, + { + "start": 480.06, + "end": 480.7, + "probability": 0.7104 + }, + { + "start": 482.0, + "end": 485.46, + "probability": 0.8848 + }, + { + "start": 486.9, + "end": 491.62, + "probability": 0.8337 + }, + { + "start": 491.94, + "end": 492.94, + "probability": 0.8448 + }, + { + "start": 493.64, + "end": 495.74, + "probability": 0.6044 + }, + { + "start": 496.34, + "end": 499.6, + "probability": 0.9581 + }, + { + "start": 500.38, + "end": 500.66, + "probability": 0.1656 + }, + { + "start": 500.84, + "end": 502.48, + "probability": 0.688 + }, + { + "start": 503.18, + "end": 503.96, + "probability": 0.9092 + }, + { + "start": 505.98, + "end": 509.26, + "probability": 0.9404 + }, + { + "start": 510.46, + "end": 513.56, + "probability": 0.9766 + }, + { + "start": 514.92, + "end": 518.22, + "probability": 0.8775 + }, + { + "start": 518.22, + "end": 521.56, + "probability": 0.6489 + }, + { + "start": 522.16, + "end": 524.74, + "probability": 0.855 + }, + { + "start": 525.44, + "end": 526.46, + "probability": 0.5979 + }, + { + "start": 526.8, + "end": 530.26, + "probability": 0.9469 + }, + { + "start": 530.26, + "end": 532.28, + "probability": 0.6702 + }, + { + "start": 532.88, + "end": 536.24, + "probability": 0.7102 + }, + { + "start": 536.36, + "end": 538.72, + "probability": 0.9329 + }, + { + "start": 538.82, + "end": 541.32, + "probability": 0.9946 + }, + { + "start": 541.52, + "end": 542.58, + "probability": 0.5473 + }, + { + "start": 543.06, + "end": 543.61, + "probability": 0.8253 + }, + { + "start": 544.32, + "end": 547.12, + "probability": 0.8093 + }, + { + "start": 547.72, + "end": 550.39, + "probability": 0.9599 + }, + { + "start": 552.4, + "end": 554.72, + "probability": 0.7939 + }, + { + "start": 554.82, + "end": 558.4, + "probability": 0.9796 + }, + { + "start": 558.58, + "end": 560.46, + "probability": 0.0199 + }, + { + "start": 562.88, + "end": 565.62, + "probability": 0.5006 + }, + { + "start": 565.72, + "end": 566.69, + "probability": 0.9834 + }, + { + "start": 567.46, + "end": 570.0, + "probability": 0.9595 + }, + { + "start": 572.53, + "end": 573.14, + "probability": 0.9763 + }, + { + "start": 573.26, + "end": 575.42, + "probability": 0.9386 + }, + { + "start": 576.94, + "end": 578.92, + "probability": 0.9924 + }, + { + "start": 579.92, + "end": 581.48, + "probability": 0.8054 + }, + { + "start": 581.72, + "end": 583.52, + "probability": 0.6887 + }, + { + "start": 583.58, + "end": 586.88, + "probability": 0.9911 + }, + { + "start": 588.42, + "end": 589.92, + "probability": 0.9968 + }, + { + "start": 590.26, + "end": 591.61, + "probability": 0.8915 + }, + { + "start": 592.34, + "end": 594.86, + "probability": 0.5114 + }, + { + "start": 596.82, + "end": 597.28, + "probability": 0.5086 + }, + { + "start": 597.84, + "end": 599.1, + "probability": 0.8556 + }, + { + "start": 600.32, + "end": 600.75, + "probability": 0.998 + }, + { + "start": 602.19, + "end": 605.14, + "probability": 0.927 + }, + { + "start": 605.22, + "end": 610.82, + "probability": 0.9687 + }, + { + "start": 611.78, + "end": 612.5, + "probability": 0.9148 + }, + { + "start": 612.78, + "end": 614.02, + "probability": 0.8788 + }, + { + "start": 614.48, + "end": 615.16, + "probability": 0.6936 + }, + { + "start": 615.24, + "end": 616.81, + "probability": 0.9895 + }, + { + "start": 617.48, + "end": 618.98, + "probability": 0.9639 + }, + { + "start": 619.52, + "end": 620.46, + "probability": 0.9387 + }, + { + "start": 620.56, + "end": 622.49, + "probability": 0.9076 + }, + { + "start": 623.52, + "end": 624.36, + "probability": 0.4349 + }, + { + "start": 624.83, + "end": 625.7, + "probability": 0.8649 + }, + { + "start": 626.74, + "end": 628.32, + "probability": 0.9844 + }, + { + "start": 628.92, + "end": 629.75, + "probability": 0.7183 + }, + { + "start": 630.42, + "end": 634.42, + "probability": 0.962 + }, + { + "start": 635.02, + "end": 638.92, + "probability": 0.9814 + }, + { + "start": 639.58, + "end": 642.03, + "probability": 0.9884 + }, + { + "start": 642.24, + "end": 642.8, + "probability": 0.844 + }, + { + "start": 643.96, + "end": 645.74, + "probability": 0.7678 + }, + { + "start": 646.52, + "end": 646.8, + "probability": 0.2976 + }, + { + "start": 646.82, + "end": 648.16, + "probability": 0.7198 + }, + { + "start": 648.76, + "end": 649.0, + "probability": 0.4306 + }, + { + "start": 649.62, + "end": 650.46, + "probability": 0.3426 + }, + { + "start": 650.56, + "end": 651.06, + "probability": 0.1005 + }, + { + "start": 651.14, + "end": 651.66, + "probability": 0.8172 + }, + { + "start": 651.84, + "end": 653.71, + "probability": 0.9868 + }, + { + "start": 654.83, + "end": 657.68, + "probability": 0.6213 + }, + { + "start": 658.68, + "end": 664.02, + "probability": 0.937 + }, + { + "start": 665.24, + "end": 671.94, + "probability": 0.9724 + }, + { + "start": 672.3, + "end": 676.3, + "probability": 0.9288 + }, + { + "start": 676.86, + "end": 678.52, + "probability": 0.9847 + }, + { + "start": 678.74, + "end": 679.94, + "probability": 0.5754 + }, + { + "start": 680.6, + "end": 683.28, + "probability": 0.874 + }, + { + "start": 683.88, + "end": 684.64, + "probability": 0.818 + }, + { + "start": 685.38, + "end": 686.26, + "probability": 0.7503 + }, + { + "start": 686.8, + "end": 689.84, + "probability": 0.9599 + }, + { + "start": 690.4, + "end": 694.84, + "probability": 0.9812 + }, + { + "start": 695.1, + "end": 695.84, + "probability": 0.9624 + }, + { + "start": 696.44, + "end": 696.92, + "probability": 0.3305 + }, + { + "start": 697.92, + "end": 698.34, + "probability": 0.8293 + }, + { + "start": 699.44, + "end": 702.72, + "probability": 0.7133 + }, + { + "start": 703.22, + "end": 705.38, + "probability": 0.7121 + }, + { + "start": 705.8, + "end": 709.88, + "probability": 0.9525 + }, + { + "start": 711.18, + "end": 713.28, + "probability": 0.7083 + }, + { + "start": 713.48, + "end": 715.1, + "probability": 0.995 + }, + { + "start": 715.7, + "end": 718.99, + "probability": 0.974 + }, + { + "start": 720.28, + "end": 722.04, + "probability": 0.9443 + }, + { + "start": 722.56, + "end": 726.81, + "probability": 0.9475 + }, + { + "start": 727.46, + "end": 729.22, + "probability": 0.5988 + }, + { + "start": 731.29, + "end": 732.42, + "probability": 0.5738 + }, + { + "start": 732.98, + "end": 735.48, + "probability": 0.9298 + }, + { + "start": 735.64, + "end": 737.12, + "probability": 0.748 + }, + { + "start": 737.58, + "end": 737.92, + "probability": 0.7576 + }, + { + "start": 738.06, + "end": 738.26, + "probability": 0.448 + }, + { + "start": 738.36, + "end": 738.86, + "probability": 0.8844 + }, + { + "start": 738.92, + "end": 740.92, + "probability": 0.9901 + }, + { + "start": 741.12, + "end": 743.14, + "probability": 0.9912 + }, + { + "start": 743.54, + "end": 746.5, + "probability": 0.8851 + }, + { + "start": 746.62, + "end": 747.64, + "probability": 0.4562 + }, + { + "start": 747.96, + "end": 748.38, + "probability": 0.5423 + }, + { + "start": 748.44, + "end": 749.04, + "probability": 0.8928 + }, + { + "start": 749.1, + "end": 750.96, + "probability": 0.8212 + }, + { + "start": 751.52, + "end": 757.18, + "probability": 0.8931 + }, + { + "start": 757.2, + "end": 759.46, + "probability": 0.5801 + }, + { + "start": 759.54, + "end": 759.94, + "probability": 0.6424 + }, + { + "start": 760.46, + "end": 761.8, + "probability": 0.9719 + }, + { + "start": 762.28, + "end": 765.34, + "probability": 0.9586 + }, + { + "start": 765.5, + "end": 766.4, + "probability": 0.862 + }, + { + "start": 767.3, + "end": 769.12, + "probability": 0.9974 + }, + { + "start": 769.52, + "end": 770.56, + "probability": 0.9041 + }, + { + "start": 771.12, + "end": 776.14, + "probability": 0.7833 + }, + { + "start": 776.36, + "end": 779.44, + "probability": 0.8559 + }, + { + "start": 779.9, + "end": 780.58, + "probability": 0.7005 + }, + { + "start": 780.68, + "end": 781.14, + "probability": 0.7822 + }, + { + "start": 781.5, + "end": 783.39, + "probability": 0.979 + }, + { + "start": 784.64, + "end": 787.36, + "probability": 0.9993 + }, + { + "start": 787.92, + "end": 790.73, + "probability": 0.6606 + }, + { + "start": 791.42, + "end": 793.54, + "probability": 0.7402 + }, + { + "start": 793.88, + "end": 794.24, + "probability": 0.8293 + }, + { + "start": 794.38, + "end": 798.21, + "probability": 0.967 + }, + { + "start": 798.78, + "end": 801.66, + "probability": 0.9636 + }, + { + "start": 801.66, + "end": 802.8, + "probability": 0.4825 + }, + { + "start": 803.56, + "end": 805.76, + "probability": 0.6279 + }, + { + "start": 806.06, + "end": 806.84, + "probability": 0.5931 + }, + { + "start": 806.84, + "end": 808.44, + "probability": 0.403 + }, + { + "start": 809.2, + "end": 809.7, + "probability": 0.3159 + }, + { + "start": 809.74, + "end": 810.38, + "probability": 0.6416 + }, + { + "start": 815.12, + "end": 815.8, + "probability": 0.5254 + }, + { + "start": 816.04, + "end": 816.92, + "probability": 0.7549 + }, + { + "start": 817.12, + "end": 817.64, + "probability": 0.8622 + }, + { + "start": 817.76, + "end": 820.98, + "probability": 0.9842 + }, + { + "start": 821.18, + "end": 821.42, + "probability": 0.7937 + }, + { + "start": 821.46, + "end": 822.04, + "probability": 0.8959 + }, + { + "start": 823.22, + "end": 824.76, + "probability": 0.5235 + }, + { + "start": 825.02, + "end": 825.42, + "probability": 0.923 + }, + { + "start": 826.22, + "end": 830.44, + "probability": 0.5958 + }, + { + "start": 831.22, + "end": 832.82, + "probability": 0.618 + }, + { + "start": 834.0, + "end": 836.62, + "probability": 0.7864 + }, + { + "start": 836.78, + "end": 838.76, + "probability": 0.9904 + }, + { + "start": 839.02, + "end": 840.28, + "probability": 0.8881 + }, + { + "start": 840.92, + "end": 843.0, + "probability": 0.7462 + }, + { + "start": 845.54, + "end": 846.94, + "probability": 0.7683 + }, + { + "start": 849.63, + "end": 855.42, + "probability": 0.9827 + }, + { + "start": 857.4, + "end": 860.48, + "probability": 0.9695 + }, + { + "start": 860.72, + "end": 863.92, + "probability": 0.9567 + }, + { + "start": 864.04, + "end": 865.32, + "probability": 0.7468 + }, + { + "start": 865.94, + "end": 866.62, + "probability": 0.7362 + }, + { + "start": 866.76, + "end": 868.78, + "probability": 0.8298 + }, + { + "start": 869.1, + "end": 874.06, + "probability": 0.9937 + }, + { + "start": 874.98, + "end": 882.5, + "probability": 0.9887 + }, + { + "start": 883.16, + "end": 885.46, + "probability": 0.989 + }, + { + "start": 886.02, + "end": 887.76, + "probability": 0.9158 + }, + { + "start": 887.94, + "end": 888.12, + "probability": 0.6655 + }, + { + "start": 888.24, + "end": 890.88, + "probability": 0.9573 + }, + { + "start": 890.92, + "end": 891.8, + "probability": 0.8599 + }, + { + "start": 892.66, + "end": 896.18, + "probability": 0.9958 + }, + { + "start": 897.04, + "end": 898.72, + "probability": 0.9969 + }, + { + "start": 899.52, + "end": 903.38, + "probability": 0.9087 + }, + { + "start": 903.52, + "end": 907.58, + "probability": 0.7566 + }, + { + "start": 907.68, + "end": 910.94, + "probability": 0.9889 + }, + { + "start": 911.72, + "end": 914.16, + "probability": 0.9456 + }, + { + "start": 914.16, + "end": 916.98, + "probability": 0.9933 + }, + { + "start": 917.72, + "end": 923.34, + "probability": 0.9971 + }, + { + "start": 923.34, + "end": 927.38, + "probability": 0.9897 + }, + { + "start": 927.62, + "end": 928.54, + "probability": 0.3692 + }, + { + "start": 929.24, + "end": 932.76, + "probability": 0.9907 + }, + { + "start": 932.78, + "end": 934.82, + "probability": 0.711 + }, + { + "start": 934.86, + "end": 935.88, + "probability": 0.7901 + }, + { + "start": 936.38, + "end": 939.94, + "probability": 0.7277 + }, + { + "start": 940.14, + "end": 944.08, + "probability": 0.9694 + }, + { + "start": 944.64, + "end": 945.04, + "probability": 0.0666 + }, + { + "start": 946.58, + "end": 948.98, + "probability": 0.5603 + }, + { + "start": 949.12, + "end": 950.91, + "probability": 0.6481 + }, + { + "start": 951.02, + "end": 951.64, + "probability": 0.3636 + }, + { + "start": 951.64, + "end": 951.74, + "probability": 0.4202 + }, + { + "start": 952.84, + "end": 954.54, + "probability": 0.947 + }, + { + "start": 955.1, + "end": 955.46, + "probability": 0.7384 + }, + { + "start": 955.52, + "end": 956.32, + "probability": 0.6429 + }, + { + "start": 957.48, + "end": 959.46, + "probability": 0.9697 + }, + { + "start": 959.9, + "end": 960.82, + "probability": 0.6022 + }, + { + "start": 962.19, + "end": 962.56, + "probability": 0.6851 + }, + { + "start": 963.48, + "end": 964.62, + "probability": 0.5396 + }, + { + "start": 966.34, + "end": 968.3, + "probability": 0.9944 + }, + { + "start": 968.56, + "end": 969.3, + "probability": 0.8927 + }, + { + "start": 970.06, + "end": 971.02, + "probability": 0.9727 + }, + { + "start": 971.43, + "end": 978.68, + "probability": 0.9668 + }, + { + "start": 978.8, + "end": 979.14, + "probability": 0.5614 + }, + { + "start": 979.24, + "end": 982.08, + "probability": 0.8301 + }, + { + "start": 982.28, + "end": 983.4, + "probability": 0.3622 + }, + { + "start": 983.58, + "end": 985.56, + "probability": 0.4696 + }, + { + "start": 987.0, + "end": 992.58, + "probability": 0.9363 + }, + { + "start": 992.82, + "end": 995.42, + "probability": 0.989 + }, + { + "start": 995.66, + "end": 997.04, + "probability": 0.9084 + }, + { + "start": 998.46, + "end": 999.28, + "probability": 0.5008 + }, + { + "start": 1000.64, + "end": 1002.1, + "probability": 0.6515 + }, + { + "start": 1002.68, + "end": 1004.7, + "probability": 0.9641 + }, + { + "start": 1005.44, + "end": 1005.58, + "probability": 0.64 + }, + { + "start": 1005.8, + "end": 1007.3, + "probability": 0.9747 + }, + { + "start": 1007.34, + "end": 1007.98, + "probability": 0.9744 + }, + { + "start": 1008.22, + "end": 1009.87, + "probability": 0.9154 + }, + { + "start": 1010.58, + "end": 1011.62, + "probability": 0.5288 + }, + { + "start": 1011.62, + "end": 1011.99, + "probability": 0.7963 + }, + { + "start": 1013.1, + "end": 1016.76, + "probability": 0.8216 + }, + { + "start": 1017.16, + "end": 1018.7, + "probability": 0.9529 + }, + { + "start": 1019.62, + "end": 1022.82, + "probability": 0.9611 + }, + { + "start": 1023.74, + "end": 1028.48, + "probability": 0.9719 + }, + { + "start": 1029.7, + "end": 1031.94, + "probability": 0.6924 + }, + { + "start": 1032.44, + "end": 1032.62, + "probability": 0.6702 + }, + { + "start": 1032.76, + "end": 1034.08, + "probability": 0.9971 + }, + { + "start": 1034.22, + "end": 1035.08, + "probability": 0.453 + }, + { + "start": 1035.68, + "end": 1038.92, + "probability": 0.8403 + }, + { + "start": 1040.14, + "end": 1041.78, + "probability": 0.968 + }, + { + "start": 1043.24, + "end": 1043.8, + "probability": 0.9858 + }, + { + "start": 1046.02, + "end": 1046.68, + "probability": 0.8395 + }, + { + "start": 1047.7, + "end": 1050.12, + "probability": 0.8302 + }, + { + "start": 1050.52, + "end": 1051.8, + "probability": 0.9966 + }, + { + "start": 1052.47, + "end": 1055.12, + "probability": 0.9574 + }, + { + "start": 1056.42, + "end": 1057.28, + "probability": 0.9897 + }, + { + "start": 1059.72, + "end": 1061.0, + "probability": 0.9505 + }, + { + "start": 1061.58, + "end": 1063.18, + "probability": 0.8867 + }, + { + "start": 1064.36, + "end": 1070.12, + "probability": 0.9742 + }, + { + "start": 1070.62, + "end": 1071.12, + "probability": 0.6722 + }, + { + "start": 1071.98, + "end": 1076.1, + "probability": 0.8309 + }, + { + "start": 1077.4, + "end": 1077.92, + "probability": 0.4837 + }, + { + "start": 1078.22, + "end": 1079.72, + "probability": 0.9972 + }, + { + "start": 1080.94, + "end": 1081.94, + "probability": 0.9875 + }, + { + "start": 1082.5, + "end": 1083.66, + "probability": 0.9426 + }, + { + "start": 1084.34, + "end": 1085.7, + "probability": 0.9631 + }, + { + "start": 1086.48, + "end": 1087.38, + "probability": 0.5046 + }, + { + "start": 1089.88, + "end": 1094.48, + "probability": 0.9972 + }, + { + "start": 1095.16, + "end": 1096.56, + "probability": 0.7645 + }, + { + "start": 1096.92, + "end": 1098.9, + "probability": 0.9426 + }, + { + "start": 1099.64, + "end": 1101.86, + "probability": 0.9902 + }, + { + "start": 1103.9, + "end": 1105.82, + "probability": 0.2851 + }, + { + "start": 1106.76, + "end": 1107.56, + "probability": 0.7778 + }, + { + "start": 1108.08, + "end": 1109.78, + "probability": 0.8379 + }, + { + "start": 1109.96, + "end": 1110.72, + "probability": 0.6201 + }, + { + "start": 1111.82, + "end": 1114.74, + "probability": 0.8698 + }, + { + "start": 1116.02, + "end": 1117.84, + "probability": 0.949 + }, + { + "start": 1118.02, + "end": 1120.04, + "probability": 0.9486 + }, + { + "start": 1120.12, + "end": 1121.76, + "probability": 0.728 + }, + { + "start": 1122.28, + "end": 1125.16, + "probability": 0.8848 + }, + { + "start": 1125.86, + "end": 1127.76, + "probability": 0.9491 + }, + { + "start": 1130.18, + "end": 1130.8, + "probability": 0.5286 + }, + { + "start": 1130.82, + "end": 1134.08, + "probability": 0.9832 + }, + { + "start": 1134.56, + "end": 1135.68, + "probability": 0.8058 + }, + { + "start": 1135.78, + "end": 1137.78, + "probability": 0.9209 + }, + { + "start": 1138.46, + "end": 1140.66, + "probability": 0.9717 + }, + { + "start": 1140.8, + "end": 1141.62, + "probability": 0.6624 + }, + { + "start": 1142.24, + "end": 1143.01, + "probability": 0.2406 + }, + { + "start": 1143.12, + "end": 1144.0, + "probability": 0.957 + }, + { + "start": 1144.12, + "end": 1146.36, + "probability": 0.9813 + }, + { + "start": 1146.48, + "end": 1147.54, + "probability": 0.7177 + }, + { + "start": 1147.62, + "end": 1147.94, + "probability": 0.8901 + }, + { + "start": 1148.92, + "end": 1149.52, + "probability": 0.802 + }, + { + "start": 1150.16, + "end": 1150.7, + "probability": 0.8993 + }, + { + "start": 1150.8, + "end": 1152.76, + "probability": 0.9805 + }, + { + "start": 1153.64, + "end": 1155.14, + "probability": 0.9702 + }, + { + "start": 1155.82, + "end": 1160.8, + "probability": 0.8658 + }, + { + "start": 1161.32, + "end": 1165.94, + "probability": 0.7578 + }, + { + "start": 1166.48, + "end": 1169.0, + "probability": 0.8881 + }, + { + "start": 1170.82, + "end": 1172.44, + "probability": 0.8888 + }, + { + "start": 1173.02, + "end": 1178.88, + "probability": 0.7871 + }, + { + "start": 1179.28, + "end": 1179.62, + "probability": 0.4236 + }, + { + "start": 1179.94, + "end": 1184.6, + "probability": 0.7996 + }, + { + "start": 1185.22, + "end": 1189.28, + "probability": 0.742 + }, + { + "start": 1189.96, + "end": 1191.18, + "probability": 0.1132 + }, + { + "start": 1191.18, + "end": 1191.18, + "probability": 0.0776 + }, + { + "start": 1191.18, + "end": 1194.42, + "probability": 0.9834 + }, + { + "start": 1194.58, + "end": 1198.25, + "probability": 0.9465 + }, + { + "start": 1199.58, + "end": 1200.34, + "probability": 0.8757 + }, + { + "start": 1200.98, + "end": 1207.56, + "probability": 0.9927 + }, + { + "start": 1208.18, + "end": 1209.52, + "probability": 0.8223 + }, + { + "start": 1209.7, + "end": 1211.94, + "probability": 0.9773 + }, + { + "start": 1212.14, + "end": 1212.74, + "probability": 0.9388 + }, + { + "start": 1213.14, + "end": 1213.62, + "probability": 0.8359 + }, + { + "start": 1214.24, + "end": 1217.28, + "probability": 0.848 + }, + { + "start": 1217.74, + "end": 1219.84, + "probability": 0.998 + }, + { + "start": 1220.06, + "end": 1221.12, + "probability": 0.8843 + }, + { + "start": 1221.56, + "end": 1224.68, + "probability": 0.913 + }, + { + "start": 1225.48, + "end": 1227.82, + "probability": 0.7435 + }, + { + "start": 1228.0, + "end": 1229.46, + "probability": 0.7751 + }, + { + "start": 1229.76, + "end": 1232.0, + "probability": 0.9228 + }, + { + "start": 1232.6, + "end": 1233.3, + "probability": 0.9395 + }, + { + "start": 1234.02, + "end": 1234.68, + "probability": 0.8528 + }, + { + "start": 1235.24, + "end": 1242.26, + "probability": 0.9499 + }, + { + "start": 1242.36, + "end": 1242.96, + "probability": 0.3555 + }, + { + "start": 1243.74, + "end": 1244.78, + "probability": 0.5792 + }, + { + "start": 1244.9, + "end": 1253.46, + "probability": 0.9886 + }, + { + "start": 1253.96, + "end": 1260.0, + "probability": 0.7832 + }, + { + "start": 1260.74, + "end": 1262.74, + "probability": 0.7925 + }, + { + "start": 1264.02, + "end": 1266.96, + "probability": 0.9165 + }, + { + "start": 1267.02, + "end": 1269.6, + "probability": 0.9644 + }, + { + "start": 1269.72, + "end": 1272.24, + "probability": 0.9086 + }, + { + "start": 1272.3, + "end": 1273.42, + "probability": 0.7275 + }, + { + "start": 1273.68, + "end": 1274.26, + "probability": 0.7017 + }, + { + "start": 1275.12, + "end": 1275.6, + "probability": 0.6381 + }, + { + "start": 1275.66, + "end": 1276.74, + "probability": 0.8574 + }, + { + "start": 1279.24, + "end": 1280.06, + "probability": 0.4028 + }, + { + "start": 1280.74, + "end": 1283.36, + "probability": 0.9221 + }, + { + "start": 1284.0, + "end": 1285.8, + "probability": 0.8782 + }, + { + "start": 1286.4, + "end": 1290.4, + "probability": 0.9884 + }, + { + "start": 1290.4, + "end": 1293.2, + "probability": 0.9974 + }, + { + "start": 1293.7, + "end": 1295.02, + "probability": 0.9259 + }, + { + "start": 1296.28, + "end": 1299.24, + "probability": 0.7935 + }, + { + "start": 1299.32, + "end": 1301.46, + "probability": 0.6592 + }, + { + "start": 1301.54, + "end": 1303.74, + "probability": 0.6803 + }, + { + "start": 1304.34, + "end": 1304.86, + "probability": 0.1536 + }, + { + "start": 1305.34, + "end": 1305.46, + "probability": 0.7391 + }, + { + "start": 1306.06, + "end": 1309.24, + "probability": 0.6834 + }, + { + "start": 1309.48, + "end": 1313.02, + "probability": 0.3192 + }, + { + "start": 1314.16, + "end": 1315.12, + "probability": 0.573 + }, + { + "start": 1315.48, + "end": 1318.58, + "probability": 0.6267 + }, + { + "start": 1318.72, + "end": 1321.66, + "probability": 0.9189 + }, + { + "start": 1322.68, + "end": 1324.04, + "probability": 0.7729 + }, + { + "start": 1325.62, + "end": 1327.66, + "probability": 0.9226 + }, + { + "start": 1328.74, + "end": 1332.9, + "probability": 0.9976 + }, + { + "start": 1333.94, + "end": 1336.16, + "probability": 0.9751 + }, + { + "start": 1337.08, + "end": 1337.78, + "probability": 0.8388 + }, + { + "start": 1338.52, + "end": 1342.3, + "probability": 0.9863 + }, + { + "start": 1343.63, + "end": 1345.76, + "probability": 0.0457 + }, + { + "start": 1345.76, + "end": 1349.21, + "probability": 0.9116 + }, + { + "start": 1349.8, + "end": 1357.08, + "probability": 0.9744 + }, + { + "start": 1359.72, + "end": 1359.79, + "probability": 0.4623 + }, + { + "start": 1360.58, + "end": 1364.36, + "probability": 0.8246 + }, + { + "start": 1365.0, + "end": 1368.78, + "probability": 0.7131 + }, + { + "start": 1369.04, + "end": 1370.82, + "probability": 0.9872 + }, + { + "start": 1372.6, + "end": 1374.88, + "probability": 0.9131 + }, + { + "start": 1375.08, + "end": 1376.66, + "probability": 0.8293 + }, + { + "start": 1378.12, + "end": 1379.91, + "probability": 0.9924 + }, + { + "start": 1381.2, + "end": 1381.9, + "probability": 0.5567 + }, + { + "start": 1382.08, + "end": 1382.96, + "probability": 0.8907 + }, + { + "start": 1383.16, + "end": 1385.7, + "probability": 0.9911 + }, + { + "start": 1386.64, + "end": 1392.5, + "probability": 0.9764 + }, + { + "start": 1393.56, + "end": 1397.16, + "probability": 0.9903 + }, + { + "start": 1398.24, + "end": 1401.62, + "probability": 0.6282 + }, + { + "start": 1401.62, + "end": 1405.58, + "probability": 0.9895 + }, + { + "start": 1406.62, + "end": 1409.86, + "probability": 0.736 + }, + { + "start": 1410.92, + "end": 1414.0, + "probability": 0.8964 + }, + { + "start": 1415.08, + "end": 1417.48, + "probability": 0.6638 + }, + { + "start": 1418.04, + "end": 1419.16, + "probability": 0.7829 + }, + { + "start": 1419.34, + "end": 1421.42, + "probability": 0.9209 + }, + { + "start": 1422.6, + "end": 1426.1, + "probability": 0.7671 + }, + { + "start": 1427.14, + "end": 1430.28, + "probability": 0.8816 + }, + { + "start": 1430.42, + "end": 1432.09, + "probability": 0.9941 + }, + { + "start": 1433.1, + "end": 1437.78, + "probability": 0.8159 + }, + { + "start": 1438.62, + "end": 1439.06, + "probability": 0.563 + }, + { + "start": 1439.12, + "end": 1442.18, + "probability": 0.9303 + }, + { + "start": 1442.78, + "end": 1445.08, + "probability": 0.8978 + }, + { + "start": 1445.78, + "end": 1447.88, + "probability": 0.9889 + }, + { + "start": 1448.54, + "end": 1451.94, + "probability": 0.9483 + }, + { + "start": 1452.72, + "end": 1455.94, + "probability": 0.9485 + }, + { + "start": 1456.6, + "end": 1458.08, + "probability": 0.9563 + }, + { + "start": 1459.1, + "end": 1459.38, + "probability": 0.3963 + }, + { + "start": 1459.42, + "end": 1461.28, + "probability": 0.7276 + }, + { + "start": 1461.96, + "end": 1462.38, + "probability": 0.4415 + }, + { + "start": 1462.64, + "end": 1463.76, + "probability": 0.9675 + }, + { + "start": 1463.96, + "end": 1464.26, + "probability": 0.394 + }, + { + "start": 1464.4, + "end": 1465.42, + "probability": 0.5035 + }, + { + "start": 1466.14, + "end": 1467.52, + "probability": 0.8611 + }, + { + "start": 1467.64, + "end": 1468.78, + "probability": 0.9004 + }, + { + "start": 1469.0, + "end": 1473.28, + "probability": 0.9487 + }, + { + "start": 1473.42, + "end": 1475.02, + "probability": 0.977 + }, + { + "start": 1475.1, + "end": 1476.42, + "probability": 0.7295 + }, + { + "start": 1476.88, + "end": 1477.77, + "probability": 0.9786 + }, + { + "start": 1478.62, + "end": 1480.86, + "probability": 0.7505 + }, + { + "start": 1480.96, + "end": 1485.14, + "probability": 0.9927 + }, + { + "start": 1485.38, + "end": 1487.16, + "probability": 0.9761 + }, + { + "start": 1487.24, + "end": 1490.26, + "probability": 0.9791 + }, + { + "start": 1491.54, + "end": 1498.52, + "probability": 0.9902 + }, + { + "start": 1498.7, + "end": 1502.1, + "probability": 0.9952 + }, + { + "start": 1502.2, + "end": 1505.14, + "probability": 0.9311 + }, + { + "start": 1507.21, + "end": 1508.72, + "probability": 0.4925 + }, + { + "start": 1509.84, + "end": 1511.1, + "probability": 0.5322 + }, + { + "start": 1514.07, + "end": 1514.68, + "probability": 0.6735 + }, + { + "start": 1515.18, + "end": 1515.78, + "probability": 0.7657 + }, + { + "start": 1516.32, + "end": 1526.5, + "probability": 0.9612 + }, + { + "start": 1526.9, + "end": 1527.72, + "probability": 0.7486 + }, + { + "start": 1529.3, + "end": 1536.4, + "probability": 0.9396 + }, + { + "start": 1537.28, + "end": 1540.82, + "probability": 0.9922 + }, + { + "start": 1541.02, + "end": 1546.6, + "probability": 0.7109 + }, + { + "start": 1547.08, + "end": 1548.3, + "probability": 0.7078 + }, + { + "start": 1548.78, + "end": 1551.84, + "probability": 0.8967 + }, + { + "start": 1552.4, + "end": 1553.56, + "probability": 0.7023 + }, + { + "start": 1554.06, + "end": 1556.96, + "probability": 0.8589 + }, + { + "start": 1558.66, + "end": 1560.32, + "probability": 0.8681 + }, + { + "start": 1560.54, + "end": 1561.62, + "probability": 0.6515 + }, + { + "start": 1561.98, + "end": 1563.72, + "probability": 0.5042 + }, + { + "start": 1563.72, + "end": 1566.52, + "probability": 0.5254 + }, + { + "start": 1567.2, + "end": 1573.96, + "probability": 0.9539 + }, + { + "start": 1574.08, + "end": 1575.86, + "probability": 0.998 + }, + { + "start": 1575.96, + "end": 1582.18, + "probability": 0.9681 + }, + { + "start": 1582.48, + "end": 1582.7, + "probability": 0.7712 + }, + { + "start": 1583.12, + "end": 1583.32, + "probability": 0.3513 + }, + { + "start": 1583.34, + "end": 1584.16, + "probability": 0.5355 + }, + { + "start": 1589.26, + "end": 1589.82, + "probability": 0.3303 + }, + { + "start": 1592.2, + "end": 1593.96, + "probability": 0.5801 + }, + { + "start": 1594.88, + "end": 1597.78, + "probability": 0.9359 + }, + { + "start": 1598.44, + "end": 1599.32, + "probability": 0.8399 + }, + { + "start": 1599.48, + "end": 1600.12, + "probability": 0.942 + }, + { + "start": 1600.44, + "end": 1606.5, + "probability": 0.7831 + }, + { + "start": 1607.28, + "end": 1609.28, + "probability": 0.8604 + }, + { + "start": 1610.06, + "end": 1611.52, + "probability": 0.8171 + }, + { + "start": 1612.16, + "end": 1612.96, + "probability": 0.2904 + }, + { + "start": 1613.62, + "end": 1615.1, + "probability": 0.6048 + }, + { + "start": 1615.28, + "end": 1616.72, + "probability": 0.8242 + }, + { + "start": 1617.06, + "end": 1618.54, + "probability": 0.8284 + }, + { + "start": 1618.68, + "end": 1621.78, + "probability": 0.8923 + }, + { + "start": 1622.2, + "end": 1625.74, + "probability": 0.9424 + }, + { + "start": 1625.9, + "end": 1628.76, + "probability": 0.7806 + }, + { + "start": 1628.94, + "end": 1630.98, + "probability": 0.9729 + }, + { + "start": 1631.2, + "end": 1633.16, + "probability": 0.9609 + }, + { + "start": 1633.64, + "end": 1634.54, + "probability": 0.3226 + }, + { + "start": 1634.62, + "end": 1636.26, + "probability": 0.6605 + }, + { + "start": 1636.72, + "end": 1640.74, + "probability": 0.6318 + }, + { + "start": 1640.93, + "end": 1646.32, + "probability": 0.7323 + }, + { + "start": 1646.7, + "end": 1650.06, + "probability": 0.7456 + }, + { + "start": 1650.24, + "end": 1650.44, + "probability": 0.8285 + }, + { + "start": 1651.52, + "end": 1652.52, + "probability": 0.6367 + }, + { + "start": 1656.4, + "end": 1657.0, + "probability": 0.6417 + }, + { + "start": 1659.6, + "end": 1660.38, + "probability": 0.7733 + }, + { + "start": 1662.06, + "end": 1663.84, + "probability": 0.7385 + }, + { + "start": 1665.94, + "end": 1666.16, + "probability": 0.2281 + }, + { + "start": 1666.34, + "end": 1668.5, + "probability": 0.9893 + }, + { + "start": 1669.9, + "end": 1671.1, + "probability": 0.9479 + }, + { + "start": 1671.56, + "end": 1671.76, + "probability": 0.3594 + }, + { + "start": 1672.64, + "end": 1674.56, + "probability": 0.9968 + }, + { + "start": 1675.03, + "end": 1678.32, + "probability": 0.761 + }, + { + "start": 1678.46, + "end": 1679.1, + "probability": 0.688 + }, + { + "start": 1679.86, + "end": 1681.54, + "probability": 0.5029 + }, + { + "start": 1681.62, + "end": 1682.3, + "probability": 0.9036 + }, + { + "start": 1682.8, + "end": 1685.42, + "probability": 0.9785 + }, + { + "start": 1685.56, + "end": 1685.56, + "probability": 0.7411 + }, + { + "start": 1685.58, + "end": 1686.06, + "probability": 0.4468 + }, + { + "start": 1686.1, + "end": 1688.38, + "probability": 0.8148 + }, + { + "start": 1689.12, + "end": 1692.23, + "probability": 0.9763 + }, + { + "start": 1693.51, + "end": 1697.28, + "probability": 0.7259 + }, + { + "start": 1698.22, + "end": 1700.9, + "probability": 0.7196 + }, + { + "start": 1701.6, + "end": 1705.02, + "probability": 0.9669 + }, + { + "start": 1705.62, + "end": 1706.64, + "probability": 0.9618 + }, + { + "start": 1707.24, + "end": 1707.74, + "probability": 0.8718 + }, + { + "start": 1708.26, + "end": 1710.5, + "probability": 0.8333 + }, + { + "start": 1710.58, + "end": 1710.86, + "probability": 0.5179 + }, + { + "start": 1711.18, + "end": 1711.42, + "probability": 0.4852 + }, + { + "start": 1711.59, + "end": 1712.54, + "probability": 0.3571 + }, + { + "start": 1712.6, + "end": 1715.03, + "probability": 0.8421 + }, + { + "start": 1716.88, + "end": 1719.88, + "probability": 0.9798 + }, + { + "start": 1722.66, + "end": 1725.49, + "probability": 0.8752 + }, + { + "start": 1729.36, + "end": 1731.52, + "probability": 0.6888 + }, + { + "start": 1732.84, + "end": 1735.72, + "probability": 0.9947 + }, + { + "start": 1736.46, + "end": 1739.76, + "probability": 0.7486 + }, + { + "start": 1740.26, + "end": 1745.62, + "probability": 0.9478 + }, + { + "start": 1746.82, + "end": 1747.6, + "probability": 0.9321 + }, + { + "start": 1747.76, + "end": 1749.2, + "probability": 0.8367 + }, + { + "start": 1749.6, + "end": 1753.72, + "probability": 0.9921 + }, + { + "start": 1753.72, + "end": 1755.52, + "probability": 0.9927 + }, + { + "start": 1756.56, + "end": 1758.28, + "probability": 0.9453 + }, + { + "start": 1758.48, + "end": 1764.64, + "probability": 0.9849 + }, + { + "start": 1765.58, + "end": 1767.64, + "probability": 0.9922 + }, + { + "start": 1769.32, + "end": 1772.15, + "probability": 0.9872 + }, + { + "start": 1773.92, + "end": 1778.04, + "probability": 0.9954 + }, + { + "start": 1778.12, + "end": 1779.72, + "probability": 0.9966 + }, + { + "start": 1780.36, + "end": 1783.72, + "probability": 0.9297 + }, + { + "start": 1784.64, + "end": 1786.0, + "probability": 0.7731 + }, + { + "start": 1786.18, + "end": 1786.76, + "probability": 0.8328 + }, + { + "start": 1786.88, + "end": 1789.3, + "probability": 0.8754 + }, + { + "start": 1790.66, + "end": 1791.94, + "probability": 0.7321 + }, + { + "start": 1793.0, + "end": 1795.88, + "probability": 0.7134 + }, + { + "start": 1796.9, + "end": 1798.42, + "probability": 0.9722 + }, + { + "start": 1798.52, + "end": 1800.58, + "probability": 0.9578 + }, + { + "start": 1801.38, + "end": 1804.62, + "probability": 0.9496 + }, + { + "start": 1806.65, + "end": 1813.72, + "probability": 0.5529 + }, + { + "start": 1814.36, + "end": 1816.84, + "probability": 0.8693 + }, + { + "start": 1817.88, + "end": 1825.98, + "probability": 0.9963 + }, + { + "start": 1826.06, + "end": 1826.4, + "probability": 0.4303 + }, + { + "start": 1826.62, + "end": 1827.54, + "probability": 0.7095 + }, + { + "start": 1828.46, + "end": 1829.96, + "probability": 0.5959 + }, + { + "start": 1830.88, + "end": 1833.82, + "probability": 0.9103 + }, + { + "start": 1838.16, + "end": 1840.14, + "probability": 0.5833 + }, + { + "start": 1840.84, + "end": 1842.04, + "probability": 0.98 + }, + { + "start": 1844.22, + "end": 1845.14, + "probability": 0.6228 + }, + { + "start": 1846.12, + "end": 1851.3, + "probability": 0.8303 + }, + { + "start": 1852.36, + "end": 1854.99, + "probability": 0.9963 + }, + { + "start": 1856.54, + "end": 1859.24, + "probability": 0.9962 + }, + { + "start": 1860.24, + "end": 1863.1, + "probability": 0.9976 + }, + { + "start": 1864.28, + "end": 1866.48, + "probability": 0.9221 + }, + { + "start": 1868.36, + "end": 1870.8, + "probability": 0.988 + }, + { + "start": 1871.04, + "end": 1873.42, + "probability": 0.7535 + }, + { + "start": 1874.34, + "end": 1875.76, + "probability": 0.8496 + }, + { + "start": 1875.9, + "end": 1881.0, + "probability": 0.7136 + }, + { + "start": 1881.04, + "end": 1883.54, + "probability": 0.9782 + }, + { + "start": 1884.52, + "end": 1886.38, + "probability": 0.8881 + }, + { + "start": 1887.5, + "end": 1888.1, + "probability": 0.337 + }, + { + "start": 1889.9, + "end": 1891.14, + "probability": 0.832 + }, + { + "start": 1891.36, + "end": 1893.64, + "probability": 0.9284 + }, + { + "start": 1893.74, + "end": 1895.38, + "probability": 0.7438 + }, + { + "start": 1896.58, + "end": 1899.52, + "probability": 0.7655 + }, + { + "start": 1900.48, + "end": 1902.1, + "probability": 0.7251 + }, + { + "start": 1902.14, + "end": 1902.46, + "probability": 0.5698 + }, + { + "start": 1902.48, + "end": 1904.06, + "probability": 0.9458 + }, + { + "start": 1907.6, + "end": 1909.7, + "probability": 0.9343 + }, + { + "start": 1909.72, + "end": 1910.68, + "probability": 0.4166 + }, + { + "start": 1911.52, + "end": 1912.5, + "probability": 0.4908 + }, + { + "start": 1912.62, + "end": 1914.17, + "probability": 0.4748 + }, + { + "start": 1916.16, + "end": 1918.16, + "probability": 0.833 + }, + { + "start": 1918.4, + "end": 1918.4, + "probability": 0.0172 + }, + { + "start": 1918.56, + "end": 1920.2, + "probability": 0.9666 + }, + { + "start": 1920.62, + "end": 1921.68, + "probability": 0.1305 + }, + { + "start": 1921.92, + "end": 1923.0, + "probability": 0.8643 + }, + { + "start": 1923.38, + "end": 1924.46, + "probability": 0.289 + }, + { + "start": 1924.62, + "end": 1924.76, + "probability": 0.0512 + }, + { + "start": 1925.64, + "end": 1932.84, + "probability": 0.4968 + }, + { + "start": 1933.04, + "end": 1934.2, + "probability": 0.2234 + }, + { + "start": 1934.72, + "end": 1935.32, + "probability": 0.3254 + }, + { + "start": 1935.9, + "end": 1939.68, + "probability": 0.2938 + }, + { + "start": 1940.2, + "end": 1941.58, + "probability": 0.2031 + }, + { + "start": 1942.5, + "end": 1943.36, + "probability": 0.6755 + }, + { + "start": 1943.84, + "end": 1944.54, + "probability": 0.0972 + }, + { + "start": 1945.64, + "end": 1951.22, + "probability": 0.2389 + }, + { + "start": 1952.0, + "end": 1953.02, + "probability": 0.5027 + }, + { + "start": 1953.62, + "end": 1955.22, + "probability": 0.6941 + }, + { + "start": 1956.06, + "end": 1961.66, + "probability": 0.7887 + }, + { + "start": 1962.14, + "end": 1964.36, + "probability": 0.9922 + }, + { + "start": 1965.36, + "end": 1966.02, + "probability": 0.5498 + }, + { + "start": 1966.82, + "end": 1970.14, + "probability": 0.4613 + }, + { + "start": 1970.24, + "end": 1970.78, + "probability": 0.8201 + }, + { + "start": 1971.02, + "end": 1974.72, + "probability": 0.9832 + }, + { + "start": 1975.1, + "end": 1976.72, + "probability": 0.9033 + }, + { + "start": 1977.46, + "end": 1980.68, + "probability": 0.7312 + }, + { + "start": 1980.8, + "end": 1981.22, + "probability": 0.8252 + }, + { + "start": 1981.62, + "end": 1982.12, + "probability": 0.6623 + }, + { + "start": 1982.76, + "end": 1984.86, + "probability": 0.4994 + }, + { + "start": 1985.86, + "end": 1987.92, + "probability": 0.895 + }, + { + "start": 1988.2, + "end": 1989.69, + "probability": 0.7519 + }, + { + "start": 1989.86, + "end": 1990.66, + "probability": 0.7306 + }, + { + "start": 1990.76, + "end": 1992.58, + "probability": 0.6486 + }, + { + "start": 1993.84, + "end": 1994.92, + "probability": 0.0367 + }, + { + "start": 1994.92, + "end": 1996.96, + "probability": 0.7852 + }, + { + "start": 1997.54, + "end": 2000.84, + "probability": 0.9658 + }, + { + "start": 2002.58, + "end": 2006.74, + "probability": 0.9945 + }, + { + "start": 2007.66, + "end": 2009.16, + "probability": 0.998 + }, + { + "start": 2009.2, + "end": 2009.3, + "probability": 0.2798 + }, + { + "start": 2010.38, + "end": 2013.48, + "probability": 0.8987 + }, + { + "start": 2013.66, + "end": 2015.66, + "probability": 0.9639 + }, + { + "start": 2016.66, + "end": 2019.96, + "probability": 0.9924 + }, + { + "start": 2019.98, + "end": 2020.46, + "probability": 0.6498 + }, + { + "start": 2020.92, + "end": 2021.26, + "probability": 0.0591 + }, + { + "start": 2021.26, + "end": 2024.0, + "probability": 0.0973 + }, + { + "start": 2024.34, + "end": 2027.64, + "probability": 0.8992 + }, + { + "start": 2027.64, + "end": 2030.3, + "probability": 0.8069 + }, + { + "start": 2031.24, + "end": 2031.26, + "probability": 0.0247 + }, + { + "start": 2031.26, + "end": 2031.26, + "probability": 0.3623 + }, + { + "start": 2031.26, + "end": 2035.08, + "probability": 0.7812 + }, + { + "start": 2036.22, + "end": 2039.5, + "probability": 0.9955 + }, + { + "start": 2041.32, + "end": 2046.48, + "probability": 0.9696 + }, + { + "start": 2047.32, + "end": 2049.25, + "probability": 0.9885 + }, + { + "start": 2050.58, + "end": 2054.9, + "probability": 0.8313 + }, + { + "start": 2055.12, + "end": 2055.92, + "probability": 0.8488 + }, + { + "start": 2056.18, + "end": 2060.36, + "probability": 0.9918 + }, + { + "start": 2061.08, + "end": 2062.04, + "probability": 0.99 + }, + { + "start": 2062.64, + "end": 2066.24, + "probability": 0.9952 + }, + { + "start": 2067.1, + "end": 2069.0, + "probability": 0.9722 + }, + { + "start": 2069.9, + "end": 2072.37, + "probability": 0.621 + }, + { + "start": 2073.2, + "end": 2074.34, + "probability": 0.8276 + }, + { + "start": 2075.28, + "end": 2080.34, + "probability": 0.9888 + }, + { + "start": 2080.4, + "end": 2082.05, + "probability": 0.981 + }, + { + "start": 2082.78, + "end": 2084.41, + "probability": 0.9621 + }, + { + "start": 2085.28, + "end": 2086.04, + "probability": 0.9792 + }, + { + "start": 2088.7, + "end": 2090.38, + "probability": 0.6503 + }, + { + "start": 2091.1, + "end": 2093.46, + "probability": 0.9629 + }, + { + "start": 2093.54, + "end": 2094.58, + "probability": 0.4558 + }, + { + "start": 2095.96, + "end": 2104.1, + "probability": 0.9274 + }, + { + "start": 2105.06, + "end": 2107.22, + "probability": 0.8782 + }, + { + "start": 2108.42, + "end": 2109.26, + "probability": 0.5807 + }, + { + "start": 2109.5, + "end": 2114.9, + "probability": 0.991 + }, + { + "start": 2115.46, + "end": 2118.0, + "probability": 0.9901 + }, + { + "start": 2118.92, + "end": 2120.26, + "probability": 0.6212 + }, + { + "start": 2121.12, + "end": 2121.5, + "probability": 0.5244 + }, + { + "start": 2121.6, + "end": 2126.18, + "probability": 0.8584 + }, + { + "start": 2126.32, + "end": 2128.26, + "probability": 0.9517 + }, + { + "start": 2128.82, + "end": 2131.28, + "probability": 0.9237 + }, + { + "start": 2131.52, + "end": 2131.92, + "probability": 0.595 + }, + { + "start": 2131.96, + "end": 2133.66, + "probability": 0.8452 + }, + { + "start": 2134.1, + "end": 2137.86, + "probability": 0.9954 + }, + { + "start": 2138.46, + "end": 2143.88, + "probability": 0.9956 + }, + { + "start": 2143.88, + "end": 2148.6, + "probability": 0.9822 + }, + { + "start": 2149.06, + "end": 2152.33, + "probability": 0.9868 + }, + { + "start": 2152.68, + "end": 2153.64, + "probability": 0.6381 + }, + { + "start": 2154.5, + "end": 2155.06, + "probability": 0.5082 + }, + { + "start": 2155.28, + "end": 2156.48, + "probability": 0.666 + }, + { + "start": 2156.82, + "end": 2158.7, + "probability": 0.7749 + }, + { + "start": 2160.0, + "end": 2162.96, + "probability": 0.8861 + }, + { + "start": 2163.52, + "end": 2167.0, + "probability": 0.9459 + }, + { + "start": 2167.92, + "end": 2170.24, + "probability": 0.9217 + }, + { + "start": 2170.78, + "end": 2173.0, + "probability": 0.9606 + }, + { + "start": 2174.95, + "end": 2177.82, + "probability": 0.7802 + }, + { + "start": 2178.04, + "end": 2178.62, + "probability": 0.6239 + }, + { + "start": 2179.08, + "end": 2179.64, + "probability": 0.7495 + }, + { + "start": 2192.02, + "end": 2193.46, + "probability": 0.9245 + }, + { + "start": 2195.36, + "end": 2197.4, + "probability": 0.901 + }, + { + "start": 2198.42, + "end": 2200.52, + "probability": 0.9638 + }, + { + "start": 2201.76, + "end": 2203.4, + "probability": 0.9679 + }, + { + "start": 2204.26, + "end": 2206.7, + "probability": 0.9312 + }, + { + "start": 2208.98, + "end": 2210.68, + "probability": 0.9954 + }, + { + "start": 2211.76, + "end": 2215.86, + "probability": 0.936 + }, + { + "start": 2217.66, + "end": 2220.1, + "probability": 0.8611 + }, + { + "start": 2220.44, + "end": 2228.0, + "probability": 0.9434 + }, + { + "start": 2228.58, + "end": 2228.92, + "probability": 0.5939 + }, + { + "start": 2230.6, + "end": 2235.06, + "probability": 0.9859 + }, + { + "start": 2235.7, + "end": 2236.72, + "probability": 0.8547 + }, + { + "start": 2237.86, + "end": 2238.52, + "probability": 0.3916 + }, + { + "start": 2239.1, + "end": 2241.0, + "probability": 0.9056 + }, + { + "start": 2241.96, + "end": 2246.42, + "probability": 0.9884 + }, + { + "start": 2246.42, + "end": 2251.76, + "probability": 0.967 + }, + { + "start": 2251.76, + "end": 2258.32, + "probability": 0.964 + }, + { + "start": 2259.06, + "end": 2263.98, + "probability": 0.9149 + }, + { + "start": 2264.62, + "end": 2267.3, + "probability": 0.9946 + }, + { + "start": 2267.3, + "end": 2269.32, + "probability": 0.9912 + }, + { + "start": 2269.56, + "end": 2270.78, + "probability": 0.978 + }, + { + "start": 2271.38, + "end": 2273.8, + "probability": 0.9969 + }, + { + "start": 2274.5, + "end": 2278.58, + "probability": 0.9961 + }, + { + "start": 2278.58, + "end": 2282.16, + "probability": 0.9979 + }, + { + "start": 2282.22, + "end": 2288.72, + "probability": 0.7686 + }, + { + "start": 2288.78, + "end": 2291.9, + "probability": 0.9483 + }, + { + "start": 2292.74, + "end": 2295.26, + "probability": 0.6702 + }, + { + "start": 2295.42, + "end": 2299.38, + "probability": 0.9549 + }, + { + "start": 2299.6, + "end": 2304.42, + "probability": 0.9905 + }, + { + "start": 2304.42, + "end": 2309.58, + "probability": 0.9976 + }, + { + "start": 2310.36, + "end": 2312.78, + "probability": 0.9359 + }, + { + "start": 2313.12, + "end": 2315.34, + "probability": 0.9694 + }, + { + "start": 2321.52, + "end": 2323.28, + "probability": 0.9757 + }, + { + "start": 2323.4, + "end": 2324.47, + "probability": 0.939 + }, + { + "start": 2325.29, + "end": 2325.97, + "probability": 0.5845 + }, + { + "start": 2326.25, + "end": 2328.43, + "probability": 0.3593 + }, + { + "start": 2328.93, + "end": 2331.21, + "probability": 0.843 + }, + { + "start": 2331.65, + "end": 2332.93, + "probability": 0.9811 + }, + { + "start": 2337.15, + "end": 2339.31, + "probability": 0.6311 + }, + { + "start": 2340.17, + "end": 2340.55, + "probability": 0.7327 + }, + { + "start": 2340.81, + "end": 2345.77, + "probability": 0.9625 + }, + { + "start": 2346.41, + "end": 2348.19, + "probability": 0.8637 + }, + { + "start": 2348.71, + "end": 2350.95, + "probability": 0.9772 + }, + { + "start": 2351.65, + "end": 2353.43, + "probability": 0.8779 + }, + { + "start": 2353.95, + "end": 2355.17, + "probability": 0.2936 + }, + { + "start": 2355.19, + "end": 2355.87, + "probability": 0.5919 + }, + { + "start": 2355.93, + "end": 2356.57, + "probability": 0.7168 + }, + { + "start": 2356.59, + "end": 2357.07, + "probability": 0.593 + }, + { + "start": 2375.68, + "end": 2377.29, + "probability": 0.39 + }, + { + "start": 2378.03, + "end": 2379.33, + "probability": 0.7587 + }, + { + "start": 2380.03, + "end": 2381.01, + "probability": 0.3577 + }, + { + "start": 2381.49, + "end": 2386.09, + "probability": 0.2757 + }, + { + "start": 2386.19, + "end": 2388.46, + "probability": 0.7405 + }, + { + "start": 2401.88, + "end": 2402.6, + "probability": 0.108 + }, + { + "start": 2406.93, + "end": 2407.13, + "probability": 0.0013 + }, + { + "start": 2409.49, + "end": 2413.47, + "probability": 0.1201 + }, + { + "start": 2413.53, + "end": 2413.73, + "probability": 0.0246 + }, + { + "start": 2414.75, + "end": 2416.05, + "probability": 0.0144 + }, + { + "start": 2416.05, + "end": 2419.29, + "probability": 0.0288 + }, + { + "start": 2419.29, + "end": 2419.29, + "probability": 0.0806 + }, + { + "start": 2419.29, + "end": 2420.63, + "probability": 0.0649 + }, + { + "start": 2422.57, + "end": 2428.55, + "probability": 0.2431 + }, + { + "start": 2445.0, + "end": 2445.0, + "probability": 0.0 + }, + { + "start": 2445.0, + "end": 2445.0, + "probability": 0.0 + }, + { + "start": 2445.0, + "end": 2445.0, + "probability": 0.0 + }, + { + "start": 2445.0, + "end": 2445.0, + "probability": 0.0 + }, + { + "start": 2445.0, + "end": 2445.0, + "probability": 0.0 + }, + { + "start": 2445.0, + "end": 2445.0, + "probability": 0.0 + }, + { + "start": 2445.0, + "end": 2445.0, + "probability": 0.0 + }, + { + "start": 2445.0, + "end": 2445.0, + "probability": 0.0 + }, + { + "start": 2445.0, + "end": 2445.0, + "probability": 0.0 + }, + { + "start": 2445.0, + "end": 2445.0, + "probability": 0.0 + }, + { + "start": 2445.0, + "end": 2445.0, + "probability": 0.0 + }, + { + "start": 2445.0, + "end": 2445.0, + "probability": 0.0 + }, + { + "start": 2445.0, + "end": 2445.0, + "probability": 0.0 + }, + { + "start": 2445.0, + "end": 2445.0, + "probability": 0.0 + }, + { + "start": 2445.0, + "end": 2445.0, + "probability": 0.0 + }, + { + "start": 2445.0, + "end": 2445.0, + "probability": 0.0 + }, + { + "start": 2445.0, + "end": 2445.0, + "probability": 0.0 + }, + { + "start": 2445.0, + "end": 2445.0, + "probability": 0.0 + }, + { + "start": 2445.1, + "end": 2449.12, + "probability": 0.9817 + }, + { + "start": 2449.6, + "end": 2453.44, + "probability": 0.9095 + }, + { + "start": 2454.26, + "end": 2454.58, + "probability": 0.6223 + }, + { + "start": 2454.62, + "end": 2458.8, + "probability": 0.9438 + }, + { + "start": 2458.8, + "end": 2463.6, + "probability": 0.993 + }, + { + "start": 2464.34, + "end": 2464.7, + "probability": 0.4685 + }, + { + "start": 2465.0, + "end": 2470.24, + "probability": 0.885 + }, + { + "start": 2470.24, + "end": 2474.2, + "probability": 0.979 + }, + { + "start": 2474.94, + "end": 2479.88, + "probability": 0.9938 + }, + { + "start": 2479.88, + "end": 2486.4, + "probability": 0.9863 + }, + { + "start": 2487.3, + "end": 2491.3, + "probability": 0.9336 + }, + { + "start": 2491.84, + "end": 2493.44, + "probability": 0.8665 + }, + { + "start": 2493.84, + "end": 2494.14, + "probability": 0.715 + }, + { + "start": 2494.3, + "end": 2496.52, + "probability": 0.6941 + }, + { + "start": 2496.92, + "end": 2498.96, + "probability": 0.9842 + }, + { + "start": 2499.58, + "end": 2501.28, + "probability": 0.9443 + }, + { + "start": 2501.6, + "end": 2502.74, + "probability": 0.7338 + }, + { + "start": 2502.88, + "end": 2504.32, + "probability": 0.9751 + }, + { + "start": 2505.14, + "end": 2509.86, + "probability": 0.9842 + }, + { + "start": 2510.34, + "end": 2513.48, + "probability": 0.9462 + }, + { + "start": 2513.94, + "end": 2516.86, + "probability": 0.95 + }, + { + "start": 2516.86, + "end": 2520.7, + "probability": 0.972 + }, + { + "start": 2523.38, + "end": 2523.54, + "probability": 0.0692 + }, + { + "start": 2523.54, + "end": 2523.54, + "probability": 0.5173 + }, + { + "start": 2523.54, + "end": 2523.66, + "probability": 0.0454 + }, + { + "start": 2524.1, + "end": 2524.6, + "probability": 0.1204 + }, + { + "start": 2529.84, + "end": 2530.78, + "probability": 0.3336 + }, + { + "start": 2542.72, + "end": 2543.82, + "probability": 0.5069 + }, + { + "start": 2544.88, + "end": 2546.28, + "probability": 0.7157 + }, + { + "start": 2547.64, + "end": 2553.1, + "probability": 0.9631 + }, + { + "start": 2554.62, + "end": 2557.02, + "probability": 0.8687 + }, + { + "start": 2557.82, + "end": 2565.2, + "probability": 0.9822 + }, + { + "start": 2566.89, + "end": 2567.7, + "probability": 0.0863 + }, + { + "start": 2568.36, + "end": 2570.32, + "probability": 0.981 + }, + { + "start": 2571.96, + "end": 2574.52, + "probability": 0.9424 + }, + { + "start": 2575.28, + "end": 2580.08, + "probability": 0.8768 + }, + { + "start": 2580.4, + "end": 2581.28, + "probability": 0.7939 + }, + { + "start": 2582.04, + "end": 2587.58, + "probability": 0.9966 + }, + { + "start": 2587.58, + "end": 2594.94, + "probability": 0.8876 + }, + { + "start": 2596.42, + "end": 2598.52, + "probability": 0.983 + }, + { + "start": 2598.78, + "end": 2602.0, + "probability": 0.8292 + }, + { + "start": 2603.42, + "end": 2607.34, + "probability": 0.9743 + }, + { + "start": 2608.0, + "end": 2609.12, + "probability": 0.9912 + }, + { + "start": 2609.32, + "end": 2614.96, + "probability": 0.9486 + }, + { + "start": 2615.7, + "end": 2619.3, + "probability": 0.8781 + }, + { + "start": 2619.92, + "end": 2620.98, + "probability": 0.5338 + }, + { + "start": 2621.68, + "end": 2627.7, + "probability": 0.9902 + }, + { + "start": 2628.06, + "end": 2634.66, + "probability": 0.9913 + }, + { + "start": 2635.86, + "end": 2637.76, + "probability": 0.9991 + }, + { + "start": 2638.88, + "end": 2641.6, + "probability": 0.9984 + }, + { + "start": 2642.14, + "end": 2646.68, + "probability": 0.9185 + }, + { + "start": 2647.68, + "end": 2651.82, + "probability": 0.9927 + }, + { + "start": 2652.78, + "end": 2653.2, + "probability": 0.6998 + }, + { + "start": 2653.2, + "end": 2654.02, + "probability": 0.8392 + }, + { + "start": 2654.48, + "end": 2657.32, + "probability": 0.8457 + }, + { + "start": 2657.44, + "end": 2660.06, + "probability": 0.72 + }, + { + "start": 2660.46, + "end": 2661.96, + "probability": 0.8694 + }, + { + "start": 2662.8, + "end": 2663.78, + "probability": 0.9468 + }, + { + "start": 2664.2, + "end": 2668.8, + "probability": 0.9718 + }, + { + "start": 2669.62, + "end": 2672.11, + "probability": 0.5195 + }, + { + "start": 2672.78, + "end": 2674.74, + "probability": 0.9468 + }, + { + "start": 2675.12, + "end": 2676.0, + "probability": 0.7094 + }, + { + "start": 2676.0, + "end": 2676.44, + "probability": 0.711 + }, + { + "start": 2676.56, + "end": 2677.08, + "probability": 0.6934 + }, + { + "start": 2677.14, + "end": 2677.68, + "probability": 0.9667 + }, + { + "start": 2678.08, + "end": 2678.64, + "probability": 0.3439 + }, + { + "start": 2695.62, + "end": 2698.73, + "probability": 0.4273 + }, + { + "start": 2699.06, + "end": 2700.68, + "probability": 0.852 + }, + { + "start": 2701.22, + "end": 2703.58, + "probability": 0.0225 + }, + { + "start": 2703.58, + "end": 2707.76, + "probability": 0.2654 + }, + { + "start": 2707.76, + "end": 2713.48, + "probability": 0.0353 + }, + { + "start": 2714.16, + "end": 2714.16, + "probability": 0.0782 + }, + { + "start": 2714.16, + "end": 2716.86, + "probability": 0.0524 + }, + { + "start": 2718.64, + "end": 2721.98, + "probability": 0.0709 + }, + { + "start": 2723.76, + "end": 2723.88, + "probability": 0.0471 + }, + { + "start": 2725.14, + "end": 2728.58, + "probability": 0.1148 + }, + { + "start": 2729.3, + "end": 2735.68, + "probability": 0.0587 + }, + { + "start": 2735.82, + "end": 2737.1, + "probability": 0.1453 + }, + { + "start": 2737.12, + "end": 2739.04, + "probability": 0.0929 + }, + { + "start": 2760.0, + "end": 2760.0, + "probability": 0.0 + }, + { + "start": 2760.0, + "end": 2760.0, + "probability": 0.0 + }, + { + "start": 2760.0, + "end": 2760.0, + "probability": 0.0 + }, + { + "start": 2760.0, + "end": 2760.0, + "probability": 0.0 + }, + { + "start": 2760.0, + "end": 2760.0, + "probability": 0.0 + }, + { + "start": 2760.0, + "end": 2760.0, + "probability": 0.0 + }, + { + "start": 2760.0, + "end": 2760.0, + "probability": 0.0 + }, + { + "start": 2760.0, + "end": 2760.0, + "probability": 0.0 + }, + { + "start": 2760.0, + "end": 2760.0, + "probability": 0.0 + }, + { + "start": 2760.0, + "end": 2760.0, + "probability": 0.0 + }, + { + "start": 2760.0, + "end": 2760.0, + "probability": 0.0 + }, + { + "start": 2760.0, + "end": 2760.0, + "probability": 0.0 + }, + { + "start": 2760.0, + "end": 2760.0, + "probability": 0.0 + }, + { + "start": 2760.0, + "end": 2760.0, + "probability": 0.0 + }, + { + "start": 2760.0, + "end": 2760.0, + "probability": 0.0 + }, + { + "start": 2760.0, + "end": 2760.0, + "probability": 0.0 + }, + { + "start": 2760.0, + "end": 2760.0, + "probability": 0.0 + }, + { + "start": 2760.0, + "end": 2760.0, + "probability": 0.0 + }, + { + "start": 2760.0, + "end": 2760.0, + "probability": 0.0 + }, + { + "start": 2760.0, + "end": 2760.0, + "probability": 0.0 + }, + { + "start": 2765.0, + "end": 2768.82, + "probability": 0.8542 + }, + { + "start": 2769.86, + "end": 2770.88, + "probability": 0.5164 + }, + { + "start": 2771.98, + "end": 2772.96, + "probability": 0.9786 + }, + { + "start": 2774.16, + "end": 2777.38, + "probability": 0.9772 + }, + { + "start": 2778.1, + "end": 2782.78, + "probability": 0.9971 + }, + { + "start": 2783.86, + "end": 2789.74, + "probability": 0.996 + }, + { + "start": 2790.44, + "end": 2791.88, + "probability": 0.9706 + }, + { + "start": 2792.76, + "end": 2793.36, + "probability": 0.5028 + }, + { + "start": 2794.22, + "end": 2795.24, + "probability": 0.7308 + }, + { + "start": 2796.52, + "end": 2798.82, + "probability": 0.3783 + }, + { + "start": 2799.8, + "end": 2802.38, + "probability": 0.7883 + }, + { + "start": 2802.92, + "end": 2804.56, + "probability": 0.9757 + }, + { + "start": 2805.38, + "end": 2809.32, + "probability": 0.9013 + }, + { + "start": 2810.1, + "end": 2813.26, + "probability": 0.9395 + }, + { + "start": 2813.8, + "end": 2817.82, + "probability": 0.9941 + }, + { + "start": 2818.34, + "end": 2818.86, + "probability": 0.9036 + }, + { + "start": 2819.44, + "end": 2822.54, + "probability": 0.9954 + }, + { + "start": 2823.14, + "end": 2825.22, + "probability": 0.9818 + }, + { + "start": 2825.86, + "end": 2827.86, + "probability": 0.8141 + }, + { + "start": 2828.46, + "end": 2831.68, + "probability": 0.6812 + }, + { + "start": 2832.3, + "end": 2832.7, + "probability": 0.3264 + }, + { + "start": 2832.96, + "end": 2833.6, + "probability": 0.6145 + }, + { + "start": 2834.28, + "end": 2837.14, + "probability": 0.7911 + }, + { + "start": 2838.0, + "end": 2838.5, + "probability": 0.482 + }, + { + "start": 2838.88, + "end": 2839.28, + "probability": 0.8186 + }, + { + "start": 2839.28, + "end": 2840.04, + "probability": 0.1944 + }, + { + "start": 2840.06, + "end": 2844.12, + "probability": 0.9215 + }, + { + "start": 2844.58, + "end": 2845.06, + "probability": 0.4574 + }, + { + "start": 2845.42, + "end": 2848.96, + "probability": 0.9561 + }, + { + "start": 2850.18, + "end": 2850.24, + "probability": 0.0296 + }, + { + "start": 2851.11, + "end": 2853.34, + "probability": 0.8091 + }, + { + "start": 2853.76, + "end": 2855.4, + "probability": 0.9476 + }, + { + "start": 2856.0, + "end": 2857.02, + "probability": 0.7867 + }, + { + "start": 2857.98, + "end": 2859.02, + "probability": 0.5751 + }, + { + "start": 2860.56, + "end": 2862.74, + "probability": 0.9324 + }, + { + "start": 2863.36, + "end": 2866.83, + "probability": 0.7442 + }, + { + "start": 2867.02, + "end": 2868.84, + "probability": 0.8541 + }, + { + "start": 2869.6, + "end": 2873.88, + "probability": 0.9943 + }, + { + "start": 2873.88, + "end": 2878.8, + "probability": 0.9854 + }, + { + "start": 2878.96, + "end": 2880.72, + "probability": 0.9777 + }, + { + "start": 2882.12, + "end": 2886.56, + "probability": 0.9962 + }, + { + "start": 2886.6, + "end": 2892.6, + "probability": 0.7426 + }, + { + "start": 2894.36, + "end": 2896.12, + "probability": 0.894 + }, + { + "start": 2896.54, + "end": 2897.94, + "probability": 0.8516 + }, + { + "start": 2898.34, + "end": 2899.06, + "probability": 0.6155 + }, + { + "start": 2899.14, + "end": 2902.54, + "probability": 0.9014 + }, + { + "start": 2902.54, + "end": 2905.7, + "probability": 0.9262 + }, + { + "start": 2906.42, + "end": 2909.34, + "probability": 0.985 + }, + { + "start": 2910.74, + "end": 2914.74, + "probability": 0.978 + }, + { + "start": 2915.84, + "end": 2919.9, + "probability": 0.9966 + }, + { + "start": 2920.76, + "end": 2924.38, + "probability": 0.9794 + }, + { + "start": 2924.88, + "end": 2931.36, + "probability": 0.9934 + }, + { + "start": 2932.04, + "end": 2936.44, + "probability": 0.9866 + }, + { + "start": 2937.02, + "end": 2937.86, + "probability": 0.8928 + }, + { + "start": 2938.84, + "end": 2943.16, + "probability": 0.5527 + }, + { + "start": 2943.74, + "end": 2947.34, + "probability": 0.9951 + }, + { + "start": 2948.5, + "end": 2951.76, + "probability": 0.8914 + }, + { + "start": 2952.74, + "end": 2955.02, + "probability": 0.7979 + }, + { + "start": 2955.58, + "end": 2959.92, + "probability": 0.998 + }, + { + "start": 2960.5, + "end": 2963.78, + "probability": 0.997 + }, + { + "start": 2963.78, + "end": 2968.22, + "probability": 0.9932 + }, + { + "start": 2968.52, + "end": 2970.92, + "probability": 0.9927 + }, + { + "start": 2971.62, + "end": 2974.76, + "probability": 0.7776 + }, + { + "start": 2974.98, + "end": 2975.38, + "probability": 0.7371 + }, + { + "start": 2976.26, + "end": 2977.76, + "probability": 0.8787 + }, + { + "start": 2978.34, + "end": 2980.04, + "probability": 0.9502 + }, + { + "start": 2980.08, + "end": 2981.26, + "probability": 0.8137 + }, + { + "start": 2981.88, + "end": 2983.32, + "probability": 0.9221 + }, + { + "start": 2983.38, + "end": 2987.3, + "probability": 0.9723 + }, + { + "start": 2988.38, + "end": 2991.8, + "probability": 0.7073 + }, + { + "start": 2992.48, + "end": 2993.88, + "probability": 0.7123 + }, + { + "start": 2994.34, + "end": 2996.86, + "probability": 0.6346 + }, + { + "start": 2998.06, + "end": 3003.98, + "probability": 0.1685 + }, + { + "start": 3004.26, + "end": 3006.58, + "probability": 0.7369 + }, + { + "start": 3007.72, + "end": 3009.34, + "probability": 0.9343 + }, + { + "start": 3009.7, + "end": 3012.84, + "probability": 0.8345 + }, + { + "start": 3013.76, + "end": 3014.94, + "probability": 0.8449 + }, + { + "start": 3015.5, + "end": 3019.22, + "probability": 0.9789 + }, + { + "start": 3019.92, + "end": 3022.64, + "probability": 0.9846 + }, + { + "start": 3023.88, + "end": 3026.5, + "probability": 0.8535 + }, + { + "start": 3027.22, + "end": 3030.22, + "probability": 0.4934 + }, + { + "start": 3030.28, + "end": 3031.18, + "probability": 0.7529 + }, + { + "start": 3031.96, + "end": 3033.86, + "probability": 0.8729 + }, + { + "start": 3034.68, + "end": 3036.62, + "probability": 0.8915 + }, + { + "start": 3037.38, + "end": 3041.38, + "probability": 0.9127 + }, + { + "start": 3041.44, + "end": 3041.78, + "probability": 0.8311 + }, + { + "start": 3041.88, + "end": 3042.94, + "probability": 0.786 + }, + { + "start": 3043.02, + "end": 3046.16, + "probability": 0.8455 + }, + { + "start": 3046.8, + "end": 3051.64, + "probability": 0.9635 + }, + { + "start": 3052.14, + "end": 3053.6, + "probability": 0.9705 + }, + { + "start": 3053.7, + "end": 3055.3, + "probability": 0.9282 + }, + { + "start": 3056.68, + "end": 3058.72, + "probability": 0.9448 + }, + { + "start": 3058.9, + "end": 3062.52, + "probability": 0.6938 + }, + { + "start": 3063.3, + "end": 3064.62, + "probability": 0.9149 + }, + { + "start": 3064.8, + "end": 3065.62, + "probability": 0.9437 + }, + { + "start": 3066.84, + "end": 3067.7, + "probability": 0.936 + }, + { + "start": 3068.24, + "end": 3074.42, + "probability": 0.9595 + }, + { + "start": 3074.6, + "end": 3075.02, + "probability": 0.8257 + }, + { + "start": 3080.08, + "end": 3084.26, + "probability": 0.8823 + }, + { + "start": 3084.8, + "end": 3085.3, + "probability": 0.8324 + }, + { + "start": 3085.82, + "end": 3089.08, + "probability": 0.9934 + }, + { + "start": 3089.42, + "end": 3090.78, + "probability": 0.773 + }, + { + "start": 3091.5, + "end": 3093.82, + "probability": 0.933 + }, + { + "start": 3094.52, + "end": 3097.86, + "probability": 0.8888 + }, + { + "start": 3098.88, + "end": 3104.46, + "probability": 0.806 + }, + { + "start": 3104.92, + "end": 3109.68, + "probability": 0.9872 + }, + { + "start": 3110.16, + "end": 3111.3, + "probability": 0.84 + }, + { + "start": 3111.54, + "end": 3114.4, + "probability": 0.9705 + }, + { + "start": 3115.02, + "end": 3120.92, + "probability": 0.9788 + }, + { + "start": 3121.46, + "end": 3122.75, + "probability": 0.9077 + }, + { + "start": 3123.28, + "end": 3124.34, + "probability": 0.8796 + }, + { + "start": 3124.86, + "end": 3126.64, + "probability": 0.8306 + }, + { + "start": 3127.36, + "end": 3128.78, + "probability": 0.9968 + }, + { + "start": 3129.24, + "end": 3130.62, + "probability": 0.8685 + }, + { + "start": 3131.08, + "end": 3132.44, + "probability": 0.8911 + }, + { + "start": 3135.16, + "end": 3135.5, + "probability": 0.2268 + }, + { + "start": 3135.5, + "end": 3140.6, + "probability": 0.5691 + }, + { + "start": 3141.02, + "end": 3142.04, + "probability": 0.9858 + }, + { + "start": 3143.06, + "end": 3146.04, + "probability": 0.9702 + }, + { + "start": 3146.72, + "end": 3150.24, + "probability": 0.9782 + }, + { + "start": 3150.82, + "end": 3151.21, + "probability": 0.4116 + }, + { + "start": 3152.32, + "end": 3156.96, + "probability": 0.9664 + }, + { + "start": 3157.11, + "end": 3163.66, + "probability": 0.7826 + }, + { + "start": 3164.54, + "end": 3167.58, + "probability": 0.9691 + }, + { + "start": 3167.72, + "end": 3169.36, + "probability": 0.7352 + }, + { + "start": 3169.84, + "end": 3171.06, + "probability": 0.8879 + }, + { + "start": 3172.64, + "end": 3172.86, + "probability": 0.6154 + }, + { + "start": 3173.2, + "end": 3176.72, + "probability": 0.7798 + }, + { + "start": 3177.4, + "end": 3179.76, + "probability": 0.9744 + }, + { + "start": 3180.28, + "end": 3182.38, + "probability": 0.6603 + }, + { + "start": 3182.92, + "end": 3184.76, + "probability": 0.9935 + }, + { + "start": 3185.66, + "end": 3187.82, + "probability": 0.077 + }, + { + "start": 3188.76, + "end": 3192.9, + "probability": 0.6983 + }, + { + "start": 3193.72, + "end": 3194.74, + "probability": 0.5146 + }, + { + "start": 3194.82, + "end": 3196.32, + "probability": 0.805 + }, + { + "start": 3196.84, + "end": 3198.84, + "probability": 0.717 + }, + { + "start": 3199.36, + "end": 3202.26, + "probability": 0.9255 + }, + { + "start": 3203.04, + "end": 3204.18, + "probability": 0.8771 + }, + { + "start": 3204.52, + "end": 3207.74, + "probability": 0.7503 + }, + { + "start": 3208.74, + "end": 3211.6, + "probability": 0.5745 + }, + { + "start": 3212.3, + "end": 3213.72, + "probability": 0.7182 + }, + { + "start": 3213.94, + "end": 3217.16, + "probability": 0.8643 + }, + { + "start": 3217.66, + "end": 3219.52, + "probability": 0.9482 + }, + { + "start": 3221.2, + "end": 3225.26, + "probability": 0.8871 + }, + { + "start": 3225.78, + "end": 3231.32, + "probability": 0.9502 + }, + { + "start": 3231.88, + "end": 3233.16, + "probability": 0.8633 + }, + { + "start": 3233.8, + "end": 3234.76, + "probability": 0.75 + }, + { + "start": 3235.0, + "end": 3240.16, + "probability": 0.7995 + }, + { + "start": 3241.84, + "end": 3241.92, + "probability": 0.0206 + }, + { + "start": 3241.92, + "end": 3242.54, + "probability": 0.1651 + }, + { + "start": 3242.66, + "end": 3245.42, + "probability": 0.9775 + }, + { + "start": 3245.46, + "end": 3245.9, + "probability": 0.2502 + }, + { + "start": 3246.27, + "end": 3248.36, + "probability": 0.705 + }, + { + "start": 3248.42, + "end": 3248.74, + "probability": 0.8543 + }, + { + "start": 3248.88, + "end": 3249.32, + "probability": 0.5959 + }, + { + "start": 3249.58, + "end": 3252.04, + "probability": 0.9407 + }, + { + "start": 3252.4, + "end": 3256.96, + "probability": 0.7315 + }, + { + "start": 3257.44, + "end": 3258.18, + "probability": 0.6365 + }, + { + "start": 3258.24, + "end": 3258.62, + "probability": 0.9328 + }, + { + "start": 3258.88, + "end": 3259.84, + "probability": 0.9961 + }, + { + "start": 3260.66, + "end": 3261.04, + "probability": 0.5058 + }, + { + "start": 3261.18, + "end": 3261.88, + "probability": 0.836 + }, + { + "start": 3262.28, + "end": 3262.62, + "probability": 0.6679 + }, + { + "start": 3262.94, + "end": 3264.32, + "probability": 0.9147 + }, + { + "start": 3264.4, + "end": 3268.18, + "probability": 0.6829 + }, + { + "start": 3268.28, + "end": 3270.5, + "probability": 0.9338 + }, + { + "start": 3270.66, + "end": 3271.18, + "probability": 0.8966 + }, + { + "start": 3272.06, + "end": 3276.0, + "probability": 0.9826 + }, + { + "start": 3276.34, + "end": 3278.0, + "probability": 0.9355 + }, + { + "start": 3278.5, + "end": 3279.04, + "probability": 0.4891 + }, + { + "start": 3279.12, + "end": 3283.88, + "probability": 0.8896 + }, + { + "start": 3284.34, + "end": 3284.74, + "probability": 0.7698 + }, + { + "start": 3284.92, + "end": 3286.9, + "probability": 0.8637 + }, + { + "start": 3286.9, + "end": 3288.82, + "probability": 0.5409 + }, + { + "start": 3288.88, + "end": 3289.24, + "probability": 0.2529 + }, + { + "start": 3289.58, + "end": 3291.86, + "probability": 0.7563 + }, + { + "start": 3292.0, + "end": 3293.2, + "probability": 0.7857 + }, + { + "start": 3294.12, + "end": 3295.68, + "probability": 0.716 + }, + { + "start": 3295.74, + "end": 3296.32, + "probability": 0.7517 + }, + { + "start": 3296.4, + "end": 3297.2, + "probability": 0.898 + }, + { + "start": 3297.2, + "end": 3298.94, + "probability": 0.8986 + }, + { + "start": 3299.24, + "end": 3301.86, + "probability": 0.9623 + }, + { + "start": 3302.42, + "end": 3302.96, + "probability": 0.5457 + }, + { + "start": 3307.12, + "end": 3309.12, + "probability": 0.62 + }, + { + "start": 3309.82, + "end": 3313.46, + "probability": 0.676 + }, + { + "start": 3313.56, + "end": 3315.32, + "probability": 0.6618 + }, + { + "start": 3315.94, + "end": 3316.9, + "probability": 0.3548 + }, + { + "start": 3317.54, + "end": 3319.38, + "probability": 0.9863 + }, + { + "start": 3319.76, + "end": 3320.56, + "probability": 0.6588 + }, + { + "start": 3320.58, + "end": 3321.28, + "probability": 0.219 + }, + { + "start": 3321.7, + "end": 3322.48, + "probability": 0.3729 + }, + { + "start": 3322.48, + "end": 3322.96, + "probability": 0.7826 + }, + { + "start": 3323.12, + "end": 3323.56, + "probability": 0.2627 + }, + { + "start": 3339.24, + "end": 3343.96, + "probability": 0.2704 + }, + { + "start": 3343.96, + "end": 3345.24, + "probability": 0.6506 + }, + { + "start": 3345.88, + "end": 3347.02, + "probability": 0.0213 + }, + { + "start": 3347.02, + "end": 3349.99, + "probability": 0.2537 + }, + { + "start": 3350.62, + "end": 3352.64, + "probability": 0.6847 + }, + { + "start": 3353.62, + "end": 3356.31, + "probability": 0.0431 + }, + { + "start": 3356.44, + "end": 3356.72, + "probability": 0.0437 + }, + { + "start": 3356.72, + "end": 3356.72, + "probability": 0.0306 + }, + { + "start": 3358.88, + "end": 3359.9, + "probability": 0.0686 + }, + { + "start": 3360.08, + "end": 3360.18, + "probability": 0.09 + }, + { + "start": 3360.18, + "end": 3360.18, + "probability": 0.1324 + }, + { + "start": 3360.18, + "end": 3360.18, + "probability": 0.0515 + }, + { + "start": 3360.18, + "end": 3360.42, + "probability": 0.1564 + }, + { + "start": 3360.42, + "end": 3365.94, + "probability": 0.5737 + }, + { + "start": 3365.94, + "end": 3366.42, + "probability": 0.3459 + }, + { + "start": 3366.74, + "end": 3367.5, + "probability": 0.2731 + }, + { + "start": 3368.44, + "end": 3372.48, + "probability": 0.5868 + }, + { + "start": 3377.46, + "end": 3385.24, + "probability": 0.489 + }, + { + "start": 3386.06, + "end": 3387.98, + "probability": 0.5003 + }, + { + "start": 3388.48, + "end": 3393.48, + "probability": 0.9954 + }, + { + "start": 3393.9, + "end": 3396.44, + "probability": 0.9796 + }, + { + "start": 3396.92, + "end": 3397.4, + "probability": 0.5792 + }, + { + "start": 3398.02, + "end": 3400.56, + "probability": 0.9857 + }, + { + "start": 3400.66, + "end": 3402.72, + "probability": 0.9644 + }, + { + "start": 3403.14, + "end": 3404.3, + "probability": 0.7426 + }, + { + "start": 3405.18, + "end": 3408.24, + "probability": 0.9603 + }, + { + "start": 3408.24, + "end": 3410.94, + "probability": 0.6293 + }, + { + "start": 3411.0, + "end": 3412.12, + "probability": 0.2883 + }, + { + "start": 3412.94, + "end": 3415.48, + "probability": 0.9971 + }, + { + "start": 3416.1, + "end": 3418.46, + "probability": 0.5958 + }, + { + "start": 3419.06, + "end": 3420.56, + "probability": 0.5825 + }, + { + "start": 3422.2, + "end": 3428.06, + "probability": 0.776 + }, + { + "start": 3430.82, + "end": 3435.92, + "probability": 0.5481 + }, + { + "start": 3437.34, + "end": 3438.1, + "probability": 0.9099 + }, + { + "start": 3438.34, + "end": 3444.82, + "probability": 0.9183 + }, + { + "start": 3445.52, + "end": 3447.36, + "probability": 0.7216 + }, + { + "start": 3448.58, + "end": 3452.04, + "probability": 0.9303 + }, + { + "start": 3453.26, + "end": 3455.51, + "probability": 0.6643 + }, + { + "start": 3455.8, + "end": 3460.34, + "probability": 0.9627 + }, + { + "start": 3460.88, + "end": 3463.28, + "probability": 0.9789 + }, + { + "start": 3463.88, + "end": 3469.4, + "probability": 0.9426 + }, + { + "start": 3470.5, + "end": 3475.69, + "probability": 0.9758 + }, + { + "start": 3476.86, + "end": 3483.48, + "probability": 0.9668 + }, + { + "start": 3483.48, + "end": 3488.42, + "probability": 0.7995 + }, + { + "start": 3489.32, + "end": 3493.46, + "probability": 0.7806 + }, + { + "start": 3493.46, + "end": 3497.66, + "probability": 0.7075 + }, + { + "start": 3498.7, + "end": 3504.32, + "probability": 0.9893 + }, + { + "start": 3504.32, + "end": 3507.66, + "probability": 0.9099 + }, + { + "start": 3508.44, + "end": 3511.56, + "probability": 0.9973 + }, + { + "start": 3511.64, + "end": 3511.84, + "probability": 0.8231 + }, + { + "start": 3512.3, + "end": 3512.3, + "probability": 0.2913 + }, + { + "start": 3512.38, + "end": 3513.44, + "probability": 0.9216 + }, + { + "start": 3516.26, + "end": 3516.5, + "probability": 0.3481 + }, + { + "start": 3520.78, + "end": 3523.35, + "probability": 0.8162 + }, + { + "start": 3524.24, + "end": 3526.0, + "probability": 0.999 + }, + { + "start": 3527.68, + "end": 3530.02, + "probability": 0.8067 + }, + { + "start": 3538.68, + "end": 3541.96, + "probability": 0.6838 + }, + { + "start": 3543.16, + "end": 3546.86, + "probability": 0.9571 + }, + { + "start": 3547.02, + "end": 3548.68, + "probability": 0.9243 + }, + { + "start": 3550.28, + "end": 3555.58, + "probability": 0.9094 + }, + { + "start": 3555.9, + "end": 3559.82, + "probability": 0.9491 + }, + { + "start": 3560.28, + "end": 3561.28, + "probability": 0.4316 + }, + { + "start": 3561.88, + "end": 3564.96, + "probability": 0.7254 + }, + { + "start": 3565.9, + "end": 3568.71, + "probability": 0.5131 + }, + { + "start": 3569.58, + "end": 3573.98, + "probability": 0.7422 + }, + { + "start": 3574.56, + "end": 3578.0, + "probability": 0.9824 + }, + { + "start": 3578.18, + "end": 3578.74, + "probability": 0.7479 + }, + { + "start": 3579.5, + "end": 3581.59, + "probability": 0.9879 + }, + { + "start": 3581.74, + "end": 3587.44, + "probability": 0.7988 + }, + { + "start": 3587.64, + "end": 3587.96, + "probability": 0.3164 + }, + { + "start": 3587.96, + "end": 3588.18, + "probability": 0.3501 + }, + { + "start": 3588.22, + "end": 3590.12, + "probability": 0.5637 + }, + { + "start": 3590.52, + "end": 3593.8, + "probability": 0.9698 + }, + { + "start": 3594.16, + "end": 3594.6, + "probability": 0.4629 + }, + { + "start": 3595.0, + "end": 3597.56, + "probability": 0.9523 + }, + { + "start": 3598.16, + "end": 3600.48, + "probability": 0.8102 + }, + { + "start": 3601.46, + "end": 3602.9, + "probability": 0.5 + }, + { + "start": 3603.08, + "end": 3603.98, + "probability": 0.6778 + }, + { + "start": 3604.12, + "end": 3605.26, + "probability": 0.2325 + }, + { + "start": 3605.56, + "end": 3607.1, + "probability": 0.9438 + }, + { + "start": 3608.21, + "end": 3613.04, + "probability": 0.9639 + }, + { + "start": 3613.48, + "end": 3616.38, + "probability": 0.689 + }, + { + "start": 