diff --git "a/103250/metadata.json" "b/103250/metadata.json" new file mode 100644--- /dev/null +++ "b/103250/metadata.json" @@ -0,0 +1,12307 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "103250", + "quality_score": 0.9174, + "per_segment_quality_scores": [ + { + "start": 82.98, + "end": 84.1, + "probability": 0.8169 + }, + { + "start": 84.28, + "end": 86.1, + "probability": 0.3335 + }, + { + "start": 86.26, + "end": 94.46, + "probability": 0.8942 + }, + { + "start": 95.26, + "end": 98.1, + "probability": 0.8823 + }, + { + "start": 98.3, + "end": 98.74, + "probability": 0.7539 + }, + { + "start": 101.48, + "end": 104.2, + "probability": 0.8204 + }, + { + "start": 104.74, + "end": 106.14, + "probability": 0.7592 + }, + { + "start": 106.48, + "end": 107.18, + "probability": 0.6468 + }, + { + "start": 107.2, + "end": 108.34, + "probability": 0.8095 + }, + { + "start": 108.98, + "end": 112.4, + "probability": 0.866 + }, + { + "start": 113.02, + "end": 115.28, + "probability": 0.5294 + }, + { + "start": 116.82, + "end": 117.96, + "probability": 0.7406 + }, + { + "start": 119.08, + "end": 121.64, + "probability": 0.7217 + }, + { + "start": 122.4, + "end": 124.4, + "probability": 0.7324 + }, + { + "start": 125.8, + "end": 126.04, + "probability": 0.0045 + }, + { + "start": 161.34, + "end": 162.96, + "probability": 0.6169 + }, + { + "start": 165.95, + "end": 168.8, + "probability": 0.9572 + }, + { + "start": 168.94, + "end": 169.72, + "probability": 0.7455 + }, + { + "start": 169.8, + "end": 171.34, + "probability": 0.669 + }, + { + "start": 172.28, + "end": 176.14, + "probability": 0.9247 + }, + { + "start": 176.36, + "end": 177.34, + "probability": 0.8091 + }, + { + "start": 177.79, + "end": 179.28, + "probability": 0.0056 + }, + { + "start": 179.84, + "end": 180.54, + "probability": 0.7722 + }, + { + "start": 181.54, + "end": 184.29, + "probability": 0.9814 + }, + { + "start": 185.2, + "end": 188.66, + "probability": 0.9419 + }, + { + "start": 188.66, + "end": 191.38, + "probability": 0.9806 + }, + { + "start": 191.68, + "end": 192.72, + "probability": 0.5934 + }, + { + "start": 192.72, + "end": 195.94, + "probability": 0.9595 + }, + { + "start": 196.88, + "end": 201.02, + "probability": 0.9418 + }, + { + "start": 206.0, + "end": 208.42, + "probability": 0.505 + }, + { + "start": 208.84, + "end": 211.94, + "probability": 0.9188 + }, + { + "start": 212.52, + "end": 213.16, + "probability": 0.8026 + }, + { + "start": 213.82, + "end": 217.3, + "probability": 0.6256 + }, + { + "start": 217.46, + "end": 219.26, + "probability": 0.9951 + }, + { + "start": 221.3, + "end": 223.47, + "probability": 0.1107 + }, + { + "start": 224.02, + "end": 224.96, + "probability": 0.5429 + }, + { + "start": 225.2, + "end": 225.36, + "probability": 0.79 + }, + { + "start": 225.86, + "end": 230.12, + "probability": 0.9233 + }, + { + "start": 230.14, + "end": 231.34, + "probability": 0.4781 + }, + { + "start": 231.44, + "end": 233.7, + "probability": 0.9098 + }, + { + "start": 235.52, + "end": 236.86, + "probability": 0.9971 + }, + { + "start": 237.96, + "end": 239.9, + "probability": 0.545 + }, + { + "start": 241.06, + "end": 242.84, + "probability": 0.8647 + }, + { + "start": 243.04, + "end": 244.28, + "probability": 0.9945 + }, + { + "start": 245.26, + "end": 247.82, + "probability": 0.7532 + }, + { + "start": 248.72, + "end": 251.56, + "probability": 0.7728 + }, + { + "start": 251.86, + "end": 254.68, + "probability": 0.9569 + }, + { + "start": 255.74, + "end": 256.83, + "probability": 0.7565 + }, + { + "start": 257.24, + "end": 261.0, + "probability": 0.9935 + }, + { + "start": 261.0, + "end": 265.48, + "probability": 0.9871 + }, + { + "start": 266.08, + "end": 268.42, + "probability": 0.9824 + }, + { + "start": 268.9, + "end": 270.17, + "probability": 0.7339 + }, + { + "start": 270.9, + "end": 274.9, + "probability": 0.8966 + }, + { + "start": 275.24, + "end": 276.93, + "probability": 0.9375 + }, + { + "start": 280.48, + "end": 283.4, + "probability": 0.98 + }, + { + "start": 284.18, + "end": 285.3, + "probability": 0.3025 + }, + { + "start": 285.98, + "end": 287.1, + "probability": 0.6198 + }, + { + "start": 288.24, + "end": 288.52, + "probability": 0.6513 + }, + { + "start": 289.1, + "end": 291.12, + "probability": 0.8283 + }, + { + "start": 291.24, + "end": 292.06, + "probability": 0.8567 + }, + { + "start": 292.36, + "end": 295.18, + "probability": 0.9266 + }, + { + "start": 295.42, + "end": 296.54, + "probability": 0.5762 + }, + { + "start": 299.0, + "end": 302.42, + "probability": 0.5352 + }, + { + "start": 302.42, + "end": 303.28, + "probability": 0.1544 + }, + { + "start": 303.36, + "end": 306.92, + "probability": 0.9383 + }, + { + "start": 307.0, + "end": 311.26, + "probability": 0.8619 + }, + { + "start": 312.42, + "end": 313.46, + "probability": 0.8642 + }, + { + "start": 313.6, + "end": 314.62, + "probability": 0.8559 + }, + { + "start": 314.66, + "end": 317.74, + "probability": 0.6926 + }, + { + "start": 317.74, + "end": 320.84, + "probability": 0.9761 + }, + { + "start": 322.08, + "end": 324.3, + "probability": 0.6842 + }, + { + "start": 324.84, + "end": 329.1, + "probability": 0.9788 + }, + { + "start": 329.66, + "end": 332.46, + "probability": 0.9954 + }, + { + "start": 332.96, + "end": 335.18, + "probability": 0.5211 + }, + { + "start": 335.62, + "end": 339.44, + "probability": 0.8269 + }, + { + "start": 339.66, + "end": 341.84, + "probability": 0.9114 + }, + { + "start": 342.86, + "end": 345.28, + "probability": 0.9376 + }, + { + "start": 345.54, + "end": 346.44, + "probability": 0.7364 + }, + { + "start": 346.52, + "end": 348.02, + "probability": 0.4373 + }, + { + "start": 348.04, + "end": 349.74, + "probability": 0.6768 + }, + { + "start": 350.48, + "end": 352.86, + "probability": 0.0979 + }, + { + "start": 352.9, + "end": 353.74, + "probability": 0.3807 + }, + { + "start": 354.04, + "end": 354.56, + "probability": 0.6542 + }, + { + "start": 355.56, + "end": 360.98, + "probability": 0.8679 + }, + { + "start": 363.34, + "end": 364.98, + "probability": 0.6371 + }, + { + "start": 365.08, + "end": 368.8, + "probability": 0.8384 + }, + { + "start": 369.14, + "end": 373.04, + "probability": 0.9603 + }, + { + "start": 373.5, + "end": 375.92, + "probability": 0.9164 + }, + { + "start": 376.06, + "end": 379.56, + "probability": 0.7796 + }, + { + "start": 379.56, + "end": 383.44, + "probability": 0.9964 + }, + { + "start": 384.16, + "end": 387.62, + "probability": 0.9984 + }, + { + "start": 388.01, + "end": 391.72, + "probability": 0.9772 + }, + { + "start": 391.76, + "end": 393.04, + "probability": 0.8519 + }, + { + "start": 393.04, + "end": 393.84, + "probability": 0.9005 + }, + { + "start": 394.4, + "end": 395.42, + "probability": 0.8048 + }, + { + "start": 395.42, + "end": 396.92, + "probability": 0.9839 + }, + { + "start": 397.14, + "end": 399.0, + "probability": 0.8556 + }, + { + "start": 399.14, + "end": 399.4, + "probability": 0.8112 + }, + { + "start": 399.56, + "end": 402.34, + "probability": 0.9044 + }, + { + "start": 402.42, + "end": 405.98, + "probability": 0.9967 + }, + { + "start": 406.44, + "end": 411.04, + "probability": 0.4872 + }, + { + "start": 411.34, + "end": 413.94, + "probability": 0.9591 + }, + { + "start": 415.02, + "end": 417.94, + "probability": 0.9445 + }, + { + "start": 418.04, + "end": 418.9, + "probability": 0.4629 + }, + { + "start": 419.48, + "end": 422.26, + "probability": 0.8862 + }, + { + "start": 422.88, + "end": 425.98, + "probability": 0.9779 + }, + { + "start": 426.64, + "end": 432.77, + "probability": 0.993 + }, + { + "start": 433.54, + "end": 434.96, + "probability": 0.9722 + }, + { + "start": 435.76, + "end": 437.8, + "probability": 0.8946 + }, + { + "start": 438.72, + "end": 442.68, + "probability": 0.9914 + }, + { + "start": 443.2, + "end": 448.36, + "probability": 0.8697 + }, + { + "start": 448.46, + "end": 449.92, + "probability": 0.8959 + }, + { + "start": 450.36, + "end": 452.42, + "probability": 0.9311 + }, + { + "start": 453.16, + "end": 458.8, + "probability": 0.9965 + }, + { + "start": 459.4, + "end": 464.8, + "probability": 0.9745 + }, + { + "start": 465.46, + "end": 470.0, + "probability": 0.9682 + }, + { + "start": 470.66, + "end": 474.88, + "probability": 0.994 + }, + { + "start": 474.88, + "end": 479.08, + "probability": 0.9709 + }, + { + "start": 479.24, + "end": 479.54, + "probability": 0.776 + }, + { + "start": 480.22, + "end": 480.72, + "probability": 0.5556 + }, + { + "start": 480.8, + "end": 482.82, + "probability": 0.7017 + }, + { + "start": 492.3, + "end": 494.96, + "probability": 0.8006 + }, + { + "start": 495.52, + "end": 497.2, + "probability": 0.9634 + }, + { + "start": 498.32, + "end": 501.8, + "probability": 0.7936 + }, + { + "start": 502.42, + "end": 502.94, + "probability": 0.7292 + }, + { + "start": 502.94, + "end": 504.0, + "probability": 0.5175 + }, + { + "start": 504.08, + "end": 505.08, + "probability": 0.552 + }, + { + "start": 505.14, + "end": 506.0, + "probability": 0.7737 + }, + { + "start": 506.08, + "end": 507.0, + "probability": 0.9175 + }, + { + "start": 508.1, + "end": 513.4, + "probability": 0.8835 + }, + { + "start": 514.62, + "end": 517.3, + "probability": 0.9879 + }, + { + "start": 518.04, + "end": 520.58, + "probability": 0.8601 + }, + { + "start": 521.68, + "end": 524.6, + "probability": 0.965 + }, + { + "start": 524.82, + "end": 527.86, + "probability": 0.9861 + }, + { + "start": 529.02, + "end": 530.86, + "probability": 0.9902 + }, + { + "start": 531.26, + "end": 533.44, + "probability": 0.9951 + }, + { + "start": 534.42, + "end": 539.38, + "probability": 0.9775 + }, + { + "start": 540.18, + "end": 540.74, + "probability": 0.7065 + }, + { + "start": 541.54, + "end": 542.18, + "probability": 0.7078 + }, + { + "start": 542.74, + "end": 542.92, + "probability": 0.6538 + }, + { + "start": 543.42, + "end": 543.92, + "probability": 0.5338 + }, + { + "start": 543.96, + "end": 546.18, + "probability": 0.8668 + }, + { + "start": 556.6, + "end": 557.8, + "probability": 0.7758 + }, + { + "start": 558.3, + "end": 559.44, + "probability": 0.7422 + }, + { + "start": 559.7, + "end": 560.26, + "probability": 0.6499 + }, + { + "start": 561.88, + "end": 563.25, + "probability": 0.9824 + }, + { + "start": 563.66, + "end": 565.64, + "probability": 0.9893 + }, + { + "start": 567.0, + "end": 568.46, + "probability": 0.976 + }, + { + "start": 569.06, + "end": 570.91, + "probability": 0.9962 + }, + { + "start": 571.02, + "end": 574.12, + "probability": 0.9975 + }, + { + "start": 574.82, + "end": 577.16, + "probability": 0.7116 + }, + { + "start": 578.02, + "end": 580.08, + "probability": 0.9761 + }, + { + "start": 580.56, + "end": 581.46, + "probability": 0.8394 + }, + { + "start": 581.56, + "end": 582.46, + "probability": 0.7839 + }, + { + "start": 583.1, + "end": 585.22, + "probability": 0.6147 + }, + { + "start": 585.9, + "end": 588.0, + "probability": 0.9625 + }, + { + "start": 589.06, + "end": 590.34, + "probability": 0.9963 + }, + { + "start": 591.72, + "end": 592.4, + "probability": 0.7946 + }, + { + "start": 593.32, + "end": 594.1, + "probability": 0.835 + }, + { + "start": 594.22, + "end": 598.8, + "probability": 0.8045 + }, + { + "start": 600.48, + "end": 602.72, + "probability": 0.8978 + }, + { + "start": 603.46, + "end": 604.98, + "probability": 0.9364 + }, + { + "start": 605.08, + "end": 607.62, + "probability": 0.051 + }, + { + "start": 607.62, + "end": 608.4, + "probability": 0.233 + }, + { + "start": 608.4, + "end": 612.46, + "probability": 0.9812 + }, + { + "start": 613.5, + "end": 614.3, + "probability": 0.7834 + }, + { + "start": 615.08, + "end": 617.02, + "probability": 0.9985 + }, + { + "start": 617.84, + "end": 621.43, + "probability": 0.9951 + }, + { + "start": 621.74, + "end": 625.48, + "probability": 0.9858 + }, + { + "start": 626.02, + "end": 627.18, + "probability": 0.8386 + }, + { + "start": 628.4, + "end": 630.54, + "probability": 0.9979 + }, + { + "start": 630.92, + "end": 633.8, + "probability": 0.9976 + }, + { + "start": 634.44, + "end": 639.48, + "probability": 0.9951 + }, + { + "start": 639.6, + "end": 640.06, + "probability": 0.4409 + }, + { + "start": 640.54, + "end": 643.94, + "probability": 0.9946 + }, + { + "start": 643.94, + "end": 647.38, + "probability": 0.9969 + }, + { + "start": 647.94, + "end": 648.82, + "probability": 0.9062 + }, + { + "start": 652.4, + "end": 652.92, + "probability": 0.6098 + }, + { + "start": 652.98, + "end": 654.26, + "probability": 0.9251 + }, + { + "start": 660.3, + "end": 662.96, + "probability": 0.6834 + }, + { + "start": 663.78, + "end": 668.42, + "probability": 0.9931 + }, + { + "start": 668.7, + "end": 671.08, + "probability": 0.9979 + }, + { + "start": 671.16, + "end": 672.82, + "probability": 0.886 + }, + { + "start": 672.98, + "end": 673.36, + "probability": 0.5664 + }, + { + "start": 675.18, + "end": 675.84, + "probability": 0.8995 + }, + { + "start": 675.92, + "end": 678.36, + "probability": 0.7922 + }, + { + "start": 678.9, + "end": 679.9, + "probability": 0.7582 + }, + { + "start": 680.06, + "end": 681.9, + "probability": 0.842 + }, + { + "start": 681.96, + "end": 683.04, + "probability": 0.9493 + }, + { + "start": 683.1, + "end": 685.42, + "probability": 0.7117 + }, + { + "start": 685.52, + "end": 685.78, + "probability": 0.8253 + }, + { + "start": 685.88, + "end": 689.0, + "probability": 0.9883 + }, + { + "start": 689.02, + "end": 692.32, + "probability": 0.9812 + }, + { + "start": 692.68, + "end": 694.04, + "probability": 0.4923 + }, + { + "start": 694.44, + "end": 695.58, + "probability": 0.573 + }, + { + "start": 695.62, + "end": 696.12, + "probability": 0.5634 + }, + { + "start": 696.2, + "end": 697.46, + "probability": 0.9507 + }, + { + "start": 698.28, + "end": 699.55, + "probability": 0.94 + }, + { + "start": 699.94, + "end": 704.32, + "probability": 0.5324 + }, + { + "start": 705.16, + "end": 706.9, + "probability": 0.9128 + }, + { + "start": 707.44, + "end": 708.41, + "probability": 0.7924 + }, + { + "start": 708.74, + "end": 710.88, + "probability": 0.8381 + }, + { + "start": 711.42, + "end": 714.98, + "probability": 0.9859 + }, + { + "start": 715.76, + "end": 716.58, + "probability": 0.8325 + }, + { + "start": 717.12, + "end": 719.22, + "probability": 0.9909 + }, + { + "start": 720.16, + "end": 720.44, + "probability": 0.7999 + }, + { + "start": 721.0, + "end": 726.1, + "probability": 0.7787 + }, + { + "start": 726.74, + "end": 732.52, + "probability": 0.9863 + }, + { + "start": 732.86, + "end": 733.12, + "probability": 0.8406 + }, + { + "start": 734.0, + "end": 734.64, + "probability": 0.7723 + }, + { + "start": 741.82, + "end": 746.3, + "probability": 0.8717 + }, + { + "start": 746.8, + "end": 751.52, + "probability": 0.9181 + }, + { + "start": 751.64, + "end": 754.46, + "probability": 0.9218 + }, + { + "start": 755.78, + "end": 756.51, + "probability": 0.4267 + }, + { + "start": 765.44, + "end": 769.8, + "probability": 0.8906 + }, + { + "start": 770.34, + "end": 770.58, + "probability": 0.0347 + }, + { + "start": 770.58, + "end": 770.58, + "probability": 0.1767 + }, + { + "start": 770.58, + "end": 770.58, + "probability": 0.2275 + }, + { + "start": 770.58, + "end": 770.58, + "probability": 0.1378 + }, + { + "start": 770.58, + "end": 771.6, + "probability": 0.4495 + }, + { + "start": 772.64, + "end": 773.66, + "probability": 0.733 + }, + { + "start": 778.5, + "end": 778.76, + "probability": 0.4769 + }, + { + "start": 796.28, + "end": 796.28, + "probability": 0.1728 + }, + { + "start": 796.28, + "end": 796.51, + "probability": 0.2109 + }, + { + "start": 796.8, + "end": 797.28, + "probability": 0.0513 + }, + { + "start": 812.76, + "end": 816.06, + "probability": 0.4305 + }, + { + "start": 816.06, + "end": 819.52, + "probability": 0.8828 + }, + { + "start": 820.7, + "end": 823.96, + "probability": 0.8373 + }, + { + "start": 824.06, + "end": 825.38, + "probability": 0.7246 + }, + { + "start": 826.28, + "end": 827.08, + "probability": 0.4811 + }, + { + "start": 828.1, + "end": 828.92, + "probability": 0.8812 + }, + { + "start": 829.04, + "end": 830.04, + "probability": 0.9055 + }, + { + "start": 830.08, + "end": 833.08, + "probability": 0.9781 + }, + { + "start": 833.08, + "end": 835.86, + "probability": 0.995 + }, + { + "start": 837.7, + "end": 840.61, + "probability": 0.9939 + }, + { + "start": 841.56, + "end": 843.1, + "probability": 0.7926 + }, + { + "start": 843.16, + "end": 843.82, + "probability": 0.9197 + }, + { + "start": 843.96, + "end": 845.5, + "probability": 0.7393 + }, + { + "start": 845.98, + "end": 846.8, + "probability": 0.9061 + }, + { + "start": 847.48, + "end": 849.4, + "probability": 0.9935 + }, + { + "start": 849.4, + "end": 852.8, + "probability": 0.9893 + }, + { + "start": 853.76, + "end": 855.21, + "probability": 0.994 + }, + { + "start": 856.34, + "end": 858.38, + "probability": 0.9984 + }, + { + "start": 859.41, + "end": 861.8, + "probability": 0.9888 + }, + { + "start": 861.94, + "end": 864.6, + "probability": 0.9578 + }, + { + "start": 864.7, + "end": 865.36, + "probability": 0.8325 + }, + { + "start": 866.14, + "end": 868.36, + "probability": 0.9774 + }, + { + "start": 868.4, + "end": 870.42, + "probability": 0.8989 + }, + { + "start": 871.46, + "end": 874.86, + "probability": 0.9856 + }, + { + "start": 874.98, + "end": 877.52, + "probability": 0.8255 + }, + { + "start": 878.24, + "end": 880.0, + "probability": 0.8963 + }, + { + "start": 880.18, + "end": 882.18, + "probability": 0.9946 + }, + { + "start": 882.2, + "end": 883.5, + "probability": 0.8778 + }, + { + "start": 883.66, + "end": 885.56, + "probability": 0.699 + }, + { + "start": 886.48, + "end": 887.44, + "probability": 0.5286 + }, + { + "start": 887.5, + "end": 891.84, + "probability": 0.9425 + }, + { + "start": 893.01, + "end": 898.02, + "probability": 0.9774 + }, + { + "start": 898.28, + "end": 902.06, + "probability": 0.9743 + }, + { + "start": 902.12, + "end": 905.68, + "probability": 0.9985 + }, + { + "start": 906.26, + "end": 908.58, + "probability": 0.9868 + }, + { + "start": 909.5, + "end": 910.02, + "probability": 0.9575 + }, + { + "start": 910.96, + "end": 918.72, + "probability": 0.9473 + }, + { + "start": 918.86, + "end": 920.26, + "probability": 0.9496 + }, + { + "start": 920.96, + "end": 921.88, + "probability": 0.9743 + }, + { + "start": 922.54, + "end": 923.74, + "probability": 0.9896 + }, + { + "start": 923.84, + "end": 924.4, + "probability": 0.7776 + }, + { + "start": 924.48, + "end": 925.48, + "probability": 0.7714 + }, + { + "start": 925.48, + "end": 926.24, + "probability": 0.9155 + }, + { + "start": 926.84, + "end": 929.48, + "probability": 0.9891 + }, + { + "start": 930.6, + "end": 932.88, + "probability": 0.985 + }, + { + "start": 933.48, + "end": 935.52, + "probability": 0.9519 + }, + { + "start": 936.92, + "end": 937.59, + "probability": 0.4997 + }, + { + "start": 938.56, + "end": 938.76, + "probability": 0.5614 + }, + { + "start": 939.82, + "end": 941.48, + "probability": 0.849 + }, + { + "start": 942.06, + "end": 944.32, + "probability": 0.9842 + }, + { + "start": 945.4, + "end": 946.24, + "probability": 0.4215 + }, + { + "start": 946.38, + "end": 949.4, + "probability": 0.8861 + }, + { + "start": 949.64, + "end": 953.84, + "probability": 0.9959 + }, + { + "start": 953.96, + "end": 957.5, + "probability": 0.9792 + }, + { + "start": 958.1, + "end": 962.58, + "probability": 0.9906 + }, + { + "start": 962.58, + "end": 966.1, + "probability": 0.9973 + }, + { + "start": 967.12, + "end": 968.38, + "probability": 0.9833 + }, + { + "start": 968.76, + "end": 968.94, + "probability": 0.445 + }, + { + "start": 969.08, + "end": 969.26, + "probability": 0.8386 + }, + { + "start": 969.36, + "end": 970.92, + "probability": 0.9744 + }, + { + "start": 970.96, + "end": 971.92, + "probability": 0.8968 + }, + { + "start": 972.74, + "end": 974.6, + "probability": 0.9497 + }, + { + "start": 975.54, + "end": 977.3, + "probability": 0.924 + }, + { + "start": 978.06, + "end": 981.12, + "probability": 0.9011 + }, + { + "start": 981.12, + "end": 983.06, + "probability": 0.999 + }, + { + "start": 983.1, + "end": 983.64, + "probability": 0.6459 + }, + { + "start": 984.06, + "end": 985.64, + "probability": 0.999 + }, + { + "start": 985.86, + "end": 986.0, + "probability": 0.6013 + }, + { + "start": 988.1, + "end": 988.5, + "probability": 0.699 + }, + { + "start": 988.6, + "end": 989.4, + "probability": 0.6387 + }, + { + "start": 989.68, + "end": 990.98, + "probability": 0.9972 + }, + { + "start": 991.36, + "end": 993.88, + "probability": 0.0063 + }, + { + "start": 994.86, + "end": 994.86, + "probability": 0.1714 + }, + { + "start": 995.04, + "end": 997.2, + "probability": 0.8433 + }, + { + "start": 997.3, + "end": 999.38, + "probability": 0.9889 + }, + { + "start": 1001.22, + "end": 1003.44, + "probability": 0.9717 + }, + { + "start": 1004.16, + "end": 1007.2, + "probability": 0.9919 + }, + { + "start": 1007.28, + "end": 1012.14, + "probability": 0.9929 + }, + { + "start": 1012.56, + "end": 1014.04, + "probability": 0.9951 + }, + { + "start": 1014.58, + "end": 1015.7, + "probability": 0.9619 + }, + { + "start": 1016.12, + "end": 1017.94, + "probability": 0.9985 + }, + { + "start": 1018.22, + "end": 1019.34, + "probability": 0.9746 + }, + { + "start": 1019.48, + "end": 1022.22, + "probability": 0.9582 + }, + { + "start": 1025.36, + "end": 1025.48, + "probability": 0.0648 + }, + { + "start": 1025.48, + "end": 1025.48, + "probability": 0.0692 + }, + { + "start": 1025.48, + "end": 1026.28, + "probability": 0.4475 + }, + { + "start": 1026.4, + "end": 1026.88, + "probability": 0.2212 + }, + { + "start": 