diff --git "a/27652/metadata.json" "b/27652/metadata.json" new file mode 100644--- /dev/null +++ "b/27652/metadata.json" @@ -0,0 +1,16462 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "27652", + "quality_score": 0.9383, + "per_segment_quality_scores": [ + { + "start": 39.13, + "end": 41.94, + "probability": 0.8003 + }, + { + "start": 42.06, + "end": 43.36, + "probability": 0.6756 + }, + { + "start": 43.46, + "end": 43.52, + "probability": 0.1514 + }, + { + "start": 43.66, + "end": 47.36, + "probability": 0.9342 + }, + { + "start": 47.62, + "end": 52.12, + "probability": 0.988 + }, + { + "start": 52.44, + "end": 54.42, + "probability": 0.6412 + }, + { + "start": 54.82, + "end": 58.2, + "probability": 0.8431 + }, + { + "start": 58.66, + "end": 59.84, + "probability": 0.7098 + }, + { + "start": 60.36, + "end": 61.68, + "probability": 0.8997 + }, + { + "start": 61.9, + "end": 62.96, + "probability": 0.5815 + }, + { + "start": 65.26, + "end": 69.48, + "probability": 0.6348 + }, + { + "start": 70.22, + "end": 71.44, + "probability": 0.9808 + }, + { + "start": 71.58, + "end": 72.97, + "probability": 0.4529 + }, + { + "start": 75.16, + "end": 76.66, + "probability": 0.9165 + }, + { + "start": 76.9, + "end": 83.44, + "probability": 0.5701 + }, + { + "start": 83.8, + "end": 84.76, + "probability": 0.2217 + }, + { + "start": 85.2, + "end": 86.26, + "probability": 0.6648 + }, + { + "start": 88.4, + "end": 90.06, + "probability": 0.7067 + }, + { + "start": 90.08, + "end": 91.7, + "probability": 0.8527 + }, + { + "start": 91.72, + "end": 93.58, + "probability": 0.8422 + }, + { + "start": 94.08, + "end": 95.88, + "probability": 0.9582 + }, + { + "start": 95.96, + "end": 97.6, + "probability": 0.9424 + }, + { + "start": 100.14, + "end": 106.26, + "probability": 0.706 + }, + { + "start": 106.62, + "end": 109.24, + "probability": 0.8888 + }, + { + "start": 109.7, + "end": 112.56, + "probability": 0.7143 + }, + { + "start": 112.56, + "end": 116.18, + "probability": 0.9875 + }, + { + "start": 118.14, + "end": 119.62, + "probability": 0.6376 + }, + { + "start": 120.3, + "end": 125.48, + "probability": 0.8536 + }, + { + "start": 125.86, + "end": 126.72, + "probability": 0.5439 + }, + { + "start": 126.88, + "end": 129.18, + "probability": 0.9865 + }, + { + "start": 129.28, + "end": 130.04, + "probability": 0.8911 + }, + { + "start": 130.14, + "end": 130.86, + "probability": 0.9668 + }, + { + "start": 130.88, + "end": 131.66, + "probability": 0.8322 + }, + { + "start": 131.76, + "end": 132.38, + "probability": 0.8639 + }, + { + "start": 132.5, + "end": 133.1, + "probability": 0.7758 + }, + { + "start": 133.18, + "end": 137.7, + "probability": 0.847 + }, + { + "start": 137.78, + "end": 139.76, + "probability": 0.5506 + }, + { + "start": 140.2, + "end": 142.52, + "probability": 0.9893 + }, + { + "start": 142.58, + "end": 143.34, + "probability": 0.9565 + }, + { + "start": 143.48, + "end": 144.26, + "probability": 0.8828 + }, + { + "start": 144.54, + "end": 145.56, + "probability": 0.6819 + }, + { + "start": 145.64, + "end": 150.74, + "probability": 0.9435 + }, + { + "start": 151.0, + "end": 152.76, + "probability": 0.0188 + }, + { + "start": 153.64, + "end": 158.6, + "probability": 0.9417 + }, + { + "start": 158.78, + "end": 159.18, + "probability": 0.8105 + }, + { + "start": 160.98, + "end": 162.44, + "probability": 0.739 + }, + { + "start": 162.54, + "end": 163.64, + "probability": 0.6761 + }, + { + "start": 163.88, + "end": 166.54, + "probability": 0.9354 + }, + { + "start": 166.54, + "end": 169.62, + "probability": 0.8653 + }, + { + "start": 170.08, + "end": 170.94, + "probability": 0.558 + }, + { + "start": 171.4, + "end": 172.26, + "probability": 0.9551 + }, + { + "start": 172.38, + "end": 173.04, + "probability": 0.9469 + }, + { + "start": 173.06, + "end": 174.2, + "probability": 0.9888 + }, + { + "start": 174.26, + "end": 175.28, + "probability": 0.8912 + }, + { + "start": 175.32, + "end": 176.52, + "probability": 0.7171 + }, + { + "start": 178.58, + "end": 180.26, + "probability": 0.0551 + }, + { + "start": 190.52, + "end": 190.86, + "probability": 0.0113 + }, + { + "start": 192.14, + "end": 197.78, + "probability": 0.8232 + }, + { + "start": 199.0, + "end": 199.68, + "probability": 0.611 + }, + { + "start": 199.74, + "end": 200.54, + "probability": 0.6255 + }, + { + "start": 200.62, + "end": 202.3, + "probability": 0.7221 + }, + { + "start": 202.53, + "end": 206.66, + "probability": 0.9329 + }, + { + "start": 206.84, + "end": 209.58, + "probability": 0.863 + }, + { + "start": 210.16, + "end": 214.86, + "probability": 0.9055 + }, + { + "start": 216.97, + "end": 220.36, + "probability": 0.5157 + }, + { + "start": 220.44, + "end": 222.12, + "probability": 0.9883 + }, + { + "start": 222.22, + "end": 224.24, + "probability": 0.9897 + }, + { + "start": 224.36, + "end": 225.7, + "probability": 0.9246 + }, + { + "start": 227.78, + "end": 228.96, + "probability": 0.9352 + }, + { + "start": 229.12, + "end": 229.98, + "probability": 0.6855 + }, + { + "start": 230.1, + "end": 237.58, + "probability": 0.9041 + }, + { + "start": 237.58, + "end": 241.26, + "probability": 0.9852 + }, + { + "start": 241.98, + "end": 249.62, + "probability": 0.9844 + }, + { + "start": 250.0, + "end": 252.62, + "probability": 0.9954 + }, + { + "start": 252.7, + "end": 254.28, + "probability": 0.9957 + }, + { + "start": 255.76, + "end": 262.39, + "probability": 0.9534 + }, + { + "start": 262.46, + "end": 265.02, + "probability": 0.508 + }, + { + "start": 265.02, + "end": 265.72, + "probability": 0.8687 + }, + { + "start": 266.62, + "end": 268.52, + "probability": 0.9668 + }, + { + "start": 269.9, + "end": 279.54, + "probability": 0.9596 + }, + { + "start": 279.68, + "end": 280.78, + "probability": 0.3285 + }, + { + "start": 281.96, + "end": 284.8, + "probability": 0.883 + }, + { + "start": 285.66, + "end": 288.25, + "probability": 0.5487 + }, + { + "start": 289.44, + "end": 289.44, + "probability": 0.1267 + }, + { + "start": 289.44, + "end": 290.14, + "probability": 0.5258 + }, + { + "start": 290.46, + "end": 293.24, + "probability": 0.9382 + }, + { + "start": 294.12, + "end": 296.9, + "probability": 0.9954 + }, + { + "start": 298.08, + "end": 302.92, + "probability": 0.772 + }, + { + "start": 304.1, + "end": 308.4, + "probability": 0.9825 + }, + { + "start": 309.8, + "end": 313.64, + "probability": 0.998 + }, + { + "start": 314.64, + "end": 320.48, + "probability": 0.9976 + }, + { + "start": 320.96, + "end": 323.8, + "probability": 0.9879 + }, + { + "start": 323.8, + "end": 323.8, + "probability": 0.4896 + }, + { + "start": 323.8, + "end": 324.96, + "probability": 0.5646 + }, + { + "start": 325.2, + "end": 326.78, + "probability": 0.821 + }, + { + "start": 327.26, + "end": 331.0, + "probability": 0.998 + }, + { + "start": 332.24, + "end": 336.72, + "probability": 0.9602 + }, + { + "start": 337.3, + "end": 337.72, + "probability": 0.5457 + }, + { + "start": 338.08, + "end": 340.16, + "probability": 0.6639 + }, + { + "start": 340.26, + "end": 341.43, + "probability": 0.8567 + }, + { + "start": 341.52, + "end": 342.14, + "probability": 0.6934 + }, + { + "start": 342.24, + "end": 343.1, + "probability": 0.6298 + }, + { + "start": 343.44, + "end": 344.6, + "probability": 0.9912 + }, + { + "start": 349.32, + "end": 349.94, + "probability": 0.2868 + }, + { + "start": 351.48, + "end": 352.8, + "probability": 0.83 + }, + { + "start": 353.06, + "end": 356.14, + "probability": 0.7978 + }, + { + "start": 356.14, + "end": 358.54, + "probability": 0.9438 + }, + { + "start": 358.54, + "end": 361.32, + "probability": 0.994 + }, + { + "start": 362.46, + "end": 364.78, + "probability": 0.8292 + }, + { + "start": 364.84, + "end": 366.26, + "probability": 0.3095 + }, + { + "start": 366.42, + "end": 370.58, + "probability": 0.9565 + }, + { + "start": 371.34, + "end": 371.82, + "probability": 0.8372 + }, + { + "start": 371.92, + "end": 376.44, + "probability": 0.915 + }, + { + "start": 377.26, + "end": 378.72, + "probability": 0.6056 + }, + { + "start": 379.26, + "end": 381.64, + "probability": 0.7885 + }, + { + "start": 381.88, + "end": 383.6, + "probability": 0.9894 + }, + { + "start": 383.6, + "end": 385.76, + "probability": 0.9414 + }, + { + "start": 386.04, + "end": 387.78, + "probability": 0.9805 + }, + { + "start": 388.38, + "end": 392.56, + "probability": 0.9171 + }, + { + "start": 392.76, + "end": 396.02, + "probability": 0.8948 + }, + { + "start": 397.5, + "end": 399.6, + "probability": 0.9888 + }, + { + "start": 399.86, + "end": 400.96, + "probability": 0.8421 + }, + { + "start": 401.18, + "end": 404.1, + "probability": 0.8979 + }, + { + "start": 404.42, + "end": 405.66, + "probability": 0.7532 + }, + { + "start": 405.88, + "end": 407.98, + "probability": 0.993 + }, + { + "start": 408.82, + "end": 411.32, + "probability": 0.9742 + }, + { + "start": 411.32, + "end": 414.74, + "probability": 0.9954 + }, + { + "start": 415.22, + "end": 416.67, + "probability": 0.5637 + }, + { + "start": 417.0, + "end": 419.3, + "probability": 0.9743 + }, + { + "start": 419.98, + "end": 421.9, + "probability": 0.9474 + }, + { + "start": 422.54, + "end": 422.88, + "probability": 0.2635 + }, + { + "start": 422.88, + "end": 424.34, + "probability": 0.7171 + }, + { + "start": 424.42, + "end": 428.08, + "probability": 0.8673 + }, + { + "start": 428.38, + "end": 430.06, + "probability": 0.979 + }, + { + "start": 430.2, + "end": 432.58, + "probability": 0.9392 + }, + { + "start": 433.42, + "end": 433.91, + "probability": 0.2576 + }, + { + "start": 434.12, + "end": 437.1, + "probability": 0.672 + }, + { + "start": 437.78, + "end": 438.64, + "probability": 0.9604 + }, + { + "start": 438.74, + "end": 439.7, + "probability": 0.6255 + }, + { + "start": 439.78, + "end": 440.6, + "probability": 0.6372 + }, + { + "start": 440.66, + "end": 441.42, + "probability": 0.8082 + }, + { + "start": 441.62, + "end": 445.12, + "probability": 0.7902 + }, + { + "start": 446.1, + "end": 447.13, + "probability": 0.5007 + }, + { + "start": 447.96, + "end": 450.82, + "probability": 0.8861 + }, + { + "start": 451.4, + "end": 452.56, + "probability": 0.7232 + }, + { + "start": 453.46, + "end": 458.08, + "probability": 0.9716 + }, + { + "start": 458.36, + "end": 463.6, + "probability": 0.9517 + }, + { + "start": 464.2, + "end": 466.13, + "probability": 0.6751 + }, + { + "start": 466.58, + "end": 469.84, + "probability": 0.9733 + }, + { + "start": 470.34, + "end": 474.08, + "probability": 0.9336 + }, + { + "start": 474.22, + "end": 474.94, + "probability": 0.8263 + }, + { + "start": 476.28, + "end": 476.98, + "probability": 0.9688 + }, + { + "start": 478.02, + "end": 481.78, + "probability": 0.7349 + }, + { + "start": 481.98, + "end": 484.86, + "probability": 0.7616 + }, + { + "start": 485.36, + "end": 490.02, + "probability": 0.9912 + }, + { + "start": 490.38, + "end": 491.22, + "probability": 0.5535 + }, + { + "start": 491.22, + "end": 495.48, + "probability": 0.6786 + }, + { + "start": 495.82, + "end": 498.92, + "probability": 0.9265 + }, + { + "start": 498.92, + "end": 501.56, + "probability": 0.971 + }, + { + "start": 501.96, + "end": 505.84, + "probability": 0.7345 + }, + { + "start": 506.18, + "end": 509.02, + "probability": 0.9805 + }, + { + "start": 509.3, + "end": 515.0, + "probability": 0.9466 + }, + { + "start": 515.38, + "end": 515.64, + "probability": 0.2618 + }, + { + "start": 515.64, + "end": 516.46, + "probability": 0.4808 + }, + { + "start": 516.58, + "end": 518.24, + "probability": 0.8614 + }, + { + "start": 518.5, + "end": 519.06, + "probability": 0.7589 + }, + { + "start": 519.08, + "end": 520.56, + "probability": 0.9776 + }, + { + "start": 524.76, + "end": 525.76, + "probability": 0.1943 + }, + { + "start": 525.76, + "end": 530.02, + "probability": 0.899 + }, + { + "start": 531.0, + "end": 532.75, + "probability": 0.886 + }, + { + "start": 533.74, + "end": 536.94, + "probability": 0.957 + }, + { + "start": 537.0, + "end": 539.56, + "probability": 0.9351 + }, + { + "start": 540.04, + "end": 544.4, + "probability": 0.9771 + }, + { + "start": 544.4, + "end": 549.38, + "probability": 0.9384 + }, + { + "start": 550.43, + "end": 552.96, + "probability": 0.9978 + }, + { + "start": 553.2, + "end": 557.54, + "probability": 0.9958 + }, + { + "start": 557.98, + "end": 560.59, + "probability": 0.9943 + }, + { + "start": 561.18, + "end": 566.98, + "probability": 0.9872 + }, + { + "start": 567.06, + "end": 568.06, + "probability": 0.5958 + }, + { + "start": 568.48, + "end": 570.68, + "probability": 0.939 + }, + { + "start": 570.78, + "end": 571.58, + "probability": 0.9147 + }, + { + "start": 571.94, + "end": 576.8, + "probability": 0.9608 + }, + { + "start": 576.9, + "end": 578.44, + "probability": 0.7 + }, + { + "start": 579.02, + "end": 580.56, + "probability": 0.9172 + }, + { + "start": 581.39, + "end": 584.68, + "probability": 0.8088 + }, + { + "start": 585.28, + "end": 589.18, + "probability": 0.0784 + }, + { + "start": 589.18, + "end": 593.44, + "probability": 0.9793 + }, + { + "start": 593.88, + "end": 596.76, + "probability": 0.9131 + }, + { + "start": 596.76, + "end": 599.4, + "probability": 0.9025 + }, + { + "start": 599.76, + "end": 601.98, + "probability": 0.5711 + }, + { + "start": 602.92, + "end": 606.14, + "probability": 0.6914 + }, + { + "start": 606.98, + "end": 609.38, + "probability": 0.8286 + }, + { + "start": 610.88, + "end": 611.58, + "probability": 0.6897 + }, + { + "start": 611.7, + "end": 612.86, + "probability": 0.6527 + }, + { + "start": 613.26, + "end": 616.18, + "probability": 0.9689 + }, + { + "start": 616.8, + "end": 618.64, + "probability": 0.8315 + }, + { + "start": 618.66, + "end": 619.28, + "probability": 0.7984 + }, + { + "start": 619.4, + "end": 620.08, + "probability": 0.6341 + }, + { + "start": 621.16, + "end": 624.22, + "probability": 0.9111 + }, + { + "start": 625.04, + "end": 628.28, + "probability": 0.9952 + }, + { + "start": 629.12, + "end": 633.54, + "probability": 0.9837 + }, + { + "start": 633.6, + "end": 635.47, + "probability": 0.6313 + }, + { + "start": 636.02, + "end": 637.72, + "probability": 0.9641 + }, + { + "start": 638.3, + "end": 638.88, + "probability": 0.9159 + }, + { + "start": 638.98, + "end": 642.86, + "probability": 0.5663 + }, + { + "start": 643.24, + "end": 646.2, + "probability": 0.8177 + }, + { + "start": 646.54, + "end": 647.78, + "probability": 0.7321 + }, + { + "start": 647.84, + "end": 650.6, + "probability": 0.8833 + }, + { + "start": 650.84, + "end": 652.88, + "probability": 0.8932 + }, + { + "start": 653.26, + "end": 656.36, + "probability": 0.9623 + }, + { + "start": 659.04, + "end": 660.78, + "probability": 0.7531 + }, + { + "start": 660.88, + "end": 664.42, + "probability": 0.7605 + }, + { + "start": 668.0, + "end": 668.8, + "probability": 0.6215 + }, + { + "start": 668.94, + "end": 669.6, + "probability": 0.2572 + }, + { + "start": 669.6, + "end": 674.4, + "probability": 0.9834 + }, + { + "start": 674.64, + "end": 675.28, + "probability": 0.7373 + }, + { + "start": 675.42, + "end": 676.32, + "probability": 0.9435 + }, + { + "start": 677.26, + "end": 680.26, + "probability": 0.8411 + }, + { + "start": 680.26, + "end": 684.36, + "probability": 0.8999 + }, + { + "start": 685.16, + "end": 688.5, + "probability": 0.974 + }, + { + "start": 688.54, + "end": 691.04, + "probability": 0.9821 + }, + { + "start": 691.44, + "end": 692.04, + "probability": 0.9342 + }, + { + "start": 692.78, + "end": 696.18, + "probability": 0.8794 + }, + { + "start": 696.18, + "end": 698.6, + "probability": 0.9001 + }, + { + "start": 699.34, + "end": 701.68, + "probability": 0.9938 + }, + { + "start": 702.22, + "end": 705.44, + "probability": 0.8923 + }, + { + "start": 705.44, + "end": 708.66, + "probability": 0.9456 + }, + { + "start": 708.86, + "end": 709.42, + "probability": 0.7945 + }, + { + "start": 709.54, + "end": 710.1, + "probability": 0.9797 + }, + { + "start": 710.18, + "end": 711.14, + "probability": 0.962 + }, + { + "start": 711.84, + "end": 713.14, + "probability": 0.8454 + }, + { + "start": 713.22, + "end": 716.16, + "probability": 0.7437 + }, + { + "start": 716.16, + "end": 719.48, + "probability": 0.7597 + }, + { + "start": 719.8, + "end": 720.54, + "probability": 0.8886 + }, + { + "start": 720.68, + "end": 721.94, + "probability": 0.9077 + }, + { + "start": 722.54, + "end": 725.08, + "probability": 0.5381 + }, + { + "start": 725.08, + "end": 727.6, + "probability": 0.7014 + }, + { + "start": 728.08, + "end": 731.9, + "probability": 0.9878 + }, + { + "start": 732.48, + "end": 735.64, + "probability": 0.9906 + }, + { + "start": 736.08, + "end": 739.0, + "probability": 0.8575 + }, + { + "start": 739.0, + "end": 743.02, + "probability": 0.9642 + }, + { + "start": 744.67, + "end": 746.54, + "probability": 0.5248 + }, + { + "start": 746.62, + "end": 747.92, + "probability": 0.6797 + }, + { + "start": 748.28, + "end": 748.74, + "probability": 0.5015 + }, + { + "start": 748.9, + "end": 750.12, + "probability": 0.8267 + }, + { + "start": 755.06, + "end": 756.1, + "probability": 0.5628 + }, + { + "start": 756.58, + "end": 759.08, + "probability": 0.9368 + }, + { + "start": 759.2, + "end": 761.22, + "probability": 0.8792 + }, + { + "start": 762.4, + "end": 770.3, + "probability": 0.7146 + }, + { + "start": 770.74, + "end": 771.36, + "probability": 0.0261 + }, + { + "start": 771.94, + "end": 775.28, + "probability": 0.8701 + }, + { + "start": 777.74, + "end": 780.04, + "probability": 0.8117 + }, + { + "start": 780.4, + "end": 785.22, + "probability": 0.9468 + }, + { + "start": 785.86, + "end": 788.8, + "probability": 0.6965 + }, + { + "start": 788.98, + "end": 793.94, + "probability": 0.7628 + }, + { + "start": 794.4, + "end": 795.42, + "probability": 0.8262 + }, + { + "start": 795.88, + "end": 797.64, + "probability": 0.9677 + }, + { + "start": 797.8, + "end": 799.36, + "probability": 0.993 + }, + { + "start": 799.9, + "end": 807.8, + "probability": 0.9963 + }, + { + "start": 807.96, + "end": 809.56, + "probability": 0.8087 + }, + { + "start": 809.86, + "end": 812.42, + "probability": 0.9938 + }, + { + "start": 813.0, + "end": 817.26, + "probability": 0.981 + }, + { + "start": 817.58, + "end": 821.18, + "probability": 0.9242 + }, + { + "start": 822.08, + "end": 822.88, + "probability": 0.5903 + }, + { + "start": 823.02, + "end": 824.5, + "probability": 0.5689 + }, + { + "start": 824.84, + "end": 829.36, + "probability": 0.9863 + }, + { + "start": 829.5, + "end": 833.26, + "probability": 0.9705 + }, + { + "start": 833.26, + "end": 835.56, + "probability": 0.9975 + }, + { + "start": 836.2, + "end": 838.42, + "probability": 0.8243 + }, + { + "start": 839.02, + "end": 840.64, + "probability": 0.9819 + }, + { + "start": 840.7, + "end": 845.46, + "probability": 0.902 + }, + { + "start": 846.34, + "end": 848.02, + "probability": 0.4966 + }, + { + "start": 848.14, + "end": 848.98, + "probability": 0.5491 + }, + { + "start": 849.08, + "end": 849.68, + "probability": 0.5993 + }, + { + "start": 849.78, + "end": 850.34, + "probability": 0.6561 + }, + { + "start": 850.38, + "end": 851.92, + "probability": 0.9542 + }, + { + "start": 856.18, + "end": 856.98, + "probability": 0.4823 + }, + { + "start": 858.54, + "end": 861.52, + "probability": 0.727 + }, + { + "start": 862.6, + "end": 862.88, + "probability": 0.738 + }, + { + "start": 864.44, + "end": 869.98, + "probability": 0.6811 + }, + { + "start": 870.78, + "end": 873.18, + "probability": 0.9116 + }, + { + "start": 874.06, + "end": 876.52, + "probability": 0.9581 + }, + { + "start": 876.94, + "end": 879.37, + "probability": 0.9982 + }, + { + "start": 881.06, + "end": 883.14, + "probability": 0.8028 + }, + { + "start": 883.72, + "end": 885.8, + "probability": 0.6069 + }, + { + "start": 886.68, + "end": 887.66, + "probability": 0.8664 + }, + { + "start": 887.7, + "end": 893.1, + "probability": 0.915 + }, + { + "start": 894.94, + "end": 905.52, + "probability": 0.8994 + }, + { + "start": 905.64, + "end": 911.02, + "probability": 0.9586 + }, + { + "start": 911.6, + "end": 915.64, + "probability": 0.9762 + }, + { + "start": 916.08, + "end": 918.85, + "probability": 0.9966 + }, + { + "start": 919.3, + "end": 920.76, + "probability": 0.7339 + }, + { + "start": 920.88, + "end": 921.74, + "probability": 0.6751 + }, + { + "start": 921.82, + "end": 926.32, + "probability": 0.9209 + }, + { + "start": 926.86, + "end": 928.58, + "probability": 0.9143 + }, + { + "start": 929.54, + "end": 930.1, + "probability": 0.7424 + }, + { + "start": 930.24, + "end": 934.18, + "probability": 0.9353 + }, + { + "start": 934.9, + "end": 938.64, + "probability": 0.7883 + }, + { + "start": 939.5, + "end": 944.14, + "probability": 0.5561 + }, + { + "start": 944.14, + "end": 947.64, + "probability": 0.5565 + }, + { + "start": 947.84, + "end": 951.46, + "probability": 0.8923 + }, + { + "start": 951.5, + "end": 953.18, + "probability": 0.8146 + }, + { + "start": 953.26, + "end": 953.64, + "probability": 0.7283 + }, + { + "start": 953.7, + "end": 954.74, + "probability": 0.6833 + }, + { + "start": 954.82, + "end": 956.92, + "probability": 0.9229 + }, + { + "start": 957.0, + "end": 957.4, + "probability": 0.4733 + }, + { + "start": 957.42, + "end": 958.64, + "probability": 0.9703 + }, + { + "start": 958.78, + "end": 960.9, + "probability": 0.2477 + }, + { + "start": 961.18, + "end": 964.06, + "probability": 0.9705 + }, + { + "start": 964.1, + "end": 965.48, + "probability": 0.9208 + }, + { + "start": 965.56, + "end": 966.74, + "probability": 0.8248 + }, + { + "start": 966.78, + "end": 967.88, + "probability": 0.9066 + }, + { + "start": 967.94, + "end": 968.26, + "probability": 0.3587 + }, + { + "start": 968.3, + "end": 969.56, + "probability": 0.8781 + }, + { + "start": 969.82, + "end": 971.94, + "probability": 0.9568 + }, + { + "start": 973.0, + "end": 975.28, + "probability": 0.8517 + }, + { + "start": 977.02, + "end": 977.4, + "probability": 0.5697 + }, + { + "start": 977.4, + "end": 978.08, + "probability": 0.2416 + }, + { + "start": 978.38, + "end": 979.06, + "probability": 0.5976 + }, + { + "start": 979.36, + "end": 979.72, + "probability": 0.8926 + }, + { + "start": 979.76, + "end": 985.35, + "probability": 0.7744 + }, + { + "start": 986.8, + "end": 988.08, + "probability": 0.8407 + }, + { + "start": 988.54, + "end": 994.26, + "probability": 0.9941 + }, + { + "start": 994.34, + "end": 994.92, + "probability": 0.8221 + }, + { + "start": 995.02, + "end": 995.54, + "probability": 0.5425 + }, + { + "start": 995.68, + "end": 998.7, + "probability": 0.9458 + }, + { + "start": 1000.02, + "end": 1003.0, + "probability": 0.9426 + }, + { + "start": 1003.12, + "end": 1003.78, + "probability": 0.9404 + }, + { + "start": 1004.36, + "end": 1008.3, + "probability": 0.6748 + }, + { + "start": 1009.44, + "end": 1014.06, + "probability": 0.5511 + }, + { + "start": 1015.02, + "end": 1021.1, + "probability": 0.9696 + }, + { + "start": 1021.1, + "end": 1027.24, + "probability": 0.9889 + }, + { + "start": 1027.72, + "end": 1033.53, + "probability": 0.9976 + }, + { + "start": 1033.92, + "end": 1035.72, + "probability": 0.9437 + }, + { + "start": 1036.24, + "end": 1039.56, + "probability": 0.9956 + }, + { + "start": 1040.7, + "end": 1042.34, + "probability": 0.7488 + }, + { + "start": 1043.08, + "end": 1050.22, + "probability": 0.9675 + }, + { + "start": 1050.22, + "end": 1057.88, + "probability": 0.9956 + }, + { + "start": 1058.46, + "end": 1061.04, + "probability": 0.987 + }, + { + "start": 1061.04, + "end": 1065.56, + "probability": 0.6711 + }, + { + "start": 1065.8, + "end": 1065.94, + "probability": 0.3688 + }, + { + "start": 1066.04, + "end": 1067.94, + "probability": 0.7762 + }, + { + "start": 1068.54, + "end": 1070.94, + "probability": 0.8428 + }, + { + "start": 1071.08, + "end": 1072.68, + "probability": 0.8789 + }, + { + "start": 1074.78, + "end": 1075.88, + "probability": 0.6486 + }, + { + "start": 1076.72, + "end": 1079.46, + "probability": 0.6898 + }, + { + "start": 1080.34, + "end": 1085.78, + "probability": 0.9821 + }, + { + "start": 1086.0, + "end": 1087.42, + "probability": 0.6782 + }, + { + "start": 1087.54, + "end": 1088.2, + "probability": 0.7445 + }, + { + "start": 1088.6, + "end": 1091.98, + "probability": 0.7792 + }, + { + "start": 1092.18, + "end": 1093.06, + "probability": 0.7303 + }, + { + "start": 1093.34, + "end": 1094.88, + "probability": 0.8306 + }, + { + "start": 1095.74, + "end": 1101.0, + "probability": 0.9177 + }, + { + "start": 1101.66, + "end": 1106.22, + "probability": 0.9424 + }, + { + "start": 1107.16, + "end": 1111.16, + "probability": 0.9408 + }, + { + "start": 1111.88, + "end": 1114.54, + "probability": 0.8767 + }, + { + "start": 1115.08, + "end": 1120.28, + "probability": 0.9727 + }, + { + "start": 1120.78, + "end": 1123.2, + "probability": 0.9464 + }, + { + "start": 1123.52, + "end": 1126.64, + "probability": 0.8031 + }, + { + "start": 1127.18, + "end": 1130.22, + "probability": 0.9964 + }, + { + "start": 1130.54, + "end": 1131.42, + "probability": 0.7927 + }, + { + "start": 1131.6, + "end": 1133.91, + "probability": 0.9587 + }, + { + "start": 1134.34, + "end": 1136.46, + "probability": 0.8728 + }, + { + "start": 1136.88, + "end": 1138.94, + "probability": 0.9702 + }, + { + "start": 1139.12, + "end": 1141.14, + "probability": 0.8456 + }, + { + "start": 1141.3, + "end": 1142.26, + "probability": 0.5874 + }, + { + "start": 1142.32, + "end": 1143.38, + "probability": 0.9438 + }, + { + "start": 1143.52, + "end": 1147.18, + "probability": 0.9794 + }, + { + "start": 1147.26, + "end": 1147.66, + "probability": 0.8393 + }, + { + "start": 1147.72, + "end": 1149.1, + "probability": 0.8345 + }, + { + "start": 1149.22, + "end": 1152.38, + "probability": 0.8567 + }, + { + "start": 1152.62, + "end": 1153.24, + "probability": 0.1858 + }, + { + "start": 1153.44, + "end": 1159.68, + "probability": 0.1557 + }, + { + "start": 1159.98, + "end": 1162.17, + "probability": 0.2706 + }, + { + "start": 1162.66, + "end": 1168.12, + "probability": 0.4698 + }, + { + "start": 1168.12, + "end": 1168.6, + "probability": 0.0526 + }, + { + "start": 1168.86, + "end": 1169.8, + "probability": 0.4388 + }, + { + "start": 1171.26, + "end": 1171.54, + "probability": 0.0279 + }, + { + "start": 1171.54, + "end": 1172.22, + "probability": 0.3279 + }, + { + "start": 1172.4, + "end": 1173.18, + "probability": 0.4975 + }, + { + "start": 1173.4, + "end": 1176.28, + "probability": 0.7285 + }, + { + "start": 1176.46, + "end": 1177.44, + "probability": 0.7043 + }, + { + "start": 1177.5, + "end": 1182.34, + "probability": 0.8234 + }, + { + "start": 1182.94, + "end": 1184.12, + "probability": 0.6124 + }, + { + "start": 1184.16, + "end": 1184.94, + "probability": 0.5755 + }, + { + "start": 1185.14, + "end": 1187.86, + "probability": 0.8711 + }, + { + "start": 1187.94, + "end": 1189.64, + "probability": 0.7724 + }, + { + "start": 1189.84, + "end": 1191.24, + "probability": 0.9928 + }, + { + "start": 1191.38, + "end": 1193.58, + "probability": 0.7564 + }, + { + "start": 1194.54, + "end": 1197.26, + "probability": 0.1387 + }, + { + "start": 1206.02, + "end": 1207.62, + "probability": 0.0676 + }, + { + "start": 1207.62, + "end": 1207.78, + "probability": 0.0612 + }, + { + "start": 1208.22, + "end": 1211.68, + "probability": 0.0194 + }, + { + "start": 1211.82, + "end": 1213.44, + "probability": 0.1089 + }, + { + "start": 1213.86, + "end": 1215.5, + "probability": 0.087 + }, + { + "start": 1216.6, + "end": 1217.78, + "probability": 0.3494 + }, + { + "start": 1217.86, + "end": 1217.98, + "probability": 0.382 + }, + { + "start": 1218.1, + "end": 1222.34, + "probability": 0.3373 + }, + { + "start": 1222.44, + "end": 1223.44, + "probability": 0.4275 + }, + { + "start": 1223.54, + "end": 1227.02, + "probability": 0.9022 + }, + { + "start": 1227.18, + "end": 1230.18, + "probability": 0.9485 + }, + { + "start": 1230.5, + "end": 1232.96, + "probability": 0.5957 + }, + { + "start": 1233.14, + "end": 1234.1, + "probability": 0.6228 + }, + { + "start": 1234.9, + "end": 1234.9, + "probability": 0.1452 + }, + { + "start": 1234.9, + "end": 1234.9, + "probability": 0.2609 + }, + { + "start": 1234.9, + "end": 1234.98, + "probability": 0.4481 + }, + { + "start": 1235.16, + "end": 1237.92, + "probability": 0.7711 + }, + { + "start": 1237.98, + "end": 1240.07, + "probability": 0.9657 + }, + { + "start": 1240.48, + "end": 1243.46, + "probability": 0.9448 + }, + { + "start": 1243.84, + "end": 1248.4, + "probability": 0.9941 + }, + { + "start": 1249.1, + "end": 1251.3, + "probability": 0.5789 + }, + { + "start": 1251.78, + "end": 1255.75, + "probability": 0.8984 + }, + { + "start": 1256.98, + "end": 1260.36, + "probability": 0.8186 + }, + { + "start": 1260.68, + "end": 1262.85, + "probability": 0.9921 + }, + { + "start": 1263.32, + "end": 1264.83, + "probability": 0.9707 + }, + { + "start": 1265.92, + "end": 1266.82, + "probability": 0.9265 + }, + { + "start": 1266.86, + "end": 1268.4, + "probability": 0.939 + }, + { + "start": 