3616.4, + "end": 3616.92, + "probability": 0.5596 + }, + { + "start": 3617.02, + "end": 3617.64, + "probability": 0.5598 + }, + { + "start": 3618.56, + "end": 3620.62, + "probability": 0.9317 + }, + { + "start": 3637.64, + "end": 3639.64, + "probability": 0.3352 + }, + { + "start": 3640.0, + "end": 3643.1, + "probability": 0.733 + }, + { + "start": 3643.54, + "end": 3644.56, + "probability": 0.2248 + }, + { + "start": 3645.22, + "end": 3648.98, + "probability": 0.3099 + }, + { + "start": 3649.12, + "end": 3652.78, + "probability": 0.6737 + }, + { + "start": 3698.48, + "end": 3699.66, + "probability": 0.0125 + }, + { + "start": 3701.2, + "end": 3702.16, + "probability": 0.1547 + }, + { + "start": 3703.02, + "end": 3703.62, + "probability": 0.0279 + }, + { + "start": 3704.52, + "end": 3708.52, + "probability": 0.0253 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.0, + "end": 3743.0, + "probability": 0.0 + }, + { + "start": 3743.58, + "end": 3743.58, + "probability": 0.105 + }, + { + "start": 3743.58, + "end": 3743.58, + "probability": 0.0386 + }, + { + "start": 3743.58, + "end": 3744.06, + "probability": 0.6209 + }, + { + "start": 3744.38, + "end": 3746.12, + "probability": 0.6097 + }, + { + "start": 3751.72, + "end": 3756.1, + "probability": 0.9108 + }, + { + "start": 3756.22, + "end": 3760.04, + "probability": 0.9711 + }, + { + "start": 3761.32, + "end": 3761.96, + "probability": 0.5393 + }, + { + "start": 3763.13, + "end": 3769.5, + "probability": 0.9561 + }, + { + "start": 3770.2, + "end": 3773.7, + "probability": 0.9224 + }, + { + "start": 3774.7, + "end": 3779.38, + "probability": 0.9231 + }, + { + "start": 3779.68, + "end": 3781.15, + "probability": 0.9399 + }, + { + "start": 3781.7, + "end": 3783.66, + "probability": 0.8639 + }, + { + "start": 3783.82, + "end": 3784.04, + "probability": 0.8344 + }, + { + "start": 3784.64, + "end": 3785.42, + "probability": 0.5798 + }, + { + "start": 3786.16, + "end": 3787.36, + "probability": 0.5561 + }, + { + "start": 3787.36, + "end": 3788.3, + "probability": 0.0999 + }, + { + "start": 3788.3, + "end": 3788.4, + "probability": 0.0384 + }, + { + "start": 3791.64, + "end": 3792.52, + "probability": 0.0645 + }, + { + "start": 3793.42, + "end": 3796.04, + "probability": 0.2147 + }, + { + "start": 3797.7, + "end": 3799.4, + "probability": 0.6188 + }, + { + "start": 3799.4, + "end": 3799.4, + "probability": 0.587 + }, + { + "start": 3799.4, + "end": 3799.82, + "probability": 0.1017 + }, + { + "start": 3819.64, + "end": 3820.08, + "probability": 0.2712 + }, + { + "start": 3829.65, + "end": 3833.2, + "probability": 0.3284 + }, + { + "start": 3835.32, + "end": 3842.02, + "probability": 0.9961 + }, + { + "start": 3842.72, + "end": 3843.32, + "probability": 0.9669 + }, + { + "start": 3844.7, + "end": 3845.32, + "probability": 0.8626 + }, + { + "start": 3848.14, + "end": 3849.16, + "probability": 0.9121 + }, + { + "start": 3850.08, + "end": 3851.04, + "probability": 0.8439 + }, + { + "start": 3852.24, + "end": 3855.62, + "probability": 0.8578 + }, + { + "start": 3856.84, + "end": 3859.86, + "probability": 0.9946 + }, + { + "start": 3860.42, + "end": 3861.86, + "probability": 0.9939 + }, + { + "start": 3862.72, + "end": 3864.95, + "probability": 0.9512 + }, + { + "start": 3867.26, + "end": 3869.18, + "probability": 0.7185 + }, + { + "start": 3869.88, + "end": 3873.8, + "probability": 0.6597 + }, + { + "start": 3875.34, + "end": 3878.66, + "probability": 0.7462 + }, + { + "start": 3878.66, + "end": 3878.88, + "probability": 0.3037 + }, + { + "start": 3878.94, + "end": 3880.13, + "probability": 0.9224 + }, + { + "start": 3880.32, + "end": 3880.7, + "probability": 0.4084 + }, + { + "start": 3880.84, + "end": 3883.18, + "probability": 0.4539 + }, + { + "start": 3884.28, + "end": 3885.46, + "probability": 0.9323 + }, + { + "start": 3886.72, + "end": 3887.18, + "probability": 0.2556 + }, + { + "start": 3888.32, + "end": 3889.72, + "probability": 0.7521 + }, + { + "start": 3892.11, + "end": 3896.0, + "probability": 0.7839 + }, + { + "start": 3896.64, + "end": 3896.64, + "probability": 0.4757 + }, + { + "start": 3896.72, + "end": 3899.04, + "probability": 0.6283 + }, + { + "start": 3899.54, + "end": 3901.82, + "probability": 0.7179 + }, + { + "start": 3902.51, + "end": 3905.12, + "probability": 0.8372 + }, + { + "start": 3905.94, + "end": 3908.8, + "probability": 0.7162 + }, + { + "start": 3909.16, + "end": 3910.1, + "probability": 0.9929 + }, + { + "start": 3910.74, + "end": 3912.98, + "probability": 0.9891 + }, + { + "start": 3913.12, + "end": 3916.17, + "probability": 0.6621 + }, + { + "start": 3917.8, + "end": 3922.36, + "probability": 0.5917 + }, + { + "start": 3923.06, + "end": 3928.52, + "probability": 0.5523 + }, + { + "start": 3928.54, + "end": 3930.2, + "probability": 0.5094 + }, + { + "start": 3931.66, + "end": 3933.01, + "probability": 0.9963 + }, + { + "start": 3933.26, + "end": 3934.54, + "probability": 0.9293 + }, + { + "start": 3934.98, + "end": 3938.06, + "probability": 0.8973 + }, + { + "start": 3938.86, + "end": 3939.14, + "probability": 0.4181 + }, + { + "start": 3940.26, + "end": 3942.22, + "probability": 0.9762 + }, + { + "start": 3942.86, + "end": 3943.52, + "probability": 0.9722 + }, + { + "start": 3944.68, + "end": 3945.73, + "probability": 0.9897 + }, + { + "start": 3946.3, + "end": 3951.82, + "probability": 0.979 + }, + { + "start": 3953.14, + "end": 3955.9, + "probability": 0.9697 + }, + { + "start": 3956.82, + "end": 3958.3, + "probability": 0.548 + }, + { + "start": 3958.92, + "end": 3960.71, + "probability": 0.9105 + }, + { + "start": 3963.02, + "end": 3966.66, + "probability": 0.8167 + }, + { + "start": 3968.26, + "end": 3975.56, + "probability": 0.5006 + }, + { + "start": 3976.4, + "end": 3982.38, + "probability": 0.6664 + }, + { + "start": 3983.58, + "end": 3984.56, + "probability": 0.7545 + }, + { + "start": 3985.2, + "end": 3986.12, + "probability": 0.3201 + }, + { + "start": 3987.54, + "end": 3989.9, + "probability": 0.9268 + }, + { + "start": 3990.2, + "end": 3991.06, + "probability": 0.7453 + }, + { + "start": 3991.64, + "end": 3992.8, + "probability": 0.6667 + }, + { + "start": 3993.72, + "end": 3995.12, + "probability": 0.6688 + }, + { + "start": 3995.98, + "end": 3998.46, + "probability": 0.4894 + }, + { + "start": 3999.76, + "end": 4001.3, + "probability": 0.3376 + }, + { + "start": 4002.1, + "end": 4002.1, + "probability": 0.0329 + }, + { + "start": 4002.1, + "end": 4004.92, + "probability": 0.4591 + }, + { + "start": 4006.0, + "end": 4006.0, + "probability": 0.2096 + }, + { + "start": 4009.84, + "end": 4014.48, + "probability": 0.6549 + }, + { + "start": 4016.14, + "end": 4017.3, + "probability": 0.8039 + }, + { + "start": 4017.76, + "end": 4020.08, + "probability": 0.5583 + }, + { + "start": 4021.76, + "end": 4024.08, + "probability": 0.2754 + }, + { + "start": 4024.82, + "end": 4028.0, + "probability": 0.8685 + }, + { + "start": 4029.26, + "end": 4034.24, + "probability": 0.7554 + }, + { + "start": 4035.16, + "end": 4036.1, + "probability": 0.2593 + }, + { + "start": 4036.96, + "end": 4039.42, + "probability": 0.6763 + }, + { + "start": 4039.98, + "end": 4041.16, + "probability": 0.9103 + }, + { + "start": 4042.2, + "end": 4045.34, + "probability": 0.7725 + }, + { + "start": 4045.5, + "end": 4049.04, + "probability": 0.9824 + }, + { + "start": 4049.66, + "end": 4051.2, + "probability": 0.9591 + }, + { + "start": 4051.66, + "end": 4053.46, + "probability": 0.9187 + }, + { + "start": 4058.72, + "end": 4060.2, + "probability": 0.4182 + }, + { + "start": 4060.88, + "end": 4061.68, + "probability": 0.3693 + }, + { + "start": 4062.32, + "end": 4063.06, + "probability": 0.64 + }, + { + "start": 4063.62, + "end": 4067.57, + "probability": 0.7475 + }, + { + "start": 4068.78, + "end": 4068.92, + "probability": 0.3386 + }, + { + "start": 4068.96, + "end": 4069.66, + "probability": 0.2324 + }, + { + "start": 4070.24, + "end": 4071.8, + "probability": 0.1921 + }, + { + "start": 4072.62, + "end": 4073.36, + "probability": 0.4852 + }, + { + "start": 4074.0, + "end": 4074.48, + "probability": 0.2828 + }, + { + "start": 4087.82, + "end": 4088.72, + "probability": 0.075 + }, + { + "start": 4100.48, + "end": 4102.36, + "probability": 0.9143 + }, + { + "start": 4103.38, + "end": 4105.14, + "probability": 0.9927 + }, + { + "start": 4105.46, + "end": 4112.34, + "probability": 0.9924 + }, + { + "start": 4113.56, + "end": 4114.12, + "probability": 0.9941 + }, + { + "start": 4114.64, + "end": 4120.06, + "probability": 0.8575 + }, + { + "start": 4121.46, + "end": 4122.46, + "probability": 0.9585 + }, + { + "start": 4122.5, + "end": 4123.26, + "probability": 0.8809 + }, + { + "start": 4123.72, + "end": 4126.26, + "probability": 0.9956 + }, + { + "start": 4127.28, + "end": 4127.84, + "probability": 0.9109 + }, + { + "start": 4127.94, + "end": 4129.29, + "probability": 0.8787 + }, + { + "start": 4129.5, + "end": 4133.86, + "probability": 0.9427 + }, + { + "start": 4135.22, + "end": 4141.9, + "probability": 0.7746 + }, + { + "start": 4142.48, + "end": 4143.4, + "probability": 0.6683 + }, + { + "start": 4144.46, + "end": 4147.62, + "probability": 0.6913 + }, + { + "start": 4148.36, + "end": 4151.2, + "probability": 0.5642 + }, + { + "start": 4153.04, + "end": 4156.18, + "probability": 0.754 + }, + { + "start": 4156.88, + "end": 4160.38, + "probability": 0.5304 + }, + { + "start": 4160.95, + "end": 4162.6, + "probability": 0.9917 + }, + { + "start": 4164.32, + "end": 4173.98, + "probability": 0.9971 + }, + { + "start": 4174.9, + "end": 4177.7, + "probability": 0.8302 + }, + { + "start": 4178.64, + "end": 4179.18, + "probability": 0.7986 + }, + { + "start": 4179.92, + "end": 4182.02, + "probability": 0.9304 + }, + { + "start": 4182.84, + "end": 4184.66, + "probability": 0.7564 + }, + { + "start": 4184.84, + "end": 4186.4, + "probability": 0.5258 + }, + { + "start": 4187.36, + "end": 4191.92, + "probability": 0.9671 + }, + { + "start": 4192.8, + "end": 4195.94, + "probability": 0.9853 + }, + { + "start": 4196.98, + "end": 4200.78, + "probability": 0.967 + }, + { + "start": 4201.24, + "end": 4203.46, + "probability": 0.6163 + }, + { + "start": 4203.5, + "end": 4203.8, + "probability": 0.8008 + }, + { + "start": 4204.06, + "end": 4206.18, + "probability": 0.6191 + }, + { + "start": 4206.32, + "end": 4207.92, + "probability": 0.4356 + }, + { + "start": 4208.46, + "end": 4210.4, + "probability": 0.8379 + }, + { + "start": 4211.32, + "end": 4213.38, + "probability": 0.9958 + }, + { + "start": 4214.06, + "end": 4218.2, + "probability": 0.3727 + }, + { + "start": 4219.48, + "end": 4220.38, + "probability": 0.8749 + }, + { + "start": 4221.22, + "end": 4224.4, + "probability": 0.9394 + }, + { + "start": 4224.96, + "end": 4226.6, + "probability": 0.7766 + }, + { + "start": 4227.3, + "end": 4230.88, + "probability": 0.5591 + }, + { + "start": 4231.64, + "end": 4232.32, + "probability": 0.484 + }, + { + "start": 4232.46, + "end": 4232.7, + "probability": 0.6153 + }, + { + "start": 4232.98, + "end": 4233.42, + "probability": 0.8067 + }, + { + "start": 4234.88, + "end": 4240.3, + "probability": 0.0132 + }, + { + "start": 4248.7, + "end": 4250.58, + "probability": 0.0104 + }, + { + "start": 4251.34, + "end": 4251.72, + "probability": 0.078 + }, + { + "start": 4251.72, + "end": 4253.76, + "probability": 0.6527 + }, + { + "start": 4254.26, + "end": 4261.78, + "probability": 0.9769 + }, + { + "start": 4263.56, + "end": 4264.08, + "probability": 0.276 + }, + { + "start": 4267.12, + "end": 4269.18, + "probability": 0.3242 + }, + { + "start": 4269.82, + "end": 4273.62, + "probability": 0.8067 + }, + { + "start": 4273.62, + "end": 4276.9, + "probability": 0.9861 + }, + { + "start": 4277.38, + "end": 4277.98, + "probability": 0.6611 + }, + { + "start": 4280.33, + "end": 4284.04, + "probability": 0.995 + }, + { + "start": 4284.78, + "end": 4287.76, + "probability": 0.4494 + }, + { + "start": 4287.98, + "end": 4289.02, + "probability": 0.7908 + }, + { + "start": 4289.86, + "end": 4290.34, + "probability": 0.7528 + }, + { + "start": 4292.94, + "end": 4294.84, + "probability": 0.8337 + }, + { + "start": 4295.02, + "end": 4295.52, + "probability": 0.7434 + }, + { + "start": 4296.02, + "end": 4301.24, + "probability": 0.7924 + }, + { + "start": 4301.78, + "end": 4303.12, + "probability": 0.3799 + }, + { + "start": 4303.62, + "end": 4306.72, + "probability": 0.9583 + }, + { + "start": 4306.86, + "end": 4308.46, + "probability": 0.9567 + }, + { + "start": 4309.26, + "end": 4310.26, + "probability": 0.6978 + }, + { + "start": 4310.42, + "end": 4313.0, + "probability": 0.6438 + }, + { + "start": 4313.64, + "end": 4317.06, + "probability": 0.9927 + }, + { + "start": 4318.46, + "end": 4319.68, + "probability": 0.7895 + }, + { + "start": 4319.76, + "end": 4320.74, + "probability": 0.9818 + }, + { + "start": 4320.94, + "end": 4321.62, + "probability": 0.833 + }, + { + "start": 4322.62, + "end": 4325.66, + "probability": 0.767 + }, + { + "start": 4326.26, + "end": 4327.62, + "probability": 0.7481 + }, + { + "start": 4328.56, + "end": 4330.84, + "probability": 0.6242 + }, + { + "start": 4331.46, + "end": 4332.6, + "probability": 0.7702 + }, + { + "start": 4333.12, + "end": 4334.56, + "probability": 0.7221 + }, + { + "start": 4335.32, + "end": 4335.92, + "probability": 0.6829 + }, + { + "start": 4336.0, + "end": 4339.26, + "probability": 0.9628 + }, + { + "start": 4339.46, + "end": 4341.2, + "probability": 0.9387 + }, + { + "start": 4342.48, + "end": 4343.42, + "probability": 0.901 + }, + { + "start": 4343.58, + "end": 4344.14, + "probability": 0.4093 + }, + { + "start": 4344.28, + "end": 4345.04, + "probability": 0.6864 + }, + { + "start": 4345.14, + "end": 4346.42, + "probability": 0.7104 + }, + { + "start": 4347.0, + "end": 4351.08, + "probability": 0.9567 + }, + { + "start": 4351.9, + "end": 4353.78, + "probability": 0.7229 + }, + { + "start": 4354.24, + "end": 4354.88, + "probability": 0.9434 + }, + { + "start": 4355.06, + "end": 4355.52, + "probability": 0.8516 + }, + { + "start": 4355.6, + "end": 4356.5, + "probability": 0.8956 + }, + { + "start": 4357.02, + "end": 4358.64, + "probability": 0.9036 + }, + { + "start": 4359.2, + "end": 4360.14, + "probability": 0.704 + }, + { + "start": 4360.26, + "end": 4361.36, + "probability": 0.8951 + }, + { + "start": 4361.88, + "end": 4362.76, + "probability": 0.8562 + }, + { + "start": 4363.18, + "end": 4368.4, + "probability": 0.8507 + }, + { + "start": 4368.54, + "end": 4370.0, + "probability": 0.9812 + }, + { + "start": 4370.4, + "end": 4372.68, + "probability": 0.9984 + }, + { + "start": 4373.72, + "end": 4378.72, + "probability": 0.9635 + }, + { + "start": 4378.82, + "end": 4379.96, + "probability": 0.5744 + }, + { + "start": 4380.5, + "end": 4384.52, + "probability": 0.8833 + }, + { + "start": 4385.22, + "end": 4388.94, + "probability": 0.7666 + }, + { + "start": 4389.34, + "end": 4390.68, + "probability": 0.9293 + }, + { + "start": 4391.22, + "end": 4392.42, + "probability": 0.753 + }, + { + "start": 4392.88, + "end": 4395.9, + "probability": 0.7749 + }, + { + "start": 4395.94, + "end": 4396.78, + "probability": 0.4066 + }, + { + "start": 4396.88, + "end": 4398.78, + "probability": 0.8101 + }, + { + "start": 4398.78, + "end": 4399.96, + "probability": 0.8286 + }, + { + "start": 4400.38, + "end": 4401.92, + "probability": 0.916 + }, + { + "start": 4402.38, + "end": 4405.08, + "probability": 0.7925 + }, + { + "start": 4405.16, + "end": 4407.42, + "probability": 0.6116 + }, + { + "start": 4407.66, + "end": 4408.52, + "probability": 0.3137 + }, + { + "start": 4408.54, + "end": 4409.8, + "probability": 0.8246 + }, + { + "start": 4410.16, + "end": 4413.32, + "probability": 0.6642 + }, + { + "start": 4414.3, + "end": 4415.66, + "probability": 0.9658 + }, + { + "start": 4416.1, + "end": 4417.5, + "probability": 0.7641 + }, + { + "start": 4417.68, + "end": 4419.57, + "probability": 0.6922 + }, + { + "start": 4420.62, + "end": 4421.74, + "probability": 0.4373 + }, + { + "start": 4421.84, + "end": 4423.26, + "probability": 0.6959 + }, + { + "start": 4423.5, + "end": 4424.84, + "probability": 0.7866 + }, + { + "start": 4425.98, + "end": 4431.66, + "probability": 0.955 + }, + { + "start": 4432.32, + "end": 4436.68, + "probability": 0.9066 + }, + { + "start": 4437.06, + "end": 4437.58, + "probability": 0.9705 + }, + { + "start": 4438.08, + "end": 4438.64, + "probability": 0.5014 + }, + { + "start": 4439.4, + "end": 4443.52, + "probability": 0.9883 + }, + { + "start": 4444.14, + "end": 4445.29, + "probability": 0.4506 + }, + { + "start": 4446.08, + "end": 4449.46, + "probability": 0.8712 + }, + { + "start": 4450.1, + "end": 4451.52, + "probability": 0.7676 + }, + { + "start": 4452.9, + "end": 4453.94, + "probability": 0.1591 + }, + { + "start": 4454.5, + "end": 4457.14, + "probability": 0.9681 + }, + { + "start": 4457.94, + "end": 4458.72, + "probability": 0.9091 + }, + { + "start": 4459.14, + "end": 4462.68, + "probability": 0.8596 + }, + { + "start": 4462.74, + "end": 4463.56, + "probability": 0.7675 + }, + { + "start": 4464.26, + "end": 4466.22, + "probability": 0.8392 + }, + { + "start": 4466.38, + "end": 4466.94, + "probability": 0.5785 + }, + { + "start": 4467.34, + "end": 4468.38, + "probability": 0.9039 + }, + { + "start": 4468.46, + "end": 4473.76, + "probability": 0.9487 + }, + { + "start": 4474.24, + "end": 4479.3, + "probability": 0.89 + }, + { + "start": 4479.88, + "end": 4482.58, + "probability": 0.9431 + }, + { + "start": 4483.12, + "end": 4484.24, + "probability": 0.5802 + }, + { + "start": 4484.4, + "end": 4485.22, + "probability": 0.8701 + }, + { + "start": 4485.72, + "end": 4488.06, + "probability": 0.8047 + }, + { + "start": 4488.54, + "end": 4489.17, + "probability": 0.9891 + }, + { + "start": 4489.74, + "end": 4492.78, + "probability": 0.9349 + }, + { + "start": 4493.32, + "end": 4494.74, + "probability": 0.9239 + }, + { + "start": 4495.36, + "end": 4500.48, + "probability": 0.9557 + }, + { + "start": 4501.08, + "end": 4503.22, + "probability": 0.9719 + }, + { + "start": 4503.66, + "end": 4504.16, + "probability": 0.7964 + }, + { + "start": 4504.2, + "end": 4506.16, + "probability": 0.7969 + }, + { + "start": 4508.52, + "end": 4515.48, + "probability": 0.9966 + }, + { + "start": 4519.32, + "end": 4523.86, + "probability": 0.9956 + }, + { + "start": 4523.88, + "end": 4526.82, + "probability": 0.7577 + }, + { + "start": 4527.5, + "end": 4531.18, + "probability": 0.8962 + }, + { + "start": 4531.72, + "end": 4535.84, + "probability": 0.9925 + }, + { + "start": 4536.66, + "end": 4539.22, + "probability": 0.9765 + }, + { + "start": 4539.82, + "end": 4544.16, + "probability": 0.9382 + }, + { + "start": 4544.56, + "end": 4545.44, + "probability": 0.8557 + }, + { + "start": 4545.52, + "end": 4550.62, + "probability": 0.9847 + }, + { + "start": 4550.94, + "end": 4553.28, + "probability": 0.6909 + }, + { + "start": 4554.46, + "end": 4560.62, + "probability": 0.9447 + }, + { + "start": 4561.08, + "end": 4563.92, + "probability": 0.7629 + }, + { + "start": 4564.16, + "end": 4565.06, + "probability": 0.0982 + }, + { + "start": 4565.12, + "end": 4566.08, + "probability": 0.8852 + }, + { + "start": 4566.56, + "end": 4569.28, + "probability": 0.9651 + }, + { + "start": 4569.68, + "end": 4572.98, + "probability": 0.9185 + }, + { + "start": 4573.12, + "end": 4573.76, + "probability": 0.9133 + }, + { + "start": 4575.26, + "end": 4576.08, + "probability": 0.789 + }, + { + "start": 4576.68, + "end": 4578.72, + "probability": 0.8352 + }, + { + "start": 4579.92, + "end": 4584.44, + "probability": 0.9863 + }, + { + "start": 4586.08, + "end": 4588.06, + "probability": 0.7484 + }, + { + "start": 4588.72, + "end": 4589.86, + "probability": 0.6659 + }, + { + "start": 4590.4, + "end": 4592.3, + "probability": 0.8939 + }, + { + "start": 4592.4, + "end": 4592.74, + "probability": 0.6021 + }, + { + "start": 4593.32, + "end": 4593.7, + "probability": 0.2461 + }, + { + "start": 4593.86, + "end": 4597.56, + "probability": 0.8829 + }, + { + "start": 4598.08, + "end": 4599.76, + "probability": 0.9648 + }, + { + "start": 4600.44, + "end": 4604.08, + "probability": 0.928 + }, + { + "start": 4604.54, + "end": 4608.14, + "probability": 0.988 + }, + { + "start": 4608.6, + "end": 4609.64, + "probability": 0.6501 + }, + { + "start": 4610.02, + "end": 4610.4, + "probability": 0.5621 + }, + { + "start": 4610.46, + "end": 4611.38, + "probability": 0.1291 + }, + { + "start": 4611.8, + "end": 4614.88, + "probability": 0.4935 + }, + { + "start": 4615.42, + "end": 4619.56, + "probability": 0.7848 + }, + { + "start": 4619.56, + "end": 4623.54, + "probability": 0.9434 + }, + { + "start": 4624.18, + "end": 4626.46, + "probability": 0.9876 + }, + { + "start": 4626.9, + "end": 4628.7, + "probability": 0.4345 + }, + { + "start": 4628.76, + "end": 4629.88, + "probability": 0.9733 + }, + { + "start": 4630.46, + "end": 4631.78, + "probability": 0.8682 + }, + { + "start": 4643.65, + "end": 4649.32, + "probability": 0.7026 + }, + { + "start": 4649.94, + "end": 4650.12, + "probability": 0.606 + }, + { + "start": 4650.68, + "end": 4654.18, + "probability": 0.8972 + }, + { + "start": 4654.18, + "end": 4658.42, + "probability": 0.9388 + }, + { + "start": 4659.54, + "end": 4664.92, + "probability": 0.8055 + }, + { + "start": 4665.18, + "end": 4665.4, + "probability": 0.2776 + }, + { + "start": 4666.08, + "end": 4667.46, + "probability": 0.6666 + }, + { + "start": 4668.18, + "end": 4672.66, + "probability": 0.8857 + }, + { + "start": 4672.66, + "end": 4674.4, + "probability": 0.8392 + }, + { + "start": 4674.94, + "end": 4676.72, + "probability": 0.9825 + }, + { + "start": 4677.52, + "end": 4682.36, + "probability": 0.9588 + }, + { + "start": 4682.68, + "end": 4685.2, + "probability": 0.9778 + }, + { + "start": 4685.2, + "end": 4687.08, + "probability": 0.9747 + }, + { + "start": 4688.34, + "end": 4689.4, + "probability": 0.832 + }, + { + "start": 4690.06, + "end": 4694.56, + "probability": 0.9006 + }, + { + "start": 4695.24, + "end": 4697.76, + "probability": 0.9508 + }, + { + "start": 4698.36, + "end": 4701.5, + "probability": 0.8766 + }, + { + "start": 4701.94, + "end": 4703.18, + "probability": 0.7718 + }, + { + "start": 4703.54, + "end": 4705.54, + "probability": 0.834 + }, + { + "start": 4705.54, + "end": 4708.02, + "probability": 0.9171 + }, + { + "start": 4709.32, + "end": 4713.2, + "probability": 0.8483 + }, + { + "start": 4713.34, + "end": 4714.36, + "probability": 0.9695 + }, + { + "start": 4714.8, + "end": 4719.62, + "probability": 0.9756 + }, + { + "start": 4719.62, + "end": 4723.72, + "probability": 0.8095 + }, + { + "start": 4723.76, + "end": 4725.02, + "probability": 0.5825 + }, + { + "start": 4725.8, + "end": 4732.04, + "probability": 0.8875 + }, + { + "start": 4732.22, + "end": 4734.06, + "probability": 0.9746 + }, + { + "start": 4734.6, + "end": 4735.44, + "probability": 0.9182 + }, + { + "start": 4735.52, + "end": 4736.63, + "probability": 0.5376 + }, + { + "start": 4737.16, + "end": 4737.75, + "probability": 0.3359 + }, + { + "start": 4738.42, + "end": 4740.61, + "probability": 0.965 + }, + { + "start": 4740.82, + "end": 4743.34, + "probability": 0.9798 + }, + { + "start": 4744.04, + "end": 4744.88, + "probability": 0.8022 + }, + { + "start": 4745.56, + "end": 4745.98, + "probability": 0.7089 + }, + { + "start": 4746.1, + "end": 4747.64, + "probability": 0.8544 + }, + { + "start": 4752.94, + "end": 4754.26, + "probability": 0.7712 + }, + { + "start": 4754.92, + "end": 4757.62, + "probability": 0.8327 + }, + { + "start": 4758.68, + "end": 4764.16, + "probability": 0.9897 + }, + { + "start": 4764.8, + "end": 4769.48, + "probability": 0.9469 + }, + { + "start": 4770.78, + "end": 4771.6, + "probability": 0.9249 + }, + { + "start": 4772.82, + "end": 4774.32, + "probability": 0.9377 + }, + { + "start": 4775.18, + "end": 4776.14, + "probability": 0.8846 + }, + { + "start": 4777.76, + "end": 4783.0, + "probability": 0.9233 + }, + { + "start": 4783.36, + "end": 4787.78, + "probability": 0.9841 + }, + { + "start": 4788.62, + "end": 4790.56, + "probability": 0.5491 + }, + { + "start": 4791.16, + "end": 4793.38, + "probability": 0.9872 + }, + { + "start": 4794.56, + "end": 4798.26, + "probability": 0.9842 + }, + { + "start": 4798.3, + "end": 4801.84, + "probability": 0.9976 + }, + { + "start": 4803.06, + "end": 4806.86, + "probability": 0.9635 + }, + { + "start": 4807.72, + "end": 4811.48, + "probability": 0.9925 + }, + { + "start": 4813.02, + "end": 4816.44, + "probability": 0.9408 + }, + { + "start": 4816.44, + "end": 4819.42, + "probability": 0.9948 + }, + { + "start": 4820.58, + "end": 4823.98, + "probability": 0.9906 + }, + { + "start": 4823.98, + "end": 4829.58, + "probability": 0.993 + }, + { + "start": 4830.08, + "end": 4833.34, + "probability": 0.9957 + }, + { + "start": 4834.48, + "end": 4836.22, + "probability": 0.843 + }, + { + "start": 4836.8, + "end": 4838.94, + "probability": 0.8848 + }, + { + "start": 4840.2, + "end": 4842.7, + "probability": 0.957 + }, + { + "start": 4843.66, + "end": 4845.12, + "probability": 0.9274 + }, + { + "start": 4845.96, + "end": 4849.68, + "probability": 0.9922 + }, + { + "start": 4850.2, + "end": 4851.36, + "probability": 0.8999 + }, + { + "start": 4852.2, + "end": 4854.62, + "probability": 0.851 + }, + { + "start": 4855.12, + "end": 4860.28, + "probability": 0.9593 + }, + { + "start": 4860.66, + "end": 4864.08, + "probability": 0.9234 + }, + { + "start": 4864.96, + "end": 4865.8, + "probability": 0.9985 + }, + { + "start": 4866.44, + "end": 4867.72, + "probability": 0.9839 + }, + { + "start": 4868.6, + "end": 4869.34, + "probability": 0.9275 + }, + { + "start": 4869.76, + "end": 4874.58, + "probability": 0.9871 + }, + { + "start": 4875.6, + "end": 4880.58, + "probability": 0.9521 + }, + { + "start": 4880.58, + "end": 4885.7, + "probability": 0.9867 + }, + { + "start": 4886.6, + "end": 4886.62, + "probability": 0.0216 + }, + { + "start": 4887.54, + "end": 4889.68, + "probability": 0.8931 + }, + { + "start": 4890.5, + "end": 4891.49, + "probability": 0.917 + }, + { + "start": 4892.24, + "end": 4894.76, + "probability": 0.9561 + }, + { + "start": 4895.38, + "end": 4897.56, + "probability": 0.7834 + }, + { + "start": 4898.16, + "end": 4899.18, + "probability": 0.9159 + }, + { + "start": 4899.56, + "end": 4899.92, + "probability": 0.825 + }, + { + "start": 4903.5, + "end": 4907.2, + "probability": 0.2543 + }, + { + "start": 4908.66, + "end": 4909.26, + "probability": 0.5321 + }, + { + "start": 4909.36, + "end": 4912.38, + "probability": 0.8462 + }, + { + "start": 4912.54, + "end": 4915.94, + "probability": 0.9583 + }, + { + "start": 4915.94, + "end": 4920.5, + "probability": 0.9902 + }, + { + "start": 4921.22, + "end": 4926.26, + "probability": 0.9921 + }, + { + "start": 4926.68, + "end": 4927.74, + "probability": 0.9789 + }, + { + "start": 4927.86, + "end": 4932.44, + "probability": 0.9036 + }, + { + "start": 4933.4, + "end": 4935.42, + "probability": 0.5643 + }, + { + "start": 4936.32, + "end": 4938.46, + "probability": 0.8529 + }, + { + "start": 4939.26, + "end": 4942.76, + "probability": 0.8805 + }, + { + "start": 4943.52, + "end": 4944.62, + "probability": 0.9618 + }, + { + "start": 4945.78, + "end": 4946.62, + "probability": 0.7735 + }, + { + "start": 4947.36, + "end": 4950.56, + "probability": 0.4138 + }, + { + "start": 4951.9, + "end": 4955.58, + "probability": 0.9065 + }, + { + "start": 4955.58, + "end": 4960.97, + "probability": 0.702 + }, + { + "start": 4962.7, + "end": 4964.4, + "probability": 0.7344 + }, + { + "start": 4965.02, + "end": 4965.86, + "probability": 0.9685 + }, + { + "start": 4966.38, + "end": 4967.24, + "probability": 0.9299 + }, + { + "start": 4967.8, + "end": 4971.2, + "probability": 0.8041 + }, + { + "start": 4972.04, + "end": 4973.88, + "probability": 0.7503 + }, + { + "start": 4974.96, + "end": 4979.72, + "probability": 0.8042 + }, + { + "start": 4980.5, + "end": 4982.11, + "probability": 0.5967 + }, + { + "start": 4985.46, + "end": 4986.42, + "probability": 0.5657 + }, + { + "start": 4987.64, + "end": 4988.32, + "probability": 0.4333 + }, + { + "start": 5014.1, + "end": 5014.46, + "probability": 0.7357 + }, + { + "start": 5016.25, + "end": 5017.92, + "probability": 0.0506 + }, + { + "start": 5017.92, + "end": 5017.92, + "probability": 0.0538 + }, + { + "start": 5017.94, + "end": 5021.32, + "probability": 0.2295 + }, + { + "start": 5023.14, + "end": 5023.82, + "probability": 0.0176 + }, + { + "start": 5030.02, + "end": 5030.02, + "probability": 0.1453 + }, + { + "start": 5030.02, + "end": 5032.48, + "probability": 0.0825 + }, + { + "start": 5033.1, + "end": 5034.64, + "probability": 0.0319 + }, + { + "start": 5035.22, + "end": 5036.78, + "probability": 0.2675 + }, + { + "start": 5045.58, + "end": 5045.96, + "probability": 0.2228 + }, + { + "start": 5045.96, + "end": 5046.24, + "probability": 0.0996 + }, + { + "start": 5046.24, + "end": 5046.24, + "probability": 0.0747 + }, + { + "start": 5046.24, + "end": 5046.26, + "probability": 0.1979 + }, + { + "start": 5046.26, + "end": 5047.96, + "probability": 0.0325 + }, + { + "start": 5058.84, + "end": 5058.88, + "probability": 0.0273 + }, + { + "start": 5058.88, + "end": 5059.68, + "probability": 0.5819 + }, + { + "start": 5062.16, + "end": 5063.06, + "probability": 0.8512 + }, + { + "start": 5065.04, + "end": 5074.92, + "probability": 0.9629 + }, + { + "start": 5076.06, + "end": 5078.24, + "probability": 0.9935 + }, + { + "start": 5078.3, + "end": 5081.9, + "probability": 0.84 + }, + { + "start": 5082.9, + "end": 5085.76, + "probability": 0.9146 + }, + { + "start": 5087.94, + "end": 5090.34, + "probability": 0.8937 + }, + { + "start": 5091.7, + "end": 5093.43, + "probability": 0.9938 + }, + { + "start": 5095.32, + "end": 5098.22, + "probability": 0.9937 + }, + { + "start": 5101.9, + "end": 5103.52, + "probability": 0.9668 + }, + { + "start": 5104.12, + "end": 5106.98, + "probability": 0.9936 + }, + { + "start": 5106.98, + "end": 5114.36, + "probability": 0.9557 + }, + { + "start": 5115.24, + "end": 5116.3, + "probability": 0.9821 + }, + { + "start": 5119.04, + "end": 5119.5, + "probability": 0.4406 + }, + { + "start": 5119.66, + "end": 5121.42, + "probability": 0.811 + }, + { + "start": 5121.48, + "end": 5121.84, + "probability": 0.2941 + }, + { + "start": 5122.0, + "end": 5123.22, + "probability": 0.9371 + }, + { + "start": 5123.48, + "end": 5125.06, + "probability": 0.5639 + }, + { + "start": 5126.74, + "end": 5128.12, + "probability": 0.6538 + }, + { + "start": 5129.1, + "end": 5131.86, + "probability": 0.9631 + }, + { + "start": 5131.94, + "end": 5134.26, + "probability": 0.975 + }, + { + "start": 5135.42, + "end": 5136.92, + "probability": 0.9782 + }, + { + "start": 5137.5, + "end": 5138.88, + "probability": 0.9309 + }, + { + "start": 5140.2, + "end": 5143.06, + "probability": 0.9651 + }, + { + "start": 5145.14, + "end": 5146.96, + "probability": 0.7856 + }, + { + "start": 5148.64, + "end": 5149.44, + "probability": 0.7794 + }, + { + "start": 5150.74, + "end": 5151.96, + "probability": 0.9589 + }, + { + "start": 5154.04, + "end": 5157.22, + "probability": 0.9738 + }, + { + "start": 5157.88, + "end": 5159.06, + "probability": 0.8457 + }, + { + "start": 5159.46, + "end": 5164.4, + "probability": 0.8822 + }, + { + "start": 5167.14, + "end": 5171.34, + "probability": 0.9917 + }, + { + "start": 5172.42, + "end": 5177.0, + "probability": 0.998 + }, + { + "start": 5179.46, + "end": 5181.84, + "probability": 0.9822 + }, + { + "start": 5183.32, + "end": 5188.94, + "probability": 0.8496 + }, + { + "start": 5194.14, + "end": 5195.26, + "probability": 0.8804 + }, + { + "start": 5195.46, + "end": 5197.42, + "probability": 0.4449 + }, + { + "start": 5201.26, + "end": 5202.26, + "probability": 0.6827 + }, + { + "start": 5203.82, + "end": 5205.74, + "probability": 0.8187 + }, + { + "start": 5205.96, + "end": 5209.58, + "probability": 0.9238 + }, + { + "start": 5212.46, + "end": 5214.86, + "probability": 0.9961 + }, + { + "start": 5215.6, + "end": 5220.68, + "probability": 0.9751 + }, + { + "start": 5220.82, + "end": 5221.78, + "probability": 0.702 + }, + { + "start": 5223.46, + "end": 5225.54, + "probability": 0.9967 + }, + { + "start": 5228.24, + "end": 5231.86, + "probability": 0.9768 + }, + { + "start": 5232.54, + "end": 5235.02, + "probability": 0.981 + }, + { + "start": 5237.26, + "end": 5238.34, + "probability": 0.9997 + }, + { + "start": 5239.46, + "end": 5245.8, + "probability": 0.9613 + }, + { + "start": 5246.72, + "end": 5247.42, + "probability": 0.8794 + }, + { + "start": 5247.52, + "end": 5251.36, + "probability": 0.9177 + }, + { + "start": 5252.52, + "end": 5256.62, + "probability": 0.9053 + }, + { + "start": 5257.9, + "end": 5260.14, + "probability": 0.9719 + }, + { + "start": 5261.78, + "end": 5262.38, + "probability": 0.683 + }, + { + "start": 5263.28, + "end": 5265.96, + "probability": 0.9663 + }, + { + "start": 5267.62, + "end": 5269.46, + "probability": 0.9872 + }, + { + "start": 5270.56, + "end": 5271.18, + "probability": 0.8086 + }, + { + "start": 5272.92, + "end": 5274.08, + "probability": 0.4017 + }, + { + "start": 5274.08, + "end": 5275.24, + "probability": 0.7091 + }, + { + "start": 5275.5, + "end": 5278.76, + "probability": 0.8613 + }, + { + "start": 5284.46, + "end": 5287.58, + "probability": 0.9062 + }, + { + "start": 5289.12, + "end": 5293.16, + "probability": 0.9934 + }, + { + "start": 5293.2, + "end": 5294.06, + "probability": 0.6904 + }, + { + "start": 5295.98, + "end": 5299.51, + "probability": 0.9818 + }, + { + "start": 5300.58, + "end": 5305.82, + "probability": 0.9977 + }, + { + "start": 5306.74, + "end": 5307.96, + "probability": 0.9932 + }, + { + "start": 5309.54, + "end": 5311.84, + "probability": 0.953 + }, + { + "start": 5312.88, + "end": 5316.28, + "probability": 0.895 + }, + { + "start": 5317.28, + "end": 5319.36, + "probability": 0.9823 + }, + { + "start": 5320.36, + "end": 5321.86, + "probability": 0.8762 + }, + { + "start": 5323.02, + "end": 5328.58, + "probability": 0.9396 + }, + { + "start": 5329.54, + "end": 5330.56, + "probability": 0.7956 + }, + { + "start": 5331.38, + "end": 5332.16, + "probability": 0.7402 + }, + { + "start": 5332.42, + "end": 5335.14, + "probability": 0.9601 + }, + { + "start": 5336.42, + "end": 5337.94, + "probability": 0.6773 + }, + { + "start": 5338.94, + "end": 5339.42, + "probability": 0.6214 + }, + { + "start": 5339.94, + "end": 5341.68, + "probability": 0.966 + }, + { + "start": 5342.54, + "end": 5346.36, + "probability": 0.7276 + }, + { + "start": 5347.16, + "end": 5349.2, + "probability": 0.9777 + }, + { + "start": 5350.52, + "end": 5351.08, + "probability": 0.9489 + }, + { + "start": 5352.7, + "end": 5355.3, + "probability": 0.7734 + }, + { + "start": 5356.14, + "end": 5356.54, + "probability": 0.6331 + }, + { + "start": 5357.76, + "end": 5359.06, + "probability": 0.8927 + }, + { + "start": 5359.94, + "end": 5362.64, + "probability": 0.6289 + }, + { + "start": 5363.6, + "end": 5364.94, + "probability": 0.9185 + }, + { + "start": 5365.04, + "end": 5368.34, + "probability": 0.992 + }, + { + "start": 5368.34, + "end": 5371.82, + "probability": 0.9922 + }, + { + "start": 5372.42, + "end": 5377.3, + "probability": 0.9911 + }, + { + "start": 5381.5, + "end": 5386.26, + "probability": 0.8435 + }, + { + "start": 5388.08, + "end": 5390.26, + "probability": 0.9556 + }, + { + "start": 5392.26, + "end": 5396.96, + "probability": 0.9114 + }, + { + "start": 5398.42, + "end": 5400.02, + "probability": 0.8796 + }, + { + "start": 5401.3, + "end": 5406.08, + "probability": 0.9858 + }, + { + "start": 5407.18, + "end": 5410.74, + "probability": 0.9808 + }, + { + "start": 5413.4, + "end": 5414.72, + "probability": 0.9207 + }, + { + "start": 5417.14, + "end": 5422.08, + "probability": 0.705 + }, + { + "start": 5422.48, + "end": 5426.34, + "probability": 0.9796 + }, + { + "start": 5427.62, + "end": 5430.74, + "probability": 0.9849 + }, + { + "start": 5430.78, + "end": 5436.12, + "probability": 0.9962 + }, + { + "start": 5437.9, + "end": 5439.48, + "probability": 0.8379 + }, + { + "start": 5439.74, + "end": 5441.4, + "probability": 0.9985 + }, + { + "start": 5442.02, + "end": 5444.68, + "probability": 0.9822 + }, + { + "start": 5445.32, + "end": 5449.02, + "probability": 0.9926 + }, + { + "start": 5450.18, + "end": 5451.88, + "probability": 0.9929 + }, + { + "start": 5452.56, + "end": 5455.48, + "probability": 0.855 + }, + { + "start": 5456.75, + "end": 5459.84, + "probability": 0.9832 + }, + { + "start": 5460.04, + "end": 5460.88, + "probability": 0.6743 + }, + { + "start": 5461.08, + "end": 5463.92, + "probability": 0.9013 + }, + { + "start": 5464.3, + "end": 5469.64, + "probability": 0.877 + }, + { + "start": 5471.36, + "end": 5477.56, + "probability": 0.8784 + }, + { + "start": 5478.1, + "end": 5479.38, + "probability": 0.72 + }, + { + "start": 5479.82, + "end": 5484.72, + "probability": 0.9274 + }, + { + "start": 5485.18, + "end": 5486.0, + "probability": 0.8599 + }, + { + "start": 5486.24, + "end": 5490.34, + "probability": 0.9493 + }, + { + "start": 5492.66, + "end": 5494.46, + "probability": 0.9683 + }, + { + "start": 5495.94, + "end": 5497.16, + "probability": 0.3123 + }, + { + "start": 5499.45, + "end": 5504.24, + "probability": 0.9971 + }, + { + "start": 5504.82, + "end": 5509.44, + "probability": 0.9896 + }, + { + "start": 5509.62, + "end": 5510.5, + "probability": 0.9613 + }, + { + "start": 5512.32, + "end": 5514.17, + "probability": 0.9977 + }, + { + "start": 5515.78, + "end": 5519.66, + "probability": 0.9681 + }, + { + "start": 5521.02, + "end": 5523.98, + "probability": 0.9131 + }, + { + "start": 5525.22, + "end": 5526.92, + "probability": 0.6402 + }, + { + "start": 5528.0, + "end": 5534.38, + "probability": 0.9883 + }, + { + "start": 5535.24, + "end": 5541.9, + "probability": 0.9955 + }, + { + "start": 5544.94, + "end": 5546.64, + "probability": 0.7602 + }, + { + "start": 5548.23, + "end": 5551.5, + "probability": 0.5335 + }, + { + "start": 5551.78, + "end": 5552.92, + "probability": 0.6467 + }, + { + "start": 5554.04, + "end": 5556.82, + "probability": 0.8689 + }, + { + "start": 5557.36, + "end": 5558.84, + "probability": 0.9606 + }, + { + "start": 5560.12, + "end": 5560.88, + "probability": 0.6617 + }, + { + "start": 5562.68, + "end": 5563.34, + "probability": 0.9382 + }, + { + "start": 5565.62, + "end": 5571.12, + "probability": 0.6522 + }, + { + "start": 5573.48, + "end": 5578.46, + "probability": 0.9923 + }, + { + "start": 5579.72, + "end": 5580.34, + "probability": 0.518 + }, + { + "start": 5580.66, + "end": 5582.9, + "probability": 0.8885 + }, + { + "start": 5583.08, + "end": 5584.08, + "probability": 0.5838 + }, + { + "start": 5584.22, + "end": 5584.67, + "probability": 0.7615 + }, + { + "start": 5586.2, + "end": 5590.78, + "probability": 0.9363 + }, + { + "start": 5591.34, + "end": 5594.86, + "probability": 0.9214 + }, + { + "start": 5595.72, + "end": 5597.8, + "probability": 0.9712 + }, + { + "start": 5599.54, + "end": 5600.5, + "probability": 0.9856 + }, + { + "start": 5601.14, + "end": 5608.28, + "probability": 0.977 + }, + { + "start": 5608.84, + "end": 5611.96, + "probability": 0.9209 + }, + { + "start": 5612.58, + "end": 5613.86, + "probability": 0.585 + }, + { + "start": 5614.04, + "end": 5622.44, + "probability": 0.8657 + }, + { + "start": 5622.48, + "end": 5627.5, + "probability": 0.7716 + }, + { + "start": 5628.36, + "end": 5629.32, + "probability": 0.7204 + }, + { + "start": 5630.12, + "end": 5637.02, + "probability": 0.9718 + }, + { + "start": 5637.84, + "end": 5641.0, + "probability": 0.9217 + }, + { + "start": 5641.92, + "end": 5643.56, + "probability": 0.7391 + }, + { + "start": 5643.6, + "end": 5644.98, + "probability": 0.9312 + }, + { + "start": 5645.08, + "end": 5647.9, + "probability": 0.9421 + }, + { + "start": 5648.68, + "end": 5652.96, + "probability": 0.9284 + }, + { + "start": 5653.48, + "end": 5658.14, + "probability": 0.9757 + }, + { + "start": 5658.2, + "end": 5660.22, + "probability": 0.9334 + }, + { + "start": 5660.7, + "end": 5664.32, + "probability": 0.994 + }, + { + "start": 5664.86, + "end": 5670.8, + "probability": 0.9926 + }, + { + "start": 5671.56, + "end": 5676.36, + "probability": 0.9976 + }, + { + "start": 5678.0, + "end": 5678.12, + "probability": 0.3435 + }, + { + "start": 5678.12, + "end": 5679.68, + "probability": 0.5281 + }, + { + "start": 5679.86, + "end": 5683.24, + "probability": 0.8478 + }, + { + "start": 5683.42, + "end": 5684.76, + "probability": 0.9701 + }, + { + "start": 5713.02, + "end": 5714.06, + "probability": 0.6859 + }, + { + "start": 5714.84, + "end": 5715.8, + "probability": 0.7886 + }, + { + "start": 5719.82, + "end": 5722.82, + "probability": 0.9304 + }, + { + "start": 5724.84, + "end": 5729.02, + "probability": 0.9062 + }, + { + "start": 5730.54, + "end": 5731.42, + "probability": 0.8029 + }, + { + "start": 5732.86, + "end": 5735.4, + "probability": 0.7475 + }, + { + "start": 5739.2, + "end": 5740.14, + "probability": 0.8346 + }, + { + "start": 5740.72, + "end": 5741.94, + "probability": 0.9948 + }, + { + "start": 5743.24, + "end": 5744.32, + "probability": 0.6999 + }, + { + "start": 5745.86, + "end": 5746.6, + "probability": 0.7581 + }, + { + "start": 5749.48, + "end": 5754.14, + "probability": 0.9569 + }, + { + "start": 5756.2, + "end": 5759.58, + "probability": 0.9316 + }, + { + "start": 5761.38, + "end": 5764.42, + "probability": 0.8254 + }, + { + "start": 5765.62, + "end": 5766.32, + "probability": 0.8737 + }, + { + "start": 5768.34, + "end": 5773.46, + "probability": 0.9948 + }, + { + "start": 5774.82, + "end": 5776.43, + "probability": 0.841 + }, + { + "start": 5777.56, + "end": 5779.82, + "probability": 0.9772 + }, + { + "start": 5780.56, + "end": 5782.2, + "probability": 0.9377 + }, + { + "start": 5783.26, + "end": 5786.76, + "probability": 0.9692 + }, + { + "start": 5787.98, + "end": 5788.78, + "probability": 0.7812 + }, + { + "start": 5789.36, + "end": 5793.8, + "probability": 0.9507 + }, + { + "start": 5798.42, + "end": 5798.84, + "probability": 0.7195 + }, + { + "start": 5802.42, + "end": 5806.06, + "probability": 0.9599 + }, + { + "start": 5807.36, + "end": 5809.16, + "probability": 0.939 + }, + { + "start": 5811.26, + "end": 5813.26, + "probability": 0.9112 + }, + { + "start": 5816.26, + "end": 5817.72, + "probability": 0.9971 + }, + { + "start": 5818.84, + "end": 5820.98, + "probability": 0.9407 + }, + { + "start": 5821.22, + "end": 5822.94, + "probability": 0.9693 + }, + { + "start": 5823.04, + "end": 5823.76, + "probability": 0.8128 + }, + { + "start": 5824.62, + "end": 5827.68, + "probability": 0.9827 + }, + { + "start": 5832.2, + "end": 5833.24, + "probability": 0.9183 + }, + { + "start": 5834.72, + "end": 5835.78, + "probability": 0.9946 + }, + { + "start": 5835.88, + "end": 5840.4, + "probability": 0.9914 + }, + { + "start": 5840.52, + "end": 5841.54, + "probability": 0.9688 + }, + { + "start": 5843.64, + "end": 5844.32, + "probability": 0.4629 + }, + { + "start": 5845.76, + "end": 5846.78, + "probability": 0.7775 + }, + { + "start": 5848.16, + "end": 5849.78, + "probability": 0.9958 + }, + { + "start": 5851.68, + "end": 5854.82, + "probability": 0.9889 + }, + { + "start": 5855.76, + "end": 5858.96, + "probability": 0.9997 + }, + { + "start": 5861.82, + "end": 5862.5, + "probability": 0.7537 + }, + { + "start": 5864.7, + "end": 5868.34, + "probability": 0.7893 + }, + { + "start": 5868.48, + "end": 5869.84, + "probability": 0.8872 + }, + { + "start": 5872.72, + "end": 5877.4, + "probability": 0.9868 + }, + { + "start": 5878.02, + "end": 5881.12, + "probability": 0.9835 + }, + { + "start": 5884.2, + "end": 5887.32, + "probability": 0.8506 + }, + { + "start": 5889.4, + "end": 5892.66, + "probability": 0.7644 + }, + { + "start": 5892.72, + "end": 5895.22, + "probability": 0.9195 + }, + { + "start": 5896.02, + "end": 5900.08, + "probability": 0.9976 + }, + { + "start": 5902.84, + "end": 5907.0, + "probability": 0.9774 + }, + { + "start": 5908.94, + "end": 5909.66, + "probability": 0.9982 + }, + { + "start": 5911.18, + "end": 5913.62, + "probability": 0.7343 + }, + { + "start": 5914.88, + "end": 5918.04, + "probability": 0.9648 + }, + { + "start": 5918.32, + "end": 5921.82, + "probability": 0.9983 + }, + { + "start": 5923.52, + "end": 5929.04, + "probability": 0.9708 + }, + { + "start": 5929.34, + "end": 5930.18, + "probability": 0.9844 + }, + { + "start": 5931.02, + "end": 5933.16, + "probability": 0.987 + }, + { + "start": 5933.78, + "end": 5937.0, + "probability": 0.9285 + }, + { + "start": 5937.8, + "end": 5939.25, + "probability": 0.6638 + }, + { + "start": 5941.62, + "end": 5942.94, + "probability": 0.9815 + }, + { + "start": 5944.88, + "end": 5945.66, + "probability": 0.8454 + }, + { + "start": 5946.5, + "end": 5947.28, + "probability": 0.6403 + }, + { + "start": 5950.52, + "end": 5951.52, + "probability": 0.7122 + }, + { + "start": 5952.98, + "end": 5955.82, + "probability": 0.5074 + }, + { + "start": 5956.86, + "end": 5959.54, + "probability": 0.9014 + }, + { + "start": 5959.74, + "end": 5962.66, + "probability": 0.7046 + }, + { + "start": 5963.58, + "end": 5965.48, + "probability": 0.8154 + }, + { + "start": 5966.98, + "end": 5971.28, + "probability": 0.8861 + }, + { + "start": 5971.54, + "end": 5972.64, + "probability": 0.7712 + }, + { + "start": 5973.48, + "end": 5976.56, + "probability": 0.9718 + }, + { + "start": 5978.3, + "end": 5979.12, + "probability": 0.4177 + }, + { + "start": 5979.22, + "end": 5979.92, + "probability": 0.7812 + }, + { + "start": 5980.06, + "end": 5980.9, + "probability": 0.8826 + }, + { + "start": 5981.38, + "end": 5984.34, + "probability": 0.9097 + }, + { + "start": 5986.94, + "end": 5989.34, + "probability": 0.9725 + }, + { + "start": 5990.48, + "end": 5993.82, + "probability": 0.9695 + }, + { + "start": 5994.64, + "end": 5999.04, + "probability": 0.9722 + }, + { + "start": 6000.88, + "end": 6003.92, + "probability": 0.8267 + }, + { + "start": 6004.34, + "end": 6006.44, + "probability": 0.7368 + }, + { + "start": 6017.26, + "end": 6018.32, + "probability": 0.5693 + }, + { + "start": 6020.04, + "end": 6022.02, + "probability": 0.2636 + }, + { + "start": 6026.4, + "end": 6027.68, + "probability": 0.5941 + }, + { + "start": 6027.86, + "end": 6028.58, + "probability": 0.6599 + }, + { + "start": 6028.72, + "end": 6029.76, + "probability": 0.6778 + }, + { + "start": 6030.12, + "end": 6033.18, + "probability": 0.6729 + }, + { + "start": 6033.28, + "end": 6035.3, + "probability": 0.9903 + }, + { + "start": 6035.52, + "end": 6035.88, + "probability": 0.6932 + }, + { + "start": 6036.78, + "end": 6039.5, + "probability": 0.9958 + }, + { + "start": 6040.08, + "end": 6041.42, + "probability": 0.8181 + }, + { + "start": 6042.26, + "end": 6043.94, + "probability": 0.981 + }, + { + "start": 6044.1, + "end": 6047.0, + "probability": 0.9824 + }, + { + "start": 6047.22, + "end": 6047.8, + "probability": 0.8778 + }, + { + "start": 6047.84, + "end": 6049.28, + "probability": 0.9473 + }, + { + "start": 6049.8, + "end": 6052.02, + "probability": 0.9976 + }, + { + "start": 6052.52, + "end": 6053.28, + "probability": 0.8379 + }, + { + "start": 6053.5, + "end": 6054.11, + "probability": 0.9844 + }, + { + "start": 6054.78, + "end": 6057.28, + "probability": 0.9961 + }, + { + "start": 6057.6, + "end": 6059.16, + "probability": 0.8799 + }, + { + "start": 6060.04, + "end": 6064.22, + "probability": 0.988 + }, + { + "start": 6064.28, + "end": 6064.78, + "probability": 0.5443 + }, + { + "start": 6065.34, + "end": 6070.24, + "probability": 0.9829 + }, + { + "start": 6070.64, + "end": 6071.1, + "probability": 0.9036 + }, + { + "start": 6071.3, + "end": 6071.84, + "probability": 0.9327 + }, + { + "start": 6072.44, + "end": 6077.52, + "probability": 0.9062 + }, + { + "start": 6078.1, + "end": 6081.46, + "probability": 0.9974 + }, + { + "start": 6082.34, + "end": 6082.84, + "probability": 0.5773 + }, + { + "start": 6082.86, + "end": 6083.26, + "probability": 0.4081 + }, + { + "start": 6083.32, + "end": 6083.64, + "probability": 0.5539 + }, + { + "start": 6083.76, + "end": 6086.46, + "probability": 0.6916 + }, + { + "start": 6086.86, + "end": 6087.38, + "probability": 0.6551 + }, + { + "start": 6087.6, + "end": 6089.29, + "probability": 0.9107 + }, + { + "start": 6089.8, + "end": 6090.62, + "probability": 0.9402 + }, + { + "start": 6090.68, + "end": 6093.09, + "probability": 0.899 + }, + { + "start": 6093.74, + "end": 6095.16, + "probability": 0.9719 + }, + { + "start": 6095.4, + "end": 6095.9, + "probability": 0.329 + }, + { + "start": 6096.38, + "end": 6097.26, + "probability": 0.9395 + }, + { + "start": 6097.32, + "end": 6098.36, + "probability": 0.7316 + }, + { + "start": 6099.23, + "end": 6101.44, + "probability": 0.9829 + }, + { + "start": 6101.94, + "end": 6102.8, + "probability": 0.8628 + }, + { + "start": 6103.8, + "end": 6108.38, + "probability": 0.9016 + }, + { + "start": 6108.52, + "end": 6109.3, + "probability": 0.9515 + }, + { + "start": 6109.84, + "end": 6111.32, + "probability": 0.6476 + }, + { + "start": 6111.84, + "end": 6114.62, + "probability": 0.7595 + }, + { + "start": 6114.7, + "end": 6116.44, + "probability": 0.767 + }, + { + "start": 6116.94, + "end": 6121.02, + "probability": 0.9932 + }, + { + "start": 6121.02, + "end": 6125.72, + "probability": 0.8827 + }, + { + "start": 6127.49, + "end": 6130.14, + "probability": 0.7385 + }, + { + "start": 6130.58, + "end": 6131.7, + "probability": 0.9603 + }, + { + "start": 6131.9, + "end": 6132.0, + "probability": 0.4193 + }, + { + "start": 6132.04, + "end": 6132.78, + "probability": 0.5864 + }, + { + "start": 6132.84, + "end": 6136.98, + "probability": 0.9897 + }, + { + "start": 6137.04, + "end": 6137.7, + "probability": 0.814 + }, + { + "start": 6138.24, + "end": 6139.68, + "probability": 0.9597 + }, + { + "start": 6139.76, + "end": 6140.52, + "probability": 0.9031 + }, + { + "start": 6140.96, + "end": 6141.04, + "probability": 0.2748 + }, + { + "start": 6141.14, + "end": 6141.64, + "probability": 0.6054 + }, + { + "start": 6142.6, + "end": 6144.94, + "probability": 0.686 + }, + { + "start": 6145.2, + "end": 6148.14, + "probability": 0.7403 + }, + { + "start": 6148.68, + "end": 6149.92, + "probability": 0.6639 + }, + { + "start": 6150.04, + "end": 6154.44, + "probability": 0.9398 + }, + { + "start": 6154.52, + "end": 6156.28, + "probability": 0.9915 + }, + { + "start": 6156.34, + "end": 6157.26, + "probability": 0.9973 + }, + { + "start": 6158.44, + "end": 6159.48, + "probability": 0.4993 + }, + { + "start": 6159.48, + "end": 6161.1, + "probability": 0.9351 + }, + { + "start": 6161.12, + "end": 6163.84, + "probability": 0.9797 + }, + { + "start": 6164.86, + "end": 6171.26, + "probability": 0.9629 + }, + { + "start": 6172.34, + "end": 6174.66, + "probability": 0.9819 + }, + { + "start": 6175.12, + "end": 6176.1, + "probability": 0.7601 + }, + { + "start": 6176.46, + "end": 6179.2, + "probability": 0.9838 + }, + { + "start": 6179.5, + "end": 6181.12, + "probability": 0.8764 + }, + { + "start": 6181.98, + "end": 6183.1, + "probability": 0.6903 + }, + { + "start": 6183.26, + "end": 6185.04, + "probability": 0.9622 + }, + { + "start": 6185.06, + "end": 6186.28, + "probability": 0.8735 + }, + { + "start": 6187.28, + "end": 6189.76, + "probability": 0.903 + }, + { + "start": 6190.0, + "end": 6190.32, + "probability": 0.6536 + }, + { + "start": 6190.42, + "end": 6191.2, + "probability": 0.7703 + }, + { + "start": 6191.56, + "end": 6194.24, + "probability": 0.9084 + }, + { + "start": 6194.74, + "end": 6195.48, + "probability": 0.8875 + }, + { + "start": 6196.82, + "end": 6199.46, + "probability": 0.9575 + }, + { + "start": 6199.48, + "end": 6202.38, + "probability": 0.8106 + }, + { + "start": 6213.88, + "end": 6217.12, + "probability": 0.9109 + }, + { + "start": 6217.34, + "end": 6217.76, + "probability": 0.3537 + }, + { + "start": 6218.58, + "end": 6220.36, + "probability": 0.5815 + }, + { + "start": 6220.88, + "end": 6223.1, + "probability": 0.5463 + }, + { + "start": 6225.94, + "end": 6230.28, + "probability": 0.8726 + }, + { + "start": 6230.46, + "end": 6230.8, + "probability": 0.3511 + }, + { + "start": 6231.51, + "end": 6231.87, + "probability": 0.3466 + }, + { + "start": 6232.46, + "end": 6234.16, + "probability": 0.0666 + }, + { + "start": 6234.18, + "end": 6235.0, + "probability": 0.5298 + }, + { + "start": 6236.18, + "end": 6236.84, + "probability": 0.1826 + }, + { + "start": 6239.68, + "end": 6240.62, + "probability": 0.1731 + }, + { + "start": 6241.48, + "end": 6242.68, + "probability": 0.0737 + }, + { + "start": 6260.24, + "end": 6261.2, + "probability": 0.2825 + }, + { + "start": 6262.26, + "end": 6262.66, + "probability": 0.5186 + }, + { + "start": 6262.84, + "end": 6263.18, + "probability": 0.3992 + }, + { + "start": 6263.18, + "end": 6267.74, + "probability": 0.8118 + }, + { + "start": 6268.52, + "end": 6274.4, + "probability": 0.2902 + }, + { + "start": 6275.0, + "end": 6278.26, + "probability": 0.8654 + }, + { + "start": 6278.26, + "end": 6281.14, + "probability": 0.877 + }, + { + "start": 6283.14, + "end": 6285.44, + "probability": 0.7742 + }, + { + "start": 6285.5, + "end": 6287.34, + "probability": 0.8639 + }, + { + "start": 6288.26, + "end": 6292.22, + "probability": 0.9814 + }, + { + "start": 6292.34, + "end": 6294.16, + "probability": 0.2874 + }, + { + "start": 6294.52, + "end": 6296.1, + "probability": 0.9878 + }, + { + "start": 6297.5, + "end": 6302.64, + "probability": 0.7802 + }, + { + "start": 6310.74, + "end": 6312.42, + "probability": 0.7291 + }, + { + "start": 6325.84, + "end": 6327.5, + "probability": 0.597 + }, + { + "start": 6329.66, + "end": 6332.72, + "probability": 0.9966 + }, + { + "start": 6333.4, + "end": 6334.68, + "probability": 0.9378 + }, + { + "start": 6335.8, + "end": 6338.68, + "probability": 0.9594 + }, + { + "start": 6340.16, + "end": 6341.06, + "probability": 0.8629 + }, + { + "start": 6342.44, + "end": 6344.56, + "probability": 0.9733 + }, + { + "start": 6345.1, + "end": 6345.4, + "probability": 0.7292 + }, + { + "start": 6345.4, + "end": 6349.68, + "probability": 0.8815 + }, + { + "start": 6350.66, + "end": 6353.66, + "probability": 0.8501 + }, + { + "start": 6354.42, + "end": 6356.34, + "probability": 0.9928 + }, + { + "start": 6357.14, + "end": 6359.84, + "probability": 0.9193 + }, + { + "start": 6360.38, + "end": 6362.32, + "probability": 0.9779 + }, + { + "start": 6363.5, + "end": 6363.9, + "probability": 0.6608 + }, + { + "start": 6364.9, + "end": 6365.68, + "probability": 0.4838 + }, + { + "start": 6366.68, + "end": 6371.08, + "probability": 0.7991 + }, + { + "start": 6371.88, + "end": 6374.36, + "probability": 0.9951 + }, + { + "start": 6375.14, + "end": 6376.7, + "probability": 0.9854 + }, + { + "start": 6377.48, + "end": 6381.6, + "probability": 0.8152 + }, + { + "start": 6381.64, + "end": 6385.56, + "probability": 0.9834 + }, + { + "start": 6386.66, + "end": 6391.83, + "probability": 0.9887 + }, + { + "start": 6392.42, + "end": 6396.4, + "probability": 0.9685 + }, + { + "start": 6397.62, + "end": 6403.24, + "probability": 0.9781 + }, + { + "start": 6403.46, + "end": 6404.32, + "probability": 0.4583 + }, + { + "start": 6404.98, + "end": 6406.26, + "probability": 0.6519 + }, + { + "start": 6406.32, + "end": 6409.0, + "probability": 0.7987 + }, + { + "start": 6409.6, + "end": 6415.06, + "probability": 0.9893 + }, + { + "start": 6415.96, + "end": 6417.48, + "probability": 0.7715 + }, + { + "start": 6418.22, + "end": 6420.74, + "probability": 0.9852 + }, + { + "start": 6421.4, + "end": 6427.26, + "probability": 0.9963 + }, + { + "start": 6427.8, + "end": 6429.62, + "probability": 0.9591 + }, + { + "start": 6430.3, + "end": 6432.7, + "probability": 0.936 + }, + { + "start": 6433.24, + "end": 6437.48, + "probability": 0.9377 + }, + { + "start": 6437.82, + "end": 6440.66, + "probability": 0.9152 + }, + { + "start": 6441.82, + "end": 6444.48, + "probability": 0.9797 + }, + { + "start": 6444.48, + "end": 6448.18, + "probability": 0.9434 + }, + { + "start": 6448.9, + "end": 6451.8, + "probability": 0.9938 + }, + { + "start": 6452.58, + "end": 6456.0, + "probability": 0.8903 + }, + { + "start": 6456.0, + "end": 6459.18, + "probability": 0.9756 + }, + { + "start": 6459.96, + "end": 6460.64, + "probability": 0.9359 + }, + { + "start": 6461.74, + "end": 6463.44, + "probability": 0.8874 + }, + { + "start": 6464.14, + "end": 6465.48, + "probability": 0.772 + }, + { + "start": 6466.3, + "end": 6472.04, + "probability": 0.9857 + }, + { + "start": 6472.84, + "end": 6475.92, + "probability": 0.8225 + }, + { + "start": 6476.96, + "end": 6482.22, + "probability": 0.9962 + }, + { + "start": 6483.12, + "end": 6485.06, + "probability": 0.9968 + }, + { + "start": 6485.82, + "end": 6487.3, + "probability": 0.8789 + }, + { + "start": 6487.88, + "end": 6490.58, + "probability": 0.7497 + }, + { + "start": 6491.44, + "end": 6493.8, + "probability": 0.9752 + }, + { + "start": 6494.52, + "end": 6495.72, + "probability": 0.8982 + }, + { + "start": 6496.52, + "end": 6501.46, + "probability": 0.9836 + }, + { + "start": 6513.72, + "end": 6515.64, + "probability": 0.184 + }, + { + "start": 6515.76, + "end": 6516.64, + "probability": 0.7338 + }, + { + "start": 6516.8, + "end": 6518.72, + "probability": 0.7374 + }, + { + "start": 6520.0, + "end": 6522.28, + "probability": 0.9365 + }, + { + "start": 6522.62, + "end": 6525.46, + "probability": 0.9854 + }, + { + "start": 6526.3, + "end": 6530.78, + "probability": 0.9925 + }, + { + "start": 6531.4, + "end": 6532.22, + "probability": 0.8717 + }, + { + "start": 6532.3, + "end": 6536.88, + "probability": 0.6858 + }, + { + "start": 6537.04, + "end": 6538.64, + "probability": 0.667 + }, + { + "start": 6539.08, + "end": 6540.68, + "probability": 0.9742 + }, + { + "start": 6540.86, + "end": 6543.48, + "probability": 0.6532 + }, + { + "start": 6544.42, + "end": 6545.28, + "probability": 0.8614 + }, + { + "start": 6546.64, + "end": 6550.04, + "probability": 0.8795 + }, + { + "start": 6551.1, + "end": 6553.58, + "probability": 0.9707 + }, + { + "start": 6554.12, + "end": 6558.12, + "probability": 0.8582 + }, + { + "start": 6558.54, + "end": 6560.78, + "probability": 0.7031 + }, + { + "start": 6561.34, + "end": 6563.56, + "probability": 0.999 + }, + { + "start": 6563.88, + "end": 6566.7, + "probability": 0.9847 + }, + { + "start": 6566.7, + "end": 6569.82, + "probability": 0.9222 + }, + { + "start": 6570.8, + "end": 6574.66, + "probability": 0.9943 + }, + { + "start": 6575.36, + "end": 6575.74, + "probability": 0.7177 + }, + { + "start": 6576.52, + "end": 6577.52, + "probability": 0.831 + }, + { + "start": 6578.12, + "end": 6579.38, + "probability": 0.7641 + }, + { + "start": 6580.04, + "end": 6580.44, + "probability": 0.5164 + }, + { + "start": 6580.56, + "end": 6583.46, + "probability": 0.917 + }, + { + "start": 6583.82, + "end": 6586.94, + "probability": 0.3093 + }, + { + "start": 6587.38, + "end": 6591.8, + "probability": 0.968 + }, + { + "start": 6592.22, + "end": 6593.23, + "probability": 0.9643 + }, + { + "start": 6593.92, + "end": 6598.5, + "probability": 0.9001 + }, + { + "start": 6598.58, + "end": 6599.0, + "probability": 0.6748 + }, + { + "start": 6599.08, + "end": 6599.68, + "probability": 0.9263 + }, + { + "start": 6600.06, + "end": 6600.52, + "probability": 0.8728 + }, + { + "start": 6601.64, + "end": 6603.98, + "probability": 0.9673 + }, + { + "start": 6604.68, + "end": 6607.88, + "probability": 0.9161 + }, + { + "start": 6607.88, + "end": 6611.64, + "probability": 0.9211 + }, + { + "start": 6612.5, + "end": 6615.5, + "probability": 0.9537 + }, + { + "start": 6615.72, + "end": 6616.26, + "probability": 0.8239 + }, + { + "start": 6616.78, + "end": 6618.9, + "probability": 0.9198 + }, + { + "start": 6619.56, + "end": 6623.72, + "probability": 0.9859 + }, + { + "start": 6624.36, + "end": 6625.8, + "probability": 0.8174 + }, + { + "start": 6626.44, + "end": 6634.6, + "probability": 0.9889 + }, + { + "start": 6635.06, + "end": 6638.78, + "probability": 0.9976 + }, + { + "start": 6638.78, + "end": 6642.46, + "probability": 0.8162 + }, + { + "start": 6643.22, + "end": 6644.56, + "probability": 0.8201 + }, + { + "start": 6644.84, + "end": 6647.64, + "probability": 0.8448 + }, + { + "start": 6647.64, + "end": 6650.56, + "probability": 0.9888 + }, + { + "start": 6651.22, + "end": 6654.84, + "probability": 0.9882 + }, + { + "start": 6654.84, + "end": 6658.1, + "probability": 0.933 + }, + { + "start": 6658.8, + "end": 6662.32, + "probability": 0.9795 + }, + { + "start": 6663.12, + "end": 6665.2, + "probability": 0.9113 + }, + { + "start": 6665.52, + "end": 6669.36, + "probability": 0.8457 + }, + { + "start": 6671.14, + "end": 6674.22, + "probability": 0.9784 + }, + { + "start": 6674.74, + "end": 6677.28, + "probability": 0.7797 + }, + { + "start": 6678.0, + "end": 6680.48, + "probability": 0.9381 + }, + { + "start": 6681.08, + "end": 6682.88, + "probability": 0.9766 + }, + { + "start": 6683.88, + "end": 6685.58, + "probability": 0.8728 + }, + { + "start": 6686.26, + "end": 6690.96, + "probability": 0.9917 + }, + { + "start": 6691.7, + "end": 6694.34, + "probability": 0.9586 + }, + { + "start": 6694.9, + "end": 6700.36, + "probability": 0.9335 + }, + { + "start": 6700.8, + "end": 6703.32, + "probability": 0.9049 + }, + { + "start": 6703.76, + "end": 6705.3, + "probability": 0.8405 + }, + { + "start": 6705.8, + "end": 6708.04, + "probability": 0.9954 + }, + { + "start": 6708.74, + "end": 6713.68, + "probability": 0.9927 + }, + { + "start": 6713.68, + "end": 6716.78, + "probability": 0.9906 + }, + { + "start": 6717.7, + "end": 6720.36, + "probability": 0.639 + }, + { + "start": 6721.26, + "end": 6723.66, + "probability": 0.9087 + }, + { + "start": 6724.06, + "end": 6726.46, + "probability": 0.9906 + }, + { + "start": 6727.42, + "end": 6727.9, + "probability": 0.671 + }, + { + "start": 6728.69, + "end": 6733.28, + "probability": 0.951 + }, + { + "start": 6733.9, + "end": 6736.9, + "probability": 0.9989 + }, + { + "start": 6736.99, + "end": 6740.36, + "probability": 0.9971 + }, + { + "start": 6740.94, + "end": 6741.58, + "probability": 0.7687 + }, + { + "start": 6742.26, + "end": 6746.4, + "probability": 0.7978 + }, + { + "start": 6747.08, + "end": 6751.44, + "probability": 0.9844 + }, + { + "start": 6752.12, + "end": 6754.46, + "probability": 0.9775 + }, + { + "start": 6755.32, + "end": 6758.08, + "probability": 0.9289 + }, + { + "start": 6758.7, + "end": 6759.28, + "probability": 0.9555 + }, + { + "start": 6759.4, + "end": 6760.52, + "probability": 0.8242 + }, + { + "start": 6760.94, + "end": 6765.52, + "probability": 0.9275 + }, + { + "start": 6765.52, + "end": 6769.06, + "probability": 0.8437 + }, + { + "start": 6769.78, + "end": 6770.44, + "probability": 0.6691 + }, + { + "start": 6770.6, + "end": 6773.74, + "probability": 0.9604 + }, + { + "start": 6774.3, + "end": 6776.34, + "probability": 0.8324 + }, + { + "start": 6776.86, + "end": 6777.52, + "probability": 0.7316 + }, + { + "start": 6778.1, + "end": 6782.34, + "probability": 0.9658 + }, + { + "start": 6783.18, + "end": 6783.76, + "probability": 0.8575 + }, + { + "start": 6784.04, + "end": 6785.94, + "probability": 0.9436 + }, + { + "start": 6786.36, + "end": 6786.94, + "probability": 0.6575 + }, + { + "start": 6787.04, + "end": 6789.02, + "probability": 0.9832 + }, + { + "start": 6790.82, + "end": 6792.82, + "probability": 0.6093 + }, + { + "start": 6792.82, + "end": 6795.92, + "probability": 0.8884 + }, + { + "start": 6796.3, + "end": 6797.68, + "probability": 0.6757 + }, + { + "start": 6798.44, + "end": 6801.42, + "probability": 0.9995 + }, + { + "start": 6801.42, + "end": 6804.3, + "probability": 0.9985 + }, + { + "start": 6805.34, + "end": 6808.4, + "probability": 0.9917 + }, + { + "start": 6809.36, + "end": 6811.9, + "probability": 0.9873 + }, + { + "start": 6812.44, + "end": 6815.7, + "probability": 0.9495 + }, + { + "start": 6816.28, + "end": 6817.0, + "probability": 0.7538 + }, + { + "start": 6817.84, + "end": 6819.76, + "probability": 0.9801 + }, + { + "start": 6820.32, + "end": 6821.88, + "probability": 0.9804 + }, + { + "start": 6822.72, + "end": 6823.9, + "probability": 0.8952 + }, + { + "start": 6823.92, + "end": 6824.38, + "probability": 0.8033 + }, + { + "start": 6824.82, + "end": 6827.96, + "probability": 0.8802 + }, + { + "start": 6828.34, + "end": 6828.92, + "probability": 0.3999 + }, + { + "start": 6828.94, + "end": 6829.62, + "probability": 0.9409 + }, + { + "start": 6830.52, + "end": 6833.06, + "probability": 0.9836 + }, + { + "start": 6833.6, + "end": 6834.7, + "probability": 0.8325 + }, + { + "start": 6835.18, + "end": 6835.78, + "probability": 0.9385 + }, + { + "start": 6835.86, + "end": 6838.78, + "probability": 0.9116 + }, + { + "start": 6839.28, + "end": 6841.7, + "probability": 0.9907 + }, + { + "start": 6842.64, + "end": 6846.66, + "probability": 0.9968 + }, + { + "start": 6846.66, + "end": 6852.46, + "probability": 0.9698 + }, + { + "start": 6852.9, + "end": 6854.4, + "probability": 0.9426 + }, + { + "start": 6854.88, + "end": 6858.1, + "probability": 0.9772 + }, + { + "start": 6858.66, + "end": 6860.56, + "probability": 0.9828 + }, + { + "start": 6861.52, + "end": 6866.84, + "probability": 0.9853 + }, + { + "start": 6866.84, + "end": 6872.64, + "probability": 0.9993 + }, + { + "start": 6873.36, + "end": 6878.1, + "probability": 0.9839 + }, + { + "start": 6878.94, + "end": 6879.04, + "probability": 0.2563 + }, + { + "start": 6879.16, + "end": 6884.34, + "probability": 0.8362 + }, + { + "start": 6884.34, + "end": 6889.02, + "probability": 0.5837 + }, + { + "start": 6889.54, + "end": 6893.2, + "probability": 0.9802 + }, + { + "start": 6894.08, + "end": 6895.38, + "probability": 0.806 + }, + { + "start": 6895.5, + "end": 6898.28, + "probability": 0.9746 + }, + { + "start": 6898.28, + "end": 6901.28, + "probability": 0.9982 + }, + { + "start": 6901.84, + "end": 6905.7, + "probability": 0.9761 + }, + { + "start": 6907.14, + "end": 6910.68, + "probability": 0.9985 + }, + { + "start": 6910.68, + "end": 6915.3, + "probability": 0.9946 + }, + { + "start": 6915.46, + "end": 6916.42, + "probability": 0.843 + }, + { + "start": 6917.06, + "end": 6918.42, + "probability": 0.8027 + }, + { + "start": 6918.94, + "end": 6919.74, + "probability": 0.7183 + }, + { + "start": 6920.26, + "end": 6923.4, + "probability": 0.7766 + }, + { + "start": 6924.04, + "end": 6928.48, + "probability": 0.9849 + }, + { + "start": 6928.48, + "end": 6932.32, + "probability": 0.975 + }, + { + "start": 6933.0, + "end": 6935.08, + "probability": 0.7238 + }, + { + "start": 6935.64, + "end": 6938.54, + "probability": 0.9963 + }, + { + "start": 6938.54, + "end": 6942.25, + "probability": 0.9814 + }, + { + "start": 6942.44, + "end": 6943.35, + "probability": 0.5821 + }, + { + "start": 6943.9, + "end": 6946.45, + "probability": 0.8239 + }, + { + "start": 6947.46, + "end": 6947.54, + "probability": 0.6784 + }, + { + "start": 6947.54, + "end": 6949.44, + "probability": 0.9787 + }, + { + "start": 6949.63, + "end": 6951.78, + "probability": 0.9243 + }, + { + "start": 6951.98, + "end": 6953.26, + "probability": 0.9399 + }, + { + "start": 6954.62, + "end": 6957.22, + "probability": 0.839 + }, + { + "start": 6957.26, + "end": 6959.0, + "probability": 0.7937 + }, + { + "start": 6959.0, + "end": 6961.58, + "probability": 0.9902 + }, + { + "start": 6962.44, + "end": 6964.82, + "probability": 0.6597 + }, + { + "start": 6965.26, + "end": 6968.16, + "probability": 0.9762 + }, + { + "start": 6968.82, + "end": 6969.78, + "probability": 0.9902 + }, + { + "start": 6969.9, + "end": 6970.78, + "probability": 0.6747 + }, + { + "start": 6970.94, + "end": 6974.28, + "probability": 0.766 + }, + { + "start": 6974.76, + "end": 6977.52, + "probability": 0.9863 + }, + { + "start": 6977.92, + "end": 6981.92, + "probability": 0.9048 + }, + { + "start": 6981.92, + "end": 6987.34, + "probability": 0.9281 + }, + { + "start": 6987.84, + "end": 6990.7, + "probability": 0.9675 + }, + { + "start": 6990.88, + "end": 6993.62, + "probability": 0.5139 + }, + { + "start": 6994.3, + "end": 6998.3, + "probability": 0.6972 + }, + { + "start": 6998.9, + "end": 7002.24, + "probability": 0.9689 + }, + { + "start": 7002.46, + "end": 7005.32, + "probability": 0.9869 + }, + { + "start": 7005.78, + "end": 7007.42, + "probability": 0.9087 + }, + { + "start": 7007.64, + "end": 7009.7, + "probability": 0.8766 + }, + { + "start": 7010.24, + "end": 7013.18, + "probability": 0.7734 + }, + { + "start": 7013.7, + "end": 7016.48, + "probability": 0.9757 + }, + { + "start": 7017.02, + "end": 7019.7, + "probability": 0.9935 + }, + { + "start": 7020.1, + "end": 7023.4, + "probability": 0.8665 + }, + { + "start": 7023.98, + "end": 7025.02, + "probability": 0.6493 + }, + { + "start": 7025.1, + "end": 7029.9, + "probability": 0.9015 + }, + { + "start": 7030.62, + "end": 7033.96, + "probability": 0.7685 + }, + { + "start": 7034.5, + "end": 7035.58, + "probability": 0.7167 + }, + { + "start": 7035.6, + "end": 7036.08, + "probability": 0.4784 + }, + { + "start": 7036.08, + "end": 7036.66, + "probability": 0.9673 + }, + { + "start": 7037.16, + "end": 7038.66, + "probability": 0.825 + }, + { + "start": 7038.72, + "end": 7041.92, + "probability": 0.6905 + }, + { + "start": 7042.26, + "end": 7043.04, + "probability": 0.7442 + }, + { + "start": 7043.28, + "end": 7045.1, + "probability": 0.6306 + }, + { + "start": 7045.26, + "end": 7048.84, + "probability": 0.7579 + }, + { + "start": 7058.7, + "end": 7058.82, + "probability": 0.2585 + }, + { + "start": 7059.16, + "end": 7060.0, + "probability": 0.6735 + }, + { + "start": 7060.42, + "end": 7061.44, + "probability": 0.7837 + }, + { + "start": 7061.94, + "end": 7063.36, + "probability": 0.9177 + }, + { + "start": 7064.08, + "end": 7067.32, + "probability": 0.987 + }, + { + "start": 7068.44, + "end": 7077.64, + "probability": 0.9976 + }, + { + "start": 7078.78, + "end": 7083.0, + "probability": 0.989 + }, + { + "start": 7083.9, + "end": 7088.24, + "probability": 0.9939 + }, + { + "start": 7089.13, + "end": 7094.08, + "probability": 0.9982 + }, + { + "start": 7094.68, + "end": 7099.42, + "probability": 0.998 + }, + { + "start": 7100.46, + "end": 7106.1, + "probability": 0.979 + }, + { + "start": 7106.14, + "end": 7108.34, + "probability": 0.7354 + }, + { + "start": 7109.12, + "end": 7110.94, + "probability": 0.7867 + }, + { + "start": 7111.26, + "end": 7112.06, + "probability": 0.9068 + }, + { + "start": 7112.18, + "end": 7117.9, + "probability": 0.9814 + }, + { + "start": 7118.3, + "end": 7119.62, + "probability": 0.9365 + }, + { + "start": 7119.82, + "end": 7121.04, + "probability": 0.6334 + }, + { + "start": 7121.1, + "end": 7125.84, + "probability": 0.8616 + }, + { + "start": 7126.74, + "end": 7131.18, + "probability": 0.94 + }, + { + "start": 7131.18, + "end": 7135.46, + "probability": 0.9973 + }, + { + "start": 7135.64, + "end": 7137.68, + "probability": 0.6278 + }, + { + "start": 7137.74, + "end": 7139.76, + "probability": 0.8967 + }, + { + "start": 7140.2, + "end": 7142.12, + "probability": 0.9971 + }, + { + "start": 7142.32, + "end": 7143.02, + "probability": 0.7548 + }, + { + "start": 7143.68, + "end": 7148.5, + "probability": 0.9951 + }, + { + "start": 7149.12, + "end": 7149.48, + "probability": 0.5219 + }, + { + "start": 7149.64, + "end": 7150.68, + "probability": 0.9644 + }, + { + "start": 7151.16, + "end": 7153.52, + "probability": 0.9956 + }, + { + "start": 7153.52, + "end": 7154.5, + "probability": 0.5151 + }, + { + "start": 7154.52, + "end": 7156.96, + "probability": 0.9405 + }, + { + "start": 7157.0, + "end": 7158.16, + "probability": 0.5778 + }, + { + "start": 7158.32, + "end": 7162.88, + "probability": 0.9248 + }, + { + "start": 7163.7, + "end": 7169.06, + "probability": 0.9952 + }, + { + "start": 7169.7, + "end": 7171.02, + "probability": 0.9908 + }, + { + "start": 7171.6, + "end": 7177.26, + "probability": 0.9964 + }, + { + "start": 7178.26, + "end": 7180.38, + "probability": 0.9142 + }, + { + "start": 7181.26, + "end": 7183.04, + "probability": 0.9785 + }, + { + "start": 7183.62, + "end": 7187.8, + "probability": 0.8104 + }, + { + "start": 7188.5, + "end": 7192.44, + "probability": 0.9905 + }, + { + "start": 7193.28, + "end": 7196.46, + "probability": 0.9747 + }, + { + "start": 7196.46, + "end": 7200.32, + "probability": 0.9984 + }, + { + "start": 7201.1, + "end": 7206.26, + "probability": 0.9937 + }, + { + "start": 7206.62, + "end": 7209.36, + "probability": 0.9894 + }, + { + "start": 7209.5, + "end": 7213.7, + "probability": 0.9891 + }, + { + "start": 7213.84, + "end": 7217.4, + "probability": 0.8097 + }, + { + "start": 7217.62, + "end": 7222.0, + "probability": 0.9948 + }, + { + "start": 7222.0, + "end": 7226.76, + "probability": 0.9917 + }, + { + "start": 7227.24, + "end": 7235.3, + "probability": 0.8662 + }, + { + "start": 7235.64, + "end": 7236.08, + "probability": 0.8159 + }, + { + "start": 7236.68, + "end": 7240.96, + "probability": 0.9663 + }, + { + "start": 7241.62, + "end": 7247.42, + "probability": 0.9282 + }, + { + "start": 7247.8, + "end": 7248.32, + "probability": 0.2531 + }, + { + "start": 7248.38, + "end": 7249.7, + "probability": 0.81 + }, + { + "start": 7249.88, + "end": 7251.98, + "probability": 0.7419 + }, + { + "start": 7258.08, + "end": 7260.22, + "probability": 0.7212 + }, + { + "start": 7262.32, + "end": 7263.42, + "probability": 0.6136 + }, + { + "start": 7264.68, + "end": 7265.12, + "probability": 0.3404 + }, + { + "start": 7265.28, + "end": 7266.38, + "probability": 0.6115 + }, + { + "start": 7266.58, + "end": 7269.46, + "probability": 0.9928 + }, + { + "start": 7269.46, + "end": 7275.2, + "probability": 0.8623 + }, + { + "start": 7275.62, + "end": 7276.68, + "probability": 0.8385 + }, + { + "start": 7277.0, + "end": 7277.62, + "probability": 0.7795 + }, + { + "start": 7278.44, + "end": 7278.88, + "probability": 0.9623 + }, + { + "start": 7280.62, + "end": 7285.5, + "probability": 0.9934 + }, + { + "start": 7286.7, + "end": 7288.72, + "probability": 0.9854 + }, + { + "start": 7288.82, + "end": 7290.06, + "probability": 0.9018 + }, + { + "start": 7290.98, + "end": 7293.08, + "probability": 0.9771 + }, + { + "start": 7293.8, + "end": 7295.86, + "probability": 0.998 + }, + { + "start": 7296.44, + "end": 7299.7, + "probability": 0.856 + }, + { + "start": 7299.86, + "end": 7300.8, + "probability": 0.7037 + }, + { + "start": 7301.44, + "end": 7305.26, + "probability": 0.9392 + }, + { + "start": 7306.0, + "end": 7310.88, + "probability": 0.9832 + }, + { + "start": 7310.88, + "end": 7314.76, + "probability": 0.4653 + }, + { + "start": 7317.72, + "end": 7319.26, + "probability": 0.6324 + }, + { + "start": 7319.37, + "end": 7322.22, + "probability": 0.9315 + }, + { + "start": 7323.0, + "end": 7325.62, + "probability": 0.9424 + }, + { + "start": 7325.7, + "end": 7329.28, + "probability": 0.9867 + }, + { + "start": 7330.24, + "end": 7335.14, + "probability": 0.9937 + }, + { + "start": 7336.82, + "end": 7338.56, + "probability": 0.6783 + }, + { + "start": 7339.02, + "end": 7340.46, + "probability": 0.895 + }, + { + "start": 7340.84, + "end": 7349.34, + "probability": 0.963 + }, + { + "start": 7349.86, + "end": 7354.64, + "probability": 0.96 + }, + { + "start": 7355.22, + "end": 7365.0, + "probability": 0.9544 + }, + { + "start": 7365.4, + "end": 7367.36, + "probability": 0.999 + }, + { + "start": 7367.78, + "end": 7368.68, + "probability": 0.8263 + }, + { + "start": 7371.8, + "end": 7375.34, + "probability": 0.617 + }, + { + "start": 7375.34, + "end": 7376.65, + "probability": 0.9565 + }, + { + "start": 7377.14, + "end": 7377.92, + "probability": 0.6421 + }, + { + "start": 7378.52, + "end": 7380.34, + "probability": 0.9453 + }, + { + "start": 7380.46, + "end": 7381.34, + "probability": 0.688 + }, + { + "start": 7381.9, + "end": 7384.0, + "probability": 0.976 + }, + { + "start": 7384.9, + "end": 7386.48, + "probability": 0.9406 + }, + { + "start": 7387.28, + "end": 7393.96, + "probability": 0.3628 + }, + { + "start": 7397.78, + "end": 7400.36, + "probability": 0.1584 + }, + { + "start": 7400.4, + "end": 7401.86, + "probability": 0.306 + }, + { + "start": 7401.86, + "end": 7403.2, + "probability": 0.1577 + }, + { + "start": 7412.64, + "end": 7414.0, + "probability": 0.7949 + }, + { + "start": 7414.7, + "end": 7415.22, + "probability": 0.3113 + }, + { + "start": 7416.18, + "end": 7416.88, + "probability": 0.1835 + }, + { + "start": 7416.88, + "end": 7419.8, + "probability": 0.8268 + }, + { + "start": 7420.74, + "end": 7421.85, + "probability": 0.6985 + }, + { + "start": 7425.54, + "end": 7428.54, + "probability": 0.6276 + }, + { + "start": 7429.54, + "end": 7431.0, + "probability": 0.0788 + }, + { + "start": 7433.54, + "end": 7435.28, + "probability": 0.1379 + }, + { + "start": 7435.28, + "end": 7435.3, + "probability": 0.4128 + }, + { + "start": 7435.3, + "end": 7436.1, + "probability": 0.6632 + }, + { + "start": 7436.1, + "end": 7438.56, + "probability": 0.7559 + }, + { + "start": 7438.56, + "end": 7442.02, + "probability": 0.6665 + }, + { + "start": 7442.4, + "end": 7445.16, + "probability": 0.7104 + }, + { + "start": 7446.58, + "end": 7447.98, + "probability": 0.2941 + }, + { + "start": 7448.48, + "end": 7450.06, + "probability": 0.9962 + }, + { + "start": 7450.2, + "end": 7452.38, + "probability": 0.9083 + }, + { + "start": 7452.5, + "end": 7454.2, + "probability": 0.2067 + }, + { + "start": 7454.58, + "end": 7456.88, + "probability": 0.9513 + }, + { + "start": 7459.11, + "end": 7462.56, + "probability": 0.8084 + }, + { + "start": 7462.56, + "end": 7463.54, + "probability": 0.5656 + }, + { + "start": 7464.94, + "end": 7465.66, + "probability": 0.3277 + }, + { + "start": 7468.28, + "end": 7469.52, + "probability": 0.0072 + }, + { + "start": 7471.88, + "end": 7475.4, + "probability": 0.6463 + }, + { + "start": 7476.4, + "end": 7477.16, + "probability": 0.7083 + }, + { + "start": 7477.4, + "end": 7478.5, + "probability": 0.6654 + }, + { + "start": 7479.16, + "end": 7480.25, + "probability": 0.9513 + }, + { + "start": 7481.54, + "end": 7482.7, + "probability": 0.7739 + }, + { + "start": 7483.32, + "end": 7488.3, + "probability": 0.9882 + }, + { + "start": 7488.3, + "end": 7493.06, + "probability": 0.9883 + }, + { + "start": 7493.6, + "end": 7498.7, + "probability": 0.964 + }, + { + "start": 7499.4, + "end": 7500.66, + "probability": 0.8956 + }, + { + "start": 7501.52, + "end": 7503.16, + "probability": 0.7234 + }, + { + "start": 7503.68, + "end": 7505.72, + "probability": 0.9984 + }, + { + "start": 7506.52, + "end": 7509.84, + "probability": 0.9584 + }, + { + "start": 7509.84, + "end": 7514.8, + "probability": 0.9769 + }, + { + "start": 7515.84, + "end": 7522.46, + "probability": 0.9912 + }, + { + "start": 7523.64, + "end": 7524.32, + "probability": 0.83 + }, + { + "start": 7525.22, + "end": 7530.02, + "probability": 0.8411 + }, + { + "start": 7530.58, + "end": 7534.72, + "probability": 0.8318 + }, + { + "start": 7535.18, + "end": 7538.58, + "probability": 0.7732 + }, + { + "start": 7539.52, + "end": 7540.96, + "probability": 0.8272 + }, + { + "start": 7541.1, + "end": 7547.94, + "probability": 0.9064 + }, + { + "start": 7548.76, + "end": 7555.74, + "probability": 0.9507 + }, + { + "start": 7555.74, + "end": 7561.44, + "probability": 0.9874 + }, + { + "start": 7561.92, + "end": 7571.01, + "probability": 0.7845 + }, + { + "start": 7572.22, + "end": 7575.74, + "probability": 0.9807 + }, + { + "start": 7576.62, + "end": 7581.24, + "probability": 0.8345 + }, + { + "start": 7581.7, + "end": 7586.2, + "probability": 0.8163 + }, + { + "start": 7587.34, + "end": 7591.66, + "probability": 0.8218 + }, + { + "start": 7592.48, + "end": 7594.7, + "probability": 0.778 + }, + { + "start": 7595.9, + "end": 7602.96, + "probability": 0.7727 + }, + { + "start": 7603.82, + "end": 7605.1, + "probability": 0.5628 + }, + { + "start": 7606.24, + "end": 7609.52, + "probability": 0.7332 + }, + { + "start": 7610.0, + "end": 7611.1, + "probability": 0.907 + }, + { + "start": 7611.66, + "end": 7614.48, + "probability": 0.7849 + }, + { + "start": 7615.36, + "end": 7617.64, + "probability": 0.9795 + }, + { + "start": 7618.64, + "end": 7625.6, + "probability": 0.9909 + }, + { + "start": 7626.3, + "end": 7632.14, + "probability": 0.9263 + }, + { + "start": 7632.72, + "end": 7636.7, + "probability": 0.4462 + }, + { + "start": 7637.6, + "end": 7643.44, + "probability": 0.9843 + }, + { + "start": 7644.32, + "end": 7649.46, + "probability": 0.9689 + }, + { + "start": 7650.12, + "end": 7651.62, + "probability": 0.9708 + }, + { + "start": 7652.44, + "end": 7657.54, + "probability": 0.9588 + }, + { + "start": 7658.38, + "end": 7662.38, + "probability": 0.805 + }, + { + "start": 7663.28, + "end": 7669.7, + "probability": 0.8205 + }, + { + "start": 7669.92, + "end": 7670.44, + "probability": 0.5117 + }, + { + "start": 7671.22, + "end": 7675.92, + "probability": 0.825 + }, + { + "start": 7676.1, + "end": 7676.74, + "probability": 0.9686 + }, + { + "start": 7677.22, + "end": 7679.98, + "probability": 0.6796 + }, + { + "start": 7679.98, + "end": 7682.38, + "probability": 0.868 + }, + { + "start": 7682.88, + "end": 7685.04, + "probability": 0.7523 + }, + { + "start": 7686.94, + "end": 7690.26, + "probability": 0.7583 + }, + { + "start": 7690.4, + "end": 7691.46, + "probability": 0.6889 + }, + { + "start": 7691.6, + "end": 7694.76, + "probability": 0.9016 + }, + { + "start": 7695.76, + "end": 7698.08, + "probability": 0.9527 + }, + { + "start": 7699.7, + "end": 7700.88, + "probability": 0.763 + }, + { + "start": 7703.0, + "end": 7703.88, + "probability": 0.9039 + }, + { + "start": 7704.42, + "end": 7704.72, + "probability": 0.6339 + }, + { + "start": 7704.78, + "end": 7710.04, + "probability": 0.9946 + }, + { + "start": 7710.46, + "end": 7712.38, + "probability": 0.6724 + }, + { + "start": 7715.04, + "end": 7716.79, + "probability": 0.633 + }, + { + "start": 7717.82, + "end": 7718.4, + "probability": 0.0697 + }, + { + "start": 7719.94, + "end": 7724.26, + "probability": 0.9186 + }, + { + "start": 7724.78, + "end": 7726.34, + "probability": 0.744 + }, + { + "start": 7726.4, + "end": 7727.32, + "probability": 0.3934 + }, + { + "start": 7727.78, + "end": 7731.54, + "probability": 0.9192 + }, + { + "start": 7741.94, + "end": 7742.52, + "probability": 0.1474 + }, + { + "start": 7744.53, + "end": 7749.28, + "probability": 0.704 + }, + { + "start": 7755.08, + "end": 7755.08, + "probability": 0.1787 + }, + { + "start": 7755.08, + "end": 7755.08, + "probability": 0.1599 + }, + { + "start": 7755.08, + "end": 7755.08, + "probability": 0.1135 + }, + { + "start": 7755.08, + "end": 7755.1, + "probability": 0.1444 + }, + { + "start": 7755.1, + "end": 7755.1, + "probability": 0.0161 + }, + { + "start": 7755.1, + "end": 7755.1, + "probability": 0.0826 + }, + { + "start": 7755.1, + "end": 7755.14, + "probability": 0.0715 + }, + { + "start": 7764.22, + "end": 7764.4, + "probability": 0.2423 + }, + { + "start": 7769.88, + "end": 7771.52, + "probability": 0.2531 + }, + { + "start": 7784.28, + "end": 7785.26, + "probability": 0.5169 + }, + { + "start": 7786.32, + "end": 7787.24, + "probability": 0.4826 + }, + { + "start": 7788.68, + "end": 7792.78, + "probability": 0.9954 + }, + { + "start": 7794.8, + "end": 7794.9, + "probability": 0.11 + }, + { + "start": 7796.44, + "end": 7799.74, + "probability": 0.9976 + }, + { + "start": 7800.84, + "end": 7805.5, + "probability": 0.5095 + }, + { + "start": 7805.5, + "end": 7809.3, + "probability": 0.9917 + }, + { + "start": 7810.14, + "end": 7812.4, + "probability": 0.8568 + }, + { + "start": 7813.56, + "end": 7816.38, + "probability": 0.3997 + }, + { + "start": 7816.72, + "end": 7819.6, + "probability": 0.7213 + }, + { + "start": 7820.5, + "end": 7821.86, + "probability": 0.9859 + }, + { + "start": 7822.6, + "end": 7824.84, + "probability": 0.9537 + }, + { + "start": 7826.48, + "end": 7828.3, + "probability": 0.6608 + }, + { + "start": 7829.62, + "end": 7831.2, + "probability": 0.3344 + }, + { + "start": 7832.46, + "end": 7835.44, + "probability": 0.9758 + }, + { + "start": 7836.86, + "end": 7839.04, + "probability": 0.8118 + }, + { + "start": 7839.68, + "end": 7840.66, + "probability": 0.7886 + }, + { + "start": 7842.2, + "end": 7844.38, + "probability": 0.7959 + }, + { + "start": 7846.04, + "end": 7846.78, + "probability": 0.9349 + }, + { + "start": 7849.0, + "end": 7852.9, + "probability": 0.7422 + }, + { + "start": 7853.74, + "end": 7853.96, + "probability": 0.9087 + }, + { + "start": 7855.02, + "end": 7856.0, + "probability": 0.9289 + }, + { + "start": 7857.02, + "end": 7860.66, + "probability": 0.7592 + }, + { + "start": 7861.98, + "end": 7864.1, + "probability": 0.9972 + }, + { + "start": 7864.7, + "end": 7868.4, + "probability": 0.8926 + }, + { + "start": 7869.32, + "end": 7872.36, + "probability": 0.3204 + }, + { + "start": 7874.42, + "end": 7877.02, + "probability": 0.8127 + }, + { + "start": 7877.8, + "end": 7878.54, + "probability": 0.3519 + }, + { + "start": 7879.38, + "end": 7884.6, + "probability": 0.8383 + }, + { + "start": 7885.86, + "end": 7886.6, + "probability": 0.7266 + }, + { + "start": 7886.68, + "end": 7892.2, + "probability": 0.9876 + }, + { + "start": 7892.42, + "end": 7896.32, + "probability": 0.9272 + }, + { + "start": 7897.36, + "end": 7900.12, + "probability": 0.9983 + }, + { + "start": 7900.8, + "end": 7904.18, + "probability": 0.9432 + }, + { + "start": 7904.88, + "end": 7906.78, + "probability": 0.7973 + }, + { + "start": 7907.88, + "end": 7913.78, + "probability": 0.9857 + }, + { + "start": 7914.68, + "end": 7920.9, + "probability": 0.7305 + }, + { + "start": 7921.26, + "end": 7922.02, + "probability": 0.455 + }, + { + "start": 7922.54, + "end": 7923.46, + "probability": 0.5371 + }, + { + "start": 7933.58, + "end": 7933.58, + "probability": 0.0138 + }, + { + "start": 7933.58, + "end": 7933.58, + "probability": 0.2304 + }, + { + "start": 7933.58, + "end": 7933.92, + "probability": 0.3405 + }, + { + "start": 7937.0, + "end": 7937.78, + "probability": 0.6686 + }, + { + "start": 7940.08, + "end": 7944.22, + "probability": 0.7634 + }, + { + "start": 7945.88, + "end": 7946.66, + "probability": 0.8703 + }, + { + "start": 7946.84, + "end": 7948.28, + "probability": 0.936 + }, + { + "start": 7948.76, + "end": 7952.88, + "probability": 0.6283 + }, + { + "start": 7953.9, + "end": 7957.38, + "probability": 0.9385 + }, + { + "start": 7958.32, + "end": 7962.42, + "probability": 0.9525 + }, + { + "start": 7963.72, + "end": 7966.22, + "probability": 0.8958 + }, + { + "start": 7967.1, + "end": 7968.86, + "probability": 0.9902 + }, + { + "start": 7969.38, + "end": 7971.04, + "probability": 0.8839 + }, + { + "start": 7971.56, + "end": 7973.3, + "probability": 0.9973 + }, + { + "start": 7974.1, + "end": 7975.14, + "probability": 0.9977 + }, + { + "start": 7976.3, + "end": 7980.64, + "probability": 0.9909 + }, + { + "start": 7981.16, + "end": 7983.38, + "probability": 0.9734 + }, + { + "start": 7983.86, + "end": 7985.64, + "probability": 0.9966 + }, + { + "start": 7989.0, + "end": 7991.0, + "probability": 0.7794 + }, + { + "start": 7991.8, + "end": 7996.82, + "probability": 0.583 + }, + { + "start": 7997.42, + "end": 7997.52, + "probability": 0.1964 + }, + { + "start": 7998.04, + "end": 7998.04, + "probability": 0.0016 + }, + { + "start": 7998.72, + "end": 7999.74, + "probability": 0.1017 + }, + { + "start": 7999.84, + "end": 8000.2, + "probability": 0.2198 + }, + { + "start": 8000.62, + "end": 8004.62, + "probability": 0.9009 + }, + { + "start": 8005.28, + "end": 8006.26, + "probability": 0.4095 + }, + { + "start": 8008.32, + "end": 8009.48, + "probability": 0.5655 + }, + { + "start": 8010.24, + "end": 8010.78, + "probability": 0.698 + }, + { + "start": 8011.08, + "end": 8011.57, + "probability": 0.5199 + }, + { + "start": 8011.97, + "end": 8017.24, + "probability": 0.8609 + }, + { + "start": 8017.64, + "end": 8019.5, + "probability": 0.9937 + }, + { + "start": 8019.88, + "end": 8020.65, + "probability": 0.8322 + }, + { + "start": 8021.3, + "end": 8023.52, + "probability": 0.845 + }, + { + "start": 8023.62, + "end": 8028.64, + "probability": 0.7387 + }, + { + "start": 8029.9, + "end": 8031.76, + "probability": 0.9904 + }, + { + "start": 8032.18, + "end": 8033.34, + "probability": 0.1015 + }, + { + "start": 8034.28, + "end": 8035.46, + "probability": 0.3053 + }, + { + "start": 8036.38, + "end": 8036.56, + "probability": 0.1712 + }, + { + "start": 8036.56, + "end": 8036.56, + "probability": 0.1289 + }, + { + "start": 8036.56, + "end": 8036.56, + "probability": 0.0571 + }, + { + "start": 8036.56, + "end": 8041.52, + "probability": 0.4725 + }, + { + "start": 8041.68, + "end": 8044.84, + "probability": 0.6198 + }, + { + "start": 8044.86, + "end": 8047.02, + "probability": 0.8199 + }, + { + "start": 8047.34, + "end": 8048.04, + "probability": 0.4883 + }, + { + "start": 8048.14, + "end": 8048.64, + "probability": 0.5896 + }, + { + "start": 8048.7, + "end": 8049.28, + "probability": 0.8003 + }, + { + "start": 8053.88, + "end": 8057.4, + "probability": 0.0137 + }, + { + "start": 8066.92, + "end": 8067.48, + "probability": 0.7244 + }, + { + "start": 8069.14, + "end": 8071.2, + "probability": 0.2387 + }, + { + "start": 8071.4, + "end": 8076.16, + "probability": 0.1445 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8141.0, + "end": 8141.0, + "probability": 0.0 + }, + { + "start": 8143.88, + "end": 8146.46, + "probability": 0.7689 + }, + { + "start": 8147.22, + "end": 8147.74, + "probability": 0.8926 + }, + { + "start": 8147.8, + "end": 8150.54, + "probability": 0.9603 + }, + { + "start": 8151.2, + "end": 8152.06, + "probability": 0.7944 + }, + { + "start": 8153.81, + "end": 8156.18, + "probability": 0.9309 + }, + { + "start": 8157.08, + "end": 8157.58, + "probability": 0.951 + }, + { + "start": 8157.8, + "end": 8161.98, + "probability": 0.9928 + }, + { + "start": 8161.98, + "end": 8166.5, + "probability": 0.8668 + }, + { + "start": 8167.46, + "end": 8168.86, + "probability": 0.8343 + }, + { + "start": 8170.84, + "end": 8171.28, + "probability": 0.476 + }, + { + "start": 8172.28, + "end": 8174.2, + "probability": 0.9562 + }, + { + "start": 8175.0, + "end": 8179.04, + "probability": 0.9773 + }, + { + "start": 8179.54, + "end": 8180.16, + "probability": 0.8153 + }, + { + "start": 8180.3, + "end": 8181.12, + "probability": 0.7869 + }, + { + "start": 8181.34, + "end": 8187.38, + "probability": 0.9843 + }, + { + "start": 8188.04, + "end": 8190.66, + "probability": 0.9893 + }, + { + "start": 8191.4, + "end": 8194.14, + "probability": 0.778 + }, + { + "start": 8194.7, + "end": 8197.12, + "probability": 0.7582 + }, + { + "start": 8197.64, + "end": 8201.78, + "probability": 0.9943 + }, + { + "start": 8201.78, + "end": 8205.14, + "probability": 0.9843 + }, + { + "start": 8205.26, + "end": 8207.02, + "probability": 0.9887 + }, + { + "start": 8208.28, + "end": 8211.42, + "probability": 0.7367 + }, + { + "start": 8211.54, + "end": 8215.46, + "probability": 0.8625 + }, + { + "start": 8215.46, + "end": 8218.62, + "probability": 0.9155 + }, + { + "start": 8219.18, + "end": 8221.48, + "probability": 0.9937 + }, + { + "start": 8222.3, + "end": 8224.56, + "probability": 0.78 + }, + { + "start": 8225.14, + "end": 8226.26, + "probability": 0.8276 + }, + { + "start": 8226.36, + "end": 8227.62, + "probability": 0.7368 + }, + { + "start": 8227.7, + "end": 8230.78, + "probability": 0.8367 + }, + { + "start": 8231.56, + "end": 8233.96, + "probability": 0.9963 + }, + { + "start": 8234.68, + "end": 8239.48, + "probability": 0.9939 + }, + { + "start": 8239.58, + "end": 8240.9, + "probability": 0.9797 + }, + { + "start": 8242.12, + "end": 8244.58, + "probability": 0.7149 + }, + { + "start": 8245.44, + "end": 8247.4, + "probability": 0.1636 + }, + { + "start": 8247.96, + "end": 8249.5, + "probability": 0.8439 + }, + { + "start": 8250.14, + "end": 8255.06, + "probability": 0.923 + }, + { + "start": 8255.68, + "end": 8257.86, + "probability": 0.9141 + }, + { + "start": 8258.59, + "end": 8260.72, + "probability": 0.613 + }, + { + "start": 8261.54, + "end": 8265.3, + "probability": 0.8545 + }, + { + "start": 8265.68, + "end": 8270.76, + "probability": 0.9762 + }, + { + "start": 8272.88, + "end": 8276.24, + "probability": 0.9675 + }, + { + "start": 8276.76, + "end": 8278.0, + "probability": 0.9037 + }, + { + "start": 8279.28, + "end": 8286.62, + "probability": 0.6005 + }, + { + "start": 8287.52, + "end": 8288.02, + "probability": 0.7417 + }, + { + "start": 8288.16, + "end": 8291.76, + "probability": 0.9036 + }, + { + "start": 8292.54, + "end": 8297.1, + "probability": 0.7924 + }, + { + "start": 8298.36, + "end": 8300.02, + "probability": 0.5315 + }, + { + "start": 8300.12, + "end": 8300.91, + "probability": 0.3773 + }, + { + "start": 8301.26, + "end": 8302.64, + "probability": 0.6658 + }, + { + "start": 8303.16, + "end": 8304.86, + "probability": 0.5483 + }, + { + "start": 8304.94, + "end": 8305.7, + "probability": 0.6229 + }, + { + "start": 8306.18, + "end": 8306.44, + "probability": 0.6837 + }, + { + "start": 8307.48, + "end": 8310.6, + "probability": 0.6511 + }, + { + "start": 8310.74, + "end": 8311.16, + "probability": 0.6684 + }, + { + "start": 8313.37, + "end": 8314.9, + "probability": 0.244 + }, + { + "start": 8314.9, + "end": 8315.16, + "probability": 0.0329 + }, + { + "start": 8315.36, + "end": 8316.72, + "probability": 0.5 + }, + { + "start": 8317.24, + "end": 8320.82, + "probability": 0.6095 + }, + { + "start": 8321.12, + "end": 8322.52, + "probability": 0.9534 + }, + { + "start": 8323.56, + "end": 8324.36, + "probability": 0.7278 + }, + { + "start": 8325.4, + "end": 8327.47, + "probability": 0.9912 + }, + { + "start": 8328.0, + "end": 8331.38, + "probability": 0.9919 + }, + { + "start": 8332.22, + "end": 8333.89, + "probability": 0.9018 + }, + { + "start": 8334.52, + "end": 8335.58, + "probability": 0.6531 + }, + { + "start": 8335.75, + "end": 8339.78, + "probability": 0.9811 + }, + { + "start": 8340.28, + "end": 8346.14, + "probability": 0.5022 + }, + { + "start": 8346.54, + "end": 8347.46, + "probability": 0.216 + }, + { + "start": 8347.56, + "end": 8348.96, + "probability": 0.7369 + }, + { + "start": 8349.06, + "end": 8349.7, + "probability": 0.7234 + }, + { + "start": 8350.76, + "end": 8352.38, + "probability": 0.468 + }, + { + "start": 8352.38, + "end": 8353.1, + "probability": 0.4921 + }, + { + "start": 8353.4, + "end": 8353.98, + "probability": 0.5677 + }, + { + "start": 8355.64, + "end": 8357.54, + "probability": 0.6669 + }, + { + "start": 8357.72, + "end": 8359.2, + "probability": 0.9577 + }, + { + "start": 8360.02, + "end": 8362.74, + "probability": 0.6558 + }, + { + "start": 8363.28, + "end": 8365.64, + "probability": 0.7302 + }, + { + "start": 8366.42, + "end": 8371.26, + "probability": 0.9209 + }, + { + "start": 8371.72, + "end": 8374.1, + "probability": 0.9589 + }, + { + "start": 8374.44, + "end": 8375.72, + "probability": 0.8709 + }, + { + "start": 8376.1, + "end": 8377.5, + "probability": 0.6842 + }, + { + "start": 8378.08, + "end": 8381.18, + "probability": 0.9912 + }, + { + "start": 8381.3, + "end": 8383.76, + "probability": 0.2176 + }, + { + "start": 8384.36, + "end": 8386.92, + "probability": 0.6549 + }, + { + "start": 8387.32, + "end": 8389.3, + "probability": 0.64 + }, + { + "start": 8389.6, + "end": 8393.16, + "probability": 0.5939 + }, + { + "start": 8393.94, + "end": 8397.96, + "probability": 0.9965 + }, + { + "start": 8398.64, + "end": 8399.6, + "probability": 0.9164 + }, + { + "start": 8400.36, + "end": 8405.12, + "probability": 0.8754 + }, + { + "start": 8405.84, + "end": 8406.44, + "probability": 0.9138 + }, + { + "start": 8407.0, + "end": 8409.26, + "probability": 0.6587 + }, + { + "start": 8409.78, + "end": 8410.2, + "probability": 0.5719 + }, + { + "start": 8411.04, + "end": 8412.46, + "probability": 0.6745 + }, + { + "start": 8413.08, + "end": 8415.78, + "probability": 0.9897 + }, + { + "start": 8416.06, + "end": 8418.78, + "probability": 0.9889 + }, + { + "start": 8419.58, + "end": 8422.16, + "probability": 0.9888 + }, + { + "start": 8422.78, + "end": 8426.2, + "probability": 0.8082 + }, + { + "start": 8426.88, + "end": 8428.08, + "probability": 0.9743 + }, + { + "start": 8428.7, + "end": 8432.12, + "probability": 0.9132 + }, + { + "start": 8433.48, + "end": 8437.78, + "probability": 0.9113 + }, + { + "start": 8441.15, + "end": 8441.88, + "probability": 0.0048 + }, + { + "start": 8441.88, + "end": 8444.92, + "probability": 0.6614 + }, + { + "start": 8445.32, + "end": 8446.24, + "probability": 0.9922 + }, + { + "start": 8446.28, + "end": 8446.94, + "probability": 0.7243 + }, + { + "start": 8447.44, + "end": 8451.4, + "probability": 0.9662 + }, + { + "start": 8453.08, + "end": 8453.76, + "probability": 0.6045 + }, + { + "start": 8454.26, + "end": 8455.84, + "probability": 0.9349 + }, + { + "start": 8456.24, + "end": 8457.26, + "probability": 0.7542 + }, + { + "start": 8457.3, + "end": 8458.5, + "probability": 0.6677 + }, + { + "start": 8459.12, + "end": 8463.7, + "probability": 0.9388 + }, + { + "start": 8464.56, + "end": 8469.34, + "probability": 0.504 + }, + { + "start": 8469.92, + "end": 8472.62, + "probability": 0.9254 + }, + { + "start": 8473.02, + "end": 8474.0, + "probability": 0.8937 + }, + { + "start": 8474.16, + "end": 8474.76, + "probability": 0.7966 + }, + { + "start": 8474.86, + "end": 8476.8, + "probability": 0.8427 + }, + { + "start": 8477.5, + "end": 8479.54, + "probability": 0.855 + }, + { + "start": 8480.08, + "end": 8482.08, + "probability": 0.9877 + }, + { + "start": 8482.2, + "end": 8485.52, + "probability": 0.9778 + }, + { + "start": 8485.52, + "end": 8492.62, + "probability": 0.7404 + }, + { + "start": 8493.56, + "end": 8496.0, + "probability": 0.8866 + }, + { + "start": 8496.6, + "end": 8498.58, + "probability": 0.0887 + }, + { + "start": 8498.58, + "end": 8499.12, + "probability": 0.2805 + }, + { + "start": 8499.86, + "end": 8501.76, + "probability": 0.9268 + }, + { + "start": 8501.9, + "end": 8503.74, + "probability": 0.9501 + }, + { + "start": 8507.74, + "end": 8508.3, + "probability": 0.7468 + }, + { + "start": 8509.44, + "end": 8511.38, + "probability": 0.9902 + }, + { + "start": 8511.6, + "end": 8512.87, + "probability": 0.9944 + }, + { + "start": 8514.24, + "end": 8516.46, + "probability": 0.9697 + }, + { + "start": 8517.46, + "end": 8519.02, + "probability": 0.9943 + }, + { + "start": 8521.96, + "end": 8523.12, + "probability": 0.0047 + }, + { + "start": 8523.88, + "end": 8523.98, + "probability": 0.0805 + }, + { + "start": 8524.44, + "end": 8524.62, + "probability": 0.0245 + }, + { + "start": 8524.62, + "end": 8524.94, + "probability": 0.0607 + }, + { + "start": 8524.94, + "end": 8524.94, + "probability": 0.5271 + }, + { + "start": 8524.94, + "end": 8526.14, + "probability": 0.7815 + }, + { + "start": 8526.22, + "end": 8527.8, + "probability": 0.0081 + }, + { + "start": 8528.04, + "end": 8528.82, + "probability": 0.5379 + }, + { + "start": 8528.94, + "end": 8533.54, + "probability": 0.9879 + }, + { + "start": 8533.9, + "end": 8536.24, + "probability": 0.8105 + }, + { + "start": 8536.64, + "end": 8541.28, + "probability": 0.8783 + }, + { + "start": 8541.38, + "end": 8542.18, + "probability": 0.865 + }, + { + "start": 8542.5, + "end": 8543.56, + "probability": 0.9404 + }, + { + "start": 8544.9, + "end": 8550.38, + "probability": 0.5742 + }, + { + "start": 8550.84, + "end": 8552.8, + "probability": 0.3169 + }, + { + "start": 8552.94, + "end": 8553.18, + "probability": 0.2571 + }, + { + "start": 8553.36, + "end": 8554.38, + "probability": 0.3827 + }, + { + "start": 8554.88, + "end": 8555.96, + "probability": 0.5961 + }, + { + "start": 8556.1, + "end": 8556.88, + "probability": 0.7177 + }, + { + "start": 8557.48, + "end": 8560.46, + "probability": 0.8206 + }, + { + "start": 8561.1, + "end": 8563.8, + "probability": 0.97 + }, + { + "start": 8565.18, + "end": 8565.46, + "probability": 0.0181 + }, + { + "start": 8565.46, + "end": 8565.94, + "probability": 0.447 + }, + { + "start": 8566.22, + "end": 8573.01, + "probability": 0.8644 + }, + { + "start": 8573.3, + "end": 8574.07, + "probability": 0.6441 + }, + { + "start": 8574.42, + "end": 8575.82, + "probability": 0.7596 + }, + { + "start": 8576.8, + "end": 8578.42, + "probability": 0.9517 + }, + { + "start": 8578.58, + "end": 8580.3, + "probability": 0.8219 + }, + { + "start": 8580.42, + "end": 8582.06, + "probability": 0.6088 + }, + { + "start": 8582.16, + "end": 8584.32, + "probability": 0.8297 + }, + { + "start": 8584.7, + "end": 8587.67, + "probability": 0.9844 + }, + { + "start": 8587.76, + "end": 8592.04, + "probability": 0.9933 + }, + { + "start": 8592.84, + "end": 8594.4, + "probability": 0.804 + }, + { + "start": 8594.88, + "end": 8598.96, + "probability": 0.9952 + }, + { + "start": 8607.78, + "end": 8609.98, + "probability": 0.5226 + }, + { + "start": 8610.64, + "end": 8612.7, + "probability": 0.5845 + }, + { + "start": 8613.3, + "end": 8614.66, + "probability": 0.5008 + }, + { + "start": 8615.1, + "end": 8615.66, + "probability": 0.8574 + }, + { + "start": 8615.78, + "end": 8616.38, + "probability": 0.9154 + }, + { + "start": 8616.54, + "end": 8617.68, + "probability": 0.9915 + }, + { + "start": 8618.44, + "end": 8620.86, + "probability": 0.8815 + }, + { + "start": 8620.86, + "end": 8624.06, + "probability": 0.933 + }, + { + "start": 8624.54, + "end": 8625.86, + "probability": 0.7409 + }, + { + "start": 8626.0, + "end": 8628.82, + "probability": 0.8008 + }, + { + "start": 8629.28, + "end": 8632.62, + "probability": 0.9911 + }, + { + "start": 8632.82, + "end": 8634.12, + "probability": 0.7807 + }, + { + "start": 8634.56, + "end": 8636.02, + "probability": 0.9875 + }, + { + "start": 8636.4, + "end": 8638.02, + "probability": 0.9935 + }, + { + "start": 8638.34, + "end": 8639.76, + "probability": 0.9849 + }, + { + "start": 8639.84, + "end": 8640.28, + "probability": 0.8575 + }, + { + "start": 8641.72, + "end": 8643.6, + "probability": 0.529 + }, + { + "start": 8645.2, + "end": 8645.26, + "probability": 0.0291 + }, + { + "start": 8645.26, + "end": 8645.26, + "probability": 0.0311 + }, + { + "start": 8645.26, + "end": 8646.08, + "probability": 0.4741 + }, + { + "start": 8646.08, + "end": 8646.79, + "probability": 0.4644 + }, + { + "start": 8648.44, + "end": 8649.88, + "probability": 0.7933 + }, + { + "start": 8650.09, + "end": 8653.9, + "probability": 0.9872 + }, + { + "start": 8654.4, + "end": 8654.52, + "probability": 0.2551 + }, + { + "start": 8654.64, + "end": 8655.92, + "probability": 0.656 + }, + { + "start": 8656.28, + "end": 8660.54, + "probability": 0.7159 + }, + { + "start": 8660.9, + "end": 8661.98, + "probability": 0.8593 + }, + { + "start": 8662.12, + "end": 8664.06, + "probability": 0.7914 + }, + { + "start": 8664.2, + "end": 8666.66, + "probability": 0.896 + }, + { + "start": 8666.74, + "end": 8673.0, + "probability": 0.9695 + }, + { + "start": 8673.5, + "end": 8676.42, + "probability": 0.6661 + }, + { + "start": 8676.88, + "end": 8678.02, + "probability": 0.8052 + }, + { + "start": 8678.5, + "end": 8686.24, + "probability": 0.9789 + }, + { + "start": 8687.88, + "end": 8689.22, + "probability": 0.9051 + }, + { + "start": 8697.56, + "end": 8698.12, + "probability": 0.2349 + }, + { + "start": 8698.34, + "end": 8700.16, + "probability": 0.6048 + }, + { + "start": 8700.32, + "end": 8705.0, + "probability": 0.9736 + }, + { + "start": 8705.98, + "end": 8707.08, + "probability": 0.6729 + }, + { + "start": 8709.02, + "end": 8711.32, + "probability": 0.6284 + }, + { + "start": 8711.9, + "end": 8713.98, + "probability": 0.8356 + }, + { + "start": 8715.54, + "end": 8719.16, + "probability": 0.9712 + }, + { + "start": 8719.16, + "end": 8721.44, + "probability": 0.9757 + }, + { + "start": 8722.66, + "end": 8723.72, + "probability": 0.995 + }, + { + "start": 8724.34, + "end": 8727.8, + "probability": 0.9246 + }, + { + "start": 8728.66, + "end": 8733.5, + "probability": 0.9884 + }, + { + "start": 8733.5, + "end": 8738.36, + "probability": 0.999 + }, + { + "start": 8739.42, + "end": 8741.56, + "probability": 0.8413 + }, + { + "start": 8742.22, + "end": 8744.86, + "probability": 0.919 + }, + { + "start": 8745.82, + "end": 8746.14, + "probability": 0.824 + }, + { + "start": 8746.68, + "end": 8749.24, + "probability": 0.9182 + }, + { + "start": 8750.66, + "end": 8753.16, + "probability": 0.7937 + }, + { + "start": 8753.96, + "end": 8756.82, + "probability": 0.988 + }, + { + "start": 8757.34, + "end": 8760.8, + "probability": 0.9946 + }, + { + "start": 8760.8, + "end": 8764.34, + "probability": 0.9812 + }, + { + "start": 8765.58, + "end": 8768.27, + "probability": 0.8484 + }, + { + "start": 8770.5, + "end": 8774.82, + "probability": 0.7551 + }, + { + "start": 8775.88, + "end": 8779.04, + "probability": 0.917 + }, + { + "start": 8779.04, + "end": 8781.48, + "probability": 0.9698 + }, + { + "start": 8782.08, + "end": 8784.18, + "probability": 0.9974 + }, + { + "start": 8784.92, + "end": 8789.4, + "probability": 0.9691 + }, + { + "start": 8789.4, + "end": 8792.9, + "probability": 0.9169 + }, + { + "start": 8793.42, + "end": 8796.18, + "probability": 0.9829 + }, + { + "start": 8796.66, + "end": 8797.06, + "probability": 0.8923 + }, + { + "start": 8797.2, + "end": 8798.44, + "probability": 0.8319 + }, + { + "start": 8799.7, + "end": 8803.96, + "probability": 0.9969 + }, + { + "start": 8803.96, + "end": 8808.32, + "probability": 0.9598 + }, + { + "start": 8808.8, + "end": 8810.08, + "probability": 0.9804 + }, + { + "start": 8810.54, + "end": 8810.98, + "probability": 0.8374 + }, + { + "start": 8811.22, + "end": 8811.72, + "probability": 0.9868 + }, + { + "start": 8812.0, + "end": 8812.9, + "probability": 0.9634 + }, + { + "start": 8813.48, + "end": 8814.58, + "probability": 0.969 + }, + { + "start": 8814.66, + "end": 8816.12, + "probability": 0.9893 + }, + { + "start": 8816.42, + "end": 8819.14, + "probability": 0.9613 + }, + { + "start": 8819.8, + "end": 8820.3, + "probability": 0.9495 + }, + { + "start": 8820.98, + "end": 8822.34, + "probability": 0.9781 + }, + { + "start": 8823.58, + "end": 8828.6, + "probability": 0.9438 + }, + { + "start": 8830.06, + "end": 8831.8, + "probability": 0.1656 + }, + { + "start": 8833.38, + "end": 8834.79, + "probability": 0.2778 + }, + { + "start": 8840.74, + "end": 8841.64, + "probability": 0.7273 + }, + { + "start": 8842.16, + "end": 8845.02, + "probability": 0.9732 + }, + { + "start": 8846.36, + "end": 8849.04, + "probability": 0.8788 + }, + { + "start": 8849.82, + "end": 8853.4, + "probability": 0.9866 + }, + { + "start": 8853.88, + "end": 8855.78, + "probability": 0.9867 + }, + { + "start": 8856.92, + "end": 8859.34, + "probability": 0.9363 + }, + { + "start": 8859.34, + "end": 8862.7, + "probability": 0.9935 + }, + { + "start": 8863.24, + "end": 8865.42, + "probability": 0.9325 + }, + { + "start": 8865.42, + "end": 8869.16, + "probability": 0.987 + }, + { + "start": 8869.7, + "end": 8871.56, + "probability": 0.7267 + }, + { + "start": 8872.6, + "end": 8874.9, + "probability": 0.9575 + }, + { + "start": 8875.02, + "end": 8877.12, + "probability": 0.9906 + }, + { + "start": 8877.7, + "end": 8882.0, + "probability": 0.9827 + }, + { + "start": 8882.58, + "end": 8883.24, + "probability": 0.9924 + }, + { + "start": 8883.82, + "end": 8887.68, + "probability": 0.9862 + }, + { + "start": 8888.04, + "end": 8888.48, + "probability": 0.529 + }, + { + "start": 8888.82, + "end": 8889.2, + "probability": 0.8019 + }, + { + "start": 8889.34, + "end": 8890.56, + "probability": 0.7676 + }, + { + "start": 8891.18, + "end": 8893.18, + "probability": 0.9711 + }, + { + "start": 8893.5, + "end": 8895.2, + "probability": 0.9896 + }, + { + "start": 8896.66, + "end": 8897.32, + "probability": 0.6925 + }, + { + "start": 8897.77, + "end": 8901.38, + "probability": 0.174 + }, + { + "start": 8902.1, + "end": 8902.2, + "probability": 0.1636 + }, + { + "start": 8903.14, + "end": 8903.14, + "probability": 0.0529 + }, + { + "start": 8903.14, + "end": 8903.72, + "probability": 0.5914 + }, + { + "start": 8904.14, + "end": 8905.76, + "probability": 0.8858 + }, + { + "start": 8906.26, + "end": 8908.96, + "probability": 0.9924 + }, + { + "start": 8909.8, + "end": 8912.64, + "probability": 0.9712 + }, + { + "start": 8912.96, + "end": 8913.92, + "probability": 0.7052 + }, + { + "start": 8917.18, + "end": 8917.18, + "probability": 0.0626 + }, + { + "start": 8917.18, + "end": 8918.79, + "probability": 0.9878 + }, + { + "start": 8919.44, + "end": 8921.72, + "probability": 0.604 + }, + { + "start": 8921.82, + "end": 8923.34, + "probability": 0.7002 + }, + { + "start": 8923.4, + "end": 8926.38, + "probability": 0.3503 + }, + { + "start": 8927.82, + "end": 8931.74, + "probability": 0.989 + }, + { + "start": 8933.6, + "end": 8936.3, + "probability": 0.3193 + }, + { + "start": 8936.3, + "end": 8938.36, + "probability": 0.7229 + }, + { + "start": 8939.36, + "end": 8942.64, + "probability": 0.9728 + }, + { + "start": 8943.3, + "end": 8948.06, + "probability": 0.9688 + }, + { + "start": 8948.48, + "end": 8949.2, + "probability": 0.894 + }, + { + "start": 8949.82, + "end": 8950.43, + "probability": 0.6805 + }, + { + "start": 8951.26, + "end": 8952.92, + "probability": 0.6226 + }, + { + "start": 8953.24, + "end": 8956.52, + "probability": 0.9794 + }, + { + "start": 8957.04, + "end": 8958.96, + "probability": 0.9679 + }, + { + "start": 8959.12, + "end": 8960.3, + "probability": 0.4783 + }, + { + "start": 8961.14, + "end": 8961.62, + "probability": 0.524 + }, + { + "start": 8961.62, + "end": 8962.92, + "probability": 0.6918 + }, + { + "start": 8963.32, + "end": 8965.08, + "probability": 0.9727 + }, + { + "start": 8965.46, + "end": 8965.7, + "probability": 0.0781 + }, + { + "start": 8965.7, + "end": 8969.5, + "probability": 0.9448 + }, + { + "start": 8969.84, + "end": 8971.28, + "probability": 0.9387 + }, + { + "start": 8971.4, + "end": 8973.0, + "probability": 0.9379 + }, + { + "start": 8973.36, + "end": 8974.52, + "probability": 0.8418 + }, + { + "start": 8974.94, + "end": 8975.74, + "probability": 0.9618 + }, + { + "start": 8975.82, + "end": 8976.78, + "probability": 0.9712 + }, + { + "start": 8977.12, + "end": 8981.14, + "probability": 0.9985 + }, + { + "start": 8981.54, + "end": 8984.96, + "probability": 0.9291 + }, + { + "start": 8984.96, + "end": 8987.76, + "probability": 0.4584 + }, + { + "start": 8988.24, + "end": 8991.32, + "probability": 0.8924 + }, + { + "start": 8991.84, + "end": 8992.41, + "probability": 0.9816 + }, + { + "start": 8992.66, + "end": 8993.44, + "probability": 0.9779 + }, + { + "start": 8993.8, + "end": 8998.06, + "probability": 0.994 + }, + { + "start": 8998.3, + "end": 8998.84, + "probability": 0.1044 + }, + { + "start": 8999.14, + "end": 9000.7, + "probability": 0.8558 + }, + { + "start": 9001.14, + "end": 9003.96, + "probability": 0.7797 + }, + { + "start": 9004.06, + "end": 9005.36, + "probability": 0.5703 + }, + { + "start": 9005.38, + "end": 9005.76, + "probability": 0.5942 + }, + { + "start": 9006.33, + "end": 9011.84, + "probability": 0.8635 + }, + { + "start": 9012.46, + "end": 9014.78, + "probability": 0.9886 + }, + { + "start": 9014.8, + "end": 9016.48, + "probability": 0.8803 + }, + { + "start": 9016.86, + "end": 9018.28, + "probability": 0.7546 + }, + { + "start": 9019.06, + "end": 9020.34, + "probability": 0.9224 + }, + { + "start": 9021.48, + "end": 9022.48, + "probability": 0.7285 + }, + { + "start": 9023.88, + "end": 9030.34, + "probability": 0.9837 + }, + { + "start": 9030.4, + "end": 9032.08, + "probability": 0.9943 + }, + { + "start": 9033.26, + "end": 9033.58, + "probability": 0.0968 + }, + { + "start": 9035.04, + "end": 9036.54, + "probability": 0.4083 + }, + { + "start": 9036.54, + "end": 9040.16, + "probability": 0.6843 + }, + { + "start": 9040.22, + "end": 9043.06, + "probability": 0.5573 + }, + { + "start": 9043.06, + "end": 9046.5, + "probability": 0.6726 + }, + { + "start": 9046.52, + "end": 9047.36, + "probability": 0.6707 + }, + { + "start": 9047.78, + "end": 9050.58, + "probability": 0.3077 + }, + { + "start": 9050.6, + "end": 9051.18, + "probability": 0.5995 + }, + { + "start": 9051.26, + "end": 9051.84, + "probability": 0.7193 + }, + { + "start": 9051.84, + "end": 9052.32, + "probability": 0.8583 + }, + { + "start": 9065.66, + "end": 9066.38, + "probability": 0.1419 + }, + { + "start": 9068.6, + "end": 9071.98, + "probability": 0.0144 + }, + { + "start": 9072.66, + "end": 9074.62, + "probability": 0.0566 + }, + { + "start": 9075.68, + "end": 9077.1, + "probability": 0.148 + }, + { + "start": 9078.0, + "end": 9078.0, + "probability": 0.1266 + }, + { + "start": 9078.98, + "end": 9078.98, + "probability": 0.0685 + }, + { + "start": 9078.98, + "end": 9082.12, + "probability": 0.3428 + }, + { + "start": 9082.24, + "end": 9084.3, + "probability": 0.8674 + }, + { + "start": 9084.54, + "end": 9085.28, + "probability": 0.6071 + }, + { + "start": 9085.74, + "end": 9086.67, + "probability": 0.9565 + }, + { + "start": 9086.92, + "end": 9090.16, + "probability": 0.9885 + }, + { + "start": 9091.24, + "end": 9095.54, + "probability": 0.8088 + }, + { + "start": 9096.08, + "end": 9098.02, + "probability": 0.9524 + }, + { + "start": 9098.34, + "end": 9100.28, + "probability": 0.8333 + }, + { + "start": 9101.04, + "end": 9101.76, + "probability": 0.8646 + }, + { + "start": 9101.84, + "end": 9102.54, + "probability": 0.9182 + }, + { + "start": 9102.96, + "end": 9105.7, + "probability": 0.7383 + }, + { + "start": 9105.7, + "end": 9106.58, + "probability": 0.5076 + }, + { + "start": 9107.22, + "end": 9109.84, + "probability": 0.9632 + }, + { + "start": 9110.4, + "end": 9112.8, + "probability": 0.7733 + }, + { + "start": 9114.04, + "end": 9115.48, + "probability": 0.6476 + }, + { + "start": 9117.78, + "end": 9121.58, + "probability": 0.4884 + }, + { + "start": 9122.58, + "end": 9125.58, + "probability": 0.5889 + }, + { + "start": 9125.6, + "end": 9127.44, + "probability": 0.5144 + }, + { + "start": 9127.98, + "end": 9129.96, + "probability": 0.8459 + }, + { + "start": 9131.5, + "end": 9132.38, + "probability": 0.6442 + }, + { + "start": 9133.08, + "end": 9135.3, + "probability": 0.9827 + }, + { + "start": 9135.92, + "end": 9140.74, + "probability": 0.9855 + }, + { + "start": 9141.08, + "end": 9141.08, + "probability": 0.1147 + }, + { + "start": 9141.08, + "end": 9141.08, + "probability": 0.0882 + }, + { + "start": 9141.08, + "end": 9141.96, + "probability": 0.495 + }, + { + "start": 9142.74, + "end": 9145.14, + "probability": 0.7226 + }, + { + "start": 9145.18, + "end": 9151.6, + "probability": 0.8469 + }, + { + "start": 9152.04, + "end": 9156.08, + "probability": 0.905 + }, + { + "start": 9157.24, + "end": 9157.24, + "probability": 0.0193 + }, + { + "start": 9157.24, + "end": 9157.24, + "probability": 0.2746 + }, + { + "start": 9157.24, + "end": 9158.24, + "probability": 0.521 + }, + { + "start": 9158.66, + "end": 9161.02, + "probability": 0.9061 + }, + { + "start": 9161.3, + "end": 9163.7, + "probability": 0.9791 + }, + { + "start": 9164.28, + "end": 9166.4, + "probability": 0.9978 + }, + { + "start": 9168.24, + "end": 9169.36, + "probability": 0.3883 + }, + { + "start": 9169.56, + "end": 9170.07, + "probability": 0.5331 + }, + { + "start": 9170.46, + "end": 9170.98, + "probability": 0.5952 + }, + { + "start": 9171.66, + "end": 9172.22, + "probability": 0.2034 + }, + { + "start": 9172.26, + "end": 9174.22, + "probability": 0.0513 + }, + { + "start": 9174.32, + "end": 9175.68, + "probability": 0.0281 + }, + { + "start": 9175.78, + "end": 9176.04, + "probability": 0.303 + }, + { + "start": 9176.04, + "end": 9178.95, + "probability": 0.531 + }, + { + "start": 9179.54, + "end": 9182.88, + "probability": 0.5506 + }, + { + "start": 9183.74, + "end": 9186.3, + "probability": 0.9954 + }, + { + "start": 9186.64, + "end": 9188.02, + "probability": 0.7141 + }, + { + "start": 9188.18, + "end": 9190.72, + "probability": 0.9924 + }, + { + "start": 9190.72, + "end": 9194.7, + "probability": 0.9342 + }, + { + "start": 9194.94, + "end": 9196.0, + "probability": 0.5523 + }, + { + "start": 9196.5, + "end": 9200.6, + "probability": 0.8132 + }, + { + "start": 9200.72, + "end": 9201.88, + "probability": 0.7803 + }, + { + "start": 9201.98, + "end": 9202.54, + "probability": 0.4503 + }, + { + "start": 9202.56, + "end": 9203.0, + "probability": 0.8208 + }, + { + "start": 9207.12, + "end": 9209.86, + "probability": 0.4948 + }, + { + "start": 9210.38, + "end": 9210.56, + "probability": 0.3841 + }, + { + "start": 9210.56, + "end": 9211.82, + "probability": 0.803 + }, + { + "start": 9211.84, + "end": 9212.42, + "probability": 0.0298 + }, + { + "start": 9212.42, + "end": 9212.66, + "probability": 0.1705 + }, + { + "start": 9212.8, + "end": 9213.18, + "probability": 0.1578 + }, + { + "start": 9213.18, + "end": 9213.18, + "probability": 0.1936 + }, + { + "start": 9213.18, + "end": 9213.18, + "probability": 0.0166 + }, + { + "start": 9213.18, + "end": 9219.36, + "probability": 0.9016 + }, + { + "start": 9219.86, + "end": 9222.15, + "probability": 0.9749 + }, + { + "start": 9223.08, + "end": 9225.26, + "probability": 0.7561 + }, + { + "start": 9225.4, + "end": 9227.1, + "probability": 0.8016 + }, + { + "start": 9227.22, + "end": 9229.62, + "probability": 0.241 + }, + { + "start": 9229.72, + "end": 9232.58, + "probability": 0.6191 + }, + { + "start": 9232.6, + "end": 9233.28, + "probability": 0.2125 + }, + { + "start": 9233.84, + "end": 9236.0, + "probability": 0.5274 + }, + { + "start": 9236.1, + "end": 9236.82, + "probability": 0.7964 + }, + { + "start": 9237.71, + "end": 9242.62, + "probability": 0.8657 + }, + { + "start": 9243.22, + "end": 9243.72, + "probability": 0.7515 + }, + { + "start": 9245.4, + "end": 9247.62, + "probability": 0.9805 + }, + { + "start": 9248.26, + "end": 9251.82, + "probability": 0.9735 + }, + { + "start": 9252.32, + "end": 9254.46, + "probability": 0.9579 + }, + { + "start": 9255.04, + "end": 9256.68, + "probability": 0.9897 + }, + { + "start": 9259.36, + "end": 9260.33, + "probability": 0.8906 + }, + { + "start": 9260.8, + "end": 9262.04, + "probability": 0.0607 + }, + { + "start": 9262.08, + "end": 9265.16, + "probability": 0.4024 + }, + { + "start": 9267.42, + "end": 9267.42, + "probability": 0.2542 + }, + { + "start": 9267.42, + "end": 9267.42, + "probability": 0.0055 + }, + { + "start": 9267.42, + "end": 9268.36, + "probability": 0.526 + }, + { + "start": 9268.5, + "end": 9270.14, + "probability": 0.5949 + }, + { + "start": 9270.52, + "end": 9272.9, + "probability": 0.5959 + }, + { + "start": 9273.96, + "end": 9276.88, + "probability": 0.8085 + }, + { + "start": 9277.96, + "end": 9279.84, + "probability": 0.9976 + }, + { + "start": 9280.76, + "end": 9282.58, + "probability": 0.9895 + }, + { + "start": 9283.48, + "end": 9284.1, + "probability": 0.6171 + }, + { + "start": 9284.18, + "end": 9287.92, + "probability": 0.8525 + }, + { + "start": 9288.08, + "end": 9288.8, + "probability": 0.8195 + }, + { + "start": 9290.32, + "end": 9296.22, + "probability": 0.7764 + }, + { + "start": 9297.2, + "end": 9301.14, + "probability": 0.8787 + }, + { + "start": 9301.98, + "end": 9304.2, + "probability": 0.773 + }, + { + "start": 9305.0, + "end": 9307.64, + "probability": 0.9258 + }, + { + "start": 9308.04, + "end": 9310.06, + "probability": 0.9824 + }, + { + "start": 9310.46, + "end": 9311.12, + "probability": 0.611 + }, + { + "start": 9316.36, + "end": 9316.66, + "probability": 0.0752 + }, + { + "start": 9316.66, + "end": 9318.21, + "probability": 0.4777 + }, + { + "start": 9319.4, + "end": 9321.41, + "probability": 0.2952 + }, + { + "start": 9324.54, + "end": 9328.15, + "probability": 0.0877 + }, + { + "start": 9328.24, + "end": 9329.2, + "probability": 0.0967 + }, + { + "start": 9329.2, + "end": 9329.2, + "probability": 0.1961 + }, + { + "start": 9329.2, + "end": 9332.28, + "probability": 0.6707 + }, + { + "start": 9332.58, + "end": 9332.58, + "probability": 0.3493 + }, + { + "start": 9332.58, + "end": 9334.18, + "probability": 0.6585 + }, + { + "start": 9336.52, + "end": 9336.52, + "probability": 0.0779 + }, + { + "start": 9336.56, + "end": 9339.1, + "probability": 0.8886 + }, + { + "start": 9340.08, + "end": 9341.88, + "probability": 0.4056 + }, + { + "start": 9342.26, + "end": 9343.9, + "probability": 0.8337 + }, + { + "start": 9344.3, + "end": 9347.76, + "probability": 0.9863 + }, + { + "start": 9347.84, + "end": 9352.98, + "probability": 0.9864 + }, + { + "start": 9353.48, + "end": 9354.32, + "probability": 0.6938 + }, + { + "start": 9354.7, + "end": 9355.32, + "probability": 0.0555 + }, + { + "start": 9355.48, + "end": 9361.48, + "probability": 0.9851 + }, + { + "start": 9361.94, + "end": 9363.38, + "probability": 0.9682 + }, + { + "start": 9363.74, + "end": 9366.8, + "probability": 0.9929 + }, + { + "start": 9367.16, + "end": 9370.4, + "probability": 0.7389 + }, + { + "start": 9370.82, + "end": 9370.82, + "probability": 0.6906 + }, + { + "start": 9370.94, + "end": 9376.42, + "probability": 0.9778 + }, + { + "start": 9377.1, + "end": 9378.14, + "probability": 0.9923 + }, + { + "start": 9378.64, + "end": 9380.66, + "probability": 0.9971 + }, + { + "start": 9381.36, + "end": 9382.15, + "probability": 0.5559 + }, + { + "start": 9382.66, + "end": 9384.26, + "probability": 0.0562 + }, + { + "start": 9385.64, + "end": 9385.82, + "probability": 0.2296 + }, + { + "start": 9385.82, + "end": 9386.66, + "probability": 0.5605 + }, + { + "start": 9386.78, + "end": 9388.86, + "probability": 0.6421 + }, + { + "start": 9389.8, + "end": 9393.22, + "probability": 0.9172 + }, + { + "start": 9394.16, + "end": 9395.43, + "probability": 0.9351 + }, + { + "start": 9396.2, + "end": 9399.3, + "probability": 0.8265 + }, + { + "start": 9400.02, + "end": 9401.02, + "probability": 0.6024 + }, + { + "start": 9401.26, + "end": 9403.0, + "probability": 0.9982 + }, + { + "start": 9403.44, + "end": 9406.06, + "probability": 0.8466 + }, + { + "start": 9406.34, + "end": 9407.54, + "probability": 0.7246 + }, + { + "start": 9408.02, + "end": 9409.1, + "probability": 0.9377 + }, + { + "start": 9410.4, + "end": 9412.6, + "probability": 0.7817 + }, + { + "start": 9414.72, + "end": 9416.5, + "probability": 0.5078 + }, + { + "start": 9417.14, + "end": 9418.14, + "probability": 0.7643 + }, + { + "start": 9418.62, + "end": 9420.4, + "probability": 0.2288 + }, + { + "start": 9420.46, + "end": 9422.1, + "probability": 0.7339 + }, + { + "start": 9423.78, + "end": 9424.96, + "probability": 0.8053 + }, + { + "start": 9425.94, + "end": 9427.81, + "probability": 0.96 + }, + { + "start": 9429.28, + "end": 9431.76, + "probability": 0.4899 + }, + { + "start": 9432.02, + "end": 9434.26, + "probability": 0.1058 + }, + { + "start": 9434.4, + "end": 9437.12, + "probability": 0.9908 + }, + { + "start": 9438.0, + "end": 9438.8, + "probability": 0.9052 + }, + { + "start": 9439.7, + "end": 9444.38, + "probability": 0.9919 + }, + { + "start": 9445.3, + "end": 9449.44, + "probability": 0.9991 + }, + { + "start": 9450.0, + "end": 9452.6, + "probability": 0.9717 + }, + { + "start": 9453.42, + "end": 9455.32, + "probability": 0.3927 + }, + { + "start": 9455.98, + "end": 9455.98, + "probability": 0.1245 + }, + { + "start": 9455.98, + "end": 9457.9, + "probability": 0.8421 + }, + { + "start": 9458.52, + "end": 9459.72, + "probability": 0.9342 + }, + { + "start": 9459.8, + "end": 9464.46, + "probability": 0.9366 + }, + { + "start": 9464.46, + "end": 9467.92, + "probability": 0.9111 + }, + { + "start": 9468.02, + "end": 9469.16, + "probability": 0.9612 + }, + { + "start": 9469.72, + "end": 9473.94, + "probability": 0.8242 + }, + { + "start": 9474.26, + "end": 9475.58, + "probability": 0.9705 + }, + { + "start": 9477.46, + "end": 9477.6, + "probability": 0.7644 + }, + { + "start": 9477.6, + "end": 9481.86, + "probability": 0.9539 + }, + { + "start": 9482.93, + "end": 9487.14, + "probability": 0.9971 + }, + { + "start": 9487.66, + "end": 9488.84, + "probability": 0.8633 + }, + { + "start": 9489.4, + "end": 9491.24, + "probability": 0.9756 + }, + { + "start": 9491.94, + "end": 9494.14, + "probability": 0.8239 + }, + { + "start": 9494.64, + "end": 9496.72, + "probability": 0.9412 + }, + { + "start": 9497.78, + "end": 9499.32, + "probability": 0.8586 + }, + { + "start": 9499.88, + "end": 9502.62, + "probability": 0.8736 + }, + { + "start": 9503.14, + "end": 9503.96, + "probability": 0.8678 + }, + { + "start": 9504.82, + "end": 9508.52, + "probability": 0.7466 + }, + { + "start": 9509.16, + "end": 9510.31, + "probability": 0.7466 + }, + { + "start": 9511.26, + "end": 9513.72, + "probability": 0.9379 + }, + { + "start": 9514.28, + "end": 9515.33, + "probability": 0.9126 + }, + { + "start": 9516.14, + "end": 9517.84, + "probability": 0.9005 + }, + { + "start": 9517.9, + "end": 9520.18, + "probability": 0.9961 + }, + { + "start": 9520.62, + "end": 9523.26, + "probability": 0.899 + }, + { + "start": 9523.82, + "end": 9523.82, + "probability": 0.03 + }, + { + "start": 9523.82, + "end": 9524.86, + "probability": 0.9585 + }, + { + "start": 9525.76, + "end": 9528.41, + "probability": 0.9356 + }, + { + "start": 9528.96, + "end": 9530.98, + "probability": 0.9417 + }, + { + "start": 9531.72, + "end": 9532.88, + "probability": 0.9902 + }, + { + "start": 9532.92, + "end": 9537.54, + "probability": 0.9911 + }, + { + "start": 9537.68, + "end": 9538.62, + "probability": 0.6769 + }, + { + "start": 9539.2, + "end": 9540.6, + "probability": 0.5344 + }, + { + "start": 9542.34, + "end": 9545.7, + "probability": 0.9966 + }, + { + "start": 9546.4, + "end": 9546.92, + "probability": 0.7527 + }, + { + "start": 9547.74, + "end": 9547.74, + "probability": 0.0194 + }, + { + "start": 9547.82, + "end": 9548.22, + "probability": 0.0321 + }, + { + "start": 9548.22, + "end": 9549.56, + "probability": 0.355 + }, + { + "start": 9551.54, + "end": 9556.82, + "probability": 0.743 + }, + { + "start": 9558.0, + "end": 9560.5, + "probability": 0.9807 + }, + { + "start": 9560.86, + "end": 9563.34, + "probability": 0.7579 + }, + { + "start": 9563.58, + "end": 9564.72, + "probability": 0.0418 + }, + { + "start": 9565.0, + "end": 9570.46, + "probability": 0.9751 + }, + { + "start": 9570.82, + "end": 9571.62, + "probability": 0.0079 + }, + { + "start": 9571.62, + "end": 9578.18, + "probability": 0.8849 + }, + { + "start": 9578.18, + "end": 9583.26, + "probability": 0.9902 + }, + { + "start": 9583.78, + "end": 9585.4, + "probability": 0.8941 + }, + { + "start": 9585.68, + "end": 9585.98, + "probability": 0.0229 + }, + { + "start": 9586.58, + "end": 9588.38, + "probability": 0.1657 + }, + { + "start": 9588.62, + "end": 9589.22, + "probability": 0.0475 + }, + { + "start": 9589.22, + "end": 9589.64, + "probability": 0.3983 + }, + { + "start": 9590.24, + "end": 9591.68, + "probability": 0.6393 + }, + { + "start": 9592.37, + "end": 9593.62, + "probability": 0.3282 + }, + { + "start": 9593.62, + "end": 9593.62, + "probability": 0.0474 + }, + { + "start": 9593.62, + "end": 9593.9, + "probability": 0.3914 + }, + { + "start": 9595.32, + "end": 9595.78, + "probability": 0.3213 + }, + { + "start": 9597.3, + "end": 9599.14, + "probability": 0.7801 + }, + { + "start": 9599.96, + "end": 9600.56, + "probability": 0.3273 + }, + { + "start": 9603.88, + "end": 9606.48, + "probability": 0.8718 + }, + { + "start": 9606.52, + "end": 9608.28, + "probability": 0.9917 + }, + { + "start": 9608.62, + "end": 9609.44, + "probability": 0.6855 + }, + { + "start": 9609.58, + "end": 9610.72, + "probability": 0.8704 + }, + { + "start": 9611.26, + "end": 9613.26, + "probability": 0.8242 + }, + { + "start": 9613.66, + "end": 9615.26, + "probability": 0.8431 + }, + { + "start": 9615.92, + "end": 9616.62, + "probability": 0.8727 + }, + { + "start": 9616.88, + "end": 9618.06, + "probability": 0.8294 + }, + { + "start": 9618.96, + "end": 9620.38, + "probability": 0.8527 + }, + { + "start": 9621.5, + "end": 9624.06, + "probability": 0.9836 + }, + { + "start": 9625.7, + "end": 9627.64, + "probability": 0.9858 + }, + { + "start": 9629.0, + "end": 9632.08, + "probability": 0.9623 + }, + { + "start": 9633.26, + "end": 9635.52, + "probability": 0.9677 + }, + { + "start": 9636.06, + "end": 9637.92, + "probability": 0.9894 + }, + { + "start": 9638.72, + "end": 9640.86, + "probability": 0.9928 + }, + { + "start": 9641.68, + "end": 9646.8, + "probability": 0.9919 + }, + { + "start": 9647.94, + "end": 9651.88, + "probability": 0.9857 + }, + { + "start": 9651.98, + "end": 9653.14, + "probability": 0.9669 + }, + { + "start": 9654.26, + "end": 9656.32, + "probability": 0.98 + }, + { + "start": 9657.74, + "end": 9658.96, + "probability": 0.989 + }, + { + "start": 9659.8, + "end": 9666.26, + "probability": 0.7281 + }, + { + "start": 9666.3, + "end": 9668.14, + "probability": 0.4995 + }, + { + "start": 9668.48, + "end": 9669.32, + "probability": 0.6979 + }, + { + "start": 9670.12, + "end": 9672.18, + "probability": 0.9218 + }, + { + "start": 9673.14, + "end": 9675.8, + "probability": 0.7365 + }, + { + "start": 9676.54, + "end": 9677.83, + "probability": 0.9763 + }, + { + "start": 9678.06, + "end": 9680.02, + "probability": 0.9493 + }, + { + "start": 9680.48, + "end": 9682.06, + "probability": 0.9447 + }, + { + "start": 9683.12, + "end": 9686.38, + "probability": 0.8759 + }, + { + "start": 9687.46, + "end": 9689.52, + "probability": 0.9888 + }, + { + "start": 9689.78, + "end": 9692.04, + "probability": 0.9309 + }, + { + "start": 9693.2, + "end": 9694.18, + "probability": 0.995 + }, + { + "start": 9696.36, + "end": 9697.74, + "probability": 0.1617 + }, + { + "start": 9699.18, + "end": 9701.17, + "probability": 0.898 + }, + { + "start": 9702.28, + "end": 9704.03, + "probability": 0.9886 + }, + { + "start": 9704.82, + "end": 9705.4, + "probability": 0.2637 + }, + { + "start": 9705.42, + "end": 9707.9, + "probability": 0.8402 + }, + { + "start": 9708.32, + "end": 9714.8, + "probability": 0.8608 + }, + { + "start": 9715.44, + "end": 9718.16, + "probability": 0.9733 + }, + { + "start": 9719.32, + "end": 9722.0, + "probability": 0.9689 + }, + { + "start": 9722.0, + "end": 9725.96, + "probability": 0.8957 + }, + { + "start": 9727.1, + "end": 9728.14, + "probability": 0.7437 + }, + { + "start": 9729.54, + "end": 9731.36, + "probability": 0.9399 + }, + { + "start": 9732.38, + "end": 9733.42, + "probability": 0.6722 + }, + { + "start": 9734.08, + "end": 9736.7, + "probability": 0.753 + }, + { + "start": 9737.86, + "end": 9739.0, + "probability": 0.9897 + }, + { + "start": 9739.12, + "end": 9741.12, + "probability": 0.9858 + }, + { + "start": 9741.3, + "end": 9741.86, + "probability": 0.9811 + }, + { + "start": 9742.38, + "end": 9745.34, + "probability": 0.8531 + }, + { + "start": 9746.36, + "end": 9751.36, + "probability": 0.9708 + }, + { + "start": 9751.5, + "end": 9759.78, + "probability": 0.8284 + }, + { + "start": 9760.04, + "end": 9761.34, + "probability": 0.9149 + }, + { + "start": 9761.8, + "end": 9762.58, + "probability": 0.006 + }, + { + "start": 9763.72, + "end": 9764.62, + "probability": 0.0087 + }, + { + "start": 9764.62, + "end": 9765.24, + "probability": 0.6429 + }, + { + "start": 9765.4, + "end": 9766.86, + "probability": 0.4314 + }, + { + "start": 9767.0, + "end": 9769.62, + "probability": 0.8782 + }, + { + "start": 9771.18, + "end": 9771.81, + "probability": 0.6048 + }, + { + "start": 9772.18, + "end": 9773.84, + "probability": 0.9442 + }, + { + "start": 9774.56, + "end": 9776.34, + "probability": 0.7929 + }, + { + "start": 9776.4, + "end": 9779.26, + "probability": 0.9929 + }, + { + "start": 9780.32, + "end": 9781.38, + "probability": 0.9214 + }, + { + "start": 9782.26, + "end": 9788.28, + "probability": 0.54 + }, + { + "start": 9789.36, + "end": 9797.44, + "probability": 0.9465 + }, + { + "start": 9797.74, + "end": 9801.76, + "probability": 0.7085 + }, + { + "start": 9802.34, + "end": 9807.04, + "probability": 0.9661 + }, + { + "start": 9807.14, + "end": 9807.36, + "probability": 0.2573 + }, + { + "start": 9808.49, + "end": 9811.26, + "probability": 0.6597 + }, + { + "start": 9811.28, + "end": 9813.2, + "probability": 0.4743 + }, + { + "start": 9813.92, + "end": 9816.6, + "probability": 0.7497 + }, + { + "start": 9816.68, + "end": 9818.62, + "probability": 0.7551 + }, + { + "start": 9823.86, + "end": 9826.9, + "probability": 0.9221 + }, + { + "start": 9827.5, + "end": 9831.78, + "probability": 0.7075 + }, + { + "start": 9832.94, + "end": 9834.82, + "probability": 0.8811 + }, + { + "start": 9835.54, + "end": 9841.78, + "probability": 0.3384 + }, + { + "start": 9842.08, + "end": 9843.16, + "probability": 0.3101 + }, + { + "start": 9843.34, + "end": 9844.62, + "probability": 0.1453 + }, + { + "start": 9845.06, + "end": 9845.64, + "probability": 0.6093 + }, + { + "start": 9847.44, + "end": 9848.3, + "probability": 0.3568 + }, + { + "start": 9848.31, + "end": 9855.62, + "probability": 0.6162 + }, + { + "start": 9855.68, + "end": 9856.06, + "probability": 0.7143 + }, + { + "start": 9856.58, + "end": 9857.52, + "probability": 0.3151 + }, + { + "start": 9857.78, + "end": 9860.48, + "probability": 0.9503 + }, + { + "start": 9861.0, + "end": 9862.06, + "probability": 0.6339 + }, + { + "start": 9863.06, + "end": 9866.32, + "probability": 0.5759 + }, + { + "start": 9866.5, + "end": 9867.78, + "probability": 0.7355 + }, + { + "start": 9868.28, + "end": 9872.38, + "probability": 0.7229 + }, + { + "start": 9872.78, + "end": 9873.36, + "probability": 0.5481 + }, + { + "start": 9877.68, + "end": 9880.44, + "probability": 0.8057 + }, + { + "start": 9881.86, + "end": 9882.46, + "probability": 0.2076 + }, + { + "start": 9884.62, + "end": 9885.2, + "probability": 0.1773 + }, + { + "start": 9890.96, + "end": 9895.74, + "probability": 0.4141 + }, + { + "start": 9896.1, + "end": 9897.0, + "probability": 0.7211 + }, + { + "start": 9897.16, + "end": 9897.94, + "probability": 0.3838 + }, + { + "start": 9899.55, + "end": 9902.72, + "probability": 0.3035 + }, + { + "start": 9904.94, + "end": 9907.02, + "probability": 0.5232 + }, + { + "start": 9909.94, + "end": 9914.26, + "probability": 0.0414 + }, + { + "start": 9915.66, + "end": 9917.02, + "probability": 0.298 + }, + { + "start": 9917.18, + "end": 9917.3, + "probability": 0.518 + }, + { + "start": 9918.08, + "end": 9921.24, + "probability": 0.0564 + }, + { + "start": 9921.46, + "end": 9923.4, + "probability": 0.0966 + }, + { + "start": 9923.5, + "end": 9926.28, + "probability": 0.0498 + }, + { + "start": 9926.68, + "end": 9927.42, + "probability": 0.0765 + }, + { + "start": 9927.62, + "end": 9928.91, + "probability": 0.0413 + }, + { + "start": 9929.52, + "end": 9930.98, + "probability": 0.1568 + }, + { + "start": 9931.0, + "end": 9931.0, + "probability": 0.0 + }, + { + "start": 9931.0, + "end": 9931.0, + "probability": 0.0 + }, + { + "start": 9931.0, + "end": 9931.0, + "probability": 0.0 + }, + { + "start": 9931.0, + "end": 9931.0, + "probability": 0.0 + }, + { + "start": 9931.0, + "end": 9931.0, + "probability": 0.0 + }, + { + "start": 9931.0, + "end": 9931.0, + "probability": 0.0 + }, + { + "start": 9931.0, + "end": 9931.0, + "probability": 0.0 + }, + { + "start": 9931.76, + "end": 9934.18, + "probability": 0.8471 + }, + { + "start": 9935.36, + "end": 9936.53, + "probability": 0.9293 + }, + { + "start": 9937.16, + "end": 9939.0, + "probability": 0.4173 + }, + { + "start": 9939.12, + "end": 9939.96, + "probability": 0.6841 + }, + { + "start": 9940.08, + "end": 9941.24, + "probability": 0.6752 + }, + { + "start": 9941.96, + "end": 9943.4, + "probability": 0.6303 + }, + { + "start": 9946.96, + "end": 9951.04, + "probability": 0.1766 + }, + { + "start": 9953.7, + "end": 9960.12, + "probability": 0.9646 + }, + { + "start": 9960.76, + "end": 9962.44, + "probability": 0.8906 + }, + { + "start": 9963.16, + "end": 9963.48, + "probability": 0.7816 + }, + { + "start": 9963.98, + "end": 9965.58, + "probability": 0.4339 + }, + { + "start": 9965.84, + "end": 9966.92, + "probability": 0.8412 + }, + { + "start": 9968.12, + "end": 9969.3, + "probability": 0.7823 + }, + { + "start": 9970.68, + "end": 9972.8, + "probability": 0.9594 + }, + { + "start": 9973.96, + "end": 9975.82, + "probability": 0.7956 + }, + { + "start": 9977.24, + "end": 9978.02, + "probability": 0.0727 + }, + { + "start": 9978.02, + "end": 9979.72, + "probability": 0.506 + }, + { + "start": 9980.32, + "end": 9981.48, + "probability": 0.224 + }, + { + "start": 9982.55, + "end": 9984.4, + "probability": 0.8374 + }, + { + "start": 9984.5, + "end": 9985.87, + "probability": 0.8047 + }, + { + "start": 9986.25, + "end": 9992.76, + "probability": 0.5145 + }, + { + "start": 9992.78, + "end": 9993.34, + "probability": 0.4731 + }, + { + "start": 9993.46, + "end": 9996.46, + "probability": 0.7646 + }, + { + "start": 9998.34, + "end": 9999.98, + "probability": 0.6252 + }, + { + "start": 10000.26, + "end": 10000.3, + "probability": 0.5081 + }, + { + "start": 10000.3, + "end": 10003.02, + "probability": 0.8424 + }, + { + "start": 10003.08, + "end": 10005.5, + "probability": 0.9473 + }, + { + "start": 10006.24, + "end": 10007.0, + "probability": 0.6678 + }, + { + "start": 10007.04, + "end": 10009.46, + "probability": 0.9983 + }, + { + "start": 10010.24, + "end": 10012.26, + "probability": 0.7535 + }, + { + "start": 10014.14, + "end": 10015.12, + "probability": 0.7526 + }, + { + "start": 10015.42, + "end": 10015.58, + "probability": 0.6599 + }, + { + "start": 10015.72, + "end": 10016.56, + "probability": 0.7493 + }, + { + "start": 10016.62, + "end": 10020.73, + "probability": 0.9842 + }, + { + "start": 10020.94, + "end": 10025.76, + "probability": 0.856 + }, + { + "start": 10025.88, + "end": 10026.9, + "probability": 0.8459 + }, + { + "start": 10027.74, + "end": 10034.32, + "probability": 0.9907 + }, + { + "start": 10035.26, + "end": 10037.5, + "probability": 0.8281 + }, + { + "start": 10038.38, + "end": 10040.84, + "probability": 0.8748 + }, + { + "start": 10041.42, + "end": 10044.9, + "probability": 0.9443 + }, + { + "start": 10045.52, + "end": 10048.06, + "probability": 0.9941 + }, + { + "start": 10049.18, + "end": 10050.24, + "probability": 0.7316 + }, + { + "start": 10051.1, + "end": 10054.38, + "probability": 0.993 + }, + { + "start": 10054.38, + "end": 10057.16, + "probability": 0.6803 + }, + { + "start": 10057.65, + "end": 10059.56, + "probability": 0.7781 + }, + { + "start": 10060.36, + "end": 10063.02, + "probability": 0.9938 + }, + { + "start": 10064.28, + "end": 10066.34, + "probability": 0.5736 + }, + { + "start": 10066.67, + "end": 10067.35, + "probability": 0.7318 + }, + { + "start": 10067.96, + "end": 10072.94, + "probability": 0.9421 + }, + { + "start": 10074.26, + "end": 10076.94, + "probability": 0.2122 + }, + { + "start": 10077.14, + "end": 10078.66, + "probability": 0.8689 + }, + { + "start": 10079.24, + "end": 10080.0, + "probability": 0.8639 + }, + { + "start": 10081.94, + "end": 10086.98, + "probability": 0.986 + }, + { + "start": 10088.3, + "end": 10090.0, + "probability": 0.2322 + }, + { + "start": 10090.52, + "end": 10094.18, + "probability": 0.9419 + }, + { + "start": 10095.08, + "end": 10096.76, + "probability": 0.9997 + }, + { + "start": 10098.02, + "end": 10100.32, + "probability": 0.9833 + }, + { + "start": 10100.44, + "end": 10100.98, + "probability": 0.9587 + }, + { + "start": 10101.08, + "end": 10101.58, + "probability": 0.9885 + }, + { + "start": 10101.68, + "end": 10101.78, + "probability": 0.9924 + }, + { + "start": 10102.42, + "end": 10103.8, + "probability": 0.8247 + }, + { + "start": 10105.94, + "end": 10107.03, + "probability": 0.8779 + }, + { + "start": 10107.5, + "end": 10109.2, + "probability": 0.8028 + }, + { + "start": 10110.94, + "end": 10112.6, + "probability": 0.858 + }, + { + "start": 10113.24, + "end": 10114.32, + "probability": 0.8699 + }, + { + "start": 10114.46, + "end": 10114.72, + "probability": 0.6006 + }, + { + "start": 10116.36, + "end": 10118.84, + "probability": 0.936 + }, + { + "start": 10118.88, + "end": 10121.18, + "probability": 0.9902 + }, + { + "start": 10121.82, + "end": 10123.1, + "probability": 0.5229 + }, + { + "start": 10124.42, + "end": 10128.98, + "probability": 0.9852 + }, + { + "start": 10130.0, + "end": 10131.08, + "probability": 0.6155 + }, + { + "start": 10131.5, + "end": 10132.47, + "probability": 0.9774 + }, + { + "start": 10133.1, + "end": 10135.36, + "probability": 0.9271 + }, + { + "start": 10136.18, + "end": 10137.74, + "probability": 0.8159 + }, + { + "start": 10138.62, + "end": 10140.2, + "probability": 0.7271 + }, + { + "start": 10140.9, + "end": 10141.86, + "probability": 0.7892 + }, + { + "start": 10142.56, + "end": 10143.32, + "probability": 0.835 + }, + { + "start": 10143.62, + "end": 10144.72, + "probability": 0.9927 + }, + { + "start": 10145.18, + "end": 10147.02, + "probability": 0.8694 + }, + { + "start": 10148.28, + "end": 10151.3, + "probability": 0.6763 + }, + { + "start": 10151.82, + "end": 10152.64, + "probability": 0.8619 + }, + { + "start": 10153.52, + "end": 10154.48, + "probability": 0.8296 + }, + { + "start": 10154.6, + "end": 10155.38, + "probability": 0.9823 + }, + { + "start": 10158.36, + "end": 10160.1, + "probability": 0.9575 + }, + { + "start": 10161.63, + "end": 10165.1, + "probability": 0.7651 + }, + { + "start": 10165.1, + "end": 10168.4, + "probability": 0.9816 + }, + { + "start": 10168.58, + "end": 10169.7, + "probability": 0.4679 + }, + { + "start": 10170.52, + "end": 10171.68, + "probability": 0.6024 + }, + { + "start": 10171.88, + "end": 10174.84, + "probability": 0.9077 + }, + { + "start": 10174.84, + "end": 10177.76, + "probability": 0.9792 + }, + { + "start": 10177.76, + "end": 10177.9, + "probability": 0.3848 + }, + { + "start": 10179.6, + "end": 10180.2, + "probability": 0.7688 + }, + { + "start": 10180.28, + "end": 10181.16, + "probability": 0.8667 + }, + { + "start": 10181.6, + "end": 10184.46, + "probability": 0.979 + }, + { + "start": 10184.56, + "end": 10185.02, + "probability": 0.9144 + }, + { + "start": 10185.12, + "end": 10186.02, + "probability": 0.9794 + }, + { + "start": 10187.28, + "end": 10188.68, + "probability": 0.8896 + }, + { + "start": 10190.36, + "end": 10191.52, + "probability": 0.8921 + }, + { + "start": 10192.12, + "end": 10195.28, + "probability": 0.699 + }, + { + "start": 10197.02, + "end": 10197.96, + "probability": 0.6685 + }, + { + "start": 10198.08, + "end": 10202.0, + "probability": 0.9886 + }, + { + "start": 10202.94, + "end": 10203.5, + "probability": 0.5579 + }, + { + "start": 10203.6, + "end": 10204.54, + "probability": 0.9605 + }, + { + "start": 10204.66, + "end": 10207.24, + "probability": 0.9242 + }, + { + "start": 10208.08, + "end": 10208.34, + "probability": 0.3988 + }, + { + "start": 10208.44, + "end": 10209.22, + "probability": 0.9229 + }, + { + "start": 10209.92, + "end": 10212.36, + "probability": 0.9734 + }, + { + "start": 10213.26, + "end": 10213.82, + "probability": 0.4089 + }, + { + "start": 10213.82, + "end": 10216.18, + "probability": 0.7757 + }, + { + "start": 10217.16, + "end": 10221.12, + "probability": 0.8292 + }, + { + "start": 10222.1, + "end": 10223.88, + "probability": 0.8729 + }, + { + "start": 10224.4, + "end": 10225.98, + "probability": 0.9677 + }, + { + "start": 10227.3, + "end": 10231.52, + "probability": 0.9399 + }, + { + "start": 10232.16, + "end": 10235.5, + "probability": 0.9922 + }, + { + "start": 10236.08, + "end": 10236.94, + "probability": 0.7631 + }, + { + "start": 10237.56, + "end": 10239.2, + "probability": 0.7208 + }, + { + "start": 10240.04, + "end": 10241.94, + "probability": 0.9954 + }, + { + "start": 10243.06, + "end": 10244.06, + "probability": 0.9048 + }, + { + "start": 10244.8, + "end": 10246.46, + "probability": 0.646 + }, + { + "start": 10247.54, + "end": 10247.61, + "probability": 0.6144 + }, + { + "start": 10247.82, + "end": 10252.1, + "probability": 0.9691 + }, + { + "start": 10253.7, + "end": 10258.1, + "probability": 0.8776 + }, + { + "start": 10258.46, + "end": 10260.44, + "probability": 0.9083 + }, + { + "start": 10262.43, + "end": 10266.54, + "probability": 0.5214 + }, + { + "start": 10267.34, + "end": 10271.08, + "probability": 0.9932 + }, + { + "start": 10272.6, + "end": 10276.8, + "probability": 0.9467 + }, + { + "start": 10276.8, + "end": 10280.66, + "probability": 0.9962 + }, + { + "start": 10281.12, + "end": 10282.04, + "probability": 0.8078 + }, + { + "start": 10282.2, + "end": 10283.26, + "probability": 0.5646 + }, + { + "start": 10283.6, + "end": 10285.0, + "probability": 0.7656 + }, + { + "start": 10285.68, + "end": 10287.86, + "probability": 0.9781 + }, + { + "start": 10289.66, + "end": 10292.98, + "probability": 0.643 + }, + { + "start": 10293.54, + "end": 10296.24, + "probability": 0.9912 + }, + { + "start": 10297.24, + "end": 10298.14, + "probability": 0.8506 + }, + { + "start": 10298.14, + "end": 10300.32, + "probability": 0.5983 + }, + { + "start": 10300.64, + "end": 10302.96, + "probability": 0.8757 + }, + { + "start": 10303.3, + "end": 10303.94, + "probability": 0.9346 + }, + { + "start": 10305.88, + "end": 10308.38, + "probability": 0.8469 + }, + { + "start": 10308.8, + "end": 10311.14, + "probability": 0.9865 + }, + { + "start": 10311.86, + "end": 10312.66, + "probability": 0.8526 + }, + { + "start": 10313.8, + "end": 10316.44, + "probability": 0.9757 + }, + { + "start": 10316.56, + "end": 10316.58, + "probability": 0.6058 + }, + { + "start": 10316.58, + "end": 10317.34, + "probability": 0.6942 + }, + { + "start": 10317.98, + "end": 10321.18, + "probability": 0.9538 + }, + { + "start": 10322.54, + "end": 10327.46, + "probability": 0.9457 + }, + { + "start": 10328.26, + "end": 10329.08, + "probability": 0.6936 + }, + { + "start": 10329.82, + "end": 10333.76, + "probability": 0.7844 + }, + { + "start": 10334.36, + "end": 10337.76, + "probability": 0.9578 + }, + { + "start": 10337.9, + "end": 10338.48, + "probability": 0.7762 + }, + { + "start": 10339.02, + "end": 10340.24, + "probability": 0.974 + }, + { + "start": 10340.76, + "end": 10343.29, + "probability": 0.9958 + }, + { + "start": 10343.44, + "end": 10347.98, + "probability": 0.9746 + }, + { + "start": 10348.04, + "end": 10348.89, + "probability": 0.9652 + }, + { + "start": 10349.64, + "end": 10350.86, + "probability": 0.9341 + }, + { + "start": 10351.64, + "end": 10353.66, + "probability": 0.9818 + }, + { + "start": 10354.36, + "end": 10356.14, + "probability": 0.9147 + }, + { + "start": 10357.2, + "end": 10359.72, + "probability": 0.9719 + }, + { + "start": 10360.02, + "end": 10361.21, + "probability": 0.7524 + }, + { + "start": 10362.08, + "end": 10364.12, + "probability": 0.9937 + }, + { + "start": 10365.14, + "end": 10366.5, + "probability": 0.3076 + }, + { + "start": 10367.8, + "end": 10371.54, + "probability": 0.987 + }, + { + "start": 10371.7, + "end": 10372.2, + "probability": 0.8745 + }, + { + "start": 10372.52, + "end": 10372.74, + "probability": 0.4059 + }, + { + "start": 10374.0, + "end": 10377.9, + "probability": 0.9731 + }, + { + "start": 10377.9, + "end": 10380.68, + "probability": 0.8625 + }, + { + "start": 10380.88, + "end": 10381.96, + "probability": 0.7151 + }, + { + "start": 10382.46, + "end": 10385.08, + "probability": 0.8359 + }, + { + "start": 10386.32, + "end": 10387.78, + "probability": 0.915 + }, + { + "start": 10388.38, + "end": 10389.82, + "probability": 0.9168 + }, + { + "start": 