1027.38, + "end": 1029.46, + "probability": 0.6931 + }, + { + "start": 1030.26, + "end": 1034.52, + "probability": 0.9969 + }, + { + "start": 1035.02, + "end": 1036.65, + "probability": 0.9213 + }, + { + "start": 1037.2, + "end": 1040.34, + "probability": 0.9987 + }, + { + "start": 1040.6, + "end": 1044.38, + "probability": 0.9966 + }, + { + "start": 1044.54, + "end": 1046.32, + "probability": 0.9438 + }, + { + "start": 1046.84, + "end": 1048.75, + "probability": 0.9971 + }, + { + "start": 1049.74, + "end": 1050.73, + "probability": 0.9785 + }, + { + "start": 1051.68, + "end": 1052.9, + "probability": 0.9631 + }, + { + "start": 1053.12, + "end": 1054.68, + "probability": 0.3567 + }, + { + "start": 1055.18, + "end": 1056.5, + "probability": 0.415 + }, + { + "start": 1056.58, + "end": 1061.58, + "probability": 0.9513 + }, + { + "start": 1062.34, + "end": 1065.16, + "probability": 0.9936 + }, + { + "start": 1065.36, + "end": 1069.96, + "probability": 0.9946 + }, + { + "start": 1069.96, + "end": 1072.54, + "probability": 0.9982 + }, + { + "start": 1072.62, + "end": 1073.02, + "probability": 0.9259 + }, + { + "start": 1073.7, + "end": 1074.98, + "probability": 0.9993 + }, + { + "start": 1075.24, + "end": 1076.38, + "probability": 0.9537 + }, + { + "start": 1077.02, + "end": 1080.02, + "probability": 0.9803 + }, + { + "start": 1080.7, + "end": 1083.46, + "probability": 0.8917 + }, + { + "start": 1084.78, + "end": 1087.32, + "probability": 0.8717 + }, + { + "start": 1087.92, + "end": 1089.74, + "probability": 0.874 + }, + { + "start": 1090.44, + "end": 1091.34, + "probability": 0.9009 + }, + { + "start": 1091.46, + "end": 1094.12, + "probability": 0.9943 + }, + { + "start": 1094.62, + "end": 1096.08, + "probability": 0.9945 + }, + { + "start": 1096.18, + "end": 1097.62, + "probability": 0.9984 + }, + { + "start": 1098.14, + "end": 1099.18, + "probability": 0.9977 + }, + { + "start": 1100.14, + "end": 1102.72, + "probability": 0.9877 + }, + { + "start": 1102.78, + "end": 1103.88, + "probability": 0.9844 + }, + { + "start": 1104.68, + "end": 1108.08, + "probability": 0.8706 + }, + { + "start": 1108.74, + "end": 1110.58, + "probability": 0.9617 + }, + { + "start": 1111.04, + "end": 1111.44, + "probability": 0.6341 + }, + { + "start": 1111.62, + "end": 1111.96, + "probability": 0.9404 + }, + { + "start": 1112.02, + "end": 1114.48, + "probability": 0.8485 + }, + { + "start": 1114.66, + "end": 1117.7, + "probability": 0.97 + }, + { + "start": 1118.24, + "end": 1119.59, + "probability": 0.897 + }, + { + "start": 1119.7, + "end": 1121.62, + "probability": 0.999 + }, + { + "start": 1122.9, + "end": 1126.06, + "probability": 0.9108 + }, + { + "start": 1126.14, + "end": 1126.75, + "probability": 0.9845 + }, + { + "start": 1127.1, + "end": 1128.08, + "probability": 0.933 + }, + { + "start": 1128.82, + "end": 1131.24, + "probability": 0.9722 + }, + { + "start": 1132.04, + "end": 1135.88, + "probability": 0.999 + }, + { + "start": 1136.3, + "end": 1138.66, + "probability": 0.8836 + }, + { + "start": 1139.68, + "end": 1140.74, + "probability": 0.8621 + }, + { + "start": 1141.42, + "end": 1143.64, + "probability": 0.4622 + }, + { + "start": 1143.64, + "end": 1146.02, + "probability": 0.9866 + }, + { + "start": 1146.7, + "end": 1148.86, + "probability": 0.9851 + }, + { + "start": 1149.96, + "end": 1150.92, + "probability": 0.9995 + }, + { + "start": 1151.78, + "end": 1155.9, + "probability": 0.9965 + }, + { + "start": 1156.87, + "end": 1159.8, + "probability": 0.8196 + }, + { + "start": 1160.0, + "end": 1163.06, + "probability": 0.9264 + }, + { + "start": 1164.22, + "end": 1164.54, + "probability": 0.6624 + }, + { + "start": 1164.8, + "end": 1167.26, + "probability": 0.9766 + }, + { + "start": 1167.44, + "end": 1168.36, + "probability": 0.8945 + }, + { + "start": 1168.4, + "end": 1168.8, + "probability": 0.9414 + }, + { + "start": 1169.36, + "end": 1170.16, + "probability": 0.9141 + }, + { + "start": 1170.76, + "end": 1174.24, + "probability": 0.708 + }, + { + "start": 1174.68, + "end": 1177.04, + "probability": 0.701 + }, + { + "start": 1177.2, + "end": 1179.86, + "probability": 0.7571 + }, + { + "start": 1180.44, + "end": 1182.2, + "probability": 0.9863 + }, + { + "start": 1182.78, + "end": 1185.06, + "probability": 0.9922 + }, + { + "start": 1185.48, + "end": 1188.18, + "probability": 0.9702 + }, + { + "start": 1188.34, + "end": 1188.54, + "probability": 0.3864 + }, + { + "start": 1188.64, + "end": 1189.1, + "probability": 0.9357 + }, + { + "start": 1189.48, + "end": 1191.56, + "probability": 0.9771 + }, + { + "start": 1191.66, + "end": 1192.54, + "probability": 0.9949 + }, + { + "start": 1192.64, + "end": 1193.48, + "probability": 0.9971 + }, + { + "start": 1194.16, + "end": 1195.74, + "probability": 0.9977 + }, + { + "start": 1196.42, + "end": 1197.86, + "probability": 0.7751 + }, + { + "start": 1197.98, + "end": 1198.6, + "probability": 0.6799 + }, + { + "start": 1199.12, + "end": 1199.92, + "probability": 0.6595 + }, + { + "start": 1201.56, + "end": 1204.04, + "probability": 0.9415 + }, + { + "start": 1210.84, + "end": 1213.92, + "probability": 0.7362 + }, + { + "start": 1214.38, + "end": 1214.44, + "probability": 0.1661 + }, + { + "start": 1215.18, + "end": 1216.54, + "probability": 0.2244 + }, + { + "start": 1216.72, + "end": 1217.14, + "probability": 0.2265 + }, + { + "start": 1217.26, + "end": 1217.26, + "probability": 0.2037 + }, + { + "start": 1217.26, + "end": 1217.44, + "probability": 0.2517 + }, + { + "start": 1217.56, + "end": 1217.94, + "probability": 0.1993 + }, + { + "start": 1238.52, + "end": 1239.18, + "probability": 0.7836 + }, + { + "start": 1239.38, + "end": 1239.74, + "probability": 0.4913 + }, + { + "start": 1239.84, + "end": 1240.12, + "probability": 0.8251 + }, + { + "start": 1240.2, + "end": 1240.38, + "probability": 0.653 + }, + { + "start": 1240.48, + "end": 1240.8, + "probability": 0.5849 + }, + { + "start": 1241.2, + "end": 1241.92, + "probability": 0.4055 + }, + { + "start": 1241.92, + "end": 1243.07, + "probability": 0.5497 + }, + { + "start": 1244.1, + "end": 1245.8, + "probability": 0.6395 + }, + { + "start": 1245.96, + "end": 1247.84, + "probability": 0.6589 + }, + { + "start": 1247.96, + "end": 1250.14, + "probability": 0.9982 + }, + { + "start": 1250.3, + "end": 1250.4, + "probability": 0.2116 + }, + { + "start": 1250.58, + "end": 1252.04, + "probability": 0.8351 + }, + { + "start": 1253.02, + "end": 1255.1, + "probability": 0.8322 + }, + { + "start": 1256.18, + "end": 1258.42, + "probability": 0.9889 + }, + { + "start": 1259.28, + "end": 1261.88, + "probability": 0.9761 + }, + { + "start": 1262.54, + "end": 1264.9, + "probability": 0.9869 + }, + { + "start": 1265.78, + "end": 1268.88, + "probability": 0.9873 + }, + { + "start": 1268.88, + "end": 1272.94, + "probability": 0.9893 + }, + { + "start": 1274.18, + "end": 1275.64, + "probability": 0.8514 + }, + { + "start": 1276.26, + "end": 1278.02, + "probability": 0.9956 + }, + { + "start": 1278.86, + "end": 1283.22, + "probability": 0.9878 + }, + { + "start": 1284.18, + "end": 1284.8, + "probability": 0.5227 + }, + { + "start": 1285.6, + "end": 1287.72, + "probability": 0.9374 + }, + { + "start": 1288.02, + "end": 1291.4, + "probability": 0.8254 + }, + { + "start": 1291.94, + "end": 1294.22, + "probability": 0.9159 + }, + { + "start": 1295.0, + "end": 1295.98, + "probability": 0.625 + }, + { + "start": 1296.58, + "end": 1297.86, + "probability": 0.6075 + }, + { + "start": 1298.6, + "end": 1299.32, + "probability": 0.6282 + }, + { + "start": 1299.74, + "end": 1300.26, + "probability": 0.5866 + }, + { + "start": 1300.94, + "end": 1301.7, + "probability": 0.9738 + }, + { + "start": 1302.8, + "end": 1305.8, + "probability": 0.9551 + }, + { + "start": 1306.5, + "end": 1312.08, + "probability": 0.9667 + }, + { + "start": 1312.56, + "end": 1313.1, + "probability": 0.8663 + }, + { + "start": 1313.66, + "end": 1314.32, + "probability": 0.8663 + }, + { + "start": 1314.94, + "end": 1315.66, + "probability": 0.8599 + }, + { + "start": 1316.22, + "end": 1318.18, + "probability": 0.9632 + }, + { + "start": 1320.76, + "end": 1323.94, + "probability": 0.9832 + }, + { + "start": 1324.14, + "end": 1325.48, + "probability": 0.9987 + }, + { + "start": 1325.54, + "end": 1326.26, + "probability": 0.6985 + }, + { + "start": 1326.38, + "end": 1328.24, + "probability": 0.6769 + }, + { + "start": 1328.82, + "end": 1330.06, + "probability": 0.9741 + }, + { + "start": 1330.88, + "end": 1332.1, + "probability": 0.8458 + }, + { + "start": 1332.4, + "end": 1332.72, + "probability": 0.0925 + }, + { + "start": 1332.94, + "end": 1335.3, + "probability": 0.9762 + }, + { + "start": 1335.3, + "end": 1339.08, + "probability": 0.5342 + }, + { + "start": 1339.14, + "end": 1339.66, + "probability": 0.5707 + }, + { + "start": 1340.62, + "end": 1342.22, + "probability": 0.9932 + }, + { + "start": 1342.36, + "end": 1344.08, + "probability": 0.5088 + }, + { + "start": 1345.24, + "end": 1347.08, + "probability": 0.7237 + }, + { + "start": 1347.66, + "end": 1348.32, + "probability": 0.9543 + }, + { + "start": 1348.96, + "end": 1349.88, + "probability": 0.5041 + }, + { + "start": 1350.76, + "end": 1352.22, + "probability": 0.7704 + }, + { + "start": 1352.9, + "end": 1357.74, + "probability": 0.9387 + }, + { + "start": 1358.68, + "end": 1359.28, + "probability": 0.9846 + }, + { + "start": 1359.94, + "end": 1363.84, + "probability": 0.9988 + }, + { + "start": 1364.46, + "end": 1368.12, + "probability": 0.8846 + }, + { + "start": 1369.04, + "end": 1370.3, + "probability": 0.7112 + }, + { + "start": 1370.62, + "end": 1372.6, + "probability": 0.2086 + }, + { + "start": 1372.84, + "end": 1374.38, + "probability": 0.7069 + }, + { + "start": 1374.76, + "end": 1377.12, + "probability": 0.9844 + }, + { + "start": 1377.22, + "end": 1378.6, + "probability": 0.9908 + }, + { + "start": 1379.72, + "end": 1381.36, + "probability": 0.9637 + }, + { + "start": 1382.06, + "end": 1382.68, + "probability": 0.9664 + }, + { + "start": 1383.66, + "end": 1387.78, + "probability": 0.9773 + }, + { + "start": 1388.42, + "end": 1394.66, + "probability": 0.9886 + }, + { + "start": 1395.32, + "end": 1398.86, + "probability": 0.9976 + }, + { + "start": 1400.54, + "end": 1403.6, + "probability": 0.9863 + }, + { + "start": 1404.36, + "end": 1405.52, + "probability": 0.9941 + }, + { + "start": 1406.14, + "end": 1406.66, + "probability": 0.9408 + }, + { + "start": 1407.84, + "end": 1408.84, + "probability": 0.7173 + }, + { + "start": 1409.4, + "end": 1410.48, + "probability": 0.8705 + }, + { + "start": 1410.84, + "end": 1414.74, + "probability": 0.9382 + }, + { + "start": 1415.52, + "end": 1415.94, + "probability": 0.674 + }, + { + "start": 1416.88, + "end": 1421.02, + "probability": 0.9944 + }, + { + "start": 1421.02, + "end": 1422.4, + "probability": 0.9434 + }, + { + "start": 1422.8, + "end": 1423.3, + "probability": 0.7562 + }, + { + "start": 1424.04, + "end": 1428.88, + "probability": 0.9875 + }, + { + "start": 1429.42, + "end": 1431.64, + "probability": 0.7601 + }, + { + "start": 1431.98, + "end": 1433.12, + "probability": 0.9968 + }, + { + "start": 1433.78, + "end": 1437.34, + "probability": 0.9412 + }, + { + "start": 1437.88, + "end": 1439.94, + "probability": 0.8958 + }, + { + "start": 1440.48, + "end": 1441.04, + "probability": 0.886 + }, + { + "start": 1441.5, + "end": 1441.92, + "probability": 0.89 + }, + { + "start": 1442.26, + "end": 1442.64, + "probability": 0.7627 + }, + { + "start": 1443.02, + "end": 1446.48, + "probability": 0.9868 + }, + { + "start": 1446.9, + "end": 1450.3, + "probability": 0.8992 + }, + { + "start": 1451.66, + "end": 1453.84, + "probability": 0.9717 + }, + { + "start": 1454.56, + "end": 1457.52, + "probability": 0.9927 + }, + { + "start": 1457.68, + "end": 1459.74, + "probability": 0.8077 + }, + { + "start": 1460.42, + "end": 1463.5, + "probability": 0.9681 + }, + { + "start": 1463.5, + "end": 1465.76, + "probability": 0.9901 + }, + { + "start": 1466.82, + "end": 1468.84, + "probability": 0.9724 + }, + { + "start": 1468.84, + "end": 1472.08, + "probability": 0.7778 + }, + { + "start": 1472.5, + "end": 1473.76, + "probability": 0.6958 + }, + { + "start": 1478.7, + "end": 1481.34, + "probability": 0.7971 + }, + { + "start": 1481.8, + "end": 1485.84, + "probability": 0.9493 + }, + { + "start": 1485.84, + "end": 1488.94, + "probability": 0.9966 + }, + { + "start": 1489.4, + "end": 1493.74, + "probability": 0.9965 + }, + { + "start": 1494.8, + "end": 1497.1, + "probability": 0.9912 + }, + { + "start": 1497.86, + "end": 1501.76, + "probability": 0.9814 + }, + { + "start": 1502.4, + "end": 1506.74, + "probability": 0.9989 + }, + { + "start": 1507.44, + "end": 1509.0, + "probability": 0.871 + }, + { + "start": 1509.48, + "end": 1510.02, + "probability": 0.9419 + }, + { + "start": 1510.2, + "end": 1510.4, + "probability": 0.8333 + }, + { + "start": 1510.44, + "end": 1511.1, + "probability": 0.8598 + }, + { + "start": 1511.56, + "end": 1512.94, + "probability": 0.9798 + }, + { + "start": 1513.74, + "end": 1517.54, + "probability": 0.9822 + }, + { + "start": 1518.32, + "end": 1523.34, + "probability": 0.996 + }, + { + "start": 1524.0, + "end": 1528.0, + "probability": 0.8775 + }, + { + "start": 1528.64, + "end": 1530.04, + "probability": 0.9962 + }, + { + "start": 1531.42, + "end": 1534.74, + "probability": 0.9258 + }, + { + "start": 1536.04, + "end": 1540.22, + "probability": 0.9932 + }, + { + "start": 1540.84, + "end": 1543.48, + "probability": 0.9961 + }, + { + "start": 1543.48, + "end": 1546.36, + "probability": 0.999 + }, + { + "start": 1546.96, + "end": 1547.86, + "probability": 0.6581 + }, + { + "start": 1548.7, + "end": 1551.94, + "probability": 0.8692 + }, + { + "start": 1552.86, + "end": 1555.18, + "probability": 0.9948 + }, + { + "start": 1555.48, + "end": 1558.48, + "probability": 0.9761 + }, + { + "start": 1558.98, + "end": 1560.22, + "probability": 0.9908 + }, + { + "start": 1560.8, + "end": 1562.04, + "probability": 0.8566 + }, + { + "start": 1562.94, + "end": 1564.24, + "probability": 0.6647 + }, + { + "start": 1564.24, + "end": 1567.52, + "probability": 0.9434 + }, + { + "start": 1567.6, + "end": 1568.24, + "probability": 0.4659 + }, + { + "start": 1568.86, + "end": 1572.8, + "probability": 0.9808 + }, + { + "start": 1572.8, + "end": 1575.22, + "probability": 0.9917 + }, + { + "start": 1575.94, + "end": 1579.6, + "probability": 0.9932 + }, + { + "start": 1579.6, + "end": 1583.56, + "probability": 0.9937 + }, + { + "start": 1584.72, + "end": 1587.78, + "probability": 0.9841 + }, + { + "start": 1588.22, + "end": 1589.82, + "probability": 0.9553 + }, + { + "start": 1590.56, + "end": 1593.04, + "probability": 0.9949 + }, + { + "start": 1593.64, + "end": 1595.48, + "probability": 0.999 + }, + { + "start": 1595.48, + "end": 1599.52, + "probability": 0.9897 + }, + { + "start": 1599.84, + "end": 1602.24, + "probability": 0.9502 + }, + { + "start": 1602.74, + "end": 1603.94, + "probability": 0.8263 + }, + { + "start": 1604.76, + "end": 1609.08, + "probability": 0.9933 + }, + { + "start": 1609.56, + "end": 1611.22, + "probability": 0.9478 + }, + { + "start": 1611.6, + "end": 1616.4, + "probability": 0.9797 + }, + { + "start": 1617.06, + "end": 1619.02, + "probability": 0.9813 + }, + { + "start": 1619.58, + "end": 1621.86, + "probability": 0.9791 + }, + { + "start": 1622.38, + "end": 1624.64, + "probability": 0.9957 + }, + { + "start": 1625.2, + "end": 1627.8, + "probability": 0.9918 + }, + { + "start": 1628.03, + "end": 1631.24, + "probability": 0.9841 + }, + { + "start": 1631.58, + "end": 1632.26, + "probability": 0.9661 + }, + { + "start": 1632.94, + "end": 1633.3, + "probability": 0.7654 + }, + { + "start": 1634.64, + "end": 1635.16, + "probability": 0.6151 + }, + { + "start": 1635.16, + "end": 1636.22, + "probability": 0.9473 + }, + { + "start": 1644.82, + "end": 1645.0, + "probability": 0.4903 + }, + { + "start": 1663.92, + "end": 1665.12, + "probability": 0.7833 + }, + { + "start": 1665.88, + "end": 1666.92, + "probability": 0.8737 + }, + { + "start": 1668.34, + "end": 1670.64, + "probability": 0.6576 + }, + { + "start": 1672.12, + "end": 1672.84, + "probability": 0.9438 + }, + { + "start": 1673.44, + "end": 1673.78, + "probability": 0.7972 + }, + { + "start": 1674.3, + "end": 1675.68, + "probability": 0.875 + }, + { + "start": 1676.56, + "end": 1677.6, + "probability": 0.4431 + }, + { + "start": 1678.36, + "end": 1681.11, + "probability": 0.9985 + }, + { + "start": 1681.56, + "end": 1682.16, + "probability": 0.979 + }, + { + "start": 1684.08, + "end": 1685.44, + "probability": 0.9993 + }, + { + "start": 1685.76, + "end": 1687.2, + "probability": 0.9663 + }, + { + "start": 1688.66, + "end": 1693.16, + "probability": 0.9675 + }, + { + "start": 1693.78, + "end": 1695.54, + "probability": 0.9993 + }, + { + "start": 1696.7, + "end": 1698.22, + "probability": 0.7296 + }, + { + "start": 1700.36, + "end": 1701.6, + "probability": 0.8784 + }, + { + "start": 1702.2, + "end": 1702.58, + "probability": 0.848 + }, + { + "start": 1703.12, + "end": 1703.7, + "probability": 0.7976 + }, + { + "start": 1705.02, + "end": 1708.44, + "probability": 0.9124 + }, + { + "start": 1708.86, + "end": 1709.52, + "probability": 0.9731 + }, + { + "start": 1710.32, + "end": 1711.32, + "probability": 0.9993 + }, + { + "start": 1712.14, + "end": 1712.62, + "probability": 0.9899 + }, + { + "start": 1713.32, + "end": 1713.86, + "probability": 0.9847 + }, + { + "start": 1714.74, + "end": 1715.2, + "probability": 0.9495 + }, + { + "start": 1716.28, + "end": 1717.36, + "probability": 0.923 + }, + { + "start": 1718.98, + "end": 1719.82, + "probability": 0.9038 + }, + { + "start": 1721.12, + "end": 1727.96, + "probability": 0.9491 + }, + { + "start": 1728.84, + "end": 1731.42, + "probability": 0.8327 + }, + { + "start": 1732.72, + "end": 1736.9, + "probability": 0.9207 + }, + { + "start": 1738.54, + "end": 1741.06, + "probability": 0.9578 + }, + { + "start": 1742.24, + "end": 1744.24, + "probability": 0.9665 + }, + { + "start": 1744.72, + "end": 1746.54, + "probability": 0.9775 + }, + { + "start": 1747.54, + "end": 1748.42, + "probability": 0.9261 + }, + { + "start": 1749.66, + "end": 1753.92, + "probability": 0.9816 + }, + { + "start": 1754.84, + "end": 1757.86, + "probability": 0.9953 + }, + { + "start": 1758.5, + "end": 1759.28, + "probability": 0.9873 + }, + { + "start": 1760.72, + "end": 1761.82, + "probability": 0.9912 + }, + { + "start": 1762.7, + "end": 1765.88, + "probability": 0.9935 + }, + { + "start": 1766.96, + "end": 1768.24, + "probability": 0.9954 + }, + { + "start": 1769.52, + "end": 1770.76, + "probability": 0.9862 + }, + { + "start": 1771.7, + "end": 1772.32, + "probability": 0.9631 + }, + { + "start": 1772.94, + "end": 1773.66, + "probability": 0.8623 + }, + { + "start": 1774.58, + "end": 1775.76, + "probability": 0.9766 + }, + { + "start": 1776.58, + "end": 1777.24, + "probability": 0.8474 + }, + { + "start": 1778.14, + "end": 1781.54, + "probability": 0.9979 + }, + { + "start": 1782.06, + "end": 1783.02, + "probability": 0.5296 + }, + { + "start": 1784.7, + "end": 1785.92, + "probability": 0.8825 + }, + { + "start": 1787.52, + "end": 1788.77, + "probability": 0.6879 + }, + { + "start": 1788.9, + "end": 1794.82, + "probability": 0.9509 + }, + { + "start": 1795.06, + "end": 1796.46, + "probability": 0.9644 + }, + { + "start": 1796.82, + "end": 1798.24, + "probability": 0.9959 + }, + { + "start": 1798.92, + "end": 1800.5, + "probability": 0.99 + }, + { + "start": 1801.9, + "end": 1802.4, + "probability": 0.9725 + }, + { + "start": 1803.36, + "end": 1805.96, + "probability": 0.3898 + }, + { + "start": 1806.9, + "end": 1807.94, + "probability": 0.9966 + }, + { + "start": 1808.76, + "end": 1810.22, + "probability": 0.9629 + }, + { + "start": 1811.16, + "end": 1811.76, + "probability": 0.9481 + }, + { + "start": 1812.38, + "end": 1813.78, + "probability": 0.8375 + }, + { + "start": 1815.96, + "end": 1817.0, + "probability": 0.5685 + }, + { + "start": 1817.7, + "end": 1818.36, + "probability": 0.7698 + }, + { + "start": 1819.22, + "end": 1824.0, + "probability": 0.9068 + }, + { + "start": 1824.98, + "end": 1825.64, + "probability": 0.6847 + }, + { + "start": 1825.72, + "end": 1826.82, + "probability": 0.8643 + }, + { + "start": 1827.12, + "end": 1828.06, + "probability": 0.9749 + }, + { + "start": 1829.32, + "end": 1831.92, + "probability": 0.9684 + }, + { + "start": 1832.46, + "end": 1836.06, + "probability": 0.9146 + }, + { + "start": 1836.6, + "end": 1839.48, + "probability": 0.9204 + }, + { + "start": 1839.72, + "end": 1842.72, + "probability": 0.7388 + }, + { + "start": 1843.72, + "end": 1844.34, + "probability": 0.501 + }, + { + "start": 1844.94, + "end": 1846.98, + "probability": 0.8373 + }, + { + "start": 1846.98, + "end": 1850.64, + "probability": 0.9948 + }, + { + "start": 1851.84, + "end": 1852.46, + "probability": 0.7546 + }, + { + "start": 1853.18, + "end": 1855.24, + "probability": 0.7734 + }, + { + "start": 1855.96, + "end": 1857.34, + "probability": 0.9889 + }, + { + "start": 1857.34, + "end": 1860.32, + "probability": 0.9631 + }, + { + "start": 1861.56, + "end": 1862.86, + "probability": 0.9583 + }, + { + "start": 1863.4, + "end": 1864.62, + "probability": 0.9152 + }, + { + "start": 1866.76, + "end": 1869.18, + "probability": 0.9964 + }, + { + "start": 1869.88, + "end": 1870.76, + "probability": 0.9719 + }, + { + "start": 1871.42, + "end": 1874.64, + "probability": 0.953 + }, + { + "start": 1875.52, + "end": 1876.92, + "probability": 0.8298 + }, + { + "start": 1877.2, + "end": 1879.1, + "probability": 0.9779 + }, + { + "start": 