1268.86, + "end": 1275.34, + "probability": 0.9932 + }, + { + "start": 1276.02, + "end": 1279.74, + "probability": 0.9682 + }, + { + "start": 1279.86, + "end": 1280.68, + "probability": 0.9751 + }, + { + "start": 1281.56, + "end": 1291.68, + "probability": 0.965 + }, + { + "start": 1292.02, + "end": 1297.24, + "probability": 0.8105 + }, + { + "start": 1297.56, + "end": 1302.68, + "probability": 0.9818 + }, + { + "start": 1302.76, + "end": 1304.12, + "probability": 0.9901 + }, + { + "start": 1304.2, + "end": 1305.96, + "probability": 0.9905 + }, + { + "start": 1306.34, + "end": 1308.44, + "probability": 0.6594 + }, + { + "start": 1308.9, + "end": 1311.46, + "probability": 0.9136 + }, + { + "start": 1318.94, + "end": 1321.48, + "probability": 0.6861 + }, + { + "start": 1322.42, + "end": 1324.06, + "probability": 0.8348 + }, + { + "start": 1324.66, + "end": 1326.46, + "probability": 0.974 + }, + { + "start": 1327.26, + "end": 1329.04, + "probability": 0.9526 + }, + { + "start": 1329.92, + "end": 1332.74, + "probability": 0.9766 + }, + { + "start": 1333.22, + "end": 1336.38, + "probability": 0.9043 + }, + { + "start": 1338.0, + "end": 1340.74, + "probability": 0.6635 + }, + { + "start": 1341.3, + "end": 1345.24, + "probability": 0.979 + }, + { + "start": 1345.5, + "end": 1346.92, + "probability": 0.9954 + }, + { + "start": 1347.34, + "end": 1347.38, + "probability": 0.4468 + }, + { + "start": 1347.48, + "end": 1347.86, + "probability": 0.8662 + }, + { + "start": 1347.96, + "end": 1352.82, + "probability": 0.9955 + }, + { + "start": 1352.94, + "end": 1355.4, + "probability": 0.9704 + }, + { + "start": 1355.92, + "end": 1358.86, + "probability": 0.96 + }, + { + "start": 1359.46, + "end": 1360.14, + "probability": 0.5181 + }, + { + "start": 1360.74, + "end": 1363.46, + "probability": 0.9017 + }, + { + "start": 1363.88, + "end": 1366.3, + "probability": 0.9946 + }, + { + "start": 1367.7, + "end": 1368.56, + "probability": 0.0508 + }, + { + "start": 1368.82, + "end": 1371.38, + "probability": 0.8302 + }, + { + "start": 1371.9, + "end": 1374.78, + "probability": 0.9849 + }, + { + "start": 1375.48, + "end": 1377.0, + "probability": 0.9524 + }, + { + "start": 1377.32, + "end": 1382.14, + "probability": 0.9984 + }, + { + "start": 1382.26, + "end": 1383.44, + "probability": 0.7576 + }, + { + "start": 1384.08, + "end": 1385.66, + "probability": 0.9448 + }, + { + "start": 1385.76, + "end": 1387.08, + "probability": 0.8461 + }, + { + "start": 1387.44, + "end": 1388.12, + "probability": 0.28 + }, + { + "start": 1388.36, + "end": 1390.66, + "probability": 0.9199 + }, + { + "start": 1391.16, + "end": 1394.26, + "probability": 0.9493 + }, + { + "start": 1395.6, + "end": 1397.82, + "probability": 0.9297 + }, + { + "start": 1397.94, + "end": 1398.44, + "probability": 0.8017 + }, + { + "start": 1398.5, + "end": 1399.14, + "probability": 0.5826 + }, + { + "start": 1399.46, + "end": 1401.4, + "probability": 0.9888 + }, + { + "start": 1401.84, + "end": 1405.12, + "probability": 0.9329 + }, + { + "start": 1405.24, + "end": 1408.94, + "probability": 0.9932 + }, + { + "start": 1409.02, + "end": 1411.02, + "probability": 0.9348 + }, + { + "start": 1411.76, + "end": 1416.98, + "probability": 0.6668 + }, + { + "start": 1416.98, + "end": 1419.92, + "probability": 0.9909 + }, + { + "start": 1420.0, + "end": 1420.3, + "probability": 0.3338 + }, + { + "start": 1420.72, + "end": 1422.2, + "probability": 0.7616 + }, + { + "start": 1423.54, + "end": 1426.18, + "probability": 0.5639 + }, + { + "start": 1426.3, + "end": 1428.04, + "probability": 0.9121 + }, + { + "start": 1431.06, + "end": 1431.64, + "probability": 0.1443 + }, + { + "start": 1431.64, + "end": 1431.76, + "probability": 0.2289 + }, + { + "start": 1431.76, + "end": 1438.08, + "probability": 0.929 + }, + { + "start": 1439.12, + "end": 1442.46, + "probability": 0.9961 + }, + { + "start": 1442.54, + "end": 1444.22, + "probability": 0.9669 + }, + { + "start": 1444.28, + "end": 1445.02, + "probability": 0.7989 + }, + { + "start": 1445.34, + "end": 1446.38, + "probability": 0.869 + }, + { + "start": 1446.66, + "end": 1447.54, + "probability": 0.9522 + }, + { + "start": 1447.74, + "end": 1448.34, + "probability": 0.7781 + }, + { + "start": 1449.64, + "end": 1453.86, + "probability": 0.9621 + }, + { + "start": 1454.64, + "end": 1455.78, + "probability": 0.6547 + }, + { + "start": 1455.84, + "end": 1456.8, + "probability": 0.8937 + }, + { + "start": 1457.58, + "end": 1458.42, + "probability": 0.9414 + }, + { + "start": 1458.48, + "end": 1459.29, + "probability": 0.8802 + }, + { + "start": 1459.5, + "end": 1461.0, + "probability": 0.6526 + }, + { + "start": 1461.2, + "end": 1464.62, + "probability": 0.9829 + }, + { + "start": 1464.86, + "end": 1466.2, + "probability": 0.8093 + }, + { + "start": 1466.4, + "end": 1470.34, + "probability": 0.9562 + }, + { + "start": 1470.5, + "end": 1472.3, + "probability": 0.9606 + }, + { + "start": 1472.84, + "end": 1475.12, + "probability": 0.967 + }, + { + "start": 1475.26, + "end": 1481.72, + "probability": 0.9895 + }, + { + "start": 1481.78, + "end": 1482.9, + "probability": 0.6086 + }, + { + "start": 1483.88, + "end": 1486.16, + "probability": 0.993 + }, + { + "start": 1486.62, + "end": 1488.14, + "probability": 0.8205 + }, + { + "start": 1488.3, + "end": 1494.92, + "probability": 0.8938 + }, + { + "start": 1495.54, + "end": 1498.52, + "probability": 0.8052 + }, + { + "start": 1499.18, + "end": 1503.14, + "probability": 0.9951 + }, + { + "start": 1503.56, + "end": 1504.46, + "probability": 0.6943 + }, + { + "start": 1504.58, + "end": 1506.65, + "probability": 0.9845 + }, + { + "start": 1507.22, + "end": 1509.88, + "probability": 0.9374 + }, + { + "start": 1510.32, + "end": 1513.88, + "probability": 0.9937 + }, + { + "start": 1514.42, + "end": 1515.33, + "probability": 0.9796 + }, + { + "start": 1515.56, + "end": 1518.1, + "probability": 0.7603 + }, + { + "start": 1518.4, + "end": 1519.9, + "probability": 0.5433 + }, + { + "start": 1519.96, + "end": 1520.66, + "probability": 0.7134 + }, + { + "start": 1520.7, + "end": 1522.32, + "probability": 0.8027 + }, + { + "start": 1522.32, + "end": 1522.8, + "probability": 0.7882 + }, + { + "start": 1522.96, + "end": 1523.68, + "probability": 0.5977 + }, + { + "start": 1523.84, + "end": 1529.18, + "probability": 0.9869 + }, + { + "start": 1529.58, + "end": 1530.0, + "probability": 0.3141 + }, + { + "start": 1530.36, + "end": 1532.92, + "probability": 0.7894 + }, + { + "start": 1533.18, + "end": 1534.96, + "probability": 0.9298 + }, + { + "start": 1534.96, + "end": 1535.6, + "probability": 0.5108 + }, + { + "start": 1535.62, + "end": 1537.7, + "probability": 0.9509 + }, + { + "start": 1546.36, + "end": 1547.12, + "probability": 0.5581 + }, + { + "start": 1547.18, + "end": 1548.34, + "probability": 0.8392 + }, + { + "start": 1548.44, + "end": 1554.58, + "probability": 0.9891 + }, + { + "start": 1554.68, + "end": 1556.6, + "probability": 0.9627 + }, + { + "start": 1557.34, + "end": 1561.82, + "probability": 0.9526 + }, + { + "start": 1562.22, + "end": 1565.16, + "probability": 0.976 + }, + { + "start": 1566.02, + "end": 1567.98, + "probability": 0.8249 + }, + { + "start": 1568.12, + "end": 1570.62, + "probability": 0.9969 + }, + { + "start": 1570.68, + "end": 1574.08, + "probability": 0.9933 + }, + { + "start": 1574.52, + "end": 1576.92, + "probability": 0.9792 + }, + { + "start": 1577.84, + "end": 1581.58, + "probability": 0.7418 + }, + { + "start": 1581.6, + "end": 1583.22, + "probability": 0.8509 + }, + { + "start": 1583.56, + "end": 1586.66, + "probability": 0.9751 + }, + { + "start": 1586.66, + "end": 1589.34, + "probability": 0.991 + }, + { + "start": 1589.88, + "end": 1590.42, + "probability": 0.934 + }, + { + "start": 1590.54, + "end": 1591.44, + "probability": 0.9072 + }, + { + "start": 1591.76, + "end": 1594.9, + "probability": 0.9943 + }, + { + "start": 1595.94, + "end": 1596.28, + "probability": 0.7762 + }, + { + "start": 1596.48, + "end": 1600.5, + "probability": 0.9855 + }, + { + "start": 1600.64, + "end": 1600.9, + "probability": 0.2983 + }, + { + "start": 1600.94, + "end": 1601.12, + "probability": 0.7534 + }, + { + "start": 1601.14, + "end": 1603.85, + "probability": 0.9923 + }, + { + "start": 1604.32, + "end": 1611.12, + "probability": 0.9978 + }, + { + "start": 1611.38, + "end": 1613.54, + "probability": 0.999 + }, + { + "start": 1613.9, + "end": 1615.12, + "probability": 0.5793 + }, + { + "start": 1615.2, + "end": 1615.78, + "probability": 0.7131 + }, + { + "start": 1616.24, + "end": 1617.72, + "probability": 0.7685 + }, + { + "start": 1618.2, + "end": 1620.26, + "probability": 0.9321 + }, + { + "start": 1620.34, + "end": 1622.9, + "probability": 0.5084 + }, + { + "start": 1623.04, + "end": 1623.82, + "probability": 0.4433 + }, + { + "start": 1623.82, + "end": 1623.82, + "probability": 0.0926 + }, + { + "start": 1623.82, + "end": 1625.34, + "probability": 0.3776 + }, + { + "start": 1625.38, + "end": 1628.12, + "probability": 0.9188 + }, + { + "start": 1628.28, + "end": 1631.48, + "probability": 0.7805 + }, + { + "start": 1632.48, + "end": 1634.9, + "probability": 0.5522 + }, + { + "start": 1634.92, + "end": 1638.92, + "probability": 0.936 + }, + { + "start": 1639.04, + "end": 1639.86, + "probability": 0.8734 + }, + { + "start": 1639.98, + "end": 1640.24, + "probability": 0.7114 + }, + { + "start": 1640.56, + "end": 1642.52, + "probability": 0.9587 + }, + { + "start": 1642.9, + "end": 1644.64, + "probability": 0.8908 + }, + { + "start": 1644.84, + "end": 1645.58, + "probability": 0.6276 + }, + { + "start": 1645.84, + "end": 1647.42, + "probability": 0.9691 + }, + { + "start": 1648.1, + "end": 1648.24, + "probability": 0.1754 + }, + { + "start": 1648.24, + "end": 1648.36, + "probability": 0.2821 + }, + { + "start": 1648.36, + "end": 1648.91, + "probability": 0.7734 + }, + { + "start": 1649.12, + "end": 1650.08, + "probability": 0.5701 + }, + { + "start": 1650.16, + "end": 1651.36, + "probability": 0.8939 + }, + { + "start": 1651.52, + "end": 1656.04, + "probability": 0.9525 + }, + { + "start": 1656.04, + "end": 1659.8, + "probability": 0.9807 + }, + { + "start": 1659.9, + "end": 1663.12, + "probability": 0.8323 + }, + { + "start": 1663.28, + "end": 1664.32, + "probability": 0.959 + }, + { + "start": 1664.44, + "end": 1665.32, + "probability": 0.6316 + }, + { + "start": 1665.5, + "end": 1667.92, + "probability": 0.9198 + }, + { + "start": 1668.02, + "end": 1668.64, + "probability": 0.7985 + }, + { + "start": 1668.76, + "end": 1669.53, + "probability": 0.7925 + }, + { + "start": 1669.64, + "end": 1672.02, + "probability": 0.9649 + }, + { + "start": 1672.66, + "end": 1676.58, + "probability": 0.897 + }, + { + "start": 1676.9, + "end": 1681.12, + "probability": 0.9402 + }, + { + "start": 1681.22, + "end": 1682.4, + "probability": 0.9155 + }, + { + "start": 1682.64, + "end": 1685.14, + "probability": 0.8653 + }, + { + "start": 1685.26, + "end": 1687.26, + "probability": 0.8989 + }, + { + "start": 1687.54, + "end": 1691.37, + "probability": 0.9956 + }, + { + "start": 1691.9, + "end": 1696.46, + "probability": 0.9945 + }, + { + "start": 1696.46, + "end": 1701.26, + "probability": 0.9847 + }, + { + "start": 1701.84, + "end": 1702.38, + "probability": 0.6696 + }, + { + "start": 1702.58, + "end": 1704.36, + "probability": 0.9939 + }, + { + "start": 1704.6, + "end": 1709.14, + "probability": 0.946 + }, + { + "start": 1709.54, + "end": 1716.02, + "probability": 0.9688 + }, + { + "start": 1716.6, + "end": 1717.82, + "probability": 0.9645 + }, + { + "start": 1717.88, + "end": 1721.4, + "probability": 0.9313 + }, + { + "start": 1721.66, + "end": 1725.34, + "probability": 0.9799 + }, + { + "start": 1725.34, + "end": 1728.32, + "probability": 0.9973 + }, + { + "start": 1728.7, + "end": 1731.22, + "probability": 0.974 + }, + { + "start": 1731.56, + "end": 1732.58, + "probability": 0.8843 + }, + { + "start": 1732.6, + "end": 1733.54, + "probability": 0.8433 + }, + { + "start": 1733.66, + "end": 1737.16, + "probability": 0.9493 + }, + { + "start": 1737.7, + "end": 1737.94, + "probability": 0.3129 + }, + { + "start": 1737.94, + "end": 1739.14, + "probability": 0.7397 + }, + { + "start": 1739.22, + "end": 1740.94, + "probability": 0.7152 + }, + { + "start": 1741.58, + "end": 1744.5, + "probability": 0.9119 + }, + { + "start": 1748.66, + "end": 1751.55, + "probability": 0.7598 + }, + { + "start": 1752.74, + "end": 1755.22, + "probability": 0.7417 + }, + { + "start": 1755.22, + "end": 1759.46, + "probability": 0.7451 + }, + { + "start": 1759.62, + "end": 1766.4, + "probability": 0.8738 + }, + { + "start": 1766.76, + "end": 1771.46, + "probability": 0.8514 + }, + { + "start": 1771.46, + "end": 1772.04, + "probability": 0.5478 + }, + { + "start": 1772.64, + "end": 1773.92, + "probability": 0.9583 + }, + { + "start": 1774.06, + "end": 1776.74, + "probability": 0.812 + }, + { + "start": 1776.86, + "end": 1777.52, + "probability": 0.8331 + }, + { + "start": 1777.58, + "end": 1779.56, + "probability": 0.7509 + }, + { + "start": 1779.66, + "end": 1781.92, + "probability": 0.9133 + }, + { + "start": 1782.46, + "end": 1783.56, + "probability": 0.8813 + }, + { + "start": 1783.7, + "end": 1787.32, + "probability": 0.7939 + }, + { + "start": 1787.32, + "end": 1790.8, + "probability": 0.8263 + }, + { + "start": 1791.68, + "end": 1795.88, + "probability": 0.998 + }, + { + "start": 1796.14, + "end": 1796.98, + "probability": 0.529 + }, + { + "start": 1797.48, + "end": 1800.28, + "probability": 0.9904 + }, + { + "start": 1802.74, + "end": 1803.48, + "probability": 0.7004 + }, + { + "start": 1803.58, + "end": 1807.24, + "probability": 0.9967 + }, + { + "start": 1807.48, + "end": 1809.1, + "probability": 0.6312 + }, + { + "start": 1809.2, + "end": 1810.36, + "probability": 0.9647 + }, + { + "start": 1810.68, + "end": 1812.96, + "probability": 0.9165 + }, + { + "start": 1813.36, + "end": 1817.54, + "probability": 0.8479 + }, + { + "start": 1817.54, + "end": 1819.4, + "probability": 0.8364 + }, + { + "start": 1819.52, + "end": 1819.98, + "probability": 0.5053 + }, + { + "start": 1820.12, + "end": 1825.62, + "probability": 0.957 + }, + { + "start": 1825.72, + "end": 1826.74, + "probability": 0.8608 + }, + { + "start": 1827.04, + "end": 1828.46, + "probability": 0.8202 + }, + { + "start": 1828.6, + "end": 1829.02, + "probability": 0.5502 + }, + { + "start": 1829.18, + "end": 1830.12, + "probability": 0.7722 + }, + { + "start": 1831.22, + "end": 1832.32, + "probability": 0.8675 + }, + { + "start": 1832.56, + "end": 1833.26, + "probability": 0.6483 + }, + { + "start": 1833.62, + "end": 1833.88, + "probability": 0.9071 + }, + { + "start": 1833.94, + "end": 1836.18, + "probability": 0.6249 + }, + { + "start": 1836.22, + "end": 1837.06, + "probability": 0.9336 + }, + { + "start": 1837.18, + "end": 1839.12, + "probability": 0.9458 + }, + { + "start": 1839.12, + "end": 1839.56, + "probability": 0.231 + }, + { + "start": 1841.18, + "end": 1842.12, + "probability": 0.993 + }, + { + "start": 1842.98, + "end": 1843.56, + "probability": 0.8525 + }, + { + "start": 1843.56, + "end": 1844.1, + "probability": 0.5139 + }, + { + "start": 1844.2, + "end": 1846.42, + "probability": 0.7358 + }, + { + "start": 1847.28, + "end": 1848.66, + "probability": 0.8147 + }, + { + "start": 1848.8, + "end": 1850.74, + "probability": 0.7529 + }, + { + "start": 1850.82, + "end": 1853.35, + "probability": 0.8248 + }, + { + "start": 1853.6, + "end": 1855.36, + "probability": 0.8161 + }, + { + "start": 1856.04, + "end": 1857.85, + "probability": 0.7534 + }, + { + "start": 1858.18, + "end": 1860.92, + "probability": 0.9919 + }, + { + "start": 1861.06, + "end": 1864.2, + "probability": 0.9844 + }, + { + "start": 1864.46, + "end": 1868.26, + "probability": 0.954 + }, + { + "start": 1868.26, + "end": 1872.28, + "probability": 0.9795 + }, + { + "start": 1872.98, + "end": 1877.62, + "probability": 0.9974 + }, + { + "start": 1877.72, + "end": 1879.5, + "probability": 0.9318 + }, + { + "start": 1879.58, + "end": 1880.73, + "probability": 0.7805 + }, + { + "start": 1880.98, + "end": 1881.82, + "probability": 0.7831 + }, + { + "start": 1881.9, + "end": 1882.5, + "probability": 0.8518 + }, + { + "start": 1883.14, + "end": 1884.8, + "probability": 0.8589 + }, + { + "start": 1885.04, + "end": 1888.36, + "probability": 0.7695 + }, + { + "start": 1888.62, + "end": 1891.76, + "probability": 0.7551 + }, + { + "start": 1893.04, + "end": 1895.8, + "probability": 0.4857 + }, + { + "start": 1895.9, + "end": 1896.44, + "probability": 0.46 + }, + { + "start": 1896.74, + "end": 1898.14, + "probability": 0.7701 + }, + { + "start": 1899.2, + "end": 1900.74, + "probability": 0.8325 + }, + { + "start": 1900.9, + "end": 1904.22, + "probability": 0.7923 + }, + { + "start": 1904.4, + "end": 1906.36, + "probability": 0.7441 + }, + { + "start": 1906.66, + "end": 1907.92, + "probability": 0.4261 + }, + { + "start": 1908.04, + "end": 1909.5, + "probability": 0.8629 + }, + { + "start": 1909.92, + "end": 1911.23, + "probability": 0.9052 + }, + { + "start": 1911.8, + "end": 1917.84, + "probability": 0.7751 + }, + { + "start": 1917.96, + "end": 1920.36, + "probability": 0.9404 + }, + { + "start": 1920.44, + "end": 1923.18, + "probability": 0.7374 + }, + { + "start": 1923.34, + "end": 1923.69, + "probability": 0.7808 + }, + { + "start": 1924.3, + "end": 1928.92, + "probability": 0.9795 + }, + { + "start": 1929.42, + "end": 1932.0, + "probability": 0.9698 + }, + { + "start": 1932.36, + "end": 1933.98, + "probability": 0.8866 + }, + { + "start": 1934.04, + "end": 1939.42, + "probability": 0.9676 + }, + { + "start": 1939.86, + "end": 1940.06, + "probability": 0.2639 + }, + { + "start": 1940.18, + "end": 1943.38, + "probability": 0.9165 + }, + { + "start": 1943.38, + "end": 1946.26, + "probability": 0.9273 + }, + { + "start": 1946.64, + "end": 1950.48, + "probability": 0.9946 + }, + { + "start": 1950.58, + "end": 1954.46, + "probability": 0.9208 + }, + { + "start": 1954.58, + "end": 1956.5, + "probability": 0.9429 + }, + { + "start": 1957.94, + "end": 1960.98, + "probability": 0.4797 + }, + { + "start": 1961.1, + "end": 1962.2, + "probability": 0.5037 + }, + { + "start": 1962.24, + "end": 1965.0, + "probability": 0.9746 + }, + { + "start": 1965.38, + "end": 1967.08, + "probability": 0.9819 + }, + { + "start": 1967.14, + "end": 1971.72, + "probability": 0.9732 + }, + { + "start": 1971.8, + "end": 1972.6, + "probability": 0.6747 + }, + { + "start": 1972.64, + "end": 1973.64, + "probability": 0.9331 + }, + { + "start": 1973.84, + "end": 1977.94, + "probability": 0.9524 + }, + { + "start": 1977.94, + "end": 1981.4, + "probability": 0.9989 + }, + { + "start": 1981.44, + "end": 1981.72, + "probability": 0.6363 + }, + { + "start": 1982.06, + "end": 1983.82, + "probability": 0.7525 + }, + { + "start": 1983.96, + "end": 1986.26, + "probability": 0.5764 + }, + { + "start": 1986.36, + "end": 1987.96, + "probability": 0.7812 + }, + { + "start": 1989.42, + "end": 1991.3, + "probability": 0.805 + }, + { + "start": 1992.1, + "end": 1996.04, + "probability": 0.9707 + }, + { + "start": 1996.7, + "end": 2004.44, + "probability": 0.9406 + }, + { + "start": 2005.4, + "end": 2010.36, + "probability": 0.9716 + }, + { + "start": 2010.8, + "end": 2012.3, + "probability": 0.7659 + }, + { + "start": 2012.98, + "end": 2016.68, + "probability": 0.7693 + }, + { + "start": 2017.0, + "end": 2022.36, + "probability": 0.9962 + }, + { + "start": 2022.96, + "end": 2024.42, + "probability": 0.9766 + }, + { + "start": 2024.42, + "end": 2027.14, + "probability": 0.9542 + }, + { + "start": 2027.72, + "end": 2030.88, + "probability": 0.907 + }, + { + "start": 2031.26, + "end": 2036.18, + "probability": 0.9946 + }, + { + "start": 2036.18, + "end": 2040.54, + "probability": 0.9868 + }, + { + "start": 2040.94, + "end": 2043.98, + "probability": 0.9949 + }, + { + "start": 2044.02, + "end": 2044.76, + "probability": 0.6348 + }, + { + "start": 2044.8, + "end": 2045.63, + "probability": 0.9046 + }, + { + "start": 2046.32, + "end": 2049.92, + "probability": 0.9935 + }, + { + "start": 2050.5, + "end": 2052.68, + "probability": 0.9136 + }, + { + "start": 2053.02, + "end": 2054.34, + "probability": 0.8901 + }, + { + "start": 2054.44, + "end": 2055.48, + "probability": 0.7212 + }, + { + "start": 2055.72, + "end": 2056.38, + "probability": 0.9074 + }, + { + "start": 2056.62, + "end": 2058.62, + "probability": 0.6856 + }, + { + "start": 2061.34, + "end": 2065.92, + "probability": 0.4262 + }, + { + "start": 2066.16, + "end": 2069.58, + "probability": 0.7247 + }, + { + "start": 2070.8, + "end": 2071.36, + "probability": 0.6523 + }, + { + "start": 2072.98, + "end": 2074.92, + "probability": 0.265 + }, + { + "start": 2075.68, + "end": 2080.58, + "probability": 0.6824 + }, + { + "start": 2082.7, + "end": 2088.74, + "probability": 0.707 + }, + { + "start": 2088.82, + "end": 2091.03, + "probability": 0.6958 + }, + { + "start": 2092.1, + "end": 2095.96, + "probability": 0.9658 + }, + { + "start": 2096.28, + "end": 2101.44, + "probability": 0.9951 + }, + { + "start": 2102.14, + "end": 2109.84, + "probability": 0.995 + }, + { + "start": 2110.32, + "end": 2112.16, + "probability": 0.9556 + }, + { + "start": 2112.26, + "end": 2112.72, + "probability": 0.6238 + }, + { + "start": 2114.38, + "end": 2114.38, + "probability": 0.0544 + }, + { + "start": 2114.38, + "end": 2116.18, + "probability": 0.5015 + }, + { + "start": 2116.56, + "end": 2120.22, + "probability": 0.7591 + }, + { + "start": 2121.66, + "end": 2125.16, + "probability": 0.7384 + }, + { + "start": 2125.16, + "end": 2130.82, + "probability": 0.9751 + }, + { + "start": 2130.82, + "end": 2138.3, + "probability": 0.8341 + }, + { + "start": 2139.76, + "end": 2143.4, + "probability": 0.9923 + }, + { + "start": 2143.4, + "end": 2147.86, + "probability": 0.9985 + }, + { + "start": 2148.52, + "end": 2149.22, + "probability": 0.7604 + }, + { + "start": 2150.0, + "end": 2153.02, + "probability": 0.6613 + }, + { + "start": 2153.94, + "end": 2158.3, + "probability": 0.9907 + }, + { + "start": 2159.04, + "end": 2165.12, + "probability": 0.9944 + }, + { + "start": 2165.6, + "end": 2167.36, + "probability": 0.954 + }, + { + "start": 2168.26, + "end": 2172.62, + "probability": 0.9881 + }, + { + "start": 2172.62, + "end": 2178.54, + "probability": 0.979 + }, + { + "start": 2178.54, + "end": 2185.04, + "probability": 0.995 + }, + { + "start": 2185.18, + "end": 2186.72, + "probability": 0.9673 + }, + { + "start": 2187.32, + "end": 2190.28, + "probability": 0.9753 + }, + { + "start": 2190.9, + "end": 2195.96, + "probability": 0.9819 + }, + { + "start": 2196.84, + "end": 2200.66, + "probability": 0.8702 + }, + { + "start": 2200.66, + "end": 2204.68, + "probability": 0.9914 + }, + { + "start": 2204.82, + "end": 2205.92, + "probability": 0.7196 + }, + { + "start": 2206.38, + "end": 2207.44, + "probability": 0.9846 + }, + { + "start": 2209.42, + "end": 2211.28, + "probability": 0.7961 + }, + { + "start": 2211.44, + "end": 2212.52, + "probability": 0.5784 + }, + { + "start": 2212.66, + "end": 2215.34, + "probability": 0.9566 + }, + { + "start": 2215.46, + "end": 2217.22, + "probability": 0.8665 + }, + { + "start": 2218.18, + "end": 2220.74, + "probability": 0.6702 + }, + { + "start": 2221.46, + "end": 2224.4, + "probability": 0.988 + }, + { + "start": 2224.82, + "end": 2231.0, + "probability": 0.9601 + }, + { + "start": 2232.28, + "end": 2233.32, + "probability": 0.5918 + }, + { + "start": 2233.38, + "end": 2234.44, + "probability": 0.9516 + }, + { + "start": 2234.9, + "end": 2243.72, + "probability": 0.972 + }, + { + "start": 2246.08, + "end": 2251.32, + "probability": 0.9885 + }, + { + "start": 2251.96, + "end": 2252.94, + "probability": 0.8301 + }, + { + "start": 2253.76, + "end": 2256.92, + "probability": 0.8111 + }, + { + "start": 2258.02, + "end": 2259.46, + "probability": 0.9539 + }, + { + "start": 2260.66, + "end": 2262.18, + "probability": 0.9774 + }, + { + "start": 2262.74, + "end": 2266.98, + "probability": 0.9768 + }, + { + "start": 2267.64, + "end": 2269.5, + "probability": 0.9716 + }, + { + "start": 2269.84, + "end": 2270.84, + "probability": 0.926 + }, + { + "start": 2271.0, + "end": 2274.82, + "probability": 0.9695 + }, + { + "start": 2275.36, + "end": 2277.82, + "probability": 0.9918 + }, + { + "start": 2278.82, + "end": 2284.4, + "probability": 0.9353 + }, + { + "start": 2284.9, + "end": 2287.18, + "probability": 0.8632 + }, + { + "start": 2287.9, + "end": 2293.92, + "probability": 0.9465 + }, + { + "start": 2294.44, + "end": 2298.32, + "probability": 0.9969 + }, + { + "start": 2298.74, + "end": 2299.74, + "probability": 0.8787 + }, + { + "start": 2300.42, + "end": 2305.8, + "probability": 0.6849 + }, + { + "start": 2306.74, + "end": 2309.28, + "probability": 0.8085 + }, + { + "start": 2310.8, + "end": 2314.62, + "probability": 0.9919 + }, + { + "start": 2314.88, + "end": 2315.52, + "probability": 0.5567 + }, + { + "start": 2316.24, + "end": 2320.88, + "probability": 0.8428 + }, + { + "start": 2322.18, + "end": 2323.02, + "probability": 0.9224 + }, + { + "start": 2323.18, + "end": 2324.42, + "probability": 0.8703 + }, + { + "start": 2324.68, + "end": 2325.32, + "probability": 0.7904 + }, + { + "start": 2325.94, + "end": 2331.06, + "probability": 0.8649 + }, + { + "start": 2331.42, + "end": 2335.08, + "probability": 0.9428 + }, + { + "start": 2335.4, + "end": 2337.38, + "probability": 0.9696 + }, + { + "start": 2337.52, + "end": 2338.62, + "probability": 0.6575 + }, + { + "start": 2338.7, + "end": 2338.78, + "probability": 0.2734 + }, + { + "start": 2338.78, + "end": 2343.9, + "probability": 0.938 + }, + { + "start": 2344.42, + "end": 2344.86, + "probability": 0.6822 + }, + { + "start": 2344.92, + "end": 2350.1, + "probability": 0.9815 + }, + { + "start": 2350.44, + "end": 2353.2, + "probability": 0.8795 + }, + { + "start": 2353.46, + "end": 2355.38, + "probability": 0.9272 + }, + { + "start": 2357.22, + "end": 2358.06, + "probability": 0.7329 + }, + { + "start": 2358.2, + "end": 2359.68, + "probability": 0.8824 + }, + { + "start": 2360.6, + "end": 2363.72, + "probability": 0.9924 + }, + { + "start": 2363.76, + "end": 2365.24, + "probability": 0.9349 + }, + { + "start": 2365.3, + "end": 2367.56, + "probability": 0.9958 + }, + { + "start": 2368.48, + "end": 2370.56, + "probability": 0.9722 + }, + { + "start": 2370.7, + "end": 2372.56, + "probability": 0.8675 + }, + { + "start": 2372.68, + "end": 2376.38, + "probability": 0.9636 + }, + { + "start": 2377.56, + "end": 2386.1, + "probability": 0.9606 + }, + { + "start": 2386.74, + "end": 2390.82, + "probability": 0.9934 + }, + { + "start": 2391.68, + "end": 2399.9, + "probability": 0.989 + }, + { + "start": 2400.46, + "end": 2401.29, + "probability": 0.6892 + }, + { + "start": 2403.1, + "end": 2405.76, + "probability": 0.9863 + }, + { + "start": 2406.22, + "end": 2407.74, + "probability": 0.6511 + }, + { + "start": 2407.78, + "end": 2408.48, + "probability": 0.9779 + }, + { + "start": 2408.74, + "end": 2409.58, + "probability": 0.6876 + }, + { + "start": 2409.78, + "end": 2415.1, + "probability": 0.9719 + }, + { + "start": 2415.18, + "end": 2416.3, + "probability": 0.9415 + }, + { + "start": 2416.46, + "end": 2417.66, + "probability": 0.9445 + }, + { + "start": 2417.8, + "end": 2418.54, + "probability": 0.5491 + }, + { + "start": 2419.08, + "end": 2422.06, + "probability": 0.9543 + }, + { + "start": 2422.14, + "end": 2423.28, + "probability": 0.4017 + }, + { + "start": 2423.44, + "end": 2426.06, + "probability": 0.2468 + }, + { + "start": 2426.06, + "end": 2427.1, + "probability": 0.3084 + }, + { + "start": 2427.24, + "end": 2427.78, + "probability": 0.5188 + }, + { + "start": 2427.78, + "end": 2427.78, + "probability": 0.6237 + }, + { + "start": 2428.18, + "end": 2432.9, + "probability": 0.7388 + }, + { + "start": 2434.46, + "end": 2436.38, + "probability": 0.9213 + }, + { + "start": 2437.16, + "end": 2437.54, + "probability": 0.7156 + }, + { + "start": 2442.22, + "end": 2442.66, + "probability": 0.398 + }, + { + "start": 2443.52, + "end": 2445.34, + "probability": 0.7447 + }, + { + "start": 2446.34, + "end": 2450.14, + "probability": 0.8614 + }, + { + "start": 2451.46, + "end": 2456.72, + "probability": 0.869 + }, + { + "start": 2457.22, + "end": 2461.42, + "probability": 0.7748 + }, + { + "start": 2461.98, + "end": 2466.36, + "probability": 0.9984 + }, + { + "start": 2467.0, + "end": 2468.0, + "probability": 0.8064 + }, + { + "start": 2468.42, + "end": 2473.48, + "probability": 0.9273 + }, + { + "start": 2473.56, + "end": 2474.98, + "probability": 0.9939 + }, + { + "start": 2475.46, + "end": 2477.28, + "probability": 0.8016 + }, + { + "start": 2477.74, + "end": 2478.83, + "probability": 0.667 + }, + { + "start": 2479.7, + "end": 2482.04, + "probability": 0.937 + }, + { + "start": 2482.58, + "end": 2482.9, + "probability": 0.4419 + }, + { + "start": 2482.98, + "end": 2483.48, + "probability": 0.8788 + }, + { + "start": 