diff --git "a/25085/metadata.json" "b/25085/metadata.json" new file mode 100644--- /dev/null +++ "b/25085/metadata.json" @@ -0,0 +1,17472 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "25085", + "quality_score": 0.9228, + "per_segment_quality_scores": [ + { + "start": 6.38, + "end": 6.38, + "probability": 0.0057 + }, + { + "start": 7.34, + "end": 8.9, + "probability": 0.2366 + }, + { + "start": 9.7, + "end": 10.1, + "probability": 0.0611 + }, + { + "start": 25.76, + "end": 26.4, + "probability": 0.0334 + }, + { + "start": 80.3, + "end": 82.14, + "probability": 0.1656 + }, + { + "start": 83.18, + "end": 84.28, + "probability": 0.5507 + }, + { + "start": 84.54, + "end": 86.82, + "probability": 0.9948 + }, + { + "start": 86.96, + "end": 87.22, + "probability": 0.4903 + }, + { + "start": 88.42, + "end": 90.72, + "probability": 0.822 + }, + { + "start": 91.58, + "end": 93.56, + "probability": 0.5538 + }, + { + "start": 94.14, + "end": 95.95, + "probability": 0.4686 + }, + { + "start": 96.82, + "end": 97.14, + "probability": 0.0456 + }, + { + "start": 97.94, + "end": 100.22, + "probability": 0.624 + }, + { + "start": 100.82, + "end": 103.24, + "probability": 0.9849 + }, + { + "start": 103.38, + "end": 107.38, + "probability": 0.8398 + }, + { + "start": 107.42, + "end": 108.24, + "probability": 0.9499 + }, + { + "start": 109.56, + "end": 111.72, + "probability": 0.915 + }, + { + "start": 112.36, + "end": 116.34, + "probability": 0.9684 + }, + { + "start": 116.38, + "end": 121.14, + "probability": 0.6749 + }, + { + "start": 122.12, + "end": 124.24, + "probability": 0.9589 + }, + { + "start": 124.76, + "end": 125.94, + "probability": 0.8375 + }, + { + "start": 127.28, + "end": 127.98, + "probability": 0.5666 + }, + { + "start": 128.2, + "end": 131.48, + "probability": 0.9596 + }, + { + "start": 131.96, + "end": 135.82, + "probability": 0.8394 + }, + { + "start": 136.46, + "end": 143.64, + "probability": 0.7503 + }, + { + "start": 144.22, + "end": 146.68, + "probability": 0.6447 + }, + { + "start": 146.68, + "end": 150.92, + "probability": 0.9668 + }, + { + "start": 151.48, + "end": 151.58, + "probability": 0.0003 + }, + { + "start": 153.76, + "end": 154.96, + "probability": 0.0971 + }, + { + "start": 156.06, + "end": 159.2, + "probability": 0.8967 + }, + { + "start": 161.87, + "end": 164.96, + "probability": 0.5194 + }, + { + "start": 166.5, + "end": 169.98, + "probability": 0.7075 + }, + { + "start": 170.16, + "end": 172.52, + "probability": 0.6093 + }, + { + "start": 172.64, + "end": 174.68, + "probability": 0.9861 + }, + { + "start": 176.56, + "end": 177.05, + "probability": 0.6837 + }, + { + "start": 178.98, + "end": 180.32, + "probability": 0.9495 + }, + { + "start": 180.44, + "end": 181.94, + "probability": 0.9822 + }, + { + "start": 183.2, + "end": 186.7, + "probability": 0.9771 + }, + { + "start": 186.8, + "end": 187.36, + "probability": 0.5396 + }, + { + "start": 187.47, + "end": 193.62, + "probability": 0.7555 + }, + { + "start": 193.62, + "end": 195.74, + "probability": 0.8657 + }, + { + "start": 196.2, + "end": 198.98, + "probability": 0.8648 + }, + { + "start": 199.02, + "end": 199.26, + "probability": 0.547 + }, + { + "start": 199.38, + "end": 202.22, + "probability": 0.9653 + }, + { + "start": 202.26, + "end": 203.64, + "probability": 0.9932 + }, + { + "start": 205.0, + "end": 211.56, + "probability": 0.7448 + }, + { + "start": 212.08, + "end": 214.16, + "probability": 0.0757 + }, + { + "start": 214.16, + "end": 215.69, + "probability": 0.6437 + }, + { + "start": 219.12, + "end": 219.42, + "probability": 0.2735 + }, + { + "start": 220.0, + "end": 222.98, + "probability": 0.5651 + }, + { + "start": 225.93, + "end": 230.52, + "probability": 0.8163 + }, + { + "start": 232.66, + "end": 232.88, + "probability": 0.1241 + }, + { + "start": 232.88, + "end": 233.65, + "probability": 0.2684 + }, + { + "start": 236.3, + "end": 237.44, + "probability": 0.9473 + }, + { + "start": 237.86, + "end": 238.16, + "probability": 0.6466 + }, + { + "start": 238.36, + "end": 244.48, + "probability": 0.6782 + }, + { + "start": 245.56, + "end": 246.44, + "probability": 0.8411 + }, + { + "start": 249.18, + "end": 251.26, + "probability": 0.6206 + }, + { + "start": 252.24, + "end": 256.36, + "probability": 0.8804 + }, + { + "start": 257.44, + "end": 261.8, + "probability": 0.8532 + }, + { + "start": 261.88, + "end": 262.68, + "probability": 0.8788 + }, + { + "start": 262.88, + "end": 266.26, + "probability": 0.9903 + }, + { + "start": 268.24, + "end": 271.6, + "probability": 0.9469 + }, + { + "start": 272.24, + "end": 273.22, + "probability": 0.7636 + }, + { + "start": 274.42, + "end": 276.16, + "probability": 0.9966 + }, + { + "start": 277.24, + "end": 279.66, + "probability": 0.9758 + }, + { + "start": 280.26, + "end": 281.6, + "probability": 0.9443 + }, + { + "start": 282.0, + "end": 286.24, + "probability": 0.9832 + }, + { + "start": 286.88, + "end": 292.74, + "probability": 0.9739 + }, + { + "start": 293.56, + "end": 295.1, + "probability": 0.7991 + }, + { + "start": 295.88, + "end": 298.06, + "probability": 0.9799 + }, + { + "start": 299.04, + "end": 300.0, + "probability": 0.8813 + }, + { + "start": 300.92, + "end": 302.44, + "probability": 0.9502 + }, + { + "start": 303.52, + "end": 308.92, + "probability": 0.9864 + }, + { + "start": 310.12, + "end": 312.26, + "probability": 0.9399 + }, + { + "start": 312.98, + "end": 315.04, + "probability": 0.9673 + }, + { + "start": 315.4, + "end": 319.7, + "probability": 0.9972 + }, + { + "start": 320.94, + "end": 324.08, + "probability": 0.6652 + }, + { + "start": 324.36, + "end": 325.12, + "probability": 0.7858 + }, + { + "start": 325.84, + "end": 329.72, + "probability": 0.8708 + }, + { + "start": 330.34, + "end": 331.92, + "probability": 0.7624 + }, + { + "start": 332.44, + "end": 335.42, + "probability": 0.3421 + }, + { + "start": 335.42, + "end": 339.46, + "probability": 0.9465 + }, + { + "start": 340.72, + "end": 342.2, + "probability": 0.8536 + }, + { + "start": 343.22, + "end": 348.14, + "probability": 0.9775 + }, + { + "start": 348.96, + "end": 353.48, + "probability": 0.9897 + }, + { + "start": 354.24, + "end": 354.76, + "probability": 0.4976 + }, + { + "start": 355.18, + "end": 358.56, + "probability": 0.9924 + }, + { + "start": 359.18, + "end": 360.44, + "probability": 0.9761 + }, + { + "start": 361.26, + "end": 366.34, + "probability": 0.6851 + }, + { + "start": 368.02, + "end": 373.9, + "probability": 0.0386 + }, + { + "start": 375.18, + "end": 377.92, + "probability": 0.0383 + }, + { + "start": 377.92, + "end": 377.92, + "probability": 0.1023 + }, + { + "start": 377.92, + "end": 379.56, + "probability": 0.6167 + }, + { + "start": 381.07, + "end": 384.13, + "probability": 0.4392 + }, + { + "start": 384.48, + "end": 386.34, + "probability": 0.0307 + }, + { + "start": 386.98, + "end": 390.34, + "probability": 0.0993 + }, + { + "start": 390.84, + "end": 391.92, + "probability": 0.3969 + }, + { + "start": 393.54, + "end": 396.02, + "probability": 0.6968 + }, + { + "start": 396.26, + "end": 402.66, + "probability": 0.9797 + }, + { + "start": 402.66, + "end": 406.46, + "probability": 0.9877 + }, + { + "start": 407.16, + "end": 410.28, + "probability": 0.9059 + }, + { + "start": 410.82, + "end": 413.3, + "probability": 0.938 + }, + { + "start": 413.9, + "end": 414.94, + "probability": 0.9407 + }, + { + "start": 417.01, + "end": 422.22, + "probability": 0.7893 + }, + { + "start": 423.02, + "end": 425.36, + "probability": 0.9749 + }, + { + "start": 426.32, + "end": 432.36, + "probability": 0.9937 + }, + { + "start": 433.22, + "end": 437.8, + "probability": 0.6935 + }, + { + "start": 438.46, + "end": 444.32, + "probability": 0.9596 + }, + { + "start": 444.42, + "end": 445.5, + "probability": 0.6486 + }, + { + "start": 445.8, + "end": 445.8, + "probability": 0.3928 + }, + { + "start": 445.8, + "end": 448.54, + "probability": 0.9111 + }, + { + "start": 448.68, + "end": 453.06, + "probability": 0.9955 + }, + { + "start": 453.36, + "end": 455.8, + "probability": 0.7751 + }, + { + "start": 456.16, + "end": 457.12, + "probability": 0.9162 + }, + { + "start": 457.66, + "end": 460.86, + "probability": 0.9663 + }, + { + "start": 460.9, + "end": 465.1, + "probability": 0.8809 + }, + { + "start": 465.12, + "end": 469.85, + "probability": 0.9833 + }, + { + "start": 471.1, + "end": 478.32, + "probability": 0.9734 + }, + { + "start": 478.74, + "end": 480.52, + "probability": 0.7334 + }, + { + "start": 481.04, + "end": 484.28, + "probability": 0.9868 + }, + { + "start": 484.28, + "end": 487.34, + "probability": 0.9971 + }, + { + "start": 488.12, + "end": 493.56, + "probability": 0.9795 + }, + { + "start": 493.56, + "end": 499.64, + "probability": 0.998 + }, + { + "start": 499.7, + "end": 506.72, + "probability": 0.9843 + }, + { + "start": 507.2, + "end": 508.46, + "probability": 0.9488 + }, + { + "start": 508.92, + "end": 511.08, + "probability": 0.894 + }, + { + "start": 511.24, + "end": 514.36, + "probability": 0.9691 + }, + { + "start": 515.98, + "end": 518.48, + "probability": 0.9952 + }, + { + "start": 518.84, + "end": 520.06, + "probability": 0.9272 + }, + { + "start": 520.72, + "end": 523.36, + "probability": 0.9938 + }, + { + "start": 523.36, + "end": 526.1, + "probability": 0.9831 + }, + { + "start": 526.66, + "end": 529.7, + "probability": 0.9385 + }, + { + "start": 530.3, + "end": 533.46, + "probability": 0.9919 + }, + { + "start": 535.04, + "end": 536.3, + "probability": 0.7551 + }, + { + "start": 537.02, + "end": 538.66, + "probability": 0.6471 + }, + { + "start": 539.46, + "end": 541.42, + "probability": 0.5286 + }, + { + "start": 541.76, + "end": 543.71, + "probability": 0.9688 + }, + { + "start": 544.18, + "end": 545.0, + "probability": 0.9292 + }, + { + "start": 545.66, + "end": 547.02, + "probability": 0.9143 + }, + { + "start": 547.22, + "end": 551.16, + "probability": 0.9528 + }, + { + "start": 551.56, + "end": 555.54, + "probability": 0.8206 + }, + { + "start": 556.04, + "end": 556.68, + "probability": 0.5936 + }, + { + "start": 557.06, + "end": 558.68, + "probability": 0.7395 + }, + { + "start": 558.78, + "end": 560.84, + "probability": 0.6884 + }, + { + "start": 561.4, + "end": 561.78, + "probability": 0.9449 + }, + { + "start": 561.86, + "end": 563.2, + "probability": 0.9578 + }, + { + "start": 563.38, + "end": 563.78, + "probability": 0.8339 + }, + { + "start": 564.0, + "end": 566.92, + "probability": 0.9604 + }, + { + "start": 567.16, + "end": 569.52, + "probability": 0.7147 + }, + { + "start": 577.52, + "end": 577.74, + "probability": 0.1968 + }, + { + "start": 579.46, + "end": 590.84, + "probability": 0.1536 + }, + { + "start": 591.32, + "end": 592.38, + "probability": 0.593 + }, + { + "start": 592.58, + "end": 595.36, + "probability": 0.9905 + }, + { + "start": 595.36, + "end": 598.12, + "probability": 0.9896 + }, + { + "start": 599.28, + "end": 603.74, + "probability": 0.2106 + }, + { + "start": 603.84, + "end": 604.5, + "probability": 0.8052 + }, + { + "start": 604.66, + "end": 606.56, + "probability": 0.813 + }, + { + "start": 606.72, + "end": 608.82, + "probability": 0.7915 + }, + { + "start": 608.82, + "end": 612.2, + "probability": 0.8765 + }, + { + "start": 612.72, + "end": 614.38, + "probability": 0.9909 + }, + { + "start": 614.66, + "end": 616.26, + "probability": 0.9792 + }, + { + "start": 616.9, + "end": 618.42, + "probability": 0.8181 + }, + { + "start": 618.52, + "end": 619.82, + "probability": 0.9453 + }, + { + "start": 620.28, + "end": 621.3, + "probability": 0.7828 + }, + { + "start": 621.54, + "end": 621.96, + "probability": 0.5457 + }, + { + "start": 622.94, + "end": 628.48, + "probability": 0.9526 + }, + { + "start": 628.7, + "end": 631.8, + "probability": 0.9558 + }, + { + "start": 632.5, + "end": 633.56, + "probability": 0.0839 + }, + { + "start": 633.64, + "end": 634.51, + "probability": 0.0133 + }, + { + "start": 636.34, + "end": 637.96, + "probability": 0.0055 + }, + { + "start": 638.12, + "end": 638.48, + "probability": 0.0732 + }, + { + "start": 638.48, + "end": 641.24, + "probability": 0.0174 + }, + { + "start": 641.64, + "end": 641.64, + "probability": 0.3028 + }, + { + "start": 641.64, + "end": 641.64, + "probability": 0.0071 + }, + { + "start": 641.64, + "end": 641.76, + "probability": 0.3158 + }, + { + "start": 642.1, + "end": 642.42, + "probability": 0.1727 + }, + { + "start": 642.74, + "end": 643.26, + "probability": 0.2588 + }, + { + "start": 643.74, + "end": 646.18, + "probability": 0.8745 + }, + { + "start": 646.78, + "end": 649.08, + "probability": 0.7388 + }, + { + "start": 649.4, + "end": 656.32, + "probability": 0.6516 + }, + { + "start": 656.48, + "end": 658.24, + "probability": 0.9445 + }, + { + "start": 658.3, + "end": 661.18, + "probability": 0.3441 + }, + { + "start": 662.18, + "end": 665.98, + "probability": 0.9583 + }, + { + "start": 666.16, + "end": 668.34, + "probability": 0.8534 + }, + { + "start": 668.44, + "end": 670.14, + "probability": 0.979 + }, + { + "start": 670.7, + "end": 671.5, + "probability": 0.035 + }, + { + "start": 671.7, + "end": 673.22, + "probability": 0.8057 + }, + { + "start": 673.74, + "end": 677.14, + "probability": 0.182 + }, + { + "start": 677.3, + "end": 679.96, + "probability": 0.5634 + }, + { + "start": 680.22, + "end": 681.4, + "probability": 0.2966 + }, + { + "start": 682.08, + "end": 683.3, + "probability": 0.7501 + }, + { + "start": 683.8, + "end": 684.58, + "probability": 0.2256 + }, + { + "start": 684.68, + "end": 684.94, + "probability": 0.8107 + }, + { + "start": 685.2, + "end": 688.28, + "probability": 0.9709 + }, + { + "start": 688.64, + "end": 692.6, + "probability": 0.9971 + }, + { + "start": 692.64, + "end": 694.3, + "probability": 0.9479 + }, + { + "start": 694.64, + "end": 696.36, + "probability": 0.8734 + }, + { + "start": 696.84, + "end": 701.26, + "probability": 0.993 + }, + { + "start": 701.26, + "end": 707.3, + "probability": 0.9864 + }, + { + "start": 708.43, + "end": 711.36, + "probability": 0.8896 + }, + { + "start": 712.3, + "end": 713.36, + "probability": 0.6914 + }, + { + "start": 713.44, + "end": 714.5, + "probability": 0.9009 + }, + { + "start": 715.22, + "end": 718.94, + "probability": 0.0158 + }, + { + "start": 727.02, + "end": 727.2, + "probability": 0.0067 + }, + { + "start": 727.2, + "end": 727.2, + "probability": 0.0077 + }, + { + "start": 727.2, + "end": 727.2, + "probability": 0.0928 + }, + { + "start": 727.2, + "end": 727.2, + "probability": 0.1683 + }, + { + "start": 727.2, + "end": 727.2, + "probability": 0.0525 + }, + { + "start": 727.2, + "end": 729.7, + "probability": 0.5759 + }, + { + "start": 730.98, + "end": 731.56, + "probability": 0.1395 + }, + { + "start": 736.86, + "end": 736.96, + "probability": 0.0912 + }, + { + "start": 739.2, + "end": 739.2, + "probability": 0.1029 + }, + { + "start": 739.2, + "end": 742.9, + "probability": 0.708 + }, + { + "start": 742.9, + "end": 746.1, + "probability": 0.997 + }, + { + "start": 746.88, + "end": 747.16, + "probability": 0.8187 + }, + { + "start": 747.16, + "end": 749.46, + "probability": 0.5559 + }, + { + "start": 751.02, + "end": 755.44, + "probability": 0.9948 + }, + { + "start": 757.42, + "end": 759.08, + "probability": 0.7336 + }, + { + "start": 759.74, + "end": 763.5, + "probability": 0.9989 + }, + { + "start": 764.68, + "end": 770.22, + "probability": 0.9925 + }, + { + "start": 770.94, + "end": 773.04, + "probability": 0.9556 + }, + { + "start": 774.32, + "end": 776.86, + "probability": 0.9594 + }, + { + "start": 777.46, + "end": 780.54, + "probability": 0.9987 + }, + { + "start": 781.28, + "end": 785.72, + "probability": 0.957 + }, + { + "start": 786.36, + "end": 790.94, + "probability": 0.9015 + }, + { + "start": 791.74, + "end": 795.76, + "probability": 0.9937 + }, + { + "start": 796.84, + "end": 800.96, + "probability": 0.9941 + }, + { + "start": 802.06, + "end": 803.4, + "probability": 0.9871 + }, + { + "start": 805.22, + "end": 811.24, + "probability": 0.9774 + }, + { + "start": 812.5, + "end": 815.3, + "probability": 0.7525 + }, + { + "start": 816.72, + "end": 819.42, + "probability": 0.9853 + }, + { + "start": 821.18, + "end": 823.54, + "probability": 0.9909 + }, + { + "start": 824.58, + "end": 828.64, + "probability": 0.997 + }, + { + "start": 829.9, + "end": 831.62, + "probability": 0.9142 + }, + { + "start": 832.24, + "end": 832.98, + "probability": 0.9106 + }, + { + "start": 833.58, + "end": 834.46, + "probability": 0.8448 + }, + { + "start": 835.02, + "end": 836.66, + "probability": 0.9886 + }, + { + "start": 837.42, + "end": 841.44, + "probability": 0.897 + }, + { + "start": 841.44, + "end": 845.98, + "probability": 0.8506 + }, + { + "start": 846.64, + "end": 849.48, + "probability": 0.9014 + }, + { + "start": 850.66, + "end": 853.46, + "probability": 0.7811 + }, + { + "start": 854.16, + "end": 857.56, + "probability": 0.9647 + }, + { + "start": 858.42, + "end": 859.7, + "probability": 0.9885 + }, + { + "start": 862.86, + "end": 863.7, + "probability": 0.622 + }, + { + "start": 863.84, + "end": 868.02, + "probability": 0.9495 + }, + { + "start": 869.54, + "end": 872.46, + "probability": 0.8837 + }, + { + "start": 873.06, + "end": 876.48, + "probability": 0.9653 + }, + { + "start": 878.8, + "end": 879.74, + "probability": 0.8287 + }, + { + "start": 879.84, + "end": 884.06, + "probability": 0.9223 + }, + { + "start": 885.28, + "end": 886.52, + "probability": 0.9105 + }, + { + "start": 887.52, + "end": 888.12, + "probability": 0.5934 + }, + { + "start": 888.4, + "end": 891.18, + "probability": 0.9907 + }, + { + "start": 891.24, + "end": 892.3, + "probability": 0.866 + }, + { + "start": 892.64, + "end": 893.84, + "probability": 0.7627 + }, + { + "start": 894.16, + "end": 895.62, + "probability": 0.9575 + }, + { + "start": 896.66, + "end": 902.76, + "probability": 0.9847 + }, + { + "start": 904.06, + "end": 911.51, + "probability": 0.9909 + }, + { + "start": 912.32, + "end": 915.8, + "probability": 0.9565 + }, + { + "start": 916.28, + "end": 920.1, + "probability": 0.9953 + }, + { + "start": 920.9, + "end": 922.38, + "probability": 0.9941 + }, + { + "start": 922.98, + "end": 927.86, + "probability": 0.9883 + }, + { + "start": 931.38, + "end": 935.8, + "probability": 0.9926 + }, + { + "start": 936.2, + "end": 937.8, + "probability": 0.8647 + }, + { + "start": 938.98, + "end": 942.22, + "probability": 0.9957 + }, + { + "start": 943.14, + "end": 948.06, + "probability": 0.9775 + }, + { + "start": 948.84, + "end": 949.84, + "probability": 0.9594 + }, + { + "start": 950.76, + "end": 952.58, + "probability": 0.866 + }, + { + "start": 953.2, + "end": 955.1, + "probability": 0.9979 + }, + { + "start": 955.92, + "end": 958.04, + "probability": 0.9843 + }, + { + "start": 958.32, + "end": 962.18, + "probability": 0.9933 + }, + { + "start": 962.56, + "end": 965.32, + "probability": 0.9964 + }, + { + "start": 966.42, + "end": 969.7, + "probability": 0.9453 + }, + { + "start": 970.34, + "end": 973.5, + "probability": 0.9962 + }, + { + "start": 977.32, + "end": 979.64, + "probability": 0.8914 + }, + { + "start": 979.74, + "end": 983.3, + "probability": 0.69 + }, + { + "start": 984.36, + "end": 988.14, + "probability": 0.9971 + }, + { + "start": 988.88, + "end": 990.48, + "probability": 0.9868 + }, + { + "start": 991.22, + "end": 993.68, + "probability": 0.9908 + }, + { + "start": 994.14, + "end": 996.34, + "probability": 0.9409 + }, + { + "start": 996.82, + "end": 997.46, + "probability": 0.566 + }, + { + "start": 997.94, + "end": 1003.44, + "probability": 0.985 + }, + { + "start": 1005.02, + "end": 1006.8, + "probability": 0.8541 + }, + { + "start": 1006.82, + "end": 1008.7, + "probability": 0.411 + }, + { + "start": 1009.66, + "end": 1009.76, + "probability": 0.0245 + }, + { + "start": 1010.04, + "end": 1014.1, + "probability": 0.9985 + }, + { + "start": 1014.56, + "end": 1015.62, + "probability": 0.5496 + }, + { + "start": 1019.88, + "end": 1020.48, + "probability": 0.9077 + }, + { + "start": 1022.28, + "end": 1024.14, + "probability": 0.9092 + }, + { + "start": 1025.44, + "end": 1028.56, + "probability": 0.9065 + }, + { + "start": 1028.56, + "end": 1032.64, + "probability": 0.9902 + }, + { + "start": 1033.52, + "end": 1035.78, + "probability": 0.8753 + }, + { + "start": 1036.78, + "end": 1042.36, + "probability": 0.9988 + }, + { + "start": 1043.5, + "end": 1049.06, + "probability": 0.879 + }, + { + "start": 1050.4, + "end": 1051.34, + "probability": 0.6743 + }, + { + "start": 1052.0, + "end": 1056.16, + "probability": 0.9758 + }, + { + "start": 1057.32, + "end": 1058.58, + "probability": 0.9902 + }, + { + "start": 1059.38, + "end": 1062.24, + "probability": 0.8901 + }, + { + "start": 1063.16, + "end": 1066.34, + "probability": 0.9971 + }, + { + "start": 1067.1, + "end": 1073.94, + "probability": 0.9882 + }, + { + "start": 1075.08, + "end": 1080.2, + "probability": 0.9819 + }, + { + "start": 1081.28, + "end": 1083.0, + "probability": 0.9529 + }, + { + "start": 1084.16, + "end": 1088.15, + "probability": 0.9971 + }, + { + "start": 1089.18, + "end": 1090.58, + "probability": 0.9513 + }, + { + "start": 1091.5, + "end": 1094.72, + "probability": 0.9857 + }, + { + "start": 1095.26, + "end": 1098.4, + "probability": 0.9843 + }, + { + "start": 1099.62, + "end": 1100.14, + "probability": 0.8211 + }, + { + "start": 1100.5, + "end": 1101.36, + "probability": 0.8286 + }, + { + "start": 1101.44, + "end": 1103.06, + "probability": 0.9875 + }, + { + "start": 1103.38, + "end": 1108.3, + "probability": 0.98 + }, + { + "start": 1109.44, + "end": 1114.64, + "probability": 0.8325 + }, + { + "start": 1115.22, + "end": 1119.18, + "probability": 0.9814 + }, + { + "start": 1119.84, + "end": 1121.8, + "probability": 0.7305 + }, + { + "start": 1122.36, + "end": 1126.78, + "probability": 0.9941 + }, + { + "start": 1126.78, + "end": 1131.4, + "probability": 0.9984 + }, + { + "start": 1134.96, + "end": 1137.18, + "probability": 0.9845 + }, + { + "start": 1137.18, + "end": 1140.66, + "probability": 0.9966 + }, + { + "start": 1141.96, + "end": 1146.48, + "probability": 0.9989 + }, + { + "start": 1147.44, + "end": 1147.64, + "probability": 0.4135 + }, + { + "start": 1147.76, + "end": 1147.98, + "probability": 0.8393 + }, + { + "start": 1148.08, + "end": 1148.5, + "probability": 0.8241 + }, + { + "start": 1149.0, + "end": 1151.14, + "probability": 0.9316 + }, + { + "start": 1151.54, + "end": 1153.04, + "probability": 0.988 + }, + { + "start": 1154.02, + "end": 1156.72, + "probability": 0.9622 + }, + { + "start": 1157.56, + "end": 1158.1, + "probability": 0.7986 + }, + { + "start": 1158.7, + "end": 1159.94, + "probability": 0.9556 + }, + { + "start": 1160.6, + "end": 1164.68, + "probability": 0.9837 + }, + { + "start": 1164.68, + "end": 1170.26, + "probability": 0.9976 + }, + { + "start": 1170.8, + "end": 1172.12, + "probability": 0.8622 + }, + { + "start": 1176.98, + "end": 1178.66, + "probability": 0.9435 + }, + { + "start": 1179.62, + "end": 1180.93, + "probability": 0.9888 + }, + { + "start": 1181.88, + "end": 1184.94, + "probability": 0.958 + }, + { + "start": 1185.72, + "end": 1188.0, + "probability": 0.871 + }, + { + "start": 1188.52, + "end": 1191.38, + "probability": 0.9974 + }, + { + "start": 1191.82, + "end": 1194.54, + "probability": 0.9951 + }, + { + "start": 1195.34, + "end": 1197.2, + "probability": 0.9949 + }, + { + "start": 1197.78, + "end": 1200.54, + "probability": 0.9669 + }, + { + "start": 1201.06, + "end": 1202.82, + "probability": 0.756 + }, + { + "start": 1203.34, + "end": 1206.02, + "probability": 0.9733 + }, + { + "start": 1208.94, + "end": 1210.14, + "probability": 0.8246 + }, + { + "start": 1210.44, + "end": 1211.16, + "probability": 0.9424 + }, + { + "start": 1211.2, + "end": 1212.0, + "probability": 0.9299 + }, + { + "start": 1212.16, + "end": 1212.96, + "probability": 0.7091 + }, + { + "start": 1213.16, + "end": 1213.86, + "probability": 0.8636 + }, + { + "start": 1214.26, + "end": 1215.32, + "probability": 0.9635 + }, + { + "start": 1216.42, + "end": 1219.34, + "probability": 0.9447 + }, + { + "start": 1225.12, + "end": 1230.96, + "probability": 0.9799 + }, + { + "start": 1232.06, + "end": 1237.12, + "probability": 0.6899 + }, + { + "start": 1238.34, + "end": 1239.3, + "probability": 0.7192 + }, + { + "start": 1239.96, + "end": 1241.38, + "probability": 0.9771 + }, + { + "start": 1241.9, + "end": 1244.96, + "probability": 0.9549 + }, + { + "start": 1245.5, + "end": 1248.98, + "probability": 0.9815 + }, + { + "start": 1249.52, + "end": 1250.3, + "probability": 0.9911 + }, + { + "start": 1250.58, + "end": 1251.92, + "probability": 0.9726 + }, + { + "start": 1252.38, + "end": 1255.4, + "probability": 0.9547 + }, + { + "start": 1255.94, + "end": 1259.34, + "probability": 0.8583 + }, + { + "start": 1260.58, + "end": 1262.1, + "probability": 0.9683 + }, + { + "start": 1264.98, + "end": 1267.3, + "probability": 0.9738 + }, + { + "start": 1267.84, + "end": 1270.44, + "probability": 0.8073 + }, + { + "start": 1270.44, + "end": 1275.34, + "probability": 0.6602 + }, + { + "start": 1276.74, + "end": 1277.78, + "probability": 0.9386 + }, + { + "start": 1277.92, + "end": 1280.82, + "probability": 0.9971 + }, + { + "start": 1282.12, + "end": 1283.2, + "probability": 0.5994 + }, + { + "start": 1283.9, + "end": 1289.42, + "probability": 0.9941 + }, + { + "start": 1290.18, + "end": 1292.54, + "probability": 0.9937 + }, + { + "start": 1293.28, + "end": 1296.58, + "probability": 0.982 + }, + { + "start": 1297.54, + "end": 1301.4, + "probability": 0.9404 + }, + { + "start": 1301.92, + "end": 1304.9, + "probability": 0.9899 + }, + { + "start": 1307.12, + "end": 1308.0, + "probability": 0.6351 + }, + { + "start": 1308.08, + "end": 1311.44, + "probability": 0.9829 + }, + { + "start": 1312.2, + "end": 1316.54, + "probability": 0.9945 + }, + { + "start": 1316.54, + "end": 1322.48, + "probability": 0.9483 + }, + { + "start": 1323.0, + "end": 1324.44, + "probability": 0.5013 + }, + { + "start": 1325.38, + "end": 1328.14, + "probability": 0.931 + }, + { + "start": 1329.0, + "end": 1331.18, + "probability": 0.9572 + }, + { + "start": 1332.12, + "end": 1334.82, + "probability": 0.9424 + }, + { + "start": 1335.54, + "end": 1337.16, + "probability": 0.8112 + }, + { + "start": 1338.08, + "end": 1341.72, + "probability": 0.7958 + }, + { + "start": 1345.22, + "end": 1346.06, + "probability": 0.8318 + }, + { + "start": 1346.24, + "end": 1351.44, + "probability": 0.9581 + }, + { + "start": 1352.22, + "end": 1356.54, + "probability": 0.981 + }, + { + "start": 1357.54, + "end": 1358.94, + "probability": 0.6541 + }, + { + "start": 1359.86, + "end": 1364.38, + "probability": 0.9653 + }, + { + "start": 1365.04, + "end": 1365.84, + "probability": 0.8351 + }, + { + "start": 1366.52, + "end": 1367.74, + "probability": 0.9546 + }, + { + "start": 1368.6, + "end": 1369.62, + "probability": 0.916 + }, + { + "start": 1370.16, + "end": 1371.94, + "probability": 0.7815 + }, + { + "start": 1372.62, + "end": 1377.2, + "probability": 0.9762 + }, + { + "start": 1378.0, + "end": 1381.86, + "probability": 0.9861 + }, + { + "start": 1383.66, + "end": 1386.04, + "probability": 0.9976 + }, + { + "start": 1386.5, + "end": 1389.24, + "probability": 0.7269 + }, + { + "start": 1389.98, + "end": 1391.92, + "probability": 0.9929 + }, + { + "start": 1392.44, + "end": 1394.9, + "probability": 0.9906 + }, + { + "start": 1395.72, + "end": 1396.08, + "probability": 0.4912 + }, + { + "start": 1396.64, + "end": 1398.1, + "probability": 0.96 + }, + { + "start": 1399.22, + "end": 1401.9, + "probability": 0.968 + }, + { + "start": 1403.14, + "end": 1408.88, + "probability": 0.9875 + }, + { + "start": 1409.68, + "end": 1411.32, + "probability": 0.9517 + }, + { + "start": 1411.76, + "end": 1412.58, + "probability": 0.7261 + }, + { + "start": 1413.06, + "end": 1414.84, + "probability": 0.9721 + }, + { + "start": 1416.8, + "end": 1420.98, + "probability": 0.9937 + }, + { + "start": 1421.94, + "end": 1423.78, + "probability": 0.7585 + }, + { + "start": 1424.38, + "end": 1425.14, + "probability": 0.8668 + }, + { + "start": 1426.24, + "end": 1428.88, + "probability": 0.9304 + }, + { + "start": 1430.18, + "end": 1435.56, + "probability": 0.7532 + }, + { + "start": 1436.24, + "end": 1439.76, + "probability": 0.9238 + }, + { + "start": 1441.22, + "end": 1443.86, + "probability": 0.9143 + }, + { + "start": 1445.6, + "end": 1446.56, + "probability": 0.9717 + }, + { + "start": 1446.8, + "end": 1450.56, + "probability": 0.9985 + }, + { + "start": 1451.5, + "end": 1453.22, + "probability": 0.9705 + }, + { + "start": 1454.02, + "end": 1456.7, + "probability": 0.9543 + }, + { + "start": 1457.36, + "end": 1460.28, + "probability": 0.9884 + }, + { + "start": 1462.12, + "end": 1462.96, + "probability": 0.5409 + }, + { + "start": 1463.0, + "end": 1463.98, + "probability": 0.7894 + }, + { + "start": 1464.24, + "end": 1467.6, + "probability": 0.9826 + }, + { + "start": 1467.6, + "end": 1471.72, + "probability": 0.9826 + }, + { + "start": 1473.02, + "end": 1474.6, + "probability": 0.9548 + }, + { + "start": 1475.08, + "end": 1478.48, + "probability": 0.9366 + }, + { + "start": 1479.92, + "end": 1481.02, + "probability": 0.8278 + }, + { + "start": 1481.6, + "end": 1483.88, + "probability": 0.984 + }, + { + "start": 1486.58, + "end": 1489.02, + "probability": 0.9713 + }, + { + "start": 1489.66, + "end": 1492.96, + "probability": 0.9178 + }, + { + "start": 1493.72, + "end": 1495.58, + "probability": 0.9791 + }, + { + "start": 1496.83, + "end": 1498.38, + "probability": 0.3952 + }, + { + "start": 1499.08, + "end": 1503.36, + "probability": 0.7965 + }, + { + "start": 1505.26, + "end": 1508.76, + "probability": 0.9211 + }, + { + "start": 1508.98, + "end": 1510.22, + "probability": 0.5708 + }, + { + "start": 1510.78, + "end": 1512.34, + "probability": 0.9798 + }, + { + "start": 1513.28, + "end": 1514.12, + "probability": 0.9928 + }, + { + "start": 