10390.6, + "end": 10391.26, + "probability": 0.5883 + }, + { + "start": 10391.68, + "end": 10394.16, + "probability": 0.9963 + }, + { + "start": 10394.28, + "end": 10395.43, + "probability": 0.865 + }, + { + "start": 10395.86, + "end": 10397.28, + "probability": 0.5934 + }, + { + "start": 10399.08, + "end": 10401.24, + "probability": 0.0262 + }, + { + "start": 10401.24, + "end": 10401.24, + "probability": 0.1686 + }, + { + "start": 10401.24, + "end": 10401.24, + "probability": 0.094 + }, + { + "start": 10401.5, + "end": 10402.02, + "probability": 0.3887 + }, + { + "start": 10402.58, + "end": 10405.02, + "probability": 0.2708 + }, + { + "start": 10405.66, + "end": 10411.86, + "probability": 0.8946 + }, + { + "start": 10411.98, + "end": 10414.25, + "probability": 0.829 + }, + { + "start": 10416.86, + "end": 10417.42, + "probability": 0.0279 + }, + { + "start": 10417.42, + "end": 10417.42, + "probability": 0.0901 + }, + { + "start": 10417.42, + "end": 10417.42, + "probability": 0.0046 + }, + { + "start": 10417.42, + "end": 10417.42, + "probability": 0.0927 + }, + { + "start": 10417.42, + "end": 10418.06, + "probability": 0.1746 + }, + { + "start": 10418.16, + "end": 10418.52, + "probability": 0.3867 + }, + { + "start": 10418.52, + "end": 10424.66, + "probability": 0.2738 + }, + { + "start": 10425.26, + "end": 10428.26, + "probability": 0.1044 + }, + { + "start": 10428.26, + "end": 10430.28, + "probability": 0.3437 + }, + { + "start": 10430.54, + "end": 10431.84, + "probability": 0.5506 + }, + { + "start": 10433.64, + "end": 10438.04, + "probability": 0.7498 + }, + { + "start": 10438.88, + "end": 10441.58, + "probability": 0.984 + }, + { + "start": 10442.42, + "end": 10446.1, + "probability": 0.8597 + }, + { + "start": 10447.34, + "end": 10452.82, + "probability": 0.9817 + }, + { + "start": 10453.82, + "end": 10457.02, + "probability": 0.936 + }, + { + "start": 10457.48, + "end": 10458.18, + "probability": 0.8234 + }, + { + "start": 10458.36, + "end": 10462.22, + "probability": 0.5021 + }, + { + "start": 10462.22, + "end": 10466.02, + "probability": 0.9894 + }, + { + "start": 10466.06, + "end": 10467.04, + "probability": 0.6191 + }, + { + "start": 10467.28, + "end": 10469.72, + "probability": 0.8683 + }, + { + "start": 10470.02, + "end": 10470.46, + "probability": 0.8348 + }, + { + "start": 10471.26, + "end": 10472.7, + "probability": 0.9912 + }, + { + "start": 10473.38, + "end": 10476.42, + "probability": 0.8838 + }, + { + "start": 10476.46, + "end": 10477.44, + "probability": 0.6593 + }, + { + "start": 10478.28, + "end": 10482.58, + "probability": 0.9941 + }, + { + "start": 10483.32, + "end": 10486.76, + "probability": 0.9585 + }, + { + "start": 10487.3, + "end": 10487.84, + "probability": 0.8054 + }, + { + "start": 10490.04, + "end": 10493.98, + "probability": 0.9143 + }, + { + "start": 10494.72, + "end": 10496.02, + "probability": 0.9944 + }, + { + "start": 10496.9, + "end": 10499.32, + "probability": 0.9957 + }, + { + "start": 10500.24, + "end": 10504.18, + "probability": 0.8701 + }, + { + "start": 10504.18, + "end": 10506.9, + "probability": 0.9286 + }, + { + "start": 10507.54, + "end": 10511.2, + "probability": 0.866 + }, + { + "start": 10511.82, + "end": 10517.6, + "probability": 0.9976 + }, + { + "start": 10518.26, + "end": 10519.3, + "probability": 0.5599 + }, + { + "start": 10519.54, + "end": 10523.06, + "probability": 0.9785 + }, + { + "start": 10523.24, + "end": 10526.36, + "probability": 0.9766 + }, + { + "start": 10527.68, + "end": 10529.32, + "probability": 0.9972 + }, + { + "start": 10530.38, + "end": 10533.32, + "probability": 0.9908 + }, + { + "start": 10533.96, + "end": 10535.76, + "probability": 0.7854 + }, + { + "start": 10537.56, + "end": 10539.26, + "probability": 0.9359 + }, + { + "start": 10542.68, + "end": 10545.02, + "probability": 0.7671 + }, + { + "start": 10545.7, + "end": 10547.3, + "probability": 0.8861 + }, + { + "start": 10547.9, + "end": 10551.12, + "probability": 0.8893 + }, + { + "start": 10551.66, + "end": 10553.56, + "probability": 0.9917 + }, + { + "start": 10554.68, + "end": 10557.82, + "probability": 0.9733 + }, + { + "start": 10558.38, + "end": 10562.18, + "probability": 0.9894 + }, + { + "start": 10562.7, + "end": 10567.28, + "probability": 0.9735 + }, + { + "start": 10568.42, + "end": 10568.62, + "probability": 0.0346 + }, + { + "start": 10568.62, + "end": 10570.26, + "probability": 0.501 + }, + { + "start": 10571.42, + "end": 10573.6, + "probability": 0.7303 + }, + { + "start": 10574.38, + "end": 10576.6, + "probability": 0.9888 + }, + { + "start": 10576.72, + "end": 10577.88, + "probability": 0.7034 + }, + { + "start": 10578.6, + "end": 10580.82, + "probability": 0.9816 + }, + { + "start": 10580.9, + "end": 10583.0, + "probability": 0.7886 + }, + { + "start": 10583.08, + "end": 10583.83, + "probability": 0.8905 + }, + { + "start": 10584.2, + "end": 10585.35, + "probability": 0.8289 + }, + { + "start": 10586.04, + "end": 10587.36, + "probability": 0.7224 + }, + { + "start": 10588.54, + "end": 10589.62, + "probability": 0.9662 + }, + { + "start": 10590.58, + "end": 10591.58, + "probability": 0.9538 + }, + { + "start": 10592.28, + "end": 10595.8, + "probability": 0.9985 + }, + { + "start": 10595.8, + "end": 10597.84, + "probability": 0.9995 + }, + { + "start": 10599.6, + "end": 10603.54, + "probability": 0.9858 + }, + { + "start": 10604.48, + "end": 10604.92, + "probability": 0.4391 + }, + { + "start": 10605.2, + "end": 10605.48, + "probability": 0.6641 + }, + { + "start": 10605.48, + "end": 10607.58, + "probability": 0.5072 + }, + { + "start": 10609.13, + "end": 10612.3, + "probability": 0.8375 + }, + { + "start": 10613.06, + "end": 10614.0, + "probability": 0.6034 + }, + { + "start": 10614.06, + "end": 10615.92, + "probability": 0.9962 + }, + { + "start": 10616.36, + "end": 10621.18, + "probability": 0.9934 + }, + { + "start": 10621.7, + "end": 10622.9, + "probability": 0.6943 + }, + { + "start": 10623.72, + "end": 10628.38, + "probability": 0.9777 + }, + { + "start": 10628.86, + "end": 10629.95, + "probability": 0.9995 + }, + { + "start": 10630.48, + "end": 10631.54, + "probability": 0.973 + }, + { + "start": 10632.16, + "end": 10633.34, + "probability": 0.7647 + }, + { + "start": 10633.74, + "end": 10634.62, + "probability": 0.5606 + }, + { + "start": 10634.62, + "end": 10635.1, + "probability": 0.5232 + }, + { + "start": 10635.12, + "end": 10636.48, + "probability": 0.9772 + }, + { + "start": 10636.6, + "end": 10637.85, + "probability": 0.7069 + }, + { + "start": 10638.4, + "end": 10640.82, + "probability": 0.7139 + }, + { + "start": 10641.1, + "end": 10642.14, + "probability": 0.8104 + }, + { + "start": 10642.64, + "end": 10646.6, + "probability": 0.9614 + }, + { + "start": 10647.28, + "end": 10648.46, + "probability": 0.6194 + }, + { + "start": 10649.16, + "end": 10651.77, + "probability": 0.9971 + }, + { + "start": 10652.24, + "end": 10653.64, + "probability": 0.9082 + }, + { + "start": 10654.06, + "end": 10655.04, + "probability": 0.9276 + }, + { + "start": 10655.14, + "end": 10655.38, + "probability": 0.8604 + }, + { + "start": 10655.38, + "end": 10655.94, + "probability": 0.7372 + }, + { + "start": 10656.16, + "end": 10656.18, + "probability": 0.9116 + }, + { + "start": 10659.67, + "end": 10664.6, + "probability": 0.6638 + }, + { + "start": 10665.14, + "end": 10667.7, + "probability": 0.8789 + }, + { + "start": 10668.24, + "end": 10672.5, + "probability": 0.9023 + }, + { + "start": 10673.0, + "end": 10680.28, + "probability": 0.9408 + }, + { + "start": 10680.7, + "end": 10684.44, + "probability": 0.9687 + }, + { + "start": 10684.44, + "end": 10685.8, + "probability": 0.8743 + }, + { + "start": 10686.32, + "end": 10691.0, + "probability": 0.9875 + }, + { + "start": 10691.62, + "end": 10697.12, + "probability": 0.9973 + }, + { + "start": 10697.82, + "end": 10700.78, + "probability": 0.8999 + }, + { + "start": 10701.42, + "end": 10707.48, + "probability": 0.9929 + }, + { + "start": 10707.64, + "end": 10711.92, + "probability": 0.9946 + }, + { + "start": 10711.92, + "end": 10716.4, + "probability": 0.9959 + }, + { + "start": 10718.54, + "end": 10725.52, + "probability": 0.9251 + }, + { + "start": 10725.9, + "end": 10729.22, + "probability": 0.9165 + }, + { + "start": 10729.62, + "end": 10731.24, + "probability": 0.9922 + }, + { + "start": 10731.58, + "end": 10735.4, + "probability": 0.946 + }, + { + "start": 10735.44, + "end": 10739.76, + "probability": 0.9804 + }, + { + "start": 10739.86, + "end": 10741.3, + "probability": 0.9141 + }, + { + "start": 10742.44, + "end": 10744.78, + "probability": 0.962 + }, + { + "start": 10745.24, + "end": 10746.4, + "probability": 0.9486 + }, + { + "start": 10746.62, + "end": 10747.1, + "probability": 0.8207 + }, + { + "start": 10747.26, + "end": 10747.64, + "probability": 0.6781 + }, + { + "start": 10749.82, + "end": 10758.38, + "probability": 0.8031 + }, + { + "start": 10759.62, + "end": 10761.3, + "probability": 0.8467 + }, + { + "start": 10764.15, + "end": 10770.08, + "probability": 0.8543 + }, + { + "start": 10770.62, + "end": 10772.4, + "probability": 0.8284 + }, + { + "start": 10772.8, + "end": 10773.76, + "probability": 0.8887 + }, + { + "start": 10773.88, + "end": 10776.68, + "probability": 0.8153 + }, + { + "start": 10776.76, + "end": 10777.16, + "probability": 0.7453 + }, + { + "start": 10777.82, + "end": 10781.32, + "probability": 0.9975 + }, + { + "start": 10781.32, + "end": 10784.5, + "probability": 0.8201 + }, + { + "start": 10785.44, + "end": 10786.56, + "probability": 0.7109 + }, + { + "start": 10787.14, + "end": 10789.36, + "probability": 0.9259 + }, + { + "start": 10789.86, + "end": 10790.98, + "probability": 0.6816 + }, + { + "start": 10791.06, + "end": 10791.36, + "probability": 0.8591 + }, + { + "start": 10791.54, + "end": 10794.82, + "probability": 0.702 + }, + { + "start": 10795.36, + "end": 10797.2, + "probability": 0.8225 + }, + { + "start": 10799.56, + "end": 10799.66, + "probability": 0.2129 + }, + { + "start": 10799.66, + "end": 10801.74, + "probability": 0.8799 + }, + { + "start": 10802.84, + "end": 10803.18, + "probability": 0.438 + }, + { + "start": 10805.46, + "end": 10811.96, + "probability": 0.9897 + }, + { + "start": 10812.52, + "end": 10815.84, + "probability": 0.2411 + }, + { + "start": 10816.38, + "end": 10819.02, + "probability": 0.0481 + }, + { + "start": 10819.76, + "end": 10823.56, + "probability": 0.8238 + }, + { + "start": 10825.3, + "end": 10827.82, + "probability": 0.9473 + }, + { + "start": 10828.5, + "end": 10835.02, + "probability": 0.8937 + }, + { + "start": 10835.14, + "end": 10836.2, + "probability": 0.6774 + }, + { + "start": 10836.84, + "end": 10837.8, + "probability": 0.9152 + }, + { + "start": 10837.88, + "end": 10839.82, + "probability": 0.937 + }, + { + "start": 10840.08, + "end": 10840.46, + "probability": 0.5828 + }, + { + "start": 10840.46, + "end": 10846.38, + "probability": 0.979 + }, + { + "start": 10846.5, + "end": 10848.02, + "probability": 0.7086 + }, + { + "start": 10848.06, + "end": 10849.56, + "probability": 0.7102 + }, + { + "start": 10850.14, + "end": 10852.08, + "probability": 0.8267 + }, + { + "start": 10852.64, + "end": 10853.32, + "probability": 0.4662 + }, + { + "start": 10853.66, + "end": 10853.94, + "probability": 0.7548 + }, + { + "start": 10854.04, + "end": 10855.28, + "probability": 0.9234 + }, + { + "start": 10855.4, + "end": 10857.36, + "probability": 0.9885 + }, + { + "start": 10858.02, + "end": 10859.0, + "probability": 0.6363 + }, + { + "start": 10859.14, + "end": 10860.66, + "probability": 0.9468 + }, + { + "start": 10861.14, + "end": 10862.3, + "probability": 0.8411 + }, + { + "start": 10862.36, + "end": 10864.06, + "probability": 0.9547 + }, + { + "start": 10864.16, + "end": 10865.79, + "probability": 0.8591 + }, + { + "start": 10867.92, + "end": 10869.28, + "probability": 0.0363 + }, + { + "start": 10870.68, + "end": 10874.34, + "probability": 0.8926 + }, + { + "start": 10874.86, + "end": 10878.98, + "probability": 0.9807 + }, + { + "start": 10878.98, + "end": 10884.08, + "probability": 0.9595 + }, + { + "start": 10884.62, + "end": 10886.24, + "probability": 0.0408 + }, + { + "start": 10886.96, + "end": 10889.58, + "probability": 0.7966 + }, + { + "start": 10889.68, + "end": 10891.96, + "probability": 0.2382 + }, + { + "start": 10893.26, + "end": 10894.3, + "probability": 0.627 + }, + { + "start": 10894.3, + "end": 10894.3, + "probability": 0.0246 + }, + { + "start": 10894.3, + "end": 10895.48, + "probability": 0.5667 + }, + { + "start": 10895.56, + "end": 10896.4, + "probability": 0.8038 + }, + { + "start": 10897.0, + "end": 10897.98, + "probability": 0.6919 + }, + { + "start": 10898.16, + "end": 10898.9, + "probability": 0.7559 + }, + { + "start": 10899.4, + "end": 10901.18, + "probability": 0.5713 + }, + { + "start": 10902.9, + "end": 10903.6, + "probability": 0.0011 + }, + { + "start": 10903.62, + "end": 10905.98, + "probability": 0.7915 + }, + { + "start": 10906.34, + "end": 10907.59, + "probability": 0.5 + }, + { + "start": 10907.76, + "end": 10910.26, + "probability": 0.9956 + }, + { + "start": 10910.92, + "end": 10911.58, + "probability": 0.7194 + }, + { + "start": 10911.72, + "end": 10912.98, + "probability": 0.2228 + }, + { + "start": 10913.04, + "end": 10913.5, + "probability": 0.9172 + }, + { + "start": 10913.78, + "end": 10914.88, + "probability": 0.418 + }, + { + "start": 10915.6, + "end": 10917.22, + "probability": 0.6608 + }, + { + "start": 10919.26, + "end": 10919.74, + "probability": 0.0044 + }, + { + "start": 10921.46, + "end": 10922.32, + "probability": 0.0853 + }, + { + "start": 10928.34, + "end": 10930.86, + "probability": 0.5994 + }, + { + "start": 10932.61, + "end": 10939.5, + "probability": 0.7943 + }, + { + "start": 10939.8, + "end": 10939.98, + "probability": 0.835 + }, + { + "start": 10940.62, + "end": 10942.32, + "probability": 0.825 + }, + { + "start": 10942.38, + "end": 10942.82, + "probability": 0.6583 + }, + { + "start": 10944.68, + "end": 10945.62, + "probability": 0.7318 + }, + { + "start": 10946.1, + "end": 10946.67, + "probability": 0.5831 + }, + { + "start": 10947.14, + "end": 10953.24, + "probability": 0.9559 + }, + { + "start": 10953.78, + "end": 10957.6, + "probability": 0.8016 + }, + { + "start": 10958.16, + "end": 10961.44, + "probability": 0.9862 + }, + { + "start": 10961.62, + "end": 10963.68, + "probability": 0.9371 + }, + { + "start": 10964.24, + "end": 10967.66, + "probability": 0.9709 + }, + { + "start": 10967.8, + "end": 10968.32, + "probability": 0.5509 + }, + { + "start": 10968.38, + "end": 10969.18, + "probability": 0.7666 + }, + { + "start": 10969.62, + "end": 10972.84, + "probability": 0.9092 + }, + { + "start": 10973.36, + "end": 10978.22, + "probability": 0.8923 + }, + { + "start": 10978.28, + "end": 10979.46, + "probability": 0.7817 + }, + { + "start": 10980.34, + "end": 10982.62, + "probability": 0.8784 + }, + { + "start": 10983.24, + "end": 10986.14, + "probability": 0.9055 + }, + { + "start": 10986.5, + "end": 10987.58, + "probability": 0.8134 + }, + { + "start": 10988.22, + "end": 10992.3, + "probability": 0.9941 + }, + { + "start": 10992.68, + "end": 10994.46, + "probability": 0.9823 + }, + { + "start": 10994.76, + "end": 10999.3, + "probability": 0.987 + }, + { + "start": 10999.3, + "end": 11005.66, + "probability": 0.9897 + }, + { + "start": 11006.34, + "end": 11008.96, + "probability": 0.7923 + }, + { + "start": 11009.66, + "end": 11011.14, + "probability": 0.9836 + }, + { + "start": 11011.7, + "end": 11019.9, + "probability": 0.9585 + }, + { + "start": 11020.56, + "end": 11024.3, + "probability": 0.9206 + }, + { + "start": 11024.44, + "end": 11028.82, + "probability": 0.9906 + }, + { + "start": 11029.42, + "end": 11030.5, + "probability": 0.0699 + }, + { + "start": 11033.18, + "end": 11038.6, + "probability": 0.8514 + }, + { + "start": 11039.96, + "end": 11041.38, + "probability": 0.8792 + }, + { + "start": 11041.94, + "end": 11045.0, + "probability": 0.7065 + }, + { + "start": 11045.22, + "end": 11046.72, + "probability": 0.9583 + }, + { + "start": 11047.12, + "end": 11053.3, + "probability": 0.924 + }, + { + "start": 11054.1, + "end": 11058.34, + "probability": 0.8656 + }, + { + "start": 11059.02, + "end": 11067.04, + "probability": 0.9928 + }, + { + "start": 11067.64, + "end": 11069.22, + "probability": 0.6795 + }, + { + "start": 11069.82, + "end": 11078.16, + "probability": 0.9426 + }, + { + "start": 11078.38, + "end": 11082.08, + "probability": 0.8555 + }, + { + "start": 11082.52, + "end": 11084.34, + "probability": 0.8309 + }, + { + "start": 11084.58, + "end": 11086.12, + "probability": 0.6838 + }, + { + "start": 11087.14, + "end": 11088.82, + "probability": 0.6906 + }, + { + "start": 11089.48, + "end": 11090.14, + "probability": 0.9565 + }, + { + "start": 11090.76, + "end": 11098.52, + "probability": 0.9561 + }, + { + "start": 11100.12, + "end": 11100.94, + "probability": 0.2201 + }, + { + "start": 11100.94, + "end": 11104.84, + "probability": 0.7123 + }, + { + "start": 11105.28, + "end": 11107.36, + "probability": 0.8289 + }, + { + "start": 11107.4, + "end": 11110.27, + "probability": 0.9857 + }, + { + "start": 11110.8, + "end": 11113.34, + "probability": 0.9348 + }, + { + "start": 11113.86, + "end": 11114.53, + "probability": 0.8111 + }, + { + "start": 11115.93, + "end": 11123.16, + "probability": 0.9889 + }, + { + "start": 11123.82, + "end": 11123.86, + "probability": 0.0444 + }, + { + "start": 11123.86, + "end": 11126.28, + "probability": 0.9339 + }, + { + "start": 11126.42, + "end": 11128.94, + "probability": 0.9614 + }, + { + "start": 11129.5, + "end": 11134.98, + "probability": 0.7986 + }, + { + "start": 11134.98, + "end": 11135.84, + "probability": 0.6251 + }, + { + "start": 11136.3, + "end": 11137.3, + "probability": 0.9421 + }, + { + "start": 11137.36, + "end": 11137.98, + "probability": 0.9871 + }, + { + "start": 11138.84, + "end": 11144.24, + "probability": 0.981 + }, + { + "start": 11145.4, + "end": 11147.02, + "probability": 0.1779 + }, + { + "start": 11147.32, + "end": 11149.54, + "probability": 0.6555 + }, + { + "start": 11149.84, + "end": 11152.36, + "probability": 0.9718 + }, + { + "start": 11152.84, + "end": 11156.48, + "probability": 0.7857 + }, + { + "start": 11156.62, + "end": 11161.2, + "probability": 0.9122 + }, + { + "start": 11161.88, + "end": 11162.74, + "probability": 0.2364 + }, + { + "start": 11162.74, + "end": 11162.74, + "probability": 0.1093 + }, + { + "start": 11162.74, + "end": 11164.7, + "probability": 0.8803 + }, + { + "start": 11165.22, + "end": 11168.32, + "probability": 0.9945 + }, + { + "start": 11168.72, + "end": 11171.36, + "probability": 0.6525 + }, + { + "start": 11172.28, + "end": 11176.96, + "probability": 0.9691 + }, + { + "start": 11176.96, + "end": 11179.72, + "probability": 0.9313 + }, + { + "start": 11180.12, + "end": 11182.6, + "probability": 0.9394 + }, + { + "start": 11183.14, + "end": 11184.6, + "probability": 0.9954 + }, + { + "start": 11184.7, + "end": 11188.78, + "probability": 0.7107 + }, + { + "start": 11189.1, + "end": 11190.54, + "probability": 0.9895 + }, + { + "start": 11191.22, + "end": 11192.96, + "probability": 0.9966 + }, + { + "start": 11192.96, + "end": 11196.04, + "probability": 0.9813 + }, + { + "start": 11197.2, + "end": 11202.18, + "probability": 0.9946 + }, + { + "start": 11202.48, + "end": 11203.64, + "probability": 0.896 + }, + { + "start": 11204.02, + "end": 11208.22, + "probability": 0.9955 + }, + { + "start": 11209.18, + "end": 11211.14, + "probability": 0.2837 + }, + { + "start": 11211.2, + "end": 11214.12, + "probability": 0.9572 + }, + { + "start": 11214.82, + "end": 11217.24, + "probability": 0.7751 + }, + { + "start": 11219.44, + "end": 11219.62, + "probability": 0.2733 + }, + { + "start": 11219.62, + "end": 11219.62, + "probability": 0.0322 + }, + { + "start": 11219.62, + "end": 11220.6, + "probability": 0.6631 + }, + { + "start": 11220.9, + "end": 11223.35, + "probability": 0.7308 + }, + { + "start": 11224.36, + "end": 11228.94, + "probability": 0.9833 + }, + { + "start": 11229.74, + "end": 11231.34, + "probability": 0.8992 + }, + { + "start": 11231.64, + "end": 11231.92, + "probability": 0.755 + }, + { + "start": 11232.36, + "end": 11233.84, + "probability": 0.9831 + }, + { + "start": 11234.04, + "end": 11234.86, + "probability": 0.6616 + }, + { + "start": 11235.44, + "end": 11238.32, + "probability": 0.9197 + }, + { + "start": 11238.42, + "end": 11240.52, + "probability": 0.9561 + }, + { + "start": 11241.2, + "end": 11242.54, + "probability": 0.9614 + }, + { + "start": 11242.9, + "end": 11246.16, + "probability": 0.7573 + }, + { + "start": 11247.12, + "end": 11250.7, + "probability": 0.9551 + }, + { + "start": 11251.38, + "end": 11256.18, + "probability": 0.9017 + }, + { + "start": 11265.52, + "end": 11268.02, + "probability": 0.5145 + }, + { + "start": 11270.4, + "end": 11273.06, + "probability": 0.9658 + }, + { + "start": 11274.14, + "end": 11276.44, + "probability": 0.8314 + }, + { + "start": 11279.78, + "end": 11283.22, + "probability": 0.7854 + }, + { + "start": 11284.2, + "end": 11287.42, + "probability": 0.9501 + }, + { + "start": 11288.24, + "end": 11292.2, + "probability": 0.9812 + }, + { + "start": 11293.37, + "end": 11295.74, + "probability": 0.6333 + }, + { + "start": 11296.44, + "end": 11298.78, + "probability": 0.4045 + }, + { + "start": 11298.84, + "end": 11299.88, + "probability": 0.589 + }, + { + "start": 11300.38, + "end": 11304.18, + "probability": 0.043 + }, + { + "start": 11313.4, + "end": 11316.42, + "probability": 0.7046 + }, + { + "start": 11316.42, + "end": 11316.42, + "probability": 0.1899 + }, + { + "start": 11316.42, + "end": 11316.42, + "probability": 0.0545 + }, + { + "start": 11316.42, + "end": 11319.96, + "probability": 0.2229 + }, + { + "start": 11320.04, + "end": 11320.48, + "probability": 0.672 + }, + { + "start": 11322.44, + "end": 11327.74, + "probability": 0.9788 + }, + { + "start": 11327.74, + "end": 11332.6, + "probability": 0.7139 + }, + { + "start": 11333.04, + "end": 11334.52, + "probability": 0.4583 + }, + { + "start": 11335.1, + "end": 11335.74, + "probability": 0.248 + }, + { + "start": 11336.9, + "end": 11336.9, + "probability": 0.0573 + }, + { + "start": 11338.78, + "end": 11343.88, + "probability": 0.8135 + }, + { + "start": 11344.44, + "end": 11348.98, + "probability": 0.6914 + }, + { + "start": 11349.44, + "end": 11349.72, + "probability": 0.4521 + }, + { + "start": 11349.98, + "end": 11351.54, + "probability": 0.4942 + }, + { + "start": 11352.7, + "end": 11358.78, + "probability": 0.4316 + }, + { + "start": 11359.9, + "end": 11366.16, + "probability": 0.6412 + }, + { + "start": 11368.5, + "end": 11372.52, + "probability": 0.9038 + }, + { + "start": 11377.56, + "end": 11377.68, + "probability": 0.0037 + }, + { + "start": 11381.25, + "end": 11383.9, + "probability": 0.7531 + }, + { + "start": 11390.22, + "end": 11396.16, + "probability": 0.5574 + }, + { + "start": 11396.42, + "end": 11402.2, + "probability": 0.9966 + }, + { + "start": 11403.16, + "end": 11404.7, + "probability": 0.8949 + }, + { + "start": 11405.78, + "end": 11407.1, + "probability": 0.7584 + }, + { + "start": 11407.4, + "end": 11409.64, + "probability": 0.6545 + }, + { + "start": 11411.57, + "end": 11415.08, + "probability": 0.9701 + }, + { + "start": 11415.96, + "end": 11419.22, + "probability": 0.959 + }, + { + "start": 11419.82, + "end": 11423.74, + "probability": 0.9196 + }, + { + "start": 11424.34, + "end": 11425.46, + "probability": 0.9603 + }, + { + "start": 11426.0, + "end": 11428.16, + "probability": 0.569 + }, + { + "start": 11428.7, + "end": 11432.32, + "probability": 0.7445 + }, + { + "start": 11432.32, + "end": 11433.74, + "probability": 0.7866 + }, + { + "start": 11434.18, + "end": 11435.86, + "probability": 0.9568 + }, + { + "start": 11435.96, + "end": 11442.74, + "probability": 0.985 + }, + { + "start": 11443.1, + "end": 11448.72, + "probability": 0.5777 + }, + { + "start": 11449.66, + "end": 11454.62, + "probability": 0.954 + }, + { + "start": 11455.34, + "end": 11455.62, + "probability": 0.6578 + }, + { + "start": 11456.68, + "end": 11458.18, + "probability": 0.8299 + }, + { + "start": 11458.96, + "end": 11462.16, + "probability": 0.9606 + }, + { + "start": 11462.74, + "end": 11465.8, + "probability": 0.9957 + }, + { + "start": 11466.36, + "end": 11470.64, + "probability": 0.9845 + }, + { + "start": 11471.1, + "end": 11475.96, + "probability": 0.9973 + }, + { + "start": 11476.5, + "end": 11477.86, + "probability": 0.9891 + }, + { + "start": 11478.28, + "end": 11479.08, + "probability": 0.9545 + }, + { + "start": 11479.38, + "end": 11482.45, + "probability": 0.9918 + }, + { + "start": 11483.72, + "end": 11486.46, + "probability": 0.9209 + }, + { + "start": 11486.88, + "end": 11487.06, + "probability": 0.8368 + }, + { + "start": 11487.64, + "end": 11491.52, + "probability": 0.7628 + }, + { + "start": 11495.44, + "end": 11500.4, + "probability": 0.9589 + }, + { + "start": 11501.0, + "end": 11502.78, + "probability": 0.998 + }, + { + "start": 11503.28, + "end": 11508.54, + "probability": 0.9666 + }, + { + "start": 11508.6, + "end": 11509.54, + "probability": 0.9616 + }, + { + "start": 11510.2, + "end": 11512.78, + "probability": 0.994 + }, + { + "start": 11514.1, + "end": 11515.96, + "probability": 0.8206 + }, + { + "start": 11516.76, + "end": 11519.1, + "probability": 0.9945 + }, + { + "start": 11519.64, + "end": 11521.72, + "probability": 0.9946 + }, + { + "start": 11522.16, + "end": 11524.52, + "probability": 0.9167 + }, + { + "start": 11525.24, + "end": 11527.18, + "probability": 0.6695 + }, + { + "start": 11527.4, + "end": 11528.65, + "probability": 0.9863 + }, + { + "start": 11529.48, + "end": 11529.98, + "probability": 0.8564 + }, + { + "start": 11530.56, + "end": 11531.06, + "probability": 0.8379 + }, + { + "start": 11531.52, + "end": 11535.46, + "probability": 0.9844 + }, + { + "start": 11536.1, + "end": 11538.66, + "probability": 0.7788 + }, + { + "start": 11539.34, + "end": 11539.66, + "probability": 0.3566 + }, + { + "start": 11541.02, + "end": 11541.62, + "probability": 0.1439 + }, + { + "start": 11541.62, + "end": 11543.54, + "probability": 0.5681 + }, + { + "start": 11543.68, + "end": 11548.42, + "probability": 0.9691 + }, + { + "start": 11548.5, + "end": 11552.14, + "probability": 0.8369 + }, + { + "start": 11553.13, + "end": 11555.94, + "probability": 0.9771 + }, + { + "start": 11556.02, + "end": 11556.6, + "probability": 0.4497 + }, + { + "start": 11556.82, + "end": 11556.82, + "probability": 0.2812 + }, + { + "start": 11556.98, + "end": 11557.52, + "probability": 0.5551 + }, + { + "start": 11557.86, + "end": 11558.2, + "probability": 0.3535 + }, + { + "start": 11558.26, + "end": 11558.8, + "probability": 0.9125 + }, + { + "start": 11558.84, + "end": 11559.82, + "probability": 0.9595 + }, + { + "start": 11560.1, + "end": 11561.02, + "probability": 0.9917 + }, + { + "start": 11561.38, + "end": 11562.96, + "probability": 0.9937 + }, + { + "start": 11563.52, + "end": 11566.3, + "probability": 0.9624 + }, + { + "start": 11567.12, + "end": 11567.58, + "probability": 0.0052 + }, + { + "start": 11568.46, + "end": 11569.62, + "probability": 0.6865 + }, + { + "start": 11571.15, + "end": 11572.22, + "probability": 0.5222 + }, + { + "start": 11572.22, + "end": 11572.22, + "probability": 0.5449 + }, + { + "start": 11572.22, + "end": 11573.0, + "probability": 0.7656 + }, + { + "start": 11573.08, + "end": 11577.92, + "probability": 0.96 + }, + { + "start": 11578.16, + "end": 11578.74, + "probability": 0.9773 + }, + { + "start": 11578.96, + "end": 11579.6, + "probability": 0.4626 + }, + { + "start": 11580.2, + "end": 11582.8, + "probability": 0.6556 + }, + { + "start": 11583.44, + "end": 11586.1, + "probability": 0.9093 + }, + { + "start": 11589.5, + "end": 11590.5, + "probability": 0.9238 + }, + { + "start": 11590.62, + "end": 11591.95, + "probability": 0.9959 + }, + { + "start": 11592.32, + "end": 11594.16, + "probability": 0.707 + }, + { + "start": 11594.62, + "end": 11594.94, + "probability": 0.7621 + }, + { + "start": 11595.0, + "end": 11596.02, + "probability": 0.9282 + }, + { + "start": 11596.08, + "end": 11596.77, + "probability": 0.8799 + }, + { + "start": 11597.54, + "end": 11599.38, + "probability": 0.99 + }, + { + "start": 11599.76, + "end": 11600.62, + "probability": 0.8173 + }, + { + "start": 11601.54, + "end": 11601.9, + "probability": 0.763 + }, + { + "start": 11602.02, + "end": 11604.35, + "probability": 0.5096 + }, + { + "start": 11604.94, + "end": 11605.42, + "probability": 0.8807 + }, + { + "start": 11605.58, + "end": 11607.72, + "probability": 0.9553 + }, + { + "start": 11608.32, + "end": 11610.58, + "probability": 0.9875 + }, + { + "start": 11611.2, + "end": 11614.94, + "probability": 0.993 + }, + { + "start": 11615.6, + "end": 11616.38, + "probability": 0.4918 + }, + { + "start": 11616.52, + "end": 11618.44, + "probability": 0.9784 + }, + { + "start": 11619.04, + "end": 11622.06, + "probability": 0.9941 + }, + { + "start": 11622.8, + "end": 11624.16, + "probability": 0.985 + }, + { + "start": 11625.14, + "end": 11628.52, + "probability": 0.4919 + }, + { + "start": 11629.46, + "end": 11631.64, + "probability": 0.9544 + }, + { + "start": 11632.3, + "end": 11633.14, + "probability": 0.7971 + }, + { + "start": 11634.78, + "end": 11635.94, + "probability": 0.0753 + }, + { + "start": 11636.52, + "end": 11638.46, + "probability": 0.6337 + }, + { + "start": 11638.56, + "end": 11640.68, + "probability": 0.6224 + }, + { + "start": 11643.03, + "end": 11644.54, + "probability": 0.3338 + }, + { + "start": 11644.54, + "end": 11644.54, + "probability": 0.0774 + }, + { + "start": 11644.54, + "end": 11644.9, + "probability": 0.7047 + }, + { + "start": 11647.04, + "end": 11650.84, + "probability": 0.6834 + }, + { + "start": 11650.92, + "end": 11653.18, + "probability": 0.6292 + }, + { + "start": 11653.24, + "end": 11654.0, + "probability": 0.7105 + }, + { + "start": 11654.1, + "end": 11655.2, + "probability": 0.8241 + }, + { + "start": 11655.3, + "end": 11656.64, + "probability": 0.4576 + }, + { + "start": 11656.7, + "end": 11657.2, + "probability": 0.9775 + }, + { + "start": 11657.68, + "end": 11660.28, + "probability": 0.7755 + }, + { + "start": 11660.52, + "end": 11662.04, + "probability": 0.848 + }, + { + "start": 11665.06, + "end": 11665.24, + "probability": 0.0006 + }, + { + "start": 11667.46, + "end": 11667.8, + "probability": 0.0522 + }, + { + "start": 11667.8, + "end": 11667.8, + "probability": 0.0088 + }, + { + "start": 11667.8, + "end": 11669.2, + "probability": 0.2373 + }, + { + "start": 11669.52, + "end": 11672.14, + "probability": 0.8072 + }, + { + "start": 11675.1, + "end": 11675.98, + "probability": 0.0186 + }, + { + "start": 11675.98, + "end": 11677.82, + "probability": 0.6743 + }, + { + "start": 11677.9, + "end": 11679.48, + "probability": 0.6598 + }, + { + "start": 11679.56, + "end": 11680.78, + "probability": 0.8904 + }, + { + "start": 11681.02, + "end": 11682.5, + "probability": 0.8455 + }, + { + "start": 11685.19, + "end": 11687.4, + "probability": 0.3261 + }, + { + "start": 11687.66, + "end": 11690.1, + "probability": 0.7436 + }, + { + "start": 11692.06, + "end": 11692.56, + "probability": 0.1056 + }, + { + "start": 11692.56, + "end": 11692.56, + "probability": 0.06 + }, + { + "start": 11692.56, + "end": 11694.27, + "probability": 0.5146 + }, + { + "start": 11694.42, + "end": 11697.84, + "probability": 0.9914 + }, + { + "start": 11697.94, + "end": 11699.32, + "probability": 0.9653 + }, + { + "start": 11699.92, + "end": 11700.38, + "probability": 0.8129 + }, + { + "start": 11700.66, + "end": 11704.68, + "probability": 0.988 + }, + { + "start": 11705.26, + "end": 11706.6, + "probability": 0.9197 + }, + { + "start": 11706.78, + "end": 11709.3, + "probability": 0.8643 + }, + { + "start": 11709.93, + "end": 11711.25, + "probability": 0.5396 + }, + { + "start": 11711.96, + "end": 11713.74, + "probability": 0.9878 + }, + { + "start": 11713.74, + "end": 11718.24, + "probability": 0.9932 + }, + { + "start": 11718.64, + "end": 11720.78, + "probability": 0.7913 + }, + { + "start": 11720.96, + "end": 11724.36, + "probability": 0.7914 + }, + { + "start": 11725.42, + "end": 11729.02, + "probability": 0.8503 + }, + { + "start": 11729.5, + "end": 11734.06, + "probability": 0.9771 + }, + { + "start": 11734.44, + "end": 11736.02, + "probability": 0.9825 + }, + { + "start": 11736.06, + "end": 11738.94, + "probability": 0.8147 + }, + { + "start": 11739.1, + "end": 11740.82, + "probability": 0.6261 + }, + { + "start": 11740.82, + "end": 11740.82, + "probability": 0.4983 + }, + { + "start": 11740.82, + "end": 11743.26, + "probability": 0.9641 + }, + { + "start": 11743.46, + "end": 11745.52, + "probability": 0.3204 + }, + { + "start": 11745.54, + "end": 11745.94, + "probability": 0.4608 + }, + { + "start": 11746.04, + "end": 11747.98, + "probability": 0.9937 + }, + { + "start": 11748.14, + "end": 11751.92, + "probability": 0.9954 + }, + { + "start": 11752.04, + "end": 11752.96, + "probability": 0.8547 + }, + { + "start": 11753.62, + "end": 11754.3, + "probability": 0.1478 + }, + { + "start": 11754.82, + "end": 11757.14, + "probability": 0.9566 + }, + { + "start": 11757.22, + "end": 11759.79, + "probability": 0.9707 + }, + { + "start": 11760.34, + "end": 11761.2, + "probability": 0.8663 + }, + { + "start": 11762.82, + "end": 11766.32, + "probability": 0.8898 + }, + { + "start": 11767.48, + "end": 11768.38, + "probability": 0.4498 + }, + { + "start": 11769.06, + "end": 11773.2, + "probability": 0.7776 + }, + { + "start": 11773.3, + "end": 11773.8, + "probability": 0.4053 + }, + { + "start": 11774.46, + "end": 11777.17, + "probability": 0.9272 + }, + { + "start": 11779.36, + "end": 11780.98, + "probability": 0.2228 + }, + { + "start": 11782.11, + "end": 11782.32, + "probability": 0.2322 + }, + { + "start": 11782.32, + "end": 11783.38, + "probability": 0.2858 + }, + { + "start": 11784.16, + "end": 11785.24, + "probability": 0.5364 + }, + { + "start": 11785.5, + "end": 11786.32, + "probability": 0.772 + }, + { + "start": 11786.42, + "end": 11786.76, + "probability": 0.9243 + }, + { + "start": 11787.54, + "end": 11788.28, + "probability": 0.9677 + }, + { + "start": 11788.86, + "end": 11790.8, + "probability": 0.6755 + }, + { + "start": 11790.82, + "end": 11791.46, + "probability": 0.6881 + }, + { + "start": 11791.56, + "end": 11792.02, + "probability": 0.4612 + }, + { + "start": 11792.04, + "end": 11793.66, + "probability": 0.8491 + }, + { + "start": 11793.66, + "end": 11794.28, + "probability": 0.6579 + }, + { + "start": 11794.38, + "end": 11794.38, + "probability": 0.5898 + }, + { + "start": 11794.42, + "end": 11794.99, + "probability": 0.8081 + }, + { + "start": 11795.22, + "end": 11796.86, + "probability": 0.9756 + }, + { + "start": 11797.08, + "end": 11797.28, + "probability": 0.7138 + }, + { + "start": 11797.5, + "end": 11797.7, + "probability": 0.6416 + }, + { + "start": 11797.76, + "end": 11800.04, + "probability": 0.4424 + }, + { + "start": 11800.56, + "end": 11801.32, + "probability": 0.3304 + }, + { + "start": 11801.64, + "end": 11803.06, + "probability": 0.0199 + }, + { + "start": 11804.92, + "end": 11806.1, + "probability": 0.1463 + }, + { + "start": 11807.46, + "end": 11808.0, + "probability": 0.6762 + }, + { + "start": 11808.56, + "end": 11811.42, + "probability": 0.9878 + }, + { + "start": 11812.92, + "end": 11813.76, + "probability": 0.2005 + }, + { + "start": 11813.94, + "end": 11814.8, + "probability": 0.8401 + }, + { + "start": 11814.8, + "end": 11816.46, + "probability": 0.7806 + }, + { + "start": 11816.56, + "end": 11819.52, + "probability": 0.9895 + }, + { + "start": 11820.28, + "end": 11823.56, + "probability": 0.5585 + }, + { + "start": 11824.16, + "end": 11827.56, + "probability": 0.9581 + }, + { + "start": 11828.32, + "end": 11828.56, + "probability": 0.0841 + }, + { + "start": 11828.56, + "end": 11830.94, + "probability": 0.5294 + }, + { + "start": 11831.74, + "end": 11831.74, + "probability": 0.0462 + }, + { + "start": 11831.74, + "end": 11832.56, + "probability": 0.67 + }, + { + "start": 11832.9, + "end": 11833.42, + "probability": 0.767 + }, + { + "start": 11833.54, + "end": 11834.06, + "probability": 0.4828 + }, + { + "start": 11834.1, + "end": 11834.88, + "probability": 0.8382 + }, + { + "start": 11835.38, + "end": 11836.96, + "probability": 0.7826 + }, + { + "start": 11838.02, + "end": 11840.98, + "probability": 0.7069 + }, + { + "start": 11849.48, + "end": 11851.3, + "probability": 0.5096 + }, + { + "start": 11851.42, + "end": 11852.93, + "probability": 0.0435 + }, + { + "start": 11854.77, + "end": 11857.84, + "probability": 0.955 + }, + { + "start": 11858.88, + "end": 11861.04, + "probability": 0.9825 + }, + { + "start": 11861.38, + "end": 11863.16, + "probability": 0.9824 + }, + { + "start": 11863.46, + "end": 11865.8, + "probability": 0.8867 + }, + { + "start": 11866.52, + "end": 11869.74, + "probability": 0.7737 + }, + { + "start": 11870.22, + "end": 11870.48, + "probability": 0.2533 + }, + { + "start": 11872.87, + "end": 11873.22, + "probability": 0.2574 + }, + { + "start": 11873.4, + "end": 11875.82, + "probability": 0.8386 + }, + { + "start": 11875.88, + "end": 11876.66, + "probability": 0.7432 + }, + { + "start": 11878.28, + "end": 11879.8, + "probability": 0.3052 + }, + { + "start": 11881.54, + "end": 11882.02, + "probability": 0.3023 + }, + { + "start": 11882.02, + "end": 11882.3, + "probability": 0.0641 + }, + { + "start": 11882.3, + "end": 11883.12, + "probability": 0.1106 + }, + { + "start": 11885.54, + "end": 11888.8, + "probability": 0.5523 + }, + { + "start": 11890.77, + "end": 11893.43, + "probability": 0.4662 + }, + { + "start": 11894.48, + "end": 11895.72, + "probability": 0.0416 + }, + { + "start": 11895.72, + "end": 11896.4, + "probability": 0.4593 + }, + { + "start": 11896.42, + "end": 11898.28, + "probability": 0.5971 + }, + { + "start": 11898.52, + "end": 11901.1, + "probability": 0.9795 + }, + { + "start": 11904.24, + "end": 11907.88, + "probability": 0.9021 + }, + { + "start": 11908.68, + "end": 11909.14, + "probability": 0.9299 + }, + { + "start": 11917.36, + "end": 11920.36, + "probability": 0.5407 + }, + { + "start": 11925.6, + "end": 11927.3, + "probability": 0.6366 + }, + { + "start": 11928.42, + "end": 11929.82, + "probability": 0.5581 + }, + { + "start": 11930.06, + "end": 11930.48, + "probability": 0.5957 + }, + { + "start": 11930.76, + "end": 11936.36, + "probability": 0.9199 + }, + { + "start": 11936.66, + "end": 11939.48, + "probability": 0.9893 + }, + { + "start": 11939.8, + "end": 11940.82, + "probability": 0.8573 + }, + { + "start": 11941.4, + "end": 11942.64, + "probability": 0.9668 + }, + { + "start": 11943.38, + "end": 11944.48, + "probability": 0.9598 + }, + { + "start": 11945.06, + "end": 11945.88, + "probability": 0.9405 + }, + { + "start": 11946.66, + "end": 11947.66, + "probability": 0.8977 + }, + { + "start": 11947.82, + "end": 11948.9, + "probability": 0.735 + }, + { + "start": 11949.02, + "end": 11951.8, + "probability": 0.9649 + }, + { + "start": 11952.64, + "end": 11955.08, + "probability": 0.6885 + }, + { + "start": 11955.6, + "end": 11957.64, + "probability": 0.9677 + }, + { + "start": 11958.74, + "end": 11960.36, + "probability": 0.8899 + }, + { + "start": 11961.46, + "end": 11965.14, + "probability": 0.959 + }, + { + "start": 11965.3, + "end": 11967.74, + "probability": 0.8951 + }, + { + "start": 11969.04, + "end": 11971.62, + "probability": 0.8583 + }, + { + "start": 11971.86, + "end": 11975.14, + "probability": 0.9135 + }, + { + "start": 11975.26, + "end": 11978.36, + "probability": 0.5609 + }, + { + "start": 11979.32, + "end": 11983.04, + "probability": 0.928 + }, + { + "start": 11983.6, + "end": 11984.48, + "probability": 0.9412 + }, + { + "start": 11985.28, + "end": 11987.16, + "probability": 0.551 + }, + { + "start": 11987.86, + "end": 11992.54, + "probability": 0.8821 + }, + { + "start": 11993.34, + "end": 11994.5, + "probability": 0.667 + }, + { + "start": 11995.14, + "end": 11997.54, + "probability": 0.9718 + }, + { + "start": 11998.22, + "end": 12000.96, + "probability": 0.9945 + }, + { + "start": 12002.06, + "end": 12003.94, + "probability": 0.9487 + }, + { + "start": 12004.54, + "end": 12006.46, + "probability": 0.9979 + }, + { + "start": 12006.62, + "end": 12008.32, + "probability": 0.663 + }, + { + "start": 12008.4, + "end": 12008.9, + "probability": 0.7341 + }, + { + "start": 12009.94, + "end": 12012.34, + "probability": 0.9751 + }, + { + "start": 12013.12, + "end": 12015.24, + "probability": 0.9825 + }, + { + "start": 12015.78, + "end": 12021.22, + "probability": 0.9956 + }, + { + "start": 12021.84, + "end": 12022.2, + "probability": 0.5438 + }, + { + "start": 12022.38, + "end": 12028.12, + "probability": 0.986 + }, + { + "start": 12028.66, + "end": 12031.58, + "probability": 0.8921 + }, + { + "start": 12032.64, + "end": 12034.24, + "probability": 0.9324 + }, + { + "start": 12034.62, + "end": 12036.38, + "probability": 0.9795 + }, + { + "start": 12036.56, + "end": 12036.74, + "probability": 0.2493 + }, + { + "start": 12036.94, + "end": 12037.74, + "probability": 0.328 + }, + { + "start": 12037.96, + "end": 12039.02, + "probability": 0.8871 + }, + { + "start": 12040.16, + "end": 12041.72, + "probability": 0.6778 + }, + { + "start": 12042.46, + "end": 12043.23, + "probability": 0.8386 + }, + { + "start": 12044.9, + "end": 12045.88, + "probability": 0.7945 + }, + { + "start": 12046.1, + "end": 12048.82, + "probability": 0.7661 + }, + { + "start": 12049.9, + "end": 12052.02, + "probability": 0.96 + }, + { + "start": 12052.18, + "end": 12052.38, + "probability": 0.4395 + }, + { + "start": 12052.78, + "end": 12056.62, + "probability": 0.9045 + }, + { + "start": 12057.89, + "end": 12059.38, + "probability": 0.1618 + }, + { + "start": 12059.54, + "end": 12062.66, + "probability": 0.8618 + }, + { + "start": 12062.8, + "end": 12065.08, + "probability": 0.9634 + }, + { + "start": 12067.62, + "end": 12070.06, + "probability": 0.7906 + }, + { + "start": 12070.74, + "end": 12072.9, + "probability": 0.719 + }, + { + "start": 12073.64, + "end": 12075.64, + "probability": 0.9679 + }, + { + "start": 12076.86, + "end": 12078.42, + "probability": 0.8984 + }, + { + "start": 12078.82, + "end": 12080.46, + "probability": 0.9751 + }, + { + "start": 12081.76, + "end": 12083.02, + "probability": 0.7924 + }, + { + "start": 12083.12, + "end": 12087.08, + "probability": 0.7596 + }, + { + "start": 12087.96, + "end": 12090.2, + "probability": 0.9912 + }, + { + "start": 12090.34, + "end": 12092.28, + "probability": 0.7851 + }, + { + "start": 12093.56, + "end": 12094.9, + "probability": 0.9724 + }, + { + "start": 12095.16, + "end": 12096.98, + "probability": 0.9207 + }, + { + "start": 12097.64, + "end": 12100.34, + "probability": 0.7723 + }, + { + "start": 12101.4, + "end": 12102.42, + "probability": 0.598 + }, + { + "start": 12102.62, + "end": 12105.24, + "probability": 0.8559 + }, + { + "start": 12105.9, + "end": 12107.8, + "probability": 0.9961 + }, + { + "start": 12108.5, + "end": 12109.28, + "probability": 0.8705 + }, + { + "start": 12110.72, + "end": 12111.5, + "probability": 0.5204 + }, + { + "start": 12112.06, + "end": 12112.62, + "probability": 0.7681 + }, + { + "start": 12113.42, + "end": 12114.84, + "probability": 0.9907 + }, + { + "start": 12115.04, + "end": 12116.52, + "probability": 0.9749 + }, + { + "start": 12117.18, + "end": 12119.52, + "probability": 0.9816 + }, + { + "start": 12119.98, + "end": 12123.22, + "probability": 0.9961 + }, + { + "start": 12123.22, + "end": 12126.3, + "probability": 0.9766 + }, + { + "start": 12127.06, + "end": 12129.56, + "probability": 0.9974 + }, + { + "start": 12130.06, + "end": 12131.36, + "probability": 0.8589 + }, + { + "start": 12131.86, + "end": 12133.68, + "probability": 0.9961 + }, + { + "start": 12133.74, + "end": 12137.47, + "probability": 0.9876 + }, + { + "start": 12138.22, + "end": 12141.88, + "probability": 0.9948 + }, + { + "start": 12142.36, + "end": 12143.62, + "probability": 0.8965 + }, + { + "start": 12143.78, + "end": 12144.24, + "probability": 0.4246 + }, + { + "start": 12144.24, + "end": 12146.08, + "probability": 0.5924 + }, + { + "start": 12146.62, + "end": 12147.26, + "probability": 0.3907 + }, + { + "start": 12148.86, + "end": 12150.72, + "probability": 0.1599 + }, + { + "start": 12150.82, + "end": 12152.66, + "probability": 0.8996 + }, + { + "start": 12163.14, + "end": 12164.52, + "probability": 0.566 + }, + { + "start": 12164.62, + "end": 12165.26, + "probability": 0.9287 + }, + { + "start": 12166.0, + "end": 12168.5, + "probability": 0.9727 + }, + { + "start": 12169.12, + "end": 12170.66, + "probability": 0.9707 + }, + { + "start": 12171.12, + "end": 12172.64, + "probability": 0.9346 + }, + { + "start": 12173.24, + "end": 12174.8, + "probability": 0.9078 + }, + { + "start": 12175.02, + "end": 12179.22, + "probability": 0.903 + }, + { + "start": 12179.9, + "end": 12182.3, + "probability": 0.859 + }, + { + "start": 12182.94, + "end": 12184.4, + "probability": 0.8008 + }, + { + "start": 12184.58, + "end": 12187.34, + "probability": 0.9512 + }, + { + "start": 12187.46, + "end": 12188.64, + "probability": 0.8065 + }, + { + "start": 12189.12, + "end": 12190.4, + "probability": 0.769 + }, + { + "start": 12190.48, + "end": 12191.98, + "probability": 0.9107 + }, + { + "start": 12192.4, + "end": 12193.98, + "probability": 0.9951 + }, + { + "start": 12194.44, + "end": 12196.26, + "probability": 0.994 + }, + { + "start": 12197.0, + "end": 12200.66, + "probability": 0.8906 + }, + { + "start": 12200.76, + "end": 12201.22, + "probability": 0.8888 + }, + { + "start": 12202.42, + "end": 12206.12, + "probability": 0.9495 + }, + { + "start": 12206.42, + "end": 12208.58, + "probability": 0.9881 + }, + { + "start": 12208.64, + "end": 12212.08, + "probability": 0.9349 + }, + { + "start": 12212.18, + "end": 12212.18, + "probability": 0.0189 + }, + { + "start": 12212.48, + "end": 12212.92, + "probability": 0.859 + }, + { + "start": 12213.02, + "end": 12213.58, + "probability": 0.6562 + }, + { + "start": 12213.92, + "end": 12214.88, + "probability": 0.7252 + }, + { + "start": 12215.4, + "end": 12217.8, + "probability": 0.8709 + }, + { + "start": 12218.36, + "end": 12219.9, + "probability": 0.7485 + }, + { + "start": 12220.48, + "end": 12221.82, + "probability": 0.9325 + }, + { + "start": 12221.96, + "end": 12223.98, + "probability": 0.9824 + }, + { + "start": 12224.88, + "end": 12226.34, + "probability": 0.958 + }, + { + "start": 12226.46, + "end": 12231.8, + "probability": 0.9388 + }, + { + "start": 12232.02, + "end": 12233.08, + "probability": 0.9108 + }, + { + "start": 12233.94, + "end": 12234.02, + "probability": 0.3142 + }, + { + "start": 12234.02, + "end": 12236.22, + "probability": 0.7623 + }, + { + "start": 12236.76, + "end": 12237.86, + "probability": 0.5372 + }, + { + "start": 12238.42, + "end": 12240.82, + "probability": 0.8979 + }, + { + "start": 12241.32, + "end": 12243.72, + "probability": 0.9818 + }, + { + "start": 12244.92, + "end": 12246.0, + "probability": 0.3643 + }, + { + "start": 12246.78, + "end": 12247.78, + "probability": 0.4275 + }, + { + "start": 12248.02, + "end": 12248.64, + "probability": 0.3468 + }, + { + "start": 12249.16, + "end": 12255.76, + "probability": 0.982 + }, + { + "start": 12256.6, + "end": 12258.26, + "probability": 0.9706 + }, + { + "start": 12258.92, + "end": 12261.8, + "probability": 0.7092 + }, + { + "start": 12262.28, + "end": 12263.11, + "probability": 0.8746 + }, + { + "start": 12263.98, + "end": 12265.84, + "probability": 0.8891 + }, + { + "start": 12266.62, + "end": 12270.28, + "probability": 0.6925 + }, + { + "start": 12270.66, + "end": 12271.95, + "probability": 0.9717 + }, + { + "start": 12272.3, + "end": 12274.5, + "probability": 0.8251 + }, + { + "start": 12274.76, + "end": 12275.36, + "probability": 0.7241 + }, + { + "start": 12276.22, + "end": 12278.82, + "probability": 0.9541 + }, + { + "start": 12280.12, + "end": 12282.5, + "probability": 0.9622 + }, + { + "start": 12283.1, + "end": 12286.27, + "probability": 0.9922 + }, + { + "start": 12286.78, + "end": 12288.3, + "probability": 0.9902 + }, + { + "start": 12288.86, + "end": 12290.45, + "probability": 0.9102 + }, + { + "start": 12290.84, + "end": 12292.84, + "probability": 0.9916 + }, + { + "start": 12293.24, + "end": 12294.34, + "probability": 0.7672 + }, + { + "start": 12295.28, + "end": 12299.1, + "probability": 0.957 + }, + { + "start": 12299.4, + "end": 12300.34, + "probability": 0.7097 + }, + { + "start": 12300.4, + "end": 12301.18, + "probability": 0.7155 + }, + { + "start": 12301.4, + "end": 12301.96, + "probability": 0.782 + }, + { + "start": 12302.98, + "end": 12303.52, + "probability": 0.7579 + }, + { + "start": 12303.8, + "end": 12304.51, + "probability": 0.7083 + }, + { + "start": 12304.62, + "end": 12306.52, + "probability": 0.9718 + }, + { + "start": 12306.52, + "end": 12309.68, + "probability": 0.9683 + }, + { + "start": 12310.3, + "end": 12314.34, + "probability": 0.9539 + }, + { + "start": 12314.56, + "end": 12316.9, + "probability": 0.9908 + }, + { + "start": 12317.1, + "end": 12320.1, + "probability": 0.9386 + }, + { + "start": 12320.92, + "end": 12320.94, + "probability": 0.6514 + }, + { + "start": 12321.88, + "end": 12323.84, + "probability": 0.9778 + }, + { + "start": 12324.4, + "end": 12326.04, + "probability": 0.5365 + }, + { + "start": 12326.64, + "end": 12329.8, + "probability": 0.7766 + }, + { + "start": 12330.24, + "end": 12333.02, + "probability": 0.9915 + }, + { + "start": 12333.68, + "end": 12335.04, + "probability": 0.9917 + }, + { + "start": 12336.62, + "end": 12340.74, + "probability": 0.7998 + }, + { + "start": 12340.8, + "end": 12342.14, + "probability": 0.822 + }, + { + "start": 12342.52, + "end": 12345.32, + "probability": 0.9832 + }, + { + "start": 12345.32, + "end": 12349.8, + "probability": 0.9941 + }, + { + "start": 12350.42, + "end": 12352.34, + "probability": 0.9769 + }, + { + "start": 12353.02, + "end": 12356.66, + "probability": 0.9554 + }, + { + "start": 12356.74, + "end": 12357.42, + "probability": 0.8419 + }, + { + "start": 12357.84, + "end": 12358.68, + "probability": 0.9504 + }, + { + "start": 12358.86, + "end": 12359.74, + "probability": 0.9811 + }, + { + "start": 12359.82, + "end": 12360.4, + "probability": 0.9545 + }, + { + "start": 12360.46, + "end": 12361.1, + "probability": 0.5207 + }, + { + "start": 12361.58, + "end": 12365.8, + "probability": 0.9766 + }, + { + "start": 12366.1, + "end": 12366.68, + "probability": 0.4516 + }, + { + "start": 12367.3, + "end": 12368.88, + "probability": 0.0058 + }, + { + "start": 12368.88, + "end": 12372.62, + "probability": 0.5036 + }, + { + "start": 12373.89, + "end": 12378.18, + "probability": 0.7039 + }, + { + "start": 12378.4, + "end": 12382.58, + "probability": 0.4802 + }, + { + "start": 12383.94, + "end": 12384.66, + "probability": 0.1024 + }, + { + "start": 12385.84, + "end": 12386.76, + "probability": 0.0389 + }, + { + "start": 12386.76, + "end": 12386.82, + "probability": 0.1982 + }, + { + "start": 12386.82, + "end": 12386.82, + "probability": 0.3125 + }, + { + "start": 12386.82, + "end": 12386.82, + "probability": 0.1081 + }, + { + "start": 12386.82, + "end": 12389.84, + "probability": 0.2436 + }, + { + "start": 12390.12, + "end": 12390.8, + "probability": 0.2971 + }, + { + "start": 12390.86, + "end": 12392.02, + "probability": 0.7845 + }, + { + "start": 12404.42, + "end": 12406.46, + "probability": 0.6395 + }, + { + "start": 12408.8, + "end": 12409.92, + "probability": 0.0556 + }, + { + "start": 12410.3, + "end": 12413.08, + "probability": 0.0462 + }, + { + "start": 12413.17, + "end": 12414.28, + "probability": 0.1538 + }, + { + "start": 12416.3, + "end": 12416.3, + "probability": 0.0268 + }, + { + "start": 12416.42, + "end": 12417.36, + "probability": 0.3575 + }, + { + "start": 12419.06, + "end": 12420.8, + "probability": 0.5101 + }, + { + "start": 12422.32, + "end": 12427.6, + "probability": 0.9777 + }, + { + "start": 12428.68, + "end": 12430.7, + "probability": 0.8868 + }, + { + "start": 12431.72, + "end": 12435.66, + "probability": 0.9809 + }, + { + "start": 12435.66, + "end": 12440.36, + "probability": 0.988 + }, + { + "start": 12442.22, + "end": 12446.9, + "probability": 0.9854 + }, + { + "start": 12448.64, + "end": 12452.76, + "probability": 0.99 + }, + { + "start": 12453.66, + "end": 12454.32, + "probability": 0.9919 + }, + { + "start": 12454.98, + "end": 12456.48, + "probability": 0.8836 + }, + { + "start": 12457.72, + "end": 12459.16, + "probability": 0.9728 + }, + { + "start": 12460.12, + "end": 12460.9, + "probability": 0.7309 + }, + { + "start": 12461.78, + "end": 12465.68, + "probability": 0.9745 + }, + { + "start": 12466.6, + "end": 12470.34, + "probability": 0.9533 + }, + { + "start": 12473.58, + "end": 12474.44, + "probability": 0.5952 + }, + { + "start": 12474.88, + "end": 12477.52, + "probability": 0.9729 + }, + { + "start": 12478.4, + "end": 12480.02, + "probability": 0.9247 + }, + { + "start": 12481.26, + "end": 12484.6, + "probability": 0.2272 + }, + { + "start": 12485.56, + "end": 12486.68, + "probability": 0.924 + }, + { + "start": 12487.84, + "end": 12491.1, + "probability": 0.7549 + }, + { + "start": 12493.08, + "end": 12497.32, + "probability": 0.8545 + }, + { + "start": 12498.28, + "end": 12499.18, + "probability": 0.7825 + }, + { + "start": 12500.34, + "end": 12501.68, + "probability": 0.9366 + }, + { + "start": 12502.48, + "end": 12503.88, + "probability": 0.9473 + }, + { + "start": 12504.64, + "end": 12508.74, + "probability": 0.9554 + }, + { + "start": 12510.14, + "end": 12514.62, + "probability": 0.9437 + }, + { + "start": 12515.72, + "end": 12516.26, + "probability": 0.5521 + }, + { + "start": 12517.82, + "end": 12520.1, + "probability": 0.8852 + }, + { + "start": 12521.16, + "end": 12523.26, + "probability": 0.974 + }, + { + "start": 12523.94, + "end": 12524.82, + "probability": 0.4131 + }, + { + "start": 12525.36, + "end": 12528.7, + "probability": 0.9839 + }, + { + "start": 12530.1, + "end": 12532.68, + "probability": 0.8502 + }, + { + "start": 12533.44, + "end": 12535.36, + "probability": 0.9518 + }, + { + "start": 12536.08, + "end": 12537.56, + "probability": 0.9955 + }, + { + "start": 12538.14, + "end": 12541.98, + "probability": 0.9947 + }, + { + "start": 12543.3, + "end": 12547.36, + "probability": 0.9983 + }, + { + "start": 12549.0, + "end": 12552.62, + "probability": 0.9502 + }, + { + "start": 12553.64, + "end": 12555.04, + "probability": 0.9958 + }, + { + "start": 12555.72, + "end": 12556.36, + "probability": 0.8581 + }, + { + "start": 12557.0, + "end": 12559.7, + "probability": 0.998 + }, + { + "start": 12560.3, + "end": 12561.76, + "probability": 0.9992 + }, + { + "start": 12562.94, + "end": 12568.12, + "probability": 0.9941 + }, + { + "start": 12569.06, + "end": 12570.72, + "probability": 0.4857 + }, + { + "start": 12571.78, + "end": 12573.37, + "probability": 0.785 + }, + { + "start": 12574.32, + "end": 12575.12, + "probability": 0.7909 + }, + { + "start": 12575.76, + "end": 12578.04, + "probability": 0.9753 + }, + { + "start": 12578.76, + "end": 12580.62, + "probability": 0.7158 + }, + { + "start": 12581.42, + "end": 12582.9, + "probability": 0.6514 + }, + { + "start": 12583.7, + "end": 12584.74, + "probability": 0.9917 + }, + { + "start": 12585.36, + "end": 12587.04, + "probability": 0.9951 + }, + { + "start": 12587.88, + "end": 12591.22, + "probability": 0.8683 + }, + { + "start": 12591.7, + "end": 12593.68, + "probability": 0.743 + }, + { + "start": 12594.84, + "end": 12596.06, + "probability": 0.7577 + }, + { + "start": 12596.5, + "end": 12596.66, + "probability": 0.5416 + }, + { + "start": 12597.36, + "end": 12599.36, + "probability": 0.8735 + }, + { + "start": 12599.7, + "end": 12601.2, + "probability": 0.9566 + }, + { + "start": 12601.3, + "end": 12601.88, + "probability": 0.404 + }, + { + "start": 12601.9, + "end": 12603.34, + "probability": 0.9624 + }, + { + "start": 12608.48, + "end": 12611.45, + "probability": 0.9552 + }, + { + "start": 12613.44, + "end": 12613.96, + "probability": 0.7094 + }, + { + "start": 12614.14, + "end": 12614.76, + "probability": 0.6867 + }, + { + "start": 12615.16, + "end": 12615.8, + "probability": 0.7824 + }, + { + "start": 12616.12, + "end": 12616.96, + "probability": 0.7996 + }, + { + "start": 12618.58, + "end": 12620.06, + "probability": 0.7611 + }, + { + "start": 12621.14, + "end": 12625.16, + "probability": 0.7729 + }, + { + "start": 12626.12, + "end": 12630.92, + "probability": 0.9899 + }, + { + "start": 12630.92, + "end": 12634.54, + "probability": 0.9847 + }, + { + "start": 12635.62, + "end": 12636.08, + "probability": 0.3954 + }, + { + "start": 12636.86, + "end": 12639.44, + "probability": 0.9087 + }, + { + "start": 12639.54, + "end": 12640.06, + "probability": 0.822 + }, + { + "start": 12640.12, + "end": 12640.52, + "probability": 0.7393 + }, + { + "start": 12640.62, + "end": 12640.78, + "probability": 0.3328 + }, + { + "start": 12641.28, + "end": 12642.64, + "probability": 0.4399 + }, + { + "start": 12642.64, + "end": 12644.64, + "probability": 0.7869 + }, + { + "start": 12644.76, + "end": 12645.92, + "probability": 0.9601 + }, + { + "start": 12646.92, + "end": 12652.14, + "probability": 0.9551 + }, + { + "start": 12653.18, + "end": 12655.18, + "probability": 0.9473 + }, + { + "start": 12655.42, + "end": 12656.12, + "probability": 0.9753 + }, + { + "start": 12657.68, + "end": 12660.34, + "probability": 0.9539 + }, + { + "start": 12661.52, + "end": 12663.58, + "probability": 0.9839 + }, + { + "start": 12663.74, + "end": 12664.26, + "probability": 0.9355 + }, + { + "start": 12664.44, + "end": 12666.86, + "probability": 0.9939 + }, + { + "start": 12666.86, + "end": 12669.44, + "probability": 0.9901 + }, + { + "start": 12669.5, + "end": 12669.96, + "probability": 0.8359 + }, + { + "start": 12670.08, + "end": 12670.26, + "probability": 0.6063 + }, + { + "start": 12670.96, + "end": 12671.84, + "probability": 0.4389 + }, + { + "start": 12672.88, + "end": 12675.26, + "probability": 0.85 + }, + { + "start": 12675.88, + "end": 12677.52, + "probability": 0.9542 + }, + { + "start": 12678.38, + "end": 12681.74, + "probability": 0.9909 + }, + { + "start": 12683.04, + "end": 12685.6, + "probability": 0.8099 + }, + { + "start": 12685.76, + "end": 12689.64, + "probability": 0.9946 + }, + { + "start": 12690.44, + "end": 12694.22, + "probability": 0.9774 + }, + { + "start": 12694.6, + "end": 12695.42, + "probability": 0.679 + }, + { + "start": 12695.76, + "end": 12697.28, + "probability": 0.9161 + }, + { + "start": 12699.0, + "end": 12700.9, + "probability": 0.938 + }, + { + "start": 12701.28, + "end": 12704.14, + "probability": 0.9707 + }, + { + "start": 12706.32, + "end": 12710.72, + "probability": 0.9912 + }, + { + "start": 12711.5, + "end": 12713.44, + "probability": 0.9585 + }, + { + "start": 12714.22, + "end": 12717.4, + "probability": 0.9218 + }, + { + "start": 12719.14, + "end": 12719.64, + "probability": 0.8324 + }, + { + "start": 12720.08, + "end": 12720.08, + "probability": 0.5064 + }, + { + "start": 12720.08, + "end": 12722.64, + "probability": 0.9917 + }, + { + "start": 12723.24, + "end": 12724.96, + "probability": 0.9963 + }, + { + "start": 12725.66, + "end": 12726.0, + "probability": 0.4957 + }, + { + "start": 12726.14, + "end": 12727.58, + "probability": 0.701 + }, + { + "start": 12727.8, + "end": 12728.0, + "probability": 0.8223 + }, + { + "start": 12729.98, + "end": 12729.98, + "probability": 0.2015 + }, + { + "start": 12729.98, + "end": 12730.72, + "probability": 0.5568 + }, + { + "start": 12730.82, + "end": 12733.52, + "probability": 0.6095 + }, + { + "start": 12734.1, + "end": 12740.18, + "probability": 0.8797 + }, + { + "start": 12740.72, + "end": 12742.1, + "probability": 0.9451 + }, + { + "start": 12742.36, + "end": 12743.24, + "probability": 0.7284 + }, + { + "start": 12743.28, + "end": 12744.98, + "probability": 0.75 + }, + { + "start": 12745.5, + "end": 12747.54, + "probability": 0.854 + }, + { + "start": 12749.04, + "end": 12751.2, + "probability": 0.862 + }, + { + "start": 12751.84, + "end": 12753.17, + "probability": 0.8301 + }, + { + "start": 12754.02, + "end": 12754.88, + "probability": 0.9389 + }, + { + "start": 12755.06, + "end": 12755.66, + "probability": 0.8053 + }, + { + "start": 12755.86, + "end": 12756.48, + "probability": 0.88 + }, + { + "start": 12756.56, + "end": 12757.9, + "probability": 0.9563 + }, + { + "start": 12759.34, + "end": 12759.5, + "probability": 0.3647 + }, + { + "start": 12759.62, + "end": 12760.22, + "probability": 0.7127 + }, + { + "start": 12760.34, + "end": 12761.5, + "probability": 0.6254 + }, + { + "start": 12761.82, + "end": 12762.78, + "probability": 0.8486 + }, + { + "start": 12763.12, + "end": 12763.86, + "probability": 0.9109 + }, + { + "start": 12763.88, + "end": 12764.46, + "probability": 0.9727 + }, + { + "start": 12764.74, + "end": 12768.82, + "probability": 0.9911 + }, + { + "start": 12769.08, + "end": 12770.54, + "probability": 0.9995 + }, + { + "start": 12771.16, + "end": 12774.1, + "probability": 0.6781 + }, + { + "start": 12774.54, + "end": 12775.76, + "probability": 0.9114 + }, + { + "start": 12775.92, + "end": 12776.66, + "probability": 0.5991 + }, + { + "start": 12777.02, + "end": 12778.55, + "probability": 0.8218 + }, + { + "start": 12779.1, + "end": 12780.76, + "probability": 0.829 + }, + { + "start": 12781.02, + "end": 12782.43, + "probability": 0.8422 + }, + { + "start": 12783.04, + "end": 12784.16, + "probability": 0.6936 + }, + { + "start": 12784.78, + "end": 12785.44, + "probability": 0.9053 + }, + { + "start": 12786.28, + "end": 12788.74, + "probability": 0.8897 + }, + { + "start": 12789.47, + "end": 12791.6, + "probability": 0.7415 + }, + { + "start": 12791.82, + "end": 12792.42, + "probability": 0.8875 + }, + { + "start": 12792.48, + "end": 12795.64, + "probability": 0.9702 + }, + { + "start": 12795.88, + "end": 12799.7, + "probability": 0.9883 + }, + { + "start": 12800.04, + "end": 12800.32, + "probability": 0.3085 + }, + { + "start": 12800.32, + "end": 12801.76, + "probability": 0.6846 + }, + { + "start": 12801.94, + "end": 12803.56, + "probability": 0.9658 + }, + { + "start": 12803.72, + "end": 12804.54, + "probability": 0.3914 + }, + { + "start": 12804.66, + "end": 12806.26, + "probability": 0.935 + }, + { + "start": 12812.28, + "end": 12812.84, + "probability": 0.5514 + }, + { + "start": 12813.12, + "end": 12814.22, + "probability": 0.7352 + }, + { + "start": 12814.3, + "end": 12815.82, + "probability": 0.7627 + }, + { + "start": 12816.0, + "end": 12817.04, + "probability": 0.9256 + }, + { + "start": 12823.88, + "end": 12824.58, + "probability": 0.5572 + }, + { + "start": 12826.68, + "end": 12826.68, + "probability": 0.2764 + }, + { + "start": 12826.68, + "end": 12826.68, + "probability": 0.7385 + }, + { + "start": 12826.68, + "end": 12831.46, + "probability": 0.9797 + }, + { + "start": 12832.22, + "end": 12835.0, + "probability": 0.9173 + }, + { + "start": 12835.82, + "end": 12839.56, + "probability": 0.9645 + }, + { + "start": 12839.96, + "end": 12843.74, + "probability": 0.9987 + }, + { + "start": 12843.74, + "end": 12848.86, + "probability": 0.9969 + }, + { + "start": 12849.64, + "end": 12851.46, + "probability": 0.8895 + }, + { + "start": 12851.98, + "end": 12853.4, + "probability": 0.9703 + }, + { + "start": 12855.34, + "end": 12856.68, + "probability": 0.6927 + }, + { + "start": 12857.4, + "end": 12858.46, + "probability": 0.874 + }, + { + "start": 12859.6, + "end": 12863.12, + "probability": 0.9931 + }, + { + "start": 12864.78, + "end": 12865.48, + "probability": 0.6639 + }, + { + "start": 12865.56, + "end": 12867.74, + "probability": 0.9135 + }, + { + "start": 12868.22, + "end": 12869.16, + "probability": 0.6579 + }, + { + "start": 12869.24, + "end": 12870.7, + "probability": 0.9974 + }, + { + "start": 12871.8, + "end": 12875.58, + "probability": 0.9611 + }, + { + "start": 12876.28, + "end": 12876.84, + "probability": 0.594 + }, + { + "start": 12878.02, + "end": 12878.78, + "probability": 0.915 + }, + { + "start": 12878.96, + "end": 12879.66, + "probability": 0.6548 + }, + { + "start": 12879.74, + "end": 12882.82, + "probability": 0.9976 + }, + { + "start": 12883.44, + "end": 12886.78, + "probability": 0.9255 + }, + { + "start": 12887.88, + "end": 12890.5, + "probability": 0.9795 + }, + { + "start": 12891.18, + "end": 12893.12, + "probability": 0.87 + }, + { + "start": 12893.26, + "end": 12894.36, + "probability": 0.5663 + }, + { + "start": 12895.5, + "end": 12897.2, + "probability": 0.9681 + }, + { + "start": 12897.48, + "end": 12898.22, + "probability": 0.7543 + }, + { + "start": 12898.68, + "end": 12900.93, + "probability": 0.7608 + }, + { + "start": 12902.72, + "end": 12909.38, + "probability": 0.9531 + }, + { + "start": 12909.38, + "end": 12912.78, + "probability": 0.8936 + }, + { + "start": 12913.84, + "end": 12915.28, + "probability": 0.9987 + }, + { + "start": 12916.4, + "end": 12919.04, + "probability": 0.9914 + }, + { + "start": 12919.94, + "end": 12921.82, + "probability": 0.9553 + }, + { + "start": 12923.12, + "end": 12923.76, + "probability": 0.6646 + }, + { + "start": 12923.88, + "end": 12926.24, + "probability": 0.9172 + }, + { + "start": 12926.24, + "end": 12928.92, + "probability": 0.9966 + }, + { + "start": 12930.14, + "end": 12930.32, + "probability": 0.6614 + }, + { + "start": 12930.36, + "end": 12931.16, + "probability": 0.8834 + }, + { + "start": 12931.42, + "end": 12934.98, + "probability": 0.9202 + }, + { + "start": 12935.62, + "end": 12937.36, + "probability": 0.994 + }, + { + "start": 12937.94, + "end": 12940.38, + "probability": 0.963 + }, + { + "start": 12942.0, + "end": 12943.96, + "probability": 0.9873 + }, + { + "start": 12945.52, + "end": 12949.46, + "probability": 0.9443 + }, + { + "start": 12950.32, + "end": 12953.78, + "probability": 0.9917 + }, + { + "start": 12954.68, + "end": 12956.64, + "probability": 0.9463 + }, + { + "start": 12957.26, + "end": 12959.48, + "probability": 0.8311 + }, + { + "start": 12960.62, + "end": 12962.58, + "probability": 0.9743 + }, + { + "start": 12963.84, + "end": 12964.64, + "probability": 0.9783 + }, + { + "start": 12965.64, + "end": 12966.96, + "probability": 0.8903 + }, + { + "start": 12967.78, + "end": 12970.56, + "probability": 0.9836 + }, + { + "start": 12971.1, + "end": 12975.12, + "probability": 0.8046 + }, + { + "start": 12975.24, + "end": 12976.37, + "probability": 0.9314 + }, + { + "start": 12977.9, + "end": 12978.56, + "probability": 0.5725 + }, + { + "start": 12978.72, + "end": 12982.32, + "probability": 0.9854 + }, + { + "start": 12983.12, + "end": 12984.44, + "probability": 0.9951 + }, + { + "start": 12985.1, + "end": 12985.98, + "probability": 0.8928 + }, + { + "start": 12986.72, + "end": 12987.84, + "probability": 0.9469 + }, + { + "start": 12988.5, + "end": 12988.86, + "probability": 0.7621 + }, + { + "start": 12989.22, + "end": 12991.3, + "probability": 0.6743 + }, + { + "start": 12991.44, + "end": 12993.72, + "probability": 0.8934 + }, + { + "start": 12993.8, + "end": 12994.34, + "probability": 0.4191 + }, + { + "start": 12994.34, + "end": 12995.48, + "probability": 0.7256 + }, + { + "start": 12995.66, + "end": 12996.22, + "probability": 0.7884 + }, + { + "start": 13006.46, + "end": 13009.72, + "probability": 0.9678 + }, + { + "start": 13016.58, + "end": 13017.24, + "probability": 0.6155 + }, + { + "start": 13017.78, + "end": 13020.54, + "probability": 0.8733 + }, + { + "start": 13021.42, + "end": 13023.32, + "probability": 0.6305 + }, + { + "start": 13023.84, + "end": 13026.44, + "probability": 0.9767 + }, + { + "start": 13028.12, + "end": 13029.38, + "probability": 0.897 + }, + { + "start": 13030.18, + "end": 13032.84, + "probability": 0.998 + }, + { + "start": 13033.8, + "end": 13035.66, + "probability": 0.9946 + }, + { + "start": 13036.86, + "end": 13038.3, + "probability": 0.9004 + }, + { + "start": 13038.48, + "end": 13039.18, + "probability": 0.6927 + }, + { + "start": 13039.46, + "end": 13042.04, + "probability": 0.9287 + }, + { + "start": 13042.5, + "end": 13043.94, + "probability": 0.9729 + }, + { + "start": 13044.92, + "end": 13046.24, + "probability": 0.9955 + }, + { + "start": 13046.38, + "end": 13046.88, + "probability": 0.5016 + }, + { + "start": 13046.96, + "end": 13047.62, + "probability": 0.9801 + }, + { + "start": 13048.3, + "end": 13049.25, + "probability": 0.8685 + }, + { + "start": 13050.84, + "end": 13051.77, + "probability": 0.9163 + }, + { + "start": 13052.62, + "end": 13053.74, + "probability": 0.7476 + }, + { + "start": 13054.82, + "end": 13056.92, + "probability": 0.8415 + }, + { + "start": 13057.0, + "end": 13057.38, + "probability": 0.6864 + }, + { + "start": 13057.42, + "end": 13058.02, + "probability": 0.8247 + }, + { + "start": 13058.4, + "end": 13058.98, + "probability": 0.3674 + }, + { + "start": 13059.02, + "end": 13060.84, + "probability": 0.5868 + }, + { + "start": 13061.26, + "end": 13062.0, + "probability": 0.884 + }, + { + "start": 13062.8, + "end": 13065.44, + "probability": 0.9696 + }, + { + "start": 13066.04, + "end": 13066.42, + "probability": 0.7381 + }, + { + "start": 13067.14, + "end": 13069.76, + "probability": 0.9751 + }, + { + "start": 13070.18, + "end": 13071.06, + "probability": 0.667 + }, + { + "start": 13071.56, + "end": 13076.22, + "probability": 0.9492 + }, + { + "start": 13077.54, + "end": 13078.4, + "probability": 0.823 + }, + { + "start": 13078.6, + "end": 13079.9, + "probability": 0.8659 + }, + { + "start": 13080.52, + "end": 13081.2, + "probability": 0.963 + }, + { + "start": 13082.04, + "end": 13085.02, + "probability": 0.9619 + }, + { + "start": 13086.06, + "end": 13089.62, + "probability": 0.9349 + }, + { + "start": 13090.18, + "end": 13091.26, + "probability": 0.8599 + }, + { + "start": 13092.18, + "end": 13094.54, + "probability": 0.9862 + }, + { + "start": 13095.48, + "end": 13099.76, + "probability": 0.9753 + }, + { + "start": 13100.42, + "end": 13101.66, + "probability": 0.8379 + }, + { + "start": 13101.96, + "end": 13103.04, + "probability": 0.8234 + }, + { + "start": 13103.18, + "end": 13104.98, + "probability": 0.9919 + }, + { + "start": 13105.88, + "end": 13108.4, + "probability": 0.9712 + }, + { + "start": 13108.54, + "end": 13109.08, + "probability": 0.9158 + }, + { + "start": 13109.14, + "end": 13109.82, + "probability": 0.6788 + }, + { + "start": 13110.58, + "end": 13111.52, + "probability": 0.9758 + }, + { + "start": 13112.12, + "end": 13112.94, + "probability": 0.9953 + }, + { + "start": 13113.48, + "end": 13114.64, + "probability": 0.9873 + }, + { + "start": 13114.98, + "end": 13116.06, + "probability": 0.9375 + }, + { + "start": 13116.36, + "end": 13116.92, + "probability": 0.4197 + }, + { + "start": 13117.12, + "end": 13119.9, + "probability": 0.8257 + }, + { + "start": 13120.48, + "end": 13121.84, + "probability": 0.9961 + }, + { + "start": 13121.94, + "end": 13123.36, + "probability": 0.8878 + }, + { + "start": 13123.92, + "end": 13125.14, + "probability": 0.8536 + }, + { + "start": 13125.2, + "end": 13126.0, + "probability": 0.9716 + }, + { + "start": 13126.44, + "end": 13127.72, + "probability": 0.9526 + }, + { + "start": 13128.12, + "end": 13129.9, + "probability": 0.9658 + }, + { + "start": 13130.34, + "end": 13131.78, + "probability": 0.98 + }, + { + "start": 13131.82, + "end": 13133.04, + "probability": 0.8276 + }, + { + "start": 13133.1, + "end": 13134.24, + "probability": 0.9236 + }, + { + "start": 13135.18, + "end": 13137.74, + "probability": 0.9193 + }, + { + "start": 13138.34, + "end": 13142.36, + "probability": 0.9878 + }, + { + "start": 13142.46, + "end": 13144.42, + "probability": 0.7433 + }, + { + "start": 13144.72, + "end": 13146.8, + "probability": 0.9812 + }, + { + "start": 13146.86, + "end": 13147.78, + "probability": 0.8998 + }, + { + "start": 13148.18, + "end": 13150.08, + "probability": 0.9968 + }, + { + "start": 13150.08, + "end": 13153.06, + "probability": 0.8641 + }, + { + "start": 13153.66, + "end": 13155.62, + "probability": 0.6783 + }, + { + "start": 13156.08, + "end": 13159.98, + "probability": 0.9544 + }, + { + "start": 13160.38, + "end": 13161.28, + "probability": 0.6882 + }, + { + "start": 13161.38, + "end": 13166.2, + "probability": 0.9136 + }, + { + "start": 13166.36, + "end": 13166.88, + "probability": 0.9309 + }, + { + "start": 13167.06, + "end": 13168.02, + "probability": 0.8708 + }, + { + "start": 13168.56, + "end": 13169.24, + "probability": 0.8373 + }, + { + "start": 13169.32, + "end": 13171.16, + "probability": 0.4885 + }, + { + "start": 13171.54, + "end": 13172.36, + "probability": 0.9367 + }, + { + "start": 13172.82, + "end": 13174.84, + "probability": 0.989 + }, + { + "start": 13175.18, + "end": 13176.84, + "probability": 0.9932 + }, + { + "start": 13177.44, + "end": 13177.68, + "probability": 0.4556 + }, + { + "start": 13177.72, + "end": 13178.2, + "probability": 0.7597 + }, + { + "start": 13178.36, + "end": 13181.46, + "probability": 0.9917 + }, + { + "start": 13181.82, + "end": 13184.16, + "probability": 0.6343 + }, + { + "start": 13184.36, + "end": 13185.58, + "probability": 0.6146 + }, + { + "start": 13185.68, + "end": 13187.46, + "probability": 0.5529 + }, + { + "start": 13187.92, + "end": 13188.64, + "probability": 0.874 + }, + { + "start": 13188.68, + "end": 13188.78, + "probability": 0.604 + }, + { + "start": 13189.42, + "end": 13190.18, + "probability": 0.8645 + }, + { + "start": 13190.8, + "end": 13192.0, + "probability": 0.9341 + }, + { + "start": 13192.08, + "end": 13192.72, + "probability": 