1879.68, + "end": 1880.62, + "probability": 0.5825 + }, + { + "start": 1882.04, + "end": 1882.64, + "probability": 0.8118 + }, + { + "start": 1882.68, + "end": 1883.44, + "probability": 0.8901 + }, + { + "start": 1883.52, + "end": 1885.64, + "probability": 0.9961 + }, + { + "start": 1886.18, + "end": 1887.04, + "probability": 0.9988 + }, + { + "start": 1888.06, + "end": 1889.7, + "probability": 0.835 + }, + { + "start": 1890.38, + "end": 1895.04, + "probability": 0.9963 + }, + { + "start": 1895.44, + "end": 1896.58, + "probability": 0.9319 + }, + { + "start": 1897.06, + "end": 1898.4, + "probability": 0.8935 + }, + { + "start": 1899.42, + "end": 1900.78, + "probability": 0.9277 + }, + { + "start": 1901.92, + "end": 1903.22, + "probability": 0.9267 + }, + { + "start": 1903.28, + "end": 1904.46, + "probability": 0.9915 + }, + { + "start": 1904.54, + "end": 1907.12, + "probability": 0.9891 + }, + { + "start": 1907.82, + "end": 1909.78, + "probability": 0.8435 + }, + { + "start": 1911.34, + "end": 1912.32, + "probability": 0.9995 + }, + { + "start": 1913.4, + "end": 1916.56, + "probability": 0.9022 + }, + { + "start": 1917.52, + "end": 1918.96, + "probability": 0.9988 + }, + { + "start": 1919.84, + "end": 1921.37, + "probability": 0.9945 + }, + { + "start": 1923.56, + "end": 1924.96, + "probability": 0.9557 + }, + { + "start": 1926.94, + "end": 1929.62, + "probability": 0.9963 + }, + { + "start": 1931.4, + "end": 1936.4, + "probability": 0.9986 + }, + { + "start": 1936.86, + "end": 1937.88, + "probability": 0.8839 + }, + { + "start": 1937.98, + "end": 1938.33, + "probability": 0.9613 + }, + { + "start": 1939.22, + "end": 1940.97, + "probability": 0.9934 + }, + { + "start": 1941.76, + "end": 1943.12, + "probability": 0.9795 + }, + { + "start": 1943.58, + "end": 1946.82, + "probability": 0.9742 + }, + { + "start": 1947.04, + "end": 1949.46, + "probability": 0.7206 + }, + { + "start": 1950.78, + "end": 1951.68, + "probability": 0.4617 + }, + { + "start": 1952.34, + "end": 1954.88, + "probability": 0.7449 + }, + { + "start": 1955.62, + "end": 1957.46, + "probability": 0.9036 + }, + { + "start": 1958.92, + "end": 1959.74, + "probability": 0.9286 + }, + { + "start": 1960.16, + "end": 1962.06, + "probability": 0.9402 + }, + { + "start": 1962.28, + "end": 1965.74, + "probability": 0.9886 + }, + { + "start": 1966.86, + "end": 1968.14, + "probability": 0.9954 + }, + { + "start": 1968.74, + "end": 1969.34, + "probability": 0.5922 + }, + { + "start": 1969.94, + "end": 1970.31, + "probability": 0.968 + }, + { + "start": 1971.08, + "end": 1972.58, + "probability": 0.9277 + }, + { + "start": 1972.94, + "end": 1973.88, + "probability": 0.9344 + }, + { + "start": 1974.02, + "end": 1974.22, + "probability": 0.792 + }, + { + "start": 1974.94, + "end": 1975.84, + "probability": 0.2992 + }, + { + "start": 1975.84, + "end": 1976.58, + "probability": 0.2005 + }, + { + "start": 1976.96, + "end": 1978.06, + "probability": 0.2756 + }, + { + "start": 1980.64, + "end": 1981.18, + "probability": 0.1805 + }, + { + "start": 1982.44, + "end": 1986.28, + "probability": 0.7235 + }, + { + "start": 1987.12, + "end": 1990.78, + "probability": 0.623 + }, + { + "start": 1991.58, + "end": 1993.3, + "probability": 0.3454 + }, + { + "start": 1993.98, + "end": 1996.17, + "probability": 0.0908 + }, + { + "start": 1996.92, + "end": 1997.34, + "probability": 0.2473 + }, + { + "start": 1997.34, + "end": 2002.06, + "probability": 0.1632 + }, + { + "start": 2010.74, + "end": 2014.34, + "probability": 0.0862 + }, + { + "start": 2014.58, + "end": 2014.93, + "probability": 0.0653 + }, + { + "start": 2017.88, + "end": 2020.74, + "probability": 0.3531 + }, + { + "start": 2022.88, + "end": 2023.26, + "probability": 0.0137 + }, + { + "start": 2171.32, + "end": 2171.42, + "probability": 0.3179 + }, + { + "start": 2172.52, + "end": 2174.7, + "probability": 0.7321 + }, + { + "start": 2175.74, + "end": 2180.12, + "probability": 0.9793 + }, + { + "start": 2180.14, + "end": 2184.07, + "probability": 0.9254 + }, + { + "start": 2184.56, + "end": 2186.29, + "probability": 0.948 + }, + { + "start": 2186.36, + "end": 2187.96, + "probability": 0.6613 + }, + { + "start": 2189.08, + "end": 2192.22, + "probability": 0.9907 + }, + { + "start": 2192.36, + "end": 2196.96, + "probability": 0.9956 + }, + { + "start": 2196.96, + "end": 2201.94, + "probability": 0.9391 + }, + { + "start": 2201.94, + "end": 2205.96, + "probability": 0.9923 + }, + { + "start": 2206.26, + "end": 2209.38, + "probability": 0.7555 + }, + { + "start": 2210.06, + "end": 2214.04, + "probability": 0.9727 + }, + { + "start": 2214.9, + "end": 2216.42, + "probability": 0.5592 + }, + { + "start": 2217.26, + "end": 2221.56, + "probability": 0.6632 + }, + { + "start": 2222.28, + "end": 2227.4, + "probability": 0.8101 + }, + { + "start": 2227.94, + "end": 2232.2, + "probability": 0.5484 + }, + { + "start": 2232.38, + "end": 2233.92, + "probability": 0.8911 + }, + { + "start": 2234.74, + "end": 2236.32, + "probability": 0.9733 + }, + { + "start": 2237.12, + "end": 2238.52, + "probability": 0.9934 + }, + { + "start": 2238.78, + "end": 2239.32, + "probability": 0.6249 + }, + { + "start": 2239.84, + "end": 2242.12, + "probability": 0.9491 + }, + { + "start": 2243.06, + "end": 2244.23, + "probability": 0.963 + }, + { + "start": 2244.4, + "end": 2248.74, + "probability": 0.7573 + }, + { + "start": 2248.78, + "end": 2249.4, + "probability": 0.3428 + }, + { + "start": 2249.94, + "end": 2252.68, + "probability": 0.6613 + }, + { + "start": 2253.4, + "end": 2260.08, + "probability": 0.9871 + }, + { + "start": 2260.9, + "end": 2263.2, + "probability": 0.8623 + }, + { + "start": 2264.14, + "end": 2267.86, + "probability": 0.9956 + }, + { + "start": 2268.64, + "end": 2270.92, + "probability": 0.9667 + }, + { + "start": 2271.52, + "end": 2273.38, + "probability": 0.9902 + }, + { + "start": 2273.88, + "end": 2279.2, + "probability": 0.8608 + }, + { + "start": 2279.2, + "end": 2286.88, + "probability": 0.9901 + }, + { + "start": 2287.2, + "end": 2288.04, + "probability": 0.5335 + }, + { + "start": 2289.04, + "end": 2291.62, + "probability": 0.8485 + }, + { + "start": 2292.16, + "end": 2297.22, + "probability": 0.947 + }, + { + "start": 2297.34, + "end": 2301.78, + "probability": 0.9816 + }, + { + "start": 2301.78, + "end": 2305.9, + "probability": 0.9678 + }, + { + "start": 2309.32, + "end": 2310.48, + "probability": 0.6254 + }, + { + "start": 2310.68, + "end": 2311.3, + "probability": 0.954 + }, + { + "start": 2311.42, + "end": 2313.56, + "probability": 0.5181 + }, + { + "start": 2314.28, + "end": 2315.54, + "probability": 0.6246 + }, + { + "start": 2316.12, + "end": 2320.82, + "probability": 0.8245 + }, + { + "start": 2321.36, + "end": 2324.36, + "probability": 0.5517 + }, + { + "start": 2324.49, + "end": 2327.52, + "probability": 0.7548 + }, + { + "start": 2327.7, + "end": 2329.16, + "probability": 0.9551 + }, + { + "start": 2329.3, + "end": 2330.42, + "probability": 0.3124 + }, + { + "start": 2330.84, + "end": 2336.1, + "probability": 0.8073 + }, + { + "start": 2336.26, + "end": 2336.94, + "probability": 0.9476 + }, + { + "start": 2337.72, + "end": 2341.58, + "probability": 0.8078 + }, + { + "start": 2342.24, + "end": 2343.98, + "probability": 0.9216 + }, + { + "start": 2344.44, + "end": 2349.27, + "probability": 0.9897 + }, + { + "start": 2350.14, + "end": 2353.72, + "probability": 0.9955 + }, + { + "start": 2354.3, + "end": 2355.58, + "probability": 0.71 + }, + { + "start": 2356.22, + "end": 2359.14, + "probability": 0.7405 + }, + { + "start": 2359.38, + "end": 2364.66, + "probability": 0.9893 + }, + { + "start": 2365.54, + "end": 2367.16, + "probability": 0.9519 + }, + { + "start": 2367.84, + "end": 2371.16, + "probability": 0.749 + }, + { + "start": 2371.86, + "end": 2373.64, + "probability": 0.9222 + }, + { + "start": 2374.5, + "end": 2377.42, + "probability": 0.9255 + }, + { + "start": 2377.94, + "end": 2379.2, + "probability": 0.9385 + }, + { + "start": 2379.92, + "end": 2381.48, + "probability": 0.8628 + }, + { + "start": 2382.82, + "end": 2385.36, + "probability": 0.8645 + }, + { + "start": 2385.88, + "end": 2387.98, + "probability": 0.7305 + }, + { + "start": 2388.6, + "end": 2389.7, + "probability": 0.7553 + }, + { + "start": 2389.9, + "end": 2393.9, + "probability": 0.8925 + }, + { + "start": 2393.94, + "end": 2394.82, + "probability": 0.7052 + }, + { + "start": 2394.9, + "end": 2395.4, + "probability": 0.7799 + }, + { + "start": 2396.46, + "end": 2399.22, + "probability": 0.5222 + }, + { + "start": 2399.74, + "end": 2402.64, + "probability": 0.9429 + }, + { + "start": 2402.74, + "end": 2404.34, + "probability": 0.9885 + }, + { + "start": 2405.2, + "end": 2406.24, + "probability": 0.9473 + }, + { + "start": 2406.44, + "end": 2408.44, + "probability": 0.8531 + }, + { + "start": 2408.56, + "end": 2409.1, + "probability": 0.9037 + }, + { + "start": 2409.24, + "end": 2409.62, + "probability": 0.7596 + }, + { + "start": 2409.72, + "end": 2410.46, + "probability": 0.9792 + }, + { + "start": 2410.5, + "end": 2411.12, + "probability": 0.6451 + }, + { + "start": 2411.82, + "end": 2413.98, + "probability": 0.9941 + }, + { + "start": 2414.76, + "end": 2418.4, + "probability": 0.9766 + }, + { + "start": 2418.4, + "end": 2422.04, + "probability": 0.9988 + }, + { + "start": 2423.48, + "end": 2425.32, + "probability": 0.7239 + }, + { + "start": 2425.5, + "end": 2427.36, + "probability": 0.8418 + }, + { + "start": 2428.0, + "end": 2429.26, + "probability": 0.9133 + }, + { + "start": 2429.56, + "end": 2431.04, + "probability": 0.7604 + }, + { + "start": 2431.24, + "end": 2433.86, + "probability": 0.6189 + }, + { + "start": 2434.26, + "end": 2439.56, + "probability": 0.908 + }, + { + "start": 2440.94, + "end": 2445.86, + "probability": 0.875 + }, + { + "start": 2446.42, + "end": 2449.34, + "probability": 0.5719 + }, + { + "start": 2449.58, + "end": 2450.98, + "probability": 0.5917 + }, + { + "start": 2451.02, + "end": 2454.24, + "probability": 0.9524 + }, + { + "start": 2454.92, + "end": 2457.76, + "probability": 0.8913 + }, + { + "start": 2458.4, + "end": 2459.98, + "probability": 0.8657 + }, + { + "start": 2460.52, + "end": 2463.08, + "probability": 0.8931 + }, + { + "start": 2463.64, + "end": 2467.03, + "probability": 0.9917 + }, + { + "start": 2467.24, + "end": 2472.26, + "probability": 0.9873 + }, + { + "start": 2472.38, + "end": 2475.22, + "probability": 0.8963 + }, + { + "start": 2475.48, + "end": 2481.58, + "probability": 0.9424 + }, + { + "start": 2481.84, + "end": 2482.44, + "probability": 0.6922 + }, + { + "start": 2482.94, + "end": 2486.66, + "probability": 0.9606 + }, + { + "start": 2487.16, + "end": 2488.32, + "probability": 0.9756 + }, + { + "start": 2488.5, + "end": 2493.98, + "probability": 0.9604 + }, + { + "start": 2494.04, + "end": 2497.34, + "probability": 0.9961 + }, + { + "start": 2497.76, + "end": 2500.0, + "probability": 0.9647 + }, + { + "start": 2500.12, + "end": 2501.0, + "probability": 0.9514 + }, + { + "start": 2501.8, + "end": 2506.28, + "probability": 0.988 + }, + { + "start": 2506.36, + "end": 2508.05, + "probability": 0.9875 + }, + { + "start": 2508.4, + "end": 2509.24, + "probability": 0.9647 + }, + { + "start": 2509.8, + "end": 2513.7, + "probability": 0.9971 + }, + { + "start": 2514.34, + "end": 2518.88, + "probability": 0.9694 + }, + { + "start": 2519.38, + "end": 2524.76, + "probability": 0.9988 + }, + { + "start": 2525.34, + "end": 2526.12, + "probability": 0.7124 + }, + { + "start": 2526.22, + "end": 2531.86, + "probability": 0.9339 + }, + { + "start": 2531.86, + "end": 2532.14, + "probability": 0.3066 + }, + { + "start": 2532.5, + "end": 2534.92, + "probability": 0.7839 + }, + { + "start": 2535.6, + "end": 2536.34, + "probability": 0.7656 + }, + { + "start": 2537.48, + "end": 2538.76, + "probability": 0.8268 + }, + { + "start": 2538.96, + "end": 2540.04, + "probability": 0.9693 + }, + { + "start": 2540.14, + "end": 2540.88, + "probability": 0.6707 + }, + { + "start": 2540.9, + "end": 2544.36, + "probability": 0.973 + }, + { + "start": 2544.68, + "end": 2545.84, + "probability": 0.8158 + }, + { + "start": 2546.0, + "end": 2546.52, + "probability": 0.6673 + }, + { + "start": 2546.82, + "end": 2547.36, + "probability": 0.502 + }, + { + "start": 2547.36, + "end": 2549.82, + "probability": 0.8936 + }, + { + "start": 2550.82, + "end": 2552.08, + "probability": 0.2531 + }, + { + "start": 2558.14, + "end": 2559.42, + "probability": 0.0189 + }, + { + "start": 2559.6, + "end": 2560.86, + "probability": 0.0618 + }, + { + "start": 2560.86, + "end": 2560.9, + "probability": 0.1772 + }, + { + "start": 2560.98, + "end": 2560.98, + "probability": 0.3528 + }, + { + "start": 2561.1, + "end": 2561.1, + "probability": 0.155 + }, + { + "start": 2561.1, + "end": 2561.32, + "probability": 0.1622 + }, + { + "start": 2561.32, + "end": 2561.32, + "probability": 0.5688 + }, + { + "start": 2561.32, + "end": 2561.34, + "probability": 0.0975 + }, + { + "start": 2561.34, + "end": 2561.87, + "probability": 0.0154 + }, + { + "start": 2579.98, + "end": 2580.28, + "probability": 0.0235 + }, + { + "start": 2598.06, + "end": 2598.48, + "probability": 0.2389 + }, + { + "start": 2599.32, + "end": 2601.78, + "probability": 0.713 + }, + { + "start": 2602.48, + "end": 2603.42, + "probability": 0.9517 + }, + { + "start": 2604.3, + "end": 2607.62, + "probability": 0.7496 + }, + { + "start": 2608.46, + "end": 2609.02, + "probability": 0.7794 + }, + { + "start": 2610.28, + "end": 2611.48, + "probability": 0.572 + }, + { + "start": 2611.6, + "end": 2614.28, + "probability": 0.9828 + }, + { + "start": 2615.58, + "end": 2617.22, + "probability": 0.6389 + }, + { + "start": 2617.94, + "end": 2618.94, + "probability": 0.8721 + }, + { + "start": 2619.74, + "end": 2620.36, + "probability": 0.7336 + }, + { + "start": 2620.54, + "end": 2621.22, + "probability": 0.9338 + }, + { + "start": 2621.28, + "end": 2621.96, + "probability": 0.9688 + }, + { + "start": 2622.02, + "end": 2622.75, + "probability": 0.7755 + }, + { + "start": 2622.82, + "end": 2623.36, + "probability": 0.9042 + }, + { + "start": 2623.76, + "end": 2623.86, + "probability": 0.7704 + }, + { + "start": 2624.48, + "end": 2625.5, + "probability": 0.9272 + }, + { + "start": 2626.24, + "end": 2626.8, + "probability": 0.6432 + }, + { + "start": 2627.54, + "end": 2630.64, + "probability": 0.5867 + }, + { + "start": 2630.64, + "end": 2630.64, + "probability": 0.0329 + }, + { + "start": 2630.64, + "end": 2631.32, + "probability": 0.425 + }, + { + "start": 2631.42, + "end": 2632.26, + "probability": 0.7046 + }, + { + "start": 2632.42, + "end": 2633.04, + "probability": 0.7293 + }, + { + "start": 2634.04, + "end": 2635.2, + "probability": 0.7418 + }, + { + "start": 2636.14, + "end": 2637.36, + "probability": 0.6259 + }, + { + "start": 2637.94, + "end": 2638.68, + "probability": 0.8457 + }, + { + "start": 2639.92, + "end": 2640.28, + "probability": 0.5866 + }, + { + "start": 2640.54, + "end": 2641.4, + "probability": 0.5687 + }, + { + "start": 2647.88, + "end": 2647.88, + "probability": 0.003 + }, + { + "start": 2647.88, + "end": 2647.88, + "probability": 0.244 + }, + { + "start": 2647.88, + "end": 2647.88, + "probability": 0.0502 + }, + { + "start": 2647.88, + "end": 2647.88, + "probability": 0.0759 + }, + { + "start": 2647.88, + "end": 2651.3, + "probability": 0.6539 + }, + { + "start": 2652.2, + "end": 2652.84, + "probability": 0.2564 + }, + { + "start": 2653.84, + "end": 2654.76, + "probability": 0.3263 + }, + { + "start": 2654.76, + "end": 2655.8, + "probability": 0.7211 + }, + { + "start": 2656.8, + "end": 2657.3, + "probability": 0.9026 + }, + { + "start": 2658.1, + "end": 2658.4, + "probability": 0.6178 + }, + { + "start": 2659.1, + "end": 2661.92, + "probability": 0.8323 + }, + { + "start": 2662.78, + "end": 2664.26, + "probability": 0.9889 + }, + { + "start": 2665.12, + "end": 2665.8, + "probability": 0.6108 + }, + { + "start": 2666.28, + "end": 2667.92, + "probability": 0.693 + }, + { + "start": 2668.04, + "end": 2669.56, + "probability": 0.943 + }, + { + "start": 2669.66, + "end": 2670.12, + "probability": 0.8688 + }, + { + "start": 2670.8, + "end": 2671.86, + "probability": 0.6409 + }, + { + "start": 2671.94, + "end": 2672.28, + "probability": 0.8545 + }, + { + "start": 2672.28, + "end": 2673.5, + "probability": 0.3544 + }, + { + "start": 2673.58, + "end": 2674.2, + "probability": 0.8447 + }, + { + "start": 2674.2, + "end": 2675.6, + "probability": 0.5643 + }, + { + "start": 2675.96, + "end": 2679.64, + "probability": 0.9907 + }, + { + "start": 2680.38, + "end": 2681.76, + "probability": 0.0731 + }, + { + "start": 2682.36, + "end": 2682.46, + "probability": 0.4623 + }, + { + "start": 2682.46, + "end": 2682.94, + "probability": 0.8084 + }, + { + "start": 2683.24, + "end": 2685.78, + "probability": 0.9925 + }, + { + "start": 2686.2, + "end": 2687.68, + "probability": 0.8134 + }, + { + "start": 2688.06, + "end": 2691.82, + "probability": 0.9915 + }, + { + "start": 2692.36, + "end": 2694.26, + "probability": 0.9364 + }, + { + "start": 2694.86, + "end": 2695.68, + "probability": 0.7213 + }, + { + "start": 2696.37, + "end": 2697.54, + "probability": 0.1552 + }, + { + "start": 2697.7, + "end": 2698.78, + "probability": 0.2862 + }, + { + "start": 2699.52, + "end": 2701.06, + "probability": 0.5662 + }, + { + "start": 2701.74, + "end": 2706.2, + "probability": 0.2353 + }, + { + "start": 2706.3, + "end": 2708.08, + "probability": 0.965 + }, + { + "start": 2710.74, + "end": 2714.94, + "probability": 0.907 + }, + { + "start": 2715.82, + "end": 2720.32, + "probability": 0.9836 + }, + { + "start": 2722.6, + "end": 2723.28, + "probability": 0.4246 + }, + { + "start": 2724.44, + "end": 2725.44, + "probability": 0.6277 + }, + { + "start": 2726.62, + "end": 2727.64, + "probability": 0.9408 + }, + { + "start": 2727.7, + "end": 2728.42, + "probability": 0.7604 + }, + { + "start": 2728.58, + "end": 2729.82, + "probability": 0.7594 + }, + { + "start": 2731.94, + "end": 2733.08, + "probability": 0.7298 + }, + { + "start": 2734.3, + "end": 2737.6, + "probability": 0.9733 + }, + { + "start": 2738.3, + "end": 2740.3, + "probability": 0.5533 + }, + { + "start": 2740.96, + "end": 2742.64, + "probability": 0.9304 + }, + { + "start": 2743.54, + "end": 2744.28, + "probability": 0.6314 + }, + { + "start": 2745.02, + "end": 2746.88, + "probability": 0.8457 + }, + { + "start": 2747.36, + "end": 2748.33, + "probability": 0.9844 + }, + { + "start": 2749.04, + "end": 2750.58, + "probability": 0.7725 + }, + { + "start": 2751.22, + "end": 2759.96, + "probability": 0.876 + }, + { + "start": 2761.62, + "end": 2762.76, + "probability": 0.0183 + }, + { + "start": 2762.88, + "end": 2764.08, + "probability": 0.9058 + }, + { + "start": 2764.88, + "end": 2767.22, + "probability": 0.9461 + }, + { + "start": 2768.08, + "end": 2768.14, + "probability": 0.0278 + }, + { + "start": 2768.14, + "end": 2770.7, + "probability": 0.4905 + }, + { + "start": 2770.74, + "end": 2773.1, + "probability": 0.8617 + }, + { + "start": 2773.74, + "end": 2774.34, + "probability": 0.7561 + }, + { + "start": 2774.42, + "end": 2779.26, + "probability": 0.9567 + }, + { + "start": 2779.64, + "end": 2780.02, + "probability": 0.7699 + }, + { + "start": 2780.6, + "end": 2780.92, + "probability": 0.6144 + }, + { + "start": 2781.76, + "end": 2783.36, + "probability": 0.8635 + }, + { + "start": 2783.56, + "end": 2784.5, + "probability": 0.5687 + }, + { + "start": 2784.6, + "end": 2785.38, + "probability": 0.8235 + }, + { + "start": 2785.68, + "end": 2786.48, + "probability": 0.9775 + }, + { + "start": 2786.6, + "end": 2788.44, + "probability": 0.9868 + }, + { + "start": 2789.18, + "end": 2793.06, + "probability": 0.8379 + }, + { + "start": 2793.78, + "end": 2797.1, + "probability": 0.6671 + }, + { + "start": 2798.04, + "end": 2798.04, + "probability": 0.3345 + }, + { + "start": 2798.04, + "end": 2798.88, + "probability": 0.6777 + }, + { + "start": 2799.34, + "end": 2799.98, + "probability": 0.4287 + }, + { + "start": 2800.1, + "end": 2800.96, + "probability": 0.771 + }, + { + "start": 2801.8, + "end": 2803.5, + "probability": 0.8946 + }, + { + "start": 2804.56, + "end": 2809.04, + "probability": 0.0644 + }, + { + "start": 2810.04, + "end": 2810.04, + "probability": 0.0845 + }, + { + "start": 2810.04, + "end": 2810.04, + "probability": 0.0379 + }, + { + "start": 2810.04, + "end": 2810.04, + "probability": 0.1821 + }, + { + "start": 2810.04, + "end": 2810.04, + "probability": 0.0886 + }, + { + "start": 2810.04, + "end": 2810.04, + "probability": 0.1292 + }, + { + "start": 2810.04, + "end": 2810.04, + "probability": 0.0783 + }, + { + "start": 2810.04, + "end": 2811.64, + "probability": 0.2161 + }, + { + "start": 2812.06, + "end": 2813.08, + "probability": 0.7009 + }, + { + "start": 2813.38, + "end": 2815.38, + "probability": 0.7517 + }, + { + "start": 2816.4, + "end": 2817.42, + "probability": 0.1411 + }, + { + "start": 2817.42, + "end": 2817.92, + "probability": 0.2061 + }, + { + "start": 2818.04, + "end": 2819.08, + "probability": 0.9119 + }, + { + "start": 2819.14, + "end": 2819.5, + "probability": 0.8597 + }, + { + "start": 2819.76, + "end": 2823.12, + "probability": 0.9872 + }, + { + "start": 2823.86, + "end": 2829.38, + "probability": 0.9866 + }, + { + "start": 2830.16, + "end": 2830.66, + "probability": 0.6114 + }, + { + "start": 2830.72, + "end": 2834.82, + "probability": 0.9971 + }, + { + "start": 2835.64, + "end": 2836.9, + "probability": 0.9767 + }, + { + "start": 2837.56, + "end": 2841.64, + "probability": 0.9268 + }, + { + "start": 2841.64, + "end": 2847.49, + "probability": 0.9954 + }, + { + "start": 2848.36, + "end": 2849.3, + "probability": 0.5669 + }, + { + "start": 2850.02, + "end": 2851.64, + "probability": 0.8882 + }, + { + "start": 2851.72, + "end": 2853.55, + "probability": 0.9885 + }, + { + "start": 2853.94, + "end": 2854.18, + "probability": 0.8556 + }, + { + "start": 2854.32, + "end": 2855.54, + "probability": 0.7461 + }, + { + "start": 2855.64, + "end": 2857.86, + "probability": 0.889 + }, + { + "start": 2858.54, + "end": 2859.76, + "probability": 0.9756 + }, + { + "start": 2860.28, + "end": 2863.52, + "probability": 0.9651 + }, + { + "start": 2864.22, + "end": 2864.92, + "probability": 0.6458 + }, + { + "start": 2865.6, + "end": 2866.52, + "probability": 0.9248 + }, + { + "start": 2867.04, + "end": 2871.32, + "probability": 0.9121 + }, + { + "start": 2871.84, + "end": 2873.02, + "probability": 0.7811 + }, + { + "start": 2873.2, + "end": 2878.63, + "probability": 0.9849 + }, + { + "start": 2878.72, + "end": 2882.36, + "probability": 0.9941 + }, + { + "start": 2882.76, + "end": 2889.22, + "probability": 0.9485 + }, + { + "start": 2889.6, + "end": 2890.06, + "probability": 0.7372 + }, + { + "start": 2891.24, + "end": 2892.7, + "probability": 0.9893 + }, + { + "start": 2893.28, + "end": 2898.12, + "probability": 0.9726 + }, + { + "start": 2901.42, + "end": 2905.64, + "probability": 0.7338 + }, + { + "start": 2906.4, + "end": 2907.94, + "probability": 0.9036 + }, + { + "start": 2908.08, + "end": 2911.66, + "probability": 0.7685 + }, + { + "start": 2911.68, + "end": 2912.6, + "probability": 0.5394 + }, + { + "start": 2913.62, + "end": 2916.22, + "probability": 0.2057 + }, + { + "start": 2916.28, + "end": 2917.16, + "probability": 0.9559 + }, + { + "start": 2919.52, + "end": 2921.92, + "probability": 0.8407 + }, + { + "start": 2931.08, + "end": 2931.62, + "probability": 0.8319 + }, + { + "start": 2935.98, + "end": 2937.4, + "probability": 0.7759 + }, + { + "start": 2939.84, + "end": 2945.06, + "probability": 0.9982 + }, + { + "start": 2945.8, + "end": 2947.33, + "probability": 0.9265 + }, + { + "start": 2948.34, + "end": 2952.06, + "probability": 0.9915 + }, + { + "start": 2953.4, + "end": 2956.86, + "probability": 0.9957 + }, + { + "start": 2956.86, + "end": 2960.96, + "probability": 0.8509 + }, + { + "start": 2961.54, + "end": 2964.68, + "probability": 0.9962 + }, + { + "start": 2965.68, + "end": 2967.6, + "probability": 0.96 + }, + { + "start": 2967.98, + "end": 2974.0, + "probability": 0.9645 + }, + { + "start": 2975.06, + "end": 2980.98, + "probability": 0.8575 + }, + { + "start": 2980.98, + "end": 2985.4, + "probability": 0.9932 + }, + { + "start": 2986.72, + "end": 2990.26, + "probability": 0.8868 + }, + { + "start": 2990.26, + "end": 2995.16, + "probability": 0.8531 + }, + { + "start": 2995.76, + "end": 3000.92, + "probability": 0.9525 + }, + { + "start": 3001.6, + "end": 3004.62, + "probability": 0.9817 + }, + { + "start": 3006.64, + "end": 3008.08, + "probability": 0.6451 + }, + { + "start": 3008.8, + "end": 3011.36, + "probability": 0.9662 + }, + { + "start": 3013.12, + "end": 3019.92, + "probability": 0.9781 + }, + { + "start": 3021.79, + "end": 3028.48, + "probability": 0.6023 + }, + { + "start": 3029.24, + "end": 3032.06, + "probability": 0.9594 + }, + { + "start": 3033.94, + "end": 3039.52, + "probability": 0.9989 + }, + { + "start": 3040.38, + "end": 3042.66, + "probability": 0.9995 + }, + { + "start": 3044.14, + "end": 3044.76, + "probability": 0.6903 + }, + { + "start": 3045.3, + "end": 3047.56, + "probability": 0.9973 + }, + { + "start": 3048.24, + "end": 3052.42, + "probability": 0.9492 + }, + { + "start": 3052.5, + "end": 3053.2, + "probability": 0.6249 + }, + { + "start": 3053.24, + "end": 3054.18, + "probability": 0.6109 + }, + { + "start": 3054.3, + "end": 3055.02, + "probability": 0.9778 + }, + { + "start": 3055.96, + "end": 3060.52, + "probability": 0.9954 + }, + { + "start": 3062.5, + "end": 3064.3, + "probability": 0.9683 + }, + { + "start": 3066.14, + "end": 3070.0, + "probability": 0.9968 + }, + { + "start": 3070.0, + "end": 3074.1, + "probability": 0.9054 + }, + { + "start": 3074.94, + "end": 3078.82, + "probability": 0.9951 + }, + { + "start": 3081.34, + "end": 3082.94, + "probability": 0.9526 + }, + { + "start": 3083.94, + "end": 3085.8, + "probability": 0.925 + }, + { + "start": 3086.22, + "end": 3088.68, + "probability": 0.929 + }, + { + "start": 3089.3, + "end": 3090.7, + "probability": 0.5476 + }, + { + "start": 3091.44, + "end": 3093.02, + "probability": 0.856 + }, + { + "start": 3093.98, + "end": 3098.96, + "probability": 0.9716 + }, + { + "start": 3100.06, + "end": 3104.84, + "probability": 0.891 + }, + { + "start": 3106.02, + "end": 3111.0, + "probability": 0.9976 + }, + { + "start": 3112.08, + "end": 3113.84, + "probability": 0.7178 + }, + { + "start": 3114.78, + "end": 3119.58, + "probability": 0.9482 + }, + { + "start": 3119.72, + "end": 3123.04, + "probability": 0.9819 + }, + { + "start": 3124.02, + "end": 3125.74, + "probability": 0.9447 + }, + { + "start": 3126.28, + "end": 3131.8, + "probability": 0.7369 + }, + { + "start": 3134.36, + "end": 3135.06, + "probability": 0.5596 + }, + { + "start": 3135.2, + "end": 3136.3, + "probability": 0.9491 + }, + { + "start": 3136.4, + "end": 3137.84, + "probability": 0.9329 + }, + { + "start": 3137.96, + "end": 3138.56, + "probability": 0.8422 + }, + { + "start": 3138.66, + "end": 3140.1, + "probability": 0.9807 + }, + { + "start": 3141.28, + "end": 3144.32, + "probability": 0.9849 + }, + { + "start": 3144.54, + "end": 3145.62, + "probability": 0.7046 + }, + { + "start": 3146.02, + "end": 3149.16, + "probability": 0.967 + }, + { + "start": 3149.26, + "end": 3150.3, + "probability": 0.8374 + }, + { + "start": 3150.84, + "end": 3151.3, + "probability": 0.5399 + }, + { + "start": 3151.34, + "end": 3156.54, + "probability": 0.9817 + }, + { + "start": 3156.54, + "end": 3161.64, + "probability": 0.9954 + }, + { + "start": 3162.44, + "end": 3166.66, + "probability": 0.9849 + }, + { + "start": 3166.66, + "end": 3173.1, + "probability": 0.9984 + }, + { + "start": 3173.68, + "end": 3175.36, + "probability": 0.9985 + }, + { + "start": 3175.52, + "end": 3178.3, + "probability": 0.9984 + }, + { + "start": 3178.76, + "end": 3185.02, + "probability": 0.9073 + }, + { + "start": 3185.24, + "end": 3187.64, + "probability": 0.9984 + }, + { + "start": 3188.04, + "end": 3191.84, + "probability": 0.9256 + }, + { + "start": 3192.06, + "end": 3192.55, + "probability": 0.8413 + }, + { + "start": 3193.0, + "end": 3194.72, + "probability": 0.8394 + }, + { + "start": 3195.68, + "end": 3197.22, + "probability": 0.7753 + }, + { + "start": 3198.92, + "end": 3200.04, + "probability": 0.7544 + }, + { + "start": 3200.08, + "end": 3201.6, + "probability": 0.9838 + }, + { + "start": 3201.68, + "end": 3203.16, + "probability": 0.6367 + }, + { + "start": 3203.2, + "end": 3206.72, + "probability": 0.9297 + }, + { + "start": 3207.24, + "end": 3208.54, + "probability": 0.9954 + }, + { + "start": 3210.36, + "end": 3211.5, + "probability": 0.9626 + }, + { + "start": 3212.06, + "end": 3215.44, + "probability": 0.9907 + }, + { + "start": 3215.44, + "end": 3220.12, + "probability": 0.9734 + }, + { + "start": 3220.66, + "end": 3223.28, + "probability": 0.9457 + }, + { + "start": 3223.82, + "end": 3226.24, + "probability": 0.8991 + }, + { + "start": 3227.5, + "end": 3228.6, + "probability": 0.97 + }, + { + "start": 3229.46, + "end": 3232.52, + "probability": 0.9514 + }, + { + "start": 3232.58, + "end": 3234.14, + "probability": 0.7256 + }, + { + "start": 3234.26, + "end": 3235.4, + "probability": 0.6356 + }, + { + "start": 3235.82, + "end": 3238.74, + "probability": 0.7459 + }, + { + "start": 3239.36, + "end": 3245.66, + "probability": 0.9917 + }, + { + "start": 3247.58, + "end": 3248.08, + "probability": 0.9654 + }, + { + "start": 3249.06, + "end": 3252.34, + "probability": 0.9983 + }, + { + "start": 3252.34, + "end": 3256.18, + "probability": 0.9838 + }, + { + "start": 3257.06, + "end": 3259.38, + "probability": 0.9977 + }, + { + "start": 3259.76, + "end": 3260.36, + "probability": 0.6727 + }, + { + "start": 3260.56, + "end": 3261.46, + "probability": 0.7754 + }, + { + "start": 3261.56, + "end": 3262.9, + "probability": 0.7666 + }, + { + "start": 3263.64, + "end": 3267.98, + "probability": 0.9628 + }, + { + "start": 3268.74, + "end": 3273.86, + "probability": 0.938 + }, + { + "start": 3274.2, + "end": 3278.08, + "probability": 0.995 + }, + { + "start": 3281.62, + "end": 3282.04, + "probability": 0.8982 + }, + { + "start": 3283.74, + "end": 3284.56, + "probability": 0.8568 + }, + { + "start": 3285.24, + "end": 3290.96, + "probability": 0.9736 + }, + { + "start": 3291.06, + "end": 3291.14, + "probability": 0.6616 + }, + { + "start": 3291.24, + "end": 3295.1, + "probability": 0.9849 + }, + { + "start": 3296.18, + "end": 3298.94, + "probability": 0.9929 + }, + { + "start": 3299.84, + "end": 3302.66, + "probability": 0.6669 + }, + { + "start": 3303.38, + "end": 3304.74, + "probability": 0.9973 + }, + { + "start": 3306.62, + "end": 3311.26, + "probability": 0.9618 + }, + { + "start": 3312.36, + "end": 3313.26, + "probability": 0.5244 + }, + { + "start": 3313.28, + "end": 3316.42, + "probability": 0.8263 + }, + { + "start": 3316.96, + "end": 3319.9, + "probability": 0.8965 + }, + { + "start": 3320.62, + "end": 3321.6, + "probability": 0.9339 + }, + { + "start": 3322.86, + "end": 3326.02, + "probability": 0.9928 + }, + { + "start": 3326.02, + "end": 3330.26, + "probability": 0.9916 + }, + { + "start": 3331.0, + "end": 3332.56, + "probability": 0.8923 + }, + { + "start": 3332.94, + "end": 3336.82, + "probability": 0.9731 + }, + { + "start": 3338.26, + "end": 3341.32, + "probability": 0.9987 + }, + { + "start": 3342.74, + "end": 3346.92, + "probability": 0.983 + }, + { + "start": 3347.42, + "end": 3349.76, + "probability": 0.9632 + }, + { + "start": 3349.8, + "end": 3353.68, + "probability": 0.9796 + }, + { + "start": 3354.52, + "end": 3355.4, + "probability": 0.9653 + }, + { + "start": 3355.64, + "end": 3356.46, + "probability": 0.9834 + }, + { + "start": 3356.6, + "end": 3364.54, + "probability": 0.9926 + }, + { + "start": 3364.54, + "end": 3370.6, + "probability": 0.9806 + }, + { + "start": 3371.14, + "end": 3374.66, + "probability": 0.9938 + }, + { + "start": 3375.34, + "end": 3380.22, + "probability": 0.9507 + }, + { + "start": 3381.25, + "end": 3382.14, + "probability": 0.9974 + }, + { + "start": 3383.54, + "end": 3387.16, + "probability": 0.8477 + }, + { + "start": 3387.74, + "end": 3388.38, + "probability": 0.8876 + }, + { + "start": 3388.46, + "end": 3393.74, + "probability": 0.9484 + }, + { + "start": 3394.32, + "end": 3398.32, + "probability": 0.9967 + }, + { + "start": 3399.82, + "end": 3400.34, + "probability": 0.8499 + }, + { + "start": 3401.1, + "end": 3403.54, + "probability": 0.9825 + }, + { + "start": 3404.18, + "end": 3408.64, + "probability": 0.9897 + }, + { + "start": 3409.12, + "end": 3413.12, + "probability": 0.9819 + }, + { + "start": 3413.12, + "end": 3417.78, + "probability": 0.9966 + }, + { + "start": 3418.64, + "end": 3422.18, + "probability": 0.9661 + }, + { + "start": 3423.1, + "end": 3424.56, + "probability": 0.499 + }, + { + "start": 3424.56, + "end": 3431.14, + "probability": 0.9924 + }, + { + "start": 3432.92, + "end": 3435.64, + "probability": 0.9958 + }, + { + "start": 3435.72, + "end": 3439.88, + "probability": 0.998 + }, + { + "start": 3440.62, + "end": 3444.2, + "probability": 0.9842 + }, + { + "start": 3445.3, + "end": 3447.2, + "probability": 0.929 + }, + { + "start": 3447.6, + "end": 3448.2, + "probability": 0.8095 + }, + { + "start": 3450.28, + "end": 3450.64, + "probability": 0.623 + }, + { + "start": 3452.44, + "end": 3453.26, + "probability": 0.3656 + }, + { + "start": 3453.3, + "end": 3453.68, + "probability": 0.5009 + }, + { + "start": 3454.54, + "end": 3455.98, + "probability": 0.8069 + }, + { + "start": 3461.12, + "end": 3462.18, + "probability": 0.8838 + }, + { + "start": 3462.54, + "end": 3464.0, + "probability": 0.7574 + }, + { + "start": 3466.9, + "end": 3469.58, + "probability": 0.517 + }, + { + "start": 3471.18, + "end": 3471.46, + "probability": 0.6802 + }, + { + "start": 3472.18, + "end": 3473.34, + "probability": 0.8043 + }, + { + "start": 3480.4, + "end": 3482.6, + "probability": 0.0815 + }, + { + "start": 3486.02, + "end": 3487.5, + "probability": 0.6773 + }, + { + "start": 3487.62, + "end": 3489.36, + "probability": 0.9388 + }, + { + "start": 3489.8, + "end": 3490.84, + "probability": 0.9545 + }, + { + "start": 3495.26, + "end": 3498.42, + "probability": 0.9565 + }, + { + "start": 3501.16, + "end": 3502.58, + "probability": 0.8958 + }, + { + "start": 3503.06, + "end": 3505.82, + "probability": 0.9304 + }, + { + "start": 3508.44, + "end": 3510.26, + "probability": 0.7316 + }, + { + "start": 3513.1, + "end": 3513.36, + "probability": 0.9682 + }, + { + "start": 3519.7, + "end": 3519.92, + "probability": 0.5313 + }, + { + "start": 3520.36, + "end": 3524.74, + "probability": 0.9849 + }, + { + "start": 3524.96, + "end": 3526.28, + "probability": 0.8228 + }, + { + "start": 3528.02, + "end": 3528.86, + "probability": 0.9242 + }, + { + "start": 3530.42, + "end": 3532.92, + "probability": 0.7219 + }, + { + "start": 3533.0, + "end": 3536.66, + "probability": 0.6567 + }, + { + "start": 3536.78, + "end": 3536.92, + "probability": 0.3657 + }, + { + "start": 3536.96, + "end": 3540.16, + "probability": 0.9107 + }, + { + "start": 3540.88, + "end": 3543.54, + "probability": 0.716 + }, + { + "start": 3544.1, + "end": 3546.74, + "probability": 0.9915 + }, + { + "start": 3546.88, + "end": 3547.5, + "probability": 0.6454 + }, + { + "start": 3548.24, + "end": 3551.48, + "probability": 0.8349 + }, + { + "start": 3552.52, + "end": 3555.12, + "probability": 0.9849 + }, + { + "start": 3555.44, + "end": 3558.7, + "probability": 0.9797 + }, + { + "start": 3561.52, + "end": 3562.56, + "probability": 0.6794 + }, + { + "start": 3562.86, + "end": 3563.58, + "probability": 0.7138 + }, + { + "start": 3563.66, + "end": 3565.68, + "probability": 0.9229 + }, + { + "start": 3567.84, + "end": 3575.1, + "probability": 0.9603 + }, + { + "start": 3576.7, + "end": 3581.64, + "probability": 0.8566 + }, + { + "start": 3583.78, + "end": 3585.18, + "probability": 0.8673 + }, + { + "start": 3586.1, + "end": 3586.82, + "probability": 0.8352 + }, + { + "start": 3586.98, + "end": 3588.67, + "probability": 0.6698 + }, + { + "start": 3589.62, + "end": 3590.96, + "probability": 0.6579 + }, + { + "start": 3591.16, + "end": 3591.5, + "probability": 0.2354 + }, + { + "start": 3591.72, + "end": 3593.4, + "probability": 0.4572 + }, + { + "start": 3593.62, + "end": 3596.5, + "probability": 0.751 + }, + { + "start": 3597.44, + "end": 3599.98, + "probability": 0.9841 + }, + { + "start": 3600.02, + "end": 3602.72, + "probability": 0.978 + }, + { + "start": 3603.92, + "end": 3608.62, + "probability": 0.8507 + }, + { + "start": 3609.7, + "end": 3612.1, + "probability": 0.97 + }, + { + "start": 3612.37, + "end": 3615.12, + "probability": 0.5436 + }, + { + "start": 3616.32, + "end": 3622.0, + "probability": 0.9634 + }, + { + "start": 3622.12, + "end": 3626.08, + "probability": 0.9937 + }, + { + "start": 3626.22, + "end": 3626.74, + "probability": 0.8607 + }, + { + "start": 3627.86, + "end": 3631.74, + "probability": 0.9587 + }, + { + "start": 3631.78, + "end": 3636.06, + "probability": 0.8701 + }, + { + "start": 3636.2, + "end": 3643.02, + "probability": 0.8856 + }, + { + "start": 3643.56, + "end": 3644.34, + "probability": 0.1847 + }, + { + "start": 3646.6, + "end": 3648.68, + "probability": 0.7441 + }, + { + "start": 3648.7, + "end": 3649.24, + "probability": 0.9113 + }, + { + "start": 3649.7, + "end": 3652.1, + "probability": 0.9213 + }, + { + "start": 3652.26, + "end": 3655.6, + "probability": 0.9875 + }, + { + "start": 3656.12, + "end": 3659.52, + "probability": 0.9956 + }, + { + "start": 3659.52, + "end": 3663.88, + "probability": 0.9966 + }, + { + "start": 3664.84, + "end": 3666.38, + "probability": 0.9853 + }, + { + "start": 3666.42, + "end": 3667.05, + "probability": 0.94 + }, + { + "start": 3668.34, + "end": 3669.92, + "probability": 0.921 + }, + { + "start": 3670.8, + "end": 3671.04, + "probability": 0.8345 + }, + { + "start": 3672.26, + "end": 3672.26, + "probability": 0.0042 + }, + { + "start": 3672.32, + "end": 3673.09, + "probability": 0.7499 + }, + { + "start": 3673.36, + "end": 3675.64, + "probability": 0.9889 + }, + { + "start": 3676.42, + "end": 3677.18, + "probability": 0.3637 + }, + { + "start": 3677.64, + "end": 3678.54, + "probability": 0.8995 + }, + { + "start": 3678.6, + "end": 3680.7, + "probability": 0.9956 + }, + { + "start": 3681.43, + "end": 3683.1, + "probability": 0.9766 + }, + { + "start": 3683.66, + "end": 3684.0, + "probability": 0.8882 + }, + { + "start": 3684.44, + "end": 3686.87, + "probability": 0.6268 + }, + { + "start": 3687.0, + "end": 3689.02, + "probability": 0.8325 + }, + { + "start": 3689.14, + "end": 3691.0, + "probability": 0.3773 + }, + { + "start": 3692.19, + "end": 3694.02, + "probability": 0.9519 + }, + { + "start": 3694.12, + "end": 3695.54, + "probability": 0.9063 + }, + { + "start": 3696.76, + "end": 3697.0, + "probability": 0.5781 + }, + { + "start": 3697.82, + "end": 3698.12, + "probability": 0.7569 + }, + { + "start": 3698.9, + "end": 3699.42, + "probability": 0.6575 + }, + { + "start": 3699.52, + "end": 3700.54, + "probability": 0.5329 + }, + { + "start": 3701.18, + "end": 3703.32, + "probability": 0.8612 + }, + { + "start": 3710.16, + "end": 3711.14, + "probability": 0.7251 + }, + { + "start": 3712.04, + "end": 3718.32, + "probability": 0.9813 + }, + { + "start": 3719.3, + "end": 3725.04, + "probability": 0.9623 + }, + { + "start": 3725.04, + "end": 3728.92, + "probability": 0.9967 + }, + { + "start": 3729.44, + "end": 3732.78, + "probability": 0.9707 + }, + { + "start": 3733.78, + "end": 3737.46, + "probability": 0.9751 + }, + { + "start": 3738.26, + "end": 3742.24, + "probability": 0.7203 + }, + { + "start": 3742.9, + "end": 3746.18, + "probability": 0.9939 + }, + { + "start": 3747.02, + "end": 3748.56, + "probability": 0.4692 + }, + { + "start": 3748.78, + "end": 3749.48, + "probability": 0.5732 + }, + { + "start": 3749.64, + "end": 3750.42, + "probability": 0.9866 + }, + { + "start": 3750.56, + "end": 3754.24, + "probability": 0.9763 + }, + { + "start": 3755.14, + "end": 3757.36, + "probability": 0.9922 + }, + { + "start": 3757.56, + "end": 3759.12, + "probability": 0.7551 + }, + { + "start": 3759.16, + "end": 3759.54, + "probability": 0.8047 + }, + { + "start": 3760.56, + "end": 3761.8, + "probability": 0.9885 + }, + { + "start": 3762.26, + "end": 3763.7, + "probability": 0.9376 + }, + { + "start": 3763.78, + "end": 3766.6, + "probability": 0.9891 + }, + { + "start": 3766.7, + "end": 3767.33, + "probability": 0.3705 + }, + { + "start": 3767.96, + "end": 3768.36, + "probability": 0.5776 + }, + { + "start": 3769.28, + "end": 3771.54, + "probability": 0.7287 + }, + { + "start": 3771.76, + "end": 3776.24, + "probability": 0.7567 + }, + { + "start": 3777.22, + "end": 3779.45, + "probability": 0.8227 + }, + { + "start": 3780.54, + "end": 3781.2, + "probability": 0.9621 + }, + { + "start": 3781.52, + "end": 3783.78, + "probability": 0.607 + }, + { + "start": 3783.78, + "end": 3786.1, + "probability": 0.9729 + }, + { + "start": 3786.3, + "end": 3788.6, + "probability": 0.9004 + }, + { + "start": 3789.8, + "end": 3790.4, + "probability": 0.7537 + }, + { + "start": 3790.44, + "end": 3791.36, + "probability": 0.8571 + }, + { + "start": 3791.4, + "end": 3792.56, + "probability": 0.8569 + }, + { + "start": 3792.7, + "end": 3797.02, + "probability": 0.7021 + }, + { + "start": 3797.12, + "end": 3798.56, + "probability": 0.8925 + }, + { + "start": 3799.74, + "end": 3801.92, + "probability": 0.9754 + }, + { + "start": 3801.92, + "end": 3804.2, + "probability": 0.8956 + }, + { + "start": 3805.83, + "end": 3809.04, + "probability": 0.9965 + }, + { + "start": 3809.1, + "end": 3811.71, + "probability": 0.7964 + }, + { + "start": 3812.74, + "end": 3814.38, + "probability": 0.9404 + }, + { + "start": 3814.98, + "end": 3816.0, + "probability": 0.3456 + }, + { + "start": 3816.2, + "end": 3819.1, + "probability": 0.9442 + }, + { + "start": 3819.1, + "end": 3819.62, + "probability": 0.7524 + }, + { + "start": 3819.74, + "end": 3824.85, + "probability": 0.9509 + }, + { + "start": 3825.7, + "end": 3827.48, + "probability": 0.9519 + }, + { + "start": 3827.72, + "end": 3828.82, + "probability": 0.9484 + }, + { + "start": 3829.28, + "end": 3831.5, + "probability": 0.8284 + }, + { + "start": 3831.54, + "end": 3832.84, + "probability": 0.8043 + }, + { + "start": 3833.3, + "end": 3834.17, + "probability": 0.7167 + }, + { + "start": 3835.1, + "end": 3837.02, + "probability": 0.4505 + }, + { + "start": 3837.18, + "end": 3841.76, + "probability": 0.975 + }, + { + "start": 3841.78, + "end": 3843.92, + "probability": 0.9592 + }, + { + "start": 3844.1, + "end": 3847.0, + "probability": 0.757 + }, + { + "start": 3847.02, + "end": 3849.24, + "probability": 0.9259 + }, + { + "start": 3849.32, + "end": 3851.9, + "probability": 0.6751 + }, + { + "start": 3852.44, + "end": 3853.74, + "probability": 0.9658 + }, + { + "start": 3853.9, + "end": 3855.12, + "probability": 0.9644 + }, + { + "start": 3856.02, + "end": 3858.34, + "probability": 0.9547 + }, + { + "start": 3859.02, + "end": 3864.1, + "probability": 0.9629 + }, + { + "start": 3864.64, + "end": 3865.38, + "probability": 0.6828 + }, + { + "start": 3865.86, + "end": 3867.5, + "probability": 0.9934 + }, + { + "start": 