diff --git "a/55655/metadata.json" "b/55655/metadata.json" new file mode 100644--- /dev/null +++ "b/55655/metadata.json" @@ -0,0 +1,70982 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "55655", + "quality_score": 0.9033, + "per_segment_quality_scores": [ + { + "start": 96.3, + "end": 97.46, + "probability": 0.0325 + }, + { + "start": 98.0, + "end": 98.94, + "probability": 0.0163 + }, + { + "start": 99.34, + "end": 103.68, + "probability": 0.0376 + }, + { + "start": 104.3, + "end": 105.6, + "probability": 0.0436 + }, + { + "start": 105.6, + "end": 109.06, + "probability": 0.035 + }, + { + "start": 128.0, + "end": 128.0, + "probability": 0.0 + }, + { + "start": 128.0, + "end": 128.0, + "probability": 0.0 + }, + { + "start": 128.0, + "end": 128.0, + "probability": 0.0 + }, + { + "start": 128.0, + "end": 128.0, + "probability": 0.0 + }, + { + "start": 128.0, + "end": 128.0, + "probability": 0.0 + }, + { + "start": 128.0, + "end": 128.0, + "probability": 0.0 + }, + { + "start": 128.0, + "end": 128.0, + "probability": 0.0 + }, + { + "start": 128.0, + "end": 128.0, + "probability": 0.0 + }, + { + "start": 128.0, + "end": 128.0, + "probability": 0.0 + }, + { + "start": 128.0, + "end": 128.0, + "probability": 0.0 + }, + { + "start": 128.0, + "end": 128.0, + "probability": 0.0 + }, + { + "start": 128.0, + "end": 128.0, + "probability": 0.0 + }, + { + "start": 128.0, + "end": 128.0, + "probability": 0.0 + }, + { + "start": 128.0, + "end": 128.0, + "probability": 0.0 + }, + { + "start": 128.0, + "end": 128.0, + "probability": 0.0 + }, + { + "start": 128.0, + "end": 128.0, + "probability": 0.0 + }, + { + "start": 128.0, + "end": 128.0, + "probability": 0.0 + }, + { + "start": 128.0, + "end": 128.0, + "probability": 0.0 + }, + { + "start": 128.18, + "end": 128.84, + "probability": 0.0277 + }, + { + "start": 128.84, + "end": 128.84, + "probability": 0.1193 + }, + { + "start": 128.84, + "end": 130.74, + "probability": 0.7253 + }, + { + "start": 131.94, + "end": 132.26, + "probability": 0.2243 + }, + { + "start": 134.26, + "end": 135.14, + "probability": 0.6284 + }, + { + "start": 136.08, + "end": 137.72, + "probability": 0.866 + }, + { + "start": 137.9, + "end": 142.24, + "probability": 0.9429 + }, + { + "start": 143.38, + "end": 147.48, + "probability": 0.9861 + }, + { + "start": 148.72, + "end": 152.86, + "probability": 0.9695 + }, + { + "start": 153.62, + "end": 154.06, + "probability": 0.8126 + }, + { + "start": 154.08, + "end": 160.7, + "probability": 0.7279 + }, + { + "start": 161.72, + "end": 162.12, + "probability": 0.1634 + }, + { + "start": 162.24, + "end": 168.74, + "probability": 0.9438 + }, + { + "start": 169.04, + "end": 170.7, + "probability": 0.8442 + }, + { + "start": 170.74, + "end": 171.48, + "probability": 0.7646 + }, + { + "start": 171.58, + "end": 172.2, + "probability": 0.9937 + }, + { + "start": 174.18, + "end": 176.0, + "probability": 0.5226 + }, + { + "start": 176.16, + "end": 177.1, + "probability": 0.9286 + }, + { + "start": 177.84, + "end": 178.36, + "probability": 0.64 + }, + { + "start": 183.74, + "end": 184.12, + "probability": 0.483 + }, + { + "start": 184.36, + "end": 187.56, + "probability": 0.9951 + }, + { + "start": 187.56, + "end": 191.14, + "probability": 0.9953 + }, + { + "start": 191.82, + "end": 195.64, + "probability": 0.9359 + }, + { + "start": 196.28, + "end": 200.4, + "probability": 0.8063 + }, + { + "start": 201.16, + "end": 202.36, + "probability": 0.8412 + }, + { + "start": 202.92, + "end": 206.68, + "probability": 0.9952 + }, + { + "start": 207.06, + "end": 211.38, + "probability": 0.9935 + }, + { + "start": 211.38, + "end": 215.24, + "probability": 0.9972 + }, + { + "start": 215.52, + "end": 221.0, + "probability": 0.8447 + }, + { + "start": 221.02, + "end": 227.44, + "probability": 0.9749 + }, + { + "start": 227.52, + "end": 229.82, + "probability": 0.8926 + }, + { + "start": 230.32, + "end": 232.5, + "probability": 0.9486 + }, + { + "start": 232.74, + "end": 233.39, + "probability": 0.9325 + }, + { + "start": 234.45, + "end": 236.3, + "probability": 0.6034 + }, + { + "start": 236.3, + "end": 236.3, + "probability": 0.0197 + }, + { + "start": 236.3, + "end": 236.3, + "probability": 0.6365 + }, + { + "start": 236.3, + "end": 237.92, + "probability": 0.7929 + }, + { + "start": 238.02, + "end": 239.62, + "probability": 0.7388 + }, + { + "start": 239.86, + "end": 242.22, + "probability": 0.8447 + }, + { + "start": 242.92, + "end": 245.12, + "probability": 0.9503 + }, + { + "start": 245.28, + "end": 245.88, + "probability": 0.9649 + }, + { + "start": 246.62, + "end": 246.7, + "probability": 0.2127 + }, + { + "start": 246.8, + "end": 247.56, + "probability": 0.4054 + }, + { + "start": 247.62, + "end": 250.0, + "probability": 0.9671 + }, + { + "start": 250.12, + "end": 251.12, + "probability": 0.8762 + }, + { + "start": 251.14, + "end": 252.66, + "probability": 0.8244 + }, + { + "start": 253.04, + "end": 253.42, + "probability": 0.851 + }, + { + "start": 253.6, + "end": 257.16, + "probability": 0.9115 + }, + { + "start": 257.16, + "end": 260.16, + "probability": 0.7903 + }, + { + "start": 260.44, + "end": 260.68, + "probability": 0.5047 + }, + { + "start": 260.68, + "end": 260.68, + "probability": 0.3934 + }, + { + "start": 260.8, + "end": 262.34, + "probability": 0.6058 + }, + { + "start": 262.52, + "end": 265.8, + "probability": 0.9508 + }, + { + "start": 265.96, + "end": 269.0, + "probability": 0.9934 + }, + { + "start": 269.34, + "end": 273.28, + "probability": 0.9974 + }, + { + "start": 274.34, + "end": 275.12, + "probability": 0.5045 + }, + { + "start": 275.12, + "end": 275.86, + "probability": 0.6823 + }, + { + "start": 276.98, + "end": 279.18, + "probability": 0.8012 + }, + { + "start": 279.26, + "end": 283.02, + "probability": 0.8333 + }, + { + "start": 283.98, + "end": 284.5, + "probability": 0.9373 + }, + { + "start": 287.32, + "end": 295.06, + "probability": 0.7614 + }, + { + "start": 295.26, + "end": 295.62, + "probability": 0.7622 + }, + { + "start": 300.08, + "end": 303.5, + "probability": 0.415 + }, + { + "start": 304.06, + "end": 307.1, + "probability": 0.7227 + }, + { + "start": 307.86, + "end": 311.88, + "probability": 0.946 + }, + { + "start": 313.06, + "end": 315.06, + "probability": 0.9511 + }, + { + "start": 316.82, + "end": 317.21, + "probability": 0.3875 + }, + { + "start": 317.66, + "end": 322.52, + "probability": 0.9145 + }, + { + "start": 323.7, + "end": 324.74, + "probability": 0.8107 + }, + { + "start": 326.66, + "end": 331.44, + "probability": 0.974 + }, + { + "start": 331.44, + "end": 337.12, + "probability": 0.9909 + }, + { + "start": 337.88, + "end": 341.34, + "probability": 0.7954 + }, + { + "start": 341.92, + "end": 343.46, + "probability": 0.9917 + }, + { + "start": 344.78, + "end": 349.72, + "probability": 0.9723 + }, + { + "start": 350.48, + "end": 352.62, + "probability": 0.4823 + }, + { + "start": 352.68, + "end": 353.9, + "probability": 0.8093 + }, + { + "start": 355.16, + "end": 363.32, + "probability": 0.9435 + }, + { + "start": 363.32, + "end": 369.12, + "probability": 0.8956 + }, + { + "start": 371.66, + "end": 372.82, + "probability": 0.8188 + }, + { + "start": 373.06, + "end": 374.88, + "probability": 0.8574 + }, + { + "start": 374.92, + "end": 376.1, + "probability": 0.9932 + }, + { + "start": 376.26, + "end": 376.51, + "probability": 0.738 + }, + { + "start": 376.74, + "end": 377.56, + "probability": 0.1243 + }, + { + "start": 378.1, + "end": 379.76, + "probability": 0.2688 + }, + { + "start": 380.9, + "end": 382.78, + "probability": 0.9681 + }, + { + "start": 385.5, + "end": 387.85, + "probability": 0.939 + }, + { + "start": 389.74, + "end": 394.6, + "probability": 0.9969 + }, + { + "start": 396.34, + "end": 397.46, + "probability": 0.73 + }, + { + "start": 398.44, + "end": 399.48, + "probability": 0.9964 + }, + { + "start": 400.24, + "end": 401.06, + "probability": 0.6307 + }, + { + "start": 402.88, + "end": 403.68, + "probability": 0.9971 + }, + { + "start": 404.96, + "end": 406.3, + "probability": 0.8743 + }, + { + "start": 407.12, + "end": 408.12, + "probability": 0.87 + }, + { + "start": 408.76, + "end": 410.42, + "probability": 0.9703 + }, + { + "start": 411.5, + "end": 415.86, + "probability": 0.8682 + }, + { + "start": 416.36, + "end": 418.6, + "probability": 0.8373 + }, + { + "start": 419.2, + "end": 420.1, + "probability": 0.9414 + }, + { + "start": 420.66, + "end": 427.7, + "probability": 0.9994 + }, + { + "start": 427.94, + "end": 428.56, + "probability": 0.9939 + }, + { + "start": 429.26, + "end": 432.7, + "probability": 0.9995 + }, + { + "start": 436.56, + "end": 439.03, + "probability": 0.695 + }, + { + "start": 439.94, + "end": 444.28, + "probability": 0.9861 + }, + { + "start": 445.12, + "end": 447.38, + "probability": 0.9652 + }, + { + "start": 449.68, + "end": 449.7, + "probability": 0.5217 + }, + { + "start": 449.7, + "end": 450.62, + "probability": 0.6652 + }, + { + "start": 450.68, + "end": 451.0, + "probability": 0.5455 + }, + { + "start": 451.38, + "end": 451.38, + "probability": 0.1305 + }, + { + "start": 451.38, + "end": 452.46, + "probability": 0.8519 + }, + { + "start": 452.64, + "end": 454.22, + "probability": 0.7714 + }, + { + "start": 454.52, + "end": 456.66, + "probability": 0.7583 + }, + { + "start": 456.72, + "end": 457.54, + "probability": 0.886 + }, + { + "start": 457.6, + "end": 461.22, + "probability": 0.8962 + }, + { + "start": 461.58, + "end": 466.44, + "probability": 0.8669 + }, + { + "start": 466.88, + "end": 468.72, + "probability": 0.5937 + }, + { + "start": 469.26, + "end": 470.82, + "probability": 0.6648 + }, + { + "start": 471.04, + "end": 471.98, + "probability": 0.9412 + }, + { + "start": 472.6, + "end": 473.86, + "probability": 0.532 + }, + { + "start": 474.26, + "end": 474.64, + "probability": 0.3407 + }, + { + "start": 474.8, + "end": 475.14, + "probability": 0.9111 + }, + { + "start": 475.24, + "end": 478.78, + "probability": 0.9921 + }, + { + "start": 478.82, + "end": 479.98, + "probability": 0.9854 + }, + { + "start": 480.7, + "end": 482.46, + "probability": 0.619 + }, + { + "start": 482.74, + "end": 485.14, + "probability": 0.9966 + }, + { + "start": 486.02, + "end": 489.76, + "probability": 0.5279 + }, + { + "start": 489.86, + "end": 492.64, + "probability": 0.7835 + }, + { + "start": 493.54, + "end": 494.56, + "probability": 0.7664 + }, + { + "start": 495.36, + "end": 499.94, + "probability": 0.9447 + }, + { + "start": 500.0, + "end": 500.36, + "probability": 0.4042 + }, + { + "start": 500.78, + "end": 502.96, + "probability": 0.593 + }, + { + "start": 503.0, + "end": 507.62, + "probability": 0.5992 + }, + { + "start": 507.8, + "end": 508.96, + "probability": 0.6273 + }, + { + "start": 509.18, + "end": 512.74, + "probability": 0.5786 + }, + { + "start": 513.14, + "end": 519.3, + "probability": 0.894 + }, + { + "start": 519.38, + "end": 520.06, + "probability": 0.5741 + }, + { + "start": 520.12, + "end": 520.74, + "probability": 0.7369 + }, + { + "start": 521.22, + "end": 523.06, + "probability": 0.8956 + }, + { + "start": 523.18, + "end": 530.58, + "probability": 0.78 + }, + { + "start": 530.94, + "end": 534.04, + "probability": 0.8819 + }, + { + "start": 535.02, + "end": 541.78, + "probability": 0.9858 + }, + { + "start": 542.56, + "end": 543.18, + "probability": 0.4016 + }, + { + "start": 543.36, + "end": 544.66, + "probability": 0.7506 + }, + { + "start": 545.3, + "end": 545.58, + "probability": 0.6397 + }, + { + "start": 545.6, + "end": 546.6, + "probability": 0.8726 + }, + { + "start": 546.66, + "end": 547.8, + "probability": 0.9607 + }, + { + "start": 553.38, + "end": 555.44, + "probability": 0.7725 + }, + { + "start": 556.26, + "end": 556.92, + "probability": 0.8433 + }, + { + "start": 557.02, + "end": 561.38, + "probability": 0.9949 + }, + { + "start": 561.38, + "end": 565.34, + "probability": 0.9988 + }, + { + "start": 566.14, + "end": 570.24, + "probability": 0.9969 + }, + { + "start": 571.28, + "end": 574.72, + "probability": 0.8662 + }, + { + "start": 574.82, + "end": 577.12, + "probability": 0.9969 + }, + { + "start": 577.76, + "end": 580.1, + "probability": 0.9731 + }, + { + "start": 580.32, + "end": 582.05, + "probability": 0.9805 + }, + { + "start": 582.38, + "end": 583.22, + "probability": 0.6559 + }, + { + "start": 583.88, + "end": 588.76, + "probability": 0.9934 + }, + { + "start": 589.96, + "end": 595.14, + "probability": 0.9878 + }, + { + "start": 596.48, + "end": 601.64, + "probability": 0.9903 + }, + { + "start": 602.24, + "end": 602.24, + "probability": 0.1631 + }, + { + "start": 602.72, + "end": 603.7, + "probability": 0.8982 + }, + { + "start": 603.84, + "end": 609.36, + "probability": 0.979 + }, + { + "start": 610.16, + "end": 611.44, + "probability": 0.9673 + }, + { + "start": 612.22, + "end": 615.7, + "probability": 0.9954 + }, + { + "start": 616.16, + "end": 618.02, + "probability": 0.8869 + }, + { + "start": 618.66, + "end": 623.38, + "probability": 0.9901 + }, + { + "start": 623.48, + "end": 626.98, + "probability": 0.9516 + }, + { + "start": 627.42, + "end": 632.3, + "probability": 0.9812 + }, + { + "start": 633.08, + "end": 635.38, + "probability": 0.9964 + }, + { + "start": 635.42, + "end": 635.82, + "probability": 0.5697 + }, + { + "start": 635.88, + "end": 636.72, + "probability": 0.7941 + }, + { + "start": 637.02, + "end": 640.34, + "probability": 0.9789 + }, + { + "start": 641.24, + "end": 642.48, + "probability": 0.9558 + }, + { + "start": 642.56, + "end": 644.08, + "probability": 0.9891 + }, + { + "start": 644.22, + "end": 646.44, + "probability": 0.9971 + }, + { + "start": 646.68, + "end": 647.78, + "probability": 0.889 + }, + { + "start": 648.46, + "end": 648.88, + "probability": 0.4487 + }, + { + "start": 649.0, + "end": 649.74, + "probability": 0.8002 + }, + { + "start": 649.88, + "end": 651.96, + "probability": 0.8028 + }, + { + "start": 651.96, + "end": 654.2, + "probability": 0.9302 + }, + { + "start": 654.32, + "end": 655.74, + "probability": 0.8192 + }, + { + "start": 656.3, + "end": 658.86, + "probability": 0.9821 + }, + { + "start": 659.0, + "end": 660.38, + "probability": 0.7523 + }, + { + "start": 661.06, + "end": 664.52, + "probability": 0.9922 + }, + { + "start": 664.52, + "end": 668.3, + "probability": 0.9982 + }, + { + "start": 668.9, + "end": 674.46, + "probability": 0.9457 + }, + { + "start": 674.62, + "end": 675.24, + "probability": 0.7735 + }, + { + "start": 675.38, + "end": 676.36, + "probability": 0.9526 + }, + { + "start": 677.08, + "end": 678.6, + "probability": 0.5063 + }, + { + "start": 678.62, + "end": 679.86, + "probability": 0.6467 + }, + { + "start": 680.08, + "end": 682.3, + "probability": 0.9719 + }, + { + "start": 687.0, + "end": 689.78, + "probability": 0.9219 + }, + { + "start": 689.98, + "end": 695.26, + "probability": 0.748 + }, + { + "start": 696.41, + "end": 700.94, + "probability": 0.6545 + }, + { + "start": 701.42, + "end": 704.1, + "probability": 0.9692 + }, + { + "start": 704.16, + "end": 706.5, + "probability": 0.9314 + }, + { + "start": 706.9, + "end": 708.66, + "probability": 0.9556 + }, + { + "start": 709.18, + "end": 714.94, + "probability": 0.984 + }, + { + "start": 716.0, + "end": 719.24, + "probability": 0.9683 + }, + { + "start": 719.9, + "end": 720.7, + "probability": 0.8864 + }, + { + "start": 721.2, + "end": 724.92, + "probability": 0.8883 + }, + { + "start": 725.74, + "end": 730.08, + "probability": 0.8798 + }, + { + "start": 730.6, + "end": 731.04, + "probability": 0.9296 + }, + { + "start": 731.64, + "end": 734.3, + "probability": 0.8013 + }, + { + "start": 734.72, + "end": 735.62, + "probability": 0.7899 + }, + { + "start": 736.0, + "end": 736.26, + "probability": 0.4026 + }, + { + "start": 736.5, + "end": 736.98, + "probability": 0.888 + }, + { + "start": 737.34, + "end": 738.74, + "probability": 0.8109 + }, + { + "start": 738.74, + "end": 741.1, + "probability": 0.4801 + }, + { + "start": 741.7, + "end": 742.84, + "probability": 0.5548 + }, + { + "start": 742.88, + "end": 744.92, + "probability": 0.9487 + }, + { + "start": 745.02, + "end": 747.14, + "probability": 0.9879 + }, + { + "start": 748.06, + "end": 748.72, + "probability": 0.5121 + }, + { + "start": 748.9, + "end": 752.86, + "probability": 0.7475 + }, + { + "start": 754.3, + "end": 755.5, + "probability": 0.5245 + }, + { + "start": 755.84, + "end": 757.16, + "probability": 0.1161 + }, + { + "start": 757.16, + "end": 758.76, + "probability": 0.9848 + }, + { + "start": 758.86, + "end": 760.04, + "probability": 0.8342 + }, + { + "start": 760.1, + "end": 763.36, + "probability": 0.9958 + }, + { + "start": 763.56, + "end": 763.74, + "probability": 0.1476 + }, + { + "start": 763.76, + "end": 767.54, + "probability": 0.9499 + }, + { + "start": 767.64, + "end": 770.66, + "probability": 0.8038 + }, + { + "start": 770.66, + "end": 772.0, + "probability": 0.2366 + }, + { + "start": 772.0, + "end": 774.01, + "probability": 0.3417 + }, + { + "start": 774.3, + "end": 776.38, + "probability": 0.9111 + }, + { + "start": 776.48, + "end": 779.48, + "probability": 0.9704 + }, + { + "start": 779.5, + "end": 779.98, + "probability": 0.8877 + }, + { + "start": 780.0, + "end": 780.34, + "probability": 0.4019 + }, + { + "start": 780.42, + "end": 781.45, + "probability": 0.6726 + }, + { + "start": 781.78, + "end": 784.68, + "probability": 0.8765 + }, + { + "start": 784.68, + "end": 786.64, + "probability": 0.4548 + }, + { + "start": 786.96, + "end": 788.86, + "probability": 0.7763 + }, + { + "start": 789.44, + "end": 790.04, + "probability": 0.8162 + }, + { + "start": 790.6, + "end": 794.6, + "probability": 0.9933 + }, + { + "start": 795.28, + "end": 797.98, + "probability": 0.9399 + }, + { + "start": 799.08, + "end": 800.54, + "probability": 0.9736 + }, + { + "start": 801.48, + "end": 804.4, + "probability": 0.9525 + }, + { + "start": 806.64, + "end": 811.02, + "probability": 0.8839 + }, + { + "start": 811.24, + "end": 811.78, + "probability": 0.4756 + }, + { + "start": 812.18, + "end": 816.32, + "probability": 0.9681 + }, + { + "start": 816.92, + "end": 819.56, + "probability": 0.9325 + }, + { + "start": 820.14, + "end": 821.48, + "probability": 0.813 + }, + { + "start": 824.28, + "end": 826.58, + "probability": 0.988 + }, + { + "start": 827.96, + "end": 830.82, + "probability": 0.955 + }, + { + "start": 831.58, + "end": 832.42, + "probability": 0.9595 + }, + { + "start": 833.08, + "end": 837.96, + "probability": 0.9482 + }, + { + "start": 838.24, + "end": 840.82, + "probability": 0.9963 + }, + { + "start": 841.1, + "end": 845.52, + "probability": 0.962 + }, + { + "start": 845.92, + "end": 846.68, + "probability": 0.7454 + }, + { + "start": 847.12, + "end": 851.32, + "probability": 0.9951 + }, + { + "start": 851.5, + "end": 852.54, + "probability": 0.9863 + }, + { + "start": 853.12, + "end": 855.98, + "probability": 0.9942 + }, + { + "start": 856.64, + "end": 857.84, + "probability": 0.797 + }, + { + "start": 858.96, + "end": 860.34, + "probability": 0.9269 + }, + { + "start": 861.4, + "end": 863.94, + "probability": 0.9609 + }, + { + "start": 864.92, + "end": 865.16, + "probability": 0.725 + }, + { + "start": 866.18, + "end": 869.06, + "probability": 0.9836 + }, + { + "start": 869.72, + "end": 872.52, + "probability": 0.996 + }, + { + "start": 874.22, + "end": 877.18, + "probability": 0.4908 + }, + { + "start": 877.24, + "end": 880.12, + "probability": 0.8062 + }, + { + "start": 880.88, + "end": 883.8, + "probability": 0.8678 + }, + { + "start": 884.52, + "end": 885.56, + "probability": 0.8094 + }, + { + "start": 885.72, + "end": 887.32, + "probability": 0.7534 + }, + { + "start": 887.44, + "end": 888.76, + "probability": 0.6651 + }, + { + "start": 888.9, + "end": 889.58, + "probability": 0.8115 + }, + { + "start": 889.84, + "end": 890.48, + "probability": 0.8933 + }, + { + "start": 903.78, + "end": 907.04, + "probability": 0.9674 + }, + { + "start": 907.04, + "end": 910.75, + "probability": 0.9969 + }, + { + "start": 927.36, + "end": 928.34, + "probability": 0.2293 + }, + { + "start": 929.38, + "end": 931.3, + "probability": 0.6671 + }, + { + "start": 931.98, + "end": 932.9, + "probability": 0.8032 + }, + { + "start": 933.22, + "end": 934.3, + "probability": 0.6974 + }, + { + "start": 934.46, + "end": 941.3, + "probability": 0.9275 + }, + { + "start": 943.1, + "end": 946.7, + "probability": 0.9342 + }, + { + "start": 947.28, + "end": 948.34, + "probability": 0.8139 + }, + { + "start": 948.68, + "end": 950.66, + "probability": 0.9976 + }, + { + "start": 951.26, + "end": 952.52, + "probability": 0.9735 + }, + { + "start": 953.6, + "end": 954.44, + "probability": 0.7053 + }, + { + "start": 955.44, + "end": 956.66, + "probability": 0.6767 + }, + { + "start": 957.28, + "end": 957.42, + "probability": 0.456 + }, + { + "start": 958.56, + "end": 961.22, + "probability": 0.984 + }, + { + "start": 961.38, + "end": 961.56, + "probability": 0.7708 + }, + { + "start": 962.7, + "end": 962.7, + "probability": 0.3602 + }, + { + "start": 962.7, + "end": 963.68, + "probability": 0.7374 + }, + { + "start": 964.62, + "end": 965.4, + "probability": 0.8309 + }, + { + "start": 965.4, + "end": 966.94, + "probability": 0.748 + }, + { + "start": 967.14, + "end": 968.94, + "probability": 0.6718 + }, + { + "start": 969.14, + "end": 969.5, + "probability": 0.5818 + }, + { + "start": 970.96, + "end": 975.08, + "probability": 0.7735 + }, + { + "start": 975.3, + "end": 976.12, + "probability": 0.3465 + }, + { + "start": 976.22, + "end": 977.02, + "probability": 0.7204 + }, + { + "start": 977.66, + "end": 980.3, + "probability": 0.9967 + }, + { + "start": 980.3, + "end": 984.24, + "probability": 0.9933 + }, + { + "start": 985.34, + "end": 987.72, + "probability": 0.9557 + }, + { + "start": 988.44, + "end": 991.68, + "probability": 0.9329 + }, + { + "start": 992.36, + "end": 994.6, + "probability": 0.9744 + }, + { + "start": 999.9, + "end": 1006.12, + "probability": 0.8504 + }, + { + "start": 1007.2, + "end": 1009.96, + "probability": 0.9805 + }, + { + "start": 1010.78, + "end": 1012.52, + "probability": 0.9847 + }, + { + "start": 1014.2, + "end": 1015.5, + "probability": 0.4896 + }, + { + "start": 1016.0, + "end": 1016.98, + "probability": 0.9792 + }, + { + "start": 1017.18, + "end": 1018.22, + "probability": 0.6935 + }, + { + "start": 1019.04, + "end": 1020.32, + "probability": 0.6598 + }, + { + "start": 1020.96, + "end": 1022.3, + "probability": 0.8638 + }, + { + "start": 1023.5, + "end": 1024.76, + "probability": 0.7281 + }, + { + "start": 1025.94, + "end": 1028.14, + "probability": 0.9921 + }, + { + "start": 1029.48, + "end": 1036.18, + "probability": 0.9865 + }, + { + "start": 1037.68, + "end": 1038.58, + "probability": 0.5681 + }, + { + "start": 1039.88, + "end": 1043.48, + "probability": 0.9831 + }, + { + "start": 1044.66, + "end": 1047.98, + "probability": 0.6313 + }, + { + "start": 1049.08, + "end": 1049.8, + "probability": 0.2499 + }, + { + "start": 1049.88, + "end": 1052.9, + "probability": 0.9981 + }, + { + "start": 1052.9, + "end": 1056.12, + "probability": 0.9005 + }, + { + "start": 1056.62, + "end": 1058.56, + "probability": 0.8653 + }, + { + "start": 1059.24, + "end": 1061.34, + "probability": 0.949 + }, + { + "start": 1062.58, + "end": 1065.82, + "probability": 0.892 + }, + { + "start": 1066.84, + "end": 1070.84, + "probability": 0.9728 + }, + { + "start": 1070.84, + "end": 1074.44, + "probability": 0.7321 + }, + { + "start": 1076.08, + "end": 1078.9, + "probability": 0.9972 + }, + { + "start": 1079.54, + "end": 1081.44, + "probability": 0.8379 + }, + { + "start": 1082.16, + "end": 1083.14, + "probability": 0.9718 + }, + { + "start": 1084.66, + "end": 1087.41, + "probability": 0.7222 + }, + { + "start": 1088.7, + "end": 1091.76, + "probability": 0.9423 + }, + { + "start": 1092.66, + "end": 1095.14, + "probability": 0.9866 + }, + { + "start": 1096.12, + "end": 1099.84, + "probability": 0.9832 + }, + { + "start": 1100.44, + "end": 1100.76, + "probability": 0.7019 + }, + { + "start": 1101.32, + "end": 1104.96, + "probability": 0.8362 + }, + { + "start": 1105.64, + "end": 1106.68, + "probability": 0.6976 + }, + { + "start": 1107.18, + "end": 1109.5, + "probability": 0.9571 + }, + { + "start": 1110.2, + "end": 1112.58, + "probability": 0.9101 + }, + { + "start": 1113.8, + "end": 1117.86, + "probability": 0.9526 + }, + { + "start": 1118.5, + "end": 1122.94, + "probability": 0.9345 + }, + { + "start": 1123.54, + "end": 1124.4, + "probability": 0.2981 + }, + { + "start": 1125.72, + "end": 1127.18, + "probability": 0.8124 + }, + { + "start": 1129.22, + "end": 1129.86, + "probability": 0.748 + }, + { + "start": 1129.88, + "end": 1131.4, + "probability": 0.5532 + }, + { + "start": 1131.52, + "end": 1133.82, + "probability": 0.8137 + }, + { + "start": 1134.02, + "end": 1134.56, + "probability": 0.7004 + }, + { + "start": 1135.22, + "end": 1137.92, + "probability": 0.7073 + }, + { + "start": 1139.72, + "end": 1140.32, + "probability": 0.7605 + }, + { + "start": 1140.96, + "end": 1146.3, + "probability": 0.9926 + }, + { + "start": 1146.76, + "end": 1150.9, + "probability": 0.9884 + }, + { + "start": 1151.58, + "end": 1156.58, + "probability": 0.9515 + }, + { + "start": 1156.8, + "end": 1157.48, + "probability": 0.7599 + }, + { + "start": 1157.98, + "end": 1162.28, + "probability": 0.7313 + }, + { + "start": 1162.38, + "end": 1166.46, + "probability": 0.8922 + }, + { + "start": 1166.68, + "end": 1168.73, + "probability": 0.9948 + }, + { + "start": 1169.52, + "end": 1172.34, + "probability": 0.937 + }, + { + "start": 1172.5, + "end": 1174.42, + "probability": 0.5036 + }, + { + "start": 1174.6, + "end": 1176.11, + "probability": 0.9456 + }, + { + "start": 1176.24, + "end": 1176.83, + "probability": 0.8391 + }, + { + "start": 1177.62, + "end": 1179.5, + "probability": 0.5532 + }, + { + "start": 1179.62, + "end": 1185.66, + "probability": 0.8063 + }, + { + "start": 1186.3, + "end": 1187.36, + "probability": 0.9271 + }, + { + "start": 1187.56, + "end": 1188.48, + "probability": 0.8708 + }, + { + "start": 1188.94, + "end": 1191.36, + "probability": 0.9527 + }, + { + "start": 1191.54, + "end": 1191.86, + "probability": 0.8493 + }, + { + "start": 1192.4, + "end": 1192.88, + "probability": 0.41 + }, + { + "start": 1192.92, + "end": 1194.84, + "probability": 0.5823 + }, + { + "start": 1199.36, + "end": 1199.68, + "probability": 0.6211 + }, + { + "start": 1199.78, + "end": 1200.96, + "probability": 0.7272 + }, + { + "start": 1201.24, + "end": 1202.38, + "probability": 0.8757 + }, + { + "start": 1202.5, + "end": 1202.98, + "probability": 0.8198 + }, + { + "start": 1203.16, + "end": 1204.92, + "probability": 0.6362 + }, + { + "start": 1205.98, + "end": 1210.8, + "probability": 0.9058 + }, + { + "start": 1211.58, + "end": 1215.48, + "probability": 0.9753 + }, + { + "start": 1216.56, + "end": 1219.08, + "probability": 0.8641 + }, + { + "start": 1219.78, + "end": 1222.56, + "probability": 0.9772 + }, + { + "start": 1223.28, + "end": 1226.44, + "probability": 0.4202 + }, + { + "start": 1227.82, + "end": 1231.74, + "probability": 0.7894 + }, + { + "start": 1232.52, + "end": 1236.7, + "probability": 0.9766 + }, + { + "start": 1237.32, + "end": 1239.2, + "probability": 0.998 + }, + { + "start": 1239.88, + "end": 1243.3, + "probability": 0.9926 + }, + { + "start": 1244.1, + "end": 1247.5, + "probability": 0.683 + }, + { + "start": 1248.14, + "end": 1249.42, + "probability": 0.749 + }, + { + "start": 1250.0, + "end": 1250.6, + "probability": 0.4313 + }, + { + "start": 1250.62, + "end": 1250.98, + "probability": 0.7954 + }, + { + "start": 1251.66, + "end": 1253.44, + "probability": 0.9204 + }, + { + "start": 1253.58, + "end": 1255.18, + "probability": 0.7869 + }, + { + "start": 1261.88, + "end": 1263.42, + "probability": 0.6607 + }, + { + "start": 1263.62, + "end": 1264.66, + "probability": 0.7816 + }, + { + "start": 1264.76, + "end": 1270.72, + "probability": 0.917 + }, + { + "start": 1271.48, + "end": 1273.1, + "probability": 0.9885 + }, + { + "start": 1274.24, + "end": 1278.96, + "probability": 0.9932 + }, + { + "start": 1279.06, + "end": 1280.32, + "probability": 0.9344 + }, + { + "start": 1280.44, + "end": 1283.68, + "probability": 0.943 + }, + { + "start": 1284.62, + "end": 1289.64, + "probability": 0.9947 + }, + { + "start": 1290.08, + "end": 1292.68, + "probability": 0.9451 + }, + { + "start": 1292.82, + "end": 1294.94, + "probability": 0.9909 + }, + { + "start": 1295.92, + "end": 1302.04, + "probability": 0.996 + }, + { + "start": 1302.2, + "end": 1303.27, + "probability": 0.9076 + }, + { + "start": 1303.4, + "end": 1306.06, + "probability": 0.5813 + }, + { + "start": 1306.38, + "end": 1309.22, + "probability": 0.795 + }, + { + "start": 1309.22, + "end": 1313.24, + "probability": 0.7066 + }, + { + "start": 1313.52, + "end": 1313.8, + "probability": 0.5197 + }, + { + "start": 1314.32, + "end": 1315.66, + "probability": 0.8175 + }, + { + "start": 1315.76, + "end": 1315.9, + "probability": 0.3372 + }, + { + "start": 1315.92, + "end": 1317.24, + "probability": 0.6766 + }, + { + "start": 1317.26, + "end": 1317.64, + "probability": 0.6855 + }, + { + "start": 1317.76, + "end": 1318.42, + "probability": 0.8659 + }, + { + "start": 1318.46, + "end": 1321.2, + "probability": 0.9976 + }, + { + "start": 1321.4, + "end": 1322.36, + "probability": 0.5659 + }, + { + "start": 1322.36, + "end": 1322.38, + "probability": 0.062 + }, + { + "start": 1322.8, + "end": 1323.18, + "probability": 0.4485 + }, + { + "start": 1323.18, + "end": 1327.24, + "probability": 0.9388 + }, + { + "start": 1327.24, + "end": 1329.02, + "probability": 0.8892 + }, + { + "start": 1329.12, + "end": 1332.96, + "probability": 0.9088 + }, + { + "start": 1332.96, + "end": 1332.96, + "probability": 0.1478 + }, + { + "start": 1332.96, + "end": 1332.96, + "probability": 0.1248 + }, + { + "start": 1332.96, + "end": 1334.42, + "probability": 0.7795 + }, + { + "start": 1334.56, + "end": 1338.2, + "probability": 0.9741 + }, + { + "start": 1338.2, + "end": 1341.5, + "probability": 0.9854 + }, + { + "start": 1341.58, + "end": 1343.36, + "probability": 0.8337 + }, + { + "start": 1343.7, + "end": 1346.06, + "probability": 0.993 + }, + { + "start": 1346.6, + "end": 1347.62, + "probability": 0.9368 + }, + { + "start": 1347.72, + "end": 1348.98, + "probability": 0.9806 + }, + { + "start": 1349.46, + "end": 1352.18, + "probability": 0.9921 + }, + { + "start": 1352.82, + "end": 1354.06, + "probability": 0.9421 + }, + { + "start": 1354.58, + "end": 1357.16, + "probability": 0.9921 + }, + { + "start": 1357.38, + "end": 1359.48, + "probability": 0.6338 + }, + { + "start": 1359.68, + "end": 1360.46, + "probability": 0.946 + }, + { + "start": 1360.62, + "end": 1361.04, + "probability": 0.5042 + }, + { + "start": 1361.18, + "end": 1361.68, + "probability": 0.4648 + }, + { + "start": 1361.78, + "end": 1363.4, + "probability": 0.9398 + }, + { + "start": 1363.86, + "end": 1365.6, + "probability": 0.9801 + }, + { + "start": 1365.62, + "end": 1367.12, + "probability": 0.9814 + }, + { + "start": 1367.8, + "end": 1370.68, + "probability": 0.9812 + }, + { + "start": 1371.62, + "end": 1378.6, + "probability": 0.852 + }, + { + "start": 1379.46, + "end": 1379.82, + "probability": 0.8884 + }, + { + "start": 1380.1, + "end": 1380.86, + "probability": 0.7388 + }, + { + "start": 1381.04, + "end": 1381.46, + "probability": 0.9021 + }, + { + "start": 1381.82, + "end": 1383.58, + "probability": 0.9783 + }, + { + "start": 1383.88, + "end": 1386.52, + "probability": 0.7892 + }, + { + "start": 1387.1, + "end": 1388.9, + "probability": 0.9455 + }, + { + "start": 1389.64, + "end": 1394.98, + "probability": 0.9939 + }, + { + "start": 1395.58, + "end": 1399.58, + "probability": 0.9603 + }, + { + "start": 1399.82, + "end": 1401.2, + "probability": 0.891 + }, + { + "start": 1401.32, + "end": 1402.06, + "probability": 0.9324 + }, + { + "start": 1402.36, + "end": 1403.96, + "probability": 0.6945 + }, + { + "start": 1404.08, + "end": 1405.5, + "probability": 0.5907 + }, + { + "start": 1405.56, + "end": 1408.0, + "probability": 0.9674 + }, + { + "start": 1410.18, + "end": 1411.26, + "probability": 0.6618 + }, + { + "start": 1411.72, + "end": 1412.36, + "probability": 0.8132 + }, + { + "start": 1412.56, + "end": 1413.18, + "probability": 0.9578 + }, + { + "start": 1413.4, + "end": 1414.64, + "probability": 0.6553 + }, + { + "start": 1415.8, + "end": 1417.64, + "probability": 0.8285 + }, + { + "start": 1418.38, + "end": 1421.92, + "probability": 0.733 + }, + { + "start": 1422.94, + "end": 1428.82, + "probability": 0.5388 + }, + { + "start": 1429.74, + "end": 1436.12, + "probability": 0.8795 + }, + { + "start": 1436.42, + "end": 1438.72, + "probability": 0.9554 + }, + { + "start": 1439.64, + "end": 1440.74, + "probability": 0.706 + }, + { + "start": 1440.9, + "end": 1443.3, + "probability": 0.5966 + }, + { + "start": 1443.66, + "end": 1445.46, + "probability": 0.722 + }, + { + "start": 1445.66, + "end": 1447.88, + "probability": 0.759 + }, + { + "start": 1448.5, + "end": 1452.86, + "probability": 0.9836 + }, + { + "start": 1453.02, + "end": 1459.04, + "probability": 0.9116 + }, + { + "start": 1459.16, + "end": 1463.34, + "probability": 0.9224 + }, + { + "start": 1464.02, + "end": 1465.82, + "probability": 0.992 + }, + { + "start": 1466.24, + "end": 1472.82, + "probability": 0.9961 + }, + { + "start": 1473.42, + "end": 1476.64, + "probability": 0.9645 + }, + { + "start": 1478.25, + "end": 1483.02, + "probability": 0.927 + }, + { + "start": 1483.02, + "end": 1487.32, + "probability": 0.8314 + }, + { + "start": 1489.71, + "end": 1492.46, + "probability": 0.9818 + }, + { + "start": 1492.64, + "end": 1494.86, + "probability": 0.884 + }, + { + "start": 1495.0, + "end": 1499.04, + "probability": 0.8114 + }, + { + "start": 1499.66, + "end": 1501.02, + "probability": 0.3105 + }, + { + "start": 1502.72, + "end": 1504.32, + "probability": 0.7482 + }, + { + "start": 1504.44, + "end": 1505.46, + "probability": 0.792 + }, + { + "start": 1507.6, + "end": 1508.72, + "probability": 0.6385 + }, + { + "start": 1509.86, + "end": 1513.04, + "probability": 0.7973 + }, + { + "start": 1514.88, + "end": 1519.46, + "probability": 0.9019 + }, + { + "start": 1519.46, + "end": 1523.2, + "probability": 0.9983 + }, + { + "start": 1523.6, + "end": 1523.88, + "probability": 0.3977 + }, + { + "start": 1523.94, + "end": 1525.22, + "probability": 0.5565 + }, + { + "start": 1525.96, + "end": 1526.8, + "probability": 0.8998 + }, + { + "start": 1526.86, + "end": 1528.88, + "probability": 0.8263 + }, + { + "start": 1528.9, + "end": 1529.24, + "probability": 0.4462 + }, + { + "start": 1529.68, + "end": 1531.38, + "probability": 0.5036 + }, + { + "start": 1531.7, + "end": 1532.84, + "probability": 0.5775 + }, + { + "start": 1533.64, + "end": 1535.86, + "probability": 0.9749 + }, + { + "start": 1536.7, + "end": 1536.74, + "probability": 0.3087 + }, + { + "start": 1536.84, + "end": 1537.94, + "probability": 0.6381 + }, + { + "start": 1538.14, + "end": 1541.36, + "probability": 0.9658 + }, + { + "start": 1541.44, + "end": 1542.31, + "probability": 0.9631 + }, + { + "start": 1543.64, + "end": 1545.28, + "probability": 0.8945 + }, + { + "start": 1546.0, + "end": 1549.04, + "probability": 0.9362 + }, + { + "start": 1549.6, + "end": 1549.9, + "probability": 0.3973 + }, + { + "start": 1549.96, + "end": 1551.92, + "probability": 0.8049 + }, + { + "start": 1551.96, + "end": 1552.48, + "probability": 0.8608 + }, + { + "start": 1552.78, + "end": 1555.3, + "probability": 0.869 + }, + { + "start": 1555.34, + "end": 1556.58, + "probability": 0.5698 + }, + { + "start": 1556.6, + "end": 1557.3, + "probability": 0.8085 + }, + { + "start": 1557.86, + "end": 1559.2, + "probability": 0.9788 + }, + { + "start": 1560.5, + "end": 1562.92, + "probability": 0.9788 + }, + { + "start": 1563.0, + "end": 1566.37, + "probability": 0.9915 + }, + { + "start": 1566.5, + "end": 1566.68, + "probability": 0.4751 + }, + { + "start": 1566.76, + "end": 1568.72, + "probability": 0.8911 + }, + { + "start": 1569.59, + "end": 1573.54, + "probability": 0.6933 + }, + { + "start": 1573.7, + "end": 1574.64, + "probability": 0.704 + }, + { + "start": 1574.98, + "end": 1576.7, + "probability": 0.9823 + }, + { + "start": 1576.92, + "end": 1577.96, + "probability": 0.8922 + }, + { + "start": 1578.32, + "end": 1578.32, + "probability": 0.1021 + }, + { + "start": 1578.32, + "end": 1580.26, + "probability": 0.6882 + }, + { + "start": 1581.22, + "end": 1582.32, + "probability": 0.6833 + }, + { + "start": 1582.74, + "end": 1584.32, + "probability": 0.9077 + }, + { + "start": 1584.4, + "end": 1585.48, + "probability": 0.9705 + }, + { + "start": 1585.56, + "end": 1585.86, + "probability": 0.9535 + }, + { + "start": 1585.9, + "end": 1589.26, + "probability": 0.8895 + }, + { + "start": 1589.38, + "end": 1590.4, + "probability": 0.6972 + }, + { + "start": 1590.96, + "end": 1592.98, + "probability": 0.6478 + }, + { + "start": 1593.08, + "end": 1593.92, + "probability": 0.959 + }, + { + "start": 1594.58, + "end": 1594.96, + "probability": 0.726 + }, + { + "start": 1595.7, + "end": 1596.76, + "probability": 0.9331 + }, + { + "start": 1596.84, + "end": 1597.44, + "probability": 0.8287 + }, + { + "start": 1597.46, + "end": 1600.36, + "probability": 0.9863 + }, + { + "start": 1601.24, + "end": 1605.48, + "probability": 0.9873 + }, + { + "start": 1608.78, + "end": 1611.56, + "probability": 0.5008 + }, + { + "start": 1612.26, + "end": 1613.96, + "probability": 0.186 + }, + { + "start": 1613.96, + "end": 1615.8, + "probability": 0.4938 + }, + { + "start": 1615.8, + "end": 1620.08, + "probability": 0.7966 + }, + { + "start": 1620.84, + "end": 1623.66, + "probability": 0.8628 + }, + { + "start": 1623.7, + "end": 1625.34, + "probability": 0.9142 + }, + { + "start": 1626.23, + "end": 1627.56, + "probability": 0.397 + }, + { + "start": 1627.56, + "end": 1629.78, + "probability": 0.9053 + }, + { + "start": 1630.12, + "end": 1630.54, + "probability": 0.4449 + }, + { + "start": 1630.7, + "end": 1635.14, + "probability": 0.8658 + }, + { + "start": 1635.5, + "end": 1636.4, + "probability": 0.6239 + }, + { + "start": 1636.48, + "end": 1637.48, + "probability": 0.9777 + }, + { + "start": 1637.98, + "end": 1642.64, + "probability": 0.9731 + }, + { + "start": 1642.84, + "end": 1645.6, + "probability": 0.98 + }, + { + "start": 1645.82, + "end": 1647.49, + "probability": 0.9904 + }, + { + "start": 1648.26, + "end": 1654.82, + "probability": 0.9862 + }, + { + "start": 1655.09, + "end": 1662.16, + "probability": 0.9072 + }, + { + "start": 1662.84, + "end": 1664.92, + "probability": 0.1173 + }, + { + "start": 1665.94, + "end": 1670.38, + "probability": 0.9053 + }, + { + "start": 1670.7, + "end": 1676.02, + "probability": 0.9228 + }, + { + "start": 1676.4, + "end": 1678.66, + "probability": 0.9866 + }, + { + "start": 1678.7, + "end": 1679.79, + "probability": 0.9015 + }, + { + "start": 1680.42, + "end": 1680.85, + "probability": 0.969 + }, + { + "start": 1681.4, + "end": 1682.76, + "probability": 0.9911 + }, + { + "start": 1682.76, + "end": 1683.34, + "probability": 0.8216 + }, + { + "start": 1684.06, + "end": 1684.88, + "probability": 0.9473 + }, + { + "start": 1685.4, + "end": 1686.94, + "probability": 0.9897 + }, + { + "start": 1687.1, + "end": 1689.25, + "probability": 0.9965 + }, + { + "start": 1689.98, + "end": 1691.64, + "probability": 0.9224 + }, + { + "start": 1691.74, + "end": 1692.61, + "probability": 0.9447 + }, + { + "start": 1693.36, + "end": 1694.38, + "probability": 0.953 + }, + { + "start": 1694.48, + "end": 1696.6, + "probability": 0.9619 + }, + { + "start": 1696.96, + "end": 1697.94, + "probability": 0.9976 + }, + { + "start": 1698.28, + "end": 1703.32, + "probability": 0.7362 + }, + { + "start": 1703.84, + "end": 1705.38, + "probability": 0.9824 + }, + { + "start": 1706.44, + "end": 1706.82, + "probability": 0.8743 + }, + { + "start": 1707.72, + "end": 1711.8, + "probability": 0.8978 + }, + { + "start": 1712.54, + "end": 1715.34, + "probability": 0.7935 + }, + { + "start": 1715.68, + "end": 1717.3, + "probability": 0.9817 + }, + { + "start": 1717.54, + "end": 1720.0, + "probability": 0.9856 + }, + { + "start": 1720.22, + "end": 1720.66, + "probability": 0.1305 + }, + { + "start": 1720.66, + "end": 1720.66, + "probability": 0.1988 + }, + { + "start": 1720.66, + "end": 1721.48, + "probability": 0.7176 + }, + { + "start": 1723.32, + "end": 1726.88, + "probability": 0.7311 + }, + { + "start": 1727.4, + "end": 1735.0, + "probability": 0.9757 + }, + { + "start": 1735.04, + "end": 1735.66, + "probability": 0.7317 + }, + { + "start": 1735.76, + "end": 1736.78, + "probability": 0.8923 + }, + { + "start": 1736.96, + "end": 1737.72, + "probability": 0.8644 + }, + { + "start": 1738.36, + "end": 1741.5, + "probability": 0.8872 + }, + { + "start": 1743.0, + "end": 1747.24, + "probability": 0.9302 + }, + { + "start": 1747.36, + "end": 1749.8, + "probability": 0.6408 + }, + { + "start": 1750.92, + "end": 1753.02, + "probability": 0.7084 + }, + { + "start": 1753.26, + "end": 1756.68, + "probability": 0.8405 + }, + { + "start": 1757.24, + "end": 1759.52, + "probability": 0.8223 + }, + { + "start": 1759.7, + "end": 1760.32, + "probability": 0.368 + }, + { + "start": 1760.4, + "end": 1761.34, + "probability": 0.8788 + }, + { + "start": 1761.96, + "end": 1763.8, + "probability": 0.9925 + }, + { + "start": 1763.96, + "end": 1766.3, + "probability": 0.8178 + }, + { + "start": 1766.56, + "end": 1767.54, + "probability": 0.9279 + }, + { + "start": 1769.64, + "end": 1772.56, + "probability": 0.8431 + }, + { + "start": 1773.66, + "end": 1774.98, + "probability": 0.7141 + }, + { + "start": 1776.6, + "end": 1778.46, + "probability": 0.8324 + }, + { + "start": 1779.4, + "end": 1781.14, + "probability": 0.8693 + }, + { + "start": 1781.24, + "end": 1782.5, + "probability": 0.5332 + }, + { + "start": 1783.28, + "end": 1783.94, + "probability": 0.6203 + }, + { + "start": 1784.58, + "end": 1786.16, + "probability": 0.9533 + }, + { + "start": 1787.04, + "end": 1787.52, + "probability": 0.4797 + }, + { + "start": 1787.62, + "end": 1789.68, + "probability": 0.9663 + }, + { + "start": 1790.48, + "end": 1793.64, + "probability": 0.9004 + }, + { + "start": 1793.78, + "end": 1795.82, + "probability": 0.7824 + }, + { + "start": 1796.26, + "end": 1798.8, + "probability": 0.9912 + }, + { + "start": 1799.28, + "end": 1800.67, + "probability": 0.9658 + }, + { + "start": 1800.94, + "end": 1804.16, + "probability": 0.9171 + }, + { + "start": 1804.3, + "end": 1805.48, + "probability": 0.7193 + }, + { + "start": 1806.04, + "end": 1808.08, + "probability": 0.8155 + }, + { + "start": 1809.98, + "end": 1812.0, + "probability": 0.9966 + }, + { + "start": 1812.04, + "end": 1813.86, + "probability": 0.9401 + }, + { + "start": 1814.1, + "end": 1814.38, + "probability": 0.9622 + }, + { + "start": 1815.04, + "end": 1818.46, + "probability": 0.9482 + }, + { + "start": 1818.62, + "end": 1819.42, + "probability": 0.0545 + }, + { + "start": 1819.42, + "end": 1822.56, + "probability": 0.5148 + }, + { + "start": 1823.1, + "end": 1826.61, + "probability": 0.9727 + }, + { + "start": 1827.56, + "end": 1829.77, + "probability": 0.9481 + }, + { + "start": 1830.6, + "end": 1831.9, + "probability": 0.875 + }, + { + "start": 1831.98, + "end": 1833.61, + "probability": 0.992 + }, + { + "start": 1834.51, + "end": 1838.39, + "probability": 0.6773 + }, + { + "start": 1839.86, + "end": 1841.18, + "probability": 0.7163 + }, + { + "start": 1841.18, + "end": 1843.34, + "probability": 0.9779 + }, + { + "start": 1845.58, + "end": 1846.05, + "probability": 0.2614 + }, + { + "start": 1846.88, + "end": 1847.76, + "probability": 0.4822 + }, + { + "start": 1848.06, + "end": 1850.54, + "probability": 0.6074 + }, + { + "start": 1850.88, + "end": 1854.98, + "probability": 0.5733 + }, + { + "start": 1855.06, + "end": 1855.86, + "probability": 0.6427 + }, + { + "start": 1855.88, + "end": 1856.87, + "probability": 0.6259 + }, + { + "start": 1858.36, + "end": 1859.88, + "probability": 0.9284 + }, + { + "start": 1859.98, + "end": 1860.46, + "probability": 0.0885 + }, + { + "start": 1860.6, + "end": 1862.26, + "probability": 0.6603 + }, + { + "start": 1862.9, + "end": 1864.88, + "probability": 0.9564 + }, + { + "start": 1864.98, + "end": 1866.48, + "probability": 0.9197 + }, + { + "start": 1867.14, + "end": 1868.52, + "probability": 0.9358 + }, + { + "start": 1869.9, + "end": 1871.04, + "probability": 0.1131 + }, + { + "start": 1871.52, + "end": 1872.12, + "probability": 0.6668 + }, + { + "start": 1872.46, + "end": 1873.86, + "probability": 0.8682 + }, + { + "start": 1874.22, + "end": 1874.38, + "probability": 0.714 + }, + { + "start": 1874.44, + "end": 1877.8, + "probability": 0.9673 + }, + { + "start": 1877.98, + "end": 1882.0, + "probability": 0.7976 + }, + { + "start": 1882.1, + "end": 1882.78, + "probability": 0.5834 + }, + { + "start": 1882.86, + "end": 1883.68, + "probability": 0.4846 + }, + { + "start": 1883.68, + "end": 1883.74, + "probability": 0.535 + }, + { + "start": 1883.84, + "end": 1884.63, + "probability": 0.8105 + }, + { + "start": 1885.14, + "end": 1886.98, + "probability": 0.8633 + }, + { + "start": 1889.1, + "end": 1891.14, + "probability": 0.993 + }, + { + "start": 1891.24, + "end": 1892.22, + "probability": 0.9268 + }, + { + "start": 1893.0, + "end": 1893.88, + "probability": 0.3452 + }, + { + "start": 1894.22, + "end": 1894.88, + "probability": 0.7882 + }, + { + "start": 1895.0, + "end": 1896.14, + "probability": 0.9606 + }, + { + "start": 1896.2, + "end": 1897.04, + "probability": 0.5964 + }, + { + "start": 1897.68, + "end": 1902.46, + "probability": 0.9466 + }, + { + "start": 1902.88, + "end": 1904.16, + "probability": 0.9152 + }, + { + "start": 1904.16, + "end": 1905.76, + "probability": 0.8794 + }, + { + "start": 1906.12, + "end": 1907.44, + "probability": 0.5446 + }, + { + "start": 1908.79, + "end": 1911.52, + "probability": 0.7562 + }, + { + "start": 1912.16, + "end": 1913.5, + "probability": 0.9902 + }, + { + "start": 1914.24, + "end": 1916.18, + "probability": 0.7057 + }, + { + "start": 1916.8, + "end": 1919.0, + "probability": 0.8546 + }, + { + "start": 1919.08, + "end": 1920.92, + "probability": 0.9875 + }, + { + "start": 1921.3, + "end": 1922.44, + "probability": 0.5386 + }, + { + "start": 1922.58, + "end": 1922.94, + "probability": 0.8823 + }, + { + "start": 1923.14, + "end": 1923.74, + "probability": 0.6712 + }, + { + "start": 1923.8, + "end": 1924.16, + "probability": 0.6815 + }, + { + "start": 1924.26, + "end": 1925.63, + "probability": 0.8973 + }, + { + "start": 1926.34, + "end": 1926.88, + "probability": 0.9829 + }, + { + "start": 1927.48, + "end": 1928.38, + "probability": 0.9267 + }, + { + "start": 1931.98, + "end": 1937.46, + "probability": 0.8116 + }, + { + "start": 1937.74, + "end": 1942.32, + "probability": 0.8441 + }, + { + "start": 1943.22, + "end": 1946.04, + "probability": 0.7246 + }, + { + "start": 1946.79, + "end": 1951.82, + "probability": 0.5793 + }, + { + "start": 1952.6, + "end": 1955.28, + "probability": 0.9598 + }, + { + "start": 1955.46, + "end": 1960.2, + "probability": 0.891 + }, + { + "start": 1960.72, + "end": 1961.84, + "probability": 0.7088 + }, + { + "start": 1962.5, + "end": 1967.05, + "probability": 0.9926 + }, + { + "start": 1968.14, + "end": 1968.66, + "probability": 0.8433 + }, + { + "start": 1968.78, + "end": 1969.82, + "probability": 0.7591 + }, + { + "start": 1969.94, + "end": 1970.94, + "probability": 0.8657 + }, + { + "start": 1970.98, + "end": 1971.93, + "probability": 0.7294 + }, + { + "start": 1972.2, + "end": 1974.34, + "probability": 0.1201 + }, + { + "start": 1974.34, + "end": 1974.94, + "probability": 0.3363 + }, + { + "start": 1975.67, + "end": 1979.19, + "probability": 0.9927 + }, + { + "start": 1984.56, + "end": 1986.14, + "probability": 0.9956 + }, + { + "start": 1987.68, + "end": 1989.78, + "probability": 0.5835 + }, + { + "start": 1989.78, + "end": 1991.16, + "probability": 0.6999 + }, + { + "start": 1991.48, + "end": 1991.88, + "probability": 0.3906 + }, + { + "start": 1992.8, + "end": 1993.44, + "probability": 0.9379 + }, + { + "start": 1993.76, + "end": 1996.86, + "probability": 0.9408 + }, + { + "start": 1997.18, + "end": 1999.7, + "probability": 0.7056 + }, + { + "start": 2000.76, + "end": 2001.7, + "probability": 0.6929 + }, + { + "start": 2002.68, + "end": 2007.04, + "probability": 0.9877 + }, + { + "start": 2007.04, + "end": 2011.82, + "probability": 0.9639 + }, + { + "start": 2012.76, + "end": 2013.27, + "probability": 0.302 + }, + { + "start": 2014.32, + "end": 2018.62, + "probability": 0.292 + }, + { + "start": 2018.62, + "end": 2019.93, + "probability": 0.1244 + }, + { + "start": 2022.32, + "end": 2022.72, + "probability": 0.0824 + }, + { + "start": 2023.5, + "end": 2028.35, + "probability": 0.8704 + }, + { + "start": 2030.36, + "end": 2032.7, + "probability": 0.8362 + }, + { + "start": 2032.7, + "end": 2038.64, + "probability": 0.7497 + }, + { + "start": 2039.22, + "end": 2039.48, + "probability": 0.7247 + }, + { + "start": 2040.08, + "end": 2040.44, + "probability": 0.3293 + }, + { + "start": 2040.52, + "end": 2041.66, + "probability": 0.7382 + }, + { + "start": 2042.46, + "end": 2042.74, + "probability": 0.8416 + }, + { + "start": 2042.8, + "end": 2043.74, + "probability": 0.7227 + }, + { + "start": 2043.92, + "end": 2044.6, + "probability": 0.7188 + }, + { + "start": 2044.92, + "end": 2045.4, + "probability": 0.6431 + }, + { + "start": 2045.9, + "end": 2046.54, + "probability": 0.1712 + }, + { + "start": 2047.08, + "end": 2047.92, + "probability": 0.6259 + }, + { + "start": 2049.06, + "end": 2049.06, + "probability": 0.0 + }, + { + "start": 2050.5, + "end": 2052.04, + "probability": 0.4406 + }, + { + "start": 2052.04, + "end": 2058.78, + "probability": 0.6834 + }, + { + "start": 2058.78, + "end": 2063.14, + "probability": 0.9766 + }, + { + "start": 2063.38, + "end": 2065.34, + "probability": 0.7154 + }, + { + "start": 2066.22, + "end": 2067.7, + "probability": 0.8051 + }, + { + "start": 2069.12, + "end": 2072.54, + "probability": 0.6963 + }, + { + "start": 2072.54, + "end": 2075.2, + "probability": 0.9684 + }, + { + "start": 2080.66, + "end": 2083.08, + "probability": 0.9329 + }, + { + "start": 2083.16, + "end": 2083.34, + "probability": 0.5858 + }, + { + "start": 2083.34, + "end": 2084.08, + "probability": 0.5968 + }, + { + "start": 2084.18, + "end": 2085.5, + "probability": 0.7765 + }, + { + "start": 2085.68, + "end": 2086.02, + "probability": 0.8143 + }, + { + "start": 2086.06, + "end": 2086.42, + "probability": 0.3887 + }, + { + "start": 2086.82, + "end": 2088.52, + "probability": 0.9864 + }, + { + "start": 2088.58, + "end": 2093.6, + "probability": 0.9782 + }, + { + "start": 2093.76, + "end": 2094.2, + "probability": 0.7272 + }, + { + "start": 2094.48, + "end": 2096.44, + "probability": 0.7809 + }, + { + "start": 2097.38, + "end": 2100.48, + "probability": 0.9495 + }, + { + "start": 2101.08, + "end": 2106.6, + "probability": 0.9019 + }, + { + "start": 2107.28, + "end": 2108.42, + "probability": 0.7588 + }, + { + "start": 2109.14, + "end": 2110.7, + "probability": 0.7525 + }, + { + "start": 2111.32, + "end": 2116.05, + "probability": 0.9761 + }, + { + "start": 2116.6, + "end": 2117.26, + "probability": 0.4165 + }, + { + "start": 2117.44, + "end": 2118.84, + "probability": 0.6973 + }, + { + "start": 2119.24, + "end": 2121.34, + "probability": 0.5132 + }, + { + "start": 2122.0, + "end": 2124.1, + "probability": 0.9037 + }, + { + "start": 2124.38, + "end": 2125.74, + "probability": 0.9621 + }, + { + "start": 2126.06, + "end": 2126.57, + "probability": 0.9383 + }, + { + "start": 2126.76, + "end": 2127.76, + "probability": 0.9951 + }, + { + "start": 2128.4, + "end": 2129.9, + "probability": 0.3858 + }, + { + "start": 2130.56, + "end": 2133.78, + "probability": 0.9781 + }, + { + "start": 2134.38, + "end": 2135.74, + "probability": 0.8568 + }, + { + "start": 2142.94, + "end": 2145.14, + "probability": 0.7278 + }, + { + "start": 2146.22, + "end": 2146.78, + "probability": 0.8648 + }, + { + "start": 2147.92, + "end": 2149.87, + "probability": 0.9937 + }, + { + "start": 2150.02, + "end": 2152.12, + "probability": 0.8264 + }, + { + "start": 2152.42, + "end": 2153.0, + "probability": 0.9794 + }, + { + "start": 2154.34, + "end": 2156.5, + "probability": 0.9945 + }, + { + "start": 2156.58, + "end": 2158.58, + "probability": 0.7496 + }, + { + "start": 2158.66, + "end": 2161.24, + "probability": 0.7571 + }, + { + "start": 2161.96, + "end": 2168.82, + "probability": 0.9741 + }, + { + "start": 2169.86, + "end": 2171.0, + "probability": 0.4333 + }, + { + "start": 2171.62, + "end": 2175.16, + "probability": 0.8979 + }, + { + "start": 2175.16, + "end": 2177.8, + "probability": 0.9954 + }, + { + "start": 2178.74, + "end": 2181.5, + "probability": 0.9976 + }, + { + "start": 2181.66, + "end": 2182.7, + "probability": 0.9021 + }, + { + "start": 2183.76, + "end": 2187.96, + "probability": 0.9913 + }, + { + "start": 2188.16, + "end": 2191.1, + "probability": 0.9733 + }, + { + "start": 2191.1, + "end": 2194.02, + "probability": 0.9666 + }, + { + "start": 2194.08, + "end": 2195.92, + "probability": 0.9319 + }, + { + "start": 2196.64, + "end": 2197.26, + "probability": 0.7276 + }, + { + "start": 2197.34, + "end": 2199.5, + "probability": 0.8362 + }, + { + "start": 2199.52, + "end": 2206.18, + "probability": 0.9753 + }, + { + "start": 2206.54, + "end": 2209.16, + "probability": 0.9953 + }, + { + "start": 2209.84, + "end": 2210.58, + "probability": 0.6622 + }, + { + "start": 2210.68, + "end": 2215.0, + "probability": 0.858 + }, + { + "start": 2216.06, + "end": 2217.92, + "probability": 0.9005 + }, + { + "start": 2218.28, + "end": 2220.62, + "probability": 0.8929 + }, + { + "start": 2221.02, + "end": 2222.54, + "probability": 0.7549 + }, + { + "start": 2223.2, + "end": 2226.18, + "probability": 0.9896 + }, + { + "start": 2226.18, + "end": 2229.14, + "probability": 0.991 + }, + { + "start": 2229.78, + "end": 2232.32, + "probability": 0.6963 + }, + { + "start": 2232.84, + "end": 2233.96, + "probability": 0.8678 + }, + { + "start": 2234.62, + "end": 2236.48, + "probability": 0.9746 + }, + { + "start": 2236.9, + "end": 2238.84, + "probability": 0.9855 + }, + { + "start": 2239.24, + "end": 2240.44, + "probability": 0.9402 + }, + { + "start": 2240.76, + "end": 2241.26, + "probability": 0.6136 + }, + { + "start": 2241.48, + "end": 2243.14, + "probability": 0.8427 + }, + { + "start": 2243.24, + "end": 2245.3, + "probability": 0.6987 + }, + { + "start": 2245.4, + "end": 2247.1, + "probability": 0.9621 + }, + { + "start": 2247.76, + "end": 2250.3, + "probability": 0.7764 + }, + { + "start": 2251.26, + "end": 2256.96, + "probability": 0.962 + }, + { + "start": 2257.54, + "end": 2259.5, + "probability": 0.6897 + }, + { + "start": 2259.68, + "end": 2265.5, + "probability": 0.9595 + }, + { + "start": 2265.7, + "end": 2269.34, + "probability": 0.9195 + }, + { + "start": 2270.02, + "end": 2275.56, + "probability": 0.9686 + }, + { + "start": 2275.8, + "end": 2278.88, + "probability": 0.9285 + }, + { + "start": 2279.84, + "end": 2285.16, + "probability": 0.8818 + }, + { + "start": 2286.12, + "end": 2292.94, + "probability": 0.9921 + }, + { + "start": 2293.88, + "end": 2298.0, + "probability": 0.9644 + }, + { + "start": 2298.3, + "end": 2303.23, + "probability": 0.9886 + }, + { + "start": 2304.04, + "end": 2306.86, + "probability": 0.8428 + }, + { + "start": 2307.52, + "end": 2312.78, + "probability": 0.9873 + }, + { + "start": 2312.9, + "end": 2313.08, + "probability": 0.7171 + }, + { + "start": 2313.98, + "end": 2315.08, + "probability": 0.6356 + }, + { + "start": 2315.2, + "end": 2315.86, + "probability": 0.397 + }, + { + "start": 2315.86, + "end": 2315.86, + "probability": 0.5357 + }, + { + "start": 2315.86, + "end": 2316.24, + "probability": 0.6409 + }, + { + "start": 2316.38, + "end": 2317.1, + "probability": 0.7588 + }, + { + "start": 2317.2, + "end": 2317.92, + "probability": 0.337 + }, + { + "start": 2318.26, + "end": 2320.62, + "probability": 0.7578 + }, + { + "start": 2321.28, + "end": 2328.18, + "probability": 0.5739 + }, + { + "start": 2328.4, + "end": 2329.4, + "probability": 0.3766 + }, + { + "start": 2329.74, + "end": 2330.78, + "probability": 0.337 + }, + { + "start": 2331.0, + "end": 2334.14, + "probability": 0.3061 + }, + { + "start": 2334.14, + "end": 2335.44, + "probability": 0.9178 + }, + { + "start": 2335.52, + "end": 2337.48, + "probability": 0.8582 + }, + { + "start": 2337.62, + "end": 2338.02, + "probability": 0.3018 + }, + { + "start": 2338.02, + "end": 2338.34, + "probability": 0.4275 + }, + { + "start": 2338.48, + "end": 2341.5, + "probability": 0.9786 + }, + { + "start": 2341.64, + "end": 2344.22, + "probability": 0.9149 + }, + { + "start": 2345.04, + "end": 2348.9, + "probability": 0.7891 + }, + { + "start": 2349.56, + "end": 2349.76, + "probability": 0.6202 + }, + { + "start": 2349.88, + "end": 2352.14, + "probability": 0.8811 + }, + { + "start": 2352.86, + "end": 2356.4, + "probability": 0.7466 + }, + { + "start": 2357.32, + "end": 2358.72, + "probability": 0.9191 + }, + { + "start": 2359.32, + "end": 2360.48, + "probability": 0.7956 + }, + { + "start": 2361.14, + "end": 2364.04, + "probability": 0.8616 + }, + { + "start": 2364.12, + "end": 2365.96, + "probability": 0.9826 + }, + { + "start": 2366.58, + "end": 2369.88, + "probability": 0.9917 + }, + { + "start": 2370.04, + "end": 2370.44, + "probability": 0.4223 + }, + { + "start": 2371.88, + "end": 2372.72, + "probability": 0.8827 + }, + { + "start": 2373.3, + "end": 2374.66, + "probability": 0.9076 + }, + { + "start": 2375.58, + "end": 2377.58, + "probability": 0.9277 + }, + { + "start": 2377.68, + "end": 2379.52, + "probability": 0.8042 + }, + { + "start": 2379.68, + "end": 2381.0, + "probability": 0.9913 + }, + { + "start": 2381.82, + "end": 2383.62, + "probability": 0.8831 + }, + { + "start": 2384.36, + "end": 2386.4, + "probability": 0.9575 + }, + { + "start": 2386.6, + "end": 2389.02, + "probability": 0.7969 + }, + { + "start": 2390.58, + "end": 2390.92, + "probability": 0.4908 + }, + { + "start": 2391.76, + "end": 2396.68, + "probability": 0.9799 + }, + { + "start": 2397.92, + "end": 2399.68, + "probability": 0.7268 + }, + { + "start": 2401.66, + "end": 2403.78, + "probability": 0.7544 + }, + { + "start": 2405.18, + "end": 2409.89, + "probability": 0.9939 + }, + { + "start": 2410.1, + "end": 2412.68, + "probability": 0.9741 + }, + { + "start": 2412.76, + "end": 2414.54, + "probability": 0.6879 + }, + { + "start": 2415.86, + "end": 2420.7, + "probability": 0.687 + }, + { + "start": 2420.7, + "end": 2424.16, + "probability": 0.9607 + }, + { + "start": 2426.34, + "end": 2429.38, + "probability": 0.9198 + }, + { + "start": 2433.32, + "end": 2435.54, + "probability": 0.7749 + }, + { + "start": 2437.95, + "end": 2441.26, + "probability": 0.95 + }, + { + "start": 2441.98, + "end": 2444.42, + "probability": 0.7131 + }, + { + "start": 2445.36, + "end": 2449.64, + "probability": 0.9871 + }, + { + "start": 2449.68, + "end": 2450.04, + "probability": 0.5235 + }, + { + "start": 2450.16, + "end": 2451.8, + "probability": 0.8085 + }, + { + "start": 2452.3, + "end": 2455.88, + "probability": 0.7535 + }, + { + "start": 2456.52, + "end": 2460.52, + "probability": 0.9499 + }, + { + "start": 2461.82, + "end": 2464.94, + "probability": 0.8517 + }, + { + "start": 2464.98, + "end": 2468.36, + "probability": 0.9976 + }, + { + "start": 2468.98, + "end": 2471.2, + "probability": 0.3359 + }, + { + "start": 2471.2, + "end": 2477.36, + "probability": 0.8037 + }, + { + "start": 2477.86, + "end": 2482.64, + "probability": 0.9799 + }, + { + "start": 2483.36, + "end": 2485.33, + "probability": 0.9095 + }, + { + "start": 2489.38, + "end": 2492.54, + "probability": 0.9938 + }, + { + "start": 2493.14, + "end": 2493.3, + "probability": 0.6657 + }, + { + "start": 2493.3, + "end": 2497.34, + "probability": 0.9947 + }, + { + "start": 2497.74, + "end": 2500.6, + "probability": 0.7278 + }, + { + "start": 2501.14, + "end": 2503.36, + "probability": 0.9767 + }, + { + "start": 2503.94, + "end": 2504.26, + "probability": 0.4686 + }, + { + "start": 2504.67, + "end": 2510.68, + "probability": 0.5688 + }, + { + "start": 2511.5, + "end": 2515.52, + "probability": 0.9294 + }, + { + "start": 2516.18, + "end": 2520.26, + "probability": 0.8327 + }, + { + "start": 2521.1, + "end": 2525.26, + "probability": 0.9741 + }, + { + "start": 2527.22, + "end": 2531.32, + "probability": 0.8949 + }, + { + "start": 2532.18, + "end": 2533.28, + "probability": 0.4936 + }, + { + "start": 2534.0, + "end": 2537.5, + "probability": 0.9909 + }, + { + "start": 2537.5, + "end": 2541.34, + "probability": 0.9662 + }, + { + "start": 2542.9, + "end": 2547.03, + "probability": 0.9907 + }, + { + "start": 2547.78, + "end": 2550.06, + "probability": 0.9961 + }, + { + "start": 2550.58, + "end": 2557.38, + "probability": 0.6648 + }, + { + "start": 2557.74, + "end": 2561.14, + "probability": 0.8005 + }, + { + "start": 2561.54, + "end": 2564.82, + "probability": 0.9869 + }, + { + "start": 2565.56, + "end": 2571.36, + "probability": 0.5094 + }, + { + "start": 2571.54, + "end": 2574.92, + "probability": 0.9708 + }, + { + "start": 2575.92, + "end": 2580.22, + "probability": 0.9984 + }, + { + "start": 2580.22, + "end": 2586.04, + "probability": 0.9856 + }, + { + "start": 2587.22, + "end": 2592.26, + "probability": 0.978 + }, + { + "start": 2592.8, + "end": 2595.48, + "probability": 0.8909 + }, + { + "start": 2596.24, + "end": 2598.4, + "probability": 0.9537 + }, + { + "start": 2598.98, + "end": 2604.46, + "probability": 0.9668 + }, + { + "start": 2604.98, + "end": 2605.32, + "probability": 0.7271 + }, + { + "start": 2605.5, + "end": 2610.3, + "probability": 0.9818 + }, + { + "start": 2610.92, + "end": 2617.06, + "probability": 0.9474 + }, + { + "start": 2617.88, + "end": 2621.65, + "probability": 0.9959 + }, + { + "start": 2621.8, + "end": 2629.06, + "probability": 0.6331 + }, + { + "start": 2629.52, + "end": 2636.02, + "probability": 0.9557 + }, + { + "start": 2636.54, + "end": 2638.02, + "probability": 0.7496 + }, + { + "start": 2638.62, + "end": 2643.88, + "probability": 0.6948 + }, + { + "start": 2644.42, + "end": 2648.32, + "probability": 0.5928 + }, + { + "start": 2648.76, + "end": 2650.5, + "probability": 0.7395 + }, + { + "start": 2651.44, + "end": 2655.12, + "probability": 0.9478 + }, + { + "start": 2655.66, + "end": 2663.28, + "probability": 0.5992 + }, + { + "start": 2663.92, + "end": 2664.28, + "probability": 0.5114 + }, + { + "start": 2664.62, + "end": 2670.92, + "probability": 0.6718 + }, + { + "start": 2671.52, + "end": 2675.78, + "probability": 0.959 + }, + { + "start": 2676.42, + "end": 2676.7, + "probability": 0.5094 + }, + { + "start": 2677.26, + "end": 2683.18, + "probability": 0.9966 + }, + { + "start": 2684.0, + "end": 2687.66, + "probability": 0.9664 + }, + { + "start": 2687.66, + "end": 2690.9, + "probability": 0.9969 + }, + { + "start": 2691.4, + "end": 2694.76, + "probability": 0.8064 + }, + { + "start": 2695.9, + "end": 2696.1, + "probability": 0.299 + }, + { + "start": 2696.1, + "end": 2696.4, + "probability": 0.7744 + }, + { + "start": 2696.5, + "end": 2702.26, + "probability": 0.9911 + }, + { + "start": 2702.74, + "end": 2707.78, + "probability": 0.9906 + }, + { + "start": 2708.38, + "end": 2710.34, + "probability": 0.6932 + }, + { + "start": 2710.8, + "end": 2711.22, + "probability": 0.8724 + }, + { + "start": 2712.6, + "end": 2714.76, + "probability": 0.9265 + }, + { + "start": 2715.4, + "end": 2718.48, + "probability": 0.7523 + }, + { + "start": 2718.52, + "end": 2719.4, + "probability": 0.7503 + }, + { + "start": 2738.32, + "end": 2739.4, + "probability": 0.2717 + }, + { + "start": 2739.52, + "end": 2739.52, + "probability": 0.2986 + }, + { + "start": 2739.58, + "end": 2740.46, + "probability": 0.7183 + }, + { + "start": 2740.56, + "end": 2740.92, + "probability": 0.7327 + }, + { + "start": 2740.98, + "end": 2743.0, + "probability": 0.95 + }, + { + "start": 2743.94, + "end": 2745.48, + "probability": 0.9229 + }, + { + "start": 2745.86, + "end": 2747.0, + "probability": 0.7359 + }, + { + "start": 2747.1, + "end": 2749.43, + "probability": 0.938 + }, + { + "start": 2749.7, + "end": 2749.98, + "probability": 0.1026 + }, + { + "start": 2750.02, + "end": 2750.24, + "probability": 0.3931 + }, + { + "start": 2750.3, + "end": 2753.4, + "probability": 0.6719 + }, + { + "start": 2753.52, + "end": 2755.62, + "probability": 0.4785 + }, + { + "start": 2755.62, + "end": 2758.34, + "probability": 0.959 + }, + { + "start": 2758.38, + "end": 2760.68, + "probability": 0.9135 + }, + { + "start": 2761.22, + "end": 2764.12, + "probability": 0.9862 + }, + { + "start": 2764.36, + "end": 2764.66, + "probability": 0.8013 + }, + { + "start": 2765.36, + "end": 2765.4, + "probability": 0.1696 + }, + { + "start": 2765.4, + "end": 2765.66, + "probability": 0.0931 + }, + { + "start": 2765.8, + "end": 2765.94, + "probability": 0.2911 + }, + { + "start": 2766.04, + "end": 2769.24, + "probability": 0.9607 + }, + { + "start": 2769.4, + "end": 2771.22, + "probability": 0.7778 + }, + { + "start": 2771.3, + "end": 2771.72, + "probability": 0.7972 + }, + { + "start": 2772.54, + "end": 2775.72, + "probability": 0.8992 + }, + { + "start": 2776.5, + "end": 2778.19, + "probability": 0.8345 + }, + { + "start": 2779.52, + "end": 2783.95, + "probability": 0.9956 + }, + { + "start": 2783.99, + "end": 2788.49, + "probability": 0.6774 + }, + { + "start": 2788.65, + "end": 2789.23, + "probability": 0.9701 + }, + { + "start": 2789.35, + "end": 2790.23, + "probability": 0.817 + }, + { + "start": 2795.99, + "end": 2800.65, + "probability": 0.8831 + }, + { + "start": 2800.69, + "end": 2801.45, + "probability": 0.4471 + }, + { + "start": 2801.45, + "end": 2802.63, + "probability": 0.4638 + }, + { + "start": 2804.51, + "end": 2806.11, + "probability": 0.653 + }, + { + "start": 2806.49, + "end": 2807.01, + "probability": 0.6511 + }, + { + "start": 2807.03, + "end": 2807.57, + "probability": 0.857 + }, + { + "start": 2809.63, + "end": 2811.01, + "probability": 0.0326 + }, + { + "start": 2831.49, + "end": 2832.55, + "probability": 0.0192 + }, + { + "start": 2832.55, + "end": 2833.81, + "probability": 0.4941 + }, + { + "start": 2833.89, + "end": 2835.09, + "probability": 0.41 + }, + { + "start": 2835.59, + "end": 2839.33, + "probability": 0.4309 + }, + { + "start": 2843.01, + "end": 2847.17, + "probability": 0.0513 + }, + { + "start": 2847.17, + "end": 2848.01, + "probability": 0.0726 + }, + { + "start": 2848.01, + "end": 2851.39, + "probability": 0.0204 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.0, + "end": 2953.0, + "probability": 0.0 + }, + { + "start": 2953.58, + "end": 2955.32, + "probability": 0.7853 + }, + { + "start": 2956.08, + "end": 2959.4, + "probability": 0.9886 + }, + { + "start": 2961.22, + "end": 2965.18, + "probability": 0.988 + }, + { + "start": 2965.18, + "end": 2970.82, + "probability": 0.9968 + }, + { + "start": 2970.82, + "end": 2974.18, + "probability": 0.9998 + }, + { + "start": 2975.34, + "end": 2979.46, + "probability": 0.9675 + }, + { + "start": 2980.4, + "end": 2982.86, + "probability": 0.7798 + }, + { + "start": 2983.08, + "end": 2987.82, + "probability": 0.9833 + }, + { + "start": 2988.26, + "end": 2992.74, + "probability": 0.9982 + }, + { + "start": 2993.56, + "end": 2998.18, + "probability": 0.9794 + }, + { + "start": 2998.78, + "end": 3000.34, + "probability": 0.9747 + }, + { + "start": 3000.5, + "end": 3004.42, + "probability": 0.9933 + }, + { + "start": 3004.42, + "end": 3007.9, + "probability": 0.993 + }, + { + "start": 3008.9, + "end": 3011.9, + "probability": 0.9943 + }, + { + "start": 3011.9, + "end": 3014.82, + "probability": 0.9607 + }, + { + "start": 3015.08, + "end": 3017.02, + "probability": 0.9903 + }, + { + "start": 3017.58, + "end": 3018.04, + "probability": 0.8724 + }, + { + "start": 3018.86, + "end": 3021.12, + "probability": 0.9933 + }, + { + "start": 3021.12, + "end": 3025.74, + "probability": 0.9794 + }, + { + "start": 3026.52, + "end": 3032.26, + "probability": 0.8118 + }, + { + "start": 3032.9, + "end": 3037.18, + "probability": 0.9502 + }, + { + "start": 3037.9, + "end": 3043.28, + "probability": 0.9793 + }, + { + "start": 3044.2, + "end": 3045.68, + "probability": 0.8898 + }, + { + "start": 3046.16, + "end": 3047.74, + "probability": 0.7397 + }, + { + "start": 3048.24, + "end": 3053.88, + "probability": 0.9772 + }, + { + "start": 3053.88, + "end": 3061.02, + "probability": 0.995 + }, + { + "start": 3063.36, + "end": 3063.64, + "probability": 0.8026 + }, + { + "start": 3064.84, + "end": 3067.78, + "probability": 0.9882 + }, + { + "start": 3067.96, + "end": 3071.8, + "probability": 0.9902 + }, + { + "start": 3072.46, + "end": 3073.94, + "probability": 0.8726 + }, + { + "start": 3074.44, + "end": 3079.24, + "probability": 0.9685 + }, + { + "start": 3079.56, + "end": 3079.84, + "probability": 0.4714 + }, + { + "start": 3080.3, + "end": 3083.12, + "probability": 0.9016 + }, + { + "start": 3083.3, + "end": 3084.0, + "probability": 0.5993 + }, + { + "start": 3084.0, + "end": 3086.64, + "probability": 0.8591 + }, + { + "start": 3086.78, + "end": 3088.23, + "probability": 0.8545 + }, + { + "start": 3090.09, + "end": 3095.32, + "probability": 0.9237 + }, + { + "start": 3095.32, + "end": 3096.74, + "probability": 0.7387 + }, + { + "start": 3097.26, + "end": 3099.92, + "probability": 0.7399 + }, + { + "start": 3100.0, + "end": 3100.52, + "probability": 0.5493 + }, + { + "start": 3100.62, + "end": 3101.58, + "probability": 0.5362 + }, + { + "start": 3117.46, + "end": 3118.86, + "probability": 0.2156 + }, + { + "start": 3121.62, + "end": 3124.12, + "probability": 0.8644 + }, + { + "start": 3125.18, + "end": 3128.5, + "probability": 0.5713 + }, + { + "start": 3130.25, + "end": 3135.2, + "probability": 0.9514 + }, + { + "start": 3136.1, + "end": 3136.34, + "probability": 0.0227 + }, + { + "start": 3145.72, + "end": 3146.3, + "probability": 0.2105 + }, + { + "start": 3148.74, + "end": 3149.3, + "probability": 0.0471 + }, + { + "start": 3153.92, + "end": 3155.62, + "probability": 0.2047 + }, + { + "start": 3155.62, + "end": 3158.66, + "probability": 0.7896 + }, + { + "start": 3164.1, + "end": 3166.12, + "probability": 0.1221 + }, + { + "start": 3191.84, + "end": 3196.62, + "probability": 0.0947 + }, + { + "start": 3197.38, + "end": 3201.14, + "probability": 0.0459 + }, + { + "start": 3201.2, + "end": 3201.44, + "probability": 0.0356 + }, + { + "start": 3202.16, + "end": 3203.86, + "probability": 0.1864 + }, + { + "start": 3204.96, + "end": 3207.9, + "probability": 0.0249 + }, + { + "start": 3208.0, + "end": 3208.0, + "probability": 0.0 + }, + { + "start": 3208.0, + "end": 3208.0, + "probability": 0.0 + }, + { + "start": 3208.0, + "end": 3208.0, + "probability": 0.0 + }, + { + "start": 3208.0, + "end": 3208.0, + "probability": 0.0 + }, + { + "start": 3208.0, + "end": 3208.0, + "probability": 0.0 + }, + { + "start": 3208.0, + "end": 3208.0, + "probability": 0.0 + }, + { + "start": 3208.0, + "end": 3208.0, + "probability": 0.0 + }, + { + "start": 3208.34, + "end": 3209.01, + "probability": 0.508 + }, + { + "start": 3215.64, + "end": 3217.08, + "probability": 0.7574 + }, + { + "start": 3217.86, + "end": 3222.1, + "probability": 0.8451 + }, + { + "start": 3222.74, + "end": 3225.9, + "probability": 0.7191 + }, + { + "start": 3226.48, + "end": 3229.58, + "probability": 0.9619 + }, + { + "start": 3229.83, + "end": 3232.71, + "probability": 0.8263 + }, + { + "start": 3233.24, + "end": 3235.56, + "probability": 0.8662 + }, + { + "start": 3236.02, + "end": 3238.52, + "probability": 0.9966 + }, + { + "start": 3238.99, + "end": 3241.47, + "probability": 0.9632 + }, + { + "start": 3242.12, + "end": 3244.3, + "probability": 0.9946 + }, + { + "start": 3245.06, + "end": 3250.2, + "probability": 0.9951 + }, + { + "start": 3250.2, + "end": 3253.36, + "probability": 0.9958 + }, + { + "start": 3254.0, + "end": 3261.18, + "probability": 0.9925 + }, + { + "start": 3261.98, + "end": 3263.95, + "probability": 0.7773 + }, + { + "start": 3264.52, + "end": 3265.02, + "probability": 0.0704 + }, + { + "start": 3265.02, + "end": 3270.14, + "probability": 0.8585 + }, + { + "start": 3270.34, + "end": 3270.5, + "probability": 0.6181 + }, + { + "start": 3270.68, + "end": 3275.16, + "probability": 0.9364 + }, + { + "start": 3275.76, + "end": 3277.1, + "probability": 0.9045 + }, + { + "start": 3277.56, + "end": 3281.16, + "probability": 0.9569 + }, + { + "start": 3281.88, + "end": 3285.0, + "probability": 0.9904 + }, + { + "start": 3285.0, + "end": 3288.6, + "probability": 0.988 + }, + { + "start": 3289.7, + "end": 3294.28, + "probability": 0.9839 + }, + { + "start": 3294.74, + "end": 3298.04, + "probability": 0.9576 + }, + { + "start": 3298.58, + "end": 3301.5, + "probability": 0.7106 + }, + { + "start": 3301.86, + "end": 3304.98, + "probability": 0.9769 + }, + { + "start": 3305.36, + "end": 3308.42, + "probability": 0.9932 + }, + { + "start": 3308.42, + "end": 3312.48, + "probability": 0.9807 + }, + { + "start": 3312.94, + "end": 3317.52, + "probability": 0.9402 + }, + { + "start": 3317.84, + "end": 3320.16, + "probability": 0.9581 + }, + { + "start": 3320.84, + "end": 3325.64, + "probability": 0.9408 + }, + { + "start": 3326.1, + "end": 3326.46, + "probability": 0.9304 + }, + { + "start": 3326.64, + "end": 3326.98, + "probability": 0.9741 + }, + { + "start": 3327.08, + "end": 3328.34, + "probability": 0.8903 + }, + { + "start": 3328.84, + "end": 3330.58, + "probability": 0.9985 + }, + { + "start": 3330.7, + "end": 3331.82, + "probability": 0.6537 + }, + { + "start": 3332.22, + "end": 3335.38, + "probability": 0.9542 + }, + { + "start": 3336.08, + "end": 3337.06, + "probability": 0.8999 + }, + { + "start": 3337.16, + "end": 3337.36, + "probability": 0.855 + }, + { + "start": 3337.52, + "end": 3338.9, + "probability": 0.9788 + }, + { + "start": 3339.36, + "end": 3343.66, + "probability": 0.9513 + }, + { + "start": 3344.68, + "end": 3348.5, + "probability": 0.9412 + }, + { + "start": 3348.5, + "end": 3352.88, + "probability": 0.9933 + }, + { + "start": 3353.34, + "end": 3358.52, + "probability": 0.9984 + }, + { + "start": 3359.14, + "end": 3362.4, + "probability": 0.9989 + }, + { + "start": 3362.4, + "end": 3365.56, + "probability": 0.9975 + }, + { + "start": 3366.26, + "end": 3367.46, + "probability": 0.9914 + }, + { + "start": 3368.02, + "end": 3369.46, + "probability": 0.9281 + }, + { + "start": 3369.88, + "end": 3373.58, + "probability": 0.9964 + }, + { + "start": 3373.74, + "end": 3375.2, + "probability": 0.5244 + }, + { + "start": 3375.6, + "end": 3376.76, + "probability": 0.7925 + }, + { + "start": 3376.86, + "end": 3378.46, + "probability": 0.8521 + }, + { + "start": 3378.78, + "end": 3379.94, + "probability": 0.9786 + }, + { + "start": 3380.12, + "end": 3381.18, + "probability": 0.9678 + }, + { + "start": 3381.68, + "end": 3382.72, + "probability": 0.9302 + }, + { + "start": 3383.1, + "end": 3385.4, + "probability": 0.9854 + }, + { + "start": 3385.76, + "end": 3386.56, + "probability": 0.8475 + }, + { + "start": 3386.68, + "end": 3387.34, + "probability": 0.8966 + }, + { + "start": 3387.76, + "end": 3391.9, + "probability": 0.9976 + }, + { + "start": 3391.9, + "end": 3395.58, + "probability": 0.9978 + }, + { + "start": 3396.12, + "end": 3396.58, + "probability": 0.9448 + }, + { + "start": 3397.34, + "end": 3402.44, + "probability": 0.974 + }, + { + "start": 3402.44, + "end": 3405.48, + "probability": 0.9769 + }, + { + "start": 3406.52, + "end": 3410.7, + "probability": 0.909 + }, + { + "start": 3411.3, + "end": 3414.44, + "probability": 0.9462 + }, + { + "start": 3414.96, + "end": 3419.83, + "probability": 0.9932 + }, + { + "start": 3420.18, + "end": 3422.62, + "probability": 0.9987 + }, + { + "start": 3423.22, + "end": 3425.2, + "probability": 0.9905 + }, + { + "start": 3425.86, + "end": 3428.54, + "probability": 0.9888 + }, + { + "start": 3429.12, + "end": 3432.88, + "probability": 0.9596 + }, + { + "start": 3433.4, + "end": 3435.82, + "probability": 0.8862 + }, + { + "start": 3436.26, + "end": 3439.68, + "probability": 0.9922 + }, + { + "start": 3439.68, + "end": 3443.74, + "probability": 0.9979 + }, + { + "start": 3444.44, + "end": 3445.86, + "probability": 0.7701 + }, + { + "start": 3446.34, + "end": 3448.44, + "probability": 0.9891 + }, + { + "start": 3448.54, + "end": 3451.5, + "probability": 0.9949 + }, + { + "start": 3452.12, + "end": 3454.22, + "probability": 0.5518 + }, + { + "start": 3454.98, + "end": 3456.64, + "probability": 0.634 + }, + { + "start": 3457.42, + "end": 3460.96, + "probability": 0.9048 + }, + { + "start": 3461.5, + "end": 3463.9, + "probability": 0.8578 + }, + { + "start": 3464.04, + "end": 3465.03, + "probability": 0.9686 + }, + { + "start": 3465.5, + "end": 3466.72, + "probability": 0.9958 + }, + { + "start": 3467.46, + "end": 3470.04, + "probability": 0.8724 + }, + { + "start": 3470.44, + "end": 3473.44, + "probability": 0.945 + }, + { + "start": 3474.04, + "end": 3477.66, + "probability": 0.9844 + }, + { + "start": 3478.16, + "end": 3482.68, + "probability": 0.9745 + }, + { + "start": 3482.8, + "end": 3484.4, + "probability": 0.9132 + }, + { + "start": 3485.06, + "end": 3486.92, + "probability": 0.9985 + }, + { + "start": 3487.58, + "end": 3489.78, + "probability": 0.8843 + }, + { + "start": 3490.54, + "end": 3495.4, + "probability": 0.9826 + }, + { + "start": 3495.92, + "end": 3502.54, + "probability": 0.9681 + }, + { + "start": 3503.52, + "end": 3506.48, + "probability": 0.8497 + }, + { + "start": 3507.1, + "end": 3509.08, + "probability": 0.9764 + }, + { + "start": 3509.5, + "end": 3511.64, + "probability": 0.9863 + }, + { + "start": 3511.8, + "end": 3512.2, + "probability": 0.7911 + }, + { + "start": 3512.62, + "end": 3516.08, + "probability": 0.9979 + }, + { + "start": 3516.6, + "end": 3520.0, + "probability": 0.8483 + }, + { + "start": 3520.02, + "end": 3522.16, + "probability": 0.998 + }, + { + "start": 3522.7, + "end": 3524.74, + "probability": 0.9966 + }, + { + "start": 3525.14, + "end": 3527.26, + "probability": 0.9941 + }, + { + "start": 3527.26, + "end": 3529.94, + "probability": 0.9977 + }, + { + "start": 3530.76, + "end": 3533.7, + "probability": 0.8663 + }, + { + "start": 3534.24, + "end": 3535.1, + "probability": 0.7419 + }, + { + "start": 3535.24, + "end": 3536.12, + "probability": 0.6075 + }, + { + "start": 3536.58, + "end": 3539.36, + "probability": 0.9844 + }, + { + "start": 3540.5, + "end": 3542.98, + "probability": 0.9943 + }, + { + "start": 3542.98, + "end": 3546.78, + "probability": 0.9869 + }, + { + "start": 3547.3, + "end": 3551.46, + "probability": 0.9482 + }, + { + "start": 3552.3, + "end": 3557.22, + "probability": 0.9965 + }, + { + "start": 3557.22, + "end": 3562.48, + "probability": 0.9792 + }, + { + "start": 3562.9, + "end": 3565.34, + "probability": 0.9946 + }, + { + "start": 3566.98, + "end": 3571.14, + "probability": 0.9966 + }, + { + "start": 3571.32, + "end": 3575.28, + "probability": 0.9958 + }, + { + "start": 3575.84, + "end": 3581.62, + "probability": 0.9938 + }, + { + "start": 3581.62, + "end": 3587.84, + "probability": 0.9867 + }, + { + "start": 3588.44, + "end": 3594.0, + "probability": 0.997 + }, + { + "start": 3594.0, + "end": 3599.78, + "probability": 0.9988 + }, + { + "start": 3600.26, + "end": 3601.03, + "probability": 0.9843 + }, + { + "start": 3601.44, + "end": 3603.1, + "probability": 0.9832 + }, + { + "start": 3603.64, + "end": 3605.8, + "probability": 0.9787 + }, + { + "start": 3605.84, + "end": 3609.36, + "probability": 0.9613 + }, + { + "start": 3609.7, + "end": 3610.32, + "probability": 0.4961 + }, + { + "start": 3610.64, + "end": 3613.08, + "probability": 0.813 + }, + { + "start": 3613.36, + "end": 3616.38, + "probability": 0.9954 + }, + { + "start": 3616.46, + "end": 3617.34, + "probability": 0.7461 + }, + { + "start": 3618.04, + "end": 3620.26, + "probability": 0.9034 + }, + { + "start": 3621.28, + "end": 3623.28, + "probability": 0.7462 + }, + { + "start": 3624.57, + "end": 3627.56, + "probability": 0.9758 + }, + { + "start": 3628.48, + "end": 3629.08, + "probability": 0.7944 + }, + { + "start": 3632.44, + "end": 3634.46, + "probability": 0.9426 + }, + { + "start": 3636.08, + "end": 3636.94, + "probability": 0.7169 + }, + { + "start": 3641.36, + "end": 3643.12, + "probability": 0.3231 + }, + { + "start": 3643.96, + "end": 3646.34, + "probability": 0.6805 + }, + { + "start": 3647.64, + "end": 3651.22, + "probability": 0.7292 + }, + { + "start": 3651.34, + "end": 3653.1, + "probability": 0.2659 + }, + { + "start": 3654.72, + "end": 3657.8, + "probability": 0.9762 + }, + { + "start": 3657.8, + "end": 3661.52, + "probability": 0.9959 + }, + { + "start": 3661.52, + "end": 3664.5, + "probability": 0.9923 + }, + { + "start": 3665.28, + "end": 3668.02, + "probability": 0.9017 + }, + { + "start": 3668.02, + "end": 3672.38, + "probability": 0.9367 + }, + { + "start": 3673.68, + "end": 3677.54, + "probability": 0.991 + }, + { + "start": 3677.54, + "end": 3682.02, + "probability": 0.9985 + }, + { + "start": 3682.5, + "end": 3683.54, + "probability": 0.7112 + }, + { + "start": 3683.72, + "end": 3686.1, + "probability": 0.9139 + }, + { + "start": 3686.72, + "end": 3686.82, + "probability": 0.0804 + }, + { + "start": 3686.98, + "end": 3689.78, + "probability": 0.984 + }, + { + "start": 3689.92, + "end": 3692.04, + "probability": 0.9379 + }, + { + "start": 3692.6, + "end": 3692.78, + "probability": 0.8181 + }, + { + "start": 3692.96, + "end": 3696.44, + "probability": 0.9366 + }, + { + "start": 3697.48, + "end": 3700.58, + "probability": 0.9564 + }, + { + "start": 3700.58, + "end": 3703.56, + "probability": 0.9963 + }, + { + "start": 3703.66, + "end": 3707.98, + "probability": 0.9805 + }, + { + "start": 3708.62, + "end": 3711.86, + "probability": 0.9054 + }, + { + "start": 3711.96, + "end": 3714.28, + "probability": 0.9709 + }, + { + "start": 3715.68, + "end": 3718.16, + "probability": 0.9392 + }, + { + "start": 3718.16, + "end": 3720.66, + "probability": 0.9967 + }, + { + "start": 3721.24, + "end": 3723.18, + "probability": 0.7499 + }, + { + "start": 3723.74, + "end": 3723.74, + "probability": 0.0017 + }, + { + "start": 3723.74, + "end": 3726.56, + "probability": 0.6861 + }, + { + "start": 3726.56, + "end": 3729.08, + "probability": 0.9541 + }, + { + "start": 3729.08, + "end": 3730.84, + "probability": 0.9932 + }, + { + "start": 3732.08, + "end": 3734.32, + "probability": 0.8365 + }, + { + "start": 3734.32, + "end": 3736.36, + "probability": 0.6373 + }, + { + "start": 3736.44, + "end": 3739.48, + "probability": 0.9884 + }, + { + "start": 3740.38, + "end": 3743.12, + "probability": 0.7076 + }, + { + "start": 3744.3, + "end": 3747.32, + "probability": 0.6875 + }, + { + "start": 3747.36, + "end": 3752.08, + "probability": 0.9706 + }, + { + "start": 3752.62, + "end": 3755.15, + "probability": 0.6925 + }, + { + "start": 3756.12, + "end": 3758.9, + "probability": 0.9908 + }, + { + "start": 3758.9, + "end": 3762.98, + "probability": 0.9656 + }, + { + "start": 3763.8, + "end": 3767.54, + "probability": 0.9979 + }, + { + "start": 3767.54, + "end": 3771.06, + "probability": 0.9988 + }, + { + "start": 3771.26, + "end": 3774.18, + "probability": 0.8999 + }, + { + "start": 3776.02, + "end": 3776.34, + "probability": 0.0665 + }, + { + "start": 3776.34, + "end": 3779.44, + "probability": 0.9225 + }, + { + "start": 3779.98, + "end": 3784.14, + "probability": 0.7212 + }, + { + "start": 3784.32, + "end": 3789.14, + "probability": 0.9694 + }, + { + "start": 3789.42, + "end": 3789.7, + "probability": 0.7015 + }, + { + "start": 3790.96, + "end": 3793.92, + "probability": 0.9771 + }, + { + "start": 3794.1, + "end": 3796.76, + "probability": 0.8444 + }, + { + "start": 3796.84, + "end": 3797.76, + "probability": 0.549 + }, + { + "start": 3809.06, + "end": 3810.64, + "probability": 0.819 + }, + { + "start": 3810.84, + "end": 3817.94, + "probability": 0.998 + }, + { + "start": 3817.94, + "end": 3822.6, + "probability": 0.9976 + }, + { + "start": 3823.38, + "end": 3823.96, + "probability": 0.5801 + }, + { + "start": 3824.1, + "end": 3827.22, + "probability": 0.9208 + }, + { + "start": 3827.72, + "end": 3828.84, + "probability": 0.781 + }, + { + "start": 3829.04, + "end": 3831.2, + "probability": 0.8779 + }, + { + "start": 3831.38, + "end": 3834.58, + "probability": 0.9128 + }, + { + "start": 3834.7, + "end": 3838.48, + "probability": 0.897 + }, + { + "start": 3838.78, + "end": 3840.52, + "probability": 0.9927 + }, + { + "start": 3841.2, + "end": 3843.03, + "probability": 0.9941 + }, + { + "start": 3843.5, + "end": 3844.82, + "probability": 0.9595 + }, + { + "start": 3844.94, + "end": 3845.84, + "probability": 0.8201 + }, + { + "start": 3845.94, + "end": 3846.55, + "probability": 0.9312 + }, + { + "start": 3846.88, + "end": 3848.64, + "probability": 0.9854 + }, + { + "start": 3849.06, + "end": 3851.38, + "probability": 0.6883 + }, + { + "start": 3851.6, + "end": 3852.82, + "probability": 0.947 + }, + { + "start": 3853.1, + "end": 3854.68, + "probability": 0.9111 + }, + { + "start": 3854.92, + "end": 3858.5, + "probability": 0.9907 + }, + { + "start": 3858.84, + "end": 3862.16, + "probability": 0.8855 + }, + { + "start": 3862.24, + "end": 3866.58, + "probability": 0.971 + }, + { + "start": 3867.02, + "end": 3869.9, + "probability": 0.9855 + }, + { + "start": 3870.38, + "end": 3871.52, + "probability": 0.7591 + }, + { + "start": 3871.62, + "end": 3876.18, + "probability": 0.9945 + }, + { + "start": 3876.32, + "end": 3877.42, + "probability": 0.8949 + }, + { + "start": 3877.62, + "end": 3880.14, + "probability": 0.9964 + }, + { + "start": 3880.5, + "end": 3881.16, + "probability": 0.4467 + }, + { + "start": 3881.22, + "end": 3886.56, + "probability": 0.9862 + }, + { + "start": 3886.78, + "end": 3891.76, + "probability": 0.996 + }, + { + "start": 3891.76, + "end": 3897.56, + "probability": 0.9995 + }, + { + "start": 3897.98, + "end": 3898.8, + "probability": 0.8405 + }, + { + "start": 3899.37, + "end": 3900.48, + "probability": 0.7707 + }, + { + "start": 3900.56, + "end": 3903.72, + "probability": 0.9598 + }, + { + "start": 3903.96, + "end": 3905.1, + "probability": 0.5376 + }, + { + "start": 3905.3, + "end": 3907.03, + "probability": 0.811 + }, + { + "start": 3907.7, + "end": 3910.56, + "probability": 0.9634 + }, + { + "start": 3910.56, + "end": 3913.26, + "probability": 0.8415 + }, + { + "start": 3913.32, + "end": 3913.9, + "probability": 0.7273 + }, + { + "start": 3915.04, + "end": 3917.0, + "probability": 0.8658 + }, + { + "start": 3917.16, + "end": 3921.79, + "probability": 0.9478 + }, + { + "start": 3926.18, + "end": 3929.04, + "probability": 0.6741 + }, + { + "start": 3934.12, + "end": 3935.64, + "probability": 0.654 + }, + { + "start": 3936.34, + "end": 3938.88, + "probability": 0.7896 + }, + { + "start": 3939.46, + "end": 3943.46, + "probability": 0.9937 + }, + { + "start": 3943.9, + "end": 3947.2, + "probability": 0.984 + }, + { + "start": 3947.68, + "end": 3948.02, + "probability": 0.8772 + }, + { + "start": 3948.28, + "end": 3951.64, + "probability": 0.984 + }, + { + "start": 3952.08, + "end": 3954.0, + "probability": 0.928 + }, + { + "start": 3954.58, + "end": 3957.02, + "probability": 0.9918 + }, + { + "start": 3957.5, + "end": 3958.42, + "probability": 0.7896 + }, + { + "start": 3958.8, + "end": 3959.76, + "probability": 0.8828 + }, + { + "start": 3960.12, + "end": 3963.26, + "probability": 0.8704 + }, + { + "start": 3963.6, + "end": 3966.38, + "probability": 0.9619 + }, + { + "start": 3966.86, + "end": 3970.24, + "probability": 0.6881 + }, + { + "start": 3970.68, + "end": 3973.58, + "probability": 0.5463 + }, + { + "start": 3974.0, + "end": 3974.76, + "probability": 0.8944 + }, + { + "start": 3974.86, + "end": 3978.26, + "probability": 0.9976 + }, + { + "start": 3978.26, + "end": 3982.16, + "probability": 0.9243 + }, + { + "start": 3982.28, + "end": 3983.26, + "probability": 0.7637 + }, + { + "start": 3983.64, + "end": 3985.92, + "probability": 0.9119 + }, + { + "start": 3986.52, + "end": 3988.0, + "probability": 0.9077 + }, + { + "start": 3988.66, + "end": 3990.8, + "probability": 0.9733 + }, + { + "start": 3991.42, + "end": 3992.08, + "probability": 0.9772 + }, + { + "start": 3992.22, + "end": 3995.16, + "probability": 0.9937 + }, + { + "start": 3995.8, + "end": 3996.98, + "probability": 0.5053 + }, + { + "start": 3997.68, + "end": 4002.08, + "probability": 0.9974 + }, + { + "start": 4002.18, + "end": 4003.22, + "probability": 0.9415 + }, + { + "start": 4003.74, + "end": 4010.5, + "probability": 0.9949 + }, + { + "start": 4011.06, + "end": 4011.56, + "probability": 0.3918 + }, + { + "start": 4011.64, + "end": 4014.78, + "probability": 0.8847 + }, + { + "start": 4015.18, + "end": 4017.3, + "probability": 0.9937 + }, + { + "start": 4017.76, + "end": 4020.86, + "probability": 0.9863 + }, + { + "start": 4021.34, + "end": 4021.62, + "probability": 0.3592 + }, + { + "start": 4021.68, + "end": 4022.12, + "probability": 0.8679 + }, + { + "start": 4022.58, + "end": 4029.34, + "probability": 0.9957 + }, + { + "start": 4029.84, + "end": 4033.46, + "probability": 0.9844 + }, + { + "start": 4033.94, + "end": 4037.24, + "probability": 0.9994 + }, + { + "start": 4037.24, + "end": 4040.42, + "probability": 0.9982 + }, + { + "start": 4040.6, + "end": 4040.92, + "probability": 0.8472 + }, + { + "start": 4041.8, + "end": 4044.86, + "probability": 0.9028 + }, + { + "start": 4045.1, + "end": 4045.2, + "probability": 0.3024 + }, + { + "start": 4045.72, + "end": 4047.52, + "probability": 0.7864 + }, + { + "start": 4048.0, + "end": 4051.24, + "probability": 0.9233 + }, + { + "start": 4052.38, + "end": 4052.72, + "probability": 0.1891 + }, + { + "start": 4052.9, + "end": 4055.0, + "probability": 0.7931 + }, + { + "start": 4055.16, + "end": 4058.1, + "probability": 0.7705 + }, + { + "start": 4058.26, + "end": 4058.92, + "probability": 0.6219 + }, + { + "start": 4059.02, + "end": 4060.06, + "probability": 0.5261 + }, + { + "start": 4081.9, + "end": 4086.02, + "probability": 0.2065 + }, + { + "start": 4087.28, + "end": 4088.8, + "probability": 0.8211 + }, + { + "start": 4088.88, + "end": 4090.02, + "probability": 0.3302 + }, + { + "start": 4090.44, + "end": 4094.76, + "probability": 0.072 + }, + { + "start": 4108.52, + "end": 4109.12, + "probability": 0.0155 + }, + { + "start": 4110.3, + "end": 4110.4, + "probability": 0.1533 + }, + { + "start": 4117.24, + "end": 4120.52, + "probability": 0.0143 + }, + { + "start": 4123.87, + "end": 4128.14, + "probability": 0.0657 + }, + { + "start": 4128.82, + "end": 4129.82, + "probability": 0.0617 + }, + { + "start": 4129.82, + "end": 4131.22, + "probability": 0.0181 + }, + { + "start": 4131.66, + "end": 4133.14, + "probability": 0.234 + }, + { + "start": 4133.62, + "end": 4134.04, + "probability": 0.0463 + }, + { + "start": 4151.0, + "end": 4151.0, + "probability": 0.0 + }, + { + "start": 4151.0, + "end": 4151.0, + "probability": 0.0 + }, + { + "start": 4151.0, + "end": 4151.0, + "probability": 0.0 + }, + { + "start": 4151.0, + "end": 4151.0, + "probability": 0.0 + }, + { + "start": 4151.0, + "end": 4151.0, + "probability": 0.0 + }, + { + "start": 4151.0, + "end": 4151.0, + "probability": 0.0 + }, + { + "start": 4151.0, + "end": 4151.0, + "probability": 0.0 + }, + { + "start": 4151.0, + "end": 4151.0, + "probability": 0.0 + }, + { + "start": 4151.0, + "end": 4151.0, + "probability": 0.0 + }, + { + "start": 4151.0, + "end": 4151.0, + "probability": 0.0 + }, + { + "start": 4151.0, + "end": 4151.0, + "probability": 0.0 + }, + { + "start": 4151.0, + "end": 4151.0, + "probability": 0.0 + }, + { + "start": 4151.0, + "end": 4151.0, + "probability": 0.0 + }, + { + "start": 4151.0, + "end": 4151.0, + "probability": 0.0 + }, + { + "start": 4151.0, + "end": 4151.0, + "probability": 0.0 + }, + { + "start": 4151.0, + "end": 4151.0, + "probability": 0.0 + }, + { + "start": 4151.0, + "end": 4151.0, + "probability": 0.0 + }, + { + "start": 4151.0, + "end": 4151.0, + "probability": 0.0 + }, + { + "start": 4151.2, + "end": 4155.26, + "probability": 0.6209 + }, + { + "start": 4156.94, + "end": 4159.7, + "probability": 0.898 + }, + { + "start": 4159.92, + "end": 4160.88, + "probability": 0.887 + }, + { + "start": 4160.96, + "end": 4168.18, + "probability": 0.868 + }, + { + "start": 4168.18, + "end": 4176.7, + "probability": 0.8969 + }, + { + "start": 4177.2, + "end": 4183.58, + "probability": 0.9958 + }, + { + "start": 4183.76, + "end": 4186.8, + "probability": 0.9712 + }, + { + "start": 4187.34, + "end": 4191.0, + "probability": 0.6799 + }, + { + "start": 4191.56, + "end": 4192.62, + "probability": 0.9624 + }, + { + "start": 4192.9, + "end": 4194.02, + "probability": 0.6259 + }, + { + "start": 4194.72, + "end": 4198.22, + "probability": 0.5806 + }, + { + "start": 4199.82, + "end": 4201.7, + "probability": 0.3251 + }, + { + "start": 4201.94, + "end": 4203.1, + "probability": 0.5777 + }, + { + "start": 4203.1, + "end": 4203.1, + "probability": 0.7138 + }, + { + "start": 4203.1, + "end": 4204.28, + "probability": 0.7036 + }, + { + "start": 4204.4, + "end": 4207.34, + "probability": 0.9491 + }, + { + "start": 4207.34, + "end": 4208.34, + "probability": 0.5318 + }, + { + "start": 4208.54, + "end": 4209.81, + "probability": 0.2235 + }, + { + "start": 4210.84, + "end": 4212.14, + "probability": 0.3034 + }, + { + "start": 4212.84, + "end": 4220.84, + "probability": 0.8689 + }, + { + "start": 4220.9, + "end": 4225.76, + "probability": 0.9714 + }, + { + "start": 4226.3, + "end": 4229.33, + "probability": 0.9584 + }, + { + "start": 4229.91, + "end": 4238.76, + "probability": 0.9663 + }, + { + "start": 4239.78, + "end": 4243.8, + "probability": 0.9968 + }, + { + "start": 4245.14, + "end": 4254.3, + "probability": 0.8421 + }, + { + "start": 4254.34, + "end": 4258.32, + "probability": 0.9833 + }, + { + "start": 4258.82, + "end": 4260.24, + "probability": 0.9973 + }, + { + "start": 4261.06, + "end": 4264.44, + "probability": 0.9591 + }, + { + "start": 4264.64, + "end": 4269.28, + "probability": 0.8765 + }, + { + "start": 4269.28, + "end": 4274.48, + "probability": 0.9028 + }, + { + "start": 4275.04, + "end": 4278.38, + "probability": 0.9562 + }, + { + "start": 4278.72, + "end": 4282.84, + "probability": 0.9631 + }, + { + "start": 4283.26, + "end": 4283.4, + "probability": 0.3288 + }, + { + "start": 4283.58, + "end": 4285.62, + "probability": 0.979 + }, + { + "start": 4285.92, + "end": 4286.24, + "probability": 0.3006 + }, + { + "start": 4286.24, + "end": 4290.68, + "probability": 0.985 + }, + { + "start": 4291.1, + "end": 4293.28, + "probability": 0.896 + }, + { + "start": 4293.7, + "end": 4300.88, + "probability": 0.9775 + }, + { + "start": 4301.6, + "end": 4303.37, + "probability": 0.5786 + }, + { + "start": 4304.22, + "end": 4307.38, + "probability": 0.8907 + }, + { + "start": 4307.48, + "end": 4307.84, + "probability": 0.7036 + }, + { + "start": 4308.98, + "end": 4310.8, + "probability": 0.7661 + }, + { + "start": 4311.56, + "end": 4314.58, + "probability": 0.9595 + }, + { + "start": 4314.74, + "end": 4315.7, + "probability": 0.8136 + }, + { + "start": 4331.48, + "end": 4333.8, + "probability": 0.6873 + }, + { + "start": 4334.44, + "end": 4338.48, + "probability": 0.8527 + }, + { + "start": 4339.58, + "end": 4339.98, + "probability": 0.0001 + }, + { + "start": 4341.4, + "end": 4345.58, + "probability": 0.2266 + }, + { + "start": 4346.12, + "end": 4348.5, + "probability": 0.7873 + }, + { + "start": 4348.92, + "end": 4352.74, + "probability": 0.9866 + }, + { + "start": 4352.76, + "end": 4355.44, + "probability": 0.9922 + }, + { + "start": 4355.8, + "end": 4360.16, + "probability": 0.9564 + }, + { + "start": 4360.18, + "end": 4360.52, + "probability": 0.3489 + }, + { + "start": 4360.58, + "end": 4361.16, + "probability": 0.8949 + }, + { + "start": 4361.82, + "end": 4364.5, + "probability": 0.7573 + }, + { + "start": 4364.5, + "end": 4366.94, + "probability": 0.9577 + }, + { + "start": 4367.5, + "end": 4372.03, + "probability": 0.9434 + }, + { + "start": 4374.26, + "end": 4377.6, + "probability": 0.9155 + }, + { + "start": 4377.6, + "end": 4379.92, + "probability": 0.9956 + }, + { + "start": 4380.68, + "end": 4383.66, + "probability": 0.6956 + }, + { + "start": 4384.0, + "end": 4386.62, + "probability": 0.7374 + }, + { + "start": 4386.62, + "end": 4389.68, + "probability": 0.8278 + }, + { + "start": 4390.92, + "end": 4395.02, + "probability": 0.6864 + }, + { + "start": 4395.02, + "end": 4398.7, + "probability": 0.9532 + }, + { + "start": 4398.86, + "end": 4403.58, + "probability": 0.8279 + }, + { + "start": 4403.58, + "end": 4407.3, + "probability": 0.9833 + }, + { + "start": 4409.02, + "end": 4414.72, + "probability": 0.9517 + }, + { + "start": 4415.24, + "end": 4419.5, + "probability": 0.7664 + }, + { + "start": 4420.14, + "end": 4420.98, + "probability": 0.7984 + }, + { + "start": 4421.54, + "end": 4422.22, + "probability": 0.666 + }, + { + "start": 4422.32, + "end": 4424.74, + "probability": 0.7673 + }, + { + "start": 4425.74, + "end": 4428.24, + "probability": 0.9287 + }, + { + "start": 4428.56, + "end": 4431.34, + "probability": 0.6643 + }, + { + "start": 4431.5, + "end": 4431.92, + "probability": 0.8027 + }, + { + "start": 4432.9, + "end": 4434.22, + "probability": 0.889 + }, + { + "start": 4434.32, + "end": 4436.69, + "probability": 0.8763 + }, + { + "start": 4437.16, + "end": 4441.5, + "probability": 0.9624 + }, + { + "start": 4441.88, + "end": 4444.7, + "probability": 0.6079 + }, + { + "start": 4444.92, + "end": 4445.7, + "probability": 0.9293 + }, + { + "start": 4445.78, + "end": 4446.76, + "probability": 0.7908 + }, + { + "start": 4447.26, + "end": 4449.04, + "probability": 0.1214 + }, + { + "start": 4450.71, + "end": 4453.4, + "probability": 0.0266 + }, + { + "start": 4453.4, + "end": 4453.46, + "probability": 0.2508 + }, + { + "start": 4454.66, + "end": 4455.72, + "probability": 0.1538 + }, + { + "start": 4456.98, + "end": 4459.8, + "probability": 0.1393 + }, + { + "start": 4465.84, + "end": 4466.16, + "probability": 0.2766 + }, + { + "start": 4466.62, + "end": 4467.3, + "probability": 0.403 + }, + { + "start": 4467.42, + "end": 4470.0, + "probability": 0.8157 + }, + { + "start": 4470.12, + "end": 4471.26, + "probability": 0.9476 + }, + { + "start": 4471.36, + "end": 4472.24, + "probability": 0.7755 + }, + { + "start": 4474.32, + "end": 4477.48, + "probability": 0.9475 + }, + { + "start": 4479.28, + "end": 4482.12, + "probability": 0.9712 + }, + { + "start": 4482.32, + "end": 4483.5, + "probability": 0.4192 + }, + { + "start": 4484.1, + "end": 4487.64, + "probability": 0.8674 + }, + { + "start": 4487.8, + "end": 4490.82, + "probability": 0.9465 + }, + { + "start": 4492.3, + "end": 4492.64, + "probability": 0.7436 + }, + { + "start": 4492.68, + "end": 4495.24, + "probability": 0.9289 + }, + { + "start": 4495.34, + "end": 4498.9, + "probability": 0.9707 + }, + { + "start": 4499.14, + "end": 4499.9, + "probability": 0.7348 + }, + { + "start": 4500.16, + "end": 4501.36, + "probability": 0.3852 + }, + { + "start": 4502.1, + "end": 4505.38, + "probability": 0.8383 + }, + { + "start": 4506.02, + "end": 4507.69, + "probability": 0.9761 + }, + { + "start": 4508.22, + "end": 4511.46, + "probability": 0.9138 + }, + { + "start": 4511.86, + "end": 4512.58, + "probability": 0.8358 + }, + { + "start": 4513.06, + "end": 4514.48, + "probability": 0.8701 + }, + { + "start": 4514.6, + "end": 4517.04, + "probability": 0.9961 + }, + { + "start": 4518.6, + "end": 4520.42, + "probability": 0.4953 + }, + { + "start": 4520.58, + "end": 4520.58, + "probability": 0.5149 + }, + { + "start": 4520.58, + "end": 4522.44, + "probability": 0.6513 + }, + { + "start": 4523.04, + "end": 4530.44, + "probability": 0.9741 + }, + { + "start": 4531.22, + "end": 4539.16, + "probability": 0.9796 + }, + { + "start": 4539.3, + "end": 4541.08, + "probability": 0.7035 + }, + { + "start": 4541.72, + "end": 4547.22, + "probability": 0.9819 + }, + { + "start": 4547.48, + "end": 4548.0, + "probability": 0.4966 + }, + { + "start": 4548.7, + "end": 4550.62, + "probability": 0.8641 + }, + { + "start": 4550.72, + "end": 4555.64, + "probability": 0.9006 + }, + { + "start": 4556.5, + "end": 4557.52, + "probability": 0.9567 + }, + { + "start": 4558.04, + "end": 4562.7, + "probability": 0.8773 + }, + { + "start": 4563.36, + "end": 4565.06, + "probability": 0.6847 + }, + { + "start": 4565.54, + "end": 4572.38, + "probability": 0.983 + }, + { + "start": 4573.0, + "end": 4578.84, + "probability": 0.9186 + }, + { + "start": 4579.14, + "end": 4580.72, + "probability": 0.6697 + }, + { + "start": 4581.14, + "end": 4588.38, + "probability": 0.9746 + }, + { + "start": 4589.22, + "end": 4592.34, + "probability": 0.6802 + }, + { + "start": 4593.11, + "end": 4596.52, + "probability": 0.9659 + }, + { + "start": 4597.08, + "end": 4599.18, + "probability": 0.6493 + }, + { + "start": 4599.26, + "end": 4603.14, + "probability": 0.9013 + }, + { + "start": 4603.56, + "end": 4604.96, + "probability": 0.6919 + }, + { + "start": 4605.02, + "end": 4610.6, + "probability": 0.994 + }, + { + "start": 4610.82, + "end": 4614.26, + "probability": 0.938 + }, + { + "start": 4614.78, + "end": 4615.92, + "probability": 0.9727 + }, + { + "start": 4616.3, + "end": 4617.8, + "probability": 0.9895 + }, + { + "start": 4617.96, + "end": 4619.1, + "probability": 0.9093 + }, + { + "start": 4619.64, + "end": 4624.58, + "probability": 0.9596 + }, + { + "start": 4624.94, + "end": 4627.5, + "probability": 0.992 + }, + { + "start": 4627.58, + "end": 4629.64, + "probability": 0.9017 + }, + { + "start": 4630.12, + "end": 4633.82, + "probability": 0.8768 + }, + { + "start": 4634.48, + "end": 4638.24, + "probability": 0.7698 + }, + { + "start": 4638.82, + "end": 4644.58, + "probability": 0.9874 + }, + { + "start": 4645.64, + "end": 4647.48, + "probability": 0.9673 + }, + { + "start": 4647.6, + "end": 4648.7, + "probability": 0.6183 + }, + { + "start": 4648.8, + "end": 4649.86, + "probability": 0.5325 + }, + { + "start": 4650.6, + "end": 4653.7, + "probability": 0.7422 + }, + { + "start": 4654.04, + "end": 4655.16, + "probability": 0.9707 + }, + { + "start": 4656.32, + "end": 4658.76, + "probability": 0.8677 + }, + { + "start": 4658.86, + "end": 4661.04, + "probability": 0.9484 + }, + { + "start": 4661.34, + "end": 4663.17, + "probability": 0.9692 + }, + { + "start": 4663.9, + "end": 4668.28, + "probability": 0.9089 + }, + { + "start": 4668.72, + "end": 4670.4, + "probability": 0.6316 + }, + { + "start": 4670.82, + "end": 4677.28, + "probability": 0.984 + }, + { + "start": 4677.62, + "end": 4682.02, + "probability": 0.9553 + }, + { + "start": 4682.52, + "end": 4683.48, + "probability": 0.9299 + }, + { + "start": 4683.68, + "end": 4686.08, + "probability": 0.9475 + }, + { + "start": 4686.32, + "end": 4686.98, + "probability": 0.8096 + }, + { + "start": 4687.24, + "end": 4688.82, + "probability": 0.6123 + }, + { + "start": 4689.08, + "end": 4691.06, + "probability": 0.9612 + }, + { + "start": 4691.4, + "end": 4692.34, + "probability": 0.9819 + }, + { + "start": 4692.44, + "end": 4693.92, + "probability": 0.7887 + }, + { + "start": 4694.38, + "end": 4697.92, + "probability": 0.9604 + }, + { + "start": 4698.0, + "end": 4700.48, + "probability": 0.6797 + }, + { + "start": 4701.04, + "end": 4702.92, + "probability": 0.9736 + }, + { + "start": 4703.56, + "end": 4706.14, + "probability": 0.9446 + }, + { + "start": 4706.2, + "end": 4707.65, + "probability": 0.9688 + }, + { + "start": 4708.28, + "end": 4712.84, + "probability": 0.9126 + }, + { + "start": 4713.12, + "end": 4714.8, + "probability": 0.9932 + }, + { + "start": 4714.88, + "end": 4715.58, + "probability": 0.7162 + }, + { + "start": 4716.26, + "end": 4718.54, + "probability": 0.9878 + }, + { + "start": 4718.56, + "end": 4720.24, + "probability": 0.7239 + }, + { + "start": 4720.76, + "end": 4722.02, + "probability": 0.7532 + }, + { + "start": 4722.12, + "end": 4723.94, + "probability": 0.9427 + }, + { + "start": 4724.32, + "end": 4726.8, + "probability": 0.9861 + }, + { + "start": 4727.4, + "end": 4731.44, + "probability": 0.9243 + }, + { + "start": 4732.06, + "end": 4737.32, + "probability": 0.8379 + }, + { + "start": 4738.3, + "end": 4739.4, + "probability": 0.5209 + }, + { + "start": 4739.72, + "end": 4741.34, + "probability": 0.8897 + }, + { + "start": 4741.62, + "end": 4747.24, + "probability": 0.9786 + }, + { + "start": 4747.32, + "end": 4751.62, + "probability": 0.9694 + }, + { + "start": 4751.7, + "end": 4755.44, + "probability": 0.9605 + }, + { + "start": 4755.74, + "end": 4757.02, + "probability": 0.8265 + }, + { + "start": 4757.3, + "end": 4759.03, + "probability": 0.995 + }, + { + "start": 4759.36, + "end": 4761.06, + "probability": 0.9791 + }, + { + "start": 4761.4, + "end": 4765.92, + "probability": 0.9927 + }, + { + "start": 4766.56, + "end": 4767.62, + "probability": 0.7278 + }, + { + "start": 4767.98, + "end": 4771.26, + "probability": 0.673 + }, + { + "start": 4772.48, + "end": 4776.24, + "probability": 0.8778 + }, + { + "start": 4776.74, + "end": 4780.82, + "probability": 0.964 + }, + { + "start": 4781.54, + "end": 4785.72, + "probability": 0.969 + }, + { + "start": 4786.4, + "end": 4788.02, + "probability": 0.8655 + }, + { + "start": 4788.54, + "end": 4789.0, + "probability": 0.4797 + }, + { + "start": 4789.96, + "end": 4790.68, + "probability": 0.9658 + }, + { + "start": 4791.08, + "end": 4791.94, + "probability": 0.9208 + }, + { + "start": 4792.34, + "end": 4793.54, + "probability": 0.9605 + }, + { + "start": 4793.98, + "end": 4799.36, + "probability": 0.9937 + }, + { + "start": 4799.94, + "end": 4800.66, + "probability": 0.9542 + }, + { + "start": 4800.88, + "end": 4805.2, + "probability": 0.9956 + }, + { + "start": 4805.7, + "end": 4806.64, + "probability": 0.8777 + }, + { + "start": 4807.26, + "end": 4808.82, + "probability": 0.9235 + }, + { + "start": 4808.86, + "end": 4809.88, + "probability": 0.9163 + }, + { + "start": 4810.32, + "end": 4813.46, + "probability": 0.9875 + }, + { + "start": 4813.84, + "end": 4816.9, + "probability": 0.9573 + }, + { + "start": 4817.4, + "end": 4820.72, + "probability": 0.9344 + }, + { + "start": 4821.56, + "end": 4822.74, + "probability": 0.9666 + }, + { + "start": 4823.1, + "end": 4823.86, + "probability": 0.9187 + }, + { + "start": 4823.98, + "end": 4826.16, + "probability": 0.9318 + }, + { + "start": 4826.24, + "end": 4827.3, + "probability": 0.935 + }, + { + "start": 4827.66, + "end": 4830.16, + "probability": 0.9849 + }, + { + "start": 4830.52, + "end": 4833.0, + "probability": 0.9219 + }, + { + "start": 4833.54, + "end": 4836.72, + "probability": 0.9806 + }, + { + "start": 4837.08, + "end": 4838.95, + "probability": 0.9829 + }, + { + "start": 4839.52, + "end": 4842.85, + "probability": 0.9878 + }, + { + "start": 4843.16, + "end": 4848.64, + "probability": 0.9221 + }, + { + "start": 4848.98, + "end": 4852.28, + "probability": 0.9889 + }, + { + "start": 4852.82, + "end": 4853.9, + "probability": 0.5261 + }, + { + "start": 4854.42, + "end": 4857.48, + "probability": 0.9956 + }, + { + "start": 4857.62, + "end": 4859.74, + "probability": 0.9685 + }, + { + "start": 4860.24, + "end": 4863.96, + "probability": 0.9602 + }, + { + "start": 4864.46, + "end": 4865.92, + "probability": 0.9475 + }, + { + "start": 4867.38, + "end": 4871.94, + "probability": 0.8669 + }, + { + "start": 4871.94, + "end": 4876.68, + "probability": 0.9922 + }, + { + "start": 4876.8, + "end": 4878.06, + "probability": 0.8116 + }, + { + "start": 4879.12, + "end": 4885.22, + "probability": 0.9159 + }, + { + "start": 4885.24, + "end": 4886.74, + "probability": 0.9943 + }, + { + "start": 4886.9, + "end": 4887.76, + "probability": 0.524 + }, + { + "start": 4888.16, + "end": 4888.94, + "probability": 0.8603 + }, + { + "start": 4889.1, + "end": 4892.26, + "probability": 0.0034 + }, + { + "start": 4892.42, + "end": 4895.62, + "probability": 0.5956 + }, + { + "start": 4895.78, + "end": 4897.18, + "probability": 0.4576 + }, + { + "start": 4897.48, + "end": 4899.84, + "probability": 0.9849 + }, + { + "start": 4900.0, + "end": 4901.6, + "probability": 0.8987 + }, + { + "start": 4901.78, + "end": 4903.14, + "probability": 0.7326 + }, + { + "start": 4903.68, + "end": 4904.38, + "probability": 0.5248 + }, + { + "start": 4904.4, + "end": 4908.36, + "probability": 0.8687 + }, + { + "start": 4908.48, + "end": 4909.66, + "probability": 0.5637 + }, + { + "start": 4910.28, + "end": 4911.3, + "probability": 0.6804 + }, + { + "start": 4911.92, + "end": 4913.9, + "probability": 0.584 + }, + { + "start": 4913.98, + "end": 4916.12, + "probability": 0.943 + }, + { + "start": 4916.4, + "end": 4919.02, + "probability": 0.9438 + }, + { + "start": 4919.28, + "end": 4921.98, + "probability": 0.9771 + }, + { + "start": 4922.3, + "end": 4926.02, + "probability": 0.1858 + }, + { + "start": 4926.02, + "end": 4928.62, + "probability": 0.4312 + }, + { + "start": 4928.92, + "end": 4929.26, + "probability": 0.0333 + }, + { + "start": 4929.26, + "end": 4935.54, + "probability": 0.3121 + }, + { + "start": 4936.14, + "end": 4937.22, + "probability": 0.2552 + }, + { + "start": 4938.46, + "end": 4939.84, + "probability": 0.2693 + }, + { + "start": 4944.16, + "end": 4947.18, + "probability": 0.2635 + }, + { + "start": 4947.2, + "end": 4948.62, + "probability": 0.3794 + }, + { + "start": 4949.18, + "end": 4953.34, + "probability": 0.499 + }, + { + "start": 4953.7, + "end": 4956.68, + "probability": 0.8326 + }, + { + "start": 4956.68, + "end": 4959.96, + "probability": 0.8865 + }, + { + "start": 4960.18, + "end": 4963.94, + "probability": 0.7512 + }, + { + "start": 4964.02, + "end": 4965.0, + "probability": 0.7396 + }, + { + "start": 4965.74, + "end": 4967.7, + "probability": 0.5128 + }, + { + "start": 4967.9, + "end": 4968.44, + "probability": 0.3743 + }, + { + "start": 4968.5, + "end": 4969.8, + "probability": 0.3786 + }, + { + "start": 4969.84, + "end": 4971.94, + "probability": 0.804 + }, + { + "start": 4972.14, + "end": 4973.86, + "probability": 0.7854 + }, + { + "start": 4993.78, + "end": 4997.72, + "probability": 0.6925 + }, + { + "start": 4998.88, + "end": 5000.24, + "probability": 0.4784 + }, + { + "start": 5001.2, + "end": 5005.88, + "probability": 0.695 + }, + { + "start": 5005.88, + "end": 5012.48, + "probability": 0.7597 + }, + { + "start": 5013.3, + "end": 5018.26, + "probability": 0.9762 + }, + { + "start": 5019.94, + "end": 5024.7, + "probability": 0.9611 + }, + { + "start": 5025.78, + "end": 5028.26, + "probability": 0.9911 + }, + { + "start": 5029.34, + "end": 5032.08, + "probability": 0.9966 + }, + { + "start": 5033.08, + "end": 5035.12, + "probability": 0.955 + }, + { + "start": 5036.24, + "end": 5037.44, + "probability": 0.7988 + }, + { + "start": 5038.46, + "end": 5041.4, + "probability": 0.9934 + }, + { + "start": 5042.06, + "end": 5043.52, + "probability": 0.9481 + }, + { + "start": 5044.18, + "end": 5044.82, + "probability": 0.9526 + }, + { + "start": 5045.88, + "end": 5050.2, + "probability": 0.9924 + }, + { + "start": 5050.9, + "end": 5051.86, + "probability": 0.4911 + }, + { + "start": 5053.02, + "end": 5058.38, + "probability": 0.9773 + }, + { + "start": 5059.12, + "end": 5065.1, + "probability": 0.9424 + }, + { + "start": 5065.84, + "end": 5071.88, + "probability": 0.968 + }, + { + "start": 5072.74, + "end": 5078.92, + "probability": 0.9736 + }, + { + "start": 5079.54, + "end": 5081.84, + "probability": 0.8629 + }, + { + "start": 5082.56, + "end": 5085.56, + "probability": 0.9974 + }, + { + "start": 5087.22, + "end": 5092.58, + "probability": 0.998 + }, + { + "start": 5094.02, + "end": 5096.8, + "probability": 0.9805 + }, + { + "start": 5097.56, + "end": 5100.66, + "probability": 0.8415 + }, + { + "start": 5101.22, + "end": 5106.5, + "probability": 0.7755 + }, + { + "start": 5108.14, + "end": 5112.68, + "probability": 0.761 + }, + { + "start": 5113.42, + "end": 5116.0, + "probability": 0.9019 + }, + { + "start": 5117.42, + "end": 5122.04, + "probability": 0.9931 + }, + { + "start": 5122.88, + "end": 5127.14, + "probability": 0.9684 + }, + { + "start": 5128.4, + "end": 5129.28, + "probability": 0.589 + }, + { + "start": 5130.02, + "end": 5132.88, + "probability": 0.7395 + }, + { + "start": 5134.16, + "end": 5138.4, + "probability": 0.8089 + }, + { + "start": 5138.4, + "end": 5142.38, + "probability": 0.9771 + }, + { + "start": 5143.46, + "end": 5145.72, + "probability": 0.9612 + }, + { + "start": 5146.26, + "end": 5147.12, + "probability": 0.7899 + }, + { + "start": 5148.08, + "end": 5152.0, + "probability": 0.6963 + }, + { + "start": 5152.52, + "end": 5154.84, + "probability": 0.7661 + }, + { + "start": 5155.54, + "end": 5158.58, + "probability": 0.907 + }, + { + "start": 5159.44, + "end": 5163.96, + "probability": 0.8558 + }, + { + "start": 5164.76, + "end": 5168.34, + "probability": 0.9855 + }, + { + "start": 5169.24, + "end": 5171.44, + "probability": 0.7739 + }, + { + "start": 5171.84, + "end": 5177.44, + "probability": 0.9927 + }, + { + "start": 5178.28, + "end": 5181.98, + "probability": 0.9974 + }, + { + "start": 5182.82, + "end": 5187.38, + "probability": 0.9795 + }, + { + "start": 5187.38, + "end": 5190.9, + "probability": 0.9977 + }, + { + "start": 5191.56, + "end": 5195.2, + "probability": 0.937 + }, + { + "start": 5195.2, + "end": 5199.76, + "probability": 0.9157 + }, + { + "start": 5200.56, + "end": 5202.82, + "probability": 0.7706 + }, + { + "start": 5203.54, + "end": 5204.82, + "probability": 0.8325 + }, + { + "start": 5205.36, + "end": 5210.58, + "probability": 0.9261 + }, + { + "start": 5210.78, + "end": 5213.52, + "probability": 0.7196 + }, + { + "start": 5213.88, + "end": 5216.28, + "probability": 0.436 + }, + { + "start": 5216.44, + "end": 5220.1, + "probability": 0.8774 + }, + { + "start": 5220.68, + "end": 5221.82, + "probability": 0.7092 + }, + { + "start": 5237.6, + "end": 5239.24, + "probability": 0.4065 + }, + { + "start": 5239.24, + "end": 5239.76, + "probability": 0.5345 + }, + { + "start": 5239.8, + "end": 5240.36, + "probability": 0.7229 + }, + { + "start": 5240.5, + "end": 5241.8, + "probability": 0.8993 + }, + { + "start": 5248.54, + "end": 5251.46, + "probability": 0.5339 + }, + { + "start": 5253.04, + "end": 5253.88, + "probability": 0.9424 + }, + { + "start": 5254.9, + "end": 5255.38, + "probability": 0.8142 + }, + { + "start": 5255.54, + "end": 5261.42, + "probability": 0.8611 + }, + { + "start": 5262.26, + "end": 5270.56, + "probability": 0.9597 + }, + { + "start": 5270.76, + "end": 5271.78, + "probability": 0.6979 + }, + { + "start": 5272.38, + "end": 5276.74, + "probability": 0.6239 + }, + { + "start": 5276.96, + "end": 5278.14, + "probability": 0.1802 + }, + { + "start": 5278.56, + "end": 5281.06, + "probability": 0.7086 + }, + { + "start": 5281.8, + "end": 5285.22, + "probability": 0.7197 + }, + { + "start": 5285.86, + "end": 5288.9, + "probability": 0.9517 + }, + { + "start": 5289.02, + "end": 5290.92, + "probability": 0.2134 + }, + { + "start": 5290.98, + "end": 5292.86, + "probability": 0.9928 + }, + { + "start": 5292.86, + "end": 5295.76, + "probability": 0.9628 + }, + { + "start": 5296.16, + "end": 5297.87, + "probability": 0.8921 + }, + { + "start": 5298.3, + "end": 5302.04, + "probability": 0.9928 + }, + { + "start": 5302.82, + "end": 5309.56, + "probability": 0.8672 + }, + { + "start": 5310.8, + "end": 5316.2, + "probability": 0.8078 + }, + { + "start": 5316.32, + "end": 5318.16, + "probability": 0.9591 + }, + { + "start": 5319.74, + "end": 5321.6, + "probability": 0.7901 + }, + { + "start": 5322.36, + "end": 5323.02, + "probability": 0.9418 + }, + { + "start": 5323.94, + "end": 5326.18, + "probability": 0.4839 + }, + { + "start": 5326.26, + "end": 5331.34, + "probability": 0.8716 + }, + { + "start": 5332.78, + "end": 5337.4, + "probability": 0.9746 + }, + { + "start": 5337.4, + "end": 5341.14, + "probability": 0.9982 + }, + { + "start": 5343.0, + "end": 5344.28, + "probability": 0.9418 + }, + { + "start": 5344.76, + "end": 5350.94, + "probability": 0.9774 + }, + { + "start": 5352.18, + "end": 5352.4, + "probability": 0.1491 + }, + { + "start": 5352.4, + "end": 5355.7, + "probability": 0.9574 + }, + { + "start": 5357.12, + "end": 5363.88, + "probability": 0.9842 + }, + { + "start": 5364.46, + "end": 5366.96, + "probability": 0.9971 + }, + { + "start": 5368.06, + "end": 5370.24, + "probability": 0.6649 + }, + { + "start": 5371.12, + "end": 5374.24, + "probability": 0.954 + }, + { + "start": 5375.48, + "end": 5377.04, + "probability": 0.9783 + }, + { + "start": 5377.9, + "end": 5379.18, + "probability": 0.9769 + }, + { + "start": 5380.04, + "end": 5381.48, + "probability": 0.7412 + }, + { + "start": 5383.38, + "end": 5385.96, + "probability": 0.9039 + }, + { + "start": 5386.54, + "end": 5388.16, + "probability": 0.903 + }, + { + "start": 5389.34, + "end": 5393.5, + "probability": 0.9865 + }, + { + "start": 5394.24, + "end": 5395.96, + "probability": 0.9976 + }, + { + "start": 5397.8, + "end": 5399.56, + "probability": 0.8443 + }, + { + "start": 5400.8, + "end": 5404.86, + "probability": 0.9832 + }, + { + "start": 5405.32, + "end": 5407.42, + "probability": 0.9985 + }, + { + "start": 5408.38, + "end": 5411.4, + "probability": 0.993 + }, + { + "start": 5413.38, + "end": 5421.9, + "probability": 0.9141 + }, + { + "start": 5422.58, + "end": 5426.28, + "probability": 0.998 + }, + { + "start": 5427.34, + "end": 5430.24, + "probability": 0.9822 + }, + { + "start": 5431.44, + "end": 5435.52, + "probability": 0.9915 + }, + { + "start": 5436.06, + "end": 5436.88, + "probability": 0.7512 + }, + { + "start": 5437.88, + "end": 5440.28, + "probability": 0.9642 + }, + { + "start": 5441.34, + "end": 5444.76, + "probability": 0.9949 + }, + { + "start": 5446.36, + "end": 5452.04, + "probability": 0.966 + }, + { + "start": 5452.6, + "end": 5454.08, + "probability": 0.9503 + }, + { + "start": 5455.24, + "end": 5459.4, + "probability": 0.9031 + }, + { + "start": 5459.54, + "end": 5462.74, + "probability": 0.9771 + }, + { + "start": 5463.96, + "end": 5469.24, + "probability": 0.9987 + }, + { + "start": 5469.8, + "end": 5471.98, + "probability": 0.9714 + }, + { + "start": 5472.7, + "end": 5474.3, + "probability": 0.634 + }, + { + "start": 5475.18, + "end": 5476.48, + "probability": 0.9839 + }, + { + "start": 5477.38, + "end": 5482.94, + "probability": 0.9805 + }, + { + "start": 5483.76, + "end": 5486.64, + "probability": 0.9498 + }, + { + "start": 5487.64, + "end": 5493.16, + "probability": 0.9781 + }, + { + "start": 5493.16, + "end": 5498.54, + "probability": 0.9911 + }, + { + "start": 5499.22, + "end": 5502.66, + "probability": 0.9556 + }, + { + "start": 5503.28, + "end": 5504.12, + "probability": 0.821 + }, + { + "start": 5505.24, + "end": 5508.18, + "probability": 0.7782 + }, + { + "start": 5509.02, + "end": 5510.04, + "probability": 0.809 + }, + { + "start": 5510.6, + "end": 5513.04, + "probability": 0.9883 + }, + { + "start": 5513.98, + "end": 5516.1, + "probability": 0.8932 + }, + { + "start": 5516.72, + "end": 5519.22, + "probability": 0.9709 + }, + { + "start": 5523.12, + "end": 5525.22, + "probability": 0.8323 + }, + { + "start": 5525.76, + "end": 5527.92, + "probability": 0.9657 + }, + { + "start": 5528.66, + "end": 5532.74, + "probability": 0.9951 + }, + { + "start": 5533.26, + "end": 5534.84, + "probability": 0.4022 + }, + { + "start": 5535.2, + "end": 5538.36, + "probability": 0.9077 + }, + { + "start": 5540.44, + "end": 5541.42, + "probability": 0.4859 + }, + { + "start": 5542.42, + "end": 5544.18, + "probability": 0.9685 + }, + { + "start": 5544.74, + "end": 5546.96, + "probability": 0.994 + }, + { + "start": 5548.62, + "end": 5550.08, + "probability": 0.9346 + }, + { + "start": 5550.6, + "end": 5551.48, + "probability": 0.6297 + }, + { + "start": 5552.26, + "end": 5555.18, + "probability": 0.9149 + }, + { + "start": 5555.6, + "end": 5556.78, + "probability": 0.9807 + }, + { + "start": 5557.16, + "end": 5558.12, + "probability": 0.978 + }, + { + "start": 5558.56, + "end": 5562.94, + "probability": 0.9983 + }, + { + "start": 5563.62, + "end": 5566.78, + "probability": 0.948 + }, + { + "start": 5566.94, + "end": 5568.18, + "probability": 0.7486 + }, + { + "start": 5569.76, + "end": 5573.44, + "probability": 0.9852 + }, + { + "start": 5574.74, + "end": 5576.42, + "probability": 0.8533 + }, + { + "start": 5577.4, + "end": 5581.24, + "probability": 0.9653 + }, + { + "start": 5583.08, + "end": 5583.68, + "probability": 0.593 + }, + { + "start": 5584.42, + "end": 5589.68, + "probability": 0.9507 + }, + { + "start": 5590.38, + "end": 5592.58, + "probability": 0.8871 + }, + { + "start": 5593.41, + "end": 5600.32, + "probability": 0.9966 + }, + { + "start": 5600.74, + "end": 5604.24, + "probability": 0.9342 + }, + { + "start": 5605.4, + "end": 5607.0, + "probability": 0.9331 + }, + { + "start": 5607.64, + "end": 5611.2, + "probability": 0.998 + }, + { + "start": 5611.8, + "end": 5613.18, + "probability": 0.9978 + }, + { + "start": 5613.24, + "end": 5613.46, + "probability": 0.7467 + }, + { + "start": 5613.5, + "end": 5617.04, + "probability": 0.881 + }, + { + "start": 5618.42, + "end": 5618.94, + "probability": 0.8007 + }, + { + "start": 5619.06, + "end": 5619.26, + "probability": 0.8381 + }, + { + "start": 5619.38, + "end": 5619.88, + "probability": 0.9067 + }, + { + "start": 5620.08, + "end": 5621.38, + "probability": 0.9946 + }, + { + "start": 5622.2, + "end": 5625.86, + "probability": 0.985 + }, + { + "start": 5627.12, + "end": 5630.02, + "probability": 0.9901 + }, + { + "start": 5631.2, + "end": 5636.22, + "probability": 0.9776 + }, + { + "start": 5636.72, + "end": 5638.44, + "probability": 0.9836 + }, + { + "start": 5638.98, + "end": 5643.34, + "probability": 0.9941 + }, + { + "start": 5644.08, + "end": 5644.68, + "probability": 0.6326 + }, + { + "start": 5645.54, + "end": 5648.36, + "probability": 0.9189 + }, + { + "start": 5649.58, + "end": 5651.12, + "probability": 0.9813 + }, + { + "start": 5651.84, + "end": 5653.84, + "probability": 0.9799 + }, + { + "start": 5654.84, + "end": 5658.56, + "probability": 0.9556 + }, + { + "start": 5659.36, + "end": 5665.22, + "probability": 0.9793 + }, + { + "start": 5666.26, + "end": 5668.1, + "probability": 0.8696 + }, + { + "start": 5669.02, + "end": 5670.2, + "probability": 0.6552 + }, + { + "start": 5670.26, + "end": 5670.86, + "probability": 0.7467 + }, + { + "start": 5670.94, + "end": 5675.6, + "probability": 0.8255 + }, + { + "start": 5676.16, + "end": 5680.5, + "probability": 0.7974 + }, + { + "start": 5681.34, + "end": 5682.5, + "probability": 0.9756 + }, + { + "start": 5683.4, + "end": 5686.98, + "probability": 0.7015 + }, + { + "start": 5687.08, + "end": 5687.08, + "probability": 0.1938 + }, + { + "start": 5687.08, + "end": 5690.17, + "probability": 0.5138 + }, + { + "start": 5690.34, + "end": 5696.56, + "probability": 0.9785 + }, + { + "start": 5698.18, + "end": 5698.18, + "probability": 0.009 + }, + { + "start": 5698.18, + "end": 5699.24, + "probability": 0.7568 + }, + { + "start": 5699.28, + "end": 5700.47, + "probability": 0.9426 + }, + { + "start": 5700.96, + "end": 5704.0, + "probability": 0.8154 + }, + { + "start": 5704.42, + "end": 5705.84, + "probability": 0.7979 + }, + { + "start": 5706.62, + "end": 5708.56, + "probability": 0.9884 + }, + { + "start": 5708.94, + "end": 5710.12, + "probability": 0.9451 + }, + { + "start": 5710.5, + "end": 5718.5, + "probability": 0.9364 + }, + { + "start": 5718.66, + "end": 5721.1, + "probability": 0.4344 + }, + { + "start": 5721.76, + "end": 5724.38, + "probability": 0.9222 + }, + { + "start": 5724.74, + "end": 5730.6, + "probability": 0.9884 + }, + { + "start": 5731.58, + "end": 5733.84, + "probability": 0.9463 + }, + { + "start": 5734.9, + "end": 5736.92, + "probability": 0.8578 + }, + { + "start": 5738.74, + "end": 5739.68, + "probability": 0.8191 + }, + { + "start": 5740.2, + "end": 5741.62, + "probability": 0.9728 + }, + { + "start": 5741.78, + "end": 5752.32, + "probability": 0.978 + }, + { + "start": 5752.58, + "end": 5754.88, + "probability": 0.6805 + }, + { + "start": 5755.92, + "end": 5756.43, + "probability": 0.9512 + }, + { + "start": 5757.68, + "end": 5759.34, + "probability": 0.9978 + }, + { + "start": 5760.68, + "end": 5763.58, + "probability": 0.9819 + }, + { + "start": 5765.38, + "end": 5772.68, + "probability": 0.9976 + }, + { + "start": 5773.84, + "end": 5774.76, + "probability": 0.998 + }, + { + "start": 