diff --git "a/73620/metadata.json" "b/73620/metadata.json" new file mode 100644--- /dev/null +++ "b/73620/metadata.json" @@ -0,0 +1,10377 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "73620", + "quality_score": 0.9402, + "per_segment_quality_scores": [ + { + "start": 32.58, + "end": 34.26, + "probability": 0.6047 + }, + { + "start": 34.86, + "end": 37.46, + "probability": 0.7119 + }, + { + "start": 38.16, + "end": 41.98, + "probability": 0.851 + }, + { + "start": 42.46, + "end": 45.9, + "probability": 0.8563 + }, + { + "start": 45.96, + "end": 46.76, + "probability": 0.9266 + }, + { + "start": 47.36, + "end": 50.28, + "probability": 0.5763 + }, + { + "start": 50.86, + "end": 56.22, + "probability": 0.7476 + }, + { + "start": 56.76, + "end": 58.1, + "probability": 0.445 + }, + { + "start": 58.16, + "end": 60.28, + "probability": 0.9408 + }, + { + "start": 60.36, + "end": 62.02, + "probability": 0.984 + }, + { + "start": 62.98, + "end": 66.9, + "probability": 0.7693 + }, + { + "start": 67.6, + "end": 69.76, + "probability": 0.9478 + }, + { + "start": 70.42, + "end": 73.24, + "probability": 0.9896 + }, + { + "start": 73.28, + "end": 75.92, + "probability": 0.998 + }, + { + "start": 76.46, + "end": 76.72, + "probability": 0.1034 + }, + { + "start": 77.28, + "end": 81.14, + "probability": 0.7648 + }, + { + "start": 81.7, + "end": 85.13, + "probability": 0.6504 + }, + { + "start": 86.08, + "end": 90.2, + "probability": 0.9968 + }, + { + "start": 90.5, + "end": 91.16, + "probability": 0.9255 + }, + { + "start": 91.86, + "end": 94.76, + "probability": 0.9855 + }, + { + "start": 95.32, + "end": 98.02, + "probability": 0.933 + }, + { + "start": 99.1, + "end": 99.28, + "probability": 0.7102 + }, + { + "start": 99.36, + "end": 100.7, + "probability": 0.7559 + }, + { + "start": 100.78, + "end": 103.38, + "probability": 0.8769 + }, + { + "start": 104.46, + "end": 107.64, + "probability": 0.8249 + }, + { + "start": 113.3, + "end": 114.16, + "probability": 0.7138 + }, + { + "start": 115.0, + "end": 115.3, + "probability": 0.4616 + }, + { + "start": 115.56, + "end": 117.14, + "probability": 0.9596 + }, + { + "start": 118.68, + "end": 120.88, + "probability": 0.9855 + }, + { + "start": 122.62, + "end": 124.82, + "probability": 0.7103 + }, + { + "start": 125.68, + "end": 129.74, + "probability": 0.7325 + }, + { + "start": 130.74, + "end": 133.02, + "probability": 0.9854 + }, + { + "start": 133.02, + "end": 137.2, + "probability": 0.9589 + }, + { + "start": 137.92, + "end": 141.16, + "probability": 0.9646 + }, + { + "start": 141.7, + "end": 144.32, + "probability": 0.9932 + }, + { + "start": 144.36, + "end": 147.76, + "probability": 0.9868 + }, + { + "start": 148.88, + "end": 149.8, + "probability": 0.4992 + }, + { + "start": 151.02, + "end": 152.92, + "probability": 0.9668 + }, + { + "start": 153.12, + "end": 153.96, + "probability": 0.6332 + }, + { + "start": 154.06, + "end": 155.52, + "probability": 0.9141 + }, + { + "start": 156.02, + "end": 159.18, + "probability": 0.9444 + }, + { + "start": 159.42, + "end": 160.94, + "probability": 0.8036 + }, + { + "start": 162.2, + "end": 162.92, + "probability": 0.5215 + }, + { + "start": 163.12, + "end": 164.1, + "probability": 0.8536 + }, + { + "start": 164.22, + "end": 165.21, + "probability": 0.8993 + }, + { + "start": 165.4, + "end": 168.94, + "probability": 0.9236 + }, + { + "start": 169.48, + "end": 171.1, + "probability": 0.7957 + }, + { + "start": 171.74, + "end": 172.9, + "probability": 0.9835 + }, + { + "start": 173.78, + "end": 174.92, + "probability": 0.812 + }, + { + "start": 175.14, + "end": 176.47, + "probability": 0.8844 + }, + { + "start": 176.62, + "end": 177.26, + "probability": 0.5013 + }, + { + "start": 177.3, + "end": 178.88, + "probability": 0.9399 + }, + { + "start": 179.34, + "end": 180.14, + "probability": 0.9571 + }, + { + "start": 180.76, + "end": 183.86, + "probability": 0.989 + }, + { + "start": 184.46, + "end": 185.2, + "probability": 0.9159 + }, + { + "start": 185.58, + "end": 187.04, + "probability": 0.9679 + }, + { + "start": 187.16, + "end": 190.36, + "probability": 0.8222 + }, + { + "start": 191.62, + "end": 192.8, + "probability": 0.7969 + }, + { + "start": 193.26, + "end": 194.2, + "probability": 0.5261 + }, + { + "start": 194.34, + "end": 195.58, + "probability": 0.99 + }, + { + "start": 195.92, + "end": 198.0, + "probability": 0.9389 + }, + { + "start": 198.06, + "end": 198.92, + "probability": 0.5032 + }, + { + "start": 199.04, + "end": 199.5, + "probability": 0.7641 + }, + { + "start": 199.98, + "end": 201.18, + "probability": 0.988 + }, + { + "start": 201.82, + "end": 202.46, + "probability": 0.8042 + }, + { + "start": 202.6, + "end": 203.92, + "probability": 0.7054 + }, + { + "start": 204.32, + "end": 205.52, + "probability": 0.9736 + }, + { + "start": 205.58, + "end": 207.14, + "probability": 0.9537 + }, + { + "start": 207.64, + "end": 213.58, + "probability": 0.9712 + }, + { + "start": 214.0, + "end": 214.52, + "probability": 0.8491 + }, + { + "start": 214.82, + "end": 218.46, + "probability": 0.9608 + }, + { + "start": 218.46, + "end": 222.88, + "probability": 0.9977 + }, + { + "start": 222.9, + "end": 223.98, + "probability": 0.5001 + }, + { + "start": 224.4, + "end": 225.36, + "probability": 0.5759 + }, + { + "start": 225.5, + "end": 227.96, + "probability": 0.4991 + }, + { + "start": 228.84, + "end": 232.84, + "probability": 0.9697 + }, + { + "start": 232.96, + "end": 234.94, + "probability": 0.4995 + }, + { + "start": 235.78, + "end": 239.22, + "probability": 0.9623 + }, + { + "start": 239.3, + "end": 239.62, + "probability": 0.7764 + }, + { + "start": 240.38, + "end": 241.92, + "probability": 0.7169 + }, + { + "start": 242.06, + "end": 244.5, + "probability": 0.8056 + }, + { + "start": 245.02, + "end": 247.52, + "probability": 0.8566 + }, + { + "start": 255.92, + "end": 256.96, + "probability": 0.748 + }, + { + "start": 258.0, + "end": 260.36, + "probability": 0.9229 + }, + { + "start": 262.68, + "end": 266.0, + "probability": 0.8151 + }, + { + "start": 266.56, + "end": 268.84, + "probability": 0.9951 + }, + { + "start": 270.7, + "end": 273.74, + "probability": 0.9912 + }, + { + "start": 274.62, + "end": 275.28, + "probability": 0.8114 + }, + { + "start": 276.28, + "end": 278.58, + "probability": 0.8635 + }, + { + "start": 280.26, + "end": 281.44, + "probability": 0.8916 + }, + { + "start": 282.44, + "end": 284.28, + "probability": 0.8943 + }, + { + "start": 285.26, + "end": 287.64, + "probability": 0.7999 + }, + { + "start": 288.24, + "end": 290.14, + "probability": 0.9577 + }, + { + "start": 291.8, + "end": 295.8, + "probability": 0.9972 + }, + { + "start": 296.68, + "end": 299.1, + "probability": 0.9863 + }, + { + "start": 300.3, + "end": 300.98, + "probability": 0.7621 + }, + { + "start": 301.7, + "end": 303.58, + "probability": 0.9329 + }, + { + "start": 304.18, + "end": 307.72, + "probability": 0.9778 + }, + { + "start": 308.66, + "end": 310.28, + "probability": 0.7858 + }, + { + "start": 311.28, + "end": 311.6, + "probability": 0.5119 + }, + { + "start": 311.68, + "end": 315.44, + "probability": 0.7642 + }, + { + "start": 316.24, + "end": 318.7, + "probability": 0.9211 + }, + { + "start": 319.9, + "end": 321.72, + "probability": 0.9707 + }, + { + "start": 322.24, + "end": 326.1, + "probability": 0.9766 + }, + { + "start": 327.28, + "end": 330.5, + "probability": 0.9766 + }, + { + "start": 331.34, + "end": 336.3, + "probability": 0.9836 + }, + { + "start": 337.06, + "end": 338.2, + "probability": 0.6631 + }, + { + "start": 339.02, + "end": 340.78, + "probability": 0.9031 + }, + { + "start": 341.36, + "end": 341.88, + "probability": 0.9808 + }, + { + "start": 342.62, + "end": 342.86, + "probability": 0.6105 + }, + { + "start": 343.96, + "end": 345.92, + "probability": 0.7556 + }, + { + "start": 346.64, + "end": 348.1, + "probability": 0.8623 + }, + { + "start": 348.2, + "end": 348.54, + "probability": 0.5305 + }, + { + "start": 348.58, + "end": 349.02, + "probability": 0.5642 + }, + { + "start": 349.1, + "end": 349.78, + "probability": 0.6511 + }, + { + "start": 350.22, + "end": 351.2, + "probability": 0.9702 + }, + { + "start": 353.48, + "end": 354.74, + "probability": 0.681 + }, + { + "start": 354.88, + "end": 357.3, + "probability": 0.7257 + }, + { + "start": 358.58, + "end": 361.36, + "probability": 0.9264 + }, + { + "start": 361.44, + "end": 362.48, + "probability": 0.7405 + }, + { + "start": 362.56, + "end": 364.7, + "probability": 0.7898 + }, + { + "start": 364.76, + "end": 368.26, + "probability": 0.9832 + }, + { + "start": 368.72, + "end": 372.24, + "probability": 0.9949 + }, + { + "start": 372.88, + "end": 373.9, + "probability": 0.6626 + }, + { + "start": 374.68, + "end": 378.56, + "probability": 0.9487 + }, + { + "start": 378.72, + "end": 381.36, + "probability": 0.9059 + }, + { + "start": 381.58, + "end": 382.98, + "probability": 0.9054 + }, + { + "start": 383.26, + "end": 385.38, + "probability": 0.9543 + }, + { + "start": 386.38, + "end": 391.5, + "probability": 0.988 + }, + { + "start": 391.92, + "end": 393.4, + "probability": 0.6648 + }, + { + "start": 393.48, + "end": 395.16, + "probability": 0.8975 + }, + { + "start": 395.24, + "end": 397.09, + "probability": 0.9429 + }, + { + "start": 397.34, + "end": 397.54, + "probability": 0.4544 + }, + { + "start": 397.54, + "end": 401.72, + "probability": 0.9508 + }, + { + "start": 402.4, + "end": 403.88, + "probability": 0.7797 + }, + { + "start": 404.24, + "end": 409.0, + "probability": 0.8434 + }, + { + "start": 409.4, + "end": 412.72, + "probability": 0.9607 + }, + { + "start": 412.96, + "end": 414.42, + "probability": 0.9137 + }, + { + "start": 414.8, + "end": 419.48, + "probability": 0.9512 + }, + { + "start": 419.94, + "end": 422.54, + "probability": 0.9225 + }, + { + "start": 422.56, + "end": 426.82, + "probability": 0.98 + }, + { + "start": 427.16, + "end": 428.14, + "probability": 0.9985 + }, + { + "start": 428.66, + "end": 430.36, + "probability": 0.994 + }, + { + "start": 430.58, + "end": 434.96, + "probability": 0.9963 + }, + { + "start": 435.3, + "end": 437.08, + "probability": 0.999 + }, + { + "start": 437.22, + "end": 439.92, + "probability": 0.9982 + }, + { + "start": 440.42, + "end": 443.4, + "probability": 0.9891 + }, + { + "start": 443.82, + "end": 444.08, + "probability": 0.7916 + }, + { + "start": 444.18, + "end": 444.94, + "probability": 0.9502 + }, + { + "start": 445.1, + "end": 445.68, + "probability": 0.7401 + }, + { + "start": 445.96, + "end": 448.24, + "probability": 0.9529 + }, + { + "start": 448.58, + "end": 453.24, + "probability": 0.9644 + }, + { + "start": 453.66, + "end": 454.16, + "probability": 0.8187 + }, + { + "start": 454.6, + "end": 456.46, + "probability": 0.8764 + }, + { + "start": 456.6, + "end": 458.16, + "probability": 0.8023 + }, + { + "start": 458.26, + "end": 458.66, + "probability": 0.7405 + }, + { + "start": 458.7, + "end": 459.04, + "probability": 0.6825 + }, + { + "start": 459.48, + "end": 461.18, + "probability": 0.6686 + }, + { + "start": 461.34, + "end": 462.78, + "probability": 0.7578 + }, + { + "start": 463.4, + "end": 464.74, + "probability": 0.5316 + }, + { + "start": 464.94, + "end": 467.44, + "probability": 0.9137 + }, + { + "start": 468.18, + "end": 469.7, + "probability": 0.9689 + }, + { + "start": 470.3, + "end": 472.32, + "probability": 0.644 + }, + { + "start": 472.96, + "end": 475.26, + "probability": 0.8545 + }, + { + "start": 475.82, + "end": 480.48, + "probability": 0.9601 + }, + { + "start": 480.56, + "end": 481.84, + "probability": 0.8688 + }, + { + "start": 482.26, + "end": 483.78, + "probability": 0.8491 + }, + { + "start": 484.34, + "end": 488.28, + "probability": 0.9047 + }, + { + "start": 488.86, + "end": 490.14, + "probability": 0.9934 + }, + { + "start": 490.74, + "end": 493.3, + "probability": 0.7622 + }, + { + "start": 493.86, + "end": 496.24, + "probability": 0.8619 + }, + { + "start": 496.68, + "end": 497.78, + "probability": 0.9382 + }, + { + "start": 498.12, + "end": 499.28, + "probability": 0.7679 + }, + { + "start": 499.92, + "end": 502.34, + "probability": 0.9789 + }, + { + "start": 502.88, + "end": 506.78, + "probability": 0.9753 + }, + { + "start": 506.94, + "end": 510.42, + "probability": 0.8711 + }, + { + "start": 510.48, + "end": 511.9, + "probability": 0.9506 + }, + { + "start": 512.18, + "end": 513.18, + "probability": 0.8662 + }, + { + "start": 513.94, + "end": 514.94, + "probability": 0.9948 + }, + { + "start": 515.5, + "end": 519.12, + "probability": 0.879 + }, + { + "start": 519.64, + "end": 522.42, + "probability": 0.9552 + }, + { + "start": 522.54, + "end": 525.24, + "probability": 0.9517 + }, + { + "start": 525.72, + "end": 526.26, + "probability": 0.9668 + }, + { + "start": 526.34, + "end": 528.66, + "probability": 0.9952 + }, + { + "start": 529.02, + "end": 529.2, + "probability": 0.6311 + }, + { + "start": 529.76, + "end": 531.46, + "probability": 0.7496 + }, + { + "start": 531.92, + "end": 534.8, + "probability": 0.8429 + }, + { + "start": 535.4, + "end": 537.14, + "probability": 0.9793 + }, + { + "start": 540.74, + "end": 542.44, + "probability": 0.737 + }, + { + "start": 543.72, + "end": 546.46, + "probability": 0.6104 + }, + { + "start": 547.64, + "end": 549.82, + "probability": 0.5406 + }, + { + "start": 550.56, + "end": 552.06, + "probability": 0.806 + }, + { + "start": 552.28, + "end": 559.96, + "probability": 0.938 + }, + { + "start": 561.22, + "end": 565.66, + "probability": 0.9526 + }, + { + "start": 566.66, + "end": 569.38, + "probability": 0.9421 + }, + { + "start": 570.9, + "end": 575.22, + "probability": 0.9147 + }, + { + "start": 575.78, + "end": 578.28, + "probability": 0.9926 + }, + { + "start": 578.9, + "end": 580.28, + "probability": 0.906 + }, + { + "start": 580.5, + "end": 585.28, + "probability": 0.9632 + }, + { + "start": 585.78, + "end": 586.34, + "probability": 0.8781 + }, + { + "start": 586.74, + "end": 587.2, + "probability": 0.5287 + }, + { + "start": 588.0, + "end": 589.34, + "probability": 0.8633 + }, + { + "start": 589.88, + "end": 590.36, + "probability": 0.7365 + }, + { + "start": 590.98, + "end": 591.62, + "probability": 0.9991 + }, + { + "start": 592.14, + "end": 594.6, + "probability": 0.9213 + }, + { + "start": 595.02, + "end": 595.34, + "probability": 0.482 + }, + { + "start": 596.78, + "end": 599.18, + "probability": 0.4615 + }, + { + "start": 599.36, + "end": 600.82, + "probability": 0.9843 + }, + { + "start": 600.86, + "end": 601.42, + "probability": 0.8313 + }, + { + "start": 601.5, + "end": 601.82, + "probability": 0.5953 + }, + { + "start": 601.86, + "end": 602.5, + "probability": 0.7381 + }, + { + "start": 602.68, + "end": 604.0, + "probability": 0.9942 + }, + { + "start": 605.76, + "end": 607.48, + "probability": 0.6532 + }, + { + "start": 607.56, + "end": 608.83, + "probability": 0.6455 + }, + { + "start": 610.12, + "end": 614.98, + "probability": 0.9243 + }, + { + "start": 617.2, + "end": 619.08, + "probability": 0.5498 + }, + { + "start": 620.24, + "end": 622.74, + "probability": 0.9915 + }, + { + "start": 623.5, + "end": 627.88, + "probability": 0.9801 + }, + { + "start": 628.66, + "end": 629.38, + "probability": 0.9331 + }, + { + "start": 631.02, + "end": 631.64, + "probability": 0.6657 + }, + { + "start": 631.7, + "end": 633.74, + "probability": 0.9546 + }, + { + "start": 633.94, + "end": 636.48, + "probability": 0.9881 + }, + { + "start": 637.84, + "end": 639.5, + "probability": 0.7053 + }, + { + "start": 639.72, + "end": 645.1, + "probability": 0.9775 + }, + { + "start": 646.02, + "end": 649.1, + "probability": 0.9309 + }, + { + "start": 649.68, + "end": 650.58, + "probability": 0.9536 + }, + { + "start": 651.96, + "end": 653.08, + "probability": 0.9976 + }, + { + "start": 653.68, + "end": 657.72, + "probability": 0.9711 + }, + { + "start": 657.98, + "end": 661.55, + "probability": 0.9625 + }, + { + "start": 662.26, + "end": 664.78, + "probability": 0.9922 + }, + { + "start": 665.66, + "end": 667.39, + "probability": 0.8975 + }, + { + "start": 667.86, + "end": 673.04, + "probability": 0.8563 + }, + { + "start": 673.52, + "end": 675.6, + "probability": 0.9727 + }, + { + "start": 676.48, + "end": 677.42, + "probability": 0.9535 + }, + { + "start": 677.56, + "end": 680.52, + "probability": 0.9739 + }, + { + "start": 680.8, + "end": 681.36, + "probability": 0.8362 + }, + { + "start": 682.12, + "end": 683.82, + "probability": 0.5617 + }, + { + "start": 685.04, + "end": 685.58, + "probability": 0.9995 + }, + { + "start": 686.12, + "end": 687.68, + "probability": 0.9559 + }, + { + "start": 688.52, + "end": 688.84, + "probability": 0.532 + }, + { + "start": 690.0, + "end": 691.86, + "probability": 0.6364 + }, + { + "start": 691.98, + "end": 694.02, + "probability": 0.7852 + }, + { + "start": 694.14, + "end": 695.66, + "probability": 0.9137 + }, + { + "start": 699.5, + "end": 702.0, + "probability": 0.7355 + }, + { + "start": 702.7, + "end": 706.76, + "probability": 0.9916 + }, + { + "start": 707.44, + "end": 709.98, + "probability": 0.9985 + }, + { + "start": 711.1, + "end": 715.54, + "probability": 0.6725 + }, + { + "start": 717.18, + "end": 719.22, + "probability": 0.9907 + }, + { + "start": 719.4, + "end": 720.76, + "probability": 0.8521 + }, + { + "start": 721.42, + "end": 723.42, + "probability": 0.781 + }, + { + "start": 723.94, + "end": 727.28, + "probability": 0.8466 + }, + { + "start": 728.2, + "end": 728.92, + "probability": 0.8021 + }, + { + "start": 729.84, + "end": 732.06, + "probability": 0.8859 + }, + { + "start": 734.78, + "end": 742.38, + "probability": 0.9352 + }, + { + "start": 744.54, + "end": 746.0, + "probability": 0.9465 + }, + { + "start": 746.72, + "end": 748.66, + "probability": 0.674 + }, + { + "start": 749.7, + "end": 749.98, + "probability": 0.8512 + }, + { + "start": 752.32, + "end": 754.48, + "probability": 0.8331 + }, + { + "start": 755.64, + "end": 758.12, + "probability": 0.5485 + }, + { + "start": 759.12, + "end": 759.6, + "probability": 0.8853 + }, + { + "start": 760.44, + "end": 764.84, + "probability": 0.9885 + }, + { + "start": 765.56, + "end": 771.2, + "probability": 0.9972 + }, + { + "start": 771.77, + "end": 772.14, + "probability": 0.0006 + }, + { + "start": 772.14, + "end": 772.98, + "probability": 0.5404 + }, + { + "start": 773.08, + "end": 774.24, + "probability": 0.7739 + }, + { + "start": 774.66, + "end": 774.66, + "probability": 0.3667 + }, + { + "start": 775.6, + "end": 783.36, + "probability": 0.8003 + }, + { + "start": 784.51, + "end": 787.5, + "probability": 0.9432 + }, + { + "start": 787.62, + "end": 788.31, + "probability": 0.7976 + }, + { + "start": 788.9, + "end": 789.69, + "probability": 0.9299 + }, + { + "start": 789.76, + "end": 794.04, + "probability": 0.9849 + }, + { + "start": 795.4, + "end": 801.7, + "probability": 0.9674 + }, + { + "start": 802.4, + "end": 804.12, + "probability": 0.9526 + }, + { + "start": 804.94, + "end": 808.7, + "probability": 0.78 + }, + { + "start": 809.22, + "end": 810.04, + "probability": 0.943 + }, + { + "start": 810.86, + "end": 814.1, + "probability": 0.8732 + }, + { + "start": 814.64, + "end": 815.28, + "probability": 0.3264 + }, + { + "start": 815.82, + "end": 818.62, + "probability": 0.8365 + }, + { + "start": 819.18, + "end": 823.98, + "probability": 0.958 + }, + { + "start": 825.1, + "end": 826.44, + "probability": 0.9476 + }, + { + "start": 826.52, + "end": 828.8, + "probability": 0.9694 + }, + { + "start": 828.9, + "end": 829.6, + "probability": 0.7427 + }, + { + "start": 830.08, + "end": 831.06, + "probability": 0.9854 + }, + { + "start": 831.34, + "end": 832.24, + "probability": 0.9884 + }, + { + "start": 832.4, + "end": 833.62, + "probability": 0.8043 + }, + { + "start": 834.26, + "end": 835.26, + "probability": 0.3509 + }, + { + "start": 835.32, + "end": 838.64, + "probability": 0.9235 + }, + { + "start": 838.64, + "end": 842.22, + "probability": 0.9448 + }, + { + "start": 842.54, + "end": 842.74, + "probability": 0.8833 + }, + { + "start": 843.28, + "end": 844.38, + "probability": 0.753 + }, + { + "start": 844.38, + "end": 848.14, + "probability": 0.9593 + }, + { + "start": 848.58, + "end": 850.28, + "probability": 0.7918 + }, + { + "start": 850.82, + "end": 852.18, + "probability": 0.9328 + }, + { + "start": 852.3, + "end": 852.84, + "probability": 0.6844 + }, + { + "start": 852.88, + "end": 853.22, + "probability": 0.7497 + }, + { + "start": 853.66, + "end": 854.3, + "probability": 0.7606 + }, + { + "start": 854.58, + "end": 856.08, + "probability": 0.7881 + }, + { + "start": 857.44, + "end": 858.38, + "probability": 0.7891 + }, + { + "start": 860.16, + "end": 862.9, + "probability": 0.9668 + }, + { + "start": 865.52, + "end": 870.76, + "probability": 0.8877 + }, + { + "start": 871.0, + "end": 873.28, + "probability": 0.9535 + }, + { + "start": 873.42, + "end": 874.78, + "probability": 0.9407 + }, + { + "start": 875.42, + "end": 877.44, + "probability": 0.9831 + }, + { + "start": 877.64, + "end": 879.08, + "probability": 0.8361 + }, + { + "start": 879.64, + "end": 882.44, + "probability": 0.9951 + }, + { + "start": 882.52, + "end": 884.76, + "probability": 0.9738 + }, + { + "start": 885.66, + "end": 886.26, + "probability": 0.9704 + }, + { + "start": 886.46, + "end": 889.0, + "probability": 0.9951 + }, + { + "start": 889.22, + "end": 890.08, + "probability": 0.875 + }, + { + "start": 890.9, + "end": 892.92, + "probability": 0.9585 + }, + { + "start": 894.7, + "end": 896.98, + "probability": 0.9585 + }, + { + "start": 897.08, + "end": 900.06, + "probability": 0.6021 + }, + { + "start": 900.86, + "end": 902.48, + "probability": 0.8833 + }, + { + "start": 905.4, + "end": 908.66, + "probability": 0.7422 + }, + { + "start": 909.48, + "end": 913.96, + "probability": 0.9802 + }, + { + "start": 914.24, + "end": 916.86, + "probability": 0.7696 + }, + { + "start": 917.76, + "end": 919.7, + "probability": 0.5256 + }, + { + "start": 921.04, + "end": 924.02, + "probability": 0.9739 + }, + { + "start": 925.08, + "end": 927.46, + "probability": 0.9833 + }, + { + "start": 928.18, + "end": 930.02, + "probability": 0.731 + }, + { + "start": 931.72, + "end": 933.52, + "probability": 0.9741 + }, + { + "start": 934.08, + "end": 937.82, + "probability": 0.9624 + }, + { + "start": 938.24, + "end": 938.6, + "probability": 0.7426 + }, + { + "start": 939.2, + "end": 939.86, + "probability": 0.9296 + }, + { + "start": 940.72, + "end": 942.9, + "probability": 0.9144 + }, + { + "start": 943.0, + "end": 946.3, + "probability": 0.9932 + }, + { + "start": 946.58, + "end": 947.7, + "probability": 0.8795 + }, + { + "start": 948.94, + "end": 952.76, + "probability": 0.9849 + }, + { + "start": 953.44, + "end": 956.8, + "probability": 0.9701 + }, + { + "start": 957.7, + "end": 961.06, + "probability": 0.6833 + }, + { + "start": 961.84, + "end": 965.42, + "probability": 0.9808 + }, + { + "start": 966.42, + "end": 969.18, + "probability": 0.1196 + }, + { + "start": 969.18, + "end": 971.87, + "probability": 0.2098 + }, + { + "start": 972.54, + "end": 975.04, + "probability": 0.2447 + }, + { + "start": 975.7, + "end": 977.38, + "probability": 0.5756 + }, + { + "start": 977.5, + "end": 979.64, + "probability": 0.7055 + }, + { + "start": 979.76, + "end": 980.12, + "probability": 0.6267 + }, + { + "start": 980.84, + "end": 982.06, + "probability": 0.691 + }, + { + "start": 987.24, + "end": 987.44, + "probability": 0.5979 + }, + { + "start": 988.8, + "end": 990.16, + "probability": 0.6748 + }, + { + "start": 990.82, + "end": 995.02, + "probability": 0.9865 + }, + { + "start": 995.02, + "end": 1001.38, + "probability": 0.9816 + }, + { + "start": 1002.66, + "end": 1007.24, + "probability": 0.9919 + }, + { + "start": 1007.76, + "end": 1008.4, + "probability": 0.717 + }, + { + "start": 1009.12, + "end": 1012.46, + "probability": 0.9881 + }, + { + "start": 1013.54, + "end": 1016.32, + "probability": 0.9149 + }, + { + "start": 1016.82, + "end": 1019.88, + "probability": 0.8281 + }, + { + "start": 1020.84, + "end": 1024.54, + "probability": 0.9811 + }, + { + "start": 1025.38, + "end": 1026.62, + "probability": 0.5317 + }, + { + "start": 1026.74, + "end": 1032.33, + "probability": 0.9847 + }, + { + "start": 1032.44, + "end": 1039.34, + "probability": 0.9814 + }, + { + "start": 1040.4, + "end": 1041.18, + "probability": 0.5243 + }, + { + "start": 1041.38, + "end": 1042.3, + "probability": 0.633 + }, + { + "start": 1042.42, + "end": 1043.78, + "probability": 0.7527 + }, + { + "start": 1043.96, + "end": 1047.96, + "probability": 0.959 + }, + { + "start": 1048.42, + "end": 1054.44, + "probability": 0.9126 + }, + { + "start": 1055.38, + "end": 1059.94, + "probability": 0.9409 + }, + { + "start": 1060.9, + "end": 1061.14, + "probability": 0.3153 + }, + { + "start": 1061.2, + "end": 1066.26, + "probability": 0.9585 + }, + { + "start": 1067.58, + "end": 1069.7, + "probability": 0.905 + }, + { + "start": 1069.74, + "end": 1073.84, + "probability": 0.9857 + }, + { + "start": 1074.96, + "end": 1078.0, + "probability": 0.9728 + }, + { + "start": 1079.14, + "end": 1082.02, + "probability": 0.7682 + }, + { + "start": 1082.6, + "end": 1085.34, + "probability": 0.767 + }, + { + "start": 1086.14, + "end": 1086.86, + "probability": 0.6778 + }, + { + "start": 1087.06, + "end": 1088.96, + "probability": 0.8326 + }, + { + "start": 1089.12, + "end": 1091.42, + "probability": 0.9771 + }, + { + "start": 1095.22, + "end": 1099.32, + "probability": 0.7546 + }, + { + "start": 1100.4, + "end": 1101.7, + "probability": 0.8119 + }, + { + "start": 1102.04, + "end": 1102.28, + "probability": 0.3079 + }, + { + "start": 1102.44, + "end": 1107.1, + "probability": 0.9679 + }, + { + "start": 1107.66, + "end": 1111.06, + "probability": 0.9458 + }, + { + "start": 1111.9, + "end": 1116.7, + "probability": 0.8825 + }, + { + "start": 1117.38, + "end": 1119.26, + "probability": 0.466 + }, + { + "start": 1120.28, + "end": 1122.22, + "probability": 0.7117 + }, + { + "start": 1122.76, + "end": 1124.68, + "probability": 0.7272 + }, + { + "start": 1124.76, + "end": 1125.14, + "probability": 0.7297 + }, + { + "start": 1125.66, + "end": 1127.3, + "probability": 0.8704 + }, + { + "start": 1129.98, + "end": 1131.64, + "probability": 0.8064 + }, + { + "start": 1131.96, + "end": 1133.0, + "probability": 0.7215 + }, + { + "start": 1133.42, + "end": 1137.9, + "probability": 0.9932 + }, + { + "start": 1137.96, + "end": 1139.22, + "probability": 0.9323 + }, + { + "start": 1139.82, + "end": 1142.2, + "probability": 0.9915 + }, + { + "start": 1142.72, + "end": 1145.38, + "probability": 0.9766 + }, + { + "start": 1145.92, + "end": 1147.88, + "probability": 0.8948 + }, + { + "start": 1148.48, + "end": 1151.56, + "probability": 0.9364 + }, + { + "start": 1152.12, + "end": 1155.24, + "probability": 0.8142 + }, + { + "start": 1156.0, + "end": 1157.14, + "probability": 0.9775 + }, + { + "start": 1157.3, + "end": 1158.12, + "probability": 0.6485 + }, + { + "start": 1158.26, + "end": 1158.78, + "probability": 0.9362 + }, + { + "start": 1159.0, + "end": 1159.94, + "probability": 0.911 + }, + { + "start": 1160.38, + "end": 1162.5, + "probability": 0.9909 + }, + { + "start": 1162.82, + "end": 1163.82, + "probability": 0.7307 + }, + { + "start": 1163.9, + "end": 1165.94, + "probability": 0.9635 + }, + { + "start": 1166.32, + "end": 1166.78, + "probability": 0.7226 + }, + { + "start": 1166.82, + "end": 1168.74, + "probability": 0.9837 + }, + { + "start": 1169.14, + "end": 1171.4, + "probability": 0.9957 + }, + { + "start": 1171.96, + "end": 1177.06, + "probability": 0.9946 + }, + { + "start": 1177.9, + "end": 1183.76, + "probability": 0.9829 + }, + { + "start": 1184.38, + "end": 1185.58, + "probability": 0.7632 + }, + { + "start": 1185.94, + "end": 1190.28, + "probability": 0.9722 + }, + { + "start": 1190.96, + "end": 1194.9, + "probability": 0.8744 + }, + { + "start": 1195.58, + "end": 1195.94, + "probability": 0.8781 + }, + { + "start": 1196.58, + "end": 1198.4, + "probability": 0.8989 + }, + { + "start": 1199.12, + "end": 1204.32, + "probability": 0.9376 + }, + { + "start": 1205.1, + "end": 1206.7, + "probability": 0.9658 + }, + { + "start": 1207.34, + "end": 1207.84, + "probability": 0.8316 + }, + { + "start": 1208.36, + "end": 1211.38, + "probability": 0.7845 + }, + { + "start": 1212.48, + "end": 1214.18, + "probability": 0.8148 + }, + { + "start": 1214.24, + "end": 1215.02, + "probability": 0.6625 + }, + { + "start": 1215.24, + "end": 1216.36, + "probability": 0.9558 + }, + { + "start": 1217.04, + "end": 1222.66, + "probability": 0.9839 + }, + { + "start": 1223.2, + "end": 1225.08, + "probability": 0.97 + }, + { + "start": 1225.86, + "end": 1227.4, + "probability": 0.9488 + }, + { + "start": 1230.08, + "end": 1232.2, + "probability": 0.574 + }, + { + "start": 1232.37, + "end": 1233.62, + "probability": 0.7278 + }, + { + "start": 1234.2, + "end": 1237.6, + "probability": 0.6989 + }, + { + "start": 1244.38, + "end": 1247.98, + "probability": 0.9815 + }, + { + "start": 1248.74, + "end": 1252.32, + "probability": 0.8782 + }, + { + "start": 1252.5, + "end": 1253.9, + "probability": 0.7339 + }, + { + "start": 1255.04, + "end": 1259.68, + "probability": 0.929 + }, + { + "start": 1260.4, + "end": 1263.2, + "probability": 0.7168 + }, + { + "start": 1264.06, + "end": 1265.14, + "probability": 0.8234 + }, + { + "start": 1265.9, + "end": 1267.94, + "probability": 0.8531 + }, + { + "start": 1269.0, + "end": 1273.8, + "probability": 0.9476 + }, + { + "start": 1273.92, + "end": 1277.58, + "probability": 0.9883 + }, + { + "start": 1278.14, + "end": 1285.3, + "probability": 0.7886 + }, + { + "start": 1285.82, + "end": 1290.42, + "probability": 0.679 + }, + { + "start": 1291.04, + "end": 1292.92, + "probability": 0.8499 + }, + { + "start": 1293.56, + "end": 1297.11, + "probability": 0.9966 + }, + { + "start": 1297.8, + "end": 1301.96, + "probability": 0.9844 + }, + { + "start": 1302.96, + "end": 1307.74, + "probability": 0.9971 + }, + { + "start": 1307.86, + "end": 1310.86, + "probability": 0.9655 + }, + { + "start": 1311.22, + "end": 1312.5, + "probability": 0.905 + }, + { + "start": 1313.1, + "end": 1314.76, + "probability": 0.7891 + }, + { + "start": 1315.56, + "end": 1317.74, + "probability": 0.995 + }, + { + "start": 1318.54, + "end": 1320.0, + "probability": 0.8333 + }, + { + "start": 1320.74, + "end": 1324.16, + "probability": 0.9751 + }, + { + "start": 1324.74, + "end": 1328.5, + "probability": 0.8916 + }, + { + "start": 1329.12, + "end": 1330.44, + "probability": 0.8265 + }, + { + "start": 1331.06, + "end": 1338.08, + "probability": 0.9639 + }, + { + "start": 1338.56, + "end": 1339.12, + "probability": 0.9368 + }, + { + "start": 1339.5, + "end": 1342.7, + "probability": 0.9497 + }, + { + "start": 1343.58, + "end": 1346.36, + "probability": 0.8108 + }, + { + "start": 1346.92, + "end": 1348.72, + "probability": 0.9246 + }, + { + "start": 1349.26, + "end": 1353.5, + "probability": 0.9782 + }, + { + "start": 1354.3, + "end": 1356.7, + "probability": 0.8903 + }, + { + "start": 1357.62, + "end": 1358.22, + "probability": 0.899 + }, + { + "start": 1359.24, + "end": 1360.44, + "probability": 0.6803 + }, + { + "start": 1361.08, + "end": 1366.98, + "probability": 0.9919 + }, + { + "start": 1367.3, + "end": 1369.66, + "probability": 0.7896 + }, + { + "start": 1370.2, + "end": 1370.88, + "probability": 0.4989 + }, + { + "start": 1371.22, + "end": 1372.72, + "probability": 0.968 + }, + { + "start": 1372.84, + "end": 1376.62, + "probability": 0.9565 + }, + { + "start": 1376.62, + "end": 1379.86, + "probability": 0.9247 + }, + { + "start": 1380.62, + "end": 1382.52, + "probability": 0.5855 + }, + { + "start": 1382.94, + "end": 1383.8, + "probability": 0.8743 + }, + { + "start": 1385.46, + "end": 1387.38, + "probability": 0.7108 + }, + { + "start": 1387.92, + "end": 1392.1, + "probability": 0.9752 + }, + { + "start": 1392.8, + "end": 1398.66, + "probability": 0.8923 + }, + { + "start": 1399.66, + "end": 1403.26, + "probability": 0.8647 + }, + { + "start": 1404.28, + "end": 1408.66, + "probability": 0.8573 + }, + { + "start": 1410.54, + "end": 1411.8, + "probability": 0.6473 + }, + { + "start": 1411.96, + "end": 1415.02, + "probability": 0.8036 + }, + { + "start": 1415.74, + "end": 1417.4, + "probability": 0.2505 + }, + { + "start": 1417.48, + "end": 1418.26, + "probability": 0.9352 + }, + { + "start": 1418.56, + "end": 1419.64, + "probability": 0.5107 + }, + { + "start": 1419.68, + "end": 1420.16, + "probability": 0.9746 + }, + { + "start": 1420.26, + "end": 1421.16, + "probability": 0.3714 + }, + { + "start": 1421.22, + "end": 1421.82, + "probability": 0.9458 + }, + { + "start": 1423.64, + "end": 1425.3, + "probability": 0.7335 + }, + { + "start": 1426.0, + "end": 1429.06, + "probability": 0.7967 + }, + { + "start": 1434.58, + "end": 1436.12, + "probability": 0.74 + }, + { + "start": 1437.18, + "end": 1441.06, + "probability": 0.9281 + }, + { + "start": 1442.18, + "end": 1446.6, + "probability": 0.9723 + }, + { + "start": 1447.84, + "end": 1449.58, + "probability": 0.9846 + }, + { + "start": 1450.18, + "end": 1452.02, + "probability": 0.958 + }, + { + "start": 1453.04, + "end": 1453.78, + "probability": 0.687 + }, + { + "start": 1453.98, + "end": 1454.18, + "probability": 0.7427 + }, + { + "start": 1454.36, + "end": 1455.04, + "probability": 0.6476 + }, + { + "start": 1455.42, + "end": 1456.46, + "probability": 0.9459 + }, + { + "start": 1456.58, + "end": 1456.98, + "probability": 0.8362 + }, + { + "start": 1457.62, + "end": 1459.4, + "probability": 0.9868 + }, + { + "start": 1460.5, + "end": 1463.9, + "probability": 0.9971 + }, + { + "start": 1465.86, + "end": 1469.58, + "probability": 0.9987 + }, + { + "start": 1470.2, + "end": 1471.56, + "probability": 0.8918 + }, + { + "start": 1472.56, + "end": 1474.8, + "probability": 0.9319 + }, + { + "start": 1475.52, + "end": 1477.28, + "probability": 0.795 + }, + { + "start": 1477.64, + "end": 1479.18, + "probability": 0.936 + }, + { + "start": 1479.58, + "end": 1481.18, + "probability": 0.8971 + }, + { + "start": 1481.38, + "end": 1483.0, + "probability": 0.9617 + }, + { + "start": 1483.0, + "end": 1483.32, + "probability": 0.9494 + }, + { + "start": 1483.92, + "end": 1484.04, + "probability": 0.1628 + }, + { + "start": 1484.04, + "end": 1484.56, + "probability": 0.2234 + }, + { + "start": 1485.36, + "end": 1487.18, + "probability": 0.6796 + }, + { + "start": 1487.26, + "end": 1489.04, + "probability": 0.9343 + }, + { + "start": 1489.4, + "end": 1489.94, + "probability": 0.7719 + }, + { + "start": 1490.52, + "end": 1491.62, + "probability": 0.9922 + }, + { + "start": 1492.46, + "end": 1494.02, + "probability": 0.9323 + }, + { + "start": 1494.56, + "end": 1497.93, + "probability": 0.9871 + }, + { + "start": 1498.64, + "end": 1500.7, + "probability": 0.9914 + }, + { + "start": 1502.97, + "end": 1505.62, + "probability": 0.894 + }, + { + "start": 1505.86, + "end": 1509.18, + "probability": 0.8849 + }, + { + "start": 1510.18, + "end": 1514.34, + "probability": 0.9927 + }, + { + "start": 1514.4, + "end": 1515.9, + "probability": 0.9146 + }, + { + "start": 1516.36, + "end": 1519.2, + "probability": 0.9935 + }, + { + "start": 1519.58, + "end": 1520.26, + "probability": 0.4899 + }, + { + "start": 1520.6, + "end": 1521.14, + "probability": 0.9628 + }, + { + "start": 1521.6, + "end": 1523.18, + "probability": 0.962 + }, + { + "start": 1523.62, + "end": 1525.54, + "probability": 0.9483 + }, + { + "start": 1526.08, + "end": 1526.62, + "probability": 0.8473 + }, + { + "start": 1527.04, + "end": 1528.18, + "probability": 0.9931 + }, + { + "start": 1529.7, + "end": 1532.58, + "probability": 0.8623 + }, + { + "start": 1535.06, + "end": 1537.44, + "probability": 0.8816 + }, + { + "start": 1537.72, + "end": 1540.54, + "probability": 0.9938 + }, + { + "start": 1541.62, + "end": 1544.82, + "probability": 0.6471 + }, + { + "start": 1544.82, + "end": 1544.82, + "probability": 0.3509 + }, + { + "start": 1544.82, + "end": 1544.82, + "probability": 0.3693 + }, + { + "start": 1544.82, + "end": 1544.82, + "probability": 0.0869 + }, + { + "start": 1544.82, + "end": 1547.34, + "probability": 0.9674 + }, + { + "start": 1548.54, + "end": 1552.32, + "probability": 0.9559 + }, + { + "start": 1552.94, + "end": 1554.04, + "probability": 0.9424 + }, + { + "start": 1554.56, + "end": 1557.38, + "probability": 0.7556 + }, + { + "start": 1558.22, + "end": 1559.0, + "probability": 0.4951 + }, + { + "start": 1559.82, + "end": 1562.82, + "probability": 0.9974 + }, + { + "start": 1564.44, + "end": 1567.14, + "probability": 0.9388 + }, + { + "start": 1567.72, + "end": 1569.2, + "probability": 0.6774 + }, + { + "start": 1569.72, + "end": 1570.8, + "probability": 0.9783 + }, + { + "start": 1572.46, + "end": 1573.52, + "probability": 0.9124 + }, + { + "start": 1574.04, + "end": 1578.52, + "probability": 0.9806 + }, + { + "start": 1579.4, + "end": 1582.62, + "probability": 0.9868 + }, + { + "start": 1582.62, + "end": 1586.08, + "probability": 0.9564 + }, + { + "start": 1587.64, + "end": 1588.24, + "probability": 0.5337 + }, + { + "start": 1588.9, + "end": 1591.04, + "probability": 0.9824 + }, + { + "start": 1591.82, + "end": 1593.84, + "probability": 0.9423 + }, + { + "start": 1594.42, + "end": 1597.58, + "probability": 0.968 + }, + { + "start": 1598.8, + "end": 1599.46, + "probability": 0.8183 + }, + { + "start": 1600.8, + "end": 1603.86, + "probability": 0.9892 + }, + { + "start": 1604.16, + "end": 1604.62, + "probability": 0.8841 + }, + { + "start": 1605.1, + "end": 1605.8, + "probability": 0.7341 + }, + { + "start": 1606.52, + "end": 1607.32, + "probability": 0.9062 + }, + { + "start": 1607.92, + "end": 1609.12, + "probability": 0.9961 + }, + { + "start": 1610.62, + "end": 1611.72, + "probability": 0.9545 + }, + { + "start": 1612.5, + "end": 1613.3, + "probability": 0.9949 + }, + { + "start": 1614.06, + "end": 1615.22, + "probability": 0.9755 + }, + { + "start": 1615.88, + "end": 1618.32, + "probability": 0.9966 + }, + { + "start": 1618.94, + "end": 1620.5, + "probability": 0.9306 + }, + { + "start": 1622.56, + "end": 1623.84, + "probability": 0.8217 + }, + { + "start": 1624.28, + "end": 1627.3, + "probability": 0.9985 + }, + { + "start": 1628.12, + "end": 1632.56, + "probability": 0.9092 + }, + { + "start": 1633.24, + "end": 1635.06, + "probability": 0.9472 + }, + { + "start": 1635.62, + "end": 1639.46, + "probability": 0.9581 + }, + { + "start": 1639.98, + "end": 1642.76, + "probability": 0.9912 + }, + { + "start": 1644.06, + "end": 1647.4, + "probability": 0.9958 + }, + { + "start": 1648.24, + "end": 1651.5, + "probability": 0.9941 + }, + { + "start": 1651.6, + "end": 1651.88, + "probability": 0.8471 + }, + { + "start": 1653.08, + "end": 1653.58, + "probability": 0.8869 + }, + { + "start": 1654.34, + "end": 1657.0, + "probability": 0.9967 + }, + { + "start": 1657.74, + "end": 1661.72, + "probability": 0.9897 + }, + { + "start": 1662.64, + "end": 1663.94, + "probability": 0.6924 + }, + { + "start": 1664.54, + "end": 1665.48, + "probability": 0.8043 + }, + { + "start": 1666.24, + "end": 1667.92, + "probability": 0.6104 + }, + { + "start": 1668.56, + "end": 1671.82, + "probability": 0.9931 + }, + { + "start": 1672.64, + "end": 1674.3, + "probability": 0.9811 + }, + { + "start": 1675.12, + "end": 1679.0, + "probability": 0.9697 + }, + { + "start": 1680.24, + "end": 1683.3, + "probability": 0.7663 + }, + { + "start": 1684.36, + "end": 1687.38, + "probability": 0.9915 + }, + { + "start": 1687.42, + "end": 1689.0, + "probability": 0.9829 + }, + { + "start": 1689.14, + "end": 1690.32, + "probability": 0.9131 + }, + { + "start": 1691.52, + "end": 1692.24, + "probability": 0.4891 + }, + { + "start": 1693.18, + "end": 1694.0, + "probability": 0.5026 + }, + { + "start": 1696.5, + "end": 1698.65, + "probability": 0.6904 + }, + { + "start": 1699.54, + "end": 1701.5, + "probability": 0.6711 + }, + { + "start": 1712.84, + "end": 1714.49, + "probability": 0.6128 + }, + { + "start": 1715.66, + "end": 1719.93, + "probability": 0.9778 + }, + { + "start": 1721.54, + "end": 1723.4, + "probability": 0.8899 + }, + { + "start": 1723.52, + "end": 1727.2, + "probability": 0.9578 + }, + { + "start": 1727.28, + "end": 1730.06, + "probability": 0.9443 + }, + { + "start": 1730.82, + "end": 1732.6, + "probability": 0.8899 + }, + { + "start": 1733.5, + "end": 1740.84, + "probability": 0.8149 + }, + { + "start": 1741.6, + "end": 1745.08, + "probability": 0.8506 + }, + { + "start": 1745.26, + "end": 1746.2, + "probability": 0.7516 + }, + { + "start": 1746.7, + "end": 1748.16, + "probability": 0.9578 + }, + { + "start": 1748.36, + "end": 1751.62, + "probability": 0.9796 + }, + { + "start": 1752.24, + "end": 1753.8, + "probability": 0.7934 + }, + { + "start": 1753.88, + "end": 1757.2, + "probability": 0.9834 + }, + { + "start": 1757.74, + "end": 1760.2, + "probability": 0.9963 + }, + { + "start": 1760.32, + "end": 1762.04, + "probability": 0.7313 + }, + { + "start": 1762.22, + "end": 1763.36, + "probability": 0.7222 + }, + { + "start": 1763.38, + "end": 1764.84, + "probability": 0.981 + }, + { + "start": 1765.24, + "end": 1766.3, + "probability": 0.9736 + }, + { + "start": 1766.84, + "end": 1769.6, + "probability": 0.888 + }, + { + "start": 1770.04, + "end": 1771.22, + "probability": 0.5967 + }, + { + "start": 1771.88, + "end": 1772.96, + "probability": 0.5566 + }, + { + "start": 1773.5, + "end": 1776.32, + "probability": 0.88 + }, + { + "start": 1776.5, + "end": 1782.24, + "probability": 0.9727 + }, + { + "start": 1782.98, + "end": 1789.52, + "probability": 0.7381 + }, + { + "start": 1790.06, + "end": 1791.94, + "probability": 0.8615 + }, + { + "start": 1792.08, + "end": 1794.08, + "probability": 0.9779 + }, + { + "start": 1794.52, + "end": 1798.48, + "probability": 0.9969 + }, + { + "start": 1799.14, + "end": 1801.44, + "probability": 0.8112 + }, + { + "start": 1802.04, + "end": 1804.38, + "probability": 0.9041 + }, + { + "start": 1804.94, + "end": 1806.02, + "probability": 0.8105 + }, + { + "start": 1806.04, + "end": 1811.81, + "probability": 0.9482 + }, + { + "start": 1812.18, + "end": 1816.5, + "probability": 0.9871 + }, + { + "start": 1816.58, + "end": 1817.58, + "probability": 0.901 + }, + { + "start": 1818.18, + "end": 1818.7, + "probability": 0.7838 + }, + { + "start": 1819.26, + "end": 1821.02, + "probability": 0.5224 + }, + { + "start": 1821.56, + "end": 1824.88, + "probability": 0.8625 + }, + { + "start": 1825.24, + "end": 1830.44, + "probability": 0.942 + }, + { + "start": 1830.52, + "end": 1834.0, + "probability": 0.9028 + }, + { + "start": 1834.18, + "end": 1836.04, + "probability": 0.8091 + }, + { + "start": 1836.12, + "end": 1837.84, + "probability": 0.7039 + }, + { + "start": 1837.86, + "end": 1839.94, + "probability": 0.9168 + }, + { + "start": 1840.54, + "end": 1840.94, + "probability": 0.6274 + }, + { + "start": 1841.16, + "end": 1843.66, + "probability": 0.8794 + }, + { + "start": 1843.84, + "end": 1847.28, + "probability": 0.9032 + }, + { + "start": 1847.7, + "end": 1855.02, + "probability": 0.9698 + }, + { + "start": 1856.54, + "end": 1860.26, + "probability": 0.9949 + }, + { + "start": 1860.3, + "end": 1861.96, + "probability": 0.9946 + }, + { + "start": 1862.46, + "end": 1868.48, + "probability": 0.9922 + }, + { + "start": 1868.62, + "end": 1871.65, + "probability": 0.898 + }, + { + "start": 1872.38, + "end": 1874.9, + "probability": 0.9824 + }, + { + "start": 1875.46, + "end": 1876.2, + "probability": 0.8659 + }, + { + "start": 1876.94, + "end": 1881.76, + "probability": 0.984 + }, + { + "start": 1882.38, + "end": 1884.82, + "probability": 0.6885 + }, + { + "start": 1884.92, + "end": 1886.3, + "probability": 0.5414 + }, + { + "start": 1887.08, + "end": 1888.86, + "probability": 0.8848 + }, + { + "start": 1889.3, + "end": 1891.56, + "probability": 0.6921 + }, + { + "start": 1891.7, + "end": 1896.52, + "probability": 0.9813 + }, + { + "start": 1896.6, + "end": 1899.7, + "probability": 0.9968 + }, + { + "start": 1900.22, + "end": 1902.28, + "probability": 0.6987 + }, + { + "start": 1902.9, + "end": 1905.19, + "probability": 0.9807 + }, + { + "start": 1905.82, + "end": 1906.24, + "probability": 0.8732 + }, + { + "start": 1907.14, + "end": 1907.24, + "probability": 0.2732 + }, + { + "start": 1907.44, + "end": 1910.72, + "probability": 0.9322 + }, + { + "start": 1911.2, + "end": 1913.32, + "probability": 0.7623 + }, + { + "start": 1913.44, + "end": 1916.12, + "probability": 0.7956 + }, + { + "start": 1916.74, + "end": 1917.9, + "probability": 0.8327 + }, + { + "start": 1918.0, + "end": 1921.18, + "probability": 0.9855 + }, + { + "start": 1921.26, + "end": 1922.0, + "probability": 0.5834 + }, + { + "start": 1922.46, + "end": 1925.3, + "probability": 0.9551 + }, + { + "start": 1926.54, + "end": 1928.68, + "probability": 0.9978 + }, + { + "start": 1929.14, + "end": 1931.52, + "probability": 0.9879 + }, + { + "start": 1931.92, + "end": 1935.3, + "probability": 0.9617 + }, + { + "start": 1935.58, + "end": 1936.12, + "probability": 0.8093 + }, + { + "start": 1936.2, + "end": 1937.31, + "probability": 0.9409 + }, + { + "start": 1937.54, + "end": 1938.68, + "probability": 0.9568 + }, + { + "start": 1939.08, + "end": 1941.98, + "probability": 0.9789 + }, + { + "start": 1942.24, + "end": 1942.98, + "probability": 0.3044 + }, + { + "start": 1943.56, + "end": 1947.04, + "probability": 0.9692 + }, + { + "start": 1947.22, + "end": 1950.01, + "probability": 0.9287 + }, + { + "start": 1950.54, + "end": 1953.92, + "probability": 0.9911 + }, + { + "start": 1954.34, + "end": 1959.52, + "probability": 0.9956 + }, + { + "start": 1959.64, + "end": 1960.8, + "probability": 0.9983 + }, + { + "start": 1960.9, + "end": 1962.2, + "probability": 0.8348 + }, + { + "start": 1963.6, + "end": 1965.46, + "probability": 0.7649 + }, + { + "start": 1965.56, + "end": 1969.52, + "probability": 0.9683 + }, + { + "start": 1969.8, + "end": 1972.54, + "probability": 0.9427 + }, + { + "start": 1972.88, + "end": 1974.64, + "probability": 0.9199 + }, + { + "start": 1975.38, + "end": 1979.14, + "probability": 0.9624 + }, + { + "start": 1979.28, + "end": 1979.96, + "probability": 0.988 + }, + { + "start": 1980.2, + "end": 1982.17, + "probability": 0.9978 + }, + { + "start": 1982.94, + "end": 1986.66, + "probability": 0.9937 + }, + { + "start": 1987.04, + "end": 1990.24, + "probability": 0.9592 + }, + { + "start": 1990.66, + "end": 1995.16, + "probability": 0.9166 + }, + { + "start": 1995.74, + "end": 2002.32, + "probability": 0.9777 + }, + { + "start": 2002.34, + "end": 2005.15, + "probability": 0.9849 + }, + { + "start": 2005.68, + "end": 2006.16, + "probability": 0.529 + }, + { + "start": 2006.22, + "end": 2008.5, + "probability": 0.9697 + }, + { + "start": 2008.68, + "end": 2011.74, + "probability": 0.7958 + }, + { + "start": 2013.38, + "end": 2017.12, + "probability": 0.9269 + }, + { + "start": 2017.58, + "end": 2018.12, + "probability": 0.8315 + }, + { + "start": 2018.92, + "end": 2021.38, + "probability": 0.7975 + }, + { + "start": 2022.18, + "end": 2023.38, + "probability": 0.9497 + }, + { + "start": 2023.96, + "end": 2028.6, + "probability": 0.9533 + }, + { + "start": 2029.14, + "end": 2030.04, + "probability": 0.7444 + }, + { + "start": 2031.32, + "end": 2034.14, + "probability": 0.7729 + }, + { + "start": 2034.14, + "end": 2035.88, + "probability": 0.818 + }, + { + "start": 2055.54, + "end": 2055.54, + "probability": 0.175 + }, + { + "start": 2055.54, + "end": 2059.04, + "probability": 0.741 + }, + { + "start": 2061.1, + "end": 2061.94, + "probability": 0.771 + }, + { + "start": 2062.0, + "end": 2062.66, + "probability": 0.6443 + }, + { + "start": 2063.06, + "end": 2065.16, + "probability": 0.7468 + }, + { + "start": 2065.34, + "end": 2065.5, + "probability": 0.416 + }, + { + "start": 2066.56, + "end": 2066.92, + "probability": 0.6147 + }, + { + "start": 2067.12, + "end": 2067.16, + "probability": 0.3899 + }, + { + "start": 2069.12, + "end": 2069.92, + "probability": 0.4263 + }, + { + "start": 2070.56, + "end": 2072.18, + "probability": 0.8697 + }, + { + "start": 2072.28, + "end": 2072.54, + "probability": 0.6519 + }, + { + "start": 2073.9, + "end": 2074.42, + "probability": 0.4752 + }, + { + "start": 2074.42, + "end": 2080.78, + "probability": 0.996 + }, + { + "start": 2081.78, + "end": 2087.16, + "probability": 0.979 + }, + { + "start": 2087.98, + "end": 2095.3, + "probability": 0.8665 + }, + { + "start": 2096.1, + "end": 2102.74, + "probability": 0.9922 + }, + { + "start": 2103.54, + "end": 2107.42, + "probability": 0.9853 + }, + { + "start": 2109.3, + "end": 2109.46, + "probability": 0.3801 + }, + { + "start": 2110.44, + "end": 2111.57, + "probability": 0.7362 + }, + { + "start": 2112.56, + "end": 2118.06, + "probability": 0.9921 + }, + { + "start": 2118.68, + "end": 2122.42, + "probability": 0.9966 + }, + { + "start": 2123.04, + "end": 2127.6, + "probability": 0.9316 + }, + { + "start": 2128.4, + "end": 2131.42, + "probability": 0.9937 + }, + { + "start": 2132.48, + "end": 2134.03, + "probability": 0.9976 + }, + { + "start": 2134.32, + "end": 2138.2, + "probability": 0.9874 + }, + { + "start": 2139.5, + "end": 2145.28, + "probability": 0.9761 + }, + { + "start": 2145.82, + "end": 2148.4, + "probability": 0.9735 + }, + { + "start": 2149.48, + "end": 2150.94, + "probability": 0.922 + }, + { + "start": 2151.86, + "end": 2153.4, + "probability": 0.9925 + }, + { + "start": 2154.04, + "end": 2155.1, + "probability": 0.7773 + }, + { + "start": 2155.86, + "end": 2156.86, + "probability": 0.403 + }, + { + "start": 2157.88, + "end": 2161.72, + "probability": 0.9403 + }, + { + "start": 2162.6, + "end": 2167.12, + "probability": 0.9249 + }, + { + "start": 2167.96, + "end": 2173.9, + "probability": 0.9727 + }, + { + "start": 2174.3, + "end": 2175.52, + "probability": 0.9537 + }, + { + "start": 2176.34, + "end": 2177.82, + "probability": 0.9083 + }, + { + "start": 2178.76, + "end": 2183.94, + "probability": 0.5293 + }, + { + "start": 2188.08, + "end": 2191.92, + "probability": 0.3237 + }, + { + "start": 2192.54, + "end": 2194.56, + "probability": 0.897 + }, + { + "start": 2196.09, + "end": 2203.86, + "probability": 0.9292 + }, + { + "start": 2203.94, + "end": 2206.2, + "probability": 0.9494 + }, + { + "start": 2206.9, + "end": 2210.44, + "probability": 0.9935 + }, + { + "start": 2210.44, + "end": 2215.34, + "probability": 0.9977 + }, + { + "start": 2217.08, + "end": 2218.84, + "probability": 0.8163 + }, + { + "start": 2218.94, + "end": 2220.98, + "probability": 0.9138 + }, + { + "start": 2221.06, + "end": 2225.28, + "probability": 0.9941 + }, + { + "start": 2225.44, + "end": 2229.24, + "probability": 0.8655 + }, + { + "start": 2229.32, + "end": 2230.36, + "probability": 0.7847 + }, + { + "start": 2230.98, + "end": 2232.04, + "probability": 0.6207 + }, + { + "start": 2232.12, + "end": 2235.08, + "probability": 0.9474 + }, + { + "start": 2235.32, + "end": 2238.0, + "probability": 0.9541 + }, + { + "start": 2238.66, + "end": 2242.04, + "probability": 0.8848 + }, + { + "start": 2242.8, + "end": 2248.16, + "probability": 0.9953 + }, + { + "start": 2248.28, + "end": 2251.02, + "probability": 0.8769 + }, + { + "start": 2251.08, + "end": 2252.8, + "probability": 0.8171 + }, + { + "start": 2253.78, + "end": 2258.5, + "probability": 0.9237 + }, + { + "start": 2259.1, + "end": 2260.26, + "probability": 0.9401 + }, + { + "start": 2260.86, + "end": 2263.22, + "probability": 0.9443 + }, + { + "start": 2263.84, + "end": 2266.8, + "probability": 0.8016 + }, + { + "start": 2267.48, + "end": 2270.4, + "probability": 0.9891 + }, + { + "start": 2270.5, + "end": 2271.68, + "probability": 0.9575 + }, + { + "start": 2272.7, + "end": 2279.54, + "probability": 0.9642 + }, + { + "start": 2280.18, + "end": 2284.22, + "probability": 0.9831 + }, + { + "start": 2284.44, + "end": 2287.22, + "probability": 0.9551 + }, + { + "start": 2287.44, + "end": 2288.82, + "probability": 0.815 + }, + { + "start": 2289.36, + "end": 2292.26, + "probability": 0.9761 + }, + { + "start": 2292.38, + "end": 2294.32, + "probability": 0.9786 + }, + { + "start": 2294.66, + "end": 2296.08, + "probability": 0.9959 + }, + { + "start": 2296.46, + "end": 2296.84, + "probability": 0.9689 + }, + { + "start": 2296.98, + "end": 2300.93, + "probability": 0.9872 + }, + { + "start": 2301.48, + "end": 2306.78, + "probability": 0.9126 + }, + { + "start": 2308.02, + "end": 2309.06, + "probability": 0.8633 + }, + { + "start": 2310.66, + "end": 2311.42, + "probability": 0.7852 + }, + { + "start": 2311.86, + "end": 2312.38, + "probability": 0.8245 + }, + { + "start": 2312.92, + "end": 2316.72, + "probability": 0.9772 + }, + { + "start": 2317.66, + "end": 2322.62, + "probability": 0.9902 + }, + { + "start": 2323.08, + "end": 2324.1, + "probability": 0.7665 + }, + { + "start": 2324.5, + "end": 2327.46, + "probability": 0.9802 + }, + { + "start": 2327.88, + "end": 2332.18, + "probability": 0.9351 + }, + { + "start": 2333.38, + "end": 2334.28, + "probability": 0.8643 + }, + { + "start": 2334.84, + "end": 2336.2, + "probability": 0.7016 + }, + { + "start": 2336.38, + "end": 2338.36, + "probability": 0.9964 + }, + { + "start": 2338.96, + "end": 2340.46, + "probability": 0.937 + }, + { + "start": 2340.94, + "end": 2343.54, + "probability": 0.9525 + }, + { + "start": 2343.78, + "end": 2345.66, + "probability": 0.4804 + }, + { + "start": 2345.66, + "end": 2346.1, + "probability": 0.3945 + }, + { + "start": 2346.54, + "end": 2347.52, + "probability": 0.7224 + }, + { + "start": 2348.4, + "end": 2350.38, + "probability": 0.8688 + }, + { + "start": 2351.08, + "end": 2353.58, + "probability": 0.9508 + }, + { + "start": 2354.5, + "end": 2357.02, + "probability": 0.991 + }, + { + "start": 2357.98, + "end": 2358.44, + "probability": 0.9551 + }, + { + "start": 2358.98, + "end": 2360.46, + "probability": 0.974 + }, + { + "start": 2361.2, + "end": 2364.52, + "probability": 0.9913 + }, + { + "start": 2364.92, + "end": 2365.96, + "probability": 0.5302 + }, + { + "start": 2366.46, + "end": 2368.2, + "probability": 0.9839 + }, + { + "start": 2368.36, + "end": 2369.68, + "probability": 0.9047 + }, + { + "start": 2370.16, + "end": 2370.8, + "probability": 0.6638 + }, + { + "start": 2371.12, + "end": 2371.96, + "probability": 0.9604 + }, + { + "start": 2372.32, + "end": 2377.6, + "probability": 0.9851 + }, + { + "start": 2377.84, + "end": 2378.1, + "probability": 0.8762 + }, + { + "start": 2380.14, + "end": 2382.64, + "probability": 0.6969 + }, + { + "start": 2382.82, + "end": 2384.5, + "probability": 0.8109 + }, + { + "start": 2384.66, + "end": 2385.54, + "probability": 0.6958 + }, + { + "start": 2385.7, + "end": 2386.4, + "probability": 