3868.0, + "end": 3870.3, + "probability": 0.8652 + }, + { + "start": 3874.3, + "end": 3877.5, + "probability": 0.4914 + }, + { + "start": 3877.82, + "end": 3878.26, + "probability": 0.5237 + }, + { + "start": 3878.36, + "end": 3879.04, + "probability": 0.7086 + }, + { + "start": 3879.04, + "end": 3879.94, + "probability": 0.0592 + }, + { + "start": 3881.88, + "end": 3886.66, + "probability": 0.4035 + }, + { + "start": 3886.74, + "end": 3887.34, + "probability": 0.7753 + }, + { + "start": 3887.46, + "end": 3888.45, + "probability": 0.4801 + }, + { + "start": 3890.68, + "end": 3895.56, + "probability": 0.9671 + }, + { + "start": 3896.54, + "end": 3897.58, + "probability": 0.9352 + }, + { + "start": 3897.64, + "end": 3898.51, + "probability": 0.9487 + }, + { + "start": 3899.02, + "end": 3899.54, + "probability": 0.5294 + }, + { + "start": 3899.92, + "end": 3900.64, + "probability": 0.8256 + }, + { + "start": 3901.32, + "end": 3902.18, + "probability": 0.876 + }, + { + "start": 3902.26, + "end": 3903.44, + "probability": 0.9876 + }, + { + "start": 3903.58, + "end": 3906.94, + "probability": 0.9448 + }, + { + "start": 3906.94, + "end": 3909.32, + "probability": 0.9867 + }, + { + "start": 3909.52, + "end": 3911.3, + "probability": 0.8893 + }, + { + "start": 3911.4, + "end": 3913.26, + "probability": 0.8369 + }, + { + "start": 3913.3, + "end": 3914.8, + "probability": 0.9938 + }, + { + "start": 3914.8, + "end": 3915.86, + "probability": 0.8057 + }, + { + "start": 3916.02, + "end": 3917.1, + "probability": 0.9757 + }, + { + "start": 3918.4, + "end": 3919.64, + "probability": 0.7104 + }, + { + "start": 3919.66, + "end": 3922.04, + "probability": 0.9424 + }, + { + "start": 3922.68, + "end": 3925.8, + "probability": 0.9922 + }, + { + "start": 3926.04, + "end": 3926.58, + "probability": 0.4784 + }, + { + "start": 3927.12, + "end": 3928.02, + "probability": 0.8125 + }, + { + "start": 3928.56, + "end": 3930.14, + "probability": 0.8495 + }, + { + "start": 3930.45, + "end": 3933.7, + "probability": 0.6866 + }, + { + "start": 3934.04, + "end": 3936.32, + "probability": 0.9905 + }, + { + "start": 3936.9, + "end": 3940.34, + "probability": 0.9663 + }, + { + "start": 3940.4, + "end": 3940.48, + "probability": 0.5595 + }, + { + "start": 3940.56, + "end": 3941.68, + "probability": 0.6359 + }, + { + "start": 3942.24, + "end": 3945.92, + "probability": 0.8723 + }, + { + "start": 3946.26, + "end": 3947.53, + "probability": 0.8208 + }, + { + "start": 3947.88, + "end": 3949.18, + "probability": 0.8915 + }, + { + "start": 3949.6, + "end": 3951.06, + "probability": 0.9799 + }, + { + "start": 3951.28, + "end": 3953.16, + "probability": 0.9747 + }, + { + "start": 3953.22, + "end": 3954.64, + "probability": 0.6738 + }, + { + "start": 3954.84, + "end": 3956.38, + "probability": 0.7702 + }, + { + "start": 3957.4, + "end": 3959.3, + "probability": 0.7957 + }, + { + "start": 3959.46, + "end": 3961.12, + "probability": 0.8579 + }, + { + "start": 3961.2, + "end": 3962.03, + "probability": 0.9213 + }, + { + "start": 3962.48, + "end": 3964.17, + "probability": 0.7876 + }, + { + "start": 3964.78, + "end": 3965.94, + "probability": 0.8245 + }, + { + "start": 3966.42, + "end": 3967.54, + "probability": 0.99 + }, + { + "start": 3967.74, + "end": 3969.7, + "probability": 0.9795 + }, + { + "start": 3970.5, + "end": 3973.34, + "probability": 0.4979 + }, + { + "start": 3973.36, + "end": 3974.4, + "probability": 0.8748 + }, + { + "start": 3974.48, + "end": 3975.64, + "probability": 0.8824 + }, + { + "start": 3976.12, + "end": 3978.14, + "probability": 0.5878 + }, + { + "start": 3978.46, + "end": 3979.6, + "probability": 0.6644 + }, + { + "start": 3979.82, + "end": 3980.5, + "probability": 0.7032 + }, + { + "start": 3980.58, + "end": 3980.78, + "probability": 0.7782 + }, + { + "start": 3980.88, + "end": 3982.52, + "probability": 0.9899 + }, + { + "start": 3982.66, + "end": 3982.76, + "probability": 0.5115 + }, + { + "start": 3982.88, + "end": 3983.8, + "probability": 0.9385 + }, + { + "start": 3984.66, + "end": 3984.96, + "probability": 0.7115 + }, + { + "start": 3986.44, + "end": 3987.18, + "probability": 0.8161 + }, + { + "start": 3988.76, + "end": 3992.18, + "probability": 0.7731 + }, + { + "start": 3992.72, + "end": 3993.64, + "probability": 0.8094 + }, + { + "start": 3994.4, + "end": 3998.8, + "probability": 0.7468 + }, + { + "start": 3998.88, + "end": 3998.98, + "probability": 0.8354 + }, + { + "start": 3999.82, + "end": 4001.02, + "probability": 0.7689 + }, + { + "start": 4009.8, + "end": 4013.36, + "probability": 0.7492 + }, + { + "start": 4014.4, + "end": 4015.48, + "probability": 0.748 + }, + { + "start": 4016.62, + "end": 4018.8, + "probability": 0.4018 + }, + { + "start": 4020.22, + "end": 4021.06, + "probability": 0.5899 + }, + { + "start": 4022.08, + "end": 4026.42, + "probability": 0.9827 + }, + { + "start": 4027.14, + "end": 4030.84, + "probability": 0.9868 + }, + { + "start": 4030.84, + "end": 4034.34, + "probability": 0.9784 + }, + { + "start": 4034.94, + "end": 4036.74, + "probability": 0.9953 + }, + { + "start": 4037.56, + "end": 4040.24, + "probability": 0.7455 + }, + { + "start": 4041.04, + "end": 4042.46, + "probability": 0.9677 + }, + { + "start": 4043.22, + "end": 4048.78, + "probability": 0.8044 + }, + { + "start": 4049.28, + "end": 4052.68, + "probability": 0.8307 + }, + { + "start": 4053.94, + "end": 4054.88, + "probability": 0.6908 + }, + { + "start": 4055.2, + "end": 4057.04, + "probability": 0.7568 + }, + { + "start": 4057.44, + "end": 4058.22, + "probability": 0.9702 + }, + { + "start": 4059.44, + "end": 4063.52, + "probability": 0.8893 + }, + { + "start": 4064.04, + "end": 4065.48, + "probability": 0.7019 + }, + { + "start": 4066.2, + "end": 4067.54, + "probability": 0.8038 + }, + { + "start": 4067.66, + "end": 4070.52, + "probability": 0.8586 + }, + { + "start": 4070.84, + "end": 4072.7, + "probability": 0.7835 + }, + { + "start": 4073.6, + "end": 4075.39, + "probability": 0.9947 + }, + { + "start": 4076.16, + "end": 4077.16, + "probability": 0.8782 + }, + { + "start": 4077.4, + "end": 4079.54, + "probability": 0.9775 + }, + { + "start": 4079.64, + "end": 4082.22, + "probability": 0.9687 + }, + { + "start": 4082.5, + "end": 4085.86, + "probability": 0.7988 + }, + { + "start": 4086.62, + "end": 4087.24, + "probability": 0.5792 + }, + { + "start": 4087.5, + "end": 4088.5, + "probability": 0.8387 + }, + { + "start": 4088.72, + "end": 4089.8, + "probability": 0.9708 + }, + { + "start": 4089.92, + "end": 4090.48, + "probability": 0.6674 + }, + { + "start": 4090.54, + "end": 4091.98, + "probability": 0.9894 + }, + { + "start": 4092.42, + "end": 4092.94, + "probability": 0.8475 + }, + { + "start": 4093.26, + "end": 4094.32, + "probability": 0.8369 + }, + { + "start": 4094.38, + "end": 4094.78, + "probability": 0.9595 + }, + { + "start": 4095.12, + "end": 4095.64, + "probability": 0.9751 + }, + { + "start": 4095.72, + "end": 4098.24, + "probability": 0.8815 + }, + { + "start": 4098.46, + "end": 4099.92, + "probability": 0.6946 + }, + { + "start": 4100.46, + "end": 4100.58, + "probability": 0.2544 + }, + { + "start": 4101.32, + "end": 4101.46, + "probability": 0.2087 + }, + { + "start": 4101.58, + "end": 4102.72, + "probability": 0.7686 + }, + { + "start": 4102.88, + "end": 4104.9, + "probability": 0.9723 + }, + { + "start": 4104.98, + "end": 4107.76, + "probability": 0.9894 + }, + { + "start": 4108.36, + "end": 4108.74, + "probability": 0.3538 + }, + { + "start": 4108.96, + "end": 4109.7, + "probability": 0.6838 + }, + { + "start": 4109.8, + "end": 4112.14, + "probability": 0.8634 + }, + { + "start": 4112.68, + "end": 4113.96, + "probability": 0.981 + }, + { + "start": 4114.06, + "end": 4114.48, + "probability": 0.884 + }, + { + "start": 4114.54, + "end": 4116.16, + "probability": 0.9733 + }, + { + "start": 4116.26, + "end": 4118.16, + "probability": 0.817 + }, + { + "start": 4118.36, + "end": 4119.36, + "probability": 0.7455 + }, + { + "start": 4119.56, + "end": 4119.88, + "probability": 0.5029 + }, + { + "start": 4120.22, + "end": 4121.74, + "probability": 0.7778 + }, + { + "start": 4121.82, + "end": 4122.41, + "probability": 0.8026 + }, + { + "start": 4123.08, + "end": 4126.32, + "probability": 0.9659 + }, + { + "start": 4126.46, + "end": 4127.92, + "probability": 0.9429 + }, + { + "start": 4128.66, + "end": 4128.76, + "probability": 0.1366 + }, + { + "start": 4129.54, + "end": 4130.4, + "probability": 0.7929 + }, + { + "start": 4130.5, + "end": 4131.28, + "probability": 0.8703 + }, + { + "start": 4131.42, + "end": 4133.7, + "probability": 0.6321 + }, + { + "start": 4133.7, + "end": 4135.48, + "probability": 0.9475 + }, + { + "start": 4136.22, + "end": 4139.66, + "probability": 0.9468 + }, + { + "start": 4140.4, + "end": 4141.7, + "probability": 0.674 + }, + { + "start": 4141.84, + "end": 4142.76, + "probability": 0.5533 + }, + { + "start": 4142.86, + "end": 4143.22, + "probability": 0.7524 + }, + { + "start": 4143.9, + "end": 4144.6, + "probability": 0.7016 + }, + { + "start": 4144.7, + "end": 4146.7, + "probability": 0.459 + }, + { + "start": 4147.08, + "end": 4150.08, + "probability": 0.9346 + }, + { + "start": 4150.76, + "end": 4151.8, + "probability": 0.2376 + }, + { + "start": 4151.88, + "end": 4151.88, + "probability": 0.0751 + }, + { + "start": 4151.88, + "end": 4152.06, + "probability": 0.2447 + }, + { + "start": 4152.7, + "end": 4153.6, + "probability": 0.7512 + }, + { + "start": 4153.86, + "end": 4154.64, + "probability": 0.6324 + }, + { + "start": 4154.74, + "end": 4156.66, + "probability": 0.7998 + }, + { + "start": 4157.38, + "end": 4158.44, + "probability": 0.9976 + }, + { + "start": 4159.06, + "end": 4162.18, + "probability": 0.9807 + }, + { + "start": 4163.08, + "end": 4167.56, + "probability": 0.9976 + }, + { + "start": 4167.56, + "end": 4171.96, + "probability": 0.9385 + }, + { + "start": 4172.72, + "end": 4177.86, + "probability": 0.9836 + }, + { + "start": 4178.28, + "end": 4181.44, + "probability": 0.9946 + }, + { + "start": 4181.8, + "end": 4187.56, + "probability": 0.9749 + }, + { + "start": 4188.04, + "end": 4190.72, + "probability": 0.9925 + }, + { + "start": 4192.78, + "end": 4194.28, + "probability": 0.7291 + }, + { + "start": 4194.74, + "end": 4199.56, + "probability": 0.9816 + }, + { + "start": 4199.96, + "end": 4200.66, + "probability": 0.184 + }, + { + "start": 4201.48, + "end": 4204.14, + "probability": 0.992 + }, + { + "start": 4205.68, + "end": 4206.6, + "probability": 0.756 + }, + { + "start": 4206.68, + "end": 4207.81, + "probability": 0.7526 + }, + { + "start": 4208.14, + "end": 4208.34, + "probability": 0.7512 + }, + { + "start": 4208.4, + "end": 4208.82, + "probability": 0.7834 + }, + { + "start": 4209.96, + "end": 4212.58, + "probability": 0.9365 + }, + { + "start": 4213.04, + "end": 4213.78, + "probability": 0.9039 + }, + { + "start": 4213.88, + "end": 4214.24, + "probability": 0.6867 + }, + { + "start": 4214.28, + "end": 4214.7, + "probability": 0.9863 + }, + { + "start": 4215.08, + "end": 4215.66, + "probability": 0.9264 + }, + { + "start": 4217.32, + "end": 4218.62, + "probability": 0.9695 + }, + { + "start": 4219.86, + "end": 4221.46, + "probability": 0.4922 + }, + { + "start": 4221.56, + "end": 4223.5, + "probability": 0.7083 + }, + { + "start": 4223.58, + "end": 4225.2, + "probability": 0.9772 + }, + { + "start": 4226.08, + "end": 4227.98, + "probability": 0.9317 + }, + { + "start": 4228.32, + "end": 4228.94, + "probability": 0.6915 + }, + { + "start": 4229.2, + "end": 4229.96, + "probability": 0.9873 + }, + { + "start": 4230.84, + "end": 4231.28, + "probability": 0.9743 + }, + { + "start": 4232.42, + "end": 4233.28, + "probability": 0.9052 + }, + { + "start": 4234.12, + "end": 4236.1, + "probability": 0.9525 + }, + { + "start": 4236.68, + "end": 4239.58, + "probability": 0.8701 + }, + { + "start": 4239.84, + "end": 4240.42, + "probability": 0.9361 + }, + { + "start": 4240.74, + "end": 4244.46, + "probability": 0.8636 + }, + { + "start": 4245.12, + "end": 4245.96, + "probability": 0.9543 + }, + { + "start": 4246.62, + "end": 4249.0, + "probability": 0.9605 + }, + { + "start": 4250.04, + "end": 4250.32, + "probability": 0.8272 + }, + { + "start": 4250.44, + "end": 4253.3, + "probability": 0.7601 + }, + { + "start": 4254.08, + "end": 4257.3, + "probability": 0.9603 + }, + { + "start": 4257.3, + "end": 4260.14, + "probability": 0.9977 + }, + { + "start": 4260.96, + "end": 4263.07, + "probability": 0.9092 + }, + { + "start": 4263.88, + "end": 4265.98, + "probability": 0.9769 + }, + { + "start": 4266.36, + "end": 4267.98, + "probability": 0.9651 + }, + { + "start": 4268.82, + "end": 4272.33, + "probability": 0.9974 + }, + { + "start": 4272.52, + "end": 4272.94, + "probability": 0.5145 + }, + { + "start": 4273.2, + "end": 4273.56, + "probability": 0.3082 + }, + { + "start": 4273.6, + "end": 4274.0, + "probability": 0.9838 + }, + { + "start": 4274.46, + "end": 4274.98, + "probability": 0.9935 + }, + { + "start": 4275.22, + "end": 4275.66, + "probability": 0.9926 + }, + { + "start": 4275.98, + "end": 4276.81, + "probability": 0.991 + }, + { + "start": 4277.0, + "end": 4277.86, + "probability": 0.7627 + }, + { + "start": 4278.04, + "end": 4278.42, + "probability": 0.9193 + }, + { + "start": 4279.14, + "end": 4279.76, + "probability": 0.6058 + }, + { + "start": 4280.24, + "end": 4281.06, + "probability": 0.8904 + }, + { + "start": 4281.08, + "end": 4282.02, + "probability": 0.7651 + }, + { + "start": 4282.1, + "end": 4283.59, + "probability": 0.9821 + }, + { + "start": 4285.36, + "end": 4285.72, + "probability": 0.7046 + }, + { + "start": 4285.82, + "end": 4287.48, + "probability": 0.8384 + }, + { + "start": 4287.63, + "end": 4288.08, + "probability": 0.5501 + }, + { + "start": 4288.08, + "end": 4288.5, + "probability": 0.2238 + }, + { + "start": 4288.58, + "end": 4289.86, + "probability": 0.9517 + }, + { + "start": 4289.92, + "end": 4290.52, + "probability": 0.8843 + }, + { + "start": 4290.6, + "end": 4291.6, + "probability": 0.8561 + }, + { + "start": 4291.8, + "end": 4294.36, + "probability": 0.979 + }, + { + "start": 4294.36, + "end": 4294.8, + "probability": 0.3455 + }, + { + "start": 4294.8, + "end": 4299.22, + "probability": 0.8704 + }, + { + "start": 4300.04, + "end": 4301.6, + "probability": 0.9731 + }, + { + "start": 4301.66, + "end": 4302.42, + "probability": 0.9819 + }, + { + "start": 4303.0, + "end": 4303.6, + "probability": 0.4456 + }, + { + "start": 4303.86, + "end": 4303.92, + "probability": 0.4603 + }, + { + "start": 4303.98, + "end": 4306.1, + "probability": 0.992 + }, + { + "start": 4306.24, + "end": 4308.18, + "probability": 0.9654 + }, + { + "start": 4308.72, + "end": 4308.92, + "probability": 0.6277 + }, + { + "start": 4309.04, + "end": 4311.64, + "probability": 0.585 + }, + { + "start": 4312.36, + "end": 4313.38, + "probability": 0.7114 + }, + { + "start": 4313.42, + "end": 4317.7, + "probability": 0.9042 + }, + { + "start": 4318.08, + "end": 4319.32, + "probability": 0.8018 + }, + { + "start": 4319.44, + "end": 4321.0, + "probability": 0.5375 + }, + { + "start": 4321.36, + "end": 4322.26, + "probability": 0.7541 + }, + { + "start": 4322.86, + "end": 4323.0, + "probability": 0.7021 + }, + { + "start": 4323.14, + "end": 4323.92, + "probability": 0.7894 + }, + { + "start": 4324.0, + "end": 4327.2, + "probability": 0.9704 + }, + { + "start": 4327.6, + "end": 4329.96, + "probability": 0.454 + }, + { + "start": 4330.14, + "end": 4330.62, + "probability": 0.8956 + }, + { + "start": 4331.02, + "end": 4334.11, + "probability": 0.9785 + }, + { + "start": 4334.78, + "end": 4336.78, + "probability": 0.9471 + }, + { + "start": 4336.88, + "end": 4337.42, + "probability": 0.9233 + }, + { + "start": 4337.96, + "end": 4340.13, + "probability": 0.8054 + }, + { + "start": 4340.82, + "end": 4342.76, + "probability": 0.9579 + }, + { + "start": 4343.42, + "end": 4347.6, + "probability": 0.8848 + }, + { + "start": 4347.94, + "end": 4348.8, + "probability": 0.8636 + }, + { + "start": 4348.88, + "end": 4349.82, + "probability": 0.8655 + }, + { + "start": 4350.66, + "end": 4352.08, + "probability": 0.8624 + }, + { + "start": 4352.36, + "end": 4352.98, + "probability": 0.7905 + }, + { + "start": 4353.1, + "end": 4355.14, + "probability": 0.9912 + }, + { + "start": 4355.7, + "end": 4357.4, + "probability": 0.6735 + }, + { + "start": 4357.74, + "end": 4358.24, + "probability": 0.8081 + }, + { + "start": 4358.62, + "end": 4360.3, + "probability": 0.8892 + }, + { + "start": 4360.38, + "end": 4361.76, + "probability": 0.9192 + }, + { + "start": 4362.26, + "end": 4364.64, + "probability": 0.7207 + }, + { + "start": 4364.76, + "end": 4369.06, + "probability": 0.6372 + }, + { + "start": 4369.06, + "end": 4369.06, + "probability": 0.0951 + }, + { + "start": 4369.06, + "end": 4369.42, + "probability": 0.0905 + }, + { + "start": 4369.42, + "end": 4374.6, + "probability": 0.5127 + }, + { + "start": 4374.66, + "end": 4375.32, + "probability": 0.3088 + }, + { + "start": 4375.42, + "end": 4377.04, + "probability": 0.908 + }, + { + "start": 4378.84, + "end": 4381.52, + "probability": 0.5203 + }, + { + "start": 4381.62, + "end": 4384.12, + "probability": 0.7921 + }, + { + "start": 4384.22, + "end": 4384.4, + "probability": 0.26 + }, + { + "start": 4384.4, + "end": 4385.57, + "probability": 0.4988 + }, + { + "start": 4385.94, + "end": 4387.1, + "probability": 0.7136 + }, + { + "start": 4387.18, + "end": 4388.28, + "probability": 0.7547 + }, + { + "start": 4389.98, + "end": 4393.06, + "probability": 0.9786 + }, + { + "start": 4395.98, + "end": 4400.04, + "probability": 0.6968 + }, + { + "start": 4400.66, + "end": 4405.92, + "probability": 0.984 + }, + { + "start": 4405.92, + "end": 4411.02, + "probability": 0.7547 + }, + { + "start": 4411.2, + "end": 4412.96, + "probability": 0.9375 + }, + { + "start": 4413.64, + "end": 4415.74, + "probability": 0.5795 + }, + { + "start": 4416.48, + "end": 4421.14, + "probability": 0.9725 + }, + { + "start": 4422.32, + "end": 4427.5, + "probability": 0.687 + }, + { + "start": 4428.14, + "end": 4430.4, + "probability": 0.609 + }, + { + "start": 4430.54, + "end": 4431.54, + "probability": 0.9297 + }, + { + "start": 4432.0, + "end": 4432.92, + "probability": 0.8362 + }, + { + "start": 4433.3, + "end": 4433.94, + "probability": 0.833 + }, + { + "start": 4435.74, + "end": 4436.46, + "probability": 0.8854 + }, + { + "start": 4436.88, + "end": 4438.5, + "probability": 0.8726 + }, + { + "start": 4439.46, + "end": 4440.24, + "probability": 0.3183 + }, + { + "start": 4440.42, + "end": 4442.66, + "probability": 0.8177 + }, + { + "start": 4442.7, + "end": 4442.86, + "probability": 0.8558 + }, + { + "start": 4443.5, + "end": 4445.46, + "probability": 0.9973 + }, + { + "start": 4445.46, + "end": 4447.78, + "probability": 0.9917 + }, + { + "start": 4450.06, + "end": 4452.72, + "probability": 0.6642 + }, + { + "start": 4453.56, + "end": 4455.42, + "probability": 0.9265 + }, + { + "start": 4455.48, + "end": 4456.18, + "probability": 0.5038 + }, + { + "start": 4456.68, + "end": 4458.1, + "probability": 0.9057 + }, + { + "start": 4458.78, + "end": 4461.44, + "probability": 0.9887 + }, + { + "start": 4462.8, + "end": 4463.55, + "probability": 0.4176 + }, + { + "start": 4464.36, + "end": 4465.82, + "probability": 0.9736 + }, + { + "start": 4466.24, + "end": 4470.08, + "probability": 0.9876 + }, + { + "start": 4470.2, + "end": 4471.28, + "probability": 0.8472 + }, + { + "start": 4472.02, + "end": 4474.02, + "probability": 0.9047 + }, + { + "start": 4474.28, + "end": 4476.18, + "probability": 0.8824 + }, + { + "start": 4476.72, + "end": 4481.04, + "probability": 0.9487 + }, + { + "start": 4481.58, + "end": 4483.9, + "probability": 0.8574 + }, + { + "start": 4484.12, + "end": 4487.66, + "probability": 0.8813 + }, + { + "start": 4488.2, + "end": 4489.17, + "probability": 0.2074 + }, + { + "start": 4490.26, + "end": 4492.98, + "probability": 0.99 + }, + { + "start": 4493.1, + "end": 4493.28, + "probability": 0.6142 + }, + { + "start": 4493.36, + "end": 4494.02, + "probability": 0.939 + }, + { + "start": 4495.6, + "end": 4496.02, + "probability": 0.5977 + }, + { + "start": 4496.1, + "end": 4496.4, + "probability": 0.7423 + }, + { + "start": 4496.56, + "end": 4497.82, + "probability": 0.9064 + }, + { + "start": 4497.9, + "end": 4498.88, + "probability": 0.6297 + }, + { + "start": 4499.04, + "end": 4500.44, + "probability": 0.9351 + }, + { + "start": 4502.14, + "end": 4503.82, + "probability": 0.2988 + }, + { + "start": 4503.92, + "end": 4506.54, + "probability": 0.9492 + }, + { + "start": 4506.62, + "end": 4507.5, + "probability": 0.5585 + }, + { + "start": 4508.16, + "end": 4509.88, + "probability": 0.8914 + }, + { + "start": 4510.14, + "end": 4511.84, + "probability": 0.7665 + }, + { + "start": 4511.94, + "end": 4512.84, + "probability": 0.7339 + }, + { + "start": 4513.42, + "end": 4514.96, + "probability": 0.5689 + }, + { + "start": 4515.06, + "end": 4516.0, + "probability": 0.9084 + }, + { + "start": 4516.42, + "end": 4517.46, + "probability": 0.8034 + }, + { + "start": 4517.6, + "end": 4520.84, + "probability": 0.6778 + }, + { + "start": 4521.5, + "end": 4521.76, + "probability": 0.1384 + }, + { + "start": 4521.76, + "end": 4523.02, + "probability": 0.7073 + }, + { + "start": 4523.14, + "end": 4526.8, + "probability": 0.8004 + }, + { + "start": 4527.18, + "end": 4527.88, + "probability": 0.8509 + }, + { + "start": 4528.28, + "end": 4529.44, + "probability": 0.7622 + }, + { + "start": 4529.88, + "end": 4534.12, + "probability": 0.8246 + }, + { + "start": 4534.88, + "end": 4537.42, + "probability": 0.9296 + }, + { + "start": 