diff --git "a/1436/metadata.json" "b/1436/metadata.json" new file mode 100644--- /dev/null +++ "b/1436/metadata.json" @@ -0,0 +1,7622 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "1436", + "quality_score": 0.9575, + "per_segment_quality_scores": [ + { + "start": 398.0, + "end": 398.0, + "probability": 0.0 + }, + { + "start": 398.0, + "end": 398.0, + "probability": 0.0 + }, + { + "start": 398.14, + "end": 402.3, + "probability": 0.9908 + }, + { + "start": 403.3, + "end": 405.34, + "probability": 0.9412 + }, + { + "start": 405.96, + "end": 409.8, + "probability": 0.7071 + }, + { + "start": 409.94, + "end": 411.4, + "probability": 0.3089 + }, + { + "start": 412.18, + "end": 415.78, + "probability": 0.3983 + }, + { + "start": 416.24, + "end": 418.4, + "probability": 0.4509 + }, + { + "start": 418.94, + "end": 419.76, + "probability": 0.8671 + }, + { + "start": 420.54, + "end": 421.14, + "probability": 0.9225 + }, + { + "start": 421.88, + "end": 424.16, + "probability": 0.9993 + }, + { + "start": 425.1, + "end": 426.98, + "probability": 0.7897 + }, + { + "start": 431.68, + "end": 432.82, + "probability": 0.9317 + }, + { + "start": 433.46, + "end": 436.62, + "probability": 0.7952 + }, + { + "start": 437.74, + "end": 439.98, + "probability": 0.8979 + }, + { + "start": 440.66, + "end": 441.68, + "probability": 0.8099 + }, + { + "start": 447.86, + "end": 450.3, + "probability": 0.6635 + }, + { + "start": 451.68, + "end": 453.72, + "probability": 0.8577 + }, + { + "start": 454.8, + "end": 456.22, + "probability": 0.9224 + }, + { + "start": 457.96, + "end": 459.96, + "probability": 0.8132 + }, + { + "start": 461.54, + "end": 461.82, + "probability": 0.3629 + }, + { + "start": 464.98, + "end": 465.6, + "probability": 0.0205 + }, + { + "start": 466.28, + "end": 466.52, + "probability": 0.2351 + }, + { + "start": 466.52, + "end": 466.62, + "probability": 0.2979 + }, + { + "start": 466.92, + "end": 468.46, + "probability": 0.3266 + }, + { + "start": 468.62, + "end": 470.26, + "probability": 0.8995 + }, + { + "start": 470.94, + "end": 472.26, + "probability": 0.8818 + }, + { + "start": 473.58, + "end": 474.7, + "probability": 0.9393 + }, + { + "start": 475.0, + "end": 476.15, + "probability": 0.8086 + }, + { + "start": 482.58, + "end": 483.5, + "probability": 0.6086 + }, + { + "start": 484.24, + "end": 484.48, + "probability": 0.7967 + }, + { + "start": 485.16, + "end": 486.54, + "probability": 0.6206 + }, + { + "start": 486.72, + "end": 487.28, + "probability": 0.6046 + }, + { + "start": 492.8, + "end": 495.48, + "probability": 0.4874 + }, + { + "start": 495.78, + "end": 496.76, + "probability": 0.6848 + }, + { + "start": 497.06, + "end": 498.44, + "probability": 0.7752 + }, + { + "start": 498.54, + "end": 499.62, + "probability": 0.6802 + }, + { + "start": 503.92, + "end": 504.52, + "probability": 0.8618 + }, + { + "start": 506.04, + "end": 507.6, + "probability": 0.8467 + }, + { + "start": 507.66, + "end": 508.92, + "probability": 0.657 + }, + { + "start": 509.06, + "end": 509.36, + "probability": 0.7641 + }, + { + "start": 509.48, + "end": 510.86, + "probability": 0.979 + }, + { + "start": 511.54, + "end": 512.94, + "probability": 0.7985 + }, + { + "start": 514.04, + "end": 520.53, + "probability": 0.09 + }, + { + "start": 528.4, + "end": 530.08, + "probability": 0.877 + }, + { + "start": 530.8, + "end": 531.58, + "probability": 0.5365 + }, + { + "start": 532.12, + "end": 534.38, + "probability": 0.1609 + }, + { + "start": 535.08, + "end": 549.04, + "probability": 0.0942 + }, + { + "start": 550.72, + "end": 552.96, + "probability": 0.1072 + }, + { + "start": 552.96, + "end": 553.38, + "probability": 0.0702 + }, + { + "start": 661.0, + "end": 661.0, + "probability": 0.0 + }, + { + "start": 715.16, + "end": 717.58, + "probability": 0.6537 + }, + { + "start": 718.26, + "end": 718.26, + "probability": 0.1519 + }, + { + "start": 720.74, + "end": 720.9, + "probability": 0.3775 + }, + { + "start": 733.21, + "end": 733.28, + "probability": 0.3469 + }, + { + "start": 733.38, + "end": 736.4, + "probability": 0.0701 + }, + { + "start": 736.4, + "end": 737.1, + "probability": 0.0984 + }, + { + "start": 738.74, + "end": 740.24, + "probability": 0.3519 + }, + { + "start": 742.06, + "end": 744.58, + "probability": 0.659 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.0, + "end": 829.0, + "probability": 0.0 + }, + { + "start": 829.88, + "end": 832.31, + "probability": 0.0529 + }, + { + "start": 833.72, + "end": 833.74, + "probability": 0.0128 + }, + { + "start": 834.44, + "end": 834.58, + "probability": 0.328 + }, + { + "start": 835.12, + "end": 835.42, + "probability": 0.446 + }, + { + "start": 835.42, + "end": 836.08, + "probability": 0.5838 + }, + { + "start": 840.02, + "end": 840.4, + "probability": 0.4989 + }, + { + "start": 841.14, + "end": 842.68, + "probability": 0.7365 + }, + { + "start": 843.32, + "end": 844.23, + "probability": 0.2894 + }, + { + "start": 845.68, + "end": 847.62, + "probability": 0.6476 + }, + { + "start": 848.84, + "end": 849.56, + "probability": 0.1261 + }, + { + "start": 850.02, + "end": 850.18, + "probability": 0.7109 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 990.0, + "probability": 0.0 + }, + { + "start": 990.0, + "end": 994.1, + "probability": 0.9152 + }, + { + "start": 995.52, + "end": 997.1, + "probability": 0.7958 + }, + { + "start": 997.8, + "end": 999.02, + "probability": 0.8549 + }, + { + "start": 999.76, + "end": 1000.42, + "probability": 0.8998 + }, + { + "start": 1002.12, + "end": 1006.92, + "probability": 0.9943 + }, + { + "start": 1008.04, + "end": 1009.0, + "probability": 0.9753 + }, + { + "start": 1010.48, + "end": 1010.74, + "probability": 0.8093 + }, + { + "start": 1012.48, + "end": 1013.82, + "probability": 0.7556 + }, + { + "start": 1015.62, + "end": 1016.5, + "probability": 0.9807 + }, + { + "start": 1017.58, + "end": 1021.02, + "probability": 0.8393 + }, + { + "start": 1022.38, + "end": 1023.2, + "probability": 0.8679 + }, + { + "start": 1024.18, + "end": 1026.78, + "probability": 0.7631 + }, + { + "start": 1027.78, + "end": 1028.46, + "probability": 0.9637 + }, + { + "start": 1029.34, + "end": 1031.59, + "probability": 0.9958 + }, + { + "start": 1032.14, + "end": 1033.4, + "probability": 0.9154 + }, + { + "start": 1034.18, + "end": 1036.28, + "probability": 0.9744 + }, + { + "start": 1036.84, + "end": 1038.08, + "probability": 0.9336 + }, + { + "start": 1038.98, + "end": 1039.92, + "probability": 0.5267 + }, + { + "start": 1041.38, + "end": 1041.96, + "probability": 0.8555 + }, + { + "start": 1043.6, + "end": 1046.28, + "probability": 0.9839 + }, + { + "start": 1047.02, + "end": 1049.34, + "probability": 0.783 + }, + { + "start": 1050.14, + "end": 1050.6, + "probability": 0.9177 + }, + { + "start": 1051.24, + "end": 1055.92, + "probability": 0.988 + }, + { + "start": 1057.06, + "end": 1062.02, + "probability": 0.9235 + }, + { + "start": 1064.44, + "end": 1065.88, + "probability": 0.4251 + }, + { + "start": 1067.08, + "end": 1068.98, + "probability": 0.9795 + }, + { + "start": 1071.52, + "end": 1072.14, + "probability": 0.9549 + }, + { + "start": 1073.28, + "end": 1075.4, + "probability": 0.9124 + }, + { + "start": 1076.12, + "end": 1078.76, + "probability": 0.9601 + }, + { + "start": 1079.74, + "end": 1080.74, + "probability": 0.9902 + }, + { + "start": 1081.44, + "end": 1082.42, + "probability": 0.9934 + }, + { + "start": 1083.32, + "end": 1084.88, + "probability": 0.962 + }, + { + "start": 1086.38, + "end": 1090.58, + "probability": 0.6348 + }, + { + "start": 