2483.88, + "end": 2484.52, + "probability": 0.7743 + }, + { + "start": 2484.64, + "end": 2486.83, + "probability": 0.8516 + }, + { + "start": 2487.64, + "end": 2490.72, + "probability": 0.9631 + }, + { + "start": 2490.8, + "end": 2492.26, + "probability": 0.9907 + }, + { + "start": 2492.42, + "end": 2497.22, + "probability": 0.8828 + }, + { + "start": 2497.6, + "end": 2498.92, + "probability": 0.6445 + }, + { + "start": 2499.38, + "end": 2502.2, + "probability": 0.7861 + }, + { + "start": 2502.3, + "end": 2504.86, + "probability": 0.8039 + }, + { + "start": 2505.54, + "end": 2506.86, + "probability": 0.9395 + }, + { + "start": 2506.98, + "end": 2508.6, + "probability": 0.749 + }, + { + "start": 2509.12, + "end": 2511.08, + "probability": 0.6063 + }, + { + "start": 2512.2, + "end": 2513.84, + "probability": 0.6242 + }, + { + "start": 2513.84, + "end": 2515.32, + "probability": 0.7411 + }, + { + "start": 2515.54, + "end": 2516.58, + "probability": 0.316 + }, + { + "start": 2517.6, + "end": 2518.22, + "probability": 0.0139 + }, + { + "start": 2518.22, + "end": 2520.06, + "probability": 0.7455 + }, + { + "start": 2520.18, + "end": 2521.82, + "probability": 0.9747 + }, + { + "start": 2521.92, + "end": 2523.2, + "probability": 0.8682 + }, + { + "start": 2523.6, + "end": 2526.2, + "probability": 0.6616 + }, + { + "start": 2526.34, + "end": 2527.0, + "probability": 0.7245 + }, + { + "start": 2527.12, + "end": 2529.32, + "probability": 0.874 + }, + { + "start": 2529.44, + "end": 2529.76, + "probability": 0.6322 + }, + { + "start": 2529.86, + "end": 2536.02, + "probability": 0.7796 + }, + { + "start": 2536.02, + "end": 2540.6, + "probability": 0.9628 + }, + { + "start": 2541.02, + "end": 2547.02, + "probability": 0.9861 + }, + { + "start": 2548.22, + "end": 2552.08, + "probability": 0.9884 + }, + { + "start": 2552.68, + "end": 2556.1, + "probability": 0.8371 + }, + { + "start": 2556.12, + "end": 2559.38, + "probability": 0.9884 + }, + { + "start": 2560.22, + "end": 2562.0, + "probability": 0.9814 + }, + { + "start": 2562.2, + "end": 2563.22, + "probability": 0.9979 + }, + { + "start": 2563.94, + "end": 2564.68, + "probability": 0.6339 + }, + { + "start": 2564.92, + "end": 2568.92, + "probability": 0.9432 + }, + { + "start": 2569.28, + "end": 2571.26, + "probability": 0.9149 + }, + { + "start": 2572.24, + "end": 2575.12, + "probability": 0.9729 + }, + { + "start": 2575.12, + "end": 2579.68, + "probability": 0.7805 + }, + { + "start": 2580.62, + "end": 2583.4, + "probability": 0.676 + }, + { + "start": 2584.1, + "end": 2588.12, + "probability": 0.9773 + }, + { + "start": 2588.76, + "end": 2593.3, + "probability": 0.8826 + }, + { + "start": 2593.54, + "end": 2598.19, + "probability": 0.8564 + }, + { + "start": 2598.78, + "end": 2603.42, + "probability": 0.996 + }, + { + "start": 2608.14, + "end": 2608.6, + "probability": 0.073 + }, + { + "start": 2609.04, + "end": 2609.04, + "probability": 0.0301 + }, + { + "start": 2609.04, + "end": 2609.04, + "probability": 0.5408 + }, + { + "start": 2609.16, + "end": 2610.8, + "probability": 0.7753 + }, + { + "start": 2611.18, + "end": 2613.58, + "probability": 0.7372 + }, + { + "start": 2613.72, + "end": 2616.42, + "probability": 0.9946 + }, + { + "start": 2617.42, + "end": 2618.26, + "probability": 0.7518 + }, + { + "start": 2618.54, + "end": 2618.54, + "probability": 0.0734 + }, + { + "start": 2618.54, + "end": 2619.06, + "probability": 0.5117 + }, + { + "start": 2619.34, + "end": 2622.18, + "probability": 0.9814 + }, + { + "start": 2622.28, + "end": 2623.55, + "probability": 0.884 + }, + { + "start": 2623.9, + "end": 2624.24, + "probability": 0.1556 + }, + { + "start": 2628.32, + "end": 2629.82, + "probability": 0.0422 + }, + { + "start": 2631.4, + "end": 2632.38, + "probability": 0.0472 + }, + { + "start": 2632.38, + "end": 2632.94, + "probability": 0.1298 + }, + { + "start": 2635.4, + "end": 2636.07, + "probability": 0.1297 + }, + { + "start": 2637.3, + "end": 2637.6, + "probability": 0.0666 + }, + { + "start": 2637.6, + "end": 2638.55, + "probability": 0.1879 + }, + { + "start": 2639.22, + "end": 2639.71, + "probability": 0.0904 + }, + { + "start": 2640.66, + "end": 2641.72, + "probability": 0.2341 + }, + { + "start": 2642.06, + "end": 2642.92, + "probability": 0.3871 + }, + { + "start": 2643.04, + "end": 2643.98, + "probability": 0.5072 + }, + { + "start": 2644.1, + "end": 2644.38, + "probability": 0.5704 + }, + { + "start": 2644.44, + "end": 2645.22, + "probability": 0.8251 + }, + { + "start": 2645.22, + "end": 2647.64, + "probability": 0.9915 + }, + { + "start": 2647.76, + "end": 2651.12, + "probability": 0.9011 + }, + { + "start": 2651.16, + "end": 2652.2, + "probability": 0.5565 + }, + { + "start": 2652.22, + "end": 2654.58, + "probability": 0.8432 + }, + { + "start": 2654.64, + "end": 2658.28, + "probability": 0.8788 + }, + { + "start": 2658.3, + "end": 2659.58, + "probability": 0.8763 + }, + { + "start": 2659.62, + "end": 2660.6, + "probability": 0.8801 + }, + { + "start": 2660.94, + "end": 2661.78, + "probability": 0.7952 + }, + { + "start": 2661.94, + "end": 2663.32, + "probability": 0.8633 + }, + { + "start": 2663.54, + "end": 2667.24, + "probability": 0.894 + }, + { + "start": 2667.24, + "end": 2671.72, + "probability": 0.9736 + }, + { + "start": 2671.8, + "end": 2674.8, + "probability": 0.6686 + }, + { + "start": 2675.02, + "end": 2675.78, + "probability": 0.5761 + }, + { + "start": 2676.1, + "end": 2676.56, + "probability": 0.7986 + }, + { + "start": 2676.58, + "end": 2677.71, + "probability": 0.9678 + }, + { + "start": 2677.88, + "end": 2683.38, + "probability": 0.9908 + }, + { + "start": 2683.38, + "end": 2687.36, + "probability": 0.9974 + }, + { + "start": 2687.92, + "end": 2690.58, + "probability": 0.7511 + }, + { + "start": 2690.78, + "end": 2696.34, + "probability": 0.9778 + }, + { + "start": 2696.42, + "end": 2699.2, + "probability": 0.9961 + }, + { + "start": 2699.82, + "end": 2705.22, + "probability": 0.9883 + }, + { + "start": 2705.32, + "end": 2706.12, + "probability": 0.4822 + }, + { + "start": 2706.84, + "end": 2708.58, + "probability": 0.8738 + }, + { + "start": 2708.58, + "end": 2709.16, + "probability": 0.7341 + }, + { + "start": 2709.48, + "end": 2712.66, + "probability": 0.9796 + }, + { + "start": 2713.06, + "end": 2715.98, + "probability": 0.7654 + }, + { + "start": 2716.14, + "end": 2720.28, + "probability": 0.9814 + }, + { + "start": 2720.46, + "end": 2720.98, + "probability": 0.7043 + }, + { + "start": 2721.28, + "end": 2724.26, + "probability": 0.8194 + }, + { + "start": 2724.72, + "end": 2725.08, + "probability": 0.6179 + }, + { + "start": 2725.3, + "end": 2726.86, + "probability": 0.9415 + }, + { + "start": 2726.94, + "end": 2727.38, + "probability": 0.4696 + }, + { + "start": 2727.4, + "end": 2730.56, + "probability": 0.8857 + }, + { + "start": 2731.06, + "end": 2735.74, + "probability": 0.8778 + }, + { + "start": 2736.06, + "end": 2736.68, + "probability": 0.5406 + }, + { + "start": 2736.76, + "end": 2739.54, + "probability": 0.9184 + }, + { + "start": 2739.56, + "end": 2741.46, + "probability": 0.8722 + }, + { + "start": 2742.2, + "end": 2744.58, + "probability": 0.9306 + }, + { + "start": 2745.0, + "end": 2745.26, + "probability": 0.4709 + }, + { + "start": 2745.38, + "end": 2746.64, + "probability": 0.8455 + }, + { + "start": 2746.9, + "end": 2747.56, + "probability": 0.6915 + }, + { + "start": 2747.96, + "end": 2749.13, + "probability": 0.7621 + }, + { + "start": 2750.08, + "end": 2753.88, + "probability": 0.9591 + }, + { + "start": 2754.22, + "end": 2756.5, + "probability": 0.9874 + }, + { + "start": 2757.24, + "end": 2761.4, + "probability": 0.9646 + }, + { + "start": 2761.6, + "end": 2763.66, + "probability": 0.9393 + }, + { + "start": 2763.66, + "end": 2765.86, + "probability": 0.9795 + }, + { + "start": 2766.08, + "end": 2768.94, + "probability": 0.8307 + }, + { + "start": 2769.4, + "end": 2773.2, + "probability": 0.9766 + }, + { + "start": 2773.36, + "end": 2775.03, + "probability": 0.9778 + }, + { + "start": 2775.42, + "end": 2776.46, + "probability": 0.736 + }, + { + "start": 2776.5, + "end": 2776.64, + "probability": 0.4715 + }, + { + "start": 2776.84, + "end": 2777.42, + "probability": 0.8169 + }, + { + "start": 2778.04, + "end": 2778.68, + "probability": 0.3647 + }, + { + "start": 2778.74, + "end": 2780.42, + "probability": 0.7149 + }, + { + "start": 2780.48, + "end": 2782.46, + "probability": 0.852 + }, + { + "start": 2783.16, + "end": 2783.32, + "probability": 0.0672 + }, + { + "start": 2783.32, + "end": 2785.76, + "probability": 0.7506 + }, + { + "start": 2785.94, + "end": 2789.04, + "probability": 0.9585 + }, + { + "start": 2789.06, + "end": 2789.94, + "probability": 0.6884 + }, + { + "start": 2790.28, + "end": 2791.7, + "probability": 0.8256 + }, + { + "start": 2791.74, + "end": 2796.98, + "probability": 0.9885 + }, + { + "start": 2797.96, + "end": 2798.86, + "probability": 0.688 + }, + { + "start": 2799.0, + "end": 2802.89, + "probability": 0.9424 + }, + { + "start": 2803.98, + "end": 2808.84, + "probability": 0.0828 + }, + { + "start": 2808.84, + "end": 2808.84, + "probability": 0.1261 + }, + { + "start": 2808.84, + "end": 2810.98, + "probability": 0.2705 + }, + { + "start": 2811.82, + "end": 2815.46, + "probability": 0.2258 + }, + { + "start": 2816.74, + "end": 2817.3, + "probability": 0.2115 + }, + { + "start": 2817.3, + "end": 2818.26, + "probability": 0.0522 + }, + { + "start": 2818.26, + "end": 2819.08, + "probability": 0.4491 + }, + { + "start": 2826.44, + "end": 2827.84, + "probability": 0.9637 + }, + { + "start": 2828.54, + "end": 2828.98, + "probability": 0.8412 + }, + { + "start": 2829.22, + "end": 2829.26, + "probability": 0.2606 + }, + { + "start": 2829.26, + "end": 2829.67, + "probability": 0.2321 + }, + { + "start": 2830.92, + "end": 2833.24, + "probability": 0.7997 + }, + { + "start": 2833.24, + "end": 2834.18, + "probability": 0.83 + }, + { + "start": 2834.28, + "end": 2835.9, + "probability": 0.9902 + }, + { + "start": 2837.14, + "end": 2838.52, + "probability": 0.3988 + }, + { + "start": 2838.72, + "end": 2841.02, + "probability": 0.9544 + }, + { + "start": 2841.72, + "end": 2844.3, + "probability": 0.7899 + }, + { + "start": 2844.94, + "end": 2846.56, + "probability": 0.7797 + }, + { + "start": 2846.7, + "end": 2848.22, + "probability": 0.9059 + }, + { + "start": 2848.3, + "end": 2849.68, + "probability": 0.8377 + }, + { + "start": 2850.26, + "end": 2853.36, + "probability": 0.9386 + }, + { + "start": 2854.12, + "end": 2854.82, + "probability": 0.9563 + }, + { + "start": 2855.44, + "end": 2857.72, + "probability": 0.6687 + }, + { + "start": 2858.0, + "end": 2859.04, + "probability": 0.5362 + }, + { + "start": 2859.1, + "end": 2863.76, + "probability": 0.9521 + }, + { + "start": 2863.92, + "end": 2870.4, + "probability": 0.9961 + }, + { + "start": 2871.0, + "end": 2874.98, + "probability": 0.9742 + }, + { + "start": 2876.38, + "end": 2877.94, + "probability": 0.6171 + }, + { + "start": 2879.36, + "end": 2882.96, + "probability": 0.927 + }, + { + "start": 2882.96, + "end": 2885.9, + "probability": 0.9629 + }, + { + "start": 2885.9, + "end": 2886.14, + "probability": 0.4524 + }, + { + "start": 2886.26, + "end": 2886.87, + "probability": 0.998 + }, + { + "start": 2887.46, + "end": 2888.08, + "probability": 0.6889 + }, + { + "start": 2888.1, + "end": 2888.98, + "probability": 0.8162 + }, + { + "start": 2889.12, + "end": 2891.31, + "probability": 0.8872 + }, + { + "start": 2891.82, + "end": 2892.56, + "probability": 0.8342 + }, + { + "start": 2892.84, + "end": 2896.12, + "probability": 0.946 + }, + { + "start": 2896.12, + "end": 2899.16, + "probability": 0.8382 + }, + { + "start": 2899.64, + "end": 2903.7, + "probability": 0.9211 + }, + { + "start": 2904.16, + "end": 2909.68, + "probability": 0.886 + }, + { + "start": 2909.88, + "end": 2912.7, + "probability": 0.889 + }, + { + "start": 2912.82, + "end": 2913.36, + "probability": 0.5334 + }, + { + "start": 2913.44, + "end": 2918.94, + "probability": 0.854 + }, + { + "start": 2919.14, + "end": 2923.82, + "probability": 0.9469 + }, + { + "start": 2923.86, + "end": 2927.96, + "probability": 0.8385 + }, + { + "start": 2928.12, + "end": 2930.66, + "probability": 0.9465 + }, + { + "start": 2931.86, + "end": 2933.42, + "probability": 0.8372 + }, + { + "start": 2934.04, + "end": 2935.12, + "probability": 0.9433 + }, + { + "start": 2935.82, + "end": 2937.3, + "probability": 0.9444 + }, + { + "start": 2937.64, + "end": 2941.24, + "probability": 0.9871 + }, + { + "start": 2941.52, + "end": 2943.32, + "probability": 0.9961 + }, + { + "start": 2943.8, + "end": 2946.66, + "probability": 0.9937 + }, + { + "start": 2947.96, + "end": 2949.66, + "probability": 0.9721 + }, + { + "start": 2950.02, + "end": 2953.06, + "probability": 0.8975 + }, + { + "start": 2953.48, + "end": 2954.74, + "probability": 0.9972 + }, + { + "start": 2954.82, + "end": 2959.98, + "probability": 0.9797 + }, + { + "start": 2960.68, + "end": 2963.34, + "probability": 0.9888 + }, + { + "start": 2963.46, + "end": 2965.24, + "probability": 0.9656 + }, + { + "start": 2965.36, + "end": 2969.14, + "probability": 0.776 + }, + { + "start": 2969.7, + "end": 2972.88, + "probability": 0.9077 + }, + { + "start": 2972.88, + "end": 2978.28, + "probability": 0.9838 + }, + { + "start": 2978.8, + "end": 2980.48, + "probability": 0.594 + }, + { + "start": 2981.04, + "end": 2984.9, + "probability": 0.9753 + }, + { + "start": 2985.44, + "end": 2987.22, + "probability": 0.8687 + }, + { + "start": 2987.76, + "end": 2992.72, + "probability": 0.9873 + }, + { + "start": 2993.46, + "end": 2993.72, + "probability": 0.6125 + }, + { + "start": 2994.26, + "end": 2996.64, + "probability": 0.9781 + }, + { + "start": 2997.08, + "end": 2999.1, + "probability": 0.9452 + }, + { + "start": 2999.38, + "end": 3001.86, + "probability": 0.9878 + }, + { + "start": 3002.28, + "end": 3005.52, + "probability": 0.9922 + }, + { + "start": 3006.74, + "end": 3007.96, + "probability": 0.9526 + }, + { + "start": 3008.14, + "end": 3011.58, + "probability": 0.9487 + }, + { + "start": 3012.42, + "end": 3015.92, + "probability": 0.6773 + }, + { + "start": 3016.0, + "end": 3020.08, + "probability": 0.9657 + }, + { + "start": 3020.4, + "end": 3024.42, + "probability": 0.7664 + }, + { + "start": 3024.54, + "end": 3025.14, + "probability": 0.7628 + }, + { + "start": 3025.26, + "end": 3027.1, + "probability": 0.7645 + }, + { + "start": 3027.68, + "end": 3030.58, + "probability": 0.9067 + }, + { + "start": 3030.84, + "end": 3031.42, + "probability": 0.734 + }, + { + "start": 3031.48, + "end": 3034.3, + "probability": 0.7574 + }, + { + "start": 3034.5, + "end": 3035.23, + "probability": 0.9677 + }, + { + "start": 3036.36, + "end": 3038.72, + "probability": 0.6809 + }, + { + "start": 3039.32, + "end": 3043.42, + "probability": 0.995 + }, + { + "start": 3043.42, + "end": 3049.04, + "probability": 0.9967 + }, + { + "start": 3049.6, + "end": 3053.36, + "probability": 0.9673 + }, + { + "start": 3053.38, + "end": 3057.92, + "probability": 0.9964 + }, + { + "start": 3058.46, + "end": 3064.32, + "probability": 0.9506 + }, + { + "start": 3064.66, + "end": 3066.28, + "probability": 0.9586 + }, + { + "start": 3066.32, + "end": 3067.5, + "probability": 0.7495 + }, + { + "start": 3067.68, + "end": 3068.2, + "probability": 0.5504 + }, + { + "start": 3068.26, + "end": 3069.23, + "probability": 0.7297 + }, + { + "start": 3070.06, + "end": 3074.94, + "probability": 0.9465 + }, + { + "start": 3075.14, + "end": 3078.12, + "probability": 0.9469 + }, + { + "start": 3078.98, + "end": 3079.4, + "probability": 0.7047 + }, + { + "start": 3079.48, + "end": 3080.66, + "probability": 0.9533 + }, + { + "start": 3080.8, + "end": 3081.72, + "probability": 0.8616 + }, + { + "start": 3082.2, + "end": 3088.62, + "probability": 0.9312 + }, + { + "start": 3089.16, + "end": 3091.82, + "probability": 0.9606 + }, + { + "start": 3091.92, + "end": 3096.74, + "probability": 0.9927 + }, + { + "start": 3096.74, + "end": 3100.48, + "probability": 0.9711 + }, + { + "start": 3102.3, + "end": 3103.62, + "probability": 0.7483 + }, + { + "start": 3103.84, + "end": 3105.6, + "probability": 0.9133 + }, + { + "start": 3105.76, + "end": 3110.08, + "probability": 0.907 + }, + { + "start": 3110.56, + "end": 3116.18, + "probability": 0.9784 + }, + { + "start": 3116.8, + "end": 3120.84, + "probability": 0.9875 + }, + { + "start": 3121.68, + "end": 3127.38, + "probability": 0.9962 + }, + { + "start": 3127.98, + "end": 3131.8, + "probability": 0.8877 + }, + { + "start": 3131.8, + "end": 3135.92, + "probability": 0.9981 + }, + { + "start": 3136.34, + "end": 3137.76, + "probability": 0.7527 + }, + { + "start": 3138.32, + "end": 3139.98, + "probability": 0.8498 + }, + { + "start": 3140.72, + "end": 3144.58, + "probability": 0.989 + }, + { + "start": 3144.64, + "end": 3145.96, + "probability": 0.6836 + }, + { + "start": 3146.46, + "end": 3146.94, + "probability": 0.5187 + }, + { + "start": 3147.16, + "end": 3150.93, + "probability": 0.9619 + }, + { + "start": 3151.08, + "end": 3154.96, + "probability": 0.9938 + }, + { + "start": 3156.08, + "end": 3156.66, + "probability": 0.5311 + }, + { + "start": 3156.84, + "end": 3159.64, + "probability": 0.9406 + }, + { + "start": 3160.06, + "end": 3163.86, + "probability": 0.9919 + }, + { + "start": 3164.44, + "end": 3169.2, + "probability": 0.9714 + }, + { + "start": 3169.72, + "end": 3173.08, + "probability": 0.9029 + }, + { + "start": 3173.76, + "end": 3177.24, + "probability": 0.9923 + }, + { + "start": 3177.24, + "end": 3180.9, + "probability": 0.9901 + }, + { + "start": 3181.34, + "end": 3184.24, + "probability": 0.9959 + }, + { + "start": 3184.74, + "end": 3186.06, + "probability": 0.5526 + }, + { + "start": 3187.04, + "end": 3191.22, + "probability": 0.9935 + }, + { + "start": 3191.68, + "end": 3192.1, + "probability": 0.4033 + }, + { + "start": 3192.26, + "end": 3195.56, + "probability": 0.9447 + }, + { + "start": 3195.98, + "end": 3196.24, + "probability": 0.4107 + }, + { + "start": 3196.38, + "end": 3197.8, + "probability": 0.8408 + }, + { + "start": 3198.34, + "end": 3202.7, + "probability": 0.9909 + }, + { + "start": 3203.22, + "end": 3206.7, + "probability": 0.9826 + }, + { + "start": 3206.7, + "end": 3210.8, + "probability": 0.9961 + }, + { + "start": 3211.46, + "end": 3213.34, + "probability": 0.9846 + }, + { + "start": 3213.82, + "end": 3218.14, + "probability": 0.9758 + }, + { + "start": 3218.72, + "end": 3221.73, + "probability": 0.7578 + }, + { + "start": 3222.82, + "end": 3224.02, + "probability": 0.8199 + }, + { + "start": 3224.64, + "end": 3225.72, + "probability": 0.9271 + }, + { + "start": 3225.84, + "end": 3228.4, + "probability": 0.894 + }, + { + "start": 3228.56, + "end": 3230.9, + "probability": 0.9792 + }, + { + "start": 3231.48, + "end": 3234.84, + "probability": 0.9869 + }, + { + "start": 3234.84, + "end": 3238.22, + "probability": 0.9299 + }, + { + "start": 3238.32, + "end": 3243.16, + "probability": 0.9813 + }, + { + "start": 3243.82, + "end": 3250.48, + "probability": 0.9701 + }, + { + "start": 3251.06, + "end": 3251.46, + "probability": 0.496 + }, + { + "start": 3251.48, + "end": 3253.14, + "probability": 0.7568 + }, + { + "start": 3253.58, + "end": 3257.36, + "probability": 0.9798 + }, + { + "start": 3257.72, + "end": 3258.24, + "probability": 0.6404 + }, + { + "start": 3258.3, + "end": 3261.92, + "probability": 0.8421 + }, + { + "start": 3262.04, + "end": 3262.4, + "probability": 0.7071 + }, + { + "start": 3262.62, + "end": 3265.06, + "probability": 0.6344 + }, + { + "start": 3265.22, + "end": 3267.16, + "probability": 0.8759 + }, + { + "start": 3268.2, + "end": 3269.12, + "probability": 0.8776 + }, + { + "start": 3269.26, + "end": 3270.7, + "probability": 0.9313 + }, + { + "start": 3270.84, + "end": 3271.64, + "probability": 0.5572 + }, + { + "start": 3271.76, + "end": 3273.18, + "probability": 0.7313 + }, + { + "start": 3273.28, + "end": 3275.44, + "probability": 0.9906 + }, + { + "start": 3275.64, + "end": 3277.66, + "probability": 0.9924 + }, + { + "start": 3277.88, + "end": 3280.04, + "probability": 0.9744 + }, + { + "start": 3280.6, + "end": 3285.34, + "probability": 0.9976 + }, + { + "start": 3285.9, + "end": 3291.9, + "probability": 0.9587 + }, + { + "start": 3292.2, + "end": 3292.72, + "probability": 0.5568 + }, + { + "start": 3293.02, + "end": 3293.26, + "probability": 0.3349 + }, + { + "start": 3293.38, + "end": 3294.36, + "probability": 0.8253 + }, + { + "start": 3294.76, + "end": 3297.08, + "probability": 0.9881 + }, + { + "start": 3297.12, + "end": 3298.34, + "probability": 0.9917 + }, + { + "start": 3298.44, + "end": 3303.5, + "probability": 0.8835 + }, + { + "start": 3303.66, + "end": 3306.2, + "probability": 0.9954 + }, + { + "start": 3306.28, + "end": 3307.4, + "probability": 0.941 + }, + { + "start": 3307.46, + "end": 3308.46, + "probability": 0.7429 + }, + { + "start": 3308.58, + "end": 3311.14, + "probability": 0.7549 + }, + { + "start": 3311.14, + "end": 3311.62, + "probability": 0.6851 + }, + { + "start": 3311.68, + "end": 3311.88, + "probability": 0.7697 + }, + { + "start": 3312.1, + "end": 3313.12, + "probability": 0.8445 + }, + { + "start": 3313.24, + "end": 3313.52, + "probability": 0.5257 + }, + { + "start": 3313.62, + "end": 3315.1, + "probability": 0.7889 + }, + { + "start": 3316.38, + "end": 3319.04, + "probability": 0.8319 + }, + { + "start": 3320.02, + "end": 3323.74, + "probability": 0.9692 + }, + { + "start": 3324.28, + "end": 3329.04, + "probability": 0.9631 + }, + { + "start": 3331.2, + "end": 3333.72, + "probability": 0.9123 + }, + { + "start": 3335.36, + "end": 3337.34, + "probability": 0.7868 + }, + { + "start": 3338.34, + "end": 3341.92, + "probability": 0.9728 + }, + { + "start": 3342.98, + "end": 3347.58, + "probability": 0.8893 + }, + { + "start": 3349.4, + "end": 3357.14, + "probability": 0.9942 + }, + { + "start": 3357.14, + "end": 3364.18, + "probability": 0.9633 + }, + { + "start": 3365.62, + "end": 3371.44, + "probability": 0.9484 + }, + { + "start": 3373.06, + "end": 3373.18, + "probability": 0.2756 + }, + { + "start": 3373.22, + "end": 3379.32, + "probability": 0.9577 + }, + { + "start": 3379.98, + "end": 3383.3, + "probability": 0.9155 + }, + { + "start": 3384.96, + "end": 3388.56, + "probability": 0.9911 + }, + { + "start": 3390.04, + "end": 3391.72, + "probability": 0.9446 + }, + { + "start": 3392.9, + "end": 3394.42, + "probability": 0.6711 + }, + { + "start": 3396.04, + "end": 3397.18, + "probability": 0.6371 + }, + { + "start": 3398.54, + "end": 3401.32, + "probability": 0.9374 + }, + { + "start": 3401.94, + "end": 3404.52, + "probability": 0.86 + }, + { + "start": 3405.96, + "end": 3412.46, + "probability": 0.9898 + }, + { + "start": 3414.24, + "end": 3414.5, + "probability": 0.843 + }, + { + "start": 3415.62, + "end": 3419.52, + "probability": 0.9371 + }, + { + "start": 3421.42, + "end": 3423.5, + "probability": 0.7713 + }, + { + "start": 3424.16, + "end": 3429.78, + "probability": 0.9662 + }, + { + "start": 3431.24, + "end": 3433.54, + "probability": 0.8966 + }, + { + "start": 3433.54, + "end": 3438.42, + "probability": 0.8212 + }, + { + "start": 3438.82, + "end": 3439.38, + "probability": 0.7264 + }, + { + "start": 3439.98, + "end": 3441.5, + "probability": 0.8706 + }, + { + "start": 3442.44, + "end": 3445.86, + "probability": 0.7672 + }, + { + "start": 3445.92, + "end": 3448.7, + "probability": 0.5582 + }, + { + "start": 3449.32, + "end": 3452.98, + "probability": 0.9296 + }, + { + "start": 3453.14, + "end": 3459.56, + "probability": 0.9438 + }, + { + "start": 3460.62, + "end": 3464.5, + "probability": 0.9934 + }, + { + "start": 3465.88, + "end": 3468.08, + "probability": 0.898 + }, + { + "start": 3468.54, + "end": 3470.8, + "probability": 0.8286 + }, + { + "start": 3472.16, + "end": 3476.52, + "probability": 0.9959 + }, + { + "start": 3476.9, + "end": 3480.38, + "probability": 0.7554 + }, + { + "start": 3481.86, + "end": 3486.0, + "probability": 0.932 + }, + { + "start": 3486.0, + "end": 3491.32, + "probability": 0.9941 + }, + { + "start": 3491.56, + "end": 3493.9, + "probability": 0.9214 + }, + { + "start": 3495.5, + "end": 3499.05, + "probability": 0.8776 + }, + { + "start": 3500.7, + "end": 3504.36, + "probability": 0.9872 + }, + { + "start": 3504.36, + "end": 3507.58, + "probability": 0.9943 + }, + { + "start": 3508.66, + "end": 3514.98, + "probability": 0.9781 + }, + { + "start": 3515.86, + "end": 3519.78, + "probability": 0.9875 + }, + { + "start": 3519.78, + "end": 3523.64, + "probability": 0.9746 + }, + { + "start": 3524.66, + "end": 3526.24, + "probability": 0.8989 + }, + { + "start": 3526.96, + "end": 3530.22, + "probability": 0.9406 + }, + { + "start": 3531.02, + "end": 3532.18, + "probability": 0.8403 + }, + { + "start": 3532.28, + "end": 3537.38, + "probability": 0.8311 + }, + { + "start": 3537.38, + "end": 3541.84, + "probability": 0.9747 + }, + { + "start": 3542.06, + "end": 3548.62, + "probability": 0.9846 + }, + { + "start": 3549.62, + "end": 3552.3, + "probability": 0.9983 + }, + { + "start": 3552.3, + "end": 3555.8, + "probability": 0.998 + }, + { + "start": 3555.8, + "end": 3560.8, + "probability": 0.9891 + }, + { + "start": 3561.32, + "end": 3566.02, + "probability": 0.9259 + }, + { + "start": 3566.72, + "end": 3569.84, + "probability": 0.7793 + }, + { + "start": 3569.84, + "end": 3572.86, + "probability": 0.9836 + }, + { + "start": 3573.76, + "end": 3574.52, + "probability": 0.5974 + }, + { + "start": 3575.12, + "end": 3577.82, + "probability": 0.8848 + }, + { + "start": 3577.88, + "end": 3579.34, + "probability": 0.9662 + }, + { + "start": 3580.06, + "end": 3582.62, + "probability": 0.99 + }, + { + "start": 3582.62, + "end": 3585.94, + "probability": 0.9865 + }, + { + "start": 3586.8, + "end": 3589.64, + "probability": 0.9881 + }, + { + "start": 3591.08, + "end": 3597.66, + "probability": 0.9693 + }, + { + "start": 3599.02, + "end": 3601.62, + "probability": 0.7734 + }, + { + "start": 3602.96, + "end": 3606.08, + "probability": 0.9298 + }, + { + "start": 3606.74, + "end": 3610.54, + "probability": 0.9807 + }, + { + "start": 3611.96, + "end": 3616.1, + "probability": 0.8094 + }, + { + "start": 3616.1, + "end": 3619.26, + "probability": 0.9795 + }, + { + "start": 3619.5, + "end": 3624.54, + "probability": 0.9939 + }, + { + "start": 3625.4, + "end": 3626.98, + "probability": 0.8579 + }, + { + "start": 3627.04, + "end": 3630.38, + "probability": 0.9746 + }, + { + "start": 3630.72, + "end": 3635.16, + "probability": 0.9943 + }, + { + "start": 3635.82, + "end": 3643.66, + "probability": 0.9974 + }, + { + "start": 3644.26, + "end": 3648.9, + "probability": 0.9702 + }, + { + "start": 3648.9, + "end": 3653.72, + "probability": 0.9806 + }, + { + "start": 3654.42, + "end": 3659.54, + "probability": 0.9512 + }, + { + "start": 3659.88, + "end": 3664.36, + "probability": 0.9961 + }, + { + "start": 3665.54, + "end": 3669.36, + "probability": 0.9963 + }, + { + "start": 3670.16, + "end": 3675.56, + "probability": 0.9943 + }, + { + "start": 3676.58, + "end": 3681.88, + "probability": 0.9226 + }, + { + "start": 3683.04, + "end": 3686.06, + "probability": 0.9846 + }, + { + "start": 3686.5, + "end": 3690.08, + "probability": 0.9906 + }, + { + "start": 3690.08, + "end": 3693.96, + "probability": 0.9988 + }, + { + "start": 3695.3, + "end": 3698.1, + "probability": 0.999 + }, + { + "start": 3698.1, + "end": 3703.0, + "probability": 0.9946 + }, + { + "start": 3703.52, + "end": 3706.82, + "probability": 0.7628 + }, + { + "start": 3707.2, + "end": 3708.94, + "probability": 0.9606 + }, + { + "start": 3709.4, + "end": 3713.05, + "probability": 0.8536 + }, + { + "start": 3713.38, + "end": 3714.84, + "probability": 0.6885 + }, + { + "start": 3715.28, + "end": 3717.6, + "probability": 0.9754 + }, + { + "start": 3717.96, + "end": 3719.36, + "probability": 0.8518 + }, + { + "start": 3719.8, + "end": 3720.96, + "probability": 0.96 + }, + { + "start": 3721.08, + "end": 3724.32, + "probability": 0.9772 + }, + { + "start": 3724.68, + "end": 3725.1, + "probability": 0.8223 + }, + { + "start": 3725.64, + "end": 3729.82, + "probability": 0.9884 + }, + { + "start": 3730.2, + "end": 3730.34, + "probability": 0.7732 + }, + { + "start": 3730.5, + "end": 3731.14, + "probability": 0.6762 + }, + { + "start": 3731.34, + "end": 3732.12, + "probability": 0.7527 + }, + { + "start": 3732.38, + "end": 3734.07, + "probability": 0.9688 + }, + { + "start": 3734.48, + "end": 3737.58, + "probability": 0.9617 + }, + { + "start": 3738.04, + "end": 3738.74, + "probability": 0.838 + }, + { + "start": 3738.82, + "end": 3739.18, + "probability": 0.8242 + }, + { + "start": 3739.9, + "end": 3742.38, + "probability": 0.7984 + }, + { + "start": 3743.53, + "end": 3745.34, + "probability": 0.9485 + }, + { + "start": 3745.5, + "end": 3745.98, + "probability": 0.5578 + }, + { + "start": 3746.0, + "end": 3746.54, + "probability": 0.7977 + }, + { + "start": 3746.62, + "end": 