4537.92, + "end": 4538.82, + "probability": 0.9781 + }, + { + "start": 4538.9, + "end": 4539.0, + "probability": 0.8796 + }, + { + "start": 4539.18, + "end": 4541.36, + "probability": 0.8932 + }, + { + "start": 4541.94, + "end": 4543.0, + "probability": 0.4622 + }, + { + "start": 4543.48, + "end": 4545.41, + "probability": 0.9795 + }, + { + "start": 4545.64, + "end": 4550.98, + "probability": 0.9285 + }, + { + "start": 4551.28, + "end": 4551.9, + "probability": 0.4666 + }, + { + "start": 4552.02, + "end": 4553.38, + "probability": 0.8964 + }, + { + "start": 4553.76, + "end": 4555.03, + "probability": 0.9124 + }, + { + "start": 4555.76, + "end": 4559.22, + "probability": 0.9659 + }, + { + "start": 4559.68, + "end": 4562.14, + "probability": 0.9448 + }, + { + "start": 4562.32, + "end": 4565.8, + "probability": 0.9886 + }, + { + "start": 4565.84, + "end": 4567.04, + "probability": 0.7127 + }, + { + "start": 4567.12, + "end": 4568.16, + "probability": 0.9481 + }, + { + "start": 4568.66, + "end": 4571.24, + "probability": 0.9891 + }, + { + "start": 4571.94, + "end": 4573.34, + "probability": 0.8912 + }, + { + "start": 4573.44, + "end": 4575.42, + "probability": 0.7728 + }, + { + "start": 4576.34, + "end": 4578.96, + "probability": 0.9819 + }, + { + "start": 4579.04, + "end": 4580.36, + "probability": 0.9628 + }, + { + "start": 4580.54, + "end": 4581.08, + "probability": 0.8741 + }, + { + "start": 4581.28, + "end": 4581.76, + "probability": 0.7263 + }, + { + "start": 4581.84, + "end": 4582.96, + "probability": 0.9548 + }, + { + "start": 4583.18, + "end": 4584.8, + "probability": 0.8014 + }, + { + "start": 4584.86, + "end": 4585.2, + "probability": 0.4934 + }, + { + "start": 4585.84, + "end": 4587.66, + "probability": 0.95 + }, + { + "start": 4587.8, + "end": 4588.18, + "probability": 0.5343 + }, + { + "start": 4588.24, + "end": 4589.08, + "probability": 0.9392 + }, + { + "start": 4589.14, + "end": 4589.6, + "probability": 0.745 + }, + { + "start": 4589.72, + "end": 4590.38, + "probability": 0.8667 + }, + { + "start": 4590.44, + "end": 4590.92, + "probability": 0.4503 + }, + { + "start": 4591.7, + "end": 4593.58, + "probability": 0.9614 + }, + { + "start": 4593.8, + "end": 4595.44, + "probability": 0.9982 + }, + { + "start": 4595.48, + "end": 4597.63, + "probability": 0.7798 + }, + { + "start": 4598.1, + "end": 4598.62, + "probability": 0.9344 + }, + { + "start": 4599.3, + "end": 4599.8, + "probability": 0.5491 + }, + { + "start": 4600.2, + "end": 4601.5, + "probability": 0.4532 + }, + { + "start": 4605.32, + "end": 4606.8, + "probability": 0.9343 + }, + { + "start": 4607.82, + "end": 4612.26, + "probability": 0.9751 + }, + { + "start": 4612.34, + "end": 4613.9, + "probability": 0.9054 + }, + { + "start": 4614.02, + "end": 4616.2, + "probability": 0.8181 + }, + { + "start": 4616.28, + "end": 4617.98, + "probability": 0.8781 + }, + { + "start": 4619.22, + "end": 4620.8, + "probability": 0.8104 + }, + { + "start": 4620.92, + "end": 4621.12, + "probability": 0.824 + }, + { + "start": 4621.2, + "end": 4622.72, + "probability": 0.9516 + }, + { + "start": 4623.8, + "end": 4626.02, + "probability": 0.9666 + }, + { + "start": 4626.14, + "end": 4629.36, + "probability": 0.9745 + }, + { + "start": 4629.78, + "end": 4631.04, + "probability": 0.6875 + }, + { + "start": 4631.26, + "end": 4633.0, + "probability": 0.8625 + }, + { + "start": 4633.16, + "end": 4635.81, + "probability": 0.9697 + }, + { + "start": 4636.58, + "end": 4638.64, + "probability": 0.9526 + }, + { + "start": 4639.22, + "end": 4643.8, + "probability": 0.9607 + }, + { + "start": 4644.1, + "end": 4647.1, + "probability": 0.9634 + }, + { + "start": 4647.5, + "end": 4649.4, + "probability": 0.9322 + }, + { + "start": 4649.5, + "end": 4652.52, + "probability": 0.8891 + }, + { + "start": 4652.94, + "end": 4656.87, + "probability": 0.9341 + }, + { + "start": 4657.24, + "end": 4658.88, + "probability": 0.7647 + }, + { + "start": 4659.22, + "end": 4660.18, + "probability": 0.9778 + }, + { + "start": 4661.98, + "end": 4663.88, + "probability": 0.9219 + }, + { + "start": 4664.3, + "end": 4665.12, + "probability": 0.7879 + }, + { + "start": 4665.12, + "end": 4665.62, + "probability": 0.842 + }, + { + "start": 4666.7, + "end": 4669.82, + "probability": 0.9799 + }, + { + "start": 4670.0, + "end": 4670.5, + "probability": 0.6205 + }, + { + "start": 4670.76, + "end": 4670.96, + "probability": 0.5026 + }, + { + "start": 4671.14, + "end": 4671.69, + "probability": 0.8826 + }, + { + "start": 4672.4, + "end": 4673.4, + "probability": 0.8484 + }, + { + "start": 4673.42, + "end": 4674.4, + "probability": 0.8212 + }, + { + "start": 4675.98, + "end": 4677.14, + "probability": 0.9932 + }, + { + "start": 4677.38, + "end": 4678.44, + "probability": 0.5559 + }, + { + "start": 4678.72, + "end": 4679.18, + "probability": 0.9374 + }, + { + "start": 4679.32, + "end": 4680.98, + "probability": 0.9595 + }, + { + "start": 4681.08, + "end": 4681.72, + "probability": 0.5667 + }, + { + "start": 4681.8, + "end": 4684.36, + "probability": 0.8948 + }, + { + "start": 4685.95, + "end": 4687.38, + "probability": 0.3216 + }, + { + "start": 4687.38, + "end": 4687.38, + "probability": 0.0634 + }, + { + "start": 4687.38, + "end": 4687.38, + "probability": 0.3065 + }, + { + "start": 4687.44, + "end": 4688.5, + "probability": 0.9204 + }, + { + "start": 4688.62, + "end": 4689.66, + "probability": 0.8215 + }, + { + "start": 4689.68, + "end": 4690.5, + "probability": 0.8379 + }, + { + "start": 4690.58, + "end": 4692.08, + "probability": 0.9328 + }, + { + "start": 4692.14, + "end": 4693.92, + "probability": 0.601 + }, + { + "start": 4694.04, + "end": 4696.42, + "probability": 0.8573 + }, + { + "start": 4696.54, + "end": 4697.66, + "probability": 0.9282 + }, + { + "start": 4697.84, + "end": 4701.78, + "probability": 0.9661 + }, + { + "start": 4702.78, + "end": 4703.64, + "probability": 0.6798 + }, + { + "start": 4703.8, + "end": 4704.76, + "probability": 0.9661 + }, + { + "start": 4705.42, + "end": 4708.58, + "probability": 0.9954 + }, + { + "start": 4709.06, + "end": 4711.72, + "probability": 0.9152 + }, + { + "start": 4712.32, + "end": 4714.04, + "probability": 0.9429 + }, + { + "start": 4714.64, + "end": 4717.3, + "probability": 0.9512 + }, + { + "start": 4717.58, + "end": 4720.26, + "probability": 0.9647 + }, + { + "start": 4720.36, + "end": 4721.2, + "probability": 0.087 + }, + { + "start": 4721.86, + "end": 4723.61, + "probability": 0.8826 + }, + { + "start": 4724.02, + "end": 4725.24, + "probability": 0.9171 + }, + { + "start": 4726.18, + "end": 4726.62, + "probability": 0.6992 + }, + { + "start": 4726.72, + "end": 4730.84, + "probability": 0.8333 + }, + { + "start": 4730.84, + "end": 4730.96, + "probability": 0.7742 + }, + { + "start": 4731.22, + "end": 4733.94, + "probability": 0.6958 + }, + { + "start": 4734.08, + "end": 4735.3, + "probability": 0.9291 + }, + { + "start": 4735.38, + "end": 4736.58, + "probability": 0.9705 + }, + { + "start": 4736.94, + "end": 4740.02, + "probability": 0.7501 + }, + { + "start": 4740.18, + "end": 4741.24, + "probability": 0.7249 + }, + { + "start": 4741.4, + "end": 4744.28, + "probability": 0.9757 + }, + { + "start": 4744.68, + "end": 4746.02, + "probability": 0.9896 + }, + { + "start": 4747.32, + "end": 4749.24, + "probability": 0.9108 + }, + { + "start": 4749.32, + "end": 4750.36, + "probability": 0.9264 + }, + { + "start": 4750.46, + "end": 4752.54, + "probability": 0.8325 + }, + { + "start": 4752.76, + "end": 4754.14, + "probability": 0.8403 + }, + { + "start": 4754.52, + "end": 4756.8, + "probability": 0.9937 + }, + { + "start": 4756.86, + "end": 4758.5, + "probability": 0.8823 + }, + { + "start": 4758.87, + "end": 4760.78, + "probability": 0.9077 + }, + { + "start": 4761.3, + "end": 4761.56, + "probability": 0.6479 + }, + { + "start": 4761.64, + "end": 4762.42, + "probability": 0.9127 + }, + { + "start": 4762.6, + "end": 4763.86, + "probability": 0.8931 + }, + { + "start": 4763.98, + "end": 4765.1, + "probability": 0.9742 + }, + { + "start": 4765.92, + "end": 4767.5, + "probability": 0.8241 + }, + { + "start": 4767.9, + "end": 4769.38, + "probability": 0.9279 + }, + { + "start": 4769.44, + "end": 4769.5, + "probability": 0.3248 + }, + { + "start": 4769.62, + "end": 4770.86, + "probability": 0.7266 + }, + { + "start": 4770.94, + "end": 4774.42, + "probability": 0.979 + }, + { + "start": 4774.88, + "end": 4776.08, + "probability": 0.8267 + }, + { + "start": 4776.18, + "end": 4776.64, + "probability": 0.3393 + }, + { + "start": 4776.72, + "end": 4778.6, + "probability": 0.7468 + }, + { + "start": 4779.12, + "end": 4780.4, + "probability": 0.7428 + }, + { + "start": 4780.52, + "end": 4780.62, + "probability": 0.5655 + }, + { + "start": 4780.62, + "end": 4780.66, + "probability": 0.1186 + }, + { + "start": 4780.66, + "end": 4781.56, + "probability": 0.9395 + }, + { + "start": 4781.78, + "end": 4785.94, + "probability": 0.9604 + }, + { + "start": 4785.98, + "end": 4785.98, + "probability": 0.4607 + }, + { + "start": 4786.04, + "end": 4786.16, + "probability": 0.4299 + }, + { + "start": 4786.16, + "end": 4786.96, + "probability": 0.5754 + }, + { + "start": 4787.1, + "end": 4788.16, + "probability": 0.7936 + }, + { + "start": 4788.48, + "end": 4790.8, + "probability": 0.9883 + }, + { + "start": 4791.7, + "end": 4793.24, + "probability": 0.6535 + }, + { + "start": 4793.42, + "end": 4793.84, + "probability": 0.8289 + }, + { + "start": 4794.34, + "end": 4796.38, + "probability": 0.976 + }, + { + "start": 4796.4, + "end": 4796.88, + "probability": 0.5295 + }, + { + "start": 4796.88, + "end": 4798.82, + "probability": 0.8348 + }, + { + "start": 4798.94, + "end": 4800.34, + "probability": 0.8172 + }, + { + "start": 4800.44, + "end": 4801.41, + "probability": 0.5802 + }, + { + "start": 4801.58, + "end": 4802.66, + "probability": 0.7067 + }, + { + "start": 4802.66, + "end": 4804.64, + "probability": 0.7748 + }, + { + "start": 4804.7, + "end": 4804.98, + "probability": 0.597 + }, + { + "start": 4804.98, + "end": 4805.36, + "probability": 0.8379 + }, + { + "start": 4806.04, + "end": 4807.5, + "probability": 0.6998 + }, + { + "start": 4808.07, + "end": 4811.19, + "probability": 0.8248 + }, + { + "start": 4812.78, + "end": 4813.22, + "probability": 0.2772 + }, + { + "start": 4813.34, + "end": 4815.04, + "probability": 0.957 + }, + { + "start": 4815.54, + "end": 4816.8, + "probability": 0.5212 + }, + { + "start": 4817.66, + "end": 4819.02, + "probability": 0.735 + }, + { + "start": 4819.08, + "end": 4820.18, + "probability": 0.9171 + }, + { + "start": 4830.24, + "end": 4832.4, + "probability": 0.8195 + }, + { + "start": 4833.94, + "end": 4835.72, + "probability": 0.6123 + }, + { + "start": 4835.9, + "end": 4836.98, + "probability": 0.7996 + }, + { + "start": 4837.68, + "end": 4839.86, + "probability": 0.9365 + }, + { + "start": 4840.68, + "end": 4842.6, + "probability": 0.4651 + }, + { + "start": 4844.38, + "end": 4848.48, + "probability": 0.9015 + }, + { + "start": 4849.44, + "end": 4852.62, + "probability": 0.6652 + }, + { + "start": 4853.08, + "end": 4853.76, + "probability": 0.7788 + }, + { + "start": 4854.32, + "end": 4856.88, + "probability": 0.9666 + }, + { + "start": 4857.34, + "end": 4860.66, + "probability": 0.9982 + }, + { + "start": 4861.96, + "end": 4862.26, + "probability": 0.5005 + }, + { + "start": 4862.46, + "end": 4862.64, + "probability": 0.6395 + }, + { + "start": 4862.7, + "end": 4866.8, + "probability": 0.8434 + }, + { + "start": 4866.84, + "end": 4867.08, + "probability": 0.6672 + }, + { + "start": 4867.26, + "end": 4869.9, + "probability": 0.9561 + }, + { + "start": 4870.12, + "end": 4872.1, + "probability": 0.7316 + }, + { + "start": 4872.22, + "end": 4873.72, + "probability": 0.797 + }, + { + "start": 4873.84, + "end": 4875.08, + "probability": 0.7294 + }, + { + "start": 4875.18, + "end": 4875.54, + "probability": 0.2693 + }, + { + "start": 4875.88, + "end": 4876.34, + "probability": 0.9858 + }, + { + "start": 4881.24, + "end": 4884.38, + "probability": 0.9784 + }, + { + "start": 4884.52, + "end": 4887.28, + "probability": 0.9034 + }, + { + "start": 4887.62, + "end": 4889.54, + "probability": 0.9575 + }, + { + "start": 4889.98, + "end": 4892.11, + "probability": 0.9286 + }, + { + "start": 4892.78, + "end": 4894.78, + "probability": 0.6758 + }, + { + "start": 4895.52, + "end": 4896.66, + "probability": 0.9764 + }, + { + "start": 4896.86, + "end": 4900.5, + "probability": 0.8087 + }, + { + "start": 4900.88, + "end": 4902.72, + "probability": 0.5483 + }, + { + "start": 4903.32, + "end": 4906.6, + "probability": 0.9038 + }, + { + "start": 4907.88, + "end": 4910.64, + "probability": 0.6044 + }, + { + "start": 4910.7, + "end": 4910.86, + "probability": 0.8023 + }, + { + "start": 4911.96, + "end": 4913.06, + "probability": 0.9547 + }, + { + "start": 4913.69, + "end": 4915.62, + "probability": 0.8235 + }, + { + "start": 4915.8, + "end": 4917.24, + "probability": 0.9797 + }, + { + "start": 4917.52, + "end": 4918.02, + "probability": 0.9042 + }, + { + "start": 4918.58, + "end": 4921.26, + "probability": 0.9946 + }, + { + "start": 4923.32, + "end": 4925.52, + "probability": 0.6653 + }, + { + "start": 4926.3, + "end": 4927.96, + "probability": 0.3729 + }, + { + "start": 4928.14, + "end": 4929.14, + "probability": 0.7991 + }, + { + "start": 4929.3, + "end": 4929.84, + "probability": 0.7101 + }, + { + "start": 4930.2, + "end": 4930.66, + "probability": 0.7604 + }, + { + "start": 4930.98, + "end": 4932.72, + "probability": 0.9951 + }, + { + "start": 4933.08, + "end": 4937.52, + "probability": 0.9932 + }, + { + "start": 4937.66, + "end": 4938.36, + "probability": 0.9382 + }, + { + "start": 4938.74, + "end": 4939.11, + "probability": 0.9316 + }, + { + "start": 4939.54, + "end": 4941.08, + "probability": 0.9453 + }, + { + "start": 4941.5, + "end": 4942.79, + "probability": 0.9536 + }, + { + "start": 4943.46, + "end": 4944.76, + "probability": 0.9428 + }, + { + "start": 4944.82, + "end": 4946.46, + "probability": 0.9353 + }, + { + "start": 4946.58, + "end": 4948.54, + "probability": 0.7559 + }, + { + "start": 4949.08, + "end": 4949.92, + "probability": 0.987 + }, + { + "start": 4949.98, + "end": 4951.88, + "probability": 0.9911 + }, + { + "start": 4951.9, + "end": 4953.68, + "probability": 0.8239 + }, + { + "start": 4954.66, + "end": 4956.3, + "probability": 0.951 + }, + { + "start": 4956.68, + "end": 4959.1, + "probability": 0.9801 + }, + { + "start": 4959.18, + "end": 4961.5, + "probability": 0.9954 + }, + { + "start": 4961.82, + "end": 4963.3, + "probability": 0.9604 + }, + { + "start": 4963.84, + "end": 4966.25, + "probability": 0.9965 + }, + { + "start": 4967.12, + "end": 4967.78, + "probability": 0.7964 + }, + { + "start": 4967.98, + "end": 4970.19, + "probability": 0.6936 + }, + { + "start": 4970.52, + "end": 4971.96, + "probability": 0.9055 + }, + { + "start": 4972.6, + "end": 4973.82, + "probability": 0.9714 + }, + { + "start": 4974.14, + "end": 4975.36, + "probability": 0.881 + }, + { + "start": 4975.82, + "end": 4976.26, + "probability": 0.6278 + }, + { + "start": 4976.4, + "end": 4977.83, + "probability": 0.6997 + }, + { + "start": 4978.6, + "end": 4981.32, + "probability": 0.9158 + }, + { + "start": 4983.0, + "end": 4988.4, + "probability": 0.63 + }, + { + "start": 4989.22, + "end": 4990.98, + "probability": 0.9475 + }, + { + "start": 4991.54, + "end": 4993.14, + "probability": 0.9405 + }, + { + "start": 4994.22, + "end": 4996.22, + "probability": 0.9731 + }, + { + "start": 4997.54, + "end": 4998.4, + "probability": 0.5141 + }, + { + "start": 4998.48, + "end": 5000.94, + "probability": 0.9749 + }, + { + "start": 5001.32, + "end": 5004.08, + "probability": 0.9574 + }, + { + "start": 5005.28, + "end": 5008.56, + "probability": 0.9224 + }, + { + "start": 5009.12, + "end": 5013.34, + "probability": 0.9875 + }, + { + "start": 5014.1, + "end": 5018.09, + "probability": 0.6383 + }, + { + "start": 5019.34, + "end": 5020.26, + "probability": 0.8651 + }, + { + "start": 5020.5, + "end": 5023.12, + "probability": 0.9657 + }, + { + "start": 5024.38, + "end": 5028.1, + "probability": 0.8534 + }, + { + "start": 5028.28, + "end": 5031.32, + "probability": 0.7678 + }, + { + "start": 5032.72, + "end": 5038.64, + "probability": 0.994 + }, + { + "start": 5040.24, + "end": 5042.8, + "probability": 0.7534 + }, + { + "start": 5042.92, + "end": 5044.6, + "probability": 0.993 + }, + { + "start": 5044.6, + "end": 5048.4, + "probability": 0.9707 + }, + { + "start": 5049.9, + "end": 5050.88, + "probability": 0.7862 + }, + { + "start": 5050.98, + "end": 5054.3, + "probability": 0.9908 + }, + { + "start": 5055.22, + "end": 5057.2, + "probability": 0.5841 + }, + { + "start": 5057.36, + "end": 5062.0, + "probability": 0.998 + }, + { + "start": 5062.36, + "end": 5064.52, + "probability": 0.9817 + }, + { + "start": 5064.68, + "end": 5071.72, + "probability": 0.6614 + }, + { + "start": 5073.1, + "end": 5075.2, + "probability": 0.863 + }, + { + "start": 5075.54, + "end": 5076.36, + "probability": 0.7861 + }, + { + "start": 5076.48, + "end": 5076.82, + "probability": 0.8429 + }, + { + "start": 5077.96, + "end": 5081.34, + "probability": 0.8073 + }, + { + "start": 5082.02, + "end": 5083.56, + "probability": 0.9941 + }, + { + "start": 5084.5, + "end": 5089.58, + "probability": 0.9956 + }, + { + "start": 5090.52, + "end": 5092.02, + "probability": 0.9883 + }, + { + "start": 5093.36, + "end": 5094.92, + "probability": 0.4844 + }, + { + "start": 5095.06, + "end": 5095.84, + "probability": 0.6749 + }, + { + "start": 5095.96, + "end": 5098.3, + "probability": 0.8305 + }, + { + "start": 5098.3, + "end": 5098.82, + "probability": 0.486 + }, + { + "start": 5098.93, + "end": 5100.18, + "probability": 0.8364 + }, + { + "start": 5100.52, + "end": 5103.42, + "probability": 0.7134 + }, + { + "start": 5103.99, + "end": 5105.14, + "probability": 0.942 + }, + { + "start": 5105.22, + "end": 5108.64, + "probability": 0.9449 + }, + { + "start": 5108.92, + "end": 5109.5, + "probability": 0.4962 + }, + { + "start": 5110.34, + "end": 5113.04, + "probability": 0.8712 + }, + { + "start": 5114.16, + "end": 5114.7, + "probability": 0.6677 + }, + { + "start": 5115.24, + "end": 5116.62, + "probability": 0.7735 + }, + { + "start": 5116.76, + "end": 5118.16, + "probability": 0.7944 + }, + { + "start": 5118.24, + "end": 5119.18, + "probability": 0.4402 + }, + { + "start": 5120.98, + "end": 5122.54, + "probability": 0.998 + }, + { + "start": 5123.3, + "end": 5125.11, + "probability": 0.9646 + }, + { + "start": 5126.16, + "end": 5126.84, + "probability": 0.7328 + }, + { + "start": 5128.3, + "end": 5131.26, + "probability": 0.8366 + }, + { + "start": 5131.3, + "end": 5131.94, + "probability": 0.6705 + }, + { + "start": 5132.1, + "end": 5133.28, + "probability": 0.6801 + }, + { + "start": 5133.52, + "end": 5134.28, + "probability": 0.5027 + }, + { + "start": 5134.62, + "end": 5134.82, + "probability": 0.7303 + }, + { + "start": 5134.9, + "end": 5137.02, + "probability": 0.9517 + }, + { + "start": 5137.96, + "end": 5138.7, + "probability": 0.9337 + }, + { + "start": 5139.38, + "end": 5139.9, + "probability": 0.9517 + }, + { + "start": 5141.18, + "end": 5142.58, + "probability": 0.7254 + }, + { + "start": 5142.66, + "end": 5145.18, + "probability": 0.975 + }, + { + "start": 5145.72, + "end": 5145.84, + "probability": 0.6726 + }, + { + "start": 5146.24, + "end": 5147.16, + "probability": 0.859 + }, + { + "start": 5147.76, + "end": 5148.28, + "probability": 0.9673 + }, + { + "start": 5148.32, + "end": 5149.46, + "probability": 0.9277 + }, + { + "start": 5149.58, + "end": 5150.42, + "probability": 0.8677 + }, + { + "start": 5150.44, + "end": 5151.58, + "probability": 0.9927 + }, + { + "start": 5152.7, + "end": 5153.78, + "probability": 0.8342 + }, + { + "start": 5153.84, + "end": 5154.5, + "probability": 0.8667 + }, + { + "start": 5154.6, + "end": 5156.38, + "probability": 0.9954 + }, + { + "start": 5156.74, + "end": 5158.18, + "probability": 0.9922 + }, + { + "start": 5158.24, + "end": 5158.66, + "probability": 0.9473 + }, + { + "start": 5159.38, + "end": 5162.0, + "probability": 0.9776 + }, + { + "start": 5163.9, + "end": 5164.3, + "probability": 0.4689 + }, + { + "start": 5165.0, + "end": 5165.69, + "probability": 0.9692 + }, + { + "start": 5166.54, + "end": 5167.04, + "probability": 0.5054 + }, + { + "start": 5168.16, + "end": 5170.4, + "probability": 0.9168 + }, + { + "start": 5170.4, + "end": 5172.76, + "probability": 0.991 + }, + { + "start": 5173.82, + "end": 5175.04, + "probability": 0.9944 + }, + { + "start": 5175.58, + "end": 5177.7, + "probability": 0.9796 + }, + { + "start": 5178.24, + "end": 5181.05, + "probability": 0.9818 + }, + { + "start": 5181.88, + "end": 5182.4, + "probability": 0.7657 + }, + { + "start": 5183.2, + "end": 5183.78, + "probability": 0.7809 + }, + { + "start": 5183.88, + "end": 5184.36, + "probability": 0.9521 + }, + { + "start": 5184.48, + "end": 5185.22, + "probability": 0.9616 + }, + { + "start": 5185.22, + "end": 5185.9, + "probability": 0.9866 + }, + { + "start": 5186.0, + "end": 5186.36, + "probability": 0.8592 + }, + { + "start": 5186.86, + "end": 5187.24, + "probability": 0.6678 + }, + { + "start": 5189.06, + "end": 5189.98, + "probability": 0.9816 + }, + { + "start": 5190.18, + "end": 5190.99, + "probability": 0.8828 + }, + { + "start": 5191.12, + "end": 5192.23, + "probability": 0.8869 + }, + { + "start": 5192.48, + "end": 5194.02, + "probability": 0.9425 + }, + { + "start": 5194.1, + "end": 5194.92, + "probability": 0.8685 + }, + { + "start": 5195.3, + "end": 5195.5, + "probability": 0.6222 + }, + { + "start": 5195.56, + "end": 