1514.42, + "end": 1515.22, + "probability": 0.9958 + }, + { + "start": 1515.56, + "end": 1516.16, + "probability": 0.9808 + }, + { + "start": 1516.6, + "end": 1517.32, + "probability": 0.8849 + }, + { + "start": 1517.8, + "end": 1519.1, + "probability": 0.9258 + }, + { + "start": 1520.22, + "end": 1525.78, + "probability": 0.9773 + }, + { + "start": 1526.84, + "end": 1529.3, + "probability": 0.9952 + }, + { + "start": 1529.3, + "end": 1532.8, + "probability": 0.9926 + }, + { + "start": 1533.56, + "end": 1536.32, + "probability": 0.9973 + }, + { + "start": 1537.28, + "end": 1540.7, + "probability": 0.9861 + }, + { + "start": 1541.1, + "end": 1541.5, + "probability": 0.8633 + }, + { + "start": 1541.98, + "end": 1543.44, + "probability": 0.8502 + }, + { + "start": 1544.48, + "end": 1545.38, + "probability": 0.8634 + }, + { + "start": 1545.62, + "end": 1548.48, + "probability": 0.9833 + }, + { + "start": 1549.36, + "end": 1552.12, + "probability": 0.9196 + }, + { + "start": 1553.2, + "end": 1554.84, + "probability": 0.9481 + }, + { + "start": 1555.68, + "end": 1555.94, + "probability": 0.8626 + }, + { + "start": 1556.84, + "end": 1560.1, + "probability": 0.8641 + }, + { + "start": 1560.68, + "end": 1561.86, + "probability": 0.9958 + }, + { + "start": 1561.94, + "end": 1562.18, + "probability": 0.8164 + }, + { + "start": 1562.18, + "end": 1562.92, + "probability": 0.857 + }, + { + "start": 1563.08, + "end": 1564.46, + "probability": 0.9219 + }, + { + "start": 1568.82, + "end": 1570.26, + "probability": 0.9436 + }, + { + "start": 1571.02, + "end": 1571.64, + "probability": 0.4668 + }, + { + "start": 1573.86, + "end": 1574.08, + "probability": 0.7181 + }, + { + "start": 1574.6, + "end": 1574.86, + "probability": 0.6403 + }, + { + "start": 1578.74, + "end": 1580.04, + "probability": 0.4493 + }, + { + "start": 1581.14, + "end": 1583.62, + "probability": 0.7057 + }, + { + "start": 1584.88, + "end": 1586.12, + "probability": 0.859 + }, + { + "start": 1587.62, + "end": 1588.7, + "probability": 0.7312 + }, + { + "start": 1589.68, + "end": 1590.78, + "probability": 0.9754 + }, + { + "start": 1591.76, + "end": 1593.18, + "probability": 0.7302 + }, + { + "start": 1595.18, + "end": 1600.02, + "probability": 0.9922 + }, + { + "start": 1600.2, + "end": 1602.06, + "probability": 0.9933 + }, + { + "start": 1603.24, + "end": 1607.46, + "probability": 0.9966 + }, + { + "start": 1607.5, + "end": 1608.22, + "probability": 0.7982 + }, + { + "start": 1608.24, + "end": 1609.68, + "probability": 0.9968 + }, + { + "start": 1610.76, + "end": 1611.94, + "probability": 0.8702 + }, + { + "start": 1612.88, + "end": 1614.74, + "probability": 0.9894 + }, + { + "start": 1616.12, + "end": 1617.58, + "probability": 0.5655 + }, + { + "start": 1619.14, + "end": 1621.16, + "probability": 0.6513 + }, + { + "start": 1623.58, + "end": 1624.02, + "probability": 0.3328 + }, + { + "start": 1625.22, + "end": 1632.14, + "probability": 0.9877 + }, + { + "start": 1632.56, + "end": 1636.08, + "probability": 0.9527 + }, + { + "start": 1638.48, + "end": 1639.18, + "probability": 0.9528 + }, + { + "start": 1639.3, + "end": 1639.96, + "probability": 0.7595 + }, + { + "start": 1640.1, + "end": 1643.74, + "probability": 0.9904 + }, + { + "start": 1644.34, + "end": 1647.98, + "probability": 0.7578 + }, + { + "start": 1649.56, + "end": 1650.6, + "probability": 0.8621 + }, + { + "start": 1651.42, + "end": 1655.76, + "probability": 0.995 + }, + { + "start": 1655.88, + "end": 1656.9, + "probability": 0.964 + }, + { + "start": 1657.44, + "end": 1659.22, + "probability": 0.9592 + }, + { + "start": 1659.8, + "end": 1662.12, + "probability": 0.9935 + }, + { + "start": 1664.16, + "end": 1666.9, + "probability": 0.9969 + }, + { + "start": 1667.94, + "end": 1669.38, + "probability": 0.9769 + }, + { + "start": 1669.96, + "end": 1671.34, + "probability": 0.9993 + }, + { + "start": 1673.18, + "end": 1674.72, + "probability": 0.9513 + }, + { + "start": 1675.54, + "end": 1678.8, + "probability": 0.7155 + }, + { + "start": 1679.36, + "end": 1683.0, + "probability": 0.8746 + }, + { + "start": 1683.18, + "end": 1684.28, + "probability": 0.8624 + }, + { + "start": 1684.86, + "end": 1686.74, + "probability": 0.9905 + }, + { + "start": 1688.9, + "end": 1691.82, + "probability": 0.9873 + }, + { + "start": 1692.52, + "end": 1693.54, + "probability": 0.8876 + }, + { + "start": 1694.04, + "end": 1694.92, + "probability": 0.914 + }, + { + "start": 1695.66, + "end": 1702.58, + "probability": 0.9715 + }, + { + "start": 1702.76, + "end": 1703.9, + "probability": 0.9822 + }, + { + "start": 1704.78, + "end": 1706.6, + "probability": 0.9282 + }, + { + "start": 1707.18, + "end": 1709.74, + "probability": 0.9961 + }, + { + "start": 1711.78, + "end": 1712.46, + "probability": 0.6634 + }, + { + "start": 1712.6, + "end": 1712.82, + "probability": 0.8617 + }, + { + "start": 1712.88, + "end": 1715.58, + "probability": 0.8979 + }, + { + "start": 1715.76, + "end": 1716.7, + "probability": 0.8558 + }, + { + "start": 1717.4, + "end": 1718.16, + "probability": 0.3546 + }, + { + "start": 1719.4, + "end": 1721.86, + "probability": 0.1448 + }, + { + "start": 1722.0, + "end": 1722.0, + "probability": 0.5915 + }, + { + "start": 1722.0, + "end": 1725.06, + "probability": 0.9585 + }, + { + "start": 1725.6, + "end": 1727.94, + "probability": 0.9156 + }, + { + "start": 1728.44, + "end": 1729.98, + "probability": 0.8252 + }, + { + "start": 1730.76, + "end": 1734.36, + "probability": 0.8481 + }, + { + "start": 1735.68, + "end": 1738.02, + "probability": 0.9835 + }, + { + "start": 1738.8, + "end": 1744.36, + "probability": 0.9245 + }, + { + "start": 1745.38, + "end": 1747.62, + "probability": 0.8885 + }, + { + "start": 1748.36, + "end": 1749.3, + "probability": 0.7632 + }, + { + "start": 1749.78, + "end": 1750.9, + "probability": 0.7793 + }, + { + "start": 1750.98, + "end": 1754.18, + "probability": 0.8122 + }, + { + "start": 1754.86, + "end": 1756.4, + "probability": 0.9948 + }, + { + "start": 1757.06, + "end": 1758.89, + "probability": 0.9841 + }, + { + "start": 1759.64, + "end": 1761.38, + "probability": 0.981 + }, + { + "start": 1762.3, + "end": 1764.04, + "probability": 0.9948 + }, + { + "start": 1764.42, + "end": 1768.0, + "probability": 0.9956 + }, + { + "start": 1768.14, + "end": 1769.05, + "probability": 0.965 + }, + { + "start": 1770.62, + "end": 1775.2, + "probability": 0.979 + }, + { + "start": 1775.56, + "end": 1777.46, + "probability": 0.9927 + }, + { + "start": 1779.7, + "end": 1782.0, + "probability": 0.9854 + }, + { + "start": 1785.06, + "end": 1787.46, + "probability": 0.9731 + }, + { + "start": 1788.52, + "end": 1790.18, + "probability": 0.9939 + }, + { + "start": 1790.32, + "end": 1792.0, + "probability": 0.9857 + }, + { + "start": 1793.72, + "end": 1798.52, + "probability": 0.6661 + }, + { + "start": 1799.62, + "end": 1802.58, + "probability": 0.9849 + }, + { + "start": 1804.3, + "end": 1805.16, + "probability": 0.9689 + }, + { + "start": 1805.8, + "end": 1806.52, + "probability": 0.6714 + }, + { + "start": 1807.9, + "end": 1809.1, + "probability": 0.8559 + }, + { + "start": 1809.64, + "end": 1814.32, + "probability": 0.979 + }, + { + "start": 1816.74, + "end": 1817.25, + "probability": 0.978 + }, + { + "start": 1818.42, + "end": 1819.12, + "probability": 0.8406 + }, + { + "start": 1819.26, + "end": 1824.52, + "probability": 0.9937 + }, + { + "start": 1825.32, + "end": 1826.54, + "probability": 0.5527 + }, + { + "start": 1826.74, + "end": 1830.36, + "probability": 0.9679 + }, + { + "start": 1832.24, + "end": 1833.64, + "probability": 0.4933 + }, + { + "start": 1835.16, + "end": 1836.02, + "probability": 0.7687 + }, + { + "start": 1836.7, + "end": 1838.23, + "probability": 0.9607 + }, + { + "start": 1839.74, + "end": 1841.72, + "probability": 0.9287 + }, + { + "start": 1842.34, + "end": 1844.06, + "probability": 0.7765 + }, + { + "start": 1844.58, + "end": 1845.09, + "probability": 0.9447 + }, + { + "start": 1846.2, + "end": 1846.87, + "probability": 0.7832 + }, + { + "start": 1847.52, + "end": 1849.22, + "probability": 0.9679 + }, + { + "start": 1849.3, + "end": 1850.48, + "probability": 0.633 + }, + { + "start": 1850.56, + "end": 1851.64, + "probability": 0.873 + }, + { + "start": 1852.06, + "end": 1852.62, + "probability": 0.8658 + }, + { + "start": 1853.02, + "end": 1855.6, + "probability": 0.9463 + }, + { + "start": 1856.0, + "end": 1856.98, + "probability": 0.6167 + }, + { + "start": 1860.4, + "end": 1861.52, + "probability": 0.9595 + }, + { + "start": 1862.74, + "end": 1863.86, + "probability": 0.8715 + }, + { + "start": 1864.9, + "end": 1865.22, + "probability": 0.8242 + }, + { + "start": 1865.3, + "end": 1865.5, + "probability": 0.8581 + }, + { + "start": 1865.54, + "end": 1867.52, + "probability": 0.9052 + }, + { + "start": 1867.94, + "end": 1869.08, + "probability": 0.8818 + }, + { + "start": 1870.7, + "end": 1872.64, + "probability": 0.9005 + }, + { + "start": 1872.68, + "end": 1873.52, + "probability": 0.9179 + }, + { + "start": 1873.54, + "end": 1876.06, + "probability": 0.8893 + }, + { + "start": 1876.3, + "end": 1877.7, + "probability": 0.9902 + }, + { + "start": 1880.04, + "end": 1885.84, + "probability": 0.9956 + }, + { + "start": 1886.86, + "end": 1891.02, + "probability": 0.989 + }, + { + "start": 1891.02, + "end": 1892.34, + "probability": 0.8044 + }, + { + "start": 1892.74, + "end": 1893.98, + "probability": 0.9808 + }, + { + "start": 1894.56, + "end": 1895.22, + "probability": 0.7573 + }, + { + "start": 1895.88, + "end": 1897.1, + "probability": 0.8739 + }, + { + "start": 1898.18, + "end": 1899.68, + "probability": 0.9939 + }, + { + "start": 1902.9, + "end": 1904.92, + "probability": 0.9377 + }, + { + "start": 1906.46, + "end": 1908.4, + "probability": 0.9574 + }, + { + "start": 1908.68, + "end": 1910.36, + "probability": 0.8666 + }, + { + "start": 1911.08, + "end": 1914.06, + "probability": 0.8953 + }, + { + "start": 1915.2, + "end": 1917.78, + "probability": 0.9281 + }, + { + "start": 1918.62, + "end": 1919.84, + "probability": 0.8124 + }, + { + "start": 1920.56, + "end": 1924.34, + "probability": 0.6824 + }, + { + "start": 1924.86, + "end": 1926.32, + "probability": 0.766 + }, + { + "start": 1927.0, + "end": 1928.68, + "probability": 0.9291 + }, + { + "start": 1928.98, + "end": 1930.02, + "probability": 0.8769 + }, + { + "start": 1931.97, + "end": 1932.18, + "probability": 0.5921 + }, + { + "start": 1932.18, + "end": 1933.02, + "probability": 0.4696 + }, + { + "start": 1933.42, + "end": 1934.06, + "probability": 0.4829 + }, + { + "start": 1934.16, + "end": 1936.4, + "probability": 0.8828 + }, + { + "start": 1937.06, + "end": 1939.16, + "probability": 0.9387 + }, + { + "start": 1940.12, + "end": 1944.08, + "probability": 0.9069 + }, + { + "start": 1944.38, + "end": 1946.06, + "probability": 0.5076 + }, + { + "start": 1947.24, + "end": 1949.62, + "probability": 0.7373 + }, + { + "start": 1951.3, + "end": 1952.54, + "probability": 0.9711 + }, + { + "start": 1953.76, + "end": 1955.08, + "probability": 0.9562 + }, + { + "start": 1956.0, + "end": 1958.64, + "probability": 0.9622 + }, + { + "start": 1959.22, + "end": 1960.82, + "probability": 0.6735 + }, + { + "start": 1961.02, + "end": 1961.24, + "probability": 0.5715 + }, + { + "start": 1961.34, + "end": 1962.44, + "probability": 0.8594 + }, + { + "start": 1962.46, + "end": 1963.8, + "probability": 0.8403 + }, + { + "start": 1963.92, + "end": 1965.24, + "probability": 0.9764 + }, + { + "start": 1968.54, + "end": 1970.66, + "probability": 0.5396 + }, + { + "start": 1971.92, + "end": 1974.14, + "probability": 0.8273 + }, + { + "start": 1975.26, + "end": 1975.74, + "probability": 0.8955 + }, + { + "start": 1976.26, + "end": 1978.52, + "probability": 0.9691 + }, + { + "start": 1978.72, + "end": 1980.4, + "probability": 0.974 + }, + { + "start": 1980.72, + "end": 1981.64, + "probability": 0.8876 + }, + { + "start": 1984.38, + "end": 1985.08, + "probability": 0.5193 + }, + { + "start": 1986.34, + "end": 1988.34, + "probability": 0.9985 + }, + { + "start": 1988.9, + "end": 1989.8, + "probability": 0.9105 + }, + { + "start": 1991.04, + "end": 1994.1, + "probability": 0.9844 + }, + { + "start": 1994.92, + "end": 1999.48, + "probability": 0.9783 + }, + { + "start": 2000.22, + "end": 2001.12, + "probability": 0.6886 + }, + { + "start": 2001.92, + "end": 2002.9, + "probability": 0.8934 + }, + { + "start": 2002.98, + "end": 2003.6, + "probability": 0.7664 + }, + { + "start": 2003.7, + "end": 2004.32, + "probability": 0.6052 + }, + { + "start": 2004.58, + "end": 2005.12, + "probability": 0.9728 + }, + { + "start": 2007.84, + "end": 2007.94, + "probability": 0.4686 + }, + { + "start": 2007.94, + "end": 2008.54, + "probability": 0.817 + }, + { + "start": 2009.0, + "end": 2009.1, + "probability": 0.0193 + }, + { + "start": 2009.2, + "end": 2009.26, + "probability": 0.1761 + }, + { + "start": 2009.28, + "end": 2010.1, + "probability": 0.9569 + }, + { + "start": 2010.54, + "end": 2011.42, + "probability": 0.4618 + }, + { + "start": 2011.84, + "end": 2013.14, + "probability": 0.9626 + }, + { + "start": 2013.26, + "end": 2015.74, + "probability": 0.9969 + }, + { + "start": 2015.74, + "end": 2019.74, + "probability": 0.9722 + }, + { + "start": 2020.0, + "end": 2021.38, + "probability": 0.9912 + }, + { + "start": 2025.02, + "end": 2029.14, + "probability": 0.9205 + }, + { + "start": 2029.14, + "end": 2032.0, + "probability": 0.9419 + }, + { + "start": 2032.56, + "end": 2033.0, + "probability": 0.6398 + }, + { + "start": 2033.02, + "end": 2035.32, + "probability": 0.9922 + }, + { + "start": 2035.58, + "end": 2035.65, + "probability": 0.0779 + }, + { + "start": 2036.34, + "end": 2036.86, + "probability": 0.0929 + }, + { + "start": 2037.1, + "end": 2039.5, + "probability": 0.7374 + }, + { + "start": 2039.7, + "end": 2040.06, + "probability": 0.1031 + }, + { + "start": 2040.06, + "end": 2041.16, + "probability": 0.9279 + }, + { + "start": 2041.28, + "end": 2042.9, + "probability": 0.984 + }, + { + "start": 2043.18, + "end": 2044.46, + "probability": 0.9665 + }, + { + "start": 2044.58, + "end": 2045.68, + "probability": 0.83 + }, + { + "start": 2046.96, + "end": 2048.88, + "probability": 0.9399 + }, + { + "start": 2049.76, + "end": 2050.88, + "probability": 0.9873 + }, + { + "start": 2051.42, + "end": 2054.84, + "probability": 0.8993 + }, + { + "start": 2055.74, + "end": 2056.36, + "probability": 0.764 + }, + { + "start": 2056.9, + "end": 2058.52, + "probability": 0.8035 + }, + { + "start": 2058.9, + "end": 2059.72, + "probability": 0.7712 + }, + { + "start": 2060.2, + "end": 2062.68, + "probability": 0.6234 + }, + { + "start": 2062.68, + "end": 2065.02, + "probability": 0.9857 + }, + { + "start": 2066.26, + "end": 2069.28, + "probability": 0.8304 + }, + { + "start": 2069.48, + "end": 2070.84, + "probability": 0.9801 + }, + { + "start": 2071.42, + "end": 2075.34, + "probability": 0.8255 + }, + { + "start": 2077.48, + "end": 2079.32, + "probability": 0.4456 + }, + { + "start": 2079.94, + "end": 2081.22, + "probability": 0.9478 + }, + { + "start": 2081.4, + "end": 2082.66, + "probability": 0.9426 + }, + { + "start": 2082.96, + "end": 2083.96, + "probability": 0.9289 + }, + { + "start": 2084.52, + "end": 2085.88, + "probability": 0.0445 + }, + { + "start": 2085.94, + "end": 2089.6, + "probability": 0.9548 + }, + { + "start": 2089.82, + "end": 2090.6, + "probability": 0.9077 + }, + { + "start": 2090.82, + "end": 2091.32, + "probability": 0.4151 + }, + { + "start": 2091.42, + "end": 2092.12, + "probability": 0.8107 + }, + { + "start": 2092.18, + "end": 2093.58, + "probability": 0.5136 + }, + { + "start": 2093.64, + "end": 2094.59, + "probability": 0.9771 + }, + { + "start": 2094.84, + "end": 2096.2, + "probability": 0.9671 + }, + { + "start": 2096.96, + "end": 2100.16, + "probability": 0.6816 + }, + { + "start": 2102.1, + "end": 2105.1, + "probability": 0.7975 + }, + { + "start": 2105.64, + "end": 2110.74, + "probability": 0.9574 + }, + { + "start": 2111.08, + "end": 2112.74, + "probability": 0.9879 + }, + { + "start": 2114.14, + "end": 2116.52, + "probability": 0.9692 + }, + { + "start": 2116.68, + "end": 2118.3, + "probability": 0.9878 + }, + { + "start": 2118.44, + "end": 2119.54, + "probability": 0.9536 + }, + { + "start": 2119.98, + "end": 2122.62, + "probability": 0.9749 + }, + { + "start": 2123.16, + "end": 2125.94, + "probability": 0.9985 + }, + { + "start": 2127.54, + "end": 2128.42, + "probability": 0.7615 + }, + { + "start": 2129.2, + "end": 2130.78, + "probability": 0.994 + }, + { + "start": 2130.92, + "end": 2133.14, + "probability": 0.98 + }, + { + "start": 2133.4, + "end": 2135.0, + "probability": 0.9546 + }, + { + "start": 2137.0, + "end": 2139.82, + "probability": 0.9942 + }, + { + "start": 2140.06, + "end": 2141.5, + "probability": 0.7992 + }, + { + "start": 2142.74, + "end": 2145.4, + "probability": 0.7505 + }, + { + "start": 2146.02, + "end": 2148.12, + "probability": 0.979 + }, + { + "start": 2148.34, + "end": 2149.16, + "probability": 0.756 + }, + { + "start": 2149.2, + "end": 2150.7, + "probability": 0.8279 + }, + { + "start": 2151.92, + "end": 2152.84, + "probability": 0.9482 + }, + { + "start": 2152.92, + "end": 2156.48, + "probability": 0.9214 + }, + { + "start": 2156.5, + "end": 2158.0, + "probability": 0.8032 + }, + { + "start": 2158.46, + "end": 2160.63, + "probability": 0.9395 + }, + { + "start": 2161.76, + "end": 2163.9, + "probability": 0.9627 + }, + { + "start": 2164.1, + "end": 2164.78, + "probability": 0.7314 + }, + { + "start": 2166.26, + "end": 2170.98, + "probability": 0.9785 + }, + { + "start": 2171.88, + "end": 2174.26, + "probability": 0.9701 + }, + { + "start": 2175.56, + "end": 2176.94, + "probability": 0.8347 + }, + { + "start": 2178.62, + "end": 2179.12, + "probability": 0.4248 + }, + { + "start": 2180.22, + "end": 2181.58, + "probability": 0.9908 + }, + { + "start": 2182.38, + "end": 2185.0, + "probability": 0.8367 + }, + { + "start": 2185.78, + "end": 2186.86, + "probability": 0.8394 + }, + { + "start": 2187.36, + "end": 2193.0, + "probability": 0.9695 + }, + { + "start": 2193.8, + "end": 2198.28, + "probability": 0.9665 + }, + { + "start": 2199.28, + "end": 2201.62, + "probability": 0.8918 + }, + { + "start": 2202.06, + "end": 2203.54, + "probability": 0.9028 + }, + { + "start": 2204.02, + "end": 2205.92, + "probability": 0.9968 + }, + { + "start": 2206.8, + "end": 2207.34, + "probability": 0.8691 + }, + { + "start": 2208.76, + "end": 2210.85, + "probability": 0.9974 + }, + { + "start": 2211.96, + "end": 2213.7, + "probability": 0.9269 + }, + { + "start": 2213.82, + "end": 2214.8, + "probability": 0.9596 + }, + { + "start": 2214.92, + "end": 2216.12, + "probability": 0.9822 + }, + { + "start": 2217.3, + "end": 2219.5, + "probability": 0.9381 + }, + { + "start": 2220.16, + "end": 2222.76, + "probability": 0.719 + }, + { + "start": 2223.46, + "end": 2226.12, + "probability": 0.7845 + }, + { + "start": 2226.88, + "end": 2228.84, + "probability": 0.8215 + }, + { + "start": 2230.04, + "end": 2236.08, + "probability": 0.8812 + }, + { + "start": 2237.16, + "end": 2243.64, + "probability": 0.9956 + }, + { + "start": 2243.66, + "end": 2243.82, + "probability": 0.4017 + }, + { + "start": 2245.79, + "end": 2250.86, + "probability": 0.9892 + }, + { + "start": 2251.34, + "end": 2252.96, + "probability": 0.7973 + }, + { + "start": 2253.16, + "end": 2254.32, + "probability": 0.9232 + }, + { + "start": 2254.7, + "end": 2256.24, + "probability": 0.9973 + }, + { + "start": 2256.28, + "end": 2259.7, + "probability": 0.9961 + }, + { + "start": 2260.56, + "end": 2262.78, + "probability": 0.9329 + }, + { + "start": 2263.1, + "end": 2264.54, + "probability": 0.614 + }, + { + "start": 2264.62, + "end": 2265.9, + "probability": 0.9912 + }, + { + "start": 2265.94, + "end": 2266.8, + "probability": 0.7638 + }, + { + "start": 2266.92, + "end": 2267.28, + "probability": 0.5251 + }, + { + "start": 2267.3, + "end": 2269.6, + "probability": 0.7903 + }, + { + "start": 2269.6, + "end": 2272.02, + "probability": 0.9587 + }, + { + "start": 2272.02, + "end": 2273.68, + "probability": 0.7909 + }, + { + "start": 2273.68, + "end": 2274.18, + "probability": 0.3845 + }, + { + "start": 2274.24, + "end": 2277.0, + "probability": 0.7183 + }, + { + "start": 2277.06, + "end": 2278.5, + "probability": 0.8557 + }, + { + "start": 2279.24, + "end": 2279.92, + "probability": 0.9458 + }, + { + "start": 2280.9, + "end": 2281.16, + "probability": 0.8182 + }, + { + "start": 2281.22, + "end": 2281.62, + "probability": 0.7554 + }, + { + "start": 2281.74, + "end": 2285.28, + "probability": 0.9553 + }, + { + "start": 2287.02, + "end": 2290.12, + "probability": 0.9739 + }, + { + "start": 2291.44, + "end": 2292.04, + "probability": 0.7089 + }, + { + "start": 2292.42, + "end": 2293.86, + "probability": 0.9537 + }, + { + "start": 2293.96, + "end": 2294.14, + "probability": 0.364 + }, + { + "start": 2294.16, + "end": 2295.8, + "probability": 0.5363 + }, + { + "start": 2295.9, + "end": 2296.9, + "probability": 0.9663 + }, + { + "start": 2297.36, + "end": 2298.14, + "probability": 0.871 + }, + { + "start": 2298.14, + "end": 2299.14, + "probability": 0.9288 + }, + { + "start": 2299.2, + "end": 2301.5, + "probability": 0.9189 + }, + { + "start": 2301.62, + "end": 2305.56, + "probability": 0.9971 + }, + { + "start": 2305.86, + "end": 2307.7, + "probability": 0.9821 + }, + { + "start": 2308.26, + "end": 2309.92, + "probability": 0.9742 + }, + { + "start": 2310.14, + "end": 2311.9, + "probability": 0.8083 + }, + { + "start": 2312.24, + "end": 2313.8, + "probability": 0.9927 + }, + { + "start": 2314.4, + "end": 2315.34, + "probability": 0.7891 + }, + { + "start": 2318.29, + "end": 2321.78, + "probability": 0.6874 + }, + { + "start": 2323.52, + "end": 2326.56, + "probability": 0.8756 + }, + { + "start": 2327.2, + "end": 2328.18, + "probability": 0.693 + }, + { + "start": 2331.64, + "end": 2334.74, + "probability": 0.2082 + }, + { + "start": 2336.92, + "end": 2339.6, + "probability": 0.0195 + }, + { + "start": 2340.12, + "end": 2343.5, + "probability": 0.5906 + }, + { + "start": 2343.82, + "end": 2348.46, + "probability": 0.8212 + }, + { + "start": 2349.24, + "end": 2351.68, + "probability": 0.8995 + }, + { + "start": 2351.86, + "end": 2356.46, + "probability": 0.7386 + }, + { + "start": 2356.48, + "end": 2357.94, + "probability": 0.4325 + }, + { + "start": 2358.08, + "end": 2358.68, + "probability": 0.8621 + }, + { + "start": 2359.12, + "end": 2362.24, + "probability": 0.9324 + }, + { + "start": 2362.3, + "end": 2363.12, + "probability": 0.9416 + }, + { + "start": 2363.2, + "end": 2364.4, + "probability": 0.7005 + }, + { + "start": 2364.76, + "end": 2364.82, + "probability": 0.3964 + }, + { + "start": 2364.82, + "end": 2365.4, + "probability": 0.8163 + }, + { + "start": 2365.52, + "end": 2366.54, + "probability": 0.8742 + }, + { + "start": 2367.16, + "end": 2371.38, + "probability": 0.7629 + }, + { + "start": 2371.48, + "end": 2372.66, + "probability": 0.7058 + }, + { + "start": 2373.22, + "end": 2375.14, + "probability": 0.9922 + }, + { + "start": 2376.3, + "end": 2378.22, + "probability": 0.8496 + }, + { + "start": 2378.97, + "end": 2382.34, + "probability": 0.5723 + }, + { + "start": 2382.48, + "end": 2383.58, + "probability": 0.8785 + }, + { + "start": 2384.24, + "end": 2384.92, + "probability": 0.5028 + }, + { + "start": 2386.0, + "end": 2389.38, + "probability": 0.0817 + }, + { + "start": 2389.46, + "end": 2390.26, + "probability": 0.636 + }, + { + "start": 2390.46, + "end": 2392.46, + "probability": 0.9259 + }, + { + "start": 2392.6, + "end": 2394.56, + "probability": 0.5204 + }, + { + "start": 2395.18, + "end": 2397.12, + "probability": 0.7655 + }, + { + "start": 2397.24, + "end": 2400.18, + "probability": 0.6652 + }, + { + "start": 2400.32, + "end": 2401.82, + "probability": 0.5122 + }, + { + "start": 2401.82, + "end": 2402.68, + "probability": 0.5849 + }, + { + "start": 2402.98, + "end": 2403.28, + "probability": 0.2941 + }, + { + "start": 2403.28, + "end": 2403.82, + "probability": 0.1629 + }, + { + "start": 2404.58, + "end": 2406.24, + "probability": 0.561 + }, + { + "start": 2406.26, + "end": 2407.5, + "probability": 0.9803 + }, + { + "start": 2407.58, + "end": 2408.92, + "probability": 0.8807 + }, + { + "start": 2408.92, + "end": 2411.54, + "probability": 0.8586 + }, + { + "start": 2412.28, + "end": 2413.76, + "probability": 0.0327 + }, + { + "start": 2414.22, + "end": 2418.34, + "probability": 0.9541 + }, + { + "start": 2418.64, + "end": 2420.46, + "probability": 0.8675 + }, + { + "start": 2421.54, + "end": 2424.08, + "probability": 0.0055 + }, + { + "start": 2424.9, + "end": 2425.98, + "probability": 0.0339 + }, + { + "start": 2425.98, + "end": 2427.6, + "probability": 0.1029 + }, + { + "start": 2427.91, + "end": 2429.0, + "probability": 0.0242 + }, + { + "start": 2429.0, + "end": 2434.58, + "probability": 0.2627 + }, + { + "start": 2435.62, + "end": 2436.34, + "probability": 0.0495 + }, + { + "start": 2436.34, + "end": 2439.34, + "probability": 0.0057 + }, + { + "start": 2440.31, + "end": 2441.5, + "probability": 0.0724 + }, + { + "start": 2441.92, + "end": 2442.84, + "probability": 0.0152 + }, + { + "start": 2443.5, + "end": 2445.1, + "probability": 0.0922 + }, + { + "start": 2445.1, + "end": 2446.44, + "probability": 0.3761 + }, + { + "start": 2446.86, + "end": 2448.06, + "probability": 0.1405 + }, + { + "start": 2458.3, + "end": 2459.24, + "probability": 0.6013 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.0, + "end": 2501.0, + "probability": 0.0 + }, + { + "start": 2501.26, + "end": 2503.01, + "probability": 0.0651 + }, + { + "start": 2503.48, + "end": 2504.0, + "probability": 0.1522 + }, + { + "start": 2504.08, + "end": 2504.24, + "probability": 0.1775 + }, + { + "start": 2504.24, + "end": 2504.62, + "probability": 0.5384 + }, + { + "start": 2504.7, + "end": 2507.98, + "probability": 0.9376 + }, + { + "start": 2508.06, + "end": 2508.8, + "probability": 0.6232 + }, + { + "start": 2509.0, + "end": 2511.92, + "probability": 0.976 + }, + { + "start": 2512.0, + "end": 2512.4, + "probability": 0.5792 + }, + { + "start": 2512.9, + "end": 2513.96, + "probability": 0.6019 + }, + { + "start": 2514.04, + "end": 2514.48, + "probability": 0.6579 + }, + { + "start": 2515.22, + "end": 2519.18, + "probability": 0.8572 + }, + { + "start": 2519.26, + "end": 2520.36, + "probability": 0.9769 + }, + { + "start": 2520.44, + "end": 2520.9, + "probability": 0.8417 + }, + { + "start": 2521.36, + "end": 2521.46, + "probability": 0.7263 + }, + { + "start": 2522.06, + "end": 2523.7, + "probability": 0.8385 + }, + { + "start": 2524.94, + "end": 2530.52, + "probability": 0.9691 + }, + { + "start": 2531.6, + "end": 2531.6, + "probability": 0.0351 + }, + { + "start": 2531.6, + "end": 2534.56, + "probability": 0.7457 + }, + { + "start": 2534.76, + "end": 2535.92, + "probability": 0.8806 + }, + { + "start": 2536.16, + "end": 2536.5, + "probability": 0.3552 + }, + { + "start": 2537.1, + "end": 2540.2, + "probability": 0.9797 + }, + { + "start": 2541.68, + "end": 2541.8, + "probability": 0.108 + }, + { + "start": 2541.8, + "end": 2542.2, + "probability": 0.7683 + }, + { + "start": 2543.08, + "end": 2545.18, + "probability": 0.665 + }, + { + "start": 2545.22, + "end": 2545.78, + "probability": 0.587 + }, + { + "start": 2546.12, + "end": 2548.84, + "probability": 0.718 + }, + { + "start": 2549.36, + "end": 2549.64, + "probability": 0.1012 + }, + { + "start": 2550.4, + "end": 2553.64, + "probability": 0.6861 + }, + { + "start": 2554.3, + "end": 2554.56, + "probability": 0.2112 + }, + { + "start": 2555.42, + "end": 2556.16, + "probability": 0.5107 + }, + { + "start": 2556.58, + "end": 2558.6, + "probability": 0.4612 + }, + { + "start": 2558.6, + "end": 2559.21, + "probability": 0.538 + }, + { + "start": 2559.86, + "end": 2560.66, + "probability": 0.7959 + }, + { + "start": 2560.86, + "end": 2562.42, + "probability": 0.9062 + }, + { + "start": 2562.48, + "end": 2563.92, + "probability": 0.7596 + }, + { + "start": 2564.02, + "end": 2564.83, + "probability": 0.854 + }, + { + "start": 2565.62, + "end": 2567.28, + "probability": 0.749 + }, + { + "start": 2567.32, + "end": 2569.54, + "probability": 0.949 + }, + { + "start": 2569.8, + "end": 2570.77, + "probability": 0.6968 + }, + { + "start": 2571.94, + "end": 2571.94, + "probability": 0.3624 + }, + { + "start": 2572.2, + "end": 2573.52, + "probability": 0.5433 + }, + { + "start": 2573.58, + "end": 2574.48, + "probability": 0.1429 + }, + { + "start": 2575.1, + "end": 2575.88, + "probability": 0.8757 + }, + { + "start": 2577.0, + "end": 2577.5, + "probability": 0.8048 + }, + { + "start": 2577.82, + "end": 2579.08, + "probability": 0.0984 + }, + { + "start": 2579.08, + "end": 2579.86, + "probability": 0.639 + }, + { + "start": 2580.46, + "end": 2581.68, + "probability": 0.6846 + }, + { + "start": 2581.94, + "end": 2582.18, + "probability": 0.5663 + }, + { + "start": 2582.44, + "end": 2583.06, + "probability": 0.5991 + }, + { + "start": 2583.5, + "end": 2583.86, + "probability": 0.724 + }, + { + "start": 2584.7, + "end": 2586.06, + "probability": 0.8414 + }, + { + "start": 2586.5, + "end": 2590.36, + "probability": 0.7021 + }, + { + "start": 2590.36, + "end": 2590.66, + "probability": 0.7252 + }, + { + "start": 2591.36, + "end": 2592.86, + "probability": 0.6824 + }, + { + "start": 2593.6, + "end": 2593.64, + "probability": 0.0299 + }, + { + "start": 2593.64, + "end": 2594.76, + "probability": 0.6422 + }, + { + "start": 2594.86, + "end": 2595.7, + "probability": 0.7435 + }, + { + "start": 2595.9, + "end": 2597.84, + "probability": 0.9026 + }, + { + "start": 2598.4, + "end": 2599.24, + "probability": 0.2175 + }, + { + "start": 2600.18, + "end": 2601.86, + "probability": 0.059 + }, + { + "start": 2601.86, + "end": 2603.4, + "probability": 0.3327 + }, + { + "start": 2603.86, + "end": 2604.9, + "probability": 0.4552 + }, + { + "start": 2605.54, + "end": 2606.62, + "probability": 0.8204 + }, + { + "start": 2606.68, + "end": 2607.54, + "probability": 0.9294 + }, + { + "start": 2607.68, + "end": 2608.6, + "probability": 0.9702 + }, + { + "start": 2609.5, + "end": 2610.2, + "probability": 0.5829 + }, + { + "start": 2610.7, + "end": 2612.06, + "probability": 0.8793 + }, + { + "start": 2612.14, + "end": 2613.46, + "probability": 0.819 + }, + { + "start": 2613.7, + "end": 2614.0, + "probability": 0.8148 + }, + { + "start": 2614.74, + "end": 2617.08, + "probability": 0.8594 + }, + { + "start": 2621.0, + "end": 2621.0, + "probability": 0.0337 + }, + { + "start": 2621.0, + "end": 2621.88, + "probability": 0.3422 + }, + { + "start": 2622.0, + "end": 2623.88, + "probability": 0.746 + }, + { + "start": 2623.88, + "end": 2624.97, + "probability": 0.8682 + }, + { + "start": 2625.28, + "end": 2625.42, + "probability": 0.4569 + }, + { + "start": 2625.44, + "end": 2626.54, + "probability": 0.9429 + }, + { + "start": 2626.76, + "end": 2627.18, + "probability": 0.4932 + }, + { + "start": 2627.52, + "end": 2628.3, + "probability": 0.7977 + }, + { + "start": 2628.42, + "end": 2629.3, + "probability": 0.8536 + }, + { + "start": 2629.4, + "end": 2629.7, + "probability": 0.4367 + }, + { + "start": 2629.9, + "end": 2631.02, + "probability": 0.5953 + }, + { + "start": 2631.1, + "end": 2631.74, + "probability": 0.5463 + }, + { + "start": 2631.86, + "end": 2631.96, + "probability": 0.9562 + }, + { + "start": 2633.46, + "end": 2635.98, + "probability": 0.985 + }, + { + "start": 2635.98, + "end": 2639.74, + "probability": 0.9039 + }, + { + "start": 2640.68, + "end": 2643.26, + "probability": 0.8291 + }, + { + "start": 2643.38, + "end": 2644.46, + "probability": 0.6642 + }, + { + "start": 2644.7, + "end": 2645.06, + "probability": 0.5908 + }, + { + "start": 2645.58, + "end": 2647.42, + "probability": 0.9187 + }, + { + "start": 2648.2, + "end": 2649.62, + "probability": 0.7778 + }, + { + "start": 2650.6, + "end": 2651.18, + "probability": 0.9172 + }, + { + "start": 2651.68, + "end": 2656.3, + "probability": 0.9771 + }, + { + "start": 2656.4, + "end": 2657.98, + "probability": 0.8247 + }, + { + "start": 2659.08, + "end": 2662.24, + "probability": 0.9794 + }, + { + "start": 2662.42, + "end": 2665.26, + "probability": 0.7825 + }, + { + "start": 2665.78, + "end": 2666.7, + "probability": 0.8586 + }, + { + "start": 2668.02, + "end": 2668.54, + "probability": 0.5322 + }, + { + "start": 2668.58, + "end": 2668.94, + "probability": 0.2847 + }, + { + "start": 2669.06, + "end": 2672.54, + "probability": 0.8612 + }, + { + "start": 2672.54, + "end": 2677.0, + "probability": 0.9744 + }, + { + "start": 2677.08, + "end": 2680.8, + "probability": 0.7542 + }, + { + "start": 2682.88, + "end": 2685.66, + "probability": 0.5354 + }, + { + "start": 2685.72, + "end": 2688.0, + "probability": 0.987 + }, + { + "start": 2688.92, + "end": 2693.36, + "probability": 0.9164 + }, + { + "start": 2694.04, + "end": 2697.28, + "probability": 0.864 + }, + { + "start": 2697.96, + "end": 2699.66, + "probability": 0.8919 + }, + { + "start": 2700.84, + "end": 2702.98, + "probability": 0.9866 + }, + { + "start": 2703.54, + "end": 2704.4, + "probability": 0.7335 + }, + { + "start": 2704.46, + "end": 2706.4, + "probability": 0.7524 + }, + { + "start": 2707.1, + "end": 2707.72, + "probability": 0.8363 + }, + { + "start": 2707.96, + "end": 2708.48, + "probability": 0.5523 + }, + { + "start": 2708.6, + "end": 2711.9, + "probability": 0.8467 + }, + { + "start": 2712.6, + "end": 2714.58, + "probability": 0.9858 + }, + { + "start": 2716.74, + "end": 2719.6, + "probability": 0.9428 + }, + { + "start": 2720.62, + "end": 2721.3, + "probability": 0.9163 + }, + { + "start": 2724.14, + "end": 2727.4, + "probability": 0.8901 + }, + { + "start": 2727.8, + "end": 2731.32, + "probability": 0.858 + }, + { + "start": 2732.0, + "end": 2733.32, + "probability": 0.8736 + }, + { + "start": 2733.9, + "end": 2735.18, + "probability": 0.9121 + }, + { + "start": 2735.26, + "end": 2738.06, + "probability": 0.9557 + }, + { + "start": 2740.06, + "end": 2740.94, + "probability": 0.6623 + }, + { + "start": 2741.0, + "end": 2742.44, + "probability": 0.872 + }, + { + "start": 2742.52, + "end": 2752.82, + "probability": 0.9927 + }, + { + "start": 2752.82, + "end": 2755.83, + "probability": 0.9372 + }, + { + "start": 2757.54, + "end": 2760.18, + "probability": 0.4867 + }, + { + "start": 2760.44, + "end": 2762.96, + "probability": 0.9043 + }, + { + "start": 2763.74, + "end": 2765.12, + "probability": 0.8805 + }, + { + "start": 2765.24, + "end": 2768.01, + "probability": 0.9919 + }, + { + "start": 2768.72, + "end": 2769.58, + "probability": 0.8205 + }, + { + "start": 2771.66, + "end": 2772.66, + "probability": 0.78 + }, + { + "start": 2772.84, + "end": 2775.12, + "probability": 0.9144 + }, + { + "start": 2775.22, + "end": 2775.92, + "probability": 0.8007 + }, + { + "start": 2776.72, + "end": 2778.72, + "probability": 0.99 + }, + { + "start": 2778.84, + "end": 2779.94, + "probability": 0.726 + }, + { + "start": 2780.1, + "end": 2782.6, + "probability": 0.8559 + }, + { + "start": 2783.16, + "end": 2784.56, + "probability": 0.9518 + }, + { + "start": 2785.54, + "end": 2788.64, + "probability": 0.9365 + }, + { + "start": 2788.64, + "end": 2791.42, + "probability": 0.9403 + }, + { + "start": 2792.44, + "end": 2794.38, + "probability": 0.9763 + }, + { + "start": 2794.66, + "end": 2797.6, + "probability": 0.9849 + }, + { + "start": 2798.86, + "end": 2799.59, + "probability": 0.9001 + }, + { + "start": 2800.34, + "end": 2801.2, + "probability": 0.6639 + }, + { + "start": 2802.4, + "end": 2809.44, + "probability": 0.9187 + }, + { + "start": 2809.44, + "end": 2812.36, + "probability": 0.9083 + }, + { + "start": 2812.7, + "end": 2814.48, + "probability": 0.9721 + }, + { + "start": 2815.18, + "end": 2819.82, + "probability": 0.9841 + }, + { + "start": 2820.48, + "end": 2823.46, + "probability": 0.888 + }, + { + "start": 2824.84, + "end": 2825.28, + "probability": 0.5307 + }, + { + "start": 2825.38, + "end": 2827.14, + "probability": 0.7112 + }, + { + "start": 2827.6, + "end": 2830.41, + "probability": 0.8302 + }, + { + "start": 2831.48, + "end": 2836.4, + "probability": 0.8258 + }, + { + "start": 2836.5, + "end": 2839.2, + "probability": 0.9432 + }, + { + "start": 2839.2, + "end": 2841.94, + "probability": 0.9864 + }, + { + "start": 2842.24, + "end": 2842.52, + "probability": 0.857 + }, + { + "start": 2843.92, + "end": 2844.42, + "probability": 0.7281 + }, + { + "start": 2844.56, + "end": 2844.96, + "probability": 0.2751 + }, + { + "start": 2845.12, + "end": 2848.86, + "probability": 0.9425 + }, + { + "start": 2849.98, + "end": 2851.3, + "probability": 0.9088 + }, + { + "start": 2852.54, + "end": 2854.46, + "probability": 0.7522 + }, + { + "start": 2854.46, + "end": 2856.78, + "probability": 0.8879 + }, + { + "start": 2858.38, + "end": 2863.66, + "probability": 0.938 + }, + { + "start": 2865.7, + "end": 2867.38, + "probability": 0.8381 + }, + { + "start": 2868.06, + "end": 2869.82, + "probability": 0.6848 + }, + { + "start": 2869.96, + "end": 2870.86, + "probability": 0.6643 + }, + { + "start": 2871.02, + "end": 2872.2, + "probability": 0.9469 + }, + { + "start": 2873.4, + "end": 2874.58, + "probability": 0.8686 + }, + { + "start": 2874.68, + "end": 2878.56, + "probability": 0.9292 + }, + { + "start": 2879.04, + "end": 2880.06, + "probability": 0.9752 + }, + { + "start": 2880.78, + "end": 2882.46, + "probability": 0.8534 + }, + { + "start": 2883.22, + "end": 2885.42, + "probability": 0.3591 + }, + { + "start": 2886.28, + "end": 2886.79, + "probability": 0.2573 + }, + { + "start": 2888.0, + "end": 2891.38, + "probability": 0.9497 + }, + { + "start": 2891.62, + "end": 2894.58, + "probability": 0.9507 + }, + { + "start": 2895.36, + "end": 2897.78, + "probability": 0.769 + }, + { + "start": 2897.92, + "end": 2899.0, + "probability": 0.9764 + }, + { + "start": 2899.86, + "end": 2903.5, + "probability": 0.9946 + }, + { + "start": 2904.72, + "end": 2909.12, + "probability": 0.9716 + }, + { + "start": 2909.68, + "end": 2911.5, + "probability": 0.8865 + }, + { + "start": 2911.9, + "end": 2912.96, + "probability": 0.7672 + }, + { + "start": 2913.36, + "end": 2914.96, + "probability": 0.8329 + }, + { + "start": 2915.74, + "end": 2916.66, + "probability": 0.9607 + }, + { + "start": 2917.28, + "end": 2917.62, + "probability": 0.7132 + }, + { + "start": 2917.7, + "end": 2918.28, + "probability": 0.7031 + }, + { + "start": 2918.38, + "end": 2921.26, + "probability": 0.7372 + }, + { + "start": 2921.4, + "end": 2924.08, + "probability": 0.8959 + }, + { + "start": 2925.38, + "end": 2926.24, + "probability": 0.4546 + }, + { + "start": 2926.88, + "end": 2929.7, + "probability": 0.9901 + }, + { + "start": 2930.6, + "end": 2931.86, + "probability": 0.873 + }, + { + "start": 2932.7, + "end": 2933.78, + "probability": 0.9586 + }, + { + "start": 2935.62, + "end": 2936.62, + "probability": 0.4736 + }, + { + "start": 2938.5, + "end": 2938.96, + "probability": 0.472 + }, + { + "start": 2939.66, + "end": 2942.15, + "probability": 0.9692 + }, + { + "start": 2942.84, + "end": 2943.64, + "probability": 0.9485 + }, + { + "start": 2944.18, + "end": 2945.74, + "probability": 0.7567 + }, + { + "start": 2946.16, + "end": 2947.2, + "probability": 0.8909 + }, + { + "start": 2947.34, + "end": 2948.74, + "probability": 0.9915 + }, + { + "start": 2949.76, + "end": 2952.0, + "probability": 0.9867 + }, + { + "start": 2954.4, + "end": 2955.7, + "probability": 0.8718 + }, + { + "start": 2955.88, + "end": 2959.86, + "probability": 0.974 + }, + { + "start": 2959.94, + "end": 2960.44, + "probability": 0.7114 + }, + { + "start": 2960.98, + "end": 2962.68, + "probability": 0.981 + }, + { + "start": 2965.68, + "end": 2966.8, + "probability": 0.7383 + }, + { + "start": 2967.08, + "end": 2967.08, + "probability": 0.4782 + }, + { + "start": 2967.48, + "end": 2969.4, + "probability": 0.8093 + }, + { + "start": 2969.8, + "end": 2971.96, + "probability": 0.8253 + }, + { + "start": 2972.0, + "end": 2973.3, + "probability": 0.7557 + }, + { + "start": 2974.2, + "end": 2977.92, + "probability": 0.4055 + }, + { + "start": 2978.06, + "end": 2978.24, + "probability": 0.0344 + }, + { + "start": 2979.32, + "end": 2980.17, + "probability": 0.9287 + }, + { + "start": 2980.92, + "end": 2982.54, + "probability": 0.9105 + }, + { + "start": 2983.58, + "end": 2985.89, + "probability": 0.9688 + }, + { + "start": 2987.0, + "end": 2991.04, + "probability": 0.9469 + }, + { + "start": 2991.86, + "end": 2995.78, + "probability": 0.9969 + }, + { + "start": 2996.76, + "end": 3000.14, + "probability": 0.9916 + }, + { + "start": 3000.14, + "end": 3004.04, + "probability": 0.998 + }, + { + "start": 3004.74, + "end": 3007.06, + "probability": 0.9761 + }, + { + "start": 3008.16, + "end": 3011.22, + "probability": 0.7755 + }, + { + "start": 3011.26, + "end": 3014.82, + "probability": 0.9716 + }, + { + "start": 3015.86, + "end": 3016.3, + "probability": 0.7985 + }, + { + "start": 3017.08, + "end": 3019.19, + "probability": 0.9043 + }, + { + "start": 3019.96, + "end": 3022.66, + "probability": 0.8795 + }, + { + "start": 3023.18, + "end": 3028.24, + "probability": 0.9695 + }, + { + "start": 3028.78, + "end": 3032.77, + "probability": 0.7452 + }, + { + "start": 3033.44, + "end": 3037.98, + "probability": 0.9624 + }, + { + "start": 3038.03, + "end": 3040.8, + "probability": 0.8049 + }, + { + "start": 3041.16, + "end": 3048.84, + "probability": 0.8428 + }, + { + "start": 3049.34, + "end": 3050.42, + "probability": 0.9258 + }, + { + "start": 3051.28, + "end": 3055.34, + "probability": 0.9809 + }, + { + "start": 3056.3, + "end": 3057.91, + "probability": 0.8593 + }, + { + "start": 3059.92, + "end": 3066.28, + "probability": 0.8267 + }, + { + "start": 3067.04, + "end": 3070.52, + "probability": 0.9971 + }, + { + "start": 3070.52, + "end": 3075.04, + "probability": 0.9941 + }, + { + "start": 3075.96, + "end": 3080.84, + "probability": 0.9924 + }, + { + "start": 3081.48, + "end": 3082.4, + "probability": 0.8398 + }, + { + "start": 3082.5, + "end": 3083.82, + "probability": 0.9703 + }, + { + "start": 3084.16, + "end": 3085.62, + "probability": 0.8707 + }, + { + "start": 3086.48, + "end": 3091.16, + "probability": 0.8906 + }, + { + "start": 3091.96, + "end": 3095.3, + "probability": 0.9943 + }, + { + "start": 3095.94, + "end": 3099.1, + "probability": 0.9931 + }, + { + "start": 3099.92, + "end": 3100.88, + "probability": 0.7981 + }, + { + "start": 3101.54, + "end": 3102.4, + "probability": 0.9769 + }, + { + "start": 3103.08, + "end": 3106.68, + "probability": 0.9958 + }, + { + "start": 3107.44, + "end": 3108.06, + "probability": 0.7763 + }, + { + "start": 3108.2, + "end": 3109.06, + "probability": 0.7933 + }, + { + "start": 3109.12, + "end": 3110.1, + "probability": 0.9888 + }, + { + "start": 3110.82, + "end": 3117.92, + "probability": 0.9911 + }, + { + "start": 3118.32, + "end": 3119.22, + "probability": 0.868 + }, + { + "start": 3119.6, + "end": 3122.48, + "probability": 0.971 + }, + { + "start": 3123.06, + "end": 3123.78, + "probability": 0.8707 + }, + { + "start": 3123.78, + "end": 3124.58, + "probability": 0.8275 + }, + { + "start": 3124.64, + "end": 3126.52, + "probability": 0.9289 + }, + { + "start": 3127.08, + "end": 3128.8, + "probability": 0.9312 + }, + { + "start": 3129.16, + "end": 3131.64, + "probability": 0.9863 + }, + { + "start": 3131.72, + "end": 3134.74, + "probability": 0.9951 + }, + { + "start": 3135.14, + "end": 3137.98, + "probability": 0.9692 + }, + { + "start": 3138.18, + "end": 3138.9, + "probability": 0.9661 + }, + { + "start": 3140.5, + "end": 3142.22, + "probability": 0.9402 + }, + { + "start": 3142.36, + "end": 3142.92, + "probability": 0.9741 + }, + { + "start": 3143.06, + "end": 3146.56, + "probability": 0.7249 + }, + { + "start": 3146.76, + "end": 3147.91, + "probability": 0.5639 + }, + { + "start": 3150.11, + "end": 3152.34, + "probability": 0.9129 + }, + { + "start": 3152.74, + "end": 3157.38, + "probability": 0.9255 + }, + { + "start": 3160.68, + "end": 3161.76, + "probability": 0.6483 + }, + { + "start": 3162.06, + "end": 3163.18, + "probability": 0.7266 + }, + { + "start": 3163.28, + "end": 3164.2, + "probability": 0.7934 + }, + { + "start": 3165.0, + "end": 3167.46, + "probability": 0.1712 + }, + { + "start": 3167.98, + "end": 3168.94, + "probability": 0.2642 + }, + { + "start": 3169.08, + "end": 3172.09, + "probability": 0.6263 + }, + { + "start": 3173.48, + "end": 3175.98, + "probability": 0.9048 + }, + { + "start": 3177.08, + "end": 3177.86, + "probability": 0.8076 + }, + { + "start": 3178.26, + "end": 3182.98, + "probability": 0.9968 + }, + { + "start": 3182.98, + "end": 3184.72, + "probability": 0.9648 + }, + { + "start": 3185.24, + "end": 3188.86, + "probability": 0.5082 + }, + { + "start": 3188.88, + "end": 3188.88, + "probability": 0.5328 + }, + { + "start": 3188.92, + "end": 3191.74, + "probability": 0.5054 + }, + { + "start": 3197.3, + "end": 3199.21, + "probability": 0.6731 + }, + { + "start": 3199.48, + "end": 3203.66, + "probability": 0.9893 + }, + { + "start": 3206.2, + "end": 3207.28, + "probability": 0.5775 + }, + { + "start": 3207.28, + "end": 3207.69, + "probability": 0.6685 + }, + { + "start": 3208.32, + "end": 3211.3, + "probability": 0.9938 + }, + { + "start": 3211.7, + "end": 3217.32, + "probability": 0.9947 + }, + { + "start": 3217.46, + "end": 3217.82, + "probability": 0.9716 + }, + { + "start": 3217.96, + "end": 3218.4, + "probability": 0.5266 + }, + { + "start": 3218.72, + "end": 3219.36, + "probability": 0.7174 + }, + { + "start": 3219.9, + "end": 3221.54, + "probability": 0.8967 + }, + { + "start": 3221.76, + "end": 3225.66, + "probability": 0.9842 + }, + { + "start": 3226.0, + "end": 3228.88, + "probability": 0.9495 + }, + { + "start": 3229.04, + "end": 3229.66, + "probability": 0.8125 + }, + { + "start": 3229.7, + "end": 3230.55, + "probability": 0.7822 + }, + { + "start": 3231.06, + "end": 3235.82, + "probability": 0.9637 + }, + { + "start": 3235.82, + "end": 3239.78, + "probability": 0.9995 + }, + { + "start": 3240.14, + "end": 3245.82, + "probability": 0.9897 + }, + { + "start": 3246.4, + "end": 3249.72, + "probability": 0.9857 + }, + { + "start": 3250.06, + "end": 3251.14, + "probability": 0.84 + }, + { + "start": 3251.86, + "end": 3255.5, + "probability": 0.9448 + }, + { + "start": 3256.0, + "end": 3257.24, + "probability": 0.893 + }, + { + "start": 3257.68, + "end": 3261.54, + "probability": 0.9755 + }, + { + "start": 3261.72, + "end": 3262.68, + "probability": 0.9133 + }, + { + "start": 3263.08, + "end": 3265.18, + "probability": 0.9658 + }, + { + "start": 3265.44, + "end": 3266.98, + "probability": 0.9946 + }, + { + "start": 3267.16, + "end": 3269.34, + "probability": 0.9905 + }, + { + "start": 3269.34, + "end": 3272.68, + "probability": 0.9976 + }, + { + "start": 3273.02, + "end": 3274.16, + "probability": 0.8447 + }, + { + "start": 3274.22, + "end": 3275.89, + "probability": 0.871 + }, + { + "start": 3276.5, + "end": 3280.2, + "probability": 0.9922 + }, + { + "start": 3280.84, + "end": 3283.3, + "probability": 0.9675 + }, + { + "start": 3283.44, + "end": 3285.14, + "probability": 0.9668 + }, + { + "start": 3285.2, + "end": 3287.38, + "probability": 0.8188 + }, + { + "start": 3287.68, + "end": 3290.64, + "probability": 0.9034 + }, + { + "start": 3290.72, + "end": 3290.72, + "probability": 0.1995 + }, + { + "start": 3290.72, + "end": 3291.46, + "probability": 0.7159 + }, + { + "start": 3291.74, + "end": 3295.02, + "probability": 0.9033 + }, + { + "start": 3295.06, + "end": 3296.4, + "probability": 0.8555 + }, + { + "start": 3296.5, + "end": 3300.22, + "probability": 0.9935 + }, + { + "start": 3300.66, + "end": 3304.9, + "probability": 0.9598 + }, + { + "start": 3305.22, + "end": 3308.02, + "probability": 0.6432 + }, + { + "start": 3308.7, + "end": 3312.36, + "probability": 0.9809 + }, + { + "start": 3312.82, + "end": 3313.75, + "probability": 0.2678 + }, + { + "start": 3315.07, + "end": 3317.7, + "probability": 0.8701 + }, + { + "start": 3317.86, + "end": 3318.62, + "probability": 0.72 + }, + { + "start": 3318.8, + "end": 3323.52, + "probability": 0.9902 + }, + { + "start": 3323.76, + "end": 3324.98, + "probability": 0.9902 + }, + { + "start": 3325.14, + "end": 3329.39, + "probability": 0.8027 + }, + { + "start": 3329.56, + "end": 3331.96, + "probability": 0.773 + }, + { + "start": 3332.87, + "end": 3337.16, + "probability": 0.7808 + }, + { + "start": 3337.3, + "end": 3339.38, + "probability": 0.9585 + }, + { + "start": 3339.62, + "end": 3341.61, + "probability": 0.9893 + }, + { + "start": 3342.06, + "end": 3343.18, + "probability": 0.9438 + }, + { + "start": 3343.48, + "end": 3344.6, + "probability": 0.8273 + }, + { + "start": 3344.74, + "end": 3347.28, + "probability": 0.9924 + }, + { + "start": 3347.42, + "end": 3347.64, + "probability": 0.8204 + }, + { + "start": 3349.93, + "end": 3352.1, + "probability": 0.9103 + }, + { + "start": 3353.12, + "end": 3354.82, + "probability": 0.8826 + }, + { + "start": 3356.52, + "end": 3358.2, + "probability": 0.9069 + }, + { + "start": 3358.6, + "end": 3361.7, + "probability": 0.6661 + }, + { + "start": 3362.52, + "end": 3366.64, + "probability": 0.7831 + }, + { + "start": 3367.58, + "end": 3369.64, + "probability": 0.5788 + }, + { + "start": 3372.46, + "end": 3375.92, + "probability": 0.0596 + }, + { + "start": 3377.04, + "end": 3377.96, + "probability": 0.0082 + }, + { + "start": 3390.62, + "end": 3390.82, + "probability": 0.3164 + }, + { + "start": 3395.48, + "end": 3399.76, + "probability": 0.7133 + }, + { + "start": 3400.54, + "end": 3405.98, + "probability": 0.8954 + }, + { + "start": 3406.18, + "end": 3407.42, + "probability": 0.8542 + }, + { + "start": 3408.72, + "end": 3411.16, + "probability": 0.9581 + }, + { + "start": 3411.68, + "end": 3413.84, + "probability": 0.9735 + }, + { + "start": 3414.8, + "end": 3420.18, + "probability": 0.997 + }, + { + "start": 3420.54, + "end": 3422.58, + "probability": 0.7887 + }, + { + "start": 3423.32, + "end": 3423.8, + "probability": 0.5389 + }, + { + "start": 3423.96, + "end": 3425.16, + "probability": 0.9751 + }, + { + "start": 3425.3, + "end": 3427.72, + "probability": 0.9927 + }, + { + "start": 3427.72, + "end": 3431.64, + "probability": 0.9915 + }, + { + "start": 3432.14, + "end": 3434.58, + "probability": 0.8129 + }, + { + "start": 3435.1, + "end": 3437.98, + "probability": 0.9976 + }, + { + "start": 3437.98, + "end": 3440.98, + "probability": 0.9299 + }, + { + "start": 3441.9, + "end": 3445.87, + "probability": 0.9893 + }, + { + "start": 3446.26, + "end": 3451.38, + "probability": 0.9983 + }, + { + "start": 3452.14, + "end": 3452.86, + "probability": 0.9611 + }, + { + "start": 3453.6, + "end": 3457.44, + "probability": 0.9847 + }, + { + "start": 3458.36, + "end": 3464.14, + "probability": 0.8428 + }, + { + "start": 3464.68, + "end": 3466.84, + "probability": 0.9939 + }, + { + "start": 3466.84, + "end": 3469.24, + "probability": 0.9976 + }, + { + "start": 3469.4, + "end": 3473.08, + "probability": 0.9409 + }, + { + "start": 3473.56, + "end": 3479.24, + "probability": 0.9546 + }, + { + "start": 3479.24, + "end": 3482.4, + "probability": 0.994 + }, + { + "start": 3483.56, + "end": 3484.7, + "probability": 0.7746 + }, + { + "start": 3484.74, + "end": 3486.54, + "probability": 0.9236 + }, + { + "start": 3486.76, + "end": 3492.54, + "probability": 0.9677 + }, + { + "start": 3492.54, + "end": 3495.62, + "probability": 0.9987 + }, + { + "start": 3496.48, + "end": 3497.54, + "probability": 0.7087 + }, + { + "start": 3499.22, + "end": 3499.92, + "probability": 0.4274 + }, + { + "start": 3500.0, + "end": 3501.24, + "probability": 0.9787 + }, + { + "start": 3501.36, + "end": 3506.78, + "probability": 0.9971 + }, + { + "start": 3507.58, + "end": 3511.72, + "probability": 0.9988 + }, + { + "start": 3512.5, + "end": 3513.73, + "probability": 0.9956 + }, + { + "start": 3513.98, + "end": 3515.71, + "probability": 0.9956 + }, + { + "start": 3516.1, + "end": 3517.52, + "probability": 0.8989 + }, + { + "start": 3517.9, + "end": 3518.96, + "probability": 0.6544 + }, + { + "start": 3519.06, + "end": 3520.0, + "probability": 0.9805 + }, + { + "start": 3520.5, + "end": 3525.38, + "probability": 0.9985 + }, + { + "start": 3525.38, + "end": 3525.74, + "probability": 0.3501 + }, + { + "start": 3525.74, + "end": 3530.82, + "probability": 0.9974 + }, + { + "start": 3531.18, + "end": 3532.62, + "probability": 0.9899 + }, + { + "start": 3532.92, + "end": 3534.52, + "probability": 0.9761 + }, + { + "start": 3535.26, + "end": 3536.98, + "probability": 0.7773 + }, + { + "start": 3537.46, + "end": 3538.66, + "probability": 0.9156 + }, + { + "start": 3538.92, + "end": 3542.88, + "probability": 0.9946 + }, + { + "start": 3542.88, + "end": 3544.48, + "probability": 0.8007 + }, + { + "start": 3544.84, + "end": 3546.88, + "probability": 0.6691 + }, + { + "start": 3547.24, + "end": 3548.28, + "probability": 0.9263 + }, + { + "start": 3563.36, + "end": 3565.12, + "probability": 0.6166 + }, + { + "start": 3566.3, + "end": 3567.3, + "probability": 0.9949 + }, + { + "start": 3568.52, + "end": 3571.46, + "probability": 0.95 + }, + { + "start": 3572.26, + "end": 3573.82, + "probability": 0.9984 + }, + { + "start": 3575.82, + "end": 3577.48, + "probability": 0.8812 + }, + { + "start": 3578.2, + "end": 3580.36, + "probability": 0.9725 + }, + { + "start": 3581.62, + "end": 3584.62, + "probability": 0.9078 + }, + { + "start": 3585.2, + "end": 3588.2, + "probability": 0.7361 + }, + { + "start": 3589.12, + "end": 3589.75, + "probability": 0.9375 + }, + { + "start": 3591.7, + "end": 3594.3, + "probability": 0.8453 + }, + { + "start": 3595.52, + "end": 3595.52, + "probability": 0.0535 + }, + { + "start": 3595.52, + "end": 3596.52, + "probability": 0.6464 + }, + { + "start": 3596.84, + "end": 3605.5, + "probability": 0.9985 + }, + { + "start": 3606.92, + "end": 3607.26, + "probability": 0.1027 + }, + { + "start": 3609.06, + "end": 3611.38, + "probability": 0.6622 + }, + { + "start": 3612.06, + "end": 3617.26, + "probability": 0.3387 + }, + { + "start": 3617.78, + "end": 3618.82, + "probability": 0.3745 + }, + { + "start": 3618.94, + "end": 3620.8, + "probability": 0.2247 + }, + { + "start": 3621.32, + "end": 3621.9, + "probability": 0.2735 + }, + { + "start": 3622.02, + "end": 3625.36, + "probability": 0.1682 + }, + { + "start": 3625.58, + "end": 3627.17, + "probability": 0.6689 + }, + { + "start": 3627.86, + "end": 3631.22, + "probability": 0.7319 + }, + { + "start": 3632.28, + "end": 3633.0, + "probability": 0.8181 + }, + { + "start": 3633.22, + "end": 3635.04, + "probability": 0.9175 + }, + { + "start": 3635.76, + "end": 3637.94, + "probability": 0.8174 + }, + { + "start": 3639.38, + "end": 3641.08, + "probability": 0.9902 + }, + { + "start": 3641.88, + "end": 3643.52, + "probability": 0.9872 + }, + { + "start": 3644.36, + "end": 3645.58, + "probability": 0.6915 + }, + { + "start": 3645.8, + "end": 3647.14, + "probability": 0.5255 + }, + { + "start": 3648.1, + "end": 3649.86, + "probability": 0.8929 + }, + { + "start": 3651.06, + "end": 3653.02, + "probability": 0.8805 + }, + { + "start": 3653.48, + "end": 3655.54, + "probability": 0.9922 + }, + { + "start": 3657.14, + "end": 3657.14, + "probability": 0.0373 + }, + { + "start": 3657.14, + "end": 3658.74, + "probability": 0.7511 + }, + { + "start": 3658.94, + "end": 3663.52, + "probability": 0.9587 + }, + { + "start": 3664.22, + "end": 3666.8, + "probability": 0.8312 + }, + { + "start": 3666.8, + "end": 3669.66, + "probability": 0.9531 + }, + { + "start": 3670.44, + "end": 3671.07, + "probability": 0.9724 + }, + { + "start": 3672.16, + "end": 3676.5, + "probability": 0.9744 + }, + { + "start": 3677.38, + "end": 3679.0, + "probability": 0.7422 + }, + { + "start": 3679.94, + "end": 3681.3, + "probability": 0.5068 + }, + { + "start": 3682.18, + "end": 3683.46, + "probability": 0.7367 + }, + { + "start": 3683.68, + "end": 3685.02, + "probability": 0.9344 + }, + { + "start": 3685.46, + "end": 3686.36, + "probability": 0.9084 + }, + { + "start": 3687.14, + "end": 3690.32, + "probability": 0.7489 + }, + { + "start": 3690.98, + "end": 3694.72, + "probability": 0.9907 + }, + { + "start": 3695.04, + "end": 3697.26, + "probability": 0.7322 + }, + { + "start": 3697.4, + "end": 3697.66, + "probability": 0.4528 + }, + { + "start": 3697.7, + "end": 3699.64, + "probability": 0.9802 + }, + { + "start": 3700.0, + "end": 3701.1, + "probability": 0.7133 + }, + { + "start": 3701.46, + "end": 3704.96, + "probability": 0.9585 + }, + { + "start": 3705.46, + "end": 3705.82, + "probability": 0.5953 + }, + { + "start": 3705.94, + "end": 3706.68, + "probability": 0.8564 + }, + { + "start": 3707.22, + "end": 3709.92, + "probability": 0.9032 + }, + { + "start": 3710.18, + "end": 3710.8, + "probability": 0.8485 + }, + { + "start": 3711.1, + "end": 3714.32, + "probability": 0.8462 + }, + { + "start": 3714.96, + "end": 3717.28, + "probability": 0.9524 + }, + { + "start": 3717.58, + "end": 3718.28, + "probability": 0.9146 + }, + { + "start": 3718.72, + "end": 3722.12, + "probability": 0.9465 + }, + { + "start": 3722.12, + "end": 3723.48, + "probability": 0.5018 + }, + { + "start": 3723.64, + "end": 3726.52, + "probability": 0.6227 + }, + { + "start": 3727.46, + "end": 3729.38, + "probability": 0.8958 + }, + { + "start": 3732.5, + "end": 3734.33, + "probability": 0.937 + }, + { + "start": 3736.62, + "end": 3738.0, + "probability": 0.1545 + }, + { + "start": 3750.98, + "end": 3752.62, + "probability": 0.8682 + }, + { + "start": 3752.72, + "end": 3753.74, + "probability": 0.8206 + }, + { + "start": 3753.94, + "end": 3755.72, + "probability": 0.5728 + }, + { + "start": 3755.84, + "end": 3756.48, + "probability": 0.614 + }, + { + "start": 3756.56, + "end": 3757.66, + "probability": 0.7039 + }, + { + "start": 3757.76, + "end": 3758.94, + "probability": 0.5756 + }, + { + "start": 3759.86, + "end": 3761.68, + "probability": 0.9771 + }, + { + "start": 3762.41, + "end": 3766.12, + "probability": 0.7791 + }, + { + "start": 3767.96, + "end": 3771.74, + "probability": 0.9951 + }, + { + "start": 3772.14, + "end": 3775.64, + "probability": 0.9943 + }, + { + "start": 3776.62, + "end": 3779.88, + "probability": 0.9816 + }, + { + "start": 3781.54, + "end": 3785.72, + "probability": 0.9972 + }, + { + "start": 3787.92, + "end": 3791.3, + "probability": 0.9984 + }, + { + "start": 3791.58, + "end": 3793.12, + "probability": 0.9684 + }, + { + "start": 3794.92, + "end": 3796.56, + "probability": 0.9908 + }, + { + "start": 3797.1, + "end": 3798.71, + "probability": 0.7237 + }, + { + "start": 3799.14, + "end": 3800.66, + "probability": 0.8565 + }, + { + "start": 3801.18, + "end": 3802.06, + "probability": 0.7993 + }, + { + "start": 3802.24, + "end": 3803.08, + "probability": 0.8083 + }, + { + "start": 3803.18, + "end": 3803.66, + "probability": 0.5819 + }, + { + "start": 3803.76, + "end": 3805.24, + "probability": 0.9904 + }, + { + "start": 3806.3, + "end": 3807.58, + "probability": 0.9883 + }, + { + "start": 3808.46, + "end": 3810.78, + "probability": 0.8015 + }, + { + "start": 3812.3, + "end": 3817.54, + "probability": 0.9982 + }, + { + "start": 3817.62, + "end": 3819.48, + "probability": 0.9624 + }, + { + "start": 3821.2, + "end": 3824.42, + "probability": 0.7986 + }, + { + "start": 3824.54, + "end": 3825.48, + "probability": 0.6338 + }, + { + "start": 3825.7, + "end": 3826.32, + "probability": 0.8557 + }, + { + "start": 3826.82, + "end": 3829.2, + "probability": 0.5389 + }, + { + "start": 3830.04, + "end": 3830.92, + "probability": 0.9512 + }, + { + "start": 3831.12, + "end": 3833.08, + "probability": 0.9849 + }, + { + "start": 3833.78, + "end": 3836.16, + "probability": 0.8191 + }, + { + "start": 3836.56, + "end": 3837.42, + "probability": 0.9731 + }, + { + "start": 3837.44, + "end": 