3748.38, + "probability": 0.973 + }, + { + "start": 3749.26, + "end": 3749.64, + "probability": 0.3181 + }, + { + "start": 3750.36, + "end": 3750.46, + "probability": 0.0759 + }, + { + "start": 3750.54, + "end": 3754.18, + "probability": 0.7568 + }, + { + "start": 3754.48, + "end": 3758.26, + "probability": 0.99 + }, + { + "start": 3758.44, + "end": 3759.82, + "probability": 0.8028 + }, + { + "start": 3760.2, + "end": 3761.4, + "probability": 0.8335 + }, + { + "start": 3762.3, + "end": 3764.82, + "probability": 0.6637 + }, + { + "start": 3764.9, + "end": 3765.4, + "probability": 0.6892 + }, + { + "start": 3765.48, + "end": 3768.18, + "probability": 0.8868 + }, + { + "start": 3768.48, + "end": 3772.36, + "probability": 0.9762 + }, + { + "start": 3772.4, + "end": 3773.7, + "probability": 0.9166 + }, + { + "start": 3773.96, + "end": 3775.76, + "probability": 0.825 + }, + { + "start": 3776.02, + "end": 3777.22, + "probability": 0.6264 + }, + { + "start": 3777.9, + "end": 3777.9, + "probability": 0.2769 + }, + { + "start": 3777.9, + "end": 3779.46, + "probability": 0.6113 + }, + { + "start": 3779.66, + "end": 3786.44, + "probability": 0.8448 + }, + { + "start": 3787.12, + "end": 3788.28, + "probability": 0.9748 + }, + { + "start": 3789.72, + "end": 3790.48, + "probability": 0.8885 + }, + { + "start": 3790.62, + "end": 3795.32, + "probability": 0.9722 + }, + { + "start": 3796.22, + "end": 3801.04, + "probability": 0.9919 + }, + { + "start": 3801.24, + "end": 3803.32, + "probability": 0.9722 + }, + { + "start": 3804.28, + "end": 3806.0, + "probability": 0.7444 + }, + { + "start": 3806.84, + "end": 3809.58, + "probability": 0.9438 + }, + { + "start": 3810.14, + "end": 3816.22, + "probability": 0.9918 + }, + { + "start": 3817.18, + "end": 3822.56, + "probability": 0.9683 + }, + { + "start": 3823.08, + "end": 3826.12, + "probability": 0.8406 + }, + { + "start": 3826.74, + "end": 3828.42, + "probability": 0.8586 + }, + { + "start": 3830.1, + "end": 3832.74, + "probability": 0.9027 + }, + { + "start": 3833.44, + "end": 3836.02, + "probability": 0.9821 + }, + { + "start": 3836.72, + "end": 3838.54, + "probability": 0.8845 + }, + { + "start": 3839.1, + "end": 3842.38, + "probability": 0.979 + }, + { + "start": 3843.02, + "end": 3849.72, + "probability": 0.9492 + }, + { + "start": 3850.14, + "end": 3851.5, + "probability": 0.9313 + }, + { + "start": 3851.74, + "end": 3852.72, + "probability": 0.5503 + }, + { + "start": 3853.28, + "end": 3853.74, + "probability": 0.9883 + }, + { + "start": 3854.28, + "end": 3854.92, + "probability": 0.9335 + }, + { + "start": 3857.38, + "end": 3859.24, + "probability": 0.9978 + }, + { + "start": 3861.78, + "end": 3866.94, + "probability": 0.7017 + }, + { + "start": 3867.9, + "end": 3871.48, + "probability": 0.8346 + }, + { + "start": 3871.86, + "end": 3873.2, + "probability": 0.8589 + }, + { + "start": 3874.4, + "end": 3876.92, + "probability": 0.8143 + }, + { + "start": 3877.34, + "end": 3878.58, + "probability": 0.8116 + }, + { + "start": 3878.8, + "end": 3879.22, + "probability": 0.3335 + }, + { + "start": 3879.82, + "end": 3882.58, + "probability": 0.9991 + }, + { + "start": 3883.1, + "end": 3884.82, + "probability": 0.7319 + }, + { + "start": 3885.36, + "end": 3889.71, + "probability": 0.9989 + }, + { + "start": 3890.8, + "end": 3894.5, + "probability": 0.9938 + }, + { + "start": 3895.06, + "end": 3898.48, + "probability": 0.9957 + }, + { + "start": 3899.4, + "end": 3901.56, + "probability": 0.9001 + }, + { + "start": 3902.04, + "end": 3903.16, + "probability": 0.9597 + }, + { + "start": 3903.16, + "end": 3904.9, + "probability": 0.9726 + }, + { + "start": 3905.36, + "end": 3906.44, + "probability": 0.6273 + }, + { + "start": 3906.7, + "end": 3909.02, + "probability": 0.9654 + }, + { + "start": 3910.38, + "end": 3914.2, + "probability": 0.9693 + }, + { + "start": 3914.62, + "end": 3921.42, + "probability": 0.9476 + }, + { + "start": 3921.88, + "end": 3925.82, + "probability": 0.943 + }, + { + "start": 3925.98, + "end": 3928.7, + "probability": 0.973 + }, + { + "start": 3929.1, + "end": 3934.0, + "probability": 0.9842 + }, + { + "start": 3934.0, + "end": 3938.76, + "probability": 0.9302 + }, + { + "start": 3939.56, + "end": 3944.04, + "probability": 0.8604 + }, + { + "start": 3944.54, + "end": 3946.3, + "probability": 0.9973 + }, + { + "start": 3946.98, + "end": 3951.58, + "probability": 0.9627 + }, + { + "start": 3952.18, + "end": 3952.78, + "probability": 0.5718 + }, + { + "start": 3952.86, + "end": 3957.66, + "probability": 0.9749 + }, + { + "start": 3957.94, + "end": 3959.64, + "probability": 0.7971 + }, + { + "start": 3959.88, + "end": 3960.36, + "probability": 0.7023 + }, + { + "start": 3960.94, + "end": 3963.1, + "probability": 0.9073 + }, + { + "start": 3963.64, + "end": 3965.22, + "probability": 0.9904 + }, + { + "start": 3965.4, + "end": 3968.14, + "probability": 0.9274 + }, + { + "start": 3968.14, + "end": 3971.32, + "probability": 0.9304 + }, + { + "start": 3971.98, + "end": 3976.34, + "probability": 0.983 + }, + { + "start": 3977.2, + "end": 3979.3, + "probability": 0.9899 + }, + { + "start": 3981.34, + "end": 3983.18, + "probability": 0.7837 + }, + { + "start": 3983.58, + "end": 3986.4, + "probability": 0.8142 + }, + { + "start": 3986.48, + "end": 3989.28, + "probability": 0.9824 + }, + { + "start": 3989.4, + "end": 3990.3, + "probability": 0.9137 + }, + { + "start": 3990.84, + "end": 3994.3, + "probability": 0.9811 + }, + { + "start": 3994.72, + "end": 3996.22, + "probability": 0.8531 + }, + { + "start": 3996.4, + "end": 3998.16, + "probability": 0.7394 + }, + { + "start": 3998.56, + "end": 4000.9, + "probability": 0.691 + }, + { + "start": 4001.54, + "end": 4005.26, + "probability": 0.9692 + }, + { + "start": 4005.68, + "end": 4008.08, + "probability": 0.9202 + }, + { + "start": 4008.8, + "end": 4009.28, + "probability": 0.8715 + }, + { + "start": 4009.8, + "end": 4013.68, + "probability": 0.8811 + }, + { + "start": 4014.82, + "end": 4016.06, + "probability": 0.6694 + }, + { + "start": 4016.08, + "end": 4016.78, + "probability": 0.755 + }, + { + "start": 4016.9, + "end": 4018.62, + "probability": 0.9703 + }, + { + "start": 4019.1, + "end": 4020.76, + "probability": 0.738 + }, + { + "start": 4021.08, + "end": 4022.26, + "probability": 0.925 + }, + { + "start": 4022.58, + "end": 4023.84, + "probability": 0.9822 + }, + { + "start": 4024.38, + "end": 4027.04, + "probability": 0.958 + }, + { + "start": 4027.04, + "end": 4030.56, + "probability": 0.9888 + }, + { + "start": 4031.4, + "end": 4032.46, + "probability": 0.7216 + }, + { + "start": 4032.72, + "end": 4034.86, + "probability": 0.7654 + }, + { + "start": 4035.34, + "end": 4038.96, + "probability": 0.7949 + }, + { + "start": 4039.6, + "end": 4042.96, + "probability": 0.9653 + }, + { + "start": 4043.5, + "end": 4047.9, + "probability": 0.9845 + }, + { + "start": 4048.06, + "end": 4048.82, + "probability": 0.7992 + }, + { + "start": 4048.88, + "end": 4051.52, + "probability": 0.9836 + }, + { + "start": 4052.46, + "end": 4053.78, + "probability": 0.9064 + }, + { + "start": 4053.82, + "end": 4054.12, + "probability": 0.8967 + }, + { + "start": 4054.14, + "end": 4057.3, + "probability": 0.9764 + }, + { + "start": 4057.68, + "end": 4062.38, + "probability": 0.9954 + }, + { + "start": 4062.78, + "end": 4064.72, + "probability": 0.81 + }, + { + "start": 4064.76, + "end": 4065.58, + "probability": 0.9369 + }, + { + "start": 4066.08, + "end": 4066.28, + "probability": 0.7426 + }, + { + "start": 4067.52, + "end": 4069.7, + "probability": 0.978 + }, + { + "start": 4070.26, + "end": 4072.52, + "probability": 0.6551 + }, + { + "start": 4072.6, + "end": 4074.68, + "probability": 0.7018 + }, + { + "start": 4083.28, + "end": 4084.44, + "probability": 0.7397 + }, + { + "start": 4087.94, + "end": 4089.92, + "probability": 0.823 + }, + { + "start": 4090.02, + "end": 4096.94, + "probability": 0.9745 + }, + { + "start": 4096.94, + "end": 4101.4, + "probability": 0.9947 + }, + { + "start": 4102.46, + "end": 4105.9, + "probability": 0.9867 + }, + { + "start": 4106.52, + "end": 4110.32, + "probability": 0.6766 + }, + { + "start": 4112.0, + "end": 4116.04, + "probability": 0.992 + }, + { + "start": 4116.16, + "end": 4119.98, + "probability": 0.9954 + }, + { + "start": 4119.99, + "end": 4123.22, + "probability": 0.9938 + }, + { + "start": 4123.28, + "end": 4124.24, + "probability": 0.7557 + }, + { + "start": 4126.38, + "end": 4134.06, + "probability": 0.9956 + }, + { + "start": 4134.06, + "end": 4139.66, + "probability": 0.9944 + }, + { + "start": 4140.32, + "end": 4148.1, + "probability": 0.8682 + }, + { + "start": 4148.1, + "end": 4156.88, + "probability": 0.9786 + }, + { + "start": 4158.0, + "end": 4159.5, + "probability": 0.9944 + }, + { + "start": 4161.16, + "end": 4164.52, + "probability": 0.7109 + }, + { + "start": 4166.16, + "end": 4168.16, + "probability": 0.9092 + }, + { + "start": 4168.7, + "end": 4172.8, + "probability": 0.9337 + }, + { + "start": 4174.68, + "end": 4176.44, + "probability": 0.8984 + }, + { + "start": 4177.38, + "end": 4182.5, + "probability": 0.9949 + }, + { + "start": 4182.5, + "end": 4187.72, + "probability": 0.9983 + }, + { + "start": 4189.18, + "end": 4195.4, + "probability": 0.9954 + }, + { + "start": 4196.6, + "end": 4197.46, + "probability": 0.644 + }, + { + "start": 4198.08, + "end": 4199.8, + "probability": 0.4739 + }, + { + "start": 4199.84, + "end": 4200.66, + "probability": 0.8544 + }, + { + "start": 4200.86, + "end": 4201.42, + "probability": 0.7214 + }, + { + "start": 4201.54, + "end": 4204.78, + "probability": 0.9734 + }, + { + "start": 4205.64, + "end": 4208.5, + "probability": 0.9491 + }, + { + "start": 4209.74, + "end": 4212.44, + "probability": 0.9762 + }, + { + "start": 4212.44, + "end": 4216.4, + "probability": 0.9377 + }, + { + "start": 4218.2, + "end": 4220.4, + "probability": 0.9559 + }, + { + "start": 4221.44, + "end": 4225.92, + "probability": 0.9725 + }, + { + "start": 4227.78, + "end": 4231.34, + "probability": 0.9035 + }, + { + "start": 4231.54, + "end": 4236.4, + "probability": 0.9634 + }, + { + "start": 4236.58, + "end": 4238.54, + "probability": 0.621 + }, + { + "start": 4239.12, + "end": 4239.71, + "probability": 0.9756 + }, + { + "start": 4240.78, + "end": 4242.04, + "probability": 0.9823 + }, + { + "start": 4242.66, + "end": 4248.28, + "probability": 0.9902 + }, + { + "start": 4249.52, + "end": 4250.77, + "probability": 0.962 + }, + { + "start": 4251.26, + "end": 4252.7, + "probability": 0.9509 + }, + { + "start": 4253.54, + "end": 4255.68, + "probability": 0.8059 + }, + { + "start": 4256.28, + "end": 4258.25, + "probability": 0.9441 + }, + { + "start": 4258.82, + "end": 4259.56, + "probability": 0.7058 + }, + { + "start": 4260.24, + "end": 4261.28, + "probability": 0.9137 + }, + { + "start": 4263.64, + "end": 4265.98, + "probability": 0.8474 + }, + { + "start": 4266.14, + "end": 4269.88, + "probability": 0.952 + }, + { + "start": 4270.16, + "end": 4271.1, + "probability": 0.8292 + }, + { + "start": 4272.26, + "end": 4274.3, + "probability": 0.864 + }, + { + "start": 4274.5, + "end": 4275.42, + "probability": 0.643 + }, + { + "start": 4275.44, + "end": 4276.5, + "probability": 0.6702 + }, + { + "start": 4277.52, + "end": 4280.34, + "probability": 0.959 + }, + { + "start": 4280.71, + "end": 4284.62, + "probability": 0.9839 + }, + { + "start": 4284.8, + "end": 4285.32, + "probability": 0.8923 + }, + { + "start": 4285.6, + "end": 4286.15, + "probability": 0.9478 + }, + { + "start": 4286.4, + "end": 4287.32, + "probability": 0.9799 + }, + { + "start": 4288.04, + "end": 4289.17, + "probability": 0.9961 + }, + { + "start": 4291.18, + "end": 4292.73, + "probability": 0.9175 + }, + { + "start": 4293.92, + "end": 4302.4, + "probability": 0.9856 + }, + { + "start": 4302.4, + "end": 4306.88, + "probability": 0.8593 + }, + { + "start": 4307.08, + "end": 4308.26, + "probability": 0.8421 + }, + { + "start": 4308.84, + "end": 4310.03, + "probability": 0.933 + }, + { + "start": 4311.26, + "end": 4317.6, + "probability": 0.9782 + }, + { + "start": 4318.04, + "end": 4318.8, + "probability": 0.7671 + }, + { + "start": 4318.96, + "end": 4319.52, + "probability": 0.4235 + }, + { + "start": 4319.7, + "end": 4320.66, + "probability": 0.4904 + }, + { + "start": 4320.78, + "end": 4322.16, + "probability": 0.8244 + }, + { + "start": 4323.08, + "end": 4325.56, + "probability": 0.9922 + }, + { + "start": 4327.12, + "end": 4330.2, + "probability": 0.9674 + }, + { + "start": 4330.56, + "end": 4332.84, + "probability": 0.9673 + }, + { + "start": 4333.98, + "end": 4337.28, + "probability": 0.9839 + }, + { + "start": 4337.9, + "end": 4340.08, + "probability": 0.9888 + }, + { + "start": 4340.66, + "end": 4342.11, + "probability": 0.9233 + }, + { + "start": 4342.58, + "end": 4345.66, + "probability": 0.9922 + }, + { + "start": 4347.14, + "end": 4348.22, + "probability": 0.7461 + }, + { + "start": 4348.36, + "end": 4349.82, + "probability": 0.8339 + }, + { + "start": 4350.1, + "end": 4352.48, + "probability": 0.9969 + }, + { + "start": 4352.58, + "end": 4354.04, + "probability": 0.9754 + }, + { + "start": 4354.14, + "end": 4355.72, + "probability": 0.9985 + }, + { + "start": 4356.48, + "end": 4361.17, + "probability": 0.9513 + }, + { + "start": 4362.34, + "end": 4363.66, + "probability": 0.8732 + }, + { + "start": 4363.74, + "end": 4366.92, + "probability": 0.9949 + }, + { + "start": 4369.28, + "end": 4371.95, + "probability": 0.9919 + }, + { + "start": 4372.64, + "end": 4374.54, + "probability": 0.7208 + }, + { + "start": 4375.64, + "end": 4379.2, + "probability": 0.959 + }, + { + "start": 4379.38, + "end": 4381.54, + "probability": 0.8646 + }, + { + "start": 4381.62, + "end": 4383.8, + "probability": 0.9158 + }, + { + "start": 4384.04, + "end": 4387.34, + "probability": 0.8938 + }, + { + "start": 4387.6, + "end": 4395.54, + "probability": 0.9834 + }, + { + "start": 4395.84, + "end": 4397.76, + "probability": 0.2378 + }, + { + "start": 4397.78, + "end": 4399.04, + "probability": 0.6895 + }, + { + "start": 4399.1, + "end": 4407.66, + "probability": 0.9364 + }, + { + "start": 4408.32, + "end": 4410.84, + "probability": 0.9624 + }, + { + "start": 4411.8, + "end": 4415.76, + "probability": 0.9609 + }, + { + "start": 4416.5, + "end": 4421.54, + "probability": 0.9727 + }, + { + "start": 4422.02, + "end": 4423.24, + "probability": 0.8596 + }, + { + "start": 4423.34, + "end": 4426.24, + "probability": 0.995 + }, + { + "start": 4426.24, + "end": 4429.32, + "probability": 0.9702 + }, + { + "start": 4429.7, + "end": 4432.82, + "probability": 0.9981 + }, + { + "start": 4433.16, + "end": 4435.22, + "probability": 0.9736 + }, + { + "start": 4436.1, + "end": 4437.52, + "probability": 0.998 + }, + { + "start": 4437.78, + "end": 4438.36, + "probability": 0.7957 + }, + { + "start": 4438.84, + "end": 4440.34, + "probability": 0.7929 + }, + { + "start": 4440.4, + "end": 4442.24, + "probability": 0.9716 + }, + { + "start": 4444.22, + "end": 4446.5, + "probability": 0.8372 + }, + { + "start": 4453.28, + "end": 4455.58, + "probability": 0.4639 + }, + { + "start": 4455.76, + "end": 4455.8, + "probability": 0.6926 + }, + { + "start": 4456.02, + "end": 4456.02, + "probability": 0.2697 + }, + { + "start": 4456.12, + "end": 4461.8, + "probability": 0.9598 + }, + { + "start": 4464.18, + "end": 4467.56, + "probability": 0.9409 + }, + { + "start": 4469.04, + "end": 4474.64, + "probability": 0.9889 + }, + { + "start": 4474.66, + "end": 4477.52, + "probability": 0.9997 + }, + { + "start": 4478.58, + "end": 4482.42, + "probability": 0.9976 + }, + { + "start": 4484.26, + "end": 4487.68, + "probability": 0.7309 + }, + { + "start": 4488.64, + "end": 4492.5, + "probability": 0.9654 + }, + { + "start": 4493.46, + "end": 4498.18, + "probability": 0.9073 + }, + { + "start": 4500.32, + "end": 4504.06, + "probability": 0.9692 + }, + { + "start": 4504.06, + "end": 4506.48, + "probability": 0.8263 + }, + { + "start": 4508.88, + "end": 4509.78, + "probability": 0.6857 + }, + { + "start": 4510.52, + "end": 4511.98, + "probability": 0.7996 + }, + { + "start": 4513.0, + "end": 4514.98, + "probability": 0.8926 + }, + { + "start": 4515.58, + "end": 4519.04, + "probability": 0.9928 + }, + { + "start": 4520.02, + "end": 4525.08, + "probability": 0.9351 + }, + { + "start": 4525.82, + "end": 4527.92, + "probability": 0.8021 + }, + { + "start": 4529.72, + "end": 4531.34, + "probability": 0.9004 + }, + { + "start": 4532.92, + "end": 4534.06, + "probability": 0.6641 + }, + { + "start": 4535.14, + "end": 4537.0, + "probability": 0.8103 + }, + { + "start": 4538.06, + "end": 4543.46, + "probability": 0.8679 + }, + { + "start": 4544.32, + "end": 4545.5, + "probability": 0.9529 + }, + { + "start": 4547.14, + "end": 4548.16, + "probability": 0.9796 + }, + { + "start": 4550.5, + "end": 4556.32, + "probability": 0.8681 + }, + { + "start": 4557.64, + "end": 4563.38, + "probability": 0.9473 + }, + { + "start": 4564.52, + "end": 4565.18, + "probability": 0.9834 + }, + { + "start": 4566.98, + "end": 4572.06, + "probability": 0.9601 + }, + { + "start": 4572.12, + "end": 4572.76, + "probability": 0.5325 + }, + { + "start": 4573.1, + "end": 4573.7, + "probability": 0.8474 + }, + { + "start": 4574.0, + "end": 4575.24, + "probability": 0.9685 + }, + { + "start": 4575.5, + "end": 4580.4, + "probability": 0.9803 + }, + { + "start": 4582.6, + "end": 4585.7, + "probability": 0.9949 + }, + { + "start": 4586.06, + "end": 4589.2, + "probability": 0.9957 + }, + { + "start": 4590.8, + "end": 4594.82, + "probability": 0.9967 + }, + { + "start": 4596.68, + "end": 4599.3, + "probability": 0.8809 + }, + { + "start": 4599.88, + "end": 4607.54, + "probability": 0.9655 + }, + { + "start": 4607.72, + "end": 4613.54, + "probability": 0.9976 + }, + { + "start": 4613.62, + "end": 4614.94, + "probability": 0.6731 + }, + { + "start": 4615.84, + "end": 4618.56, + "probability": 0.9355 + }, + { + "start": 4619.82, + "end": 4624.3, + "probability": 0.9949 + }, + { + "start": 4624.98, + "end": 4627.18, + "probability": 0.9958 + }, + { + "start": 4629.76, + "end": 4635.82, + "probability": 0.9978 + }, + { + "start": 4636.16, + "end": 4640.62, + "probability": 0.9827 + }, + { + "start": 4641.82, + "end": 4644.8, + "probability": 0.9888 + }, + { + "start": 4645.48, + "end": 4649.2, + "probability": 0.9215 + }, + { + "start": 4649.8, + "end": 4651.12, + "probability": 0.9742 + }, + { + "start": 4652.7, + "end": 4653.98, + "probability": 0.9729 + }, + { + "start": 4654.48, + "end": 4659.96, + "probability": 0.9873 + }, + { + "start": 4661.36, + "end": 4665.02, + "probability": 0.9917 + }, + { + "start": 4666.14, + "end": 4669.86, + "probability": 0.9855 + }, + { + "start": 4670.12, + "end": 4671.04, + "probability": 0.5891 + }, + { + "start": 4672.22, + "end": 4679.08, + "probability": 0.9856 + }, + { + "start": 4680.96, + "end": 4685.4, + "probability": 0.9954 + }, + { + "start": 4685.46, + "end": 4686.88, + "probability": 0.8856 + }, + { + "start": 4687.08, + "end": 4687.56, + "probability": 0.2446 + }, + { + "start": 4687.6, + "end": 4688.9, + "probability": 0.8047 + }, + { + "start": 4689.5, + "end": 4691.4, + "probability": 0.853 + }, + { + "start": 4692.14, + "end": 4695.66, + "probability": 0.9989 + }, + { + "start": 4698.36, + "end": 4700.9, + "probability": 0.9822 + }, + { + "start": 4700.96, + "end": 4701.36, + "probability": 0.471 + }, + { + "start": 4701.44, + "end": 4702.46, + "probability": 0.7078 + }, + { + "start": 4702.56, + "end": 4704.04, + "probability": 0.8989 + }, + { + "start": 4704.8, + "end": 4709.64, + "probability": 0.8901 + }, + { + "start": 4710.02, + "end": 4718.74, + "probability": 0.7265 + }, + { + "start": 4718.88, + "end": 4719.64, + "probability": 0.7077 + }, + { + "start": 4722.44, + "end": 4724.17, + "probability": 0.712 + }, + { + "start": 4724.82, + "end": 4731.74, + "probability": 0.8136 + }, + { + "start": 4732.72, + "end": 4734.78, + "probability": 0.9927 + }, + { + "start": 4735.64, + "end": 4737.4, + "probability": 0.9913 + }, + { + "start": 4738.34, + "end": 4740.18, + "probability": 0.7621 + }, + { + "start": 4740.9, + "end": 4741.74, + "probability": 0.6717 + }, + { + "start": 4742.44, + "end": 4745.22, + "probability": 0.9977 + }, + { + "start": 4746.3, + "end": 4748.1, + "probability": 0.9364 + }, + { + "start": 4750.55, + "end": 4752.85, + "probability": 0.3824 + }, + { + "start": 4753.6, + "end": 4756.88, + "probability": 0.9196 + }, + { + "start": 4757.66, + "end": 4758.38, + "probability": 0.6367 + }, + { + "start": 4759.08, + "end": 4760.94, + "probability": 0.9655 + }, + { + "start": 4761.2, + "end": 4763.78, + "probability": 0.9838 + }, + { + "start": 4764.2, + "end": 4765.11, + "probability": 0.9889 + }, + { + "start": 4766.12, + "end": 4767.48, + "probability": 0.6169 + }, + { + "start": 4768.48, + "end": 4769.9, + "probability": 0.4875 + }, + { + "start": 4770.78, + "end": 4772.12, + "probability": 0.9875 + }, + { + "start": 4772.32, + "end": 4773.4, + "probability": 0.9826 + }, + { + "start": 4778.34, + "end": 4779.52, + "probability": 0.4192 + }, + { + "start": 4780.18, + "end": 4786.12, + "probability": 0.9922 + }, + { + "start": 4786.64, + "end": 4788.18, + "probability": 0.953 + }, + { + "start": 4789.9, + "end": 4791.82, + "probability": 0.9988 + }, + { + "start": 4793.34, + "end": 4794.62, + "probability": 0.9718 + }, + { + "start": 4796.06, + "end": 4802.76, + "probability": 0.9723 + }, + { + "start": 4803.58, + "end": 4806.96, + "probability": 0.9632 + }, + { + "start": 4807.82, + "end": 4809.96, + "probability": 0.9756 + }, + { + "start": 4810.04, + "end": 4811.74, + "probability": 0.7267 + }, + { + "start": 4812.4, + "end": 4813.0, + "probability": 0.7647 + }, + { + "start": 4813.16, + "end": 4816.76, + "probability": 0.8589 + }, + { + "start": 4817.4, + "end": 4823.32, + "probability": 0.9249 + }, + { + "start": 4832.56, + "end": 4833.12, + "probability": 0.5184 + }, + { + "start": 4835.52, + "end": 4836.84, + "probability": 0.5768 + }, + { + "start": 4837.64, + "end": 4837.64, + "probability": 0.4215 + }, + { + "start": 4837.64, + "end": 4839.28, + "probability": 0.5128 + }, + { + "start": 4839.46, + "end": 4840.75, + "probability": 0.8848 + }, + { + "start": 4842.02, + "end": 4847.82, + "probability": 0.9535 + }, + { + "start": 4848.74, + "end": 4851.48, + "probability": 0.9805 + }, + { + "start": 4851.6, + "end": 4854.06, + "probability": 0.9035 + }, + { + "start": 4854.42, + "end": 4856.91, + "probability": 0.9602 + }, + { + "start": 4857.92, + "end": 4863.74, + "probability": 0.9328 + }, + { + "start": 4864.6, + "end": 4868.06, + "probability": 0.7781 + }, + { + "start": 4868.66, + "end": 4871.78, + "probability": 0.7542 + }, + { + "start": 4872.14, + "end": 4877.32, + "probability": 0.9588 + }, + { + "start": 4878.14, + "end": 4880.08, + "probability": 0.9928 + }, + { + "start": 4880.48, + "end": 4883.09, + "probability": 0.9474 + }, + { + "start": 4883.82, + "end": 4888.24, + "probability": 0.9858 + }, + { + "start": 4888.8, + "end": 4891.8, + "probability": 0.5839 + }, + { + "start": 4892.8, + "end": 4894.55, + "probability": 0.8611 + }, + { + "start": 4895.32, + "end": 4897.21, + "probability": 0.8323 + }, + { + "start": 4898.44, + "end": 4902.82, + "probability": 0.706 + }, + { + "start": 4903.64, + "end": 4909.64, + "probability": 0.9773 + }, + { + "start": 4910.5, + "end": 4915.54, + "probability": 0.9325 + }, + { + "start": 4916.28, + "end": 4918.32, + "probability": 0.9964 + }, + { + "start": 4918.88, + "end": 4922.06, + "probability": 0.8967 + }, + { + "start": 4923.04, + "end": 4927.22, + "probability": 0.9738 + }, + { + "start": 4927.68, + "end": 4928.99, + "probability": 0.9821 + }, + { + "start": 4929.9, + "end": 4930.28, + "probability": 0.3357 + }, + { + "start": 4930.48, + "end": 4932.76, + "probability": 0.9524 + }, + { + "start": 4932.92, + "end": 4933.88, + "probability": 0.8418 + }, + { + "start": 4934.8, + "end": 4936.82, + "probability": 0.9297 + }, + { + "start": 4936.92, + "end": 4938.94, + "probability": 0.9219 + }, + { + "start": 4940.14, + "end": 4945.1, + "probability": 0.9955 + }, + { + "start": 4945.24, + "end": 4947.9, + "probability": 0.7836 + }, + { + "start": 4948.62, + "end": 4950.74, + "probability": 0.9279 + }, + { + "start": 4951.4, + "end": 4953.42, + "probability": 0.6676 + }, + { + "start": 4953.42, + "end": 4958.32, + "probability": 0.9957 + }, + { + "start": 4958.64, + "end": 4961.14, + "probability": 0.8706 + }, + { + "start": 4962.3, + "end": 4963.58, + "probability": 0.8062 + }, + { + "start": 4964.44, + "end": 4965.84, + "probability": 0.7338 + }, + { + "start": 4966.4, + "end": 4969.58, + "probability": 0.9926 + }, + { + "start": 4969.58, + "end": 4973.46, + "probability": 0.9917 + }, + { + "start": 4974.68, + "end": 4976.18, + "probability": 0.5893 + }, + { + "start": 4976.32, + "end": 4978.78, + "probability": 0.9833 + }, + { + "start": 4979.24, + "end": 4981.12, + "probability": 0.9396 + }, + { + "start": 4981.84, + "end": 4986.32, + "probability": 0.9836 + }, + { + "start": 4987.06, + "end": 4988.0, + "probability": 0.9154 + }, + { + "start": 4988.12, + "end": 4990.76, + "probability": 0.9678 + }, + { + "start": 4991.38, + "end": 4995.88, + "probability": 0.9002 + }, + { + "start": 4996.72, + "end": 4998.6, + "probability": 0.9769 + }, + { + "start": 4998.6, + "end": 5001.8, + "probability": 0.8412 + }, + { + "start": 5002.22, + "end": 5003.52, + "probability": 0.9089 + }, + { + "start": 5003.82, + "end": 5006.28, + "probability": 0.8959 + }, + { + "start": 5006.34, + "end": 5008.62, + "probability": 0.9836 + }, + { + "start": 5009.54, + "end": 5011.22, + "probability": 0.9694 + }, + { + "start": 5011.38, + "end": 5015.32, + "probability": 0.9925 + }, + { + "start": 5015.44, + "end": 5016.44, + "probability": 0.8357 + }, + { + "start": 5017.56, + "end": 5021.66, + "probability": 0.9749 + }, + { + "start": 5021.66, + "end": 5025.38, + "probability": 0.9961 + }, + { + "start": 5026.16, + "end": 5029.6, + "probability": 0.6923 + }, + { + "start": 5030.04, + "end": 5031.94, + "probability": 0.7278 + }, + { + "start": 5032.56, + "end": 5036.14, + "probability": 0.9901 + }, + { + "start": 5036.58, + "end": 5038.94, + "probability": 0.9779 + }, + { + "start": 5039.04, + "end": 5040.16, + "probability": 0.9021 + }, + { + "start": 5040.34, + "end": 5044.34, + "probability": 0.9821 + }, + { + "start": 5045.18, + "end": 5048.26, + "probability": 0.9863 + }, + { + "start": 5049.24, + "end": 5052.48, + "probability": 0.9727 + }, + { + "start": 5052.84, + "end": 5053.56, + "probability": 0.5157 + }, + { + "start": 5053.56, + "end": 5054.22, + "probability": 0.967 + }, + { + "start": 5054.68, + "end": 5054.94, + "probability": 0.7141 + }, + { + "start": 5056.92, + "end": 5059.1, + "probability": 0.6155 + }, + { + "start": 5059.2, + "end": 5061.46, + "probability": 0.9111 + }, + { + "start": 5076.72, + "end": 5079.02, + "probability": 0.7279 + }, + { + "start": 5080.36, + "end": 5082.32, + "probability": 0.9569 + }, + { + "start": 5083.8, + "end": 5089.54, + "probability": 0.9897 + }, + { + "start": 5090.16, + "end": 5093.16, + "probability": 0.9989 + }, + { + "start": 5093.88, + "end": 5096.0, + "probability": 0.9785 + }, + { + "start": 5096.96, + "end": 5100.84, + "probability": 0.9956 + }, + { + "start": 5102.28, + "end": 5102.52, + "probability": 0.6496 + }, + { + "start": 5102.7, + "end": 5108.74, + "probability": 0.9828 + }, + { + "start": 5109.4, + "end": 5112.76, + "probability": 0.994 + }, + { + "start": 5113.78, + "end": 5117.18, + "probability": 0.9619 + }, + { + "start": 5117.18, + "end": 5121.8, + "probability": 0.9131 + }, + { + "start": 5122.78, + "end": 5126.3, + "probability": 0.9975 + }, + { + "start": 5126.52, + "end": 5129.6, + "probability": 0.7886 + }, + { + "start": 5130.06, + "end": 5130.58, + "probability": 0.882 + }, + { + "start": 5131.52, + "end": 5136.08, + "probability": 0.9851 + }, + { + "start": 5136.78, + "end": 5140.28, + "probability": 0.9937 + }, + { + "start": 5141.76, + "end": 5146.02, + "probability": 0.9942 + }, + { + "start": 5146.02, + "end": 5148.76, + "probability": 0.9984 + }, + { + "start": 5150.1, + "end": 5152.18, + "probability": 0.9946 + }, + { + "start": 5152.7, + "end": 5153.22, + "probability": 0.7156 + }, + { + "start": 5154.24, + "end": 5155.54, + "probability": 0.9785 + }, + { + "start": 5155.66, + "end": 5159.94, + "probability": 0.9927 + }, + { + "start": 5161.06, + "end": 5166.82, + "probability": 0.981 + }, + { + "start": 5167.86, + "end": 5170.45, + "probability": 0.9873 + }, + { + "start": 5170.98, + "end": 5172.21, + "probability": 0.9796 + }, + { + "start": 5174.12, + "end": 5174.58, + "probability": 0.2656 + }, + { + "start": 5174.58, + "end": 5176.2, + "probability": 0.6941 + }, + { + "start": 5176.54, + "end": 5180.72, + "probability": 0.8082 + }, + { + "start": 5180.88, + "end": 5181.68, + "probability": 0.8784 + }, + { + "start": 5182.06, + "end": 5183.22, + "probability": 