diff --git "a/12654/metadata.json" "b/12654/metadata.json" new file mode 100644--- /dev/null +++ "b/12654/metadata.json" @@ -0,0 +1,18632 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "12654", + "quality_score": 0.9265, + "per_segment_quality_scores": [ + { + "start": 20.03, + "end": 20.92, + "probability": 0.047 + }, + { + "start": 21.2, + "end": 21.92, + "probability": 0.0076 + }, + { + "start": 22.16, + "end": 22.46, + "probability": 0.0492 + }, + { + "start": 22.46, + "end": 24.12, + "probability": 0.0838 + }, + { + "start": 24.44, + "end": 25.61, + "probability": 0.0412 + }, + { + "start": 28.46, + "end": 29.98, + "probability": 0.0037 + }, + { + "start": 60.77, + "end": 64.62, + "probability": 0.986 + }, + { + "start": 65.1, + "end": 68.0, + "probability": 0.6824 + }, + { + "start": 68.3, + "end": 69.34, + "probability": 0.8037 + }, + { + "start": 69.62, + "end": 70.74, + "probability": 0.6179 + }, + { + "start": 70.8, + "end": 73.5, + "probability": 0.9561 + }, + { + "start": 73.64, + "end": 77.68, + "probability": 0.7972 + }, + { + "start": 78.22, + "end": 79.32, + "probability": 0.8651 + }, + { + "start": 79.76, + "end": 81.14, + "probability": 0.7519 + }, + { + "start": 81.56, + "end": 83.22, + "probability": 0.71 + }, + { + "start": 83.28, + "end": 83.6, + "probability": 0.6957 + }, + { + "start": 84.3, + "end": 86.7, + "probability": 0.636 + }, + { + "start": 87.32, + "end": 89.76, + "probability": 0.9298 + }, + { + "start": 90.42, + "end": 92.36, + "probability": 0.9675 + }, + { + "start": 92.48, + "end": 96.04, + "probability": 0.9578 + }, + { + "start": 96.14, + "end": 96.58, + "probability": 0.4926 + }, + { + "start": 96.6, + "end": 97.12, + "probability": 0.8704 + }, + { + "start": 98.56, + "end": 100.0, + "probability": 0.5529 + }, + { + "start": 103.58, + "end": 105.34, + "probability": 0.6835 + }, + { + "start": 106.76, + "end": 109.12, + "probability": 0.8838 + }, + { + "start": 109.36, + "end": 109.84, + "probability": 0.9463 + }, + { + "start": 111.94, + "end": 113.32, + "probability": 0.7643 + }, + { + "start": 113.44, + "end": 114.86, + "probability": 0.7629 + }, + { + "start": 115.52, + "end": 115.72, + "probability": 0.3947 + }, + { + "start": 115.86, + "end": 118.9, + "probability": 0.9543 + }, + { + "start": 119.44, + "end": 123.0, + "probability": 0.8554 + }, + { + "start": 123.72, + "end": 129.74, + "probability": 0.9629 + }, + { + "start": 130.78, + "end": 134.76, + "probability": 0.7088 + }, + { + "start": 135.1, + "end": 139.57, + "probability": 0.97 + }, + { + "start": 140.76, + "end": 142.26, + "probability": 0.9954 + }, + { + "start": 143.04, + "end": 144.38, + "probability": 0.9705 + }, + { + "start": 145.06, + "end": 148.22, + "probability": 0.9905 + }, + { + "start": 148.96, + "end": 150.66, + "probability": 0.9634 + }, + { + "start": 151.24, + "end": 154.64, + "probability": 0.9924 + }, + { + "start": 154.64, + "end": 157.94, + "probability": 0.9771 + }, + { + "start": 158.98, + "end": 163.3, + "probability": 0.9897 + }, + { + "start": 163.98, + "end": 166.24, + "probability": 0.9868 + }, + { + "start": 167.14, + "end": 172.82, + "probability": 0.9451 + }, + { + "start": 173.52, + "end": 177.16, + "probability": 0.8787 + }, + { + "start": 177.96, + "end": 181.96, + "probability": 0.9958 + }, + { + "start": 182.56, + "end": 184.0, + "probability": 0.9419 + }, + { + "start": 184.06, + "end": 188.06, + "probability": 0.9935 + }, + { + "start": 188.88, + "end": 190.06, + "probability": 0.9693 + }, + { + "start": 190.82, + "end": 194.68, + "probability": 0.948 + }, + { + "start": 195.12, + "end": 196.64, + "probability": 0.9532 + }, + { + "start": 197.68, + "end": 198.38, + "probability": 0.8421 + }, + { + "start": 198.6, + "end": 199.44, + "probability": 0.7739 + }, + { + "start": 199.6, + "end": 207.02, + "probability": 0.7635 + }, + { + "start": 207.08, + "end": 210.96, + "probability": 0.9452 + }, + { + "start": 211.32, + "end": 212.02, + "probability": 0.7034 + }, + { + "start": 212.26, + "end": 216.98, + "probability": 0.8967 + }, + { + "start": 217.8, + "end": 220.7, + "probability": 0.8335 + }, + { + "start": 220.82, + "end": 223.32, + "probability": 0.8624 + }, + { + "start": 224.12, + "end": 229.66, + "probability": 0.9822 + }, + { + "start": 230.42, + "end": 230.42, + "probability": 0.7077 + }, + { + "start": 230.42, + "end": 234.24, + "probability": 0.9957 + }, + { + "start": 234.52, + "end": 234.82, + "probability": 0.8084 + }, + { + "start": 235.0, + "end": 236.46, + "probability": 0.828 + }, + { + "start": 237.08, + "end": 237.78, + "probability": 0.7321 + }, + { + "start": 237.92, + "end": 238.32, + "probability": 0.8241 + }, + { + "start": 238.4, + "end": 238.82, + "probability": 0.8204 + }, + { + "start": 238.94, + "end": 240.48, + "probability": 0.9196 + }, + { + "start": 241.14, + "end": 243.56, + "probability": 0.9102 + }, + { + "start": 245.56, + "end": 246.88, + "probability": 0.8463 + }, + { + "start": 247.6, + "end": 248.66, + "probability": 0.8813 + }, + { + "start": 249.84, + "end": 255.72, + "probability": 0.9104 + }, + { + "start": 255.94, + "end": 259.28, + "probability": 0.9457 + }, + { + "start": 259.94, + "end": 262.32, + "probability": 0.9991 + }, + { + "start": 262.56, + "end": 265.9, + "probability": 0.833 + }, + { + "start": 266.34, + "end": 271.3, + "probability": 0.9846 + }, + { + "start": 271.44, + "end": 272.0, + "probability": 0.8877 + }, + { + "start": 273.34, + "end": 275.02, + "probability": 0.7929 + }, + { + "start": 275.3, + "end": 280.38, + "probability": 0.9682 + }, + { + "start": 281.06, + "end": 288.52, + "probability": 0.9932 + }, + { + "start": 289.98, + "end": 295.14, + "probability": 0.9597 + }, + { + "start": 295.94, + "end": 299.46, + "probability": 0.9683 + }, + { + "start": 299.46, + "end": 304.56, + "probability": 0.9907 + }, + { + "start": 305.5, + "end": 309.48, + "probability": 0.9966 + }, + { + "start": 309.7, + "end": 310.7, + "probability": 0.8839 + }, + { + "start": 311.6, + "end": 315.96, + "probability": 0.9949 + }, + { + "start": 316.18, + "end": 316.46, + "probability": 0.4927 + }, + { + "start": 316.62, + "end": 317.1, + "probability": 0.9781 + }, + { + "start": 317.12, + "end": 317.68, + "probability": 0.8588 + }, + { + "start": 318.34, + "end": 320.5, + "probability": 0.957 + }, + { + "start": 320.54, + "end": 322.0, + "probability": 0.7856 + }, + { + "start": 322.02, + "end": 324.98, + "probability": 0.4491 + }, + { + "start": 325.86, + "end": 326.4, + "probability": 0.5549 + }, + { + "start": 326.8, + "end": 331.06, + "probability": 0.978 + }, + { + "start": 331.44, + "end": 332.16, + "probability": 0.6677 + }, + { + "start": 332.32, + "end": 333.7, + "probability": 0.6908 + }, + { + "start": 333.76, + "end": 336.86, + "probability": 0.8502 + }, + { + "start": 342.44, + "end": 344.44, + "probability": 0.7606 + }, + { + "start": 345.76, + "end": 346.48, + "probability": 0.9178 + }, + { + "start": 349.38, + "end": 354.02, + "probability": 0.818 + }, + { + "start": 355.16, + "end": 356.82, + "probability": 0.9695 + }, + { + "start": 357.66, + "end": 358.22, + "probability": 0.8237 + }, + { + "start": 358.42, + "end": 360.42, + "probability": 0.9282 + }, + { + "start": 361.24, + "end": 363.6, + "probability": 0.9961 + }, + { + "start": 364.12, + "end": 365.76, + "probability": 0.995 + }, + { + "start": 366.94, + "end": 368.36, + "probability": 0.8196 + }, + { + "start": 369.98, + "end": 374.3, + "probability": 0.9913 + }, + { + "start": 374.84, + "end": 377.5, + "probability": 0.9541 + }, + { + "start": 378.06, + "end": 382.78, + "probability": 0.9972 + }, + { + "start": 383.76, + "end": 386.66, + "probability": 0.9973 + }, + { + "start": 386.66, + "end": 389.96, + "probability": 0.968 + }, + { + "start": 390.6, + "end": 391.74, + "probability": 0.9688 + }, + { + "start": 392.32, + "end": 393.5, + "probability": 0.9247 + }, + { + "start": 394.92, + "end": 396.83, + "probability": 0.9051 + }, + { + "start": 397.56, + "end": 400.46, + "probability": 0.9115 + }, + { + "start": 401.1, + "end": 403.02, + "probability": 0.9357 + }, + { + "start": 403.58, + "end": 404.48, + "probability": 0.976 + }, + { + "start": 405.9, + "end": 409.28, + "probability": 0.9957 + }, + { + "start": 410.08, + "end": 413.08, + "probability": 0.2875 + }, + { + "start": 414.02, + "end": 421.32, + "probability": 0.9769 + }, + { + "start": 421.32, + "end": 426.44, + "probability": 0.8048 + }, + { + "start": 426.68, + "end": 429.9, + "probability": 0.749 + }, + { + "start": 429.94, + "end": 430.28, + "probability": 0.708 + }, + { + "start": 430.62, + "end": 431.1, + "probability": 0.4936 + }, + { + "start": 431.2, + "end": 432.54, + "probability": 0.7794 + }, + { + "start": 432.56, + "end": 435.44, + "probability": 0.8671 + }, + { + "start": 446.18, + "end": 449.4, + "probability": 0.7441 + }, + { + "start": 449.56, + "end": 450.85, + "probability": 0.734 + }, + { + "start": 452.53, + "end": 454.46, + "probability": 0.8059 + }, + { + "start": 454.54, + "end": 455.44, + "probability": 0.8303 + }, + { + "start": 455.52, + "end": 458.18, + "probability": 0.8408 + }, + { + "start": 458.64, + "end": 459.5, + "probability": 0.9001 + }, + { + "start": 459.6, + "end": 459.84, + "probability": 0.7009 + }, + { + "start": 459.92, + "end": 461.26, + "probability": 0.6191 + }, + { + "start": 461.34, + "end": 465.36, + "probability": 0.91 + }, + { + "start": 465.76, + "end": 468.32, + "probability": 0.9453 + }, + { + "start": 468.88, + "end": 469.36, + "probability": 0.9599 + }, + { + "start": 469.92, + "end": 473.3, + "probability": 0.9543 + }, + { + "start": 473.38, + "end": 476.44, + "probability": 0.9441 + }, + { + "start": 477.06, + "end": 479.04, + "probability": 0.8713 + }, + { + "start": 479.16, + "end": 480.76, + "probability": 0.9814 + }, + { + "start": 480.9, + "end": 482.88, + "probability": 0.982 + }, + { + "start": 483.7, + "end": 486.68, + "probability": 0.9795 + }, + { + "start": 486.88, + "end": 490.16, + "probability": 0.732 + }, + { + "start": 490.86, + "end": 492.1, + "probability": 0.9128 + }, + { + "start": 492.24, + "end": 492.9, + "probability": 0.8391 + }, + { + "start": 492.92, + "end": 498.1, + "probability": 0.9832 + }, + { + "start": 498.74, + "end": 501.6, + "probability": 0.683 + }, + { + "start": 502.22, + "end": 505.82, + "probability": 0.9849 + }, + { + "start": 505.92, + "end": 507.06, + "probability": 0.9144 + }, + { + "start": 507.42, + "end": 507.86, + "probability": 0.8198 + }, + { + "start": 507.96, + "end": 510.18, + "probability": 0.9888 + }, + { + "start": 510.72, + "end": 512.1, + "probability": 0.9868 + }, + { + "start": 512.32, + "end": 516.58, + "probability": 0.969 + }, + { + "start": 516.74, + "end": 518.68, + "probability": 0.9741 + }, + { + "start": 519.16, + "end": 520.62, + "probability": 0.8345 + }, + { + "start": 521.3, + "end": 523.86, + "probability": 0.9785 + }, + { + "start": 524.66, + "end": 527.86, + "probability": 0.9351 + }, + { + "start": 528.54, + "end": 529.7, + "probability": 0.96 + }, + { + "start": 530.18, + "end": 533.04, + "probability": 0.9863 + }, + { + "start": 533.18, + "end": 534.2, + "probability": 0.9613 + }, + { + "start": 534.6, + "end": 536.06, + "probability": 0.8999 + }, + { + "start": 536.48, + "end": 537.06, + "probability": 0.9888 + }, + { + "start": 537.12, + "end": 538.7, + "probability": 0.881 + }, + { + "start": 538.8, + "end": 541.32, + "probability": 0.8711 + }, + { + "start": 541.7, + "end": 545.36, + "probability": 0.9834 + }, + { + "start": 545.74, + "end": 546.48, + "probability": 0.9828 + }, + { + "start": 546.84, + "end": 547.6, + "probability": 0.818 + }, + { + "start": 547.94, + "end": 549.55, + "probability": 0.9546 + }, + { + "start": 550.18, + "end": 551.14, + "probability": 0.9561 + }, + { + "start": 551.24, + "end": 551.52, + "probability": 0.8853 + }, + { + "start": 551.78, + "end": 552.32, + "probability": 0.6687 + }, + { + "start": 552.8, + "end": 553.86, + "probability": 0.9651 + }, + { + "start": 554.74, + "end": 556.9, + "probability": 0.86 + }, + { + "start": 561.16, + "end": 564.26, + "probability": 0.7795 + }, + { + "start": 565.38, + "end": 570.98, + "probability": 0.9271 + }, + { + "start": 572.5, + "end": 573.82, + "probability": 0.9463 + }, + { + "start": 574.0, + "end": 577.28, + "probability": 0.9133 + }, + { + "start": 577.96, + "end": 579.9, + "probability": 0.8249 + }, + { + "start": 580.04, + "end": 582.28, + "probability": 0.6491 + }, + { + "start": 583.22, + "end": 584.0, + "probability": 0.7206 + }, + { + "start": 584.22, + "end": 587.72, + "probability": 0.9888 + }, + { + "start": 588.36, + "end": 589.82, + "probability": 0.9282 + }, + { + "start": 590.42, + "end": 595.5, + "probability": 0.9701 + }, + { + "start": 596.06, + "end": 598.68, + "probability": 0.9732 + }, + { + "start": 599.42, + "end": 603.34, + "probability": 0.9728 + }, + { + "start": 603.42, + "end": 603.77, + "probability": 0.9285 + }, + { + "start": 604.38, + "end": 606.58, + "probability": 0.9795 + }, + { + "start": 607.66, + "end": 610.92, + "probability": 0.7924 + }, + { + "start": 611.38, + "end": 611.7, + "probability": 0.5016 + }, + { + "start": 611.9, + "end": 618.04, + "probability": 0.9599 + }, + { + "start": 618.36, + "end": 621.22, + "probability": 0.9929 + }, + { + "start": 622.08, + "end": 623.84, + "probability": 0.9793 + }, + { + "start": 623.92, + "end": 625.44, + "probability": 0.7632 + }, + { + "start": 625.88, + "end": 628.82, + "probability": 0.8499 + }, + { + "start": 629.2, + "end": 633.16, + "probability": 0.9904 + }, + { + "start": 633.26, + "end": 635.64, + "probability": 0.5658 + }, + { + "start": 635.7, + "end": 636.02, + "probability": 0.8101 + }, + { + "start": 636.3, + "end": 636.9, + "probability": 0.5377 + }, + { + "start": 637.16, + "end": 640.02, + "probability": 0.6391 + }, + { + "start": 640.78, + "end": 644.24, + "probability": 0.7769 + }, + { + "start": 644.6, + "end": 646.95, + "probability": 0.9426 + }, + { + "start": 647.7, + "end": 649.94, + "probability": 0.8097 + }, + { + "start": 650.84, + "end": 654.38, + "probability": 0.7698 + }, + { + "start": 657.38, + "end": 658.86, + "probability": 0.7755 + }, + { + "start": 659.08, + "end": 662.48, + "probability": 0.9763 + }, + { + "start": 662.7, + "end": 663.76, + "probability": 0.9427 + }, + { + "start": 664.28, + "end": 666.92, + "probability": 0.7134 + }, + { + "start": 667.74, + "end": 671.22, + "probability": 0.992 + }, + { + "start": 672.16, + "end": 675.32, + "probability": 0.7575 + }, + { + "start": 676.84, + "end": 679.22, + "probability": 0.5834 + }, + { + "start": 680.56, + "end": 683.02, + "probability": 0.9814 + }, + { + "start": 683.32, + "end": 684.2, + "probability": 0.9786 + }, + { + "start": 686.18, + "end": 689.32, + "probability": 0.9497 + }, + { + "start": 690.28, + "end": 691.16, + "probability": 0.9911 + }, + { + "start": 692.94, + "end": 695.54, + "probability": 0.956 + }, + { + "start": 697.68, + "end": 702.38, + "probability": 0.964 + }, + { + "start": 703.56, + "end": 708.24, + "probability": 0.9968 + }, + { + "start": 709.64, + "end": 712.66, + "probability": 0.8931 + }, + { + "start": 712.92, + "end": 717.08, + "probability": 0.869 + }, + { + "start": 723.14, + "end": 725.44, + "probability": 0.5292 + }, + { + "start": 726.18, + "end": 727.66, + "probability": 0.6912 + }, + { + "start": 729.82, + "end": 733.08, + "probability": 0.9915 + }, + { + "start": 733.14, + "end": 735.2, + "probability": 0.9954 + }, + { + "start": 737.82, + "end": 741.66, + "probability": 0.9979 + }, + { + "start": 744.96, + "end": 747.28, + "probability": 0.3873 + }, + { + "start": 748.38, + "end": 749.0, + "probability": 0.5742 + }, + { + "start": 751.04, + "end": 755.46, + "probability": 0.9355 + }, + { + "start": 756.06, + "end": 757.17, + "probability": 0.9914 + }, + { + "start": 758.52, + "end": 760.28, + "probability": 0.8687 + }, + { + "start": 760.84, + "end": 761.16, + "probability": 0.8623 + }, + { + "start": 761.34, + "end": 761.84, + "probability": 0.7554 + }, + { + "start": 762.68, + "end": 765.52, + "probability": 0.9731 + }, + { + "start": 766.08, + "end": 766.66, + "probability": 0.3945 + }, + { + "start": 766.76, + "end": 767.72, + "probability": 0.65 + }, + { + "start": 767.82, + "end": 768.2, + "probability": 0.7744 + }, + { + "start": 768.28, + "end": 769.08, + "probability": 0.9429 + }, + { + "start": 770.8, + "end": 772.34, + "probability": 0.8116 + }, + { + "start": 772.82, + "end": 776.04, + "probability": 0.968 + }, + { + "start": 777.44, + "end": 779.58, + "probability": 0.991 + }, + { + "start": 781.02, + "end": 782.0, + "probability": 0.8213 + }, + { + "start": 782.1, + "end": 782.54, + "probability": 0.6532 + }, + { + "start": 782.64, + "end": 784.74, + "probability": 0.793 + }, + { + "start": 785.84, + "end": 788.06, + "probability": 0.9224 + }, + { + "start": 788.5, + "end": 789.38, + "probability": 0.8587 + }, + { + "start": 789.54, + "end": 791.38, + "probability": 0.8909 + }, + { + "start": 792.06, + "end": 795.44, + "probability": 0.6917 + }, + { + "start": 795.64, + "end": 796.3, + "probability": 0.6502 + }, + { + "start": 797.0, + "end": 797.64, + "probability": 0.8355 + }, + { + "start": 798.12, + "end": 801.48, + "probability": 0.9707 + }, + { + "start": 802.08, + "end": 806.28, + "probability": 0.9875 + }, + { + "start": 807.3, + "end": 808.08, + "probability": 0.8477 + }, + { + "start": 808.72, + "end": 811.66, + "probability": 0.9678 + }, + { + "start": 812.14, + "end": 812.78, + "probability": 0.95 + }, + { + "start": 813.42, + "end": 814.9, + "probability": 0.8645 + }, + { + "start": 815.5, + "end": 818.61, + "probability": 0.9424 + }, + { + "start": 819.16, + "end": 820.94, + "probability": 0.923 + }, + { + "start": 821.76, + "end": 823.32, + "probability": 0.6002 + }, + { + "start": 824.1, + "end": 825.06, + "probability": 0.8061 + }, + { + "start": 825.8, + "end": 826.7, + "probability": 0.9367 + }, + { + "start": 827.16, + "end": 829.06, + "probability": 0.6989 + }, + { + "start": 830.36, + "end": 831.62, + "probability": 0.9402 + }, + { + "start": 832.14, + "end": 834.06, + "probability": 0.9988 + }, + { + "start": 834.78, + "end": 837.56, + "probability": 0.9831 + }, + { + "start": 838.32, + "end": 838.62, + "probability": 0.7755 + }, + { + "start": 839.22, + "end": 839.4, + "probability": 0.4142 + }, + { + "start": 839.5, + "end": 841.04, + "probability": 0.991 + }, + { + "start": 841.72, + "end": 844.38, + "probability": 0.9701 + }, + { + "start": 845.3, + "end": 851.18, + "probability": 0.7809 + }, + { + "start": 851.3, + "end": 853.82, + "probability": 0.5096 + }, + { + "start": 855.14, + "end": 855.36, + "probability": 0.5563 + }, + { + "start": 855.36, + "end": 855.36, + "probability": 0.6361 + }, + { + "start": 855.52, + "end": 855.76, + "probability": 0.4862 + }, + { + "start": 855.8, + "end": 856.47, + "probability": 0.8994 + }, + { + "start": 856.8, + "end": 857.46, + "probability": 0.5 + }, + { + "start": 857.54, + "end": 858.42, + "probability": 0.9729 + }, + { + "start": 859.22, + "end": 860.99, + "probability": 0.979 + }, + { + "start": 861.48, + "end": 862.22, + "probability": 0.9602 + }, + { + "start": 863.14, + "end": 864.2, + "probability": 0.504 + }, + { + "start": 864.34, + "end": 867.88, + "probability": 0.7581 + }, + { + "start": 868.42, + "end": 870.38, + "probability": 0.7255 + }, + { + "start": 871.22, + "end": 875.18, + "probability": 0.9876 + }, + { + "start": 875.34, + "end": 879.32, + "probability": 0.8434 + }, + { + "start": 880.02, + "end": 880.62, + "probability": 0.8595 + }, + { + "start": 881.6, + "end": 883.92, + "probability": 0.8992 + }, + { + "start": 884.78, + "end": 886.52, + "probability": 0.8576 + }, + { + "start": 886.84, + "end": 889.26, + "probability": 0.9247 + }, + { + "start": 889.88, + "end": 890.4, + "probability": 0.9002 + }, + { + "start": 891.1, + "end": 894.17, + "probability": 0.5154 + }, + { + "start": 897.44, + "end": 898.06, + "probability": 0.3973 + }, + { + "start": 899.72, + "end": 902.78, + "probability": 0.8799 + }, + { + "start": 903.04, + "end": 904.7, + "probability": 0.6552 + }, + { + "start": 904.9, + "end": 906.48, + "probability": 0.6015 + }, + { + "start": 906.64, + "end": 908.88, + "probability": 0.7726 + }, + { + "start": 909.5, + "end": 913.9, + "probability": 0.9468 + }, + { + "start": 914.5, + "end": 916.86, + "probability": 0.945 + }, + { + "start": 917.36, + "end": 918.5, + "probability": 0.9185 + }, + { + "start": 919.06, + "end": 919.72, + "probability": 0.8709 + }, + { + "start": 920.5, + "end": 921.88, + "probability": 0.9585 + }, + { + "start": 922.42, + "end": 925.92, + "probability": 0.8269 + }, + { + "start": 926.44, + "end": 926.78, + "probability": 0.9718 + }, + { + "start": 927.68, + "end": 928.24, + "probability": 0.6918 + }, + { + "start": 929.12, + "end": 931.12, + "probability": 0.9701 + }, + { + "start": 931.64, + "end": 933.44, + "probability": 0.956 + }, + { + "start": 934.4, + "end": 935.46, + "probability": 0.7617 + }, + { + "start": 936.14, + "end": 938.74, + "probability": 0.8023 + }, + { + "start": 940.64, + "end": 941.04, + "probability": 0.9221 + }, + { + "start": 942.98, + "end": 943.8, + "probability": 0.8486 + }, + { + "start": 945.18, + "end": 951.32, + "probability": 0.9108 + }, + { + "start": 951.94, + "end": 952.26, + "probability": 0.8983 + }, + { + "start": 952.52, + "end": 954.06, + "probability": 0.9597 + }, + { + "start": 954.62, + "end": 956.54, + "probability": 0.9465 + }, + { + "start": 956.64, + "end": 957.1, + "probability": 0.7726 + }, + { + "start": 957.14, + "end": 957.52, + "probability": 0.7351 + }, + { + "start": 957.84, + "end": 958.28, + "probability": 0.6282 + }, + { + "start": 958.32, + "end": 959.14, + "probability": 0.8477 + }, + { + "start": 959.9, + "end": 960.48, + "probability": 0.8374 + }, + { + "start": 961.02, + "end": 962.38, + "probability": 0.1885 + }, + { + "start": 963.0, + "end": 963.72, + "probability": 0.3391 + }, + { + "start": 963.76, + "end": 964.04, + "probability": 0.9146 + }, + { + "start": 964.3, + "end": 965.02, + "probability": 0.7942 + }, + { + "start": 965.18, + "end": 966.86, + "probability": 0.7634 + }, + { + "start": 967.26, + "end": 968.52, + "probability": 0.7265 + }, + { + "start": 968.64, + "end": 970.82, + "probability": 0.4556 + }, + { + "start": 971.4, + "end": 971.92, + "probability": 0.8017 + }, + { + "start": 973.1, + "end": 973.82, + "probability": 0.7291 + }, + { + "start": 974.76, + "end": 975.84, + "probability": 0.8916 + }, + { + "start": 977.12, + "end": 979.86, + "probability": 0.9932 + }, + { + "start": 981.46, + "end": 982.24, + "probability": 0.6501 + }, + { + "start": 982.38, + "end": 982.78, + "probability": 0.9664 + }, + { + "start": 982.86, + "end": 987.4, + "probability": 0.925 + }, + { + "start": 988.62, + "end": 991.96, + "probability": 0.9975 + }, + { + "start": 992.8, + "end": 994.4, + "probability": 0.9957 + }, + { + "start": 994.92, + "end": 995.16, + "probability": 0.8494 + }, + { + "start": 996.08, + "end": 996.82, + "probability": 0.9764 + }, + { + "start": 997.96, + "end": 1001.24, + "probability": 0.7423 + }, + { + "start": 1002.46, + "end": 1004.2, + "probability": 0.9325 + }, + { + "start": 1005.7, + "end": 1010.06, + "probability": 0.9884 + }, + { + "start": 1010.88, + "end": 1014.0, + "probability": 0.926 + }, + { + "start": 1014.64, + "end": 1017.5, + "probability": 0.9061 + }, + { + "start": 1018.12, + "end": 1022.36, + "probability": 0.9717 + }, + { + "start": 1022.92, + "end": 1023.36, + "probability": 0.8706 + }, + { + "start": 1024.14, + "end": 1024.48, + "probability": 0.3217 + }, + { + "start": 1024.54, + "end": 1027.14, + "probability": 0.8298 + }, + { + "start": 1029.76, + "end": 1031.08, + "probability": 0.594 + }, + { + "start": 1033.38, + "end": 1034.6, + "probability": 0.8044 + }, + { + "start": 1035.48, + "end": 1036.06, + "probability": 0.7035 + }, + { + "start": 1036.6, + "end": 1040.2, + "probability": 0.7701 + }, + { + "start": 1040.96, + "end": 1042.04, + "probability": 0.9614 + }, + { + "start": 1042.18, + "end": 1042.52, + "probability": 0.55 + }, + { + "start": 1042.81, + "end": 1045.84, + "probability": 0.8784 + }, + { + "start": 1047.44, + "end": 1050.26, + "probability": 0.9143 + }, + { + "start": 1050.46, + "end": 1051.46, + "probability": 0.8561 + }, + { + "start": 1052.98, + "end": 1057.06, + "probability": 0.8473 + }, + { + "start": 1058.08, + "end": 1059.42, + "probability": 0.8684 + }, + { + "start": 1061.25, + "end": 1063.94, + "probability": 0.9913 + }, + { + "start": 1064.18, + "end": 1065.28, + "probability": 0.9285 + }, + { + "start": 1065.32, + "end": 1065.94, + "probability": 0.8176 + }, + { + "start": 1066.04, + "end": 1067.26, + "probability": 0.7789 + }, + { + "start": 1067.36, + "end": 1067.5, + "probability": 0.1064 + }, + { + "start": 1067.86, + "end": 1070.4, + "probability": 0.8449 + }, + { + "start": 1071.24, + "end": 1072.24, + "probability": 0.9459 + }, + { + "start": 1073.44, + "end": 1075.06, + "probability": 0.9743 + }, + { + "start": 1075.24, + "end": 1077.86, + "probability": 0.9899 + }, + { + "start": 1078.48, + "end": 1080.62, + "probability": 0.9263 + }, + { + "start": 1081.84, + "end": 1082.88, + "probability": 0.6638 + }, + { + "start": 1082.94, + "end": 1084.62, + "probability": 0.7942 + }, + { + "start": 1084.76, + "end": 1085.1, + "probability": 0.7987 + }, + { + "start": 1085.18, + "end": 1085.57, + "probability": 0.8955 + }, + { + "start": 1085.82, + "end": 1086.56, + "probability": 0.8136 + }, + { + "start": 1087.16, + "end": 1090.06, + "probability": 0.943 + }, + { + "start": 1090.64, + "end": 1092.5, + "probability": 0.9481 + }, + { + "start": 1093.08, + "end": 1098.32, + "probability": 0.9984 + }, + { + "start": 1099.18, + "end": 1101.28, + "probability": 0.8369 + }, + { + "start": 1101.54, + "end": 1104.42, + "probability": 0.8893 + }, + { + "start": 1104.76, + "end": 1106.82, + "probability": 0.984 + }, + { + "start": 1107.88, + "end": 1108.5, + "probability": 0.7179 + }, + { + "start": 1109.02, + "end": 1110.1, + "probability": 0.916 + }, + { + "start": 1110.94, + "end": 1115.62, + "probability": 0.9974 + }, + { + "start": 1115.82, + "end": 1118.25, + "probability": 0.9888 + }, + { + "start": 1118.56, + "end": 1121.9, + "probability": 0.9832 + }, + { + "start": 1122.2, + "end": 1126.36, + "probability": 0.9934 + }, + { + "start": 1126.92, + "end": 1127.64, + "probability": 0.7418 + }, + { + "start": 1127.78, + "end": 1129.82, + "probability": 0.823 + }, + { + "start": 1130.54, + "end": 1134.1, + "probability": 0.9198 + }, + { + "start": 1135.1, + "end": 1136.22, + "probability": 0.7742 + }, + { + "start": 1137.32, + "end": 1140.44, + "probability": 0.828 + }, + { + "start": 1140.98, + "end": 1143.54, + "probability": 0.7365 + }, + { + "start": 1144.18, + "end": 1144.84, + "probability": 0.9037 + }, + { + "start": 1145.14, + "end": 1145.5, + "probability": 0.7588 + }, + { + "start": 1145.68, + "end": 1147.76, + "probability": 0.571 + }, + { + "start": 1148.18, + "end": 1150.52, + "probability": 0.7622 + }, + { + "start": 1150.6, + "end": 1155.58, + "probability": 0.938 + }, + { + "start": 1155.72, + "end": 1157.16, + "probability": 0.9896 + }, + { + "start": 1157.56, + "end": 1159.3, + "probability": 0.8879 + }, + { + "start": 1159.5, + "end": 1160.06, + "probability": 0.8087 + }, + { + "start": 1160.66, + "end": 1162.66, + "probability": 0.8328 + }, + { + "start": 1163.34, + "end": 1168.86, + "probability": 0.9674 + }, + { + "start": 1169.36, + "end": 1169.78, + "probability": 0.6288 + }, + { + "start": 1169.84, + "end": 1172.22, + "probability": 0.7658 + }, + { + "start": 1173.02, + "end": 1174.92, + "probability": 0.6245 + }, + { + "start": 1174.98, + "end": 1175.54, + "probability": 0.8469 + }, + { + "start": 1175.9, + "end": 1176.68, + "probability": 0.6527 + }, + { + "start": 1176.68, + "end": 1180.28, + "probability": 0.8174 + }, + { + "start": 1181.18, + "end": 1184.8, + "probability": 0.9797 + }, + { + "start": 1186.22, + "end": 1187.56, + "probability": 0.9025 + }, + { + "start": 1187.76, + "end": 1189.02, + "probability": 0.8756 + }, + { + "start": 1190.3, + "end": 1192.92, + "probability": 0.9183 + }, + { + "start": 1193.5, + "end": 1195.5, + "probability": 0.9578 + }, + { + "start": 1196.78, + "end": 1198.64, + "probability": 0.9386 + }, + { + "start": 1199.46, + "end": 1201.54, + "probability": 0.9814 + }, + { + "start": 1202.28, + "end": 1205.5, + "probability": 0.8516 + }, + { + "start": 1206.76, + "end": 1211.94, + "probability": 0.9927 + }, + { + "start": 1213.02, + "end": 1213.22, + "probability": 0.7191 + }, + { + "start": 1213.78, + "end": 1218.0, + "probability": 0.993 + }, + { + "start": 1218.88, + "end": 1219.46, + "probability": 0.8217 + }, + { + "start": 1219.58, + "end": 1220.3, + "probability": 0.6964 + }, + { + "start": 1220.58, + "end": 1222.16, + "probability": 0.6432 + }, + { + "start": 1222.66, + "end": 1223.34, + "probability": 0.7888 + }, + { + "start": 1223.9, + "end": 1226.24, + "probability": 0.9095 + }, + { + "start": 1226.5, + "end": 1226.84, + "probability": 0.561 + }, + { + "start": 1226.92, + "end": 1227.24, + "probability": 0.6741 + }, + { + "start": 1227.5, + "end": 1231.66, + "probability": 0.9764 + }, + { + "start": 1231.72, + "end": 1234.46, + "probability": 0.9764 + }, + { + "start": 1235.12, + "end": 1236.36, + "probability": 0.9314 + }, + { + "start": 1236.68, + "end": 1237.16, + "probability": 0.8789 + }, + { + "start": 1237.2, + "end": 1241.42, + "probability": 0.9479 + }, + { + "start": 1241.52, + "end": 1242.5, + "probability": 0.4671 + }, + { + "start": 1242.58, + "end": 1243.68, + "probability": 0.7704 + }, + { + "start": 1244.22, + "end": 1244.24, + "probability": 0.5201 + }, + { + "start": 1244.24, + "end": 1247.38, + "probability": 0.7953 + }, + { + "start": 1247.98, + "end": 1249.4, + "probability": 0.8564 + }, + { + "start": 1249.44, + "end": 1252.54, + "probability": 0.4681 + }, + { + "start": 1253.08, + "end": 1254.94, + "probability": 0.5978 + }, + { + "start": 1255.1, + "end": 1259.44, + "probability": 0.8188 + }, + { + "start": 1260.22, + "end": 1261.8, + "probability": 0.9414 + }, + { + "start": 1262.22, + "end": 1266.3, + "probability": 0.9812 + }, + { + "start": 1266.4, + "end": 1266.62, + "probability": 0.7701 + }, + { + "start": 1267.64, + "end": 1271.94, + "probability": 0.9656 + }, + { + "start": 1272.78, + "end": 1274.5, + "probability": 0.8102 + }, + { + "start": 1275.14, + "end": 1278.66, + "probability": 0.9769 + }, + { + "start": 1279.52, + "end": 1281.7, + "probability": 0.9872 + }, + { + "start": 1282.52, + "end": 1284.22, + "probability": 0.6479 + }, + { + "start": 1285.28, + "end": 1285.6, + "probability": 0.0813 + }, + { + "start": 1286.72, + "end": 1287.4, + "probability": 0.4375 + }, + { + "start": 1289.16, + "end": 1289.4, + "probability": 0.0564 + }, + { + "start": 1290.58, + "end": 1291.06, + "probability": 0.38 + }, + { + "start": 1291.08, + "end": 1291.72, + "probability": 0.2041 + }, + { + "start": 1292.08, + "end": 1295.58, + "probability": 0.5709 + }, + { + "start": 1295.84, + "end": 1297.28, + "probability": 0.6186 + }, + { + "start": 1297.34, + "end": 1300.64, + "probability": 0.3604 + }, + { + "start": 1301.2, + "end": 1302.1, + "probability": 0.0001 + }, + { + "start": 1304.28, + "end": 1305.52, + "probability": 0.5769 + }, + { + "start": 1305.74, + "end": 1309.24, + "probability": 0.6249 + }, + { + "start": 1309.26, + "end": 1309.82, + "probability": 0.0281 + }, + { + "start": 1310.16, + "end": 1313.0, + "probability": 0.8707 + }, + { + "start": 1313.2, + "end": 1316.13, + "probability": 0.6464 + }, + { + "start": 1316.14, + "end": 1319.22, + "probability": 0.1242 + }, + { + "start": 1320.0, + "end": 1324.56, + "probability": 0.604 + }, + { + "start": 1325.3, + "end": 1326.96, + "probability": 0.7345 + }, + { + "start": 1327.4, + "end": 1329.55, + "probability": 0.9581 + }, + { + "start": 1330.9, + "end": 1332.14, + "probability": 0.5799 + }, + { + "start": 1332.34, + "end": 1333.8, + "probability": 0.9181 + }, + { + "start": 1334.78, + "end": 1338.28, + "probability": 0.8512 + }, + { + "start": 1338.4, + "end": 1341.32, + "probability": 0.9922 + }, + { + "start": 1341.56, + "end": 1346.42, + "probability": 0.7433 + }, + { + "start": 1346.5, + "end": 1348.42, + "probability": 0.1242 + }, + { + "start": 1350.42, + "end": 1352.72, + "probability": 0.775 + }, + { + "start": 1353.14, + "end": 1354.37, + "probability": 0.744 + }, + { + "start": 1354.54, + "end": 1358.96, + "probability": 0.7316 + }, + { + "start": 1359.08, + "end": 1359.26, + "probability": 0.2612 + }, + { + "start": 1359.28, + "end": 1364.12, + "probability": 0.5738 + }, + { + "start": 1364.12, + "end": 1364.92, + "probability": 0.5374 + }, + { + "start": 1365.22, + "end": 1367.52, + "probability": 0.5542 + }, + { + "start": 1368.24, + "end": 1370.62, + "probability": 0.7313 + }, + { + "start": 1371.14, + "end": 1371.78, + "probability": 0.5298 + }, + { + "start": 1371.94, + "end": 1374.0, + "probability": 0.8961 + }, + { + "start": 1374.0, + "end": 1377.5, + "probability": 0.8937 + }, + { + "start": 1378.38, + "end": 1379.96, + "probability": 0.806 + }, + { + "start": 1382.02, + "end": 1382.02, + "probability": 0.385 + }, + { + "start": 1382.02, + "end": 1383.1, + "probability": 0.6333 + }, + { + "start": 1383.24, + "end": 1384.49, + "probability": 0.931 + }, + { + "start": 1384.68, + "end": 1387.16, + "probability": 0.917 + }, + { + "start": 1387.8, + "end": 1389.98, + "probability": 0.9964 + }, + { + "start": 1390.46, + "end": 1393.4, + "probability": 0.9658 + }, + { + "start": 1393.94, + "end": 1396.62, + "probability": 0.9161 + }, + { + "start": 1397.16, + "end": 1400.18, + "probability": 0.5952 + }, + { + "start": 1400.78, + "end": 1403.22, + "probability": 0.9661 + }, + { + "start": 1403.78, + "end": 1405.16, + "probability": 0.9196 + }, + { + "start": 1406.22, + "end": 1407.58, + "probability": 0.8222 + }, + { + "start": 1408.2, + "end": 1410.51, + "probability": 0.637 + }, + { + "start": 1411.24, + "end": 1411.86, + "probability": 0.4191 + }, + { + "start": 1411.98, + "end": 1417.14, + "probability": 0.7754 + }, + { + "start": 1417.68, + "end": 1419.4, + "probability": 0.5232 + }, + { + "start": 1419.96, + "end": 1422.84, + "probability": 0.8876 + }, + { + "start": 1423.12, + "end": 1423.82, + "probability": 0.8743 + }, + { + "start": 1424.14, + "end": 1424.9, + "probability": 0.5592 + }, + { + "start": 1426.46, + "end": 1426.58, + "probability": 0.1148 + }, + { + "start": 1426.58, + "end": 1428.19, + "probability": 0.6984 + }, + { + "start": 1428.26, + "end": 1431.42, + "probability": 0.8128 + }, + { + "start": 1431.54, + "end": 1433.42, + "probability": 0.5856 + }, + { + "start": 1434.0, + "end": 1435.24, + "probability": 0.3921 + }, + { + "start": 1435.34, + "end": 1435.48, + "probability": 0.9765 + }, + { + "start": 1436.9, + "end": 1437.08, + "probability": 0.9129 + }, + { + "start": 1437.4, + "end": 1438.96, + "probability": 0.9941 + }, + { + "start": 1439.42, + "end": 1440.98, + "probability": 0.5982 + }, + { + "start": 1441.32, + "end": 1442.42, + "probability": 0.5756 + }, + { + "start": 1447.24, + "end": 1448.26, + "probability": 0.6502 + }, + { + "start": 1448.44, + "end": 1453.34, + "probability": 0.9338 + }, + { + "start": 1453.52, + "end": 1456.54, + "probability": 0.9019 + }, + { + "start": 1457.32, + "end": 1460.9, + "probability": 0.9934 + }, + { + "start": 1460.9, + "end": 1467.0, + "probability": 0.9896 + }, + { + "start": 1467.34, + "end": 1475.3, + "probability": 0.9646 + }, + { + "start": 1475.4, + "end": 1479.7, + "probability": 0.9969 + }, + { + "start": 1480.7, + "end": 1486.04, + "probability": 0.9941 + }, + { + "start": 1486.3, + "end": 1491.6, + "probability": 0.9884 + }, + { + "start": 1492.36, + "end": 1495.42, + "probability": 0.999 + }, + { + "start": 1495.54, + "end": 1499.38, + "probability": 0.9527 + }, + { + "start": 1499.94, + "end": 1501.5, + "probability": 0.8212 + }, + { + "start": 1502.5, + "end": 1504.74, + "probability": 0.8517 + }, + { + "start": 1504.76, + "end": 1509.46, + "probability": 0.9792 + }, + { + "start": 1509.6, + "end": 1511.56, + "probability": 0.8279 + }, + { + "start": 1511.96, + "end": 1513.26, + "probability": 0.5831 + }, + { + "start": 1513.56, + "end": 1519.9, + "probability": 0.9598 + }, + { + "start": 1520.54, + "end": 1523.56, + "probability": 0.9647 + }, + { + "start": 1523.68, + "end": 1524.18, + "probability": 0.7699 + }, + { + "start": 1524.34, + "end": 1526.06, + "probability": 0.7832 + }, + { + "start": 1526.48, + "end": 1527.96, + "probability": 0.5913 + }, + { + "start": 1528.2, + "end": 1530.46, + "probability": 0.8359 + }, + { + "start": 1534.2, + "end": 1535.84, + "probability": 0.6903 + }, + { + "start": 1536.36, + "end": 1540.62, + "probability": 0.9146 + }, + { + "start": 1540.7, + "end": 1542.5, + "probability": 0.9654 + }, + { + "start": 1542.58, + "end": 1544.18, + "probability": 0.575 + }, + { + "start": 1544.26, + "end": 1552.06, + "probability": 0.823 + }, + { + "start": 1553.56, + "end": 1553.56, + "probability": 0.1235 + }, + { + "start": 1553.76, + "end": 1555.28, + "probability": 0.921 + }, + { + "start": 1555.28, + "end": 1558.8, + "probability": 0.9702 + }, + { + "start": 1558.8, + "end": 1563.42, + "probability": 0.9568 + }, + { + "start": 1563.5, + "end": 1568.2, + "probability": 0.8934 + }, + { + "start": 1568.4, + "end": 1571.16, + "probability": 0.8778 + }, + { + "start": 1571.78, + "end": 1575.89, + "probability": 0.9382 + }, + { + "start": 1576.72, + "end": 1580.8, + "probability": 0.9349 + }, + { + "start": 1581.38, + "end": 1585.76, + "probability": 0.9923 + }, + { + "start": 1586.1, + "end": 1587.4, + "probability": 0.9653 + }, + { + "start": 1587.8, + "end": 1590.64, + "probability": 0.7683 + }, + { + "start": 1591.16, + "end": 1597.3, + "probability": 0.9139 + }, + { + "start": 1597.36, + "end": 1599.84, + "probability": 0.9502 + }, + { + "start": 1600.08, + "end": 1602.42, + "probability": 0.8731 + }, + { + "start": 1602.76, + "end": 1604.6, + "probability": 0.9471 + }, + { + "start": 1604.86, + "end": 1607.2, + "probability": 0.9889 + }, + { + "start": 1607.2, + "end": 1610.74, + "probability": 0.7186 + }, + { + "start": 1610.78, + "end": 1611.08, + "probability": 0.748 + }, + { + "start": 1611.52, + "end": 1613.32, + "probability": 0.7819 + }, + { + "start": 1613.84, + "end": 1615.94, + "probability": 0.9945 + }, + { + "start": 1616.42, + "end": 1617.04, + "probability": 0.4971 + }, + { + "start": 1617.18, + "end": 1618.58, + "probability": 0.8245 + }, + { + "start": 1621.12, + "end": 1623.62, + "probability": 0.6921 + }, + { + "start": 1624.56, + "end": 1626.34, + "probability": 0.5234 + }, + { + "start": 1626.54, + "end": 1631.8, + "probability": 0.7902 + }, + { + "start": 1632.18, + "end": 1634.06, + "probability": 0.9288 + }, + { + "start": 1634.74, + "end": 1635.38, + "probability": 0.8525 + }, + { + "start": 1635.48, + "end": 1636.76, + "probability": 0.8306 + }, + { + "start": 1637.82, + "end": 1641.76, + "probability": 0.7628 + }, + { + "start": 1641.76, + "end": 1644.38, + "probability": 0.9846 + }, + { + "start": 1644.94, + "end": 1646.18, + "probability": 0.4241 + }, + { + "start": 1646.72, + "end": 1647.04, + "probability": 0.3368 + }, + { + "start": 1647.7, + "end": 1652.18, + "probability": 0.7429 + }, + { + "start": 1652.74, + "end": 1655.9, + "probability": 0.7151 + }, + { + "start": 1656.5, + "end": 1659.94, + "probability": 0.9346 + }, + { + "start": 1660.62, + "end": 1663.56, + "probability": 0.9913 + }, + { + "start": 1663.88, + "end": 1664.66, + "probability": 0.7866 + }, + { + "start": 1664.68, + "end": 1667.18, + "probability": 0.9841 + }, + { + "start": 1668.46, + "end": 1671.1, + "probability": 0.4422 + }, + { + "start": 1671.22, + "end": 1673.56, + "probability": 0.6584 + }, + { + "start": 1674.14, + "end": 1677.98, + "probability": 0.962 + }, + { + "start": 1678.12, + "end": 1679.32, + "probability": 0.3955 + }, + { + "start": 1679.9, + "end": 1680.68, + "probability": 0.0836 + }, + { + "start": 1682.12, + "end": 1688.62, + "probability": 0.9738 + }, + { + "start": 1690.7, + "end": 1695.86, + "probability": 0.6697 + }, + { + "start": 1696.59, + "end": 1699.78, + "probability": 0.6533 + }, + { + "start": 1700.22, + "end": 1701.74, + "probability": 0.9741 + }, + { + "start": 1701.92, + "end": 1704.74, + "probability": 0.6476 + }, + { + "start": 1704.98, + "end": 1706.8, + "probability": 0.9169 + }, + { + "start": 1706.86, + "end": 1707.22, + "probability": 0.8721 + }, + { + "start": 1707.54, + "end": 1710.26, + "probability": 0.8218 + }, + { + "start": 1711.1, + "end": 1713.44, + "probability": 0.9836 + }, + { + "start": 1713.92, + "end": 1714.02, + "probability": 0.6533 + }, + { + "start": 1714.8, + "end": 1714.96, + "probability": 0.2808 + }, + { + "start": 1714.96, + "end": 1716.2, + "probability": 0.7102 + }, + { + "start": 1717.58, + "end": 1718.2, + "probability": 0.7833 + }, + { + "start": 1718.32, + "end": 1718.98, + "probability": 0.5742 + }, + { + "start": 1719.02, + "end": 1720.64, + "probability": 0.6556 + }, + { + "start": 1720.98, + "end": 1723.54, + "probability": 0.9688 + }, + { + "start": 1723.54, + "end": 1725.84, + "probability": 0.951 + }, + { + "start": 1726.12, + "end": 1729.4, + "probability": 0.6506 + }, + { + "start": 1729.56, + "end": 1730.28, + "probability": 0.6798 + }, + { + "start": 1730.84, + "end": 1734.6, + "probability": 0.9556 + }, + { + "start": 1734.66, + "end": 1736.34, + "probability": 0.9961 + }, + { + "start": 1736.7, + "end": 1737.18, + "probability": 0.9956 + }, + { + "start": 1738.6, + "end": 1739.44, + "probability": 0.5482 + }, + { + "start": 1740.84, + "end": 1742.16, + "probability": 0.9089 + }, + { + "start": 1742.26, + "end": 1744.34, + "probability": 0.9772 + }, + { + "start": 1745.48, + "end": 1752.08, + "probability": 0.9697 + }, + { + "start": 1752.52, + "end": 1755.84, + "probability": 0.9725 + }, + { + "start": 1756.72, + "end": 1760.38, + "probability": 0.9946 + }, + { + "start": 1760.92, + "end": 1766.24, + "probability": 0.9952 + }, + { + "start": 1767.1, + "end": 1768.14, + "probability": 0.5489 + }, + { + "start": 1768.66, + "end": 1770.7, + "probability": 0.978 + }, + { + "start": 1770.96, + "end": 1775.64, + "probability": 0.8606 + }, + { + "start": 1776.14, + "end": 1776.6, + "probability": 0.9807 + }, + { + "start": 1776.7, + "end": 1780.62, + "probability": 0.9922 + }, + { + "start": 1781.18, + "end": 1783.7, + "probability": 0.899 + }, + { + "start": 1784.04, + "end": 1791.04, + "probability": 0.9936 + }, + { + "start": 1791.12, + "end": 1792.58, + "probability": 0.737 + }, + { + "start": 1792.62, + "end": 1794.19, + "probability": 0.6542 + }, + { + "start": 1794.72, + "end": 1796.38, + "probability": 0.8628 + }, + { + "start": 1797.16, + "end": 1798.02, + "probability": 0.8579 + }, + { + "start": 1798.18, + "end": 1799.16, + "probability": 0.9595 + }, + { + "start": 1799.32, + "end": 1800.16, + "probability": 0.8952 + }, + { + "start": 1800.22, + "end": 1802.02, + "probability": 0.8462 + }, + { + "start": 1802.32, + "end": 1805.4, + "probability": 0.9916 + }, + { + "start": 1806.18, + "end": 1807.14, + "probability": 0.8337 + }, + { + "start": 1807.7, + "end": 1809.11, + "probability": 0.7209 + }, + { + "start": 1809.46, + "end": 1810.02, + "probability": 0.5731 + }, + { + "start": 1810.04, + "end": 1810.48, + "probability": 0.742 + }, + { + "start": 1810.74, + "end": 1812.02, + "probability": 0.6523 + }, + { + "start": 1812.04, + "end": 1813.72, + "probability": 0.2735 + }, + { + "start": 1813.72, + "end": 1814.68, + "probability": 0.0594 + }, + { + "start": 1817.12, + "end": 1818.76, + "probability": 0.227 + }, + { + "start": 1819.5, + "end": 1819.54, + "probability": 0.0694 + }, + { + "start": 1819.54, + "end": 1819.54, + "probability": 0.1876 + }, + { + "start": 1819.54, + "end": 1821.08, + "probability": 0.0748 + }, + { + "start": 1821.32, + "end": 1822.86, + "probability": 0.4104 + }, + { + "start": 1823.18, + "end": 1826.56, + "probability": 0.329 + }, + { + "start": 1826.84, + "end": 1827.12, + "probability": 0.1734 + }, + { + "start": 1827.52, + "end": 1828.15, + "probability": 0.2373 + }, + { + "start": 1831.68, + "end": 1831.92, + "probability": 0.0732 + }, + { + "start": 1831.92, + "end": 1831.92, + "probability": 0.134 + }, + { + "start": 1831.92, + "end": 1832.32, + "probability": 0.0981 + }, + { + "start": 1832.64, + "end": 1835.86, + "probability": 0.1378 + }, + { + "start": 1836.18, + "end": 1837.6, + "probability": 0.2743 + }, + { + "start": 1840.5, + "end": 1843.4, + "probability": 0.3801 + }, + { + "start": 1843.58, + "end": 1844.21, + "probability": 0.9162 + }, + { + "start": 1845.02, + "end": 1847.72, + "probability": 0.915 + }, + { + "start": 1847.88, + "end": 1848.78, + "probability": 0.7445 + }, + { + "start": 1849.06, + "end": 1854.62, + "probability": 0.8562 + }, + { + "start": 1854.74, + "end": 1857.73, + "probability": 0.9861 + }, + { + "start": 1858.32, + "end": 1863.16, + "probability": 0.8324 + }, + { + "start": 1863.88, + "end": 1865.34, + "probability": 0.6528 + }, + { + "start": 1865.5, + "end": 1868.88, + "probability": 0.9907 + }, + { + "start": 1868.88, + "end": 1871.66, + "probability": 0.9927 + }, + { + "start": 1872.1, + "end": 1873.44, + "probability": 0.9353 + }, + { + "start": 1873.62, + "end": 1876.4, + "probability": 0.9838 + }, + { + "start": 1876.68, + "end": 1878.94, + "probability": 0.8621 + }, + { + "start": 1879.0, + "end": 1880.24, + "probability": 0.9848 + }, + { + "start": 1880.36, + "end": 1883.12, + "probability": 0.9279 + }, + { + "start": 1883.7, + "end": 1886.6, + "probability": 0.998 + }, + { + "start": 1886.88, + "end": 1890.92, + "probability": 0.9949 + }, + { + "start": 1891.44, + "end": 1893.3, + "probability": 0.9339 + }, + { + "start": 1894.3, + "end": 1897.94, + "probability": 0.9906 + }, + { + "start": 1898.1, + "end": 1899.84, + "probability": 0.9931 + }, + { + "start": 1900.24, + "end": 1901.6, + "probability": 0.9465 + }, + { + "start": 1902.82, + "end": 1903.28, + "probability": 0.5288 + }, + { + "start": 1903.28, + "end": 1906.46, + "probability": 0.7084 + }, + { + "start": 1906.88, + "end": 1909.16, + "probability": 0.8004 + }, + { + "start": 1909.16, + "end": 1911.94, + "probability": 0.7931 + }, + { + "start": 1912.52, + "end": 1915.7, + "probability": 0.8574 + }, + { + "start": 1916.22, + "end": 1917.42, + "probability": 0.918 + }, + { + "start": 1917.96, + "end": 1919.76, + "probability": 0.8665 + }, + { + "start": 1919.76, + "end": 1919.86, + "probability": 0.6703 + }, + { + "start": 1919.92, + "end": 1920.98, + "probability": 0.7808 + }, + { + "start": 1920.98, + "end": 1921.48, + "probability": 0.4609 + }, + { + "start": 1921.66, + "end": 1922.04, + "probability": 0.7241 + }, + { + "start": 1922.24, + "end": 1922.28, + "probability": 0.6275 + }, + { + "start": 1922.28, + "end": 1922.28, + "probability": 0.4819 + }, + { + "start": 1922.28, + "end": 1923.08, + "probability": 0.4949 + }, + { + "start": 1923.62, + "end": 1929.6, + "probability": 0.7888 + }, + { + "start": 1930.66, + "end": 1933.92, + "probability": 0.6971 + }, + { + "start": 1934.64, + "end": 1935.04, + "probability": 0.1758 + }, + { + "start": 1935.04, + "end": 1937.96, + "probability": 0.8231 + }, + { + "start": 1938.94, + "end": 1941.04, + "probability": 0.9336 + }, + { + "start": 1941.2, + "end": 1943.66, + "probability": 0.861 + }, + { + "start": 1943.66, + "end": 1946.92, + "probability": 0.9251 + }, + { + "start": 1946.92, + "end": 1951.06, + "probability": 0.5635 + }, + { + "start": 1951.06, + "end": 1951.5, + "probability": 0.3284 + }, + { + "start": 1951.9, + "end": 1953.6, + "probability": 0.8779 + }, + { + "start": 1955.32, + "end": 1957.94, + "probability": 0.9276 + }, + { + "start": 1959.0, + "end": 1959.97, + "probability": 0.9055 + }, + { + "start": 1961.8, + "end": 1962.94, + "probability": 0.8633 + }, + { + "start": 1963.0, + "end": 1963.6, + "probability": 0.2906 + }, + { + "start": 1963.76, + "end": 1965.78, + "probability": 0.6511 + }, + { + "start": 1965.86, + "end": 1966.18, + "probability": 0.3891 + }, + { + "start": 1966.18, + "end": 1966.38, + "probability": 0.4428 + }, + { + "start": 1966.52, + "end": 1967.46, + "probability": 0.2882 + }, + { + "start": 1967.58, + "end": 1971.02, + "probability": 0.9738 + }, + { + "start": 1972.12, + "end": 1973.78, + "probability": 0.9956 + }, + { + "start": 1974.3, + "end": 1975.96, + "probability": 0.7289 + }, + { + "start": 1976.12, + "end": 1979.63, + "probability": 0.9058 + }, + { + "start": 1980.12, + "end": 1985.04, + "probability": 0.9678 + }, + { + "start": 1985.2, + "end": 1986.26, + "probability": 0.5803 + }, + { + "start": 1986.32, + "end": 1987.0, + "probability": 0.5982 + }, + { + "start": 1987.08, + "end": 1988.13, + "probability": 0.5386 + }, + { + "start": 1988.98, + "end": 1992.56, + "probability": 0.4958 + }, + { + "start": 1992.62, + "end": 1993.66, + "probability": 0.938 + }, + { + "start": 1993.88, + "end": 1994.44, + "probability": 0.722 + }, + { + "start": 1994.44, + "end": 1994.56, + "probability": 0.6867 + }, + { + "start": 1995.08, + "end": 1995.22, + "probability": 0.6584 + }, + { + "start": 1995.24, + "end": 1999.2, + "probability": 0.6329 + }, + { + "start": 1999.24, + "end": 2002.42, + "probability": 0.6602 + }, + { + "start": 2002.56, + "end": 2005.87, + "probability": 0.9277 + }, + { + "start": 2007.22, + "end": 2010.02, + "probability": 0.8666 + }, + { + "start": 2010.02, + "end": 2012.2, + "probability": 0.5716 + }, + { + "start": 2012.94, + "end": 2012.98, + "probability": 0.1167 + }, + { + "start": 2012.98, + "end": 2015.46, + "probability": 0.7383 + }, + { + "start": 2015.58, + "end": 2017.36, + "probability": 0.9869 + }, + { + "start": 2017.78, + "end": 2020.66, + "probability": 0.879 + }, + { + "start": 2020.86, + "end": 2023.68, + "probability": 0.518 + }, + { + "start": 2023.82, + "end": 2024.66, + "probability": 0.7729 + }, + { + "start": 2024.66, + "end": 2027.12, + "probability": 0.96 + }, + { + "start": 2027.4, + "end": 2030.74, + "probability": 0.9209 + }, + { + "start": 2030.8, + "end": 2032.03, + "probability": 0.9778 + }, + { + "start": 2032.6, + "end": 2033.02, + "probability": 0.7055 + }, + { + "start": 2033.16, + "end": 2033.4, + "probability": 0.6743 + }, + { + "start": 2033.56, + "end": 2033.92, + "probability": 0.6576 + }, + { + "start": 2034.86, + "end": 2035.64, + "probability": 0.6822 + }, + { + "start": 2037.4, + "end": 2040.82, + "probability": 0.7444 + }, + { + "start": 2040.89, + "end": 2043.72, + "probability": 0.855 + }, + { + "start": 2044.22, + "end": 2048.34, + "probability": 0.9746 + }, + { + "start": 2048.48, + "end": 2049.12, + "probability": 0.9822 + }, + { + "start": 2049.58, + "end": 2050.84, + "probability": 0.9985 + }, + { + "start": 2052.69, + "end": 2055.84, + "probability": 0.4102 + }, + { + "start": 2057.16, + "end": 2057.38, + "probability": 0.566 + }, + { + "start": 2057.38, + "end": 2057.38, + "probability": 0.7097 + }, + { + "start": 2057.38, + "end": 2057.38, + "probability": 0.4103 + }, + { + "start": 2057.38, + "end": 2057.58, + "probability": 0.2893 + }, + { + "start": 2057.82, + "end": 2058.52, + "probability": 0.7843 + }, + { + "start": 2059.12, + "end": 2060.24, + "probability": 0.7108 + }, + { + "start": 2060.56, + "end": 2060.84, + "probability": 0.8881 + }, + { + "start": 2061.52, + "end": 2061.96, + "probability": 0.323 + }, + { + "start": 2062.62, + "end": 2063.02, + "probability": 0.8116 + }, + { + "start": 2063.48, + "end": 2063.86, + "probability": 0.7341 + }, + { + "start": 2064.02, + "end": 2065.18, + "probability": 0.8821 + }, + { + "start": 2065.66, + "end": 2066.2, + "probability": 0.6664 + }, + { + "start": 2066.22, + "end": 2069.28, + "probability": 0.8563 + }, + { + "start": 2069.42, + "end": 2071.9, + "probability": 0.9937 + }, + { + "start": 2072.72, + "end": 2073.62, + "probability": 0.7397 + }, + { + "start": 2073.82, + "end": 2075.1, + "probability": 0.9056 + }, + { + "start": 2075.3, + "end": 2076.84, + "probability": 0.8607 + }, + { + "start": 2076.94, + "end": 2077.06, + "probability": 0.3804 + }, + { + "start": 2077.06, + "end": 2077.57, + "probability": 0.8261 + }, + { + "start": 2078.71, + "end": 2078.78, + "probability": 0.1876 + }, + { + "start": 2078.78, + "end": 2079.06, + "probability": 0.3843 + }, + { + "start": 2079.1, + "end": 2081.16, + "probability": 0.9006 + }, + { + "start": 2081.28, + "end": 2083.42, + "probability": 0.1016 + }, + { + "start": 2083.42, + "end": 2086.83, + "probability": 0.7792 + }, + { + "start": 2088.44, + "end": 2090.3, + "probability": 0.0219 + }, + { + "start": 2090.3, + "end": 2091.64, + "probability": 0.5328 + }, + { + "start": 2091.98, + "end": 2092.16, + "probability": 0.2043 + }, + { + "start": 2093.12, + "end": 2093.92, + "probability": 0.3408 + }, + { + "start": 2093.92, + "end": 2094.12, + "probability": 0.8584 + }, + { + "start": 2094.26, + "end": 2097.62, + "probability": 0.7722 + }, + { + "start": 2097.62, + "end": 2101.38, + "probability": 0.994 + }, + { + "start": 2102.0, + "end": 2106.24, + "probability": 0.9988 + }, + { + "start": 2106.8, + "end": 2111.62, + "probability": 0.9645 + }, + { + "start": 2111.7, + "end": 2114.02, + "probability": 0.9555 + }, + { + "start": 2114.84, + "end": 2119.64, + "probability": 0.9949 + }, + { + "start": 2120.32, + "end": 2123.88, + "probability": 0.9892 + }, + { + "start": 2123.88, + "end": 2129.96, + "probability": 0.9024 + }, + { + "start": 2130.36, + "end": 2131.64, + "probability": 0.9782 + }, + { + "start": 2132.22, + "end": 2134.72, + "probability": 0.8242 + }, + { + "start": 2135.42, + "end": 2137.82, + "probability": 0.9677 + }, + { + "start": 2137.82, + "end": 2141.0, + "probability": 0.9945 + }, + { + "start": 2141.98, + "end": 2143.95, + "probability": 0.7674 + }, + { + "start": 2144.96, + "end": 2146.02, + "probability": 0.9809 + }, + { + "start": 2148.68, + "end": 2150.44, + "probability": 0.7707 + }, + { + "start": 2157.58, + "end": 2158.84, + "probability": 0.5024 + }, + { + "start": 2159.0, + "end": 2159.04, + "probability": 0.3726 + }, + { + "start": 2159.04, + "end": 2159.32, + "probability": 0.4599 + }, + { + "start": 2159.4, + "end": 2160.22, + "probability": 0.8444 + }, + { + "start": 2160.5, + "end": 2162.45, + "probability": 0.981 + }, + { + "start": 2162.58, + "end": 2164.74, + "probability": 0.9424 + }, + { + "start": 2164.74, + "end": 2167.1, + "probability": 0.9851 + }, + { + "start": 2167.18, + "end": 2167.94, + "probability": 0.3013 + }, + { + "start": 2168.5, + "end": 2170.9, + "probability": 0.9108 + }, + { + "start": 2171.0, + "end": 2172.54, + "probability": 0.3406 + }, + { + "start": 2172.92, + "end": 2174.46, + "probability": 0.4258 + }, + { + "start": 2174.86, + "end": 2176.96, + "probability": 0.7053 + }, + { + "start": 2176.96, + "end": 2179.66, + "probability": 0.9494 + }, + { + "start": 2180.37, + "end": 2182.42, + "probability": 0.8825 + }, + { + "start": 2182.48, + "end": 2183.06, + "probability": 0.8359 + }, + { + "start": 2183.14, + "end": 2183.76, + "probability": 0.8642 + }, + { + "start": 2183.84, + "end": 2185.4, + "probability": 0.732 + }, + { + "start": 2185.84, + "end": 2188.66, + "probability": 0.7552 + }, + { + "start": 2188.66, + "end": 2191.56, + "probability": 0.8923 + }, + { + "start": 2191.76, + "end": 2193.28, + "probability": 0.8882 + }, + { + "start": 2193.42, + "end": 2194.02, + "probability": 0.8824 + }, + { + "start": 2194.1, + "end": 2195.22, + "probability": 0.524 + }, + { + "start": 2195.38, + "end": 2196.91, + "probability": 0.7017 + }, + { + "start": 2197.54, + "end": 2201.22, + "probability": 0.7047 + }, + { + "start": 2201.3, + "end": 2202.8, + "probability": 0.7401 + }, + { + "start": 2202.96, + "end": 2203.46, + "probability": 0.1016 + }, + { + "start": 2204.88, + "end": 2206.48, + "probability": 0.3484 + }, + { + "start": 2207.44, + "end": 2211.5, + "probability": 0.9131 + }, + { + "start": 2211.62, + "end": 2214.94, + "probability": 0.9631 + }, + { + "start": 2215.14, + "end": 2215.42, + "probability": 0.7258 + }, + { + "start": 2215.68, + "end": 2218.18, + "probability": 0.7121 + }, + { + "start": 2218.38, + "end": 2220.32, + "probability": 0.7695 + }, + { + "start": 2222.25, + "end": 2223.84, + "probability": 0.0911 + }, + { + "start": 2224.94, + "end": 2225.62, + "probability": 0.743 + }, + { + "start": 2225.7, + "end": 2230.34, + "probability": 0.907 + }, + { + "start": 2234.18, + "end": 2238.06, + "probability": 0.8055 + }, + { + "start": 2238.82, + "end": 2239.9, + "probability": 0.938 + }, + { + "start": 2240.58, + "end": 2242.22, + "probability": 0.7869 + }, + { + "start": 2243.84, + "end": 2244.88, + "probability": 0.278 + }, + { + "start": 2244.88, + "end": 2244.88, + "probability": 0.3752 + }, + { + "start": 2244.88, + "end": 2245.08, + "probability": 0.7747 + }, + { + "start": 2245.12, + "end": 2245.98, + "probability": 0.8873 + }, + { + "start": 2246.08, + "end": 2248.06, + "probability": 0.8965 + }, + { + "start": 2248.7, + "end": 2249.96, + "probability": 0.5135 + }, + { + "start": 2250.36, + "end": 2252.18, + "probability": 0.7904 + }, + { + "start": 2252.68, + "end": 2254.14, + "probability": 0.8879 + }, + { + "start": 2255.46, + "end": 2257.13, + "probability": 0.5463 + }, + { + "start": 2258.44, + "end": 2258.7, + "probability": 0.987 + }, + { + "start": 2260.0, + "end": 2261.14, + "probability": 0.9891 + }, + { + "start": 2262.46, + "end": 2265.8, + "probability": 0.9086 + }, + { + "start": 2266.68, + "end": 2268.72, + "probability": 0.9909 + }, + { + "start": 2269.72, + "end": 2271.02, + "probability": 0.8935 + }, + { + "start": 2272.2, + "end": 2274.04, + "probability": 0.9941 + }, + { + "start": 2274.7, + "end": 2276.64, + "probability": 0.9856 + }, + { + "start": 2277.34, + "end": 2281.18, + "probability": 0.9917 + }, + { + "start": 2281.18, + "end": 2284.74, + "probability": 0.8836 + }, + { + "start": 2285.14, + "end": 2285.62, + "probability": 0.3653 + }, + { + "start": 2285.66, + "end": 2286.02, + "probability": 0.9125 + }, + { + "start": 2286.3, + "end": 2286.78, + "probability": 0.4471 + }, + { + "start": 2288.14, + "end": 2290.6, + "probability": 0.9056 + }, + { + "start": 2292.08, + "end": 2295.12, + "probability": 0.9892 + }, + { + "start": 2296.48, + "end": 2300.0, + "probability": 0.9958 + }, + { + "start": 2300.1, + "end": 2304.62, + "probability": 0.9094 + }, + { + "start": 2305.76, + "end": 2306.72, + "probability": 0.8679 + }, + { + "start": 2307.66, + "end": 2311.9, + "probability": 0.9889 + }, + { + "start": 2312.62, + "end": 2316.28, + "probability": 0.98 + }, + { + "start": 2316.28, + "end": 2319.84, + "probability": 0.9932 + }, + { + "start": 2320.9, + "end": 2321.28, + "probability": 0.8274 + }, + { + "start": 2322.1, + "end": 2324.26, + "probability": 0.9966 + }, + { + "start": 2324.96, + "end": 2331.72, + "probability": 0.9873 + }, + { + "start": 2332.9, + "end": 2337.54, + "probability": 0.9829 + }, + { + "start": 2337.98, + "end": 2339.0, + "probability": 0.8241 + }, + { + "start": 2339.94, + "end": 2344.36, + "probability": 0.9414 + }, + { + "start": 2344.98, + "end": 2345.4, + "probability": 0.7042 + }, + { + "start": 2346.12, + "end": 2347.28, + "probability": 0.92 + }, + { + "start": 2347.86, + "end": 2350.74, + "probability": 0.8191 + }, + { + "start": 2351.84, + "end": 2354.62, + "probability": 0.9665 + }, + { + "start": 2355.14, + "end": 2358.34, + "probability": 0.8152 + }, + { + "start": 2358.42, + "end": 2362.38, + "probability": 0.9929 + }, + { + "start": 2362.92, + "end": 2363.72, + "probability": 0.823 + }, + { + "start": 2365.02, + "end": 2366.7, + "probability": 0.9584 + }, + { + "start": 2367.66, + "end": 2369.72, + "probability": 0.9842 + }, + { + "start": 2370.38, + "end": 2376.66, + "probability": 0.9895 + }, + { + "start": 2377.3, + "end": 2379.4, + "probability": 0.9767 + }, + { + "start": 2380.46, + "end": 2385.02, + "probability": 0.9282 + }, + { + "start": 2385.96, + "end": 2386.3, + "probability": 0.9541 + }, + { + "start": 2386.94, + "end": 2392.14, + "probability": 0.9901 + }, + { + "start": 2392.9, + "end": 2397.82, + "probability": 0.9756 + }, + { + "start": 2398.8, + "end": 2401.78, + "probability": 0.9702 + }, + { + "start": 2401.78, + "end": 2405.64, + "probability": 0.9985 + }, + { + "start": 2406.2, + "end": 2409.7, + "probability": 0.944 + }, + { + "start": 2410.14, + "end": 2412.7, + "probability": 0.9902 + }, + { + "start": 2413.26, + "end": 2414.41, + "probability": 0.915 + }, + { + "start": 2415.56, + "end": 2417.16, + "probability": 0.9685 + }, + { + "start": 2417.72, + "end": 2418.96, + "probability": 0.7709 + }, + { + "start": 2419.6, + "end": 2424.68, + "probability": 0.9507 + }, + { + "start": 2425.84, + "end": 2427.78, + "probability": 0.9585 + }, + { + "start": 2427.88, + "end": 2431.14, + "probability": 0.8621 + }, + { + "start": 2431.84, + "end": 2435.11, + "probability": 0.9329 + }, + { + "start": 2435.54, + "end": 2438.36, + "probability": 0.9696 + }, + { + "start": 2439.16, + "end": 2441.34, + "probability": 0.7801 + }, + { + "start": 2441.52, + "end": 2445.66, + "probability": 0.9356 + }, + { + "start": 2446.26, + "end": 2449.52, + "probability": 0.9855 + }, + { + "start": 2450.5, + "end": 2453.74, + "probability": 0.8092 + }, + { + "start": 2454.46, + "end": 2459.94, + "probability": 0.9922 + }, + { + "start": 2460.54, + "end": 2464.62, + "probability": 0.9828 + }, + { + "start": 2465.7, + "end": 2468.86, + "probability": 0.8792 + }, + { + "start": 2469.0, + "end": 2470.66, + "probability": 0.8005 + }, + { + "start": 2471.34, + "end": 2473.94, + "probability": 0.9691 + }, + { + "start": 2474.62, + "end": 2474.62, + "probability": 0.0331 + }, + { + "start": 2474.62, + "end": 2474.62, + "probability": 0.2694 + }, + { + "start": 2474.62, + "end": 2474.62, + "probability": 0.2651 + }, + { + "start": 2474.62, + "end": 2474.62, + "probability": 0.3047 + }, + { + "start": 2474.62, + "end": 2474.62, + "probability": 0.3903 + }, + { + "start": 2474.62, + "end": 2474.62, + "probability": 0.3913 + }, + { + "start": 2474.62, + "end": 2474.62, + "probability": 0.4074 + }, + { + "start": 2474.62, + "end": 2474.62, + "probability": 0.1267 + }, + { + "start": 2474.62, + "end": 2476.09, + "probability": 0.0535 + }, + { + "start": 2479.2, + "end": 2479.58, + "probability": 0.6252 + }, + { + "start": 2481.34, + "end": 2484.92, + "probability": 0.6428 + }, + { + "start": 2485.32, + "end": 2486.92, + "probability": 0.5003 + }, + { + "start": 2486.92, + "end": 2487.5, + "probability": 0.3159 + }, + { + "start": 2502.8, + "end": 2505.36, + "probability": 0.6668 + }, + { + "start": 2505.4, + "end": 2510.88, + "probability": 0.6943 + }, + { + "start": 2511.22, + "end": 2514.58, + "probability": 0.6573 + }, + { + "start": 2515.36, + "end": 2518.66, + "probability": 0.7374 + }, + { + "start": 2519.84, + "end": 2522.2, + "probability": 0.9972 + }, + { + "start": 2522.36, + "end": 2527.06, + "probability": 0.9828 + }, + { + "start": 2528.14, + "end": 2528.92, + "probability": 0.6043 + }, + { + "start": 2529.12, + "end": 2532.8, + "probability": 0.9971 + }, + { + "start": 2533.98, + "end": 2537.1, + "probability": 0.9279 + }, + { + "start": 2537.44, + "end": 2541.0, + "probability": 0.9832 + }, + { + "start": 2541.0, + "end": 2544.42, + "probability": 0.9967 + }, + { + "start": 2545.06, + "end": 2548.64, + "probability": 0.8346 + }, + { + "start": 2549.0, + "end": 2553.2, + "probability": 0.9843 + }, + { + "start": 2553.78, + "end": 2559.86, + "probability": 0.9683 + }, + { + "start": 2560.3, + "end": 2567.42, + "probability": 0.8931 + }, + { + "start": 2567.86, + "end": 2569.74, + "probability": 0.9271 + }, + { + "start": 2570.42, + "end": 2575.44, + "probability": 0.9717 + }, + { + "start": 2576.34, + "end": 2581.86, + "probability": 0.9952 + }, + { + "start": 2582.66, + "end": 2583.06, + "probability": 0.9109 + }, + { + "start": 2583.2, + "end": 2587.24, + "probability": 0.8642 + }, + { + "start": 2587.42, + "end": 2592.58, + "probability": 0.9799 + }, + { + "start": 2592.68, + "end": 2597.2, + "probability": 0.9906 + }, + { + "start": 2597.54, + "end": 2600.86, + "probability": 0.9349 + }, + { + "start": 2601.48, + "end": 2602.56, + "probability": 0.8364 + }, + { + "start": 2602.62, + "end": 2604.18, + "probability": 0.9161 + }, + { + "start": 2604.28, + "end": 2605.54, + "probability": 0.8548 + }, + { + "start": 2605.86, + "end": 2606.62, + "probability": 0.89 + }, + { + "start": 2606.92, + "end": 2610.82, + "probability": 0.9767 + }, + { + "start": 2611.34, + "end": 2611.98, + "probability": 0.6469 + }, + { + "start": 2612.6, + "end": 2616.26, + "probability": 0.9906 + }, + { + "start": 2616.26, + "end": 2619.9, + "probability": 0.9819 + }, + { + "start": 2620.24, + "end": 2624.5, + "probability": 0.8746 + }, + { + "start": 2624.62, + "end": 2625.78, + "probability": 0.8184 + }, + { + "start": 2625.96, + "end": 2629.56, + "probability": 0.9927 + }, + { + "start": 2629.8, + "end": 2630.74, + "probability": 0.9697 + }, + { + "start": 2630.92, + "end": 2632.78, + "probability": 0.9771 + }, + { + "start": 2633.16, + "end": 2636.82, + "probability": 0.9754 + }, + { + "start": 2636.82, + "end": 2640.84, + "probability": 0.9849 + }, + { + "start": 2641.18, + "end": 2645.16, + "probability": 0.9922 + }, + { + "start": 