5775.9, + "end": 5777.79, + "probability": 0.9998 + }, + { + "start": 5778.32, + "end": 5779.89, + "probability": 0.9995 + }, + { + "start": 5781.12, + "end": 5784.14, + "probability": 0.9893 + }, + { + "start": 5784.5, + "end": 5785.74, + "probability": 0.9834 + }, + { + "start": 5785.92, + "end": 5786.9, + "probability": 0.9551 + }, + { + "start": 5786.98, + "end": 5787.64, + "probability": 0.9839 + }, + { + "start": 5787.7, + "end": 5789.18, + "probability": 0.6554 + }, + { + "start": 5790.78, + "end": 5792.88, + "probability": 0.6649 + }, + { + "start": 5793.4, + "end": 5796.72, + "probability": 0.9772 + }, + { + "start": 5797.12, + "end": 5798.16, + "probability": 0.9849 + }, + { + "start": 5801.38, + "end": 5805.04, + "probability": 0.9877 + }, + { + "start": 5806.22, + "end": 5808.54, + "probability": 0.9819 + }, + { + "start": 5809.76, + "end": 5813.0, + "probability": 0.8236 + }, + { + "start": 5813.78, + "end": 5816.76, + "probability": 0.8831 + }, + { + "start": 5816.96, + "end": 5817.7, + "probability": 0.6001 + }, + { + "start": 5819.22, + "end": 5819.88, + "probability": 0.4963 + }, + { + "start": 5821.6, + "end": 5824.12, + "probability": 0.8472 + }, + { + "start": 5824.24, + "end": 5824.24, + "probability": 0.3011 + }, + { + "start": 5824.24, + "end": 5825.44, + "probability": 0.8849 + }, + { + "start": 5826.44, + "end": 5828.46, + "probability": 0.978 + }, + { + "start": 5829.7, + "end": 5830.47, + "probability": 0.936 + }, + { + "start": 5831.26, + "end": 5834.3, + "probability": 0.9893 + }, + { + "start": 5835.3, + "end": 5836.92, + "probability": 0.965 + }, + { + "start": 5837.42, + "end": 5838.78, + "probability": 0.9646 + }, + { + "start": 5840.52, + "end": 5843.66, + "probability": 0.9064 + }, + { + "start": 5844.78, + "end": 5846.58, + "probability": 0.7402 + }, + { + "start": 5847.66, + "end": 5853.14, + "probability": 0.8486 + }, + { + "start": 5853.48, + "end": 5856.08, + "probability": 0.4982 + }, + { + "start": 5856.22, + "end": 5859.36, + "probability": 0.865 + }, + { + "start": 5860.22, + "end": 5861.84, + "probability": 0.7217 + }, + { + "start": 5862.5, + "end": 5864.98, + "probability": 0.9747 + }, + { + "start": 5865.44, + "end": 5867.56, + "probability": 0.9023 + }, + { + "start": 5867.96, + "end": 5869.08, + "probability": 0.9895 + }, + { + "start": 5870.02, + "end": 5872.52, + "probability": 0.8089 + }, + { + "start": 5873.18, + "end": 5875.66, + "probability": 0.9963 + }, + { + "start": 5876.8, + "end": 5880.0, + "probability": 0.5782 + }, + { + "start": 5881.0, + "end": 5881.92, + "probability": 0.8925 + }, + { + "start": 5882.6, + "end": 5884.08, + "probability": 0.9768 + }, + { + "start": 5884.64, + "end": 5891.62, + "probability": 0.989 + }, + { + "start": 5892.42, + "end": 5893.08, + "probability": 0.8231 + }, + { + "start": 5893.2, + "end": 5894.42, + "probability": 0.7996 + }, + { + "start": 5894.82, + "end": 5896.78, + "probability": 0.9881 + }, + { + "start": 5897.9, + "end": 5900.44, + "probability": 0.9946 + }, + { + "start": 5901.28, + "end": 5903.18, + "probability": 0.9954 + }, + { + "start": 5903.86, + "end": 5906.58, + "probability": 0.9799 + }, + { + "start": 5909.94, + "end": 5911.16, + "probability": 0.9517 + }, + { + "start": 5911.72, + "end": 5912.06, + "probability": 0.4364 + }, + { + "start": 5912.14, + "end": 5916.98, + "probability": 0.9056 + }, + { + "start": 5917.5, + "end": 5921.46, + "probability": 0.6322 + }, + { + "start": 5921.52, + "end": 5922.16, + "probability": 0.9213 + }, + { + "start": 5922.58, + "end": 5922.86, + "probability": 0.0291 + }, + { + "start": 5922.86, + "end": 5926.02, + "probability": 0.7243 + }, + { + "start": 5926.38, + "end": 5929.03, + "probability": 0.5745 + }, + { + "start": 5937.98, + "end": 5939.4, + "probability": 0.5076 + }, + { + "start": 5939.72, + "end": 5945.74, + "probability": 0.938 + }, + { + "start": 5946.58, + "end": 5948.24, + "probability": 0.9868 + }, + { + "start": 5948.36, + "end": 5950.34, + "probability": 0.6931 + }, + { + "start": 5950.86, + "end": 5953.78, + "probability": 0.973 + }, + { + "start": 5954.38, + "end": 5955.56, + "probability": 0.9814 + }, + { + "start": 5956.56, + "end": 5958.92, + "probability": 0.9169 + }, + { + "start": 5959.2, + "end": 5961.32, + "probability": 0.8901 + }, + { + "start": 5961.74, + "end": 5962.0, + "probability": 0.0282 + }, + { + "start": 5962.0, + "end": 5962.0, + "probability": 0.0052 + }, + { + "start": 5962.0, + "end": 5966.04, + "probability": 0.6962 + }, + { + "start": 5966.46, + "end": 5966.72, + "probability": 0.286 + }, + { + "start": 5966.72, + "end": 5966.82, + "probability": 0.1421 + }, + { + "start": 5966.82, + "end": 5971.48, + "probability": 0.818 + }, + { + "start": 5971.74, + "end": 5971.82, + "probability": 0.0168 + }, + { + "start": 5971.82, + "end": 5975.74, + "probability": 0.9403 + }, + { + "start": 5975.74, + "end": 5979.28, + "probability": 0.9441 + }, + { + "start": 5979.74, + "end": 5981.32, + "probability": 0.9146 + }, + { + "start": 5981.82, + "end": 5981.88, + "probability": 0.0137 + }, + { + "start": 5981.88, + "end": 5981.88, + "probability": 0.0905 + }, + { + "start": 5981.88, + "end": 5984.24, + "probability": 0.6923 + }, + { + "start": 5984.74, + "end": 5984.74, + "probability": 0.0111 + }, + { + "start": 5984.74, + "end": 5984.74, + "probability": 0.0844 + }, + { + "start": 5984.74, + "end": 5989.04, + "probability": 0.9287 + }, + { + "start": 5989.24, + "end": 5989.24, + "probability": 0.009 + }, + { + "start": 5989.24, + "end": 5994.44, + "probability": 0.9967 + }, + { + "start": 5994.76, + "end": 5995.92, + "probability": 0.8018 + }, + { + "start": 5996.28, + "end": 5998.54, + "probability": 0.9951 + }, + { + "start": 5999.3, + "end": 6000.24, + "probability": 0.4359 + }, + { + "start": 6000.3, + "end": 6002.32, + "probability": 0.9867 + }, + { + "start": 6002.66, + "end": 6003.86, + "probability": 0.8738 + }, + { + "start": 6003.86, + "end": 6004.48, + "probability": 0.5096 + }, + { + "start": 6005.04, + "end": 6005.16, + "probability": 0.0541 + }, + { + "start": 6005.26, + "end": 6005.28, + "probability": 0.1324 + }, + { + "start": 6005.38, + "end": 6006.14, + "probability": 0.391 + }, + { + "start": 6006.16, + "end": 6008.36, + "probability": 0.9614 + }, + { + "start": 6008.56, + "end": 6009.97, + "probability": 0.572 + }, + { + "start": 6010.36, + "end": 6011.86, + "probability": 0.6151 + }, + { + "start": 6012.06, + "end": 6013.94, + "probability": 0.4439 + }, + { + "start": 6016.46, + "end": 6016.64, + "probability": 0.0126 + }, + { + "start": 6016.64, + "end": 6016.64, + "probability": 0.1969 + }, + { + "start": 6016.64, + "end": 6016.64, + "probability": 0.0657 + }, + { + "start": 6016.64, + "end": 6017.22, + "probability": 0.1746 + }, + { + "start": 6017.22, + "end": 6018.6, + "probability": 0.689 + }, + { + "start": 6019.02, + "end": 6021.46, + "probability": 0.7953 + }, + { + "start": 6021.92, + "end": 6025.34, + "probability": 0.8266 + }, + { + "start": 6025.76, + "end": 6026.96, + "probability": 0.8211 + }, + { + "start": 6027.22, + "end": 6028.61, + "probability": 0.8799 + }, + { + "start": 6029.0, + "end": 6030.9, + "probability": 0.9817 + }, + { + "start": 6031.22, + "end": 6036.22, + "probability": 0.9844 + }, + { + "start": 6036.58, + "end": 6036.66, + "probability": 0.0224 + }, + { + "start": 6036.66, + "end": 6038.08, + "probability": 0.7701 + }, + { + "start": 6038.74, + "end": 6039.06, + "probability": 0.0002 + }, + { + "start": 6039.64, + "end": 6039.88, + "probability": 0.0468 + }, + { + "start": 6039.88, + "end": 6040.51, + "probability": 0.2294 + }, + { + "start": 6041.28, + "end": 6042.58, + "probability": 0.8464 + }, + { + "start": 6042.94, + "end": 6049.04, + "probability": 0.8927 + }, + { + "start": 6049.3, + "end": 6050.92, + "probability": 0.727 + }, + { + "start": 6051.32, + "end": 6052.58, + "probability": 0.6983 + }, + { + "start": 6052.92, + "end": 6054.92, + "probability": 0.9285 + }, + { + "start": 6055.26, + "end": 6057.54, + "probability": 0.8786 + }, + { + "start": 6057.9, + "end": 6057.92, + "probability": 0.0771 + }, + { + "start": 6057.92, + "end": 6057.92, + "probability": 0.1498 + }, + { + "start": 6057.92, + "end": 6061.62, + "probability": 0.8176 + }, + { + "start": 6062.4, + "end": 6066.36, + "probability": 0.6316 + }, + { + "start": 6067.63, + "end": 6068.5, + "probability": 0.057 + }, + { + "start": 6068.5, + "end": 6069.04, + "probability": 0.0753 + }, + { + "start": 6069.88, + "end": 6071.66, + "probability": 0.9302 + }, + { + "start": 6071.92, + "end": 6074.28, + "probability": 0.6241 + }, + { + "start": 6075.44, + "end": 6075.94, + "probability": 0.0796 + }, + { + "start": 6076.18, + "end": 6080.18, + "probability": 0.6978 + }, + { + "start": 6080.4, + "end": 6081.0, + "probability": 0.6898 + }, + { + "start": 6081.06, + "end": 6086.0, + "probability": 0.9883 + }, + { + "start": 6086.4, + "end": 6088.94, + "probability": 0.9321 + }, + { + "start": 6089.26, + "end": 6090.16, + "probability": 0.7788 + }, + { + "start": 6090.16, + "end": 6091.9, + "probability": 0.4557 + }, + { + "start": 6091.9, + "end": 6094.06, + "probability": 0.5349 + }, + { + "start": 6094.1, + "end": 6095.94, + "probability": 0.0464 + }, + { + "start": 6095.94, + "end": 6097.68, + "probability": 0.0953 + }, + { + "start": 6098.0, + "end": 6098.46, + "probability": 0.0029 + }, + { + "start": 6098.46, + "end": 6103.9, + "probability": 0.6199 + }, + { + "start": 6104.14, + "end": 6107.36, + "probability": 0.6662 + }, + { + "start": 6107.98, + "end": 6107.98, + "probability": 0.1132 + }, + { + "start": 6108.08, + "end": 6108.2, + "probability": 0.0254 + }, + { + "start": 6108.2, + "end": 6108.4, + "probability": 0.1078 + }, + { + "start": 6108.4, + "end": 6111.66, + "probability": 0.5577 + }, + { + "start": 6111.86, + "end": 6113.52, + "probability": 0.7144 + }, + { + "start": 6114.9, + "end": 6117.04, + "probability": 0.5514 + }, + { + "start": 6117.46, + "end": 6121.45, + "probability": 0.033 + }, + { + "start": 6122.0, + "end": 6124.4, + "probability": 0.0284 + }, + { + "start": 6136.74, + "end": 6137.42, + "probability": 0.122 + }, + { + "start": 6138.1, + "end": 6140.16, + "probability": 0.1207 + }, + { + "start": 6141.46, + "end": 6141.58, + "probability": 0.1812 + }, + { + "start": 6141.58, + "end": 6141.58, + "probability": 0.0182 + }, + { + "start": 6141.58, + "end": 6144.71, + "probability": 0.297 + }, + { + "start": 6145.1, + "end": 6146.2, + "probability": 0.7981 + }, + { + "start": 6146.28, + "end": 6148.66, + "probability": 0.5408 + }, + { + "start": 6149.22, + "end": 6149.42, + "probability": 0.1585 + }, + { + "start": 6149.64, + "end": 6149.76, + "probability": 0.0044 + }, + { + "start": 6149.76, + "end": 6150.76, + "probability": 0.8713 + }, + { + "start": 6151.4, + "end": 6154.76, + "probability": 0.8324 + }, + { + "start": 6154.94, + "end": 6156.62, + "probability": 0.6881 + }, + { + "start": 6156.66, + "end": 6157.48, + "probability": 0.8753 + }, + { + "start": 6159.48, + "end": 6160.36, + "probability": 0.5961 + }, + { + "start": 6161.4, + "end": 6163.22, + "probability": 0.9741 + }, + { + "start": 6163.54, + "end": 6170.96, + "probability": 0.9741 + }, + { + "start": 6172.58, + "end": 6180.78, + "probability": 0.9843 + }, + { + "start": 6181.78, + "end": 6185.6, + "probability": 0.9463 + }, + { + "start": 6186.5, + "end": 6187.22, + "probability": 0.5375 + }, + { + "start": 6187.44, + "end": 6191.56, + "probability": 0.9956 + }, + { + "start": 6192.3, + "end": 6194.5, + "probability": 0.9935 + }, + { + "start": 6195.08, + "end": 6196.29, + "probability": 1.0 + }, + { + "start": 6197.18, + "end": 6198.86, + "probability": 0.9648 + }, + { + "start": 6199.68, + "end": 6201.34, + "probability": 0.998 + }, + { + "start": 6202.0, + "end": 6203.3, + "probability": 0.887 + }, + { + "start": 6203.6, + "end": 6205.1, + "probability": 0.9385 + }, + { + "start": 6205.16, + "end": 6209.4, + "probability": 0.9695 + }, + { + "start": 6209.4, + "end": 6215.36, + "probability": 0.6996 + }, + { + "start": 6216.18, + "end": 6218.28, + "probability": 0.6701 + }, + { + "start": 6219.24, + "end": 6222.66, + "probability": 0.9301 + }, + { + "start": 6223.52, + "end": 6228.02, + "probability": 0.9761 + }, + { + "start": 6228.76, + "end": 6232.3, + "probability": 0.9382 + }, + { + "start": 6233.1, + "end": 6239.1, + "probability": 0.9926 + }, + { + "start": 6240.04, + "end": 6243.26, + "probability": 0.9886 + }, + { + "start": 6244.22, + "end": 6246.34, + "probability": 0.9425 + }, + { + "start": 6247.02, + "end": 6248.96, + "probability": 0.8391 + }, + { + "start": 6249.72, + "end": 6250.66, + "probability": 0.8325 + }, + { + "start": 6251.38, + "end": 6252.96, + "probability": 0.9983 + }, + { + "start": 6253.78, + "end": 6261.6, + "probability": 0.9787 + }, + { + "start": 6262.32, + "end": 6263.26, + "probability": 0.7478 + }, + { + "start": 6264.0, + "end": 6268.52, + "probability": 0.742 + }, + { + "start": 6269.2, + "end": 6271.96, + "probability": 0.0683 + }, + { + "start": 6272.64, + "end": 6272.64, + "probability": 0.0935 + }, + { + "start": 6272.64, + "end": 6273.56, + "probability": 0.4015 + }, + { + "start": 6274.0, + "end": 6277.54, + "probability": 0.9826 + }, + { + "start": 6277.56, + "end": 6279.84, + "probability": 0.8251 + }, + { + "start": 6279.96, + "end": 6280.76, + "probability": 0.0226 + }, + { + "start": 6280.96, + "end": 6285.74, + "probability": 0.9934 + }, + { + "start": 6285.94, + "end": 6288.4, + "probability": 0.9692 + }, + { + "start": 6288.68, + "end": 6290.27, + "probability": 0.2248 + }, + { + "start": 6290.68, + "end": 6296.6, + "probability": 0.9967 + }, + { + "start": 6296.62, + "end": 6301.28, + "probability": 0.87 + }, + { + "start": 6301.86, + "end": 6303.64, + "probability": 0.7421 + }, + { + "start": 6304.3, + "end": 6312.36, + "probability": 0.8944 + }, + { + "start": 6312.86, + "end": 6314.84, + "probability": 0.9494 + }, + { + "start": 6315.7, + "end": 6317.44, + "probability": 0.938 + }, + { + "start": 6317.96, + "end": 6323.08, + "probability": 0.9634 + }, + { + "start": 6324.48, + "end": 6324.82, + "probability": 0.7222 + }, + { + "start": 6325.74, + "end": 6328.7, + "probability": 0.9618 + }, + { + "start": 6329.26, + "end": 6331.88, + "probability": 0.9927 + }, + { + "start": 6332.76, + "end": 6338.7, + "probability": 0.9863 + }, + { + "start": 6338.98, + "end": 6338.98, + "probability": 0.387 + }, + { + "start": 6339.26, + "end": 6340.0, + "probability": 0.7038 + }, + { + "start": 6340.4, + "end": 6341.28, + "probability": 0.6234 + }, + { + "start": 6341.48, + "end": 6343.4, + "probability": 0.7874 + }, + { + "start": 6343.5, + "end": 6348.76, + "probability": 0.5926 + }, + { + "start": 6348.84, + "end": 6349.84, + "probability": 0.7608 + }, + { + "start": 6350.96, + "end": 6352.46, + "probability": 0.9385 + }, + { + "start": 6352.96, + "end": 6356.02, + "probability": 0.9722 + }, + { + "start": 6356.02, + "end": 6359.7, + "probability": 0.9919 + }, + { + "start": 6360.38, + "end": 6364.48, + "probability": 0.8632 + }, + { + "start": 6364.5, + "end": 6366.56, + "probability": 0.8357 + }, + { + "start": 6367.0, + "end": 6371.62, + "probability": 0.9976 + }, + { + "start": 6371.72, + "end": 6371.96, + "probability": 0.8123 + }, + { + "start": 6372.64, + "end": 6373.78, + "probability": 0.0375 + }, + { + "start": 6374.5, + "end": 6376.38, + "probability": 0.1029 + }, + { + "start": 6378.02, + "end": 6378.92, + "probability": 0.5967 + }, + { + "start": 6382.02, + "end": 6382.72, + "probability": 0.406 + }, + { + "start": 6383.62, + "end": 6384.86, + "probability": 0.7044 + }, + { + "start": 6385.78, + "end": 6386.32, + "probability": 0.9443 + }, + { + "start": 6389.4, + "end": 6390.14, + "probability": 0.6042 + }, + { + "start": 6391.34, + "end": 6393.56, + "probability": 0.9634 + }, + { + "start": 6395.98, + "end": 6397.04, + "probability": 0.7652 + }, + { + "start": 6399.48, + "end": 6402.3, + "probability": 0.9099 + }, + { + "start": 6404.32, + "end": 6406.02, + "probability": 0.9523 + }, + { + "start": 6406.54, + "end": 6407.44, + "probability": 0.8812 + }, + { + "start": 6410.28, + "end": 6411.34, + "probability": 0.9629 + }, + { + "start": 6415.14, + "end": 6416.1, + "probability": 0.5736 + }, + { + "start": 6417.4, + "end": 6418.48, + "probability": 0.832 + }, + { + "start": 6419.96, + "end": 6421.22, + "probability": 0.7171 + }, + { + "start": 6423.04, + "end": 6424.7, + "probability": 0.951 + }, + { + "start": 6425.66, + "end": 6426.88, + "probability": 0.6417 + }, + { + "start": 6428.38, + "end": 6429.34, + "probability": 0.9246 + }, + { + "start": 6432.46, + "end": 6433.24, + "probability": 0.6004 + }, + { + "start": 6435.66, + "end": 6437.3, + "probability": 0.8594 + }, + { + "start": 6438.34, + "end": 6439.26, + "probability": 0.8104 + }, + { + "start": 6441.59, + "end": 6444.64, + "probability": 0.8993 + }, + { + "start": 6445.4, + "end": 6447.88, + "probability": 0.9678 + }, + { + "start": 6448.56, + "end": 6450.12, + "probability": 0.8004 + }, + { + "start": 6451.02, + "end": 6451.82, + "probability": 0.9312 + }, + { + "start": 6454.34, + "end": 6457.32, + "probability": 0.7032 + }, + { + "start": 6458.62, + "end": 6460.42, + "probability": 0.8651 + }, + { + "start": 6461.48, + "end": 6462.38, + "probability": 0.8873 + }, + { + "start": 6464.42, + "end": 6464.8, + "probability": 0.7309 + }, + { + "start": 6468.0, + "end": 6469.32, + "probability": 0.517 + }, + { + "start": 6472.88, + "end": 6475.08, + "probability": 0.8481 + }, + { + "start": 6476.92, + "end": 6477.28, + "probability": 0.4774 + }, + { + "start": 6479.34, + "end": 6480.12, + "probability": 0.3505 + }, + { + "start": 6481.38, + "end": 6482.42, + "probability": 0.9277 + }, + { + "start": 6484.1, + "end": 6484.38, + "probability": 0.9407 + }, + { + "start": 6487.04, + "end": 6487.14, + "probability": 0.3974 + }, + { + "start": 6488.76, + "end": 6490.46, + "probability": 0.7732 + }, + { + "start": 6492.28, + "end": 6493.34, + "probability": 0.6277 + }, + { + "start": 6496.12, + "end": 6497.08, + "probability": 0.8291 + }, + { + "start": 6501.75, + "end": 6502.59, + "probability": 0.7759 + }, + { + "start": 6504.39, + "end": 6504.95, + "probability": 0.8564 + }, + { + "start": 6507.4, + "end": 6508.67, + "probability": 0.6913 + }, + { + "start": 6511.335, + "end": 6513.6, + "probability": 0.9546 + }, + { + "start": 6516.07, + "end": 6518.43, + "probability": 0.9304 + }, + { + "start": 6519.77, + "end": 6520.85, + "probability": 0.7944 + }, + { + "start": 6522.22, + "end": 6523.26, + "probability": 0.8805 + }, + { + "start": 6525.47, + "end": 6529.17, + "probability": 0.6783 + }, + { + "start": 6530.35, + "end": 6531.29, + "probability": 0.6808 + }, + { + "start": 6534.49, + "end": 6535.55, + "probability": 0.6041 + }, + { + "start": 6536.85, + "end": 6537.67, + "probability": 0.5313 + }, + { + "start": 6539.63, + "end": 6540.61, + "probability": 0.6808 + }, + { + "start": 6542.44, + "end": 6544.77, + "probability": 0.9595 + }, + { + "start": 6546.13, + "end": 6550.13, + "probability": 0.9383 + }, + { + "start": 6551.55, + "end": 6553.15, + "probability": 0.8706 + }, + { + "start": 6553.85, + "end": 6554.77, + "probability": 0.797 + }, + { + "start": 6556.87, + "end": 6558.07, + "probability": 0.9686 + }, + { + "start": 6558.67, + "end": 6559.67, + "probability": 0.5439 + }, + { + "start": 6561.71, + "end": 6562.15, + "probability": 0.5639 + }, + { + "start": 6566.19, + "end": 6567.09, + "probability": 0.6583 + }, + { + "start": 6568.6, + "end": 6571.39, + "probability": 0.7601 + }, + { + "start": 6572.53, + "end": 6575.17, + "probability": 0.9465 + }, + { + "start": 6577.47, + "end": 6578.35, + "probability": 0.8433 + }, + { + "start": 6580.11, + "end": 6581.65, + "probability": 0.9076 + }, + { + "start": 6583.35, + "end": 6583.73, + "probability": 0.6772 + }, + { + "start": 6587.27, + "end": 6588.23, + "probability": 0.613 + }, + { + "start": 6590.35, + "end": 6591.35, + "probability": 0.9398 + }, + { + "start": 6594.43, + "end": 6595.27, + "probability": 0.5836 + }, + { + "start": 6596.85, + "end": 6597.79, + "probability": 0.5082 + }, + { + "start": 6598.75, + "end": 6599.59, + "probability": 0.7487 + }, + { + "start": 6601.93, + "end": 6602.81, + "probability": 0.885 + }, + { + "start": 6605.99, + "end": 6606.79, + "probability": 0.5424 + }, + { + "start": 6608.29, + "end": 6613.27, + "probability": 0.811 + }, + { + "start": 6615.11, + "end": 6616.19, + "probability": 0.897 + }, + { + "start": 6617.53, + "end": 6618.91, + "probability": 0.7188 + }, + { + "start": 6620.39, + "end": 6621.45, + "probability": 0.8326 + }, + { + "start": 6624.49, + "end": 6625.47, + "probability": 0.5146 + }, + { + "start": 6626.95, + "end": 6627.69, + "probability": 0.6739 + }, + { + "start": 6630.09, + "end": 6631.21, + "probability": 0.8967 + }, + { + "start": 6632.11, + "end": 6632.85, + "probability": 0.847 + }, + { + "start": 6635.31, + "end": 6636.29, + "probability": 0.8121 + }, + { + "start": 6637.47, + "end": 6638.53, + "probability": 0.9074 + }, + { + "start": 6641.05, + "end": 6641.85, + "probability": 0.9726 + }, + { + "start": 6643.75, + "end": 6645.09, + "probability": 0.9768 + }, + { + "start": 6650.53, + "end": 6651.57, + "probability": 0.6431 + }, + { + "start": 6662.63, + "end": 6663.39, + "probability": 0.6624 + }, + { + "start": 6670.39, + "end": 6671.25, + "probability": 0.4496 + }, + { + "start": 6674.9, + "end": 6677.81, + "probability": 0.8337 + }, + { + "start": 6679.76, + "end": 6682.07, + "probability": 0.6865 + }, + { + "start": 6683.07, + "end": 6685.89, + "probability": 0.7679 + }, + { + "start": 6686.63, + "end": 6687.11, + "probability": 0.9954 + }, + { + "start": 6689.85, + "end": 6690.67, + "probability": 0.7988 + }, + { + "start": 6695.37, + "end": 6696.95, + "probability": 0.5529 + }, + { + "start": 6699.51, + "end": 6700.35, + "probability": 0.3874 + }, + { + "start": 6702.17, + "end": 6704.47, + "probability": 0.5819 + }, + { + "start": 6706.15, + "end": 6707.83, + "probability": 0.9845 + }, + { + "start": 6708.41, + "end": 6709.45, + "probability": 0.7772 + }, + { + "start": 6710.65, + "end": 6713.01, + "probability": 0.1409 + }, + { + "start": 6715.57, + "end": 6717.01, + "probability": 0.1509 + }, + { + "start": 6717.87, + "end": 6720.89, + "probability": 0.0899 + }, + { + "start": 6745.57, + "end": 6746.41, + "probability": 0.4184 + }, + { + "start": 6749.81, + "end": 6751.15, + "probability": 0.718 + }, + { + "start": 6752.99, + "end": 6753.77, + "probability": 0.6554 + }, + { + "start": 6754.87, + "end": 6755.61, + "probability": 0.9661 + }, + { + "start": 6758.85, + "end": 6759.65, + "probability": 0.5775 + }, + { + "start": 6760.97, + "end": 6762.03, + "probability": 0.7781 + }, + { + "start": 6765.57, + "end": 6766.17, + "probability": 0.5994 + }, + { + "start": 6767.19, + "end": 6770.51, + "probability": 0.8688 + }, + { + "start": 6771.49, + "end": 6772.25, + "probability": 0.8017 + }, + { + "start": 6775.11, + "end": 6776.01, + "probability": 0.7942 + }, + { + "start": 6777.13, + "end": 6777.97, + "probability": 0.6577 + }, + { + "start": 6780.49, + "end": 6781.87, + "probability": 0.5873 + }, + { + "start": 6783.07, + "end": 6784.17, + "probability": 0.551 + }, + { + "start": 6785.09, + "end": 6785.95, + "probability": 0.8341 + }, + { + "start": 6787.51, + "end": 6793.59, + "probability": 0.9089 + }, + { + "start": 6794.51, + "end": 6795.01, + "probability": 0.8786 + }, + { + "start": 6796.93, + "end": 6797.79, + "probability": 0.6097 + }, + { + "start": 6798.93, + "end": 6803.01, + "probability": 0.8468 + }, + { + "start": 6803.89, + "end": 6805.63, + "probability": 0.9864 + }, + { + "start": 6806.47, + "end": 6807.85, + "probability": 0.9517 + }, + { + "start": 6808.71, + "end": 6809.73, + "probability": 0.9859 + }, + { + "start": 6811.75, + "end": 6812.63, + "probability": 0.6807 + }, + { + "start": 6813.53, + "end": 6814.51, + "probability": 0.7859 + }, + { + "start": 6815.97, + "end": 6816.85, + "probability": 0.924 + }, + { + "start": 6817.89, + "end": 6819.61, + "probability": 0.5482 + }, + { + "start": 6821.51, + "end": 6823.91, + "probability": 0.6867 + }, + { + "start": 6826.07, + "end": 6827.11, + "probability": 0.7613 + }, + { + "start": 6828.79, + "end": 6829.53, + "probability": 0.6304 + }, + { + "start": 6831.57, + "end": 6832.49, + "probability": 0.5187 + }, + { + "start": 6833.97, + "end": 6835.55, + "probability": 0.9925 + }, + { + "start": 6836.59, + "end": 6837.93, + "probability": 0.9846 + }, + { + "start": 6838.75, + "end": 6840.65, + "probability": 0.8636 + }, + { + "start": 6843.31, + "end": 6844.87, + "probability": 0.7508 + }, + { + "start": 6845.57, + "end": 6846.65, + "probability": 0.7054 + }, + { + "start": 6848.37, + "end": 6849.75, + "probability": 0.7351 + }, + { + "start": 6860.03, + "end": 6860.37, + "probability": 0.7179 + }, + { + "start": 6861.55, + "end": 6862.37, + "probability": 0.7004 + }, + { + "start": 6864.07, + "end": 6867.33, + "probability": 0.79 + }, + { + "start": 6868.73, + "end": 6870.25, + "probability": 0.6379 + }, + { + "start": 6871.89, + "end": 6873.47, + "probability": 0.9271 + }, + { + "start": 6874.73, + "end": 6876.83, + "probability": 0.8717 + }, + { + "start": 6877.85, + "end": 6878.59, + "probability": 0.8799 + }, + { + "start": 6880.25, + "end": 6881.23, + "probability": 0.4596 + }, + { + "start": 6887.43, + "end": 6888.57, + "probability": 0.3598 + }, + { + "start": 6890.37, + "end": 6891.15, + "probability": 0.4962 + }, + { + "start": 6894.15, + "end": 6895.05, + "probability": 0.6624 + }, + { + "start": 6897.19, + "end": 6898.49, + "probability": 0.832 + }, + { + "start": 6902.95, + "end": 6904.29, + "probability": 0.6108 + }, + { + "start": 6906.09, + "end": 6907.33, + "probability": 0.8777 + }, + { + "start": 6910.63, + "end": 6911.71, + "probability": 0.7174 + }, + { + "start": 6913.09, + "end": 6913.67, + "probability": 0.7559 + }, + { + "start": 6915.93, + "end": 6917.01, + "probability": 0.7202 + }, + { + "start": 6919.89, + "end": 6921.71, + "probability": 0.7747 + }, + { + "start": 6922.39, + "end": 6923.47, + "probability": 0.6619 + }, + { + "start": 6925.11, + "end": 6925.91, + "probability": 0.8779 + }, + { + "start": 6928.31, + "end": 6929.55, + "probability": 0.8469 + }, + { + "start": 6935.15, + "end": 6937.53, + "probability": 0.5745 + }, + { + "start": 6939.51, + "end": 6940.55, + "probability": 0.7923 + }, + { + "start": 6942.35, + "end": 6942.67, + "probability": 0.5502 + }, + { + "start": 6944.49, + "end": 6945.33, + "probability": 0.7884 + }, + { + "start": 6946.61, + "end": 6949.49, + "probability": 0.6242 + }, + { + "start": 6950.97, + "end": 6951.83, + "probability": 0.6843 + }, + { + "start": 6954.21, + "end": 6955.05, + "probability": 0.8863 + }, + { + "start": 6956.43, + "end": 6956.91, + "probability": 0.981 + }, + { + "start": 6958.33, + "end": 6959.25, + "probability": 0.849 + }, + { + "start": 6960.35, + "end": 6960.71, + "probability": 0.9702 + }, + { + "start": 6962.21, + "end": 6963.01, + "probability": 0.853 + }, + { + "start": 6964.03, + "end": 6964.35, + "probability": 0.7666 + }, + { + "start": 6965.89, + "end": 6970.47, + "probability": 0.764 + }, + { + "start": 6971.59, + "end": 6972.85, + "probability": 0.687 + }, + { + "start": 6976.21, + "end": 6977.07, + "probability": 0.4527 + }, + { + "start": 6978.43, + "end": 6979.55, + "probability": 0.712 + }, + { + "start": 6980.49, + "end": 6981.41, + "probability": 0.6356 + }, + { + "start": 6982.29, + "end": 6983.25, + "probability": 0.668 + }, + { + "start": 6984.33, + "end": 6985.13, + "probability": 0.7304 + }, + { + "start": 6986.01, + "end": 6987.65, + "probability": 0.8291 + }, + { + "start": 6990.85, + "end": 6991.67, + "probability": 0.6948 + }, + { + "start": 6993.15, + "end": 6996.63, + "probability": 0.7283 + }, + { + "start": 6998.13, + "end": 7000.45, + "probability": 0.9803 + }, + { + "start": 7001.79, + "end": 7002.67, + "probability": 0.9715 + }, + { + "start": 7003.67, + "end": 7004.69, + "probability": 0.662 + }, + { + "start": 7005.65, + "end": 7006.19, + "probability": 0.9456 + }, + { + "start": 7007.69, + "end": 7008.73, + "probability": 0.9321 + }, + { + "start": 7009.51, + "end": 7010.51, + "probability": 0.9771 + }, + { + "start": 7011.85, + "end": 7013.03, + "probability": 0.9223 + }, + { + "start": 7013.99, + "end": 7017.63, + "probability": 0.6209 + }, + { + "start": 7019.01, + "end": 7019.31, + "probability": 0.7495 + }, + { + "start": 7021.81, + "end": 7022.87, + "probability": 0.7342 + }, + { + "start": 7024.09, + "end": 7026.33, + "probability": 0.9017 + }, + { + "start": 7027.13, + "end": 7028.41, + "probability": 0.689 + }, + { + "start": 7029.25, + "end": 7032.81, + "probability": 0.7786 + }, + { + "start": 7033.93, + "end": 7034.97, + "probability": 0.5815 + }, + { + "start": 7036.13, + "end": 7037.37, + "probability": 0.7871 + }, + { + "start": 7038.89, + "end": 7039.89, + "probability": 0.8105 + }, + { + "start": 7040.25, + "end": 7043.11, + "probability": 0.2297 + }, + { + "start": 7044.62, + "end": 7045.87, + "probability": 0.4542 + }, + { + "start": 7046.19, + "end": 7049.89, + "probability": 0.201 + }, + { + "start": 7050.41, + "end": 7054.07, + "probability": 0.5284 + }, + { + "start": 7055.29, + "end": 7059.45, + "probability": 0.7414 + }, + { + "start": 7067.61, + "end": 7070.63, + "probability": 0.6276 + }, + { + "start": 7072.57, + "end": 7073.39, + "probability": 0.6255 + }, + { + "start": 7076.01, + "end": 7077.03, + "probability": 0.8151 + }, + { + "start": 7079.61, + "end": 7083.61, + "probability": 0.761 + }, + { + "start": 7084.75, + "end": 7086.11, + "probability": 0.4069 + }, + { + "start": 7086.17, + "end": 7089.37, + "probability": 0.8772 + }, + { + "start": 7089.79, + "end": 7092.37, + "probability": 0.3711 + }, + { + "start": 7093.51, + "end": 7098.11, + "probability": 0.795 + }, + { + "start": 7100.09, + "end": 7101.29, + "probability": 0.5805 + }, + { + "start": 7102.35, + "end": 7103.15, + "probability": 0.8666 + }, + { + "start": 7106.53, + "end": 7109.61, + "probability": 0.6837 + }, + { + "start": 7113.03, + "end": 7113.81, + "probability": 0.4964 + }, + { + "start": 7114.85, + "end": 7115.69, + "probability": 0.6277 + }, + { + "start": 7116.87, + "end": 7118.13, + "probability": 0.8571 + }, + { + "start": 7118.85, + "end": 7119.49, + "probability": 0.7135 + }, + { + "start": 7124.13, + "end": 7125.11, + "probability": 0.5534 + }, + { + "start": 7126.61, + "end": 7127.41, + "probability": 0.714 + }, + { + "start": 7128.19, + "end": 7130.29, + "probability": 0.7803 + }, + { + "start": 7131.01, + "end": 7132.17, + "probability": 0.5244 + }, + { + "start": 7133.47, + "end": 7134.93, + "probability": 0.9394 + }, + { + "start": 7135.65, + "end": 7136.81, + "probability": 0.7545 + }, + { + "start": 7137.33, + "end": 7138.43, + "probability": 0.931 + }, + { + "start": 7139.17, + "end": 7140.33, + "probability": 0.854 + }, + { + "start": 7141.27, + "end": 7147.15, + "probability": 0.9876 + }, + { + "start": 7149.15, + "end": 7149.85, + "probability": 0.6522 + }, + { + "start": 7153.03, + "end": 7154.09, + "probability": 0.3825 + }, + { + "start": 7154.93, + "end": 7158.63, + "probability": 0.846 + }, + { + "start": 7159.51, + "end": 7161.65, + "probability": 0.9919 + }, + { + "start": 7162.49, + "end": 7163.37, + "probability": 0.9577 + }, + { + "start": 7163.95, + "end": 7164.57, + "probability": 0.9685 + }, + { + "start": 7166.07, + "end": 7166.91, + "probability": 0.7826 + }, + { + "start": 7167.71, + "end": 7168.55, + "probability": 0.7562 + }, + { + "start": 7169.59, + "end": 7170.75, + "probability": 0.9379 + }, + { + "start": 7171.87, + "end": 7174.87, + "probability": 0.8457 + }, + { + "start": 7175.85, + "end": 7176.81, + "probability": 0.9575 + }, + { + "start": 7178.19, + "end": 7182.33, + "probability": 0.842 + }, + { + "start": 7182.89, + "end": 7185.11, + "probability": 0.9841 + }, + { + "start": 7185.69, + "end": 7186.35, + "probability": 0.953 + }, + { + "start": 7187.39, + "end": 7188.47, + "probability": 0.8836 + }, + { + "start": 7189.75, + "end": 7194.11, + "probability": 0.9158 + }, + { + "start": 7195.39, + "end": 7196.57, + "probability": 0.5555 + }, + { + "start": 7197.25, + "end": 7200.57, + "probability": 0.7125 + }, + { + "start": 7201.19, + "end": 7203.97, + "probability": 0.9764 + }, + { + "start": 7204.53, + "end": 7207.21, + "probability": 0.9826 + }, + { + "start": 7207.93, + "end": 7208.67, + "probability": 0.789 + }, + { + "start": 7212.63, + "end": 7215.93, + "probability": 0.5364 + }, + { + "start": 7217.87, + "end": 7220.53, + "probability": 0.2767 + }, + { + "start": 7221.79, + "end": 7222.63, + "probability": 0.5605 + }, + { + "start": 7224.57, + "end": 7225.41, + "probability": 0.7316 + }, + { + "start": 7225.95, + "end": 7231.77, + "probability": 0.9799 + }, + { + "start": 7231.77, + "end": 7234.25, + "probability": 0.9951 + }, + { + "start": 7235.23, + "end": 7237.99, + "probability": 0.8081 + }, + { + "start": 7238.83, + "end": 7239.39, + "probability": 0.4898 + }, + { + "start": 7239.59, + "end": 7241.61, + "probability": 0.8066 + }, + { + "start": 7242.15, + "end": 7243.53, + "probability": 0.7711 + }, + { + "start": 7243.55, + "end": 7245.87, + "probability": 0.9885 + }, + { + "start": 7266.23, + "end": 7267.95, + "probability": 0.4665 + }, + { + "start": 7269.97, + "end": 7271.73, + "probability": 0.0386 + }, + { + "start": 7273.25, + "end": 7274.19, + "probability": 0.0254 + }, + { + "start": 7276.01, + "end": 7276.57, + "probability": 0.0059 + }, + { + "start": 7288.91, + "end": 7290.53, + "probability": 0.0074 + }, + { + "start": 7354.26, + "end": 7356.98, + "probability": 0.0225 + }, + { + "start": 7358.68, + "end": 7359.52, + "probability": 0.0035 + }, + { + "start": 7360.52, + "end": 7361.82, + "probability": 0.0632 + }, + { + "start": 7393.48, + "end": 7394.64, + "probability": 0.3489 + }, + { + "start": 7395.28, + "end": 7398.62, + "probability": 0.8379 + }, + { + "start": 7399.32, + "end": 7402.06, + "probability": 0.9048 + }, + { + "start": 7403.44, + "end": 7404.04, + "probability": 0.7586 + }, + { + "start": 7406.68, + "end": 7413.06, + "probability": 0.7787 + }, + { + "start": 7413.06, + "end": 7414.08, + "probability": 0.6758 + }, + { + "start": 7414.2, + "end": 7415.6, + "probability": 0.3363 + }, + { + "start": 7416.28, + "end": 7418.9, + "probability": 0.7535 + }, + { + "start": 7419.5, + "end": 7420.32, + "probability": 0.569 + }, + { + "start": 7420.54, + "end": 7421.22, + "probability": 0.811 + }, + { + "start": 7421.34, + "end": 7422.34, + "probability": 0.7243 + }, + { + "start": 7424.18, + "end": 7424.38, + "probability": 0.2313 + }, + { + "start": 7432.02, + "end": 7432.12, + "probability": 0.015 + }, + { + "start": 7437.48, + "end": 7437.48, + "probability": 0.7511 + }, + { + "start": 7437.5, + "end": 7437.5, + "probability": 0.6599 + }, + { + "start": 7437.5, + "end": 7437.74, + "probability": 0.081 + }, + { + "start": 7442.94, + "end": 7444.38, + "probability": 0.0595 + }, + { + "start": 7450.06, + "end": 7452.24, + "probability": 0.5715 + }, + { + "start": 7452.92, + "end": 7455.06, + "probability": 0.8929 + }, + { + "start": 7456.18, + "end": 7456.98, + "probability": 0.6676 + }, + { + "start": 7457.24, + "end": 7460.6, + "probability": 0.9562 + }, + { + "start": 7460.64, + "end": 7461.24, + "probability": 0.7689 + }, + { + "start": 7461.3, + "end": 7462.52, + "probability": 0.3644 + }, + { + "start": 7462.88, + "end": 7465.72, + "probability": 0.9398 + }, + { + "start": 7467.12, + "end": 7469.96, + "probability": 0.9917 + }, + { + "start": 7470.02, + "end": 7470.94, + "probability": 0.849 + }, + { + "start": 7503.28, + "end": 7504.56, + "probability": 0.4501 + }, + { + "start": 7504.66, + "end": 7508.86, + "probability": 0.7834 + }, + { + "start": 7510.1, + "end": 7511.0, + "probability": 0.8108 + }, + { + "start": 7511.1, + "end": 7511.9, + "probability": 0.9873 + }, + { + "start": 7512.18, + "end": 7513.32, + "probability": 0.7572 + }, + { + "start": 7513.38, + "end": 7515.98, + "probability": 0.8029 + }, + { + "start": 7517.4, + "end": 7517.8, + "probability": 0.2482 + }, + { + "start": 7517.9, + "end": 7519.44, + "probability": 0.8223 + }, + { + "start": 7519.5, + "end": 7519.88, + "probability": 0.8484 + }, + { + "start": 7519.98, + "end": 7523.32, + "probability": 0.7417 + }, + { + "start": 7523.38, + "end": 7526.08, + "probability": 0.8528 + }, + { + "start": 7528.0, + "end": 7529.12, + "probability": 0.9758 + }, + { + "start": 7529.28, + "end": 7535.15, + "probability": 0.9468 + }, + { + "start": 7535.56, + "end": 7536.46, + "probability": 0.4448 + }, + { + "start": 7537.2, + "end": 7539.7, + "probability": 0.726 + }, + { + "start": 7540.24, + "end": 7546.82, + "probability": 0.9328 + }, + { + "start": 7546.86, + "end": 7547.2, + "probability": 0.6832 + }, + { + "start": 7547.28, + "end": 7548.58, + "probability": 0.8317 + }, + { + "start": 7549.22, + "end": 7554.0, + "probability": 0.9832 + }, + { + "start": 7554.04, + "end": 7554.86, + "probability": 0.4444 + }, + { + "start": 7555.24, + "end": 7556.64, + "probability": 0.9331 + }, + { + "start": 7557.76, + "end": 7560.2, + "probability": 0.9137 + }, + { + "start": 7560.84, + "end": 7563.36, + "probability": 0.9571 + }, + { + "start": 7564.02, + "end": 7569.86, + "probability": 0.9971 + }, + { + "start": 7570.28, + "end": 7572.2, + "probability": 0.9458 + }, + { + "start": 7572.26, + "end": 7572.62, + "probability": 0.6096 + }, + { + "start": 7573.2, + "end": 7578.76, + "probability": 0.9932 + }, + { + "start": 7579.54, + "end": 7586.52, + "probability": 0.9947 + }, + { + "start": 7587.1, + "end": 7588.44, + "probability": 0.9331 + }, + { + "start": 7588.96, + "end": 7591.44, + "probability": 0.9846 + }, + { + "start": 7591.9, + "end": 7595.96, + "probability": 0.918 + }, + { + "start": 7596.08, + "end": 7597.72, + "probability": 0.3402 + }, + { + "start": 7598.08, + "end": 7600.22, + "probability": 0.9182 + }, + { + "start": 7600.34, + "end": 7601.76, + "probability": 0.5365 + }, + { + "start": 7602.24, + "end": 7603.46, + "probability": 0.9382 + }, + { + "start": 7603.66, + "end": 7606.4, + "probability": 0.7457 + }, + { + "start": 7606.8, + "end": 7611.3, + "probability": 0.9939 + }, + { + "start": 7611.74, + "end": 7612.64, + "probability": 0.9414 + }, + { + "start": 7612.64, + "end": 7613.06, + "probability": 0.6783 + }, + { + "start": 7613.78, + "end": 7614.36, + "probability": 0.7367 + }, + { + "start": 7615.32, + "end": 7622.46, + "probability": 0.9824 + }, + { + "start": 7623.06, + "end": 7625.52, + "probability": 0.9866 + }, + { + "start": 7625.68, + "end": 7627.02, + "probability": 0.8901 + }, + { + "start": 7627.1, + "end": 7627.9, + "probability": 0.7933 + }, + { + "start": 7628.28, + "end": 7630.22, + "probability": 0.9019 + }, + { + "start": 7631.08, + "end": 7633.46, + "probability": 0.9943 + }, + { + "start": 7633.46, + "end": 7637.28, + "probability": 0.9902 + }, + { + "start": 7638.02, + "end": 7639.72, + "probability": 0.9917 + }, + { + "start": 7640.54, + "end": 7644.96, + "probability": 0.5293 + }, + { + "start": 7647.2, + "end": 7648.82, + "probability": 0.6021 + }, + { + "start": 7648.92, + "end": 7649.04, + "probability": 0.0736 + }, + { + "start": 7649.04, + "end": 7649.38, + "probability": 0.458 + }, + { + "start": 7649.54, + "end": 7652.9, + "probability": 0.8903 + }, + { + "start": 7653.0, + "end": 7653.86, + "probability": 0.7376 + }, + { + "start": 7654.34, + "end": 7655.92, + "probability": 0.7843 + }, + { + "start": 7656.12, + "end": 7657.2, + "probability": 0.6167 + }, + { + "start": 7657.28, + "end": 7659.43, + "probability": 0.8907 + }, + { + "start": 7659.9, + "end": 7660.66, + "probability": 0.8736 + }, + { + "start": 7661.12, + "end": 7664.6, + "probability": 0.9546 + }, + { + "start": 7665.26, + "end": 7666.58, + "probability": 0.2693 + }, + { + "start": 7666.82, + "end": 7668.56, + "probability": 0.6084 + }, + { + "start": 7668.94, + "end": 7669.58, + "probability": 0.8667 + }, + { + "start": 7669.88, + "end": 7671.58, + "probability": 0.8622 + }, + { + "start": 7671.62, + "end": 7672.12, + "probability": 0.7681 + }, + { + "start": 7675.0, + "end": 7677.34, + "probability": 0.283 + }, + { + "start": 7677.56, + "end": 7677.8, + "probability": 0.7452 + }, + { + "start": 7678.84, + "end": 7679.34, + "probability": 0.6617 + }, + { + "start": 7679.48, + "end": 7680.68, + "probability": 0.9389 + }, + { + "start": 7681.32, + "end": 7686.4, + "probability": 0.9923 + }, + { + "start": 7686.82, + "end": 7688.0, + "probability": 0.5074 + }, + { + "start": 7688.18, + "end": 7691.78, + "probability": 0.9784 + }, + { + "start": 7692.34, + "end": 7693.5, + "probability": 0.6884 + }, + { + "start": 7695.1, + "end": 7697.9, + "probability": 0.867 + }, + { + "start": 7698.4, + "end": 7699.66, + "probability": 0.9983 + }, + { + "start": 7700.4, + "end": 7702.5, + "probability": 0.9731 + }, + { + "start": 7704.15, + "end": 7708.9, + "probability": 0.699 + }, + { + "start": 7722.02, + "end": 7723.34, + "probability": 0.793 + }, + { + "start": 7724.14, + "end": 7728.0, + "probability": 0.9986 + }, + { + "start": 7728.9, + "end": 7731.82, + "probability": 0.9989 + }, + { + "start": 7732.38, + "end": 7735.56, + "probability": 0.9961 + }, + { + "start": 7736.7, + "end": 7737.6, + "probability": 0.8057 + }, + { + "start": 7738.58, + "end": 7743.36, + "probability": 0.9204 + }, + { + "start": 7744.0, + "end": 7748.68, + "probability": 0.9883 + }, + { + "start": 7749.32, + "end": 7750.66, + "probability": 0.9741 + }, + { + "start": 7751.4, + "end": 7753.12, + "probability": 0.9873 + }, + { + "start": 7753.68, + "end": 7758.2, + "probability": 0.942 + }, + { + "start": 7758.88, + "end": 7760.66, + "probability": 0.981 + }, + { + "start": 7761.12, + "end": 7762.66, + "probability": 0.8584 + }, + { + "start": 7763.08, + "end": 7764.54, + "probability": 0.9937 + }, + { + "start": 7765.1, + "end": 7770.72, + "probability": 0.988 + }, + { + "start": 7771.82, + "end": 7771.94, + "probability": 0.1087 + }, + { + "start": 7771.96, + "end": 7773.22, + "probability": 0.8306 + }, + { + "start": 7773.72, + "end": 7777.14, + "probability": 0.9917 + }, + { + "start": 7777.74, + "end": 7785.26, + "probability": 0.9833 + }, + { + "start": 7786.2, + "end": 7790.24, + "probability": 0.9992 + }, + { + "start": 7791.26, + "end": 7791.92, + "probability": 0.9185 + }, + { + "start": 7792.62, + "end": 7794.46, + "probability": 0.6694 + }, + { + "start": 7794.56, + "end": 7798.98, + "probability": 0.9922 + }, + { + "start": 7799.52, + "end": 7800.6, + "probability": 0.9466 + }, + { + "start": 7800.8, + "end": 7806.08, + "probability": 0.9927 + }, + { + "start": 7806.96, + "end": 7807.94, + "probability": 0.9764 + }, + { + "start": 7808.54, + "end": 7809.44, + "probability": 0.7582 + }, + { + "start": 7810.0, + "end": 7812.94, + "probability": 0.9455 + }, + { + "start": 7813.58, + "end": 7819.08, + "probability": 0.9967 + }, + { + "start": 7819.86, + "end": 7820.88, + "probability": 0.9987 + }, + { + "start": 7821.4, + "end": 7821.8, + "probability": 0.1446 + }, + { + "start": 7822.34, + "end": 7823.6, + "probability": 0.6848 + }, + { + "start": 7824.08, + "end": 7826.98, + "probability": 0.973 + }, + { + "start": 7828.86, + "end": 7829.62, + "probability": 0.8484 + }, + { + "start": 7830.34, + "end": 7832.3, + "probability": 0.9335 + }, + { + "start": 7832.86, + "end": 7838.14, + "probability": 0.9774 + }, + { + "start": 7838.7, + "end": 7840.18, + "probability": 0.688 + }, + { + "start": 7840.78, + "end": 7841.28, + "probability": 0.9956 + }, + { + "start": 7842.3, + "end": 7846.52, + "probability": 0.9902 + }, + { + "start": 7847.06, + "end": 7852.3, + "probability": 0.9195 + }, + { + "start": 7852.82, + "end": 7854.6, + "probability": 0.9509 + }, + { + "start": 7856.02, + "end": 7858.92, + "probability": 0.9485 + }, + { + "start": 7859.44, + "end": 7863.14, + "probability": 0.9788 + }, + { + "start": 7863.98, + "end": 7866.98, + "probability": 0.936 + }, + { + "start": 7868.26, + "end": 7870.58, + "probability": 0.9902 + }, + { + "start": 7871.14, + "end": 7874.34, + "probability": 0.9852 + }, + { + "start": 7874.84, + "end": 7876.5, + "probability": 0.7899 + }, + { + "start": 7878.24, + "end": 7881.72, + "probability": 0.9181 + }, + { + "start": 7882.6, + "end": 7885.42, + "probability": 0.9912 + }, + { + "start": 7886.4, + "end": 7889.22, + "probability": 0.9749 + }, + { + "start": 7890.02, + "end": 7894.92, + "probability": 0.9764 + }, + { + "start": 7895.86, + "end": 7898.46, + "probability": 0.362 + }, + { + "start": 7899.12, + "end": 7901.52, + "probability": 0.9828 + }, + { + "start": 7902.08, + "end": 7904.86, + "probability": 0.9878 + }, + { + "start": 7905.46, + "end": 7909.16, + "probability": 0.9823 + }, + { + "start": 7910.2, + "end": 7913.42, + "probability": 0.9946 + }, + { + "start": 7913.6, + "end": 7914.16, + "probability": 0.8651 + }, + { + "start": 7914.24, + "end": 7915.4, + "probability": 0.8953 + }, + { + "start": 7915.46, + "end": 7919.58, + "probability": 0.9843 + }, + { + "start": 7921.22, + "end": 7921.74, + "probability": 0.9357 + }, + { + "start": 7922.92, + "end": 7926.76, + "probability": 0.889 + }, + { + "start": 7927.46, + "end": 7932.16, + "probability": 0.9906 + }, + { + "start": 7932.62, + "end": 7938.12, + "probability": 0.9814 + }, + { + "start": 7938.74, + "end": 7941.7, + "probability": 0.9949 + }, + { + "start": 7941.88, + "end": 7944.0, + "probability": 0.99 + }, + { + "start": 7944.86, + "end": 7950.7, + "probability": 0.9906 + }, + { + "start": 7951.42, + "end": 7954.08, + "probability": 0.9304 + }, + { + "start": 7955.72, + "end": 7961.1, + "probability": 0.9305 + }, + { + "start": 7962.28, + "end": 7964.28, + "probability": 0.6755 + }, + { + "start": 7965.06, + "end": 7970.68, + "probability": 0.9456 + }, + { + "start": 7971.2, + "end": 7978.0, + "probability": 0.9604 + }, + { + "start": 7979.26, + "end": 7981.76, + "probability": 0.9981 + }, + { + "start": 7982.82, + "end": 7985.06, + "probability": 0.7749 + }, + { + "start": 7985.8, + "end": 7989.04, + "probability": 0.9958 + }, + { + "start": 7989.96, + "end": 7990.65, + "probability": 0.9858 + }, + { + "start": 7991.5, + "end": 7993.96, + "probability": 0.9824 + }, + { + "start": 7995.76, + "end": 8001.0, + "probability": 0.9891 + }, + { + "start": 8001.88, + "end": 8004.5, + "probability": 0.5843 + }, + { + "start": 8005.18, + "end": 8009.96, + "probability": 0.994 + }, + { + "start": 8010.56, + "end": 8011.28, + "probability": 0.7665 + }, + { + "start": 8012.1, + "end": 8014.92, + "probability": 0.9971 + }, + { + "start": 8015.76, + "end": 8018.46, + "probability": 0.884 + }, + { + "start": 8019.84, + "end": 8020.68, + "probability": 0.835 + }, + { + "start": 8021.54, + "end": 8027.48, + "probability": 0.9946 + }, + { + "start": 8028.06, + "end": 8031.86, + "probability": 0.9586 + }, + { + "start": 8032.32, + "end": 8033.84, + "probability": 0.9955 + }, + { + "start": 8035.3, + "end": 8037.12, + "probability": 0.9985 + }, + { + "start": 8037.76, + "end": 8039.0, + "probability": 0.7548 + }, + { + "start": 8040.38, + "end": 8043.44, + "probability": 0.9946 + }, + { + "start": 8044.98, + "end": 8046.76, + "probability": 0.7866 + }, + { + "start": 8047.76, + "end": 8049.0, + "probability": 0.8651 + }, + { + "start": 8049.98, + "end": 8050.5, + "probability": 0.8733 + }, + { + "start": 8053.42, + "end": 8056.72, + "probability": 0.9293 + }, + { + "start": 8057.88, + "end": 8061.3, + "probability": 0.9688 + }, + { + "start": 8062.18, + "end": 8063.84, + "probability": 0.4629 + }, + { + "start": 8064.84, + "end": 8066.78, + "probability": 0.8926 + }, + { + "start": 8067.58, + "end": 8069.88, + "probability": 0.9711 + }, + { + "start": 8070.92, + "end": 8071.61, + "probability": 0.8291 + }, + { + "start": 8072.7, + "end": 8073.8, + "probability": 0.6188 + }, + { + "start": 8074.58, + "end": 8075.82, + "probability": 0.9928 + }, + { + "start": 8076.64, + "end": 8078.66, + "probability": 0.9387 + }, + { + "start": 8079.68, + "end": 8081.14, + "probability": 0.7693 + }, + { + "start": 8082.06, + "end": 8084.0, + "probability": 0.7991 + }, + { + "start": 8084.7, + "end": 8085.56, + "probability": 0.9167 + }, + { + "start": 8086.12, + "end": 8088.06, + "probability": 0.5159 + }, + { + "start": 8088.66, + "end": 8090.72, + "probability": 0.7944 + }, + { + "start": 8091.54, + "end": 8092.18, + "probability": 0.7668 + }, + { + "start": 8092.82, + "end": 8094.16, + "probability": 0.8626 + }, + { + "start": 8094.84, + "end": 8095.82, + "probability": 0.9879 + }, + { + "start": 8096.68, + "end": 8099.4, + "probability": 0.5005 + }, + { + "start": 8099.4, + "end": 8099.96, + "probability": 0.9829 + }, + { + "start": 8101.06, + "end": 8109.88, + "probability": 0.9989 + }, + { + "start": 8110.2, + "end": 8115.44, + "probability": 0.9707 + }, + { + "start": 8117.2, + "end": 8118.94, + "probability": 0.9712 + }, + { + "start": 8119.66, + "end": 8120.62, + "probability": 0.5287 + }, + { + "start": 8121.72, + "end": 8124.56, + "probability": 0.891 + }, + { + "start": 8125.94, + "end": 8131.73, + "probability": 0.9917 + }, + { + "start": 8133.96, + "end": 8134.86, + "probability": 0.8948 + }, + { + "start": 8136.6, + "end": 8137.76, + "probability": 0.8861 + }, + { + "start": 8139.82, + "end": 8141.0, + "probability": 0.653 + }, + { + "start": 8142.0, + "end": 8142.78, + "probability": 0.4479 + }, + { + "start": 8144.28, + "end": 8146.98, + "probability": 0.9006 + }, + { + "start": 8148.04, + "end": 8148.94, + "probability": 0.8816 + }, + { + "start": 8149.68, + "end": 8152.14, + "probability": 0.9941 + }, + { + "start": 8153.24, + "end": 8159.4, + "probability": 0.9083 + }, + { + "start": 8159.88, + "end": 8161.44, + "probability": 0.7791 + }, + { + "start": 8162.04, + "end": 8165.32, + "probability": 0.9744 + }, + { + "start": 8167.92, + "end": 8173.98, + "probability": 0.8825 + }, + { + "start": 8174.68, + "end": 8177.94, + "probability": 0.9525 + }, + { + "start": 8179.22, + "end": 8186.06, + "probability": 0.9817 + }, + { + "start": 8187.5, + "end": 8191.14, + "probability": 0.9967 + }, + { + "start": 8191.7, + "end": 8192.86, + "probability": 0.793 + }, + { + "start": 8194.36, + "end": 8198.1, + "probability": 0.9967 + }, + { + "start": 8199.32, + "end": 8202.26, + "probability": 0.9975 + }, + { + "start": 8203.28, + "end": 8208.52, + "probability": 0.9958 + }, + { + "start": 8208.52, + "end": 8214.08, + "probability": 0.9995 + }, + { + "start": 8214.74, + "end": 8216.72, + "probability": 0.7942 + }, + { + "start": 8217.22, + "end": 8219.22, + "probability": 0.98 + }, + { + "start": 8219.64, + "end": 8225.2, + "probability": 0.9927 + }, + { + "start": 8225.62, + "end": 8228.0, + "probability": 0.9933 + }, + { + "start": 8230.24, + "end": 8231.52, + "probability": 0.37 + }, + { + "start": 8232.24, + "end": 8234.6, + "probability": 0.9688 + }, + { + "start": 8235.5, + "end": 8237.98, + "probability": 0.9679 + }, + { + "start": 8239.28, + "end": 8241.18, + "probability": 0.9079 + }, + { + "start": 8242.72, + "end": 8244.08, + "probability": 0.6934 + }, + { + "start": 8245.52, + "end": 8249.74, + "probability": 0.9972 + }, + { + "start": 8249.94, + "end": 8253.98, + "probability": 0.979 + }, + { + "start": 8254.7, + "end": 8255.7, + "probability": 0.7904 + }, + { + "start": 8256.64, + "end": 8259.7, + "probability": 0.9644 + }, + { + "start": 8259.7, + "end": 8263.28, + "probability": 0.9993 + }, + { + "start": 8264.26, + "end": 8267.41, + "probability": 0.9986 + }, + { + "start": 8268.8, + "end": 8270.0, + "probability": 0.7774 + }, + { + "start": 8270.74, + "end": 8271.86, + "probability": 0.9824 + }, + { + "start": 8272.48, + "end": 8273.02, + "probability": 0.7775 + }, + { + "start": 8273.78, + "end": 8275.56, + "probability": 0.9468 + }, + { + "start": 8276.2, + "end": 8278.58, + "probability": 0.8632 + }, + { + "start": 8279.44, + "end": 8287.5, + "probability": 0.9344 + }, + { + "start": 8288.26, + "end": 8290.56, + "probability": 0.9742 + }, + { + "start": 8290.92, + "end": 8294.0, + "probability": 0.9927 + }, + { + "start": 8294.04, + "end": 8295.76, + "probability": 0.9894 + }, + { + "start": 8296.42, + "end": 8298.52, + "probability": 0.9985 + }, + { + "start": 8299.18, + "end": 8301.22, + "probability": 0.9973 + }, + { + "start": 8301.9, + "end": 8304.27, + "probability": 0.9438 + }, + { + "start": 8305.66, + "end": 8307.78, + "probability": 0.9837 + }, + { + "start": 8309.06, + "end": 8311.32, + "probability": 0.9674 + }, + { + "start": 8311.46, + "end": 8313.38, + "probability": 0.6111 + }, + { + "start": 8313.98, + "end": 8316.22, + "probability": 0.7383 + }, + { + "start": 8316.98, + "end": 8318.18, + "probability": 0.9795 + }, + { + "start": 8318.58, + "end": 8322.2, + "probability": 0.9902 + }, + { + "start": 8322.94, + "end": 8325.46, + "probability": 0.9835 + }, + { + "start": 8326.22, + "end": 8328.32, + "probability": 0.981 + }, + { + "start": 8340.44, + "end": 8340.86, + "probability": 0.01 + }, + { + "start": 8340.86, + "end": 8346.2, + "probability": 0.0962 + }, + { + "start": 8346.2, + "end": 8346.47, + "probability": 0.0782 + }, + { + "start": 8347.08, + "end": 8347.08, + "probability": 0.0644 + }, + { + "start": 8347.76, + "end": 8348.06, + "probability": 0.2599 + }, + { + "start": 8348.06, + "end": 8348.06, + "probability": 0.0514 + }, + { + "start": 8348.06, + "end": 8348.2, + "probability": 0.427 + }, + { + "start": 8348.22, + "end": 8349.56, + "probability": 0.6019 + }, + { + "start": 8350.02, + "end": 8354.1, + "probability": 0.7366 + }, + { + "start": 8403.04, + "end": 8407.4, + "probability": 0.649 + }, + { + "start": 8408.8, + "end": 8410.04, + "probability": 0.9305 + }, + { + "start": 8412.4, + "end": 8415.06, + "probability": 0.7233 + }, + { + "start": 8415.6, + "end": 8418.32, + "probability": 0.9481 + }, + { + "start": 8419.88, + "end": 8420.36, + "probability": 0.7676 + }, + { + "start": 8423.14, + "end": 8424.24, + "probability": 0.985 + }, + { + "start": 8424.34, + "end": 8429.66, + "probability": 0.9979 + }, + { + "start": 8430.54, + "end": 8431.8, + "probability": 0.7664 + }, + { + "start": 8432.9, + "end": 8435.58, + "probability": 0.9899 + }, + { + "start": 8439.5, + "end": 8444.26, + "probability": 0.7876 + }, + { + "start": 8444.3, + "end": 8444.76, + "probability": 0.8309 + }, + { + "start": 8444.82, + "end": 8447.4, + "probability": 0.9727 + }, + { + "start": 8448.34, + "end": 8450.68, + "probability": 0.9355 + }, + { + "start": 8452.32, + "end": 8458.06, + "probability": 0.9657 + }, + { + "start": 8459.26, + "end": 8461.16, + "probability": 0.7161 + }, + { + "start": 8462.36, + "end": 8462.98, + "probability": 0.6676 + }, + { + "start": 8464.64, + "end": 8468.1, + "probability": 0.4644 + }, + { + "start": 8469.28, + "end": 8471.88, + "probability": 0.7943 + }, + { + "start": 8472.62, + "end": 8476.5, + "probability": 0.9651 + }, + { + "start": 8477.38, + "end": 8477.94, + "probability": 0.3525 + }, + { + "start": 8478.84, + "end": 8480.36, + "probability": 0.9505 + }, + { + "start": 8480.98, + "end": 8483.84, + "probability": 0.9324 + }, + { + "start": 8484.92, + "end": 8488.08, + "probability": 0.7738 + }, + { + "start": 8489.4, + "end": 8494.28, + "probability": 0.8055 + }, + { + "start": 8495.08, + "end": 8497.22, + "probability": 0.938 + }, + { + "start": 8501.4, + "end": 8501.78, + "probability": 0.7584 + }, + { + "start": 8502.5, + "end": 8505.72, + "probability": 0.9697 + }, + { + "start": 8506.34, + "end": 8507.84, + "probability": 0.9859 + }, + { + "start": 8508.88, + "end": 8509.86, + "probability": 0.9821 + }, + { + "start": 8511.66, + "end": 8512.56, + "probability": 0.6228 + }, + { + "start": 8515.78, + "end": 8522.92, + "probability": 0.8113 + }, + { + "start": 8523.56, + "end": 8526.58, + "probability": 0.8801 + }, + { + "start": 8527.96, + "end": 8530.72, + "probability": 0.9958 + }, + { + "start": 8531.42, + "end": 8533.6, + "probability": 0.9954 + }, + { + "start": 8536.24, + "end": 8537.28, + "probability": 0.755 + }, + { + "start": 8539.94, + "end": 8542.44, + "probability": 0.9982 + }, + { + "start": 8543.64, + "end": 8544.38, + "probability": 0.623 + }, + { + "start": 8546.06, + "end": 8551.68, + "probability": 0.941 + }, + { + "start": 8552.94, + "end": 8555.18, + "probability": 0.9539 + }, + { + "start": 8556.64, + "end": 8557.57, + "probability": 0.9946 + }, + { + "start": 8558.74, + "end": 8561.2, + "probability": 0.9805 + }, + { + "start": 8561.74, + "end": 8565.38, + "probability": 0.9807 + }, + { + "start": 8566.2, + "end": 8567.42, + "probability": 0.893 + }, + { + "start": 8568.42, + "end": 8571.38, + "probability": 0.9907 + }, + { + "start": 8571.94, + "end": 8575.26, + "probability": 0.6654 + }, + { + "start": 8576.28, + "end": 8579.8, + "probability": 0.9838 + }, + { + "start": 8582.36, + "end": 8583.15, + "probability": 0.9884 + }, + { + "start": 8583.32, + "end": 8590.18, + "probability": 0.9504 + }, + { + "start": 8590.18, + "end": 8598.58, + "probability": 0.7952 + }, + { + "start": 8600.22, + "end": 8601.4, + "probability": 0.5345 + }, + { + "start": 8602.74, + "end": 8606.8, + "probability": 0.8948 + }, + { + "start": 8606.8, + "end": 8607.55, + "probability": 0.5269 + }, + { + "start": 8608.0, + "end": 8612.12, + "probability": 0.6339 + }, + { + "start": 8612.86, + "end": 8616.48, + "probability": 0.9892 + }, + { + "start": 8617.72, + "end": 8618.7, + "probability": 0.5929 + }, + { + "start": 8620.68, + "end": 8621.54, + "probability": 0.8332 + }, + { + "start": 8622.32, + "end": 8624.5, + "probability": 0.9528 + }, + { + "start": 8625.44, + "end": 8630.74, + "probability": 0.9357 + }, + { + "start": 8633.08, + "end": 8633.78, + "probability": 0.5659 + }, + { + "start": 8635.12, + "end": 8636.09, + "probability": 0.9517 + }, + { + "start": 8637.08, + "end": 8638.02, + "probability": 0.8384 + }, + { + "start": 8640.02, + "end": 8642.26, + "probability": 0.9652 + }, + { + "start": 8645.12, + "end": 8648.82, + "probability": 0.9541 + }, + { + "start": 8649.86, + "end": 8650.18, + "probability": 0.6523 + }, + { + "start": 8650.42, + "end": 8656.2, + "probability": 0.9953 + }, + { + "start": 8658.82, + "end": 8662.56, + "probability": 0.9212 + }, + { + "start": 8663.76, + "end": 8664.74, + "probability": 0.0396 + }, + { + "start": 8664.9, + "end": 8664.9, + "probability": 0.028 + }, + { + "start": 8664.9, + "end": 8673.34, + "probability": 0.9533 + }, + { + "start": 8674.42, + "end": 8675.68, + "probability": 0.9933 + }, + { + "start": 8676.24, + "end": 8677.22, + "probability": 0.6118 + }, + { + "start": 8677.48, + "end": 8677.7, + "probability": 0.9819 + }, + { + "start": 8678.06, + "end": 8682.86, + "probability": 0.9941 + }, + { + "start": 8683.74, + "end": 8685.22, + "probability": 0.8226 + }, + { + "start": 8686.0, + "end": 8689.42, + "probability": 0.9764 + }, + { + "start": 8689.72, + "end": 8691.24, + "probability": 0.8734 + }, + { + "start": 8691.9, + "end": 8696.18, + "probability": 0.9765 + }, + { + "start": 8696.18, + "end": 8700.46, + "probability": 0.9804 + }, + { + "start": 8700.82, + "end": 8703.16, + "probability": 0.9986 + }, + { + "start": 8704.36, + "end": 8710.1, + "probability": 0.7648 + }, + { + "start": 8712.28, + "end": 8712.82, + "probability": 0.673 + }, + { + "start": 8713.14, + "end": 8718.6, + "probability": 0.9718 + }, + { + "start": 8720.1, + "end": 8724.18, + "probability": 0.9172 + }, + { + "start": 8726.02, + "end": 8733.34, + "probability": 0.9376 + }, + { + "start": 8735.06, + "end": 8736.16, + "probability": 0.9663 + }, + { + "start": 8736.54, + "end": 8742.3, + "probability": 0.9709 + }, + { + "start": 8742.3, + "end": 8745.18, + "probability": 0.9827 + }, + { + "start": 8745.22, + "end": 8746.26, + "probability": 0.5496 + }, + { + "start": 8747.96, + "end": 8749.92, + "probability": 0.9382 + }, + { + "start": 8751.04, + "end": 8753.5, + "probability": 0.9558 + }, + { + "start": 8753.86, + "end": 8756.4, + "probability": 0.9393 + }, + { + "start": 8757.08, + "end": 8759.07, + "probability": 0.5229 + }, + { + "start": 8760.4, + "end": 8762.22, + "probability": 0.8186 + }, + { + "start": 8763.22, + "end": 8765.22, + "probability": 0.8244 + }, + { + "start": 8766.22, + "end": 8767.4, + "probability": 0.8519 + }, + { + "start": 8768.18, + "end": 8772.3, + "probability": 0.9847 + }, + { + "start": 8773.28, + "end": 8777.52, + "probability": 0.9611 + }, + { + "start": 8779.56, + "end": 8787.28, + "probability": 0.7939 + }, + { + "start": 8790.46, + "end": 8793.14, + "probability": 0.9269 + }, + { + "start": 8793.9, + "end": 8800.2, + "probability": 0.991 + }, + { + "start": 8800.88, + "end": 8803.8, + "probability": 0.955 + }, + { + "start": 8805.4, + "end": 8806.88, + "probability": 0.9961 + }, + { + "start": 8808.12, + "end": 8813.52, + "probability": 0.8608 + }, + { + "start": 8814.8, + "end": 8815.28, + "probability": 0.6791 + }, + { + "start": 8816.38, + "end": 8817.74, + "probability": 0.8437 + }, + { + "start": 8818.09, + "end": 8820.38, + "probability": 0.9734 + }, + { + "start": 8820.46, + "end": 8822.5, + "probability": 0.9967 + }, + { + "start": 8822.56, + "end": 8824.7, + "probability": 0.9149 + }, + { + "start": 8825.56, + "end": 8828.64, + "probability": 0.9124 + }, + { + "start": 8828.72, + "end": 8831.7, + "probability": 0.9686 + }, + { + "start": 8831.8, + "end": 8832.84, + "probability": 0.8305 + }, + { + "start": 8833.48, + "end": 8837.42, + "probability": 0.9492 + }, + { + "start": 8838.1, + "end": 8839.36, + "probability": 0.7982 + }, + { + "start": 8839.54, + "end": 8844.54, + "probability": 0.9757 + }, + { + "start": 8846.17, + "end": 8848.6, + "probability": 0.827 + }, + { + "start": 8848.88, + "end": 8852.18, + "probability": 0.9626 + }, + { + "start": 8853.76, + "end": 8857.3, + "probability": 0.9237 + }, + { + "start": 8859.12, + "end": 8864.22, + "probability": 0.7086 + }, + { + "start": 8864.22, + "end": 8867.58, + "probability": 0.9839 + }, + { + "start": 8868.48, + "end": 8870.98, + "probability": 0.6612 + }, + { + "start": 8871.6, + "end": 8876.3, + "probability": 0.9795 + }, + { + "start": 8879.02, + "end": 8880.66, + "probability": 0.6814 + }, + { + "start": 8882.08, + "end": 8890.74, + "probability": 0.9902 + }, + { + "start": 8891.52, + "end": 8896.34, + "probability": 0.9469 + }, + { + "start": 8897.3, + "end": 8898.94, + "probability": 0.7402 + }, + { + "start": 8899.64, + "end": 8904.0, + "probability": 0.9805 + }, + { + "start": 8904.58, + "end": 8907.36, + "probability": 0.7905 + }, + { + "start": 8908.02, + "end": 8908.9, + "probability": 0.7517 + }, + { + "start": 8909.06, + "end": 8910.04, + "probability": 0.7966 + }, + { + "start": 8910.7, + "end": 8913.04, + "probability": 0.7992 + }, + { + "start": 8913.04, + "end": 8918.96, + "probability": 0.9703 + }, + { + "start": 8920.4, + "end": 8922.94, + "probability": 0.9922 + }, + { + "start": 8923.56, + "end": 8924.4, + "probability": 0.8407 + }, + { + "start": 8925.2, + "end": 8929.6, + "probability": 0.9739 + }, + { + "start": 8931.48, + "end": 8937.0, + "probability": 0.9977 + }, + { + "start": 8938.28, + "end": 8939.26, + "probability": 0.9961 + }, + { + "start": 8941.76, + "end": 8949.4, + "probability": 0.8283 + }, + { + "start": 8950.78, + "end": 8951.52, + "probability": 0.819 + }, + { + "start": 8951.66, + "end": 8952.62, + "probability": 0.9845 + }, + { + "start": 8952.68, + "end": 8956.66, + "probability": 0.9635 + }, + { + "start": 8956.66, + "end": 8959.5, + "probability": 0.9735 + }, + { + "start": 8960.44, + "end": 8961.7, + "probability": 0.8584 + }, + { + "start": 8963.06, + "end": 8966.08, + "probability": 0.7555 + }, + { + "start": 8966.3, + "end": 8969.7, + "probability": 0.9561 + }, + { + "start": 8970.28, + "end": 8973.38, + "probability": 0.9886 + }, + { + "start": 8974.5, + "end": 8977.94, + "probability": 0.9808 + }, + { + "start": 8978.5, + "end": 8980.2, + "probability": 0.8601 + }, + { + "start": 8980.34, + "end": 8981.55, + "probability": 0.6392 + }, + { + "start": 8982.52, + "end": 8985.54, + "probability": 0.9924 + }, + { + "start": 8987.88, + "end": 8988.7, + "probability": 0.8276 + }, + { + "start": 8988.78, + "end": 8989.42, + "probability": 0.9268 + }, + { + "start": 8989.62, + "end": 8992.34, + "probability": 0.9688 + }, + { + "start": 8992.36, + "end": 8993.86, + "probability": 0.9287 + }, + { + "start": 8994.58, + "end": 8995.92, + "probability": 0.9695 + }, + { + "start": 8997.28, + "end": 8998.66, + "probability": 0.9622 + }, + { + "start": 8999.38, + "end": 9000.16, + "probability": 0.7682 + }, + { + "start": 9000.72, + "end": 9001.6, + "probability": 0.7174 + }, + { + "start": 9001.62, + "end": 9004.36, + "probability": 0.9565 + }, + { + "start": 9005.56, + "end": 9006.08, + "probability": 0.6861 + }, + { + "start": 9006.14, + "end": 9006.9, + "probability": 0.8818 + }, + { + "start": 9006.96, + "end": 9009.9, + "probability": 0.8022 + }, + { + "start": 9010.05, + "end": 9014.02, + "probability": 0.6342 + }, + { + "start": 9015.32, + "end": 9017.22, + "probability": 0.8597 + }, + { + "start": 9017.22, + "end": 9019.24, + "probability": 0.9695 + }, + { + "start": 9019.34, + "end": 9023.72, + "probability": 0.9741 + }, + { + "start": 9024.48, + "end": 9024.64, + "probability": 0.249 + }, + { + "start": 9024.74, + "end": 9029.14, + "probability": 0.7487 + }, + { + "start": 9029.24, + "end": 9029.86, + "probability": 0.8199 + }, + { + "start": 9029.88, + "end": 9032.94, + "probability": 0.956 + }, + { + "start": 9032.99, + "end": 9037.27, + "probability": 0.9703 + }, + { + "start": 9037.56, + "end": 9038.2, + "probability": 0.3395 + }, + { + "start": 9038.86, + "end": 9040.4, + "probability": 0.5539 + }, + { + "start": 9040.5, + "end": 9042.22, + "probability": 0.8502 + }, + { + "start": 9043.42, + "end": 9047.04, + "probability": 0.9198 + }, + { + "start": 9047.64, + "end": 9049.78, + "probability": 0.8331 + }, + { + "start": 9050.3, + "end": 9051.96, + "probability": 0.9325 + }, + { + "start": 9051.96, + "end": 9055.35, + "probability": 0.8204 + }, + { + "start": 9056.36, + "end": 9056.68, + "probability": 0.39 + }, + { + "start": 9056.84, + "end": 9057.62, + "probability": 0.6045 + }, + { + "start": 9057.66, + "end": 9058.28, + "probability": 0.6763 + }, + { + "start": 9058.36, + "end": 9061.0, + "probability": 0.9905 + }, + { + "start": 9061.52, + "end": 9063.08, + "probability": 0.8981 + }, + { + "start": 9063.16, + "end": 9067.76, + "probability": 0.9365 + }, + { + "start": 9067.84, + "end": 9069.96, + "probability": 0.8627 + }, + { + "start": 9070.16, + "end": 9075.56, + "probability": 0.7964 + }, + { + "start": 9075.64, + "end": 9076.72, + "probability": 0.3981 + }, + { + "start": 9077.52, + "end": 9079.0, + "probability": 0.8208 + }, + { + "start": 9079.38, + "end": 9082.3, + "probability": 0.7224 + }, + { + "start": 9082.3, + "end": 9084.4, + "probability": 0.5921 + }, + { + "start": 9084.42, + "end": 9087.96, + "probability": 0.6745 + }, + { + "start": 9087.96, + "end": 9091.04, + "probability": 0.7197 + }, + { + "start": 9091.08, + "end": 9094.94, + "probability": 0.8599 + }, + { + "start": 9095.08, + "end": 9095.72, + "probability": 0.4196 + }, + { + "start": 9097.6, + "end": 9100.62, + "probability": 0.6624 + }, + { + "start": 9102.56, + "end": 9106.52, + "probability": 0.9731 + }, + { + "start": 9106.74, + "end": 9107.22, + "probability": 0.8161 + }, + { + "start": 9108.86, + "end": 9111.54, + "probability": 0.8616 + }, + { + "start": 9111.76, + "end": 9115.3, + "probability": 0.9771 + }, + { + "start": 9115.5, + "end": 9118.44, + "probability": 0.8258 + }, + { + "start": 9118.46, + "end": 9121.68, + "probability": 0.8488 + }, + { + "start": 9128.0, + "end": 9129.0, + "probability": 0.5002 + }, + { + "start": 9129.12, + "end": 9130.46, + "probability": 0.7014 + }, + { + "start": 9130.78, + "end": 9132.34, + "probability": 0.9445 + }, + { + "start": 9132.9, + "end": 9134.86, + "probability": 0.897 + }, + { + "start": 9136.46, + "end": 9139.92, + "probability": 0.9799 + }, + { + "start": 9140.5, + "end": 9144.46, + "probability": 0.7874 + }, + { + "start": 9145.04, + "end": 9147.8, + "probability": 0.9101 + }, + { + "start": 9148.84, + "end": 9150.52, + "probability": 0.6601 + }, + { + "start": 9150.98, + "end": 9153.06, + "probability": 0.8866 + }, + { + "start": 9153.4, + "end": 9157.08, + "probability": 0.959 + }, + { + "start": 9157.08, + "end": 9159.02, + "probability": 0.9985 + }, + { + "start": 9159.16, + "end": 9159.93, + "probability": 0.9497 + }, + { + "start": 9160.06, + "end": 9161.3, + "probability": 0.651 + }, + { + "start": 9161.88, + "end": 9164.48, + "probability": 0.9004 + }, + { + "start": 9164.48, + "end": 9165.17, + "probability": 0.6209 + }, + { + "start": 9165.26, + "end": 9172.24, + "probability": 0.984 + }, + { + "start": 9172.88, + "end": 9175.18, + "probability": 0.8738 + }, + { + "start": 9175.26, + "end": 9176.24, + "probability": 0.9639 + }, + { + "start": 9176.24, + "end": 9176.92, + "probability": 0.7211 + }, + { + "start": 9177.1, + "end": 9180.86, + "probability": 0.8914 + }, + { + "start": 9180.86, + "end": 9184.28, + "probability": 0.8855 + }, + { + "start": 9184.68, + "end": 9190.52, + "probability": 0.995 + }, + { + "start": 9191.18, + "end": 9194.88, + "probability": 0.7486 + }, + { + "start": 9194.94, + "end": 9195.82, + "probability": 0.9284 + }, + { + "start": 9196.32, + "end": 9198.82, + "probability": 0.994 + }, + { + "start": 9199.46, + "end": 9201.82, + "probability": 0.2245 + }, + { + "start": 9201.82, + "end": 9203.22, + "probability": 0.0948 + }, + { + "start": 9204.48, + "end": 9206.54, + "probability": 0.8685 + }, + { + "start": 9207.16, + "end": 9209.64, + "probability": 0.982 + }, + { + "start": 9210.22, + "end": 9210.96, + "probability": 0.595 + }, + { + "start": 9211.48, + "end": 9215.06, + "probability": 0.9696 + }, + { + "start": 9215.98, + "end": 9215.98, + "probability": 0.1994 + }, + { + "start": 9215.98, + "end": 9216.76, + "probability": 0.212 + }, + { + "start": 9216.98, + "end": 9218.36, + "probability": 0.2142 + }, + { + "start": 9218.82, + "end": 9220.58, + "probability": 0.782 + }, + { + "start": 9220.92, + "end": 9222.74, + "probability": 0.9761 + }, + { + "start": 9222.92, + "end": 9224.34, + "probability": 0.975 + }, + { + "start": 9224.92, + "end": 9226.26, + "probability": 0.9858 + }, + { + "start": 9227.04, + "end": 9233.26, + "probability": 0.6823 + }, + { + "start": 9234.23, + "end": 9234.35, + "probability": 0.0688 + }, + { + "start": 9235.82, + "end": 9241.16, + "probability": 0.4669 + }, + { + "start": 9241.76, + "end": 9242.38, + "probability": 0.7388 + }, + { + "start": 9242.5, + "end": 9243.42, + "probability": 0.0193 + }, + { + "start": 9243.8, + "end": 9246.32, + "probability": 0.8525 + }, + { + "start": 9246.56, + "end": 9248.48, + "probability": 0.9868 + }, + { + "start": 9248.8, + "end": 9250.22, + "probability": 0.9609 + }, + { + "start": 9250.78, + "end": 9251.88, + "probability": 0.9531 + }, + { + "start": 9252.84, + "end": 9255.3, + "probability": 0.8909 + }, + { + "start": 9255.64, + "end": 9257.28, + "probability": 0.9849 + }, + { + "start": 9257.28, + "end": 9258.09, + "probability": 0.5558 + }, + { + "start": 9258.52, + "end": 9262.32, + "probability": 0.9912 + }, + { + "start": 9262.9, + "end": 9264.16, + "probability": 0.9493 + }, + { + "start": 9264.62, + "end": 9266.74, + "probability": 0.9902 + }, + { + "start": 9266.96, + "end": 9269.6, + "probability": 0.9646 + }, + { + "start": 9270.14, + "end": 9273.86, + "probability": 0.9766 + }, + { + "start": 9273.88, + "end": 9274.92, + "probability": 0.8245 + }, + { + "start": 9275.32, + "end": 9279.22, + "probability": 0.9893 + }, + { + "start": 9279.22, + "end": 9284.34, + "probability": 0.9886 + }, + { + "start": 9284.86, + "end": 9288.7, + "probability": 0.9991 + }, + { + "start": 9289.24, + "end": 9291.78, + "probability": 0.9946 + }, + { + "start": 9292.04, + "end": 9294.54, + "probability": 0.9977 + }, + { + "start": 9294.88, + "end": 9296.18, + "probability": 0.9976 + }, + { + "start": 9296.8, + "end": 9301.3, + "probability": 0.9719 + }, + { + "start": 9301.88, + "end": 9306.48, + "probability": 0.9916 + }, + { + "start": 9306.92, + "end": 9307.97, + "probability": 0.9209 + }, + { + "start": 9308.38, + "end": 9312.5, + "probability": 0.9715 + }, + { + "start": 9312.5, + "end": 9315.62, + "probability": 0.9422 + }, + { + "start": 9315.62, + "end": 9316.06, + "probability": 0.3818 + }, + { + "start": 9316.18, + "end": 9316.8, + "probability": 0.2619 + }, + { + "start": 9317.12, + "end": 9320.22, + "probability": 0.986 + }, + { + "start": 9320.74, + "end": 9325.3, + "probability": 0.8985 + }, + { + "start": 9325.44, + "end": 9326.1, + "probability": 0.6008 + }, + { + "start": 9326.14, + "end": 9328.28, + "probability": 0.9707 + }, + { + "start": 9329.08, + "end": 9332.12, + "probability": 0.9392 + }, + { + "start": 9332.86, + "end": 9336.36, + "probability": 0.8927 + }, + { + "start": 9336.44, + "end": 9340.26, + "probability": 0.9824 + }, + { + "start": 9341.48, + "end": 9343.06, + "probability": 0.4969 + }, + { + "start": 9343.44, + "end": 9346.58, + "probability": 0.8486 + }, + { + "start": 9347.28, + "end": 9350.84, + "probability": 0.8311 + }, + { + "start": 9351.0, + "end": 9355.22, + "probability": 0.6624 + }, + { + "start": 9368.58, + "end": 9370.9, + "probability": 0.8066 + }, + { + "start": 9374.82, + "end": 9375.78, + "probability": 0.668 + }, + { + "start": 9377.47, + "end": 9381.46, + "probability": 0.7385 + }, + { + "start": 9383.86, + "end": 9387.4, + "probability": 0.8082 + }, + { + "start": 9389.3, + "end": 9394.2, + "probability": 0.8859 + }, + { + "start": 9395.26, + "end": 9399.28, + "probability": 0.7153 + }, + { + "start": 9402.75, + "end": 9405.94, + "probability": 0.7988 + }, + { + "start": 9407.02, + "end": 9410.46, + "probability": 0.9016 + }, + { + "start": 9411.84, + "end": 9414.58, + "probability": 0.9712 + }, + { + "start": 9416.5, + "end": 9417.94, + "probability": 0.9875 + }, + { + "start": 9421.36, + "end": 9424.32, + "probability": 0.808 + }, + { + "start": 9425.34, + "end": 9427.74, + "probability": 0.7875 + }, + { + "start": 9428.62, + "end": 9431.28, + "probability": 0.8029 + }, + { + "start": 9433.25, + "end": 9435.5, + "probability": 0.8475 + }, + { + "start": 9439.18, + "end": 9442.9, + "probability": 0.8237 + }, + { + "start": 9444.13, + "end": 9446.3, + "probability": 0.8791 + }, + { + "start": 9447.47, + "end": 9450.18, + "probability": 0.4468 + }, + { + "start": 9451.1, + "end": 9454.1, + "probability": 0.9622 + }, + { + "start": 9454.84, + "end": 9456.82, + "probability": 0.9925 + }, + { + "start": 9457.36, + "end": 9458.48, + "probability": 0.8132 + }, + { + "start": 9460.06, + "end": 9463.54, + "probability": 0.8366 + }, + { + "start": 9464.8, + "end": 9465.08, + "probability": 0.3284 + }, + { + "start": 9468.88, + "end": 9472.26, + "probability": 0.6919 + }, + { + "start": 9473.74, + "end": 9477.26, + "probability": 0.8498 + }, + { + "start": 9480.18, + "end": 9483.74, + "probability": 0.87 + }, + { + "start": 9484.94, + "end": 9489.24, + "probability": 0.7254 + }, + { + "start": 9493.84, + "end": 9498.82, + "probability": 0.677 + }, + { + "start": 9500.1, + "end": 9502.54, + "probability": 0.9881 + }, + { + "start": 9503.98, + "end": 9504.86, + "probability": 0.754 + }, + { + "start": 9507.5, + "end": 9508.5, + "probability": 0.6265 + }, + { + "start": 9509.48, + "end": 9513.1, + "probability": 0.8286 + }, + { + "start": 9514.82, + "end": 9521.0, + "probability": 0.6515 + }, + { + "start": 9521.94, + "end": 9522.8, + "probability": 0.5928 + }, + { + "start": 9526.88, + "end": 9527.7, + "probability": 0.6876 + }, + { + "start": 9528.52, + "end": 9532.28, + "probability": 0.5023 + }, + { + "start": 9533.86, + "end": 9537.7, + "probability": 0.9304 + }, + { + "start": 9539.5, + "end": 9540.78, + "probability": 0.9076 + }, + { + "start": 9545.46, + "end": 9546.5, + "probability": 0.6633 + }, + { + "start": 9547.74, + "end": 9550.72, + "probability": 0.8646 + }, + { + "start": 9552.48, + "end": 9555.62, + "probability": 0.8054 + }, + { + "start": 9556.58, + "end": 9559.7, + "probability": 0.7947 + }, + { + "start": 9562.78, + "end": 9563.12, + "probability": 0.7484 + }, + { + "start": 9566.22, + "end": 9567.08, + "probability": 0.3142 + }, + { + "start": 9568.54, + "end": 9571.14, + "probability": 0.7748 + }, + { + "start": 9572.3, + "end": 9577.02, + "probability": 0.9438 + }, + { + "start": 9578.34, + "end": 9581.44, + "probability": 0.9121 + }, + { + "start": 9582.58, + "end": 9585.4, + "probability": 0.992 + }, + { + "start": 9586.06, + "end": 9588.54, + "probability": 0.7996 + }, + { + "start": 9589.2, + "end": 9593.9, + "probability": 0.8729 + }, + { + "start": 9599.42, + "end": 9600.62, + "probability": 0.663 + }, + { + "start": 9603.0, + "end": 9605.86, + "probability": 0.9141 + }, + { + "start": 9606.86, + "end": 9609.66, + "probability": 0.6987 + }, + { + "start": 9610.7, + "end": 9613.4, + "probability": 0.8003 + }, + { + "start": 9614.66, + "end": 9614.96, + "probability": 0.8848 + }, + { + "start": 9617.94, + "end": 9619.32, + "probability": 0.3909 + }, + { + "start": 9620.34, + "end": 9623.38, + "probability": 0.8035 + }, + { + "start": 9624.94, + "end": 9628.2, + "probability": 0.8088 + }, + { + "start": 9636.48, + "end": 9637.04, + "probability": 0.5903 + }, + { + "start": 9638.74, + "end": 9639.56, + "probability": 0.6394 + }, + { + "start": 9640.76, + "end": 9641.84, + "probability": 0.7429 + }, + { + "start": 9642.78, + "end": 9645.24, + "probability": 0.9419 + }, + { + "start": 9646.06, + "end": 9647.08, + "probability": 0.9526 + }, + { + "start": 9647.64, + "end": 9649.24, + "probability": 0.9668 + }, + { + "start": 9650.38, + "end": 9651.56, + "probability": 0.9575 + }, + { + "start": 9652.16, + "end": 9658.32, + "probability": 0.8925 + }, + { + "start": 9660.5, + "end": 9661.9, + "probability": 0.8775 + }, + { + "start": 9662.76, + "end": 9664.56, + "probability": 0.1286 + }, + { + "start": 9673.72, + "end": 9674.0, + "probability": 0.5174 + }, + { + "start": 9675.48, + "end": 9676.54, + "probability": 0.6543 + }, + { + "start": 9677.95, + "end": 9680.6, + "probability": 0.8859 + }, + { + "start": 9682.55, + "end": 9684.62, + "probability": 0.9602 + }, + { + "start": 9685.58, + "end": 9686.74, + "probability": 0.9795 + }, + { + "start": 9688.42, + "end": 9689.54, + "probability": 0.9163 + }, + { + "start": 9690.6, + "end": 9693.76, + "probability": 0.8519 + }, + { + "start": 9694.86, + "end": 9698.18, + "probability": 0.9025 + }, + { + "start": 9699.1, + "end": 9703.18, + "probability": 0.8484 + }, + { + "start": 9707.86, + "end": 9708.42, + "probability": 0.5414 + }, + { + "start": 9709.28, + "end": 9711.78, + "probability": 0.8805 + }, + { + "start": 9712.56, + "end": 9714.18, + "probability": 0.6275 + }, + { + "start": 9715.48, + "end": 9719.0, + "probability": 0.8578 + }, + { + "start": 9720.18, + "end": 9722.6, + "probability": 0.8103 + }, + { + "start": 9724.0, + "end": 9725.46, + "probability": 0.5841 + }, + { + "start": 9726.28, + "end": 9726.94, + "probability": 0.9849 + }, + { + "start": 9728.78, + "end": 9730.72, + "probability": 0.8939 + }, + { + "start": 9735.02, + "end": 9735.82, + "probability": 0.703 + }, + { + "start": 9737.32, + "end": 9740.3, + "probability": 0.8054 + }, + { + "start": 9741.38, + "end": 9742.9, + "probability": 0.9842 + }, + { + "start": 9743.88, + "end": 9744.88, + "probability": 0.9623 + }, + { + "start": 9745.75, + "end": 9748.28, + "probability": 0.8383 + }, + { + "start": 9749.32, + "end": 9757.26, + "probability": 0.9775 + }, + { + "start": 9762.06, + "end": 9765.28, + "probability": 0.6942 + }, + { + "start": 9766.58, + "end": 9769.22, + "probability": 0.7369 + }, + { + "start": 9770.54, + "end": 9771.96, + "probability": 0.8797 + }, + { + "start": 9772.57, + "end": 9776.44, + "probability": 0.7833 + }, + { + "start": 9783.86, + "end": 9786.8, + "probability": 0.6054 + }, + { + "start": 9787.9, + "end": 9791.52, + "probability": 0.7758 + }, + { + "start": 9794.12, + "end": 9794.54, + "probability": 0.8514 + }, + { + "start": 9798.12, + "end": 9799.12, + "probability": 0.6264 + }, + { + "start": 9800.18, + "end": 9801.5, + "probability": 0.9372 + }, + { + "start": 9802.62, + "end": 9803.86, + "probability": 0.8255 + }, + { + "start": 9804.44, + "end": 9805.48, + "probability": 0.8835 + }, + { + "start": 9808.24, + "end": 9809.24, + "probability": 0.7568 + }, + { + "start": 9809.94, + "end": 9814.42, + "probability": 0.8171 + }, + { + "start": 9815.28, + "end": 9815.66, + "probability": 0.9565 + }, + { + "start": 9817.46, + "end": 9818.74, + "probability": 0.93 + }, + { + "start": 9819.5, + "end": 9820.38, + "probability": 0.9427 + }, + { + "start": 9822.16, + "end": 9823.54, + "probability": 0.8076 + }, + { + "start": 9825.12, + "end": 9827.8, + "probability": 0.9814 + }, + { + "start": 9828.8, + "end": 9829.92, + "probability": 0.5466 + }, + { + "start": 9830.96, + "end": 9831.24, + "probability": 0.5125 + }, + { + "start": 9834.2, + "end": 9835.58, + "probability": 0.604 + }, + { + "start": 9836.18, + "end": 9840.26, + "probability": 0.5017 + }, + { + "start": 9840.96, + "end": 9842.32, + "probability": 0.9295 + }, + { + "start": 9843.88, + "end": 9845.2, + "probability": 0.7976 + }, + { + "start": 9845.98, + "end": 9846.8, + "probability": 0.676 + }, + { + "start": 9848.82, + "end": 9849.7, + "probability": 0.6518 + }, + { + "start": 9850.8, + "end": 9851.3, + "probability": 0.5582 + }, + { + "start": 9853.22, + "end": 9854.48, + "probability": 0.8176 + }, + { + "start": 9855.04, + "end": 9856.36, + "probability": 0.8539 + }, + { + "start": 9859.58, + "end": 9860.58, + "probability": 0.561 + }, + { + "start": 9862.32, + "end": 9866.58, + "probability": 0.847 + }, + { + "start": 9867.93, + "end": 9870.7, + "probability": 0.9308 + }, + { + "start": 9871.74, + "end": 9878.6, + "probability": 0.9249 + }, + { + "start": 9879.5, + "end": 9879.9, + "probability": 0.7476 + }, + { + "start": 9881.62, + "end": 9882.88, + "probability": 0.7124 + }, + { + "start": 9884.52, + "end": 9885.46, + "probability": 0.2838 + }, + { + "start": 9887.64, + "end": 9891.36, + "probability": 0.5719 + }, + { + "start": 9893.82, + "end": 9894.94, + "probability": 0.9295 + }, + { + "start": 9896.62, + "end": 9897.7, + "probability": 0.8481 + }, + { + "start": 9899.04, + "end": 9899.58, + "probability": 0.9544 + }, + { + "start": 9901.12, + "end": 9901.98, + "probability": 0.8212 + }, + { + "start": 9903.34, + "end": 9903.88, + "probability": 0.9886 + }, + { + "start": 9906.2, + "end": 9907.14, + "probability": 0.9662 + }, + { + "start": 9908.18, + "end": 9912.48, + "probability": 0.9374 + }, + { + "start": 9913.22, + "end": 9913.62, + "probability": 0.8906 + }, + { + "start": 9915.82, + "end": 9917.04, + "probability": 0.8068 + }, + { + "start": 9917.9, + "end": 9921.34, + "probability": 0.6949 + }, + { + "start": 9921.94, + "end": 9924.8, + "probability": 0.7246 + }, + { + "start": 9925.54, + "end": 9926.78, + "probability": 0.9652 + }, + { + "start": 9929.38, + "end": 9930.86, + "probability": 0.8802 + }, + { + "start": 9932.46, + "end": 9935.82, + "probability": 0.7645 + }, + { + "start": 9936.76, + "end": 9938.84, + "probability": 0.9724 + }, + { + "start": 9939.7, + "end": 9940.92, + "probability": 0.9333 + }, + { + "start": 9941.68, + "end": 9942.28, + "probability": 0.9846 + }, + { + "start": 9944.38, + "end": 9945.28, + "probability": 0.671 + }, + { + "start": 9945.96, + "end": 9948.64, + "probability": 0.6656 + }, + { + "start": 9952.42, + "end": 9953.28, + "probability": 0.5186 + }, + { + "start": 9954.12, + "end": 9954.42, + "probability": 0.6281 + }, + { + "start": 9957.34, + "end": 9958.16, + "probability": 0.6782 + }, + { + "start": 9959.0, + "end": 9959.62, + "probability": 0.9214 + }, + { + "start": 9961.08, + "end": 9962.18, + "probability": 0.6809 + }, + { + "start": 9964.02, + "end": 9964.96, + "probability": 0.7958 + }, + { + "start": 9965.78, + "end": 9967.1, + "probability": 0.8532 + }, + { + "start": 9968.12, + "end": 9968.4, + "probability": 0.9922 + }, + { + "start": 9970.02, + "end": 9970.74, + "probability": 0.5323 + }, + { + "start": 9970.8, + "end": 9974.6, + "probability": 0.8974 + }, + { + "start": 9976.81, + "end": 9982.08, + "probability": 0.0685 + }, + { + "start": 9982.08, + "end": 9982.08, + "probability": 0.4724 + }, + { + "start": 9982.08, + "end": 9982.42, + "probability": 0.4768 + }, + { + "start": 9984.1, + "end": 9985.66, + "probability": 0.6825 + }, + { + "start": 9986.62, + "end": 9989.28, + "probability": 0.6135 + }, + { + "start": 9991.36, + "end": 9995.96, + "probability": 0.5397 + }, + { + "start": 9996.98, + "end": 9997.44, + "probability": 0.9733 + }, + { + "start": 10006.24, + "end": 10010.42, + "probability": 0.6664 + }, + { + "start": 10011.96, + "end": 10014.32, + "probability": 0.7628 + }, + { + "start": 10015.38, + "end": 10016.22, + "probability": 0.8931 + }, + { + "start": 10017.48, + "end": 10018.6, + "probability": 0.5399 + }, + { + "start": 10019.84, + "end": 10020.76, + "probability": 0.9236 + }, + { + "start": 10021.4, + "end": 10022.56, + "probability": 0.8886 + }, + { + "start": 10023.72, + "end": 10029.24, + "probability": 0.8926 + }, + { + "start": 10030.58, + "end": 10033.22, + "probability": 0.8826 + }, + { + "start": 10033.78, + "end": 10036.22, + "probability": 0.7349 + }, + { + "start": 10036.78, + "end": 10038.44, + "probability": 0.8985 + }, + { + "start": 10040.1, + "end": 10045.74, + "probability": 0.9323 + }, + { + "start": 10047.58, + "end": 10052.84, + "probability": 0.8773 + }, + { + "start": 10053.78, + "end": 10058.72, + "probability": 0.9857 + }, + { + "start": 10059.74, + "end": 10060.02, + "probability": 0.6268 + }, + { + "start": 10060.68, + "end": 10063.52, + "probability": 0.8957 + }, + { + "start": 10064.24, + "end": 10068.6, + "probability": 0.8235 + }, + { + "start": 10071.38, + "end": 10072.3, + "probability": 0.6266 + }, + { + "start": 10075.74, + "end": 10077.12, + "probability": 0.5842 + }, + { + "start": 10078.46, + "end": 10079.96, + "probability": 0.8202 + }, + { + "start": 10082.98, + "end": 10083.92, + "probability": 0.6483 + }, + { + "start": 10084.5, + "end": 10087.0, + "probability": 0.9099 + }, + { + "start": 10087.82, + "end": 10088.74, + "probability": 0.7736 + }, + { + "start": 10091.24, + "end": 10094.92, + "probability": 0.7214 + }, + { + "start": 10097.04, + "end": 10097.38, + "probability": 0.7533 + }, + { + "start": 10102.66, + "end": 10103.46, + "probability": 0.6162 + }, + { + "start": 10105.04, + "end": 10107.76, + "probability": 0.7834 + }, + { + "start": 10113.94, + "end": 10115.04, + "probability": 0.4123 + }, + { + "start": 10115.82, + "end": 10117.98, + "probability": 0.7748 + }, + { + "start": 10118.7, + "end": 10119.7, + "probability": 0.7473 + }, + { + "start": 10121.02, + "end": 10126.12, + "probability": 0.9716 + }, + { + "start": 10127.78, + "end": 10127.88, + "probability": 0.4461 + }, + { + "start": 10127.94, + "end": 10128.6, + "probability": 0.456 + }, + { + "start": 10128.62, + "end": 10129.64, + "probability": 0.7559 + }, + { + "start": 10129.76, + "end": 10130.76, + "probability": 0.8587 + }, + { + "start": 10140.08, + "end": 10140.98, + "probability": 0.4009 + }, + { + "start": 10142.14, + "end": 10145.46, + "probability": 0.1066 + }, + { + "start": 10154.5, + "end": 10154.5, + "probability": 0.0099 + }, + { + "start": 10159.32, + "end": 10160.56, + "probability": 0.0513 + }, + { + "start": 10200.1, + "end": 10200.2, + "probability": 0.1666 + }, + { + "start": 10214.48, + "end": 10214.76, + "probability": 0.0327 + }, + { + "start": 10218.62, + "end": 10219.32, + "probability": 0.5425 + }, + { + "start": 10219.8, + "end": 10221.76, + "probability": 0.9785 + }, + { + "start": 10224.52, + "end": 10229.5, + "probability": 0.9893 + }, + { + "start": 10229.98, + "end": 10230.94, + "probability": 0.3477 + }, + { + "start": 10231.32, + "end": 10234.46, + "probability": 0.8819 + }, + { + "start": 10234.88, + "end": 10235.78, + "probability": 0.7415 + }, + { + "start": 10236.64, + "end": 10236.98, + "probability": 0.6118 + }, + { + "start": 10237.04, + "end": 10241.48, + "probability": 0.7763 + }, + { + "start": 10241.48, + "end": 10245.98, + "probability": 0.9838 + }, + { + "start": 10246.46, + "end": 10247.72, + "probability": 0.4322 + }, + { + "start": 10248.36, + "end": 10251.26, + "probability": 0.7563 + }, + { + "start": 10252.12, + "end": 10255.7, + "probability": 0.9785 + }, + { + "start": 10255.8, + "end": 10256.14, + "probability": 0.5318 + }, + { + "start": 10256.16, + "end": 10256.7, + "probability": 0.3936 + }, + { + "start": 10257.82, + "end": 10262.22, + "probability": 0.9894 + }, + { + "start": 10263.26, + "end": 10265.06, + "probability": 0.868 + }, + { + "start": 10265.64, + "end": 10266.18, + "probability": 0.9396 + }, + { + "start": 10274.82, + "end": 10275.74, + "probability": 0.571 + }, + { + "start": 10276.42, + "end": 10280.58, + "probability": 0.8896 + }, + { + "start": 10281.16, + "end": 10282.5, + "probability": 0.9891 + }, + { + "start": 10283.64, + "end": 10286.96, + "probability": 0.981 + }, + { + "start": 10287.8, + "end": 10290.72, + "probability": 0.9372 + }, + { + "start": 10291.98, + "end": 10292.54, + "probability": 0.8092 + }, + { + "start": 10292.68, + "end": 10298.28, + "probability": 0.8433 + }, + { + "start": 10298.9, + "end": 10302.64, + "probability": 0.9912 + }, + { + "start": 10303.16, + "end": 10307.16, + "probability": 0.9927 + }, + { + "start": 10307.76, + "end": 10308.36, + "probability": 0.8146 + }, + { + "start": 10308.96, + "end": 10310.86, + "probability": 0.8317 + }, + { + "start": 10311.88, + "end": 10314.54, + "probability": 0.9918 + }, + { + "start": 10315.54, + "end": 10318.46, + "probability": 0.9868 + }, + { + "start": 10319.42, + "end": 10322.66, + "probability": 0.9824 + }, + { + "start": 10323.18, + "end": 10325.44, + "probability": 0.991 + }, + { + "start": 10326.08, + "end": 10330.02, + "probability": 0.8514 + }, + { + "start": 10330.02, + "end": 10333.68, + "probability": 0.8701 + }, + { + "start": 10334.38, + "end": 10335.92, + "probability": 0.9518 + }, + { + "start": 10336.54, + "end": 10338.86, + "probability": 0.9666 + }, + { + "start": 10340.38, + "end": 10343.5, + "probability": 0.6613 + }, + { + "start": 10344.04, + "end": 10345.12, + "probability": 0.8054 + }, + { + "start": 10345.84, + "end": 10349.64, + "probability": 0.9931 + }, + { + "start": 10350.32, + "end": 10352.92, + "probability": 0.9865 + }, + { + "start": 10353.46, + "end": 10357.0, + "probability": 0.9929 + }, + { + "start": 10357.38, + "end": 10358.16, + "probability": 0.9866 + }, + { + "start": 10358.74, + "end": 10362.24, + "probability": 0.9739 + }, + { + "start": 10362.3, + "end": 10366.22, + "probability": 0.8921 + }, + { + "start": 10367.44, + "end": 10371.0, + "probability": 0.9663 + }, + { + "start": 10371.04, + "end": 10371.82, + "probability": 0.9021 + }, + { + "start": 10372.52, + "end": 10375.9, + "probability": 0.0837 + }, + { + "start": 10375.9, + "end": 10375.9, + "probability": 0.1651 + }, + { + "start": 10375.9, + "end": 10377.54, + "probability": 0.3668 + }, + { + "start": 10378.06, + "end": 10381.5, + "probability": 0.946 + }, + { + "start": 10381.5, + "end": 10382.88, + "probability": 0.1378 + }, + { + "start": 10383.28, + "end": 10386.2, + "probability": 0.596 + }, + { + "start": 10386.22, + "end": 10386.91, + "probability": 0.4213 + }, + { + "start": 10387.9, + "end": 10389.58, + "probability": 0.8513 + }, + { + "start": 10390.56, + "end": 10391.44, + "probability": 0.6039 + }, + { + "start": 10391.64, + "end": 10395.92, + "probability": 0.7844 + }, + { + "start": 10396.0, + "end": 10396.18, + "probability": 0.1411 + }, + { + "start": 10396.26, + "end": 10396.26, + "probability": 0.0327 + }, + { + "start": 10396.36, + "end": 10399.68, + "probability": 0.9722 + }, + { + "start": 10399.74, + "end": 10403.02, + "probability": 0.646 + }, + { + "start": 10403.42, + "end": 10405.06, + "probability": 0.9978 + }, + { + "start": 10405.48, + "end": 10409.12, + "probability": 0.9935 + }, + { + "start": 10409.12, + "end": 10411.1, + "probability": 0.8687 + }, + { + "start": 10411.38, + "end": 10412.22, + "probability": 0.9829 + }, + { + "start": 10412.54, + "end": 10412.76, + "probability": 0.553 + }, + { + "start": 10413.1, + "end": 10417.14, + "probability": 0.9814 + }, + { + "start": 10417.46, + "end": 10420.16, + "probability": 0.9236 + }, + { + "start": 10420.52, + "end": 10421.42, + "probability": 0.6019 + }, + { + "start": 10421.7, + "end": 10424.5, + "probability": 0.9821 + }, + { + "start": 10424.98, + "end": 10425.74, + "probability": 0.7194 + }, + { + "start": 10425.88, + "end": 10426.38, + "probability": 0.4056 + }, + { + "start": 10426.98, + "end": 10429.9, + "probability": 0.8092 + }, + { + "start": 10430.5, + "end": 10433.3, + "probability": 0.9995 + }, + { + "start": 10433.3, + "end": 10436.28, + "probability": 0.9961 + }, + { + "start": 10437.22, + "end": 10439.26, + "probability": 0.0474 + }, + { + "start": 10440.0, + "end": 10440.36, + "probability": 0.2013 + }, + { + "start": 10440.36, + "end": 10440.66, + "probability": 0.0778 + }, + { + "start": 10441.24, + "end": 10443.16, + "probability": 0.7602 + }, + { + "start": 10444.4, + "end": 10448.18, + "probability": 0.8184 + }, + { + "start": 10449.0, + "end": 10452.42, + "probability": 0.797 + }, + { + "start": 10453.4, + "end": 10454.4, + "probability": 0.919 + }, + { + "start": 10454.8, + "end": 10455.66, + "probability": 0.6817 + }, + { + "start": 10456.1, + "end": 10457.68, + "probability": 0.9947 + }, + { + "start": 10458.46, + "end": 10459.76, + "probability": 0.8217 + }, + { + "start": 10460.16, + "end": 10461.76, + "probability": 0.9717 + }, + { + "start": 10461.8, + "end": 10465.08, + "probability": 0.8763 + }, + { + "start": 10465.96, + "end": 10466.4, + "probability": 0.4067 + }, + { + "start": 10467.18, + "end": 10469.42, + "probability": 0.9761 + }, + { + "start": 10469.58, + "end": 10471.88, + "probability": 0.6984 + }, + { + "start": 10472.16, + "end": 10475.12, + "probability": 0.9134 + }, + { + "start": 10475.9, + "end": 10479.0, + "probability": 0.9949 + }, + { + "start": 10479.56, + "end": 10483.08, + "probability": 0.9946 + }, + { + "start": 10483.08, + "end": 10486.7, + "probability": 0.9988 + }, + { + "start": 10487.32, + "end": 10492.98, + "probability": 0.9966 + }, + { + "start": 10494.0, + "end": 10495.04, + "probability": 0.8371 + }, + { + "start": 10495.12, + "end": 10496.12, + "probability": 0.6657 + }, + { + "start": 10496.58, + "end": 10499.04, + "probability": 0.5915 + }, + { + "start": 10499.56, + "end": 10500.12, + "probability": 0.5737 + }, + { + "start": 10500.28, + "end": 10502.32, + "probability": 0.9879 + }, + { + "start": 10502.58, + "end": 10504.28, + "probability": 0.8613 + }, + { + "start": 10504.34, + "end": 10506.38, + "probability": 0.9791 + }, + { + "start": 10506.92, + "end": 10507.64, + "probability": 0.9615 + }, + { + "start": 10508.02, + "end": 10508.52, + "probability": 0.9636 + }, + { + "start": 10508.58, + "end": 10510.2, + "probability": 0.5181 + }, + { + "start": 10510.26, + "end": 10510.82, + "probability": 0.3291 + }, + { + "start": 10511.26, + "end": 10512.22, + "probability": 0.9259 + }, + { + "start": 10512.28, + "end": 10516.5, + "probability": 0.9915 + }, + { + "start": 10516.72, + "end": 10519.2, + "probability": 0.4877 + }, + { + "start": 10519.28, + "end": 10519.52, + "probability": 0.7012 + }, + { + "start": 10519.64, + "end": 10519.78, + "probability": 0.4941 + }, + { + "start": 10519.86, + "end": 10520.38, + "probability": 0.866 + }, + { + "start": 10520.5, + "end": 10522.62, + "probability": 0.9957 + }, + { + "start": 10523.08, + "end": 10524.64, + "probability": 0.9305 + }, + { + "start": 10525.32, + "end": 10528.64, + "probability": 0.9772 + }, + { + "start": 10529.64, + "end": 10532.56, + "probability": 0.9958 + }, + { + "start": 10533.18, + "end": 10535.81, + "probability": 0.998 + }, + { + "start": 10536.84, + "end": 10540.38, + "probability": 0.0143 + }, + { + "start": 10540.38, + "end": 10543.56, + "probability": 0.7099 + }, + { + "start": 10543.88, + "end": 10545.64, + "probability": 0.2394 + }, + { + "start": 10546.28, + "end": 10550.26, + "probability": 0.9953 + }, + { + "start": 10550.26, + "end": 10554.52, + "probability": 0.9843 + }, + { + "start": 10554.98, + "end": 10556.22, + "probability": 0.9482 + }, + { + "start": 10556.78, + "end": 10560.14, + "probability": 0.9027 + }, + { + "start": 10561.06, + "end": 10565.42, + "probability": 0.985 + }, + { + "start": 10565.54, + "end": 10566.12, + "probability": 0.9051 + }, + { + "start": 10566.38, + "end": 10567.54, + "probability": 0.9458 + }, + { + "start": 10568.1, + "end": 10568.88, + "probability": 0.7099 + }, + { + "start": 10569.14, + "end": 10569.98, + "probability": 0.7526 + }, + { + "start": 10570.16, + "end": 10572.54, + "probability": 0.8657 + }, + { + "start": 10573.02, + "end": 10576.36, + "probability": 0.934 + }, + { + "start": 10576.7, + "end": 10580.56, + "probability": 0.9029 + }, + { + "start": 10581.34, + "end": 10584.7, + "probability": 0.8401 + }, + { + "start": 10585.06, + "end": 10587.16, + "probability": 0.9937 + }, + { + "start": 10587.16, + "end": 10590.9, + "probability": 0.6274 + }, + { + "start": 10591.34, + "end": 10594.14, + "probability": 0.982 + }, + { + "start": 10594.8, + "end": 10595.06, + "probability": 0.5358 + }, + { + "start": 10595.2, + "end": 10598.22, + "probability": 0.9302 + }, + { + "start": 10598.3, + "end": 10603.16, + "probability": 0.9709 + }, + { + "start": 10603.7, + "end": 10604.62, + "probability": 0.8032 + }, + { + "start": 10604.98, + "end": 10606.22, + "probability": 0.9514 + }, + { + "start": 10606.28, + "end": 10608.46, + "probability": 0.9795 + }, + { + "start": 10608.82, + "end": 10609.92, + "probability": 0.751 + }, + { + "start": 10610.12, + "end": 10610.56, + "probability": 0.3908 + }, + { + "start": 10611.7, + "end": 10616.02, + "probability": 0.9912 + }, + { + "start": 10616.36, + "end": 10617.68, + "probability": 0.8477 + }, + { + "start": 10618.06, + "end": 10619.02, + "probability": 0.8877 + }, + { + "start": 10619.46, + "end": 10621.06, + "probability": 0.9239 + }, + { + "start": 10621.16, + "end": 10622.02, + "probability": 0.4467 + }, + { + "start": 10622.38, + "end": 10625.26, + "probability": 0.7852 + }, + { + "start": 10625.68, + "end": 10627.89, + "probability": 0.9757 + }, + { + "start": 10628.4, + "end": 10629.92, + "probability": 0.9818 + }, + { + "start": 10630.1, + "end": 10633.43, + "probability": 0.8473 + }, + { + "start": 10634.52, + "end": 10634.66, + "probability": 0.5208 + }, + { + "start": 10634.76, + "end": 10639.28, + "probability": 0.7935 + }, + { + "start": 10639.56, + "end": 10640.06, + "probability": 0.6135 + }, + { + "start": 10640.32, + "end": 10641.44, + "probability": 0.9395 + }, + { + "start": 10641.98, + "end": 10646.86, + "probability": 0.8032 + }, + { + "start": 10647.18, + "end": 10650.74, + "probability": 0.8469 + }, + { + "start": 10651.66, + "end": 10653.02, + "probability": 0.8861 + }, + { + "start": 10653.62, + "end": 10655.03, + "probability": 0.6841 + }, + { + "start": 10655.44, + "end": 10659.02, + "probability": 0.9049 + }, + { + "start": 10659.3, + "end": 10662.42, + "probability": 0.9973 + }, + { + "start": 10662.42, + "end": 10666.82, + "probability": 0.9705 + }, + { + "start": 10666.96, + "end": 10668.86, + "probability": 0.5756 + }, + { + "start": 10669.3, + "end": 10671.54, + "probability": 0.9966 + }, + { + "start": 10671.88, + "end": 10675.04, + "probability": 0.9674 + }, + { + "start": 10675.14, + "end": 10676.32, + "probability": 0.902 + }, + { + "start": 10676.78, + "end": 10680.54, + "probability": 0.9512 + }, + { + "start": 10681.2, + "end": 10683.52, + "probability": 0.9694 + }, + { + "start": 10684.06, + "end": 10686.24, + "probability": 0.8315 + }, + { + "start": 10686.56, + "end": 10686.68, + "probability": 0.7456 + }, + { + "start": 10686.72, + "end": 10692.02, + "probability": 0.9651 + }, + { + "start": 10692.38, + "end": 10695.14, + "probability": 0.915 + }, + { + "start": 10695.54, + "end": 10696.22, + "probability": 0.5982 + }, + { + "start": 10696.36, + "end": 10698.54, + "probability": 0.9828 + }, + { + "start": 10698.98, + "end": 10701.98, + "probability": 0.981 + }, + { + "start": 10701.98, + "end": 10706.6, + "probability": 0.9667 + }, + { + "start": 10707.16, + "end": 10708.7, + "probability": 0.6129 + }, + { + "start": 10709.0, + "end": 10710.98, + "probability": 0.9861 + }, + { + "start": 10711.28, + "end": 10711.5, + "probability": 0.7176 + }, + { + "start": 10712.86, + "end": 10714.96, + "probability": 0.8314 + }, + { + "start": 10715.1, + "end": 10715.54, + "probability": 0.7539 + }, + { + "start": 10715.68, + "end": 10719.18, + "probability": 0.9921 + }, + { + "start": 10720.04, + "end": 10724.24, + "probability": 0.0023 + }, + { + "start": 10724.26, + "end": 10724.64, + "probability": 0.0938 + }, + { + "start": 10724.78, + "end": 10725.18, + "probability": 0.0752 + }, + { + "start": 10725.4, + "end": 10725.54, + "probability": 0.1314 + }, + { + "start": 10725.54, + "end": 10725.54, + "probability": 0.0213 + }, + { + "start": 10725.54, + "end": 10729.7, + "probability": 0.549 + }, + { + "start": 10729.92, + "end": 10731.54, + "probability": 0.5919 + }, + { + "start": 10731.64, + "end": 10732.86, + "probability": 0.8496 + }, + { + "start": 10733.26, + "end": 10739.26, + "probability": 0.6852 + }, + { + "start": 10739.32, + "end": 10741.58, + "probability": 0.705 + }, + { + "start": 10741.64, + "end": 10742.0, + "probability": 0.7595 + }, + { + "start": 10742.1, + "end": 10743.16, + "probability": 0.9683 + }, + { + "start": 10743.86, + "end": 10744.58, + "probability": 0.8784 + }, + { + "start": 10744.58, + "end": 10745.08, + "probability": 0.3807 + }, + { + "start": 10745.1, + "end": 10747.18, + "probability": 0.8004 + }, + { + "start": 10747.37, + "end": 10749.8, + "probability": 0.9972 + }, + { + "start": 10751.42, + "end": 10753.58, + "probability": 0.9915 + }, + { + "start": 10754.12, + "end": 10755.34, + "probability": 0.9685 + }, + { + "start": 10755.46, + "end": 10759.12, + "probability": 0.9967 + }, + { + "start": 10759.22, + "end": 10764.3, + "probability": 0.9971 + }, + { + "start": 10764.3, + "end": 10769.12, + "probability": 0.9951 + }, + { + "start": 10769.44, + "end": 10770.86, + "probability": 0.9125 + }, + { + "start": 10771.94, + "end": 10774.2, + "probability": 0.9962 + }, + { + "start": 10774.32, + "end": 10777.34, + "probability": 0.7922 + }, + { + "start": 10777.8, + "end": 10781.06, + "probability": 0.97 + }, + { + "start": 10781.22, + "end": 10782.78, + "probability": 0.6305 + }, + { + "start": 10782.86, + "end": 10783.78, + "probability": 0.8948 + }, + { + "start": 10784.3, + "end": 10784.86, + "probability": 0.5461 + }, + { + "start": 10786.96, + "end": 10789.54, + "probability": 0.8572 + }, + { + "start": 10791.32, + "end": 10795.24, + "probability": 0.9893 + }, + { + "start": 10795.54, + "end": 10796.5, + "probability": 0.714 + }, + { + "start": 10796.68, + "end": 10796.9, + "probability": 0.7781 + }, + { + "start": 10797.58, + "end": 10801.14, + "probability": 0.9214 + }, + { + "start": 10801.6, + "end": 10802.7, + "probability": 0.9218 + }, + { + "start": 10802.82, + "end": 10803.68, + "probability": 0.9449 + }, + { + "start": 10804.18, + "end": 10806.82, + "probability": 0.9454 + }, + { + "start": 10806.9, + "end": 10807.96, + "probability": 0.6725 + }, + { + "start": 10808.86, + "end": 10812.48, + "probability": 0.9701 + }, + { + "start": 10813.62, + "end": 10817.36, + "probability": 0.9894 + }, + { + "start": 10818.02, + "end": 10821.08, + "probability": 0.9879 + }, + { + "start": 10822.4, + "end": 10825.64, + "probability": 0.9635 + }, + { + "start": 10825.64, + "end": 10830.18, + "probability": 0.9983 + }, + { + "start": 10830.28, + "end": 10833.36, + "probability": 0.9038 + }, + { + "start": 10833.36, + "end": 10837.04, + "probability": 0.9717 + }, + { + "start": 10837.54, + "end": 10841.58, + "probability": 0.9919 + }, + { + "start": 10843.36, + "end": 10847.3, + "probability": 0.9862 + }, + { + "start": 10848.04, + "end": 10851.7, + "probability": 0.9873 + }, + { + "start": 10852.14, + "end": 10855.38, + "probability": 0.9979 + }, + { + "start": 10855.92, + "end": 10860.8, + "probability": 0.9951 + }, + { + "start": 10860.96, + "end": 10865.12, + "probability": 0.9943 + }, + { + "start": 10865.12, + "end": 10869.7, + "probability": 0.9922 + }, + { + "start": 10870.18, + "end": 10871.76, + "probability": 0.7745 + }, + { + "start": 10872.18, + "end": 10872.92, + "probability": 0.9307 + }, + { + "start": 10873.02, + "end": 10874.16, + "probability": 0.9601 + }, + { + "start": 10874.24, + "end": 10875.62, + "probability": 0.9364 + }, + { + "start": 10875.98, + "end": 10878.14, + "probability": 0.9435 + }, + { + "start": 10878.62, + "end": 10879.18, + "probability": 0.7504 + }, + { + "start": 10880.18, + "end": 10882.26, + "probability": 0.8144 + }, + { + "start": 10882.5, + "end": 10886.54, + "probability": 0.9656 + }, + { + "start": 10887.02, + "end": 10889.86, + "probability": 0.8888 + }, + { + "start": 10889.86, + "end": 10893.72, + "probability": 0.7353 + }, + { + "start": 10893.78, + "end": 10895.98, + "probability": 0.6528 + }, + { + "start": 10896.04, + "end": 10896.36, + "probability": 0.7873 + }, + { + "start": 10896.4, + "end": 10897.66, + "probability": 0.8179 + }, + { + "start": 10897.88, + "end": 10901.3, + "probability": 0.924 + }, + { + "start": 10902.26, + "end": 10904.06, + "probability": 0.5758 + }, + { + "start": 10904.64, + "end": 10906.46, + "probability": 0.6546 + }, + { + "start": 10907.0, + "end": 10910.64, + "probability": 0.9288 + }, + { + "start": 10910.64, + "end": 10914.68, + "probability": 0.7382 + }, + { + "start": 10915.32, + "end": 10917.7, + "probability": 0.9944 + }, + { + "start": 10918.36, + "end": 10920.88, + "probability": 0.9658 + }, + { + "start": 10921.32, + "end": 10925.4, + "probability": 0.9913 + }, + { + "start": 10925.4, + "end": 10929.72, + "probability": 0.9908 + }, + { + "start": 10930.32, + "end": 10931.26, + "probability": 0.7285 + }, + { + "start": 10931.36, + "end": 10933.24, + "probability": 0.9434 + }, + { + "start": 10933.3, + "end": 10934.56, + "probability": 0.7745 + }, + { + "start": 10935.12, + "end": 10937.4, + "probability": 0.891 + }, + { + "start": 10937.6, + "end": 10938.86, + "probability": 0.6979 + }, + { + "start": 10939.67, + "end": 10942.87, + "probability": 0.98 + }, + { + "start": 10943.38, + "end": 10944.04, + "probability": 0.553 + }, + { + "start": 10944.24, + "end": 10947.34, + "probability": 0.751 + }, + { + "start": 10947.34, + "end": 10949.54, + "probability": 0.9936 + }, + { + "start": 10949.96, + "end": 10952.11, + "probability": 0.7415 + }, + { + "start": 10952.58, + "end": 10957.38, + "probability": 0.995 + }, + { + "start": 10957.5, + "end": 10958.4, + "probability": 0.9839 + }, + { + "start": 10959.0, + "end": 10965.06, + "probability": 0.9825 + }, + { + "start": 10965.56, + "end": 10967.78, + "probability": 0.8636 + }, + { + "start": 10967.84, + "end": 10968.88, + "probability": 0.8218 + }, + { + "start": 10969.36, + "end": 10970.68, + "probability": 0.8755 + }, + { + "start": 10970.88, + "end": 10975.16, + "probability": 0.9844 + }, + { + "start": 10975.16, + "end": 10979.2, + "probability": 0.9027 + }, + { + "start": 10979.66, + "end": 10982.74, + "probability": 0.9977 + }, + { + "start": 10982.74, + "end": 10986.38, + "probability": 0.9859 + }, + { + "start": 10986.72, + "end": 10987.96, + "probability": 0.6893 + }, + { + "start": 10988.26, + "end": 10990.16, + "probability": 0.8975 + }, + { + "start": 10990.54, + "end": 10995.4, + "probability": 0.993 + }, + { + "start": 10995.82, + "end": 10996.94, + "probability": 0.8049 + }, + { + "start": 10997.02, + "end": 10998.8, + "probability": 0.9549 + }, + { + "start": 10999.3, + "end": 11003.96, + "probability": 0.8773 + }, + { + "start": 11004.24, + "end": 11005.04, + "probability": 0.9065 + }, + { + "start": 11005.24, + "end": 11006.22, + "probability": 0.8789 + }, + { + "start": 11006.56, + "end": 11008.46, + "probability": 0.9215 + }, + { + "start": 11008.92, + "end": 11014.82, + "probability": 0.9964 + }, + { + "start": 11015.26, + "end": 11015.74, + "probability": 0.7776 + }, + { + "start": 11015.78, + "end": 11017.14, + "probability": 0.7858 + }, + { + "start": 11017.26, + "end": 11021.78, + "probability": 0.9816 + }, + { + "start": 11022.0, + "end": 11027.46, + "probability": 0.9897 + }, + { + "start": 11028.16, + "end": 11032.16, + "probability": 0.9804 + }, + { + "start": 11032.28, + "end": 11036.32, + "probability": 0.9924 + }, + { + "start": 11036.68, + "end": 11038.0, + "probability": 0.8255 + }, + { + "start": 11038.06, + "end": 11039.36, + "probability": 0.6626 + }, + { + "start": 11039.48, + "end": 11040.8, + "probability": 0.8345 + }, + { + "start": 11040.84, + "end": 11042.33, + "probability": 0.9951 + }, + { + "start": 11043.02, + "end": 11043.54, + "probability": 0.7412 + }, + { + "start": 11044.34, + "end": 11046.28, + "probability": 0.9315 + }, + { + "start": 11046.52, + "end": 11049.06, + "probability": 0.9612 + }, + { + "start": 11049.1, + "end": 11050.04, + "probability": 0.8317 + }, + { + "start": 11052.5, + "end": 11052.66, + "probability": 0.0075 + }, + { + "start": 11053.28, + "end": 11054.42, + "probability": 0.0223 + }, + { + "start": 11057.66, + "end": 11059.42, + "probability": 0.1647 + }, + { + "start": 11060.48, + "end": 11061.46, + "probability": 0.1329 + }, + { + "start": 11091.38, + "end": 11091.64, + "probability": 0.2343 + }, + { + "start": 11099.74, + "end": 11103.46, + "probability": 0.3592 + }, + { + "start": 11104.64, + "end": 11105.83, + "probability": 0.7769 + }, + { + "start": 11107.08, + "end": 11107.72, + "probability": 0.4938 + }, + { + "start": 11107.82, + "end": 11108.44, + "probability": 0.3765 + }, + { + "start": 11108.94, + "end": 11109.9, + "probability": 0.5825 + }, + { + "start": 11116.88, + "end": 11117.26, + "probability": 0.152 + }, + { + "start": 11117.26, + "end": 11122.12, + "probability": 0.7327 + }, + { + "start": 11122.28, + "end": 11123.0, + "probability": 0.437 + }, + { + "start": 11124.88, + "end": 11127.2, + "probability": 0.6685 + }, + { + "start": 11128.18, + "end": 11129.16, + "probability": 0.5151 + }, + { + "start": 11130.92, + "end": 11132.04, + "probability": 0.8877 + }, + { + "start": 11133.3, + "end": 11137.76, + "probability": 0.8034 + }, + { + "start": 11137.96, + "end": 11138.45, + "probability": 0.0608 + }, + { + "start": 11140.92, + "end": 11141.88, + "probability": 0.854 + }, + { + "start": 11142.5, + "end": 11145.46, + "probability": 0.0392 + }, + { + "start": 11145.46, + "end": 11145.46, + "probability": 0.0297 + }, + { + "start": 11145.46, + "end": 11145.46, + "probability": 0.2702 + }, + { + "start": 11145.46, + "end": 11145.62, + "probability": 0.1044 + }, + { + "start": 11145.76, + "end": 11150.1, + "probability": 0.9375 + }, + { + "start": 11150.34, + "end": 11150.86, + "probability": 0.0101 + }, + { + "start": 11152.52, + "end": 11152.52, + "probability": 0.0144 + }, + { + "start": 11153.28, + "end": 11156.44, + "probability": 0.898 + }, + { + "start": 11156.66, + "end": 11162.14, + "probability": 0.9923 + }, + { + "start": 11162.88, + "end": 11167.74, + "probability": 0.9978 + }, + { + "start": 11167.74, + "end": 11171.94, + "probability": 0.9903 + }, + { + "start": 11173.9, + "end": 11176.98, + "probability": 0.7368 + }, + { + "start": 11177.84, + "end": 11183.6, + "probability": 0.9498 + }, + { + "start": 11183.6, + "end": 11188.22, + "probability": 0.9061 + }, + { + "start": 11188.82, + "end": 11190.7, + "probability": 0.6372 + }, + { + "start": 11192.42, + "end": 11192.92, + "probability": 0.6444 + }, + { + "start": 11193.02, + "end": 11198.6, + "probability": 0.9596 + }, + { + "start": 11199.36, + "end": 11206.6, + "probability": 0.9875 + }, + { + "start": 11207.48, + "end": 11207.92, + "probability": 0.9178 + }, + { + "start": 11208.64, + "end": 11212.78, + "probability": 0.9458 + }, + { + "start": 11213.8, + "end": 11221.28, + "probability": 0.8936 + }, + { + "start": 11222.76, + "end": 11223.34, + "probability": 0.7597 + }, + { + "start": 11223.48, + "end": 11229.04, + "probability": 0.9943 + }, + { + "start": 11230.12, + "end": 11232.32, + "probability": 0.6033 + }, + { + "start": 11232.88, + "end": 11239.34, + "probability": 0.9523 + }, + { + "start": 11239.9, + "end": 11242.52, + "probability": 0.969 + }, + { + "start": 11243.42, + "end": 11248.94, + "probability": 0.9752 + }, + { + "start": 11250.24, + "end": 11253.66, + "probability": 0.9959 + }, + { + "start": 11253.66, + "end": 11257.2, + "probability": 0.9338 + }, + { + "start": 11261.7, + "end": 11265.52, + "probability": 0.7648 + }, + { + "start": 11266.84, + "end": 11267.56, + "probability": 0.8103 + }, + { + "start": 11269.24, + "end": 11271.32, + "probability": 0.9227 + }, + { + "start": 11274.3, + "end": 11276.84, + "probability": 0.6073 + }, + { + "start": 11279.5, + "end": 11283.04, + "probability": 0.0445 + }, + { + "start": 11283.04, + "end": 11283.3, + "probability": 0.0409 + }, + { + "start": 11283.3, + "end": 11287.32, + "probability": 0.8629 + }, + { + "start": 11288.24, + "end": 11288.34, + "probability": 0.369 + }, + { + "start": 11290.62, + "end": 11292.46, + "probability": 0.9052 + }, + { + "start": 11293.42, + "end": 11296.66, + "probability": 0.9836 + }, + { + "start": 11297.96, + "end": 11300.06, + "probability": 0.7747 + }, + { + "start": 11301.08, + "end": 11309.62, + "probability": 0.8406 + }, + { + "start": 11310.68, + "end": 11312.82, + "probability": 0.4421 + }, + { + "start": 11316.34, + "end": 11317.0, + "probability": 0.4449 + }, + { + "start": 11317.52, + "end": 11321.14, + "probability": 0.8994 + }, + { + "start": 11321.9, + "end": 11325.68, + "probability": 0.9421 + }, + { + "start": 11326.68, + "end": 11329.9, + "probability": 0.527 + }, + { + "start": 11331.94, + "end": 11332.5, + "probability": 0.4972 + }, + { + "start": 11334.32, + "end": 11335.56, + "probability": 0.8384 + }, + { + "start": 11335.62, + "end": 11337.94, + "probability": 0.8378 + }, + { + "start": 11338.2, + "end": 11338.2, + "probability": 0.1785 + }, + { + "start": 11338.2, + "end": 11339.64, + "probability": 0.7114 + }, + { + "start": 11340.32, + "end": 11341.82, + "probability": 0.3948 + }, + { + "start": 11342.1, + "end": 11343.08, + "probability": 0.7101 + }, + { + "start": 11343.18, + "end": 11347.26, + "probability": 0.8462 + }, + { + "start": 11347.26, + "end": 11348.8, + "probability": 0.9321 + }, + { + "start": 11348.9, + "end": 11349.9, + "probability": 0.9886 + }, + { + "start": 11350.52, + "end": 11353.62, + "probability": 0.9886 + }, + { + "start": 11353.8, + "end": 11357.62, + "probability": 0.8708 + }, + { + "start": 11357.72, + "end": 11358.72, + "probability": 0.7186 + }, + { + "start": 11359.18, + "end": 11360.88, + "probability": 0.9572 + }, + { + "start": 11361.02, + "end": 11362.58, + "probability": 0.8874 + }, + { + "start": 11362.92, + "end": 11364.92, + "probability": 0.5735 + }, + { + "start": 11365.32, + "end": 11365.98, + "probability": 0.5937 + }, + { + "start": 11366.0, + "end": 11366.1, + "probability": 0.2587 + }, + { + "start": 11366.58, + "end": 11367.18, + "probability": 0.1046 + }, + { + "start": 11367.78, + "end": 11376.88, + "probability": 0.9751 + }, + { + "start": 11378.38, + "end": 11380.84, + "probability": 0.832 + }, + { + "start": 11381.62, + "end": 11382.46, + "probability": 0.6285 + }, + { + "start": 11385.66, + "end": 11391.06, + "probability": 0.7117 + }, + { + "start": 11391.9, + "end": 11395.62, + "probability": 0.8776 + }, + { + "start": 11396.74, + "end": 11397.62, + "probability": 0.7096 + }, + { + "start": 11398.96, + "end": 11401.8, + "probability": 0.7335 + }, + { + "start": 11403.16, + "end": 11406.1, + "probability": 0.6273 + }, + { + "start": 11407.74, + "end": 11409.96, + "probability": 0.9741 + }, + { + "start": 11410.8, + "end": 11416.36, + "probability": 0.9805 + }, + { + "start": 11417.46, + "end": 11421.44, + "probability": 0.9443 + }, + { + "start": 11422.9, + "end": 11426.96, + "probability": 0.8848 + }, + { + "start": 11427.68, + "end": 11428.52, + "probability": 0.9615 + }, + { + "start": 11430.21, + "end": 11434.24, + "probability": 0.8576 + }, + { + "start": 11436.86, + "end": 11438.06, + "probability": 0.9123 + }, + { + "start": 11438.42, + "end": 11439.94, + "probability": 0.946 + }, + { + "start": 11440.36, + "end": 11443.78, + "probability": 0.8446 + }, + { + "start": 11444.28, + "end": 11445.44, + "probability": 0.8646 + }, + { + "start": 11445.74, + "end": 11448.72, + "probability": 0.9826 + }, + { + "start": 11450.98, + "end": 11452.46, + "probability": 0.8765 + }, + { + "start": 11453.06, + "end": 11455.84, + "probability": 0.8675 + }, + { + "start": 11457.52, + "end": 11458.48, + "probability": 0.8129 + }, + { + "start": 11458.58, + "end": 11459.46, + "probability": 0.5671 + }, + { + "start": 11459.84, + "end": 11462.2, + "probability": 0.9 + }, + { + "start": 11462.62, + "end": 11465.04, + "probability": 0.8854 + }, + { + "start": 11466.18, + "end": 11470.06, + "probability": 0.0885 + }, + { + "start": 11470.56, + "end": 11471.66, + "probability": 0.3317 + }, + { + "start": 11472.82, + "end": 11473.1, + "probability": 0.0457 + }, + { + "start": 11474.82, + "end": 11476.08, + "probability": 0.0491 + }, + { + "start": 11476.8, + "end": 11476.8, + "probability": 0.0274 + }, + { + "start": 11477.26, + "end": 11477.68, + "probability": 0.8792 + }, + { + "start": 11477.68, + "end": 11483.64, + "probability": 0.9927 + }, + { + "start": 11485.46, + "end": 11486.44, + "probability": 0.7686 + }, + { + "start": 11487.14, + "end": 11492.34, + "probability": 0.993 + }, + { + "start": 11492.34, + "end": 11498.52, + "probability": 0.9631 + }, + { + "start": 11500.38, + "end": 11501.74, + "probability": 0.8251 + }, + { + "start": 11503.38, + "end": 11505.76, + "probability": 0.7417 + }, + { + "start": 11506.52, + "end": 11511.72, + "probability": 0.952 + }, + { + "start": 11511.92, + "end": 11517.24, + "probability": 0.3232 + }, + { + "start": 11518.65, + "end": 11524.76, + "probability": 0.8976 + }, + { + "start": 11525.46, + "end": 11527.18, + "probability": 0.8653 + }, + { + "start": 11527.4, + "end": 11534.44, + "probability": 0.938 + }, + { + "start": 11535.1, + "end": 11542.42, + "probability": 0.626 + }, + { + "start": 11544.55, + "end": 11546.56, + "probability": 0.5152 + }, + { + "start": 11546.56, + "end": 11548.6, + "probability": 0.7518 + }, + { + "start": 11548.6, + "end": 11549.3, + "probability": 0.2678 + }, + { + "start": 11549.38, + "end": 11549.99, + "probability": 0.7688 + }, + { + "start": 11550.38, + "end": 11551.0, + "probability": 0.9584 + }, + { + "start": 11551.06, + "end": 11552.92, + "probability": 0.8442 + }, + { + "start": 11553.04, + "end": 11555.32, + "probability": 0.9655 + }, + { + "start": 11560.98, + "end": 11562.18, + "probability": 0.747 + }, + { + "start": 11565.16, + "end": 11572.48, + "probability": 0.9588 + }, + { + "start": 11573.7, + "end": 11578.96, + "probability": 0.998 + }, + { + "start": 11579.16, + "end": 11579.6, + "probability": 0.7512 + }, + { + "start": 11580.26, + "end": 11582.38, + "probability": 0.7708 + }, + { + "start": 11582.8, + "end": 11585.34, + "probability": 0.7161 + }, + { + "start": 11585.82, + "end": 11586.44, + "probability": 0.6661 + }, + { + "start": 11587.32, + "end": 11591.26, + "probability": 0.7584 + }, + { + "start": 11592.04, + "end": 11594.66, + "probability": 0.9349 + }, + { + "start": 11594.82, + "end": 11595.06, + "probability": 0.123 + }, + { + "start": 11595.06, + "end": 11596.24, + "probability": 0.7966 + }, + { + "start": 11596.94, + "end": 11597.78, + "probability": 0.1161 + }, + { + "start": 11599.72, + "end": 11600.56, + "probability": 0.6538 + }, + { + "start": 11600.82, + "end": 11603.28, + "probability": 0.995 + }, + { + "start": 11604.38, + "end": 11606.72, + "probability": 0.8107 + }, + { + "start": 11607.18, + "end": 11607.26, + "probability": 0.5617 + }, + { + "start": 11607.26, + "end": 11609.98, + "probability": 0.9211 + }, + { + "start": 11610.32, + "end": 11614.56, + "probability": 0.9515 + }, + { + "start": 11614.92, + "end": 11615.76, + "probability": 0.7789 + }, + { + "start": 11616.46, + "end": 11620.42, + "probability": 0.9949 + }, + { + "start": 11620.84, + "end": 11623.38, + "probability": 0.923 + }, + { + "start": 11624.24, + "end": 11624.8, + "probability": 0.9209 + }, + { + "start": 11625.18, + "end": 11628.18, + "probability": 0.9414 + }, + { + "start": 11629.1, + "end": 11631.92, + "probability": 0.9852 + }, + { + "start": 11631.92, + "end": 11637.8, + "probability": 0.9713 + }, + { + "start": 11638.28, + "end": 11639.6, + "probability": 0.6875 + }, + { + "start": 11640.04, + "end": 11643.58, + "probability": 0.6549 + }, + { + "start": 11643.58, + "end": 11644.92, + "probability": 0.6557 + }, + { + "start": 11645.0, + "end": 11645.58, + "probability": 0.587 + }, + { + "start": 11645.68, + "end": 11647.78, + "probability": 0.3878 + }, + { + "start": 11647.78, + "end": 11647.78, + "probability": 0.2696 + }, + { + "start": 11647.78, + "end": 11648.66, + "probability": 0.1834 + }, + { + "start": 11649.08, + "end": 11653.34, + "probability": 0.924 + }, + { + "start": 11653.34, + "end": 11656.84, + "probability": 0.6142 + }, + { + "start": 11656.96, + "end": 11659.3, + "probability": 0.3979 + }, + { + "start": 11659.8, + "end": 11663.66, + "probability": 0.9355 + }, + { + "start": 11663.66, + "end": 11667.48, + "probability": 0.9946 + }, + { + "start": 11667.56, + "end": 11668.92, + "probability": 0.9338 + }, + { + "start": 11669.38, + "end": 11670.82, + "probability": 0.9082 + }, + { + "start": 11671.1, + "end": 11675.04, + "probability": 0.6687 + }, + { + "start": 11675.24, + "end": 11676.36, + "probability": 0.4488 + }, + { + "start": 11676.8, + "end": 11681.62, + "probability": 0.8263 + }, + { + "start": 11681.8, + "end": 11682.96, + "probability": 0.8641 + }, + { + "start": 11682.96, + "end": 11684.94, + "probability": 0.9027 + }, + { + "start": 11685.4, + "end": 11685.96, + "probability": 0.9053 + }, + { + "start": 11686.12, + "end": 11688.32, + "probability": 0.7069 + }, + { + "start": 11688.72, + "end": 11688.74, + "probability": 0.0055 + }, + { + "start": 11688.74, + "end": 11688.74, + "probability": 0.1829 + }, + { + "start": 11688.74, + "end": 11690.06, + "probability": 0.7832 + }, + { + "start": 11690.54, + "end": 11694.52, + "probability": 0.9065 + }, + { + "start": 11694.58, + "end": 11695.08, + "probability": 0.4408 + }, + { + "start": 11695.72, + "end": 11697.08, + "probability": 0.9795 + }, + { + "start": 11697.62, + "end": 11698.94, + "probability": 0.9839 + }, + { + "start": 11699.1, + "end": 11701.02, + "probability": 0.9144 + }, + { + "start": 11701.38, + "end": 11704.22, + "probability": 0.9759 + }, + { + "start": 11704.46, + "end": 11709.86, + "probability": 0.8797 + }, + { + "start": 11709.96, + "end": 11710.68, + "probability": 0.0222 + }, + { + "start": 11710.68, + "end": 11710.68, + "probability": 0.1203 + }, + { + "start": 11710.68, + "end": 11713.9, + "probability": 0.593 + }, + { + "start": 11714.2, + "end": 11715.26, + "probability": 0.2605 + }, + { + "start": 11715.64, + "end": 11717.34, + "probability": 0.8481 + }, + { + "start": 11717.5, + "end": 11719.63, + "probability": 0.6797 + }, + { + "start": 11720.02, + "end": 11723.46, + "probability": 0.9956 + }, + { + "start": 11723.46, + "end": 11726.46, + "probability": 0.9956 + }, + { + "start": 11727.06, + "end": 11728.58, + "probability": 0.9946 + }, + { + "start": 11728.86, + "end": 11729.96, + "probability": 0.9871 + }, + { + "start": 11730.74, + "end": 11732.42, + "probability": 0.9941 + }, + { + "start": 11732.56, + "end": 11736.56, + "probability": 0.9046 + }, + { + "start": 11737.22, + "end": 11738.84, + "probability": 0.968 + }, + { + "start": 11739.5, + "end": 11740.26, + "probability": 0.5896 + }, + { + "start": 11740.52, + "end": 11740.96, + "probability": 0.6804 + }, + { + "start": 11741.44, + "end": 11742.3, + "probability": 0.5125 + }, + { + "start": 11742.4, + "end": 11743.52, + "probability": 0.4568 + }, + { + "start": 11743.58, + "end": 11745.0, + "probability": 