0.9976 + }, + { + "start": 5195.32, + "end": 5196.06, + "probability": 0.5911 + }, + { + "start": 5197.06, + "end": 5200.46, + "probability": 0.7856 + }, + { + "start": 5201.82, + "end": 5207.64, + "probability": 0.9871 + }, + { + "start": 5207.64, + "end": 5213.16, + "probability": 0.9907 + }, + { + "start": 5214.74, + "end": 5218.42, + "probability": 0.9938 + }, + { + "start": 5218.42, + "end": 5221.58, + "probability": 0.9997 + }, + { + "start": 5222.52, + "end": 5226.14, + "probability": 0.8577 + }, + { + "start": 5226.66, + "end": 5230.34, + "probability": 0.9849 + }, + { + "start": 5232.52, + "end": 5236.9, + "probability": 0.9929 + }, + { + "start": 5238.06, + "end": 5238.84, + "probability": 0.5355 + }, + { + "start": 5239.34, + "end": 5243.32, + "probability": 0.9954 + }, + { + "start": 5243.32, + "end": 5251.1, + "probability": 0.991 + }, + { + "start": 5252.58, + "end": 5255.54, + "probability": 0.7676 + }, + { + "start": 5255.6, + "end": 5256.14, + "probability": 0.6976 + }, + { + "start": 5256.22, + "end": 5257.42, + "probability": 0.6952 + }, + { + "start": 5257.62, + "end": 5258.92, + "probability": 0.9967 + }, + { + "start": 5259.44, + "end": 5259.72, + "probability": 0.1365 + }, + { + "start": 5260.02, + "end": 5261.98, + "probability": 0.8012 + }, + { + "start": 5262.36, + "end": 5265.9, + "probability": 0.9809 + }, + { + "start": 5266.04, + "end": 5267.24, + "probability": 0.9565 + }, + { + "start": 5267.36, + "end": 5268.34, + "probability": 0.7712 + }, + { + "start": 5268.48, + "end": 5269.68, + "probability": 0.4997 + }, + { + "start": 5269.84, + "end": 5271.36, + "probability": 0.8998 + }, + { + "start": 5273.44, + "end": 5275.96, + "probability": 0.8774 + }, + { + "start": 5276.6, + "end": 5277.5, + "probability": 0.8049 + }, + { + "start": 5277.92, + "end": 5282.56, + "probability": 0.9788 + }, + { + "start": 5283.66, + "end": 5287.64, + "probability": 0.9614 + }, + { + "start": 5287.64, + "end": 5291.54, + "probability": 0.993 + }, + { + "start": 5293.26, + "end": 5298.86, + "probability": 0.9785 + }, + { + "start": 5299.24, + "end": 5301.0, + "probability": 0.8711 + }, + { + "start": 5301.64, + "end": 5305.27, + "probability": 0.9852 + }, + { + "start": 5306.52, + "end": 5308.88, + "probability": 0.9637 + }, + { + "start": 5310.9, + "end": 5311.54, + "probability": 0.7847 + }, + { + "start": 5311.66, + "end": 5316.96, + "probability": 0.9893 + }, + { + "start": 5317.24, + "end": 5318.66, + "probability": 0.9377 + }, + { + "start": 5319.26, + "end": 5320.44, + "probability": 0.6183 + }, + { + "start": 5320.66, + "end": 5322.9, + "probability": 0.9155 + }, + { + "start": 5322.98, + "end": 5325.72, + "probability": 0.9894 + }, + { + "start": 5326.16, + "end": 5331.56, + "probability": 0.9756 + }, + { + "start": 5333.88, + "end": 5335.44, + "probability": 0.9334 + }, + { + "start": 5335.84, + "end": 5336.62, + "probability": 0.5636 + }, + { + "start": 5336.72, + "end": 5337.32, + "probability": 0.8525 + }, + { + "start": 5337.6, + "end": 5341.56, + "probability": 0.9793 + }, + { + "start": 5341.82, + "end": 5346.42, + "probability": 0.9477 + }, + { + "start": 5346.62, + "end": 5347.04, + "probability": 0.6839 + }, + { + "start": 5347.88, + "end": 5348.26, + "probability": 0.7962 + }, + { + "start": 5354.76, + "end": 5355.08, + "probability": 0.3901 + }, + { + "start": 5355.16, + "end": 5356.52, + "probability": 0.4769 + }, + { + "start": 5356.9, + "end": 5361.42, + "probability": 0.9805 + }, + { + "start": 5361.63, + "end": 5365.34, + "probability": 0.9855 + }, + { + "start": 5365.34, + "end": 5367.88, + "probability": 0.9706 + }, + { + "start": 5368.04, + "end": 5371.0, + "probability": 0.9703 + }, + { + "start": 5371.1, + "end": 5372.56, + "probability": 0.9644 + }, + { + "start": 5372.72, + "end": 5374.0, + "probability": 0.9953 + }, + { + "start": 5374.24, + "end": 5375.52, + "probability": 0.9976 + }, + { + "start": 5375.76, + "end": 5378.31, + "probability": 0.944 + }, + { + "start": 5378.45, + "end": 5381.94, + "probability": 0.9739 + }, + { + "start": 5382.4, + "end": 5384.56, + "probability": 0.9894 + }, + { + "start": 5384.7, + "end": 5388.36, + "probability": 0.9216 + }, + { + "start": 5388.44, + "end": 5390.48, + "probability": 0.9861 + }, + { + "start": 5390.48, + "end": 5392.51, + "probability": 0.9868 + }, + { + "start": 5392.86, + "end": 5393.54, + "probability": 0.6615 + }, + { + "start": 5393.92, + "end": 5396.4, + "probability": 0.3265 + }, + { + "start": 5396.5, + "end": 5397.64, + "probability": 0.4172 + }, + { + "start": 5397.84, + "end": 5398.46, + "probability": 0.3697 + }, + { + "start": 5399.0, + "end": 5399.56, + "probability": 0.1794 + }, + { + "start": 5400.02, + "end": 5402.18, + "probability": 0.3198 + }, + { + "start": 5402.2, + "end": 5403.26, + "probability": 0.0657 + }, + { + "start": 5403.26, + "end": 5405.86, + "probability": 0.3778 + }, + { + "start": 5406.84, + "end": 5408.16, + "probability": 0.7241 + }, + { + "start": 5408.72, + "end": 5409.14, + "probability": 0.3808 + }, + { + "start": 5409.14, + "end": 5410.34, + "probability": 0.0941 + }, + { + "start": 5410.42, + "end": 5412.02, + "probability": 0.8276 + }, + { + "start": 5412.24, + "end": 5412.84, + "probability": 0.5028 + }, + { + "start": 5414.02, + "end": 5415.78, + "probability": 0.578 + }, + { + "start": 5417.8, + "end": 5420.04, + "probability": 0.7277 + }, + { + "start": 5420.18, + "end": 5423.88, + "probability": 0.8717 + }, + { + "start": 5424.32, + "end": 5426.46, + "probability": 0.9932 + }, + { + "start": 5426.62, + "end": 5427.22, + "probability": 0.9302 + }, + { + "start": 5427.38, + "end": 5428.86, + "probability": 0.9194 + }, + { + "start": 5428.88, + "end": 5430.04, + "probability": 0.8334 + }, + { + "start": 5430.12, + "end": 5432.44, + "probability": 0.915 + }, + { + "start": 5432.66, + "end": 5433.68, + "probability": 0.9917 + }, + { + "start": 5433.76, + "end": 5438.18, + "probability": 0.7818 + }, + { + "start": 5438.58, + "end": 5440.81, + "probability": 0.8226 + }, + { + "start": 5441.52, + "end": 5443.9, + "probability": 0.9756 + }, + { + "start": 5443.92, + "end": 5446.54, + "probability": 0.9639 + }, + { + "start": 5446.92, + "end": 5449.38, + "probability": 0.9744 + }, + { + "start": 5449.64, + "end": 5450.54, + "probability": 0.2033 + }, + { + "start": 5451.28, + "end": 5454.08, + "probability": 0.1774 + }, + { + "start": 5454.7, + "end": 5455.76, + "probability": 0.8657 + }, + { + "start": 5456.48, + "end": 5456.54, + "probability": 0.12 + }, + { + "start": 5457.16, + "end": 5457.6, + "probability": 0.0634 + }, + { + "start": 5457.7, + "end": 5458.38, + "probability": 0.6879 + }, + { + "start": 5458.92, + "end": 5461.66, + "probability": 0.8552 + }, + { + "start": 5461.84, + "end": 5463.04, + "probability": 0.9297 + }, + { + "start": 5463.12, + "end": 5465.1, + "probability": 0.9385 + }, + { + "start": 5465.22, + "end": 5466.54, + "probability": 0.2849 + }, + { + "start": 5466.86, + "end": 5467.76, + "probability": 0.9568 + }, + { + "start": 5467.92, + "end": 5468.5, + "probability": 0.8898 + }, + { + "start": 5469.2, + "end": 5469.56, + "probability": 0.5336 + }, + { + "start": 5469.66, + "end": 5473.48, + "probability": 0.9539 + }, + { + "start": 5473.76, + "end": 5475.8, + "probability": 0.8647 + }, + { + "start": 5478.58, + "end": 5481.49, + "probability": 0.7342 + }, + { + "start": 5485.0, + "end": 5486.94, + "probability": 0.6278 + }, + { + "start": 5487.52, + "end": 5490.56, + "probability": 0.7994 + }, + { + "start": 5490.64, + "end": 5494.04, + "probability": 0.9646 + }, + { + "start": 5494.14, + "end": 5496.72, + "probability": 0.9447 + }, + { + "start": 5496.84, + "end": 5498.5, + "probability": 0.7063 + }, + { + "start": 5499.38, + "end": 5500.44, + "probability": 0.9753 + }, + { + "start": 5501.38, + "end": 5505.9, + "probability": 0.7737 + }, + { + "start": 5507.08, + "end": 5508.42, + "probability": 0.9767 + }, + { + "start": 5509.18, + "end": 5515.02, + "probability": 0.9752 + }, + { + "start": 5515.02, + "end": 5518.2, + "probability": 0.8792 + }, + { + "start": 5519.92, + "end": 5522.12, + "probability": 0.9022 + }, + { + "start": 5523.0, + "end": 5527.0, + "probability": 0.9951 + }, + { + "start": 5527.14, + "end": 5528.42, + "probability": 0.8162 + }, + { + "start": 5529.06, + "end": 5532.98, + "probability": 0.9545 + }, + { + "start": 5533.28, + "end": 5535.79, + "probability": 0.9657 + }, + { + "start": 5536.2, + "end": 5537.91, + "probability": 0.9979 + }, + { + "start": 5540.06, + "end": 5540.06, + "probability": 0.0822 + }, + { + "start": 5540.06, + "end": 5541.5, + "probability": 0.3798 + }, + { + "start": 5541.76, + "end": 5546.02, + "probability": 0.9946 + }, + { + "start": 5547.36, + "end": 5551.16, + "probability": 0.9964 + }, + { + "start": 5551.72, + "end": 5555.7, + "probability": 0.9606 + }, + { + "start": 5555.7, + "end": 5558.9, + "probability": 0.9974 + }, + { + "start": 5559.66, + "end": 5561.3, + "probability": 0.5269 + }, + { + "start": 5561.56, + "end": 5562.29, + "probability": 0.9725 + }, + { + "start": 5562.64, + "end": 5563.9, + "probability": 0.999 + }, + { + "start": 5564.02, + "end": 5566.34, + "probability": 0.9632 + }, + { + "start": 5566.4, + "end": 5567.48, + "probability": 0.5856 + }, + { + "start": 5568.18, + "end": 5570.52, + "probability": 0.9744 + }, + { + "start": 5571.52, + "end": 5573.74, + "probability": 0.8451 + }, + { + "start": 5574.12, + "end": 5578.16, + "probability": 0.9224 + }, + { + "start": 5578.24, + "end": 5579.6, + "probability": 0.9683 + }, + { + "start": 5579.62, + "end": 5580.5, + "probability": 0.8915 + }, + { + "start": 5581.18, + "end": 5583.52, + "probability": 0.965 + }, + { + "start": 5583.7, + "end": 5585.36, + "probability": 0.7345 + }, + { + "start": 5585.46, + "end": 5586.16, + "probability": 0.9683 + }, + { + "start": 5586.56, + "end": 5588.24, + "probability": 0.769 + }, + { + "start": 5589.12, + "end": 5591.7, + "probability": 0.9915 + }, + { + "start": 5591.7, + "end": 5595.46, + "probability": 0.9976 + }, + { + "start": 5595.82, + "end": 5596.96, + "probability": 0.3685 + }, + { + "start": 5597.22, + "end": 5598.12, + "probability": 0.462 + }, + { + "start": 5598.2, + "end": 5600.26, + "probability": 0.9956 + }, + { + "start": 5600.26, + "end": 5604.9, + "probability": 0.9526 + }, + { + "start": 5605.18, + "end": 5605.52, + "probability": 0.7683 + }, + { + "start": 5606.3, + "end": 5608.0, + "probability": 0.9668 + }, + { + "start": 5608.16, + "end": 5610.9, + "probability": 0.8494 + }, + { + "start": 5610.96, + "end": 5612.46, + "probability": 0.9478 + }, + { + "start": 5612.78, + "end": 5615.32, + "probability": 0.7186 + }, + { + "start": 5616.18, + "end": 5620.38, + "probability": 0.9154 + }, + { + "start": 5620.7, + "end": 5621.56, + "probability": 0.6807 + }, + { + "start": 5621.78, + "end": 5625.26, + "probability": 0.8831 + }, + { + "start": 5625.54, + "end": 5627.08, + "probability": 0.9053 + }, + { + "start": 5627.56, + "end": 5628.2, + "probability": 0.9336 + }, + { + "start": 5628.32, + "end": 5630.28, + "probability": 0.9878 + }, + { + "start": 5630.4, + "end": 5630.7, + "probability": 0.3649 + }, + { + "start": 5630.76, + "end": 5631.54, + "probability": 0.7665 + }, + { + "start": 5631.66, + "end": 5636.26, + "probability": 0.9149 + }, + { + "start": 5636.44, + "end": 5636.82, + "probability": 0.6754 + }, + { + "start": 5637.0, + "end": 5640.18, + "probability": 0.7047 + }, + { + "start": 5640.18, + "end": 5642.46, + "probability": 0.659 + }, + { + "start": 5642.56, + "end": 5644.86, + "probability": 0.8766 + }, + { + "start": 5646.06, + "end": 5647.22, + "probability": 0.3366 + }, + { + "start": 5647.22, + "end": 5648.94, + "probability": 0.7289 + }, + { + "start": 5649.44, + "end": 5653.72, + "probability": 0.9751 + }, + { + "start": 5653.94, + "end": 5654.54, + "probability": 0.7957 + }, + { + "start": 5654.62, + "end": 5655.64, + "probability": 0.7914 + }, + { + "start": 5655.82, + "end": 5656.64, + "probability": 0.7197 + }, + { + "start": 5656.96, + "end": 5658.36, + "probability": 0.9633 + }, + { + "start": 5658.54, + "end": 5659.52, + "probability": 0.4982 + }, + { + "start": 5659.6, + "end": 5661.42, + "probability": 0.8716 + }, + { + "start": 5662.2, + "end": 5663.18, + "probability": 0.3942 + }, + { + "start": 5664.6, + "end": 5666.62, + "probability": 0.9536 + }, + { + "start": 5666.76, + "end": 5667.08, + "probability": 0.5271 + }, + { + "start": 5667.2, + "end": 5668.24, + "probability": 0.783 + }, + { + "start": 5668.72, + "end": 5669.2, + "probability": 0.7101 + }, + { + "start": 5669.32, + "end": 5672.06, + "probability": 0.9634 + }, + { + "start": 5672.74, + "end": 5673.74, + "probability": 0.68 + }, + { + "start": 5685.46, + "end": 5686.12, + "probability": 0.1539 + }, + { + "start": 5686.12, + "end": 5688.4, + "probability": 0.5545 + }, + { + "start": 5688.48, + "end": 5692.0, + "probability": 0.8647 + }, + { + "start": 5692.0, + "end": 5694.62, + "probability": 0.6586 + }, + { + "start": 5698.66, + "end": 5699.74, + "probability": 0.3233 + }, + { + "start": 5699.74, + "end": 5699.74, + "probability": 0.19 + }, + { + "start": 5699.74, + "end": 5700.18, + "probability": 0.4116 + }, + { + "start": 5701.19, + "end": 5702.42, + "probability": 0.2806 + }, + { + "start": 5702.52, + "end": 5705.2, + "probability": 0.0995 + }, + { + "start": 5705.64, + "end": 5707.04, + "probability": 0.6949 + }, + { + "start": 5707.6, + "end": 5707.6, + "probability": 0.7373 + }, + { + "start": 5708.98, + "end": 5709.46, + "probability": 0.5829 + }, + { + "start": 5709.66, + "end": 5711.55, + "probability": 0.2061 + }, + { + "start": 5711.76, + "end": 5711.83, + "probability": 0.0596 + }, + { + "start": 5713.06, + "end": 5714.1, + "probability": 0.8516 + }, + { + "start": 5714.1, + "end": 5716.18, + "probability": 0.7532 + }, + { + "start": 5716.92, + "end": 5718.75, + "probability": 0.8794 + }, + { + "start": 5720.18, + "end": 5721.82, + "probability": 0.2333 + }, + { + "start": 5722.44, + "end": 5723.54, + "probability": 0.2068 + }, + { + "start": 5723.58, + "end": 5724.34, + "probability": 0.3211 + }, + { + "start": 5724.46, + "end": 5728.96, + "probability": 0.6975 + }, + { + "start": 5730.08, + "end": 5732.44, + "probability": 0.0083 + }, + { + "start": 5732.91, + "end": 5735.58, + "probability": 0.0532 + }, + { + "start": 5735.58, + "end": 5737.54, + "probability": 0.5012 + }, + { + "start": 5737.9, + "end": 5740.54, + "probability": 0.7196 + }, + { + "start": 5740.76, + "end": 5741.04, + "probability": 0.2096 + }, + { + "start": 5741.16, + "end": 5743.66, + "probability": 0.9854 + }, + { + "start": 5743.72, + "end": 5744.09, + "probability": 0.8444 + }, + { + "start": 5744.3, + "end": 5748.14, + "probability": 0.8168 + }, + { + "start": 5748.24, + "end": 5749.1, + "probability": 0.9695 + }, + { + "start": 5749.28, + "end": 5750.02, + "probability": 0.8228 + }, + { + "start": 5750.94, + "end": 5755.3, + "probability": 0.0563 + }, + { + "start": 5755.92, + "end": 5755.94, + "probability": 0.2453 + }, + { + "start": 5755.94, + "end": 5756.46, + "probability": 0.5443 + }, + { + "start": 5756.54, + "end": 5757.06, + "probability": 0.6971 + }, + { + "start": 5757.3, + "end": 5758.84, + "probability": 0.319 + }, + { + "start": 5759.06, + "end": 5763.14, + "probability": 0.8789 + }, + { + "start": 5763.18, + "end": 5764.6, + "probability": 0.9354 + }, + { + "start": 5764.94, + "end": 5767.8, + "probability": 0.9824 + }, + { + "start": 5768.12, + "end": 5772.08, + "probability": 0.9106 + }, + { + "start": 5772.45, + "end": 5779.02, + "probability": 0.8768 + }, + { + "start": 5780.3, + "end": 5782.94, + "probability": 0.5722 + }, + { + "start": 5783.86, + "end": 5784.92, + "probability": 0.6889 + }, + { + "start": 5785.46, + "end": 5788.44, + "probability": 0.0468 + }, + { + "start": 5788.44, + "end": 5788.44, + "probability": 0.1369 + }, + { + "start": 5788.44, + "end": 5788.44, + "probability": 0.3119 + }, + { + "start": 5788.44, + "end": 5788.44, + "probability": 0.2395 + }, + { + "start": 5788.44, + "end": 5788.44, + "probability": 0.287 + }, + { + "start": 5788.44, + "end": 5788.44, + "probability": 0.0169 + }, + { + "start": 5788.44, + "end": 5788.78, + "probability": 0.2487 + }, + { + "start": 5788.78, + "end": 5789.36, + "probability": 0.1668 + }, + { + "start": 5789.42, + "end": 5790.94, + "probability": 0.7412 + }, + { + "start": 5790.98, + "end": 5792.34, + "probability": 0.5562 + }, + { + "start": 5793.2, + "end": 5796.96, + "probability": 0.9683 + }, + { + "start": 5797.6, + "end": 5802.0, + "probability": 0.8093 + }, + { + "start": 5804.39, + "end": 5805.64, + "probability": 0.1469 + }, + { + "start": 5805.96, + "end": 5807.3, + "probability": 0.6248 + }, + { + "start": 5807.6, + "end": 5812.64, + "probability": 0.9419 + }, + { + "start": 5812.82, + "end": 5814.58, + "probability": 0.9751 + }, + { + "start": 5815.76, + "end": 5816.4, + "probability": 0.6099 + }, + { + "start": 5816.6, + "end": 5819.58, + "probability": 0.913 + }, + { + "start": 5819.58, + "end": 5823.04, + "probability": 0.9469 + }, + { + "start": 5823.44, + "end": 5824.56, + "probability": 0.853 + }, + { + "start": 5824.9, + "end": 5827.66, + "probability": 0.9821 + }, + { + "start": 5828.08, + "end": 5831.28, + "probability": 0.955 + }, + { + "start": 5831.69, + "end": 5837.64, + "probability": 0.9973 + }, + { + "start": 5837.64, + "end": 5844.46, + "probability": 0.9976 + }, + { + "start": 5845.9, + "end": 5851.42, + "probability": 0.995 + }, + { + "start": 5851.42, + "end": 5858.62, + "probability": 0.9855 + }, + { + "start": 5859.64, + "end": 5863.66, + "probability": 0.9971 + }, + { + "start": 5864.5, + "end": 5868.68, + "probability": 0.9357 + }, + { + "start": 5870.16, + "end": 5876.7, + "probability": 0.9873 + }, + { + "start": 5877.06, + "end": 5879.68, + "probability": 0.9181 + }, + { + "start": 5879.78, + "end": 5880.9, + "probability": 0.9285 + }, + { + "start": 5881.08, + "end": 5881.86, + "probability": 0.9474 + }, + { + "start": 5881.96, + "end": 5885.94, + "probability": 0.9127 + }, + { + "start": 5886.84, + "end": 5887.42, + "probability": 0.4347 + }, + { + "start": 5887.68, + "end": 5893.38, + "probability": 0.9751 + }, + { + "start": 5894.0, + "end": 5897.58, + "probability": 0.9963 + }, + { + "start": 5897.58, + "end": 5902.66, + "probability": 0.9976 + }, + { + "start": 5903.92, + "end": 5905.9, + "probability": 0.6872 + }, + { + "start": 5906.3, + "end": 5907.56, + "probability": 0.7772 + }, + { + "start": 5907.66, + "end": 5908.66, + "probability": 0.9509 + }, + { + "start": 5909.96, + "end": 5913.54, + "probability": 0.9722 + }, + { + "start": 5913.68, + "end": 5916.58, + "probability": 0.9849 + }, + { + "start": 5916.66, + "end": 5919.57, + "probability": 0.7349 + }, + { + "start": 5920.28, + "end": 5926.34, + "probability": 0.9602 + }, + { + "start": 5926.56, + "end": 5930.92, + "probability": 0.9822 + }, + { + "start": 5931.8, + "end": 5936.12, + "probability": 0.9544 + }, + { + "start": 5936.12, + "end": 5940.3, + "probability": 0.9967 + }, + { + "start": 5940.64, + "end": 5944.06, + "probability": 0.9988 + }, + { + "start": 5944.9, + "end": 5950.16, + "probability": 0.9871 + }, + { + "start": 5950.4, + "end": 5951.62, + "probability": 0.9486 + }, + { + "start": 5951.68, + "end": 5954.14, + "probability": 0.9447 + }, + { + "start": 5955.08, + "end": 5958.24, + "probability": 0.9338 + }, + { + "start": 5958.64, + "end": 5961.64, + "probability": 0.9823 + }, + { + "start": 5961.72, + "end": 5962.4, + "probability": 0.9515 + }, + { + "start": 5962.44, + "end": 5963.4, + "probability": 0.7253 + }, + { + "start": 5963.74, + "end": 5969.44, + "probability": 0.9466 + }, + { + "start": 5969.56, + "end": 5971.04, + "probability": 0.9932 + }, + { + "start": 5971.22, + "end": 5975.1, + "probability": 0.9929 + }, + { + "start": 5975.92, + "end": 5977.74, + "probability": 0.0414 + }, + { + "start": 5978.94, + "end": 5979.36, + "probability": 0.7095 + }, + { + "start": 5980.18, + "end": 5981.84, + "probability": 0.559 + }, + { + "start": 5982.06, + "end": 5982.06, + "probability": 0.7462 + }, + { + "start": 5982.06, + "end": 5984.14, + "probability": 0.8331 + }, + { + "start": 5984.7, + "end": 5989.54, + "probability": 0.9736 + }, + { + "start": 5990.16, + "end": 5992.62, + "probability": 0.9754 + }, + { + "start": 5993.1, + "end": 5997.84, + "probability": 0.7731 + }, + { + "start": 5997.84, + "end": 6001.78, + "probability": 0.9995 + }, + { + "start": 6002.62, + "end": 6006.06, + "probability": 0.99 + }, + { + "start": 6006.2, + "end": 6007.14, + "probability": 0.5285 + }, + { + "start": 6007.26, + "end": 6009.34, + "probability": 0.9558 + }, + { + "start": 6009.44, + "end": 6010.5, + "probability": 0.585 + }, + { + "start": 6010.92, + "end": 6016.08, + "probability": 0.9871 + }, + { + "start": 6016.18, + "end": 6018.9, + "probability": 0.9949 + }, + { + "start": 6019.42, + "end": 6022.22, + "probability": 0.916 + }, + { + "start": 6022.26, + "end": 6024.76, + "probability": 0.9933 + }, + { + "start": 6025.86, + "end": 6028.26, + "probability": 0.9692 + }, + { + "start": 6031.94, + "end": 6036.96, + "probability": 0.9631 + }, + { + "start": 6037.77, + "end": 6041.16, + "probability": 0.9912 + }, + { + "start": 6041.32, + "end": 6044.78, + "probability": 0.9875 + }, + { + "start": 6045.02, + "end": 6047.34, + "probability": 0.9151 + }, + { + "start": 6047.48, + "end": 6048.61, + "probability": 0.6851 + }, + { + "start": 6049.58, + "end": 6053.44, + "probability": 0.9868 + }, + { + "start": 6054.24, + "end": 6057.72, + "probability": 0.9886 + }, + { + "start": 6057.84, + "end": 6059.72, + "probability": 0.8943 + }, + { + "start": 6060.32, + "end": 6060.82, + "probability": 0.4407 + }, + { + "start": 6060.96, + "end": 6063.76, + "probability": 0.9451 + }, + { + "start": 6064.14, + "end": 6068.42, + "probability": 0.9303 + }, + { + "start": 6068.52, + "end": 6069.74, + "probability": 0.4977 + }, + { + "start": 6069.86, + "end": 6070.58, + "probability": 0.7353 + }, + { + "start": 6070.68, + "end": 6071.08, + "probability": 0.5829 + }, + { + "start": 6071.24, + "end": 6073.86, + "probability": 0.9276 + }, + { + "start": 6073.86, + "end": 6077.5, + "probability": 0.4864 + }, + { + "start": 6077.5, + "end": 6079.38, + "probability": 0.2546 + }, + { + "start": 6079.82, + "end": 6080.26, + "probability": 0.6017 + }, + { + "start": 6080.36, + "end": 6080.7, + "probability": 0.2988 + }, + { + "start": 6081.1, + "end": 6083.56, + "probability": 0.9892 + }, + { + "start": 6083.56, + "end": 6084.36, + "probability": 0.8778 + }, + { + "start": 6085.16, + "end": 6088.1, + "probability": 0.7913 + }, + { + "start": 6089.72, + "end": 6093.8, + "probability": 0.9646 + }, + { + "start": 6093.8, + "end": 6098.46, + "probability": 0.9977 + }, + { + "start": 6099.36, + "end": 6102.7, + "probability": 0.9956 + }, + { + "start": 6102.9, + "end": 6105.86, + "probability": 0.9985 + }, + { + "start": 6106.66, + "end": 6111.74, + "probability": 0.9802 + }, + { + "start": 6112.44, + "end": 6113.28, + "probability": 0.7186 + }, + { + "start": 6113.52, + "end": 6116.68, + "probability": 0.9465 + }, + { + "start": 6117.0, + "end": 6124.68, + "probability": 0.9949 + }, + { + "start": 6124.86, + "end": 6126.72, + "probability": 0.9637 + }, + { + "start": 6127.14, + "end": 6128.42, + "probability": 0.9717 + }, + { + "start": 6129.72, + "end": 6134.72, + "probability": 0.9949 + }, + { + "start": 6135.02, + "end": 6138.3, + "probability": 0.8074 + }, + { + "start": 6138.3, + "end": 6141.54, + "probability": 0.9952 + }, + { + "start": 6143.36, + "end": 6145.26, + "probability": 0.2903 + }, + { + "start": 6145.48, + "end": 6149.26, + "probability": 0.9911 + }, + { + "start": 6149.48, + "end": 6153.9, + "probability": 0.9927 + }, + { + "start": 6154.78, + "end": 6159.3, + "probability": 0.9736 + }, + { + "start": 6159.42, + "end": 6159.92, + "probability": 0.7339 + }, + { + "start": 6160.24, + "end": 6161.56, + "probability": 0.8628 + }, + { + "start": 6162.78, + "end": 6166.02, + "probability": 0.9546 + }, + { + "start": 6166.22, + "end": 6172.82, + "probability": 0.9567 + }, + { + "start": 6173.14, + "end": 6174.42, + "probability": 0.9587 + }, + { + "start": 6174.62, + "end": 6176.1, + "probability": 0.8199 + }, + { + "start": 6177.1, + "end": 6181.54, + "probability": 0.9929 + }, + { + "start": 6181.64, + "end": 6183.19, + "probability": 0.9951 + }, + { + "start": 6183.6, + "end": 6185.2, + "probability": 0.9594 + }, + { + "start": 6186.08, + "end": 6188.88, + "probability": 0.926 + }, + { + "start": 6189.58, + "end": 6192.44, + "probability": 0.9229 + }, + { + "start": 6192.62, + "end": 6195.78, + "probability": 0.9782 + }, + { + "start": 6196.04, + "end": 6196.42, + "probability": 0.1812 + }, + { + "start": 6196.42, + "end": 6201.96, + "probability": 0.9418 + }, + { + "start": 6202.56, + "end": 6205.86, + "probability": 0.9779 + }, + { + "start": 6206.48, + "end": 6208.74, + "probability": 0.9872 + }, + { + "start": 6209.56, + "end": 6212.58, + "probability": 0.9052 + }, + { + "start": 6212.68, + "end": 6214.52, + "probability": 0.9856 + }, + { + "start": 6215.86, + "end": 6219.12, + "probability": 0.9426 + }, + { + "start": 6219.55, + "end": 6223.56, + "probability": 0.9994 + }, + { + "start": 6224.12, + "end": 6226.9, + "probability": 0.9965 + }, + { + "start": 6226.98, + "end": 6228.24, + "probability": 0.7095 + }, + { + "start": 6229.22, + "end": 6230.78, + "probability": 0.9207 + }, + { + "start": 6230.96, + "end": 6231.64, + "probability": 0.9792 + }, + { + "start": 6231.76, + "end": 6232.44, + "probability": 0.9318 + }, + { + "start": 6232.7, + "end": 6233.56, + "probability": 0.9857 + }, + { + "start": 6234.56, + "end": 6236.2, + "probability": 0.8317 + }, + { + "start": 6237.44, + "end": 6243.56, + "probability": 0.998 + }, + { + "start": 6244.52, + "end": 6248.46, + "probability": 0.8354 + }, + { + "start": 6249.78, + "end": 6253.47, + "probability": 0.9761 + }, + { + "start": 6254.32, + "end": 6254.96, + "probability": 0.5026 + }, + { + "start": 6255.08, + "end": 6255.64, + "probability": 0.5917 + }, + { + "start": 6255.72, + "end": 6257.87, + "probability": 0.9841 + }, + { + "start": 6258.46, + "end": 6259.32, + "probability": 0.7701 + }, + { + "start": 6259.54, + "end": 6263.16, + "probability": 0.9326 + }, + { + "start": 6263.84, + "end": 6267.18, + "probability": 0.9444 + }, + { + "start": 6268.0, + "end": 6272.1, + "probability": 0.971 + }, + { + "start": 6273.42, + "end": 6274.98, + "probability": 0.9648 + }, + { + "start": 6275.4, + "end": 6276.34, + "probability": 0.9772 + }, + { + "start": 6276.8, + "end": 6278.02, + "probability": 0.8943 + }, + { + "start": 6278.44, + "end": 6281.26, + "probability": 0.9766 + }, + { + "start": 6282.3, + "end": 6288.06, + "probability": 0.99 + }, + { + "start": 6288.06, + "end": 6292.5, + "probability": 0.9959 + }, + { + "start": 6293.04, + "end": 6296.9, + "probability": 0.9158 + }, + { + "start": 6298.34, + "end": 6302.1, + "probability": 0.9824 + }, + { + "start": 6302.62, + "end": 6302.94, + "probability": 0.9748 + }, + { + "start": 6303.56, + "end": 6304.69, + "probability": 0.979 + }, + { + "start": 6305.54, + "end": 6310.08, + "probability": 0.9846 + }, + { + "start": 6310.68, + "end": 6316.48, + "probability": 0.9974 + }, + { + "start": 6316.48, + "end": 6321.32, + "probability": 0.9986 + }, + { + "start": 6323.18, + "end": 6324.64, + "probability": 0.7377 + }, + { + "start": 6324.8, + "end": 6325.76, + "probability": 0.9144 + }, + { + "start": 6325.84, + "end": 6327.46, + "probability": 0.9007 + }, + { + "start": 6327.8, + "end": 6331.48, + "probability": 0.9912 + }, + { + "start": 6331.48, + "end": 6334.0, + "probability": 0.999 + }, + { + "start": 6335.3, + "end": 6339.8, + "probability": 0.9785 + }, + { + "start": 6339.92, + "end": 6342.4, + "probability": 0.8677 + }, + { + "start": 6343.2, + "end": 6346.3, + "probability": 0.8432 + }, + { + "start": 6347.12, + "end": 6350.18, + "probability": 0.8446 + }, + { + "start": 6350.26, + "end": 6353.4, + "probability": 0.9747 + }, + { + "start": 6353.74, + "end": 6354.94, + "probability": 0.9161 + }, + { + "start": 6355.22, + "end": 6357.2, + "probability": 0.9979 + }, + { + "start": 6358.12, + "end": 6361.3, + "probability": 0.9769 + }, + { + "start": 6362.74, + "end": 6367.42, + "probability": 0.9727 + }, + { + "start": 6368.68, + "end": 6371.78, + "probability": 0.8543 + }, + { + "start": 6371.84, + "end": 6371.84, + "probability": 0.0187 + }, + { + "start": 6371.84, + "end": 6372.46, + "probability": 0.7562 + }, + { + "start": 6372.56, + "end": 6374.16, + "probability": 0.748 + }, + { + "start": 6374.26, + "end": 6375.5, + "probability": 0.4447 + }, + { + "start": 6375.62, + "end": 6378.06, + "probability": 0.9498 + }, + { + "start": 6378.16, + "end": 6381.38, + "probability": 0.4805 + }, + { + "start": 6381.98, + "end": 6383.88, + "probability": 0.8924 + }, + { + "start": 6384.14, + "end": 6386.84, + "probability": 