0.9421 + }, + { + "start": 13192.88, + "end": 13192.92, + "probability": 0.2503 + }, + { + "start": 13192.92, + "end": 13193.16, + "probability": 0.8727 + }, + { + "start": 13193.54, + "end": 13197.26, + "probability": 0.9521 + }, + { + "start": 13197.34, + "end": 13198.58, + "probability": 0.7817 + }, + { + "start": 13198.58, + "end": 13199.04, + "probability": 0.9179 + }, + { + "start": 13199.3, + "end": 13203.26, + "probability": 0.9619 + }, + { + "start": 13203.66, + "end": 13205.86, + "probability": 0.9919 + }, + { + "start": 13206.34, + "end": 13208.12, + "probability": 0.8948 + }, + { + "start": 13208.22, + "end": 13209.02, + "probability": 0.9165 + }, + { + "start": 13210.04, + "end": 13211.2, + "probability": 0.8258 + }, + { + "start": 13211.98, + "end": 13214.86, + "probability": 0.7291 + }, + { + "start": 13214.94, + "end": 13215.68, + "probability": 0.5984 + }, + { + "start": 13215.72, + "end": 13218.94, + "probability": 0.9143 + }, + { + "start": 13219.28, + "end": 13222.08, + "probability": 0.9731 + }, + { + "start": 13222.5, + "end": 13223.92, + "probability": 0.8647 + }, + { + "start": 13223.92, + "end": 13225.08, + "probability": 0.7865 + }, + { + "start": 13225.62, + "end": 13229.54, + "probability": 0.7396 + }, + { + "start": 13230.38, + "end": 13232.5, + "probability": 0.7806 + }, + { + "start": 13232.62, + "end": 13233.76, + "probability": 0.3454 + }, + { + "start": 13233.78, + "end": 13234.2, + "probability": 0.7785 + }, + { + "start": 13234.82, + "end": 13237.9, + "probability": 0.621 + }, + { + "start": 13237.96, + "end": 13239.34, + "probability": 0.9053 + }, + { + "start": 13239.56, + "end": 13240.2, + "probability": 0.8018 + }, + { + "start": 13240.26, + "end": 13242.62, + "probability": 0.8438 + }, + { + "start": 13242.78, + "end": 13243.16, + "probability": 0.4944 + }, + { + "start": 13245.56, + "end": 13247.52, + "probability": 0.8362 + }, + { + "start": 13253.24, + "end": 13254.52, + "probability": 0.7029 + }, + { + "start": 13255.76, + "end": 13256.02, + "probability": 0.9157 + }, + { + "start": 13256.54, + "end": 13259.1, + "probability": 0.7084 + }, + { + "start": 13259.92, + "end": 13262.13, + "probability": 0.7384 + }, + { + "start": 13263.18, + "end": 13265.62, + "probability": 0.8411 + }, + { + "start": 13266.4, + "end": 13267.21, + "probability": 0.9827 + }, + { + "start": 13268.24, + "end": 13270.62, + "probability": 0.8329 + }, + { + "start": 13272.38, + "end": 13273.34, + "probability": 0.8068 + }, + { + "start": 13274.38, + "end": 13276.92, + "probability": 0.978 + }, + { + "start": 13277.08, + "end": 13278.14, + "probability": 0.9411 + }, + { + "start": 13279.68, + "end": 13281.59, + "probability": 0.9697 + }, + { + "start": 13282.84, + "end": 13284.58, + "probability": 0.9972 + }, + { + "start": 13285.36, + "end": 13285.78, + "probability": 0.9915 + }, + { + "start": 13286.34, + "end": 13287.96, + "probability": 0.8415 + }, + { + "start": 13288.16, + "end": 13290.62, + "probability": 0.869 + }, + { + "start": 13290.68, + "end": 13292.5, + "probability": 0.9796 + }, + { + "start": 13293.7, + "end": 13297.0, + "probability": 0.9697 + }, + { + "start": 13297.14, + "end": 13299.42, + "probability": 0.9765 + }, + { + "start": 13299.48, + "end": 13302.5, + "probability": 0.9988 + }, + { + "start": 13303.68, + "end": 13305.98, + "probability": 0.7793 + }, + { + "start": 13306.14, + "end": 13311.32, + "probability": 0.9937 + }, + { + "start": 13311.32, + "end": 13313.82, + "probability": 0.9777 + }, + { + "start": 13315.58, + "end": 13315.94, + "probability": 0.0357 + }, + { + "start": 13315.94, + "end": 13317.44, + "probability": 0.4975 + }, + { + "start": 13317.48, + "end": 13319.56, + "probability": 0.9829 + }, + { + "start": 13319.8, + "end": 13320.76, + "probability": 0.5893 + }, + { + "start": 13322.5, + "end": 13325.53, + "probability": 0.9906 + }, + { + "start": 13326.38, + "end": 13327.88, + "probability": 0.9976 + }, + { + "start": 13328.34, + "end": 13329.5, + "probability": 0.9377 + }, + { + "start": 13329.66, + "end": 13331.42, + "probability": 0.8677 + }, + { + "start": 13331.44, + "end": 13331.86, + "probability": 0.5356 + }, + { + "start": 13332.08, + "end": 13332.98, + "probability": 0.8921 + }, + { + "start": 13333.32, + "end": 13336.18, + "probability": 0.2768 + }, + { + "start": 13336.18, + "end": 13339.08, + "probability": 0.9157 + }, + { + "start": 13339.26, + "end": 13342.37, + "probability": 0.9927 + }, + { + "start": 13342.76, + "end": 13343.22, + "probability": 0.3859 + }, + { + "start": 13343.48, + "end": 13344.7, + "probability": 0.972 + }, + { + "start": 13345.68, + "end": 13349.28, + "probability": 0.978 + }, + { + "start": 13350.08, + "end": 13351.8, + "probability": 0.9658 + }, + { + "start": 13352.16, + "end": 13354.72, + "probability": 0.9648 + }, + { + "start": 13354.78, + "end": 13357.0, + "probability": 0.9976 + }, + { + "start": 13357.08, + "end": 13357.98, + "probability": 0.4977 + }, + { + "start": 13358.04, + "end": 13362.8, + "probability": 0.9166 + }, + { + "start": 13363.0, + "end": 13367.88, + "probability": 0.9578 + }, + { + "start": 13369.62, + "end": 13372.55, + "probability": 0.9808 + }, + { + "start": 13373.84, + "end": 13373.92, + "probability": 0.0567 + }, + { + "start": 13374.26, + "end": 13375.46, + "probability": 0.7481 + }, + { + "start": 13375.72, + "end": 13377.48, + "probability": 0.893 + }, + { + "start": 13377.68, + "end": 13378.56, + "probability": 0.3919 + }, + { + "start": 13379.08, + "end": 13380.16, + "probability": 0.9051 + }, + { + "start": 13380.24, + "end": 13383.4, + "probability": 0.9749 + }, + { + "start": 13384.02, + "end": 13387.52, + "probability": 0.9216 + }, + { + "start": 13388.72, + "end": 13389.7, + "probability": 0.3369 + }, + { + "start": 13390.26, + "end": 13392.27, + "probability": 0.5191 + }, + { + "start": 13393.9, + "end": 13396.86, + "probability": 0.9639 + }, + { + "start": 13397.82, + "end": 13400.0, + "probability": 0.7288 + }, + { + "start": 13400.92, + "end": 13401.9, + "probability": 0.7668 + }, + { + "start": 13402.14, + "end": 13402.92, + "probability": 0.798 + }, + { + "start": 13403.44, + "end": 13409.16, + "probability": 0.9581 + }, + { + "start": 13409.48, + "end": 13409.84, + "probability": 0.6225 + }, + { + "start": 13410.34, + "end": 13412.58, + "probability": 0.9094 + }, + { + "start": 13412.76, + "end": 13413.1, + "probability": 0.5792 + }, + { + "start": 13414.22, + "end": 13416.1, + "probability": 0.6483 + }, + { + "start": 13434.36, + "end": 13434.36, + "probability": 0.1876 + }, + { + "start": 13434.36, + "end": 13434.36, + "probability": 0.083 + }, + { + "start": 13434.36, + "end": 13437.3, + "probability": 0.8562 + }, + { + "start": 13437.3, + "end": 13441.54, + "probability": 0.9843 + }, + { + "start": 13442.66, + "end": 13445.12, + "probability": 0.9428 + }, + { + "start": 13445.12, + "end": 13449.96, + "probability": 0.8551 + }, + { + "start": 13450.66, + "end": 13452.38, + "probability": 0.9858 + }, + { + "start": 13453.3, + "end": 13455.54, + "probability": 0.8013 + }, + { + "start": 13456.16, + "end": 13458.06, + "probability": 0.9089 + }, + { + "start": 13458.72, + "end": 13460.8, + "probability": 0.968 + }, + { + "start": 13461.36, + "end": 13464.18, + "probability": 0.7996 + }, + { + "start": 13466.26, + "end": 13468.32, + "probability": 0.9965 + }, + { + "start": 13469.28, + "end": 13470.98, + "probability": 0.8582 + }, + { + "start": 13472.86, + "end": 13476.12, + "probability": 0.9823 + }, + { + "start": 13476.94, + "end": 13481.72, + "probability": 0.9334 + }, + { + "start": 13482.44, + "end": 13482.98, + "probability": 0.6143 + }, + { + "start": 13483.52, + "end": 13484.81, + "probability": 0.4463 + }, + { + "start": 13485.88, + "end": 13489.58, + "probability": 0.9772 + }, + { + "start": 13491.02, + "end": 13495.05, + "probability": 0.9795 + }, + { + "start": 13496.5, + "end": 13498.98, + "probability": 0.9981 + }, + { + "start": 13499.62, + "end": 13503.4, + "probability": 0.9858 + }, + { + "start": 13504.14, + "end": 13508.6, + "probability": 0.9931 + }, + { + "start": 13509.86, + "end": 13511.56, + "probability": 0.7739 + }, + { + "start": 13512.3, + "end": 13516.14, + "probability": 0.9678 + }, + { + "start": 13517.34, + "end": 13520.34, + "probability": 0.8438 + }, + { + "start": 13521.0, + "end": 13523.28, + "probability": 0.9817 + }, + { + "start": 13523.86, + "end": 13525.14, + "probability": 0.8873 + }, + { + "start": 13526.0, + "end": 13531.26, + "probability": 0.9115 + }, + { + "start": 13531.26, + "end": 13531.6, + "probability": 0.0491 + }, + { + "start": 13531.6, + "end": 13531.74, + "probability": 0.5602 + }, + { + "start": 13533.12, + "end": 13535.64, + "probability": 0.6661 + }, + { + "start": 13535.76, + "end": 13538.76, + "probability": 0.957 + }, + { + "start": 13539.02, + "end": 13539.66, + "probability": 0.6217 + }, + { + "start": 13540.32, + "end": 13543.26, + "probability": 0.8633 + }, + { + "start": 13544.3, + "end": 13545.64, + "probability": 0.9308 + }, + { + "start": 13546.46, + "end": 13549.58, + "probability": 0.9759 + }, + { + "start": 13550.14, + "end": 13551.18, + "probability": 0.5697 + }, + { + "start": 13551.82, + "end": 13553.68, + "probability": 0.9573 + }, + { + "start": 13554.96, + "end": 13558.28, + "probability": 0.9883 + }, + { + "start": 13558.76, + "end": 13559.7, + "probability": 0.8787 + }, + { + "start": 13561.1, + "end": 13562.98, + "probability": 0.7111 + }, + { + "start": 13562.98, + "end": 13565.36, + "probability": 0.9968 + }, + { + "start": 13565.9, + "end": 13566.38, + "probability": 0.7288 + }, + { + "start": 13567.64, + "end": 13570.18, + "probability": 0.9814 + }, + { + "start": 13570.72, + "end": 13572.88, + "probability": 0.8588 + }, + { + "start": 13573.94, + "end": 13577.16, + "probability": 0.9948 + }, + { + "start": 13578.46, + "end": 13579.02, + "probability": 0.7535 + }, + { + "start": 13579.92, + "end": 13580.54, + "probability": 0.9784 + }, + { + "start": 13582.76, + "end": 13584.14, + "probability": 0.9139 + }, + { + "start": 13584.28, + "end": 13586.86, + "probability": 0.9947 + }, + { + "start": 13587.9, + "end": 13590.56, + "probability": 0.9905 + }, + { + "start": 13591.08, + "end": 13595.28, + "probability": 0.9976 + }, + { + "start": 13595.84, + "end": 13598.1, + "probability": 0.9531 + }, + { + "start": 13599.24, + "end": 13600.84, + "probability": 0.9597 + }, + { + "start": 13601.92, + "end": 13604.62, + "probability": 0.9814 + }, + { + "start": 13605.6, + "end": 13608.4, + "probability": 0.9455 + }, + { + "start": 13608.94, + "end": 13610.84, + "probability": 0.9849 + }, + { + "start": 13611.38, + "end": 13613.54, + "probability": 0.8156 + }, + { + "start": 13615.22, + "end": 13617.34, + "probability": 0.9727 + }, + { + "start": 13617.92, + "end": 13623.06, + "probability": 0.957 + }, + { + "start": 13623.06, + "end": 13627.58, + "probability": 0.993 + }, + { + "start": 13629.16, + "end": 13633.74, + "probability": 0.9909 + }, + { + "start": 13635.2, + "end": 13639.68, + "probability": 0.6563 + }, + { + "start": 13640.26, + "end": 13643.86, + "probability": 0.9485 + }, + { + "start": 13647.72, + "end": 13651.02, + "probability": 0.9639 + }, + { + "start": 13652.18, + "end": 13652.94, + "probability": 0.8799 + }, + { + "start": 13653.72, + "end": 13655.9, + "probability": 0.995 + }, + { + "start": 13656.44, + "end": 13657.86, + "probability": 0.8238 + }, + { + "start": 13658.84, + "end": 13659.4, + "probability": 0.6492 + }, + { + "start": 13660.2, + "end": 13661.78, + "probability": 0.5066 + }, + { + "start": 13662.62, + "end": 13665.14, + "probability": 0.998 + }, + { + "start": 13665.84, + "end": 13667.32, + "probability": 0.9831 + }, + { + "start": 13668.1, + "end": 13672.7, + "probability": 0.9307 + }, + { + "start": 13673.44, + "end": 13674.18, + "probability": 0.9257 + }, + { + "start": 13675.98, + "end": 13681.2, + "probability": 0.993 + }, + { + "start": 13682.14, + "end": 13687.82, + "probability": 0.9823 + }, + { + "start": 13688.52, + "end": 13689.06, + "probability": 0.8986 + }, + { + "start": 13689.8, + "end": 13691.46, + "probability": 0.9675 + }, + { + "start": 13692.86, + "end": 13699.34, + "probability": 0.998 + }, + { + "start": 13700.26, + "end": 13702.54, + "probability": 0.9946 + }, + { + "start": 13702.94, + "end": 13706.01, + "probability": 0.9406 + }, + { + "start": 13706.54, + "end": 13707.54, + "probability": 0.0472 + }, + { + "start": 13709.76, + "end": 13711.0, + "probability": 0.0361 + }, + { + "start": 13711.54, + "end": 13712.44, + "probability": 0.8252 + }, + { + "start": 13713.38, + "end": 13715.26, + "probability": 0.6522 + }, + { + "start": 13715.78, + "end": 13715.82, + "probability": 0.108 + }, + { + "start": 13718.52, + "end": 13719.5, + "probability": 0.3078 + }, + { + "start": 13719.94, + "end": 13723.06, + "probability": 0.785 + }, + { + "start": 13723.56, + "end": 13728.46, + "probability": 0.9113 + }, + { + "start": 13728.72, + "end": 13731.44, + "probability": 0.9043 + }, + { + "start": 13732.02, + "end": 13734.36, + "probability": 0.9749 + }, + { + "start": 13735.12, + "end": 13740.52, + "probability": 0.9169 + }, + { + "start": 13740.66, + "end": 13742.1, + "probability": 0.8438 + }, + { + "start": 13742.22, + "end": 13742.58, + "probability": 0.5718 + }, + { + "start": 13742.74, + "end": 13743.1, + "probability": 0.8761 + }, + { + "start": 13743.36, + "end": 13744.04, + "probability": 0.9319 + }, + { + "start": 13744.66, + "end": 13745.66, + "probability": 0.8528 + }, + { + "start": 13745.76, + "end": 13746.0, + "probability": 0.5234 + }, + { + "start": 13746.06, + "end": 13747.1, + "probability": 0.5507 + }, + { + "start": 13747.12, + "end": 13747.66, + "probability": 0.8619 + }, + { + "start": 13748.6, + "end": 13750.3, + "probability": 0.6833 + }, + { + "start": 13750.52, + "end": 13751.66, + "probability": 0.5404 + }, + { + "start": 13752.1, + "end": 13754.52, + "probability": 0.977 + }, + { + "start": 13755.99, + "end": 13761.26, + "probability": 0.6655 + }, + { + "start": 13761.76, + "end": 13765.26, + "probability": 0.6805 + }, + { + "start": 13765.94, + "end": 13768.64, + "probability": 0.984 + }, + { + "start": 13768.84, + "end": 13769.06, + "probability": 0.0979 + }, + { + "start": 13769.06, + "end": 13769.16, + "probability": 0.3859 + }, + { + "start": 13769.64, + "end": 13769.96, + "probability": 0.5045 + }, + { + "start": 13770.08, + "end": 13770.42, + "probability": 0.9369 + }, + { + "start": 13770.82, + "end": 13772.48, + "probability": 0.6966 + }, + { + "start": 13773.86, + "end": 13774.9, + "probability": 0.5937 + }, + { + "start": 13775.58, + "end": 13776.0, + "probability": 0.2338 + }, + { + "start": 13776.67, + "end": 13780.88, + "probability": 0.8445 + }, + { + "start": 13781.48, + "end": 13784.58, + "probability": 0.9854 + }, + { + "start": 13785.32, + "end": 13787.43, + "probability": 0.9666 + }, + { + "start": 13787.9, + "end": 13788.36, + "probability": 0.3534 + }, + { + "start": 13788.58, + "end": 13788.58, + "probability": 0.4677 + }, + { + "start": 13788.62, + "end": 13789.22, + "probability": 0.7229 + }, + { + "start": 13789.7, + "end": 13791.42, + "probability": 0.7517 + }, + { + "start": 13792.1, + "end": 13792.32, + "probability": 0.715 + }, + { + "start": 13792.76, + "end": 13795.08, + "probability": 0.6318 + }, + { + "start": 13796.12, + "end": 13801.02, + "probability": 0.9536 + }, + { + "start": 13801.64, + "end": 13803.46, + "probability": 0.9646 + }, + { + "start": 13803.88, + "end": 13805.52, + "probability": 0.9478 + }, + { + "start": 13805.98, + "end": 13809.0, + "probability": 0.9084 + }, + { + "start": 13809.34, + "end": 13811.82, + "probability": 0.988 + }, + { + "start": 13812.6, + "end": 13815.04, + "probability": 0.9935 + }, + { + "start": 13816.38, + "end": 13816.9, + "probability": 0.8771 + }, + { + "start": 13817.1, + "end": 13819.92, + "probability": 0.9387 + }, + { + "start": 13820.3, + "end": 13823.52, + "probability": 0.722 + }, + { + "start": 13824.06, + "end": 13827.06, + "probability": 0.9493 + }, + { + "start": 13829.81, + "end": 13830.58, + "probability": 0.1666 + }, + { + "start": 13831.8, + "end": 13835.56, + "probability": 0.5 + }, + { + "start": 13835.86, + "end": 13837.38, + "probability": 0.8787 + }, + { + "start": 13837.82, + "end": 13839.04, + "probability": 0.8716 + }, + { + "start": 13839.56, + "end": 13839.92, + "probability": 0.674 + }, + { + "start": 13840.7, + "end": 13842.31, + "probability": 0.5869 + }, + { + "start": 13845.88, + "end": 13848.98, + "probability": 0.8854 + }, + { + "start": 13853.79, + "end": 13857.98, + "probability": 0.5251 + }, + { + "start": 13857.98, + "end": 13859.36, + "probability": 0.3341 + }, + { + "start": 13859.46, + "end": 13861.2, + "probability": 0.7633 + }, + { + "start": 13861.58, + "end": 13861.72, + "probability": 0.4416 + }, + { + "start": 13861.86, + "end": 13866.52, + "probability": 0.927 + }, + { + "start": 13866.9, + "end": 13867.72, + "probability": 0.6052 + }, + { + "start": 13868.06, + "end": 13868.96, + "probability": 0.7802 + }, + { + "start": 13870.0, + "end": 13870.56, + "probability": 0.1589 + }, + { + "start": 13883.26, + "end": 13883.66, + "probability": 0.0612 + }, + { + "start": 13883.66, + "end": 13885.36, + "probability": 0.7769 + }, + { + "start": 13885.82, + "end": 13892.76, + "probability": 0.9839 + }, + { + "start": 13893.42, + "end": 13895.12, + "probability": 0.8069 + }, + { + "start": 13895.52, + "end": 13900.24, + "probability": 0.9896 + }, + { + "start": 13915.18, + "end": 13915.52, + "probability": 0.1996 + }, + { + "start": 13916.18, + "end": 13916.86, + "probability": 0.6674 + }, + { + "start": 13916.86, + "end": 13918.08, + "probability": 0.0885 + }, + { + "start": 13919.2, + "end": 13920.26, + "probability": 0.043 + }, + { + "start": 13920.9, + "end": 13921.18, + "probability": 0.2766 + }, + { + "start": 13922.04, + "end": 13923.08, + "probability": 0.3201 + }, + { + "start": 13923.1, + "end": 13923.22, + "probability": 0.1777 + }, + { + "start": 13923.24, + "end": 13923.38, + "probability": 0.187 + }, + { + "start": 13923.48, + "end": 13925.02, + "probability": 0.2997 + }, + { + "start": 13925.36, + "end": 13926.06, + "probability": 0.4314 + }, + { + "start": 13926.38, + "end": 13927.98, + "probability": 0.6337 + }, + { + "start": 13928.08, + "end": 13928.42, + "probability": 0.7168 + }, + { + "start": 13928.76, + "end": 13931.04, + "probability": 0.6375 + }, + { + "start": 13931.44, + "end": 13933.54, + "probability": 0.9336 + }, + { + "start": 13933.92, + "end": 13938.86, + "probability": 0.9375 + }, + { + "start": 13940.28, + "end": 13941.84, + "probability": 0.7611 + }, + { + "start": 13941.88, + "end": 13942.54, + "probability": 0.933 + }, + { + "start": 13942.66, + "end": 13944.36, + "probability": 0.7459 + }, + { + "start": 13944.98, + "end": 13945.56, + "probability": 0.8097 + }, + { + "start": 13947.5, + "end": 13947.7, + "probability": 0.8134 + }, + { + "start": 13949.87, + "end": 13953.8, + "probability": 0.6761 + }, + { + "start": 13955.96, + "end": 13958.88, + "probability": 0.7485 + }, + { + "start": 13959.6, + "end": 13961.72, + "probability": 0.6915 + }, + { + "start": 13962.42, + "end": 13964.26, + "probability": 0.6634 + }, + { + "start": 13965.1, + "end": 13965.3, + "probability": 0.6963 + }, + { + "start": 13965.8, + "end": 13967.86, + "probability": 0.3028 + }, + { + "start": 13967.94, + "end": 13968.24, + "probability": 0.3301 + }, + { + "start": 13968.26, + "end": 13969.1, + "probability": 0.6342 + }, + { + "start": 13969.96, + "end": 13971.64, + "probability": 0.1158 + }, + { + "start": 13973.24, + "end": 13977.44, + "probability": 0.8741 + }, + { + "start": 13979.44, + "end": 13980.78, + "probability": 0.5074 + }, + { + "start": 13984.48, + "end": 13987.6, + "probability": 0.957 + }, + { + "start": 13988.5, + "end": 13989.48, + "probability": 0.9648 + }, + { + "start": 13991.04, + "end": 13998.14, + "probability": 0.9427 + }, + { + "start": 14001.64, + "end": 14005.38, + "probability": 0.6364 + }, + { + "start": 14006.34, + "end": 14007.98, + "probability": 0.5561 + }, + { + "start": 14008.74, + "end": 14010.7, + "probability": 0.9305 + }, + { + "start": 14012.38, + "end": 14017.1, + "probability": 0.8418 + }, + { + "start": 14018.3, + "end": 14022.58, + "probability": 0.5283 + }, + { + "start": 14024.24, + "end": 14026.2, + "probability": 0.9855 + }, + { + "start": 14027.02, + "end": 14029.58, + "probability": 0.9538 + }, + { + "start": 14030.3, + "end": 14032.04, + "probability": 0.3028 + }, + { + "start": 14032.68, + "end": 14037.48, + "probability": 0.917 + }, + { + "start": 14038.88, + "end": 14040.78, + "probability": 0.9885 + }, + { + "start": 14041.5, + "end": 14046.88, + "probability": 0.5264 + }, + { + "start": 14047.82, + "end": 14051.4, + "probability": 0.9956 + }, + { + "start": 14051.7, + "end": 14052.26, + "probability": 0.4977 + }, + { + "start": 14054.14, + "end": 14055.6, + "probability": 0.2765 + }, + { + "start": 14057.64, + "end": 14058.92, + "probability": 0.545 + }, + { + "start": 14059.14, + "end": 14064.68, + "probability": 0.7599 + }, + { + "start": 14067.02, + "end": 14070.36, + "probability": 0.8566 + }, + { + "start": 14071.34, + "end": 14074.26, + "probability": 0.947 + }, + { + "start": 14074.86, + "end": 14076.96, + "probability": 0.6642 + }, + { + "start": 14077.84, + "end": 14080.4, + "probability": 0.4963 + }, + { + "start": 14080.46, + "end": 14081.68, + "probability": 0.2994 + }, + { + "start": 14082.54, + "end": 14087.08, + "probability": 0.4349 + }, + { + "start": 14087.5, + "end": 14091.3, + "probability": 0.8912 + }, + { + "start": 14092.82, + "end": 14096.44, + "probability": 0.7062 + }, + { + "start": 14099.37, + "end": 14101.0, + "probability": 0.7537 + }, + { + "start": 14101.3, + "end": 14103.28, + "probability": 0.7609 + }, + { + "start": 14104.28, + "end": 14106.82, + "probability": 0.7377 + }, + { + "start": 14107.9, + "end": 14113.6, + "probability": 0.5689 + }, + { + "start": 14113.82, + "end": 14115.03, + "probability": 0.5036 + }, + { + "start": 14115.82, + "end": 14119.42, + "probability": 0.6719 + }, + { + "start": 14120.98, + "end": 14122.04, + "probability": 0.7229 + }, + { + "start": 14122.18, + "end": 14123.98, + "probability": 0.8766 + }, + { + "start": 14124.44, + "end": 14125.9, + "probability": 0.863 + }, + { + "start": 14126.7, + "end": 14128.36, + "probability": 0.461 + }, + { + "start": 14130.14, + "end": 14133.08, + "probability": 0.9527 + }, + { + "start": 14133.14, + "end": 14140.18, + "probability": 0.9844 + }, + { + "start": 14140.56, + "end": 14146.34, + "probability": 0.6676 + }, + { + "start": 14146.38, + "end": 14149.62, + "probability": 0.9071 + }, + { + "start": 14152.32, + "end": 14153.14, + "probability": 0.6938 + }, + { + "start": 14153.42, + "end": 14159.54, + "probability": 0.7133 + }, + { + "start": 14159.58, + "end": 14160.9, + "probability": 0.5931 + }, + { + "start": 14162.73, + "end": 14162.94, + "probability": 0.0022 + }, + { + "start": 14162.94, + "end": 14164.9, + "probability": 0.3106 + }, + { + "start": 14165.0, + "end": 14166.06, + "probability": 0.539 + }, + { + "start": 14171.18, + "end": 14173.64, + "probability": 0.7434 + }, + { + "start": 14173.7, + "end": 14174.52, + "probability": 0.6324 + }, + { + "start": 14175.14, + "end": 14177.3, + "probability": 0.9946 + }, + { + "start": 14178.66, + "end": 14182.36, + "probability": 0.8455 + }, + { + "start": 14189.42, + "end": 14190.4, + "probability": 0.6781 + }, + { + "start": 14193.26, + "end": 14196.94, + "probability": 0.6639 + }, + { + "start": 14197.44, + "end": 14203.84, + "probability": 0.7934 + }, + { + "start": 14204.56, + "end": 14207.16, + "probability": 0.9665 + }, + { + "start": 14207.62, + "end": 14209.41, + "probability": 0.9678 + }, + { + "start": 14211.12, + "end": 14213.04, + "probability": 0.9987 + }, + { + "start": 14214.48, + "end": 14215.96, + "probability": 0.5104 + }, + { + "start": 14216.16, + "end": 14216.92, + "probability": 0.5579 + }, + { + "start": 14217.02, + "end": 14217.64, + "probability": 0.6765 + }, + { + "start": 14218.86, + "end": 14220.94, + "probability": 0.9655 + }, + { + "start": 14221.32, + "end": 14222.34, + "probability": 0.9569 + }, + { + "start": 14222.64, + "end": 14224.42, + "probability": 0.9477 + }, + { + "start": 14225.66, + "end": 14228.92, + "probability": 0.5886 + }, + { + "start": 14231.64, + "end": 14233.02, + "probability": 0.4885 + }, + { + "start": 14233.84, + "end": 14236.12, + "probability": 0.9962 + }, + { + "start": 14236.8, + "end": 14238.78, + "probability": 0.9976 + }, + { + "start": 14238.82, + "end": 14241.56, + "probability": 0.6312 + }, + { + "start": 14242.76, + "end": 14245.08, + "probability": 0.7495 + }, + { + "start": 14246.0, + "end": 14247.12, + "probability": 0.7211 + }, + { + "start": 14247.94, + "end": 14248.89, + "probability": 0.0198 + }, + { + "start": 14249.1, + "end": 14250.2, + "probability": 0.2485 + }, + { + "start": 14250.92, + "end": 14255.22, + "probability": 0.4503 + }, + { + "start": 14255.78, + "end": 14257.66, + "probability": 0.55 + }, + { + "start": 14258.12, + "end": 14259.1, + "probability": 0.7423 + }, + { + "start": 14259.24, + "end": 14259.3, + "probability": 0.3121 + }, + { + "start": 14259.3, + "end": 14261.0, + "probability": 0.8228 + }, + { + "start": 14261.12, + "end": 14264.16, + "probability": 0.6711 + }, + { + "start": 14264.3, + "end": 14266.54, + "probability": 0.9858 + }, + { + "start": 14266.96, + "end": 14269.88, + "probability": 0.9478 + }, + { + "start": 14276.5, + "end": 14276.72, + "probability": 0.7551 + }, + { + "start": 14276.74, + "end": 14277.96, + "probability": 0.5877 + }, + { + "start": 14278.44, + "end": 14279.36, + "probability": 0.0545 + }, + { + "start": 14279.38, + "end": 14280.56, + "probability": 0.7111 + }, + { + "start": 14284.06, + "end": 14285.38, + "probability": 0.5951 + }, + { + "start": 14289.3, + "end": 14290.44, + "probability": 0.672 + }, + { + "start": 14291.58, + "end": 14298.36, + "probability": 0.524 + }, + { + "start": 14298.5, + "end": 14300.12, + "probability": 0.8457 + }, + { + "start": 14300.5, + "end": 14306.68, + "probability": 0.9199 + }, + { + "start": 14307.4, + "end": 14312.02, + "probability": 0.791 + }, + { + "start": 14312.08, + "end": 14315.42, + "probability": 0.512 + }, + { + "start": 14317.04, + "end": 14318.82, + "probability": 0.9915 + }, + { + "start": 14319.54, + "end": 14320.3, + "probability": 0.8516 + }, + { + "start": 14321.06, + "end": 14323.74, + "probability": 0.4852 + }, + { + "start": 14324.92, + "end": 14327.58, + "probability": 0.5554 + }, + { + "start": 14330.74, + "end": 14331.52, + "probability": 0.1672 + }, + { + "start": 14332.52, + "end": 14334.22, + "probability": 0.5147 + }, + { + "start": 14335.6, + "end": 14338.72, + "probability": 0.8376 + }, + { + "start": 14339.14, + "end": 14339.74, + "probability": 0.265 + }, + { + "start": 14340.14, + "end": 14341.9, + "probability": 0.9229 + }, + { + "start": 14343.02, + "end": 14347.24, + "probability": 0.9799 + }, + { + "start": 14348.1, + "end": 14348.58, + "probability": 0.7725 + }, + { + "start": 14348.6, + "end": 14353.42, + "probability": 0.5829 + }, + { + "start": 14353.48, + "end": 14361.22, + "probability": 0.8543 + }, + { + "start": 14362.36, + "end": 14368.18, + "probability": 0.672 + }, + { + "start": 14368.64, + "end": 14369.78, + "probability": 0.7121 + }, + { + "start": 14370.55, + "end": 14376.82, + "probability": 0.942 + }, + { + "start": 14377.46, + "end": 14377.78, + "probability": 0.2672 + }, + { + "start": 14377.8, + "end": 14379.92, + "probability": 0.9575 + }, + { + "start": 14380.3, + "end": 14382.94, + "probability": 0.9139 + }, + { + "start": 14384.6, + "end": 14389.0, + "probability": 0.2235 + }, + { + "start": 14389.14, + "end": 14393.13, + "probability": 0.6863 + }, + { + "start": 14393.94, + "end": 14395.22, + "probability": 0.3666 + }, + { + "start": 14395.84, + "end": 14396.04, + "probability": 0.6554 + }, + { + "start": 14396.9, + "end": 14397.76, + "probability": 0.8528 + }, + { + "start": 14397.84, + "end": 14399.3, + "probability": 0.5012 + }, + { + "start": 14399.42, + "end": 14403.76, + "probability": 0.5349 + }, + { + "start": 14407.43, + "end": 14410.3, + "probability": 0.9448 + }, + { + "start": 14410.88, + "end": 14412.42, + "probability": 0.9819 + }, + { + "start": 14412.88, + "end": 14413.7, + "probability": 0.8926 + }, + { + "start": 14413.96, + "end": 14415.06, + "probability": 0.535 + }, + { + "start": 14415.22, + "end": 14418.96, + "probability": 0.528 + }, + { + "start": 14419.0, + "end": 14421.02, + "probability": 0.6095 + }, + { + "start": 14421.37, + "end": 14423.74, + "probability": 0.5969 + }, + { + "start": 14423.86, + "end": 14424.64, + "probability": 0.7432 + }, + { + "start": 14424.7, + "end": 14425.48, + "probability": 0.4959 + }, + { + "start": 14425.6, + "end": 14428.34, + "probability": 0.9081 + }, + { + "start": 14428.44, + "end": 14429.78, + "probability": 0.6959 + }, + { + "start": 14429.92, + "end": 14432.9, + "probability": 0.9614 + }, + { + "start": 14434.2, + "end": 14434.28, + "probability": 0.915 + }, + { + "start": 14434.82, + "end": 14435.68, + "probability": 0.458 + }, + { + "start": 14441.53, + "end": 14447.24, + "probability": 0.7344 + }, + { + "start": 14447.24, + "end": 14447.82, + "probability": 0.5652 + }, + { + "start": 14447.94, + "end": 14450.04, + "probability": 0.9972 + }, + { + "start": 14450.22, + "end": 14454.04, + "probability": 0.8853 + }, + { + "start": 14454.46, + "end": 14455.78, + "probability": 0.8587 + }, + { + "start": 14456.4, + "end": 14461.76, + "probability": 0.8588 + }, + { + "start": 14462.22, + "end": 14464.08, + "probability": 0.7086 + }, + { + "start": 14464.58, + "end": 14469.32, + "probability": 0.6002 + }, + { + "start": 14469.77, + "end": 14471.4, + "probability": 0.9612 + }, + { + "start": 14472.02, + "end": 14475.42, + "probability": 0.9468 + }, + { + "start": 14477.28, + "end": 14480.24, + "probability": 0.9036 + }, + { + "start": 14480.9, + "end": 14483.9, + "probability": 0.5787 + }, + { + "start": 14484.28, + "end": 14487.66, + "probability": 0.8624 + }, + { + "start": 14488.32, + "end": 14488.42, + "probability": 0.6754 + }, + { + "start": 14488.94, + "end": 14489.4, + "probability": 0.7227 + }, + { + "start": 14489.9, + "end": 14495.8, + "probability": 0.9028 + }, + { + "start": 14496.26, + "end": 14497.24, + "probability": 0.6523 + }, + { + "start": 14497.3, + "end": 14498.24, + "probability": 0.9644 + }, + { + "start": 14499.02, + "end": 14508.06, + "probability": 0.6853 + }, + { + "start": 14508.06, + "end": 14508.4, + "probability": 0.9304 + }, + { + "start": 14511.6, + "end": 14514.04, + "probability": 0.8562 + }, + { + "start": 14514.54, + "end": 14519.3, + "probability": 0.9141 + }, + { + "start": 14519.6, + "end": 14520.06, + "probability": 0.5735 + }, + { + "start": 14520.5, + "end": 14520.82, + "probability": 0.7138 + }, + { + "start": 14521.1, + "end": 14523.2, + "probability": 0.8111 + }, + { + "start": 14523.6, + "end": 14525.76, + "probability": 0.8567 + }, + { + "start": 14542.94, + "end": 14545.34, + "probability": 0.7543 + }, + { + "start": 14545.96, + "end": 14546.66, + "probability": 0.6843 + }, + { + "start": 14547.38, + "end": 14551.44, + "probability": 0.9465 + }, + { + "start": 14552.4, + "end": 14558.08, + "probability": 0.9833 + }, + { + "start": 14558.22, + "end": 14560.82, + "probability": 0.6485 + }, + { + "start": 14561.56, + "end": 14563.6, + "probability": 0.5961 + }, + { + "start": 14564.34, + "end": 14566.78, + "probability": 0.9763 + }, + { + "start": 14567.92, + "end": 14569.52, + "probability": 0.6125 + }, + { + "start": 14570.24, + "end": 14572.76, + "probability": 0.8993 + }, + { + "start": 14572.84, + "end": 14574.16, + "probability": 0.7042 + }, + { + "start": 14574.41, + "end": 14576.48, + "probability": 0.9726 + }, + { + "start": 14578.54, + "end": 14581.44, + "probability": 0.6232 + }, + { + "start": 14582.48, + "end": 14588.8, + "probability": 0.9768 + }, + { + "start": 14588.86, + "end": 14589.66, + "probability": 0.816 + }, + { + "start": 14590.32, + "end": 14591.12, + "probability": 0.7487 + }, + { + "start": 14591.96, + "end": 14595.8, + "probability": 0.9703 + }, + { + "start": 14596.3, + "end": 14597.82, + "probability": 0.9209 + }, + { + "start": 14598.48, + "end": 14604.0, + "probability": 0.9972 + }, + { + "start": 14604.7, + "end": 14610.18, + "probability": 0.9908 + }, + { + "start": 14611.66, + "end": 14613.78, + "probability": 0.8169 + }, + { + "start": 14614.56, + "end": 14620.08, + "probability": 0.9956 + }, + { + "start": 14620.68, + "end": 14623.28, + "probability": 0.979 + }, + { + "start": 14623.98, + "end": 14625.0, + "probability": 0.9863 + }, + { + "start": 14625.08, + "end": 14632.88, + "probability": 0.9702 + }, + { + "start": 14632.98, + "end": 14635.48, + "probability": 0.8819 + }, + { + "start": 14635.48, + "end": 14638.44, + "probability": 0.9813 + }, + { + "start": 14638.58, + "end": 14639.36, + "probability": 0.631 + }, + { + "start": 14640.02, + "end": 14641.72, + "probability": 0.994 + }, + { + "start": 14642.5, + "end": 14646.56, + "probability": 0.9819 + }, + { + "start": 14647.28, + "end": 14649.24, + "probability": 0.9846 + }, + { + "start": 14649.9, + "end": 14652.06, + "probability": 0.9873 + }, + { + "start": 14652.54, + "end": 14654.22, + "probability": 0.5961 + }, + { + "start": 14654.98, + "end": 14658.46, + "probability": 0.8913 + }, + { + "start": 14658.54, + "end": 14663.44, + "probability": 0.8793 + }, + { + "start": 14664.3, + "end": 14666.88, + "probability": 0.9017 + }, + { + "start": 14667.76, + "end": 14669.78, + "probability": 0.9463 + }, + { + "start": 14669.88, + "end": 14677.66, + "probability": 0.9664 + }, + { + "start": 14678.4, + "end": 14680.42, + "probability": 0.3979 + }, + { + "start": 14681.04, + "end": 14682.88, + "probability": 0.8462 + }, + { + "start": 14683.5, + "end": 14685.5, + "probability": 0.3677 + }, + { + "start": 14685.8, + "end": 14691.98, + "probability": 0.916 + }, + { + "start": 14692.14, + "end": 14699.8, + "probability": 0.7097 + }, + { + "start": 14700.36, + "end": 14703.64, + "probability": 0.7579 + }, + { + "start": 14704.76, + "end": 14708.02, + "probability": 0.7306 + }, + { + "start": 14709.48, + "end": 14713.8, + "probability": 0.9917 + }, + { + "start": 14713.88, + "end": 14714.72, + "probability": 0.7991 + }, + { + "start": 14715.14, + "end": 14715.88, + "probability": 0.0133 + }, + { + "start": 14716.88, + "end": 14718.58, + "probability": 0.6296 + }, + { + "start": 14719.48, + "end": 14722.9, + "probability": 0.9813 + }, + { + "start": 14723.38, + "end": 14724.4, + "probability": 0.7306 + }, + { + "start": 14725.08, + "end": 14726.36, + "probability": 0.8789 + }, + { + "start": 14727.12, + "end": 14731.02, + "probability": 0.7787 + }, + { + "start": 14731.38, + "end": 14732.14, + "probability": 0.5453 + }, + { + "start": 14732.2, + "end": 14733.14, + "probability": 0.8501 + }, + { + "start": 14733.56, + "end": 14736.88, + "probability": 0.9795 + }, + { + "start": 14737.32, + "end": 14741.64, + "probability": 0.857 + }, + { + "start": 14742.06, + "end": 14745.88, + "probability": 0.82 + }, + { + "start": 14746.28, + "end": 14748.42, + "probability": 0.7436 + }, + { + "start": 14748.44, + "end": 14751.34, + "probability": 0.9427 + }, + { + "start": 14751.42, + "end": 14752.12, + "probability": 0.5793 + }, + { + "start": 14752.56, + "end": 14758.28, + "probability": 0.5252 + }, + { + "start": 14758.86, + "end": 14762.72, + "probability": 0.7635 + }, + { + "start": 14763.26, + "end": 14766.08, + "probability": 0.8051 + }, + { + "start": 14766.08, + "end": 14767.94, + "probability": 0.5293 + }, + { + "start": 14768.48, + "end": 14774.66, + "probability": 0.9129 + }, + { + "start": 14775.16, + "end": 14779.02, + "probability": 0.8392 + }, + { + "start": 14779.12, + "end": 14780.96, + "probability": 0.7452 + }, + { + "start": 14781.04, + "end": 14782.16, + "probability": 0.907 + }, + { + "start": 14782.8, + "end": 14783.36, + "probability": 0.8141 + }, + { + "start": 14783.62, + "end": 14784.28, + "probability": 0.7973 + }, + { + "start": 14784.38, + "end": 14784.84, + "probability": 0.6283 + }, + { + "start": 14784.96, + "end": 14789.32, + "probability": 0.8642 + }, + { + "start": 14789.76, + "end": 14794.16, + "probability": 0.8948 + }, + { + "start": 14794.98, + "end": 14801.06, + "probability": 0.9465 + }, + { + "start": 14801.14, + "end": 14806.72, + "probability": 0.8824 + }, + { + "start": 14807.04, + "end": 14811.24, + "probability": 0.9803 + }, + { + "start": 14811.26, + "end": 14811.58, + "probability": 0.8202 + }, + { + "start": 14812.5, + "end": 14813.1, + "probability": 0.7712 + }, + { + "start": 14813.16, + "end": 14813.74, + "probability": 0.8953 + }, + { + "start": 14813.86, + "end": 14814.24, + "probability": 0.8244 + }, + { + "start": 14814.44, + "end": 14815.28, + "probability": 0.5094 + }, + { + "start": 14816.12, + "end": 14818.1, + "probability": 0.552 + }, + { + "start": 14818.84, + "end": 14819.54, + "probability": 0.7256 + }, + { + "start": 14819.68, + "end": 14821.54, + "probability": 0.7113 + }, + { + "start": 14821.72, + "end": 14823.33, + "probability": 0.5468 + }, + { + "start": 14824.62, + "end": 14830.0, + "probability": 0.9445 + }, + { + "start": 14830.96, + "end": 14835.34, + "probability": 0.8526 + }, + { + "start": 14835.94, + "end": 14838.14, + "probability": 0.6089 + }, + { + "start": 14839.96, + "end": 14845.74, + "probability": 0.5433 + }, + { + "start": 14847.14, + "end": 14850.06, + "probability": 0.5427 + }, + { + "start": 14850.26, + "end": 14853.78, + "probability": 0.8775 + }, + { + "start": 14854.08, + "end": 14855.4, + "probability": 0.7754 + }, + { + "start": 14856.34, + "end": 14859.5, + "probability": 0.9956 + }, + { + "start": 14859.66, + "end": 14862.18, + "probability": 0.8396 + }, + { + "start": 14862.26, + "end": 14862.72, + "probability": 0.4646 + }, + { + "start": 14863.02, + "end": 14863.54, + "probability": 0.8079 + }, + { + "start": 14863.84, + "end": 14868.42, + "probability": 0.9828 + }, + { + "start": 14870.46, + "end": 14872.04, + "probability": 0.9436 + }, + { + "start": 14872.18, + "end": 14875.4, + "probability": 0.4459 + }, + { + "start": 14876.19, + "end": 14879.92, + "probability": 0.9758 + }, + { + "start": 14880.86, + "end": 14884.12, + "probability": 0.5882 + }, + { + "start": 14884.12, + "end": 14884.46, + "probability": 0.627 + }, + { + "start": 14887.58, + "end": 14888.3, + "probability": 0.9004 + }, + { + "start": 14889.5, + "end": 14889.7, + "probability": 0.8355 + }, + { + "start": 14890.28, + "end": 14891.24, + "probability": 0.8097 + }, + { + "start": 14892.28, + "end": 14894.18, + "probability": 0.8685 + }, + { + "start": 14895.68, + "end": 14900.04, + "probability": 0.6158 + }, + { + "start": 14900.22, + "end": 14901.19, + "probability": 0.5913 + }, + { + "start": 14902.38, + "end": 14905.4, + "probability": 0.911 + }, + { + "start": 14907.24, + "end": 14907.98, + "probability": 0.659 + }, + { + "start": 14910.06, + "end": 14914.6, + "probability": 0.9931 + }, + { + "start": 14915.46, + "end": 14918.88, + "probability": 0.9594 + }, + { + "start": 14919.26, + "end": 14920.56, + "probability": 0.6731 + }, + { + "start": 14921.54, + "end": 14923.4, + "probability": 0.7963 + }, + { + "start": 14923.7, + "end": 14926.32, + "probability": 0.9403 + }, + { + "start": 14926.4, + "end": 14927.02, + "probability": 0.9296 + }, + { + "start": 14928.36, + "end": 14931.6, + "probability": 0.9548 + }, + { + "start": 14933.64, + "end": 14937.58, + "probability": 0.8613 + }, + { + "start": 14938.24, + "end": 14940.1, + "probability": 0.721 + }, + { + "start": 14940.94, + "end": 14941.28, + "probability": 0.6155 + }, + { + "start": 14942.4, + "end": 14946.9, + "probability": 0.8669 + }, + { + "start": 14947.54, + "end": 14949.66, + "probability": 0.4016 + }, + { + "start": 14950.14, + "end": 14950.46, + "probability": 0.6075 + }, + { + "start": 14951.0, + "end": 14951.24, + "probability": 0.9214 + }, + { + "start": 14952.56, + "end": 14957.46, + "probability": 0.9372 + }, + { + "start": 14958.0, + "end": 14960.84, + "probability": 0.7885 + }, + { + "start": 14961.58, + "end": 14963.68, + "probability": 0.9351 + }, + { + "start": 14964.46, + "end": 14965.38, + "probability": 0.8618 + }, + { + "start": 14965.88, + "end": 14966.84, + "probability": 0.8727 + }, + { + "start": 14967.62, + "end": 14970.4, + "probability": 0.7392 + }, + { + "start": 14970.96, + "end": 14976.18, + "probability": 0.7874 + }, + { + "start": 14976.94, + "end": 14976.94, + "probability": 0.0618 + }, + { + "start": 14977.04, + "end": 14980.8, + "probability": 0.7545 + }, + { + "start": 14981.06, + "end": 14982.31, + "probability": 0.9937 + }, + { + "start": 14982.58, + "end": 14983.04, + "probability": 0.7628 + }, + { + "start": 14983.12, + "end": 14986.82, + "probability": 0.6135 + }, + { + "start": 14987.84, + "end": 14988.32, + "probability": 0.5141 + }, + { + "start": 14989.58, + "end": 14990.97, + "probability": 0.998 + }, + { + "start": 14992.22, + "end": 14995.26, + "probability": 0.9969 + }, + { + "start": 14996.3, + "end": 14999.44, + "probability": 0.9707 + }, + { + "start": 15000.55, + "end": 15002.38, + "probability": 0.6879 + }, + { + "start": 15003.1, + "end": 15007.02, + "probability": 0.7162 + }, + { + "start": 15007.8, + "end": 15016.16, + "probability": 0.979 + }, + { + "start": 15016.16, + "end": 15021.62, + "probability": 0.9586 + }, + { + "start": 15022.2, + "end": 15025.2, + "probability": 0.9946 + }, + { + "start": 15025.26, + "end": 15025.98, + "probability": 0.6684 + }, + { + "start": 15026.26, + "end": 15026.84, + "probability": 0.9062 + }, + { + "start": 15027.94, + "end": 15029.12, + "probability": 0.9629 + }, + { + "start": 15029.76, + "end": 15031.62, + "probability": 0.9695 + }, + { + "start": 15031.96, + "end": 15035.1, + "probability": 0.9674 + }, + { + "start": 15036.32, + "end": 15039.32, + "probability": 0.8356 + }, + { + "start": 15040.0, + "end": 15040.54, + "probability": 0.1886 + }, + { + "start": 15041.66, + "end": 15044.68, + "probability": 0.929 + }, + { + "start": 15045.6, + "end": 15049.92, + "probability": 0.8257 + }, + { + "start": 15050.82, + "end": 15053.98, + "probability": 0.7432 + }, + { + "start": 15054.6, + "end": 15055.5, + "probability": 0.3873 + }, + { + "start": 15056.58, + "end": 15058.13, + "probability": 0.6432 + }, + { + "start": 15058.44, + "end": 15060.04, + "probability": 0.9001 + }, + { + "start": 15060.88, + "end": 15063.62, + "probability": 0.9012 + }, + { + "start": 15064.3, + "end": 15066.22, + "probability": 0.806 + }, + { + "start": 15066.32, + "end": 15068.32, + "probability": 0.9856 + }, + { + "start": 15068.84, + "end": 15069.12, + "probability": 0.9237 + }, + { + "start": 15069.22, + "end": 15070.72, + "probability": 0.9537 + }, + { + "start": 15070.8, + "end": 15071.62, + "probability": 0.6874 + }, + { + "start": 15072.64, + "end": 15073.93, + "probability": 0.9408 + }, + { + "start": 15075.28, + "end": 15076.24, + "probability": 0.976 + }, + { + "start": 15077.64, + "end": 15081.44, + "probability": 0.9266 + }, + { + "start": 15082.18, + "end": 15083.24, + "probability": 0.8928 + }, + { + "start": 15084.22, + "end": 15086.08, + "probability": 0.9904 + }, + { + "start": 15086.12, + "end": 15088.62, + "probability": 0.8334 + }, + { + "start": 15089.55, + "end": 15092.62, + "probability": 0.9734 + }, + { + "start": 15094.18, + "end": 15095.6, + "probability": 0.9934 + }, + { + "start": 15095.78, + "end": 15096.38, + "probability": 0.2602 + }, + { + "start": 15097.12, + "end": 15099.84, + "probability": 0.8533 + }, + { + "start": 15101.26, + "end": 15103.06, + "probability": 0.7314 + }, + { + "start": 15103.42, + "end": 15104.53, + "probability": 0.7256 + }, + { + "start": 15105.7, + "end": 15109.28, + "probability": 0.9783 + }, + { + "start": 15109.74, + "end": 15111.54, + "probability": 0.4556 + }, + { + "start": 15112.44, + "end": 15113.8, + "probability": 0.8359 + }, + { + "start": 15113.9, + "end": 15114.5, + "probability": 0.9861 + }, + { + "start": 15115.28, + "end": 15116.08, + "probability": 0.9966 + }, + { + "start": 15117.04, + "end": 15122.48, + "probability": 0.9986 + }, + { + "start": 15123.12, + "end": 15123.9, + "probability": 0.5949 + }, + { + "start": 15124.64, + "end": 15125.42, + "probability": 0.8955 + }, + { + "start": 15125.82, + "end": 15127.14, + "probability": 0.6879 + }, + { + "start": 15127.88, + "end": 15130.44, + "probability": 0.8328 + }, + { + "start": 15130.74, + "end": 15131.2, + "probability": 0.7102 + }, + { + "start": 15131.4, + "end": 15131.8, + "probability": 0.0662 + }, + { + "start": 15132.48, + "end": 15137.68, + "probability": 0.9932 + }, + { + "start": 15137.86, + "end": 15138.92, + "probability": 0.5277 + }, + { + "start": 15140.16, + "end": 15142.08, + "probability": 0.4795 + }, + { + "start": 15142.54, + "end": 15143.54, + "probability": 0.6198 + }, + { + "start": 15144.56, + "end": 15147.16, + "probability": 0.9699 + }, + { + "start": 15147.78, + "end": 15148.58, + "probability": 0.9336 + }, + { + "start": 15148.86, + "end": 15153.26, + "probability": 0.973 + }, + { + "start": 15154.1, + "end": 15156.24, + "probability": 0.999 + }, + { + "start": 15157.16, + "end": 15161.46, + "probability": 0.7007 + }, + { + "start": 15162.62, + "end": 15164.06, + "probability": 0.7439 + }, + { + "start": 15164.2, + "end": 15164.86, + "probability": 0.8764 + }, + { + "start": 15165.82, + "end": 15169.28, + "probability": 0.9112 + }, + { + "start": 15169.68, + "end": 15172.36, + "probability": 0.9467 + }, + { + "start": 15173.14, + "end": 15173.62, + "probability": 0.5819 + }, + { + "start": 15174.32, + "end": 15177.26, + "probability": 0.9635 + }, + { + "start": 15177.76, + "end": 15179.16, + "probability": 0.9968 + }, + { + "start": 15179.38, + "end": 15180.78, + "probability": 0.9703 + }, + { + "start": 15180.88, + "end": 15183.0, + "probability": 0.8848 + }, + { + "start": 15183.26, + "end": 15183.36, + "probability": 0.6856 + }, + { + "start": 15184.48, + "end": 15186.44, + "probability": 0.9917 + }, + { + "start": 15187.04, + "end": 15189.14, + "probability": 0.621 + }, + { + "start": 15189.2, + "end": 15189.6, + "probability": 0.5281 + }, + { + "start": 15190.46, + "end": 15192.02, + "probability": 0.9624 + }, + { + "start": 15206.02, + "end": 15206.82, + "probability": 0.8694 + }, + { + "start": 15207.48, + "end": 15211.34, + "probability": 0.9105 + }, + { + "start": 15212.24, + "end": 15213.44, + "probability": 0.4995 + }, + { + "start": 15216.54, + "end": 15217.92, + "probability": 0.9272 + }, + { + "start": 15219.19, + "end": 15222.96, + "probability": 0.835 + }, + { + "start": 15224.0, + "end": 15225.74, + "probability": 0.9721 + }, + { + "start": 15227.86, + "end": 15232.56, + "probability": 0.9696 + }, + { + "start": 15232.98, + "end": 15233.32, + "probability": 0.6885 + }, + { + "start": 15235.87, + "end": 15237.18, + "probability": 0.7379 + }, + { + "start": 15239.06, + "end": 15239.78, + "probability": 0.9621 + }, + { + "start": 15241.46, + "end": 15241.5, + "probability": 0.6134 + }, + { + "start": 15241.5, + "end": 15241.94, + "probability": 0.6317 + }, + { + "start": 15242.82, + "end": 15246.64, + "probability": 0.9854 + }, + { + "start": 15247.46, + "end": 15248.62, + "probability": 0.9957 + }, + { + "start": 15249.56, + "end": 15252.94, + "probability": 0.9928 + }, + { + "start": 15252.94, + "end": 15256.0, + "probability": 0.987 + }, + { + "start": 15256.12, + "end": 15257.38, + "probability": 0.3768 + }, + { + "start": 15257.58, + "end": 15257.84, + "probability": 0.4643 + }, + { + "start": 15258.04, + "end": 15258.88, + "probability": 0.9676 + }, + { + "start": 15258.96, + "end": 15259.96, + "probability": 0.9482 + }, + { + "start": 15260.08, + "end": 15261.24, + "probability": 0.9027 + }, + { + "start": 15261.98, + "end": 15263.36, + "probability": 0.2532 + }, + { + "start": 15263.4, + "end": 15264.06, + "probability": 0.071 + }, + { + "start": 15264.92, + "end": 15265.58, + "probability": 0.6578 + }, + { + "start": 15265.7, + "end": 15267.16, + "probability": 0.6726 + }, + { + "start": 15267.18, + "end": 15271.04, + "probability": 0.98 + }, + { + "start": 15271.92, + "end": 15274.22, + "probability": 0.7921 + }, + { + "start": 15275.02, + "end": 15277.88, + "probability": 0.7402 + }, + { + "start": 15279.82, + "end": 15281.78, + "probability": 0.9487 + }, + { + "start": 15282.14, + "end": 15283.24, + "probability": 0.8622 + }, + { + "start": 15284.5, + "end": 15284.94, + "probability": 0.8528 + }, + { + "start": 15285.44, + "end": 15287.64, + "probability": 0.9893 + }, + { + "start": 15288.02, + "end": 15289.19, + "probability": 0.7466 + }, + { + "start": 15290.28, + "end": 15292.1, + "probability": 0.8761 + }, + { + "start": 15292.98, + "end": 15293.46, + "probability": 0.8955 + }, + { + "start": 15294.12, + "end": 15294.86, + "probability": 0.2368 + }, + { + "start": 15295.54, + "end": 15297.38, + "probability": 0.5808 + }, + { + "start": 15297.42, + "end": 15301.42, + "probability": 0.8694 + }, + { + "start": 15301.46, + "end": 15302.3, + "probability": 0.9482 + }, + { + "start": 15302.82, + "end": 15304.1, + "probability": 0.8223 + }, + { + "start": 15306.86, + "end": 15309.48, + "probability": 0.9941 + }, + { + "start": 15309.54, + "end": 15311.48, + "probability": 0.9451 + }, + { + "start": 15313.82, + "end": 15318.26, + "probability": 0.9946 + }, + { + "start": 15318.94, + "end": 15323.1, + "probability": 0.998 + }, + { + "start": 15323.24, + "end": 15325.1, + "probability": 0.9827 + }, + { + "start": 15326.1, + "end": 15326.45, + "probability": 0.8922 + }, + { + "start": 15327.86, + "end": 15327.86, + "probability": 0.001 + }, + { + "start": 15329.26, + "end": 15329.7, + "probability": 0.2056 + }, + { + "start": 15329.7, + "end": 15330.87, + "probability": 0.9941 + }, + { + "start": 15333.42, + "end": 15334.86, + "probability": 0.2827 + }, + { + "start": 15335.28, + "end": 15335.62, + "probability": 0.6524 + }, + { + "start": 15335.78, + "end": 15339.62, + "probability": 0.9077 + }, + { + "start": 15341.12, + "end": 15342.36, + "probability": 0.9502 + }, + { + "start": 15342.74, + "end": 15345.28, + "probability": 0.9922 + }, + { + "start": 15345.34, + "end": 15346.78, + "probability": 0.7654 + }, + { + "start": 15347.68, + "end": 15349.76, + "probability": 0.8501 + }, + { + "start": 15351.5, + "end": 15351.98, + "probability": 0.979 + }, + { + "start": 15352.56, + "end": 15353.46, + "probability": 0.9609 + }, + { + "start": 15353.96, + "end": 15356.1, + "probability": 0.8833 + }, + { + "start": 15356.98, + "end": 15357.77, + "probability": 0.9597 + }, + { + "start": 15358.54, + "end": 15359.49, + "probability": 0.8989 + }, + { + "start": 15360.46, + "end": 15361.4, + "probability": 0.9634 + }, + { + "start": 15362.8, + "end": 15363.48, + "probability": 0.8574 + }, + { + "start": 15364.46, + "end": 15365.18, + "probability": 0.9907 + }, + { + "start": 15365.34, + "end": 15366.08, + "probability": 0.8916 + }, + { + "start": 15366.38, + "end": 15367.06, + "probability": 0.747 + }, + { + "start": 15368.1, + "end": 15369.94, + "probability": 0.9976 + }, + { + "start": 15370.46, + "end": 15372.02, + "probability": 0.7461 + }, + { + "start": 15373.22, + "end": 15374.48, + "probability": 0.8884 + }, + { + "start": 15374.56, + "end": 15375.62, + "probability": 0.9978 + }, + { + "start": 15376.72, + "end": 15378.1, + "probability": 0.9873 + }, + { + "start": 15379.04, + "end": 15379.88, + "probability": 0.6176 + }, + { + "start": 15381.1, + "end": 15383.08, + "probability": 0.8641 + }, + { + "start": 15384.32, + "end": 15387.7, + "probability": 0.9207 + }, + { + "start": 15388.28, + "end": 15389.7, + "probability": 0.9443 + }, + { + "start": 15390.36, + "end": 15391.52, + "probability": 0.7592 + }, + { + "start": 15392.76, + "end": 15393.28, + "probability": 0.7391 + }, + { + "start": 15395.06, + "end": 15396.62, + "probability": 0.8418 + }, + { + "start": 15397.56, + "end": 15400.78, + "probability": 0.5552 + }, + { + "start": 15400.88, + "end": 15402.64, + "probability": 0.7578 + }, + { + "start": 15403.8, + "end": 15404.22, + "probability": 0.4935 + }, + { + "start": 15404.3, + "end": 15405.12, + "probability": 0.9731 + }, + { + "start": 15405.94, + "end": 15407.42, + "probability": 0.8564 + }, + { + "start": 15407.56, + "end": 15408.64, + "probability": 0.3932 + }, + { + "start": 15409.14, + "end": 15410.84, + "probability": 0.9702 + }, + { + "start": 15410.96, + "end": 15415.24, + "probability": 0.9435 + }, + { + "start": 15415.46, + "end": 15415.94, + "probability": 0.6768 + }, + { + "start": 15415.98, + "end": 15416.68, + "probability": 0.9321 + }, + { + "start": 15416.88, + "end": 15418.0, + "probability": 0.9879 + }, + { + "start": 15419.16, + "end": 15420.2, + "probability": 0.8714 + }, + { + "start": 15420.42, + "end": 15421.84, + "probability": 0.9189 + }, + { + "start": 15421.96, + "end": 15423.1, + "probability": 0.7673 + }, + { + "start": 15423.28, + "end": 15424.06, + "probability": 0.9614 + }, + { + "start": 15425.24, + "end": 15428.2, + "probability": 0.98 + }, + { + "start": 15429.1, + "end": 15429.56, + "probability": 0.8767 + }, + { + "start": 15430.74, + "end": 15431.2, + "probability": 0.9786 + }, + { + "start": 15432.44, + "end": 15433.58, + "probability": 0.6447 + }, + { + "start": 15434.32, + "end": 15434.84, + "probability": 0.7846 + }, + { + "start": 15435.94, + "end": 15437.64, + "probability": 0.9093 + }, + { + "start": 15437.74, + "end": 15438.32, + "probability": 0.6228 + }, + { + "start": 15440.72, + "end": 15442.44, + "probability": 0.9901 + }, + { + "start": 15444.18, + "end": 15445.36, + "probability": 0.6172 + }, + { + "start": 15445.48, + "end": 15446.7, + "probability": 0.9461 + }, + { + "start": 15447.56, + "end": 15448.4, + "probability": 0.9326 + }, + { + "start": 15450.11, + "end": 15455.36, + "probability": 0.8422 + }, + { + "start": 15455.36, + "end": 15458.12, + "probability": 0.9989 + }, + { + "start": 15458.74, + "end": 15459.14, + "probability": 0.8759 + }, + { + "start": 15459.98, + "end": 15462.44, + "probability": 0.7173 + }, + { + "start": 15463.44, + "end": 15464.68, + "probability": 0.5052 + }, + { + "start": 15465.54, + "end": 15467.16, + "probability": 0.8994 + }, + { + "start": 15467.38, + "end": 15470.88, + "probability": 0.9297 + }, + { + "start": 15471.18, + "end": 15472.1, + "probability": 0.9069 + }, + { + "start": 15472.1, + "end": 15473.1, + "probability": 0.9169 + }, + { + "start": 15473.44, + "end": 15474.82, + "probability": 0.9413 + }, + { + "start": 15476.5, + "end": 15477.32, + "probability": 0.7873 + }, + { + "start": 15477.4, + "end": 15478.92, + "probability": 0.9271 + }, + { + "start": 15479.04, + "end": 15480.68, + "probability": 0.8164 + }, + { + "start": 15481.14, + "end": 15482.72, + "probability": 0.9624 + }, + { + "start": 15484.26, + "end": 15485.39, + "probability": 0.9927 + }, + { + "start": 15486.4, + "end": 15489.48, + "probability": 0.8758 + }, + { + "start": 15489.98, + "end": 15493.84, + "probability": 0.9033 + }, + { + "start": 15494.04, + "end": 15496.18, + "probability": 0.7739 + }, + { + "start": 15496.28, + "end": 15497.04, + "probability": 0.9809 + }, + { + "start": 15497.16, + "end": 15497.86, + "probability": 0.9142 + }, + { + "start": 15498.54, + "end": 15499.7, + "probability": 0.8849 + }, + { + "start": 15502.86, + "end": 15504.72, + "probability": 0.7279 + }, + { + "start": 15505.52, + "end": 15506.89, + "probability": 0.9979 + }, + { + "start": 15507.64, + "end": 15510.22, + "probability": 0.954 + }, + { + "start": 15510.68, + "end": 15511.98, + "probability": 0.9255 + }, + { + "start": 15512.26, + "end": 15513.1, + "probability": 0.9596 + }, + { + "start": 15514.08, + "end": 15515.68, + "probability": 0.926 + }, + { + "start": 15516.8, + "end": 15517.64, + "probability": 0.9829 + }, + { + "start": 15519.32, + "end": 15520.36, + "probability": 0.9402 + }, + { + "start": 15521.5, + "end": 15522.3, + "probability": 0.4864 + }, + { + "start": 15523.32, + "end": 15523.84, + "probability": 0.636 + }, + { + "start": 15523.94, + "end": 15525.02, + "probability": 0.9907 + }, + { + "start": 15525.92, + "end": 15527.72, + "probability": 0.8429 + }, + { + "start": 15529.04, + "end": 15531.06, + "probability": 0.6636 + }, + { + "start": 15531.12, + "end": 15532.04, + "probability": 0.9353 + }, + { + "start": 15532.16, + "end": 15533.1, + "probability": 0.7921 + }, + { + "start": 15533.56, + "end": 15534.5, + "probability": 0.5843 + }, + { + "start": 15535.44, + "end": 15537.94, + "probability": 0.7595 + }, + { + "start": 15538.52, + "end": 15539.8, + "probability": 0.8779 + }, + { + "start": 15540.58, + "end": 15542.5, + "probability": 0.7412 + }, + { + "start": 15544.3, + "end": 15546.22, + "probability": 0.7818 + }, + { + "start": 15546.3, + "end": 15548.5, + "probability": 0.8627 + }, + { + "start": 15548.68, + "end": 15549.32, + "probability": 0.75 + }, + { + "start": 15550.54, + "end": 15553.52, + "probability": 0.6842 + }, + { + "start": 15554.0, + "end": 15554.64, + "probability": 0.5361 + }, + { + "start": 15555.2, + "end": 15556.14, + "probability": 0.8265 + }, + { + "start": 15559.1, + "end": 15560.06, + "probability": 0.907 + }, + { + "start": 15561.34, + "end": 15566.08, + "probability": 0.9268 + }, + { + "start": 15566.84, + "end": 15568.94, + "probability": 0.9863 + }, + { + "start": 15569.76, + "end": 15570.22, + "probability": 0.6569 + }, + { + "start": 15570.44, + "end": 15572.06, + "probability": 0.9888 + }, + { + "start": 15572.08, + "end": 15573.56, + "probability": 0.8787 + }, + { + "start": 15574.04, + "end": 15575.66, + "probability": 0.9858 + }, + { + "start": 15577.44, + "end": 15578.22, + "probability": 0.7485 + }, + { + "start": 15578.28, + "end": 15579.02, + "probability": 0.8448 + }, + { + "start": 15581.51, + "end": 15582.14, + "probability": 0.1207 + }, + { + "start": 15582.14, + "end": 15582.14, + "probability": 0.1075 + }, + { + "start": 15582.14, + "end": 15583.44, + "probability": 0.4417 + }, + { + "start": 15583.92, + "end": 15585.82, + "probability": 0.8646 + }, + { + "start": 15586.86, + "end": 15587.48, + "probability": 0.9156 + }, + { + "start": 15588.4, + "end": 15590.88, + "probability": 0.928 + }, + { + "start": 15591.38, + "end": 15592.82, + "probability": 0.9895 + }, + { + "start": 15593.5, + "end": 15594.96, + "probability": 0.9928 + }, + { + "start": 15595.9, + "end": 15597.98, + "probability": 0.6475 + }, + { + "start": 15599.84, + "end": 15602.2, + "probability": 0.7801 + }, + { + "start": 15602.92, + "end": 15602.92, + "probability": 0.3049 + }, + { + "start": 15602.92, + "end": 15603.86, + "probability": 0.873 + }, + { + "start": 15604.44, + "end": 15605.86, + "probability": 0.6528 + }, + { + "start": 15606.0, + "end": 15606.32, + "probability": 0.6901 + }, + { + "start": 15607.02, + "end": 15608.18, + "probability": 0.5952 + }, + { + "start": 15628.68, + "end": 15629.48, + "probability": 0.7563 + }, + { + "start": 15630.78, + "end": 15632.9, + "probability": 0.8048 + }, + { + "start": 15633.98, + "end": 15636.26, + "probability": 0.9145 + }, + { + "start": 15636.54, + "end": 15640.64, + "probability": 0.7747 + }, + { + "start": 15641.94, + "end": 15647.1, + "probability": 0.9824 + }, + { + "start": 15648.24, + "end": 15650.08, + "probability": 0.5209 + }, + { + "start": 15652.02, + "end": 15654.66, + "probability": 0.9976 + }, + { + "start": 15655.24, + "end": 15656.25, + "probability": 0.8285 + }, + { + "start": 15657.62, + "end": 15659.16, + "probability": 0.8644 + }, + { + "start": 15662.14, + "end": 15665.66, + "probability": 0.7655 + }, + { + "start": 15668.26, + "end": 15669.68, + "probability": 0.9836 + }, + { + "start": 15670.98, + "end": 15671.64, + "probability": 0.7303 + }, + { + "start": 15672.34, + "end": 15673.72, + "probability": 0.5658 + }, + { + "start": 15675.54, + "end": 15679.44, + "probability": 0.9795 + }, + { + "start": 15680.94, + "end": 15684.14, + "probability": 0.979 + }, + { + "start": 15684.88, + "end": 15687.46, + "probability": 0.6682 + }, + { + "start": 15688.56, + "end": 15690.86, + "probability": 0.7761 + }, + { + "start": 15690.96, + "end": 15692.46, + "probability": 0.6106 + }, + { + "start": 15692.66, + "end": 15693.3, + "probability": 0.8726 + }, + { + "start": 15694.24, + "end": 15695.18, + "probability": 0.8868 + }, + { + "start": 15697.32, + "end": 15700.66, + "probability": 0.9312 + }, + { + "start": 15700.86, + "end": 15707.04, + "probability": 0.5877 + }, + { + "start": 15707.68, + "end": 15708.88, + "probability": 0.785 + }, + { + "start": 15709.69, + "end": 15711.66, + "probability": 0.5952 + }, + { + "start": 15712.92, + "end": 15713.98, + "probability": 0.5415 + }, + { + "start": 15714.06, + "end": 15717.18, + "probability": 0.6656 + }, + { + "start": 15717.9, + "end": 15718.28, + "probability": 0.0463 + }, + { + "start": 15720.2, + "end": 15720.5, + "probability": 0.0076 + }, + { + "start": 15721.26, + "end": 15722.48, + "probability": 0.1387 + }, + { + "start": 15722.72, + "end": 15723.8, + "probability": 0.5413 + }, + { + "start": 15724.8, + "end": 15725.9, + "probability": 0.8011 + }, + { + "start": 15726.66, + "end": 15731.84, + "probability": 0.2058 + }, + { + "start": 15732.5, + "end": 15732.52, + "probability": 0.0883 + }, + { + "start": 15732.52, + "end": 15735.0, + "probability": 0.79 + }, + { + "start": 15735.52, + "end": 15736.37, + "probability": 0.9067 + }, + { + "start": 15736.98, + "end": 15737.5, + "probability": 0.0294 + }, + { + "start": 15737.6, + "end": 15741.18, + "probability": 0.7426 + }, + { + "start": 15742.06, + "end": 15747.32, + "probability": 0.8188 + }, + { + "start": 15747.4, + "end": 15751.56, + "probability": 0.8948 + }, + { + "start": 15751.7, + "end": 15753.9, + "probability": 0.8936 + }, + { + "start": 15755.02, + "end": 15758.44, + "probability": 0.4937 + }, + { + "start": 15759.08, + "end": 15759.78, + "probability": 0.9551 + }, + { + "start": 15761.1, + "end": 15763.44, + "probability": 0.7986 + }, + { + "start": 15764.28, + "end": 15766.16, + "probability": 0.9831 + }, + { + "start": 15766.82, + "end": 15770.02, + "probability": 0.8793 + }, + { + "start": 15770.56, + "end": 15772.38, + "probability": 0.5276 + }, + { + "start": 15772.98, + "end": 15774.04, + "probability": 0.7506 + }, + { + "start": 15774.94, + "end": 15775.26, + "probability": 0.7786 + }, + { + "start": 15777.02, + "end": 15778.96, + "probability": 0.9956 + }, + { + "start": 15780.65, + "end": 15785.02, + "probability": 0.9158 + }, + { + "start": 15786.7, + "end": 15787.72, + "probability": 0.9155 + }, + { + "start": 15788.62, + "end": 15789.42, + "probability": 0.9264 + }, + { + "start": 15790.54, + "end": 15791.89, + "probability": 0.9856 + }, + { + "start": 15793.26, + "end": 15795.82, + "probability": 0.9844 + }, + { + "start": 15796.8, + "end": 15798.74, + "probability": 0.9413 + }, + { + "start": 15799.52, + "end": 15802.84, + "probability": 0.9876 + }, + { + "start": 15803.28, + "end": 15806.16, + "probability": 0.3851 + }, + { + "start": 15806.22, + "end": 15806.62, + "probability": 0.4577 + }, + { + "start": 15806.68, + "end": 15808.32, + "probability": 0.9527 + }, + { + "start": 15809.32, + "end": 15811.48, + "probability": 0.7789 + }, + { + "start": 15816.54, + "end": 15816.84, + "probability": 0.0654 + }, + { + "start": 15816.84, + "end": 15822.71, + "probability": 0.5946 + }, + { + "start": 15823.08, + "end": 15824.14, + "probability": 0.758 + }, + { + "start": 15825.8, + "end": 15826.64, + "probability": 0.6655 + }, + { + "start": 15827.36, + "end": 15829.24, + "probability": 0.8572 + }, + { + "start": 15829.69, + "end": 15836.54, + "probability": 0.6905 + }, + { + "start": 15838.22, + "end": 15839.18, + "probability": 0.0563 + }, + { + "start": 15839.72, + "end": 15840.36, + "probability": 0.0716 + }, + { + "start": 15841.88, + "end": 15843.0, + "probability": 0.9217 + }, + { + "start": 15844.28, + "end": 15844.74, + "probability": 0.9565 + }, + { + "start": 15846.68, + "end": 15847.74, + "probability": 0.8831 + }, + { + "start": 15848.38, + "end": 15848.98, + "probability": 0.4404 + }, + { + "start": 15849.52, + "end": 15850.14, + "probability": 0.687 + }, + { + "start": 15851.18, + "end": 15852.7, + "probability": 0.9077 + }, + { + "start": 15853.64, + "end": 15856.4, + "probability": 0.9908 + }, + { + "start": 15857.44, + "end": 15858.14, + "probability": 0.6163 + }, + { + "start": 15859.42, + "end": 15860.96, + "probability": 0.9834 + }, + { + "start": 15862.0, + "end": 15864.28, + "probability": 0.8649 + }, + { + "start": 15865.68, + "end": 15866.86, + "probability": 0.6675 + }, + { + "start": 15867.5, + "end": 15868.58, + "probability": 0.7726 + }, + { + "start": 15869.32, + "end": 15872.34, + "probability": 0.8912 + }, + { + "start": 15873.08, + "end": 15873.9, + "probability": 0.2805 + }, + { + "start": 15874.48, + "end": 15875.32, + "probability": 0.3262 + }, + { + "start": 15875.48, + "end": 15878.94, + "probability": 0.9545 + }, + { + "start": 15879.44, + "end": 15882.9, + "probability": 0.8452 + }, + { + "start": 15884.32, + "end": 15886.36, + "probability": 0.9852 + }, + { + "start": 15888.36, + "end": 15889.34, + "probability": 0.9243 + }, + { + "start": 15890.32, + "end": 15894.68, + "probability": 0.347 + }, + { + "start": 15894.9, + "end": 15895.72, + "probability": 0.91 + }, + { + "start": 15896.44, + "end": 15898.63, + "probability": 0.7231 + }, + { + "start": 15899.82, + "end": 15901.58, + "probability": 0.9277 + }, + { + "start": 15902.66, + "end": 15905.12, + "probability": 0.8095 + }, + { + "start": 15905.9, + "end": 15907.26, + "probability": 0.5403 + }, + { + "start": 15909.56, + "end": 15911.94, + "probability": 0.9189 + }, + { + "start": 15911.98, + "end": 15913.92, + "probability": 0.8929 + }, + { + "start": 15914.68, + "end": 15915.94, + "probability": 0.9966 + }, + { + "start": 15917.26, + "end": 15919.34, + "probability": 0.5705 + }, + { + "start": 15919.68, + "end": 15920.74, + "probability": 0.9775 + }, + { + "start": 15921.94, + "end": 15922.96, + "probability": 0.9976 + }, + { + "start": 15924.36, + "end": 15925.74, + "probability": 0.993 + }, + { + "start": 15927.38, + "end": 15929.72, + "probability": 0.9976 + }, + { + "start": 15930.54, + "end": 15930.96, + "probability": 0.884 + }, + { + "start": 15931.4, + "end": 15933.38, + "probability": 0.8461 + }, + { + "start": 15933.66, + "end": 15936.0, + "probability": 0.6005 + }, + { + "start": 15936.4, + "end": 15949.2, + "probability": 0.7193 + }, + { + "start": 15949.48, + "end": 15950.32, + "probability": 0.5189 + }, + { + "start": 15952.51, + "end": 15955.8, + "probability": 0.5611 + }, + { + "start": 15956.82, + "end": 15960.28, + "probability": 0.2647 + }, + { + "start": 15962.29, + "end": 15963.32, + "probability": 0.8533 + }, + { + "start": 15963.6, + "end": 15964.62, + "probability": 0.7865 + }, + { + "start": 15964.64, + "end": 15969.04, + "probability": 0.5023 + }, + { + "start": 15970.24, + "end": 15974.36, + "probability": 0.8978 + }, + { + "start": 15975.32, + "end": 15982.82, + "probability": 0.8768 + }, + { + "start": 15983.78, + "end": 15986.92, + "probability": 0.6205 + }, + { + "start": 15987.02, + "end": 15987.98, + "probability": 0.8454 + }, + { + "start": 15988.6, + "end": 15989.44, + "probability": 0.9312 + }, + { + "start": 15990.0, + "end": 15991.18, + "probability": 0.3068 + }, + { + "start": 15991.82, + "end": 15992.8, + "probability": 0.7403 + }, + { + "start": 15993.86, + "end": 15996.5, + "probability": 0.9688 + }, + { + "start": 15996.96, + "end": 15998.64, + "probability": 0.6353 + }, + { + "start": 15999.74, + "end": 16003.26, + "probability": 0.9631 + }, + { + "start": 16003.58, + "end": 16003.96, + "probability": 0.8029 + }, + { + "start": 16004.06, + "end": 16004.52, + "probability": 0.6689 + }, + { + "start": 16005.47, + "end": 16009.88, + "probability": 0.8758 + }, + { + "start": 16010.28, + "end": 16013.4, + "probability": 0.7556 + }, + { + "start": 16016.96, + "end": 16018.18, + "probability": 0.2654 + }, + { + "start": 16018.5, + "end": 16019.78, + "probability": 0.8696 + }, + { + "start": 16036.7, + "end": 16038.48, + "probability": 0.6256 + }, + { + "start": 16041.56, + "end": 16045.16, + "probability": 0.9754 + }, + { + "start": 16046.66, + "end": 16050.26, + "probability": 0.9636 + }, + { + "start": 16051.58, + "end": 16054.74, + "probability": 0.7121 + }, + { + "start": 16055.72, + "end": 16058.2, + "probability": 0.9898 + }, + { + "start": 16059.8, + "end": 16061.28, + "probability": 0.5622 + }, + { + "start": 16061.48, + "end": 16065.06, + "probability": 0.8996 + }, + { + "start": 16065.06, + "end": 16069.36, + "probability": 0.9874 + }, + { + "start": 16070.82, + "end": 16074.72, + "probability": 0.8827 + }, + { + "start": 16075.74, + "end": 16080.02, + "probability": 0.8286 + }, + { + "start": 16080.66, + "end": 16083.0, + "probability": 0.9803 + }, + { + "start": 16084.74, + "end": 16085.42, + "probability": 0.5355 + }, + { + "start": 16086.02, + "end": 16088.46, + "probability": 0.9959 + }, + { + "start": 16090.2, + "end": 16091.82, + "probability": 0.9688 + }, + { + "start": 16093.06, + "end": 16096.74, + "probability": 0.9088 + }, + { + "start": 16099.22, + "end": 16100.42, + "probability": 0.9867 + }, + { + "start": 16101.38, + "end": 16102.66, + "probability": 0.9966 + }, + { + "start": 16104.18, + "end": 16105.72, + "probability": 0.8732 + }, + { + "start": 16105.98, + "end": 16108.1, + "probability": 0.5042 + }, + { + "start": 16109.1, + "end": 16111.64, + "probability": 0.998 + }, + { + "start": 16112.9, + "end": 16113.76, + "probability": 0.7359 + }, + { + "start": 16115.46, + "end": 16116.28, + "probability": 0.9809 + }, + { + "start": 16116.56, + "end": 16117.96, + "probability": 0.9733 + }, + { + "start": 16119.3, + "end": 16123.68, + "probability": 0.9727 + }, + { + "start": 16124.84, + "end": 16126.7, + "probability": 0.8636 + }, + { + "start": 16128.16, + "end": 16131.38, + "probability": 0.8548 + }, + { + "start": 16133.0, + "end": 16139.52, + "probability": 0.9754 + }, + { + "start": 16140.2, + "end": 16142.02, + "probability": 0.7861 + }, + { + "start": 16143.26, + "end": 16145.68, + "probability": 0.8223 + }, + { + "start": 16146.5, + "end": 16149.7, + "probability": 0.9693 + }, + { + "start": 16149.7, + "end": 16154.14, + "probability": 0.6701 + }, + { + "start": 16154.84, + "end": 16156.4, + "probability": 0.952 + }, + { + "start": 16157.7, + "end": 16158.18, + "probability": 0.2209 + }, + { + "start": 16158.18, + "end": 16160.5, + "probability": 0.9247 + }, + { + "start": 16160.7, + "end": 16162.8, + "probability": 0.9972 + }, + { + "start": 16164.44, + "end": 16167.48, + "probability": 0.8735 + }, + { + "start": 16167.68, + "end": 16169.34, + "probability": 0.7569 + }, + { + "start": 16171.42, + "end": 16174.08, + "probability": 0.9883 + }, + { + "start": 16175.08, + "end": 16175.9, + "probability": 0.7728 + }, + { + "start": 16176.42, + "end": 16180.08, + "probability": 0.9648 + }, + { + "start": 16180.98, + "end": 16184.98, + "probability": 0.8498 + }, + { + "start": 16189.36, + "end": 16189.36, + "probability": 0.0168 + }, + { + "start": 16189.36, + "end": 16189.7, + "probability": 0.4188 + }, + { + "start": 16189.84, + "end": 16194.12, + "probability": 0.4865 + }, + { + "start": 16194.16, + "end": 16196.16, + "probability": 0.6733 + }, + { + "start": 16197.04, + "end": 16198.8, + "probability": 0.8686 + }, + { + "start": 16199.94, + "end": 16203.38, + "probability": 0.8893 + }, + { + "start": 16203.9, + "end": 16205.12, + "probability": 0.7046 + }, + { + "start": 16206.22, + "end": 16208.22, + "probability": 0.9928 + }, + { + "start": 16209.16, + "end": 16212.74, + "probability": 0.9933 + }, + { + "start": 16214.16, + "end": 16215.36, + "probability": 0.873 + }, + { + "start": 16216.14, + "end": 16218.06, + "probability": 0.7393 + }, + { + "start": 16218.78, + "end": 16220.48, + "probability": 0.8735 + }, + { + "start": 16220.96, + "end": 16221.62, + "probability": 0.5226 + }, + { + "start": 16222.32, + "end": 16226.92, + "probability": 0.7588 + }, + { + "start": 16227.48, + "end": 16228.14, + "probability": 0.9173 + }, + { + "start": 16228.74, + "end": 16229.9, + "probability": 0.8787 + }, + { + "start": 16230.62, + "end": 16232.04, + "probability": 0.8645 + }, + { + "start": 16232.58, + "end": 16234.34, + "probability": 0.9917 + }, + { + "start": 16234.38, + "end": 16235.42, + "probability": 0.9789 + }, + { + "start": 16235.5, + "end": 16235.9, + "probability": 0.7026 + }, + { + "start": 16237.62, + "end": 16239.26, + "probability": 0.3969 + }, + { + "start": 16239.28, + "end": 16240.56, + "probability": 0.0069 + }, + { + "start": 16243.22, + "end": 16244.7, + "probability": 0.5341 + }, + { + "start": 16245.64, + "end": 16246.84, + "probability": 0.9575 + }, + { + "start": 16246.88, + "end": 16247.4, + "probability": 0.6067 + }, + { + "start": 16247.78, + "end": 16248.38, + "probability": 0.8631 + }, + { + "start": 16252.98, + "end": 16256.12, + "probability": 0.9924 + }, + { + "start": 16256.12, + "end": 16259.18, + "probability": 0.982 + }, + { + "start": 16259.3, + "end": 16264.4, + "probability": 0.9663 + }, + { + "start": 16265.28, + "end": 16266.43, + "probability": 0.5708 + }, + { + "start": 16266.56, + "end": 16269.56, + "probability": 0.9796 + }, + { + "start": 16270.12, + "end": 16274.1, + "probability": 0.7131 + }, + { + "start": 16274.94, + "end": 16278.8, + "probability": 0.9771 + }, + { + "start": 16278.8, + "end": 16282.74, + "probability": 0.9305 + }, + { + "start": 