0.7631 + }, + { + "start": 2386.48, + "end": 2387.76, + "probability": 0.9849 + }, + { + "start": 2388.46, + "end": 2392.0, + "probability": 0.897 + }, + { + "start": 2392.18, + "end": 2393.08, + "probability": 0.7711 + }, + { + "start": 2393.54, + "end": 2396.38, + "probability": 0.738 + }, + { + "start": 2396.96, + "end": 2398.14, + "probability": 0.8135 + }, + { + "start": 2398.68, + "end": 2402.16, + "probability": 0.7382 + }, + { + "start": 2403.94, + "end": 2404.94, + "probability": 0.9442 + }, + { + "start": 2407.64, + "end": 2410.08, + "probability": 0.2378 + }, + { + "start": 2411.24, + "end": 2414.26, + "probability": 0.7672 + }, + { + "start": 2415.54, + "end": 2416.52, + "probability": 0.92 + }, + { + "start": 2417.44, + "end": 2418.42, + "probability": 0.8955 + }, + { + "start": 2418.92, + "end": 2423.7, + "probability": 0.9218 + }, + { + "start": 2424.44, + "end": 2427.34, + "probability": 0.9856 + }, + { + "start": 2428.26, + "end": 2432.16, + "probability": 0.9272 + }, + { + "start": 2432.2, + "end": 2434.82, + "probability": 0.8526 + }, + { + "start": 2436.94, + "end": 2438.88, + "probability": 0.9475 + }, + { + "start": 2439.5, + "end": 2442.16, + "probability": 0.9891 + }, + { + "start": 2442.2, + "end": 2445.48, + "probability": 0.9868 + }, + { + "start": 2446.68, + "end": 2449.32, + "probability": 0.9688 + }, + { + "start": 2449.32, + "end": 2451.96, + "probability": 0.9985 + }, + { + "start": 2453.5, + "end": 2455.78, + "probability": 0.9889 + }, + { + "start": 2456.98, + "end": 2458.88, + "probability": 0.929 + }, + { + "start": 2459.16, + "end": 2463.48, + "probability": 0.9822 + }, + { + "start": 2464.72, + "end": 2467.5, + "probability": 0.9825 + }, + { + "start": 2468.12, + "end": 2471.68, + "probability": 0.9996 + }, + { + "start": 2471.94, + "end": 2472.6, + "probability": 0.9771 + }, + { + "start": 2473.14, + "end": 2474.18, + "probability": 0.9362 + }, + { + "start": 2475.98, + "end": 2479.26, + "probability": 0.982 + }, + { + "start": 2480.04, + "end": 2483.58, + "probability": 0.99 + }, + { + "start": 2483.96, + "end": 2488.68, + "probability": 0.9927 + }, + { + "start": 2489.92, + "end": 2494.48, + "probability": 0.9934 + }, + { + "start": 2494.54, + "end": 2496.86, + "probability": 0.9947 + }, + { + "start": 2497.76, + "end": 2500.86, + "probability": 0.8801 + }, + { + "start": 2501.6, + "end": 2503.12, + "probability": 0.8708 + }, + { + "start": 2503.18, + "end": 2503.99, + "probability": 0.5015 + }, + { + "start": 2504.5, + "end": 2507.8, + "probability": 0.931 + }, + { + "start": 2507.9, + "end": 2509.84, + "probability": 0.7801 + }, + { + "start": 2510.72, + "end": 2514.16, + "probability": 0.9839 + }, + { + "start": 2515.4, + "end": 2516.18, + "probability": 0.8105 + }, + { + "start": 2516.7, + "end": 2518.06, + "probability": 0.9901 + }, + { + "start": 2518.48, + "end": 2519.6, + "probability": 0.9982 + }, + { + "start": 2519.9, + "end": 2521.4, + "probability": 0.9668 + }, + { + "start": 2521.92, + "end": 2525.6, + "probability": 0.9989 + }, + { + "start": 2525.6, + "end": 2528.84, + "probability": 0.5515 + }, + { + "start": 2535.32, + "end": 2538.7, + "probability": 0.835 + }, + { + "start": 2538.86, + "end": 2541.54, + "probability": 0.8031 + }, + { + "start": 2541.68, + "end": 2543.64, + "probability": 0.9397 + }, + { + "start": 2562.52, + "end": 2563.84, + "probability": 0.5699 + }, + { + "start": 2564.02, + "end": 2565.74, + "probability": 0.829 + }, + { + "start": 2566.3, + "end": 2569.48, + "probability": 0.8943 + }, + { + "start": 2570.24, + "end": 2573.02, + "probability": 0.9094 + }, + { + "start": 2573.26, + "end": 2575.58, + "probability": 0.9612 + }, + { + "start": 2576.38, + "end": 2576.5, + "probability": 0.3393 + }, + { + "start": 2576.74, + "end": 2579.56, + "probability": 0.9921 + }, + { + "start": 2580.56, + "end": 2582.0, + "probability": 0.9476 + }, + { + "start": 2582.82, + "end": 2584.3, + "probability": 0.5547 + }, + { + "start": 2584.38, + "end": 2586.0, + "probability": 0.8315 + }, + { + "start": 2586.68, + "end": 2590.36, + "probability": 0.9074 + }, + { + "start": 2591.12, + "end": 2593.14, + "probability": 0.6649 + }, + { + "start": 2593.6, + "end": 2594.28, + "probability": 0.9263 + }, + { + "start": 2594.98, + "end": 2597.1, + "probability": 0.8345 + }, + { + "start": 2598.3, + "end": 2598.58, + "probability": 0.7557 + }, + { + "start": 2599.18, + "end": 2601.26, + "probability": 0.839 + }, + { + "start": 2602.04, + "end": 2602.4, + "probability": 0.0206 + }, + { + "start": 2603.96, + "end": 2603.96, + "probability": 0.0358 + }, + { + "start": 2603.96, + "end": 2605.92, + "probability": 0.4706 + }, + { + "start": 2608.24, + "end": 2609.5, + "probability": 0.5076 + }, + { + "start": 2609.64, + "end": 2610.52, + "probability": 0.8088 + }, + { + "start": 2610.56, + "end": 2611.66, + "probability": 0.9565 + }, + { + "start": 2611.86, + "end": 2612.94, + "probability": 0.8486 + }, + { + "start": 2613.6, + "end": 2615.02, + "probability": 0.9392 + }, + { + "start": 2616.74, + "end": 2620.56, + "probability": 0.9927 + }, + { + "start": 2621.56, + "end": 2622.06, + "probability": 0.5442 + }, + { + "start": 2622.24, + "end": 2623.74, + "probability": 0.9471 + }, + { + "start": 2623.84, + "end": 2627.42, + "probability": 0.6656 + }, + { + "start": 2627.52, + "end": 2631.96, + "probability": 0.9462 + }, + { + "start": 2632.7, + "end": 2635.98, + "probability": 0.986 + }, + { + "start": 2636.6, + "end": 2639.46, + "probability": 0.9463 + }, + { + "start": 2640.8, + "end": 2641.5, + "probability": 0.7224 + }, + { + "start": 2641.52, + "end": 2642.66, + "probability": 0.9409 + }, + { + "start": 2642.78, + "end": 2643.72, + "probability": 0.5801 + }, + { + "start": 2643.88, + "end": 2644.36, + "probability": 0.9497 + }, + { + "start": 2644.42, + "end": 2645.89, + "probability": 0.7807 + }, + { + "start": 2646.92, + "end": 2648.26, + "probability": 0.974 + }, + { + "start": 2648.92, + "end": 2650.84, + "probability": 0.9947 + }, + { + "start": 2652.32, + "end": 2654.58, + "probability": 0.9268 + }, + { + "start": 2654.98, + "end": 2655.5, + "probability": 0.9489 + }, + { + "start": 2655.58, + "end": 2657.34, + "probability": 0.8605 + }, + { + "start": 2658.1, + "end": 2660.82, + "probability": 0.9585 + }, + { + "start": 2662.82, + "end": 2665.86, + "probability": 0.9097 + }, + { + "start": 2666.4, + "end": 2671.58, + "probability": 0.9839 + }, + { + "start": 2672.4, + "end": 2675.6, + "probability": 0.9876 + }, + { + "start": 2675.82, + "end": 2678.54, + "probability": 0.9989 + }, + { + "start": 2680.36, + "end": 2683.12, + "probability": 0.6971 + }, + { + "start": 2683.12, + "end": 2688.56, + "probability": 0.9966 + }, + { + "start": 2688.98, + "end": 2689.76, + "probability": 0.4638 + }, + { + "start": 2689.84, + "end": 2692.32, + "probability": 0.7726 + }, + { + "start": 2694.64, + "end": 2695.3, + "probability": 0.6286 + }, + { + "start": 2695.92, + "end": 2698.24, + "probability": 0.991 + }, + { + "start": 2699.26, + "end": 2704.12, + "probability": 0.7314 + }, + { + "start": 2704.96, + "end": 2706.36, + "probability": 0.979 + }, + { + "start": 2707.02, + "end": 2708.58, + "probability": 0.9261 + }, + { + "start": 2709.4, + "end": 2710.72, + "probability": 0.856 + }, + { + "start": 2711.62, + "end": 2712.18, + "probability": 0.8807 + }, + { + "start": 2712.22, + "end": 2712.78, + "probability": 0.4787 + }, + { + "start": 2712.92, + "end": 2715.1, + "probability": 0.9824 + }, + { + "start": 2716.2, + "end": 2716.78, + "probability": 0.8627 + }, + { + "start": 2718.34, + "end": 2722.92, + "probability": 0.9481 + }, + { + "start": 2723.82, + "end": 2724.42, + "probability": 0.9418 + }, + { + "start": 2724.58, + "end": 2726.26, + "probability": 0.7192 + }, + { + "start": 2726.54, + "end": 2730.98, + "probability": 0.9921 + }, + { + "start": 2731.12, + "end": 2733.8, + "probability": 0.9249 + }, + { + "start": 2734.54, + "end": 2737.4, + "probability": 0.9911 + }, + { + "start": 2738.52, + "end": 2740.78, + "probability": 0.8224 + }, + { + "start": 2741.24, + "end": 2744.26, + "probability": 0.9892 + }, + { + "start": 2745.58, + "end": 2749.36, + "probability": 0.8267 + }, + { + "start": 2750.06, + "end": 2753.82, + "probability": 0.9744 + }, + { + "start": 2755.1, + "end": 2760.52, + "probability": 0.991 + }, + { + "start": 2761.68, + "end": 2763.68, + "probability": 0.8982 + }, + { + "start": 2764.74, + "end": 2767.24, + "probability": 0.9836 + }, + { + "start": 2769.11, + "end": 2772.38, + "probability": 0.9961 + }, + { + "start": 2773.04, + "end": 2776.98, + "probability": 0.9268 + }, + { + "start": 2778.04, + "end": 2779.28, + "probability": 0.0402 + }, + { + "start": 2779.42, + "end": 2781.28, + "probability": 0.6462 + }, + { + "start": 2781.42, + "end": 2784.92, + "probability": 0.9428 + }, + { + "start": 2785.52, + "end": 2785.7, + "probability": 0.1082 + }, + { + "start": 2785.82, + "end": 2787.08, + "probability": 0.4459 + }, + { + "start": 2787.18, + "end": 2789.95, + "probability": 0.0537 + }, + { + "start": 2790.08, + "end": 2792.4, + "probability": 0.8079 + }, + { + "start": 2792.46, + "end": 2792.76, + "probability": 0.702 + }, + { + "start": 2792.76, + "end": 2795.56, + "probability": 0.998 + }, + { + "start": 2795.82, + "end": 2799.08, + "probability": 0.9968 + }, + { + "start": 2799.54, + "end": 2801.26, + "probability": 0.7973 + }, + { + "start": 2801.78, + "end": 2802.1, + "probability": 0.0277 + }, + { + "start": 2802.1, + "end": 2804.12, + "probability": 0.8748 + }, + { + "start": 2804.56, + "end": 2806.1, + "probability": 0.7293 + }, + { + "start": 2806.28, + "end": 2806.44, + "probability": 0.8258 + }, + { + "start": 2806.79, + "end": 2809.14, + "probability": 0.9839 + }, + { + "start": 2809.88, + "end": 2811.58, + "probability": 0.9851 + }, + { + "start": 2811.62, + "end": 2811.96, + "probability": 0.5387 + }, + { + "start": 2812.04, + "end": 2812.48, + "probability": 0.4901 + }, + { + "start": 2812.78, + "end": 2814.44, + "probability": 0.994 + }, + { + "start": 2814.62, + "end": 2819.68, + "probability": 0.9812 + }, + { + "start": 2820.72, + "end": 2821.62, + "probability": 0.9387 + }, + { + "start": 2821.86, + "end": 2823.64, + "probability": 0.1069 + }, + { + "start": 2823.74, + "end": 2824.5, + "probability": 0.1577 + }, + { + "start": 2824.69, + "end": 2827.96, + "probability": 0.8536 + }, + { + "start": 2829.16, + "end": 2829.76, + "probability": 0.9883 + }, + { + "start": 2830.3, + "end": 2832.36, + "probability": 0.9424 + }, + { + "start": 2833.18, + "end": 2836.16, + "probability": 0.9916 + }, + { + "start": 2837.38, + "end": 2838.54, + "probability": 0.8164 + }, + { + "start": 2838.64, + "end": 2839.88, + "probability": 0.9973 + }, + { + "start": 2840.5, + "end": 2844.58, + "probability": 0.9971 + }, + { + "start": 2845.02, + "end": 2845.56, + "probability": 0.9341 + }, + { + "start": 2846.36, + "end": 2848.2, + "probability": 0.9799 + }, + { + "start": 2848.3, + "end": 2849.2, + "probability": 0.9428 + }, + { + "start": 2849.66, + "end": 2850.34, + "probability": 0.9961 + }, + { + "start": 2851.32, + "end": 2852.48, + "probability": 0.982 + }, + { + "start": 2852.82, + "end": 2856.86, + "probability": 0.988 + }, + { + "start": 2857.2, + "end": 2860.38, + "probability": 0.9758 + }, + { + "start": 2860.72, + "end": 2862.28, + "probability": 0.9944 + }, + { + "start": 2863.3, + "end": 2864.08, + "probability": 0.9622 + }, + { + "start": 2864.16, + "end": 2865.78, + "probability": 0.763 + }, + { + "start": 2865.92, + "end": 2868.48, + "probability": 0.7265 + }, + { + "start": 2869.22, + "end": 2872.42, + "probability": 0.9832 + }, + { + "start": 2873.04, + "end": 2874.14, + "probability": 0.8364 + }, + { + "start": 2874.56, + "end": 2877.6, + "probability": 0.9719 + }, + { + "start": 2877.66, + "end": 2878.54, + "probability": 0.6857 + }, + { + "start": 2879.4, + "end": 2880.14, + "probability": 0.7998 + }, + { + "start": 2880.36, + "end": 2881.98, + "probability": 0.9238 + }, + { + "start": 2882.36, + "end": 2883.48, + "probability": 0.9418 + }, + { + "start": 2883.68, + "end": 2885.28, + "probability": 0.7595 + }, + { + "start": 2887.12, + "end": 2888.78, + "probability": 0.9854 + }, + { + "start": 2889.4, + "end": 2890.6, + "probability": 0.8657 + }, + { + "start": 2890.96, + "end": 2891.88, + "probability": 0.7412 + }, + { + "start": 2892.1, + "end": 2896.14, + "probability": 0.9823 + }, + { + "start": 2896.34, + "end": 2897.05, + "probability": 0.5613 + }, + { + "start": 2897.24, + "end": 2898.26, + "probability": 0.9657 + }, + { + "start": 2898.92, + "end": 2900.94, + "probability": 0.8509 + }, + { + "start": 2901.1, + "end": 2903.09, + "probability": 0.69 + }, + { + "start": 2903.68, + "end": 2906.26, + "probability": 0.6942 + }, + { + "start": 2906.98, + "end": 2910.8, + "probability": 0.9792 + }, + { + "start": 2910.92, + "end": 2911.48, + "probability": 0.9621 + }, + { + "start": 2911.76, + "end": 2912.98, + "probability": 0.8354 + }, + { + "start": 2913.48, + "end": 2914.44, + "probability": 0.9102 + }, + { + "start": 2914.56, + "end": 2915.84, + "probability": 0.9867 + }, + { + "start": 2915.98, + "end": 2917.72, + "probability": 0.9685 + }, + { + "start": 2918.4, + "end": 2918.68, + "probability": 0.7211 + }, + { + "start": 2920.14, + "end": 2922.68, + "probability": 0.981 + }, + { + "start": 2922.88, + "end": 2925.18, + "probability": 0.8248 + }, + { + "start": 2931.48, + "end": 2932.66, + "probability": 0.9987 + }, + { + "start": 2933.88, + "end": 2937.0, + "probability": 0.9846 + }, + { + "start": 2937.91, + "end": 2939.97, + "probability": 0.9696 + }, + { + "start": 2943.64, + "end": 2944.72, + "probability": 0.7881 + }, + { + "start": 2945.52, + "end": 2946.3, + "probability": 0.9396 + }, + { + "start": 2947.22, + "end": 2948.26, + "probability": 0.8157 + }, + { + "start": 2949.34, + "end": 2952.16, + "probability": 0.9783 + }, + { + "start": 2952.82, + "end": 2954.86, + "probability": 0.9791 + }, + { + "start": 2955.62, + "end": 2957.86, + "probability": 0.8223 + }, + { + "start": 2961.0, + "end": 2962.58, + "probability": 0.9141 + }, + { + "start": 2963.2, + "end": 2963.84, + "probability": 0.5308 + }, + { + "start": 2964.34, + "end": 2968.42, + "probability": 0.9878 + }, + { + "start": 2968.98, + "end": 2971.58, + "probability": 0.689 + }, + { + "start": 2973.52, + "end": 2975.94, + "probability": 0.9558 + }, + { + "start": 2976.82, + "end": 2981.1, + "probability": 0.9133 + }, + { + "start": 2982.02, + "end": 2983.34, + "probability": 0.8833 + }, + { + "start": 2984.6, + "end": 2985.64, + "probability": 0.6424 + }, + { + "start": 2987.38, + "end": 2989.86, + "probability": 0.8602 + }, + { + "start": 2992.4, + "end": 2994.26, + "probability": 0.9259 + }, + { + "start": 2995.02, + "end": 2996.06, + "probability": 0.6848 + }, + { + "start": 2996.64, + "end": 3000.4, + "probability": 0.9155 + }, + { + "start": 3001.02, + "end": 3004.36, + "probability": 0.9739 + }, + { + "start": 3004.82, + "end": 3006.58, + "probability": 0.7743 + }, + { + "start": 3007.28, + "end": 3010.34, + "probability": 0.9843 + }, + { + "start": 3011.12, + "end": 3014.08, + "probability": 0.9878 + }, + { + "start": 3015.08, + "end": 3017.23, + "probability": 0.9858 + }, + { + "start": 3017.74, + "end": 3018.78, + "probability": 0.9534 + }, + { + "start": 3019.14, + "end": 3020.1, + "probability": 0.9099 + }, + { + "start": 3020.86, + "end": 3023.82, + "probability": 0.9797 + }, + { + "start": 3024.18, + "end": 3028.12, + "probability": 0.9817 + }, + { + "start": 3029.68, + "end": 3030.12, + "probability": 0.9645 + }, + { + "start": 3030.66, + "end": 3035.46, + "probability": 0.9939 + }, + { + "start": 3035.72, + "end": 3036.06, + "probability": 0.6713 + }, + { + "start": 3037.56, + "end": 3041.48, + "probability": 0.8056 + }, + { + "start": 3042.48, + "end": 3044.06, + "probability": 0.754 + }, + { + "start": 3044.34, + "end": 3044.7, + "probability": 0.8297 + }, + { + "start": 3044.76, + "end": 3046.79, + "probability": 0.9971 + }, + { + "start": 3048.78, + "end": 3049.26, + "probability": 0.8806 + }, + { + "start": 3049.34, + "end": 3049.8, + "probability": 0.8991 + }, + { + "start": 3050.06, + "end": 3052.62, + "probability": 0.9843 + }, + { + "start": 3053.64, + "end": 3058.64, + "probability": 0.9973 + }, + { + "start": 3059.02, + "end": 3060.64, + "probability": 0.9965 + }, + { + "start": 3061.38, + "end": 3066.86, + "probability": 0.9664 + }, + { + "start": 3067.78, + "end": 3068.8, + "probability": 0.8453 + }, + { + "start": 3069.48, + "end": 3070.0, + "probability": 0.7188 + }, + { + "start": 3070.16, + "end": 3075.3, + "probability": 0.9879 + }, + { + "start": 3075.92, + "end": 3080.28, + "probability": 0.9798 + }, + { + "start": 3081.2, + "end": 3083.64, + "probability": 0.9929 + }, + { + "start": 3083.9, + "end": 3086.88, + "probability": 0.9453 + }, + { + "start": 3087.36, + "end": 3089.21, + "probability": 0.9868 + }, + { + "start": 3090.16, + "end": 3091.36, + "probability": 0.741 + }, + { + "start": 3091.42, + "end": 3092.62, + "probability": 0.7733 + }, + { + "start": 3092.64, + "end": 3093.72, + "probability": 0.937 + }, + { + "start": 3093.88, + "end": 3096.48, + "probability": 0.8522 + }, + { + "start": 3096.54, + "end": 3097.12, + "probability": 0.6473 + }, + { + "start": 3097.64, + "end": 3100.5, + "probability": 0.9708 + }, + { + "start": 3101.26, + "end": 3102.5, + "probability": 0.8867 + }, + { + "start": 3102.86, + "end": 3106.84, + "probability": 0.9801 + }, + { + "start": 3107.46, + "end": 3111.04, + "probability": 0.9568 + }, + { + "start": 3112.72, + "end": 3113.04, + "probability": 0.9865 + }, + { + "start": 3113.8, + "end": 3115.48, + "probability": 0.9993 + }, + { + "start": 3116.6, + "end": 3120.72, + "probability": 0.9735 + }, + { + "start": 3121.42, + "end": 3124.68, + "probability": 0.9434 + }, + { + "start": 3125.12, + "end": 3126.52, + "probability": 0.9927 + }, + { + "start": 3126.62, + "end": 3127.32, + "probability": 0.8848 + }, + { + "start": 3127.96, + "end": 3130.72, + "probability": 0.906 + }, + { + "start": 3131.14, + "end": 3134.8, + "probability": 0.9765 + }, + { + "start": 3134.92, + "end": 3136.18, + "probability": 0.9705 + }, + { + "start": 