1091.28, + "end": 1092.16, + "probability": 0.9382 + }, + { + "start": 1092.94, + "end": 1095.76, + "probability": 0.9956 + }, + { + "start": 1096.28, + "end": 1096.78, + "probability": 0.6711 + }, + { + "start": 1097.5, + "end": 1099.92, + "probability": 0.9944 + }, + { + "start": 1100.64, + "end": 1106.46, + "probability": 0.8196 + }, + { + "start": 1107.46, + "end": 1108.14, + "probability": 0.8307 + }, + { + "start": 1108.7, + "end": 1111.44, + "probability": 0.8101 + }, + { + "start": 1112.34, + "end": 1114.5, + "probability": 0.943 + }, + { + "start": 1115.44, + "end": 1119.54, + "probability": 0.6991 + }, + { + "start": 1120.96, + "end": 1122.56, + "probability": 0.9883 + }, + { + "start": 1123.7, + "end": 1125.74, + "probability": 0.9074 + }, + { + "start": 1126.78, + "end": 1129.86, + "probability": 0.987 + }, + { + "start": 1132.24, + "end": 1134.42, + "probability": 0.9282 + }, + { + "start": 1134.7, + "end": 1137.18, + "probability": 0.9875 + }, + { + "start": 1138.04, + "end": 1140.2, + "probability": 0.8871 + }, + { + "start": 1141.1, + "end": 1141.42, + "probability": 0.9619 + }, + { + "start": 1142.16, + "end": 1142.76, + "probability": 0.8977 + }, + { + "start": 1143.08, + "end": 1146.26, + "probability": 0.9673 + }, + { + "start": 1146.26, + "end": 1149.3, + "probability": 0.9754 + }, + { + "start": 1149.8, + "end": 1150.9, + "probability": 0.9028 + }, + { + "start": 1151.1, + "end": 1152.62, + "probability": 0.9337 + }, + { + "start": 1153.08, + "end": 1157.3, + "probability": 0.9663 + }, + { + "start": 1158.42, + "end": 1159.98, + "probability": 0.9661 + }, + { + "start": 1161.08, + "end": 1162.08, + "probability": 0.9147 + }, + { + "start": 1162.9, + "end": 1164.72, + "probability": 0.9316 + }, + { + "start": 1165.72, + "end": 1167.8, + "probability": 0.9863 + }, + { + "start": 1168.42, + "end": 1171.6, + "probability": 0.9857 + }, + { + "start": 1172.0, + "end": 1176.46, + "probability": 0.9792 + }, + { + "start": 1177.56, + "end": 1181.1, + "probability": 0.9299 + }, + { + "start": 1181.62, + "end": 1183.84, + "probability": 0.9238 + }, + { + "start": 1184.42, + "end": 1186.94, + "probability": 0.94 + }, + { + "start": 1187.82, + "end": 1189.8, + "probability": 0.9775 + }, + { + "start": 1190.04, + "end": 1191.3, + "probability": 0.9661 + }, + { + "start": 1191.72, + "end": 1193.98, + "probability": 0.9111 + }, + { + "start": 1195.48, + "end": 1198.72, + "probability": 0.9978 + }, + { + "start": 1199.22, + "end": 1201.08, + "probability": 0.9607 + }, + { + "start": 1201.58, + "end": 1202.4, + "probability": 0.8515 + }, + { + "start": 1202.86, + "end": 1203.6, + "probability": 0.9752 + }, + { + "start": 1205.18, + "end": 1206.46, + "probability": 0.959 + }, + { + "start": 1207.4, + "end": 1208.86, + "probability": 0.9763 + }, + { + "start": 1210.38, + "end": 1214.84, + "probability": 0.7799 + }, + { + "start": 1215.66, + "end": 1216.82, + "probability": 0.9965 + }, + { + "start": 1217.66, + "end": 1220.5, + "probability": 0.8247 + }, + { + "start": 1221.46, + "end": 1223.03, + "probability": 0.9858 + }, + { + "start": 1224.0, + "end": 1225.02, + "probability": 0.9646 + }, + { + "start": 1225.66, + "end": 1226.5, + "probability": 0.9014 + }, + { + "start": 1227.42, + "end": 1233.4, + "probability": 0.9275 + }, + { + "start": 1233.92, + "end": 1234.38, + "probability": 0.5756 + }, + { + "start": 1234.84, + "end": 1240.56, + "probability": 0.8709 + }, + { + "start": 1241.54, + "end": 1242.72, + "probability": 0.7351 + }, + { + "start": 1243.24, + "end": 1246.04, + "probability": 0.9841 + }, + { + "start": 1247.02, + "end": 1250.62, + "probability": 0.9844 + }, + { + "start": 1251.14, + "end": 1257.3, + "probability": 0.9792 + }, + { + "start": 1258.06, + "end": 1259.34, + "probability": 0.9907 + }, + { + "start": 1260.1, + "end": 1261.24, + "probability": 0.9932 + }, + { + "start": 1261.82, + "end": 1264.02, + "probability": 0.9701 + }, + { + "start": 1264.9, + "end": 1265.64, + "probability": 0.9287 + }, + { + "start": 1266.52, + "end": 1270.22, + "probability": 0.9767 + }, + { + "start": 1271.0, + "end": 1275.18, + "probability": 0.9718 + }, + { + "start": 1275.92, + "end": 1277.16, + "probability": 0.8955 + }, + { + "start": 1277.94, + "end": 1281.58, + "probability": 0.8823 + }, + { + "start": 1282.22, + "end": 1285.18, + "probability": 0.9836 + }, + { + "start": 1285.54, + "end": 1289.76, + "probability": 0.9277 + }, + { + "start": 1291.0, + "end": 1293.82, + "probability": 0.9839 + }, + { + "start": 1294.58, + "end": 1300.04, + "probability": 0.9899 + }, + { + "start": 1301.16, + "end": 1301.9, + "probability": 0.9635 + }, + { + "start": 1302.86, + "end": 1304.74, + "probability": 0.9843 + }, + { + "start": 1305.46, + "end": 1307.72, + "probability": 0.9888 + }, + { + "start": 1308.16, + "end": 1312.72, + "probability": 0.9907 + }, + { + "start": 1313.56, + "end": 1314.76, + "probability": 0.7312 + }, + { + "start": 1315.56, + "end": 1316.18, + "probability": 0.756 + }, + { + "start": 1316.24, + "end": 1320.42, + "probability": 0.9855 + }, + { + "start": 1321.77, + "end": 1322.42, + "probability": 0.8682 + }, + { + "start": 1323.58, + "end": 1326.92, + "probability": 0.9785 + }, + { + "start": 1327.9, + "end": 1329.36, + "probability": 0.7004 + }, + { + "start": 1329.7, + "end": 1331.3, + "probability": 0.9162 + }, + { + "start": 1332.14, + "end": 1336.9, + "probability": 0.996 + }, + { + "start": 1337.74, + "end": 1341.42, + "probability": 0.9095 + }, + { + "start": 1342.4, + "end": 1344.4, + "probability": 0.9973 + }, + { + "start": 1344.92, + "end": 1346.0, + "probability": 0.9042 + }, + { + "start": 1347.72, + "end": 1350.62, + "probability": 0.801 + }, + { + "start": 1351.32, + "end": 1352.14, + "probability": 0.59 + }, + { + "start": 1352.94, + "end": 1354.44, + "probability": 0.9537 + }, + { + "start": 1355.24, + "end": 1356.84, + "probability": 0.9899 + }, + { + "start": 1357.42, + "end": 1361.0, + "probability": 0.9774 + }, + { + "start": 1361.64, + "end": 1367.52, + "probability": 0.9702 + }, + { + "start": 1367.98, + "end": 1369.27, + "probability": 0.9221 + }, + { + "start": 1370.86, + "end": 1373.52, + "probability": 0.9785 + }, + { + "start": 1374.06, + "end": 1375.74, + "probability": 0.984 + }, + { + "start": 1378.82, + "end": 1379.9, + "probability": 0.889 + }, + { + "start": 1381.42, + "end": 1384.42, + "probability": 0.8745 + }, + { + "start": 1385.2, + "end": 1386.46, + "probability": 0.763 + }, + { + "start": 1387.6, + "end": 1388.82, + "probability": 0.9773 + }, + { + "start": 1389.62, + "end": 1390.88, + "probability": 0.9546 + }, + { + "start": 1391.7, + "end": 1393.12, + "probability": 0.8507 + }, + { + "start": 1394.12, + "end": 1395.6, + "probability": 0.988 + }, + { + "start": 1396.26, + "end": 1398.08, + "probability": 0.91 + }, + { + "start": 1398.6, + "end": 1404.34, + "probability": 0.8027 + }, + { + "start": 1404.9, + "end": 1405.86, + "probability": 0.9714 + }, + { + "start": 1407.48, + "end": 1408.84, + "probability": 0.6294 + }, + { + "start": 1410.96, + "end": 1412.34, + "probability": 0.6094 + }, + { + "start": 1424.84, + "end": 1426.3, + "probability": 0.689 + }, + { + "start": 1427.56, + "end": 1430.12, + "probability": 0.9856 + }, + { + "start": 1430.12, + "end": 1432.44, + "probability": 0.8329 + }, + { + "start": 1432.76, + "end": 1434.58, + "probability": 0.7448 + }, + { + "start": 1435.08, + "end": 1436.94, + "probability": 0.685 + }, + { + "start": 1443.42, + "end": 1444.02, + "probability": 0.6097 + }, + { + "start": 