16283.26, + "end": 16286.46, + "probability": 0.9663 + }, + { + "start": 16287.12, + "end": 16287.52, + "probability": 0.9875 + }, + { + "start": 16288.22, + "end": 16288.8, + "probability": 0.7807 + }, + { + "start": 16289.36, + "end": 16292.18, + "probability": 0.9983 + }, + { + "start": 16292.72, + "end": 16294.7, + "probability": 0.9369 + }, + { + "start": 16294.9, + "end": 16295.74, + "probability": 0.5908 + }, + { + "start": 16296.06, + "end": 16298.78, + "probability": 0.9407 + }, + { + "start": 16298.92, + "end": 16299.9, + "probability": 0.9546 + }, + { + "start": 16300.26, + "end": 16302.02, + "probability": 0.982 + }, + { + "start": 16302.56, + "end": 16307.0, + "probability": 0.9816 + }, + { + "start": 16307.5, + "end": 16309.6, + "probability": 0.8184 + }, + { + "start": 16309.74, + "end": 16310.54, + "probability": 0.887 + }, + { + "start": 16310.88, + "end": 16312.88, + "probability": 0.8779 + }, + { + "start": 16313.3, + "end": 16315.84, + "probability": 0.9613 + }, + { + "start": 16316.0, + "end": 16317.82, + "probability": 0.9472 + }, + { + "start": 16318.28, + "end": 16319.38, + "probability": 0.8996 + }, + { + "start": 16319.86, + "end": 16320.44, + "probability": 0.9871 + }, + { + "start": 16320.78, + "end": 16321.46, + "probability": 0.987 + }, + { + "start": 16321.92, + "end": 16322.61, + "probability": 0.9458 + }, + { + "start": 16323.14, + "end": 16327.96, + "probability": 0.9938 + }, + { + "start": 16328.1, + "end": 16328.58, + "probability": 0.801 + }, + { + "start": 16329.32, + "end": 16329.6, + "probability": 0.305 + }, + { + "start": 16329.66, + "end": 16332.3, + "probability": 0.6739 + }, + { + "start": 16333.9, + "end": 16335.92, + "probability": 0.62 + }, + { + "start": 16338.21, + "end": 16339.86, + "probability": 0.4987 + }, + { + "start": 16340.28, + "end": 16343.18, + "probability": 0.3056 + }, + { + "start": 16344.02, + "end": 16344.08, + "probability": 0.0642 + }, + { + "start": 16345.16, + "end": 16347.36, + "probability": 0.533 + }, + { + "start": 16347.74, + "end": 16352.3, + "probability": 0.5649 + }, + { + "start": 16352.4, + "end": 16353.44, + "probability": 0.3984 + }, + { + "start": 16353.78, + "end": 16356.38, + "probability": 0.8134 + }, + { + "start": 16357.08, + "end": 16358.02, + "probability": 0.6666 + }, + { + "start": 16358.42, + "end": 16360.0, + "probability": 0.5384 + }, + { + "start": 16361.76, + "end": 16362.9, + "probability": 0.5424 + }, + { + "start": 16363.8, + "end": 16365.0, + "probability": 0.2131 + }, + { + "start": 16366.26, + "end": 16367.84, + "probability": 0.8047 + }, + { + "start": 16368.54, + "end": 16369.68, + "probability": 0.6609 + }, + { + "start": 16370.24, + "end": 16375.38, + "probability": 0.7026 + }, + { + "start": 16376.0, + "end": 16381.62, + "probability": 0.5065 + }, + { + "start": 16381.62, + "end": 16382.48, + "probability": 0.5537 + }, + { + "start": 16383.26, + "end": 16384.88, + "probability": 0.6605 + }, + { + "start": 16388.22, + "end": 16388.22, + "probability": 0.0042 + }, + { + "start": 16395.64, + "end": 16397.58, + "probability": 0.2052 + }, + { + "start": 16399.5, + "end": 16405.06, + "probability": 0.2626 + }, + { + "start": 16406.32, + "end": 16407.72, + "probability": 0.0688 + }, + { + "start": 16408.14, + "end": 16410.92, + "probability": 0.0173 + }, + { + "start": 16411.8, + "end": 16415.42, + "probability": 0.7185 + }, + { + "start": 16415.54, + "end": 16417.62, + "probability": 0.9132 + }, + { + "start": 16417.68, + "end": 16418.92, + "probability": 0.8382 + }, + { + "start": 16419.52, + "end": 16423.28, + "probability": 0.6764 + }, + { + "start": 16423.28, + "end": 16429.56, + "probability": 0.8477 + }, + { + "start": 16430.48, + "end": 16433.24, + "probability": 0.4554 + }, + { + "start": 16434.6, + "end": 16435.09, + "probability": 0.4995 + }, + { + "start": 16436.26, + "end": 16436.68, + "probability": 0.0528 + }, + { + "start": 16436.68, + "end": 16436.68, + "probability": 0.4071 + }, + { + "start": 16436.68, + "end": 16436.68, + "probability": 0.4483 + }, + { + "start": 16436.68, + "end": 16436.68, + "probability": 0.4564 + }, + { + "start": 16436.68, + "end": 16436.68, + "probability": 0.4553 + }, + { + "start": 16436.68, + "end": 16436.68, + "probability": 0.3286 + }, + { + "start": 16436.68, + "end": 16436.68, + "probability": 0.0929 + }, + { + "start": 16436.68, + "end": 16437.58, + "probability": 0.4251 + }, + { + "start": 16439.12, + "end": 16439.58, + "probability": 0.7265 + }, + { + "start": 16449.26, + "end": 16450.32, + "probability": 0.6646 + }, + { + "start": 16459.66, + "end": 16463.18, + "probability": 0.7249 + }, + { + "start": 16464.1, + "end": 16476.2, + "probability": 0.9655 + }, + { + "start": 16476.68, + "end": 16477.28, + "probability": 0.5905 + }, + { + "start": 16478.36, + "end": 16481.12, + "probability": 0.988 + }, + { + "start": 16482.0, + "end": 16485.58, + "probability": 0.9993 + }, + { + "start": 16488.86, + "end": 16495.48, + "probability": 0.9982 + }, + { + "start": 16496.1, + "end": 16498.08, + "probability": 0.998 + }, + { + "start": 16498.88, + "end": 16503.72, + "probability": 0.9964 + }, + { + "start": 16505.72, + "end": 16510.22, + "probability": 0.8695 + }, + { + "start": 16511.04, + "end": 16513.9, + "probability": 0.7227 + }, + { + "start": 16515.12, + "end": 16517.02, + "probability": 0.7982 + }, + { + "start": 16517.9, + "end": 16521.96, + "probability": 0.9826 + }, + { + "start": 16522.9, + "end": 16523.84, + "probability": 0.782 + }, + { + "start": 16524.76, + "end": 16527.12, + "probability": 0.8852 + }, + { + "start": 16527.58, + "end": 16530.44, + "probability": 0.9611 + }, + { + "start": 16530.92, + "end": 16536.92, + "probability": 0.9834 + }, + { + "start": 16537.44, + "end": 16542.0, + "probability": 0.9741 + }, + { + "start": 16542.72, + "end": 16545.14, + "probability": 0.9597 + }, + { + "start": 16545.76, + "end": 16551.8, + "probability": 0.881 + }, + { + "start": 16551.8, + "end": 16557.48, + "probability": 0.9941 + }, + { + "start": 16558.82, + "end": 16563.94, + "probability": 0.876 + }, + { + "start": 16564.82, + "end": 16568.38, + "probability": 0.998 + }, + { + "start": 16568.38, + "end": 16573.16, + "probability": 0.9844 + }, + { + "start": 16573.58, + "end": 16574.56, + "probability": 0.7507 + }, + { + "start": 16575.38, + "end": 16583.94, + "probability": 0.9907 + }, + { + "start": 16584.56, + "end": 16588.27, + "probability": 0.9978 + }, + { + "start": 16588.8, + "end": 16590.88, + "probability": 0.9 + }, + { + "start": 16591.76, + "end": 16595.72, + "probability": 0.9883 + }, + { + "start": 16595.72, + "end": 16601.7, + "probability": 0.8313 + }, + { + "start": 16602.06, + "end": 16603.42, + "probability": 0.6394 + }, + { + "start": 16603.62, + "end": 16604.08, + "probability": 0.9157 + }, + { + "start": 16606.37, + "end": 16609.38, + "probability": 0.8049 + }, + { + "start": 16609.94, + "end": 16614.06, + "probability": 0.9226 + }, + { + "start": 16614.68, + "end": 16614.94, + "probability": 0.49 + }, + { + "start": 16614.98, + "end": 16618.02, + "probability": 0.9088 + }, + { + "start": 16618.1, + "end": 16622.8, + "probability": 0.9309 + }, + { + "start": 16623.5, + "end": 16625.28, + "probability": 0.8877 + }, + { + "start": 16626.08, + "end": 16630.44, + "probability": 0.9838 + }, + { + "start": 16631.16, + "end": 16634.47, + "probability": 0.9897 + }, + { + "start": 16634.72, + "end": 16637.18, + "probability": 0.97 + }, + { + "start": 16637.8, + "end": 16642.06, + "probability": 0.9763 + }, + { + "start": 16642.38, + "end": 16642.56, + "probability": 0.7345 + }, + { + "start": 16643.12, + "end": 16644.98, + "probability": 0.6602 + }, + { + "start": 16645.16, + "end": 16646.6, + "probability": 0.5209 + }, + { + "start": 16646.64, + "end": 16648.42, + "probability": 0.5762 + }, + { + "start": 16648.5, + "end": 16649.08, + "probability": 0.8811 + }, + { + "start": 16651.1, + "end": 16654.38, + "probability": 0.8188 + }, + { + "start": 16661.48, + "end": 16662.2, + "probability": 0.3767 + }, + { + "start": 16662.34, + "end": 16664.78, + "probability": 0.6548 + }, + { + "start": 16666.44, + "end": 16667.38, + "probability": 0.6504 + }, + { + "start": 16668.64, + "end": 16671.06, + "probability": 0.9867 + }, + { + "start": 16671.72, + "end": 16673.02, + "probability": 0.7664 + }, + { + "start": 16673.82, + "end": 16674.92, + "probability": 0.981 + }, + { + "start": 16675.04, + "end": 16675.52, + "probability": 0.8688 + }, + { + "start": 16676.74, + "end": 16677.68, + "probability": 0.6593 + }, + { + "start": 16677.76, + "end": 16678.82, + "probability": 0.9268 + }, + { + "start": 16679.32, + "end": 16683.04, + "probability": 0.9928 + }, + { + "start": 16683.62, + "end": 16686.54, + "probability": 0.7613 + }, + { + "start": 16688.1, + "end": 16689.92, + "probability": 0.6651 + }, + { + "start": 16691.34, + "end": 16694.3, + "probability": 0.9838 + }, + { + "start": 16694.54, + "end": 16700.88, + "probability": 0.9864 + }, + { + "start": 16701.62, + "end": 16705.24, + "probability": 0.9229 + }, + { + "start": 16706.02, + "end": 16707.48, + "probability": 0.5103 + }, + { + "start": 16708.06, + "end": 16709.2, + "probability": 0.8228 + }, + { + "start": 16711.68, + "end": 16715.82, + "probability": 0.9257 + }, + { + "start": 16716.82, + "end": 16717.94, + "probability": 0.9683 + }, + { + "start": 16719.06, + "end": 16721.46, + "probability": 0.9883 + }, + { + "start": 16722.4, + "end": 16723.86, + "probability": 0.9967 + }, + { + "start": 16725.04, + "end": 16727.94, + "probability": 0.967 + }, + { + "start": 16728.68, + "end": 16730.54, + "probability": 0.9916 + }, + { + "start": 16731.66, + "end": 16734.62, + "probability": 0.9828 + }, + { + "start": 16735.36, + "end": 16737.56, + "probability": 0.7135 + }, + { + "start": 16738.22, + "end": 16738.96, + "probability": 0.481 + }, + { + "start": 16739.78, + "end": 16744.54, + "probability": 0.9897 + }, + { + "start": 16745.46, + "end": 16751.74, + "probability": 0.9971 + }, + { + "start": 16752.28, + "end": 16753.08, + "probability": 0.9937 + }, + { + "start": 16753.62, + "end": 16757.6, + "probability": 0.8856 + }, + { + "start": 16758.7, + "end": 16763.7, + "probability": 0.8011 + }, + { + "start": 16764.4, + "end": 16765.08, + "probability": 0.9915 + }, + { + "start": 16766.02, + "end": 16768.74, + "probability": 0.8672 + }, + { + "start": 16769.76, + "end": 16776.4, + "probability": 0.8507 + }, + { + "start": 16777.78, + "end": 16780.74, + "probability": 0.9253 + }, + { + "start": 16781.54, + "end": 16784.48, + "probability": 0.7773 + }, + { + "start": 16785.14, + "end": 16790.04, + "probability": 0.9698 + }, + { + "start": 16790.36, + "end": 16790.68, + "probability": 0.9084 + }, + { + "start": 16791.14, + "end": 16792.36, + "probability": 0.9792 + }, + { + "start": 16792.9, + "end": 16795.11, + "probability": 0.7907 + }, + { + "start": 16795.64, + "end": 16797.0, + "probability": 0.999 + }, + { + "start": 16797.74, + "end": 16798.7, + "probability": 0.6509 + }, + { + "start": 16799.08, + "end": 16800.42, + "probability": 0.9331 + }, + { + "start": 16800.74, + "end": 16801.96, + "probability": 0.8942 + }, + { + "start": 16802.36, + "end": 16803.16, + "probability": 0.9229 + }, + { + "start": 16803.72, + "end": 16804.22, + "probability": 0.4835 + }, + { + "start": 16804.28, + "end": 16806.96, + "probability": 0.9976 + }, + { + "start": 16807.16, + "end": 16808.7, + "probability": 0.9896 + }, + { + "start": 16809.12, + "end": 16810.15, + "probability": 0.8372 + }, + { + "start": 16810.8, + "end": 16813.92, + "probability": 0.989 + }, + { + "start": 16814.18, + "end": 16815.28, + "probability": 0.9587 + }, + { + "start": 16815.34, + "end": 16816.08, + "probability": 0.8887 + }, + { + "start": 16816.56, + "end": 16818.3, + "probability": 0.9482 + }, + { + "start": 16819.14, + "end": 16819.88, + "probability": 0.6286 + }, + { + "start": 16821.0, + "end": 16822.0, + "probability": 0.482 + }, + { + "start": 16822.06, + "end": 16827.2, + "probability": 0.7217 + }, + { + "start": 16827.28, + "end": 16828.06, + "probability": 0.9941 + }, + { + "start": 16829.28, + "end": 16830.46, + "probability": 0.9443 + }, + { + "start": 16831.3, + "end": 16832.24, + "probability": 0.5893 + }, + { + "start": 16832.42, + "end": 16833.59, + "probability": 0.4805 + }, + { + "start": 16833.9, + "end": 16835.04, + "probability": 0.9555 + }, + { + "start": 16835.2, + "end": 16837.17, + "probability": 0.6755 + }, + { + "start": 16853.76, + "end": 16856.22, + "probability": 0.6987 + }, + { + "start": 16857.4, + "end": 16859.24, + "probability": 0.7615 + }, + { + "start": 16861.46, + "end": 16864.12, + "probability": 0.8876 + }, + { + "start": 16865.1, + "end": 16868.04, + "probability": 0.9788 + }, + { + "start": 16868.48, + "end": 16869.7, + "probability": 0.7648 + }, + { + "start": 16870.74, + "end": 16874.36, + "probability": 0.9313 + }, + { + "start": 16875.46, + "end": 16876.12, + "probability": 0.0658 + }, + { + "start": 16879.06, + "end": 16881.04, + "probability": 0.5105 + }, + { + "start": 16881.08, + "end": 16883.02, + "probability": 0.6159 + }, + { + "start": 16886.0, + "end": 16886.34, + "probability": 0.1474 + }, + { + "start": 16886.34, + "end": 16886.34, + "probability": 0.4368 + }, + { + "start": 16886.34, + "end": 16886.72, + "probability": 0.6377 + }, + { + "start": 16887.42, + "end": 16889.56, + "probability": 0.6509 + }, + { + "start": 16891.47, + "end": 16894.26, + "probability": 0.7091 + }, + { + "start": 16895.04, + "end": 16897.8, + "probability": 0.8984 + }, + { + "start": 16898.1, + "end": 16899.36, + "probability": 0.9525 + }, + { + "start": 16900.1, + "end": 16904.34, + "probability": 0.4981 + }, + { + "start": 16904.4, + "end": 16909.56, + "probability": 0.9443 + }, + { + "start": 16909.56, + "end": 16912.34, + "probability": 0.5884 + }, + { + "start": 16912.48, + "end": 16915.08, + "probability": 0.4399 + }, + { + "start": 16915.3, + "end": 16915.32, + "probability": 0.1743 + }, + { + "start": 16915.32, + "end": 16916.95, + "probability": 0.8866 + }, + { + "start": 16917.84, + "end": 16919.56, + "probability": 0.9904 + }, + { + "start": 16920.9, + "end": 16921.8, + "probability": 0.794 + }, + { + "start": 16922.56, + "end": 16923.58, + "probability": 0.9163 + }, + { + "start": 16924.4, + "end": 16925.6, + "probability": 0.9418 + }, + { + "start": 16926.78, + "end": 16927.98, + "probability": 0.9792 + }, + { + "start": 16928.22, + "end": 16929.18, + "probability": 0.7495 + }, + { + "start": 16929.86, + "end": 16931.88, + "probability": 0.9481 + }, + { + "start": 16932.86, + "end": 16935.3, + "probability": 0.9869 + }, + { + "start": 16935.44, + "end": 16936.14, + "probability": 0.6622 + }, + { + "start": 16936.26, + "end": 16938.1, + "probability": 0.7157 + }, + { + "start": 16938.2, + "end": 16938.94, + "probability": 0.9827 + }, + { + "start": 16940.2, + "end": 16941.1, + "probability": 0.75 + }, + { + "start": 16941.78, + "end": 16945.18, + "probability": 0.8682 + }, + { + "start": 16945.58, + "end": 16946.9, + "probability": 0.6538 + }, + { + "start": 16947.76, + "end": 16948.94, + "probability": 0.9339 + }, + { + "start": 16949.66, + "end": 16952.88, + "probability": 0.9418 + }, + { + "start": 16953.36, + "end": 16954.07, + "probability": 0.959 + }, + { + "start": 16954.9, + "end": 16956.46, + "probability": 0.9927 + }, + { + "start": 16959.26, + "end": 16959.26, + "probability": 0.0022 + }, + { + "start": 16961.26, + "end": 16961.6, + "probability": 0.4647 + }, + { + "start": 16963.06, + "end": 16966.9, + "probability": 0.8884 + }, + { + "start": 16967.56, + "end": 16968.56, + "probability": 0.8511 + }, + { + "start": 16969.18, + "end": 16971.3, + "probability": 0.9927 + }, + { + "start": 16972.22, + "end": 16974.54, + "probability": 0.9248 + }, + { + "start": 16975.14, + "end": 16977.88, + "probability": 0.9846 + }, + { + "start": 16978.46, + "end": 16979.6, + "probability": 0.6644 + }, + { + "start": 16980.5, + "end": 16984.14, + "probability": 0.9961 + }, + { + "start": 16984.86, + "end": 16986.61, + "probability": 0.9619 + }, + { + "start": 16986.86, + "end": 16988.64, + "probability": 0.9409 + }, + { + "start": 16989.28, + "end": 16991.16, + "probability": 0.9933 + }, + { + "start": 16991.86, + "end": 16995.14, + "probability": 0.9406 + }, + { + "start": 16995.32, + "end": 16996.3, + "probability": 0.7567 + }, + { + "start": 16997.06, + "end": 16999.36, + "probability": 0.7499 + }, + { + "start": 16999.88, + "end": 17005.38, + "probability": 0.8626 + }, + { + "start": 17006.14, + "end": 17007.68, + "probability": 0.9461 + }, + { + "start": 17007.8, + "end": 17011.42, + "probability": 0.9873 + }, + { + "start": 17012.42, + "end": 17013.2, + "probability": 0.5404 + }, + { + "start": 17014.02, + "end": 17015.52, + "probability": 0.976 + }, + { + "start": 17015.6, + "end": 17016.53, + "probability": 0.9937 + }, + { + "start": 17017.54, + "end": 17019.8, + "probability": 0.9648 + }, + { + "start": 17020.06, + "end": 17021.07, + "probability": 0.9785 + }, + { + "start": 17022.34, + "end": 17024.78, + "probability": 0.3017 + }, + { + "start": 17025.56, + "end": 17026.18, + "probability": 0.5313 + }, + { + "start": 17027.5, + "end": 17031.06, + "probability": 0.9836 + }, + { + "start": 17031.42, + "end": 17033.1, + "probability": 0.6934 + }, + { + "start": 17034.66, + "end": 17039.86, + "probability": 0.9551 + }, + { + "start": 17040.44, + "end": 17041.18, + "probability": 0.798 + }, + { + "start": 17041.34, + "end": 17041.96, + "probability": 0.7534 + }, + { + "start": 17042.8, + "end": 17045.84, + "probability": 0.9818 + }, + { + "start": 17046.04, + "end": 17047.08, + "probability": 0.5673 + }, + { + "start": 17047.32, + "end": 17049.96, + "probability": 0.8653 + }, + { + "start": 17050.0, + "end": 17051.6, + "probability": 0.6691 + }, + { + "start": 17052.36, + "end": 17052.82, + "probability": 0.937 + }, + { + "start": 17053.66, + "end": 17054.64, + "probability": 0.9849 + }, + { + "start": 17055.34, + "end": 17056.04, + "probability": 0.9038 + }, + { + "start": 17057.28, + "end": 17057.9, + "probability": 0.672 + }, + { + "start": 17058.42, + "end": 17060.88, + "probability": 0.9771 + }, + { + "start": 17061.32, + "end": 17062.6, + "probability": 0.7131 + }, + { + "start": 17063.5, + "end": 17066.92, + "probability": 0.6199 + }, + { + "start": 17067.68, + "end": 17068.94, + "probability": 0.9967 + }, + { + "start": 17069.64, + "end": 17070.96, + "probability": 0.9009 + }, + { + "start": 17071.24, + "end": 17074.16, + "probability": 0.9167 + }, + { + "start": 17074.32, + "end": 17075.56, + "probability": 0.7968 + }, + { + "start": 17076.82, + "end": 17079.62, + "probability": 0.9681 + }, + { + "start": 17080.26, + "end": 17081.38, + "probability": 0.6147 + }, + { + "start": 17081.6, + "end": 17084.5, + "probability": 0.9004 + }, + { + "start": 17084.7, + "end": 17085.14, + "probability": 0.9008 + }, + { + "start": 17085.9, + "end": 17086.4, + "probability": 0.9269 + }, + { + "start": 17087.56, + "end": 17089.72, + "probability": 0.7424 + }, + { + "start": 17090.26, + "end": 17091.36, + "probability": 0.963 + }, + { + "start": 17091.88, + "end": 17092.84, + "probability": 0.6672 + }, + { + "start": 17093.28, + "end": 17097.64, + "probability": 0.9965 + }, + { + "start": 17098.1, + "end": 17100.08, + "probability": 0.9429 + }, + { + "start": 17101.0, + "end": 17102.73, + "probability": 0.779 + }, + { + "start": 17103.5, + "end": 17106.04, + "probability": 0.6444 + }, + { + "start": 17106.78, + "end": 17106.78, + "probability": 0.3445 + }, + { + "start": 17107.08, + "end": 17108.74, + "probability": 0.8961 + }, + { + "start": 17108.88, + "end": 17109.94, + "probability": 0.8203 + }, + { + "start": 17110.52, + "end": 17111.04, + "probability": 0.4452 + }, + { + "start": 17111.58, + "end": 17113.0, + "probability": 0.766 + }, + { + "start": 17122.0, + "end": 17125.5, + "probability": 0.5961 + }, + { + "start": 17126.94, + "end": 17131.49, + "probability": 0.7919 + }, + { + "start": 17135.14, + "end": 17137.78, + "probability": 0.7841 + }, + { + "start": 17139.14, + "end": 17142.48, + "probability": 0.9526 + }, + { + "start": 17143.38, + "end": 17144.68, + "probability": 0.9972 + }, + { + "start": 17147.8, + "end": 17151.1, + "probability": 0.9907 + }, + { + "start": 17151.46, + "end": 17155.78, + "probability": 0.6115 + }, + { + "start": 17156.24, + "end": 17156.74, + "probability": 0.7219 + }, + { + "start": 17158.22, + "end": 17159.44, + "probability": 0.8328 + }, + { + "start": 17160.7, + "end": 17163.32, + "probability": 0.7847 + }, + { + "start": 17165.16, + "end": 17171.66, + "probability": 0.9799 + }, + { + "start": 17173.34, + "end": 17174.54, + "probability": 0.967 + }, + { + "start": 17174.78, + "end": 17175.62, + "probability": 0.7881 + }, + { + "start": 17176.04, + "end": 17177.28, + "probability": 0.9558 + }, + { + "start": 17177.36, + "end": 17179.14, + "probability": 0.9604 + }, + { + "start": 17179.78, + "end": 17181.52, + "probability": 0.979 + }, + { + "start": 17182.64, + "end": 17185.04, + "probability": 0.9601 + }, + { + "start": 17185.1, + "end": 17186.0, + "probability": 0.6969 + }, + { + "start": 17187.28, + "end": 17190.14, + "probability": 0.9409 + }, + { + "start": 17193.4, + "end": 17196.42, + "probability": 0.8846 + }, + { + "start": 17196.58, + "end": 17198.16, + "probability": 0.9976 + }, + { + "start": 17198.42, + "end": 17199.52, + "probability": 0.7495 + }, + { + "start": 17199.6, + "end": 17200.32, + "probability": 0.84 + }, + { + "start": 17202.18, + "end": 17204.92, + "probability": 0.819 + }, + { + "start": 17205.06, + "end": 17206.66, + "probability": 0.8475 + }, + { + "start": 17206.78, + "end": 17210.92, + "probability": 0.6903 + }, + { + "start": 17212.18, + "end": 17215.3, + "probability": 0.946 + }, + { + "start": 17215.44, + "end": 17217.78, + "probability": 0.3303 + }, + { + "start": 17217.9, + "end": 17218.26, + "probability": 0.7346 + }, + { + "start": 17218.32, + "end": 17219.5, + "probability": 0.7762 + }, + { + "start": 17219.84, + "end": 17219.94, + "probability": 0.6467 + }, + { + "start": 17220.0, + "end": 17220.8, + "probability": 0.3433 + }, + { + "start": 17221.1, + "end": 17221.82, + "probability": 0.6951 + }, + { + "start": 17223.04, + "end": 17224.8, + "probability": 0.9233 + }, + { + "start": 17225.78, + "end": 17228.56, + "probability": 0.9951 + }, + { + "start": 17229.52, + "end": 17231.02, + "probability": 0.9958 + }, + { + "start": 17231.66, + "end": 17233.98, + "probability": 0.8214 + }, + { + "start": 17234.6, + "end": 17235.41, + "probability": 0.8726 + }, + { + "start": 17235.5, + "end": 17237.54, + "probability": 0.9222 + }, + { + "start": 17238.04, + "end": 17239.36, + "probability": 0.7449 + }, + { + "start": 17240.4, + "end": 17242.56, + "probability": 0.9531 + }, + { + "start": 17244.07, + "end": 17247.0, + "probability": 0.8119 + }, + { + "start": 17247.54, + "end": 17251.44, + "probability": 0.6103 + }, + { + "start": 17251.44, + "end": 17252.14, + "probability": 0.6051 + }, + { + "start": 17252.2, + "end": 17254.84, + "probability": 0.4098 + }, + { + "start": 17260.64, + "end": 17263.16, + "probability": 0.7567 + }, + { + "start": 17263.3, + "end": 17264.04, + "probability": 0.9005 + }, + { + "start": 17264.18, + "end": 17266.1, + "probability": 0.8589 + }, + { + "start": 17267.0, + "end": 17267.8, + "probability": 0.6047 + }, + { + "start": 17267.88, + "end": 17269.34, + "probability": 0.9941 + }, + { + "start": 17269.36, + "end": 17270.42, + "probability": 0.789 + }, + { + "start": 17271.06, + "end": 17274.8, + "probability": 0.9571 + }, + { + "start": 17275.32, + "end": 17276.0, + "probability": 0.8491 + }, + { + "start": 17276.64, + "end": 17277.28, + "probability": 0.4572 + }, + { + "start": 17277.68, + "end": 17278.14, + "probability": 0.9186 + }, + { + "start": 17279.64, + "end": 17281.3, + "probability": 0.9771 + }, + { + "start": 17282.06, + "end": 17282.78, + "probability": 0.8227 + }, + { + "start": 17283.22, + "end": 17284.36, + "probability": 0.8911 + }, + { + "start": 17284.44, + "end": 17286.56, + "probability": 0.9814 + }, + { + "start": 17287.42, + "end": 17290.08, + "probability": 0.9863 + }, + { + "start": 17290.6, + "end": 17292.9, + "probability": 0.9834 + }, + { + "start": 17293.44, + "end": 17293.88, + "probability": 0.7646 + }, + { + "start": 17294.16, + "end": 17295.74, + "probability": 0.9222 + }, + { + "start": 17296.96, + "end": 17299.42, + "probability": 0.9916 + }, + { + "start": 17300.3, + "end": 17301.16, + "probability": 0.9624 + }, + { + "start": 17301.4, + "end": 17303.78, + "probability": 0.6399 + }, + { + "start": 17304.94, + "end": 17306.44, + "probability": 0.5942 + }, + { + "start": 17307.6, + "end": 17310.98, + "probability": 0.8853 + }, + { + "start": 17311.86, + "end": 17314.28, + "probability": 0.9902 + }, + { + "start": 17315.04, + "end": 17316.04, + "probability": 0.8755 + }, + { + "start": 17316.98, + "end": 17318.72, + "probability": 0.9294 + }, + { + "start": 17319.08, + "end": 17320.1, + "probability": 0.5271 + }, + { + "start": 17320.68, + "end": 17322.16, + "probability": 0.8859 + }, + { + "start": 17322.24, + "end": 17323.1, + "probability": 0.6306 + }, + { + "start": 17323.8, + "end": 17325.28, + "probability": 0.5428 + }, + { + "start": 17326.12, + "end": 17328.28, + "probability": 0.9561 + }, + { + "start": 17328.56, + "end": 17330.76, + "probability": 0.9704 + }, + { + "start": 17331.64, + "end": 17335.84, + "probability": 0.9609 + }, + { + "start": 17336.44, + "end": 17337.48, + "probability": 0.7641 + }, + { + "start": 17338.12, + "end": 17339.48, + "probability": 0.8612 + }, + { + "start": 17342.09, + "end": 17343.86, + "probability": 0.9961 + }, + { + "start": 17345.04, + "end": 17348.14, + "probability": 0.9863 + }, + { + "start": 17348.48, + "end": 17349.82, + "probability": 0.9521 + }, + { + "start": 17350.52, + "end": 17350.94, + "probability": 0.993 + }, + { + "start": 17351.5, + "end": 17353.1, + "probability": 0.7489 + }, + { + "start": 17353.26, + "end": 17354.26, + "probability": 0.8156 + }, + { + "start": 17354.5, + "end": 17355.3, + "probability": 0.4385 + }, + { + "start": 17355.9, + "end": 17359.38, + "probability": 0.9916 + }, + { + "start": 17360.22, + "end": 17361.82, + "probability": 0.9796 + }, + { + "start": 17362.34, + "end": 17364.02, + "probability": 0.9517 + }, + { + "start": 17364.42, + "end": 17364.88, + "probability": 0.7338 + }, + { + "start": 17365.34, + "end": 17366.35, + "probability": 0.4494 + }, + { + "start": 17367.28, + "end": 17368.92, + "probability": 0.6854 + }, + { + "start": 17368.98, + "end": 17369.58, + "probability": 0.6263 + }, + { + "start": 17369.64, + "end": 17370.92, + "probability": 0.9432 + }, + { + "start": 17371.3, + "end": 17372.1, + "probability": 0.9165 + }, + { + "start": 17389.4, + "end": 17390.16, + "probability": 0.5793 + }, + { + "start": 17392.88, + "end": 17393.44, + "probability": 0.9234 + }, + { + "start": 17395.26, + "end": 17396.52, + "probability": 0.6907 + }, + { + "start": 17398.1, + "end": 17405.24, + "probability": 0.7475 + }, + { + "start": 17407.9, + "end": 17411.04, + "probability": 0.951 + }, + { + "start": 17411.74, + "end": 17412.36, + "probability": 0.2901 + }, + { + "start": 17413.38, + "end": 17418.16, + "probability": 0.9468 + }, + { + "start": 17420.02, + "end": 17424.96, + "probability": 0.6283 + }, + { + "start": 17426.04, + "end": 17427.52, + "probability": 0.9161 + }, + { + "start": 17428.16, + "end": 17431.64, + "probability": 0.9522 + }, + { + "start": 17432.16, + "end": 17432.94, + "probability": 0.9818 + }, + { + "start": 17433.64, + "end": 17436.28, + "probability": 0.7061 + }, + { + "start": 17437.18, + "end": 17437.94, + "probability": 0.7343 + }, + { + "start": 17438.84, + "end": 17439.44, + "probability": 0.5006 + }, + { + "start": 17440.02, + "end": 17442.64, + "probability": 0.9232 + }, + { + "start": 17444.24, + "end": 17447.22, + "probability": 0.9458 + }, + { + "start": 17447.4, + "end": 17449.62, + "probability": 0.9966 + }, + { + "start": 17450.28, + "end": 17451.44, + "probability": 0.8076 + }, + { + "start": 17452.56, + "end": 17454.28, + "probability": 0.8313 + }, + { + "start": 17456.98, + "end": 17457.46, + "probability": 0.5719 + }, + { + "start": 17458.12, + "end": 17461.06, + "probability": 0.8443 + }, + { + "start": 17461.64, + "end": 17464.26, + "probability": 0.8257 + }, + { + "start": 17464.78, + "end": 17465.62, + "probability": 0.9961 + }, + { + "start": 17466.14, + "end": 17467.02, + "probability": 0.7172 + }, + { + "start": 17467.74, + "end": 17472.58, + "probability": 0.9719 + }, + { + "start": 17472.84, + "end": 17478.04, + "probability": 0.8947 + }, + { + "start": 17478.44, + "end": 17479.68, + "probability": 0.4811 + }, + { + "start": 17480.34, + "end": 17482.36, + "probability": 0.8271 + }, + { + "start": 17482.88, + "end": 17484.84, + "probability": 0.7968 + }, + { + "start": 17485.42, + "end": 17486.66, + "probability": 0.8042 + }, + { + "start": 17487.34, + "end": 17488.48, + "probability": 0.8113 + }, + { + "start": 17488.88, + "end": 17489.9, + "probability": 0.739 + }, + { + "start": 17490.24, + "end": 17491.22, + "probability": 0.8684 + }, + { + "start": 17491.88, + "end": 17493.74, + "probability": 0.8741 + }, + { + "start": 17494.04, + "end": 17495.12, + "probability": 0.381 + }, + { + "start": 17495.7, + "end": 17496.82, + "probability": 0.5972 + }, + { + "start": 17497.42, + "end": 17498.6, + "probability": 0.6806 + }, + { + "start": 17499.44, + "end": 17500.17, + "probability": 0.9253 + }, + { + "start": 17500.82, + "end": 17504.04, + "probability": 0.9414 + }, + { + "start": 17504.22, + "end": 17507.64, + "probability": 0.9156 + }, + { + "start": 17508.3, + "end": 17510.24, + "probability": 0.7847 + }, + { + "start": 17511.14, + "end": 17512.78, + "probability": 0.5008 + }, + { + "start": 17513.5, + "end": 17515.34, + "probability": 0.9834 + }, + { + "start": 17517.3, + "end": 17519.04, + "probability": 0.3888 + }, + { + "start": 17519.86, + "end": 17522.22, + "probability": 0.9565 + }, + { + "start": 17522.6, + "end": 17522.88, + "probability": 0.9308 + }, + { + "start": 17523.34, + "end": 17523.74, + "probability": 0.5162 + }, + { + "start": 17524.6, + "end": 17524.8, + "probability": 0.1662 + }, + { + "start": 17524.8, + "end": 17526.04, + "probability": 0.4699 + }, + { + "start": 17526.76, + "end": 17527.26, + "probability": 0.3175 + }, + { + "start": 17527.34, + "end": 17528.78, + "probability": 0.9339 + }, + { + "start": 17529.08, + "end": 17530.2, + "probability": 0.7158 + }, + { + "start": 17530.66, + "end": 17531.6, + "probability": 0.5468 + }, + { + "start": 17531.7, + "end": 17532.58, + "probability": 0.6823 + }, + { + "start": 17533.16, + "end": 17533.36, + "probability": 0.9141 + }, + { + "start": 17533.9, + "end": 17536.0, + "probability": 0.7214 + }, + { + "start": 17536.48, + "end": 17539.47, + "probability": 0.8418 + }, + { + "start": 17540.09, + "end": 17542.28, + "probability": 0.9758 + }, + { + "start": 17545.06, + "end": 17547.62, + "probability": 0.7621 + }, + { + "start": 17547.82, + "end": 17548.1, + "probability": 0.7116 + }, + { + "start": 17549.22, + "end": 17552.22, + "probability": 0.7958 + }, + { + "start": 17552.98, + "end": 17555.24, + "probability": 0.7927 + }, + { + "start": 17555.64, + "end": 17556.78, + "probability": 0.8358 + }, + { + "start": 17557.7, + "end": 17562.92, + "probability": 0.9548 + }, + { + "start": 17562.92, + "end": 17565.84, + "probability": 0.7567 + }, + { + "start": 17565.84, + "end": 17569.12, + "probability": 0.9311 + }, + { + "start": 17570.22, + "end": 17571.6, + "probability": 0.8964 + }, + { + "start": 17574.14, + "end": 17579.24, + "probability": 0.9749 + }, + { + "start": 17579.24, + "end": 17584.86, + "probability": 0.979 + }, + { + "start": 17584.98, + "end": 17585.42, + "probability": 0.8034 + }, + { + "start": 17586.54, + "end": 17588.16, + "probability": 0.8855 + }, + { + "start": 17588.42, + "end": 17590.24, + "probability": 0.9075 + }, + { + "start": 17591.85, + "end": 17595.02, + "probability": 0.7593 + }, + { + "start": 17595.3, + "end": 17598.26, + "probability": 0.6568 + }, + { + "start": 17598.96, + "end": 17600.14, + "probability": 0.7788 + }, + { + "start": 17600.46, + "end": 17603.2, + "probability": 0.9052 + }, + { + "start": 17603.78, + "end": 17605.04, + "probability": 0.6256 + }, + { + "start": 17605.32, + "end": 17606.7, + "probability": 0.8613 + }, + { + "start": 17607.1, + "end": 17608.6, + "probability": 0.9104 + }, + { + "start": 17609.66, + "end": 17612.38, + "probability": 0.6701 + }, + { + "start": 17612.74, + "end": 17614.48, + "probability": 0.9781 + }, + { + "start": 17614.82, + "end": 17615.74, + "probability": 0.8389 + }, + { + "start": 17616.62, + "end": 17617.9, + "probability": 0.8911 + }, + { + "start": 17618.5, + "end": 17619.92, + "probability": 0.8371 + }, + { + "start": 17620.22, + "end": 17621.48, + "probability": 0.4668 + }, + { + "start": 17621.96, + "end": 17623.16, + "probability": 0.966 + }, + { + "start": 17623.74, + "end": 17626.8, + "probability": 0.9482 + }, + { + "start": 17627.34, + "end": 17631.78, + "probability": 0.9028 + }, + { + "start": 17632.35, + "end": 17634.94, + "probability": 0.9282 + }, + { + "start": 17635.4, + "end": 17636.18, + "probability": 0.5768 + }, + { + "start": 17636.32, + "end": 17637.73, + "probability": 0.5648 + }, + { + "start": 17637.74, + "end": 17638.84, + "probability": 0.7723 + }, + { + "start": 17639.04, + "end": 17639.86, + "probability": 0.4618 + }, + { + "start": 17640.04, + "end": 17641.52, + "probability": 0.9755 + }, + { + "start": 17643.92, + "end": 17643.96, + "probability": 0.2814 + }, + { + "start": 17660.73, + "end": 17664.24, + "probability": 0.6054 + }, + { + "start": 17665.36, + "end": 17667.7, + "probability": 0.8652 + }, + { + "start": 17668.24, + "end": 17669.5, + "probability": 0.9749 + }, + { + "start": 17671.26, + "end": 17675.7, + "probability": 0.9739 + }, + { + "start": 17677.24, + "end": 17677.56, + "probability": 0.4526 + }, + { + "start": 17677.6, + "end": 17678.36, + "probability": 0.4401 + }, + { + "start": 17678.5, + "end": 17678.78, + "probability": 0.4771 + }, + { + "start": 17678.78, + "end": 17681.74, + "probability": 0.9766 + }, + { + "start": 17682.66, + "end": 17686.28, + "probability": 0.9949 + }, + { + "start": 17686.9, + "end": 17687.88, + "probability": 0.6852 + }, + { + "start": 17688.6, + "end": 17689.78, + "probability": 0.7793 + }, + { + "start": 17690.74, + "end": 17691.32, + "probability": 0.9148 + }, + { + "start": 17691.5, + "end": 17692.12, + "probability": 0.7812 + }, + { + "start": 17692.76, + "end": 17693.48, + "probability": 0.8837 + }, + { + "start": 17695.88, + "end": 17697.14, + "probability": 0.2248 + }, + { + "start": 17697.28, + "end": 17698.21, + "probability": 0.7919 + }, + { + "start": 17700.52, + "end": 17703.4, + "probability": 0.733 + }, + { + "start": 17704.1, + "end": 17707.26, + "probability": 0.8208 + }, + { + "start": 17707.26, + "end": 17711.28, + "probability": 0.8612 + }, + { + "start": 17712.52, + "end": 17714.86, + "probability": 0.8831 + }, + { + "start": 17715.98, + "end": 17718.82, + "probability": 0.6879 + }, + { + "start": 17719.5, + "end": 17721.12, + "probability": 0.5736 + }, + { + "start": 17722.2, + "end": 17725.08, + "probability": 0.7297 + }, + { + "start": 17725.08, + "end": 17729.56, + "probability": 0.9703 + }, + { + "start": 17729.7, + "end": 17732.1, + "probability": 0.9633 + }, + { + "start": 17732.74, + "end": 17737.18, + "probability": 0.8428 + }, + { + "start": 17738.3, + "end": 17741.1, + "probability": 0.7618 + }, + { + "start": 17741.72, + "end": 17744.04, + "probability": 0.9283 + }, + { + "start": 17745.26, + "end": 17746.02, + "probability": 0.7318 + }, + { + "start": 17746.14, + "end": 17751.34, + "probability": 0.9605 + }, + { + "start": 17752.07, + "end": 17753.2, + "probability": 0.0844 + }, + { + "start": 17753.76, + "end": 17757.64, + "probability": 0.2749 + }, + { + "start": 17758.4, + "end": 17760.86, + "probability": 0.9617 + }, + { + "start": 17761.34, + "end": 17762.24, + "probability": 0.6056 + }, + { + "start": 17762.34, + "end": 17765.68, + "probability": 0.9966 + }, + { + "start": 17765.78, + "end": 17767.96, + "probability": 0.9213 + }, + { + "start": 17768.1, + "end": 17769.34, + "probability": 0.7461 + }, + { + "start": 17769.98, + "end": 17772.08, + "probability": 0.9507 + }, + { + "start": 17773.06, + "end": 17776.58, + "probability": 0.6183 + }, + { + "start": 17777.62, + "end": 17779.18, + "probability": 0.5148 + }, + { + "start": 17779.48, + "end": 17782.66, + "probability": 0.9487 + }, + { + "start": 17782.84, + "end": 17785.18, + "probability": 0.9977 + }, + { + "start": 17785.72, + "end": 17786.66, + "probability": 0.9803 + }, + { + "start": 17787.3, + "end": 17788.3, + "probability": 0.7562 + }, + { + "start": 17789.38, + "end": 17791.66, + "probability": 0.4965 + }, + { + "start": 17791.94, + "end": 17795.6, + "probability": 0.1017 + }, + { + "start": 17795.6, + "end": 17797.44, + "probability": 0.4014 + }, + { + "start": 17798.72, + "end": 17801.52, + "probability": 0.5804 + }, + { + "start": 17802.2, + "end": 17803.9, + "probability": 0.9778 + }, + { + "start": 17804.0, + "end": 17804.9, + "probability": 0.7888 + }, + { + "start": 17805.06, + "end": 17810.5, + "probability": 0.9775 + }, + { + "start": 17810.82, + "end": 17812.92, + "probability": 0.99 + }, + { + "start": 17813.78, + "end": 17817.12, + "probability": 0.9827 + }, + { + "start": 17817.78, + "end": 17819.8, + "probability": 0.989 + }, + { + "start": 17820.66, + "end": 17823.94, + "probability": 0.897 + }, + { + "start": 17824.38, + "end": 17825.94, + "probability": 0.8923 + }, + { + "start": 17826.46, + "end": 17829.68, + "probability": 0.8845 + }, + { + "start": 17830.32, + "end": 17831.76, + "probability": 0.8477 + }, + { + "start": 17831.94, + "end": 17832.68, + "probability": 0.7988 + }, + { + "start": 17833.08, + "end": 17837.06, + "probability": 0.195 + }, + { + "start": 17837.16, + "end": 17839.22, + "probability": 0.7424 + }, + { + "start": 17839.36, + "end": 17841.74, + "probability": 0.6179 + }, + { + "start": 17841.8, + "end": 17842.64, + "probability": 0.6746 + }, + { + "start": 17842.76, + "end": 17843.52, + "probability": 0.3525 + }, + { + "start": 17843.58, + "end": 17844.37, + "probability": 0.4502 + }, + { + "start": 17845.18, + "end": 17849.68, + "probability": 0.3868 + }, + { + "start": 17849.94, + "end": 17850.86, + "probability": 0.6178 + }, + { + "start": 17852.28, + "end": 17855.84, + "probability": 0.186 + }, + { + "start": 17857.64, + "end": 17860.42, + "probability": 0.9934 + }, + { + "start": 17861.56, + "end": 17863.74, + "probability": 0.994 + }, + { + "start": 17864.72, + "end": 17867.42, + "probability": 0.926 + }, + { + "start": 17868.5, + "end": 17869.72, + "probability": 0.6425 + }, + { + "start": 17869.82, + "end": 17870.78, + "probability": 0.9487 + }, + { + "start": 17870.9, + "end": 17872.66, + "probability": 0.9727 + }, + { + "start": 17873.82, + "end": 17876.14, + "probability": 0.7458 + }, + { + "start": 17877.26, + "end": 17877.66, + "probability": 0.0874 + }, + { + "start": 17877.66, + "end": 17880.56, + "probability": 0.6243 + }, + { + "start": 17881.92, + "end": 17882.86, + "probability": 0.8081 + }, + { + "start": 17884.16, + "end": 17884.76, + "probability": 0.453 + }, + { + "start": 17885.9, + "end": 17886.32, + "probability": 0.9537 + }, + { + "start": 17887.44, + "end": 17889.16, + "probability": 0.9481 + }, + { + "start": 17890.16, + "end": 17894.12, + "probability": 0.9329 + }, + { + "start": 17894.5, + "end": 17896.58, + "probability": 0.9385 + }, + { + "start": 17899.04, + "end": 17902.58, + "probability": 0.9935 + }, + { + "start": 17902.8, + "end": 17904.62, + "probability": 0.6957 + }, + { + "start": 17904.8, + "end": 17906.54, + "probability": 0.9001 + }, + { + "start": 17906.58, + "end": 17907.56, + "probability": 0.5386 + }, + { + "start": 17907.8, + "end": 17910.06, + "probability": 0.7458 + }, + { + "start": 17910.6, + "end": 17911.48, + "probability": 0.9878 + }, + { + "start": 17912.1, + "end": 17913.02, + "probability": 0.9028 + }, + { + "start": 17913.32, + "end": 17913.72, + "probability": 0.5918 + }, + { + "start": 17915.16, + "end": 17916.28, + "probability": 0.8992 + }, + { + "start": 17918.96, + "end": 17919.46, + "probability": 0.983 + }, + { + "start": 17921.22, + "end": 17924.7, + "probability": 0.8048 + }, + { + "start": 17925.5, + "end": 17926.4, + "probability": 0.9368 + }, + { + "start": 17927.32, + "end": 17928.14, + "probability": 0.7679 + }, + { + "start": 17928.88, + "end": 17930.04, + "probability": 0.9048 + }, + { + "start": 17930.3, + "end": 17932.74, + "probability": 0.6016 + }, + { + "start": 17933.44, + "end": 17933.78, + "probability": 0.8371 + }, + { + "start": 17933.88, + "end": 17934.28, + "probability": 0.8136 + }, + { + "start": 17934.36, + "end": 17935.02, + "probability": 0.3113 + }, + { + "start": 17935.06, + "end": 17936.06, + "probability": 0.9285 + }, + { + "start": 17936.12, + "end": 17937.36, + "probability": 0.7192 + }, + { + "start": 17937.68, + "end": 17939.86, + "probability": 0.7921 + }, + { + "start": 17940.8, + "end": 17941.76, + "probability": 0.6825 + }, + { + "start": 17943.54, + "end": 17943.7, + "probability": 0.1097 + }, + { + "start": 17943.7, + "end": 17943.77, + "probability": 0.2268 + }, + { + "start": 17945.44, + "end": 17946.78, + "probability": 0.3869 + }, + { + "start": 17948.0, + "end": 17949.86, + "probability": 0.9858 + }, + { + "start": 17950.4, + "end": 17951.54, + "probability": 0.7295 + }, + { + "start": 17952.18, + "end": 17952.74, + "probability": 0.7953 + }, + { + "start": 17954.86, + "end": 17955.36, + "probability": 0.9548 + }, + { + "start": 17956.54, + "end": 17959.8, + "probability": 0.6866 + }, + { + "start": 17959.94, + "end": 17962.06, + "probability": 0.9712 + }, + { + "start": 17963.4, + "end": 17965.6, + "probability": 0.945 + }, + { + "start": 17966.82, + "end": 17972.22, + "probability": 0.9697 + }, + { + "start": 17972.34, + "end": 17973.04, + "probability": 0.7275 + }, + { + "start": 17975.72, + "end": 17979.68, + "probability": 0.9626 + }, + { + "start": 17981.02, + "end": 17982.96, + "probability": 0.7881 + }, + { + "start": 17983.54, + "end": 17987.28, + "probability": 0.7314 + }, + { + "start": 17987.28, + "end": 17988.44, + "probability": 0.9067 + }, + { + "start": 17990.16, + "end": 17991.14, + "probability": 0.649 + }, + { + "start": 17991.56, + "end": 17994.26, + "probability": 0.9958 + }, + { + "start": 17995.44, + "end": 17999.25, + "probability": 0.73 + }, + { + "start": 18001.24, + "end": 18002.18, + "probability": 0.1671 + }, + { + "start": 18003.08, + "end": 18005.1, + "probability": 0.0352 + }, + { + "start": 18007.92, + "end": 18009.92, + "probability": 0.8981 + }, + { + "start": 18012.63, + "end": 18014.3, + "probability": 0.9679 + }, + { + "start": 18015.98, + "end": 18017.72, + "probability": 0.9319 + }, + { + "start": 18019.02, + "end": 18020.86, + "probability": 0.9978 + }, + { + "start": 18021.74, + "end": 18022.64, + "probability": 0.7143 + }, + { + "start": 18024.06, + "end": 18025.48, + "probability": 0.8644 + }, + { + "start": 18025.6, + "end": 18029.1, + "probability": 0.8891 + }, + { + "start": 18030.14, + "end": 18031.68, + "probability": 0.9358 + }, + { + "start": 18032.32, + "end": 18033.26, + "probability": 0.7689 + }, + { + "start": 18033.46, + "end": 18034.06, + "probability": 0.9443 + }, + { + "start": 18034.28, + "end": 18034.92, + "probability": 0.9546 + }, + { + "start": 18035.02, + "end": 18035.68, + "probability": 0.6483 + }, + { + "start": 18036.14, + "end": 18036.56, + "probability": 0.6925 + }, + { + "start": 18036.62, + "end": 18037.24, + "probability": 0.624 + }, + { + "start": 18039.46, + "end": 18039.89, + "probability": 0.9963 + }, + { + "start": 18041.64, + "end": 18047.58, + "probability": 0.9596 + }, + { + "start": 18048.56, + "end": 18051.26, + "probability": 0.3271 + }, + { + "start": 18051.3, + "end": 18052.3, + "probability": 0.5681 + }, + { + "start": 18052.5, + "end": 18054.22, + "probability": 0.6403 + }, + { + "start": 18054.44, + "end": 18055.2, + "probability": 0.5623 + }, + { + "start": 18055.32, + "end": 18055.82, + "probability": 0.5037 + }, + { + "start": 18056.3, + "end": 18057.14, + "probability": 0.806 + }, + { + "start": 18057.64, + "end": 18062.34, + "probability": 0.834 + }, + { + "start": 18062.86, + "end": 18065.56, + "probability": 0.9956 + }, + { + "start": 18066.1, + "end": 18068.4, + "probability": 0.9492 + }, + { + "start": 18068.98, + "end": 18069.33, + "probability": 0.0676 + }, + { + "start": 18070.54, + "end": 18073.1, + "probability": 0.6703 + }, + { + "start": 18074.04, + "end": 18075.16, + "probability": 0.949 + }, + { + "start": 18077.64, + "end": 18078.7, + "probability": 0.5932 + }, + { + "start": 18078.7, + "end": 18080.16, + "probability": 0.498 + }, + { + "start": 18081.28, + "end": 18082.36, + "probability": 0.9436 + }, + { + "start": 18082.36, + "end": 18083.14, + "probability": 0.4215 + }, + { + "start": 18083.58, + "end": 18084.96, + "probability": 0.9269 + }, + { + "start": 18085.68, + "end": 18086.82, + "probability": 0.71 + }, + { + "start": 18087.56, + "end": 18088.33, + "probability": 0.8853 + }, + { + "start": 18089.62, + "end": 18090.48, + "probability": 0.9502 + }, + { + "start": 18090.56, + "end": 18091.36, + "probability": 0.8047 + }, + { + "start": 18091.48, + "end": 18092.06, + "probability": 0.8157 + }, + { + "start": 18092.1, + "end": 18092.8, + "probability": 0.8733 + }, + { + "start": 18093.16, + "end": 18093.72, + "probability": 0.7567 + }, + { + "start": 18093.76, + "end": 18094.8, + "probability": 0.6777 + }, + { + "start": 18094.86, + "end": 18095.44, + "probability": 0.4791 + }, + { + "start": 18096.02, + "end": 18096.3, + "probability": 0.9034 + }, + { + "start": 18096.34, + "end": 18097.0, + "probability": 0.8293 + }, + { + "start": 18097.08, + "end": 18097.62, + "probability": 0.6088 + }, + { + "start": 18097.64, + "end": 18098.72, + "probability": 0.8939 + }, + { + "start": 18098.78, + "end": 18099.32, + "probability": 0.649 + }, + { + "start": 18099.6, + "end": 18101.38, + "probability": 0.9855 + }, + { + "start": 18102.88, + "end": 18103.68, + "probability": 0.7534 + }, + { + "start": 18104.48, + "end": 18105.26, + "probability": 0.5794 + }, + { + "start": 18106.08, + "end": 18106.32, + "probability": 0.7894 + }, + { + "start": 18107.68, + "end": 18108.24, + "probability": 0.5787 + }, + { + "start": 18108.5, + "end": 18109.02, + "probability": 0.7964 + }, + { + "start": 18109.38, + "end": 18110.32, + "probability": 0.1128 + }, + { + "start": 18110.32, + "end": 18112.08, + "probability": 0.4168 + }, + { + "start": 18112.18, + "end": 18113.26, + "probability": 0.4527 + }, + { + "start": 18114.44, + "end": 18115.5, + "probability": 0.9349 + }, + { + "start": 18116.92, + "end": 18120.36, + "probability": 0.7154 + }, + { + "start": 18120.8, + "end": 18123.24, + "probability": 0.9495 + }, + { + "start": 18123.72, + "end": 18123.8, + "probability": 0.39 + }, + { + "start": 18126.4, + "end": 18129.26, + "probability": 0.9073 + }, + { + "start": 18135.14, + "end": 18135.96, + "probability": 0.6974 + }, + { + "start": 18137.0, + "end": 18139.94, + "probability": 0.8297 + }, + { + "start": 18140.9, + "end": 18143.36, + "probability": 0.9082 + }, + { + "start": 18144.42, + "end": 18144.9, + "probability": 0.8321 + }, + { + "start": 18145.87, + "end": 18146.38, + "probability": 0.0313 + }, + { + "start": 18146.5, + "end": 18147.12, + "probability": 0.9491 + }, + { + "start": 18149.32, + "end": 18151.04, + "probability": 0.9886 + }, + { + "start": 18151.08, + "end": 18152.34, + "probability": 0.9803 + }, + { + "start": 18152.4, + "end": 18154.48, + "probability": 0.9899 + }, + { + "start": 18156.12, + "end": 18159.46, + "probability": 0.8983 + }, + { + "start": 18159.58, + "end": 18161.46, + "probability": 0.9855 + }, + { + "start": 18161.6, + "end": 18164.97, + "probability": 0.9683 + }, + { + "start": 18165.16, + "end": 18166.21, + "probability": 0.998 + }, + { + "start": 18166.46, + "end": 18166.95, + "probability": 0.647 + }, + { + "start": 18167.82, + "end": 18168.92, + "probability": 0.9745 + }, + { + "start": 18169.02, + "end": 18170.6, + "probability": 0.9385 + }, + { + "start": 18171.3, + "end": 18174.04, + "probability": 0.9788 + }, + { + "start": 18175.84, + "end": 18181.2, + "probability": 0.9126 + }, + { + "start": 18181.78, + "end": 18187.16, + "probability": 0.998 + }, + { + "start": 18188.56, + "end": 18191.06, + "probability": 0.9967 + }, + { + "start": 18192.06, + "end": 18192.26, + "probability": 0.0948 + }, + { + "start": 18193.0, + "end": 18194.18, + "probability": 0.9128 + }, + { + "start": 18195.26, + "end": 18196.32, + "probability": 0.9214 + }, + { + "start": 18199.48, + "end": 18201.18, + "probability": 0.778 + }, + { + "start": 18202.04, + "end": 18205.28, + "probability": 0.9912 + }, + { + "start": 18206.42, + "end": 18208.62, + "probability": 0.9868 + }, + { + "start": 18210.16, + "end": 18214.34, + "probability": 0.9837 + }, + { + "start": 18215.24, + "end": 18216.16, + "probability": 0.9879 + }, + { + "start": 18216.26, + "end": 18216.58, + "probability": 0.9429 + }, + { + "start": 18216.82, + "end": 18217.88, + "probability": 0.745 + }, + { + "start": 18219.72, + "end": 18221.16, + "probability": 0.7885 + }, + { + "start": 18222.64, + "end": 18224.46, + "probability": 0.9906 + }, + { + "start": 18224.6, + "end": 18225.36, + "probability": 0.9213 + }, + { + "start": 18226.76, + "end": 18227.2, + "probability": 0.8947 + }, + { + "start": 18228.08, + "end": 18228.46, + "probability": 0.7178 + }, + { + "start": 18229.16, + "end": 18233.59, + "probability": 0.9811 + }, + { + "start": 18234.24, + "end": 18234.94, + "probability": 0.4088 + }, + { + "start": 18236.44, + "end": 18237.04, + "probability": 0.9845 + }, + { + "start": 18237.24, + "end": 18237.94, + "probability": 0.9472 + }, + { + "start": 18237.98, + "end": 18238.34, + "probability": 0.6196 + }, + { + "start": 18238.42, + "end": 18239.3, + "probability": 0.7424 + }, + { + "start": 18240.68, + "end": 18241.56, + "probability": 0.9734 + }, + { + "start": 18242.36, + "end": 18243.78, + "probability": 0.998 + }, + { + "start": 18244.56, + "end": 18247.7, + "probability": 0.9749 + }, + { + "start": 18248.32, + "end": 18250.44, + "probability": 0.9368 + }, + { + "start": 18250.6, + "end": 18252.26, + "probability": 0.8467 + }, + { + "start": 18253.38, + "end": 18255.64, + "probability": 0.9976 + }, + { + "start": 18256.22, + "end": 18258.44, + "probability": 0.9972 + }, + { + "start": 18259.22, + "end": 18260.96, + "probability": 0.5562 + }, + { + "start": 18262.44, + "end": 18265.86, + "probability": 0.9871 + }, + { + "start": 18266.02, + "end": 18266.59, + "probability": 0.8296 + }, + { + "start": 18267.56, + "end": 18269.26, + "probability": 0.9761 + }, + { + "start": 18272.02, + "end": 18276.0, + "probability": 0.9897 + }, + { + "start": 18276.9, + "end": 18277.26, + "probability": 0.8411 + }, + { + "start": 18278.34, + "end": 18278.86, + "probability": 0.5951 + }, + { + "start": 18280.1, + "end": 18280.7, + "probability": 0.9453 + }, + { + "start": 18281.32, + "end": 18281.8, + "probability": 0.6097 + }, + { + "start": 18282.44, + "end": 18282.94, + "probability": 0.9922 + }, + { + "start": 18284.44, + "end": 18287.34, + "probability": 0.7539 + }, + { + "start": 18287.98, + "end": 18291.34, + "probability": 0.9938 + }, + { + "start": 18291.44, + "end": 18292.32, + "probability": 0.9371 + }, + { + "start": 18293.22, + "end": 18294.46, + "probability": 0.4895 + }, + { + "start": 18294.56, + "end": 18294.78, + "probability": 0.0231 + }, + { + "start": 18295.22, + "end": 18295.56, + "probability": 0.5192 + }, + { + "start": 18295.72, + "end": 18296.18, + "probability": 0.6658 + }, + { + "start": 18297.04, + "end": 18298.76, + "probability": 0.7576 + }, + { + "start": 18299.88, + "end": 18302.01, + "probability": 0.957 + }, + { + "start": 18303.68, + "end": 18305.78, + "probability": 0.9492 + }, + { + "start": 18307.64, + "end": 18308.1, + "probability": 0.44 + }, + { + "start": 18308.86, + "end": 18309.58, + "probability": 0.8818 + }, + { + "start": 18310.22, + "end": 18312.24, + "probability": 0.9933 + }, + { + "start": 18313.4, + "end": 18315.38, + "probability": 0.9898 + }, + { + "start": 18316.48, + "end": 18316.94, + "probability": 0.5283 + }, + { + "start": 18318.02, + "end": 18321.06, + "probability": 0.994 + }, + { + "start": 18321.52, + "end": 18322.32, + "probability": 0.9901 + }, + { + "start": 18323.72, + "end": 18324.8, + "probability": 0.5934 + }, + { + "start": 18325.72, + "end": 18326.02, + "probability": 0.4384 + }, + { + "start": 18326.68, + "end": 18328.08, + "probability": 0.9866 + }, + { + "start": 18329.1, + "end": 18329.9, + "probability": 0.316 + }, + { + "start": 18330.08, + "end": 18331.5, + "probability": 0.9961 + }, + { + "start": 18331.86, + "end": 18332.64, + "probability": 0.6643 + }, + { + "start": 18334.54, + "end": 18335.13, + "probability": 0.1423 + }, + { + "start": 18336.88, + "end": 18338.3, + "probability": 0.9824 + }, + { + "start": 18338.42, + "end": 18339.92, + "probability": 0.9758 + }, + { + "start": 18340.0, + "end": 18341.14, + "probability": 0.4447 + }, + { + "start": 18341.18, + "end": 18342.88, + "probability": 0.2627 + }, + { + "start": 18343.0, + "end": 18350.72, + "probability": 0.99 + }, + { + "start": 18350.9, + "end": 18351.52, + "probability": 0.8326 + }, + { + "start": 18351.58, + "end": 18352.5, + "probability": 0.6477 + }, + { + "start": 18352.78, + "end": 18355.44, + "probability": 0.9976 + }, + { + "start": 18355.46, + "end": 18356.58, + "probability": 0.988 + }, + { + "start": 18357.98, + "end": 18360.94, + "probability": 0.8799 + }, + { + "start": 18360.94, + "end": 18360.94, + "probability": 0.0624 + }, + { + "start": 18360.94, + "end": 18361.0, + "probability": 0.2891 + }, + { + "start": 18361.02, + "end": 18361.98, + "probability": 0.6366 + }, + { + "start": 18362.38, + "end": 18364.12, + "probability": 0.7225 + }, + { + "start": 18364.3, + "end": 18365.44, + "probability": 0.7236 + }, + { + "start": 18366.02, + "end": 18366.98, + "probability": 0.9517 + }, + { + "start": 18367.66, + "end": 18369.08, + "probability": 0.9424 + }, + { + "start": 18369.2, + "end": 18371.48, + "probability": 0.861 + }, + { + "start": 18372.04, + "end": 18375.26, + "probability": 0.9752 + }, + { + "start": 18376.1, + "end": 18379.68, + "probability": 0.959 + }, + { + "start": 18380.36, + "end": 18382.16, + "probability": 0.9924 + }, + { + "start": 18382.48, + "end": 18385.08, + "probability": 0.7256 + }, + { + "start": 18386.66, + "end": 18387.74, + "probability": 0.3552 + }, + { + "start": 18387.74, + "end": 18388.18, + "probability": 0.4804 + }, + { + "start": 18388.7, + "end": 18391.5, + "probability": 0.7542 + }, + { + "start": 18392.52, + "end": 18397.18, + "probability": 0.7883 + }, + { + "start": 18397.42, + "end": 18397.62, + "probability": 0.5662 + }, + { + "start": 18397.92, + "end": 18398.78, + "probability": 0.7632 + }, + { + "start": 18399.16, + "end": 18400.06, + "probability": 0.938 + }, + { + "start": 18400.1, + "end": 18401.84, + "probability": 0.9653 + }, + { + "start": 18403.3, + "end": 18404.64, + "probability": 0.9988 + }, + { + "start": 18404.86, + "end": 18407.46, + "probability": 0.9539 + }, + { + "start": 18408.2, + "end": 18409.62, + "probability": 0.8584 + }, + { + "start": 18410.16, + "end": 18410.7, + "probability": 0.9055 + }, + { + "start": 18410.84, + "end": 18411.48, + "probability": 0.8849 + }, + { + "start": 18411.56, + "end": 18413.16, + "probability": 0.9954 + }, + { + "start": 18413.18, + "end": 18413.86, + "probability": 0.854 + }, + { + "start": 18414.06, + "end": 18414.72, + "probability": 0.9165 + }, + { + "start": 18415.32, + "end": 18415.66, + "probability": 0.2683 + }, + { + "start": 18416.6, + "end": 18418.96, + "probability": 0.8751 + }, + { + "start": 18420.78, + "end": 18421.41, + "probability": 0.0033 + }, + { + "start": 18422.5, + "end": 18423.86, + "probability": 0.0531 + }, + { + "start": 18424.38, + "end": 18427.34, + "probability": 0.8676 + }, + { + "start": 18427.56, + "end": 18434.32, + "probability": 0.9523 + }, + { + "start": 18434.62, + "end": 18435.64, + "probability": 0.8766 + }, + { + "start": 18436.4, + "end": 18440.86, + "probability": 0.915 + }, + { + "start": 18441.38, + "end": 18441.76, + "probability": 0.7931 + }, + { + "start": 18441.88, + "end": 18443.96, + "probability": 0.9821 + }, + { + "start": 18444.56, + "end": 18446.4, + "probability": 0.9583 + }, + { + "start": 18446.94, + "end": 18447.66, + "probability": 0.7371 + }, + { + "start": 18447.7, + "end": 18449.36, + "probability": 0.983 + }, + { + "start": 18449.52, + "end": 18449.8, + "probability": 0.7293 + }, + { + "start": 18449.88, + "end": 18450.68, + "probability": 0.8144 + }, + { + "start": 18451.54, + "end": 18452.46, + "probability": 0.9305 + }, + { + "start": 18453.42, + "end": 18453.52, + "probability": 0.1672 + }, + { + "start": 18453.52, + "end": 18456.02, + "probability": 0.8866 + }, + { + "start": 18456.14, + "end": 18456.78, + "probability": 0.8465 + }, + { + "start": 18457.62, + "end": 18458.08, + "probability": 0.9021 + }, + { + "start": 18458.2, + "end": 18459.08, + "probability": 0.968 + }, + { + "start": 18459.14, + "end": 18459.82, + "probability": 0.9829 + }, + { + "start": 18459.84, + "end": 18460.43, + "probability": 0.9156 + }, + { + "start": 18461.38, + "end": 18462.52, + "probability": 0.9938 + }, + { + "start": 18462.58, + "end": 18464.26, + "probability": 0.9004 + }, + { + "start": 18464.52, + "end": 18465.34, + "probability": 0.7402 + }, + { + "start": 18465.5, + "end": 18467.48, + "probability": 0.7221 + }, + { + "start": 18467.82, + "end": 18469.42, + "probability": 0.9736 + }, + { + "start": 18469.48, + "end": 18470.04, + "probability": 0.61 + }, + { + "start": 18470.46, + "end": 18471.6, + "probability": 0.9824 + }, + { + "start": 18472.08, + "end": 18474.68, + "probability": 0.8245 + }, + { + "start": 18475.42, + "end": 18478.49, + "probability": 0.8083 + }, + { + "start": 18478.74, + "end": 18480.83, + "probability": 0.9551 + }, + { + "start": 18481.22, + "end": 18482.88, + "probability": 0.382 + }, + { + "start": 18483.38, + "end": 18484.32, + "probability": 0.8303 + }, + { + "start": 18485.76, + "end": 18488.24, + "probability": 0.3404 + }, + { + "start": 18488.24, + "end": 18489.9, + "probability": 0.2304 + }, + { + "start": 18490.18, + "end": 18492.16, + "probability": 0.0921 + }, + { + "start": 18492.16, + "end": 18492.46, + "probability": 0.1616 + }, + { + "start": 18492.98, + "end": 18493.4, + "probability": 0.0396 + }, + { + "start": 18502.12, + "end": 18502.96, + "probability": 0.2397 + }, + { + "start": 18503.06, + "end": 18505.0, + "probability": 0.3624 + }, + { + "start": 18505.68, + "end": 18506.88, + "probability": 0.0602 + }, + { + "start": 18509.9, + "end": 18510.96, + "probability": 0.0645 + }, + { + "start": 18510.96, + "end": 18512.9, + "probability": 0.5032 + }, + { + "start": 18513.72, + "end": 18514.88, + "probability": 0.7523 + }, + { + "start": 18516.06, + "end": 18516.98, + "probability": 0.7896 + }, + { + "start": 18519.76, + "end": 18526.82, + "probability": 0.9845 + }, + { + "start": 18528.1, + "end": 18530.62, + "probability": 0.9308 + }, + { + "start": 18531.96, + "end": 18534.3, + "probability": 0.9731 + }, + { + "start": 18535.08, + "end": 18536.48, + "probability": 0.9777 + }, + { + "start": 18536.74, + "end": 18538.36, + "probability": 0.3188 + }, + { + "start": 18539.06, + "end": 18540.14, + "probability": 0.4161 + }, + { + "start": 18541.06, + "end": 18541.92, + "probability": 0.5212 + }, + { + "start": 18542.08, + "end": 18542.86, + "probability": 0.8627 + }, + { + "start": 18543.12, + "end": 18546.0, + "probability": 0.8499 + }, + { + "start": 18546.1, + "end": 18547.2, + "probability": 0.9509 + }, + { + "start": 18547.32, + "end": 18548.12, + "probability": 0.835 + }, + { + "start": 18548.2, + "end": 18549.74, + "probability": 0.7266 + }, + { + "start": 18550.04, + "end": 18553.3, + "probability": 0.962 + }, + { + "start": 18553.88, + "end": 18554.88, + "probability": 0.4729 + }, + { + "start": 18554.88, + "end": 18556.3, + "probability": 0.9682 + }, + { + "start": 18556.42, + "end": 18557.24, + "probability": 0.6882 + }, + { + "start": 18557.48, + "end": 18558.06, + "probability": 0.8778 + }, + { + "start": 18560.2, + "end": 18563.46, + "probability": 0.8672 + }, + { + "start": 18564.12, + "end": 18564.72, + "probability": 0.7728 + }, + { + "start": 18564.82, + "end": 18569.05, + "probability": 0.9647 + }, + { + "start": 18569.82, + "end": 18573.76, + "probability": 0.9909 + }, + { + "start": 18575.14, + "end": 18575.86, + "probability": 0.7913 + }, + { + "start": 18577.54, + "end": 18580.62, + "probability": 0.8188 + }, + { + "start": 18581.36, + "end": 18582.02, + "probability": 0.4735 + }, + { + "start": 18584.26, + "end": 18586.94, + "probability": 0.8867 + }, + { + "start": 18588.14, + "end": 18593.7, + "probability": 0.6513 + }, + { + "start": 18594.62, + "end": 18596.04, + "probability": 0.8568 + }, + { + "start": 18596.76, + "end": 18600.12, + "probability": 0.9961 + }, + { + "start": 18600.64, + "end": 18601.58, + "probability": 0.7032 + }, + { + "start": 18602.34, + "end": 18605.48, + "probability": 0.7943 + }, + { + "start": 18606.26, + "end": 18609.22, + "probability": 0.9145 + }, + { + "start": 18609.88, + "end": 18612.52, + "probability": 0.9867 + }, + { + "start": 18613.98, + "end": 18617.94, + "probability": 0.9443 + }, + { + "start": 18618.88, + "end": 18622.89, + "probability": 0.9924 + }, + { + "start": 18623.78, + "end": 18628.24, + "probability": 0.9412 + }, + { + "start": 18629.76, + "end": 18630.56, + "probability": 0.9316 + }, + { + "start": 18631.92, + "end": 18633.62, + "probability": 0.5739 + }, + { + "start": 18633.7, + "end": 18639.42, + "probability": 0.9832 + }, + { + "start": 18640.92, + "end": 18646.6, + "probability": 0.9874 + }, + { + "start": 18646.86, + "end": 18648.68, + "probability": 0.7802 + }, + { + "start": 18649.38, + "end": 18652.88, + "probability": 0.7461 + }, + { + "start": 18653.68, + "end": 18655.5, + "probability": 0.8564 + }, + { + "start": 18656.08, + "end": 18658.44, + "probability": 0.8981 + }, + { + "start": 18659.26, + "end": 18660.24, + "probability": 0.8693 + }, + { + "start": 18660.86, + "end": 18665.96, + "probability": 0.9017 + }, + { + "start": 18666.54, + "end": 18666.98, + "probability": 0.9694 + }, + { + "start": 18668.94, + "end": 18670.1, + "probability": 0.4675 + }, + { + "start": 18671.26, + "end": 18673.7, + "probability": 0.9962 + }, + { + "start": 18673.7, + "end": 18675.96, + "probability": 0.9618 + }, + { + "start": 18677.32, + "end": 18680.36, + "probability": 0.9535 + }, + { + "start": 18681.8, + "end": 18686.18, + "probability": 0.4978 + }, + { + "start": 18686.4, + "end": 18690.1, + "probability": 0.6877 + }, + { + "start": 18690.1, + "end": 18692.88, + "probability": 0.734 + }, + { + "start": 18694.5, + "end": 18699.32, + "probability": 0.959 + }, + { + "start": 18700.04, + "end": 18702.42, + "probability": 0.7708 + }, + { + "start": 18703.98, + "end": 18706.02, + "probability": 0.9146 + }, + { + "start": 18707.16, + "end": 18711.22, + "probability": 0.9555 + }, + { + "start": 18711.76, + "end": 18713.44, + "probability": 0.8638 + }, + { + "start": 18714.94, + "end": 18719.22, + "probability": 0.7417 + }, + { + "start": 18720.9, + "end": 18722.34, + "probability": 0.728 + }, + { + "start": 18723.04, + "end": 18724.56, + "probability": 0.9858 + }, + { + "start": 18725.36, + "end": 18727.94, + "probability": 0.8627 + }, + { + "start": 18728.76, + "end": 18731.48, + "probability": 0.519 + }, + { + "start": 18732.82, + "end": 18736.28, + "probability": 0.9843 + }, + { + "start": 18736.42, + "end": 18737.84, + "probability": 0.9489 + }, + { + "start": 18739.24, + "end": 18740.72, + "probability": 0.9037 + }, + { + "start": 18741.28, + "end": 18742.06, + "probability": 0.7876 + }, + { + "start": 18742.24, + "end": 18744.72, + "probability": 0.8389 + }, + { + "start": 18746.12, + "end": 18747.2, + "probability": 0.3217 + }, + { + "start": 18747.72, + "end": 18750.77, + "probability": 0.9501 + }, + { + "start": 18751.41, + "end": 18752.6, + "probability": 0.8818 + }, + { + "start": 18754.2, + "end": 18757.7, + "probability": 0.967 + }, + { + "start": 18758.54, + "end": 18762.56, + "probability": 0.9448 + }, + { + "start": 18763.42, + "end": 18766.14, + "probability": 0.9812 + }, + { + "start": 18766.14, + "end": 18769.2, + "probability": 0.9074 + }, + { + "start": 18771.2, + "end": 18779.42, + "probability": 0.7546 + }, + { + "start": 18780.14, + "end": 18784.44, + "probability": 0.9883 + }, + { + "start": 18785.6, + "end": 18787.64, + "probability": 0.8956 + }, + { + "start": 18787.76, + "end": 18789.16, + "probability": 0.9293 + }, + { + "start": 18791.1, + "end": 18796.92, + "probability": 0.7644 + }, + { + "start": 18797.58, + "end": 18798.78, + "probability": 0.7767 + }, + { + "start": 18799.58, + "end": 18800.96, + "probability": 0.8082 + }, + { + "start": 18801.04, + "end": 18801.82, + "probability": 0.8719 + }, + { + "start": 18802.32, + "end": 18803.42, + "probability": 0.778 + }, + { + "start": 18803.58, + "end": 18804.78, + "probability": 0.9837 + }, + { + "start": 18806.14, + "end": 18809.71, + "probability": 0.8892 + }, + { + "start": 18811.06, + "end": 18813.66, + "probability": 0.8294 + }, + { + "start": 18815.06, + "end": 18817.08, + "probability": 0.8848 + }, + { + "start": 18817.94, + "end": 18819.31, + "probability": 0.8872 + }, + { + "start": 18820.28, + "end": 18823.58, + "probability": 0.9381 + }, + { + "start": 18824.2, + "end": 18825.9, + "probability": 0.8828 + }, + { + "start": 18827.54, + "end": 18828.92, + "probability": 0.8222 + }, + { + "start": 18828.92, + "end": 18833.12, + "probability": 0.9394 + }, + { + "start": 18833.8, + "end": 18835.38, + "probability": 0.7604 + }, + { + "start": 18836.34, + "end": 18838.82, + "probability": 0.9896 + }, + { + "start": 18839.42, + "end": 18843.16, + "probability": 0.8591 + }, + { + "start": 18843.64, + "end": 18844.9, + "probability": 0.8934 + }, + { + "start": 18846.12, + "end": 18847.74, + "probability": 0.7463 + }, + { + "start": 18847.84, + "end": 18850.73, + "probability": 0.9917 + }, + { + "start": 18851.72, + "end": 18854.92, + "probability": 0.921 + }, + { + "start": 18855.64, + "end": 18858.84, + "probability": 0.8181 + }, + { + "start": 18859.42, + "end": 18859.98, + "probability": 0.9507 + }, + { + "start": 18861.14, + "end": 18862.96, + "probability": 0.8955 + }, + { + "start": 18863.44, + "end": 18865.66, + "probability": 0.9854 + }, + { + "start": 18866.5, + "end": 18867.78, + "probability": 0.9989 + }, + { + "start": 18868.56, + "end": 18874.48, + "probability": 0.9136 + }, + { + "start": 18875.24, + "end": 18877.46, + "probability": 0.8994 + }, + { + "start": 18879.74, + "end": 18883.6, + "probability": 0.9411 + }, + { + "start": 18884.4, + "end": 18885.2, + "probability": 0.5649 + }, + { + "start": 18886.34, + "end": 18889.34, + "probability": 0.7548 + }, + { + "start": 18889.96, + "end": 18891.64, + "probability": 0.9883 + }, + { + "start": 18893.22, + "end": 18895.08, + "probability": 0.9105 + }, + { + "start": 18895.46, + "end": 18896.58, + "probability": 0.7948 + }, + { + "start": 18896.92, + "end": 18897.86, + "probability": 0.9988 + }, + { + "start": 18898.5, + "end": 18901.56, + "probability": 0.886 + }, + { + "start": 18902.26, + "end": 18904.34, + "probability": 0.9421 + }, + { + "start": 18905.36, + "end": 18910.23, + "probability": 0.7737 + }, + { + "start": 18910.96, + "end": 18911.38, + "probability": 0.422 + }, + { + "start": 18911.5, + "end": 18918.24, + "probability": 0.9883 + }, + { + "start": 18918.92, + "end": 18920.44, + "probability": 0.9207 + }, + { + "start": 18921.02, + "end": 18923.1, + "probability": 0.7669 + }, + { + "start": 18923.18, + "end": 18927.28, + "probability": 0.8905 + }, + { + "start": 18927.78, + "end": 18928.64, + "probability": 0.8155 + }, + { + "start": 18928.76, + "end": 18929.42, + "probability": 0.7059 + }, + { + "start": 18929.64, + "end": 18930.72, + "probability": 0.4569 + }, + { + "start": 18930.92, + "end": 18933.02, + "probability": 0.2986 + }, + { + "start": 18933.76, + "end": 18934.4, + "probability": 0.588 + }, + { + "start": 18934.72, + "end": 18936.0, + "probability": 0.0529 + }, + { + "start": 18936.44, + "end": 18940.06, + "probability": 0.5792 + }, + { + "start": 18940.88, + "end": 18943.93, + "probability": 0.7094 + }, + { + "start": 18945.14, + "end": 18946.12, + "probability": 0.6244 + }, + { + "start": 18946.24, + "end": 18947.9, + "probability": 0.9955 + }, + { + "start": 18948.18, + "end": 18949.32, + "probability": 0.7555 + }, + { + "start": 18950.12, + "end": 18954.34, + "probability": 0.8164 + }, + { + "start": 18955.16, + "end": 18956.46, + "probability": 0.6622 + }, + { + "start": 18958.22, + "end": 18960.14, + "probability": 0.8226 + }, + { + "start": 18961.28, + "end": 18963.36, + "probability": 0.6637 + }, + { + "start": 18967.7, + "end": 18969.6, + "probability": 0.8415 + }, + { + "start": 18970.42, + "end": 18974.46, + "probability": 0.9759 + }, + { + "start": 18974.58, + "end": 18975.2, + "probability": 0.7462 + }, + { + "start": 18975.8, + "end": 18978.96, + "probability": 0.649 + }, + { + "start": 18979.2, + "end": 18980.84, + "probability": 0.5261 + }, + { + "start": 18983.72, + "end": 18985.64, + "probability": 0.6903 + }, + { + "start": 18986.62, + "end": 18988.44, + "probability": 0.2273 + }, + { + "start": 18988.56, + "end": 18989.38, + "probability": 0.3771 + }, + { + "start": 18990.06, + "end": 18993.04, + "probability": 0.615 + }, + { + "start": 18993.08, + "end": 18994.6, + "probability": 0.7653 + }, + { + "start": 18994.7, + "end": 18997.22, + "probability": 0.806 + }, + { + "start": 18997.46, + "end": 18998.82, + "probability": 0.8049 + }, + { + "start": 18998.94, + "end": 18999.94, + "probability": 0.8525 + }, + { + "start": 19000.54, + "end": 19001.74, + "probability": 0.8079 + }, + { + "start": 19001.92, + "end": 19002.22, + "probability": 0.4804 + }, + { + "start": 19002.76, + "end": 19004.38, + "probability": 0.1361 + }, + { + "start": 19005.56, + "end": 19006.64, + "probability": 0.2661 + }, + { + "start": 19011.1, + "end": 19013.98, + "probability": 0.3079 + }, + { + "start": 19014.78, + "end": 19018.54, + "probability": 0.7249 + }, + { + "start": 19018.66, + "end": 19019.14, + "probability": 0.5753 + }, + { + "start": 19019.68, + "end": 19020.78, + "probability": 0.6453 + }, + { + "start": 19021.96, + "end": 19023.34, + "probability": 0.837 + }, + { + "start": 19023.94, + "end": 19025.16, + "probability": 0.6583 + }, + { + "start": 19025.4, + "end": 19027.58, + "probability": 0.9925 + }, + { + "start": 19028.2, + "end": 19028.86, + "probability": 0.546 + }, + { + "start": 19029.3, + "end": 19030.1, + "probability": 0.0004 + }, + { + "start": 19032.36, + "end": 19037.08, + "probability": 0.7382 + }, + { + "start": 19037.84, + "end": 19039.36, + "probability": 0.4616 + }, + { + "start": 19040.5, + "end": 19040.5, + "probability": 0.0111 + }, + { + "start": 19040.5, + "end": 19042.24, + "probability": 0.7309 + }, + { + "start": 19043.88, + "end": 19044.38, + "probability": 0.4829 + }, + { + "start": 19045.78, + "end": 19048.72, + "probability": 0.347 + }, + { + "start": 19048.94, + "end": 19049.57, + "probability": 0.2635 + }, + { + "start": 19050.68, + "end": 19055.76, + "probability": 0.6829 + }, + { + "start": 19056.82, + "end": 19059.32, + "probability": 0.7514 + }, + { + "start": 19059.6, + "end": 19059.6, + "probability": 0.0 + }, + { + "start": 19060.5, + "end": 19061.48, + "probability": 0.3512 + }, + { + "start": 19063.22, + "end": 19063.4, + "probability": 0.1734 + }, + { + "start": 19064.4, + "end": 19069.92, + "probability": 0.0999 + }, + { + "start": 19083.46, + "end": 19083.56, + "probability": 0.7242 + }, + { + "start": 19084.9, + "end": 19087.66, + "probability": 0.5356 + }, + { + "start": 19087.7, + "end": 19088.34, + "probability": 0.7475 + }, + { + "start": 19088.56, + "end": 19091.36, + "probability": 0.5939 + }, + { + "start": 19091.42, + "end": 19092.66, + "probability": 0.7215 + }, + { + "start": 19093.16, + "end": 19094.38, + "probability": 0.7638 + }, + { + "start": 19094.78, + "end": 19097.08, + "probability": 0.321 + }, + { + "start": 19105.64, + "end": 19108.5, + "probability": 0.7649 + }, + { + "start": 19109.6, + "end": 19109.6, + "probability": 0.1462 + }, + { + "start": 19109.6, + "end": 19111.56, + "probability": 0.8232 + }, + { + "start": 19113.06, + "end": 19113.84, + "probability": 0.1787 + }, + { + "start": 19117.86, + "end": 19118.1, + "probability": 0.0731 + }, + { + "start": 19133.7, + "end": 19136.08, + "probability": 0.6429 + }, + { + "start": 19138.84, + "end": 19140.48, + "probability": 0.8234 + }, + { + "start": 19142.1, + "end": 19143.0, + "probability": 0.6931 + }, + { + "start": 19145.72, + "end": 19151.56, + "probability": 0.7284 + }, + { + "start": 19154.2, + "end": 19156.78, + "probability": 0.658 + }, + { + "start": 19158.88, + "end": 19162.52, + "probability": 0.795 + }, + { + "start": 19163.58, + "end": 19165.56, + "probability": 0.8307 + }, + { + "start": 19166.68, + "end": 19168.4, + "probability": 0.9613 + }, + { + "start": 19170.2, + "end": 19172.61, + "probability": 0.9279 + }, + { + "start": 19173.72, + "end": 19176.62, + "probability": 0.9824 + }, + { + "start": 19178.76, + "end": 