3136.2, + "end": 3136.92, + "probability": 0.9117 + }, + { + "start": 3137.82, + "end": 3142.26, + "probability": 0.6291 + }, + { + "start": 3142.26, + "end": 3146.08, + "probability": 0.9211 + }, + { + "start": 3146.16, + "end": 3147.92, + "probability": 0.9876 + }, + { + "start": 3149.24, + "end": 3151.16, + "probability": 0.9904 + }, + { + "start": 3152.2, + "end": 3154.94, + "probability": 0.998 + }, + { + "start": 3155.86, + "end": 3156.72, + "probability": 0.7071 + }, + { + "start": 3158.24, + "end": 3160.24, + "probability": 0.9883 + }, + { + "start": 3160.76, + "end": 3161.86, + "probability": 0.9065 + }, + { + "start": 3162.38, + "end": 3166.24, + "probability": 0.989 + }, + { + "start": 3166.74, + "end": 3168.54, + "probability": 0.9812 + }, + { + "start": 3169.04, + "end": 3170.28, + "probability": 0.9908 + }, + { + "start": 3170.76, + "end": 3172.48, + "probability": 0.7636 + }, + { + "start": 3172.82, + "end": 3175.22, + "probability": 0.9925 + }, + { + "start": 3175.3, + "end": 3177.04, + "probability": 0.8603 + }, + { + "start": 3177.7, + "end": 3178.96, + "probability": 0.9767 + }, + { + "start": 3179.46, + "end": 3183.0, + "probability": 0.9346 + }, + { + "start": 3183.02, + "end": 3185.52, + "probability": 0.936 + }, + { + "start": 3187.24, + "end": 3188.18, + "probability": 0.4011 + }, + { + "start": 3188.88, + "end": 3194.46, + "probability": 0.9716 + }, + { + "start": 3195.06, + "end": 3198.19, + "probability": 0.8584 + }, + { + "start": 3199.28, + "end": 3205.56, + "probability": 0.9786 + }, + { + "start": 3206.66, + "end": 3208.06, + "probability": 0.6649 + }, + { + "start": 3208.28, + "end": 3210.16, + "probability": 0.9706 + }, + { + "start": 3210.66, + "end": 3211.02, + "probability": 0.3838 + }, + { + "start": 3211.12, + "end": 3212.56, + "probability": 0.6346 + }, + { + "start": 3214.9, + "end": 3218.08, + "probability": 0.9514 + }, + { + "start": 3218.64, + "end": 3222.32, + "probability": 0.9664 + }, + { + "start": 3223.34, + "end": 3224.9, + "probability": 0.838 + }, + { + "start": 3224.98, + "end": 3226.16, + "probability": 0.964 + }, + { + "start": 3226.66, + "end": 3227.44, + "probability": 0.599 + }, + { + "start": 3228.0, + "end": 3231.02, + "probability": 0.987 + }, + { + "start": 3231.4, + "end": 3233.6, + "probability": 0.9411 + }, + { + "start": 3234.12, + "end": 3235.0, + "probability": 0.7467 + }, + { + "start": 3235.9, + "end": 3239.74, + "probability": 0.9967 + }, + { + "start": 3240.12, + "end": 3242.14, + "probability": 0.9975 + }, + { + "start": 3242.48, + "end": 3242.92, + "probability": 0.8557 + }, + { + "start": 3244.32, + "end": 3246.4, + "probability": 0.7482 + }, + { + "start": 3246.48, + "end": 3249.8, + "probability": 0.9575 + }, + { + "start": 3263.02, + "end": 3264.9, + "probability": 0.9974 + }, + { + "start": 3265.22, + "end": 3269.48, + "probability": 0.9705 + }, + { + "start": 3270.76, + "end": 3272.64, + "probability": 0.9487 + }, + { + "start": 3277.34, + "end": 3283.56, + "probability": 0.994 + }, + { + "start": 3284.32, + "end": 3286.04, + "probability": 0.8031 + }, + { + "start": 3287.86, + "end": 3290.1, + "probability": 0.6459 + }, + { + "start": 3291.78, + "end": 3293.84, + "probability": 0.9922 + }, + { + "start": 3294.52, + "end": 3296.2, + "probability": 0.573 + }, + { + "start": 3297.22, + "end": 3298.84, + "probability": 0.9963 + }, + { + "start": 3299.48, + "end": 3300.32, + "probability": 0.6942 + }, + { + "start": 3301.4, + "end": 3303.45, + "probability": 0.9893 + }, + { + "start": 3304.18, + "end": 3305.38, + "probability": 0.4432 + }, + { + "start": 3306.36, + "end": 3307.3, + "probability": 0.4947 + }, + { + "start": 3307.88, + "end": 3311.86, + "probability": 0.99 + }, + { + "start": 3312.98, + "end": 3314.58, + "probability": 0.9822 + }, + { + "start": 3315.5, + "end": 3321.08, + "probability": 0.9987 + }, + { + "start": 3322.32, + "end": 3324.82, + "probability": 0.9055 + }, + { + "start": 3325.92, + "end": 3328.18, + "probability": 0.9949 + }, + { + "start": 3329.04, + "end": 3330.06, + "probability": 0.8691 + }, + { + "start": 3330.8, + "end": 3331.24, + "probability": 0.7162 + }, + { + "start": 3332.5, + "end": 3333.18, + "probability": 0.3651 + }, + { + "start": 3333.32, + "end": 3333.73, + "probability": 0.834 + }, + { + "start": 3334.42, + "end": 3338.72, + "probability": 0.9746 + }, + { + "start": 3340.68, + "end": 3341.54, + "probability": 0.7589 + }, + { + "start": 3342.88, + "end": 3344.12, + "probability": 0.9281 + }, + { + "start": 3344.98, + "end": 3347.98, + "probability": 0.6475 + }, + { + "start": 3348.56, + "end": 3349.92, + "probability": 0.9335 + }, + { + "start": 3351.02, + "end": 3353.68, + "probability": 0.7949 + }, + { + "start": 3354.58, + "end": 3357.24, + "probability": 0.9824 + }, + { + "start": 3357.94, + "end": 3360.18, + "probability": 0.8995 + }, + { + "start": 3361.66, + "end": 3362.84, + "probability": 0.835 + }, + { + "start": 3363.88, + "end": 3364.66, + "probability": 0.4444 + }, + { + "start": 3366.02, + "end": 3368.72, + "probability": 0.8854 + }, + { + "start": 3369.4, + "end": 3370.32, + "probability": 0.9613 + }, + { + "start": 3371.26, + "end": 3372.48, + "probability": 0.99 + }, + { + "start": 3373.56, + "end": 3375.8, + "probability": 0.9978 + }, + { + "start": 3377.24, + "end": 3381.3, + "probability": 0.8527 + }, + { + "start": 3382.14, + "end": 3385.3, + "probability": 0.9809 + }, + { + "start": 3386.26, + "end": 3388.2, + "probability": 0.943 + }, + { + "start": 3388.58, + "end": 3390.54, + "probability": 0.9964 + }, + { + "start": 3391.86, + "end": 3392.88, + "probability": 0.4443 + }, + { + "start": 3393.82, + "end": 3397.58, + "probability": 0.8263 + }, + { + "start": 3397.78, + "end": 3399.26, + "probability": 0.9603 + }, + { + "start": 3400.16, + "end": 3403.46, + "probability": 0.9803 + }, + { + "start": 3404.48, + "end": 3407.3, + "probability": 0.947 + }, + { + "start": 3409.02, + "end": 3410.78, + "probability": 0.7975 + }, + { + "start": 3411.44, + "end": 3412.6, + "probability": 0.9995 + }, + { + "start": 3413.22, + "end": 3414.18, + "probability": 0.8879 + }, + { + "start": 3414.28, + "end": 3418.16, + "probability": 0.9943 + }, + { + "start": 3418.66, + "end": 3419.6, + "probability": 0.504 + }, + { + "start": 3420.96, + "end": 3423.66, + "probability": 0.8833 + }, + { + "start": 3424.24, + "end": 3428.02, + "probability": 0.9874 + }, + { + "start": 3428.6, + "end": 3431.44, + "probability": 0.9885 + }, + { + "start": 3432.64, + "end": 3434.68, + "probability": 0.9945 + }, + { + "start": 3434.96, + "end": 3436.7, + "probability": 0.6694 + }, + { + "start": 3437.38, + "end": 3441.46, + "probability": 0.9863 + }, + { + "start": 3441.98, + "end": 3443.64, + "probability": 0.9628 + }, + { + "start": 3444.7, + "end": 3448.22, + "probability": 0.9388 + }, + { + "start": 3449.18, + "end": 3450.7, + "probability": 0.9863 + }, + { + "start": 3451.44, + "end": 3453.1, + "probability": 0.884 + }, + { + "start": 3454.52, + "end": 3458.9, + "probability": 0.9951 + }, + { + "start": 3459.42, + "end": 3460.06, + "probability": 0.9266 + }, + { + "start": 3461.02, + "end": 3462.16, + "probability": 0.802 + }, + { + "start": 3463.12, + "end": 3465.0, + "probability": 0.8071 + }, + { + "start": 3465.68, + "end": 3469.78, + "probability": 0.9945 + }, + { + "start": 3469.86, + "end": 3473.44, + "probability": 0.998 + }, + { + "start": 3474.72, + "end": 3476.54, + "probability": 0.9982 + }, + { + "start": 3477.24, + "end": 3481.08, + "probability": 0.9673 + }, + { + "start": 3481.94, + "end": 3484.0, + "probability": 0.9515 + }, + { + "start": 3484.82, + "end": 3486.32, + "probability": 0.8555 + }, + { + "start": 3486.84, + "end": 3491.08, + "probability": 0.9983 + }, + { + "start": 3493.32, + "end": 3497.18, + "probability": 0.8458 + }, + { + "start": 3497.82, + "end": 3500.42, + "probability": 0.1863 + }, + { + "start": 3501.34, + "end": 3503.74, + "probability": 0.8985 + }, + { + "start": 3504.72, + "end": 3506.48, + "probability": 0.7296 + }, + { + "start": 3507.04, + "end": 3507.46, + "probability": 0.8936 + }, + { + "start": 3508.18, + "end": 3508.82, + "probability": 0.7553 + }, + { + "start": 3509.46, + "end": 3513.24, + "probability": 0.8337 + }, + { + "start": 3513.92, + "end": 3514.38, + "probability": 0.9882 + }, + { + "start": 3515.5, + "end": 3517.24, + "probability": 0.9594 + }, + { + "start": 3517.98, + "end": 3518.9, + "probability": 0.9592 + }, + { + "start": 3519.62, + "end": 3520.18, + "probability": 0.7031 + }, + { + "start": 3520.84, + "end": 3521.38, + "probability": 0.9316 + }, + { + "start": 3522.76, + "end": 3523.12, + "probability": 0.8622 + }, + { + "start": 3523.7, + "end": 3524.82, + "probability": 0.9904 + }, + { + "start": 3528.86, + "end": 3529.76, + "probability": 0.6004 + }, + { + "start": 3530.84, + "end": 3531.52, + "probability": 0.2491 + }, + { + "start": 3532.3, + "end": 3534.88, + "probability": 0.7874 + }, + { + "start": 3535.66, + "end": 3538.04, + "probability": 0.7778 + }, + { + "start": 3538.96, + "end": 3540.76, + "probability": 0.8485 + }, + { + "start": 3541.08, + "end": 3543.14, + "probability": 0.8353 + }, + { + "start": 3544.34, + "end": 3547.1, + "probability": 0.9667 + }, + { + "start": 3547.76, + "end": 3549.82, + "probability": 0.8535 + }, + { + "start": 3550.88, + "end": 3551.34, + "probability": 0.7593 + }, + { + "start": 3551.88, + "end": 3552.54, + "probability": 0.8329 + }, + { + "start": 3553.24, + "end": 3556.78, + "probability": 0.8504 + }, + { + "start": 3558.0, + "end": 3561.74, + "probability": 0.9712 + }, + { + "start": 3562.56, + "end": 3566.76, + "probability": 0.8259 + }, + { + "start": 3567.9, + "end": 3570.48, + "probability": 0.8757 + }, + { + "start": 3571.1, + "end": 3574.08, + "probability": 0.5664 + }, + { + "start": 3574.64, + "end": 3577.98, + "probability": 0.9922 + }, + { + "start": 3579.12, + "end": 3581.54, + "probability": 0.9961 + }, + { + "start": 3582.08, + "end": 3585.18, + "probability": 0.9971 + }, + { + "start": 3585.62, + "end": 3586.48, + "probability": 0.9364 + }, + { + "start": 3587.38, + "end": 3590.92, + "probability": 0.9977 + }, + { + "start": 3590.92, + "end": 3596.26, + "probability": 0.9908 + }, + { + "start": 3596.92, + "end": 3600.62, + "probability": 0.8633 + }, + { + "start": 3601.14, + "end": 3602.94, + "probability": 0.9235 + }, + { + "start": 3603.96, + "end": 3606.02, + "probability": 0.9092 + }, + { + "start": 3606.96, + "end": 3610.9, + "probability": 0.923 + }, + { + "start": 3612.12, + "end": 3615.04, + "probability": 0.9351 + }, + { + "start": 3615.88, + "end": 3618.14, + "probability": 0.8002 + }, + { + "start": 3618.74, + "end": 3621.06, + "probability": 0.8839 + }, + { + "start": 3622.0, + "end": 3627.96, + "probability": 0.9901 + }, + { + "start": 3629.88, + "end": 3632.3, + "probability": 0.5222 + }, + { + "start": 3633.38, + "end": 3637.08, + "probability": 0.8995 + }, + { + "start": 3638.26, + "end": 3640.38, + "probability": 0.9946 + }, + { + "start": 3641.76, + "end": 3643.64, + "probability": 0.9786 + }, + { + "start": 3644.44, + "end": 3646.32, + "probability": 0.9593 + }, + { + "start": 3647.22, + "end": 3649.48, + "probability": 0.9905 + }, + { + "start": 3650.22, + "end": 3653.2, + "probability": 0.8746 + }, + { + "start": 3654.08, + "end": 3656.69, + "probability": 0.9968 + }, + { + "start": 3658.38, + "end": 3660.6, + "probability": 0.8058 + }, + { + "start": 3661.32, + "end": 3662.92, + "probability": 0.7596 + }, + { + "start": 3663.82, + "end": 3665.68, + "probability": 0.9412 + }, + { + "start": 3666.6, + "end": 3670.28, + "probability": 0.3028 + }, + { + "start": 3671.24, + "end": 3672.94, + "probability": 0.7433 + }, + { + "start": 3674.18, + "end": 3678.4, + "probability": 0.78 + }, + { + "start": 3679.36, + "end": 3680.64, + "probability": 0.7834 + }, + { + "start": 3681.5, + "end": 3682.3, + "probability": 0.9879 + }, + { + "start": 3682.52, + "end": 3684.58, + "probability": 0.9791 + }, + { + "start": 3685.2, + "end": 3686.65, + "probability": 0.9902 + }, + { + "start": 3687.8, + "end": 3688.58, + "probability": 0.5762 + }, + { + "start": 3689.64, + "end": 3690.88, + "probability": 0.9478 + }, + { + "start": 3691.66, + "end": 3692.9, + "probability": 0.9849 + }, + { + "start": 3693.62, + "end": 3694.96, + "probability": 0.9723 + }, + { + "start": 3695.72, + "end": 3695.82, + "probability": 0.9101 + }, + { + "start": 3696.9, + "end": 3698.72, + "probability": 0.9067 + }, + { + "start": 3699.32, + "end": 3701.76, + "probability": 0.9907 + }, + { + "start": 3702.88, + "end": 3704.86, + "probability": 0.9957 + }, + { + "start": 3705.7, + "end": 3707.1, + "probability": 0.928 + }, + { + "start": 3707.88, + "end": 3709.6, + "probability": 0.893 + }, + { + "start": 3710.16, + "end": 3711.54, + "probability": 0.9921 + }, + { + "start": 3712.14, + "end": 3714.34, + "probability": 0.7372 + }, + { + "start": 3714.94, + "end": 3717.46, + "probability": 0.9895 + }, + { + "start": 3717.82, + "end": 3719.24, + "probability": 0.8903 + }, + { + "start": 3719.8, + "end": 3722.74, + "probability": 0.9088 + }, + { + "start": 3722.74, + "end": 3727.14, + "probability": 0.9609 + }, + { + "start": 3727.74, + "end": 3731.38, + "probability": 0.9268 + }, + { + "start": 3732.02, + "end": 3733.9, + "probability": 0.8861 + }, + { + "start": 3734.58, + "end": 3734.9, + "probability": 0.3859 + }, + { + "start": 3735.44, + "end": 3736.42, + "probability": 0.7827 + }, + { + "start": 3737.38, + "end": 3737.64, + "probability": 0.801 + }, + { + "start": 3737.96, + "end": 3738.34, + "probability": 0.7427 + }, + { + "start": 3738.9, + "end": 3740.5, + "probability": 0.9866 + }, + { + "start": 3740.62, + "end": 3742.28, + "probability": 0.919 + }, + { + "start": 3744.36, + "end": 3744.76, + "probability": 0.8943 + }, + { + "start": 3745.28, + "end": 3746.88, + "probability": 0.9386 + }, + { + "start": 3746.98, + "end": 3749.36, + "probability": 0.9941 + }, + { + "start": 3749.52, + "end": 3749.96, + "probability": 0.0057 + }, + { + "start": 3749.98, + "end": 3750.56, + "probability": 0.1427 + }, + { + "start": 3750.76, + "end": 3750.94, + "probability": 0.1916 + }, + { + "start": 3750.94, + "end": 3751.22, + "probability": 0.232 + }, + { + "start": 3751.32, + "end": 3751.92, + "probability": 0.3226 + }, + { + "start": 3751.98, + "end": 3752.1, + "probability": 0.2807 + }, + { + "start": 3752.1, + "end": 3753.01, + "probability": 0.6304 + }, + { + "start": 3753.44, + "end": 3759.28, + "probability": 0.959 + }, + { + "start": 3761.34, + "end": 3762.2, + "probability": 0.2639 + }, + { + "start": 3762.62, + "end": 3764.14, + "probability": 0.1851 + }, + { + "start": 3764.5, + "end": 3764.5, + "probability": 0.2 + }, + { + "start": 3764.5, + "end": 3764.5, + "probability": 0.1596 + }, + { + "start": 3764.7, + "end": 3765.06, + "probability": 0.5648 + }, + { + "start": 3765.62, + "end": 3765.98, + "probability": 0.2985 + }, + { + "start": 3766.04, + "end": 3766.46, + "probability": 0.8345 + }, + { + "start": 3766.48, + "end": 3766.98, + "probability": 0.2116 + }, + { + "start": 3767.74, + "end": 3769.62, + "probability": 0.9039 + }, + { + "start": 3771.78, + "end": 3775.18, + "probability": 0.9904 + }, + { + "start": 3775.28, + "end": 3776.58, + "probability": 0.5557 + }, + { + "start": 3777.16, + "end": 3778.9, + "probability": 0.8975 + }, + { + "start": 3779.56, + "end": 3781.72, + "probability": 0.995 + }, + { + "start": 3781.72, + "end": 3786.16, + "probability": 0.9551 + }, + { + "start": 3786.46, + "end": 3790.6, + "probability": 0.9846 + }, + { + "start": 3790.88, + "end": 3794.26, + "probability": 0.8531 + }, + { + "start": 3794.72, + "end": 3796.12, + "probability": 0.8001 + }, + { + "start": 3798.22, + "end": 3800.22, + "probability": 0.6089 + }, + { + "start": 3800.34, + "end": 3801.2, + "probability": 0.7651 + }, + { + "start": 3801.82, + "end": 3804.98, + "probability": 0.271 + }, + { + "start": 3812.84, + "end": 3812.84, + "probability": 0.0613 + }, + { + "start": 3812.84, + "end": 3813.02, + "probability": 0.4807 + }, + { + "start": 3813.52, + "end": 3814.28, + "probability": 0.8144 + }, + { + "start": 3814.34, + "end": 3816.56, + "probability": 0.7677 + }, + { + "start": 3816.82, + "end": 3817.66, + "probability": 0.7402 + }, + { + "start": 3818.34, + "end": 3820.82, + "probability": 0.99 + }, + { + "start": 3820.82, + "end": 3824.0, + "probability": 0.7939 + }, + { + "start": 3824.46, + "end": 3826.94, + "probability": 0.6475 + }, + { + "start": 3827.25, + "end": 3830.66, + "probability": 0.9189 + }, + { + "start": 3830.88, + "end": 3831.58, + "probability": 0.706 + }, + { + "start": 3832.44, + "end": 3833.66, + "probability": 0.627 + }, + { + "start": 3833.84, + "end": 3835.98, + "probability": 0.9202 + }, + { + "start": 3836.08, + "end": 3837.06, + "probability": 0.7697 + }, + { + "start": 3837.26, + "end": 3838.14, + "probability": 0.9356 + }, + { + "start": 3839.44, + "end": 3841.0, + "probability": 0.9912 + }, + { + "start": 3841.02, + "end": 3843.24, + "probability": 0.7046 + }, + { + "start": 3843.26, + "end": 3845.64, + "probability": 0.983 + }, + { + "start": 3846.56, + "end": 3848.42, + "probability": 0.9889 + }, + { + "start": 3848.5, + "end": 3849.2, + "probability": 0.5859 + }, + { + "start": 3849.54, + "end": 3852.88, + "probability": 0.9606 + }, + { + "start": 3852.88, + "end": 3857.42, + "probability": 0.9276 + }, + { + "start": 3857.76, + "end": 3863.24, + "probability": 0.9927 + }, + { + "start": 3863.72, + "end": 3866.56, + "probability": 0.9973 + }, + { + "start": 3866.64, + "end": 3868.62, + "probability": 0.9513 + }, + { + "start": 3869.34, + "end": 3871.86, + "probability": 0.9907 + }, + { + "start": 3871.94, + "end": 3873.98, + "probability": 0.8887 + }, + { + "start": 3874.28, + "end": 3875.58, + "probability": 0.9861 + }, + { + "start": 3876.02, + "end": 3878.11, + "probability": 0.9966 + }, + { + "start": 3878.24, + "end": 3882.18, + "probability": 0.9799 + }, + { + "start": 3882.74, + "end": 3886.84, + "probability": 0.9735 + }, + { + "start": 3887.0, + "end": 3888.88, + "probability": 0.9811 + }, + { + "start": 3889.24, + "end": 3892.28, + "probability": 0.8649 + }, + { + "start": 3892.36, + "end": 3892.5, + "probability": 