2645.36, + "end": 2649.1, + "probability": 0.9961 + }, + { + "start": 2649.48, + "end": 2652.24, + "probability": 0.9857 + }, + { + "start": 2652.36, + "end": 2658.0, + "probability": 0.9977 + }, + { + "start": 2659.3, + "end": 2662.01, + "probability": 0.9883 + }, + { + "start": 2662.64, + "end": 2667.52, + "probability": 0.9966 + }, + { + "start": 2667.84, + "end": 2669.58, + "probability": 0.6644 + }, + { + "start": 2670.08, + "end": 2674.3, + "probability": 0.9636 + }, + { + "start": 2674.54, + "end": 2677.62, + "probability": 0.9963 + }, + { + "start": 2678.14, + "end": 2679.66, + "probability": 0.9691 + }, + { + "start": 2679.8, + "end": 2685.52, + "probability": 0.9915 + }, + { + "start": 2686.28, + "end": 2688.26, + "probability": 0.9883 + }, + { + "start": 2688.8, + "end": 2692.52, + "probability": 0.918 + }, + { + "start": 2692.74, + "end": 2696.56, + "probability": 0.9868 + }, + { + "start": 2696.74, + "end": 2698.08, + "probability": 0.8365 + }, + { + "start": 2698.32, + "end": 2700.76, + "probability": 0.9346 + }, + { + "start": 2700.84, + "end": 2704.12, + "probability": 0.965 + }, + { + "start": 2704.8, + "end": 2706.72, + "probability": 0.9455 + }, + { + "start": 2707.18, + "end": 2713.1, + "probability": 0.9792 + }, + { + "start": 2713.54, + "end": 2716.62, + "probability": 0.9567 + }, + { + "start": 2716.78, + "end": 2720.22, + "probability": 0.9814 + }, + { + "start": 2720.22, + "end": 2725.08, + "probability": 0.9876 + }, + { + "start": 2725.36, + "end": 2727.66, + "probability": 0.9751 + }, + { + "start": 2727.88, + "end": 2731.58, + "probability": 0.9887 + }, + { + "start": 2732.2, + "end": 2737.44, + "probability": 0.9975 + }, + { + "start": 2738.02, + "end": 2738.52, + "probability": 0.4445 + }, + { + "start": 2738.6, + "end": 2744.02, + "probability": 0.9369 + }, + { + "start": 2744.32, + "end": 2747.1, + "probability": 0.9932 + }, + { + "start": 2747.24, + "end": 2751.48, + "probability": 0.9971 + }, + { + "start": 2751.48, + "end": 2754.82, + "probability": 0.9496 + }, + { + "start": 2755.86, + "end": 2760.52, + "probability": 0.9951 + }, + { + "start": 2760.86, + "end": 2761.96, + "probability": 0.8999 + }, + { + "start": 2762.1, + "end": 2769.98, + "probability": 0.9764 + }, + { + "start": 2770.14, + "end": 2772.3, + "probability": 0.7922 + }, + { + "start": 2772.76, + "end": 2775.86, + "probability": 0.9985 + }, + { + "start": 2775.86, + "end": 2780.92, + "probability": 0.9869 + }, + { + "start": 2781.08, + "end": 2786.06, + "probability": 0.9867 + }, + { + "start": 2786.36, + "end": 2790.4, + "probability": 0.9984 + }, + { + "start": 2790.4, + "end": 2796.02, + "probability": 0.9983 + }, + { + "start": 2796.44, + "end": 2796.94, + "probability": 0.5984 + }, + { + "start": 2797.22, + "end": 2801.55, + "probability": 0.9917 + }, + { + "start": 2802.0, + "end": 2804.94, + "probability": 0.9629 + }, + { + "start": 2804.94, + "end": 2807.84, + "probability": 0.9982 + }, + { + "start": 2807.88, + "end": 2810.8, + "probability": 0.9136 + }, + { + "start": 2811.26, + "end": 2811.88, + "probability": 0.7259 + }, + { + "start": 2812.1, + "end": 2813.34, + "probability": 0.8584 + }, + { + "start": 2813.52, + "end": 2815.56, + "probability": 0.9976 + }, + { + "start": 2815.74, + "end": 2817.56, + "probability": 0.6878 + }, + { + "start": 2817.64, + "end": 2818.68, + "probability": 0.7274 + }, + { + "start": 2818.72, + "end": 2821.28, + "probability": 0.9932 + }, + { + "start": 2821.74, + "end": 2822.64, + "probability": 0.9582 + }, + { + "start": 2823.26, + "end": 2827.88, + "probability": 0.9837 + }, + { + "start": 2828.04, + "end": 2830.36, + "probability": 0.8452 + }, + { + "start": 2830.54, + "end": 2833.8, + "probability": 0.9951 + }, + { + "start": 2833.8, + "end": 2838.3, + "probability": 0.7452 + }, + { + "start": 2838.66, + "end": 2842.22, + "probability": 0.9618 + }, + { + "start": 2842.64, + "end": 2845.14, + "probability": 0.9966 + }, + { + "start": 2845.14, + "end": 2848.35, + "probability": 0.9984 + }, + { + "start": 2848.72, + "end": 2853.64, + "probability": 0.9976 + }, + { + "start": 2853.64, + "end": 2857.68, + "probability": 0.9953 + }, + { + "start": 2858.0, + "end": 2858.58, + "probability": 0.5774 + }, + { + "start": 2858.82, + "end": 2860.94, + "probability": 0.9949 + }, + { + "start": 2860.94, + "end": 2863.22, + "probability": 0.939 + }, + { + "start": 2863.84, + "end": 2867.24, + "probability": 0.9796 + }, + { + "start": 2867.76, + "end": 2871.24, + "probability": 0.9232 + }, + { + "start": 2871.34, + "end": 2875.76, + "probability": 0.9897 + }, + { + "start": 2875.82, + "end": 2880.74, + "probability": 0.991 + }, + { + "start": 2880.96, + "end": 2883.3, + "probability": 0.9951 + }, + { + "start": 2883.44, + "end": 2888.68, + "probability": 0.985 + }, + { + "start": 2889.24, + "end": 2890.3, + "probability": 0.7775 + }, + { + "start": 2890.46, + "end": 2892.18, + "probability": 0.9295 + }, + { + "start": 2892.48, + "end": 2897.16, + "probability": 0.9229 + }, + { + "start": 2897.38, + "end": 2903.68, + "probability": 0.8352 + }, + { + "start": 2904.56, + "end": 2907.26, + "probability": 0.9866 + }, + { + "start": 2907.8, + "end": 2909.16, + "probability": 0.8256 + }, + { + "start": 2909.64, + "end": 2912.02, + "probability": 0.9829 + }, + { + "start": 2913.04, + "end": 2914.36, + "probability": 0.9019 + }, + { + "start": 2914.84, + "end": 2919.92, + "probability": 0.7551 + }, + { + "start": 2920.04, + "end": 2920.78, + "probability": 0.9771 + }, + { + "start": 2921.26, + "end": 2922.6, + "probability": 0.7663 + }, + { + "start": 2923.02, + "end": 2924.48, + "probability": 0.3132 + }, + { + "start": 2924.54, + "end": 2929.58, + "probability": 0.9935 + }, + { + "start": 2930.32, + "end": 2932.84, + "probability": 0.9785 + }, + { + "start": 2933.32, + "end": 2935.34, + "probability": 0.9474 + }, + { + "start": 2936.38, + "end": 2938.94, + "probability": 0.9867 + }, + { + "start": 2939.4, + "end": 2940.8, + "probability": 0.9751 + }, + { + "start": 2940.88, + "end": 2943.56, + "probability": 0.9473 + }, + { + "start": 2943.62, + "end": 2945.28, + "probability": 0.7052 + }, + { + "start": 2945.94, + "end": 2948.2, + "probability": 0.9469 + }, + { + "start": 2948.84, + "end": 2950.8, + "probability": 0.6907 + }, + { + "start": 2950.84, + "end": 2951.74, + "probability": 0.9608 + }, + { + "start": 2951.82, + "end": 2953.36, + "probability": 0.9331 + }, + { + "start": 2954.02, + "end": 2955.68, + "probability": 0.7751 + }, + { + "start": 2955.74, + "end": 2956.52, + "probability": 0.8457 + }, + { + "start": 2956.62, + "end": 2958.98, + "probability": 0.85 + }, + { + "start": 2959.34, + "end": 2960.16, + "probability": 0.635 + }, + { + "start": 2960.3, + "end": 2962.44, + "probability": 0.9961 + }, + { + "start": 2962.62, + "end": 2964.0, + "probability": 0.5544 + }, + { + "start": 2964.04, + "end": 2964.44, + "probability": 0.9629 + }, + { + "start": 2965.28, + "end": 2968.5, + "probability": 0.9834 + }, + { + "start": 2968.56, + "end": 2970.06, + "probability": 0.918 + }, + { + "start": 2970.66, + "end": 2976.2, + "probability": 0.9657 + }, + { + "start": 2977.8, + "end": 2979.62, + "probability": 0.9902 + }, + { + "start": 2980.0, + "end": 2981.3, + "probability": 0.9953 + }, + { + "start": 2982.02, + "end": 2983.36, + "probability": 0.912 + }, + { + "start": 2983.6, + "end": 2987.24, + "probability": 0.9017 + }, + { + "start": 2987.24, + "end": 2990.36, + "probability": 0.9928 + }, + { + "start": 2990.94, + "end": 2993.68, + "probability": 0.8408 + }, + { + "start": 2993.86, + "end": 2998.4, + "probability": 0.9618 + }, + { + "start": 2998.52, + "end": 2999.96, + "probability": 0.9241 + }, + { + "start": 3000.56, + "end": 3007.98, + "probability": 0.7855 + }, + { + "start": 3008.78, + "end": 3011.76, + "probability": 0.9653 + }, + { + "start": 3011.76, + "end": 3015.52, + "probability": 0.9938 + }, + { + "start": 3016.04, + "end": 3019.4, + "probability": 0.9979 + }, + { + "start": 3019.46, + "end": 3021.42, + "probability": 0.8771 + }, + { + "start": 3021.64, + "end": 3026.42, + "probability": 0.9977 + }, + { + "start": 3026.42, + "end": 3032.22, + "probability": 0.9863 + }, + { + "start": 3032.32, + "end": 3036.06, + "probability": 0.9966 + }, + { + "start": 3036.06, + "end": 3039.62, + "probability": 0.9895 + }, + { + "start": 3039.76, + "end": 3040.96, + "probability": 0.9823 + }, + { + "start": 3041.14, + "end": 3042.84, + "probability": 0.9954 + }, + { + "start": 3043.62, + "end": 3044.04, + "probability": 0.6906 + }, + { + "start": 3044.1, + "end": 3044.72, + "probability": 0.9451 + }, + { + "start": 3044.8, + "end": 3047.94, + "probability": 0.9971 + }, + { + "start": 3048.2, + "end": 3052.62, + "probability": 0.9918 + }, + { + "start": 3053.64, + "end": 3056.84, + "probability": 0.9353 + }, + { + "start": 3056.84, + "end": 3059.42, + "probability": 0.9404 + }, + { + "start": 3060.18, + "end": 3063.2, + "probability": 0.936 + }, + { + "start": 3063.68, + "end": 3066.06, + "probability": 0.9993 + }, + { + "start": 3066.06, + "end": 3068.6, + "probability": 0.9548 + }, + { + "start": 3068.74, + "end": 3070.1, + "probability": 0.8612 + }, + { + "start": 3070.24, + "end": 3071.36, + "probability": 0.8881 + }, + { + "start": 3072.1, + "end": 3075.35, + "probability": 0.9967 + }, + { + "start": 3075.92, + "end": 3080.48, + "probability": 0.9814 + }, + { + "start": 3080.48, + "end": 3084.28, + "probability": 0.998 + }, + { + "start": 3084.36, + "end": 3091.52, + "probability": 0.9175 + }, + { + "start": 3091.84, + "end": 3094.3, + "probability": 0.8148 + }, + { + "start": 3094.86, + "end": 3097.96, + "probability": 0.9938 + }, + { + "start": 3098.7, + "end": 3103.64, + "probability": 0.936 + }, + { + "start": 3103.64, + "end": 3106.68, + "probability": 0.9978 + }, + { + "start": 3107.38, + "end": 3113.12, + "probability": 0.9954 + }, + { + "start": 3113.44, + "end": 3117.94, + "probability": 0.991 + }, + { + "start": 3118.54, + "end": 3122.2, + "probability": 0.9995 + }, + { + "start": 3122.2, + "end": 3124.92, + "probability": 0.9992 + }, + { + "start": 3125.7, + "end": 3130.86, + "probability": 0.9866 + }, + { + "start": 3131.46, + "end": 3136.48, + "probability": 0.98 + }, + { + "start": 3137.3, + "end": 3140.6, + "probability": 0.9954 + }, + { + "start": 3140.6, + "end": 3143.24, + "probability": 0.9972 + }, + { + "start": 3143.82, + "end": 3148.54, + "probability": 0.998 + }, + { + "start": 3148.7, + "end": 3154.48, + "probability": 0.9995 + }, + { + "start": 3154.64, + "end": 3158.64, + "probability": 0.9784 + }, + { + "start": 3159.2, + "end": 3163.44, + "probability": 0.9975 + }, + { + "start": 3163.82, + "end": 3166.68, + "probability": 0.9967 + }, + { + "start": 3167.38, + "end": 3172.58, + "probability": 0.9932 + }, + { + "start": 3173.08, + "end": 3175.18, + "probability": 0.6776 + }, + { + "start": 3175.46, + "end": 3178.34, + "probability": 0.9855 + }, + { + "start": 3178.64, + "end": 3181.14, + "probability": 0.9746 + }, + { + "start": 3181.46, + "end": 3182.1, + "probability": 0.813 + }, + { + "start": 3182.62, + "end": 3185.46, + "probability": 0.9972 + }, + { + "start": 3185.46, + "end": 3189.26, + "probability": 0.9775 + }, + { + "start": 3190.18, + "end": 3191.04, + "probability": 0.7542 + }, + { + "start": 3191.24, + "end": 3194.48, + "probability": 0.872 + }, + { + "start": 3195.44, + "end": 3197.72, + "probability": 0.8231 + }, + { + "start": 3198.82, + "end": 3201.39, + "probability": 0.9987 + }, + { + "start": 3201.56, + "end": 3202.84, + "probability": 0.9224 + }, + { + "start": 3203.6, + "end": 3203.76, + "probability": 0.9 + }, + { + "start": 3206.24, + "end": 3208.89, + "probability": 0.9876 + }, + { + "start": 3209.24, + "end": 3210.08, + "probability": 0.9649 + }, + { + "start": 3210.28, + "end": 3211.02, + "probability": 0.4859 + }, + { + "start": 3211.02, + "end": 3211.42, + "probability": 0.7291 + }, + { + "start": 3211.78, + "end": 3214.16, + "probability": 0.866 + }, + { + "start": 3214.88, + "end": 3216.45, + "probability": 0.9937 + }, + { + "start": 3216.86, + "end": 3219.64, + "probability": 0.9351 + }, + { + "start": 3220.1, + "end": 3222.54, + "probability": 0.9431 + }, + { + "start": 3222.66, + "end": 3226.18, + "probability": 0.7869 + }, + { + "start": 3227.14, + "end": 3232.94, + "probability": 0.9812 + }, + { + "start": 3233.52, + "end": 3235.46, + "probability": 0.9936 + }, + { + "start": 3235.7, + "end": 3236.94, + "probability": 0.92 + }, + { + "start": 3237.1, + "end": 3238.76, + "probability": 0.9983 + }, + { + "start": 3239.02, + "end": 3242.68, + "probability": 0.9101 + }, + { + "start": 3244.14, + "end": 3247.18, + "probability": 0.5269 + }, + { + "start": 3248.62, + "end": 3249.34, + "probability": 0.9127 + }, + { + "start": 3250.22, + "end": 3253.79, + "probability": 0.7682 + }, + { + "start": 3254.62, + "end": 3255.36, + "probability": 0.9937 + }, + { + "start": 3255.94, + "end": 3258.74, + "probability": 0.9983 + }, + { + "start": 3258.82, + "end": 3261.14, + "probability": 0.9759 + }, + { + "start": 3262.5, + "end": 3263.62, + "probability": 0.8077 + }, + { + "start": 3263.66, + "end": 3264.7, + "probability": 0.805 + }, + { + "start": 3264.8, + "end": 3265.76, + "probability": 0.9012 + }, + { + "start": 3265.88, + "end": 3266.7, + "probability": 0.7446 + }, + { + "start": 3266.74, + "end": 3267.58, + "probability": 0.7059 + }, + { + "start": 3267.66, + "end": 3268.35, + "probability": 0.8861 + }, + { + "start": 3269.48, + "end": 3271.4, + "probability": 0.9037 + }, + { + "start": 3272.2, + "end": 3274.5, + "probability": 0.6919 + }, + { + "start": 3275.44, + "end": 3275.94, + "probability": 0.4784 + }, + { + "start": 3275.98, + "end": 3276.14, + "probability": 0.248 + }, + { + "start": 3276.22, + "end": 3278.02, + "probability": 0.7069 + }, + { + "start": 3278.08, + "end": 3279.46, + "probability": 0.9631 + }, + { + "start": 3279.52, + "end": 3280.48, + "probability": 0.7324 + }, + { + "start": 3280.48, + "end": 3281.12, + "probability": 0.5869 + }, + { + "start": 3282.02, + "end": 3284.68, + "probability": 0.7266 + }, + { + "start": 3284.74, + "end": 3285.94, + "probability": 0.8909 + }, + { + "start": 3286.7, + "end": 3288.28, + "probability": 0.9696 + }, + { + "start": 3289.0, + "end": 3290.58, + "probability": 0.9907 + }, + { + "start": 3291.22, + "end": 3294.96, + "probability": 0.8141 + }, + { + "start": 3296.01, + "end": 3299.44, + "probability": 0.9946 + }, + { + "start": 3299.44, + "end": 3300.92, + "probability": 0.9353 + }, + { + "start": 3301.74, + "end": 3302.65, + "probability": 0.8872 + }, + { + "start": 3302.94, + "end": 3305.72, + "probability": 0.9578 + }, + { + "start": 3306.68, + "end": 3307.76, + "probability": 0.6847 + }, + { + "start": 3309.45, + "end": 3311.18, + "probability": 0.9585 + }, + { + "start": 3312.46, + "end": 3313.8, + "probability": 0.8948 + }, + { + "start": 3313.84, + "end": 3316.94, + "probability": 0.9702 + }, + { + "start": 3318.26, + "end": 3321.54, + "probability": 0.8428 + }, + { + "start": 3322.12, + "end": 3327.66, + "probability": 0.9942 + }, + { + "start": 3329.68, + "end": 3331.18, + "probability": 0.64 + }, + { + "start": 3331.28, + "end": 3331.84, + "probability": 0.6492 + }, + { + "start": 3331.9, + "end": 3334.62, + "probability": 0.9722 + }, + { + "start": 3335.32, + "end": 3337.92, + "probability": 0.9924 + }, + { + "start": 3338.02, + "end": 3339.52, + "probability": 0.8842 + }, + { + "start": 3340.18, + "end": 3341.52, + "probability": 0.6646 + }, + { + "start": 3342.58, + "end": 3346.92, + "probability": 0.9989 + }, + { + "start": 3348.12, + "end": 3354.78, + "probability": 0.8729 + }, + { + "start": 3355.62, + "end": 3357.4, + "probability": 0.9851 + }, + { + "start": 3358.1, + "end": 3359.55, + "probability": 0.9989 + }, + { + "start": 3360.42, + "end": 3361.46, + "probability": 0.0686 + }, + { + "start": 3362.32, + "end": 3365.44, + "probability": 0.9303 + }, + { + "start": 3365.96, + "end": 3368.4, + "probability": 0.9338 + }, + { + "start": 3368.9, + "end": 3374.04, + "probability": 0.9827 + }, + { + "start": 3374.14, + "end": 3378.56, + "probability": 0.9987 + }, + { + "start": 3379.06, + "end": 3380.06, + "probability": 0.9357 + }, + { + "start": 3380.24, + "end": 3381.6, + "probability": 0.9946 + }, + { + "start": 3382.36, + "end": 3387.12, + "probability": 0.9333 + }, + { + "start": 3387.9, + "end": 3390.66, + "probability": 0.999 + }, + { + "start": 3391.4, + "end": 3393.26, + "probability": 0.7328 + }, + { + "start": 3394.14, + "end": 3394.9, + "probability": 0.6091 + }, + { + "start": 3396.08, + "end": 3397.78, + "probability": 0.9154 + }, + { + "start": 3399.52, + "end": 3400.58, + "probability": 0.8303 + }, + { + "start": 3400.76, + "end": 3402.64, + "probability": 0.9965 + }, + { + "start": 3402.72, + "end": 3403.54, + "probability": 0.7643 + }, + { + "start": 3403.68, + "end": 3403.88, + "probability": 0.6135 + }, + { + "start": 3404.96, + "end": 3407.08, + "probability": 0.9309 + }, + { + "start": 3407.56, + "end": 3408.1, + "probability": 0.9323 + }, + { + "start": 3409.0, + "end": 3410.88, + "probability": 0.9324 + }, + { + "start": 3410.92, + "end": 3413.1, + "probability": 0.9941 + }, + { + "start": 3413.82, + "end": 3414.88, + "probability": 0.9823 + }, + { + "start": 3415.56, + "end": 3417.0, + "probability": 0.9194 + }, + { + "start": 3417.82, + "end": 3418.64, + "probability": 0.6562 + }, + { + "start": 3419.8, + "end": 3420.36, + "probability": 0.5043 + }, + { + "start": 3421.36, + "end": 3422.64, + "probability": 0.7847 + }, + { + "start": 3423.34, + "end": 3423.88, + "probability": 0.9402 + }, + { + "start": 3424.4, + "end": 3425.88, + "probability": 0.9632 + }, + { + "start": 3426.84, + "end": 3432.46, + "probability": 0.9976 + }, + { + "start": 3433.08, + "end": 3434.52, + "probability": 0.9757 + }, + { + "start": 3435.04, + "end": 3436.36, + "probability": 0.8152 + }, + { + "start": 3437.48, + "end": 3439.64, + "probability": 0.9753 + }, + { + "start": 3440.38, + "end": 3442.52, + "probability": 0.7504 + }, + { + "start": 3443.12, + "end": 3445.06, + "probability": 0.9831 + }, + { + "start": 3445.42, + "end": 3446.76, + "probability": 0.9995 + }, + { + "start": 3447.3, + "end": 3449.14, + "probability": 0.9732 + }, + { + "start": 3449.38, + "end": 3450.28, + "probability": 0.6858 + }, + { + "start": 3450.92, + "end": 3454.38, + "probability": 0.9983 + }, + { + "start": 3455.04, + "end": 3456.06, + "probability": 0.926 + }, + { + "start": 3458.18, + "end": 3460.54, + "probability": 0.9961 + }, + { + "start": 3461.61, + "end": 3463.78, + "probability": 0.9033 + }, + { + "start": 3464.58, + "end": 3465.58, + "probability": 0.811 + }, + { + "start": 3466.52, + "end": 3468.3, + "probability": 0.9974 + }, + { + "start": 3468.76, + "end": 3469.7, + "probability": 0.6973 + }, + { + "start": 3470.5, + "end": 3471.28, + "probability": 0.9722 + }, + { + "start": 3471.38, + "end": 3473.76, + "probability": 0.8896 + }, + { + "start": 3474.26, + "end": 3475.18, + "probability": 0.8557 + }, + { + "start": 3475.72, + "end": 3477.66, + "probability": 0.7441 + }, + { + "start": 3478.0, + "end": 3479.44, + "probability": 0.9644 + }, + { + "start": 3480.62, + "end": 3482.54, + "probability": 0.9745 + }, + { + "start": 3483.2, + "end": 3483.7, + "probability": 0.8997 + }, + { + "start": 3483.78, + "end": 3485.94, + "probability": 0.9966 + }, + { + "start": 3486.06, + "end": 3487.24, + "probability": 0.9985 + }, + { + "start": 3487.68, + "end": 3488.84, + "probability": 0.689 + }, + { + "start": 3489.24, + "end": 3490.12, + "probability": 0.938 + }, + { + "start": 3490.64, + "end": 3491.34, + "probability": 0.9441 + }, + { + "start": 3492.02, + "end": 3493.28, + "probability": 0.9987 + }, + { + "start": 3493.82, + "end": 3495.28, + "probability": 0.8934 + }, + { + "start": 3495.78, + "end": 3497.3, + "probability": 0.9891 + }, + { + "start": 3497.78, + "end": 3498.96, + "probability": 0.9863 + }, + { + "start": 3499.1, + "end": 3502.02, + "probability": 0.993 + }, + { + "start": 3502.34, + "end": 3504.2, + "probability": 0.99 + }, + { + "start": 3504.7, + "end": 3507.68, + "probability": 0.9832 + }, + { + "start": 3508.02, + "end": 3510.64, + "probability": 0.7081 + }, + { + "start": 3511.16, + "end": 3511.78, + "probability": 0.7192 + }, + { + "start": 3512.36, + "end": 3515.92, + "probability": 0.9018 + }, + { + "start": 3516.0, + "end": 3516.36, + "probability": 0.8428 + }, + { + "start": 3516.8, + "end": 3518.66, + "probability": 0.9058 + }, + { + "start": 3519.36, + "end": 3521.39, + "probability": 0.958 + }, + { + "start": 3521.86, + "end": 3522.76, + "probability": 0.8955 + }, + { + "start": 3523.38, + "end": 3524.52, + "probability": 0.8753 + }, + { + "start": 3524.9, + "end": 3527.82, + "probability": 0.8766 + }, + { + "start": 3527.82, + "end": 3530.72, + "probability": 0.9525 + }, + { + "start": 3530.76, + "end": 3531.84, + "probability": 0.9064 + }, + { + "start": 3532.3, + "end": 3533.02, + "probability": 0.9041 + }, + { + "start": 3534.12, + "end": 3534.46, + "probability": 0.1004 + }, + { + "start": 3534.46, + "end": 3536.26, + "probability": 0.88 + }, + { + "start": 3536.32, + "end": 3537.66, + "probability": 0.8856 + }, + { + "start": 3548.64, + "end": 3549.12, + "probability": 0.7262 + }, + { + "start": 3549.54, + "end": 3551.2, + "probability": 0.542 + }, + { + "start": 3552.82, + "end": 3553.5, + "probability": 0.8466 + }, + { + "start": 3554.52, + "end": 3557.68, + "probability": 0.8973 + }, + { + "start": 3560.36, + "end": 3561.9, + "probability": 0.7618 + }, + { + "start": 3563.8, + "end": 3571.12, + "probability": 0.924 + }, + { + "start": 3571.3, + "end": 3573.54, + "probability": 0.919 + }, + { + "start": 3575.56, + "end": 3578.18, + "probability": 0.9152 + }, + { + "start": 3580.0, + "end": 3586.88, + "probability": 0.9945 + }, + { + "start": 3586.88, + "end": 3590.74, + "probability": 0.9706 + }, + { + "start": 3592.16, + "end": 3595.14, + "probability": 0.7035 + }, + { + "start": 3598.78, + "end": 3603.36, + "probability": 0.945 + }, + { + "start": 3604.56, + "end": 3609.96, + "probability": 0.9275 + }, + { + "start": 3611.04, + "end": 3622.32, + "probability": 0.8597 + }, + { + "start": 3625.76, + "end": 3630.5, + "probability": 0.8492 + }, + { + "start": 3631.96, + "end": 3635.02, + "probability": 0.7922 + }, + { + "start": 3635.7, + "end": 3638.74, + "probability": 0.9439 + }, + { + "start": 3638.84, + "end": 3640.16, + "probability": 0.7484 + }, + { + "start": 3640.28, + "end": 3642.44, + "probability": 0.9323 + }, + { + "start": 3642.56, + "end": 3643.2, + "probability": 0.637 + }, + { + "start": 3645.18, + "end": 3645.68, + "probability": 0.5018 + }, + { + "start": 3647.26, + "end": 3648.28, + "probability": 0.8459 + }, + { + "start": 3648.9, + "end": 3652.16, + "probability": 0.9963 + }, + { + "start": 3653.64, + "end": 3658.2, + "probability": 0.874 + }, + { + "start": 3658.38, + "end": 3659.08, + "probability": 0.8553 + }, + { + "start": 3659.78, + "end": 3663.68, + "probability": 0.9798 + }, + { + "start": 3664.24, + "end": 3667.41, + "probability": 0.7933 + }, + { + "start": 3668.72, + "end": 3673.16, + "probability": 0.9313 + }, + { + "start": 3673.86, + "end": 3675.42, + "probability": 0.8521 + }, + { + "start": 3678.16, + "end": 3678.88, + "probability": 0.4717 + }, + { + "start": 3678.92, + "end": 3680.1, + "probability": 0.7148 + }, + { + "start": 3680.12, + "end": 3682.34, + "probability": 0.7905 + }, + { + "start": 3682.36, + "end": 3683.96, + "probability": 0.8775 + }, + { + "start": 3685.2, + "end": 3689.54, + "probability": 0.9956 + }, + { + "start": 3690.26, + "end": 3691.17, + "probability": 0.7666 + }, + { + "start": 3691.66, + "end": 3697.6, + "probability": 0.8698 + }, + { + "start": 3698.22, + "end": 3702.72, + "probability": 0.9392 + }, + { + "start": 3702.76, + "end": 3703.02, + "probability": 0.3688 + }, + { + "start": 3703.02, + "end": 3708.18, + "probability": 0.9377 + }, + { + "start": 3709.52, + "end": 3715.9, + "probability": 0.817 + }, + { + "start": 3716.66, + "end": 3720.2, + "probability": 0.999 + }, + { + "start": 3721.48, + "end": 3724.26, + "probability": 0.9832 + }, + { + "start": 3724.32, + "end": 3725.14, + "probability": 0.459 + }, + { + "start": 3725.46, + "end": 3728.02, + "probability": 0.96 + }, + { + "start": 3730.32, + "end": 3733.36, + "probability": 0.946 + }, + { + "start": 3733.44, + "end": 3734.46, + "probability": 0.5266 + }, + { + "start": 3734.6, + "end": 3744.08, + "probability": 0.9944 + }, + { + "start": 3745.38, + "end": 3750.2, + "probability": 0.9296 + }, + { + "start": 3753.46, + "end": 3758.44, + "probability": 0.8313 + }, + { + "start": 3760.74, + "end": 3765.64, + "probability": 0.9796 + }, + { + "start": 3767.74, + "end": 3771.16, + "probability": 0.8879 + }, + { + "start": 3771.58, + "end": 3775.08, + "probability": 0.9951 + }, + { + "start": 3775.08, + "end": 3780.38, + "probability": 0.9804 + }, + { + "start": 3781.54, + "end": 3785.72, + "probability": 0.8635 + }, + { + "start": 3786.18, + "end": 3789.26, + "probability": 0.9889 + }, + { + "start": 3791.12, + "end": 3797.66, + "probability": 0.9106 + }, + { + "start": 3798.54, + "end": 3802.5, + "probability": 0.8982 + }, + { + "start": 3803.06, + "end": 3805.16, + "probability": 0.999 + }, + { + "start": 3806.22, + "end": 3808.28, + "probability": 0.9639 + }, + { + "start": 3808.4, + "end": 3809.64, + "probability": 0.9279 + }, + { + "start": 3810.06, + "end": 3811.24, + "probability": 0.9812 + }, + { + "start": 3811.44, + "end": 3814.79, + "probability": 0.9871 + }, + { + "start": 3815.28, + "end": 3819.36, + "probability": 0.8246 + }, + { + "start": 3819.9, + "end": 3820.7, + "probability": 0.1583 + }, + { + "start": 3821.32, + "end": 3823.16, + "probability": 0.8464 + }, + { + "start": 3824.24, + "end": 3828.8, + "probability": 0.8215 + }, + { + "start": 3829.28, + "end": 3831.12, + "probability": 0.9521 + }, + { + "start": 3831.36, + "end": 3832.06, + "probability": 0.6684 + }, + { + "start": 3832.48, + "end": 3836.0, + "probability": 0.9663 + }, + { + "start": 3836.04, + "end": 3837.0, + "probability": 0.8885 + }, + { + "start": 3840.1, + "end": 3843.36, + "probability": 0.8853 + }, + { + "start": 3844.56, + "end": 3848.22, + "probability": 0.9922 + }, + { + "start": 3850.2, + "end": 3854.98, + "probability": 0.981 + }, + { + "start": 3855.84, + "end": 3859.84, + "probability": 0.8954 + }, + { + "start": 3860.66, + "end": 3862.86, + "probability": 0.9688 + }, + { + "start": 3864.18, + "end": 3867.8, + "probability": 0.9913 + }, + { + "start": 3870.0, + "end": 3874.8, + "probability": 0.9985 + }, + { + "start": 3874.8, + "end": 3878.06, + "probability": 0.9981 + }, + { + "start": 3880.44, + "end": 3888.82, + "probability": 0.9053 + }, + { + "start": 3889.9, + "end": 3891.8, + "probability": 0.5474 + }, + { + "start": 3893.1, + "end": 3894.26, + "probability": 0.3262 + }, + { + "start": 3894.86, + "end": 3896.99, + "probability": 0.9469 + }, + { + "start": 3898.08, + "end": 3904.26, + "probability": 0.9577 + }, + { + "start": 3906.56, + "end": 3907.19, + "probability": 0.8541 + }, + { + "start": 3907.62, + "end": 3908.58, + "probability": 0.8953 + }, + { + "start": 3908.86, + "end": 3911.04, + "probability": 0.956 + }, + { + "start": 3911.8, + "end": 3913.2, + "probability": 0.9686 + }, + { + "start": 3914.74, + "end": 3918.6, + "probability": 0.9765 + }, + { + "start": 3919.96, + "end": 3922.78, + "probability": 0.993 + }, + { + "start": 3922.78, + "end": 3924.64, + "probability": 0.833 + }, + { + "start": 3926.64, + "end": 3930.94, + "probability": 0.8017 + }, + { + "start": 3933.78, + "end": 3938.48, + "probability": 0.7229 + }, + { + "start": 3938.54, + "end": 3948.8, + "probability": 0.736 + }, + { + "start": 3949.0, + "end": 3952.28, + "probability": 0.9578 + }, + { + "start": 3954.32, + "end": 3959.42, + "probability": 0.9919 + }, + { + "start": 3959.66, + "end": 3963.04, + "probability": 0.982 + }, + { + "start": 3963.78, + "end": 3964.92, + "probability": 0.9598 + }, + { + "start": 3966.4, + "end": 3968.16, + "probability": 0.9292 + }, + { + "start": 3968.22, + "end": 3969.2, + "probability": 0.827 + }, + { + "start": 3969.4, + "end": 3973.72, + "probability": 0.989 + }, + { + "start": 3974.08, + "end": 3976.88, + "probability": 0.8684 + }, + { + "start": 3978.82, + "end": 3981.64, + "probability": 0.8176 + }, + { + "start": 3982.56, + "end": 3983.38, + "probability": 0.6978 + }, + { + "start": 3983.5, + "end": 3985.51, + "probability": 0.9736 + }, + { + "start": 3987.5, + "end": 3991.7, + "probability": 0.9862 + }, + { + "start": 3991.7, + "end": 3995.8, + "probability": 0.8766 + }, + { + "start": 4001.78, + "end": 4010.14, + "probability": 0.9856 + }, + { + "start": 4011.5, + "end": 4011.72, + "probability": 0.6609 + }, + { + "start": 4012.3, + "end": 4013.7, + "probability": 0.9919 + }, + { + "start": 4014.06, + "end": 4015.44, + "probability": 0.9253 + }, + { + "start": 4016.56, + "end": 4018.58, + "probability": 0.5396 + }, + { + "start": 4019.34, + "end": 4019.56, + "probability": 0.9879 + }, + { + "start": 4021.78, + "end": 4025.18, + "probability": 0.7507 + }, + { + "start": 4027.5, + "end": 4029.34, + "probability": 0.8566 + }, + { + "start": 4031.0, + "end": 4033.54, + "probability": 0.6978 + }, + { + "start": 4036.72, + "end": 4037.96, + "probability": 0.8979 + }, + { + "start": 4039.1, + "end": 4040.26, + "probability": 0.6366 + }, + { + "start": 4041.0, + "end": 4041.76, + "probability": 0.8916 + }, + { + "start": 4043.2, + "end": 4047.82, + "probability": 0.987 + }, + { + "start": 4049.24, + "end": 4052.78, + "probability": 0.8858 + }, + { + "start": 4054.06, + "end": 4054.88, + "probability": 0.9238 + }, + { + "start": 4055.08, + "end": 4058.33, + "probability": 0.9924 + }, + { + "start": 4059.74, + "end": 4062.0, + "probability": 0.9263 + }, + { + "start": 4063.66, + "end": 4064.12, + "probability": 0.9746 + }, + { + "start": 4065.34, + "end": 4067.0, + "probability": 0.9543 + }, + { + "start": 4067.68, + "end": 4069.9, + "probability": 0.9697 + }, + { + "start": 4072.82, + "end": 4075.83, + "probability": 0.9648 + }, + { + "start": 4077.72, + "end": 4078.28, + "probability": 0.6998 + }, + { + "start": 4080.36, + "end": 4082.9, + "probability": 0.9011 + }, + { + "start": 4085.2, + "end": 4087.54, + "probability": 0.9153 + }, + { + "start": 4088.76, + "end": 4093.76, + "probability": 0.8509 + }, + { + "start": 4094.56, + "end": 4096.36, + "probability": 0.8491 + }, + { + "start": 4097.42, + "end": 4100.92, + "probability": 0.7726 + }, + { + "start": 4102.1, + "end": 4104.36, + "probability": 0.8203 + }, + { + "start": 4104.96, + "end": 4107.16, + "probability": 0.6699 + }, + { + "start": 4107.76, + "end": 4108.9, + "probability": 0.9599 + }, + { + "start": 4110.14, + "end": 4110.5, + "probability": 0.8219 + }, + { + "start": 4111.06, + "end": 4111.72, + "probability": 0.6089 + }, + { + "start": 4112.5, + "end": 4115.3, + "probability": 0.9705 + }, + { + "start": 4116.7, + "end": 4117.62, + "probability": 0.507 + }, + { + "start": 4119.11, + "end": 4122.08, + "probability": 0.9595 + }, + { + "start": 4122.92, + "end": 4124.76, + "probability": 0.9826 + }, + { + "start": 4126.15, + "end": 4129.4, + "probability": 0.9817 + }, + { + "start": 4130.64, + "end": 4134.78, + "probability": 0.7042 + }, + { + "start": 4134.96, + "end": 4141.54, + "probability": 0.9813 + }, + { + "start": 4142.92, + "end": 4143.86, + "probability": 0.784 + }, + { + "start": 4144.08, + "end": 4145.12, + "probability": 0.9518 + }, + { + "start": 4145.16, + "end": 4146.44, + "probability": 0.9472 + }, + { + "start": 4146.6, + "end": 4147.96, + "probability": 0.4788 + }, + { + "start": 4148.1, + "end": 4149.18, + "probability": 0.4864 + }, + { + "start": 4150.86, + "end": 4157.96, + "probability": 0.9351 + }, + { + "start": 4158.56, + "end": 4162.36, + "probability": 0.975 + }, + { + "start": 4162.48, + "end": 4166.66, + "probability": 0.997 + }, + { + "start": 4166.72, + "end": 4174.51, + "probability": 0.7031 + }, + { + "start": 4175.86, + "end": 4177.66, + "probability": 0.565 + }, + { + "start": 4177.66, + "end": 4178.7, + "probability": 0.3632 + }, + { + "start": 4189.22, + "end": 4189.56, + "probability": 0.8389 + }, + { + "start": 4190.42, + "end": 4191.2, + "probability": 0.0397 + }, + { + "start": 4191.2, + "end": 4191.2, + "probability": 0.0369 + }, + { + "start": 4191.2, + "end": 4192.17, + "probability": 0.1542 + }, + { + "start": 4193.96, + "end": 4194.48, + "probability": 0.0326 + }, + { + "start": 4194.5, + "end": 4195.06, + "probability": 0.3505 + }, + { + "start": 4195.44, + "end": 4197.49, + "probability": 0.9043 + }, + { + "start": 4198.3, + "end": 4201.14, + "probability": 0.9876 + }, + { + "start": 4201.14, + "end": 4205.0, + "probability": 0.9633 + }, + { + "start": 4205.86, + "end": 4208.66, + "probability": 0.9902 + }, + { + "start": 4208.72, + "end": 4211.64, + "probability": 0.9573 + }, + { + "start": 4211.82, + "end": 4212.94, + "probability": 0.9081 + }, + { + "start": 4213.52, + "end": 4216.52, + "probability": 0.9946 + }, + { + "start": 4216.52, + "end": 4221.42, + "probability": 0.9893 + }, + { + "start": 4221.56, + "end": 4225.86, + "probability": 0.9893 + }, + { + "start": 4226.28, + "end": 4229.44, + "probability": 0.3504 + }, + { + "start": 4229.44, + "end": 4231.68, + "probability": 0.9698 + }, + { + "start": 4232.64, + "end": 4237.31, + "probability": 0.8383 + }, + { + "start": 4238.86, + "end": 4242.1, + "probability": 0.9692 + }, + { + "start": 4245.5, + "end": 4245.5, + "probability": 0.0545 + }, + { + "start": 4245.5, + "end": 4248.28, + "probability": 0.6895 + }, + { + "start": 4249.38, + "end": 4249.82, + "probability": 0.4769 + }, + { + "start": 4251.7, + "end": 4252.0, + "probability": 0.4222 + }, + { + "start": 4252.2, + "end": 4252.52, + "probability": 0.7451 + }, + { + "start": 4252.7, + "end": 4254.02, + "probability": 0.9871 + }, + { + "start": 4254.1, + "end": 4254.2, + "probability": 0.8006 + }, + { + "start": 4254.58, + "end": 4256.28, + "probability": 0.8665 + }, + { + "start": 4256.9, + "end": 4259.94, + "probability": 0.8003 + }, + { + "start": 4259.94, + "end": 4260.34, + "probability": 0.1393 + }, + { + "start": 4260.42, + "end": 4262.28, + "probability": 0.7803 + }, + { + "start": 4262.98, + "end": 4265.34, + "probability": 0.8084 + }, + { + "start": 4273.34, + "end": 4275.0, + "probability": 0.9379 + }, + { + "start": 4275.04, + "end": 4277.72, + "probability": 0.9817 + }, + { + "start": 4277.72, + "end": 4282.68, + "probability": 0.9811 + }, + { + "start": 4283.5, + "end": 4285.38, + "probability": 0.6253 + }, + { + "start": 4285.66, + "end": 4289.08, + "probability": 0.9936 + }, + { + "start": 4298.04, + "end": 4298.04, + "probability": 0.165 + }, + { + "start": 4298.04, + "end": 4298.04, + "probability": 0.0476 + }, + { + "start": 4298.04, + "end": 4298.04, + "probability": 0.1981 + }, + { + "start": 4298.04, + "end": 4298.44, + "probability": 0.4096 + }, + { + "start": 4299.12, + "end": 4300.34, + "probability": 0.8859 + }, + { + "start": 4300.52, + "end": 4301.36, + "probability": 0.3978 + }, + { + "start": 4304.68, + "end": 4308.94, + "probability": 0.6762 + }, + { + "start": 4311.8, + "end": 4313.34, + "probability": 0.9914 + }, + { + "start": 4313.58, + "end": 4315.9, + "probability": 0.833 + }, + { + "start": 4315.94, + "end": 4316.86, + "probability": 0.1851 + }, + { + "start": 4316.96, + "end": 4318.54, + "probability": 0.7739 + }, + { + "start": 4319.04, + "end": 4321.08, + "probability": 0.881 + }, + { + "start": 4321.28, + "end": 4323.0, + "probability": 0.9715 + }, + { + "start": 4323.18, + "end": 4324.62, + "probability": 0.8999 + }, + { + "start": 4324.66, + "end": 4324.86, + "probability": 0.9058 + }, + { + "start": 4325.38, + "end": 4328.34, + "probability": 0.8891 + }, + { + "start": 4328.38, + "end": 4332.04, + "probability": 0.87 + }, + { + "start": 4332.04, + "end": 4335.68, + "probability": 0.9875 + }, + { + "start": 4336.16, + "end": 4338.78, + "probability": 0.5443 + }, + { + "start": 4339.06, + "end": 4341.68, + "probability": 0.7363 + }, + { + "start": 4342.92, + "end": 4345.3, + "probability": 0.9934 + }, + { + "start": 4345.68, + "end": 4347.58, + "probability": 0.8439 + }, + { + "start": 4348.5, + "end": 4354.12, + "probability": 0.8934 + }, + { + "start": 4354.26, + "end": 4354.8, + "probability": 0.5062 + }, + { + "start": 4355.16, + "end": 4357.38, + "probability": 0.9774 + }, + { + "start": 4358.32, + "end": 4359.1, + "probability": 0.7696 + }, + { + "start": 4359.14, + "end": 4361.76, + "probability": 0.7348 + }, + { + "start": 4361.76, + "end": 4363.06, + "probability": 0.7241 + }, + { + "start": 4363.32, + "end": 4365.28, + "probability": 0.978 + }, + { + "start": 4365.68, + "end": 4367.48, + "probability": 0.9685 + }, + { + "start": 4367.94, + "end": 4372.94, + "probability": 0.9802 + }, + { + "start": 4373.2, + "end": 4374.26, + "probability": 0.5664 + }, + { + "start": 4374.42, + "end": 4376.38, + "probability": 0.9655 + }, + { + "start": 4377.7, + "end": 4382.32, + "probability": 0.9268 + }, + { + "start": 4382.5, + "end": 4384.34, + "probability": 0.8424 + }, + { + "start": 4384.36, + "end": 4384.86, + "probability": 0.9502 + }, + { + "start": 4384.92, + "end": 4387.0, + "probability": 0.895 + }, + { + "start": 4387.0, + "end": 4391.88, + "probability": 0.7361 + }, + { + "start": 4391.9, + "end": 4392.8, + "probability": 0.5455 + }, + { + "start": 4392.8, + "end": 4394.54, + "probability": 0.7506 + }, + { + "start": 4396.5, + "end": 4397.68, + "probability": 0.0699 + }, + { + "start": 4397.68, + "end": 4400.19, + "probability": 0.2529 + }, + { + "start": 4401.0, + "end": 4403.18, + "probability": 0.6753 + }, + { + "start": 4403.96, + "end": 4408.42, + "probability": 0.8988 + }, + { + "start": 4409.24, + "end": 4409.24, + "probability": 0.2482 + }, + { + "start": 4409.24, + "end": 4410.89, + "probability": 0.9238 + }, + { + "start": 4412.46, + "end": 4418.32, + "probability": 0.689 + }, + { + "start": 4419.06, + "end": 4425.86, + "probability": 0.9947 + }, + { + "start": 4426.6, + "end": 4430.76, + "probability": 0.9937 + }, + { + "start": 4430.86, + "end": 4432.22, + "probability": 0.8125 + }, + { + "start": 4433.08, + "end": 4437.3, + "probability": 0.9124 + }, + { + "start": 4438.02, + "end": 4439.88, + "probability": 0.9324 + }, + { + "start": 4440.92, + "end": 4442.6, + "probability": 0.9045 + }, + { + "start": 4443.64, + "end": 4446.56, + "probability": 0.661 + }, + { + "start": 4447.2, + "end": 4449.72, + "probability": 0.816 + }, + { + "start": 4450.82, + "end": 4451.48, + "probability": 0.6262 + }, + { + "start": 4452.08, + "end": 4454.88, + "probability": 0.7113 + }, + { + "start": 4455.0, + "end": 4455.54, + "probability": 0.8755 + }, + { + "start": 4455.62, + "end": 4459.62, + "probability": 0.9851 + }, + { + "start": 4460.0, + "end": 4461.5, + "probability": 0.937 + }, + { + "start": 4462.26, + "end": 4462.82, + "probability": 0.7705 + }, + { + "start": 4462.96, + "end": 4463.4, + "probability": 0.6256 + }, + { + "start": 4463.42, + "end": 4464.84, + "probability": 0.9951 + }, + { + "start": 4464.84, + "end": 4467.44, + "probability": 0.9732 + }, + { + "start": 4468.12, + "end": 4471.74, + "probability": 0.9885 + }, + { + "start": 4471.86, + "end": 4474.48, + "probability": 0.8335 + }, + { + "start": 4475.24, + "end": 4478.58, + "probability": 0.9971 + }, + { + "start": 4479.72, + "end": 4480.44, + "probability": 0.4454 + }, + { + "start": 4482.22, + "end": 4485.78, + "probability": 0.5758 + }, + { + "start": 4490.36, + "end": 4491.82, + "probability": 0.4696 + }, + { + "start": 4492.38, + "end": 4495.6, + "probability": 0.9324 + }, + { + "start": 4495.6, + "end": 4500.14, + "probability": 0.9654 + }, + { + "start": 4501.14, + "end": 4503.1, + "probability": 0.2879 + }, + { + "start": 4503.12, + "end": 4504.5, + "probability": 0.9333 + }, + { + "start": 4504.88, + "end": 4510.96, + "probability": 0.7935 + }, + { + "start": 4511.46, + "end": 4513.72, + "probability": 0.9706 + }, + { + "start": 4514.26, + "end": 4516.1, + "probability": 0.9802 + }, + { + "start": 4516.62, + "end": 4520.82, + "probability": 0.9883 + }, + { + "start": 4540.78, + "end": 4541.84, + "probability": 0.1546 + }, + { + "start": 4542.42, + "end": 4543.04, + "probability": 0.5795 + }, + { + "start": 4543.32, + "end": 4549.64, + "probability": 0.9824 + }, + { + "start": 4549.86, + "end": 4556.78, + "probability": 0.9089 + }, + { + "start": 4557.54, + "end": 4560.34, + "probability": 0.9423 + }, + { + "start": 4560.48, + "end": 4561.2, + "probability": 0.5629 + }, + { + "start": 4561.42, + "end": 4562.6, + "probability": 0.7811 + }, + { + "start": 4562.68, + "end": 4567.14, + "probability": 0.6479 + }, + { + "start": 4567.8, + "end": 4571.44, + "probability": 0.7539 + }, + { + "start": 4572.02, + "end": 4575.48, + "probability": 0.9761 + }, + { + "start": 4576.02, + "end": 4580.22, + "probability": 0.6887 + }, + { + "start": 4581.22, + "end": 4587.74, + "probability": 0.9556 + }, + { + "start": 4590.24, + "end": 4595.4, + "probability": 0.9252 + }, + { + "start": 4596.14, + "end": 4598.26, + "probability": 0.9539 + }, + { + "start": 4598.26, + "end": 4601.54, + "probability": 0.9892 + }, + { + "start": 4602.06, + "end": 4603.96, + "probability": 0.9044 + }, + { + "start": 4604.6, + "end": 4609.12, + "probability": 0.8615 + }, + { + "start": 4609.76, + "end": 4613.74, + "probability": 0.7139 + }, + { + "start": 4614.92, + "end": 4616.78, + "probability": 0.9966 + }, + { + "start": 4617.38, + "end": 4622.14, + "probability": 0.7925 + }, + { + "start": 4623.04, + "end": 4625.0, + "probability": 0.9251 + }, + { + "start": 4625.89, + "end": 4628.86, + "probability": 0.6935 + }, + { + "start": 4629.88, + "end": 4634.34, + "probability": 0.9812 + }, + { + "start": 4634.96, + "end": 4637.09, + "probability": 0.9445 + }, + { + "start": 4638.52, + "end": 4642.46, + "probability": 0.8124 + }, + { + "start": 4643.3, + "end": 4647.8, + "probability": 0.9497 + }, + { + "start": 4648.26, + "end": 4649.16, + "probability": 0.8399 + }, + { + "start": 4649.42, + "end": 4650.0, + "probability": 0.808 + }, + { + "start": 4650.38, + "end": 4651.34, + "probability": 0.8146 + }, + { + "start": 4651.46, + "end": 4652.64, + "probability": 0.9654 + }, + { + "start": 4653.2, + "end": 4658.86, + "probability": 0.9596 + }, + { + "start": 4659.18, + "end": 4662.74, + "probability": 0.9599 + }, + { + "start": 4663.62, + "end": 4664.9, + "probability": 0.9327 + }, + { + "start": 4665.76, + "end": 4668.5, + "probability": 0.9467 + }, + { + "start": 4668.94, + "end": 4670.54, + "probability": 0.9439 + }, + { + "start": 4671.54, + "end": 4676.62, + "probability": 0.8214 + }, + { + "start": 4677.16, + "end": 4681.64, + "probability": 0.9984 + }, + { + "start": 4681.64, + "end": 4685.98, + "probability": 0.9873 + }, + { + "start": 4686.64, + "end": 4688.1, + "probability": 0.9953 + }, + { + "start": 4688.68, + "end": 4691.62, + "probability": 0.7466 + }, + { + "start": 4692.54, + "end": 4694.16, + "probability": 0.7654 + }, + { + "start": 4694.88, + "end": 4699.44, + "probability": 0.7957 + }, + { + "start": 4700.04, + "end": 4702.24, + "probability": 0.6379 + }, + { + "start": 4703.46, + "end": 4704.8, + "probability": 0.8537 + }, + { + "start": 4706.18, + "end": 4708.94, + "probability": 0.9102 + }, + { + "start": 4709.66, + "end": 4712.96, + "probability": 0.9179 + }, + { + "start": 4713.34, + "end": 4719.26, + "probability": 0.8513 + }, + { + "start": 4719.6, + "end": 4723.18, + "probability": 0.8351 + }, + { + "start": 4723.36, + "end": 4728.9, + "probability": 0.9634 + }, + { + "start": 4729.74, + "end": 4734.74, + "probability": 0.7672 + }, + { + "start": 4735.32, + "end": 4740.46, + "probability": 0.7038 + }, + { + "start": 4741.3, + "end": 4743.54, + "probability": 0.8611 + }, + { + "start": 4744.0, + "end": 4748.7, + "probability": 0.8091 + }, + { + "start": 4749.6, + "end": 4752.92, + "probability": 0.9767 + }, + { + "start": 4753.8, + "end": 4754.08, + "probability": 0.9352 + }, + { + "start": 4754.62, + "end": 4756.54, + "probability": 0.999 + }, + { + "start": 4757.1, + "end": 4757.92, + "probability": 0.0046 + }, + { + "start": 4758.74, + "end": 4764.56, + "probability": 0.9929 + }, + { + "start": 4765.7, + "end": 4766.08, + "probability": 0.3728 + }, + { + "start": 4766.36, + "end": 4769.32, + "probability": 0.8077 + }, + { + "start": 4769.4, + "end": 4771.78, + "probability": 0.9156 + }, + { + "start": 4772.4, + "end": 4772.72, + "probability": 0.7725 + }, + { + "start": 4773.02, + "end": 4775.48, + "probability": 0.6284 + }, + { + "start": 4775.62, + "end": 4777.3, + "probability": 0.9826 + }, + { + "start": 4777.38, + "end": 4777.98, + "probability": 0.9469 + }, + { + "start": 4778.04, + "end": 4778.72, + "probability": 0.7912 + }, + { + "start": 4779.26, + "end": 4781.94, + "probability": 0.7557 + }, + { + "start": 4783.24, + "end": 4788.42, + "probability": 0.9757 + }, + { + "start": 4789.1, + "end": 4790.42, + "probability": 0.9207 + }, + { + "start": 4790.82, + "end": 4795.02, + "probability": 0.9935 + }, + { + "start": 4795.66, + "end": 4796.66, + "probability": 0.8886 + }, + { + "start": 4797.22, + "end": 4804.38, + "probability": 0.8111 + }, + { + "start": 4804.68, + "end": 4810.94, + "probability": 0.9856 + }, + { + "start": 4812.36, + "end": 4815.26, + "probability": 0.9243 + }, + { + "start": 4816.3, + "end": 4816.3, + "probability": 0.0467 + }, + { + "start": 4816.3, + "end": 4817.38, + "probability": 0.9768 + }, + { + "start": 4818.66, + "end": 4819.92, + "probability": 0.8341 + }, + { + "start": 4820.52, + "end": 4821.36, + "probability": 0.9555 + }, + { + "start": 4821.88, + "end": 4824.14, + "probability": 0.8443 + }, + { + "start": 4825.26, + "end": 4829.7, + "probability": 0.9471 + }, + { + "start": 4830.22, + "end": 4831.18, + "probability": 0.8771 + }, + { + "start": 4831.94, + "end": 4833.6, + "probability": 0.9789 + }, + { + "start": 4833.78, + "end": 4834.16, + "probability": 0.6996 + }, + { + "start": 4834.22, + "end": 4834.74, + "probability": 0.8235 + }, + { + "start": 4834.92, + "end": 4835.68, + "probability": 0.9111 + }, + { + "start": 4835.82, + "end": 4836.2, + "probability": 0.5612 + }, + { + "start": 4836.98, + "end": 4839.62, + "probability": 0.9399 + }, + { + "start": 4840.08, + "end": 4843.96, + "probability": 0.9814 + }, + { + "start": 4844.46, + "end": 4847.58, + "probability": 0.9827 + }, + { + "start": 4848.44, + "end": 4851.94, + "probability": 0.9807 + }, + { + "start": 4852.48, + "end": 4854.16, + "probability": 0.8413 + }, + { + "start": 4854.84, + "end": 4858.44, + "probability": 0.932 + }, + { + "start": 4858.9, + "end": 4861.4, + "probability": 0.9057 + }, + { + "start": 4861.9, + "end": 4865.5, + "probability": 0.9872 + }, + { + "start": 4866.7, + "end": 4869.06, + "probability": 0.9811 + }, + { + "start": 4869.7, + "end": 4872.24, + "probability": 0.9559 + }, + { + "start": 4873.14, + "end": 4876.74, + "probability": 0.9902 + }, + { + "start": 4877.42, + "end": 4880.52, + "probability": 0.9961 + }, + { + "start": 4881.64, + "end": 4883.74, + "probability": 0.9451 + }, + { + "start": 4884.52, + "end": 4889.32, + "probability": 0.9849 + }, + { + "start": 4889.76, + "end": 4893.38, + "probability": 0.7271 + }, + { + "start": 4894.56, + "end": 4895.66, + "probability": 0.7361 + }, + { + "start": 4896.68, + "end": 4899.04, + "probability": 0.8413 + }, + { + "start": 4899.66, + "end": 4901.86, + "probability": 0.6814 + }, + { + "start": 4902.4, + "end": 4906.98, + "probability": 0.7119 + }, + { + "start": 4907.58, + "end": 4912.14, + "probability": 0.9246 + }, + { + "start": 4912.14, + "end": 4916.34, + "probability": 0.9966 + }, + { + "start": 4917.18, + "end": 4923.96, + "probability": 0.9843 + }, + { + "start": 4925.34, + "end": 4931.29, + "probability": 0.9608 + }, + { + "start": 4932.16, + "end": 4936.46, + "probability": 0.834 + }, + { + "start": 4938.48, + "end": 4944.98, + "probability": 0.9807 + }, + { + "start": 4945.7, + "end": 4948.54, + "probability": 0.6954 + }, + { + "start": 4949.5, + "end": 4952.78, + "probability": 0.9902 + }, + { + "start": 4953.4, + "end": 4955.66, + "probability": 0.9583 + }, + { + "start": 4956.04, + "end": 4957.0, + "probability": 0.4892 + }, + { + "start": 4957.22, + "end": 4959.68, + "probability": 0.825 + }, + { + "start": 4960.18, + "end": 4962.48, + "probability": 0.6559 + }, + { + "start": 4963.3, + "end": 4965.4, + "probability": 0.767 + }, + { + "start": 4966.26, + "end": 4972.04, + "probability": 0.8634 + }, + { + "start": 4973.04, + "end": 4975.02, + "probability": 0.721 + }, + { + "start": 4975.94, + "end": 4978.82, + "probability": 0.9686 + }, + { + "start": 4979.32, + "end": 4979.92, + "probability": 0.8831 + }, + { + "start": 4980.12, + "end": 4980.76, + "probability": 0.7247 + }, + { + "start": 4981.22, + "end": 4983.08, + "probability": 0.6636 + }, + { + "start": 4983.68, + "end": 4987.42, + "probability": 0.9373 + }, + { + "start": 4988.36, + "end": 4990.3, + "probability": 0.6638 + }, + { + "start": 4991.06, + "end": 4992.36, + "probability": 0.6694 + }, + { + "start": 4992.94, + "end": 4995.4, + "probability": 0.9115 + }, + { + "start": 4996.64, + "end": 4996.66, + "probability": 0.7715 + }, + { + "start": 4997.58, + "end": 4999.92, + "probability": 0.8532 + }, + { + "start": 5000.48, + "end": 5005.64, + "probability": 0.9915 + }, + { + "start": 5006.42, + "end": 5009.52, + "probability": 0.8096 + }, + { + "start": 5009.72, + "end": 5009.96, + "probability": 0.3804 + }, + { + "start": 5010.64, + "end": 5013.54, + "probability": 0.8917 + }, + { + "start": 5013.54, + "end": 5014.04, + "probability": 0.3648 + }, + { + "start": 5014.24, + "end": 5017.54, + "probability": 0.8656 + }, + { + "start": 5017.62, + "end": 5020.0, + "probability": 0.6542 + }, + { + "start": 5020.86, + "end": 5022.14, + "probability": 0.98 + }, + { + "start": 5022.59, + "end": 5027.72, + "probability": 0.8116 + }, + { + "start": 5029.44, + "end": 5032.55, + "probability": 0.8472 + }, + { + "start": 5032.56, + "end": 5037.01, + "probability": 0.8148 + }, + { + "start": 5038.7, + "end": 5038.7, + "probability": 0.0261 + }, + { + "start": 5038.7, + "end": 5039.38, + "probability": 0.0478 + }, + { + "start": 5039.72, + "end": 5041.08, + "probability": 0.6359 + }, + { + "start": 5041.7, + "end": 5044.08, + "probability": 0.7077 + }, + { + "start": 5047.54, + "end": 5053.52, + "probability": 0.7345 + }, + { + "start": 5054.4, + "end": 5055.94, + "probability": 0.9076 + }, + { + "start": 5057.24, + "end": 5058.98, + "probability": 0.7029 + }, + { + "start": 5059.62, + "end": 5063.58, + "probability": 0.8638 + }, + { + "start": 5063.8, + "end": 5064.82, + "probability": 0.6873 + }, + { + "start": 5065.54, + "end": 5067.48, + "probability": 0.9972 + }, + { + "start": 5069.0, + "end": 5069.74, + "probability": 0.9067 + }, + { + "start": 5069.84, + "end": 5070.46, + "probability": 0.8412 + }, + { + "start": 5070.56, + "end": 5073.56, + "probability": 0.8899 + }, + { + "start": 5074.86, + "end": 5075.76, + "probability": 0.9601 + }, + { + "start": 5077.78, + "end": 5079.32, + "probability": 0.9749 + }, + { + "start": 5080.9, + "end": 5082.06, + "probability": 0.9705 + }, + { + "start": 5084.66, + "end": 5092.66, + "probability": 0.9526 + }, + { + "start": 5095.36, + "end": 5098.32, + "probability": 0.8662 + }, + { + "start": 5100.7, + "end": 5101.84, + "probability": 0.8858 + }, + { + "start": 5102.68, + "end": 5103.48, + "probability": 0.9686 + }, + { + "start": 5104.7, + "end": 5111.04, + "probability": 0.8689 + }, + { + "start": 5113.88, + "end": 5114.65, + "probability": 0.8823 + }, + { + "start": 5115.4, + "end": 5116.1, + "probability": 0.7502 + }, + { + "start": 5116.98, + "end": 5117.52, + "probability": 0.8067 + }, + { + "start": 5118.72, + "end": 5119.24, + "probability": 0.766 + }, + { + "start": 5123.84, + "end": 5125.78, + "probability": 0.7261 + }, + { + "start": 5128.6, + "end": 5133.86, + "probability": 0.9189 + }, + { + "start": 5134.38, + "end": 5136.48, + "probability": 0.9897 + }, + { + "start": 5136.68, + "end": 5142.8, + "probability": 0.9378 + }, + { + "start": 5143.14, + "end": 5144.08, + "probability": 0.7184 + }, + { + "start": 5144.08, + "end": 5144.36, + "probability": 0.5636 + }, + { + "start": 5147.42, + "end": 5148.6, + "probability": 0.589 + }, + { + "start": 5152.48, + "end": 5156.6, + "probability": 0.7592 + }, + { + "start": 5156.6, + "end": 5161.1, + "probability": 0.82 + }, + { + "start": 5161.36, + "end": 5163.34, + "probability": 0.9647 + }, + { + "start": 5163.52, + "end": 5168.44, + "probability": 0.8964 + }, + { + "start": 5170.18, + "end": 5172.54, + "probability": 0.9276 + }, + { + "start": 5177.1, + "end": 5181.68, + "probability": 0.8452 + }, + { + "start": 5182.24, + "end": 5182.82, + "probability": 0.5479 + }, + { + "start": 5183.48, + "end": 5183.76, + "probability": 0.8674 + }, + { + "start": 5184.42, + "end": 5185.98, + "probability": 0.9924 + }, + { + "start": 5186.02, + "end": 5188.52, + "probability": 0.9517 + }, + { + "start": 5188.98, + "end": 5190.38, + "probability": 0.9749 + }, + { + "start": 5191.04, + "end": 5192.2, + "probability": 0.748 + }, + { + "start": 5193.5, + "end": 5195.38, + "probability": 0.9287 + }, + { + "start": 5196.82, + "end": 5197.76, + "probability": 0.935 + }, + { + "start": 5198.46, + "end": 5202.08, + "probability": 0.9722 + }, + { + "start": 5203.2, + "end": 5208.56, + "probability": 0.9813 + }, + { + "start": 5211.26, + "end": 5219.3, + "probability": 0.9727 + }, + { + "start": 5219.3, + "end": 5225.52, + "probability": 0.9982 + }, + { + "start": 5226.1, + "end": 5227.7, + "probability": 0.9376 + }, + { + "start": 5228.6, + "end": 5229.48, + "probability": 0.8317 + }, + { + "start": 5230.06, + "end": 5236.76, + "probability": 0.9919 + }, + { + "start": 5237.14, + "end": 5237.84, + "probability": 0.6814 + }, + { + "start": 5239.04, + "end": 5241.7, + "probability": 0.9027 + }, + { + "start": 5247.1, + "end": 5249.24, + "probability": 0.7308 + }, + { + "start": 5251.22, + "end": 5252.54, + "probability": 0.9646 + }, + { + "start": 5253.5, + "end": 5259.76, + "probability": 0.9808 + }, + { + "start": 5261.1, + "end": 5262.7, + "probability": 0.8113 + }, + { + "start": 5263.5, + "end": 5267.7, + "probability": 0.6586 + }, + { + "start": 5268.68, + "end": 5272.92, + "probability": 0.9951 + }, + { + "start": 5273.58, + "end": 5274.04, + "probability": 0.7123 + }, + { + "start": 5277.42, + "end": 5278.36, + "probability": 0.9603 + }, + { + "start": 5279.3, + "end": 5279.96, + "probability": 0.7249 + }, + { + "start": 5281.52, + "end": 5283.68, + "probability": 0.8967 + }, + { + "start": 5285.08, + "end": 5286.28, + "probability": 0.9934 + }, + { + "start": 5287.08, + "end": 5291.8, + "probability": 0.9583 + }, + { + "start": 5291.94, + "end": 5293.64, + "probability": 0.8958 + }, + { + "start": 5293.8, + "end": 5297.9, + "probability": 0.8157 + }, + { + "start": 5298.6, + "end": 5302.46, + "probability": 0.8115 + }, + { + "start": 5303.45, + "end": 5306.6, + "probability": 0.7827 + }, + { + "start": 5307.72, + "end": 5312.94, + "probability": 0.9804 + }, + { + "start": 5313.96, + "end": 5317.25, + "probability": 0.5692 + }, + { + "start": 5318.22, + "end": 5319.62, + "probability": 0.9834 + }, + { + "start": 5319.82, + "end": 5321.24, + "probability": 0.9181 + }, + { + "start": 5321.28, + "end": 5321.76, + "probability": 0.8974 + }, + { + "start": 5321.82, + "end": 5322.28, + "probability": 0.8888 + }, + { + "start": 5322.88, + "end": 5325.04, + "probability": 0.8182 + }, + { + "start": 5326.08, + "end": 5330.62, + "probability": 0.8809 + }, + { + "start": 5330.62, + "end": 5331.14, + "probability": 0.6545 + }, + { + "start": 5333.12, + "end": 5337.28, + "probability": 0.8687 + }, + { + "start": 5337.98, + "end": 5340.49, + "probability": 0.9504 + }, + { + "start": 5346.14, + "end": 5348.4, + "probability": 0.8122 + }, + { + "start": 5350.14, + "end": 5352.3, + "probability": 0.975 + }, + { + "start": 5352.76, + "end": 5357.98, + "probability": 0.9872 + }, + { + "start": 5358.22, + "end": 5358.76, + "probability": 0.4869 + }, + { + "start": 5358.98, + "end": 5359.48, + "probability": 0.875 + }, + { + "start": 5359.56, + "end": 5360.3, + "probability": 0.893 + }, + { + "start": 5360.42, + "end": 5361.84, + "probability": 0.8232 + }, + { + "start": 5363.3, + "end": 5364.76, + "probability": 0.9481 + }, + { + "start": 5366.22, + "end": 5367.54, + "probability": 0.7211 + }, + { + "start": 5368.66, + "end": 5372.56, + "probability": 0.9122 + }, + { + "start": 5373.2, + "end": 5374.4, + "probability": 0.886 + }, + { + "start": 5376.46, + "end": 5377.64, + "probability": 0.854 + }, + { + "start": 5377.98, + "end": 5378.14, + "probability": 0.9604 + }, + { + "start": 5378.22, + "end": 5380.7, + "probability": 0.8114 + }, + { + "start": 5380.82, + "end": 5383.72, + "probability": 0.8015 + }, + { + "start": 5383.86, + "end": 5385.32, + "probability": 0.9538 + }, + { + "start": 5385.36, + "end": 5386.32, + "probability": 0.867 + }, + { + "start": 5386.36, + "end": 5390.04, + "probability": 0.9871 + }, + { + "start": 5390.78, + "end": 5394.74, + "probability": 0.993 + }, + { + "start": 5394.74, + "end": 5400.82, + "probability": 0.9905 + }, + { + "start": 5400.9, + "end": 5402.2, + "probability": 0.6342 + }, + { + "start": 5402.48, + "end": 5403.42, + "probability": 0.824 + }, + { + "start": 5403.78, + "end": 5405.1, + "probability": 0.9945 + }, + { + "start": 5405.54, + "end": 5406.44, + "probability": 0.5991 + }, + { + "start": 5406.5, + "end": 5407.62, + "probability": 0.9442 + }, + { + "start": 5407.72, + "end": 5408.82, + "probability": 0.7656 + }, + { + "start": 5409.76, + "end": 5415.68, + "probability": 0.959 + }, + { + "start": 5416.7, + "end": 5417.54, + "probability": 0.9224 + }, + { + "start": 5417.58, + "end": 5418.58, + "probability": 0.6444 + }, + { + "start": 5418.84, + "end": 5419.8, + "probability": 0.4399 + }, + { + "start": 5419.9, + "end": 5421.48, + "probability": 0.8424 + }, + { + "start": 5421.6, + "end": 5422.62, + "probability": 0.9276 + }, + { + "start": 5422.78, + "end": 5423.9, + "probability": 0.8776 + }, + { + "start": 5424.74, + "end": 5426.14, + "probability": 0.9045 + }, + { + "start": 5427.62, + "end": 5430.28, + "probability": 0.5225 + }, + { + "start": 5430.38, + "end": 5430.84, + "probability": 0.6728 + }, + { + "start": 5430.86, + "end": 5431.18, + "probability": 0.883 + }, + { + "start": 5431.28, + "end": 5432.32, + "probability": 0.9833 + }, + { + "start": 5433.46, + "end": 5433.5, + "probability": 0.3607 + }, + { + "start": 5433.6, + "end": 5436.34, + "probability": 0.6161 + }, + { + "start": 5436.35, + "end": 5440.42, + "probability": 0.8601 + }, + { + "start": 5440.5, + "end": 5441.16, + "probability": 0.9527 + }, + { + "start": 5442.34, + "end": 5446.24, + "probability": 0.6974 + }, + { + "start": 5446.8, + "end": 5449.36, + "probability": 0.7487 + }, + { + "start": 5449.36, + "end": 5452.1, + "probability": 0.7993 + }, + { + "start": 5452.82, + "end": 5461.64, + "probability": 0.9814 + }, + { + "start": 5461.7, + "end": 5462.42, + "probability": 0.7168 + }, + { + "start": 5462.44, + "end": 5465.16, + "probability": 0.9595 + }, + { + "start": 5466.4, + "end": 5469.32, + "probability": 0.9521 + }, + { + "start": 5469.84, + "end": 5470.76, + "probability": 0.7963 + }, + { + "start": 5471.42, + "end": 5471.88, + "probability": 0.4955 + }, + { + "start": 5472.72, + "end": 5477.34, + "probability": 0.8587 + }, + { + "start": 5479.1, + "end": 5482.66, + "probability": 0.9564 + }, + { + "start": 5484.68, + "end": 5487.44, + "probability": 0.9424 + }, + { + "start": 5488.98, + "end": 5490.78, + "probability": 0.963 + }, + { + "start": 5491.58, + "end": 5495.88, + "probability": 0.9974 + }, + { + "start": 5496.0, + "end": 5497.64, + "probability": 0.8656 + }, + { + "start": 5497.94, + "end": 5501.44, + "probability": 0.9868 + }, + { + "start": 5502.08, + "end": 5503.42, + "probability": 0.7192 + }, + { + "start": 5504.22, + "end": 5510.23, + "probability": 0.9549 + }, + { + "start": 5514.56, + "end": 5520.76, + "probability": 0.9964 + }, + { + "start": 5523.58, + "end": 5526.64, + "probability": 0.8083 + }, + { + "start": 5528.88, + "end": 5531.16, + "probability": 0.6098 + }, + { + "start": 5533.34, + "end": 5536.02, + "probability": 0.8301 + }, + { + "start": 5537.96, + "end": 5542.9, + "probability": 0.6662 + }, + { + "start": 5546.06, + "end": 5550.34, + "probability": 0.5951 + }, + { + "start": 5550.48, + "end": 5550.9, + "probability": 0.6626 + }, + { + "start": 5551.46, + "end": 5552.36, + "probability": 0.9265 + }, + { + "start": 5552.52, + "end": 5553.14, + "probability": 0.675 + }, + { + "start": 5553.26, + "end": 5554.26, + "probability": 0.8338 + }, + { + "start": 5554.28, + "end": 5555.64, + "probability": 0.9445 + }, + { + "start": 5556.74, + "end": 5559.68, + "probability": 0.9895 + }, + { + "start": 5561.34, + "end": 5563.0, + "probability": 0.9343 + }, + { + "start": 5563.76, + "end": 5565.9, + "probability": 0.9854 + }, + { + "start": 5566.92, + "end": 5570.36, + "probability": 0.5183 + }, + { + "start": 5572.34, + "end": 5573.24, + "probability": 0.0016 + }, + { + "start": 5574.84, + "end": 5576.11, + "probability": 0.0833 + }, + { + "start": 5578.48, + "end": 5579.86, + "probability": 0.7525 + }, + { + "start": 5580.94, + "end": 5583.18, + "probability": 0.5936 + }, + { + "start": 5583.18, + "end": 5584.6, + "probability": 0.4724 + }, + { + "start": 5586.09, + "end": 5588.4, + "probability": 0.7432 + }, + { + "start": 5588.5, + "end": 5589.32, + "probability": 0.797 + }, + { + "start": 5589.72, + "end": 5591.78, + "probability": 0.7931 + }, + { + "start": 5592.0, + "end": 5592.1, + "probability": 0.5041 + }, + { + "start": 5592.22, + "end": 5594.38, + "probability": 0.8608 + }, + { + "start": 5596.75, + "end": 5600.02, + "probability": 0.7668 + }, + { + "start": 5600.68, + "end": 5600.9, + "probability": 0.8853 + }, + { + "start": 5603.56, + "end": 5604.68, + "probability": 0.2839 + }, + { + "start": 5605.74, + "end": 5607.0, + "probability": 0.5224 + }, + { + "start": 5608.26, + "end": 5611.94, + "probability": 0.7464 + }, + { + "start": 5612.92, + "end": 5617.7, + "probability": 0.9709 + }, + { + "start": 5618.24, + "end": 5619.18, + "probability": 0.8406 + }, + { + "start": 5619.44, + "end": 5622.58, + "probability": 0.892 + }, + { + "start": 5623.9, + "end": 5625.2, + "probability": 0.3438 + }, + { + "start": 5625.82, + "end": 5628.46, + "probability": 0.9385 + }, + { + "start": 5629.62, + "end": 5635.22, + "probability": 0.9249 + }, + { + "start": 5636.18, + "end": 5638.2, + "probability": 0.5023 + }, + { + "start": 5638.48, + "end": 5639.64, + "probability": 0.973 + }, + { + "start": 5640.44, + "end": 5643.12, + "probability": 0.9602 + }, + { + "start": 5643.34, + "end": 5643.56, + "probability": 0.7983 + }, + { + "start": 5644.18, + "end": 5648.38, + "probability": 0.9958 + }, + { + "start": 5648.42, + "end": 5649.2, + "probability": 0.583 + }, + { + "start": 5649.82, + "end": 5651.92, + "probability": 0.9144 + }, + { + "start": 5653.46, + "end": 5657.96, + "probability": 0.8919 + }, + { + "start": 5671.42, + "end": 5672.6, + "probability": 0.6619 + }, + { + "start": 5672.8, + "end": 5676.1, + "probability": 0.7217 + }, + { + "start": 5676.5, + "end": 5677.3, + "probability": 0.6895 + }, + { + "start": 5678.26, + "end": 5679.14, + "probability": 0.7656 + }, + { + "start": 5679.34, + "end": 5680.32, + "probability": 0.8705 + }, + { + "start": 5680.52, + "end": 5687.58, + "probability": 0.9966 + }, + { + "start": 5688.42, + "end": 5693.66, + "probability": 0.9679 + }, + { + "start": 5693.78, + "end": 5695.4, + "probability": 0.9089 + }, + { + "start": 5696.3, + "end": 5699.99, + "probability": 0.8768 + }, + { + "start": 5700.74, + "end": 5708.58, + "probability": 0.9766 + }, + { + "start": 5708.58, + "end": 5712.16, + "probability": 0.8693 + }, + { + "start": 5712.7, + "end": 5715.58, + "probability": 0.7223 + }, + { + "start": 5715.96, + "end": 5719.94, + "probability": 0.9875 + }, + { + "start": 5720.66, + "end": 5722.12, + "probability": 0.9652 + }, + { + "start": 5722.24, + "end": 5726.28, + "probability": 0.9603 + }, + { + "start": 5727.16, + "end": 5730.28, + "probability": 0.9924 + }, + { + "start": 5730.28, + "end": 5733.2, + "probability": 0.9996 + }, + { + "start": 5733.86, + "end": 5735.86, + "probability": 0.7369 + }, + { + "start": 5736.74, + "end": 5741.48, + "probability": 0.983 + }, + { + "start": 5742.52, + "end": 5746.56, + "probability": 0.976 + }, + { + "start": 5756.94, + "end": 5758.34, + "probability": 0.853 + }, + { + "start": 5761.22, + "end": 5762.89, + "probability": 0.5974 + }, + { + "start": 5772.9, + "end": 5773.63, + "probability": 0.8259 + }, + { + "start": 5773.94, + "end": 5774.74, + "probability": 0.66 + }, + { + "start": 5774.82, + "end": 5777.92, + "probability": 0.8907 + }, + { + "start": 5778.38, + "end": 5780.04, + "probability": 0.947 + }, + { + "start": 5780.9, + "end": 5784.42, + "probability": 0.9766 + }, + { + "start": 5785.14, + "end": 5788.72, + "probability": 0.983 + }, + { + "start": 5789.14, + "end": 5790.14, + "probability": 0.9761 + }, + { + "start": 5790.46, + "end": 5791.86, + "probability": 0.7522 + }, + { + "start": 5792.26, + "end": 5793.66, + "probability": 0.9599 + }, + { + "start": 