3837.95, + "probability": 0.9556 + }, + { + "start": 3838.86, + "end": 3840.55, + "probability": 0.9965 + }, + { + "start": 3841.08, + "end": 3843.02, + "probability": 0.987 + }, + { + "start": 3843.4, + "end": 3844.62, + "probability": 0.9499 + }, + { + "start": 3845.04, + "end": 3846.2, + "probability": 0.686 + }, + { + "start": 3846.64, + "end": 3847.58, + "probability": 0.9907 + }, + { + "start": 3848.04, + "end": 3850.6, + "probability": 0.9956 + }, + { + "start": 3851.12, + "end": 3852.5, + "probability": 0.972 + }, + { + "start": 3852.9, + "end": 3855.82, + "probability": 0.9666 + }, + { + "start": 3856.4, + "end": 3862.28, + "probability": 0.9907 + }, + { + "start": 3862.72, + "end": 3863.83, + "probability": 0.9736 + }, + { + "start": 3864.44, + "end": 3865.54, + "probability": 0.9659 + }, + { + "start": 3865.84, + "end": 3867.14, + "probability": 0.9751 + }, + { + "start": 3867.32, + "end": 3868.82, + "probability": 0.3991 + }, + { + "start": 3869.18, + "end": 3871.5, + "probability": 0.9232 + }, + { + "start": 3872.1, + "end": 3873.78, + "probability": 0.9899 + }, + { + "start": 3874.76, + "end": 3876.82, + "probability": 0.9507 + }, + { + "start": 3876.94, + "end": 3878.86, + "probability": 0.9965 + }, + { + "start": 3879.22, + "end": 3879.22, + "probability": 0.0155 + }, + { + "start": 3879.22, + "end": 3881.56, + "probability": 0.7471 + }, + { + "start": 3881.96, + "end": 3884.72, + "probability": 0.9633 + }, + { + "start": 3884.92, + "end": 3885.96, + "probability": 0.8215 + }, + { + "start": 3886.12, + "end": 3888.22, + "probability": 0.9312 + }, + { + "start": 3888.66, + "end": 3891.8, + "probability": 0.7124 + }, + { + "start": 3892.1, + "end": 3897.56, + "probability": 0.9424 + }, + { + "start": 3897.6, + "end": 3898.14, + "probability": 0.6458 + }, + { + "start": 3898.14, + "end": 3899.21, + "probability": 0.5494 + }, + { + "start": 3900.98, + "end": 3902.8, + "probability": 0.9014 + }, + { + "start": 3903.06, + "end": 3904.76, + "probability": 0.7777 + }, + { + "start": 3906.51, + "end": 3908.72, + "probability": 0.2744 + }, + { + "start": 3909.46, + "end": 3909.66, + "probability": 0.0082 + }, + { + "start": 3909.66, + "end": 3909.66, + "probability": 0.3036 + }, + { + "start": 3909.66, + "end": 3909.66, + "probability": 0.1722 + }, + { + "start": 3909.66, + "end": 3909.66, + "probability": 0.1487 + }, + { + "start": 3909.66, + "end": 3910.58, + "probability": 0.4941 + }, + { + "start": 3910.58, + "end": 3910.58, + "probability": 0.2712 + }, + { + "start": 3910.58, + "end": 3912.59, + "probability": 0.3682 + }, + { + "start": 3912.8, + "end": 3913.04, + "probability": 0.456 + }, + { + "start": 3913.32, + "end": 3915.04, + "probability": 0.7676 + }, + { + "start": 3916.08, + "end": 3916.86, + "probability": 0.4398 + }, + { + "start": 3916.86, + "end": 3917.72, + "probability": 0.3175 + }, + { + "start": 3918.9, + "end": 3920.8, + "probability": 0.3357 + }, + { + "start": 3921.9, + "end": 3922.36, + "probability": 0.1349 + }, + { + "start": 3922.36, + "end": 3922.74, + "probability": 0.3765 + }, + { + "start": 3923.02, + "end": 3923.14, + "probability": 0.3048 + }, + { + "start": 3923.14, + "end": 3926.67, + "probability": 0.6236 + }, + { + "start": 3927.06, + "end": 3928.1, + "probability": 0.7704 + }, + { + "start": 3928.26, + "end": 3929.9, + "probability": 0.9255 + }, + { + "start": 3930.38, + "end": 3930.84, + "probability": 0.223 + }, + { + "start": 3934.8, + "end": 3936.56, + "probability": 0.7678 + }, + { + "start": 3936.9, + "end": 3937.9, + "probability": 0.7888 + }, + { + "start": 3938.34, + "end": 3939.21, + "probability": 0.9668 + }, + { + "start": 3939.4, + "end": 3941.54, + "probability": 0.4975 + }, + { + "start": 3941.78, + "end": 3941.92, + "probability": 0.2038 + }, + { + "start": 3941.92, + "end": 3943.16, + "probability": 0.6227 + }, + { + "start": 3943.22, + "end": 3946.14, + "probability": 0.6659 + }, + { + "start": 3947.56, + "end": 3949.02, + "probability": 0.2766 + }, + { + "start": 3949.16, + "end": 3949.66, + "probability": 0.0526 + }, + { + "start": 3952.16, + "end": 3953.5, + "probability": 0.5096 + }, + { + "start": 3953.58, + "end": 3954.44, + "probability": 0.6066 + }, + { + "start": 3954.54, + "end": 3955.28, + "probability": 0.72 + }, + { + "start": 3955.38, + "end": 3959.54, + "probability": 0.6518 + }, + { + "start": 3960.22, + "end": 3961.32, + "probability": 0.0391 + }, + { + "start": 3961.32, + "end": 3962.32, + "probability": 0.2453 + }, + { + "start": 3962.46, + "end": 3963.08, + "probability": 0.7812 + }, + { + "start": 3963.1, + "end": 3967.16, + "probability": 0.5302 + }, + { + "start": 3967.8, + "end": 3968.54, + "probability": 0.1272 + }, + { + "start": 3968.98, + "end": 3969.6, + "probability": 0.0955 + }, + { + "start": 3979.06, + "end": 3980.28, + "probability": 0.534 + }, + { + "start": 3982.74, + "end": 3984.3, + "probability": 0.0281 + }, + { + "start": 3985.1, + "end": 3988.1, + "probability": 0.6632 + }, + { + "start": 3988.56, + "end": 3990.54, + "probability": 0.9866 + }, + { + "start": 3991.4, + "end": 3992.82, + "probability": 0.9472 + }, + { + "start": 3994.04, + "end": 3998.44, + "probability": 0.9025 + }, + { + "start": 3998.58, + "end": 4000.14, + "probability": 0.8159 + }, + { + "start": 4001.16, + "end": 4002.54, + "probability": 0.8289 + }, + { + "start": 4004.1, + "end": 4004.7, + "probability": 0.007 + }, + { + "start": 4004.7, + "end": 4004.98, + "probability": 0.0075 + }, + { + "start": 4004.98, + "end": 4005.32, + "probability": 0.1946 + }, + { + "start": 4005.48, + "end": 4007.08, + "probability": 0.5411 + }, + { + "start": 4007.24, + "end": 4007.76, + "probability": 0.7347 + }, + { + "start": 4007.98, + "end": 4008.44, + "probability": 0.7776 + }, + { + "start": 4008.64, + "end": 4009.52, + "probability": 0.508 + }, + { + "start": 4009.58, + "end": 4010.14, + "probability": 0.6141 + }, + { + "start": 4010.48, + "end": 4011.29, + "probability": 0.7749 + }, + { + "start": 4011.66, + "end": 4012.87, + "probability": 0.7747 + }, + { + "start": 4013.68, + "end": 4014.98, + "probability": 0.0071 + }, + { + "start": 4016.98, + "end": 4017.54, + "probability": 0.1425 + }, + { + "start": 4018.14, + "end": 4018.14, + "probability": 0.5204 + }, + { + "start": 4018.14, + "end": 4018.14, + "probability": 0.8756 + }, + { + "start": 4018.14, + "end": 4020.24, + "probability": 0.7157 + }, + { + "start": 4020.54, + "end": 4021.84, + "probability": 0.3552 + }, + { + "start": 4021.96, + "end": 4023.28, + "probability": 0.8848 + }, + { + "start": 4023.98, + "end": 4024.98, + "probability": 0.7287 + }, + { + "start": 4026.46, + "end": 4029.64, + "probability": 0.9532 + }, + { + "start": 4030.86, + "end": 4033.92, + "probability": 0.8715 + }, + { + "start": 4034.62, + "end": 4037.7, + "probability": 0.9396 + }, + { + "start": 4039.38, + "end": 4041.42, + "probability": 0.6558 + }, + { + "start": 4041.68, + "end": 4044.38, + "probability": 0.9946 + }, + { + "start": 4044.56, + "end": 4045.6, + "probability": 0.9021 + }, + { + "start": 4045.7, + "end": 4046.64, + "probability": 0.981 + }, + { + "start": 4047.24, + "end": 4049.06, + "probability": 0.5416 + }, + { + "start": 4050.2, + "end": 4053.44, + "probability": 0.9921 + }, + { + "start": 4053.96, + "end": 4058.74, + "probability": 0.9868 + }, + { + "start": 4059.64, + "end": 4061.28, + "probability": 0.856 + }, + { + "start": 4062.12, + "end": 4063.99, + "probability": 0.9893 + }, + { + "start": 4064.59, + "end": 4066.11, + "probability": 0.7342 + }, + { + "start": 4066.59, + "end": 4071.55, + "probability": 0.9943 + }, + { + "start": 4072.09, + "end": 4073.97, + "probability": 0.9122 + }, + { + "start": 4074.57, + "end": 4079.29, + "probability": 0.991 + }, + { + "start": 4079.89, + "end": 4083.09, + "probability": 0.8739 + }, + { + "start": 4083.81, + "end": 4084.85, + "probability": 0.7806 + }, + { + "start": 4085.13, + "end": 4087.95, + "probability": 0.9641 + }, + { + "start": 4088.91, + "end": 4089.77, + "probability": 0.2073 + }, + { + "start": 4089.87, + "end": 4090.15, + "probability": 0.4262 + }, + { + "start": 4090.29, + "end": 4090.87, + "probability": 0.8684 + }, + { + "start": 4091.65, + "end": 4093.55, + "probability": 0.4801 + }, + { + "start": 4094.25, + "end": 4094.43, + "probability": 0.2319 + }, + { + "start": 4097.77, + "end": 4100.51, + "probability": 0.8161 + }, + { + "start": 4101.17, + "end": 4102.77, + "probability": 0.7462 + }, + { + "start": 4103.03, + "end": 4103.45, + "probability": 0.1772 + }, + { + "start": 4103.63, + "end": 4105.07, + "probability": 0.6904 + }, + { + "start": 4105.19, + "end": 4105.85, + "probability": 0.0205 + }, + { + "start": 4108.95, + "end": 4110.35, + "probability": 0.0314 + }, + { + "start": 4110.37, + "end": 4112.63, + "probability": 0.2346 + }, + { + "start": 4113.72, + "end": 4116.51, + "probability": 0.744 + }, + { + "start": 4116.51, + "end": 4117.95, + "probability": 0.0705 + }, + { + "start": 4119.55, + "end": 4120.35, + "probability": 0.5962 + }, + { + "start": 4121.45, + "end": 4122.85, + "probability": 0.0704 + }, + { + "start": 4123.37, + "end": 4123.51, + "probability": 0.2471 + }, + { + "start": 4124.3, + "end": 4124.67, + "probability": 0.0409 + }, + { + "start": 4125.35, + "end": 4128.05, + "probability": 0.093 + }, + { + "start": 4129.57, + "end": 4129.93, + "probability": 0.0395 + }, + { + "start": 4129.93, + "end": 4131.01, + "probability": 0.151 + }, + { + "start": 4131.41, + "end": 4131.91, + "probability": 0.1203 + }, + { + "start": 4132.41, + "end": 4134.19, + "probability": 0.5184 + }, + { + "start": 4141.93, + "end": 4141.93, + "probability": 0.0326 + }, + { + "start": 4141.93, + "end": 4143.63, + "probability": 0.0932 + }, + { + "start": 4145.07, + "end": 4145.84, + "probability": 0.0657 + }, + { + "start": 4148.15, + "end": 4148.29, + "probability": 0.1017 + }, + { + "start": 4150.15, + "end": 4150.35, + "probability": 0.1175 + }, + { + "start": 4150.35, + "end": 4150.97, + "probability": 0.0604 + }, + { + "start": 4158.17, + "end": 4160.59, + "probability": 0.0923 + }, + { + "start": 4162.33, + "end": 4164.11, + "probability": 0.1949 + }, + { + "start": 4164.71, + "end": 4166.75, + "probability": 0.0487 + }, + { + "start": 4166.75, + "end": 4166.79, + "probability": 0.0644 + }, + { + "start": 4167.91, + "end": 4169.71, + "probability": 0.0688 + }, + { + "start": 4169.71, + "end": 4170.85, + "probability": 0.0083 + }, + { + "start": 4176.41, + "end": 4177.85, + "probability": 0.0057 + }, + { + "start": 4178.13, + "end": 4182.32, + "probability": 0.0613 + }, + { + "start": 4183.33, + "end": 4185.15, + "probability": 0.0339 + }, + { + "start": 4185.65, + "end": 4186.43, + "probability": 0.0351 + }, + { + "start": 4187.23, + "end": 4187.23, + "probability": 0.199 + }, + { + "start": 4187.23, + "end": 4189.27, + "probability": 0.0888 + }, + { + "start": 4189.31, + "end": 4189.33, + "probability": 0.0987 + }, + { + "start": 4189.41, + "end": 4189.79, + "probability": 0.1336 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4190.0, + "end": 4190.0, + "probability": 0.0 + }, + { + "start": 4200.84, + "end": 4201.96, + "probability": 0.1905 + }, + { + "start": 4202.48, + "end": 4202.94, + "probability": 0.2673 + }, + { + "start": 4213.82, + "end": 4216.5, + "probability": 0.1125 + }, + { + "start": 4217.3, + "end": 4218.62, + "probability": 0.025 + }, + { + "start": 4222.28, + "end": 4223.46, + "probability": 0.0548 + }, + { + "start": 4224.04, + "end": 4225.34, + "probability": 0.0248 + }, + { + "start": 4225.52, + "end": 4227.38, + "probability": 0.0521 + }, + { + "start": 4227.84, + "end": 4232.32, + "probability": 0.0181 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.0, + "end": 4315.0, + "probability": 0.0 + }, + { + "start": 4315.16, + "end": 4315.16, + "probability": 0.0544 + }, + { + "start": 4315.16, + "end": 4315.16, + "probability": 0.0557 + }, + { + "start": 4315.16, + "end": 4315.16, + "probability": 0.1084 + }, + { + "start": 4315.16, + "end": 4315.72, + "probability": 0.2196 + }, + { + "start": 4316.28, + "end": 4320.74, + "probability": 0.9793 + }, + { + "start": 4320.94, + "end": 4323.28, + "probability": 0.9379 + }, + { + "start": 4323.96, + "end": 4327.32, + "probability": 0.8971 + }, + { + "start": 4327.66, + "end": 4328.56, + "probability": 0.8722 + }, + { + "start": 4328.86, + "end": 4332.68, + "probability": 0.9838 + }, + { + "start": 4333.3, + "end": 4334.68, + "probability": 0.8955 + }, + { + "start": 4335.6, + "end": 4339.28, + "probability": 0.984 + }, + { + "start": 4339.8, + "end": 4342.66, + "probability": 0.9873 + }, + { + "start": 4343.14, + "end": 4344.94, + "probability": 0.6774 + }, + { + "start": 4345.46, + "end": 4351.4, + "probability": 0.9668 + }, + { + "start": 4352.34, + "end": 4354.24, + "probability": 0.6003 + }, + { + "start": 4355.18, + "end": 4357.68, + "probability": 0.9764 + }, + { + "start": 4357.86, + "end": 4359.48, + "probability": 0.8354 + }, + { + "start": 4359.58, + "end": 4360.46, + "probability": 0.9717 + }, + { + "start": 4361.02, + "end": 4363.08, + "probability": 0.9901 + }, + { + "start": 4363.8, + "end": 4365.8, + "probability": 0.8102 + }, + { + "start": 4365.88, + "end": 4366.72, + "probability": 0.6779 + }, + { + "start": 4367.0, + "end": 4369.66, + "probability": 0.9174 + }, + { + "start": 4370.8, + "end": 4372.2, + "probability": 0.9826 + }, + { + "start": 4373.54, + "end": 4375.3, + "probability": 0.9954 + }, + { + "start": 4375.44, + "end": 4377.88, + "probability": 0.9785 + }, + { + "start": 4378.12, + "end": 4379.04, + "probability": 0.6627 + }, + { + "start": 4379.58, + "end": 4384.16, + "probability": 0.8725 + }, + { + "start": 4384.42, + "end": 4387.26, + "probability": 0.9882 + }, + { + "start": 4387.52, + "end": 4388.78, + "probability": 0.7793 + }, + { + "start": 4389.02, + "end": 4392.14, + "probability": 0.9443 + }, + { + "start": 4392.46, + "end": 4395.8, + "probability": 0.986 + }, + { + "start": 4396.12, + "end": 4401.26, + "probability": 0.9957 + }, + { + "start": 4402.82, + "end": 4403.82, + "probability": 0.4891 + }, + { + "start": 4404.02, + "end": 4405.0, + "probability": 0.9727 + }, + { + "start": 4405.16, + "end": 4406.02, + "probability": 0.6226 + }, + { + "start": 4406.04, + "end": 4407.24, + "probability": 0.6262 + }, + { + "start": 4408.08, + "end": 4410.0, + "probability": 0.9912 + }, + { + "start": 4410.76, + "end": 4413.72, + "probability": 0.8818 + }, + { + "start": 4414.54, + "end": 4419.18, + "probability": 0.9736 + }, + { + "start": 4419.46, + "end": 4420.84, + "probability": 0.9879 + }, + { + "start": 4421.78, + "end": 4422.8, + "probability": 0.9224 + }, + { + "start": 4423.62, + "end": 4427.7, + "probability": 0.9799 + }, + { + "start": 4428.5, + "end": 4432.3, + "probability": 0.7803 + }, + { + "start": 4432.44, + "end": 4433.88, + "probability": 0.6652 + }, + { + "start": 4434.24, + "end": 4435.14, + "probability": 0.9824 + }, + { + "start": 4435.26, + "end": 4436.42, + "probability": 0.5801 + }, + { + "start": 4436.54, + "end": 4437.96, + "probability": 0.9915 + }, + { + "start": 4438.22, + "end": 4439.4, + "probability": 0.9297 + }, + { + "start": 4439.52, + "end": 4441.22, + "probability": 0.8435 + }, + { + "start": 4442.66, + "end": 4446.22, + "probability": 0.9914 + }, + { + "start": 4447.2, + "end": 4447.84, + "probability": 0.9701 + }, + { + "start": 4448.4, + "end": 4449.02, + "probability": 0.8584 + }, + { + "start": 4449.08, + "end": 4449.4, + "probability": 0.9607 + }, + { + "start": 4449.74, + "end": 4450.32, + "probability": 0.9465 + }, + { + "start": 4450.82, + "end": 4452.98, + "probability": 0.9536 + }, + { + "start": 4453.04, + "end": 4455.62, + "probability": 0.99 + }, + { + "start": 4456.7, + "end": 4459.46, + "probability": 0.9837 + }, + { + "start": 4459.6, + "end": 4460.48, + "probability": 0.7402 + }, + { + "start": 4460.82, + "end": 4464.74, + "probability": 0.9828 + }, + { + "start": 4464.8, + "end": 4465.42, + "probability": 0.5221 + }, + { + "start": 4465.44, + "end": 4469.46, + "probability": 0.961 + }, + { + "start": 4469.82, + "end": 4471.66, + "probability": 0.9814 + }, + { + "start": 4471.92, + "end": 4473.5, + "probability": 0.9528 + }, + { + "start": 4473.6, + "end": 4474.88, + "probability": 0.9727 + }, + { + "start": 4475.84, + "end": 4477.2, + "probability": 0.9695 + }, + { + "start": 4477.34, + "end": 4477.72, + "probability": 0.8024 + }, + { + "start": 4477.82, + "end": 4479.0, + "probability": 0.9865 + }, + { + "start": 4479.68, + "end": 4480.86, + "probability": 0.803 + }, + { + "start": 4481.94, + "end": 4483.76, + "probability": 0.6788 + }, + { + "start": 4484.88, + "end": 4486.78, + "probability": 0.9348 + }, + { + "start": 4487.16, + "end": 4488.06, + "probability": 0.7566 + }, + { + "start": 4488.14, + "end": 4489.68, + "probability": 0.976 + }, + { + "start": 4490.3, + "end": 4493.78, + "probability": 0.9741 + }, + { + "start": 4494.6, + "end": 4495.56, + "probability": 0.9383 + }, + { + "start": 4496.4, + "end": 4501.68, + "probability": 0.9327 + }, + { + "start": 4502.14, + "end": 4503.5, + "probability": 0.9982 + }, + { + "start": 4503.66, + "end": 4504.52, + "probability": 0.7757 + }, + { + "start": 4505.02, + "end": 4506.71, + "probability": 0.9035 + }, + { + "start": 4507.44, + "end": 4511.08, + "probability": 0.9984 + }, + { + "start": 4511.24, + "end": 4516.3, + "probability": 0.9885 + }, + { + "start": 4517.48, + "end": 4522.92, + "probability": 0.9225 + }, + { + "start": 4523.66, + "end": 4525.76, + "probability": 0.9854 + }, + { + "start": 4525.9, + "end": 4527.29, + "probability": 0.9685 + }, + { + "start": 4527.94, + "end": 4529.34, + "probability": 0.9781 + }, + { + "start": 4530.18, + "end": 4531.1, + "probability": 0.7303 + }, + { + "start": 4531.72, + "end": 4534.01, + "probability": 0.7957 + }, + { + "start": 4534.72, + "end": 4536.34, + "probability": 0.9971 + }, + { + "start": 4536.56, + "end": 4537.78, + "probability": 0.9777 + }, + { + "start": 4538.56, + "end": 4540.42, + "probability": 0.9983 + }, + { + "start": 4540.48, + "end": 4545.02, + "probability": 0.9935 + }, + { + "start": 4545.36, + "end": 4548.38, + "probability": 0.983 + }, + { + "start": 4550.22, + "end": 4554.2, + "probability": 0.8989 + }, + { + "start": 4555.56, + "end": 4559.08, + "probability": 0.9419 + }, + { + "start": 4559.8, + "end": 4561.18, + "probability": 0.9197 + }, + { + "start": 4561.74, + "end": 4567.92, + "probability": 0.9749 + }, + { + "start": 4568.56, + "end": 4571.42, + "probability": 0.9335 + }, + { + "start": 4571.46, + "end": 4572.88, + "probability": 0.5635 + }, + { + "start": 4574.12, + "end": 4575.26, + "probability": 0.8898 + }, + { + "start": 4576.88, + "end": 4578.66, + "probability": 0.7751 + }, + { + "start": 4578.72, + "end": 4580.24, + "probability": 0.9955 + }, + { + "start": 4580.38, + "end": 4582.36, + "probability": 0.997 + }, + { + "start": 4583.34, + "end": 4584.66, + "probability": 0.9613 + }, + { + "start": 4585.0, + "end": 4586.22, + "probability": 0.7044 + }, + { + "start": 4586.48, + "end": 4588.78, + "probability": 0.8394 + }, + { + "start": 4593.38, + "end": 4593.76, + "probability": 0.0599 + }, + { + "start": 4593.76, + "end": 4595.04, + "probability": 0.9435 + }, + { + "start": 4596.74, + "end": 4596.74, + "probability": 0.0075 + }, + { + "start": 4596.74, + "end": 4599.17, + "probability": 0.5084 + }, + { + "start": 4599.4, + "end": 4600.9, + "probability": 0.9136 + }, + { + "start": 4601.76, + "end": 4603.42, + "probability": 0.9951 + }, + { + "start": 4604.02, + "end": 4605.9, + "probability": 0.9351 + }, + { + "start": 4605.9, + "end": 4609.72, + "probability": 0.9967 + }, + { + "start": 4610.28, + "end": 4613.56, + "probability": 0.8725 + }, + { + "start": 4613.92, + "end": 4614.82, + "probability": 0.6873 + }, + { + "start": 4615.86, + "end": 4617.28, + "probability": 0.7334 + }, + { + "start": 4618.2, + "end": 4623.28, + "probability": 0.9833 + }, + { + "start": 4623.84, + "end": 4624.84, + "probability": 0.6756 + }, + { + "start": 4624.94, + "end": 4627.82, + "probability": 0.9661 + }, + { + "start": 4628.32, + "end": 4629.64, + "probability": 0.8608 + }, + { + "start": 4629.7, + "end": 4631.84, + "probability": 0.9858 + }, + { + "start": 4633.7, + "end": 4634.94, + "probability": 0.7781 + }, + { + "start": 4635.04, + "end": 4636.12, + "probability": 0.9635 + }, + { + "start": 4636.22, + "end": 4637.78, + "probability": 0.9866 + }, + { + "start": 4637.9, + "end": 4638.44, + "probability": 0.9062 + }, + { + "start": 4639.56, + "end": 4640.98, + "probability": 0.8955 + }, + { + "start": 4642.8, + "end": 4645.16, + "probability": 0.998 + }, + { + "start": 4645.62, + "end": 4649.2, + "probability": 0.9993 + }, + { + "start": 4649.2, + "end": 4654.14, + "probability": 0.9992 + }, + { + "start": 4655.2, + "end": 4663.0, + "probability": 0.9668 + }, + { + "start": 4663.58, + "end": 4664.86, + "probability": 0.5291 + }, + { + "start": 4665.36, + "end": 4665.62, + "probability": 0.7868 + }, + { + "start": 4666.06, + "end": 4668.88, + "probability": 0.9834 + }, + { + "start": 4669.0, + "end": 4669.36, + "probability": 0.664 + }, + { + "start": 4669.58, + "end": 4670.04, + "probability": 0.7415 + }, + { + "start": 4671.06, + "end": 4671.64, + "probability": 0.9189 + }, + { + "start": 4672.4, + "end": 4675.66, + "probability": 0.9983 + }, + { + "start": 4675.72, + "end": 4676.1, + "probability": 0.7862 + }, + { + "start": 4677.5, + "end": 4680.32, + "probability": 0.9372 + }, + { + "start": 4680.76, + "end": 4683.13, + "probability": 0.9924 + }, + { + "start": 4684.1, + "end": 4684.76, + "probability": 0.7264 + }, + { + "start": 4685.86, + "end": 4687.1, + "probability": 0.9811 + }, + { + "start": 4689.1, + "end": 4690.75, + "probability": 0.8408 + }, + { + "start": 4691.56, + "end": 4692.46, + "probability": 0.8665 + }, + { + "start": 4693.36, + "end": 4695.58, + "probability": 0.965 + }, + { + "start": 4696.28, + "end": 4698.28, + "probability": 0.997 + }, + { + "start": 4698.7, + "end": 4699.68, + "probability": 0.0383 + }, + { + "start": 4700.72, + "end": 4701.04, + "probability": 0.7498 + }, + { + "start": 4701.7, + "end": 4703.64, + "probability": 0.9705 + }, + { + "start": 4704.52, + "end": 4708.3, + "probability": 0.7996 + }, + { + "start": 4709.74, + "end": 4712.96, + "probability": 0.8161 + }, + { + "start": 4713.66, + "end": 4716.12, + "probability": 0.9724 + }, + { + "start": 4716.84, + "end": 4720.14, + "probability": 0.8922 + }, + { + "start": 4720.4, + "end": 4722.64, + "probability": 0.9712 + }, + { + "start": 4722.9, + "end": 4724.98, + "probability": 0.8398 + }, + { + "start": 4726.18, + "end": 4728.0, + "probability": 0.8964 + }, + { + "start": 4728.56, + "end": 4731.3, + "probability": 0.9933 + }, + { + "start": 4731.96, + "end": 4733.54, + "probability": 0.8831 + }, + { + "start": 4734.3, + "end": 4735.22, + "probability": 0.9901 + }, + { + "start": 4735.32, + "end": 4736.72, + "probability": 0.5578 + }, + { + "start": 4737.16, + "end": 4741.1, + "probability": 0.9769 + }, + { + "start": 4741.68, + "end": 4746.26, + "probability": 0.9912 + }, + { + "start": 4747.46, + "end": 4748.44, + "probability": 0.8607 + }, + { + "start": 4749.08, + "end": 4750.22, + "probability": 0.8766 + }, + { + "start": 4750.88, + "end": 4752.68, + "probability": 0.9897 + }, + { + "start": 4753.44, + "end": 4755.26, + "probability": 0.9493 + }, + { + "start": 4755.64, + "end": 4761.04, + "probability": 0.9971 + }, + { + "start": 4761.74, + "end": 4767.04, + "probability": 0.986 + }, + { + "start": 4767.24, + "end": 4767.58, + "probability": 0.3174 + }, + { + "start": 4767.66, + "end": 4768.42, + "probability": 0.722 + }, + { + "start": 4768.6, + "end": 4769.34, + "probability": 0.5674 + }, + { + "start": 4770.22, + "end": 4774.5, + "probability": 0.9878 + }, + { + "start": 4774.9, + "end": 4775.74, + "probability": 0.9825 + }, + { + "start": 4775.82, + "end": 4777.4, + "probability": 0.9524 + }, + { + "start": 4777.72, + "end": 4779.37, + "probability": 0.9976 + }, + { + "start": 4780.7, + "end": 4782.07, + "probability": 0.7599 + }, + { + "start": 4782.78, + "end": 4784.36, + "probability": 0.969 + }, + { + "start": 4784.42, + "end": 4784.86, + "probability": 0.7612 + }, + { + "start": 4785.0, + "end": 4785.66, + "probability": 0.7215 + }, + { + "start": 4785.8, + "end": 4787.8, + "probability": 0.9639 + }, + { + "start": 4787.94, + "end": 4790.1, + "probability": 0.9689 + }, + { + "start": 4790.8, + "end": 4792.18, + "probability": 0.9517 + }, + { + "start": 4792.72, + "end": 4793.22, + "probability": 0.6285 + }, + { + "start": 4794.68, + "end": 4795.33, + "probability": 0.9126 + }, + { + "start": 4796.6, + "end": 4797.72, + "probability": 0.9968 + }, + { + "start": 4798.3, + "end": 4800.7, + "probability": 0.989 + }, + { + "start": 4801.8, + "end": 4804.12, + "probability": 0.8633 + }, + { + "start": 4805.0, + "end": 4808.06, + "probability": 0.993 + }, + { + "start": 4809.36, + "end": 4811.11, + "probability": 0.962 + }, + { + "start": 4812.16, + "end": 4815.72, + "probability": 0.9766 + }, + { + "start": 4816.52, + "end": 4819.28, + "probability": 0.9976 + }, + { + "start": 4819.28, + "end": 4822.68, + "probability": 0.9504 + }, + { + "start": 4823.1, + "end": 4823.36, + "probability": 0.6851 + }, + { + "start": 4823.38, + "end": 4824.75, + "probability": 0.7013 + }, + { + "start": 4825.66, + "end": 4827.8, + "probability": 0.7737 + }, + { + "start": 4828.14, + "end": 4830.88, + "probability": 0.8008 + }, + { + "start": 4842.16, + "end": 4843.86, + "probability": 0.741 + }, + { + "start": 4844.58, + "end": 4845.62, + "probability": 0.7594 + }, + { + "start": 4846.36, + "end": 4847.7, + "probability": 0.9811 + }, + { + "start": 4848.46, + "end": 4849.7, + "probability": 0.9457 + }, + { + "start": 4850.68, + "end": 4852.66, + "probability": 0.9881 + }, + { + "start": 4852.68, + "end": 4853.28, + "probability": 0.7663 + }, + { + "start": 4853.46, + "end": 4857.3, + "probability": 0.9487 + }, + { + "start": 4857.52, + "end": 4858.89, + "probability": 0.8178 + }, + { + "start": 4859.0, + "end": 4860.0, + "probability": 0.9409 + }, + { + "start": 4860.08, + "end": 4860.66, + "probability": 0.9658 + }, + { + "start": 4861.64, + "end": 4862.76, + "probability": 0.9507 + }, + { + "start": 4863.8, + "end": 4864.54, + "probability": 0.8502 + }, + { + "start": 4864.84, + "end": 4865.98, + "probability": 0.9319 + }, + { + "start": 4866.3, + "end": 4869.9, + "probability": 0.9963 + }, + { + "start": 4870.88, + "end": 4874.88, + "probability": 0.9192 + }, + { + "start": 4876.26, + "end": 4879.76, + "probability": 0.9872 + }, + { + "start": 4880.62, + "end": 4885.48, + "probability": 0.8521 + }, + { + "start": 4886.36, + "end": 4887.74, + "probability": 0.9245 + }, + { + "start": 4888.26, + "end": 4889.4, + "probability": 0.7114 + }, + { + "start": 4889.58, + "end": 4892.7, + "probability": 0.7114 + }, + { + "start": 4893.14, + "end": 4893.9, + "probability": 0.874 + }, + { + "start": 4894.96, + "end": 4895.42, + "probability": 0.4442 + }, + { + "start": 4895.54, + "end": 4899.7, + "probability": 0.9041 + }, + { + "start": 4900.6, + "end": 4904.86, + "probability": 0.9612 + }, + { + "start": 4905.6, + "end": 4908.28, + "probability": 0.9942 + }, + { + "start": 4908.44, + "end": 4912.84, + "probability": 0.987 + }, + { + "start": 4914.0, + "end": 4914.6, + "probability": 0.631 + }, + { + "start": 4914.72, + "end": 4917.56, + "probability": 0.909 + }, + { + "start": 4917.68, + "end": 4918.4, + "probability": 0.6359 + }, + { + "start": 4919.02, + "end": 4920.6, + "probability": 0.9676 + }, + { + "start": 4921.08, + "end": 4924.84, + "probability": 0.9709 + }, + { + "start": 4924.84, + "end": 4927.96, + "probability": 0.943 + }, + { + "start": 4929.14, + "end": 4931.6, + "probability": 0.8098 + }, + { + "start": 4932.16, + "end": 4935.46, + "probability": 0.8434 + }, + { + "start": 4936.5, + "end": 4937.56, + "probability": 0.9268 + }, + { + "start": 4938.36, + "end": 4940.82, + "probability": 0.9576 + }, + { + "start": 4941.6, + "end": 4943.54, + "probability": 0.9893 + }, + { + "start": 4944.52, + "end": 4947.88, + "probability": 0.9885 + }, + { + "start": 4947.96, + "end": 4949.58, + "probability": 0.9968 + }, + { + "start": 4950.2, + "end": 4951.82, + "probability": 0.6989 + }, + { + "start": 4952.29, + "end": 4954.52, + "probability": 0.8195 + }, + { + "start": 4954.96, + "end": 4957.62, + "probability": 0.979 + }, + { + "start": 4958.64, + "end": 4958.98, + "probability": 0.6686 + }, + { + "start": 4958.98, + "end": 4961.54, + "probability": 0.9688 + }, + { + "start": 4961.62, + "end": 4966.16, + "probability": 0.9906 + }, + { + "start": 4966.42, + "end": 4968.54, + "probability": 0.8925 + }, + { + "start": 4969.52, + "end": 4971.8, + "probability": 0.9823 + }, + { + "start": 4972.82, + "end": 4973.54, + "probability": 0.7432 + }, + { + "start": 4974.52, + "end": 4975.68, + "probability": 0.9811 + }, + { + "start": 4975.8, + "end": 4978.36, + "probability": 0.936 + }, + { + "start": 4979.22, + "end": 4982.36, + "probability": 0.9926 + }, + { + "start": 4983.56, + "end": 4986.82, + "probability": 0.9453 + }, + { + "start": 4987.72, + "end": 4991.22, + "probability": 0.9866 + }, + { + "start": 4992.18, + "end": 4993.66, + "probability": 0.6854 + }, + { + "start": 4994.34, + "end": 4995.84, + "probability": 0.8815 + }, + { + "start": 4996.68, + "end": 4998.92, + "probability": 0.9561 + }, + { + "start": 5000.58, + "end": 5001.42, + "probability": 0.9824 + }, + { + "start": 5002.34, + "end": 5002.62, + "probability": 0.7256 + }, + { + "start": 5002.78, + "end": 5004.94, + "probability": 0.925 + }, + { + "start": 5005.32, + "end": 5006.18, + "probability": 0.9163 + }, + { + "start": 5006.62, + "end": 5007.82, + "probability": 0.959 + }, + { + "start": 5008.34, + "end": 5009.62, + "probability": 0.8411 + }, + { + "start": 5010.74, + "end": 5011.02, + "probability": 0.7423 + }, + { + "start": 5011.74, + "end": 