0.54 + }, + { + "start": 3893.1, + "end": 3894.12, + "probability": 0.715 + }, + { + "start": 3894.82, + "end": 3897.12, + "probability": 0.6266 + }, + { + "start": 3897.58, + "end": 3897.96, + "probability": 0.3413 + }, + { + "start": 3897.96, + "end": 3898.16, + "probability": 0.6793 + }, + { + "start": 3898.38, + "end": 3900.42, + "probability": 0.889 + }, + { + "start": 3901.44, + "end": 3904.54, + "probability": 0.8906 + }, + { + "start": 3906.7, + "end": 3910.16, + "probability": 0.9951 + }, + { + "start": 3910.16, + "end": 3913.52, + "probability": 0.9944 + }, + { + "start": 3914.28, + "end": 3916.42, + "probability": 0.995 + }, + { + "start": 3916.42, + "end": 3918.78, + "probability": 0.9894 + }, + { + "start": 3919.14, + "end": 3919.46, + "probability": 0.4841 + }, + { + "start": 3919.58, + "end": 3921.88, + "probability": 0.9939 + }, + { + "start": 3921.88, + "end": 3924.36, + "probability": 0.9777 + }, + { + "start": 3924.76, + "end": 3927.24, + "probability": 0.9925 + }, + { + "start": 3927.72, + "end": 3928.62, + "probability": 0.7541 + }, + { + "start": 3929.1, + "end": 3932.52, + "probability": 0.9914 + }, + { + "start": 3932.52, + "end": 3937.7, + "probability": 0.9965 + }, + { + "start": 3937.7, + "end": 3941.98, + "probability": 0.9989 + }, + { + "start": 3942.5, + "end": 3944.74, + "probability": 0.9655 + }, + { + "start": 3944.74, + "end": 3947.3, + "probability": 0.9983 + }, + { + "start": 3947.64, + "end": 3950.34, + "probability": 0.994 + }, + { + "start": 3950.66, + "end": 3951.08, + "probability": 0.8957 + }, + { + "start": 3951.28, + "end": 3954.06, + "probability": 0.9987 + }, + { + "start": 3954.6, + "end": 3958.0, + "probability": 0.9724 + }, + { + "start": 3958.0, + "end": 3961.22, + "probability": 0.9966 + }, + { + "start": 3961.7, + "end": 3963.14, + "probability": 0.9812 + }, + { + "start": 3963.28, + "end": 3967.12, + "probability": 0.9254 + }, + { + "start": 3967.28, + "end": 3969.83, + "probability": 0.9858 + }, + { + "start": 3970.16, + "end": 3972.08, + "probability": 0.9802 + }, + { + "start": 3972.82, + "end": 3973.82, + "probability": 0.7382 + }, + { + "start": 3973.96, + "end": 3974.24, + "probability": 0.756 + }, + { + "start": 3974.36, + "end": 3974.78, + "probability": 0.8984 + }, + { + "start": 3974.98, + "end": 3977.09, + "probability": 0.9871 + }, + { + "start": 3977.4, + "end": 3979.7, + "probability": 0.8391 + }, + { + "start": 3980.18, + "end": 3981.3, + "probability": 0.8394 + }, + { + "start": 3981.58, + "end": 3982.92, + "probability": 0.8699 + }, + { + "start": 3983.04, + "end": 3984.68, + "probability": 0.998 + }, + { + "start": 3985.02, + "end": 3989.14, + "probability": 0.8958 + }, + { + "start": 3989.48, + "end": 3991.08, + "probability": 0.632 + }, + { + "start": 3991.1, + "end": 3993.44, + "probability": 0.958 + }, + { + "start": 3994.32, + "end": 3994.56, + "probability": 0.6027 + }, + { + "start": 3994.62, + "end": 3995.86, + "probability": 0.9548 + }, + { + "start": 3995.98, + "end": 3999.2, + "probability": 0.9971 + }, + { + "start": 4000.1, + "end": 4001.73, + "probability": 0.957 + }, + { + "start": 4001.96, + "end": 4003.96, + "probability": 0.9922 + }, + { + "start": 4004.2, + "end": 4007.3, + "probability": 0.9706 + }, + { + "start": 4008.12, + "end": 4011.3, + "probability": 0.998 + }, + { + "start": 4012.22, + "end": 4012.86, + "probability": 0.9532 + }, + { + "start": 4012.96, + "end": 4014.04, + "probability": 0.959 + }, + { + "start": 4014.1, + "end": 4014.82, + "probability": 0.9864 + }, + { + "start": 4015.04, + "end": 4015.48, + "probability": 0.7539 + }, + { + "start": 4015.62, + "end": 4016.28, + "probability": 0.9678 + }, + { + "start": 4016.48, + "end": 4016.72, + "probability": 0.829 + }, + { + "start": 4017.32, + "end": 4018.72, + "probability": 0.3971 + }, + { + "start": 4018.78, + "end": 4019.08, + "probability": 0.442 + }, + { + "start": 4019.3, + "end": 4019.82, + "probability": 0.5515 + }, + { + "start": 4019.88, + "end": 4021.3, + "probability": 0.7446 + }, + { + "start": 4021.4, + "end": 4023.58, + "probability": 0.9098 + }, + { + "start": 4024.0, + "end": 4026.34, + "probability": 0.946 + }, + { + "start": 4026.8, + "end": 4028.44, + "probability": 0.8352 + }, + { + "start": 4028.6, + "end": 4029.94, + "probability": 0.2082 + }, + { + "start": 4029.96, + "end": 4030.48, + "probability": 0.6997 + }, + { + "start": 4031.36, + "end": 4033.81, + "probability": 0.9969 + }, + { + "start": 4034.38, + "end": 4035.92, + "probability": 0.8629 + }, + { + "start": 4036.38, + "end": 4037.34, + "probability": 0.4277 + }, + { + "start": 4037.44, + "end": 4037.78, + "probability": 0.4883 + }, + { + "start": 4037.84, + "end": 4038.8, + "probability": 0.3775 + }, + { + "start": 4038.98, + "end": 4041.48, + "probability": 0.8485 + }, + { + "start": 4042.04, + "end": 4042.52, + "probability": 0.9113 + }, + { + "start": 4043.12, + "end": 4044.2, + "probability": 0.759 + }, + { + "start": 4044.54, + "end": 4045.25, + "probability": 0.9595 + }, + { + "start": 4045.76, + "end": 4047.98, + "probability": 0.9912 + }, + { + "start": 4048.08, + "end": 4048.34, + "probability": 0.7427 + }, + { + "start": 4048.78, + "end": 4050.76, + "probability": 0.9808 + }, + { + "start": 4050.86, + "end": 4052.48, + "probability": 0.9742 + }, + { + "start": 4052.64, + "end": 4053.62, + "probability": 0.9743 + }, + { + "start": 4053.62, + "end": 4054.52, + "probability": 0.9604 + }, + { + "start": 4054.56, + "end": 4054.66, + "probability": 0.889 + }, + { + "start": 4064.06, + "end": 4064.22, + "probability": 0.2144 + }, + { + "start": 4064.22, + "end": 4064.22, + "probability": 0.2578 + }, + { + "start": 4064.22, + "end": 4064.58, + "probability": 0.1141 + }, + { + "start": 4064.64, + "end": 4065.66, + "probability": 0.701 + }, + { + "start": 4065.8, + "end": 4066.12, + "probability": 0.7472 + }, + { + "start": 4066.12, + "end": 4067.2, + "probability": 0.7457 + }, + { + "start": 4068.96, + "end": 4073.16, + "probability": 0.9771 + }, + { + "start": 4073.96, + "end": 4074.7, + "probability": 0.749 + }, + { + "start": 4076.2, + "end": 4076.88, + "probability": 0.8481 + }, + { + "start": 4077.9, + "end": 4079.9, + "probability": 0.8818 + }, + { + "start": 4080.12, + "end": 4082.78, + "probability": 0.98 + }, + { + "start": 4083.4, + "end": 4089.08, + "probability": 0.9685 + }, + { + "start": 4089.4, + "end": 4090.86, + "probability": 0.9739 + }, + { + "start": 4091.28, + "end": 4092.06, + "probability": 0.8454 + }, + { + "start": 4092.28, + "end": 4096.98, + "probability": 0.9377 + }, + { + "start": 4097.82, + "end": 4103.84, + "probability": 0.981 + }, + { + "start": 4104.34, + "end": 4107.46, + "probability": 0.8594 + }, + { + "start": 4108.12, + "end": 4109.08, + "probability": 0.8661 + }, + { + "start": 4109.8, + "end": 4110.84, + "probability": 0.8367 + }, + { + "start": 4111.4, + "end": 4111.82, + "probability": 0.7877 + }, + { + "start": 4111.88, + "end": 4115.8, + "probability": 0.9841 + }, + { + "start": 4115.92, + "end": 4117.26, + "probability": 0.8572 + }, + { + "start": 4117.7, + "end": 4117.74, + "probability": 0.0225 + }, + { + "start": 4117.74, + "end": 4119.3, + "probability": 0.9871 + }, + { + "start": 4119.72, + "end": 4120.76, + "probability": 0.7254 + }, + { + "start": 4120.86, + "end": 4121.78, + "probability": 0.967 + }, + { + "start": 4123.66, + "end": 4124.56, + "probability": 0.6067 + }, + { + "start": 4125.04, + "end": 4125.06, + "probability": 0.6276 + }, + { + "start": 4125.06, + "end": 4125.54, + "probability": 0.5019 + }, + { + "start": 4125.54, + "end": 4125.64, + "probability": 0.4939 + }, + { + "start": 4125.74, + "end": 4128.38, + "probability": 0.9116 + }, + { + "start": 4128.94, + "end": 4130.36, + "probability": 0.9648 + }, + { + "start": 4130.76, + "end": 4133.86, + "probability": 0.9795 + }, + { + "start": 4134.4, + "end": 4139.02, + "probability": 0.75 + }, + { + "start": 4139.22, + "end": 4141.36, + "probability": 0.1227 + }, + { + "start": 4141.4, + "end": 4142.22, + "probability": 0.5901 + }, + { + "start": 4142.46, + "end": 4143.68, + "probability": 0.9492 + }, + { + "start": 4144.7, + "end": 4146.66, + "probability": 0.991 + }, + { + "start": 4149.0, + "end": 4150.72, + "probability": 0.8261 + }, + { + "start": 4160.89, + "end": 4160.96, + "probability": 0.001 + }, + { + "start": 4160.96, + "end": 4163.52, + "probability": 0.8025 + }, + { + "start": 4164.2, + "end": 4165.9, + "probability": 0.9937 + }, + { + "start": 4165.94, + "end": 4169.84, + "probability": 0.9622 + }, + { + "start": 4170.74, + "end": 4171.46, + "probability": 0.7534 + }, + { + "start": 4171.88, + "end": 4172.72, + "probability": 0.9702 + }, + { + "start": 4173.82, + "end": 4173.94, + "probability": 0.0164 + }, + { + "start": 4188.72, + "end": 4189.24, + "probability": 0.2582 + }, + { + "start": 4189.24, + "end": 4191.76, + "probability": 0.8549 + }, + { + "start": 4192.28, + "end": 4194.74, + "probability": 0.9282 + }, + { + "start": 4194.82, + "end": 4197.12, + "probability": 0.6272 + }, + { + "start": 4197.52, + "end": 4200.82, + "probability": 0.9741 + }, + { + "start": 4201.28, + "end": 4203.04, + "probability": 0.6415 + }, + { + "start": 4203.08, + "end": 4204.34, + "probability": 0.3517 + }, + { + "start": 4204.38, + "end": 4207.68, + "probability": 0.9207 + }, + { + "start": 4208.3, + "end": 4213.29, + "probability": 0.8785 + }, + { + "start": 4218.68, + "end": 4220.62, + "probability": 0.4583 + }, + { + "start": 4220.84, + "end": 4221.3, + "probability": 0.8961 + }, + { + "start": 4221.62, + "end": 4223.6, + "probability": 0.9154 + }, + { + "start": 4223.64, + "end": 4224.5, + "probability": 0.7781 + }, + { + "start": 4225.0, + "end": 4227.12, + "probability": 0.9881 + }, + { + "start": 4227.64, + "end": 4229.84, + "probability": 0.9717 + }, + { + "start": 4230.1, + "end": 4234.66, + "probability": 0.9994 + }, + { + "start": 4235.22, + "end": 4237.2, + "probability": 0.5001 + }, + { + "start": 4237.42, + "end": 4240.42, + "probability": 0.627 + }, + { + "start": 4241.04, + "end": 4241.6, + "probability": 0.2125 + }, + { + "start": 4241.72, + "end": 4244.98, + "probability": 0.8958 + }, + { + "start": 4245.92, + "end": 4246.76, + "probability": 0.9722 + }, + { + "start": 4247.28, + "end": 4248.61, + "probability": 0.7564 + }, + { + "start": 4249.52, + "end": 4249.62, + "probability": 0.0412 + }, + { + "start": 4249.62, + "end": 4250.8, + "probability": 0.0983 + }, + { + "start": 4250.88, + "end": 4252.36, + "probability": 0.8955 + }, + { + "start": 4253.3, + "end": 4255.26, + "probability": 0.9718 + }, + { + "start": 4256.06, + "end": 4257.68, + "probability": 0.9149 + }, + { + "start": 4257.84, + "end": 4259.16, + "probability": 0.8975 + }, + { + "start": 4259.62, + "end": 4260.2, + "probability": 0.9497 + }, + { + "start": 4261.24, + "end": 4262.52, + "probability": 0.4777 + }, + { + "start": 4262.78, + "end": 4266.48, + "probability": 0.9661 + }, + { + "start": 4266.54, + "end": 4267.72, + "probability": 0.9818 + }, + { + "start": 4267.86, + "end": 4269.48, + "probability": 0.9817 + }, + { + "start": 4269.88, + "end": 4272.9, + "probability": 0.973 + }, + { + "start": 4272.9, + "end": 4275.0, + "probability": 0.9785 + }, + { + "start": 4275.54, + "end": 4278.72, + "probability": 0.9969 + }, + { + "start": 4279.38, + "end": 4282.79, + "probability": 0.9937 + }, + { + "start": 4282.98, + "end": 4286.9, + "probability": 0.9932 + }, + { + "start": 4287.48, + "end": 4289.28, + "probability": 0.861 + }, + { + "start": 4289.34, + "end": 4291.72, + "probability": 0.7242 + }, + { + "start": 4292.24, + "end": 4294.76, + "probability": 0.9756 + }, + { + "start": 4294.88, + "end": 4295.52, + "probability": 0.2459 + }, + { + "start": 4295.84, + "end": 4296.64, + "probability": 0.8622 + }, + { + "start": 4297.08, + "end": 4298.34, + "probability": 0.8295 + }, + { + "start": 4298.42, + "end": 4299.02, + "probability": 0.7818 + }, + { + "start": 4299.12, + "end": 4301.62, + "probability": 0.99 + }, + { + "start": 4301.72, + "end": 4302.9, + "probability": 0.9894 + }, + { + "start": 4303.2, + "end": 4306.0, + "probability": 0.9937 + }, + { + "start": 4307.16, + "end": 4311.38, + "probability": 0.8248 + }, + { + "start": 4312.06, + "end": 4312.52, + "probability": 0.4637 + }, + { + "start": 4312.6, + "end": 4314.58, + "probability": 0.4155 + }, + { + "start": 4314.58, + "end": 4315.54, + "probability": 0.004 + }, + { + "start": 4316.28, + "end": 4317.44, + "probability": 0.7272 + }, + { + "start": 4317.68, + "end": 4318.32, + "probability": 0.908 + }, + { + "start": 4318.4, + "end": 4321.19, + "probability": 0.6826 + }, + { + "start": 4322.1, + "end": 4322.94, + "probability": 0.1652 + }, + { + "start": 4323.94, + "end": 4324.73, + "probability": 0.4866 + }, + { + "start": 4325.5, + "end": 4326.2, + "probability": 0.7758 + }, + { + "start": 4327.3, + "end": 4327.88, + "probability": 0.4577 + }, + { + "start": 4327.88, + "end": 4328.3, + "probability": 0.5944 + }, + { + "start": 4328.58, + "end": 4328.88, + "probability": 0.7839 + }, + { + "start": 4329.52, + "end": 4329.98, + "probability": 0.8901 + }, + { + "start": 4330.3, + "end": 4331.28, + "probability": 0.8786 + }, + { + "start": 4331.48, + "end": 4332.42, + "probability": 0.9171 + }, + { + "start": 4332.58, + "end": 4336.42, + "probability": 0.9894 + }, + { + "start": 4336.52, + "end": 4337.24, + "probability": 0.9783 + }, + { + "start": 4337.8, + "end": 4338.6, + "probability": 0.9863 + }, + { + "start": 4339.2, + "end": 4340.46, + "probability": 0.9473 + }, + { + "start": 4340.58, + "end": 4340.99, + "probability": 0.9688 + }, + { + "start": 4341.2, + "end": 4343.58, + "probability": 0.9009 + }, + { + "start": 4343.98, + "end": 4344.58, + "probability": 0.7719 + }, + { + "start": 4344.66, + "end": 4348.16, + "probability": 0.9632 + }, + { + "start": 4348.68, + "end": 4351.44, + "probability": 0.9474 + }, + { + "start": 4351.98, + "end": 4352.96, + "probability": 0.9811 + }, + { + "start": 4353.56, + "end": 4354.04, + "probability": 0.6593 + }, + { + "start": 4354.1, + "end": 4354.6, + "probability": 0.8024 + }, + { + "start": 4354.68, + "end": 4355.26, + "probability": 0.8468 + }, + { + "start": 4355.62, + "end": 4356.64, + "probability": 0.8986 + }, + { + "start": 4356.68, + "end": 4358.14, + "probability": 0.9207 + }, + { + "start": 4358.54, + "end": 4360.72, + "probability": 0.9907 + }, + { + "start": 4361.16, + "end": 4363.35, + "probability": 0.983 + }, + { + "start": 4364.92, + "end": 4364.92, + "probability": 0.0579 + }, + { + "start": 4364.92, + "end": 4364.92, + "probability": 0.0863 + }, + { + "start": 4364.92, + "end": 4365.7, + "probability": 0.5177 + }, + { + "start": 4365.7, + "end": 4367.02, + "probability": 0.978 + }, + { + "start": 4367.28, + "end": 4371.44, + "probability": 0.9125 + }, + { + "start": 4371.78, + "end": 4373.28, + "probability": 0.884 + }, + { + "start": 4373.68, + "end": 4374.94, + "probability": 0.7001 + }, + { + "start": 4374.96, + "end": 4375.94, + "probability": 0.8949 + }, + { + "start": 4377.82, + "end": 4378.48, + "probability": 0.9676 + }, + { + "start": 4378.78, + "end": 4379.34, + "probability": 0.8596 + }, + { + "start": 4379.44, + "end": 4379.92, + "probability": 0.8322 + }, + { + "start": 4380.18, + "end": 4380.68, + "probability": 0.6181 + }, + { + "start": 4380.78, + "end": 4381.44, + "probability": 0.9417 + }, + { + "start": 4381.66, + "end": 4382.72, + "probability": 0.8064 + }, + { + "start": 4383.1, + "end": 4385.58, + "probability": 0.9678 + }, + { + "start": 4385.62, + "end": 4388.0, + "probability": 0.9732 + }, + { + "start": 4388.46, + "end": 4389.4, + "probability": 0.8096 + }, + { + "start": 4390.08, + "end": 4391.48, + "probability": 0.6577 + }, + { + "start": 4391.58, + "end": 4393.08, + "probability": 0.9946 + }, + { + "start": 4393.48, + "end": 4394.12, + "probability": 0.937 + }, + { + "start": 4394.16, + "end": 4395.58, + "probability": 0.9902 + }, + { + "start": 4396.08, + "end": 4397.58, + "probability": 0.8146 + }, + { + "start": 4398.08, + "end": 4399.02, + "probability": 0.978 + }, + { + "start": 4399.26, + "end": 4400.64, + "probability": 0.6849 + }, + { + "start": 4401.08, + "end": 4402.26, + "probability": 0.8133 + }, + { + "start": 4402.7, + "end": 4403.5, + "probability": 0.9156 + }, + { + "start": 4403.62, + "end": 4404.22, + "probability": 0.9528 + }, + { + "start": 4404.26, + "end": 4405.18, + "probability": 0.8253 + }, + { + "start": 4405.66, + "end": 4406.46, + "probability": 0.9371 + }, + { + "start": 4406.8, + "end": 4408.9, + "probability": 0.981 + }, + { + "start": 4409.54, + "end": 4411.28, + "probability": 0.7686 + }, + { + "start": 4411.74, + "end": 4412.46, + "probability": 0.8096 + }, + { + "start": 4412.56, + "end": 4413.42, + "probability": 0.7266 + }, + { + "start": 4413.9, + "end": 4418.58, + "probability": 0.9971 + }, + { + "start": 4418.88, + "end": 4423.52, + "probability": 0.9997 + }, + { + "start": 4423.56, + "end": 4424.77, + "probability": 0.999 + }, + { + "start": 4424.92, + "end": 4425.44, + "probability": 0.7926 + }, + { + "start": 4425.64, + "end": 4426.05, + "probability": 0.5353 + }, + { + "start": 4426.88, + "end": 4429.7, + "probability": 0.998 + }, + { + "start": 4430.68, + "end": 4431.8, + "probability": 0.6533 + }, + { + "start": 4432.04, + "end": 4432.42, + "probability": 0.7454 + }, + { + "start": 4432.54, + "end": 4432.9, + "probability": 0.5082 + }, + { + "start": 4433.4, + "end": 4435.18, + "probability": 0.9109 + }, + { + "start": 4435.28, + "end": 4435.48, + "probability": 0.7656 + }, + { + "start": 4436.32, + "end": 4438.38, + "probability": 0.9917 + }, + { + "start": 4438.8, + "end": 4441.34, + "probability": 0.9565 + }, + { + "start": 4441.5, + "end": 4442.08, + "probability": 0.9827 + }, + { + "start": 4442.16, + "end": 4442.92, + "probability": 0.941 + }, + { + "start": 4443.06, + "end": 4443.8, + "probability": 0.9877 + }, + { + "start": 4443.86, + "end": 4444.36, + "probability": 0.5473 + }, + { + "start": 4445.0, + "end": 4448.4, + "probability": 0.4445 + }, + { + "start": 4448.4, + "end": 4448.8, + "probability": 0.3079 + }, + { + "start": 4448.98, + "end": 4449.32, + "probability": 0.72 + }, + { + "start": 4449.4, + "end": 4450.31, + "probability": 