0.7034 + }, + { + "start": 11745.0, + "end": 11745.28, + "probability": 0.3428 + }, + { + "start": 11745.72, + "end": 11748.68, + "probability": 0.7656 + }, + { + "start": 11748.72, + "end": 11750.88, + "probability": 0.8726 + }, + { + "start": 11751.24, + "end": 11754.92, + "probability": 0.6671 + }, + { + "start": 11754.92, + "end": 11759.53, + "probability": 0.7442 + }, + { + "start": 11759.92, + "end": 11760.9, + "probability": 0.7766 + }, + { + "start": 11761.0, + "end": 11762.13, + "probability": 0.9606 + }, + { + "start": 11762.34, + "end": 11763.22, + "probability": 0.9768 + }, + { + "start": 11763.26, + "end": 11765.2, + "probability": 0.9648 + }, + { + "start": 11765.56, + "end": 11767.5, + "probability": 0.7784 + }, + { + "start": 11767.78, + "end": 11769.3, + "probability": 0.5633 + }, + { + "start": 11769.7, + "end": 11770.72, + "probability": 0.556 + }, + { + "start": 11770.76, + "end": 11775.66, + "probability": 0.9736 + }, + { + "start": 11775.66, + "end": 11780.42, + "probability": 0.9895 + }, + { + "start": 11780.78, + "end": 11781.84, + "probability": 0.7102 + }, + { + "start": 11781.94, + "end": 11782.52, + "probability": 0.7721 + }, + { + "start": 11782.6, + "end": 11784.66, + "probability": 0.7691 + }, + { + "start": 11784.98, + "end": 11785.96, + "probability": 0.8182 + }, + { + "start": 11786.3, + "end": 11788.66, + "probability": 0.9805 + }, + { + "start": 11788.98, + "end": 11790.58, + "probability": 0.9666 + }, + { + "start": 11790.64, + "end": 11790.9, + "probability": 0.6415 + }, + { + "start": 11790.96, + "end": 11794.38, + "probability": 0.9041 + }, + { + "start": 11794.6, + "end": 11795.26, + "probability": 0.6383 + }, + { + "start": 11795.54, + "end": 11797.48, + "probability": 0.9588 + }, + { + "start": 11797.86, + "end": 11800.44, + "probability": 0.7434 + }, + { + "start": 11800.52, + "end": 11804.44, + "probability": 0.7545 + }, + { + "start": 11804.52, + "end": 11804.98, + "probability": 0.9128 + }, + { + "start": 11805.2, + "end": 11806.4, + "probability": 0.9002 + }, + { + "start": 11806.5, + "end": 11808.6, + "probability": 0.9704 + }, + { + "start": 11808.92, + "end": 11810.66, + "probability": 0.8748 + }, + { + "start": 11811.42, + "end": 11811.94, + "probability": 0.852 + }, + { + "start": 11814.06, + "end": 11816.56, + "probability": 0.9336 + }, + { + "start": 11820.18, + "end": 11823.74, + "probability": 0.7832 + }, + { + "start": 11826.24, + "end": 11828.3, + "probability": 0.6712 + }, + { + "start": 11828.4, + "end": 11829.64, + "probability": 0.7548 + }, + { + "start": 11829.8, + "end": 11830.62, + "probability": 0.988 + }, + { + "start": 11830.82, + "end": 11831.16, + "probability": 0.9062 + }, + { + "start": 11831.26, + "end": 11832.9, + "probability": 0.8976 + }, + { + "start": 11832.9, + "end": 11834.5, + "probability": 0.845 + }, + { + "start": 11834.58, + "end": 11835.86, + "probability": 0.9841 + }, + { + "start": 11836.08, + "end": 11836.5, + "probability": 0.0774 + }, + { + "start": 11836.5, + "end": 11836.8, + "probability": 0.8411 + }, + { + "start": 11836.8, + "end": 11839.16, + "probability": 0.9091 + }, + { + "start": 11839.98, + "end": 11841.64, + "probability": 0.8509 + }, + { + "start": 11841.78, + "end": 11842.13, + "probability": 0.093 + }, + { + "start": 11845.68, + "end": 11848.76, + "probability": 0.6739 + }, + { + "start": 11848.76, + "end": 11850.26, + "probability": 0.9233 + }, + { + "start": 11850.38, + "end": 11851.7, + "probability": 0.8398 + }, + { + "start": 11852.1, + "end": 11855.14, + "probability": 0.7332 + }, + { + "start": 11855.44, + "end": 11856.28, + "probability": 0.9731 + }, + { + "start": 11858.66, + "end": 11860.46, + "probability": 0.7141 + }, + { + "start": 11860.82, + "end": 11864.12, + "probability": 0.9277 + }, + { + "start": 11865.08, + "end": 11865.64, + "probability": 0.8312 + }, + { + "start": 11866.44, + "end": 11867.76, + "probability": 0.7749 + }, + { + "start": 11867.92, + "end": 11873.62, + "probability": 0.9661 + }, + { + "start": 11873.62, + "end": 11880.36, + "probability": 0.896 + }, + { + "start": 11881.3, + "end": 11883.0, + "probability": 0.8983 + }, + { + "start": 11883.2, + "end": 11884.2, + "probability": 0.9846 + }, + { + "start": 11884.4, + "end": 11885.8, + "probability": 0.8028 + }, + { + "start": 11885.92, + "end": 11886.26, + "probability": 0.9112 + }, + { + "start": 11886.4, + "end": 11887.32, + "probability": 0.8529 + }, + { + "start": 11888.32, + "end": 11895.04, + "probability": 0.9969 + }, + { + "start": 11895.26, + "end": 11896.8, + "probability": 0.9903 + }, + { + "start": 11896.88, + "end": 11904.98, + "probability": 0.9985 + }, + { + "start": 11905.18, + "end": 11908.86, + "probability": 0.9881 + }, + { + "start": 11908.86, + "end": 11912.58, + "probability": 0.959 + }, + { + "start": 11912.84, + "end": 11918.5, + "probability": 0.8983 + }, + { + "start": 11918.54, + "end": 11920.98, + "probability": 0.8521 + }, + { + "start": 11921.42, + "end": 11927.42, + "probability": 0.9874 + }, + { + "start": 11928.34, + "end": 11935.22, + "probability": 0.992 + }, + { + "start": 11935.46, + "end": 11938.2, + "probability": 0.9984 + }, + { + "start": 11938.6, + "end": 11940.66, + "probability": 0.9976 + }, + { + "start": 11940.78, + "end": 11944.28, + "probability": 0.9873 + }, + { + "start": 11944.34, + "end": 11946.7, + "probability": 0.9865 + }, + { + "start": 11946.96, + "end": 11949.27, + "probability": 0.9904 + }, + { + "start": 11949.54, + "end": 11949.94, + "probability": 0.7554 + }, + { + "start": 11950.22, + "end": 11952.22, + "probability": 0.7701 + }, + { + "start": 11952.48, + "end": 11955.48, + "probability": 0.9189 + }, + { + "start": 11955.62, + "end": 11960.84, + "probability": 0.8159 + }, + { + "start": 11960.94, + "end": 11962.02, + "probability": 0.3711 + }, + { + "start": 11963.08, + "end": 11966.56, + "probability": 0.7041 + }, + { + "start": 11967.1, + "end": 11968.64, + "probability": 0.6758 + }, + { + "start": 11969.94, + "end": 11970.0, + "probability": 0.1439 + }, + { + "start": 11972.62, + "end": 11973.06, + "probability": 0.0419 + }, + { + "start": 11976.27, + "end": 11979.47, + "probability": 0.0398 + }, + { + "start": 11982.24, + "end": 11986.42, + "probability": 0.0443 + }, + { + "start": 11990.52, + "end": 11990.74, + "probability": 0.0965 + }, + { + "start": 11991.42, + "end": 11994.04, + "probability": 0.8328 + }, + { + "start": 11994.48, + "end": 11996.0, + "probability": 0.9629 + }, + { + "start": 11996.2, + "end": 12000.88, + "probability": 0.9832 + }, + { + "start": 12001.32, + "end": 12004.59, + "probability": 0.86 + }, + { + "start": 12005.23, + "end": 12005.41, + "probability": 0.0694 + }, + { + "start": 12005.59, + "end": 12007.09, + "probability": 0.9927 + }, + { + "start": 12007.23, + "end": 12009.81, + "probability": 0.8538 + }, + { + "start": 12009.93, + "end": 12010.53, + "probability": 0.604 + }, + { + "start": 12010.73, + "end": 12011.61, + "probability": 0.8647 + }, + { + "start": 12011.87, + "end": 12012.25, + "probability": 0.4175 + }, + { + "start": 12017.05, + "end": 12018.75, + "probability": 0.5318 + }, + { + "start": 12018.91, + "end": 12020.39, + "probability": 0.9739 + }, + { + "start": 12021.17, + "end": 12024.03, + "probability": 0.9727 + }, + { + "start": 12024.11, + "end": 12026.65, + "probability": 0.967 + }, + { + "start": 12027.23, + "end": 12028.75, + "probability": 0.9048 + }, + { + "start": 12029.57, + "end": 12036.09, + "probability": 0.0387 + }, + { + "start": 12036.09, + "end": 12042.37, + "probability": 0.0372 + }, + { + "start": 12043.09, + "end": 12045.39, + "probability": 0.0518 + }, + { + "start": 12045.39, + "end": 12047.21, + "probability": 0.0437 + }, + { + "start": 12047.21, + "end": 12047.21, + "probability": 0.0934 + }, + { + "start": 12047.21, + "end": 12050.93, + "probability": 0.8822 + }, + { + "start": 12051.15, + "end": 12052.55, + "probability": 0.8589 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12147.0, + "probability": 0.0 + }, + { + "start": 12147.0, + "end": 12148.82, + "probability": 0.9072 + }, + { + "start": 12148.94, + "end": 12150.22, + "probability": 0.8976 + }, + { + "start": 12150.66, + "end": 12151.48, + "probability": 0.8184 + }, + { + "start": 12151.78, + "end": 12155.82, + "probability": 0.7908 + }, + { + "start": 12156.5, + "end": 12159.54, + "probability": 0.9404 + }, + { + "start": 12159.54, + "end": 12160.32, + "probability": 0.9731 + }, + { + "start": 12161.68, + "end": 12163.88, + "probability": 0.5284 + }, + { + "start": 12166.6, + "end": 12166.6, + "probability": 0.1109 + }, + { + "start": 12166.6, + "end": 12170.62, + "probability": 0.9956 + }, + { + "start": 12171.15, + "end": 12175.84, + "probability": 0.9979 + }, + { + "start": 12176.76, + "end": 12185.98, + "probability": 0.9851 + }, + { + "start": 12186.66, + "end": 12188.76, + "probability": 0.9797 + }, + { + "start": 12189.5, + "end": 12193.14, + "probability": 0.397 + }, + { + "start": 12194.52, + "end": 12197.12, + "probability": 0.8607 + }, + { + "start": 12197.7, + "end": 12203.64, + "probability": 0.9006 + }, + { + "start": 12203.7, + "end": 12205.17, + "probability": 0.8784 + }, + { + "start": 12206.4, + "end": 12209.32, + "probability": 0.7922 + }, + { + "start": 12209.36, + "end": 12210.38, + "probability": 0.9487 + }, + { + "start": 12211.98, + "end": 12221.02, + "probability": 0.8585 + }, + { + "start": 12221.02, + "end": 12224.9, + "probability": 0.98 + }, + { + "start": 12225.64, + "end": 12228.48, + "probability": 0.7724 + }, + { + "start": 12229.54, + "end": 12230.94, + "probability": 0.9516 + }, + { + "start": 12231.78, + "end": 12237.52, + "probability": 0.9236 + }, + { + "start": 12238.92, + "end": 12242.22, + "probability": 0.9933 + }, + { + "start": 12243.28, + "end": 12246.92, + "probability": 0.8375 + }, + { + "start": 12247.84, + "end": 12251.48, + "probability": 0.9667 + }, + { + "start": 12252.52, + "end": 12263.1, + "probability": 0.9287 + }, + { + "start": 12263.7, + "end": 12272.64, + "probability": 0.5399 + }, + { + "start": 12272.64, + "end": 12279.28, + "probability": 0.999 + }, + { + "start": 12279.36, + "end": 12280.5, + "probability": 0.8667 + }, + { + "start": 12280.96, + "end": 12286.9, + "probability": 0.9453 + }, + { + "start": 12288.88, + "end": 12292.1, + "probability": 0.0412 + }, + { + "start": 12292.1, + "end": 12293.0, + "probability": 0.3189 + }, + { + "start": 12293.64, + "end": 12293.9, + "probability": 0.2844 + }, + { + "start": 12295.04, + "end": 12296.3, + "probability": 0.1796 + }, + { + "start": 12296.32, + "end": 12298.99, + "probability": 0.9833 + }, + { + "start": 12303.24, + "end": 12305.9, + "probability": 0.7354 + }, + { + "start": 12307.27, + "end": 12312.04, + "probability": 0.9871 + }, + { + "start": 12313.2, + "end": 12318.4, + "probability": 0.9921 + }, + { + "start": 12319.56, + "end": 12321.04, + "probability": 0.5484 + }, + { + "start": 12321.58, + "end": 12322.82, + "probability": 0.9368 + }, + { + "start": 12323.66, + "end": 12326.44, + "probability": 0.9514 + }, + { + "start": 12327.16, + "end": 12329.58, + "probability": 0.7669 + }, + { + "start": 12330.32, + "end": 12334.76, + "probability": 0.959 + }, + { + "start": 12335.38, + "end": 12337.32, + "probability": 0.872 + }, + { + "start": 12338.02, + "end": 12340.38, + "probability": 0.4952 + }, + { + "start": 12343.36, + "end": 12346.94, + "probability": 0.5408 + }, + { + "start": 12346.98, + "end": 12348.44, + "probability": 0.9015 + }, + { + "start": 12348.58, + "end": 12349.52, + "probability": 0.8497 + }, + { + "start": 12349.6, + "end": 12351.92, + "probability": 0.8491 + }, + { + "start": 12353.12, + "end": 12353.7, + "probability": 0.3974 + }, + { + "start": 12354.04, + "end": 12357.56, + "probability": 0.9761 + }, + { + "start": 12358.38, + "end": 12364.7, + "probability": 0.9858 + }, + { + "start": 12366.68, + "end": 12372.46, + "probability": 0.9915 + }, + { + "start": 12373.08, + "end": 12375.5, + "probability": 0.654 + }, + { + "start": 12376.6, + "end": 12380.0, + "probability": 0.7155 + }, + { + "start": 12380.88, + "end": 12384.56, + "probability": 0.9028 + }, + { + "start": 12385.62, + "end": 12387.52, + "probability": 0.742 + }, + { + "start": 12388.2, + "end": 12391.68, + "probability": 0.8877 + }, + { + "start": 12392.44, + "end": 12393.22, + "probability": 0.6566 + }, + { + "start": 12394.1, + "end": 12396.6, + "probability": 0.9751 + }, + { + "start": 12397.48, + "end": 12403.54, + "probability": 0.9938 + }, + { + "start": 12404.76, + "end": 12406.26, + "probability": 0.993 + }, + { + "start": 12407.52, + "end": 12413.92, + "probability": 0.9119 + }, + { + "start": 12414.6, + "end": 12417.22, + "probability": 0.9992 + }, + { + "start": 12418.8, + "end": 12423.5, + "probability": 0.9894 + }, + { + "start": 12423.5, + "end": 12428.38, + "probability": 0.9806 + }, + { + "start": 12429.22, + "end": 12435.12, + "probability": 0.988 + }, + { + "start": 12436.14, + "end": 12437.32, + "probability": 0.8912 + }, + { + "start": 12438.12, + "end": 12439.12, + "probability": 0.7927 + }, + { + "start": 12439.82, + "end": 12440.26, + "probability": 0.7642 + }, + { + "start": 12442.5, + "end": 12446.94, + "probability": 0.5101 + }, + { + "start": 12448.92, + "end": 12451.46, + "probability": 0.9571 + }, + { + "start": 12452.08, + "end": 12457.22, + "probability": 0.8982 + }, + { + "start": 12458.26, + "end": 12461.26, + "probability": 0.9881 + }, + { + "start": 12463.28, + "end": 12471.02, + "probability": 0.991 + }, + { + "start": 12471.94, + "end": 12478.58, + "probability": 0.9191 + }, + { + "start": 12479.44, + "end": 12482.5, + "probability": 0.9688 + }, + { + "start": 12483.72, + "end": 12484.98, + "probability": 0.8761 + }, + { + "start": 12485.76, + "end": 12489.64, + "probability": 0.8341 + }, + { + "start": 12490.24, + "end": 12492.28, + "probability": 0.9902 + }, + { + "start": 12493.54, + "end": 12494.68, + "probability": 0.9756 + }, + { + "start": 12495.58, + "end": 12496.12, + "probability": 0.0479 + }, + { + "start": 12496.14, + "end": 12498.78, + "probability": 0.8685 + }, + { + "start": 12498.96, + "end": 12501.26, + "probability": 0.1635 + }, + { + "start": 12501.34, + "end": 12504.9, + "probability": 0.6184 + }, + { + "start": 12504.9, + "end": 12505.84, + "probability": 0.4793 + }, + { + "start": 12505.92, + "end": 12506.92, + "probability": 0.1418 + }, + { + "start": 12506.92, + "end": 12512.2, + "probability": 0.6681 + }, + { + "start": 12512.8, + "end": 12513.06, + "probability": 0.2673 + }, + { + "start": 12513.1, + "end": 12513.62, + "probability": 0.0476 + }, + { + "start": 12513.62, + "end": 12514.7, + "probability": 0.5685 + }, + { + "start": 12515.02, + "end": 12515.08, + "probability": 0.1059 + }, + { + "start": 12515.08, + "end": 12515.08, + "probability": 0.2641 + }, + { + "start": 12515.08, + "end": 12515.14, + "probability": 0.1192 + }, + { + "start": 12515.14, + "end": 12517.12, + "probability": 0.4284 + }, + { + "start": 12517.78, + "end": 12520.96, + "probability": 0.577 + }, + { + "start": 12521.08, + "end": 12521.3, + "probability": 0.3843 + }, + { + "start": 12521.3, + "end": 12521.72, + "probability": 0.0973 + }, + { + "start": 12521.84, + "end": 12523.54, + "probability": 0.6422 + }, + { + "start": 12523.8, + "end": 12524.18, + "probability": 0.5972 + }, + { + "start": 12525.14, + "end": 12528.56, + "probability": 0.0485 + }, + { + "start": 12529.1, + "end": 12531.02, + "probability": 0.2618 + }, + { + "start": 12531.3, + "end": 12534.42, + "probability": 0.563 + }, + { + "start": 12535.1, + "end": 12536.76, + "probability": 0.4092 + }, + { + "start": 12536.76, + "end": 12536.8, + "probability": 0.5672 + }, + { + "start": 12536.84, + "end": 12536.84, + "probability": 0.1587 + }, + { + "start": 12536.9, + "end": 12537.22, + "probability": 0.4798 + }, + { + "start": 12537.22, + "end": 12542.86, + "probability": 0.943 + }, + { + "start": 12543.22, + "end": 12545.92, + "probability": 0.6103 + }, + { + "start": 12546.28, + "end": 12549.04, + "probability": 0.9844 + }, + { + "start": 12549.5, + "end": 12552.6, + "probability": 0.984 + }, + { + "start": 12552.62, + "end": 12559.9, + "probability": 0.985 + }, + { + "start": 12560.42, + "end": 12563.04, + "probability": 0.8697 + }, + { + "start": 12565.5, + "end": 12574.0, + "probability": 0.9906 + }, + { + "start": 12574.06, + "end": 12581.46, + "probability": 0.9926 + }, + { + "start": 12582.1, + "end": 12584.62, + "probability": 0.6398 + }, + { + "start": 12585.3, + "end": 12587.84, + "probability": 0.9333 + }, + { + "start": 12588.36, + "end": 12590.52, + "probability": 0.7613 + }, + { + "start": 12591.18, + "end": 12597.18, + "probability": 0.9853 + }, + { + "start": 12599.0, + "end": 12604.32, + "probability": 0.8506 + }, + { + "start": 12604.64, + "end": 12608.8, + "probability": 0.9331 + }, + { + "start": 12610.06, + "end": 12618.4, + "probability": 0.9871 + }, + { + "start": 12619.1, + "end": 12623.28, + "probability": 0.9709 + }, + { + "start": 12624.34, + "end": 12627.42, + "probability": 0.9938 + }, + { + "start": 12628.02, + "end": 12628.98, + "probability": 0.9733 + }, + { + "start": 12629.7, + "end": 12631.54, + "probability": 0.9963 + }, + { + "start": 12632.28, + "end": 12635.22, + "probability": 0.6013 + }, + { + "start": 12635.92, + "end": 12637.53, + "probability": 0.9856 + }, + { + "start": 12638.36, + "end": 12642.16, + "probability": 0.9649 + }, + { + "start": 12642.66, + "end": 12647.78, + "probability": 0.9921 + }, + { + "start": 12647.78, + "end": 12652.98, + "probability": 0.9949 + }, + { + "start": 12653.5, + "end": 12659.72, + "probability": 0.9974 + }, + { + "start": 12660.54, + "end": 12664.92, + "probability": 0.9995 + }, + { + "start": 12665.4, + "end": 12668.16, + "probability": 0.9326 + }, + { + "start": 12668.76, + "end": 12675.4, + "probability": 0.9933 + }, + { + "start": 12675.4, + "end": 12680.86, + "probability": 0.9969 + }, + { + "start": 12682.0, + "end": 12686.54, + "probability": 0.9655 + }, + { + "start": 12687.02, + "end": 12691.36, + "probability": 0.949 + }, + { + "start": 12692.38, + "end": 12693.46, + "probability": 0.6894 + }, + { + "start": 12694.62, + "end": 12695.82, + "probability": 0.9059 + }, + { + "start": 12696.9, + "end": 12701.02, + "probability": 0.9105 + }, + { + "start": 12701.54, + "end": 12702.78, + "probability": 0.8058 + }, + { + "start": 12703.7, + "end": 12704.88, + "probability": 0.8104 + }, + { + "start": 12705.94, + "end": 12710.6, + "probability": 0.9938 + }, + { + "start": 12711.64, + "end": 12713.04, + "probability": 0.6753 + }, + { + "start": 12713.58, + "end": 12714.9, + "probability": 0.8055 + }, + { + "start": 12715.7, + "end": 12717.8, + "probability": 0.9829 + }, + { + "start": 12719.24, + "end": 12721.62, + "probability": 0.9804 + }, + { + "start": 12722.16, + "end": 12724.5, + "probability": 0.8854 + }, + { + "start": 12725.56, + "end": 12731.24, + "probability": 0.9603 + }, + { + "start": 12731.46, + "end": 12731.68, + "probability": 0.6491 + }, + { + "start": 12731.86, + "end": 12733.6, + "probability": 0.574 + }, + { + "start": 12733.68, + "end": 12738.96, + "probability": 0.9857 + }, + { + "start": 12738.96, + "end": 12744.18, + "probability": 0.9876 + }, + { + "start": 12745.12, + "end": 12748.31, + "probability": 0.8647 + }, + { + "start": 12748.56, + "end": 12752.16, + "probability": 0.8988 + }, + { + "start": 12753.8, + "end": 12757.7, + "probability": 0.7719 + }, + { + "start": 12758.98, + "end": 12761.54, + "probability": 0.9194 + }, + { + "start": 12764.22, + "end": 12765.12, + "probability": 0.9991 + }, + { + "start": 12766.16, + "end": 12767.08, + "probability": 0.8272 + }, + { + "start": 12775.92, + "end": 12777.08, + "probability": 0.7308 + }, + { + "start": 12777.72, + "end": 12778.94, + "probability": 0.6392 + }, + { + "start": 12779.56, + "end": 12780.48, + "probability": 0.7389 + }, + { + "start": 12781.58, + "end": 12782.72, + "probability": 0.9119 + }, + { + "start": 12783.96, + "end": 12785.76, + "probability": 0.5672 + }, + { + "start": 12786.16, + "end": 12788.14, + "probability": 0.9033 + }, + { + "start": 12788.22, + "end": 12789.84, + "probability": 0.8444 + }, + { + "start": 12790.96, + "end": 12791.84, + "probability": 0.5304 + }, + { + "start": 12791.94, + "end": 12792.91, + "probability": 0.574 + }, + { + "start": 12793.24, + "end": 12793.9, + "probability": 0.79 + }, + { + "start": 12794.02, + "end": 12795.62, + "probability": 0.9809 + }, + { + "start": 12797.12, + "end": 12803.78, + "probability": 0.9395 + }, + { + "start": 12804.98, + "end": 12807.32, + "probability": 0.9102 + }, + { + "start": 12809.84, + "end": 12816.1, + "probability": 0.9421 + }, + { + "start": 12817.68, + "end": 12820.86, + "probability": 0.989 + }, + { + "start": 12821.92, + "end": 12824.42, + "probability": 0.9863 + }, + { + "start": 12826.22, + "end": 12830.2, + "probability": 0.9232 + }, + { + "start": 12830.74, + "end": 12834.52, + "probability": 0.8807 + }, + { + "start": 12837.72, + "end": 12840.36, + "probability": 0.9651 + }, + { + "start": 12841.56, + "end": 12848.18, + "probability": 0.9854 + }, + { + "start": 12850.2, + "end": 12851.12, + "probability": 0.4581 + }, + { + "start": 12851.84, + "end": 12856.86, + "probability": 0.7875 + }, + { + "start": 12857.66, + "end": 12859.22, + "probability": 0.9268 + }, + { + "start": 12860.54, + "end": 12861.62, + "probability": 0.8912 + }, + { + "start": 12861.72, + "end": 12862.58, + "probability": 0.906 + }, + { + "start": 12863.08, + "end": 12863.22, + "probability": 0.3365 + }, + { + "start": 12863.22, + "end": 12865.26, + "probability": 0.9278 + }, + { + "start": 12867.5, + "end": 12871.68, + "probability": 0.9683 + }, + { + "start": 12872.4, + "end": 12873.68, + "probability": 0.6811 + }, + { + "start": 12874.44, + "end": 12880.62, + "probability": 0.8738 + }, + { + "start": 12881.08, + "end": 12883.71, + "probability": 0.9782 + }, + { + "start": 12885.93, + "end": 12886.18, + "probability": 0.0944 + }, + { + "start": 12886.46, + "end": 12888.02, + "probability": 0.4747 + }, + { + "start": 12888.02, + "end": 12890.11, + "probability": 0.3418 + }, + { + "start": 12890.32, + "end": 12891.67, + "probability": 0.7725 + }, + { + "start": 12891.86, + "end": 12894.74, + "probability": 0.5393 + }, + { + "start": 12894.8, + "end": 12896.12, + "probability": 0.875 + }, + { + "start": 12896.28, + "end": 12898.2, + "probability": 0.5483 + }, + { + "start": 12898.32, + "end": 12901.56, + "probability": 0.8683 + }, + { + "start": 12902.32, + "end": 12902.9, + "probability": 0.8797 + }, + { + "start": 12904.02, + "end": 12907.24, + "probability": 0.9822 + }, + { + "start": 12907.72, + "end": 12909.56, + "probability": 0.9972 + }, + { + "start": 12910.08, + "end": 12911.34, + "probability": 0.9076 + }, + { + "start": 12912.24, + "end": 12912.26, + "probability": 0.4692 + }, + { + "start": 12912.26, + "end": 12912.26, + "probability": 0.0 + }, + { + "start": 12913.06, + "end": 12917.32, + "probability": 0.7137 + }, + { + "start": 12918.58, + "end": 12919.92, + "probability": 0.52 + }, + { + "start": 12919.92, + "end": 12921.66, + "probability": 0.9117 + }, + { + "start": 12922.34, + "end": 12922.84, + "probability": 0.41 + }, + { + "start": 12922.84, + "end": 12924.42, + "probability": 0.4379 + }, + { + "start": 12925.18, + "end": 12929.88, + "probability": 0.968 + }, + { + "start": 12930.4, + "end": 12930.82, + "probability": 0.5001 + }, + { + "start": 12932.74, + "end": 12935.06, + "probability": 0.824 + }, + { + "start": 12935.6, + "end": 12940.72, + "probability": 0.6494 + }, + { + "start": 12941.36, + "end": 12943.74, + "probability": 0.773 + }, + { + "start": 12944.5, + "end": 12945.42, + "probability": 0.3817 + }, + { + "start": 12945.6, + "end": 12946.52, + "probability": 0.8626 + }, + { + "start": 12946.58, + "end": 12949.46, + "probability": 0.9639 + }, + { + "start": 12949.82, + "end": 12951.1, + "probability": 0.9858 + }, + { + "start": 12951.34, + "end": 12951.62, + "probability": 0.7619 + }, + { + "start": 12952.02, + "end": 12952.64, + "probability": 0.5104 + }, + { + "start": 12952.72, + "end": 12953.56, + "probability": 0.4796 + }, + { + "start": 12953.56, + "end": 12954.61, + "probability": 0.9248 + }, + { + "start": 12955.3, + "end": 12957.38, + "probability": 0.9505 + }, + { + "start": 12957.7, + "end": 12958.18, + "probability": 0.5807 + }, + { + "start": 12958.74, + "end": 12960.32, + "probability": 0.5816 + }, + { + "start": 12961.08, + "end": 12964.22, + "probability": 0.6619 + }, + { + "start": 12964.72, + "end": 12966.12, + "probability": 0.6725 + }, + { + "start": 12966.26, + "end": 12967.42, + "probability": 0.9161 + }, + { + "start": 12968.82, + "end": 12969.84, + "probability": 0.9556 + }, + { + "start": 12971.46, + "end": 12974.22, + "probability": 0.9048 + }, + { + "start": 12975.32, + "end": 12981.74, + "probability": 0.9284 + }, + { + "start": 12982.86, + "end": 12983.58, + "probability": 0.7445 + }, + { + "start": 12984.56, + "end": 12988.12, + "probability": 0.8023 + }, + { + "start": 12988.66, + "end": 12989.6, + "probability": 0.8253 + }, + { + "start": 12990.9, + "end": 12994.52, + "probability": 0.9067 + }, + { + "start": 12996.62, + "end": 12999.54, + "probability": 0.5082 + }, + { + "start": 12999.8, + "end": 13000.5, + "probability": 0.9706 + }, + { + "start": 13001.12, + "end": 13001.8, + "probability": 0.9337 + }, + { + "start": 13002.2, + "end": 13002.72, + "probability": 0.7753 + }, + { + "start": 13002.84, + "end": 13004.14, + "probability": 0.9479 + }, + { + "start": 13004.14, + "end": 13005.6, + "probability": 0.7552 + }, + { + "start": 13005.6, + "end": 13007.1, + "probability": 0.9047 + }, + { + "start": 13007.54, + "end": 13007.7, + "probability": 0.8525 + }, + { + "start": 13008.02, + "end": 13008.32, + "probability": 0.6683 + }, + { + "start": 13008.78, + "end": 13010.56, + "probability": 0.9296 + }, + { + "start": 13011.22, + "end": 13012.46, + "probability": 0.8872 + }, + { + "start": 13012.46, + "end": 13013.46, + "probability": 0.9893 + }, + { + "start": 13013.48, + "end": 13014.3, + "probability": 0.5362 + }, + { + "start": 13014.38, + "end": 13015.86, + "probability": 0.7069 + }, + { + "start": 13016.34, + "end": 13017.38, + "probability": 0.8589 + }, + { + "start": 13018.48, + "end": 13019.7, + "probability": 0.9088 + }, + { + "start": 13021.02, + "end": 13024.92, + "probability": 0.9385 + }, + { + "start": 13025.06, + "end": 13026.2, + "probability": 0.5213 + }, + { + "start": 13029.76, + "end": 13034.58, + "probability": 0.9983 + }, + { + "start": 13035.58, + "end": 13038.0, + "probability": 0.9961 + }, + { + "start": 13053.1, + "end": 13053.2, + "probability": 0.1509 + }, + { + "start": 13053.2, + "end": 13053.2, + "probability": 0.1546 + }, + { + "start": 13053.2, + "end": 13053.32, + "probability": 0.0518 + }, + { + "start": 13053.32, + "end": 13053.32, + "probability": 0.012 + }, + { + "start": 13069.9, + "end": 13073.96, + "probability": 0.2605 + }, + { + "start": 13075.0, + "end": 13075.8, + "probability": 0.9919 + }, + { + "start": 13076.6, + "end": 13077.76, + "probability": 0.9851 + }, + { + "start": 13078.66, + "end": 13081.18, + "probability": 0.8629 + }, + { + "start": 13081.9, + "end": 13086.8, + "probability": 0.9666 + }, + { + "start": 13088.48, + "end": 13091.06, + "probability": 0.6055 + }, + { + "start": 13092.14, + "end": 13095.82, + "probability": 0.9038 + }, + { + "start": 13097.28, + "end": 13100.92, + "probability": 0.8394 + }, + { + "start": 13100.96, + "end": 13101.38, + "probability": 0.9254 + }, + { + "start": 13101.76, + "end": 13106.88, + "probability": 0.9788 + }, + { + "start": 13107.96, + "end": 13109.6, + "probability": 0.9221 + }, + { + "start": 13111.26, + "end": 13112.38, + "probability": 0.9037 + }, + { + "start": 13112.4, + "end": 13115.9, + "probability": 0.9945 + }, + { + "start": 13115.9, + "end": 13121.58, + "probability": 0.9946 + }, + { + "start": 13121.76, + "end": 13125.4, + "probability": 0.9528 + }, + { + "start": 13128.16, + "end": 13130.66, + "probability": 0.9666 + }, + { + "start": 13130.66, + "end": 13133.1, + "probability": 0.682 + }, + { + "start": 13133.98, + "end": 13136.24, + "probability": 0.8167 + }, + { + "start": 13139.02, + "end": 13139.72, + "probability": 0.7421 + }, + { + "start": 13139.94, + "end": 13141.44, + "probability": 0.2987 + }, + { + "start": 13141.44, + "end": 13144.18, + "probability": 0.9847 + }, + { + "start": 13145.96, + "end": 13150.5, + "probability": 0.9664 + }, + { + "start": 13151.26, + "end": 13155.3, + "probability": 0.8449 + }, + { + "start": 13155.38, + "end": 13161.28, + "probability": 0.3116 + }, + { + "start": 13161.65, + "end": 13164.44, + "probability": 0.6113 + }, + { + "start": 13164.48, + "end": 13165.32, + "probability": 0.7993 + }, + { + "start": 13166.58, + "end": 13168.36, + "probability": 0.7125 + }, + { + "start": 13169.6, + "end": 13169.6, + "probability": 0.4939 + }, + { + "start": 13169.6, + "end": 13171.26, + "probability": 0.1838 + }, + { + "start": 13171.4, + "end": 13171.44, + "probability": 0.0515 + }, + { + "start": 13171.44, + "end": 13173.29, + "probability": 0.5073 + }, + { + "start": 13174.56, + "end": 13175.62, + "probability": 0.0746 + }, + { + "start": 13175.76, + "end": 13176.98, + "probability": 0.5594 + }, + { + "start": 13177.1, + "end": 13179.04, + "probability": 0.8732 + }, + { + "start": 13179.58, + "end": 13181.34, + "probability": 0.9255 + }, + { + "start": 13181.34, + "end": 13183.12, + "probability": 0.832 + }, + { + "start": 13183.18, + "end": 13184.24, + "probability": 0.7232 + }, + { + "start": 13184.4, + "end": 13186.32, + "probability": 0.9058 + }, + { + "start": 13186.4, + "end": 13188.02, + "probability": 0.7988 + }, + { + "start": 13188.04, + "end": 13188.76, + "probability": 0.9368 + }, + { + "start": 13189.08, + "end": 13189.45, + "probability": 0.8066 + }, + { + "start": 13189.72, + "end": 13190.16, + "probability": 0.4887 + }, + { + "start": 13190.16, + "end": 13191.54, + "probability": 0.9436 + }, + { + "start": 13191.62, + "end": 13192.44, + "probability": 0.8782 + }, + { + "start": 13193.06, + "end": 13194.04, + "probability": 0.5459 + }, + { + "start": 13194.12, + "end": 13194.48, + "probability": 0.3734 + }, + { + "start": 13194.5, + "end": 13195.08, + "probability": 0.9458 + }, + { + "start": 13195.08, + "end": 13196.72, + "probability": 0.6153 + }, + { + "start": 13196.72, + "end": 13199.25, + "probability": 0.0485 + }, + { + "start": 13199.5, + "end": 13199.64, + "probability": 0.026 + }, + { + "start": 13199.64, + "end": 13199.8, + "probability": 0.7234 + }, + { + "start": 13199.94, + "end": 13200.08, + "probability": 0.5334 + }, + { + "start": 13200.22, + "end": 13200.8, + "probability": 0.2642 + }, + { + "start": 13200.8, + "end": 13203.02, + "probability": 0.6121 + }, + { + "start": 13203.74, + "end": 13204.32, + "probability": 0.8236 + }, + { + "start": 13204.62, + "end": 13205.66, + "probability": 0.8605 + }, + { + "start": 13205.94, + "end": 13208.36, + "probability": 0.8839 + }, + { + "start": 13208.5, + "end": 13209.62, + "probability": 0.7881 + }, + { + "start": 13209.62, + "end": 13213.2, + "probability": 0.783 + }, + { + "start": 13213.38, + "end": 13214.17, + "probability": 0.959 + }, + { + "start": 13214.66, + "end": 13215.4, + "probability": 0.7534 + }, + { + "start": 13215.44, + "end": 13219.56, + "probability": 0.8559 + }, + { + "start": 13219.6, + "end": 13220.1, + "probability": 0.799 + }, + { + "start": 13221.3, + "end": 13221.68, + "probability": 0.0363 + }, + { + "start": 13222.84, + "end": 13226.54, + "probability": 0.1955 + }, + { + "start": 13227.32, + "end": 13229.38, + "probability": 0.0304 + }, + { + "start": 13229.48, + "end": 13233.02, + "probability": 0.9355 + }, + { + "start": 13233.56, + "end": 13235.74, + "probability": 0.9809 + }, + { + "start": 13235.86, + "end": 13239.88, + "probability": 0.2962 + }, + { + "start": 13240.58, + "end": 13242.36, + "probability": 0.5566 + }, + { + "start": 13243.25, + "end": 13247.02, + "probability": 0.5245 + }, + { + "start": 13247.28, + "end": 13249.86, + "probability": 0.7613 + }, + { + "start": 13250.86, + "end": 13253.8, + "probability": 0.6959 + }, + { + "start": 13255.34, + "end": 13256.44, + "probability": 0.5828 + }, + { + "start": 13256.58, + "end": 13257.48, + "probability": 0.5663 + }, + { + "start": 13257.48, + "end": 13257.48, + "probability": 0.1851 + }, + { + "start": 13257.48, + "end": 13258.63, + "probability": 0.5307 + }, + { + "start": 13259.72, + "end": 13260.74, + "probability": 0.6784 + }, + { + "start": 13260.74, + "end": 13262.58, + "probability": 0.9121 + }, + { + "start": 13262.58, + "end": 13262.88, + "probability": 0.8459 + }, + { + "start": 13262.96, + "end": 13264.5, + "probability": 0.6108 + }, + { + "start": 13266.02, + "end": 13266.82, + "probability": 0.3158 + }, + { + "start": 13266.82, + "end": 13267.3, + "probability": 0.832 + }, + { + "start": 13267.56, + "end": 13269.02, + "probability": 0.958 + }, + { + "start": 13269.02, + "end": 13270.38, + "probability": 0.9491 + }, + { + "start": 13270.92, + "end": 13272.32, + "probability": 0.969 + }, + { + "start": 13272.36, + "end": 13275.2, + "probability": 0.8096 + }, + { + "start": 13275.46, + "end": 13276.64, + "probability": 0.7457 + }, + { + "start": 13276.64, + "end": 13277.78, + "probability": 0.8058 + }, + { + "start": 13277.78, + "end": 13278.24, + "probability": 0.7214 + }, + { + "start": 13278.34, + "end": 13281.4, + "probability": 0.9607 + }, + { + "start": 13281.5, + "end": 13282.74, + "probability": 0.6704 + }, + { + "start": 13282.84, + "end": 13284.9, + "probability": 0.4549 + }, + { + "start": 13284.94, + "end": 13285.1, + "probability": 0.862 + }, + { + "start": 13285.1, + "end": 13285.88, + "probability": 0.6975 + }, + { + "start": 13285.96, + "end": 13287.02, + "probability": 0.9219 + }, + { + "start": 13287.2, + "end": 13288.99, + "probability": 0.8141 + }, + { + "start": 13289.42, + "end": 13291.06, + "probability": 0.9044 + }, + { + "start": 13291.54, + "end": 13292.54, + "probability": 0.91 + }, + { + "start": 13293.28, + "end": 13295.2, + "probability": 0.2731 + }, + { + "start": 13297.08, + "end": 13299.6, + "probability": 0.9152 + }, + { + "start": 13300.6, + "end": 13302.3, + "probability": 0.0406 + }, + { + "start": 13305.22, + "end": 13308.3, + "probability": 0.9683 + }, + { + "start": 13308.4, + "end": 13309.42, + "probability": 0.6658 + }, + { + "start": 13309.42, + "end": 13309.78, + "probability": 0.445 + }, + { + "start": 13309.86, + "end": 13311.32, + "probability": 0.9272 + }, + { + "start": 13311.66, + "end": 13312.64, + "probability": 0.9897 + }, + { + "start": 13313.36, + "end": 13314.74, + "probability": 0.1313 + }, + { + "start": 13314.88, + "end": 13316.58, + "probability": 0.3376 + }, + { + "start": 13316.68, + "end": 13319.28, + "probability": 0.5859 + }, + { + "start": 13319.42, + "end": 13319.94, + "probability": 0.6931 + }, + { + "start": 13320.0, + "end": 13321.74, + "probability": 0.9899 + }, + { + "start": 13322.32, + "end": 13326.88, + "probability": 0.9586 + }, + { + "start": 13326.88, + "end": 13328.26, + "probability": 0.6102 + }, + { + "start": 13328.34, + "end": 13331.24, + "probability": 0.8062 + }, + { + "start": 13334.08, + "end": 13335.18, + "probability": 0.3543 + }, + { + "start": 13335.18, + "end": 13335.18, + "probability": 0.1189 + }, + { + "start": 13335.18, + "end": 13335.18, + "probability": 0.0501 + }, + { + "start": 13335.18, + "end": 13336.09, + "probability": 0.5896 + }, + { + "start": 13336.58, + "end": 13338.0, + "probability": 0.8483 + }, + { + "start": 13339.04, + "end": 13340.82, + "probability": 0.7954 + }, + { + "start": 13342.18, + "end": 13342.76, + "probability": 0.5059 + }, + { + "start": 13343.18, + "end": 13343.46, + "probability": 0.6421 + }, + { + "start": 13344.16, + "end": 13345.12, + "probability": 0.0875 + }, + { + "start": 13345.12, + "end": 13346.5, + "probability": 0.8119 + }, + { + "start": 13346.67, + "end": 13347.4, + "probability": 0.9434 + }, + { + "start": 13347.52, + "end": 13347.8, + "probability": 0.8866 + }, + { + "start": 13348.98, + "end": 13352.4, + "probability": 0.9509 + }, + { + "start": 13352.4, + "end": 13355.74, + "probability": 0.7427 + }, + { + "start": 13356.46, + "end": 13357.3, + "probability": 0.5308 + }, + { + "start": 13357.76, + "end": 13362.84, + "probability": 0.9967 + }, + { + "start": 13363.38, + "end": 13366.74, + "probability": 0.9702 + }, + { + "start": 13367.38, + "end": 13369.62, + "probability": 0.9904 + }, + { + "start": 13371.48, + "end": 13371.78, + "probability": 0.4217 + }, + { + "start": 13371.96, + "end": 13372.66, + "probability": 0.9565 + }, + { + "start": 13372.96, + "end": 13373.58, + "probability": 0.839 + }, + { + "start": 13373.6, + "end": 13375.54, + "probability": 0.9321 + }, + { + "start": 13375.82, + "end": 13379.32, + "probability": 0.8071 + }, + { + "start": 13379.32, + "end": 13383.06, + "probability": 0.9168 + }, + { + "start": 13383.18, + "end": 13383.94, + "probability": 0.8188 + }, + { + "start": 13385.12, + "end": 13387.58, + "probability": 0.9976 + }, + { + "start": 13388.48, + "end": 13393.74, + "probability": 0.9911 + }, + { + "start": 13396.1, + "end": 13398.9, + "probability": 0.9908 + }, + { + "start": 13398.9, + "end": 13402.92, + "probability": 0.8948 + }, + { + "start": 13403.88, + "end": 13407.4, + "probability": 0.7758 + }, + { + "start": 13407.48, + "end": 13409.14, + "probability": 0.5075 + }, + { + "start": 13409.76, + "end": 13413.02, + "probability": 0.8026 + }, + { + "start": 13413.98, + "end": 13417.62, + "probability": 0.9813 + }, + { + "start": 13418.2, + "end": 13419.36, + "probability": 0.7298 + }, + { + "start": 13419.97, + "end": 13425.02, + "probability": 0.9495 + }, + { + "start": 13425.96, + "end": 13430.4, + "probability": 0.9916 + }, + { + "start": 13430.92, + "end": 13433.68, + "probability": 0.8821 + }, + { + "start": 13434.6, + "end": 13435.16, + "probability": 0.9058 + }, + { + "start": 13436.5, + "end": 13439.0, + "probability": 0.7479 + }, + { + "start": 13440.26, + "end": 13441.9, + "probability": 0.8561 + }, + { + "start": 13442.52, + "end": 13444.34, + "probability": 0.9866 + }, + { + "start": 13444.38, + "end": 13446.26, + "probability": 0.9376 + }, + { + "start": 13447.74, + "end": 13451.07, + "probability": 0.8472 + }, + { + "start": 13451.22, + "end": 13455.46, + "probability": 0.9989 + }, + { + "start": 13456.22, + "end": 13458.36, + "probability": 0.996 + }, + { + "start": 13459.26, + "end": 13459.72, + "probability": 0.4448 + }, + { + "start": 13459.78, + "end": 13462.12, + "probability": 0.9938 + }, + { + "start": 13462.12, + "end": 13466.1, + "probability": 0.991 + }, + { + "start": 13467.94, + "end": 13472.24, + "probability": 0.9852 + }, + { + "start": 13472.7, + "end": 13477.14, + "probability": 0.9933 + }, + { + "start": 13478.0, + "end": 13479.43, + "probability": 0.9976 + }, + { + "start": 13480.52, + "end": 13482.68, + "probability": 0.98 + }, + { + "start": 13483.12, + "end": 13485.84, + "probability": 0.068 + }, + { + "start": 13488.54, + "end": 13489.34, + "probability": 0.5679 + }, + { + "start": 13489.34, + "end": 13489.82, + "probability": 0.5618 + }, + { + "start": 13490.5, + "end": 13493.46, + "probability": 0.6058 + }, + { + "start": 13493.82, + "end": 13497.18, + "probability": 0.7216 + }, + { + "start": 13497.86, + "end": 13499.56, + "probability": 0.0651 + }, + { + "start": 13500.06, + "end": 13500.9, + "probability": 0.5916 + }, + { + "start": 13503.98, + "end": 13505.0, + "probability": 0.7999 + }, + { + "start": 13506.04, + "end": 13510.2, + "probability": 0.9871 + }, + { + "start": 13510.26, + "end": 13511.54, + "probability": 0.9971 + }, + { + "start": 13511.64, + "end": 13513.08, + "probability": 0.978 + }, + { + "start": 13514.2, + "end": 13516.74, + "probability": 0.9948 + }, + { + "start": 13516.92, + "end": 13519.72, + "probability": 0.858 + }, + { + "start": 13519.78, + "end": 13522.86, + "probability": 0.9761 + }, + { + "start": 13522.86, + "end": 13524.9, + "probability": 0.9795 + }, + { + "start": 13525.64, + "end": 13527.24, + "probability": 0.9902 + }, + { + "start": 13529.2, + "end": 13532.08, + "probability": 0.9941 + }, + { + "start": 13532.32, + "end": 13532.94, + "probability": 0.9781 + }, + { + "start": 13533.02, + "end": 13533.84, + "probability": 0.3523 + }, + { + "start": 13534.5, + "end": 13538.38, + "probability": 0.9673 + }, + { + "start": 13538.98, + "end": 13540.92, + "probability": 0.7608 + }, + { + "start": 13541.84, + "end": 13544.96, + "probability": 0.939 + }, + { + "start": 13544.96, + "end": 13547.06, + "probability": 0.9872 + }, + { + "start": 13549.4, + "end": 13549.96, + "probability": 0.0433 + }, + { + "start": 13551.28, + "end": 13556.44, + "probability": 0.1788 + }, + { + "start": 13559.58, + "end": 13563.56, + "probability": 0.198 + }, + { + "start": 13563.56, + "end": 13563.56, + "probability": 0.2567 + }, + { + "start": 13563.56, + "end": 13563.56, + "probability": 0.0712 + }, + { + "start": 13563.56, + "end": 13564.66, + "probability": 0.4049 + }, + { + "start": 13565.08, + "end": 13569.37, + "probability": 0.3991 + }, + { + "start": 13570.28, + "end": 13570.34, + "probability": 0.0809 + }, + { + "start": 13570.34, + "end": 13570.34, + "probability": 0.1585 + }, + { + "start": 13570.34, + "end": 13572.56, + "probability": 0.7305 + }, + { + "start": 13572.96, + "end": 13575.78, + "probability": 0.7581 + }, + { + "start": 13575.84, + "end": 13580.58, + "probability": 0.9404 + }, + { + "start": 13588.24, + "end": 13590.18, + "probability": 0.6841 + }, + { + "start": 13591.54, + "end": 13594.32, + "probability": 0.9939 + }, + { + "start": 13596.1, + "end": 13598.48, + "probability": 0.9954 + }, + { + "start": 13598.48, + "end": 13600.96, + "probability": 0.9971 + }, + { + "start": 13602.7, + "end": 13604.18, + "probability": 0.9928 + }, + { + "start": 13605.28, + "end": 13608.96, + "probability": 0.6653 + }, + { + "start": 13612.71, + "end": 13614.64, + "probability": 0.6704 + }, + { + "start": 13614.7, + "end": 13617.92, + "probability": 0.6685 + }, + { + "start": 13618.6, + "end": 13622.02, + "probability": 0.5816 + }, + { + "start": 13622.12, + "end": 13623.12, + "probability": 0.9889 + }, + { + "start": 13624.26, + "end": 13625.9, + "probability": 0.9411 + }, + { + "start": 13628.56, + "end": 13630.38, + "probability": 0.9976 + }, + { + "start": 13630.72, + "end": 13633.1, + "probability": 0.8316 + }, + { + "start": 13633.18, + "end": 13633.68, + "probability": 0.8492 + }, + { + "start": 13634.02, + "end": 13636.04, + "probability": 0.7763 + }, + { + "start": 13637.7, + "end": 13640.48, + "probability": 0.9637 + }, + { + "start": 13641.0, + "end": 13643.97, + "probability": 0.9539 + }, + { + "start": 13644.08, + "end": 13645.98, + "probability": 0.9976 + }, + { + "start": 13646.66, + "end": 13647.98, + "probability": 0.641 + }, + { + "start": 13648.34, + "end": 13648.64, + "probability": 0.6808 + }, + { + "start": 13648.74, + "end": 13650.15, + "probability": 0.972 + }, + { + "start": 13650.56, + "end": 13652.82, + "probability": 0.7504 + }, + { + "start": 13653.52, + "end": 13655.56, + "probability": 0.8503 + }, + { + "start": 13655.82, + "end": 13657.86, + "probability": 0.9577 + }, + { + "start": 13658.58, + "end": 13663.42, + "probability": 0.921 + }, + { + "start": 13663.82, + "end": 13664.82, + "probability": 0.8857 + }, + { + "start": 13665.46, + "end": 13669.38, + "probability": 0.9761 + }, + { + "start": 13669.72, + "end": 13671.3, + "probability": 0.9961 + }, + { + "start": 13671.56, + "end": 13674.38, + "probability": 0.7634 + }, + { + "start": 13675.59, + "end": 13678.68, + "probability": 0.6443 + }, + { + "start": 13679.73, + "end": 13681.85, + "probability": 0.9685 + }, + { + "start": 13683.62, + "end": 13686.22, + "probability": 0.8579 + }, + { + "start": 13686.96, + "end": 13688.52, + "probability": 0.9187 + }, + { + "start": 13698.5, + "end": 13699.5, + "probability": 0.4594 + }, + { + "start": 13700.98, + "end": 13702.64, + "probability": 0.6945 + }, + { + "start": 13705.06, + "end": 13710.68, + "probability": 0.9075 + }, + { + "start": 13711.96, + "end": 13715.26, + "probability": 0.9822 + }, + { + "start": 13716.18, + "end": 13722.16, + "probability": 0.9741 + }, + { + "start": 13723.1, + "end": 13724.92, + "probability": 0.8492 + }, + { + "start": 13725.48, + "end": 13727.18, + "probability": 0.7319 + }, + { + "start": 13727.78, + "end": 13730.78, + "probability": 0.9805 + }, + { + "start": 13731.5, + "end": 13735.78, + "probability": 0.9744 + }, + { + "start": 13736.66, + "end": 13740.3, + "probability": 0.959 + }, + { + "start": 13740.76, + "end": 13744.46, + "probability": 0.9593 + }, + { + "start": 13745.4, + "end": 13747.06, + "probability": 0.9839 + }, + { + "start": 13748.1, + "end": 13751.74, + "probability": 0.9757 + }, + { + "start": 13752.8, + "end": 13757.8, + "probability": 0.9757 + }, + { + "start": 13757.8, + "end": 13764.74, + "probability": 0.9897 + }, + { + "start": 13765.5, + "end": 13768.25, + "probability": 0.9629 + }, + { + "start": 13768.84, + "end": 13769.5, + "probability": 0.4342 + }, + { + "start": 13770.76, + "end": 13772.13, + "probability": 0.7057 + }, + { + "start": 13773.48, + "end": 13776.0, + "probability": 0.8654 + }, + { + "start": 13776.22, + "end": 13778.88, + "probability": 0.7292 + }, + { + "start": 13779.74, + "end": 13781.28, + "probability": 0.2537 + }, + { + "start": 13783.16, + "end": 13786.2, + "probability": 0.9423 + }, + { + "start": 13786.96, + "end": 13792.6, + "probability": 0.9969 + }, + { + "start": 13793.36, + "end": 13795.3, + "probability": 0.9799 + }, + { + "start": 13796.5, + "end": 13800.28, + "probability": 0.8507 + }, + { + "start": 13800.82, + "end": 13802.34, + "probability": 0.7501 + }, + { + "start": 13803.5, + "end": 13806.16, + "probability": 0.8689 + }, + { + "start": 13806.68, + "end": 13807.26, + "probability": 0.5679 + }, + { + "start": 13808.5, + "end": 13813.28, + "probability": 0.9279 + }, + { + "start": 13813.84, + "end": 13818.32, + "probability": 0.9822 + }, + { + "start": 13819.54, + "end": 13821.5, + "probability": 0.9875 + }, + { + "start": 13823.24, + "end": 13824.2, + "probability": 0.6057 + }, + { + "start": 13824.3, + "end": 13825.22, + "probability": 0.7925 + }, + { + "start": 13825.82, + "end": 13828.3, + "probability": 0.7222 + }, + { + "start": 13828.6, + "end": 13832.22, + "probability": 0.9532 + }, + { + "start": 13832.54, + "end": 13834.88, + "probability": 0.9496 + }, + { + "start": 13835.12, + "end": 13840.86, + "probability": 0.7848 + }, + { + "start": 13841.26, + "end": 13843.42, + "probability": 0.6234 + }, + { + "start": 13843.66, + "end": 13849.32, + "probability": 0.9073 + }, + { + "start": 13850.24, + "end": 13854.32, + "probability": 0.9388 + }, + { + "start": 13854.58, + "end": 13861.76, + "probability": 0.9133 + }, + { + "start": 13862.18, + "end": 13863.62, + "probability": 0.7146 + }, + { + "start": 13864.4, + "end": 13867.7, + "probability": 0.9229 + }, + { + "start": 13868.28, + "end": 13875.49, + "probability": 0.9686 + }, + { + "start": 13877.34, + "end": 13881.02, + "probability": 0.8716 + }, + { + "start": 13881.28, + "end": 13882.9, + "probability": 0.947 + }, + { + "start": 13883.38, + "end": 13888.54, + "probability": 0.9772 + }, + { + "start": 13888.88, + "end": 13892.42, + "probability": 0.968 + }, + { + "start": 13892.76, + "end": 13895.46, + "probability": 0.9845 + }, + { + "start": 13895.54, + "end": 13897.18, + "probability": 0.6658 + }, + { + "start": 13897.52, + "end": 13898.7, + "probability": 0.8331 + }, + { + "start": 13899.08, + "end": 13900.94, + "probability": 0.9681 + }, + { + "start": 13901.58, + "end": 13902.58, + "probability": 0.8042 + }, + { + "start": 13903.18, + "end": 13905.04, + "probability": 0.8008 + }, + { + "start": 13905.98, + "end": 13907.16, + "probability": 0.9801 + }, + { + "start": 13931.38, + "end": 13932.36, + "probability": 0.6583 + }, + { + "start": 13934.16, + "end": 13937.5, + "probability": 0.9021 + }, + { + "start": 13938.26, + "end": 13939.14, + "probability": 0.7524 + }, + { + "start": 13939.7, + "end": 13942.92, + "probability": 0.637 + }, + { + "start": 13944.36, + "end": 13946.88, + "probability": 0.5218 + }, + { + "start": 13946.96, + "end": 13952.06, + "probability": 0.6327 + }, + { + "start": 13952.9, + "end": 13953.1, + "probability": 0.541 + }, + { + "start": 13953.14, + "end": 13956.54, + "probability": 0.7675 + }, + { + "start": 13956.64, + "end": 13958.86, + "probability": 0.013 + }, + { + "start": 13958.86, + "end": 13959.49, + "probability": 0.5125 + }, + { + "start": 13959.8, + "end": 13961.22, + "probability": 0.1867 + }, + { + "start": 13963.5, + "end": 13964.08, + "probability": 0.5635 + }, + { + "start": 13964.18, + "end": 13964.76, + "probability": 0.8493 + }, + { + "start": 13964.98, + "end": 13965.48, + "probability": 0.8702 + }, + { + "start": 13965.78, + "end": 13967.52, + "probability": 0.8149 + }, + { + "start": 13968.1, + "end": 13971.0, + "probability": 0.8454 + }, + { + "start": 13971.84, + "end": 13973.48, + "probability": 0.9668 + }, + { + "start": 13974.12, + "end": 13974.76, + "probability": 0.8573 + }, + { + "start": 13974.82, + "end": 13978.54, + "probability": 0.9167 + }, + { + "start": 13978.64, + "end": 13979.94, + "probability": 0.8073 + }, + { + "start": 13980.1, + "end": 13984.24, + "probability": 0.7728 + }, + { + "start": 13984.24, + "end": 13984.24, + "probability": 0.6565 + }, + { + "start": 13984.24, + "end": 13985.0, + "probability": 0.2335 + }, + { + "start": 13986.52, + "end": 13989.86, + "probability": 0.4619 + }, + { + "start": 13990.02, + "end": 13991.0, + "probability": 0.1959 + }, + { + "start": 13991.14, + "end": 13993.34, + "probability": 0.8701 + }, + { + "start": 13993.62, + "end": 13994.82, + "probability": 0.5061 + }, + { + "start": 13994.94, + "end": 13997.5, + "probability": 0.6025 + }, + { + "start": 13997.5, + "end": 14000.72, + "probability": 0.6542 + }, + { + "start": 14001.44, + "end": 14004.38, + "probability": 0.5913 + }, + { + "start": 14004.5, + "end": 14007.26, + "probability": 0.5433 + }, + { + "start": 14007.66, + "end": 14009.36, + "probability": 0.9612 + }, + { + "start": 14010.84, + "end": 14013.2, + "probability": 0.6486 + }, + { + "start": 14013.82, + "end": 14015.18, + "probability": 0.9744 + }, + { + "start": 14015.26, + "end": 14016.7, + "probability": 0.7879 + }, + { + "start": 14017.58, + "end": 14020.78, + "probability": 0.8887 + }, + { + "start": 14021.78, + "end": 14023.8, + "probability": 0.9651 + }, + { + "start": 14024.82, + "end": 14026.76, + "probability": 0.9979 + }, + { + "start": 14027.44, + "end": 14030.16, + "probability": 0.9066 + }, + { + "start": 14031.36, + "end": 14032.92, + "probability": 0.8793 + }, + { + "start": 14033.48, + "end": 14035.48, + "probability": 0.9132 + }, + { + "start": 14036.38, + "end": 14039.06, + "probability": 0.9132 + }, + { + "start": 14040.22, + "end": 14042.16, + "probability": 0.4381 + }, + { + "start": 14042.18, + "end": 14042.94, + "probability": 0.9492 + }, + { + "start": 14044.14, + "end": 14046.8, + "probability": 0.6483 + }, + { + "start": 14047.16, + "end": 14047.48, + "probability": 0.0129 + }, + { + "start": 14047.6, + "end": 14052.74, + "probability": 0.687 + }, + { + "start": 14052.74, + "end": 14052.98, + "probability": 0.5062 + }, + { + "start": 14052.98, + "end": 14053.38, + "probability": 0.0118 + }, + { + "start": 14053.48, + "end": 14055.46, + "probability": 0.5872 + }, + { + "start": 14055.56, + "end": 14057.28, + "probability": 0.0041 + }, + { + "start": 14057.28, + "end": 14057.28, + "probability": 0.3863 + }, + { + "start": 14057.74, + "end": 14058.9, + "probability": 0.5698 + }, + { + "start": 14058.9, + "end": 14061.6, + "probability": 0.8325 + }, + { + "start": 14061.72, + "end": 14063.04, + "probability": 0.5356 + }, + { + "start": 14063.06, + "end": 14063.42, + "probability": 0.8155 + }, + { + "start": 14063.6, + "end": 14066.54, + "probability": 0.9026 + }, + { + "start": 14066.66, + "end": 14068.26, + "probability": 0.3342 + }, + { + "start": 14068.3, + "end": 14070.4, + "probability": 0.9731 + }, + { + "start": 14070.82, + "end": 14076.48, + "probability": 0.6899 + }, + { + "start": 14076.6, + "end": 14081.04, + "probability": 0.9934 + }, + { + "start": 14081.68, + "end": 14083.9, + "probability": 0.9321 + }, + { + "start": 14084.7, + "end": 14085.54, + "probability": 0.7513 + }, + { + "start": 14085.6, + "end": 14086.44, + "probability": 0.7533 + }, + { + "start": 14086.8, + "end": 14090.14, + "probability": 0.9813 + }, + { + "start": 14090.42, + "end": 14091.64, + "probability": 0.1043 + }, + { + "start": 14092.18, + "end": 14092.68, + "probability": 0.3261 + }, + { + "start": 14092.68, + "end": 14097.16, + "probability": 0.6954 + }, + { + "start": 14097.28, + "end": 14098.9, + "probability": 0.3677 + }, + { + "start": 14098.94, + "end": 14099.6, + "probability": 0.5605 + }, + { + "start": 14099.86, + "end": 14101.4, + "probability": 0.7273 + }, + { + "start": 14101.5, + "end": 14103.0, + "probability": 0.3504 + }, + { + "start": 14105.82, + "end": 14107.82, + "probability": 0.6353 + }, + { + "start": 14108.26, + "end": 14110.58, + "probability": 0.7777 + }, + { + "start": 14110.64, + "end": 14112.02, + "probability": 0.088 + }, + { + "start": 14113.35, + "end": 14115.78, + "probability": 0.146 + }, + { + "start": 14116.0, + "end": 14116.86, + "probability": 0.5215 + }, + { + "start": 14117.0, + "end": 14117.64, + "probability": 0.3966 + }, + { + "start": 14117.72, + "end": 14119.04, + "probability": 0.5057 + }, + { + "start": 14119.44, + "end": 14121.04, + "probability": 0.9195 + }, + { + "start": 14121.12, + "end": 14123.38, + "probability": 0.9741 + }, + { + "start": 14123.46, + "end": 14124.75, + "probability": 0.895 + }, + { + "start": 14125.08, + "end": 14128.24, + "probability": 0.9287 + }, + { + "start": 14130.46, + "end": 14134.92, + "probability": 0.5656 + }, + { + "start": 14135.8, + "end": 14137.94, + "probability": 0.63 + }, + { + "start": 14138.46, + "end": 14140.16, + "probability": 0.7964 + }, + { + "start": 14140.7, + "end": 14142.52, + "probability": 0.6986 + }, + { + "start": 14142.98, + "end": 14144.72, + "probability": 0.9502 + }, + { + "start": 14144.86, + "end": 14145.44, + "probability": 0.9126 + }, + { + "start": 14145.96, + "end": 14151.3, + "probability": 0.9309 + }, + { + "start": 14152.12, + "end": 14154.98, + "probability": 0.8527 + }, + { + "start": 14155.58, + "end": 14157.42, + "probability": 0.7529 + }, + { + "start": 14157.56, + "end": 14160.24, + "probability": 0.6382 + }, + { + "start": 14160.82, + "end": 14161.16, + "probability": 0.6878 + }, + { + "start": 14161.18, + "end": 14161.22, + "probability": 0.5641 + }, + { + "start": 14161.22, + "end": 14165.1, + "probability": 0.4554 + }, + { + "start": 14174.06, + "end": 14174.9, + "probability": 0.4309 + }, + { + "start": 14174.9, + "end": 14174.9, + "probability": 0.2085 + }, + { + "start": 14174.9, + "end": 14174.9, + "probability": 0.0758 + }, + { + "start": 14174.9, + "end": 14174.9, + "probability": 0.0915 + }, + { + "start": 14174.9, + "end": 14174.9, + "probability": 0.0313 + }, + { + "start": 14174.9, + "end": 14178.68, + "probability": 0.5056 + }, + { + "start": 14179.28, + "end": 14179.54, + "probability": 0.4023 + }, + { + "start": 14179.62, + "end": 14182.6, + "probability": 0.7519 + }, + { + "start": 14182.6, + "end": 14183.26, + "probability": 0.3345 + }, + { + "start": 14183.26, + "end": 14184.12, + "probability": 0.2444 + }, + { + "start": 14184.24, + "end": 14185.98, + "probability": 0.254 + }, + { + "start": 14186.1, + "end": 14187.42, + "probability": 0.1038 + }, + { + "start": 14187.92, + "end": 14188.78, + "probability": 0.0196 + }, + { + "start": 14189.74, + "end": 14190.68, + "probability": 0.0056 + }, + { + "start": 14194.36, + "end": 14195.42, + "probability": 0.7432 + }, + { + "start": 14195.48, + "end": 14197.79, + "probability": 0.9589 + }, + { + "start": 14198.09, + "end": 14202.85, + "probability": 0.6243 + }, + { + "start": 14203.91, + "end": 14205.59, + "probability": 0.9639 + }, + { + "start": 14205.67, + "end": 14206.75, + "probability": 0.5075 + }, + { + "start": 14206.99, + "end": 14210.49, + "probability": 0.6899 + }, + { + "start": 14210.55, + "end": 14213.35, + "probability": 0.9067 + }, + { + "start": 14213.99, + "end": 14218.49, + "probability": 0.1329 + }, + { + "start": 14218.49, + "end": 14219.14, + "probability": 0.4472 + }, + { + "start": 14219.57, + "end": 14220.51, + "probability": 0.2527 + }, + { + "start": 14220.51, + "end": 14220.65, + "probability": 0.5481 + }, + { + "start": 14220.87, + "end": 14220.97, + "probability": 0.567 + }, + { + "start": 14220.97, + "end": 14224.25, + "probability": 0.2365 + }, + { + "start": 14224.71, + "end": 14227.47, + "probability": 0.0482 + }, + { + "start": 14227.47, + "end": 14233.03, + "probability": 0.7763 + }, + { + "start": 14233.39, + "end": 14234.19, + "probability": 0.4798 + }, + { + "start": 14234.91, + "end": 14234.91, + "probability": 0.0266 + }, + { + "start": 14234.91, + "end": 14237.52, + "probability": 0.8543 + }, + { + "start": 14237.95, + "end": 14239.93, + "probability": 0.3454 + }, + { + "start": 14240.19, + "end": 14241.85, + "probability": 0.2681 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.0, + "end": 14349.0, + "probability": 0.0 + }, + { + "start": 14349.16, + "end": 14349.42, + "probability": 0.1107 + }, + { + "start": 14352.02, + "end": 14354.14, + "probability": 0.3561 + }, + { + "start": 14355.02, + "end": 14358.91, + "probability": 0.0909 + }, + { + "start": 14359.78, + "end": 14360.48, + "probability": 0.5203 + }, + { + "start": 14360.5, + "end": 14360.7, + "probability": 0.0273 + }, + { + "start": 14363.58, + "end": 14367.08, + "probability": 0.1378 + }, + { + "start": 14367.6, + "end": 14368.62, + "probability": 0.1626 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.0, + "end": 14470.0, + "probability": 0.0 + }, + { + "start": 14470.5, + "end": 14473.52, + "probability": 0.843 + }, + { + "start": 14473.52, + "end": 14476.92, + "probability": 0.9753 + }, + { + "start": 14477.02, + "end": 14478.08, + "probability": 0.4091 + }, + { + "start": 14478.92, + "end": 14482.3, + "probability": 0.8989 + }, + { + "start": 14482.62, + "end": 14484.74, + "probability": 0.7396 + }, + { + "start": 14493.44, + "end": 14494.96, + "probability": 0.9323 + }, + { + "start": 14498.72, + "end": 14500.24, + "probability": 0.8255 + }, + { + "start": 14501.38, + "end": 14504.17, + "probability": 0.8984 + }, + { + "start": 14505.36, + "end": 14511.72, + "probability": 0.9843 + }, + { + "start": 14511.72, + "end": 14515.72, + "probability": 0.9789 + }, + { + "start": 14516.96, + "end": 14523.86, + "probability": 0.9712 + }, + { + "start": 14523.86, + "end": 14530.88, + "probability": 0.8442 + }, + { + "start": 14533.48, + "end": 14538.04, + "probability": 0.8209 + }, + { + "start": 14538.96, + "end": 14545.04, + "probability": 0.9636 + }, + { + "start": 14545.22, + "end": 14550.1, + "probability": 0.987 + }, + { + "start": 14551.86, + "end": 14552.04, + "probability": 0.2542 + }, + { + "start": 14552.78, + "end": 14555.7, + "probability": 0.527 + }, + { + "start": 14556.84, + "end": 14564.4, + "probability": 0.9901 + }, + { + "start": 14565.52, + "end": 14571.34, + "probability": 0.9743 + }, + { + "start": 14572.26, + "end": 14574.0, + "probability": 0.812 + }, + { + "start": 14575.16, + "end": 14575.98, + "probability": 0.951 + }, + { + "start": 14578.06, + "end": 14578.18, + "probability": 0.4523 + }, + { + "start": 14579.1, + "end": 14584.14, + "probability": 0.9902 + }, + { + "start": 14584.14, + "end": 14591.53, + "probability": 0.9474 + }, + { + "start": 14593.12, + "end": 14596.0, + "probability": 0.8586 + }, + { + "start": 14597.76, + "end": 14604.94, + "probability": 0.9863 + }, + { + "start": 14606.12, + "end": 14614.82, + "probability": 0.9592 + }, + { + "start": 14614.82, + "end": 14621.58, + "probability": 0.8594 + }, + { + "start": 14622.58, + "end": 14623.88, + "probability": 0.7235 + }, + { + "start": 14624.3, + "end": 14625.88, + "probability": 0.9093 + }, + { + "start": 14626.66, + "end": 14629.38, + "probability": 0.8997 + }, + { + "start": 14629.7, + "end": 14630.9, + "probability": 0.8863 + }, + { + "start": 14631.46, + "end": 14636.68, + "probability": 0.9095 + }, + { + "start": 14638.28, + "end": 14640.5, + "probability": 0.7922 + }, + { + "start": 14642.96, + "end": 14645.68, + "probability": 0.7753 + }, + { + "start": 14647.36, + "end": 14647.5, + "probability": 0.3972 + }, + { + "start": 14647.96, + "end": 14651.28, + "probability": 0.5749 + }, + { + "start": 14651.4, + "end": 14655.42, + "probability": 0.8306 + }, + { + "start": 14655.84, + "end": 14662.74, + "probability": 0.9436 + }, + { + "start": 14663.82, + "end": 14672.88, + "probability": 0.7755 + }, + { + "start": 14673.44, + "end": 14676.94, + "probability": 0.8466 + }, + { + "start": 14677.54, + "end": 14684.72, + "probability": 0.7069 + }, + { + "start": 14685.56, + "end": 14688.76, + "probability": 0.9912 + }, + { + "start": 14690.56, + "end": 14694.06, + "probability": 0.8125 + }, + { + "start": 14694.26, + "end": 14699.4, + "probability": 0.846 + }, + { + "start": 14700.26, + "end": 14705.24, + "probability": 0.9785 + }, + { + "start": 14705.88, + "end": 14709.1, + "probability": 0.9661 + }, + { + "start": 14709.86, + "end": 14711.36, + "probability": 0.8109 + }, + { + "start": 14712.58, + "end": 14714.86, + "probability": 0.6975 + }, + { + "start": 14715.86, + "end": 14718.46, + "probability": 0.6964 + }, + { + "start": 14719.48, + "end": 14722.36, + "probability": 0.9536 + }, + { + "start": 14723.52, + "end": 14725.38, + "probability": 0.7198 + }, + { + "start": 14725.52, + "end": 14730.72, + "probability": 0.9932 + }, + { + "start": 14731.74, + "end": 14734.42, + "probability": 0.9863 + }, + { + "start": 14734.56, + "end": 14738.02, + "probability": 0.5024 + }, + { + "start": 14738.78, + "end": 14744.94, + "probability": 0.908 + }, + { + "start": 14745.58, + "end": 14754.56, + "probability": 0.7215 + }, + { + "start": 14754.56, + "end": 14759.08, + "probability": 0.9771 + }, + { + "start": 14760.18, + "end": 14761.22, + "probability": 0.8142 + }, + { + "start": 14762.82, + "end": 14763.1, + "probability": 0.7468 + }, + { + "start": 14763.18, + "end": 14763.44, + "probability": 0.8198 + }, + { + "start": 14763.48, + "end": 14764.88, + "probability": 0.8882 + }, + { + "start": 14765.0, + "end": 14767.08, + "probability": 0.9052 + }, + { + "start": 14768.42, + "end": 14771.04, + "probability": 0.6425 + }, + { + "start": 14771.8, + "end": 14773.74, + "probability": 0.6944 + }, + { + "start": 14774.7, + "end": 14774.7, + "probability": 0.5107 + }, + { + "start": 14775.4, + "end": 14777.06, + "probability": 0.7034 + }, + { + "start": 14777.72, + "end": 14781.22, + "probability": 0.2893 + }, + { + "start": 14781.22, + "end": 14782.25, + "probability": 0.2055 + }, + { + "start": 14783.4, + "end": 14787.36, + "probability": 0.9552 + }, + { + "start": 14787.36, + "end": 14792.58, + "probability": 0.7139 + }, + { + "start": 14792.68, + "end": 14793.62, + "probability": 0.8142 + }, + { + "start": 14793.8, + "end": 14794.84, + "probability": 0.934 + }, + { + "start": 14795.64, + "end": 14796.74, + "probability": 0.1873 + }, + { + "start": 14797.6, + "end": 14800.62, + "probability": 0.9421 + }, + { + "start": 14800.62, + "end": 14803.96, + "probability": 0.6469 + }, + { + "start": 14805.26, + "end": 14807.1, + "probability": 0.746 + }, + { + "start": 14807.72, + "end": 14810.54, + "probability": 0.8901 + }, + { + "start": 14812.64, + "end": 14814.38, + "probability": 0.6211 + }, + { + "start": 14816.48, + "end": 14818.64, + "probability": 0.4903 + }, + { + "start": 14819.56, + "end": 14825.96, + "probability": 0.736 + }, + { + "start": 14827.18, + "end": 14837.14, + "probability": 0.7081 + }, + { + "start": 14837.92, + "end": 14838.62, + "probability": 0.1236 + }, + { + "start": 14838.62, + "end": 14841.02, + "probability": 0.785 + }, + { + "start": 14841.1, + "end": 14844.12, + "probability": 0.7985 + }, + { + "start": 14846.12, + "end": 14847.82, + "probability": 0.5391 + }, + { + "start": 14847.88, + "end": 14852.78, + "probability": 0.5662 + }, + { + "start": 14854.06, + "end": 14859.38, + "probability": 0.9814 + }, + { + "start": 14859.44, + "end": 14859.8, + "probability": 0.8508 + }, + { + "start": 14860.46, + "end": 14861.68, + "probability": 0.7537 + }, + { + "start": 14862.62, + "end": 14866.54, + "probability": 0.9275 + }, + { + "start": 14867.76, + "end": 14868.88, + "probability": 0.9352 + }, + { + "start": 14869.58, + "end": 14869.86, + "probability": 0.2767 + }, + { + "start": 14869.86, + "end": 14874.02, + "probability": 0.9948 + }, + { + "start": 14874.02, + "end": 14877.58, + "probability": 0.9894 + }, + { + "start": 14878.18, + "end": 14882.2, + "probability": 0.8145 + }, + { + "start": 14882.2, + "end": 14887.4, + "probability": 0.9453 + }, + { + "start": 14888.26, + "end": 14889.2, + "probability": 0.8627 + }, + { + "start": 14890.46, + "end": 14894.18, + "probability": 0.5704 + }, + { + "start": 14894.78, + "end": 14896.54, + "probability": 0.9943 + }, + { + "start": 14898.44, + "end": 14899.34, + "probability": 0.802 + }, + { + "start": 14900.22, + "end": 14901.48, + "probability": 0.855 + }, + { + "start": 14902.06, + "end": 14903.38, + "probability": 0.8921 + }, + { + "start": 14903.92, + "end": 14905.02, + "probability": 0.988 + }, + { + "start": 14905.7, + "end": 14907.36, + "probability": 0.7602 + }, + { + "start": 14907.62, + "end": 14908.28, + "probability": 0.6467 + }, + { + "start": 14908.42, + "end": 14910.16, + "probability": 0.9946 + }, + { + "start": 14910.64, + "end": 14913.86, + "probability": 0.7925 + }, + { + "start": 14913.86, + "end": 14916.54, + "probability": 0.9435 + }, + { + "start": 14917.78, + "end": 14923.18, + "probability": 0.876 + }, + { + "start": 14923.5, + "end": 14925.5, + "probability": 0.7094 + }, + { + "start": 14926.34, + "end": 14927.82, + "probability": 0.95 + }, + { + "start": 14927.88, + "end": 14930.02, + "probability": 0.7522 + }, + { + "start": 14930.38, + "end": 14931.72, + "probability": 0.9497 + }, + { + "start": 14931.92, + "end": 14935.86, + "probability": 0.9854 + }, + { + "start": 14936.1, + "end": 14937.2, + "probability": 0.5238 + }, + { + "start": 14938.28, + "end": 14940.74, + "probability": 0.1647 + }, + { + "start": 14941.3, + "end": 14943.26, + "probability": 0.5114 + }, + { + "start": 14943.54, + "end": 14944.24, + "probability": 0.6765 + }, + { + "start": 14945.34, + "end": 14946.04, + "probability": 0.5397 + }, + { + "start": 14947.16, + "end": 14947.58, + "probability": 0.7241 + }, + { + "start": 14949.4, + "end": 14950.86, + "probability": 0.6721 + }, + { + "start": 14951.78, + "end": 14953.9, + "probability": 0.5223 + }, + { + "start": 14954.48, + "end": 14954.64, + "probability": 0.3146 + }, + { + "start": 14954.82, + "end": 14957.83, + "probability": 0.6226 + }, + { + "start": 14960.64, + "end": 14961.12, + "probability": 0.4247 + }, + { + "start": 14962.52, + "end": 14963.54, + "probability": 0.8041 + }, + { + "start": 14964.42, + "end": 14966.86, + "probability": 0.6942 + }, + { + "start": 14968.3, + "end": 14970.34, + "probability": 0.5604 + }, + { + "start": 14971.16, + "end": 14972.74, + "probability": 0.9567 + }, + { + "start": 14986.04, + "end": 14986.26, + "probability": 0.0255 + }, + { + "start": 14986.26, + "end": 14986.58, + "probability": 0.2763 + }, + { + "start": 14989.33, + "end": 14990.62, + "probability": 0.3551 + }, + { + "start": 14990.62, + "end": 14995.28, + "probability": 0.71 + }, + { + "start": 14995.28, + "end": 14997.28, + "probability": 0.8379 + }, + { + "start": 14998.12, + "end": 15000.43, + "probability": 0.9977 + }, + { + "start": 15001.58, + "end": 15004.18, + "probability": 0.9891 + }, + { + "start": 15004.98, + "end": 15005.34, + "probability": 0.3222 + }, + { + "start": 15005.5, + "end": 15005.98, + "probability": 0.4711 + }, + { + "start": 15006.18, + "end": 15006.4, + "probability": 0.4874 + }, + { + "start": 15006.5, + "end": 15009.48, + "probability": 0.9443 + }, + { + "start": 15011.18, + "end": 15012.6, + "probability": 0.9462 + }, + { + "start": 15013.32, + "end": 15014.08, + "probability": 0.9016 + }, + { + "start": 15014.18, + "end": 15015.12, + "probability": 0.6824 + }, + { + "start": 15016.24, + "end": 15017.1, + "probability": 0.0417 + }, + { + "start": 15025.68, + "end": 15026.02, + "probability": 0.493 + }, + { + "start": 15026.02, + "end": 15026.5, + "probability": 0.1455 + }, + { + "start": 15026.5, + "end": 15027.62, + "probability": 0.5753 + }, + { + "start": 15029.32, + "end": 15029.92, + "probability": 0.577 + }, + { + "start": 15030.0, + "end": 15030.04, + "probability": 0.4509 + }, + { + "start": 15030.04, + "end": 15030.04, + "probability": 0.4748 + }, + { + "start": 15030.04, + "end": 15030.04, + "probability": 0.6105 + }, + { + "start": 15030.04, + "end": 15033.36, + "probability": 0.991 + }, + { + "start": 15033.42, + "end": 15036.96, + "probability": 0.7697 + }, + { + "start": 15037.7, + "end": 15038.36, + "probability": 0.7501 + }, + { + "start": 15042.48, + "end": 15044.92, + "probability": 0.0496 + }, + { + "start": 15044.92, + "end": 15045.32, + "probability": 0.0265 + }, + { + "start": 15045.62, + "end": 15045.84, + "probability": 0.0244 + }, + { + "start": 15045.84, + "end": 15046.02, + "probability": 0.2546 + }, + { + "start": 15048.78, + "end": 15049.36, + "probability": 0.4966 + }, + { + "start": 15050.82, + "end": 15053.98, + "probability": 0.3287 + }, + { + "start": 15054.87, + "end": 15058.7, + "probability": 0.582 + }, + { + "start": 15059.32, + "end": 15061.6, + "probability": 0.5159 + }, + { + "start": 15061.6, + "end": 15064.58, + "probability": 0.7953 + }, + { + "start": 15065.38, + "end": 15068.74, + "probability": 0.6968 + }, + { + "start": 15068.82, + "end": 15071.36, + "probability": 0.8737 + }, + { + "start": 15072.04, + "end": 15076.16, + "probability": 0.9723 + }, + { + "start": 15076.64, + "end": 15078.36, + "probability": 0.7945 + }, + { + "start": 15078.94, + "end": 15080.78, + "probability": 0.9648 + }, + { + "start": 15081.36, + "end": 15083.24, + "probability": 0.9819 + }, + { + "start": 15096.12, + "end": 15097.06, + "probability": 0.5336 + }, + { + "start": 15113.0, + "end": 15121.02, + "probability": 0.5628 + }, + { + "start": 15121.02, + "end": 15121.6, + "probability": 0.6678 + }, + { + "start": 15126.96, + "end": 15129.92, + "probability": 0.9912 + }, + { + "start": 15131.14, + "end": 15132.9, + "probability": 0.5606 + }, + { + "start": 15134.88, + "end": 15138.52, + "probability": 0.7816 + }, + { + "start": 15139.5, + "end": 15143.1, + "probability": 0.9842 + }, + { + "start": 15143.82, + "end": 15145.12, + "probability": 0.8872 + }, + { + "start": 15145.68, + "end": 15149.38, + "probability": 0.998 + }, + { + "start": 15149.84, + "end": 15151.38, + "probability": 0.813 + }, + { + "start": 15151.76, + "end": 15152.42, + "probability": 0.7814 + }, + { + "start": 15153.34, + "end": 15157.22, + "probability": 0.9933 + }, + { + "start": 15158.04, + "end": 15161.84, + "probability": 0.8895 + }, + { + "start": 15161.88, + "end": 15163.5, + "probability": 0.9298 + }, + { + "start": 15163.88, + "end": 15164.88, + "probability": 0.5537 + }, + { + "start": 15165.32, + "end": 15166.26, + "probability": 0.9155 + }, + { + "start": 15166.8, + "end": 15170.02, + "probability": 0.8699 + }, + { + "start": 15170.6, + "end": 15171.4, + "probability": 0.5473 + }, + { + "start": 15172.34, + "end": 15176.16, + "probability": 0.8501 + }, + { + "start": 15176.32, + "end": 15176.78, + "probability": 0.9527 + }, + { + "start": 15178.62, + "end": 15185.0, + "probability": 0.9972 + }, + { + "start": 15185.0, + "end": 15189.88, + "probability": 0.9985 + }, + { + "start": 15189.88, + "end": 15195.66, + "probability": 0.9973 + }, + { + "start": 15196.34, + "end": 15197.9, + "probability": 0.7286 + }, + { + "start": 15198.48, + "end": 15201.1, + "probability": 0.8835 + }, + { + "start": 15201.9, + "end": 15202.38, + "probability": 0.842 + }, + { + "start": 15203.24, + "end": 15203.44, + "probability": 0.8452 + }, + { + "start": 15204.38, + "end": 15204.9, + "probability": 0.9854 + }, + { + "start": 15205.92, + "end": 15207.56, + "probability": 0.8516 + }, + { + "start": 15207.66, + "end": 15209.9, + "probability": 0.9806 + }, + { + "start": 15210.8, + "end": 15214.0, + "probability": 0.9857 + }, + { + "start": 15214.22, + "end": 15214.99, + "probability": 0.9723 + }, + { + "start": 15215.42, + "end": 15216.94, + "probability": 0.9147 + }, + { + "start": 15217.73, + "end": 15219.58, + "probability": 0.9229 + }, + { + "start": 15219.58, + "end": 15219.68, + "probability": 0.7895 + }, + { + "start": 15220.28, + "end": 15221.58, + "probability": 0.9971 + }, + { + "start": 15222.36, + "end": 15224.08, + "probability": 0.9936 + }, + { + "start": 15224.6, + "end": 15228.97, + "probability": 0.9922 + }, + { + "start": 15229.62, + "end": 15231.1, + "probability": 0.9901 + }, + { + "start": 15231.32, + "end": 15232.56, + "probability": 0.9896 + }, + { + "start": 15233.94, + "end": 15235.62, + "probability": 0.9569 + }, + { + "start": 15236.2, + "end": 15237.7, + "probability": 0.9409 + }, + { + "start": 15238.82, + "end": 15239.88, + "probability": 0.9629 + }, + { + "start": 15239.88, + "end": 15240.96, + "probability": 0.9387 + }, + { + "start": 15241.06, + "end": 15242.22, + "probability": 0.9932 + }, + { + "start": 15243.6, + "end": 15245.57, + "probability": 0.9895 + }, + { + "start": 15247.64, + "end": 15248.88, + "probability": 0.9977 + }, + { + "start": 15250.86, + "end": 15252.42, + "probability": 0.9912 + }, + { + "start": 15253.58, + "end": 15255.48, + "probability": 0.7819 + }, + { + "start": 15256.88, + "end": 15258.56, + "probability": 0.8343 + }, + { + "start": 15259.44, + "end": 15260.9, + "probability": 0.9604 + }, + { + "start": 15261.98, + "end": 15266.74, + "probability": 0.9937 + }, + { + "start": 15269.82, + "end": 15272.42, + "probability": 0.8507 + }, + { + "start": 15272.94, + "end": 15275.96, + "probability": 0.9166 + }, + { + "start": 15278.38, + "end": 15280.94, + "probability": 0.967 + }, + { + "start": 15281.66, + "end": 15284.94, + "probability": 0.8244 + }, + { + "start": 15285.8, + "end": 15286.54, + "probability": 0.8704 + }, + { + "start": 15286.96, + "end": 15289.68, + "probability": 0.9035 + }, + { + "start": 15291.56, + "end": 15293.82, + "probability": 0.9921 + }, + { + "start": 15294.86, + "end": 15295.24, + "probability": 0.6376 + }, + { + "start": 15296.72, + "end": 15298.85, + "probability": 0.9696 + }, + { + "start": 15299.64, + "end": 15303.9, + "probability": 0.9821 + }, + { + "start": 15303.9, + "end": 15308.24, + "probability": 0.9902 + }, + { + "start": 15309.78, + "end": 15310.1, + "probability": 0.7559 + }, + { + "start": 15310.2, + "end": 15312.0, + "probability": 0.9849 + }, + { + "start": 15312.28, + "end": 15313.68, + "probability": 0.9473 + }, + { + "start": 15314.06, + "end": 15316.74, + "probability": 0.9944 + }, + { + "start": 15317.36, + "end": 15320.14, + "probability": 0.9566 + }, + { + "start": 15322.54, + "end": 15323.26, + "probability": 0.9734 + }, + { + "start": 15323.98, + "end": 15326.32, + "probability": 0.78 + }, + { + "start": 15328.54, + "end": 15331.39, + "probability": 0.999 + }, + { + "start": 15331.64, + "end": 15334.4, + "probability": 0.9963 + }, + { + "start": 15336.84, + "end": 15338.06, + "probability": 0.9636 + }, + { + "start": 15338.6, + "end": 15340.81, + "probability": 0.7263 + }, + { + "start": 15341.58, + "end": 15343.64, + "probability": 0.9868 + }, + { + "start": 15344.08, + "end": 15346.67, + "probability": 0.9695 + }, + { + "start": 15348.48, + "end": 15349.44, + "probability": 0.833 + }, + { + "start": 15350.18, + "end": 15353.25, + "probability": 0.9692 + }, + { + "start": 15353.7, + "end": 15356.52, + "probability": 0.9788 + }, + { + "start": 15356.82, + "end": 15359.44, + "probability": 0.999 + }, + { + "start": 15360.1, + "end": 15363.52, + "probability": 0.9077 + }, + { + "start": 15364.68, + "end": 15365.4, + "probability": 0.9888 + }, + { + "start": 15367.04, + "end": 15368.34, + "probability": 0.9868 + }, + { + "start": 15368.72, + "end": 15371.46, + "probability": 0.6766 + }, + { + "start": 15371.94, + "end": 15374.22, + "probability": 0.2624 + }, + { + "start": 15374.94, + "end": 15376.96, + "probability": 0.4016 + }, + { + "start": 15378.3, + "end": 15381.78, + "probability": 0.9536 + }, + { + "start": 15382.48, + "end": 15384.7, + "probability": 0.9932 + }, + { + "start": 15386.04, + "end": 15390.62, + "probability": 0.9812 + }, + { + "start": 15390.94, + "end": 15391.74, + "probability": 0.6624 + }, + { + "start": 15392.3, + "end": 15393.46, + "probability": 0.884 + }, + { + "start": 15394.06, + "end": 15399.28, + "probability": 0.9945 + }, + { + "start": 15399.28, + "end": 15402.68, + "probability": 0.9162 + }, + { + "start": 15405.12, + "end": 15407.4, + "probability": 0.9895 + }, + { + "start": 15408.08, + "end": 15412.1, + "probability": 0.4279 + }, + { + "start": 15412.92, + "end": 15415.44, + "probability": 0.7632 + }, + { + "start": 15415.54, + "end": 15416.82, + "probability": 0.8807 + }, + { + "start": 15416.88, + "end": 15417.42, + "probability": 0.6277 + }, + { + "start": 15417.48, + "end": 15418.38, + "probability": 0.4896 + }, + { + "start": 15418.92, + "end": 15421.28, + "probability": 0.7739 + }, + { + "start": 15421.94, + "end": 15425.04, + "probability": 0.9468 + }, + { + "start": 15428.34, + "end": 15431.06, + "probability": 0.9888 + }, + { + "start": 15432.44, + "end": 15435.82, + "probability": 0.7326 + }, + { + "start": 15435.82, + "end": 15443.1, + "probability": 0.7919 + }, + { + "start": 15443.98, + "end": 15446.58, + "probability": 0.9242 + }, + { + "start": 15447.64, + "end": 15449.26, + "probability": 0.808 + }, + { + "start": 15449.38, + "end": 15450.83, + "probability": 0.9424 + }, + { + "start": 15451.26, + "end": 15453.28, + "probability": 0.9958 + }, + { + "start": 15454.8, + "end": 15456.64, + "probability": 0.9862 + }, + { + "start": 15457.64, + "end": 15458.22, + "probability": 0.8634 + }, + { + "start": 15459.14, + "end": 15459.88, + "probability": 0.7736 + }, + { + "start": 15460.3, + "end": 15463.56, + "probability": 0.9148 + }, + { + "start": 15464.0, + "end": 15467.46, + "probability": 0.9893 + }, + { + "start": 15468.22, + "end": 15473.18, + "probability": 0.9702 + }, + { + "start": 15473.18, + "end": 15476.32, + "probability": 0.9984 + }, + { + "start": 15479.72, + "end": 15480.85, + "probability": 0.8203 + }, + { + "start": 15481.66, + "end": 15485.24, + "probability": 0.9841 + }, + { + "start": 15486.34, + "end": 15488.92, + "probability": 0.7715 + }, + { + "start": 15489.68, + "end": 15492.64, + "probability": 0.9028 + }, + { + "start": 15492.96, + "end": 15495.2, + "probability": 0.8221 + }, + { + "start": 15495.58, + "end": 15497.34, + "probability": 0.1883 + }, + { + "start": 15497.58, + "end": 15500.9, + "probability": 0.8623 + }, + { + "start": 15501.28, + "end": 15502.7, + "probability": 0.3933 + }, + { + "start": 15502.82, + "end": 15505.2, + "probability": 0.7933 + }, + { + "start": 15506.62, + "end": 15510.26, + "probability": 0.8495 + }, + { + "start": 15510.6, + "end": 15511.71, + "probability": 0.9341 + }, + { + "start": 15514.76, + "end": 15517.94, + "probability": 0.986 + }, + { + "start": 15518.86, + "end": 15520.72, + "probability": 0.9922 + }, + { + "start": 15522.36, + "end": 15525.44, + "probability": 0.5867 + }, + { + "start": 15526.08, + "end": 15528.74, + "probability": 0.4629 + }, + { + "start": 15529.36, + "end": 15530.8, + "probability": 0.3838 + }, + { + "start": 15531.48, + "end": 15532.26, + "probability": 0.5429 + }, + { + "start": 15532.68, + "end": 15535.14, + "probability": 0.9128 + }, + { + "start": 15535.3, + "end": 15536.96, + "probability": 0.9971 + }, + { + "start": 15537.14, + "end": 15538.1, + "probability": 0.7145 + }, + { + "start": 15539.04, + "end": 15541.3, + "probability": 0.6701 + }, + { + "start": 15541.92, + "end": 15542.92, + "probability": 0.7604 + }, + { + "start": 15542.92, + "end": 15543.84, + "probability": 0.8764 + }, + { + "start": 15543.94, + "end": 15547.98, + "probability": 0.8376 + }, + { + "start": 15549.42, + "end": 15552.34, + "probability": 0.9817 + }, + { + "start": 15553.18, + "end": 15554.18, + "probability": 0.8803 + }, + { + "start": 15555.64, + "end": 15557.68, + "probability": 0.9903 + }, + { + "start": 15558.9, + "end": 15561.5, + "probability": 0.9891 + }, + { + "start": 15561.58, + "end": 15562.12, + "probability": 0.446 + }, + { + "start": 15562.56, + "end": 15564.02, + "probability": 0.9973 + }, + { + "start": 15566.14, + "end": 15570.6, + "probability": 0.9897 + }, + { + "start": 15570.72, + "end": 15571.69, + "probability": 0.9307 + }, + { + "start": 15572.16, + "end": 15572.65, + "probability": 0.9927 + }, + { + "start": 15573.6, + "end": 15575.14, + "probability": 0.7783 + }, + { + "start": 15575.62, + "end": 15576.18, + "probability": 0.1326 + }, + { + "start": 15576.66, + "end": 15578.78, + "probability": 0.616 + }, + { + "start": 15579.32, + "end": 15582.04, + "probability": 0.58 + }, + { + "start": 15582.34, + "end": 15583.54, + "probability": 0.9888 + }, + { + "start": 15584.74, + "end": 15590.24, + "probability": 0.8386 + }, + { + "start": 15590.64, + "end": 15591.83, + "probability": 0.8644 + }, + { + "start": 15592.2, + "end": 15600.26, + "probability": 0.9733 + }, + { + "start": 15604.52, + "end": 15606.92, + "probability": 0.9586 + }, + { + "start": 15607.94, + "end": 15610.38, + "probability": 0.6986 + }, + { + "start": 15610.38, + "end": 15612.36, + "probability": 0.9664 + }, + { + "start": 15613.84, + "end": 15620.02, + "probability": 0.9934 + }, + { + "start": 15620.92, + "end": 15624.6, + "probability": 0.8848 + }, + { + "start": 15625.0, + "end": 15626.96, + "probability": 0.9912 + }, + { + "start": 15627.38, + "end": 15630.26, + "probability": 0.9873 + }, + { + "start": 15631.72, + "end": 15638.2, + "probability": 0.9823 + }, + { + "start": 15638.52, + "end": 15639.24, + "probability": 0.3837 + }, + { + "start": 15639.48, + "end": 15643.04, + "probability": 0.9966 + }, + { + "start": 15643.86, + "end": 15650.79, + "probability": 0.9785 + }, + { + "start": 15651.6, + "end": 15652.98, + "probability": 0.4334 + }, + { + "start": 15654.6, + "end": 15656.36, + "probability": 0.4735 + }, + { + "start": 15657.1, + "end": 15658.56, + "probability": 0.9182 + }, + { + "start": 15658.68, + "end": 15659.18, + "probability": 0.9198 + }, + { + "start": 15659.44, + "end": 15662.08, + "probability": 0.9971 + }, + { + "start": 15663.02, + "end": 15666.24, + "probability": 0.7803 + }, + { + "start": 15667.88, + "end": 15671.46, + "probability": 0.9905 + }, + { + "start": 15673.58, + "end": 15679.14, + "probability": 0.9956 + }, + { + "start": 15680.14, + "end": 15682.2, + "probability": 0.9902 + }, + { + "start": 15683.08, + "end": 15684.04, + "probability": 0.7288 + }, + { + "start": 15684.78, + "end": 15689.54, + "probability": 0.8048 + }, + { + "start": 15690.66, + "end": 15698.3, + "probability": 0.9854 + }, + { + "start": 15698.94, + "end": 15700.6, + "probability": 0.9885 + }, + { + "start": 15702.26, + "end": 15704.28, + "probability": 0.9236 + }, + { + "start": 15704.96, + "end": 15705.8, + "probability": 0.9731 + }, + { + "start": 15706.72, + "end": 15708.54, + "probability": 0.9976 + }, + { + "start": 15709.06, + "end": 15710.3, + "probability": 0.8206 + }, + { + "start": 15711.02, + "end": 15712.9, + "probability": 0.8226 + }, + { + "start": 15713.6, + "end": 15717.12, + "probability": 0.988 + }, + { + "start": 15717.76, + "end": 15718.68, + "probability": 0.8201 + }, + { + "start": 15719.34, + "end": 15720.58, + "probability": 0.9574 + }, + { + "start": 15721.34, + "end": 15723.42, + "probability": 0.9924 + }, + { + "start": 15723.96, + "end": 15727.54, + "probability": 0.9648 + }, + { + "start": 15727.72, + "end": 15728.8, + "probability": 0.7474 + }, + { + "start": 15729.28, + "end": 15731.66, + "probability": 0.9637 + }, + { + "start": 15732.1, + "end": 15734.74, + "probability": 0.9441 + }, + { + "start": 15734.74, + "end": 15735.26, + "probability": 0.6953 + }, + { + "start": 15735.42, + "end": 15737.84, + "probability": 0.7229 + }, + { + "start": 15739.0, + "end": 15739.0, + "probability": 0.2054 + }, + { + "start": 15739.0, + "end": 15740.68, + "probability": 0.2139 + }, + { + "start": 15742.3, + "end": 15744.46, + "probability": 0.3472 + }, + { + "start": 15744.98, + "end": 15747.02, + "probability": 0.8688 + }, + { + "start": 15747.24, + "end": 15747.5, + "probability": 0.5905 + }, + { + "start": 15747.62, + "end": 15749.52, + "probability": 0.6397 + }, + { + "start": 15749.74, + "end": 15752.34, + "probability": 0.6198 + }, + { + "start": 15753.24, + "end": 15754.08, + "probability": 0.8013 + }, + { + "start": 15754.26, + "end": 15757.16, + "probability": 0.0257 + }, + { + "start": 15759.06, + "end": 15760.04, + "probability": 0.1081 + }, + { + "start": 15760.72, + "end": 15762.68, + "probability": 0.0216 + }, + { + "start": 15768.52, + "end": 15770.6, + "probability": 0.1681 + }, + { + "start": 15773.34, + "end": 15777.44, + "probability": 0.1676 + }, + { + "start": 15780.2, + "end": 15783.74, + "probability": 0.1172 + }, + { + "start": 15783.74, + "end": 15784.93, + "probability": 0.2242 + }, + { + "start": 15803.62, + "end": 15804.46, + "probability": 0.4048 + }, + { + "start": 15805.24, + "end": 15811.08, + "probability": 0.79 + }, + { + "start": 15811.7, + "end": 15817.82, + "probability": 0.9574 + }, + { + "start": 15819.44, + "end": 15819.96, + "probability": 0.0958 + }, + { + "start": 15819.98, + "end": 15822.58, + "probability": 0.2048 + }, + { + "start": 15822.66, + "end": 15825.86, + "probability": 0.8882 + }, + { + "start": 15826.2, + "end": 15826.7, + "probability": 0.665 + }, + { + "start": 15826.96, + "end": 15827.3, + "probability": 0.6988 + }, + { + "start": 15827.38, + "end": 15829.14, + "probability": 0.8255 + }, + { + "start": 15829.46, + "end": 15831.66, + "probability": 0.801 + }, + { + "start": 15831.66, + "end": 15833.76, + "probability": 0.6666 + }, + { + "start": 15833.76, + "end": 15838.2, + "probability": 0.7421 + }, + { + "start": 15838.64, + "end": 15844.48, + "probability": 0.5024 + }, + { + "start": 15844.48, + "end": 15847.02, + "probability": 0.4467 + }, + { + "start": 15847.68, + "end": 15848.6, + "probability": 0.0621 + }, + { + "start": 15848.6, + "end": 15850.88, + "probability": 0.8017 + }, + { + "start": 15850.94, + "end": 15853.3, + "probability": 0.8265 + }, + { + "start": 15853.52, + "end": 15856.98, + "probability": 0.9543 + }, + { + "start": 15857.1, + "end": 15857.54, + "probability": 0.7599 + }, + { + "start": 15857.7, + "end": 15858.28, + "probability": 0.5975 + }, + { + "start": 15858.28, + "end": 15858.98, + "probability": 0.705 + }, + { + "start": 15859.42, + "end": 15860.32, + "probability": 0.717 + }, + { + "start": 15860.46, + "end": 15860.92, + "probability": 0.7445 + }, + { + "start": 15860.98, + "end": 15861.48, + "probability": 0.9136 + }, + { + "start": 15861.72, + "end": 15865.62, + "probability": 0.5014 + }, + { + "start": 15870.28, + "end": 15871.86, + "probability": 0.8338 + }, + { + "start": 15873.1, + "end": 15873.44, + "probability": 0.9713 + }, + { + "start": 15875.86, + "end": 15876.66, + "probability": 0.8153 + }, + { + "start": 15877.78, + "end": 15881.86, + "probability": 0.9841 + }, + { + "start": 15882.52, + "end": 15886.56, + "probability": 0.7561 + }, + { + "start": 15886.84, + "end": 15890.28, + "probability": 0.981 + }, + { + "start": 15890.44, + "end": 15891.68, + "probability": 0.8143 + }, + { + "start": 15891.72, + "end": 15892.48, + "probability": 0.6688 + }, + { + "start": 15892.48, + "end": 15892.7, + "probability": 0.81 + }, + { + "start": 15892.86, + "end": 15893.52, + "probability": 0.5027 + }, + { + "start": 15893.86, + "end": 15896.14, + "probability": 0.7983 + }, + { + "start": 15896.16, + "end": 15899.82, + "probability": 0.8651 + }, + { + "start": 15899.82, + "end": 15903.68, + "probability": 0.8661 + }, + { + "start": 15904.68, + "end": 15908.2, + "probability": 0.9899 + }, + { + "start": 15909.64, + "end": 15911.96, + "probability": 0.9823 + }, + { + "start": 15920.82, + "end": 15922.92, + "probability": 0.8993 + }, + { + "start": 15923.96, + "end": 15925.26, + "probability": 0.7395 + }, + { + "start": 15936.62, + "end": 15938.8, + "probability": 0.6972 + }, + { + "start": 15941.22, + "end": 15944.27, + "probability": 0.9897 + }, + { + "start": 15945.22, + "end": 15946.78, + "probability": 0.9759 + }, + { + "start": 15947.82, + "end": 15953.98, + "probability": 0.9854 + }, + { + "start": 15955.34, + "end": 15957.56, + "probability": 0.996 + }, + { + "start": 15958.26, + "end": 15958.78, + "probability": 0.8704 + }, + { + "start": 15959.52, + "end": 15962.1, + "probability": 0.9868 + }, + { + "start": 15963.04, + "end": 15964.78, + "probability": 0.8602 + }, + { + "start": 15966.1, + "end": 15969.42, + "probability": 0.5683 + }, + { + "start": 15970.24, + "end": 15974.5, + "probability": 0.9625 + }, + { + "start": 15977.46, + "end": 15982.22, + "probability": 0.9932 + }, + { + "start": 15983.24, + "end": 15984.98, + "probability": 0.9502 + }, + { + "start": 15986.56, + "end": 15988.26, + "probability": 0.9971 + }, + { + "start": 15989.52, + "end": 15996.06, + "probability": 0.9482 + }, + { + "start": 15996.84, + "end": 15997.84, + "probability": 0.622 + }, + { + "start": 15998.82, + "end": 15999.52, + "probability": 0.218 + }, + { + "start": 15999.92, + "end": 16001.69, + "probability": 0.9705 + }, + { + "start": 16003.76, + "end": 16008.26, + "probability": 0.9854 + }, + { + "start": 16009.26, + "end": 16011.9, + "probability": 0.917 + }, + { + "start": 16012.84, + "end": 16016.36, + "probability": 0.9968 + }, + { + "start": 16016.78, + "end": 16017.85, + "probability": 0.9729 + }, + { + "start": 16019.1, + "end": 16024.51, + "probability": 0.994 + }, + { + "start": 16025.56, + "end": 16028.14, + "probability": 0.9842 + }, + { + "start": 16028.9, + "end": 16031.84, + "probability": 0.9923 + }, + { + "start": 16033.06, + "end": 16034.82, + "probability": 0.9609 + }, + { + "start": 16035.94, + "end": 16039.9, + "probability": 0.9834 + }, + { + "start": 16041.92, + "end": 16045.0, + "probability": 0.9719 + }, + { + "start": 16046.28, + "end": 16049.72, + "probability": 0.9588 + }, + { + "start": 16050.28, + "end": 16052.48, + "probability": 0.9644 + }, + { + "start": 16053.64, + "end": 16054.58, + "probability": 0.8936 + }, + { + "start": 16055.24, + "end": 16056.24, + "probability": 0.9773 + }, + { + "start": 16056.28, + "end": 16056.5, + "probability": 0.8628 + }, + { + "start": 16056.56, + "end": 16057.66, + "probability": 0.9976 + }, + { + "start": 16057.74, + "end": 16058.66, + "probability": 0.9542 + }, + { + "start": 16058.84, + "end": 16059.44, + "probability": 0.9039 + }, + { + "start": 16059.54, + "end": 16060.96, + "probability": 0.8046 + }, + { + "start": 16061.4, + "end": 16062.26, + "probability": 0.9556 + }, + { + "start": 16062.82, + "end": 16067.1, + "probability": 0.9823 + }, + { + "start": 16067.24, + "end": 16068.32, + "probability": 0.8312 + }, + { + "start": 16068.98, + "end": 16071.58, + "probability": 0.9238 + }, + { + "start": 16071.58, + "end": 16074.48, + "probability": 0.9096 + }, + { + "start": 16075.02, + "end": 16076.32, + "probability": 0.9667 + }, + { + "start": 16077.04, + "end": 16078.08, + "probability": 0.973 + }, + { + "start": 16078.56, + "end": 16080.32, + "probability": 0.9928 + }, + { + "start": 16080.62, + "end": 16085.14, + "probability": 0.9136 + }, + { + "start": 16085.28, + "end": 16092.62, + "probability": 0.9753 + }, + { + "start": 16093.12, + "end": 16094.62, + "probability": 0.9277 + }, + { + "start": 16094.7, + "end": 16096.4, + "probability": 0.9587 + }, + { + "start": 16096.58, + "end": 16099.76, + "probability": 0.995 + }, + { + "start": 16100.98, + "end": 16102.12, + "probability": 0.1528 + }, + { + "start": 16102.8, + "end": 16104.4, + "probability": 0.9893 + }, + { + "start": 16104.5, + "end": 16104.88, + "probability": 0.8058 + }, + { + "start": 16105.04, + "end": 16105.96, + "probability": 0.9374 + }, + { + "start": 16106.04, + "end": 16107.64, + "probability": 0.9167 + }, + { + "start": 16108.4, + "end": 16110.28, + "probability": 0.996 + }, + { + "start": 16110.46, + "end": 16111.86, + "probability": 0.9932 + }, + { + "start": 16111.86, + "end": 16115.3, + "probability": 0.9722 + }, + { + "start": 16115.96, + "end": 16118.88, + "probability": 0.9995 + }, + { + "start": 16120.2, + "end": 16122.35, + "probability": 0.9653 + }, + { + "start": 16123.62, + "end": 16127.32, + "probability": 0.9888 + }, + { + "start": 16127.8, + "end": 16129.08, + "probability": 0.9988 + }, + { + "start": 16130.02, + "end": 16131.24, + "probability": 0.9648 + }, + { + "start": 16131.62, + "end": 16134.26, + "probability": 0.9059 + }, + { + "start": 16134.84, + "end": 16138.24, + "probability": 0.9288 + }, + { + "start": 16138.98, + "end": 16143.1, + "probability": 0.9606 + }, + { + "start": 16144.96, + "end": 16145.52, + "probability": 0.9614 + }, + { + "start": 16145.82, + "end": 16147.24, + "probability": 0.9912 + }, + { + "start": 16147.52, + "end": 16147.92, + "probability": 0.8172 + }, + { + "start": 16148.1, + "end": 16148.32, + "probability": 0.7943 + }, + { + "start": 16148.46, + "end": 16151.14, + "probability": 0.8319 + }, + { + "start": 16151.7, + "end": 16152.56, + "probability": 0.9856 + }, + { + "start": 16153.62, + "end": 16160.36, + "probability": 0.9536 + }, + { + "start": 16160.98, + "end": 16163.84, + "probability": 0.9961 + }, + { + "start": 16164.88, + "end": 16167.44, + "probability": 0.9751 + }, + { + "start": 16167.78, + "end": 16171.46, + "probability": 0.9632 + }, + { + "start": 16171.94, + "end": 16172.36, + "probability": 0.9299 + }, + { + "start": 16172.54, + "end": 16177.64, + "probability": 0.9952 + }, + { + "start": 16178.16, + "end": 16178.8, + "probability": 0.8775 + }, + { + "start": 16179.04, + "end": 16180.42, + "probability": 0.9885 + }, + { + "start": 16180.82, + "end": 16182.34, + "probability": 0.9718 + }, + { + "start": 16183.22, + "end": 16184.14, + "probability": 0.7861 + }, + { + "start": 16184.86, + "end": 16185.82, + "probability": 0.5714 + }, + { + "start": 16185.92, + "end": 16191.22, + "probability": 0.9814 + }, + { + "start": 16191.54, + "end": 16194.56, + "probability": 0.9834 + }, + { + "start": 16195.26, + "end": 16196.54, + "probability": 0.978 + }, + { + "start": 16196.94, + "end": 16198.68, + "probability": 0.9859 + }, + { + "start": 16198.76, + "end": 16203.7, + "probability": 0.9982 + }, + { + "start": 16204.54, + "end": 16207.2, + "probability": 0.9221 + }, + { + "start": 16207.2, + "end": 16209.64, + "probability": 0.8735 + }, + { + "start": 16210.52, + "end": 16215.42, + "probability": 0.9962 + }, + { + "start": 16215.42, + "end": 16221.62, + "probability": 0.9718 + }, + { + "start": 16222.6, + "end": 16228.62, + "probability": 0.9871 + }, + { + "start": 16228.62, + "end": 16232.38, + "probability": 0.6477 + }, + { + "start": 16232.7, + "end": 16233.86, + "probability": 0.9579 + }, + { + "start": 16234.66, + "end": 16236.76, + "probability": 0.8551 + }, + { + "start": 16237.0, + "end": 16241.98, + "probability": 0.9535 + }, + { + "start": 16242.94, + "end": 16243.94, + "probability": 0.7319 + }, + { + "start": 16244.1, + "end": 16244.34, + "probability": 0.7373 + }, + { + "start": 16244.46, + "end": 16247.64, + "probability": 0.973 + }, + { + "start": 16247.64, + "end": 16251.54, + "probability": 0.9912 + }, + { + "start": 16251.98, + "end": 16252.61, + "probability": 0.6699 + }, + { + "start": 16252.88, + "end": 16256.18, + "probability": 0.98 + }, + { + "start": 16257.34, + "end": 16259.26, + "probability": 0.7932 + }, + { + "start": 16259.94, + "end": 16262.0, + "probability": 0.9829 + }, + { + "start": 16262.52, + "end": 16263.56, + "probability": 0.9976 + }, + { + "start": 16263.64, + "end": 16265.04, + "probability": 0.9907 + }, + { + "start": 16265.18, + "end": 16266.42, + "probability": 0.8568 + }, + { + "start": 16267.58, + "end": 16271.5, + "probability": 0.9956 + }, + { + "start": 16271.5, + "end": 16275.42, + "probability": 0.9382 + }, + { + "start": 16275.5, + "end": 16278.16, + "probability": 0.9147 + }, + { + "start": 16279.54, + "end": 16280.82, + "probability": 0.9632 + }, + { + "start": 16281.16, + "end": 16281.54, + "probability": 0.8953 + }, + { + "start": 16281.58, + "end": 16285.7, + "probability": 0.9954 + }, + { + "start": 16286.36, + "end": 16289.9, + "probability": 0.993 + }, + { + "start": 16290.74, + "end": 16293.82, + "probability": 0.9875 + }, + { + "start": 16294.36, + "end": 16295.4, + "probability": 0.915 + }, + { + "start": 16295.48, + "end": 16296.96, + "probability": 0.9619 + }, + { + "start": 16297.0, + "end": 16298.98, + "probability": 0.8626 + }, + { + "start": 16299.4, + "end": 16300.58, + "probability": 0.9838 + }, + { + "start": 16301.0, + "end": 16302.32, + "probability": 0.9013 + }, + { + "start": 16302.62, + "end": 16306.22, + "probability": 0.9763 + }, + { + "start": 16306.64, + "end": 16310.22, + "probability": 0.9973 + }, + { + "start": 16311.26, + "end": 16313.2, + "probability": 0.9916 + }, + { + "start": 16313.52, + "end": 16315.56, + "probability": 0.978 + }, + { + "start": 16315.98, + "end": 16319.2, + "probability": 0.9973 + }, + { + "start": 16319.3, + "end": 16324.08, + "probability": 0.9863 + }, + { + "start": 16324.08, + "end": 16327.74, + "probability": 0.9902 + }, + { + "start": 16328.02, + "end": 16328.48, + "probability": 0.5776 + }, + { + "start": 16329.38, + "end": 16332.88, + "probability": 0.9875 + }, + { + "start": 16333.34, + "end": 16336.18, + "probability": 0.9795 + }, + { + "start": 16336.72, + "end": 16337.6, + "probability": 0.8955 + }, + { + "start": 16338.32, + "end": 16338.5, + "probability": 0.6599 + }, + { + "start": 16339.24, + "end": 16346.26, + "probability": 0.9873 + }, + { + "start": 16346.38, + "end": 16347.46, + "probability": 0.5115 + }, + { + "start": 16347.98, + "end": 16349.84, + "probability": 0.6006 + }, + { + "start": 16350.48, + "end": 16351.44, + "probability": 0.5939 + }, + { + "start": 16352.2, + "end": 16352.8, + "probability": 0.5722 + }, + { + "start": 16353.14, + "end": 16359.6, + "probability": 0.9144 + }, + { + "start": 16360.0, + "end": 16360.64, + "probability": 0.9089 + }, + { + "start": 16360.84, + "end": 16361.44, + "probability": 0.9448 + }, + { + "start": 16362.08, + "end": 16364.6, + "probability": 0.9834 + }, + { + "start": 16365.38, + "end": 16370.02, + "probability": 0.843 + }, + { + "start": 16370.4, + "end": 16374.09, + "probability": 0.9922 + }, + { + "start": 16374.72, + "end": 16375.28, + "probability": 0.8713 + }, + { + "start": 16375.3, + "end": 16376.02, + "probability": 0.9728 + }, + { + "start": 16376.2, + "end": 16380.26, + "probability": 0.8633 + }, + { + "start": 16380.72, + "end": 16382.78, + "probability": 0.9563 + }, + { + "start": 16383.4, + "end": 16385.6, + "probability": 0.9827 + }, + { + "start": 16386.18, + "end": 16388.04, + "probability": 0.7549 + }, + { + "start": 16388.54, + "end": 16389.44, + "probability": 0.911 + }, + { + "start": 16389.76, + "end": 16397.62, + "probability": 0.8315 + }, + { + "start": 16398.2, + "end": 16404.52, + "probability": 0.9872 + }, + { + "start": 16404.52, + "end": 16404.84, + "probability": 0.6521 + }, + { + "start": 16404.96, + "end": 16410.04, + "probability": 0.9921 + }, + { + "start": 16410.38, + "end": 16413.26, + "probability": 0.9136 + }, + { + "start": 16413.26, + "end": 16415.8, + "probability": 0.9739 + }, + { + "start": 16416.38, + "end": 16416.84, + "probability": 0.365 + }, + { + "start": 16417.48, + "end": 16418.6, + "probability": 0.9662 + }, + { + "start": 16418.78, + "end": 16419.76, + "probability": 0.9805 + }, + { + "start": 16420.14, + "end": 16425.14, + "probability": 0.9866 + }, + { + "start": 16425.24, + "end": 16425.86, + "probability": 0.8881 + }, + { + "start": 16426.18, + "end": 16427.2, + "probability": 0.8798 + }, + { + "start": 16427.6, + "end": 16431.24, + "probability": 0.9875 + }, + { + "start": 16431.4, + "end": 16434.4, + "probability": 0.9987 + }, + { + "start": 16435.14, + "end": 16435.86, + "probability": 0.6184 + }, + { + "start": 16435.98, + "end": 16439.9, + "probability": 0.9841 + }, + { + "start": 16440.38, + "end": 16442.0, + "probability": 0.9929 + }, + { + "start": 16442.54, + "end": 16446.44, + "probability": 0.9661 + }, + { + "start": 16446.5, + "end": 16447.28, + "probability": 0.4548 + }, + { + "start": 16447.34, + "end": 16451.0, + "probability": 0.9828 + }, + { + "start": 16451.0, + "end": 16454.84, + "probability": 0.9492 + }, + { + "start": 16455.26, + "end": 16458.72, + "probability": 0.9709 + }, + { + "start": 16459.04, + "end": 16460.34, + "probability": 0.9751 + }, + { + "start": 16460.8, + "end": 16463.48, + "probability": 0.9668 + }, + { + "start": 16463.62, + "end": 16464.8, + "probability": 0.8619 + }, + { + "start": 16465.22, + "end": 16468.18, + "probability": 0.9121 + }, + { + "start": 16468.56, + "end": 16470.12, + "probability": 0.9705 + }, + { + "start": 16470.5, + "end": 16474.0, + "probability": 0.9896 + }, + { + "start": 16474.0, + "end": 16475.94, + "probability": 0.9854 + }, + { + "start": 16476.24, + "end": 16481.18, + "probability": 0.763 + }, + { + "start": 16481.76, + "end": 16484.54, + "probability": 0.9398 + }, + { + "start": 16485.2, + "end": 16486.32, + "probability": 0.8823 + }, + { + "start": 16487.37, + "end": 16489.98, + "probability": 0.5327 + }, + { + "start": 16490.1, + "end": 16490.42, + "probability": 0.5895 + }, + { + "start": 16490.44, + "end": 16492.64, + "probability": 0.9601 + }, + { + "start": 16493.02, + "end": 16496.58, + "probability": 0.658 + }, + { + "start": 16496.86, + "end": 16497.38, + "probability": 0.9958 + }, + { + "start": 16497.92, + "end": 16498.95, + "probability": 0.7292 + }, + { + "start": 16499.14, + "end": 16499.58, + "probability": 0.804 + }, + { + "start": 16499.66, + "end": 16500.06, + "probability": 0.7924 + }, + { + "start": 16500.34, + "end": 16503.47, + "probability": 0.946 + }, + { + "start": 16503.64, + "end": 16505.74, + "probability": 0.9518 + }, + { + "start": 16506.17, + "end": 16507.45, + "probability": 0.7908 + }, + { + "start": 16508.32, + "end": 16514.96, + "probability": 0.9731 + }, + { + "start": 16515.36, + "end": 16516.04, + "probability": 0.911 + }, + { + "start": 16516.34, + "end": 16517.02, + "probability": 0.9449 + }, + { + "start": 16517.46, + "end": 16519.38, + "probability": 0.9228 + }, + { + "start": 16519.7, + "end": 16520.2, + "probability": 0.6853 + }, + { + "start": 16520.84, + "end": 16524.4, + "probability": 0.995 + }, + { + "start": 16524.52, + "end": 16525.54, + "probability": 0.9692 + }, + { + "start": 16525.6, + "end": 16526.24, + "probability": 0.734 + }, + { + "start": 16527.46, + "end": 16530.2, + "probability": 0.9603 + }, + { + "start": 16535.1, + "end": 16536.37, + "probability": 0.8296 + }, + { + "start": 16538.06, + "end": 16541.2, + "probability": 0.5009 + }, + { + "start": 16541.46, + "end": 16546.47, + "probability": 0.8962 + }, + { + "start": 16547.5, + "end": 16549.36, + "probability": 0.9772 + }, + { + "start": 16550.7, + "end": 16550.94, + "probability": 0.0996 + }, + { + "start": 16550.94, + "end": 16552.32, + "probability": 0.7553 + }, + { + "start": 16552.56, + "end": 16554.24, + "probability": 0.9823 + }, + { + "start": 16554.32, + "end": 16554.82, + "probability": 0.5799 + }, + { + "start": 16556.1, + "end": 16557.14, + "probability": 0.7476 + }, + { + "start": 16558.28, + "end": 16561.04, + "probability": 0.9382 + }, + { + "start": 16562.04, + "end": 16565.32, + "probability": 0.9764 + }, + { + "start": 16565.76, + "end": 16568.06, + "probability": 0.8918 + }, + { + "start": 16570.32, + "end": 16573.28, + "probability": 0.6206 + }, + { + "start": 16574.56, + "end": 16578.66, + "probability": 0.8917 + }, + { + "start": 16578.98, + "end": 16579.28, + "probability": 0.6583 + }, + { + "start": 16579.96, + "end": 16582.92, + "probability": 0.7638 + }, + { + "start": 16584.46, + "end": 16587.72, + "probability": 0.9971 + }, + { + "start": 16588.12, + "end": 16588.26, + "probability": 0.974 + }, + { + "start": 16589.04, + "end": 16592.2, + "probability": 0.7891 + }, + { + "start": 16592.46, + "end": 16592.6, + "probability": 0.3238 + }, + { + "start": 16593.9, + "end": 16595.12, + "probability": 0.9517 + }, + { + "start": 16596.08, + "end": 16598.26, + "probability": 0.7843 + }, + { + "start": 16598.68, + "end": 16601.06, + "probability": 0.943 + }, + { + "start": 16601.62, + "end": 16605.16, + "probability": 0.9062 + }, + { + "start": 16605.6, + "end": 16606.42, + "probability": 0.9038 + }, + { + "start": 16606.5, + "end": 16607.65, + "probability": 0.7761 + }, + { + "start": 16608.28, + "end": 16609.06, + "probability": 0.9088 + }, + { + "start": 16609.16, + "end": 16609.9, + "probability": 0.7049 + }, + { + "start": 16610.6, + "end": 16611.5, + "probability": 0.8174 + }, + { + "start": 16612.02, + "end": 16614.41, + "probability": 0.9905 + }, + { + "start": 16616.42, + "end": 16618.12, + "probability": 0.7257 + }, + { + "start": 16618.76, + "end": 16620.39, + "probability": 0.9907 + }, + { + "start": 16621.36, + "end": 16625.58, + "probability": 0.9909 + }, + { + "start": 16626.2, + "end": 16627.18, + "probability": 0.5406 + }, + { + "start": 16628.3, + "end": 16631.54, + "probability": 0.7637 + }, + { + "start": 16631.68, + "end": 16632.14, + "probability": 0.4244 + }, + { + "start": 16632.2, + "end": 16633.56, + "probability": 0.453 + }, + { + "start": 16634.14, + "end": 16635.68, + "probability": 0.4325 + }, + { + "start": 16635.82, + "end": 16636.68, + "probability": 0.8395 + }, + { + "start": 16637.14, + "end": 16639.01, + "probability": 0.9951 + }, + { + "start": 16640.92, + "end": 16641.79, + "probability": 0.8176 + }, + { + "start": 16643.21, + "end": 16646.56, + "probability": 0.9919 + }, + { + "start": 16647.74, + "end": 16648.74, + "probability": 0.917 + }, + { + "start": 16649.56, + "end": 16649.68, + "probability": 0.7974 + }, + { + "start": 16650.54, + "end": 16652.14, + "probability": 0.8484 + }, + { + "start": 16652.56, + "end": 16654.98, + "probability": 0.5704 + }, + { + "start": 16655.1, + "end": 16655.98, + "probability": 0.9956 + }, + { + "start": 16656.04, + "end": 16658.68, + "probability": 0.8763 + }, + { + "start": 16658.9, + "end": 16659.64, + "probability": 0.9885 + }, + { + "start": 16659.8, + "end": 16660.74, + "probability": 0.6637 + }, + { + "start": 16661.58, + "end": 16662.29, + "probability": 0.9619 + }, + { + "start": 16663.32, + "end": 16664.68, + "probability": 0.9215 + }, + { + "start": 16665.9, + "end": 16669.84, + "probability": 0.9621 + }, + { + "start": 16670.42, + "end": 16672.76, + "probability": 0.9535 + }, + { + "start": 16673.32, + "end": 16674.22, + "probability": 0.5369 + }, + { + "start": 16674.56, + "end": 16676.64, + "probability": 0.9604 + }, + { + "start": 16677.16, + "end": 16678.7, + "probability": 0.983 + }, + { + "start": 16680.48, + "end": 16683.75, + "probability": 0.936 + }, + { + "start": 16684.38, + "end": 16686.32, + "probability": 0.873 + }, + { + "start": 16687.02, + "end": 16690.12, + "probability": 0.9448 + }, + { + "start": 16690.76, + "end": 16692.28, + "probability": 0.7671 + }, + { + "start": 16693.0, + "end": 16694.84, + "probability": 0.8299 + }, + { + "start": 16695.5, + "end": 16695.62, + "probability": 0.5097 + }, + { + "start": 16697.84, + "end": 16701.52, + "probability": 0.8184 + }, + { + "start": 16703.64, + "end": 16707.14, + "probability": 0.8027 + }, + { + "start": 16707.88, + "end": 16709.4, + "probability": 0.8586 + }, + { + "start": 16709.78, + "end": 16710.08, + "probability": 0.5343 + }, + { + "start": 16710.36, + "end": 16711.05, + "probability": 0.2712 + }, + { + "start": 16712.52, + "end": 16715.22, + "probability": 0.5886 + }, + { + "start": 16715.6, + "end": 16717.0, + "probability": 0.45 + }, + { + "start": 16717.6, + "end": 16719.52, + "probability": 0.4844 + }, + { + "start": 16719.54, + "end": 16720.04, + "probability": 0.5725 + }, + { + "start": 16720.9, + "end": 16721.62, + "probability": 0.7485 + }, + { + "start": 16723.3, + "end": 16725.98, + "probability": 0.8623 + }, + { + "start": 16728.46, + "end": 16729.4, + "probability": 0.5415 + }, + { + "start": 16729.76, + "end": 16731.42, + "probability": 0.9299 + }, + { + "start": 16731.44, + "end": 16734.76, + "probability": 0.812 + }, + { + "start": 16735.59, + "end": 16737.3, + "probability": 0.8961 + }, + { + "start": 16740.04, + "end": 16741.0, + "probability": 0.8894 + }, + { + "start": 16741.34, + "end": 16742.82, + "probability": 0.7008 + }, + { + "start": 16742.9, + "end": 16745.32, + "probability": 0.9983 + }, + { + "start": 16747.72, + "end": 16749.5, + "probability": 0.7654 + }, + { + "start": 16750.48, + "end": 16752.36, + "probability": 0.5559 + }, + { + "start": 16752.76, + "end": 16754.02, + "probability": 0.998 + }, + { + "start": 16754.22, + "end": 16756.0, + "probability": 0.9969 + }, + { + "start": 16756.86, + "end": 16758.74, + "probability": 0.9946 + }, + { + "start": 16759.16, + "end": 16759.84, + "probability": 0.9919 + }, + { + "start": 16760.86, + "end": 16765.04, + "probability": 0.9887 + }, + { + "start": 16765.5, + "end": 16766.16, + "probability": 0.958 + }, + { + "start": 16767.96, + "end": 16769.56, + "probability": 0.7091 + }, + { + "start": 16769.78, + "end": 16770.14, + "probability": 0.8174 + }, + { + "start": 16770.26, + "end": 16770.85, + "probability": 0.7197 + }, + { + "start": 16771.1, + "end": 16772.54, + "probability": 0.9028 + }, + { + "start": 16773.26, + "end": 16773.88, + "probability": 0.7313 + }, + { + "start": 16774.92, + "end": 16775.88, + "probability": 0.0273 + }, + { + "start": 16778.12, + "end": 16778.26, + "probability": 0.408 + }, + { + "start": 16778.42, + "end": 16780.84, + "probability": 0.733 + }, + { + "start": 16781.32, + "end": 16783.0, + "probability": 0.9658 + }, + { + "start": 16783.5, + "end": 16785.16, + "probability": 0.999 + }, + { + "start": 16785.58, + "end": 16788.74, + "probability": 0.9789 + }, + { + "start": 16788.74, + "end": 16789.56, + "probability": 0.8461 + }, + { + "start": 16789.82, + "end": 16791.44, + "probability": 0.8982 + }, + { + "start": 16792.12, + "end": 16795.34, + "probability": 0.8573 + }, + { + "start": 16795.8, + "end": 16797.94, + "probability": 0.9834 + }, + { + "start": 16798.04, + "end": 16798.54, + "probability": 0.7007 + }, + { + "start": 16798.82, + "end": 16801.66, + "probability": 0.9907 + }, + { + "start": 16802.14, + "end": 16802.76, + "probability": 0.8998 + }, + { + "start": 16802.92, + "end": 16804.42, + "probability": 0.8228 + }, + { + "start": 16805.72, + "end": 16808.28, + "probability": 0.9749 + }, + { + "start": 16810.74, + "end": 16814.48, + "probability": 0.9393 + }, + { + "start": 16814.6, + "end": 16814.8, + "probability": 0.2863 + }, + { + "start": 16814.98, + "end": 16815.88, + "probability": 0.8785 + }, + { + "start": 16815.88, + "end": 16817.1, + "probability": 0.1668 + }, + { + "start": 16817.1, + "end": 16817.76, + "probability": 0.4549 + }, + { + "start": 16817.9, + "end": 16817.98, + "probability": 0.2288 + }, + { + "start": 16818.12, + "end": 16819.12, + "probability": 0.7557 + }, + { + "start": 16819.28, + "end": 16821.46, + "probability": 0.8524 + }, + { + "start": 16821.6, + "end": 16822.58, + "probability": 0.4053 + }, + { + "start": 16822.64, + "end": 16822.94, + "probability": 0.5052 + }, + { + "start": 16822.94, + "end": 16823.38, + "probability": 0.8391 + }, + { + "start": 16823.62, + "end": 16824.84, + "probability": 0.803 + }, + { + "start": 16824.84, + "end": 16827.12, + "probability": 0.2118 + }, + { + "start": 16827.28, + "end": 16827.28, + "probability": 0.2847 + }, + { + "start": 16827.28, + "end": 16829.88, + "probability": 0.6636 + }, + { + "start": 16830.06, + "end": 16833.68, + "probability": 0.4952 + }, + { + "start": 16833.7, + "end": 16835.3, + "probability": 0.528 + }, + { + "start": 16836.2, + "end": 16836.56, + "probability": 0.4892 + }, + { + "start": 16836.76, + "end": 16840.74, + "probability": 0.9033 + }, + { + "start": 16841.04, + "end": 16842.69, + "probability": 0.7529 + }, + { + "start": 16843.02, + "end": 16843.5, + "probability": 0.7671 + }, + { + "start": 16843.58, + "end": 16846.96, + "probability": 0.9803 + }, + { + "start": 16847.02, + "end": 16847.86, + "probability": 0.9694 + }, + { + "start": 16852.5, + "end": 16854.04, + "probability": 0.9612 + }, + { + "start": 16855.12, + "end": 16855.42, + "probability": 0.7291 + }, + { + "start": 16855.64, + "end": 16860.56, + "probability": 0.8893 + }, + { + "start": 16860.64, + "end": 16863.2, + "probability": 0.8923 + }, + { + "start": 16863.4, + "end": 16864.3, + "probability": 0.7427 + }, + { + "start": 16865.06, + "end": 16871.06, + "probability": 0.9956 + }, + { + "start": 16871.56, + "end": 16875.28, + "probability": 0.961 + }, + { + "start": 16876.12, + "end": 16879.48, + "probability": 0.9989 + }, + { + "start": 16880.0, + "end": 16882.98, + "probability": 0.985 + }, + { + "start": 16883.08, + "end": 16883.18, + "probability": 0.4091 + }, + { + "start": 16883.36, + "end": 16884.18, + "probability": 0.8289 + }, + { + "start": 16884.26, + "end": 16887.36, + "probability": 0.7579 + }, + { + "start": 16887.46, + "end": 16891.12, + "probability": 0.8539 + }, + { + "start": 16891.84, + "end": 16893.0, + "probability": 0.6479 + }, + { + "start": 16893.26, + "end": 16894.44, + "probability": 0.8798 + }, + { + "start": 16894.48, + "end": 16896.0, + "probability": 0.9535 + }, + { + "start": 16896.32, + "end": 16896.69, + "probability": 0.6462 + }, + { + "start": 16897.0, + "end": 16898.94, + "probability": 0.9907 + }, + { + "start": 16899.38, + "end": 16902.64, + "probability": 0.9706 + }, + { + "start": 16902.66, + "end": 16903.94, + "probability": 0.1664 + }, + { + "start": 16904.16, + "end": 16904.88, + "probability": 0.7112 + }, + { + "start": 16905.16, + "end": 16905.94, + "probability": 0.901 + }, + { + "start": 16906.0, + "end": 16906.52, + "probability": 0.8378 + }, + { + "start": 16906.56, + "end": 16910.92, + "probability": 0.9272 + }, + { + "start": 16911.42, + "end": 16913.9, + "probability": 0.9933 + }, + { + "start": 16914.22, + "end": 16915.28, + "probability": 0.9408 + }, + { + "start": 16915.48, + "end": 16916.48, + "probability": 0.9554 + }, + { + "start": 16916.68, + "end": 16918.5, + "probability": 0.6859 + }, + { + "start": 16918.5, + "end": 16919.26, + "probability": 0.6589 + }, + { + "start": 16919.62, + "end": 16921.66, + "probability": 0.9902 + }, + { + "start": 16922.34, + "end": 16925.66, + "probability": 0.7299 + }, + { + "start": 16926.26, + "end": 16928.02, + "probability": 0.9187 + }, + { + "start": 16928.16, + "end": 16929.82, + "probability": 0.9664 + }, + { + "start": 16929.9, + "end": 16930.66, + "probability": 0.9505 + }, + { + "start": 16930.92, + "end": 16931.8, + "probability": 0.994 + }, + { + "start": 16932.32, + "end": 16933.24, + "probability": 0.4961 + }, + { + "start": 16933.44, + "end": 16934.72, + "probability": 0.8093 + }, + { + "start": 16934.84, + "end": 16935.68, + "probability": 0.6429 + }, + { + "start": 16935.8, + "end": 16936.68, + "probability": 0.9756 + }, + { + "start": 16937.1, + "end": 16938.68, + "probability": 0.5979 + }, + { + "start": 16938.86, + "end": 16940.38, + "probability": 0.9609 + }, + { + "start": 16940.92, + "end": 16942.84, + "probability": 0.7833 + }, + { + "start": 16942.92, + "end": 16943.44, + "probability": 0.8296 + }, + { + "start": 16943.46, + "end": 16944.8, + "probability": 0.8875 + }, + { + "start": 16944.98, + "end": 16946.82, + "probability": 0.9056 + }, + { + "start": 16947.34, + "end": 16948.04, + "probability": 0.5441 + }, + { + "start": 16948.14, + "end": 16948.58, + "probability": 0.4292 + }, + { + "start": 16948.96, + "end": 16951.44, + "probability": 0.9912 + }, + { + "start": 16951.6, + "end": 16952.6, + "probability": 0.9934 + }, + { + "start": 16952.6, + "end": 16954.76, + "probability": 0.6143 + }, + { + "start": 16954.9, + "end": 16954.94, + "probability": 0.4211 + }, + { + "start": 16955.2, + "end": 16955.3, + "probability": 0.046 + }, + { + "start": 16955.3, + "end": 16957.8, + "probability": 0.5543 + }, + { + "start": 16957.96, + "end": 16958.32, + "probability": 0.4337 + }, + { + "start": 16958.4, + "end": 16959.74, + "probability": 0.9075 + }, + { + "start": 16960.3, + "end": 16961.42, + "probability": 0.6742 + }, + { + "start": 16961.5, + "end": 16962.2, + "probability": 0.3279 + }, + { + "start": 16962.26, + "end": 16964.1, + "probability": 0.7692 + }, + { + "start": 16964.16, + "end": 16965.18, + "probability": 0.9178 + }, + { + "start": 16965.38, + "end": 16966.72, + "probability": 0.8947 + }, + { + "start": 16966.86, + "end": 16967.95, + "probability": 0.932 + }, + { + "start": 16968.2, + "end": 16968.62, + "probability": 0.7777 + }, + { + "start": 16968.7, + "end": 16970.16, + "probability": 0.9356 + }, + { + "start": 16970.5, + "end": 16971.14, + "probability": 0.7068 + }, + { + "start": 16971.22, + "end": 16973.46, + "probability": 0.9794 + }, + { + "start": 16973.68, + "end": 16975.12, + "probability": 0.9934 + }, + { + "start": 16975.46, + "end": 16976.26, + "probability": 0.7393 + }, + { + "start": 16976.26, + "end": 16976.86, + "probability": 0.0538 + }, + { + "start": 16976.86, + "end": 16977.48, + "probability": 0.0809 + }, + { + "start": 16978.0, + "end": 16978.62, + "probability": 0.5281 + }, + { + "start": 16979.02, + "end": 16979.6, + "probability": 0.97 + }, + { + "start": 16979.92, + "end": 16982.44, + "probability": 0.9766 + }, + { + "start": 16982.52, + "end": 16983.38, + "probability": 0.9497 + }, + { + "start": 16983.9, + "end": 16985.54, + "probability": 0.9989 + }, + { + "start": 16985.88, + "end": 16989.66, + "probability": 0.9862 + }, + { + "start": 16989.76, + "end": 16993.66, + "probability": 0.9119 + }, + { + "start": 16993.76, + "end": 16994.2, + "probability": 0.6816 + }, + { + "start": 16994.3, + "end": 16995.81, + "probability": 0.9549 + }, + { + "start": 16996.14, + "end": 16999.64, + "probability": 0.9738 + }, + { + "start": 16999.78, + "end": 17000.7, + "probability": 0.6691 + }, + { + "start": 17001.04, + "end": 17007.56, + "probability": 0.9976 + }, + { + "start": 17008.0, + "end": 17008.62, + "probability": 0.9325 + }, + { + "start": 17009.06, + "end": 17010.38, + "probability": 0.9976 + }, + { + "start": 17010.84, + "end": 17013.02, + "probability": 0.9956 + }, + { + "start": 17013.22, + "end": 17013.68, + "probability": 0.7299 + }, + { + "start": 17015.08, + "end": 17017.92, + "probability": 0.872 + }, + { + "start": 17018.74, + "end": 17020.12, + "probability": 0.7122 + }, + { + "start": 17020.16, + "end": 17020.78, + "probability": 0.9733 + }, + { + "start": 17021.54, + "end": 17022.74, + "probability": 0.7462 + }, + { + "start": 17023.36, + "end": 17025.31, + "probability": 0.9077 + }, + { + "start": 17026.44, + "end": 17027.14, + "probability": 0.9337 + }, + { + "start": 17027.26, + "end": 17028.0, + "probability": 0.7842 + }, + { + "start": 17028.12, + "end": 17029.4, + "probability": 0.9454 + }, + { + "start": 17029.94, + "end": 17030.44, + "probability": 0.5198 + }, + { + "start": 17030.68, + "end": 17033.28, + "probability": 0.9922 + }, + { + "start": 17033.3, + "end": 17036.92, + "probability": 0.9424 + }, + { + "start": 17039.26, + "end": 17041.36, + "probability": 0.8252 + }, + { + "start": 17042.26, + "end": 17044.46, + "probability": 0.9366 + }, + { + "start": 17045.72, + "end": 17047.36, + "probability": 0.9989 + }, + { + "start": 17048.36, + "end": 17050.48, + "probability": 0.7641 + }, + { + "start": 17050.86, + "end": 17054.34, + "probability": 0.9864 + }, + { + "start": 17056.92, + "end": 17062.92, + "probability": 0.9558 + }, + { + "start": 17063.42, + "end": 17068.72, + "probability": 0.9749 + }, + { + "start": 17069.02, + "end": 17069.94, + "probability": 0.6303 + }, + { + "start": 17070.34, + "end": 17071.34, + "probability": 0.3685 + }, + { + "start": 17071.62, + "end": 17071.86, + "probability": 0.6966 + }, + { + "start": 17073.26, + "end": 17076.34, + "probability": 0.812 + }, + { + "start": 17076.4, + "end": 17077.42, + "probability": 0.7831 + }, + { + "start": 17080.38, + "end": 17081.32, + "probability": 0.194 + }, + { + "start": 17081.96, + "end": 17082.06, + "probability": 0.0252 + }, + { + "start": 17083.6, + "end": 17086.74, + "probability": 0.3467 + }, + { + "start": 17087.85, + "end": 17088.52, + "probability": 0.0754 + }, + { + "start": 17089.58, + "end": 17092.96, + "probability": 0.0424 + }, + { + "start": 17093.54, + "end": 17094.38, + "probability": 0.0779 + }, + { + "start": 17094.38, + "end": 17097.0, + "probability": 0.7588 + }, + { + "start": 17097.74, + "end": 17100.06, + "probability": 0.7849 + }, + { + "start": 17100.44, + "end": 17103.78, + "probability": 0.9932 + }, + { + "start": 17103.86, + "end": 17104.94, + "probability": 0.6703 + }, + { + "start": 17105.42, + "end": 17107.08, + "probability": 0.7386 + }, + { + "start": 17107.2, + "end": 17109.06, + "probability": 0.7687 + }, + { + "start": 17109.16, + "end": 17110.16, + "probability": 0.7512 + }, + { + "start": 17110.16, + "end": 17111.22, + "probability": 0.9214 + }, + { + "start": 17112.12, + "end": 17115.66, + "probability": 0.8586 + }, + { + "start": 17116.2, + "end": 17123.02, + "probability": 0.7106 + }, + { + "start": 17123.68, + "end": 17125.76, + "probability": 0.9613 + }, + { + "start": 17133.54, + "end": 17135.64, + "probability": 0.3799 + }, + { + "start": 17135.64, + "end": 17138.34, + "probability": 0.5773 + }, + { + "start": 17138.36, + "end": 17140.2, + "probability": 0.8481 + }, + { + "start": 17141.98, + "end": 17142.24, + "probability": 0.7556 + }, + { + "start": 17142.92, + "end": 17145.14, + "probability": 0.389 + }, + { + "start": 17145.3, + "end": 17145.82, + "probability": 0.2763 + }, + { + "start": 17146.48, + "end": 17147.4, + "probability": 0.4929 + }, + { + "start": 17147.9, + "end": 17148.38, + "probability": 0.7025 + }, + { + "start": 17149.22, + "end": 17150.44, + "probability": 0.3323 + }, + { + "start": 17150.46, + "end": 17151.78, + "probability": 0.7531 + }, + { + "start": 17151.78, + "end": 17152.4, + "probability": 0.8334 + }, + { + "start": 17153.74, + "end": 17155.53, + "probability": 0.7681 + }, + { + "start": 17155.7, + "end": 17156.42, + "probability": 0.96 + }, + { + "start": 17156.5, + "end": 17157.56, + "probability": 0.9873 + }, + { + "start": 17158.16, + "end": 17159.6, + "probability": 0.8663 + }, + { + "start": 17159.96, + "end": 17161.74, + "probability": 0.876 + }, + { + "start": 17161.74, + "end": 17170.08, + "probability": 0.9945 + }, + { + "start": 17170.8, + "end": 17174.6, + "probability": 0.9655 + }, + { + "start": 17174.74, + "end": 17179.96, + "probability": 0.9893 + }, + { + "start": 17180.5, + "end": 17186.54, + "probability": 0.9858 + }, + { + "start": 17187.18, + "end": 17191.68, + "probability": 0.9349 + }, + { + "start": 17192.68, + "end": 17193.72, + "probability": 0.7091 + }, + { + "start": 17194.18, + "end": 17196.36, + "probability": 0.9461 + }, + { + "start": 17196.82, + "end": 17198.76, + "probability": 0.8919 + }, + { + "start": 17199.54, + "end": 17202.54, + "probability": 0.9843 + }, + { + "start": 17203.32, + "end": 17206.02, + "probability": 0.7933 + }, + { + "start": 17206.58, + "end": 17211.08, + "probability": 0.9883 + }, + { + "start": 17212.12, + "end": 17219.84, + "probability": 0.9763 + }, + { + "start": 17220.44, + "end": 17223.16, + "probability": 0.8888 + }, + { + "start": 17223.48, + "end": 17229.0, + "probability": 0.9897 + }, + { + "start": 17230.24, + "end": 17235.56, + "probability": 0.9907 + }, + { + "start": 17236.22, + "end": 17241.5, + "probability": 0.9958 + }, + { + "start": 17241.5, + "end": 17248.34, + "probability": 0.9777 + }, + { + "start": 17249.0, + "end": 17253.5, + "probability": 0.9917 + }, + { + "start": 17253.5, + "end": 17261.8, + "probability": 0.9733 + }, + { + "start": 17263.64, + "end": 17268.76, + "probability": 0.9937 + }, + { + "start": 17268.9, + "end": 17273.12, + "probability": 0.9979 + }, + { + "start": 17274.38, + "end": 