5794.08, + "end": 5796.26, + "probability": 0.9775 + }, + { + "start": 5797.0, + "end": 5799.32, + "probability": 0.9713 + }, + { + "start": 5799.42, + "end": 5800.66, + "probability": 0.9214 + }, + { + "start": 5800.82, + "end": 5801.88, + "probability": 0.1605 + }, + { + "start": 5802.42, + "end": 5805.48, + "probability": 0.9649 + }, + { + "start": 5805.7, + "end": 5807.66, + "probability": 0.9807 + }, + { + "start": 5807.78, + "end": 5811.34, + "probability": 0.915 + }, + { + "start": 5811.4, + "end": 5812.44, + "probability": 0.9658 + }, + { + "start": 5813.1, + "end": 5814.43, + "probability": 0.9665 + }, + { + "start": 5814.92, + "end": 5817.1, + "probability": 0.9809 + }, + { + "start": 5817.14, + "end": 5818.11, + "probability": 0.9697 + }, + { + "start": 5818.58, + "end": 5821.34, + "probability": 0.9856 + }, + { + "start": 5821.44, + "end": 5824.02, + "probability": 0.9866 + }, + { + "start": 5824.32, + "end": 5827.74, + "probability": 0.9731 + }, + { + "start": 5828.26, + "end": 5832.66, + "probability": 0.9941 + }, + { + "start": 5833.24, + "end": 5838.56, + "probability": 0.8785 + }, + { + "start": 5839.22, + "end": 5841.22, + "probability": 0.978 + }, + { + "start": 5841.66, + "end": 5844.16, + "probability": 0.9973 + }, + { + "start": 5844.62, + "end": 5848.46, + "probability": 0.9937 + }, + { + "start": 5848.94, + "end": 5850.42, + "probability": 0.8265 + }, + { + "start": 5851.02, + "end": 5853.06, + "probability": 0.7873 + }, + { + "start": 5853.32, + "end": 5854.02, + "probability": 0.934 + }, + { + "start": 5854.08, + "end": 5857.02, + "probability": 0.6992 + }, + { + "start": 5857.28, + "end": 5862.2, + "probability": 0.9899 + }, + { + "start": 5862.8, + "end": 5866.72, + "probability": 0.9331 + }, + { + "start": 5867.12, + "end": 5872.44, + "probability": 0.9632 + }, + { + "start": 5873.06, + "end": 5880.9, + "probability": 0.9731 + }, + { + "start": 5881.04, + "end": 5882.7, + "probability": 0.627 + }, + { + "start": 5882.84, + "end": 5883.86, + "probability": 0.8066 + }, + { + "start": 5883.96, + "end": 5885.72, + "probability": 0.9941 + }, + { + "start": 5885.86, + "end": 5889.18, + "probability": 0.9795 + }, + { + "start": 5889.26, + "end": 5892.46, + "probability": 0.9507 + }, + { + "start": 5892.98, + "end": 5896.52, + "probability": 0.6397 + }, + { + "start": 5896.6, + "end": 5898.62, + "probability": 0.8535 + }, + { + "start": 5898.62, + "end": 5899.18, + "probability": 0.9287 + }, + { + "start": 5900.06, + "end": 5901.54, + "probability": 0.655 + }, + { + "start": 5901.6, + "end": 5905.44, + "probability": 0.956 + }, + { + "start": 5905.64, + "end": 5911.36, + "probability": 0.9769 + }, + { + "start": 5911.78, + "end": 5914.35, + "probability": 0.9614 + }, + { + "start": 5914.76, + "end": 5916.78, + "probability": 0.897 + }, + { + "start": 5916.84, + "end": 5917.94, + "probability": 0.981 + }, + { + "start": 5918.3, + "end": 5921.12, + "probability": 0.9861 + }, + { + "start": 5921.16, + "end": 5922.82, + "probability": 0.9925 + }, + { + "start": 5922.84, + "end": 5927.06, + "probability": 0.9982 + }, + { + "start": 5927.56, + "end": 5930.62, + "probability": 0.9847 + }, + { + "start": 5931.28, + "end": 5934.48, + "probability": 0.9852 + }, + { + "start": 5934.48, + "end": 5943.46, + "probability": 0.9662 + }, + { + "start": 5943.6, + "end": 5944.86, + "probability": 0.7091 + }, + { + "start": 5945.44, + "end": 5947.04, + "probability": 0.9884 + }, + { + "start": 5948.18, + "end": 5949.32, + "probability": 0.7952 + }, + { + "start": 5949.44, + "end": 5950.16, + "probability": 0.8229 + }, + { + "start": 5950.26, + "end": 5952.38, + "probability": 0.9523 + }, + { + "start": 5952.7, + "end": 5954.18, + "probability": 0.9915 + }, + { + "start": 5954.32, + "end": 5955.88, + "probability": 0.9958 + }, + { + "start": 5956.24, + "end": 5959.96, + "probability": 0.992 + }, + { + "start": 5960.62, + "end": 5962.94, + "probability": 0.9839 + }, + { + "start": 5963.7, + "end": 5965.66, + "probability": 0.9515 + }, + { + "start": 5966.24, + "end": 5967.0, + "probability": 0.9745 + }, + { + "start": 5967.08, + "end": 5968.46, + "probability": 0.9543 + }, + { + "start": 5968.86, + "end": 5970.26, + "probability": 0.9919 + }, + { + "start": 5970.72, + "end": 5974.24, + "probability": 0.9917 + }, + { + "start": 5974.8, + "end": 5980.04, + "probability": 0.9952 + }, + { + "start": 5980.9, + "end": 5983.22, + "probability": 0.9535 + }, + { + "start": 5984.24, + "end": 5985.26, + "probability": 0.5199 + }, + { + "start": 5985.54, + "end": 5989.36, + "probability": 0.9763 + }, + { + "start": 5989.9, + "end": 5994.4, + "probability": 0.9922 + }, + { + "start": 5994.86, + "end": 6001.46, + "probability": 0.9308 + }, + { + "start": 6001.68, + "end": 6004.12, + "probability": 0.6221 + }, + { + "start": 6004.92, + "end": 6006.9, + "probability": 0.8801 + }, + { + "start": 6007.1, + "end": 6008.1, + "probability": 0.6452 + }, + { + "start": 6008.2, + "end": 6008.84, + "probability": 0.6674 + }, + { + "start": 6008.88, + "end": 6010.5, + "probability": 0.9449 + }, + { + "start": 6010.9, + "end": 6014.76, + "probability": 0.9865 + }, + { + "start": 6014.76, + "end": 6020.24, + "probability": 0.9981 + }, + { + "start": 6020.68, + "end": 6024.88, + "probability": 0.995 + }, + { + "start": 6025.24, + "end": 6026.38, + "probability": 0.968 + }, + { + "start": 6027.6, + "end": 6030.86, + "probability": 0.9911 + }, + { + "start": 6031.22, + "end": 6032.1, + "probability": 0.9805 + }, + { + "start": 6032.46, + "end": 6035.14, + "probability": 0.8624 + }, + { + "start": 6035.5, + "end": 6041.04, + "probability": 0.9592 + }, + { + "start": 6041.12, + "end": 6043.0, + "probability": 0.8042 + }, + { + "start": 6043.44, + "end": 6045.84, + "probability": 0.9282 + }, + { + "start": 6046.2, + "end": 6048.58, + "probability": 0.9771 + }, + { + "start": 6049.14, + "end": 6051.14, + "probability": 0.9941 + }, + { + "start": 6051.36, + "end": 6051.78, + "probability": 0.8241 + }, + { + "start": 6051.92, + "end": 6053.02, + "probability": 0.8703 + }, + { + "start": 6053.04, + "end": 6053.32, + "probability": 0.822 + }, + { + "start": 6053.42, + "end": 6054.0, + "probability": 0.8359 + }, + { + "start": 6054.4, + "end": 6056.38, + "probability": 0.9692 + }, + { + "start": 6056.54, + "end": 6057.5, + "probability": 0.9688 + }, + { + "start": 6057.9, + "end": 6060.48, + "probability": 0.99 + }, + { + "start": 6061.04, + "end": 6067.42, + "probability": 0.8826 + }, + { + "start": 6067.5, + "end": 6072.42, + "probability": 0.9905 + }, + { + "start": 6072.78, + "end": 6073.9, + "probability": 0.895 + }, + { + "start": 6073.98, + "end": 6075.74, + "probability": 0.5167 + }, + { + "start": 6076.02, + "end": 6077.34, + "probability": 0.7099 + }, + { + "start": 6077.54, + "end": 6080.14, + "probability": 0.9404 + }, + { + "start": 6080.8, + "end": 6082.33, + "probability": 0.9148 + }, + { + "start": 6083.0, + "end": 6084.32, + "probability": 0.9717 + }, + { + "start": 6084.78, + "end": 6086.18, + "probability": 0.9474 + }, + { + "start": 6086.36, + "end": 6090.44, + "probability": 0.9858 + }, + { + "start": 6091.06, + "end": 6094.84, + "probability": 0.981 + }, + { + "start": 6095.42, + "end": 6098.72, + "probability": 0.9971 + }, + { + "start": 6098.86, + "end": 6103.62, + "probability": 0.9941 + }, + { + "start": 6104.22, + "end": 6108.68, + "probability": 0.9961 + }, + { + "start": 6109.28, + "end": 6109.74, + "probability": 0.8489 + }, + { + "start": 6109.88, + "end": 6112.3, + "probability": 0.994 + }, + { + "start": 6112.6, + "end": 6114.5, + "probability": 0.9845 + }, + { + "start": 6114.86, + "end": 6119.76, + "probability": 0.9827 + }, + { + "start": 6120.1, + "end": 6121.04, + "probability": 0.9163 + }, + { + "start": 6121.56, + "end": 6121.94, + "probability": 0.9551 + }, + { + "start": 6122.22, + "end": 6125.36, + "probability": 0.9897 + }, + { + "start": 6125.6, + "end": 6129.08, + "probability": 0.7353 + }, + { + "start": 6129.81, + "end": 6133.7, + "probability": 0.8565 + }, + { + "start": 6133.76, + "end": 6135.22, + "probability": 0.9798 + }, + { + "start": 6135.38, + "end": 6138.3, + "probability": 0.9917 + }, + { + "start": 6138.3, + "end": 6141.34, + "probability": 0.9963 + }, + { + "start": 6141.9, + "end": 6144.86, + "probability": 0.9946 + }, + { + "start": 6144.86, + "end": 6147.78, + "probability": 0.9924 + }, + { + "start": 6148.32, + "end": 6151.32, + "probability": 0.8665 + }, + { + "start": 6151.44, + "end": 6154.58, + "probability": 0.9737 + }, + { + "start": 6154.96, + "end": 6156.74, + "probability": 0.5171 + }, + { + "start": 6157.08, + "end": 6160.0, + "probability": 0.981 + }, + { + "start": 6160.0, + "end": 6164.12, + "probability": 0.9673 + }, + { + "start": 6164.4, + "end": 6167.8, + "probability": 0.9932 + }, + { + "start": 6168.04, + "end": 6169.62, + "probability": 0.9044 + }, + { + "start": 6169.76, + "end": 6169.99, + "probability": 0.9175 + }, + { + "start": 6170.46, + "end": 6172.88, + "probability": 0.7561 + }, + { + "start": 6173.72, + "end": 6176.0, + "probability": 0.6906 + }, + { + "start": 6176.14, + "end": 6176.78, + "probability": 0.5656 + }, + { + "start": 6176.88, + "end": 6177.34, + "probability": 0.8874 + }, + { + "start": 6177.7, + "end": 6178.74, + "probability": 0.897 + }, + { + "start": 6179.04, + "end": 6181.1, + "probability": 0.8033 + }, + { + "start": 6181.26, + "end": 6182.18, + "probability": 0.9531 + }, + { + "start": 6182.62, + "end": 6184.06, + "probability": 0.995 + }, + { + "start": 6184.38, + "end": 6187.02, + "probability": 0.9907 + }, + { + "start": 6187.36, + "end": 6188.98, + "probability": 0.902 + }, + { + "start": 6189.54, + "end": 6193.54, + "probability": 0.9327 + }, + { + "start": 6194.14, + "end": 6195.0, + "probability": 0.9639 + }, + { + "start": 6195.48, + "end": 6196.62, + "probability": 0.6654 + }, + { + "start": 6197.06, + "end": 6198.08, + "probability": 0.5553 + }, + { + "start": 6198.36, + "end": 6203.18, + "probability": 0.9976 + }, + { + "start": 6203.18, + "end": 6207.64, + "probability": 0.9992 + }, + { + "start": 6208.06, + "end": 6210.54, + "probability": 0.9959 + }, + { + "start": 6210.92, + "end": 6212.8, + "probability": 0.5994 + }, + { + "start": 6213.06, + "end": 6215.68, + "probability": 0.9741 + }, + { + "start": 6216.1, + "end": 6219.9, + "probability": 0.9805 + }, + { + "start": 6220.18, + "end": 6224.7, + "probability": 0.9289 + }, + { + "start": 6224.98, + "end": 6227.06, + "probability": 0.9681 + }, + { + "start": 6227.18, + "end": 6228.24, + "probability": 0.9409 + }, + { + "start": 6228.82, + "end": 6230.34, + "probability": 0.475 + }, + { + "start": 6230.72, + "end": 6236.72, + "probability": 0.9438 + }, + { + "start": 6237.02, + "end": 6239.42, + "probability": 0.9805 + }, + { + "start": 6241.06, + "end": 6244.3, + "probability": 0.9687 + }, + { + "start": 6244.38, + "end": 6245.46, + "probability": 0.7274 + }, + { + "start": 6245.6, + "end": 6246.06, + "probability": 0.6769 + }, + { + "start": 6246.34, + "end": 6247.41, + "probability": 0.8547 + }, + { + "start": 6248.48, + "end": 6250.6, + "probability": 0.903 + }, + { + "start": 6250.88, + "end": 6253.26, + "probability": 0.9742 + }, + { + "start": 6253.74, + "end": 6256.54, + "probability": 0.9347 + }, + { + "start": 6256.88, + "end": 6261.66, + "probability": 0.966 + }, + { + "start": 6261.68, + "end": 6264.68, + "probability": 0.8397 + }, + { + "start": 6264.76, + "end": 6268.46, + "probability": 0.9561 + }, + { + "start": 6268.78, + "end": 6271.68, + "probability": 0.9946 + }, + { + "start": 6271.68, + "end": 6274.32, + "probability": 0.9988 + }, + { + "start": 6274.62, + "end": 6275.06, + "probability": 0.6975 + }, + { + "start": 6276.42, + "end": 6278.24, + "probability": 0.961 + }, + { + "start": 6278.26, + "end": 6283.23, + "probability": 0.7139 + }, + { + "start": 6284.59, + "end": 6287.45, + "probability": 0.9856 + }, + { + "start": 6288.84, + "end": 6291.0, + "probability": 0.9748 + }, + { + "start": 6291.5, + "end": 6292.12, + "probability": 0.4799 + }, + { + "start": 6292.4, + "end": 6294.82, + "probability": 0.7919 + }, + { + "start": 6294.94, + "end": 6296.82, + "probability": 0.8462 + }, + { + "start": 6298.76, + "end": 6300.6, + "probability": 0.0073 + }, + { + "start": 6303.06, + "end": 6304.92, + "probability": 0.1696 + }, + { + "start": 6305.36, + "end": 6306.4, + "probability": 0.1263 + }, + { + "start": 6307.1, + "end": 6311.32, + "probability": 0.7567 + }, + { + "start": 6311.46, + "end": 6315.54, + "probability": 0.5694 + }, + { + "start": 6316.14, + "end": 6316.7, + "probability": 0.812 + }, + { + "start": 6317.54, + "end": 6321.02, + "probability": 0.8236 + }, + { + "start": 6321.36, + "end": 6322.42, + "probability": 0.7303 + }, + { + "start": 6322.42, + "end": 6322.82, + "probability": 0.6933 + }, + { + "start": 6322.88, + "end": 6323.84, + "probability": 0.8324 + }, + { + "start": 6324.3, + "end": 6324.94, + "probability": 0.6689 + }, + { + "start": 6325.08, + "end": 6327.68, + "probability": 0.748 + }, + { + "start": 6327.74, + "end": 6328.84, + "probability": 0.6578 + }, + { + "start": 6329.34, + "end": 6332.06, + "probability": 0.8666 + }, + { + "start": 6332.06, + "end": 6334.36, + "probability": 0.8252 + }, + { + "start": 6335.0, + "end": 6338.4, + "probability": 0.9778 + }, + { + "start": 6338.4, + "end": 6342.08, + "probability": 0.9561 + }, + { + "start": 6342.48, + "end": 6347.2, + "probability": 0.9925 + }, + { + "start": 6347.72, + "end": 6349.92, + "probability": 0.7875 + }, + { + "start": 6350.32, + "end": 6354.2, + "probability": 0.9963 + }, + { + "start": 6354.92, + "end": 6358.14, + "probability": 0.9952 + }, + { + "start": 6358.62, + "end": 6360.84, + "probability": 0.9964 + }, + { + "start": 6361.24, + "end": 6365.42, + "probability": 0.9958 + }, + { + "start": 6365.82, + "end": 6367.7, + "probability": 0.9934 + }, + { + "start": 6367.88, + "end": 6369.42, + "probability": 0.8392 + }, + { + "start": 6369.98, + "end": 6370.26, + "probability": 0.4578 + }, + { + "start": 6370.32, + "end": 6371.16, + "probability": 0.6225 + }, + { + "start": 6371.24, + "end": 6372.76, + "probability": 0.8697 + }, + { + "start": 6373.18, + "end": 6379.14, + "probability": 0.9708 + }, + { + "start": 6379.44, + "end": 6380.06, + "probability": 0.6076 + }, + { + "start": 6380.78, + "end": 6381.4, + "probability": 0.7553 + }, + { + "start": 6381.58, + "end": 6386.74, + "probability": 0.9894 + }, + { + "start": 6389.24, + "end": 6395.36, + "probability": 0.9995 + }, + { + "start": 6397.27, + "end": 6400.8, + "probability": 0.9912 + }, + { + "start": 6400.88, + "end": 6402.14, + "probability": 0.9036 + }, + { + "start": 6402.68, + "end": 6408.4, + "probability": 0.9913 + }, + { + "start": 6408.72, + "end": 6409.42, + "probability": 0.6904 + }, + { + "start": 6410.28, + "end": 6411.3, + "probability": 0.8407 + }, + { + "start": 6411.82, + "end": 6414.8, + "probability": 0.9957 + }, + { + "start": 6415.0, + "end": 6419.42, + "probability": 0.8433 + }, + { + "start": 6419.92, + "end": 6422.94, + "probability": 0.9927 + }, + { + "start": 6423.34, + "end": 6423.88, + "probability": 0.6327 + }, + { + "start": 6423.96, + "end": 6425.04, + "probability": 0.9601 + }, + { + "start": 6425.1, + "end": 6430.08, + "probability": 0.9665 + }, + { + "start": 6430.6, + "end": 6434.01, + "probability": 0.9917 + }, + { + "start": 6434.7, + "end": 6439.38, + "probability": 0.9344 + }, + { + "start": 6439.92, + "end": 6441.44, + "probability": 0.9753 + }, + { + "start": 6441.76, + "end": 6444.24, + "probability": 0.9946 + }, + { + "start": 6444.44, + "end": 6445.44, + "probability": 0.8657 + }, + { + "start": 6445.48, + "end": 6446.16, + "probability": 0.9765 + }, + { + "start": 6446.36, + "end": 6447.14, + "probability": 0.9863 + }, + { + "start": 6447.34, + "end": 6448.2, + "probability": 0.919 + }, + { + "start": 6448.58, + "end": 6450.84, + "probability": 0.9788 + }, + { + "start": 6451.36, + "end": 6455.24, + "probability": 0.9863 + }, + { + "start": 6455.24, + "end": 6458.94, + "probability": 0.9434 + }, + { + "start": 6459.52, + "end": 6462.74, + "probability": 0.8814 + }, + { + "start": 6463.0, + "end": 6469.46, + "probability": 0.9699 + }, + { + "start": 6469.46, + "end": 6473.34, + "probability": 0.9979 + }, + { + "start": 6473.68, + "end": 6475.14, + "probability": 0.9685 + }, + { + "start": 6475.24, + "end": 6477.44, + "probability": 0.9493 + }, + { + "start": 6477.68, + "end": 6479.78, + "probability": 0.9922 + }, + { + "start": 6480.1, + "end": 6480.88, + "probability": 0.9309 + }, + { + "start": 6480.88, + "end": 6481.84, + "probability": 0.9276 + }, + { + "start": 6482.06, + "end": 6488.06, + "probability": 0.986 + }, + { + "start": 6488.82, + "end": 6491.9, + "probability": 0.9933 + }, + { + "start": 6492.54, + "end": 6496.14, + "probability": 0.9949 + }, + { + "start": 6496.38, + "end": 6498.42, + "probability": 0.9638 + }, + { + "start": 6498.7, + "end": 6501.38, + "probability": 0.9858 + }, + { + "start": 6501.66, + "end": 6507.34, + "probability": 0.9905 + }, + { + "start": 6507.34, + "end": 6513.04, + "probability": 0.9767 + }, + { + "start": 6513.52, + "end": 6516.3, + "probability": 0.8464 + }, + { + "start": 6516.62, + "end": 6517.18, + "probability": 0.8812 + }, + { + "start": 6517.26, + "end": 6518.54, + "probability": 0.8295 + }, + { + "start": 6518.84, + "end": 6520.26, + "probability": 0.6955 + }, + { + "start": 6520.76, + "end": 6521.32, + "probability": 0.4531 + }, + { + "start": 6521.48, + "end": 6524.22, + "probability": 0.9743 + }, + { + "start": 6524.74, + "end": 6526.46, + "probability": 0.9456 + }, + { + "start": 6526.72, + "end": 6529.8, + "probability": 0.86 + }, + { + "start": 6530.16, + "end": 6535.82, + "probability": 0.995 + }, + { + "start": 6536.12, + "end": 6539.14, + "probability": 0.9609 + }, + { + "start": 6539.58, + "end": 6542.76, + "probability": 0.9958 + }, + { + "start": 6542.84, + "end": 6546.1, + "probability": 0.9873 + }, + { + "start": 6546.3, + "end": 6551.4, + "probability": 0.9525 + }, + { + "start": 6552.36, + "end": 6554.64, + "probability": 0.8123 + }, + { + "start": 6555.04, + "end": 6558.06, + "probability": 0.9965 + }, + { + "start": 6558.34, + "end": 6560.36, + "probability": 0.8908 + }, + { + "start": 6560.78, + "end": 6562.76, + "probability": 0.8147 + }, + { + "start": 6563.0, + "end": 6565.68, + "probability": 0.9904 + }, + { + "start": 6566.0, + "end": 6568.5, + "probability": 0.9926 + }, + { + "start": 6569.24, + "end": 6572.22, + "probability": 0.9994 + }, + { + "start": 6572.8, + "end": 6578.04, + "probability": 0.9959 + }, + { + "start": 6578.04, + "end": 6584.58, + "probability": 0.999 + }, + { + "start": 6585.04, + "end": 6585.52, + "probability": 0.8186 + }, + { + "start": 6585.6, + "end": 6586.3, + "probability": 0.9023 + }, + { + "start": 6586.36, + "end": 6589.26, + "probability": 0.899 + }, + { + "start": 6589.8, + "end": 6590.2, + "probability": 0.8657 + }, + { + "start": 6590.72, + "end": 6593.76, + "probability": 0.9825 + }, + { + "start": 6594.22, + "end": 6598.68, + "probability": 0.9923 + }, + { + "start": 6599.06, + "end": 6602.32, + "probability": 0.9606 + }, + { + "start": 6602.32, + "end": 6606.16, + "probability": 0.9966 + }, + { + "start": 6606.66, + "end": 6608.92, + "probability": 0.8274 + }, + { + "start": 6609.52, + "end": 6610.32, + "probability": 0.744 + }, + { + "start": 6610.46, + "end": 6611.32, + "probability": 0.9573 + }, + { + "start": 6611.46, + "end": 6611.74, + "probability": 0.9529 + }, + { + "start": 6611.84, + "end": 6612.3, + "probability": 0.9903 + }, + { + "start": 6612.36, + "end": 6613.0, + "probability": 0.9783 + }, + { + "start": 6613.18, + "end": 6614.0, + "probability": 0.9665 + }, + { + "start": 6614.46, + "end": 6616.2, + "probability": 0.9953 + }, + { + "start": 6616.72, + "end": 6622.36, + "probability": 0.9919 + }, + { + "start": 6623.78, + "end": 6625.54, + "probability": 0.8636 + }, + { + "start": 6625.74, + "end": 6628.9, + "probability": 0.9733 + }, + { + "start": 6629.24, + "end": 6630.6, + "probability": 0.781 + }, + { + "start": 6631.14, + "end": 6631.76, + "probability": 0.7247 + }, + { + "start": 6632.14, + "end": 6635.68, + "probability": 0.9753 + }, + { + "start": 6635.72, + "end": 6639.56, + "probability": 0.9984 + }, + { + "start": 6639.9, + "end": 6640.96, + "probability": 0.8429 + }, + { + "start": 6641.34, + "end": 6645.28, + "probability": 0.993 + }, + { + "start": 6645.54, + "end": 6649.14, + "probability": 0.879 + }, + { + "start": 6649.52, + "end": 6651.34, + "probability": 0.6304 + }, + { + "start": 6651.44, + "end": 6654.3, + "probability": 0.9849 + }, + { + "start": 6654.6, + "end": 6655.44, + "probability": 0.7035 + }, + { + "start": 6655.58, + "end": 6658.7, + "probability": 0.9917 + }, + { + "start": 6659.02, + "end": 6665.25, + "probability": 0.9897 + }, + { + "start": 6666.18, + "end": 6672.92, + "probability": 0.989 + }, + { + "start": 6672.94, + "end": 6680.22, + "probability": 0.9943 + }, + { + "start": 6680.94, + "end": 6684.14, + "probability": 0.7321 + }, + { + "start": 6684.68, + "end": 6692.34, + "probability": 0.9956 + }, + { + "start": 6692.48, + "end": 6696.98, + "probability": 0.8483 + }, + { + "start": 6697.38, + "end": 6699.76, + "probability": 0.9224 + }, + { + "start": 6700.14, + "end": 6701.74, + "probability": 0.8966 + }, + { + "start": 6702.0, + "end": 6706.42, + "probability": 0.9954 + }, + { + "start": 6706.42, + "end": 6710.54, + "probability": 0.9749 + }, + { + "start": 6711.22, + "end": 6716.8, + "probability": 0.9948 + }, + { + "start": 6717.2, + "end": 6722.04, + "probability": 0.9835 + }, + { + "start": 6722.84, + "end": 6724.84, + "probability": 0.9569 + }, + { + "start": 6725.3, + "end": 6728.1, + "probability": 0.9127 + }, + { + "start": 6728.1, + "end": 6732.26, + "probability": 0.9773 + }, + { + "start": 6732.36, + "end": 6733.94, + "probability": 0.9611 + }, + { + "start": 6734.4, + "end": 6735.54, + "probability": 0.7304 + }, + { + "start": 6735.7, + "end": 6738.8, + "probability": 0.9663 + }, + { + "start": 6739.34, + "end": 6741.43, + "probability": 0.9606 + }, + { + "start": 6741.88, + "end": 6743.64, + "probability": 0.996 + }, + { + "start": 6744.22, + "end": 6749.48, + "probability": 0.9651 + }, + { + "start": 6749.48, + "end": 6755.74, + "probability": 0.8306 + }, + { + "start": 6755.74, + "end": 6765.8, + "probability": 0.929 + }, + { + "start": 6765.94, + "end": 6770.3, + "probability": 0.9963 + }, + { + "start": 6770.3, + "end": 6775.08, + "probability": 0.9985 + }, + { + "start": 6775.44, + "end": 6776.96, + "probability": 0.7403 + }, + { + "start": 6777.24, + "end": 6782.28, + "probability": 0.939 + }, + { + "start": 6782.74, + "end": 6784.2, + "probability": 0.8424 + }, + { + "start": 6784.54, + "end": 6791.84, + "probability": 0.953 + }, + { + "start": 6792.3, + "end": 6796.02, + "probability": 0.9768 + }, + { + "start": 6796.34, + "end": 6803.14, + "probability": 0.991 + }, + { + "start": 6803.14, + "end": 6809.54, + "probability": 0.9991 + }, + { + "start": 6809.84, + "end": 6815.88, + "probability": 0.9992 + }, + { + "start": 6816.38, + "end": 6822.64, + "probability": 0.9893 + }, + { + "start": 6822.64, + "end": 6830.14, + "probability": 0.998 + }, + { + "start": 6830.52, + "end": 6835.78, + "probability": 0.9926 + }, + { + "start": 6835.78, + "end": 6841.0, + "probability": 0.999 + }, + { + "start": 6841.34, + "end": 6844.4, + "probability": 0.8767 + }, + { + "start": 6844.4, + "end": 6848.38, + "probability": 0.9942 + }, + { + "start": 6849.12, + "end": 6852.86, + "probability": 0.9889 + }, + { + "start": 6852.86, + "end": 6857.26, + "probability": 0.9906 + }, + { + "start": 6857.26, + "end": 6862.46, + "probability": 0.9901 + }, + { + "start": 6862.94, + "end": 6865.74, + "probability": 0.9929 + }, + { + "start": 6866.2, + "end": 6869.52, + "probability": 0.9917 + }, + { + "start": 6870.08, + "end": 6871.18, + "probability": 0.5076 + }, + { + "start": 6871.62, + "end": 6875.38, + "probability": 0.9858 + }, + { + "start": 6875.7, + "end": 6879.94, + "probability": 0.984 + }, + { + "start": 6879.94, + "end": 6883.22, + "probability": 0.9994 + }, + { + "start": 6884.38, + "end": 6888.28, + "probability": 0.9961 + }, + { + "start": 6888.38, + "end": 6888.68, + "probability": 0.895 + }, + { + "start": 6888.82, + "end": 6891.38, + "probability": 0.8021 + }, + { + "start": 6891.5, + "end": 6896.16, + "probability": 0.9961 + }, + { + "start": 6897.4, + "end": 6898.78, + "probability": 0.9814 + }, + { + "start": 6898.92, + "end": 6901.35, + "probability": 0.8732 + }, + { + "start": 6902.06, + "end": 6905.48, + "probability": 0.7432 + }, + { + "start": 6905.48, + "end": 6909.22, + "probability": 0.9973 + }, + { + "start": 6909.9, + "end": 6915.28, + "probability": 0.9387 + }, + { + "start": 6915.28, + "end": 6921.48, + "probability": 0.4203 + }, + { + "start": 6921.72, + "end": 6925.54, + "probability": 0.8371 + }, + { + "start": 6925.96, + "end": 6927.88, + "probability": 0.9783 + }, + { + "start": 6928.08, + "end": 6929.18, + "probability": 0.8898 + }, + { + "start": 6929.66, + "end": 6930.78, + "probability": 0.9795 + }, + { + "start": 6931.14, + "end": 6932.84, + "probability": 0.8903 + }, + { + "start": 6934.52, + "end": 6936.68, + "probability": 0.8668 + }, + { + "start": 6936.78, + "end": 6938.68, + "probability": 0.7397 + }, + { + "start": 6938.86, + "end": 6939.82, + "probability": 0.846 + }, + { + "start": 6940.34, + "end": 6942.72, + "probability": 0.9019 + }, + { + "start": 6942.82, + "end": 6945.9, + "probability": 0.9325 + }, + { + "start": 6946.42, + "end": 6949.26, + "probability": 0.9939 + }, + { + "start": 6949.74, + "end": 6951.76, + "probability": 0.998 + }, + { + "start": 6951.9, + "end": 6954.4, + "probability": 0.8283 + }, + { + "start": 6954.52, + "end": 6955.04, + "probability": 0.9744 + }, + { + "start": 6955.34, + "end": 6956.32, + "probability": 0.6948 + }, + { + "start": 6956.32, + "end": 6960.26, + "probability": 0.9781 + }, + { + "start": 6961.02, + "end": 6963.22, + "probability": 0.6389 + }, + { + "start": 6963.4, + "end": 6966.46, + "probability": 0.992 + }, + { + "start": 6967.08, + "end": 6968.15, + "probability": 0.9792 + }, + { + "start": 6969.5, + "end": 6971.52, + "probability": 0.166 + }, + { + "start": 6971.66, + "end": 6974.54, + "probability": 0.0194 + }, + { + "start": 6976.2, + "end": 6976.24, + "probability": 0.0006 + }, + { + "start": 6976.24, + "end": 6978.38, + "probability": 0.5877 + }, + { + "start": 6978.97, + "end": 6981.28, + "probability": 0.4504 + }, + { + "start": 6982.14, + "end": 6983.82, + "probability": 0.9941 + }, + { + "start": 6983.9, + "end": 6985.6, + "probability": 0.6474 + }, + { + "start": 6986.51, + "end": 6987.94, + "probability": 0.4896 + }, + { + "start": 6988.92, + "end": 6995.54, + "probability": 0.35 + }, + { + "start": 6995.9, + "end": 6996.88, + "probability": 0.3695 + }, + { + "start": 6996.88, + "end": 6997.78, + "probability": 0.1775 + }, + { + "start": 7005.56, + "end": 7008.64, + "probability": 0.2701 + }, + { + "start": 7009.24, + "end": 7013.6, + "probability": 0.5121 + }, + { + "start": 7014.0, + "end": 7015.66, + "probability": 0.5747 + }, + { + "start": 7016.38, + "end": 7016.38, + "probability": 0.0057 + }, + { + "start": 7016.38, + "end": 7018.9, + "probability": 0.8943 + }, + { + "start": 7019.44, + "end": 7020.88, + "probability": 0.8164 + }, + { + "start": 7021.08, + "end": 7022.7, + "probability": 0.6222 + }, + { + "start": 7022.88, + "end": 7026.45, + "probability": 0.8606 + }, + { + "start": 7026.9, + "end": 7027.04, + "probability": 0.1214 + }, + { + "start": 7027.04, + "end": 7030.45, + "probability": 0.9273 + }, + { + "start": 7030.98, + "end": 7034.12, + "probability": 0.9782 + }, + { + "start": 7034.24, + "end": 7035.0, + "probability": 0.9211 + }, + { + "start": 7035.08, + "end": 7036.98, + "probability": 0.9856 + }, + { + "start": 7037.14, + "end": 7039.75, + "probability": 0.9942 + }, + { + "start": 7039.94, + "end": 7041.14, + "probability": 0.4921 + }, + { + "start": 7041.3, + "end": 7043.26, + "probability": 0.6706 + }, + { + "start": 7043.34, + "end": 7046.24, + "probability": 0.7084 + }, + { + "start": 7046.34, + "end": 7046.91, + "probability": 0.1143 + }, + { + "start": 7047.21, + "end": 7047.28, + "probability": 0.1067 + }, + { + "start": 7047.28, + "end": 7050.29, + "probability": 0.8849 + }, + { + "start": 7051.32, + "end": 7053.08, + "probability": 0.9202 + }, + { + "start": 7053.42, + "end": 7055.84, + "probability": 0.5918 + }, + { + "start": 7055.96, + "end": 7059.32, + "probability": 0.5405 + }, + { + "start": 7059.82, + "end": 7059.82, + "probability": 0.0512 + }, + { + "start": 7059.82, + "end": 7059.82, + "probability": 0.2875 + }, + { + "start": 7059.82, + "end": 7062.08, + "probability": 0.8389 + }, + { + "start": 7062.12, + "end": 7062.98, + "probability": 0.7453 + }, + { + "start": 7063.06, + "end": 7067.4, + "probability": 0.9753 + }, + { + "start": 7067.74, + "end": 7070.79, + "probability": 0.9607 + }, + { + "start": 7071.33, + "end": 7074.43, + "probability": 0.8799 + }, + { + "start": 7076.77, + "end": 7078.95, + "probability": 0.8386 + }, + { + "start": 7083.09, + "end": 7085.41, + "probability": 0.9012 + }, + { + "start": 7087.05, + "end": 7090.59, + "probability": 0.9995 + }, + { + "start": 7090.65, + "end": 7092.59, + "probability": 0.9354 + }, + { + "start": 7092.81, + "end": 7093.03, + "probability": 0.6128 + }, + { + "start": 7093.13, + "end": 7094.09, + "probability": 0.8904 + }, + { + "start": 7094.49, + "end": 7097.83, + "probability": 0.9758 + }, + { + "start": 7097.83, + "end": 7100.83, + "probability": 0.8361 + }, + { + "start": 7100.97, + "end": 7106.23, + "probability": 0.9449 + }, + { + "start": 7106.67, + "end": 7107.15, + "probability": 0.6993 + }, + { + "start": 7107.69, + "end": 7112.35, + "probability": 0.7781 + }, + { + "start": 7113.41, + "end": 7113.97, + "probability": 0.8244 + }, + { + "start": 7114.13, + "end": 7116.31, + "probability": 0.524 + }, + { + "start": 7116.47, + "end": 7116.83, + "probability": 0.3949 + }, + { + "start": 7117.15, + "end": 7117.15, + "probability": 0.3449 + }, + { + "start": 7117.15, + "end": 7118.59, + "probability": 0.7295 + }, + { + "start": 7118.81, + "end": 7121.15, + "probability": 0.9869 + }, + { + "start": 7121.21, + "end": 7121.37, + "probability": 0.6811 + }, + { + "start": 7121.41, + "end": 7123.79, + "probability": 0.7158 + }, + { + "start": 7123.91, + "end": 7127.01, + "probability": 0.9083 + }, + { + "start": 7127.23, + "end": 7127.33, + "probability": 0.2794 + }, + { + "start": 7127.33, + "end": 7129.37, + "probability": 0.5917 + }, + { + "start": 7129.65, + "end": 7131.79, + "probability": 0.415 + }, + { + "start": 7131.89, + "end": 7132.73, + "probability": 0.8103 + }, + { + "start": 7132.85, + "end": 7138.55, + "probability": 0.9797 + }, + { + "start": 7138.67, + "end": 7139.35, + "probability": 0.3615 + }, + { + "start": 7139.51, + "end": 7139.83, + "probability": 0.5703 + }, + { + "start": 7140.37, + "end": 7141.71, + "probability": 0.7318 + }, + { + "start": 7144.25, + "end": 7144.79, + "probability": 0.106 + }, + { + "start": 7144.79, + "end": 7145.87, + "probability": 0.0339 + }, + { + "start": 7145.99, + "end": 7147.05, + "probability": 0.3527 + }, + { + "start": 7147.23, + "end": 7149.17, + "probability": 0.8455 + }, + { + "start": 7149.89, + "end": 7150.33, + "probability": 0.3666 + }, + { + "start": 7150.39, + "end": 7150.55, + "probability": 0.0887 + }, + { + "start": 7150.73, + "end": 7151.27, + "probability": 0.2813 + }, + { + "start": 7151.27, + "end": 7151.27, + "probability": 0.2718 + }, + { + "start": 7151.27, + "end": 7153.81, + "probability": 0.6331 + }, + { + "start": 7153.87, + "end": 7156.29, + "probability": 0.8105 + }, + { + "start": 7156.45, + "end": 7159.21, + "probability": 0.9703 + }, + { + "start": 7159.49, + "end": 7160.81, + "probability": 0.9274 + }, + { + "start": 7161.37, + "end": 7166.03, + "probability": 0.8595 + }, + { + "start": 7166.33, + "end": 7167.99, + "probability": 0.9899 + }, + { + "start": 7168.31, + "end": 7174.75, + "probability": 0.9777 + }, + { + "start": 7175.17, + "end": 7177.17, + "probability": 0.9192 + }, + { + "start": 7177.77, + "end": 7180.11, + "probability": 0.6161 + }, + { + "start": 7180.15, + "end": 7182.53, + "probability": 0.8311 + }, + { + "start": 7182.63, + "end": 7187.59, + "probability": 0.9961 + }, + { + "start": 7187.83, + "end": 7192.91, + "probability": 0.9991 + }, + { + "start": 7194.09, + "end": 7196.39, + "probability": 0.9061 + }, + { + "start": 7196.49, + "end": 7198.59, + "probability": 0.6887 + }, + { + "start": 7198.73, + "end": 7202.29, + "probability": 0.999 + }, + { + "start": 7202.91, + "end": 