0.7735 + }, + { + "start": 4450.4, + "end": 4451.32, + "probability": 0.7697 + }, + { + "start": 4451.32, + "end": 4455.52, + "probability": 0.3557 + }, + { + "start": 4455.62, + "end": 4456.48, + "probability": 0.8413 + }, + { + "start": 4456.54, + "end": 4457.5, + "probability": 0.928 + }, + { + "start": 4457.7, + "end": 4458.62, + "probability": 0.8921 + }, + { + "start": 4459.14, + "end": 4460.24, + "probability": 0.8455 + }, + { + "start": 4460.24, + "end": 4461.4, + "probability": 0.7222 + }, + { + "start": 4461.7, + "end": 4462.92, + "probability": 0.71 + }, + { + "start": 4462.96, + "end": 4463.82, + "probability": 0.2508 + }, + { + "start": 4464.4, + "end": 4464.66, + "probability": 0.0163 + }, + { + "start": 4464.88, + "end": 4466.1, + "probability": 0.8572 + }, + { + "start": 4466.32, + "end": 4468.6, + "probability": 0.9613 + }, + { + "start": 4468.64, + "end": 4469.3, + "probability": 0.9056 + }, + { + "start": 4469.82, + "end": 4472.69, + "probability": 0.9037 + }, + { + "start": 4473.5, + "end": 4474.64, + "probability": 0.9025 + }, + { + "start": 4474.88, + "end": 4477.56, + "probability": 0.9892 + }, + { + "start": 4477.68, + "end": 4477.9, + "probability": 0.8232 + }, + { + "start": 4479.04, + "end": 4480.78, + "probability": 0.9452 + }, + { + "start": 4480.94, + "end": 4485.36, + "probability": 0.6625 + }, + { + "start": 4485.64, + "end": 4485.66, + "probability": 0.1109 + }, + { + "start": 4486.34, + "end": 4489.6, + "probability": 0.7824 + }, + { + "start": 4489.68, + "end": 4493.94, + "probability": 0.8909 + }, + { + "start": 4494.46, + "end": 4497.1, + "probability": 0.5305 + }, + { + "start": 4497.52, + "end": 4500.14, + "probability": 0.869 + }, + { + "start": 4500.56, + "end": 4501.62, + "probability": 0.8875 + }, + { + "start": 4514.68, + "end": 4515.65, + "probability": 0.2617 + }, + { + "start": 4516.3, + "end": 4517.16, + "probability": 0.7182 + }, + { + "start": 4517.7, + "end": 4519.04, + "probability": 0.8395 + }, + { + "start": 4519.12, + "end": 4523.3, + "probability": 0.9009 + }, + { + "start": 4523.54, + "end": 4524.12, + "probability": 0.83 + }, + { + "start": 4524.84, + "end": 4530.14, + "probability": 0.9163 + }, + { + "start": 4532.16, + "end": 4533.56, + "probability": 0.8706 + }, + { + "start": 4534.22, + "end": 4536.02, + "probability": 0.9689 + }, + { + "start": 4538.88, + "end": 4543.36, + "probability": 0.9814 + }, + { + "start": 4544.42, + "end": 4549.96, + "probability": 0.9858 + }, + { + "start": 4550.92, + "end": 4553.78, + "probability": 0.9553 + }, + { + "start": 4554.32, + "end": 4555.73, + "probability": 0.9338 + }, + { + "start": 4556.22, + "end": 4560.3, + "probability": 0.9575 + }, + { + "start": 4560.38, + "end": 4563.7, + "probability": 0.7309 + }, + { + "start": 4563.8, + "end": 4565.16, + "probability": 0.7588 + }, + { + "start": 4565.36, + "end": 4568.24, + "probability": 0.9435 + }, + { + "start": 4569.12, + "end": 4569.76, + "probability": 0.8095 + }, + { + "start": 4570.64, + "end": 4577.38, + "probability": 0.8899 + }, + { + "start": 4577.48, + "end": 4578.5, + "probability": 0.9922 + }, + { + "start": 4578.64, + "end": 4581.18, + "probability": 0.9104 + }, + { + "start": 4581.72, + "end": 4582.9, + "probability": 0.8547 + }, + { + "start": 4584.36, + "end": 4588.02, + "probability": 0.9273 + }, + { + "start": 4588.44, + "end": 4590.98, + "probability": 0.8691 + }, + { + "start": 4591.12, + "end": 4591.56, + "probability": 0.032 + }, + { + "start": 4591.56, + "end": 4592.22, + "probability": 0.2356 + }, + { + "start": 4592.84, + "end": 4593.2, + "probability": 0.721 + }, + { + "start": 4593.84, + "end": 4595.8, + "probability": 0.8945 + }, + { + "start": 4596.28, + "end": 4597.18, + "probability": 0.0263 + }, + { + "start": 4597.18, + "end": 4598.36, + "probability": 0.7359 + }, + { + "start": 4598.52, + "end": 4601.12, + "probability": 0.4186 + }, + { + "start": 4601.42, + "end": 4601.62, + "probability": 0.0635 + }, + { + "start": 4601.62, + "end": 4601.94, + "probability": 0.7951 + }, + { + "start": 4601.94, + "end": 4605.72, + "probability": 0.7988 + }, + { + "start": 4606.44, + "end": 4606.76, + "probability": 0.6995 + }, + { + "start": 4607.0, + "end": 4610.96, + "probability": 0.8719 + }, + { + "start": 4611.08, + "end": 4611.92, + "probability": 0.6876 + }, + { + "start": 4612.42, + "end": 4612.62, + "probability": 0.5403 + }, + { + "start": 4613.02, + "end": 4613.6, + "probability": 0.4152 + }, + { + "start": 4614.14, + "end": 4616.28, + "probability": 0.9907 + }, + { + "start": 4616.96, + "end": 4617.06, + "probability": 0.4468 + }, + { + "start": 4617.18, + "end": 4618.1, + "probability": 0.9097 + }, + { + "start": 4618.86, + "end": 4619.94, + "probability": 0.7979 + }, + { + "start": 4620.12, + "end": 4620.64, + "probability": 0.5134 + }, + { + "start": 4620.96, + "end": 4626.58, + "probability": 0.5533 + }, + { + "start": 4626.7, + "end": 4626.7, + "probability": 0.5714 + }, + { + "start": 4626.7, + "end": 4629.7, + "probability": 0.9394 + }, + { + "start": 4630.18, + "end": 4633.32, + "probability": 0.9806 + }, + { + "start": 4633.54, + "end": 4634.86, + "probability": 0.901 + }, + { + "start": 4635.98, + "end": 4636.86, + "probability": 0.9492 + }, + { + "start": 4637.14, + "end": 4644.54, + "probability": 0.9462 + }, + { + "start": 4644.74, + "end": 4646.58, + "probability": 0.9731 + }, + { + "start": 4646.58, + "end": 4648.58, + "probability": 0.8994 + }, + { + "start": 4649.02, + "end": 4649.06, + "probability": 0.6176 + }, + { + "start": 4649.06, + "end": 4649.28, + "probability": 0.0948 + }, + { + "start": 4649.44, + "end": 4651.56, + "probability": 0.8074 + }, + { + "start": 4652.48, + "end": 4653.58, + "probability": 0.7246 + }, + { + "start": 4654.26, + "end": 4654.54, + "probability": 0.9364 + }, + { + "start": 4655.6, + "end": 4659.02, + "probability": 0.9241 + }, + { + "start": 4659.14, + "end": 4660.54, + "probability": 0.8008 + }, + { + "start": 4660.7, + "end": 4662.8, + "probability": 0.9349 + }, + { + "start": 4663.6, + "end": 4664.0, + "probability": 0.8859 + }, + { + "start": 4664.44, + "end": 4665.76, + "probability": 0.9168 + }, + { + "start": 4666.28, + "end": 4667.12, + "probability": 0.9849 + }, + { + "start": 4667.3, + "end": 4670.5, + "probability": 0.9685 + }, + { + "start": 4670.96, + "end": 4672.74, + "probability": 0.9719 + }, + { + "start": 4673.6, + "end": 4675.04, + "probability": 0.9066 + }, + { + "start": 4675.56, + "end": 4678.14, + "probability": 0.9167 + }, + { + "start": 4678.62, + "end": 4683.46, + "probability": 0.8932 + }, + { + "start": 4683.94, + "end": 4685.94, + "probability": 0.7066 + }, + { + "start": 4686.5, + "end": 4687.3, + "probability": 0.9618 + }, + { + "start": 4687.96, + "end": 4691.94, + "probability": 0.9943 + }, + { + "start": 4692.36, + "end": 4695.22, + "probability": 0.9951 + }, + { + "start": 4695.74, + "end": 4697.66, + "probability": 0.9112 + }, + { + "start": 4698.16, + "end": 4699.08, + "probability": 0.9468 + }, + { + "start": 4700.0, + "end": 4701.16, + "probability": 0.8504 + }, + { + "start": 4701.36, + "end": 4701.92, + "probability": 0.8059 + }, + { + "start": 4702.04, + "end": 4702.58, + "probability": 0.7218 + }, + { + "start": 4702.66, + "end": 4703.84, + "probability": 0.9248 + }, + { + "start": 4703.92, + "end": 4704.44, + "probability": 0.7799 + }, + { + "start": 4704.54, + "end": 4705.08, + "probability": 0.803 + }, + { + "start": 4705.62, + "end": 4707.84, + "probability": 0.393 + }, + { + "start": 4707.92, + "end": 4708.38, + "probability": 0.3719 + }, + { + "start": 4708.6, + "end": 4709.46, + "probability": 0.0052 + }, + { + "start": 4711.08, + "end": 4711.42, + "probability": 0.1494 + }, + { + "start": 4713.16, + "end": 4716.04, + "probability": 0.9082 + }, + { + "start": 4716.62, + "end": 4719.92, + "probability": 0.6813 + }, + { + "start": 4720.66, + "end": 4721.08, + "probability": 0.4905 + }, + { + "start": 4721.44, + "end": 4723.04, + "probability": 0.7514 + }, + { + "start": 4723.78, + "end": 4726.76, + "probability": 0.8795 + }, + { + "start": 4727.54, + "end": 4728.36, + "probability": 0.6346 + }, + { + "start": 4728.68, + "end": 4729.66, + "probability": 0.9315 + }, + { + "start": 4729.85, + "end": 4732.18, + "probability": 0.6925 + }, + { + "start": 4732.32, + "end": 4737.12, + "probability": 0.959 + }, + { + "start": 4738.44, + "end": 4742.22, + "probability": 0.885 + }, + { + "start": 4742.92, + "end": 4743.84, + "probability": 0.7618 + }, + { + "start": 4743.92, + "end": 4744.74, + "probability": 0.9746 + }, + { + "start": 4745.28, + "end": 4746.7, + "probability": 0.9938 + }, + { + "start": 4746.82, + "end": 4749.18, + "probability": 0.9497 + }, + { + "start": 4750.04, + "end": 4753.46, + "probability": 0.9692 + }, + { + "start": 4754.23, + "end": 4755.48, + "probability": 0.9943 + }, + { + "start": 4756.56, + "end": 4758.53, + "probability": 0.9229 + }, + { + "start": 4759.36, + "end": 4760.4, + "probability": 0.8914 + }, + { + "start": 4761.8, + "end": 4762.64, + "probability": 0.9209 + }, + { + "start": 4762.88, + "end": 4764.9, + "probability": 0.9764 + }, + { + "start": 4765.04, + "end": 4766.22, + "probability": 0.9802 + }, + { + "start": 4766.78, + "end": 4767.44, + "probability": 0.7106 + }, + { + "start": 4768.7, + "end": 4771.32, + "probability": 0.8828 + }, + { + "start": 4771.54, + "end": 4774.94, + "probability": 0.9821 + }, + { + "start": 4775.44, + "end": 4776.1, + "probability": 0.7781 + }, + { + "start": 4776.18, + "end": 4777.61, + "probability": 0.8923 + }, + { + "start": 4778.1, + "end": 4778.98, + "probability": 0.3602 + }, + { + "start": 4779.3, + "end": 4780.52, + "probability": 0.8286 + }, + { + "start": 4781.84, + "end": 4782.32, + "probability": 0.79 + }, + { + "start": 4784.94, + "end": 4789.74, + "probability": 0.8911 + }, + { + "start": 4797.1, + "end": 4797.18, + "probability": 0.0433 + }, + { + "start": 4797.18, + "end": 4797.82, + "probability": 0.4965 + }, + { + "start": 4801.06, + "end": 4804.94, + "probability": 0.7103 + }, + { + "start": 4805.82, + "end": 4807.12, + "probability": 0.9292 + }, + { + "start": 4807.16, + "end": 4808.78, + "probability": 0.698 + }, + { + "start": 4809.08, + "end": 4810.88, + "probability": 0.9038 + }, + { + "start": 4811.98, + "end": 4816.98, + "probability": 0.9771 + }, + { + "start": 4818.28, + "end": 4821.56, + "probability": 0.8621 + }, + { + "start": 4822.42, + "end": 4828.36, + "probability": 0.4723 + }, + { + "start": 4828.48, + "end": 4829.42, + "probability": 0.5144 + }, + { + "start": 4830.18, + "end": 4835.8, + "probability": 0.9538 + }, + { + "start": 4836.54, + "end": 4841.18, + "probability": 0.9957 + }, + { + "start": 4841.18, + "end": 4842.92, + "probability": 0.9998 + }, + { + "start": 4844.5, + "end": 4849.0, + "probability": 0.9966 + }, + { + "start": 4849.64, + "end": 4854.92, + "probability": 0.9971 + }, + { + "start": 4855.96, + "end": 4863.12, + "probability": 0.9868 + }, + { + "start": 4863.34, + "end": 4864.11, + "probability": 0.9785 + }, + { + "start": 4864.82, + "end": 4867.14, + "probability": 0.9988 + }, + { + "start": 4867.6, + "end": 4868.94, + "probability": 0.9319 + }, + { + "start": 4869.6, + "end": 4874.32, + "probability": 0.999 + }, + { + "start": 4875.4, + "end": 4878.58, + "probability": 0.9989 + }, + { + "start": 4879.18, + "end": 4881.12, + "probability": 0.9818 + }, + { + "start": 4882.12, + "end": 4886.04, + "probability": 0.9948 + }, + { + "start": 4886.28, + "end": 4886.58, + "probability": 0.6494 + }, + { + "start": 4887.18, + "end": 4891.24, + "probability": 0.9871 + }, + { + "start": 4891.76, + "end": 4892.7, + "probability": 0.8759 + }, + { + "start": 4893.26, + "end": 4898.0, + "probability": 0.9952 + }, + { + "start": 4898.0, + "end": 4903.58, + "probability": 0.9992 + }, + { + "start": 4904.16, + "end": 4906.16, + "probability": 0.921 + }, + { + "start": 4906.62, + "end": 4906.98, + "probability": 0.7136 + }, + { + "start": 4907.82, + "end": 4909.3, + "probability": 0.9363 + }, + { + "start": 4909.86, + "end": 4911.08, + "probability": 0.8251 + }, + { + "start": 4911.82, + "end": 4913.88, + "probability": 0.7011 + }, + { + "start": 4914.5, + "end": 4915.12, + "probability": 0.6964 + }, + { + "start": 4915.36, + "end": 4916.86, + "probability": 0.9818 + }, + { + "start": 4917.32, + "end": 4917.92, + "probability": 0.9436 + }, + { + "start": 4918.06, + "end": 4919.36, + "probability": 0.7565 + }, + { + "start": 4920.12, + "end": 4922.16, + "probability": 0.7401 + }, + { + "start": 4923.18, + "end": 4923.9, + "probability": 0.6782 + }, + { + "start": 4924.92, + "end": 4926.22, + "probability": 0.9087 + }, + { + "start": 4926.28, + "end": 4926.72, + "probability": 0.7346 + }, + { + "start": 4927.04, + "end": 4928.16, + "probability": 0.8201 + }, + { + "start": 4928.26, + "end": 4928.9, + "probability": 0.7848 + }, + { + "start": 4929.38, + "end": 4930.72, + "probability": 0.8345 + }, + { + "start": 4930.78, + "end": 4931.44, + "probability": 0.8424 + }, + { + "start": 4931.86, + "end": 4933.72, + "probability": 0.8305 + }, + { + "start": 4934.1, + "end": 4934.86, + "probability": 0.3648 + }, + { + "start": 4935.04, + "end": 4937.5, + "probability": 0.7868 + }, + { + "start": 4937.66, + "end": 4939.1, + "probability": 0.9886 + }, + { + "start": 4939.5, + "end": 4940.02, + "probability": 0.9095 + }, + { + "start": 4940.16, + "end": 4941.38, + "probability": 0.9893 + }, + { + "start": 4942.26, + "end": 4942.92, + "probability": 0.6606 + }, + { + "start": 4945.5, + "end": 4945.92, + "probability": 0.5848 + }, + { + "start": 4946.14, + "end": 4946.6, + "probability": 0.432 + }, + { + "start": 4946.92, + "end": 4948.48, + "probability": 0.5786 + }, + { + "start": 4949.16, + "end": 4951.8, + "probability": 0.8223 + }, + { + "start": 4952.5, + "end": 4953.3, + "probability": 0.8153 + }, + { + "start": 4953.42, + "end": 4954.76, + "probability": 0.897 + }, + { + "start": 4955.14, + "end": 4955.7, + "probability": 0.6026 + }, + { + "start": 4955.84, + "end": 4957.04, + "probability": 0.9105 + }, + { + "start": 4957.4, + "end": 4957.88, + "probability": 0.3332 + }, + { + "start": 4958.0, + "end": 4959.32, + "probability": 0.8917 + }, + { + "start": 4959.7, + "end": 4960.4, + "probability": 0.5289 + }, + { + "start": 4960.42, + "end": 4961.7, + "probability": 0.9153 + }, + { + "start": 4962.22, + "end": 4962.8, + "probability": 0.8857 + }, + { + "start": 4963.26, + "end": 4964.66, + "probability": 0.9915 + }, + { + "start": 4964.68, + "end": 4965.28, + "probability": 0.9567 + }, + { + "start": 4965.46, + "end": 4967.12, + "probability": 0.9951 + }, + { + "start": 4967.72, + "end": 4969.7, + "probability": 0.7849 + }, + { + "start": 4970.26, + "end": 4970.92, + "probability": 0.958 + }, + { + "start": 4971.48, + "end": 4973.0, + "probability": 0.8186 + }, + { + "start": 4973.08, + "end": 4973.94, + "probability": 0.6854 + }, + { + "start": 4973.96, + "end": 4975.24, + "probability": 0.9918 + }, + { + "start": 4975.64, + "end": 4976.44, + "probability": 0.9753 + }, + { + "start": 4976.8, + "end": 4979.02, + "probability": 0.9023 + }, + { + "start": 4979.52, + "end": 4980.26, + "probability": 0.7486 + }, + { + "start": 4982.74, + "end": 4983.9, + "probability": 0.5368 + }, + { + "start": 4983.9, + "end": 4983.9, + "probability": 0.0209 + }, + { + "start": 4983.9, + "end": 4984.04, + "probability": 0.6398 + }, + { + "start": 4985.26, + "end": 4985.62, + "probability": 0.7611 + }, + { + "start": 4987.02, + "end": 4989.18, + "probability": 0.6635 + }, + { + "start": 4989.86, + "end": 4991.02, + "probability": 0.4176 + }, + { + "start": 4991.9, + "end": 4992.44, + "probability": 0.9443 + }, + { + "start": 4997.5, + "end": 4999.28, + "probability": 0.5422 + }, + { + "start": 5000.66, + "end": 5003.0, + "probability": 0.9951 + }, + { + "start": 5004.72, + "end": 5012.64, + "probability": 0.9877 + }, + { + "start": 5013.56, + "end": 5016.1, + "probability": 0.9961 + }, + { + "start": 5017.16, + "end": 5019.98, + "probability": 0.8965 + }, + { + "start": 5021.06, + "end": 5023.0, + "probability": 0.7152 + }, + { + "start": 5023.42, + "end": 5024.26, + "probability": 0.7385 + }, + { + "start": 5024.38, + "end": 5024.96, + "probability": 0.9885 + }, + { + "start": 5026.46, + "end": 5026.84, + "probability": 0.6333 + }, + { + "start": 5027.52, + "end": 5029.72, + "probability": 0.9966 + }, + { + "start": 5030.38, + "end": 5031.68, + "probability": 0.6173 + }, + { + "start": 5032.46, + "end": 5033.64, + "probability": 0.9401 + }, + { + "start": 5034.52, + "end": 5035.92, + "probability": 0.5568 + }, + { + "start": 5036.64, + "end": 5038.46, + "probability": 0.9137 + }, + { + "start": 5038.68, + "end": 5042.88, + "probability": 0.95 + }, + { + "start": 5043.68, + "end": 5046.96, + "probability": 0.8711 + }, + { + "start": 5048.62, + "end": 5050.24, + "probability": 0.5105 + }, + { + "start": 5051.22, + "end": 5051.4, + "probability": 0.3791 + }, + { + "start": 5052.0, + "end": 5052.58, + "probability": 0.7137 + }, + { + "start": 5052.7, + "end": 5058.74, + "probability": 0.8223 + }, + { + "start": 5058.74, + "end": 5060.58, + "probability": 0.7338 + }, + { + "start": 5060.94, + "end": 5062.94, + "probability": 0.9719 + }, + { + "start": 5063.04, + "end": 5066.36, + "probability": 0.9471 + }, + { + "start": 5066.46, + "end": 5067.74, + "probability": 0.9863 + }, + { + "start": 5068.84, + "end": 5070.18, + "probability": 0.8677 + }, + { + "start": 5071.0, + "end": 5072.71, + "probability": 0.9854 + }, + { + "start": 5073.78, + "end": 5075.66, + "probability": 0.9928 + }, + { + "start": 5077.2, + "end": 5078.56, + "probability": 0.9879 + }, + { + "start": 5079.32, + "end": 5082.7, + "probability": 0.9713 + }, + { + "start": 5083.86, + "end": 5086.86, + "probability": 0.9793 + }, + { + "start": 5088.08, + "end": 5090.74, + "probability": 0.9845 + }, + { + "start": 5092.18, + "end": 5093.8, + "probability": 0.9219 + }, + { + "start": 5094.42, + "end": 5095.06, + "probability": 0.6942 + }, + { + "start": 5096.22, + "end": 5096.98, + "probability": 0.8867 + }, + { + "start": 5098.62, + "end": 5100.62, + "probability": 0.9119 + }, + { + "start": 5100.94, + "end": 5101.6, + "probability": 0.7332 + }, + { + "start": 