5013.68, + "probability": 0.872 + }, + { + "start": 5014.16, + "end": 5017.88, + "probability": 0.7383 + }, + { + "start": 5018.68, + "end": 5020.76, + "probability": 0.9347 + }, + { + "start": 5021.16, + "end": 5024.92, + "probability": 0.9662 + }, + { + "start": 5025.84, + "end": 5028.58, + "probability": 0.9433 + }, + { + "start": 5029.74, + "end": 5032.76, + "probability": 0.9944 + }, + { + "start": 5033.62, + "end": 5036.56, + "probability": 0.896 + }, + { + "start": 5036.64, + "end": 5038.02, + "probability": 0.9656 + }, + { + "start": 5038.74, + "end": 5040.08, + "probability": 0.9851 + }, + { + "start": 5041.3, + "end": 5043.11, + "probability": 0.9434 + }, + { + "start": 5044.06, + "end": 5048.34, + "probability": 0.9935 + }, + { + "start": 5049.18, + "end": 5051.76, + "probability": 0.9955 + }, + { + "start": 5052.34, + "end": 5053.1, + "probability": 0.8149 + }, + { + "start": 5053.28, + "end": 5054.62, + "probability": 0.8636 + }, + { + "start": 5055.34, + "end": 5055.64, + "probability": 0.5115 + }, + { + "start": 5056.16, + "end": 5057.84, + "probability": 0.4497 + }, + { + "start": 5058.62, + "end": 5060.26, + "probability": 0.875 + }, + { + "start": 5060.42, + "end": 5062.18, + "probability": 0.9883 + }, + { + "start": 5063.08, + "end": 5065.58, + "probability": 0.9875 + }, + { + "start": 5065.66, + "end": 5067.1, + "probability": 0.9629 + }, + { + "start": 5067.66, + "end": 5068.86, + "probability": 0.9438 + }, + { + "start": 5069.48, + "end": 5072.36, + "probability": 0.9902 + }, + { + "start": 5073.22, + "end": 5076.12, + "probability": 0.9954 + }, + { + "start": 5076.18, + "end": 5077.3, + "probability": 0.9383 + }, + { + "start": 5077.38, + "end": 5080.34, + "probability": 0.9814 + }, + { + "start": 5081.6, + "end": 5084.6, + "probability": 0.8906 + }, + { + "start": 5085.98, + "end": 5086.82, + "probability": 0.7171 + }, + { + "start": 5087.94, + "end": 5091.06, + "probability": 0.6433 + }, + { + "start": 5091.76, + "end": 5093.98, + "probability": 0.9953 + }, + { + "start": 5095.08, + "end": 5100.68, + "probability": 0.9286 + }, + { + "start": 5102.18, + "end": 5105.72, + "probability": 0.6264 + }, + { + "start": 5106.38, + "end": 5108.0, + "probability": 0.9779 + }, + { + "start": 5108.78, + "end": 5110.46, + "probability": 0.9858 + }, + { + "start": 5111.26, + "end": 5112.0, + "probability": 0.4517 + }, + { + "start": 5112.08, + "end": 5113.74, + "probability": 0.8105 + }, + { + "start": 5113.74, + "end": 5115.34, + "probability": 0.8145 + }, + { + "start": 5115.76, + "end": 5116.48, + "probability": 0.7715 + }, + { + "start": 5116.64, + "end": 5117.88, + "probability": 0.9051 + }, + { + "start": 5118.0, + "end": 5118.94, + "probability": 0.4165 + }, + { + "start": 5119.26, + "end": 5119.98, + "probability": 0.6097 + }, + { + "start": 5120.58, + "end": 5121.64, + "probability": 0.9769 + }, + { + "start": 5122.6, + "end": 5127.66, + "probability": 0.9637 + }, + { + "start": 5128.14, + "end": 5131.64, + "probability": 0.9794 + }, + { + "start": 5132.36, + "end": 5134.44, + "probability": 0.9963 + }, + { + "start": 5134.94, + "end": 5136.62, + "probability": 0.2496 + }, + { + "start": 5137.48, + "end": 5139.37, + "probability": 0.729 + }, + { + "start": 5140.28, + "end": 5140.98, + "probability": 0.9878 + }, + { + "start": 5141.4, + "end": 5142.68, + "probability": 0.9683 + }, + { + "start": 5143.52, + "end": 5145.14, + "probability": 0.9536 + }, + { + "start": 5145.8, + "end": 5148.42, + "probability": 0.6553 + }, + { + "start": 5148.44, + "end": 5149.82, + "probability": 0.9043 + }, + { + "start": 5150.56, + "end": 5155.02, + "probability": 0.9824 + }, + { + "start": 5155.4, + "end": 5156.5, + "probability": 0.9738 + }, + { + "start": 5157.22, + "end": 5159.6, + "probability": 0.9946 + }, + { + "start": 5159.6, + "end": 5163.02, + "probability": 0.8026 + }, + { + "start": 5165.86, + "end": 5166.3, + "probability": 0.3201 + }, + { + "start": 5166.32, + "end": 5166.34, + "probability": 0.0475 + }, + { + "start": 5166.34, + "end": 5167.16, + "probability": 0.757 + }, + { + "start": 5167.82, + "end": 5170.66, + "probability": 0.9836 + }, + { + "start": 5171.02, + "end": 5172.52, + "probability": 0.9453 + }, + { + "start": 5172.62, + "end": 5172.96, + "probability": 0.4928 + }, + { + "start": 5172.98, + "end": 5174.38, + "probability": 0.9598 + }, + { + "start": 5174.74, + "end": 5176.54, + "probability": 0.7665 + }, + { + "start": 5177.2, + "end": 5179.36, + "probability": 0.8165 + }, + { + "start": 5180.02, + "end": 5182.02, + "probability": 0.9195 + }, + { + "start": 5182.98, + "end": 5183.78, + "probability": 0.9618 + }, + { + "start": 5184.9, + "end": 5187.48, + "probability": 0.9734 + }, + { + "start": 5188.16, + "end": 5189.12, + "probability": 0.3892 + }, + { + "start": 5189.66, + "end": 5191.0, + "probability": 0.9912 + }, + { + "start": 5191.8, + "end": 5193.06, + "probability": 0.9857 + }, + { + "start": 5194.0, + "end": 5196.02, + "probability": 0.9875 + }, + { + "start": 5197.18, + "end": 5199.5, + "probability": 0.9209 + }, + { + "start": 5200.54, + "end": 5202.86, + "probability": 0.6239 + }, + { + "start": 5203.52, + "end": 5206.62, + "probability": 0.9448 + }, + { + "start": 5207.66, + "end": 5209.42, + "probability": 0.7937 + }, + { + "start": 5210.18, + "end": 5211.48, + "probability": 0.9071 + }, + { + "start": 5212.52, + "end": 5215.6, + "probability": 0.5793 + }, + { + "start": 5216.5, + "end": 5218.54, + "probability": 0.5028 + }, + { + "start": 5219.14, + "end": 5221.68, + "probability": 0.8594 + }, + { + "start": 5222.46, + "end": 5225.24, + "probability": 0.9375 + }, + { + "start": 5225.86, + "end": 5228.8, + "probability": 0.9822 + }, + { + "start": 5229.74, + "end": 5231.58, + "probability": 0.717 + }, + { + "start": 5232.76, + "end": 5234.94, + "probability": 0.7538 + }, + { + "start": 5235.84, + "end": 5238.16, + "probability": 0.9958 + }, + { + "start": 5238.16, + "end": 5239.68, + "probability": 0.7658 + }, + { + "start": 5239.84, + "end": 5240.83, + "probability": 0.9524 + }, + { + "start": 5241.54, + "end": 5243.16, + "probability": 0.9801 + }, + { + "start": 5243.9, + "end": 5245.28, + "probability": 0.975 + }, + { + "start": 5245.92, + "end": 5247.32, + "probability": 0.9932 + }, + { + "start": 5248.26, + "end": 5249.96, + "probability": 0.842 + }, + { + "start": 5250.58, + "end": 5250.96, + "probability": 0.9526 + }, + { + "start": 5251.0, + "end": 5255.32, + "probability": 0.8215 + }, + { + "start": 5256.1, + "end": 5258.74, + "probability": 0.9821 + }, + { + "start": 5259.78, + "end": 5260.98, + "probability": 0.9055 + }, + { + "start": 5261.5, + "end": 5262.32, + "probability": 0.8306 + }, + { + "start": 5263.12, + "end": 5265.86, + "probability": 0.7527 + }, + { + "start": 5266.68, + "end": 5267.46, + "probability": 0.8307 + }, + { + "start": 5268.82, + "end": 5270.48, + "probability": 0.892 + }, + { + "start": 5270.6, + "end": 5272.02, + "probability": 0.7152 + }, + { + "start": 5272.6, + "end": 5273.5, + "probability": 0.3222 + }, + { + "start": 5273.76, + "end": 5275.52, + "probability": 0.4987 + }, + { + "start": 5276.34, + "end": 5278.26, + "probability": 0.6362 + }, + { + "start": 5278.74, + "end": 5280.08, + "probability": 0.8628 + }, + { + "start": 5280.68, + "end": 5282.2, + "probability": 0.6108 + }, + { + "start": 5282.94, + "end": 5286.22, + "probability": 0.8903 + }, + { + "start": 5286.6, + "end": 5287.76, + "probability": 0.6504 + }, + { + "start": 5288.68, + "end": 5290.48, + "probability": 0.9358 + }, + { + "start": 5290.6, + "end": 5291.7, + "probability": 0.9427 + }, + { + "start": 5292.38, + "end": 5293.2, + "probability": 0.9716 + }, + { + "start": 5293.94, + "end": 5295.16, + "probability": 0.9591 + }, + { + "start": 5295.7, + "end": 5296.9, + "probability": 0.9722 + }, + { + "start": 5297.42, + "end": 5299.8, + "probability": 0.9954 + }, + { + "start": 5299.96, + "end": 5300.46, + "probability": 0.6448 + }, + { + "start": 5301.0, + "end": 5304.12, + "probability": 0.81 + }, + { + "start": 5304.84, + "end": 5307.0, + "probability": 0.9531 + }, + { + "start": 5307.96, + "end": 5310.56, + "probability": 0.9446 + }, + { + "start": 5311.66, + "end": 5312.95, + "probability": 0.991 + }, + { + "start": 5313.72, + "end": 5314.8, + "probability": 0.9028 + }, + { + "start": 5315.32, + "end": 5316.65, + "probability": 0.9044 + }, + { + "start": 5317.36, + "end": 5317.86, + "probability": 0.7676 + }, + { + "start": 5318.1, + "end": 5319.6, + "probability": 0.7404 + }, + { + "start": 5319.7, + "end": 5320.24, + "probability": 0.5187 + }, + { + "start": 5320.82, + "end": 5322.32, + "probability": 0.8809 + }, + { + "start": 5322.9, + "end": 5324.06, + "probability": 0.7625 + }, + { + "start": 5324.12, + "end": 5325.68, + "probability": 0.9678 + }, + { + "start": 5325.7, + "end": 5326.84, + "probability": 0.634 + }, + { + "start": 5326.94, + "end": 5327.56, + "probability": 0.8174 + }, + { + "start": 5327.64, + "end": 5328.32, + "probability": 0.4614 + }, + { + "start": 5328.72, + "end": 5329.12, + "probability": 0.3429 + }, + { + "start": 5329.14, + "end": 5331.88, + "probability": 0.8469 + }, + { + "start": 5334.42, + "end": 5335.22, + "probability": 0.9268 + }, + { + "start": 5335.98, + "end": 5339.86, + "probability": 0.6967 + }, + { + "start": 5339.94, + "end": 5342.22, + "probability": 0.6977 + }, + { + "start": 5343.06, + "end": 5345.02, + "probability": 0.6338 + }, + { + "start": 5345.64, + "end": 5347.5, + "probability": 0.5796 + }, + { + "start": 5348.22, + "end": 5351.38, + "probability": 0.9099 + }, + { + "start": 5351.48, + "end": 5353.5, + "probability": 0.995 + }, + { + "start": 5354.16, + "end": 5354.93, + "probability": 0.9772 + }, + { + "start": 5355.7, + "end": 5357.58, + "probability": 0.9497 + }, + { + "start": 5358.5, + "end": 5360.62, + "probability": 0.8896 + }, + { + "start": 5362.04, + "end": 5364.46, + "probability": 0.9902 + }, + { + "start": 5364.54, + "end": 5367.0, + "probability": 0.9848 + }, + { + "start": 5367.62, + "end": 5368.08, + "probability": 0.6392 + }, + { + "start": 5368.82, + "end": 5372.18, + "probability": 0.9497 + }, + { + "start": 5373.16, + "end": 5375.68, + "probability": 0.8734 + }, + { + "start": 5376.44, + "end": 5379.82, + "probability": 0.7617 + }, + { + "start": 5380.42, + "end": 5381.56, + "probability": 0.9824 + }, + { + "start": 5381.7, + "end": 5383.52, + "probability": 0.9814 + }, + { + "start": 5383.62, + "end": 5385.26, + "probability": 0.9976 + }, + { + "start": 5385.36, + "end": 5385.74, + "probability": 0.8062 + }, + { + "start": 5386.02, + "end": 5388.4, + "probability": 0.6036 + }, + { + "start": 5389.18, + "end": 5391.98, + "probability": 0.7104 + }, + { + "start": 5393.68, + "end": 5394.18, + "probability": 0.1415 + }, + { + "start": 5395.66, + "end": 5398.8, + "probability": 0.129 + }, + { + "start": 5412.94, + "end": 5415.64, + "probability": 0.2986 + }, + { + "start": 5416.59, + "end": 5419.32, + "probability": 0.309 + }, + { + "start": 5419.88, + "end": 5420.46, + "probability": 0.0354 + }, + { + "start": 5420.86, + "end": 5420.96, + "probability": 0.0613 + }, + { + "start": 5421.84, + "end": 5423.0, + "probability": 0.0171 + }, + { + "start": 5423.64, + "end": 5423.88, + "probability": 0.0207 + }, + { + "start": 5423.88, + "end": 5423.88, + "probability": 0.014 + }, + { + "start": 5423.88, + "end": 5427.68, + "probability": 0.0514 + }, + { + "start": 5445.8, + "end": 5447.92, + "probability": 0.6111 + }, + { + "start": 5448.0, + "end": 5453.08, + "probability": 0.4124 + }, + { + "start": 5453.14, + "end": 5456.5, + "probability": 0.9473 + }, + { + "start": 5457.56, + "end": 5459.4, + "probability": 0.9441 + }, + { + "start": 5460.24, + "end": 5461.5, + "probability": 0.8184 + }, + { + "start": 5461.58, + "end": 5463.78, + "probability": 0.9693 + }, + { + "start": 5463.78, + "end": 5467.32, + "probability": 0.9988 + }, + { + "start": 5467.94, + "end": 5471.8, + "probability": 0.9524 + }, + { + "start": 5472.46, + "end": 5475.74, + "probability": 0.1496 + }, + { + "start": 5476.32, + "end": 5479.02, + "probability": 0.9701 + }, + { + "start": 5481.02, + "end": 5486.44, + "probability": 0.9711 + }, + { + "start": 5486.44, + "end": 5491.98, + "probability": 0.9957 + }, + { + "start": 5493.0, + "end": 5497.6, + "probability": 0.9907 + }, + { + "start": 5497.84, + "end": 5502.94, + "probability": 0.9416 + }, + { + "start": 5503.32, + "end": 5503.8, + "probability": 0.5674 + }, + { + "start": 5503.84, + "end": 5508.07, + "probability": 0.9945 + }, + { + "start": 5508.28, + "end": 5511.96, + "probability": 0.7481 + }, + { + "start": 5512.7, + "end": 5517.78, + "probability": 0.9848 + }, + { + "start": 5518.42, + "end": 5521.66, + "probability": 0.9458 + }, + { + "start": 5522.32, + "end": 5522.54, + "probability": 0.4031 + }, + { + "start": 5522.54, + "end": 5527.4, + "probability": 0.9803 + }, + { + "start": 5528.46, + "end": 5531.6, + "probability": 0.9819 + }, + { + "start": 5531.6, + "end": 5534.1, + "probability": 0.9985 + }, + { + "start": 5534.84, + "end": 5538.02, + "probability": 0.9598 + }, + { + "start": 5538.58, + "end": 5544.46, + "probability": 0.9704 + }, + { + "start": 5544.64, + "end": 5546.41, + "probability": 0.9721 + }, + { + "start": 5547.02, + "end": 5549.48, + "probability": 0.9953 + }, + { + "start": 5550.14, + "end": 5556.8, + "probability": 0.9211 + }, + { + "start": 5557.68, + "end": 5562.12, + "probability": 0.9904 + }, + { + "start": 5562.12, + "end": 5567.92, + "probability": 0.9937 + }, + { + "start": 5568.6, + "end": 5573.06, + "probability": 0.9788 + }, + { + "start": 5573.06, + "end": 5576.82, + "probability": 0.9897 + }, + { + "start": 5577.4, + "end": 5579.13, + "probability": 0.8636 + }, + { + "start": 5579.94, + "end": 5581.62, + "probability": 0.9289 + }, + { + "start": 5581.8, + "end": 5584.46, + "probability": 0.9934 + }, + { + "start": 5585.02, + "end": 5586.5, + "probability": 0.9888 + }, + { + "start": 5586.74, + "end": 5588.16, + "probability": 0.9321 + }, + { + "start": 5588.86, + "end": 5591.82, + "probability": 0.8096 + }, + { + "start": 5592.2, + "end": 5594.3, + "probability": 0.9971 + }, + { + "start": 5594.88, + "end": 5596.54, + "probability": 0.9602 + }, + { + "start": 5597.04, + "end": 5598.46, + "probability": 0.5488 + }, + { + "start": 5599.1, + "end": 5600.86, + "probability": 0.614 + }, + { + "start": 5601.64, + "end": 5607.9, + "probability": 0.8853 + }, + { + "start": 5608.2, + "end": 5608.96, + "probability": 0.036 + }, + { + "start": 5608.96, + "end": 5610.63, + "probability": 0.9679 + }, + { + "start": 5611.06, + "end": 5611.46, + "probability": 0.8689 + }, + { + "start": 5613.1, + "end": 5613.94, + "probability": 0.0796 + }, + { + "start": 5613.94, + "end": 5616.11, + "probability": 0.9646 + }, + { + "start": 5617.0, + "end": 5618.18, + "probability": 0.9761 + }, + { + "start": 5618.5, + "end": 5620.42, + "probability": 0.8427 + }, + { + "start": 5621.18, + "end": 5623.52, + "probability": 0.9939 + }, + { + "start": 5624.14, + "end": 5626.8, + "probability": 0.9677 + }, + { + "start": 5627.5, + "end": 5628.56, + "probability": 0.9627 + }, + { + "start": 5629.36, + "end": 5631.12, + "probability": 0.9763 + }, + { + "start": 5631.5, + "end": 5631.7, + "probability": 0.6216 + }, + { + "start": 5631.74, + "end": 5633.58, + "probability": 0.5978 + }, + { + "start": 5634.66, + "end": 5637.3, + "probability": 0.9579 + }, + { + "start": 5637.4, + "end": 5639.52, + "probability": 0.8958 + }, + { + "start": 5639.58, + "end": 5640.16, + "probability": 0.5105 + }, + { + "start": 5640.22, + "end": 5641.5, + "probability": 0.9913 + }, + { + "start": 5642.22, + "end": 5643.46, + "probability": 0.4189 + }, + { + "start": 5644.16, + "end": 5647.5, + "probability": 0.5583 + }, + { + "start": 5647.5, + "end": 5648.08, + "probability": 0.7797 + }, + { + "start": 5671.14, + "end": 5671.7, + "probability": 0.5723 + }, + { + "start": 5671.9, + "end": 5672.39, + "probability": 0.4567 + }, + { + "start": 5673.42, + "end": 5674.6, + "probability": 0.5351 + }, + { + "start": 5674.86, + "end": 5677.58, + "probability": 0.9259 + }, + { + "start": 5678.34, + "end": 5683.5, + "probability": 0.9802 + }, + { + "start": 5684.16, + "end": 5686.02, + "probability": 0.9702 + }, + { + "start": 5686.68, + "end": 5688.4, + "probability": 0.8577 + }, + { + "start": 5688.48, + "end": 5690.88, + "probability": 0.9958 + }, + { + "start": 5692.32, + "end": 5694.6, + "probability": 0.7732 + }, + { + "start": 5694.64, + "end": 5698.68, + "probability": 0.8786 + }, + { + "start": 5699.66, + "end": 5702.94, + "probability": 0.9974 + }, + { + "start": 5703.44, + "end": 5707.86, + "probability": 0.9751 + }, + { + "start": 5708.5, + "end": 5712.2, + "probability": 0.9596 + }, + { + "start": 5712.78, + "end": 5714.38, + "probability": 0.9001 + }, + { + "start": 5715.28, + "end": 5718.28, + "probability": 0.9722 + }, + { + "start": 5719.41, + "end": 5720.14, + "probability": 0.9331 + }, + { + "start": 5721.76, + "end": 5726.92, + "probability": 0.9634 + }, + { + "start": 5727.6, + "end": 5729.16, + "probability": 0.6155 + }, + { + "start": 5729.3, + "end": 5730.0, + "probability": 0.5025 + }, + { + "start": 5730.02, + "end": 5730.51, + "probability": 0.4817 + }, + { + "start": 5731.2, + "end": 5732.9, + "probability": 0.9857 + }, + { + "start": 5733.26, + "end": 5735.48, + "probability": 0.9775 + }, + { + "start": 5735.64, + "end": 5737.7, + "probability": 0.8744 + }, + { + "start": 5738.54, + "end": 5739.6, + "probability": 0.9584 + }, + { + "start": 5740.5, + "end": 5744.18, + "probability": 0.9944 + }, + { + "start": 5744.64, + "end": 5745.92, + "probability": 0.9969 + }, + { + "start": 5747.12, + "end": 5748.24, + "probability": 0.9832 + }, + { + "start": 5748.6, + "end": 5749.78, + "probability": 0.9741 + }, + { + "start": 5749.78, + "end": 5753.12, + "probability": 0.9946 + }, + { + "start": 5753.4, + "end": 5754.0, + "probability": 0.8185 + }, + { + "start": 5754.42, + "end": 5755.26, + "probability": 0.9954 + }, + { + "start": 5755.74, + "end": 5759.5, + "probability": 0.9924 + }, + { + "start": 5760.14, + "end": 5760.76, + "probability": 0.7325 + }, + { + "start": 5761.48, + "end": 5762.78, + "probability": 0.9623 + }, + { + "start": 5763.3, + "end": 5764.31, + "probability": 0.9167 + }, + { + "start": 5765.18, + "end": 5765.86, + "probability": 0.9622 + }, + { + "start": 5766.56, + "end": 5767.34, + "probability": 0.7508 + }, + { + "start": 5767.38, + "end": 5767.88, + "probability": 0.8079 + }, + { + "start": 5768.46, + "end": 5772.16, + "probability": 0.9907 + }, + { + "start": 5772.54, + "end": 5776.26, + "probability": 0.9991 + }, + { + "start": 5776.8, + "end": 5779.6, + "probability": 0.9774 + }, + { + "start": 5780.18, + "end": 5780.54, + "probability": 0.7566 + }, + { + "start": 5780.7, + "end": 5781.32, + "probability": 0.6153 + }, + { + "start": 5783.08, + "end": 5785.92, + "probability": 0.7933 + }, + { + "start": 5793.66, + "end": 5795.96, + "probability": 0.6545 + }, + { + "start": 5797.66, + "end": 5802.28, + "probability": 0.8824 + }, + { + "start": 5802.52, + "end": 5802.82, + "probability": 0.8145 + }, + { + "start": 5802.88, + "end": 5804.16, + "probability": 0.853 + }, + { + "start": 5804.16, + "end": 5805.4, + "probability": 0.9819 + }, + { + "start": 5805.44, + "end": 5806.7, + "probability": 0.9497 + }, + { + "start": 5807.04, + "end": 5810.64, + "probability": 0.9645 + }, + { + "start": 5811.22, + "end": 5814.6, + "probability": 0.9871 + }, + { + "start": 5814.84, + "end": 5815.38, + "probability": 0.4945 + }, + { + "start": 5815.48, + "end": 5815.72, + "probability": 0.8134 + }, + { + "start": 5815.8, + "end": 5817.86, + "probability": 0.9899 + }, + { + "start": 5818.68, + "end": 5821.76, + "probability": 0.9923 + }, + { + "start": 5821.86, + "end": 5824.04, + "probability": 0.8008 + }, + { + "start": 5824.16, + "end": 5825.84, + "probability": 0.6288 + }, + { + "start": 5826.6, + "end": 5831.1, + "probability": 0.9183 + }, + { + "start": 5831.52, + "end": 5833.54, + "probability": 0.8842 + }, + { + "start": 5833.84, + "end": 5834.2, + "probability": 0.6649 + }, + { + "start": 5834.2, + "end": 5835.26, + "probability": 0.8208 + }, + { + "start": 5836.44, + "end": 5838.53, + "probability": 0.9551 + }, + { + "start": 5839.4, + "end": 5840.74, + "probability": 0.8536 + }, + { + "start": 5841.46, + "end": 5844.68, + "probability": 0.9894 + }, + { + "start": 5845.56, + "end": 5846.74, + "probability": 0.9474 + }, + { + "start": 5847.3, + "end": 5848.56, + "probability": 0.9652 + }, + { + "start": 5849.12, + "end": 5852.94, + "probability": 0.9114 + }, + { + "start": 5853.46, + "end": 5854.78, + "probability": 0.9822 + }, + { + "start": 5855.44, + "end": 5857.46, + "probability": 0.9863 + }, + { + "start": 5857.6, + "end": 5860.44, + "probability": 0.9729 + }, + { + "start": 5861.44, + "end": 5862.02, + "probability": 0.9934 + }, + { + "start": 5863.32, + "end": 5866.0, + "probability": 0.9652 + }, + { + "start": 5866.64, + "end": 5869.34, + "probability": 0.9985 + }, + { + "start": 5870.16, + "end": 5871.44, + "probability": 0.7984 + }, + { + "start": 5872.28, + "end": 5874.02, + "probability": 0.9707 + }, + { + "start": 5874.66, + "end": 5875.42, + "probability": 0.9712 + }, + { + "start": 5875.56, + "end": 5876.34, + "probability": 0.8262 + }, + { + "start": 5876.48, + "end": 5878.16, + "probability": 0.9803 + }, + { + "start": 5878.84, + "end": 5880.06, + "probability": 0.9993 + }, + { + "start": 5880.66, + "end": 5883.68, + "probability": 0.9875 + }, + { + "start": 5884.66, + "end": 5885.18, + "probability": 0.7559 + }, + { + "start": 5886.24, + "end": 5887.35, + "probability": 0.9902 + }, + { + "start": 5888.86, + "end": 5890.74, + "probability": 0.999 + }, + { + "start": 5891.54, + "end": 5893.94, + "probability": 0.9523 + }, + { + "start": 5894.72, + "end": 5896.18, + "probability": 0.8702 + }, + { + "start": 5896.58, + "end": 5899.1, + "probability": 0.9077 + }, + { + "start": 5899.48, + "end": 5899.58, + "probability": 0.4253 + }, + { + "start": 5900.12, + "end": 5901.28, + "probability": 0.7828 + }, + { + "start": 5902.36, + "end": 5903.42, + "probability": 0.3503 + }, + { + "start": 5903.7, + "end": 5903.84, + "probability": 0.0406 + }, + { + "start": 5903.84, + "end": 5903.84, + "probability": 0.0622 + }, + { + "start": 5903.84, + "end": 5905.56, + "probability": 0.4668 + }, + { + "start": 5906.1, + "end": 5906.84, + "probability": 0.9855 + }, + { + "start": 5907.38, + "end": 5910.62, + "probability": 0.9447 + }, + { + "start": 5912.0, + "end": 5913.12, + "probability": 0.9918 + }, + { + "start": 5914.58, + "end": 5915.82, + "probability": 0.6594 + }, + { + "start": 5916.9, + "end": 5920.8, + "probability": 0.9736 + }, + { + "start": 5921.52, + "end": 5922.08, + "probability": 0.7539 + }, + { + "start": 5923.06, + "end": 5923.66, + "probability": 0.9016 + }, + { + "start": 5924.38, + "end": 5924.78, + "probability": 0.5102 + }, + { + "start": 5924.84, + "end": 5926.28, + "probability": 0.8642 + }, + { + "start": 5926.64, + "end": 5929.28, + "probability": 0.9902 + }, + { + "start": 5930.74, + "end": 5931.68, + "probability": 0.9243 + }, + { + "start": 5932.28, + "end": 5934.54, + "probability": 0.9371 + }, + { + "start": 5935.22, + "end": 5936.32, + "probability": 0.8788 + }, + { + "start": 5936.92, + "end": 5939.5, + "probability": 0.9971 + }, + { + "start": 5939.5, + "end": 5941.88, + "probability": 0.999 + }, + { + "start": 5942.62, + "end": 5943.26, + "probability": 0.8767 + }, + { + "start": 5943.76, + "end": 5946.6, + "probability": 0.9807 + }, + { + "start": 5946.72, + "end": 5953.02, + "probability": 0.9873 + }, + { + "start": 5953.08, + "end": 5958.76, + "probability": 0.998 + }, + { + "start": 5959.4, + "end": 5959.98, + "probability": 0.3328 + }, + { + "start": 5960.06, + "end": 5961.84, + "probability": 0.9724 + }, + { + "start": 5962.28, + "end": 5966.26, + "probability": 0.9868 + }, + { + "start": 5966.34, + "end": 5967.02, + "probability": 0.9126 + }, + { + "start": 5967.36, + "end": 5968.2, + "probability": 0.9704 + }, + { + "start": 5968.26, + "end": 5968.98, + "probability": 0.6494 + }, + { + "start": 5969.42, + "end": 5973.76, + "probability": 0.9845 + }, + { + "start": 5974.16, + "end": 5978.82, + "probability": 0.9982 + }, + { + "start": 5979.08, + "end": 5979.7, + "probability": 0.6186 + }, + { + "start": 5980.4, + "end": 5980.4, + "probability": 0.2555 + }, + { + "start": 5980.78, + "end": 5981.8, + "probability": 0.6436 + }, + { + "start": 5982.7, + "end": 5984.0, + "probability": 0.5272 + }, + { + "start": 5986.08, + "end": 5987.08, + "probability": 0.7521 + }, + { + "start": 5987.4, + "end": 5987.42, + "probability": 0.6192 + }, + { + "start": 5987.42, + "end": 5990.14, + "probability": 0.7593 + }, + { + "start": 5990.34, + "end": 5991.04, + "probability": 0.6717 + }, + { + "start": 6003.34, + "end": 6004.33, + "probability": 0.3793 + }, + { + "start": 6007.34, + "end": 6008.02, + "probability": 0.0502 + }, + { + "start": 6014.36, + "end": 6016.56, + "probability": 0.3702 + }, + { + "start": 6016.68, + "end": 6018.48, + "probability": 0.8226 + }, + { + "start": 6019.52, + "end": 6020.96, + "probability": 0.8738 + }, + { + "start": 6022.72, + "end": 6022.96, + "probability": 0.0754 + }, + { + "start": 6022.96, + "end": 6025.8, + "probability": 0.7533 + }, + { + "start": 6026.02, + "end": 6028.4, + "probability": 0.8265 + }, + { + "start": 6028.46, + "end": 6030.66, + "probability": 0.7986 + }, + { + "start": 6048.1, + "end": 6049.72, + "probability": 0.6719 + }, + { + "start": 6052.82, + "end": 6055.45, + "probability": 0.7819 + }, + { + "start": 6057.66, + "end": 6061.68, + "probability": 0.7754 + }, + { + "start": 6063.0, + "end": 6070.84, + "probability": 0.9761 + }, + { + "start": 6071.62, + "end": 6072.58, + "probability": 0.8132 + }, + { + "start": 6072.7, + "end": 6073.72, + "probability": 0.6843 + }, + { + "start": 6073.94, + "end": 6074.46, + "probability": 0.7975 + }, + { + "start": 6076.32, + "end": 6078.86, + "probability": 0.9714 + }, + { + "start": 6080.9, + "end": 6083.0, + "probability": 0.655 + }, + { + "start": 6083.58, + "end": 6084.31, + "probability": 0.965 + }, + { + "start": 6089.8, + "end": 6090.44, + "probability": 0.5751 + }, + { + "start": 6093.66, + "end": 6094.97, + "probability": 0.8339 + }, + { + "start": 6096.9, + "end": 6097.58, + "probability": 0.5049 + }, + { + "start": 6099.28, + "end": 6101.98, + "probability": 0.9503 + }, + { + "start": 6103.22, + "end": 6104.14, + "probability": 0.9541 + }, + { + "start": 6105.52, + "end": 6107.52, + "probability": 0.9023 + }, + { + "start": 6107.88, + "end": 6109.24, + "probability": 0.9888 + }, + { + "start": 6112.8, + "end": 6114.04, + "probability": 0.8526 + }, + { + "start": 6115.24, + "end": 6118.36, + "probability": 0.7624 + }, + { + "start": 6119.84, + "end": 6120.3, + "probability": 0.6528 + }, + { + "start": 6121.1, + "end": 6123.8, + "probability": 0.9654 + }, + { + "start": 6124.74, + "end": 6131.86, + "probability": 0.9751 + }, + { + "start": 6131.86, + "end": 6140.62, + "probability": 0.9268 + }, + { + "start": 6141.7, + "end": 6142.38, + "probability": 0.5335 + }, + { + "start": 6144.28, + "end": 6147.96, + "probability": 0.9154 + }, + { + "start": 6149.06, + "end": 6150.52, + "probability": 0.9648 + }, + { + "start": 6151.54, + "end": 6156.38, + "probability": 0.9902 + }, + { + "start": 6158.66, + "end": 6161.58, + "probability": 0.9759 + }, + { + "start": 6163.62, + "end": 6163.92, + "probability": 0.4847 + }, + { + "start": 6164.04, + "end": 6171.3, + "probability": 0.9948 + }, + { + "start": 6172.2, + "end": 6174.14, + "probability": 0.7741 + }, + { + "start": 6174.32, + "end": 6175.58, + "probability": 0.9478 + }, + { + "start": 6175.76, + "end": 6180.72, + "probability": 0.9683 + }, + { + "start": 6181.9, + "end": 6187.96, + "probability": 0.9816 + }, + { + "start": 6189.6, + "end": 6190.06, + "probability": 0.3204 + }, + { + "start": 6190.08, + "end": 6192.08, + "probability": 0.4693 + }, + { + "start": 6192.08, + "end": 6192.44, + "probability": 0.5903 + }, + { + "start": 6192.74, + "end": 6196.6, + "probability": 0.9603 + }, + { + "start": 6197.44, + "end": 6200.2, + "probability": 0.832 + }, + { + "start": 6200.74, + "end": 6202.36, + "probability": 0.9861 + }, + { + "start": 6202.72, + "end": 6204.6, + "probability": 0.7654 + }, + { + "start": 6205.84, + "end": 6209.04, + "probability": 0.9886 + }, + { + "start": 6209.26, + "end": 6210.86, + "probability": 0.7055 + }, + { + "start": 6211.34, + "end": 6214.28, + "probability": 0.9904 + }, + { + "start": 6215.06, + "end": 6221.5, + "probability": 0.967 + }, + { + "start": 6226.52, + "end": 6229.8, + "probability": 0.9927 + }, + { + "start": 6231.3, + "end": 6236.44, + "probability": 0.9731 + }, + { + "start": 6237.6, + "end": 6241.4, + "probability": 0.8317 + }, + { + "start": 6242.1, + "end": 6242.52, + "probability": 0.5317 + }, + { + "start": 6246.32, + "end": 6249.98, + "probability": 0.8054 + }, + { + "start": 6251.34, + "end": 6255.28, + "probability": 0.9595 + }, + { + "start": 6255.38, + "end": 6256.19, + "probability": 0.8911 + }, + { + "start": 6257.0, + "end": 6261.26, + "probability": 0.9893 + }, + { + "start": 6262.64, + "end": 6266.3, + "probability": 0.9968 + }, + { + "start": 6266.3, + "end": 6272.28, + "probability": 0.998 + }, + { + "start": 6273.48, + "end": 6274.46, + "probability": 0.6053 + }, + { + "start": 6275.18, + "end": 6276.24, + "probability": 0.9043 + }, + { + "start": 6276.52, + "end": 6279.36, + "probability": 0.9959 + }, + { + "start": 6279.38, + "end": 6284.84, + "probability": 0.9929 + }, + { + "start": 6285.68, + "end": 6289.13, + "probability": 0.9667 + }, + { + "start": 6291.44, + "end": 6293.1, + "probability": 0.5682 + }, + { + "start": 6293.88, + "end": 6295.06, + "probability": 0.7234 + }, + { + "start": 6295.24, + "end": 6300.82, + "probability": 0.9799 + }, + { + "start": 6302.06, + "end": 6303.52, + "probability": 0.9017 + }, + { + "start": 6304.24, + "end": 6307.52, + "probability": 0.3969 + }, + { + "start": 6307.52, + "end": 6307.87, + "probability": 0.2156 + }, + { + "start": 6308.28, + "end": 6311.36, + "probability": 0.9269 + }, + { + "start": 6312.98, + "end": 6318.62, + "probability": 0.9183 + }, + { + "start": 6319.0, + "end": 6321.94, + "probability": 0.9717 + }, + { + "start": 6323.62, + "end": 6324.54, + "probability": 0.979 + }, + { + "start": 6326.4, + "end": 6329.54, + "probability": 0.9204 + }, + { + "start": 6329.66, + "end": 6331.1, + "probability": 0.7627 + }, + { + "start": 6332.26, + "end": 6335.34, + "probability": 0.9627 + }, + { + "start": 6336.57, + "end": 6338.34, + "probability": 0.7634 + }, + { + "start": 6341.06, + "end": 6343.26, + "probability": 0.9835 + }, + { + "start": 6343.5, + "end": 6343.86, + "probability": 0.015 + }, + { + "start": 6344.58, + "end": 6345.58, + "probability": 0.61 + }, + { + "start": 6345.84, + "end": 6349.62, + "probability": 0.9123 + }, + { + "start": 6350.34, + "end": 6354.96, + "probability": 0.9358 + }, + { + "start": 6355.06, + "end": 6355.96, + "probability": 0.7261 + }, + { + "start": 6356.08, + "end": 6357.52, + "probability": 0.9556 + }, + { + "start": 6358.38, + "end": 6362.56, + "probability": 0.9706 + }, + { + "start": 6363.86, + "end": 6366.38, + "probability": 0.9346 + }, + { + "start": 6367.28, + "end": 6371.46, + "probability": 0.9458 + }, + { + "start": 6372.1, + "end": 6375.04, + "probability": 0.8359 + }, + { + "start": 6375.5, + "end": 6377.86, + "probability": 0.9946 + }, + { + "start": 6378.36, + "end": 6380.8, + "probability": 0.7256 + }, + { + "start": 6382.14, + "end": 6386.02, + "probability": 0.9171 + }, + { + "start": 6386.98, + "end": 6389.82, + "probability": 0.981 + }, + { + "start": 6390.98, + "end": 6393.94, + "probability": 0.988 + }, + { + "start": 6394.04, + "end": 6394.88, + "probability": 0.8911 + }, + { + "start": 6395.42, + "end": 6396.02, + "probability": 0.8605 + }, + { + "start": 6396.92, + "end": 6397.68, + "probability": 0.9914 + }, + { + "start": 6398.42, + "end": 6399.26, + "probability": 0.9908 + }, + { + "start": 6400.58, + "end": 6402.36, + "probability": 0.7099 + }, + { + "start": 6405.48, + "end": 6408.72, + "probability": 0.9836 + }, + { + "start": 6411.1, + "end": 6413.94, + "probability": 0.746 + }, + { + "start": 6416.89, + "end": 6420.28, + "probability": 0.8303 + }, + { + "start": 6420.78, + "end": 6422.42, + "probability": 0.9553 + }, + { + "start": 6424.46, + "end": 6431.76, + "probability": 0.9229 + }, + { + "start": 6432.64, + "end": 6438.44, + "probability": 0.9891 + }, + { + "start": 6440.04, + "end": 6440.92, + "probability": 0.7246 + }, + { + "start": 6441.0, + "end": 6442.12, + "probability": 0.9162 + }, + { + "start": 6442.2, + "end": 6444.86, + "probability": 0.9624 + }, + { + "start": 6445.84, + "end": 6449.42, + "probability": 0.9378 + }, + { + "start": 6451.8, + "end": 6457.92, + "probability": 0.7809 + }, + { + "start": 6460.94, + "end": 6463.4, + "probability": 0.5475 + }, + { + "start": 6463.9, + "end": 6467.54, + "probability": 0.9882 + }, + { + "start": 6468.04, + "end": 6473.82, + "probability": 0.8203 + }, + { + "start": 6474.48, + "end": 6475.62, + "probability": 0.8484 + }, + { + "start": 6476.32, + "end": 6480.82, + "probability": 0.8959 + }, + { + "start": 6481.3, + "end": 6482.9, + "probability": 0.755 + }, + { + "start": 6483.16, + "end": 6484.34, + "probability": 0.7825 + }, + { + "start": 6485.3, + "end": 6485.84, + "probability": 0.9707 + }, + { + "start": 6487.24, + "end": 6490.42, + "probability": 0.9714 + }, + { + "start": 6492.66, + "end": 6499.2, + "probability": 0.8687 + }, + { + "start": 6499.66, + "end": 6502.78, + "probability": 0.9884 + }, + { + "start": 6503.64, + "end": 6509.36, + "probability": 0.8839 + }, + { + "start": 6509.52, + "end": 6512.62, + "probability": 0.9884 + }, + { + "start": 6513.3, + "end": 6514.34, + "probability": 0.6346 + }, + { + "start": 6515.9, + "end": 6517.16, + "probability": 0.3018 + }, + { + "start": 6517.36, + "end": 6518.74, + "probability": 0.5677 + }, + { + "start": 6518.74, + "end": 6522.24, + "probability": 0.8843 + }, + { + "start": 6524.96, + "end": 6526.8, + "probability": 0.8312 + }, + { + "start": 6528.26, + "end": 6531.56, + "probability": 0.7363 + }, + { + "start": 6531.68, + "end": 6532.26, + "probability": 0.7336 + }, + { + "start": 6533.44, + "end": 6539.7, + "probability": 0.8123 + }, + { + "start": 6539.7, + "end": 6543.36, + "probability": 0.999 + }, + { + "start": 6544.24, + "end": 6545.9, + "probability": 0.8842 + }, + { + "start": 6547.08, + "end": 6551.76, + "probability": 0.9143 + }, + { + "start": 6552.7, + "end": 6555.86, + "probability": 0.931 + }, + { + "start": 6558.18, + "end": 6558.68, + "probability": 0.4435 + }, + { + "start": 6560.34, + "end": 6562.06, + "probability": 0.7905 + }, + { + "start": 6562.24, + "end": 6563.46, + "probability": 0.6167 + }, + { + "start": 6563.54, + "end": 6564.2, + "probability": 0.3885 + }, + { + "start": 6564.34, + "end": 6566.05, + "probability": 0.5602 + }, + { + "start": 6567.48, + "end": 6569.22, + "probability": 0.9825 + }, + { + "start": 6569.26, + "end": 6571.6, + "probability": 0.9475 + }, + { + "start": 6573.88, + "end": 6576.7, + "probability": 0.5645 + }, + { + "start": 6578.1, + "end": 6580.48, + "probability": 0.448 + }, + { + "start": 6584.32, + "end": 6589.04, + "probability": 0.5167 + }, + { + "start": 6589.16, + "end": 6591.8, + "probability": 0.8281 + }, + { + "start": 6592.48, + "end": 6595.6, + "probability": 0.8563 + }, + { + "start": 6595.7, + "end": 6601.88, + "probability": 0.8911 + }, + { + "start": 6602.98, + "end": 6604.46, + "probability": 0.9517 + }, + { + "start": 6605.7, + "end": 6607.22, + "probability": 0.8279 + }, + { + "start": 6608.08, + "end": 6609.18, + "probability": 0.8026 + }, + { + "start": 6609.28, + "end": 6617.94, + "probability": 0.9571 + }, + { + "start": 6618.88, + "end": 6621.98, + "probability": 0.7571 + }, + { + "start": 6623.14, + "end": 6625.96, + "probability": 0.8408 + }, + { + "start": 6626.56, + "end": 6627.26, + "probability": 0.9869 + }, + { + "start": 6628.12, + "end": 6629.68, + "probability": 0.956 + }, + { + "start": 6630.96, + "end": 6633.86, + "probability": 0.047 + }, + { + "start": 6633.86, + "end": 6638.02, + "probability": 0.4029 + }, + { + "start": 6641.22, + "end": 6645.3, + "probability": 0.949 + }, + { + "start": 6645.8, + "end": 6646.04, + "probability": 0.4959 + }, + { + "start": 6646.22, + "end": 6648.22, + "probability": 0.9927 + }, + { + "start": 6649.5, + "end": 6652.14, + "probability": 0.9513 + }, + { + "start": 6652.14, + "end": 6656.5, + "probability": 0.974 + }, + { + "start": 6656.62, + "end": 6660.3, + "probability": 0.8911 + }, + { + "start": 6661.64, + "end": 6663.82, + "probability": 0.8242 + }, + { + "start": 6664.94, + "end": 6665.22, + "probability": 0.9802 + }, + { + "start": 6666.4, + "end": 6668.8, + "probability": 0.9072 + }, + { + "start": 6668.8, + "end": 6671.4, + "probability": 0.9736 + }, + { + "start": 6674.68, + "end": 6678.18, + "probability": 0.9948 + }, + { + "start": 6678.98, + "end": 6681.14, + "probability": 0.9927 + }, + { + "start": 6682.92, + "end": 6684.12, + "probability": 0.6515 + }, + { + "start": 6684.44, + "end": 6684.66, + "probability": 0.4651 + }, + { + "start": 6684.74, + "end": 6685.3, + "probability": 0.7653 + }, + { + "start": 6685.46, + "end": 6685.56, + "probability": 0.8564 + }, + { + "start": 6686.32, + "end": 6687.48, + "probability": 0.8477 + }, + { + "start": 6688.02, + "end": 6690.04, + "probability": 0.9679 + }, + { + "start": 6692.12, + "end": 6697.82, + "probability": 0.8135 + }, + { + "start": 6699.04, + "end": 6699.42, + "probability": 0.5285 + }, + { + "start": 6700.46, + "end": 6702.68, + "probability": 0.7944 + }, + { + "start": 6705.94, + "end": 6707.2, + "probability": 0.416 + }, + { + "start": 6708.38, + "end": 6711.82, + "probability": 0.9673 + }, + { + "start": 6713.14, + "end": 6716.7, + "probability": 0.7809 + }, + { + "start": 6717.14, + "end": 6718.58, + "probability": 0.9445 + }, + { + "start": 6719.1, + "end": 6721.58, + "probability": 0.8336 + }, + { + "start": 6724.58, + "end": 6725.62, + "probability": 0.7818 + }, + { + "start": 6726.64, + "end": 6730.02, + "probability": 0.9417 + }, + { + "start": 6730.76, + "end": 6733.92, + "probability": 0.9194 + }, + { + "start": 6734.16, + "end": 6736.54, + "probability": 0.728 + }, + { + "start": 6737.62, + "end": 6738.98, + "probability": 0.985 + }, + { + "start": 6739.76, + "end": 6741.54, + "probability": 0.925 + }, + { + "start": 6742.08, + "end": 6742.72, + "probability": 0.8392 + }, + { + "start": 6743.5, + "end": 6746.06, + "probability": 0.8905 + }, + { + "start": 6746.36, + "end": 6747.52, + "probability": 0.9714 + }, + { + "start": 6747.68, + "end": 6748.7, + "probability": 0.7537 + }, + { + "start": 6749.76, + "end": 6751.0, + "probability": 0.7413 + }, + { + "start": 6751.72, + "end": 6755.28, + "probability": 0.9609 + }, + { + "start": 6755.8, + "end": 6756.3, + "probability": 0.9067 + }, + { + "start": 6756.88, + "end": 6760.58, + "probability": 0.9808 + }, + { + "start": 6760.8, + "end": 6761.08, + "probability": 0.6192 + }, + { + "start": 6764.16, + "end": 6764.16, + "probability": 0.3718 + }, + { + "start": 6764.16, + "end": 6764.72, + "probability": 0.5606 + }, + { + "start": 6764.72, + "end": 6765.08, + "probability": 0.8802 + }, + { + "start": 6767.42, + "end": 6767.92, + "probability": 0.6038 + }, + { + "start": 6769.08, + "end": 6771.06, + "probability": 0.8806 + }, + { + "start": 6784.2, + "end": 6784.44, + "probability": 0.1094 + }, + { + "start": 6784.44, + "end": 6784.56, + "probability": 0.3143 + }, + { + "start": 6791.66, + "end": 6792.58, + "probability": 0.5021 + }, + { + "start": 6793.88, + "end": 6794.58, + "probability": 0.7526 + }, + { + "start": 6796.94, + "end": 6797.84, + "probability": 0.235 + }, + { + "start": 6798.56, + "end": 6801.02, + "probability": 0.2615 + }, + { + "start": 6801.16, + "end": 6802.6, + "probability": 0.5242 + }, + { + "start": 6802.6, + "end": 6803.26, + "probability": 0.3402 + }, + { + "start": 6803.36, + "end": 6804.22, + "probability": 0.6856 + }, + { + "start": 6804.98, + "end": 6805.56, + "probability": 0.9617 + }, + { + "start": 6808.56, + "end": 6816.68, + "probability": 0.9916 + }, + { + "start": 6820.96, + "end": 6828.58, + "probability": 0.9963 + }, + { + "start": 6829.9, + "end": 6831.04, + "probability": 0.6264 + }, + { + "start": 6832.02, + "end": 6833.76, + "probability": 0.9062 + }, + { + "start": 6835.4, + "end": 6837.08, + "probability": 0.9569 + }, + { + "start": 6838.38, + "end": 6839.74, + "probability": 0.8562 + }, + { + "start": 6841.48, + "end": 6842.38, + "probability": 0.6377 + }, + { + "start": 6843.66, + "end": 6844.06, + "probability": 0.7206 + }, + { + "start": 6846.1, + "end": 6848.57, + "probability": 0.8829 + }, + { + "start": 6851.66, + "end": 6852.96, + "probability": 0.9832 + }, + { + "start": 6856.58, + "end": 6866.46, + "probability": 0.9609 + }, + { + "start": 6868.5, + "end": 6874.82, + "probability": 0.9626 + }, + { + "start": 6877.9, + "end": 6879.58, + "probability": 0.9979 + }, + { + "start": 6880.62, + "end": 6883.62, + "probability": 0.9889 + }, + { + "start": 6885.6, + "end": 6886.62, + "probability": 0.7034 + }, + { + "start": 6888.56, + "end": 6894.92, + "probability": 0.7559 + }, + { + "start": 6896.85, + "end": 6900.7, + "probability": 0.8578 + }, + { + "start": 6902.92, + "end": 6903.42, + "probability": 0.0038 + }, + { + "start": 6904.42, + "end": 6905.64, + "probability": 0.7982 + }, + { + "start": 6909.22, + "end": 6909.92, + "probability": 0.785 + }, + { + "start": 6910.58, + "end": 6911.34, + "probability": 0.8207 + }, + { + "start": 6911.92, + "end": 6913.18, + "probability": 0.5934 + }, + { + "start": 6915.92, + "end": 6923.84, + "probability": 0.9792 + }, + { + "start": 6923.96, + "end": 6924.48, + "probability": 0.3922 + }, + { + "start": 6925.56, + "end": 6926.84, + "probability": 0.7361 + }, + { + "start": 6929.28, + "end": 6930.24, + "probability": 0.5776 + }, + { + "start": 6931.34, + "end": 6934.32, + "probability": 0.6981 + }, + { + "start": 6934.96, + "end": 6936.88, + "probability": 0.5271 + }, + { + "start": 6937.18, + "end": 6941.9, + "probability": 0.9907 + }, + { + "start": 6942.8, + "end": 6945.78, + "probability": 0.7442 + }, + { + "start": 6946.64, + "end": 6947.48, + "probability": 0.7512 + }, + { + "start": 6948.38, + "end": 6950.76, + "probability": 0.9023 + }, + { + "start": 6951.82, + "end": 6952.48, + "probability": 0.7524 + }, + { + "start": 6954.68, + "end": 6955.94, + "probability": 0.585 + }, + { + "start": 6956.18, + "end": 6957.38, + "probability": 0.6981 + }, + { + "start": 6957.42, + "end": 6961.56, + "probability": 0.9261 + }, + { + "start": 6962.42, + "end": 6968.04, + "probability": 0.9861 + }, + { + "start": 6971.1, + "end": 6972.62, + "probability": 0.4691 + }, + { + "start": 6973.2, + "end": 6973.98, + "probability": 0.6713 + }, + { + "start": 6975.68, + "end": 6976.24, + "probability": 0.3723 + }, + { + "start": 6976.4, + "end": 6980.02, + "probability": 0.4316 + }, + { + "start": 6980.2, + "end": 6981.58, + "probability": 0.7973 + }, + { + "start": 6981.64, + "end": 6982.24, + "probability": 0.7014 + }, + { + "start": 6982.42, + "end": 6989.78, + "probability": 0.9674 + }, + { + "start": 6991.44, + "end": 7000.98, + "probability": 0.9229 + }, + { + "start": 7001.86, + "end": 7003.06, + "probability": 0.1942 + }, + { + "start": 7004.84, + "end": 7006.38, + "probability": 0.7019 + }, + { + "start": 7007.12, + "end": 7007.74, + "probability": 0.7943 + }, + { + "start": 7008.26, + "end": 7009.2, + "probability": 0.2944 + }, + { + "start": 7009.38, + "end": 7009.58, + "probability": 0.654 + }, + { + "start": 7010.04, + "end": 7011.26, + "probability": 0.6646 + }, + { + "start": 7011.56, + "end": 7013.34, + "probability": 0.8387 + }, + { + "start": 7014.68, + "end": 7017.52, + "probability": 0.998 + }, + { + "start": 7017.94, + "end": 7020.3, + "probability": 0.9723 + }, + { + "start": 7020.98, + "end": 7022.3, + "probability": 0.8142 + }, + { + "start": 7023.82, + "end": 7025.6, + "probability": 0.7611 + }, + { + "start": 7028.38, + "end": 7029.66, + "probability": 0.9749 + }, + { + "start": 7030.58, + "end": 7030.7, + "probability": 0.8636 + }, + { + "start": 7033.38, + "end": 7033.5, + "probability": 0.7906 + }, + { + "start": 7035.02, + "end": 7037.66, + "probability": 0.9854 + }, + { + "start": 7038.84, + "end": 7040.12, + "probability": 0.7876 + }, + { + "start": 7040.64, + "end": 7041.48, + "probability": 0.9964 + }, + { + "start": 7042.66, + "end": 7044.8, + "probability": 0.9886 + }, + { + "start": 7045.1, + "end": 7045.7, + "probability": 0.3363 + }, + { + "start": 7045.78, + "end": 7045.88, + "probability": 0.7645 + }, + { + "start": 7045.92, + "end": 7046.83, + "probability": 0.9621 + }, + { + "start": 7047.42, + "end": 7047.88, + "probability": 0.3369 + }, + { + "start": 7048.78, + "end": 7049.18, + "probability": 0.2117 + }, + { + "start": 7049.28, + "end": 7051.56, + "probability": 0.341 + }, + { + "start": 7051.56, + "end": 7056.26, + "probability": 0.8638 + }, + { + "start": 7056.88, + "end": 7061.68, + "probability": 0.9827 + }, + { + "start": 7062.58, + "end": 7063.16, + "probability": 0.3675 + }, + { + "start": 7063.88, + "end": 7064.28, + "probability": 0.3527 + }, + { + "start": 7064.3, + "end": 7066.15, + "probability": 0.8851 + }, + { + "start": 7066.5, + "end": 7067.9, + "probability": 0.9929 + }, + { + "start": 7068.56, + "end": 7070.38, + "probability": 0.2982 + }, + { + "start": 7070.92, + "end": 7071.62, + "probability": 0.88 + }, + { + "start": 7073.46, + "end": 7075.16, + "probability": 0.9816 + }, + { + "start": 7075.96, + "end": 7076.26, + "probability": 0.4887 + }, + { + "start": 7077.74, + "end": 7078.56, + "probability": 0.788 + }, + { + "start": 7079.22, + "end": 7080.1, + "probability": 0.8337 + }, + { + "start": 7080.54, + "end": 7081.54, + "probability": 0.6968 + }, + { + "start": 7081.86, + "end": 7083.78, + "probability": 0.7611 + }, + { + "start": 7084.86, + "end": 7086.36, + "probability": 0.8822 + }, + { + "start": 7087.82, + "end": 7089.38, + "probability": 0.9973 + }, + { + "start": 7090.86, + "end": 7091.98, + "probability": 0.8451 + }, + { + "start": 7094.52, + "end": 7097.82, + "probability": 0.8528 + }, + { + "start": 7098.74, + "end": 7099.56, + "probability": 0.9347 + }, + { + "start": 7100.06, + "end": 7101.98, + "probability": 0.8703 + }, + { + "start": 7102.72, + "end": 7111.5, + "probability": 0.7472 + }, + { + "start": 7112.26, + "end": 7113.5, + "probability": 0.4696 + }, + { + "start": 7114.4, + "end": 7114.44, + "probability": 0.1617 + }, + { + "start": 7114.72, + "end": 7115.9, + "probability": 0.5876 + }, + { + "start": 7117.22, + "end": 7118.2, + "probability": 0.6935 + }, + { + "start": 7119.98, + "end": 7119.98, + "probability": 0.1711 + }, + { + "start": 7119.98, + "end": 7120.32, + "probability": 0.7706 + }, + { + "start": 7120.92, + "end": 7123.96, + "probability": 0.9702 + }, + { + "start": 7124.56, + "end": 7125.1, + "probability": 0.868 + }, + { + "start": 7128.02, + "end": 7128.25, + "probability": 0.0097 + }, + { + "start": 7128.62, + "end": 7129.14, + "probability": 0.5382 + }, + { + "start": 7129.36, + "end": 7130.04, + "probability": 0.717 + }, + { + "start": 7130.86, + "end": 7131.94, + "probability": 0.6597 + }, + { + "start": 7132.96, + "end": 7136.86, + "probability": 0.9198 + }, + { + "start": 7137.36, + "end": 7138.46, + "probability": 0.7214 + }, + { + "start": 7138.9, + "end": 7142.5, + "probability": 0.945 + }, + { + "start": 7143.1, + "end": 7144.66, + "probability": 0.4071 + }, + { + "start": 7145.66, + "end": 7147.8, + "probability": 0.9245 + }, + { + "start": 7148.58, + "end": 7149.82, + "probability": 0.9761 + }, + { + "start": 7150.3, + "end": 7153.0, + "probability": 0.8694 + }, + { + "start": 7153.62, + "end": 7155.44, + "probability": 0.856 + }, + { + "start": 7156.54, + "end": 7158.54, + "probability": 0.8634 + }, + { + "start": 7158.68, + "end": 7161.02, + "probability": 0.7396 + }, + { + "start": 7161.56, + "end": 7162.4, + "probability": 0.867 + }, + { + "start": 7163.34, + "end": 7164.02, + "probability": 0.6664 + }, + { + "start": 7164.14, + "end": 7166.32, + "probability": 0.0587 + }, + { + "start": 7166.32, + "end": 7167.38, + "probability": 0.0039 + }, + { + "start": 7167.38, + "end": 7169.31, + "probability": 0.0976 + }, + { + "start": 7172.1, + "end": 7177.28, + "probability": 0.4354 + }, + { + "start": 7177.28, + "end": 7178.69, + "probability": 0.2144 + }, + { + "start": 7180.5, + "end": 7181.92, + "probability": 0.4747 + }, + { + "start": 7183.52, + "end": 7186.74, + "probability": 0.5773 + }, + { + "start": 7187.54, + "end": 7189.1, + "probability": 0.8303 + }, + { + "start": 7192.26, + "end": 7194.16, + "probability": 0.7871 + }, + { + "start": 7194.48, + "end": 7195.96, + "probability": 0.8032 + }, + { + "start": 7197.6, + "end": 7202.58, + "probability": 0.3245 + }, + { + "start": 7202.76, + "end": 7203.74, + "probability": 0.0422 + }, + { + "start": 7204.02, + "end": 7206.78, + "probability": 0.3653 + }, + { + "start": 7207.98, + "end": 7211.86, + "probability": 0.9347 + }, + { + "start": 7213.08, + "end": 7217.16, + "probability": 0.892 + }, + { + "start": 7217.18, + "end": 7218.14, + "probability": 0.856 + }, + { + "start": 7218.22, + "end": 7219.44, + "probability": 0.8065 + }, + { + "start": 7219.72, + "end": 7220.33, + "probability": 0.7062 + }, + { + "start": 7221.12, + "end": 7223.9, + "probability": 0.7862 + }, + { + "start": 7223.9, + "end": 7227.08, + "probability": 0.8157 + }, + { + "start": 7227.48, + "end": 7228.58, + "probability": 0.6942 + }, + { + "start": 7229.18, + "end": 7230.45, + "probability": 0.9839 + }, + { + "start": 7232.96, + "end": 7233.14, + "probability": 0.4477 + }, + { + "start": 7233.92, + "end": 7234.02, + "probability": 0.0734 + }, + { + "start": 7234.02, + "end": 7235.02, + "probability": 0.7817 + }, + { + "start": 7235.46, + "end": 7240.36, + "probability": 0.913 + }, + { + "start": 7242.39, + "end": 7247.68, + "probability": 0.8143 + }, + { + "start": 7248.14, + "end": 7251.76, + "probability": 0.9099 + }, + { + "start": 7251.9, + "end": 7254.4, + "probability": 0.9928 + }, + { + "start": 7254.48, + "end": 7255.8, + "probability": 0.8053 + }, + { + "start": 7256.53, + "end": 7258.64, + "probability": 0.9057 + }, + { + "start": 7258.8, + "end": 7259.48, + "probability": 0.2045 + }, + { + "start": 7260.0, + "end": 7262.04, + "probability": 0.9744 + }, + { + "start": 7264.05, + "end": 7268.66, + "probability": 0.7568 + }, + { + "start": 7269.76, + "end": 7272.6, + "probability": 0.9819 + }, + { + "start": 7273.38, + "end": 7273.84, + "probability": 0.9291 + }, + { + "start": 7274.56, + "end": 7278.14, + "probability": 0.8328 + }, + { + "start": 7279.3, + "end": 7283.54, + "probability": 0.9863 + }, + { + "start": 7284.68, + "end": 7285.53, + "probability": 0.7018 + }, + { + "start": 7286.7, + "end": 7287.86, + "probability": 0.981 + }, + { + "start": 7290.32, + "end": 7296.32, + "probability": 0.8247 + }, + { + "start": 7296.36, + "end": 7299.84, + "probability": 0.9324 + }, + { + "start": 7300.26, + "end": 7301.22, + "probability": 0.927 + }, + { + "start": 7301.94, + "end": 7303.38, + "probability": 0.9392 + }, + { + "start": 7304.06, + "end": 7305.36, + "probability": 0.6332 + }, + { + "start": 7305.5, + "end": 7307.6, + "probability": 0.6233 + }, + { + "start": 7307.7, + "end": 7308.14, + "probability": 0.5119 + }, + { + "start": 7308.28, + "end": 7310.16, + "probability": 0.7461 + }, + { + "start": 7310.86, + "end": 7311.88, + "probability": 0.8711 + }, + { + "start": 7313.14, + "end": 7313.88, + "probability": 0.5078 + }, + { + "start": 7315.18, + "end": 7316.06, + "probability": 0.5142 + }, + { + "start": 7317.14, + "end": 7320.3, + "probability": 0.8512 + }, + { + "start": 7322.02, + "end": 7324.72, + "probability": 0.9789 + }, + { + "start": 7325.36, + "end": 7326.84, + "probability": 0.8192 + }, + { + "start": 7328.15, + "end": 7331.82, + "probability": 0.8083 + }, + { + "start": 7332.42, + "end": 7334.46, + "probability": 0.7988 + }, + { + "start": 7337.26, + "end": 7341.52, + "probability": 0.9312 + }, + { + "start": 7342.04, + "end": 7343.1, + "probability": 0.9293 + }, + { + "start": 7344.42, + "end": 7345.4, + "probability": 0.9518 + }, + { + "start": 7346.26, + "end": 7349.16, + "probability": 0.8815 + }, + { + "start": 7349.84, + "end": 7351.52, + "probability": 0.9619 + }, + { + "start": 7352.86, + "end": 7355.72, + "probability": 0.9817 + }, + { + "start": 7355.84, + "end": 7357.02, + "probability": 0.7931 + }, + { + "start": 7357.84, + "end": 7358.42, + "probability": 0.9322 + }, + { + "start": 7358.5, + "end": 7359.68, + "probability": 0.9399 + }, + { + "start": 7360.06, + "end": 7362.22, + "probability": 0.9146 + }, + { + "start": 7363.88, + "end": 7366.14, + "probability": 0.743 + }, + { + "start": 7366.74, + "end": 7370.34, + "probability": 0.9847 + }, + { + "start": 7374.02, + "end": 7375.68, + "probability": 0.8194 + }, + { + "start": 7375.9, + "end": 7378.72, + "probability": 0.8914 + }, + { + "start": 7379.52, + "end": 7381.58, + "probability": 0.9248 + }, + { + "start": 7381.62, + "end": 7382.88, + "probability": 0.9383 + }, + { + "start": 7382.9, + "end": 7383.63, + "probability": 0.9402 + }, + { + "start": 7386.36, + "end": 7386.98, + "probability": 0.9697 + }, + { + "start": 7387.42, + "end": 7388.06, + "probability": 0.8405 + }, + { + "start": 7388.58, + "end": 7390.18, + "probability": 0.651 + }, + { + "start": 7395.33, + "end": 7397.98, + "probability": 0.732 + }, + { + "start": 7400.64, + "end": 7402.08, + "probability": 0.0638 + }, + { + "start": 7403.0, + "end": 7404.18, + "probability": 0.6754 + }, + { + "start": 7405.94, + "end": 7408.68, + "probability": 0.9762 + }, + { + "start": 7408.68, + "end": 7411.06, + "probability": 0.9563 + }, + { + "start": 7413.85, + "end": 7416.62, + "probability": 0.7598 + }, + { + "start": 7416.74, + "end": 7418.66, + "probability": 0.9507 + }, + { + "start": 7418.8, + "end": 7421.44, + "probability": 0.7106 + }, + { + "start": 7422.2, + "end": 7423.64, + "probability": 0.4709 + }, + { + "start": 7423.99, + "end": 7429.34, + "probability": 0.361 + }, + { + "start": 7430.14, + "end": 7432.66, + "probability": 0.7701 + }, + { + "start": 7432.98, + "end": 7434.7, + "probability": 0.9984 + }, + { + "start": 7436.0, + "end": 7436.54, + "probability": 0.0002 + }, + { + "start": 7436.54, + "end": 7438.38, + "probability": 0.5282 + }, + { + "start": 7438.58, + "end": 7439.12, + "probability": 0.4624 + }, + { + "start": 7439.12, + "end": 7439.88, + "probability": 0.9776 + }, + { + "start": 7440.52, + "end": 7441.1, + "probability": 0.7392 + }, + { + "start": 7441.74, + "end": 7444.06, + "probability": 0.8745 + }, + { + "start": 7444.22, + "end": 7445.6, + "probability": 0.9631 + }, + { + "start": 7446.38, + "end": 7447.3, + "probability": 0.7417 + }, + { + "start": 7449.12, + "end": 7453.16, + "probability": 0.6953 + }, + { + "start": 7458.06, + "end": 7458.74, + "probability": 0.1802 + }, + { + "start": 7461.76, + "end": 7462.44, + "probability": 0.584 + }, + { + "start": 7462.78, + "end": 7463.96, + "probability": 0.9306 + }, + { + "start": 7464.16, + "end": 7469.28, + "probability": 0.9116 + }, + { + "start": 7469.92, + "end": 7471.02, + "probability": 0.9671 + }, + { + "start": 7471.16, + "end": 7471.51, + "probability": 0.9736 + }, + { + "start": 7471.82, + "end": 7473.05, + "probability": 0.9971 + }, + { + "start": 7473.6, + "end": 7473.92, + "probability": 0.9788 + }, + { + "start": 7474.74, + "end": 7476.92, + "probability": 0.8225 + }, + { + "start": 7477.56, + "end": 7479.68, + "probability": 0.9976 + }, + { + "start": 7480.72, + "end": 7484.14, + "probability": 0.9971 + }, + { + "start": 7484.68, + "end": 7487.96, + "probability": 0.9572 + }, + { + "start": 7489.6, + "end": 7489.72, + "probability": 0.5604 + }, + { + "start": 7489.76, + "end": 7490.08, + "probability": 0.9431 + }, + { + "start": 7490.12, + "end": 7491.2, + "probability": 0.836 + }, + { + "start": 7491.4, + "end": 7493.13, + "probability": 0.9873 + }, + { + "start": 7493.46, + "end": 7498.14, + "probability": 0.9937 + }, + { + "start": 7498.82, + "end": 7502.66, + "probability": 0.9907 + }, + { + "start": 7502.88, + "end": 7505.66, + "probability": 0.8585 + }, + { + "start": 7505.9, + "end": 7506.3, + "probability": 0.5379 + }, + { + "start": 7506.96, + "end": 7508.58, + "probability": 0.8805 + }, + { + "start": 7508.68, + "end": 7509.08, + "probability": 0.6902 + }, + { + "start": 7509.12, + "end": 7509.89, + "probability": 0.901 + }, + { + "start": 7510.08, + "end": 7513.08, + "probability": 0.8301 + }, + { + "start": 7514.24, + "end": 7518.26, + "probability": 0.9343 + }, + { + "start": 7518.26, + "end": 7522.3, + "probability": 0.9008 + }, + { + "start": 7523.92, + "end": 7526.64, + "probability": 0.9622 + }, + { + "start": 7527.02, + "end": 7529.78, + "probability": 0.7684 + }, + { + "start": 7530.16, + "end": 7532.18, + "probability": 0.9821 + }, + { + "start": 7532.98, + "end": 7535.34, + "probability": 0.9238 + }, + { + "start": 7535.98, + "end": 7539.44, + "probability": 0.9311 + }, + { + "start": 7540.92, + "end": 7542.02, + "probability": 0.8455 + }, + { + "start": 7542.4, + "end": 7546.38, + "probability": 0.9824 + }, + { + "start": 7546.38, + "end": 7550.8, + "probability": 0.9989 + }, + { + "start": 7551.14, + "end": 7553.1, + "probability": 0.9761 + }, + { + "start": 7555.12, + "end": 7557.8, + "probability": 0.9136 + }, + { + "start": 7559.24, + "end": 7562.94, + "probability": 0.979 + }, + { + "start": 7563.46, + "end": 7569.98, + "probability": 0.9687 + }, + { + "start": 7570.56, + "end": 7571.5, + "probability": 0.8057 + }, + { + "start": 7571.6, + "end": 7572.38, + "probability": 0.7271 + }, + { + "start": 7572.52, + "end": 7574.12, + "probability": 0.9669 + }, + { + "start": 7574.2, + "end": 7575.4, + "probability": 0.7759 + }, + { + "start": 7575.7, + "end": 7577.66, + "probability": 0.734 + }, + { + "start": 7578.08, + "end": 7582.56, + "probability": 0.9202 + }, + { + "start": 7582.72, + "end": 7583.8, + "probability": 0.7628 + }, + { + "start": 7585.44, + "end": 7587.7, + "probability": 0.9521 + }, + { + "start": 7588.38, + "end": 7589.14, + "probability": 0.7201 + }, + { + "start": 7589.7, + "end": 7592.7, + "probability": 0.8682 + }, + { + "start": 7593.52, + "end": 7596.18, + "probability": 0.5973 + }, + { + "start": 7596.6, + "end": 7600.7, + "probability": 0.9884 + }, + { + "start": 7600.74, + "end": 7602.72, + "probability": 0.9722 + }, + { + "start": 7603.58, + "end": 7607.26, + "probability": 0.8025 + }, + { + "start": 7607.9, + "end": 7609.18, + "probability": 0.6881 + }, + { + "start": 7609.72, + "end": 7611.66, + "probability": 0.9977 + }, + { + "start": 7612.14, + "end": 7614.64, + "probability": 0.9862 + }, + { + "start": 7615.52, + "end": 7618.2, + "probability": 0.9636 + }, + { + "start": 7618.62, + "end": 7618.8, + "probability": 0.9144 + }, + { + "start": 7618.84, + "end": 7620.68, + "probability": 0.9354 + }, + { + "start": 7620.76, + "end": 7625.52, + "probability": 0.9576 + }, + { + "start": 7626.26, + "end": 7628.58, + "probability": 0.9271 + }, + { + "start": 7629.12, + "end": 7630.92, + "probability": 0.7822 + }, + { + "start": 7631.28, + "end": 7632.84, + "probability": 0.917 + }, + { + "start": 7633.02, + "end": 7638.08, + "probability": 0.9943 + }, + { + "start": 7638.08, + "end": 7643.76, + "probability": 0.951 + }, + { + "start": 7644.84, + "end": 7648.6, + "probability": 0.8217 + }, + { + "start": 7648.74, + "end": 7650.84, + "probability": 0.6541 + }, + { + "start": 7652.34, + "end": 