5195.9, + "probability": 0.8474 + }, + { + "start": 5196.08, + "end": 5197.31, + "probability": 0.7896 + }, + { + "start": 5197.36, + "end": 5198.58, + "probability": 0.8026 + }, + { + "start": 5198.92, + "end": 5199.88, + "probability": 0.869 + }, + { + "start": 5200.6, + "end": 5201.32, + "probability": 0.8747 + }, + { + "start": 5201.38, + "end": 5202.72, + "probability": 0.8187 + }, + { + "start": 5203.18, + "end": 5205.16, + "probability": 0.977 + }, + { + "start": 5206.0, + "end": 5208.52, + "probability": 0.9971 + }, + { + "start": 5208.52, + "end": 5213.46, + "probability": 0.9874 + }, + { + "start": 5213.56, + "end": 5214.36, + "probability": 0.8267 + }, + { + "start": 5214.46, + "end": 5215.54, + "probability": 0.9572 + }, + { + "start": 5216.28, + "end": 5216.86, + "probability": 0.7537 + }, + { + "start": 5216.98, + "end": 5218.46, + "probability": 0.9973 + }, + { + "start": 5219.14, + "end": 5220.88, + "probability": 0.4012 + }, + { + "start": 5221.02, + "end": 5222.5, + "probability": 0.9237 + }, + { + "start": 5223.76, + "end": 5225.78, + "probability": 0.9806 + }, + { + "start": 5226.46, + "end": 5227.39, + "probability": 0.9846 + }, + { + "start": 5228.04, + "end": 5232.06, + "probability": 0.7444 + }, + { + "start": 5232.28, + "end": 5235.38, + "probability": 0.7353 + }, + { + "start": 5236.6, + "end": 5239.18, + "probability": 0.9739 + }, + { + "start": 5239.38, + "end": 5243.56, + "probability": 0.9082 + }, + { + "start": 5243.62, + "end": 5244.08, + "probability": 0.9443 + }, + { + "start": 5244.34, + "end": 5245.38, + "probability": 0.9812 + }, + { + "start": 5245.54, + "end": 5246.86, + "probability": 0.9882 + }, + { + "start": 5247.06, + "end": 5247.96, + "probability": 0.9281 + }, + { + "start": 5248.52, + "end": 5248.66, + "probability": 0.5052 + }, + { + "start": 5251.14, + "end": 5253.9, + "probability": 0.952 + }, + { + "start": 5254.04, + "end": 5256.36, + "probability": 0.95 + }, + { + "start": 5257.3, + "end": 5261.52, + "probability": 0.6928 + }, + { + "start": 5262.54, + "end": 5265.29, + "probability": 0.8436 + }, + { + "start": 5266.9, + "end": 5268.08, + "probability": 0.7027 + }, + { + "start": 5268.14, + "end": 5269.02, + "probability": 0.9916 + }, + { + "start": 5269.8, + "end": 5271.54, + "probability": 0.9595 + }, + { + "start": 5271.68, + "end": 5271.78, + "probability": 0.4237 + }, + { + "start": 5272.58, + "end": 5274.84, + "probability": 0.9336 + }, + { + "start": 5275.6, + "end": 5276.78, + "probability": 0.5063 + }, + { + "start": 5276.9, + "end": 5278.6, + "probability": 0.8423 + }, + { + "start": 5279.44, + "end": 5281.8, + "probability": 0.9309 + }, + { + "start": 5282.7, + "end": 5284.1, + "probability": 0.9966 + }, + { + "start": 5284.82, + "end": 5285.96, + "probability": 0.8897 + }, + { + "start": 5285.96, + "end": 5290.08, + "probability": 0.6045 + }, + { + "start": 5290.14, + "end": 5291.32, + "probability": 0.9691 + }, + { + "start": 5291.36, + "end": 5293.12, + "probability": 0.905 + }, + { + "start": 5293.48, + "end": 5297.0, + "probability": 0.7914 + }, + { + "start": 5299.36, + "end": 5300.44, + "probability": 0.8065 + }, + { + "start": 5300.64, + "end": 5302.96, + "probability": 0.9365 + }, + { + "start": 5303.0, + "end": 5304.76, + "probability": 0.9301 + }, + { + "start": 5304.84, + "end": 5305.68, + "probability": 0.7983 + }, + { + "start": 5306.0, + "end": 5307.9, + "probability": 0.8786 + }, + { + "start": 5308.26, + "end": 5309.16, + "probability": 0.8399 + }, + { + "start": 5311.3, + "end": 5312.2, + "probability": 0.5036 + }, + { + "start": 5312.84, + "end": 5312.84, + "probability": 0.1532 + }, + { + "start": 5312.84, + "end": 5312.84, + "probability": 0.1056 + }, + { + "start": 5312.84, + "end": 5315.16, + "probability": 0.5083 + }, + { + "start": 5315.46, + "end": 5317.14, + "probability": 0.847 + }, + { + "start": 5317.7, + "end": 5319.08, + "probability": 0.9725 + }, + { + "start": 5319.48, + "end": 5320.54, + "probability": 0.8162 + }, + { + "start": 5321.04, + "end": 5321.42, + "probability": 0.6295 + }, + { + "start": 5321.52, + "end": 5322.24, + "probability": 0.6633 + }, + { + "start": 5322.32, + "end": 5322.52, + "probability": 0.9682 + }, + { + "start": 5323.96, + "end": 5325.04, + "probability": 0.8467 + }, + { + "start": 5326.22, + "end": 5329.04, + "probability": 0.8835 + }, + { + "start": 5329.12, + "end": 5332.12, + "probability": 0.8332 + }, + { + "start": 5332.94, + "end": 5335.26, + "probability": 0.9958 + }, + { + "start": 5336.42, + "end": 5339.22, + "probability": 0.9494 + }, + { + "start": 5339.74, + "end": 5343.78, + "probability": 0.9087 + }, + { + "start": 5344.34, + "end": 5344.66, + "probability": 0.6784 + }, + { + "start": 5344.96, + "end": 5347.98, + "probability": 0.9927 + }, + { + "start": 5348.34, + "end": 5349.28, + "probability": 0.9756 + }, + { + "start": 5349.76, + "end": 5350.86, + "probability": 0.8118 + }, + { + "start": 5352.04, + "end": 5355.62, + "probability": 0.8127 + }, + { + "start": 5356.28, + "end": 5356.88, + "probability": 0.9798 + }, + { + "start": 5358.36, + "end": 5360.64, + "probability": 0.7351 + }, + { + "start": 5360.82, + "end": 5362.1, + "probability": 0.866 + }, + { + "start": 5362.14, + "end": 5366.04, + "probability": 0.9907 + }, + { + "start": 5366.58, + "end": 5368.78, + "probability": 0.9951 + }, + { + "start": 5369.04, + "end": 5369.92, + "probability": 0.9944 + }, + { + "start": 5370.54, + "end": 5372.78, + "probability": 0.9824 + }, + { + "start": 5373.26, + "end": 5374.54, + "probability": 0.9355 + }, + { + "start": 5374.62, + "end": 5375.32, + "probability": 0.9182 + }, + { + "start": 5375.32, + "end": 5376.0, + "probability": 0.9722 + }, + { + "start": 5376.72, + "end": 5379.26, + "probability": 0.9751 + }, + { + "start": 5379.52, + "end": 5380.08, + "probability": 0.7261 + }, + { + "start": 5380.56, + "end": 5381.76, + "probability": 0.5138 + }, + { + "start": 5382.22, + "end": 5384.68, + "probability": 0.9188 + }, + { + "start": 5385.08, + "end": 5389.45, + "probability": 0.9784 + }, + { + "start": 5389.76, + "end": 5390.88, + "probability": 0.9886 + }, + { + "start": 5391.32, + "end": 5392.4, + "probability": 0.5707 + }, + { + "start": 5393.08, + "end": 5394.98, + "probability": 0.4843 + }, + { + "start": 5395.72, + "end": 5397.12, + "probability": 0.9579 + }, + { + "start": 5397.24, + "end": 5398.4, + "probability": 0.8619 + }, + { + "start": 5398.64, + "end": 5399.18, + "probability": 0.3057 + }, + { + "start": 5399.26, + "end": 5399.9, + "probability": 0.5239 + }, + { + "start": 5401.7, + "end": 5402.32, + "probability": 0.8629 + }, + { + "start": 5403.14, + "end": 5403.54, + "probability": 0.8812 + }, + { + "start": 5404.32, + "end": 5404.66, + "probability": 0.5792 + }, + { + "start": 5404.76, + "end": 5407.23, + "probability": 0.7588 + }, + { + "start": 5407.74, + "end": 5408.78, + "probability": 0.8221 + }, + { + "start": 5409.28, + "end": 5409.38, + "probability": 0.8289 + }, + { + "start": 5429.56, + "end": 5430.32, + "probability": 0.6033 + }, + { + "start": 5430.4, + "end": 5431.06, + "probability": 0.9109 + }, + { + "start": 5431.14, + "end": 5433.03, + "probability": 0.9172 + }, + { + "start": 5433.73, + "end": 5436.42, + "probability": 0.9855 + }, + { + "start": 5436.58, + "end": 5440.24, + "probability": 0.9736 + }, + { + "start": 5441.82, + "end": 5446.66, + "probability": 0.61 + }, + { + "start": 5448.78, + "end": 5450.82, + "probability": 0.541 + }, + { + "start": 5450.92, + "end": 5452.56, + "probability": 0.8053 + }, + { + "start": 5452.82, + "end": 5455.24, + "probability": 0.9384 + }, + { + "start": 5455.92, + "end": 5458.86, + "probability": 0.7155 + }, + { + "start": 5458.86, + "end": 5460.49, + "probability": 0.98 + }, + { + "start": 5461.94, + "end": 5465.16, + "probability": 0.241 + }, + { + "start": 5465.16, + "end": 5466.82, + "probability": 0.8889 + }, + { + "start": 5466.86, + "end": 5469.51, + "probability": 0.976 + }, + { + "start": 5469.8, + "end": 5471.72, + "probability": 0.8934 + }, + { + "start": 5472.2, + "end": 5472.4, + "probability": 0.5025 + }, + { + "start": 5473.0, + "end": 5473.36, + "probability": 0.5057 + }, + { + "start": 5473.94, + "end": 5474.48, + "probability": 0.8258 + }, + { + "start": 5474.88, + "end": 5476.58, + "probability": 0.7303 + }, + { + "start": 5477.32, + "end": 5480.48, + "probability": 0.8475 + }, + { + "start": 5480.5, + "end": 5481.26, + "probability": 0.9666 + }, + { + "start": 5481.78, + "end": 5483.14, + "probability": 0.9705 + }, + { + "start": 5483.76, + "end": 5484.26, + "probability": 0.9216 + }, + { + "start": 5484.7, + "end": 5486.66, + "probability": 0.6403 + }, + { + "start": 5487.34, + "end": 5492.04, + "probability": 0.9221 + }, + { + "start": 5492.8, + "end": 5494.58, + "probability": 0.9459 + }, + { + "start": 5495.36, + "end": 5495.76, + "probability": 0.6956 + }, + { + "start": 5496.24, + "end": 5496.96, + "probability": 0.6756 + }, + { + "start": 5497.44, + "end": 5497.56, + "probability": 0.3913 + }, + { + "start": 5497.56, + "end": 5500.8, + "probability": 0.8356 + }, + { + "start": 5502.72, + "end": 5505.88, + "probability": 0.8713 + }, + { + "start": 5506.4, + "end": 5507.66, + "probability": 0.8934 + }, + { + "start": 5510.76, + "end": 5512.52, + "probability": 0.9886 + }, + { + "start": 5513.28, + "end": 5514.06, + "probability": 0.7647 + }, + { + "start": 5514.9, + "end": 5515.9, + "probability": 0.8438 + }, + { + "start": 5516.46, + "end": 5521.66, + "probability": 0.9773 + }, + { + "start": 5522.9, + "end": 5526.98, + "probability": 0.9224 + }, + { + "start": 5528.14, + "end": 5529.12, + "probability": 0.8961 + }, + { + "start": 5529.16, + "end": 5529.69, + "probability": 0.9624 + }, + { + "start": 5530.2, + "end": 5530.48, + "probability": 0.5981 + }, + { + "start": 5531.22, + "end": 5531.74, + "probability": 0.8849 + }, + { + "start": 5531.82, + "end": 5533.78, + "probability": 0.9301 + }, + { + "start": 5535.95, + "end": 5539.34, + "probability": 0.8206 + }, + { + "start": 5540.92, + "end": 5541.82, + "probability": 0.9185 + }, + { + "start": 5542.14, + "end": 5543.0, + "probability": 0.7357 + }, + { + "start": 5543.12, + "end": 5544.84, + "probability": 0.998 + }, + { + "start": 5545.42, + "end": 5546.0, + "probability": 0.0125 + }, + { + "start": 5550.98, + "end": 5552.64, + "probability": 0.8505 + }, + { + "start": 5553.75, + "end": 5555.52, + "probability": 0.5332 + }, + { + "start": 5555.84, + "end": 5556.54, + "probability": 0.5412 + }, + { + "start": 5558.35, + "end": 5559.7, + "probability": 0.9226 + }, + { + "start": 5559.92, + "end": 5560.6, + "probability": 0.6022 + }, + { + "start": 5560.6, + "end": 5566.14, + "probability": 0.9341 + }, + { + "start": 5567.4, + "end": 5572.48, + "probability": 0.9933 + }, + { + "start": 5573.14, + "end": 5574.14, + "probability": 0.9634 + }, + { + "start": 5574.34, + "end": 5577.11, + "probability": 0.7849 + }, + { + "start": 5577.6, + "end": 5578.08, + "probability": 0.6275 + }, + { + "start": 5578.16, + "end": 5580.06, + "probability": 0.9846 + }, + { + "start": 5580.06, + "end": 5581.88, + "probability": 0.7531 + }, + { + "start": 5583.04, + "end": 5589.4, + "probability": 0.9207 + }, + { + "start": 5589.9, + "end": 5590.92, + "probability": 0.8548 + }, + { + "start": 5591.02, + "end": 5594.58, + "probability": 0.9121 + }, + { + "start": 5594.86, + "end": 5596.48, + "probability": 0.7781 + }, + { + "start": 5597.06, + "end": 5598.04, + "probability": 0.9824 + }, + { + "start": 5598.06, + "end": 5601.22, + "probability": 0.9637 + }, + { + "start": 5602.22, + "end": 5602.72, + "probability": 0.661 + }, + { + "start": 5604.98, + "end": 5605.52, + "probability": 0.5978 + }, + { + "start": 5605.54, + "end": 5611.14, + "probability": 0.5909 + }, + { + "start": 5612.26, + "end": 5617.0, + "probability": 0.0796 + }, + { + "start": 5617.24, + "end": 5617.52, + "probability": 0.4127 + }, + { + "start": 5617.62, + "end": 5621.26, + "probability": 0.6623 + }, + { + "start": 5621.38, + "end": 5626.3, + "probability": 0.9841 + }, + { + "start": 5627.08, + "end": 5629.17, + "probability": 0.5879 + }, + { + "start": 5629.98, + "end": 5632.66, + "probability": 0.7597 + }, + { + "start": 5633.34, + "end": 5636.5, + "probability": 0.5504 + }, + { + "start": 5636.6, + "end": 5638.16, + "probability": 0.7738 + }, + { + "start": 5638.64, + "end": 5638.94, + "probability": 0.4038 + }, + { + "start": 5640.12, + "end": 5643.44, + "probability": 0.9218 + }, + { + "start": 5643.44, + "end": 5646.4, + "probability": 0.7786 + }, + { + "start": 5647.48, + "end": 5649.5, + "probability": 0.9879 + }, + { + "start": 5650.2, + "end": 5650.52, + "probability": 0.4175 + }, + { + "start": 5650.76, + "end": 5651.92, + "probability": 0.8121 + }, + { + "start": 5652.0, + "end": 5655.08, + "probability": 0.9858 + }, + { + "start": 5655.24, + "end": 5656.02, + "probability": 0.7428 + }, + { + "start": 5657.6, + "end": 5659.2, + "probability": 0.3267 + }, + { + "start": 5660.02, + "end": 5662.54, + "probability": 0.9904 + }, + { + "start": 5663.0, + "end": 5664.18, + "probability": 0.8187 + }, + { + "start": 5664.4, + "end": 5665.06, + "probability": 0.5035 + }, + { + "start": 5666.68, + "end": 5667.9, + "probability": 0.4579 + }, + { + "start": 5667.9, + "end": 5669.72, + "probability": 0.7459 + }, + { + "start": 5670.26, + "end": 5672.06, + "probability": 0.989 + }, + { + "start": 5672.1, + "end": 5673.72, + "probability": 0.5276 + }, + { + "start": 5674.62, + "end": 5680.02, + "probability": 0.9728 + }, + { + "start": 5680.3, + "end": 5682.38, + "probability": 0.9039 + }, + { + "start": 5683.44, + "end": 5685.09, + "probability": 0.9964 + }, + { + "start": 5686.86, + "end": 5688.16, + "probability": 0.9268 + }, + { + "start": 5688.28, + "end": 5689.42, + "probability": 0.7039 + }, + { + "start": 5689.46, + "end": 5689.92, + "probability": 0.8586 + }, + { + "start": 5690.72, + "end": 5691.42, + "probability": 0.6965 + }, + { + "start": 5691.84, + "end": 5692.9, + "probability": 0.9522 + }, + { + "start": 5692.96, + "end": 5694.42, + "probability": 0.8698 + }, + { + "start": 5694.54, + "end": 5695.4, + "probability": 0.98 + }, + { + "start": 5695.96, + "end": 5696.56, + "probability": 0.986 + }, + { + "start": 5697.44, + "end": 5698.72, + "probability": 0.9313 + }, + { + "start": 5700.53, + "end": 5704.1, + "probability": 0.592 + }, + { + "start": 5705.46, + "end": 5706.12, + "probability": 0.7252 + }, + { + "start": 5706.2, + "end": 5709.02, + "probability": 0.9609 + }, + { + "start": 5709.5, + "end": 5714.6, + "probability": 0.9609 + }, + { + "start": 5715.4, + "end": 5716.72, + "probability": 0.9037 + }, + { + "start": 5716.76, + "end": 5717.46, + "probability": 0.9917 + }, + { + "start": 5717.54, + "end": 5718.16, + "probability": 0.9953 + }, + { + "start": 5718.5, + "end": 5720.28, + "probability": 0.8671 + }, + { + "start": 5720.36, + "end": 5721.6, + "probability": 0.8642 + }, + { + "start": 5722.48, + "end": 5724.54, + "probability": 0.8193 + }, + { + "start": 5724.68, + "end": 5728.18, + "probability": 0.771 + }, + { + "start": 5728.46, + "end": 5730.92, + "probability": 0.9282 + }, + { + "start": 5732.5, + "end": 5735.32, + "probability": 0.7932 + }, + { + "start": 5735.46, + "end": 5736.31, + "probability": 0.9883 + }, + { + "start": 5736.46, + "end": 5738.36, + "probability": 0.6006 + }, + { + "start": 5738.4, + "end": 5739.98, + "probability": 0.9814 + }, + { + "start": 5740.1, + "end": 5742.76, + "probability": 0.9309 + }, + { + "start": 5742.76, + "end": 5746.2, + "probability": 0.8248 + }, + { + "start": 5746.78, + "end": 5748.82, + "probability": 0.9904 + }, + { + "start": 5749.24, + "end": 5749.72, + "probability": 0.6867 + }, + { + "start": 5750.52, + "end": 5751.8, + "probability": 0.9972 + }, + { + "start": 5752.2, + "end": 5752.68, + "probability": 0.8237 + }, + { + "start": 5752.8, + "end": 5753.78, + "probability": 0.8694 + }, + { + "start": 5755.3, + "end": 5757.48, + "probability": 0.5131 + }, + { + "start": 5757.82, + "end": 5759.38, + "probability": 0.7017 + }, + { + "start": 5759.48, + "end": 5761.12, + "probability": 0.8569 + }, + { + "start": 5762.14, + "end": 5763.72, + "probability": 0.9678 + }, + { + "start": 5764.36, + "end": 5768.4, + "probability": 0.9219 + }, + { + "start": 5769.36, + "end": 5770.28, + "probability": 0.6694 + }, + { + "start": 5771.48, + "end": 5774.82, + "probability": 0.987 + }, + { + "start": 5775.3, + "end": 5779.44, + "probability": 0.6361 + }, + { + "start": 5779.68, + "end": 5786.54, + "probability": 0.5771 + }, + { + "start": 5786.56, + "end": 5790.84, + "probability": 0.9897 + }, + { + "start": 5790.88, + "end": 5794.68, + "probability": 0.9894 + }, + { + "start": 5795.48, + "end": 5799.7, + "probability": 0.985 + }, + { + "start": 5800.36, + "end": 5804.38, + "probability": 0.9806 + }, + { + "start": 5804.92, + "end": 5807.84, + "probability": 0.9954 + }, + { + "start": 5808.68, + "end": 5811.14, + "probability": 0.9456 + }, + { + "start": 5811.68, + "end": 5814.4, + "probability": 0.5456 + }, + { + "start": 5815.32, + "end": 5815.94, + "probability": 0.3108 + }, + { + "start": 5815.98, + "end": 5818.18, + "probability": 0.6247 + }, + { + "start": 5818.28, + "end": 5822.84, + "probability": 0.9761 + }, + { + "start": 5823.6, + "end": 5827.1, + "probability": 0.64 + }, + { + "start": 5827.52, + "end": 5829.06, + "probability": 0.9839 + }, + { + "start": 5829.14, + "end": 5830.6, + "probability": 0.769 + }, + { + "start": 5830.7, + "end": 5833.06, + "probability": 0.6138 + }, + { + "start": 5833.64, + "end": 5836.42, + "probability": 0.9937 + }, + { + "start": 5836.66, + "end": 5837.66, + "probability": 0.6351 + }, + { + "start": 5838.14, + "end": 5839.05, + "probability": 0.9033 + }, + { + "start": 5841.06, + "end": 5843.06, + "probability": 0.7412 + }, + { + "start": 5843.22, + "end": 5844.16, + "probability": 0.4147 + }, + { + "start": 5844.16, + "end": 5845.26, + "probability": 0.9896 + }, + { + "start": 5845.3, + "end": 5846.72, + "probability": 0.7516 + }, + { + "start": 5847.62, + "end": 5848.38, + "probability": 0.9471 + }, + { + "start": 5849.26, + "end": 5850.72, + "probability": 0.9806 + }, + { + "start": 5850.74, + "end": 5851.48, + "probability": 0.5751 + }, + { + "start": 5851.56, + "end": 5852.14, + "probability": 0.9658 + }, + { + "start": 5852.28, + "end": 5854.52, + "probability": 0.8868 + }, + { + "start": 5855.04, + "end": 5856.16, + "probability": 0.7386 + }, + { + "start": 5856.24, + "end": 5857.12, + "probability": 0.9741 + }, + { + "start": 5857.6, + "end": 5859.94, + "probability": 0.8725 + }, + { + "start": 5859.96, + "end": 5860.62, + "probability": 0.8767 + }, + { + "start": 5860.72, + "end": 5862.94, + "probability": 0.9937 + }, + { + "start": 5863.52, + "end": 5865.88, + "probability": 0.9028 + }, + { + "start": 5865.94, + "end": 5866.9, + "probability": 0.9749 + }, + { + "start": 5867.0, + "end": 5867.5, + "probability": 0.0289 + }, + { + "start": 5867.64, + "end": 5868.01, + "probability": 0.3578 + }, + { + "start": 5868.26, + "end": 5870.24, + "probability": 0.7756 + }, + { + "start": 5871.02, + "end": 5872.98, + "probability": 0.979 + }, + { + "start": 5873.1, + "end": 5875.98, + "probability": 0.9871 + }, + { + "start": 5876.54, + "end": 5877.84, + "probability": 0.915 + }, + { + "start": 5878.4, + "end": 5880.92, + "probability": 0.8477 + }, + { + "start": 5881.58, + "end": 5881.78, + "probability": 0.7109 + }, + { + "start": 5883.12, + "end": 5883.74, + "probability": 0.6718 + }, + { + "start": 5883.78, + "end": 5884.96, + "probability": 0.8431 + }, + { + "start": 5885.46, + "end": 5885.56, + "probability": 0.9026 + }, + { + "start": 5887.24, + "end": 5888.3, + "probability": 0.797 + }, + { + "start": 5888.36, + "end": 5891.88, + "probability": 0.9873 + }, + { + "start": 5891.94, + "end": 5895.46, + "probability": 0.8543 + }, + { + "start": 5895.74, + "end": 5896.4, + "probability": 0.9557 + }, + { + "start": 5897.4, + "end": 5900.64, + "probability": 0.9648 + }, + { + "start": 5900.82, + "end": 5901.98, + "probability": 0.4464 + }, + { + "start": 5902.1, + "end": 5904.74, + "probability": 0.8674 + }, + { + "start": 5904.9, + "end": 5909.68, + "probability": 0.9283 + }, + { + "start": 5910.42, + "end": 5914.6, + "probability": 0.7591 + }, + { + "start": 5914.64, + "end": 5917.52, + "probability": 0.8893 + }, + { + "start": 5918.06, + "end": 5922.48, + "probability": 0.9701 + }, + { + "start": 5924.16, + "end": 5927.2, + "probability": 0.7435 + }, + { + "start": 5928.06, + "end": 5928.49, + "probability": 0.5805 + }, + { + "start": 5928.78, + "end": 5932.26, + "probability": 0.954 + }, + { + "start": 5932.36, + "end": 5933.14, + "probability": 0.7093 + }, + { + "start": 5933.46, + "end": 5934.88, + "probability": 0.7995 + }, + { + "start": 5935.44, + "end": 5938.16, + "probability": 0.9577 + }, + { + "start": 5938.8, + "end": 5939.37, + "probability": 0.8426 + }, + { + "start": 5941.45, + "end": 5943.12, + "probability": 0.7423 + }, + { + "start": 5943.86, + "end": 5946.24, + "probability": 0.9545 + }, + { + "start": 5946.24, + "end": 5950.34, + "probability": 0.9806 + }, + { + "start": 5950.42, + "end": 5950.58, + "probability": 0.6184 + }, + { + "start": 5950.66, + "end": 5953.44, + "probability": 0.9745 + }, + { + "start": 5953.71, + "end": 5956.64, + "probability": 0.8726 + }, + { + "start": 5957.4, + "end": 5957.8, + "probability": 0.5266 + }, + { + "start": 5957.88, + "end": 5960.02, + "probability": 0.5231 + }, + { + "start": 5960.06, + "end": 5961.2, + "probability": 0.848 + }, + { + "start": 5961.62, + "end": 5965.56, + "probability": 0.8177 + }, + { + "start": 5966.48, + "end": 