5102.36, + "end": 5104.58, + "probability": 0.7979 + }, + { + "start": 5105.4, + "end": 5107.82, + "probability": 0.945 + }, + { + "start": 5108.36, + "end": 5110.34, + "probability": 0.9242 + }, + { + "start": 5111.34, + "end": 5113.12, + "probability": 0.9818 + }, + { + "start": 5113.18, + "end": 5115.78, + "probability": 0.955 + }, + { + "start": 5116.74, + "end": 5117.7, + "probability": 0.9304 + }, + { + "start": 5117.94, + "end": 5120.58, + "probability": 0.8628 + }, + { + "start": 5121.5, + "end": 5123.18, + "probability": 0.9547 + }, + { + "start": 5123.44, + "end": 5125.04, + "probability": 0.9658 + }, + { + "start": 5125.9, + "end": 5128.8, + "probability": 0.9647 + }, + { + "start": 5129.42, + "end": 5134.64, + "probability": 0.9944 + }, + { + "start": 5134.76, + "end": 5136.1, + "probability": 0.9804 + }, + { + "start": 5136.62, + "end": 5138.34, + "probability": 0.9673 + }, + { + "start": 5138.72, + "end": 5142.86, + "probability": 0.9405 + }, + { + "start": 5143.28, + "end": 5144.52, + "probability": 0.8659 + }, + { + "start": 5144.62, + "end": 5146.66, + "probability": 0.9216 + }, + { + "start": 5147.36, + "end": 5148.82, + "probability": 0.9895 + }, + { + "start": 5149.4, + "end": 5151.42, + "probability": 0.9488 + }, + { + "start": 5152.3, + "end": 5156.2, + "probability": 0.7968 + }, + { + "start": 5156.8, + "end": 5158.8, + "probability": 0.8882 + }, + { + "start": 5159.06, + "end": 5163.12, + "probability": 0.8739 + }, + { + "start": 5165.0, + "end": 5167.4, + "probability": 0.9827 + }, + { + "start": 5168.0, + "end": 5169.58, + "probability": 0.9932 + }, + { + "start": 5170.38, + "end": 5171.26, + "probability": 0.9814 + }, + { + "start": 5173.18, + "end": 5177.38, + "probability": 0.8896 + }, + { + "start": 5178.0, + "end": 5179.7, + "probability": 0.9561 + }, + { + "start": 5180.42, + "end": 5184.06, + "probability": 0.9878 + }, + { + "start": 5184.18, + "end": 5185.36, + "probability": 0.956 + }, + { + "start": 5185.7, + "end": 5187.38, + "probability": 0.1459 + }, + { + "start": 5187.56, + "end": 5187.84, + "probability": 0.0673 + }, + { + "start": 5187.94, + "end": 5189.46, + "probability": 0.7393 + }, + { + "start": 5189.52, + "end": 5190.46, + "probability": 0.404 + }, + { + "start": 5191.46, + "end": 5191.74, + "probability": 0.4402 + }, + { + "start": 5191.8, + "end": 5192.5, + "probability": 0.9597 + }, + { + "start": 5193.06, + "end": 5194.56, + "probability": 0.5601 + }, + { + "start": 5194.56, + "end": 5195.16, + "probability": 0.5172 + }, + { + "start": 5196.22, + "end": 5197.38, + "probability": 0.3781 + }, + { + "start": 5197.38, + "end": 5198.99, + "probability": 0.6404 + }, + { + "start": 5199.1, + "end": 5200.0, + "probability": 0.2209 + }, + { + "start": 5200.36, + "end": 5201.44, + "probability": 0.8834 + }, + { + "start": 5201.46, + "end": 5201.94, + "probability": 0.3217 + }, + { + "start": 5202.08, + "end": 5202.8, + "probability": 0.9333 + }, + { + "start": 5204.1, + "end": 5205.12, + "probability": 0.9632 + }, + { + "start": 5205.14, + "end": 5205.82, + "probability": 0.0033 + }, + { + "start": 5209.42, + "end": 5209.58, + "probability": 0.0926 + }, + { + "start": 5209.58, + "end": 5209.6, + "probability": 0.0131 + }, + { + "start": 5209.6, + "end": 5209.6, + "probability": 0.0213 + }, + { + "start": 5209.6, + "end": 5210.23, + "probability": 0.4087 + }, + { + "start": 5211.52, + "end": 5212.28, + "probability": 0.0032 + }, + { + "start": 5212.46, + "end": 5213.08, + "probability": 0.5284 + }, + { + "start": 5213.08, + "end": 5214.54, + "probability": 0.6889 + }, + { + "start": 5214.58, + "end": 5215.15, + "probability": 0.4117 + }, + { + "start": 5216.28, + "end": 5217.12, + "probability": 0.9902 + }, + { + "start": 5217.74, + "end": 5218.14, + "probability": 0.7678 + }, + { + "start": 5218.5, + "end": 5221.9, + "probability": 0.9903 + }, + { + "start": 5222.76, + "end": 5225.72, + "probability": 0.8997 + }, + { + "start": 5226.58, + "end": 5229.04, + "probability": 0.9987 + }, + { + "start": 5229.78, + "end": 5233.64, + "probability": 0.9542 + }, + { + "start": 5234.36, + "end": 5234.68, + "probability": 0.6552 + }, + { + "start": 5234.76, + "end": 5237.44, + "probability": 0.9647 + }, + { + "start": 5238.0, + "end": 5241.3, + "probability": 0.9875 + }, + { + "start": 5241.54, + "end": 5241.76, + "probability": 0.5261 + }, + { + "start": 5241.76, + "end": 5244.44, + "probability": 0.8174 + }, + { + "start": 5244.86, + "end": 5246.26, + "probability": 0.7883 + }, + { + "start": 5246.7, + "end": 5250.8, + "probability": 0.9922 + }, + { + "start": 5250.88, + "end": 5251.46, + "probability": 0.6396 + }, + { + "start": 5251.64, + "end": 5252.94, + "probability": 0.8328 + }, + { + "start": 5253.08, + "end": 5254.94, + "probability": 0.9847 + }, + { + "start": 5255.12, + "end": 5259.0, + "probability": 0.9878 + }, + { + "start": 5259.64, + "end": 5262.5, + "probability": 0.7666 + }, + { + "start": 5263.64, + "end": 5266.32, + "probability": 0.9657 + }, + { + "start": 5266.9, + "end": 5268.2, + "probability": 0.886 + }, + { + "start": 5268.84, + "end": 5271.02, + "probability": 0.9459 + }, + { + "start": 5271.68, + "end": 5272.3, + "probability": 0.9338 + }, + { + "start": 5272.48, + "end": 5273.7, + "probability": 0.9901 + }, + { + "start": 5274.18, + "end": 5274.82, + "probability": 0.9773 + }, + { + "start": 5275.0, + "end": 5276.14, + "probability": 0.9875 + }, + { + "start": 5276.58, + "end": 5277.38, + "probability": 0.979 + }, + { + "start": 5279.81, + "end": 5280.74, + "probability": 0.0352 + }, + { + "start": 5280.74, + "end": 5280.74, + "probability": 0.0135 + }, + { + "start": 5280.74, + "end": 5281.14, + "probability": 0.4644 + }, + { + "start": 5282.52, + "end": 5282.94, + "probability": 0.8139 + }, + { + "start": 5295.58, + "end": 5296.38, + "probability": 0.2353 + }, + { + "start": 5296.48, + "end": 5297.54, + "probability": 0.7786 + }, + { + "start": 5298.94, + "end": 5301.96, + "probability": 0.8666 + }, + { + "start": 5302.74, + "end": 5305.28, + "probability": 0.9733 + }, + { + "start": 5306.94, + "end": 5309.95, + "probability": 0.962 + }, + { + "start": 5311.18, + "end": 5313.88, + "probability": 0.9629 + }, + { + "start": 5314.54, + "end": 5315.98, + "probability": 0.6538 + }, + { + "start": 5317.97, + "end": 5319.98, + "probability": 0.8964 + }, + { + "start": 5320.16, + "end": 5321.38, + "probability": 0.9487 + }, + { + "start": 5322.44, + "end": 5323.46, + "probability": 0.9985 + }, + { + "start": 5324.83, + "end": 5325.7, + "probability": 0.9976 + }, + { + "start": 5327.42, + "end": 5332.88, + "probability": 0.9908 + }, + { + "start": 5334.5, + "end": 5336.76, + "probability": 0.9974 + }, + { + "start": 5337.72, + "end": 5344.62, + "probability": 0.9879 + }, + { + "start": 5345.58, + "end": 5346.24, + "probability": 0.5078 + }, + { + "start": 5346.46, + "end": 5347.46, + "probability": 0.93 + }, + { + "start": 5347.92, + "end": 5350.14, + "probability": 0.9441 + }, + { + "start": 5350.32, + "end": 5354.12, + "probability": 0.9988 + }, + { + "start": 5354.24, + "end": 5356.4, + "probability": 0.9178 + }, + { + "start": 5357.06, + "end": 5363.46, + "probability": 0.9377 + }, + { + "start": 5363.56, + "end": 5364.9, + "probability": 0.959 + }, + { + "start": 5365.68, + "end": 5369.46, + "probability": 0.9443 + }, + { + "start": 5370.2, + "end": 5371.82, + "probability": 0.868 + }, + { + "start": 5372.46, + "end": 5375.14, + "probability": 0.7337 + }, + { + "start": 5375.28, + "end": 5375.67, + "probability": 0.9237 + }, + { + "start": 5377.38, + "end": 5379.18, + "probability": 0.9965 + }, + { + "start": 5379.36, + "end": 5380.35, + "probability": 0.9746 + }, + { + "start": 5380.54, + "end": 5381.51, + "probability": 0.9889 + }, + { + "start": 5382.8, + "end": 5383.84, + "probability": 0.9692 + }, + { + "start": 5384.54, + "end": 5384.94, + "probability": 0.7861 + }, + { + "start": 5385.5, + "end": 5389.76, + "probability": 0.9974 + }, + { + "start": 5390.58, + "end": 5393.58, + "probability": 0.9962 + }, + { + "start": 5394.08, + "end": 5394.26, + "probability": 0.8341 + }, + { + "start": 5394.36, + "end": 5394.88, + "probability": 0.9473 + }, + { + "start": 5395.16, + "end": 5395.74, + "probability": 0.991 + }, + { + "start": 5395.94, + "end": 5396.44, + "probability": 0.9661 + }, + { + "start": 5396.56, + "end": 5397.1, + "probability": 0.7843 + }, + { + "start": 5397.16, + "end": 5398.62, + "probability": 0.9902 + }, + { + "start": 5399.82, + "end": 5402.43, + "probability": 0.9897 + }, + { + "start": 5403.38, + "end": 5405.36, + "probability": 0.9668 + }, + { + "start": 5405.9, + "end": 5406.8, + "probability": 0.991 + }, + { + "start": 5407.8, + "end": 5408.46, + "probability": 0.7997 + }, + { + "start": 5408.5, + "end": 5410.24, + "probability": 0.9893 + }, + { + "start": 5410.76, + "end": 5412.0, + "probability": 0.7261 + }, + { + "start": 5412.0, + "end": 5412.4, + "probability": 0.6197 + }, + { + "start": 5412.48, + "end": 5413.1, + "probability": 0.9307 + }, + { + "start": 5413.1, + "end": 5414.66, + "probability": 0.9849 + }, + { + "start": 5415.66, + "end": 5418.14, + "probability": 0.9963 + }, + { + "start": 5420.4, + "end": 5424.06, + "probability": 0.9855 + }, + { + "start": 5424.52, + "end": 5425.28, + "probability": 0.7186 + }, + { + "start": 5425.78, + "end": 5426.69, + "probability": 0.9037 + }, + { + "start": 5427.66, + "end": 5431.32, + "probability": 0.9576 + }, + { + "start": 5431.9, + "end": 5433.54, + "probability": 0.9216 + }, + { + "start": 5434.24, + "end": 5434.6, + "probability": 0.4984 + }, + { + "start": 5434.64, + "end": 5435.3, + "probability": 0.7949 + }, + { + "start": 5435.36, + "end": 5440.06, + "probability": 0.9281 + }, + { + "start": 5440.24, + "end": 5440.88, + "probability": 0.8868 + }, + { + "start": 5441.32, + "end": 5444.86, + "probability": 0.99 + }, + { + "start": 5444.86, + "end": 5448.66, + "probability": 0.9993 + }, + { + "start": 5448.9, + "end": 5449.46, + "probability": 0.6699 + }, + { + "start": 5450.02, + "end": 5451.82, + "probability": 0.9876 + }, + { + "start": 5452.0, + "end": 5452.96, + "probability": 0.9632 + }, + { + "start": 5453.34, + "end": 5453.94, + "probability": 0.5795 + }, + { + "start": 5454.12, + "end": 5455.18, + "probability": 0.9759 + }, + { + "start": 5455.74, + "end": 5461.54, + "probability": 0.96 + }, + { + "start": 5462.16, + "end": 5462.86, + "probability": 0.2879 + }, + { + "start": 5462.86, + "end": 5462.86, + "probability": 0.3796 + }, + { + "start": 5462.86, + "end": 5463.28, + "probability": 0.6546 + }, + { + "start": 5464.44, + "end": 5465.14, + "probability": 0.694 + }, + { + "start": 5465.3, + "end": 5466.72, + "probability": 0.7916 + }, + { + "start": 5466.78, + "end": 5467.24, + "probability": 0.8287 + }, + { + "start": 5467.48, + "end": 5468.62, + "probability": 0.917 + }, + { + "start": 5469.24, + "end": 5469.88, + "probability": 0.7882 + }, + { + "start": 5473.14, + "end": 5473.52, + "probability": 0.2464 + }, + { + "start": 5473.52, + "end": 5473.52, + "probability": 0.2792 + }, + { + "start": 5473.52, + "end": 5474.08, + "probability": 0.5003 + }, + { + "start": 5474.26, + "end": 5474.8, + "probability": 0.4142 + }, + { + "start": 5474.92, + "end": 5477.8, + "probability": 0.68 + }, + { + "start": 5478.66, + "end": 5479.32, + "probability": 0.5114 + }, + { + "start": 5479.76, + "end": 5481.84, + "probability": 0.97 + }, + { + "start": 5484.08, + "end": 5484.52, + "probability": 0.1657 + }, + { + "start": 5484.9, + "end": 5486.86, + "probability": 0.8236 + }, + { + "start": 5486.94, + "end": 5489.7, + "probability": 0.6663 + }, + { + "start": 5490.32, + "end": 5491.56, + "probability": 0.9553 + }, + { + "start": 5493.78, + "end": 5493.78, + "probability": 0.0442 + }, + { + "start": 5494.12, + "end": 5496.01, + "probability": 0.3706 + }, + { + "start": 5496.5, + "end": 5496.99, + "probability": 0.166 + }, + { + "start": 5497.68, + "end": 5498.98, + "probability": 0.8611 + }, + { + "start": 5499.52, + "end": 5501.2, + "probability": 0.6585 + }, + { + "start": 5502.12, + "end": 5504.04, + "probability": 0.9047 + }, + { + "start": 5505.02, + "end": 5505.9, + "probability": 0.5511 + }, + { + "start": 5506.0, + "end": 5508.35, + "probability": 0.9669 + }, + { + "start": 5508.5, + "end": 5509.8, + "probability": 0.8879 + }, + { + "start": 5510.7, + "end": 5512.34, + "probability": 0.8989 + }, + { + "start": 5512.44, + "end": 5514.79, + "probability": 0.957 + }, + { + "start": 5515.96, + "end": 5518.04, + "probability": 0.9366 + }, + { + "start": 5519.58, + "end": 5520.42, + "probability": 0.6938 + }, + { + "start": 5520.5, + "end": 5520.7, + "probability": 0.488 + }, + { + "start": 5520.76, + "end": 5520.9, + "probability": 0.7484 + }, + { + "start": 5520.94, + "end": 5523.72, + "probability": 0.95 + }, + { + "start": 5523.78, + "end": 5524.64, + "probability": 0.5695 + }, + { + "start": 5525.84, + "end": 5526.88, + "probability": 0.6384 + }, + { + "start": 5527.2, + "end": 5528.42, + "probability": 0.2749 + }, + { + "start": 5528.42, + "end": 5528.7, + "probability": 0.2217 + }, + { + "start": 5529.58, + "end": 5530.22, + "probability": 0.3959 + }, + { + "start": 5530.42, + "end": 5530.96, + "probability": 0.8743 + }, + { + "start": 5531.3, + "end": 5534.12, + "probability": 0.9907 + }, + { + "start": 5534.12, + "end": 5539.12, + "probability": 0.9584 + }, + { + "start": 5540.0, + "end": 5545.54, + "probability": 0.9976 + }, + { + "start": 5545.62, + "end": 5545.84, + "probability": 0.819 + }, + { + "start": 5545.94, + "end": 5546.22, + "probability": 0.8825 + }, + { + "start": 5546.32, + "end": 5550.32, + "probability": 0.9321 + }, + { + "start": 5550.54, + "end": 5551.66, + "probability": 0.9851 + }, + { + "start": 5552.6, + "end": 5553.72, + "probability": 0.9906 + }, + { + "start": 5554.9, + "end": 5557.28, + "probability": 0.999 + }, + { + "start": 5558.82, + "end": 5563.32, + "probability": 0.9997 + }, + { + "start": 5564.4, + "end": 5564.46, + "probability": 0.0834 + }, + { + "start": 5564.6, + "end": 5565.16, + "probability": 0.934 + }, + { + "start": 5565.64, + "end": 5566.52, + "probability": 0.7286 + }, + { + "start": 5566.6, + "end": 5567.89, + "probability": 0.9622 + }, + { + "start": 5569.08, + "end": 5570.98, + "probability": 0.9729 + }, + { + "start": 5571.38, + "end": 5572.08, + "probability": 0.9786 + }, + { + "start": 5572.22, + "end": 5574.98, + "probability": 0.9771 + }, + { + "start": 5575.5, + "end": 5577.38, + "probability": 0.9951 + }, + { + "start": 5577.44, + "end": 5578.38, + "probability": 0.9656 + }, + { + "start": 5578.66, + "end": 5579.28, + "probability": 0.9416 + }, + { + "start": 5580.46, + "end": 5581.02, + "probability": 0.9077 + }, + { + "start": 5581.08, + "end": 5582.04, + "probability": 0.7148 + }, + { + "start": 5582.22, + "end": 5586.64, + "probability": 0.9936 + }, + { + "start": 5587.46, + "end": 5588.68, + "probability": 0.9985 + }, + { + "start": 5589.64, + "end": 5593.06, + "probability": 0.91 + }, + { + "start": 5593.86, + "end": 5595.68, + "probability": 0.9597 + }, + { + "start": 5596.72, + "end": 5597.52, + "probability": 0.9793 + }, + { + "start": 5597.6, + "end": 5600.24, + "probability": 0.9428 + }, + { + "start": 5600.34, + "end": 5604.82, + "probability": 0.9995 + }, + { + "start": 5605.5, + "end": 5610.98, + "probability": 0.9979 + }, + { + "start": 5610.98, + "end": 5615.86, + "probability": 0.9999 + }, + { + "start": 5616.02, + "end": 5617.02, + "probability": 0.999 + }, + { + "start": 5617.98, + "end": 5622.66, + "probability": 0.9915 + }, + { + "start": 5623.1, + "end": 5623.36, + "probability": 0.3919 + }, + { + "start": 5623.52, + "end": 5628.56, + "probability": 0.985 + }, + { + "start": 5628.68, + "end": 5630.18, + "probability": 0.9981 + }, + { + "start": 5630.32, + "end": 5631.62, + "probability": 0.8329 + }, + { + "start": 5633.96, + "end": 5637.36, + "probability": 0.895 + }, + { + "start": 5637.88, + "end": 5643.26, + "probability": 0.9839 + }, + { + "start": 5643.26, + "end": 5648.46, + "probability": 0.9995 + }, + { + "start": 5648.46, + "end": 5652.52, + "probability": 0.9979 + }, + { + "start": 5652.96, + "end": 5653.62, + "probability": 0.8486 + }, + { + "start": 5654.72, + "end": 5657.36, + "probability": 0.9302 + }, + { + "start": 5658.12, + "end": 5659.4, + "probability": 0.9918 + }, + { + "start": 5659.52, + "end": 5660.14, + "probability": 0.8984 + }, + { + "start": 5660.58, + "end": 5664.14, + "probability": 0.9823 + }, + { + "start": 5664.68, + "end": 5665.4, + "probability": 0.9432 + }, + { + "start": 5665.48, + "end": 5666.24, + "probability": 0.652 + }, + { + "start": 5667.2, + "end": 5669.2, + "probability": 0.9784 + }, + { + "start": 5669.32, + "end": 5671.15, + "probability": 0.9984 + }, + { + "start": 5672.46, + "end": 5676.88, + "probability": 0.92 + }, + { + "start": 5677.04, + "end": 5680.3, + "probability": 0.9778 + }, + { + "start": 5680.5, + "end": 5681.74, + "probability": 0.3927 + }, + { + "start": 5681.9, + "end": 5683.06, + "probability": 0.8924 + }, + { + "start": 5683.56, + "end": 5684.38, + "probability": 0.6656 + }, + { + "start": 5684.84, + "end": 5685.84, + "probability": 0.7706 + }, + { + "start": 5691.34, + "end": 5691.34, + "probability": 0.0403 + }, + { + "start": 5691.34, + "end": 5691.34, + "probability": 0.054 + }, + { + "start": 5703.92, + "end": 5704.44, + "probability": 0.1322 + }, + { + "start": 5704.44, + "end": 5704.44, + "probability": 0.5319 + }, + { + "start": 5704.44, + "end": 5704.44, + "probability": 0.2041 + }, + { + "start": 5704.44, + "end": 5707.08, + "probability": 0.8718 + }, + { + "start": 5707.42, + "end": 5709.74, + "probability": 0.8678 + }, + { + "start": 5710.84, + "end": 5713.86, + "probability": 0.9817 + }, + { + "start": 5717.13, + "end": 5720.58, + "probability": 0.6711 + }, + { + "start": 5721.06, + "end": 5721.94, + "probability": 0.3536 + }, + { + "start": 5722.04, + "end": 5723.68, + "probability": 0.9581 + } + ], + "segments_count": 2072, + "words_count": 9993, + "avg_words_per_segment": 4.8229, + "avg_segment_duration": 2.0518, + "avg_words_per_minute": 104.2139, + "plenum_id": "73620", + "duration": 5753.36, + "title": null, + "plenum_date": "2018-05-29" +} \ No newline at end of file