7208.25, + "probability": 0.9977 + }, + { + "start": 7208.31, + "end": 7212.79, + "probability": 0.8913 + }, + { + "start": 7213.23, + "end": 7214.93, + "probability": 0.7728 + }, + { + "start": 7215.17, + "end": 7217.23, + "probability": 0.9193 + }, + { + "start": 7217.39, + "end": 7220.67, + "probability": 0.8961 + }, + { + "start": 7221.23, + "end": 7224.39, + "probability": 0.9967 + }, + { + "start": 7225.25, + "end": 7225.69, + "probability": 0.4693 + }, + { + "start": 7228.71, + "end": 7231.01, + "probability": 0.6558 + }, + { + "start": 7231.29, + "end": 7234.53, + "probability": 0.5597 + }, + { + "start": 7234.61, + "end": 7235.25, + "probability": 0.8329 + }, + { + "start": 7235.25, + "end": 7238.15, + "probability": 0.8257 + }, + { + "start": 7238.65, + "end": 7239.71, + "probability": 0.6166 + }, + { + "start": 7241.51, + "end": 7241.61, + "probability": 0.1738 + }, + { + "start": 7241.61, + "end": 7242.93, + "probability": 0.5272 + }, + { + "start": 7243.79, + "end": 7245.07, + "probability": 0.8171 + }, + { + "start": 7246.01, + "end": 7251.85, + "probability": 0.7583 + }, + { + "start": 7253.13, + "end": 7253.91, + "probability": 0.8099 + }, + { + "start": 7254.03, + "end": 7254.43, + "probability": 0.5175 + }, + { + "start": 7254.51, + "end": 7255.15, + "probability": 0.9019 + }, + { + "start": 7258.71, + "end": 7264.13, + "probability": 0.9975 + }, + { + "start": 7264.23, + "end": 7264.45, + "probability": 0.855 + }, + { + "start": 7266.35, + "end": 7267.03, + "probability": 0.9672 + }, + { + "start": 7267.31, + "end": 7268.09, + "probability": 0.5953 + }, + { + "start": 7268.27, + "end": 7270.27, + "probability": 0.9827 + }, + { + "start": 7271.58, + "end": 7273.91, + "probability": 0.8594 + }, + { + "start": 7273.99, + "end": 7275.05, + "probability": 0.977 + }, + { + "start": 7275.17, + "end": 7278.01, + "probability": 0.8477 + }, + { + "start": 7279.05, + "end": 7287.07, + "probability": 0.9924 + }, + { + "start": 7287.07, + "end": 7290.47, + "probability": 0.8856 + }, + { + "start": 7291.61, + "end": 7295.83, + "probability": 0.9598 + }, + { + "start": 7298.03, + "end": 7306.59, + "probability": 0.9974 + }, + { + "start": 7306.59, + "end": 7313.51, + "probability": 0.9917 + }, + { + "start": 7314.33, + "end": 7315.75, + "probability": 0.9646 + }, + { + "start": 7318.03, + "end": 7324.05, + "probability": 0.9876 + }, + { + "start": 7324.05, + "end": 7332.95, + "probability": 0.9327 + }, + { + "start": 7333.61, + "end": 7335.93, + "probability": 0.9954 + }, + { + "start": 7336.61, + "end": 7338.09, + "probability": 0.9759 + }, + { + "start": 7339.63, + "end": 7342.78, + "probability": 0.7866 + }, + { + "start": 7343.55, + "end": 7346.96, + "probability": 0.935 + }, + { + "start": 7349.09, + "end": 7351.55, + "probability": 0.9779 + }, + { + "start": 7352.99, + "end": 7354.43, + "probability": 0.5334 + }, + { + "start": 7355.59, + "end": 7358.35, + "probability": 0.8409 + }, + { + "start": 7359.47, + "end": 7365.67, + "probability": 0.9873 + }, + { + "start": 7366.57, + "end": 7369.49, + "probability": 0.9796 + }, + { + "start": 7370.13, + "end": 7373.91, + "probability": 0.9406 + }, + { + "start": 7374.69, + "end": 7376.63, + "probability": 0.6139 + }, + { + "start": 7377.29, + "end": 7380.09, + "probability": 0.7026 + }, + { + "start": 7381.51, + "end": 7383.81, + "probability": 0.9854 + }, + { + "start": 7385.51, + "end": 7387.03, + "probability": 0.8708 + }, + { + "start": 7388.15, + "end": 7391.07, + "probability": 0.9849 + }, + { + "start": 7391.07, + "end": 7396.77, + "probability": 0.9407 + }, + { + "start": 7397.87, + "end": 7399.71, + "probability": 0.9978 + }, + { + "start": 7400.27, + "end": 7401.09, + "probability": 0.6047 + }, + { + "start": 7402.41, + "end": 7403.39, + "probability": 0.6713 + }, + { + "start": 7406.31, + "end": 7409.63, + "probability": 0.8557 + }, + { + "start": 7411.11, + "end": 7415.03, + "probability": 0.8179 + }, + { + "start": 7416.59, + "end": 7417.97, + "probability": 0.9912 + }, + { + "start": 7419.11, + "end": 7421.75, + "probability": 0.9959 + }, + { + "start": 7422.91, + "end": 7425.09, + "probability": 0.9286 + }, + { + "start": 7426.13, + "end": 7427.31, + "probability": 0.6662 + }, + { + "start": 7428.67, + "end": 7434.15, + "probability": 0.9584 + }, + { + "start": 7435.57, + "end": 7436.27, + "probability": 0.6101 + }, + { + "start": 7437.33, + "end": 7440.01, + "probability": 0.9243 + }, + { + "start": 7441.21, + "end": 7442.89, + "probability": 0.9879 + }, + { + "start": 7443.43, + "end": 7450.23, + "probability": 0.9775 + }, + { + "start": 7451.33, + "end": 7454.13, + "probability": 0.9375 + }, + { + "start": 7454.51, + "end": 7456.03, + "probability": 0.6181 + }, + { + "start": 7456.83, + "end": 7460.01, + "probability": 0.9502 + }, + { + "start": 7460.13, + "end": 7460.99, + "probability": 0.8783 + }, + { + "start": 7461.05, + "end": 7465.53, + "probability": 0.9513 + }, + { + "start": 7465.61, + "end": 7466.63, + "probability": 0.8593 + }, + { + "start": 7467.65, + "end": 7468.89, + "probability": 0.8589 + }, + { + "start": 7469.87, + "end": 7471.73, + "probability": 0.9351 + }, + { + "start": 7472.62, + "end": 7476.71, + "probability": 0.9938 + }, + { + "start": 7477.27, + "end": 7477.87, + "probability": 0.7479 + }, + { + "start": 7478.23, + "end": 7478.95, + "probability": 0.9334 + }, + { + "start": 7479.17, + "end": 7482.45, + "probability": 0.98 + }, + { + "start": 7483.27, + "end": 7486.51, + "probability": 0.8765 + }, + { + "start": 7486.63, + "end": 7487.75, + "probability": 0.5888 + }, + { + "start": 7489.21, + "end": 7492.65, + "probability": 0.9905 + }, + { + "start": 7492.65, + "end": 7496.31, + "probability": 0.978 + }, + { + "start": 7497.13, + "end": 7502.31, + "probability": 0.8689 + }, + { + "start": 7502.41, + "end": 7504.07, + "probability": 0.7654 + }, + { + "start": 7504.33, + "end": 7505.45, + "probability": 0.6642 + }, + { + "start": 7506.31, + "end": 7506.41, + "probability": 0.0482 + }, + { + "start": 7506.41, + "end": 7507.69, + "probability": 0.9766 + }, + { + "start": 7507.81, + "end": 7510.55, + "probability": 0.9253 + }, + { + "start": 7511.37, + "end": 7512.67, + "probability": 0.9939 + }, + { + "start": 7513.49, + "end": 7518.35, + "probability": 0.9889 + }, + { + "start": 7518.35, + "end": 7521.69, + "probability": 0.9945 + }, + { + "start": 7523.47, + "end": 7525.19, + "probability": 0.6174 + }, + { + "start": 7525.35, + "end": 7528.1, + "probability": 0.9574 + }, + { + "start": 7528.21, + "end": 7530.83, + "probability": 0.9924 + }, + { + "start": 7530.89, + "end": 7531.38, + "probability": 0.79 + }, + { + "start": 7532.37, + "end": 7537.15, + "probability": 0.4776 + }, + { + "start": 7538.81, + "end": 7542.67, + "probability": 0.9857 + }, + { + "start": 7542.83, + "end": 7544.75, + "probability": 0.8573 + }, + { + "start": 7545.15, + "end": 7546.47, + "probability": 0.869 + }, + { + "start": 7547.37, + "end": 7550.91, + "probability": 0.9922 + }, + { + "start": 7551.63, + "end": 7556.15, + "probability": 0.9889 + }, + { + "start": 7557.23, + "end": 7560.65, + "probability": 0.8239 + }, + { + "start": 7561.49, + "end": 7562.29, + "probability": 0.8508 + }, + { + "start": 7562.69, + "end": 7564.04, + "probability": 0.9868 + }, + { + "start": 7564.69, + "end": 7565.45, + "probability": 0.7913 + }, + { + "start": 7565.57, + "end": 7568.39, + "probability": 0.9752 + }, + { + "start": 7569.79, + "end": 7571.15, + "probability": 0.995 + }, + { + "start": 7571.93, + "end": 7572.81, + "probability": 0.4855 + }, + { + "start": 7572.85, + "end": 7577.19, + "probability": 0.7975 + }, + { + "start": 7578.07, + "end": 7580.35, + "probability": 0.5904 + }, + { + "start": 7581.53, + "end": 7583.37, + "probability": 0.9943 + }, + { + "start": 7585.13, + "end": 7587.81, + "probability": 0.9414 + }, + { + "start": 7589.13, + "end": 7592.89, + "probability": 0.991 + }, + { + "start": 7594.47, + "end": 7597.91, + "probability": 0.7602 + }, + { + "start": 7598.45, + "end": 7599.65, + "probability": 0.9767 + }, + { + "start": 7600.57, + "end": 7602.07, + "probability": 0.999 + }, + { + "start": 7603.17, + "end": 7607.19, + "probability": 0.7496 + }, + { + "start": 7607.71, + "end": 7609.93, + "probability": 0.9712 + }, + { + "start": 7610.29, + "end": 7611.85, + "probability": 0.821 + }, + { + "start": 7613.13, + "end": 7615.15, + "probability": 0.7827 + }, + { + "start": 7615.67, + "end": 7617.13, + "probability": 0.9712 + }, + { + "start": 7617.93, + "end": 7618.51, + "probability": 0.7793 + }, + { + "start": 7620.33, + "end": 7621.07, + "probability": 0.9216 + }, + { + "start": 7622.21, + "end": 7623.64, + "probability": 0.5604 + }, + { + "start": 7623.79, + "end": 7630.63, + "probability": 0.9821 + }, + { + "start": 7631.31, + "end": 7632.57, + "probability": 0.7642 + }, + { + "start": 7633.35, + "end": 7635.77, + "probability": 0.9962 + }, + { + "start": 7637.05, + "end": 7638.01, + "probability": 0.9143 + }, + { + "start": 7639.37, + "end": 7642.95, + "probability": 0.9987 + }, + { + "start": 7643.85, + "end": 7644.95, + "probability": 0.6001 + }, + { + "start": 7645.05, + "end": 7649.21, + "probability": 0.9985 + }, + { + "start": 7651.01, + "end": 7651.93, + "probability": 0.9136 + }, + { + "start": 7652.09, + "end": 7655.11, + "probability": 0.7528 + }, + { + "start": 7655.81, + "end": 7662.67, + "probability": 0.9932 + }, + { + "start": 7663.31, + "end": 7666.43, + "probability": 0.9109 + }, + { + "start": 7666.99, + "end": 7667.97, + "probability": 0.9958 + }, + { + "start": 7671.09, + "end": 7672.71, + "probability": 0.865 + }, + { + "start": 7673.25, + "end": 7677.41, + "probability": 0.9951 + }, + { + "start": 7678.13, + "end": 7682.15, + "probability": 0.9965 + }, + { + "start": 7683.95, + "end": 7684.31, + "probability": 0.4408 + }, + { + "start": 7684.35, + "end": 7685.91, + "probability": 0.8865 + }, + { + "start": 7686.15, + "end": 7687.25, + "probability": 0.8796 + }, + { + "start": 7690.49, + "end": 7691.47, + "probability": 0.7467 + }, + { + "start": 7692.37, + "end": 7698.99, + "probability": 0.6946 + }, + { + "start": 7699.25, + "end": 7701.39, + "probability": 0.9874 + }, + { + "start": 7702.77, + "end": 7707.03, + "probability": 0.9946 + }, + { + "start": 7707.21, + "end": 7708.15, + "probability": 0.8989 + }, + { + "start": 7709.33, + "end": 7711.47, + "probability": 0.971 + }, + { + "start": 7712.79, + "end": 7718.83, + "probability": 0.9804 + }, + { + "start": 7720.01, + "end": 7721.19, + "probability": 0.7632 + }, + { + "start": 7721.83, + "end": 7723.19, + "probability": 0.8427 + }, + { + "start": 7724.03, + "end": 7727.85, + "probability": 0.936 + }, + { + "start": 7727.85, + "end": 7731.37, + "probability": 0.9982 + }, + { + "start": 7732.41, + "end": 7735.59, + "probability": 0.9969 + }, + { + "start": 7736.35, + "end": 7738.45, + "probability": 0.9536 + }, + { + "start": 7738.61, + "end": 7740.53, + "probability": 0.7764 + }, + { + "start": 7740.75, + "end": 7741.25, + "probability": 0.8173 + }, + { + "start": 7741.69, + "end": 7742.07, + "probability": 0.5631 + }, + { + "start": 7742.21, + "end": 7743.15, + "probability": 0.8332 + }, + { + "start": 7743.91, + "end": 7745.73, + "probability": 0.8263 + }, + { + "start": 7746.31, + "end": 7748.19, + "probability": 0.8133 + }, + { + "start": 7748.29, + "end": 7750.17, + "probability": 0.5042 + }, + { + "start": 7750.17, + "end": 7751.23, + "probability": 0.9337 + }, + { + "start": 7751.83, + "end": 7752.73, + "probability": 0.6812 + }, + { + "start": 7752.97, + "end": 7754.79, + "probability": 0.7184 + }, + { + "start": 7755.09, + "end": 7755.45, + "probability": 0.801 + }, + { + "start": 7769.17, + "end": 7770.57, + "probability": 0.4632 + }, + { + "start": 7770.83, + "end": 7771.69, + "probability": 0.8469 + }, + { + "start": 7772.01, + "end": 7774.57, + "probability": 0.7834 + }, + { + "start": 7774.89, + "end": 7778.51, + "probability": 0.8662 + }, + { + "start": 7779.71, + "end": 7780.77, + "probability": 0.798 + }, + { + "start": 7780.77, + "end": 7786.97, + "probability": 0.9907 + }, + { + "start": 7787.99, + "end": 7793.73, + "probability": 0.6749 + }, + { + "start": 7793.73, + "end": 7801.03, + "probability": 0.9744 + }, + { + "start": 7801.41, + "end": 7802.39, + "probability": 0.1653 + }, + { + "start": 7802.57, + "end": 7803.13, + "probability": 0.6794 + }, + { + "start": 7803.69, + "end": 7804.15, + "probability": 0.7463 + }, + { + "start": 7804.61, + "end": 7805.87, + "probability": 0.3329 + }, + { + "start": 7806.49, + "end": 7810.21, + "probability": 0.9287 + }, + { + "start": 7810.67, + "end": 7812.13, + "probability": 0.8496 + }, + { + "start": 7812.21, + "end": 7815.13, + "probability": 0.9691 + }, + { + "start": 7815.19, + "end": 7815.73, + "probability": 0.8998 + }, + { + "start": 7816.97, + "end": 7818.03, + "probability": 0.5537 + }, + { + "start": 7818.39, + "end": 7822.41, + "probability": 0.9814 + }, + { + "start": 7823.23, + "end": 7826.31, + "probability": 0.9225 + }, + { + "start": 7827.05, + "end": 7830.43, + "probability": 0.988 + }, + { + "start": 7830.43, + "end": 7833.59, + "probability": 0.9924 + }, + { + "start": 7835.37, + "end": 7840.61, + "probability": 0.995 + }, + { + "start": 7840.61, + "end": 7841.23, + "probability": 0.2653 + }, + { + "start": 7841.33, + "end": 7842.61, + "probability": 0.7345 + }, + { + "start": 7842.97, + "end": 7848.47, + "probability": 0.993 + }, + { + "start": 7849.05, + "end": 7852.81, + "probability": 0.9941 + }, + { + "start": 7854.25, + "end": 7854.53, + "probability": 0.7263 + }, + { + "start": 7858.47, + "end": 7861.43, + "probability": 0.6108 + }, + { + "start": 7861.65, + "end": 7862.65, + "probability": 0.6378 + }, + { + "start": 7862.71, + "end": 7864.23, + "probability": 0.3535 + }, + { + "start": 7864.43, + "end": 7864.79, + "probability": 0.7557 + }, + { + "start": 7866.31, + "end": 7867.57, + "probability": 0.8516 + }, + { + "start": 7867.63, + "end": 7870.63, + "probability": 0.9948 + }, + { + "start": 7870.73, + "end": 7874.95, + "probability": 0.9965 + }, + { + "start": 7876.03, + "end": 7879.89, + "probability": 0.9905 + }, + { + "start": 7880.41, + "end": 7882.57, + "probability": 0.943 + }, + { + "start": 7882.69, + "end": 7883.11, + "probability": 0.8228 + }, + { + "start": 7883.25, + "end": 7883.79, + "probability": 0.7247 + }, + { + "start": 7884.25, + "end": 7885.83, + "probability": 0.7845 + }, + { + "start": 7885.95, + "end": 7886.58, + "probability": 0.8984 + }, + { + "start": 7886.97, + "end": 7890.19, + "probability": 0.8206 + }, + { + "start": 7891.21, + "end": 7896.85, + "probability": 0.999 + }, + { + "start": 7896.87, + "end": 7902.27, + "probability": 0.9775 + }, + { + "start": 7902.53, + "end": 7905.39, + "probability": 0.958 + }, + { + "start": 7905.91, + "end": 7911.45, + "probability": 0.9979 + }, + { + "start": 7911.55, + "end": 7911.77, + "probability": 0.4861 + }, + { + "start": 7911.87, + "end": 7914.03, + "probability": 0.963 + }, + { + "start": 7914.13, + "end": 7917.21, + "probability": 0.9838 + }, + { + "start": 7917.87, + "end": 7920.29, + "probability": 0.918 + }, + { + "start": 7920.41, + "end": 7925.27, + "probability": 0.9585 + }, + { + "start": 7926.25, + "end": 7928.69, + "probability": 0.8351 + }, + { + "start": 7929.51, + "end": 7933.27, + "probability": 0.8795 + }, + { + "start": 7934.25, + "end": 7936.55, + "probability": 0.9986 + }, + { + "start": 7936.71, + "end": 7939.79, + "probability": 0.9118 + }, + { + "start": 7940.31, + "end": 7942.01, + "probability": 0.9985 + }, + { + "start": 7943.59, + "end": 7946.63, + "probability": 0.9906 + }, + { + "start": 7947.85, + "end": 7950.27, + "probability": 0.9955 + }, + { + "start": 7950.97, + "end": 7951.35, + "probability": 0.4982 + }, + { + "start": 7951.49, + "end": 7953.41, + "probability": 0.9456 + }, + { + "start": 7953.75, + "end": 7954.61, + "probability": 0.979 + }, + { + "start": 7954.95, + "end": 7955.66, + "probability": 0.9902 + }, + { + "start": 7956.65, + "end": 7960.39, + "probability": 0.9707 + }, + { + "start": 7960.91, + "end": 7963.95, + "probability": 0.9657 + }, + { + "start": 7964.63, + "end": 7968.59, + "probability": 0.9741 + }, + { + "start": 7968.59, + "end": 7972.33, + "probability": 0.9933 + }, + { + "start": 7973.01, + "end": 7976.39, + "probability": 0.9479 + }, + { + "start": 7977.23, + "end": 7982.33, + "probability": 0.9897 + }, + { + "start": 7982.45, + "end": 7983.59, + "probability": 0.8846 + }, + { + "start": 7984.17, + "end": 7986.77, + "probability": 0.9951 + }, + { + "start": 7987.85, + "end": 7992.47, + "probability": 0.9957 + }, + { + "start": 7993.27, + "end": 7997.79, + "probability": 0.9971 + }, + { + "start": 7998.41, + "end": 8001.13, + "probability": 0.9966 + }, + { + "start": 8001.69, + "end": 8004.65, + "probability": 0.982 + }, + { + "start": 8005.13, + "end": 8005.77, + "probability": 0.9846 + }, + { + "start": 8006.19, + "end": 8006.93, + "probability": 0.944 + }, + { + "start": 8007.03, + "end": 8009.97, + "probability": 0.9971 + }, + { + "start": 8010.01, + "end": 8014.83, + "probability": 0.9919 + }, + { + "start": 8015.47, + "end": 8020.13, + "probability": 0.9976 + }, + { + "start": 8020.69, + "end": 8022.59, + "probability": 0.8789 + }, + { + "start": 8023.13, + "end": 8027.75, + "probability": 0.5044 + }, + { + "start": 8028.51, + "end": 8032.17, + "probability": 0.9963 + }, + { + "start": 8032.81, + "end": 8035.19, + "probability": 0.9868 + }, + { + "start": 8036.25, + "end": 8039.43, + "probability": 0.9826 + }, + { + "start": 8039.51, + "end": 8041.33, + "probability": 0.782 + }, + { + "start": 8041.49, + "end": 8042.15, + "probability": 0.9373 + }, + { + "start": 8042.53, + "end": 8043.55, + "probability": 0.8366 + }, + { + "start": 8044.37, + "end": 8048.31, + "probability": 0.996 + }, + { + "start": 8048.63, + "end": 8049.81, + "probability": 0.9913 + }, + { + "start": 8050.01, + "end": 8051.09, + "probability": 0.9697 + }, + { + "start": 8051.63, + "end": 8053.29, + "probability": 0.991 + }, + { + "start": 8053.95, + "end": 8060.11, + "probability": 0.9956 + }, + { + "start": 8060.71, + "end": 8067.37, + "probability": 0.9891 + }, + { + "start": 8067.85, + "end": 8068.97, + "probability": 0.9012 + }, + { + "start": 8069.31, + "end": 8072.51, + "probability": 0.9251 + }, + { + "start": 8072.65, + "end": 8073.31, + "probability": 0.9057 + }, + { + "start": 8073.69, + "end": 8074.23, + "probability": 0.6169 + }, + { + "start": 8074.31, + "end": 8075.61, + "probability": 0.9687 + }, + { + "start": 8076.17, + "end": 8078.83, + "probability": 0.9894 + }, + { + "start": 8080.19, + "end": 8086.13, + "probability": 0.9988 + }, + { + "start": 8086.75, + "end": 8092.31, + "probability": 0.9876 + }, + { + "start": 8092.83, + "end": 8096.51, + "probability": 0.9891 + }, + { + "start": 8097.05, + "end": 8102.71, + "probability": 0.9791 + }, + { + "start": 8102.81, + "end": 8104.63, + "probability": 0.9748 + }, + { + "start": 8105.05, + "end": 8106.15, + "probability": 0.8844 + }, + { + "start": 8106.31, + "end": 8109.69, + "probability": 0.9942 + }, + { + "start": 8109.69, + "end": 8113.73, + "probability": 0.9951 + }, + { + "start": 8114.19, + "end": 8114.65, + "probability": 0.7524 + }, + { + "start": 8114.89, + "end": 8117.89, + "probability": 0.7219 + }, + { + "start": 8118.69, + "end": 8121.77, + "probability": 0.8522 + }, + { + "start": 8121.99, + "end": 8123.89, + "probability": 0.9369 + }, + { + "start": 8140.61, + "end": 8141.81, + "probability": 0.6231 + }, + { + "start": 8142.57, + "end": 8143.81, + "probability": 0.5094 + }, + { + "start": 8145.97, + "end": 8148.11, + "probability": 0.7912 + }, + { + "start": 8150.25, + "end": 8154.99, + "probability": 0.9659 + }, + { + "start": 8156.51, + "end": 8158.05, + "probability": 0.6255 + }, + { + "start": 8159.59, + "end": 8160.97, + "probability": 0.8737 + }, + { + "start": 8162.23, + "end": 8164.61, + "probability": 0.6029 + }, + { + "start": 8165.89, + "end": 8166.47, + "probability": 0.5652 + }, + { + "start": 8167.05, + "end": 8172.05, + "probability": 0.7886 + }, + { + "start": 8174.35, + "end": 8180.85, + "probability": 0.947 + }, + { + "start": 8180.93, + "end": 8182.83, + "probability": 0.9865 + }, + { + "start": 8187.15, + "end": 8190.09, + "probability": 0.7433 + }, + { + "start": 8190.61, + "end": 8190.71, + "probability": 0.9998 + }, + { + "start": 8192.79, + "end": 8193.65, + "probability": 0.9814 + }, + { + "start": 8194.25, + "end": 8196.79, + "probability": 0.9938 + }, + { + "start": 8197.33, + "end": 8202.31, + "probability": 0.8502 + }, + { + "start": 8203.25, + "end": 8204.62, + "probability": 0.9274 + }, + { + "start": 8205.73, + "end": 8210.07, + "probability": 0.957 + }, + { + "start": 8212.53, + "end": 8214.75, + "probability": 0.9308 + }, + { + "start": 8216.89, + "end": 8220.93, + "probability": 0.762 + }, + { + "start": 8221.73, + "end": 8224.11, + "probability": 0.9629 + }, + { + "start": 8224.33, + "end": 8228.27, + "probability": 0.9008 + }, + { + "start": 8228.39, + "end": 8232.43, + "probability": 0.7105 + }, + { + "start": 8233.57, + "end": 8238.99, + "probability": 0.9847 + }, + { + "start": 8240.47, + "end": 8241.41, + "probability": 0.4153 + }, + { + "start": 8243.17, + "end": 8245.34, + "probability": 0.4992 + }, + { + "start": 8245.93, + "end": 8247.93, + "probability": 0.8558 + }, + { + "start": 8248.49, + "end": 8252.47, + "probability": 0.7667 + }, + { + "start": 8253.69, + "end": 8256.67, + "probability": 0.9774 + }, + { + "start": 8258.19, + "end": 8259.61, + "probability": 0.9452 + }, + { + "start": 8260.43, + "end": 8261.21, + "probability": 0.8654 + }, + { + "start": 8263.11, + "end": 8265.47, + "probability": 0.7787 + }, + { + "start": 8266.29, + "end": 8268.43, + "probability": 0.6977 + }, + { + "start": 8270.19, + "end": 8277.73, + "probability": 0.7936 + }, + { + "start": 8279.55, + "end": 8280.79, + "probability": 0.7548 + }, + { + "start": 8284.81, + "end": 8289.89, + "probability": 0.5854 + }, + { + "start": 8292.67, + "end": 8293.47, + "probability": 0.2988 + }, + { + "start": 8294.93, + "end": 8301.49, + "probability": 0.8443 + }, + { + "start": 8301.79, + "end": 8310.71, + "probability": 0.9539 + }, + { + "start": 8311.33, + "end": 8314.93, + "probability": 0.959 + }, + { + "start": 8315.79, + "end": 8321.31, + "probability": 0.7664 + }, + { + "start": 8322.61, + "end": 8325.97, + "probability": 0.8052 + }, + { + "start": 8330.99, + "end": 8334.19, + "probability": 0.7977 + }, + { + "start": 8335.51, + "end": 8337.85, + "probability": 0.8005 + }, + { + "start": 8338.13, + "end": 8341.41, + "probability": 0.9545 + }, + { + "start": 8342.23, + "end": 8346.05, + "probability": 0.9663 + }, + { + "start": 8347.47, + "end": 8352.37, + "probability": 0.9712 + }, + { + "start": 8353.65, + "end": 8360.13, + "probability": 0.9978 + }, + { + "start": 8361.59, + "end": 8363.15, + "probability": 0.9766 + }, + { + "start": 8364.58, + "end": 8370.33, + "probability": 0.9948 + }, + { + "start": 8370.61, + "end": 8372.13, + "probability": 0.9824 + }, + { + "start": 8372.99, + "end": 8375.69, + "probability": 0.9641 + }, + { + "start": 8375.85, + "end": 8378.47, + "probability": 0.7727 + }, + { + "start": 8378.53, + "end": 8380.26, + "probability": 0.8191 + }, + { + "start": 8380.45, + "end": 8383.07, + "probability": 0.7789 + }, + { + "start": 8384.75, + "end": 8386.87, + "probability": 0.9624 + }, + { + "start": 8387.71, + "end": 8389.05, + "probability": 0.9728 + }, + { + "start": 8397.09, + "end": 8399.65, + "probability": 0.9461 + }, + { + "start": 8402.23, + "end": 8403.57, + "probability": 0.8919 + }, + { + "start": 8403.63, + "end": 8409.41, + "probability": 0.9585 + }, + { + "start": 8409.41, + "end": 8410.07, + "probability": 0.738 + }, + { + "start": 8412.07, + "end": 8413.17, + "probability": 0.9794 + }, + { + "start": 8415.37, + "end": 8418.01, + "probability": 0.9536 + }, + { + "start": 8418.53, + "end": 8419.91, + "probability": 0.864 + }, + { + "start": 8420.59, + "end": 8425.65, + "probability": 0.9962 + }, + { + "start": 8426.83, + "end": 8430.05, + "probability": 0.8784 + }, + { + "start": 8431.96, + "end": 8438.09, + "probability": 0.8208 + }, + { + "start": 8439.15, + "end": 8439.17, + "probability": 0.1315 + }, + { + "start": 8439.17, + "end": 8444.99, + "probability": 0.9637 + }, + { + "start": 8447.33, + "end": 8450.33, + "probability": 0.8664 + }, + { + "start": 8452.37, + "end": 8457.93, + "probability": 0.8006 + }, + { + "start": 8458.91, + "end": 8463.01, + "probability": 0.7871 + }, + { + "start": 8464.97, + "end": 8467.57, + "probability": 0.9104 + }, + { + "start": 8467.65, + "end": 8472.61, + "probability": 0.8176 + }, + { + "start": 8482.69, + "end": 8486.05, + "probability": 0.9983 + }, + { + "start": 8486.05, + "end": 8489.59, + "probability": 0.7535 + }, + { + "start": 8489.85, + "end": 8497.51, + "probability": 0.6662 + }, + { + "start": 8498.67, + "end": 8501.55, + "probability": 0.9929 + }, + { + "start": 8501.89, + "end": 8502.59, + "probability": 0.7742 + }, + { + "start": 8504.17, + "end": 8508.6, + "probability": 0.9427 + }, + { + "start": 8508.87, + "end": 8510.25, + "probability": 0.8403 + }, + { + "start": 8510.43, + "end": 8511.73, + "probability": 0.639 + }, + { + "start": 8511.81, + "end": 8512.27, + "probability": 0.7854 + }, + { + "start": 8514.83, + "end": 8516.41, + "probability": 0.4254 + }, + { + "start": 8517.83, + "end": 8520.01, + "probability": 0.8324 + }, + { + "start": 8521.43, + "end": 8523.99, + "probability": 0.3306 + }, + { + "start": 8524.11, + "end": 8525.51, + "probability": 0.8772 + }, + { + "start": 8525.57, + "end": 8528.4, + "probability": 0.4948 + }, + { + "start": 8528.95, + "end": 8532.71, + "probability": 0.9292 + }, + { + "start": 8532.83, + "end": 8535.07, + "probability": 0.8025 + }, + { + "start": 8535.23, + "end": 8536.21, + "probability": 0.9329 + }, + { + "start": 8536.27, + "end": 8537.39, + "probability": 0.6963 + }, + { + "start": 8537.53, + "end": 8538.53, + "probability": 0.7953 + }, + { + "start": 8538.55, + "end": 8540.67, + "probability": 0.7986 + }, + { + "start": 8540.71, + "end": 8541.57, + "probability": 0.7686 + }, + { + "start": 8541.59, + "end": 8543.27, + "probability": 0.8832 + }, + { + "start": 8543.77, + "end": 8544.61, + "probability": 0.8383 + }, + { + "start": 8546.25, + "end": 8550.37, + "probability": 0.6074 + }, + { + "start": 8551.89, + "end": 8554.15, + "probability": 0.9054 + }, + { + "start": 8554.25, + "end": 8562.29, + "probability": 0.6273 + }, + { + "start": 8563.67, + "end": 8564.92, + "probability": 0.9436 + }, + { + "start": 8565.11, + "end": 8566.39, + "probability": 0.897 + }, + { + "start": 8566.53, + "end": 8569.79, + "probability": 0.2829 + }, + { + "start": 8569.79, + "end": 8570.49, + "probability": 0.4066 + }, + { + "start": 8570.57, + "end": 8571.49, + "probability": 0.8428 + }, + { + "start": 8572.03, + "end": 8575.15, + "probability": 0.4213 + }, + { + "start": 8575.67, + "end": 8578.37, + "probability": 0.6666 + }, + { + "start": 8578.85, + "end": 8582.93, + "probability": 0.9771 + }, + { + "start": 8582.93, + "end": 8589.19, + "probability": 0.9556 + }, + { + "start": 8590.03, + "end": 8591.91, + "probability": 0.7173 + }, + { + "start": 8592.35, + "end": 8596.23, + "probability": 0.9577 + }, + { + "start": 8597.93, + "end": 8603.45, + "probability": 0.981 + }, + { + "start": 8603.51, + "end": 8611.89, + "probability": 0.7439 + }, + { + "start": 8612.41, + "end": 8613.73, + "probability": 0.8658 + }, + { + "start": 8613.97, + "end": 8617.37, + "probability": 0.6436 + }, + { + "start": 8617.51, + "end": 8619.03, + "probability": 0.7925 + }, + { + "start": 8619.23, + "end": 8620.33, + "probability": 0.7843 + }, + { + "start": 8620.99, + "end": 8621.49, + "probability": 0.8755 + }, + { + "start": 8621.91, + "end": 8623.57, + "probability": 0.9264 + }, + { + "start": 8623.65, + "end": 8625.13, + "probability": 0.8223 + }, + { + "start": 8626.21, + "end": 8630.11, + "probability": 0.7078 + }, + { + "start": 8630.63, + "end": 8635.67, + "probability": 0.9116 + }, + { + "start": 8635.85, + "end": 8636.62, + "probability": 0.0087 + }, + { + "start": 8638.55, + "end": 8643.01, + "probability": 0.8745 + }, + { + "start": 8643.15, + "end": 8646.07, + "probability": 0.986 + }, + { + "start": 8646.45, + "end": 8649.14, + "probability": 0.9567 + }, + { + "start": 8651.97, + "end": 8656.51, + "probability": 0.5467 + }, + { + "start": 8658.11, + "end": 8659.09, + "probability": 0.9971 + }, + { + "start": 8661.1, + "end": 8663.19, + "probability": 0.8868 + }, + { + "start": 8664.95, + "end": 8665.97, + "probability": 0.9479 + }, + { + "start": 8667.45, + "end": 8668.15, + "probability": 0.7537 + }, + { + "start": 8669.33, + "end": 8672.39, + "probability": 0.8475 + }, + { + "start": 8672.65, + "end": 8673.89, + "probability": 0.8625 + }, + { + "start": 8674.17, + "end": 8674.52, + "probability": 0.4583 + }, + { + "start": 8676.45, + "end": 8678.33, + "probability": 0.9032 + }, + { + "start": 8678.39, + "end": 8680.63, + "probability": 0.8579 + }, + { + "start": 8681.27, + "end": 8682.89, + "probability": 0.5843 + }, + { + "start": 8683.55, + "end": 8684.03, + "probability": 0.8063 + }, + { + "start": 8686.63, + "end": 8687.09, + "probability": 0.9285 + }, + { + "start": 8687.11, + "end": 8688.21, + "probability": 0.9484 + }, + { + "start": 8688.39, + "end": 8689.65, + "probability": 0.9476 + }, + { + "start": 8689.85, + "end": 8691.89, + "probability": 0.9116 + }, + { + "start": 8692.99, + "end": 8694.73, + "probability": 0.9229 + }, + { + "start": 8695.79, + "end": 8701.13, + "probability": 0.6604 + }, + { + "start": 8701.23, + "end": 8701.93, + "probability": 0.5146 + }, + { + "start": 8702.73, + "end": 8706.51, + "probability": 0.7171 + }, + { + "start": 8707.15, + "end": 8709.99, + "probability": 0.7252 + }, + { + "start": 8710.23, + "end": 8712.89, + "probability": 0.9905 + }, + { + "start": 8712.91, + "end": 8714.99, + "probability": 0.6346 + }, + { + "start": 8715.37, + "end": 8717.51, + "probability": 0.9607 + }, + { + "start": 8719.91, + "end": 8722.01, + "probability": 0.9507 + }, + { + "start": 8722.71, + "end": 8729.69, + "probability": 0.9951 + }, + { + "start": 8731.75, + "end": 8735.29, + "probability": 0.522 + }, + { + "start": 8736.33, + "end": 8740.69, + "probability": 0.7117 + }, + { + "start": 8742.59, + "end": 8744.19, + "probability": 0.2159 + }, + { + "start": 8745.07, + "end": 8745.95, + "probability": 0.7898 + }, + { + "start": 8746.83, + "end": 8750.43, + "probability": 0.9945 + }, + { + "start": 8750.55, + "end": 8754.21, + "probability": 0.7488 + }, + { + "start": 8754.55, + "end": 8757.27, + "probability": 0.9703 + }, + { + "start": 8757.45, + "end": 8758.05, + "probability": 0.3688 + }, + { + "start": 8758.23, + "end": 8762.31, + "probability": 0.8769 + }, + { + "start": 8762.47, + "end": 8763.47, + "probability": 0.7407 + }, + { + "start": 8763.55, + "end": 8767.73, + "probability": 0.6392 + }, + { + "start": 8767.89, + "end": 8769.51, + "probability": 0.7455 + }, + { + "start": 8769.69, + "end": 8773.19, + "probability": 0.9655 + }, + { + "start": 8773.33, + "end": 8775.43, + "probability": 0.9686 + }, + { + "start": 8776.47, + "end": 8777.55, + "probability": 0.881 + }, + { + "start": 8777.77, + "end": 8778.77, + "probability": 0.7021 + }, + { + "start": 8778.87, + "end": 8780.35, + "probability": 0.9913 + }, + { + "start": 8780.79, + "end": 8781.15, + "probability": 0.543 + }, + { + "start": 8781.73, + "end": 8783.01, + "probability": 0.5508 + }, + { + "start": 8784.19, + "end": 8788.45, + "probability": 0.9565 + }, + { + "start": 8788.45, + "end": 8793.75, + "probability": 0.9846 + }, + { + "start": 8793.93, + "end": 8795.21, + "probability": 0.9457 + }, + { + "start": 8795.39, + "end": 8797.91, + "probability": 0.5889 + }, + { + "start": 8798.95, + "end": 8802.69, + "probability": 0.9627 + }, + { + "start": 8803.77, + "end": 8807.21, + "probability": 0.8015 + }, + { + "start": 8808.09, + "end": 8812.51, + "probability": 0.9149 + }, + { + "start": 8814.09, + "end": 8814.87, + "probability": 0.8711 + }, + { + "start": 8815.65, + "end": 8815.91, + "probability": 0.7986 + }, + { + "start": 8817.45, + "end": 8819.11, + "probability": 0.7272 + }, + { + "start": 8819.89, + "end": 8824.51, + "probability": 0.9646 + }, + { + "start": 8824.51, + "end": 8827.75, + "probability": 0.9895 + }, + { + "start": 8829.13, + "end": 8830.35, + "probability": 0.9834 + }, + { + "start": 8831.61, + "end": 8833.47, + "probability": 0.9958 + }, + { + "start": 8833.83, + "end": 8834.27, + "probability": 0.9862 + }, + { + "start": 8836.37, + "end": 8837.77, + "probability": 0.9681 + }, + { + "start": 