19180.8, + "probability": 0.8406 + }, + { + "start": 19182.02, + "end": 19184.96, + "probability": 0.9548 + }, + { + "start": 19186.6, + "end": 19187.6, + "probability": 0.9492 + }, + { + "start": 19190.04, + "end": 19191.0, + "probability": 0.783 + }, + { + "start": 19191.72, + "end": 19193.96, + "probability": 0.749 + }, + { + "start": 19194.78, + "end": 19197.28, + "probability": 0.902 + }, + { + "start": 19200.34, + "end": 19202.86, + "probability": 0.7308 + }, + { + "start": 19203.68, + "end": 19206.9, + "probability": 0.6631 + }, + { + "start": 19209.92, + "end": 19212.16, + "probability": 0.7964 + }, + { + "start": 19214.7, + "end": 19216.84, + "probability": 0.9472 + }, + { + "start": 19217.88, + "end": 19219.62, + "probability": 0.9226 + }, + { + "start": 19220.24, + "end": 19221.52, + "probability": 0.8669 + }, + { + "start": 19222.44, + "end": 19225.7, + "probability": 0.983 + }, + { + "start": 19226.62, + "end": 19230.42, + "probability": 0.9889 + }, + { + "start": 19232.16, + "end": 19234.35, + "probability": 0.9183 + }, + { + "start": 19235.36, + "end": 19236.64, + "probability": 0.8243 + }, + { + "start": 19237.5, + "end": 19240.6, + "probability": 0.937 + }, + { + "start": 19241.26, + "end": 19247.24, + "probability": 0.9707 + }, + { + "start": 19248.1, + "end": 19250.64, + "probability": 0.8721 + }, + { + "start": 19252.4, + "end": 19253.24, + "probability": 0.9265 + }, + { + "start": 19254.1, + "end": 19254.84, + "probability": 0.5224 + }, + { + "start": 19255.84, + "end": 19256.22, + "probability": 0.5314 + }, + { + "start": 19256.84, + "end": 19259.2, + "probability": 0.8447 + }, + { + "start": 19260.94, + "end": 19261.32, + "probability": 0.4857 + }, + { + "start": 19261.38, + "end": 19265.7, + "probability": 0.9928 + }, + { + "start": 19266.42, + "end": 19267.38, + "probability": 0.7104 + }, + { + "start": 19268.7, + "end": 19270.94, + "probability": 0.8811 + }, + { + "start": 19271.7, + "end": 19273.62, + "probability": 0.8501 + }, + { + "start": 19273.74, + "end": 19274.5, + "probability": 0.8204 + }, + { + "start": 19275.32, + "end": 19280.66, + "probability": 0.9706 + }, + { + "start": 19281.92, + "end": 19282.86, + "probability": 0.9058 + }, + { + "start": 19284.32, + "end": 19285.98, + "probability": 0.9263 + }, + { + "start": 19286.18, + "end": 19287.97, + "probability": 0.9844 + }, + { + "start": 19289.2, + "end": 19292.22, + "probability": 0.9919 + }, + { + "start": 19292.22, + "end": 19294.84, + "probability": 0.9675 + }, + { + "start": 19296.08, + "end": 19297.58, + "probability": 0.9953 + }, + { + "start": 19298.92, + "end": 19301.66, + "probability": 0.8652 + }, + { + "start": 19302.38, + "end": 19305.6, + "probability": 0.9979 + }, + { + "start": 19306.3, + "end": 19307.6, + "probability": 0.9753 + }, + { + "start": 19308.3, + "end": 19309.5, + "probability": 0.8186 + }, + { + "start": 19310.3, + "end": 19311.3, + "probability": 0.7614 + }, + { + "start": 19312.3, + "end": 19313.24, + "probability": 0.975 + }, + { + "start": 19314.72, + "end": 19317.42, + "probability": 0.9678 + }, + { + "start": 19318.48, + "end": 19320.2, + "probability": 0.8231 + }, + { + "start": 19322.86, + "end": 19326.88, + "probability": 0.8624 + }, + { + "start": 19327.72, + "end": 19331.3, + "probability": 0.9967 + }, + { + "start": 19331.94, + "end": 19334.74, + "probability": 0.8704 + }, + { + "start": 19336.24, + "end": 19339.52, + "probability": 0.9436 + }, + { + "start": 19340.92, + "end": 19341.68, + "probability": 0.4827 + }, + { + "start": 19341.86, + "end": 19343.24, + "probability": 0.6556 + }, + { + "start": 19344.04, + "end": 19345.28, + "probability": 0.9507 + }, + { + "start": 19346.34, + "end": 19347.2, + "probability": 0.9761 + }, + { + "start": 19348.08, + "end": 19350.16, + "probability": 0.9893 + }, + { + "start": 19351.0, + "end": 19354.6, + "probability": 0.8549 + }, + { + "start": 19355.22, + "end": 19357.14, + "probability": 0.979 + }, + { + "start": 19358.06, + "end": 19360.68, + "probability": 0.7604 + }, + { + "start": 19361.46, + "end": 19362.62, + "probability": 0.5689 + }, + { + "start": 19363.7, + "end": 19366.2, + "probability": 0.9849 + }, + { + "start": 19366.84, + "end": 19367.65, + "probability": 0.5431 + }, + { + "start": 19368.02, + "end": 19369.24, + "probability": 0.9388 + }, + { + "start": 19370.12, + "end": 19372.02, + "probability": 0.7033 + }, + { + "start": 19372.74, + "end": 19373.58, + "probability": 0.9305 + }, + { + "start": 19374.14, + "end": 19375.3, + "probability": 0.9499 + }, + { + "start": 19376.06, + "end": 19381.14, + "probability": 0.7526 + }, + { + "start": 19381.14, + "end": 19385.08, + "probability": 0.911 + }, + { + "start": 19385.96, + "end": 19388.02, + "probability": 0.7241 + }, + { + "start": 19388.22, + "end": 19390.21, + "probability": 0.8029 + }, + { + "start": 19390.72, + "end": 19392.48, + "probability": 0.5991 + }, + { + "start": 19392.76, + "end": 19394.06, + "probability": 0.8087 + }, + { + "start": 19401.4, + "end": 19408.8, + "probability": 0.7314 + }, + { + "start": 19409.48, + "end": 19409.96, + "probability": 0.8319 + }, + { + "start": 19413.56, + "end": 19413.56, + "probability": 0.1058 + }, + { + "start": 19413.56, + "end": 19414.18, + "probability": 0.6317 + }, + { + "start": 19414.48, + "end": 19416.28, + "probability": 0.6599 + }, + { + "start": 19417.9, + "end": 19420.84, + "probability": 0.9834 + }, + { + "start": 19421.68, + "end": 19422.68, + "probability": 0.964 + }, + { + "start": 19422.74, + "end": 19423.7, + "probability": 0.9677 + }, + { + "start": 19423.96, + "end": 19425.26, + "probability": 0.9858 + }, + { + "start": 19425.76, + "end": 19426.82, + "probability": 0.6463 + }, + { + "start": 19426.84, + "end": 19427.48, + "probability": 0.8479 + }, + { + "start": 19427.86, + "end": 19429.2, + "probability": 0.7543 + }, + { + "start": 19429.64, + "end": 19429.66, + "probability": 0.729 + }, + { + "start": 19429.7, + "end": 19430.34, + "probability": 0.862 + }, + { + "start": 19430.6, + "end": 19431.7, + "probability": 0.793 + }, + { + "start": 19433.34, + "end": 19435.08, + "probability": 0.9287 + }, + { + "start": 19436.3, + "end": 19441.08, + "probability": 0.8669 + }, + { + "start": 19441.45, + "end": 19445.5, + "probability": 0.9873 + }, + { + "start": 19446.18, + "end": 19451.62, + "probability": 0.8443 + }, + { + "start": 19453.5, + "end": 19458.22, + "probability": 0.9526 + }, + { + "start": 19459.32, + "end": 19459.74, + "probability": 0.6423 + }, + { + "start": 19459.88, + "end": 19462.42, + "probability": 0.8263 + }, + { + "start": 19462.56, + "end": 19463.38, + "probability": 0.9074 + }, + { + "start": 19463.52, + "end": 19464.18, + "probability": 0.9287 + }, + { + "start": 19464.5, + "end": 19466.02, + "probability": 0.9419 + }, + { + "start": 19466.66, + "end": 19468.36, + "probability": 0.6987 + }, + { + "start": 19469.76, + "end": 19473.2, + "probability": 0.8009 + }, + { + "start": 19474.16, + "end": 19475.18, + "probability": 0.5703 + }, + { + "start": 19476.5, + "end": 19480.94, + "probability": 0.8544 + }, + { + "start": 19481.34, + "end": 19483.86, + "probability": 0.981 + }, + { + "start": 19484.5, + "end": 19489.08, + "probability": 0.9942 + }, + { + "start": 19489.08, + "end": 19493.72, + "probability": 0.9989 + }, + { + "start": 19493.88, + "end": 19494.78, + "probability": 0.7214 + }, + { + "start": 19494.9, + "end": 19495.5, + "probability": 0.83 + }, + { + "start": 19496.02, + "end": 19498.42, + "probability": 0.8687 + }, + { + "start": 19499.74, + "end": 19500.22, + "probability": 0.8718 + }, + { + "start": 19500.32, + "end": 19502.44, + "probability": 0.8625 + }, + { + "start": 19503.42, + "end": 19506.22, + "probability": 0.7665 + }, + { + "start": 19507.16, + "end": 19507.84, + "probability": 0.5265 + }, + { + "start": 19508.44, + "end": 19509.0, + "probability": 0.9369 + }, + { + "start": 19509.62, + "end": 19516.04, + "probability": 0.7801 + }, + { + "start": 19516.12, + "end": 19518.18, + "probability": 0.6993 + }, + { + "start": 19518.32, + "end": 19519.09, + "probability": 0.6169 + }, + { + "start": 19519.7, + "end": 19523.48, + "probability": 0.9292 + }, + { + "start": 19523.88, + "end": 19525.74, + "probability": 0.8675 + }, + { + "start": 19527.14, + "end": 19529.04, + "probability": 0.9028 + }, + { + "start": 19529.08, + "end": 19530.5, + "probability": 0.9545 + }, + { + "start": 19531.58, + "end": 19534.52, + "probability": 0.9834 + }, + { + "start": 19535.78, + "end": 19540.22, + "probability": 0.8948 + }, + { + "start": 19540.32, + "end": 19543.52, + "probability": 0.9806 + }, + { + "start": 19543.78, + "end": 19545.88, + "probability": 0.9897 + }, + { + "start": 19546.6, + "end": 19547.78, + "probability": 0.9751 + }, + { + "start": 19547.88, + "end": 19550.58, + "probability": 0.982 + }, + { + "start": 19551.26, + "end": 19553.46, + "probability": 0.9858 + }, + { + "start": 19554.62, + "end": 19555.08, + "probability": 0.6476 + }, + { + "start": 19555.2, + "end": 19557.78, + "probability": 0.8008 + }, + { + "start": 19557.8, + "end": 19558.6, + "probability": 0.8979 + }, + { + "start": 19558.98, + "end": 19560.58, + "probability": 0.8306 + }, + { + "start": 19560.82, + "end": 19562.08, + "probability": 0.9701 + }, + { + "start": 19562.16, + "end": 19564.64, + "probability": 0.7889 + }, + { + "start": 19565.38, + "end": 19568.06, + "probability": 0.9486 + }, + { + "start": 19569.22, + "end": 19571.12, + "probability": 0.8488 + }, + { + "start": 19571.62, + "end": 19572.12, + "probability": 0.5206 + }, + { + "start": 19572.9, + "end": 19579.08, + "probability": 0.959 + }, + { + "start": 19581.2, + "end": 19581.2, + "probability": 0.1359 + }, + { + "start": 19581.2, + "end": 19582.53, + "probability": 0.6013 + }, + { + "start": 19583.52, + "end": 19584.08, + "probability": 0.6593 + }, + { + "start": 19584.18, + "end": 19585.78, + "probability": 0.936 + }, + { + "start": 19585.82, + "end": 19587.78, + "probability": 0.4805 + }, + { + "start": 19588.76, + "end": 19589.94, + "probability": 0.5821 + }, + { + "start": 19591.08, + "end": 19596.18, + "probability": 0.9624 + }, + { + "start": 19598.36, + "end": 19599.88, + "probability": 0.6088 + }, + { + "start": 19600.8, + "end": 19602.82, + "probability": 0.9814 + }, + { + "start": 19603.48, + "end": 19605.72, + "probability": 0.9589 + }, + { + "start": 19606.16, + "end": 19608.14, + "probability": 0.8813 + }, + { + "start": 19608.24, + "end": 19610.6, + "probability": 0.9891 + }, + { + "start": 19611.44, + "end": 19612.46, + "probability": 0.7471 + }, + { + "start": 19612.56, + "end": 19614.92, + "probability": 0.6678 + }, + { + "start": 19615.66, + "end": 19617.6, + "probability": 0.964 + }, + { + "start": 19618.24, + "end": 19619.41, + "probability": 0.0254 + }, + { + "start": 19619.7, + "end": 19622.88, + "probability": 0.9662 + }, + { + "start": 19623.06, + "end": 19625.44, + "probability": 0.9919 + }, + { + "start": 19627.66, + "end": 19629.84, + "probability": 0.6662 + }, + { + "start": 19630.84, + "end": 19631.88, + "probability": 0.9897 + }, + { + "start": 19634.06, + "end": 19636.7, + "probability": 0.8765 + }, + { + "start": 19638.02, + "end": 19640.98, + "probability": 0.9462 + }, + { + "start": 19642.1, + "end": 19644.42, + "probability": 0.9895 + }, + { + "start": 19645.34, + "end": 19647.72, + "probability": 0.847 + }, + { + "start": 19649.52, + "end": 19652.9, + "probability": 0.9111 + }, + { + "start": 19653.3, + "end": 19654.34, + "probability": 0.5435 + }, + { + "start": 19654.94, + "end": 19656.9, + "probability": 0.9 + }, + { + "start": 19657.62, + "end": 19659.32, + "probability": 0.9629 + }, + { + "start": 19659.4, + "end": 19660.3, + "probability": 0.9468 + }, + { + "start": 19661.78, + "end": 19662.27, + "probability": 0.6496 + }, + { + "start": 19663.82, + "end": 19665.34, + "probability": 0.8228 + }, + { + "start": 19667.78, + "end": 19670.26, + "probability": 0.6999 + }, + { + "start": 19670.52, + "end": 19673.38, + "probability": 0.7574 + }, + { + "start": 19674.8, + "end": 19678.44, + "probability": 0.9388 + }, + { + "start": 19679.42, + "end": 19680.54, + "probability": 0.9723 + }, + { + "start": 19681.58, + "end": 19684.06, + "probability": 0.9766 + }, + { + "start": 19684.2, + "end": 19685.84, + "probability": 0.9055 + }, + { + "start": 19686.04, + "end": 19686.6, + "probability": 0.6694 + }, + { + "start": 19688.4, + "end": 19690.82, + "probability": 0.8671 + }, + { + "start": 19690.88, + "end": 19691.76, + "probability": 0.7668 + }, + { + "start": 19692.14, + "end": 19693.34, + "probability": 0.9819 + }, + { + "start": 19695.32, + "end": 19696.36, + "probability": 0.9768 + }, + { + "start": 19696.46, + "end": 19701.96, + "probability": 0.6768 + }, + { + "start": 19702.78, + "end": 19705.52, + "probability": 0.6726 + }, + { + "start": 19706.1, + "end": 19706.84, + "probability": 0.4507 + }, + { + "start": 19708.54, + "end": 19709.76, + "probability": 0.9784 + }, + { + "start": 19709.9, + "end": 19711.44, + "probability": 0.939 + }, + { + "start": 19711.54, + "end": 19714.9, + "probability": 0.7353 + }, + { + "start": 19716.18, + "end": 19719.62, + "probability": 0.6718 + }, + { + "start": 19720.34, + "end": 19721.58, + "probability": 0.4376 + }, + { + "start": 19721.7, + "end": 19723.54, + "probability": 0.6628 + }, + { + "start": 19724.32, + "end": 19726.28, + "probability": 0.6536 + }, + { + "start": 19726.28, + "end": 19727.26, + "probability": 0.5209 + }, + { + "start": 19727.36, + "end": 19729.23, + "probability": 0.888 + }, + { + "start": 19731.44, + "end": 19731.46, + "probability": 0.0659 + }, + { + "start": 19731.46, + "end": 19731.46, + "probability": 0.2379 + }, + { + "start": 19731.46, + "end": 19732.56, + "probability": 0.5738 + }, + { + "start": 19732.96, + "end": 19734.92, + "probability": 0.7647 + }, + { + "start": 19735.04, + "end": 19736.72, + "probability": 0.8804 + }, + { + "start": 19738.58, + "end": 19740.52, + "probability": 0.5808 + }, + { + "start": 19742.66, + "end": 19745.48, + "probability": 0.9238 + }, + { + "start": 19746.3, + "end": 19748.68, + "probability": 0.9983 + }, + { + "start": 19750.1, + "end": 19751.22, + "probability": 0.8039 + }, + { + "start": 19752.24, + "end": 19752.74, + "probability": 0.922 + }, + { + "start": 19763.0, + "end": 19765.82, + "probability": 0.298 + }, + { + "start": 19766.12, + "end": 19766.74, + "probability": 0.5461 + }, + { + "start": 19766.74, + "end": 19766.92, + "probability": 0.4629 + }, + { + "start": 19767.06, + "end": 19771.16, + "probability": 0.8931 + }, + { + "start": 19771.86, + "end": 19774.42, + "probability": 0.9983 + }, + { + "start": 19775.1, + "end": 19775.56, + "probability": 0.5084 + }, + { + "start": 19775.56, + "end": 19777.88, + "probability": 0.7855 + }, + { + "start": 19778.98, + "end": 19784.88, + "probability": 0.9083 + }, + { + "start": 19785.54, + "end": 19791.84, + "probability": 0.9478 + }, + { + "start": 19793.38, + "end": 19797.38, + "probability": 0.9484 + }, + { + "start": 19800.18, + "end": 19802.08, + "probability": 0.7309 + }, + { + "start": 19803.72, + "end": 19804.62, + "probability": 0.4876 + }, + { + "start": 19808.18, + "end": 19813.84, + "probability": 0.9968 + }, + { + "start": 19814.44, + "end": 19815.34, + "probability": 0.9697 + }, + { + "start": 19818.1, + "end": 19820.12, + "probability": 0.7866 + }, + { + "start": 19821.18, + "end": 19822.2, + "probability": 0.7235 + }, + { + "start": 19823.72, + "end": 19826.41, + "probability": 0.9495 + }, + { + "start": 19827.8, + "end": 19830.78, + "probability": 0.8266 + }, + { + "start": 19832.36, + "end": 19835.06, + "probability": 0.9018 + }, + { + "start": 19835.76, + "end": 19842.44, + "probability": 0.9595 + }, + { + "start": 19842.88, + "end": 19844.4, + "probability": 0.8307 + }, + { + "start": 19844.5, + "end": 19850.12, + "probability": 0.9986 + }, + { + "start": 19851.8, + "end": 19852.0, + "probability": 0.1229 + }, + { + "start": 19852.06, + "end": 19855.82, + "probability": 0.8193 + }, + { + "start": 19856.92, + "end": 19859.22, + "probability": 0.9961 + }, + { + "start": 19860.5, + "end": 19860.72, + "probability": 0.12 + }, + { + "start": 19860.96, + "end": 19864.68, + "probability": 0.9421 + }, + { + "start": 19864.68, + "end": 19867.66, + "probability": 0.8948 + }, + { + "start": 19867.68, + "end": 19869.08, + "probability": 0.7511 + }, + { + "start": 19870.8, + "end": 19873.24, + "probability": 0.8424 + }, + { + "start": 19873.46, + "end": 19873.76, + "probability": 0.7977 + }, + { + "start": 19873.84, + "end": 19874.4, + "probability": 0.9866 + }, + { + "start": 19874.68, + "end": 19875.5, + "probability": 0.9702 + }, + { + "start": 19876.18, + "end": 19880.08, + "probability": 0.8287 + }, + { + "start": 19881.26, + "end": 19881.9, + "probability": 0.0437 + }, + { + "start": 19882.02, + "end": 19883.3, + "probability": 0.8494 + }, + { + "start": 19884.9, + "end": 19885.14, + "probability": 0.0184 + }, + { + "start": 19885.6, + "end": 19893.1, + "probability": 0.7877 + }, + { + "start": 19895.06, + "end": 19895.26, + "probability": 0.1612 + }, + { + "start": 19895.28, + "end": 19897.32, + "probability": 0.9948 + }, + { + "start": 19897.32, + "end": 19900.26, + "probability": 0.9938 + }, + { + "start": 19901.82, + "end": 19909.24, + "probability": 0.9964 + }, + { + "start": 19910.56, + "end": 19912.76, + "probability": 0.765 + }, + { + "start": 19914.76, + "end": 19915.2, + "probability": 0.1324 + }, + { + "start": 19915.88, + "end": 19916.08, + "probability": 0.0331 + }, + { + "start": 19917.5, + "end": 19923.02, + "probability": 0.7651 + }, + { + "start": 19924.52, + "end": 19927.82, + "probability": 0.9438 + }, + { + "start": 19928.66, + "end": 19928.82, + "probability": 0.0118 + }, + { + "start": 19928.9, + "end": 19934.5, + "probability": 0.9934 + }, + { + "start": 19935.2, + "end": 19937.26, + "probability": 0.9482 + }, + { + "start": 19937.4, + "end": 19941.7, + "probability": 0.8348 + }, + { + "start": 19943.78, + "end": 19943.92, + "probability": 0.0089 + }, + { + "start": 19944.12, + "end": 19948.42, + "probability": 0.8869 + }, + { + "start": 19948.74, + "end": 19951.62, + "probability": 0.987 + }, + { + "start": 19951.62, + "end": 19955.06, + "probability": 0.9432 + }, + { + "start": 19956.0, + "end": 19956.22, + "probability": 0.0239 + }, + { + "start": 19956.38, + "end": 19960.98, + "probability": 0.9924 + }, + { + "start": 19961.86, + "end": 19961.98, + "probability": 0.1821 + }, + { + "start": 19962.1, + "end": 19965.02, + "probability": 0.9967 + }, + { + "start": 19965.72, + "end": 19965.94, + "probability": 0.1959 + }, + { + "start": 19965.98, + "end": 19969.38, + "probability": 0.9675 + }, + { + "start": 19970.16, + "end": 19970.3, + "probability": 0.0174 + }, + { + "start": 19970.44, + "end": 19973.04, + "probability": 0.9746 + }, + { + "start": 19973.28, + "end": 19974.66, + "probability": 0.9333 + }, + { + "start": 19975.54, + "end": 19976.78, + "probability": 0.9329 + }, + { + "start": 19977.54, + "end": 19977.64, + "probability": 0.1155 + }, + { + "start": 19977.78, + "end": 19980.66, + "probability": 0.9087 + }, + { + "start": 19982.04, + "end": 19982.3, + "probability": 0.4289 + }, + { + "start": 19982.3, + "end": 19985.52, + "probability": 0.9748 + }, + { + "start": 19986.14, + "end": 19988.5, + "probability": 0.8834 + }, + { + "start": 19990.5, + "end": 19990.62, + "probability": 0.0162 + }, + { + "start": 19990.78, + "end": 19992.94, + "probability": 0.9066 + }, + { + "start": 19992.94, + "end": 19995.1, + "probability": 0.9994 + }, + { + "start": 19995.34, + "end": 19997.7, + "probability": 0.976 + }, + { + "start": 19999.04, + "end": 20000.22, + "probability": 0.9626 + }, + { + "start": 20000.34, + "end": 20002.26, + "probability": 0.5794 + }, + { + "start": 20003.98, + "end": 20005.3, + "probability": 0.8049 + }, + { + "start": 20005.34, + "end": 20007.88, + "probability": 0.8844 + }, + { + "start": 20008.26, + "end": 20013.06, + "probability": 0.9634 + }, + { + "start": 20014.24, + "end": 20017.8, + "probability": 0.8919 + }, + { + "start": 20017.96, + "end": 20018.16, + "probability": 0.0369 + }, + { + "start": 20019.04, + "end": 20021.04, + "probability": 0.9874 + }, + { + "start": 20021.68, + "end": 20026.3, + "probability": 0.9541 + }, + { + "start": 20027.16, + "end": 20028.1, + "probability": 0.3026 + }, + { + "start": 20028.2, + "end": 20030.38, + "probability": 0.8413 + }, + { + "start": 20031.6, + "end": 20033.62, + "probability": 0.6331 + }, + { + "start": 20033.68, + "end": 20035.94, + "probability": 0.9467 + }, + { + "start": 20036.66, + "end": 20036.88, + "probability": 0.0708 + }, + { + "start": 20037.02, + "end": 20039.78, + "probability": 0.9747 + }, + { + "start": 20039.78, + "end": 20042.26, + "probability": 0.997 + }, + { + "start": 20043.94, + "end": 20047.62, + "probability": 0.9032 + }, + { + "start": 20047.68, + "end": 20047.78, + "probability": 0.0456 + }, + { + "start": 20047.86, + "end": 20050.96, + "probability": 0.9914 + }, + { + "start": 20051.26, + "end": 20052.16, + "probability": 0.7445 + }, + { + "start": 20052.88, + "end": 20053.0, + "probability": 0.049 + }, + { + "start": 20053.12, + "end": 20055.26, + "probability": 0.9958 + }, + { + "start": 20055.26, + "end": 20058.8, + "probability": 0.9604 + }, + { + "start": 20058.96, + "end": 20059.08, + "probability": 0.3588 + }, + { + "start": 20059.12, + "end": 20063.54, + "probability": 0.9942 + }, + { + "start": 20064.38, + "end": 20065.52, + "probability": 0.9586 + }, + { + "start": 20067.08, + "end": 20068.34, + "probability": 0.8031 + }, + { + "start": 20069.06, + "end": 20071.78, + "probability": 0.9183 + }, + { + "start": 20072.36, + "end": 20077.02, + "probability": 0.9849 + }, + { + "start": 20077.72, + "end": 20079.62, + "probability": 0.9923 + }, + { + "start": 20080.46, + "end": 20082.82, + "probability": 0.8939 + }, + { + "start": 20085.5, + "end": 20086.38, + "probability": 0.3921 + }, + { + "start": 20086.94, + "end": 20088.14, + "probability": 0.6045 + }, + { + "start": 20089.12, + "end": 20090.2, + "probability": 0.9956 + }, + { + "start": 20091.88, + "end": 20097.1, + "probability": 0.994 + }, + { + "start": 20097.98, + "end": 20099.46, + "probability": 0.9956 + }, + { + "start": 20101.22, + "end": 20101.8, + "probability": 0.543 + }, + { + "start": 20101.96, + "end": 20105.62, + "probability": 0.906 + }, + { + "start": 20106.5, + "end": 20109.94, + "probability": 0.9854 + }, + { + "start": 20110.76, + "end": 20112.54, + "probability": 0.9893 + }, + { + "start": 20113.14, + "end": 20116.18, + "probability": 0.9114 + }, + { + "start": 20117.46, + "end": 20126.24, + "probability": 0.9471 + }, + { + "start": 20127.2, + "end": 20134.36, + "probability": 0.9507 + }, + { + "start": 20137.64, + "end": 20143.09, + "probability": 0.9556 + }, + { + "start": 20144.14, + "end": 20146.0, + "probability": 0.9912 + }, + { + "start": 20147.26, + "end": 20149.04, + "probability": 0.9305 + }, + { + "start": 20151.38, + "end": 20152.1, + "probability": 0.9367 + }, + { + "start": 20152.62, + "end": 20158.16, + "probability": 0.9963 + }, + { + "start": 20158.5, + "end": 20162.76, + "probability": 0.9951 + }, + { + "start": 20162.9, + "end": 20167.72, + "probability": 0.8146 + }, + { + "start": 20168.46, + "end": 20169.08, + "probability": 0.8341 + }, + { + "start": 20170.62, + "end": 20171.78, + "probability": 0.5887 + }, + { + "start": 20171.78, + "end": 20173.12, + "probability": 0.9646 + }, + { + "start": 20176.12, + "end": 20178.08, + "probability": 0.6274 + }, + { + "start": 20179.64, + "end": 20181.11, + "probability": 0.9803 + }, + { + "start": 20181.42, + "end": 20186.78, + "probability": 0.9923 + }, + { + "start": 20187.56, + "end": 20189.02, + "probability": 0.345 + }, + { + "start": 20190.6, + "end": 20193.78, + "probability": 0.8188 + }, + { + "start": 20193.78, + "end": 20197.22, + "probability": 0.7628 + }, + { + "start": 20198.44, + "end": 20201.08, + "probability": 0.7719 + }, + { + "start": 20202.56, + "end": 20208.08, + "probability": 0.9875 + }, + { + "start": 20208.22, + "end": 20208.22, + "probability": 0.2588 + }, + { + "start": 20209.02, + "end": 20210.48, + "probability": 0.3723 + }, + { + "start": 20210.48, + "end": 20212.4, + "probability": 0.742 + }, + { + "start": 20212.48, + "end": 20217.08, + "probability": 0.6777 + }, + { + "start": 20217.26, + "end": 20218.48, + "probability": 0.7502 + }, + { + "start": 20219.04, + "end": 20225.5, + "probability": 0.9378 + }, + { + "start": 20225.6, + "end": 20226.62, + "probability": 0.3254 + }, + { + "start": 20227.2, + "end": 20230.24, + "probability": 0.9981 + }, + { + "start": 20230.24, + "end": 20233.56, + "probability": 0.8521 + }, + { + "start": 20233.86, + "end": 20238.5, + "probability": 0.5911 + }, + { + "start": 20239.98, + "end": 20245.4, + "probability": 0.7774 + }, + { + "start": 20245.54, + "end": 20246.38, + "probability": 0.6563 + }, + { + "start": 20247.66, + "end": 20249.76, + "probability": 0.762 + }, + { + "start": 20249.94, + "end": 20253.96, + "probability": 0.6785 + }, + { + "start": 20254.58, + "end": 20257.1, + "probability": 0.9097 + }, + { + "start": 20259.14, + "end": 20264.16, + "probability": 0.9083 + }, + { + "start": 20265.18, + "end": 20266.28, + "probability": 0.735 + }, + { + "start": 20268.12, + "end": 20269.32, + "probability": 0.6194 + }, + { + "start": 20277.52, + "end": 20283.17, + "probability": 0.2328 + }, + { + "start": 20292.36, + "end": 20293.0, + "probability": 0.0572 + }, + { + "start": 20293.0, + "end": 20293.54, + "probability": 0.2199 + }, + { + "start": 20294.42, + "end": 20296.52, + "probability": 0.4489 + }, + { + "start": 20296.94, + "end": 20300.34, + "probability": 0.516 + }, + { + "start": 20305.62, + "end": 20307.4, + "probability": 0.7102 + }, + { + "start": 20308.0, + "end": 20309.76, + "probability": 0.5038 + }, + { + "start": 20310.42, + "end": 20314.78, + "probability": 0.9684 + }, + { + "start": 20316.12, + "end": 20319.72, + "probability": 0.671 + }, + { + "start": 20323.2, + "end": 20324.72, + "probability": 0.0469 + }, + { + "start": 20326.36, + "end": 20330.94, + "probability": 0.9237 + }, + { + "start": 20331.06, + "end": 20333.98, + "probability": 0.8412 + }, + { + "start": 20334.7, + "end": 20337.38, + "probability": 0.7043 + }, + { + "start": 20337.46, + "end": 20338.38, + "probability": 0.7381 + }, + { + "start": 20338.76, + "end": 20339.04, + "probability": 0.7917 + }, + { + "start": 20340.52, + "end": 20344.02, + "probability": 0.4372 + }, + { + "start": 20344.08, + "end": 20344.86, + "probability": 0.1555 + }, + { + "start": 20344.86, + "end": 20346.68, + "probability": 0.7712 + }, + { + "start": 20347.6, + "end": 20350.74, + "probability": 0.7274 + }, + { + "start": 20350.74, + "end": 20353.44, + "probability": 0.9862 + }, + { + "start": 20354.18, + "end": 20357.22, + "probability": 0.9976 + }, + { + "start": 20358.09, + "end": 20361.86, + "probability": 0.8592 + }, + { + "start": 20362.64, + "end": 20366.6, + "probability": 0.9479 + }, + { + "start": 20367.04, + "end": 20367.56, + "probability": 0.4717 + }, + { + "start": 20367.74, + "end": 20371.14, + "probability": 0.9298 + }, + { + "start": 20371.78, + "end": 20374.04, + "probability": 0.9546 + }, + { + "start": 20374.42, + "end": 20377.18, + "probability": 0.97 + }, + { + "start": 20377.5, + "end": 20379.62, + "probability": 0.9349 + }, + { + "start": 20380.0, + "end": 20382.48, + "probability": 0.8987 + }, + { + "start": 20382.48, + "end": 20385.44, + "probability": 0.9987 + }, + { + "start": 20386.12, + "end": 20388.48, + "probability": 0.8036 + }, + { + "start": 20389.26, + "end": 20392.52, + "probability": 0.9805 + }, + { + "start": 20392.96, + "end": 20395.34, + "probability": 0.4292 + }, + { + "start": 20395.96, + "end": 20399.16, + "probability": 0.9574 + }, + { + "start": 20400.2, + "end": 20404.28, + "probability": 0.8431 + }, + { + "start": 20405.08, + "end": 20406.7, + "probability": 0.6516 + }, + { + "start": 20406.78, + "end": 20408.0, + "probability": 0.8582 + }, + { + "start": 20408.34, + "end": 20409.1, + "probability": 0.4673 + }, + { + "start": 20410.12, + "end": 20415.48, + "probability": 0.7306 + }, + { + "start": 20416.02, + "end": 20418.18, + "probability": 0.9777 + }, + { + "start": 20419.16, + "end": 20421.44, + "probability": 0.9324 + }, + { + "start": 20421.56, + "end": 20423.82, + "probability": 0.9351 + }, + { + "start": 20424.42, + "end": 20426.34, + "probability": 0.8789 + }, + { + "start": 20427.26, + "end": 20428.88, + "probability": 0.4875 + }, + { + "start": 20429.16, + "end": 20429.16, + "probability": 0.2775 + }, + { + "start": 20429.16, + "end": 20430.34, + "probability": 0.6639 + }, + { + "start": 20430.38, + "end": 20432.04, + "probability": 0.8584 + }, + { + "start": 20432.2, + "end": 20433.3, + "probability": 0.8829 + }, + { + "start": 20434.04, + "end": 20434.7, + "probability": 0.3278 + }, + { + "start": 20434.98, + "end": 20438.36, + "probability": 0.9538 + }, + { + "start": 20438.36, + "end": 20440.96, + "probability": 0.9901 + }, + { + "start": 20442.5, + "end": 20443.62, + "probability": 0.7764 + }, + { + "start": 20444.28, + "end": 20446.38, + "probability": 0.989 + }, + { + "start": 20446.98, + "end": 20450.1, + "probability": 0.876 + }, + { + "start": 20450.1, + "end": 20452.72, + "probability": 0.9835 + }, + { + "start": 20453.26, + "end": 20453.98, + "probability": 0.7272 + }, + { + "start": 20454.24, + "end": 20458.68, + "probability": 0.7228 + }, + { + "start": 20459.34, + "end": 20463.42, + "probability": 0.9894 + }, + { + "start": 20463.6, + "end": 20464.16, + "probability": 0.7084 + }, + { + "start": 20464.22, + "end": 20464.86, + "probability": 0.9207 + }, + { + "start": 20465.74, + "end": 20468.02, + "probability": 0.9491 + }, + { + "start": 20468.06, + "end": 20469.38, + "probability": 0.9197 + }, + { + "start": 20469.96, + "end": 20471.66, + "probability": 0.9445 + }, + { + "start": 20472.7, + "end": 20476.7, + "probability": 0.9272 + }, + { + "start": 20477.14, + "end": 20480.22, + "probability": 0.9849 + }, + { + "start": 20480.76, + "end": 20481.38, + "probability": 0.6432 + }, + { + "start": 20481.52, + "end": 20483.96, + "probability": 0.9826 + }, + { + "start": 20484.2, + "end": 20485.04, + "probability": 0.904 + }, + { + "start": 20485.78, + "end": 20486.98, + "probability": 0.8044 + }, + { + "start": 20487.24, + "end": 20490.04, + "probability": 0.9717 + }, + { + "start": 20490.04, + "end": 20493.56, + "probability": 0.9972 + }, + { + "start": 20494.16, + "end": 20496.78, + "probability": 0.8349 + }, + { + "start": 20497.22, + "end": 20498.36, + "probability": 0.9238 + }, + { + "start": 20499.08, + "end": 20500.09, + "probability": 0.998 + }, + { + "start": 20500.84, + "end": 20502.16, + "probability": 0.2896 + }, + { + "start": 20502.9, + "end": 20504.42, + "probability": 0.8835 + }, + { + "start": 20505.2, + "end": 20507.94, + "probability": 0.9539 + }, + { + "start": 20508.42, + "end": 20511.4, + "probability": 0.904 + }, + { + "start": 20511.92, + "end": 20515.58, + "probability": 0.9943 + }, + { + "start": 20516.26, + "end": 20518.18, + "probability": 0.6959 + }, + { + "start": 20518.38, + "end": 20520.64, + "probability": 0.6976 + }, + { + "start": 20521.6, + "end": 20522.0, + "probability": 0.6402 + }, + { + "start": 20522.26, + "end": 20526.6, + "probability": 0.9669 + }, + { + "start": 20527.02, + "end": 20529.58, + "probability": 0.9922 + }, + { + "start": 20529.58, + "end": 20532.52, + "probability": 0.9858 + }, + { + "start": 20532.98, + "end": 20534.1, + "probability": 0.6787 + }, + { + "start": 20534.7, + "end": 20537.48, + "probability": 0.9663 + }, + { + "start": 20537.48, + "end": 20541.06, + "probability": 0.9443 + }, + { + "start": 20541.12, + "end": 20542.86, + "probability": 0.704 + }, + { + "start": 20542.88, + "end": 20546.26, + "probability": 0.713 + }, + { + "start": 20546.68, + "end": 20549.0, + "probability": 0.9907 + }, + { + "start": 20550.12, + "end": 20550.46, + "probability": 0.777 + }, + { + "start": 20550.56, + "end": 20553.1, + "probability": 0.8755 + }, + { + "start": 20553.1, + "end": 20557.46, + "probability": 0.6646 + }, + { + "start": 20557.9, + "end": 20558.08, + "probability": 0.2376 + }, + { + "start": 20558.22, + "end": 20558.68, + "probability": 0.7307 + }, + { + "start": 20559.22, + "end": 20561.06, + "probability": 0.9083 + }, + { + "start": 20561.7, + "end": 20565.2, + "probability": 0.9933 + }, + { + "start": 20565.26, + "end": 20565.54, + "probability": 0.7507 + }, + { + "start": 20566.4, + "end": 20568.58, + "probability": 0.9567 + }, + { + "start": 20570.12, + "end": 20571.48, + "probability": 0.9489 + }, + { + "start": 20571.74, + "end": 20574.1, + "probability": 0.972 + }, + { + "start": 20574.74, + "end": 20577.44, + "probability": 0.359 + }, + { + "start": 20577.44, + "end": 20580.06, + "probability": 0.9245 + }, + { + "start": 20580.64, + "end": 20581.36, + "probability": 0.8575 + }, + { + "start": 20581.38, + "end": 20583.52, + "probability": 0.982 + }, + { + "start": 20583.86, + "end": 20585.32, + "probability": 0.9893 + }, + { + "start": 20585.42, + "end": 20586.97, + "probability": 0.9092 + }, + { + "start": 20588.26, + "end": 20589.84, + "probability": 0.9661 + }, + { + "start": 20590.56, + "end": 20592.16, + "probability": 0.8217 + }, + { + "start": 20592.26, + "end": 20594.83, + "probability": 0.927 + }, + { + "start": 20595.34, + "end": 20597.42, + "probability": 0.737 + }, + { + "start": 20597.66, + "end": 20600.84, + "probability": 0.8451 + }, + { + "start": 20600.96, + "end": 20604.14, + "probability": 0.9717 + }, + { + "start": 20604.6, + "end": 20606.34, + "probability": 0.7039 + }, + { + "start": 20607.02, + "end": 20608.04, + "probability": 0.9549 + }, + { + "start": 20608.1, + "end": 20608.5, + "probability": 0.5325 + }, + { + "start": 20608.56, + "end": 20610.8, + "probability": 0.9733 + }, + { + "start": 20611.34, + "end": 20613.38, + "probability": 0.993 + }, + { + "start": 20613.38, + "end": 20616.74, + "probability": 0.9941 + }, + { + "start": 20617.48, + "end": 20619.36, + "probability": 0.9932 + }, + { + "start": 20620.18, + "end": 20621.24, + "probability": 0.9907 + }, + { + "start": 20621.82, + "end": 20623.08, + "probability": 0.5218 + }, + { + "start": 20623.8, + "end": 20628.16, + "probability": 0.7498 + }, + { + "start": 20629.77, + "end": 20631.12, + "probability": 0.8733 + }, + { + "start": 20631.12, + "end": 20632.4, + "probability": 0.0677 + }, + { + "start": 20632.74, + "end": 20633.66, + "probability": 0.8394 + }, + { + "start": 20633.96, + "end": 20634.5, + "probability": 0.9034 + }, + { + "start": 20634.72, + "end": 20636.7, + "probability": 0.9414 + }, + { + "start": 20637.62, + "end": 20638.0, + "probability": 0.4609 + }, + { + "start": 20638.18, + "end": 20641.0, + "probability": 0.9253 + }, + { + "start": 20641.12, + "end": 20643.2, + "probability": 0.9935 + }, + { + "start": 20643.2, + "end": 20645.36, + "probability": 0.8001 + }, + { + "start": 20646.06, + "end": 20647.64, + "probability": 0.9959 + }, + { + "start": 20648.16, + "end": 20650.7, + "probability": 0.9856 + }, + { + "start": 20650.8, + "end": 20651.64, + "probability": 0.924 + }, + { + "start": 20651.74, + "end": 20653.04, + "probability": 0.8679 + }, + { + "start": 20653.82, + "end": 20657.84, + "probability": 0.6912 + }, + { + "start": 20659.16, + "end": 20662.32, + "probability": 0.8444 + }, + { + "start": 20662.82, + "end": 20665.44, + "probability": 0.9644 + }, + { + "start": 20665.94, + "end": 20668.18, + "probability": 0.7651 + }, + { + "start": 20668.76, + "end": 20671.28, + "probability": 0.6128 + }, + { + "start": 20671.6, + "end": 20674.96, + "probability": 0.9708 + }, + { + "start": 20675.6, + "end": 20677.16, + "probability": 0.8592 + }, + { + "start": 20677.68, + "end": 20679.26, + "probability": 0.9482 + }, + { + "start": 20680.72, + "end": 20681.08, + "probability": 0.6252 + }, + { + "start": 20681.12, + "end": 20681.58, + "probability": 0.8293 + }, + { + "start": 20681.7, + "end": 20683.4, + "probability": 0.8774 + }, + { + "start": 20683.74, + "end": 20684.62, + "probability": 0.7903 + }, + { + "start": 20684.7, + "end": 20686.54, + "probability": 0.754 + }, + { + "start": 20687.02, + "end": 20688.26, + "probability": 0.8596 + }, + { + "start": 20688.72, + "end": 20690.88, + "probability": 0.938 + }, + { + "start": 20690.88, + "end": 20693.0, + "probability": 0.8616 + }, + { + "start": 20693.72, + "end": 20697.62, + "probability": 0.8793 + }, + { + "start": 20698.3, + "end": 20699.0, + "probability": 0.6388 + }, + { + "start": 20699.2, + "end": 20702.92, + "probability": 0.8167 + }, + { + "start": 20703.46, + "end": 20706.4, + "probability": 0.8893 + }, + { + "start": 20706.62, + "end": 20707.8, + "probability": 0.5723 + }, + { + "start": 20708.1, + "end": 20710.5, + "probability": 0.7396 + }, + { + "start": 20710.98, + "end": 20714.8, + "probability": 0.966 + }, + { + "start": 20715.3, + "end": 20716.56, + "probability": 0.3532 + }, + { + "start": 20716.76, + "end": 20718.98, + "probability": 0.7095 + }, + { + "start": 20719.74, + "end": 20720.0, + "probability": 0.4844 + }, + { + "start": 20720.08, + "end": 20722.72, + "probability": 0.9599 + }, + { + "start": 20723.4, + "end": 20725.39, + "probability": 0.9153 + }, + { + "start": 20726.1, + "end": 20727.14, + "probability": 0.7575 + }, + { + "start": 20727.4, + "end": 20729.3, + "probability": 0.8275 + }, + { + "start": 20729.8, + "end": 20730.96, + "probability": 0.9158 + }, + { + "start": 20731.58, + "end": 20731.8, + "probability": 0.7831 + }, + { + "start": 20732.8, + "end": 20733.6, + "probability": 0.5638 + }, + { + "start": 20733.86, + "end": 20734.0, + "probability": 0.8371 + }, + { + "start": 20740.66, + "end": 20741.24, + "probability": 0.6756 + }, + { + "start": 20751.84, + "end": 20752.04, + "probability": 0.0712 + }, + { + "start": 20752.04, + "end": 20754.24, + "probability": 0.8696 + }, + { + "start": 20755.18, + "end": 20757.51, + "probability": 0.9569 + }, + { + "start": 20759.84, + "end": 20761.04, + "probability": 0.8046 + }, + { + "start": 20761.14, + "end": 20763.3, + "probability": 0.9437 + }, + { + "start": 20763.78, + "end": 20764.4, + "probability": 0.6185 + }, + { + "start": 20765.6, + "end": 20766.14, + "probability": 0.9268 + }, + { + "start": 20768.32, + "end": 20769.62, + "probability": 0.7758 + }, + { + "start": 20770.52, + "end": 20775.22, + "probability": 0.8009 + }, + { + "start": 20777.56, + "end": 20777.58, + "probability": 0.5522 + }, + { + "start": 20777.58, + "end": 20778.18, + "probability": 0.5174 + }, + { + "start": 20779.22, + "end": 20782.62, + "probability": 0.7854 + }, + { + "start": 20782.9, + "end": 20787.42, + "probability": 0.8855 + }, + { + "start": 20788.3, + "end": 20790.34, + "probability": 0.8514 + }, + { + "start": 20792.44, + "end": 20797.08, + "probability": 0.6636 + }, + { + "start": 20798.12, + "end": 20802.2, + "probability": 0.9743 + }, + { + "start": 20802.96, + "end": 20805.16, + "probability": 0.9956 + }, + { + "start": 20805.98, + "end": 20809.72, + "probability": 0.9653 + }, + { + "start": 20810.74, + "end": 20813.7, + "probability": 0.8729 + }, + { + "start": 20813.94, + "end": 20819.38, + "probability": 0.9948 + }, + { + "start": 20820.74, + "end": 20823.98, + "probability": 0.6088 + }, + { + "start": 20824.18, + "end": 20825.74, + "probability": 0.9906 + }, + { + "start": 20826.46, + "end": 20829.92, + "probability": 0.9814 + }, + { + "start": 20831.42, + "end": 20833.36, + "probability": 0.6735 + }, + { + "start": 20833.66, + "end": 20835.56, + "probability": 0.9536 + }, + { + "start": 20837.2, + "end": 20839.76, + "probability": 0.9417 + }, + { + "start": 20840.04, + "end": 20842.42, + "probability": 0.6811 + }, + { + "start": 20844.62, + "end": 20847.72, + "probability": 0.7815 + }, + { + "start": 20848.62, + "end": 20851.85, + "probability": 0.9576 + }, + { + "start": 20853.42, + "end": 20853.42, + "probability": 0.0952 + }, + { + "start": 20853.42, + "end": 20859.3, + "probability": 0.9845 + }, + { + "start": 20860.92, + "end": 20861.2, + "probability": 0.9558 + }, + { + "start": 20861.8, + "end": 20865.1, + "probability": 0.9696 + }, + { + "start": 20865.26, + "end": 20866.08, + "probability": 0.8447 + }, + { + "start": 20866.96, + "end": 20868.42, + "probability": 0.9098 + }, + { + "start": 20871.02, + "end": 20874.84, + "probability": 0.9866 + }, + { + "start": 20875.56, + "end": 20876.18, + "probability": 0.7496 + }, + { + "start": 20876.4, + "end": 20877.1, + "probability": 0.9332 + }, + { + "start": 20877.2, + "end": 20882.14, + "probability": 0.9912 + }, + { + "start": 20882.28, + "end": 20888.62, + "probability": 0.9934 + }, + { + "start": 20889.3, + "end": 20889.94, + "probability": 0.9868 + }, + { + "start": 20890.14, + "end": 20893.36, + "probability": 0.9915 + }, + { + "start": 20894.32, + "end": 20901.58, + "probability": 0.9424 + }, + { + "start": 20901.78, + "end": 20906.18, + "probability": 0.5323 + }, + { + "start": 20908.42, + "end": 20913.48, + "probability": 0.7513 + }, + { + "start": 20915.18, + "end": 20918.62, + "probability": 0.8885 + }, + { + "start": 20919.58, + "end": 20922.22, + "probability": 0.9932 + }, + { + "start": 20923.04, + "end": 20927.08, + "probability": 0.9134 + }, + { + "start": 20927.68, + "end": 20931.88, + "probability": 0.9864 + }, + { + "start": 20931.96, + "end": 20937.5, + "probability": 0.8944 + }, + { + "start": 20937.88, + "end": 20939.94, + "probability": 0.5475 + }, + { + "start": 20940.84, + "end": 20942.76, + "probability": 0.9931 + }, + { + "start": 20945.56, + "end": 20949.16, + "probability": 0.8671 + }, + { + "start": 20949.32, + "end": 20952.52, + "probability": 0.6827 + }, + { + "start": 20953.82, + "end": 20956.42, + "probability": 0.9116 + }, + { + "start": 20956.6, + "end": 20958.02, + "probability": 0.8868 + }, + { + "start": 20958.18, + "end": 20962.48, + "probability": 0.9895 + }, + { + "start": 20962.54, + "end": 20964.02, + "probability": 0.9673 + }, + { + "start": 20967.38, + "end": 20969.66, + "probability": 0.8254 + }, + { + "start": 20970.84, + "end": 20973.42, + "probability": 0.9453 + }, + { + "start": 20974.18, + "end": 20975.04, + "probability": 0.6601 + }, + { + "start": 20976.08, + "end": 20978.22, + "probability": 0.8872 + }, + { + "start": 20978.68, + "end": 20980.22, + "probability": 0.3754 + }, + { + "start": 20980.34, + "end": 20981.96, + "probability": 0.5142 + }, + { + "start": 20982.58, + "end": 20985.42, + "probability": 0.9814 + }, + { + "start": 20986.36, + "end": 20989.56, + "probability": 0.957 + }, + { + "start": 20989.9, + "end": 20991.38, + "probability": 0.9207 + }, + { + "start": 20994.62, + "end": 20995.34, + "probability": 0.4567 + }, + { + "start": 20995.4, + "end": 20996.22, + "probability": 0.9688 + }, + { + "start": 20996.48, + "end": 20998.26, + "probability": 0.8741 + }, + { + "start": 20998.38, + "end": 21002.14, + "probability": 0.9774 + }, + { + "start": 21003.7, + "end": 21004.46, + "probability": 0.4497 + }, + { + "start": 21004.6, + "end": 21006.54, + "probability": 0.9399 + }, + { + "start": 21006.68, + "end": 21010.0, + "probability": 0.9426 + }, + { + "start": 21010.2, + "end": 21013.68, + "probability": 0.7531 + }, + { + "start": 21017.56, + "end": 21022.92, + "probability": 0.5712 + }, + { + "start": 21024.56, + "end": 21027.3, + "probability": 0.8075 + }, + { + "start": 21028.04, + "end": 21034.44, + "probability": 0.9455 + }, + { + "start": 21034.9, + "end": 21035.9, + "probability": 0.9595 + }, + { + "start": 21036.9, + "end": 21040.44, + "probability": 0.8189 + }, + { + "start": 21040.54, + "end": 21044.78, + "probability": 0.9911 + }, + { + "start": 21044.98, + "end": 21045.76, + "probability": 0.9913 + }, + { + "start": 21045.92, + "end": 21046.68, + "probability": 0.9857 + }, + { + "start": 21047.52, + "end": 21051.32, + "probability": 0.8851 + }, + { + "start": 21051.92, + "end": 21057.56, + "probability": 0.9959 + }, + { + "start": 21058.28, + "end": 21061.18, + "probability": 0.937 + }, + { + "start": 21061.82, + "end": 21068.96, + "probability": 0.9989 + }, + { + "start": 21069.86, + "end": 21070.9, + "probability": 0.6858 + }, + { + "start": 21071.28, + "end": 21072.24, + "probability": 0.6644 + }, + { + "start": 21072.42, + "end": 21076.18, + "probability": 0.9465 + }, + { + "start": 21076.18, + "end": 21079.14, + "probability": 0.9775 + }, + { + "start": 21079.74, + "end": 21080.66, + "probability": 0.9904 + }, + { + "start": 21081.48, + "end": 21083.16, + "probability": 0.8549 + }, + { + "start": 21087.42, + "end": 21087.42, + "probability": 0.0664 + }, + { + "start": 21087.42, + "end": 21088.46, + "probability": 0.5824 + }, + { + "start": 21088.58, + "end": 21091.94, + "probability": 0.9869 + }, + { + "start": 21092.68, + "end": 21094.24, + "probability": 0.9173 + }, + { + "start": 21095.14, + "end": 21097.06, + "probability": 0.9587 + }, + { + "start": 21098.08, + "end": 21103.2, + "probability": 0.9019 + }, + { + "start": 21104.38, + "end": 21110.3, + "probability": 0.7136 + }, + { + "start": 21110.3, + "end": 21113.38, + "probability": 0.9863 + }, + { + "start": 21113.48, + "end": 21113.9, + "probability": 0.8857 + }, + { + "start": 21114.54, + "end": 21118.98, + "probability": 0.9976 + }, + { + "start": 21120.42, + "end": 21121.46, + "probability": 0.0963 + }, + { + "start": 21122.02, + "end": 21125.26, + "probability": 0.941 + }, + { + "start": 21126.48, + "end": 21126.68, + "probability": 0.7859 + }, + { + "start": 21126.76, + "end": 21129.94, + "probability": 0.9973 + }, + { + "start": 21130.16, + "end": 21134.42, + "probability": 0.7081 + }, + { + "start": 21134.48, + "end": 21139.94, + "probability": 0.9691 + }, + { + "start": 21140.54, + "end": 21143.14, + "probability": 0.9424 + }, + { + "start": 21143.46, + "end": 21143.8, + "probability": 0.3088 + }, + { + "start": 21144.3, + "end": 21145.92, + "probability": 0.5152 + }, + { + "start": 21148.63, + "end": 21152.0, + "probability": 0.8817 + }, + { + "start": 21152.42, + "end": 21152.42, + "probability": 0.0697 + }, + { + "start": 21152.42, + "end": 21154.1, + "probability": 0.8356 + }, + { + "start": 21154.5, + "end": 21155.76, + "probability": 0.8599 + }, + { + "start": 21156.42, + "end": 21158.32, + "probability": 0.7244 + }, + { + "start": 21158.38, + "end": 21161.24, + "probability": 0.6924 + }, + { + "start": 21164.82, + "end": 21165.18, + "probability": 0.7521 + }, + { + "start": 21183.86, + "end": 21183.88, + "probability": 0.3284 + }, + { + "start": 21183.88, + "end": 21183.88, + "probability": 0.0711 + }, + { + "start": 21183.88, + "end": 21186.22, + "probability": 0.412 + }, + { + "start": 21186.56, + "end": 21188.32, + "probability": 0.7563 + }, + { + "start": 21189.28, + "end": 21191.66, + "probability": 0.7473 + }, + { + "start": 21192.92, + "end": 21192.94, + "probability": 0.3645 + }, + { + "start": 21192.94, + "end": 21195.48, + "probability": 0.3282 + }, + { + "start": 21196.72, + "end": 21198.04, + "probability": 0.4412 + }, + { + "start": 21201.96, + "end": 21202.46, + "probability": 0.77 + }, + { + "start": 21203.3, + "end": 21203.82, + "probability": 0.9316 + }, + { + "start": 21207.5, + "end": 21209.16, + "probability": 0.8667 + }, + { + "start": 21216.82, + "end": 21218.22, + "probability": 0.1882 + }, + { + "start": 21218.64, + "end": 21221.0, + "probability": 0.1296 + }, + { + "start": 21221.6, + "end": 21223.2, + "probability": 0.4431 + }, + { + "start": 21224.58, + "end": 21225.72, + "probability": 0.5169 + }, + { + "start": 21225.72, + "end": 21226.04, + "probability": 0.7823 + }, + { + "start": 21226.32, + "end": 21227.42, + "probability": 0.9749 + }, + { + "start": 21227.72, + "end": 21230.82, + "probability": 0.8378 + }, + { + "start": 21231.52, + "end": 21233.32, + "probability": 0.6145 + }, + { + "start": 21234.22, + "end": 21236.14, + "probability": 0.8644 + }, + { + "start": 21236.82, + "end": 21237.94, + "probability": 0.9984 + }, + { + "start": 21238.78, + "end": 21242.0, + "probability": 0.993 + }, + { + "start": 21244.62, + "end": 21245.93, + "probability": 0.9922 + }, + { + "start": 21247.54, + "end": 21250.14, + "probability": 0.9614 + }, + { + "start": 21250.86, + "end": 21255.2, + "probability": 0.8923 + }, + { + "start": 21255.86, + "end": 21258.48, + "probability": 0.891 + }, + { + "start": 21260.68, + "end": 21261.08, + "probability": 0.9095 + }, + { + "start": 21263.58, + "end": 21266.72, + "probability": 0.8029 + }, + { + "start": 21268.5, + "end": 21272.06, + "probability": 0.7883 + }, + { + "start": 21273.1, + "end": 21274.5, + "probability": 0.7499 + }, + { + "start": 21275.1, + "end": 21275.64, + "probability": 0.7801 + }, + { + "start": 21276.7, + "end": 21279.0, + "probability": 0.9889 + }, + { + "start": 21280.5, + "end": 21281.34, + "probability": 0.6479 + }, + { + "start": 21282.02, + "end": 21285.76, + "probability": 0.981 + }, + { + "start": 21286.02, + "end": 21287.28, + "probability": 0.8456 + }, + { + "start": 21287.46, + "end": 21287.8, + "probability": 0.618 + }, + { + "start": 21288.58, + "end": 21293.16, + "probability": 0.8005 + }, + { + "start": 21294.02, + "end": 21295.92, + "probability": 0.7252 + }, + { + "start": 21296.46, + "end": 21296.98, + "probability": 0.976 + }, + { + "start": 21297.12, + "end": 21297.85, + "probability": 0.9177 + }, + { + "start": 21298.52, + "end": 21300.34, + "probability": 0.8838 + }, + { + "start": 21301.16, + "end": 21304.08, + "probability": 0.7556 + }, + { + "start": 21304.16, + "end": 21308.36, + "probability": 0.6692 + }, + { + "start": 21308.66, + "end": 21310.5, + "probability": 0.7592 + }, + { + "start": 21312.48, + "end": 21313.12, + "probability": 0.4995 + }, + { + "start": 21314.04, + "end": 21315.76, + "probability": 0.6204 + }, + { + "start": 21316.34, + "end": 21317.03, + "probability": 0.9974 + }, + { + "start": 21317.78, + "end": 21318.92, + "probability": 0.7005 + }, + { + "start": 21320.32, + "end": 21324.82, + "probability": 0.8536 + }, + { + "start": 21325.38, + "end": 21325.76, + "probability": 0.7553 + }, + { + "start": 21327.2, + "end": 21328.8, + "probability": 0.9883 + }, + { + "start": 21329.6, + "end": 21331.22, + "probability": 0.8088 + }, + { + "start": 21332.32, + "end": 21333.4, + "probability": 0.7258 + }, + { + "start": 21333.9, + "end": 21337.26, + "probability": 0.8502 + }, + { + "start": 21338.38, + "end": 21338.8, + "probability": 0.9277 + }, + { + "start": 21339.76, + "end": 21340.44, + "probability": 0.4439 + }, + { + "start": 21341.16, + "end": 21343.78, + "probability": 0.3072 + }, + { + "start": 21344.38, + "end": 21344.98, + "probability": 0.543 + }, + { + "start": 21345.56, + "end": 21346.2, + "probability": 0.7651 + }, + { + "start": 21346.5, + "end": 21347.46, + "probability": 0.9974 + }, + { + "start": 21348.04, + "end": 21350.74, + "probability": 0.2628 + }, + { + "start": 21351.6, + "end": 21352.22, + "probability": 0.4986 + }, + { + "start": 21353.2, + "end": 21353.88, + "probability": 0.6906 + }, + { + "start": 21354.46, + "end": 21356.06, + "probability": 0.6053 + }, + { + "start": 21356.06, + "end": 21359.08, + "probability": 0.9969 + }, + { + "start": 21359.64, + "end": 21359.94, + "probability": 0.9226 + }, + { + "start": 21360.7, + "end": 21362.6, + "probability": 0.7706 + }, + { + "start": 21363.04, + "end": 21364.86, + "probability": 0.8492 + }, + { + "start": 21365.32, + "end": 21365.72, + "probability": 0.6278 + }, + { + "start": 21366.34, + "end": 21366.48, + "probability": 0.7285 + }, + { + "start": 21367.22, + "end": 21368.1, + "probability": 0.9907 + }, + { + "start": 21369.78, + "end": 21370.6, + "probability": 0.8779 + }, + { + "start": 21371.14, + "end": 21371.94, + "probability": 0.9702 + }, + { + "start": 21372.96, + "end": 21375.82, + "probability": 0.6667 + }, + { + "start": 21375.88, + "end": 21377.14, + "probability": 0.4567 + }, + { + "start": 21377.58, + "end": 21377.92, + "probability": 0.7349 + }, + { + "start": 21378.06, + "end": 21380.08, + "probability": 0.7573 + }, + { + "start": 21380.24, + "end": 21382.8, + "probability": 0.7019 + }, + { + "start": 21383.18, + "end": 21383.5, + "probability": 0.887 + }, + { + "start": 21384.48, + "end": 21385.69, + "probability": 0.9768 + }, + { + "start": 21386.56, + "end": 21387.6, + "probability": 0.7206 + }, + { + "start": 21388.18, + "end": 21390.44, + "probability": 0.9161 + }, + { + "start": 21390.94, + "end": 21395.06, + "probability": 0.8146 + }, + { + "start": 21396.04, + "end": 21399.08, + "probability": 0.9404 + }, + { + "start": 21399.8, + "end": 21401.58, + "probability": 0.5811 + }, + { + "start": 21402.38, + "end": 21403.82, + "probability": 0.8754 + }, + { + "start": 21405.52, + "end": 21407.18, + "probability": 0.0179 + }, + { + "start": 21408.72, + "end": 21409.42, + "probability": 0.8051 + }, + { + "start": 21410.44, + "end": 21411.78, + "probability": 0.5831 + }, + { + "start": 21412.54, + "end": 21413.84, + "probability": 0.5291 + }, + { + "start": 21413.92, + "end": 21415.14, + "probability": 0.0956 + }, + { + "start": 21415.14, + "end": 21416.64, + "probability": 0.9585 + }, + { + "start": 21417.68, + "end": 21419.37, + "probability": 0.9456 + }, + { + "start": 21421.32, + "end": 21423.02, + "probability": 0.6829 + }, + { + "start": 21423.32, + "end": 21425.48, + "probability": 0.6273 + }, + { + "start": 21426.36, + "end": 21428.56, + "probability": 0.5562 + }, + { + "start": 21428.7, + "end": 21433.06, + "probability": 0.7248 + }, + { + "start": 21433.4, + "end": 21434.08, + "probability": 0.1471 + }, + { + "start": 21435.82, + "end": 21442.38, + "probability": 0.9386 + }, + { + "start": 21443.68, + "end": 21445.6, + "probability": 0.9937 + }, + { + "start": 21447.46, + "end": 21450.58, + "probability": 0.9636 + }, + { + "start": 21451.67, + "end": 21456.46, + "probability": 0.9807 + }, + { + "start": 21457.22, + "end": 21459.64, + "probability": 0.9949 + }, + { + "start": 21460.52, + "end": 21463.62, + "probability": 0.9883 + }, + { + "start": 21464.2, + "end": 21467.08, + "probability": 0.9973 + }, + { + "start": 21469.38, + "end": 21470.76, + "probability": 0.9126 + }, + { + "start": 21472.32, + "end": 21474.96, + "probability": 0.5847 + }, + { + "start": 21475.62, + "end": 21477.28, + "probability": 0.9566 + }, + { + "start": 21477.76, + "end": 21478.58, + "probability": 0.969 + }, + { + "start": 21479.08, + "end": 21479.98, + "probability": 0.7199 + }, + { + "start": 21480.52, + "end": 21482.68, + "probability": 0.9369 + }, + { + "start": 21482.8, + "end": 21485.3, + "probability": 0.9135 + }, + { + "start": 21485.68, + "end": 21487.74, + "probability": 0.9635 + }, + { + "start": 21488.3, + "end": 21490.5, + "probability": 0.8659 + }, + { + "start": 21491.08, + "end": 21492.8, + "probability": 0.8862 + }, + { + "start": 21493.54, + "end": 21494.44, + "probability": 0.9164 + }, + { + "start": 21494.6, + "end": 21495.1, + "probability": 0.6642 + }, + { + "start": 21495.1, + "end": 21496.06, + "probability": 0.4517 + }, + { + "start": 21496.2, + "end": 21498.86, + "probability": 0.8929 + }, + { + "start": 21500.03, + "end": 21500.63, + "probability": 0.0754 + }, + { + "start": 21503.58, + "end": 21506.54, + "probability": 0.9904 + }, + { + "start": 21507.26, + "end": 21510.74, + "probability": 0.7875 + }, + { + "start": 21511.24, + "end": 21512.46, + "probability": 0.9113 + }, + { + "start": 21513.76, + "end": 21514.68, + "probability": 0.398 + }, + { + "start": 21520.12, + "end": 21521.12, + "probability": 0.784 + }, + { + "start": 21522.3, + "end": 21525.74, + "probability": 0.8353 + }, + { + "start": 21527.32, + "end": 21528.58, + "probability": 0.6588 + }, + { + "start": 21528.92, + "end": 21528.92, + "probability": 0.1795 + }, + { + "start": 21528.92, + "end": 21530.22, + "probability": 0.8796 + }, + { + "start": 21530.46, + "end": 21535.72, + "probability": 0.9966 + }, + { + "start": 21536.82, + "end": 21542.6, + "probability": 0.9617 + }, + { + "start": 21544.78, + "end": 21548.28, + "probability": 0.9935 + }, + { + "start": 21548.28, + "end": 21551.26, + "probability": 0.965 + }, + { + "start": 21552.78, + "end": 21556.82, + "probability": 0.9366 + }, + { + "start": 21556.82, + "end": 21560.08, + "probability": 0.9705 + }, + { + "start": 21561.36, + "end": 21566.92, + "probability": 0.982 + }, + { + "start": 21567.08, + "end": 21568.52, + "probability": 0.9615 + }, + { + "start": 21569.24, + "end": 21571.9, + "probability": 0.9964 + }, + { + "start": 21573.76, + "end": 21575.74, + "probability": 0.9195 + }, + { + "start": 21575.96, + "end": 21579.88, + "probability": 0.8992 + }, + { + "start": 21580.6, + "end": 21581.88, + "probability": 0.8321 + }, + { + "start": 21582.52, + "end": 21587.26, + "probability": 0.941 + }, + { + "start": 21587.46, + "end": 21590.47, + "probability": 0.0259 + }, + { + "start": 21592.1, + "end": 21592.16, + "probability": 0.0203 + }, + { + "start": 21592.16, + "end": 21592.7, + "probability": 0.1507 + }, + { + "start": 21592.86, + "end": 21593.66, + "probability": 0.7679 + }, + { + "start": 21594.62, + "end": 21596.9, + "probability": 0.2968 + }, + { + "start": 21597.06, + "end": 21598.28, + "probability": 0.8382 + }, + { + "start": 21598.5, + "end": 21600.7, + "probability": 0.4828 + }, + { + "start": 21601.06, + "end": 21603.84, + "probability": 0.7827 + }, + { + "start": 21604.72, + "end": 21605.76, + "probability": 0.1983 + }, + { + "start": 21605.9, + "end": 21608.89, + "probability": 0.8637 + }, + { + "start": 21609.82, + "end": 21610.22, + "probability": 0.7079 + }, + { + "start": 21610.28, + "end": 21615.64, + "probability": 0.882 + }, + { + "start": 21616.8, + "end": 21617.72, + "probability": 0.8984 + }, + { + "start": 21619.34, + "end": 21620.48, + "probability": 0.9316 + }, + { + "start": 21621.8, + "end": 21624.46, + "probability": 0.9713 + }, + { + "start": 21625.24, + "end": 21627.24, + "probability": 0.8412 + }, + { + "start": 21627.86, + "end": 21630.0, + "probability": 0.9963 + }, + { + "start": 21630.68, + "end": 21635.6, + "probability": 0.9943 + }, + { + "start": 21636.66, + "end": 21637.72, + "probability": 0.7968 + }, + { + "start": 21638.48, + "end": 21640.34, + "probability": 0.9861 + }, + { + "start": 21640.56, + "end": 21646.62, + "probability": 0.9854 + }, + { + "start": 21647.24, + "end": 21649.06, + "probability": 0.0773 + }, + { + "start": 21651.74, + "end": 21653.38, + "probability": 0.9828 + }, + { + "start": 21653.96, + "end": 21655.78, + "probability": 0.9429 + }, + { + "start": 21656.34, + "end": 21657.86, + "probability": 0.9985 + }, + { + "start": 21658.84, + "end": 21664.02, + "probability": 0.9593 + }, + { + "start": 21664.1, + "end": 21666.34, + "probability": 0.9883 + }, + { + "start": 21666.92, + "end": 21669.06, + "probability": 0.3478 + }, + { + "start": 21669.18, + "end": 21672.44, + "probability": 0.9832 + }, + { + "start": 21672.46, + "end": 21675.72, + "probability": 0.9839 + }, + { + "start": 21676.7, + "end": 21678.18, + "probability": 0.989 + }, + { + "start": 21678.42, + "end": 21680.52, + "probability": 0.526 + }, + { + "start": 21681.08, + "end": 21683.28, + "probability": 0.7338 + }, + { + "start": 21684.02, + "end": 21685.62, + "probability": 0.7518 + }, + { + "start": 21685.86, + "end": 21689.32, + "probability": 0.5603 + }, + { + "start": 21689.72, + "end": 21690.8, + "probability": 0.5597 + }, + { + "start": 21691.4, + "end": 21694.9, + "probability": 0.709 + }, + { + "start": 21695.48, + "end": 21696.16, + "probability": 0.74 + }, + { + "start": 21696.9, + "end": 21699.28, + "probability": 0.6589 + }, + { + "start": 21700.02, + "end": 21700.68, + "probability": 0.9956 + }, + { + "start": 21703.52, + "end": 21706.04, + "probability": 0.7611 + }, + { + "start": 21706.18, + "end": 21708.7, + "probability": 0.2987 + }, + { + "start": 21708.72, + "end": 21709.86, + "probability": 0.5227 + }, + { + "start": 21710.22, + "end": 21711.26, + "probability": 0.6595 + }, + { + "start": 21711.64, + "end": 21713.69, + "probability": 0.9932 + }, + { + "start": 21714.46, + "end": 21715.54, + "probability": 0.9915 + }, + { + "start": 21715.72, + "end": 21716.12, + "probability": 0.896 + }, + { + "start": 21718.32, + "end": 21720.72, + "probability": 0.6892 + }, + { + "start": 21743.34, + "end": 21744.9, + "probability": 0.7248 + }, + { + "start": 21747.28, + "end": 21748.35, + "probability": 0.8955 + }, + { + "start": 21749.56, + "end": 21751.62, + "probability": 0.4339 + }, + { + "start": 21752.62, + "end": 21753.38, + "probability": 0.9954 + }, + { + "start": 21753.58, + "end": 21756.74, + "probability": 0.979 + }, + { + "start": 21757.82, + "end": 21759.94, + "probability": 0.8492 + }, + { + "start": 21761.2, + "end": 21764.48, + "probability": 0.985 + }, + { + "start": 21764.6, + "end": 21765.88, + "probability": 0.723 + }, + { + "start": 21767.8, + "end": 21769.74, + "probability": 0.6155 + }, + { + "start": 21770.16, + "end": 21771.85, + "probability": 0.8358 + }, + { + "start": 21772.86, + "end": 21773.73, + "probability": 0.283 + }, + { + "start": 21775.36, + "end": 21777.3, + "probability": 0.9865 + }, + { + "start": 21778.82, + "end": 21780.06, + "probability": 0.3232 + }, + { + "start": 21780.42, + "end": 21780.42, + "probability": 0.4981 + }, + { + "start": 21780.42, + "end": 21782.1, + "probability": 0.5881 + }, + { + "start": 21783.46, + "end": 21784.12, + "probability": 0.5062 + }, + { + "start": 21784.28, + "end": 21787.52, + "probability": 0.9893 + }, + { + "start": 21788.1, + "end": 21788.97, + "probability": 0.0927 + }, + { + "start": 21789.0, + "end": 21789.78, + "probability": 0.0084 + }, + { + "start": 21789.9, + "end": 21793.5, + "probability": 0.2712 + }, + { + "start": 21793.5, + "end": 21794.84, + "probability": 0.4441 + }, + { + "start": 21795.14, + "end": 21796.44, + "probability": 0.8473 + }, + { + "start": 21796.96, + "end": 21798.06, + "probability": 0.6563 + }, + { + "start": 21798.58, + "end": 21799.08, + "probability": 0.2266 + }, + { + "start": 21799.62, + "end": 21801.04, + "probability": 0.9238 + }, + { + "start": 21801.22, + "end": 21803.7, + "probability": 0.4662 + }, + { + "start": 21803.82, + "end": 21806.02, + "probability": 0.8841 + }, + { + "start": 21806.26, + "end": 21806.3, + "probability": 0.4291 + }, + { + "start": 21806.5, + "end": 21807.24, + "probability": 0.7889 + }, + { + "start": 21807.44, + "end": 21808.54, + "probability": 0.4846 + }, + { + "start": 21808.78, + "end": 21809.52, + "probability": 0.5663 + }, + { + "start": 21809.96, + "end": 21811.38, + "probability": 0.1544 + }, + { + "start": 21812.6, + "end": 21815.7, + "probability": 0.7189 + }, + { + "start": 21815.7, + "end": 21816.35, + "probability": 0.7734 + }, + { + "start": 21816.92, + "end": 21817.52, + "probability": 0.6694 + }, + { + "start": 21817.6, + "end": 21818.78, + "probability": 0.8928 + }, + { + "start": 21818.92, + "end": 21820.98, + "probability": 0.8837 + }, + { + "start": 21820.98, + "end": 21821.28, + "probability": 0.2429 + }, + { + "start": 21821.4, + "end": 21822.94, + "probability": 0.6045 + }, + { + "start": 21823.02, + "end": 21824.16, + "probability": 0.7323 + }, + { + "start": 21824.18, + "end": 21824.25, + "probability": 0.401 + }, + { + "start": 21824.96, + "end": 21826.06, + "probability": 0.2026 + }, + { + "start": 21826.78, + "end": 21830.5, + "probability": 0.1716 + }, + { + "start": 21830.6, + "end": 21830.76, + "probability": 0.0462 + }, + { + "start": 21830.76, + "end": 21831.64, + "probability": 0.0376 + }, + { + "start": 21832.24, + "end": 21833.94, + "probability": 0.7458 + }, + { + "start": 21834.7, + "end": 21834.94, + "probability": 0.7243 + }, + { + "start": 21835.5, + "end": 21835.86, + "probability": 0.5896 + }, + { + "start": 21835.92, + "end": 21836.62, + "probability": 0.9257 + }, + { + "start": 21836.74, + "end": 21838.26, + "probability": 0.4957 + }, + { + "start": 21838.34, + "end": 21838.74, + "probability": 0.0991 + }, + { + "start": 21838.78, + "end": 21840.54, + "probability": 0.8459 + }, + { + "start": 21841.32, + "end": 21846.48, + "probability": 0.1552 + }, + { + "start": 21846.48, + "end": 21847.88, + "probability": 0.5029 + }, + { + "start": 21851.14, + "end": 21853.32, + "probability": 0.8772 + }, + { + "start": 21853.84, + "end": 21854.2, + "probability": 0.5425 + }, + { + "start": 21854.46, + "end": 21857.26, + "probability": 0.8086 + }, + { + "start": 21857.4, + "end": 21860.52, + "probability": 0.988 + }, + { + "start": 21860.74, + "end": 21864.78, + "probability": 0.6623 + }, + { + "start": 21865.4, + "end": 21865.92, + "probability": 0.6241 + }, + { + "start": 21868.88, + "end": 21870.38, + "probability": 0.402 + }, + { + "start": 21873.27, + "end": 21875.2, + "probability": 0.8136 + }, + { + "start": 21875.3, + "end": 21877.92, + "probability": 0.98 + }, + { + "start": 21878.64, + "end": 21882.7, + "probability": 0.9912 + }, + { + "start": 21882.82, + "end": 21883.61, + "probability": 0.9005 + }, + { + "start": 21884.08, + "end": 21886.18, + "probability": 0.6156 + }, + { + "start": 21886.62, + "end": 21887.04, + "probability": 0.7028 + }, + { + "start": 21887.78, + "end": 21888.36, + "probability": 0.4745 + }, + { + "start": 21889.4, + "end": 21893.1, + "probability": 0.7371 + }, + { + "start": 21894.19, + "end": 21895.72, + "probability": 0.4621 + }, + { + "start": 21897.32, + "end": 21897.54, + "probability": 0.4848 + }, + { + "start": 21902.2, + "end": 21903.62, + "probability": 0.6984 + }, + { + "start": 21904.46, + "end": 21905.74, + "probability": 0.1451 + }, + { + "start": 21906.58, + "end": 21909.4, + "probability": 0.3479 + }, + { + "start": 21910.3, + "end": 21914.76, + "probability": 0.4722 + }, + { + "start": 21919.8, + "end": 21922.12, + "probability": 0.0689 + }, + { + "start": 21922.42, + "end": 21925.54, + "probability": 0.1646 + }, + { + "start": 21925.82, + "end": 21928.02, + "probability": 0.0776 + }, + { + "start": 21928.44, + "end": 21928.86, + "probability": 0.1026 + }, + { + "start": 21928.86, + "end": 21929.84, + "probability": 0.1044 + }, + { + "start": 21932.41, + "end": 21933.82, + "probability": 0.1284 + }, + { + "start": 22023.0, + "end": 22023.0, + "probability": 0.0 + }, + { + "start": 22023.0, + "end": 22023.0, + "probability": 0.0 + }, + { + "start": 22023.0, + "end": 22023.0, + "probability": 0.0 + }, + { + "start": 22023.0, + "end": 22023.0, + "probability": 0.0 + }, + { + "start": 22023.0, + "end": 22023.0, + "probability": 0.0 + }, + { + "start": 22023.0, + "end": 22023.0, + "probability": 0.0 + }, + { + "start": 22023.0, + "end": 22023.0, + "probability": 0.0 + }, + { + "start": 22023.0, + "end": 22023.0, + "probability": 0.0 + }, + { + "start": 22023.0, + "end": 22023.0, + "probability": 0.0 + }, + { + "start": 22023.0, + "end": 22023.0, + "probability": 0.0 + }, + { + "start": 22023.0, + "end": 22023.0, + "probability": 0.0 + }, + { + "start": 22023.54, + "end": 22023.64, + "probability": 0.0052 + }, + { + "start": 22024.34, + "end": 22026.82, + "probability": 0.0233 + }, + { + "start": 22028.9, + "end": 22030.7, + "probability": 0.1702 + }, + { + "start": 22033.94, + "end": 22034.8, + "probability": 0.0195 + }, + { + "start": 22040.5, + "end": 22042.26, + "probability": 0.1109 + }, + { + "start": 22043.41, + "end": 22044.74, + "probability": 0.103 + }, + { + "start": 22045.03, + "end": 22046.52, + "probability": 0.3546 + }, + { + "start": 22049.38, + "end": 22050.08, + "probability": 0.1954 + }, + { + "start": 22050.82, + "end": 22050.84, + "probability": 0.0214 + }, + { + "start": 22052.76, + "end": 22056.76, + "probability": 0.1029 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.0, + "end": 22145.0, + "probability": 0.0 + }, + { + "start": 22145.1, + "end": 22145.54, + "probability": 0.0346 + }, + { + "start": 22145.54, + "end": 22147.52, + "probability": 0.5159 + }, + { + "start": 22147.6, + "end": 22147.6, + "probability": 0.2318 + }, + { + "start": 22147.6, + "end": 22147.6, + "probability": 0.0783 + }, + { + "start": 22147.6, + "end": 22148.66, + "probability": 0.6057 + }, + { + "start": 22148.78, + "end": 22149.96, + "probability": 0.8755 + }, + { + "start": 22150.3, + "end": 22152.14, + "probability": 0.5573 + }, + { + "start": 22152.38, + "end": 22155.78, + "probability": 0.8909 + }, + { + "start": 22155.9, + "end": 22157.5, + "probability": 0.9472 + }, + { + "start": 22157.94, + "end": 22161.46, + "probability": 0.9288 + }, + { + "start": 22162.1, + "end": 22162.86, + "probability": 0.3774 + }, + { + "start": 22162.92, + "end": 22164.52, + "probability": 0.8329 + }, + { + "start": 22164.52, + "end": 22165.16, + "probability": 0.1176 + }, + { + "start": 22165.69, + "end": 22167.38, + "probability": 0.1421 + }, + { + "start": 22167.38, + "end": 22170.22, + "probability": 0.1879 + }, + { + "start": 22170.22, + "end": 22170.5, + "probability": 0.337 + }, + { + "start": 22170.5, + "end": 22171.02, + "probability": 0.1591 + }, + { + "start": 22172.1, + "end": 22173.5, + "probability": 0.9792 + }, + { + "start": 22173.76, + "end": 22175.4, + "probability": 0.2462 + }, + { + "start": 22175.4, + "end": 22176.44, + "probability": 0.2275 + }, + { + "start": 22176.44, + "end": 22178.3, + "probability": 0.824 + }, + { + "start": 22178.82, + "end": 22180.34, + "probability": 0.7725 + }, + { + "start": 22180.42, + "end": 22181.88, + "probability": 0.8589 + }, + { + "start": 22182.68, + "end": 22183.84, + "probability": 0.9339 + }, + { + "start": 22184.1, + "end": 22184.66, + "probability": 0.4467 + }, + { + "start": 22184.72, + "end": 22185.6, + "probability": 0.5093 + }, + { + "start": 22186.18, + "end": 22188.18, + "probability": 0.9507 + }, + { + "start": 22188.24, + "end": 22188.68, + "probability": 0.5137 + }, + { + "start": 22188.76, + "end": 22189.34, + "probability": 0.6569 + }, + { + "start": 22190.6, + "end": 22192.66, + "probability": 0.8142 + }, + { + "start": 22192.84, + "end": 22195.56, + "probability": 0.9393 + }, + { + "start": 22196.42, + "end": 22198.56, + "probability": 0.8948 + }, + { + "start": 22199.1, + "end": 22200.62, + "probability": 0.9715 + }, + { + "start": 22201.28, + "end": 22205.2, + "probability": 0.9974 + }, + { + "start": 22205.36, + "end": 22206.14, + "probability": 0.9316 + }, + { + "start": 22206.3, + "end": 22206.65, + "probability": 0.3199 + }, + { + "start": 22208.44, + "end": 22210.22, + "probability": 0.9243 + }, + { + "start": 22211.1, + "end": 22212.82, + "probability": 0.8726 + }, + { + "start": 22212.84, + "end": 22214.86, + "probability": 0.4675 + }, + { + "start": 22214.94, + "end": 22215.76, + "probability": 0.1981 + }, + { + "start": 22215.92, + "end": 22216.66, + "probability": 0.8605 + }, + { + "start": 22216.78, + "end": 22218.38, + "probability": 0.5104 + }, + { + "start": 22219.22, + "end": 22220.92, + "probability": 0.6189 + }, + { + "start": 22221.06, + "end": 22221.12, + "probability": 0.1128 + }, + { + "start": 22221.12, + "end": 22221.12, + "probability": 0.6226 + }, + { + "start": 22221.12, + "end": 22221.92, + "probability": 0.4456 + }, + { + "start": 22222.3, + "end": 22224.84, + "probability": 0.3623 + }, + { + "start": 22224.96, + "end": 22225.0, + "probability": 0.0929 + }, + { + "start": 22225.0, + "end": 22225.26, + "probability": 0.0256 + }, + { + "start": 22225.53, + "end": 22226.32, + "probability": 0.3326 + }, + { + "start": 22226.32, + "end": 22227.58, + "probability": 0.2648 + }, + { + "start": 22227.62, + "end": 22229.84, + "probability": 0.4065 + }, + { + "start": 22229.92, + "end": 22229.92, + "probability": 0.0962 + }, + { + "start": 22229.92, + "end": 22233.08, + "probability": 0.7766 + }, + { + "start": 22233.36, + "end": 22234.44, + "probability": 0.9668 + }, + { + "start": 22235.04, + "end": 22235.22, + "probability": 0.1602 + }, + { + "start": 22235.22, + "end": 22236.14, + "probability": 0.1209 + }, + { + "start": 22236.36, + "end": 22237.36, + "probability": 0.5386 + }, + { + "start": 22237.4, + "end": 22240.72, + "probability": 0.2208 + }, + { + "start": 22242.14, + "end": 22243.6, + "probability": 0.4993 + }, + { + "start": 22243.7, + "end": 22244.86, + "probability": 0.7905 + }, + { + "start": 22244.96, + "end": 22244.96, + "probability": 0.4241 + }, + { + "start": 22244.96, + "end": 22247.04, + "probability": 0.9813 + }, + { + "start": 22247.36, + "end": 22247.72, + "probability": 0.7495 + }, + { + "start": 22247.82, + "end": 22248.76, + "probability": 0.9106 + }, + { + "start": 22248.82, + "end": 22249.48, + "probability": 0.8221 + }, + { + "start": 22249.6, + "end": 22251.9, + "probability": 0.697 + }, + { + "start": 22252.6, + "end": 22255.12, + "probability": 0.9861 + }, + { + "start": 22255.18, + "end": 22257.58, + "probability": 0.9946 + }, + { + "start": 22258.28, + "end": 22260.51, + "probability": 0.8371 + }, + { + "start": 22261.08, + "end": 22264.72, + "probability": 0.8289 + }, + { + "start": 22265.22, + "end": 22266.22, + "probability": 0.4998 + }, + { + "start": 22268.26, + "end": 22269.16, + "probability": 0.8005 + }, + { + "start": 22269.18, + "end": 22270.03, + "probability": 0.669 + }, + { + "start": 22270.62, + "end": 22272.04, + "probability": 0.885 + }, + { + "start": 22272.54, + "end": 22273.34, + "probability": 0.5554 + }, + { + "start": 22274.18, + "end": 22279.22, + "probability": 0.9914 + }, + { + "start": 22279.56, + "end": 22280.28, + "probability": 0.4639 + }, + { + "start": 22280.68, + "end": 22280.78, + "probability": 0.1308 + }, + { + "start": 22281.7, + "end": 22281.82, + "probability": 0.7137 + }, + { + "start": 22282.0, + "end": 22286.3, + "probability": 0.9427 + }, + { + "start": 22286.8, + "end": 22287.94, + "probability": 0.1325 + }, + { + "start": 22287.94, + "end": 22288.32, + "probability": 0.3494 + }, + { + "start": 22288.6, + "end": 22289.94, + "probability": 0.837 + }, + { + "start": 22290.06, + "end": 22290.52, + "probability": 0.7036 + }, + { + "start": 22290.68, + "end": 22292.46, + "probability": 0.9563 + }, + { + "start": 22292.5, + "end": 22294.32, + "probability": 0.342 + }, + { + "start": 22295.06, + "end": 22295.42, + "probability": 0.0292 + }, + { + "start": 22295.42, + "end": 22298.28, + "probability": 0.7282 + }, + { + "start": 22298.68, + "end": 22300.96, + "probability": 0.9048 + }, + { + "start": 22302.4, + "end": 22303.98, + "probability": 0.3139 + }, + { + "start": 22303.98, + "end": 22306.04, + "probability": 0.511 + }, + { + "start": 22306.1, + "end": 22307.42, + "probability": 0.1001 + }, + { + "start": 22307.42, + "end": 22308.7, + "probability": 0.4654 + }, + { + "start": 22308.76, + "end": 22310.6, + "probability": 0.8796 + }, + { + "start": 22311.06, + "end": 22312.22, + "probability": 0.9421 + }, + { + "start": 22312.6, + "end": 22314.07, + "probability": 0.9478 + }, + { + "start": 22314.74, + "end": 22315.62, + "probability": 0.7981 + }, + { + "start": 22315.86, + "end": 22319.76, + "probability": 0.9952 + }, + { + "start": 22320.2, + "end": 22321.32, + "probability": 0.9832 + }, + { + "start": 22321.94, + "end": 22321.94, + "probability": 0.2036 + }, + { + "start": 22321.94, + "end": 22322.78, + "probability": 0.6315 + }, + { + "start": 22322.9, + "end": 22324.28, + "probability": 0.9641 + }, + { + "start": 22324.64, + "end": 22328.1, + "probability": 0.9771 + }, + { + "start": 22328.94, + "end": 22330.5, + "probability": 0.7616 + }, + { + "start": 22330.98, + "end": 22334.94, + "probability": 0.9047 + }, + { + "start": 22335.56, + "end": 22340.5, + "probability": 0.99 + }, + { + "start": 22340.54, + "end": 22341.06, + "probability": 0.6043 + }, + { + "start": 22341.2, + "end": 22342.44, + "probability": 0.5472 + }, + { + "start": 22342.5, + "end": 22345.08, + "probability": 0.558 + }, + { + "start": 22345.66, + "end": 22347.41, + "probability": 0.1066 + }, + { + "start": 22349.02, + "end": 22350.62, + "probability": 0.958 + }, + { + "start": 22350.88, + "end": 22353.76, + "probability": 0.9861 + }, + { + "start": 22354.34, + "end": 22355.36, + "probability": 0.9951 + }, + { + "start": 22356.1, + "end": 22357.28, + "probability": 0.999 + }, + { + "start": 22357.86, + "end": 22360.88, + "probability": 0.9799 + }, + { + "start": 22361.46, + "end": 22362.4, + "probability": 0.9128 + }, + { + "start": 22362.76, + "end": 22364.52, + "probability": 0.9988 + }, + { + "start": 22364.94, + "end": 22366.4, + "probability": 0.695 + }, + { + "start": 22366.8, + "end": 22367.8, + "probability": 0.6951 + }, + { + "start": 22368.1, + "end": 22369.48, + "probability": 0.9482 + }, + { + "start": 22370.14, + "end": 22371.62, + "probability": 0.7244 + }, + { + "start": 22371.76, + "end": 22372.58, + "probability": 0.0958 + }, + { + "start": 22373.26, + "end": 22373.78, + "probability": 0.0633 + }, + { + "start": 22373.78, + "end": 22374.95, + "probability": 0.3575 + }, + { + "start": 22375.62, + "end": 22379.4, + "probability": 0.5945 + }, + { + "start": 22381.16, + "end": 22381.68, + "probability": 0.5555 + }, + { + "start": 22382.44, + "end": 22383.42, + "probability": 0.2364 + }, + { + "start": 22383.42, + "end": 22383.42, + "probability": 0.3941 + }, + { + "start": 22383.42, + "end": 22385.06, + "probability": 0.4632 + }, + { + "start": 22385.8, + "end": 22385.8, + "probability": 0.0773 + }, + { + "start": 22385.8, + "end": 22387.6, + "probability": 0.7345 + }, + { + "start": 22387.72, + "end": 22388.34, + "probability": 0.9386 + }, + { + "start": 22388.64, + "end": 22389.53, + "probability": 0.866 + }, + { + "start": 22389.72, + "end": 22391.03, + "probability": 0.6111 + }, + { + "start": 22392.36, + "end": 22392.92, + "probability": 0.9448 + }, + { + "start": 22393.0, + "end": 22393.02, + "probability": 0.2312 + }, + { + "start": 22393.02, + "end": 22393.02, + "probability": 0.2538 + }, + { + "start": 22393.12, + "end": 22395.98, + "probability": 0.3385 + }, + { + "start": 22396.42, + "end": 22397.52, + "probability": 0.4237 + }, + { + "start": 22398.66, + "end": 22400.6, + "probability": 0.2009 + }, + { + "start": 22401.6, + "end": 22402.26, + "probability": 0.5405 + }, + { + "start": 22402.34, + "end": 22405.28, + "probability": 0.9729 + }, + { + "start": 22405.6, + "end": 22410.52, + "probability": 0.0429 + }, + { + "start": 22410.74, + "end": 22410.74, + "probability": 0.0765 + }, + { + "start": 22410.74, + "end": 22410.74, + "probability": 0.0303 + }, + { + "start": 22410.74, + "end": 22411.14, + "probability": 0.1244 + }, + { + "start": 22413.42, + "end": 22414.06, + "probability": 0.0482 + }, + { + "start": 22414.06, + "end": 22414.14, + "probability": 0.128 + }, + { + "start": 22415.18, + "end": 22416.62, + "probability": 0.23 + }, + { + "start": 22417.92, + "end": 22421.16, + "probability": 0.7651 + }, + { + "start": 22421.64, + "end": 22422.3, + "probability": 0.6646 + }, + { + "start": 22423.7, + "end": 22425.32, + "probability": 0.8539 + }, + { + "start": 22426.26, + "end": 22428.94, + "probability": 0.9982 + }, + { + "start": 22429.76, + "end": 22432.9, + "probability": 0.5084 + }, + { + "start": 22434.2, + "end": 22435.54, + "probability": 0.8932 + }, + { + "start": 22436.12, + "end": 22437.34, + "probability": 0.843 + }, + { + "start": 22437.92, + "end": 22439.9, + "probability": 0.9682 + }, + { + "start": 22441.52, + "end": 22443.8, + "probability": 0.6615 + }, + { + "start": 22444.78, + "end": 22447.14, + "probability": 0.9814 + }, + { + "start": 22447.76, + "end": 22449.04, + "probability": 0.9974 + }, + { + "start": 22449.78, + "end": 22450.86, + "probability": 0.5258 + }, + { + "start": 22452.28, + "end": 22456.32, + "probability": 0.7565 + }, + { + "start": 22457.12, + "end": 22457.98, + "probability": 0.9423 + }, + { + "start": 22459.02, + "end": 22459.02, + "probability": 0.3562 + }, + { + "start": 22459.06, + "end": 22461.9, + "probability": 0.2531 + }, + { + "start": 22462.14, + "end": 22463.22, + "probability": 0.1008 + }, + { + "start": 22463.26, + "end": 22464.24, + "probability": 0.8708 + }, + { + "start": 22464.3, + "end": 22467.6, + "probability": 0.9901 + }, + { + "start": 22468.18, + "end": 22469.53, + "probability": 0.771 + }, + { + "start": 22469.7, + "end": 22470.0, + "probability": 0.4945 + }, + { + "start": 22470.28, + "end": 22474.08, + "probability": 0.988 + }, + { + "start": 22474.16, + "end": 22475.33, + "probability": 0.5711 + }, + { + "start": 22477.22, + "end": 22477.78, + "probability": 0.5032 + }, + { + "start": 22477.98, + "end": 22481.4, + "probability": 0.9963 + }, + { + "start": 22481.94, + "end": 22482.6, + "probability": 0.4551 + }, + { + "start": 22482.68, + "end": 22483.34, + "probability": 0.4278 + }, + { + "start": 22484.0, + "end": 22485.46, + "probability": 0.542 + }, + { + "start": 22485.54, + "end": 22486.52, + "probability": 0.7983 + }, + { + "start": 22487.34, + "end": 22488.43, + "probability": 0.9895 + }, + { + "start": 22489.06, + "end": 22490.56, + "probability": 0.9551 + }, + { + "start": 22491.47, + "end": 22497.2, + "probability": 0.8806 + }, + { + "start": 22497.96, + "end": 22498.26, + "probability": 0.161 + }, + { + "start": 22498.52, + "end": 22500.64, + "probability": 0.9778 + }, + { + "start": 22501.5, + "end": 22501.84, + "probability": 0.9076 + }, + { + "start": 22502.02, + "end": 22502.78, + "probability": 0.8309 + }, + { + "start": 22502.86, + "end": 22505.3, + "probability": 0.9006 + }, + { + "start": 22505.92, + "end": 22508.88, + "probability": 0.9951 + }, + { + "start": 22509.18, + "end": 22509.54, + "probability": 0.7974 + }, + { + "start": 22509.98, + "end": 22511.3, + "probability": 0.3309 + }, + { + "start": 22511.37, + "end": 22514.3, + "probability": 0.8421 + }, + { + "start": 22514.38, + "end": 22515.8, + "probability": 0.9204 + }, + { + "start": 22516.36, + "end": 22517.48, + "probability": 0.7112 + }, + { + "start": 22517.72, + "end": 22518.74, + "probability": 0.9641 + }, + { + "start": 22519.16, + "end": 22520.84, + "probability": 0.962 + }, + { + "start": 22522.26, + "end": 22523.78, + "probability": 0.9531 + }, + { + "start": 22523.78, + "end": 22526.88, + "probability": 0.988 + }, + { + "start": 22527.52, + "end": 22529.64, + "probability": 0.9224 + }, + { + "start": 22529.84, + "end": 22530.44, + "probability": 0.9976 + }, + { + "start": 22530.9, + "end": 22531.56, + "probability": 0.9932 + }, + { + "start": 22531.64, + "end": 22532.18, + "probability": 0.7888 + }, + { + "start": 22533.44, + "end": 22533.56, + "probability": 0.1392 + }, + { + "start": 22533.56, + "end": 22533.98, + "probability": 0.0524 + }, + { + "start": 22534.02, + "end": 22536.78, + "probability": 0.8667 + }, + { + "start": 22537.1, + "end": 22538.06, + "probability": 0.6934 + }, + { + "start": 22539.44, + "end": 22539.44, + "probability": 0.0163 + }, + { + "start": 22539.44, + "end": 22542.46, + "probability": 0.9658 + }, + { + "start": 22542.62, + "end": 22545.54, + "probability": 0.9266 + }, + { + "start": 22547.8, + "end": 22549.52, + "probability": 0.8009 + }, + { + "start": 22549.52, + "end": 22550.3, + "probability": 0.4413 + }, + { + "start": 22550.32, + "end": 22550.34, + "probability": 0.1784 + }, + { + "start": 22550.34, + "end": 22550.9, + "probability": 0.6234 + }, + { + "start": 22552.06, + "end": 22553.44, + "probability": 0.5447 + }, + { + "start": 22553.44, + "end": 22555.34, + "probability": 0.0532 + }, + { + "start": 22555.34, + "end": 22557.08, + "probability": 0.7442 + }, + { + "start": 22558.07, + "end": 22559.8, + "probability": 0.6428 + }, + { + "start": 22560.76, + "end": 22561.84, + "probability": 0.5742 + }, + { + "start": 22562.68, + "end": 22563.82, + "probability": 0.5986 + }, + { + "start": 22564.42, + "end": 22565.92, + "probability": 0.5886 + }, + { + "start": 22566.44, + "end": 22568.02, + "probability": 0.8712 + }, + { + "start": 22568.5, + "end": 22573.1, + "probability": 0.9822 + }, + { + "start": 22573.1, + "end": 22578.98, + "probability": 0.9856 + }, + { + "start": 22579.62, + "end": 22581.28, + "probability": 0.6454 + }, + { + "start": 22581.46, + "end": 22586.12, + "probability": 0.937 + }, + { + "start": 22587.3, + "end": 22587.79, + "probability": 0.5902 + }, + { + "start": 22588.56, + "end": 22590.34, + "probability": 0.8507 + }, + { + "start": 22590.36, + "end": 22591.22, + "probability": 0.5029 + }, + { + "start": 22591.46, + "end": 22592.34, + "probability": 0.7607 + }, + { + "start": 22592.46, + "end": 22593.1, + "probability": 0.6958 + }, + { + "start": 22593.54, + "end": 22594.04, + "probability": 0.1671 + }, + { + "start": 22594.48, + "end": 22595.11, + "probability": 0.0955 + }, + { + "start": 22596.16, + "end": 22597.22, + "probability": 0.59 + }, + { + "start": 22597.44, + "end": 22598.0, + "probability": 0.9642 + }, + { + "start": 22598.7, + "end": 22601.69, + "probability": 0.9969 + }, + { + "start": 22602.08, + "end": 22602.74, + "probability": 0.3391 + }, + { + "start": 22602.78, + "end": 22604.54, + "probability": 0.9286 + }, + { + "start": 22605.14, + "end": 22608.57, + "probability": 0.987 + }, + { + "start": 22609.32, + "end": 22611.34, + "probability": 0.7803 + }, + { + "start": 22611.9, + "end": 22613.4, + "probability": 0.8175 + }, + { + "start": 22614.02, + "end": 22615.1, + "probability": 0.9637 + }, + { + "start": 22615.58, + "end": 22619.22, + "probability": 0.9952 + }, + { + "start": 22619.62, + "end": 22622.31, + "probability": 0.9889 + }, + { + "start": 22622.8, + "end": 22624.54, + "probability": 0.6939 + }, + { + "start": 22624.98, + "end": 22627.58, + "probability": 0.9752 + }, + { + "start": 22628.22, + "end": 22630.32, + "probability": 0.9912 + }, + { + "start": 22630.9, + "end": 22632.78, + "probability": 0.8383 + }, + { + "start": 22632.84, + "end": 22634.31, + "probability": 0.9854 + }, + { + "start": 22635.2, + "end": 22636.78, + "probability": 0.998 + }, + { + "start": 22637.22, + "end": 22638.02, + "probability": 0.7471 + }, + { + "start": 22638.14, + "end": 22638.64, + "probability": 0.5673 + }, + { + "start": 22639.34, + "end": 22640.48, + "probability": 0.9614 + }, + { + "start": 22641.32, + "end": 22642.4, + "probability": 0.9115 + }, + { + "start": 22642.56, + "end": 22643.16, + "probability": 0.4973 + }, + { + "start": 22643.72, + "end": 22643.72, + "probability": 0.562 + }, + { + "start": 22643.74, + "end": 22645.02, + "probability": 0.4644 + }, + { + "start": 22645.8, + "end": 22647.6, + "probability": 0.3838 + }, + { + "start": 22647.92, + "end": 22649.9, + "probability": 0.9856 + }, + { + "start": 22650.48, + "end": 22652.82, + "probability": 0.5549 + }, + { + "start": 22653.02, + "end": 22655.44, + "probability": 0.5009 + }, + { + "start": 22655.96, + "end": 22657.64, + "probability": 0.5723 + }, + { + "start": 22658.42, + "end": 22662.06, + "probability": 0.741 + }, + { + "start": 22662.78, + "end": 22663.2, + "probability": 0.7427 + }, + { + "start": 22663.32, + "end": 22664.24, + "probability": 0.4973 + }, + { + "start": 22665.7, + "end": 22668.84, + "probability": 0.9447 + }, + { + "start": 22669.52, + "end": 22671.02, + "probability": 0.9511 + }, + { + "start": 22671.22, + "end": 22674.42, + "probability": 0.9816 + }, + { + "start": 22674.9, + "end": 22676.1, + "probability": 0.8735 + }, + { + "start": 22676.2, + "end": 22676.6, + "probability": 0.3852 + }, + { + "start": 22677.12, + "end": 22679.82, + "probability": 0.9607 + }, + { + "start": 22680.18, + "end": 22683.14, + "probability": 0.9882 + }, + { + "start": 22683.46, + "end": 22684.08, + "probability": 0.7141 + }, + { + "start": 22684.42, + "end": 22686.12, + "probability": 0.9724 + }, + { + "start": 22686.46, + "end": 22687.84, + "probability": 0.9984 + }, + { + "start": 22688.26, + "end": 22689.0, + "probability": 0.4498 + }, + { + "start": 22689.52, + "end": 22691.44, + "probability": 0.6226 + }, + { + "start": 22692.04, + "end": 22693.5, + "probability": 0.995 + }, + { + "start": 22693.88, + "end": 22695.94, + "probability": 0.991 + }, + { + "start": 22696.4, + "end": 22697.06, + "probability": 0.4724 + }, + { + "start": 22697.64, + "end": 22698.78, + "probability": 0.5281 + }, + { + "start": 22700.24, + "end": 22701.12, + "probability": 0.3655 + }, + { + "start": 22701.48, + "end": 22701.84, + "probability": 0.746 + }, + { + "start": 22701.84, + "end": 22703.0, + "probability": 0.5215 + }, + { + "start": 22703.1, + "end": 22706.65, + "probability": 0.715 + }, + { + "start": 22706.88, + "end": 22707.94, + "probability": 0.9616 + }, + { + "start": 22708.76, + "end": 22711.06, + "probability": 0.9446 + }, + { + "start": 22711.72, + "end": 22712.14, + "probability": 0.7497 + }, + { + "start": 22713.16, + "end": 22714.26, + "probability": 0.6596 + }, + { + "start": 22714.56, + "end": 22717.48, + "probability": 0.8043 + }, + { + "start": 22718.16, + "end": 22720.04, + "probability": 0.5549 + }, + { + "start": 22720.38, + "end": 22720.54, + "probability": 0.7289 + }, + { + "start": 22720.74, + "end": 22721.58, + "probability": 0.6445 + }, + { + "start": 22722.62, + "end": 22726.02, + "probability": 0.9943 + }, + { + "start": 22726.96, + "end": 22728.26, + "probability": 0.382 + }, + { + "start": 22728.84, + "end": 22729.91, + "probability": 0.9907 + }, + { + "start": 22730.96, + "end": 22732.48, + "probability": 0.9001 + }, + { + "start": 22732.48, + "end": 22734.8, + "probability": 0.8976 + }, + { + "start": 22734.98, + "end": 22736.56, + "probability": 0.8123 + }, + { + "start": 22737.04, + "end": 22738.0, + "probability": 0.8577 + }, + { + "start": 22738.64, + "end": 22739.2, + "probability": 0.6032 + }, + { + "start": 22740.26, + "end": 22741.02, + "probability": 0.9589 + }, + { + "start": 22741.64, + "end": 22743.26, + "probability": 0.8246 + }, + { + "start": 22743.52, + "end": 22745.0, + "probability": 0.8514 + }, + { + "start": 22745.42, + "end": 22746.42, + "probability": 0.9658 + }, + { + "start": 22747.22, + "end": 22748.68, + "probability": 0.958 + }, + { + "start": 22750.31, + "end": 22752.62, + "probability": 0.8938 + }, + { + "start": 22753.86, + "end": 22757.2, + "probability": 0.673 + }, + { + "start": 22758.38, + "end": 22759.48, + "probability": 0.8659 + }, + { + "start": 22760.02, + "end": 22762.3, + "probability": 0.8943 + }, + { + "start": 22763.06, + "end": 22763.06, + "probability": 0.049 + }, + { + "start": 22763.06, + "end": 22764.72, + "probability": 0.96 + }, + { + "start": 22765.02, + "end": 22765.7, + "probability": 0.5958 + }, + { + "start": 22766.24, + "end": 22767.24, + "probability": 0.9263 + }, + { + "start": 22768.02, + "end": 22769.82, + "probability": 0.9507 + }, + { + "start": 22770.48, + "end": 22774.04, + "probability": 0.9941 + }, + { + "start": 22774.04, + "end": 22776.72, + "probability": 0.9785 + }, + { + "start": 22777.2, + "end": 22780.5, + "probability": 0.9978 + }, + { + "start": 22780.5, + "end": 22785.08, + "probability": 0.9757 + }, + { + "start": 22785.7, + "end": 22786.58, + "probability": 0.8973 + }, + { + "start": 22786.68, + "end": 22787.77, + "probability": 0.9945 + }, + { + "start": 22788.66, + "end": 22788.66, + "probability": 0.4253 + }, + { + "start": 22788.66, + "end": 22789.5, + "probability": 0.6767 + }, + { + "start": 22790.6, + "end": 22792.36, + "probability": 0.756 + }, + { + "start": 22792.46, + "end": 22792.48, + "probability": 0.1287 + }, + { + "start": 22792.48, + "end": 22792.85, + "probability": 0.7251 + }, + { + "start": 22793.41, + "end": 22795.94, + "probability": 0.7917 + }, + { + "start": 22796.56, + "end": 22799.22, + "probability": 0.9675 + }, + { + "start": 22799.26, + "end": 22801.9, + "probability": 0.9879 + }, + { + "start": 22802.52, + "end": 22804.14, + "probability": 0.903 + }, + { + "start": 22806.39, + "end": 22807.66, + "probability": 0.7356 + }, + { + "start": 22808.04, + "end": 22810.24, + "probability": 0.998 + }, + { + "start": 22810.52, + "end": 22813.0, + "probability": 0.8888 + }, + { + "start": 22813.68, + "end": 22815.47, + "probability": 0.9985 + }, + { + "start": 22815.9, + "end": 22819.3, + "probability": 0.7365 + }, + { + "start": 22819.72, + "end": 22820.7, + "probability": 0.8027 + }, + { + "start": 22821.0, + "end": 22822.88, + "probability": 0.8889 + }, + { + "start": 22823.32, + "end": 22824.36, + "probability": 0.7266 + }, + { + "start": 22824.72, + "end": 22825.26, + "probability": 0.9305 + }, + { + "start": 22825.5, + "end": 22826.98, + "probability": 0.9432 + }, + { + "start": 22827.08, + "end": 22829.28, + "probability": 0.9052 + }, + { + "start": 22829.98, + "end": 22831.56, + "probability": 0.7952 + }, + { + "start": 22832.71, + "end": 22833.06, + "probability": 0.7852 + }, + { + "start": 22833.36, + "end": 22834.8, + "probability": 0.9174 + }, + { + "start": 22835.26, + "end": 22839.9, + "probability": 0.8438 + }, + { + "start": 22839.96, + "end": 22841.7, + "probability": 0.9545 + }, + { + "start": 22842.62, + "end": 22843.34, + "probability": 0.5586 + }, + { + "start": 22843.5, + "end": 22845.94, + "probability": 0.8848 + }, + { + "start": 22846.44, + "end": 22847.88, + "probability": 0.9539 + }, + { + "start": 22848.22, + "end": 22849.32, + "probability": 0.924 + }, + { + "start": 22849.8, + "end": 22852.28, + "probability": 0.9166 + }, + { + "start": 22853.22, + "end": 22855.28, + "probability": 0.8629 + }, + { + "start": 22856.34, + "end": 22859.98, + "probability": 0.9378 + }, + { + "start": 22860.84, + "end": 22862.86, + "probability": 0.7857 + }, + { + "start": 22863.9, + "end": 22868.18, + "probability": 0.9961 + }, + { + "start": 22868.24, + "end": 22871.64, + "probability": 0.9989 + }, + { + "start": 22871.76, + "end": 22873.68, + "probability": 0.6099 + }, + { + "start": 22875.4, + "end": 22876.6, + "probability": 0.3902 + }, + { + "start": 22876.68, + "end": 22878.74, + "probability": 0.8639 + }, + { + "start": 22879.5, + "end": 22881.0, + "probability": 0.6879 + }, + { + "start": 22898.68, + "end": 22898.97, + "probability": 0.1557 + }, + { + "start": 22909.06, + "end": 22911.04, + "probability": 0.602 + }, + { + "start": 22912.52, + "end": 22913.64, + "probability": 0.775 + }, + { + "start": 22915.38, + "end": 22917.24, + "probability": 0.9915 + }, + { + "start": 22918.98, + "end": 22921.96, + "probability": 0.8823 + }, + { + "start": 22922.88, + "end": 22923.7, + "probability": 0.9666 + }, + { + "start": 22923.78, + "end": 22926.3, + "probability": 0.9977 + }, + { + "start": 22927.06, + "end": 22927.26, + "probability": 0.4976 + }, + { + "start": 22928.3, + "end": 22930.62, + "probability": 0.941 + }, + { + "start": 22931.22, + "end": 22931.88, + "probability": 0.7007 + }, + { + "start": 22932.76, + "end": 22934.68, + "probability": 0.9006 + }, + { + "start": 22934.82, + "end": 22936.24, + "probability": 0.5897 + }, + { + "start": 22936.7, + "end": 22938.4, + "probability": 0.6398 + }, + { + "start": 22939.1, + "end": 22940.86, + "probability": 0.9928 + }, + { + "start": 22940.9, + "end": 22942.74, + "probability": 0.8729 + }, + { + "start": 22943.4, + "end": 22944.26, + "probability": 0.9935 + }, + { + "start": 22945.3, + "end": 22947.5, + "probability": 0.9746 + }, + { + "start": 22947.92, + "end": 22948.74, + "probability": 0.6303 + }, + { + "start": 22949.44, + "end": 22950.92, + "probability": 0.5956 + }, + { + "start": 22952.6, + "end": 22955.4, + "probability": 0.7819 + }, + { + "start": 22956.32, + "end": 22958.64, + "probability": 0.437 + }, + { + "start": 22959.5, + "end": 22962.74, + "probability": 0.0488 + }, + { + "start": 22963.22, + "end": 22964.36, + "probability": 0.1675 + }, + { + "start": 22968.04, + "end": 22970.54, + "probability": 0.2904 + }, + { + "start": 22971.06, + "end": 22971.06, + "probability": 0.1237 + }, + { + "start": 22971.06, + "end": 22971.42, + "probability": 0.2207 + }, + { + "start": 22971.42, + "end": 22975.66, + "probability": 0.4348 + }, + { + "start": 22976.18, + "end": 22977.44, + "probability": 0.3496 + }, + { + "start": 22982.52, + "end": 22983.64, + "probability": 0.6459 + }, + { + "start": 22984.46, + "end": 22986.14, + "probability": 0.9938 + }, + { + "start": 22986.34, + "end": 22987.24, + "probability": 0.9961 + }, + { + "start": 22988.02, + "end": 22991.04, + "probability": 0.8758 + }, + { + "start": 22991.1, + "end": 22997.1, + "probability": 0.9706 + }, + { + "start": 22997.52, + "end": 22999.64, + "probability": 0.6857 + }, + { + "start": 23000.14, + "end": 23001.58, + "probability": 0.8455 + }, + { + "start": 23001.94, + "end": 23003.6, + "probability": 0.9949 + }, + { + "start": 23004.42, + "end": 23006.66, + "probability": 0.9658 + }, + { + "start": 23006.8, + "end": 23008.8, + "probability": 0.8667 + }, + { + "start": 23009.54, + "end": 23010.22, + "probability": 0.9535 + }, + { + "start": 23011.68, + "end": 23012.8, + "probability": 0.8085 + }, + { + "start": 23012.84, + "end": 23014.84, + "probability": 0.8301 + }, + { + "start": 23014.9, + "end": 23020.58, + "probability": 0.5655 + }, + { + "start": 23021.26, + "end": 23021.92, + "probability": 0.5487 + }, + { + "start": 23022.22, + "end": 23022.98, + "probability": 0.9667 + }, + { + "start": 23023.06, + "end": 23024.26, + "probability": 0.7935 + }, + { + "start": 23024.4, + "end": 23025.56, + "probability": 0.9772 + }, + { + "start": 23026.22, + "end": 23027.9, + "probability": 0.9815 + }, + { + "start": 23028.44, + "end": 23029.82, + "probability": 0.701 + }, + { + "start": 23030.64, + "end": 23031.15, + "probability": 0.7002 + }, + { + "start": 23032.38, + "end": 23035.7, + "probability": 0.9327 + }, + { + "start": 23037.24, + "end": 23039.34, + "probability": 0.8609 + }, + { + "start": 23040.56, + "end": 23042.18, + "probability": 0.8788 + }, + { + "start": 23042.72, + "end": 23043.32, + "probability": 0.9239 + }, + { + "start": 23043.36, + "end": 23046.02, + "probability": 0.8339 + }, + { + "start": 23046.12, + "end": 23046.47, + "probability": 0.7992 + }, + { + "start": 23047.84, + "end": 23049.94, + "probability": 0.9901 + }, + { + "start": 23050.48, + "end": 23052.84, + "probability": 0.9683 + }, + { + "start": 23053.54, + "end": 23055.0, + "probability": 0.4935 + }, + { + "start": 23056.42, + "end": 23058.64, + "probability": 0.2448 + }, + { + "start": 23058.84, + "end": 23060.8, + "probability": 0.5112 + }, + { + "start": 23062.04, + "end": 23062.56, + "probability": 0.8098 + }, + { + "start": 23063.32, + "end": 23065.85, + "probability": 0.6456 + }, + { + "start": 23065.98, + "end": 23067.74, + "probability": 0.5739 + }, + { + "start": 23068.2, + "end": 23068.91, + "probability": 0.6643 + }, + { + "start": 23069.04, + "end": 23070.9, + "probability": 0.9556 + }, + { + "start": 23071.02, + "end": 23073.82, + "probability": 0.9172 + }, + { + "start": 23074.98, + "end": 23077.66, + "probability": 0.9124 + }, + { + "start": 23077.74, + "end": 23078.02, + "probability": 0.215 + }, + { + "start": 23078.08, + "end": 23082.08, + "probability": 0.8268 + }, + { + "start": 23082.72, + "end": 23084.56, + "probability": 0.9711 + }, + { + "start": 23085.92, + "end": 23088.12, + "probability": 0.9995 + }, + { + "start": 23088.12, + "end": 23090.92, + "probability": 0.865 + }, + { + "start": 23091.74, + "end": 23093.76, + "probability": 0.7804 + }, + { + "start": 23093.94, + "end": 23095.79, + "probability": 0.773 + }, + { + "start": 23097.7, + "end": 23099.49, + "probability": 0.9961 + }, + { + "start": 23101.6, + "end": 23103.18, + "probability": 0.9223 + }, + { + "start": 23103.56, + "end": 23105.12, + "probability": 0.9902 + }, + { + "start": 23106.06, + "end": 23108.78, + "probability": 0.9355 + }, + { + "start": 23109.7, + "end": 23111.72, + "probability": 0.9836 + }, + { + "start": 23112.04, + "end": 23118.88, + "probability": 0.8928 + }, + { + "start": 23119.18, + "end": 23121.72, + "probability": 0.9116 + }, + { + "start": 23122.54, + "end": 23125.36, + "probability": 0.9775 + }, + { + "start": 23126.06, + "end": 23128.38, + "probability": 0.373 + }, + { + "start": 23128.38, + "end": 23129.08, + "probability": 0.8436 + }, + { + "start": 23129.74, + "end": 23131.26, + "probability": 0.5606 + }, + { + "start": 23131.26, + "end": 23134.18, + "probability": 0.9871 + }, + { + "start": 23134.84, + "end": 23139.72, + "probability": 0.6612 + }, + { + "start": 23141.84, + "end": 23141.86, + "probability": 0.2228 + }, + { + "start": 23141.86, + "end": 23143.88, + "probability": 0.8208 + }, + { + "start": 23144.0, + "end": 23144.9, + "probability": 0.5356 + }, + { + "start": 23144.98, + "end": 23146.08, + "probability": 0.7167 + }, + { + "start": 23146.5, + "end": 23149.0, + "probability": 0.8611 + }, + { + "start": 23149.2, + "end": 23150.46, + "probability": 0.1956 + }, + { + "start": 23150.6, + "end": 23152.7, + "probability": 0.6551 + }, + { + "start": 23152.76, + "end": 23154.04, + "probability": 0.9893 + }, + { + "start": 23155.44, + "end": 23161.22, + "probability": 0.9893 + }, + { + "start": 23161.28, + "end": 23162.12, + "probability": 0.7904 + }, + { + "start": 23163.5, + "end": 23167.92, + "probability": 0.968 + }, + { + "start": 23168.6, + "end": 23170.86, + "probability": 0.8363 + }, + { + "start": 23171.08, + "end": 23171.44, + "probability": 0.8376 + }, + { + "start": 23171.52, + "end": 23174.86, + "probability": 0.9914 + }, + { + "start": 23175.48, + "end": 23176.64, + "probability": 0.8582 + }, + { + "start": 23177.62, + "end": 23179.4, + "probability": 0.9572 + }, + { + "start": 23179.64, + "end": 23181.72, + "probability": 0.8384 + }, + { + "start": 23183.76, + "end": 23187.9, + "probability": 0.8076 + }, + { + "start": 23188.6, + "end": 23189.2, + "probability": 0.9058 + }, + { + "start": 23190.18, + "end": 23193.08, + "probability": 0.7944 + }, + { + "start": 23193.68, + "end": 23196.0, + "probability": 0.8612 + }, + { + "start": 23196.6, + "end": 23200.16, + "probability": 0.7512 + }, + { + "start": 23200.68, + "end": 23203.28, + "probability": 0.7754 + }, + { + "start": 23203.44, + "end": 23205.74, + "probability": 0.9604 + }, + { + "start": 23206.48, + "end": 23208.34, + "probability": 0.9006 + }, + { + "start": 23208.96, + "end": 23210.0, + "probability": 0.4596 + }, + { + "start": 23211.94, + "end": 23215.42, + "probability": 0.7684 + }, + { + "start": 23215.68, + "end": 23219.18, + "probability": 0.8538 + }, + { + "start": 23219.5, + "end": 23220.18, + "probability": 0.7634 + }, + { + "start": 23220.24, + "end": 23220.6, + "probability": 0.7899 + }, + { + "start": 23220.96, + "end": 23221.96, + "probability": 0.8065 + }, + { + "start": 23222.4, + "end": 23223.2, + "probability": 0.6771 + }, + { + "start": 23223.64, + "end": 23227.44, + "probability": 0.8311 + }, + { + "start": 23228.12, + "end": 23230.1, + "probability": 0.9609 + }, + { + "start": 23230.24, + "end": 23232.18, + "probability": 0.64 + }, + { + "start": 23232.92, + "end": 23234.28, + "probability": 0.9871 + }, + { + "start": 23234.96, + "end": 23235.06, + "probability": 0.7562 + }, + { + "start": 23236.08, + "end": 23237.48, + "probability": 0.6592 + }, + { + "start": 23238.26, + "end": 23239.36, + "probability": 0.7146 + }, + { + "start": 23240.56, + "end": 23243.76, + "probability": 0.8748 + }, + { + "start": 23244.78, + "end": 23245.52, + "probability": 0.9769 + }, + { + "start": 23247.36, + "end": 23248.38, + "probability": 0.4911 + }, + { + "start": 23249.28, + "end": 23253.36, + "probability": 0.3694 + }, + { + "start": 23253.47, + "end": 23256.52, + "probability": 0.8536 + }, + { + "start": 23256.82, + "end": 23256.96, + "probability": 0.0146 + }, + { + "start": 23257.53, + "end": 23260.5, + "probability": 0.7822 + }, + { + "start": 23261.16, + "end": 23264.34, + "probability": 0.6822 + }, + { + "start": 23265.36, + "end": 23267.1, + "probability": 0.9749 + }, + { + "start": 23270.12, + "end": 23273.34, + "probability": 0.5307 + }, + { + "start": 23274.14, + "end": 23277.54, + "probability": 0.8485 + }, + { + "start": 23277.72, + "end": 23278.84, + "probability": 0.9054 + }, + { + "start": 23280.06, + "end": 23283.36, + "probability": 0.9031 + }, + { + "start": 23287.26, + "end": 23289.18, + "probability": 0.045 + }, + { + "start": 23290.1, + "end": 23292.18, + "probability": 0.0252 + }, + { + "start": 23299.94, + "end": 23303.7, + "probability": 0.4184 + }, + { + "start": 23303.94, + "end": 23306.04, + "probability": 0.052 + }, + { + "start": 23306.68, + "end": 23309.26, + "probability": 0.5687 + }, + { + "start": 23311.28, + "end": 23312.32, + "probability": 0.529 + }, + { + "start": 23313.34, + "end": 23314.42, + "probability": 0.6819 + }, + { + "start": 23315.11, + "end": 23317.4, + "probability": 0.0869 + }, + { + "start": 23317.54, + "end": 23318.9, + "probability": 0.0686 + }, + { + "start": 23319.0, + "end": 23319.12, + "probability": 0.0085 + }, + { + "start": 23331.56, + "end": 23332.28, + "probability": 0.3247 + }, + { + "start": 23332.82, + "end": 23336.24, + "probability": 0.9238 + }, + { + "start": 23338.52, + "end": 23341.52, + "probability": 0.1111 + }, + { + "start": 23342.58, + "end": 23343.44, + "probability": 0.1432 + }, + { + "start": 23343.44, + "end": 23343.68, + "probability": 0.0772 + }, + { + "start": 23343.68, + "end": 23345.32, + "probability": 0.0171 + }, + { + "start": 23345.48, + "end": 23346.02, + "probability": 0.519 + }, + { + "start": 23346.64, + "end": 23348.48, + "probability": 0.441 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23430.0, + "end": 23430.0, + "probability": 0.0 + }, + { + "start": 23431.08, + "end": 23431.28, + "probability": 0.0629 + }, + { + "start": 23431.28, + "end": 23431.64, + "probability": 0.1413 + }, + { + "start": 23432.98, + "end": 23436.36, + "probability": 0.8536 + }, + { + "start": 23438.0, + "end": 23438.54, + "probability": 0.4198 + }, + { + "start": 23439.62, + "end": 23442.66, + "probability": 0.9457 + }, + { + "start": 23443.48, + "end": 23447.1, + "probability": 0.946 + }, + { + "start": 23447.7, + "end": 23449.0, + "probability": 0.9586 + }, + { + "start": 23450.02, + "end": 23451.06, + "probability": 0.9766 + }, + { + "start": 23451.72, + "end": 23453.78, + "probability": 0.9465 + }, + { + "start": 23455.56, + "end": 23457.02, + "probability": 0.992 + }, + { + "start": 23458.24, + "end": 23460.54, + "probability": 0.9221 + }, + { + "start": 23461.64, + "end": 23463.16, + "probability": 0.8379 + }, + { + "start": 23464.32, + "end": 23465.34, + "probability": 0.8535 + }, + { + "start": 23466.5, + "end": 23471.06, + "probability": 0.9645 + }, + { + "start": 23475.64, + "end": 23477.72, + "probability": 0.8966 + }, + { + "start": 23478.78, + "end": 23478.88, + "probability": 0.7353 + }, + { + "start": 23479.96, + "end": 23481.29, + "probability": 0.0807 + }, + { + "start": 23481.42, + "end": 23482.52, + "probability": 0.7074 + }, + { + "start": 23485.32, + "end": 23486.58, + "probability": 0.6012 + }, + { + "start": 23506.46, + "end": 23510.44, + "probability": 0.5239 + }, + { + "start": 23512.42, + "end": 23516.66, + "probability": 0.767 + }, + { + "start": 23518.54, + "end": 23523.48, + "probability": 0.9202 + }, + { + "start": 23523.54, + "end": 23528.36, + "probability": 0.9276 + }, + { + "start": 23528.8, + "end": 23529.42, + "probability": 0.7686 + }, + { + "start": 23531.1, + "end": 23535.38, + "probability": 0.9691 + }, + { + "start": 23537.56, + "end": 23539.86, + "probability": 0.8394 + }, + { + "start": 23541.16, + "end": 23542.7, + "probability": 0.3874 + }, + { + "start": 23544.08, + "end": 23544.82, + "probability": 0.3565 + }, + { + "start": 23546.14, + "end": 23548.46, + "probability": 0.5944 + }, + { + "start": 23548.98, + "end": 23552.76, + "probability": 0.6356 + }, + { + "start": 23553.7, + "end": 23555.94, + "probability": 0.973 + }, + { + "start": 23556.64, + "end": 23558.22, + "probability": 0.937 + }, + { + "start": 23559.34, + "end": 23562.12, + "probability": 0.5854 + }, + { + "start": 23563.12, + "end": 23565.42, + "probability": 0.5788 + }, + { + "start": 23566.66, + "end": 23569.48, + "probability": 0.8571 + }, + { + "start": 23570.52, + "end": 23572.8, + "probability": 0.878 + }, + { + "start": 23573.84, + "end": 23576.0, + "probability": 0.914 + }, + { + "start": 23577.16, + "end": 23578.92, + "probability": 0.5637 + }, + { + "start": 23579.68, + "end": 23579.96, + "probability": 0.9547 + }, + { + "start": 23580.9, + "end": 23582.62, + "probability": 0.7843 + }, + { + "start": 23583.14, + "end": 23583.42, + "probability": 0.9657 + }, + { + "start": 23584.3, + "end": 23587.5, + "probability": 0.8727 + }, + { + "start": 23588.04, + "end": 23589.72, + "probability": 0.5179 + }, + { + "start": 23590.86, + "end": 23595.26, + "probability": 0.6193 + }, + { + "start": 23596.22, + "end": 23598.68, + "probability": 0.7941 + }, + { + "start": 23599.58, + "end": 23603.88, + "probability": 0.8917 + }, + { + "start": 23604.8, + "end": 23608.32, + "probability": 0.7755 + }, + { + "start": 23608.84, + "end": 23609.06, + "probability": 0.4588 + }, + { + "start": 23610.0, + "end": 23613.48, + "probability": 0.8034 + }, + { + "start": 23614.46, + "end": 23617.16, + "probability": 0.9638 + }, + { + "start": 23617.86, + "end": 23620.84, + "probability": 0.9451 + }, + { + "start": 23622.36, + "end": 23624.0, + "probability": 0.9766 + }, + { + "start": 23624.7, + "end": 23625.32, + "probability": 0.6275 + }, + { + "start": 23625.96, + "end": 23627.7, + "probability": 0.5437 + }, + { + "start": 23628.48, + "end": 23630.56, + "probability": 0.7715 + }, + { + "start": 23631.32, + "end": 23633.76, + "probability": 0.7831 + }, + { + "start": 23634.46, + "end": 23636.22, + "probability": 0.9319 + }, + { + "start": 23636.74, + "end": 23637.0, + "probability": 0.2741 + }, + { + "start": 23637.7, + "end": 23640.34, + "probability": 0.5962 + }, + { + "start": 23641.1, + "end": 23643.25, + "probability": 0.8159 + }, + { + "start": 23644.7, + "end": 23646.14, + "probability": 0.9243 + }, + { + "start": 23646.74, + "end": 23649.4, + "probability": 0.9211 + }, + { + "start": 23650.08, + "end": 23653.56, + "probability": 0.6274 + }, + { + "start": 23654.32, + "end": 23657.42, + "probability": 0.8203 + }, + { + "start": 23658.18, + "end": 23659.62, + "probability": 0.6789 + }, + { + "start": 23659.72, + "end": 23660.58, + "probability": 0.2819 + }, + { + "start": 23660.82, + "end": 23661.78, + "probability": 0.7987 + }, + { + "start": 23661.88, + "end": 23663.06, + "probability": 0.7958 + }, + { + "start": 23663.42, + "end": 23664.14, + "probability": 0.4282 + }, + { + "start": 23664.68, + "end": 23664.9, + "probability": 0.5863 + }, + { + "start": 23665.6, + "end": 23667.44, + "probability": 0.565 + }, + { + "start": 23668.08, + "end": 23670.88, + "probability": 0.7684 + }, + { + "start": 23671.6, + "end": 23673.5, + "probability": 0.9041 + }, + { + "start": 23674.08, + "end": 23676.46, + "probability": 0.8683 + }, + { + "start": 23677.34, + "end": 23679.84, + "probability": 0.6158 + }, + { + "start": 23680.48, + "end": 23682.74, + "probability": 0.7098 + }, + { + "start": 23684.2, + "end": 23685.44, + "probability": 0.4251 + }, + { + "start": 23685.54, + "end": 23686.18, + "probability": 0.9177 + }, + { + "start": 23686.54, + "end": 23688.86, + "probability": 0.899 + }, + { + "start": 23689.56, + "end": 23690.86, + "probability": 0.6809 + }, + { + "start": 23690.86, + "end": 23691.78, + "probability": 0.9945 + }, + { + "start": 23692.24, + "end": 23694.04, + "probability": 0.6882 + }, + { + "start": 23694.76, + "end": 23695.86, + "probability": 0.514 + }, + { + "start": 23695.94, + "end": 23696.64, + "probability": 0.7231 + }, + { + "start": 23696.9, + "end": 23698.74, + "probability": 0.9868 + }, + { + "start": 23699.54, + "end": 23704.5, + "probability": 0.8846 + }, + { + "start": 23705.16, + "end": 23707.66, + "probability": 0.6547 + }, + { + "start": 23708.3, + "end": 23710.82, + "probability": 0.5718 + }, + { + "start": 23711.54, + "end": 23712.68, + "probability": 0.5962 + }, + { + "start": 23712.74, + "end": 23713.28, + "probability": 0.9717 + }, + { + "start": 23713.38, + "end": 23715.04, + "probability": 0.9665 + }, + { + "start": 23715.72, + "end": 23717.72, + "probability": 0.7756 + }, + { + "start": 23718.58, + "end": 23721.76, + "probability": 0.4988 + }, + { + "start": 23722.1, + "end": 23723.42, + "probability": 0.9091 + }, + { + "start": 23723.44, + "end": 23724.54, + "probability": 0.5761 + }, + { + "start": 23725.24, + "end": 23726.64, + "probability": 0.4607 + }, + { + "start": 23727.28, + "end": 23728.66, + "probability": 0.8956 + }, + { + "start": 23729.38, + "end": 23733.28, + "probability": 0.9491 + }, + { + "start": 23733.84, + "end": 23735.74, + "probability": 0.9334 + }, + { + "start": 23736.4, + "end": 23738.78, + "probability": 0.9841 + }, + { + "start": 23739.84, + "end": 23741.94, + "probability": 0.7815 + }, + { + "start": 23742.46, + "end": 23744.02, + "probability": 0.9145 + }, + { + "start": 23744.8, + "end": 23747.2, + "probability": 0.5294 + }, + { + "start": 23747.78, + "end": 23751.78, + "probability": 0.9307 + }, + { + "start": 23752.44, + "end": 23754.72, + "probability": 0.7723 + }, + { + "start": 23755.82, + "end": 23756.62, + "probability": 0.6622 + }, + { + "start": 23757.36, + "end": 23758.46, + "probability": 0.657 + }, + { + "start": 23758.98, + "end": 23759.52, + "probability": 0.701 + }, + { + "start": 23760.08, + "end": 23760.38, + "probability": 0.8186 + }, + { + "start": 23760.86, + "end": 23761.98, + "probability": 0.6331 + }, + { + "start": 23762.42, + "end": 23763.54, + "probability": 0.9219 + }, + { + "start": 23764.38, + "end": 23766.72, + "probability": 0.8181 + }, + { + "start": 23767.32, + "end": 23768.0, + "probability": 0.7923 + }, + { + "start": 23768.54, + "end": 23770.76, + "probability": 0.9492 + }, + { + "start": 23771.16, + "end": 23773.52, + "probability": 0.8641 + }, + { + "start": 23774.04, + "end": 23775.38, + "probability": 0.6398 + }, + { + "start": 23776.26, + "end": 23777.6, + "probability": 0.7006 + }, + { + "start": 23778.08, + "end": 23780.16, + "probability": 0.7422 + }, + { + "start": 23780.72, + "end": 23781.58, + "probability": 0.9113 + }, + { + "start": 23782.5, + "end": 23782.96, + "probability": 0.4184 + }, + { + "start": 23782.96, + "end": 23785.69, + "probability": 0.4919 + }, + { + "start": 23787.96, + "end": 23788.7, + "probability": 0.7048 + }, + { + "start": 23790.66, + "end": 23791.76, + "probability": 0.157 + }, + { + "start": 23793.24, + "end": 23794.48, + "probability": 0.0917 + }, + { + "start": 23819.54, + "end": 23819.72, + "probability": 0.0502 + }, + { + "start": 23819.76, + "end": 23820.98, + "probability": 0.3259 + }, + { + "start": 23821.04, + "end": 23822.4, + "probability": 0.4583 + }, + { + "start": 23823.5, + "end": 23826.06, + "probability": 0.3122 + }, + { + "start": 23826.26, + "end": 23827.78, + "probability": 0.7109 + }, + { + "start": 23829.02, + "end": 23832.56, + "probability": 0.5941 + }, + { + "start": 23833.48, + "end": 23836.18, + "probability": 0.8083 + }, + { + "start": 23836.78, + "end": 23841.24, + "probability": 0.9214 + }, + { + "start": 23842.76, + "end": 23845.62, + "probability": 0.9508 + }, + { + "start": 23845.62, + "end": 23848.74, + "probability": 0.9918 + }, + { + "start": 23850.46, + "end": 23856.14, + "probability": 0.8407 + }, + { + "start": 23857.26, + "end": 23857.48, + "probability": 0.4031 + }, + { + "start": 23857.64, + "end": 23859.44, + "probability": 0.8639 + }, + { + "start": 23859.58, + "end": 23862.72, + "probability": 0.8511 + }, + { + "start": 23863.92, + "end": 23869.34, + "probability": 0.4817 + }, + { + "start": 23870.44, + "end": 23872.12, + "probability": 0.8013 + }, + { + "start": 23874.54, + "end": 23875.5, + "probability": 0.8225 + }, + { + "start": 23875.7, + "end": 23876.36, + "probability": 0.7764 + }, + { + "start": 23876.4, + "end": 23877.8, + "probability": 0.6884 + }, + { + "start": 23878.92, + "end": 23879.92, + "probability": 0.4013 + }, + { + "start": 23881.96, + "end": 23883.4, + "probability": 0.6195 + }, + { + "start": 23884.32, + "end": 23886.92, + "probability": 0.9922 + }, + { + "start": 23887.06, + "end": 23887.86, + "probability": 0.1322 + }, + { + "start": 23887.86, + "end": 23889.22, + "probability": 0.7992 + }, + { + "start": 23889.32, + "end": 23890.0, + "probability": 0.2928 + }, + { + "start": 23894.34, + "end": 23894.86, + "probability": 0.3047 + }, + { + "start": 23894.94, + "end": 23896.6, + "probability": 0.908 + }, + { + "start": 23896.74, + "end": 23900.94, + "probability": 0.9893 + }, + { + "start": 23903.66, + "end": 23906.34, + "probability": 0.8096 + }, + { + "start": 23906.52, + "end": 23907.62, + "probability": 0.594 + }, + { + "start": 23908.22, + "end": 23911.4, + "probability": 0.9894 + }, + { + "start": 23911.96, + "end": 23915.88, + "probability": 0.8169 + }, + { + "start": 23916.06, + "end": 23916.98, + "probability": 0.6382 + }, + { + "start": 23917.7, + "end": 23919.94, + "probability": 0.7627 + }, + { + "start": 23920.34, + "end": 23922.84, + "probability": 0.8549 + }, + { + "start": 23923.2, + "end": 23925.1, + "probability": 0.9575 + }, + { + "start": 23925.68, + "end": 23933.4, + "probability": 0.8795 + }, + { + "start": 23933.92, + "end": 23935.2, + "probability": 0.4892 + }, + { + "start": 23935.76, + "end": 23936.76, + "probability": 0.4438 + }, + { + "start": 23938.06, + "end": 23939.48, + "probability": 0.8479 + }, + { + "start": 23939.62, + "end": 23940.76, + "probability": 0.7779 + }, + { + "start": 23940.8, + "end": 23941.32, + "probability": 0.9167 + }, + { + "start": 23941.54, + "end": 23942.06, + "probability": 0.8942 + }, + { + "start": 23942.31, + "end": 23943.02, + "probability": 0.795 + }, + { + "start": 23943.02, + "end": 23943.84, + "probability": 0.7547 + }, + { + "start": 23945.1, + "end": 23945.52, + "probability": 0.2731 + }, + { + "start": 23945.74, + "end": 23947.92, + "probability": 0.9803 + }, + { + "start": 23947.92, + "end": 23951.5, + "probability": 0.9913 + }, + { + "start": 23951.58, + "end": 23951.8, + "probability": 0.755 + }, + { + "start": 23952.86, + "end": 23953.62, + "probability": 0.5044 + }, + { + "start": 23953.72, + "end": 23957.56, + "probability": 0.847 + }, + { + "start": 23957.9, + "end": 23960.3, + "probability": 0.9748 + }, + { + "start": 23985.34, + "end": 23985.34, + "probability": 0.3084 + }, + { + "start": 23985.34, + "end": 23985.34, + "probability": 0.0582 + }, + { + "start": 23985.34, + "end": 23987.34, + "probability": 0.5213 + }, + { + "start": 23987.5, + "end": 23989.14, + "probability": 0.6906 + }, + { + "start": 23989.44, + "end": 23991.26, + "probability": 0.7183 + }, + { + "start": 23992.94, + "end": 23994.14, + "probability": 0.7612 + }, + { + "start": 23994.26, + "end": 23995.18, + "probability": 0.5329 + }, + { + "start": 23995.22, + "end": 23996.84, + "probability": 0.845 + }, + { + "start": 23997.04, + "end": 23998.0, + "probability": 0.6075 + }, + { + "start": 23998.62, + "end": 24002.36, + "probability": 0.8753 + }, + { + "start": 24002.88, + "end": 24005.05, + "probability": 0.3234 + }, + { + "start": 24006.18, + "end": 24008.06, + "probability": 0.5374 + }, + { + "start": 24010.84, + "end": 24013.44, + "probability": 0.3368 + }, + { + "start": 24014.04, + "end": 24018.2, + "probability": 0.4521 + }, + { + "start": 24020.2, + "end": 24024.12, + "probability": 0.9709 + }, + { + "start": 24024.16, + "end": 24026.56, + "probability": 0.9935 + }, + { + "start": 24027.08, + "end": 24028.86, + "probability": 0.99 + }, + { + "start": 24029.44, + "end": 24032.08, + "probability": 0.9688 + }, + { + "start": 24032.94, + "end": 24037.52, + "probability": 0.9934 + }, + { + "start": 24037.52, + "end": 24043.08, + "probability": 0.9785 + }, + { + "start": 24043.16, + "end": 24043.54, + "probability": 0.5857 + }, + { + "start": 24044.36, + "end": 24044.58, + "probability": 0.4683 + }, + { + "start": 24044.82, + "end": 24046.56, + "probability": 0.8711 + }, + { + "start": 24046.76, + "end": 24048.56, + "probability": 0.2847 + }, + { + "start": 24050.16, + "end": 24054.54, + "probability": 0.9747 + }, + { + "start": 24054.6, + "end": 24056.24, + "probability": 0.5899 + }, + { + "start": 24058.06, + "end": 24064.26, + "probability": 0.7604 + }, + { + "start": 24070.42, + "end": 24073.02, + "probability": 0.7151 + }, + { + "start": 24073.68, + "end": 24074.0, + "probability": 0.4514 + }, + { + "start": 24077.0, + "end": 24079.5, + "probability": 0.7185 + }, + { + "start": 24081.66, + "end": 24083.28, + "probability": 0.7494 + }, + { + "start": 24084.76, + "end": 24087.06, + "probability": 0.8221 + }, + { + "start": 24088.5, + "end": 24091.5, + "probability": 0.8729 + }, + { + "start": 24091.5, + "end": 24092.78, + "probability": 0.9785 + }, + { + "start": 24096.84, + "end": 24098.54, + "probability": 0.6438 + }, + { + "start": 24099.5, + "end": 24100.64, + "probability": 0.9387 + }, + { + "start": 24101.34, + "end": 24101.8, + "probability": 0.5052 + }, + { + "start": 24103.62, + "end": 24104.98, + "probability": 0.754 + }, + { + "start": 24106.14, + "end": 24108.5, + "probability": 0.9744 + }, + { + "start": 24123.18, + "end": 24124.16, + "probability": 0.4683 + }, + { + "start": 24124.48, + "end": 24129.96, + "probability": 0.7955 + }, + { + "start": 24130.52, + "end": 24132.24, + "probability": 0.88 + }, + { + "start": 24132.78, + "end": 24134.08, + "probability": 0.3238 + }, + { + "start": 24135.94, + "end": 24139.42, + "probability": 0.9008 + }, + { + "start": 24140.44, + "end": 24141.54, + "probability": 0.8579 + }, + { + "start": 24141.8, + "end": 24145.64, + "probability": 0.8872 + }, + { + "start": 24145.64, + "end": 24147.4, + "probability": 0.3822 + }, + { + "start": 24147.74, + "end": 24149.5, + "probability": 0.5468 + }, + { + "start": 24149.5, + "end": 24152.58, + "probability": 0.554 + }, + { + "start": 24153.7, + "end": 24155.34, + "probability": 0.4918 + }, + { + "start": 24159.9, + "end": 24160.64, + "probability": 0.7126 + }, + { + "start": 24162.02, + "end": 24164.28, + "probability": 0.8386 + }, + { + "start": 24165.42, + "end": 24166.42, + "probability": 0.5137 + }, + { + "start": 24167.4, + "end": 24170.23, + "probability": 0.4981 + }, + { + "start": 24171.84, + "end": 24174.02, + "probability": 0.8332 + }, + { + "start": 24174.12, + "end": 24176.17, + "probability": 0.208 + }, + { + "start": 24176.56, + "end": 24177.05, + "probability": 0.8991 + }, + { + "start": 24178.25, + "end": 24180.34, + "probability": 0.8493 + }, + { + "start": 24180.82, + "end": 24183.02, + "probability": 0.7532 + }, + { + "start": 24183.56, + "end": 24184.36, + "probability": 0.8416 + }, + { + "start": 24185.62, + "end": 24187.52, + "probability": 0.5539 + }, + { + "start": 24187.76, + "end": 24192.52, + "probability": 0.9383 + }, + { + "start": 24193.36, + "end": 24197.34, + "probability": 0.979 + }, + { + "start": 24197.52, + "end": 24199.0, + "probability": 0.9551 + }, + { + "start": 24199.06, + "end": 24201.02, + "probability": 0.7343 + }, + { + "start": 24202.36, + "end": 24207.94, + "probability": 0.9314 + }, + { + "start": 24208.7, + "end": 24209.8, + "probability": 0.9133 + }, + { + "start": 24209.9, + "end": 24210.4, + "probability": 0.6714 + }, + { + "start": 24210.56, + "end": 24212.08, + "probability": 0.9797 + }, + { + "start": 24212.44, + "end": 24215.84, + "probability": 0.9308 + }, + { + "start": 24216.66, + "end": 24217.22, + "probability": 0.9039 + }, + { + "start": 24217.34, + "end": 24225.98, + "probability": 0.891 + }, + { + "start": 24226.64, + "end": 24229.76, + "probability": 0.9517 + }, + { + "start": 24229.86, + "end": 24231.47, + "probability": 0.9976 + }, + { + "start": 24231.56, + "end": 24232.83, + "probability": 0.8672 + }, + { + "start": 24234.26, + "end": 24236.3, + "probability": 0.401 + }, + { + "start": 24238.32, + "end": 24240.92, + "probability": 0.7634 + }, + { + "start": 24241.96, + "end": 24243.68, + "probability": 0.6934 + }, + { + "start": 24244.6, + "end": 24248.36, + "probability": 0.7359 + }, + { + "start": 24248.4, + "end": 24250.16, + "probability": 0.8535 + }, + { + "start": 24250.96, + "end": 24252.96, + "probability": 0.4635 + }, + { + "start": 24253.16, + "end": 24257.98, + "probability": 0.7106 + }, + { + "start": 24258.62, + "end": 24267.18, + "probability": 0.7095 + }, + { + "start": 24267.18, + "end": 24270.04, + "probability": 0.6677 + }, + { + "start": 24270.22, + "end": 24271.26, + "probability": 0.9964 + }, + { + "start": 24271.98, + "end": 24273.54, + "probability": 0.991 + }, + { + "start": 24274.22, + "end": 24278.12, + "probability": 0.6098 + }, + { + "start": 24278.34, + "end": 24279.48, + "probability": 0.4914 + }, + { + "start": 24280.14, + "end": 24280.24, + "probability": 0.9979 + }, + { + "start": 24281.68, + "end": 24282.4, + "probability": 0.8066 + }, + { + "start": 24282.92, + "end": 24284.02, + "probability": 0.6864 + }, + { + "start": 24284.08, + "end": 24286.23, + "probability": 0.6852 + }, + { + "start": 24287.86, + "end": 24288.5, + "probability": 0.9844 + }, + { + "start": 24289.24, + "end": 24289.76, + "probability": 0.1166 + }, + { + "start": 24290.7, + "end": 24295.9, + "probability": 0.6564 + }, + { + "start": 24297.78, + "end": 24302.72, + "probability": 0.9749 + }, + { + "start": 24302.72, + "end": 24306.2, + "probability": 0.7023 + }, + { + "start": 24306.2, + "end": 24306.8, + "probability": 0.6939 + }, + { + "start": 24307.34, + "end": 24311.06, + "probability": 0.9927 + }, + { + "start": 24311.84, + "end": 24314.64, + "probability": 0.4118 + }, + { + "start": 24314.64, + "end": 24318.62, + "probability": 0.8542 + }, + { + "start": 24319.26, + "end": 24321.04, + "probability": 0.8315 + }, + { + "start": 24321.42, + "end": 24321.58, + "probability": 0.2625 + }, + { + "start": 24328.36, + "end": 24328.6, + "probability": 0.0029 + }, + { + "start": 24328.6, + "end": 24333.02, + "probability": 0.7177 + }, + { + "start": 24333.02, + "end": 24333.36, + "probability": 0.7552 + }, + { + "start": 24333.4, + "end": 24334.04, + "probability": 0.7767 + }, + { + "start": 24334.16, + "end": 24336.1, + "probability": 0.8843 + }, + { + "start": 24337.09, + "end": 24339.34, + "probability": 0.8477 + }, + { + "start": 24339.56, + "end": 24344.84, + "probability": 0.9379 + }, + { + "start": 24344.84, + "end": 24348.62, + "probability": 0.9757 + }, + { + "start": 24349.6, + "end": 24354.46, + "probability": 0.6723 + }, + { + "start": 24355.2, + "end": 24356.62, + "probability": 0.7755 + }, + { + "start": 24356.8, + "end": 24358.42, + "probability": 0.8707 + }, + { + "start": 24358.62, + "end": 24359.78, + "probability": 0.9379 + }, + { + "start": 24360.0, + "end": 24361.58, + "probability": 0.514 + }, + { + "start": 24362.94, + "end": 24369.62, + "probability": 0.7675 + }, + { + "start": 24369.8, + "end": 24371.74, + "probability": 0.5068 + }, + { + "start": 24372.32, + "end": 24375.21, + "probability": 0.8468 + }, + { + "start": 24376.0, + "end": 24379.92, + "probability": 0.9736 + }, + { + "start": 24380.68, + "end": 24381.72, + "probability": 0.2876 + }, + { + "start": 24381.82, + "end": 24382.56, + "probability": 0.3517 + }, + { + "start": 24382.56, + "end": 24385.04, + "probability": 0.9813 + }, + { + "start": 24385.6, + "end": 24387.54, + "probability": 0.8699 + }, + { + "start": 24387.82, + "end": 24391.48, + "probability": 0.8659 + }, + { + "start": 24391.64, + "end": 24393.12, + "probability": 0.973 + }, + { + "start": 24394.12, + "end": 24394.88, + "probability": 0.6663 + }, + { + "start": 24395.6, + "end": 24396.78, + "probability": 0.0324 + }, + { + "start": 24398.19, + "end": 24404.7, + "probability": 0.8672 + }, + { + "start": 24405.08, + "end": 24405.44, + "probability": 0.5221 + }, + { + "start": 24405.58, + "end": 24405.98, + "probability": 0.7584 + }, + { + "start": 24406.22, + "end": 24406.32, + "probability": 0.4526 + }, + { + "start": 24406.98, + "end": 24407.62, + "probability": 0.8257 + }, + { + "start": 24407.72, + "end": 24409.3, + "probability": 0.6418 + }, + { + "start": 24409.64, + "end": 24410.98, + "probability": 0.7865 + }, + { + "start": 24411.16, + "end": 24414.12, + "probability": 0.9227 + }, + { + "start": 24414.62, + "end": 24416.14, + "probability": 0.5003 + }, + { + "start": 24418.74, + "end": 24419.28, + "probability": 0.7233 + }, + { + "start": 24420.04, + "end": 24426.14, + "probability": 0.9252 + }, + { + "start": 24426.14, + "end": 24429.49, + "probability": 0.5101 + }, + { + "start": 24430.12, + "end": 24430.78, + "probability": 0.3372 + }, + { + "start": 24430.9, + "end": 24433.84, + "probability": 0.7025 + }, + { + "start": 24437.08, + "end": 24439.48, + "probability": 0.7521 + }, + { + "start": 24439.72, + "end": 24442.0, + "probability": 0.6366 + }, + { + "start": 24443.1, + "end": 24447.08, + "probability": 0.8566 + }, + { + "start": 24450.56, + "end": 24451.2, + "probability": 0.2564 + }, + { + "start": 24468.04, + "end": 24468.76, + "probability": 0.2236 + }, + { + "start": 24468.76, + "end": 24471.86, + "probability": 0.2081 + }, + { + "start": 24472.68, + "end": 24474.92, + "probability": 0.8767 + }, + { + "start": 24476.34, + "end": 24478.82, + "probability": 0.9932 + }, + { + "start": 24479.06, + "end": 24481.08, + "probability": 0.4167 + }, + { + "start": 24482.4, + "end": 24485.92, + "probability": 0.8896 + }, + { + "start": 24486.9, + "end": 24488.98, + "probability": 0.5843 + }, + { + "start": 24489.56, + "end": 24490.04, + "probability": 0.628 + }, + { + "start": 24490.64, + "end": 24491.08, + "probability": 0.9521 + }, + { + "start": 24492.06, + "end": 24494.02, + "probability": 0.0086 + }, + { + "start": 24494.82, + "end": 24495.99, + "probability": 0.7327 + }, + { + "start": 24496.14, + "end": 24496.62, + "probability": 0.6043 + }, + { + "start": 24497.24, + "end": 24497.8, + "probability": 0.2046 + }, + { + "start": 24499.42, + "end": 24501.54, + "probability": 0.2676 + }, + { + "start": 24506.1, + "end": 24509.8, + "probability": 0.2276 + }, + { + "start": 24511.28, + "end": 24517.06, + "probability": 0.4056 + }, + { + "start": 24517.62, + "end": 24518.5, + "probability": 0.2489 + }, + { + "start": 24519.34, + "end": 24522.06, + "probability": 0.5268 + }, + { + "start": 24522.38, + "end": 24528.24, + "probability": 0.1599 + }, + { + "start": 24528.96, + "end": 24530.88, + "probability": 0.4256 + }, + { + "start": 24530.88, + "end": 24532.36, + "probability": 0.347 + }, + { + "start": 24532.66, + "end": 24534.14, + "probability": 0.3759 + }, + { + "start": 24534.32, + "end": 24537.02, + "probability": 0.5181 + }, + { + "start": 24537.04, + "end": 24539.34, + "probability": 0.5352 + }, + { + "start": 24539.34, + "end": 24541.44, + "probability": 0.285 + }, + { + "start": 24545.58, + "end": 24545.88, + "probability": 0.0145 + }, + { + "start": 24546.86, + "end": 24546.96, + "probability": 0.0033 + }, + { + "start": 24548.32, + "end": 24549.02, + "probability": 0.0209 + }, + { + "start": 24550.78, + "end": 24553.16, + "probability": 0.6651 + }, + { + "start": 24553.32, + "end": 24556.14, + "probability": 0.8698 + }, + { + "start": 24556.46, + "end": 24557.15, + "probability": 0.5674 + }, + { + "start": 24558.5, + "end": 24558.82, + "probability": 0.5147 + }, + { + "start": 24558.92, + "end": 24559.72, + "probability": 0.9866 + }, + { + "start": 24560.12, + "end": 24561.8, + "probability": 0.7379 + }, + { + "start": 24562.32, + "end": 24564.04, + "probability": 0.9528 + }, + { + "start": 24564.84, + "end": 24571.14, + "probability": 0.8815 + }, + { + "start": 24571.76, + "end": 24572.32, + "probability": 0.0764 + }, + { + "start": 24572.4, + "end": 24574.18, + "probability": 0.7185 + }, + { + "start": 24574.66, + "end": 24576.57, + "probability": 0.6301 + }, + { + "start": 24576.92, + "end": 24578.42, + "probability": 0.9709 + }, + { + "start": 24579.3, + "end": 24583.44, + "probability": 0.8951 + }, + { + "start": 24583.64, + "end": 24587.2, + "probability": 0.4278 + }, + { + "start": 24587.82, + "end": 24591.66, + "probability": 0.9471 + }, + { + "start": 24591.92, + "end": 24597.39, + "probability": 0.9288 + }, + { + "start": 24598.14, + "end": 24599.16, + "probability": 0.7846 + }, + { + "start": 24599.34, + "end": 24602.96, + "probability": 0.9552 + }, + { + "start": 24603.56, + "end": 24605.24, + "probability": 0.764 + }, + { + "start": 24605.34, + "end": 24606.48, + "probability": 0.9528 + }, + { + "start": 24606.6, + "end": 24607.62, + "probability": 0.9784 + }, + { + "start": 24607.72, + "end": 24609.58, + "probability": 0.9962 + }, + { + "start": 24610.58, + "end": 24615.24, + "probability": 0.8516 + }, + { + "start": 24615.82, + "end": 24618.82, + "probability": 0.606 + }, + { + "start": 24619.54, + "end": 24619.64, + "probability": 0.2515 + }, + { + "start": 24619.64, + "end": 24621.0, + "probability": 0.8448 + }, + { + "start": 24621.16, + "end": 24623.32, + "probability": 0.826 + }, + { + "start": 24623.96, + "end": 24624.42, + "probability": 0.8293 + }, + { + "start": 24624.52, + "end": 24626.3, + "probability": 0.9699 + }, + { + "start": 24626.62, + "end": 24630.02, + "probability": 0.7595 + }, + { + "start": 24630.76, + "end": 24632.2, + "probability": 0.9652 + }, + { + "start": 24633.3, + "end": 24635.96, + "probability": 0.7499 + }, + { + "start": 24636.1, + "end": 24637.76, + "probability": 0.8914 + }, + { + "start": 24637.96, + "end": 24639.24, + "probability": 0.8159 + }, + { + "start": 24639.4, + "end": 24640.54, + "probability": 0.9159 + }, + { + "start": 24641.47, + "end": 24645.18, + "probability": 0.8452 + }, + { + "start": 24645.88, + "end": 24648.65, + "probability": 0.4726 + }, + { + "start": 24649.48, + "end": 24652.26, + "probability": 0.777 + }, + { + "start": 24652.28, + "end": 24657.98, + "probability": 0.7704 + }, + { + "start": 24658.88, + "end": 24662.26, + "probability": 0.7892 + }, + { + "start": 24662.76, + "end": 24664.44, + "probability": 0.5176 + }, + { + "start": 24664.76, + "end": 24669.7, + "probability": 0.9452 + }, + { + "start": 24670.3, + "end": 24670.58, + "probability": 0.334 + }, + { + "start": 24670.62, + "end": 24674.08, + "probability": 0.9434 + }, + { + "start": 24675.12, + "end": 24680.1, + "probability": 0.9897 + }, + { + "start": 24680.36, + "end": 24683.42, + "probability": 0.9882 + }, + { + "start": 24684.22, + "end": 24688.26, + "probability": 0.9349 + }, + { + "start": 24688.62, + "end": 24689.88, + "probability": 0.8029 + }, + { + "start": 24690.64, + "end": 24694.24, + "probability": 0.7544 + }, + { + "start": 24695.16, + "end": 24696.0, + "probability": 0.7201 + }, + { + "start": 24696.16, + "end": 24702.52, + "probability": 0.9089 + }, + { + "start": 24702.76, + "end": 24705.18, + "probability": 0.7295 + }, + { + "start": 24705.78, + "end": 24707.84, + "probability": 0.6973 + }, + { + "start": 24709.56, + "end": 24712.26, + "probability": 0.7365 + }, + { + "start": 24713.5, + "end": 24715.9, + "probability": 0.9664 + }, + { + "start": 24716.32, + "end": 24717.3, + "probability": 0.8511 + }, + { + "start": 24717.9, + "end": 24721.14, + "probability": 0.9971 + }, + { + "start": 24721.34, + "end": 24724.12, + "probability": 0.9072 + }, + { + "start": 24724.6, + "end": 24726.76, + "probability": 0.7762 + }, + { + "start": 24727.08, + "end": 24729.56, + "probability": 0.6267 + }, + { + "start": 24729.92, + "end": 24730.76, + "probability": 0.9692 + }, + { + "start": 24731.28, + "end": 24734.14, + "probability": 0.8953 + }, + { + "start": 24734.46, + "end": 24737.96, + "probability": 0.6674 + }, + { + "start": 24738.32, + "end": 24738.52, + "probability": 0.3858 + }, + { + "start": 24738.6, + "end": 24744.48, + "probability": 0.7983 + }, + { + "start": 24745.16, + "end": 24750.28, + "probability": 0.9897 + }, + { + "start": 24751.12, + "end": 24754.38, + "probability": 0.9751 + }, + { + "start": 24754.7, + "end": 24756.06, + "probability": 0.6683 + }, + { + "start": 24756.48, + "end": 24760.34, + "probability": 0.95 + }, + { + "start": 24760.6, + "end": 24765.24, + "probability": 0.6636 + }, + { + "start": 24765.24, + "end": 24768.84, + "probability": 0.9904 + }, + { + "start": 24769.46, + "end": 24772.94, + "probability": 0.9874 + }, + { + "start": 24774.0, + "end": 24778.58, + "probability": 0.9854 + }, + { + "start": 24778.7, + "end": 24781.56, + "probability": 0.9846 + }, + { + "start": 24782.14, + "end": 24785.96, + "probability": 0.9795 + }, + { + "start": 24786.68, + "end": 24789.3, + "probability": 0.7963 + }, + { + "start": 24789.46, + "end": 24790.4, + "probability": 0.7001 + }, + { + "start": 24790.4, + "end": 24792.88, + "probability": 0.9937 + }, + { + "start": 24794.22, + "end": 24794.82, + "probability": 0.6032 + }, + { + "start": 24795.04, + "end": 24798.58, + "probability": 0.9796 + }, + { + "start": 24798.78, + "end": 24800.1, + "probability": 0.9618 + }, + { + "start": 24800.58, + "end": 24801.46, + "probability": 0.7219 + }, + { + "start": 24801.5, + "end": 24803.58, + "probability": 0.9043 + }, + { + "start": 24804.26, + "end": 24805.86, + "probability": 0.7814 + }, + { + "start": 24806.9, + "end": 24808.34, + "probability": 0.801 + }, + { + "start": 24808.34, + "end": 24812.16, + "probability": 0.9849 + }, + { + "start": 24813.04, + "end": 24814.06, + "probability": 0.9226 + }, + { + "start": 24814.82, + "end": 24817.38, + "probability": 0.9922 + }, + { + "start": 24817.42, + "end": 24822.08, + "probability": 0.9719 + }, + { + "start": 24822.7, + "end": 24824.39, + "probability": 0.9731 + }, + { + "start": 24825.34, + "end": 24828.12, + "probability": 0.957 + }, + { + "start": 24828.74, + "end": 24832.42, + "probability": 0.9854 + }, + { + "start": 24832.42, + "end": 24836.66, + "probability": 0.7805 + }, + { + "start": 24836.88, + "end": 24839.06, + "probability": 0.9445 + }, + { + "start": 24839.72, + "end": 24840.24, + "probability": 0.7529 + }, + { + "start": 24840.5, + "end": 24844.5, + "probability": 0.904 + }, + { + "start": 24845.18, + "end": 24850.18, + "probability": 0.9902 + }, + { + "start": 24850.76, + "end": 24854.1, + "probability": 0.9598 + }, + { + "start": 24854.62, + "end": 24858.38, + "probability": 0.7284 + }, + { + "start": 24858.62, + "end": 24861.96, + "probability": 0.9908 + }, + { + "start": 24862.42, + "end": 24864.64, + "probability": 0.7397 + }, + { + "start": 24865.14, + "end": 24868.18, + "probability": 0.9891 + }, + { + "start": 24868.44, + "end": 24869.22, + "probability": 0.9154 + }, + { + "start": 24869.34, + "end": 24871.96, + "probability": 0.9432 + }, + { + "start": 24872.68, + "end": 24876.54, + "probability": 0.986 + }, + { + "start": 24877.32, + "end": 24882.36, + "probability": 0.8206 + }, + { + "start": 24882.64, + "end": 24884.56, + "probability": 0.9919 + }, + { + "start": 24884.66, + "end": 24886.56, + "probability": 0.9863 + }, + { + "start": 24886.58, + "end": 24890.96, + "probability": 0.9903 + }, + { + "start": 24891.42, + "end": 24894.76, + "probability": 0.8896 + }, + { + "start": 24894.76, + "end": 24898.78, + "probability": 0.9708 + }, + { + "start": 24898.78, + "end": 24902.16, + "probability": 0.9982 + }, + { + "start": 24902.86, + "end": 24905.66, + "probability": 0.9973 + }, + { + "start": 24906.2, + "end": 24906.76, + "probability": 0.8824 + }, + { + "start": 24907.22, + "end": 24911.86, + "probability": 0.9887 + }, + { + "start": 24911.86, + "end": 24917.0, + "probability": 0.964 + }, + { + "start": 24917.4, + "end": 24919.24, + "probability": 0.9026 + }, + { + "start": 24919.86, + "end": 24920.44, + "probability": 0.8081 + }, + { + "start": 24920.6, + "end": 24923.24, + "probability": 0.9863 + }, + { + "start": 24923.42, + "end": 24925.28, + "probability": 0.6974 + }, + { + "start": 24925.7, + "end": 24928.48, + "probability": 0.9972 + }, + { + "start": 24929.09, + "end": 24933.12, + "probability": 0.9922 + }, + { + "start": 24933.62, + "end": 24934.9, + "probability": 0.8204 + }, + { + "start": 24935.28, + "end": 24936.74, + "probability": 0.9294 + }, + { + "start": 24936.78, + "end": 24937.94, + "probability": 0.715 + }, + { + "start": 24938.18, + "end": 24939.58, + "probability": 0.8614 + }, + { + "start": 24940.02, + "end": 24940.56, + "probability": 0.6133 + }, + { + "start": 24941.26, + "end": 24942.76, + "probability": 0.9748 + }, + { + "start": 24942.88, + "end": 24944.42, + "probability": 0.8892 + }, + { + "start": 24944.42, + "end": 24947.58, + "probability": 0.9873 + }, + { + "start": 24948.28, + "end": 24950.96, + "probability": 0.5272 + }, + { + "start": 24951.1, + "end": 24953.26, + "probability": 0.9884 + }, + { + "start": 24953.82, + "end": 24954.16, + "probability": 0.4627 + }, + { + "start": 24954.28, + "end": 24955.56, + "probability": 0.9461 + }, + { + "start": 24955.68, + "end": 24957.54, + "probability": 0.9922 + }, + { + "start": 24959.04, + "end": 24962.98, + "probability": 0.9868 + }, + { + "start": 24963.44, + "end": 24967.42, + "probability": 0.9917 + }, + { + "start": 24967.64, + "end": 24967.88, + "probability": 0.6606 + }, + { + "start": 24968.72, + "end": 24969.3, + "probability": 0.3085 + }, + { + "start": 24969.34, + "end": 24970.12, + "probability": 0.6577 + }, + { + "start": 24971.44, + "end": 24972.44, + "probability": 0.4432 + }, + { + "start": 24992.02, + "end": 24994.96, + "probability": 0.4693 + }, + { + "start": 24996.26, + "end": 25000.58, + "probability": 0.8083 + }, + { + "start": 25002.42, + "end": 25009.66, + "probability": 0.2053 + }, + { + "start": 25009.78, + "end": 25010.44, + "probability": 0.7074 + }, + { + "start": 25011.08, + "end": 25014.18, + "probability": 0.5236 + }, + { + "start": 25014.9, + "end": 25017.96, + "probability": 0.7998 + }, + { + "start": 25019.24, + "end": 25020.84, + "probability": 0.7248 + }, + { + "start": 25021.6, + "end": 25023.46, + "probability": 0.5383 + }, + { + "start": 25024.2, + "end": 25024.68, + "probability": 0.5452 + }, + { + "start": 25026.04, + "end": 25029.3, + "probability": 0.6825 + }, + { + "start": 25030.08, + "end": 25032.4, + "probability": 0.8511 + }, + { + "start": 25034.58, + "end": 25036.58, + "probability": 0.8608 + }, + { + "start": 25038.42, + "end": 25039.92, + "probability": 0.799 + }, + { + "start": 25041.36, + "end": 25044.92, + "probability": 0.9665 + }, + { + "start": 25046.98, + "end": 25047.32, + "probability": 0.6154 + }, + { + "start": 25048.68, + "end": 25049.86, + "probability": 0.9623 + }, + { + "start": 25051.26, + "end": 25052.72, + "probability": 0.3561 + }, + { + "start": 25052.94, + "end": 25054.36, + "probability": 0.7204 + }, + { + "start": 25054.5, + "end": 25055.66, + "probability": 0.8604 + }, + { + "start": 25056.12, + "end": 25059.86, + "probability": 0.9605 + }, + { + "start": 25060.4, + "end": 25061.04, + "probability": 0.8309 + }, + { + "start": 25061.66, + "end": 25064.78, + "probability": 0.8703 + }, + { + "start": 25065.46, + "end": 25067.54, + "probability": 0.7782 + }, + { + "start": 25067.6, + "end": 25068.86, + "probability": 0.9877 + }, + { + "start": 25069.78, + "end": 25070.04, + "probability": 0.3924 + }, + { + "start": 25070.26, + "end": 25075.96, + "probability": 0.9121 + }, + { + "start": 25077.47, + "end": 25081.2, + "probability": 0.9344 + }, + { + "start": 25084.13, + "end": 25089.18, + "probability": 0.9586 + }, + { + "start": 25090.4, + "end": 25095.56, + "probability": 0.9696 + }, + { + "start": 25095.56, + "end": 25099.96, + "probability": 0.7667 + }, + { + "start": 25101.12, + "end": 25102.8, + "probability": 0.623 + }, + { + "start": 25104.34, + "end": 25105.02, + "probability": 0.6653 + }, + { + "start": 25105.18, + "end": 25105.42, + "probability": 0.2933 + }, + { + "start": 25105.84, + "end": 25110.2, + "probability": 0.668 + }, + { + "start": 25111.48, + "end": 25115.74, + "probability": 0.8894 + }, + { + "start": 25116.78, + "end": 25118.98, + "probability": 0.6083 + }, + { + "start": 25119.02, + "end": 25120.43, + "probability": 0.939 + }, + { + "start": 25120.7, + "end": 25122.42, + "probability": 0.9262 + }, + { + "start": 25122.52, + "end": 25124.02, + "probability": 0.842 + }, + { + "start": 25124.72, + "end": 25126.5, + "probability": 0.8955 + }, + { + "start": 25126.56, + "end": 25127.05, + "probability": 0.8081 + }, + { + "start": 25127.87, + "end": 25130.34, + "probability": 0.8739 + }, + { + "start": 25130.44, + "end": 25131.98, + "probability": 0.9451 + }, + { + "start": 25132.66, + "end": 25133.45, + "probability": 0.7534 + }, + { + "start": 25133.94, + "end": 25135.3, + "probability": 0.6933 + }, + { + "start": 25136.52, + "end": 25141.16, + "probability": 0.7474 + }, + { + "start": 25142.16, + "end": 25144.26, + "probability": 0.9521 + }, + { + "start": 25145.64, + "end": 25149.82, + "probability": 0.9949 + }, + { + "start": 25150.56, + "end": 25153.74, + "probability": 0.3579 + }, + { + "start": 25154.88, + "end": 25158.52, + "probability": 0.9616 + }, + { + "start": 25158.88, + "end": 25162.52, + "probability": 0.8025 + }, + { + "start": 25162.9, + "end": 25164.92, + "probability": 0.6342 + }, + { + "start": 25165.88, + "end": 25166.04, + "probability": 0.5648 + }, + { + "start": 25166.12, + "end": 25166.64, + "probability": 0.9062 + }, + { + "start": 25166.76, + "end": 25170.32, + "probability": 0.9396 + }, + { + "start": 25170.72, + "end": 25173.38, + "probability": 0.8267 + }, + { + "start": 25173.6, + "end": 25176.4, + "probability": 0.9855 + }, + { + "start": 25177.12, + "end": 25180.4, + "probability": 0.9578 + }, + { + "start": 25180.42, + "end": 25181.38, + "probability": 0.9705 + }, + { + "start": 25181.4, + "end": 25186.06, + "probability": 0.9678 + }, + { + "start": 25188.91, + "end": 25192.7, + "probability": 0.978 + }, + { + "start": 25193.52, + "end": 25194.36, + "probability": 0.7449 + }, + { + "start": 25194.56, + "end": 25197.16, + "probability": 0.8208 + }, + { + "start": 25198.56, + "end": 25199.28, + "probability": 0.3691 + }, + { + "start": 25199.34, + "end": 25200.04, + "probability": 0.8103 + }, + { + "start": 25200.9, + "end": 25201.74, + "probability": 0.508 + }, + { + "start": 25201.74, + "end": 25201.84, + "probability": 0.185 + }, + { + "start": 25201.96, + "end": 25205.16, + "probability": 0.3626 + }, + { + "start": 25205.3, + "end": 25208.34, + "probability": 0.9348 + }, + { + "start": 25208.76, + "end": 25209.0, + "probability": 0.1663 + }, + { + "start": 25209.0, + "end": 25210.2, + "probability": 0.5305 + }, + { + "start": 25210.56, + "end": 25211.74, + "probability": 0.6851 + }, + { + "start": 25211.94, + "end": 25219.88, + "probability": 0.717 + }, + { + "start": 25220.9, + "end": 25224.98, + "probability": 0.8823 + }, + { + "start": 25225.88, + "end": 25226.68, + "probability": 0.2979 + }, + { + "start": 25234.52, + "end": 25234.96, + "probability": 0.2413 + }, + { + "start": 25243.44, + "end": 25245.3, + "probability": 0.1725 + }, + { + "start": 25245.3, + "end": 25247.48, + "probability": 0.1889 + }, + { + "start": 25247.66, + "end": 25250.44, + "probability": 0.5742 + }, + { + "start": 25253.22, + "end": 25255.28, + "probability": 0.8522 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.0, + "end": 25347.0, + "probability": 0.0 + }, + { + "start": 25347.64, + "end": 25347.87, + "probability": 0.1885 + }, + { + "start": 25348.52, + "end": 25352.44, + "probability": 0.8448 + }, + { + "start": 25353.16, + "end": 25357.22, + "probability": 0.8528 + }, + { + "start": 25357.88, + "end": 25362.76, + "probability": 0.9171 + }, + { + "start": 25362.78, + "end": 25363.8, + "probability": 0.8139 + }, + { + "start": 25363.84, + "end": 25365.9, + "probability": 0.5793 + }, + { + "start": 25366.36, + "end": 25367.53, + "probability": 0.7759 + }, + { + "start": 25368.66, + "end": 25368.9, + "probability": 0.153 + } + ], + "segments_count": 8939, + "words_count": 45276, + "avg_words_per_segment": 5.065, + "avg_segment_duration": 1.9935, + "avg_words_per_minute": 106.9493, + "plenum_id": "4300", + "duration": 25400.45, + "title": null, + "plenum_date": "2009-10-28" +} \ No newline at end of file