5966.7, + "probability": 0.9011 + }, + { + "start": 5967.52, + "end": 5969.84, + "probability": 0.9984 + }, + { + "start": 5969.98, + "end": 5972.9, + "probability": 0.7733 + }, + { + "start": 5973.02, + "end": 5975.12, + "probability": 0.9929 + }, + { + "start": 5975.12, + "end": 5976.88, + "probability": 0.9919 + }, + { + "start": 5976.88, + "end": 5979.64, + "probability": 0.9316 + }, + { + "start": 5980.71, + "end": 5981.77, + "probability": 0.0588 + }, + { + "start": 5981.98, + "end": 5984.72, + "probability": 0.9434 + }, + { + "start": 5985.7, + "end": 5990.44, + "probability": 0.9689 + }, + { + "start": 5991.12, + "end": 5994.3, + "probability": 0.9917 + }, + { + "start": 5994.46, + "end": 5995.02, + "probability": 0.87 + }, + { + "start": 5995.76, + "end": 5996.0, + "probability": 0.6038 + }, + { + "start": 5996.78, + "end": 5997.6, + "probability": 0.9405 + }, + { + "start": 5997.68, + "end": 5999.26, + "probability": 0.9961 + }, + { + "start": 5999.56, + "end": 5999.7, + "probability": 0.4054 + }, + { + "start": 5999.7, + "end": 6001.78, + "probability": 0.5075 + }, + { + "start": 6001.84, + "end": 6002.88, + "probability": 0.626 + }, + { + "start": 6002.98, + "end": 6004.96, + "probability": 0.7552 + }, + { + "start": 6005.12, + "end": 6007.24, + "probability": 0.97 + }, + { + "start": 6007.8, + "end": 6009.38, + "probability": 0.9902 + }, + { + "start": 6009.72, + "end": 6011.16, + "probability": 0.9946 + }, + { + "start": 6011.74, + "end": 6015.37, + "probability": 0.764 + }, + { + "start": 6015.68, + "end": 6019.74, + "probability": 0.8407 + }, + { + "start": 6020.1, + "end": 6026.32, + "probability": 0.9692 + }, + { + "start": 6026.32, + "end": 6026.4, + "probability": 0.0663 + }, + { + "start": 6026.4, + "end": 6029.78, + "probability": 0.8729 + }, + { + "start": 6029.84, + "end": 6032.46, + "probability": 0.5444 + }, + { + "start": 6032.98, + "end": 6034.0, + "probability": 0.6512 + }, + { + "start": 6035.5, + "end": 6038.08, + "probability": 0.4195 + }, + { + "start": 6038.7, + "end": 6040.78, + "probability": 0.8903 + }, + { + "start": 6041.26, + "end": 6043.62, + "probability": 0.9448 + }, + { + "start": 6044.16, + "end": 6046.62, + "probability": 0.977 + }, + { + "start": 6047.22, + "end": 6047.77, + "probability": 0.7468 + }, + { + "start": 6048.34, + "end": 6050.09, + "probability": 0.8214 + }, + { + "start": 6050.36, + "end": 6052.2, + "probability": 0.7112 + }, + { + "start": 6052.32, + "end": 6055.3, + "probability": 0.8517 + }, + { + "start": 6055.92, + "end": 6057.92, + "probability": 0.9883 + }, + { + "start": 6059.58, + "end": 6061.74, + "probability": 0.9617 + }, + { + "start": 6061.84, + "end": 6064.06, + "probability": 0.9968 + }, + { + "start": 6064.26, + "end": 6067.36, + "probability": 0.9937 + }, + { + "start": 6067.72, + "end": 6068.24, + "probability": 0.7619 + }, + { + "start": 6068.6, + "end": 6070.96, + "probability": 0.9897 + }, + { + "start": 6071.04, + "end": 6071.38, + "probability": 0.9238 + }, + { + "start": 6071.7, + "end": 6072.64, + "probability": 0.9736 + }, + { + "start": 6073.49, + "end": 6075.8, + "probability": 0.775 + }, + { + "start": 6076.55, + "end": 6078.5, + "probability": 0.9844 + }, + { + "start": 6078.54, + "end": 6079.32, + "probability": 0.8952 + }, + { + "start": 6080.09, + "end": 6081.24, + "probability": 0.8153 + }, + { + "start": 6081.84, + "end": 6083.54, + "probability": 0.8881 + }, + { + "start": 6083.72, + "end": 6084.58, + "probability": 0.5083 + }, + { + "start": 6084.6, + "end": 6086.24, + "probability": 0.7573 + }, + { + "start": 6087.0, + "end": 6088.84, + "probability": 0.9049 + }, + { + "start": 6089.8, + "end": 6092.52, + "probability": 0.9701 + }, + { + "start": 6092.52, + "end": 6098.78, + "probability": 0.9811 + }, + { + "start": 6098.88, + "end": 6099.58, + "probability": 0.5851 + }, + { + "start": 6100.16, + "end": 6105.32, + "probability": 0.9644 + }, + { + "start": 6105.42, + "end": 6107.7, + "probability": 0.9575 + }, + { + "start": 6107.78, + "end": 6108.72, + "probability": 0.9935 + }, + { + "start": 6109.14, + "end": 6110.52, + "probability": 0.4235 + }, + { + "start": 6110.52, + "end": 6111.35, + "probability": 0.632 + }, + { + "start": 6111.56, + "end": 6114.8, + "probability": 0.8721 + }, + { + "start": 6115.66, + "end": 6118.42, + "probability": 0.761 + }, + { + "start": 6119.42, + "end": 6120.2, + "probability": 0.7272 + }, + { + "start": 6120.38, + "end": 6123.6, + "probability": 0.7815 + }, + { + "start": 6123.68, + "end": 6126.07, + "probability": 0.5898 + }, + { + "start": 6126.6, + "end": 6127.96, + "probability": 0.5534 + }, + { + "start": 6129.21, + "end": 6134.1, + "probability": 0.9755 + }, + { + "start": 6134.42, + "end": 6135.2, + "probability": 0.7759 + }, + { + "start": 6135.34, + "end": 6135.94, + "probability": 0.3236 + }, + { + "start": 6135.94, + "end": 6138.48, + "probability": 0.9971 + }, + { + "start": 6138.92, + "end": 6140.32, + "probability": 0.9949 + }, + { + "start": 6141.2, + "end": 6144.38, + "probability": 0.9565 + }, + { + "start": 6144.44, + "end": 6146.82, + "probability": 0.9939 + }, + { + "start": 6147.02, + "end": 6148.18, + "probability": 0.9283 + }, + { + "start": 6148.22, + "end": 6149.58, + "probability": 0.9371 + }, + { + "start": 6149.99, + "end": 6150.6, + "probability": 0.8704 + }, + { + "start": 6151.2, + "end": 6152.8, + "probability": 0.9777 + }, + { + "start": 6153.44, + "end": 6155.66, + "probability": 0.941 + }, + { + "start": 6155.94, + "end": 6156.24, + "probability": 0.7589 + }, + { + "start": 6156.7, + "end": 6159.24, + "probability": 0.9176 + }, + { + "start": 6161.06, + "end": 6161.24, + "probability": 0.9141 + }, + { + "start": 6161.34, + "end": 6162.88, + "probability": 0.7537 + }, + { + "start": 6163.0, + "end": 6166.78, + "probability": 0.6625 + }, + { + "start": 6167.84, + "end": 6172.52, + "probability": 0.2619 + }, + { + "start": 6172.52, + "end": 6176.24, + "probability": 0.7403 + }, + { + "start": 6176.86, + "end": 6180.26, + "probability": 0.8536 + }, + { + "start": 6180.44, + "end": 6182.36, + "probability": 0.9907 + }, + { + "start": 6183.14, + "end": 6184.94, + "probability": 0.7229 + }, + { + "start": 6185.38, + "end": 6186.84, + "probability": 0.4674 + }, + { + "start": 6189.44, + "end": 6190.78, + "probability": 0.6795 + }, + { + "start": 6191.58, + "end": 6194.86, + "probability": 0.97 + }, + { + "start": 6194.96, + "end": 6195.9, + "probability": 0.8302 + }, + { + "start": 6197.49, + "end": 6199.0, + "probability": 0.7472 + }, + { + "start": 6199.94, + "end": 6200.44, + "probability": 0.6259 + }, + { + "start": 6200.86, + "end": 6201.22, + "probability": 0.4248 + }, + { + "start": 6203.54, + "end": 6204.36, + "probability": 0.952 + }, + { + "start": 6204.92, + "end": 6205.82, + "probability": 0.9097 + }, + { + "start": 6206.28, + "end": 6208.44, + "probability": 0.9517 + }, + { + "start": 6210.24, + "end": 6211.44, + "probability": 0.9854 + }, + { + "start": 6211.66, + "end": 6212.71, + "probability": 0.6805 + }, + { + "start": 6212.94, + "end": 6213.5, + "probability": 0.9661 + }, + { + "start": 6213.62, + "end": 6214.4, + "probability": 0.9105 + }, + { + "start": 6214.62, + "end": 6214.9, + "probability": 0.7541 + }, + { + "start": 6215.06, + "end": 6216.68, + "probability": 0.9521 + }, + { + "start": 6218.68, + "end": 6221.12, + "probability": 0.976 + }, + { + "start": 6222.06, + "end": 6224.26, + "probability": 0.8196 + }, + { + "start": 6225.12, + "end": 6225.68, + "probability": 0.681 + }, + { + "start": 6226.84, + "end": 6228.79, + "probability": 0.9937 + }, + { + "start": 6230.4, + "end": 6232.2, + "probability": 0.876 + }, + { + "start": 6232.3, + "end": 6235.6, + "probability": 0.9249 + }, + { + "start": 6236.62, + "end": 6237.5, + "probability": 0.9829 + }, + { + "start": 6238.48, + "end": 6241.94, + "probability": 0.9759 + }, + { + "start": 6242.18, + "end": 6248.68, + "probability": 0.9935 + }, + { + "start": 6250.72, + "end": 6252.3, + "probability": 0.6724 + }, + { + "start": 6252.46, + "end": 6259.48, + "probability": 0.9875 + }, + { + "start": 6260.3, + "end": 6260.82, + "probability": 0.3797 + }, + { + "start": 6261.78, + "end": 6267.96, + "probability": 0.8638 + }, + { + "start": 6268.48, + "end": 6269.24, + "probability": 0.7233 + }, + { + "start": 6269.76, + "end": 6270.7, + "probability": 0.3062 + }, + { + "start": 6271.04, + "end": 6274.32, + "probability": 0.6703 + }, + { + "start": 6275.1, + "end": 6280.38, + "probability": 0.9756 + }, + { + "start": 6280.9, + "end": 6282.35, + "probability": 0.789 + }, + { + "start": 6283.52, + "end": 6288.22, + "probability": 0.9817 + }, + { + "start": 6288.22, + "end": 6295.44, + "probability": 0.936 + }, + { + "start": 6295.58, + "end": 6297.14, + "probability": 0.9833 + }, + { + "start": 6297.28, + "end": 6297.86, + "probability": 0.8698 + }, + { + "start": 6297.96, + "end": 6298.66, + "probability": 0.8635 + }, + { + "start": 6299.44, + "end": 6300.3, + "probability": 0.8883 + }, + { + "start": 6300.44, + "end": 6301.98, + "probability": 0.8677 + }, + { + "start": 6302.12, + "end": 6307.42, + "probability": 0.8331 + }, + { + "start": 6307.88, + "end": 6312.52, + "probability": 0.9454 + }, + { + "start": 6312.58, + "end": 6313.2, + "probability": 0.894 + }, + { + "start": 6313.92, + "end": 6316.12, + "probability": 0.9415 + }, + { + "start": 6316.5, + "end": 6316.64, + "probability": 0.0244 + }, + { + "start": 6316.8, + "end": 6316.96, + "probability": 0.6901 + }, + { + "start": 6317.16, + "end": 6319.7, + "probability": 0.5992 + }, + { + "start": 6319.7, + "end": 6321.46, + "probability": 0.9489 + }, + { + "start": 6321.48, + "end": 6323.92, + "probability": 0.944 + }, + { + "start": 6323.92, + "end": 6325.9, + "probability": 0.9904 + }, + { + "start": 6326.0, + "end": 6328.16, + "probability": 0.932 + }, + { + "start": 6328.28, + "end": 6331.98, + "probability": 0.9506 + }, + { + "start": 6332.5, + "end": 6333.66, + "probability": 0.9977 + }, + { + "start": 6333.76, + "end": 6334.28, + "probability": 0.8101 + }, + { + "start": 6334.36, + "end": 6335.44, + "probability": 0.9211 + }, + { + "start": 6335.72, + "end": 6336.22, + "probability": 0.6875 + }, + { + "start": 6336.26, + "end": 6340.58, + "probability": 0.8657 + }, + { + "start": 6340.66, + "end": 6343.78, + "probability": 0.9536 + }, + { + "start": 6343.84, + "end": 6345.1, + "probability": 0.7767 + }, + { + "start": 6345.36, + "end": 6346.72, + "probability": 0.9189 + }, + { + "start": 6347.7, + "end": 6349.0, + "probability": 0.8724 + }, + { + "start": 6349.8, + "end": 6351.94, + "probability": 0.7904 + }, + { + "start": 6352.08, + "end": 6356.0, + "probability": 0.9587 + }, + { + "start": 6356.62, + "end": 6359.64, + "probability": 0.9875 + }, + { + "start": 6360.18, + "end": 6361.48, + "probability": 0.9476 + }, + { + "start": 6362.12, + "end": 6362.51, + "probability": 0.0282 + }, + { + "start": 6363.4, + "end": 6365.1, + "probability": 0.8406 + }, + { + "start": 6366.02, + "end": 6370.76, + "probability": 0.7223 + }, + { + "start": 6370.8, + "end": 6371.55, + "probability": 0.7264 + }, + { + "start": 6372.06, + "end": 6373.34, + "probability": 0.9498 + }, + { + "start": 6373.7, + "end": 6374.92, + "probability": 0.7582 + }, + { + "start": 6375.38, + "end": 6376.5, + "probability": 0.9887 + }, + { + "start": 6377.46, + "end": 6377.66, + "probability": 0.685 + }, + { + "start": 6378.52, + "end": 6379.74, + "probability": 0.9047 + }, + { + "start": 6381.12, + "end": 6383.36, + "probability": 0.6778 + }, + { + "start": 6383.36, + "end": 6384.06, + "probability": 0.8325 + }, + { + "start": 6385.7, + "end": 6392.52, + "probability": 0.4307 + }, + { + "start": 6392.54, + "end": 6393.02, + "probability": 0.3825 + }, + { + "start": 6393.04, + "end": 6396.82, + "probability": 0.9164 + }, + { + "start": 6397.56, + "end": 6399.7, + "probability": 0.7285 + }, + { + "start": 6399.86, + "end": 6401.58, + "probability": 0.5667 + }, + { + "start": 6402.9, + "end": 6403.08, + "probability": 0.5196 + }, + { + "start": 6403.2, + "end": 6405.8, + "probability": 0.8809 + }, + { + "start": 6405.88, + "end": 6406.34, + "probability": 0.9276 + }, + { + "start": 6406.92, + "end": 6407.92, + "probability": 0.8038 + }, + { + "start": 6408.06, + "end": 6408.32, + "probability": 0.6848 + }, + { + "start": 6408.56, + "end": 6409.32, + "probability": 0.7915 + }, + { + "start": 6409.42, + "end": 6411.86, + "probability": 0.9071 + }, + { + "start": 6411.88, + "end": 6412.3, + "probability": 0.6934 + }, + { + "start": 6412.46, + "end": 6414.44, + "probability": 0.8989 + }, + { + "start": 6414.52, + "end": 6416.2, + "probability": 0.9336 + }, + { + "start": 6416.44, + "end": 6416.93, + "probability": 0.9357 + }, + { + "start": 6418.04, + "end": 6419.43, + "probability": 0.4929 + }, + { + "start": 6420.12, + "end": 6421.8, + "probability": 0.9161 + }, + { + "start": 6421.88, + "end": 6422.88, + "probability": 0.9888 + }, + { + "start": 6422.96, + "end": 6424.0, + "probability": 0.9924 + }, + { + "start": 6425.06, + "end": 6427.46, + "probability": 0.9863 + }, + { + "start": 6427.46, + "end": 6430.42, + "probability": 0.7545 + }, + { + "start": 6430.96, + "end": 6433.22, + "probability": 0.9578 + }, + { + "start": 6433.32, + "end": 6438.06, + "probability": 0.9736 + }, + { + "start": 6438.88, + "end": 6441.58, + "probability": 0.9429 + }, + { + "start": 6442.26, + "end": 6446.99, + "probability": 0.9653 + }, + { + "start": 6447.12, + "end": 6448.6, + "probability": 0.572 + }, + { + "start": 6448.84, + "end": 6448.96, + "probability": 0.5129 + }, + { + "start": 6452.38, + "end": 6456.14, + "probability": 0.9087 + }, + { + "start": 6456.54, + "end": 6459.74, + "probability": 0.4169 + }, + { + "start": 6459.8, + "end": 6461.36, + "probability": 0.8685 + }, + { + "start": 6462.02, + "end": 6463.96, + "probability": 0.9356 + }, + { + "start": 6464.62, + "end": 6465.77, + "probability": 0.7676 + }, + { + "start": 6466.32, + "end": 6470.44, + "probability": 0.5038 + }, + { + "start": 6470.72, + "end": 6474.0, + "probability": 0.8934 + }, + { + "start": 6474.3, + "end": 6476.04, + "probability": 0.758 + }, + { + "start": 6477.16, + "end": 6481.42, + "probability": 0.9589 + }, + { + "start": 6482.36, + "end": 6483.8, + "probability": 0.7272 + }, + { + "start": 6484.32, + "end": 6486.76, + "probability": 0.7584 + }, + { + "start": 6487.08, + "end": 6489.74, + "probability": 0.8949 + }, + { + "start": 6489.82, + "end": 6491.46, + "probability": 0.6935 + }, + { + "start": 6492.08, + "end": 6492.48, + "probability": 0.6506 + }, + { + "start": 6492.6, + "end": 6498.12, + "probability": 0.6494 + }, + { + "start": 6498.12, + "end": 6500.2, + "probability": 0.2195 + }, + { + "start": 6501.61, + "end": 6503.22, + "probability": 0.6044 + }, + { + "start": 6504.02, + "end": 6507.88, + "probability": 0.8813 + }, + { + "start": 6508.48, + "end": 6510.7, + "probability": 0.9702 + }, + { + "start": 6511.82, + "end": 6516.58, + "probability": 0.9455 + }, + { + "start": 6517.36, + "end": 6519.2, + "probability": 0.3946 + }, + { + "start": 6519.2, + "end": 6522.8, + "probability": 0.9517 + }, + { + "start": 6523.42, + "end": 6524.54, + "probability": 0.9658 + }, + { + "start": 6524.64, + "end": 6527.4, + "probability": 0.9121 + }, + { + "start": 6527.48, + "end": 6527.98, + "probability": 0.96 + }, + { + "start": 6528.58, + "end": 6529.91, + "probability": 0.7739 + }, + { + "start": 6530.46, + "end": 6537.88, + "probability": 0.9825 + }, + { + "start": 6539.1, + "end": 6540.28, + "probability": 0.9768 + }, + { + "start": 6540.3, + "end": 6542.5, + "probability": 0.9866 + }, + { + "start": 6543.43, + "end": 6544.42, + "probability": 0.8667 + }, + { + "start": 6544.5, + "end": 6545.43, + "probability": 0.9817 + }, + { + "start": 6545.62, + "end": 6550.58, + "probability": 0.971 + }, + { + "start": 6550.86, + "end": 6552.0, + "probability": 0.8725 + }, + { + "start": 6552.2, + "end": 6552.64, + "probability": 0.4403 + }, + { + "start": 6553.36, + "end": 6556.38, + "probability": 0.9718 + }, + { + "start": 6556.58, + "end": 6557.66, + "probability": 0.9917 + }, + { + "start": 6557.74, + "end": 6558.5, + "probability": 0.9736 + }, + { + "start": 6558.88, + "end": 6559.08, + "probability": 0.8124 + }, + { + "start": 6559.9, + "end": 6560.48, + "probability": 0.734 + }, + { + "start": 6560.78, + "end": 6563.02, + "probability": 0.5348 + }, + { + "start": 6563.82, + "end": 6564.34, + "probability": 0.8906 + }, + { + "start": 6564.5, + "end": 6567.34, + "probability": 0.8022 + }, + { + "start": 6567.94, + "end": 6570.0, + "probability": 0.6199 + }, + { + "start": 6570.22, + "end": 6571.22, + "probability": 0.7199 + }, + { + "start": 6571.3, + "end": 6572.32, + "probability": 0.8586 + }, + { + "start": 6572.44, + "end": 6573.06, + "probability": 0.2284 + }, + { + "start": 6573.5, + "end": 6576.82, + "probability": 0.8706 + }, + { + "start": 6577.2, + "end": 6579.48, + "probability": 0.8973 + }, + { + "start": 6579.8, + "end": 6579.9, + "probability": 0.7011 + }, + { + "start": 6582.66, + "end": 6586.82, + "probability": 0.8952 + }, + { + "start": 6587.42, + "end": 6587.84, + "probability": 0.3676 + }, + { + "start": 6588.42, + "end": 6590.38, + "probability": 0.676 + }, + { + "start": 6590.92, + "end": 6594.7, + "probability": 0.9726 + }, + { + "start": 6595.22, + "end": 6596.22, + "probability": 0.7809 + }, + { + "start": 6596.34, + "end": 6598.0, + "probability": 0.5411 + }, + { + "start": 6601.75, + "end": 6603.08, + "probability": 0.7601 + }, + { + "start": 6603.16, + "end": 6604.28, + "probability": 0.9819 + }, + { + "start": 6604.38, + "end": 6604.64, + "probability": 0.3823 + }, + { + "start": 6604.64, + "end": 6608.92, + "probability": 0.8701 + }, + { + "start": 6608.92, + "end": 6611.56, + "probability": 0.9931 + }, + { + "start": 6613.6, + "end": 6614.4, + "probability": 0.721 + }, + { + "start": 6616.0, + "end": 6616.94, + "probability": 0.7388 + }, + { + "start": 6617.62, + "end": 6618.06, + "probability": 0.5192 + }, + { + "start": 6618.16, + "end": 6618.24, + "probability": 0.2006 + }, + { + "start": 6618.24, + "end": 6618.91, + "probability": 0.563 + }, + { + "start": 6619.06, + "end": 6621.3, + "probability": 0.9448 + }, + { + "start": 6621.78, + "end": 6623.22, + "probability": 0.7585 + }, + { + "start": 6623.34, + "end": 6625.34, + "probability": 0.8955 + }, + { + "start": 6626.19, + "end": 6627.02, + "probability": 0.6902 + }, + { + "start": 6628.26, + "end": 6630.18, + "probability": 0.8477 + }, + { + "start": 6630.7, + "end": 6632.02, + "probability": 0.2323 + }, + { + "start": 6632.02, + "end": 6633.3, + "probability": 0.8633 + }, + { + "start": 6633.82, + "end": 6635.73, + "probability": 0.4906 + }, + { + "start": 6635.96, + "end": 6636.64, + "probability": 0.8999 + }, + { + "start": 6636.7, + "end": 6637.08, + "probability": 0.7113 + }, + { + "start": 6637.28, + "end": 6639.28, + "probability": 0.7227 + }, + { + "start": 6639.44, + "end": 6640.12, + "probability": 0.2601 + }, + { + "start": 6640.5, + "end": 6644.76, + "probability": 0.9539 + }, + { + "start": 6644.94, + "end": 6645.44, + "probability": 0.4609 + }, + { + "start": 6645.56, + "end": 6647.11, + "probability": 0.7664 + }, + { + "start": 6647.6, + "end": 6647.6, + "probability": 0.1593 + }, + { + "start": 6648.24, + "end": 6651.7, + "probability": 0.9951 + }, + { + "start": 6652.28, + "end": 6654.13, + "probability": 0.7569 + }, + { + "start": 6654.48, + "end": 6656.96, + "probability": 0.9226 + }, + { + "start": 6657.4, + "end": 6657.5, + "probability": 0.5481 + }, + { + "start": 6658.6, + "end": 6658.96, + "probability": 0.4239 + }, + { + "start": 6659.06, + "end": 6659.28, + "probability": 0.6338 + }, + { + "start": 6661.92, + "end": 6667.26, + "probability": 0.9219 + }, + { + "start": 6667.28, + "end": 6668.56, + "probability": 0.9605 + }, + { + "start": 6671.68, + "end": 6674.73, + "probability": 0.5959 + }, + { + "start": 6675.3, + "end": 6676.38, + "probability": 0.9519 + }, + { + "start": 6677.34, + "end": 6680.4, + "probability": 0.9003 + }, + { + "start": 6680.88, + "end": 6682.26, + "probability": 0.6729 + }, + { + "start": 6682.4, + "end": 6683.78, + "probability": 0.7276 + }, + { + "start": 6683.88, + "end": 6685.5, + "probability": 0.9675 + }, + { + "start": 6685.86, + "end": 6687.34, + "probability": 0.9332 + }, + { + "start": 6687.98, + "end": 6691.98, + "probability": 0.6418 + }, + { + "start": 6692.5, + "end": 6695.16, + "probability": 0.6927 + }, + { + "start": 6696.06, + "end": 6698.1, + "probability": 0.8325 + }, + { + "start": 6698.8, + "end": 6701.62, + "probability": 0.9925 + }, + { + "start": 6701.68, + "end": 6702.92, + "probability": 0.6515 + }, + { + "start": 6703.24, + "end": 6705.24, + "probability": 0.5638 + }, + { + "start": 6705.64, + "end": 6707.36, + "probability": 0.9875 + }, + { + "start": 6707.56, + "end": 6707.8, + "probability": 0.9006 + }, + { + "start": 6709.44, + "end": 6710.94, + "probability": 0.7941 + }, + { + "start": 6714.38, + "end": 6715.24, + "probability": 0.3417 + }, + { + "start": 6715.58, + "end": 6717.0, + "probability": 0.9422 + }, + { + "start": 6717.08, + "end": 6717.82, + "probability": 0.81 + }, + { + "start": 6718.08, + "end": 6719.58, + "probability": 0.35 + }, + { + "start": 6720.58, + "end": 6723.8, + "probability": 0.7383 + }, + { + "start": 6724.44, + "end": 6724.58, + "probability": 0.0006 + } + ], + "segments_count": 2458, + "words_count": 12343, + "avg_words_per_segment": 5.0216, + "avg_segment_duration": 1.9612, + "avg_words_per_minute": 108.0646, + "plenum_id": "103250", + "duration": 6853.12, + "title": null, + "plenum_date": "2021-12-28" +} \ No newline at end of file