8838.69, + "end": 8842.17, + "probability": 0.9956 + }, + { + "start": 8843.67, + "end": 8845.77, + "probability": 0.9614 + }, + { + "start": 8846.27, + "end": 8847.18, + "probability": 0.8691 + }, + { + "start": 8848.39, + "end": 8849.2, + "probability": 0.7965 + }, + { + "start": 8849.99, + "end": 8851.15, + "probability": 0.8823 + }, + { + "start": 8852.53, + "end": 8854.39, + "probability": 0.9988 + }, + { + "start": 8854.65, + "end": 8858.73, + "probability": 0.6414 + }, + { + "start": 8861.06, + "end": 8869.41, + "probability": 0.8815 + }, + { + "start": 8871.87, + "end": 8874.14, + "probability": 0.4929 + }, + { + "start": 8874.67, + "end": 8875.83, + "probability": 0.5957 + }, + { + "start": 8875.83, + "end": 8876.23, + "probability": 0.4141 + }, + { + "start": 8876.47, + "end": 8876.95, + "probability": 0.6258 + }, + { + "start": 8876.95, + "end": 8880.75, + "probability": 0.762 + }, + { + "start": 8882.81, + "end": 8884.05, + "probability": 0.0418 + }, + { + "start": 8887.03, + "end": 8888.63, + "probability": 0.928 + }, + { + "start": 8889.03, + "end": 8891.09, + "probability": 0.8764 + }, + { + "start": 8891.53, + "end": 8895.02, + "probability": 0.711 + }, + { + "start": 8896.17, + "end": 8897.41, + "probability": 0.4993 + }, + { + "start": 8897.69, + "end": 8901.95, + "probability": 0.9911 + }, + { + "start": 8902.05, + "end": 8902.93, + "probability": 0.3279 + }, + { + "start": 8903.83, + "end": 8906.39, + "probability": 0.4859 + }, + { + "start": 8906.47, + "end": 8908.91, + "probability": 0.2076 + }, + { + "start": 8909.07, + "end": 8909.59, + "probability": 0.6914 + }, + { + "start": 8916.67, + "end": 8917.81, + "probability": 0.0872 + }, + { + "start": 8918.03, + "end": 8922.51, + "probability": 0.6433 + }, + { + "start": 8922.95, + "end": 8931.61, + "probability": 0.6018 + }, + { + "start": 8932.83, + "end": 8937.09, + "probability": 0.9941 + }, + { + "start": 8938.03, + "end": 8939.01, + "probability": 0.8514 + }, + { + "start": 8939.67, + "end": 8942.49, + "probability": 0.8181 + }, + { + "start": 8943.05, + "end": 8945.81, + "probability": 0.9351 + }, + { + "start": 8946.27, + "end": 8952.37, + "probability": 0.7734 + }, + { + "start": 8952.97, + "end": 8954.45, + "probability": 0.7865 + }, + { + "start": 8954.49, + "end": 8956.37, + "probability": 0.7625 + }, + { + "start": 8956.47, + "end": 8957.31, + "probability": 0.8991 + }, + { + "start": 8958.29, + "end": 8958.99, + "probability": 0.6201 + }, + { + "start": 8959.31, + "end": 8961.89, + "probability": 0.9727 + }, + { + "start": 8961.95, + "end": 8962.23, + "probability": 0.9471 + }, + { + "start": 8962.61, + "end": 8964.69, + "probability": 0.8057 + }, + { + "start": 8964.83, + "end": 8969.53, + "probability": 0.8326 + }, + { + "start": 8970.69, + "end": 8975.97, + "probability": 0.8585 + }, + { + "start": 8976.65, + "end": 8978.53, + "probability": 0.8106 + }, + { + "start": 8981.77, + "end": 8983.21, + "probability": 0.4375 + }, + { + "start": 8984.35, + "end": 8986.85, + "probability": 0.2012 + }, + { + "start": 8988.57, + "end": 8989.07, + "probability": 0.0637 + }, + { + "start": 8989.81, + "end": 8993.45, + "probability": 0.5029 + }, + { + "start": 8993.45, + "end": 8994.27, + "probability": 0.5987 + }, + { + "start": 8995.13, + "end": 8997.69, + "probability": 0.0873 + }, + { + "start": 8998.19, + "end": 9000.81, + "probability": 0.1641 + }, + { + "start": 9001.17, + "end": 9004.75, + "probability": 0.1192 + }, + { + "start": 9006.97, + "end": 9007.91, + "probability": 0.2243 + }, + { + "start": 9008.09, + "end": 9010.59, + "probability": 0.7757 + }, + { + "start": 9010.93, + "end": 9012.52, + "probability": 0.9703 + }, + { + "start": 9012.61, + "end": 9012.95, + "probability": 0.9365 + }, + { + "start": 9014.15, + "end": 9017.29, + "probability": 0.532 + }, + { + "start": 9018.45, + "end": 9019.29, + "probability": 0.747 + }, + { + "start": 9019.37, + "end": 9021.57, + "probability": 0.9312 + }, + { + "start": 9024.05, + "end": 9024.71, + "probability": 0.6753 + }, + { + "start": 9024.83, + "end": 9025.43, + "probability": 0.0258 + }, + { + "start": 9025.61, + "end": 9025.67, + "probability": 0.2376 + }, + { + "start": 9025.67, + "end": 9026.79, + "probability": 0.1422 + }, + { + "start": 9027.14, + "end": 9029.31, + "probability": 0.36 + }, + { + "start": 9030.31, + "end": 9030.75, + "probability": 0.0401 + }, + { + "start": 9030.75, + "end": 9033.65, + "probability": 0.4371 + }, + { + "start": 9034.09, + "end": 9037.53, + "probability": 0.2242 + }, + { + "start": 9038.09, + "end": 9038.99, + "probability": 0.6103 + }, + { + "start": 9039.15, + "end": 9040.23, + "probability": 0.4772 + }, + { + "start": 9040.47, + "end": 9042.09, + "probability": 0.241 + }, + { + "start": 9042.51, + "end": 9045.39, + "probability": 0.0924 + }, + { + "start": 9046.05, + "end": 9046.59, + "probability": 0.4706 + }, + { + "start": 9046.99, + "end": 9047.57, + "probability": 0.0303 + }, + { + "start": 9047.57, + "end": 9047.57, + "probability": 0.0406 + }, + { + "start": 9047.57, + "end": 9048.62, + "probability": 0.1766 + }, + { + "start": 9048.93, + "end": 9050.45, + "probability": 0.2549 + }, + { + "start": 9051.01, + "end": 9054.81, + "probability": 0.3258 + }, + { + "start": 9067.0, + "end": 9067.0, + "probability": 0.0 + }, + { + "start": 9067.0, + "end": 9067.0, + "probability": 0.0 + }, + { + "start": 9067.0, + "end": 9067.0, + "probability": 0.0 + }, + { + "start": 9067.0, + "end": 9067.0, + "probability": 0.0 + }, + { + "start": 9067.0, + "end": 9067.0, + "probability": 0.0 + }, + { + "start": 9070.9, + "end": 9072.2, + "probability": 0.7034 + }, + { + "start": 9073.22, + "end": 9074.84, + "probability": 0.9048 + }, + { + "start": 9075.92, + "end": 9076.42, + "probability": 0.4818 + }, + { + "start": 9079.22, + "end": 9082.7, + "probability": 0.4931 + }, + { + "start": 9083.82, + "end": 9084.32, + "probability": 0.052 + }, + { + "start": 9084.6, + "end": 9084.8, + "probability": 0.3363 + }, + { + "start": 9084.96, + "end": 9086.22, + "probability": 0.8759 + }, + { + "start": 9086.46, + "end": 9088.7, + "probability": 0.9573 + }, + { + "start": 9088.76, + "end": 9090.94, + "probability": 0.7951 + }, + { + "start": 9091.58, + "end": 9094.36, + "probability": 0.2249 + }, + { + "start": 9094.86, + "end": 9095.43, + "probability": 0.3145 + }, + { + "start": 9095.86, + "end": 9096.02, + "probability": 0.1554 + }, + { + "start": 9096.12, + "end": 9098.08, + "probability": 0.8328 + }, + { + "start": 9098.6, + "end": 9098.68, + "probability": 0.3961 + }, + { + "start": 9098.76, + "end": 9099.38, + "probability": 0.706 + }, + { + "start": 9100.0, + "end": 9101.42, + "probability": 0.809 + }, + { + "start": 9101.56, + "end": 9104.14, + "probability": 0.8657 + }, + { + "start": 9104.62, + "end": 9108.4, + "probability": 0.054 + }, + { + "start": 9117.8, + "end": 9119.32, + "probability": 0.851 + }, + { + "start": 9123.1, + "end": 9123.5, + "probability": 0.1148 + }, + { + "start": 9124.38, + "end": 9126.5, + "probability": 0.0296 + }, + { + "start": 9126.9, + "end": 9127.22, + "probability": 0.3197 + }, + { + "start": 9127.58, + "end": 9129.67, + "probability": 0.0441 + }, + { + "start": 9130.0, + "end": 9130.86, + "probability": 0.1634 + }, + { + "start": 9130.86, + "end": 9133.61, + "probability": 0.2016 + }, + { + "start": 9135.22, + "end": 9135.7, + "probability": 0.0219 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9204.0, + "end": 9204.0, + "probability": 0.0 + }, + { + "start": 9207.1, + "end": 9209.36, + "probability": 0.8714 + }, + { + "start": 9210.54, + "end": 9213.48, + "probability": 0.9003 + }, + { + "start": 9214.46, + "end": 9214.94, + "probability": 0.8812 + }, + { + "start": 9215.12, + "end": 9216.7, + "probability": 0.8718 + }, + { + "start": 9216.72, + "end": 9218.16, + "probability": 0.9785 + }, + { + "start": 9218.98, + "end": 9223.26, + "probability": 0.9878 + }, + { + "start": 9223.78, + "end": 9225.94, + "probability": 0.9644 + }, + { + "start": 9226.1, + "end": 9227.26, + "probability": 0.6827 + }, + { + "start": 9227.98, + "end": 9230.0, + "probability": 0.9709 + }, + { + "start": 9230.18, + "end": 9231.68, + "probability": 0.4677 + }, + { + "start": 9232.02, + "end": 9236.48, + "probability": 0.9665 + }, + { + "start": 9237.12, + "end": 9239.46, + "probability": 0.9471 + }, + { + "start": 9240.66, + "end": 9243.36, + "probability": 0.9597 + }, + { + "start": 9243.96, + "end": 9247.18, + "probability": 0.9885 + }, + { + "start": 9248.46, + "end": 9252.36, + "probability": 0.9969 + }, + { + "start": 9253.86, + "end": 9256.12, + "probability": 0.981 + }, + { + "start": 9256.88, + "end": 9258.16, + "probability": 0.9015 + }, + { + "start": 9258.9, + "end": 9262.74, + "probability": 0.9077 + }, + { + "start": 9263.16, + "end": 9264.76, + "probability": 0.9782 + }, + { + "start": 9264.82, + "end": 9268.96, + "probability": 0.7946 + }, + { + "start": 9269.76, + "end": 9273.16, + "probability": 0.6454 + }, + { + "start": 9273.74, + "end": 9278.64, + "probability": 0.925 + }, + { + "start": 9279.4, + "end": 9282.0, + "probability": 0.974 + }, + { + "start": 9283.12, + "end": 9284.47, + "probability": 0.6167 + }, + { + "start": 9286.0, + "end": 9289.52, + "probability": 0.7402 + }, + { + "start": 9290.22, + "end": 9294.02, + "probability": 0.8955 + }, + { + "start": 9295.78, + "end": 9300.26, + "probability": 0.9043 + }, + { + "start": 9300.26, + "end": 9303.28, + "probability": 0.7689 + }, + { + "start": 9304.7, + "end": 9308.46, + "probability": 0.1223 + }, + { + "start": 9310.85, + "end": 9311.42, + "probability": 0.141 + }, + { + "start": 9311.42, + "end": 9311.42, + "probability": 0.0592 + }, + { + "start": 9311.42, + "end": 9311.96, + "probability": 0.4519 + }, + { + "start": 9312.4, + "end": 9314.69, + "probability": 0.9925 + }, + { + "start": 9315.26, + "end": 9317.36, + "probability": 0.6881 + }, + { + "start": 9317.38, + "end": 9318.08, + "probability": 0.8081 + }, + { + "start": 9318.62, + "end": 9322.58, + "probability": 0.9894 + }, + { + "start": 9323.34, + "end": 9325.42, + "probability": 0.9849 + }, + { + "start": 9326.22, + "end": 9330.38, + "probability": 0.9976 + }, + { + "start": 9331.12, + "end": 9333.84, + "probability": 0.7932 + }, + { + "start": 9334.84, + "end": 9336.02, + "probability": 0.8129 + }, + { + "start": 9336.44, + "end": 9340.09, + "probability": 0.8321 + }, + { + "start": 9340.9, + "end": 9341.74, + "probability": 0.9102 + }, + { + "start": 9342.44, + "end": 9343.64, + "probability": 0.9744 + }, + { + "start": 9343.86, + "end": 9346.44, + "probability": 0.9961 + }, + { + "start": 9346.6, + "end": 9347.54, + "probability": 0.9326 + }, + { + "start": 9348.2, + "end": 9353.38, + "probability": 0.9516 + }, + { + "start": 9354.98, + "end": 9356.4, + "probability": 0.9829 + }, + { + "start": 9356.5, + "end": 9357.2, + "probability": 0.8635 + }, + { + "start": 9357.46, + "end": 9358.42, + "probability": 0.9648 + }, + { + "start": 9358.5, + "end": 9360.6, + "probability": 0.9834 + }, + { + "start": 9360.84, + "end": 9362.7, + "probability": 0.7551 + }, + { + "start": 9363.22, + "end": 9364.02, + "probability": 0.6954 + }, + { + "start": 9367.81, + "end": 9370.22, + "probability": 0.4886 + }, + { + "start": 9370.4, + "end": 9372.36, + "probability": 0.7197 + }, + { + "start": 9372.36, + "end": 9373.5, + "probability": 0.7184 + }, + { + "start": 9373.72, + "end": 9376.62, + "probability": 0.3538 + }, + { + "start": 9377.32, + "end": 9377.6, + "probability": 0.6454 + }, + { + "start": 9377.8, + "end": 9383.88, + "probability": 0.659 + }, + { + "start": 9384.6, + "end": 9385.82, + "probability": 0.7291 + }, + { + "start": 9386.34, + "end": 9388.56, + "probability": 0.7555 + }, + { + "start": 9389.26, + "end": 9390.48, + "probability": 0.9935 + }, + { + "start": 9391.04, + "end": 9395.2, + "probability": 0.896 + }, + { + "start": 9395.98, + "end": 9401.84, + "probability": 0.9937 + }, + { + "start": 9402.06, + "end": 9403.56, + "probability": 0.9219 + }, + { + "start": 9403.96, + "end": 9406.62, + "probability": 0.9636 + }, + { + "start": 9407.62, + "end": 9412.3, + "probability": 0.7731 + }, + { + "start": 9412.46, + "end": 9417.08, + "probability": 0.9955 + }, + { + "start": 9417.68, + "end": 9420.56, + "probability": 0.8415 + }, + { + "start": 9420.8, + "end": 9423.6, + "probability": 0.921 + }, + { + "start": 9423.82, + "end": 9426.44, + "probability": 0.9653 + }, + { + "start": 9427.06, + "end": 9429.38, + "probability": 0.9327 + }, + { + "start": 9429.58, + "end": 9430.1, + "probability": 0.9783 + }, + { + "start": 9430.58, + "end": 9433.25, + "probability": 0.978 + }, + { + "start": 9433.4, + "end": 9434.54, + "probability": 0.7463 + }, + { + "start": 9434.74, + "end": 9437.12, + "probability": 0.6857 + }, + { + "start": 9437.84, + "end": 9438.66, + "probability": 0.9026 + }, + { + "start": 9439.32, + "end": 9444.88, + "probability": 0.9167 + }, + { + "start": 9445.28, + "end": 9447.4, + "probability": 0.9707 + }, + { + "start": 9447.76, + "end": 9451.78, + "probability": 0.9499 + }, + { + "start": 9451.86, + "end": 9452.78, + "probability": 0.7573 + }, + { + "start": 9453.56, + "end": 9454.16, + "probability": 0.2941 + }, + { + "start": 9454.48, + "end": 9456.9, + "probability": 0.9695 + }, + { + "start": 9457.26, + "end": 9458.04, + "probability": 0.2902 + }, + { + "start": 9458.42, + "end": 9458.48, + "probability": 0.1422 + }, + { + "start": 9458.48, + "end": 9458.96, + "probability": 0.1299 + }, + { + "start": 9459.24, + "end": 9461.52, + "probability": 0.5682 + }, + { + "start": 9461.56, + "end": 9463.98, + "probability": 0.4996 + }, + { + "start": 9464.16, + "end": 9466.48, + "probability": 0.8472 + }, + { + "start": 9466.52, + "end": 9469.38, + "probability": 0.3309 + }, + { + "start": 9469.38, + "end": 9471.4, + "probability": 0.0588 + }, + { + "start": 9471.77, + "end": 9476.8, + "probability": 0.9819 + }, + { + "start": 9476.9, + "end": 9479.96, + "probability": 0.9974 + }, + { + "start": 9480.06, + "end": 9481.18, + "probability": 0.7675 + }, + { + "start": 9481.9, + "end": 9485.2, + "probability": 0.656 + }, + { + "start": 9485.34, + "end": 9486.52, + "probability": 0.9927 + }, + { + "start": 9486.66, + "end": 9487.87, + "probability": 0.9751 + }, + { + "start": 9489.18, + "end": 9491.2, + "probability": 0.4795 + }, + { + "start": 9491.76, + "end": 9492.14, + "probability": 0.486 + }, + { + "start": 9492.88, + "end": 9494.88, + "probability": 0.7206 + }, + { + "start": 9495.12, + "end": 9498.16, + "probability": 0.8281 + }, + { + "start": 9498.3, + "end": 9504.46, + "probability": 0.8762 + }, + { + "start": 9505.24, + "end": 9506.68, + "probability": 0.9839 + }, + { + "start": 9507.68, + "end": 9509.14, + "probability": 0.9255 + }, + { + "start": 9509.68, + "end": 9512.22, + "probability": 0.993 + }, + { + "start": 9514.88, + "end": 9515.0, + "probability": 0.0422 + }, + { + "start": 9515.0, + "end": 9516.0, + "probability": 0.1988 + }, + { + "start": 9516.52, + "end": 9518.0, + "probability": 0.8583 + }, + { + "start": 9519.04, + "end": 9520.82, + "probability": 0.8174 + }, + { + "start": 9521.02, + "end": 9525.36, + "probability": 0.984 + }, + { + "start": 9526.2, + "end": 9528.56, + "probability": 0.9917 + }, + { + "start": 9529.42, + "end": 9532.1, + "probability": 0.993 + }, + { + "start": 9532.64, + "end": 9533.86, + "probability": 0.995 + }, + { + "start": 9534.26, + "end": 9538.4, + "probability": 0.9329 + }, + { + "start": 9539.08, + "end": 9540.62, + "probability": 0.9836 + }, + { + "start": 9542.52, + "end": 9546.78, + "probability": 0.9 + }, + { + "start": 9546.94, + "end": 9547.94, + "probability": 0.8027 + }, + { + "start": 9550.66, + "end": 9551.12, + "probability": 0.5186 + }, + { + "start": 9551.3, + "end": 9552.7, + "probability": 0.911 + }, + { + "start": 9552.96, + "end": 9558.96, + "probability": 0.9521 + }, + { + "start": 9559.74, + "end": 9562.76, + "probability": 0.8122 + }, + { + "start": 9562.84, + "end": 9565.0, + "probability": 0.9834 + }, + { + "start": 9565.18, + "end": 9566.7, + "probability": 0.8185 + }, + { + "start": 9567.24, + "end": 9570.64, + "probability": 0.9897 + }, + { + "start": 9570.82, + "end": 9571.74, + "probability": 0.9387 + }, + { + "start": 9571.92, + "end": 9573.03, + "probability": 0.9719 + }, + { + "start": 9573.54, + "end": 9575.0, + "probability": 0.9677 + }, + { + "start": 9575.5, + "end": 9577.32, + "probability": 0.9788 + }, + { + "start": 9578.34, + "end": 9580.46, + "probability": 0.9405 + }, + { + "start": 9581.36, + "end": 9582.95, + "probability": 0.9942 + }, + { + "start": 9583.02, + "end": 9584.84, + "probability": 0.9945 + }, + { + "start": 9585.44, + "end": 9587.4, + "probability": 0.99 + }, + { + "start": 9588.44, + "end": 9591.12, + "probability": 0.9596 + }, + { + "start": 9591.16, + "end": 9594.18, + "probability": 0.8496 + }, + { + "start": 9595.08, + "end": 9595.91, + "probability": 0.7111 + }, + { + "start": 9596.8, + "end": 9600.42, + "probability": 0.9627 + }, + { + "start": 9601.96, + "end": 9603.02, + "probability": 0.7771 + }, + { + "start": 9603.08, + "end": 9604.4, + "probability": 0.9775 + }, + { + "start": 9604.58, + "end": 9607.08, + "probability": 0.6952 + }, + { + "start": 9607.32, + "end": 9609.26, + "probability": 0.8333 + }, + { + "start": 9609.38, + "end": 9610.88, + "probability": 0.9531 + }, + { + "start": 9611.48, + "end": 9613.7, + "probability": 0.9803 + }, + { + "start": 9613.98, + "end": 9615.64, + "probability": 0.9595 + }, + { + "start": 9617.5, + "end": 9618.0, + "probability": 0.6573 + }, + { + "start": 9618.94, + "end": 9620.56, + "probability": 0.9639 + }, + { + "start": 9621.64, + "end": 9622.04, + "probability": 0.7279 + }, + { + "start": 9622.2, + "end": 9623.2, + "probability": 0.7436 + }, + { + "start": 9623.26, + "end": 9628.34, + "probability": 0.9752 + }, + { + "start": 9630.57, + "end": 9634.14, + "probability": 0.9945 + }, + { + "start": 9634.96, + "end": 9637.14, + "probability": 0.866 + }, + { + "start": 9637.84, + "end": 9639.08, + "probability": 0.8161 + }, + { + "start": 9639.42, + "end": 9641.58, + "probability": 0.9919 + }, + { + "start": 9641.68, + "end": 9642.76, + "probability": 0.9089 + }, + { + "start": 9643.7, + "end": 9645.26, + "probability": 0.8838 + }, + { + "start": 9645.97, + "end": 9648.28, + "probability": 0.2388 + }, + { + "start": 9649.54, + "end": 9652.2, + "probability": 0.991 + }, + { + "start": 9652.62, + "end": 9657.3, + "probability": 0.0377 + }, + { + "start": 9657.52, + "end": 9657.74, + "probability": 0.5873 + }, + { + "start": 9657.74, + "end": 9658.76, + "probability": 0.6985 + }, + { + "start": 9658.98, + "end": 9659.54, + "probability": 0.6841 + }, + { + "start": 9659.62, + "end": 9660.94, + "probability": 0.9861 + }, + { + "start": 9661.0, + "end": 9664.52, + "probability": 0.9721 + }, + { + "start": 9665.12, + "end": 9666.58, + "probability": 0.7205 + }, + { + "start": 9666.62, + "end": 9667.92, + "probability": 0.6243 + }, + { + "start": 9668.02, + "end": 9669.68, + "probability": 0.9458 + }, + { + "start": 9672.58, + "end": 9675.28, + "probability": 0.9564 + }, + { + "start": 9675.28, + "end": 9675.28, + "probability": 0.6722 + }, + { + "start": 9675.28, + "end": 9677.86, + "probability": 0.7442 + }, + { + "start": 9678.16, + "end": 9680.42, + "probability": 0.988 + }, + { + "start": 9680.46, + "end": 9681.69, + "probability": 0.9702 + }, + { + "start": 9683.4, + "end": 9685.36, + "probability": 0.6189 + }, + { + "start": 9685.6, + "end": 9685.9, + "probability": 0.4282 + }, + { + "start": 9686.0, + "end": 9690.56, + "probability": 0.9798 + }, + { + "start": 9690.66, + "end": 9692.44, + "probability": 0.9573 + }, + { + "start": 9692.82, + "end": 9697.25, + "probability": 0.9761 + }, + { + "start": 9698.8, + "end": 9701.04, + "probability": 0.9243 + }, + { + "start": 9701.99, + "end": 9706.69, + "probability": 0.9368 + }, + { + "start": 9707.54, + "end": 9711.76, + "probability": 0.9788 + }, + { + "start": 9712.6, + "end": 9715.18, + "probability": 0.8876 + }, + { + "start": 9715.44, + "end": 9717.52, + "probability": 0.9478 + }, + { + "start": 9717.98, + "end": 9719.87, + "probability": 0.6673 + }, + { + "start": 9720.46, + "end": 9721.64, + "probability": 0.6876 + }, + { + "start": 9721.98, + "end": 9723.08, + "probability": 0.8441 + }, + { + "start": 9723.24, + "end": 9724.8, + "probability": 0.8238 + }, + { + "start": 9725.22, + "end": 9729.24, + "probability": 0.9062 + }, + { + "start": 9729.96, + "end": 9734.86, + "probability": 0.7094 + }, + { + "start": 9735.46, + "end": 9737.03, + "probability": 0.9232 + }, + { + "start": 9738.56, + "end": 9739.38, + "probability": 0.5603 + }, + { + "start": 9739.9, + "end": 9740.72, + "probability": 0.5734 + }, + { + "start": 9741.7, + "end": 9745.42, + "probability": 0.8286 + }, + { + "start": 9746.74, + "end": 9750.08, + "probability": 0.6581 + }, + { + "start": 9751.28, + "end": 9754.34, + "probability": 0.9835 + }, + { + "start": 9754.46, + "end": 9756.6, + "probability": 0.7593 + }, + { + "start": 9758.04, + "end": 9762.6, + "probability": 0.6627 + }, + { + "start": 9763.18, + "end": 9764.34, + "probability": 0.978 + }, + { + "start": 9765.14, + "end": 9766.3, + "probability": 0.9283 + }, + { + "start": 9767.88, + "end": 9770.74, + "probability": 0.9939 + }, + { + "start": 9771.5, + "end": 9776.02, + "probability": 0.8886 + }, + { + "start": 9777.86, + "end": 9779.96, + "probability": 0.9595 + }, + { + "start": 9781.18, + "end": 9784.1, + "probability": 0.7411 + }, + { + "start": 9784.12, + "end": 9784.52, + "probability": 0.8117 + }, + { + "start": 9784.64, + "end": 9786.36, + "probability": 0.4484 + }, + { + "start": 9786.4, + "end": 9786.8, + "probability": 0.8495 + }, + { + "start": 9787.18, + "end": 9789.08, + "probability": 0.9808 + }, + { + "start": 9789.36, + "end": 9790.74, + "probability": 0.9541 + }, + { + "start": 9790.98, + "end": 9795.8, + "probability": 0.899 + }, + { + "start": 9796.5, + "end": 9798.76, + "probability": 0.6649 + }, + { + "start": 9798.98, + "end": 9800.64, + "probability": 0.9798 + }, + { + "start": 9800.68, + "end": 9802.06, + "probability": 0.9637 + }, + { + "start": 9803.62, + "end": 9804.88, + "probability": 0.9984 + }, + { + "start": 9805.58, + "end": 9806.04, + "probability": 0.7024 + }, + { + "start": 9806.22, + "end": 9808.22, + "probability": 0.9893 + }, + { + "start": 9808.28, + "end": 9809.0, + "probability": 0.837 + }, + { + "start": 9809.06, + "end": 9810.34, + "probability": 0.7629 + }, + { + "start": 9810.42, + "end": 9812.84, + "probability": 0.883 + }, + { + "start": 9814.43, + "end": 9817.52, + "probability": 0.8099 + }, + { + "start": 9817.66, + "end": 9818.22, + "probability": 0.761 + }, + { + "start": 9818.28, + "end": 9821.05, + "probability": 0.9168 + }, + { + "start": 9821.72, + "end": 9825.64, + "probability": 0.8031 + }, + { + "start": 9826.18, + "end": 9826.56, + "probability": 0.9253 + }, + { + "start": 9827.48, + "end": 9832.8, + "probability": 0.9375 + }, + { + "start": 9833.92, + "end": 9835.16, + "probability": 0.5918 + }, + { + "start": 9835.6, + "end": 9837.36, + "probability": 0.9201 + }, + { + "start": 9837.46, + "end": 9839.48, + "probability": 0.7671 + }, + { + "start": 9839.64, + "end": 9840.46, + "probability": 0.9497 + }, + { + "start": 9841.74, + "end": 9846.44, + "probability": 0.9708 + }, + { + "start": 9846.86, + "end": 9847.8, + "probability": 0.9878 + }, + { + "start": 9847.8, + "end": 9850.04, + "probability": 0.9521 + }, + { + "start": 9850.08, + "end": 9851.76, + "probability": 0.6777 + }, + { + "start": 9852.44, + "end": 9854.85, + "probability": 0.8271 + }, + { + "start": 9855.68, + "end": 9858.44, + "probability": 0.9951 + }, + { + "start": 9858.52, + "end": 9859.68, + "probability": 0.9503 + }, + { + "start": 9859.72, + "end": 9863.52, + "probability": 0.9553 + }, + { + "start": 9864.58, + "end": 9866.98, + "probability": 0.8098 + }, + { + "start": 9867.46, + "end": 9868.8, + "probability": 0.918 + }, + { + "start": 9868.92, + "end": 9870.52, + "probability": 0.9689 + }, + { + "start": 9870.98, + "end": 9872.32, + "probability": 0.9047 + }, + { + "start": 9872.74, + "end": 9873.36, + "probability": 0.9117 + }, + { + "start": 9873.46, + "end": 9873.9, + "probability": 0.7213 + }, + { + "start": 9874.66, + "end": 9877.34, + "probability": 0.9122 + }, + { + "start": 9878.5, + "end": 9878.5, + "probability": 0.1613 + }, + { + "start": 9878.5, + "end": 9881.66, + "probability": 0.7116 + }, + { + "start": 9882.06, + "end": 9884.56, + "probability": 0.821 + }, + { + "start": 9884.64, + "end": 9887.22, + "probability": 0.807 + }, + { + "start": 9887.78, + "end": 9890.4, + "probability": 0.8157 + }, + { + "start": 9891.24, + "end": 9894.24, + "probability": 0.9159 + }, + { + "start": 9894.44, + "end": 9901.72, + "probability": 0.9755 + }, + { + "start": 9901.86, + "end": 9902.42, + "probability": 0.5906 + }, + { + "start": 9902.96, + "end": 9904.46, + "probability": 0.6201 + }, + { + "start": 9904.52, + "end": 9907.5, + "probability": 0.9577 + }, + { + "start": 9907.6, + "end": 9908.57, + "probability": 0.748 + }, + { + "start": 9910.4, + "end": 9911.72, + "probability": 0.7754 + }, + { + "start": 9911.84, + "end": 9914.12, + "probability": 0.9636 + }, + { + "start": 9914.28, + "end": 9914.84, + "probability": 0.8783 + }, + { + "start": 9916.02, + "end": 9917.14, + "probability": 0.7041 + }, + { + "start": 9917.3, + "end": 9918.84, + "probability": 0.6727 + }, + { + "start": 9918.98, + "end": 9922.97, + "probability": 0.9146 + }, + { + "start": 9923.1, + "end": 9924.62, + "probability": 0.9929 + }, + { + "start": 9925.08, + "end": 9926.07, + "probability": 0.9968 + }, + { + "start": 9926.8, + "end": 9929.24, + "probability": 0.9474 + }, + { + "start": 9929.28, + "end": 9935.7, + "probability": 0.8916 + }, + { + "start": 9936.06, + "end": 9939.42, + "probability": 0.7214 + }, + { + "start": 9940.14, + "end": 9940.94, + "probability": 0.7104 + }, + { + "start": 9941.22, + "end": 9943.7, + "probability": 0.9744 + }, + { + "start": 9943.78, + "end": 9944.16, + "probability": 0.4509 + }, + { + "start": 9944.22, + "end": 9945.32, + "probability": 0.7751 + }, + { + "start": 9946.41, + "end": 9949.9, + "probability": 0.7559 + }, + { + "start": 9949.94, + "end": 9951.5, + "probability": 0.9076 + }, + { + "start": 9952.08, + "end": 9953.28, + "probability": 0.9381 + }, + { + "start": 9953.88, + "end": 9956.76, + "probability": 0.979 + }, + { + "start": 9956.86, + "end": 9959.18, + "probability": 0.9963 + }, + { + "start": 9959.88, + "end": 9962.16, + "probability": 0.978 + }, + { + "start": 9962.72, + "end": 9967.78, + "probability": 0.9736 + }, + { + "start": 9968.46, + "end": 9970.59, + "probability": 0.9595 + }, + { + "start": 9971.6, + "end": 9973.28, + "probability": 0.6464 + }, + { + "start": 9973.4, + "end": 9975.86, + "probability": 0.9561 + }, + { + "start": 9976.56, + "end": 9979.56, + "probability": 0.9219 + }, + { + "start": 9979.94, + "end": 9981.76, + "probability": 0.9457 + }, + { + "start": 9982.6, + "end": 9983.94, + "probability": 0.7155 + }, + { + "start": 9984.06, + "end": 9985.36, + "probability": 0.9358 + }, + { + "start": 9985.5, + "end": 9986.66, + "probability": 0.6407 + }, + { + "start": 9987.26, + "end": 9989.5, + "probability": 0.9989 + }, + { + "start": 9990.14, + "end": 9993.02, + "probability": 0.9457 + }, + { + "start": 9993.76, + "end": 9995.16, + "probability": 0.982 + }, + { + "start": 9995.7, + "end": 9998.64, + "probability": 0.9651 + }, + { + "start": 9999.2, + "end": 10003.16, + "probability": 0.9907 + }, + { + "start": 10003.16, + "end": 10007.38, + "probability": 0.9989 + }, + { + "start": 10007.64, + "end": 10009.25, + "probability": 0.9233 + }, + { + "start": 10009.82, + "end": 10013.76, + "probability": 0.9863 + }, + { + "start": 10013.94, + "end": 10015.66, + "probability": 0.4917 + }, + { + "start": 10016.26, + "end": 10018.42, + "probability": 0.9684 + }, + { + "start": 10019.32, + "end": 10022.18, + "probability": 0.9016 + }, + { + "start": 10022.82, + "end": 10024.3, + "probability": 0.894 + }, + { + "start": 10025.1, + "end": 10027.06, + "probability": 0.8549 + }, + { + "start": 10027.34, + "end": 10028.08, + "probability": 0.9737 + }, + { + "start": 10028.2, + "end": 10034.26, + "probability": 0.6233 + }, + { + "start": 10034.86, + "end": 10035.44, + "probability": 0.3188 + }, + { + "start": 10035.44, + "end": 10037.66, + "probability": 0.5754 + }, + { + "start": 10038.2, + "end": 10041.06, + "probability": 0.9562 + }, + { + "start": 10041.6, + "end": 10043.4, + "probability": 0.9862 + }, + { + "start": 10044.02, + "end": 10048.4, + "probability": 0.8135 + }, + { + "start": 10048.4, + "end": 10051.56, + "probability": 0.8798 + }, + { + "start": 10051.68, + "end": 10052.36, + "probability": 0.7585 + }, + { + "start": 10052.42, + "end": 10054.52, + "probability": 0.6402 + }, + { + "start": 10055.14, + "end": 10055.7, + "probability": 0.728 + }, + { + "start": 10056.48, + "end": 10059.32, + "probability": 0.8996 + }, + { + "start": 10059.38, + "end": 10060.25, + "probability": 0.6643 + }, + { + "start": 10060.92, + "end": 10064.06, + "probability": 0.6054 + }, + { + "start": 10064.42, + "end": 10065.15, + "probability": 0.958 + }, + { + "start": 10065.3, + "end": 10066.52, + "probability": 0.5116 + }, + { + "start": 10066.76, + "end": 10070.5, + "probability": 0.912 + }, + { + "start": 10071.34, + "end": 10072.32, + "probability": 0.8958 + }, + { + "start": 10072.98, + "end": 10076.62, + "probability": 0.9904 + }, + { + "start": 10076.72, + "end": 10081.28, + "probability": 0.9865 + }, + { + "start": 10082.02, + "end": 10082.26, + "probability": 0.4958 + }, + { + "start": 10084.9, + "end": 10086.73, + "probability": 0.9978 + }, + { + "start": 10087.44, + "end": 10088.36, + "probability": 0.9535 + }, + { + "start": 10089.6, + "end": 10091.38, + "probability": 0.9955 + }, + { + "start": 10091.38, + "end": 10093.64, + "probability": 0.7454 + }, + { + "start": 10094.36, + "end": 10095.04, + "probability": 0.8054 + }, + { + "start": 10096.26, + "end": 10101.28, + "probability": 0.9819 + }, + { + "start": 10101.92, + "end": 10105.56, + "probability": 0.992 + }, + { + "start": 10105.7, + "end": 10106.46, + "probability": 0.8183 + }, + { + "start": 10106.94, + "end": 10107.7, + "probability": 0.8103 + }, + { + "start": 10108.88, + "end": 10109.18, + "probability": 0.6239 + }, + { + "start": 10109.28, + "end": 10110.56, + "probability": 0.838 + }, + { + "start": 10110.76, + "end": 10112.04, + "probability": 0.9534 + }, + { + "start": 10112.16, + "end": 10114.42, + "probability": 0.6695 + }, + { + "start": 10114.48, + "end": 10115.2, + "probability": 0.9273 + }, + { + "start": 10115.24, + "end": 10116.5, + "probability": 0.8977 + }, + { + "start": 10117.1, + "end": 10120.08, + "probability": 0.7641 + }, + { + "start": 10120.7, + "end": 10121.68, + "probability": 0.9048 + }, + { + "start": 10121.86, + "end": 10125.8, + "probability": 0.8558 + }, + { + "start": 10126.32, + "end": 10127.44, + "probability": 0.98 + }, + { + "start": 10127.48, + "end": 10130.52, + "probability": 0.582 + }, + { + "start": 10131.22, + "end": 10133.22, + "probability": 0.9531 + }, + { + "start": 10133.32, + "end": 10134.34, + "probability": 0.6888 + }, + { + "start": 10134.5, + "end": 10134.94, + "probability": 0.5562 + }, + { + "start": 10135.18, + "end": 10135.83, + "probability": 0.937 + }, + { + "start": 10136.72, + "end": 10137.97, + "probability": 0.9468 + }, + { + "start": 10138.94, + "end": 10140.2, + "probability": 0.9644 + }, + { + "start": 10140.34, + "end": 10141.92, + "probability": 0.8127 + }, + { + "start": 10142.2, + "end": 10144.5, + "probability": 0.9653 + }, + { + "start": 10145.22, + "end": 10146.1, + "probability": 0.9131 + }, + { + "start": 10146.66, + "end": 10148.1, + "probability": 0.8921 + }, + { + "start": 10148.18, + "end": 10148.46, + "probability": 0.9316 + }, + { + "start": 10148.52, + "end": 10148.78, + "probability": 0.9871 + }, + { + "start": 10148.84, + "end": 10149.1, + "probability": 0.9154 + }, + { + "start": 10149.12, + "end": 10149.46, + "probability": 0.9408 + }, + { + "start": 10149.48, + "end": 10150.28, + "probability": 0.9309 + }, + { + "start": 10151.62, + "end": 10153.26, + "probability": 0.897 + }, + { + "start": 10153.76, + "end": 10156.54, + "probability": 0.9622 + }, + { + "start": 10156.96, + "end": 10157.5, + "probability": 0.4993 + }, + { + "start": 10158.56, + "end": 10159.76, + "probability": 0.8936 + }, + { + "start": 10160.5, + "end": 10161.18, + "probability": 0.897 + }, + { + "start": 10162.28, + "end": 10163.38, + "probability": 0.8049 + }, + { + "start": 10163.84, + "end": 10167.82, + "probability": 0.9668 + }, + { + "start": 10168.58, + "end": 