17278.78, + "probability": 0.0723 + }, + { + "start": 17279.82, + "end": 17280.92, + "probability": 0.535 + }, + { + "start": 17281.64, + "end": 17283.37, + "probability": 0.5119 + }, + { + "start": 17283.98, + "end": 17285.52, + "probability": 0.7876 + }, + { + "start": 17285.92, + "end": 17286.42, + "probability": 0.5983 + }, + { + "start": 17287.46, + "end": 17288.42, + "probability": 0.5463 + }, + { + "start": 17288.42, + "end": 17289.36, + "probability": 0.2663 + }, + { + "start": 17289.68, + "end": 17292.32, + "probability": 0.6186 + }, + { + "start": 17292.32, + "end": 17292.94, + "probability": 0.2403 + }, + { + "start": 17292.94, + "end": 17296.98, + "probability": 0.6789 + }, + { + "start": 17297.38, + "end": 17298.1, + "probability": 0.2224 + }, + { + "start": 17300.7, + "end": 17302.08, + "probability": 0.8624 + }, + { + "start": 17304.22, + "end": 17306.08, + "probability": 0.7447 + }, + { + "start": 17306.18, + "end": 17308.82, + "probability": 0.9093 + }, + { + "start": 17310.9, + "end": 17313.52, + "probability": 0.9795 + }, + { + "start": 17314.2, + "end": 17317.36, + "probability": 0.925 + }, + { + "start": 17317.42, + "end": 17319.56, + "probability": 0.8361 + }, + { + "start": 17319.68, + "end": 17323.62, + "probability": 0.8473 + }, + { + "start": 17323.7, + "end": 17328.88, + "probability": 0.9976 + }, + { + "start": 17329.6, + "end": 17331.44, + "probability": 0.9043 + }, + { + "start": 17331.54, + "end": 17335.48, + "probability": 0.9542 + }, + { + "start": 17335.82, + "end": 17339.46, + "probability": 0.9982 + }, + { + "start": 17339.92, + "end": 17343.42, + "probability": 0.995 + }, + { + "start": 17344.5, + "end": 17347.16, + "probability": 0.7777 + }, + { + "start": 17347.64, + "end": 17350.9, + "probability": 0.986 + }, + { + "start": 17350.9, + "end": 17355.76, + "probability": 0.9698 + }, + { + "start": 17356.36, + "end": 17362.52, + "probability": 0.9971 + }, + { + "start": 17363.36, + "end": 17364.44, + "probability": 0.7453 + }, + { + "start": 17365.1, + "end": 17371.34, + "probability": 0.9978 + }, + { + "start": 17372.0, + "end": 17375.24, + "probability": 0.9935 + }, + { + "start": 17375.24, + "end": 17379.82, + "probability": 0.9946 + }, + { + "start": 17380.66, + "end": 17383.62, + "probability": 0.9866 + }, + { + "start": 17384.0, + "end": 17387.78, + "probability": 0.9805 + }, + { + "start": 17388.62, + "end": 17393.3, + "probability": 0.9111 + }, + { + "start": 17393.9, + "end": 17396.8, + "probability": 0.7612 + }, + { + "start": 17397.36, + "end": 17402.74, + "probability": 0.9756 + }, + { + "start": 17403.22, + "end": 17409.14, + "probability": 0.9717 + }, + { + "start": 17409.14, + "end": 17413.52, + "probability": 0.9955 + }, + { + "start": 17414.16, + "end": 17417.92, + "probability": 0.9749 + }, + { + "start": 17418.52, + "end": 17419.24, + "probability": 0.3658 + }, + { + "start": 17419.24, + "end": 17422.88, + "probability": 0.991 + }, + { + "start": 17423.68, + "end": 17426.58, + "probability": 0.9456 + }, + { + "start": 17427.44, + "end": 17429.16, + "probability": 0.8161 + }, + { + "start": 17429.42, + "end": 17432.58, + "probability": 0.9785 + }, + { + "start": 17432.58, + "end": 17436.38, + "probability": 0.9901 + }, + { + "start": 17437.1, + "end": 17437.48, + "probability": 0.5924 + }, + { + "start": 17438.04, + "end": 17440.7, + "probability": 0.9856 + }, + { + "start": 17440.7, + "end": 17444.14, + "probability": 0.9985 + }, + { + "start": 17444.72, + "end": 17448.22, + "probability": 0.9983 + }, + { + "start": 17449.1, + "end": 17454.52, + "probability": 0.9641 + }, + { + "start": 17454.66, + "end": 17461.58, + "probability": 0.9991 + }, + { + "start": 17462.26, + "end": 17464.04, + "probability": 0.9946 + }, + { + "start": 17464.66, + "end": 17469.54, + "probability": 0.9838 + }, + { + "start": 17469.54, + "end": 17474.18, + "probability": 0.9997 + }, + { + "start": 17474.76, + "end": 17478.02, + "probability": 0.9617 + }, + { + "start": 17479.0, + "end": 17484.14, + "probability": 0.9877 + }, + { + "start": 17484.98, + "end": 17489.94, + "probability": 0.9971 + }, + { + "start": 17489.94, + "end": 17497.32, + "probability": 0.979 + }, + { + "start": 17498.62, + "end": 17499.22, + "probability": 0.6043 + }, + { + "start": 17499.34, + "end": 17504.68, + "probability": 0.9852 + }, + { + "start": 17505.34, + "end": 17509.34, + "probability": 0.9806 + }, + { + "start": 17509.76, + "end": 17511.16, + "probability": 0.9874 + }, + { + "start": 17511.8, + "end": 17517.78, + "probability": 0.8171 + }, + { + "start": 17518.44, + "end": 17520.32, + "probability": 0.6847 + }, + { + "start": 17520.86, + "end": 17522.22, + "probability": 0.8861 + }, + { + "start": 17522.48, + "end": 17526.94, + "probability": 0.9751 + }, + { + "start": 17527.7, + "end": 17529.82, + "probability": 0.9598 + }, + { + "start": 17530.74, + "end": 17532.26, + "probability": 0.7684 + }, + { + "start": 17532.32, + "end": 17537.58, + "probability": 0.6631 + }, + { + "start": 17537.58, + "end": 17542.66, + "probability": 0.9912 + }, + { + "start": 17543.12, + "end": 17550.1, + "probability": 0.9849 + }, + { + "start": 17551.22, + "end": 17551.92, + "probability": 0.7167 + }, + { + "start": 17552.08, + "end": 17553.28, + "probability": 0.8075 + }, + { + "start": 17553.48, + "end": 17555.92, + "probability": 0.9933 + }, + { + "start": 17556.46, + "end": 17561.36, + "probability": 0.9818 + }, + { + "start": 17562.04, + "end": 17565.8, + "probability": 0.9866 + }, + { + "start": 17565.8, + "end": 17569.7, + "probability": 0.8247 + }, + { + "start": 17570.58, + "end": 17574.4, + "probability": 0.948 + }, + { + "start": 17574.94, + "end": 17580.56, + "probability": 0.9913 + }, + { + "start": 17580.56, + "end": 17586.46, + "probability": 0.9921 + }, + { + "start": 17587.62, + "end": 17590.94, + "probability": 0.9993 + }, + { + "start": 17590.94, + "end": 17595.44, + "probability": 0.9546 + }, + { + "start": 17596.12, + "end": 17600.38, + "probability": 0.7516 + }, + { + "start": 17600.54, + "end": 17602.2, + "probability": 0.9657 + }, + { + "start": 17602.34, + "end": 17608.38, + "probability": 0.9937 + }, + { + "start": 17608.94, + "end": 17614.96, + "probability": 0.9573 + }, + { + "start": 17615.46, + "end": 17616.8, + "probability": 0.9962 + }, + { + "start": 17617.28, + "end": 17620.74, + "probability": 0.6604 + }, + { + "start": 17620.8, + "end": 17623.08, + "probability": 0.9916 + }, + { + "start": 17623.64, + "end": 17625.34, + "probability": 0.9932 + }, + { + "start": 17625.72, + "end": 17627.8, + "probability": 0.9961 + }, + { + "start": 17628.18, + "end": 17629.8, + "probability": 0.9893 + }, + { + "start": 17631.08, + "end": 17631.6, + "probability": 0.7521 + }, + { + "start": 17632.1, + "end": 17633.0, + "probability": 0.8628 + }, + { + "start": 17633.12, + "end": 17636.88, + "probability": 0.7057 + }, + { + "start": 17640.14, + "end": 17640.64, + "probability": 0.6496 + }, + { + "start": 17642.34, + "end": 17642.34, + "probability": 0.2344 + }, + { + "start": 17642.34, + "end": 17644.82, + "probability": 0.7165 + }, + { + "start": 17645.38, + "end": 17649.14, + "probability": 0.9873 + }, + { + "start": 17649.4, + "end": 17650.8, + "probability": 0.8457 + }, + { + "start": 17650.92, + "end": 17653.76, + "probability": 0.9754 + }, + { + "start": 17654.6, + "end": 17655.84, + "probability": 0.7536 + }, + { + "start": 17655.9, + "end": 17656.92, + "probability": 0.5547 + }, + { + "start": 17657.04, + "end": 17658.76, + "probability": 0.5005 + }, + { + "start": 17658.96, + "end": 17660.56, + "probability": 0.3768 + }, + { + "start": 17661.7, + "end": 17666.36, + "probability": 0.9746 + }, + { + "start": 17666.96, + "end": 17668.34, + "probability": 0.7897 + }, + { + "start": 17668.46, + "end": 17670.66, + "probability": 0.9235 + }, + { + "start": 17670.66, + "end": 17673.54, + "probability": 0.9989 + }, + { + "start": 17673.8, + "end": 17676.5, + "probability": 0.9983 + }, + { + "start": 17676.5, + "end": 17678.96, + "probability": 0.9932 + }, + { + "start": 17679.04, + "end": 17681.63, + "probability": 0.6893 + }, + { + "start": 17682.22, + "end": 17683.28, + "probability": 0.6613 + }, + { + "start": 17683.92, + "end": 17686.38, + "probability": 0.9864 + }, + { + "start": 17688.82, + "end": 17689.56, + "probability": 0.7347 + }, + { + "start": 17690.24, + "end": 17691.5, + "probability": 0.8819 + }, + { + "start": 17691.66, + "end": 17695.78, + "probability": 0.9347 + }, + { + "start": 17695.78, + "end": 17700.76, + "probability": 0.9618 + }, + { + "start": 17701.68, + "end": 17705.52, + "probability": 0.97 + }, + { + "start": 17706.46, + "end": 17706.58, + "probability": 0.1618 + }, + { + "start": 17706.58, + "end": 17711.07, + "probability": 0.7852 + }, + { + "start": 17711.6, + "end": 17712.37, + "probability": 0.7642 + }, + { + "start": 17712.56, + "end": 17713.72, + "probability": 0.869 + }, + { + "start": 17714.22, + "end": 17714.7, + "probability": 0.9683 + }, + { + "start": 17715.42, + "end": 17719.08, + "probability": 0.9965 + }, + { + "start": 17719.08, + "end": 17719.62, + "probability": 0.6082 + }, + { + "start": 17719.7, + "end": 17721.94, + "probability": 0.982 + }, + { + "start": 17721.94, + "end": 17724.88, + "probability": 0.9806 + }, + { + "start": 17725.06, + "end": 17728.16, + "probability": 0.8234 + }, + { + "start": 17728.16, + "end": 17730.7, + "probability": 0.8559 + }, + { + "start": 17730.84, + "end": 17732.98, + "probability": 0.9825 + }, + { + "start": 17733.38, + "end": 17736.3, + "probability": 0.8718 + }, + { + "start": 17738.36, + "end": 17739.34, + "probability": 0.7852 + }, + { + "start": 17739.96, + "end": 17743.14, + "probability": 0.9854 + }, + { + "start": 17743.14, + "end": 17747.4, + "probability": 0.6792 + }, + { + "start": 17747.52, + "end": 17752.56, + "probability": 0.984 + }, + { + "start": 17753.3, + "end": 17755.26, + "probability": 0.9951 + }, + { + "start": 17755.4, + "end": 17757.58, + "probability": 0.9022 + }, + { + "start": 17759.06, + "end": 17759.8, + "probability": 0.906 + }, + { + "start": 17759.9, + "end": 17762.44, + "probability": 0.8737 + }, + { + "start": 17762.46, + "end": 17766.08, + "probability": 0.9125 + }, + { + "start": 17766.14, + "end": 17769.6, + "probability": 0.6679 + }, + { + "start": 17770.28, + "end": 17774.1, + "probability": 0.9648 + }, + { + "start": 17774.2, + "end": 17775.34, + "probability": 0.9492 + }, + { + "start": 17776.84, + "end": 17777.2, + "probability": 0.581 + }, + { + "start": 17777.3, + "end": 17778.7, + "probability": 0.9107 + }, + { + "start": 17778.72, + "end": 17780.22, + "probability": 0.68 + }, + { + "start": 17781.42, + "end": 17781.42, + "probability": 0.1829 + }, + { + "start": 17781.42, + "end": 17782.46, + "probability": 0.7414 + }, + { + "start": 17783.0, + "end": 17784.14, + "probability": 0.6632 + }, + { + "start": 17785.28, + "end": 17786.06, + "probability": 0.6847 + }, + { + "start": 17786.14, + "end": 17787.72, + "probability": 0.9611 + }, + { + "start": 17787.94, + "end": 17790.28, + "probability": 0.9611 + }, + { + "start": 17791.3, + "end": 17793.71, + "probability": 0.6358 + }, + { + "start": 17794.42, + "end": 17798.04, + "probability": 0.8277 + }, + { + "start": 17798.52, + "end": 17799.76, + "probability": 0.3804 + }, + { + "start": 17800.42, + "end": 17802.62, + "probability": 0.92 + }, + { + "start": 17809.48, + "end": 17810.08, + "probability": 0.1411 + }, + { + "start": 17815.78, + "end": 17817.08, + "probability": 0.9955 + }, + { + "start": 17818.0, + "end": 17818.46, + "probability": 0.0989 + }, + { + "start": 17818.64, + "end": 17819.72, + "probability": 0.5879 + }, + { + "start": 17820.24, + "end": 17822.06, + "probability": 0.5875 + }, + { + "start": 17823.52, + "end": 17827.94, + "probability": 0.9419 + }, + { + "start": 17828.68, + "end": 17831.86, + "probability": 0.9596 + }, + { + "start": 17833.18, + "end": 17836.86, + "probability": 0.9519 + }, + { + "start": 17837.6, + "end": 17840.88, + "probability": 0.9968 + }, + { + "start": 17841.68, + "end": 17844.72, + "probability": 0.986 + }, + { + "start": 17845.66, + "end": 17846.28, + "probability": 0.6654 + }, + { + "start": 17846.42, + "end": 17850.02, + "probability": 0.9921 + }, + { + "start": 17850.42, + "end": 17853.82, + "probability": 0.9494 + }, + { + "start": 17854.56, + "end": 17858.26, + "probability": 0.9564 + }, + { + "start": 17858.96, + "end": 17862.36, + "probability": 0.997 + }, + { + "start": 17862.76, + "end": 17866.4, + "probability": 0.9946 + }, + { + "start": 17866.48, + "end": 17867.74, + "probability": 0.986 + }, + { + "start": 17868.44, + "end": 17869.3, + "probability": 0.8073 + }, + { + "start": 17869.74, + "end": 17874.22, + "probability": 0.9979 + }, + { + "start": 17874.22, + "end": 17879.04, + "probability": 0.9942 + }, + { + "start": 17879.92, + "end": 17885.6, + "probability": 0.9902 + }, + { + "start": 17887.12, + "end": 17889.4, + "probability": 0.9635 + }, + { + "start": 17889.4, + "end": 17892.14, + "probability": 0.9989 + }, + { + "start": 17893.18, + "end": 17897.84, + "probability": 0.9983 + }, + { + "start": 17898.42, + "end": 17901.76, + "probability": 0.9961 + }, + { + "start": 17903.04, + "end": 17904.62, + "probability": 0.7073 + }, + { + "start": 17904.72, + "end": 17905.08, + "probability": 0.3395 + }, + { + "start": 17905.14, + "end": 17909.98, + "probability": 0.9639 + }, + { + "start": 17910.9, + "end": 17911.9, + "probability": 0.8609 + }, + { + "start": 17912.4, + "end": 17917.22, + "probability": 0.9862 + }, + { + "start": 17917.9, + "end": 17919.58, + "probability": 0.9801 + }, + { + "start": 17921.6, + "end": 17922.32, + "probability": 0.8914 + }, + { + "start": 17923.5, + "end": 17929.56, + "probability": 0.9983 + }, + { + "start": 17930.06, + "end": 17930.96, + "probability": 0.6901 + }, + { + "start": 17931.06, + "end": 17935.38, + "probability": 0.9107 + }, + { + "start": 17935.48, + "end": 17940.78, + "probability": 0.8973 + }, + { + "start": 17941.92, + "end": 17948.32, + "probability": 0.9983 + }, + { + "start": 17948.56, + "end": 17954.08, + "probability": 0.9248 + }, + { + "start": 17954.44, + "end": 17958.54, + "probability": 0.9707 + }, + { + "start": 17959.68, + "end": 17963.89, + "probability": 0.9681 + }, + { + "start": 17963.94, + "end": 17968.54, + "probability": 0.9346 + }, + { + "start": 17969.12, + "end": 17969.9, + "probability": 0.7192 + }, + { + "start": 17970.5, + "end": 17971.72, + "probability": 0.8784 + }, + { + "start": 17973.0, + "end": 17977.26, + "probability": 0.9062 + }, + { + "start": 17977.56, + "end": 17981.8, + "probability": 0.9084 + }, + { + "start": 17982.48, + "end": 17988.92, + "probability": 0.9954 + }, + { + "start": 17989.08, + "end": 17991.36, + "probability": 0.8283 + }, + { + "start": 17992.02, + "end": 17992.72, + "probability": 0.8935 + }, + { + "start": 17993.36, + "end": 17994.02, + "probability": 0.7369 + }, + { + "start": 17994.04, + "end": 17994.5, + "probability": 0.4941 + }, + { + "start": 17994.54, + "end": 17998.9, + "probability": 0.9294 + }, + { + "start": 17999.24, + "end": 18005.56, + "probability": 0.9659 + }, + { + "start": 18006.12, + "end": 18008.0, + "probability": 0.7365 + }, + { + "start": 18008.1, + "end": 18008.72, + "probability": 0.7854 + }, + { + "start": 18009.0, + "end": 18015.74, + "probability": 0.9744 + }, + { + "start": 18017.3, + "end": 18018.24, + "probability": 0.761 + }, + { + "start": 18021.66, + "end": 18021.84, + "probability": 0.936 + }, + { + "start": 18024.56, + "end": 18028.08, + "probability": 0.5542 + }, + { + "start": 18028.16, + "end": 18031.4, + "probability": 0.8655 + }, + { + "start": 18031.4, + "end": 18033.58, + "probability": 0.4072 + }, + { + "start": 18033.68, + "end": 18034.12, + "probability": 0.7476 + }, + { + "start": 18034.12, + "end": 18035.14, + "probability": 0.7482 + }, + { + "start": 18035.22, + "end": 18037.98, + "probability": 0.9693 + }, + { + "start": 18038.9, + "end": 18040.46, + "probability": 0.5804 + }, + { + "start": 18040.52, + "end": 18043.26, + "probability": 0.6114 + }, + { + "start": 18044.62, + "end": 18046.88, + "probability": 0.1641 + }, + { + "start": 18046.88, + "end": 18047.75, + "probability": 0.8278 + }, + { + "start": 18048.54, + "end": 18048.88, + "probability": 0.4808 + }, + { + "start": 18050.67, + "end": 18050.74, + "probability": 0.0708 + }, + { + "start": 18050.74, + "end": 18052.25, + "probability": 0.0488 + }, + { + "start": 18052.86, + "end": 18056.98, + "probability": 0.9629 + }, + { + "start": 18057.38, + "end": 18059.5, + "probability": 0.7871 + }, + { + "start": 18059.5, + "end": 18060.74, + "probability": 0.6748 + }, + { + "start": 18061.22, + "end": 18064.57, + "probability": 0.9449 + }, + { + "start": 18065.52, + "end": 18066.18, + "probability": 0.8741 + }, + { + "start": 18066.48, + "end": 18068.82, + "probability": 0.715 + }, + { + "start": 18068.82, + "end": 18072.32, + "probability": 0.9758 + }, + { + "start": 18072.96, + "end": 18074.44, + "probability": 0.9082 + }, + { + "start": 18074.96, + "end": 18079.72, + "probability": 0.8668 + }, + { + "start": 18079.98, + "end": 18084.1, + "probability": 0.8323 + }, + { + "start": 18085.32, + "end": 18086.1, + "probability": 0.4363 + }, + { + "start": 18086.28, + "end": 18090.28, + "probability": 0.9705 + }, + { + "start": 18090.28, + "end": 18093.52, + "probability": 0.9578 + }, + { + "start": 18093.96, + "end": 18096.38, + "probability": 0.9263 + }, + { + "start": 18097.48, + "end": 18100.5, + "probability": 0.9814 + }, + { + "start": 18100.5, + "end": 18105.45, + "probability": 0.82 + }, + { + "start": 18106.72, + "end": 18112.92, + "probability": 0.9424 + }, + { + "start": 18112.98, + "end": 18118.0, + "probability": 0.973 + }, + { + "start": 18118.88, + "end": 18122.38, + "probability": 0.7368 + }, + { + "start": 18122.98, + "end": 18125.28, + "probability": 0.9476 + }, + { + "start": 18126.58, + "end": 18131.04, + "probability": 0.9728 + }, + { + "start": 18131.04, + "end": 18136.0, + "probability": 0.939 + }, + { + "start": 18136.28, + "end": 18136.98, + "probability": 0.4583 + }, + { + "start": 18137.98, + "end": 18139.26, + "probability": 0.64 + }, + { + "start": 18139.76, + "end": 18141.64, + "probability": 0.7771 + }, + { + "start": 18142.32, + "end": 18144.72, + "probability": 0.7135 + }, + { + "start": 18144.78, + "end": 18145.1, + "probability": 0.7908 + }, + { + "start": 18155.78, + "end": 18157.52, + "probability": 0.3481 + }, + { + "start": 18157.64, + "end": 18157.64, + "probability": 0.5926 + }, + { + "start": 18157.64, + "end": 18158.42, + "probability": 0.5795 + }, + { + "start": 18158.68, + "end": 18160.08, + "probability": 0.9336 + }, + { + "start": 18160.34, + "end": 18162.96, + "probability": 0.8537 + }, + { + "start": 18163.02, + "end": 18165.5, + "probability": 0.969 + }, + { + "start": 18167.0, + "end": 18168.76, + "probability": 0.7493 + }, + { + "start": 18168.98, + "end": 18170.78, + "probability": 0.5693 + }, + { + "start": 18171.04, + "end": 18172.02, + "probability": 0.8975 + }, + { + "start": 18172.66, + "end": 18175.76, + "probability": 0.9948 + }, + { + "start": 18175.76, + "end": 18181.0, + "probability": 0.9763 + }, + { + "start": 18181.58, + "end": 18185.84, + "probability": 0.9567 + }, + { + "start": 18185.84, + "end": 18189.64, + "probability": 0.9737 + }, + { + "start": 18190.22, + "end": 18190.68, + "probability": 0.5144 + }, + { + "start": 18190.7, + "end": 18194.52, + "probability": 0.8677 + }, + { + "start": 18194.96, + "end": 18195.68, + "probability": 0.9151 + }, + { + "start": 18195.86, + "end": 18198.17, + "probability": 0.9556 + }, + { + "start": 18199.0, + "end": 18203.96, + "probability": 0.9309 + }, + { + "start": 18203.96, + "end": 18209.54, + "probability": 0.9752 + }, + { + "start": 18209.54, + "end": 18214.58, + "probability": 0.8539 + }, + { + "start": 18215.32, + "end": 18218.0, + "probability": 0.9927 + }, + { + "start": 18218.0, + "end": 18221.72, + "probability": 0.9492 + }, + { + "start": 18221.9, + "end": 18223.06, + "probability": 0.8658 + }, + { + "start": 18223.44, + "end": 18228.34, + "probability": 0.9915 + }, + { + "start": 18229.22, + "end": 18229.58, + "probability": 0.5857 + }, + { + "start": 18229.7, + "end": 18236.9, + "probability": 0.9648 + }, + { + "start": 18237.32, + "end": 18240.3, + "probability": 0.8639 + }, + { + "start": 18240.8, + "end": 18243.4, + "probability": 0.998 + }, + { + "start": 18243.5, + "end": 18248.9, + "probability": 0.988 + }, + { + "start": 18249.72, + "end": 18251.18, + "probability": 0.9489 + }, + { + "start": 18252.2, + "end": 18253.5, + "probability": 0.9189 + }, + { + "start": 18253.94, + "end": 18257.84, + "probability": 0.9889 + }, + { + "start": 18257.84, + "end": 18263.12, + "probability": 0.9651 + }, + { + "start": 18263.96, + "end": 18266.28, + "probability": 0.9858 + }, + { + "start": 18266.28, + "end": 18270.5, + "probability": 0.9821 + }, + { + "start": 18271.18, + "end": 18274.54, + "probability": 0.8392 + }, + { + "start": 18275.16, + "end": 18281.4, + "probability": 0.8898 + }, + { + "start": 18281.56, + "end": 18283.02, + "probability": 0.9661 + }, + { + "start": 18283.88, + "end": 18284.18, + "probability": 0.4698 + }, + { + "start": 18284.2, + "end": 18288.64, + "probability": 0.978 + }, + { + "start": 18289.32, + "end": 18294.28, + "probability": 0.8748 + }, + { + "start": 18294.28, + "end": 18298.48, + "probability": 0.9938 + }, + { + "start": 18300.58, + "end": 18300.84, + "probability": 0.4865 + }, + { + "start": 18300.98, + "end": 18307.86, + "probability": 0.9904 + }, + { + "start": 18307.86, + "end": 18312.64, + "probability": 0.9763 + }, + { + "start": 18312.66, + "end": 18318.5, + "probability": 0.9781 + }, + { + "start": 18319.18, + "end": 18322.14, + "probability": 0.9735 + }, + { + "start": 18322.76, + "end": 18324.3, + "probability": 0.9716 + }, + { + "start": 18325.02, + "end": 18328.64, + "probability": 0.9709 + }, + { + "start": 18328.64, + "end": 18331.52, + "probability": 0.9893 + }, + { + "start": 18332.02, + "end": 18335.86, + "probability": 0.9879 + }, + { + "start": 18336.56, + "end": 18343.16, + "probability": 0.9958 + }, + { + "start": 18343.86, + "end": 18347.62, + "probability": 0.9802 + }, + { + "start": 18347.62, + "end": 18352.28, + "probability": 0.9845 + }, + { + "start": 18352.9, + "end": 18354.72, + "probability": 0.948 + }, + { + "start": 18355.28, + "end": 18360.7, + "probability": 0.9615 + }, + { + "start": 18360.7, + "end": 18368.0, + "probability": 0.9542 + }, + { + "start": 18369.48, + "end": 18373.48, + "probability": 0.981 + }, + { + "start": 18373.48, + "end": 18378.02, + "probability": 0.9008 + }, + { + "start": 18378.88, + "end": 18382.6, + "probability": 0.8462 + }, + { + "start": 18383.0, + "end": 18387.08, + "probability": 0.9702 + }, + { + "start": 18387.78, + "end": 18391.16, + "probability": 0.9987 + }, + { + "start": 18391.16, + "end": 18395.0, + "probability": 0.9661 + }, + { + "start": 18395.82, + "end": 18398.46, + "probability": 0.7343 + }, + { + "start": 18399.16, + "end": 18401.72, + "probability": 0.5651 + }, + { + "start": 18401.82, + "end": 18403.22, + "probability": 0.8823 + }, + { + "start": 18404.14, + "end": 18406.32, + "probability": 0.4832 + }, + { + "start": 18406.6, + "end": 18409.66, + "probability": 0.367 + }, + { + "start": 18412.06, + "end": 18412.42, + "probability": 0.132 + }, + { + "start": 18414.11, + "end": 18417.02, + "probability": 0.9845 + }, + { + "start": 18417.08, + "end": 18417.72, + "probability": 0.6638 + }, + { + "start": 18418.16, + "end": 18418.74, + "probability": 0.3496 + }, + { + "start": 18419.1, + "end": 18419.5, + "probability": 0.3987 + }, + { + "start": 18419.5, + "end": 18420.18, + "probability": 0.5927 + }, + { + "start": 18420.26, + "end": 18420.72, + "probability": 0.6444 + }, + { + "start": 18420.74, + "end": 18422.04, + "probability": 0.7452 + }, + { + "start": 18422.18, + "end": 18422.64, + "probability": 0.9552 + }, + { + "start": 18422.72, + "end": 18422.98, + "probability": 0.8326 + }, + { + "start": 18423.0, + "end": 18423.32, + "probability": 0.8749 + }, + { + "start": 18423.46, + "end": 18425.14, + "probability": 0.7625 + }, + { + "start": 18425.16, + "end": 18425.74, + "probability": 0.6273 + }, + { + "start": 18425.94, + "end": 18430.24, + "probability": 0.9767 + }, + { + "start": 18436.18, + "end": 18437.74, + "probability": 0.2785 + }, + { + "start": 18438.5, + "end": 18439.76, + "probability": 0.5977 + }, + { + "start": 18439.86, + "end": 18444.98, + "probability": 0.1801 + }, + { + "start": 18445.3, + "end": 18447.64, + "probability": 0.8975 + }, + { + "start": 18447.7, + "end": 18448.46, + "probability": 0.8751 + }, + { + "start": 18448.74, + "end": 18450.78, + "probability": 0.6967 + }, + { + "start": 18451.24, + "end": 18452.12, + "probability": 0.9727 + }, + { + "start": 18452.2, + "end": 18457.36, + "probability": 0.9666 + }, + { + "start": 18457.98, + "end": 18462.22, + "probability": 0.9912 + }, + { + "start": 18462.76, + "end": 18463.52, + "probability": 0.723 + }, + { + "start": 18464.1, + "end": 18468.35, + "probability": 0.8373 + }, + { + "start": 18469.84, + "end": 18473.2, + "probability": 0.9963 + }, + { + "start": 18473.56, + "end": 18475.22, + "probability": 0.9725 + }, + { + "start": 18475.3, + "end": 18482.02, + "probability": 0.9686 + }, + { + "start": 18482.2, + "end": 18482.7, + "probability": 0.7422 + }, + { + "start": 18483.18, + "end": 18485.04, + "probability": 0.7003 + }, + { + "start": 18485.18, + "end": 18488.24, + "probability": 0.7542 + }, + { + "start": 18495.78, + "end": 18496.18, + "probability": 0.3748 + }, + { + "start": 18496.44, + "end": 18498.12, + "probability": 0.7573 + }, + { + "start": 18500.46, + "end": 18501.78, + "probability": 0.8295 + }, + { + "start": 18502.64, + "end": 18504.76, + "probability": 0.8628 + }, + { + "start": 18505.98, + "end": 18507.74, + "probability": 0.9471 + }, + { + "start": 18508.34, + "end": 18511.96, + "probability": 0.991 + }, + { + "start": 18512.88, + "end": 18516.66, + "probability": 0.9775 + }, + { + "start": 18516.92, + "end": 18517.88, + "probability": 0.9645 + }, + { + "start": 18518.62, + "end": 18520.34, + "probability": 0.8019 + }, + { + "start": 18520.42, + "end": 18524.78, + "probability": 0.9966 + }, + { + "start": 18525.64, + "end": 18527.06, + "probability": 0.895 + }, + { + "start": 18527.22, + "end": 18529.0, + "probability": 0.8864 + }, + { + "start": 18529.86, + "end": 18533.04, + "probability": 0.9843 + }, + { + "start": 18534.4, + "end": 18539.04, + "probability": 0.9798 + }, + { + "start": 18539.8, + "end": 18541.24, + "probability": 0.828 + }, + { + "start": 18542.16, + "end": 18543.94, + "probability": 0.976 + }, + { + "start": 18545.24, + "end": 18547.24, + "probability": 0.9592 + }, + { + "start": 18548.02, + "end": 18552.88, + "probability": 0.9153 + }, + { + "start": 18553.1, + "end": 18554.7, + "probability": 0.5266 + }, + { + "start": 18554.9, + "end": 18555.28, + "probability": 0.4281 + }, + { + "start": 18555.8, + "end": 18559.34, + "probability": 0.8871 + }, + { + "start": 18560.04, + "end": 18563.7, + "probability": 0.9625 + }, + { + "start": 18564.24, + "end": 18566.52, + "probability": 0.9302 + }, + { + "start": 18566.52, + "end": 18568.99, + "probability": 0.9625 + }, + { + "start": 18569.8, + "end": 18574.04, + "probability": 0.9785 + }, + { + "start": 18574.82, + "end": 18575.54, + "probability": 0.75 + }, + { + "start": 18577.3, + "end": 18578.84, + "probability": 0.8342 + }, + { + "start": 18579.58, + "end": 18582.7, + "probability": 0.9918 + }, + { + "start": 18582.82, + "end": 18586.5, + "probability": 0.9906 + }, + { + "start": 18587.84, + "end": 18588.36, + "probability": 0.4297 + }, + { + "start": 18589.24, + "end": 18590.2, + "probability": 0.7885 + }, + { + "start": 18591.26, + "end": 18592.5, + "probability": 0.8161 + }, + { + "start": 18592.58, + "end": 18594.34, + "probability": 0.9302 + }, + { + "start": 18594.42, + "end": 18597.66, + "probability": 0.9922 + }, + { + "start": 18598.84, + "end": 18601.26, + "probability": 0.9463 + }, + { + "start": 18602.1, + "end": 18605.48, + "probability": 0.9567 + }, + { + "start": 18606.22, + "end": 18608.86, + "probability": 0.9062 + }, + { + "start": 18608.86, + "end": 18611.66, + "probability": 0.7334 + }, + { + "start": 18611.94, + "end": 18613.74, + "probability": 0.9956 + }, + { + "start": 18614.76, + "end": 18617.18, + "probability": 0.9269 + }, + { + "start": 18617.18, + "end": 18620.54, + "probability": 0.9844 + }, + { + "start": 18621.54, + "end": 18623.34, + "probability": 0.6238 + }, + { + "start": 18623.98, + "end": 18628.2, + "probability": 0.9499 + }, + { + "start": 18628.9, + "end": 18632.04, + "probability": 0.7729 + }, + { + "start": 18632.1, + "end": 18633.6, + "probability": 0.996 + }, + { + "start": 18634.2, + "end": 18636.22, + "probability": 0.8687 + }, + { + "start": 18637.14, + "end": 18641.18, + "probability": 0.9699 + }, + { + "start": 18641.46, + "end": 18645.6, + "probability": 0.9287 + }, + { + "start": 18646.14, + "end": 18646.82, + "probability": 0.3732 + }, + { + "start": 18647.18, + "end": 18653.04, + "probability": 0.7902 + }, + { + "start": 18653.46, + "end": 18657.08, + "probability": 0.9937 + }, + { + "start": 18657.22, + "end": 18660.3, + "probability": 0.998 + }, + { + "start": 18661.86, + "end": 18662.79, + "probability": 0.9763 + }, + { + "start": 18663.46, + "end": 18664.4, + "probability": 0.8721 + }, + { + "start": 18664.88, + "end": 18665.58, + "probability": 0.5958 + }, + { + "start": 18666.04, + "end": 18667.98, + "probability": 0.7411 + }, + { + "start": 18668.42, + "end": 18668.44, + "probability": 0.4525 + }, + { + "start": 18668.44, + "end": 18669.59, + "probability": 0.3249 + }, + { + "start": 18670.28, + "end": 18672.48, + "probability": 0.995 + }, + { + "start": 18673.18, + "end": 18676.66, + "probability": 0.7134 + }, + { + "start": 18677.18, + "end": 18679.22, + "probability": 0.9204 + }, + { + "start": 18679.62, + "end": 18682.38, + "probability": 0.8682 + }, + { + "start": 18682.9, + "end": 18688.19, + "probability": 0.9257 + }, + { + "start": 18689.08, + "end": 18690.42, + "probability": 0.8126 + }, + { + "start": 18691.18, + "end": 18692.46, + "probability": 0.7395 + }, + { + "start": 18692.46, + "end": 18693.36, + "probability": 0.8155 + }, + { + "start": 18693.96, + "end": 18694.76, + "probability": 0.8289 + }, + { + "start": 18695.18, + "end": 18698.6, + "probability": 0.9343 + }, + { + "start": 18699.44, + "end": 18700.61, + "probability": 0.6751 + }, + { + "start": 18701.42, + "end": 18702.74, + "probability": 0.6023 + }, + { + "start": 18702.96, + "end": 18703.6, + "probability": 0.7284 + }, + { + "start": 18703.6, + "end": 18704.96, + "probability": 0.6274 + }, + { + "start": 18705.14, + "end": 18708.24, + "probability": 0.7574 + }, + { + "start": 18709.36, + "end": 18711.68, + "probability": 0.7284 + }, + { + "start": 18711.82, + "end": 18714.04, + "probability": 0.7752 + }, + { + "start": 18714.04, + "end": 18714.72, + "probability": 0.895 + }, + { + "start": 18715.26, + "end": 18716.5, + "probability": 0.468 + }, + { + "start": 18716.54, + "end": 18721.78, + "probability": 0.5998 + }, + { + "start": 18723.27, + "end": 18723.88, + "probability": 0.1198 + }, + { + "start": 18724.22, + "end": 18725.74, + "probability": 0.0682 + }, + { + "start": 18727.68, + "end": 18728.3, + "probability": 0.3248 + }, + { + "start": 18729.12, + "end": 18732.1, + "probability": 0.5014 + }, + { + "start": 18732.42, + "end": 18735.0, + "probability": 0.2352 + }, + { + "start": 18737.32, + "end": 18737.32, + "probability": 0.0013 + }, + { + "start": 18738.9, + "end": 18742.04, + "probability": 0.0581 + }, + { + "start": 18742.38, + "end": 18745.1, + "probability": 0.3189 + }, + { + "start": 18745.1, + "end": 18746.08, + "probability": 0.572 + }, + { + "start": 18746.94, + "end": 18750.09, + "probability": 0.1054 + }, + { + "start": 18753.47, + "end": 18755.1, + "probability": 0.0236 + }, + { + "start": 18755.96, + "end": 18759.5, + "probability": 0.069 + }, + { + "start": 18762.78, + "end": 18763.96, + "probability": 0.0867 + }, + { + "start": 18765.54, + "end": 18766.76, + "probability": 0.0464 + }, + { + "start": 18767.58, + "end": 18768.46, + "probability": 0.0804 + }, + { + "start": 18768.46, + "end": 18768.56, + "probability": 0.3163 + }, + { + "start": 18769.78, + "end": 18772.44, + "probability": 0.0789 + }, + { + "start": 18773.42, + "end": 18777.2, + "probability": 0.2524 + }, + { + "start": 18777.87, + "end": 18777.98, + "probability": 0.0812 + }, + { + "start": 18778.0, + "end": 18778.0, + "probability": 0.0 + }, + { + "start": 18778.0, + "end": 18778.0, + "probability": 0.0 + }, + { + "start": 18778.0, + "end": 18778.0, + "probability": 0.0 + }, + { + "start": 18778.0, + "end": 18778.0, + "probability": 0.0 + }, + { + "start": 18778.0, + "end": 18778.0, + "probability": 0.0 + }, + { + "start": 18778.0, + "end": 18778.0, + "probability": 0.0 + }, + { + "start": 18778.56, + "end": 18781.1, + "probability": 0.6253 + }, + { + "start": 18781.88, + "end": 18784.44, + "probability": 0.7422 + }, + { + "start": 18785.1, + "end": 18791.04, + "probability": 0.9608 + }, + { + "start": 18791.04, + "end": 18796.84, + "probability": 0.9917 + }, + { + "start": 18797.68, + "end": 18798.92, + "probability": 0.6775 + }, + { + "start": 18799.04, + "end": 18805.38, + "probability": 0.9912 + }, + { + "start": 18805.38, + "end": 18811.22, + "probability": 0.962 + }, + { + "start": 18811.84, + "end": 18816.92, + "probability": 0.9785 + }, + { + "start": 18817.76, + "end": 18819.32, + "probability": 0.5437 + }, + { + "start": 18820.16, + "end": 18824.86, + "probability": 0.9665 + }, + { + "start": 18825.36, + "end": 18828.04, + "probability": 0.9829 + }, + { + "start": 18829.84, + "end": 18833.62, + "probability": 0.9738 + }, + { + "start": 18834.24, + "end": 18838.14, + "probability": 0.9321 + }, + { + "start": 18838.74, + "end": 18841.12, + "probability": 0.8047 + }, + { + "start": 18841.78, + "end": 18842.86, + "probability": 0.8245 + }, + { + "start": 18843.0, + "end": 18849.88, + "probability": 0.916 + }, + { + "start": 18850.46, + "end": 18854.54, + "probability": 0.9839 + }, + { + "start": 18855.12, + "end": 18858.96, + "probability": 0.9982 + }, + { + "start": 18859.1, + "end": 18859.52, + "probability": 0.28 + }, + { + "start": 18859.54, + "end": 18860.74, + "probability": 0.5721 + }, + { + "start": 18860.82, + "end": 18863.6, + "probability": 0.7297 + }, + { + "start": 18863.78, + "end": 18864.88, + "probability": 0.4801 + }, + { + "start": 18864.88, + "end": 18865.12, + "probability": 0.2607 + }, + { + "start": 18865.38, + "end": 18866.18, + "probability": 0.9655 + }, + { + "start": 18866.56, + "end": 18868.0, + "probability": 0.8237 + }, + { + "start": 18868.32, + "end": 18869.26, + "probability": 0.9184 + }, + { + "start": 18869.28, + "end": 18872.92, + "probability": 0.7542 + }, + { + "start": 18872.92, + "end": 18873.86, + "probability": 0.2277 + }, + { + "start": 18873.96, + "end": 18875.78, + "probability": 0.9268 + }, + { + "start": 18875.78, + "end": 18877.16, + "probability": 0.8659 + }, + { + "start": 18877.5, + "end": 18879.14, + "probability": 0.9554 + }, + { + "start": 18879.16, + "end": 18879.84, + "probability": 0.9582 + }, + { + "start": 18880.24, + "end": 18880.42, + "probability": 0.437 + }, + { + "start": 18881.22, + "end": 18882.37, + "probability": 0.9048 + }, + { + "start": 18883.6, + "end": 18885.1, + "probability": 0.8779 + }, + { + "start": 18888.78, + "end": 18889.04, + "probability": 0.3451 + }, + { + "start": 18889.04, + "end": 18890.66, + "probability": 0.3746 + }, + { + "start": 18892.24, + "end": 18894.62, + "probability": 0.786 + }, + { + "start": 18895.04, + "end": 18897.78, + "probability": 0.9777 + }, + { + "start": 18897.94, + "end": 18899.08, + "probability": 0.9469 + }, + { + "start": 18899.66, + "end": 18899.9, + "probability": 0.7779 + }, + { + "start": 18918.44, + "end": 18920.52, + "probability": 0.7242 + }, + { + "start": 18924.92, + "end": 18925.98, + "probability": 0.6871 + }, + { + "start": 18928.02, + "end": 18931.1, + "probability": 0.9882 + }, + { + "start": 18931.1, + "end": 18934.86, + "probability": 0.9587 + }, + { + "start": 18935.54, + "end": 18936.47, + "probability": 0.381 + }, + { + "start": 18937.54, + "end": 18940.22, + "probability": 0.991 + }, + { + "start": 18940.22, + "end": 18942.68, + "probability": 0.9771 + }, + { + "start": 18942.82, + "end": 18944.9, + "probability": 0.8065 + }, + { + "start": 18945.66, + "end": 18948.54, + "probability": 0.9915 + }, + { + "start": 18949.0, + "end": 18951.7, + "probability": 0.9859 + }, + { + "start": 18951.7, + "end": 18955.22, + "probability": 0.9968 + }, + { + "start": 18955.28, + "end": 18958.72, + "probability": 0.8839 + }, + { + "start": 18959.28, + "end": 18962.8, + "probability": 0.9531 + }, + { + "start": 18963.82, + "end": 18965.22, + "probability": 0.7928 + }, + { + "start": 18966.1, + "end": 18969.9, + "probability": 0.9869 + }, + { + "start": 18970.64, + "end": 18971.68, + "probability": 0.6246 + }, + { + "start": 18972.3, + "end": 18976.14, + "probability": 0.9952 + }, + { + "start": 18976.8, + "end": 18980.1, + "probability": 0.8498 + }, + { + "start": 18980.16, + "end": 18981.1, + "probability": 0.9977 + }, + { + "start": 18981.68, + "end": 18985.72, + "probability": 0.8461 + }, + { + "start": 18987.46, + "end": 18990.44, + "probability": 0.995 + }, + { + "start": 18990.44, + "end": 18993.42, + "probability": 0.9897 + }, + { + "start": 18993.56, + "end": 18997.4, + "probability": 0.9659 + }, + { + "start": 18997.4, + "end": 19000.36, + "probability": 0.9989 + }, + { + "start": 19000.78, + "end": 19004.38, + "probability": 0.9271 + }, + { + "start": 19005.06, + "end": 19011.08, + "probability": 0.8335 + }, + { + "start": 19011.86, + "end": 19015.78, + "probability": 0.7931 + }, + { + "start": 19015.88, + "end": 19018.78, + "probability": 0.9899 + }, + { + "start": 19019.52, + "end": 19023.52, + "probability": 0.9988 + }, + { + "start": 19023.72, + "end": 19027.92, + "probability": 0.9688 + }, + { + "start": 19029.22, + "end": 19031.98, + "probability": 0.8399 + }, + { + "start": 19032.5, + "end": 19033.92, + "probability": 0.9888 + }, + { + "start": 19034.58, + "end": 19038.04, + "probability": 0.9769 + }, + { + "start": 19038.22, + "end": 19041.7, + "probability": 0.9848 + }, + { + "start": 19041.8, + "end": 19045.08, + "probability": 0.9627 + }, + { + "start": 19045.96, + "end": 19047.1, + "probability": 0.8095 + }, + { + "start": 19047.5, + "end": 19047.6, + "probability": 0.4034 + }, + { + "start": 19048.08, + "end": 19048.68, + "probability": 0.5712 + }, + { + "start": 19049.38, + "end": 19050.74, + "probability": 0.1553 + }, + { + "start": 19051.52, + "end": 19052.74, + "probability": 0.4535 + }, + { + "start": 19052.82, + "end": 19053.72, + "probability": 0.6635 + }, + { + "start": 19054.36, + "end": 19055.68, + "probability": 0.1334 + }, + { + "start": 19055.94, + "end": 19056.58, + "probability": 0.8544 + }, + { + "start": 19056.78, + "end": 19057.72, + "probability": 0.0363 + }, + { + "start": 19059.64, + "end": 19059.64, + "probability": 0.0506 + }, + { + "start": 19059.64, + "end": 19062.42, + "probability": 0.7577 + }, + { + "start": 19062.76, + "end": 19064.7, + "probability": 0.7269 + }, + { + "start": 19064.78, + "end": 19066.11, + "probability": 0.8887 + }, + { + "start": 19066.54, + "end": 19069.04, + "probability": 0.6869 + }, + { + "start": 19069.66, + "end": 19071.36, + "probability": 0.9637 + }, + { + "start": 19071.36, + "end": 19072.58, + "probability": 0.9507 + }, + { + "start": 19073.42, + "end": 19077.6, + "probability": 0.5939 + }, + { + "start": 19078.92, + "end": 19081.12, + "probability": 0.3924 + }, + { + "start": 19081.12, + "end": 19081.64, + "probability": 0.4418 + }, + { + "start": 19081.64, + "end": 19082.06, + "probability": 0.5303 + }, + { + "start": 19082.64, + "end": 19082.66, + "probability": 0.5545 + }, + { + "start": 19082.66, + "end": 19083.88, + "probability": 0.7933 + }, + { + "start": 19084.0, + "end": 19085.42, + "probability": 0.6952 + }, + { + "start": 19085.66, + "end": 19088.34, + "probability": 0.2756 + }, + { + "start": 19088.8, + "end": 19090.22, + "probability": 0.4137 + }, + { + "start": 19091.54, + "end": 19095.77, + "probability": 0.1063 + }, + { + "start": 19097.14, + "end": 19097.76, + "probability": 0.0895 + }, + { + "start": 19097.76, + "end": 19097.76, + "probability": 0.0345 + }, + { + "start": 19101.02, + "end": 19101.68, + "probability": 0.2354 + }, + { + "start": 19101.7, + "end": 19104.78, + "probability": 0.4815 + }, + { + "start": 19105.1, + "end": 19110.46, + "probability": 0.9975 + }, + { + "start": 19110.46, + "end": 19112.58, + "probability": 0.1582 + }, + { + "start": 19113.28, + "end": 19113.86, + "probability": 0.4113 + }, + { + "start": 19114.42, + "end": 19115.0, + "probability": 0.5124 + }, + { + "start": 19115.12, + "end": 19116.6, + "probability": 0.9709 + }, + { + "start": 19116.98, + "end": 19120.98, + "probability": 0.9576 + }, + { + "start": 19122.38, + "end": 19124.8, + "probability": 0.7689 + }, + { + "start": 19125.02, + "end": 19125.26, + "probability": 0.5393 + }, + { + "start": 19125.26, + "end": 19127.48, + "probability": 0.1525 + }, + { + "start": 19127.48, + "end": 19127.7, + "probability": 0.3989 + }, + { + "start": 19128.12, + "end": 19130.34, + "probability": 0.4034 + }, + { + "start": 19130.44, + "end": 19132.18, + "probability": 0.9377 + }, + { + "start": 19132.92, + "end": 19134.94, + "probability": 0.7143 + }, + { + "start": 19135.7, + "end": 19136.28, + "probability": 0.708 + }, + { + "start": 19136.66, + "end": 19137.7, + "probability": 0.943 + }, + { + "start": 19138.12, + "end": 19138.3, + "probability": 0.2881 + }, + { + "start": 19138.38, + "end": 19139.46, + "probability": 0.8229 + }, + { + "start": 19141.34, + "end": 19141.94, + "probability": 0.8423 + }, + { + "start": 19142.02, + "end": 19144.68, + "probability": 0.2177 + }, + { + "start": 19145.26, + "end": 19148.98, + "probability": 0.9714 + }, + { + "start": 19149.66, + "end": 19150.88, + "probability": 0.8113 + }, + { + "start": 19151.9, + "end": 19151.92, + "probability": 0.7744 + }, + { + "start": 19151.92, + "end": 19153.9, + "probability": 0.8056 + }, + { + "start": 19154.34, + "end": 19159.42, + "probability": 0.8041 + }, + { + "start": 19160.56, + "end": 19163.78, + "probability": 0.6683 + }, + { + "start": 19164.22, + "end": 19168.55, + "probability": 0.9988 + }, + { + "start": 19168.62, + "end": 19170.12, + "probability": 0.6433 + }, + { + "start": 19170.98, + "end": 19172.78, + "probability": 0.7727 + }, + { + "start": 19172.78, + "end": 19173.55, + "probability": 0.7119 + }, + { + "start": 19174.02, + "end": 19176.04, + "probability": 0.92 + }, + { + "start": 19176.2, + "end": 19178.3, + "probability": 0.9113 + }, + { + "start": 19178.6, + "end": 19180.84, + "probability": 0.9824 + }, + { + "start": 19180.84, + "end": 19183.36, + "probability": 0.9154 + }, + { + "start": 19184.74, + "end": 19187.2, + "probability": 0.9025 + }, + { + "start": 19187.72, + "end": 19187.74, + "probability": 0.4082 + }, + { + "start": 19187.74, + "end": 19187.74, + "probability": 0.4307 + }, + { + "start": 19187.74, + "end": 19188.58, + "probability": 0.6963 + }, + { + "start": 19188.8, + "end": 19189.96, + "probability": 0.8779 + }, + { + "start": 19189.96, + "end": 19190.8, + "probability": 0.7784 + }, + { + "start": 19195.9, + "end": 19196.58, + "probability": 0.7653 + }, + { + "start": 19197.08, + "end": 19197.26, + "probability": 0.3087 + }, + { + "start": 19198.48, + "end": 19198.82, + "probability": 0.0077 + }, + { + "start": 19213.24, + "end": 19214.76, + "probability": 0.2099 + }, + { + "start": 19215.6, + "end": 19218.18, + "probability": 0.7113 + }, + { + "start": 19219.24, + "end": 19221.57, + "probability": 0.998 + }, + { + "start": 19222.7, + "end": 19224.54, + "probability": 0.9987 + }, + { + "start": 19227.06, + "end": 19230.16, + "probability": 0.9754 + }, + { + "start": 19230.3, + "end": 19232.2, + "probability": 0.995 + }, + { + "start": 19232.9, + "end": 19238.64, + "probability": 0.8008 + }, + { + "start": 19238.76, + "end": 19241.74, + "probability": 0.7016 + }, + { + "start": 19242.64, + "end": 19245.11, + "probability": 0.9824 + }, + { + "start": 19247.22, + "end": 19253.78, + "probability": 0.8563 + }, + { + "start": 19255.64, + "end": 19259.98, + "probability": 0.9574 + }, + { + "start": 19261.42, + "end": 19261.78, + "probability": 0.5791 + }, + { + "start": 19262.0, + "end": 19265.48, + "probability": 0.9576 + }, + { + "start": 19266.64, + "end": 19270.3, + "probability": 0.6636 + }, + { + "start": 19271.54, + "end": 19274.74, + "probability": 0.9843 + }, + { + "start": 19275.46, + "end": 19277.08, + "probability": 0.9884 + }, + { + "start": 19277.16, + "end": 19281.84, + "probability": 0.9718 + }, + { + "start": 19281.84, + "end": 19286.78, + "probability": 0.993 + }, + { + "start": 19288.64, + "end": 19293.8, + "probability": 0.9872 + }, + { + "start": 19293.88, + "end": 19295.04, + "probability": 0.8311 + }, + { + "start": 19295.16, + "end": 19296.78, + "probability": 0.7881 + }, + { + "start": 19297.82, + "end": 19304.16, + "probability": 0.9973 + }, + { + "start": 19304.76, + "end": 19308.3, + "probability": 0.8923 + }, + { + "start": 19308.46, + "end": 19310.92, + "probability": 0.9924 + }, + { + "start": 19312.46, + "end": 19312.9, + "probability": 0.7126 + }, + { + "start": 19313.1, + "end": 19315.74, + "probability": 0.975 + }, + { + "start": 19315.78, + "end": 19318.26, + "probability": 0.9948 + }, + { + "start": 19318.92, + "end": 19320.56, + "probability": 0.8123 + }, + { + "start": 19321.2, + "end": 19324.16, + "probability": 0.9606 + }, + { + "start": 19325.48, + "end": 19332.08, + "probability": 0.937 + }, + { + "start": 19332.92, + "end": 19333.32, + "probability": 0.6569 + }, + { + "start": 19333.94, + "end": 19336.32, + "probability": 0.9592 + }, + { + "start": 19336.38, + "end": 19337.4, + "probability": 0.9242 + }, + { + "start": 19337.8, + "end": 19338.46, + "probability": 0.8179 + }, + { + "start": 19338.56, + "end": 19340.58, + "probability": 0.9828 + }, + { + "start": 19340.84, + "end": 19342.9, + "probability": 0.9295 + }, + { + "start": 19344.14, + "end": 19349.39, + "probability": 0.9821 + }, + { + "start": 19349.56, + "end": 19353.3, + "probability": 0.9983 + }, + { + "start": 19353.56, + "end": 19355.08, + "probability": 0.8722 + }, + { + "start": 19355.74, + "end": 19357.68, + "probability": 0.89 + }, + { + "start": 19358.36, + "end": 19360.8, + "probability": 0.95 + }, + { + "start": 19361.76, + "end": 19364.0, + "probability": 0.9924 + }, + { + "start": 19365.0, + "end": 19371.34, + "probability": 0.8724 + }, + { + "start": 19371.46, + "end": 19372.4, + "probability": 0.6322 + }, + { + "start": 19373.14, + "end": 19376.28, + "probability": 0.9884 + }, + { + "start": 19376.4, + "end": 19381.22, + "probability": 0.9966 + }, + { + "start": 19381.82, + "end": 19385.64, + "probability": 0.8144 + }, + { + "start": 19386.16, + "end": 19387.5, + "probability": 0.9738 + }, + { + "start": 19387.8, + "end": 19388.4, + "probability": 0.8513 + }, + { + "start": 19388.64, + "end": 19392.56, + "probability": 0.8453 + }, + { + "start": 19393.78, + "end": 19395.5, + "probability": 0.3421 + }, + { + "start": 19395.66, + "end": 19396.38, + "probability": 0.6756 + }, + { + "start": 19396.52, + "end": 19401.18, + "probability": 0.9803 + }, + { + "start": 19401.74, + "end": 19403.54, + "probability": 0.9194 + }, + { + "start": 19404.36, + "end": 19406.86, + "probability": 0.8009 + }, + { + "start": 19407.38, + "end": 19409.04, + "probability": 0.9697 + }, + { + "start": 19410.28, + "end": 19411.04, + "probability": 0.6085 + }, + { + "start": 19411.2, + "end": 19415.02, + "probability": 0.9406 + }, + { + "start": 19415.18, + "end": 19416.48, + "probability": 0.6833 + }, + { + "start": 19417.62, + "end": 19421.72, + "probability": 0.9837 + }, + { + "start": 19423.3, + "end": 19427.36, + "probability": 0.9394 + }, + { + "start": 19427.36, + "end": 19431.36, + "probability": 0.9458 + }, + { + "start": 19433.82, + "end": 19439.42, + "probability": 0.7808 + }, + { + "start": 19442.08, + "end": 19443.08, + "probability": 0.9587 + }, + { + "start": 19443.08, + "end": 19448.4, + "probability": 0.9935 + }, + { + "start": 19448.94, + "end": 19455.94, + "probability": 0.9912 + }, + { + "start": 19456.0, + "end": 19457.14, + "probability": 0.7773 + }, + { + "start": 19457.26, + "end": 19457.82, + "probability": 0.8368 + }, + { + "start": 19457.94, + "end": 19459.26, + "probability": 0.9268 + }, + { + "start": 19459.6, + "end": 19461.42, + "probability": 0.9897 + }, + { + "start": 19461.6, + "end": 19462.58, + "probability": 0.9897 + }, + { + "start": 19463.78, + "end": 19464.24, + "probability": 0.859 + }, + { + "start": 19464.32, + "end": 19465.48, + "probability": 0.9307 + }, + { + "start": 19465.9, + "end": 19468.54, + "probability": 0.9989 + }, + { + "start": 19468.94, + "end": 19469.3, + "probability": 0.9749 + }, + { + "start": 19469.78, + "end": 19472.48, + "probability": 0.9929 + }, + { + "start": 19472.86, + "end": 19473.78, + "probability": 0.9852 + }, + { + "start": 19473.84, + "end": 19475.86, + "probability": 0.9341 + }, + { + "start": 19476.3, + "end": 19477.56, + "probability": 0.4481 + }, + { + "start": 19478.22, + "end": 19480.92, + "probability": 0.9945 + }, + { + "start": 19481.78, + "end": 19484.7, + "probability": 0.7409 + }, + { + "start": 19485.3, + "end": 19487.9, + "probability": 0.9167 + }, + { + "start": 19488.46, + "end": 19489.12, + "probability": 0.8881 + }, + { + "start": 19489.42, + "end": 19493.38, + "probability": 0.9723 + }, + { + "start": 19494.28, + "end": 19498.6, + "probability": 0.9968 + }, + { + "start": 19499.24, + "end": 19503.18, + "probability": 0.9947 + }, + { + "start": 19503.44, + "end": 19503.84, + "probability": 0.6893 + }, + { + "start": 19504.55, + "end": 19512.02, + "probability": 0.9904 + }, + { + "start": 19512.98, + "end": 19514.66, + "probability": 0.873 + }, + { + "start": 19515.38, + "end": 19516.22, + "probability": 0.5355 + }, + { + "start": 19517.12, + "end": 19518.5, + "probability": 0.5828 + }, + { + "start": 19518.78, + "end": 19521.41, + "probability": 0.7951 + }, + { + "start": 19522.1, + "end": 19526.06, + "probability": 0.9348 + }, + { + "start": 19526.5, + "end": 19526.88, + "probability": 0.4811 + }, + { + "start": 19527.08, + "end": 19528.64, + "probability": 0.9611 + }, + { + "start": 19528.66, + "end": 19530.2, + "probability": 0.9971 + }, + { + "start": 19530.36, + "end": 19531.48, + "probability": 0.7767 + }, + { + "start": 19531.5, + "end": 19532.2, + "probability": 0.8384 + }, + { + "start": 19532.6, + "end": 19535.64, + "probability": 0.8717 + }, + { + "start": 19543.64, + "end": 19544.72, + "probability": 0.435 + }, + { + "start": 19544.88, + "end": 19548.34, + "probability": 0.5076 + }, + { + "start": 19548.82, + "end": 19551.64, + "probability": 0.9287 + }, + { + "start": 19551.8, + "end": 19553.32, + "probability": 0.7708 + }, + { + "start": 19554.77, + "end": 19556.05, + "probability": 0.9692 + }, + { + "start": 19557.54, + "end": 19560.15, + "probability": 0.641 + }, + { + "start": 19560.2, + "end": 19562.94, + "probability": 0.9414 + }, + { + "start": 19563.0, + "end": 19563.76, + "probability": 0.4886 + }, + { + "start": 19564.38, + "end": 19567.9, + "probability": 0.8569 + }, + { + "start": 19568.36, + "end": 19571.58, + "probability": 0.978 + }, + { + "start": 19571.66, + "end": 19573.92, + "probability": 0.8725 + }, + { + "start": 19574.72, + "end": 19577.16, + "probability": 0.7982 + }, + { + "start": 19577.22, + "end": 19580.6, + "probability": 0.9935 + }, + { + "start": 19580.76, + "end": 19582.78, + "probability": 0.8887 + }, + { + "start": 19583.3, + "end": 19584.68, + "probability": 0.9731 + }, + { + "start": 19586.36, + "end": 19590.3, + "probability": 0.8495 + }, + { + "start": 19590.4, + "end": 19591.94, + "probability": 0.5784 + }, + { + "start": 19592.34, + "end": 19594.6, + "probability": 0.9346 + }, + { + "start": 19594.6, + "end": 19596.6, + "probability": 0.1145 + }, + { + "start": 19599.12, + "end": 19600.84, + "probability": 0.4537 + }, + { + "start": 19601.14, + "end": 19602.96, + "probability": 0.7665 + }, + { + "start": 19603.2, + "end": 19604.38, + "probability": 0.8269 + }, + { + "start": 19604.64, + "end": 19607.02, + "probability": 0.4327 + }, + { + "start": 19607.2, + "end": 19609.68, + "probability": 0.994 + }, + { + "start": 19610.74, + "end": 19611.12, + "probability": 0.8089 + }, + { + "start": 19611.24, + "end": 19612.12, + "probability": 0.7485 + }, + { + "start": 19612.2, + "end": 19613.48, + "probability": 0.7399 + }, + { + "start": 19613.6, + "end": 19614.3, + "probability": 0.3796 + }, + { + "start": 19614.3, + "end": 19615.1, + "probability": 0.4983 + }, + { + "start": 19615.22, + "end": 19617.3, + "probability": 0.7433 + }, + { + "start": 19617.48, + "end": 19618.86, + "probability": 0.6939 + }, + { + "start": 19619.98, + "end": 19623.7, + "probability": 0.6906 + }, + { + "start": 19625.75, + "end": 19630.38, + "probability": 0.2614 + }, + { + "start": 19630.38, + "end": 19634.98, + "probability": 0.8881 + }, + { + "start": 19635.06, + "end": 19635.84, + "probability": 0.7739 + }, + { + "start": 19635.98, + "end": 19637.58, + "probability": 0.7499 + }, + { + "start": 19638.2, + "end": 19639.84, + "probability": 0.5021 + }, + { + "start": 19640.7, + "end": 19641.6, + "probability": 0.6527 + }, + { + "start": 19641.72, + "end": 19642.08, + "probability": 0.9339 + }, + { + "start": 19654.8, + "end": 19655.14, + "probability": 0.6981 + }, + { + "start": 19655.76, + "end": 19657.06, + "probability": 0.8018 + }, + { + "start": 19658.66, + "end": 19667.72, + "probability": 0.9915 + }, + { + "start": 19669.06, + "end": 19670.48, + "probability": 0.9368 + }, + { + "start": 19671.38, + "end": 19675.84, + "probability": 0.9869 + }, + { + "start": 19675.96, + "end": 19676.54, + "probability": 0.9222 + }, + { + "start": 19676.62, + "end": 19678.04, + "probability": 0.986 + }, + { + "start": 19678.56, + "end": 19681.04, + "probability": 0.6351 + }, + { + "start": 19681.58, + "end": 19684.84, + "probability": 0.7359 + }, + { + "start": 19684.88, + "end": 19687.62, + "probability": 0.8147 + }, + { + "start": 19688.22, + "end": 19691.76, + "probability": 0.8245 + }, + { + "start": 19691.88, + "end": 19693.62, + "probability": 0.9941 + }, + { + "start": 19694.8, + "end": 19696.2, + "probability": 0.5012 + }, + { + "start": 19696.78, + "end": 19696.78, + "probability": 0.7668 + }, + { + "start": 19696.78, + "end": 19699.0, + "probability": 0.8986 + }, + { + "start": 19700.19, + "end": 19703.18, + "probability": 0.7313 + }, + { + "start": 19703.56, + "end": 19706.14, + "probability": 0.9523 + }, + { + "start": 19706.32, + "end": 19706.98, + "probability": 0.6938 + }, + { + "start": 19707.02, + "end": 19713.16, + "probability": 0.9882 + }, + { + "start": 19713.16, + "end": 19718.08, + "probability": 0.9657 + }, + { + "start": 19718.14, + "end": 19719.54, + "probability": 0.8353 + }, + { + "start": 19720.18, + "end": 19721.1, + "probability": 0.8196 + }, + { + "start": 19721.72, + "end": 19722.5, + "probability": 0.9537 + }, + { + "start": 19722.6, + "end": 19727.34, + "probability": 0.9876 + }, + { + "start": 19728.82, + "end": 19730.14, + "probability": 0.9433 + }, + { + "start": 19730.58, + "end": 19736.54, + "probability": 0.9909 + }, + { + "start": 19737.26, + "end": 19744.74, + "probability": 0.9806 + }, + { + "start": 19745.04, + "end": 19746.08, + "probability": 0.9667 + }, + { + "start": 19746.18, + "end": 19751.12, + "probability": 0.9943 + }, + { + "start": 19751.7, + "end": 19753.2, + "probability": 0.7102 + }, + { + "start": 19754.04, + "end": 19755.88, + "probability": 0.9937 + }, + { + "start": 19756.62, + "end": 19758.94, + "probability": 0.697 + }, + { + "start": 19759.72, + "end": 19760.86, + "probability": 0.9024 + }, + { + "start": 19762.78, + "end": 19771.26, + "probability": 0.8383 + }, + { + "start": 19771.76, + "end": 19773.42, + "probability": 0.9561 + }, + { + "start": 19773.62, + "end": 19778.52, + "probability": 0.8994 + }, + { + "start": 19778.52, + "end": 19782.22, + "probability": 0.9557 + }, + { + "start": 19782.84, + "end": 19784.18, + "probability": 0.927 + }, + { + "start": 19784.62, + "end": 19786.6, + "probability": 0.9926 + }, + { + "start": 19787.18, + "end": 19790.34, + "probability": 0.9557 + }, + { + "start": 19791.24, + "end": 19792.9, + "probability": 0.998 + }, + { + "start": 19793.58, + "end": 19795.02, + "probability": 0.8263 + }, + { + "start": 19795.18, + "end": 19796.18, + "probability": 0.7171 + }, + { + "start": 19796.62, + "end": 19801.16, + "probability": 0.9923 + }, + { + "start": 19802.1, + "end": 19805.98, + "probability": 0.9927 + }, + { + "start": 19805.98, + "end": 19808.56, + "probability": 0.8748 + }, + { + "start": 19809.96, + "end": 19811.92, + "probability": 0.7362 + }, + { + "start": 19812.36, + "end": 19816.04, + "probability": 0.9852 + }, + { + "start": 19816.04, + "end": 19820.24, + "probability": 0.9044 + }, + { + "start": 19821.42, + "end": 19823.76, + "probability": 0.9338 + }, + { + "start": 19824.94, + "end": 19831.18, + "probability": 0.9779 + }, + { + "start": 19832.22, + "end": 19835.4, + "probability": 0.9049 + }, + { + "start": 19836.48, + "end": 19838.76, + "probability": 0.7324 + }, + { + "start": 19839.78, + "end": 19845.76, + "probability": 0.8664 + }, + { + "start": 19846.44, + "end": 19852.14, + "probability": 0.9364 + }, + { + "start": 19852.94, + "end": 19853.58, + "probability": 0.7155 + }, + { + "start": 19854.3, + "end": 19861.26, + "probability": 0.8507 + }, + { + "start": 19862.24, + "end": 19866.58, + "probability": 0.9364 + }, + { + "start": 19867.18, + "end": 19872.4, + "probability": 0.9924 + }, + { + "start": 19872.94, + "end": 19874.46, + "probability": 0.9011 + }, + { + "start": 19874.68, + "end": 19877.16, + "probability": 0.98 + }, + { + "start": 19877.58, + "end": 19879.54, + "probability": 0.9545 + }, + { + "start": 19879.96, + "end": 19881.76, + "probability": 0.9694 + }, + { + "start": 19882.6, + "end": 19883.72, + "probability": 0.9949 + }, + { + "start": 19883.86, + "end": 19887.8, + "probability": 0.9917 + }, + { + "start": 19888.02, + "end": 19889.36, + "probability": 0.887 + }, + { + "start": 19889.72, + "end": 19892.6, + "probability": 0.9853 + }, + { + "start": 19892.96, + "end": 19895.32, + "probability": 0.8668 + }, + { + "start": 19895.9, + "end": 19896.96, + "probability": 0.9814 + }, + { + "start": 19897.64, + "end": 19898.15, + "probability": 0.9346 + }, + { + "start": 19898.3, + "end": 19899.38, + "probability": 0.9861 + }, + { + "start": 19899.4, + "end": 19902.42, + "probability": 0.9943 + }, + { + "start": 19903.58, + "end": 19906.64, + "probability": 0.9943 + }, + { + "start": 19906.64, + "end": 19910.46, + "probability": 0.9989 + }, + { + "start": 19911.72, + "end": 19912.46, + "probability": 0.6494 + }, + { + "start": 19912.82, + "end": 19913.62, + "probability": 0.9505 + }, + { + "start": 19913.96, + "end": 19916.4, + "probability": 0.9619 + }, + { + "start": 19917.48, + "end": 19922.56, + "probability": 0.9937 + }, + { + "start": 19923.24, + "end": 19929.16, + "probability": 0.9873 + }, + { + "start": 19929.66, + "end": 19931.84, + "probability": 0.8975 + }, + { + "start": 19932.5, + "end": 19935.02, + "probability": 0.9949 + }, + { + "start": 19935.02, + "end": 19938.48, + "probability": 0.9897 + }, + { + "start": 19940.36, + "end": 19942.64, + "probability": 0.998 + }, + { + "start": 19942.92, + "end": 19944.96, + "probability": 0.9899 + }, + { + "start": 19945.76, + "end": 19950.88, + "probability": 0.9716 + }, + { + "start": 19951.44, + "end": 19952.96, + "probability": 0.993 + }, + { + "start": 19953.44, + "end": 19957.94, + "probability": 0.96 + }, + { + "start": 19958.54, + "end": 19959.28, + "probability": 0.938 + }, + { + "start": 19959.62, + "end": 19962.82, + "probability": 0.9823 + }, + { + "start": 19962.82, + "end": 19967.66, + "probability": 0.9946 + }, + { + "start": 19969.7, + "end": 19971.62, + "probability": 0.8007 + }, + { + "start": 19972.26, + "end": 19976.18, + "probability": 0.9976 + }, + { + "start": 19976.38, + "end": 19977.26, + "probability": 0.8532 + }, + { + "start": 19977.62, + "end": 19978.22, + "probability": 0.9487 + }, + { + "start": 19979.3, + "end": 19980.0, + "probability": 0.851 + }, + { + "start": 19982.64, + "end": 19985.38, + "probability": 0.9846 + }, + { + "start": 19985.46, + "end": 19988.48, + "probability": 0.9867 + }, + { + "start": 19988.48, + "end": 19992.4, + "probability": 0.9979 + }, + { + "start": 19992.82, + "end": 19994.96, + "probability": 0.9937 + }, + { + "start": 19995.32, + "end": 19996.76, + "probability": 0.8817 + }, + { + "start": 19997.24, + "end": 19997.96, + "probability": 0.8176 + }, + { + "start": 19998.12, + "end": 20003.12, + "probability": 0.9946 + }, + { + "start": 20003.56, + "end": 20005.72, + "probability": 0.9767 + }, + { + "start": 20005.78, + "end": 20007.22, + "probability": 0.9785 + }, + { + "start": 20007.46, + "end": 20009.62, + "probability": 0.9979 + }, + { + "start": 20010.52, + "end": 20013.78, + "probability": 0.9932 + }, + { + "start": 20014.88, + "end": 20017.54, + "probability": 0.9989 + }, + { + "start": 20017.64, + "end": 20019.08, + "probability": 0.9872 + }, + { + "start": 20019.12, + "end": 20019.72, + "probability": 0.5154 + }, + { + "start": 20020.02, + "end": 20024.68, + "probability": 0.9016 + }, + { + "start": 20024.68, + "end": 20028.86, + "probability": 0.9995 + }, + { + "start": 20029.32, + "end": 20030.7, + "probability": 0.8761 + }, + { + "start": 20031.52, + "end": 20032.64, + "probability": 0.8052 + }, + { + "start": 20032.72, + "end": 20034.3, + "probability": 0.9868 + }, + { + "start": 20034.4, + "end": 20035.42, + "probability": 0.9963 + }, + { + "start": 20035.94, + "end": 20037.63, + "probability": 0.9737 + }, + { + "start": 20038.64, + "end": 20040.91, + "probability": 0.9927 + }, + { + "start": 20041.6, + "end": 20043.46, + "probability": 0.9662 + }, + { + "start": 20044.42, + "end": 20045.64, + "probability": 0.4802 + }, + { + "start": 20046.16, + "end": 20048.16, + "probability": 0.8124 + }, + { + "start": 20048.74, + "end": 20052.78, + "probability": 0.9343 + }, + { + "start": 20053.96, + "end": 20058.28, + "probability": 0.9941 + }, + { + "start": 20058.56, + "end": 20064.0, + "probability": 0.9973 + }, + { + "start": 20064.0, + "end": 20067.66, + "probability": 0.9844 + }, + { + "start": 20068.08, + "end": 20070.32, + "probability": 0.5873 + }, + { + "start": 20071.86, + "end": 20073.26, + "probability": 0.8818 + }, + { + "start": 20074.74, + "end": 20074.9, + "probability": 0.405 + }, + { + "start": 20077.7, + "end": 20080.34, + "probability": 0.828 + }, + { + "start": 20081.56, + "end": 20085.36, + "probability": 0.9956 + }, + { + "start": 20085.68, + "end": 20086.42, + "probability": 0.9651 + }, + { + "start": 20086.72, + "end": 20089.3, + "probability": 0.8418 + }, + { + "start": 20089.34, + "end": 20092.42, + "probability": 0.9985 + }, + { + "start": 20092.42, + "end": 20095.2, + "probability": 0.9906 + }, + { + "start": 20095.68, + "end": 20100.52, + "probability": 0.9878 + }, + { + "start": 20100.98, + "end": 20101.58, + "probability": 0.9973 + }, + { + "start": 20102.42, + "end": 20104.28, + "probability": 0.8085 + }, + { + "start": 20108.28, + "end": 20110.68, + "probability": 0.8235 + }, + { + "start": 20110.9, + "end": 20114.0, + "probability": 0.9962 + }, + { + "start": 20115.0, + "end": 20119.6, + "probability": 0.9854 + }, + { + "start": 20120.1, + "end": 20124.04, + "probability": 0.9873 + }, + { + "start": 20125.0, + "end": 20128.76, + "probability": 0.9966 + }, + { + "start": 20128.9, + "end": 20129.8, + "probability": 0.3373 + }, + { + "start": 20130.32, + "end": 20133.28, + "probability": 0.998 + }, + { + "start": 20133.74, + "end": 20135.62, + "probability": 0.9991 + }, + { + "start": 20136.14, + "end": 20139.12, + "probability": 0.9958 + }, + { + "start": 20139.12, + "end": 20141.46, + "probability": 0.8476 + }, + { + "start": 20141.46, + "end": 20142.06, + "probability": 0.9127 + }, + { + "start": 20142.28, + "end": 20143.66, + "probability": 0.974 + }, + { + "start": 20143.78, + "end": 20144.98, + "probability": 0.9508 + }, + { + "start": 20146.22, + "end": 20153.6, + "probability": 0.8647 + }, + { + "start": 20153.66, + "end": 20154.4, + "probability": 0.8303 + }, + { + "start": 20154.46, + "end": 20157.72, + "probability": 0.8584 + }, + { + "start": 20157.76, + "end": 20161.37, + "probability": 0.9366 + }, + { + "start": 20161.92, + "end": 20164.66, + "probability": 0.9987 + }, + { + "start": 20165.46, + "end": 20167.31, + "probability": 0.9904 + }, + { + "start": 20168.38, + "end": 20170.72, + "probability": 0.9369 + }, + { + "start": 20171.9, + "end": 20172.3, + "probability": 0.5097 + }, + { + "start": 20172.38, + "end": 20174.96, + "probability": 0.9905 + }, + { + "start": 20174.96, + "end": 20179.92, + "probability": 0.9653 + }, + { + "start": 20180.94, + "end": 20186.84, + "probability": 0.9993 + }, + { + "start": 20188.18, + "end": 20192.3, + "probability": 0.9404 + }, + { + "start": 20193.64, + "end": 20199.76, + "probability": 0.9967 + }, + { + "start": 20199.76, + "end": 20206.58, + "probability": 0.9962 + }, + { + "start": 20206.62, + "end": 20210.72, + "probability": 0.9876 + }, + { + "start": 20211.0, + "end": 20214.06, + "probability": 0.9884 + }, + { + "start": 20214.36, + "end": 20215.04, + "probability": 0.9864 + }, + { + "start": 20215.3, + "end": 20217.06, + "probability": 0.9702 + }, + { + "start": 20219.12, + "end": 20222.61, + "probability": 0.9824 + }, + { + "start": 20223.06, + "end": 20225.74, + "probability": 0.9956 + }, + { + "start": 20226.58, + "end": 20229.94, + "probability": 0.9121 + }, + { + "start": 20229.98, + "end": 20230.54, + "probability": 0.5895 + }, + { + "start": 20231.0, + "end": 20231.82, + "probability": 0.6894 + }, + { + "start": 20231.98, + "end": 20235.38, + "probability": 0.991 + }, + { + "start": 20235.88, + "end": 20239.2, + "probability": 0.8778 + }, + { + "start": 20239.94, + "end": 20240.88, + "probability": 0.908 + }, + { + "start": 20240.96, + "end": 20241.78, + "probability": 0.9539 + }, + { + "start": 20242.2, + "end": 20246.04, + "probability": 0.9917 + }, + { + "start": 20246.56, + "end": 20249.9, + "probability": 0.9852 + }, + { + "start": 20250.72, + "end": 20252.22, + "probability": 0.7352 + }, + { + "start": 20252.88, + "end": 20254.78, + "probability": 0.9937 + }, + { + "start": 20255.18, + "end": 20260.04, + "probability": 0.9811 + }, + { + "start": 20260.5, + "end": 20260.5, + "probability": 0.6113 + }, + { + "start": 20260.74, + "end": 20265.5, + "probability": 0.9857 + }, + { + "start": 20266.08, + "end": 20266.9, + "probability": 0.6751 + }, + { + "start": 20267.26, + "end": 20270.58, + "probability": 0.9858 + }, + { + "start": 20270.74, + "end": 20271.04, + "probability": 0.7254 + }, + { + "start": 20271.12, + "end": 20275.5, + "probability": 0.8773 + }, + { + "start": 20275.6, + "end": 20275.82, + "probability": 0.6284 + }, + { + "start": 20275.94, + "end": 20278.94, + "probability": 0.9843 + }, + { + "start": 20279.5, + "end": 20280.26, + "probability": 0.8522 + }, + { + "start": 20280.9, + "end": 20281.56, + "probability": 0.9283 + }, + { + "start": 20281.92, + "end": 20283.02, + "probability": 0.9028 + }, + { + "start": 20283.04, + "end": 20286.56, + "probability": 0.9847 + }, + { + "start": 20286.68, + "end": 20286.68, + "probability": 0.0788 + }, + { + "start": 20286.74, + "end": 20288.32, + "probability": 0.8952 + }, + { + "start": 20288.36, + "end": 20288.58, + "probability": 0.644 + }, + { + "start": 20288.58, + "end": 20292.24, + "probability": 0.7561 + }, + { + "start": 20293.38, + "end": 20295.14, + "probability": 0.3051 + }, + { + "start": 20302.68, + "end": 20303.52, + "probability": 0.0398 + }, + { + "start": 20318.42, + "end": 20321.58, + "probability": 0.1386 + }, + { + "start": 20321.78, + "end": 20323.12, + "probability": 0.2005 + }, + { + "start": 20323.34, + "end": 20324.12, + "probability": 0.0501 + }, + { + "start": 20324.12, + "end": 20324.32, + "probability": 0.0746 + }, + { + "start": 20348.66, + "end": 20351.46, + "probability": 0.0048 + }, + { + "start": 20354.49, + "end": 20357.88, + "probability": 0.8932 + }, + { + "start": 20359.24, + "end": 20361.74, + "probability": 0.9982 + }, + { + "start": 20363.32, + "end": 20366.62, + "probability": 0.9974 + }, + { + "start": 20367.76, + "end": 20368.3, + "probability": 0.9244 + }, + { + "start": 20369.4, + "end": 20370.3, + "probability": 0.9791 + }, + { + "start": 20371.16, + "end": 20371.7, + "probability": 0.9649 + }, + { + "start": 20372.22, + "end": 20373.76, + "probability": 0.9945 + }, + { + "start": 20375.3, + "end": 20375.94, + "probability": 0.6282 + }, + { + "start": 20377.46, + "end": 20380.62, + "probability": 0.9981 + }, + { + "start": 20382.16, + "end": 20387.12, + "probability": 0.8643 + }, + { + "start": 20389.42, + "end": 20395.66, + "probability": 0.9932 + }, + { + "start": 20396.42, + "end": 20396.94, + "probability": 0.9935 + }, + { + "start": 20398.52, + "end": 20400.4, + "probability": 0.9757 + }, + { + "start": 20401.38, + "end": 20402.5, + "probability": 0.9509 + }, + { + "start": 20404.28, + "end": 20408.32, + "probability": 0.9949 + }, + { + "start": 20409.4, + "end": 20412.3, + "probability": 0.8395 + }, + { + "start": 20412.68, + "end": 20413.42, + "probability": 0.9709 + }, + { + "start": 20413.9, + "end": 20414.68, + "probability": 0.9846 + }, + { + "start": 20415.08, + "end": 20416.0, + "probability": 0.9897 + }, + { + "start": 20416.5, + "end": 20417.38, + "probability": 0.9872 + }, + { + "start": 20417.7, + "end": 20418.44, + "probability": 0.9296 + }, + { + "start": 20419.72, + "end": 20424.84, + "probability": 0.9921 + }, + { + "start": 20425.62, + "end": 20427.78, + "probability": 0.9954 + }, + { + "start": 20428.96, + "end": 20430.04, + "probability": 0.9939 + }, + { + "start": 20431.22, + "end": 20433.04, + "probability": 0.9705 + }, + { + "start": 20433.22, + "end": 20435.2, + "probability": 0.9907 + }, + { + "start": 20436.3, + "end": 20437.0, + "probability": 0.6564 + }, + { + "start": 20437.62, + "end": 20439.66, + "probability": 0.7458 + }, + { + "start": 20440.34, + "end": 20442.68, + "probability": 0.8659 + }, + { + "start": 20444.88, + "end": 20445.74, + "probability": 0.9995 + }, + { + "start": 20451.84, + "end": 20452.82, + "probability": 0.2932 + }, + { + "start": 20455.46, + "end": 20458.04, + "probability": 0.7455 + }, + { + "start": 20459.5, + "end": 20463.1, + "probability": 0.9867 + }, + { + "start": 20463.1, + "end": 20465.68, + "probability": 0.978 + }, + { + "start": 20467.22, + "end": 20468.48, + "probability": 0.9797 + }, + { + "start": 20470.7, + "end": 20473.56, + "probability": 0.9605 + }, + { + "start": 20474.36, + "end": 20477.06, + "probability": 0.9902 + }, + { + "start": 20477.3, + "end": 20478.7, + "probability": 0.999 + }, + { + "start": 20480.04, + "end": 20481.96, + "probability": 0.8845 + }, + { + "start": 20483.44, + "end": 20487.22, + "probability": 0.9475 + }, + { + "start": 20488.18, + "end": 20489.38, + "probability": 0.9778 + }, + { + "start": 20489.42, + "end": 20490.84, + "probability": 0.9917 + }, + { + "start": 20491.84, + "end": 20495.96, + "probability": 0.9785 + }, + { + "start": 20497.94, + "end": 20501.2, + "probability": 0.9407 + }, + { + "start": 20502.38, + "end": 20508.12, + "probability": 0.9966 + }, + { + "start": 20509.64, + "end": 20513.96, + "probability": 0.8483 + }, + { + "start": 20514.5, + "end": 20516.04, + "probability": 0.9774 + }, + { + "start": 20516.7, + "end": 20518.94, + "probability": 0.5813 + }, + { + "start": 20520.2, + "end": 20526.18, + "probability": 0.9888 + }, + { + "start": 20526.18, + "end": 20529.0, + "probability": 0.9991 + }, + { + "start": 20530.0, + "end": 20532.5, + "probability": 0.8992 + }, + { + "start": 20533.52, + "end": 20534.8, + "probability": 0.939 + }, + { + "start": 20536.18, + "end": 20538.92, + "probability": 0.8768 + }, + { + "start": 20539.78, + "end": 20543.0, + "probability": 0.8747 + }, + { + "start": 20543.48, + "end": 20544.06, + "probability": 0.8589 + }, + { + "start": 20545.08, + "end": 20548.28, + "probability": 0.9858 + }, + { + "start": 20548.28, + "end": 20550.64, + "probability": 0.9663 + }, + { + "start": 20553.56, + "end": 20554.68, + "probability": 0.7278 + }, + { + "start": 20555.66, + "end": 20557.9, + "probability": 0.858 + }, + { + "start": 20558.98, + "end": 20560.5, + "probability": 0.9617 + }, + { + "start": 20561.24, + "end": 20565.26, + "probability": 0.992 + }, + { + "start": 20566.46, + "end": 20569.56, + "probability": 0.9966 + }, + { + "start": 20571.22, + "end": 20577.04, + "probability": 0.9915 + }, + { + "start": 20577.2, + "end": 20578.06, + "probability": 0.4399 + }, + { + "start": 20579.52, + "end": 20583.08, + "probability": 0.9954 + }, + { + "start": 20583.08, + "end": 20585.56, + "probability": 0.9722 + }, + { + "start": 20586.62, + "end": 20587.68, + "probability": 0.6468 + }, + { + "start": 20588.38, + "end": 20589.82, + "probability": 0.7578 + }, + { + "start": 20590.86, + "end": 20592.84, + "probability": 0.9888 + }, + { + "start": 20593.72, + "end": 20597.0, + "probability": 0.9658 + }, + { + "start": 20598.16, + "end": 20600.54, + "probability": 0.9329 + }, + { + "start": 20600.54, + "end": 20604.26, + "probability": 0.869 + }, + { + "start": 20605.16, + "end": 20607.44, + "probability": 0.3099 + }, + { + "start": 20608.36, + "end": 20614.2, + "probability": 0.7301 + }, + { + "start": 20614.32, + "end": 20616.62, + "probability": 0.9983 + }, + { + "start": 20617.1, + "end": 20621.18, + "probability": 0.994 + }, + { + "start": 20622.12, + "end": 20624.93, + "probability": 0.877 + }, + { + "start": 20626.9, + "end": 20628.4, + "probability": 0.9781 + }, + { + "start": 20629.26, + "end": 20632.76, + "probability": 0.7592 + }, + { + "start": 20633.28, + "end": 20634.54, + "probability": 0.7895 + }, + { + "start": 20635.52, + "end": 20637.68, + "probability": 0.9897 + }, + { + "start": 20638.68, + "end": 20642.7, + "probability": 0.712 + }, + { + "start": 20642.86, + "end": 20645.98, + "probability": 0.9808 + }, + { + "start": 20646.8, + "end": 20648.8, + "probability": 0.6514 + }, + { + "start": 20651.32, + "end": 20652.76, + "probability": 0.8374 + }, + { + "start": 20653.66, + "end": 20659.28, + "probability": 0.9312 + }, + { + "start": 20660.06, + "end": 20663.62, + "probability": 0.9976 + }, + { + "start": 20664.78, + "end": 20669.3, + "probability": 0.9956 + }, + { + "start": 20670.74, + "end": 20674.34, + "probability": 0.7935 + }, + { + "start": 20674.88, + "end": 20681.4, + "probability": 0.9893 + }, + { + "start": 20682.48, + "end": 20685.34, + "probability": 0.9822 + }, + { + "start": 20685.34, + "end": 20687.94, + "probability": 0.9617 + }, + { + "start": 20688.92, + "end": 20689.8, + "probability": 0.7416 + }, + { + "start": 20690.38, + "end": 20692.26, + "probability": 0.7317 + }, + { + "start": 20692.3, + "end": 20698.82, + "probability": 0.994 + }, + { + "start": 20698.88, + "end": 20699.94, + "probability": 0.998 + }, + { + "start": 20700.82, + "end": 20702.34, + "probability": 0.9858 + }, + { + "start": 20703.8, + "end": 20709.02, + "probability": 0.9892 + }, + { + "start": 20709.02, + "end": 20709.8, + "probability": 0.7305 + }, + { + "start": 20710.56, + "end": 20711.74, + "probability": 0.8166 + }, + { + "start": 20712.3, + "end": 20712.86, + "probability": 0.7272 + }, + { + "start": 20713.7, + "end": 20718.7, + "probability": 0.9464 + }, + { + "start": 20720.08, + "end": 20724.66, + "probability": 0.9585 + }, + { + "start": 20725.58, + "end": 20727.28, + "probability": 0.7719 + }, + { + "start": 20729.18, + "end": 20730.62, + "probability": 0.9954 + }, + { + "start": 20731.64, + "end": 20736.56, + "probability": 0.9917 + }, + { + "start": 20737.5, + "end": 20740.26, + "probability": 0.7517 + }, + { + "start": 20740.26, + "end": 20742.1, + "probability": 0.9909 + }, + { + "start": 20743.3, + "end": 20745.34, + "probability": 0.8932 + }, + { + "start": 20746.54, + "end": 20748.58, + "probability": 0.9912 + }, + { + "start": 20748.58, + "end": 20752.54, + "probability": 0.9871 + }, + { + "start": 20754.62, + "end": 20757.1, + "probability": 0.8883 + }, + { + "start": 20757.1, + "end": 20757.1, + "probability": 0.1328 + }, + { + "start": 20757.1, + "end": 20758.36, + "probability": 0.6997 + }, + { + "start": 20759.88, + "end": 20761.08, + "probability": 0.9416 + }, + { + "start": 20762.72, + "end": 20765.9, + "probability": 0.9712 + }, + { + "start": 20766.92, + "end": 20768.66, + "probability": 0.82 + }, + { + "start": 20770.04, + "end": 20774.14, + "probability": 0.9639 + }, + { + "start": 20775.6, + "end": 20778.12, + "probability": 0.6253 + }, + { + "start": 20778.94, + "end": 20781.08, + "probability": 0.8984 + }, + { + "start": 20783.14, + "end": 20786.28, + "probability": 0.9644 + }, + { + "start": 20787.74, + "end": 20791.24, + "probability": 0.7552 + }, + { + "start": 20792.38, + "end": 20793.26, + "probability": 0.7571 + }, + { + "start": 20795.26, + "end": 20797.62, + "probability": 0.8673 + }, + { + "start": 20798.14, + "end": 20799.74, + "probability": 0.8314 + }, + { + "start": 20800.14, + "end": 20805.26, + "probability": 0.8343 + }, + { + "start": 20807.34, + "end": 20809.52, + "probability": 0.9932 + }, + { + "start": 20810.98, + "end": 20811.98, + "probability": 0.8909 + }, + { + "start": 20813.28, + "end": 20817.32, + "probability": 0.9697 + }, + { + "start": 20818.18, + "end": 20819.18, + "probability": 0.6787 + }, + { + "start": 20820.24, + "end": 20821.3, + "probability": 0.6473 + }, + { + "start": 20821.94, + "end": 20823.02, + "probability": 0.9447 + }, + { + "start": 20823.14, + "end": 20824.1, + "probability": 0.3626 + }, + { + "start": 20824.12, + "end": 20825.69, + "probability": 0.9462 + }, + { + "start": 20826.44, + "end": 20827.81, + "probability": 0.9261 + }, + { + "start": 20828.56, + "end": 20831.8, + "probability": 0.9523 + }, + { + "start": 20833.14, + "end": 20834.12, + "probability": 0.7621 + }, + { + "start": 20835.04, + "end": 20839.92, + "probability": 0.9453 + }, + { + "start": 20840.58, + "end": 20842.28, + "probability": 0.9642 + }, + { + "start": 20843.56, + "end": 20844.19, + "probability": 0.9423 + }, + { + "start": 20845.52, + "end": 20847.09, + "probability": 0.9788 + }, + { + "start": 20847.82, + "end": 20848.96, + "probability": 0.9727 + }, + { + "start": 20850.02, + "end": 20854.0, + "probability": 0.9492 + }, + { + "start": 20854.92, + "end": 20856.7, + "probability": 0.7612 + }, + { + "start": 20857.28, + "end": 20859.2, + "probability": 0.9089 + }, + { + "start": 20860.18, + "end": 20861.62, + "probability": 0.8377 + }, + { + "start": 20863.18, + "end": 20865.1, + "probability": 0.9397 + }, + { + "start": 20866.4, + "end": 20870.2, + "probability": 0.8487 + }, + { + "start": 20870.9, + "end": 20874.34, + "probability": 0.9152 + }, + { + "start": 20875.14, + "end": 20876.22, + "probability": 0.8601 + }, + { + "start": 20877.04, + "end": 20881.88, + "probability": 0.6791 + }, + { + "start": 20883.72, + "end": 20888.74, + "probability": 0.9663 + }, + { + "start": 20889.36, + "end": 20891.86, + "probability": 0.9567 + }, + { + "start": 20892.6, + "end": 20893.44, + "probability": 0.9626 + }, + { + "start": 20894.36, + "end": 20896.58, + "probability": 0.7415 + }, + { + "start": 20897.6, + "end": 20899.58, + "probability": 0.995 + }, + { + "start": 20900.7, + "end": 20903.2, + "probability": 0.5928 + }, + { + "start": 20904.14, + "end": 20910.22, + "probability": 0.9473 + }, + { + "start": 20910.82, + "end": 20916.78, + "probability": 0.9914 + }, + { + "start": 20917.9, + "end": 20918.6, + "probability": 0.7743 + }, + { + "start": 20919.42, + "end": 20920.05, + "probability": 0.9557 + }, + { + "start": 20922.16, + "end": 20924.96, + "probability": 0.9686 + }, + { + "start": 20926.1, + "end": 20927.14, + "probability": 0.9824 + }, + { + "start": 20928.54, + "end": 20929.44, + "probability": 0.9801 + }, + { + "start": 20929.6, + "end": 20930.52, + "probability": 0.9364 + }, + { + "start": 20931.72, + "end": 20932.9, + "probability": 0.7596 + }, + { + "start": 20933.8, + "end": 20935.5, + "probability": 0.7305 + }, + { + "start": 20936.02, + "end": 20937.68, + "probability": 0.96 + }, + { + "start": 20938.4, + "end": 20939.81, + "probability": 0.861 + }, + { + "start": 20940.82, + "end": 20943.56, + "probability": 0.9509 + }, + { + "start": 20945.42, + "end": 20945.54, + "probability": 0.8721 + }, + { + "start": 20945.9, + "end": 20947.3, + "probability": 0.9887 + }, + { + "start": 20947.34, + "end": 20948.41, + "probability": 0.9387 + }, + { + "start": 20949.34, + "end": 20949.84, + "probability": 0.6984 + }, + { + "start": 20951.16, + "end": 20953.58, + "probability": 0.7505 + }, + { + "start": 20954.92, + "end": 20955.87, + "probability": 0.97 + }, + { + "start": 20956.64, + "end": 20959.08, + "probability": 0.9835 + }, + { + "start": 20961.12, + "end": 20962.84, + "probability": 0.981 + }, + { + "start": 20963.88, + "end": 20968.44, + "probability": 0.8612 + }, + { + "start": 20969.76, + "end": 20974.54, + "probability": 0.9294 + }, + { + "start": 20975.44, + "end": 20978.64, + "probability": 0.9306 + }, + { + "start": 20980.72, + "end": 20985.2, + "probability": 0.9924 + }, + { + "start": 20987.06, + "end": 20988.42, + "probability": 0.7462 + }, + { + "start": 20989.08, + "end": 20990.36, + "probability": 0.9951 + }, + { + "start": 20991.8, + "end": 20995.36, + "probability": 0.9504 + }, + { + "start": 20995.48, + "end": 20995.94, + "probability": 0.7892 + }, + { + "start": 20997.28, + "end": 21000.82, + "probability": 0.9891 + }, + { + "start": 21000.82, + "end": 21004.56, + "probability": 0.9758 + }, + { + "start": 21005.78, + "end": 21007.78, + "probability": 0.653 + }, + { + "start": 21009.3, + "end": 21010.7, + "probability": 0.7598 + }, + { + "start": 21012.16, + "end": 21013.94, + "probability": 0.9263 + }, + { + "start": 21014.76, + "end": 21016.53, + "probability": 0.8865 + }, + { + "start": 21017.8, + "end": 21021.3, + "probability": 0.9652 + }, + { + "start": 21022.12, + "end": 21024.14, + "probability": 0.8635 + }, + { + "start": 21025.54, + "end": 21028.8, + "probability": 0.9312 + }, + { + "start": 21029.84, + "end": 21030.86, + "probability": 0.8266 + }, + { + "start": 21030.94, + "end": 21031.72, + "probability": 0.9104 + }, + { + "start": 21031.8, + "end": 21032.22, + "probability": 0.8569 + }, + { + "start": 21032.28, + "end": 21032.98, + "probability": 0.5516 + }, + { + "start": 21034.04, + "end": 21034.82, + "probability": 0.9047 + }, + { + "start": 21035.86, + "end": 21038.42, + "probability": 0.6866 + }, + { + "start": 21039.86, + "end": 21042.62, + "probability": 0.6665 + }, + { + "start": 21043.34, + "end": 21044.9, + "probability": 0.9941 + }, + { + "start": 21046.52, + "end": 21048.97, + "probability": 0.9353 + }, + { + "start": 21051.14, + "end": 21056.0, + "probability": 0.9971 + }, + { + "start": 21056.52, + "end": 21057.74, + "probability": 0.9683 + }, + { + "start": 21059.0, + "end": 21064.4, + "probability": 0.9771 + }, + { + "start": 21065.08, + "end": 21066.08, + "probability": 0.5465 + }, + { + "start": 21067.08, + "end": 21069.38, + "probability": 0.897 + }, + { + "start": 21070.5, + "end": 21072.32, + "probability": 0.9776 + }, + { + "start": 21073.42, + "end": 21074.86, + "probability": 0.691 + }, + { + "start": 21076.26, + "end": 21080.18, + "probability": 0.9888 + }, + { + "start": 21081.14, + "end": 21084.62, + "probability": 0.9786 + }, + { + "start": 21084.66, + "end": 21087.58, + "probability": 0.9967 + }, + { + "start": 21088.6, + "end": 21090.46, + "probability": 0.995 + }, + { + "start": 21091.4, + "end": 21095.5, + "probability": 0.8801 + }, + { + "start": 21095.6, + "end": 21096.56, + "probability": 0.8235 + }, + { + "start": 21097.88, + "end": 21099.6, + "probability": 0.8243 + }, + { + "start": 21100.38, + "end": 21104.0, + "probability": 0.7667 + }, + { + "start": 21107.18, + "end": 21107.68, + "probability": 0.9674 + }, + { + "start": 21111.36, + "end": 21114.3, + "probability": 0.9416 + }, + { + "start": 21116.02, + "end": 21117.74, + "probability": 0.9722 + }, + { + "start": 21118.58, + "end": 21123.68, + "probability": 0.9852 + }, + { + "start": 21123.84, + "end": 21124.92, + "probability": 0.8755 + }, + { + "start": 21125.84, + "end": 21127.1, + "probability": 0.9169 + }, + { + "start": 21127.2, + "end": 21130.76, + "probability": 0.9602 + }, + { + "start": 21130.9, + "end": 21131.72, + "probability": 0.8618 + }, + { + "start": 21132.6, + "end": 21136.5, + "probability": 0.8893 + }, + { + "start": 21137.54, + "end": 21138.68, + "probability": 0.3905 + }, + { + "start": 21139.34, + "end": 21145.7, + "probability": 0.9408 + }, + { + "start": 21146.08, + "end": 21149.28, + "probability": 0.8921 + }, + { + "start": 21150.42, + "end": 21152.12, + "probability": 0.6902 + }, + { + "start": 21152.84, + "end": 21154.94, + "probability": 0.9016 + }, + { + "start": 21156.06, + "end": 21158.0, + "probability": 0.9645 + }, + { + "start": 21158.92, + "end": 21161.32, + "probability": 0.9597 + }, + { + "start": 21161.62, + "end": 21166.34, + "probability": 0.8832 + }, + { + "start": 21166.46, + "end": 21166.82, + "probability": 0.7089 + }, + { + "start": 21166.9, + "end": 21167.26, + "probability": 0.8168 + }, + { + "start": 21167.26, + "end": 21167.76, + "probability": 0.8354 + }, + { + "start": 21168.52, + "end": 21171.72, + "probability": 0.9073 + }, + { + "start": 21173.44, + "end": 21175.12, + "probability": 0.8691 + }, + { + "start": 21175.9, + "end": 21178.08, + "probability": 0.8582 + }, + { + "start": 21178.78, + "end": 21185.11, + "probability": 0.9475 + }, + { + "start": 21186.34, + "end": 21188.68, + "probability": 0.856 + }, + { + "start": 21189.92, + "end": 21191.32, + "probability": 0.9636 + }, + { + "start": 21191.34, + "end": 21191.9, + "probability": 0.9081 + }, + { + "start": 21193.56, + "end": 21194.56, + "probability": 0.8589 + }, + { + "start": 21194.76, + "end": 21196.04, + "probability": 0.9117 + }, + { + "start": 21196.14, + "end": 21196.56, + "probability": 0.9245 + }, + { + "start": 21196.68, + "end": 21197.76, + "probability": 0.7289 + }, + { + "start": 21198.98, + "end": 21202.0, + "probability": 0.6059 + }, + { + "start": 21202.08, + "end": 21203.18, + "probability": 0.5184 + }, + { + "start": 21205.24, + "end": 21208.98, + "probability": 0.8849 + }, + { + "start": 21209.56, + "end": 21210.76, + "probability": 0.9299 + }, + { + "start": 21211.78, + "end": 21213.08, + "probability": 0.8708 + }, + { + "start": 21214.18, + "end": 21216.9, + "probability": 0.9189 + }, + { + "start": 21217.5, + "end": 21219.62, + "probability": 0.8717 + }, + { + "start": 21220.36, + "end": 21222.16, + "probability": 0.957 + }, + { + "start": 21226.52, + "end": 21230.04, + "probability": 0.9897 + }, + { + "start": 21230.58, + "end": 21234.54, + "probability": 0.9932 + }, + { + "start": 21237.62, + "end": 21243.34, + "probability": 0.9493 + }, + { + "start": 21245.3, + "end": 21247.28, + "probability": 0.8042 + }, + { + "start": 21247.96, + "end": 21249.76, + "probability": 0.9494 + }, + { + "start": 21250.64, + "end": 21253.81, + "probability": 0.366 + }, + { + "start": 21254.98, + "end": 21257.73, + "probability": 0.5377 + }, + { + "start": 21258.6, + "end": 21261.96, + "probability": 0.9947 + }, + { + "start": 21262.8, + "end": 21265.1, + "probability": 0.6115 + }, + { + "start": 21267.9, + "end": 21268.3, + "probability": 0.2314 + }, + { + "start": 21268.3, + "end": 21269.25, + "probability": 0.5643 + }, + { + "start": 21270.26, + "end": 21272.72, + "probability": 0.854 + }, + { + "start": 21273.34, + "end": 21276.16, + "probability": 0.944 + }, + { + "start": 21277.04, + "end": 21279.58, + "probability": 0.9433 + }, + { + "start": 21281.0, + "end": 21284.19, + "probability": 0.7515 + }, + { + "start": 21285.1, + "end": 21289.65, + "probability": 0.7334 + }, + { + "start": 21290.22, + "end": 21294.28, + "probability": 0.856 + }, + { + "start": 21295.0, + "end": 21296.52, + "probability": 0.7203 + }, + { + "start": 21297.3, + "end": 21300.78, + "probability": 0.9967 + }, + { + "start": 21301.98, + "end": 21305.34, + "probability": 0.0667 + }, + { + "start": 21308.1, + "end": 21310.1, + "probability": 0.6294 + }, + { + "start": 21310.78, + "end": 21313.44, + "probability": 0.9805 + }, + { + "start": 21314.34, + "end": 21315.84, + "probability": 0.9469 + }, + { + "start": 21316.86, + "end": 21318.32, + "probability": 0.6799 + }, + { + "start": 21319.02, + "end": 21319.92, + "probability": 0.6986 + }, + { + "start": 21321.46, + "end": 21323.8, + "probability": 0.8826 + }, + { + "start": 21325.26, + "end": 21327.37, + "probability": 0.9565 + }, + { + "start": 21328.56, + "end": 21330.94, + "probability": 0.9987 + }, + { + "start": 21332.14, + "end": 21337.26, + "probability": 0.9987 + }, + { + "start": 21337.56, + "end": 21338.48, + "probability": 0.6742 + }, + { + "start": 21339.34, + "end": 21340.52, + "probability": 0.7615 + }, + { + "start": 21341.16, + "end": 21341.84, + "probability": 0.9717 + }, + { + "start": 21343.16, + "end": 21347.18, + "probability": 0.9575 + }, + { + "start": 21348.08, + "end": 21353.48, + "probability": 0.917 + }, + { + "start": 21354.3, + "end": 21357.54, + "probability": 0.9946 + }, + { + "start": 21358.28, + "end": 21359.42, + "probability": 0.6417 + }, + { + "start": 21359.52, + "end": 21359.98, + "probability": 0.3964 + }, + { + "start": 21360.24, + "end": 21361.61, + "probability": 0.0589 + }, + { + "start": 21362.68, + "end": 21367.68, + "probability": 0.7399 + }, + { + "start": 21367.76, + "end": 21371.74, + "probability": 0.9727 + }, + { + "start": 21372.42, + "end": 21375.18, + "probability": 0.9732 + }, + { + "start": 21376.1, + "end": 21377.52, + "probability": 0.8862 + }, + { + "start": 21378.32, + "end": 21380.34, + "probability": 0.9672 + }, + { + "start": 21382.02, + "end": 21385.24, + "probability": 0.6693 + }, + { + "start": 21386.1, + "end": 21388.16, + "probability": 0.7393 + }, + { + "start": 21388.92, + "end": 21393.92, + "probability": 0.9491 + }, + { + "start": 21395.56, + "end": 21397.24, + "probability": 0.9763 + }, + { + "start": 21398.1, + "end": 21399.62, + "probability": 0.9941 + }, + { + "start": 21400.3, + "end": 21401.11, + "probability": 0.8779 + }, + { + "start": 21401.22, + "end": 21401.62, + "probability": 0.4796 + }, + { + "start": 21401.7, + "end": 21403.11, + "probability": 0.8326 + }, + { + "start": 21403.76, + "end": 21404.84, + "probability": 0.8001 + }, + { + "start": 21405.52, + "end": 21406.48, + "probability": 0.9539 + }, + { + "start": 21406.94, + "end": 21411.76, + "probability": 0.9988 + }, + { + "start": 21412.54, + "end": 21416.1, + "probability": 0.8837 + }, + { + "start": 21416.9, + "end": 21417.2, + "probability": 0.8656 + }, + { + "start": 21417.38, + "end": 21418.18, + "probability": 0.8386 + }, + { + "start": 21418.42, + "end": 21421.38, + "probability": 0.9214 + }, + { + "start": 21422.16, + "end": 21423.88, + "probability": 0.7315 + }, + { + "start": 21423.88, + "end": 21426.16, + "probability": 0.5262 + }, + { + "start": 21426.8, + "end": 21429.46, + "probability": 0.9922 + }, + { + "start": 21429.46, + "end": 21433.76, + "probability": 0.9962 + }, + { + "start": 21433.82, + "end": 21434.32, + "probability": 0.7804 + }, + { + "start": 21436.1, + "end": 21437.04, + "probability": 0.9233 + }, + { + "start": 21437.04, + "end": 21437.78, + "probability": 0.8578 + }, + { + "start": 21445.54, + "end": 21449.72, + "probability": 0.2332 + }, + { + "start": 21451.08, + "end": 21457.62, + "probability": 0.0812 + }, + { + "start": 21460.35, + "end": 21465.7, + "probability": 0.4622 + }, + { + "start": 21466.58, + "end": 21472.28, + "probability": 0.8572 + }, + { + "start": 21472.94, + "end": 21478.64, + "probability": 0.9238 + }, + { + "start": 21478.64, + "end": 21484.28, + "probability": 0.9196 + }, + { + "start": 21506.82, + "end": 21509.1, + "probability": 0.5777 + }, + { + "start": 21510.0, + "end": 21514.42, + "probability": 0.6382 + }, + { + "start": 21518.48, + "end": 21519.22, + "probability": 0.8431 + }, + { + "start": 21519.84, + "end": 21521.06, + "probability": 0.6775 + }, + { + "start": 21523.44, + "end": 21526.1, + "probability": 0.8929 + }, + { + "start": 21528.02, + "end": 21530.0, + "probability": 0.995 + }, + { + "start": 21531.6, + "end": 21533.02, + "probability": 0.9946 + }, + { + "start": 21534.06, + "end": 21539.82, + "probability": 0.6591 + }, + { + "start": 21540.7, + "end": 21542.68, + "probability": 0.9672 + }, + { + "start": 21543.26, + "end": 21544.72, + "probability": 0.9749 + }, + { + "start": 21545.64, + "end": 21546.34, + "probability": 0.9543 + }, + { + "start": 21547.06, + "end": 21548.18, + "probability": 0.7343 + }, + { + "start": 21549.08, + "end": 21549.7, + "probability": 0.7539 + }, + { + "start": 21551.78, + "end": 21555.08, + "probability": 0.771 + }, + { + "start": 21555.68, + "end": 21556.04, + "probability": 0.6265 + }, + { + "start": 21556.92, + "end": 21559.14, + "probability": 0.8866 + }, + { + "start": 21561.72, + "end": 21563.94, + "probability": 0.7568 + }, + { + "start": 21565.1, + "end": 21571.3, + "probability": 0.974 + }, + { + "start": 21572.44, + "end": 21579.06, + "probability": 0.9951 + }, + { + "start": 21579.7, + "end": 21580.6, + "probability": 0.6056 + }, + { + "start": 21581.24, + "end": 21585.32, + "probability": 0.8687 + }, + { + "start": 21585.32, + "end": 21589.54, + "probability": 0.9928 + }, + { + "start": 21590.3, + "end": 21593.16, + "probability": 0.9252 + }, + { + "start": 21594.02, + "end": 21597.36, + "probability": 0.9895 + }, + { + "start": 21598.52, + "end": 21604.62, + "probability": 0.7592 + }, + { + "start": 21605.52, + "end": 21607.46, + "probability": 0.8512 + }, + { + "start": 21608.34, + "end": 21610.24, + "probability": 0.9925 + }, + { + "start": 21610.92, + "end": 21613.2, + "probability": 0.9253 + }, + { + "start": 21614.24, + "end": 21618.9, + "probability": 0.9595 + }, + { + "start": 21619.88, + "end": 21629.56, + "probability": 0.9785 + }, + { + "start": 21630.64, + "end": 21637.06, + "probability": 0.9891 + }, + { + "start": 21638.1, + "end": 21641.86, + "probability": 0.998 + }, + { + "start": 21642.46, + "end": 21645.7, + "probability": 0.955 + }, + { + "start": 21646.86, + "end": 21652.54, + "probability": 0.9971 + }, + { + "start": 21652.6, + "end": 21655.88, + "probability": 0.7945 + }, + { + "start": 21656.44, + "end": 21658.06, + "probability": 0.891 + }, + { + "start": 21658.42, + "end": 21661.45, + "probability": 0.912 + }, + { + "start": 21661.88, + "end": 21664.36, + "probability": 0.9929 + }, + { + "start": 21664.36, + "end": 21667.24, + "probability": 0.8833 + }, + { + "start": 21667.9, + "end": 21670.04, + "probability": 0.9946 + }, + { + "start": 21670.58, + "end": 21671.28, + "probability": 0.9006 + }, + { + "start": 21672.04, + "end": 21672.74, + "probability": 0.9186 + }, + { + "start": 21673.7, + "end": 21674.66, + "probability": 0.6534 + }, + { + "start": 21675.52, + "end": 21678.67, + "probability": 0.9384 + }, + { + "start": 21680.32, + "end": 21682.48, + "probability": 0.6528 + }, + { + "start": 21683.36, + "end": 21685.78, + "probability": 0.9879 + }, + { + "start": 21686.48, + "end": 21692.84, + "probability": 0.9399 + }, + { + "start": 21693.76, + "end": 21694.44, + "probability": 0.9569 + }, + { + "start": 21695.76, + "end": 21696.52, + "probability": 0.6665 + }, + { + "start": 21697.18, + "end": 21698.82, + "probability": 0.6767 + }, + { + "start": 21699.44, + "end": 21703.9, + "probability": 0.9661 + }, + { + "start": 21703.9, + "end": 21709.02, + "probability": 0.9795 + }, + { + "start": 21710.26, + "end": 21712.56, + "probability": 0.9546 + }, + { + "start": 21713.1, + "end": 21716.68, + "probability": 0.989 + }, + { + "start": 21716.68, + "end": 21720.6, + "probability": 0.9985 + }, + { + "start": 21721.26, + "end": 21725.22, + "probability": 0.9763 + }, + { + "start": 21725.74, + "end": 21729.82, + "probability": 0.9702 + }, + { + "start": 21730.32, + "end": 21731.72, + "probability": 0.8912 + }, + { + "start": 21732.2, + "end": 21735.32, + "probability": 0.8888 + }, + { + "start": 21736.18, + "end": 21738.03, + "probability": 0.9163 + }, + { + "start": 21739.1, + "end": 21742.32, + "probability": 0.9127 + }, + { + "start": 21742.88, + "end": 21743.7, + "probability": 0.8503 + }, + { + "start": 21744.3, + "end": 21746.74, + "probability": 0.5216 + }, + { + "start": 21747.3, + "end": 21751.42, + "probability": 0.9717 + }, + { + "start": 21751.9, + "end": 21757.34, + "probability": 0.9932 + }, + { + "start": 21757.84, + "end": 21759.92, + "probability": 0.9727 + }, + { + "start": 21761.1, + "end": 21764.42, + "probability": 0.9967 + }, + { + "start": 21765.0, + "end": 21766.8, + "probability": 0.6668 + }, + { + "start": 21768.22, + "end": 21769.84, + "probability": 0.9202 + }, + { + "start": 21770.48, + "end": 21775.02, + "probability": 0.7497 + }, + { + "start": 21775.92, + "end": 21777.28, + "probability": 0.9976 + }, + { + "start": 21777.82, + "end": 21779.96, + "probability": 0.9813 + }, + { + "start": 21780.62, + "end": 21783.9, + "probability": 0.9951 + }, + { + "start": 21784.38, + "end": 21787.54, + "probability": 0.9484 + }, + { + "start": 21788.14, + "end": 21792.7, + "probability": 0.8083 + }, + { + "start": 21793.68, + "end": 21794.62, + "probability": 0.9031 + }, + { + "start": 21795.32, + "end": 21795.64, + "probability": 0.7082 + }, + { + "start": 21797.04, + "end": 21802.2, + "probability": 0.9785 + }, + { + "start": 21803.0, + "end": 21803.94, + "probability": 0.252 + }, + { + "start": 21804.6, + "end": 21809.12, + "probability": 0.9844 + }, + { + "start": 21810.12, + "end": 21813.74, + "probability": 0.9939 + }, + { + "start": 21814.6, + "end": 21818.92, + "probability": 0.8883 + }, + { + "start": 21819.68, + "end": 21823.18, + "probability": 0.9395 + }, + { + "start": 21824.36, + "end": 21825.46, + "probability": 0.6019 + }, + { + "start": 21826.84, + "end": 21828.86, + "probability": 0.907 + }, + { + "start": 21829.6, + "end": 21831.6, + "probability": 0.9724 + }, + { + "start": 21832.18, + "end": 21835.08, + "probability": 0.9874 + }, + { + "start": 21836.24, + "end": 21838.66, + "probability": 0.9827 + }, + { + "start": 21839.32, + "end": 21843.18, + "probability": 0.9609 + }, + { + "start": 21843.8, + "end": 21846.64, + "probability": 0.9922 + }, + { + "start": 21847.56, + "end": 21854.02, + "probability": 0.9916 + }, + { + "start": 21854.44, + "end": 21855.62, + "probability": 0.958 + }, + { + "start": 21856.68, + "end": 21857.16, + "probability": 0.7584 + }, + { + "start": 21858.34, + "end": 21861.26, + "probability": 0.9895 + }, + { + "start": 21861.88, + "end": 21864.12, + "probability": 0.9844 + }, + { + "start": 21865.04, + "end": 21865.72, + "probability": 0.6913 + }, + { + "start": 21867.38, + "end": 21872.04, + "probability": 0.9517 + }, + { + "start": 21872.8, + "end": 21876.38, + "probability": 0.986 + }, + { + "start": 21877.64, + "end": 21881.36, + "probability": 0.7643 + }, + { + "start": 21882.04, + "end": 21885.12, + "probability": 0.9803 + }, + { + "start": 21885.82, + "end": 21888.86, + "probability": 0.988 + }, + { + "start": 21889.64, + "end": 21892.08, + "probability": 0.922 + }, + { + "start": 21892.8, + "end": 21894.7, + "probability": 0.9874 + }, + { + "start": 21895.34, + "end": 21900.36, + "probability": 0.834 + }, + { + "start": 21900.58, + "end": 21902.74, + "probability": 0.9973 + }, + { + "start": 21904.2, + "end": 21905.18, + "probability": 0.9924 + }, + { + "start": 21906.16, + "end": 21908.42, + "probability": 0.9978 + }, + { + "start": 21909.3, + "end": 21912.22, + "probability": 0.9908 + }, + { + "start": 21912.94, + "end": 21914.58, + "probability": 0.9856 + }, + { + "start": 21915.18, + "end": 21915.86, + "probability": 0.9657 + }, + { + "start": 21916.18, + "end": 21917.32, + "probability": 0.9487 + }, + { + "start": 21917.78, + "end": 21919.88, + "probability": 0.8599 + }, + { + "start": 21920.22, + "end": 21922.9, + "probability": 0.998 + }, + { + "start": 21922.9, + "end": 21927.14, + "probability": 0.9935 + }, + { + "start": 21927.86, + "end": 21929.58, + "probability": 0.7189 + }, + { + "start": 21931.2, + "end": 21933.98, + "probability": 0.6521 + }, + { + "start": 21934.88, + "end": 21937.46, + "probability": 0.9509 + }, + { + "start": 21938.65, + "end": 21940.84, + "probability": 0.7611 + }, + { + "start": 21941.44, + "end": 21942.46, + "probability": 0.851 + }, + { + "start": 21943.26, + "end": 21946.12, + "probability": 0.8504 + }, + { + "start": 21946.98, + "end": 21948.38, + "probability": 0.9937 + }, + { + "start": 21949.3, + "end": 21951.18, + "probability": 0.9736 + }, + { + "start": 21952.8, + "end": 21953.52, + "probability": 0.9323 + }, + { + "start": 21954.36, + "end": 21954.72, + "probability": 0.8625 + }, + { + "start": 21955.5, + "end": 21956.34, + "probability": 0.9552 + }, + { + "start": 21958.4, + "end": 21965.0, + "probability": 0.8955 + }, + { + "start": 21965.84, + "end": 21968.48, + "probability": 0.9647 + }, + { + "start": 21969.28, + "end": 21972.02, + "probability": 0.9158 + }, + { + "start": 21972.92, + "end": 21973.32, + "probability": 0.8313 + }, + { + "start": 21974.26, + "end": 21975.04, + "probability": 0.9834 + }, + { + "start": 21976.08, + "end": 21979.36, + "probability": 0.9787 + }, + { + "start": 21981.06, + "end": 21981.84, + "probability": 0.9993 + }, + { + "start": 21982.44, + "end": 21983.4, + "probability": 0.97 + }, + { + "start": 21984.42, + "end": 21985.94, + "probability": 0.9197 + }, + { + "start": 21986.56, + "end": 21987.98, + "probability": 0.9401 + }, + { + "start": 21988.52, + "end": 21989.12, + "probability": 0.8347 + }, + { + "start": 21990.14, + "end": 21994.32, + "probability": 0.9883 + }, + { + "start": 21995.28, + "end": 21997.28, + "probability": 0.9208 + }, + { + "start": 21999.0, + "end": 22001.76, + "probability": 0.9834 + }, + { + "start": 22003.34, + "end": 22011.86, + "probability": 0.9854 + }, + { + "start": 22012.46, + "end": 22014.52, + "probability": 0.9653 + }, + { + "start": 22015.12, + "end": 22016.1, + "probability": 0.7741 + }, + { + "start": 22017.12, + "end": 22017.7, + "probability": 0.755 + }, + { + "start": 22018.46, + "end": 22020.3, + "probability": 0.8159 + }, + { + "start": 22021.26, + "end": 22022.2, + "probability": 0.6346 + }, + { + "start": 22023.34, + "end": 22025.74, + "probability": 0.9486 + }, + { + "start": 22026.64, + "end": 22030.68, + "probability": 0.9841 + }, + { + "start": 22031.24, + "end": 22032.46, + "probability": 0.8953 + }, + { + "start": 22033.04, + "end": 22034.56, + "probability": 0.869 + }, + { + "start": 22035.3, + "end": 22039.22, + "probability": 0.8503 + }, + { + "start": 22039.78, + "end": 22044.36, + "probability": 0.9231 + }, + { + "start": 22045.72, + "end": 22046.22, + "probability": 0.6476 + }, + { + "start": 22046.4, + "end": 22046.54, + "probability": 0.3518 + }, + { + "start": 22046.56, + "end": 22047.74, + "probability": 0.9612 + }, + { + "start": 22048.14, + "end": 22050.96, + "probability": 0.7458 + }, + { + "start": 22073.54, + "end": 22077.78, + "probability": 0.848 + }, + { + "start": 22078.64, + "end": 22081.78, + "probability": 0.7947 + }, + { + "start": 22082.74, + "end": 22084.36, + "probability": 0.9758 + }, + { + "start": 22089.0, + "end": 22091.96, + "probability": 0.7251 + }, + { + "start": 22092.5, + "end": 22092.8, + "probability": 0.8979 + }, + { + "start": 22092.9, + "end": 22097.46, + "probability": 0.9917 + }, + { + "start": 22097.46, + "end": 22102.4, + "probability": 0.9839 + }, + { + "start": 22102.44, + "end": 22106.14, + "probability": 0.98 + }, + { + "start": 22106.14, + "end": 22110.34, + "probability": 0.9087 + }, + { + "start": 22110.4, + "end": 22112.96, + "probability": 0.8828 + }, + { + "start": 22113.26, + "end": 22117.24, + "probability": 0.9756 + }, + { + "start": 22118.32, + "end": 22124.8, + "probability": 0.8868 + }, + { + "start": 22124.88, + "end": 22128.46, + "probability": 0.9339 + }, + { + "start": 22128.52, + "end": 22135.14, + "probability": 0.9759 + }, + { + "start": 22135.94, + "end": 22139.1, + "probability": 0.9916 + }, + { + "start": 22139.1, + "end": 22142.86, + "probability": 0.999 + }, + { + "start": 22144.22, + "end": 22147.96, + "probability": 0.9878 + }, + { + "start": 22147.96, + "end": 22152.5, + "probability": 0.9996 + }, + { + "start": 22152.94, + "end": 22159.06, + "probability": 0.9836 + }, + { + "start": 22159.3, + "end": 22162.36, + "probability": 0.8987 + }, + { + "start": 22162.64, + "end": 22169.92, + "probability": 0.9849 + }, + { + "start": 22170.0, + "end": 22171.32, + "probability": 0.9619 + }, + { + "start": 22171.56, + "end": 22180.2, + "probability": 0.9934 + }, + { + "start": 22181.08, + "end": 22186.7, + "probability": 0.9082 + }, + { + "start": 22186.7, + "end": 22190.9, + "probability": 0.9899 + }, + { + "start": 22192.1, + "end": 22198.6, + "probability": 0.9944 + }, + { + "start": 22199.14, + "end": 22202.38, + "probability": 0.9696 + }, + { + "start": 22202.9, + "end": 22208.92, + "probability": 0.9902 + }, + { + "start": 22208.92, + "end": 22212.7, + "probability": 0.9993 + }, + { + "start": 22213.52, + "end": 22218.0, + "probability": 0.9849 + }, + { + "start": 22218.26, + "end": 22221.7, + "probability": 0.996 + }, + { + "start": 22222.58, + "end": 22222.88, + "probability": 0.69 + }, + { + "start": 22223.68, + "end": 22224.42, + "probability": 0.68 + }, + { + "start": 22224.52, + "end": 22225.2, + "probability": 0.7457 + }, + { + "start": 22225.28, + "end": 22227.98, + "probability": 0.8882 + }, + { + "start": 22228.18, + "end": 22229.36, + "probability": 0.8784 + }, + { + "start": 22229.38, + "end": 22230.62, + "probability": 0.838 + }, + { + "start": 22230.96, + "end": 22232.52, + "probability": 0.9463 + }, + { + "start": 22232.62, + "end": 22235.1, + "probability": 0.7112 + }, + { + "start": 22235.44, + "end": 22236.66, + "probability": 0.5899 + }, + { + "start": 22237.0, + "end": 22238.68, + "probability": 0.2023 + }, + { + "start": 22238.96, + "end": 22240.58, + "probability": 0.9578 + }, + { + "start": 22241.28, + "end": 22244.06, + "probability": 0.8757 + }, + { + "start": 22244.34, + "end": 22244.6, + "probability": 0.4304 + }, + { + "start": 22244.68, + "end": 22247.32, + "probability": 0.8873 + }, + { + "start": 22254.86, + "end": 22255.92, + "probability": 0.6469 + }, + { + "start": 22256.0, + "end": 22259.88, + "probability": 0.8688 + }, + { + "start": 22261.06, + "end": 22261.56, + "probability": 0.6195 + }, + { + "start": 22261.83, + "end": 22267.01, + "probability": 0.9289 + }, + { + "start": 22267.3, + "end": 22267.58, + "probability": 0.736 + }, + { + "start": 22267.62, + "end": 22270.36, + "probability": 0.9876 + }, + { + "start": 22270.84, + "end": 22272.88, + "probability": 0.9588 + }, + { + "start": 22272.94, + "end": 22277.08, + "probability": 0.1994 + }, + { + "start": 22277.76, + "end": 22279.02, + "probability": 0.2401 + }, + { + "start": 22279.54, + "end": 22280.84, + "probability": 0.2346 + }, + { + "start": 22281.98, + "end": 22284.46, + "probability": 0.7299 + }, + { + "start": 22284.52, + "end": 22285.3, + "probability": 0.4453 + }, + { + "start": 22285.64, + "end": 22286.85, + "probability": 0.3337 + }, + { + "start": 22287.08, + "end": 22287.8, + "probability": 0.1699 + }, + { + "start": 22288.1, + "end": 22289.12, + "probability": 0.3644 + }, + { + "start": 22289.12, + "end": 22291.54, + "probability": 0.4494 + }, + { + "start": 22292.63, + "end": 22295.64, + "probability": 0.8037 + }, + { + "start": 22295.88, + "end": 22297.26, + "probability": 0.889 + }, + { + "start": 22297.98, + "end": 22300.76, + "probability": 0.8665 + }, + { + "start": 22300.94, + "end": 22301.6, + "probability": 0.8555 + }, + { + "start": 22302.28, + "end": 22305.4, + "probability": 0.998 + }, + { + "start": 22305.6, + "end": 22307.92, + "probability": 0.8765 + }, + { + "start": 22308.87, + "end": 22310.14, + "probability": 0.7014 + }, + { + "start": 22311.8, + "end": 22313.06, + "probability": 0.7711 + }, + { + "start": 22313.14, + "end": 22315.76, + "probability": 0.9819 + }, + { + "start": 22315.92, + "end": 22316.86, + "probability": 0.9802 + }, + { + "start": 22316.98, + "end": 22318.2, + "probability": 0.9471 + }, + { + "start": 22318.32, + "end": 22320.34, + "probability": 0.991 + }, + { + "start": 22320.71, + "end": 22321.6, + "probability": 0.5432 + }, + { + "start": 22321.7, + "end": 22322.14, + "probability": 0.698 + }, + { + "start": 22322.46, + "end": 22323.46, + "probability": 0.8451 + }, + { + "start": 22323.54, + "end": 22323.96, + "probability": 0.7059 + }, + { + "start": 22324.0, + "end": 22326.34, + "probability": 0.7826 + }, + { + "start": 22326.42, + "end": 22327.64, + "probability": 0.9767 + }, + { + "start": 22327.64, + "end": 22329.76, + "probability": 0.9741 + }, + { + "start": 22330.18, + "end": 22331.62, + "probability": 0.875 + }, + { + "start": 22332.24, + "end": 22334.88, + "probability": 0.9619 + }, + { + "start": 22335.44, + "end": 22338.78, + "probability": 0.9624 + }, + { + "start": 22339.36, + "end": 22342.88, + "probability": 0.9866 + }, + { + "start": 22343.34, + "end": 22346.4, + "probability": 0.9954 + }, + { + "start": 22346.7, + "end": 22348.9, + "probability": 0.9871 + }, + { + "start": 22349.28, + "end": 22351.67, + "probability": 0.9735 + }, + { + "start": 22352.16, + "end": 22353.58, + "probability": 0.8433 + }, + { + "start": 22353.68, + "end": 22356.9, + "probability": 0.9622 + }, + { + "start": 22357.76, + "end": 22361.66, + "probability": 0.5994 + }, + { + "start": 22361.96, + "end": 22363.24, + "probability": 0.813 + }, + { + "start": 22363.46, + "end": 22366.98, + "probability": 0.9661 + }, + { + "start": 22367.86, + "end": 22369.9, + "probability": 0.1182 + }, + { + "start": 22370.22, + "end": 22371.56, + "probability": 0.0584 + }, + { + "start": 22371.8, + "end": 22372.87, + "probability": 0.0582 + }, + { + "start": 22373.62, + "end": 22376.56, + "probability": 0.1982 + }, + { + "start": 22377.78, + "end": 22380.4, + "probability": 0.501 + }, + { + "start": 22383.92, + "end": 22386.36, + "probability": 0.9077 + }, + { + "start": 22386.8, + "end": 22389.42, + "probability": 0.9052 + }, + { + "start": 22389.46, + "end": 22393.6, + "probability": 0.9839 + }, + { + "start": 22393.6, + "end": 22395.7, + "probability": 0.9937 + }, + { + "start": 22396.04, + "end": 22396.96, + "probability": 0.9686 + }, + { + "start": 22397.04, + "end": 22397.92, + "probability": 0.9935 + }, + { + "start": 22398.36, + "end": 22400.54, + "probability": 0.853 + }, + { + "start": 22400.82, + "end": 22403.6, + "probability": 0.987 + }, + { + "start": 22403.6, + "end": 22406.08, + "probability": 0.996 + }, + { + "start": 22406.14, + "end": 22406.64, + "probability": 0.7715 + }, + { + "start": 22407.2, + "end": 22408.58, + "probability": 0.843 + }, + { + "start": 22408.64, + "end": 22410.44, + "probability": 0.8682 + }, + { + "start": 22411.56, + "end": 22418.02, + "probability": 0.9546 + }, + { + "start": 22418.02, + "end": 22418.24, + "probability": 0.1823 + }, + { + "start": 22418.24, + "end": 22418.97, + "probability": 0.5097 + }, + { + "start": 22420.4, + "end": 22421.05, + "probability": 0.9971 + }, + { + "start": 22422.26, + "end": 22426.12, + "probability": 0.9955 + }, + { + "start": 22426.12, + "end": 22428.2, + "probability": 0.9976 + }, + { + "start": 22429.04, + "end": 22431.9, + "probability": 0.9766 + }, + { + "start": 22432.06, + "end": 22432.86, + "probability": 0.936 + }, + { + "start": 22432.96, + "end": 22436.74, + "probability": 0.9841 + }, + { + "start": 22437.08, + "end": 22438.72, + "probability": 0.3523 + }, + { + "start": 22439.16, + "end": 22443.1, + "probability": 0.9811 + }, + { + "start": 22443.1, + "end": 22447.06, + "probability": 0.9967 + }, + { + "start": 22447.58, + "end": 22449.76, + "probability": 0.979 + }, + { + "start": 22450.06, + "end": 22450.44, + "probability": 0.7887 + }, + { + "start": 22450.64, + "end": 22453.06, + "probability": 0.8151 + }, + { + "start": 22453.26, + "end": 22457.24, + "probability": 0.9272 + }, + { + "start": 22457.58, + "end": 22460.08, + "probability": 0.8986 + }, + { + "start": 22460.12, + "end": 22460.54, + "probability": 0.6515 + }, + { + "start": 22460.6, + "end": 22460.78, + "probability": 0.9367 + }, + { + "start": 22460.88, + "end": 22462.6, + "probability": 0.9941 + }, + { + "start": 22462.62, + "end": 22463.88, + "probability": 0.4379 + }, + { + "start": 22464.12, + "end": 22466.32, + "probability": 0.9181 + }, + { + "start": 22466.64, + "end": 22467.48, + "probability": 0.7292 + }, + { + "start": 22467.64, + "end": 22469.26, + "probability": 0.6765 + }, + { + "start": 22469.88, + "end": 22470.54, + "probability": 0.658 + }, + { + "start": 22470.74, + "end": 22471.28, + "probability": 0.8118 + }, + { + "start": 22471.44, + "end": 22472.44, + "probability": 0.9812 + }, + { + "start": 22472.48, + "end": 22477.22, + "probability": 0.996 + }, + { + "start": 22477.32, + "end": 22479.16, + "probability": 0.7913 + }, + { + "start": 22479.46, + "end": 22479.48, + "probability": 0.2974 + }, + { + "start": 22479.64, + "end": 22481.64, + "probability": 0.9917 + }, + { + "start": 22481.88, + "end": 22482.6, + "probability": 0.9578 + }, + { + "start": 22482.62, + "end": 22483.22, + "probability": 0.8075 + }, + { + "start": 22483.42, + "end": 22485.46, + "probability": 0.9975 + }, + { + "start": 22485.92, + "end": 22486.9, + "probability": 0.8068 + }, + { + "start": 22487.02, + "end": 22487.38, + "probability": 0.4111 + }, + { + "start": 22487.5, + "end": 22488.36, + "probability": 0.7858 + }, + { + "start": 22488.7, + "end": 22492.98, + "probability": 0.6893 + }, + { + "start": 22493.14, + "end": 22496.22, + "probability": 0.9883 + }, + { + "start": 22496.72, + "end": 22498.04, + "probability": 0.8963 + }, + { + "start": 22498.1, + "end": 22502.16, + "probability": 0.794 + }, + { + "start": 22502.26, + "end": 22502.52, + "probability": 0.7224 + }, + { + "start": 22502.74, + "end": 22503.8, + "probability": 0.605 + }, + { + "start": 22503.88, + "end": 22509.36, + "probability": 0.926 + }, + { + "start": 22510.22, + "end": 22511.78, + "probability": 0.3452 + }, + { + "start": 22512.02, + "end": 22514.02, + "probability": 0.9406 + }, + { + "start": 22514.56, + "end": 22516.28, + "probability": 0.8436 + }, + { + "start": 22516.58, + "end": 22517.18, + "probability": 0.1169 + }, + { + "start": 22519.28, + "end": 22520.98, + "probability": 0.8548 + }, + { + "start": 22521.78, + "end": 22523.66, + "probability": 0.9733 + }, + { + "start": 22525.06, + "end": 22526.02, + "probability": 0.8532 + }, + { + "start": 22528.62, + "end": 22529.38, + "probability": 0.654 + }, + { + "start": 22530.52, + "end": 22534.04, + "probability": 0.7156 + }, + { + "start": 22535.6, + "end": 22541.58, + "probability": 0.8495 + }, + { + "start": 22541.76, + "end": 22543.7, + "probability": 0.8229 + }, + { + "start": 22544.12, + "end": 22547.48, + "probability": 0.9103 + }, + { + "start": 22549.48, + "end": 22551.26, + "probability": 0.1682 + }, + { + "start": 22552.26, + "end": 22554.78, + "probability": 0.2183 + }, + { + "start": 22556.66, + "end": 22557.22, + "probability": 0.0887 + }, + { + "start": 22559.64, + "end": 22564.29, + "probability": 0.5676 + }, + { + "start": 22564.82, + "end": 22565.44, + "probability": 0.2722 + }, + { + "start": 22566.64, + "end": 22567.6, + "probability": 0.2427 + }, + { + "start": 22569.6, + "end": 22570.14, + "probability": 0.5768 + }, + { + "start": 22570.14, + "end": 22570.6, + "probability": 0.3531 + }, + { + "start": 22570.74, + "end": 22571.28, + "probability": 0.4413 + }, + { + "start": 22571.28, + "end": 22576.52, + "probability": 0.974 + }, + { + "start": 22577.18, + "end": 22579.64, + "probability": 0.8178 + }, + { + "start": 22580.22, + "end": 22586.32, + "probability": 0.8475 + }, + { + "start": 22586.76, + "end": 22589.02, + "probability": 0.4552 + }, + { + "start": 22589.58, + "end": 22589.64, + "probability": 0.7801 + }, + { + "start": 22589.64, + "end": 22592.72, + "probability": 0.5254 + }, + { + "start": 22592.84, + "end": 22593.92, + "probability": 0.8546 + }, + { + "start": 22594.34, + "end": 22597.36, + "probability": 0.7039 + }, + { + "start": 22597.36, + "end": 22601.28, + "probability": 0.8707 + }, + { + "start": 22601.6, + "end": 22603.98, + "probability": 0.1473 + }, + { + "start": 22604.12, + "end": 22606.86, + "probability": 0.9801 + }, + { + "start": 22606.86, + "end": 22612.68, + "probability": 0.8305 + }, + { + "start": 22612.74, + "end": 22615.2, + "probability": 0.2264 + }, + { + "start": 22615.66, + "end": 22620.6, + "probability": 0.8878 + }, + { + "start": 22620.88, + "end": 22625.63, + "probability": 0.7403 + }, + { + "start": 22626.06, + "end": 22628.04, + "probability": 0.864 + }, + { + "start": 22628.32, + "end": 22629.34, + "probability": 0.5748 + }, + { + "start": 22630.26, + "end": 22633.16, + "probability": 0.973 + }, + { + "start": 22633.4, + "end": 22635.1, + "probability": 0.7985 + }, + { + "start": 22635.46, + "end": 22639.22, + "probability": 0.9891 + }, + { + "start": 22654.32, + "end": 22655.28, + "probability": 0.6731 + }, + { + "start": 22658.5, + "end": 22664.78, + "probability": 0.4838 + }, + { + "start": 22665.7, + "end": 22666.54, + "probability": 0.9053 + }, + { + "start": 22668.62, + "end": 22669.3, + "probability": 0.8441 + }, + { + "start": 22674.94, + "end": 22676.79, + "probability": 0.9871 + }, + { + "start": 22677.34, + "end": 22677.86, + "probability": 0.5025 + }, + { + "start": 22682.1, + "end": 22682.72, + "probability": 0.7989 + }, + { + "start": 22684.06, + "end": 22689.08, + "probability": 0.9387 + }, + { + "start": 22689.38, + "end": 22692.58, + "probability": 0.6533 + }, + { + "start": 22692.98, + "end": 22693.72, + "probability": 0.0365 + }, + { + "start": 22694.66, + "end": 22695.55, + "probability": 0.0908 + }, + { + "start": 22697.8, + "end": 22701.32, + "probability": 0.7323 + }, + { + "start": 22704.9, + "end": 22707.62, + "probability": 0.9353 + }, + { + "start": 22709.94, + "end": 22711.32, + "probability": 0.8981 + }, + { + "start": 22714.02, + "end": 22718.24, + "probability": 0.9263 + }, + { + "start": 22719.68, + "end": 22722.26, + "probability": 0.8237 + }, + { + "start": 22723.46, + "end": 22724.18, + "probability": 0.873 + }, + { + "start": 22724.78, + "end": 22725.3, + "probability": 0.9688 + }, + { + "start": 22726.2, + "end": 22727.74, + "probability": 0.8064 + }, + { + "start": 22729.08, + "end": 22729.8, + "probability": 0.2225 + }, + { + "start": 22730.28, + "end": 22731.26, + "probability": 0.9278 + }, + { + "start": 22731.36, + "end": 22732.54, + "probability": 0.5502 + }, + { + "start": 22735.3, + "end": 22737.6, + "probability": 0.9034 + }, + { + "start": 22739.44, + "end": 22739.82, + "probability": 0.9298 + }, + { + "start": 22741.1, + "end": 22742.18, + "probability": 0.8162 + }, + { + "start": 22742.78, + "end": 22743.86, + "probability": 0.9661 + }, + { + "start": 22745.04, + "end": 22745.64, + "probability": 0.851 + }, + { + "start": 22747.72, + "end": 22748.7, + "probability": 0.9956 + }, + { + "start": 22751.92, + "end": 22754.02, + "probability": 0.9989 + }, + { + "start": 22754.92, + "end": 22757.16, + "probability": 0.6693 + }, + { + "start": 22758.38, + "end": 22760.28, + "probability": 0.8543 + }, + { + "start": 22761.5, + "end": 22762.04, + "probability": 0.7528 + }, + { + "start": 22764.88, + "end": 22765.7, + "probability": 0.9561 + }, + { + "start": 22766.68, + "end": 22770.4, + "probability": 0.9973 + }, + { + "start": 22774.24, + "end": 22778.78, + "probability": 0.9689 + }, + { + "start": 22780.22, + "end": 22782.08, + "probability": 0.9883 + }, + { + "start": 22783.3, + "end": 22784.46, + "probability": 0.999 + }, + { + "start": 22784.72, + "end": 22788.8, + "probability": 0.9868 + }, + { + "start": 22789.84, + "end": 22793.2, + "probability": 0.9912 + }, + { + "start": 22793.94, + "end": 22795.92, + "probability": 0.7671 + }, + { + "start": 22796.84, + "end": 22798.1, + "probability": 0.8081 + }, + { + "start": 22799.28, + "end": 22800.33, + "probability": 0.5858 + }, + { + "start": 22801.0, + "end": 22802.7, + "probability": 0.8432 + }, + { + "start": 22804.04, + "end": 22805.36, + "probability": 0.7375 + }, + { + "start": 22807.42, + "end": 22808.98, + "probability": 0.9115 + }, + { + "start": 22811.7, + "end": 22812.64, + "probability": 0.7539 + }, + { + "start": 22814.86, + "end": 22815.7, + "probability": 0.5037 + }, + { + "start": 22816.7, + "end": 22821.24, + "probability": 0.9541 + }, + { + "start": 22822.44, + "end": 22825.36, + "probability": 0.9694 + }, + { + "start": 22827.32, + "end": 22827.82, + "probability": 0.3654 + }, + { + "start": 22830.68, + "end": 22832.86, + "probability": 0.995 + }, + { + "start": 22834.28, + "end": 22837.0, + "probability": 0.9219 + }, + { + "start": 22837.88, + "end": 22839.04, + "probability": 0.9445 + }, + { + "start": 22840.9, + "end": 22842.56, + "probability": 0.6494 + }, + { + "start": 22843.5, + "end": 22844.76, + "probability": 0.8341 + }, + { + "start": 22845.76, + "end": 22847.06, + "probability": 0.6057 + }, + { + "start": 22848.72, + "end": 22848.82, + "probability": 0.0156 + }, + { + "start": 22848.82, + "end": 22849.96, + "probability": 0.6641 + }, + { + "start": 22851.6, + "end": 22853.36, + "probability": 0.9542 + }, + { + "start": 22854.84, + "end": 22856.38, + "probability": 0.7955 + }, + { + "start": 22857.16, + "end": 22857.7, + "probability": 0.9206 + }, + { + "start": 22860.68, + "end": 22862.16, + "probability": 0.9134 + }, + { + "start": 22862.32, + "end": 22863.06, + "probability": 0.895 + }, + { + "start": 22863.64, + "end": 22865.3, + "probability": 0.9955 + }, + { + "start": 22867.3, + "end": 22871.46, + "probability": 0.9927 + }, + { + "start": 22872.54, + "end": 22873.96, + "probability": 0.9271 + }, + { + "start": 22875.12, + "end": 22877.9, + "probability": 0.8651 + }, + { + "start": 22877.96, + "end": 22879.34, + "probability": 0.9697 + }, + { + "start": 22879.4, + "end": 22880.26, + "probability": 0.9864 + }, + { + "start": 22881.02, + "end": 22882.42, + "probability": 0.9744 + }, + { + "start": 22886.58, + "end": 22893.02, + "probability": 0.935 + }, + { + "start": 22894.92, + "end": 22896.98, + "probability": 0.7823 + }, + { + "start": 22897.18, + "end": 22897.95, + "probability": 0.9746 + }, + { + "start": 22898.22, + "end": 22899.2, + "probability": 0.9058 + }, + { + "start": 22899.76, + "end": 22901.14, + "probability": 0.6054 + }, + { + "start": 22901.66, + "end": 22903.8, + "probability": 0.8809 + }, + { + "start": 22906.32, + "end": 22908.24, + "probability": 0.7878 + }, + { + "start": 22909.9, + "end": 22912.94, + "probability": 0.6628 + }, + { + "start": 22913.62, + "end": 22915.67, + "probability": 0.6681 + }, + { + "start": 22917.42, + "end": 22918.88, + "probability": 0.9428 + }, + { + "start": 22920.0, + "end": 22923.2, + "probability": 0.9614 + }, + { + "start": 22924.44, + "end": 22927.0, + "probability": 0.8281 + }, + { + "start": 22927.78, + "end": 22933.1, + "probability": 0.9688 + }, + { + "start": 22934.32, + "end": 22935.14, + "probability": 0.9244 + }, + { + "start": 22935.94, + "end": 22936.64, + "probability": 0.4659 + }, + { + "start": 22937.22, + "end": 22940.1, + "probability": 0.9056 + }, + { + "start": 22940.82, + "end": 22942.24, + "probability": 0.7575 + }, + { + "start": 22942.78, + "end": 22944.66, + "probability": 0.8307 + }, + { + "start": 22945.44, + "end": 22950.32, + "probability": 0.9298 + }, + { + "start": 22951.4, + "end": 22952.18, + "probability": 0.5958 + }, + { + "start": 22952.34, + "end": 22953.0, + "probability": 0.9225 + }, + { + "start": 22955.04, + "end": 22955.72, + "probability": 0.9569 + }, + { + "start": 22955.78, + "end": 22956.88, + "probability": 0.9583 + }, + { + "start": 22957.1, + "end": 22959.38, + "probability": 0.9866 + }, + { + "start": 22960.68, + "end": 22964.72, + "probability": 0.9899 + }, + { + "start": 22964.72, + "end": 22967.08, + "probability": 0.9246 + }, + { + "start": 22968.02, + "end": 22973.66, + "probability": 