7653.02, + "probability": 0.7404 + }, + { + "start": 7653.7, + "end": 7654.48, + "probability": 0.7521 + }, + { + "start": 7654.66, + "end": 7656.62, + "probability": 0.8713 + }, + { + "start": 7656.64, + "end": 7662.18, + "probability": 0.9638 + }, + { + "start": 7662.76, + "end": 7663.12, + "probability": 0.6812 + }, + { + "start": 7663.52, + "end": 7668.18, + "probability": 0.923 + }, + { + "start": 7668.6, + "end": 7670.98, + "probability": 0.9501 + }, + { + "start": 7671.5, + "end": 7677.28, + "probability": 0.7009 + }, + { + "start": 7677.58, + "end": 7680.08, + "probability": 0.9253 + }, + { + "start": 7680.72, + "end": 7683.94, + "probability": 0.988 + }, + { + "start": 7684.78, + "end": 7686.44, + "probability": 0.8939 + }, + { + "start": 7686.9, + "end": 7687.76, + "probability": 0.8883 + }, + { + "start": 7688.36, + "end": 7689.26, + "probability": 0.9277 + }, + { + "start": 7689.32, + "end": 7690.12, + "probability": 0.9765 + }, + { + "start": 7690.16, + "end": 7691.36, + "probability": 0.9646 + }, + { + "start": 7691.38, + "end": 7692.76, + "probability": 0.9417 + }, + { + "start": 7694.16, + "end": 7695.14, + "probability": 0.9866 + }, + { + "start": 7695.66, + "end": 7699.92, + "probability": 0.9419 + }, + { + "start": 7700.56, + "end": 7703.58, + "probability": 0.9612 + }, + { + "start": 7703.78, + "end": 7710.56, + "probability": 0.9912 + }, + { + "start": 7712.04, + "end": 7716.94, + "probability": 0.9824 + }, + { + "start": 7718.14, + "end": 7719.22, + "probability": 0.8853 + }, + { + "start": 7719.84, + "end": 7723.34, + "probability": 0.9867 + }, + { + "start": 7723.54, + "end": 7724.14, + "probability": 0.7808 + }, + { + "start": 7724.58, + "end": 7726.62, + "probability": 0.9955 + }, + { + "start": 7726.72, + "end": 7727.34, + "probability": 0.9242 + }, + { + "start": 7727.66, + "end": 7730.22, + "probability": 0.9824 + }, + { + "start": 7730.58, + "end": 7736.28, + "probability": 0.9764 + }, + { + "start": 7737.7, + "end": 7741.74, + "probability": 0.9872 + }, + { + "start": 7742.56, + "end": 7742.72, + "probability": 0.5917 + }, + { + "start": 7742.76, + "end": 7745.7, + "probability": 0.9969 + }, + { + "start": 7746.44, + "end": 7749.12, + "probability": 0.943 + }, + { + "start": 7750.16, + "end": 7751.82, + "probability": 0.9189 + }, + { + "start": 7751.96, + "end": 7752.1, + "probability": 0.521 + }, + { + "start": 7752.18, + "end": 7752.34, + "probability": 0.7673 + }, + { + "start": 7752.5, + "end": 7753.52, + "probability": 0.4285 + }, + { + "start": 7753.56, + "end": 7755.04, + "probability": 0.9623 + }, + { + "start": 7755.16, + "end": 7757.3, + "probability": 0.9259 + }, + { + "start": 7757.46, + "end": 7757.78, + "probability": 0.9806 + }, + { + "start": 7757.94, + "end": 7759.53, + "probability": 0.9149 + }, + { + "start": 7760.04, + "end": 7760.76, + "probability": 0.8907 + }, + { + "start": 7760.98, + "end": 7762.34, + "probability": 0.9913 + }, + { + "start": 7762.48, + "end": 7763.16, + "probability": 0.5465 + }, + { + "start": 7764.14, + "end": 7764.74, + "probability": 0.7462 + }, + { + "start": 7765.92, + "end": 7767.58, + "probability": 0.7513 + }, + { + "start": 7768.44, + "end": 7770.58, + "probability": 0.9492 + }, + { + "start": 7771.04, + "end": 7773.56, + "probability": 0.9557 + }, + { + "start": 7773.64, + "end": 7777.2, + "probability": 0.7014 + }, + { + "start": 7778.6, + "end": 7779.56, + "probability": 0.9439 + }, + { + "start": 7780.54, + "end": 7784.18, + "probability": 0.9733 + }, + { + "start": 7785.04, + "end": 7788.06, + "probability": 0.9945 + }, + { + "start": 7788.58, + "end": 7789.32, + "probability": 0.9958 + }, + { + "start": 7789.64, + "end": 7790.92, + "probability": 0.9605 + }, + { + "start": 7791.2, + "end": 7792.24, + "probability": 0.9146 + }, + { + "start": 7792.38, + "end": 7794.92, + "probability": 0.9475 + }, + { + "start": 7795.66, + "end": 7796.16, + "probability": 0.7424 + }, + { + "start": 7797.48, + "end": 7799.64, + "probability": 0.968 + }, + { + "start": 7800.58, + "end": 7803.7, + "probability": 0.9835 + }, + { + "start": 7804.78, + "end": 7807.38, + "probability": 0.9481 + }, + { + "start": 7807.96, + "end": 7811.6, + "probability": 0.9639 + }, + { + "start": 7812.04, + "end": 7814.25, + "probability": 0.5887 + }, + { + "start": 7815.12, + "end": 7817.66, + "probability": 0.7676 + }, + { + "start": 7817.84, + "end": 7818.64, + "probability": 0.9366 + }, + { + "start": 7818.96, + "end": 7820.9, + "probability": 0.9934 + }, + { + "start": 7821.18, + "end": 7823.38, + "probability": 0.9664 + }, + { + "start": 7823.68, + "end": 7826.78, + "probability": 0.9976 + }, + { + "start": 7827.46, + "end": 7827.72, + "probability": 0.9797 + }, + { + "start": 7828.44, + "end": 7833.64, + "probability": 0.8015 + }, + { + "start": 7833.84, + "end": 7834.32, + "probability": 0.6553 + }, + { + "start": 7834.78, + "end": 7836.98, + "probability": 0.6523 + }, + { + "start": 7837.58, + "end": 7842.06, + "probability": 0.9909 + }, + { + "start": 7842.44, + "end": 7845.04, + "probability": 0.9811 + }, + { + "start": 7845.54, + "end": 7847.64, + "probability": 0.9055 + }, + { + "start": 7848.16, + "end": 7849.5, + "probability": 0.9722 + }, + { + "start": 7850.0, + "end": 7850.98, + "probability": 0.8181 + }, + { + "start": 7851.08, + "end": 7851.52, + "probability": 0.7623 + }, + { + "start": 7851.58, + "end": 7852.22, + "probability": 0.9469 + }, + { + "start": 7852.7, + "end": 7856.68, + "probability": 0.9908 + }, + { + "start": 7859.06, + "end": 7859.28, + "probability": 0.8157 + }, + { + "start": 7859.94, + "end": 7863.64, + "probability": 0.9988 + }, + { + "start": 7864.3, + "end": 7864.8, + "probability": 0.8947 + }, + { + "start": 7865.58, + "end": 7868.64, + "probability": 0.9485 + }, + { + "start": 7868.7, + "end": 7869.32, + "probability": 0.6244 + }, + { + "start": 7870.16, + "end": 7872.02, + "probability": 0.7364 + }, + { + "start": 7872.74, + "end": 7874.36, + "probability": 0.9805 + }, + { + "start": 7875.08, + "end": 7877.16, + "probability": 0.9744 + }, + { + "start": 7877.54, + "end": 7878.68, + "probability": 0.8537 + }, + { + "start": 7879.24, + "end": 7881.1, + "probability": 0.667 + }, + { + "start": 7881.44, + "end": 7882.6, + "probability": 0.7285 + }, + { + "start": 7882.88, + "end": 7885.74, + "probability": 0.8204 + }, + { + "start": 7886.62, + "end": 7887.32, + "probability": 0.8341 + }, + { + "start": 7888.04, + "end": 7889.04, + "probability": 0.9585 + }, + { + "start": 7891.1, + "end": 7893.4, + "probability": 0.9983 + }, + { + "start": 7893.48, + "end": 7894.56, + "probability": 0.5093 + }, + { + "start": 7894.66, + "end": 7897.76, + "probability": 0.9124 + }, + { + "start": 7898.22, + "end": 7899.48, + "probability": 0.9976 + }, + { + "start": 7899.82, + "end": 7903.5, + "probability": 0.9821 + }, + { + "start": 7903.5, + "end": 7908.16, + "probability": 0.9938 + }, + { + "start": 7909.02, + "end": 7910.55, + "probability": 0.9227 + }, + { + "start": 7911.22, + "end": 7912.44, + "probability": 0.9979 + }, + { + "start": 7912.78, + "end": 7914.82, + "probability": 0.9937 + }, + { + "start": 7914.92, + "end": 7915.42, + "probability": 0.4296 + }, + { + "start": 7916.22, + "end": 7920.82, + "probability": 0.9972 + }, + { + "start": 7921.48, + "end": 7921.76, + "probability": 0.9131 + }, + { + "start": 7922.54, + "end": 7924.68, + "probability": 0.9769 + }, + { + "start": 7925.3, + "end": 7926.38, + "probability": 0.9445 + }, + { + "start": 7926.94, + "end": 7928.52, + "probability": 0.6815 + }, + { + "start": 7928.6, + "end": 7929.06, + "probability": 0.7742 + }, + { + "start": 7929.18, + "end": 7929.7, + "probability": 0.95 + }, + { + "start": 7929.88, + "end": 7932.88, + "probability": 0.993 + }, + { + "start": 7934.4, + "end": 7936.66, + "probability": 0.9521 + }, + { + "start": 7938.46, + "end": 7940.64, + "probability": 0.998 + }, + { + "start": 7941.46, + "end": 7947.22, + "probability": 0.9997 + }, + { + "start": 7948.3, + "end": 7950.34, + "probability": 0.978 + }, + { + "start": 7951.16, + "end": 7951.98, + "probability": 0.7849 + }, + { + "start": 7952.06, + "end": 7953.92, + "probability": 0.9788 + }, + { + "start": 7954.38, + "end": 7955.0, + "probability": 0.7807 + }, + { + "start": 7955.4, + "end": 7956.82, + "probability": 0.7269 + }, + { + "start": 7957.12, + "end": 7958.5, + "probability": 0.9832 + }, + { + "start": 7960.4, + "end": 7960.5, + "probability": 0.896 + }, + { + "start": 7962.18, + "end": 7966.38, + "probability": 0.8273 + }, + { + "start": 7967.66, + "end": 7970.38, + "probability": 0.9665 + }, + { + "start": 7971.0, + "end": 7973.9, + "probability": 0.9707 + }, + { + "start": 7974.74, + "end": 7975.87, + "probability": 0.0947 + }, + { + "start": 7977.14, + "end": 7977.92, + "probability": 0.853 + }, + { + "start": 7980.68, + "end": 7983.54, + "probability": 0.7451 + }, + { + "start": 7985.34, + "end": 7989.89, + "probability": 0.9276 + }, + { + "start": 7991.8, + "end": 7993.38, + "probability": 0.9515 + }, + { + "start": 7993.98, + "end": 7995.6, + "probability": 0.8547 + }, + { + "start": 7996.36, + "end": 7997.68, + "probability": 0.98 + }, + { + "start": 7999.32, + "end": 8000.4, + "probability": 0.8988 + }, + { + "start": 8001.32, + "end": 8003.94, + "probability": 0.9725 + }, + { + "start": 8004.72, + "end": 8007.08, + "probability": 0.9978 + }, + { + "start": 8007.76, + "end": 8010.44, + "probability": 0.9833 + }, + { + "start": 8011.16, + "end": 8013.56, + "probability": 0.6885 + }, + { + "start": 8014.26, + "end": 8016.94, + "probability": 0.5413 + }, + { + "start": 8017.78, + "end": 8019.42, + "probability": 0.8949 + }, + { + "start": 8019.54, + "end": 8024.68, + "probability": 0.8191 + }, + { + "start": 8025.48, + "end": 8027.9, + "probability": 0.9954 + }, + { + "start": 8029.3, + "end": 8034.02, + "probability": 0.9292 + }, + { + "start": 8034.5, + "end": 8036.86, + "probability": 0.988 + }, + { + "start": 8037.36, + "end": 8038.76, + "probability": 0.9708 + }, + { + "start": 8039.4, + "end": 8042.2, + "probability": 0.9775 + }, + { + "start": 8043.46, + "end": 8046.18, + "probability": 0.9929 + }, + { + "start": 8046.7, + "end": 8047.98, + "probability": 0.8574 + }, + { + "start": 8048.4, + "end": 8050.04, + "probability": 0.9644 + }, + { + "start": 8051.08, + "end": 8054.6, + "probability": 0.9379 + }, + { + "start": 8054.8, + "end": 8057.4, + "probability": 0.9861 + }, + { + "start": 8058.74, + "end": 8059.7, + "probability": 0.9648 + }, + { + "start": 8060.2, + "end": 8063.8, + "probability": 0.9643 + }, + { + "start": 8064.9, + "end": 8066.08, + "probability": 0.7594 + }, + { + "start": 8066.8, + "end": 8069.58, + "probability": 0.8669 + }, + { + "start": 8069.92, + "end": 8073.45, + "probability": 0.9897 + }, + { + "start": 8074.34, + "end": 8077.31, + "probability": 0.873 + }, + { + "start": 8077.96, + "end": 8079.54, + "probability": 0.8662 + }, + { + "start": 8080.16, + "end": 8082.09, + "probability": 0.9963 + }, + { + "start": 8082.26, + "end": 8084.46, + "probability": 0.9956 + }, + { + "start": 8084.88, + "end": 8086.66, + "probability": 0.9969 + }, + { + "start": 8088.46, + "end": 8092.84, + "probability": 0.9532 + }, + { + "start": 8094.6, + "end": 8097.98, + "probability": 0.228 + }, + { + "start": 8098.08, + "end": 8099.6, + "probability": 0.8026 + }, + { + "start": 8102.44, + "end": 8103.3, + "probability": 0.707 + }, + { + "start": 8104.38, + "end": 8105.44, + "probability": 0.8626 + }, + { + "start": 8108.24, + "end": 8109.92, + "probability": 0.9308 + }, + { + "start": 8110.42, + "end": 8111.98, + "probability": 0.9469 + }, + { + "start": 8112.16, + "end": 8113.02, + "probability": 0.7432 + }, + { + "start": 8113.68, + "end": 8115.24, + "probability": 0.961 + }, + { + "start": 8115.74, + "end": 8120.92, + "probability": 0.9171 + }, + { + "start": 8121.6, + "end": 8122.38, + "probability": 0.6062 + }, + { + "start": 8122.58, + "end": 8124.52, + "probability": 0.9469 + }, + { + "start": 8124.6, + "end": 8128.26, + "probability": 0.9813 + }, + { + "start": 8128.7, + "end": 8131.68, + "probability": 0.9849 + }, + { + "start": 8131.68, + "end": 8134.8, + "probability": 0.7532 + }, + { + "start": 8135.22, + "end": 8139.34, + "probability": 0.7437 + }, + { + "start": 8139.82, + "end": 8142.78, + "probability": 0.9524 + }, + { + "start": 8143.36, + "end": 8144.32, + "probability": 0.7924 + }, + { + "start": 8144.66, + "end": 8144.84, + "probability": 0.9124 + }, + { + "start": 8145.78, + "end": 8146.28, + "probability": 0.4933 + }, + { + "start": 8146.6, + "end": 8148.4, + "probability": 0.7276 + }, + { + "start": 8152.36, + "end": 8154.9, + "probability": 0.9918 + }, + { + "start": 8155.8, + "end": 8159.34, + "probability": 0.9167 + }, + { + "start": 8165.24, + "end": 8168.32, + "probability": 0.7401 + }, + { + "start": 8169.16, + "end": 8172.38, + "probability": 0.9675 + }, + { + "start": 8174.62, + "end": 8177.22, + "probability": 0.8101 + }, + { + "start": 8177.36, + "end": 8178.5, + "probability": 0.6508 + }, + { + "start": 8178.54, + "end": 8179.94, + "probability": 0.9768 + }, + { + "start": 8180.62, + "end": 8181.74, + "probability": 0.9938 + }, + { + "start": 8182.16, + "end": 8185.04, + "probability": 0.9888 + }, + { + "start": 8187.02, + "end": 8190.48, + "probability": 0.6961 + }, + { + "start": 8190.66, + "end": 8192.93, + "probability": 0.9597 + }, + { + "start": 8194.08, + "end": 8196.38, + "probability": 0.7748 + }, + { + "start": 8197.42, + "end": 8198.86, + "probability": 0.9792 + }, + { + "start": 8199.88, + "end": 8204.94, + "probability": 0.9118 + }, + { + "start": 8205.94, + "end": 8209.16, + "probability": 0.9979 + }, + { + "start": 8209.16, + "end": 8211.5, + "probability": 0.9985 + }, + { + "start": 8212.38, + "end": 8214.12, + "probability": 0.998 + }, + { + "start": 8214.96, + "end": 8215.86, + "probability": 0.6173 + }, + { + "start": 8221.04, + "end": 8221.44, + "probability": 0.5776 + }, + { + "start": 8223.52, + "end": 8224.26, + "probability": 0.462 + }, + { + "start": 8225.52, + "end": 8225.98, + "probability": 0.8243 + }, + { + "start": 8226.76, + "end": 8228.72, + "probability": 0.9971 + }, + { + "start": 8229.72, + "end": 8236.1, + "probability": 0.9341 + }, + { + "start": 8236.8, + "end": 8239.4, + "probability": 0.9817 + }, + { + "start": 8241.08, + "end": 8243.16, + "probability": 0.7639 + }, + { + "start": 8244.16, + "end": 8245.86, + "probability": 0.6158 + }, + { + "start": 8246.5, + "end": 8247.52, + "probability": 0.7119 + }, + { + "start": 8248.0, + "end": 8251.62, + "probability": 0.9841 + }, + { + "start": 8255.92, + "end": 8256.4, + "probability": 0.7048 + }, + { + "start": 8257.26, + "end": 8258.66, + "probability": 0.1783 + }, + { + "start": 8259.1, + "end": 8261.66, + "probability": 0.762 + }, + { + "start": 8262.86, + "end": 8268.18, + "probability": 0.989 + }, + { + "start": 8269.44, + "end": 8269.7, + "probability": 0.4663 + }, + { + "start": 8269.72, + "end": 8271.06, + "probability": 0.9685 + }, + { + "start": 8271.18, + "end": 8272.36, + "probability": 0.7507 + }, + { + "start": 8272.78, + "end": 8276.06, + "probability": 0.9994 + }, + { + "start": 8278.62, + "end": 8279.1, + "probability": 0.8073 + }, + { + "start": 8279.66, + "end": 8280.72, + "probability": 0.6571 + }, + { + "start": 8282.28, + "end": 8283.26, + "probability": 0.9048 + }, + { + "start": 8284.0, + "end": 8284.22, + "probability": 0.8566 + }, + { + "start": 8284.34, + "end": 8284.8, + "probability": 0.9244 + }, + { + "start": 8284.86, + "end": 8285.6, + "probability": 0.8542 + }, + { + "start": 8285.94, + "end": 8287.6, + "probability": 0.9372 + }, + { + "start": 8289.58, + "end": 8293.92, + "probability": 0.9661 + }, + { + "start": 8298.9, + "end": 8298.92, + "probability": 0.2234 + }, + { + "start": 8298.92, + "end": 8301.96, + "probability": 0.8464 + }, + { + "start": 8302.96, + "end": 8302.96, + "probability": 0.0586 + }, + { + "start": 8302.96, + "end": 8303.93, + "probability": 0.7358 + }, + { + "start": 8304.66, + "end": 8306.04, + "probability": 0.9648 + }, + { + "start": 8306.16, + "end": 8309.38, + "probability": 0.887 + }, + { + "start": 8310.56, + "end": 8313.68, + "probability": 0.8478 + }, + { + "start": 8314.74, + "end": 8315.58, + "probability": 0.7458 + }, + { + "start": 8315.8, + "end": 8315.8, + "probability": 0.7347 + }, + { + "start": 8315.8, + "end": 8316.22, + "probability": 0.8094 + }, + { + "start": 8316.54, + "end": 8319.32, + "probability": 0.9414 + }, + { + "start": 8320.3, + "end": 8322.66, + "probability": 0.723 + }, + { + "start": 8325.1, + "end": 8328.9, + "probability": 0.9962 + }, + { + "start": 8328.98, + "end": 8329.76, + "probability": 0.7784 + }, + { + "start": 8330.26, + "end": 8331.02, + "probability": 0.873 + }, + { + "start": 8331.84, + "end": 8336.2, + "probability": 0.9975 + }, + { + "start": 8337.22, + "end": 8338.32, + "probability": 0.986 + }, + { + "start": 8339.74, + "end": 8342.5, + "probability": 0.9951 + }, + { + "start": 8343.56, + "end": 8344.4, + "probability": 0.5863 + }, + { + "start": 8345.78, + "end": 8347.34, + "probability": 0.9859 + }, + { + "start": 8348.3, + "end": 8350.86, + "probability": 0.98 + }, + { + "start": 8351.42, + "end": 8355.74, + "probability": 0.881 + }, + { + "start": 8357.94, + "end": 8362.8, + "probability": 0.9504 + }, + { + "start": 8364.16, + "end": 8365.54, + "probability": 0.7434 + }, + { + "start": 8366.58, + "end": 8369.0, + "probability": 0.9751 + }, + { + "start": 8369.78, + "end": 8370.68, + "probability": 0.9891 + }, + { + "start": 8372.68, + "end": 8374.08, + "probability": 0.9926 + }, + { + "start": 8374.94, + "end": 8376.9, + "probability": 0.9474 + }, + { + "start": 8378.1, + "end": 8379.58, + "probability": 0.9974 + }, + { + "start": 8380.94, + "end": 8381.98, + "probability": 0.9425 + }, + { + "start": 8383.66, + "end": 8386.5, + "probability": 0.7987 + }, + { + "start": 8388.6, + "end": 8391.4, + "probability": 0.902 + }, + { + "start": 8391.5, + "end": 8392.58, + "probability": 0.9282 + }, + { + "start": 8392.62, + "end": 8393.0, + "probability": 0.9689 + }, + { + "start": 8395.28, + "end": 8399.38, + "probability": 0.9917 + }, + { + "start": 8400.04, + "end": 8400.92, + "probability": 0.9937 + }, + { + "start": 8402.1, + "end": 8403.14, + "probability": 0.9281 + }, + { + "start": 8403.62, + "end": 8405.38, + "probability": 0.8682 + }, + { + "start": 8406.06, + "end": 8409.04, + "probability": 0.9974 + }, + { + "start": 8410.36, + "end": 8413.44, + "probability": 0.9745 + }, + { + "start": 8413.66, + "end": 8414.76, + "probability": 0.8544 + }, + { + "start": 8414.9, + "end": 8415.74, + "probability": 0.9032 + }, + { + "start": 8416.96, + "end": 8417.86, + "probability": 0.4087 + }, + { + "start": 8418.66, + "end": 8421.5, + "probability": 0.9092 + }, + { + "start": 8422.16, + "end": 8425.28, + "probability": 0.8558 + }, + { + "start": 8427.02, + "end": 8427.54, + "probability": 0.7482 + }, + { + "start": 8428.7, + "end": 8429.08, + "probability": 0.8698 + }, + { + "start": 8429.12, + "end": 8429.68, + "probability": 0.9745 + }, + { + "start": 8429.82, + "end": 8431.24, + "probability": 0.9422 + }, + { + "start": 8431.3, + "end": 8433.8, + "probability": 0.9746 + }, + { + "start": 8433.86, + "end": 8436.46, + "probability": 0.9801 + }, + { + "start": 8436.98, + "end": 8438.0, + "probability": 0.7871 + }, + { + "start": 8438.2, + "end": 8439.3, + "probability": 0.8837 + }, + { + "start": 8441.26, + "end": 8442.5, + "probability": 0.6659 + }, + { + "start": 8443.22, + "end": 8444.16, + "probability": 0.8059 + }, + { + "start": 8444.32, + "end": 8445.23, + "probability": 0.9194 + }, + { + "start": 8445.98, + "end": 8447.4, + "probability": 0.9705 + }, + { + "start": 8449.16, + "end": 8452.28, + "probability": 0.9932 + }, + { + "start": 8454.16, + "end": 8455.18, + "probability": 0.9946 + }, + { + "start": 8458.12, + "end": 8460.76, + "probability": 0.9982 + }, + { + "start": 8462.22, + "end": 8465.4, + "probability": 0.8889 + }, + { + "start": 8468.52, + "end": 8471.4, + "probability": 0.9639 + }, + { + "start": 8472.9, + "end": 8474.7, + "probability": 0.9302 + }, + { + "start": 8476.16, + "end": 8477.32, + "probability": 0.9807 + }, + { + "start": 8478.08, + "end": 8480.84, + "probability": 0.7214 + }, + { + "start": 8482.56, + "end": 8483.22, + "probability": 0.8813 + }, + { + "start": 8483.76, + "end": 8488.76, + "probability": 0.999 + }, + { + "start": 8489.56, + "end": 8490.3, + "probability": 0.7534 + }, + { + "start": 8492.24, + "end": 8494.34, + "probability": 0.8577 + }, + { + "start": 8495.1, + "end": 8497.4, + "probability": 0.9447 + }, + { + "start": 8500.54, + "end": 8501.72, + "probability": 0.9839 + }, + { + "start": 8501.8, + "end": 8502.78, + "probability": 0.8774 + }, + { + "start": 8502.92, + "end": 8504.96, + "probability": 0.994 + }, + { + "start": 8507.12, + "end": 8508.2, + "probability": 0.8799 + }, + { + "start": 8510.56, + "end": 8511.62, + "probability": 0.995 + }, + { + "start": 8513.12, + "end": 8513.69, + "probability": 0.9539 + }, + { + "start": 8515.03, + "end": 8521.24, + "probability": 0.9403 + }, + { + "start": 8522.66, + "end": 8527.57, + "probability": 0.9175 + }, + { + "start": 8529.94, + "end": 8530.98, + "probability": 0.937 + }, + { + "start": 8532.84, + "end": 8535.05, + "probability": 0.932 + }, + { + "start": 8535.68, + "end": 8537.36, + "probability": 0.9215 + }, + { + "start": 8538.66, + "end": 8541.52, + "probability": 0.9924 + }, + { + "start": 8543.64, + "end": 8545.56, + "probability": 0.6344 + }, + { + "start": 8546.06, + "end": 8548.32, + "probability": 0.5834 + }, + { + "start": 8548.78, + "end": 8550.4, + "probability": 0.8459 + }, + { + "start": 8551.26, + "end": 8553.12, + "probability": 0.2594 + }, + { + "start": 8553.36, + "end": 8554.14, + "probability": 0.252 + }, + { + "start": 8554.72, + "end": 8556.08, + "probability": 0.9585 + }, + { + "start": 8556.26, + "end": 8558.62, + "probability": 0.946 + }, + { + "start": 8558.98, + "end": 8561.6, + "probability": 0.9951 + }, + { + "start": 8562.44, + "end": 8569.24, + "probability": 0.9654 + }, + { + "start": 8570.28, + "end": 8571.14, + "probability": 0.7841 + }, + { + "start": 8572.08, + "end": 8577.46, + "probability": 0.9887 + }, + { + "start": 8580.86, + "end": 8583.18, + "probability": 0.9225 + }, + { + "start": 8583.8, + "end": 8586.72, + "probability": 0.9963 + }, + { + "start": 8586.8, + "end": 8587.84, + "probability": 0.9414 + }, + { + "start": 8588.02, + "end": 8591.14, + "probability": 0.9923 + }, + { + "start": 8591.4, + "end": 8592.42, + "probability": 0.9453 + }, + { + "start": 8594.18, + "end": 8595.18, + "probability": 0.7384 + }, + { + "start": 8595.24, + "end": 8595.46, + "probability": 0.3001 + }, + { + "start": 8595.76, + "end": 8596.84, + "probability": 0.9519 + }, + { + "start": 8596.92, + "end": 8597.86, + "probability": 0.7204 + }, + { + "start": 8599.54, + "end": 8601.48, + "probability": 0.9956 + }, + { + "start": 8602.18, + "end": 8606.96, + "probability": 0.9836 + }, + { + "start": 8608.56, + "end": 8609.56, + "probability": 0.9774 + }, + { + "start": 8610.06, + "end": 8612.16, + "probability": 0.9727 + }, + { + "start": 8612.28, + "end": 8613.55, + "probability": 0.9685 + }, + { + "start": 8614.28, + "end": 8614.98, + "probability": 0.7786 + }, + { + "start": 8616.56, + "end": 8619.02, + "probability": 0.9899 + }, + { + "start": 8619.74, + "end": 8624.44, + "probability": 0.994 + }, + { + "start": 8626.08, + "end": 8628.86, + "probability": 0.974 + }, + { + "start": 8629.06, + "end": 8631.66, + "probability": 0.1228 + }, + { + "start": 8631.66, + "end": 8634.78, + "probability": 0.9091 + }, + { + "start": 8634.98, + "end": 8635.39, + "probability": 0.8875 + }, + { + "start": 8636.6, + "end": 8639.44, + "probability": 0.9821 + }, + { + "start": 8639.44, + "end": 8639.88, + "probability": 0.7174 + }, + { + "start": 8640.92, + "end": 8641.76, + "probability": 0.888 + }, + { + "start": 8642.46, + "end": 8643.51, + "probability": 0.9993 + }, + { + "start": 8644.26, + "end": 8645.02, + "probability": 0.7041 + }, + { + "start": 8645.62, + "end": 8646.6, + "probability": 0.8068 + }, + { + "start": 8648.14, + "end": 8650.54, + "probability": 0.9574 + }, + { + "start": 8651.36, + "end": 8652.26, + "probability": 0.8755 + }, + { + "start": 8654.08, + "end": 8658.8, + "probability": 0.8635 + }, + { + "start": 8658.8, + "end": 8663.0, + "probability": 0.9921 + }, + { + "start": 8664.32, + "end": 8665.76, + "probability": 0.792 + }, + { + "start": 8670.06, + "end": 8670.72, + "probability": 0.614 + }, + { + "start": 8671.18, + "end": 8672.16, + "probability": 0.837 + }, + { + "start": 8672.92, + "end": 8673.94, + "probability": 0.9923 + }, + { + "start": 8674.54, + "end": 8675.84, + "probability": 0.9623 + }, + { + "start": 8678.18, + "end": 8681.18, + "probability": 0.9806 + }, + { + "start": 8684.3, + "end": 8686.98, + "probability": 0.999 + }, + { + "start": 8687.8, + "end": 8689.14, + "probability": 0.969 + }, + { + "start": 8691.86, + "end": 8693.93, + "probability": 0.9069 + }, + { + "start": 8695.22, + "end": 8695.68, + "probability": 0.8221 + }, + { + "start": 8695.74, + "end": 8697.08, + "probability": 0.9929 + }, + { + "start": 8697.16, + "end": 8697.68, + "probability": 0.7178 + }, + { + "start": 8697.74, + "end": 8698.55, + "probability": 0.9316 + }, + { + "start": 8699.22, + "end": 8702.8, + "probability": 0.9938 + }, + { + "start": 8702.8, + "end": 8705.32, + "probability": 0.9986 + }, + { + "start": 8708.28, + "end": 8710.04, + "probability": 0.9819 + }, + { + "start": 8712.32, + "end": 8713.98, + "probability": 0.9631 + }, + { + "start": 8714.7, + "end": 8717.98, + "probability": 0.9912 + }, + { + "start": 8719.38, + "end": 8722.22, + "probability": 0.779 + }, + { + "start": 8723.44, + "end": 8724.59, + "probability": 0.9204 + }, + { + "start": 8726.1, + "end": 8726.88, + "probability": 0.7498 + }, + { + "start": 8727.02, + "end": 8727.66, + "probability": 0.9726 + }, + { + "start": 8727.74, + "end": 8728.2, + "probability": 0.9106 + }, + { + "start": 8728.26, + "end": 8730.06, + "probability": 0.9683 + }, + { + "start": 8730.08, + "end": 8731.04, + "probability": 0.8779 + }, + { + "start": 8734.02, + "end": 8734.78, + "probability": 0.9375 + }, + { + "start": 8735.86, + "end": 8737.66, + "probability": 0.7488 + }, + { + "start": 8738.84, + "end": 8739.66, + "probability": 0.804 + }, + { + "start": 8740.72, + "end": 8741.44, + "probability": 0.8816 + }, + { + "start": 8742.12, + "end": 8743.26, + "probability": 0.9634 + }, + { + "start": 8744.56, + "end": 8745.32, + "probability": 0.9932 + }, + { + "start": 8745.44, + "end": 8745.76, + "probability": 0.8793 + }, + { + "start": 8745.82, + "end": 8746.82, + "probability": 0.9736 + }, + { + "start": 8747.32, + "end": 8747.86, + "probability": 0.9653 + }, + { + "start": 8749.34, + "end": 8751.64, + "probability": 0.818 + }, + { + "start": 8752.22, + "end": 8752.48, + "probability": 0.9844 + }, + { + "start": 8753.92, + "end": 8754.94, + "probability": 0.8409 + }, + { + "start": 8756.0, + "end": 8759.98, + "probability": 0.9797 + }, + { + "start": 8761.32, + "end": 8761.66, + "probability": 0.6968 + }, + { + "start": 8762.48, + "end": 8763.82, + "probability": 0.9663 + }, + { + "start": 8764.36, + "end": 8765.9, + "probability": 0.9684 + }, + { + "start": 8767.04, + "end": 8771.2, + "probability": 0.9993 + }, + { + "start": 8771.46, + "end": 8776.22, + "probability": 0.9944 + }, + { + "start": 8779.08, + "end": 8781.08, + "probability": 0.9253 + }, + { + "start": 8783.18, + "end": 8786.06, + "probability": 0.7508 + }, + { + "start": 8794.15, + "end": 8796.0, + "probability": 0.6724 + }, + { + "start": 8796.8, + "end": 8798.28, + "probability": 0.9988 + }, + { + "start": 8801.16, + "end": 8804.5, + "probability": 0.9976 + }, + { + "start": 8804.56, + "end": 8806.54, + "probability": 0.9622 + }, + { + "start": 8806.88, + "end": 8810.72, + "probability": 0.9111 + }, + { + "start": 8811.66, + "end": 8813.04, + "probability": 0.8728 + }, + { + "start": 8816.0, + "end": 8817.93, + "probability": 0.9541 + }, + { + "start": 8818.62, + "end": 8819.12, + "probability": 0.8124 + }, + { + "start": 8819.22, + "end": 8819.96, + "probability": 0.7939 + }, + { + "start": 8820.36, + "end": 8822.18, + "probability": 0.8989 + }, + { + "start": 8822.72, + "end": 8827.4, + "probability": 0.9662 + }, + { + "start": 8827.4, + "end": 8830.44, + "probability": 0.9994 + }, + { + "start": 8832.4, + "end": 8833.22, + "probability": 0.6341 + }, + { + "start": 8834.94, + "end": 8839.88, + "probability": 0.9966 + }, + { + "start": 8840.84, + "end": 8842.58, + "probability": 0.8405 + }, + { + "start": 8842.78, + "end": 8844.98, + "probability": 0.9926 + }, + { + "start": 8845.22, + "end": 8847.86, + "probability": 0.998 + }, + { + "start": 8848.14, + "end": 8851.32, + "probability": 0.9204 + }, + { + "start": 8851.88, + "end": 8852.28, + "probability": 0.5775 + }, + { + "start": 8852.58, + "end": 8856.84, + "probability": 0.9753 + }, + { + "start": 8857.22, + "end": 8857.5, + "probability": 0.7892 + }, + { + "start": 8858.76, + "end": 8860.18, + "probability": 0.6799 + }, + { + "start": 8860.34, + "end": 8867.78, + "probability": 0.8706 + }, + { + "start": 8870.04, + "end": 8871.04, + "probability": 0.7568 + }, + { + "start": 8876.06, + "end": 8880.02, + "probability": 0.5426 + }, + { + "start": 8881.12, + "end": 8882.34, + "probability": 0.8412 + }, + { + "start": 8883.02, + "end": 8890.08, + "probability": 0.7331 + }, + { + "start": 8890.64, + "end": 8893.88, + "probability": 0.1403 + }, + { + "start": 8894.64, + "end": 8895.18, + "probability": 0.0341 + }, + { + "start": 8896.04, + "end": 8897.2, + "probability": 0.0422 + }, + { + "start": 8897.2, + "end": 8898.2, + "probability": 0.0206 + }, + { + "start": 8900.34, + "end": 8901.46, + "probability": 0.7421 + }, + { + "start": 8901.92, + "end": 8902.64, + "probability": 0.159 + }, + { + "start": 