10170.34, + "probability": 0.9948 + }, + { + "start": 10170.92, + "end": 10174.34, + "probability": 0.9115 + }, + { + "start": 10175.52, + "end": 10176.66, + "probability": 0.4753 + }, + { + "start": 10177.36, + "end": 10177.76, + "probability": 0.6919 + }, + { + "start": 10178.88, + "end": 10179.86, + "probability": 0.878 + }, + { + "start": 10182.78, + "end": 10183.98, + "probability": 0.9218 + }, + { + "start": 10184.08, + "end": 10184.42, + "probability": 0.6378 + }, + { + "start": 10185.4, + "end": 10189.24, + "probability": 0.9244 + }, + { + "start": 10189.24, + "end": 10194.34, + "probability": 0.9797 + }, + { + "start": 10197.2, + "end": 10201.7, + "probability": 0.7563 + }, + { + "start": 10201.7, + "end": 10205.42, + "probability": 0.9958 + }, + { + "start": 10206.38, + "end": 10209.28, + "probability": 0.9731 + }, + { + "start": 10209.32, + "end": 10211.24, + "probability": 0.9896 + }, + { + "start": 10211.32, + "end": 10212.84, + "probability": 0.9133 + }, + { + "start": 10213.38, + "end": 10213.86, + "probability": 0.8652 + }, + { + "start": 10214.58, + "end": 10215.12, + "probability": 0.7462 + }, + { + "start": 10215.82, + "end": 10216.6, + "probability": 0.8143 + }, + { + "start": 10217.32, + "end": 10221.62, + "probability": 0.9844 + }, + { + "start": 10221.94, + "end": 10222.64, + "probability": 0.8647 + }, + { + "start": 10222.88, + "end": 10223.62, + "probability": 0.985 + }, + { + "start": 10223.72, + "end": 10224.41, + "probability": 0.9932 + }, + { + "start": 10224.66, + "end": 10225.37, + "probability": 0.9609 + }, + { + "start": 10225.64, + "end": 10228.26, + "probability": 0.6575 + }, + { + "start": 10229.06, + "end": 10229.9, + "probability": 0.9312 + }, + { + "start": 10230.78, + "end": 10233.3, + "probability": 0.9955 + }, + { + "start": 10233.94, + "end": 10234.57, + "probability": 0.9416 + }, + { + "start": 10235.48, + "end": 10236.92, + "probability": 0.9973 + }, + { + "start": 10237.26, + "end": 10238.03, + "probability": 0.7783 + }, + { + "start": 10240.06, + "end": 10240.54, + "probability": 0.8698 + }, + { + "start": 10240.74, + "end": 10241.76, + "probability": 0.9681 + }, + { + "start": 10242.3, + "end": 10243.28, + "probability": 0.9741 + }, + { + "start": 10243.34, + "end": 10244.52, + "probability": 0.9897 + }, + { + "start": 10245.86, + "end": 10248.1, + "probability": 0.7856 + }, + { + "start": 10248.1, + "end": 10251.26, + "probability": 0.9985 + }, + { + "start": 10253.66, + "end": 10255.66, + "probability": 0.9929 + }, + { + "start": 10256.32, + "end": 10258.73, + "probability": 0.9609 + }, + { + "start": 10260.19, + "end": 10263.06, + "probability": 0.7898 + }, + { + "start": 10263.72, + "end": 10265.68, + "probability": 0.9878 + }, + { + "start": 10265.86, + "end": 10268.12, + "probability": 0.7959 + }, + { + "start": 10268.98, + "end": 10271.18, + "probability": 0.8144 + }, + { + "start": 10272.12, + "end": 10272.5, + "probability": 0.9039 + }, + { + "start": 10274.1, + "end": 10276.08, + "probability": 0.9932 + }, + { + "start": 10277.28, + "end": 10280.12, + "probability": 0.9946 + }, + { + "start": 10281.02, + "end": 10282.96, + "probability": 0.9683 + }, + { + "start": 10283.86, + "end": 10288.38, + "probability": 0.7042 + }, + { + "start": 10289.38, + "end": 10290.66, + "probability": 0.9502 + }, + { + "start": 10291.48, + "end": 10292.96, + "probability": 0.9709 + }, + { + "start": 10293.66, + "end": 10298.1, + "probability": 0.7214 + }, + { + "start": 10299.4, + "end": 10302.88, + "probability": 0.9628 + }, + { + "start": 10303.96, + "end": 10308.04, + "probability": 0.9709 + }, + { + "start": 10308.94, + "end": 10311.54, + "probability": 0.7217 + }, + { + "start": 10312.74, + "end": 10317.37, + "probability": 0.9866 + }, + { + "start": 10317.54, + "end": 10319.36, + "probability": 0.9258 + }, + { + "start": 10319.82, + "end": 10321.4, + "probability": 0.8823 + }, + { + "start": 10321.52, + "end": 10325.84, + "probability": 0.9849 + }, + { + "start": 10326.12, + "end": 10327.11, + "probability": 0.4541 + }, + { + "start": 10327.86, + "end": 10332.04, + "probability": 0.9514 + }, + { + "start": 10332.26, + "end": 10332.82, + "probability": 0.8931 + }, + { + "start": 10333.16, + "end": 10333.86, + "probability": 0.9747 + }, + { + "start": 10333.92, + "end": 10334.02, + "probability": 0.6179 + }, + { + "start": 10334.08, + "end": 10334.76, + "probability": 0.9537 + }, + { + "start": 10334.76, + "end": 10335.36, + "probability": 0.9143 + }, + { + "start": 10337.38, + "end": 10339.52, + "probability": 0.7075 + }, + { + "start": 10341.6, + "end": 10343.76, + "probability": 0.9983 + }, + { + "start": 10345.2, + "end": 10348.14, + "probability": 0.9532 + }, + { + "start": 10349.14, + "end": 10350.64, + "probability": 0.906 + }, + { + "start": 10351.02, + "end": 10354.52, + "probability": 0.9891 + }, + { + "start": 10357.62, + "end": 10364.88, + "probability": 0.8157 + }, + { + "start": 10364.96, + "end": 10365.81, + "probability": 0.9565 + }, + { + "start": 10367.17, + "end": 10368.52, + "probability": 0.708 + }, + { + "start": 10368.52, + "end": 10372.18, + "probability": 0.9958 + }, + { + "start": 10372.9, + "end": 10374.96, + "probability": 0.9746 + }, + { + "start": 10375.6, + "end": 10379.04, + "probability": 0.9532 + }, + { + "start": 10379.8, + "end": 10382.84, + "probability": 0.8472 + }, + { + "start": 10384.04, + "end": 10389.64, + "probability": 0.9636 + }, + { + "start": 10389.68, + "end": 10391.13, + "probability": 0.9893 + }, + { + "start": 10391.6, + "end": 10392.72, + "probability": 0.9126 + }, + { + "start": 10392.8, + "end": 10396.52, + "probability": 0.9652 + }, + { + "start": 10397.26, + "end": 10399.4, + "probability": 0.9891 + }, + { + "start": 10399.92, + "end": 10402.38, + "probability": 0.7849 + }, + { + "start": 10403.28, + "end": 10406.32, + "probability": 0.9814 + }, + { + "start": 10407.36, + "end": 10409.08, + "probability": 0.8131 + }, + { + "start": 10410.28, + "end": 10412.4, + "probability": 0.999 + }, + { + "start": 10412.54, + "end": 10413.64, + "probability": 0.6366 + }, + { + "start": 10414.56, + "end": 10415.34, + "probability": 0.9909 + }, + { + "start": 10416.6, + "end": 10418.52, + "probability": 0.8924 + }, + { + "start": 10419.7, + "end": 10421.22, + "probability": 0.9587 + }, + { + "start": 10422.28, + "end": 10424.54, + "probability": 0.9969 + }, + { + "start": 10425.76, + "end": 10427.4, + "probability": 0.799 + }, + { + "start": 10428.26, + "end": 10430.5, + "probability": 0.6987 + }, + { + "start": 10431.98, + "end": 10435.14, + "probability": 0.9717 + }, + { + "start": 10435.68, + "end": 10435.84, + "probability": 0.0637 + }, + { + "start": 10435.84, + "end": 10437.22, + "probability": 0.6967 + }, + { + "start": 10437.84, + "end": 10439.24, + "probability": 0.8393 + }, + { + "start": 10440.88, + "end": 10446.6, + "probability": 0.9005 + }, + { + "start": 10447.38, + "end": 10449.0, + "probability": 0.5255 + }, + { + "start": 10450.1, + "end": 10451.06, + "probability": 0.8383 + }, + { + "start": 10451.93, + "end": 10454.94, + "probability": 0.9753 + }, + { + "start": 10456.3, + "end": 10456.9, + "probability": 0.7077 + }, + { + "start": 10456.98, + "end": 10459.18, + "probability": 0.9917 + }, + { + "start": 10459.92, + "end": 10462.4, + "probability": 0.9677 + }, + { + "start": 10463.36, + "end": 10465.2, + "probability": 0.871 + }, + { + "start": 10466.48, + "end": 10468.44, + "probability": 0.9948 + }, + { + "start": 10469.46, + "end": 10469.96, + "probability": 0.8808 + }, + { + "start": 10470.82, + "end": 10472.07, + "probability": 0.8938 + }, + { + "start": 10473.54, + "end": 10474.32, + "probability": 0.9752 + }, + { + "start": 10475.4, + "end": 10476.28, + "probability": 0.9282 + }, + { + "start": 10478.6, + "end": 10479.49, + "probability": 0.7763 + }, + { + "start": 10480.44, + "end": 10481.9, + "probability": 0.9425 + }, + { + "start": 10482.32, + "end": 10484.2, + "probability": 0.7105 + }, + { + "start": 10485.94, + "end": 10487.2, + "probability": 0.7652 + }, + { + "start": 10488.34, + "end": 10494.14, + "probability": 0.9282 + }, + { + "start": 10495.04, + "end": 10495.52, + "probability": 0.8396 + }, + { + "start": 10496.68, + "end": 10499.4, + "probability": 0.9971 + }, + { + "start": 10500.08, + "end": 10502.54, + "probability": 0.9709 + }, + { + "start": 10504.98, + "end": 10505.96, + "probability": 0.7128 + }, + { + "start": 10505.96, + "end": 10506.06, + "probability": 0.0376 + }, + { + "start": 10506.92, + "end": 10509.92, + "probability": 0.9062 + }, + { + "start": 10510.35, + "end": 10510.42, + "probability": 0.0758 + }, + { + "start": 10510.42, + "end": 10511.44, + "probability": 0.6158 + }, + { + "start": 10512.24, + "end": 10512.76, + "probability": 0.8603 + }, + { + "start": 10512.82, + "end": 10513.82, + "probability": 0.8392 + }, + { + "start": 10514.88, + "end": 10515.66, + "probability": 0.9281 + }, + { + "start": 10516.1, + "end": 10517.22, + "probability": 0.9043 + }, + { + "start": 10517.78, + "end": 10519.06, + "probability": 0.9468 + }, + { + "start": 10519.58, + "end": 10522.74, + "probability": 0.4373 + }, + { + "start": 10522.82, + "end": 10524.4, + "probability": 0.9978 + }, + { + "start": 10525.4, + "end": 10528.18, + "probability": 0.9952 + }, + { + "start": 10528.34, + "end": 10528.88, + "probability": 0.4896 + }, + { + "start": 10528.92, + "end": 10531.09, + "probability": 0.9858 + }, + { + "start": 10532.64, + "end": 10538.26, + "probability": 0.8875 + }, + { + "start": 10538.48, + "end": 10539.42, + "probability": 0.8343 + }, + { + "start": 10539.68, + "end": 10541.14, + "probability": 0.9735 + }, + { + "start": 10541.58, + "end": 10542.92, + "probability": 0.7449 + }, + { + "start": 10543.88, + "end": 10545.46, + "probability": 0.9952 + }, + { + "start": 10548.31, + "end": 10550.1, + "probability": 0.8843 + }, + { + "start": 10550.28, + "end": 10551.2, + "probability": 0.3904 + }, + { + "start": 10551.5, + "end": 10552.66, + "probability": 0.6514 + }, + { + "start": 10552.84, + "end": 10553.82, + "probability": 0.7256 + }, + { + "start": 10555.32, + "end": 10558.66, + "probability": 0.9565 + }, + { + "start": 10559.26, + "end": 10560.48, + "probability": 0.9941 + }, + { + "start": 10562.18, + "end": 10564.12, + "probability": 0.9936 + }, + { + "start": 10565.1, + "end": 10567.38, + "probability": 0.4908 + }, + { + "start": 10568.12, + "end": 10570.02, + "probability": 0.7582 + }, + { + "start": 10570.76, + "end": 10572.64, + "probability": 0.9976 + }, + { + "start": 10573.68, + "end": 10574.66, + "probability": 0.8 + }, + { + "start": 10574.9, + "end": 10576.24, + "probability": 0.9048 + }, + { + "start": 10577.24, + "end": 10580.68, + "probability": 0.8005 + }, + { + "start": 10581.5, + "end": 10583.6, + "probability": 0.7738 + }, + { + "start": 10585.76, + "end": 10587.86, + "probability": 0.4205 + }, + { + "start": 10588.06, + "end": 10588.2, + "probability": 0.14 + }, + { + "start": 10588.2, + "end": 10589.93, + "probability": 0.2357 + }, + { + "start": 10590.24, + "end": 10591.59, + "probability": 0.7323 + }, + { + "start": 10592.84, + "end": 10593.3, + "probability": 0.9594 + }, + { + "start": 10594.12, + "end": 10596.88, + "probability": 0.6471 + }, + { + "start": 10597.42, + "end": 10597.86, + "probability": 0.6069 + }, + { + "start": 10598.28, + "end": 10600.56, + "probability": 0.9135 + }, + { + "start": 10602.2, + "end": 10605.3, + "probability": 0.7763 + }, + { + "start": 10607.1, + "end": 10607.66, + "probability": 0.0362 + }, + { + "start": 10607.66, + "end": 10610.74, + "probability": 0.853 + }, + { + "start": 10611.38, + "end": 10611.38, + "probability": 0.3801 + }, + { + "start": 10611.38, + "end": 10613.6, + "probability": 0.8843 + }, + { + "start": 10614.7, + "end": 10615.64, + "probability": 0.977 + }, + { + "start": 10616.68, + "end": 10617.92, + "probability": 0.7445 + }, + { + "start": 10618.54, + "end": 10619.64, + "probability": 0.7569 + }, + { + "start": 10620.9, + "end": 10622.58, + "probability": 0.5644 + }, + { + "start": 10624.7, + "end": 10626.52, + "probability": 0.9808 + }, + { + "start": 10627.76, + "end": 10630.16, + "probability": 0.9403 + }, + { + "start": 10631.1, + "end": 10632.74, + "probability": 0.8074 + }, + { + "start": 10633.64, + "end": 10636.7, + "probability": 0.9034 + }, + { + "start": 10637.88, + "end": 10639.64, + "probability": 0.8536 + }, + { + "start": 10641.38, + "end": 10642.92, + "probability": 0.3171 + }, + { + "start": 10643.68, + "end": 10648.72, + "probability": 0.939 + }, + { + "start": 10649.34, + "end": 10650.46, + "probability": 0.8012 + }, + { + "start": 10651.56, + "end": 10653.88, + "probability": 0.5545 + }, + { + "start": 10655.02, + "end": 10658.3, + "probability": 0.9549 + }, + { + "start": 10659.58, + "end": 10660.28, + "probability": 0.6468 + }, + { + "start": 10661.44, + "end": 10663.22, + "probability": 0.724 + }, + { + "start": 10664.26, + "end": 10664.88, + "probability": 0.9758 + }, + { + "start": 10666.12, + "end": 10666.56, + "probability": 0.7447 + }, + { + "start": 10667.12, + "end": 10669.44, + "probability": 0.6771 + }, + { + "start": 10670.46, + "end": 10674.28, + "probability": 0.9846 + }, + { + "start": 10674.74, + "end": 10677.0, + "probability": 0.9678 + }, + { + "start": 10677.8, + "end": 10679.46, + "probability": 0.337 + }, + { + "start": 10685.68, + "end": 10688.44, + "probability": 0.7363 + }, + { + "start": 10688.5, + "end": 10691.1, + "probability": 0.9946 + }, + { + "start": 10692.32, + "end": 10693.76, + "probability": 0.6598 + }, + { + "start": 10696.14, + "end": 10698.04, + "probability": 0.8813 + }, + { + "start": 10699.52, + "end": 10700.1, + "probability": 0.0868 + }, + { + "start": 10704.8, + "end": 10704.8, + "probability": 0.0018 + }, + { + "start": 10733.22, + "end": 10733.86, + "probability": 0.2388 + }, + { + "start": 10734.4, + "end": 10737.06, + "probability": 0.5885 + }, + { + "start": 10737.62, + "end": 10741.72, + "probability": 0.9318 + }, + { + "start": 10742.44, + "end": 10743.02, + "probability": 0.5142 + }, + { + "start": 10743.06, + "end": 10743.34, + "probability": 0.3749 + }, + { + "start": 10743.4, + "end": 10744.06, + "probability": 0.7147 + }, + { + "start": 10744.2, + "end": 10744.74, + "probability": 0.8681 + }, + { + "start": 10745.0, + "end": 10745.78, + "probability": 0.6765 + }, + { + "start": 10745.84, + "end": 10747.98, + "probability": 0.4815 + }, + { + "start": 10748.25, + "end": 10752.6, + "probability": 0.9688 + }, + { + "start": 10752.6, + "end": 10754.88, + "probability": 0.9934 + }, + { + "start": 10756.66, + "end": 10758.88, + "probability": 0.9855 + }, + { + "start": 10759.66, + "end": 10760.32, + "probability": 0.435 + }, + { + "start": 10760.84, + "end": 10762.6, + "probability": 0.7513 + }, + { + "start": 10763.06, + "end": 10764.5, + "probability": 0.9916 + }, + { + "start": 10764.56, + "end": 10768.3, + "probability": 0.9907 + }, + { + "start": 10770.22, + "end": 10771.08, + "probability": 0.7901 + }, + { + "start": 10771.62, + "end": 10772.9, + "probability": 0.4628 + }, + { + "start": 10774.48, + "end": 10775.02, + "probability": 0.7265 + }, + { + "start": 10775.82, + "end": 10777.94, + "probability": 0.8826 + }, + { + "start": 10779.66, + "end": 10783.0, + "probability": 0.814 + }, + { + "start": 10784.52, + "end": 10786.3, + "probability": 0.8741 + }, + { + "start": 10787.5, + "end": 10792.0, + "probability": 0.8771 + }, + { + "start": 10792.0, + "end": 10795.94, + "probability": 0.8764 + }, + { + "start": 10796.7, + "end": 10799.7, + "probability": 0.866 + }, + { + "start": 10801.58, + "end": 10805.74, + "probability": 0.7723 + }, + { + "start": 10807.76, + "end": 10809.42, + "probability": 0.376 + }, + { + "start": 10810.54, + "end": 10812.48, + "probability": 0.9013 + }, + { + "start": 10812.66, + "end": 10814.26, + "probability": 0.8722 + }, + { + "start": 10814.98, + "end": 10817.8, + "probability": 0.9473 + }, + { + "start": 10818.26, + "end": 10820.18, + "probability": 0.7997 + }, + { + "start": 10821.24, + "end": 10824.64, + "probability": 0.9849 + }, + { + "start": 10825.18, + "end": 10827.54, + "probability": 0.9934 + }, + { + "start": 10828.92, + "end": 10833.1, + "probability": 0.9933 + }, + { + "start": 10833.9, + "end": 10838.96, + "probability": 0.9982 + }, + { + "start": 10839.98, + "end": 10840.14, + "probability": 0.5399 + }, + { + "start": 10840.48, + "end": 10845.58, + "probability": 0.811 + }, + { + "start": 10847.98, + "end": 10852.84, + "probability": 0.9401 + }, + { + "start": 10853.6, + "end": 10856.1, + "probability": 0.9759 + }, + { + "start": 10857.02, + "end": 10861.18, + "probability": 0.9474 + }, + { + "start": 10861.34, + "end": 10863.38, + "probability": 0.6675 + }, + { + "start": 10865.2, + "end": 10866.36, + "probability": 0.9961 + }, + { + "start": 10867.12, + "end": 10869.6, + "probability": 0.998 + }, + { + "start": 10869.76, + "end": 10872.52, + "probability": 0.9705 + }, + { + "start": 10873.36, + "end": 10875.84, + "probability": 0.8221 + }, + { + "start": 10876.1, + "end": 10878.64, + "probability": 0.8535 + }, + { + "start": 10879.42, + "end": 10883.76, + "probability": 0.9944 + }, + { + "start": 10884.88, + "end": 10887.24, + "probability": 0.8954 + }, + { + "start": 10887.38, + "end": 10890.32, + "probability": 0.8585 + }, + { + "start": 10891.42, + "end": 10892.94, + "probability": 0.7655 + }, + { + "start": 10893.08, + "end": 10896.72, + "probability": 0.9753 + }, + { + "start": 10897.02, + "end": 10897.54, + "probability": 0.6367 + }, + { + "start": 10898.66, + "end": 10901.74, + "probability": 0.9722 + }, + { + "start": 10903.02, + "end": 10905.78, + "probability": 0.9224 + }, + { + "start": 10905.8, + "end": 10906.53, + "probability": 0.4073 + }, + { + "start": 10906.76, + "end": 10908.12, + "probability": 0.8655 + }, + { + "start": 10908.64, + "end": 10910.34, + "probability": 0.9272 + }, + { + "start": 10911.08, + "end": 10913.44, + "probability": 0.991 + }, + { + "start": 10915.42, + "end": 10918.82, + "probability": 0.959 + }, + { + "start": 10919.6, + "end": 10921.04, + "probability": 0.9966 + }, + { + "start": 10924.02, + "end": 10924.8, + "probability": 0.7894 + }, + { + "start": 10925.12, + "end": 10925.58, + "probability": 0.9595 + }, + { + "start": 10925.68, + "end": 10926.46, + "probability": 0.8006 + }, + { + "start": 10926.52, + "end": 10927.14, + "probability": 0.8479 + }, + { + "start": 10927.7, + "end": 10928.7, + "probability": 0.9521 + }, + { + "start": 10928.92, + "end": 10929.22, + "probability": 0.5805 + }, + { + "start": 10929.34, + "end": 10929.98, + "probability": 0.7758 + }, + { + "start": 10930.06, + "end": 10931.66, + "probability": 0.9353 + }, + { + "start": 10932.73, + "end": 10935.14, + "probability": 0.9741 + }, + { + "start": 10935.28, + "end": 10936.94, + "probability": 0.9544 + }, + { + "start": 10938.16, + "end": 10940.3, + "probability": 0.9657 + }, + { + "start": 10941.28, + "end": 10942.7, + "probability": 0.7921 + }, + { + "start": 10944.62, + "end": 10945.6, + "probability": 0.8403 + }, + { + "start": 10948.6, + "end": 10950.18, + "probability": 0.5075 + }, + { + "start": 10950.78, + "end": 10951.08, + "probability": 0.7837 + }, + { + "start": 10951.08, + "end": 10953.92, + "probability": 0.991 + }, + { + "start": 10954.48, + "end": 10955.64, + "probability": 0.5204 + }, + { + "start": 10956.2, + "end": 10958.28, + "probability": 0.8317 + }, + { + "start": 10958.88, + "end": 10960.2, + "probability": 0.2224 + }, + { + "start": 10962.6, + "end": 10963.46, + "probability": 0.1721 + }, + { + "start": 10963.46, + "end": 10964.68, + "probability": 0.9202 + }, + { + "start": 10965.5, + "end": 10969.32, + "probability": 0.7818 + }, + { + "start": 10971.68, + "end": 10976.2, + "probability": 0.8078 + }, + { + "start": 10976.34, + "end": 10978.04, + "probability": 0.8294 + }, + { + "start": 10979.06, + "end": 10980.32, + "probability": 0.8386 + }, + { + "start": 10980.88, + "end": 10983.78, + "probability": 0.9824 + }, + { + "start": 10984.54, + "end": 10986.42, + "probability": 0.779 + }, + { + "start": 10987.18, + "end": 10989.9, + "probability": 0.9949 + }, + { + "start": 10990.14, + "end": 10993.52, + "probability": 0.8276 + }, + { + "start": 10995.42, + "end": 10997.34, + "probability": 0.9847 + }, + { + "start": 10998.74, + "end": 11002.92, + "probability": 0.991 + }, + { + "start": 11003.86, + "end": 11007.66, + "probability": 0.9961 + }, + { + "start": 11009.08, + "end": 11011.02, + "probability": 0.7399 + }, + { + "start": 11011.84, + "end": 11013.26, + "probability": 0.822 + }, + { + "start": 11013.7, + "end": 11017.11, + "probability": 0.9639 + }, + { + "start": 11017.52, + "end": 11020.2, + "probability": 0.9971 + }, + { + "start": 11020.94, + "end": 11022.44, + "probability": 0.8749 + }, + { + "start": 11023.82, + "end": 11027.18, + "probability": 0.9621 + }, + { + "start": 11028.24, + "end": 11030.98, + "probability": 0.9239 + }, + { + "start": 11032.0, + "end": 11032.66, + "probability": 0.5619 + }, + { + "start": 11032.84, + "end": 11033.46, + "probability": 0.3981 + }, + { + "start": 11033.46, + "end": 11033.76, + "probability": 0.8569 + }, + { + "start": 11033.76, + "end": 11035.16, + "probability": 0.4062 + }, + { + "start": 11035.46, + "end": 11039.98, + "probability": 0.9136 + }, + { + "start": 11040.48, + "end": 11043.62, + "probability": 0.9854 + }, + { + "start": 11044.06, + "end": 11045.26, + "probability": 0.832 + }, + { + "start": 11045.38, + "end": 11048.54, + "probability": 0.5634 + }, + { + "start": 11048.82, + "end": 11049.38, + "probability": 0.2058 + }, + { + "start": 11050.04, + "end": 11052.2, + "probability": 0.9937 + }, + { + "start": 11052.46, + "end": 11053.2, + "probability": 0.5743 + }, + { + "start": 11053.34, + "end": 11055.4, + "probability": 0.8345 + }, + { + "start": 11055.52, + "end": 11056.12, + "probability": 0.7326 + }, + { + "start": 11057.26, + "end": 11060.96, + "probability": 0.9754 + }, + { + "start": 11061.18, + "end": 11062.46, + "probability": 0.7866 + }, + { + "start": 11063.66, + "end": 11065.34, + "probability": 0.9758 + }, + { + "start": 11065.4, + "end": 11066.72, + "probability": 0.9777 + }, + { + "start": 11067.74, + "end": 11071.4, + "probability": 0.9967 + }, + { + "start": 11071.4, + "end": 11075.72, + "probability": 0.9568 + }, + { + "start": 11075.88, + "end": 11079.22, + "probability": 0.7835 + }, + { + "start": 11080.24, + "end": 11083.36, + "probability": 0.9189 + }, + { + "start": 11084.68, + "end": 11092.6, + "probability": 0.981 + }, + { + "start": 11094.16, + "end": 11096.02, + "probability": 0.9626 + }, + { + "start": 11096.7, + "end": 11101.62, + "probability": 0.7982 + }, + { + "start": 11101.7, + "end": 11104.54, + "probability": 0.925 + }, + { + "start": 11105.56, + "end": 11107.66, + "probability": 0.9291 + }, + { + "start": 11108.34, + "end": 11111.88, + "probability": 0.8538 + }, + { + "start": 11112.88, + "end": 11114.88, + "probability": 0.993 + }, + { + "start": 11114.88, + "end": 11117.54, + "probability": 0.9666 + }, + { + "start": 11117.74, + "end": 11120.2, + "probability": 0.8673 + }, + { + "start": 11120.9, + "end": 11122.46, + "probability": 0.9323 + }, + { + "start": 11123.22, + "end": 11124.76, + "probability": 0.9917 + }, + { + "start": 11125.66, + "end": 11130.56, + "probability": 0.8665 + }, + { + "start": 11131.44, + "end": 11134.62, + "probability": 0.9777 + }, + { + "start": 11135.36, + "end": 11137.62, + "probability": 0.9913 + }, + { + "start": 11138.12, + "end": 11143.3, + "probability": 0.9495 + }, + { + "start": 11143.88, + "end": 11145.04, + "probability": 0.9106 + }, + { + "start": 11145.92, + "end": 11148.42, + "probability": 0.8149 + }, + { + "start": 11149.56, + "end": 11154.52, + "probability": 0.9949 + }, + { + "start": 11155.44, + "end": 11158.26, + "probability": 0.8733 + }, + { + "start": 11159.54, + "end": 11164.12, + "probability": 0.9832 + }, + { + "start": 11164.12, + "end": 11167.62, + "probability": 0.994 + }, + { + "start": 11168.56, + "end": 11172.86, + "probability": 0.9392 + }, + { + "start": 11173.48, + "end": 11174.44, + "probability": 0.9937 + }, + { + "start": 11175.08, + "end": 11178.82, + "probability": 0.9958 + }, + { + "start": 11179.46, + "end": 11181.52, + "probability": 0.9158 + }, + { + "start": 11182.4, + "end": 11185.96, + "probability": 0.9875 + }, + { + "start": 11186.14, + "end": 11187.33, + "probability": 0.9267 + }, + { + "start": 11190.33, + "end": 11194.48, + "probability": 0.5188 + }, + { + "start": 11195.04, + "end": 11197.4, + "probability": 0.7184 + }, + { + "start": 11198.04, + "end": 11198.96, + "probability": 0.0364 + }, + { + "start": 11199.14, + "end": 11200.3, + "probability": 0.489 + }, + { + "start": 11200.3, + "end": 11201.4, + "probability": 0.6953 + }, + { + "start": 11201.4, + "end": 11204.5, + "probability": 0.6481 + }, + { + "start": 11204.6, + "end": 11205.26, + "probability": 0.932 + }, + { + "start": 11205.46, + "end": 11208.14, + "probability": 0.6197 + }, + { + "start": 11209.1, + "end": 11211.02, + "probability": 0.9102 + }, + { + "start": 11211.6, + "end": 11213.64, + "probability": 0.6885 + }, + { + "start": 11214.04, + "end": 11221.26, + "probability": 0.9868 + }, + { + "start": 11222.32, + "end": 11222.84, + "probability": 0.7712 + }, + { + "start": 11224.73, + "end": 11226.78, + "probability": 0.8853 + }, + { + "start": 11227.02, + "end": 11228.14, + "probability": 0.7743 + }, + { + "start": 11228.22, + "end": 11230.72, + "probability": 0.193 + }, + { + "start": 11230.72, + "end": 11231.92, + "probability": 0.5477 + }, + { + "start": 11233.64, + "end": 11236.92, + "probability": 0.9434 + }, + { + "start": 11237.66, + "end": 11241.08, + "probability": 0.9269 + }, + { + "start": 11243.6, + "end": 11247.74, + "probability": 0.7544 + }, + { + "start": 11248.68, + "end": 11249.65, + "probability": 0.1417 + }, + { + "start": 11251.16, + "end": 11251.7, + "probability": 0.9127 + }, + { + "start": 11252.2, + "end": 11255.56, + "probability": 0.6139 + }, + { + "start": 11255.76, + "end": 11256.08, + "probability": 0.5974 + }, + { + "start": 11256.62, + "end": 11257.1, + "probability": 0.7835 + }, + { + "start": 11257.7, + "end": 11259.42, + "probability": 0.412 + }, + { + "start": 11259.96, + "end": 11262.26, + "probability": 0.9767 + }, + { + "start": 11262.8, + "end": 11266.88, + "probability": 0.9359 + }, + { + "start": 11267.52, + "end": 11270.95, + "probability": 0.8686 + }, + { + "start": 11272.1, + "end": 11274.24, + "probability": 0.629 + }, + { + "start": 11274.84, + "end": 11276.76, + "probability": 0.731 + }, + { + "start": 11277.74, + "end": 11278.78, + "probability": 0.7231 + }, + { + "start": 11279.56, + "end": 11282.82, + "probability": 0.7023 + }, + { + "start": 11283.58, + "end": 11285.86, + "probability": 0.7578 + }, + { + "start": 11286.4, + "end": 11287.98, + "probability": 0.7804 + }, + { + "start": 11290.54, + "end": 11295.82, + "probability": 0.9858 + }, + { + "start": 11296.0, + "end": 11299.54, + "probability": 0.9348 + }, + { + "start": 11300.72, + "end": 11303.44, + "probability": 0.9802 + }, + { + "start": 11304.1, + "end": 11306.98, + "probability": 0.6974 + }, + { + "start": 11307.98, + "end": 11310.26, + "probability": 0.9835 + }, + { + "start": 11310.26, + "end": 11312.76, + "probability": 0.9927 + }, + { + "start": 11315.38, + "end": 11318.04, + "probability": 0.8952 + }, + { + "start": 11318.94, + "end": 11320.54, + "probability": 0.7406 + }, + { + "start": 11321.06, + "end": 11322.4, + "probability": 0.9229 + }, + { + "start": 11322.94, + "end": 11324.12, + "probability": 0.894 + }, + { + "start": 11324.68, + "end": 11328.46, + "probability": 0.993 + }, + { + "start": 11332.04, + "end": 11332.62, + "probability": 0.6986 + }, + { + "start": 11333.46, + "end": 11334.4, + "probability": 0.6281 + }, + { + "start": 11334.72, + "end": 11336.78, + "probability": 0.8367 + }, + { + "start": 11337.32, + "end": 11339.06, + "probability": 0.8645 + }, + { + "start": 11339.72, + "end": 11340.76, + "probability": 0.7259 + }, + { + "start": 11340.84, + "end": 11341.36, + "probability": 0.7175 + }, + { + "start": 11341.38, + "end": 11341.92, + "probability": 0.9036 + }, + { + "start": 11341.98, + "end": 11343.42, + "probability": 0.967 + }, + { + "start": 11344.32, + "end": 11347.86, + "probability": 0.8319 + }, + { + "start": 11349.58, + "end": 11350.56, + "probability": 0.8077 + }, + { + "start": 11350.6, + "end": 11351.5, + "probability": 0.9963 + }, + { + "start": 11351.7, + "end": 11355.55, + "probability": 0.9642 + }, + { + "start": 11355.91, + "end": 11358.93, + "probability": 0.9614 + }, + { + "start": 11361.0, + "end": 11361.92, + "probability": 0.9152 + }, + { + "start": 11363.56, + "end": 11367.98, + "probability": 0.8317 + }, + { + "start": 11368.88, + "end": 11372.4, + "probability": 0.9708 + }, + { + "start": 11373.58, + "end": 11374.84, + "probability": 0.7917 + }, + { + "start": 11375.74, + "end": 11376.29, + "probability": 0.6602 + }, + { + "start": 11377.06, + "end": 11379.56, + "probability": 0.975 + }, + { + "start": 11380.24, + "end": 11384.56, + "probability": 0.9449 + }, + { + "start": 11384.68, + "end": 11386.76, + "probability": 0.9444 + }, + { + "start": 11388.14, + "end": 11391.02, + "probability": 0.9494 + }, + { + "start": 11391.8, + "end": 11394.2, + "probability": 0.943 + }, + { + "start": 11396.34, + "end": 11398.78, + "probability": 0.952 + }, + { + "start": 11398.96, + "end": 11400.76, + "probability": 0.929 + }, + { + "start": 11400.76, + "end": 11403.18, + "probability": 0.9984 + }, + { + "start": 11406.36, + "end": 11408.02, + "probability": 0.8328 + }, + { + "start": 11408.78, + "end": 11410.38, + "probability": 0.0558 + }, + { + "start": 11410.86, + "end": 11413.44, + "probability": 0.9735 + }, + { + "start": 11415.26, + "end": 11419.3, + "probability": 0.8639 + }, + { + "start": 11420.22, + "end": 11421.86, + "probability": 0.9793 + }, + { + "start": 11423.06, + "end": 11426.24, + "probability": 0.9493 + }, + { + "start": 11426.58, + "end": 11430.1, + "probability": 0.7922 + }, + { + "start": 11430.94, + "end": 11431.88, + "probability": 0.5942 + }, + { + "start": 11433.22, + "end": 11437.64, + "probability": 0.9962 + }, + { + "start": 11438.56, + "end": 11438.84, + "probability": 0.4764 + }, + { + "start": 11438.94, + "end": 11439.04, + "probability": 0.2225 + }, + { + "start": 11439.24, + "end": 11442.12, + "probability": 0.925 + }, + { + "start": 11442.76, + "end": 11443.98, + "probability": 0.9363 + }, + { + "start": 11445.2, + "end": 11447.32, + "probability": 0.8421 + }, + { + "start": 11447.96, + "end": 11449.06, + "probability": 0.5381 + }, + { + "start": 11449.14, + "end": 11450.65, + "probability": 0.8816 + }, + { + "start": 11452.12, + "end": 11453.62, + "probability": 0.6173 + }, + { + "start": 11454.54, + "end": 11457.4, + "probability": 0.8977 + }, + { + "start": 11460.46, + "end": 11461.82, + "probability": 0.6481 + }, + { + "start": 11462.6, + "end": 11465.16, + "probability": 0.7572 + }, + { + "start": 11465.74, + "end": 11468.88, + "probability": 0.7974 + }, + { + "start": 11477.71, + "end": 11479.9, + "probability": 0.6118 + }, + { + "start": 11480.56, + "end": 11482.18, + "probability": 0.5328 + }, + { + "start": 11482.58, + "end": 11483.54, + "probability": 0.837 + }, + { + "start": 11483.8, + "end": 11484.08, + "probability": 0.7868 + }, + { + "start": 11485.54, + "end": 11485.76, + "probability": 0.8826 + }, + { + "start": 11486.44, + "end": 11487.4, + "probability": 0.6868 + }, + { + "start": 11487.48, + "end": 11488.9, + "probability": 0.8128 + }, + { + "start": 11488.98, + "end": 11490.74, + "probability": 0.9793 + }, + { + "start": 11491.44, + "end": 11493.16, + "probability": 0.9689 + }, + { + "start": 11493.38, + "end": 11496.3, + "probability": 0.9875 + }, + { + "start": 11496.44, + "end": 11498.16, + "probability": 0.3658 + }, + { + "start": 11498.78, + "end": 11501.48, + "probability": 0.318 + }, + { + "start": 11501.76, + "end": 11501.96, + "probability": 0.7955 + }, + { + "start": 11503.42, + "end": 11506.68, + "probability": 0.9124 + }, + { + "start": 11506.84, + "end": 11507.04, + "probability": 0.5989 + }, + { + "start": 11508.3, + "end": 11511.2, + "probability": 0.7918 + }, + { + "start": 11512.08, + "end": 11514.42, + "probability": 0.5189 + }, + { + "start": 11515.76, + "end": 11518.66, + "probability": 0.5998 + }, + { + "start": 11519.36, + "end": 11522.6, + "probability": 0.7733 + } + ], + "segments_count": 3723, + "words_count": 19128, + "avg_words_per_segment": 5.1378, + "avg_segment_duration": 2.3574, + "avg_words_per_minute": 97.049, + "plenum_id": "12654", + "duration": 11825.78, + "title": null, + "plenum_date": "2011-03-08" +} \ No newline at end of file