0.9936 + }, + { + "start": 22974.42, + "end": 22975.72, + "probability": 0.9352 + }, + { + "start": 22976.12, + "end": 22976.26, + "probability": 0.3405 + }, + { + "start": 22976.3, + "end": 22977.16, + "probability": 0.8469 + }, + { + "start": 22977.52, + "end": 22979.37, + "probability": 0.7656 + }, + { + "start": 22980.38, + "end": 22982.69, + "probability": 0.7962 + }, + { + "start": 22983.46, + "end": 22985.16, + "probability": 0.9883 + }, + { + "start": 22985.82, + "end": 22988.02, + "probability": 0.7576 + }, + { + "start": 22992.52, + "end": 22993.48, + "probability": 0.7981 + }, + { + "start": 22995.0, + "end": 22997.8, + "probability": 0.9564 + }, + { + "start": 22998.8, + "end": 22999.64, + "probability": 0.7848 + }, + { + "start": 23002.0, + "end": 23002.58, + "probability": 0.9769 + }, + { + "start": 23003.26, + "end": 23005.4, + "probability": 0.9907 + }, + { + "start": 23007.52, + "end": 23010.2, + "probability": 0.9921 + }, + { + "start": 23011.24, + "end": 23011.48, + "probability": 0.9795 + }, + { + "start": 23012.12, + "end": 23012.72, + "probability": 0.9403 + }, + { + "start": 23013.34, + "end": 23014.64, + "probability": 0.9391 + }, + { + "start": 23016.98, + "end": 23019.08, + "probability": 0.6708 + }, + { + "start": 23019.22, + "end": 23020.69, + "probability": 0.9602 + }, + { + "start": 23020.8, + "end": 23022.18, + "probability": 0.8784 + }, + { + "start": 23022.24, + "end": 23024.05, + "probability": 0.8206 + }, + { + "start": 23025.28, + "end": 23026.2, + "probability": 0.9797 + }, + { + "start": 23029.28, + "end": 23033.54, + "probability": 0.9984 + }, + { + "start": 23034.0, + "end": 23035.64, + "probability": 0.916 + }, + { + "start": 23035.88, + "end": 23036.38, + "probability": 0.8157 + }, + { + "start": 23036.48, + "end": 23037.26, + "probability": 0.8301 + }, + { + "start": 23038.52, + "end": 23042.34, + "probability": 0.9876 + }, + { + "start": 23042.96, + "end": 23044.52, + "probability": 0.8616 + }, + { + "start": 23046.86, + "end": 23049.01, + "probability": 0.9673 + }, + { + "start": 23050.5, + "end": 23053.28, + "probability": 0.934 + }, + { + "start": 23054.46, + "end": 23057.21, + "probability": 0.4011 + }, + { + "start": 23058.84, + "end": 23061.5, + "probability": 0.9833 + }, + { + "start": 23062.0, + "end": 23062.9, + "probability": 0.92 + }, + { + "start": 23063.46, + "end": 23065.54, + "probability": 0.9182 + }, + { + "start": 23066.64, + "end": 23069.22, + "probability": 0.9614 + }, + { + "start": 23069.3, + "end": 23070.6, + "probability": 0.9765 + }, + { + "start": 23071.42, + "end": 23072.6, + "probability": 0.9814 + }, + { + "start": 23073.34, + "end": 23073.9, + "probability": 0.5461 + }, + { + "start": 23074.16, + "end": 23075.46, + "probability": 0.8406 + }, + { + "start": 23075.48, + "end": 23077.84, + "probability": 0.9453 + }, + { + "start": 23077.84, + "end": 23079.97, + "probability": 0.9828 + }, + { + "start": 23081.22, + "end": 23082.56, + "probability": 0.8971 + }, + { + "start": 23083.78, + "end": 23084.58, + "probability": 0.5349 + }, + { + "start": 23085.58, + "end": 23086.88, + "probability": 0.5862 + }, + { + "start": 23087.76, + "end": 23088.68, + "probability": 0.6723 + }, + { + "start": 23089.64, + "end": 23091.44, + "probability": 0.9264 + }, + { + "start": 23092.14, + "end": 23093.08, + "probability": 0.7246 + }, + { + "start": 23093.86, + "end": 23094.28, + "probability": 0.1799 + }, + { + "start": 23095.54, + "end": 23100.82, + "probability": 0.6665 + }, + { + "start": 23101.84, + "end": 23102.3, + "probability": 0.1129 + }, + { + "start": 23102.3, + "end": 23102.36, + "probability": 0.2583 + }, + { + "start": 23103.46, + "end": 23103.58, + "probability": 0.0653 + }, + { + "start": 23103.58, + "end": 23105.66, + "probability": 0.3152 + }, + { + "start": 23105.92, + "end": 23106.48, + "probability": 0.2779 + }, + { + "start": 23106.48, + "end": 23107.2, + "probability": 0.0297 + }, + { + "start": 23107.36, + "end": 23108.1, + "probability": 0.3227 + }, + { + "start": 23108.32, + "end": 23110.88, + "probability": 0.3954 + }, + { + "start": 23111.06, + "end": 23112.24, + "probability": 0.4828 + }, + { + "start": 23112.42, + "end": 23115.28, + "probability": 0.2452 + }, + { + "start": 23115.92, + "end": 23117.42, + "probability": 0.7252 + }, + { + "start": 23117.5, + "end": 23118.49, + "probability": 0.0627 + }, + { + "start": 23119.6, + "end": 23122.16, + "probability": 0.6872 + }, + { + "start": 23122.4, + "end": 23125.56, + "probability": 0.5161 + }, + { + "start": 23126.28, + "end": 23127.98, + "probability": 0.8401 + }, + { + "start": 23133.52, + "end": 23135.68, + "probability": 0.71 + }, + { + "start": 23135.72, + "end": 23137.22, + "probability": 0.263 + }, + { + "start": 23137.28, + "end": 23143.64, + "probability": 0.697 + }, + { + "start": 23143.82, + "end": 23144.68, + "probability": 0.1239 + }, + { + "start": 23144.68, + "end": 23144.68, + "probability": 0.2017 + }, + { + "start": 23144.68, + "end": 23145.46, + "probability": 0.0395 + }, + { + "start": 23145.64, + "end": 23147.14, + "probability": 0.926 + }, + { + "start": 23152.74, + "end": 23155.86, + "probability": 0.6562 + }, + { + "start": 23156.52, + "end": 23158.16, + "probability": 0.6551 + }, + { + "start": 23159.2, + "end": 23161.58, + "probability": 0.6133 + }, + { + "start": 23161.8, + "end": 23162.5, + "probability": 0.2493 + }, + { + "start": 23162.9, + "end": 23163.58, + "probability": 0.2371 + }, + { + "start": 23163.58, + "end": 23163.58, + "probability": 0.132 + }, + { + "start": 23163.58, + "end": 23163.94, + "probability": 0.1553 + }, + { + "start": 23164.04, + "end": 23164.64, + "probability": 0.4138 + }, + { + "start": 23164.64, + "end": 23166.14, + "probability": 0.3662 + }, + { + "start": 23166.42, + "end": 23168.62, + "probability": 0.9435 + }, + { + "start": 23168.92, + "end": 23169.66, + "probability": 0.3995 + }, + { + "start": 23169.82, + "end": 23170.87, + "probability": 0.1008 + }, + { + "start": 23170.9, + "end": 23171.76, + "probability": 0.2451 + }, + { + "start": 23172.2, + "end": 23175.36, + "probability": 0.4788 + }, + { + "start": 23175.36, + "end": 23177.26, + "probability": 0.1102 + }, + { + "start": 23177.38, + "end": 23177.9, + "probability": 0.6754 + }, + { + "start": 23177.92, + "end": 23179.42, + "probability": 0.3701 + }, + { + "start": 23179.5, + "end": 23180.76, + "probability": 0.2577 + }, + { + "start": 23180.76, + "end": 23181.32, + "probability": 0.5999 + }, + { + "start": 23181.94, + "end": 23186.28, + "probability": 0.9442 + }, + { + "start": 23186.34, + "end": 23190.24, + "probability": 0.9448 + }, + { + "start": 23190.76, + "end": 23192.04, + "probability": 0.4987 + }, + { + "start": 23192.56, + "end": 23195.38, + "probability": 0.9736 + }, + { + "start": 23195.54, + "end": 23198.16, + "probability": 0.895 + }, + { + "start": 23198.78, + "end": 23201.46, + "probability": 0.3377 + }, + { + "start": 23201.6, + "end": 23202.47, + "probability": 0.4036 + }, + { + "start": 23203.42, + "end": 23204.66, + "probability": 0.4959 + }, + { + "start": 23204.84, + "end": 23207.56, + "probability": 0.079 + }, + { + "start": 23207.9, + "end": 23210.62, + "probability": 0.6514 + }, + { + "start": 23210.8, + "end": 23211.96, + "probability": 0.052 + }, + { + "start": 23212.34, + "end": 23215.12, + "probability": 0.2305 + }, + { + "start": 23215.12, + "end": 23215.68, + "probability": 0.1048 + }, + { + "start": 23215.88, + "end": 23216.48, + "probability": 0.1614 + }, + { + "start": 23216.5, + "end": 23219.14, + "probability": 0.3428 + }, + { + "start": 23219.28, + "end": 23220.56, + "probability": 0.387 + }, + { + "start": 23220.72, + "end": 23221.82, + "probability": 0.4959 + }, + { + "start": 23221.82, + "end": 23222.88, + "probability": 0.6615 + }, + { + "start": 23223.36, + "end": 23226.46, + "probability": 0.7207 + }, + { + "start": 23226.66, + "end": 23229.13, + "probability": 0.7397 + }, + { + "start": 23234.06, + "end": 23238.96, + "probability": 0.9955 + }, + { + "start": 23240.72, + "end": 23241.7, + "probability": 0.9551 + }, + { + "start": 23242.34, + "end": 23243.42, + "probability": 0.9425 + }, + { + "start": 23244.22, + "end": 23247.46, + "probability": 0.8993 + }, + { + "start": 23247.54, + "end": 23247.89, + "probability": 0.8755 + }, + { + "start": 23248.26, + "end": 23249.0, + "probability": 0.9967 + }, + { + "start": 23249.12, + "end": 23249.7, + "probability": 0.6101 + }, + { + "start": 23250.16, + "end": 23251.02, + "probability": 0.9265 + }, + { + "start": 23251.08, + "end": 23251.82, + "probability": 0.6379 + }, + { + "start": 23254.22, + "end": 23257.38, + "probability": 0.5114 + }, + { + "start": 23259.14, + "end": 23260.22, + "probability": 0.7382 + }, + { + "start": 23260.34, + "end": 23262.42, + "probability": 0.9131 + }, + { + "start": 23263.14, + "end": 23263.82, + "probability": 0.8369 + }, + { + "start": 23263.94, + "end": 23266.6, + "probability": 0.9946 + }, + { + "start": 23266.66, + "end": 23269.02, + "probability": 0.5958 + }, + { + "start": 23269.14, + "end": 23270.41, + "probability": 0.9603 + }, + { + "start": 23271.64, + "end": 23272.14, + "probability": 0.7001 + }, + { + "start": 23273.22, + "end": 23273.98, + "probability": 0.649 + }, + { + "start": 23274.02, + "end": 23274.12, + "probability": 0.6927 + }, + { + "start": 23274.48, + "end": 23275.32, + "probability": 0.7784 + }, + { + "start": 23275.76, + "end": 23278.84, + "probability": 0.9765 + }, + { + "start": 23279.68, + "end": 23282.72, + "probability": 0.9313 + }, + { + "start": 23282.72, + "end": 23285.26, + "probability": 0.8165 + }, + { + "start": 23285.36, + "end": 23288.54, + "probability": 0.7098 + }, + { + "start": 23288.98, + "end": 23289.12, + "probability": 0.7729 + }, + { + "start": 23289.24, + "end": 23290.14, + "probability": 0.8771 + }, + { + "start": 23290.22, + "end": 23290.44, + "probability": 0.8848 + }, + { + "start": 23295.03, + "end": 23296.28, + "probability": 0.2484 + }, + { + "start": 23297.24, + "end": 23297.9, + "probability": 0.7588 + }, + { + "start": 23298.08, + "end": 23298.88, + "probability": 0.8338 + }, + { + "start": 23299.48, + "end": 23300.28, + "probability": 0.7659 + }, + { + "start": 23301.22, + "end": 23303.98, + "probability": 0.0067 + }, + { + "start": 23305.02, + "end": 23305.66, + "probability": 0.9626 + }, + { + "start": 23306.2, + "end": 23307.0, + "probability": 0.8184 + }, + { + "start": 23307.44, + "end": 23308.03, + "probability": 0.4745 + }, + { + "start": 23309.12, + "end": 23310.04, + "probability": 0.7466 + }, + { + "start": 23310.12, + "end": 23311.0, + "probability": 0.5764 + }, + { + "start": 23311.06, + "end": 23312.08, + "probability": 0.4585 + }, + { + "start": 23312.46, + "end": 23312.74, + "probability": 0.725 + }, + { + "start": 23315.9, + "end": 23318.44, + "probability": 0.9771 + }, + { + "start": 23318.64, + "end": 23323.06, + "probability": 0.7229 + }, + { + "start": 23323.16, + "end": 23323.98, + "probability": 0.948 + }, + { + "start": 23324.08, + "end": 23326.36, + "probability": 0.9631 + }, + { + "start": 23327.5, + "end": 23328.26, + "probability": 0.6765 + }, + { + "start": 23328.94, + "end": 23330.54, + "probability": 0.8859 + }, + { + "start": 23331.22, + "end": 23331.22, + "probability": 0.0083 + }, + { + "start": 23331.22, + "end": 23331.94, + "probability": 0.6508 + }, + { + "start": 23332.02, + "end": 23332.38, + "probability": 0.7822 + }, + { + "start": 23332.44, + "end": 23335.02, + "probability": 0.9347 + }, + { + "start": 23335.48, + "end": 23338.28, + "probability": 0.7067 + }, + { + "start": 23339.25, + "end": 23341.3, + "probability": 0.9313 + }, + { + "start": 23346.78, + "end": 23350.02, + "probability": 0.9754 + }, + { + "start": 23350.3, + "end": 23351.9, + "probability": 0.7034 + }, + { + "start": 23352.56, + "end": 23354.16, + "probability": 0.9799 + }, + { + "start": 23356.0, + "end": 23358.74, + "probability": 0.9928 + }, + { + "start": 23359.58, + "end": 23361.06, + "probability": 0.2091 + }, + { + "start": 23361.18, + "end": 23361.7, + "probability": 0.3577 + }, + { + "start": 23361.76, + "end": 23362.02, + "probability": 0.4535 + }, + { + "start": 23362.22, + "end": 23364.08, + "probability": 0.777 + }, + { + "start": 23364.18, + "end": 23364.5, + "probability": 0.6036 + }, + { + "start": 23365.86, + "end": 23366.74, + "probability": 0.6514 + }, + { + "start": 23367.7, + "end": 23370.74, + "probability": 0.9842 + }, + { + "start": 23372.58, + "end": 23375.7, + "probability": 0.2506 + }, + { + "start": 23375.84, + "end": 23379.26, + "probability": 0.6294 + }, + { + "start": 23381.12, + "end": 23383.32, + "probability": 0.087 + }, + { + "start": 23384.06, + "end": 23387.42, + "probability": 0.9042 + }, + { + "start": 23391.93, + "end": 23393.26, + "probability": 0.9411 + }, + { + "start": 23394.3, + "end": 23394.91, + "probability": 0.915 + }, + { + "start": 23399.54, + "end": 23404.8, + "probability": 0.8772 + }, + { + "start": 23405.96, + "end": 23413.1, + "probability": 0.9938 + }, + { + "start": 23413.2, + "end": 23415.2, + "probability": 0.9608 + }, + { + "start": 23415.88, + "end": 23417.68, + "probability": 0.8933 + }, + { + "start": 23418.46, + "end": 23419.56, + "probability": 0.5377 + }, + { + "start": 23420.82, + "end": 23423.16, + "probability": 0.5072 + }, + { + "start": 23423.16, + "end": 23423.8, + "probability": 0.8269 + }, + { + "start": 23425.6, + "end": 23426.86, + "probability": 0.8429 + }, + { + "start": 23427.92, + "end": 23428.44, + "probability": 0.874 + }, + { + "start": 23428.76, + "end": 23430.92, + "probability": 0.5425 + }, + { + "start": 23431.38, + "end": 23432.26, + "probability": 0.1464 + }, + { + "start": 23432.34, + "end": 23433.22, + "probability": 0.3667 + }, + { + "start": 23433.38, + "end": 23435.9, + "probability": 0.947 + }, + { + "start": 23436.22, + "end": 23439.94, + "probability": 0.9297 + }, + { + "start": 23440.46, + "end": 23441.72, + "probability": 0.9398 + }, + { + "start": 23444.38, + "end": 23444.88, + "probability": 0.9667 + }, + { + "start": 23446.76, + "end": 23448.7, + "probability": 0.8103 + }, + { + "start": 23448.9, + "end": 23449.44, + "probability": 0.9758 + }, + { + "start": 23449.5, + "end": 23450.2, + "probability": 0.8742 + }, + { + "start": 23450.24, + "end": 23450.96, + "probability": 0.9823 + }, + { + "start": 23450.98, + "end": 23451.7, + "probability": 0.9689 + }, + { + "start": 23451.78, + "end": 23452.18, + "probability": 0.9889 + }, + { + "start": 23452.26, + "end": 23452.92, + "probability": 0.9829 + }, + { + "start": 23452.94, + "end": 23453.52, + "probability": 0.9836 + }, + { + "start": 23453.6, + "end": 23454.3, + "probability": 0.8638 + }, + { + "start": 23454.44, + "end": 23455.24, + "probability": 0.6529 + }, + { + "start": 23455.38, + "end": 23456.6, + "probability": 0.7091 + }, + { + "start": 23456.96, + "end": 23458.7, + "probability": 0.8724 + }, + { + "start": 23459.54, + "end": 23460.88, + "probability": 0.9567 + }, + { + "start": 23461.42, + "end": 23462.76, + "probability": 0.7748 + }, + { + "start": 23462.86, + "end": 23464.78, + "probability": 0.8415 + }, + { + "start": 23464.88, + "end": 23465.48, + "probability": 0.6159 + }, + { + "start": 23465.8, + "end": 23466.12, + "probability": 0.6223 + }, + { + "start": 23466.32, + "end": 23466.9, + "probability": 0.8587 + }, + { + "start": 23467.22, + "end": 23467.84, + "probability": 0.8662 + }, + { + "start": 23467.96, + "end": 23468.46, + "probability": 0.708 + }, + { + "start": 23468.54, + "end": 23469.36, + "probability": 0.8215 + }, + { + "start": 23469.78, + "end": 23471.28, + "probability": 0.7435 + }, + { + "start": 23472.02, + "end": 23473.92, + "probability": 0.7051 + }, + { + "start": 23474.0, + "end": 23475.78, + "probability": 0.9182 + }, + { + "start": 23477.14, + "end": 23480.33, + "probability": 0.6366 + }, + { + "start": 23482.88, + "end": 23482.88, + "probability": 0.0483 + }, + { + "start": 23482.88, + "end": 23482.88, + "probability": 0.0819 + }, + { + "start": 23482.9, + "end": 23484.46, + "probability": 0.7341 + }, + { + "start": 23486.36, + "end": 23488.24, + "probability": 0.9653 + }, + { + "start": 23491.88, + "end": 23495.28, + "probability": 0.8514 + }, + { + "start": 23499.14, + "end": 23501.16, + "probability": 0.5381 + }, + { + "start": 23501.58, + "end": 23501.66, + "probability": 0.0215 + }, + { + "start": 23501.66, + "end": 23501.76, + "probability": 0.1637 + }, + { + "start": 23503.43, + "end": 23506.5, + "probability": 0.6551 + }, + { + "start": 23506.54, + "end": 23507.36, + "probability": 0.9576 + }, + { + "start": 23507.42, + "end": 23510.38, + "probability": 0.9565 + }, + { + "start": 23510.46, + "end": 23511.5, + "probability": 0.9289 + }, + { + "start": 23513.82, + "end": 23514.88, + "probability": 0.9922 + }, + { + "start": 23515.12, + "end": 23516.56, + "probability": 0.9966 + }, + { + "start": 23516.74, + "end": 23517.12, + "probability": 0.069 + }, + { + "start": 23517.28, + "end": 23517.98, + "probability": 0.4575 + }, + { + "start": 23518.76, + "end": 23521.36, + "probability": 0.9718 + }, + { + "start": 23521.92, + "end": 23526.32, + "probability": 0.5807 + }, + { + "start": 23528.24, + "end": 23531.38, + "probability": 0.9441 + }, + { + "start": 23532.14, + "end": 23533.77, + "probability": 0.5806 + }, + { + "start": 23534.94, + "end": 23537.74, + "probability": 0.7983 + }, + { + "start": 23538.96, + "end": 23539.76, + "probability": 0.5281 + }, + { + "start": 23542.86, + "end": 23543.76, + "probability": 0.7611 + }, + { + "start": 23544.72, + "end": 23548.64, + "probability": 0.9919 + }, + { + "start": 23550.36, + "end": 23552.64, + "probability": 0.7376 + }, + { + "start": 23553.86, + "end": 23556.24, + "probability": 0.7268 + }, + { + "start": 23557.14, + "end": 23559.44, + "probability": 0.9822 + }, + { + "start": 23560.78, + "end": 23561.3, + "probability": 0.9937 + }, + { + "start": 23563.26, + "end": 23567.48, + "probability": 0.8499 + }, + { + "start": 23568.18, + "end": 23569.62, + "probability": 0.9054 + }, + { + "start": 23570.62, + "end": 23573.74, + "probability": 0.9658 + }, + { + "start": 23575.24, + "end": 23576.96, + "probability": 0.9984 + }, + { + "start": 23577.04, + "end": 23580.66, + "probability": 0.9917 + }, + { + "start": 23580.66, + "end": 23583.22, + "probability": 0.9986 + }, + { + "start": 23584.66, + "end": 23584.66, + "probability": 0.4871 + }, + { + "start": 23585.64, + "end": 23587.46, + "probability": 0.9443 + }, + { + "start": 23588.88, + "end": 23589.62, + "probability": 0.9253 + }, + { + "start": 23591.58, + "end": 23593.76, + "probability": 0.8311 + }, + { + "start": 23594.84, + "end": 23595.68, + "probability": 0.8585 + }, + { + "start": 23598.76, + "end": 23598.88, + "probability": 0.0614 + }, + { + "start": 23598.88, + "end": 23601.2, + "probability": 0.8358 + }, + { + "start": 23601.86, + "end": 23603.14, + "probability": 0.7758 + }, + { + "start": 23604.68, + "end": 23607.56, + "probability": 0.498 + }, + { + "start": 23607.56, + "end": 23610.32, + "probability": 0.9927 + }, + { + "start": 23610.44, + "end": 23611.6, + "probability": 0.8834 + }, + { + "start": 23612.22, + "end": 23613.62, + "probability": 0.9227 + }, + { + "start": 23614.26, + "end": 23615.1, + "probability": 0.7894 + }, + { + "start": 23615.26, + "end": 23616.38, + "probability": 0.9806 + }, + { + "start": 23617.04, + "end": 23620.0, + "probability": 0.9033 + }, + { + "start": 23620.4, + "end": 23621.62, + "probability": 0.6789 + }, + { + "start": 23622.36, + "end": 23624.22, + "probability": 0.9779 + }, + { + "start": 23624.3, + "end": 23625.3, + "probability": 0.9547 + }, + { + "start": 23625.78, + "end": 23627.46, + "probability": 0.917 + }, + { + "start": 23627.5, + "end": 23632.08, + "probability": 0.9922 + }, + { + "start": 23632.72, + "end": 23637.28, + "probability": 0.995 + }, + { + "start": 23637.8, + "end": 23639.48, + "probability": 0.9586 + }, + { + "start": 23639.64, + "end": 23642.28, + "probability": 0.9127 + }, + { + "start": 23642.38, + "end": 23642.93, + "probability": 0.9446 + }, + { + "start": 23645.92, + "end": 23648.74, + "probability": 0.9578 + }, + { + "start": 23649.46, + "end": 23653.34, + "probability": 0.333 + }, + { + "start": 23653.46, + "end": 23654.68, + "probability": 0.6768 + }, + { + "start": 23654.7, + "end": 23655.58, + "probability": 0.7769 + }, + { + "start": 23656.18, + "end": 23657.76, + "probability": 0.9601 + }, + { + "start": 23662.68, + "end": 23664.44, + "probability": 0.2347 + }, + { + "start": 23664.44, + "end": 23666.01, + "probability": 0.6124 + }, + { + "start": 23666.26, + "end": 23666.92, + "probability": 0.3758 + }, + { + "start": 23666.98, + "end": 23671.8, + "probability": 0.973 + }, + { + "start": 23672.78, + "end": 23674.7, + "probability": 0.7823 + }, + { + "start": 23674.8, + "end": 23678.42, + "probability": 0.7864 + }, + { + "start": 23678.42, + "end": 23684.76, + "probability": 0.9827 + }, + { + "start": 23684.82, + "end": 23685.84, + "probability": 0.942 + }, + { + "start": 23686.7, + "end": 23688.72, + "probability": 0.7957 + }, + { + "start": 23690.72, + "end": 23693.9, + "probability": 0.9625 + }, + { + "start": 23695.42, + "end": 23696.08, + "probability": 0.9401 + }, + { + "start": 23698.3, + "end": 23701.3, + "probability": 0.9771 + }, + { + "start": 23703.25, + "end": 23704.86, + "probability": 0.5565 + }, + { + "start": 23705.62, + "end": 23706.78, + "probability": 0.1618 + }, + { + "start": 23712.68, + "end": 23714.08, + "probability": 0.5341 + }, + { + "start": 23716.04, + "end": 23719.14, + "probability": 0.8194 + }, + { + "start": 23719.36, + "end": 23720.56, + "probability": 0.7349 + }, + { + "start": 23720.58, + "end": 23720.96, + "probability": 0.7581 + }, + { + "start": 23723.66, + "end": 23726.54, + "probability": 0.9916 + }, + { + "start": 23728.16, + "end": 23728.8, + "probability": 0.9259 + }, + { + "start": 23729.32, + "end": 23730.82, + "probability": 0.9196 + }, + { + "start": 23730.98, + "end": 23735.58, + "probability": 0.9092 + }, + { + "start": 23736.6, + "end": 23740.08, + "probability": 0.9971 + }, + { + "start": 23741.44, + "end": 23742.58, + "probability": 0.0029 + }, + { + "start": 23743.58, + "end": 23744.52, + "probability": 0.8564 + }, + { + "start": 23744.64, + "end": 23746.22, + "probability": 0.9977 + }, + { + "start": 23747.46, + "end": 23748.14, + "probability": 0.9575 + }, + { + "start": 23751.25, + "end": 23752.12, + "probability": 0.317 + }, + { + "start": 23752.12, + "end": 23753.24, + "probability": 0.8137 + }, + { + "start": 23754.08, + "end": 23754.5, + "probability": 0.8604 + }, + { + "start": 23754.68, + "end": 23755.58, + "probability": 0.8652 + }, + { + "start": 23757.52, + "end": 23759.28, + "probability": 0.9858 + }, + { + "start": 23760.78, + "end": 23761.7, + "probability": 0.8857 + }, + { + "start": 23762.38, + "end": 23763.4, + "probability": 0.9663 + }, + { + "start": 23763.58, + "end": 23764.6, + "probability": 0.9896 + }, + { + "start": 23765.08, + "end": 23766.09, + "probability": 0.9895 + }, + { + "start": 23767.44, + "end": 23769.14, + "probability": 0.606 + }, + { + "start": 23769.64, + "end": 23770.9, + "probability": 0.7651 + }, + { + "start": 23772.08, + "end": 23773.64, + "probability": 0.922 + }, + { + "start": 23774.88, + "end": 23779.9, + "probability": 0.9907 + }, + { + "start": 23780.4, + "end": 23784.94, + "probability": 0.9851 + }, + { + "start": 23785.86, + "end": 23790.06, + "probability": 0.9736 + }, + { + "start": 23790.3, + "end": 23792.96, + "probability": 0.9468 + }, + { + "start": 23793.9, + "end": 23794.44, + "probability": 0.9924 + }, + { + "start": 23795.12, + "end": 23800.02, + "probability": 0.9968 + }, + { + "start": 23800.14, + "end": 23800.14, + "probability": 0.9263 + }, + { + "start": 23801.02, + "end": 23802.48, + "probability": 0.5085 + }, + { + "start": 23803.5, + "end": 23804.04, + "probability": 0.3411 + }, + { + "start": 23804.8, + "end": 23806.98, + "probability": 0.938 + }, + { + "start": 23808.48, + "end": 23810.4, + "probability": 0.9309 + }, + { + "start": 23810.94, + "end": 23814.42, + "probability": 0.9383 + }, + { + "start": 23815.38, + "end": 23817.02, + "probability": 0.8048 + }, + { + "start": 23818.06, + "end": 23820.62, + "probability": 0.9609 + }, + { + "start": 23821.8, + "end": 23824.48, + "probability": 0.7711 + }, + { + "start": 23825.54, + "end": 23830.44, + "probability": 0.9557 + }, + { + "start": 23831.94, + "end": 23833.92, + "probability": 0.8419 + }, + { + "start": 23834.8, + "end": 23837.18, + "probability": 0.7132 + }, + { + "start": 23839.62, + "end": 23841.32, + "probability": 0.868 + }, + { + "start": 23842.8, + "end": 23845.26, + "probability": 0.7093 + }, + { + "start": 23845.86, + "end": 23847.44, + "probability": 0.9873 + }, + { + "start": 23850.5, + "end": 23853.88, + "probability": 0.9686 + }, + { + "start": 23854.64, + "end": 23858.04, + "probability": 0.5687 + }, + { + "start": 23858.66, + "end": 23861.76, + "probability": 0.9871 + }, + { + "start": 23862.79, + "end": 23866.16, + "probability": 0.8276 + }, + { + "start": 23867.16, + "end": 23868.32, + "probability": 0.9677 + }, + { + "start": 23868.56, + "end": 23871.52, + "probability": 0.7217 + }, + { + "start": 23872.36, + "end": 23875.68, + "probability": 0.9467 + }, + { + "start": 23876.32, + "end": 23879.3, + "probability": 0.9918 + }, + { + "start": 23881.93, + "end": 23884.88, + "probability": 0.9033 + }, + { + "start": 23887.45, + "end": 23891.66, + "probability": 0.821 + }, + { + "start": 23892.82, + "end": 23897.18, + "probability": 0.75 + }, + { + "start": 23897.32, + "end": 23898.25, + "probability": 0.7599 + }, + { + "start": 23898.94, + "end": 23901.02, + "probability": 0.9851 + }, + { + "start": 23901.6, + "end": 23903.14, + "probability": 0.767 + }, + { + "start": 23903.14, + "end": 23904.84, + "probability": 0.9553 + }, + { + "start": 23905.06, + "end": 23908.04, + "probability": 0.0699 + }, + { + "start": 23909.62, + "end": 23913.2, + "probability": 0.2774 + }, + { + "start": 23917.26, + "end": 23920.38, + "probability": 0.9492 + }, + { + "start": 23920.48, + "end": 23922.78, + "probability": 0.9955 + }, + { + "start": 23926.88, + "end": 23930.04, + "probability": 0.8598 + }, + { + "start": 23932.14, + "end": 23936.28, + "probability": 0.6758 + }, + { + "start": 23936.66, + "end": 23939.38, + "probability": 0.7128 + }, + { + "start": 23941.52, + "end": 23943.38, + "probability": 0.9966 + }, + { + "start": 23944.22, + "end": 23945.22, + "probability": 0.6476 + }, + { + "start": 23947.76, + "end": 23948.34, + "probability": 0.6616 + }, + { + "start": 23949.38, + "end": 23953.02, + "probability": 0.9033 + }, + { + "start": 23953.88, + "end": 23957.64, + "probability": 0.9164 + }, + { + "start": 23958.78, + "end": 23962.08, + "probability": 0.8698 + }, + { + "start": 23962.18, + "end": 23970.3, + "probability": 0.9572 + }, + { + "start": 23970.5, + "end": 23971.27, + "probability": 0.9031 + }, + { + "start": 23971.56, + "end": 23972.82, + "probability": 0.7812 + }, + { + "start": 23973.34, + "end": 23973.76, + "probability": 0.7743 + }, + { + "start": 23973.76, + "end": 23975.7, + "probability": 0.951 + }, + { + "start": 23975.98, + "end": 23976.87, + "probability": 0.7168 + }, + { + "start": 23978.3, + "end": 23980.36, + "probability": 0.9927 + }, + { + "start": 23980.42, + "end": 23981.7, + "probability": 0.7112 + }, + { + "start": 23983.29, + "end": 23985.42, + "probability": 0.7582 + }, + { + "start": 23985.52, + "end": 23986.49, + "probability": 0.8726 + }, + { + "start": 23986.7, + "end": 23987.2, + "probability": 0.9133 + }, + { + "start": 23987.78, + "end": 23990.82, + "probability": 0.9458 + }, + { + "start": 23992.46, + "end": 23995.88, + "probability": 0.9943 + }, + { + "start": 23996.72, + "end": 23997.66, + "probability": 0.9764 + }, + { + "start": 24006.66, + "end": 24007.64, + "probability": 0.845 + }, + { + "start": 24008.98, + "end": 24012.6, + "probability": 0.9899 + }, + { + "start": 24013.24, + "end": 24019.22, + "probability": 0.6239 + }, + { + "start": 24021.82, + "end": 24023.56, + "probability": 0.9922 + }, + { + "start": 24025.46, + "end": 24026.34, + "probability": 0.4898 + }, + { + "start": 24027.58, + "end": 24028.28, + "probability": 0.8862 + }, + { + "start": 24028.4, + "end": 24029.02, + "probability": 0.9758 + }, + { + "start": 24029.16, + "end": 24029.26, + "probability": 0.3838 + }, + { + "start": 24029.68, + "end": 24031.52, + "probability": 0.8732 + }, + { + "start": 24032.56, + "end": 24036.96, + "probability": 0.99 + }, + { + "start": 24037.36, + "end": 24039.78, + "probability": 0.4972 + }, + { + "start": 24041.58, + "end": 24045.68, + "probability": 0.7137 + }, + { + "start": 24046.72, + "end": 24048.06, + "probability": 0.8834 + }, + { + "start": 24048.3, + "end": 24049.12, + "probability": 0.7896 + }, + { + "start": 24049.12, + "end": 24049.84, + "probability": 0.7699 + }, + { + "start": 24050.26, + "end": 24051.1, + "probability": 0.9904 + }, + { + "start": 24053.02, + "end": 24053.8, + "probability": 0.8965 + }, + { + "start": 24054.68, + "end": 24055.1, + "probability": 0.1429 + }, + { + "start": 24055.42, + "end": 24056.34, + "probability": 0.0396 + }, + { + "start": 24057.08, + "end": 24061.06, + "probability": 0.4427 + }, + { + "start": 24061.62, + "end": 24062.2, + "probability": 0.5346 + }, + { + "start": 24063.18, + "end": 24064.11, + "probability": 0.4175 + }, + { + "start": 24064.6, + "end": 24066.14, + "probability": 0.3781 + }, + { + "start": 24066.14, + "end": 24066.22, + "probability": 0.2275 + }, + { + "start": 24066.22, + "end": 24066.64, + "probability": 0.7887 + }, + { + "start": 24066.72, + "end": 24067.86, + "probability": 0.4265 + }, + { + "start": 24067.98, + "end": 24068.3, + "probability": 0.4647 + }, + { + "start": 24068.42, + "end": 24068.68, + "probability": 0.6023 + }, + { + "start": 24068.88, + "end": 24072.32, + "probability": 0.8789 + }, + { + "start": 24072.64, + "end": 24073.92, + "probability": 0.814 + }, + { + "start": 24073.96, + "end": 24075.6, + "probability": 0.7747 + }, + { + "start": 24075.74, + "end": 24078.42, + "probability": 0.9634 + }, + { + "start": 24078.46, + "end": 24079.34, + "probability": 0.9681 + }, + { + "start": 24080.4, + "end": 24080.78, + "probability": 0.7604 + }, + { + "start": 24081.62, + "end": 24082.42, + "probability": 0.7013 + }, + { + "start": 24082.76, + "end": 24083.65, + "probability": 0.9972 + }, + { + "start": 24084.24, + "end": 24086.8, + "probability": 0.9919 + }, + { + "start": 24086.9, + "end": 24087.48, + "probability": 0.9434 + }, + { + "start": 24088.36, + "end": 24088.46, + "probability": 0.8542 + }, + { + "start": 24089.86, + "end": 24092.44, + "probability": 0.9591 + }, + { + "start": 24092.5, + "end": 24092.92, + "probability": 0.7478 + }, + { + "start": 24093.94, + "end": 24098.44, + "probability": 0.9407 + }, + { + "start": 24098.54, + "end": 24100.52, + "probability": 0.785 + }, + { + "start": 24100.7, + "end": 24100.7, + "probability": 0.3516 + }, + { + "start": 24100.7, + "end": 24101.12, + "probability": 0.4319 + }, + { + "start": 24101.26, + "end": 24101.84, + "probability": 0.9312 + }, + { + "start": 24102.28, + "end": 24103.5, + "probability": 0.327 + }, + { + "start": 24103.65, + "end": 24106.64, + "probability": 0.6938 + }, + { + "start": 24107.12, + "end": 24108.54, + "probability": 0.8708 + }, + { + "start": 24108.6, + "end": 24109.1, + "probability": 0.8525 + }, + { + "start": 24109.2, + "end": 24109.64, + "probability": 0.9556 + }, + { + "start": 24109.7, + "end": 24110.86, + "probability": 0.9523 + }, + { + "start": 24111.8, + "end": 24114.02, + "probability": 0.8716 + }, + { + "start": 24114.4, + "end": 24115.0, + "probability": 0.8253 + }, + { + "start": 24115.7, + "end": 24116.68, + "probability": 0.9805 + }, + { + "start": 24117.94, + "end": 24119.36, + "probability": 0.9907 + }, + { + "start": 24120.24, + "end": 24122.42, + "probability": 0.998 + }, + { + "start": 24124.54, + "end": 24125.62, + "probability": 0.5806 + }, + { + "start": 24126.3, + "end": 24126.32, + "probability": 0.7711 + }, + { + "start": 24126.52, + "end": 24129.3, + "probability": 0.9888 + }, + { + "start": 24130.78, + "end": 24131.56, + "probability": 0.9514 + }, + { + "start": 24132.06, + "end": 24134.12, + "probability": 0.795 + }, + { + "start": 24134.44, + "end": 24135.4, + "probability": 0.8942 + }, + { + "start": 24135.42, + "end": 24136.2, + "probability": 0.9678 + }, + { + "start": 24136.64, + "end": 24137.3, + "probability": 0.5934 + }, + { + "start": 24137.46, + "end": 24140.4, + "probability": 0.8226 + }, + { + "start": 24140.48, + "end": 24144.42, + "probability": 0.9979 + }, + { + "start": 24144.9, + "end": 24146.44, + "probability": 0.6889 + }, + { + "start": 24150.07, + "end": 24152.16, + "probability": 0.5005 + }, + { + "start": 24152.8, + "end": 24153.64, + "probability": 0.8687 + }, + { + "start": 24154.36, + "end": 24156.86, + "probability": 0.8748 + }, + { + "start": 24157.18, + "end": 24158.2, + "probability": 0.797 + }, + { + "start": 24158.28, + "end": 24158.86, + "probability": 0.9238 + }, + { + "start": 24159.4, + "end": 24162.22, + "probability": 0.7574 + }, + { + "start": 24162.62, + "end": 24163.66, + "probability": 0.728 + }, + { + "start": 24163.98, + "end": 24165.14, + "probability": 0.9223 + }, + { + "start": 24165.2, + "end": 24166.74, + "probability": 0.7258 + }, + { + "start": 24166.98, + "end": 24167.77, + "probability": 0.9412 + }, + { + "start": 24168.36, + "end": 24169.18, + "probability": 0.6091 + }, + { + "start": 24169.78, + "end": 24173.18, + "probability": 0.9929 + }, + { + "start": 24175.74, + "end": 24178.42, + "probability": 0.7572 + }, + { + "start": 24179.9, + "end": 24180.94, + "probability": 0.6967 + }, + { + "start": 24181.18, + "end": 24184.14, + "probability": 0.9932 + }, + { + "start": 24186.24, + "end": 24190.58, + "probability": 0.9733 + }, + { + "start": 24192.56, + "end": 24194.68, + "probability": 0.9233 + }, + { + "start": 24195.96, + "end": 24198.98, + "probability": 0.9922 + }, + { + "start": 24203.02, + "end": 24203.82, + "probability": 0.6554 + }, + { + "start": 24205.8, + "end": 24207.72, + "probability": 0.9932 + }, + { + "start": 24209.74, + "end": 24210.81, + "probability": 0.8322 + }, + { + "start": 24212.18, + "end": 24213.72, + "probability": 0.9713 + }, + { + "start": 24214.88, + "end": 24218.9, + "probability": 0.991 + }, + { + "start": 24220.16, + "end": 24223.28, + "probability": 0.7639 + }, + { + "start": 24224.32, + "end": 24226.16, + "probability": 0.9985 + }, + { + "start": 24226.32, + "end": 24228.08, + "probability": 0.9652 + }, + { + "start": 24233.38, + "end": 24235.92, + "probability": 0.9788 + }, + { + "start": 24237.6, + "end": 24238.92, + "probability": 0.9787 + }, + { + "start": 24239.56, + "end": 24240.46, + "probability": 0.8426 + }, + { + "start": 24241.96, + "end": 24244.81, + "probability": 0.9858 + }, + { + "start": 24246.6, + "end": 24247.66, + "probability": 0.9838 + }, + { + "start": 24248.22, + "end": 24249.2, + "probability": 0.9896 + }, + { + "start": 24250.46, + "end": 24251.5, + "probability": 0.8663 + }, + { + "start": 24252.92, + "end": 24256.66, + "probability": 0.9385 + }, + { + "start": 24256.8, + "end": 24257.96, + "probability": 0.9022 + }, + { + "start": 24258.82, + "end": 24260.04, + "probability": 0.9756 + }, + { + "start": 24260.92, + "end": 24262.05, + "probability": 0.939 + }, + { + "start": 24264.48, + "end": 24265.38, + "probability": 0.0983 + }, + { + "start": 24265.84, + "end": 24269.16, + "probability": 0.8138 + }, + { + "start": 24269.72, + "end": 24270.9, + "probability": 0.7787 + }, + { + "start": 24271.72, + "end": 24274.8, + "probability": 0.7635 + }, + { + "start": 24275.38, + "end": 24278.64, + "probability": 0.0551 + }, + { + "start": 24279.08, + "end": 24279.28, + "probability": 0.8137 + }, + { + "start": 24279.28, + "end": 24279.38, + "probability": 0.7245 + }, + { + "start": 24281.46, + "end": 24284.96, + "probability": 0.9592 + }, + { + "start": 24286.72, + "end": 24287.94, + "probability": 0.8377 + }, + { + "start": 24290.64, + "end": 24292.54, + "probability": 0.8965 + }, + { + "start": 24293.4, + "end": 24294.16, + "probability": 0.9816 + }, + { + "start": 24294.6, + "end": 24295.84, + "probability": 0.6907 + }, + { + "start": 24295.98, + "end": 24296.52, + "probability": 0.6527 + }, + { + "start": 24298.16, + "end": 24300.48, + "probability": 0.82 + }, + { + "start": 24301.62, + "end": 24302.78, + "probability": 0.9984 + }, + { + "start": 24303.84, + "end": 24306.56, + "probability": 0.9826 + }, + { + "start": 24307.9, + "end": 24309.1, + "probability": 0.6425 + }, + { + "start": 24309.78, + "end": 24311.74, + "probability": 0.7689 + }, + { + "start": 24312.96, + "end": 24316.02, + "probability": 0.973 + }, + { + "start": 24316.14, + "end": 24316.66, + "probability": 0.882 + }, + { + "start": 24317.04, + "end": 24318.56, + "probability": 0.9752 + }, + { + "start": 24321.02, + "end": 24322.64, + "probability": 0.6679 + }, + { + "start": 24325.62, + "end": 24328.08, + "probability": 0.9895 + }, + { + "start": 24328.22, + "end": 24329.72, + "probability": 0.8846 + }, + { + "start": 24330.46, + "end": 24332.4, + "probability": 0.5289 + }, + { + "start": 24333.36, + "end": 24334.34, + "probability": 0.9941 + }, + { + "start": 24335.02, + "end": 24336.12, + "probability": 0.8857 + }, + { + "start": 24337.1, + "end": 24339.22, + "probability": 0.8759 + }, + { + "start": 24340.16, + "end": 24340.16, + "probability": 0.0227 + }, + { + "start": 24340.16, + "end": 24340.74, + "probability": 0.8547 + }, + { + "start": 24340.82, + "end": 24345.48, + "probability": 0.9937 + }, + { + "start": 24346.86, + "end": 24348.36, + "probability": 0.703 + }, + { + "start": 24349.64, + "end": 24350.8, + "probability": 0.8075 + }, + { + "start": 24351.34, + "end": 24355.18, + "probability": 0.9534 + }, + { + "start": 24356.06, + "end": 24357.68, + "probability": 0.8292 + }, + { + "start": 24358.56, + "end": 24362.28, + "probability": 0.8895 + }, + { + "start": 24362.4, + "end": 24362.66, + "probability": 0.854 + }, + { + "start": 24363.4, + "end": 24364.62, + "probability": 0.5584 + }, + { + "start": 24365.32, + "end": 24365.78, + "probability": 0.6494 + }, + { + "start": 24365.9, + "end": 24367.18, + "probability": 0.9401 + }, + { + "start": 24369.16, + "end": 24370.48, + "probability": 0.952 + }, + { + "start": 24371.02, + "end": 24371.5, + "probability": 0.4465 + }, + { + "start": 24372.22, + "end": 24373.08, + "probability": 0.5899 + }, + { + "start": 24373.2, + "end": 24373.3, + "probability": 0.4363 + }, + { + "start": 24374.12, + "end": 24375.4, + "probability": 0.8176 + }, + { + "start": 24375.46, + "end": 24377.26, + "probability": 0.8614 + }, + { + "start": 24380.23, + "end": 24382.58, + "probability": 0.1209 + }, + { + "start": 24382.58, + "end": 24383.49, + "probability": 0.1762 + }, + { + "start": 24383.54, + "end": 24384.32, + "probability": 0.6291 + }, + { + "start": 24384.44, + "end": 24385.08, + "probability": 0.9314 + }, + { + "start": 24385.24, + "end": 24386.44, + "probability": 0.9871 + }, + { + "start": 24387.68, + "end": 24389.84, + "probability": 0.163 + }, + { + "start": 24391.18, + "end": 24391.98, + "probability": 0.1259 + }, + { + "start": 24394.76, + "end": 24396.72, + "probability": 0.8317 + }, + { + "start": 24397.4, + "end": 24397.4, + "probability": 0.0452 + }, + { + "start": 24397.4, + "end": 24397.4, + "probability": 0.1534 + }, + { + "start": 24397.4, + "end": 24397.4, + "probability": 0.7758 + }, + { + "start": 24397.4, + "end": 24398.4, + "probability": 0.6655 + }, + { + "start": 24398.58, + "end": 24404.2, + "probability": 0.919 + }, + { + "start": 24404.48, + "end": 24408.52, + "probability": 0.9344 + }, + { + "start": 24408.88, + "end": 24414.66, + "probability": 0.0959 + }, + { + "start": 24414.76, + "end": 24417.32, + "probability": 0.4859 + }, + { + "start": 24417.48, + "end": 24421.78, + "probability": 0.6841 + }, + { + "start": 24422.06, + "end": 24424.3, + "probability": 0.106 + }, + { + "start": 24424.96, + "end": 24427.62, + "probability": 0.9877 + }, + { + "start": 24427.68, + "end": 24429.1, + "probability": 0.9633 + }, + { + "start": 24429.28, + "end": 24431.36, + "probability": 0.9169 + }, + { + "start": 24431.7, + "end": 24435.1, + "probability": 0.978 + }, + { + "start": 24435.28, + "end": 24437.52, + "probability": 0.9736 + }, + { + "start": 24438.5, + "end": 24438.5, + "probability": 0.5385 + }, + { + "start": 24438.5, + "end": 24444.82, + "probability": 0.8664 + }, + { + "start": 24444.86, + "end": 24445.0, + "probability": 0.4762 + }, + { + "start": 24445.5, + "end": 24446.1, + "probability": 0.8372 + }, + { + "start": 24447.1, + "end": 24452.14, + "probability": 0.9961 + }, + { + "start": 24452.72, + "end": 24453.82, + "probability": 0.8994 + }, + { + "start": 24453.9, + "end": 24454.36, + "probability": 0.4948 + }, + { + "start": 24455.36, + "end": 24457.84, + "probability": 0.1692 + }, + { + "start": 24458.18, + "end": 24459.36, + "probability": 0.3916 + }, + { + "start": 24459.64, + "end": 24459.98, + "probability": 0.3223 + }, + { + "start": 24460.12, + "end": 24460.54, + "probability": 0.4834 + }, + { + "start": 24460.54, + "end": 24462.84, + "probability": 0.396 + }, + { + "start": 24463.1, + "end": 24464.38, + "probability": 0.902 + }, + { + "start": 24465.24, + "end": 24467.58, + "probability": 0.9744 + }, + { + "start": 24467.58, + "end": 24470.54, + "probability": 0.999 + }, + { + "start": 24470.54, + "end": 24473.06, + "probability": 0.9979 + }, + { + "start": 24473.62, + "end": 24474.44, + "probability": 0.8365 + }, + { + "start": 24475.18, + "end": 24476.14, + "probability": 0.7825 + }, + { + "start": 24477.08, + "end": 24477.46, + "probability": 0.0641 + }, + { + "start": 24477.46, + "end": 24482.02, + "probability": 0.6611 + }, + { + "start": 24483.56, + "end": 24486.32, + "probability": 0.9427 + }, + { + "start": 24488.18, + "end": 24490.78, + "probability": 0.9905 + }, + { + "start": 24490.94, + "end": 24493.5, + "probability": 0.9323 + }, + { + "start": 24494.34, + "end": 24495.34, + "probability": 0.7124 + }, + { + "start": 24496.06, + "end": 24498.18, + "probability": 0.827 + }, + { + "start": 24499.64, + "end": 24502.08, + "probability": 0.9971 + }, + { + "start": 24502.62, + "end": 24503.12, + "probability": 0.7301 + }, + { + "start": 24505.12, + "end": 24510.64, + "probability": 0.8748 + }, + { + "start": 24513.42, + "end": 24514.44, + "probability": 0.6877 + }, + { + "start": 24515.0, + "end": 24515.58, + "probability": 0.7777 + }, + { + "start": 24515.76, + "end": 24521.44, + "probability": 0.9959 + }, + { + "start": 24522.74, + "end": 24525.5, + "probability": 0.9897 + }, + { + "start": 24526.02, + "end": 24528.38, + "probability": 0.9951 + }, + { + "start": 24530.16, + "end": 24532.49, + "probability": 0.7935 + }, + { + "start": 24532.78, + "end": 24537.14, + "probability": 0.8285 + }, + { + "start": 24537.64, + "end": 24539.06, + "probability": 0.8379 + }, + { + "start": 24539.3, + "end": 24541.28, + "probability": 0.653 + }, + { + "start": 24542.92, + "end": 24544.7, + "probability": 0.4431 + }, + { + "start": 24544.7, + "end": 24545.06, + "probability": 0.3377 + }, + { + "start": 24545.08, + "end": 24545.86, + "probability": 0.7217 + }, + { + "start": 24547.42, + "end": 24548.62, + "probability": 0.7615 + }, + { + "start": 24549.6, + "end": 24552.9, + "probability": 0.9939 + }, + { + "start": 24553.8, + "end": 24554.6, + "probability": 0.9707 + }, + { + "start": 24555.52, + "end": 24560.76, + "probability": 0.9076 + }, + { + "start": 24562.07, + "end": 24565.74, + "probability": 0.8433 + }, + { + "start": 24566.7, + "end": 24568.42, + "probability": 0.8853 + }, + { + "start": 24569.14, + "end": 24576.3, + "probability": 0.9061 + }, + { + "start": 24577.64, + "end": 24578.56, + "probability": 0.5371 + }, + { + "start": 24579.48, + "end": 24583.66, + "probability": 0.9359 + }, + { + "start": 24584.34, + "end": 24589.7, + "probability": 0.9258 + }, + { + "start": 24591.12, + "end": 24593.72, + "probability": 0.9878 + }, + { + "start": 24594.3, + "end": 24594.78, + "probability": 0.9511 + }, + { + "start": 24597.76, + "end": 24598.8, + "probability": 0.7935 + }, + { + "start": 24599.88, + "end": 24601.56, + "probability": 0.9318 + }, + { + "start": 24602.68, + "end": 24607.88, + "probability": 0.8921 + }, + { + "start": 24608.06, + "end": 24608.7, + "probability": 0.776 + }, + { + "start": 24609.96, + "end": 24611.66, + "probability": 0.9673 + }, + { + "start": 24611.92, + "end": 24613.5, + "probability": 0.821 + }, + { + "start": 24613.86, + "end": 24614.22, + "probability": 0.4932 + }, + { + "start": 24614.3, + "end": 24615.66, + "probability": 0.5623 + }, + { + "start": 24616.32, + "end": 24620.46, + "probability": 0.9924 + }, + { + "start": 24620.56, + "end": 24622.35, + "probability": 0.9908 + }, + { + "start": 24623.22, + "end": 24624.82, + "probability": 0.9989 + }, + { + "start": 24625.38, + "end": 24627.74, + "probability": 0.7284 + }, + { + "start": 24627.98, + "end": 24629.34, + "probability": 0.9587 + }, + { + "start": 24630.14, + "end": 24631.06, + "probability": 0.9325 + }, + { + "start": 24632.58, + "end": 24633.5, + "probability": 0.6979 + }, + { + "start": 24633.52, + "end": 24635.68, + "probability": 0.5771 + }, + { + "start": 24635.68, + "end": 24636.26, + "probability": 0.7552 + }, + { + "start": 24636.32, + "end": 24636.66, + "probability": 0.7293 + }, + { + "start": 24636.7, + "end": 24637.04, + "probability": 0.7706 + }, + { + "start": 24637.08, + "end": 24637.28, + "probability": 0.6815 + }, + { + "start": 24637.38, + "end": 24637.58, + "probability": 0.3181 + }, + { + "start": 24637.92, + "end": 24638.24, + "probability": 0.0105 + }, + { + "start": 24638.26, + "end": 24638.4, + "probability": 0.4537 + }, + { + "start": 24638.46, + "end": 24639.85, + "probability": 0.9839 + }, + { + "start": 24639.98, + "end": 24641.34, + "probability": 0.9698 + }, + { + "start": 24641.46, + "end": 24641.56, + "probability": 0.0986 + }, + { + "start": 24641.56, + "end": 24642.98, + "probability": 0.8027 + }, + { + "start": 24643.56, + "end": 24645.07, + "probability": 0.6588 + }, + { + "start": 24645.3, + "end": 24646.7, + "probability": 0.3707 + }, + { + "start": 24646.7, + "end": 24647.78, + "probability": 0.9237 + }, + { + "start": 24648.1, + "end": 24650.38, + "probability": 0.9529 + }, + { + "start": 24650.38, + "end": 24650.96, + "probability": 0.5279 + }, + { + "start": 24650.96, + "end": 24651.3, + "probability": 0.7964 + }, + { + "start": 24651.34, + "end": 24651.74, + "probability": 0.4306 + }, + { + "start": 24651.74, + "end": 24652.84, + "probability": 0.8542 + }, + { + "start": 24653.6, + "end": 24656.48, + "probability": 0.8361 + }, + { + "start": 24656.48, + "end": 24658.36, + "probability": 0.6157 + }, + { + "start": 24658.36, + "end": 24658.61, + "probability": 0.6658 + }, + { + "start": 24658.68, + "end": 24658.74, + "probability": 0.2133 + }, + { + "start": 24658.92, + "end": 24660.98, + "probability": 0.9216 + }, + { + "start": 24660.98, + "end": 24661.48, + "probability": 0.1309 + }, + { + "start": 24661.94, + "end": 24662.92, + "probability": 0.9434 + }, + { + "start": 24663.12, + "end": 24665.08, + "probability": 0.6079 + }, + { + "start": 24665.4, + "end": 24666.54, + "probability": 0.3021 + }, + { + "start": 24666.64, + "end": 24667.38, + "probability": 0.6311 + }, + { + "start": 24667.46, + "end": 24668.14, + "probability": 0.6991 + }, + { + "start": 24668.36, + "end": 24668.48, + "probability": 0.5306 + }, + { + "start": 24668.58, + "end": 24669.64, + "probability": 0.6943 + }, + { + "start": 24669.86, + "end": 24670.88, + "probability": 0.8381 + }, + { + "start": 24671.24, + "end": 24671.93, + "probability": 0.3171 + }, + { + "start": 24673.91, + "end": 24674.98, + "probability": 0.4964 + }, + { + "start": 24675.1, + "end": 24675.1, + "probability": 0.2544 + }, + { + "start": 24675.1, + "end": 24676.26, + "probability": 0.6765 + }, + { + "start": 24676.4, + "end": 24678.16, + "probability": 0.6076 + }, + { + "start": 24678.42, + "end": 24680.08, + "probability": 0.4469 + }, + { + "start": 24680.82, + "end": 24680.82, + "probability": 0.0207 + }, + { + "start": 24680.82, + "end": 24681.18, + "probability": 0.0172 + }, + { + "start": 24681.72, + "end": 24682.96, + "probability": 0.6553 + }, + { + "start": 24683.1, + "end": 24683.16, + "probability": 0.2186 + }, + { + "start": 24683.16, + "end": 24684.02, + "probability": 0.9897 + }, + { + "start": 24684.08, + "end": 24685.2, + "probability": 0.7241 + }, + { + "start": 24685.22, + "end": 24685.84, + "probability": 0.5865 + }, + { + "start": 24685.98, + "end": 24686.16, + "probability": 0.6387 + }, + { + "start": 24686.82, + "end": 24687.12, + "probability": 0.7946 + }, + { + "start": 24687.16, + "end": 24687.86, + "probability": 0.3908 + }, + { + "start": 24688.04, + "end": 24688.18, + "probability": 0.4079 + }, + { + "start": 24688.88, + "end": 24689.64, + "probability": 0.9406 + }, + { + "start": 24690.68, + "end": 24692.4, + "probability": 0.8059 + }, + { + "start": 24692.94, + "end": 24693.78, + "probability": 0.9683 + }, + { + "start": 24694.82, + "end": 24694.98, + "probability": 0.2287 + }, + { + "start": 24695.76, + "end": 24698.64, + "probability": 0.5499 + }, + { + "start": 24699.95, + "end": 24700.18, + "probability": 0.1159 + }, + { + "start": 24700.46, + "end": 24700.56, + "probability": 0.1412 + }, + { + "start": 24700.56, + "end": 24701.44, + "probability": 0.6895 + }, + { + "start": 24701.5, + "end": 24702.08, + "probability": 0.9141 + }, + { + "start": 24702.14, + "end": 24705.54, + "probability": 0.8551 + }, + { + "start": 24705.56, + "end": 24705.66, + "probability": 0.0495 + }, + { + "start": 24707.64, + "end": 24710.62, + "probability": 0.744 + }, + { + "start": 24711.0, + "end": 24713.16, + "probability": 0.7124 + }, + { + "start": 24713.18, + "end": 24714.26, + "probability": 0.3727 + }, + { + "start": 24714.26, + "end": 24717.5, + "probability": 0.9875 + }, + { + "start": 24717.96, + "end": 24718.3, + "probability": 0.411 + }, + { + "start": 24719.08, + "end": 24723.04, + "probability": 0.9784 + }, + { + "start": 24723.4, + "end": 24725.5, + "probability": 0.7913 + }, + { + "start": 24725.68, + "end": 24725.96, + "probability": 0.5067 + }, + { + "start": 24726.16, + "end": 24729.58, + "probability": 0.9493 + }, + { + "start": 24729.88, + "end": 24732.48, + "probability": 0.9126 + }, + { + "start": 24733.62, + "end": 24734.8, + "probability": 0.9611 + }, + { + "start": 24735.58, + "end": 24738.08, + "probability": 0.9893 + }, + { + "start": 24738.38, + "end": 24739.58, + "probability": 0.7267 + }, + { + "start": 24739.66, + "end": 24740.08, + "probability": 0.4857 + }, + { + "start": 24740.62, + "end": 24742.5, + "probability": 0.9821 + }, + { + "start": 24742.9, + "end": 24743.78, + "probability": 0.7919 + }, + { + "start": 24743.84, + "end": 24745.78, + "probability": 0.9273 + }, + { + "start": 24746.28, + "end": 24747.26, + "probability": 0.9125 + }, + { + "start": 24747.84, + "end": 24748.62, + "probability": 0.3542 + }, + { + "start": 24748.88, + "end": 24750.62, + "probability": 0.9954 + }, + { + "start": 24750.7, + "end": 24752.1, + "probability": 0.9656 + }, + { + "start": 24752.18, + "end": 24752.28, + "probability": 0.8194 + }, + { + "start": 24753.1, + "end": 24754.32, + "probability": 0.8526 + }, + { + "start": 24756.12, + "end": 24757.1, + "probability": 0.5945 + }, + { + "start": 24758.5, + "end": 24758.74, + "probability": 0.8653 + }, + { + "start": 24758.74, + "end": 24759.98, + "probability": 0.5796 + }, + { + "start": 24760.0, + "end": 24761.5, + "probability": 0.7103 + }, + { + "start": 24762.02, + "end": 24764.9, + "probability": 0.572 + }, + { + "start": 24764.97, + "end": 24771.46, + "probability": 0.7386 + }, + { + "start": 24772.07, + "end": 24772.8, + "probability": 0.1442 + }, + { + "start": 24772.8, + "end": 24773.24, + "probability": 0.6181 + }, + { + "start": 24773.3, + "end": 24774.4, + "probability": 0.9235 + }, + { + "start": 24774.46, + "end": 24775.08, + "probability": 0.8674 + }, + { + "start": 24775.14, + "end": 24776.84, + "probability": 0.9166 + }, + { + "start": 24776.98, + "end": 24778.5, + "probability": 0.9658 + }, + { + "start": 24779.16, + "end": 24781.72, + "probability": 0.9033 + }, + { + "start": 24781.9, + "end": 24782.64, + "probability": 0.2405 + }, + { + "start": 24782.82, + "end": 24782.88, + "probability": 0.1196 + }, + { + "start": 24782.88, + "end": 24783.32, + "probability": 0.1574 + }, + { + "start": 24783.46, + "end": 24784.85, + "probability": 0.749 + }, + { + "start": 24785.16, + "end": 24785.96, + "probability": 0.9081 + }, + { + "start": 24786.33, + "end": 24787.73, + "probability": 0.3034 + }, + { + "start": 24788.82, + "end": 24790.12, + "probability": 0.5557 + }, + { + "start": 24790.44, + "end": 24792.44, + "probability": 0.8027 + }, + { + "start": 24792.52, + "end": 24792.56, + "probability": 0.4175 + }, + { + "start": 24792.66, + "end": 24795.76, + "probability": 0.8273 + }, + { + "start": 24795.94, + "end": 24796.34, + "probability": 0.679 + }, + { + "start": 24797.32, + "end": 24799.23, + "probability": 0.9198 + }, + { + "start": 24800.18, + "end": 24800.72, + "probability": 0.4822 + }, + { + "start": 24801.26, + "end": 24804.38, + "probability": 0.1341 + }, + { + "start": 24804.38, + "end": 24805.81, + "probability": 0.083 + }, + { + "start": 24806.5, + "end": 24808.6, + "probability": 0.0123 + }, + { + "start": 24809.22, + "end": 24811.84, + "probability": 0.4161 + }, + { + "start": 24812.1, + "end": 24812.2, + "probability": 0.0343 + }, + { + "start": 24813.36, + "end": 24814.88, + "probability": 0.0053 + }, + { + "start": 24816.36, + "end": 24816.48, + "probability": 0.16 + }, + { + "start": 24816.48, + "end": 24817.48, + "probability": 0.623 + }, + { + "start": 24818.44, + "end": 24824.44, + "probability": 0.6951 + }, + { + "start": 24824.64, + "end": 24825.18, + "probability": 0.7793 + }, + { + "start": 24825.26, + "end": 24826.22, + "probability": 0.9922 + }, + { + "start": 24827.5, + "end": 24829.96, + "probability": 0.998 + }, + { + "start": 24829.98, + "end": 24832.84, + "probability": 0.9945 + }, + { + "start": 24833.7, + "end": 24834.8, + "probability": 0.5362 + }, + { + "start": 24834.9, + "end": 24837.15, + "probability": 0.7151 + }, + { + "start": 24838.58, + "end": 24839.44, + "probability": 0.9201 + }, + { + "start": 24839.5, + "end": 24839.84, + "probability": 0.0883 + }, + { + "start": 24839.98, + "end": 24841.92, + "probability": 0.9856 + }, + { + "start": 24842.32, + "end": 24842.66, + "probability": 0.0179 + }, + { + "start": 24842.92, + "end": 24843.38, + "probability": 0.4273 + }, + { + "start": 24844.14, + "end": 24845.43, + "probability": 0.6004 + }, + { + "start": 24846.08, + "end": 24847.5, + "probability": 0.8542 + }, + { + "start": 24847.92, + "end": 24848.9, + "probability": 0.7172 + }, + { + "start": 24849.9, + "end": 24850.34, + "probability": 0.6729 + }, + { + "start": 24853.28, + "end": 24854.52, + "probability": 0.9426 + }, + { + "start": 24856.4, + "end": 24857.8, + "probability": 0.5015 + }, + { + "start": 24858.02, + "end": 24858.74, + "probability": 0.8753 + }, + { + "start": 24859.22, + "end": 24860.58, + "probability": 0.8602 + }, + { + "start": 24861.12, + "end": 24866.78, + "probability": 0.9866 + }, + { + "start": 24867.38, + "end": 24868.36, + "probability": 0.998 + }, + { + "start": 24869.04, + "end": 24871.06, + "probability": 0.8533 + }, + { + "start": 24871.64, + "end": 24873.53, + "probability": 0.9653 + }, + { + "start": 24874.26, + "end": 24875.14, + "probability": 0.9921 + }, + { + "start": 24875.22, + "end": 24875.79, + "probability": 0.9937 + }, + { + "start": 24876.08, + "end": 24876.74, + "probability": 0.7497 + }, + { + "start": 24877.12, + "end": 24878.13, + "probability": 0.9601 + }, + { + "start": 24878.78, + "end": 24879.83, + "probability": 0.9637 + }, + { + "start": 24880.5, + "end": 24881.34, + "probability": 0.3935 + }, + { + "start": 24882.24, + "end": 24884.7, + "probability": 0.9564 + }, + { + "start": 24886.22, + "end": 24889.52, + "probability": 0.9831 + }, + { + "start": 24891.84, + "end": 24893.88, + "probability": 0.9936 + }, + { + "start": 24894.84, + "end": 24895.84, + "probability": 0.8561 + }, + { + "start": 24895.84, + "end": 24897.82, + "probability": 0.9723 + }, + { + "start": 24898.84, + "end": 24900.64, + "probability": 0.942 + }, + { + "start": 24902.58, + "end": 24903.34, + "probability": 0.7757 + }, + { + "start": 24903.44, + "end": 24904.8, + "probability": 0.681 + }, + { + "start": 24905.14, + "end": 24905.76, + "probability": 0.8302 + }, + { + "start": 24905.86, + "end": 24912.48, + "probability": 0.8587 + }, + { + "start": 24913.64, + "end": 24914.52, + "probability": 0.7027 + }, + { + "start": 24915.08, + "end": 24917.2, + "probability": 0.9418 + }, + { + "start": 24921.0, + "end": 24922.46, + "probability": 0.9813 + }, + { + "start": 24923.34, + "end": 24925.86, + "probability": 0.9626 + }, + { + "start": 24929.42, + "end": 24930.5, + "probability": 0.876 + }, + { + "start": 24931.18, + "end": 24934.74, + "probability": 0.8451 + }, + { + "start": 24936.4, + "end": 24939.1, + "probability": 0.9633 + }, + { + "start": 24940.44, + "end": 24942.66, + "probability": 0.9141 + }, + { + "start": 24943.26, + "end": 24947.1, + "probability": 0.9717 + }, + { + "start": 24949.24, + "end": 24952.72, + "probability": 0.9714 + }, + { + "start": 24952.88, + "end": 24952.88, + "probability": 0.1983 + }, + { + "start": 24952.88, + "end": 24954.16, + "probability": 0.0985 + }, + { + "start": 24954.2, + "end": 24955.6, + "probability": 0.8512 + }, + { + "start": 24955.74, + "end": 24957.08, + "probability": 0.9837 + }, + { + "start": 24957.28, + "end": 24959.06, + "probability": 0.8711 + }, + { + "start": 24959.54, + "end": 24961.8, + "probability": 0.8865 + }, + { + "start": 24967.26, + "end": 24971.68, + "probability": 0.804 + }, + { + "start": 24972.3, + "end": 24975.44, + "probability": 0.9961 + }, + { + "start": 24976.34, + "end": 24977.78, + "probability": 0.9084 + }, + { + "start": 24978.04, + "end": 24978.78, + "probability": 0.5955 + }, + { + "start": 24979.54, + "end": 24981.86, + "probability": 0.7489 + }, + { + "start": 24981.88, + "end": 24984.04, + "probability": 0.9607 + }, + { + "start": 24986.04, + "end": 24986.38, + "probability": 0.901 + }, + { + "start": 24986.46, + "end": 24987.14, + "probability": 0.8271 + }, + { + "start": 24987.26, + "end": 24988.26, + "probability": 0.8918 + }, + { + "start": 24988.74, + "end": 24989.48, + "probability": 0.9817 + }, + { + "start": 24989.58, + "end": 24990.64, + "probability": 0.7469 + }, + { + "start": 24991.02, + "end": 24994.2, + "probability": 0.6958 + }, + { + "start": 24994.24, + "end": 24995.78, + "probability": 0.9728 + }, + { + "start": 24996.5, + "end": 24997.82, + "probability": 0.9522 + }, + { + "start": 24998.36, + "end": 24999.06, + "probability": 0.6937 + }, + { + "start": 25000.32, + "end": 25001.16, + "probability": 0.7715 + }, + { + "start": 25002.16, + "end": 25003.34, + "probability": 0.7586 + }, + { + "start": 25003.98, + "end": 25006.68, + "probability": 0.9129 + }, + { + "start": 25007.12, + "end": 25008.12, + "probability": 0.9451 + }, + { + "start": 25008.48, + "end": 25009.26, + "probability": 0.8328 + }, + { + "start": 25009.76, + "end": 25010.5, + "probability": 0.5745 + }, + { + "start": 25012.44, + "end": 25017.12, + "probability": 0.9813 + }, + { + "start": 25017.3, + "end": 25019.46, + "probability": 0.8561 + }, + { + "start": 25020.7, + "end": 25021.68, + "probability": 0.6476 + }, + { + "start": 25022.92, + "end": 25025.16, + "probability": 0.944 + }, + { + "start": 25026.28, + "end": 25029.04, + "probability": 0.9847 + }, + { + "start": 25030.02, + "end": 25031.26, + "probability": 0.9927 + }, + { + "start": 25032.04, + "end": 25032.6, + "probability": 0.8942 + }, + { + "start": 25032.68, + "end": 25035.28, + "probability": 0.4302 + }, + { + "start": 25035.7, + "end": 25039.58, + "probability": 0.9371 + }, + { + "start": 25040.46, + "end": 25046.44, + "probability": 0.9119 + }, + { + "start": 25051.85, + "end": 25053.48, + "probability": 0.2888 + }, + { + "start": 25058.8, + "end": 25059.84, + "probability": 0.6841 + }, + { + "start": 25060.28, + "end": 25066.36, + "probability": 0.9161 + }, + { + "start": 25072.1, + "end": 25073.98, + "probability": 0.7604 + }, + { + "start": 25074.5, + "end": 25075.26, + "probability": 0.3602 + }, + { + "start": 25075.44, + "end": 25079.46, + "probability": 0.8445 + }, + { + "start": 25079.58, + "end": 25080.51, + "probability": 0.9045 + }, + { + "start": 25080.7, + "end": 25084.62, + "probability": 0.9734 + }, + { + "start": 25084.66, + "end": 25086.08, + "probability": 0.9655 + }, + { + "start": 25087.3, + "end": 25088.0, + "probability": 0.9677 + }, + { + "start": 25088.1, + "end": 25089.68, + "probability": 0.8018 + }, + { + "start": 25089.74, + "end": 25092.48, + "probability": 0.6714 + }, + { + "start": 25093.16, + "end": 25096.3, + "probability": 0.9627 + }, + { + "start": 25096.82, + "end": 25101.38, + "probability": 0.8404 + }, + { + "start": 25102.02, + "end": 25104.02, + "probability": 0.5908 + }, + { + "start": 25104.84, + "end": 25107.6, + "probability": 0.9661 + }, + { + "start": 25110.64, + "end": 25111.84, + "probability": 0.1091 + }, + { + "start": 25113.16, + "end": 25114.04, + "probability": 0.225 + }, + { + "start": 25114.38, + "end": 25117.9, + "probability": 0.0606 + }, + { + "start": 25121.84, + "end": 25122.02, + "probability": 0.3913 + }, + { + "start": 25124.44, + "end": 25125.18, + "probability": 0.0274 + }, + { + "start": 25129.76, + "end": 25130.38, + "probability": 0.2903 + }, + { + "start": 25132.6, + "end": 25132.9, + "probability": 0.035 + }, + { + "start": 25138.36, + "end": 25139.72, + "probability": 0.0174 + }, + { + "start": 25166.67, + "end": 25167.51, + "probability": 0.9958 + }, + { + "start": 25167.53, + "end": 25169.23, + "probability": 0.3267 + }, + { + "start": 25170.02, + "end": 25172.15, + "probability": 0.6991 + }, + { + "start": 25172.39, + "end": 25173.79, + "probability": 0.8595 + }, + { + "start": 25173.93, + "end": 25174.63, + "probability": 0.4293 + }, + { + "start": 25174.71, + "end": 25175.63, + "probability": 0.9842 + }, + { + "start": 25176.53, + "end": 25180.53, + "probability": 0.9754 + }, + { + "start": 25180.67, + "end": 25183.39, + "probability": 0.5049 + }, + { + "start": 25183.43, + "end": 25183.99, + "probability": 0.7621 + }, + { + "start": 25184.37, + "end": 25185.83, + "probability": 0.8176 + }, + { + "start": 25187.41, + "end": 25189.93, + "probability": 0.7144 + }, + { + "start": 25190.11, + "end": 25191.85, + "probability": 0.981 + }, + { + "start": 25192.41, + "end": 25193.57, + "probability": 0.8523 + }, + { + "start": 25196.15, + "end": 25197.21, + "probability": 0.6883 + }, + { + "start": 25197.63, + "end": 25199.29, + "probability": 0.9156 + }, + { + "start": 25199.99, + "end": 25203.11, + "probability": 0.9775 + }, + { + "start": 25203.69, + "end": 25205.31, + "probability": 0.8788 + }, + { + "start": 25206.01, + "end": 25207.41, + "probability": 0.9241 + }, + { + "start": 25208.11, + "end": 25213.97, + "probability": 0.9906 + }, + { + "start": 25214.73, + "end": 25215.21, + "probability": 0.8607 + }, + { + "start": 25222.89, + "end": 25223.95, + "probability": 0.8037 + }, + { + "start": 25224.69, + "end": 25225.73, + "probability": 0.6671 + }, + { + "start": 25226.35, + "end": 25227.05, + "probability": 0.6538 + }, + { + "start": 25228.17, + "end": 25230.71, + "probability": 0.927 + }, + { + "start": 25231.33, + "end": 25232.71, + "probability": 0.9252 + }, + { + "start": 25233.71, + "end": 25236.67, + "probability": 0.8704 + }, + { + "start": 25236.99, + "end": 25237.99, + "probability": 0.7697 + }, + { + "start": 25238.55, + "end": 25240.07, + "probability": 0.8002 + }, + { + "start": 25240.99, + "end": 25244.19, + "probability": 0.9944 + }, + { + "start": 25244.24, + "end": 25248.87, + "probability": 0.9791 + }, + { + "start": 25249.55, + "end": 25251.37, + "probability": 0.9473 + }, + { + "start": 25252.15, + "end": 25253.61, + "probability": 0.9362 + }, + { + "start": 25254.97, + "end": 25256.75, + "probability": 0.9849 + }, + { + "start": 25257.25, + "end": 25259.19, + "probability": 0.8844 + }, + { + "start": 25259.89, + "end": 25260.09, + "probability": 0.7377 + }, + { + "start": 25260.17, + "end": 25261.87, + "probability": 0.93 + }, + { + "start": 25262.27, + "end": 25263.31, + "probability": 0.7257 + }, + { + "start": 25264.09, + "end": 25269.61, + "probability": 0.9265 + }, + { + "start": 25271.09, + "end": 25274.07, + "probability": 0.8962 + }, + { + "start": 25275.15, + "end": 25277.89, + "probability": 0.988 + }, + { + "start": 25279.55, + "end": 25283.69, + "probability": 0.984 + }, + { + "start": 25283.69, + "end": 25288.19, + "probability": 0.9934 + }, + { + "start": 25290.39, + "end": 25293.25, + "probability": 0.8141 + }, + { + "start": 25293.97, + "end": 25295.59, + "probability": 0.9337 + }, + { + "start": 25295.79, + "end": 25296.89, + "probability": 0.5005 + }, + { + "start": 25297.09, + "end": 25298.11, + "probability": 0.9365 + }, + { + "start": 25299.33, + "end": 25301.53, + "probability": 0.9962 + }, + { + "start": 25302.55, + "end": 25305.41, + "probability": 0.5019 + }, + { + "start": 25306.81, + "end": 25308.31, + "probability": 0.8214 + }, + { + "start": 25309.13, + "end": 25310.85, + "probability": 0.8147 + }, + { + "start": 25311.91, + "end": 25314.07, + "probability": 0.9373 + }, + { + "start": 25314.43, + "end": 25317.26, + "probability": 0.8927 + }, + { + "start": 25317.39, + "end": 25320.73, + "probability": 0.9796 + }, + { + "start": 25322.35, + "end": 25323.19, + "probability": 0.7187 + }, + { + "start": 25324.47, + "end": 25327.67, + "probability": 0.9679 + }, + { + "start": 25327.83, + "end": 25328.69, + "probability": 0.8429 + }, + { + "start": 25329.93, + "end": 25333.03, + "probability": 0.8038 + }, + { + "start": 25334.27, + "end": 25338.69, + "probability": 0.9609 + }, + { + "start": 25338.69, + "end": 25343.31, + "probability": 0.9658 + }, + { + "start": 25344.37, + "end": 25344.87, + "probability": 0.7554 + }, + { + "start": 25345.67, + "end": 25348.57, + "probability": 0.957 + }, + { + "start": 25348.75, + "end": 25351.97, + "probability": 0.9782 + }, + { + "start": 25353.41, + "end": 25357.55, + "probability": 0.9744 + }, + { + "start": 25358.65, + "end": 25361.44, + "probability": 0.9985 + }, + { + "start": 25361.83, + "end": 25364.51, + "probability": 0.8285 + }, + { + "start": 25365.83, + "end": 25370.53, + "probability": 0.9968 + }, + { + "start": 25371.23, + "end": 25373.93, + "probability": 0.8112 + }, + { + "start": 25374.57, + "end": 25378.09, + "probability": 0.8556 + }, + { + "start": 25378.51, + "end": 25379.89, + "probability": 0.9817 + }, + { + "start": 25380.49, + "end": 25383.77, + "probability": 0.9796 + }, + { + "start": 25385.09, + "end": 25388.07, + "probability": 0.9448 + }, + { + "start": 25389.25, + "end": 25389.35, + "probability": 0.5099 + }, + { + "start": 25389.87, + "end": 25395.53, + "probability": 0.9737 + }, + { + "start": 25396.05, + "end": 25397.57, + "probability": 0.9989 + }, + { + "start": 25398.65, + "end": 25399.77, + "probability": 0.7901 + }, + { + "start": 25400.33, + "end": 25403.43, + "probability": 0.8485 + }, + { + "start": 25403.89, + "end": 25406.23, + "probability": 0.9785 + }, + { + "start": 25406.79, + "end": 25408.77, + "probability": 0.888 + }, + { + "start": 25409.31, + "end": 25414.55, + "probability": 0.9885 + }, + { + "start": 25415.93, + "end": 25418.45, + "probability": 0.9829 + }, + { + "start": 25420.09, + "end": 25422.29, + "probability": 0.8332 + }, + { + "start": 25422.65, + "end": 25424.03, + "probability": 0.7573 + }, + { + "start": 25424.33, + "end": 25425.65, + "probability": 0.9198 + }, + { + "start": 25426.21, + "end": 25427.91, + "probability": 0.7171 + }, + { + "start": 25428.45, + "end": 25430.59, + "probability": 0.9159 + }, + { + "start": 25431.37, + "end": 25432.33, + "probability": 0.7346 + }, + { + "start": 25434.01, + "end": 25434.75, + "probability": 0.5715 + }, + { + "start": 25436.01, + "end": 25436.83, + "probability": 0.7355 + }, + { + "start": 25437.21, + "end": 25443.91, + "probability": 0.989 + }, + { + "start": 25444.71, + "end": 25447.31, + "probability": 0.9992 + }, + { + "start": 25447.89, + "end": 25449.31, + "probability": 0.7406 + }, + { + "start": 25449.73, + "end": 25450.27, + "probability": 0.7387 + }, + { + "start": 25450.29, + "end": 25451.69, + "probability": 0.3981 + }, + { + "start": 25451.79, + "end": 25452.23, + "probability": 0.3175 + }, + { + "start": 25452.23, + "end": 25452.79, + "probability": 0.825 + }, + { + "start": 25453.57, + "end": 25456.93, + "probability": 0.894 + }, + { + "start": 25458.03, + "end": 25462.11, + "probability": 0.9421 + }, + { + "start": 25462.69, + "end": 25464.07, + "probability": 0.9712 + }, + { + "start": 25464.73, + "end": 25469.15, + "probability": 0.8995 + }, + { + "start": 25470.25, + "end": 25472.53, + "probability": 0.9611 + }, + { + "start": 25472.85, + "end": 25473.37, + "probability": 0.8613 + }, + { + "start": 25473.75, + "end": 25474.37, + "probability": 0.9727 + }, + { + "start": 25474.71, + "end": 25475.99, + "probability": 0.9395 + }, + { + "start": 25476.81, + "end": 25479.55, + "probability": 0.9526 + }, + { + "start": 25479.55, + "end": 25481.85, + "probability": 0.8027 + }, + { + "start": 25482.85, + "end": 25484.39, + "probability": 0.9606 + }, + { + "start": 25485.23, + "end": 25486.31, + "probability": 0.9571 + }, + { + "start": 25487.03, + "end": 25488.41, + "probability": 0.9429 + }, + { + "start": 25489.21, + "end": 25492.29, + "probability": 0.8995 + }, + { + "start": 25493.05, + "end": 25496.01, + "probability": 0.9873 + }, + { + "start": 25496.77, + "end": 25498.53, + "probability": 0.9728 + }, + { + "start": 25498.95, + "end": 25500.47, + "probability": 0.952 + }, + { + "start": 25501.71, + "end": 25504.91, + "probability": 0.7685 + }, + { + "start": 25505.77, + "end": 25507.75, + "probability": 0.9684 + }, + { + "start": 25508.57, + "end": 25512.35, + "probability": 0.9867 + }, + { + "start": 25512.87, + "end": 25516.53, + "probability": 0.9736 + }, + { + "start": 25517.67, + "end": 25518.59, + "probability": 0.7242 + }, + { + "start": 25519.61, + "end": 25521.49, + "probability": 0.9769 + }, + { + "start": 25522.41, + "end": 25526.29, + "probability": 0.9963 + }, + { + "start": 25527.35, + "end": 25529.85, + "probability": 0.9905 + }, + { + "start": 25529.85, + "end": 25532.47, + "probability": 0.9914 + }, + { + "start": 25533.25, + "end": 25536.35, + "probability": 0.9365 + }, + { + "start": 25537.31, + "end": 25540.69, + "probability": 0.6677 + }, + { + "start": 25541.59, + "end": 25544.49, + "probability": 0.8812 + }, + { + "start": 25545.09, + "end": 25545.25, + "probability": 0.8109 + }, + { + "start": 25547.13, + "end": 25550.35, + "probability": 0.9797 + }, + { + "start": 25551.77, + "end": 25554.53, + "probability": 0.8316 + }, + { + "start": 25555.15, + "end": 25559.25, + "probability": 0.9935 + }, + { + "start": 25559.33, + "end": 25561.73, + "probability": 0.9939 + }, + { + "start": 25563.07, + "end": 25564.27, + "probability": 0.1583 + }, + { + "start": 25564.35, + "end": 25564.81, + "probability": 0.0079 + }, + { + "start": 25664.24, + "end": 25664.4, + "probability": 0.5935 + }, + { + "start": 25664.4, + "end": 25664.9, + "probability": 0.1976 + }, + { + "start": 25665.26, + "end": 25668.04, + "probability": 0.3741 + }, + { + "start": 25668.68, + "end": 25670.4, + "probability": 0.0556 + }, + { + "start": 25671.68, + "end": 25672.48, + "probability": 0.0972 + }, + { + "start": 25681.56, + "end": 25683.24, + "probability": 0.1752 + }, + { + "start": 25684.9, + "end": 25686.3, + "probability": 0.0636 + }, + { + "start": 25686.8, + "end": 25689.58, + "probability": 0.6638 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25791.0, + "end": 25791.0, + "probability": 0.0 + }, + { + "start": 25803.12, + "end": 25803.9, + "probability": 0.0169 + }, + { + "start": 25804.62, + "end": 25805.38, + "probability": 0.083 + }, + { + "start": 25808.04, + "end": 25811.26, + "probability": 0.0699 + }, + { + "start": 25812.0, + "end": 25813.9, + "probability": 0.2067 + }, + { + "start": 25814.48, + "end": 25815.08, + "probability": 0.1796 + }, + { + "start": 25815.08, + "end": 25815.3, + "probability": 0.0573 + }, + { + "start": 25815.3, + "end": 25815.52, + "probability": 0.0723 + }, + { + "start": 25815.56, + "end": 25816.56, + "probability": 0.0771 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.0, + "end": 25912.0, + "probability": 0.0 + }, + { + "start": 25912.32, + "end": 25912.44, + "probability": 0.3581 + }, + { + "start": 25912.44, + "end": 25912.44, + "probability": 0.1115 + }, + { + "start": 25912.44, + "end": 25912.44, + "probability": 0.1724 + }, + { + "start": 25912.58, + "end": 25914.06, + "probability": 0.956 + }, + { + "start": 25914.34, + "end": 25915.24, + "probability": 0.769 + }, + { + "start": 25915.28, + "end": 25916.58, + "probability": 0.0839 + }, + { + "start": 25918.16, + "end": 25921.6, + "probability": 0.9418 + }, + { + "start": 25922.26, + "end": 25926.14, + "probability": 0.9218 + }, + { + "start": 25927.1, + "end": 25928.18, + "probability": 0.7355 + }, + { + "start": 25928.32, + "end": 25929.6, + "probability": 0.8675 + }, + { + "start": 25929.8, + "end": 25933.32, + "probability": 0.9867 + }, + { + "start": 25933.48, + "end": 25934.46, + "probability": 0.9032 + }, + { + "start": 25934.54, + "end": 25935.88, + "probability": 0.9492 + }, + { + "start": 25936.3, + "end": 25937.56, + "probability": 0.8967 + }, + { + "start": 25938.08, + "end": 25940.14, + "probability": 0.9694 + }, + { + "start": 25940.68, + "end": 25944.12, + "probability": 0.8429 + }, + { + "start": 25944.98, + "end": 25947.14, + "probability": 0.9373 + }, + { + "start": 25947.26, + "end": 25947.94, + "probability": 0.9435 + }, + { + "start": 25948.14, + "end": 25948.86, + "probability": 0.889 + }, + { + "start": 25948.92, + "end": 25950.22, + "probability": 0.9004 + }, + { + "start": 25950.26, + "end": 25950.94, + "probability": 0.91 + }, + { + "start": 25951.12, + "end": 25951.22, + "probability": 0.8757 + }, + { + "start": 25954.4, + "end": 25957.62, + "probability": 0.2842 + }, + { + "start": 25959.12, + "end": 25960.72, + "probability": 0.0094 + }, + { + "start": 25960.72, + "end": 25963.66, + "probability": 0.6843 + }, + { + "start": 25963.9, + "end": 25964.6, + "probability": 0.6837 + }, + { + "start": 25965.34, + "end": 25966.74, + "probability": 0.6925 + }, + { + "start": 25967.12, + "end": 25968.32, + "probability": 0.8617 + }, + { + "start": 25968.48, + "end": 25970.54, + "probability": 0.5548 + }, + { + "start": 25970.54, + "end": 25971.4, + "probability": 0.3603 + }, + { + "start": 25971.4, + "end": 25972.13, + "probability": 0.9429 + }, + { + "start": 25973.66, + "end": 25975.36, + "probability": 0.6297 + }, + { + "start": 25975.78, + "end": 25978.64, + "probability": 0.9818 + }, + { + "start": 25978.8, + "end": 25982.72, + "probability": 0.9954 + }, + { + "start": 25983.14, + "end": 25988.3, + "probability": 0.9987 + }, + { + "start": 25989.08, + "end": 25992.66, + "probability": 0.9717 + }, + { + "start": 25993.32, + "end": 25999.0, + "probability": 0.9728 + }, + { + "start": 25999.06, + "end": 25999.78, + "probability": 0.5137 + }, + { + "start": 26000.28, + "end": 26003.32, + "probability": 0.9987 + }, + { + "start": 26003.52, + "end": 26004.52, + "probability": 0.7777 + }, + { + "start": 26005.24, + "end": 26006.02, + "probability": 0.7977 + }, + { + "start": 26006.02, + "end": 26006.42, + "probability": 0.6124 + }, + { + "start": 26006.46, + "end": 26007.04, + "probability": 0.7165 + }, + { + "start": 26007.22, + "end": 26008.1, + "probability": 0.5612 + }, + { + "start": 26008.18, + "end": 26009.26, + "probability": 0.4958 + }, + { + "start": 26009.34, + "end": 26012.06, + "probability": 0.8712 + }, + { + "start": 26012.08, + "end": 26012.18, + "probability": 0.6167 + }, + { + "start": 26012.4, + "end": 26016.78, + "probability": 0.9989 + }, + { + "start": 26016.78, + "end": 26021.46, + "probability": 0.999 + }, + { + "start": 26021.54, + "end": 26022.88, + "probability": 0.8222 + }, + { + "start": 26023.42, + "end": 26029.34, + "probability": 0.9958 + }, + { + "start": 26029.34, + "end": 26034.56, + "probability": 0.9867 + }, + { + "start": 26035.26, + "end": 26039.68, + "probability": 0.9484 + }, + { + "start": 26039.68, + "end": 26044.28, + "probability": 0.9987 + }, + { + "start": 26044.88, + "end": 26045.58, + "probability": 0.7284 + }, + { + "start": 26045.62, + "end": 26048.5, + "probability": 0.7424 + }, + { + "start": 26048.54, + "end": 26051.48, + "probability": 0.9956 + }, + { + "start": 26052.36, + "end": 26055.04, + "probability": 0.8843 + }, + { + "start": 26057.4, + "end": 26058.08, + "probability": 0.6511 + }, + { + "start": 26058.5, + "end": 26059.38, + "probability": 0.6964 + }, + { + "start": 26059.6, + "end": 26060.32, + "probability": 0.8657 + }, + { + "start": 26060.82, + "end": 26066.14, + "probability": 0.9824 + }, + { + "start": 26066.24, + "end": 26068.78, + "probability": 0.8447 + }, + { + "start": 26068.84, + "end": 26070.69, + "probability": 0.9498 + }, + { + "start": 26071.18, + "end": 26071.86, + "probability": 0.933 + }, + { + "start": 26072.04, + "end": 26073.27, + "probability": 0.9619 + }, + { + "start": 26073.92, + "end": 26077.6, + "probability": 0.8777 + }, + { + "start": 26077.9, + "end": 26083.4, + "probability": 0.9567 + }, + { + "start": 26083.76, + "end": 26085.02, + "probability": 0.9734 + }, + { + "start": 26085.26, + "end": 26085.36, + "probability": 0.7301 + }, + { + "start": 26085.52, + "end": 26086.6, + "probability": 0.9578 + }, + { + "start": 26086.94, + "end": 26089.26, + "probability": 0.8572 + }, + { + "start": 26089.74, + "end": 26095.18, + "probability": 0.9187 + }, + { + "start": 26095.66, + "end": 26097.05, + "probability": 0.9083 + }, + { + "start": 26097.78, + "end": 26102.04, + "probability": 0.9911 + }, + { + "start": 26102.2, + "end": 26105.2, + "probability": 0.9904 + }, + { + "start": 26105.38, + "end": 26106.78, + "probability": 0.6957 + }, + { + "start": 26107.24, + "end": 26111.88, + "probability": 0.9813 + }, + { + "start": 26112.32, + "end": 26113.36, + "probability": 0.9544 + }, + { + "start": 26113.46, + "end": 26114.38, + "probability": 0.9697 + }, + { + "start": 26114.74, + "end": 26117.32, + "probability": 0.9796 + }, + { + "start": 26118.1, + "end": 26122.28, + "probability": 0.9966 + }, + { + "start": 26122.28, + "end": 26127.2, + "probability": 0.9852 + }, + { + "start": 26127.34, + "end": 26133.06, + "probability": 0.7759 + }, + { + "start": 26133.74, + "end": 26136.66, + "probability": 0.8384 + }, + { + "start": 26137.06, + "end": 26139.58, + "probability": 0.9328 + }, + { + "start": 26139.98, + "end": 26142.58, + "probability": 0.9924 + }, + { + "start": 26142.84, + "end": 26144.58, + "probability": 0.9934 + }, + { + "start": 26145.12, + "end": 26149.22, + "probability": 0.9953 + }, + { + "start": 26149.6, + "end": 26156.1, + "probability": 0.8989 + }, + { + "start": 26156.22, + "end": 26156.98, + "probability": 0.3976 + }, + { + "start": 26157.4, + "end": 26163.12, + "probability": 0.9912 + }, + { + "start": 26163.2, + "end": 26165.6, + "probability": 0.9956 + }, + { + "start": 26165.82, + "end": 26169.32, + "probability": 0.8953 + }, + { + "start": 26169.68, + "end": 26173.64, + "probability": 0.9833 + }, + { + "start": 26173.84, + "end": 26174.56, + "probability": 0.8295 + }, + { + "start": 26175.12, + "end": 26178.04, + "probability": 0.9889 + }, + { + "start": 26178.44, + "end": 26180.26, + "probability": 0.758 + }, + { + "start": 26180.4, + "end": 26185.46, + "probability": 0.9927 + }, + { + "start": 26185.7, + "end": 26188.66, + "probability": 0.7866 + }, + { + "start": 26189.22, + "end": 26190.92, + "probability": 0.9894 + }, + { + "start": 26191.02, + "end": 26197.56, + "probability": 0.7947 + }, + { + "start": 26197.76, + "end": 26200.58, + "probability": 0.9875 + }, + { + "start": 26200.68, + "end": 26203.16, + "probability": 0.9878 + }, + { + "start": 26204.42, + "end": 26207.08, + "probability": 0.9944 + }, + { + "start": 26208.12, + "end": 26216.96, + "probability": 0.9759 + }, + { + "start": 26216.98, + "end": 26217.9, + "probability": 0.7827 + }, + { + "start": 26218.52, + "end": 26219.7, + "probability": 0.8892 + }, + { + "start": 26219.84, + "end": 26221.0, + "probability": 0.9728 + }, + { + "start": 26221.36, + "end": 26222.92, + "probability": 0.903 + }, + { + "start": 26223.1, + "end": 26223.92, + "probability": 0.9597 + }, + { + "start": 26224.14, + "end": 26225.26, + "probability": 0.8478 + }, + { + "start": 26225.48, + "end": 26229.64, + "probability": 0.9945 + }, + { + "start": 26230.24, + "end": 26231.12, + "probability": 0.7855 + }, + { + "start": 26231.26, + "end": 26231.7, + "probability": 0.7771 + }, + { + "start": 26231.92, + "end": 26237.0, + "probability": 0.8544 + }, + { + "start": 26237.87, + "end": 26241.01, + "probability": 0.7737 + }, + { + "start": 26241.82, + "end": 26246.86, + "probability": 0.9944 + }, + { + "start": 26247.52, + "end": 26252.14, + "probability": 0.9938 + }, + { + "start": 26252.42, + "end": 26255.3, + "probability": 0.9855 + }, + { + "start": 26255.72, + "end": 26262.44, + "probability": 0.953 + }, + { + "start": 26263.04, + "end": 26264.68, + "probability": 0.75 + }, + { + "start": 26265.56, + "end": 26268.68, + "probability": 0.9182 + }, + { + "start": 26268.68, + "end": 26272.08, + "probability": 0.9824 + }, + { + "start": 26272.12, + "end": 26276.3, + "probability": 0.9469 + }, + { + "start": 26276.97, + "end": 26277.7, + "probability": 0.979 + }, + { + "start": 26278.3, + "end": 26279.6, + "probability": 0.6517 + }, + { + "start": 26280.06, + "end": 26284.3, + "probability": 0.9911 + }, + { + "start": 26285.0, + "end": 26289.78, + "probability": 0.8248 + }, + { + "start": 26290.08, + "end": 26292.2, + "probability": 0.9509 + }, + { + "start": 26292.72, + "end": 26293.62, + "probability": 0.8514 + }, + { + "start": 26294.16, + "end": 26296.14, + "probability": 0.674 + }, + { + "start": 26296.78, + "end": 26298.36, + "probability": 0.7069 + }, + { + "start": 26298.66, + "end": 26302.04, + "probability": 0.8317 + }, + { + "start": 26302.16, + "end": 26303.06, + "probability": 0.9451 + }, + { + "start": 26303.78, + "end": 26306.64, + "probability": 0.8682 + }, + { + "start": 26307.0, + "end": 26310.74, + "probability": 0.9951 + }, + { + "start": 26311.06, + "end": 26314.42, + "probability": 0.9856 + }, + { + "start": 26314.94, + "end": 26316.12, + "probability": 0.7687 + }, + { + "start": 26316.3, + "end": 26319.18, + "probability": 0.979 + }, + { + "start": 26319.52, + "end": 26325.4, + "probability": 0.998 + }, + { + "start": 26325.9, + "end": 26328.1, + "probability": 0.9637 + }, + { + "start": 26328.32, + "end": 26329.2, + "probability": 0.6445 + }, + { + "start": 26329.74, + "end": 26330.42, + "probability": 0.5896 + }, + { + "start": 26330.58, + "end": 26331.76, + "probability": 0.6746 + }, + { + "start": 26334.28, + "end": 26334.88, + "probability": 0.1637 + }, + { + "start": 26352.14, + "end": 26354.28, + "probability": 0.0421 + }, + { + "start": 26354.58, + "end": 26356.7, + "probability": 0.6525 + }, + { + "start": 26358.18, + "end": 26359.65, + "probability": 0.5624 + }, + { + "start": 26359.96, + "end": 26363.04, + "probability": 0.8581 + }, + { + "start": 26363.16, + "end": 26365.44, + "probability": 0.9705 + }, + { + "start": 26365.56, + "end": 26366.7, + "probability": 0.2948 + }, + { + "start": 26366.92, + "end": 26366.92, + "probability": 0.1692 + }, + { + "start": 26366.92, + "end": 26372.19, + "probability": 0.8177 + }, + { + "start": 26372.71, + "end": 26376.88, + "probability": 0.8016 + }, + { + "start": 26378.12, + "end": 26378.22, + "probability": 0.091 + }, + { + "start": 26378.22, + "end": 26380.3, + "probability": 0.7882 + }, + { + "start": 26380.78, + "end": 26381.32, + "probability": 0.761 + }, + { + "start": 26381.44, + "end": 26381.94, + "probability": 0.1159 + }, + { + "start": 26382.7, + "end": 26383.62, + "probability": 0.5704 + }, + { + "start": 26384.42, + "end": 26388.96, + "probability": 0.5866 + }, + { + "start": 26388.96, + "end": 26389.08, + "probability": 0.7415 + }, + { + "start": 26390.08, + "end": 26390.12, + "probability": 0.403 + }, + { + "start": 26390.66, + "end": 26394.26, + "probability": 0.8786 + }, + { + "start": 26395.32, + "end": 26401.99, + "probability": 0.9314 + }, + { + "start": 26404.1, + "end": 26406.22, + "probability": 0.9973 + }, + { + "start": 26407.96, + "end": 26411.58, + "probability": 0.5601 + }, + { + "start": 26412.54, + "end": 26417.2, + "probability": 0.9918 + }, + { + "start": 26417.26, + "end": 26419.18, + "probability": 0.9893 + }, + { + "start": 26419.9, + "end": 26422.68, + "probability": 0.9465 + }, + { + "start": 26424.0, + "end": 26427.82, + "probability": 0.8784 + }, + { + "start": 26430.38, + "end": 26432.18, + "probability": 0.8223 + }, + { + "start": 26432.7, + "end": 26434.42, + "probability": 0.2102 + }, + { + "start": 26434.68, + "end": 26435.16, + "probability": 0.4966 + }, + { + "start": 26436.2, + "end": 26437.56, + "probability": 0.8656 + }, + { + "start": 26438.34, + "end": 26439.03, + "probability": 0.6265 + }, + { + "start": 26439.38, + "end": 26439.58, + "probability": 0.8491 + }, + { + "start": 26440.52, + "end": 26441.4, + "probability": 0.3532 + }, + { + "start": 26442.34, + "end": 26443.52, + "probability": 0.6306 + }, + { + "start": 26445.14, + "end": 26448.04, + "probability": 0.9673 + }, + { + "start": 26449.56, + "end": 26452.18, + "probability": 0.6481 + }, + { + "start": 26453.32, + "end": 26454.42, + "probability": 0.6889 + }, + { + "start": 26454.92, + "end": 26456.24, + "probability": 0.9077 + }, + { + "start": 26456.24, + "end": 26456.46, + "probability": 0.427 + }, + { + "start": 26456.6, + "end": 26459.06, + "probability": 0.3623 + }, + { + "start": 26459.14, + "end": 26463.56, + "probability": 0.9644 + }, + { + "start": 26464.8, + "end": 26472.84, + "probability": 0.9354 + }, + { + "start": 26474.78, + "end": 26476.06, + "probability": 0.1145 + }, + { + "start": 26476.06, + "end": 26477.24, + "probability": 0.0784 + }, + { + "start": 26477.48, + "end": 26480.88, + "probability": 0.9927 + }, + { + "start": 26484.12, + "end": 26486.4, + "probability": 0.705 + }, + { + "start": 26486.82, + "end": 26487.26, + "probability": 0.6896 + }, + { + "start": 26487.36, + "end": 26488.12, + "probability": 0.7646 + }, + { + "start": 26488.88, + "end": 26489.34, + "probability": 0.9205 + }, + { + "start": 26490.28, + "end": 26491.76, + "probability": 0.5588 + }, + { + "start": 26492.08, + "end": 26495.02, + "probability": 0.9443 + }, + { + "start": 26495.46, + "end": 26496.66, + "probability": 0.9552 + }, + { + "start": 26496.94, + "end": 26500.62, + "probability": 0.8389 + }, + { + "start": 26501.64, + "end": 26503.02, + "probability": 0.0576 + }, + { + "start": 26503.16, + "end": 26504.78, + "probability": 0.3214 + }, + { + "start": 26505.32, + "end": 26507.64, + "probability": 0.9604 + }, + { + "start": 26507.74, + "end": 26509.26, + "probability": 0.8416 + }, + { + "start": 26509.92, + "end": 26511.54, + "probability": 0.931 + }, + { + "start": 26512.66, + "end": 26514.36, + "probability": 0.9352 + }, + { + "start": 26517.38, + "end": 26517.98, + "probability": 0.098 + }, + { + "start": 26517.98, + "end": 26520.34, + "probability": 0.3638 + }, + { + "start": 26520.46, + "end": 26522.24, + "probability": 0.5648 + }, + { + "start": 26522.54, + "end": 26523.74, + "probability": 0.3884 + }, + { + "start": 26524.3, + "end": 26526.29, + "probability": 0.8378 + }, + { + "start": 26527.14, + "end": 26528.66, + "probability": 0.3291 + }, + { + "start": 26528.68, + "end": 26530.24, + "probability": 0.7979 + }, + { + "start": 26530.48, + "end": 26535.62, + "probability": 0.5201 + }, + { + "start": 26535.92, + "end": 26536.56, + "probability": 0.1222 + }, + { + "start": 26536.56, + "end": 26539.54, + "probability": 0.8333 + }, + { + "start": 26539.54, + "end": 26539.6, + "probability": 0.1926 + }, + { + "start": 26539.6, + "end": 26540.84, + "probability": 0.1705 + }, + { + "start": 26541.0, + "end": 26543.1, + "probability": 0.8301 + }, + { + "start": 26543.92, + "end": 26548.89, + "probability": 0.9556 + }, + { + "start": 26549.74, + "end": 26550.46, + "probability": 0.0458 + }, + { + "start": 26550.64, + "end": 26551.12, + "probability": 0.1201 + }, + { + "start": 26551.74, + "end": 26553.0, + "probability": 0.5897 + }, + { + "start": 26553.06, + "end": 26556.84, + "probability": 0.6787 + }, + { + "start": 26556.98, + "end": 26559.92, + "probability": 0.9454 + }, + { + "start": 26561.2, + "end": 26563.29, + "probability": 0.98 + }, + { + "start": 26564.2, + "end": 26565.08, + "probability": 0.9209 + }, + { + "start": 26565.58, + "end": 26567.62, + "probability": 0.4919 + }, + { + "start": 26567.68, + "end": 26570.24, + "probability": 0.6773 + }, + { + "start": 26571.54, + "end": 26573.2, + "probability": 0.6131 + }, + { + "start": 26574.12, + "end": 26577.82, + "probability": 0.5189 + }, + { + "start": 26577.98, + "end": 26582.4, + "probability": 0.5895 + }, + { + "start": 26582.74, + "end": 26586.74, + "probability": 0.051 + }, + { + "start": 26594.22, + "end": 26595.18, + "probability": 0.388 + }, + { + "start": 26595.26, + "end": 26596.23, + "probability": 0.0596 + }, + { + "start": 26596.32, + "end": 26596.76, + "probability": 0.0386 + }, + { + "start": 26596.76, + "end": 26596.76, + "probability": 0.0496 + }, + { + "start": 26596.76, + "end": 26596.76, + "probability": 0.0825 + }, + { + "start": 26596.76, + "end": 26597.8, + "probability": 0.4645 + }, + { + "start": 26598.76, + "end": 26599.86, + "probability": 0.3143 + }, + { + "start": 26600.98, + "end": 26600.98, + "probability": 0.0407 + }, + { + "start": 26600.98, + "end": 26600.98, + "probability": 0.4114 + }, + { + "start": 26600.98, + "end": 26600.98, + "probability": 0.3115 + }, + { + "start": 26600.98, + "end": 26600.98, + "probability": 0.4408 + }, + { + "start": 26600.98, + "end": 26604.78, + "probability": 0.7983 + }, + { + "start": 26605.94, + "end": 26606.96, + "probability": 0.4571 + }, + { + "start": 26620.34, + "end": 26621.0, + "probability": 0.2184 + }, + { + "start": 26623.3, + "end": 26624.1, + "probability": 0.081 + }, + { + "start": 26624.1, + "end": 26624.66, + "probability": 0.0594 + }, + { + "start": 26624.66, + "end": 26624.86, + "probability": 0.0392 + }, + { + "start": 26626.56, + "end": 26632.0, + "probability": 0.2096 + }, + { + "start": 26633.88, + "end": 26634.54, + "probability": 0.1062 + }, + { + "start": 26635.66, + "end": 26635.96, + "probability": 0.0145 + }, + { + "start": 26635.96, + "end": 26635.96, + "probability": 0.0266 + }, + { + "start": 26635.96, + "end": 26640.04, + "probability": 0.5713 + }, + { + "start": 26640.2, + "end": 26640.78, + "probability": 0.3561 + }, + { + "start": 26640.78, + "end": 26642.96, + "probability": 0.8901 + }, + { + "start": 26643.06, + "end": 26644.9, + "probability": 0.8174 + }, + { + "start": 26646.0, + "end": 26650.56, + "probability": 0.9316 + }, + { + "start": 26651.88, + "end": 26652.58, + "probability": 0.9578 + }, + { + "start": 26653.48, + "end": 26654.14, + "probability": 0.4548 + }, + { + "start": 26655.42, + "end": 26655.74, + "probability": 0.3244 + }, + { + "start": 26656.92, + "end": 26658.22, + "probability": 0.9928 + }, + { + "start": 26659.46, + "end": 26660.54, + "probability": 0.97 + }, + { + "start": 26661.9, + "end": 26665.56, + "probability": 0.8 + }, + { + "start": 26667.02, + "end": 26667.38, + "probability": 0.0514 + }, + { + "start": 26670.04, + "end": 26670.24, + "probability": 0.053 + }, + { + "start": 26670.24, + "end": 26672.04, + "probability": 0.3387 + }, + { + "start": 26673.98, + "end": 26681.26, + "probability": 0.9983 + }, + { + "start": 26682.6, + "end": 26684.94, + "probability": 0.9712 + }, + { + "start": 26685.78, + "end": 26688.22, + "probability": 0.9686 + }, + { + "start": 26690.18, + "end": 26693.35, + "probability": 0.9535 + }, + { + "start": 26694.2, + "end": 26695.92, + "probability": 0.8413 + }, + { + "start": 26695.98, + "end": 26696.68, + "probability": 0.7925 + }, + { + "start": 26697.74, + "end": 26702.72, + "probability": 0.9892 + }, + { + "start": 26704.22, + "end": 26704.56, + "probability": 0.9875 + }, + { + "start": 26705.28, + "end": 26708.1, + "probability": 0.8392 + }, + { + "start": 26708.78, + "end": 26710.9, + "probability": 0.8362 + }, + { + "start": 26711.52, + "end": 26712.93, + "probability": 0.9961 + }, + { + "start": 26713.64, + "end": 26716.24, + "probability": 0.8609 + }, + { + "start": 26716.78, + "end": 26717.8, + "probability": 0.5351 + }, + { + "start": 26718.58, + "end": 26720.96, + "probability": 0.6376 + }, + { + "start": 26722.44, + "end": 26725.68, + "probability": 0.9407 + }, + { + "start": 26726.3, + "end": 26727.42, + "probability": 0.8119 + }, + { + "start": 26727.94, + "end": 26729.52, + "probability": 0.7409 + }, + { + "start": 26730.24, + "end": 26732.28, + "probability": 0.9059 + }, + { + "start": 26732.56, + "end": 26733.86, + "probability": 0.729 + }, + { + "start": 26734.52, + "end": 26735.38, + "probability": 0.5863 + }, + { + "start": 26735.78, + "end": 26736.24, + "probability": 0.6447 + }, + { + "start": 26736.44, + "end": 26738.68, + "probability": 0.865 + }, + { + "start": 26739.26, + "end": 26742.0, + "probability": 0.9941 + }, + { + "start": 26742.82, + "end": 26744.3, + "probability": 0.667 + }, + { + "start": 26744.3, + "end": 26746.58, + "probability": 0.7668 + }, + { + "start": 26746.7, + "end": 26748.44, + "probability": 0.8754 + }, + { + "start": 26748.54, + "end": 26749.9, + "probability": 0.8857 + }, + { + "start": 26751.2, + "end": 26753.38, + "probability": 0.8394 + }, + { + "start": 26753.72, + "end": 26753.72, + "probability": 0.6886 + }, + { + "start": 26753.82, + "end": 26754.54, + "probability": 0.8745 + }, + { + "start": 26755.36, + "end": 26756.86, + "probability": 0.9932 + }, + { + "start": 26756.94, + "end": 26762.1, + "probability": 0.6662 + }, + { + "start": 26763.1, + "end": 26764.5, + "probability": 0.7336 + }, + { + "start": 26764.98, + "end": 26769.3, + "probability": 0.3864 + }, + { + "start": 26769.64, + "end": 26771.84, + "probability": 0.8395 + }, + { + "start": 26772.98, + "end": 26777.71, + "probability": 0.9153 + }, + { + "start": 26778.32, + "end": 26780.08, + "probability": 0.9297 + }, + { + "start": 26780.56, + "end": 26785.08, + "probability": 0.6975 + }, + { + "start": 26786.4, + "end": 26787.3, + "probability": 0.9324 + }, + { + "start": 26787.52, + "end": 26788.96, + "probability": 0.0107 + }, + { + "start": 26790.87, + "end": 26790.94, + "probability": 0.1165 + }, + { + "start": 26790.94, + "end": 26791.82, + "probability": 0.3197 + }, + { + "start": 26792.74, + "end": 26800.92, + "probability": 0.5913 + }, + { + "start": 26801.64, + "end": 26802.34, + "probability": 0.8234 + }, + { + "start": 26803.28, + "end": 26808.66, + "probability": 0.9169 + }, + { + "start": 26809.96, + "end": 26811.92, + "probability": 0.4489 + }, + { + "start": 26811.94, + "end": 26815.56, + "probability": 0.8975 + }, + { + "start": 26815.8, + "end": 26816.0, + "probability": 0.9713 + }, + { + "start": 26816.6, + "end": 26816.82, + "probability": 0.8594 + }, + { + "start": 26817.34, + "end": 26820.36, + "probability": 0.8336 + }, + { + "start": 26822.4, + "end": 26824.72, + "probability": 0.9551 + }, + { + "start": 26826.52, + "end": 26833.0, + "probability": 0.7736 + }, + { + "start": 26836.68, + "end": 26840.08, + "probability": 0.9214 + }, + { + "start": 26841.28, + "end": 26846.52, + "probability": 0.9802 + }, + { + "start": 26846.66, + "end": 26849.1, + "probability": 0.8174 + }, + { + "start": 26849.96, + "end": 26851.78, + "probability": 0.731 + }, + { + "start": 26852.28, + "end": 26853.6, + "probability": 0.8691 + }, + { + "start": 26853.62, + "end": 26854.54, + "probability": 0.4382 + }, + { + "start": 26854.68, + "end": 26855.78, + "probability": 0.8096 + }, + { + "start": 26856.34, + "end": 26858.52, + "probability": 0.9069 + }, + { + "start": 26859.54, + "end": 26863.14, + "probability": 0.9156 + }, + { + "start": 26865.32, + "end": 26866.08, + "probability": 0.0684 + }, + { + "start": 26866.08, + "end": 26866.08, + "probability": 0.2142 + }, + { + "start": 26866.08, + "end": 26867.2, + "probability": 0.847 + }, + { + "start": 26867.38, + "end": 26868.75, + "probability": 0.9539 + }, + { + "start": 26869.26, + "end": 26872.48, + "probability": 0.9819 + }, + { + "start": 26873.52, + "end": 26874.18, + "probability": 0.6057 + }, + { + "start": 26874.54, + "end": 26875.98, + "probability": 0.7476 + }, + { + "start": 26876.06, + "end": 26877.34, + "probability": 0.7977 + }, + { + "start": 26877.7, + "end": 26880.72, + "probability": 0.8103 + }, + { + "start": 26880.76, + "end": 26882.04, + "probability": 0.6556 + }, + { + "start": 26882.52, + "end": 26887.2, + "probability": 0.6544 + }, + { + "start": 26887.8, + "end": 26890.06, + "probability": 0.503 + }, + { + "start": 26890.9, + "end": 26892.36, + "probability": 0.957 + }, + { + "start": 26893.04, + "end": 26893.36, + "probability": 0.8639 + }, + { + "start": 26893.96, + "end": 26897.3, + "probability": 0.885 + }, + { + "start": 26898.44, + "end": 26901.64, + "probability": 0.7632 + }, + { + "start": 26902.14, + "end": 26904.56, + "probability": 0.9631 + }, + { + "start": 26905.78, + "end": 26907.0, + "probability": 0.7496 + }, + { + "start": 26908.4, + "end": 26909.02, + "probability": 0.718 + }, + { + "start": 26909.68, + "end": 26914.12, + "probability": 0.9776 + }, + { + "start": 26914.22, + "end": 26915.42, + "probability": 0.8365 + }, + { + "start": 26915.8, + "end": 26917.96, + "probability": 0.9805 + }, + { + "start": 26918.5, + "end": 26919.74, + "probability": 0.9323 + }, + { + "start": 26921.42, + "end": 26925.44, + "probability": 0.9639 + }, + { + "start": 26925.58, + "end": 26927.36, + "probability": 0.6918 + }, + { + "start": 26928.08, + "end": 26928.86, + "probability": 0.9313 + }, + { + "start": 26930.94, + "end": 26931.96, + "probability": 0.6805 + }, + { + "start": 26932.4, + "end": 26933.06, + "probability": 0.8057 + }, + { + "start": 26933.26, + "end": 26936.79, + "probability": 0.9652 + }, + { + "start": 26938.07, + "end": 26942.88, + "probability": 0.8545 + }, + { + "start": 26943.12, + "end": 26949.7, + "probability": 0.9302 + }, + { + "start": 26950.3, + "end": 26951.78, + "probability": 0.7201 + }, + { + "start": 26953.44, + "end": 26956.28, + "probability": 0.5809 + }, + { + "start": 26957.74, + "end": 26959.0, + "probability": 0.9338 + }, + { + "start": 26959.22, + "end": 26963.04, + "probability": 0.6492 + }, + { + "start": 26963.98, + "end": 26966.14, + "probability": 0.9613 + }, + { + "start": 26968.46, + "end": 26974.2, + "probability": 0.9902 + }, + { + "start": 26974.56, + "end": 26975.24, + "probability": 0.7149 + }, + { + "start": 26976.0, + "end": 26977.84, + "probability": 0.72 + }, + { + "start": 26979.68, + "end": 26982.98, + "probability": 0.9349 + }, + { + "start": 26983.62, + "end": 26988.6, + "probability": 0.9922 + }, + { + "start": 26989.68, + "end": 26996.22, + "probability": 0.9016 + }, + { + "start": 26997.45, + "end": 27001.21, + "probability": 0.972 + }, + { + "start": 27002.14, + "end": 27006.38, + "probability": 0.9946 + }, + { + "start": 27006.42, + "end": 27009.59, + "probability": 0.8367 + }, + { + "start": 27010.12, + "end": 27011.82, + "probability": 0.9295 + }, + { + "start": 27012.62, + "end": 27014.32, + "probability": 0.8286 + }, + { + "start": 27014.5, + "end": 27016.86, + "probability": 0.675 + }, + { + "start": 27018.04, + "end": 27020.2, + "probability": 0.4673 + }, + { + "start": 27020.88, + "end": 27026.0, + "probability": 0.9604 + }, + { + "start": 27026.24, + "end": 27028.28, + "probability": 0.9169 + }, + { + "start": 27028.82, + "end": 27033.5, + "probability": 0.5466 + }, + { + "start": 27034.38, + "end": 27036.15, + "probability": 0.9176 + }, + { + "start": 27036.98, + "end": 27039.36, + "probability": 0.9022 + }, + { + "start": 27039.88, + "end": 27041.54, + "probability": 0.8028 + }, + { + "start": 27042.76, + "end": 27044.58, + "probability": 0.8641 + }, + { + "start": 27045.08, + "end": 27047.88, + "probability": 0.9326 + }, + { + "start": 27047.96, + "end": 27048.86, + "probability": 0.9692 + }, + { + "start": 27049.24, + "end": 27049.44, + "probability": 0.7659 + }, + { + "start": 27051.1, + "end": 27054.44, + "probability": 0.8549 + }, + { + "start": 27055.36, + "end": 27059.94, + "probability": 0.9716 + }, + { + "start": 27060.84, + "end": 27064.32, + "probability": 0.9685 + }, + { + "start": 27064.94, + "end": 27068.28, + "probability": 0.942 + }, + { + "start": 27069.16, + "end": 27073.22, + "probability": 0.731 + }, + { + "start": 27074.32, + "end": 27079.82, + "probability": 0.7653 + }, + { + "start": 27080.82, + "end": 27082.06, + "probability": 0.7793 + }, + { + "start": 27082.66, + "end": 27083.74, + "probability": 0.9397 + }, + { + "start": 27084.66, + "end": 27086.72, + "probability": 0.9282 + }, + { + "start": 27087.1, + "end": 27089.92, + "probability": 0.9783 + }, + { + "start": 27090.56, + "end": 27091.44, + "probability": 0.7898 + }, + { + "start": 27092.28, + "end": 27093.08, + "probability": 0.4793 + }, + { + "start": 27093.78, + "end": 27096.48, + "probability": 0.4621 + }, + { + "start": 27098.18, + "end": 27100.74, + "probability": 0.9094 + }, + { + "start": 27100.88, + "end": 27101.76, + "probability": 0.8252 + }, + { + "start": 27102.4, + "end": 27103.1, + "probability": 0.8493 + }, + { + "start": 27103.54, + "end": 27107.48, + "probability": 0.7853 + }, + { + "start": 27108.0, + "end": 27109.58, + "probability": 0.7413 + }, + { + "start": 27110.2, + "end": 27112.7, + "probability": 0.9299 + }, + { + "start": 27112.86, + "end": 27116.42, + "probability": 0.6735 + }, + { + "start": 27116.96, + "end": 27119.46, + "probability": 0.7999 + }, + { + "start": 27119.78, + "end": 27119.78, + "probability": 0.655 + }, + { + "start": 27119.78, + "end": 27120.68, + "probability": 0.792 + }, + { + "start": 27121.14, + "end": 27122.38, + "probability": 0.5951 + }, + { + "start": 27123.34, + "end": 27124.08, + "probability": 0.6749 + }, + { + "start": 27126.64, + "end": 27129.04, + "probability": 0.633 + }, + { + "start": 27129.2, + "end": 27131.62, + "probability": 0.9612 + }, + { + "start": 27132.06, + "end": 27134.8, + "probability": 0.7154 + }, + { + "start": 27135.32, + "end": 27137.08, + "probability": 0.6521 + }, + { + "start": 27137.74, + "end": 27138.36, + "probability": 0.0503 + }, + { + "start": 27138.36, + "end": 27139.34, + "probability": 0.5966 + }, + { + "start": 27139.34, + "end": 27141.54, + "probability": 0.6962 + }, + { + "start": 27141.54, + "end": 27142.68, + "probability": 0.6913 + }, + { + "start": 27142.78, + "end": 27144.16, + "probability": 0.6372 + }, + { + "start": 27144.32, + "end": 27144.92, + "probability": 0.7637 + }, + { + "start": 27144.96, + "end": 27146.86, + "probability": 0.6015 + }, + { + "start": 27147.14, + "end": 27149.36, + "probability": 0.9091 + }, + { + "start": 27154.76, + "end": 27155.78, + "probability": 0.0558 + }, + { + "start": 27162.06, + "end": 27162.5, + "probability": 0.1615 + }, + { + "start": 27173.66, + "end": 27175.4, + "probability": 0.5909 + }, + { + "start": 27177.06, + "end": 27178.41, + "probability": 0.963 + }, + { + "start": 27178.6, + "end": 27179.39, + "probability": 0.9746 + }, + { + "start": 27180.12, + "end": 27180.86, + "probability": 0.7158 + }, + { + "start": 27183.03, + "end": 27189.0, + "probability": 0.9798 + }, + { + "start": 27189.78, + "end": 27191.94, + "probability": 0.9632 + }, + { + "start": 27192.48, + "end": 27193.59, + "probability": 0.9399 + }, + { + "start": 27194.5, + "end": 27196.95, + "probability": 0.9962 + }, + { + "start": 27197.56, + "end": 27198.94, + "probability": 0.9601 + }, + { + "start": 27199.32, + "end": 27200.88, + "probability": 0.9514 + }, + { + "start": 27201.44, + "end": 27203.92, + "probability": 0.9801 + }, + { + "start": 27204.06, + "end": 27207.36, + "probability": 0.9847 + }, + { + "start": 27208.06, + "end": 27209.72, + "probability": 0.9099 + }, + { + "start": 27210.84, + "end": 27213.86, + "probability": 0.9903 + }, + { + "start": 27214.42, + "end": 27215.54, + "probability": 0.7754 + }, + { + "start": 27215.88, + "end": 27220.06, + "probability": 0.9702 + }, + { + "start": 27220.24, + "end": 27223.64, + "probability": 0.998 + }, + { + "start": 27223.96, + "end": 27226.62, + "probability": 0.9321 + }, + { + "start": 27227.1, + "end": 27229.6, + "probability": 0.9424 + }, + { + "start": 27230.0, + "end": 27231.6, + "probability": 0.8996 + }, + { + "start": 27231.66, + "end": 27232.56, + "probability": 0.7982 + }, + { + "start": 27232.6, + "end": 27233.26, + "probability": 0.5689 + }, + { + "start": 27233.4, + "end": 27234.06, + "probability": 0.9284 + }, + { + "start": 27234.74, + "end": 27237.32, + "probability": 0.9619 + }, + { + "start": 27237.46, + "end": 27238.93, + "probability": 0.9825 + }, + { + "start": 27239.14, + "end": 27239.82, + "probability": 0.8473 + }, + { + "start": 27239.82, + "end": 27240.78, + "probability": 0.9128 + }, + { + "start": 27241.22, + "end": 27245.76, + "probability": 0.9802 + }, + { + "start": 27245.88, + "end": 27251.56, + "probability": 0.9652 + }, + { + "start": 27252.24, + "end": 27255.5, + "probability": 0.8845 + }, + { + "start": 27256.1, + "end": 27257.24, + "probability": 0.858 + }, + { + "start": 27257.9, + "end": 27262.22, + "probability": 0.8578 + }, + { + "start": 27262.42, + "end": 27263.44, + "probability": 0.3309 + }, + { + "start": 27264.02, + "end": 27267.1, + "probability": 0.9733 + }, + { + "start": 27268.82, + "end": 27272.3, + "probability": 0.7339 + }, + { + "start": 27273.0, + "end": 27274.84, + "probability": 0.7281 + }, + { + "start": 27275.36, + "end": 27276.2, + "probability": 0.9073 + }, + { + "start": 27276.26, + "end": 27277.22, + "probability": 0.9748 + }, + { + "start": 27277.52, + "end": 27279.7, + "probability": 0.9215 + }, + { + "start": 27279.9, + "end": 27282.68, + "probability": 0.989 + }, + { + "start": 27282.74, + "end": 27287.76, + "probability": 0.9917 + }, + { + "start": 27288.36, + "end": 27289.68, + "probability": 0.8301 + }, + { + "start": 27289.84, + "end": 27292.4, + "probability": 0.9986 + }, + { + "start": 27293.3, + "end": 27294.02, + "probability": 0.7447 + }, + { + "start": 27294.72, + "end": 27295.9, + "probability": 0.9048 + }, + { + "start": 27296.0, + "end": 27297.12, + "probability": 0.9773 + }, + { + "start": 27297.3, + "end": 27297.76, + "probability": 0.825 + }, + { + "start": 27298.18, + "end": 27300.9, + "probability": 0.9856 + }, + { + "start": 27301.38, + "end": 27304.62, + "probability": 0.7043 + }, + { + "start": 27305.9, + "end": 27307.9, + "probability": 0.9672 + }, + { + "start": 27308.42, + "end": 27308.92, + "probability": 0.7905 + }, + { + "start": 27309.48, + "end": 27310.28, + "probability": 0.9408 + }, + { + "start": 27311.36, + "end": 27312.68, + "probability": 0.9767 + }, + { + "start": 27313.28, + "end": 27315.78, + "probability": 0.9402 + }, + { + "start": 27316.62, + "end": 27319.3, + "probability": 0.9725 + }, + { + "start": 27319.34, + "end": 27322.86, + "probability": 0.8979 + }, + { + "start": 27323.0, + "end": 27325.18, + "probability": 0.9855 + }, + { + "start": 27325.28, + "end": 27326.28, + "probability": 0.7803 + }, + { + "start": 27326.36, + "end": 27328.94, + "probability": 0.8815 + }, + { + "start": 27328.94, + "end": 27332.54, + "probability": 0.9648 + }, + { + "start": 27333.08, + "end": 27333.52, + "probability": 0.5168 + }, + { + "start": 27333.82, + "end": 27338.06, + "probability": 0.8396 + }, + { + "start": 27338.58, + "end": 27339.9, + "probability": 0.981 + }, + { + "start": 27340.2, + "end": 27341.24, + "probability": 0.9336 + }, + { + "start": 27341.7, + "end": 27345.76, + "probability": 0.9668 + }, + { + "start": 27345.86, + "end": 27346.58, + "probability": 0.936 + }, + { + "start": 27346.7, + "end": 27349.6, + "probability": 0.9372 + }, + { + "start": 27350.18, + "end": 27352.04, + "probability": 0.9408 + }, + { + "start": 27352.5, + "end": 27355.34, + "probability": 0.9973 + }, + { + "start": 27355.8, + "end": 27358.28, + "probability": 0.9976 + }, + { + "start": 27358.58, + "end": 27362.08, + "probability": 0.9971 + }, + { + "start": 27362.14, + "end": 27363.2, + "probability": 0.9941 + }, + { + "start": 27363.6, + "end": 27367.44, + "probability": 0.9882 + }, + { + "start": 27367.88, + "end": 27372.12, + "probability": 0.9229 + }, + { + "start": 27372.34, + "end": 27372.86, + "probability": 0.8352 + }, + { + "start": 27373.6, + "end": 27376.84, + "probability": 0.9891 + }, + { + "start": 27377.16, + "end": 27377.98, + "probability": 0.835 + }, + { + "start": 27378.18, + "end": 27380.5, + "probability": 0.8357 + }, + { + "start": 27382.42, + "end": 27383.26, + "probability": 0.5537 + }, + { + "start": 27383.62, + "end": 27386.18, + "probability": 0.9505 + }, + { + "start": 27386.54, + "end": 27387.52, + "probability": 0.8993 + }, + { + "start": 27387.86, + "end": 27390.3, + "probability": 0.9722 + }, + { + "start": 27390.92, + "end": 27391.7, + "probability": 0.9032 + }, + { + "start": 27392.42, + "end": 27395.0, + "probability": 0.9736 + }, + { + "start": 27395.48, + "end": 27396.8, + "probability": 0.9873 + }, + { + "start": 27397.14, + "end": 27400.32, + "probability": 0.9783 + }, + { + "start": 27401.46, + "end": 27401.98, + "probability": 0.7564 + }, + { + "start": 27402.5, + "end": 27404.82, + "probability": 0.9977 + }, + { + "start": 27405.18, + "end": 27407.32, + "probability": 0.8584 + }, + { + "start": 27407.68, + "end": 27411.14, + "probability": 0.9712 + }, + { + "start": 27411.58, + "end": 27417.22, + "probability": 0.9834 + }, + { + "start": 27417.96, + "end": 27419.3, + "probability": 0.7747 + }, + { + "start": 27419.76, + "end": 27421.36, + "probability": 0.8105 + }, + { + "start": 27421.52, + "end": 27421.84, + "probability": 0.5672 + }, + { + "start": 27421.9, + "end": 27423.0, + "probability": 0.8217 + }, + { + "start": 27423.36, + "end": 27424.78, + "probability": 0.855 + }, + { + "start": 27425.76, + "end": 27428.06, + "probability": 0.9583 + }, + { + "start": 27428.74, + "end": 27430.62, + "probability": 0.9885 + }, + { + "start": 27430.78, + "end": 27431.34, + "probability": 0.4008 + }, + { + "start": 27431.38, + "end": 27431.84, + "probability": 0.5007 + }, + { + "start": 27432.24, + "end": 27435.78, + "probability": 0.9602 + }, + { + "start": 27436.16, + "end": 27437.79, + "probability": 0.9658 + }, + { + "start": 27438.9, + "end": 27443.42, + "probability": 0.9277 + }, + { + "start": 27443.94, + "end": 27444.98, + "probability": 0.862 + }, + { + "start": 27445.74, + "end": 27447.5, + "probability": 0.9958 + }, + { + "start": 27447.86, + "end": 27450.32, + "probability": 0.9592 + }, + { + "start": 27450.32, + "end": 27454.2, + "probability": 0.8839 + }, + { + "start": 27454.74, + "end": 27456.06, + "probability": 0.9881 + }, + { + "start": 27456.5, + "end": 27457.42, + "probability": 0.9234 + }, + { + "start": 27457.88, + "end": 27458.78, + "probability": 0.9707 + }, + { + "start": 27459.24, + "end": 27459.9, + "probability": 0.9351 + }, + { + "start": 27460.76, + "end": 27461.08, + "probability": 0.4441 + }, + { + "start": 27461.68, + "end": 27462.18, + "probability": 0.8029 + }, + { + "start": 27462.58, + "end": 27462.96, + "probability": 0.477 + }, + { + "start": 27463.42, + "end": 27465.62, + "probability": 0.9895 + }, + { + "start": 27465.84, + "end": 27466.64, + "probability": 0.6819 + }, + { + "start": 27467.1, + "end": 27467.44, + "probability": 0.7916 + }, + { + "start": 27467.72, + "end": 27469.36, + "probability": 0.9933 + }, + { + "start": 27469.84, + "end": 27472.84, + "probability": 0.9924 + }, + { + "start": 27472.84, + "end": 27476.0, + "probability": 0.9509 + }, + { + "start": 27476.0, + "end": 27476.62, + "probability": 0.404 + }, + { + "start": 27476.62, + "end": 27477.7, + "probability": 0.802 + }, + { + "start": 27478.1, + "end": 27481.06, + "probability": 0.8623 + }, + { + "start": 27481.72, + "end": 27486.2, + "probability": 0.9636 + }, + { + "start": 27487.02, + "end": 27489.2, + "probability": 0.8343 + }, + { + "start": 27489.3, + "end": 27489.7, + "probability": 0.2982 + }, + { + "start": 27489.7, + "end": 27489.8, + "probability": 0.505 + }, + { + "start": 27492.26, + "end": 27493.38, + "probability": 0.8497 + }, + { + "start": 27495.02, + "end": 27496.76, + "probability": 0.947 + }, + { + "start": 27497.78, + "end": 27498.86, + "probability": 0.5648 + }, + { + "start": 27499.44, + "end": 27500.58, + "probability": 0.9946 + }, + { + "start": 27501.96, + "end": 27502.86, + "probability": 0.6257 + }, + { + "start": 27503.52, + "end": 27504.54, + "probability": 0.1838 + }, + { + "start": 27505.64, + "end": 27507.78, + "probability": 0.0338 + }, + { + "start": 27511.27, + "end": 27514.98, + "probability": 0.2001 + }, + { + "start": 27515.12, + "end": 27516.32, + "probability": 0.0448 + }, + { + "start": 27517.24, + "end": 27520.7, + "probability": 0.275 + }, + { + "start": 27520.84, + "end": 27523.76, + "probability": 0.3651 + }, + { + "start": 27524.78, + "end": 27525.64, + "probability": 0.7244 + }, + { + "start": 27526.9, + "end": 27529.08, + "probability": 0.7585 + }, + { + "start": 27531.44, + "end": 27532.8, + "probability": 0.8106 + }, + { + "start": 27534.5, + "end": 27535.42, + "probability": 0.8156 + }, + { + "start": 27536.56, + "end": 27542.14, + "probability": 0.9989 + }, + { + "start": 27543.08, + "end": 27543.4, + "probability": 0.8099 + }, + { + "start": 27545.58, + "end": 27545.94, + "probability": 0.6814 + }, + { + "start": 27546.74, + "end": 27547.24, + "probability": 0.8302 + }, + { + "start": 27550.76, + "end": 27552.66, + "probability": 0.9968 + }, + { + "start": 27554.7, + "end": 27557.28, + "probability": 0.9142 + }, + { + "start": 27560.6, + "end": 27561.28, + "probability": 0.8763 + }, + { + "start": 27563.22, + "end": 27563.58, + "probability": 0.5055 + }, + { + "start": 27564.84, + "end": 27567.2, + "probability": 0.9841 + }, + { + "start": 27568.7, + "end": 27570.58, + "probability": 0.9868 + }, + { + "start": 27572.6, + "end": 27574.84, + "probability": 0.9606 + }, + { + "start": 27576.62, + "end": 27580.26, + "probability": 0.9962 + }, + { + "start": 27581.24, + "end": 27581.72, + "probability": 0.9882 + }, + { + "start": 27582.88, + "end": 27586.72, + "probability": 0.9929 + }, + { + "start": 27586.72, + "end": 27589.04, + "probability": 0.9983 + }, + { + "start": 27591.18, + "end": 27592.13, + "probability": 0.9237 + }, + { + "start": 27592.84, + "end": 27593.3, + "probability": 0.859 + }, + { + "start": 27595.16, + "end": 27596.2, + "probability": 0.7972 + }, + { + "start": 27597.82, + "end": 27599.69, + "probability": 0.9872 + }, + { + "start": 27601.6, + "end": 27607.38, + "probability": 0.9795 + }, + { + "start": 27608.64, + "end": 27615.12, + "probability": 0.9849 + }, + { + "start": 27615.36, + "end": 27616.3, + "probability": 0.7237 + }, + { + "start": 27617.76, + "end": 27619.92, + "probability": 0.9555 + }, + { + "start": 27621.96, + "end": 27622.6, + "probability": 0.8137 + }, + { + "start": 27623.28, + "end": 27625.34, + "probability": 0.8623 + }, + { + "start": 27625.48, + "end": 27627.79, + "probability": 0.9397 + }, + { + "start": 27629.3, + "end": 27633.14, + "probability": 0.9614 + }, + { + "start": 27633.32, + "end": 27634.32, + "probability": 0.9827 + }, + { + "start": 27634.42, + "end": 27635.51, + "probability": 0.8914 + }, + { + "start": 27636.78, + "end": 27641.24, + "probability": 0.9912 + }, + { + "start": 27641.7, + "end": 27644.86, + "probability": 0.9801 + }, + { + "start": 27644.86, + "end": 27648.68, + "probability": 0.981 + }, + { + "start": 27648.74, + "end": 27649.56, + "probability": 0.626 + }, + { + "start": 27650.78, + "end": 27652.52, + "probability": 0.9135 + }, + { + "start": 27652.86, + "end": 27653.94, + "probability": 0.8032 + }, + { + "start": 27654.28, + "end": 27655.37, + "probability": 0.9258 + }, + { + "start": 27656.04, + "end": 27659.38, + "probability": 0.9856 + }, + { + "start": 27659.92, + "end": 27660.36, + "probability": 0.9132 + }, + { + "start": 27660.96, + "end": 27662.18, + "probability": 0.9344 + }, + { + "start": 27663.76, + "end": 27664.88, + "probability": 0.9666 + }, + { + "start": 27666.04, + "end": 27667.92, + "probability": 0.6284 + }, + { + "start": 27668.02, + "end": 27668.92, + "probability": 0.9882 + }, + { + "start": 27670.37, + "end": 27672.9, + "probability": 0.6903 + }, + { + "start": 27675.54, + "end": 27676.16, + "probability": 0.7934 + }, + { + "start": 27676.28, + "end": 27677.72, + "probability": 0.9363 + }, + { + "start": 27677.86, + "end": 27681.68, + "probability": 0.9731 + }, + { + "start": 27682.24, + "end": 27684.78, + "probability": 0.7712 + }, + { + "start": 27685.44, + "end": 27688.7, + "probability": 0.9197 + }, + { + "start": 27688.92, + "end": 27689.98, + "probability": 0.7098 + }, + { + "start": 27690.2, + "end": 27695.76, + "probability": 0.8349 + }, + { + "start": 27695.9, + "end": 27699.96, + "probability": 0.8119 + }, + { + "start": 27700.22, + "end": 27702.86, + "probability": 0.9082 + }, + { + "start": 27703.5, + "end": 27705.08, + "probability": 0.6515 + }, + { + "start": 27707.3, + "end": 27709.52, + "probability": 0.9893 + }, + { + "start": 27710.48, + "end": 27712.04, + "probability": 0.9456 + }, + { + "start": 27713.7, + "end": 27715.84, + "probability": 0.8881 + }, + { + "start": 27716.34, + "end": 27718.68, + "probability": 0.7831 + }, + { + "start": 27720.1, + "end": 27723.4, + "probability": 0.9275 + }, + { + "start": 27724.38, + "end": 27727.82, + "probability": 0.9951 + }, + { + "start": 27727.82, + "end": 27731.02, + "probability": 0.97 + }, + { + "start": 27731.48, + "end": 27732.72, + "probability": 0.6785 + }, + { + "start": 27734.44, + "end": 27736.3, + "probability": 0.7678 + }, + { + "start": 27737.8, + "end": 27739.68, + "probability": 0.6387 + }, + { + "start": 27739.8, + "end": 27741.18, + "probability": 0.9839 + }, + { + "start": 27741.54, + "end": 27743.88, + "probability": 0.9753 + }, + { + "start": 27745.44, + "end": 27747.5, + "probability": 0.9757 + }, + { + "start": 27748.18, + "end": 27748.92, + "probability": 0.6504 + }, + { + "start": 27749.58, + "end": 27752.16, + "probability": 0.8843 + }, + { + "start": 27753.5, + "end": 27756.58, + "probability": 0.6363 + }, + { + "start": 27757.26, + "end": 27758.74, + "probability": 0.5664 + }, + { + "start": 27759.5, + "end": 27764.06, + "probability": 0.9709 + }, + { + "start": 27764.28, + "end": 27766.19, + "probability": 0.9827 + }, + { + "start": 27768.12, + "end": 27769.22, + "probability": 0.9189 + }, + { + "start": 27769.68, + "end": 27769.78, + "probability": 0.0079 + }, + { + "start": 27769.78, + "end": 27770.66, + "probability": 0.1285 + }, + { + "start": 27770.74, + "end": 27772.48, + "probability": 0.9396 + }, + { + "start": 27772.66, + "end": 27775.54, + "probability": 0.9503 + }, + { + "start": 27775.9, + "end": 27780.0, + "probability": 0.0405 + }, + { + "start": 27790.88, + "end": 27791.91, + "probability": 0.9814 + }, + { + "start": 27793.48, + "end": 27795.7, + "probability": 0.1429 + }, + { + "start": 27795.7, + "end": 27798.94, + "probability": 0.0463 + }, + { + "start": 27798.94, + "end": 27798.94, + "probability": 0.142 + }, + { + "start": 27799.12, + "end": 27801.02, + "probability": 0.2886 + }, + { + "start": 27801.02, + "end": 27801.8, + "probability": 0.2589 + }, + { + "start": 27802.16, + "end": 27803.54, + "probability": 0.5039 + }, + { + "start": 27805.16, + "end": 27806.96, + "probability": 0.0692 + }, + { + "start": 27806.96, + "end": 27807.74, + "probability": 0.0729 + }, + { + "start": 27807.92, + "end": 27810.7, + "probability": 0.0883 + }, + { + "start": 27811.08, + "end": 27813.7, + "probability": 0.3526 + }, + { + "start": 27813.7, + "end": 27814.1, + "probability": 0.1745 + }, + { + "start": 27814.76, + "end": 27818.36, + "probability": 0.0288 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.0, + "end": 27873.0, + "probability": 0.0 + }, + { + "start": 27873.22, + "end": 27873.42, + "probability": 0.0133 + }, + { + "start": 27873.82, + "end": 27874.22, + "probability": 0.0399 + }, + { + "start": 27874.22, + "end": 27875.58, + "probability": 0.4674 + }, + { + "start": 27875.64, + "end": 27876.22, + "probability": 0.7906 + }, + { + "start": 27876.24, + "end": 27877.56, + "probability": 0.0873 + }, + { + "start": 27877.6, + "end": 27877.98, + "probability": 0.3824 + }, + { + "start": 27878.0, + "end": 27878.12, + "probability": 0.3494 + }, + { + "start": 27878.28, + "end": 27878.98, + "probability": 0.2962 + }, + { + "start": 27879.38, + "end": 27879.44, + "probability": 0.8831 + }, + { + "start": 27879.5, + "end": 27883.12, + "probability": 0.9893 + }, + { + "start": 27883.28, + "end": 27883.54, + "probability": 0.0142 + }, + { + "start": 27883.56, + "end": 27883.56, + "probability": 0.3497 + }, + { + "start": 27883.68, + "end": 27883.76, + "probability": 0.3061 + }, + { + "start": 27883.76, + "end": 27885.0, + "probability": 0.8159 + }, + { + "start": 27885.84, + "end": 27886.92, + "probability": 0.2452 + }, + { + "start": 27887.0, + "end": 27888.82, + "probability": 0.36 + }, + { + "start": 27889.16, + "end": 27889.56, + "probability": 0.8306 + }, + { + "start": 27890.36, + "end": 27891.02, + "probability": 0.9906 + }, + { + "start": 27892.76, + "end": 27892.88, + "probability": 0.812 + }, + { + "start": 27892.96, + "end": 27893.22, + "probability": 0.9116 + }, + { + "start": 27893.32, + "end": 27895.94, + "probability": 0.948 + }, + { + "start": 27896.14, + "end": 27896.36, + "probability": 0.678 + }, + { + "start": 27896.48, + "end": 27898.42, + "probability": 0.851 + }, + { + "start": 27898.7, + "end": 27899.92, + "probability": 0.9648 + }, + { + "start": 27900.02, + "end": 27900.34, + "probability": 0.6354 + }, + { + "start": 27900.52, + "end": 27901.06, + "probability": 0.8782 + }, + { + "start": 27901.98, + "end": 27903.54, + "probability": 0.2662 + }, + { + "start": 27903.96, + "end": 27906.26, + "probability": 0.9873 + }, + { + "start": 27906.68, + "end": 27907.2, + "probability": 0.8367 + }, + { + "start": 27907.28, + "end": 27909.56, + "probability": 0.9482 + }, + { + "start": 27910.46, + "end": 27915.98, + "probability": 0.9896 + }, + { + "start": 27916.18, + "end": 27919.76, + "probability": 0.9744 + }, + { + "start": 27919.76, + "end": 27923.2, + "probability": 0.999 + }, + { + "start": 27923.72, + "end": 27925.78, + "probability": 0.9614 + }, + { + "start": 27926.28, + "end": 27926.86, + "probability": 0.4467 + }, + { + "start": 27926.94, + "end": 27928.32, + "probability": 0.9873 + }, + { + "start": 27928.56, + "end": 27930.32, + "probability": 0.8619 + }, + { + "start": 27930.42, + "end": 27934.72, + "probability": 0.9884 + }, + { + "start": 27934.72, + "end": 27940.74, + "probability": 0.921 + }, + { + "start": 27940.84, + "end": 27941.86, + "probability": 0.832 + }, + { + "start": 27942.44, + "end": 27946.14, + "probability": 0.9892 + }, + { + "start": 27946.14, + "end": 27949.08, + "probability": 0.9468 + }, + { + "start": 27949.16, + "end": 27951.58, + "probability": 0.9902 + }, + { + "start": 27951.6, + "end": 27952.18, + "probability": 0.4988 + }, + { + "start": 27952.24, + "end": 27953.26, + "probability": 0.6061 + }, + { + "start": 27953.76, + "end": 27956.42, + "probability": 0.9059 + }, + { + "start": 27956.42, + "end": 27958.96, + "probability": 0.9956 + }, + { + "start": 27959.72, + "end": 27962.68, + "probability": 0.9912 + }, + { + "start": 27963.32, + "end": 27963.46, + "probability": 0.261 + }, + { + "start": 27963.6, + "end": 27964.9, + "probability": 0.8616 + }, + { + "start": 27965.38, + "end": 27966.1, + "probability": 0.7641 + }, + { + "start": 27966.22, + "end": 27966.84, + "probability": 0.8647 + }, + { + "start": 27966.94, + "end": 27967.8, + "probability": 0.943 + }, + { + "start": 27967.84, + "end": 27968.86, + "probability": 0.6538 + }, + { + "start": 27968.92, + "end": 27969.84, + "probability": 0.7588 + }, + { + "start": 27970.22, + "end": 27973.54, + "probability": 0.8098 + }, + { + "start": 27973.88, + "end": 27976.42, + "probability": 0.8883 + }, + { + "start": 27977.14, + "end": 27980.56, + "probability": 0.9969 + }, + { + "start": 27980.74, + "end": 27981.06, + "probability": 0.5039 + }, + { + "start": 27981.32, + "end": 27985.02, + "probability": 0.9797 + }, + { + "start": 27985.44, + "end": 27988.58, + "probability": 0.9979 + }, + { + "start": 27988.86, + "end": 27990.92, + "probability": 0.9939 + }, + { + "start": 27991.28, + "end": 27994.22, + "probability": 0.917 + }, + { + "start": 27994.78, + "end": 27995.92, + "probability": 0.8257 + }, + { + "start": 27996.26, + "end": 27998.32, + "probability": 0.9896 + }, + { + "start": 27998.72, + "end": 28003.08, + "probability": 0.8062 + }, + { + "start": 28003.2, + "end": 28004.3, + "probability": 0.9075 + }, + { + "start": 28004.64, + "end": 28006.18, + "probability": 0.9502 + }, + { + "start": 28007.33, + "end": 28009.84, + "probability": 0.0864 + }, + { + "start": 28010.12, + "end": 28013.08, + "probability": 0.2608 + }, + { + "start": 28013.08, + "end": 28013.08, + "probability": 0.5585 + }, + { + "start": 28013.08, + "end": 28015.02, + "probability": 0.5884 + }, + { + "start": 28015.26, + "end": 28016.88, + "probability": 0.948 + }, + { + "start": 28017.18, + "end": 28018.24, + "probability": 0.2636 + }, + { + "start": 28018.42, + "end": 28018.58, + "probability": 0.004 + }, + { + "start": 28018.82, + "end": 28019.1, + "probability": 0.0072 + }, + { + "start": 28019.1, + "end": 28020.65, + "probability": 0.2506 + }, + { + "start": 28020.82, + "end": 28023.14, + "probability": 0.6867 + }, + { + "start": 28023.32, + "end": 28023.82, + "probability": 0.668 + }, + { + "start": 28024.12, + "end": 28025.72, + "probability": 0.7038 + }, + { + "start": 28025.84, + "end": 28026.96, + "probability": 0.8541 + }, + { + "start": 28027.22, + "end": 28030.32, + "probability": 0.9324 + }, + { + "start": 28030.66, + "end": 28031.94, + "probability": 0.6737 + }, + { + "start": 28032.58, + "end": 28032.84, + "probability": 0.8187 + }, + { + "start": 28033.02, + "end": 28035.74, + "probability": 0.9957 + }, + { + "start": 28036.22, + "end": 28040.5, + "probability": 0.927 + }, + { + "start": 28040.66, + "end": 28043.12, + "probability": 0.9723 + }, + { + "start": 28043.4, + "end": 28046.38, + "probability": 0.9977 + }, + { + "start": 28046.38, + "end": 28050.88, + "probability": 0.9187 + }, + { + "start": 28051.12, + "end": 28051.46, + "probability": 0.6837 + }, + { + "start": 28051.54, + "end": 28054.52, + "probability": 0.9027 + }, + { + "start": 28054.74, + "end": 28056.8, + "probability": 0.8853 + }, + { + "start": 28056.96, + "end": 28059.53, + "probability": 0.9272 + }, + { + "start": 28059.88, + "end": 28063.4, + "probability": 0.8149 + }, + { + "start": 28064.14, + "end": 28066.96, + "probability": 0.8022 + }, + { + "start": 28066.96, + "end": 28070.79, + "probability": 0.9971 + }, + { + "start": 28072.22, + "end": 28076.64, + "probability": 0.8147 + }, + { + "start": 28076.98, + "end": 28080.54, + "probability": 0.9836 + }, + { + "start": 28082.06, + "end": 28084.44, + "probability": 0.6752 + }, + { + "start": 28084.94, + "end": 28088.92, + "probability": 0.9651 + }, + { + "start": 28089.26, + "end": 28091.98, + "probability": 0.9557 + }, + { + "start": 28092.4, + "end": 28092.92, + "probability": 0.9636 + }, + { + "start": 28093.1, + "end": 28093.98, + "probability": 0.9371 + }, + { + "start": 28094.16, + "end": 28097.7, + "probability": 0.9917 + }, + { + "start": 28097.92, + "end": 28100.52, + "probability": 0.8753 + }, + { + "start": 28100.98, + "end": 28103.52, + "probability": 0.9941 + }, + { + "start": 28103.6, + "end": 28105.1, + "probability": 0.9396 + }, + { + "start": 28105.16, + "end": 28107.64, + "probability": 0.8152 + }, + { + "start": 28107.78, + "end": 28113.22, + "probability": 0.9821 + }, + { + "start": 28113.28, + "end": 28115.42, + "probability": 0.8328 + }, + { + "start": 28115.98, + "end": 28122.06, + "probability": 0.9681 + }, + { + "start": 28122.14, + "end": 28123.44, + "probability": 0.9142 + }, + { + "start": 28123.88, + "end": 28128.44, + "probability": 0.9719 + }, + { + "start": 28129.12, + "end": 28130.04, + "probability": 0.2906 + }, + { + "start": 28130.86, + "end": 28132.32, + "probability": 0.7468 + }, + { + "start": 28132.72, + "end": 28135.34, + "probability": 0.998 + }, + { + "start": 28135.86, + "end": 28137.06, + "probability": 0.471 + }, + { + "start": 28138.04, + "end": 28139.0, + "probability": 0.9394 + }, + { + "start": 28139.54, + "end": 28142.28, + "probability": 0.9535 + }, + { + "start": 28142.9, + "end": 28145.94, + "probability": 0.9784 + }, + { + "start": 28146.3, + "end": 28149.46, + "probability": 0.2198 + }, + { + "start": 28149.46, + "end": 28153.08, + "probability": 0.7622 + }, + { + "start": 28153.6, + "end": 28157.34, + "probability": 0.9849 + }, + { + "start": 28157.78, + "end": 28158.48, + "probability": 0.7573 + }, + { + "start": 28158.6, + "end": 28159.34, + "probability": 0.9142 + }, + { + "start": 28160.34, + "end": 28162.84, + "probability": 0.9758 + }, + { + "start": 28163.06, + "end": 28163.24, + "probability": 0.6255 + }, + { + "start": 28163.64, + "end": 28164.26, + "probability": 0.6709 + }, + { + "start": 28165.04, + "end": 28166.14, + "probability": 0.9554 + }, + { + "start": 28169.74, + "end": 28176.86, + "probability": 0.817 + }, + { + "start": 28177.46, + "end": 28177.94, + "probability": 0.4603 + }, + { + "start": 28178.14, + "end": 28179.48, + "probability": 0.8575 + }, + { + "start": 28181.24, + "end": 28181.4, + "probability": 0.1487 + }, + { + "start": 28181.4, + "end": 28181.78, + "probability": 0.3321 + }, + { + "start": 28181.98, + "end": 28182.96, + "probability": 0.9883 + }, + { + "start": 28183.14, + "end": 28185.66, + "probability": 0.9364 + }, + { + "start": 28186.12, + "end": 28186.84, + "probability": 0.6804 + }, + { + "start": 28187.18, + "end": 28188.54, + "probability": 0.2933 + }, + { + "start": 28188.54, + "end": 28189.62, + "probability": 0.6953 + }, + { + "start": 28190.98, + "end": 28192.36, + "probability": 0.8633 + }, + { + "start": 28193.62, + "end": 28194.54, + "probability": 0.9374 + }, + { + "start": 28195.72, + "end": 28198.78, + "probability": 0.9448 + }, + { + "start": 28199.42, + "end": 28200.52, + "probability": 0.7419 + }, + { + "start": 28201.14, + "end": 28202.16, + "probability": 0.7329 + }, + { + "start": 28202.28, + "end": 28203.16, + "probability": 0.9551 + }, + { + "start": 28203.28, + "end": 28204.51, + "probability": 0.9694 + }, + { + "start": 28204.94, + "end": 28207.56, + "probability": 0.9438 + }, + { + "start": 28207.9, + "end": 28210.34, + "probability": 0.4806 + }, + { + "start": 28210.34, + "end": 28213.98, + "probability": 0.7827 + }, + { + "start": 28215.38, + "end": 28219.4, + "probability": 0.9571 + }, + { + "start": 28219.4, + "end": 28223.48, + "probability": 0.9818 + }, + { + "start": 28223.92, + "end": 28226.2, + "probability": 0.9787 + }, + { + "start": 28226.28, + "end": 28228.43, + "probability": 0.7571 + }, + { + "start": 28229.26, + "end": 28232.64, + "probability": 0.9272 + }, + { + "start": 28232.74, + "end": 28233.68, + "probability": 0.8267 + }, + { + "start": 28234.24, + "end": 28237.7, + "probability": 0.6637 + }, + { + "start": 28238.54, + "end": 28242.08, + "probability": 0.8204 + }, + { + "start": 28243.28, + "end": 28245.7, + "probability": 0.9944 + }, + { + "start": 28247.54, + "end": 28249.86, + "probability": 0.7595 + }, + { + "start": 28250.3, + "end": 28250.54, + "probability": 0.4413 + }, + { + "start": 28250.92, + "end": 28253.22, + "probability": 0.9291 + }, + { + "start": 28254.32, + "end": 28255.74, + "probability": 0.9983 + }, + { + "start": 28256.38, + "end": 28260.54, + "probability": 0.9824 + }, + { + "start": 28261.34, + "end": 28264.22, + "probability": 0.9697 + }, + { + "start": 28265.06, + "end": 28266.88, + "probability": 0.5517 + }, + { + "start": 28267.36, + "end": 28271.86, + "probability": 0.9373 + }, + { + "start": 28271.86, + "end": 28274.82, + "probability": 0.9883 + }, + { + "start": 28275.78, + "end": 28279.68, + "probability": 0.8881 + }, + { + "start": 28280.9, + "end": 28283.9, + "probability": 0.9312 + }, + { + "start": 28284.66, + "end": 28287.9, + "probability": 0.8712 + }, + { + "start": 28288.68, + "end": 28290.96, + "probability": 0.8395 + }, + { + "start": 28291.84, + "end": 28294.02, + "probability": 0.9121 + }, + { + "start": 28294.36, + "end": 28295.98, + "probability": 0.7935 + }, + { + "start": 28296.66, + "end": 28299.66, + "probability": 0.9692 + }, + { + "start": 28300.1, + "end": 28301.08, + "probability": 0.8698 + }, + { + "start": 28301.62, + "end": 28304.18, + "probability": 0.8381 + }, + { + "start": 28304.58, + "end": 28305.34, + "probability": 0.672 + }, + { + "start": 28305.62, + "end": 28308.28, + "probability": 0.9875 + }, + { + "start": 28308.28, + "end": 28311.5, + "probability": 0.9944 + }, + { + "start": 28312.02, + "end": 28313.84, + "probability": 0.9843 + }, + { + "start": 28315.84, + "end": 28317.96, + "probability": 0.8062 + }, + { + "start": 28318.08, + "end": 28322.62, + "probability": 0.9831 + }, + { + "start": 28323.14, + "end": 28327.24, + "probability": 0.9638 + }, + { + "start": 28328.1, + "end": 28329.34, + "probability": 0.9881 + }, + { + "start": 28329.5, + "end": 28331.8, + "probability": 0.5359 + }, + { + "start": 28331.8, + "end": 28335.62, + "probability": 0.998 + }, + { + "start": 28336.58, + "end": 28338.84, + "probability": 0.9982 + }, + { + "start": 28340.14, + "end": 28343.0, + "probability": 0.994 + }, + { + "start": 28343.52, + "end": 28347.68, + "probability": 0.9959 + }, + { + "start": 28348.36, + "end": 28349.68, + "probability": 0.9405 + }, + { + "start": 28350.14, + "end": 28352.0, + "probability": 0.7502 + }, + { + "start": 28352.44, + "end": 28355.72, + "probability": 0.9718 + }, + { + "start": 28357.52, + "end": 28357.8, + "probability": 0.9734 + }, + { + "start": 28358.32, + "end": 28361.58, + "probability": 0.8824 + }, + { + "start": 28361.98, + "end": 28362.93, + "probability": 0.9165 + }, + { + "start": 28363.72, + "end": 28368.3, + "probability": 0.9011 + }, + { + "start": 28368.58, + "end": 28369.34, + "probability": 0.7911 + }, + { + "start": 28370.76, + "end": 28373.12, + "probability": 0.9725 + }, + { + "start": 28373.7, + "end": 28374.24, + "probability": 0.5991 + }, + { + "start": 28374.38, + "end": 28374.96, + "probability": 0.8373 + }, + { + "start": 28375.16, + "end": 28376.12, + "probability": 0.8611 + }, + { + "start": 28376.24, + "end": 28379.1, + "probability": 0.9465 + }, + { + "start": 28379.88, + "end": 28385.52, + "probability": 0.9922 + }, + { + "start": 28386.0, + "end": 28386.8, + "probability": 0.9253 + }, + { + "start": 28387.8, + "end": 28390.86, + "probability": 0.997 + }, + { + "start": 28391.7, + "end": 28393.72, + "probability": 0.0722 + }, + { + "start": 28394.3, + "end": 28395.38, + "probability": 0.5518 + }, + { + "start": 28395.46, + "end": 28395.96, + "probability": 0.7153 + }, + { + "start": 28396.18, + "end": 28399.06, + "probability": 0.8782 + }, + { + "start": 28399.6, + "end": 28400.51, + "probability": 0.8656 + }, + { + "start": 28401.38, + "end": 28403.2, + "probability": 0.9883 + }, + { + "start": 28403.4, + "end": 28406.56, + "probability": 0.9032 + }, + { + "start": 28407.38, + "end": 28408.86, + "probability": 0.833 + }, + { + "start": 28409.0, + "end": 28412.94, + "probability": 0.9775 + }, + { + "start": 28413.56, + "end": 28417.3, + "probability": 0.9878 + }, + { + "start": 28417.88, + "end": 28420.34, + "probability": 0.9209 + }, + { + "start": 28420.86, + "end": 28424.34, + "probability": 0.593 + }, + { + "start": 28425.32, + "end": 28430.88, + "probability": 0.796 + }, + { + "start": 28433.36, + "end": 28435.72, + "probability": 0.9902 + }, + { + "start": 28436.48, + "end": 28439.84, + "probability": 0.9912 + }, + { + "start": 28440.62, + "end": 28441.58, + "probability": 0.5984 + }, + { + "start": 28442.74, + "end": 28443.82, + "probability": 0.9424 + }, + { + "start": 28445.16, + "end": 28447.2, + "probability": 0.9883 + }, + { + "start": 28449.26, + "end": 28452.4, + "probability": 0.7312 + }, + { + "start": 28453.18, + "end": 28454.12, + "probability": 0.9551 + }, + { + "start": 28454.22, + "end": 28458.46, + "probability": 0.9799 + }, + { + "start": 28459.92, + "end": 28461.73, + "probability": 0.9281 + }, + { + "start": 28465.64, + "end": 28466.78, + "probability": 0.2996 + }, + { + "start": 28467.84, + "end": 28469.48, + "probability": 0.6793 + }, + { + "start": 28469.62, + "end": 28470.68, + "probability": 0.7354 + }, + { + "start": 28473.24, + "end": 28476.82, + "probability": 0.8271 + }, + { + "start": 28478.32, + "end": 28480.92, + "probability": 0.9963 + }, + { + "start": 28481.28, + "end": 28483.04, + "probability": 0.9868 + }, + { + "start": 28483.98, + "end": 28486.95, + "probability": 0.0141 + }, + { + "start": 28487.12, + "end": 28487.34, + "probability": 0.0061 + }, + { + "start": 28487.34, + "end": 28488.9, + "probability": 0.4708 + }, + { + "start": 28488.9, + "end": 28489.4, + "probability": 0.7897 + }, + { + "start": 28489.92, + "end": 28492.58, + "probability": 0.5178 + }, + { + "start": 28493.42, + "end": 28500.39, + "probability": 0.9834 + }, + { + "start": 28501.48, + "end": 28503.52, + "probability": 0.3615 + }, + { + "start": 28503.53, + "end": 28504.6, + "probability": 0.5412 + }, + { + "start": 28504.68, + "end": 28506.34, + "probability": 0.6915 + }, + { + "start": 28506.4, + "end": 28506.96, + "probability": 0.5792 + }, + { + "start": 28507.78, + "end": 28509.22, + "probability": 0.6199 + }, + { + "start": 28509.22, + "end": 28510.96, + "probability": 0.4677 + }, + { + "start": 28512.34, + "end": 28513.92, + "probability": 0.9269 + }, + { + "start": 28515.44, + "end": 28516.32, + "probability": 0.3827 + }, + { + "start": 28516.48, + "end": 28517.88, + "probability": 0.0463 + }, + { + "start": 28517.88, + "end": 28519.3, + "probability": 0.8115 + }, + { + "start": 28519.3, + "end": 28521.18, + "probability": 0.2595 + }, + { + "start": 28521.6, + "end": 28523.36, + "probability": 0.0903 + }, + { + "start": 28524.18, + "end": 28524.64, + "probability": 0.0512 + }, + { + "start": 28525.54, + "end": 28527.72, + "probability": 0.5145 + }, + { + "start": 28528.02, + "end": 28529.53, + "probability": 0.0494 + }, + { + "start": 28530.32, + "end": 28535.94, + "probability": 0.3585 + }, + { + "start": 28536.52, + "end": 28539.64, + "probability": 0.1942 + }, + { + "start": 28539.76, + "end": 28540.24, + "probability": 0.4751 + }, + { + "start": 28540.76, + "end": 28541.72, + "probability": 0.5042 + }, + { + "start": 28542.92, + "end": 28543.1, + "probability": 0.0486 + }, + { + "start": 28543.1, + "end": 28543.8, + "probability": 0.2095 + }, + { + "start": 28545.2, + "end": 28545.84, + "probability": 0.2563 + }, + { + "start": 28547.0, + "end": 28547.68, + "probability": 0.5381 + }, + { + "start": 28548.06, + "end": 28548.54, + "probability": 0.177 + }, + { + "start": 28548.54, + "end": 28548.56, + "probability": 0.1981 + }, + { + "start": 28548.56, + "end": 28550.92, + "probability": 0.7691 + }, + { + "start": 28551.42, + "end": 28554.06, + "probability": 0.856 + }, + { + "start": 28555.1, + "end": 28556.24, + "probability": 0.6047 + }, + { + "start": 28556.28, + "end": 28558.76, + "probability": 0.9262 + }, + { + "start": 28559.72, + "end": 28561.4, + "probability": 0.7467 + }, + { + "start": 28562.64, + "end": 28563.48, + "probability": 0.8678 + }, + { + "start": 28564.56, + "end": 28572.56, + "probability": 0.3543 + }, + { + "start": 28573.76, + "end": 28574.08, + "probability": 0.316 + }, + { + "start": 28574.52, + "end": 28574.98, + "probability": 0.8765 + }, + { + "start": 28575.02, + "end": 28575.42, + "probability": 0.7742 + }, + { + "start": 28575.5, + "end": 28576.9, + "probability": 0.7266 + }, + { + "start": 28577.02, + "end": 28579.76, + "probability": 0.829 + }, + { + "start": 28579.9, + "end": 28581.66, + "probability": 0.9788 + }, + { + "start": 28582.7, + "end": 28584.68, + "probability": 0.874 + }, + { + "start": 28586.64, + "end": 28592.44, + "probability": 0.8626 + }, + { + "start": 28592.52, + "end": 28594.06, + "probability": 0.995 + }, + { + "start": 28594.28, + "end": 28595.53, + "probability": 0.4524 + }, + { + "start": 28595.93, + "end": 28599.92, + "probability": 0.9988 + }, + { + "start": 28601.6, + "end": 28602.84, + "probability": 0.9019 + }, + { + "start": 28602.94, + "end": 28604.87, + "probability": 0.9697 + }, + { + "start": 28606.56, + "end": 28607.08, + "probability": 0.5798 + }, + { + "start": 28607.64, + "end": 28609.06, + "probability": 0.9046 + }, + { + "start": 28609.2, + "end": 28609.2, + "probability": 0.2428 + }, + { + "start": 28611.42, + "end": 28613.4, + "probability": 0.7316 + }, + { + "start": 28613.42, + "end": 28613.42, + "probability": 0.6147 + }, + { + "start": 28613.42, + "end": 28616.7, + "probability": 0.9366 + }, + { + "start": 28616.76, + "end": 28618.24, + "probability": 0.9973 + }, + { + "start": 28618.36, + "end": 28618.86, + "probability": 0.4869 + }, + { + "start": 28619.56, + "end": 28620.26, + "probability": 0.4481 + }, + { + "start": 28620.3, + "end": 28624.92, + "probability": 0.969 + }, + { + "start": 28625.02, + "end": 28627.16, + "probability": 0.7195 + }, + { + "start": 28627.42, + "end": 28630.9, + "probability": 0.9165 + }, + { + "start": 28631.58, + "end": 28634.64, + "probability": 0.7302 + }, + { + "start": 28635.96, + "end": 28642.92, + "probability": 0.9356 + }, + { + "start": 28643.04, + "end": 28650.4, + "probability": 0.725 + }, + { + "start": 28651.42, + "end": 28652.26, + "probability": 0.9733 + }, + { + "start": 28653.92, + "end": 28658.02, + "probability": 0.9528 + }, + { + "start": 28658.82, + "end": 28664.38, + "probability": 0.8013 + }, + { + "start": 28664.92, + "end": 28665.26, + "probability": 0.9396 + }, + { + "start": 28665.32, + "end": 28671.68, + "probability": 0.9816 + }, + { + "start": 28674.06, + "end": 28675.18, + "probability": 0.8536 + }, + { + "start": 28675.3, + "end": 28676.14, + "probability": 0.6653 + }, + { + "start": 28679.32, + "end": 28680.64, + "probability": 0.7797 + }, + { + "start": 28682.12, + "end": 28688.68, + "probability": 0.9968 + }, + { + "start": 28688.88, + "end": 28689.66, + "probability": 0.6239 + }, + { + "start": 28690.96, + "end": 28694.2, + "probability": 0.9813 + }, + { + "start": 28695.08, + "end": 28697.66, + "probability": 0.9954 + }, + { + "start": 28698.5, + "end": 28700.06, + "probability": 0.7033 + }, + { + "start": 28700.6, + "end": 28703.02, + "probability": 0.8949 + }, + { + "start": 28704.48, + "end": 28707.08, + "probability": 0.9652 + }, + { + "start": 28707.72, + "end": 28710.76, + "probability": 0.9937 + }, + { + "start": 28711.46, + "end": 28713.86, + "probability": 0.7651 + }, + { + "start": 28714.24, + "end": 28714.6, + "probability": 0.3715 + }, + { + "start": 28714.78, + "end": 28715.26, + "probability": 0.5835 + }, + { + "start": 28715.5, + "end": 28715.84, + "probability": 0.5863 + }, + { + "start": 28715.96, + "end": 28716.84, + "probability": 0.8135 + }, + { + "start": 28717.94, + "end": 28721.51, + "probability": 0.8777 + }, + { + "start": 28723.06, + "end": 28726.56, + "probability": 0.6307 + }, + { + "start": 28727.94, + "end": 28730.22, + "probability": 0.5068 + }, + { + "start": 28731.16, + "end": 28734.94, + "probability": 0.9165 + }, + { + "start": 28735.92, + "end": 28738.08, + "probability": 0.9655 + }, + { + "start": 28740.22, + "end": 28742.36, + "probability": 0.812 + }, + { + "start": 28742.46, + "end": 28745.54, + "probability": 0.8577 + }, + { + "start": 28745.74, + "end": 28747.1, + "probability": 0.7008 + }, + { + "start": 28747.62, + "end": 28749.92, + "probability": 0.8887 + }, + { + "start": 28750.8, + "end": 28752.84, + "probability": 0.8293 + }, + { + "start": 28753.38, + "end": 28753.9, + "probability": 0.4272 + }, + { + "start": 28755.12, + "end": 28757.62, + "probability": 0.8965 + }, + { + "start": 28758.48, + "end": 28761.28, + "probability": 0.6746 + }, + { + "start": 28762.02, + "end": 28763.76, + "probability": 0.8389 + }, + { + "start": 28764.9, + "end": 28767.12, + "probability": 0.9018 + }, + { + "start": 28768.58, + "end": 28771.46, + "probability": 0.9485 + }, + { + "start": 28772.28, + "end": 28774.1, + "probability": 0.998 + }, + { + "start": 28775.66, + "end": 28777.54, + "probability": 0.9082 + }, + { + "start": 28777.66, + "end": 28781.28, + "probability": 0.8673 + }, + { + "start": 28781.56, + "end": 28782.45, + "probability": 0.5936 + }, + { + "start": 28783.26, + "end": 28787.0, + "probability": 0.9543 + }, + { + "start": 28787.8, + "end": 28788.84, + "probability": 0.9149 + }, + { + "start": 28788.9, + "end": 28790.32, + "probability": 0.9431 + }, + { + "start": 28790.36, + "end": 28791.52, + "probability": 0.3302 + }, + { + "start": 28793.4, + "end": 28794.4, + "probability": 0.9528 + }, + { + "start": 28795.54, + "end": 28797.12, + "probability": 0.8962 + }, + { + "start": 28798.06, + "end": 28801.96, + "probability": 0.8364 + }, + { + "start": 28803.26, + "end": 28803.93, + "probability": 0.984 + }, + { + "start": 28804.18, + "end": 28806.74, + "probability": 0.795 + }, + { + "start": 28807.48, + "end": 28809.1, + "probability": 0.2659 + }, + { + "start": 28809.88, + "end": 28811.08, + "probability": 0.9849 + }, + { + "start": 28812.48, + "end": 28813.17, + "probability": 0.7868 + }, + { + "start": 28814.48, + "end": 28817.02, + "probability": 0.9493 + }, + { + "start": 28817.76, + "end": 28821.02, + "probability": 0.9209 + }, + { + "start": 28822.12, + "end": 28824.72, + "probability": 0.9272 + }, + { + "start": 28824.72, + "end": 28825.74, + "probability": 0.5458 + }, + { + "start": 28828.06, + "end": 28829.88, + "probability": 0.9454 + }, + { + "start": 28831.24, + "end": 28834.46, + "probability": 0.9902 + }, + { + "start": 28834.52, + "end": 28838.38, + "probability": 0.9487 + }, + { + "start": 28838.68, + "end": 28839.36, + "probability": 0.7914 + }, + { + "start": 28839.66, + "end": 28843.58, + "probability": 0.9844 + }, + { + "start": 28843.64, + "end": 28844.94, + "probability": 0.8191 + }, + { + "start": 28845.68, + "end": 28851.04, + "probability": 0.9912 + }, + { + "start": 28852.28, + "end": 28854.24, + "probability": 0.5493 + }, + { + "start": 28854.34, + "end": 28858.5, + "probability": 0.9307 + }, + { + "start": 28859.58, + "end": 28860.28, + "probability": 0.7471 + }, + { + "start": 28860.34, + "end": 28861.86, + "probability": 0.9691 + }, + { + "start": 28862.94, + "end": 28863.44, + "probability": 0.7332 + }, + { + "start": 28863.62, + "end": 28863.84, + "probability": 0.4313 + }, + { + "start": 28863.88, + "end": 28864.16, + "probability": 0.87 + }, + { + "start": 28864.28, + "end": 28866.4, + "probability": 0.8589 + }, + { + "start": 28866.4, + "end": 28866.86, + "probability": 0.258 + }, + { + "start": 28867.14, + "end": 28867.24, + "probability": 0.7249 + }, + { + "start": 28867.32, + "end": 28867.42, + "probability": 0.3913 + }, + { + "start": 28867.54, + "end": 28871.36, + "probability": 0.6019 + }, + { + "start": 28871.5, + "end": 28872.72, + "probability": 0.946 + }, + { + "start": 28872.82, + "end": 28875.93, + "probability": 0.9952 + }, + { + "start": 28876.64, + "end": 28876.86, + "probability": 0.6116 + }, + { + "start": 28877.4, + "end": 28878.86, + "probability": 0.7944 + }, + { + "start": 28879.2, + "end": 28881.4, + "probability": 0.9539 + }, + { + "start": 28882.36, + "end": 28883.48, + "probability": 0.6981 + }, + { + "start": 28884.56, + "end": 28888.78, + "probability": 0.9963 + }, + { + "start": 28889.82, + "end": 28889.82, + "probability": 0.0405 + }, + { + "start": 28889.98, + "end": 28890.36, + "probability": 0.8487 + }, + { + "start": 28890.68, + "end": 28891.4, + "probability": 0.345 + }, + { + "start": 28891.5, + "end": 28894.46, + "probability": 0.9937 + }, + { + "start": 28895.54, + "end": 28898.06, + "probability": 0.9928 + }, + { + "start": 28898.1, + "end": 28901.48, + "probability": 0.9097 + }, + { + "start": 28902.62, + "end": 28907.28, + "probability": 0.9871 + }, + { + "start": 28908.0, + "end": 28910.34, + "probability": 0.9345 + }, + { + "start": 28910.52, + "end": 28911.06, + "probability": 0.2984 + }, + { + "start": 28911.06, + "end": 28913.62, + "probability": 0.954 + }, + { + "start": 28913.98, + "end": 28916.38, + "probability": 0.9026 + }, + { + "start": 28916.82, + "end": 28919.42, + "probability": 0.979 + }, + { + "start": 28919.86, + "end": 28921.92, + "probability": 0.9956 + }, + { + "start": 28923.04, + "end": 28923.98, + "probability": 0.9441 + }, + { + "start": 28924.8, + "end": 28926.04, + "probability": 0.5544 + }, + { + "start": 28926.08, + "end": 28926.2, + "probability": 0.2706 + }, + { + "start": 28926.2, + "end": 28926.86, + "probability": 0.6578 + }, + { + "start": 28926.92, + "end": 28929.14, + "probability": 0.7492 + }, + { + "start": 28929.18, + "end": 28931.26, + "probability": 0.9817 + }, + { + "start": 28931.34, + "end": 28932.41, + "probability": 0.9172 + }, + { + "start": 28933.14, + "end": 28937.5, + "probability": 0.8544 + }, + { + "start": 28939.0, + "end": 28941.74, + "probability": 0.5106 + }, + { + "start": 28943.84, + "end": 28945.03, + "probability": 0.5125 + }, + { + "start": 28946.88, + "end": 28948.14, + "probability": 0.8322 + }, + { + "start": 28948.38, + "end": 28949.0, + "probability": 0.7856 + }, + { + "start": 28949.08, + "end": 28949.74, + "probability": 0.6412 + }, + { + "start": 28949.84, + "end": 28952.44, + "probability": 0.6175 + }, + { + "start": 28954.54, + "end": 28955.62, + "probability": 0.3591 + }, + { + "start": 28956.58, + "end": 28959.46, + "probability": 0.8904 + }, + { + "start": 28960.48, + "end": 28965.16, + "probability": 0.9085 + }, + { + "start": 28965.72, + "end": 28966.6, + "probability": 0.9263 + }, + { + "start": 28966.92, + "end": 28968.56, + "probability": 0.8879 + }, + { + "start": 28968.62, + "end": 28969.52, + "probability": 0.5671 + }, + { + "start": 28970.56, + "end": 28974.5, + "probability": 0.9896 + }, + { + "start": 28974.74, + "end": 28975.04, + "probability": 0.8032 + }, + { + "start": 28975.6, + "end": 28980.68, + "probability": 0.9598 + }, + { + "start": 28980.76, + "end": 28983.36, + "probability": 0.8065 + }, + { + "start": 28984.04, + "end": 28985.64, + "probability": 0.7422 + }, + { + "start": 28986.18, + "end": 28989.46, + "probability": 0.9556 + }, + { + "start": 28989.76, + "end": 28993.98, + "probability": 0.5071 + }, + { + "start": 28994.26, + "end": 28994.52, + "probability": 0.7979 + }, + { + "start": 28994.62, + "end": 28994.86, + "probability": 0.5154 + }, + { + "start": 28995.1, + "end": 28996.62, + "probability": 0.9106 + }, + { + "start": 28996.86, + "end": 28997.46, + "probability": 0.5501 + }, + { + "start": 28997.46, + "end": 28998.34, + "probability": 0.8923 + }, + { + "start": 28999.26, + "end": 28999.26, + "probability": 0.004 + }, + { + "start": 28999.26, + "end": 29000.72, + "probability": 0.9292 + }, + { + "start": 29001.76, + "end": 29001.76, + "probability": 0.1534 + }, + { + "start": 29001.76, + "end": 29001.86, + "probability": 0.3754 + }, + { + "start": 29003.02, + "end": 29005.66, + "probability": 0.9627 + }, + { + "start": 29005.66, + "end": 29007.68, + "probability": 0.9402 + }, + { + "start": 29007.76, + "end": 29008.46, + "probability": 0.8142 + }, + { + "start": 29008.78, + "end": 29008.98, + "probability": 0.2619 + }, + { + "start": 29008.98, + "end": 29013.0, + "probability": 0.3058 + }, + { + "start": 29013.38, + "end": 29014.92, + "probability": 0.8152 + }, + { + "start": 29015.08, + "end": 29016.76, + "probability": 0.7706 + }, + { + "start": 29017.3, + "end": 29018.5, + "probability": 0.5786 + }, + { + "start": 29018.96, + "end": 29020.4, + "probability": 0.9292 + }, + { + "start": 29020.44, + "end": 29021.28, + "probability": 0.2879 + }, + { + "start": 29021.28, + "end": 29023.62, + "probability": 0.9337 + }, + { + "start": 29024.14, + "end": 29025.56, + "probability": 0.9894 + }, + { + "start": 29026.46, + "end": 29028.36, + "probability": 0.7784 + }, + { + "start": 29029.9, + "end": 29030.8, + "probability": 0.9542 + }, + { + "start": 29030.88, + "end": 29031.48, + "probability": 0.875 + }, + { + "start": 29031.74, + "end": 29032.18, + "probability": 0.8863 + }, + { + "start": 29033.08, + "end": 29034.54, + "probability": 0.9643 + }, + { + "start": 29035.08, + "end": 29035.54, + "probability": 0.9155 + }, + { + "start": 29036.54, + "end": 29038.63, + "probability": 0.9619 + }, + { + "start": 29039.82, + "end": 29040.2, + "probability": 0.6664 + }, + { + "start": 29041.1, + "end": 29041.58, + "probability": 0.9983 + }, + { + "start": 29042.78, + "end": 29044.26, + "probability": 0.6881 + }, + { + "start": 29044.96, + "end": 29045.4, + "probability": 0.7513 + }, + { + "start": 29046.14, + "end": 29046.58, + "probability": 0.9229 + }, + { + "start": 29048.18, + "end": 29048.82, + "probability": 0.6833 + }, + { + "start": 29048.94, + "end": 29049.4, + "probability": 0.9524 + }, + { + "start": 29050.22, + "end": 29050.98, + "probability": 0.9873 + }, + { + "start": 29051.36, + "end": 29052.74, + "probability": 0.9933 + }, + { + "start": 29053.5, + "end": 29054.98, + "probability": 0.3067 + }, + { + "start": 29055.64, + "end": 29058.04, + "probability": 0.7772 + }, + { + "start": 29058.6, + "end": 29059.86, + "probability": 0.9936 + }, + { + "start": 29060.82, + "end": 29061.6, + "probability": 0.9526 + }, + { + "start": 29062.12, + "end": 29065.54, + "probability": 0.962 + }, + { + "start": 29066.04, + "end": 29066.96, + "probability": 0.952 + }, + { + "start": 29067.38, + "end": 29068.28, + "probability": 0.6397 + }, + { + "start": 29069.24, + "end": 29070.04, + "probability": 0.947 + }, + { + "start": 29070.72, + "end": 29071.45, + "probability": 0.9655 + }, + { + "start": 29072.2, + "end": 29073.2, + "probability": 0.9917 + }, + { + "start": 29073.52, + "end": 29074.37, + "probability": 0.9906 + }, + { + "start": 29074.8, + "end": 29075.2, + "probability": 0.7095 + }, + { + "start": 29076.02, + "end": 29076.9, + "probability": 0.6011 + }, + { + "start": 29077.42, + "end": 29080.64, + "probability": 0.9893 + }, + { + "start": 29081.38, + "end": 29082.02, + "probability": 0.9739 + }, + { + "start": 29082.14, + "end": 29082.56, + "probability": 0.8026 + }, + { + "start": 29082.6, + "end": 29083.1, + "probability": 0.6048 + }, + { + "start": 29083.1, + "end": 29083.44, + "probability": 0.9677 + }, + { + "start": 29083.7, + "end": 29085.1, + "probability": 0.9814 + }, + { + "start": 29085.7, + "end": 29087.42, + "probability": 0.8055 + }, + { + "start": 29088.46, + "end": 29094.88, + "probability": 0.9841 + }, + { + "start": 29094.96, + "end": 29096.18, + "probability": 0.9692 + }, + { + "start": 29096.26, + "end": 29097.14, + "probability": 0.4261 + }, + { + "start": 29098.42, + "end": 29099.36, + "probability": 0.951 + }, + { + "start": 29099.8, + "end": 29100.43, + "probability": 0.9678 + }, + { + "start": 29101.4, + "end": 29102.74, + "probability": 0.99 + }, + { + "start": 29102.88, + "end": 29104.94, + "probability": 0.9896 + }, + { + "start": 29105.8, + "end": 29106.74, + "probability": 0.9567 + }, + { + "start": 29107.96, + "end": 29108.58, + "probability": 0.8355 + }, + { + "start": 29109.72, + "end": 29110.78, + "probability": 0.745 + }, + { + "start": 29111.78, + "end": 29117.04, + "probability": 0.9421 + }, + { + "start": 29117.12, + "end": 29118.44, + "probability": 0.2333 + }, + { + "start": 29119.06, + "end": 29120.34, + "probability": 0.63 + }, + { + "start": 29120.94, + "end": 29123.02, + "probability": 0.978 + }, + { + "start": 29124.18, + "end": 29126.02, + "probability": 0.9673 + }, + { + "start": 29126.18, + "end": 29127.68, + "probability": 0.9577 + }, + { + "start": 29128.4, + "end": 29128.88, + "probability": 0.2624 + }, + { + "start": 29129.0, + "end": 29129.48, + "probability": 0.3556 + }, + { + "start": 29129.48, + "end": 29132.2, + "probability": 0.9022 + }, + { + "start": 29132.64, + "end": 29133.24, + "probability": 0.3336 + }, + { + "start": 29134.36, + "end": 29135.42, + "probability": 0.8602 + }, + { + "start": 29135.52, + "end": 29136.36, + "probability": 0.9814 + }, + { + "start": 29136.58, + "end": 29139.04, + "probability": 0.7726 + }, + { + "start": 29139.6, + "end": 29139.96, + "probability": 0.7497 + }, + { + "start": 29140.36, + "end": 29140.6, + "probability": 0.9049 + }, + { + "start": 29141.68, + "end": 29142.52, + "probability": 0.7184 + }, + { + "start": 29143.58, + "end": 29143.68, + "probability": 0.5716 + }, + { + "start": 29143.76, + "end": 29146.08, + "probability": 0.9436 + }, + { + "start": 29146.78, + "end": 29147.28, + "probability": 0.3599 + }, + { + "start": 29147.98, + "end": 29149.76, + "probability": 0.9824 + }, + { + "start": 29149.88, + "end": 29150.86, + "probability": 0.9476 + }, + { + "start": 29151.38, + "end": 29151.62, + "probability": 0.557 + }, + { + "start": 29151.78, + "end": 29152.78, + "probability": 0.9132 + }, + { + "start": 29153.82, + "end": 29156.74, + "probability": 0.9924 + }, + { + "start": 29157.36, + "end": 29158.24, + "probability": 0.9873 + }, + { + "start": 29158.3, + "end": 29159.34, + "probability": 0.8824 + }, + { + "start": 29160.08, + "end": 29161.4, + "probability": 0.9516 + }, + { + "start": 29162.18, + "end": 29164.42, + "probability": 0.9019 + }, + { + "start": 29165.06, + "end": 29167.56, + "probability": 0.8651 + }, + { + "start": 29169.26, + "end": 29173.2, + "probability": 0.9193 + }, + { + "start": 29173.32, + "end": 29175.08, + "probability": 0.8582 + }, + { + "start": 29175.74, + "end": 29177.44, + "probability": 0.752 + }, + { + "start": 29177.52, + "end": 29182.94, + "probability": 0.8843 + }, + { + "start": 29183.54, + "end": 29187.48, + "probability": 0.9902 + }, + { + "start": 29188.43, + "end": 29190.36, + "probability": 0.9715 + }, + { + "start": 29191.36, + "end": 29191.46, + "probability": 0.856 + }, + { + "start": 29192.42, + "end": 29195.52, + "probability": 0.9895 + }, + { + "start": 29196.66, + "end": 29199.28, + "probability": 0.8455 + }, + { + "start": 29200.3, + "end": 29202.46, + "probability": 0.9944 + }, + { + "start": 29202.46, + "end": 29205.58, + "probability": 0.8414 + }, + { + "start": 29206.74, + "end": 29209.5, + "probability": 0.8708 + }, + { + "start": 29209.5, + "end": 29212.26, + "probability": 0.9948 + }, + { + "start": 29212.36, + "end": 29214.7, + "probability": 0.9831 + }, + { + "start": 29215.58, + "end": 29217.38, + "probability": 0.8102 + }, + { + "start": 29217.48, + "end": 29218.0, + "probability": 0.5611 + }, + { + "start": 29218.54, + "end": 29220.46, + "probability": 0.9495 + }, + { + "start": 29220.56, + "end": 29222.41, + "probability": 0.9679 + }, + { + "start": 29222.54, + "end": 29223.98, + "probability": 0.984 + }, + { + "start": 29224.3, + "end": 29225.92, + "probability": 0.9128 + }, + { + "start": 29226.5, + "end": 29228.84, + "probability": 0.9364 + }, + { + "start": 29229.38, + "end": 29230.9, + "probability": 0.9854 + }, + { + "start": 29230.9, + "end": 29235.3, + "probability": 0.9777 + }, + { + "start": 29235.38, + "end": 29236.08, + "probability": 0.933 + }, + { + "start": 29236.76, + "end": 29239.22, + "probability": 0.6468 + }, + { + "start": 29239.68, + "end": 29241.26, + "probability": 0.9901 + }, + { + "start": 29242.06, + "end": 29243.34, + "probability": 0.7626 + }, + { + "start": 29243.42, + "end": 29245.12, + "probability": 0.974 + }, + { + "start": 29245.56, + "end": 29246.67, + "probability": 0.9692 + }, + { + "start": 29247.36, + "end": 29248.76, + "probability": 0.802 + }, + { + "start": 29250.02, + "end": 29252.26, + "probability": 0.9595 + }, + { + "start": 29253.18, + "end": 29253.68, + "probability": 0.7435 + }, + { + "start": 29254.0, + "end": 29254.86, + "probability": 0.8426 + }, + { + "start": 29255.62, + "end": 29255.84, + "probability": 0.669 + }, + { + "start": 29256.68, + "end": 29258.25, + "probability": 0.939 + }, + { + "start": 29258.28, + "end": 29260.72, + "probability": 0.9983 + }, + { + "start": 29261.8, + "end": 29263.8, + "probability": 0.9569 + }, + { + "start": 29264.26, + "end": 29264.94, + "probability": 0.5599 + }, + { + "start": 29265.35, + "end": 29268.17, + "probability": 0.9609 + }, + { + "start": 29268.86, + "end": 29269.88, + "probability": 0.5848 + }, + { + "start": 29270.06, + "end": 29271.44, + "probability": 0.8953 + }, + { + "start": 29271.62, + "end": 29272.84, + "probability": 0.9172 + }, + { + "start": 29273.54, + "end": 29276.02, + "probability": 0.9849 + }, + { + "start": 29276.62, + "end": 29277.92, + "probability": 0.9016 + }, + { + "start": 29278.38, + "end": 29280.44, + "probability": 0.9972 + }, + { + "start": 29280.44, + "end": 29284.78, + "probability": 0.9198 + }, + { + "start": 29285.26, + "end": 29286.56, + "probability": 0.9241 + }, + { + "start": 29287.34, + "end": 29288.56, + "probability": 0.9968 + }, + { + "start": 29289.5, + "end": 29291.34, + "probability": 0.8921 + }, + { + "start": 29292.14, + "end": 29293.34, + "probability": 0.9937 + }, + { + "start": 29293.76, + "end": 29295.97, + "probability": 0.9961 + }, + { + "start": 29296.78, + "end": 29300.24, + "probability": 0.8308 + }, + { + "start": 29300.46, + "end": 29301.26, + "probability": 0.7842 + }, + { + "start": 29301.28, + "end": 29301.66, + "probability": 0.6759 + }, + { + "start": 29302.1, + "end": 29302.82, + "probability": 0.9919 + }, + { + "start": 29303.22, + "end": 29305.9, + "probability": 0.9544 + }, + { + "start": 29306.56, + "end": 29308.08, + "probability": 0.9073 + }, + { + "start": 29308.98, + "end": 29310.46, + "probability": 0.7781 + }, + { + "start": 29310.62, + "end": 29312.54, + "probability": 0.8092 + }, + { + "start": 29312.9, + "end": 29313.48, + "probability": 0.7891 + }, + { + "start": 29313.6, + "end": 29317.3, + "probability": 0.9277 + }, + { + "start": 29317.46, + "end": 29320.6, + "probability": 0.7671 + }, + { + "start": 29321.72, + "end": 29321.72, + "probability": 0.0323 + }, + { + "start": 29321.72, + "end": 29324.08, + "probability": 0.5527 + }, + { + "start": 29324.38, + "end": 29327.82, + "probability": 0.9171 + }, + { + "start": 29328.76, + "end": 29332.84, + "probability": 0.8954 + }, + { + "start": 29333.6, + "end": 29333.8, + "probability": 0.797 + }, + { + "start": 29334.34, + "end": 29334.62, + "probability": 0.5141 + }, + { + "start": 29334.94, + "end": 29337.02, + "probability": 0.9089 + }, + { + "start": 29337.14, + "end": 29339.4, + "probability": 0.7488 + }, + { + "start": 29340.14, + "end": 29340.6, + "probability": 0.3758 + }, + { + "start": 29341.24, + "end": 29342.46, + "probability": 0.7734 + }, + { + "start": 29343.5, + "end": 29345.8, + "probability": 0.9062 + }, + { + "start": 29349.86, + "end": 29352.2, + "probability": 0.9203 + }, + { + "start": 29352.44, + "end": 29354.1, + "probability": 0.7942 + }, + { + "start": 29358.94, + "end": 29360.6, + "probability": 0.6226 + }, + { + "start": 29360.68, + "end": 29360.68, + "probability": 0.441 + }, + { + "start": 29360.68, + "end": 29361.74, + "probability": 0.703 + }, + { + "start": 29361.82, + "end": 29363.18, + "probability": 0.6482 + }, + { + "start": 29363.82, + "end": 29365.87, + "probability": 0.9937 + }, + { + "start": 29366.68, + "end": 29367.6, + "probability": 0.9746 + }, + { + "start": 29367.68, + "end": 29368.42, + "probability": 0.8242 + }, + { + "start": 29368.58, + "end": 29370.58, + "probability": 0.9966 + }, + { + "start": 29371.78, + "end": 29373.3, + "probability": 0.9995 + }, + { + "start": 29375.14, + "end": 29376.54, + "probability": 0.9839 + }, + { + "start": 29376.68, + "end": 29381.78, + "probability": 0.9717 + }, + { + "start": 29382.36, + "end": 29384.46, + "probability": 0.9802 + }, + { + "start": 29384.92, + "end": 29388.74, + "probability": 0.9886 + }, + { + "start": 29389.7, + "end": 29391.74, + "probability": 0.9404 + }, + { + "start": 29392.38, + "end": 29394.38, + "probability": 0.9113 + }, + { + "start": 29395.22, + "end": 29400.7, + "probability": 0.9816 + }, + { + "start": 29401.44, + "end": 29405.72, + "probability": 0.9921 + }, + { + "start": 29406.1, + "end": 29408.16, + "probability": 0.9466 + }, + { + "start": 29408.26, + "end": 29409.86, + "probability": 0.8223 + }, + { + "start": 29411.38, + "end": 29414.24, + "probability": 0.9402 + }, + { + "start": 29415.12, + "end": 29419.18, + "probability": 0.9821 + }, + { + "start": 29420.9, + "end": 29422.8, + "probability": 0.9905 + }, + { + "start": 29423.78, + "end": 29428.28, + "probability": 0.9656 + }, + { + "start": 29429.44, + "end": 29432.2, + "probability": 0.9971 + }, + { + "start": 29432.3, + "end": 29434.76, + "probability": 0.7244 + }, + { + "start": 29434.76, + "end": 29439.0, + "probability": 0.9637 + }, + { + "start": 29440.52, + "end": 29440.96, + "probability": 0.3133 + }, + { + "start": 29440.96, + "end": 29441.3, + "probability": 0.1026 + }, + { + "start": 29441.98, + "end": 29442.49, + "probability": 0.5501 + }, + { + "start": 29446.32, + "end": 29447.5, + "probability": 0.5421 + }, + { + "start": 29449.24, + "end": 29450.62, + "probability": 0.234 + }, + { + "start": 29451.08, + "end": 29451.7, + "probability": 0.1877 + }, + { + "start": 29452.0, + "end": 29452.88, + "probability": 0.5975 + }, + { + "start": 29453.66, + "end": 29456.82, + "probability": 0.9573 + }, + { + "start": 29457.18, + "end": 29458.1, + "probability": 0.9207 + }, + { + "start": 29458.84, + "end": 29461.28, + "probability": 0.9767 + }, + { + "start": 29462.0, + "end": 29467.34, + "probability": 0.9714 + }, + { + "start": 29468.44, + "end": 29472.55, + "probability": 0.886 + }, + { + "start": 29473.4, + "end": 29475.32, + "probability": 0.6629 + }, + { + "start": 29475.72, + "end": 29478.92, + "probability": 0.9789 + }, + { + "start": 29479.34, + "end": 29482.14, + "probability": 0.9856 + }, + { + "start": 29482.72, + "end": 29485.39, + "probability": 0.9969 + }, + { + "start": 29485.9, + "end": 29489.34, + "probability": 0.9202 + }, + { + "start": 29490.68, + "end": 29492.76, + "probability": 0.9773 + }, + { + "start": 29493.36, + "end": 29495.24, + "probability": 0.9862 + }, + { + "start": 29496.98, + "end": 29499.58, + "probability": 0.9155 + }, + { + "start": 29499.7, + "end": 29502.18, + "probability": 0.9968 + }, + { + "start": 29503.24, + "end": 29506.18, + "probability": 0.9194 + }, + { + "start": 29506.5, + "end": 29510.08, + "probability": 0.9854 + }, + { + "start": 29510.46, + "end": 29514.72, + "probability": 0.9956 + }, + { + "start": 29515.34, + "end": 29516.94, + "probability": 0.9979 + }, + { + "start": 29517.1, + "end": 29520.06, + "probability": 0.1195 + }, + { + "start": 29520.06, + "end": 29522.76, + "probability": 0.8018 + }, + { + "start": 29523.2, + "end": 29525.38, + "probability": 0.9785 + }, + { + "start": 29525.5, + "end": 29527.34, + "probability": 0.8572 + }, + { + "start": 29527.82, + "end": 29531.86, + "probability": 0.9955 + }, + { + "start": 29532.04, + "end": 29532.7, + "probability": 0.7805 + }, + { + "start": 29532.78, + "end": 29533.94, + "probability": 0.9806 + }, + { + "start": 29534.28, + "end": 29535.12, + "probability": 0.9888 + }, + { + "start": 29535.22, + "end": 29536.28, + "probability": 0.9483 + }, + { + "start": 29537.52, + "end": 29542.8, + "probability": 0.9858 + }, + { + "start": 29543.32, + "end": 29543.68, + "probability": 0.8107 + }, + { + "start": 29543.92, + "end": 29549.16, + "probability": 0.9969 + }, + { + "start": 29550.84, + "end": 29552.5, + "probability": 0.8564 + }, + { + "start": 29553.4, + "end": 29557.9, + "probability": 0.9195 + }, + { + "start": 29558.34, + "end": 29560.46, + "probability": 0.9904 + }, + { + "start": 29560.9, + "end": 29563.92, + "probability": 0.9944 + }, + { + "start": 29564.82, + "end": 29567.88, + "probability": 0.9777 + }, + { + "start": 29568.56, + "end": 29570.3, + "probability": 0.9428 + }, + { + "start": 29570.76, + "end": 29574.02, + "probability": 0.9873 + }, + { + "start": 29574.98, + "end": 29576.04, + "probability": 0.9519 + }, + { + "start": 29576.58, + "end": 29578.0, + "probability": 0.8961 + }, + { + "start": 29578.56, + "end": 29580.3, + "probability": 0.9806 + }, + { + "start": 29580.98, + "end": 29589.1, + "probability": 0.9871 + }, + { + "start": 29589.78, + "end": 29592.36, + "probability": 0.9201 + }, + { + "start": 29593.16, + "end": 29595.72, + "probability": 0.8695 + }, + { + "start": 29596.86, + "end": 29599.86, + "probability": 0.9679 + }, + { + "start": 29600.88, + "end": 29603.88, + "probability": 0.9972 + }, + { + "start": 29604.4, + "end": 29606.26, + "probability": 0.9629 + }, + { + "start": 29606.8, + "end": 29608.48, + "probability": 0.9712 + }, + { + "start": 29608.62, + "end": 29609.48, + "probability": 0.678 + }, + { + "start": 29609.88, + "end": 29613.92, + "probability": 0.981 + }, + { + "start": 29614.32, + "end": 29615.4, + "probability": 0.9966 + }, + { + "start": 29615.8, + "end": 29616.36, + "probability": 0.7787 + }, + { + "start": 29617.4, + "end": 29619.28, + "probability": 0.9602 + }, + { + "start": 29619.52, + "end": 29621.12, + "probability": 0.8908 + }, + { + "start": 29621.56, + "end": 29626.62, + "probability": 0.9453 + }, + { + "start": 29627.08, + "end": 29629.16, + "probability": 0.997 + }, + { + "start": 29629.74, + "end": 29633.72, + "probability": 0.9855 + }, + { + "start": 29633.72, + "end": 29637.4, + "probability": 0.993 + }, + { + "start": 29638.06, + "end": 29639.64, + "probability": 0.8392 + }, + { + "start": 29639.8, + "end": 29641.28, + "probability": 0.7955 + }, + { + "start": 29641.74, + "end": 29643.12, + "probability": 0.8501 + }, + { + "start": 29643.14, + "end": 29644.22, + "probability": 0.923 + }, + { + "start": 29644.8, + "end": 29645.44, + "probability": 0.2758 + }, + { + "start": 29646.0, + "end": 29647.18, + "probability": 0.7829 + }, + { + "start": 29647.6, + "end": 29648.86, + "probability": 0.9393 + }, + { + "start": 29649.82, + "end": 29654.0, + "probability": 0.966 + }, + { + "start": 29654.34, + "end": 29655.78, + "probability": 0.9507 + }, + { + "start": 29655.9, + "end": 29657.2, + "probability": 0.9851 + }, + { + "start": 29657.66, + "end": 29661.22, + "probability": 0.9963 + }, + { + "start": 29661.9, + "end": 29665.52, + "probability": 0.9678 + }, + { + "start": 29665.52, + "end": 29665.8, + "probability": 0.3812 + }, + { + "start": 29666.08, + "end": 29667.78, + "probability": 0.9995 + }, + { + "start": 29668.24, + "end": 29670.42, + "probability": 0.9469 + }, + { + "start": 29671.24, + "end": 29674.02, + "probability": 0.9839 + }, + { + "start": 29674.48, + "end": 29677.74, + "probability": 0.9912 + }, + { + "start": 29678.2, + "end": 29679.04, + "probability": 0.9482 + }, + { + "start": 29679.06, + "end": 29680.66, + "probability": 0.9628 + }, + { + "start": 29680.68, + "end": 29684.08, + "probability": 0.9687 + }, + { + "start": 29684.16, + "end": 29686.7, + "probability": 0.7431 + }, + { + "start": 29687.42, + "end": 29689.54, + "probability": 0.9829 + }, + { + "start": 29690.48, + "end": 29691.04, + "probability": 0.484 + }, + { + "start": 29692.14, + "end": 29693.26, + "probability": 0.8999 + }, + { + "start": 29694.94, + "end": 29695.94, + "probability": 0.8029 + }, + { + "start": 29698.56, + "end": 29700.12, + "probability": 0.7795 + }, + { + "start": 29700.54, + "end": 29702.8, + "probability": 0.6004 + }, + { + "start": 29704.16, + "end": 29705.28, + "probability": 0.9135 + }, + { + "start": 29705.38, + "end": 29705.78, + "probability": 0.924 + }, + { + "start": 29705.86, + "end": 29707.04, + "probability": 0.8566 + }, + { + "start": 29707.06, + "end": 29708.3, + "probability": 0.9797 + }, + { + "start": 29709.12, + "end": 29710.56, + "probability": 0.917 + }, + { + "start": 29710.64, + "end": 29713.02, + "probability": 0.8697 + }, + { + "start": 29714.04, + "end": 29716.78, + "probability": 0.9331 + }, + { + "start": 29716.9, + "end": 29717.62, + "probability": 0.6089 + }, + { + "start": 29718.02, + "end": 29721.1, + "probability": 0.6953 + }, + { + "start": 29721.1, + "end": 29723.66, + "probability": 0.9333 + }, + { + "start": 29723.68, + "end": 29723.9, + "probability": 0.7732 + }, + { + "start": 29724.9, + "end": 29726.84, + "probability": 0.684 + }, + { + "start": 29726.9, + "end": 29728.02, + "probability": 0.8716 + }, + { + "start": 29730.06, + "end": 29730.82, + "probability": 0.619 + }, + { + "start": 29730.86, + "end": 29732.5, + "probability": 0.861 + }, + { + "start": 29732.78, + "end": 29735.32, + "probability": 0.9699 + }, + { + "start": 29736.89, + "end": 29740.24, + "probability": 0.9518 + }, + { + "start": 29741.6, + "end": 29744.16, + "probability": 0.9968 + }, + { + "start": 29744.84, + "end": 29748.6, + "probability": 0.9586 + }, + { + "start": 29749.24, + "end": 29749.5, + "probability": 0.7188 + }, + { + "start": 29750.5, + "end": 29751.9, + "probability": 0.9675 + }, + { + "start": 29753.14, + "end": 29759.86, + "probability": 0.9881 + }, + { + "start": 29760.2, + "end": 29760.88, + "probability": 0.7246 + }, + { + "start": 29760.94, + "end": 29761.36, + "probability": 0.481 + }, + { + "start": 29761.98, + "end": 29762.2, + "probability": 0.728 + }, + { + "start": 29762.72, + "end": 29764.53, + "probability": 0.8838 + }, + { + "start": 29765.58, + "end": 29766.61, + "probability": 0.9744 + }, + { + "start": 29767.72, + "end": 29772.82, + "probability": 0.9019 + }, + { + "start": 29774.0, + "end": 29774.56, + "probability": 0.6842 + }, + { + "start": 29775.1, + "end": 29777.2, + "probability": 0.9371 + }, + { + "start": 29778.36, + "end": 29779.24, + "probability": 0.8136 + }, + { + "start": 29780.38, + "end": 29785.04, + "probability": 0.9759 + }, + { + "start": 29785.9, + "end": 29786.37, + "probability": 0.9803 + }, + { + "start": 29787.5, + "end": 29788.07, + "probability": 0.9895 + }, + { + "start": 29788.92, + "end": 29789.33, + "probability": 0.8926 + }, + { + "start": 29790.3, + "end": 29792.8, + "probability": 0.8776 + }, + { + "start": 29794.3, + "end": 29796.92, + "probability": 0.9888 + }, + { + "start": 29798.14, + "end": 29800.0, + "probability": 0.9937 + }, + { + "start": 29800.86, + "end": 29801.96, + "probability": 0.9697 + }, + { + "start": 29802.9, + "end": 29804.58, + "probability": 0.9825 + }, + { + "start": 29805.52, + "end": 29806.42, + "probability": 0.9157 + }, + { + "start": 29806.98, + "end": 29808.89, + "probability": 0.9875 + }, + { + "start": 29809.4, + "end": 29810.82, + "probability": 0.9914 + }, + { + "start": 29811.44, + "end": 29814.16, + "probability": 0.9927 + }, + { + "start": 29814.74, + "end": 29820.52, + "probability": 0.8193 + }, + { + "start": 29821.62, + "end": 29825.82, + "probability": 0.9561 + }, + { + "start": 29827.22, + "end": 29830.58, + "probability": 0.7546 + }, + { + "start": 29831.58, + "end": 29832.4, + "probability": 0.8252 + }, + { + "start": 29833.1, + "end": 29838.9, + "probability": 0.9478 + }, + { + "start": 29839.94, + "end": 29845.06, + "probability": 0.992 + }, + { + "start": 29845.6, + "end": 29846.52, + "probability": 0.9422 + }, + { + "start": 29847.64, + "end": 29851.34, + "probability": 0.9902 + }, + { + "start": 29851.42, + "end": 29852.54, + "probability": 0.743 + }, + { + "start": 29853.85, + "end": 29859.94, + "probability": 0.8489 + }, + { + "start": 29860.5, + "end": 29861.12, + "probability": 0.9893 + }, + { + "start": 29862.12, + "end": 29867.76, + "probability": 0.915 + }, + { + "start": 29869.06, + "end": 29870.62, + "probability": 0.8801 + }, + { + "start": 29871.76, + "end": 29873.88, + "probability": 0.9237 + }, + { + "start": 29874.6, + "end": 29875.32, + "probability": 0.8132 + }, + { + "start": 29876.06, + "end": 29877.78, + "probability": 0.5855 + }, + { + "start": 29878.36, + "end": 29880.82, + "probability": 0.9105 + }, + { + "start": 29881.54, + "end": 29884.64, + "probability": 0.847 + }, + { + "start": 29884.8, + "end": 29886.38, + "probability": 0.9667 + }, + { + "start": 29886.9, + "end": 29889.14, + "probability": 0.9375 + }, + { + "start": 29889.66, + "end": 29892.62, + "probability": 0.9061 + }, + { + "start": 29892.76, + "end": 29895.58, + "probability": 0.9635 + }, + { + "start": 29896.44, + "end": 29901.92, + "probability": 0.9689 + }, + { + "start": 29902.68, + "end": 29907.24, + "probability": 0.9712 + }, + { + "start": 29907.44, + "end": 29911.54, + "probability": 0.9652 + }, + { + "start": 29913.1, + "end": 29916.0, + "probability": 0.9774 + }, + { + "start": 29916.66, + "end": 29919.68, + "probability": 0.8214 + }, + { + "start": 29921.26, + "end": 29924.0, + "probability": 0.9966 + }, + { + "start": 29924.66, + "end": 29925.88, + "probability": 0.9372 + }, + { + "start": 29927.14, + "end": 29928.52, + "probability": 0.9972 + }, + { + "start": 29929.82, + "end": 29932.08, + "probability": 0.923 + }, + { + "start": 29932.22, + "end": 29932.9, + "probability": 0.5585 + }, + { + "start": 29934.8, + "end": 29938.84, + "probability": 0.8007 + }, + { + "start": 29939.6, + "end": 29941.0, + "probability": 0.8082 + }, + { + "start": 29941.62, + "end": 29944.0, + "probability": 0.791 + }, + { + "start": 29944.36, + "end": 29945.92, + "probability": 0.9951 + }, + { + "start": 29946.0, + "end": 29946.44, + "probability": 0.764 + }, + { + "start": 29946.54, + "end": 29946.8, + "probability": 0.6158 + }, + { + "start": 29948.5, + "end": 29948.82, + "probability": 0.6259 + }, + { + "start": 29949.38, + "end": 29950.1, + "probability": 0.7774 + }, + { + "start": 29951.12, + "end": 29952.1, + "probability": 0.79 + }, + { + "start": 29952.26, + "end": 29952.48, + "probability": 0.5617 + }, + { + "start": 29953.4, + "end": 29955.96, + "probability": 0.9929 + }, + { + "start": 29956.78, + "end": 29960.52, + "probability": 0.8572 + }, + { + "start": 29961.4, + "end": 29964.06, + "probability": 0.9771 + }, + { + "start": 29965.08, + "end": 29966.52, + "probability": 0.9529 + }, + { + "start": 29967.08, + "end": 29970.88, + "probability": 0.8817 + }, + { + "start": 29972.22, + "end": 29973.46, + "probability": 0.7847 + }, + { + "start": 29975.1, + "end": 29975.54, + "probability": 0.8962 + }, + { + "start": 29976.92, + "end": 29979.94, + "probability": 0.9111 + }, + { + "start": 29980.66, + "end": 29984.08, + "probability": 0.9694 + }, + { + "start": 29984.9, + "end": 29988.16, + "probability": 0.965 + }, + { + "start": 29988.52, + "end": 29989.36, + "probability": 0.4978 + }, + { + "start": 29989.66, + "end": 29990.24, + "probability": 0.9444 + }, + { + "start": 29991.0, + "end": 29991.32, + "probability": 0.6158 + }, + { + "start": 29991.48, + "end": 29995.78, + "probability": 0.9066 + }, + { + "start": 29996.8, + "end": 30001.7, + "probability": 0.9856 + }, + { + "start": 30001.86, + "end": 30002.44, + "probability": 0.9458 + }, + { + "start": 30004.48, + "end": 30006.18, + "probability": 0.6749 + }, + { + "start": 30007.08, + "end": 30008.98, + "probability": 0.8677 + }, + { + "start": 30009.34, + "end": 30010.7, + "probability": 0.9896 + }, + { + "start": 30012.34, + "end": 30014.42, + "probability": 0.7704 + }, + { + "start": 30015.14, + "end": 30018.6, + "probability": 0.8129 + }, + { + "start": 30019.1, + "end": 30019.26, + "probability": 0.7131 + }, + { + "start": 30020.18, + "end": 30020.5, + "probability": 0.6767 + }, + { + "start": 30020.8, + "end": 30023.52, + "probability": 0.781 + }, + { + "start": 30024.34, + "end": 30024.78, + "probability": 0.731 + }, + { + "start": 30025.28, + "end": 30026.32, + "probability": 0.8645 + }, + { + "start": 30026.9, + "end": 30029.8, + "probability": 0.8801 + }, + { + "start": 30030.18, + "end": 30031.52, + "probability": 0.9705 + }, + { + "start": 30032.12, + "end": 30033.52, + "probability": 0.9463 + }, + { + "start": 30034.46, + "end": 30034.92, + "probability": 0.6634 + }, + { + "start": 30035.44, + "end": 30038.44, + "probability": 0.4151 + }, + { + "start": 30039.38, + "end": 30044.5, + "probability": 0.8689 + }, + { + "start": 30044.96, + "end": 30045.58, + "probability": 0.6401 + }, + { + "start": 30046.18, + "end": 30047.38, + "probability": 0.8268 + }, + { + "start": 30048.87, + "end": 30051.18, + "probability": 0.7291 + }, + { + "start": 30051.28, + "end": 30051.78, + "probability": 0.866 + }, + { + "start": 30052.26, + "end": 30055.62, + "probability": 0.6073 + }, + { + "start": 30056.3, + "end": 30056.78, + "probability": 0.6468 + }, + { + "start": 30058.14, + "end": 30061.42, + "probability": 0.931 + }, + { + "start": 30062.82, + "end": 30065.46, + "probability": 0.9413 + }, + { + "start": 30066.4, + "end": 30067.36, + "probability": 0.9639 + }, + { + "start": 30068.28, + "end": 30068.78, + "probability": 0.6808 + }, + { + "start": 30070.5, + "end": 30074.14, + "probability": 0.8638 + }, + { + "start": 30074.72, + "end": 30075.94, + "probability": 0.9365 + }, + { + "start": 30077.26, + "end": 30077.26, + "probability": 0.4011 + }, + { + "start": 30077.28, + "end": 30078.48, + "probability": 0.573 + }, + { + "start": 30079.16, + "end": 30079.26, + "probability": 0.7743 + }, + { + "start": 30083.06, + "end": 30083.7, + "probability": 0.0388 + }, + { + "start": 30083.82, + "end": 30083.82, + "probability": 0.2311 + }, + { + "start": 30083.82, + "end": 30086.25, + "probability": 0.1458 + }, + { + "start": 30086.36, + "end": 30089.14, + "probability": 0.3923 + }, + { + "start": 30089.2, + "end": 30089.9, + "probability": 0.154 + }, + { + "start": 30092.9, + "end": 30093.68, + "probability": 0.0472 + }, + { + "start": 30093.68, + "end": 30093.78, + "probability": 0.1957 + }, + { + "start": 30094.54, + "end": 30097.38, + "probability": 0.8155 + }, + { + "start": 30097.64, + "end": 30098.9, + "probability": 0.5664 + }, + { + "start": 30099.12, + "end": 30104.2, + "probability": 0.5879 + }, + { + "start": 30105.7, + "end": 30106.74, + "probability": 0.6653 + }, + { + "start": 30107.62, + "end": 30110.02, + "probability": 0.1563 + }, + { + "start": 30114.52, + "end": 30115.36, + "probability": 0.8327 + }, + { + "start": 30115.78, + "end": 30117.06, + "probability": 0.316 + }, + { + "start": 30117.06, + "end": 30118.2, + "probability": 0.2427 + }, + { + "start": 30118.2, + "end": 30118.66, + "probability": 0.1164 + }, + { + "start": 30118.66, + "end": 30119.26, + "probability": 0.4403 + }, + { + "start": 30119.48, + "end": 30120.34, + "probability": 0.6266 + }, + { + "start": 30122.1, + "end": 30122.94, + "probability": 0.7053 + }, + { + "start": 30124.12, + "end": 30124.86, + "probability": 0.9368 + }, + { + "start": 30126.0, + "end": 30126.84, + "probability": 0.7422 + }, + { + "start": 30128.68, + "end": 30131.28, + "probability": 0.9981 + }, + { + "start": 30132.48, + "end": 30133.04, + "probability": 0.98 + }, + { + "start": 30134.8, + "end": 30136.12, + "probability": 0.979 + }, + { + "start": 30136.66, + "end": 30138.06, + "probability": 0.9948 + }, + { + "start": 30139.28, + "end": 30141.04, + "probability": 0.9945 + }, + { + "start": 30141.78, + "end": 30146.62, + "probability": 0.9976 + }, + { + "start": 30148.26, + "end": 30151.0, + "probability": 0.9978 + }, + { + "start": 30152.1, + "end": 30155.0, + "probability": 0.7246 + }, + { + "start": 30155.78, + "end": 30156.92, + "probability": 0.8521 + }, + { + "start": 30157.98, + "end": 30163.22, + "probability": 0.9978 + }, + { + "start": 30164.4, + "end": 30165.5, + "probability": 0.763 + }, + { + "start": 30166.28, + "end": 30167.52, + "probability": 0.8461 + }, + { + "start": 30168.42, + "end": 30171.4, + "probability": 0.6157 + }, + { + "start": 30172.44, + "end": 30173.6, + "probability": 0.9661 + }, + { + "start": 30174.82, + "end": 30178.2, + "probability": 0.8522 + }, + { + "start": 30179.22, + "end": 30180.3, + "probability": 0.9902 + }, + { + "start": 30181.16, + "end": 30183.08, + "probability": 0.9029 + }, + { + "start": 30183.98, + "end": 30184.9, + "probability": 0.9713 + }, + { + "start": 30186.2, + "end": 30186.8, + "probability": 0.8393 + }, + { + "start": 30187.54, + "end": 30188.14, + "probability": 0.8433 + }, + { + "start": 30189.2, + "end": 30193.22, + "probability": 0.998 + }, + { + "start": 30194.1, + "end": 30195.12, + "probability": 0.9995 + }, + { + "start": 30196.66, + "end": 30199.34, + "probability": 0.7688 + }, + { + "start": 30200.3, + "end": 30201.16, + "probability": 0.9332 + }, + { + "start": 30202.3, + "end": 30206.0, + "probability": 0.986 + }, + { + "start": 30207.5, + "end": 30212.12, + "probability": 0.9868 + }, + { + "start": 30213.3, + "end": 30215.06, + "probability": 0.8526 + }, + { + "start": 30215.84, + "end": 30217.84, + "probability": 0.8135 + }, + { + "start": 30218.72, + "end": 30220.12, + "probability": 0.9912 + }, + { + "start": 30220.9, + "end": 30222.14, + "probability": 0.9937 + }, + { + "start": 30224.28, + "end": 30230.02, + "probability": 0.9679 + }, + { + "start": 30230.86, + "end": 30232.14, + "probability": 0.8887 + }, + { + "start": 30232.68, + "end": 30233.58, + "probability": 0.9541 + }, + { + "start": 30234.88, + "end": 30242.34, + "probability": 0.9938 + }, + { + "start": 30243.62, + "end": 30244.7, + "probability": 0.9169 + }, + { + "start": 30245.84, + "end": 30248.59, + "probability": 0.9 + }, + { + "start": 30249.44, + "end": 30250.72, + "probability": 0.98 + }, + { + "start": 30250.86, + "end": 30254.6, + "probability": 0.7652 + }, + { + "start": 30254.6, + "end": 30259.26, + "probability": 0.9934 + }, + { + "start": 30260.64, + "end": 30261.8, + "probability": 0.7429 + }, + { + "start": 30263.1, + "end": 30267.56, + "probability": 0.9957 + }, + { + "start": 30268.78, + "end": 30270.54, + "probability": 0.9399 + }, + { + "start": 30272.24, + "end": 30274.14, + "probability": 0.7866 + }, + { + "start": 30274.82, + "end": 30276.62, + "probability": 0.7926 + }, + { + "start": 30276.84, + "end": 30277.62, + "probability": 0.5306 + }, + { + "start": 30278.4, + "end": 30279.72, + "probability": 0.9252 + }, + { + "start": 30281.58, + "end": 30283.86, + "probability": 0.998 + }, + { + "start": 30285.08, + "end": 30288.32, + "probability": 0.9398 + }, + { + "start": 30289.06, + "end": 30291.54, + "probability": 0.875 + }, + { + "start": 30292.5, + "end": 30294.78, + "probability": 0.9482 + }, + { + "start": 30295.34, + "end": 30298.14, + "probability": 0.9316 + }, + { + "start": 30298.8, + "end": 30301.16, + "probability": 0.9991 + }, + { + "start": 30303.14, + "end": 30305.68, + "probability": 0.993 + }, + { + "start": 30305.9, + "end": 30306.48, + "probability": 0.9109 + }, + { + "start": 30307.06, + "end": 30310.48, + "probability": 0.9114 + }, + { + "start": 30311.78, + "end": 30313.46, + "probability": 0.7303 + }, + { + "start": 30314.3, + "end": 30314.94, + "probability": 0.4821 + }, + { + "start": 30316.5, + "end": 30317.9, + "probability": 0.9556 + }, + { + "start": 30319.44, + "end": 30325.74, + "probability": 0.9869 + }, + { + "start": 30325.74, + "end": 30330.38, + "probability": 0.9219 + }, + { + "start": 30331.08, + "end": 30331.3, + "probability": 0.2697 + }, + { + "start": 30331.42, + "end": 30334.4, + "probability": 0.9861 + }, + { + "start": 30335.5, + "end": 30336.22, + "probability": 0.7911 + }, + { + "start": 30337.42, + "end": 30338.17, + "probability": 0.9751 + }, + { + "start": 30339.24, + "end": 30339.97, + "probability": 0.9858 + }, + { + "start": 30341.68, + "end": 30344.76, + "probability": 0.9636 + }, + { + "start": 30346.06, + "end": 30350.12, + "probability": 0.7459 + }, + { + "start": 30351.1, + "end": 30352.5, + "probability": 0.7155 + }, + { + "start": 30353.5, + "end": 30360.1, + "probability": 0.9559 + }, + { + "start": 30360.82, + "end": 30362.06, + "probability": 0.9665 + }, + { + "start": 30363.06, + "end": 30366.3, + "probability": 0.9963 + }, + { + "start": 30366.98, + "end": 30372.7, + "probability": 0.9124 + }, + { + "start": 30373.44, + "end": 30375.34, + "probability": 0.7507 + }, + { + "start": 30376.96, + "end": 30377.94, + "probability": 0.6421 + }, + { + "start": 30378.72, + "end": 30380.84, + "probability": 0.7877 + }, + { + "start": 30381.44, + "end": 30381.88, + "probability": 0.7219 + }, + { + "start": 30382.9, + "end": 30384.74, + "probability": 0.8604 + }, + { + "start": 30385.26, + "end": 30388.36, + "probability": 0.9728 + }, + { + "start": 30388.46, + "end": 30389.6, + "probability": 0.7971 + }, + { + "start": 30390.36, + "end": 30393.04, + "probability": 0.8962 + }, + { + "start": 30394.06, + "end": 30395.04, + "probability": 0.7256 + }, + { + "start": 30395.32, + "end": 30399.32, + "probability": 0.8092 + }, + { + "start": 30399.36, + "end": 30400.26, + "probability": 0.9058 + }, + { + "start": 30401.04, + "end": 30402.0, + "probability": 0.9919 + }, + { + "start": 30402.74, + "end": 30403.5, + "probability": 0.007 + }, + { + "start": 30404.38, + "end": 30406.44, + "probability": 0.8486 + }, + { + "start": 30407.5, + "end": 30409.6, + "probability": 0.9669 + }, + { + "start": 30409.86, + "end": 30414.18, + "probability": 0.9211 + }, + { + "start": 30414.18, + "end": 30417.52, + "probability": 0.9782 + }, + { + "start": 30418.22, + "end": 30420.16, + "probability": 0.9727 + }, + { + "start": 30420.16, + "end": 30422.8, + "probability": 0.9119 + }, + { + "start": 30423.98, + "end": 30425.5, + "probability": 0.504 + }, + { + "start": 30426.32, + "end": 30427.52, + "probability": 0.6326 + }, + { + "start": 30427.88, + "end": 30430.86, + "probability": 0.937 + }, + { + "start": 30431.34, + "end": 30432.28, + "probability": 0.9741 + }, + { + "start": 30432.4, + "end": 30433.28, + "probability": 0.7105 + }, + { + "start": 30433.84, + "end": 30435.6, + "probability": 0.7112 + }, + { + "start": 30435.9, + "end": 30438.76, + "probability": 0.9164 + }, + { + "start": 30438.92, + "end": 30440.34, + "probability": 0.872 + }, + { + "start": 30440.4, + "end": 30441.82, + "probability": 0.8847 + }, + { + "start": 30442.3, + "end": 30443.28, + "probability": 0.7063 + }, + { + "start": 30443.6, + "end": 30444.88, + "probability": 0.9666 + }, + { + "start": 30445.28, + "end": 30446.84, + "probability": 0.9421 + }, + { + "start": 30447.3, + "end": 30451.9, + "probability": 0.9941 + }, + { + "start": 30452.78, + "end": 30454.52, + "probability": 0.9849 + }, + { + "start": 30455.04, + "end": 30458.18, + "probability": 0.9924 + }, + { + "start": 30458.42, + "end": 30458.86, + "probability": 0.6193 + }, + { + "start": 30458.96, + "end": 30460.84, + "probability": 0.8408 + }, + { + "start": 30461.7, + "end": 30463.96, + "probability": 0.7867 + }, + { + "start": 30465.12, + "end": 30467.56, + "probability": 0.9788 + }, + { + "start": 30473.66, + "end": 30475.5, + "probability": 0.7971 + }, + { + "start": 30476.52, + "end": 30478.36, + "probability": 0.7573 + }, + { + "start": 30480.0, + "end": 30483.32, + "probability": 0.9934 + }, + { + "start": 30483.32, + "end": 30486.68, + "probability": 0.9848 + }, + { + "start": 30488.66, + "end": 30489.54, + "probability": 0.9883 + }, + { + "start": 30490.8, + "end": 30491.9, + "probability": 0.9978 + }, + { + "start": 30493.46, + "end": 30495.74, + "probability": 0.9521 + }, + { + "start": 30497.24, + "end": 30502.54, + "probability": 0.9247 + }, + { + "start": 30502.84, + "end": 30508.7, + "probability": 0.9633 + }, + { + "start": 30509.96, + "end": 30511.86, + "probability": 0.9932 + }, + { + "start": 30511.92, + "end": 30513.78, + "probability": 0.9431 + }, + { + "start": 30515.14, + "end": 30517.88, + "probability": 0.9703 + }, + { + "start": 30518.19, + "end": 30521.38, + "probability": 0.9998 + }, + { + "start": 30522.9, + "end": 30525.18, + "probability": 0.9966 + }, + { + "start": 30525.6, + "end": 30526.32, + "probability": 0.9279 + }, + { + "start": 30527.34, + "end": 30533.8, + "probability": 0.9487 + }, + { + "start": 30533.82, + "end": 30537.26, + "probability": 0.9914 + }, + { + "start": 30537.54, + "end": 30539.04, + "probability": 0.9905 + }, + { + "start": 30539.42, + "end": 30541.04, + "probability": 0.8971 + }, + { + "start": 30541.1, + "end": 30541.94, + "probability": 0.9917 + }, + { + "start": 30543.1, + "end": 30544.72, + "probability": 0.8187 + }, + { + "start": 30546.48, + "end": 30549.62, + "probability": 0.9777 + }, + { + "start": 30550.22, + "end": 30554.4, + "probability": 0.9586 + }, + { + "start": 30555.35, + "end": 30563.02, + "probability": 0.983 + }, + { + "start": 30563.64, + "end": 30563.98, + "probability": 0.5188 + }, + { + "start": 30564.54, + "end": 30571.1, + "probability": 0.8995 + }, + { + "start": 30573.28, + "end": 30575.64, + "probability": 0.9919 + }, + { + "start": 30575.9, + "end": 30579.7, + "probability": 0.7524 + }, + { + "start": 30581.2, + "end": 30581.48, + "probability": 0.3719 + }, + { + "start": 30581.56, + "end": 30582.68, + "probability": 0.9142 + }, + { + "start": 30582.94, + "end": 30587.0, + "probability": 0.9895 + }, + { + "start": 30587.52, + "end": 30593.34, + "probability": 0.9983 + }, + { + "start": 30593.5, + "end": 30594.3, + "probability": 0.9799 + }, + { + "start": 30594.46, + "end": 30595.6, + "probability": 0.8616 + }, + { + "start": 30596.22, + "end": 30598.38, + "probability": 0.9314 + }, + { + "start": 30601.0, + "end": 30602.98, + "probability": 0.6612 + }, + { + "start": 30603.22, + "end": 30603.83, + "probability": 0.3402 + }, + { + "start": 30604.3, + "end": 30607.16, + "probability": 0.9441 + }, + { + "start": 30607.78, + "end": 30611.02, + "probability": 0.8258 + }, + { + "start": 30611.22, + "end": 30614.38, + "probability": 0.8384 + }, + { + "start": 30614.88, + "end": 30615.8, + "probability": 0.9342 + }, + { + "start": 30616.28, + "end": 30619.82, + "probability": 0.8376 + }, + { + "start": 30620.0, + "end": 30620.8, + "probability": 0.7792 + }, + { + "start": 30620.84, + "end": 30626.66, + "probability": 0.964 + }, + { + "start": 30627.32, + "end": 30629.46, + "probability": 0.9937 + }, + { + "start": 30631.34, + "end": 30632.3, + "probability": 0.8276 + }, + { + "start": 30632.38, + "end": 30634.22, + "probability": 0.9875 + }, + { + "start": 30635.48, + "end": 30637.76, + "probability": 0.9919 + }, + { + "start": 30638.56, + "end": 30642.14, + "probability": 0.5091 + }, + { + "start": 30643.2, + "end": 30647.68, + "probability": 0.7032 + }, + { + "start": 30648.36, + "end": 30652.88, + "probability": 0.855 + }, + { + "start": 30653.48, + "end": 30656.22, + "probability": 0.9529 + }, + { + "start": 30657.02, + "end": 30658.22, + "probability": 0.6821 + }, + { + "start": 30658.32, + "end": 30659.28, + "probability": 0.9573 + }, + { + "start": 30659.44, + "end": 30660.14, + "probability": 0.7744 + }, + { + "start": 30660.58, + "end": 30661.1, + "probability": 0.7178 + }, + { + "start": 30661.18, + "end": 30661.76, + "probability": 0.5838 + }, + { + "start": 30661.88, + "end": 30664.36, + "probability": 0.9523 + }, + { + "start": 30664.42, + "end": 30666.26, + "probability": 0.953 + }, + { + "start": 30666.92, + "end": 30670.96, + "probability": 0.9629 + }, + { + "start": 30671.3, + "end": 30676.76, + "probability": 0.9908 + }, + { + "start": 30678.04, + "end": 30679.84, + "probability": 0.998 + }, + { + "start": 30680.4, + "end": 30683.14, + "probability": 0.9985 + }, + { + "start": 30683.54, + "end": 30686.64, + "probability": 0.998 + }, + { + "start": 30687.54, + "end": 30688.68, + "probability": 0.8864 + }, + { + "start": 30688.78, + "end": 30692.56, + "probability": 0.9071 + }, + { + "start": 30693.32, + "end": 30693.78, + "probability": 0.7374 + }, + { + "start": 30694.34, + "end": 30696.62, + "probability": 0.9742 + }, + { + "start": 30696.74, + "end": 30698.54, + "probability": 0.9932 + }, + { + "start": 30698.98, + "end": 30700.46, + "probability": 0.8441 + }, + { + "start": 30701.98, + "end": 30702.94, + "probability": 0.9477 + }, + { + "start": 30704.82, + "end": 30706.08, + "probability": 0.9774 + }, + { + "start": 30706.16, + "end": 30707.7, + "probability": 0.6993 + }, + { + "start": 30707.82, + "end": 30710.86, + "probability": 0.9893 + }, + { + "start": 30710.94, + "end": 30713.38, + "probability": 0.9977 + }, + { + "start": 30714.68, + "end": 30719.82, + "probability": 0.9951 + }, + { + "start": 30720.84, + "end": 30724.06, + "probability": 0.9956 + }, + { + "start": 30724.6, + "end": 30729.58, + "probability": 0.9956 + }, + { + "start": 30729.84, + "end": 30736.72, + "probability": 0.983 + }, + { + "start": 30737.94, + "end": 30739.42, + "probability": 0.9971 + }, + { + "start": 30740.84, + "end": 30741.94, + "probability": 0.8481 + }, + { + "start": 30743.18, + "end": 30744.12, + "probability": 0.8956 + }, + { + "start": 30744.24, + "end": 30744.96, + "probability": 0.9033 + }, + { + "start": 30745.32, + "end": 30747.1, + "probability": 0.905 + }, + { + "start": 30747.68, + "end": 30751.01, + "probability": 0.3449 + }, + { + "start": 30751.2, + "end": 30751.58, + "probability": 0.4773 + }, + { + "start": 30752.52, + "end": 30753.6, + "probability": 0.3688 + }, + { + "start": 30753.6, + "end": 30754.02, + "probability": 0.0829 + }, + { + "start": 30754.02, + "end": 30756.06, + "probability": 0.8989 + }, + { + "start": 30756.36, + "end": 30756.86, + "probability": 0.8425 + }, + { + "start": 30756.96, + "end": 30757.2, + "probability": 0.4923 + }, + { + "start": 30757.22, + "end": 30758.38, + "probability": 0.957 + }, + { + "start": 30758.52, + "end": 30760.16, + "probability": 0.8669 + }, + { + "start": 30760.62, + "end": 30767.78, + "probability": 0.9535 + }, + { + "start": 30767.86, + "end": 30772.44, + "probability": 0.8606 + }, + { + "start": 30773.26, + "end": 30774.8, + "probability": 0.8778 + }, + { + "start": 30775.48, + "end": 30779.9, + "probability": 0.9951 + }, + { + "start": 30780.0, + "end": 30780.6, + "probability": 0.5128 + }, + { + "start": 30781.06, + "end": 30786.96, + "probability": 0.9963 + }, + { + "start": 30787.04, + "end": 30787.36, + "probability": 0.7128 + }, + { + "start": 30787.92, + "end": 30789.4, + "probability": 0.9915 + }, + { + "start": 30790.26, + "end": 30792.26, + "probability": 0.9681 + }, + { + "start": 30792.66, + "end": 30795.84, + "probability": 0.9432 + }, + { + "start": 30796.76, + "end": 30799.34, + "probability": 0.9978 + }, + { + "start": 30799.48, + "end": 30801.29, + "probability": 0.9768 + }, + { + "start": 30801.36, + "end": 30804.48, + "probability": 0.9846 + }, + { + "start": 30804.48, + "end": 30808.78, + "probability": 0.9971 + }, + { + "start": 30809.18, + "end": 30809.88, + "probability": 0.925 + }, + { + "start": 30810.92, + "end": 30812.72, + "probability": 0.9938 + }, + { + "start": 30812.78, + "end": 30814.16, + "probability": 0.9989 + }, + { + "start": 30814.7, + "end": 30817.2, + "probability": 0.9967 + }, + { + "start": 30817.58, + "end": 30820.88, + "probability": 0.9739 + }, + { + "start": 30821.1, + "end": 30821.6, + "probability": 0.7333 + }, + { + "start": 30821.72, + "end": 30823.88, + "probability": 0.7306 + }, + { + "start": 30823.96, + "end": 30826.14, + "probability": 0.9849 + }, + { + "start": 30826.84, + "end": 30827.56, + "probability": 0.4491 + }, + { + "start": 30828.84, + "end": 30830.08, + "probability": 0.9543 + }, + { + "start": 30833.04, + "end": 30838.28, + "probability": 0.6532 + }, + { + "start": 30846.52, + "end": 30848.98, + "probability": 0.5428 + }, + { + "start": 30851.56, + "end": 30853.05, + "probability": 0.8501 + }, + { + "start": 30856.74, + "end": 30859.3, + "probability": 0.9742 + }, + { + "start": 30861.16, + "end": 30864.82, + "probability": 0.9798 + }, + { + "start": 30866.38, + "end": 30867.3, + "probability": 0.975 + }, + { + "start": 30868.02, + "end": 30872.0, + "probability": 0.9883 + }, + { + "start": 30873.07, + "end": 30874.98, + "probability": 0.978 + }, + { + "start": 30877.6, + "end": 30878.34, + "probability": 0.4382 + }, + { + "start": 30879.94, + "end": 30882.12, + "probability": 0.9596 + }, + { + "start": 30883.96, + "end": 30885.5, + "probability": 0.9939 + }, + { + "start": 30886.72, + "end": 30889.06, + "probability": 0.8733 + }, + { + "start": 30889.82, + "end": 30890.72, + "probability": 0.9365 + }, + { + "start": 30892.02, + "end": 30894.36, + "probability": 0.9917 + }, + { + "start": 30896.16, + "end": 30896.74, + "probability": 0.9854 + }, + { + "start": 30897.3, + "end": 30897.53, + "probability": 0.9534 + }, + { + "start": 30897.86, + "end": 30902.8, + "probability": 0.9792 + }, + { + "start": 30903.36, + "end": 30904.32, + "probability": 0.9449 + }, + { + "start": 30905.8, + "end": 30907.28, + "probability": 0.9858 + }, + { + "start": 30908.0, + "end": 30909.3, + "probability": 0.993 + }, + { + "start": 30910.38, + "end": 30911.5, + "probability": 0.7187 + }, + { + "start": 30912.58, + "end": 30914.02, + "probability": 0.7348 + }, + { + "start": 30914.96, + "end": 30916.1, + "probability": 0.8269 + }, + { + "start": 30916.8, + "end": 30917.38, + "probability": 0.9411 + }, + { + "start": 30917.66, + "end": 30918.88, + "probability": 0.9323 + }, + { + "start": 30919.36, + "end": 30919.8, + "probability": 0.7648 + }, + { + "start": 30922.02, + "end": 30923.9, + "probability": 0.9811 + }, + { + "start": 30923.9, + "end": 30926.52, + "probability": 0.8726 + }, + { + "start": 30926.76, + "end": 30930.32, + "probability": 0.971 + }, + { + "start": 30930.84, + "end": 30932.22, + "probability": 0.971 + }, + { + "start": 30932.76, + "end": 30933.2, + "probability": 0.98 + }, + { + "start": 30934.56, + "end": 30938.02, + "probability": 0.9445 + }, + { + "start": 30938.74, + "end": 30939.46, + "probability": 0.6831 + }, + { + "start": 30940.28, + "end": 30943.42, + "probability": 0.8188 + }, + { + "start": 30944.32, + "end": 30946.01, + "probability": 0.8924 + }, + { + "start": 30946.14, + "end": 30947.22, + "probability": 0.9489 + }, + { + "start": 30947.52, + "end": 30949.24, + "probability": 0.9258 + }, + { + "start": 30949.34, + "end": 30949.9, + "probability": 0.9158 + }, + { + "start": 30949.98, + "end": 30950.68, + "probability": 0.4166 + }, + { + "start": 30951.06, + "end": 30951.64, + "probability": 0.612 + }, + { + "start": 30952.14, + "end": 30955.56, + "probability": 0.9359 + }, + { + "start": 30957.5, + "end": 30960.22, + "probability": 0.9956 + }, + { + "start": 30960.66, + "end": 30963.16, + "probability": 0.5822 + }, + { + "start": 30963.28, + "end": 30963.64, + "probability": 0.195 + }, + { + "start": 30963.84, + "end": 30964.46, + "probability": 0.7963 + }, + { + "start": 30964.54, + "end": 30966.68, + "probability": 0.8035 + }, + { + "start": 30966.78, + "end": 30967.59, + "probability": 0.9834 + }, + { + "start": 30967.8, + "end": 30968.64, + "probability": 0.78 + }, + { + "start": 30968.7, + "end": 30969.36, + "probability": 0.9575 + }, + { + "start": 30970.98, + "end": 30976.64, + "probability": 0.9777 + }, + { + "start": 30976.96, + "end": 30980.9, + "probability": 0.9609 + }, + { + "start": 30981.96, + "end": 30983.02, + "probability": 0.9941 + }, + { + "start": 30983.42, + "end": 30983.94, + "probability": 0.7357 + }, + { + "start": 30983.98, + "end": 30984.48, + "probability": 0.9125 + }, + { + "start": 30984.56, + "end": 30987.24, + "probability": 0.9265 + }, + { + "start": 30989.12, + "end": 30989.54, + "probability": 0.9648 + }, + { + "start": 30990.86, + "end": 30993.04, + "probability": 0.9889 + }, + { + "start": 30994.56, + "end": 30996.52, + "probability": 0.8796 + }, + { + "start": 30997.46, + "end": 31000.56, + "probability": 0.9794 + }, + { + "start": 31000.72, + "end": 31002.78, + "probability": 0.9959 + }, + { + "start": 31003.58, + "end": 31005.4, + "probability": 0.8978 + }, + { + "start": 31006.34, + "end": 31008.1, + "probability": 0.9973 + }, + { + "start": 31009.56, + "end": 31011.66, + "probability": 0.9938 + }, + { + "start": 31013.4, + "end": 31015.2, + "probability": 0.7926 + }, + { + "start": 31015.28, + "end": 31015.74, + "probability": 0.8628 + }, + { + "start": 31018.02, + "end": 31019.24, + "probability": 0.9612 + }, + { + "start": 31020.02, + "end": 31021.11, + "probability": 0.9695 + }, + { + "start": 31022.48, + "end": 31024.02, + "probability": 0.9951 + }, + { + "start": 31024.22, + "end": 31025.4, + "probability": 0.9641 + }, + { + "start": 31028.26, + "end": 31029.0, + "probability": 0.8413 + }, + { + "start": 31030.74, + "end": 31037.59, + "probability": 0.9851 + }, + { + "start": 31039.22, + "end": 31043.6, + "probability": 0.8954 + }, + { + "start": 31043.72, + "end": 31045.12, + "probability": 0.9237 + }, + { + "start": 31045.72, + "end": 31047.48, + "probability": 0.8016 + }, + { + "start": 31047.6, + "end": 31047.84, + "probability": 0.5018 + }, + { + "start": 31048.02, + "end": 31048.5, + "probability": 0.6142 + }, + { + "start": 31050.18, + "end": 31051.42, + "probability": 0.9845 + }, + { + "start": 31053.32, + "end": 31053.9, + "probability": 0.8992 + }, + { + "start": 31054.04, + "end": 31056.3, + "probability": 0.9408 + }, + { + "start": 31056.42, + "end": 31057.4, + "probability": 0.9961 + }, + { + "start": 31058.18, + "end": 31059.98, + "probability": 0.915 + }, + { + "start": 31060.08, + "end": 31064.26, + "probability": 0.9357 + }, + { + "start": 31064.56, + "end": 31066.18, + "probability": 0.9666 + }, + { + "start": 31066.6, + "end": 31067.38, + "probability": 0.5459 + }, + { + "start": 31067.52, + "end": 31069.6, + "probability": 0.9816 + }, + { + "start": 31069.64, + "end": 31072.66, + "probability": 0.9852 + }, + { + "start": 31072.66, + "end": 31075.62, + "probability": 0.9987 + }, + { + "start": 31076.08, + "end": 31076.72, + "probability": 0.9642 + }, + { + "start": 31076.82, + "end": 31078.82, + "probability": 0.7556 + }, + { + "start": 31079.4, + "end": 31080.24, + "probability": 0.9392 + }, + { + "start": 31082.0, + "end": 31085.94, + "probability": 0.9958 + }, + { + "start": 31087.16, + "end": 31089.34, + "probability": 0.8949 + }, + { + "start": 31089.82, + "end": 31090.64, + "probability": 0.7572 + }, + { + "start": 31091.12, + "end": 31092.14, + "probability": 0.8297 + }, + { + "start": 31092.58, + "end": 31094.34, + "probability": 0.6666 + }, + { + "start": 31094.42, + "end": 31096.9, + "probability": 0.9059 + }, + { + "start": 31096.9, + "end": 31099.48, + "probability": 0.9878 + }, + { + "start": 31099.56, + "end": 31100.42, + "probability": 0.9746 + }, + { + "start": 31101.12, + "end": 31103.68, + "probability": 0.9902 + }, + { + "start": 31104.14, + "end": 31105.96, + "probability": 0.9898 + }, + { + "start": 31106.34, + "end": 31108.94, + "probability": 0.9953 + }, + { + "start": 31109.02, + "end": 31110.26, + "probability": 0.4067 + }, + { + "start": 31112.4, + "end": 31113.83, + "probability": 0.9785 + }, + { + "start": 31113.92, + "end": 31116.54, + "probability": 0.9958 + }, + { + "start": 31116.88, + "end": 31120.67, + "probability": 0.6509 + }, + { + "start": 31121.08, + "end": 31122.92, + "probability": 0.9188 + }, + { + "start": 31123.96, + "end": 31127.46, + "probability": 0.9584 + }, + { + "start": 31127.74, + "end": 31128.8, + "probability": 0.9045 + }, + { + "start": 31129.2, + "end": 31130.04, + "probability": 0.986 + }, + { + "start": 31130.08, + "end": 31130.78, + "probability": 0.8892 + }, + { + "start": 31131.06, + "end": 31132.29, + "probability": 0.9871 + }, + { + "start": 31133.08, + "end": 31134.48, + "probability": 0.747 + }, + { + "start": 31134.52, + "end": 31136.34, + "probability": 0.7429 + }, + { + "start": 31136.48, + "end": 31137.18, + "probability": 0.6911 + }, + { + "start": 31137.22, + "end": 31137.52, + "probability": 0.9666 + }, + { + "start": 31137.74, + "end": 31138.7, + "probability": 0.9272 + }, + { + "start": 31139.3, + "end": 31141.9, + "probability": 0.9907 + }, + { + "start": 31142.66, + "end": 31146.06, + "probability": 0.8152 + }, + { + "start": 31147.1, + "end": 31149.76, + "probability": 0.9259 + }, + { + "start": 31150.28, + "end": 31153.32, + "probability": 0.9842 + }, + { + "start": 31153.64, + "end": 31154.78, + "probability": 0.9333 + }, + { + "start": 31154.96, + "end": 31155.98, + "probability": 0.9417 + }, + { + "start": 31156.04, + "end": 31156.44, + "probability": 0.7936 + }, + { + "start": 31157.38, + "end": 31158.11, + "probability": 0.6741 + }, + { + "start": 31158.36, + "end": 31158.71, + "probability": 0.5029 + }, + { + "start": 31160.34, + "end": 31160.98, + "probability": 0.5295 + }, + { + "start": 31160.98, + "end": 31162.28, + "probability": 0.8188 + }, + { + "start": 31162.4, + "end": 31164.07, + "probability": 0.8018 + }, + { + "start": 31164.32, + "end": 31164.54, + "probability": 0.6101 + }, + { + "start": 31164.62, + "end": 31165.54, + "probability": 0.8198 + }, + { + "start": 31165.72, + "end": 31166.2, + "probability": 0.44 + }, + { + "start": 31166.52, + "end": 31170.32, + "probability": 0.9033 + }, + { + "start": 31170.38, + "end": 31171.46, + "probability": 0.9289 + }, + { + "start": 31171.5, + "end": 31173.42, + "probability": 0.99 + }, + { + "start": 31173.7, + "end": 31176.24, + "probability": 0.8008 + }, + { + "start": 31176.52, + "end": 31178.64, + "probability": 0.8345 + }, + { + "start": 31178.96, + "end": 31180.56, + "probability": 0.9572 + }, + { + "start": 31181.28, + "end": 31181.72, + "probability": 0.6194 + }, + { + "start": 31181.78, + "end": 31185.0, + "probability": 0.6629 + }, + { + "start": 31185.88, + "end": 31186.34, + "probability": 0.8411 + }, + { + "start": 31186.8, + "end": 31187.44, + "probability": 0.9858 + }, + { + "start": 31187.76, + "end": 31190.56, + "probability": 0.9636 + }, + { + "start": 31191.02, + "end": 31193.98, + "probability": 0.8599 + }, + { + "start": 31194.5, + "end": 31196.84, + "probability": 0.9954 + }, + { + "start": 31197.38, + "end": 31198.44, + "probability": 0.6182 + }, + { + "start": 31199.16, + "end": 31202.06, + "probability": 0.8306 + }, + { + "start": 31204.98, + "end": 31205.26, + "probability": 0.2023 + }, + { + "start": 31205.46, + "end": 31210.92, + "probability": 0.0457 + }, + { + "start": 31210.92, + "end": 31211.12, + "probability": 0.2087 + }, + { + "start": 31211.12, + "end": 31211.12, + "probability": 0.1341 + }, + { + "start": 31213.48, + "end": 31214.22, + "probability": 0.0977 + }, + { + "start": 31221.46, + "end": 31222.0, + "probability": 0.0019 + }, + { + "start": 31231.04, + "end": 31231.88, + "probability": 0.2401 + }, + { + "start": 31236.54, + "end": 31238.5, + "probability": 0.6129 + }, + { + "start": 31239.44, + "end": 31241.12, + "probability": 0.9771 + }, + { + "start": 31241.96, + "end": 31243.01, + "probability": 0.9621 + }, + { + "start": 31243.96, + "end": 31245.12, + "probability": 0.9634 + }, + { + "start": 31245.62, + "end": 31250.32, + "probability": 0.9975 + }, + { + "start": 31250.92, + "end": 31255.58, + "probability": 0.9774 + }, + { + "start": 31256.78, + "end": 31259.96, + "probability": 0.9963 + }, + { + "start": 31260.54, + "end": 31263.56, + "probability": 0.9942 + }, + { + "start": 31264.12, + "end": 31264.72, + "probability": 0.8955 + }, + { + "start": 31266.18, + "end": 31269.66, + "probability": 0.9935 + }, + { + "start": 31270.42, + "end": 31270.76, + "probability": 0.4265 + }, + { + "start": 31270.8, + "end": 31271.74, + "probability": 0.6504 + }, + { + "start": 31272.04, + "end": 31276.82, + "probability": 0.9931 + }, + { + "start": 31278.1, + "end": 31284.22, + "probability": 0.9979 + }, + { + "start": 31284.98, + "end": 31287.0, + "probability": 0.9664 + }, + { + "start": 31287.54, + "end": 31292.7, + "probability": 0.9986 + }, + { + "start": 31294.18, + "end": 31294.6, + "probability": 0.4276 + }, + { + "start": 31294.74, + "end": 31298.54, + "probability": 0.9944 + }, + { + "start": 31298.54, + "end": 31301.7, + "probability": 0.9727 + }, + { + "start": 31302.88, + "end": 31305.48, + "probability": 0.669 + }, + { + "start": 31306.14, + "end": 31308.06, + "probability": 0.9966 + }, + { + "start": 31308.16, + "end": 31313.14, + "probability": 0.9743 + }, + { + "start": 31313.14, + "end": 31318.28, + "probability": 0.9854 + }, + { + "start": 31319.24, + "end": 31320.32, + "probability": 0.7271 + }, + { + "start": 31320.84, + "end": 31321.8, + "probability": 0.6119 + }, + { + "start": 31322.18, + "end": 31323.18, + "probability": 0.6502 + }, + { + "start": 31323.58, + "end": 31325.34, + "probability": 0.9959 + }, + { + "start": 31326.76, + "end": 31329.61, + "probability": 0.9913 + }, + { + "start": 31330.02, + "end": 31330.32, + "probability": 0.9277 + }, + { + "start": 31330.68, + "end": 31332.12, + "probability": 0.9344 + }, + { + "start": 31333.02, + "end": 31335.96, + "probability": 0.8704 + }, + { + "start": 31337.02, + "end": 31339.86, + "probability": 0.9951 + }, + { + "start": 31340.44, + "end": 31342.54, + "probability": 0.8206 + }, + { + "start": 31342.76, + "end": 31343.58, + "probability": 0.9616 + }, + { + "start": 31343.96, + "end": 31345.86, + "probability": 0.9917 + }, + { + "start": 31346.08, + "end": 31346.48, + "probability": 0.9587 + }, + { + "start": 31346.52, + "end": 31347.56, + "probability": 0.8942 + }, + { + "start": 31348.32, + "end": 31351.98, + "probability": 0.9883 + }, + { + "start": 31352.12, + "end": 31353.1, + "probability": 0.9781 + }, + { + "start": 31354.02, + "end": 31355.42, + "probability": 0.9965 + }, + { + "start": 31356.9, + "end": 31359.06, + "probability": 0.9209 + }, + { + "start": 31359.66, + "end": 31361.5, + "probability": 0.9278 + }, + { + "start": 31361.94, + "end": 31363.94, + "probability": 0.9388 + }, + { + "start": 31365.1, + "end": 31367.06, + "probability": 0.9576 + }, + { + "start": 31367.82, + "end": 31369.44, + "probability": 0.9229 + }, + { + "start": 31370.08, + "end": 31372.52, + "probability": 0.9722 + }, + { + "start": 31373.44, + "end": 31375.8, + "probability": 0.9684 + }, + { + "start": 31375.92, + "end": 31376.64, + "probability": 0.8953 + }, + { + "start": 31376.68, + "end": 31379.8, + "probability": 0.8906 + }, + { + "start": 31380.28, + "end": 31380.8, + "probability": 0.529 + }, + { + "start": 31381.16, + "end": 31383.7, + "probability": 0.8952 + }, + { + "start": 31384.8, + "end": 31386.48, + "probability": 0.9763 + }, + { + "start": 31387.36, + "end": 31393.1, + "probability": 0.9897 + }, + { + "start": 31393.48, + "end": 31396.24, + "probability": 0.9834 + }, + { + "start": 31396.62, + "end": 31399.56, + "probability": 0.8283 + }, + { + "start": 31400.64, + "end": 31404.78, + "probability": 0.967 + }, + { + "start": 31405.52, + "end": 31405.94, + "probability": 0.7697 + }, + { + "start": 31406.32, + "end": 31407.22, + "probability": 0.8794 + }, + { + "start": 31407.38, + "end": 31408.1, + "probability": 0.985 + }, + { + "start": 31408.14, + "end": 31408.7, + "probability": 0.9664 + }, + { + "start": 31408.74, + "end": 31410.38, + "probability": 0.8325 + }, + { + "start": 31410.9, + "end": 31415.94, + "probability": 0.9927 + }, + { + "start": 31417.18, + "end": 31418.62, + "probability": 0.7981 + }, + { + "start": 31419.4, + "end": 31419.84, + "probability": 0.6214 + }, + { + "start": 31420.7, + "end": 31423.9, + "probability": 0.9921 + }, + { + "start": 31424.22, + "end": 31425.52, + "probability": 0.9872 + }, + { + "start": 31425.62, + "end": 31428.56, + "probability": 0.9692 + }, + { + "start": 31429.58, + "end": 31432.38, + "probability": 0.9874 + }, + { + "start": 31432.98, + "end": 31433.32, + "probability": 0.4576 + }, + { + "start": 31433.5, + "end": 31434.8, + "probability": 0.6744 + }, + { + "start": 31435.2, + "end": 31437.68, + "probability": 0.9972 + }, + { + "start": 31440.42, + "end": 31443.2, + "probability": 0.7337 + }, + { + "start": 31443.6, + "end": 31447.82, + "probability": 0.9854 + }, + { + "start": 31448.58, + "end": 31450.78, + "probability": 0.7997 + }, + { + "start": 31451.36, + "end": 31452.66, + "probability": 0.8296 + }, + { + "start": 31453.34, + "end": 31453.76, + "probability": 0.6848 + }, + { + "start": 31453.92, + "end": 31454.2, + "probability": 0.8898 + }, + { + "start": 31454.62, + "end": 31455.96, + "probability": 0.9757 + }, + { + "start": 31456.42, + "end": 31458.76, + "probability": 0.9436 + }, + { + "start": 31459.66, + "end": 31460.62, + "probability": 0.8 + }, + { + "start": 31461.4, + "end": 31463.24, + "probability": 0.7301 + }, + { + "start": 31463.86, + "end": 31466.76, + "probability": 0.6691 + }, + { + "start": 31467.16, + "end": 31471.1, + "probability": 0.9535 + }, + { + "start": 31471.58, + "end": 31472.6, + "probability": 0.9659 + }, + { + "start": 31472.7, + "end": 31477.42, + "probability": 0.9453 + }, + { + "start": 31478.24, + "end": 31481.34, + "probability": 0.9935 + }, + { + "start": 31481.86, + "end": 31484.36, + "probability": 0.9404 + }, + { + "start": 31485.22, + "end": 31486.5, + "probability": 0.6294 + }, + { + "start": 31486.84, + "end": 31490.4, + "probability": 0.8999 + }, + { + "start": 31491.76, + "end": 31492.38, + "probability": 0.4438 + }, + { + "start": 31492.44, + "end": 31493.14, + "probability": 0.9446 + }, + { + "start": 31493.14, + "end": 31494.5, + "probability": 0.8501 + }, + { + "start": 31494.98, + "end": 31497.06, + "probability": 0.9739 + }, + { + "start": 31497.78, + "end": 31500.54, + "probability": 0.9751 + }, + { + "start": 31500.94, + "end": 31504.2, + "probability": 0.948 + }, + { + "start": 31504.2, + "end": 31507.7, + "probability": 0.9254 + }, + { + "start": 31509.0, + "end": 31510.68, + "probability": 0.9966 + }, + { + "start": 31510.68, + "end": 31513.32, + "probability": 0.8121 + }, + { + "start": 31513.84, + "end": 31514.32, + "probability": 0.7952 + }, + { + "start": 31514.94, + "end": 31516.5, + "probability": 0.6621 + }, + { + "start": 31517.6, + "end": 31518.86, + "probability": 0.9207 + }, + { + "start": 31519.34, + "end": 31521.48, + "probability": 0.9007 + }, + { + "start": 31521.98, + "end": 31523.98, + "probability": 0.7612 + }, + { + "start": 31524.32, + "end": 31526.0, + "probability": 0.7356 + }, + { + "start": 31526.08, + "end": 31527.08, + "probability": 0.9742 + }, + { + "start": 31527.36, + "end": 31528.6, + "probability": 0.9018 + }, + { + "start": 31529.28, + "end": 31531.16, + "probability": 0.946 + }, + { + "start": 31531.5, + "end": 31534.02, + "probability": 0.8938 + }, + { + "start": 31534.4, + "end": 31535.0, + "probability": 0.7778 + }, + { + "start": 31535.3, + "end": 31535.9, + "probability": 0.7293 + }, + { + "start": 31536.16, + "end": 31537.22, + "probability": 0.9471 + }, + { + "start": 31538.12, + "end": 31538.99, + "probability": 0.916 + }, + { + "start": 31539.5, + "end": 31540.02, + "probability": 0.936 + }, + { + "start": 31540.02, + "end": 31541.04, + "probability": 0.916 + }, + { + "start": 31541.04, + "end": 31544.26, + "probability": 0.9854 + }, + { + "start": 31545.28, + "end": 31547.26, + "probability": 0.8767 + }, + { + "start": 31547.8, + "end": 31551.64, + "probability": 0.9893 + }, + { + "start": 31551.88, + "end": 31552.22, + "probability": 0.7921 + }, + { + "start": 31553.36, + "end": 31555.78, + "probability": 0.7901 + }, + { + "start": 31555.92, + "end": 31558.52, + "probability": 0.9365 + }, + { + "start": 31559.06, + "end": 31559.9, + "probability": 0.5329 + }, + { + "start": 31561.4, + "end": 31564.2, + "probability": 0.7926 + }, + { + "start": 31564.94, + "end": 31566.68, + "probability": 0.9296 + }, + { + "start": 31567.22, + "end": 31568.88, + "probability": 0.8703 + }, + { + "start": 31570.24, + "end": 31571.06, + "probability": 0.8995 + }, + { + "start": 31571.58, + "end": 31572.72, + "probability": 0.8801 + }, + { + "start": 31573.5, + "end": 31576.78, + "probability": 0.6287 + }, + { + "start": 31577.36, + "end": 31582.72, + "probability": 0.9933 + }, + { + "start": 31583.32, + "end": 31587.46, + "probability": 0.9997 + }, + { + "start": 31588.28, + "end": 31589.22, + "probability": 0.7495 + }, + { + "start": 31590.16, + "end": 31592.58, + "probability": 0.89 + }, + { + "start": 31592.84, + "end": 31593.62, + "probability": 0.9536 + }, + { + "start": 31594.32, + "end": 31599.9, + "probability": 0.9955 + }, + { + "start": 31600.46, + "end": 31603.32, + "probability": 0.9755 + }, + { + "start": 31604.32, + "end": 31605.1, + "probability": 0.6582 + }, + { + "start": 31605.34, + "end": 31609.24, + "probability": 0.9892 + }, + { + "start": 31610.22, + "end": 31611.22, + "probability": 0.8585 + }, + { + "start": 31612.1, + "end": 31612.96, + "probability": 0.9699 + }, + { + "start": 31613.62, + "end": 31615.36, + "probability": 0.9908 + }, + { + "start": 31616.4, + "end": 31618.68, + "probability": 0.8173 + }, + { + "start": 31619.36, + "end": 31621.08, + "probability": 0.9921 + }, + { + "start": 31621.68, + "end": 31623.3, + "probability": 0.9906 + }, + { + "start": 31624.34, + "end": 31628.14, + "probability": 0.9938 + }, + { + "start": 31628.14, + "end": 31632.54, + "probability": 0.9971 + }, + { + "start": 31632.82, + "end": 31633.84, + "probability": 0.9731 + }, + { + "start": 31634.26, + "end": 31636.42, + "probability": 0.9482 + }, + { + "start": 31637.04, + "end": 31641.34, + "probability": 0.9984 + }, + { + "start": 31641.78, + "end": 31642.5, + "probability": 0.8323 + }, + { + "start": 31643.38, + "end": 31644.1, + "probability": 0.9836 + }, + { + "start": 31644.54, + "end": 31645.58, + "probability": 0.9705 + }, + { + "start": 31646.04, + "end": 31647.38, + "probability": 0.9893 + }, + { + "start": 31647.84, + "end": 31652.98, + "probability": 0.9953 + }, + { + "start": 31653.68, + "end": 31656.02, + "probability": 0.9963 + }, + { + "start": 31657.18, + "end": 31661.36, + "probability": 0.9947 + }, + { + "start": 31661.4, + "end": 31664.38, + "probability": 0.9984 + }, + { + "start": 31665.18, + "end": 31666.86, + "probability": 0.7658 + }, + { + "start": 31667.84, + "end": 31670.78, + "probability": 0.8844 + }, + { + "start": 31671.46, + "end": 31675.76, + "probability": 0.9937 + }, + { + "start": 31676.0, + "end": 31676.47, + "probability": 0.8436 + }, + { + "start": 31677.16, + "end": 31681.2, + "probability": 0.9902 + }, + { + "start": 31682.66, + "end": 31686.18, + "probability": 0.9745 + }, + { + "start": 31687.0, + "end": 31687.78, + "probability": 0.9176 + }, + { + "start": 31688.38, + "end": 31688.98, + "probability": 0.9517 + }, + { + "start": 31689.04, + "end": 31694.04, + "probability": 0.9568 + }, + { + "start": 31694.78, + "end": 31697.2, + "probability": 0.7338 + }, + { + "start": 31697.78, + "end": 31700.02, + "probability": 0.7219 + }, + { + "start": 31700.74, + "end": 31705.16, + "probability": 0.9947 + }, + { + "start": 31705.98, + "end": 31710.76, + "probability": 0.9329 + }, + { + "start": 31711.12, + "end": 31712.5, + "probability": 0.5446 + }, + { + "start": 31713.8, + "end": 31715.04, + "probability": 0.952 + }, + { + "start": 31715.12, + "end": 31718.68, + "probability": 0.9265 + }, + { + "start": 31719.38, + "end": 31722.44, + "probability": 0.9801 + }, + { + "start": 31722.44, + "end": 31725.02, + "probability": 0.9911 + }, + { + "start": 31726.18, + "end": 31728.72, + "probability": 0.97 + }, + { + "start": 31729.24, + "end": 31731.44, + "probability": 0.535 + }, + { + "start": 31731.96, + "end": 31737.58, + "probability": 0.9906 + }, + { + "start": 31738.36, + "end": 31741.14, + "probability": 0.9958 + }, + { + "start": 31741.14, + "end": 31743.98, + "probability": 0.9978 + }, + { + "start": 31744.58, + "end": 31748.64, + "probability": 0.9937 + }, + { + "start": 31749.38, + "end": 31752.7, + "probability": 0.8406 + }, + { + "start": 31753.72, + "end": 31755.02, + "probability": 0.8231 + }, + { + "start": 31755.92, + "end": 31756.76, + "probability": 0.9157 + }, + { + "start": 31757.24, + "end": 31758.2, + "probability": 0.9227 + }, + { + "start": 31758.34, + "end": 31760.74, + "probability": 0.8846 + }, + { + "start": 31761.28, + "end": 31766.8, + "probability": 0.9815 + }, + { + "start": 31767.58, + "end": 31771.0, + "probability": 0.9954 + }, + { + "start": 31771.0, + "end": 31774.88, + "probability": 0.9151 + }, + { + "start": 31775.34, + "end": 31776.26, + "probability": 0.7371 + }, + { + "start": 31777.26, + "end": 31781.28, + "probability": 0.9948 + }, + { + "start": 31781.28, + "end": 31785.5, + "probability": 0.9973 + }, + { + "start": 31788.1, + "end": 31790.74, + "probability": 0.9647 + }, + { + "start": 31790.74, + "end": 31793.48, + "probability": 0.9669 + }, + { + "start": 31794.3, + "end": 31795.96, + "probability": 0.9863 + }, + { + "start": 31796.72, + "end": 31799.38, + "probability": 0.7772 + }, + { + "start": 31799.78, + "end": 31803.28, + "probability": 0.8722 + }, + { + "start": 31804.72, + "end": 31809.6, + "probability": 0.9934 + }, + { + "start": 31810.34, + "end": 31813.84, + "probability": 0.9972 + }, + { + "start": 31814.32, + "end": 31816.32, + "probability": 0.9695 + }, + { + "start": 31817.28, + "end": 31818.9, + "probability": 0.9425 + }, + { + "start": 31819.46, + "end": 31822.06, + "probability": 0.9023 + }, + { + "start": 31822.84, + "end": 31824.64, + "probability": 0.9391 + }, + { + "start": 31825.56, + "end": 31827.56, + "probability": 0.9163 + }, + { + "start": 31828.16, + "end": 31831.44, + "probability": 0.9712 + }, + { + "start": 31832.12, + "end": 31834.54, + "probability": 0.7086 + }, + { + "start": 31835.06, + "end": 31835.92, + "probability": 0.5775 + }, + { + "start": 31836.54, + "end": 31839.64, + "probability": 0.9971 + }, + { + "start": 31840.06, + "end": 31842.42, + "probability": 0.9333 + }, + { + "start": 31842.74, + "end": 31843.26, + "probability": 0.6812 + }, + { + "start": 31844.26, + "end": 31846.6, + "probability": 0.8938 + }, + { + "start": 31846.74, + "end": 31848.3, + "probability": 0.967 + }, + { + "start": 31848.94, + "end": 31850.1, + "probability": 0.7414 + }, + { + "start": 31850.62, + "end": 31853.46, + "probability": 0.911 + }, + { + "start": 31857.4, + "end": 31859.34, + "probability": 0.8257 + }, + { + "start": 31860.46, + "end": 31863.6, + "probability": 0.9496 + }, + { + "start": 31866.18, + "end": 31867.94, + "probability": 0.6287 + }, + { + "start": 31870.7, + "end": 31873.38, + "probability": 0.9993 + }, + { + "start": 31874.42, + "end": 31875.6, + "probability": 0.8491 + }, + { + "start": 31876.8, + "end": 31877.84, + "probability": 0.9939 + }, + { + "start": 31880.72, + "end": 31881.62, + "probability": 0.9844 + }, + { + "start": 31882.66, + "end": 31884.78, + "probability": 0.9912 + }, + { + "start": 31886.44, + "end": 31888.08, + "probability": 0.9805 + }, + { + "start": 31888.66, + "end": 31890.49, + "probability": 0.9688 + }, + { + "start": 31891.74, + "end": 31892.52, + "probability": 0.9873 + }, + { + "start": 31892.6, + "end": 31893.17, + "probability": 0.9853 + }, + { + "start": 31893.78, + "end": 31894.46, + "probability": 0.9546 + }, + { + "start": 31895.56, + "end": 31897.14, + "probability": 0.989 + }, + { + "start": 31898.3, + "end": 31901.88, + "probability": 0.9611 + }, + { + "start": 31902.8, + "end": 31904.72, + "probability": 0.9718 + }, + { + "start": 31905.32, + "end": 31907.28, + "probability": 0.9932 + }, + { + "start": 31907.4, + "end": 31914.08, + "probability": 0.9419 + }, + { + "start": 31914.7, + "end": 31915.84, + "probability": 0.9972 + }, + { + "start": 31916.88, + "end": 31919.48, + "probability": 0.9829 + }, + { + "start": 31920.2, + "end": 31922.94, + "probability": 0.9937 + }, + { + "start": 31923.68, + "end": 31925.4, + "probability": 0.923 + }, + { + "start": 31925.46, + "end": 31929.46, + "probability": 0.9906 + }, + { + "start": 31929.52, + "end": 31931.04, + "probability": 0.9099 + }, + { + "start": 31932.0, + "end": 31934.29, + "probability": 0.9819 + }, + { + "start": 31935.14, + "end": 31937.79, + "probability": 0.7109 + }, + { + "start": 31938.76, + "end": 31939.42, + "probability": 0.2368 + }, + { + "start": 31939.62, + "end": 31940.26, + "probability": 0.5401 + }, + { + "start": 31940.34, + "end": 31941.0, + "probability": 0.8014 + }, + { + "start": 31941.74, + "end": 31942.27, + "probability": 0.9062 + }, + { + "start": 31943.84, + "end": 31945.76, + "probability": 0.9517 + }, + { + "start": 31947.84, + "end": 31950.44, + "probability": 0.9892 + }, + { + "start": 31951.04, + "end": 31953.72, + "probability": 0.9229 + }, + { + "start": 31954.34, + "end": 31955.5, + "probability": 0.7511 + }, + { + "start": 31956.56, + "end": 31957.9, + "probability": 0.6246 + }, + { + "start": 31958.44, + "end": 31960.92, + "probability": 0.5543 + }, + { + "start": 31961.02, + "end": 31961.3, + "probability": 0.8672 + }, + { + "start": 31962.88, + "end": 31963.23, + "probability": 0.8735 + }, + { + "start": 31963.9, + "end": 31965.0, + "probability": 0.9319 + }, + { + "start": 31965.26, + "end": 31966.76, + "probability": 0.9946 + }, + { + "start": 31967.84, + "end": 31968.16, + "probability": 0.5458 + }, + { + "start": 31969.16, + "end": 31971.78, + "probability": 0.9965 + }, + { + "start": 31972.28, + "end": 31972.72, + "probability": 0.8877 + }, + { + "start": 31973.98, + "end": 31976.48, + "probability": 0.9966 + }, + { + "start": 31976.48, + "end": 31980.32, + "probability": 0.999 + }, + { + "start": 31980.56, + "end": 31982.38, + "probability": 0.9985 + }, + { + "start": 31982.66, + "end": 31982.96, + "probability": 0.7086 + }, + { + "start": 31983.08, + "end": 31987.14, + "probability": 0.9957 + }, + { + "start": 31987.14, + "end": 31991.04, + "probability": 0.9948 + }, + { + "start": 31992.68, + "end": 31994.32, + "probability": 0.988 + }, + { + "start": 31994.42, + "end": 31996.82, + "probability": 0.9916 + }, + { + "start": 31998.19, + "end": 31999.46, + "probability": 0.929 + }, + { + "start": 31999.54, + "end": 32000.38, + "probability": 0.6853 + }, + { + "start": 32000.48, + "end": 32004.5, + "probability": 0.9829 + }, + { + "start": 32005.74, + "end": 32008.86, + "probability": 0.998 + }, + { + "start": 32009.02, + "end": 32011.17, + "probability": 0.9888 + }, + { + "start": 32012.72, + "end": 32013.38, + "probability": 0.7643 + }, + { + "start": 32015.44, + "end": 32016.72, + "probability": 0.9944 + }, + { + "start": 32016.82, + "end": 32019.84, + "probability": 0.9985 + }, + { + "start": 32021.04, + "end": 32022.26, + "probability": 0.9941 + }, + { + "start": 32022.38, + "end": 32024.18, + "probability": 0.9806 + }, + { + "start": 32025.36, + "end": 32030.04, + "probability": 0.9958 + }, + { + "start": 32030.18, + "end": 32035.48, + "probability": 0.9722 + }, + { + "start": 32036.0, + "end": 32040.14, + "probability": 0.9847 + }, + { + "start": 32041.44, + "end": 32043.72, + "probability": 0.9162 + }, + { + "start": 32044.1, + "end": 32046.18, + "probability": 0.9942 + }, + { + "start": 32046.22, + "end": 32048.83, + "probability": 0.9993 + }, + { + "start": 32050.24, + "end": 32052.0, + "probability": 0.8932 + }, + { + "start": 32052.6, + "end": 32054.18, + "probability": 0.948 + }, + { + "start": 32054.24, + "end": 32055.9, + "probability": 0.9712 + }, + { + "start": 32056.28, + "end": 32057.74, + "probability": 0.9828 + }, + { + "start": 32058.86, + "end": 32062.48, + "probability": 0.988 + }, + { + "start": 32062.5, + "end": 32065.66, + "probability": 0.9979 + }, + { + "start": 32065.66, + "end": 32067.92, + "probability": 0.9956 + }, + { + "start": 32069.4, + "end": 32073.72, + "probability": 0.9941 + }, + { + "start": 32073.82, + "end": 32074.68, + "probability": 0.5977 + }, + { + "start": 32074.82, + "end": 32078.0, + "probability": 0.7485 + }, + { + "start": 32079.02, + "end": 32079.02, + "probability": 0.0357 + }, + { + "start": 32079.02, + "end": 32082.96, + "probability": 0.9743 + }, + { + "start": 32083.34, + "end": 32084.92, + "probability": 0.9963 + }, + { + "start": 32085.5, + "end": 32087.86, + "probability": 0.7969 + }, + { + "start": 32089.48, + "end": 32092.02, + "probability": 0.9766 + }, + { + "start": 32095.38, + "end": 32096.31, + "probability": 0.9946 + }, + { + "start": 32098.58, + "end": 32102.4, + "probability": 0.8942 + }, + { + "start": 32102.4, + "end": 32104.3, + "probability": 0.9135 + }, + { + "start": 32104.44, + "end": 32104.7, + "probability": 0.2227 + }, + { + "start": 32104.7, + "end": 32104.72, + "probability": 0.4422 + }, + { + "start": 32104.72, + "end": 32106.72, + "probability": 0.4515 + }, + { + "start": 32106.86, + "end": 32109.48, + "probability": 0.5761 + }, + { + "start": 32109.48, + "end": 32109.48, + "probability": 0.2575 + }, + { + "start": 32109.48, + "end": 32109.5, + "probability": 0.1667 + }, + { + "start": 32109.56, + "end": 32109.7, + "probability": 0.1993 + }, + { + "start": 32109.7, + "end": 32110.28, + "probability": 0.1779 + }, + { + "start": 32110.9, + "end": 32111.68, + "probability": 0.6769 + }, + { + "start": 32112.24, + "end": 32112.82, + "probability": 0.7697 + }, + { + "start": 32114.14, + "end": 32116.79, + "probability": 0.9889 + }, + { + "start": 32117.04, + "end": 32119.07, + "probability": 0.7258 + }, + { + "start": 32120.96, + "end": 32120.96, + "probability": 0.0271 + }, + { + "start": 32120.96, + "end": 32120.96, + "probability": 0.512 + }, + { + "start": 32120.96, + "end": 32122.77, + "probability": 0.5925 + }, + { + "start": 32122.84, + "end": 32124.14, + "probability": 0.8176 + }, + { + "start": 32124.68, + "end": 32125.56, + "probability": 0.9197 + }, + { + "start": 32125.66, + "end": 32125.98, + "probability": 0.8453 + }, + { + "start": 32125.98, + "end": 32126.34, + "probability": 0.3428 + }, + { + "start": 32126.52, + "end": 32126.66, + "probability": 0.1849 + }, + { + "start": 32126.98, + "end": 32127.5, + "probability": 0.6858 + }, + { + "start": 32127.5, + "end": 32127.58, + "probability": 0.1902 + }, + { + "start": 32127.58, + "end": 32129.6, + "probability": 0.7515 + }, + { + "start": 32129.6, + "end": 32129.88, + "probability": 0.2682 + }, + { + "start": 32131.16, + "end": 32132.92, + "probability": 0.9395 + }, + { + "start": 32133.6, + "end": 32136.14, + "probability": 0.8207 + }, + { + "start": 32137.12, + "end": 32137.12, + "probability": 0.1326 + }, + { + "start": 32137.12, + "end": 32138.38, + "probability": 0.6777 + }, + { + "start": 32138.92, + "end": 32143.96, + "probability": 0.9323 + }, + { + "start": 32145.46, + "end": 32146.56, + "probability": 0.9976 + }, + { + "start": 32147.08, + "end": 32147.77, + "probability": 0.947 + }, + { + "start": 32148.38, + "end": 32148.64, + "probability": 0.2308 + }, + { + "start": 32150.56, + "end": 32152.78, + "probability": 0.9927 + }, + { + "start": 32154.84, + "end": 32159.16, + "probability": 0.967 + }, + { + "start": 32159.98, + "end": 32160.86, + "probability": 0.8978 + }, + { + "start": 32162.42, + "end": 32164.36, + "probability": 0.9561 + }, + { + "start": 32164.84, + "end": 32166.78, + "probability": 0.7966 + }, + { + "start": 32167.12, + "end": 32169.42, + "probability": 0.8237 + }, + { + "start": 32170.34, + "end": 32171.66, + "probability": 0.5253 + }, + { + "start": 32172.18, + "end": 32174.86, + "probability": 0.7745 + }, + { + "start": 32175.58, + "end": 32178.8, + "probability": 0.8379 + }, + { + "start": 32179.4, + "end": 32183.2, + "probability": 0.9689 + }, + { + "start": 32183.6, + "end": 32184.92, + "probability": 0.941 + }, + { + "start": 32185.3, + "end": 32186.38, + "probability": 0.9468 + }, + { + "start": 32187.1, + "end": 32189.26, + "probability": 0.7759 + }, + { + "start": 32189.36, + "end": 32189.76, + "probability": 0.6279 + }, + { + "start": 32189.9, + "end": 32190.54, + "probability": 0.797 + }, + { + "start": 32190.86, + "end": 32193.06, + "probability": 0.9535 + }, + { + "start": 32193.74, + "end": 32197.94, + "probability": 0.9683 + }, + { + "start": 32198.22, + "end": 32201.98, + "probability": 0.9974 + }, + { + "start": 32202.06, + "end": 32203.04, + "probability": 0.323 + }, + { + "start": 32203.08, + "end": 32203.24, + "probability": 0.4974 + }, + { + "start": 32204.48, + "end": 32208.04, + "probability": 0.9973 + }, + { + "start": 32208.46, + "end": 32210.7, + "probability": 0.9951 + }, + { + "start": 32210.78, + "end": 32211.76, + "probability": 0.8389 + }, + { + "start": 32212.58, + "end": 32215.22, + "probability": 0.8795 + }, + { + "start": 32215.9, + "end": 32219.06, + "probability": 0.9142 + }, + { + "start": 32219.58, + "end": 32221.66, + "probability": 0.7185 + }, + { + "start": 32222.22, + "end": 32222.42, + "probability": 0.3357 + }, + { + "start": 32226.44, + "end": 32231.28, + "probability": 0.0831 + }, + { + "start": 32232.3, + "end": 32235.03, + "probability": 0.0483 + }, + { + "start": 32235.78, + "end": 32236.88, + "probability": 0.1252 + }, + { + "start": 32238.44, + "end": 32241.88, + "probability": 0.2242 + }, + { + "start": 32243.08, + "end": 32244.64, + "probability": 0.0592 + }, + { + "start": 32245.56, + "end": 32247.64, + "probability": 0.1799 + }, + { + "start": 32248.08, + "end": 32252.14, + "probability": 0.0196 + }, + { + "start": 32253.22, + "end": 32255.14, + "probability": 0.0064 + }, + { + "start": 32255.32, + "end": 32258.76, + "probability": 0.5515 + }, + { + "start": 32258.98, + "end": 32260.88, + "probability": 0.1558 + }, + { + "start": 32264.12, + "end": 32265.24, + "probability": 0.2017 + }, + { + "start": 32268.5, + "end": 32270.7, + "probability": 0.2748 + }, + { + "start": 32271.22, + "end": 32271.72, + "probability": 0.019 + }, + { + "start": 32271.72, + "end": 32271.72, + "probability": 0.2295 + }, + { + "start": 32271.72, + "end": 32271.72, + "probability": 0.0313 + }, + { + "start": 32271.72, + "end": 32271.9, + "probability": 0.1428 + }, + { + "start": 32272.14, + "end": 32274.96, + "probability": 0.7799 + }, + { + "start": 32275.56, + "end": 32276.5, + "probability": 0.0066 + }, + { + "start": 32276.52, + "end": 32276.52, + "probability": 0.0424 + }, + { + "start": 32276.52, + "end": 32276.52, + "probability": 0.0489 + }, + { + "start": 32276.52, + "end": 32276.94, + "probability": 0.5303 + }, + { + "start": 32277.88, + "end": 32280.35, + "probability": 0.6467 + }, + { + "start": 32280.72, + "end": 32281.66, + "probability": 0.4949 + }, + { + "start": 32281.66, + "end": 32284.04, + "probability": 0.4747 + }, + { + "start": 32284.04, + "end": 32284.8, + "probability": 0.8143 + }, + { + "start": 32284.98, + "end": 32286.48, + "probability": 0.4765 + }, + { + "start": 32286.5, + "end": 32287.36, + "probability": 0.1776 + }, + { + "start": 32288.06, + "end": 32288.38, + "probability": 0.2165 + }, + { + "start": 32289.14, + "end": 32289.96, + "probability": 0.6537 + }, + { + "start": 32290.18, + "end": 32290.88, + "probability": 0.7274 + }, + { + "start": 32291.32, + "end": 32293.1, + "probability": 0.958 + }, + { + "start": 32293.68, + "end": 32294.94, + "probability": 0.7798 + }, + { + "start": 32295.08, + "end": 32296.13, + "probability": 0.9162 + }, + { + "start": 32296.74, + "end": 32299.44, + "probability": 0.8291 + }, + { + "start": 32300.92, + "end": 32301.24, + "probability": 0.1054 + }, + { + "start": 32302.02, + "end": 32305.74, + "probability": 0.8581 + }, + { + "start": 32307.88, + "end": 32310.14, + "probability": 0.7759 + }, + { + "start": 32310.78, + "end": 32311.4, + "probability": 0.9131 + }, + { + "start": 32312.26, + "end": 32317.98, + "probability": 0.9667 + }, + { + "start": 32319.4, + "end": 32323.66, + "probability": 0.9606 + }, + { + "start": 32323.86, + "end": 32325.64, + "probability": 0.9974 + }, + { + "start": 32326.48, + "end": 32328.77, + "probability": 0.6693 + }, + { + "start": 32329.9, + "end": 32334.34, + "probability": 0.9674 + }, + { + "start": 32334.96, + "end": 32336.8, + "probability": 0.9843 + }, + { + "start": 32337.42, + "end": 32343.84, + "probability": 0.9473 + }, + { + "start": 32345.0, + "end": 32349.06, + "probability": 0.7805 + }, + { + "start": 32349.42, + "end": 32350.84, + "probability": 0.6655 + }, + { + "start": 32351.88, + "end": 32353.8, + "probability": 0.9108 + }, + { + "start": 32354.9, + "end": 32359.47, + "probability": 0.9546 + }, + { + "start": 32361.28, + "end": 32365.94, + "probability": 0.9888 + }, + { + "start": 32367.4, + "end": 32368.98, + "probability": 0.5117 + }, + { + "start": 32370.54, + "end": 32376.06, + "probability": 0.9983 + }, + { + "start": 32378.02, + "end": 32381.21, + "probability": 0.9739 + }, + { + "start": 32382.3, + "end": 32384.32, + "probability": 0.9486 + }, + { + "start": 32384.74, + "end": 32386.66, + "probability": 0.8298 + }, + { + "start": 32389.08, + "end": 32392.48, + "probability": 0.8322 + }, + { + "start": 32394.28, + "end": 32400.56, + "probability": 0.9672 + }, + { + "start": 32401.08, + "end": 32402.72, + "probability": 0.89 + }, + { + "start": 32402.78, + "end": 32405.04, + "probability": 0.8438 + }, + { + "start": 32406.72, + "end": 32409.76, + "probability": 0.9893 + }, + { + "start": 32409.76, + "end": 32414.88, + "probability": 0.5347 + }, + { + "start": 32415.74, + "end": 32417.68, + "probability": 0.9917 + }, + { + "start": 32418.54, + "end": 32422.0, + "probability": 0.9959 + }, + { + "start": 32422.44, + "end": 32427.48, + "probability": 0.9808 + }, + { + "start": 32428.12, + "end": 32429.34, + "probability": 0.7044 + }, + { + "start": 32429.96, + "end": 32432.1, + "probability": 0.7997 + }, + { + "start": 32432.68, + "end": 32434.76, + "probability": 0.6611 + }, + { + "start": 32437.4, + "end": 32438.26, + "probability": 0.8582 + }, + { + "start": 32438.92, + "end": 32442.22, + "probability": 0.8889 + }, + { + "start": 32442.88, + "end": 32447.16, + "probability": 0.9934 + }, + { + "start": 32447.28, + "end": 32447.9, + "probability": 0.7563 + }, + { + "start": 32448.5, + "end": 32451.02, + "probability": 0.9913 + }, + { + "start": 32452.24, + "end": 32454.3, + "probability": 0.5073 + }, + { + "start": 32454.36, + "end": 32457.62, + "probability": 0.6623 + }, + { + "start": 32459.07, + "end": 32463.18, + "probability": 0.9915 + }, + { + "start": 32464.6, + "end": 32468.04, + "probability": 0.6608 + }, + { + "start": 32468.22, + "end": 32469.24, + "probability": 0.629 + }, + { + "start": 32469.34, + "end": 32470.44, + "probability": 0.999 + }, + { + "start": 32470.98, + "end": 32476.12, + "probability": 0.9645 + }, + { + "start": 32476.76, + "end": 32480.7, + "probability": 0.9807 + }, + { + "start": 32481.4, + "end": 32484.86, + "probability": 0.9681 + }, + { + "start": 32486.48, + "end": 32492.02, + "probability": 0.696 + }, + { + "start": 32492.46, + "end": 32493.84, + "probability": 0.8186 + }, + { + "start": 32494.38, + "end": 32495.24, + "probability": 0.7222 + }, + { + "start": 32496.08, + "end": 32499.72, + "probability": 0.8434 + }, + { + "start": 32500.96, + "end": 32504.68, + "probability": 0.989 + }, + { + "start": 32505.28, + "end": 32507.76, + "probability": 0.9953 + }, + { + "start": 32507.76, + "end": 32511.16, + "probability": 0.9985 + }, + { + "start": 32515.88, + "end": 32519.92, + "probability": 0.8621 + }, + { + "start": 32522.08, + "end": 32523.06, + "probability": 0.9406 + }, + { + "start": 32525.74, + "end": 32529.64, + "probability": 0.7973 + }, + { + "start": 32530.98, + "end": 32532.28, + "probability": 0.9858 + }, + { + "start": 32533.56, + "end": 32538.18, + "probability": 0.9812 + }, + { + "start": 32538.82, + "end": 32539.46, + "probability": 0.9807 + }, + { + "start": 32539.58, + "end": 32540.7, + "probability": 0.7768 + }, + { + "start": 32541.0, + "end": 32545.22, + "probability": 0.944 + }, + { + "start": 32545.92, + "end": 32547.64, + "probability": 0.6421 + }, + { + "start": 32549.2, + "end": 32552.32, + "probability": 0.9919 + }, + { + "start": 32552.52, + "end": 32557.13, + "probability": 0.9051 + }, + { + "start": 32557.63, + "end": 32560.53, + "probability": 0.7637 + }, + { + "start": 32560.53, + "end": 32561.23, + "probability": 0.8731 + }, + { + "start": 32561.43, + "end": 32562.89, + "probability": 0.8354 + }, + { + "start": 32563.79, + "end": 32566.67, + "probability": 0.8625 + }, + { + "start": 32567.25, + "end": 32569.27, + "probability": 0.9637 + }, + { + "start": 32570.51, + "end": 32571.37, + "probability": 0.6975 + }, + { + "start": 32572.23, + "end": 32574.89, + "probability": 0.9047 + }, + { + "start": 32574.99, + "end": 32576.51, + "probability": 0.8295 + }, + { + "start": 32577.17, + "end": 32577.99, + "probability": 0.9951 + }, + { + "start": 32578.65, + "end": 32581.89, + "probability": 0.9941 + }, + { + "start": 32583.53, + "end": 32585.89, + "probability": 0.3393 + }, + { + "start": 32585.95, + "end": 32590.01, + "probability": 0.966 + }, + { + "start": 32590.77, + "end": 32593.77, + "probability": 0.9949 + }, + { + "start": 32595.19, + "end": 32596.67, + "probability": 0.8662 + }, + { + "start": 32597.61, + "end": 32598.1, + "probability": 0.8765 + }, + { + "start": 32598.31, + "end": 32598.97, + "probability": 0.8634 + }, + { + "start": 32599.57, + "end": 32600.31, + "probability": 0.848 + }, + { + "start": 32600.41, + "end": 32602.03, + "probability": 0.6295 + }, + { + "start": 32602.97, + "end": 32604.27, + "probability": 0.9956 + }, + { + "start": 32604.91, + "end": 32605.87, + "probability": 0.9924 + }, + { + "start": 32606.99, + "end": 32611.51, + "probability": 0.9662 + }, + { + "start": 32612.21, + "end": 32615.48, + "probability": 0.8699 + }, + { + "start": 32615.69, + "end": 32617.07, + "probability": 0.9591 + }, + { + "start": 32617.15, + "end": 32618.25, + "probability": 0.8904 + }, + { + "start": 32618.31, + "end": 32618.53, + "probability": 0.5167 + }, + { + "start": 32618.53, + "end": 32618.99, + "probability": 0.7323 + }, + { + "start": 32619.11, + "end": 32620.97, + "probability": 0.8945 + }, + { + "start": 32621.03, + "end": 32622.17, + "probability": 0.3264 + }, + { + "start": 32622.23, + "end": 32623.39, + "probability": 0.6965 + }, + { + "start": 32623.75, + "end": 32623.75, + "probability": 0.1093 + }, + { + "start": 32623.75, + "end": 32623.75, + "probability": 0.0174 + }, + { + "start": 32623.75, + "end": 32624.15, + "probability": 0.6927 + }, + { + "start": 32624.27, + "end": 32625.51, + "probability": 0.7436 + }, + { + "start": 32626.51, + "end": 32627.47, + "probability": 0.6073 + }, + { + "start": 32627.47, + "end": 32627.75, + "probability": 0.2881 + }, + { + "start": 32627.93, + "end": 32628.61, + "probability": 0.0729 + }, + { + "start": 32628.61, + "end": 32632.87, + "probability": 0.3455 + }, + { + "start": 32633.47, + "end": 32633.55, + "probability": 0.0385 + }, + { + "start": 32633.55, + "end": 32633.55, + "probability": 0.0183 + }, + { + "start": 32633.55, + "end": 32633.75, + "probability": 0.0496 + }, + { + "start": 32634.13, + "end": 32636.29, + "probability": 0.3566 + }, + { + "start": 32636.41, + "end": 32640.39, + "probability": 0.0226 + }, + { + "start": 32640.53, + "end": 32640.71, + "probability": 0.0595 + }, + { + "start": 32640.93, + "end": 32641.35, + "probability": 0.3717 + }, + { + "start": 32643.62, + "end": 32644.21, + "probability": 0.1429 + }, + { + "start": 32644.21, + "end": 32644.39, + "probability": 0.0762 + }, + { + "start": 32644.39, + "end": 32646.69, + "probability": 0.6696 + }, + { + "start": 32647.27, + "end": 32651.09, + "probability": 0.7285 + }, + { + "start": 32651.49, + "end": 32653.37, + "probability": 0.8922 + }, + { + "start": 32653.37, + "end": 32654.49, + "probability": 0.3855 + }, + { + "start": 32654.49, + "end": 32655.81, + "probability": 0.8928 + }, + { + "start": 32656.05, + "end": 32657.79, + "probability": 0.8505 + }, + { + "start": 32658.17, + "end": 32658.65, + "probability": 0.7656 + }, + { + "start": 32658.97, + "end": 32663.53, + "probability": 0.9657 + }, + { + "start": 32664.47, + "end": 32667.12, + "probability": 0.9736 + }, + { + "start": 32667.85, + "end": 32669.11, + "probability": 0.8557 + }, + { + "start": 32669.85, + "end": 32673.19, + "probability": 0.9092 + }, + { + "start": 32673.33, + "end": 32673.57, + "probability": 0.6429 + }, + { + "start": 32673.61, + "end": 32675.45, + "probability": 0.6947 + }, + { + "start": 32675.69, + "end": 32677.71, + "probability": 0.6313 + }, + { + "start": 32678.5, + "end": 32681.57, + "probability": 0.6403 + }, + { + "start": 32684.17, + "end": 32686.08, + "probability": 0.2387 + }, + { + "start": 32687.35, + "end": 32687.61, + "probability": 0.2235 + }, + { + "start": 32688.17, + "end": 32688.99, + "probability": 0.359 + }, + { + "start": 32690.79, + "end": 32692.31, + "probability": 0.4792 + }, + { + "start": 32692.71, + "end": 32692.97, + "probability": 0.7998 + }, + { + "start": 32695.81, + "end": 32697.89, + "probability": 0.4993 + }, + { + "start": 32700.63, + "end": 32700.91, + "probability": 0.9894 + }, + { + "start": 32702.33, + "end": 32705.11, + "probability": 0.4895 + }, + { + "start": 32707.81, + "end": 32712.09, + "probability": 0.9528 + }, + { + "start": 32714.91, + "end": 32715.71, + "probability": 0.8855 + }, + { + "start": 32717.31, + "end": 32720.19, + "probability": 0.7074 + }, + { + "start": 32721.13, + "end": 32722.11, + "probability": 0.9442 + }, + { + "start": 32723.51, + "end": 32724.43, + "probability": 0.6096 + }, + { + "start": 32726.95, + "end": 32727.35, + "probability": 