8902.74, + "end": 8903.56, + "probability": 0.9272 + }, + { + "start": 8904.48, + "end": 8906.92, + "probability": 0.6468 + }, + { + "start": 8906.94, + "end": 8910.16, + "probability": 0.9548 + }, + { + "start": 8910.16, + "end": 8915.2, + "probability": 0.754 + }, + { + "start": 8916.62, + "end": 8918.52, + "probability": 0.8328 + }, + { + "start": 8918.68, + "end": 8919.08, + "probability": 0.2504 + }, + { + "start": 8919.18, + "end": 8920.0, + "probability": 0.9408 + }, + { + "start": 8920.04, + "end": 8924.43, + "probability": 0.8628 + }, + { + "start": 8924.72, + "end": 8927.82, + "probability": 0.9891 + }, + { + "start": 8929.56, + "end": 8932.56, + "probability": 0.7979 + }, + { + "start": 8934.0, + "end": 8937.02, + "probability": 0.7086 + }, + { + "start": 8938.74, + "end": 8941.8, + "probability": 0.1338 + }, + { + "start": 8943.54, + "end": 8946.06, + "probability": 0.7639 + }, + { + "start": 8947.16, + "end": 8949.68, + "probability": 0.909 + }, + { + "start": 8950.26, + "end": 8953.92, + "probability": 0.9531 + }, + { + "start": 8953.92, + "end": 8957.34, + "probability": 0.9994 + }, + { + "start": 8958.0, + "end": 8961.44, + "probability": 0.9818 + }, + { + "start": 8962.74, + "end": 8963.04, + "probability": 0.6829 + }, + { + "start": 8964.02, + "end": 8965.2, + "probability": 0.0467 + }, + { + "start": 8967.18, + "end": 8968.5, + "probability": 0.3834 + }, + { + "start": 8970.49, + "end": 8975.62, + "probability": 0.9187 + }, + { + "start": 8976.18, + "end": 8978.6, + "probability": 0.9985 + }, + { + "start": 8979.0, + "end": 8982.06, + "probability": 0.9272 + }, + { + "start": 8983.34, + "end": 8986.56, + "probability": 0.9952 + }, + { + "start": 8986.56, + "end": 8991.44, + "probability": 0.9951 + }, + { + "start": 8992.48, + "end": 8998.16, + "probability": 0.9849 + }, + { + "start": 8998.92, + "end": 9001.06, + "probability": 0.9919 + }, + { + "start": 9002.66, + "end": 9004.44, + "probability": 0.9829 + }, + { + "start": 9005.0, + "end": 9005.78, + "probability": 0.766 + }, + { + "start": 9006.66, + "end": 9009.24, + "probability": 0.9572 + }, + { + "start": 9009.8, + "end": 9015.52, + "probability": 0.9958 + }, + { + "start": 9016.48, + "end": 9017.04, + "probability": 0.8813 + }, + { + "start": 9017.94, + "end": 9021.26, + "probability": 0.9983 + }, + { + "start": 9022.0, + "end": 9024.0, + "probability": 0.993 + }, + { + "start": 9025.06, + "end": 9026.72, + "probability": 0.7411 + }, + { + "start": 9027.38, + "end": 9028.54, + "probability": 0.442 + }, + { + "start": 9029.7, + "end": 9033.26, + "probability": 0.9896 + }, + { + "start": 9034.22, + "end": 9036.82, + "probability": 0.9337 + }, + { + "start": 9037.22, + "end": 9042.86, + "probability": 0.979 + }, + { + "start": 9044.32, + "end": 9046.04, + "probability": 0.988 + }, + { + "start": 9046.74, + "end": 9048.18, + "probability": 0.2074 + }, + { + "start": 9049.08, + "end": 9053.02, + "probability": 0.7681 + }, + { + "start": 9054.12, + "end": 9055.32, + "probability": 0.9671 + }, + { + "start": 9057.9, + "end": 9062.08, + "probability": 0.8774 + }, + { + "start": 9063.34, + "end": 9064.46, + "probability": 0.9827 + }, + { + "start": 9065.3, + "end": 9069.66, + "probability": 0.9849 + }, + { + "start": 9070.96, + "end": 9074.42, + "probability": 0.9566 + }, + { + "start": 9075.51, + "end": 9078.92, + "probability": 0.9741 + }, + { + "start": 9080.74, + "end": 9087.98, + "probability": 0.9876 + }, + { + "start": 9088.58, + "end": 9096.9, + "probability": 0.9994 + }, + { + "start": 9096.92, + "end": 9097.62, + "probability": 0.9104 + }, + { + "start": 9097.8, + "end": 9103.2, + "probability": 0.9915 + }, + { + "start": 9104.2, + "end": 9105.78, + "probability": 0.965 + }, + { + "start": 9105.84, + "end": 9110.54, + "probability": 0.9342 + }, + { + "start": 9110.54, + "end": 9114.74, + "probability": 0.7868 + }, + { + "start": 9114.88, + "end": 9120.2, + "probability": 0.9705 + }, + { + "start": 9120.88, + "end": 9126.38, + "probability": 0.9141 + }, + { + "start": 9126.94, + "end": 9130.12, + "probability": 0.9721 + }, + { + "start": 9130.22, + "end": 9133.62, + "probability": 0.9795 + }, + { + "start": 9133.92, + "end": 9135.46, + "probability": 0.9951 + }, + { + "start": 9136.92, + "end": 9138.3, + "probability": 0.6533 + }, + { + "start": 9138.36, + "end": 9139.45, + "probability": 0.7853 + }, + { + "start": 9139.56, + "end": 9140.66, + "probability": 0.9878 + }, + { + "start": 9141.6, + "end": 9146.3, + "probability": 0.9242 + }, + { + "start": 9147.9, + "end": 9150.74, + "probability": 0.9959 + }, + { + "start": 9150.74, + "end": 9153.68, + "probability": 0.9867 + }, + { + "start": 9154.36, + "end": 9161.58, + "probability": 0.9915 + }, + { + "start": 9162.52, + "end": 9164.54, + "probability": 0.8958 + }, + { + "start": 9164.54, + "end": 9168.69, + "probability": 0.9973 + }, + { + "start": 9170.78, + "end": 9175.74, + "probability": 0.9506 + }, + { + "start": 9176.68, + "end": 9177.96, + "probability": 0.6275 + }, + { + "start": 9178.68, + "end": 9182.72, + "probability": 0.9862 + }, + { + "start": 9183.3, + "end": 9189.12, + "probability": 0.9888 + }, + { + "start": 9189.12, + "end": 9194.78, + "probability": 0.9628 + }, + { + "start": 9195.76, + "end": 9201.47, + "probability": 0.7798 + }, + { + "start": 9202.5, + "end": 9203.74, + "probability": 0.9873 + }, + { + "start": 9203.9, + "end": 9205.0, + "probability": 0.8244 + }, + { + "start": 9205.9, + "end": 9207.9, + "probability": 0.9932 + }, + { + "start": 9207.98, + "end": 9209.44, + "probability": 0.9749 + }, + { + "start": 9210.76, + "end": 9213.12, + "probability": 0.9539 + }, + { + "start": 9214.12, + "end": 9215.24, + "probability": 0.9484 + }, + { + "start": 9215.62, + "end": 9217.24, + "probability": 0.8292 + }, + { + "start": 9218.7, + "end": 9221.98, + "probability": 0.878 + }, + { + "start": 9223.0, + "end": 9225.32, + "probability": 0.9181 + }, + { + "start": 9225.52, + "end": 9228.52, + "probability": 0.7378 + }, + { + "start": 9228.92, + "end": 9235.2, + "probability": 0.9564 + }, + { + "start": 9236.24, + "end": 9237.14, + "probability": 0.6928 + }, + { + "start": 9238.0, + "end": 9240.5, + "probability": 0.9934 + }, + { + "start": 9241.18, + "end": 9244.98, + "probability": 0.9897 + }, + { + "start": 9245.62, + "end": 9250.48, + "probability": 0.9875 + }, + { + "start": 9250.9, + "end": 9253.08, + "probability": 0.9507 + }, + { + "start": 9254.28, + "end": 9257.34, + "probability": 0.8703 + }, + { + "start": 9257.96, + "end": 9260.0, + "probability": 0.9866 + }, + { + "start": 9260.92, + "end": 9261.98, + "probability": 0.7579 + }, + { + "start": 9262.24, + "end": 9267.44, + "probability": 0.9709 + }, + { + "start": 9267.98, + "end": 9270.34, + "probability": 0.9871 + }, + { + "start": 9271.26, + "end": 9276.9, + "probability": 0.9963 + }, + { + "start": 9279.08, + "end": 9287.92, + "probability": 0.9807 + }, + { + "start": 9288.54, + "end": 9293.34, + "probability": 0.9956 + }, + { + "start": 9293.34, + "end": 9297.6, + "probability": 0.9881 + }, + { + "start": 9298.5, + "end": 9301.24, + "probability": 0.8737 + }, + { + "start": 9301.94, + "end": 9305.42, + "probability": 0.971 + }, + { + "start": 9306.16, + "end": 9309.82, + "probability": 0.9733 + }, + { + "start": 9310.7, + "end": 9311.34, + "probability": 0.7047 + }, + { + "start": 9311.4, + "end": 9314.26, + "probability": 0.9928 + }, + { + "start": 9314.98, + "end": 9318.98, + "probability": 0.9158 + }, + { + "start": 9320.16, + "end": 9320.76, + "probability": 0.6297 + }, + { + "start": 9321.48, + "end": 9324.5, + "probability": 0.9821 + }, + { + "start": 9325.28, + "end": 9328.5, + "probability": 0.8721 + }, + { + "start": 9329.48, + "end": 9332.94, + "probability": 0.7253 + }, + { + "start": 9333.64, + "end": 9337.9, + "probability": 0.9976 + }, + { + "start": 9338.48, + "end": 9343.56, + "probability": 0.8591 + }, + { + "start": 9344.56, + "end": 9346.34, + "probability": 0.8935 + }, + { + "start": 9346.7, + "end": 9349.52, + "probability": 0.4955 + }, + { + "start": 9349.88, + "end": 9351.58, + "probability": 0.5734 + }, + { + "start": 9351.62, + "end": 9355.18, + "probability": 0.2737 + }, + { + "start": 9355.28, + "end": 9356.66, + "probability": 0.6374 + }, + { + "start": 9356.74, + "end": 9356.84, + "probability": 0.3109 + }, + { + "start": 9357.68, + "end": 9360.16, + "probability": 0.333 + }, + { + "start": 9360.38, + "end": 9362.7, + "probability": 0.9814 + }, + { + "start": 9363.4, + "end": 9368.0, + "probability": 0.8644 + }, + { + "start": 9368.74, + "end": 9373.96, + "probability": 0.9233 + }, + { + "start": 9373.96, + "end": 9377.08, + "probability": 0.978 + }, + { + "start": 9378.66, + "end": 9382.4, + "probability": 0.9714 + }, + { + "start": 9383.2, + "end": 9384.6, + "probability": 0.5428 + }, + { + "start": 9384.66, + "end": 9389.19, + "probability": 0.9747 + }, + { + "start": 9390.86, + "end": 9396.1, + "probability": 0.9725 + }, + { + "start": 9396.1, + "end": 9396.36, + "probability": 0.5438 + }, + { + "start": 9396.48, + "end": 9399.02, + "probability": 0.9813 + }, + { + "start": 9400.12, + "end": 9403.96, + "probability": 0.8651 + }, + { + "start": 9404.92, + "end": 9405.16, + "probability": 0.6915 + }, + { + "start": 9405.24, + "end": 9409.14, + "probability": 0.9969 + }, + { + "start": 9409.84, + "end": 9412.2, + "probability": 0.6898 + }, + { + "start": 9413.02, + "end": 9417.36, + "probability": 0.9899 + }, + { + "start": 9418.48, + "end": 9418.94, + "probability": 0.7993 + }, + { + "start": 9419.06, + "end": 9424.34, + "probability": 0.9944 + }, + { + "start": 9425.46, + "end": 9431.56, + "probability": 0.9987 + }, + { + "start": 9432.4, + "end": 9433.82, + "probability": 0.9402 + }, + { + "start": 9434.46, + "end": 9434.9, + "probability": 0.542 + }, + { + "start": 9434.94, + "end": 9435.62, + "probability": 0.48 + }, + { + "start": 9435.88, + "end": 9437.58, + "probability": 0.8957 + }, + { + "start": 9437.86, + "end": 9439.44, + "probability": 0.9811 + }, + { + "start": 9439.94, + "end": 9440.22, + "probability": 0.3899 + }, + { + "start": 9440.78, + "end": 9441.74, + "probability": 0.4073 + }, + { + "start": 9442.36, + "end": 9442.72, + "probability": 0.4269 + }, + { + "start": 9442.72, + "end": 9447.26, + "probability": 0.794 + }, + { + "start": 9447.26, + "end": 9450.3, + "probability": 0.6853 + }, + { + "start": 9450.76, + "end": 9451.36, + "probability": 0.4141 + }, + { + "start": 9451.7, + "end": 9453.46, + "probability": 0.9961 + }, + { + "start": 9454.22, + "end": 9459.44, + "probability": 0.9868 + }, + { + "start": 9460.08, + "end": 9468.88, + "probability": 0.9916 + }, + { + "start": 9470.42, + "end": 9474.0, + "probability": 0.9053 + }, + { + "start": 9475.6, + "end": 9478.96, + "probability": 0.9849 + }, + { + "start": 9479.6, + "end": 9481.22, + "probability": 0.6317 + }, + { + "start": 9482.28, + "end": 9487.68, + "probability": 0.5744 + }, + { + "start": 9488.44, + "end": 9490.56, + "probability": 0.7907 + }, + { + "start": 9491.48, + "end": 9493.64, + "probability": 0.9883 + }, + { + "start": 9494.16, + "end": 9498.48, + "probability": 0.6308 + }, + { + "start": 9499.16, + "end": 9500.56, + "probability": 0.9053 + }, + { + "start": 9501.3, + "end": 9503.96, + "probability": 0.7836 + }, + { + "start": 9505.84, + "end": 9513.0, + "probability": 0.7184 + }, + { + "start": 9514.64, + "end": 9516.08, + "probability": 0.6689 + }, + { + "start": 9516.64, + "end": 9520.12, + "probability": 0.533 + }, + { + "start": 9520.74, + "end": 9523.04, + "probability": 0.7764 + }, + { + "start": 9523.3, + "end": 9523.4, + "probability": 0.096 + }, + { + "start": 9523.52, + "end": 9525.14, + "probability": 0.357 + }, + { + "start": 9525.56, + "end": 9527.06, + "probability": 0.769 + }, + { + "start": 9527.32, + "end": 9529.88, + "probability": 0.9962 + }, + { + "start": 9529.88, + "end": 9533.66, + "probability": 0.7885 + }, + { + "start": 9536.4, + "end": 9536.68, + "probability": 0.5622 + }, + { + "start": 9537.4, + "end": 9540.28, + "probability": 0.6455 + }, + { + "start": 9541.78, + "end": 9545.34, + "probability": 0.9038 + }, + { + "start": 9546.18, + "end": 9549.28, + "probability": 0.9607 + }, + { + "start": 9549.84, + "end": 9553.14, + "probability": 0.9538 + }, + { + "start": 9554.3, + "end": 9557.14, + "probability": 0.896 + }, + { + "start": 9557.78, + "end": 9562.5, + "probability": 0.9725 + }, + { + "start": 9562.6, + "end": 9564.56, + "probability": 0.9746 + }, + { + "start": 9565.34, + "end": 9567.07, + "probability": 0.9805 + }, + { + "start": 9567.86, + "end": 9570.08, + "probability": 0.9704 + }, + { + "start": 9570.94, + "end": 9574.46, + "probability": 0.9854 + }, + { + "start": 9575.3, + "end": 9578.5, + "probability": 0.9743 + }, + { + "start": 9579.18, + "end": 9582.4, + "probability": 0.9729 + }, + { + "start": 9583.02, + "end": 9586.24, + "probability": 0.9863 + }, + { + "start": 9587.24, + "end": 9590.22, + "probability": 0.8326 + }, + { + "start": 9590.82, + "end": 9592.2, + "probability": 0.7692 + }, + { + "start": 9592.26, + "end": 9594.18, + "probability": 0.9265 + }, + { + "start": 9595.12, + "end": 9598.04, + "probability": 0.9792 + }, + { + "start": 9598.58, + "end": 9602.46, + "probability": 0.9885 + }, + { + "start": 9603.16, + "end": 9603.92, + "probability": 0.8455 + }, + { + "start": 9604.6, + "end": 9607.74, + "probability": 0.8821 + }, + { + "start": 9608.34, + "end": 9612.02, + "probability": 0.9586 + }, + { + "start": 9612.82, + "end": 9614.36, + "probability": 0.9865 + }, + { + "start": 9615.06, + "end": 9617.16, + "probability": 0.9963 + }, + { + "start": 9618.3, + "end": 9620.86, + "probability": 0.9958 + }, + { + "start": 9620.86, + "end": 9624.32, + "probability": 0.9927 + }, + { + "start": 9624.82, + "end": 9628.64, + "probability": 0.7426 + }, + { + "start": 9629.26, + "end": 9631.24, + "probability": 0.9237 + }, + { + "start": 9631.78, + "end": 9633.56, + "probability": 0.9805 + }, + { + "start": 9634.66, + "end": 9637.64, + "probability": 0.8436 + }, + { + "start": 9638.3, + "end": 9641.22, + "probability": 0.978 + }, + { + "start": 9642.34, + "end": 9643.48, + "probability": 0.9596 + }, + { + "start": 9643.66, + "end": 9645.9, + "probability": 0.9626 + }, + { + "start": 9646.48, + "end": 9650.02, + "probability": 0.9949 + }, + { + "start": 9650.8, + "end": 9652.84, + "probability": 0.9959 + }, + { + "start": 9653.54, + "end": 9655.36, + "probability": 0.9854 + }, + { + "start": 9656.02, + "end": 9657.88, + "probability": 0.9929 + }, + { + "start": 9658.5, + "end": 9661.66, + "probability": 0.9743 + }, + { + "start": 9662.42, + "end": 9663.32, + "probability": 0.9701 + }, + { + "start": 9664.1, + "end": 9667.8, + "probability": 0.9977 + }, + { + "start": 9667.8, + "end": 9671.7, + "probability": 0.9985 + }, + { + "start": 9672.56, + "end": 9675.28, + "probability": 0.8587 + }, + { + "start": 9675.98, + "end": 9678.64, + "probability": 0.9224 + }, + { + "start": 9679.36, + "end": 9682.84, + "probability": 0.9924 + }, + { + "start": 9683.44, + "end": 9685.28, + "probability": 0.907 + }, + { + "start": 9685.86, + "end": 9687.56, + "probability": 0.9788 + }, + { + "start": 9688.44, + "end": 9690.08, + "probability": 0.8696 + }, + { + "start": 9690.26, + "end": 9695.22, + "probability": 0.978 + }, + { + "start": 9695.22, + "end": 9699.4, + "probability": 0.9979 + }, + { + "start": 9700.2, + "end": 9703.8, + "probability": 0.9959 + }, + { + "start": 9703.8, + "end": 9708.68, + "probability": 0.9526 + }, + { + "start": 9709.46, + "end": 9710.3, + "probability": 0.7835 + }, + { + "start": 9710.38, + "end": 9713.06, + "probability": 0.9521 + }, + { + "start": 9714.38, + "end": 9714.74, + "probability": 0.5211 + }, + { + "start": 9714.92, + "end": 9715.74, + "probability": 0.8925 + }, + { + "start": 9715.9, + "end": 9719.04, + "probability": 0.9943 + }, + { + "start": 9719.84, + "end": 9727.02, + "probability": 0.9951 + }, + { + "start": 9727.98, + "end": 9729.84, + "probability": 0.9017 + }, + { + "start": 9730.5, + "end": 9732.9, + "probability": 0.9913 + }, + { + "start": 9733.84, + "end": 9735.72, + "probability": 0.9954 + }, + { + "start": 9735.72, + "end": 9739.4, + "probability": 0.9869 + }, + { + "start": 9740.06, + "end": 9744.66, + "probability": 0.998 + }, + { + "start": 9745.22, + "end": 9748.88, + "probability": 0.8781 + }, + { + "start": 9748.94, + "end": 9752.8, + "probability": 0.996 + }, + { + "start": 9752.8, + "end": 9757.32, + "probability": 0.9803 + }, + { + "start": 9758.34, + "end": 9761.04, + "probability": 0.9657 + }, + { + "start": 9761.7, + "end": 9762.86, + "probability": 0.9321 + }, + { + "start": 9763.5, + "end": 9766.7, + "probability": 0.9407 + }, + { + "start": 9766.7, + "end": 9770.54, + "probability": 0.9502 + }, + { + "start": 9771.66, + "end": 9775.5, + "probability": 0.9142 + }, + { + "start": 9776.14, + "end": 9779.22, + "probability": 0.9775 + }, + { + "start": 9779.98, + "end": 9782.5, + "probability": 0.9971 + }, + { + "start": 9783.1, + "end": 9784.64, + "probability": 0.6482 + }, + { + "start": 9785.38, + "end": 9788.7, + "probability": 0.9952 + }, + { + "start": 9789.22, + "end": 9792.36, + "probability": 0.9605 + }, + { + "start": 9793.3, + "end": 9794.34, + "probability": 0.9538 + }, + { + "start": 9794.44, + "end": 9794.94, + "probability": 0.7757 + }, + { + "start": 9795.28, + "end": 9797.24, + "probability": 0.9971 + }, + { + "start": 9798.02, + "end": 9800.32, + "probability": 0.9879 + }, + { + "start": 9800.88, + "end": 9803.3, + "probability": 0.8802 + }, + { + "start": 9803.94, + "end": 9807.44, + "probability": 0.9827 + }, + { + "start": 9807.96, + "end": 9811.34, + "probability": 0.8736 + }, + { + "start": 9811.4, + "end": 9813.66, + "probability": 0.9941 + }, + { + "start": 9814.18, + "end": 9816.64, + "probability": 0.7397 + }, + { + "start": 9817.66, + "end": 9823.8, + "probability": 0.9867 + }, + { + "start": 9824.62, + "end": 9829.44, + "probability": 0.9843 + }, + { + "start": 9830.38, + "end": 9831.9, + "probability": 0.8277 + }, + { + "start": 9832.22, + "end": 9835.32, + "probability": 0.9482 + }, + { + "start": 9835.32, + "end": 9839.1, + "probability": 0.9001 + }, + { + "start": 9839.28, + "end": 9840.48, + "probability": 0.9889 + }, + { + "start": 9841.0, + "end": 9843.08, + "probability": 0.9548 + }, + { + "start": 9843.78, + "end": 9845.8, + "probability": 0.9982 + }, + { + "start": 9845.92, + "end": 9847.68, + "probability": 0.7818 + }, + { + "start": 9848.6, + "end": 9853.28, + "probability": 0.9887 + }, + { + "start": 9853.52, + "end": 9859.92, + "probability": 0.9802 + }, + { + "start": 9860.7, + "end": 9862.43, + "probability": 0.8489 + }, + { + "start": 9863.94, + "end": 9864.18, + "probability": 0.8282 + }, + { + "start": 9864.24, + "end": 9868.3, + "probability": 0.9963 + }, + { + "start": 9868.44, + "end": 9870.78, + "probability": 0.7878 + }, + { + "start": 9871.38, + "end": 9875.32, + "probability": 0.8748 + }, + { + "start": 9875.9, + "end": 9879.36, + "probability": 0.8317 + }, + { + "start": 9880.34, + "end": 9882.7, + "probability": 0.9779 + }, + { + "start": 9883.28, + "end": 9886.32, + "probability": 0.9947 + }, + { + "start": 9887.16, + "end": 9890.06, + "probability": 0.9757 + }, + { + "start": 9890.64, + "end": 9896.54, + "probability": 0.9904 + }, + { + "start": 9897.12, + "end": 9897.74, + "probability": 0.6371 + }, + { + "start": 9897.96, + "end": 9902.84, + "probability": 0.9925 + }, + { + "start": 9903.54, + "end": 9905.06, + "probability": 0.8781 + }, + { + "start": 9905.78, + "end": 9905.96, + "probability": 0.5079 + }, + { + "start": 9906.12, + "end": 9910.18, + "probability": 0.9444 + }, + { + "start": 9911.28, + "end": 9914.64, + "probability": 0.9883 + }, + { + "start": 9915.34, + "end": 9916.5, + "probability": 0.7589 + }, + { + "start": 9916.62, + "end": 9917.28, + "probability": 0.5907 + }, + { + "start": 9917.44, + "end": 9920.12, + "probability": 0.9592 + }, + { + "start": 9920.7, + "end": 9923.02, + "probability": 0.972 + }, + { + "start": 9923.56, + "end": 9926.5, + "probability": 0.8826 + }, + { + "start": 9927.92, + "end": 9930.74, + "probability": 0.9076 + }, + { + "start": 9931.42, + "end": 9934.74, + "probability": 0.998 + }, + { + "start": 9934.74, + "end": 9937.82, + "probability": 0.983 + }, + { + "start": 9938.54, + "end": 9944.96, + "probability": 0.997 + }, + { + "start": 9945.6, + "end": 9947.38, + "probability": 0.9985 + }, + { + "start": 9948.02, + "end": 9951.06, + "probability": 0.9933 + }, + { + "start": 9951.62, + "end": 9954.1, + "probability": 0.984 + }, + { + "start": 9954.92, + "end": 9956.86, + "probability": 0.9686 + }, + { + "start": 9957.06, + "end": 9958.55, + "probability": 0.9944 + }, + { + "start": 9959.28, + "end": 9962.5, + "probability": 0.7027 + }, + { + "start": 9963.44, + "end": 9967.4, + "probability": 0.7051 + }, + { + "start": 9968.28, + "end": 9972.38, + "probability": 0.6221 + }, + { + "start": 9972.44, + "end": 9974.56, + "probability": 0.9897 + }, + { + "start": 9975.1, + "end": 9976.42, + "probability": 0.8529 + }, + { + "start": 9976.74, + "end": 9979.38, + "probability": 0.9432 + }, + { + "start": 9979.72, + "end": 9980.56, + "probability": 0.0743 + }, + { + "start": 9980.56, + "end": 9980.56, + "probability": 0.0459 + }, + { + "start": 9980.56, + "end": 9981.02, + "probability": 0.4816 + }, + { + "start": 9981.24, + "end": 9982.04, + "probability": 0.6996 + }, + { + "start": 9982.7, + "end": 9984.36, + "probability": 0.7023 + }, + { + "start": 9984.72, + "end": 9985.66, + "probability": 0.8916 + }, + { + "start": 9985.84, + "end": 9986.96, + "probability": 0.9239 + }, + { + "start": 9987.78, + "end": 9990.34, + "probability": 0.8822 + }, + { + "start": 9991.18, + "end": 9992.4, + "probability": 0.6156 + }, + { + "start": 9993.04, + "end": 9993.65, + "probability": 0.9958 + }, + { + "start": 9994.46, + "end": 9997.1, + "probability": 0.996 + }, + { + "start": 9997.98, + "end": 10000.28, + "probability": 0.7583 + }, + { + "start": 10003.22, + "end": 10003.34, + "probability": 0.0881 + }, + { + "start": 10003.34, + "end": 10003.88, + "probability": 0.4338 + }, + { + "start": 10004.1, + "end": 10004.34, + "probability": 0.6873 + }, + { + "start": 10004.6, + "end": 10004.96, + "probability": 0.163 + }, + { + "start": 10005.26, + "end": 10010.72, + "probability": 0.0616 + }, + { + "start": 10010.8, + "end": 10011.76, + "probability": 0.1691 + }, + { + "start": 10011.84, + "end": 10014.5, + "probability": 0.9922 + }, + { + "start": 10014.72, + "end": 10016.24, + "probability": 0.7529 + }, + { + "start": 10017.04, + "end": 10019.68, + "probability": 0.9863 + }, + { + "start": 10021.32, + "end": 10024.94, + "probability": 0.8887 + }, + { + "start": 10025.06, + "end": 10028.58, + "probability": 0.9727 + }, + { + "start": 10028.88, + "end": 10029.54, + "probability": 0.9976 + }, + { + "start": 10030.26, + "end": 10033.26, + "probability": 0.963 + }, + { + "start": 10033.38, + "end": 10034.32, + "probability": 0.9145 + }, + { + "start": 10034.46, + "end": 10036.02, + "probability": 0.9985 + }, + { + "start": 10037.48, + "end": 10038.48, + "probability": 0.2513 + }, + { + "start": 10038.84, + "end": 10041.86, + "probability": 0.9633 + }, + { + "start": 10043.32, + "end": 10048.62, + "probability": 0.9604 + }, + { + "start": 10049.76, + "end": 10051.74, + "probability": 0.994 + }, + { + "start": 10051.9, + "end": 10054.08, + "probability": 0.9807 + }, + { + "start": 10054.72, + "end": 10057.5, + "probability": 0.8703 + }, + { + "start": 10058.42, + "end": 10059.14, + "probability": 0.9871 + }, + { + "start": 10060.1, + "end": 10060.86, + "probability": 0.6841 + }, + { + "start": 10061.0, + "end": 10062.36, + "probability": 0.9342 + }, + { + "start": 10063.22, + "end": 10064.28, + "probability": 0.4978 + }, + { + "start": 10064.78, + "end": 10065.48, + "probability": 0.894 + }, + { + "start": 10065.7, + "end": 10068.12, + "probability": 0.9487 + }, + { + "start": 10068.86, + "end": 10071.0, + "probability": 0.5627 + }, + { + "start": 10072.68, + "end": 10073.52, + "probability": 0.0539 + }, + { + "start": 10073.52, + "end": 10073.86, + "probability": 0.3186 + }, + { + "start": 10075.66, + "end": 10075.86, + "probability": 0.6694 + }, + { + "start": 10077.16, + "end": 10078.6, + "probability": 0.8653 + }, + { + "start": 10078.84, + "end": 10079.38, + "probability": 0.9126 + }, + { + "start": 10080.66, + "end": 10081.2, + "probability": 0.9577 + }, + { + "start": 10083.26, + "end": 10084.51, + "probability": 0.8262 + }, + { + "start": 10085.22, + "end": 10085.6, + "probability": 0.5886 + }, + { + "start": 10085.74, + "end": 10086.24, + "probability": 0.7482 + }, + { + "start": 10086.86, + "end": 10088.24, + "probability": 0.659 + }, + { + "start": 10089.28, + "end": 10094.86, + "probability": 0.9919 + }, + { + "start": 10095.66, + "end": 10097.0, + "probability": 0.887 + }, + { + "start": 10098.4, + "end": 10099.35, + "probability": 0.9685 + }, + { + "start": 10099.8, + "end": 10100.7, + "probability": 0.7228 + }, + { + "start": 10100.86, + "end": 10102.78, + "probability": 0.8746 + }, + { + "start": 10102.96, + "end": 10104.46, + "probability": 0.9917 + }, + { + "start": 10105.0, + "end": 10107.6, + "probability": 0.9912 + }, + { + "start": 10107.7, + "end": 10108.88, + "probability": 0.9172 + }, + { + "start": 10109.52, + "end": 10109.84, + "probability": 0.7303 + }, + { + "start": 10111.04, + "end": 10111.64, + "probability": 0.4698 + }, + { + "start": 10112.65, + "end": 10116.08, + "probability": 0.9858 + }, + { + "start": 10116.08, + "end": 10118.7, + "probability": 0.9926 + }, + { + "start": 10118.94, + "end": 10119.82, + "probability": 0.811 + }, + { + "start": 10121.74, + "end": 10123.72, + "probability": 0.7704 + }, + { + "start": 10124.02, + "end": 10126.86, + "probability": 0.878 + }, + { + "start": 10126.94, + "end": 10129.4, + "probability": 0.9938 + }, + { + "start": 10130.2, + "end": 10132.7, + "probability": 0.9453 + }, + { + "start": 10133.56, + "end": 10136.34, + "probability": 0.9971 + }, + { + "start": 10136.58, + "end": 10138.0, + "probability": 0.618 + }, + { + "start": 10138.08, + "end": 10140.2, + "probability": 0.9856 + }, + { + "start": 10140.4, + "end": 10140.7, + "probability": 0.7948 + }, + { + "start": 10141.94, + "end": 10143.92, + "probability": 0.9944 + }, + { + "start": 10143.98, + "end": 10146.62, + "probability": 0.9731 + }, + { + "start": 10146.62, + "end": 10149.64, + "probability": 0.9944 + }, + { + "start": 10150.36, + "end": 10152.86, + "probability": 0.9968 + }, + { + "start": 10152.86, + "end": 10155.94, + "probability": 0.9658 + }, + { + "start": 10156.42, + "end": 10159.82, + "probability": 0.9927 + }, + { + "start": 10159.82, + "end": 10164.06, + "probability": 0.9974 + }, + { + "start": 10165.32, + "end": 10165.98, + "probability": 0.8811 + }, + { + "start": 10167.34, + "end": 10169.12, + "probability": 0.8986 + }, + { + "start": 10169.94, + "end": 10172.66, + "probability": 0.9346 + }, + { + "start": 10173.4, + "end": 10173.82, + "probability": 0.6088 + }, + { + "start": 10180.9, + "end": 10182.06, + "probability": 0.5844 + }, + { + "start": 10182.12, + "end": 10183.3, + "probability": 0.6006 + }, + { + "start": 10183.8, + "end": 10185.98, + "probability": 0.8901 + }, + { + "start": 10186.1, + "end": 10187.24, + "probability": 0.9668 + }, + { + "start": 10187.82, + "end": 10189.98, + "probability": 0.5905 + }, + { + "start": 10190.44, + "end": 10192.26, + "probability": 0.3434 + }, + { + "start": 10192.34, + "end": 10193.38, + "probability": 0.9521 + }, + { + "start": 10193.54, + "end": 10194.66, + "probability": 0.8065 + }, + { + "start": 10194.68, + "end": 10194.78, + "probability": 0.6768 + }, + { + "start": 10196.08, + "end": 10196.94, + "probability": 0.7923 + }, + { + "start": 10197.06, + "end": 10200.21, + "probability": 0.5444 + }, + { + "start": 10202.66, + "end": 10207.9, + "probability": 0.8978 + }, + { + "start": 10208.62, + "end": 10209.22, + "probability": 0.6567 + }, + { + "start": 10209.36, + "end": 10212.24, + "probability": 0.5287 + }, + { + "start": 10212.3, + "end": 10214.34, + "probability": 0.7429 + }, + { + "start": 10215.48, + "end": 10218.66, + "probability": 0.9885 + }, + { + "start": 10219.5, + "end": 10220.04, + "probability": 0.6068 + }, + { + "start": 10227.02, + "end": 10229.62, + "probability": 0.3316 + }, + { + "start": 10234.44, + "end": 10235.1, + "probability": 0.0868 + }, + { + "start": 10235.36, + "end": 10237.36, + "probability": 0.7642 + }, + { + "start": 10237.42, + "end": 10239.22, + "probability": 0.8465 + }, + { + "start": 10239.36, + "end": 10241.24, + "probability": 0.7377 + }, + { + "start": 10241.78, + "end": 10244.12, + "probability": 0.8354 + }, + { + "start": 10245.22, + "end": 10247.58, + "probability": 0.9764 + }, + { + "start": 10247.8, + "end": 10252.08, + "probability": 0.7954 + }, + { + "start": 10261.46, + "end": 10261.6, + "probability": 0.0005 + }, + { + "start": 10262.16, + "end": 10267.12, + "probability": 0.5167 + }, + { + "start": 10267.66, + "end": 10270.22, + "probability": 0.9385 + }, + { + "start": 10271.26, + "end": 10272.18, + "probability": 0.5631 + }, + { + "start": 10272.3, + "end": 10272.94, + "probability": 0.7441 + }, + { + "start": 10275.2, + "end": 10277.2, + "probability": 0.8579 + }, + { + "start": 10288.68, + "end": 10288.92, + "probability": 0.1723 + }, + { + "start": 10288.92, + "end": 10291.16, + "probability": 0.9912 + }, + { + "start": 10291.18, + "end": 10293.22, + "probability": 0.9052 + }, + { + "start": 10293.6, + "end": 10295.18, + "probability": 0.7993 + }, + { + "start": 10296.22, + "end": 10296.36, + "probability": 0.0045 + } + ], + "segments_count": 3491, + "words_count": 17144, + "avg_words_per_segment": 4.9109, + "avg_segment_duration": 2.0992, + "avg_words_per_minute": 99.4608, + "plenum_id": "25085", + "duration": 10342.16, + "title": null, + "plenum_date": "2012-08-29" +} \ No newline at end of file