0.9241 + }, + { + "start": 6386.98, + "end": 6389.58, + "probability": 0.9935 + }, + { + "start": 6389.76, + "end": 6393.44, + "probability": 0.9878 + }, + { + "start": 6393.44, + "end": 6395.66, + "probability": 0.998 + }, + { + "start": 6396.52, + "end": 6399.3, + "probability": 0.9764 + }, + { + "start": 6399.46, + "end": 6400.82, + "probability": 0.8607 + }, + { + "start": 6400.86, + "end": 6404.32, + "probability": 0.963 + }, + { + "start": 6405.04, + "end": 6408.72, + "probability": 0.998 + }, + { + "start": 6409.0, + "end": 6409.76, + "probability": 0.8729 + }, + { + "start": 6409.96, + "end": 6411.25, + "probability": 0.9941 + }, + { + "start": 6411.64, + "end": 6414.62, + "probability": 0.859 + }, + { + "start": 6414.68, + "end": 6415.6, + "probability": 0.5998 + }, + { + "start": 6415.78, + "end": 6416.8, + "probability": 0.7392 + }, + { + "start": 6417.56, + "end": 6418.14, + "probability": 0.2885 + }, + { + "start": 6418.24, + "end": 6419.26, + "probability": 0.683 + }, + { + "start": 6419.32, + "end": 6420.34, + "probability": 0.9605 + }, + { + "start": 6420.5, + "end": 6421.44, + "probability": 0.7249 + }, + { + "start": 6421.88, + "end": 6423.0, + "probability": 0.6459 + }, + { + "start": 6423.04, + "end": 6424.48, + "probability": 0.9902 + }, + { + "start": 6424.62, + "end": 6430.38, + "probability": 0.978 + }, + { + "start": 6430.4, + "end": 6431.22, + "probability": 0.7054 + }, + { + "start": 6431.58, + "end": 6435.78, + "probability": 0.9873 + }, + { + "start": 6435.86, + "end": 6436.32, + "probability": 0.7757 + }, + { + "start": 6436.6, + "end": 6438.34, + "probability": 0.6886 + }, + { + "start": 6438.48, + "end": 6441.9, + "probability": 0.8973 + }, + { + "start": 6441.96, + "end": 6442.82, + "probability": 0.4494 + }, + { + "start": 6443.08, + "end": 6444.92, + "probability": 0.9095 + }, + { + "start": 6456.88, + "end": 6457.88, + "probability": 0.6114 + }, + { + "start": 6458.96, + "end": 6460.36, + "probability": 0.8076 + }, + { + "start": 6461.4, + "end": 6464.68, + "probability": 0.9674 + }, + { + "start": 6464.68, + "end": 6467.76, + "probability": 0.9995 + }, + { + "start": 6468.82, + "end": 6469.54, + "probability": 0.8841 + }, + { + "start": 6469.7, + "end": 6471.16, + "probability": 0.957 + }, + { + "start": 6471.18, + "end": 6472.3, + "probability": 0.9467 + }, + { + "start": 6472.78, + "end": 6475.5, + "probability": 0.7987 + }, + { + "start": 6477.18, + "end": 6478.52, + "probability": 0.6964 + }, + { + "start": 6478.68, + "end": 6480.14, + "probability": 0.9634 + }, + { + "start": 6480.54, + "end": 6484.12, + "probability": 0.9807 + }, + { + "start": 6484.12, + "end": 6487.64, + "probability": 0.8683 + }, + { + "start": 6488.78, + "end": 6491.92, + "probability": 0.9952 + }, + { + "start": 6492.68, + "end": 6495.57, + "probability": 0.9884 + }, + { + "start": 6495.86, + "end": 6499.06, + "probability": 0.9865 + }, + { + "start": 6500.32, + "end": 6502.88, + "probability": 0.7733 + }, + { + "start": 6503.46, + "end": 6506.06, + "probability": 0.9987 + }, + { + "start": 6506.14, + "end": 6506.7, + "probability": 0.9406 + }, + { + "start": 6507.64, + "end": 6511.7, + "probability": 0.9858 + }, + { + "start": 6511.7, + "end": 6515.92, + "probability": 0.9847 + }, + { + "start": 6516.72, + "end": 6518.22, + "probability": 0.8012 + }, + { + "start": 6518.84, + "end": 6520.74, + "probability": 0.7829 + }, + { + "start": 6521.6, + "end": 6523.6, + "probability": 0.9941 + }, + { + "start": 6523.6, + "end": 6526.9, + "probability": 0.9839 + }, + { + "start": 6527.46, + "end": 6532.76, + "probability": 0.9932 + }, + { + "start": 6533.6, + "end": 6539.32, + "probability": 0.9878 + }, + { + "start": 6539.34, + "end": 6540.54, + "probability": 0.8689 + }, + { + "start": 6541.02, + "end": 6544.24, + "probability": 0.9015 + }, + { + "start": 6545.28, + "end": 6548.6, + "probability": 0.9946 + }, + { + "start": 6548.72, + "end": 6552.76, + "probability": 0.9953 + }, + { + "start": 6552.8, + "end": 6554.64, + "probability": 0.9917 + }, + { + "start": 6554.94, + "end": 6556.84, + "probability": 0.998 + }, + { + "start": 6557.22, + "end": 6559.62, + "probability": 0.9968 + }, + { + "start": 6559.62, + "end": 6563.46, + "probability": 0.9839 + }, + { + "start": 6563.6, + "end": 6565.98, + "probability": 0.995 + }, + { + "start": 6567.02, + "end": 6569.6, + "probability": 0.9854 + }, + { + "start": 6570.12, + "end": 6574.64, + "probability": 0.9918 + }, + { + "start": 6574.64, + "end": 6580.1, + "probability": 0.9879 + }, + { + "start": 6580.9, + "end": 6583.82, + "probability": 0.8693 + }, + { + "start": 6584.34, + "end": 6585.08, + "probability": 0.7168 + }, + { + "start": 6585.42, + "end": 6587.54, + "probability": 0.9393 + }, + { + "start": 6587.68, + "end": 6590.32, + "probability": 0.9961 + }, + { + "start": 6590.76, + "end": 6595.1, + "probability": 0.9857 + }, + { + "start": 6595.48, + "end": 6597.54, + "probability": 0.9672 + }, + { + "start": 6598.48, + "end": 6599.42, + "probability": 0.892 + }, + { + "start": 6600.36, + "end": 6602.86, + "probability": 0.8603 + }, + { + "start": 6602.86, + "end": 6604.92, + "probability": 0.9681 + }, + { + "start": 6605.54, + "end": 6607.76, + "probability": 0.9956 + }, + { + "start": 6608.16, + "end": 6610.76, + "probability": 0.9688 + }, + { + "start": 6610.76, + "end": 6613.28, + "probability": 0.9597 + }, + { + "start": 6614.32, + "end": 6617.76, + "probability": 0.9963 + }, + { + "start": 6618.06, + "end": 6622.22, + "probability": 0.9918 + }, + { + "start": 6623.76, + "end": 6627.16, + "probability": 0.7762 + }, + { + "start": 6627.32, + "end": 6631.44, + "probability": 0.8896 + }, + { + "start": 6631.7, + "end": 6634.1, + "probability": 0.7003 + }, + { + "start": 6634.14, + "end": 6634.88, + "probability": 0.8242 + }, + { + "start": 6635.3, + "end": 6640.03, + "probability": 0.9873 + }, + { + "start": 6641.42, + "end": 6641.64, + "probability": 0.2667 + }, + { + "start": 6641.64, + "end": 6644.6, + "probability": 0.9277 + }, + { + "start": 6644.6, + "end": 6648.08, + "probability": 0.9917 + }, + { + "start": 6648.16, + "end": 6652.2, + "probability": 0.9951 + }, + { + "start": 6652.2, + "end": 6656.14, + "probability": 0.9921 + }, + { + "start": 6656.78, + "end": 6657.56, + "probability": 0.714 + }, + { + "start": 6657.66, + "end": 6658.52, + "probability": 0.7022 + }, + { + "start": 6658.78, + "end": 6660.68, + "probability": 0.9264 + }, + { + "start": 6660.8, + "end": 6661.32, + "probability": 0.9307 + }, + { + "start": 6661.42, + "end": 6666.66, + "probability": 0.973 + }, + { + "start": 6667.84, + "end": 6669.7, + "probability": 0.8645 + }, + { + "start": 6669.78, + "end": 6670.8, + "probability": 0.7939 + }, + { + "start": 6670.9, + "end": 6673.7, + "probability": 0.8453 + }, + { + "start": 6674.3, + "end": 6677.84, + "probability": 0.9705 + }, + { + "start": 6677.84, + "end": 6681.44, + "probability": 0.9946 + }, + { + "start": 6681.44, + "end": 6684.78, + "probability": 0.995 + }, + { + "start": 6685.2, + "end": 6685.24, + "probability": 0.0953 + }, + { + "start": 6685.34, + "end": 6685.42, + "probability": 0.8242 + }, + { + "start": 6685.52, + "end": 6686.68, + "probability": 0.8628 + }, + { + "start": 6687.1, + "end": 6688.04, + "probability": 0.897 + }, + { + "start": 6688.18, + "end": 6689.4, + "probability": 0.7931 + }, + { + "start": 6689.74, + "end": 6691.8, + "probability": 0.9844 + }, + { + "start": 6692.66, + "end": 6692.84, + "probability": 0.2876 + }, + { + "start": 6692.94, + "end": 6697.52, + "probability": 0.9751 + }, + { + "start": 6698.0, + "end": 6698.46, + "probability": 0.8904 + }, + { + "start": 6698.52, + "end": 6699.04, + "probability": 0.7563 + }, + { + "start": 6699.14, + "end": 6701.88, + "probability": 0.995 + }, + { + "start": 6702.6, + "end": 6705.78, + "probability": 0.9957 + }, + { + "start": 6705.86, + "end": 6706.72, + "probability": 0.7064 + }, + { + "start": 6706.86, + "end": 6711.84, + "probability": 0.9702 + }, + { + "start": 6712.14, + "end": 6714.82, + "probability": 0.9888 + }, + { + "start": 6715.84, + "end": 6717.94, + "probability": 0.9802 + }, + { + "start": 6717.97, + "end": 6720.36, + "probability": 0.9863 + }, + { + "start": 6720.46, + "end": 6720.72, + "probability": 0.8756 + }, + { + "start": 6720.8, + "end": 6721.92, + "probability": 0.8399 + }, + { + "start": 6722.16, + "end": 6726.1, + "probability": 0.995 + }, + { + "start": 6726.58, + "end": 6729.46, + "probability": 0.9917 + }, + { + "start": 6729.46, + "end": 6732.26, + "probability": 0.994 + }, + { + "start": 6732.36, + "end": 6733.44, + "probability": 0.4868 + }, + { + "start": 6733.66, + "end": 6735.09, + "probability": 0.9746 + }, + { + "start": 6736.76, + "end": 6740.8, + "probability": 0.9913 + }, + { + "start": 6740.88, + "end": 6742.06, + "probability": 0.8283 + }, + { + "start": 6742.16, + "end": 6743.26, + "probability": 0.7297 + }, + { + "start": 6743.5, + "end": 6745.84, + "probability": 0.9952 + }, + { + "start": 6745.84, + "end": 6748.8, + "probability": 0.9737 + }, + { + "start": 6749.32, + "end": 6750.66, + "probability": 0.7259 + }, + { + "start": 6752.1, + "end": 6754.0, + "probability": 0.4771 + }, + { + "start": 6754.22, + "end": 6757.9, + "probability": 0.9934 + }, + { + "start": 6757.9, + "end": 6762.6, + "probability": 0.909 + }, + { + "start": 6762.98, + "end": 6763.24, + "probability": 0.6761 + }, + { + "start": 6763.38, + "end": 6764.3, + "probability": 0.718 + }, + { + "start": 6764.58, + "end": 6770.2, + "probability": 0.993 + }, + { + "start": 6770.2, + "end": 6775.78, + "probability": 0.9971 + }, + { + "start": 6776.08, + "end": 6776.4, + "probability": 0.8582 + }, + { + "start": 6777.04, + "end": 6779.7, + "probability": 0.5807 + }, + { + "start": 6780.3, + "end": 6782.68, + "probability": 0.6766 + }, + { + "start": 6783.1, + "end": 6783.94, + "probability": 0.404 + }, + { + "start": 6784.42, + "end": 6786.12, + "probability": 0.9594 + }, + { + "start": 6803.16, + "end": 6803.3, + "probability": 0.2095 + }, + { + "start": 6803.32, + "end": 6805.38, + "probability": 0.6048 + }, + { + "start": 6806.68, + "end": 6809.46, + "probability": 0.9051 + }, + { + "start": 6810.5, + "end": 6812.82, + "probability": 0.9939 + }, + { + "start": 6813.98, + "end": 6817.8, + "probability": 0.975 + }, + { + "start": 6818.54, + "end": 6820.59, + "probability": 0.7728 + }, + { + "start": 6821.68, + "end": 6825.68, + "probability": 0.8684 + }, + { + "start": 6826.52, + "end": 6827.81, + "probability": 0.9808 + }, + { + "start": 6828.26, + "end": 6830.3, + "probability": 0.9812 + }, + { + "start": 6830.96, + "end": 6833.42, + "probability": 0.9951 + }, + { + "start": 6834.46, + "end": 6837.08, + "probability": 0.9725 + }, + { + "start": 6837.94, + "end": 6840.35, + "probability": 0.9922 + }, + { + "start": 6841.2, + "end": 6842.92, + "probability": 0.7268 + }, + { + "start": 6843.92, + "end": 6845.18, + "probability": 0.6085 + }, + { + "start": 6846.36, + "end": 6849.28, + "probability": 0.9847 + }, + { + "start": 6849.42, + "end": 6850.14, + "probability": 0.7672 + }, + { + "start": 6850.26, + "end": 6853.68, + "probability": 0.7809 + }, + { + "start": 6855.28, + "end": 6859.18, + "probability": 0.6115 + }, + { + "start": 6860.0, + "end": 6863.12, + "probability": 0.9879 + }, + { + "start": 6863.92, + "end": 6864.96, + "probability": 0.9252 + }, + { + "start": 6865.12, + "end": 6866.32, + "probability": 0.875 + }, + { + "start": 6866.82, + "end": 6869.24, + "probability": 0.9507 + }, + { + "start": 6871.24, + "end": 6874.22, + "probability": 0.9739 + }, + { + "start": 6875.36, + "end": 6879.48, + "probability": 0.876 + }, + { + "start": 6880.24, + "end": 6883.54, + "probability": 0.9966 + }, + { + "start": 6883.54, + "end": 6886.52, + "probability": 0.9988 + }, + { + "start": 6887.26, + "end": 6888.52, + "probability": 0.9773 + }, + { + "start": 6888.9, + "end": 6890.28, + "probability": 0.8248 + }, + { + "start": 6890.3, + "end": 6891.66, + "probability": 0.8751 + }, + { + "start": 6892.32, + "end": 6895.58, + "probability": 0.9987 + }, + { + "start": 6895.58, + "end": 6898.46, + "probability": 0.9527 + }, + { + "start": 6898.54, + "end": 6902.62, + "probability": 0.8449 + }, + { + "start": 6903.42, + "end": 6905.82, + "probability": 0.9933 + }, + { + "start": 6905.98, + "end": 6906.62, + "probability": 0.9456 + }, + { + "start": 6906.7, + "end": 6909.04, + "probability": 0.9634 + }, + { + "start": 6909.52, + "end": 6911.12, + "probability": 0.9778 + }, + { + "start": 6911.64, + "end": 6915.62, + "probability": 0.9388 + }, + { + "start": 6915.76, + "end": 6917.36, + "probability": 0.9032 + }, + { + "start": 6917.46, + "end": 6918.16, + "probability": 0.4022 + }, + { + "start": 6918.42, + "end": 6920.74, + "probability": 0.7898 + }, + { + "start": 6921.58, + "end": 6923.16, + "probability": 0.8735 + }, + { + "start": 6923.28, + "end": 6924.58, + "probability": 0.8678 + }, + { + "start": 6924.72, + "end": 6929.56, + "probability": 0.9763 + }, + { + "start": 6929.56, + "end": 6933.17, + "probability": 0.9922 + }, + { + "start": 6934.04, + "end": 6935.8, + "probability": 0.9442 + }, + { + "start": 6936.24, + "end": 6936.9, + "probability": 0.9583 + }, + { + "start": 6937.64, + "end": 6941.07, + "probability": 0.9917 + }, + { + "start": 6941.76, + "end": 6943.38, + "probability": 0.9664 + }, + { + "start": 6943.94, + "end": 6944.85, + "probability": 0.9535 + }, + { + "start": 6945.6, + "end": 6949.5, + "probability": 0.9946 + }, + { + "start": 6949.66, + "end": 6950.36, + "probability": 0.9133 + }, + { + "start": 6951.94, + "end": 6954.28, + "probability": 0.8142 + }, + { + "start": 6954.3, + "end": 6956.4, + "probability": 0.7338 + }, + { + "start": 6957.96, + "end": 6960.0, + "probability": 0.7166 + }, + { + "start": 6966.3, + "end": 6966.82, + "probability": 0.4224 + }, + { + "start": 6967.62, + "end": 6968.54, + "probability": 0.7867 + }, + { + "start": 6969.46, + "end": 6971.5, + "probability": 0.908 + }, + { + "start": 6972.38, + "end": 6976.04, + "probability": 0.8159 + }, + { + "start": 6976.84, + "end": 6978.7, + "probability": 0.9785 + }, + { + "start": 6980.1, + "end": 6983.72, + "probability": 0.9614 + }, + { + "start": 6984.54, + "end": 6989.6, + "probability": 0.9883 + }, + { + "start": 6989.72, + "end": 6990.38, + "probability": 0.5822 + }, + { + "start": 6990.4, + "end": 6991.72, + "probability": 0.5006 + }, + { + "start": 6991.8, + "end": 6993.41, + "probability": 0.6897 + }, + { + "start": 6994.04, + "end": 6998.71, + "probability": 0.9977 + }, + { + "start": 6999.72, + "end": 7000.28, + "probability": 0.7494 + }, + { + "start": 7000.42, + "end": 7001.4, + "probability": 0.907 + }, + { + "start": 7001.5, + "end": 7008.04, + "probability": 0.9756 + }, + { + "start": 7008.42, + "end": 7009.76, + "probability": 0.5062 + }, + { + "start": 7009.8, + "end": 7014.26, + "probability": 0.996 + }, + { + "start": 7014.46, + "end": 7015.16, + "probability": 0.6945 + }, + { + "start": 7015.76, + "end": 7016.98, + "probability": 0.646 + }, + { + "start": 7017.56, + "end": 7021.49, + "probability": 0.9668 + }, + { + "start": 7021.72, + "end": 7026.86, + "probability": 0.9963 + }, + { + "start": 7026.86, + "end": 7029.94, + "probability": 0.9985 + }, + { + "start": 7030.66, + "end": 7033.2, + "probability": 0.9995 + }, + { + "start": 7033.2, + "end": 7036.04, + "probability": 0.7378 + }, + { + "start": 7036.18, + "end": 7037.32, + "probability": 0.8076 + }, + { + "start": 7037.6, + "end": 7041.88, + "probability": 0.9878 + }, + { + "start": 7041.88, + "end": 7044.82, + "probability": 0.9378 + }, + { + "start": 7044.9, + "end": 7047.12, + "probability": 0.9829 + }, + { + "start": 7047.84, + "end": 7048.26, + "probability": 0.677 + }, + { + "start": 7048.36, + "end": 7052.68, + "probability": 0.9862 + }, + { + "start": 7052.84, + "end": 7056.0, + "probability": 0.9704 + }, + { + "start": 7056.1, + "end": 7057.07, + "probability": 0.761 + }, + { + "start": 7057.82, + "end": 7060.24, + "probability": 0.9668 + }, + { + "start": 7060.24, + "end": 7064.32, + "probability": 0.9799 + }, + { + "start": 7064.94, + "end": 7067.48, + "probability": 0.9749 + }, + { + "start": 7068.06, + "end": 7068.94, + "probability": 0.8487 + }, + { + "start": 7069.12, + "end": 7070.94, + "probability": 0.9978 + }, + { + "start": 7071.32, + "end": 7074.6, + "probability": 0.9688 + }, + { + "start": 7074.84, + "end": 7077.96, + "probability": 0.6969 + }, + { + "start": 7078.32, + "end": 7078.85, + "probability": 0.9465 + }, + { + "start": 7079.1, + "end": 7081.21, + "probability": 0.8519 + }, + { + "start": 7081.82, + "end": 7082.86, + "probability": 0.8288 + }, + { + "start": 7083.8, + "end": 7088.52, + "probability": 0.98 + }, + { + "start": 7088.52, + "end": 7091.12, + "probability": 0.993 + }, + { + "start": 7091.78, + "end": 7092.88, + "probability": 0.9551 + }, + { + "start": 7092.98, + "end": 7095.02, + "probability": 0.9837 + }, + { + "start": 7095.08, + "end": 7099.2, + "probability": 0.9948 + }, + { + "start": 7099.2, + "end": 7102.48, + "probability": 0.9918 + }, + { + "start": 7102.48, + "end": 7106.04, + "probability": 0.9989 + }, + { + "start": 7106.46, + "end": 7109.38, + "probability": 0.9752 + }, + { + "start": 7109.38, + "end": 7111.72, + "probability": 0.9938 + }, + { + "start": 7112.72, + "end": 7116.0, + "probability": 0.9207 + }, + { + "start": 7116.14, + "end": 7118.34, + "probability": 0.9941 + }, + { + "start": 7118.88, + "end": 7121.84, + "probability": 0.9301 + }, + { + "start": 7122.42, + "end": 7125.66, + "probability": 0.9362 + }, + { + "start": 7125.66, + "end": 7129.34, + "probability": 0.9766 + }, + { + "start": 7129.48, + "end": 7131.88, + "probability": 0.9319 + }, + { + "start": 7132.26, + "end": 7136.68, + "probability": 0.8706 + }, + { + "start": 7136.68, + "end": 7140.44, + "probability": 0.9951 + }, + { + "start": 7141.12, + "end": 7142.42, + "probability": 0.7734 + }, + { + "start": 7142.76, + "end": 7146.85, + "probability": 0.9913 + }, + { + "start": 7147.98, + "end": 7151.68, + "probability": 0.9984 + }, + { + "start": 7151.68, + "end": 7155.82, + "probability": 0.9955 + }, + { + "start": 7156.06, + "end": 7157.82, + "probability": 0.9784 + }, + { + "start": 7157.94, + "end": 7158.26, + "probability": 0.5017 + }, + { + "start": 7158.74, + "end": 7159.16, + "probability": 0.4332 + }, + { + "start": 7159.2, + "end": 7161.66, + "probability": 0.9794 + }, + { + "start": 7161.66, + "end": 7165.5, + "probability": 0.9933 + }, + { + "start": 7165.58, + "end": 7168.32, + "probability": 0.9531 + }, + { + "start": 7168.4, + "end": 7170.3, + "probability": 0.8782 + }, + { + "start": 7171.86, + "end": 7172.94, + "probability": 0.7679 + }, + { + "start": 7173.04, + "end": 7175.78, + "probability": 0.9743 + }, + { + "start": 7176.0, + "end": 7178.0, + "probability": 0.9961 + }, + { + "start": 7178.0, + "end": 7181.46, + "probability": 0.9953 + }, + { + "start": 7182.2, + "end": 7182.94, + "probability": 0.8015 + }, + { + "start": 7183.02, + "end": 7185.4, + "probability": 0.995 + }, + { + "start": 7185.4, + "end": 7189.26, + "probability": 0.9962 + }, + { + "start": 7189.78, + "end": 7190.04, + "probability": 0.3107 + }, + { + "start": 7190.18, + "end": 7192.94, + "probability": 0.9736 + }, + { + "start": 7192.94, + "end": 7195.14, + "probability": 0.9824 + }, + { + "start": 7195.24, + "end": 7196.1, + "probability": 0.8221 + }, + { + "start": 7196.46, + "end": 7198.04, + "probability": 0.9355 + }, + { + "start": 7199.12, + "end": 7203.56, + "probability": 0.9533 + }, + { + "start": 7204.15, + "end": 7208.26, + "probability": 0.9702 + }, + { + "start": 7208.72, + "end": 7210.78, + "probability": 0.7998 + }, + { + "start": 7210.8, + "end": 7214.28, + "probability": 0.9936 + }, + { + "start": 7214.56, + "end": 7217.9, + "probability": 0.9645 + }, + { + "start": 7217.9, + "end": 7220.68, + "probability": 0.9966 + }, + { + "start": 7221.02, + "end": 7221.62, + "probability": 0.5059 + }, + { + "start": 7221.78, + "end": 7223.3, + "probability": 0.7723 + }, + { + "start": 7223.34, + "end": 7227.68, + "probability": 0.9756 + }, + { + "start": 7227.68, + "end": 7232.1, + "probability": 0.9995 + }, + { + "start": 7232.48, + "end": 7233.68, + "probability": 0.6265 + }, + { + "start": 7233.72, + "end": 7236.08, + "probability": 0.8903 + }, + { + "start": 7236.14, + "end": 7240.16, + "probability": 0.9831 + }, + { + "start": 7240.3, + "end": 7240.68, + "probability": 0.708 + }, + { + "start": 7240.76, + "end": 7243.3, + "probability": 0.5789 + }, + { + "start": 7243.62, + "end": 7246.94, + "probability": 0.8651 + }, + { + "start": 7247.06, + "end": 7247.58, + "probability": 0.3355 + }, + { + "start": 7247.68, + "end": 7248.62, + "probability": 0.6914 + }, + { + "start": 7249.18, + "end": 7250.84, + "probability": 0.8556 + }, + { + "start": 7265.72, + "end": 7267.86, + "probability": 0.7794 + }, + { + "start": 7268.4, + "end": 7268.74, + "probability": 0.6194 + }, + { + "start": 7268.8, + "end": 7272.24, + "probability": 0.9022 + }, + { + "start": 7272.4, + "end": 7275.12, + "probability": 0.9682 + }, + { + "start": 7275.16, + "end": 7276.36, + "probability": 0.773 + }, + { + "start": 7276.46, + "end": 7279.26, + "probability": 0.9418 + }, + { + "start": 7280.14, + "end": 7281.88, + "probability": 0.7552 + }, + { + "start": 7282.44, + "end": 7283.52, + "probability": 0.8595 + }, + { + "start": 7284.34, + "end": 7287.62, + "probability": 0.9331 + }, + { + "start": 7288.14, + "end": 7293.36, + "probability": 0.9725 + }, + { + "start": 7293.36, + "end": 7296.42, + "probability": 0.9984 + }, + { + "start": 7296.5, + "end": 7297.86, + "probability": 0.819 + }, + { + "start": 7298.08, + "end": 7299.78, + "probability": 0.8802 + }, + { + "start": 7300.02, + "end": 7301.33, + "probability": 0.9174 + }, + { + "start": 7301.48, + "end": 7302.56, + "probability": 0.5018 + }, + { + "start": 7303.64, + "end": 7311.14, + "probability": 0.9912 + }, + { + "start": 7311.14, + "end": 7317.7, + "probability": 0.9937 + }, + { + "start": 7317.78, + "end": 7318.44, + "probability": 0.9441 + }, + { + "start": 7318.52, + "end": 7322.68, + "probability": 0.9567 + }, + { + "start": 7323.22, + "end": 7326.98, + "probability": 0.9924 + }, + { + "start": 7327.14, + "end": 7328.92, + "probability": 0.9837 + }, + { + "start": 7329.12, + "end": 7329.58, + "probability": 0.9199 + }, + { + "start": 7330.58, + "end": 7334.26, + "probability": 0.9694 + }, + { + "start": 7335.1, + "end": 7337.18, + "probability": 0.9556 + }, + { + "start": 7337.38, + "end": 7339.24, + "probability": 0.9175 + }, + { + "start": 7339.72, + "end": 7340.02, + "probability": 0.4517 + }, + { + "start": 7340.16, + "end": 7341.28, + "probability": 0.874 + }, + { + "start": 7341.54, + "end": 7346.38, + "probability": 0.9935 + }, + { + "start": 7346.38, + "end": 7348.78, + "probability": 0.811 + }, + { + "start": 7348.92, + "end": 7352.8, + "probability": 0.9539 + }, + { + "start": 7353.68, + "end": 7354.44, + "probability": 0.6163 + }, + { + "start": 7354.54, + "end": 7357.74, + "probability": 0.9764 + }, + { + "start": 7357.86, + "end": 7360.32, + "probability": 0.9971 + }, + { + "start": 7361.26, + "end": 7363.74, + "probability": 0.9656 + }, + { + "start": 7364.3, + "end": 7368.46, + "probability": 0.9835 + }, + { + "start": 7368.46, + "end": 7372.2, + "probability": 0.9984 + }, + { + "start": 7372.26, + "end": 7376.18, + "probability": 0.9673 + }, + { + "start": 7376.86, + "end": 7380.26, + "probability": 0.7142 + }, + { + "start": 7381.78, + "end": 7385.62, + "probability": 0.9266 + }, + { + "start": 7386.16, + "end": 7389.48, + "probability": 0.9824 + }, + { + "start": 7390.02, + "end": 7391.6, + "probability": 0.723 + }, + { + "start": 7392.12, + "end": 7393.1, + "probability": 0.8612 + }, + { + "start": 7393.24, + "end": 7393.68, + "probability": 0.9065 + }, + { + "start": 7393.8, + "end": 7394.44, + "probability": 0.909 + }, + { + "start": 7394.7, + "end": 7397.86, + "probability": 0.9876 + }, + { + "start": 7399.0, + "end": 7403.04, + "probability": 0.9438 + }, + { + "start": 7403.56, + "end": 7407.48, + "probability": 0.9446 + }, + { + "start": 7407.66, + "end": 7411.84, + "probability": 0.9909 + }, + { + "start": 7411.84, + "end": 7415.94, + "probability": 0.9982 + }, + { + "start": 7416.44, + "end": 7419.8, + "probability": 0.9878 + }, + { + "start": 7420.02, + "end": 7422.54, + "probability": 0.903 + }, + { + "start": 7422.74, + "end": 7423.7, + "probability": 0.9849 + }, + { + "start": 7423.8, + "end": 7427.4, + "probability": 0.972 + }, + { + "start": 7428.02, + "end": 7428.44, + "probability": 0.7243 + }, + { + "start": 7428.5, + "end": 7428.66, + "probability": 0.8351 + }, + { + "start": 7428.74, + "end": 7431.12, + "probability": 0.9693 + }, + { + "start": 7431.46, + "end": 7435.26, + "probability": 0.9489 + }, + { + "start": 7435.54, + "end": 7437.1, + "probability": 0.9613 + }, + { + "start": 7437.54, + "end": 7437.84, + "probability": 0.5461 + }, + { + "start": 7437.9, + "end": 7438.28, + "probability": 0.9291 + }, + { + "start": 7438.34, + "end": 7439.98, + "probability": 0.9792 + }, + { + "start": 7440.32, + "end": 7441.64, + "probability": 0.9955 + }, + { + "start": 7441.74, + "end": 7444.42, + "probability": 0.8245 + }, + { + "start": 7445.7, + "end": 7448.64, + "probability": 0.8714 + }, + { + "start": 7449.34, + "end": 7453.2, + "probability": 0.963 + }, + { + "start": 7454.4, + "end": 7456.28, + "probability": 0.9444 + }, + { + "start": 7456.48, + "end": 7461.1, + "probability": 0.9695 + }, + { + "start": 7461.66, + "end": 7464.04, + "probability": 0.8391 + }, + { + "start": 7464.36, + "end": 7468.46, + "probability": 0.9172 + }, + { + "start": 7469.06, + "end": 7469.72, + "probability": 0.2706 + }, + { + "start": 7469.72, + "end": 7473.76, + "probability": 0.9535 + }, + { + "start": 7474.38, + "end": 7479.6, + "probability": 0.9438 + }, + { + "start": 7479.64, + "end": 7480.78, + "probability": 0.876 + }, + { + "start": 7480.82, + "end": 7485.58, + "probability": 0.9865 + }, + { + "start": 7485.58, + "end": 7489.7, + "probability": 0.9913 + }, + { + "start": 7490.1, + "end": 7495.34, + "probability": 0.9902 + }, + { + "start": 7495.54, + "end": 7500.82, + "probability": 0.9907 + }, + { + "start": 7500.94, + "end": 7501.58, + "probability": 0.7281 + }, + { + "start": 7501.82, + "end": 7502.38, + "probability": 0.8076 + }, + { + "start": 7502.7, + "end": 7504.84, + "probability": 0.9845 + }, + { + "start": 7505.82, + "end": 7510.2, + "probability": 0.9772 + }, + { + "start": 7511.04, + "end": 7514.38, + "probability": 0.8845 + }, + { + "start": 7514.52, + "end": 7517.44, + "probability": 0.9475 + }, + { + "start": 7517.88, + "end": 7523.06, + "probability": 0.9673 + }, + { + "start": 7523.81, + "end": 7529.62, + "probability": 0.9928 + }, + { + "start": 7530.64, + "end": 7536.0, + "probability": 0.8932 + }, + { + "start": 7536.38, + "end": 7537.9, + "probability": 0.7533 + }, + { + "start": 7537.98, + "end": 7540.62, + "probability": 0.9525 + }, + { + "start": 7540.7, + "end": 7542.71, + "probability": 0.7435 + }, + { + "start": 7543.64, + "end": 7548.42, + "probability": 0.8992 + }, + { + "start": 7548.82, + "end": 7550.12, + "probability": 0.6283 + }, + { + "start": 7550.2, + "end": 7551.42, + "probability": 0.9597 + }, + { + "start": 7551.82, + "end": 7554.3, + "probability": 0.9461 + }, + { + "start": 7554.54, + "end": 7556.78, + "probability": 0.9709 + }, + { + "start": 7557.44, + "end": 7558.1, + "probability": 0.7781 + }, + { + "start": 7558.28, + "end": 7560.38, + "probability": 0.7236 + }, + { + "start": 7560.68, + "end": 7565.36, + "probability": 0.9808 + }, + { + "start": 7565.6, + "end": 7567.58, + "probability": 0.9956 + }, + { + "start": 7567.6, + "end": 7568.74, + "probability": 0.7486 + }, + { + "start": 7568.74, + "end": 7568.81, + "probability": 0.5192 + }, + { + "start": 7569.18, + "end": 7569.92, + "probability": 0.5845 + }, + { + "start": 7570.36, + "end": 7571.56, + "probability": 0.7501 + }, + { + "start": 7571.66, + "end": 7573.2, + "probability": 0.8468 + }, + { + "start": 7573.3, + "end": 7574.14, + "probability": 0.8512 + }, + { + "start": 7574.48, + "end": 7576.54, + "probability": 0.9493 + }, + { + "start": 7576.68, + "end": 7580.86, + "probability": 0.9481 + }, + { + "start": 7580.9, + "end": 7581.46, + "probability": 0.8024 + }, + { + "start": 7582.12, + "end": 7584.44, + "probability": 0.9315 + }, + { + "start": 7584.54, + "end": 7585.91, + "probability": 0.6992 + }, + { + "start": 7586.76, + "end": 7588.72, + "probability": 0.6868 + }, + { + "start": 7588.74, + "end": 7593.28, + "probability": 0.7489 + }, + { + "start": 7593.4, + "end": 7594.54, + "probability": 0.9259 + }, + { + "start": 7609.62, + "end": 7611.1, + "probability": 0.4939 + }, + { + "start": 7612.58, + "end": 7614.14, + "probability": 0.9479 + }, + { + "start": 7615.22, + "end": 7616.94, + "probability": 0.8936 + }, + { + "start": 7617.24, + "end": 7621.1, + "probability": 0.9578 + }, + { + "start": 7622.86, + "end": 7625.02, + "probability": 0.8262 + }, + { + "start": 7625.58, + "end": 7627.74, + "probability": 0.9407 + }, + { + "start": 7628.64, + "end": 7633.24, + "probability": 0.9962 + }, + { + "start": 7635.0, + "end": 7635.52, + "probability": 0.4453 + }, + { + "start": 7635.58, + "end": 7638.02, + "probability": 0.8553 + }, + { + "start": 7638.14, + "end": 7642.68, + "probability": 0.9766 + }, + { + "start": 7643.36, + "end": 7648.44, + "probability": 0.7424 + }, + { + "start": 7649.18, + "end": 7651.9, + "probability": 0.9965 + }, + { + "start": 7651.9, + "end": 7656.16, + "probability": 0.9989 + }, + { + "start": 7657.2, + "end": 7658.54, + "probability": 0.8604 + }, + { + "start": 7658.56, + "end": 7661.02, + "probability": 0.9064 + }, + { + "start": 7661.1, + "end": 7663.26, + "probability": 0.9419 + }, + { + "start": 7663.98, + "end": 7668.2, + "probability": 0.8201 + }, + { + "start": 7668.2, + "end": 7672.0, + "probability": 0.9748 + }, + { + "start": 7673.16, + "end": 7676.62, + "probability": 0.927 + }, + { + "start": 7677.56, + "end": 7683.25, + "probability": 0.999 + }, + { + "start": 7683.4, + "end": 7688.18, + "probability": 0.998 + }, + { + "start": 7689.22, + "end": 7690.92, + "probability": 0.9983 + }, + { + "start": 7691.2, + "end": 7694.58, + "probability": 0.989 + }, + { + "start": 7694.78, + "end": 7695.88, + "probability": 0.9889 + }, + { + "start": 7695.9, + "end": 7697.38, + "probability": 0.9798 + }, + { + "start": 7697.84, + "end": 7702.08, + "probability": 0.9777 + }, + { + "start": 7703.24, + "end": 7707.36, + "probability": 0.984 + }, + { + "start": 7707.76, + "end": 7710.39, + "probability": 0.8904 + }, + { + "start": 7711.38, + "end": 7713.5, + "probability": 0.9932 + }, + { + "start": 7714.02, + "end": 7715.9, + "probability": 0.7778 + }, + { + "start": 7716.52, + "end": 7723.6, + "probability": 0.9841 + }, + { + "start": 7725.04, + "end": 7726.26, + "probability": 0.954 + }, + { + "start": 7727.9, + "end": 7730.54, + "probability": 0.985 + }, + { + "start": 7730.64, + "end": 7732.18, + "probability": 0.9871 + }, + { + "start": 7733.28, + "end": 7738.5, + "probability": 0.9834 + }, + { + "start": 7738.72, + "end": 7739.76, + "probability": 0.9421 + }, + { + "start": 7740.44, + "end": 7742.38, + "probability": 0.7847 + }, + { + "start": 7743.18, + "end": 7746.6, + "probability": 0.9572 + }, + { + "start": 7747.08, + "end": 7750.26, + "probability": 0.995 + }, + { + "start": 7750.26, + "end": 7754.84, + "probability": 0.9127 + }, + { + "start": 7755.84, + "end": 7757.72, + "probability": 0.79 + }, + { + "start": 7757.92, + "end": 7759.68, + "probability": 0.9572 + }, + { + "start": 7759.76, + "end": 7760.62, + "probability": 0.907 + }, + { + "start": 7760.68, + "end": 7761.64, + "probability": 0.9856 + }, + { + "start": 7762.04, + "end": 7762.82, + "probability": 0.7251 + }, + { + "start": 7763.56, + "end": 7765.68, + "probability": 0.8616 + }, + { + "start": 7766.04, + "end": 7768.54, + "probability": 0.9543 + }, + { + "start": 7769.56, + "end": 7773.18, + "probability": 0.7472 + }, + { + "start": 7773.76, + "end": 7775.92, + "probability": 0.8892 + }, + { + "start": 7776.34, + "end": 7781.22, + "probability": 0.9933 + }, + { + "start": 7781.3, + "end": 7782.26, + "probability": 0.792 + }, + { + "start": 7782.74, + "end": 7784.46, + "probability": 0.9835 + }, + { + "start": 7785.02, + "end": 7789.58, + "probability": 0.9888 + }, + { + "start": 7789.74, + "end": 7791.22, + "probability": 0.5827 + }, + { + "start": 7792.24, + "end": 7796.48, + "probability": 0.9637 + }, + { + "start": 7796.72, + "end": 7799.86, + "probability": 0.892 + }, + { + "start": 7800.6, + "end": 7804.2, + "probability": 0.9878 + }, + { + "start": 7804.32, + "end": 7806.64, + "probability": 0.9608 + }, + { + "start": 7807.1, + "end": 7808.0, + "probability": 0.9003 + }, + { + "start": 7808.02, + "end": 7809.26, + "probability": 0.8556 + }, + { + "start": 7809.58, + "end": 7814.22, + "probability": 0.96 + }, + { + "start": 7814.36, + "end": 7814.96, + "probability": 0.8323 + }, + { + "start": 7815.04, + "end": 7816.92, + "probability": 0.9238 + }, + { + "start": 7817.32, + "end": 7821.06, + "probability": 0.9725 + }, + { + "start": 7821.64, + "end": 7822.3, + "probability": 0.9175 + }, + { + "start": 7822.52, + "end": 7829.87, + "probability": 0.9756 + }, + { + "start": 7829.9, + "end": 7839.38, + "probability": 0.9991 + }, + { + "start": 7840.0, + "end": 7841.14, + "probability": 0.7632 + }, + { + "start": 7841.18, + "end": 7842.8, + "probability": 0.7767 + }, + { + "start": 7843.28, + "end": 7846.94, + "probability": 0.9992 + }, + { + "start": 7846.94, + "end": 7852.18, + "probability": 0.9993 + }, + { + "start": 7852.78, + "end": 7855.42, + "probability": 0.9988 + }, + { + "start": 7855.42, + "end": 7858.18, + "probability": 0.9244 + }, + { + "start": 7858.32, + "end": 7865.62, + "probability": 0.9934 + }, + { + "start": 7866.08, + "end": 7866.76, + "probability": 0.7546 + }, + { + "start": 7867.38, + "end": 7869.5, + "probability": 0.578 + }, + { + "start": 7869.94, + "end": 7875.42, + "probability": 0.8085 + }, + { + "start": 7875.84, + "end": 7877.02, + "probability": 0.8891 + }, + { + "start": 7880.22, + "end": 7880.8, + "probability": 0.9209 + }, + { + "start": 7882.56, + "end": 7883.0, + "probability": 0.8629 + }, + { + "start": 7889.56, + "end": 7891.32, + "probability": 0.5589 + }, + { + "start": 7893.06, + "end": 7895.44, + "probability": 0.8087 + }, + { + "start": 7897.34, + "end": 7900.62, + "probability": 0.9929 + }, + { + "start": 7900.62, + "end": 7904.82, + "probability": 0.7344 + }, + { + "start": 7906.1, + "end": 7911.84, + "probability": 0.974 + }, + { + "start": 7913.34, + "end": 7917.24, + "probability": 0.9976 + }, + { + "start": 7917.24, + "end": 7921.86, + "probability": 0.9937 + }, + { + "start": 7923.32, + "end": 7923.68, + "probability": 0.3497 + }, + { + "start": 7923.8, + "end": 7926.14, + "probability": 0.9458 + }, + { + "start": 7927.04, + "end": 7931.54, + "probability": 0.9484 + }, + { + "start": 7932.56, + "end": 7933.56, + "probability": 0.9175 + }, + { + "start": 7934.98, + "end": 7937.72, + "probability": 0.9966 + }, + { + "start": 7937.95, + "end": 7942.5, + "probability": 0.9963 + }, + { + "start": 7942.56, + "end": 7945.88, + "probability": 0.9677 + }, + { + "start": 7948.54, + "end": 7950.92, + "probability": 0.5664 + }, + { + "start": 7952.36, + "end": 7957.98, + "probability": 0.981 + }, + { + "start": 7959.12, + "end": 7962.06, + "probability": 0.8012 + }, + { + "start": 7962.26, + "end": 7971.14, + "probability": 0.9369 + }, + { + "start": 7972.04, + "end": 7973.64, + "probability": 0.8151 + }, + { + "start": 7974.82, + "end": 7975.64, + "probability": 0.6641 + }, + { + "start": 7976.06, + "end": 7976.88, + "probability": 0.7528 + }, + { + "start": 7977.1, + "end": 7978.12, + "probability": 0.9388 + }, + { + "start": 7978.46, + "end": 7981.76, + "probability": 0.9459 + }, + { + "start": 7983.04, + "end": 7984.32, + "probability": 0.39 + }, + { + "start": 7985.82, + "end": 7989.1, + "probability": 0.7345 + }, + { + "start": 7990.36, + "end": 7994.02, + "probability": 0.7722 + }, + { + "start": 7994.28, + "end": 7995.08, + "probability": 0.6623 + }, + { + "start": 7995.46, + "end": 7996.14, + "probability": 0.3761 + }, + { + "start": 7996.66, + "end": 7998.54, + "probability": 0.4043 + }, + { + "start": 7999.06, + "end": 8001.88, + "probability": 0.5856 + }, + { + "start": 8002.68, + "end": 8002.76, + "probability": 0.011 + }, + { + "start": 8002.76, + "end": 8003.78, + "probability": 0.3136 + }, + { + "start": 8003.96, + "end": 8003.96, + "probability": 0.2066 + }, + { + "start": 8003.96, + "end": 8003.96, + "probability": 0.5276 + }, + { + "start": 8003.96, + "end": 8007.26, + "probability": 0.6341 + }, + { + "start": 8007.9, + "end": 8010.94, + "probability": 0.9463 + }, + { + "start": 8011.46, + "end": 8014.38, + "probability": 0.8514 + }, + { + "start": 8015.68, + "end": 8024.18, + "probability": 0.9967 + }, + { + "start": 8025.04, + "end": 8033.18, + "probability": 0.9985 + }, + { + "start": 8034.42, + "end": 8038.86, + "probability": 0.9722 + }, + { + "start": 8040.2, + "end": 8042.66, + "probability": 0.7779 + }, + { + "start": 8043.34, + "end": 8046.54, + "probability": 0.9648 + }, + { + "start": 8047.56, + "end": 8049.06, + "probability": 0.7387 + }, + { + "start": 8049.32, + "end": 8053.48, + "probability": 0.8826 + }, + { + "start": 8053.94, + "end": 8055.1, + "probability": 0.9296 + }, + { + "start": 8055.6, + "end": 8057.96, + "probability": 0.91 + }, + { + "start": 8060.06, + "end": 8063.08, + "probability": 0.9615 + }, + { + "start": 8063.28, + "end": 8065.81, + "probability": 0.9641 + }, + { + "start": 8066.8, + "end": 8070.06, + "probability": 0.8442 + }, + { + "start": 8070.54, + "end": 8072.98, + "probability": 0.8728 + }, + { + "start": 8073.86, + "end": 8074.16, + "probability": 0.5122 + }, + { + "start": 8074.18, + "end": 8080.34, + "probability": 0.8036 + }, + { + "start": 8081.44, + "end": 8083.76, + "probability": 0.8432 + }, + { + "start": 8084.68, + "end": 8086.46, + "probability": 0.9149 + }, + { + "start": 8087.16, + "end": 8091.4, + "probability": 0.9134 + }, + { + "start": 8092.66, + "end": 8096.94, + "probability": 0.9365 + }, + { + "start": 8097.68, + "end": 8100.02, + "probability": 0.7893 + }, + { + "start": 8100.26, + "end": 8109.42, + "probability": 0.801 + }, + { + "start": 8110.66, + "end": 8115.66, + "probability": 0.928 + }, + { + "start": 8115.96, + "end": 8117.11, + "probability": 0.9032 + }, + { + "start": 8117.44, + "end": 8118.5, + "probability": 0.9816 + }, + { + "start": 8119.02, + "end": 8120.52, + "probability": 0.9385 + }, + { + "start": 8120.78, + "end": 8122.75, + "probability": 0.9481 + }, + { + "start": 8124.12, + "end": 8126.94, + "probability": 0.769 + }, + { + "start": 8127.78, + "end": 8129.04, + "probability": 0.9368 + }, + { + "start": 8129.66, + "end": 8130.58, + "probability": 0.9387 + }, + { + "start": 8131.06, + "end": 8136.32, + "probability": 0.8887 + }, + { + "start": 8136.7, + "end": 8142.12, + "probability": 0.8845 + }, + { + "start": 8142.6, + "end": 8145.88, + "probability": 0.983 + }, + { + "start": 8146.64, + "end": 8151.04, + "probability": 0.9899 + }, + { + "start": 8151.84, + "end": 8155.82, + "probability": 0.9891 + }, + { + "start": 8156.26, + "end": 8158.28, + "probability": 0.8657 + }, + { + "start": 8158.42, + "end": 8158.96, + "probability": 0.4346 + }, + { + "start": 8159.06, + "end": 8160.24, + "probability": 0.9414 + }, + { + "start": 8160.34, + "end": 8160.99, + "probability": 0.9762 + }, + { + "start": 8161.74, + "end": 8162.54, + "probability": 0.978 + }, + { + "start": 8162.64, + "end": 8163.64, + "probability": 0.4687 + }, + { + "start": 8164.86, + "end": 8168.54, + "probability": 0.9102 + }, + { + "start": 8168.62, + "end": 8172.02, + "probability": 0.972 + }, + { + "start": 8172.24, + "end": 8174.22, + "probability": 0.8593 + }, + { + "start": 8174.74, + "end": 8177.75, + "probability": 0.8288 + }, + { + "start": 8178.1, + "end": 8183.18, + "probability": 0.9911 + }, + { + "start": 8183.64, + "end": 8186.6, + "probability": 0.9893 + }, + { + "start": 8187.3, + "end": 8193.34, + "probability": 0.9873 + }, + { + "start": 8193.48, + "end": 8194.64, + "probability": 0.4511 + }, + { + "start": 8195.14, + "end": 8196.38, + "probability": 0.9564 + }, + { + "start": 8196.62, + "end": 8197.56, + "probability": 0.8523 + }, + { + "start": 8198.14, + "end": 8202.86, + "probability": 0.7996 + }, + { + "start": 8202.94, + "end": 8209.08, + "probability": 0.9742 + }, + { + "start": 8210.26, + "end": 8211.76, + "probability": 0.9922 + }, + { + "start": 8211.88, + "end": 8212.28, + "probability": 0.4448 + }, + { + "start": 8212.28, + "end": 8213.02, + "probability": 0.4734 + }, + { + "start": 8213.16, + "end": 8215.82, + "probability": 0.9792 + }, + { + "start": 8217.04, + "end": 8218.02, + "probability": 0.8828 + }, + { + "start": 8218.92, + "end": 8222.08, + "probability": 0.947 + }, + { + "start": 8222.24, + "end": 8222.8, + "probability": 0.7854 + }, + { + "start": 8223.42, + "end": 8227.32, + "probability": 0.9711 + }, + { + "start": 8227.4, + "end": 8227.72, + "probability": 0.4079 + }, + { + "start": 8228.58, + "end": 8235.24, + "probability": 0.5471 + }, + { + "start": 8235.28, + "end": 8237.26, + "probability": 0.4261 + }, + { + "start": 8237.48, + "end": 8238.08, + "probability": 0.3506 + }, + { + "start": 8238.08, + "end": 8239.58, + "probability": 0.8213 + }, + { + "start": 8239.82, + "end": 8241.14, + "probability": 0.6135 + }, + { + "start": 8241.32, + "end": 8242.45, + "probability": 0.908 + }, + { + "start": 8242.96, + "end": 8245.94, + "probability": 0.9884 + }, + { + "start": 8246.1, + "end": 8248.9, + "probability": 0.9456 + }, + { + "start": 8249.06, + "end": 8252.58, + "probability": 0.9219 + }, + { + "start": 8253.64, + "end": 8254.82, + "probability": 0.4492 + }, + { + "start": 8255.74, + "end": 8258.06, + "probability": 0.8364 + }, + { + "start": 8258.44, + "end": 8259.78, + "probability": 0.757 + }, + { + "start": 8261.46, + "end": 8263.46, + "probability": 0.9897 + }, + { + "start": 8264.14, + "end": 8266.48, + "probability": 0.9648 + }, + { + "start": 8267.46, + "end": 8270.4, + "probability": 0.9597 + }, + { + "start": 8270.4, + "end": 8273.66, + "probability": 0.998 + }, + { + "start": 8274.72, + "end": 8277.04, + "probability": 0.5778 + }, + { + "start": 8277.68, + "end": 8283.22, + "probability": 0.7642 + }, + { + "start": 8284.64, + "end": 8287.88, + "probability": 0.931 + }, + { + "start": 8289.6, + "end": 8293.38, + "probability": 0.9922 + }, + { + "start": 8293.54, + "end": 8294.26, + "probability": 0.8022 + }, + { + "start": 8294.74, + "end": 8295.76, + "probability": 0.7353 + }, + { + "start": 8296.5, + "end": 8299.88, + "probability": 0.8058 + }, + { + "start": 8299.98, + "end": 8300.9, + "probability": 0.6144 + }, + { + "start": 8301.38, + "end": 8303.3, + "probability": 0.5146 + }, + { + "start": 8303.46, + "end": 8305.3, + "probability": 0.7738 + }, + { + "start": 8306.01, + "end": 8307.88, + "probability": 0.6499 + }, + { + "start": 8308.0, + "end": 8309.24, + "probability": 0.7359 + }, + { + "start": 8309.72, + "end": 8310.62, + "probability": 0.5112 + }, + { + "start": 8310.92, + "end": 8311.72, + "probability": 0.6342 + }, + { + "start": 8311.78, + "end": 8312.38, + "probability": 0.9605 + }, + { + "start": 8312.5, + "end": 8317.16, + "probability": 0.7189 + }, + { + "start": 8317.48, + "end": 8318.38, + "probability": 0.4576 + }, + { + "start": 8318.38, + "end": 8319.1, + "probability": 0.6385 + }, + { + "start": 8319.44, + "end": 8319.9, + "probability": 0.4973 + }, + { + "start": 8320.52, + "end": 8321.76, + "probability": 0.664 + }, + { + "start": 8321.88, + "end": 8323.06, + "probability": 0.5405 + }, + { + "start": 8323.2, + "end": 8324.52, + "probability": 0.8239 + }, + { + "start": 8325.78, + "end": 8328.22, + "probability": 0.9146 + }, + { + "start": 8328.26, + "end": 8331.2, + "probability": 0.9629 + }, + { + "start": 8332.3, + "end": 8333.2, + "probability": 0.9788 + }, + { + "start": 8333.34, + "end": 8338.44, + "probability": 0.9736 + }, + { + "start": 8338.92, + "end": 8340.8, + "probability": 0.9218 + }, + { + "start": 8341.34, + "end": 8342.56, + "probability": 0.7614 + }, + { + "start": 8342.7, + "end": 8343.33, + "probability": 0.9589 + }, + { + "start": 8344.26, + "end": 8345.48, + "probability": 0.8677 + }, + { + "start": 8345.74, + "end": 8347.14, + "probability": 0.8898 + }, + { + "start": 8347.56, + "end": 8350.76, + "probability": 0.8089 + }, + { + "start": 8351.18, + "end": 8354.49, + "probability": 0.9626 + }, + { + "start": 8354.72, + "end": 8355.52, + "probability": 0.3324 + }, + { + "start": 8356.1, + "end": 8360.37, + "probability": 0.9715 + }, + { + "start": 8361.98, + "end": 8364.48, + "probability": 0.9663 + }, + { + "start": 8365.36, + "end": 8367.38, + "probability": 0.999 + }, + { + "start": 8368.1, + "end": 8371.6, + "probability": 0.9977 + }, + { + "start": 8372.2, + "end": 8374.46, + "probability": 0.5061 + }, + { + "start": 8374.46, + "end": 8379.48, + "probability": 0.83 + }, + { + "start": 8381.04, + "end": 8384.58, + "probability": 0.7548 + }, + { + "start": 8385.4, + "end": 8388.97, + "probability": 0.9806 + }, + { + "start": 8390.84, + "end": 8393.96, + "probability": 0.7812 + }, + { + "start": 8394.4, + "end": 8395.36, + "probability": 0.9515 + }, + { + "start": 8395.42, + "end": 8396.44, + "probability": 0.9816 + }, + { + "start": 8396.56, + "end": 8397.16, + "probability": 0.9766 + }, + { + "start": 8397.84, + "end": 8398.41, + "probability": 0.9872 + }, + { + "start": 8399.22, + "end": 8399.98, + "probability": 0.9512 + }, + { + "start": 8400.98, + "end": 8402.92, + "probability": 0.8609 + }, + { + "start": 8403.7, + "end": 8405.94, + "probability": 0.9896 + }, + { + "start": 8406.52, + "end": 8410.4, + "probability": 0.8676 + }, + { + "start": 8410.96, + "end": 8413.54, + "probability": 0.991 + }, + { + "start": 8414.2, + "end": 8415.34, + "probability": 0.9929 + }, + { + "start": 8416.16, + "end": 8421.12, + "probability": 0.9882 + }, + { + "start": 8421.86, + "end": 8425.92, + "probability": 0.9897 + }, + { + "start": 8426.8, + "end": 8430.54, + "probability": 0.7277 + }, + { + "start": 8430.54, + "end": 8434.76, + "probability": 0.9871 + }, + { + "start": 8435.48, + "end": 8438.7, + "probability": 0.9952 + }, + { + "start": 8439.1, + "end": 8443.98, + "probability": 0.9761 + }, + { + "start": 8444.54, + "end": 8446.64, + "probability": 0.8605 + }, + { + "start": 8447.34, + "end": 8453.42, + "probability": 0.8263 + }, + { + "start": 8454.06, + "end": 8456.94, + "probability": 0.9593 + }, + { + "start": 8456.94, + "end": 8461.04, + "probability": 0.7001 + }, + { + "start": 8461.6, + "end": 8465.9, + "probability": 0.9453 + }, + { + "start": 8466.42, + "end": 8471.28, + "probability": 0.9819 + }, + { + "start": 8473.24, + "end": 8481.0, + "probability": 0.9838 + }, + { + "start": 8481.46, + "end": 8485.04, + "probability": 0.8053 + }, + { + "start": 8485.06, + "end": 8486.84, + "probability": 0.9858 + }, + { + "start": 8487.34, + "end": 8491.64, + "probability": 0.9844 + }, + { + "start": 8493.74, + "end": 8494.98, + "probability": 0.7577 + }, + { + "start": 8496.48, + "end": 8500.2, + "probability": 0.9678 + }, + { + "start": 8500.42, + "end": 8503.04, + "probability": 0.7344 + }, + { + "start": 8503.68, + "end": 8508.38, + "probability": 0.9807 + }, + { + "start": 8509.1, + "end": 8510.92, + "probability": 0.9809 + }, + { + "start": 8511.9, + "end": 8514.1, + "probability": 0.9971 + }, + { + "start": 8514.22, + "end": 8515.32, + "probability": 0.8351 + }, + { + "start": 8515.42, + "end": 8520.35, + "probability": 0.9922 + }, + { + "start": 8521.38, + "end": 8525.36, + "probability": 0.9886 + }, + { + "start": 8526.44, + "end": 8527.48, + "probability": 0.9231 + }, + { + "start": 8528.2, + "end": 8530.82, + "probability": 0.9562 + }, + { + "start": 8531.72, + "end": 8534.4, + "probability": 0.9883 + }, + { + "start": 8534.88, + "end": 8539.18, + "probability": 0.8959 + }, + { + "start": 8539.8, + "end": 8545.32, + "probability": 0.9908 + }, + { + "start": 8545.6, + "end": 8546.7, + "probability": 0.8423 + }, + { + "start": 8547.54, + "end": 8550.14, + "probability": 0.9931 + }, + { + "start": 8550.36, + "end": 8552.92, + "probability": 0.9863 + }, + { + "start": 8553.0, + "end": 8553.58, + "probability": 0.5302 + }, + { + "start": 8553.76, + "end": 8554.74, + "probability": 0.7314 + }, + { + "start": 8555.3, + "end": 8562.8, + "probability": 0.9593 + }, + { + "start": 8563.52, + "end": 8564.31, + "probability": 0.7723 + }, + { + "start": 8565.92, + "end": 8567.86, + "probability": 0.9851 + }, + { + "start": 8568.04, + "end": 8571.52, + "probability": 0.8501 + }, + { + "start": 8572.12, + "end": 8573.77, + "probability": 0.9312 + }, + { + "start": 8574.28, + "end": 8576.44, + "probability": 0.871 + }, + { + "start": 8576.62, + "end": 8577.74, + "probability": 0.6494 + }, + { + "start": 8579.5, + "end": 8580.12, + "probability": 0.9734 + }, + { + "start": 8583.28, + "end": 8584.06, + "probability": 0.4194 + }, + { + "start": 8588.08, + "end": 8589.46, + "probability": 0.5385 + }, + { + "start": 8592.15, + "end": 8596.53, + "probability": 0.9423 + }, + { + "start": 8597.26, + "end": 8598.82, + "probability": 0.8038 + }, + { + "start": 8599.04, + "end": 8599.76, + "probability": 0.443 + }, + { + "start": 8600.4, + "end": 8601.49, + "probability": 0.829 + }, + { + "start": 8602.6, + "end": 8603.66, + "probability": 0.6062 + }, + { + "start": 8603.88, + "end": 8606.56, + "probability": 0.9918 + }, + { + "start": 8606.62, + "end": 8610.58, + "probability": 0.7475 + }, + { + "start": 8610.94, + "end": 8613.24, + "probability": 0.8416 + }, + { + "start": 8615.52, + "end": 8618.86, + "probability": 0.8706 + }, + { + "start": 8619.5, + "end": 8624.62, + "probability": 0.9915 + }, + { + "start": 8625.36, + "end": 8629.64, + "probability": 0.8335 + }, + { + "start": 8629.72, + "end": 8630.4, + "probability": 0.4635 + }, + { + "start": 8631.46, + "end": 8633.1, + "probability": 0.7827 + }, + { + "start": 8633.66, + "end": 8635.98, + "probability": 0.8424 + }, + { + "start": 8636.28, + "end": 8640.68, + "probability": 0.9937 + }, + { + "start": 8641.9, + "end": 8646.44, + "probability": 0.9913 + }, + { + "start": 8646.98, + "end": 8650.84, + "probability": 0.9336 + }, + { + "start": 8650.84, + "end": 8653.4, + "probability": 0.9932 + }, + { + "start": 8654.24, + "end": 8660.3, + "probability": 0.9516 + }, + { + "start": 8660.88, + "end": 8662.74, + "probability": 0.8826 + }, + { + "start": 8663.38, + "end": 8664.22, + "probability": 0.8419 + }, + { + "start": 8664.44, + "end": 8666.44, + "probability": 0.9799 + }, + { + "start": 8667.48, + "end": 8669.54, + "probability": 0.9922 + }, + { + "start": 8670.4, + "end": 8672.02, + "probability": 0.957 + }, + { + "start": 8672.98, + "end": 8680.8, + "probability": 0.9832 + }, + { + "start": 8682.0, + "end": 8684.84, + "probability": 0.7442 + }, + { + "start": 8685.76, + "end": 8688.8, + "probability": 0.6611 + }, + { + "start": 8689.24, + "end": 8690.8, + "probability": 0.6118 + }, + { + "start": 8691.72, + "end": 8695.0, + "probability": 0.9951 + }, + { + "start": 8695.5, + "end": 8696.26, + "probability": 0.8564 + }, + { + "start": 8696.42, + "end": 8697.44, + "probability": 0.4867 + }, + { + "start": 8698.14, + "end": 8699.3, + "probability": 0.8062 + }, + { + "start": 8700.34, + "end": 8704.76, + "probability": 0.9949 + }, + { + "start": 8704.76, + "end": 8708.06, + "probability": 0.9661 + }, + { + "start": 8709.82, + "end": 8713.56, + "probability": 0.9746 + }, + { + "start": 8713.56, + "end": 8717.74, + "probability": 0.8595 + }, + { + "start": 8717.88, + "end": 8718.8, + "probability": 0.5108 + }, + { + "start": 8719.3, + "end": 8722.28, + "probability": 0.9928 + }, + { + "start": 8723.56, + "end": 8724.22, + "probability": 0.5466 + }, + { + "start": 8724.34, + "end": 8729.06, + "probability": 0.9323 + }, + { + "start": 8729.36, + "end": 8731.06, + "probability": 0.9966 + }, + { + "start": 8731.46, + "end": 8733.14, + "probability": 0.9629 + }, + { + "start": 8733.66, + "end": 8740.38, + "probability": 0.9877 + }, + { + "start": 8742.34, + "end": 8745.78, + "probability": 0.9039 + }, + { + "start": 8746.78, + "end": 8747.32, + "probability": 0.7243 + }, + { + "start": 8748.72, + "end": 8749.12, + "probability": 0.7691 + }, + { + "start": 8749.34, + "end": 8750.04, + "probability": 0.7143 + }, + { + "start": 8750.48, + "end": 8754.62, + "probability": 0.9959 + }, + { + "start": 8754.7, + "end": 8755.56, + "probability": 0.7708 + }, + { + "start": 8756.14, + "end": 8757.62, + "probability": 0.9717 + }, + { + "start": 8758.32, + "end": 8762.82, + "probability": 0.9476 + }, + { + "start": 8763.26, + "end": 8764.65, + "probability": 0.9717 + }, + { + "start": 8766.6, + "end": 8767.7, + "probability": 0.254 + }, + { + "start": 8767.8, + "end": 8769.84, + "probability": 0.8406 + }, + { + "start": 8770.64, + "end": 8774.42, + "probability": 0.9166 + }, + { + "start": 8775.64, + "end": 8780.96, + "probability": 0.8485 + }, + { + "start": 8781.56, + "end": 8782.8, + "probability": 0.9886 + }, + { + "start": 8784.94, + "end": 8786.44, + "probability": 0.5368 + }, + { + "start": 8787.12, + "end": 8795.2, + "probability": 0.7932 + }, + { + "start": 8796.5, + "end": 8802.52, + "probability": 0.9277 + }, + { + "start": 8802.79, + "end": 8812.66, + "probability": 0.9717 + }, + { + "start": 8815.36, + "end": 8817.16, + "probability": 0.6255 + }, + { + "start": 8817.62, + "end": 8822.4, + "probability": 0.9879 + }, + { + "start": 8822.4, + "end": 8826.08, + "probability": 0.9976 + }, + { + "start": 8826.76, + "end": 8829.66, + "probability": 0.7333 + }, + { + "start": 8830.4, + "end": 8834.92, + "probability": 0.9919 + }, + { + "start": 8836.86, + "end": 8838.88, + "probability": 0.9893 + }, + { + "start": 8839.54, + "end": 8844.78, + "probability": 0.9823 + }, + { + "start": 8845.56, + "end": 8849.02, + "probability": 0.9553 + }, + { + "start": 8849.86, + "end": 8850.64, + "probability": 0.9132 + }, + { + "start": 8850.78, + "end": 8855.98, + "probability": 0.993 + }, + { + "start": 8856.0, + "end": 8857.06, + "probability": 0.446 + }, + { + "start": 8858.16, + "end": 8860.24, + "probability": 0.9342 + }, + { + "start": 8860.28, + "end": 8862.64, + "probability": 0.9948 + }, + { + "start": 8864.02, + "end": 8864.76, + "probability": 0.7676 + }, + { + "start": 8865.24, + "end": 8867.26, + "probability": 0.9637 + }, + { + "start": 8867.3, + "end": 8870.84, + "probability": 0.939 + }, + { + "start": 8871.7, + "end": 8872.72, + "probability": 0.5849 + }, + { + "start": 8873.24, + "end": 8875.76, + "probability": 0.6418 + }, + { + "start": 8877.04, + "end": 8877.9, + "probability": 0.5003 + }, + { + "start": 8878.12, + "end": 8878.86, + "probability": 0.4299 + }, + { + "start": 8878.98, + "end": 8881.34, + "probability": 0.9706 + }, + { + "start": 8882.58, + "end": 8887.58, + "probability": 0.9839 + }, + { + "start": 8889.06, + "end": 8894.28, + "probability": 0.7588 + }, + { + "start": 8894.76, + "end": 8897.78, + "probability": 0.9832 + }, + { + "start": 8898.34, + "end": 8899.5, + "probability": 0.8608 + }, + { + "start": 8901.7, + "end": 8905.86, + "probability": 0.9271 + }, + { + "start": 8905.96, + "end": 8911.1, + "probability": 0.9882 + }, + { + "start": 8911.44, + "end": 8912.38, + "probability": 0.8881 + }, + { + "start": 8912.46, + "end": 8913.52, + "probability": 0.8801 + }, + { + "start": 8914.4, + "end": 8917.32, + "probability": 0.6973 + }, + { + "start": 8917.42, + "end": 8918.96, + "probability": 0.8538 + }, + { + "start": 8919.82, + "end": 8921.88, + "probability": 0.9016 + }, + { + "start": 8922.0, + "end": 8925.74, + "probability": 0.6502 + }, + { + "start": 8927.32, + "end": 8929.34, + "probability": 0.3884 + }, + { + "start": 8929.34, + "end": 8930.7, + "probability": 0.7891 + }, + { + "start": 8930.92, + "end": 8931.24, + "probability": 0.1257 + }, + { + "start": 8931.58, + "end": 8932.17, + "probability": 0.6914 + }, + { + "start": 8933.52, + "end": 8935.04, + "probability": 0.9745 + }, + { + "start": 8935.98, + "end": 8937.52, + "probability": 0.9228 + }, + { + "start": 8937.68, + "end": 8942.6, + "probability": 0.9619 + }, + { + "start": 8943.02, + "end": 8944.72, + "probability": 0.4292 + }, + { + "start": 8945.64, + "end": 8948.88, + "probability": 0.9924 + }, + { + "start": 8948.88, + "end": 8956.84, + "probability": 0.9819 + }, + { + "start": 8956.96, + "end": 8959.06, + "probability": 0.8913 + }, + { + "start": 8959.12, + "end": 8960.16, + "probability": 0.6213 + }, + { + "start": 8960.4, + "end": 8964.94, + "probability": 0.8837 + }, + { + "start": 8965.58, + "end": 8967.16, + "probability": 0.5146 + }, + { + "start": 8968.72, + "end": 8969.26, + "probability": 0.5023 + }, + { + "start": 8969.44, + "end": 8971.8, + "probability": 0.9811 + }, + { + "start": 8972.5, + "end": 8977.64, + "probability": 0.9663 + }, + { + "start": 8978.3, + "end": 8978.76, + "probability": 0.2992 + }, + { + "start": 8978.92, + "end": 8980.44, + "probability": 0.5095 + }, + { + "start": 8980.66, + "end": 8982.12, + "probability": 0.9852 + }, + { + "start": 8982.16, + "end": 8983.3, + "probability": 0.8607 + }, + { + "start": 8983.98, + "end": 8984.98, + "probability": 0.9012 + }, + { + "start": 8985.84, + "end": 8987.14, + "probability": 0.9817 + }, + { + "start": 8987.82, + "end": 8988.44, + "probability": 0.9421 + }, + { + "start": 8988.52, + "end": 8992.16, + "probability": 0.9821 + }, + { + "start": 8992.48, + "end": 8994.7, + "probability": 0.9006 + }, + { + "start": 8995.28, + "end": 8996.74, + "probability": 0.9082 + }, + { + "start": 8997.32, + "end": 8999.96, + "probability": 0.9926 + }, + { + "start": 9000.28, + "end": 9003.72, + "probability": 0.9934 + }, + { + "start": 9004.4, + "end": 9008.04, + "probability": 0.9933 + }, + { + "start": 9008.3, + "end": 9009.38, + "probability": 0.9708 + }, + { + "start": 9009.88, + "end": 9011.42, + "probability": 0.9117 + }, + { + "start": 9011.74, + "end": 9014.84, + "probability": 0.936 + }, + { + "start": 9015.52, + "end": 9018.62, + "probability": 0.929 + }, + { + "start": 9018.62, + "end": 9022.32, + "probability": 0.8528 + }, + { + "start": 9022.9, + "end": 9025.2, + "probability": 0.9833 + }, + { + "start": 9025.96, + "end": 9026.42, + "probability": 0.9264 + }, + { + "start": 9026.5, + "end": 9027.24, + "probability": 0.6711 + }, + { + "start": 9027.66, + "end": 9031.94, + "probability": 0.864 + }, + { + "start": 9032.13, + "end": 9035.86, + "probability": 0.9717 + }, + { + "start": 9036.5, + "end": 9038.3, + "probability": 0.9863 + }, + { + "start": 9039.28, + "end": 9044.52, + "probability": 0.9956 + }, + { + "start": 9045.38, + "end": 9052.8, + "probability": 0.9432 + }, + { + "start": 9054.08, + "end": 9055.18, + "probability": 0.7466 + }, + { + "start": 9055.9, + "end": 9058.72, + "probability": 0.937 + }, + { + "start": 9058.82, + "end": 9062.88, + "probability": 0.9796 + }, + { + "start": 9064.32, + "end": 9064.92, + "probability": 0.3486 + }, + { + "start": 9065.92, + "end": 9066.38, + "probability": 0.4878 + }, + { + "start": 9067.18, + "end": 9067.88, + "probability": 0.4414 + }, + { + "start": 9068.48, + "end": 9068.64, + "probability": 0.0147 + }, + { + "start": 9068.92, + "end": 9069.16, + "probability": 0.1066 + }, + { + "start": 9069.28, + "end": 9069.72, + "probability": 0.5291 + }, + { + "start": 9073.94, + "end": 9075.74, + "probability": 0.4844 + }, + { + "start": 9075.84, + "end": 9076.16, + "probability": 0.5497 + }, + { + "start": 9076.16, + "end": 9077.4, + "probability": 0.7842 + }, + { + "start": 9079.48, + "end": 9081.38, + "probability": 0.9016 + }, + { + "start": 9081.64, + "end": 9082.92, + "probability": 0.9744 + }, + { + "start": 9083.76, + "end": 9083.98, + "probability": 0.5208 + }, + { + "start": 9084.16, + "end": 9087.28, + "probability": 0.4297 + }, + { + "start": 9087.42, + "end": 9088.22, + "probability": 0.3469 + }, + { + "start": 9088.7, + "end": 9089.98, + "probability": 0.5657 + }, + { + "start": 9090.22, + "end": 9096.66, + "probability": 0.9225 + }, + { + "start": 9096.86, + "end": 9097.9, + "probability": 0.7377 + }, + { + "start": 9098.26, + "end": 9099.04, + "probability": 0.6184 + }, + { + "start": 9099.6, + "end": 9104.36, + "probability": 0.9142 + }, + { + "start": 9105.56, + "end": 9107.64, + "probability": 0.9604 + }, + { + "start": 9108.42, + "end": 9113.53, + "probability": 0.9712 + }, + { + "start": 9114.74, + "end": 9114.74, + "probability": 0.4545 + }, + { + "start": 9115.0, + "end": 9119.24, + "probability": 0.9592 + }, + { + "start": 9120.18, + "end": 9123.14, + "probability": 0.9271 + }, + { + "start": 9123.28, + "end": 9125.65, + "probability": 0.6686 + }, + { + "start": 9126.1, + "end": 9130.24, + "probability": 0.9283 + }, + { + "start": 9131.26, + "end": 9132.42, + "probability": 0.4304 + }, + { + "start": 9133.32, + "end": 9135.37, + "probability": 0.6363 + }, + { + "start": 9136.86, + "end": 9141.02, + "probability": 0.7917 + }, + { + "start": 9141.56, + "end": 9144.14, + "probability": 0.9858 + }, + { + "start": 9144.96, + "end": 9147.84, + "probability": 0.9517 + }, + { + "start": 9148.08, + "end": 9149.36, + "probability": 0.8357 + }, + { + "start": 9150.36, + "end": 9153.64, + "probability": 0.9857 + }, + { + "start": 9153.98, + "end": 9158.96, + "probability": 0.9927 + }, + { + "start": 9158.96, + "end": 9164.18, + "probability": 0.9881 + }, + { + "start": 9164.62, + "end": 9168.34, + "probability": 0.9167 + }, + { + "start": 9168.88, + "end": 9169.44, + "probability": 0.711 + }, + { + "start": 9169.52, + "end": 9172.94, + "probability": 0.6798 + }, + { + "start": 9173.32, + "end": 9174.2, + "probability": 0.7875 + }, + { + "start": 9175.66, + "end": 9181.1, + "probability": 0.9741 + }, + { + "start": 9181.92, + "end": 9186.44, + "probability": 0.9963 + }, + { + "start": 9186.44, + "end": 9190.86, + "probability": 0.9507 + }, + { + "start": 9192.02, + "end": 9197.96, + "probability": 0.9773 + }, + { + "start": 9198.24, + "end": 9200.06, + "probability": 0.9464 + }, + { + "start": 9200.84, + "end": 9203.22, + "probability": 0.4982 + }, + { + "start": 9203.89, + "end": 9204.32, + "probability": 0.1387 + }, + { + "start": 9204.32, + "end": 9206.82, + "probability": 0.98 + }, + { + "start": 9207.64, + "end": 9208.7, + "probability": 0.8209 + }, + { + "start": 9208.98, + "end": 9210.96, + "probability": 0.8513 + }, + { + "start": 9211.96, + "end": 9212.8, + "probability": 0.7422 + }, + { + "start": 9213.32, + "end": 9214.5, + "probability": 0.8695 + }, + { + "start": 9215.02, + "end": 9220.22, + "probability": 0.7883 + }, + { + "start": 9221.12, + "end": 9224.98, + "probability": 0.9537 + }, + { + "start": 9225.76, + "end": 9228.84, + "probability": 0.9876 + }, + { + "start": 9228.98, + "end": 9231.5, + "probability": 0.8654 + }, + { + "start": 9231.9, + "end": 9234.0, + "probability": 0.6004 + }, + { + "start": 9234.46, + "end": 9238.0, + "probability": 0.8415 + }, + { + "start": 9238.2, + "end": 9239.38, + "probability": 0.6891 + }, + { + "start": 9239.86, + "end": 9244.96, + "probability": 0.9537 + }, + { + "start": 9245.52, + "end": 9246.46, + "probability": 0.9712 + }, + { + "start": 9249.2, + "end": 9253.4, + "probability": 0.9058 + }, + { + "start": 9254.26, + "end": 9255.5, + "probability": 0.7747 + }, + { + "start": 9255.62, + "end": 9256.11, + "probability": 0.5794 + }, + { + "start": 9257.36, + "end": 9261.24, + "probability": 0.9492 + }, + { + "start": 9262.44, + "end": 9267.48, + "probability": 0.9631 + }, + { + "start": 9267.96, + "end": 9268.24, + "probability": 0.4982 + }, + { + "start": 9268.3, + "end": 9272.6, + "probability": 0.9968 + }, + { + "start": 9273.08, + "end": 9274.46, + "probability": 0.8317 + }, + { + "start": 9274.96, + "end": 9275.66, + "probability": 0.9442 + }, + { + "start": 9276.48, + "end": 9280.32, + "probability": 0.9366 + }, + { + "start": 9281.0, + "end": 9285.2, + "probability": 0.9718 + }, + { + "start": 9285.78, + "end": 9289.42, + "probability": 0.9561 + }, + { + "start": 9290.8, + "end": 9293.08, + "probability": 0.9607 + }, + { + "start": 9293.56, + "end": 9296.24, + "probability": 0.9966 + }, + { + "start": 9296.8, + "end": 9300.26, + "probability": 0.1916 + }, + { + "start": 9300.26, + "end": 9303.6, + "probability": 0.8298 + }, + { + "start": 9304.1, + "end": 9305.53, + "probability": 0.6985 + }, + { + "start": 9306.66, + "end": 9315.18, + "probability": 0.9625 + }, + { + "start": 9316.76, + "end": 9323.26, + "probability": 0.9492 + }, + { + "start": 9323.26, + "end": 9329.4, + "probability": 0.9703 + }, + { + "start": 9329.78, + "end": 9330.74, + "probability": 0.5303 + }, + { + "start": 9332.06, + "end": 9340.14, + "probability": 0.9965 + }, + { + "start": 9340.62, + "end": 9344.2, + "probability": 0.9438 + }, + { + "start": 9344.26, + "end": 9344.66, + "probability": 0.3983 + }, + { + "start": 9345.34, + "end": 9349.22, + "probability": 0.9917 + }, + { + "start": 9349.68, + "end": 9350.41, + "probability": 0.9849 + }, + { + "start": 9350.96, + "end": 9355.4, + "probability": 0.9622 + }, + { + "start": 9355.4, + "end": 9355.75, + "probability": 0.4613 + }, + { + "start": 9356.22, + "end": 9356.94, + "probability": 0.7065 + }, + { + "start": 9357.42, + "end": 9361.12, + "probability": 0.8883 + }, + { + "start": 9361.22, + "end": 9361.72, + "probability": 0.5817 + }, + { + "start": 9361.84, + "end": 9362.94, + "probability": 0.8524 + }, + { + "start": 9362.96, + "end": 9364.08, + "probability": 0.9114 + }, + { + "start": 9364.62, + "end": 9368.64, + "probability": 0.9218 + }, + { + "start": 9368.94, + "end": 9370.8, + "probability": 0.67 + }, + { + "start": 9371.3, + "end": 9373.94, + "probability": 0.9501 + }, + { + "start": 9374.74, + "end": 9379.6, + "probability": 0.9489 + }, + { + "start": 9380.36, + "end": 9388.32, + "probability": 0.9725 + }, + { + "start": 9389.58, + "end": 9395.1, + "probability": 0.9775 + }, + { + "start": 9395.78, + "end": 9400.12, + "probability": 0.9459 + }, + { + "start": 9400.12, + "end": 9406.24, + "probability": 0.9866 + }, + { + "start": 9407.52, + "end": 9410.04, + "probability": 0.8955 + }, + { + "start": 9410.94, + "end": 9415.02, + "probability": 0.9802 + }, + { + "start": 9415.12, + "end": 9416.7, + "probability": 0.9438 + }, + { + "start": 9417.0, + "end": 9419.54, + "probability": 0.9487 + }, + { + "start": 9419.54, + "end": 9421.76, + "probability": 0.9659 + }, + { + "start": 9422.44, + "end": 9424.44, + "probability": 0.7337 + }, + { + "start": 9424.86, + "end": 9425.14, + "probability": 0.1027 + }, + { + "start": 9425.9, + "end": 9426.76, + "probability": 0.4975 + }, + { + "start": 9427.0, + "end": 9427.46, + "probability": 0.4324 + }, + { + "start": 9427.54, + "end": 9427.74, + "probability": 0.6537 + }, + { + "start": 9428.1, + "end": 9434.42, + "probability": 0.7378 + }, + { + "start": 9434.88, + "end": 9437.64, + "probability": 0.9748 + }, + { + "start": 9438.22, + "end": 9443.86, + "probability": 0.9681 + }, + { + "start": 9443.86, + "end": 9450.76, + "probability": 0.9915 + }, + { + "start": 9451.38, + "end": 9455.22, + "probability": 0.9869 + }, + { + "start": 9455.44, + "end": 9455.76, + "probability": 0.5053 + }, + { + "start": 9455.84, + "end": 9457.2, + "probability": 0.7769 + }, + { + "start": 9457.68, + "end": 9459.02, + "probability": 0.9804 + }, + { + "start": 9459.7, + "end": 9462.02, + "probability": 0.8656 + }, + { + "start": 9462.1, + "end": 9463.58, + "probability": 0.8351 + }, + { + "start": 9464.48, + "end": 9468.5, + "probability": 0.9775 + }, + { + "start": 9469.64, + "end": 9471.39, + "probability": 0.9839 + }, + { + "start": 9472.18, + "end": 9476.1, + "probability": 0.8486 + }, + { + "start": 9476.68, + "end": 9478.14, + "probability": 0.5745 + }, + { + "start": 9478.98, + "end": 9481.62, + "probability": 0.6279 + }, + { + "start": 9481.72, + "end": 9482.3, + "probability": 0.4516 + }, + { + "start": 9482.42, + "end": 9483.44, + "probability": 0.567 + }, + { + "start": 9483.8, + "end": 9486.62, + "probability": 0.9478 + }, + { + "start": 9487.02, + "end": 9491.92, + "probability": 0.9824 + }, + { + "start": 9491.92, + "end": 9498.24, + "probability": 0.8248 + }, + { + "start": 9498.72, + "end": 9502.39, + "probability": 0.8326 + }, + { + "start": 9502.8, + "end": 9503.94, + "probability": 0.9131 + }, + { + "start": 9505.3, + "end": 9506.56, + "probability": 0.8296 + }, + { + "start": 9507.18, + "end": 9510.98, + "probability": 0.9583 + }, + { + "start": 9511.54, + "end": 9515.72, + "probability": 0.9398 + }, + { + "start": 9515.82, + "end": 9516.54, + "probability": 0.9474 + }, + { + "start": 9517.34, + "end": 9519.94, + "probability": 0.8894 + }, + { + "start": 9520.12, + "end": 9521.16, + "probability": 0.5366 + }, + { + "start": 9521.74, + "end": 9522.64, + "probability": 0.664 + }, + { + "start": 9522.66, + "end": 9523.6, + "probability": 0.7301 + }, + { + "start": 9523.68, + "end": 9525.14, + "probability": 0.7596 + }, + { + "start": 9525.14, + "end": 9526.9, + "probability": 0.0103 + }, + { + "start": 9526.9, + "end": 9527.82, + "probability": 0.4145 + }, + { + "start": 9528.52, + "end": 9531.55, + "probability": 0.7465 + }, + { + "start": 9531.7, + "end": 9537.24, + "probability": 0.9919 + }, + { + "start": 9538.36, + "end": 9540.48, + "probability": 0.9806 + }, + { + "start": 9541.92, + "end": 9545.78, + "probability": 0.8527 + }, + { + "start": 9546.72, + "end": 9548.03, + "probability": 0.8436 + }, + { + "start": 9548.36, + "end": 9548.96, + "probability": 0.9436 + }, + { + "start": 9549.0, + "end": 9551.1, + "probability": 0.8633 + }, + { + "start": 9554.0, + "end": 9555.92, + "probability": 0.7233 + }, + { + "start": 9556.7, + "end": 9557.99, + "probability": 0.9766 + }, + { + "start": 9558.86, + "end": 9560.18, + "probability": 0.9746 + }, + { + "start": 9561.6, + "end": 9563.08, + "probability": 0.9374 + }, + { + "start": 9563.54, + "end": 9564.72, + "probability": 0.7403 + }, + { + "start": 9565.32, + "end": 9565.64, + "probability": 0.7593 + }, + { + "start": 9566.28, + "end": 9569.1, + "probability": 0.782 + }, + { + "start": 9569.1, + "end": 9570.91, + "probability": 0.9313 + }, + { + "start": 9572.5, + "end": 9576.5, + "probability": 0.859 + }, + { + "start": 9576.62, + "end": 9578.08, + "probability": 0.744 + }, + { + "start": 9578.92, + "end": 9579.74, + "probability": 0.734 + }, + { + "start": 9580.6, + "end": 9581.64, + "probability": 0.8201 + }, + { + "start": 9581.84, + "end": 9584.08, + "probability": 0.9434 + }, + { + "start": 9584.12, + "end": 9585.22, + "probability": 0.758 + }, + { + "start": 9585.94, + "end": 9589.04, + "probability": 0.9849 + }, + { + "start": 9589.74, + "end": 9592.38, + "probability": 0.9666 + }, + { + "start": 9593.1, + "end": 9593.84, + "probability": 0.4007 + }, + { + "start": 9594.36, + "end": 9596.34, + "probability": 0.2126 + }, + { + "start": 9596.46, + "end": 9597.38, + "probability": 0.4504 + }, + { + "start": 9597.38, + "end": 9598.32, + "probability": 0.2629 + }, + { + "start": 9599.52, + "end": 9599.92, + "probability": 0.002 + }, + { + "start": 9599.92, + "end": 9599.92, + "probability": 0.0252 + }, + { + "start": 9599.92, + "end": 9601.27, + "probability": 0.3196 + }, + { + "start": 9601.82, + "end": 9604.02, + "probability": 0.6598 + }, + { + "start": 9604.08, + "end": 9604.14, + "probability": 0.1467 + }, + { + "start": 9604.14, + "end": 9605.02, + "probability": 0.7125 + }, + { + "start": 9605.08, + "end": 9606.96, + "probability": 0.7312 + }, + { + "start": 9607.04, + "end": 9609.22, + "probability": 0.8097 + }, + { + "start": 9609.44, + "end": 9610.6, + "probability": 0.6714 + }, + { + "start": 9611.78, + "end": 9614.24, + "probability": 0.7636 + }, + { + "start": 9614.28, + "end": 9616.48, + "probability": 0.8644 + }, + { + "start": 9617.24, + "end": 9621.32, + "probability": 0.8894 + }, + { + "start": 9621.72, + "end": 9622.44, + "probability": 0.9935 + }, + { + "start": 9623.12, + "end": 9625.68, + "probability": 0.8613 + }, + { + "start": 9625.88, + "end": 9626.1, + "probability": 0.6229 + }, + { + "start": 9626.14, + "end": 9631.98, + "probability": 0.6884 + }, + { + "start": 9632.14, + "end": 9634.32, + "probability": 0.503 + }, + { + "start": 9634.62, + "end": 9637.12, + "probability": 0.9251 + }, + { + "start": 9637.88, + "end": 9638.82, + "probability": 0.4248 + }, + { + "start": 9638.92, + "end": 9640.16, + "probability": 0.7008 + }, + { + "start": 9640.34, + "end": 9643.28, + "probability": 0.7991 + }, + { + "start": 9643.36, + "end": 9643.94, + "probability": 0.6528 + }, + { + "start": 9644.14, + "end": 9647.32, + "probability": 0.8952 + }, + { + "start": 9647.9, + "end": 9650.94, + "probability": 0.9906 + }, + { + "start": 9651.1, + "end": 9651.62, + "probability": 0.4932 + }, + { + "start": 9652.42, + "end": 9653.84, + "probability": 0.9683 + }, + { + "start": 9655.34, + "end": 9657.18, + "probability": 0.9058 + }, + { + "start": 9657.62, + "end": 9661.62, + "probability": 0.8422 + }, + { + "start": 9661.86, + "end": 9662.96, + "probability": 0.9451 + }, + { + "start": 9663.2, + "end": 9666.58, + "probability": 0.9543 + }, + { + "start": 9666.66, + "end": 9669.3, + "probability": 0.9211 + }, + { + "start": 9669.62, + "end": 9671.24, + "probability": 0.8457 + }, + { + "start": 9671.96, + "end": 9673.22, + "probability": 0.9634 + }, + { + "start": 9673.56, + "end": 9674.5, + "probability": 0.807 + }, + { + "start": 9674.58, + "end": 9679.18, + "probability": 0.7611 + }, + { + "start": 9679.54, + "end": 9680.28, + "probability": 0.5491 + }, + { + "start": 9680.38, + "end": 9683.12, + "probability": 0.9629 + }, + { + "start": 9683.34, + "end": 9684.16, + "probability": 0.7661 + }, + { + "start": 9684.58, + "end": 9688.16, + "probability": 0.9287 + }, + { + "start": 9688.66, + "end": 9692.12, + "probability": 0.9122 + }, + { + "start": 9692.22, + "end": 9693.02, + "probability": 0.6019 + }, + { + "start": 9693.08, + "end": 9693.34, + "probability": 0.4323 + }, + { + "start": 9693.42, + "end": 9693.68, + "probability": 0.5856 + }, + { + "start": 9693.78, + "end": 9694.62, + "probability": 0.4752 + }, + { + "start": 9694.94, + "end": 9696.83, + "probability": 0.8213 + }, + { + "start": 9697.42, + "end": 9698.42, + "probability": 0.907 + }, + { + "start": 9699.0, + "end": 9700.24, + "probability": 0.8988 + }, + { + "start": 9700.3, + "end": 9701.24, + "probability": 0.8293 + }, + { + "start": 9701.44, + "end": 9702.62, + "probability": 0.8424 + }, + { + "start": 9702.7, + "end": 9703.62, + "probability": 0.4044 + }, + { + "start": 9703.7, + "end": 9705.36, + "probability": 0.9742 + }, + { + "start": 9705.68, + "end": 9709.02, + "probability": 0.9649 + }, + { + "start": 9709.1, + "end": 9709.98, + "probability": 0.9265 + }, + { + "start": 9710.06, + "end": 9712.04, + "probability": 0.0349 + }, + { + "start": 9712.04, + "end": 9714.62, + "probability": 0.824 + }, + { + "start": 9714.7, + "end": 9715.6, + "probability": 0.7686 + }, + { + "start": 9715.7, + "end": 9717.08, + "probability": 0.7332 + }, + { + "start": 9717.26, + "end": 9717.68, + "probability": 0.7531 + }, + { + "start": 9717.72, + "end": 9718.86, + "probability": 0.9282 + }, + { + "start": 9719.12, + "end": 9721.44, + "probability": 0.6461 + }, + { + "start": 9722.12, + "end": 9722.92, + "probability": 0.6969 + }, + { + "start": 9723.02, + "end": 9724.89, + "probability": 0.8035 + }, + { + "start": 9725.54, + "end": 9727.54, + "probability": 0.9895 + }, + { + "start": 9727.92, + "end": 9728.74, + "probability": 0.7192 + }, + { + "start": 9728.86, + "end": 9730.72, + "probability": 0.8883 + }, + { + "start": 9730.86, + "end": 9733.46, + "probability": 0.9907 + }, + { + "start": 9734.1, + "end": 9738.28, + "probability": 0.9823 + }, + { + "start": 9738.36, + "end": 9741.0, + "probability": 0.8641 + }, + { + "start": 9741.78, + "end": 9744.04, + "probability": 0.9971 + }, + { + "start": 9744.12, + "end": 9745.31, + "probability": 0.97 + }, + { + "start": 9745.9, + "end": 9750.14, + "probability": 0.9651 + }, + { + "start": 9750.24, + "end": 9754.12, + "probability": 0.9689 + }, + { + "start": 9754.62, + "end": 9755.1, + "probability": 0.5857 + }, + { + "start": 9755.18, + "end": 9756.64, + "probability": 0.7833 + }, + { + "start": 9756.78, + "end": 9758.82, + "probability": 0.7884 + }, + { + "start": 9759.06, + "end": 9760.72, + "probability": 0.8308 + }, + { + "start": 9761.62, + "end": 9764.14, + "probability": 0.9747 + }, + { + "start": 9764.46, + "end": 9764.95, + "probability": 0.4643 + }, + { + "start": 9765.88, + "end": 9773.92, + "probability": 0.94 + }, + { + "start": 9774.46, + "end": 9778.44, + "probability": 0.9463 + }, + { + "start": 9778.78, + "end": 9780.88, + "probability": 0.9634 + }, + { + "start": 9781.7, + "end": 9784.02, + "probability": 0.8965 + }, + { + "start": 9784.26, + "end": 9785.4, + "probability": 0.7476 + }, + { + "start": 9786.56, + "end": 9791.02, + "probability": 0.8167 + }, + { + "start": 9791.38, + "end": 9794.58, + "probability": 0.9624 + }, + { + "start": 9795.02, + "end": 9798.9, + "probability": 0.6285 + }, + { + "start": 9799.52, + "end": 9800.48, + "probability": 0.3009 + }, + { + "start": 9800.94, + "end": 9803.34, + "probability": 0.9211 + }, + { + "start": 9804.18, + "end": 9804.94, + "probability": 0.6875 + }, + { + "start": 9805.02, + "end": 9805.96, + "probability": 0.5982 + }, + { + "start": 9805.98, + "end": 9808.28, + "probability": 0.6382 + }, + { + "start": 9809.14, + "end": 9811.72, + "probability": 0.833 + }, + { + "start": 9812.08, + "end": 9814.86, + "probability": 0.0718 + }, + { + "start": 9815.2, + "end": 9815.24, + "probability": 0.0466 + }, + { + "start": 9815.24, + "end": 9815.64, + "probability": 0.5676 + }, + { + "start": 9816.14, + "end": 9818.64, + "probability": 0.8758 + }, + { + "start": 9819.2, + "end": 9822.34, + "probability": 0.8664 + }, + { + "start": 9822.7, + "end": 9826.56, + "probability": 0.9907 + }, + { + "start": 9826.76, + "end": 9827.5, + "probability": 0.3647 + }, + { + "start": 9828.04, + "end": 9828.54, + "probability": 0.328 + }, + { + "start": 9828.66, + "end": 9829.64, + "probability": 0.417 + }, + { + "start": 9830.18, + "end": 9835.1, + "probability": 0.9384 + }, + { + "start": 9835.58, + "end": 9838.26, + "probability": 0.9448 + }, + { + "start": 9838.98, + "end": 9841.66, + "probability": 0.5767 + }, + { + "start": 9842.96, + "end": 9847.26, + "probability": 0.8887 + }, + { + "start": 9847.26, + "end": 9851.94, + "probability": 0.9944 + }, + { + "start": 9852.58, + "end": 9859.34, + "probability": 0.9852 + }, + { + "start": 9859.48, + "end": 9864.26, + "probability": 0.8955 + }, + { + "start": 9864.74, + "end": 9868.9, + "probability": 0.9666 + }, + { + "start": 9869.4, + "end": 9872.7, + "probability": 0.985 + }, + { + "start": 9874.3, + "end": 9877.46, + "probability": 0.9819 + }, + { + "start": 9878.12, + "end": 9880.26, + "probability": 0.9115 + }, + { + "start": 9881.48, + "end": 9885.3, + "probability": 0.8364 + }, + { + "start": 9886.06, + "end": 9889.0, + "probability": 0.8457 + }, + { + "start": 9889.04, + "end": 9891.72, + "probability": 0.919 + }, + { + "start": 9892.08, + "end": 9895.64, + "probability": 0.894 + }, + { + "start": 9896.0, + "end": 9900.02, + "probability": 0.6873 + }, + { + "start": 9900.56, + "end": 9902.54, + "probability": 0.5431 + }, + { + "start": 9902.68, + "end": 9903.84, + "probability": 0.7339 + }, + { + "start": 9904.72, + "end": 9910.44, + "probability": 0.9033 + }, + { + "start": 9911.02, + "end": 9911.72, + "probability": 0.683 + }, + { + "start": 9912.24, + "end": 9914.92, + "probability": 0.9431 + }, + { + "start": 9915.1, + "end": 9916.1, + "probability": 0.6935 + }, + { + "start": 9916.34, + "end": 9917.5, + "probability": 0.6753 + }, + { + "start": 9917.56, + "end": 9921.32, + "probability": 0.7929 + }, + { + "start": 9922.42, + "end": 9924.98, + "probability": 0.8818 + }, + { + "start": 9926.22, + "end": 9928.63, + "probability": 0.9817 + }, + { + "start": 9929.24, + "end": 9929.84, + "probability": 0.2628 + }, + { + "start": 9929.94, + "end": 9932.26, + "probability": 0.9911 + }, + { + "start": 9932.58, + "end": 9934.4, + "probability": 0.9847 + }, + { + "start": 9934.8, + "end": 9937.36, + "probability": 0.9749 + }, + { + "start": 9937.9, + "end": 9939.92, + "probability": 0.959 + }, + { + "start": 9940.16, + "end": 9943.1, + "probability": 0.9818 + }, + { + "start": 9943.54, + "end": 9945.62, + "probability": 0.9828 + }, + { + "start": 9945.92, + "end": 9950.48, + "probability": 0.9912 + }, + { + "start": 9950.7, + "end": 9954.94, + "probability": 0.9851 + }, + { + "start": 9955.18, + "end": 9957.88, + "probability": 0.9904 + }, + { + "start": 9958.32, + "end": 9959.36, + "probability": 0.8407 + }, + { + "start": 9960.4, + "end": 9962.86, + "probability": 0.8604 + }, + { + "start": 9964.44, + "end": 9969.42, + "probability": 0.8724 + }, + { + "start": 9969.42, + "end": 9973.68, + "probability": 0.9963 + }, + { + "start": 9974.42, + "end": 9978.96, + "probability": 0.9757 + }, + { + "start": 9979.78, + "end": 9983.58, + "probability": 0.917 + }, + { + "start": 9984.62, + "end": 9986.14, + "probability": 0.6664 + }, + { + "start": 9986.24, + "end": 9990.12, + "probability": 0.9501 + }, + { + "start": 9990.44, + "end": 9991.54, + "probability": 0.8339 + }, + { + "start": 9992.04, + "end": 9992.59, + "probability": 0.9204 + }, + { + "start": 9993.54, + "end": 9998.98, + "probability": 0.9202 + }, + { + "start": 9999.48, + "end": 10002.0, + "probability": 0.8338 + }, + { + "start": 10002.68, + "end": 10004.27, + "probability": 0.96 + }, + { + "start": 10004.68, + "end": 10009.96, + "probability": 0.7102 + }, + { + "start": 10010.72, + "end": 10013.34, + "probability": 0.8682 + }, + { + "start": 10013.8, + "end": 10018.96, + "probability": 0.9791 + }, + { + "start": 10019.54, + "end": 10023.14, + "probability": 0.9434 + }, + { + "start": 10023.2, + "end": 10027.94, + "probability": 0.8012 + }, + { + "start": 10028.32, + "end": 10031.36, + "probability": 0.5077 + }, + { + "start": 10032.24, + "end": 10036.24, + "probability": 0.9763 + }, + { + "start": 10036.24, + "end": 10039.46, + "probability": 0.9908 + }, + { + "start": 10040.22, + "end": 10042.82, + "probability": 0.9854 + }, + { + "start": 10043.46, + "end": 10046.98, + "probability": 0.9676 + }, + { + "start": 10047.86, + "end": 10050.54, + "probability": 0.7493 + }, + { + "start": 10051.2, + "end": 10053.38, + "probability": 0.598 + }, + { + "start": 10054.04, + "end": 10055.34, + "probability": 0.9868 + }, + { + "start": 10056.5, + "end": 10061.24, + "probability": 0.9686 + }, + { + "start": 10062.78, + "end": 10066.42, + "probability": 0.9677 + }, + { + "start": 10066.42, + "end": 10072.38, + "probability": 0.9916 + }, + { + "start": 10072.5, + "end": 10074.54, + "probability": 0.7858 + }, + { + "start": 10074.7, + "end": 10075.86, + "probability": 0.6533 + }, + { + "start": 10075.98, + "end": 10079.44, + "probability": 0.5079 + }, + { + "start": 10080.35, + "end": 10082.72, + "probability": 0.8022 + }, + { + "start": 10082.84, + "end": 10086.32, + "probability": 0.7141 + }, + { + "start": 10086.7, + "end": 10091.44, + "probability": 0.5311 + }, + { + "start": 10092.16, + "end": 10093.32, + "probability": 0.1977 + }, + { + "start": 10093.46, + "end": 10095.22, + "probability": 0.3329 + }, + { + "start": 10095.66, + "end": 10095.76, + "probability": 0.0586 + }, + { + "start": 10095.76, + "end": 10096.32, + "probability": 0.0772 + }, + { + "start": 10096.72, + "end": 10097.34, + "probability": 0.4872 + }, + { + "start": 10097.36, + "end": 10098.64, + "probability": 0.4139 + }, + { + "start": 10098.82, + "end": 10100.98, + "probability": 0.6375 + }, + { + "start": 10101.54, + "end": 10105.2, + "probability": 0.8037 + }, + { + "start": 10106.02, + "end": 10107.68, + "probability": 0.9111 + }, + { + "start": 10109.86, + "end": 10111.38, + "probability": 0.7572 + }, + { + "start": 10112.18, + "end": 10116.62, + "probability": 0.8337 + }, + { + "start": 10117.1, + "end": 10120.42, + "probability": 0.9563 + }, + { + "start": 10120.42, + "end": 10124.04, + "probability": 0.9082 + }, + { + "start": 10125.61, + "end": 10127.14, + "probability": 0.8446 + }, + { + "start": 10127.14, + "end": 10129.74, + "probability": 0.6994 + }, + { + "start": 10129.94, + "end": 10130.42, + "probability": 0.4976 + }, + { + "start": 10130.6, + "end": 10132.56, + "probability": 0.739 + }, + { + "start": 10133.76, + "end": 10136.98, + "probability": 0.6871 + }, + { + "start": 10137.12, + "end": 10137.72, + "probability": 0.8416 + }, + { + "start": 10137.8, + "end": 10139.9, + "probability": 0.8186 + }, + { + "start": 10139.96, + "end": 10140.8, + "probability": 0.9495 + }, + { + "start": 10141.3, + "end": 10143.2, + "probability": 0.6114 + }, + { + "start": 10143.2, + "end": 10143.2, + "probability": 0.0062 + }, + { + "start": 10143.2, + "end": 10146.28, + "probability": 0.6793 + }, + { + "start": 10146.32, + "end": 10148.6, + "probability": 0.8182 + }, + { + "start": 10149.24, + "end": 10150.04, + "probability": 0.5913 + }, + { + "start": 10150.28, + "end": 10155.12, + "probability": 0.9751 + }, + { + "start": 10155.12, + "end": 10159.66, + "probability": 0.9791 + }, + { + "start": 10159.74, + "end": 10161.9, + "probability": 0.9429 + }, + { + "start": 10162.04, + "end": 10163.31, + "probability": 0.5043 + }, + { + "start": 10164.36, + "end": 10164.36, + "probability": 0.3775 + }, + { + "start": 10164.48, + "end": 10165.14, + "probability": 0.3447 + }, + { + "start": 10165.2, + "end": 10165.52, + "probability": 0.7533 + }, + { + "start": 10165.62, + "end": 10166.48, + "probability": 0.9651 + }, + { + "start": 10166.58, + "end": 10167.26, + "probability": 0.7381 + }, + { + "start": 10167.3, + "end": 10167.46, + "probability": 0.5855 + }, + { + "start": 10167.6, + "end": 10168.56, + "probability": 0.7764 + }, + { + "start": 10168.66, + "end": 10171.72, + "probability": 0.9037 + }, + { + "start": 10172.16, + "end": 10173.12, + "probability": 0.5031 + }, + { + "start": 10173.18, + "end": 10173.96, + "probability": 0.5427 + }, + { + "start": 10193.06, + "end": 10193.46, + "probability": 0.1777 + }, + { + "start": 10193.46, + "end": 10195.01, + "probability": 0.4742 + }, + { + "start": 10195.26, + "end": 10195.34, + "probability": 0.1593 + }, + { + "start": 10195.34, + "end": 10195.82, + "probability": 0.6137 + }, + { + "start": 10195.88, + "end": 10202.54, + "probability": 0.7322 + } + ], + "segments_count": 3289, + "words_count": 17685, + "avg_words_per_segment": 5.377, + "avg_segment_duration": 2.5141, + "avg_words_per_minute": 103.6376, + "plenum_id": "27652", + "duration": 10238.56, + "title": null, + "plenum_date": "2013-04-23" +} \ No newline at end of file