0.4647 + }, + { + "start": 32729.41, + "end": 32730.37, + "probability": 0.8661 + }, + { + "start": 32732.87, + "end": 32734.26, + "probability": 0.9863 + }, + { + "start": 32736.69, + "end": 32738.07, + "probability": 0.8049 + }, + { + "start": 32738.75, + "end": 32739.67, + "probability": 0.6658 + }, + { + "start": 32740.33, + "end": 32741.69, + "probability": 0.9101 + }, + { + "start": 32742.21, + "end": 32743.29, + "probability": 0.71 + }, + { + "start": 32746.61, + "end": 32747.75, + "probability": 0.7439 + }, + { + "start": 32750.23, + "end": 32751.85, + "probability": 0.7026 + }, + { + "start": 32752.13, + "end": 32756.47, + "probability": 0.9027 + }, + { + "start": 32758.15, + "end": 32759.19, + "probability": 0.9342 + }, + { + "start": 32759.97, + "end": 32760.73, + "probability": 0.9188 + }, + { + "start": 32762.99, + "end": 32765.77, + "probability": 0.9052 + }, + { + "start": 32769.17, + "end": 32770.31, + "probability": 0.377 + }, + { + "start": 32771.71, + "end": 32772.75, + "probability": 0.4986 + }, + { + "start": 32774.23, + "end": 32775.75, + "probability": 0.9871 + }, + { + "start": 32778.17, + "end": 32781.85, + "probability": 0.7013 + }, + { + "start": 32783.53, + "end": 32784.27, + "probability": 0.7413 + }, + { + "start": 32787.45, + "end": 32789.23, + "probability": 0.8484 + }, + { + "start": 32791.79, + "end": 32794.25, + "probability": 0.9512 + }, + { + "start": 32796.47, + "end": 32798.01, + "probability": 0.6645 + }, + { + "start": 32799.33, + "end": 32800.29, + "probability": 0.8977 + }, + { + "start": 32801.81, + "end": 32805.69, + "probability": 0.8743 + }, + { + "start": 32808.71, + "end": 32808.71, + "probability": 0.4563 + }, + { + "start": 32809.81, + "end": 32815.73, + "probability": 0.8846 + }, + { + "start": 32817.05, + "end": 32819.33, + "probability": 0.7673 + }, + { + "start": 32821.89, + "end": 32824.37, + "probability": 0.6561 + }, + { + "start": 32825.99, + "end": 32828.55, + "probability": 0.8025 + }, + { + "start": 32829.85, + "end": 32830.97, + "probability": 0.6637 + }, + { + "start": 32834.55, + "end": 32834.65, + "probability": 0.0347 + }, + { + "start": 32834.73, + "end": 32834.73, + "probability": 0.1221 + }, + { + "start": 32834.73, + "end": 32835.53, + "probability": 0.64 + }, + { + "start": 32835.67, + "end": 32836.37, + "probability": 0.5963 + }, + { + "start": 32836.89, + "end": 32837.43, + "probability": 0.5904 + }, + { + "start": 32838.11, + "end": 32839.29, + "probability": 0.8243 + }, + { + "start": 32840.11, + "end": 32841.45, + "probability": 0.8756 + }, + { + "start": 32845.47, + "end": 32845.71, + "probability": 0.0968 + }, + { + "start": 32846.65, + "end": 32846.65, + "probability": 0.2428 + }, + { + "start": 32846.65, + "end": 32846.65, + "probability": 0.2878 + }, + { + "start": 32846.65, + "end": 32847.21, + "probability": 0.2138 + }, + { + "start": 32848.25, + "end": 32848.87, + "probability": 0.4893 + }, + { + "start": 32849.97, + "end": 32851.87, + "probability": 0.8813 + }, + { + "start": 32853.71, + "end": 32854.87, + "probability": 0.4839 + }, + { + "start": 32856.09, + "end": 32858.21, + "probability": 0.9784 + }, + { + "start": 32859.13, + "end": 32861.61, + "probability": 0.7881 + }, + { + "start": 32863.05, + "end": 32865.05, + "probability": 0.8533 + }, + { + "start": 32868.43, + "end": 32869.09, + "probability": 0.5674 + }, + { + "start": 32870.75, + "end": 32871.27, + "probability": 0.7564 + }, + { + "start": 32873.07, + "end": 32875.19, + "probability": 0.9402 + }, + { + "start": 32876.79, + "end": 32879.71, + "probability": 0.8274 + }, + { + "start": 32880.91, + "end": 32886.73, + "probability": 0.9509 + }, + { + "start": 32887.21, + "end": 32887.91, + "probability": 0.8845 + }, + { + "start": 32888.81, + "end": 32889.35, + "probability": 0.7289 + }, + { + "start": 32892.05, + "end": 32897.43, + "probability": 0.7786 + }, + { + "start": 32898.53, + "end": 32899.99, + "probability": 0.9526 + }, + { + "start": 32900.63, + "end": 32901.75, + "probability": 0.6256 + }, + { + "start": 32902.53, + "end": 32903.47, + "probability": 0.9768 + }, + { + "start": 32904.07, + "end": 32905.57, + "probability": 0.6388 + }, + { + "start": 32906.19, + "end": 32906.93, + "probability": 0.9771 + }, + { + "start": 32907.17, + "end": 32907.63, + "probability": 0.9576 + }, + { + "start": 32908.17, + "end": 32912.19, + "probability": 0.7836 + }, + { + "start": 32913.21, + "end": 32915.59, + "probability": 0.8896 + }, + { + "start": 32918.25, + "end": 32918.85, + "probability": 0.5822 + }, + { + "start": 32921.21, + "end": 32923.39, + "probability": 0.7748 + }, + { + "start": 32925.27, + "end": 32927.31, + "probability": 0.4257 + }, + { + "start": 32928.47, + "end": 32929.25, + "probability": 0.1479 + }, + { + "start": 32932.23, + "end": 32935.23, + "probability": 0.8145 + }, + { + "start": 32936.87, + "end": 32940.37, + "probability": 0.8363 + }, + { + "start": 32941.19, + "end": 32941.83, + "probability": 0.6492 + }, + { + "start": 32943.17, + "end": 32946.77, + "probability": 0.7709 + }, + { + "start": 32947.43, + "end": 32948.07, + "probability": 0.7049 + }, + { + "start": 32950.27, + "end": 32956.69, + "probability": 0.7025 + }, + { + "start": 32957.57, + "end": 32959.31, + "probability": 0.898 + }, + { + "start": 32961.27, + "end": 32961.61, + "probability": 0.5317 + }, + { + "start": 32962.41, + "end": 32964.35, + "probability": 0.9161 + }, + { + "start": 32964.89, + "end": 32966.21, + "probability": 0.9927 + }, + { + "start": 32967.27, + "end": 32970.61, + "probability": 0.9658 + }, + { + "start": 32971.73, + "end": 32972.63, + "probability": 0.9033 + }, + { + "start": 32973.01, + "end": 32976.21, + "probability": 0.8445 + }, + { + "start": 32976.33, + "end": 32978.46, + "probability": 0.8016 + }, + { + "start": 32978.73, + "end": 32979.3, + "probability": 0.9766 + }, + { + "start": 32980.33, + "end": 32981.61, + "probability": 0.9604 + }, + { + "start": 32981.81, + "end": 32985.81, + "probability": 0.8016 + }, + { + "start": 32985.93, + "end": 32986.5, + "probability": 0.9757 + }, + { + "start": 32987.27, + "end": 32987.73, + "probability": 0.777 + }, + { + "start": 32987.83, + "end": 32987.95, + "probability": 0.7328 + }, + { + "start": 32989.12, + "end": 32991.45, + "probability": 0.4505 + }, + { + "start": 32992.67, + "end": 32995.71, + "probability": 0.9425 + }, + { + "start": 32996.37, + "end": 32999.25, + "probability": 0.708 + }, + { + "start": 33000.11, + "end": 33000.13, + "probability": 0.3668 + }, + { + "start": 33000.47, + "end": 33000.71, + "probability": 0.9741 + }, + { + "start": 33001.69, + "end": 33002.87, + "probability": 0.6102 + }, + { + "start": 33003.65, + "end": 33006.07, + "probability": 0.6982 + }, + { + "start": 33006.49, + "end": 33008.17, + "probability": 0.6818 + }, + { + "start": 33008.89, + "end": 33012.35, + "probability": 0.7529 + }, + { + "start": 33013.67, + "end": 33014.49, + "probability": 0.9877 + }, + { + "start": 33014.97, + "end": 33017.21, + "probability": 0.666 + }, + { + "start": 33018.37, + "end": 33021.06, + "probability": 0.9785 + }, + { + "start": 33022.67, + "end": 33025.11, + "probability": 0.7351 + }, + { + "start": 33031.57, + "end": 33034.67, + "probability": 0.8887 + }, + { + "start": 33035.31, + "end": 33036.65, + "probability": 0.8705 + }, + { + "start": 33037.21, + "end": 33038.73, + "probability": 0.9937 + }, + { + "start": 33039.47, + "end": 33042.21, + "probability": 0.8826 + }, + { + "start": 33043.41, + "end": 33044.65, + "probability": 0.9759 + }, + { + "start": 33045.57, + "end": 33046.19, + "probability": 0.6503 + }, + { + "start": 33050.43, + "end": 33050.43, + "probability": 0.1242 + }, + { + "start": 33050.43, + "end": 33052.77, + "probability": 0.7164 + }, + { + "start": 33053.83, + "end": 33057.41, + "probability": 0.9827 + }, + { + "start": 33058.15, + "end": 33061.01, + "probability": 0.9034 + }, + { + "start": 33061.69, + "end": 33062.59, + "probability": 0.9167 + }, + { + "start": 33063.31, + "end": 33064.73, + "probability": 0.1268 + }, + { + "start": 33065.89, + "end": 33070.79, + "probability": 0.8132 + }, + { + "start": 33071.55, + "end": 33075.45, + "probability": 0.9217 + }, + { + "start": 33075.45, + "end": 33077.97, + "probability": 0.9969 + }, + { + "start": 33078.21, + "end": 33078.65, + "probability": 0.6498 + }, + { + "start": 33079.29, + "end": 33080.73, + "probability": 0.6933 + }, + { + "start": 33080.97, + "end": 33082.05, + "probability": 0.9233 + }, + { + "start": 33082.09, + "end": 33082.99, + "probability": 0.8529 + }, + { + "start": 33083.27, + "end": 33083.95, + "probability": 0.6112 + }, + { + "start": 33084.11, + "end": 33086.79, + "probability": 0.7436 + }, + { + "start": 33087.23, + "end": 33088.71, + "probability": 0.8779 + }, + { + "start": 33088.81, + "end": 33091.35, + "probability": 0.9878 + }, + { + "start": 33091.35, + "end": 33096.43, + "probability": 0.938 + }, + { + "start": 33097.45, + "end": 33102.11, + "probability": 0.8046 + }, + { + "start": 33102.69, + "end": 33104.83, + "probability": 0.885 + }, + { + "start": 33105.43, + "end": 33112.49, + "probability": 0.9774 + }, + { + "start": 33113.51, + "end": 33117.57, + "probability": 0.9829 + }, + { + "start": 33118.43, + "end": 33119.77, + "probability": 0.7118 + }, + { + "start": 33120.45, + "end": 33123.47, + "probability": 0.9066 + }, + { + "start": 33124.01, + "end": 33126.33, + "probability": 0.8866 + }, + { + "start": 33127.85, + "end": 33129.45, + "probability": 0.8467 + }, + { + "start": 33129.61, + "end": 33136.21, + "probability": 0.985 + }, + { + "start": 33136.51, + "end": 33138.57, + "probability": 0.9896 + }, + { + "start": 33139.63, + "end": 33141.15, + "probability": 0.9827 + }, + { + "start": 33142.19, + "end": 33147.21, + "probability": 0.9865 + }, + { + "start": 33147.21, + "end": 33151.67, + "probability": 0.7812 + }, + { + "start": 33152.13, + "end": 33153.87, + "probability": 0.8266 + }, + { + "start": 33154.75, + "end": 33156.81, + "probability": 0.8397 + }, + { + "start": 33156.91, + "end": 33160.63, + "probability": 0.947 + }, + { + "start": 33160.91, + "end": 33161.63, + "probability": 0.4604 + }, + { + "start": 33162.19, + "end": 33163.05, + "probability": 0.6104 + }, + { + "start": 33163.39, + "end": 33165.33, + "probability": 0.9604 + }, + { + "start": 33165.69, + "end": 33168.03, + "probability": 0.8735 + }, + { + "start": 33168.41, + "end": 33169.33, + "probability": 0.759 + }, + { + "start": 33169.45, + "end": 33169.85, + "probability": 0.8998 + }, + { + "start": 33169.99, + "end": 33170.47, + "probability": 0.9374 + }, + { + "start": 33171.13, + "end": 33172.85, + "probability": 0.9154 + }, + { + "start": 33173.23, + "end": 33174.73, + "probability": 0.7709 + }, + { + "start": 33176.39, + "end": 33177.27, + "probability": 0.5853 + }, + { + "start": 33178.85, + "end": 33180.11, + "probability": 0.9882 + }, + { + "start": 33181.05, + "end": 33181.71, + "probability": 0.8711 + }, + { + "start": 33181.99, + "end": 33182.35, + "probability": 0.7378 + }, + { + "start": 33182.53, + "end": 33184.07, + "probability": 0.9589 + }, + { + "start": 33184.77, + "end": 33187.69, + "probability": 0.8772 + }, + { + "start": 33188.55, + "end": 33190.93, + "probability": 0.9819 + }, + { + "start": 33191.89, + "end": 33197.03, + "probability": 0.8864 + }, + { + "start": 33197.03, + "end": 33197.59, + "probability": 0.8207 + }, + { + "start": 33198.25, + "end": 33199.47, + "probability": 0.969 + }, + { + "start": 33199.77, + "end": 33200.55, + "probability": 0.9771 + }, + { + "start": 33200.89, + "end": 33201.89, + "probability": 0.8829 + }, + { + "start": 33202.07, + "end": 33203.27, + "probability": 0.7532 + }, + { + "start": 33203.61, + "end": 33207.15, + "probability": 0.9938 + }, + { + "start": 33207.61, + "end": 33209.31, + "probability": 0.9797 + }, + { + "start": 33210.57, + "end": 33211.55, + "probability": 0.9846 + }, + { + "start": 33211.77, + "end": 33212.93, + "probability": 0.9867 + }, + { + "start": 33213.93, + "end": 33215.49, + "probability": 0.8665 + }, + { + "start": 33216.11, + "end": 33217.19, + "probability": 0.8716 + }, + { + "start": 33217.39, + "end": 33219.25, + "probability": 0.9522 + }, + { + "start": 33219.67, + "end": 33220.96, + "probability": 0.7605 + }, + { + "start": 33221.93, + "end": 33225.05, + "probability": 0.9131 + }, + { + "start": 33225.63, + "end": 33228.53, + "probability": 0.9917 + }, + { + "start": 33228.91, + "end": 33232.01, + "probability": 0.813 + }, + { + "start": 33232.53, + "end": 33235.27, + "probability": 0.8223 + }, + { + "start": 33236.13, + "end": 33238.61, + "probability": 0.9516 + }, + { + "start": 33239.91, + "end": 33241.63, + "probability": 0.9188 + }, + { + "start": 33242.31, + "end": 33246.89, + "probability": 0.8994 + }, + { + "start": 33247.55, + "end": 33248.71, + "probability": 0.9137 + }, + { + "start": 33249.43, + "end": 33249.73, + "probability": 0.6239 + }, + { + "start": 33249.77, + "end": 33252.43, + "probability": 0.9875 + }, + { + "start": 33252.75, + "end": 33255.01, + "probability": 0.9314 + }, + { + "start": 33256.17, + "end": 33257.35, + "probability": 0.6455 + }, + { + "start": 33258.23, + "end": 33261.07, + "probability": 0.9375 + }, + { + "start": 33261.87, + "end": 33264.75, + "probability": 0.9867 + }, + { + "start": 33265.31, + "end": 33267.75, + "probability": 0.9891 + }, + { + "start": 33268.19, + "end": 33271.41, + "probability": 0.9091 + }, + { + "start": 33271.51, + "end": 33272.09, + "probability": 0.8866 + }, + { + "start": 33272.17, + "end": 33273.79, + "probability": 0.5322 + }, + { + "start": 33273.79, + "end": 33274.71, + "probability": 0.5841 + }, + { + "start": 33275.25, + "end": 33276.34, + "probability": 0.8281 + }, + { + "start": 33277.25, + "end": 33279.57, + "probability": 0.9436 + }, + { + "start": 33280.99, + "end": 33281.79, + "probability": 0.8513 + }, + { + "start": 33283.49, + "end": 33285.29, + "probability": 0.8551 + }, + { + "start": 33285.99, + "end": 33289.89, + "probability": 0.9756 + }, + { + "start": 33290.45, + "end": 33293.13, + "probability": 0.7516 + }, + { + "start": 33293.89, + "end": 33300.97, + "probability": 0.7838 + }, + { + "start": 33301.55, + "end": 33302.55, + "probability": 0.7956 + }, + { + "start": 33303.99, + "end": 33308.27, + "probability": 0.7474 + }, + { + "start": 33309.23, + "end": 33312.65, + "probability": 0.7893 + }, + { + "start": 33313.29, + "end": 33314.87, + "probability": 0.9477 + }, + { + "start": 33315.43, + "end": 33324.25, + "probability": 0.8496 + }, + { + "start": 33325.29, + "end": 33326.33, + "probability": 0.9561 + }, + { + "start": 33327.49, + "end": 33330.15, + "probability": 0.7379 + }, + { + "start": 33331.09, + "end": 33332.7, + "probability": 0.9881 + }, + { + "start": 33332.73, + "end": 33334.05, + "probability": 0.6446 + }, + { + "start": 33334.93, + "end": 33336.41, + "probability": 0.6447 + }, + { + "start": 33337.83, + "end": 33340.91, + "probability": 0.9957 + }, + { + "start": 33341.45, + "end": 33341.95, + "probability": 0.986 + }, + { + "start": 33342.03, + "end": 33342.31, + "probability": 0.7648 + }, + { + "start": 33343.11, + "end": 33345.45, + "probability": 0.8444 + }, + { + "start": 33346.57, + "end": 33348.53, + "probability": 0.9353 + }, + { + "start": 33354.55, + "end": 33356.61, + "probability": 0.8335 + }, + { + "start": 33368.97, + "end": 33370.07, + "probability": 0.446 + }, + { + "start": 33374.61, + "end": 33376.03, + "probability": 0.6843 + }, + { + "start": 33378.77, + "end": 33384.23, + "probability": 0.9891 + }, + { + "start": 33386.53, + "end": 33389.85, + "probability": 0.9359 + }, + { + "start": 33390.51, + "end": 33395.97, + "probability": 0.9948 + }, + { + "start": 33397.51, + "end": 33400.29, + "probability": 0.9984 + }, + { + "start": 33401.27, + "end": 33403.61, + "probability": 0.9788 + }, + { + "start": 33403.61, + "end": 33407.49, + "probability": 0.9814 + }, + { + "start": 33408.37, + "end": 33410.35, + "probability": 0.9302 + }, + { + "start": 33413.29, + "end": 33414.51, + "probability": 0.9873 + }, + { + "start": 33414.55, + "end": 33415.39, + "probability": 0.8005 + }, + { + "start": 33415.55, + "end": 33421.05, + "probability": 0.9756 + }, + { + "start": 33422.47, + "end": 33426.29, + "probability": 0.5196 + }, + { + "start": 33428.07, + "end": 33434.63, + "probability": 0.9865 + }, + { + "start": 33434.63, + "end": 33439.15, + "probability": 0.9355 + }, + { + "start": 33440.39, + "end": 33445.95, + "probability": 0.9881 + }, + { + "start": 33446.53, + "end": 33448.43, + "probability": 0.4406 + }, + { + "start": 33448.53, + "end": 33448.83, + "probability": 0.7265 + }, + { + "start": 33448.85, + "end": 33453.03, + "probability": 0.9504 + }, + { + "start": 33454.11, + "end": 33455.67, + "probability": 0.5495 + }, + { + "start": 33456.69, + "end": 33460.31, + "probability": 0.9915 + }, + { + "start": 33460.41, + "end": 33464.43, + "probability": 0.9772 + }, + { + "start": 33465.83, + "end": 33472.67, + "probability": 0.9825 + }, + { + "start": 33473.63, + "end": 33478.09, + "probability": 0.9951 + }, + { + "start": 33478.15, + "end": 33478.95, + "probability": 0.7358 + }, + { + "start": 33479.67, + "end": 33481.05, + "probability": 0.9248 + }, + { + "start": 33481.75, + "end": 33484.67, + "probability": 0.9645 + }, + { + "start": 33484.67, + "end": 33487.29, + "probability": 0.886 + }, + { + "start": 33489.23, + "end": 33491.57, + "probability": 0.9839 + }, + { + "start": 33493.81, + "end": 33499.93, + "probability": 0.9959 + }, + { + "start": 33499.93, + "end": 33503.49, + "probability": 0.9893 + }, + { + "start": 33505.15, + "end": 33506.79, + "probability": 0.7721 + }, + { + "start": 33507.81, + "end": 33510.07, + "probability": 0.9423 + }, + { + "start": 33511.17, + "end": 33513.47, + "probability": 0.9728 + }, + { + "start": 33514.41, + "end": 33518.57, + "probability": 0.9776 + }, + { + "start": 33519.51, + "end": 33524.38, + "probability": 0.9966 + }, + { + "start": 33524.91, + "end": 33529.99, + "probability": 0.9168 + }, + { + "start": 33530.11, + "end": 33535.19, + "probability": 0.7362 + }, + { + "start": 33535.35, + "end": 33539.51, + "probability": 0.9316 + }, + { + "start": 33539.51, + "end": 33544.85, + "probability": 0.9934 + }, + { + "start": 33545.71, + "end": 33547.57, + "probability": 0.8035 + }, + { + "start": 33548.29, + "end": 33549.43, + "probability": 0.7928 + }, + { + "start": 33550.07, + "end": 33554.27, + "probability": 0.9329 + }, + { + "start": 33556.17, + "end": 33562.23, + "probability": 0.996 + }, + { + "start": 33563.95, + "end": 33567.61, + "probability": 0.9184 + }, + { + "start": 33569.79, + "end": 33573.89, + "probability": 0.6773 + }, + { + "start": 33575.85, + "end": 33577.27, + "probability": 0.7475 + }, + { + "start": 33577.75, + "end": 33581.97, + "probability": 0.9974 + }, + { + "start": 33583.83, + "end": 33586.67, + "probability": 0.8247 + }, + { + "start": 33588.75, + "end": 33590.85, + "probability": 0.8914 + }, + { + "start": 33591.05, + "end": 33596.39, + "probability": 0.9854 + }, + { + "start": 33598.17, + "end": 33602.61, + "probability": 0.9909 + }, + { + "start": 33603.13, + "end": 33607.13, + "probability": 0.8581 + }, + { + "start": 33609.37, + "end": 33610.67, + "probability": 0.8997 + }, + { + "start": 33610.81, + "end": 33617.23, + "probability": 0.8405 + }, + { + "start": 33619.29, + "end": 33620.46, + "probability": 0.5487 + }, + { + "start": 33620.89, + "end": 33621.79, + "probability": 0.7971 + }, + { + "start": 33622.45, + "end": 33626.93, + "probability": 0.8639 + }, + { + "start": 33626.97, + "end": 33630.39, + "probability": 0.5576 + }, + { + "start": 33630.93, + "end": 33632.27, + "probability": 0.8728 + }, + { + "start": 33632.29, + "end": 33633.27, + "probability": 0.9521 + }, + { + "start": 33633.65, + "end": 33636.03, + "probability": 0.9764 + }, + { + "start": 33636.35, + "end": 33637.07, + "probability": 0.8632 + }, + { + "start": 33638.45, + "end": 33640.59, + "probability": 0.0406 + }, + { + "start": 33640.73, + "end": 33640.91, + "probability": 0.1625 + }, + { + "start": 33640.91, + "end": 33640.91, + "probability": 0.0159 + }, + { + "start": 33640.91, + "end": 33640.95, + "probability": 0.0161 + }, + { + "start": 33640.95, + "end": 33641.37, + "probability": 0.8343 + }, + { + "start": 33642.03, + "end": 33644.08, + "probability": 0.7683 + }, + { + "start": 33646.53, + "end": 33648.45, + "probability": 0.1025 + }, + { + "start": 33648.53, + "end": 33651.23, + "probability": 0.8515 + }, + { + "start": 33651.31, + "end": 33654.61, + "probability": 0.9429 + }, + { + "start": 33655.13, + "end": 33658.01, + "probability": 0.9766 + }, + { + "start": 33658.67, + "end": 33663.25, + "probability": 0.9854 + }, + { + "start": 33664.33, + "end": 33666.09, + "probability": 0.6992 + }, + { + "start": 33668.03, + "end": 33668.83, + "probability": 0.9185 + }, + { + "start": 33669.43, + "end": 33670.49, + "probability": 0.9912 + }, + { + "start": 33671.11, + "end": 33673.15, + "probability": 0.824 + }, + { + "start": 33673.15, + "end": 33674.84, + "probability": 0.7516 + }, + { + "start": 33674.89, + "end": 33676.01, + "probability": 0.5817 + }, + { + "start": 33676.49, + "end": 33679.57, + "probability": 0.9962 + }, + { + "start": 33680.13, + "end": 33680.37, + "probability": 0.5866 + }, + { + "start": 33680.75, + "end": 33683.0, + "probability": 0.6085 + }, + { + "start": 33683.69, + "end": 33683.75, + "probability": 0.076 + }, + { + "start": 33683.75, + "end": 33683.75, + "probability": 0.0809 + }, + { + "start": 33683.75, + "end": 33683.75, + "probability": 0.4264 + }, + { + "start": 33683.75, + "end": 33683.75, + "probability": 0.0235 + }, + { + "start": 33683.75, + "end": 33683.75, + "probability": 0.5266 + }, + { + "start": 33683.75, + "end": 33684.25, + "probability": 0.6426 + }, + { + "start": 33686.07, + "end": 33686.91, + "probability": 0.4726 + }, + { + "start": 33686.91, + "end": 33687.61, + "probability": 0.1331 + }, + { + "start": 33687.61, + "end": 33690.02, + "probability": 0.4154 + }, + { + "start": 33690.95, + "end": 33693.08, + "probability": 0.0939 + }, + { + "start": 33693.41, + "end": 33693.65, + "probability": 0.4086 + }, + { + "start": 33693.69, + "end": 33695.37, + "probability": 0.3156 + }, + { + "start": 33696.43, + "end": 33698.09, + "probability": 0.0488 + }, + { + "start": 33698.13, + "end": 33699.35, + "probability": 0.3982 + }, + { + "start": 33699.65, + "end": 33700.81, + "probability": 0.1371 + }, + { + "start": 33701.05, + "end": 33702.03, + "probability": 0.1698 + }, + { + "start": 33703.72, + "end": 33705.68, + "probability": 0.0687 + }, + { + "start": 33706.25, + "end": 33709.13, + "probability": 0.6187 + }, + { + "start": 33709.73, + "end": 33713.33, + "probability": 0.6444 + }, + { + "start": 33713.55, + "end": 33716.43, + "probability": 0.9506 + }, + { + "start": 33717.11, + "end": 33721.07, + "probability": 0.9954 + }, + { + "start": 33721.63, + "end": 33723.27, + "probability": 0.9987 + }, + { + "start": 33723.79, + "end": 33724.17, + "probability": 0.6362 + }, + { + "start": 33724.79, + "end": 33726.05, + "probability": 0.9292 + }, + { + "start": 33726.69, + "end": 33728.61, + "probability": 0.7852 + }, + { + "start": 33728.61, + "end": 33729.09, + "probability": 0.5862 + }, + { + "start": 33729.29, + "end": 33730.69, + "probability": 0.9972 + }, + { + "start": 33731.23, + "end": 33731.25, + "probability": 0.051 + }, + { + "start": 33731.25, + "end": 33737.37, + "probability": 0.9426 + }, + { + "start": 33737.93, + "end": 33740.61, + "probability": 0.8507 + }, + { + "start": 33740.63, + "end": 33741.64, + "probability": 0.9426 + }, + { + "start": 33742.11, + "end": 33744.87, + "probability": 0.6952 + }, + { + "start": 33744.89, + "end": 33746.79, + "probability": 0.7445 + }, + { + "start": 33746.79, + "end": 33749.99, + "probability": 0.9915 + }, + { + "start": 33750.31, + "end": 33751.7, + "probability": 0.9766 + }, + { + "start": 33751.95, + "end": 33752.47, + "probability": 0.6382 + }, + { + "start": 33752.53, + "end": 33752.75, + "probability": 0.5383 + }, + { + "start": 33753.03, + "end": 33753.91, + "probability": 0.9372 + }, + { + "start": 33754.09, + "end": 33754.37, + "probability": 0.7006 + }, + { + "start": 33754.37, + "end": 33754.47, + "probability": 0.5378 + }, + { + "start": 33754.67, + "end": 33756.65, + "probability": 0.8804 + }, + { + "start": 33767.47, + "end": 33770.33, + "probability": 0.6986 + }, + { + "start": 33771.68, + "end": 33775.53, + "probability": 0.035 + }, + { + "start": 33777.21, + "end": 33779.27, + "probability": 0.8108 + }, + { + "start": 33779.27, + "end": 33779.79, + "probability": 0.5382 + }, + { + "start": 33781.13, + "end": 33783.33, + "probability": 0.3358 + }, + { + "start": 33783.71, + "end": 33784.87, + "probability": 0.0328 + }, + { + "start": 33784.87, + "end": 33785.57, + "probability": 0.7034 + }, + { + "start": 33785.59, + "end": 33786.99, + "probability": 0.8489 + }, + { + "start": 33787.19, + "end": 33790.31, + "probability": 0.9437 + }, + { + "start": 33790.91, + "end": 33791.25, + "probability": 0.0222 + }, + { + "start": 33791.29, + "end": 33791.53, + "probability": 0.2676 + }, + { + "start": 33791.53, + "end": 33792.55, + "probability": 0.1056 + }, + { + "start": 33793.05, + "end": 33794.61, + "probability": 0.5062 + }, + { + "start": 33795.33, + "end": 33795.85, + "probability": 0.2399 + }, + { + "start": 33795.93, + "end": 33798.35, + "probability": 0.9081 + }, + { + "start": 33799.09, + "end": 33800.56, + "probability": 0.98 + }, + { + "start": 33801.99, + "end": 33804.59, + "probability": 0.8378 + }, + { + "start": 33805.55, + "end": 33806.85, + "probability": 0.5009 + }, + { + "start": 33807.05, + "end": 33807.85, + "probability": 0.8679 + }, + { + "start": 33809.15, + "end": 33813.93, + "probability": 0.7756 + }, + { + "start": 33814.05, + "end": 33815.95, + "probability": 0.9768 + }, + { + "start": 33817.19, + "end": 33818.65, + "probability": 0.9352 + }, + { + "start": 33819.99, + "end": 33823.17, + "probability": 0.6526 + }, + { + "start": 33824.07, + "end": 33825.17, + "probability": 0.2502 + }, + { + "start": 33825.57, + "end": 33825.67, + "probability": 0.2467 + }, + { + "start": 33825.67, + "end": 33826.53, + "probability": 0.7333 + }, + { + "start": 33826.67, + "end": 33830.03, + "probability": 0.9081 + }, + { + "start": 33831.47, + "end": 33833.95, + "probability": 0.8023 + }, + { + "start": 33835.17, + "end": 33841.49, + "probability": 0.8436 + }, + { + "start": 33842.91, + "end": 33845.41, + "probability": 0.4738 + }, + { + "start": 33845.41, + "end": 33845.95, + "probability": 0.7504 + }, + { + "start": 33846.81, + "end": 33849.51, + "probability": 0.8498 + }, + { + "start": 33850.23, + "end": 33852.45, + "probability": 0.9561 + }, + { + "start": 33853.35, + "end": 33854.57, + "probability": 0.9946 + }, + { + "start": 33855.19, + "end": 33857.97, + "probability": 0.8837 + }, + { + "start": 33859.09, + "end": 33860.29, + "probability": 0.8673 + }, + { + "start": 33861.35, + "end": 33864.51, + "probability": 0.9973 + }, + { + "start": 33866.37, + "end": 33871.69, + "probability": 0.6716 + }, + { + "start": 33872.93, + "end": 33876.51, + "probability": 0.061 + }, + { + "start": 33876.77, + "end": 33884.45, + "probability": 0.9756 + }, + { + "start": 33885.41, + "end": 33891.03, + "probability": 0.6689 + }, + { + "start": 33892.17, + "end": 33901.01, + "probability": 0.9748 + }, + { + "start": 33901.07, + "end": 33901.49, + "probability": 0.4143 + }, + { + "start": 33901.73, + "end": 33903.61, + "probability": 0.9202 + }, + { + "start": 33903.81, + "end": 33904.55, + "probability": 0.8383 + }, + { + "start": 33904.71, + "end": 33905.31, + "probability": 0.5752 + }, + { + "start": 33906.97, + "end": 33910.17, + "probability": 0.6818 + }, + { + "start": 33911.63, + "end": 33919.15, + "probability": 0.9785 + }, + { + "start": 33919.31, + "end": 33920.01, + "probability": 0.573 + }, + { + "start": 33921.71, + "end": 33929.27, + "probability": 0.9424 + }, + { + "start": 33930.43, + "end": 33932.95, + "probability": 0.9737 + }, + { + "start": 33933.95, + "end": 33935.33, + "probability": 0.9312 + }, + { + "start": 33936.23, + "end": 33936.89, + "probability": 0.7849 + }, + { + "start": 33937.93, + "end": 33940.47, + "probability": 0.9375 + }, + { + "start": 33942.45, + "end": 33942.45, + "probability": 0.4706 + }, + { + "start": 33943.29, + "end": 33943.57, + "probability": 0.3179 + }, + { + "start": 33943.57, + "end": 33949.15, + "probability": 0.9503 + }, + { + "start": 33950.69, + "end": 33951.37, + "probability": 0.9014 + }, + { + "start": 33953.09, + "end": 33953.93, + "probability": 0.7814 + }, + { + "start": 33954.55, + "end": 33956.67, + "probability": 0.8744 + }, + { + "start": 33957.99, + "end": 33961.01, + "probability": 0.8488 + }, + { + "start": 33962.01, + "end": 33963.19, + "probability": 0.8711 + }, + { + "start": 33964.23, + "end": 33971.03, + "probability": 0.9524 + }, + { + "start": 33973.39, + "end": 33976.53, + "probability": 0.979 + }, + { + "start": 33977.81, + "end": 33980.51, + "probability": 0.7983 + }, + { + "start": 33981.63, + "end": 33986.29, + "probability": 0.9824 + }, + { + "start": 33988.09, + "end": 33988.95, + "probability": 0.9521 + }, + { + "start": 33989.73, + "end": 33991.23, + "probability": 0.8733 + }, + { + "start": 33991.43, + "end": 33992.63, + "probability": 0.9365 + }, + { + "start": 33994.65, + "end": 33996.93, + "probability": 0.9951 + }, + { + "start": 33997.73, + "end": 33998.45, + "probability": 0.8384 + }, + { + "start": 34000.23, + "end": 34000.87, + "probability": 0.9697 + }, + { + "start": 34001.95, + "end": 34006.75, + "probability": 0.9756 + }, + { + "start": 34007.97, + "end": 34011.05, + "probability": 0.9455 + }, + { + "start": 34012.23, + "end": 34013.51, + "probability": 0.6271 + }, + { + "start": 34015.43, + "end": 34016.87, + "probability": 0.875 + }, + { + "start": 34020.03, + "end": 34021.43, + "probability": 0.7724 + }, + { + "start": 34023.01, + "end": 34024.96, + "probability": 0.1799 + }, + { + "start": 34025.21, + "end": 34025.73, + "probability": 0.5815 + }, + { + "start": 34025.81, + "end": 34031.87, + "probability": 0.8684 + }, + { + "start": 34031.87, + "end": 34032.39, + "probability": 0.0282 + }, + { + "start": 34034.03, + "end": 34037.33, + "probability": 0.9032 + }, + { + "start": 34038.55, + "end": 34040.89, + "probability": 0.7757 + }, + { + "start": 34042.65, + "end": 34044.05, + "probability": 0.3528 + }, + { + "start": 34045.85, + "end": 34048.79, + "probability": 0.8127 + }, + { + "start": 34050.65, + "end": 34053.25, + "probability": 0.7554 + }, + { + "start": 34054.25, + "end": 34055.49, + "probability": 0.8216 + }, + { + "start": 34057.17, + "end": 34058.21, + "probability": 0.655 + }, + { + "start": 34060.45, + "end": 34063.61, + "probability": 0.949 + }, + { + "start": 34066.41, + "end": 34067.27, + "probability": 0.4944 + }, + { + "start": 34068.27, + "end": 34069.95, + "probability": 0.9912 + }, + { + "start": 34070.67, + "end": 34071.65, + "probability": 0.8063 + }, + { + "start": 34073.11, + "end": 34073.81, + "probability": 0.7489 + }, + { + "start": 34076.55, + "end": 34081.43, + "probability": 0.839 + }, + { + "start": 34082.15, + "end": 34083.73, + "probability": 0.8024 + }, + { + "start": 34085.57, + "end": 34086.19, + "probability": 0.5039 + }, + { + "start": 34087.11, + "end": 34087.77, + "probability": 0.6864 + }, + { + "start": 34088.69, + "end": 34089.59, + "probability": 0.5209 + }, + { + "start": 34089.81, + "end": 34090.15, + "probability": 0.6654 + }, + { + "start": 34090.43, + "end": 34091.33, + "probability": 0.548 + }, + { + "start": 34092.23, + "end": 34093.99, + "probability": 0.9397 + }, + { + "start": 34094.99, + "end": 34100.24, + "probability": 0.9509 + }, + { + "start": 34100.59, + "end": 34102.83, + "probability": 0.9961 + }, + { + "start": 34103.51, + "end": 34105.79, + "probability": 0.837 + }, + { + "start": 34107.37, + "end": 34108.51, + "probability": 0.8588 + }, + { + "start": 34109.25, + "end": 34112.23, + "probability": 0.8873 + }, + { + "start": 34112.37, + "end": 34113.03, + "probability": 0.6378 + }, + { + "start": 34113.09, + "end": 34114.69, + "probability": 0.8913 + }, + { + "start": 34114.75, + "end": 34115.45, + "probability": 0.7024 + }, + { + "start": 34115.95, + "end": 34116.49, + "probability": 0.4755 + }, + { + "start": 34116.53, + "end": 34118.49, + "probability": 0.7445 + }, + { + "start": 34132.97, + "end": 34133.05, + "probability": 0.5973 + }, + { + "start": 34133.55, + "end": 34133.91, + "probability": 0.6567 + }, + { + "start": 34134.73, + "end": 34137.07, + "probability": 0.6585 + }, + { + "start": 34138.44, + "end": 34142.29, + "probability": 0.8685 + }, + { + "start": 34143.05, + "end": 34145.05, + "probability": 0.7373 + }, + { + "start": 34146.29, + "end": 34152.56, + "probability": 0.3424 + }, + { + "start": 34154.03, + "end": 34155.93, + "probability": 0.8084 + }, + { + "start": 34156.33, + "end": 34158.71, + "probability": 0.8423 + }, + { + "start": 34159.65, + "end": 34162.79, + "probability": 0.9873 + }, + { + "start": 34162.83, + "end": 34163.59, + "probability": 0.948 + }, + { + "start": 34164.39, + "end": 34166.11, + "probability": 0.9856 + }, + { + "start": 34166.71, + "end": 34169.63, + "probability": 0.9289 + }, + { + "start": 34170.05, + "end": 34171.09, + "probability": 0.9161 + }, + { + "start": 34171.75, + "end": 34177.01, + "probability": 0.9907 + }, + { + "start": 34177.23, + "end": 34177.81, + "probability": 0.9017 + }, + { + "start": 34178.27, + "end": 34179.41, + "probability": 0.6176 + }, + { + "start": 34180.05, + "end": 34180.65, + "probability": 0.9427 + }, + { + "start": 34182.07, + "end": 34183.13, + "probability": 0.9188 + }, + { + "start": 34184.41, + "end": 34184.91, + "probability": 0.9374 + }, + { + "start": 34186.17, + "end": 34187.08, + "probability": 0.9653 + }, + { + "start": 34187.77, + "end": 34188.45, + "probability": 0.9833 + }, + { + "start": 34189.03, + "end": 34194.28, + "probability": 0.9673 + }, + { + "start": 34195.51, + "end": 34197.57, + "probability": 0.7158 + }, + { + "start": 34198.19, + "end": 34199.05, + "probability": 0.8453 + }, + { + "start": 34199.75, + "end": 34200.55, + "probability": 0.7869 + }, + { + "start": 34201.39, + "end": 34205.59, + "probability": 0.7019 + }, + { + "start": 34206.57, + "end": 34207.11, + "probability": 0.9751 + }, + { + "start": 34207.93, + "end": 34210.73, + "probability": 0.8666 + }, + { + "start": 34211.31, + "end": 34211.91, + "probability": 0.8832 + }, + { + "start": 34213.37, + "end": 34216.83, + "probability": 0.9951 + }, + { + "start": 34216.91, + "end": 34217.87, + "probability": 0.9817 + }, + { + "start": 34218.43, + "end": 34224.15, + "probability": 0.9924 + }, + { + "start": 34224.75, + "end": 34229.87, + "probability": 0.7243 + }, + { + "start": 34230.53, + "end": 34232.49, + "probability": 0.8978 + }, + { + "start": 34233.53, + "end": 34234.63, + "probability": 0.683 + }, + { + "start": 34236.03, + "end": 34237.13, + "probability": 0.98 + }, + { + "start": 34237.81, + "end": 34243.71, + "probability": 0.9854 + }, + { + "start": 34244.15, + "end": 34246.41, + "probability": 0.8055 + }, + { + "start": 34247.33, + "end": 34250.75, + "probability": 0.5719 + }, + { + "start": 34250.75, + "end": 34255.89, + "probability": 0.9593 + }, + { + "start": 34256.33, + "end": 34257.11, + "probability": 0.422 + }, + { + "start": 34257.69, + "end": 34262.87, + "probability": 0.9704 + }, + { + "start": 34263.49, + "end": 34264.67, + "probability": 0.6585 + }, + { + "start": 34265.09, + "end": 34269.63, + "probability": 0.9583 + }, + { + "start": 34271.29, + "end": 34276.71, + "probability": 0.9955 + }, + { + "start": 34277.53, + "end": 34282.91, + "probability": 0.9353 + }, + { + "start": 34283.03, + "end": 34284.91, + "probability": 0.7114 + }, + { + "start": 34286.63, + "end": 34287.95, + "probability": 0.9554 + }, + { + "start": 34288.49, + "end": 34291.17, + "probability": 0.8095 + }, + { + "start": 34291.71, + "end": 34292.71, + "probability": 0.5007 + }, + { + "start": 34292.79, + "end": 34296.73, + "probability": 0.7157 + }, + { + "start": 34297.17, + "end": 34297.76, + "probability": 0.6394 + }, + { + "start": 34298.59, + "end": 34299.77, + "probability": 0.8476 + }, + { + "start": 34300.29, + "end": 34303.05, + "probability": 0.9642 + }, + { + "start": 34303.61, + "end": 34309.83, + "probability": 0.9636 + }, + { + "start": 34310.21, + "end": 34313.63, + "probability": 0.9924 + }, + { + "start": 34314.47, + "end": 34318.11, + "probability": 0.992 + }, + { + "start": 34318.83, + "end": 34320.19, + "probability": 0.9816 + }, + { + "start": 34320.73, + "end": 34321.77, + "probability": 0.9876 + }, + { + "start": 34322.29, + "end": 34326.93, + "probability": 0.9219 + }, + { + "start": 34327.77, + "end": 34332.05, + "probability": 0.9736 + }, + { + "start": 34332.45, + "end": 34333.35, + "probability": 0.9756 + }, + { + "start": 34333.69, + "end": 34337.35, + "probability": 0.9636 + }, + { + "start": 34338.53, + "end": 34341.39, + "probability": 0.8621 + }, + { + "start": 34342.05, + "end": 34344.59, + "probability": 0.9991 + }, + { + "start": 34345.53, + "end": 34346.69, + "probability": 0.6258 + }, + { + "start": 34347.17, + "end": 34355.05, + "probability": 0.9106 + }, + { + "start": 34355.51, + "end": 34355.69, + "probability": 0.7758 + }, + { + "start": 34356.79, + "end": 34359.39, + "probability": 0.8329 + }, + { + "start": 34360.33, + "end": 34362.45, + "probability": 0.9052 + }, + { + "start": 34377.25, + "end": 34377.67, + "probability": 0.7043 + }, + { + "start": 34378.55, + "end": 34381.21, + "probability": 0.6243 + }, + { + "start": 34382.61, + "end": 34386.87, + "probability": 0.9971 + }, + { + "start": 34387.73, + "end": 34389.83, + "probability": 0.9611 + }, + { + "start": 34389.89, + "end": 34392.99, + "probability": 0.9333 + }, + { + "start": 34394.31, + "end": 34396.05, + "probability": 0.9971 + }, + { + "start": 34396.11, + "end": 34397.14, + "probability": 0.8569 + }, + { + "start": 34398.57, + "end": 34399.85, + "probability": 0.9532 + }, + { + "start": 34399.99, + "end": 34401.68, + "probability": 0.9961 + }, + { + "start": 34401.95, + "end": 34403.34, + "probability": 0.9971 + }, + { + "start": 34404.05, + "end": 34405.13, + "probability": 0.9986 + }, + { + "start": 34405.89, + "end": 34408.47, + "probability": 0.7417 + }, + { + "start": 34409.85, + "end": 34414.63, + "probability": 0.6058 + }, + { + "start": 34415.19, + "end": 34418.55, + "probability": 0.9795 + }, + { + "start": 34418.97, + "end": 34422.03, + "probability": 0.9239 + }, + { + "start": 34422.57, + "end": 34425.65, + "probability": 0.9995 + }, + { + "start": 34425.65, + "end": 34427.63, + "probability": 0.9915 + }, + { + "start": 34428.75, + "end": 34430.95, + "probability": 0.9912 + }, + { + "start": 34430.95, + "end": 34433.77, + "probability": 0.9976 + }, + { + "start": 34434.05, + "end": 34437.45, + "probability": 0.97 + }, + { + "start": 34438.35, + "end": 34438.65, + "probability": 0.3206 + }, + { + "start": 34439.45, + "end": 34442.91, + "probability": 0.77 + }, + { + "start": 34443.07, + "end": 34444.11, + "probability": 0.0136 + }, + { + "start": 34445.08, + "end": 34445.86, + "probability": 0.9668 + }, + { + "start": 34446.03, + "end": 34446.05, + "probability": 0.9722 + }, + { + "start": 34446.19, + "end": 34447.27, + "probability": 0.9717 + }, + { + "start": 34447.33, + "end": 34448.44, + "probability": 0.7712 + }, + { + "start": 34449.17, + "end": 34451.19, + "probability": 0.8905 + }, + { + "start": 34451.19, + "end": 34454.07, + "probability": 0.9969 + }, + { + "start": 34454.31, + "end": 34454.71, + "probability": 0.356 + }, + { + "start": 34454.75, + "end": 34455.49, + "probability": 0.654 + }, + { + "start": 34456.45, + "end": 34457.19, + "probability": 0.5829 + }, + { + "start": 34457.19, + "end": 34457.19, + "probability": 0.6737 + }, + { + "start": 34457.29, + "end": 34458.93, + "probability": 0.9065 + }, + { + "start": 34459.61, + "end": 34461.39, + "probability": 0.3388 + }, + { + "start": 34461.41, + "end": 34461.87, + "probability": 0.4927 + }, + { + "start": 34461.95, + "end": 34464.79, + "probability": 0.9868 + }, + { + "start": 34464.79, + "end": 34467.07, + "probability": 0.8853 + }, + { + "start": 34467.55, + "end": 34468.67, + "probability": 0.6697 + }, + { + "start": 34468.71, + "end": 34470.15, + "probability": 0.9858 + }, + { + "start": 34470.29, + "end": 34472.41, + "probability": 0.8391 + }, + { + "start": 34473.23, + "end": 34474.75, + "probability": 0.8468 + }, + { + "start": 34474.91, + "end": 34476.96, + "probability": 0.9913 + }, + { + "start": 34478.77, + "end": 34480.85, + "probability": 0.4286 + }, + { + "start": 34481.25, + "end": 34486.23, + "probability": 0.946 + }, + { + "start": 34489.11, + "end": 34493.89, + "probability": 0.8057 + }, + { + "start": 34494.47, + "end": 34494.65, + "probability": 0.2719 + }, + { + "start": 34494.65, + "end": 34494.81, + "probability": 0.2736 + }, + { + "start": 34494.85, + "end": 34496.87, + "probability": 0.9646 + }, + { + "start": 34497.27, + "end": 34498.57, + "probability": 0.9462 + }, + { + "start": 34499.11, + "end": 34499.81, + "probability": 0.8369 + }, + { + "start": 34500.51, + "end": 34503.79, + "probability": 0.8828 + }, + { + "start": 34504.35, + "end": 34506.33, + "probability": 0.9662 + }, + { + "start": 34506.53, + "end": 34511.13, + "probability": 0.9707 + }, + { + "start": 34511.53, + "end": 34514.27, + "probability": 0.5991 + }, + { + "start": 34515.35, + "end": 34518.45, + "probability": 0.8103 + }, + { + "start": 34519.29, + "end": 34522.37, + "probability": 0.9912 + }, + { + "start": 34522.65, + "end": 34524.85, + "probability": 0.9929 + }, + { + "start": 34524.97, + "end": 34525.83, + "probability": 0.8479 + }, + { + "start": 34526.57, + "end": 34532.35, + "probability": 0.9619 + }, + { + "start": 34532.67, + "end": 34533.99, + "probability": 0.9673 + }, + { + "start": 34534.45, + "end": 34536.05, + "probability": 0.99 + }, + { + "start": 34537.6, + "end": 34539.79, + "probability": 0.9985 + }, + { + "start": 34540.61, + "end": 34543.5, + "probability": 0.9956 + }, + { + "start": 34543.61, + "end": 34546.21, + "probability": 0.999 + }, + { + "start": 34546.23, + "end": 34547.21, + "probability": 0.5214 + }, + { + "start": 34547.75, + "end": 34550.99, + "probability": 0.9974 + }, + { + "start": 34550.99, + "end": 34556.11, + "probability": 0.9968 + }, + { + "start": 34556.55, + "end": 34557.97, + "probability": 0.9449 + }, + { + "start": 34558.59, + "end": 34562.95, + "probability": 0.9943 + }, + { + "start": 34563.37, + "end": 34566.45, + "probability": 0.9218 + }, + { + "start": 34566.89, + "end": 34568.43, + "probability": 0.9917 + }, + { + "start": 34569.21, + "end": 34570.05, + "probability": 0.7996 + }, + { + "start": 34570.79, + "end": 34571.47, + "probability": 0.929 + }, + { + "start": 34572.73, + "end": 34572.93, + "probability": 0.8812 + }, + { + "start": 34573.07, + "end": 34576.49, + "probability": 0.9918 + }, + { + "start": 34576.49, + "end": 34581.27, + "probability": 0.9985 + }, + { + "start": 34581.75, + "end": 34585.21, + "probability": 0.9212 + }, + { + "start": 34586.82, + "end": 34592.93, + "probability": 0.993 + }, + { + "start": 34594.65, + "end": 34600.69, + "probability": 0.9984 + }, + { + "start": 34600.69, + "end": 34608.47, + "probability": 0.999 + }, + { + "start": 34609.41, + "end": 34610.57, + "probability": 0.6977 + }, + { + "start": 34610.95, + "end": 34612.75, + "probability": 0.995 + }, + { + "start": 34614.09, + "end": 34619.03, + "probability": 0.7401 + }, + { + "start": 34619.99, + "end": 34624.93, + "probability": 0.9446 + }, + { + "start": 34626.79, + "end": 34629.57, + "probability": 0.993 + }, + { + "start": 34629.57, + "end": 34633.49, + "probability": 0.8343 + }, + { + "start": 34634.25, + "end": 34635.15, + "probability": 0.771 + }, + { + "start": 34636.27, + "end": 34639.45, + "probability": 0.9921 + }, + { + "start": 34640.31, + "end": 34641.55, + "probability": 0.9605 + }, + { + "start": 34642.09, + "end": 34645.63, + "probability": 0.9683 + }, + { + "start": 34645.67, + "end": 34646.42, + "probability": 0.9555 + }, + { + "start": 34647.21, + "end": 34649.87, + "probability": 0.8891 + }, + { + "start": 34650.39, + "end": 34655.15, + "probability": 0.9829 + }, + { + "start": 34655.41, + "end": 34656.29, + "probability": 0.8565 + }, + { + "start": 34657.61, + "end": 34659.03, + "probability": 0.7092 + }, + { + "start": 34660.27, + "end": 34662.53, + "probability": 0.866 + }, + { + "start": 34663.09, + "end": 34666.53, + "probability": 0.9937 + }, + { + "start": 34667.35, + "end": 34669.89, + "probability": 0.9893 + }, + { + "start": 34670.03, + "end": 34671.65, + "probability": 0.9712 + }, + { + "start": 34672.11, + "end": 34675.55, + "probability": 0.9962 + }, + { + "start": 34676.23, + "end": 34680.75, + "probability": 0.9392 + }, + { + "start": 34681.37, + "end": 34682.33, + "probability": 0.9314 + }, + { + "start": 34682.47, + "end": 34683.39, + "probability": 0.99 + }, + { + "start": 34683.49, + "end": 34684.33, + "probability": 0.803 + }, + { + "start": 34685.27, + "end": 34687.49, + "probability": 0.96 + }, + { + "start": 34687.55, + "end": 34688.25, + "probability": 0.409 + }, + { + "start": 34688.37, + "end": 34689.25, + "probability": 0.743 + }, + { + "start": 34689.33, + "end": 34690.91, + "probability": 0.8091 + }, + { + "start": 34691.53, + "end": 34696.47, + "probability": 0.9947 + }, + { + "start": 34696.97, + "end": 34697.55, + "probability": 0.4627 + }, + { + "start": 34697.55, + "end": 34702.55, + "probability": 0.9964 + }, + { + "start": 34702.59, + "end": 34705.25, + "probability": 0.7495 + }, + { + "start": 34705.71, + "end": 34709.91, + "probability": 0.9112 + }, + { + "start": 34710.25, + "end": 34710.89, + "probability": 0.7424 + }, + { + "start": 34710.99, + "end": 34711.91, + "probability": 0.8647 + }, + { + "start": 34712.15, + "end": 34712.17, + "probability": 0.543 + }, + { + "start": 34712.17, + "end": 34714.51, + "probability": 0.9922 + }, + { + "start": 34715.25, + "end": 34718.81, + "probability": 0.9774 + }, + { + "start": 34719.17, + "end": 34719.59, + "probability": 0.9128 + }, + { + "start": 34719.75, + "end": 34722.23, + "probability": 0.9139 + }, + { + "start": 34722.77, + "end": 34724.41, + "probability": 0.8632 + }, + { + "start": 34724.97, + "end": 34725.79, + "probability": 0.5176 + }, + { + "start": 34727.23, + "end": 34729.13, + "probability": 0.9379 + }, + { + "start": 34746.21, + "end": 34747.05, + "probability": 0.2597 + }, + { + "start": 34747.29, + "end": 34750.31, + "probability": 0.7734 + }, + { + "start": 34751.89, + "end": 34754.89, + "probability": 0.8357 + }, + { + "start": 34755.45, + "end": 34756.61, + "probability": 0.9237 + }, + { + "start": 34757.65, + "end": 34759.41, + "probability": 0.9429 + }, + { + "start": 34760.45, + "end": 34764.31, + "probability": 0.957 + }, + { + "start": 34764.39, + "end": 34765.13, + "probability": 0.8677 + }, + { + "start": 34765.19, + "end": 34768.33, + "probability": 0.8395 + }, + { + "start": 34769.51, + "end": 34773.87, + "probability": 0.9935 + }, + { + "start": 34774.67, + "end": 34780.11, + "probability": 0.9946 + }, + { + "start": 34780.69, + "end": 34781.73, + "probability": 0.595 + }, + { + "start": 34782.03, + "end": 34783.47, + "probability": 0.9854 + }, + { + "start": 34783.95, + "end": 34784.91, + "probability": 0.9552 + }, + { + "start": 34785.09, + "end": 34787.95, + "probability": 0.995 + }, + { + "start": 34787.95, + "end": 34790.85, + "probability": 0.9829 + }, + { + "start": 34790.87, + "end": 34791.81, + "probability": 0.9707 + }, + { + "start": 34791.85, + "end": 34793.31, + "probability": 0.9058 + }, + { + "start": 34793.77, + "end": 34795.55, + "probability": 0.8781 + }, + { + "start": 34796.19, + "end": 34798.27, + "probability": 0.9126 + }, + { + "start": 34798.91, + "end": 34799.93, + "probability": 0.7239 + }, + { + "start": 34800.81, + "end": 34801.65, + "probability": 0.9325 + }, + { + "start": 34802.63, + "end": 34805.81, + "probability": 0.9645 + }, + { + "start": 34806.41, + "end": 34808.61, + "probability": 0.9869 + }, + { + "start": 34808.69, + "end": 34809.27, + "probability": 0.6823 + }, + { + "start": 34809.27, + "end": 34809.37, + "probability": 0.8606 + }, + { + "start": 34809.51, + "end": 34810.07, + "probability": 0.8884 + }, + { + "start": 34810.89, + "end": 34812.13, + "probability": 0.8816 + }, + { + "start": 34813.49, + "end": 34817.15, + "probability": 0.925 + }, + { + "start": 34817.79, + "end": 34818.95, + "probability": 0.9343 + }, + { + "start": 34820.45, + "end": 34821.85, + "probability": 0.5124 + }, + { + "start": 34822.81, + "end": 34826.27, + "probability": 0.9149 + }, + { + "start": 34827.63, + "end": 34828.99, + "probability": 0.9977 + }, + { + "start": 34830.21, + "end": 34832.39, + "probability": 0.9275 + }, + { + "start": 34832.99, + "end": 34836.99, + "probability": 0.7128 + }, + { + "start": 34837.97, + "end": 34838.49, + "probability": 0.7765 + }, + { + "start": 34839.45, + "end": 34840.29, + "probability": 0.9268 + }, + { + "start": 34842.85, + "end": 34846.11, + "probability": 0.9746 + }, + { + "start": 34846.33, + "end": 34848.79, + "probability": 0.6318 + }, + { + "start": 34848.79, + "end": 34849.61, + "probability": 0.778 + }, + { + "start": 34851.43, + "end": 34856.67, + "probability": 0.9002 + }, + { + "start": 34857.03, + "end": 34858.75, + "probability": 0.9599 + }, + { + "start": 34859.51, + "end": 34860.19, + "probability": 0.7583 + }, + { + "start": 34860.89, + "end": 34862.41, + "probability": 0.7404 + }, + { + "start": 34862.63, + "end": 34863.97, + "probability": 0.9034 + }, + { + "start": 34864.87, + "end": 34867.87, + "probability": 0.9968 + }, + { + "start": 34867.87, + "end": 34871.79, + "probability": 0.7415 + }, + { + "start": 34872.85, + "end": 34874.05, + "probability": 0.7557 + }, + { + "start": 34874.41, + "end": 34875.73, + "probability": 0.9968 + }, + { + "start": 34876.43, + "end": 34879.91, + "probability": 0.9941 + }, + { + "start": 34879.95, + "end": 34881.35, + "probability": 0.8245 + }, + { + "start": 34882.17, + "end": 34884.65, + "probability": 0.9241 + }, + { + "start": 34885.41, + "end": 34886.49, + "probability": 0.4022 + }, + { + "start": 34886.61, + "end": 34888.09, + "probability": 0.9265 + }, + { + "start": 34888.93, + "end": 34892.35, + "probability": 0.9534 + }, + { + "start": 34893.07, + "end": 34893.97, + "probability": 0.8147 + }, + { + "start": 34894.51, + "end": 34897.97, + "probability": 0.9157 + }, + { + "start": 34897.97, + "end": 34902.69, + "probability": 0.8401 + }, + { + "start": 34903.05, + "end": 34903.64, + "probability": 0.8867 + }, + { + "start": 34905.21, + "end": 34905.88, + "probability": 0.8856 + }, + { + "start": 34907.15, + "end": 34910.95, + "probability": 0.9149 + }, + { + "start": 34910.95, + "end": 34914.29, + "probability": 0.9919 + }, + { + "start": 34916.37, + "end": 34920.01, + "probability": 0.9971 + }, + { + "start": 34921.29, + "end": 34922.21, + "probability": 0.842 + }, + { + "start": 34922.77, + "end": 34923.51, + "probability": 0.6417 + }, + { + "start": 34924.15, + "end": 34926.73, + "probability": 0.8329 + }, + { + "start": 34927.63, + "end": 34929.53, + "probability": 0.955 + }, + { + "start": 34929.75, + "end": 34932.43, + "probability": 0.9878 + }, + { + "start": 34934.43, + "end": 34937.37, + "probability": 0.9476 + }, + { + "start": 34939.01, + "end": 34942.69, + "probability": 0.8125 + }, + { + "start": 34943.27, + "end": 34944.73, + "probability": 0.8655 + }, + { + "start": 34945.29, + "end": 34946.05, + "probability": 0.6692 + }, + { + "start": 34946.97, + "end": 34947.83, + "probability": 0.815 + }, + { + "start": 34948.63, + "end": 34949.89, + "probability": 0.6869 + }, + { + "start": 34949.93, + "end": 34950.35, + "probability": 0.3666 + }, + { + "start": 34950.35, + "end": 34950.63, + "probability": 0.9858 + }, + { + "start": 34951.61, + "end": 34955.65, + "probability": 0.9293 + }, + { + "start": 34956.59, + "end": 34959.45, + "probability": 0.7436 + }, + { + "start": 34960.05, + "end": 34961.41, + "probability": 0.8128 + }, + { + "start": 34961.45, + "end": 34963.03, + "probability": 0.8779 + }, + { + "start": 34963.33, + "end": 34965.85, + "probability": 0.9799 + }, + { + "start": 34967.23, + "end": 34967.85, + "probability": 0.7617 + }, + { + "start": 34969.21, + "end": 34973.11, + "probability": 0.9344 + }, + { + "start": 34974.07, + "end": 34979.41, + "probability": 0.9964 + }, + { + "start": 34980.21, + "end": 34982.81, + "probability": 0.8692 + }, + { + "start": 34982.97, + "end": 34984.45, + "probability": 0.9927 + }, + { + "start": 34985.11, + "end": 34988.19, + "probability": 0.9238 + }, + { + "start": 34988.61, + "end": 34991.67, + "probability": 0.9579 + }, + { + "start": 34993.03, + "end": 34993.69, + "probability": 0.9849 + }, + { + "start": 34994.37, + "end": 34996.23, + "probability": 0.9526 + }, + { + "start": 34996.76, + "end": 34997.84, + "probability": 0.9038 + }, + { + "start": 34998.57, + "end": 34999.23, + "probability": 0.8722 + }, + { + "start": 34999.97, + "end": 35004.57, + "probability": 0.866 + }, + { + "start": 35005.19, + "end": 35006.65, + "probability": 0.7791 + }, + { + "start": 35007.43, + "end": 35009.71, + "probability": 0.9033 + }, + { + "start": 35010.55, + "end": 35013.43, + "probability": 0.9873 + }, + { + "start": 35014.09, + "end": 35016.19, + "probability": 0.8588 + }, + { + "start": 35016.59, + "end": 35017.36, + "probability": 0.4145 + }, + { + "start": 35018.31, + "end": 35022.19, + "probability": 0.9735 + }, + { + "start": 35022.67, + "end": 35023.52, + "probability": 0.7791 + }, + { + "start": 35023.65, + "end": 35024.53, + "probability": 0.9421 + }, + { + "start": 35024.91, + "end": 35028.83, + "probability": 0.9824 + }, + { + "start": 35029.19, + "end": 35030.79, + "probability": 0.9613 + }, + { + "start": 35031.23, + "end": 35032.67, + "probability": 0.969 + }, + { + "start": 35032.95, + "end": 35038.79, + "probability": 0.9917 + }, + { + "start": 35038.79, + "end": 35042.27, + "probability": 0.8218 + }, + { + "start": 35042.49, + "end": 35044.96, + "probability": 0.9801 + }, + { + "start": 35046.45, + "end": 35047.31, + "probability": 0.7645 + }, + { + "start": 35048.71, + "end": 35050.13, + "probability": 0.6494 + }, + { + "start": 35050.77, + "end": 35051.37, + "probability": 0.6975 + }, + { + "start": 35051.49, + "end": 35052.53, + "probability": 0.8884 + }, + { + "start": 35053.21, + "end": 35056.01, + "probability": 0.9681 + }, + { + "start": 35056.91, + "end": 35056.91, + "probability": 0.9575 + }, + { + "start": 35057.49, + "end": 35058.87, + "probability": 0.8896 + }, + { + "start": 35059.37, + "end": 35063.33, + "probability": 0.9912 + }, + { + "start": 35063.39, + "end": 35066.17, + "probability": 0.8713 + }, + { + "start": 35066.67, + "end": 35068.65, + "probability": 0.9406 + }, + { + "start": 35069.07, + "end": 35072.21, + "probability": 0.835 + }, + { + "start": 35072.53, + "end": 35077.81, + "probability": 0.9028 + }, + { + "start": 35078.13, + "end": 35078.29, + "probability": 0.6698 + }, + { + "start": 35078.41, + "end": 35081.05, + "probability": 0.9594 + }, + { + "start": 35081.65, + "end": 35083.11, + "probability": 0.7271 + }, + { + "start": 35083.61, + "end": 35085.41, + "probability": 0.9248 + }, + { + "start": 35087.03, + "end": 35090.83, + "probability": 0.0591 + }, + { + "start": 35107.09, + "end": 35107.23, + "probability": 0.0201 + }, + { + "start": 35107.25, + "end": 35109.93, + "probability": 0.6361 + }, + { + "start": 35110.73, + "end": 35111.59, + "probability": 0.9639 + }, + { + "start": 35112.39, + "end": 35114.13, + "probability": 0.5111 + }, + { + "start": 35114.15, + "end": 35114.71, + "probability": 0.8118 + }, + { + "start": 35115.79, + "end": 35119.21, + "probability": 0.9749 + }, + { + "start": 35120.69, + "end": 35125.91, + "probability": 0.7462 + }, + { + "start": 35126.05, + "end": 35126.77, + "probability": 0.9796 + }, + { + "start": 35126.83, + "end": 35127.55, + "probability": 0.8055 + }, + { + "start": 35128.45, + "end": 35129.25, + "probability": 0.8755 + }, + { + "start": 35130.27, + "end": 35134.57, + "probability": 0.9966 + }, + { + "start": 35135.55, + "end": 35140.23, + "probability": 0.9953 + }, + { + "start": 35142.09, + "end": 35143.23, + "probability": 0.8349 + }, + { + "start": 35143.95, + "end": 35145.33, + "probability": 0.949 + }, + { + "start": 35145.45, + "end": 35146.97, + "probability": 0.8669 + }, + { + "start": 35147.81, + "end": 35148.31, + "probability": 0.7348 + }, + { + "start": 35148.79, + "end": 35149.85, + "probability": 0.9179 + }, + { + "start": 35149.97, + "end": 35151.93, + "probability": 0.675 + }, + { + "start": 35152.45, + "end": 35154.21, + "probability": 0.8394 + }, + { + "start": 35154.85, + "end": 35155.61, + "probability": 0.6144 + }, + { + "start": 35157.29, + "end": 35160.95, + "probability": 0.9187 + }, + { + "start": 35161.75, + "end": 35169.77, + "probability": 0.9788 + }, + { + "start": 35170.55, + "end": 35172.59, + "probability": 0.9989 + }, + { + "start": 35173.47, + "end": 35174.93, + "probability": 0.9867 + }, + { + "start": 35175.71, + "end": 35179.23, + "probability": 0.9946 + }, + { + "start": 35179.89, + "end": 35184.93, + "probability": 0.9926 + }, + { + "start": 35185.67, + "end": 35188.15, + "probability": 0.8549 + }, + { + "start": 35188.29, + "end": 35190.39, + "probability": 0.9927 + }, + { + "start": 35191.11, + "end": 35193.19, + "probability": 0.9055 + }, + { + "start": 35194.31, + "end": 35196.33, + "probability": 0.5361 + }, + { + "start": 35196.43, + "end": 35197.63, + "probability": 0.6889 + }, + { + "start": 35198.13, + "end": 35200.21, + "probability": 0.9437 + }, + { + "start": 35200.31, + "end": 35201.63, + "probability": 0.9827 + }, + { + "start": 35203.05, + "end": 35204.41, + "probability": 0.9705 + }, + { + "start": 35205.35, + "end": 35206.95, + "probability": 0.885 + }, + { + "start": 35207.51, + "end": 35211.13, + "probability": 0.9446 + }, + { + "start": 35212.31, + "end": 35216.93, + "probability": 0.9743 + }, + { + "start": 35218.65, + "end": 35218.95, + "probability": 0.4389 + }, + { + "start": 35219.11, + "end": 35221.77, + "probability": 0.9779 + }, + { + "start": 35221.77, + "end": 35226.77, + "probability": 0.9893 + }, + { + "start": 35227.71, + "end": 35228.79, + "probability": 0.9881 + }, + { + "start": 35229.99, + "end": 35230.03, + "probability": 0.7185 + }, + { + "start": 35230.15, + "end": 35230.71, + "probability": 0.3878 + }, + { + "start": 35230.77, + "end": 35234.33, + "probability": 0.9373 + }, + { + "start": 35234.43, + "end": 35234.99, + "probability": 0.9897 + }, + { + "start": 35236.49, + "end": 35239.37, + "probability": 0.8269 + }, + { + "start": 35239.95, + "end": 35240.31, + "probability": 0.6132 + }, + { + "start": 35240.53, + "end": 35241.99, + "probability": 0.7737 + }, + { + "start": 35242.11, + "end": 35243.59, + "probability": 0.9274 + }, + { + "start": 35244.31, + "end": 35245.61, + "probability": 0.9447 + }, + { + "start": 35245.81, + "end": 35247.01, + "probability": 0.7475 + }, + { + "start": 35247.05, + "end": 35247.87, + "probability": 0.7948 + }, + { + "start": 35248.71, + "end": 35253.99, + "probability": 0.9529 + }, + { + "start": 35267.09, + "end": 35267.37, + "probability": 0.0509 + }, + { + "start": 35267.37, + "end": 35267.37, + "probability": 0.0918 + }, + { + "start": 35267.37, + "end": 35267.37, + "probability": 0.019 + }, + { + "start": 35267.37, + "end": 35268.21, + "probability": 0.1158 + }, + { + "start": 35268.35, + "end": 35270.6, + "probability": 0.8899 + }, + { + "start": 35271.37, + "end": 35272.17, + "probability": 0.9304 + }, + { + "start": 35273.01, + "end": 35275.87, + "probability": 0.9941 + }, + { + "start": 35276.43, + "end": 35277.01, + "probability": 0.2176 + }, + { + "start": 35277.53, + "end": 35279.45, + "probability": 0.9969 + }, + { + "start": 35279.87, + "end": 35281.93, + "probability": 0.9961 + }, + { + "start": 35282.45, + "end": 35283.75, + "probability": 0.8158 + }, + { + "start": 35284.37, + "end": 35288.17, + "probability": 0.9725 + }, + { + "start": 35288.17, + "end": 35291.77, + "probability": 0.9274 + }, + { + "start": 35293.21, + "end": 35293.97, + "probability": 0.6935 + }, + { + "start": 35294.75, + "end": 35295.25, + "probability": 0.2209 + }, + { + "start": 35295.87, + "end": 35297.27, + "probability": 0.9904 + }, + { + "start": 35297.77, + "end": 35299.73, + "probability": 0.9224 + }, + { + "start": 35301.11, + "end": 35301.99, + "probability": 0.9644 + }, + { + "start": 35302.05, + "end": 35303.74, + "probability": 0.9907 + }, + { + "start": 35304.53, + "end": 35305.41, + "probability": 0.7772 + }, + { + "start": 35307.23, + "end": 35308.81, + "probability": 0.668 + }, + { + "start": 35310.01, + "end": 35313.41, + "probability": 0.8079 + }, + { + "start": 35314.07, + "end": 35319.19, + "probability": 0.9989 + }, + { + "start": 35319.67, + "end": 35321.59, + "probability": 0.7417 + }, + { + "start": 35322.29, + "end": 35324.79, + "probability": 0.8915 + }, + { + "start": 35325.39, + "end": 35326.09, + "probability": 0.7668 + }, + { + "start": 35326.97, + "end": 35330.01, + "probability": 0.9977 + }, + { + "start": 35330.47, + "end": 35332.25, + "probability": 0.9993 + }, + { + "start": 35332.93, + "end": 35336.07, + "probability": 0.8807 + }, + { + "start": 35336.67, + "end": 35337.05, + "probability": 0.9509 + }, + { + "start": 35338.65, + "end": 35339.45, + "probability": 0.7005 + }, + { + "start": 35339.53, + "end": 35340.01, + "probability": 0.5385 + }, + { + "start": 35340.05, + "end": 35340.43, + "probability": 0.8633 + }, + { + "start": 35340.51, + "end": 35341.09, + "probability": 0.775 + }, + { + "start": 35341.19, + "end": 35342.19, + "probability": 0.9681 + }, + { + "start": 35342.69, + "end": 35345.69, + "probability": 0.9779 + }, + { + "start": 35346.45, + "end": 35346.61, + "probability": 0.4688 + }, + { + "start": 35346.67, + "end": 35346.91, + "probability": 0.7894 + }, + { + "start": 35346.91, + "end": 35351.17, + "probability": 0.9894 + }, + { + "start": 35351.17, + "end": 35354.37, + "probability": 0.7048 + }, + { + "start": 35354.81, + "end": 35360.47, + "probability": 0.9968 + }, + { + "start": 35360.47, + "end": 35361.83, + "probability": 0.7764 + }, + { + "start": 35362.09, + "end": 35363.19, + "probability": 0.3162 + }, + { + "start": 35363.27, + "end": 35365.59, + "probability": 0.8095 + }, + { + "start": 35365.69, + "end": 35368.39, + "probability": 0.9468 + }, + { + "start": 35369.09, + "end": 35370.59, + "probability": 0.9884 + }, + { + "start": 35371.21, + "end": 35375.77, + "probability": 0.9941 + }, + { + "start": 35376.35, + "end": 35377.29, + "probability": 0.9807 + }, + { + "start": 35378.59, + "end": 35379.57, + "probability": 0.4692 + }, + { + "start": 35379.69, + "end": 35380.75, + "probability": 0.6594 + }, + { + "start": 35381.51, + "end": 35385.31, + "probability": 0.992 + }, + { + "start": 35386.63, + "end": 35387.97, + "probability": 0.9922 + }, + { + "start": 35388.17, + "end": 35390.79, + "probability": 0.9966 + }, + { + "start": 35391.37, + "end": 35391.75, + "probability": 0.715 + }, + { + "start": 35392.35, + "end": 35393.39, + "probability": 0.9775 + }, + { + "start": 35394.01, + "end": 35394.77, + "probability": 0.886 + }, + { + "start": 35395.39, + "end": 35398.19, + "probability": 0.9934 + }, + { + "start": 35398.65, + "end": 35402.13, + "probability": 0.9951 + }, + { + "start": 35403.13, + "end": 35404.99, + "probability": 0.7185 + }, + { + "start": 35405.27, + "end": 35407.65, + "probability": 0.9624 + }, + { + "start": 35407.73, + "end": 35408.25, + "probability": 0.4962 + }, + { + "start": 35408.31, + "end": 35409.19, + "probability": 0.7798 + }, + { + "start": 35409.19, + "end": 35409.55, + "probability": 0.5361 + }, + { + "start": 35410.47, + "end": 35412.49, + "probability": 0.9245 + }, + { + "start": 35412.55, + "end": 35416.71, + "probability": 0.7948 + }, + { + "start": 35417.29, + "end": 35418.19, + "probability": 0.7479 + }, + { + "start": 35418.33, + "end": 35420.67, + "probability": 0.8584 + }, + { + "start": 35420.67, + "end": 35420.74, + "probability": 0.6778 + }, + { + "start": 35421.63, + "end": 35422.65, + "probability": 0.9799 + }, + { + "start": 35422.93, + "end": 35428.75, + "probability": 0.9692 + }, + { + "start": 35429.47, + "end": 35430.77, + "probability": 0.9956 + }, + { + "start": 35431.13, + "end": 35432.59, + "probability": 0.9827 + }, + { + "start": 35432.95, + "end": 35434.07, + "probability": 0.9834 + }, + { + "start": 35434.13, + "end": 35435.31, + "probability": 0.9366 + }, + { + "start": 35435.37, + "end": 35435.63, + "probability": 0.6827 + }, + { + "start": 35435.65, + "end": 35436.03, + "probability": 0.95 + }, + { + "start": 35436.23, + "end": 35436.73, + "probability": 0.6769 + }, + { + "start": 35437.35, + "end": 35439.71, + "probability": 0.9955 + }, + { + "start": 35440.35, + "end": 35442.15, + "probability": 0.9462 + }, + { + "start": 35442.19, + "end": 35443.39, + "probability": 0.6757 + }, + { + "start": 35443.81, + "end": 35448.31, + "probability": 0.9901 + }, + { + "start": 35449.18, + "end": 35450.07, + "probability": 0.5124 + }, + { + "start": 35450.11, + "end": 35450.91, + "probability": 0.5938 + }, + { + "start": 35451.03, + "end": 35452.29, + "probability": 0.6836 + }, + { + "start": 35452.29, + "end": 35452.59, + "probability": 0.0638 + }, + { + "start": 35452.59, + "end": 35453.31, + "probability": 0.6629 + }, + { + "start": 35454.05, + "end": 35454.99, + "probability": 0.4803 + }, + { + "start": 35456.53, + "end": 35457.31, + "probability": 0.9259 + }, + { + "start": 35457.43, + "end": 35458.55, + "probability": 0.9829 + }, + { + "start": 35458.59, + "end": 35459.99, + "probability": 0.993 + }, + { + "start": 35461.05, + "end": 35464.67, + "probability": 0.9792 + }, + { + "start": 35465.25, + "end": 35466.97, + "probability": 0.666 + }, + { + "start": 35466.97, + "end": 35468.69, + "probability": 0.632 + }, + { + "start": 35468.79, + "end": 35470.59, + "probability": 0.9436 + }, + { + "start": 35470.65, + "end": 35472.31, + "probability": 0.9933 + }, + { + "start": 35473.19, + "end": 35474.19, + "probability": 0.5994 + }, + { + "start": 35474.75, + "end": 35475.25, + "probability": 0.673 + }, + { + "start": 35475.39, + "end": 35475.61, + "probability": 0.8885 + }, + { + "start": 35476.17, + "end": 35476.91, + "probability": 0.5518 + }, + { + "start": 35483.27, + "end": 35484.27, + "probability": 0.2428 + }, + { + "start": 35484.27, + "end": 35484.67, + "probability": 0.5643 + }, + { + "start": 35496.29, + "end": 35497.49, + "probability": 0.477 + }, + { + "start": 35497.75, + "end": 35497.75, + "probability": 0.2176 + }, + { + "start": 35497.75, + "end": 35498.23, + "probability": 0.6178 + }, + { + "start": 35498.47, + "end": 35498.87, + "probability": 0.4511 + }, + { + "start": 35499.35, + "end": 35499.55, + "probability": 0.7504 + }, + { + "start": 35500.97, + "end": 35503.83, + "probability": 0.9931 + }, + { + "start": 35504.17, + "end": 35506.81, + "probability": 0.9884 + }, + { + "start": 35506.93, + "end": 35508.35, + "probability": 0.79 + }, + { + "start": 35508.41, + "end": 35509.27, + "probability": 0.9146 + }, + { + "start": 35509.31, + "end": 35510.87, + "probability": 0.7433 + }, + { + "start": 35511.31, + "end": 35513.93, + "probability": 0.776 + }, + { + "start": 35514.09, + "end": 35515.01, + "probability": 0.8965 + }, + { + "start": 35516.59, + "end": 35518.19, + "probability": 0.7902 + }, + { + "start": 35518.67, + "end": 35524.09, + "probability": 0.9954 + }, + { + "start": 35524.53, + "end": 35527.49, + "probability": 0.9943 + }, + { + "start": 35527.95, + "end": 35533.35, + "probability": 0.9868 + }, + { + "start": 35533.83, + "end": 35536.55, + "probability": 0.7382 + }, + { + "start": 35537.07, + "end": 35540.81, + "probability": 0.9971 + }, + { + "start": 35541.13, + "end": 35541.79, + "probability": 0.5181 + }, + { + "start": 35541.85, + "end": 35543.57, + "probability": 0.9766 + }, + { + "start": 35543.65, + "end": 35548.37, + "probability": 0.9719 + }, + { + "start": 35548.45, + "end": 35550.22, + "probability": 0.7456 + }, + { + "start": 35550.83, + "end": 35551.99, + "probability": 0.9678 + }, + { + "start": 35552.09, + "end": 35555.51, + "probability": 0.9938 + }, + { + "start": 35555.93, + "end": 35556.49, + "probability": 0.6109 + }, + { + "start": 35556.95, + "end": 35557.23, + "probability": 0.7747 + }, + { + "start": 35558.69, + "end": 35560.67, + "probability": 0.9129 + }, + { + "start": 35561.03, + "end": 35561.35, + "probability": 0.5545 + }, + { + "start": 35561.53, + "end": 35561.65, + "probability": 0.8501 + }, + { + "start": 35561.73, + "end": 35564.81, + "probability": 0.9372 + }, + { + "start": 35565.15, + "end": 35566.05, + "probability": 0.3295 + }, + { + "start": 35566.37, + "end": 35568.55, + "probability": 0.4026 + }, + { + "start": 35568.63, + "end": 35568.85, + "probability": 0.7154 + }, + { + "start": 35568.95, + "end": 35571.69, + "probability": 0.5199 + }, + { + "start": 35572.79, + "end": 35575.25, + "probability": 0.557 + }, + { + "start": 35575.41, + "end": 35577.96, + "probability": 0.9785 + }, + { + "start": 35578.67, + "end": 35582.31, + "probability": 0.8551 + }, + { + "start": 35582.51, + "end": 35584.23, + "probability": 0.6608 + }, + { + "start": 35584.61, + "end": 35587.05, + "probability": 0.8042 + }, + { + "start": 35587.47, + "end": 35589.81, + "probability": 0.9975 + }, + { + "start": 35590.39, + "end": 35592.43, + "probability": 0.8068 + }, + { + "start": 35592.63, + "end": 35595.81, + "probability": 0.8856 + }, + { + "start": 35595.99, + "end": 35597.19, + "probability": 0.6705 + }, + { + "start": 35597.53, + "end": 35598.37, + "probability": 0.5554 + }, + { + "start": 35598.51, + "end": 35599.46, + "probability": 0.9525 + }, + { + "start": 35599.69, + "end": 35603.17, + "probability": 0.9362 + }, + { + "start": 35603.41, + "end": 35604.83, + "probability": 0.9857 + }, + { + "start": 35605.17, + "end": 35606.35, + "probability": 0.9966 + }, + { + "start": 35606.67, + "end": 35609.34, + "probability": 0.7505 + }, + { + "start": 35609.63, + "end": 35612.35, + "probability": 0.9167 + }, + { + "start": 35612.35, + "end": 35614.35, + "probability": 0.6627 + }, + { + "start": 35614.39, + "end": 35615.85, + "probability": 0.9087 + }, + { + "start": 35616.29, + "end": 35618.71, + "probability": 0.8574 + }, + { + "start": 35618.71, + "end": 35622.33, + "probability": 0.9952 + }, + { + "start": 35622.43, + "end": 35623.49, + "probability": 0.9007 + }, + { + "start": 35624.13, + "end": 35625.61, + "probability": 0.8638 + }, + { + "start": 35626.17, + "end": 35627.07, + "probability": 0.8111 + }, + { + "start": 35627.43, + "end": 35628.19, + "probability": 0.8881 + }, + { + "start": 35628.59, + "end": 35630.35, + "probability": 0.909 + }, + { + "start": 35630.41, + "end": 35630.91, + "probability": 0.718 + }, + { + "start": 35630.91, + "end": 35636.15, + "probability": 0.9736 + }, + { + "start": 35636.45, + "end": 35637.73, + "probability": 0.9927 + }, + { + "start": 35637.83, + "end": 35639.01, + "probability": 0.9023 + }, + { + "start": 35639.49, + "end": 35641.18, + "probability": 0.7808 + }, + { + "start": 35641.43, + "end": 35641.81, + "probability": 0.9062 + }, + { + "start": 35641.93, + "end": 35644.39, + "probability": 0.9785 + }, + { + "start": 35644.47, + "end": 35649.65, + "probability": 0.9604 + }, + { + "start": 35650.13, + "end": 35652.31, + "probability": 0.9884 + }, + { + "start": 35652.67, + "end": 35654.17, + "probability": 0.7803 + }, + { + "start": 35654.81, + "end": 35655.85, + "probability": 0.9159 + }, + { + "start": 35655.89, + "end": 35657.95, + "probability": 0.9741 + }, + { + "start": 35658.31, + "end": 35660.31, + "probability": 0.9434 + }, + { + "start": 35660.57, + "end": 35661.87, + "probability": 0.9934 + }, + { + "start": 35661.97, + "end": 35662.55, + "probability": 0.5476 + }, + { + "start": 35662.87, + "end": 35665.13, + "probability": 0.817 + }, + { + "start": 35665.21, + "end": 35668.05, + "probability": 0.7108 + }, + { + "start": 35668.09, + "end": 35671.07, + "probability": 0.9563 + }, + { + "start": 35671.83, + "end": 35672.41, + "probability": 0.8623 + }, + { + "start": 35672.75, + "end": 35674.93, + "probability": 0.9877 + }, + { + "start": 35676.37, + "end": 35676.65, + "probability": 0.9596 + }, + { + "start": 35676.75, + "end": 35678.23, + "probability": 0.8909 + }, + { + "start": 35678.35, + "end": 35678.98, + "probability": 0.7605 + }, + { + "start": 35679.21, + "end": 35680.47, + "probability": 0.8495 + }, + { + "start": 35680.63, + "end": 35681.91, + "probability": 0.9387 + }, + { + "start": 35682.41, + "end": 35684.29, + "probability": 0.9786 + }, + { + "start": 35685.49, + "end": 35689.39, + "probability": 0.9674 + }, + { + "start": 35690.17, + "end": 35693.69, + "probability": 0.9855 + }, + { + "start": 35693.69, + "end": 35698.01, + "probability": 0.9432 + }, + { + "start": 35698.67, + "end": 35698.85, + "probability": 0.3363 + }, + { + "start": 35698.91, + "end": 35699.69, + "probability": 0.7296 + }, + { + "start": 35699.71, + "end": 35700.19, + "probability": 0.8999 + }, + { + "start": 35700.39, + "end": 35701.79, + "probability": 0.9922 + }, + { + "start": 35702.27, + "end": 35705.41, + "probability": 0.9746 + }, + { + "start": 35705.41, + "end": 35708.97, + "probability": 0.9097 + }, + { + "start": 35709.45, + "end": 35712.53, + "probability": 0.9881 + }, + { + "start": 35713.13, + "end": 35714.01, + "probability": 0.7646 + }, + { + "start": 35714.35, + "end": 35717.73, + "probability": 0.9945 + }, + { + "start": 35717.73, + "end": 35722.23, + "probability": 0.99 + }, + { + "start": 35722.87, + "end": 35725.01, + "probability": 0.8449 + }, + { + "start": 35725.85, + "end": 35726.47, + "probability": 0.539 + }, + { + "start": 35726.85, + "end": 35728.67, + "probability": 0.9761 + }, + { + "start": 35728.77, + "end": 35730.67, + "probability": 0.8641 + }, + { + "start": 35730.87, + "end": 35732.65, + "probability": 0.9715 + }, + { + "start": 35732.97, + "end": 35735.41, + "probability": 0.9946 + }, + { + "start": 35735.85, + "end": 35742.19, + "probability": 0.9818 + }, + { + "start": 35742.59, + "end": 35743.63, + "probability": 0.9773 + }, + { + "start": 35744.07, + "end": 35746.91, + "probability": 0.8066 + }, + { + "start": 35746.91, + "end": 35750.55, + "probability": 0.9968 + }, + { + "start": 35750.71, + "end": 35751.43, + "probability": 0.3789 + }, + { + "start": 35751.83, + "end": 35754.57, + "probability": 0.9775 + }, + { + "start": 35754.57, + "end": 35757.03, + "probability": 0.9987 + }, + { + "start": 35757.13, + "end": 35758.53, + "probability": 0.9752 + }, + { + "start": 35759.09, + "end": 35760.77, + "probability": 0.9301 + }, + { + "start": 35760.93, + "end": 35762.29, + "probability": 0.8749 + }, + { + "start": 35763.03, + "end": 35763.81, + "probability": 0.9674 + }, + { + "start": 35763.99, + "end": 35764.97, + "probability": 0.5345 + }, + { + "start": 35765.05, + "end": 35766.71, + "probability": 0.9912 + }, + { + "start": 35767.13, + "end": 35770.43, + "probability": 0.9015 + }, + { + "start": 35771.03, + "end": 35771.44, + "probability": 0.9259 + }, + { + "start": 35771.99, + "end": 35774.97, + "probability": 0.9739 + }, + { + "start": 35775.53, + "end": 35776.32, + "probability": 0.9209 + }, + { + "start": 35777.43, + "end": 35780.37, + "probability": 0.9971 + }, + { + "start": 35780.47, + "end": 35784.69, + "probability": 0.9915 + }, + { + "start": 35784.93, + "end": 35785.73, + "probability": 0.5037 + }, + { + "start": 35785.75, + "end": 35788.99, + "probability": 0.9737 + }, + { + "start": 35789.31, + "end": 35792.75, + "probability": 0.9686 + }, + { + "start": 35793.49, + "end": 35796.41, + "probability": 0.9626 + }, + { + "start": 35797.19, + "end": 35802.03, + "probability": 0.9815 + }, + { + "start": 35802.61, + "end": 35807.79, + "probability": 0.9361 + }, + { + "start": 35808.77, + "end": 35810.11, + "probability": 0.744 + }, + { + "start": 35810.43, + "end": 35810.75, + "probability": 0.6075 + }, + { + "start": 35810.75, + "end": 35815.69, + "probability": 0.8543 + }, + { + "start": 35816.15, + "end": 35818.01, + "probability": 0.8665 + }, + { + "start": 35818.39, + "end": 35819.17, + "probability": 0.5667 + }, + { + "start": 35819.61, + "end": 35822.79, + "probability": 0.4658 + }, + { + "start": 35824.13, + "end": 35824.75, + "probability": 0.9261 + }, + { + "start": 35824.83, + "end": 35825.65, + "probability": 0.8604 + }, + { + "start": 35825.81, + "end": 35828.03, + "probability": 0.873 + }, + { + "start": 35828.23, + "end": 35829.71, + "probability": 0.9904 + }, + { + "start": 35830.15, + "end": 35831.17, + "probability": 0.8829 + }, + { + "start": 35831.67, + "end": 35833.27, + "probability": 0.6074 + }, + { + "start": 35833.29, + "end": 35834.95, + "probability": 0.9993 + }, + { + "start": 35835.07, + "end": 35836.49, + "probability": 0.8647 + }, + { + "start": 35836.93, + "end": 35837.61, + "probability": 0.7311 + }, + { + "start": 35837.63, + "end": 35838.01, + "probability": 0.6067 + }, + { + "start": 35838.03, + "end": 35838.75, + "probability": 0.9145 + }, + { + "start": 35839.03, + "end": 35839.89, + "probability": 0.9897 + }, + { + "start": 35840.37, + "end": 35842.51, + "probability": 0.4446 + }, + { + "start": 35854.21, + "end": 35855.01, + "probability": 0.7792 + }, + { + "start": 35855.09, + "end": 35855.93, + "probability": 0.465 + }, + { + "start": 35856.61, + "end": 35857.57, + "probability": 0.0198 + }, + { + "start": 35857.57, + "end": 35859.11, + "probability": 0.1113 + }, + { + "start": 35863.07, + "end": 35863.07, + "probability": 0.2879 + }, + { + "start": 35863.07, + "end": 35863.11, + "probability": 0.3386 + }, + { + "start": 35863.95, + "end": 35865.63, + "probability": 0.2019 + }, + { + "start": 35866.15, + "end": 35868.69, + "probability": 0.6193 + }, + { + "start": 35869.83, + "end": 35872.47, + "probability": 0.9924 + }, + { + "start": 35872.79, + "end": 35873.75, + "probability": 0.7323 + }, + { + "start": 35873.91, + "end": 35876.21, + "probability": 0.98 + }, + { + "start": 35876.85, + "end": 35881.61, + "probability": 0.9914 + }, + { + "start": 35882.95, + "end": 35885.67, + "probability": 0.5667 + }, + { + "start": 35886.33, + "end": 35887.52, + "probability": 0.9702 + }, + { + "start": 35888.73, + "end": 35890.11, + "probability": 0.9976 + }, + { + "start": 35890.29, + "end": 35892.96, + "probability": 0.9839 + }, + { + "start": 35893.89, + "end": 35894.87, + "probability": 0.8322 + }, + { + "start": 35894.89, + "end": 35897.88, + "probability": 0.5859 + }, + { + "start": 35898.05, + "end": 35901.81, + "probability": 0.9958 + }, + { + "start": 35901.93, + "end": 35902.57, + "probability": 0.6853 + }, + { + "start": 35903.39, + "end": 35906.13, + "probability": 0.9797 + }, + { + "start": 35906.53, + "end": 35907.75, + "probability": 0.8335 + }, + { + "start": 35907.91, + "end": 35910.11, + "probability": 0.9238 + }, + { + "start": 35910.33, + "end": 35912.43, + "probability": 0.8837 + }, + { + "start": 35912.53, + "end": 35914.23, + "probability": 0.9659 + }, + { + "start": 35915.31, + "end": 35916.17, + "probability": 0.7338 + }, + { + "start": 35916.17, + "end": 35918.43, + "probability": 0.6926 + }, + { + "start": 35918.47, + "end": 35919.47, + "probability": 0.8673 + }, + { + "start": 35919.53, + "end": 35922.01, + "probability": 0.941 + }, + { + "start": 35922.11, + "end": 35923.61, + "probability": 0.0211 + }, + { + "start": 35923.99, + "end": 35926.27, + "probability": 0.2829 + }, + { + "start": 35928.39, + "end": 35929.02, + "probability": 0.7607 + }, + { + "start": 35931.28, + "end": 35935.71, + "probability": 0.4323 + }, + { + "start": 35935.71, + "end": 35936.81, + "probability": 0.5406 + }, + { + "start": 35936.87, + "end": 35937.69, + "probability": 0.4326 + }, + { + "start": 35938.21, + "end": 35940.11, + "probability": 0.9257 + }, + { + "start": 35940.85, + "end": 35942.19, + "probability": 0.9572 + }, + { + "start": 35943.21, + "end": 35947.58, + "probability": 0.9774 + }, + { + "start": 35948.31, + "end": 35949.61, + "probability": 0.7839 + }, + { + "start": 35950.05, + "end": 35950.43, + "probability": 0.7366 + }, + { + "start": 35950.51, + "end": 35951.07, + "probability": 0.6636 + }, + { + "start": 35951.43, + "end": 35952.85, + "probability": 0.9238 + }, + { + "start": 35953.31, + "end": 35956.59, + "probability": 0.9414 + }, + { + "start": 35956.65, + "end": 35959.73, + "probability": 0.9841 + }, + { + "start": 35960.25, + "end": 35960.53, + "probability": 0.5962 + }, + { + "start": 35960.61, + "end": 35961.61, + "probability": 0.8927 + }, + { + "start": 35961.69, + "end": 35964.91, + "probability": 0.9926 + }, + { + "start": 35965.39, + "end": 35968.22, + "probability": 0.7206 + }, + { + "start": 35968.69, + "end": 35970.31, + "probability": 0.9976 + }, + { + "start": 35970.91, + "end": 35972.57, + "probability": 0.9958 + }, + { + "start": 35973.01, + "end": 35974.47, + "probability": 0.7864 + }, + { + "start": 35975.09, + "end": 35977.67, + "probability": 0.9737 + }, + { + "start": 35978.07, + "end": 35978.53, + "probability": 0.4135 + }, + { + "start": 35978.65, + "end": 35979.47, + "probability": 0.71 + }, + { + "start": 35979.57, + "end": 35979.71, + "probability": 0.6319 + }, + { + "start": 35979.79, + "end": 35981.73, + "probability": 0.9666 + }, + { + "start": 35982.07, + "end": 35982.79, + "probability": 0.6281 + }, + { + "start": 35983.47, + "end": 35986.79, + "probability": 0.9545 + }, + { + "start": 35987.17, + "end": 35989.07, + "probability": 0.9812 + }, + { + "start": 35989.61, + "end": 35990.65, + "probability": 0.9069 + }, + { + "start": 35990.73, + "end": 35993.29, + "probability": 0.9705 + }, + { + "start": 35993.83, + "end": 35995.27, + "probability": 0.9531 + }, + { + "start": 35996.03, + "end": 35997.01, + "probability": 0.9451 + }, + { + "start": 35997.25, + "end": 36000.99, + "probability": 0.9934 + }, + { + "start": 36001.37, + "end": 36004.13, + "probability": 0.95 + }, + { + "start": 36004.13, + "end": 36007.83, + "probability": 0.2451 + }, + { + "start": 36008.07, + "end": 36008.99, + "probability": 0.0676 + }, + { + "start": 36009.33, + "end": 36010.62, + "probability": 0.3122 + }, + { + "start": 36010.73, + "end": 36013.65, + "probability": 0.3289 + }, + { + "start": 36014.37, + "end": 36016.74, + "probability": 0.5331 + }, + { + "start": 36017.65, + "end": 36019.07, + "probability": 0.1619 + }, + { + "start": 36019.37, + "end": 36020.41, + "probability": 0.3107 + }, + { + "start": 36021.78, + "end": 36024.53, + "probability": 0.4369 + }, + { + "start": 36024.73, + "end": 36025.99, + "probability": 0.9685 + }, + { + "start": 36026.03, + "end": 36027.42, + "probability": 0.4389 + }, + { + "start": 36028.19, + "end": 36028.91, + "probability": 0.4666 + }, + { + "start": 36029.57, + "end": 36031.57, + "probability": 0.2642 + }, + { + "start": 36031.57, + "end": 36033.47, + "probability": 0.1887 + }, + { + "start": 36033.81, + "end": 36038.11, + "probability": 0.8966 + }, + { + "start": 36038.23, + "end": 36038.55, + "probability": 0.0306 + }, + { + "start": 36039.13, + "end": 36039.35, + "probability": 0.1017 + }, + { + "start": 36039.57, + "end": 36039.85, + "probability": 0.0837 + }, + { + "start": 36039.85, + "end": 36041.21, + "probability": 0.0449 + }, + { + "start": 36041.37, + "end": 36043.49, + "probability": 0.3749 + }, + { + "start": 36044.21, + "end": 36045.93, + "probability": 0.7172 + }, + { + "start": 36047.15, + "end": 36049.81, + "probability": 0.8632 + }, + { + "start": 36049.97, + "end": 36050.51, + "probability": 0.5628 + }, + { + "start": 36050.87, + "end": 36052.67, + "probability": 0.8989 + }, + { + "start": 36053.31, + "end": 36053.53, + "probability": 0.2608 + }, + { + "start": 36053.53, + "end": 36053.95, + "probability": 0.7559 + }, + { + "start": 36054.07, + "end": 36056.65, + "probability": 0.9974 + }, + { + "start": 36057.17, + "end": 36058.47, + "probability": 0.4716 + }, + { + "start": 36058.87, + "end": 36062.49, + "probability": 0.0451 + }, + { + "start": 36062.59, + "end": 36065.07, + "probability": 0.0906 + }, + { + "start": 36066.07, + "end": 36067.33, + "probability": 0.5194 + }, + { + "start": 36067.63, + "end": 36069.87, + "probability": 0.8358 + }, + { + "start": 36070.39, + "end": 36073.27, + "probability": 0.9322 + }, + { + "start": 36074.45, + "end": 36076.49, + "probability": 0.7222 + }, + { + "start": 36077.07, + "end": 36079.21, + "probability": 0.9908 + }, + { + "start": 36079.39, + "end": 36082.85, + "probability": 0.9921 + }, + { + "start": 36083.65, + "end": 36084.63, + "probability": 0.9046 + }, + { + "start": 36084.93, + "end": 36085.43, + "probability": 0.7407 + }, + { + "start": 36085.59, + "end": 36088.11, + "probability": 0.9913 + }, + { + "start": 36088.31, + "end": 36089.83, + "probability": 0.9032 + }, + { + "start": 36090.51, + "end": 36091.87, + "probability": 0.9692 + }, + { + "start": 36092.57, + "end": 36093.87, + "probability": 0.9615 + }, + { + "start": 36094.15, + "end": 36095.23, + "probability": 0.9534 + }, + { + "start": 36095.63, + "end": 36096.45, + "probability": 0.5638 + }, + { + "start": 36096.81, + "end": 36097.41, + "probability": 0.9357 + }, + { + "start": 36097.83, + "end": 36098.57, + "probability": 0.6841 + }, + { + "start": 36100.08, + "end": 36103.83, + "probability": 0.8727 + }, + { + "start": 36104.27, + "end": 36107.89, + "probability": 0.9857 + }, + { + "start": 36108.07, + "end": 36108.27, + "probability": 0.7699 + }, + { + "start": 36108.37, + "end": 36109.04, + "probability": 0.9629 + }, + { + "start": 36109.59, + "end": 36110.41, + "probability": 0.2558 + }, + { + "start": 36110.75, + "end": 36112.99, + "probability": 0.9536 + }, + { + "start": 36113.39, + "end": 36116.39, + "probability": 0.9924 + }, + { + "start": 36117.01, + "end": 36122.17, + "probability": 0.9626 + }, + { + "start": 36122.59, + "end": 36123.99, + "probability": 0.2861 + }, + { + "start": 36125.57, + "end": 36126.97, + "probability": 0.2057 + }, + { + "start": 36126.97, + "end": 36127.17, + "probability": 0.6148 + }, + { + "start": 36127.31, + "end": 36129.49, + "probability": 0.8374 + }, + { + "start": 36130.47, + "end": 36130.79, + "probability": 0.1619 + }, + { + "start": 36131.57, + "end": 36132.15, + "probability": 0.0533 + }, + { + "start": 36132.25, + "end": 36133.18, + "probability": 0.1769 + }, + { + "start": 36135.23, + "end": 36138.57, + "probability": 0.3017 + }, + { + "start": 36138.87, + "end": 36138.87, + "probability": 0.0794 + }, + { + "start": 36138.87, + "end": 36138.87, + "probability": 0.0997 + }, + { + "start": 36138.87, + "end": 36142.19, + "probability": 0.8762 + }, + { + "start": 36142.75, + "end": 36143.75, + "probability": 0.7134 + }, + { + "start": 36144.17, + "end": 36148.57, + "probability": 0.9756 + }, + { + "start": 36149.07, + "end": 36149.99, + "probability": 0.813 + }, + { + "start": 36149.99, + "end": 36151.55, + "probability": 0.7317 + }, + { + "start": 36152.29, + "end": 36152.63, + "probability": 0.79 + }, + { + "start": 36152.97, + "end": 36154.71, + "probability": 0.8496 + }, + { + "start": 36154.75, + "end": 36155.21, + "probability": 0.8359 + }, + { + "start": 36155.51, + "end": 36155.83, + "probability": 0.859 + }, + { + "start": 36156.99, + "end": 36159.31, + "probability": 0.6488 + }, + { + "start": 36161.41, + "end": 36163.23, + "probability": 0.9274 + }, + { + "start": 36165.85, + "end": 36168.57, + "probability": 0.9103 + }, + { + "start": 36173.35, + "end": 36176.05, + "probability": 0.6367 + }, + { + "start": 36176.69, + "end": 36179.37, + "probability": 0.7418 + }, + { + "start": 36180.71, + "end": 36181.15, + "probability": 0.531 + }, + { + "start": 36182.17, + "end": 36183.61, + "probability": 0.9995 + }, + { + "start": 36184.75, + "end": 36187.99, + "probability": 0.9889 + }, + { + "start": 36188.87, + "end": 36191.67, + "probability": 0.9779 + }, + { + "start": 36192.79, + "end": 36196.73, + "probability": 0.9918 + }, + { + "start": 36196.73, + "end": 36200.75, + "probability": 0.9695 + }, + { + "start": 36201.39, + "end": 36204.63, + "probability": 0.9375 + }, + { + "start": 36205.21, + "end": 36209.19, + "probability": 0.9869 + }, + { + "start": 36209.77, + "end": 36210.77, + "probability": 0.7557 + }, + { + "start": 36211.35, + "end": 36213.71, + "probability": 0.9941 + }, + { + "start": 36213.87, + "end": 36216.17, + "probability": 0.9788 + }, + { + "start": 36216.41, + "end": 36217.67, + "probability": 0.9902 + }, + { + "start": 36218.25, + "end": 36222.21, + "probability": 0.9965 + }, + { + "start": 36222.77, + "end": 36229.19, + "probability": 0.9886 + }, + { + "start": 36229.87, + "end": 36233.13, + "probability": 0.9994 + }, + { + "start": 36233.17, + "end": 36238.09, + "probability": 0.9988 + }, + { + "start": 36238.71, + "end": 36240.15, + "probability": 0.9979 + }, + { + "start": 36240.31, + "end": 36243.53, + "probability": 0.9956 + }, + { + "start": 36243.79, + "end": 36243.87, + "probability": 0.0808 + }, + { + "start": 36243.87, + "end": 36243.87, + "probability": 0.0992 + }, + { + "start": 36243.87, + "end": 36250.39, + "probability": 0.9349 + }, + { + "start": 36251.09, + "end": 36255.19, + "probability": 0.9069 + }, + { + "start": 36255.41, + "end": 36260.23, + "probability": 0.0717 + }, + { + "start": 36260.85, + "end": 36261.61, + "probability": 0.7791 + }, + { + "start": 36261.95, + "end": 36267.57, + "probability": 0.9741 + }, + { + "start": 36268.11, + "end": 36270.19, + "probability": 0.951 + }, + { + "start": 36271.15, + "end": 36272.39, + "probability": 0.6489 + }, + { + "start": 36273.37, + "end": 36273.49, + "probability": 0.5375 + }, + { + "start": 36274.07, + "end": 36280.11, + "probability": 0.7885 + }, + { + "start": 36280.97, + "end": 36282.97, + "probability": 0.9883 + }, + { + "start": 36283.03, + "end": 36283.69, + "probability": 0.9065 + }, + { + "start": 36284.63, + "end": 36289.11, + "probability": 0.996 + }, + { + "start": 36289.49, + "end": 36291.11, + "probability": 0.0358 + }, + { + "start": 36291.11, + "end": 36294.15, + "probability": 0.8392 + }, + { + "start": 36296.34, + "end": 36302.73, + "probability": 0.946 + }, + { + "start": 36303.33, + "end": 36306.03, + "probability": 0.9824 + }, + { + "start": 36306.41, + "end": 36308.53, + "probability": 0.876 + }, + { + "start": 36309.19, + "end": 36313.47, + "probability": 0.9907 + }, + { + "start": 36314.29, + "end": 36323.55, + "probability": 0.9296 + }, + { + "start": 36324.29, + "end": 36326.17, + "probability": 0.8119 + }, + { + "start": 36326.73, + "end": 36327.77, + "probability": 0.72 + }, + { + "start": 36328.35, + "end": 36329.03, + "probability": 0.4556 + }, + { + "start": 36329.79, + "end": 36334.55, + "probability": 0.9955 + }, + { + "start": 36334.55, + "end": 36341.91, + "probability": 0.9543 + }, + { + "start": 36342.83, + "end": 36346.97, + "probability": 0.7189 + }, + { + "start": 36347.53, + "end": 36351.88, + "probability": 0.9812 + }, + { + "start": 36352.63, + "end": 36355.11, + "probability": 0.9633 + }, + { + "start": 36355.23, + "end": 36355.95, + "probability": 0.8147 + }, + { + "start": 36356.41, + "end": 36359.21, + "probability": 0.9987 + }, + { + "start": 36359.69, + "end": 36361.85, + "probability": 0.9849 + }, + { + "start": 36362.63, + "end": 36372.35, + "probability": 0.9736 + }, + { + "start": 36373.25, + "end": 36377.97, + "probability": 0.9966 + }, + { + "start": 36378.15, + "end": 36379.19, + "probability": 0.7924 + }, + { + "start": 36379.47, + "end": 36385.97, + "probability": 0.988 + }, + { + "start": 36386.35, + "end": 36390.49, + "probability": 0.9984 + }, + { + "start": 36390.49, + "end": 36395.19, + "probability": 0.9928 + }, + { + "start": 36395.61, + "end": 36398.67, + "probability": 0.9626 + }, + { + "start": 36398.97, + "end": 36400.05, + "probability": 0.999 + }, + { + "start": 36400.67, + "end": 36401.95, + "probability": 0.9746 + }, + { + "start": 36402.59, + "end": 36403.4, + "probability": 0.3152 + }, + { + "start": 36403.93, + "end": 36404.67, + "probability": 0.361 + }, + { + "start": 36404.77, + "end": 36410.85, + "probability": 0.981 + }, + { + "start": 36410.85, + "end": 36417.09, + "probability": 0.9985 + }, + { + "start": 36417.73, + "end": 36420.83, + "probability": 0.951 + }, + { + "start": 36421.41, + "end": 36422.89, + "probability": 0.9769 + }, + { + "start": 36423.63, + "end": 36426.39, + "probability": 0.9926 + }, + { + "start": 36426.79, + "end": 36428.91, + "probability": 0.9838 + }, + { + "start": 36429.43, + "end": 36434.61, + "probability": 0.9749 + }, + { + "start": 36436.93, + "end": 36439.15, + "probability": 0.8417 + }, + { + "start": 36439.77, + "end": 36441.75, + "probability": 0.7935 + }, + { + "start": 36448.31, + "end": 36450.03, + "probability": 0.8337 + }, + { + "start": 36451.11, + "end": 36453.93, + "probability": 0.0235 + }, + { + "start": 36460.65, + "end": 36466.25, + "probability": 0.3717 + }, + { + "start": 36466.83, + "end": 36467.67, + "probability": 0.6536 + }, + { + "start": 36468.77, + "end": 36469.15, + "probability": 0.514 + }, + { + "start": 36470.47, + "end": 36472.38, + "probability": 0.9922 + }, + { + "start": 36473.15, + "end": 36475.39, + "probability": 0.7445 + }, + { + "start": 36476.59, + "end": 36476.69, + "probability": 0.1366 + }, + { + "start": 36476.69, + "end": 36477.89, + "probability": 0.9246 + }, + { + "start": 36478.17, + "end": 36482.31, + "probability": 0.9921 + }, + { + "start": 36484.25, + "end": 36488.07, + "probability": 0.9983 + }, + { + "start": 36488.63, + "end": 36490.06, + "probability": 0.9973 + }, + { + "start": 36490.87, + "end": 36491.77, + "probability": 0.9357 + }, + { + "start": 36492.33, + "end": 36492.99, + "probability": 0.2722 + }, + { + "start": 36493.59, + "end": 36495.47, + "probability": 0.4523 + }, + { + "start": 36496.59, + "end": 36497.29, + "probability": 0.2903 + }, + { + "start": 36499.67, + "end": 36502.67, + "probability": 0.1469 + }, + { + "start": 36506.11, + "end": 36506.21, + "probability": 0.1079 + }, + { + "start": 36506.21, + "end": 36506.73, + "probability": 0.1268 + }, + { + "start": 36506.73, + "end": 36506.73, + "probability": 0.0084 + }, + { + "start": 36506.73, + "end": 36506.73, + "probability": 0.0277 + }, + { + "start": 36506.73, + "end": 36506.73, + "probability": 0.0224 + }, + { + "start": 36506.73, + "end": 36507.65, + "probability": 0.4937 + }, + { + "start": 36508.37, + "end": 36510.47, + "probability": 0.7716 + }, + { + "start": 36511.51, + "end": 36513.08, + "probability": 0.5191 + }, + { + "start": 36513.77, + "end": 36514.26, + "probability": 0.9814 + }, + { + "start": 36516.27, + "end": 36518.1, + "probability": 0.9687 + }, + { + "start": 36518.25, + "end": 36519.49, + "probability": 0.9574 + }, + { + "start": 36521.19, + "end": 36524.13, + "probability": 0.7831 + }, + { + "start": 36524.65, + "end": 36525.95, + "probability": 0.3204 + }, + { + "start": 36526.19, + "end": 36526.88, + "probability": 0.4706 + }, + { + "start": 36527.09, + "end": 36528.65, + "probability": 0.8904 + }, + { + "start": 36528.81, + "end": 36531.53, + "probability": 0.7984 + }, + { + "start": 36531.85, + "end": 36532.53, + "probability": 0.59 + }, + { + "start": 36532.53, + "end": 36533.93, + "probability": 0.8869 + }, + { + "start": 36536.49, + "end": 36537.17, + "probability": 0.3059 + }, + { + "start": 36538.25, + "end": 36540.91, + "probability": 0.9631 + }, + { + "start": 36540.97, + "end": 36544.15, + "probability": 0.9981 + }, + { + "start": 36545.11, + "end": 36547.25, + "probability": 0.9664 + }, + { + "start": 36548.19, + "end": 36551.53, + "probability": 0.9673 + }, + { + "start": 36552.53, + "end": 36555.11, + "probability": 0.9239 + }, + { + "start": 36555.13, + "end": 36559.13, + "probability": 0.8317 + }, + { + "start": 36559.65, + "end": 36562.25, + "probability": 0.7283 + }, + { + "start": 36563.03, + "end": 36564.89, + "probability": 0.7922 + }, + { + "start": 36565.37, + "end": 36566.11, + "probability": 0.952 + }, + { + "start": 36566.23, + "end": 36566.89, + "probability": 0.8953 + }, + { + "start": 36567.77, + "end": 36568.95, + "probability": 0.812 + }, + { + "start": 36569.73, + "end": 36572.44, + "probability": 0.9978 + }, + { + "start": 36572.51, + "end": 36573.71, + "probability": 0.8247 + }, + { + "start": 36574.93, + "end": 36578.75, + "probability": 0.8348 + }, + { + "start": 36579.51, + "end": 36580.47, + "probability": 0.9387 + }, + { + "start": 36580.57, + "end": 36581.71, + "probability": 0.9842 + }, + { + "start": 36581.81, + "end": 36582.15, + "probability": 0.5645 + }, + { + "start": 36582.15, + "end": 36583.75, + "probability": 0.9917 + }, + { + "start": 36583.87, + "end": 36586.28, + "probability": 0.7522 + }, + { + "start": 36586.55, + "end": 36586.93, + "probability": 0.788 + }, + { + "start": 36587.31, + "end": 36589.35, + "probability": 0.983 + }, + { + "start": 36590.01, + "end": 36590.89, + "probability": 0.8956 + }, + { + "start": 36592.11, + "end": 36594.4, + "probability": 0.9282 + }, + { + "start": 36595.03, + "end": 36595.71, + "probability": 0.9937 + }, + { + "start": 36596.73, + "end": 36598.53, + "probability": 0.7681 + }, + { + "start": 36599.33, + "end": 36601.45, + "probability": 0.9151 + }, + { + "start": 36602.21, + "end": 36603.21, + "probability": 0.8188 + }, + { + "start": 36605.17, + "end": 36608.11, + "probability": 0.993 + }, + { + "start": 36608.99, + "end": 36611.69, + "probability": 0.814 + }, + { + "start": 36613.55, + "end": 36615.07, + "probability": 0.9872 + }, + { + "start": 36615.95, + "end": 36620.15, + "probability": 0.994 + }, + { + "start": 36620.31, + "end": 36620.59, + "probability": 0.8294 + }, + { + "start": 36621.07, + "end": 36621.41, + "probability": 0.8323 + }, + { + "start": 36621.49, + "end": 36622.15, + "probability": 0.6473 + }, + { + "start": 36623.27, + "end": 36625.43, + "probability": 0.9866 + }, + { + "start": 36625.99, + "end": 36628.37, + "probability": 0.9757 + }, + { + "start": 36628.51, + "end": 36631.37, + "probability": 0.8682 + }, + { + "start": 36632.55, + "end": 36635.65, + "probability": 0.9449 + }, + { + "start": 36636.23, + "end": 36636.95, + "probability": 0.2536 + }, + { + "start": 36638.11, + "end": 36639.79, + "probability": 0.9505 + }, + { + "start": 36640.89, + "end": 36642.29, + "probability": 0.9972 + }, + { + "start": 36643.05, + "end": 36647.03, + "probability": 0.995 + }, + { + "start": 36647.19, + "end": 36647.33, + "probability": 0.3809 + }, + { + "start": 36647.39, + "end": 36647.91, + "probability": 0.8104 + }, + { + "start": 36647.99, + "end": 36649.75, + "probability": 0.9955 + }, + { + "start": 36651.41, + "end": 36656.23, + "probability": 0.9903 + }, + { + "start": 36656.49, + "end": 36656.97, + "probability": 0.9719 + }, + { + "start": 36657.41, + "end": 36658.31, + "probability": 0.9414 + }, + { + "start": 36658.49, + "end": 36659.31, + "probability": 0.875 + }, + { + "start": 36660.05, + "end": 36663.03, + "probability": 0.9705 + }, + { + "start": 36663.27, + "end": 36664.61, + "probability": 0.9688 + }, + { + "start": 36665.81, + "end": 36669.59, + "probability": 0.9985 + }, + { + "start": 36670.53, + "end": 36671.71, + "probability": 0.9382 + }, + { + "start": 36672.17, + "end": 36675.23, + "probability": 0.9873 + }, + { + "start": 36676.65, + "end": 36678.23, + "probability": 0.9834 + }, + { + "start": 36678.93, + "end": 36682.91, + "probability": 0.8572 + }, + { + "start": 36683.51, + "end": 36683.77, + "probability": 0.4783 + }, + { + "start": 36683.85, + "end": 36686.33, + "probability": 0.9114 + }, + { + "start": 36686.45, + "end": 36690.11, + "probability": 0.9813 + }, + { + "start": 36691.05, + "end": 36694.11, + "probability": 0.6637 + }, + { + "start": 36695.85, + "end": 36699.81, + "probability": 0.8745 + }, + { + "start": 36700.19, + "end": 36700.83, + "probability": 0.7283 + }, + { + "start": 36700.93, + "end": 36701.99, + "probability": 0.8163 + }, + { + "start": 36702.55, + "end": 36703.51, + "probability": 0.9377 + }, + { + "start": 36703.61, + "end": 36705.97, + "probability": 0.9957 + }, + { + "start": 36706.77, + "end": 36706.89, + "probability": 0.0001 + }, + { + "start": 36708.31, + "end": 36709.51, + "probability": 0.3611 + }, + { + "start": 36710.35, + "end": 36711.51, + "probability": 0.8999 + }, + { + "start": 36712.33, + "end": 36716.92, + "probability": 0.9183 + }, + { + "start": 36718.41, + "end": 36719.25, + "probability": 0.4906 + }, + { + "start": 36720.53, + "end": 36722.25, + "probability": 0.894 + }, + { + "start": 36723.45, + "end": 36727.03, + "probability": 0.9902 + }, + { + "start": 36727.37, + "end": 36730.47, + "probability": 0.9849 + }, + { + "start": 36731.25, + "end": 36733.25, + "probability": 0.9955 + }, + { + "start": 36734.33, + "end": 36737.33, + "probability": 0.9676 + }, + { + "start": 36737.91, + "end": 36739.59, + "probability": 0.9479 + }, + { + "start": 36739.75, + "end": 36742.01, + "probability": 0.5904 + }, + { + "start": 36742.67, + "end": 36743.43, + "probability": 0.8921 + }, + { + "start": 36743.59, + "end": 36744.21, + "probability": 0.9746 + }, + { + "start": 36744.31, + "end": 36745.09, + "probability": 0.6154 + }, + { + "start": 36745.25, + "end": 36746.31, + "probability": 0.9758 + }, + { + "start": 36747.47, + "end": 36748.77, + "probability": 0.8822 + }, + { + "start": 36748.87, + "end": 36751.85, + "probability": 0.9785 + }, + { + "start": 36751.85, + "end": 36755.13, + "probability": 0.9977 + }, + { + "start": 36755.17, + "end": 36755.59, + "probability": 0.8436 + }, + { + "start": 36757.13, + "end": 36760.73, + "probability": 0.8941 + }, + { + "start": 36760.89, + "end": 36764.65, + "probability": 0.9883 + }, + { + "start": 36765.01, + "end": 36765.25, + "probability": 0.7298 + }, + { + "start": 36766.85, + "end": 36767.73, + "probability": 0.6462 + }, + { + "start": 36768.17, + "end": 36770.79, + "probability": 0.7653 + }, + { + "start": 36771.79, + "end": 36773.83, + "probability": 0.9816 + }, + { + "start": 36777.43, + "end": 36779.57, + "probability": 0.7334 + }, + { + "start": 36784.73, + "end": 36786.69, + "probability": 0.4693 + }, + { + "start": 36787.97, + "end": 36790.27, + "probability": 0.7287 + }, + { + "start": 36791.47, + "end": 36795.33, + "probability": 0.994 + }, + { + "start": 36795.97, + "end": 36796.57, + "probability": 0.936 + }, + { + "start": 36797.41, + "end": 36797.92, + "probability": 0.9189 + }, + { + "start": 36799.27, + "end": 36802.81, + "probability": 0.9938 + }, + { + "start": 36803.39, + "end": 36806.89, + "probability": 0.9951 + }, + { + "start": 36807.07, + "end": 36808.05, + "probability": 0.9359 + }, + { + "start": 36808.17, + "end": 36809.21, + "probability": 0.9248 + }, + { + "start": 36809.85, + "end": 36812.37, + "probability": 0.8999 + }, + { + "start": 36813.81, + "end": 36818.13, + "probability": 0.9733 + }, + { + "start": 36819.15, + "end": 36819.87, + "probability": 0.4174 + }, + { + "start": 36820.39, + "end": 36820.81, + "probability": 0.7906 + }, + { + "start": 36823.27, + "end": 36826.95, + "probability": 0.8245 + }, + { + "start": 36828.43, + "end": 36829.63, + "probability": 0.79 + }, + { + "start": 36830.29, + "end": 36830.55, + "probability": 0.1171 + }, + { + "start": 36830.57, + "end": 36831.33, + "probability": 0.0586 + }, + { + "start": 36831.37, + "end": 36832.01, + "probability": 0.9075 + }, + { + "start": 36833.31, + "end": 36834.05, + "probability": 0.5157 + }, + { + "start": 36834.15, + "end": 36835.47, + "probability": 0.5794 + }, + { + "start": 36836.75, + "end": 36837.39, + "probability": 0.5297 + }, + { + "start": 36837.39, + "end": 36843.61, + "probability": 0.7868 + }, + { + "start": 36845.33, + "end": 36848.47, + "probability": 0.9514 + }, + { + "start": 36849.45, + "end": 36849.65, + "probability": 0.5212 + }, + { + "start": 36849.71, + "end": 36851.31, + "probability": 0.9995 + }, + { + "start": 36852.03, + "end": 36853.91, + "probability": 0.7642 + }, + { + "start": 36854.07, + "end": 36854.87, + "probability": 0.9972 + }, + { + "start": 36855.49, + "end": 36856.47, + "probability": 0.738 + }, + { + "start": 36857.91, + "end": 36859.37, + "probability": 0.7225 + }, + { + "start": 36860.21, + "end": 36862.47, + "probability": 0.9629 + }, + { + "start": 36863.31, + "end": 36864.25, + "probability": 0.9927 + }, + { + "start": 36864.47, + "end": 36865.41, + "probability": 0.0265 + }, + { + "start": 36865.59, + "end": 36866.27, + "probability": 0.0847 + }, + { + "start": 36866.49, + "end": 36866.83, + "probability": 0.1102 + }, + { + "start": 36866.93, + "end": 36867.39, + "probability": 0.088 + }, + { + "start": 36867.39, + "end": 36870.31, + "probability": 0.9489 + }, + { + "start": 36872.17, + "end": 36875.11, + "probability": 0.9825 + }, + { + "start": 36875.31, + "end": 36879.55, + "probability": 0.9132 + }, + { + "start": 36880.41, + "end": 36880.95, + "probability": 0.9837 + }, + { + "start": 36881.49, + "end": 36883.83, + "probability": 0.9969 + }, + { + "start": 36883.99, + "end": 36888.39, + "probability": 0.9895 + }, + { + "start": 36888.41, + "end": 36889.07, + "probability": 0.9648 + }, + { + "start": 36890.01, + "end": 36890.91, + "probability": 0.6756 + }, + { + "start": 36891.51, + "end": 36893.09, + "probability": 0.8452 + }, + { + "start": 36893.63, + "end": 36894.85, + "probability": 0.731 + }, + { + "start": 36895.51, + "end": 36898.65, + "probability": 0.9595 + }, + { + "start": 36899.17, + "end": 36900.41, + "probability": 0.969 + }, + { + "start": 36901.07, + "end": 36901.87, + "probability": 0.9122 + }, + { + "start": 36902.37, + "end": 36903.61, + "probability": 0.957 + }, + { + "start": 36903.61, + "end": 36904.99, + "probability": 0.8812 + }, + { + "start": 36905.49, + "end": 36906.59, + "probability": 0.8916 + }, + { + "start": 36906.85, + "end": 36908.09, + "probability": 0.6959 + }, + { + "start": 36909.03, + "end": 36909.84, + "probability": 0.8503 + }, + { + "start": 36910.71, + "end": 36913.39, + "probability": 0.9656 + }, + { + "start": 36913.89, + "end": 36915.39, + "probability": 0.984 + }, + { + "start": 36916.61, + "end": 36920.75, + "probability": 0.988 + }, + { + "start": 36921.49, + "end": 36923.95, + "probability": 0.9945 + }, + { + "start": 36925.51, + "end": 36927.85, + "probability": 0.9892 + }, + { + "start": 36928.69, + "end": 36930.15, + "probability": 0.9836 + }, + { + "start": 36930.81, + "end": 36932.87, + "probability": 0.7459 + }, + { + "start": 36933.93, + "end": 36936.39, + "probability": 0.9975 + }, + { + "start": 36937.27, + "end": 36939.21, + "probability": 0.9306 + }, + { + "start": 36939.93, + "end": 36942.67, + "probability": 0.9992 + }, + { + "start": 36942.77, + "end": 36944.32, + "probability": 0.9575 + }, + { + "start": 36945.77, + "end": 36948.77, + "probability": 0.9735 + }, + { + "start": 36949.33, + "end": 36951.05, + "probability": 0.9414 + }, + { + "start": 36953.19, + "end": 36954.69, + "probability": 0.9893 + }, + { + "start": 36955.99, + "end": 36959.89, + "probability": 0.7918 + }, + { + "start": 36960.99, + "end": 36962.65, + "probability": 0.9951 + }, + { + "start": 36964.09, + "end": 36965.59, + "probability": 0.9763 + }, + { + "start": 36966.47, + "end": 36969.97, + "probability": 0.9248 + }, + { + "start": 36970.61, + "end": 36971.13, + "probability": 0.4001 + }, + { + "start": 36972.39, + "end": 36972.83, + "probability": 0.9056 + }, + { + "start": 36973.31, + "end": 36977.59, + "probability": 0.9764 + }, + { + "start": 36979.21, + "end": 36981.55, + "probability": 0.9806 + }, + { + "start": 36982.07, + "end": 36982.61, + "probability": 0.4127 + }, + { + "start": 36983.91, + "end": 36986.35, + "probability": 0.969 + }, + { + "start": 36987.21, + "end": 36990.35, + "probability": 0.8488 + }, + { + "start": 36990.39, + "end": 36992.23, + "probability": 0.9128 + }, + { + "start": 36993.19, + "end": 36993.51, + "probability": 0.7407 + }, + { + "start": 36993.51, + "end": 36997.75, + "probability": 0.9724 + }, + { + "start": 36998.39, + "end": 37001.07, + "probability": 0.8459 + }, + { + "start": 37002.01, + "end": 37004.95, + "probability": 0.9709 + }, + { + "start": 37005.57, + "end": 37007.27, + "probability": 0.9372 + }, + { + "start": 37007.65, + "end": 37009.35, + "probability": 0.8874 + }, + { + "start": 37009.43, + "end": 37010.41, + "probability": 0.9029 + }, + { + "start": 37010.49, + "end": 37012.55, + "probability": 0.889 + }, + { + "start": 37014.33, + "end": 37016.61, + "probability": 0.9969 + }, + { + "start": 37018.33, + "end": 37019.09, + "probability": 0.9216 + }, + { + "start": 37020.89, + "end": 37023.89, + "probability": 0.9536 + }, + { + "start": 37024.87, + "end": 37025.53, + "probability": 0.8318 + }, + { + "start": 37026.25, + "end": 37029.11, + "probability": 0.9514 + }, + { + "start": 37029.19, + "end": 37032.83, + "probability": 0.9966 + }, + { + "start": 37032.93, + "end": 37034.81, + "probability": 0.8792 + }, + { + "start": 37035.37, + "end": 37036.79, + "probability": 0.957 + }, + { + "start": 37037.89, + "end": 37039.64, + "probability": 0.9965 + }, + { + "start": 37040.43, + "end": 37041.41, + "probability": 0.7207 + }, + { + "start": 37041.93, + "end": 37044.53, + "probability": 0.9561 + }, + { + "start": 37045.21, + "end": 37048.47, + "probability": 0.8768 + }, + { + "start": 37049.21, + "end": 37051.01, + "probability": 0.9124 + }, + { + "start": 37052.05, + "end": 37053.59, + "probability": 0.9395 + }, + { + "start": 37053.95, + "end": 37057.27, + "probability": 0.9828 + }, + { + "start": 37058.41, + "end": 37062.39, + "probability": 0.9667 + }, + { + "start": 37062.99, + "end": 37063.77, + "probability": 0.9667 + }, + { + "start": 37063.81, + "end": 37064.49, + "probability": 0.4784 + }, + { + "start": 37064.51, + "end": 37070.41, + "probability": 0.9899 + }, + { + "start": 37071.55, + "end": 37074.77, + "probability": 0.9028 + }, + { + "start": 37075.55, + "end": 37077.53, + "probability": 0.9985 + }, + { + "start": 37078.15, + "end": 37083.55, + "probability": 0.9155 + }, + { + "start": 37085.03, + "end": 37085.76, + "probability": 0.4988 + }, + { + "start": 37086.77, + "end": 37087.77, + "probability": 0.9937 + }, + { + "start": 37088.47, + "end": 37090.35, + "probability": 0.8303 + }, + { + "start": 37090.51, + "end": 37091.07, + "probability": 0.7261 + }, + { + "start": 37091.55, + "end": 37091.55, + "probability": 0.5312 + }, + { + "start": 37092.79, + "end": 37093.45, + "probability": 0.9305 + }, + { + "start": 37093.63, + "end": 37099.13, + "probability": 0.993 + }, + { + "start": 37100.01, + "end": 37100.55, + "probability": 0.815 + }, + { + "start": 37101.35, + "end": 37103.93, + "probability": 0.9643 + }, + { + "start": 37104.49, + "end": 37108.19, + "probability": 0.9356 + }, + { + "start": 37108.21, + "end": 37112.77, + "probability": 0.9959 + }, + { + "start": 37112.81, + "end": 37114.61, + "probability": 0.8411 + }, + { + "start": 37116.19, + "end": 37118.17, + "probability": 0.7127 + }, + { + "start": 37137.01, + "end": 37140.31, + "probability": 0.7289 + }, + { + "start": 37141.03, + "end": 37142.01, + "probability": 0.6537 + }, + { + "start": 37144.11, + "end": 37147.01, + "probability": 0.95 + }, + { + "start": 37148.83, + "end": 37154.23, + "probability": 0.9757 + }, + { + "start": 37155.57, + "end": 37160.09, + "probability": 0.9919 + }, + { + "start": 37161.01, + "end": 37161.35, + "probability": 0.3875 + }, + { + "start": 37161.95, + "end": 37162.55, + "probability": 0.3843 + }, + { + "start": 37163.55, + "end": 37165.11, + "probability": 0.9617 + }, + { + "start": 37165.95, + "end": 37166.95, + "probability": 0.9126 + }, + { + "start": 37167.75, + "end": 37170.63, + "probability": 0.9953 + }, + { + "start": 37172.43, + "end": 37177.75, + "probability": 0.7563 + }, + { + "start": 37178.67, + "end": 37183.25, + "probability": 0.9797 + }, + { + "start": 37184.93, + "end": 37187.31, + "probability": 0.8937 + }, + { + "start": 37188.55, + "end": 37191.57, + "probability": 0.9972 + }, + { + "start": 37192.25, + "end": 37195.17, + "probability": 0.9814 + }, + { + "start": 37196.75, + "end": 37201.87, + "probability": 0.9842 + }, + { + "start": 37203.15, + "end": 37206.99, + "probability": 0.9 + }, + { + "start": 37207.67, + "end": 37209.03, + "probability": 0.9708 + }, + { + "start": 37209.51, + "end": 37213.5, + "probability": 0.9837 + }, + { + "start": 37213.85, + "end": 37214.65, + "probability": 0.9054 + }, + { + "start": 37215.19, + "end": 37216.37, + "probability": 0.7515 + }, + { + "start": 37217.39, + "end": 37217.93, + "probability": 0.9341 + }, + { + "start": 37218.63, + "end": 37220.03, + "probability": 0.9469 + }, + { + "start": 37221.81, + "end": 37222.79, + "probability": 0.9706 + }, + { + "start": 37223.45, + "end": 37228.33, + "probability": 0.9599 + }, + { + "start": 37228.59, + "end": 37231.17, + "probability": 0.9956 + }, + { + "start": 37232.17, + "end": 37233.25, + "probability": 0.8738 + }, + { + "start": 37234.53, + "end": 37237.87, + "probability": 0.9829 + }, + { + "start": 37238.57, + "end": 37241.13, + "probability": 0.9924 + }, + { + "start": 37241.49, + "end": 37243.95, + "probability": 0.9437 + }, + { + "start": 37244.55, + "end": 37246.11, + "probability": 0.8122 + }, + { + "start": 37247.31, + "end": 37247.61, + "probability": 0.8822 + }, + { + "start": 37248.61, + "end": 37249.01, + "probability": 0.8755 + }, + { + "start": 37249.57, + "end": 37250.83, + "probability": 0.9911 + }, + { + "start": 37252.11, + "end": 37253.33, + "probability": 0.9341 + }, + { + "start": 37254.15, + "end": 37256.71, + "probability": 0.9873 + }, + { + "start": 37257.91, + "end": 37259.31, + "probability": 0.9891 + }, + { + "start": 37259.83, + "end": 37261.65, + "probability": 0.9915 + }, + { + "start": 37262.11, + "end": 37263.65, + "probability": 0.9823 + }, + { + "start": 37264.09, + "end": 37265.74, + "probability": 0.9974 + }, + { + "start": 37266.23, + "end": 37268.31, + "probability": 0.9981 + }, + { + "start": 37268.99, + "end": 37269.25, + "probability": 0.7767 + }, + { + "start": 37270.09, + "end": 37270.77, + "probability": 0.6422 + }, + { + "start": 37272.15, + "end": 37274.43, + "probability": 0.9065 + }, + { + "start": 37274.95, + "end": 37275.87, + "probability": 0.7135 + }, + { + "start": 37276.81, + "end": 37280.87, + "probability": 0.9966 + }, + { + "start": 37281.65, + "end": 37284.03, + "probability": 0.9898 + }, + { + "start": 37284.99, + "end": 37287.15, + "probability": 0.9937 + }, + { + "start": 37287.81, + "end": 37289.17, + "probability": 0.9846 + }, + { + "start": 37289.89, + "end": 37291.63, + "probability": 0.9427 + }, + { + "start": 37292.17, + "end": 37297.83, + "probability": 0.9868 + }, + { + "start": 37299.55, + "end": 37300.05, + "probability": 0.9829 + }, + { + "start": 37302.45, + "end": 37308.53, + "probability": 0.9934 + }, + { + "start": 37309.49, + "end": 37314.47, + "probability": 0.8254 + }, + { + "start": 37315.03, + "end": 37318.09, + "probability": 0.9971 + }, + { + "start": 37318.09, + "end": 37320.85, + "probability": 0.9984 + }, + { + "start": 37321.55, + "end": 37325.91, + "probability": 0.9993 + }, + { + "start": 37325.91, + "end": 37330.83, + "probability": 0.8845 + }, + { + "start": 37332.35, + "end": 37334.23, + "probability": 0.9519 + }, + { + "start": 37335.69, + "end": 37339.55, + "probability": 0.9697 + }, + { + "start": 37339.65, + "end": 37340.09, + "probability": 0.9876 + }, + { + "start": 37340.19, + "end": 37340.69, + "probability": 0.9045 + }, + { + "start": 37340.77, + "end": 37341.43, + "probability": 0.828 + }, + { + "start": 37341.87, + "end": 37343.17, + "probability": 0.7808 + }, + { + "start": 37343.47, + "end": 37344.33, + "probability": 0.8615 + }, + { + "start": 37344.87, + "end": 37347.67, + "probability": 0.9656 + }, + { + "start": 37349.27, + "end": 37350.45, + "probability": 0.9851 + }, + { + "start": 37351.37, + "end": 37354.59, + "probability": 0.9886 + }, + { + "start": 37354.59, + "end": 37358.41, + "probability": 0.9982 + }, + { + "start": 37359.19, + "end": 37360.51, + "probability": 0.737 + }, + { + "start": 37361.29, + "end": 37365.37, + "probability": 0.9559 + }, + { + "start": 37365.77, + "end": 37366.68, + "probability": 0.9722 + }, + { + "start": 37367.35, + "end": 37368.07, + "probability": 0.6548 + }, + { + "start": 37369.37, + "end": 37373.57, + "probability": 0.9956 + }, + { + "start": 37373.67, + "end": 37375.57, + "probability": 0.8503 + }, + { + "start": 37376.11, + "end": 37378.45, + "probability": 0.9484 + }, + { + "start": 37378.73, + "end": 37381.09, + "probability": 0.9282 + }, + { + "start": 37381.57, + "end": 37385.89, + "probability": 0.9966 + }, + { + "start": 37386.87, + "end": 37388.11, + "probability": 0.7084 + }, + { + "start": 37389.47, + "end": 37392.55, + "probability": 0.9717 + }, + { + "start": 37393.01, + "end": 37393.17, + "probability": 0.6055 + }, + { + "start": 37394.63, + "end": 37394.63, + "probability": 0.3718 + }, + { + "start": 37394.63, + "end": 37396.35, + "probability": 0.83 + }, + { + "start": 37397.25, + "end": 37397.78, + "probability": 0.9036 + }, + { + "start": 37398.47, + "end": 37398.73, + "probability": 0.351 + }, + { + "start": 37398.79, + "end": 37403.17, + "probability": 0.9378 + }, + { + "start": 37403.73, + "end": 37407.25, + "probability": 0.8835 + }, + { + "start": 37407.55, + "end": 37409.19, + "probability": 0.9962 + }, + { + "start": 37409.55, + "end": 37412.53, + "probability": 0.9598 + }, + { + "start": 37413.33, + "end": 37421.91, + "probability": 0.9979 + }, + { + "start": 37422.05, + "end": 37425.01, + "probability": 0.9941 + }, + { + "start": 37425.47, + "end": 37425.59, + "probability": 0.4836 + }, + { + "start": 37425.73, + "end": 37426.57, + "probability": 0.9486 + }, + { + "start": 37427.01, + "end": 37428.45, + "probability": 0.9895 + }, + { + "start": 37429.09, + "end": 37432.53, + "probability": 0.8407 + }, + { + "start": 37433.05, + "end": 37434.53, + "probability": 0.7358 + }, + { + "start": 37435.21, + "end": 37437.61, + "probability": 0.9907 + }, + { + "start": 37438.23, + "end": 37443.15, + "probability": 0.9814 + }, + { + "start": 37443.95, + "end": 37445.29, + "probability": 0.9639 + }, + { + "start": 37445.65, + "end": 37447.71, + "probability": 0.7442 + }, + { + "start": 37448.41, + "end": 37448.77, + "probability": 0.6455 + }, + { + "start": 37449.23, + "end": 37450.27, + "probability": 0.6509 + }, + { + "start": 37450.89, + "end": 37451.73, + "probability": 0.9223 + }, + { + "start": 37452.03, + "end": 37452.95, + "probability": 0.9622 + }, + { + "start": 37453.25, + "end": 37454.27, + "probability": 0.9761 + }, + { + "start": 37454.49, + "end": 37455.51, + "probability": 0.8586 + }, + { + "start": 37455.79, + "end": 37457.35, + "probability": 0.959 + }, + { + "start": 37457.65, + "end": 37460.63, + "probability": 0.9628 + }, + { + "start": 37461.07, + "end": 37461.75, + "probability": 0.5126 + }, + { + "start": 37462.11, + "end": 37466.39, + "probability": 0.9873 + }, + { + "start": 37467.05, + "end": 37467.91, + "probability": 0.8846 + }, + { + "start": 37468.41, + "end": 37469.41, + "probability": 0.9943 + }, + { + "start": 37470.39, + "end": 37470.63, + "probability": 0.5535 + }, + { + "start": 37470.63, + "end": 37475.31, + "probability": 0.8904 + }, + { + "start": 37475.45, + "end": 37479.61, + "probability": 0.9937 + }, + { + "start": 37481.67, + "end": 37483.67, + "probability": 0.9961 + }, + { + "start": 37483.71, + "end": 37486.73, + "probability": 0.9977 + }, + { + "start": 37487.17, + "end": 37490.93, + "probability": 0.9985 + }, + { + "start": 37492.53, + "end": 37496.85, + "probability": 0.9778 + }, + { + "start": 37497.55, + "end": 37501.57, + "probability": 0.9696 + }, + { + "start": 37501.79, + "end": 37506.41, + "probability": 0.9746 + }, + { + "start": 37506.59, + "end": 37508.71, + "probability": 0.8825 + }, + { + "start": 37509.49, + "end": 37513.17, + "probability": 0.9531 + }, + { + "start": 37513.91, + "end": 37514.68, + "probability": 0.9795 + }, + { + "start": 37516.21, + "end": 37519.45, + "probability": 0.9322 + }, + { + "start": 37519.79, + "end": 37521.33, + "probability": 0.9206 + }, + { + "start": 37521.79, + "end": 37523.13, + "probability": 0.6635 + }, + { + "start": 37523.61, + "end": 37524.83, + "probability": 0.9597 + }, + { + "start": 37524.99, + "end": 37530.03, + "probability": 0.9777 + }, + { + "start": 37530.03, + "end": 37530.45, + "probability": 0.5619 + }, + { + "start": 37530.57, + "end": 37534.25, + "probability": 0.3004 + }, + { + "start": 37535.25, + "end": 37535.25, + "probability": 0.111 + }, + { + "start": 37535.25, + "end": 37535.25, + "probability": 0.0297 + }, + { + "start": 37535.25, + "end": 37535.25, + "probability": 0.0247 + }, + { + "start": 37535.25, + "end": 37535.81, + "probability": 0.6748 + }, + { + "start": 37536.75, + "end": 37537.63, + "probability": 0.7246 + }, + { + "start": 37538.31, + "end": 37541.07, + "probability": 0.881 + }, + { + "start": 37541.73, + "end": 37542.27, + "probability": 0.8964 + }, + { + "start": 37542.35, + "end": 37543.33, + "probability": 0.928 + }, + { + "start": 37543.79, + "end": 37545.63, + "probability": 0.9917 + }, + { + "start": 37546.35, + "end": 37549.73, + "probability": 0.9954 + }, + { + "start": 37550.27, + "end": 37553.09, + "probability": 0.9885 + }, + { + "start": 37553.61, + "end": 37556.83, + "probability": 0.9771 + }, + { + "start": 37557.31, + "end": 37564.23, + "probability": 0.9914 + }, + { + "start": 37564.75, + "end": 37564.93, + "probability": 0.6188 + }, + { + "start": 37565.61, + "end": 37566.13, + "probability": 0.6298 + }, + { + "start": 37566.35, + "end": 37568.65, + "probability": 0.8281 + }, + { + "start": 37569.07, + "end": 37571.97, + "probability": 0.2839 + }, + { + "start": 37575.41, + "end": 37577.13, + "probability": 0.8046 + }, + { + "start": 37578.59, + "end": 37579.75, + "probability": 0.1021 + }, + { + "start": 37581.6, + "end": 37584.35, + "probability": 0.3788 + }, + { + "start": 37584.39, + "end": 37585.21, + "probability": 0.1741 + }, + { + "start": 37585.23, + "end": 37586.03, + "probability": 0.5028 + }, + { + "start": 37586.43, + "end": 37586.79, + "probability": 0.418 + }, + { + "start": 37594.27, + "end": 37597.99, + "probability": 0.6095 + }, + { + "start": 37598.05, + "end": 37598.15, + "probability": 0.7742 + }, + { + "start": 37598.15, + "end": 37598.37, + "probability": 0.6969 + }, + { + "start": 37598.47, + "end": 37602.33, + "probability": 0.9197 + }, + { + "start": 37602.91, + "end": 37603.73, + "probability": 0.7502 + }, + { + "start": 37603.75, + "end": 37606.15, + "probability": 0.9447 + }, + { + "start": 37606.31, + "end": 37607.23, + "probability": 0.6297 + }, + { + "start": 37607.73, + "end": 37609.47, + "probability": 0.4902 + }, + { + "start": 37610.45, + "end": 37612.35, + "probability": 0.7532 + }, + { + "start": 37614.13, + "end": 37617.17, + "probability": 0.5981 + }, + { + "start": 37618.19, + "end": 37621.29, + "probability": 0.9927 + }, + { + "start": 37621.35, + "end": 37622.77, + "probability": 0.8884 + }, + { + "start": 37623.43, + "end": 37626.37, + "probability": 0.9905 + }, + { + "start": 37627.01, + "end": 37628.49, + "probability": 0.7031 + }, + { + "start": 37628.73, + "end": 37628.97, + "probability": 0.5445 + }, + { + "start": 37629.13, + "end": 37630.53, + "probability": 0.9087 + }, + { + "start": 37631.56, + "end": 37633.81, + "probability": 0.9691 + }, + { + "start": 37633.89, + "end": 37635.29, + "probability": 0.9966 + }, + { + "start": 37636.07, + "end": 37638.27, + "probability": 0.9859 + }, + { + "start": 37638.27, + "end": 37641.61, + "probability": 0.9925 + }, + { + "start": 37642.03, + "end": 37646.41, + "probability": 0.994 + }, + { + "start": 37646.85, + "end": 37651.49, + "probability": 0.9926 + }, + { + "start": 37651.93, + "end": 37654.33, + "probability": 0.5688 + }, + { + "start": 37654.57, + "end": 37660.85, + "probability": 0.9868 + }, + { + "start": 37660.91, + "end": 37664.71, + "probability": 0.6501 + }, + { + "start": 37664.81, + "end": 37665.19, + "probability": 0.6147 + }, + { + "start": 37665.19, + "end": 37669.65, + "probability": 0.9771 + }, + { + "start": 37670.57, + "end": 37672.61, + "probability": 0.8071 + }, + { + "start": 37672.61, + "end": 37673.59, + "probability": 0.9817 + }, + { + "start": 37673.95, + "end": 37676.27, + "probability": 0.9846 + }, + { + "start": 37677.15, + "end": 37679.27, + "probability": 0.9461 + }, + { + "start": 37679.29, + "end": 37680.19, + "probability": 0.9405 + }, + { + "start": 37680.53, + "end": 37681.81, + "probability": 0.9274 + }, + { + "start": 37682.15, + "end": 37683.61, + "probability": 0.9919 + }, + { + "start": 37684.09, + "end": 37685.23, + "probability": 0.6747 + }, + { + "start": 37685.39, + "end": 37686.47, + "probability": 0.759 + }, + { + "start": 37686.67, + "end": 37687.03, + "probability": 0.7591 + }, + { + "start": 37687.87, + "end": 37692.01, + "probability": 0.7929 + }, + { + "start": 37692.89, + "end": 37697.35, + "probability": 0.9936 + }, + { + "start": 37697.87, + "end": 37698.31, + "probability": 0.9386 + }, + { + "start": 37699.11, + "end": 37699.89, + "probability": 0.9456 + }, + { + "start": 37701.17, + "end": 37702.33, + "probability": 0.8689 + }, + { + "start": 37702.67, + "end": 37703.21, + "probability": 0.939 + }, + { + "start": 37703.61, + "end": 37705.13, + "probability": 0.9634 + }, + { + "start": 37705.61, + "end": 37707.61, + "probability": 0.9937 + }, + { + "start": 37708.25, + "end": 37709.81, + "probability": 0.9792 + }, + { + "start": 37710.41, + "end": 37712.03, + "probability": 0.9951 + }, + { + "start": 37712.11, + "end": 37715.11, + "probability": 0.6728 + }, + { + "start": 37715.11, + "end": 37717.93, + "probability": 0.9749 + }, + { + "start": 37718.37, + "end": 37722.51, + "probability": 0.9846 + }, + { + "start": 37722.57, + "end": 37724.89, + "probability": 0.4267 + }, + { + "start": 37725.23, + "end": 37729.51, + "probability": 0.9951 + }, + { + "start": 37729.85, + "end": 37733.01, + "probability": 0.9849 + }, + { + "start": 37733.75, + "end": 37737.83, + "probability": 0.9196 + }, + { + "start": 37737.91, + "end": 37738.47, + "probability": 0.7925 + }, + { + "start": 37738.57, + "end": 37739.65, + "probability": 0.9958 + }, + { + "start": 37740.21, + "end": 37744.17, + "probability": 0.9383 + }, + { + "start": 37744.17, + "end": 37747.47, + "probability": 0.9824 + }, + { + "start": 37747.99, + "end": 37748.83, + "probability": 0.7732 + }, + { + "start": 37749.53, + "end": 37756.97, + "probability": 0.7968 + }, + { + "start": 37757.51, + "end": 37759.65, + "probability": 0.986 + }, + { + "start": 37760.21, + "end": 37763.93, + "probability": 0.9945 + }, + { + "start": 37764.03, + "end": 37766.51, + "probability": 0.9956 + }, + { + "start": 37766.87, + "end": 37768.23, + "probability": 0.9379 + }, + { + "start": 37771.03, + "end": 37773.81, + "probability": 0.6924 + }, + { + "start": 37774.47, + "end": 37776.79, + "probability": 0.8381 + }, + { + "start": 37777.05, + "end": 37779.63, + "probability": 0.7783 + }, + { + "start": 37780.13, + "end": 37782.45, + "probability": 0.9358 + }, + { + "start": 37783.49, + "end": 37786.59, + "probability": 0.9889 + }, + { + "start": 37787.33, + "end": 37789.21, + "probability": 0.9927 + }, + { + "start": 37789.81, + "end": 37791.03, + "probability": 0.9367 + }, + { + "start": 37791.21, + "end": 37793.31, + "probability": 0.9635 + }, + { + "start": 37793.83, + "end": 37795.61, + "probability": 0.6357 + }, + { + "start": 37795.75, + "end": 37799.59, + "probability": 0.8755 + }, + { + "start": 37800.07, + "end": 37802.77, + "probability": 0.9724 + }, + { + "start": 37802.85, + "end": 37805.39, + "probability": 0.8224 + }, + { + "start": 37805.69, + "end": 37808.37, + "probability": 0.9183 + }, + { + "start": 37809.01, + "end": 37810.61, + "probability": 0.9585 + }, + { + "start": 37810.79, + "end": 37811.69, + "probability": 0.7951 + }, + { + "start": 37812.11, + "end": 37814.32, + "probability": 0.9883 + }, + { + "start": 37814.53, + "end": 37816.59, + "probability": 0.9918 + }, + { + "start": 37816.95, + "end": 37821.51, + "probability": 0.9465 + }, + { + "start": 37821.85, + "end": 37822.45, + "probability": 0.9606 + }, + { + "start": 37822.55, + "end": 37827.09, + "probability": 0.9919 + }, + { + "start": 37827.81, + "end": 37829.47, + "probability": 0.9197 + }, + { + "start": 37829.75, + "end": 37831.33, + "probability": 0.8951 + }, + { + "start": 37831.93, + "end": 37834.53, + "probability": 0.9893 + }, + { + "start": 37835.25, + "end": 37836.75, + "probability": 0.841 + }, + { + "start": 37836.89, + "end": 37840.51, + "probability": 0.9666 + }, + { + "start": 37840.59, + "end": 37844.37, + "probability": 0.811 + }, + { + "start": 37845.01, + "end": 37846.63, + "probability": 0.8892 + }, + { + "start": 37846.99, + "end": 37851.41, + "probability": 0.8138 + }, + { + "start": 37851.85, + "end": 37856.51, + "probability": 0.9169 + }, + { + "start": 37856.55, + "end": 37856.79, + "probability": 0.2598 + }, + { + "start": 37856.81, + "end": 37857.75, + "probability": 0.9096 + }, + { + "start": 37858.15, + "end": 37863.01, + "probability": 0.972 + }, + { + "start": 37863.07, + "end": 37863.97, + "probability": 0.7419 + }, + { + "start": 37864.01, + "end": 37866.05, + "probability": 0.4113 + }, + { + "start": 37866.05, + "end": 37866.93, + "probability": 0.622 + }, + { + "start": 37867.79, + "end": 37868.45, + "probability": 0.9231 + }, + { + "start": 37869.29, + "end": 37869.47, + "probability": 0.0101 + }, + { + "start": 37869.47, + "end": 37872.65, + "probability": 0.9616 + }, + { + "start": 37873.33, + "end": 37876.05, + "probability": 0.9886 + }, + { + "start": 37876.47, + "end": 37878.43, + "probability": 0.9161 + }, + { + "start": 37878.95, + "end": 37880.39, + "probability": 0.9838 + }, + { + "start": 37880.87, + "end": 37881.35, + "probability": 0.6932 + }, + { + "start": 37881.57, + "end": 37882.77, + "probability": 0.9275 + }, + { + "start": 37883.23, + "end": 37886.79, + "probability": 0.979 + }, + { + "start": 37887.19, + "end": 37887.65, + "probability": 0.9838 + }, + { + "start": 37888.05, + "end": 37890.23, + "probability": 0.6648 + }, + { + "start": 37890.91, + "end": 37894.67, + "probability": 0.8359 + }, + { + "start": 37894.79, + "end": 37895.79, + "probability": 0.9281 + }, + { + "start": 37896.67, + "end": 37898.55, + "probability": 0.936 + }, + { + "start": 37898.69, + "end": 37900.45, + "probability": 0.8589 + }, + { + "start": 37901.05, + "end": 37901.41, + "probability": 0.3563 + }, + { + "start": 37901.43, + "end": 37901.83, + "probability": 0.8229 + }, + { + "start": 37901.83, + "end": 37904.17, + "probability": 0.843 + }, + { + "start": 37904.29, + "end": 37907.39, + "probability": 0.7671 + }, + { + "start": 37908.01, + "end": 37910.29, + "probability": 0.9971 + }, + { + "start": 37910.67, + "end": 37912.51, + "probability": 0.9966 + }, + { + "start": 37913.01, + "end": 37915.43, + "probability": 0.9917 + }, + { + "start": 37915.89, + "end": 37916.39, + "probability": 0.6013 + }, + { + "start": 37916.53, + "end": 37917.81, + "probability": 0.8495 + }, + { + "start": 37918.31, + "end": 37922.05, + "probability": 0.7971 + }, + { + "start": 37922.47, + "end": 37923.75, + "probability": 0.9879 + }, + { + "start": 37923.93, + "end": 37925.13, + "probability": 0.98 + }, + { + "start": 37925.45, + "end": 37926.49, + "probability": 0.8157 + }, + { + "start": 37926.85, + "end": 37929.29, + "probability": 0.9902 + }, + { + "start": 37929.69, + "end": 37933.69, + "probability": 0.9756 + }, + { + "start": 37934.29, + "end": 37934.39, + "probability": 0.4505 + }, + { + "start": 37934.49, + "end": 37934.93, + "probability": 0.757 + }, + { + "start": 37935.07, + "end": 37937.31, + "probability": 0.925 + }, + { + "start": 37937.61, + "end": 37939.75, + "probability": 0.9648 + }, + { + "start": 37939.97, + "end": 37944.45, + "probability": 0.9898 + }, + { + "start": 37945.33, + "end": 37946.93, + "probability": 0.6191 + }, + { + "start": 37947.17, + "end": 37950.43, + "probability": 0.735 + }, + { + "start": 37950.43, + "end": 37953.01, + "probability": 0.9983 + }, + { + "start": 37953.29, + "end": 37955.89, + "probability": 0.9967 + }, + { + "start": 37956.47, + "end": 37958.45, + "probability": 0.9893 + }, + { + "start": 37958.87, + "end": 37962.63, + "probability": 0.9578 + }, + { + "start": 37963.09, + "end": 37965.83, + "probability": 0.9585 + }, + { + "start": 37965.83, + "end": 37968.75, + "probability": 0.9785 + }, + { + "start": 37969.05, + "end": 37971.07, + "probability": 0.9902 + }, + { + "start": 37971.55, + "end": 37972.71, + "probability": 0.4335 + }, + { + "start": 37972.71, + "end": 37973.49, + "probability": 0.7245 + }, + { + "start": 37973.99, + "end": 37976.41, + "probability": 0.8438 + }, + { + "start": 37976.43, + "end": 37979.07, + "probability": 0.9717 + }, + { + "start": 37979.51, + "end": 37980.91, + "probability": 0.8982 + }, + { + "start": 37981.33, + "end": 37987.39, + "probability": 0.8852 + }, + { + "start": 37987.77, + "end": 37990.56, + "probability": 0.9976 + }, + { + "start": 37990.91, + "end": 37993.13, + "probability": 0.8907 + }, + { + "start": 37993.51, + "end": 37994.56, + "probability": 0.9917 + }, + { + "start": 37994.81, + "end": 37995.79, + "probability": 0.8997 + }, + { + "start": 37995.87, + "end": 37998.31, + "probability": 0.9274 + }, + { + "start": 37998.47, + "end": 37998.69, + "probability": 0.6738 + }, + { + "start": 37999.95, + "end": 38000.11, + "probability": 0.4949 + }, + { + "start": 38000.43, + "end": 38001.47, + "probability": 0.0085 + }, + { + "start": 38001.63, + "end": 38005.13, + "probability": 0.1004 + }, + { + "start": 38005.21, + "end": 38006.43, + "probability": 0.1161 + }, + { + "start": 38008.59, + "end": 38010.95, + "probability": 0.7182 + }, + { + "start": 38012.33, + "end": 38012.93, + "probability": 0.4987 + }, + { + "start": 38013.93, + "end": 38014.81, + "probability": 0.5941 + }, + { + "start": 38021.35, + "end": 38021.81, + "probability": 0.4687 + }, + { + "start": 38022.91, + "end": 38025.25, + "probability": 0.7427 + }, + { + "start": 38028.53, + "end": 38028.81, + "probability": 0.3145 + }, + { + "start": 38028.81, + "end": 38029.41, + "probability": 0.7621 + }, + { + "start": 38032.37, + "end": 38035.03, + "probability": 0.8764 + }, + { + "start": 38036.45, + "end": 38038.85, + "probability": 0.7297 + }, + { + "start": 38041.59, + "end": 38045.05, + "probability": 0.8388 + }, + { + "start": 38045.31, + "end": 38048.23, + "probability": 0.9692 + }, + { + "start": 38048.47, + "end": 38050.39, + "probability": 0.9792 + }, + { + "start": 38050.49, + "end": 38051.87, + "probability": 0.9839 + }, + { + "start": 38051.91, + "end": 38052.47, + "probability": 0.8145 + }, + { + "start": 38054.01, + "end": 38055.91, + "probability": 0.7926 + }, + { + "start": 38056.05, + "end": 38059.71, + "probability": 0.9604 + }, + { + "start": 38061.25, + "end": 38062.93, + "probability": 0.9902 + }, + { + "start": 38063.57, + "end": 38065.79, + "probability": 0.8358 + }, + { + "start": 38067.11, + "end": 38069.93, + "probability": 0.7321 + }, + { + "start": 38070.19, + "end": 38072.21, + "probability": 0.955 + }, + { + "start": 38072.91, + "end": 38076.75, + "probability": 0.8955 + }, + { + "start": 38079.74, + "end": 38086.01, + "probability": 0.8899 + }, + { + "start": 38086.63, + "end": 38087.05, + "probability": 0.8417 + }, + { + "start": 38087.13, + "end": 38092.85, + "probability": 0.9932 + }, + { + "start": 38093.63, + "end": 38094.23, + "probability": 0.5703 + }, + { + "start": 38094.49, + "end": 38095.59, + "probability": 0.9519 + }, + { + "start": 38095.73, + "end": 38097.21, + "probability": 0.8908 + }, + { + "start": 38097.93, + "end": 38100.45, + "probability": 0.7059 + }, + { + "start": 38100.53, + "end": 38104.07, + "probability": 0.9941 + }, + { + "start": 38104.07, + "end": 38110.41, + "probability": 0.6596 + }, + { + "start": 38113.51, + "end": 38118.87, + "probability": 0.6175 + }, + { + "start": 38119.57, + "end": 38123.27, + "probability": 0.4268 + }, + { + "start": 38124.47, + "end": 38125.41, + "probability": 0.2833 + }, + { + "start": 38125.41, + "end": 38125.41, + "probability": 0.1633 + }, + { + "start": 38125.41, + "end": 38126.19, + "probability": 0.5088 + }, + { + "start": 38127.43, + "end": 38127.93, + "probability": 0.6768 + }, + { + "start": 38128.17, + "end": 38129.11, + "probability": 0.4163 + }, + { + "start": 38129.11, + "end": 38131.17, + "probability": 0.6961 + }, + { + "start": 38131.19, + "end": 38132.95, + "probability": 0.6217 + }, + { + "start": 38133.21, + "end": 38135.53, + "probability": 0.5882 + }, + { + "start": 38136.79, + "end": 38138.87, + "probability": 0.6964 + }, + { + "start": 38139.01, + "end": 38141.13, + "probability": 0.9911 + }, + { + "start": 38141.23, + "end": 38144.89, + "probability": 0.7805 + }, + { + "start": 38145.41, + "end": 38151.71, + "probability": 0.8367 + }, + { + "start": 38152.23, + "end": 38154.09, + "probability": 0.9982 + }, + { + "start": 38154.43, + "end": 38159.73, + "probability": 0.8035 + }, + { + "start": 38160.43, + "end": 38162.22, + "probability": 0.8334 + }, + { + "start": 38164.55, + "end": 38165.97, + "probability": 0.4276 + }, + { + "start": 38166.17, + "end": 38168.47, + "probability": 0.6494 + }, + { + "start": 38168.65, + "end": 38170.19, + "probability": 0.9834 + }, + { + "start": 38170.25, + "end": 38170.55, + "probability": 0.2662 + }, + { + "start": 38170.65, + "end": 38171.43, + "probability": 0.6047 + }, + { + "start": 38172.63, + "end": 38173.45, + "probability": 0.8157 + }, + { + "start": 38173.51, + "end": 38178.37, + "probability": 0.7286 + }, + { + "start": 38178.87, + "end": 38180.47, + "probability": 0.9678 + }, + { + "start": 38180.67, + "end": 38182.51, + "probability": 0.6774 + }, + { + "start": 38183.01, + "end": 38184.21, + "probability": 0.9673 + }, + { + "start": 38185.23, + "end": 38187.43, + "probability": 0.973 + }, + { + "start": 38188.93, + "end": 38189.31, + "probability": 0.9019 + }, + { + "start": 38189.87, + "end": 38191.59, + "probability": 0.8468 + }, + { + "start": 38191.73, + "end": 38195.63, + "probability": 0.8883 + }, + { + "start": 38197.19, + "end": 38198.45, + "probability": 0.9817 + }, + { + "start": 38199.03, + "end": 38201.11, + "probability": 0.7401 + }, + { + "start": 38202.99, + "end": 38205.13, + "probability": 0.9246 + }, + { + "start": 38205.99, + "end": 38207.55, + "probability": 0.8684 + }, + { + "start": 38207.83, + "end": 38210.31, + "probability": 0.9865 + }, + { + "start": 38211.09, + "end": 38212.21, + "probability": 0.9937 + }, + { + "start": 38213.05, + "end": 38214.15, + "probability": 0.959 + }, + { + "start": 38214.87, + "end": 38217.99, + "probability": 0.9679 + }, + { + "start": 38219.33, + "end": 38222.27, + "probability": 0.8772 + }, + { + "start": 38223.05, + "end": 38226.65, + "probability": 0.989 + }, + { + "start": 38228.07, + "end": 38229.37, + "probability": 0.9855 + }, + { + "start": 38230.59, + "end": 38234.69, + "probability": 0.8699 + }, + { + "start": 38235.27, + "end": 38236.11, + "probability": 0.9342 + }, + { + "start": 38237.27, + "end": 38238.67, + "probability": 0.9348 + }, + { + "start": 38238.87, + "end": 38241.23, + "probability": 0.9975 + }, + { + "start": 38242.11, + "end": 38243.36, + "probability": 0.6275 + }, + { + "start": 38244.27, + "end": 38244.89, + "probability": 0.9488 + }, + { + "start": 38245.21, + "end": 38246.41, + "probability": 0.935 + }, + { + "start": 38246.83, + "end": 38249.65, + "probability": 0.6072 + }, + { + "start": 38249.73, + "end": 38250.29, + "probability": 0.8715 + }, + { + "start": 38252.84, + "end": 38255.42, + "probability": 0.5416 + }, + { + "start": 38256.13, + "end": 38259.25, + "probability": 0.9921 + }, + { + "start": 38259.85, + "end": 38261.37, + "probability": 0.3876 + }, + { + "start": 38261.83, + "end": 38262.61, + "probability": 0.9532 + }, + { + "start": 38263.47, + "end": 38264.07, + "probability": 0.8838 + }, + { + "start": 38264.15, + "end": 38264.89, + "probability": 0.8772 + }, + { + "start": 38265.17, + "end": 38267.88, + "probability": 0.9779 + }, + { + "start": 38269.73, + "end": 38270.83, + "probability": 0.8525 + }, + { + "start": 38271.85, + "end": 38275.29, + "probability": 0.998 + }, + { + "start": 38276.73, + "end": 38280.65, + "probability": 0.9167 + }, + { + "start": 38280.95, + "end": 38283.43, + "probability": 0.8451 + }, + { + "start": 38283.83, + "end": 38284.81, + "probability": 0.825 + }, + { + "start": 38285.23, + "end": 38285.89, + "probability": 0.3139 + }, + { + "start": 38286.53, + "end": 38287.61, + "probability": 0.8569 + }, + { + "start": 38288.65, + "end": 38292.47, + "probability": 0.9919 + }, + { + "start": 38292.47, + "end": 38297.63, + "probability": 0.9793 + }, + { + "start": 38299.05, + "end": 38299.63, + "probability": 0.8127 + }, + { + "start": 38300.09, + "end": 38300.95, + "probability": 0.8647 + }, + { + "start": 38300.97, + "end": 38303.45, + "probability": 0.9688 + }, + { + "start": 38304.07, + "end": 38306.13, + "probability": 0.8853 + }, + { + "start": 38306.81, + "end": 38309.45, + "probability": 0.5946 + }, + { + "start": 38310.61, + "end": 38311.93, + "probability": 0.9255 + }, + { + "start": 38312.63, + "end": 38313.57, + "probability": 0.4562 + }, + { + "start": 38314.73, + "end": 38315.71, + "probability": 0.605 + }, + { + "start": 38316.45, + "end": 38320.49, + "probability": 0.9478 + }, + { + "start": 38320.75, + "end": 38321.09, + "probability": 0.5609 + }, + { + "start": 38322.79, + "end": 38323.23, + "probability": 0.7685 + }, + { + "start": 38323.23, + "end": 38324.81, + "probability": 0.956 + }, + { + "start": 38324.93, + "end": 38327.69, + "probability": 0.9907 + }, + { + "start": 38328.65, + "end": 38330.69, + "probability": 0.9917 + }, + { + "start": 38330.69, + "end": 38334.33, + "probability": 0.9795 + }, + { + "start": 38335.01, + "end": 38337.01, + "probability": 0.8177 + }, + { + "start": 38337.13, + "end": 38339.73, + "probability": 0.8783 + }, + { + "start": 38339.85, + "end": 38341.01, + "probability": 0.9766 + }, + { + "start": 38342.17, + "end": 38343.55, + "probability": 0.9458 + }, + { + "start": 38344.33, + "end": 38345.45, + "probability": 0.9287 + }, + { + "start": 38345.65, + "end": 38347.16, + "probability": 0.9528 + }, + { + "start": 38348.45, + "end": 38349.45, + "probability": 0.9773 + }, + { + "start": 38350.51, + "end": 38351.63, + "probability": 0.7979 + }, + { + "start": 38352.71, + "end": 38355.55, + "probability": 0.9993 + }, + { + "start": 38355.57, + "end": 38358.69, + "probability": 0.9865 + }, + { + "start": 38360.05, + "end": 38360.55, + "probability": 0.9463 + }, + { + "start": 38362.19, + "end": 38364.23, + "probability": 0.9513 + }, + { + "start": 38364.77, + "end": 38365.71, + "probability": 0.96 + }, + { + "start": 38366.23, + "end": 38367.47, + "probability": 0.8001 + }, + { + "start": 38368.01, + "end": 38369.49, + "probability": 0.984 + }, + { + "start": 38370.15, + "end": 38372.15, + "probability": 0.998 + }, + { + "start": 38372.95, + "end": 38373.67, + "probability": 0.7017 + }, + { + "start": 38375.63, + "end": 38378.67, + "probability": 0.9976 + }, + { + "start": 38379.19, + "end": 38381.59, + "probability": 0.7448 + }, + { + "start": 38382.83, + "end": 38386.07, + "probability": 0.5784 + }, + { + "start": 38387.27, + "end": 38388.53, + "probability": 0.7562 + }, + { + "start": 38389.07, + "end": 38391.37, + "probability": 0.2757 + }, + { + "start": 38391.77, + "end": 38393.42, + "probability": 0.9679 + }, + { + "start": 38395.87, + "end": 38396.73, + "probability": 0.6454 + }, + { + "start": 38398.37, + "end": 38401.69, + "probability": 0.9211 + }, + { + "start": 38403.11, + "end": 38404.69, + "probability": 0.9313 + }, + { + "start": 38405.59, + "end": 38408.85, + "probability": 0.8478 + }, + { + "start": 38410.59, + "end": 38411.89, + "probability": 0.9655 + }, + { + "start": 38413.01, + "end": 38416.59, + "probability": 0.8489 + }, + { + "start": 38417.19, + "end": 38419.57, + "probability": 0.9844 + }, + { + "start": 38419.63, + "end": 38421.47, + "probability": 0.7017 + }, + { + "start": 38421.79, + "end": 38423.47, + "probability": 0.8095 + }, + { + "start": 38423.97, + "end": 38425.68, + "probability": 0.9316 + }, + { + "start": 38426.27, + "end": 38426.27, + "probability": 0.6823 + }, + { + "start": 38426.69, + "end": 38429.59, + "probability": 0.7992 + }, + { + "start": 38430.83, + "end": 38432.63, + "probability": 0.8487 + }, + { + "start": 38432.79, + "end": 38433.13, + "probability": 0.8544 + }, + { + "start": 38433.71, + "end": 38434.77, + "probability": 0.9827 + }, + { + "start": 38436.19, + "end": 38438.61, + "probability": 0.9772 + }, + { + "start": 38439.43, + "end": 38441.45, + "probability": 0.9902 + }, + { + "start": 38441.55, + "end": 38442.05, + "probability": 0.3016 + }, + { + "start": 38442.97, + "end": 38443.17, + "probability": 0.5637 + }, + { + "start": 38443.21, + "end": 38443.67, + "probability": 0.6635 + }, + { + "start": 38443.83, + "end": 38445.96, + "probability": 0.8683 + }, + { + "start": 38446.51, + "end": 38450.83, + "probability": 0.1179 + }, + { + "start": 38452.15, + "end": 38452.15, + "probability": 0.4586 + }, + { + "start": 38452.15, + "end": 38452.15, + "probability": 0.1348 + }, + { + "start": 38452.19, + "end": 38457.61, + "probability": 0.9309 + }, + { + "start": 38458.11, + "end": 38458.69, + "probability": 0.752 + }, + { + "start": 38458.91, + "end": 38460.0, + "probability": 0.7088 + }, + { + "start": 38460.77, + "end": 38460.87, + "probability": 0.0672 + }, + { + "start": 38460.87, + "end": 38462.71, + "probability": 0.4948 + }, + { + "start": 38462.71, + "end": 38462.92, + "probability": 0.2379 + }, + { + "start": 38463.71, + "end": 38468.65, + "probability": 0.5021 + }, + { + "start": 38468.91, + "end": 38470.73, + "probability": 0.8689 + }, + { + "start": 38470.83, + "end": 38472.15, + "probability": 0.3823 + }, + { + "start": 38472.21, + "end": 38473.53, + "probability": 0.4156 + }, + { + "start": 38473.57, + "end": 38475.53, + "probability": 0.6614 + }, + { + "start": 38475.83, + "end": 38478.89, + "probability": 0.2043 + }, + { + "start": 38479.11, + "end": 38482.05, + "probability": 0.4851 + }, + { + "start": 38482.15, + "end": 38483.69, + "probability": 0.7691 + }, + { + "start": 38484.25, + "end": 38484.45, + "probability": 0.5791 + }, + { + "start": 38486.29, + "end": 38488.79, + "probability": 0.8995 + }, + { + "start": 38489.03, + "end": 38489.37, + "probability": 0.6745 + }, + { + "start": 38489.95, + "end": 38493.67, + "probability": 0.7278 + }, + { + "start": 38496.41, + "end": 38496.97, + "probability": 0.7698 + }, + { + "start": 38502.33, + "end": 38504.25, + "probability": 0.6943 + }, + { + "start": 38505.59, + "end": 38507.51, + "probability": 0.906 + }, + { + "start": 38508.47, + "end": 38510.31, + "probability": 0.8413 + }, + { + "start": 38510.71, + "end": 38511.51, + "probability": 0.1258 + }, + { + "start": 38511.77, + "end": 38512.29, + "probability": 0.6527 + }, + { + "start": 38512.39, + "end": 38513.27, + "probability": 0.9908 + }, + { + "start": 38513.45, + "end": 38517.57, + "probability": 0.8237 + }, + { + "start": 38517.65, + "end": 38520.21, + "probability": 0.9402 + }, + { + "start": 38520.29, + "end": 38521.29, + "probability": 0.8933 + }, + { + "start": 38521.87, + "end": 38524.21, + "probability": 0.7986 + }, + { + "start": 38524.37, + "end": 38525.77, + "probability": 0.9244 + }, + { + "start": 38526.23, + "end": 38530.15, + "probability": 0.9702 + }, + { + "start": 38530.15, + "end": 38533.31, + "probability": 0.9775 + }, + { + "start": 38533.85, + "end": 38535.37, + "probability": 0.5089 + }, + { + "start": 38535.41, + "end": 38537.17, + "probability": 0.9933 + }, + { + "start": 38537.77, + "end": 38540.75, + "probability": 0.9922 + }, + { + "start": 38540.83, + "end": 38543.27, + "probability": 0.7227 + }, + { + "start": 38543.69, + "end": 38545.39, + "probability": 0.9966 + }, + { + "start": 38546.01, + "end": 38551.25, + "probability": 0.9308 + }, + { + "start": 38551.29, + "end": 38552.37, + "probability": 0.944 + }, + { + "start": 38552.47, + "end": 38556.25, + "probability": 0.974 + }, + { + "start": 38556.37, + "end": 38557.97, + "probability": 0.8976 + }, + { + "start": 38558.67, + "end": 38558.95, + "probability": 0.9091 + }, + { + "start": 38559.07, + "end": 38559.85, + "probability": 0.3123 + }, + { + "start": 38559.85, + "end": 38560.03, + "probability": 0.5684 + }, + { + "start": 38560.31, + "end": 38564.87, + "probability": 0.9964 + }, + { + "start": 38564.87, + "end": 38570.07, + "probability": 0.9904 + }, + { + "start": 38570.65, + "end": 38571.89, + "probability": 0.7395 + }, + { + "start": 38571.99, + "end": 38574.37, + "probability": 0.9445 + }, + { + "start": 38574.79, + "end": 38580.35, + "probability": 0.915 + }, + { + "start": 38580.37, + "end": 38583.51, + "probability": 0.9866 + }, + { + "start": 38584.87, + "end": 38586.79, + "probability": 0.9981 + }, + { + "start": 38586.91, + "end": 38588.69, + "probability": 0.9578 + }, + { + "start": 38589.43, + "end": 38592.13, + "probability": 0.9918 + }, + { + "start": 38592.19, + "end": 38594.45, + "probability": 0.9884 + }, + { + "start": 38595.37, + "end": 38596.19, + "probability": 0.8647 + }, + { + "start": 38596.79, + "end": 38598.55, + "probability": 0.9774 + }, + { + "start": 38599.25, + "end": 38601.09, + "probability": 0.9764 + }, + { + "start": 38601.47, + "end": 38603.0, + "probability": 0.9946 + }, + { + "start": 38603.19, + "end": 38604.93, + "probability": 0.802 + }, + { + "start": 38605.39, + "end": 38608.43, + "probability": 0.9644 + }, + { + "start": 38609.11, + "end": 38613.89, + "probability": 0.9807 + }, + { + "start": 38614.05, + "end": 38615.06, + "probability": 0.8771 + }, + { + "start": 38616.35, + "end": 38619.81, + "probability": 0.7908 + }, + { + "start": 38620.45, + "end": 38624.55, + "probability": 0.9857 + }, + { + "start": 38624.99, + "end": 38626.07, + "probability": 0.9963 + }, + { + "start": 38626.15, + "end": 38627.65, + "probability": 0.836 + }, + { + "start": 38627.73, + "end": 38630.99, + "probability": 0.9689 + }, + { + "start": 38631.53, + "end": 38633.21, + "probability": 0.9979 + }, + { + "start": 38633.27, + "end": 38635.39, + "probability": 0.9981 + }, + { + "start": 38636.05, + "end": 38638.25, + "probability": 0.8717 + }, + { + "start": 38638.53, + "end": 38642.69, + "probability": 0.9805 + }, + { + "start": 38643.31, + "end": 38647.55, + "probability": 0.9965 + }, + { + "start": 38647.55, + "end": 38649.55, + "probability": 0.9727 + }, + { + "start": 38649.95, + "end": 38650.65, + "probability": 0.9682 + }, + { + "start": 38651.27, + "end": 38651.67, + "probability": 0.5473 + }, + { + "start": 38651.69, + "end": 38652.51, + "probability": 0.9279 + }, + { + "start": 38652.79, + "end": 38653.83, + "probability": 0.9391 + }, + { + "start": 38654.23, + "end": 38656.77, + "probability": 0.9424 + }, + { + "start": 38656.77, + "end": 38658.75, + "probability": 0.9589 + }, + { + "start": 38659.95, + "end": 38661.85, + "probability": 0.8864 + }, + { + "start": 38661.89, + "end": 38662.71, + "probability": 0.9404 + }, + { + "start": 38663.81, + "end": 38666.19, + "probability": 0.9107 + }, + { + "start": 38666.37, + "end": 38667.51, + "probability": 0.9753 + }, + { + "start": 38667.87, + "end": 38670.05, + "probability": 0.9479 + }, + { + "start": 38670.53, + "end": 38674.67, + "probability": 0.9752 + }, + { + "start": 38679.63, + "end": 38681.01, + "probability": 0.7863 + }, + { + "start": 38681.05, + "end": 38681.05, + "probability": 0.0344 + }, + { + "start": 38681.05, + "end": 38681.05, + "probability": 0.7824 + }, + { + "start": 38681.07, + "end": 38682.27, + "probability": 0.9749 + }, + { + "start": 38682.79, + "end": 38686.51, + "probability": 0.8687 + }, + { + "start": 38686.61, + "end": 38687.23, + "probability": 0.7893 + }, + { + "start": 38689.43, + "end": 38690.09, + "probability": 0.2647 + }, + { + "start": 38690.09, + "end": 38691.01, + "probability": 0.7409 + }, + { + "start": 38691.27, + "end": 38691.89, + "probability": 0.803 + }, + { + "start": 38692.55, + "end": 38693.11, + "probability": 0.653 + }, + { + "start": 38694.61, + "end": 38695.81, + "probability": 0.8647 + }, + { + "start": 38696.63, + "end": 38698.15, + "probability": 0.9647 + }, + { + "start": 38698.79, + "end": 38701.07, + "probability": 0.9139 + }, + { + "start": 38701.99, + "end": 38702.25, + "probability": 0.0006 + }, + { + "start": 38704.61, + "end": 38704.61, + "probability": 0.695 + }, + { + "start": 38704.61, + "end": 38705.07, + "probability": 0.7479 + }, + { + "start": 38705.51, + "end": 38706.17, + "probability": 0.5224 + }, + { + "start": 38706.31, + "end": 38707.91, + "probability": 0.9707 + }, + { + "start": 38709.29, + "end": 38713.03, + "probability": 0.5123 + }, + { + "start": 38713.41, + "end": 38713.53, + "probability": 0.0502 + }, + { + "start": 38713.53, + "end": 38714.43, + "probability": 0.994 + }, + { + "start": 38716.21, + "end": 38719.79, + "probability": 0.1852 + }, + { + "start": 38719.81, + "end": 38724.39, + "probability": 0.9153 + }, + { + "start": 38724.91, + "end": 38727.69, + "probability": 0.9906 + }, + { + "start": 38728.37, + "end": 38731.13, + "probability": 0.8696 + }, + { + "start": 38731.57, + "end": 38732.35, + "probability": 0.9091 + }, + { + "start": 38733.75, + "end": 38736.71, + "probability": 0.9883 + }, + { + "start": 38736.77, + "end": 38737.41, + "probability": 0.5522 + }, + { + "start": 38737.79, + "end": 38741.91, + "probability": 0.8518 + }, + { + "start": 38741.91, + "end": 38747.35, + "probability": 0.8493 + }, + { + "start": 38747.41, + "end": 38748.65, + "probability": 0.6125 + }, + { + "start": 38748.81, + "end": 38749.15, + "probability": 0.5045 + }, + { + "start": 38749.17, + "end": 38749.79, + "probability": 0.8428 + }, + { + "start": 38750.83, + "end": 38752.73, + "probability": 0.7492 + }, + { + "start": 38753.15, + "end": 38754.29, + "probability": 0.993 + }, + { + "start": 38755.31, + "end": 38758.57, + "probability": 0.9861 + }, + { + "start": 38759.11, + "end": 38761.73, + "probability": 0.8688 + }, + { + "start": 38762.35, + "end": 38764.87, + "probability": 0.8389 + }, + { + "start": 38764.91, + "end": 38765.39, + "probability": 0.9348 + }, + { + "start": 38765.79, + "end": 38768.35, + "probability": 0.9803 + }, + { + "start": 38768.69, + "end": 38769.91, + "probability": 0.9924 + }, + { + "start": 38770.31, + "end": 38771.15, + "probability": 0.8146 + }, + { + "start": 38771.53, + "end": 38772.77, + "probability": 0.9691 + }, + { + "start": 38772.99, + "end": 38776.09, + "probability": 0.9746 + }, + { + "start": 38776.47, + "end": 38777.01, + "probability": 0.7215 + }, + { + "start": 38777.09, + "end": 38777.79, + "probability": 0.877 + }, + { + "start": 38777.85, + "end": 38778.71, + "probability": 0.6997 + }, + { + "start": 38779.03, + "end": 38780.71, + "probability": 0.8833 + }, + { + "start": 38781.21, + "end": 38782.05, + "probability": 0.8882 + }, + { + "start": 38782.47, + "end": 38783.45, + "probability": 0.7552 + }, + { + "start": 38783.93, + "end": 38783.93, + "probability": 0.0879 + }, + { + "start": 38783.93, + "end": 38785.21, + "probability": 0.8862 + }, + { + "start": 38786.23, + "end": 38788.95, + "probability": 0.8327 + }, + { + "start": 38789.09, + "end": 38789.89, + "probability": 0.3753 + }, + { + "start": 38789.95, + "end": 38792.35, + "probability": 0.2136 + }, + { + "start": 38794.09, + "end": 38797.85, + "probability": 0.9912 + }, + { + "start": 38798.39, + "end": 38801.19, + "probability": 0.9313 + }, + { + "start": 38801.47, + "end": 38802.91, + "probability": 0.9778 + }, + { + "start": 38803.43, + "end": 38808.71, + "probability": 0.9946 + }, + { + "start": 38809.15, + "end": 38811.99, + "probability": 0.7712 + }, + { + "start": 38812.11, + "end": 38813.49, + "probability": 0.9971 + }, + { + "start": 38813.87, + "end": 38816.41, + "probability": 0.5381 + }, + { + "start": 38817.31, + "end": 38821.07, + "probability": 0.5108 + }, + { + "start": 38821.93, + "end": 38823.33, + "probability": 0.5876 + }, + { + "start": 38823.91, + "end": 38825.97, + "probability": 0.9958 + }, + { + "start": 38827.71, + "end": 38831.57, + "probability": 0.5872 + }, + { + "start": 38831.63, + "end": 38833.39, + "probability": 0.6846 + }, + { + "start": 38833.47, + "end": 38834.13, + "probability": 0.6046 + }, + { + "start": 38834.31, + "end": 38835.87, + "probability": 0.9362 + }, + { + "start": 38836.13, + "end": 38840.23, + "probability": 0.7364 + }, + { + "start": 38841.79, + "end": 38844.59, + "probability": 0.9966 + }, + { + "start": 38845.59, + "end": 38849.63, + "probability": 0.8709 + }, + { + "start": 38849.87, + "end": 38850.41, + "probability": 0.8252 + }, + { + "start": 38850.57, + "end": 38855.91, + "probability": 0.9975 + }, + { + "start": 38855.97, + "end": 38857.69, + "probability": 0.9781 + }, + { + "start": 38858.23, + "end": 38859.69, + "probability": 0.9291 + }, + { + "start": 38859.87, + "end": 38860.61, + "probability": 0.8733 + }, + { + "start": 38861.71, + "end": 38863.15, + "probability": 0.986 + }, + { + "start": 38863.23, + "end": 38863.87, + "probability": 0.8847 + }, + { + "start": 38864.03, + "end": 38866.43, + "probability": 0.7831 + }, + { + "start": 38867.71, + "end": 38868.73, + "probability": 0.9974 + }, + { + "start": 38870.11, + "end": 38871.41, + "probability": 0.929 + }, + { + "start": 38871.45, + "end": 38873.37, + "probability": 0.9694 + }, + { + "start": 38873.37, + "end": 38875.51, + "probability": 0.9945 + }, + { + "start": 38875.95, + "end": 38876.47, + "probability": 0.6225 + }, + { + "start": 38876.85, + "end": 38879.07, + "probability": 0.9968 + }, + { + "start": 38879.75, + "end": 38884.39, + "probability": 0.9647 + }, + { + "start": 38885.39, + "end": 38887.55, + "probability": 0.9852 + }, + { + "start": 38888.15, + "end": 38890.41, + "probability": 0.9989 + }, + { + "start": 38890.79, + "end": 38894.92, + "probability": 0.9958 + }, + { + "start": 38895.37, + "end": 38897.43, + "probability": 0.9586 + }, + { + "start": 38898.03, + "end": 38901.15, + "probability": 0.9659 + }, + { + "start": 38901.39, + "end": 38901.73, + "probability": 0.8684 + }, + { + "start": 38902.31, + "end": 38902.73, + "probability": 0.6587 + }, + { + "start": 38902.81, + "end": 38904.05, + "probability": 0.7588 + }, + { + "start": 38913.75, + "end": 38914.93, + "probability": 0.4278 + }, + { + "start": 38915.97, + "end": 38917.49, + "probability": 0.766 + }, + { + "start": 38918.71, + "end": 38920.75, + "probability": 0.7962 + }, + { + "start": 38921.99, + "end": 38924.35, + "probability": 0.972 + }, + { + "start": 38925.23, + "end": 38927.93, + "probability": 0.9929 + }, + { + "start": 38929.05, + "end": 38930.76, + "probability": 0.841 + }, + { + "start": 38931.65, + "end": 38934.29, + "probability": 0.9277 + }, + { + "start": 38936.11, + "end": 38939.35, + "probability": 0.9373 + }, + { + "start": 38940.85, + "end": 38946.25, + "probability": 0.8617 + }, + { + "start": 38946.87, + "end": 38947.49, + "probability": 0.8362 + }, + { + "start": 38948.47, + "end": 38950.35, + "probability": 0.9991 + }, + { + "start": 38951.13, + "end": 38953.27, + "probability": 0.9873 + }, + { + "start": 38953.99, + "end": 38956.43, + "probability": 0.6311 + }, + { + "start": 38957.15, + "end": 38958.55, + "probability": 0.9526 + }, + { + "start": 38959.15, + "end": 38960.67, + "probability": 0.9717 + }, + { + "start": 38960.91, + "end": 38962.73, + "probability": 0.9911 + }, + { + "start": 38962.81, + "end": 38963.63, + "probability": 0.9338 + }, + { + "start": 38964.95, + "end": 38966.97, + "probability": 0.9231 + }, + { + "start": 38967.63, + "end": 38971.97, + "probability": 0.9434 + }, + { + "start": 38973.19, + "end": 38977.69, + "probability": 0.9872 + }, + { + "start": 38978.67, + "end": 38980.44, + "probability": 0.9714 + }, + { + "start": 38981.01, + "end": 38982.91, + "probability": 0.7482 + }, + { + "start": 38983.85, + "end": 38989.69, + "probability": 0.9852 + }, + { + "start": 38991.67, + "end": 38993.47, + "probability": 0.7031 + }, + { + "start": 38994.39, + "end": 38996.95, + "probability": 0.9763 + }, + { + "start": 38997.75, + "end": 38999.37, + "probability": 0.546 + }, + { + "start": 39000.31, + "end": 39001.09, + "probability": 0.9756 + }, + { + "start": 39001.71, + "end": 39003.58, + "probability": 0.9598 + }, + { + "start": 39003.67, + "end": 39009.33, + "probability": 0.8141 + }, + { + "start": 39009.33, + "end": 39010.11, + "probability": 0.7938 + }, + { + "start": 39010.99, + "end": 39012.47, + "probability": 0.7499 + }, + { + "start": 39012.55, + "end": 39015.85, + "probability": 0.7856 + }, + { + "start": 39016.37, + "end": 39018.91, + "probability": 0.9823 + }, + { + "start": 39019.39, + "end": 39021.83, + "probability": 0.9498 + }, + { + "start": 39023.05, + "end": 39025.85, + "probability": 0.9022 + }, + { + "start": 39026.53, + "end": 39027.75, + "probability": 0.9655 + }, + { + "start": 39028.37, + "end": 39029.79, + "probability": 0.8951 + }, + { + "start": 39030.03, + "end": 39035.93, + "probability": 0.9639 + }, + { + "start": 39036.35, + "end": 39038.09, + "probability": 0.8894 + }, + { + "start": 39038.69, + "end": 39041.61, + "probability": 0.9935 + }, + { + "start": 39043.19, + "end": 39045.05, + "probability": 0.7835 + }, + { + "start": 39045.87, + "end": 39047.01, + "probability": 0.7533 + }, + { + "start": 39047.57, + "end": 39049.61, + "probability": 0.9659 + }, + { + "start": 39050.41, + "end": 39057.19, + "probability": 0.8886 + }, + { + "start": 39057.61, + "end": 39058.38, + "probability": 0.9795 + }, + { + "start": 39059.23, + "end": 39061.05, + "probability": 0.791 + }, + { + "start": 39061.75, + "end": 39062.99, + "probability": 0.9788 + }, + { + "start": 39063.71, + "end": 39066.7, + "probability": 0.9894 + }, + { + "start": 39067.39, + "end": 39069.74, + "probability": 0.9905 + }, + { + "start": 39070.61, + "end": 39072.21, + "probability": 0.9509 + }, + { + "start": 39072.65, + "end": 39076.25, + "probability": 0.9524 + }, + { + "start": 39076.39, + "end": 39076.87, + "probability": 0.788 + }, + { + "start": 39077.75, + "end": 39079.13, + "probability": 0.9948 + }, + { + "start": 39080.19, + "end": 39085.67, + "probability": 0.9897 + }, + { + "start": 39086.33, + "end": 39088.85, + "probability": 0.8856 + }, + { + "start": 39089.97, + "end": 39090.49, + "probability": 0.9571 + }, + { + "start": 39091.37, + "end": 39092.95, + "probability": 0.9565 + }, + { + "start": 39093.03, + "end": 39096.32, + "probability": 0.9521 + }, + { + "start": 39096.99, + "end": 39101.07, + "probability": 0.9784 + }, + { + "start": 39101.99, + "end": 39105.13, + "probability": 0.9739 + }, + { + "start": 39105.57, + "end": 39110.39, + "probability": 0.8187 + }, + { + "start": 39110.43, + "end": 39111.03, + "probability": 0.7141 + }, + { + "start": 39111.51, + "end": 39112.13, + "probability": 0.7815 + }, + { + "start": 39113.13, + "end": 39115.37, + "probability": 0.9956 + }, + { + "start": 39115.51, + "end": 39116.53, + "probability": 0.9368 + }, + { + "start": 39117.23, + "end": 39119.15, + "probability": 0.8254 + }, + { + "start": 39119.25, + "end": 39121.67, + "probability": 0.9161 + }, + { + "start": 39122.59, + "end": 39124.91, + "probability": 0.846 + }, + { + "start": 39125.57, + "end": 39127.27, + "probability": 0.9098 + }, + { + "start": 39127.95, + "end": 39131.01, + "probability": 0.981 + }, + { + "start": 39131.09, + "end": 39134.47, + "probability": 0.9066 + }, + { + "start": 39135.01, + "end": 39138.01, + "probability": 0.9034 + }, + { + "start": 39138.61, + "end": 39141.05, + "probability": 0.9769 + }, + { + "start": 39141.71, + "end": 39145.01, + "probability": 0.9933 + }, + { + "start": 39145.47, + "end": 39147.63, + "probability": 0.7385 + }, + { + "start": 39147.71, + "end": 39149.11, + "probability": 0.7737 + }, + { + "start": 39150.03, + "end": 39150.99, + "probability": 0.9697 + }, + { + "start": 39151.83, + "end": 39153.93, + "probability": 0.958 + }, + { + "start": 39154.99, + "end": 39159.41, + "probability": 0.9978 + }, + { + "start": 39159.57, + "end": 39162.87, + "probability": 0.7778 + }, + { + "start": 39163.49, + "end": 39166.35, + "probability": 0.9901 + }, + { + "start": 39167.17, + "end": 39168.13, + "probability": 0.9729 + }, + { + "start": 39168.25, + "end": 39168.61, + "probability": 0.4045 + }, + { + "start": 39168.79, + "end": 39171.61, + "probability": 0.5425 + }, + { + "start": 39172.83, + "end": 39177.93, + "probability": 0.918 + }, + { + "start": 39178.57, + "end": 39179.79, + "probability": 0.8514 + }, + { + "start": 39180.63, + "end": 39184.25, + "probability": 0.9746 + }, + { + "start": 39184.65, + "end": 39186.01, + "probability": 0.9946 + }, + { + "start": 39187.13, + "end": 39188.05, + "probability": 0.9941 + }, + { + "start": 39189.19, + "end": 39191.03, + "probability": 0.9932 + }, + { + "start": 39191.69, + "end": 39196.05, + "probability": 0.941 + }, + { + "start": 39196.23, + "end": 39197.33, + "probability": 0.7762 + }, + { + "start": 39198.09, + "end": 39204.19, + "probability": 0.3896 + }, + { + "start": 39204.61, + "end": 39206.35, + "probability": 0.8066 + }, + { + "start": 39206.87, + "end": 39206.87, + "probability": 0.4155 + }, + { + "start": 39208.61, + "end": 39209.71, + "probability": 0.4046 + }, + { + "start": 39209.85, + "end": 39210.07, + "probability": 0.2316 + }, + { + "start": 39210.19, + "end": 39210.89, + "probability": 0.3203 + }, + { + "start": 39211.07, + "end": 39214.67, + "probability": 0.8083 + }, + { + "start": 39214.77, + "end": 39215.55, + "probability": 0.9939 + }, + { + "start": 39216.13, + "end": 39218.83, + "probability": 0.7731 + }, + { + "start": 39219.71, + "end": 39224.11, + "probability": 0.8533 + }, + { + "start": 39224.61, + "end": 39228.21, + "probability": 0.9787 + }, + { + "start": 39229.51, + "end": 39233.15, + "probability": 0.991 + }, + { + "start": 39233.75, + "end": 39234.05, + "probability": 0.3386 + }, + { + "start": 39234.05, + "end": 39236.47, + "probability": 0.8619 + }, + { + "start": 39238.39, + "end": 39241.41, + "probability": 0.9898 + }, + { + "start": 39242.07, + "end": 39243.87, + "probability": 0.9156 + }, + { + "start": 39244.61, + "end": 39246.25, + "probability": 0.9538 + }, + { + "start": 39247.69, + "end": 39253.39, + "probability": 0.7078 + }, + { + "start": 39254.49, + "end": 39254.49, + "probability": 0.3478 + }, + { + "start": 39254.49, + "end": 39254.49, + "probability": 0.5417 + }, + { + "start": 39254.49, + "end": 39259.47, + "probability": 0.9945 + }, + { + "start": 39259.47, + "end": 39262.95, + "probability": 0.9996 + }, + { + "start": 39263.51, + "end": 39265.15, + "probability": 0.9352 + }, + { + "start": 39265.37, + "end": 39266.25, + "probability": 0.9467 + }, + { + "start": 39266.83, + "end": 39267.75, + "probability": 0.7715 + }, + { + "start": 39268.57, + "end": 39270.83, + "probability": 0.8984 + }, + { + "start": 39272.11, + "end": 39274.61, + "probability": 0.9854 + }, + { + "start": 39275.31, + "end": 39276.47, + "probability": 0.5643 + }, + { + "start": 39277.01, + "end": 39278.85, + "probability": 0.9252 + }, + { + "start": 39278.93, + "end": 39279.29, + "probability": 0.7308 + }, + { + "start": 39279.49, + "end": 39284.81, + "probability": 0.9871 + }, + { + "start": 39285.99, + "end": 39290.41, + "probability": 0.9767 + }, + { + "start": 39291.03, + "end": 39292.35, + "probability": 0.9402 + }, + { + "start": 39292.53, + "end": 39293.45, + "probability": 0.9376 + }, + { + "start": 39293.85, + "end": 39295.11, + "probability": 0.9748 + }, + { + "start": 39295.21, + "end": 39296.15, + "probability": 0.9725 + }, + { + "start": 39296.53, + "end": 39298.83, + "probability": 0.9666 + }, + { + "start": 39299.01, + "end": 39299.01, + "probability": 0.6753 + }, + { + "start": 39299.23, + "end": 39302.65, + "probability": 0.9718 + }, + { + "start": 39302.81, + "end": 39303.07, + "probability": 0.573 + }, + { + "start": 39303.23, + "end": 39303.81, + "probability": 0.6125 + }, + { + "start": 39303.83, + "end": 39304.99, + "probability": 0.6032 + }, + { + "start": 39326.73, + "end": 39327.65, + "probability": 0.5317 + }, + { + "start": 39329.5, + "end": 39332.33, + "probability": 0.6517 + }, + { + "start": 39333.39, + "end": 39335.39, + "probability": 0.9012 + }, + { + "start": 39336.41, + "end": 39337.27, + "probability": 0.7616 + }, + { + "start": 39338.05, + "end": 39339.19, + "probability": 0.7308 + }, + { + "start": 39341.41, + "end": 39344.11, + "probability": 0.9907 + }, + { + "start": 39345.15, + "end": 39346.63, + "probability": 0.603 + }, + { + "start": 39347.99, + "end": 39350.27, + "probability": 0.8334 + }, + { + "start": 39351.97, + "end": 39352.93, + "probability": 0.9031 + }, + { + "start": 39353.75, + "end": 39355.17, + "probability": 0.9619 + }, + { + "start": 39355.85, + "end": 39356.73, + "probability": 0.9912 + }, + { + "start": 39357.89, + "end": 39367.57, + "probability": 0.9891 + }, + { + "start": 39368.81, + "end": 39370.55, + "probability": 0.9557 + }, + { + "start": 39371.41, + "end": 39373.41, + "probability": 0.9692 + }, + { + "start": 39374.67, + "end": 39380.13, + "probability": 0.8413 + }, + { + "start": 39381.13, + "end": 39382.32, + "probability": 0.5025 + }, + { + "start": 39384.05, + "end": 39386.71, + "probability": 0.8293 + }, + { + "start": 39386.89, + "end": 39391.05, + "probability": 0.9878 + }, + { + "start": 39391.71, + "end": 39392.83, + "probability": 0.6682 + }, + { + "start": 39395.17, + "end": 39397.99, + "probability": 0.9092 + }, + { + "start": 39399.61, + "end": 39401.99, + "probability": 0.978 + }, + { + "start": 39402.79, + "end": 39406.51, + "probability": 0.9934 + }, + { + "start": 39407.07, + "end": 39409.77, + "probability": 0.9932 + }, + { + "start": 39411.17, + "end": 39412.53, + "probability": 0.8853 + }, + { + "start": 39413.69, + "end": 39419.73, + "probability": 0.9817 + }, + { + "start": 39421.37, + "end": 39422.75, + "probability": 0.9854 + }, + { + "start": 39423.87, + "end": 39425.25, + "probability": 0.8694 + }, + { + "start": 39426.15, + "end": 39427.99, + "probability": 0.8387 + }, + { + "start": 39428.05, + "end": 39433.45, + "probability": 0.6347 + }, + { + "start": 39433.57, + "end": 39434.29, + "probability": 0.4563 + }, + { + "start": 39435.45, + "end": 39436.23, + "probability": 0.9624 + }, + { + "start": 39436.31, + "end": 39441.15, + "probability": 0.9107 + }, + { + "start": 39442.03, + "end": 39445.23, + "probability": 0.8953 + }, + { + "start": 39445.67, + "end": 39447.79, + "probability": 0.8142 + }, + { + "start": 39448.53, + "end": 39451.99, + "probability": 0.5362 + }, + { + "start": 39453.35, + "end": 39454.33, + "probability": 0.9959 + }, + { + "start": 39454.99, + "end": 39459.23, + "probability": 0.9946 + }, + { + "start": 39459.77, + "end": 39462.69, + "probability": 0.9516 + }, + { + "start": 39463.67, + "end": 39466.18, + "probability": 0.9849 + }, + { + "start": 39466.73, + "end": 39468.03, + "probability": 0.8364 + }, + { + "start": 39470.21, + "end": 39470.79, + "probability": 0.6079 + }, + { + "start": 39471.87, + "end": 39473.89, + "probability": 0.9149 + }, + { + "start": 39474.51, + "end": 39477.09, + "probability": 0.9805 + }, + { + "start": 39477.93, + "end": 39483.67, + "probability": 0.9736 + }, + { + "start": 39483.93, + "end": 39489.41, + "probability": 0.9819 + }, + { + "start": 39489.43, + "end": 39490.79, + "probability": 0.7039 + }, + { + "start": 39491.63, + "end": 39492.61, + "probability": 0.6165 + }, + { + "start": 39493.19, + "end": 39493.98, + "probability": 0.9817 + }, + { + "start": 39494.69, + "end": 39497.31, + "probability": 0.9985 + }, + { + "start": 39498.31, + "end": 39499.21, + "probability": 0.9904 + }, + { + "start": 39499.99, + "end": 39502.17, + "probability": 0.9456 + }, + { + "start": 39504.35, + "end": 39505.51, + "probability": 0.9875 + }, + { + "start": 39507.79, + "end": 39508.91, + "probability": 0.775 + }, + { + "start": 39509.95, + "end": 39513.27, + "probability": 0.8517 + }, + { + "start": 39514.23, + "end": 39517.89, + "probability": 0.6934 + }, + { + "start": 39518.63, + "end": 39519.99, + "probability": 0.9985 + }, + { + "start": 39521.59, + "end": 39522.69, + "probability": 0.7642 + }, + { + "start": 39523.21, + "end": 39526.91, + "probability": 0.9189 + }, + { + "start": 39526.95, + "end": 39527.63, + "probability": 0.7585 + }, + { + "start": 39527.75, + "end": 39528.55, + "probability": 0.9817 + }, + { + "start": 39528.75, + "end": 39529.45, + "probability": 0.7234 + }, + { + "start": 39529.57, + "end": 39530.19, + "probability": 0.7156 + }, + { + "start": 39530.39, + "end": 39531.65, + "probability": 0.7199 + }, + { + "start": 39532.43, + "end": 39536.61, + "probability": 0.8689 + }, + { + "start": 39537.77, + "end": 39539.85, + "probability": 0.6916 + }, + { + "start": 39540.51, + "end": 39543.81, + "probability": 0.9656 + }, + { + "start": 39543.93, + "end": 39545.03, + "probability": 0.9556 + }, + { + "start": 39545.69, + "end": 39546.17, + "probability": 0.8327 + }, + { + "start": 39547.05, + "end": 39551.97, + "probability": 0.9804 + }, + { + "start": 39553.55, + "end": 39554.41, + "probability": 0.7833 + }, + { + "start": 39555.27, + "end": 39557.73, + "probability": 0.957 + }, + { + "start": 39558.91, + "end": 39566.65, + "probability": 0.6801 + }, + { + "start": 39569.46, + "end": 39571.67, + "probability": 0.9586 + }, + { + "start": 39572.99, + "end": 39578.23, + "probability": 0.9697 + }, + { + "start": 39578.23, + "end": 39583.63, + "probability": 0.7961 + }, + { + "start": 39583.83, + "end": 39584.57, + "probability": 0.5592 + }, + { + "start": 39584.69, + "end": 39586.69, + "probability": 0.6344 + }, + { + "start": 39587.29, + "end": 39588.95, + "probability": 0.8979 + }, + { + "start": 39589.41, + "end": 39592.51, + "probability": 0.7877 + }, + { + "start": 39593.75, + "end": 39599.91, + "probability": 0.9355 + }, + { + "start": 39600.97, + "end": 39607.49, + "probability": 0.8586 + }, + { + "start": 39607.75, + "end": 39609.3, + "probability": 0.8013 + }, + { + "start": 39609.77, + "end": 39614.21, + "probability": 0.3903 + }, + { + "start": 39614.51, + "end": 39620.03, + "probability": 0.9931 + }, + { + "start": 39621.71, + "end": 39624.41, + "probability": 0.7018 + }, + { + "start": 39625.05, + "end": 39630.45, + "probability": 0.8249 + }, + { + "start": 39631.01, + "end": 39637.47, + "probability": 0.9214 + }, + { + "start": 39637.51, + "end": 39638.71, + "probability": 0.9386 + }, + { + "start": 39639.23, + "end": 39640.53, + "probability": 0.4852 + }, + { + "start": 39641.55, + "end": 39642.11, + "probability": 0.7315 + }, + { + "start": 39643.86, + "end": 39644.91, + "probability": 0.2543 + }, + { + "start": 39644.91, + "end": 39649.89, + "probability": 0.873 + }, + { + "start": 39650.33, + "end": 39651.73, + "probability": 0.7807 + }, + { + "start": 39652.63, + "end": 39653.93, + "probability": 0.8965 + }, + { + "start": 39654.35, + "end": 39658.75, + "probability": 0.8758 + }, + { + "start": 39659.73, + "end": 39662.69, + "probability": 0.9004 + }, + { + "start": 39663.29, + "end": 39666.49, + "probability": 0.5692 + }, + { + "start": 39666.57, + "end": 39667.01, + "probability": 0.5166 + }, + { + "start": 39667.13, + "end": 39668.01, + "probability": 0.1712 + }, + { + "start": 39668.01, + "end": 39668.43, + "probability": 0.4066 + }, + { + "start": 39668.53, + "end": 39669.27, + "probability": 0.4508 + }, + { + "start": 39669.75, + "end": 39671.25, + "probability": 0.9837 + }, + { + "start": 39671.77, + "end": 39672.23, + "probability": 0.2474 + }, + { + "start": 39672.89, + "end": 39673.57, + "probability": 0.6703 + }, + { + "start": 39673.85, + "end": 39675.65, + "probability": 0.3956 + }, + { + "start": 39676.23, + "end": 39677.99, + "probability": 0.7243 + }, + { + "start": 39678.79, + "end": 39680.19, + "probability": 0.6618 + }, + { + "start": 39681.31, + "end": 39682.09, + "probability": 0.9192 + }, + { + "start": 39682.65, + "end": 39683.81, + "probability": 0.4942 + }, + { + "start": 39685.39, + "end": 39687.41, + "probability": 0.8924 + }, + { + "start": 39688.15, + "end": 39690.25, + "probability": 0.0066 + }, + { + "start": 39704.25, + "end": 39706.55, + "probability": 0.3435 + }, + { + "start": 39709.35, + "end": 39711.33, + "probability": 0.755 + }, + { + "start": 39712.37, + "end": 39717.27, + "probability": 0.998 + }, + { + "start": 39717.27, + "end": 39721.97, + "probability": 0.9941 + }, + { + "start": 39723.09, + "end": 39726.25, + "probability": 0.9982 + }, + { + "start": 39727.45, + "end": 39729.37, + "probability": 0.9906 + }, + { + "start": 39730.55, + "end": 39732.67, + "probability": 0.9902 + }, + { + "start": 39732.79, + "end": 39733.91, + "probability": 0.9524 + }, + { + "start": 39734.95, + "end": 39737.23, + "probability": 0.9899 + }, + { + "start": 39737.35, + "end": 39738.63, + "probability": 0.9663 + }, + { + "start": 39738.79, + "end": 39740.13, + "probability": 0.939 + }, + { + "start": 39740.95, + "end": 39742.43, + "probability": 0.9541 + }, + { + "start": 39743.91, + "end": 39743.95, + "probability": 0.2394 + }, + { + "start": 39744.87, + "end": 39749.71, + "probability": 0.9663 + }, + { + "start": 39749.91, + "end": 39753.47, + "probability": 0.9867 + }, + { + "start": 39753.89, + "end": 39757.33, + "probability": 0.9294 + }, + { + "start": 39758.09, + "end": 39759.87, + "probability": 0.5352 + }, + { + "start": 39761.01, + "end": 39765.75, + "probability": 0.9893 + }, + { + "start": 39766.55, + "end": 39771.75, + "probability": 0.9791 + }, + { + "start": 39772.89, + "end": 39774.95, + "probability": 0.8288 + }, + { + "start": 39775.05, + "end": 39777.07, + "probability": 0.998 + }, + { + "start": 39778.07, + "end": 39779.06, + "probability": 0.9874 + }, + { + "start": 39780.37, + "end": 39781.87, + "probability": 0.9926 + }, + { + "start": 39782.83, + "end": 39783.93, + "probability": 0.9993 + }, + { + "start": 39785.21, + "end": 39790.71, + "probability": 0.9141 + }, + { + "start": 39792.05, + "end": 39794.33, + "probability": 0.8353 + }, + { + "start": 39794.59, + "end": 39797.31, + "probability": 0.9904 + }, + { + "start": 39798.47, + "end": 39801.51, + "probability": 0.986 + }, + { + "start": 39803.35, + "end": 39804.61, + "probability": 0.8633 + }, + { + "start": 39805.17, + "end": 39808.43, + "probability": 0.9849 + }, + { + "start": 39808.43, + "end": 39810.75, + "probability": 0.9956 + }, + { + "start": 39811.79, + "end": 39817.87, + "probability": 0.9989 + }, + { + "start": 39819.29, + "end": 39823.41, + "probability": 0.9955 + }, + { + "start": 39824.35, + "end": 39827.85, + "probability": 0.9056 + }, + { + "start": 39827.99, + "end": 39828.35, + "probability": 0.5533 + }, + { + "start": 39828.53, + "end": 39829.69, + "probability": 0.6879 + }, + { + "start": 39829.77, + "end": 39831.81, + "probability": 0.6636 + }, + { + "start": 39832.77, + "end": 39835.29, + "probability": 0.9954 + }, + { + "start": 39835.93, + "end": 39842.27, + "probability": 0.9869 + }, + { + "start": 39842.55, + "end": 39843.91, + "probability": 0.9713 + }, + { + "start": 39844.37, + "end": 39845.75, + "probability": 0.9796 + }, + { + "start": 39845.91, + "end": 39847.23, + "probability": 0.9907 + }, + { + "start": 39847.31, + "end": 39850.07, + "probability": 0.9904 + }, + { + "start": 39850.95, + "end": 39852.57, + "probability": 0.9761 + }, + { + "start": 39852.65, + "end": 39856.87, + "probability": 0.9957 + }, + { + "start": 39857.05, + "end": 39857.29, + "probability": 0.6755 + }, + { + "start": 39857.71, + "end": 39858.49, + "probability": 0.8706 + }, + { + "start": 39858.65, + "end": 39862.17, + "probability": 0.9941 + }, + { + "start": 39862.33, + "end": 39863.74, + "probability": 0.8577 + }, + { + "start": 39864.57, + "end": 39866.69, + "probability": 0.992 + }, + { + "start": 39867.49, + "end": 39869.43, + "probability": 0.8285 + }, + { + "start": 39869.59, + "end": 39870.93, + "probability": 0.4998 + }, + { + "start": 39871.25, + "end": 39872.31, + "probability": 0.9085 + }, + { + "start": 39872.53, + "end": 39873.35, + "probability": 0.7342 + }, + { + "start": 39874.77, + "end": 39879.87, + "probability": 0.9927 + }, + { + "start": 39879.97, + "end": 39881.45, + "probability": 0.99 + }, + { + "start": 39881.81, + "end": 39883.83, + "probability": 0.9961 + }, + { + "start": 39884.31, + "end": 39885.52, + "probability": 0.8877 + }, + { + "start": 39886.13, + "end": 39887.01, + "probability": 0.6794 + }, + { + "start": 39887.07, + "end": 39889.09, + "probability": 0.9868 + }, + { + "start": 39890.95, + "end": 39891.63, + "probability": 0.7678 + }, + { + "start": 39893.31, + "end": 39895.67, + "probability": 0.9971 + }, + { + "start": 39895.67, + "end": 39901.19, + "probability": 0.936 + }, + { + "start": 39902.19, + "end": 39904.17, + "probability": 0.9174 + }, + { + "start": 39904.83, + "end": 39910.95, + "probability": 0.9622 + }, + { + "start": 39911.09, + "end": 39911.75, + "probability": 0.61 + }, + { + "start": 39911.81, + "end": 39912.51, + "probability": 0.9186 + }, + { + "start": 39912.73, + "end": 39913.21, + "probability": 0.9165 + }, + { + "start": 39913.35, + "end": 39914.05, + "probability": 0.8394 + }, + { + "start": 39914.61, + "end": 39916.45, + "probability": 0.8311 + }, + { + "start": 39917.89, + "end": 39921.17, + "probability": 0.8232 + }, + { + "start": 39921.93, + "end": 39924.89, + "probability": 0.9834 + }, + { + "start": 39924.93, + "end": 39928.37, + "probability": 0.9294 + }, + { + "start": 39928.51, + "end": 39930.35, + "probability": 0.5962 + }, + { + "start": 39930.47, + "end": 39930.65, + "probability": 0.8532 + }, + { + "start": 39930.77, + "end": 39934.69, + "probability": 0.9853 + }, + { + "start": 39935.03, + "end": 39937.85, + "probability": 0.9974 + }, + { + "start": 39937.91, + "end": 39940.75, + "probability": 0.995 + }, + { + "start": 39941.25, + "end": 39941.43, + "probability": 0.4148 + }, + { + "start": 39941.53, + "end": 39941.67, + "probability": 0.8698 + }, + { + "start": 39941.75, + "end": 39943.61, + "probability": 0.9447 + }, + { + "start": 39944.01, + "end": 39945.07, + "probability": 0.8792 + }, + { + "start": 39945.13, + "end": 39945.59, + "probability": 0.8269 + }, + { + "start": 39945.83, + "end": 39948.99, + "probability": 0.9675 + }, + { + "start": 39948.99, + "end": 39952.13, + "probability": 0.9961 + }, + { + "start": 39952.59, + "end": 39957.09, + "probability": 0.9964 + }, + { + "start": 39957.41, + "end": 39958.83, + "probability": 0.9515 + }, + { + "start": 39958.93, + "end": 39959.89, + "probability": 0.9846 + }, + { + "start": 39961.65, + "end": 39965.05, + "probability": 0.981 + }, + { + "start": 39965.07, + "end": 39969.45, + "probability": 0.996 + }, + { + "start": 39971.91, + "end": 39973.35, + "probability": 0.5042 + }, + { + "start": 39973.35, + "end": 39975.15, + "probability": 0.917 + }, + { + "start": 39975.31, + "end": 39980.45, + "probability": 0.8236 + }, + { + "start": 39980.45, + "end": 39984.49, + "probability": 0.9888 + }, + { + "start": 39985.95, + "end": 39988.87, + "probability": 0.8966 + }, + { + "start": 39989.87, + "end": 39991.11, + "probability": 0.845 + }, + { + "start": 39992.29, + "end": 39994.71, + "probability": 0.9875 + }, + { + "start": 39995.41, + "end": 39999.39, + "probability": 0.988 + }, + { + "start": 39999.39, + "end": 40003.71, + "probability": 0.9879 + }, + { + "start": 40005.39, + "end": 40007.39, + "probability": 0.929 + }, + { + "start": 40007.43, + "end": 40009.93, + "probability": 0.991 + }, + { + "start": 40010.65, + "end": 40012.15, + "probability": 0.9739 + }, + { + "start": 40012.39, + "end": 40012.65, + "probability": 0.8987 + }, + { + "start": 40015.19, + "end": 40017.01, + "probability": 0.8947 + }, + { + "start": 40017.09, + "end": 40018.51, + "probability": 0.7185 + }, + { + "start": 40020.15, + "end": 40021.37, + "probability": 0.5897 + }, + { + "start": 40021.51, + "end": 40022.81, + "probability": 0.8307 + }, + { + "start": 40025.83, + "end": 40027.83, + "probability": 0.7788 + }, + { + "start": 40027.97, + "end": 40030.31, + "probability": 0.9552 + }, + { + "start": 40032.15, + "end": 40032.61, + "probability": 0.6382 + }, + { + "start": 40034.19, + "end": 40034.69, + "probability": 0.4661 + }, + { + "start": 40034.69, + "end": 40035.09, + "probability": 0.6611 + }, + { + "start": 40035.21, + "end": 40035.45, + "probability": 0.6182 + }, + { + "start": 40036.49, + "end": 40038.21, + "probability": 0.9263 + }, + { + "start": 40039.33, + "end": 40040.19, + "probability": 0.359 + }, + { + "start": 40041.23, + "end": 40041.33, + "probability": 0.5634 + }, + { + "start": 40043.77, + "end": 40044.99, + "probability": 0.761 + }, + { + "start": 40046.37, + "end": 40049.73, + "probability": 0.4261 + }, + { + "start": 40051.35, + "end": 40058.99, + "probability": 0.9932 + }, + { + "start": 40059.59, + "end": 40064.31, + "probability": 0.8207 + }, + { + "start": 40065.67, + "end": 40066.67, + "probability": 0.9563 + }, + { + "start": 40067.17, + "end": 40069.65, + "probability": 0.811 + }, + { + "start": 40069.79, + "end": 40070.99, + "probability": 0.9797 + }, + { + "start": 40071.07, + "end": 40076.53, + "probability": 0.9893 + }, + { + "start": 40077.25, + "end": 40079.17, + "probability": 0.998 + }, + { + "start": 40080.73, + "end": 40083.31, + "probability": 0.9971 + }, + { + "start": 40084.91, + "end": 40086.47, + "probability": 0.9712 + }, + { + "start": 40086.73, + "end": 40088.19, + "probability": 0.9966 + }, + { + "start": 40089.43, + "end": 40092.33, + "probability": 0.974 + }, + { + "start": 40094.23, + "end": 40098.11, + "probability": 0.9438 + }, + { + "start": 40099.25, + "end": 40102.01, + "probability": 0.8007 + }, + { + "start": 40102.99, + "end": 40105.17, + "probability": 0.9668 + }, + { + "start": 40109.73, + "end": 40111.33, + "probability": 0.9939 + }, + { + "start": 40113.89, + "end": 40117.81, + "probability": 0.6525 + }, + { + "start": 40118.73, + "end": 40123.71, + "probability": 0.9159 + }, + { + "start": 40126.85, + "end": 40131.13, + "probability": 0.9902 + }, + { + "start": 40131.43, + "end": 40131.92, + "probability": 0.8659 + }, + { + "start": 40133.25, + "end": 40137.06, + "probability": 0.7867 + }, + { + "start": 40138.73, + "end": 40140.87, + "probability": 0.6385 + }, + { + "start": 40140.89, + "end": 40142.57, + "probability": 0.8445 + }, + { + "start": 40142.95, + "end": 40145.05, + "probability": 0.9924 + }, + { + "start": 40146.25, + "end": 40147.61, + "probability": 0.9563 + }, + { + "start": 40150.09, + "end": 40154.05, + "probability": 0.9446 + }, + { + "start": 40155.25, + "end": 40158.19, + "probability": 0.9291 + }, + { + "start": 40158.73, + "end": 40160.49, + "probability": 0.9924 + }, + { + "start": 40160.97, + "end": 40163.69, + "probability": 0.9958 + }, + { + "start": 40165.95, + "end": 40170.19, + "probability": 0.9224 + }, + { + "start": 40170.89, + "end": 40174.46, + "probability": 0.9482 + }, + { + "start": 40174.99, + "end": 40175.33, + "probability": 0.3678 + }, + { + "start": 40175.33, + "end": 40178.49, + "probability": 0.9021 + }, + { + "start": 40179.61, + "end": 40182.23, + "probability": 0.8465 + }, + { + "start": 40183.33, + "end": 40183.99, + "probability": 0.7982 + }, + { + "start": 40185.37, + "end": 40186.07, + "probability": 0.9854 + }, + { + "start": 40187.25, + "end": 40188.23, + "probability": 0.9937 + }, + { + "start": 40189.31, + "end": 40195.17, + "probability": 0.9261 + }, + { + "start": 40195.97, + "end": 40196.51, + "probability": 0.6644 + }, + { + "start": 40196.83, + "end": 40199.51, + "probability": 0.6965 + }, + { + "start": 40199.93, + "end": 40202.18, + "probability": 0.7493 + }, + { + "start": 40202.85, + "end": 40203.71, + "probability": 0.8886 + }, + { + "start": 40204.35, + "end": 40205.13, + "probability": 0.8374 + }, + { + "start": 40206.99, + "end": 40207.09, + "probability": 0.7244 + }, + { + "start": 40208.69, + "end": 40210.79, + "probability": 0.88 + }, + { + "start": 40210.85, + "end": 40211.57, + "probability": 0.7838 + }, + { + "start": 40211.97, + "end": 40217.95, + "probability": 0.9962 + }, + { + "start": 40218.55, + "end": 40220.19, + "probability": 0.8607 + }, + { + "start": 40220.77, + "end": 40223.13, + "probability": 0.9528 + }, + { + "start": 40223.93, + "end": 40226.81, + "probability": 0.9115 + }, + { + "start": 40227.71, + "end": 40229.93, + "probability": 0.9173 + }, + { + "start": 40231.21, + "end": 40232.23, + "probability": 0.7975 + }, + { + "start": 40233.01, + "end": 40233.91, + "probability": 0.4777 + }, + { + "start": 40234.85, + "end": 40237.53, + "probability": 0.9906 + }, + { + "start": 40238.53, + "end": 40240.57, + "probability": 0.8262 + }, + { + "start": 40241.17, + "end": 40242.19, + "probability": 0.9865 + }, + { + "start": 40242.77, + "end": 40243.63, + "probability": 0.9902 + }, + { + "start": 40244.41, + "end": 40245.27, + "probability": 0.9937 + }, + { + "start": 40246.01, + "end": 40250.95, + "probability": 0.9777 + }, + { + "start": 40251.73, + "end": 40255.27, + "probability": 0.9652 + }, + { + "start": 40255.63, + "end": 40259.31, + "probability": 0.9536 + }, + { + "start": 40260.63, + "end": 40261.33, + "probability": 0.8586 + }, + { + "start": 40262.25, + "end": 40263.03, + "probability": 0.9757 + }, + { + "start": 40263.75, + "end": 40266.07, + "probability": 0.7541 + }, + { + "start": 40266.89, + "end": 40267.35, + "probability": 0.5041 + }, + { + "start": 40268.75, + "end": 40271.03, + "probability": 0.9966 + }, + { + "start": 40272.15, + "end": 40273.57, + "probability": 0.8606 + }, + { + "start": 40274.25, + "end": 40275.27, + "probability": 0.883 + }, + { + "start": 40276.07, + "end": 40276.69, + "probability": 0.9951 + }, + { + "start": 40278.57, + "end": 40286.05, + "probability": 0.9979 + }, + { + "start": 40288.23, + "end": 40289.05, + "probability": 0.7817 + }, + { + "start": 40290.39, + "end": 40294.35, + "probability": 0.9752 + }, + { + "start": 40294.79, + "end": 40303.77, + "probability": 0.9875 + }, + { + "start": 40304.49, + "end": 40309.87, + "probability": 0.8901 + }, + { + "start": 40310.31, + "end": 40310.77, + "probability": 0.8897 + }, + { + "start": 40312.23, + "end": 40315.83, + "probability": 0.9636 + }, + { + "start": 40316.63, + "end": 40318.59, + "probability": 0.7726 + }, + { + "start": 40319.63, + "end": 40321.59, + "probability": 0.8804 + }, + { + "start": 40322.65, + "end": 40324.19, + "probability": 0.9891 + }, + { + "start": 40326.57, + "end": 40327.99, + "probability": 0.9056 + }, + { + "start": 40328.23, + "end": 40328.57, + "probability": 0.7311 + }, + { + "start": 40328.95, + "end": 40333.69, + "probability": 0.7956 + }, + { + "start": 40333.97, + "end": 40334.47, + "probability": 0.974 + }, + { + "start": 40335.07, + "end": 40336.99, + "probability": 0.7403 + }, + { + "start": 40338.05, + "end": 40345.33, + "probability": 0.9367 + }, + { + "start": 40346.27, + "end": 40347.05, + "probability": 0.1069 + }, + { + "start": 40347.21, + "end": 40349.01, + "probability": 0.4898 + }, + { + "start": 40349.95, + "end": 40355.19, + "probability": 0.8867 + }, + { + "start": 40356.01, + "end": 40359.55, + "probability": 0.9313 + }, + { + "start": 40359.59, + "end": 40359.87, + "probability": 0.7184 + }, + { + "start": 40360.21, + "end": 40360.31, + "probability": 0.5195 + }, + { + "start": 40360.41, + "end": 40362.71, + "probability": 0.9066 + }, + { + "start": 40363.17, + "end": 40365.77, + "probability": 0.8326 + }, + { + "start": 40366.17, + "end": 40370.29, + "probability": 0.6603 + }, + { + "start": 40370.53, + "end": 40371.53, + "probability": 0.2886 + }, + { + "start": 40371.61, + "end": 40373.67, + "probability": 0.7859 + }, + { + "start": 40374.33, + "end": 40375.73, + "probability": 0.9279 + }, + { + "start": 40380.75, + "end": 40380.85, + "probability": 0.2393 + }, + { + "start": 40380.85, + "end": 40383.83, + "probability": 0.7415 + }, + { + "start": 40386.29, + "end": 40387.73, + "probability": 0.8328 + }, + { + "start": 40391.95, + "end": 40393.55, + "probability": 0.5605 + }, + { + "start": 40397.36, + "end": 40401.33, + "probability": 0.9976 + }, + { + "start": 40403.19, + "end": 40407.03, + "probability": 0.9982 + }, + { + "start": 40408.15, + "end": 40409.45, + "probability": 0.7477 + }, + { + "start": 40410.75, + "end": 40411.79, + "probability": 0.9207 + }, + { + "start": 40412.59, + "end": 40416.49, + "probability": 0.8019 + }, + { + "start": 40417.45, + "end": 40417.83, + "probability": 0.6747 + }, + { + "start": 40418.63, + "end": 40422.15, + "probability": 0.9023 + }, + { + "start": 40423.55, + "end": 40425.71, + "probability": 0.9955 + }, + { + "start": 40428.01, + "end": 40428.93, + "probability": 0.7507 + }, + { + "start": 40430.93, + "end": 40431.93, + "probability": 0.9323 + }, + { + "start": 40433.79, + "end": 40435.87, + "probability": 0.9847 + }, + { + "start": 40437.37, + "end": 40438.43, + "probability": 0.9289 + }, + { + "start": 40438.81, + "end": 40440.07, + "probability": 0.9867 + }, + { + "start": 40440.09, + "end": 40441.65, + "probability": 0.9313 + }, + { + "start": 40441.85, + "end": 40442.97, + "probability": 0.9248 + }, + { + "start": 40443.57, + "end": 40445.05, + "probability": 0.9076 + }, + { + "start": 40446.23, + "end": 40450.73, + "probability": 0.7604 + }, + { + "start": 40452.85, + "end": 40453.93, + "probability": 0.9722 + }, + { + "start": 40456.93, + "end": 40457.27, + "probability": 0.886 + }, + { + "start": 40460.11, + "end": 40465.55, + "probability": 0.7659 + }, + { + "start": 40468.75, + "end": 40473.27, + "probability": 0.9812 + }, + { + "start": 40473.83, + "end": 40473.83, + "probability": 0.0073 + }, + { + "start": 40475.19, + "end": 40476.15, + "probability": 0.5615 + }, + { + "start": 40477.19, + "end": 40477.82, + "probability": 0.6308 + }, + { + "start": 40478.55, + "end": 40479.53, + "probability": 0.9946 + }, + { + "start": 40482.95, + "end": 40484.43, + "probability": 0.7841 + }, + { + "start": 40485.63, + "end": 40485.81, + "probability": 0.3566 + }, + { + "start": 40486.23, + "end": 40487.75, + "probability": 0.939 + }, + { + "start": 40487.91, + "end": 40491.73, + "probability": 0.8272 + }, + { + "start": 40492.63, + "end": 40494.49, + "probability": 0.9022 + }, + { + "start": 40497.05, + "end": 40497.55, + "probability": 0.7775 + }, + { + "start": 40498.19, + "end": 40498.87, + "probability": 0.58 + }, + { + "start": 40500.03, + "end": 40501.75, + "probability": 0.9563 + }, + { + "start": 40502.33, + "end": 40502.85, + "probability": 0.9103 + }, + { + "start": 40504.89, + "end": 40509.17, + "probability": 0.9769 + }, + { + "start": 40510.19, + "end": 40512.83, + "probability": 0.8496 + }, + { + "start": 40516.85, + "end": 40518.39, + "probability": 0.4521 + }, + { + "start": 40522.91, + "end": 40523.99, + "probability": 0.5828 + }, + { + "start": 40526.45, + "end": 40528.19, + "probability": 0.8353 + }, + { + "start": 40531.67, + "end": 40534.33, + "probability": 0.8281 + }, + { + "start": 40536.17, + "end": 40538.43, + "probability": 0.7169 + }, + { + "start": 40539.59, + "end": 40543.81, + "probability": 0.8934 + }, + { + "start": 40545.13, + "end": 40549.18, + "probability": 0.8025 + }, + { + "start": 40549.23, + "end": 40551.43, + "probability": 0.7986 + }, + { + "start": 40551.45, + "end": 40553.17, + "probability": 0.7585 + }, + { + "start": 40554.59, + "end": 40555.11, + "probability": 0.5697 + }, + { + "start": 40556.17, + "end": 40557.13, + "probability": 0.8805 + }, + { + "start": 40557.67, + "end": 40559.61, + "probability": 0.926 + }, + { + "start": 40559.63, + "end": 40560.11, + "probability": 0.2646 + }, + { + "start": 40560.95, + "end": 40562.39, + "probability": 0.4612 + }, + { + "start": 40564.23, + "end": 40565.59, + "probability": 0.6902 + }, + { + "start": 40566.09, + "end": 40566.61, + "probability": 0.4923 + }, + { + "start": 40566.73, + "end": 40567.49, + "probability": 0.8554 + }, + { + "start": 40567.95, + "end": 40570.25, + "probability": 0.821 + }, + { + "start": 40571.11, + "end": 40571.57, + "probability": 0.7819 + }, + { + "start": 40572.15, + "end": 40573.17, + "probability": 0.7909 + }, + { + "start": 40573.59, + "end": 40574.75, + "probability": 0.6161 + }, + { + "start": 40575.79, + "end": 40576.81, + "probability": 0.8133 + }, + { + "start": 40576.99, + "end": 40579.59, + "probability": 0.9088 + }, + { + "start": 40579.69, + "end": 40581.47, + "probability": 0.8373 + }, + { + "start": 40582.07, + "end": 40583.33, + "probability": 0.4998 + }, + { + "start": 40583.51, + "end": 40586.95, + "probability": 0.8635 + }, + { + "start": 40588.45, + "end": 40588.69, + "probability": 0.624 + }, + { + "start": 40588.69, + "end": 40588.89, + "probability": 0.479 + }, + { + "start": 40590.07, + "end": 40590.45, + "probability": 0.6594 + }, + { + "start": 40590.95, + "end": 40591.67, + "probability": 0.8958 + }, + { + "start": 40591.67, + "end": 40594.89, + "probability": 0.8212 + }, + { + "start": 40595.93, + "end": 40597.09, + "probability": 0.8524 + }, + { + "start": 40598.39, + "end": 40599.59, + "probability": 0.7654 + }, + { + "start": 40600.37, + "end": 40603.39, + "probability": 0.896 + }, + { + "start": 40603.89, + "end": 40605.81, + "probability": 0.9077 + }, + { + "start": 40606.65, + "end": 40611.5, + "probability": 0.9258 + }, + { + "start": 40612.19, + "end": 40613.29, + "probability": 0.7595 + }, + { + "start": 40614.33, + "end": 40616.29, + "probability": 0.8814 + }, + { + "start": 40617.09, + "end": 40618.3, + "probability": 0.8794 + }, + { + "start": 40619.61, + "end": 40621.01, + "probability": 0.6074 + }, + { + "start": 40623.73, + "end": 40625.69, + "probability": 0.6473 + }, + { + "start": 40625.99, + "end": 40626.43, + "probability": 0.8522 + }, + { + "start": 40628.01, + "end": 40632.69, + "probability": 0.7388 + }, + { + "start": 40634.41, + "end": 40635.57, + "probability": 0.7377 + }, + { + "start": 40636.03, + "end": 40637.85, + "probability": 0.4172 + }, + { + "start": 40638.39, + "end": 40639.37, + "probability": 0.6699 + }, + { + "start": 40639.53, + "end": 40640.55, + "probability": 0.724 + }, + { + "start": 40641.95, + "end": 40643.17, + "probability": 0.8575 + }, + { + "start": 40644.15, + "end": 40645.21, + "probability": 0.8347 + }, + { + "start": 40647.19, + "end": 40651.59, + "probability": 0.7697 + }, + { + "start": 40653.65, + "end": 40657.03, + "probability": 0.8662 + }, + { + "start": 40659.07, + "end": 40661.27, + "probability": 0.6968 + }, + { + "start": 40661.89, + "end": 40662.57, + "probability": 0.4933 + }, + { + "start": 40664.93, + "end": 40666.21, + "probability": 0.8506 + }, + { + "start": 40667.83, + "end": 40668.65, + "probability": 0.8982 + }, + { + "start": 40670.01, + "end": 40674.61, + "probability": 0.9434 + }, + { + "start": 40675.33, + "end": 40676.21, + "probability": 0.9862 + }, + { + "start": 40676.31, + "end": 40676.91, + "probability": 0.9818 + }, + { + "start": 40677.05, + "end": 40677.97, + "probability": 0.8286 + }, + { + "start": 40678.39, + "end": 40679.59, + "probability": 0.8351 + }, + { + "start": 40680.81, + "end": 40683.85, + "probability": 0.7034 + }, + { + "start": 40683.93, + "end": 40684.86, + "probability": 0.6774 + }, + { + "start": 40685.89, + "end": 40688.89, + "probability": 0.836 + }, + { + "start": 40689.23, + "end": 40690.09, + "probability": 0.9316 + }, + { + "start": 40691.17, + "end": 40692.05, + "probability": 0.8694 + }, + { + "start": 40692.91, + "end": 40698.33, + "probability": 0.7888 + }, + { + "start": 40698.77, + "end": 40699.41, + "probability": 0.8506 + }, + { + "start": 40699.93, + "end": 40702.85, + "probability": 0.7411 + }, + { + "start": 40702.89, + "end": 40704.97, + "probability": 0.8255 + }, + { + "start": 40706.11, + "end": 40707.33, + "probability": 0.936 + }, + { + "start": 40707.69, + "end": 40709.61, + "probability": 0.893 + }, + { + "start": 40709.97, + "end": 40710.33, + "probability": 0.5443 + }, + { + "start": 40710.37, + "end": 40712.37, + "probability": 0.9128 + }, + { + "start": 40712.43, + "end": 40713.23, + "probability": 0.8515 + }, + { + "start": 40713.55, + "end": 40714.47, + "probability": 0.999 + }, + { + "start": 40717.79, + "end": 40719.93, + "probability": 0.9989 + }, + { + "start": 40720.09, + "end": 40724.47, + "probability": 0.9216 + }, + { + "start": 40725.07, + "end": 40725.86, + "probability": 0.7106 + }, + { + "start": 40726.85, + "end": 40727.39, + "probability": 0.4323 + }, + { + "start": 40727.65, + "end": 40728.17, + "probability": 0.7477 + }, + { + "start": 40728.89, + "end": 40731.27, + "probability": 0.7714 + }, + { + "start": 40731.39, + "end": 40735.19, + "probability": 0.9274 + }, + { + "start": 40738.91, + "end": 40739.03, + "probability": 0.6407 + }, + { + "start": 40739.03, + "end": 40739.03, + "probability": 0.0405 + }, + { + "start": 40739.03, + "end": 40739.19, + "probability": 0.4537 + }, + { + "start": 40739.21, + "end": 40740.65, + "probability": 0.7185 + }, + { + "start": 40741.09, + "end": 40742.91, + "probability": 0.7022 + }, + { + "start": 40744.17, + "end": 40745.13, + "probability": 0.8392 + }, + { + "start": 40751.73, + "end": 40753.75, + "probability": 0.7112 + }, + { + "start": 40788.11, + "end": 40788.37, + "probability": 0.0352 + }, + { + "start": 40788.37, + "end": 40788.37, + "probability": 0.2058 + }, + { + "start": 40788.37, + "end": 40788.37, + "probability": 0.0543 + }, + { + "start": 40788.37, + "end": 40788.97, + "probability": 0.0938 + }, + { + "start": 40790.39, + "end": 40791.47, + "probability": 0.7581 + }, + { + "start": 40793.41, + "end": 40796.13, + "probability": 0.8479 + }, + { + "start": 40796.23, + "end": 40802.09, + "probability": 0.9994 + }, + { + "start": 40803.63, + "end": 40808.37, + "probability": 0.981 + }, + { + "start": 40810.11, + "end": 40811.59, + "probability": 0.9893 + }, + { + "start": 40813.07, + "end": 40817.41, + "probability": 0.9888 + }, + { + "start": 40817.41, + "end": 40823.77, + "probability": 0.8136 + }, + { + "start": 40826.53, + "end": 40827.77, + "probability": 0.8094 + }, + { + "start": 40828.89, + "end": 40832.09, + "probability": 0.9734 + }, + { + "start": 40833.79, + "end": 40834.59, + "probability": 0.835 + }, + { + "start": 40836.95, + "end": 40839.11, + "probability": 0.713 + }, + { + "start": 40840.35, + "end": 40844.66, + "probability": 0.9236 + }, + { + "start": 40845.87, + "end": 40847.95, + "probability": 0.9498 + }, + { + "start": 40849.09, + "end": 40850.85, + "probability": 0.9939 + }, + { + "start": 40852.33, + "end": 40858.89, + "probability": 0.9937 + }, + { + "start": 40860.29, + "end": 40862.29, + "probability": 0.7546 + }, + { + "start": 40863.69, + "end": 40866.43, + "probability": 0.9954 + }, + { + "start": 40867.15, + "end": 40870.85, + "probability": 0.9645 + }, + { + "start": 40872.51, + "end": 40872.93, + "probability": 0.946 + }, + { + "start": 40876.27, + "end": 40880.05, + "probability": 0.9799 + }, + { + "start": 40880.83, + "end": 40882.83, + "probability": 0.9141 + }, + { + "start": 40886.71, + "end": 40893.83, + "probability": 0.9805 + }, + { + "start": 40895.11, + "end": 40903.29, + "probability": 0.9708 + }, + { + "start": 40903.37, + "end": 40904.85, + "probability": 0.8048 + }, + { + "start": 40906.73, + "end": 40911.05, + "probability": 0.9676 + }, + { + "start": 40911.09, + "end": 40913.79, + "probability": 0.6347 + }, + { + "start": 40914.65, + "end": 40916.45, + "probability": 0.8615 + }, + { + "start": 40917.39, + "end": 40919.59, + "probability": 0.863 + }, + { + "start": 40919.77, + "end": 40923.03, + "probability": 0.8838 + }, + { + "start": 40923.77, + "end": 40924.13, + "probability": 0.5706 + }, + { + "start": 40924.35, + "end": 40924.93, + "probability": 0.935 + }, + { + "start": 40927.83, + "end": 40929.51, + "probability": 0.8532 + }, + { + "start": 40929.61, + "end": 40931.31, + "probability": 0.8328 + }, + { + "start": 40931.37, + "end": 40932.23, + "probability": 0.907 + }, + { + "start": 40932.41, + "end": 40934.83, + "probability": 0.9675 + }, + { + "start": 40936.47, + "end": 40938.49, + "probability": 0.9927 + }, + { + "start": 40940.89, + "end": 40941.91, + "probability": 0.9835 + }, + { + "start": 40942.11, + "end": 40943.77, + "probability": 0.8652 + }, + { + "start": 40945.57, + "end": 40947.05, + "probability": 0.7666 + }, + { + "start": 40948.19, + "end": 40950.37, + "probability": 0.6506 + }, + { + "start": 40950.47, + "end": 40951.31, + "probability": 0.8758 + }, + { + "start": 40951.47, + "end": 40957.07, + "probability": 0.908 + }, + { + "start": 40958.81, + "end": 40963.03, + "probability": 0.9459 + }, + { + "start": 40963.33, + "end": 40964.07, + "probability": 0.8269 + }, + { + "start": 40966.53, + "end": 40968.39, + "probability": 0.9775 + }, + { + "start": 40971.15, + "end": 40974.25, + "probability": 0.8062 + }, + { + "start": 40975.87, + "end": 40984.39, + "probability": 0.8964 + }, + { + "start": 40984.43, + "end": 40985.99, + "probability": 0.6654 + }, + { + "start": 40987.27, + "end": 40989.71, + "probability": 0.8252 + }, + { + "start": 40989.81, + "end": 40994.69, + "probability": 0.498 + }, + { + "start": 40995.07, + "end": 40995.95, + "probability": 0.6419 + }, + { + "start": 40996.11, + "end": 40997.93, + "probability": 0.8327 + }, + { + "start": 40998.65, + "end": 41001.67, + "probability": 0.9809 + }, + { + "start": 41001.73, + "end": 41003.27, + "probability": 0.7043 + }, + { + "start": 41003.67, + "end": 41004.61, + "probability": 0.9451 + }, + { + "start": 41005.89, + "end": 41007.69, + "probability": 0.9194 + }, + { + "start": 41009.27, + "end": 41014.01, + "probability": 0.9807 + }, + { + "start": 41015.61, + "end": 41019.03, + "probability": 0.9929 + }, + { + "start": 41019.81, + "end": 41022.11, + "probability": 0.835 + }, + { + "start": 41022.39, + "end": 41023.15, + "probability": 0.8325 + }, + { + "start": 41024.09, + "end": 41030.43, + "probability": 0.9628 + }, + { + "start": 41032.23, + "end": 41032.47, + "probability": 0.6731 + }, + { + "start": 41033.57, + "end": 41034.75, + "probability": 0.6804 + }, + { + "start": 41036.51, + "end": 41038.15, + "probability": 0.8294 + }, + { + "start": 41038.61, + "end": 41039.89, + "probability": 0.9063 + }, + { + "start": 41039.93, + "end": 41044.59, + "probability": 0.9858 + }, + { + "start": 41045.87, + "end": 41046.45, + "probability": 0.9325 + }, + { + "start": 41047.53, + "end": 41052.25, + "probability": 0.9113 + }, + { + "start": 41052.67, + "end": 41055.05, + "probability": 0.785 + }, + { + "start": 41056.27, + "end": 41059.27, + "probability": 0.9373 + }, + { + "start": 41060.13, + "end": 41063.59, + "probability": 0.7746 + }, + { + "start": 41064.27, + "end": 41067.73, + "probability": 0.8243 + }, + { + "start": 41068.45, + "end": 41070.25, + "probability": 0.3508 + }, + { + "start": 41071.61, + "end": 41074.89, + "probability": 0.8958 + }, + { + "start": 41075.47, + "end": 41078.43, + "probability": 0.9346 + }, + { + "start": 41079.89, + "end": 41084.37, + "probability": 0.9695 + }, + { + "start": 41084.67, + "end": 41085.25, + "probability": 0.2163 + }, + { + "start": 41085.35, + "end": 41085.99, + "probability": 0.2927 + }, + { + "start": 41087.15, + "end": 41089.41, + "probability": 0.9783 + }, + { + "start": 41090.41, + "end": 41094.97, + "probability": 0.9693 + }, + { + "start": 41094.99, + "end": 41098.29, + "probability": 0.8945 + }, + { + "start": 41098.71, + "end": 41101.71, + "probability": 0.6717 + }, + { + "start": 41101.71, + "end": 41102.11, + "probability": 0.8964 + }, + { + "start": 41102.39, + "end": 41104.45, + "probability": 0.7142 + }, + { + "start": 41104.95, + "end": 41106.59, + "probability": 0.9617 + }, + { + "start": 41107.17, + "end": 41108.11, + "probability": 0.5909 + }, + { + "start": 41109.69, + "end": 41112.05, + "probability": 0.7084 + }, + { + "start": 41134.17, + "end": 41135.41, + "probability": 0.9193 + }, + { + "start": 41136.59, + "end": 41139.83, + "probability": 0.0488 + }, + { + "start": 41147.19, + "end": 41152.59, + "probability": 0.935 + }, + { + "start": 41153.83, + "end": 41156.21, + "probability": 0.7231 + }, + { + "start": 41158.27, + "end": 41159.15, + "probability": 0.5001 + }, + { + "start": 41159.93, + "end": 41162.87, + "probability": 0.7655 + }, + { + "start": 41163.09, + "end": 41166.75, + "probability": 0.5326 + }, + { + "start": 41168.28, + "end": 41171.43, + "probability": 0.9895 + }, + { + "start": 41172.51, + "end": 41175.93, + "probability": 0.9341 + }, + { + "start": 41175.99, + "end": 41177.45, + "probability": 0.9224 + }, + { + "start": 41178.15, + "end": 41180.39, + "probability": 0.9229 + }, + { + "start": 41181.73, + "end": 41184.33, + "probability": 0.9514 + }, + { + "start": 41185.97, + "end": 41192.07, + "probability": 0.9941 + }, + { + "start": 41192.17, + "end": 41194.47, + "probability": 0.9396 + }, + { + "start": 41194.57, + "end": 41194.99, + "probability": 0.678 + }, + { + "start": 41195.37, + "end": 41196.47, + "probability": 0.661 + }, + { + "start": 41197.27, + "end": 41203.23, + "probability": 0.9806 + }, + { + "start": 41204.95, + "end": 41207.03, + "probability": 0.5254 + }, + { + "start": 41207.31, + "end": 41214.09, + "probability": 0.9635 + }, + { + "start": 41214.33, + "end": 41214.65, + "probability": 0.2612 + }, + { + "start": 41214.77, + "end": 41215.91, + "probability": 0.9207 + }, + { + "start": 41216.17, + "end": 41220.85, + "probability": 0.9821 + }, + { + "start": 41221.07, + "end": 41222.93, + "probability": 0.7826 + }, + { + "start": 41223.65, + "end": 41226.27, + "probability": 0.6861 + }, + { + "start": 41227.55, + "end": 41232.85, + "probability": 0.9977 + }, + { + "start": 41235.13, + "end": 41240.03, + "probability": 0.9982 + }, + { + "start": 41241.99, + "end": 41246.23, + "probability": 0.9729 + }, + { + "start": 41246.81, + "end": 41249.45, + "probability": 0.8557 + }, + { + "start": 41250.73, + "end": 41258.73, + "probability": 0.8848 + }, + { + "start": 41258.77, + "end": 41265.47, + "probability": 0.9175 + }, + { + "start": 41265.47, + "end": 41269.91, + "probability": 0.948 + }, + { + "start": 41270.79, + "end": 41274.97, + "probability": 0.444 + }, + { + "start": 41275.09, + "end": 41278.59, + "probability": 0.9984 + }, + { + "start": 41280.03, + "end": 41289.31, + "probability": 0.9421 + }, + { + "start": 41289.49, + "end": 41295.13, + "probability": 0.9992 + }, + { + "start": 41295.33, + "end": 41296.59, + "probability": 0.9685 + }, + { + "start": 41297.31, + "end": 41299.45, + "probability": 0.924 + }, + { + "start": 41299.69, + "end": 41304.29, + "probability": 0.9753 + }, + { + "start": 41305.61, + "end": 41307.03, + "probability": 0.9903 + }, + { + "start": 41307.57, + "end": 41310.27, + "probability": 0.9946 + }, + { + "start": 41312.73, + "end": 41317.87, + "probability": 0.9279 + }, + { + "start": 41318.55, + "end": 41320.31, + "probability": 0.9693 + }, + { + "start": 41321.53, + "end": 41324.17, + "probability": 0.9676 + }, + { + "start": 41325.21, + "end": 41331.19, + "probability": 0.9941 + }, + { + "start": 41331.39, + "end": 41336.43, + "probability": 0.9985 + }, + { + "start": 41337.69, + "end": 41340.03, + "probability": 0.9991 + }, + { + "start": 41340.83, + "end": 41343.81, + "probability": 0.9868 + }, + { + "start": 41343.91, + "end": 41346.79, + "probability": 0.9869 + }, + { + "start": 41347.67, + "end": 41348.89, + "probability": 0.5964 + }, + { + "start": 41349.25, + "end": 41358.39, + "probability": 0.9611 + }, + { + "start": 41359.79, + "end": 41365.03, + "probability": 0.9883 + }, + { + "start": 41365.99, + "end": 41369.09, + "probability": 0.8063 + }, + { + "start": 41369.69, + "end": 41373.47, + "probability": 0.9873 + }, + { + "start": 41373.99, + "end": 41377.53, + "probability": 0.6875 + }, + { + "start": 41378.39, + "end": 41382.35, + "probability": 0.8729 + }, + { + "start": 41383.03, + "end": 41387.99, + "probability": 0.9869 + }, + { + "start": 41389.81, + "end": 41390.55, + "probability": 0.9153 + }, + { + "start": 41392.57, + "end": 41397.45, + "probability": 0.9315 + }, + { + "start": 41398.37, + "end": 41401.75, + "probability": 0.8175 + }, + { + "start": 41403.07, + "end": 41406.41, + "probability": 0.9554 + }, + { + "start": 41406.41, + "end": 41410.23, + "probability": 0.9927 + }, + { + "start": 41411.05, + "end": 41412.71, + "probability": 0.682 + }, + { + "start": 41413.53, + "end": 41415.67, + "probability": 0.9796 + }, + { + "start": 41416.53, + "end": 41419.27, + "probability": 0.996 + }, + { + "start": 41419.91, + "end": 41424.55, + "probability": 0.9785 + }, + { + "start": 41425.17, + "end": 41427.31, + "probability": 0.9746 + }, + { + "start": 41428.53, + "end": 41430.59, + "probability": 0.9803 + }, + { + "start": 41433.21, + "end": 41435.53, + "probability": 0.9728 + }, + { + "start": 41435.69, + "end": 41438.83, + "probability": 0.8708 + }, + { + "start": 41438.89, + "end": 41439.69, + "probability": 0.8969 + }, + { + "start": 41439.83, + "end": 41440.17, + "probability": 0.4407 + }, + { + "start": 41440.27, + "end": 41441.77, + "probability": 0.6221 + }, + { + "start": 41442.55, + "end": 41446.93, + "probability": 0.7275 + }, + { + "start": 41447.13, + "end": 41450.45, + "probability": 0.951 + }, + { + "start": 41450.57, + "end": 41452.35, + "probability": 0.9897 + }, + { + "start": 41453.19, + "end": 41461.05, + "probability": 0.9912 + }, + { + "start": 41461.23, + "end": 41461.53, + "probability": 0.5575 + }, + { + "start": 41462.09, + "end": 41467.11, + "probability": 0.9976 + }, + { + "start": 41467.11, + "end": 41471.23, + "probability": 0.9991 + }, + { + "start": 41471.39, + "end": 41471.39, + "probability": 0.5048 + }, + { + "start": 41471.39, + "end": 41475.09, + "probability": 0.9814 + }, + { + "start": 41475.53, + "end": 41477.97, + "probability": 0.8794 + }, + { + "start": 41478.97, + "end": 41480.53, + "probability": 0.9644 + }, + { + "start": 41482.05, + "end": 41483.53, + "probability": 0.9106 + }, + { + "start": 41484.73, + "end": 41486.57, + "probability": 0.9948 + }, + { + "start": 41487.47, + "end": 41488.47, + "probability": 0.7168 + }, + { + "start": 41490.91, + "end": 41496.47, + "probability": 0.9658 + }, + { + "start": 41497.27, + "end": 41498.88, + "probability": 0.9912 + }, + { + "start": 41500.17, + "end": 41501.61, + "probability": 0.901 + }, + { + "start": 41502.13, + "end": 41502.49, + "probability": 0.2686 + }, + { + "start": 41502.63, + "end": 41503.15, + "probability": 0.8542 + }, + { + "start": 41503.31, + "end": 41504.63, + "probability": 0.2437 + }, + { + "start": 41505.54, + "end": 41509.05, + "probability": 0.9587 + }, + { + "start": 41509.81, + "end": 41510.91, + "probability": 0.6684 + }, + { + "start": 41512.21, + "end": 41512.81, + "probability": 0.6394 + }, + { + "start": 41513.15, + "end": 41514.21, + "probability": 0.7205 + }, + { + "start": 41514.29, + "end": 41516.97, + "probability": 0.8164 + }, + { + "start": 41518.19, + "end": 41519.97, + "probability": 0.4592 + }, + { + "start": 41520.01, + "end": 41526.09, + "probability": 0.9913 + }, + { + "start": 41526.17, + "end": 41527.01, + "probability": 0.8276 + }, + { + "start": 41556.71, + "end": 41556.81, + "probability": 0.0286 + }, + { + "start": 41556.81, + "end": 41556.81, + "probability": 0.202 + }, + { + "start": 41556.81, + "end": 41558.07, + "probability": 0.6534 + }, + { + "start": 41558.69, + "end": 41559.45, + "probability": 0.5143 + }, + { + "start": 41560.07, + "end": 41560.77, + "probability": 0.8851 + }, + { + "start": 41564.21, + "end": 41565.81, + "probability": 0.8341 + }, + { + "start": 41572.03, + "end": 41574.41, + "probability": 0.4831 + }, + { + "start": 41574.51, + "end": 41575.11, + "probability": 0.152 + }, + { + "start": 41575.59, + "end": 41575.93, + "probability": 0.0275 + }, + { + "start": 41576.15, + "end": 41577.19, + "probability": 0.2729 + }, + { + "start": 41578.63, + "end": 41579.45, + "probability": 0.8083 + }, + { + "start": 41580.81, + "end": 41583.41, + "probability": 0.1151 + }, + { + "start": 41584.51, + "end": 41586.11, + "probability": 0.7758 + }, + { + "start": 41590.59, + "end": 41592.71, + "probability": 0.7556 + }, + { + "start": 41593.27, + "end": 41595.66, + "probability": 0.0595 + }, + { + "start": 41597.57, + "end": 41598.89, + "probability": 0.7706 + }, + { + "start": 41599.35, + "end": 41602.21, + "probability": 0.7712 + }, + { + "start": 41602.79, + "end": 41603.43, + "probability": 0.8949 + }, + { + "start": 41608.09, + "end": 41614.71, + "probability": 0.885 + }, + { + "start": 41616.09, + "end": 41621.13, + "probability": 0.9692 + }, + { + "start": 41622.17, + "end": 41623.75, + "probability": 0.9359 + }, + { + "start": 41625.39, + "end": 41627.03, + "probability": 0.9536 + }, + { + "start": 41629.51, + "end": 41636.23, + "probability": 0.6922 + }, + { + "start": 41639.53, + "end": 41640.83, + "probability": 0.1574 + }, + { + "start": 41642.83, + "end": 41646.45, + "probability": 0.6438 + }, + { + "start": 41648.29, + "end": 41649.15, + "probability": 0.8301 + }, + { + "start": 41650.05, + "end": 41651.41, + "probability": 0.2016 + }, + { + "start": 41654.09, + "end": 41654.81, + "probability": 0.2907 + }, + { + "start": 41655.39, + "end": 41656.69, + "probability": 0.6865 + }, + { + "start": 41656.95, + "end": 41658.89, + "probability": 0.3992 + }, + { + "start": 41659.63, + "end": 41659.83, + "probability": 0.4267 + }, + { + "start": 41660.21, + "end": 41660.47, + "probability": 0.6977 + }, + { + "start": 41661.03, + "end": 41661.03, + "probability": 0.4769 + }, + { + "start": 41661.09, + "end": 41661.53, + "probability": 0.4507 + }, + { + "start": 41662.45, + "end": 41662.59, + "probability": 0.2959 + }, + { + "start": 41662.59, + "end": 41663.04, + "probability": 0.8731 + }, + { + "start": 41668.83, + "end": 41669.17, + "probability": 0.1214 + }, + { + "start": 41669.21, + "end": 41669.65, + "probability": 0.276 + }, + { + "start": 41670.81, + "end": 41671.99, + "probability": 0.6562 + }, + { + "start": 41674.53, + "end": 41675.83, + "probability": 0.7458 + }, + { + "start": 41676.81, + "end": 41678.47, + "probability": 0.9748 + }, + { + "start": 41679.99, + "end": 41681.05, + "probability": 0.8149 + }, + { + "start": 41681.91, + "end": 41682.17, + "probability": 0.1586 + }, + { + "start": 41682.43, + "end": 41682.59, + "probability": 0.1916 + }, + { + "start": 41682.59, + "end": 41682.65, + "probability": 0.1199 + }, + { + "start": 41695.63, + "end": 41696.33, + "probability": 0.5972 + }, + { + "start": 41697.37, + "end": 41698.34, + "probability": 0.8854 + }, + { + "start": 41698.91, + "end": 41701.15, + "probability": 0.9932 + }, + { + "start": 41701.85, + "end": 41704.01, + "probability": 0.9685 + }, + { + "start": 41704.59, + "end": 41706.17, + "probability": 0.9038 + }, + { + "start": 41706.23, + "end": 41706.99, + "probability": 0.5896 + }, + { + "start": 41707.37, + "end": 41707.95, + "probability": 0.7046 + }, + { + "start": 41709.84, + "end": 41711.54, + "probability": 0.4504 + }, + { + "start": 41714.57, + "end": 41715.77, + "probability": 0.4556 + }, + { + "start": 41717.47, + "end": 41720.85, + "probability": 0.5852 + }, + { + "start": 41721.77, + "end": 41724.53, + "probability": 0.7891 + }, + { + "start": 41726.23, + "end": 41728.17, + "probability": 0.4194 + }, + { + "start": 41730.01, + "end": 41733.19, + "probability": 0.7372 + }, + { + "start": 41734.07, + "end": 41735.69, + "probability": 0.6585 + }, + { + "start": 41737.17, + "end": 41740.43, + "probability": 0.7476 + }, + { + "start": 41741.87, + "end": 41742.83, + "probability": 0.7549 + }, + { + "start": 41743.17, + "end": 41744.45, + "probability": 0.9165 + }, + { + "start": 41744.61, + "end": 41745.57, + "probability": 0.3681 + }, + { + "start": 41746.51, + "end": 41752.19, + "probability": 0.8344 + }, + { + "start": 41753.15, + "end": 41754.73, + "probability": 0.9829 + }, + { + "start": 41756.23, + "end": 41762.29, + "probability": 0.7918 + }, + { + "start": 41763.33, + "end": 41764.17, + "probability": 0.5251 + }, + { + "start": 41764.19, + "end": 41766.95, + "probability": 0.8516 + }, + { + "start": 41767.07, + "end": 41768.38, + "probability": 0.6566 + }, + { + "start": 41769.13, + "end": 41770.43, + "probability": 0.9354 + }, + { + "start": 41771.83, + "end": 41773.37, + "probability": 0.9475 + }, + { + "start": 41773.73, + "end": 41778.51, + "probability": 0.7544 + }, + { + "start": 41778.73, + "end": 41779.39, + "probability": 0.835 + }, + { + "start": 41779.51, + "end": 41780.17, + "probability": 0.8249 + }, + { + "start": 41780.63, + "end": 41782.51, + "probability": 0.7924 + }, + { + "start": 41785.05, + "end": 41786.31, + "probability": 0.7203 + }, + { + "start": 41787.59, + "end": 41788.45, + "probability": 0.1809 + }, + { + "start": 41789.05, + "end": 41789.71, + "probability": 0.8652 + }, + { + "start": 41790.87, + "end": 41792.33, + "probability": 0.7929 + }, + { + "start": 41792.47, + "end": 41794.07, + "probability": 0.9195 + }, + { + "start": 41795.33, + "end": 41796.85, + "probability": 0.6241 + }, + { + "start": 41805.65, + "end": 41807.83, + "probability": 0.508 + }, + { + "start": 41808.85, + "end": 41810.01, + "probability": 0.9718 + }, + { + "start": 41810.53, + "end": 41812.21, + "probability": 0.8844 + }, + { + "start": 41813.65, + "end": 41814.11, + "probability": 0.9316 + }, + { + "start": 41814.19, + "end": 41814.71, + "probability": 0.7704 + }, + { + "start": 41815.19, + "end": 41815.75, + "probability": 0.8553 + }, + { + "start": 41815.75, + "end": 41819.03, + "probability": 0.9272 + }, + { + "start": 41820.01, + "end": 41821.39, + "probability": 0.9785 + }, + { + "start": 41822.19, + "end": 41825.67, + "probability": 0.747 + }, + { + "start": 41826.79, + "end": 41829.91, + "probability": 0.7969 + }, + { + "start": 41832.51, + "end": 41833.43, + "probability": 0.8337 + }, + { + "start": 41835.07, + "end": 41835.07, + "probability": 0.0006 + }, + { + "start": 41835.11, + "end": 41836.25, + "probability": 0.6438 + }, + { + "start": 41836.29, + "end": 41837.95, + "probability": 0.8679 + }, + { + "start": 41838.91, + "end": 41841.17, + "probability": 0.8063 + }, + { + "start": 41841.17, + "end": 41844.31, + "probability": 0.9776 + }, + { + "start": 41845.53, + "end": 41848.93, + "probability": 0.9606 + }, + { + "start": 41849.53, + "end": 41853.07, + "probability": 0.9803 + }, + { + "start": 41853.69, + "end": 41855.73, + "probability": 0.9963 + }, + { + "start": 41856.37, + "end": 41857.07, + "probability": 0.8804 + }, + { + "start": 41857.59, + "end": 41859.57, + "probability": 0.992 + }, + { + "start": 41859.57, + "end": 41861.75, + "probability": 0.99 + }, + { + "start": 41862.39, + "end": 41863.65, + "probability": 0.9236 + }, + { + "start": 41864.35, + "end": 41865.01, + "probability": 0.7941 + }, + { + "start": 41865.73, + "end": 41868.63, + "probability": 0.9817 + }, + { + "start": 41869.27, + "end": 41871.59, + "probability": 0.9052 + }, + { + "start": 41871.59, + "end": 41875.15, + "probability": 0.9156 + }, + { + "start": 41876.43, + "end": 41877.33, + "probability": 0.5586 + }, + { + "start": 41884.35, + "end": 41887.47, + "probability": 0.8161 + }, + { + "start": 41888.19, + "end": 41890.35, + "probability": 0.7886 + }, + { + "start": 41890.35, + "end": 41894.95, + "probability": 0.872 + }, + { + "start": 41895.03, + "end": 41897.27, + "probability": 0.8965 + }, + { + "start": 41897.45, + "end": 41897.87, + "probability": 0.4142 + }, + { + "start": 41898.63, + "end": 41900.37, + "probability": 0.7824 + }, + { + "start": 41900.37, + "end": 41902.45, + "probability": 0.939 + }, + { + "start": 41903.21, + "end": 41906.05, + "probability": 0.7482 + }, + { + "start": 41906.67, + "end": 41910.25, + "probability": 0.9434 + }, + { + "start": 41910.97, + "end": 41911.27, + "probability": 0.4816 + }, + { + "start": 41911.27, + "end": 41913.49, + "probability": 0.8279 + }, + { + "start": 41913.51, + "end": 41914.39, + "probability": 0.6023 + }, + { + "start": 41914.51, + "end": 41916.29, + "probability": 0.8172 + }, + { + "start": 41917.23, + "end": 41920.97, + "probability": 0.9399 + }, + { + "start": 41924.85, + "end": 41927.13, + "probability": 0.8197 + }, + { + "start": 41930.75, + "end": 41934.37, + "probability": 0.8264 + }, + { + "start": 41935.15, + "end": 41937.55, + "probability": 0.9473 + }, + { + "start": 41938.87, + "end": 41942.19, + "probability": 0.9939 + }, + { + "start": 41942.79, + "end": 41945.09, + "probability": 0.6758 + }, + { + "start": 41945.17, + "end": 41947.93, + "probability": 0.9738 + }, + { + "start": 41949.73, + "end": 41953.65, + "probability": 0.9826 + }, + { + "start": 41954.67, + "end": 41956.27, + "probability": 0.5972 + }, + { + "start": 41957.07, + "end": 41960.55, + "probability": 0.7837 + }, + { + "start": 41961.55, + "end": 41964.49, + "probability": 0.9731 + }, + { + "start": 41965.25, + "end": 41967.11, + "probability": 0.9099 + }, + { + "start": 41968.25, + "end": 41970.15, + "probability": 0.8759 + }, + { + "start": 41972.63, + "end": 41974.19, + "probability": 0.8194 + }, + { + "start": 41975.21, + "end": 41975.67, + "probability": 0.419 + }, + { + "start": 41976.75, + "end": 41977.61, + "probability": 0.3353 + }, + { + "start": 41979.01, + "end": 41981.55, + "probability": 0.9692 + }, + { + "start": 41982.65, + "end": 41985.35, + "probability": 0.7803 + }, + { + "start": 41985.35, + "end": 41989.37, + "probability": 0.7642 + }, + { + "start": 41989.93, + "end": 41991.99, + "probability": 0.9923 + }, + { + "start": 41992.17, + "end": 41995.79, + "probability": 0.9865 + }, + { + "start": 41997.17, + "end": 41998.55, + "probability": 0.692 + }, + { + "start": 41999.85, + "end": 42001.93, + "probability": 0.7773 + }, + { + "start": 42001.93, + "end": 42004.69, + "probability": 0.9082 + }, + { + "start": 42005.85, + "end": 42008.09, + "probability": 0.8624 + }, + { + "start": 42008.85, + "end": 42010.71, + "probability": 0.7693 + }, + { + "start": 42012.44, + "end": 42013.05, + "probability": 0.2791 + }, + { + "start": 42014.29, + "end": 42015.03, + "probability": 0.5625 + }, + { + "start": 42018.37, + "end": 42020.47, + "probability": 0.7646 + }, + { + "start": 42020.47, + "end": 42023.29, + "probability": 0.9737 + }, + { + "start": 42024.25, + "end": 42027.67, + "probability": 0.9902 + }, + { + "start": 42028.49, + "end": 42029.13, + "probability": 0.9691 + }, + { + "start": 42031.25, + "end": 42033.37, + "probability": 0.5539 + }, + { + "start": 42034.29, + "end": 42036.45, + "probability": 0.8669 + }, + { + "start": 42036.45, + "end": 42039.99, + "probability": 0.9834 + }, + { + "start": 42040.73, + "end": 42043.99, + "probability": 0.8744 + }, + { + "start": 42044.79, + "end": 42047.81, + "probability": 0.7854 + }, + { + "start": 42047.89, + "end": 42052.25, + "probability": 0.9058 + }, + { + "start": 42052.67, + "end": 42052.93, + "probability": 0.7029 + }, + { + "start": 42055.51, + "end": 42058.09, + "probability": 0.9738 + }, + { + "start": 42059.27, + "end": 42059.75, + "probability": 0.6565 + }, + { + "start": 42060.27, + "end": 42061.93, + "probability": 0.1104 + }, + { + "start": 42063.47, + "end": 42064.97, + "probability": 0.7769 + }, + { + "start": 42066.93, + "end": 42069.77, + "probability": 0.8537 + }, + { + "start": 42069.89, + "end": 42072.29, + "probability": 0.7091 + }, + { + "start": 42072.99, + "end": 42074.75, + "probability": 0.8783 + }, + { + "start": 42075.33, + "end": 42079.17, + "probability": 0.9559 + }, + { + "start": 42079.17, + "end": 42082.21, + "probability": 0.759 + }, + { + "start": 42084.23, + "end": 42086.65, + "probability": 0.8967 + }, + { + "start": 42086.65, + "end": 42089.43, + "probability": 0.9587 + }, + { + "start": 42090.17, + "end": 42093.19, + "probability": 0.9875 + }, + { + "start": 42093.81, + "end": 42095.31, + "probability": 0.9448 + }, + { + "start": 42096.23, + "end": 42100.03, + "probability": 0.9829 + }, + { + "start": 42100.03, + "end": 42105.51, + "probability": 0.8616 + }, + { + "start": 42106.29, + "end": 42108.17, + "probability": 0.8358 + }, + { + "start": 42108.17, + "end": 42112.29, + "probability": 0.983 + }, + { + "start": 42115.75, + "end": 42116.85, + "probability": 0.5384 + }, + { + "start": 42119.43, + "end": 42120.97, + "probability": 0.8571 + }, + { + "start": 42122.67, + "end": 42123.83, + "probability": 0.6742 + }, + { + "start": 42124.21, + "end": 42124.98, + "probability": 0.6759 + }, + { + "start": 42128.01, + "end": 42130.21, + "probability": 0.7799 + }, + { + "start": 42130.75, + "end": 42132.73, + "probability": 0.469 + }, + { + "start": 42133.71, + "end": 42134.49, + "probability": 0.2882 + }, + { + "start": 42135.09, + "end": 42138.44, + "probability": 0.8958 + }, + { + "start": 42139.33, + "end": 42150.31, + "probability": 0.8391 + }, + { + "start": 42150.51, + "end": 42152.07, + "probability": 0.2507 + }, + { + "start": 42152.17, + "end": 42152.71, + "probability": 0.6861 + }, + { + "start": 42156.35, + "end": 42156.89, + "probability": 0.9195 + }, + { + "start": 42163.55, + "end": 42164.99, + "probability": 0.9155 + }, + { + "start": 42166.05, + "end": 42168.57, + "probability": 0.8457 + }, + { + "start": 42169.49, + "end": 42170.01, + "probability": 0.6149 + }, + { + "start": 42172.21, + "end": 42174.65, + "probability": 0.7632 + }, + { + "start": 42174.65, + "end": 42177.29, + "probability": 0.974 + }, + { + "start": 42177.41, + "end": 42177.79, + "probability": 0.502 + }, + { + "start": 42179.13, + "end": 42182.49, + "probability": 0.9088 + }, + { + "start": 42182.63, + "end": 42185.49, + "probability": 0.9723 + }, + { + "start": 42185.65, + "end": 42190.51, + "probability": 0.835 + }, + { + "start": 42193.25, + "end": 42193.77, + "probability": 0.7276 + }, + { + "start": 42194.39, + "end": 42196.39, + "probability": 0.379 + }, + { + "start": 42200.05, + "end": 42201.11, + "probability": 0.104 + }, + { + "start": 42201.73, + "end": 42202.27, + "probability": 0.5998 + }, + { + "start": 42202.39, + "end": 42203.15, + "probability": 0.743 + }, + { + "start": 42203.25, + "end": 42203.97, + "probability": 0.7957 + }, + { + "start": 42204.01, + "end": 42205.15, + "probability": 0.5413 + }, + { + "start": 42208.27, + "end": 42209.57, + "probability": 0.8414 + }, + { + "start": 42210.67, + "end": 42212.57, + "probability": 0.9188 + }, + { + "start": 42217.03, + "end": 42219.31, + "probability": 0.5664 + }, + { + "start": 42222.35, + "end": 42222.91, + "probability": 0.7205 + }, + { + "start": 42222.97, + "end": 42224.95, + "probability": 0.7737 + }, + { + "start": 42224.95, + "end": 42228.39, + "probability": 0.9454 + }, + { + "start": 42229.63, + "end": 42232.61, + "probability": 0.6661 + }, + { + "start": 42232.69, + "end": 42235.77, + "probability": 0.9893 + }, + { + "start": 42236.01, + "end": 42238.77, + "probability": 0.7632 + }, + { + "start": 42239.29, + "end": 42240.31, + "probability": 0.6822 + }, + { + "start": 42240.41, + "end": 42241.07, + "probability": 0.5891 + }, + { + "start": 42241.89, + "end": 42244.75, + "probability": 0.7694 + }, + { + "start": 42245.43, + "end": 42246.45, + "probability": 0.5009 + }, + { + "start": 42246.57, + "end": 42247.39, + "probability": 0.7503 + }, + { + "start": 42247.67, + "end": 42251.03, + "probability": 0.7026 + }, + { + "start": 42251.81, + "end": 42254.69, + "probability": 0.9521 + }, + { + "start": 42254.93, + "end": 42256.75, + "probability": 0.8049 + }, + { + "start": 42258.25, + "end": 42260.77, + "probability": 0.519 + }, + { + "start": 42261.35, + "end": 42262.65, + "probability": 0.8009 + }, + { + "start": 42263.27, + "end": 42269.41, + "probability": 0.7107 + }, + { + "start": 42269.41, + "end": 42272.89, + "probability": 0.79 + }, + { + "start": 42273.49, + "end": 42275.65, + "probability": 0.95 + }, + { + "start": 42277.83, + "end": 42280.27, + "probability": 0.7622 + }, + { + "start": 42280.43, + "end": 42283.89, + "probability": 0.9593 + }, + { + "start": 42284.71, + "end": 42286.87, + "probability": 0.9689 + }, + { + "start": 42286.93, + "end": 42288.73, + "probability": 0.8587 + }, + { + "start": 42289.61, + "end": 42290.11, + "probability": 0.6128 + }, + { + "start": 42290.23, + "end": 42293.31, + "probability": 0.797 + }, + { + "start": 42295.13, + "end": 42298.21, + "probability": 0.9704 + }, + { + "start": 42298.35, + "end": 42300.05, + "probability": 0.7519 + }, + { + "start": 42301.31, + "end": 42301.43, + "probability": 0.5206 + }, + { + "start": 42301.55, + "end": 42302.03, + "probability": 0.7307 + }, + { + "start": 42302.27, + "end": 42303.2, + "probability": 0.3426 + }, + { + "start": 42303.25, + "end": 42305.07, + "probability": 0.8564 + }, + { + "start": 42305.23, + "end": 42307.25, + "probability": 0.5253 + }, + { + "start": 42308.35, + "end": 42310.55, + "probability": 0.9751 + }, + { + "start": 42310.55, + "end": 42313.37, + "probability": 0.9946 + }, + { + "start": 42313.89, + "end": 42315.21, + "probability": 0.8061 + }, + { + "start": 42317.07, + "end": 42321.01, + "probability": 0.9288 + }, + { + "start": 42321.81, + "end": 42322.83, + "probability": 0.7685 + }, + { + "start": 42322.85, + "end": 42323.63, + "probability": 0.4106 + }, + { + "start": 42323.73, + "end": 42324.45, + "probability": 0.6307 + }, + { + "start": 42324.63, + "end": 42326.03, + "probability": 0.7076 + }, + { + "start": 42326.73, + "end": 42328.07, + "probability": 0.8241 + }, + { + "start": 42329.91, + "end": 42330.41, + "probability": 0.3597 + }, + { + "start": 42331.85, + "end": 42333.49, + "probability": 0.8176 + }, + { + "start": 42335.09, + "end": 42335.41, + "probability": 0.1117 + }, + { + "start": 42335.41, + "end": 42335.43, + "probability": 0.0701 + }, + { + "start": 42338.87, + "end": 42341.31, + "probability": 0.7104 + }, + { + "start": 42345.39, + "end": 42348.07, + "probability": 0.5763 + }, + { + "start": 42348.09, + "end": 42348.59, + "probability": 0.4854 + }, + { + "start": 42348.67, + "end": 42348.85, + "probability": 0.4255 + }, + { + "start": 42348.89, + "end": 42351.15, + "probability": 0.8421 + }, + { + "start": 42369.07, + "end": 42370.2, + "probability": 0.6911 + }, + { + "start": 42373.11, + "end": 42376.01, + "probability": 0.3457 + }, + { + "start": 42381.84, + "end": 42384.81, + "probability": 0.6608 + }, + { + "start": 42385.73, + "end": 42389.23, + "probability": 0.9836 + }, + { + "start": 42390.77, + "end": 42394.65, + "probability": 0.9033 + }, + { + "start": 42395.81, + "end": 42400.31, + "probability": 0.9204 + }, + { + "start": 42400.31, + "end": 42403.09, + "probability": 0.7033 + }, + { + "start": 42404.97, + "end": 42406.31, + "probability": 0.831 + }, + { + "start": 42406.83, + "end": 42407.29, + "probability": 0.6778 + }, + { + "start": 42409.29, + "end": 42410.25, + "probability": 0.8726 + }, + { + "start": 42411.09, + "end": 42412.31, + "probability": 0.9896 + }, + { + "start": 42413.43, + "end": 42413.67, + "probability": 0.4221 + }, + { + "start": 42413.69, + "end": 42414.03, + "probability": 0.7123 + }, + { + "start": 42414.11, + "end": 42418.03, + "probability": 0.9523 + }, + { + "start": 42418.03, + "end": 42421.61, + "probability": 0.8831 + }, + { + "start": 42423.71, + "end": 42425.27, + "probability": 0.6848 + }, + { + "start": 42426.03, + "end": 42426.89, + "probability": 0.3085 + }, + { + "start": 42428.39, + "end": 42431.01, + "probability": 0.3274 + }, + { + "start": 42431.01, + "end": 42433.87, + "probability": 0.1056 + }, + { + "start": 42434.07, + "end": 42435.41, + "probability": 0.9266 + }, + { + "start": 42435.79, + "end": 42437.67, + "probability": 0.926 + }, + { + "start": 42441.74, + "end": 42446.45, + "probability": 0.7783 + }, + { + "start": 42447.67, + "end": 42452.63, + "probability": 0.8332 + }, + { + "start": 42453.55, + "end": 42454.03, + "probability": 0.3116 + }, + { + "start": 42454.03, + "end": 42454.43, + "probability": 0.3349 + }, + { + "start": 42456.31, + "end": 42459.15, + "probability": 0.3698 + }, + { + "start": 42459.15, + "end": 42461.55, + "probability": 0.0466 + }, + { + "start": 42461.55, + "end": 42461.67, + "probability": 0.1224 + }, + { + "start": 42461.67, + "end": 42461.67, + "probability": 0.2933 + }, + { + "start": 42461.67, + "end": 42462.39, + "probability": 0.0271 + }, + { + "start": 42462.47, + "end": 42463.29, + "probability": 0.1126 + }, + { + "start": 42463.55, + "end": 42464.53, + "probability": 0.6492 + }, + { + "start": 42465.25, + "end": 42467.19, + "probability": 0.3016 + }, + { + "start": 42467.63, + "end": 42468.85, + "probability": 0.7009 + }, + { + "start": 42471.55, + "end": 42471.75, + "probability": 0.1033 + }, + { + "start": 42471.75, + "end": 42471.75, + "probability": 0.0891 + }, + { + "start": 42471.75, + "end": 42472.07, + "probability": 0.0561 + }, + { + "start": 42473.41, + "end": 42473.97, + "probability": 0.0424 + }, + { + "start": 42475.11, + "end": 42477.51, + "probability": 0.7225 + }, + { + "start": 42478.11, + "end": 42481.83, + "probability": 0.7749 + }, + { + "start": 42484.95, + "end": 42490.05, + "probability": 0.6391 + }, + { + "start": 42490.93, + "end": 42492.49, + "probability": 0.7258 + }, + { + "start": 42493.25, + "end": 42494.47, + "probability": 0.9494 + }, + { + "start": 42495.03, + "end": 42496.93, + "probability": 0.8768 + }, + { + "start": 42497.31, + "end": 42498.81, + "probability": 0.9728 + }, + { + "start": 42499.15, + "end": 42500.09, + "probability": 0.6436 + }, + { + "start": 42500.67, + "end": 42501.65, + "probability": 0.9842 + }, + { + "start": 42502.33, + "end": 42503.31, + "probability": 0.8205 + }, + { + "start": 42503.99, + "end": 42505.83, + "probability": 0.9314 + }, + { + "start": 42507.49, + "end": 42508.33, + "probability": 0.7374 + }, + { + "start": 42508.53, + "end": 42509.3, + "probability": 0.974 + }, + { + "start": 42510.29, + "end": 42513.57, + "probability": 0.8451 + }, + { + "start": 42514.11, + "end": 42515.15, + "probability": 0.8125 + }, + { + "start": 42515.93, + "end": 42517.87, + "probability": 0.9268 + }, + { + "start": 42518.17, + "end": 42518.93, + "probability": 0.6066 + }, + { + "start": 42519.11, + "end": 42519.81, + "probability": 0.8527 + }, + { + "start": 42519.89, + "end": 42522.27, + "probability": 0.5621 + }, + { + "start": 42522.39, + "end": 42523.47, + "probability": 0.9002 + }, + { + "start": 42523.51, + "end": 42525.19, + "probability": 0.3528 + }, + { + "start": 42526.01, + "end": 42528.43, + "probability": 0.9633 + }, + { + "start": 42528.85, + "end": 42531.71, + "probability": 0.7982 + }, + { + "start": 42532.47, + "end": 42533.44, + "probability": 0.5012 + }, + { + "start": 42533.81, + "end": 42535.61, + "probability": 0.778 + }, + { + "start": 42536.03, + "end": 42537.85, + "probability": 0.7268 + }, + { + "start": 42539.61, + "end": 42539.61, + "probability": 0.1196 + }, + { + "start": 42539.61, + "end": 42540.07, + "probability": 0.2954 + }, + { + "start": 42540.83, + "end": 42541.31, + "probability": 0.3023 + }, + { + "start": 42541.67, + "end": 42543.17, + "probability": 0.3183 + }, + { + "start": 42544.29, + "end": 42545.55, + "probability": 0.9683 + }, + { + "start": 42545.63, + "end": 42549.17, + "probability": 0.5711 + }, + { + "start": 42549.53, + "end": 42550.05, + "probability": 0.7271 + }, + { + "start": 42550.13, + "end": 42550.87, + "probability": 0.7678 + }, + { + "start": 42550.87, + "end": 42551.29, + "probability": 0.8926 + }, + { + "start": 42551.87, + "end": 42552.23, + "probability": 0.9173 + }, + { + "start": 42552.33, + "end": 42553.33, + "probability": 0.6645 + }, + { + "start": 42556.46, + "end": 42559.13, + "probability": 0.7819 + }, + { + "start": 42562.39, + "end": 42564.59, + "probability": 0.7808 + }, + { + "start": 42564.99, + "end": 42567.07, + "probability": 0.6819 + }, + { + "start": 42567.09, + "end": 42568.85, + "probability": 0.8883 + }, + { + "start": 42569.51, + "end": 42572.25, + "probability": 0.8917 + }, + { + "start": 42573.09, + "end": 42576.35, + "probability": 0.7575 + }, + { + "start": 42577.19, + "end": 42579.55, + "probability": 0.8541 + }, + { + "start": 42579.55, + "end": 42584.41, + "probability": 0.401 + }, + { + "start": 42585.37, + "end": 42587.83, + "probability": 0.673 + }, + { + "start": 42587.83, + "end": 42590.07, + "probability": 0.7622 + }, + { + "start": 42590.21, + "end": 42592.45, + "probability": 0.5212 + }, + { + "start": 42592.65, + "end": 42594.61, + "probability": 0.7967 + }, + { + "start": 42599.23, + "end": 42600.57, + "probability": 0.8848 + }, + { + "start": 42602.33, + "end": 42603.25, + "probability": 0.7742 + }, + { + "start": 42604.43, + "end": 42605.29, + "probability": 0.4524 + }, + { + "start": 42606.23, + "end": 42606.45, + "probability": 0.9247 + }, + { + "start": 42609.05, + "end": 42609.43, + "probability": 0.3988 + }, + { + "start": 42613.89, + "end": 42616.27, + "probability": 0.5509 + }, + { + "start": 42616.93, + "end": 42620.23, + "probability": 0.8126 + }, + { + "start": 42621.09, + "end": 42624.29, + "probability": 0.8104 + }, + { + "start": 42625.25, + "end": 42628.81, + "probability": 0.8852 + }, + { + "start": 42628.83, + "end": 42632.27, + "probability": 0.9297 + }, + { + "start": 42632.33, + "end": 42632.47, + "probability": 0.3658 + }, + { + "start": 42632.61, + "end": 42634.87, + "probability": 0.9448 + }, + { + "start": 42634.93, + "end": 42638.67, + "probability": 0.9949 + }, + { + "start": 42640.27, + "end": 42640.45, + "probability": 0.4099 + }, + { + "start": 42640.67, + "end": 42643.07, + "probability": 0.9669 + }, + { + "start": 42643.07, + "end": 42645.89, + "probability": 0.972 + }, + { + "start": 42646.89, + "end": 42649.93, + "probability": 0.9014 + }, + { + "start": 42649.93, + "end": 42652.73, + "probability": 0.9823 + }, + { + "start": 42653.41, + "end": 42655.37, + "probability": 0.6823 + }, + { + "start": 42655.37, + "end": 42659.25, + "probability": 0.5493 + }, + { + "start": 42660.47, + "end": 42661.65, + "probability": 0.5052 + }, + { + "start": 42663.31, + "end": 42663.85, + "probability": 0.426 + }, + { + "start": 42663.91, + "end": 42668.93, + "probability": 0.9065 + }, + { + "start": 42669.99, + "end": 42671.59, + "probability": 0.5748 + }, + { + "start": 42672.1, + "end": 42673.95, + "probability": 0.6578 + }, + { + "start": 42674.03, + "end": 42674.03, + "probability": 0.4995 + }, + { + "start": 42674.07, + "end": 42679.15, + "probability": 0.9664 + }, + { + "start": 42679.55, + "end": 42679.67, + "probability": 0.4846 + }, + { + "start": 42679.77, + "end": 42680.79, + "probability": 0.913 + }, + { + "start": 42680.97, + "end": 42683.15, + "probability": 0.9774 + }, + { + "start": 42683.97, + "end": 42684.27, + "probability": 0.6265 + }, + { + "start": 42684.37, + "end": 42684.85, + "probability": 0.5882 + }, + { + "start": 42684.91, + "end": 42687.03, + "probability": 0.9056 + }, + { + "start": 42687.13, + "end": 42687.39, + "probability": 0.865 + }, + { + "start": 42689.77, + "end": 42693.39, + "probability": 0.8707 + }, + { + "start": 42693.81, + "end": 42695.57, + "probability": 0.5795 + }, + { + "start": 42696.13, + "end": 42697.99, + "probability": 0.912 + }, + { + "start": 42698.41, + "end": 42699.75, + "probability": 0.7274 + }, + { + "start": 42699.89, + "end": 42701.09, + "probability": 0.4057 + }, + { + "start": 42701.19, + "end": 42703.03, + "probability": 0.9883 + }, + { + "start": 42703.27, + "end": 42704.11, + "probability": 0.5319 + }, + { + "start": 42704.21, + "end": 42704.55, + "probability": 0.9244 + }, + { + "start": 42705.29, + "end": 42707.87, + "probability": 0.9543 + }, + { + "start": 42707.89, + "end": 42711.55, + "probability": 0.9686 + }, + { + "start": 42711.79, + "end": 42713.71, + "probability": 0.7449 + }, + { + "start": 42714.13, + "end": 42716.15, + "probability": 0.2206 + }, + { + "start": 42716.37, + "end": 42716.89, + "probability": 0.9121 + }, + { + "start": 42721.17, + "end": 42723.71, + "probability": 0.0418 + }, + { + "start": 42724.19, + "end": 42725.39, + "probability": 0.6691 + }, + { + "start": 42728.13, + "end": 42729.69, + "probability": 0.764 + }, + { + "start": 42729.77, + "end": 42730.87, + "probability": 0.5401 + }, + { + "start": 42731.15, + "end": 42732.43, + "probability": 0.9803 + }, + { + "start": 42736.21, + "end": 42741.26, + "probability": 0.75 + }, + { + "start": 42742.79, + "end": 42745.17, + "probability": 0.239 + }, + { + "start": 42745.39, + "end": 42746.43, + "probability": 0.6746 + }, + { + "start": 42746.89, + "end": 42749.03, + "probability": 0.8327 + }, + { + "start": 42749.27, + "end": 42751.23, + "probability": 0.8232 + }, + { + "start": 42751.25, + "end": 42751.67, + "probability": 0.8786 + }, + { + "start": 42751.83, + "end": 42755.75, + "probability": 0.9893 + }, + { + "start": 42756.15, + "end": 42757.35, + "probability": 0.8209 + }, + { + "start": 42757.39, + "end": 42757.83, + "probability": 0.8733 + }, + { + "start": 42758.11, + "end": 42759.85, + "probability": 0.9331 + }, + { + "start": 42762.19, + "end": 42765.49, + "probability": 0.7491 + }, + { + "start": 42770.37, + "end": 42776.27, + "probability": 0.0555 + }, + { + "start": 42778.38, + "end": 42780.61, + "probability": 0.1073 + }, + { + "start": 42780.83, + "end": 42782.07, + "probability": 0.4243 + }, + { + "start": 42783.21, + "end": 42784.19, + "probability": 0.3483 + }, + { + "start": 42790.27, + "end": 42794.37, + "probability": 0.5391 + }, + { + "start": 42794.87, + "end": 42798.35, + "probability": 0.8796 + }, + { + "start": 42798.35, + "end": 42799.75, + "probability": 0.1757 + }, + { + "start": 42801.2, + "end": 42805.62, + "probability": 0.9585 + }, + { + "start": 42806.13, + "end": 42807.61, + "probability": 0.2486 + }, + { + "start": 42807.75, + "end": 42809.01, + "probability": 0.9885 + }, + { + "start": 42811.31, + "end": 42817.09, + "probability": 0.974 + }, + { + "start": 42821.43, + "end": 42823.31, + "probability": 0.0488 + }, + { + "start": 42825.69, + "end": 42826.49, + "probability": 0.007 + }, + { + "start": 42826.77, + "end": 42827.17, + "probability": 0.0567 + }, + { + "start": 42863.44, + "end": 42864.48, + "probability": 0.0156 + }, + { + "start": 42869.66, + "end": 42871.66, + "probability": 0.0335 + }, + { + "start": 42876.6, + "end": 42878.1, + "probability": 0.0185 + }, + { + "start": 42878.98, + "end": 42879.02, + "probability": 0.0025 + }, + { + "start": 42879.54, + "end": 42880.38, + "probability": 0.4601 + }, + { + "start": 42882.44, + "end": 42884.26, + "probability": 0.0754 + }, + { + "start": 42887.94, + "end": 42888.65, + "probability": 0.0429 + }, + { + "start": 42891.26, + "end": 42891.84, + "probability": 0.0156 + }, + { + "start": 43031.0, + "end": 43031.0, + "probability": 0.0 + }, + { + "start": 43031.0, + "end": 43031.0, + "probability": 0.0 + }, + { + "start": 43031.0, + "end": 43031.0, + "probability": 0.0 + }, + { + "start": 43031.16, + "end": 43032.28, + "probability": 0.5631 + }, + { + "start": 43033.04, + "end": 43037.86, + "probability": 0.6134 + }, + { + "start": 43038.92, + "end": 43039.58, + "probability": 0.6079 + }, + { + "start": 43039.84, + "end": 43040.68, + "probability": 0.5111 + }, + { + "start": 43040.68, + "end": 43042.06, + "probability": 0.7914 + }, + { + "start": 43044.36, + "end": 43045.22, + "probability": 0.1687 + }, + { + "start": 43046.46, + "end": 43048.5, + "probability": 0.2034 + }, + { + "start": 43049.44, + "end": 43056.1, + "probability": 0.1745 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43175.0, + "end": 43175.0, + "probability": 0.0 + }, + { + "start": 43195.94, + "end": 43201.46, + "probability": 0.7713 + }, + { + "start": 43202.0, + "end": 43203.82, + "probability": 0.1786 + }, + { + "start": 43205.01, + "end": 43208.32, + "probability": 0.7482 + }, + { + "start": 43211.28, + "end": 43214.18, + "probability": 0.0065 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.0, + "end": 43295.0, + "probability": 0.0 + }, + { + "start": 43295.14, + "end": 43295.72, + "probability": 0.0588 + }, + { + "start": 43295.72, + "end": 43296.48, + "probability": 0.1726 + }, + { + "start": 43297.42, + "end": 43298.18, + "probability": 0.7668 + }, + { + "start": 43298.22, + "end": 43300.02, + "probability": 0.978 + }, + { + "start": 43300.12, + "end": 43301.16, + "probability": 0.9922 + }, + { + "start": 43302.0, + "end": 43305.96, + "probability": 0.9969 + }, + { + "start": 43310.52, + "end": 43311.36, + "probability": 0.3613 + }, + { + "start": 43311.48, + "end": 43313.46, + "probability": 0.976 + }, + { + "start": 43313.54, + "end": 43315.16, + "probability": 0.3017 + }, + { + "start": 43315.62, + "end": 43317.78, + "probability": 0.6156 + }, + { + "start": 43317.9, + "end": 43317.94, + "probability": 0.002 + } + ], + "segments_count": 14193, + "words_count": 69211, + "avg_words_per_segment": 4.8764, + "avg_segment_duration": 2.1497, + "avg_words_per_minute": 95.5593, + "plenum_id": "55655", + "duration": 43456.38, + "title": null, + "plenum_date": "2016-11-02" +} \ No newline at end of file