1444.66, + "end": 1445.5, + "probability": 0.7117 + }, + { + "start": 1446.38, + "end": 1448.2, + "probability": 0.7918 + }, + { + "start": 1449.04, + "end": 1452.26, + "probability": 0.9797 + }, + { + "start": 1452.46, + "end": 1455.32, + "probability": 0.9306 + }, + { + "start": 1458.86, + "end": 1459.74, + "probability": 0.5405 + }, + { + "start": 1459.76, + "end": 1462.32, + "probability": 0.8857 + }, + { + "start": 1462.62, + "end": 1464.9, + "probability": 0.8066 + }, + { + "start": 1465.02, + "end": 1466.62, + "probability": 0.2286 + }, + { + "start": 1467.9, + "end": 1468.82, + "probability": 0.6692 + }, + { + "start": 1470.4, + "end": 1471.76, + "probability": 0.8951 + }, + { + "start": 1472.44, + "end": 1473.32, + "probability": 0.9326 + }, + { + "start": 1474.54, + "end": 1477.76, + "probability": 0.7759 + }, + { + "start": 1486.68, + "end": 1488.96, + "probability": 0.748 + }, + { + "start": 1488.98, + "end": 1489.38, + "probability": 0.3687 + }, + { + "start": 1489.84, + "end": 1490.54, + "probability": 0.7837 + }, + { + "start": 1496.92, + "end": 1500.06, + "probability": 0.1814 + }, + { + "start": 1501.68, + "end": 1506.78, + "probability": 0.3198 + }, + { + "start": 1507.38, + "end": 1510.7, + "probability": 0.754 + }, + { + "start": 1511.16, + "end": 1516.08, + "probability": 0.8042 + }, + { + "start": 1521.16, + "end": 1522.66, + "probability": 0.8327 + }, + { + "start": 1526.04, + "end": 1529.02, + "probability": 0.7634 + }, + { + "start": 1530.52, + "end": 1533.92, + "probability": 0.9883 + }, + { + "start": 1534.48, + "end": 1535.4, + "probability": 0.8827 + }, + { + "start": 1536.28, + "end": 1539.66, + "probability": 0.9139 + }, + { + "start": 1541.08, + "end": 1543.78, + "probability": 0.7583 + }, + { + "start": 1545.14, + "end": 1547.58, + "probability": 0.9656 + }, + { + "start": 1549.64, + "end": 1550.4, + "probability": 0.5032 + }, + { + "start": 1551.16, + "end": 1554.56, + "probability": 0.9554 + }, + { + "start": 1555.8, + "end": 1556.42, + "probability": 0.6812 + }, + { + "start": 1557.18, + "end": 1558.68, + "probability": 0.9928 + }, + { + "start": 1559.42, + "end": 1561.32, + "probability": 0.6818 + }, + { + "start": 1562.36, + "end": 1564.0, + "probability": 0.5528 + }, + { + "start": 1564.74, + "end": 1566.94, + "probability": 0.976 + }, + { + "start": 1568.16, + "end": 1570.58, + "probability": 0.9485 + }, + { + "start": 1571.66, + "end": 1576.78, + "probability": 0.8847 + }, + { + "start": 1578.0, + "end": 1578.78, + "probability": 0.4456 + }, + { + "start": 1580.82, + "end": 1583.02, + "probability": 0.5159 + }, + { + "start": 1584.14, + "end": 1587.26, + "probability": 0.9397 + }, + { + "start": 1587.86, + "end": 1590.04, + "probability": 0.8855 + }, + { + "start": 1590.7, + "end": 1593.6, + "probability": 0.9951 + }, + { + "start": 1594.92, + "end": 1595.58, + "probability": 0.644 + }, + { + "start": 1597.74, + "end": 1601.09, + "probability": 0.9978 + }, + { + "start": 1601.51, + "end": 1603.77, + "probability": 0.9993 + }, + { + "start": 1604.79, + "end": 1606.75, + "probability": 0.8702 + }, + { + "start": 1607.59, + "end": 1609.17, + "probability": 0.9768 + }, + { + "start": 1609.79, + "end": 1610.71, + "probability": 0.9405 + }, + { + "start": 1611.79, + "end": 1613.99, + "probability": 0.9911 + }, + { + "start": 1614.95, + "end": 1618.75, + "probability": 0.9583 + }, + { + "start": 1619.95, + "end": 1623.81, + "probability": 0.9795 + }, + { + "start": 1624.91, + "end": 1627.55, + "probability": 0.9905 + }, + { + "start": 1628.17, + "end": 1631.99, + "probability": 0.9848 + }, + { + "start": 1632.15, + "end": 1635.61, + "probability": 0.961 + }, + { + "start": 1636.13, + "end": 1640.33, + "probability": 0.9161 + }, + { + "start": 1641.63, + "end": 1642.59, + "probability": 0.5931 + }, + { + "start": 1643.25, + "end": 1645.51, + "probability": 0.9964 + }, + { + "start": 1646.87, + "end": 1657.07, + "probability": 0.9746 + }, + { + "start": 1658.94, + "end": 1660.58, + "probability": 0.0399 + }, + { + "start": 1664.76, + "end": 1667.67, + "probability": 0.087 + }, + { + "start": 1667.69, + "end": 1671.11, + "probability": 0.0107 + }, + { + "start": 1673.05, + "end": 1679.01, + "probability": 0.0842 + }, + { + "start": 1685.99, + "end": 1688.31, + "probability": 0.0083 + }, + { + "start": 1689.38, + "end": 1692.51, + "probability": 0.1566 + }, + { + "start": 1695.35, + "end": 1696.47, + "probability": 0.1395 + }, + { + "start": 1697.43, + "end": 1701.51, + "probability": 0.1741 + }, + { + "start": 1702.43, + "end": 1703.39, + "probability": 0.0155 + }, + { + "start": 1703.89, + "end": 1704.53, + "probability": 0.0758 + }, + { + "start": 1722.73, + "end": 1722.83, + "probability": 0.1689 + }, + { + "start": 1724.49, + "end": 1725.29, + "probability": 0.1524 + }, + { + "start": 1726.97, + "end": 1728.27, + "probability": 0.0551 + }, + { + "start": 1728.27, + "end": 1729.37, + "probability": 0.045 + }, + { + "start": 1730.95, + "end": 1732.15, + "probability": 0.0122 + }, + { + "start": 1738.0, + "end": 1738.0, + "probability": 0.0 + }, + { + "start": 1738.0, + "end": 1738.0, + "probability": 0.0 + }, + { + "start": 1738.0, + "end": 1738.0, + "probability": 0.0 + }, + { + "start": 1738.0, + "end": 1738.0, + "probability": 0.0 + }, + { + "start": 1738.0, + "end": 1738.0, + "probability": 0.0 + }, + { + "start": 1738.0, + "end": 1738.0, + "probability": 0.0 + }, + { + "start": 1738.0, + "end": 1738.0, + "probability": 0.0 + }, + { + "start": 1738.0, + "end": 1738.0, + "probability": 0.0 + }, + { + "start": 1738.0, + "end": 1738.0, + "probability": 0.0 + }, + { + "start": 1738.0, + "end": 1738.0, + "probability": 0.0 + }, + { + "start": 1738.0, + "end": 1738.0, + "probability": 0.0 + }, + { + "start": 1738.0, + "end": 1738.0, + "probability": 0.0 + }, + { + "start": 1738.0, + "end": 1738.0, + "probability": 0.0 + }, + { + "start": 1738.14, + "end": 1739.58, + "probability": 0.6976 + }, + { + "start": 1740.7, + "end": 1743.38, + "probability": 0.9675 + }, + { + "start": 1744.22, + "end": 1745.28, + "probability": 0.7444 + }, + { + "start": 1746.3, + "end": 1749.0, + "probability": 0.9585 + }, + { + "start": 1750.54, + "end": 1751.64, + "probability": 0.9853 + }, + { + "start": 1752.52, + "end": 1753.4, + "probability": 0.8829 + }, + { + "start": 1754.38, + "end": 1755.12, + "probability": 0.725 + }, + { + "start": 1755.72, + "end": 1757.02, + "probability": 0.7983 + }, + { + "start": 1757.96, + "end": 1760.46, + "probability": 0.922 + }, + { + "start": 1762.0, + "end": 1763.76, + "probability": 0.8366 + }, + { + "start": 1764.98, + "end": 1767.02, + "probability": 0.9969 + }, + { + "start": 1767.94, + "end": 1772.02, + "probability": 0.8469 + }, + { + "start": 1773.06, + "end": 1774.84, + "probability": 0.972 + }, + { + "start": 1775.82, + "end": 1776.86, + "probability": 0.8589 + }, + { + "start": 1778.52, + "end": 1781.38, + "probability": 0.9917 + }, + { + "start": 1782.26, + "end": 1784.94, + "probability": 0.7946 + }, + { + "start": 1785.94, + "end": 1786.62, + "probability": 0.8492 + }, + { + "start": 1788.24, + "end": 1789.94, + "probability": 0.9128 + }, + { + "start": 1791.3, + "end": 1795.14, + "probability": 0.9983 + }, + { + "start": 1796.1, + "end": 1797.16, + "probability": 0.8419 + }, + { + "start": 1797.86, + "end": 1800.96, + "probability": 0.9529 + }, + { + "start": 1802.08, + "end": 1802.7, + "probability": 0.9379 + }, + { + "start": 1803.44, + "end": 1805.16, + "probability": 0.9631 + }, + { + "start": 1805.82, + "end": 1810.36, + "probability": 0.8656 + }, + { + "start": 1811.32, + "end": 1813.6, + "probability": 0.7801 + }, + { + "start": 1816.3, + "end": 1817.84, + "probability": 0.936 + }, + { + "start": 1818.84, + "end": 1819.4, + "probability": 0.7008 + }, + { + "start": 1820.4, + "end": 1821.42, + "probability": 0.932 + }, + { + "start": 1822.16, + "end": 1823.16, + "probability": 0.9003 + }, + { + "start": 1824.66, + "end": 1826.86, + "probability": 0.9844 + }, + { + "start": 1828.16, + "end": 1829.14, + "probability": 0.8632 + }, + { + "start": 1830.52, + "end": 1832.18, + "probability": 0.7862 + }, + { + "start": 1833.76, + "end": 1835.64, + "probability": 0.9941 + }, + { + "start": 1838.02, + "end": 1840.5, + "probability": 0.6577 + }, + { + "start": 1841.62, + "end": 1845.97, + "probability": 0.9806 + }, + { + "start": 1847.74, + "end": 1849.54, + "probability": 0.9872 + }, + { + "start": 1850.26, + "end": 1851.1, + "probability": 0.9589 + }, + { + "start": 1851.94, + "end": 1853.08, + "probability": 0.9763 + }, + { + "start": 1853.96, + "end": 1856.78, + "probability": 0.8506 + }, + { + "start": 1857.44, + "end": 1858.44, + "probability": 0.7716 + }, + { + "start": 1859.38, + "end": 1860.04, + "probability": 0.9973 + }, + { + "start": 1861.16, + "end": 1862.94, + "probability": 0.9961 + }, + { + "start": 1865.73, + "end": 1868.7, + "probability": 0.999 + }, + { + "start": 1869.76, + "end": 1870.32, + "probability": 0.9909 + }, + { + "start": 1871.28, + "end": 1873.38, + "probability": 0.8959 + }, + { + "start": 1874.56, + "end": 1875.22, + "probability": 0.9056 + }, + { + "start": 1876.14, + "end": 1877.04, + "probability": 0.846 + }, + { + "start": 1878.26, + "end": 1878.46, + "probability": 0.875 + }, + { + "start": 1879.54, + "end": 1880.2, + "probability": 0.9123 + }, + { + "start": 1880.28, + "end": 1883.01, + "probability": 0.4792 + }, + { + "start": 1883.46, + "end": 1883.94, + "probability": 0.5789 + }, + { + "start": 1885.44, + "end": 1886.68, + "probability": 0.9987 + }, + { + "start": 1887.44, + "end": 1888.48, + "probability": 0.9598 + }, + { + "start": 1889.54, + "end": 1890.14, + "probability": 0.9626 + }, + { + "start": 1891.36, + "end": 1892.0, + "probability": 0.8248 + }, + { + "start": 1893.44, + "end": 1899.06, + "probability": 0.9947 + }, + { + "start": 1900.58, + "end": 1902.14, + "probability": 0.894 + }, + { + "start": 1904.04, + "end": 1906.42, + "probability": 0.7576 + }, + { + "start": 1908.76, + "end": 1909.94, + "probability": 0.6908 + }, + { + "start": 1911.32, + "end": 1912.84, + "probability": 0.9502 + }, + { + "start": 1914.42, + "end": 1915.44, + "probability": 0.8585 + }, + { + "start": 1917.14, + "end": 1919.14, + "probability": 0.9915 + }, + { + "start": 1920.56, + "end": 1922.5, + "probability": 0.9104 + }, + { + "start": 1923.84, + "end": 1925.5, + "probability": 0.9438 + }, + { + "start": 1926.56, + "end": 1928.32, + "probability": 0.9046 + }, + { + "start": 1929.22, + "end": 1930.04, + "probability": 0.7177 + }, + { + "start": 1930.96, + "end": 1935.22, + "probability": 0.9932 + }, + { + "start": 1937.56, + "end": 1939.36, + "probability": 0.9819 + }, + { + "start": 1940.56, + "end": 1941.44, + "probability": 0.7575 + }, + { + "start": 1942.58, + "end": 1945.62, + "probability": 0.991 + }, + { + "start": 1947.08, + "end": 1949.92, + "probability": 0.9974 + }, + { + "start": 1953.16, + "end": 1956.66, + "probability": 0.9353 + }, + { + "start": 1958.22, + "end": 1963.4, + "probability": 0.9984 + }, + { + "start": 1964.88, + "end": 1966.44, + "probability": 0.8213 + }, + { + "start": 1968.44, + "end": 1969.9, + "probability": 0.7682 + }, + { + "start": 1970.9, + "end": 1976.34, + "probability": 0.9788 + }, + { + "start": 1978.1, + "end": 1979.38, + "probability": 0.8726 + }, + { + "start": 1980.54, + "end": 1982.08, + "probability": 0.9604 + }, + { + "start": 1983.22, + "end": 1987.58, + "probability": 0.9729 + }, + { + "start": 1988.7, + "end": 1989.92, + "probability": 0.856 + }, + { + "start": 1991.4, + "end": 1992.72, + "probability": 0.9473 + }, + { + "start": 1994.42, + "end": 1995.42, + "probability": 0.981 + }, + { + "start": 1996.42, + "end": 1996.9, + "probability": 0.9744 + }, + { + "start": 1997.8, + "end": 1998.42, + "probability": 0.8771 + }, + { + "start": 1999.34, + "end": 1999.76, + "probability": 0.6571 + }, + { + "start": 2002.06, + "end": 2002.94, + "probability": 0.87 + }, + { + "start": 2004.66, + "end": 2006.12, + "probability": 0.9868 + }, + { + "start": 2006.96, + "end": 2008.24, + "probability": 0.9801 + }, + { + "start": 2009.96, + "end": 2011.06, + "probability": 0.751 + }, + { + "start": 2012.68, + "end": 2015.08, + "probability": 0.9967 + }, + { + "start": 2016.12, + "end": 2019.34, + "probability": 0.9929 + }, + { + "start": 2020.38, + "end": 2022.12, + "probability": 0.8513 + }, + { + "start": 2023.26, + "end": 2025.44, + "probability": 0.8408 + }, + { + "start": 2026.32, + "end": 2027.4, + "probability": 0.7646 + }, + { + "start": 2028.24, + "end": 2030.06, + "probability": 0.9774 + }, + { + "start": 2031.7, + "end": 2034.36, + "probability": 0.9395 + }, + { + "start": 2035.26, + "end": 2037.14, + "probability": 0.9767 + }, + { + "start": 2038.72, + "end": 2039.4, + "probability": 0.8026 + }, + { + "start": 2041.0, + "end": 2041.44, + "probability": 0.6216 + }, + { + "start": 2043.36, + "end": 2044.94, + "probability": 0.9967 + }, + { + "start": 2046.18, + "end": 2046.7, + "probability": 0.991 + }, + { + "start": 2049.6, + "end": 2050.62, + "probability": 0.7705 + }, + { + "start": 2051.58, + "end": 2052.64, + "probability": 0.9597 + }, + { + "start": 2054.06, + "end": 2055.86, + "probability": 0.959 + }, + { + "start": 2057.58, + "end": 2060.36, + "probability": 0.9861 + }, + { + "start": 2061.34, + "end": 2062.46, + "probability": 0.6665 + }, + { + "start": 2063.78, + "end": 2064.3, + "probability": 0.9248 + }, + { + "start": 2066.02, + "end": 2067.46, + "probability": 0.9338 + }, + { + "start": 2068.94, + "end": 2071.98, + "probability": 0.9863 + }, + { + "start": 2072.34, + "end": 2076.64, + "probability": 0.994 + }, + { + "start": 2077.84, + "end": 2080.66, + "probability": 0.9762 + }, + { + "start": 2082.36, + "end": 2083.48, + "probability": 0.9989 + }, + { + "start": 2084.6, + "end": 2086.48, + "probability": 0.9875 + }, + { + "start": 2088.2, + "end": 2090.02, + "probability": 0.9979 + }, + { + "start": 2091.4, + "end": 2095.36, + "probability": 0.9882 + }, + { + "start": 2096.62, + "end": 2101.02, + "probability": 0.9746 + }, + { + "start": 2102.12, + "end": 2103.76, + "probability": 0.9901 + }, + { + "start": 2105.72, + "end": 2108.3, + "probability": 0.9956 + }, + { + "start": 2109.2, + "end": 2110.36, + "probability": 0.9849 + }, + { + "start": 2111.38, + "end": 2114.44, + "probability": 0.9896 + }, + { + "start": 2115.4, + "end": 2120.3, + "probability": 0.8082 + }, + { + "start": 2121.18, + "end": 2121.62, + "probability": 0.0702 + }, + { + "start": 2122.42, + "end": 2122.82, + "probability": 0.8036 + }, + { + "start": 2124.14, + "end": 2125.36, + "probability": 0.9867 + }, + { + "start": 2126.6, + "end": 2128.36, + "probability": 0.9507 + }, + { + "start": 2129.98, + "end": 2131.5, + "probability": 0.6654 + }, + { + "start": 2132.48, + "end": 2136.04, + "probability": 0.9849 + }, + { + "start": 2136.98, + "end": 2139.4, + "probability": 0.9827 + }, + { + "start": 2142.04, + "end": 2145.38, + "probability": 0.9399 + }, + { + "start": 2146.92, + "end": 2147.82, + "probability": 0.7971 + }, + { + "start": 2149.8, + "end": 2152.54, + "probability": 0.9956 + }, + { + "start": 2154.1, + "end": 2157.06, + "probability": 0.9504 + }, + { + "start": 2158.7, + "end": 2159.76, + "probability": 0.9058 + }, + { + "start": 2161.08, + "end": 2164.2, + "probability": 0.9966 + }, + { + "start": 2165.82, + "end": 2168.4, + "probability": 0.9924 + }, + { + "start": 2169.72, + "end": 2172.05, + "probability": 0.9951 + }, + { + "start": 2173.24, + "end": 2175.36, + "probability": 0.9985 + }, + { + "start": 2176.76, + "end": 2179.38, + "probability": 0.9971 + }, + { + "start": 2180.8, + "end": 2182.82, + "probability": 0.9917 + }, + { + "start": 2184.0, + "end": 2186.12, + "probability": 0.5368 + }, + { + "start": 2187.94, + "end": 2193.0, + "probability": 0.9984 + }, + { + "start": 2194.26, + "end": 2196.7, + "probability": 0.9483 + }, + { + "start": 2198.48, + "end": 2200.22, + "probability": 0.9595 + }, + { + "start": 2201.8, + "end": 2204.18, + "probability": 0.9969 + }, + { + "start": 2205.94, + "end": 2206.32, + "probability": 0.3529 + }, + { + "start": 2206.52, + "end": 2210.32, + "probability": 0.981 + }, + { + "start": 2211.22, + "end": 2214.75, + "probability": 0.9677 + }, + { + "start": 2215.74, + "end": 2216.54, + "probability": 0.9962 + }, + { + "start": 2218.38, + "end": 2224.18, + "probability": 0.9936 + }, + { + "start": 2225.16, + "end": 2225.6, + "probability": 0.837 + }, + { + "start": 2226.78, + "end": 2229.03, + "probability": 0.97 + }, + { + "start": 2229.88, + "end": 2232.5, + "probability": 0.9885 + }, + { + "start": 2233.44, + "end": 2234.54, + "probability": 0.9285 + }, + { + "start": 2235.72, + "end": 2239.42, + "probability": 0.9989 + }, + { + "start": 2240.46, + "end": 2241.53, + "probability": 0.9933 + }, + { + "start": 2242.54, + "end": 2244.52, + "probability": 0.9282 + }, + { + "start": 2246.98, + "end": 2248.52, + "probability": 0.9082 + }, + { + "start": 2249.96, + "end": 2251.1, + "probability": 0.9532 + }, + { + "start": 2252.96, + "end": 2256.42, + "probability": 0.9793 + }, + { + "start": 2257.86, + "end": 2258.94, + "probability": 0.9561 + }, + { + "start": 2260.08, + "end": 2261.1, + "probability": 0.9121 + }, + { + "start": 2263.12, + "end": 2267.64, + "probability": 0.9909 + }, + { + "start": 2269.4, + "end": 2271.74, + "probability": 0.9953 + }, + { + "start": 2273.84, + "end": 2274.76, + "probability": 0.5559 + }, + { + "start": 2276.58, + "end": 2277.36, + "probability": 0.9118 + }, + { + "start": 2278.38, + "end": 2279.22, + "probability": 0.9817 + }, + { + "start": 2281.22, + "end": 2282.28, + "probability": 0.7819 + }, + { + "start": 2283.7, + "end": 2286.1, + "probability": 0.9849 + }, + { + "start": 2286.14, + "end": 2288.56, + "probability": 0.9937 + }, + { + "start": 2290.9, + "end": 2295.28, + "probability": 0.9871 + }, + { + "start": 2295.92, + "end": 2299.16, + "probability": 0.9337 + }, + { + "start": 2300.32, + "end": 2301.74, + "probability": 0.9686 + }, + { + "start": 2302.82, + "end": 2305.56, + "probability": 0.9934 + }, + { + "start": 2305.56, + "end": 2309.34, + "probability": 0.9875 + }, + { + "start": 2310.66, + "end": 2314.0, + "probability": 0.9535 + }, + { + "start": 2315.68, + "end": 2316.38, + "probability": 0.8191 + }, + { + "start": 2317.6, + "end": 2318.18, + "probability": 0.8753 + }, + { + "start": 2320.1, + "end": 2321.88, + "probability": 0.9308 + }, + { + "start": 2322.64, + "end": 2328.58, + "probability": 0.9975 + }, + { + "start": 2329.78, + "end": 2334.82, + "probability": 0.994 + }, + { + "start": 2336.34, + "end": 2339.88, + "probability": 0.9818 + }, + { + "start": 2340.58, + "end": 2341.84, + "probability": 0.9971 + }, + { + "start": 2342.96, + "end": 2346.12, + "probability": 0.9557 + }, + { + "start": 2347.5, + "end": 2348.62, + "probability": 0.701 + }, + { + "start": 2349.72, + "end": 2351.22, + "probability": 0.7991 + }, + { + "start": 2352.46, + "end": 2354.02, + "probability": 0.6315 + }, + { + "start": 2355.62, + "end": 2356.94, + "probability": 0.8291 + }, + { + "start": 2359.02, + "end": 2362.38, + "probability": 0.9819 + }, + { + "start": 2363.38, + "end": 2364.98, + "probability": 0.8871 + }, + { + "start": 2366.64, + "end": 2367.56, + "probability": 0.7124 + }, + { + "start": 2368.9, + "end": 2369.86, + "probability": 0.879 + }, + { + "start": 2371.1, + "end": 2372.02, + "probability": 0.8349 + }, + { + "start": 2373.16, + "end": 2377.68, + "probability": 0.9907 + }, + { + "start": 2379.38, + "end": 2382.14, + "probability": 0.9912 + }, + { + "start": 2383.44, + "end": 2384.16, + "probability": 0.8781 + }, + { + "start": 2385.28, + "end": 2389.74, + "probability": 0.9513 + }, + { + "start": 2391.16, + "end": 2391.44, + "probability": 0.7443 + }, + { + "start": 2393.54, + "end": 2394.56, + "probability": 0.9976 + }, + { + "start": 2395.5, + "end": 2397.12, + "probability": 0.8861 + }, + { + "start": 2398.5, + "end": 2401.48, + "probability": 0.9974 + }, + { + "start": 2403.27, + "end": 2403.72, + "probability": 0.5741 + }, + { + "start": 2406.84, + "end": 2409.38, + "probability": 0.989 + }, + { + "start": 2410.92, + "end": 2414.77, + "probability": 0.9799 + }, + { + "start": 2414.84, + "end": 2420.16, + "probability": 0.9796 + }, + { + "start": 2421.82, + "end": 2425.14, + "probability": 0.9858 + }, + { + "start": 2426.3, + "end": 2428.28, + "probability": 0.9659 + }, + { + "start": 2429.1, + "end": 2430.74, + "probability": 0.9954 + }, + { + "start": 2431.64, + "end": 2433.32, + "probability": 0.9958 + }, + { + "start": 2436.96, + "end": 2437.84, + "probability": 0.9386 + }, + { + "start": 2438.8, + "end": 2440.72, + "probability": 0.9973 + }, + { + "start": 2440.77, + "end": 2444.54, + "probability": 0.9226 + }, + { + "start": 2445.98, + "end": 2449.68, + "probability": 0.9028 + }, + { + "start": 2450.0, + "end": 2450.92, + "probability": 0.8948 + }, + { + "start": 2451.32, + "end": 2454.28, + "probability": 0.8951 + }, + { + "start": 2455.6, + "end": 2456.3, + "probability": 0.919 + }, + { + "start": 2456.96, + "end": 2457.92, + "probability": 0.911 + }, + { + "start": 2459.04, + "end": 2460.16, + "probability": 0.9433 + }, + { + "start": 2462.06, + "end": 2465.44, + "probability": 0.9876 + }, + { + "start": 2466.82, + "end": 2470.98, + "probability": 0.813 + }, + { + "start": 2472.04, + "end": 2476.44, + "probability": 0.9955 + }, + { + "start": 2477.16, + "end": 2483.12, + "probability": 0.9896 + }, + { + "start": 2483.88, + "end": 2485.06, + "probability": 0.9753 + }, + { + "start": 2486.62, + "end": 2490.34, + "probability": 0.9974 + }, + { + "start": 2491.14, + "end": 2492.84, + "probability": 0.9379 + }, + { + "start": 2494.42, + "end": 2495.36, + "probability": 0.9824 + }, + { + "start": 2496.7, + "end": 2501.86, + "probability": 0.9982 + }, + { + "start": 2502.72, + "end": 2506.58, + "probability": 0.8884 + }, + { + "start": 2507.8, + "end": 2508.0, + "probability": 0.9211 + }, + { + "start": 2509.54, + "end": 2510.28, + "probability": 0.9806 + }, + { + "start": 2512.98, + "end": 2513.34, + "probability": 0.9116 + }, + { + "start": 2514.36, + "end": 2515.64, + "probability": 0.7916 + }, + { + "start": 2516.76, + "end": 2521.52, + "probability": 0.9365 + }, + { + "start": 2522.14, + "end": 2524.64, + "probability": 0.9773 + }, + { + "start": 2526.2, + "end": 2527.44, + "probability": 0.9547 + }, + { + "start": 2527.96, + "end": 2533.42, + "probability": 0.9818 + }, + { + "start": 2533.42, + "end": 2538.9, + "probability": 0.9457 + }, + { + "start": 2543.08, + "end": 2545.74, + "probability": 0.9939 + }, + { + "start": 2546.66, + "end": 2551.98, + "probability": 0.9976 + }, + { + "start": 2553.32, + "end": 2556.28, + "probability": 0.9922 + }, + { + "start": 2557.54, + "end": 2558.9, + "probability": 0.9385 + }, + { + "start": 2561.98, + "end": 2564.16, + "probability": 0.8015 + }, + { + "start": 2565.0, + "end": 2565.54, + "probability": 0.4634 + }, + { + "start": 2566.54, + "end": 2568.1, + "probability": 0.5216 + }, + { + "start": 2569.12, + "end": 2570.5, + "probability": 0.904 + }, + { + "start": 2572.2, + "end": 2573.06, + "probability": 0.6021 + }, + { + "start": 2573.96, + "end": 2575.22, + "probability": 0.9976 + }, + { + "start": 2576.16, + "end": 2578.96, + "probability": 0.8815 + }, + { + "start": 2579.84, + "end": 2584.9, + "probability": 0.913 + }, + { + "start": 2585.04, + "end": 2585.98, + "probability": 0.951 + }, + { + "start": 2586.92, + "end": 2588.78, + "probability": 0.8771 + }, + { + "start": 2589.88, + "end": 2590.5, + "probability": 0.998 + }, + { + "start": 2591.3, + "end": 2591.98, + "probability": 0.97 + }, + { + "start": 2592.6, + "end": 2594.44, + "probability": 0.1927 + }, + { + "start": 2595.44, + "end": 2596.36, + "probability": 0.8979 + }, + { + "start": 2598.1, + "end": 2599.16, + "probability": 0.177 + }, + { + "start": 2600.76, + "end": 2602.08, + "probability": 0.5084 + }, + { + "start": 2603.94, + "end": 2604.7, + "probability": 0.7946 + }, + { + "start": 2606.76, + "end": 2610.04, + "probability": 0.9829 + }, + { + "start": 2612.68, + "end": 2613.66, + "probability": 0.9183 + }, + { + "start": 2615.18, + "end": 2617.24, + "probability": 0.9417 + }, + { + "start": 2617.96, + "end": 2618.92, + "probability": 0.8714 + }, + { + "start": 2620.48, + "end": 2621.3, + "probability": 0.8638 + }, + { + "start": 2622.58, + "end": 2624.56, + "probability": 0.9966 + }, + { + "start": 2626.26, + "end": 2627.24, + "probability": 0.9023 + }, + { + "start": 2628.88, + "end": 2630.32, + "probability": 0.9831 + }, + { + "start": 2631.5, + "end": 2632.5, + "probability": 0.872 + }, + { + "start": 2634.5, + "end": 2635.6, + "probability": 0.9991 + }, + { + "start": 2639.06, + "end": 2640.42, + "probability": 0.8975 + }, + { + "start": 2642.34, + "end": 2643.8, + "probability": 0.9624 + }, + { + "start": 2644.84, + "end": 2647.34, + "probability": 0.9976 + }, + { + "start": 2649.6, + "end": 2650.24, + "probability": 0.8647 + }, + { + "start": 2651.7, + "end": 2652.9, + "probability": 0.9479 + }, + { + "start": 2654.28, + "end": 2656.85, + "probability": 0.9897 + }, + { + "start": 2658.44, + "end": 2659.26, + "probability": 0.8864 + }, + { + "start": 2661.02, + "end": 2661.98, + "probability": 0.8145 + }, + { + "start": 2663.14, + "end": 2663.56, + "probability": 0.7412 + }, + { + "start": 2665.84, + "end": 2669.52, + "probability": 0.9285 + }, + { + "start": 2671.36, + "end": 2672.42, + "probability": 0.9977 + }, + { + "start": 2673.42, + "end": 2674.38, + "probability": 0.9985 + }, + { + "start": 2675.7, + "end": 2677.28, + "probability": 0.9989 + }, + { + "start": 2678.34, + "end": 2679.46, + "probability": 0.9556 + }, + { + "start": 2680.62, + "end": 2681.94, + "probability": 0.999 + }, + { + "start": 2683.3, + "end": 2684.24, + "probability": 0.9637 + }, + { + "start": 2686.52, + "end": 2686.92, + "probability": 0.5012 + }, + { + "start": 2688.52, + "end": 2692.84, + "probability": 0.9957 + }, + { + "start": 2693.9, + "end": 2699.54, + "probability": 0.9971 + }, + { + "start": 2701.34, + "end": 2705.08, + "probability": 0.9983 + }, + { + "start": 2706.12, + "end": 2707.54, + "probability": 0.7668 + }, + { + "start": 2709.02, + "end": 2711.1, + "probability": 0.9972 + }, + { + "start": 2712.5, + "end": 2713.9, + "probability": 0.9883 + }, + { + "start": 2715.76, + "end": 2716.68, + "probability": 0.9132 + }, + { + "start": 2718.0, + "end": 2721.04, + "probability": 0.9943 + }, + { + "start": 2722.1, + "end": 2724.12, + "probability": 0.9715 + }, + { + "start": 2725.66, + "end": 2731.38, + "probability": 0.9815 + }, + { + "start": 2732.98, + "end": 2736.2, + "probability": 0.9891 + }, + { + "start": 2738.12, + "end": 2740.1, + "probability": 0.9084 + }, + { + "start": 2741.3, + "end": 2742.2, + "probability": 0.9761 + }, + { + "start": 2744.6, + "end": 2745.96, + "probability": 0.6235 + }, + { + "start": 2747.78, + "end": 2748.84, + "probability": 0.9517 + }, + { + "start": 2750.36, + "end": 2751.98, + "probability": 0.9136 + }, + { + "start": 2753.82, + "end": 2757.12, + "probability": 0.9974 + }, + { + "start": 2757.12, + "end": 2761.94, + "probability": 0.9937 + }, + { + "start": 2763.04, + "end": 2764.1, + "probability": 0.6581 + }, + { + "start": 2765.74, + "end": 2766.32, + "probability": 0.9934 + }, + { + "start": 2767.78, + "end": 2768.66, + "probability": 0.5388 + }, + { + "start": 2770.14, + "end": 2772.98, + "probability": 0.9854 + }, + { + "start": 2773.76, + "end": 2774.48, + "probability": 0.9508 + }, + { + "start": 2775.52, + "end": 2776.2, + "probability": 0.9496 + }, + { + "start": 2777.28, + "end": 2779.14, + "probability": 0.9834 + }, + { + "start": 2781.16, + "end": 2782.84, + "probability": 0.8242 + }, + { + "start": 2784.42, + "end": 2785.21, + "probability": 0.9746 + }, + { + "start": 2787.02, + "end": 2789.36, + "probability": 0.9976 + }, + { + "start": 2790.92, + "end": 2792.14, + "probability": 0.9844 + }, + { + "start": 2793.46, + "end": 2794.38, + "probability": 0.9686 + }, + { + "start": 2795.92, + "end": 2798.8, + "probability": 0.9958 + }, + { + "start": 2800.86, + "end": 2803.96, + "probability": 0.9146 + }, + { + "start": 2804.68, + "end": 2806.34, + "probability": 0.9961 + }, + { + "start": 2807.18, + "end": 2808.3, + "probability": 0.9371 + }, + { + "start": 2809.4, + "end": 2812.08, + "probability": 0.9947 + }, + { + "start": 2812.92, + "end": 2814.14, + "probability": 0.9976 + }, + { + "start": 2815.1, + "end": 2815.72, + "probability": 0.889 + }, + { + "start": 2817.44, + "end": 2822.22, + "probability": 0.9985 + }, + { + "start": 2824.18, + "end": 2828.46, + "probability": 0.9966 + }, + { + "start": 2830.02, + "end": 2834.22, + "probability": 0.9941 + }, + { + "start": 2835.64, + "end": 2839.3, + "probability": 0.9326 + }, + { + "start": 2840.04, + "end": 2844.16, + "probability": 0.8502 + }, + { + "start": 2845.54, + "end": 2849.16, + "probability": 0.9925 + }, + { + "start": 2850.2, + "end": 2852.52, + "probability": 0.8561 + }, + { + "start": 2854.36, + "end": 2855.26, + "probability": 0.8718 + }, + { + "start": 2856.8, + "end": 2857.78, + "probability": 0.8955 + }, + { + "start": 2859.12, + "end": 2860.06, + "probability": 0.8437 + }, + { + "start": 2861.62, + "end": 2862.28, + "probability": 0.6663 + }, + { + "start": 2864.04, + "end": 2864.26, + "probability": 0.9852 + }, + { + "start": 2866.36, + "end": 2870.5, + "probability": 0.9978 + }, + { + "start": 2871.66, + "end": 2872.29, + "probability": 0.937 + }, + { + "start": 2873.52, + "end": 2877.42, + "probability": 0.9917 + }, + { + "start": 2878.58, + "end": 2879.58, + "probability": 0.8271 + }, + { + "start": 2881.4, + "end": 2882.46, + "probability": 0.9497 + }, + { + "start": 2884.54, + "end": 2886.9, + "probability": 0.9801 + }, + { + "start": 2888.16, + "end": 2889.26, + "probability": 0.8999 + }, + { + "start": 2890.34, + "end": 2891.18, + "probability": 0.9956 + }, + { + "start": 2892.6, + "end": 2894.32, + "probability": 0.6626 + }, + { + "start": 2895.34, + "end": 2896.96, + "probability": 0.9686 + }, + { + "start": 2897.82, + "end": 2898.78, + "probability": 0.908 + }, + { + "start": 2900.74, + "end": 2904.34, + "probability": 0.9937 + }, + { + "start": 2905.76, + "end": 2908.28, + "probability": 0.9987 + }, + { + "start": 2908.88, + "end": 2910.3, + "probability": 0.7918 + }, + { + "start": 2911.56, + "end": 2913.12, + "probability": 0.9896 + }, + { + "start": 2915.62, + "end": 2916.12, + "probability": 0.743 + }, + { + "start": 2916.32, + "end": 2916.66, + "probability": 0.9867 + }, + { + "start": 2916.72, + "end": 2920.54, + "probability": 0.9949 + }, + { + "start": 2921.16, + "end": 2924.92, + "probability": 0.96 + }, + { + "start": 2926.54, + "end": 2927.12, + "probability": 0.543 + }, + { + "start": 2928.62, + "end": 2930.48, + "probability": 0.9754 + }, + { + "start": 2932.46, + "end": 2935.04, + "probability": 0.9189 + }, + { + "start": 2935.04, + "end": 2939.34, + "probability": 0.935 + }, + { + "start": 2940.54, + "end": 2942.26, + "probability": 0.5009 + }, + { + "start": 2942.5, + "end": 2944.72, + "probability": 0.9712 + }, + { + "start": 2947.02, + "end": 2950.36, + "probability": 0.9661 + }, + { + "start": 2951.28, + "end": 2953.76, + "probability": 0.9992 + }, + { + "start": 2954.56, + "end": 2957.12, + "probability": 0.9933 + }, + { + "start": 2959.16, + "end": 2960.32, + "probability": 0.9594 + }, + { + "start": 2960.6, + "end": 2964.64, + "probability": 0.9956 + }, + { + "start": 2966.3, + "end": 2966.98, + "probability": 0.808 + }, + { + "start": 2967.94, + "end": 2970.96, + "probability": 0.9911 + }, + { + "start": 2972.44, + "end": 2976.76, + "probability": 0.938 + }, + { + "start": 2978.64, + "end": 2979.36, + "probability": 0.6535 + }, + { + "start": 2981.07, + "end": 2981.14, + "probability": 0.0005 + }, + { + "start": 2981.94, + "end": 2983.6, + "probability": 0.9985 + }, + { + "start": 2984.82, + "end": 2986.36, + "probability": 0.9891 + }, + { + "start": 2987.64, + "end": 2988.34, + "probability": 0.7133 + }, + { + "start": 2990.14, + "end": 2992.96, + "probability": 0.9895 + }, + { + "start": 2994.7, + "end": 2997.24, + "probability": 0.9959 + }, + { + "start": 2998.12, + "end": 2999.56, + "probability": 0.9771 + }, + { + "start": 3001.32, + "end": 3004.12, + "probability": 0.9799 + }, + { + "start": 3004.88, + "end": 3006.5, + "probability": 0.9858 + }, + { + "start": 3007.62, + "end": 3008.3, + "probability": 0.7117 + }, + { + "start": 3009.72, + "end": 3014.16, + "probability": 0.9854 + }, + { + "start": 3015.02, + "end": 3015.64, + "probability": 0.8695 + }, + { + "start": 3017.08, + "end": 3018.08, + "probability": 0.9844 + }, + { + "start": 3019.6, + "end": 3021.28, + "probability": 0.8674 + }, + { + "start": 3022.56, + "end": 3023.12, + "probability": 0.8495 + }, + { + "start": 3024.56, + "end": 3025.3, + "probability": 0.9628 + }, + { + "start": 3026.66, + "end": 3028.42, + "probability": 0.949 + }, + { + "start": 3029.72, + "end": 3031.04, + "probability": 0.922 + }, + { + "start": 3032.24, + "end": 3032.88, + "probability": 0.9408 + }, + { + "start": 3034.24, + "end": 3035.98, + "probability": 0.6444 + }, + { + "start": 3036.96, + "end": 3037.7, + "probability": 0.76 + }, + { + "start": 3038.96, + "end": 3041.78, + "probability": 0.9674 + }, + { + "start": 3043.36, + "end": 3045.62, + "probability": 0.9646 + }, + { + "start": 3046.28, + "end": 3047.18, + "probability": 0.9775 + }, + { + "start": 3048.4, + "end": 3051.02, + "probability": 0.9937 + }, + { + "start": 3053.24, + "end": 3053.84, + "probability": 0.274 + }, + { + "start": 3054.72, + "end": 3057.18, + "probability": 0.9782 + }, + { + "start": 3058.84, + "end": 3060.36, + "probability": 0.9436 + }, + { + "start": 3061.92, + "end": 3062.5, + "probability": 0.829 + }, + { + "start": 3063.78, + "end": 3064.12, + "probability": 0.8973 + }, + { + "start": 3066.02, + "end": 3066.64, + "probability": 0.9569 + }, + { + "start": 3067.66, + "end": 3068.6, + "probability": 0.7618 + }, + { + "start": 3069.78, + "end": 3072.14, + "probability": 0.9737 + }, + { + "start": 3073.34, + "end": 3073.92, + "probability": 0.6329 + }, + { + "start": 3076.36, + "end": 3078.98, + "probability": 0.9961 + }, + { + "start": 3080.02, + "end": 3082.08, + "probability": 0.9573 + }, + { + "start": 3120.08, + "end": 3121.42, + "probability": 0.9264 + }, + { + "start": 3124.4, + "end": 3125.6, + "probability": 0.8595 + }, + { + "start": 3126.72, + "end": 3127.5, + "probability": 0.6905 + }, + { + "start": 3130.2, + "end": 3131.5, + "probability": 0.9965 + }, + { + "start": 3135.86, + "end": 3136.78, + "probability": 0.7212 + }, + { + "start": 3139.62, + "end": 3141.18, + "probability": 0.9122 + }, + { + "start": 3144.64, + "end": 3145.56, + "probability": 0.6978 + }, + { + "start": 3150.08, + "end": 3150.42, + "probability": 0.9712 + }, + { + "start": 3153.62, + "end": 3154.14, + "probability": 0.7994 + }, + { + "start": 3156.72, + "end": 3157.4, + "probability": 0.5676 + }, + { + "start": 3160.52, + "end": 3161.8, + "probability": 0.9974 + }, + { + "start": 3163.18, + "end": 3163.84, + "probability": 0.808 + }, + { + "start": 3165.08, + "end": 3165.66, + "probability": 0.8946 + }, + { + "start": 3167.02, + "end": 3168.88, + "probability": 0.9803 + }, + { + "start": 3170.22, + "end": 3177.72, + "probability": 0.9278 + }, + { + "start": 3180.34, + "end": 3181.86, + "probability": 0.9982 + }, + { + "start": 3184.98, + "end": 3185.8, + "probability": 0.8891 + }, + { + "start": 3187.72, + "end": 3189.54, + "probability": 0.9436 + }, + { + "start": 3193.1, + "end": 3194.22, + "probability": 0.9592 + }, + { + "start": 3198.84, + "end": 3201.02, + "probability": 0.9811 + }, + { + "start": 3203.24, + "end": 3204.14, + "probability": 0.9795 + }, + { + "start": 3206.12, + "end": 3207.5, + "probability": 0.9479 + }, + { + "start": 3210.58, + "end": 3213.93, + "probability": 0.9741 + }, + { + "start": 3215.06, + "end": 3217.52, + "probability": 0.9433 + }, + { + "start": 3219.44, + "end": 3221.66, + "probability": 0.7781 + }, + { + "start": 3222.74, + "end": 3223.06, + "probability": 0.9305 + }, + { + "start": 3224.82, + "end": 3225.41, + "probability": 0.9773 + }, + { + "start": 3227.62, + "end": 3228.14, + "probability": 0.3581 + }, + { + "start": 3228.98, + "end": 3231.58, + "probability": 0.9926 + }, + { + "start": 3232.78, + "end": 3233.74, + "probability": 0.9714 + }, + { + "start": 3234.52, + "end": 3235.82, + "probability": 0.6453 + }, + { + "start": 3237.22, + "end": 3240.76, + "probability": 0.9315 + }, + { + "start": 3245.5, + "end": 3247.14, + "probability": 0.9064 + }, + { + "start": 3248.9, + "end": 3259.13, + "probability": 0.809 + }, + { + "start": 3261.54, + "end": 3262.29, + "probability": 0.8285 + }, + { + "start": 3264.95, + "end": 3265.11, + "probability": 0.312 + }, + { + "start": 3266.69, + "end": 3268.47, + "probability": 0.9767 + }, + { + "start": 3269.93, + "end": 3270.42, + "probability": 0.93 + }, + { + "start": 3273.09, + "end": 3274.29, + "probability": 0.867 + }, + { + "start": 3278.13, + "end": 3282.93, + "probability": 0.8411 + }, + { + "start": 3284.33, + "end": 3286.23, + "probability": 0.9847 + }, + { + "start": 3290.85, + "end": 3292.69, + "probability": 0.9112 + }, + { + "start": 3295.37, + "end": 3296.37, + "probability": 0.9849 + }, + { + "start": 3297.95, + "end": 3299.89, + "probability": 0.9956 + }, + { + "start": 3300.43, + "end": 3301.38, + "probability": 0.9837 + }, + { + "start": 3303.95, + "end": 3305.05, + "probability": 0.994 + }, + { + "start": 3308.41, + "end": 3310.26, + "probability": 0.9427 + }, + { + "start": 3311.11, + "end": 3313.69, + "probability": 0.9954 + }, + { + "start": 3315.25, + "end": 3318.67, + "probability": 0.9824 + }, + { + "start": 3318.79, + "end": 3320.13, + "probability": 0.8454 + }, + { + "start": 3323.23, + "end": 3324.31, + "probability": 0.843 + }, + { + "start": 3325.21, + "end": 3326.11, + "probability": 0.5218 + }, + { + "start": 3330.01, + "end": 3330.61, + "probability": 0.8708 + }, + { + "start": 3333.55, + "end": 3334.31, + "probability": 0.8221 + }, + { + "start": 3335.63, + "end": 3337.51, + "probability": 0.7863 + }, + { + "start": 3341.11, + "end": 3342.12, + "probability": 0.8945 + }, + { + "start": 3343.85, + "end": 3344.27, + "probability": 0.6687 + }, + { + "start": 3347.09, + "end": 3348.57, + "probability": 0.9858 + }, + { + "start": 3355.95, + "end": 3357.69, + "probability": 0.8352 + }, + { + "start": 3358.73, + "end": 3360.95, + "probability": 0.6911 + }, + { + "start": 3364.13, + "end": 3367.85, + "probability": 0.9985 + }, + { + "start": 3370.23, + "end": 3372.93, + "probability": 0.7419 + }, + { + "start": 3375.21, + "end": 3376.79, + "probability": 0.7823 + }, + { + "start": 3380.03, + "end": 3381.09, + "probability": 0.5397 + }, + { + "start": 3383.57, + "end": 3384.15, + "probability": 0.9903 + }, + { + "start": 3388.67, + "end": 3390.89, + "probability": 0.9976 + }, + { + "start": 3393.61, + "end": 3394.61, + "probability": 0.9677 + }, + { + "start": 3395.49, + "end": 3401.22, + "probability": 0.9817 + }, + { + "start": 3404.79, + "end": 3405.29, + "probability": 0.9267 + }, + { + "start": 3407.15, + "end": 3407.75, + "probability": 0.7563 + }, + { + "start": 3408.87, + "end": 3409.43, + "probability": 0.9677 + }, + { + "start": 3410.89, + "end": 3412.17, + "probability": 0.7713 + }, + { + "start": 3413.37, + "end": 3414.18, + "probability": 0.9937 + }, + { + "start": 3415.31, + "end": 3417.69, + "probability": 0.995 + }, + { + "start": 3420.05, + "end": 3421.01, + "probability": 0.8588 + }, + { + "start": 3424.53, + "end": 3425.19, + "probability": 0.9079 + }, + { + "start": 3428.35, + "end": 3429.83, + "probability": 0.9851 + }, + { + "start": 3431.91, + "end": 3433.05, + "probability": 0.9976 + }, + { + "start": 3435.85, + "end": 3436.39, + "probability": 0.9637 + }, + { + "start": 3438.33, + "end": 3440.01, + "probability": 0.5723 + }, + { + "start": 3440.93, + "end": 3442.05, + "probability": 0.8929 + }, + { + "start": 3444.99, + "end": 3448.21, + "probability": 0.998 + }, + { + "start": 3450.77, + "end": 3452.27, + "probability": 0.9993 + }, + { + "start": 3455.21, + "end": 3457.57, + "probability": 0.9825 + }, + { + "start": 3459.39, + "end": 3461.51, + "probability": 0.983 + }, + { + "start": 3463.77, + "end": 3466.69, + "probability": 0.9961 + }, + { + "start": 3467.11, + "end": 3468.87, + "probability": 0.869 + }, + { + "start": 3471.39, + "end": 3472.07, + "probability": 0.972 + }, + { + "start": 3474.57, + "end": 3477.18, + "probability": 0.9827 + }, + { + "start": 3478.13, + "end": 3479.31, + "probability": 0.8425 + }, + { + "start": 3482.01, + "end": 3482.85, + "probability": 0.9787 + }, + { + "start": 3486.59, + "end": 3487.07, + "probability": 0.802 + }, + { + "start": 3490.11, + "end": 3491.41, + "probability": 0.4732 + }, + { + "start": 3492.43, + "end": 3496.17, + "probability": 0.999 + }, + { + "start": 3499.23, + "end": 3500.13, + "probability": 0.7875 + }, + { + "start": 3506.29, + "end": 3507.15, + "probability": 0.7737 + }, + { + "start": 3513.17, + "end": 3513.63, + "probability": 0.8511 + }, + { + "start": 3516.69, + "end": 3517.21, + "probability": 0.9817 + }, + { + "start": 3518.25, + "end": 3519.27, + "probability": 0.5044 + }, + { + "start": 3520.57, + "end": 3521.66, + "probability": 0.9628 + }, + { + "start": 3522.61, + "end": 3525.29, + "probability": 0.8334 + }, + { + "start": 3531.75, + "end": 3532.33, + "probability": 0.4096 + }, + { + "start": 3534.87, + "end": 3537.35, + "probability": 0.7066 + }, + { + "start": 3541.53, + "end": 3544.05, + "probability": 0.973 + }, + { + "start": 3546.55, + "end": 3549.53, + "probability": 0.9903 + }, + { + "start": 3551.41, + "end": 3556.49, + "probability": 0.9824 + }, + { + "start": 3557.25, + "end": 3559.21, + "probability": 0.9292 + }, + { + "start": 3562.37, + "end": 3563.43, + "probability": 0.8218 + }, + { + "start": 3565.97, + "end": 3567.85, + "probability": 0.699 + }, + { + "start": 3579.17, + "end": 3580.61, + "probability": 0.6706 + }, + { + "start": 3582.29, + "end": 3584.89, + "probability": 0.983 + }, + { + "start": 3586.19, + "end": 3587.77, + "probability": 0.968 + }, + { + "start": 3588.81, + "end": 3590.57, + "probability": 0.9709 + }, + { + "start": 3593.93, + "end": 3594.91, + "probability": 0.9028 + }, + { + "start": 3597.51, + "end": 3598.75, + "probability": 0.9421 + }, + { + "start": 3600.81, + "end": 3604.23, + "probability": 0.9617 + }, + { + "start": 3606.73, + "end": 3607.61, + "probability": 0.7637 + }, + { + "start": 3608.61, + "end": 3611.77, + "probability": 0.9255 + }, + { + "start": 3612.81, + "end": 3614.37, + "probability": 0.906 + }, + { + "start": 3615.93, + "end": 3619.72, + "probability": 0.981 + }, + { + "start": 3622.13, + "end": 3623.77, + "probability": 0.9676 + }, + { + "start": 3625.29, + "end": 3626.27, + "probability": 0.7372 + }, + { + "start": 3627.75, + "end": 3629.67, + "probability": 0.7279 + }, + { + "start": 3630.83, + "end": 3633.95, + "probability": 0.9424 + }, + { + "start": 3635.31, + "end": 3636.53, + "probability": 0.9689 + }, + { + "start": 3638.15, + "end": 3641.03, + "probability": 0.9919 + }, + { + "start": 3641.03, + "end": 3645.47, + "probability": 0.9775 + }, + { + "start": 3648.09, + "end": 3649.03, + "probability": 0.9373 + }, + { + "start": 3651.39, + "end": 3652.11, + "probability": 0.98 + }, + { + "start": 3653.65, + "end": 3660.09, + "probability": 0.9992 + }, + { + "start": 3662.57, + "end": 3663.93, + "probability": 0.8369 + }, + { + "start": 3665.57, + "end": 3667.63, + "probability": 0.9918 + }, + { + "start": 3668.65, + "end": 3670.57, + "probability": 0.9989 + }, + { + "start": 3672.21, + "end": 3674.95, + "probability": 0.9963 + }, + { + "start": 3676.19, + "end": 3678.99, + "probability": 0.9992 + }, + { + "start": 3681.01, + "end": 3683.95, + "probability": 0.8831 + }, + { + "start": 3685.09, + "end": 3686.11, + "probability": 0.9973 + }, + { + "start": 3688.41, + "end": 3690.73, + "probability": 0.9954 + }, + { + "start": 3693.51, + "end": 3695.27, + "probability": 0.9814 + }, + { + "start": 3696.53, + "end": 3697.37, + "probability": 0.9812 + }, + { + "start": 3698.39, + "end": 3698.83, + "probability": 0.6717 + }, + { + "start": 3701.81, + "end": 3705.07, + "probability": 0.9919 + }, + { + "start": 3706.11, + "end": 3708.03, + "probability": 0.6168 + }, + { + "start": 3709.03, + "end": 3709.81, + "probability": 0.9373 + }, + { + "start": 3711.21, + "end": 3714.67, + "probability": 0.9812 + }, + { + "start": 3717.13, + "end": 3719.47, + "probability": 0.7226 + }, + { + "start": 3721.81, + "end": 3723.49, + "probability": 0.9397 + }, + { + "start": 3725.19, + "end": 3725.89, + "probability": 0.9216 + }, + { + "start": 3727.43, + "end": 3729.01, + "probability": 0.9891 + }, + { + "start": 3731.75, + "end": 3734.47, + "probability": 0.9045 + }, + { + "start": 3735.81, + "end": 3736.23, + "probability": 0.6754 + }, + { + "start": 3737.39, + "end": 3740.03, + "probability": 0.9907 + }, + { + "start": 3741.19, + "end": 3742.06, + "probability": 0.9276 + }, + { + "start": 3743.77, + "end": 3744.77, + "probability": 0.9972 + }, + { + "start": 3746.47, + "end": 3749.87, + "probability": 0.9991 + }, + { + "start": 3751.63, + "end": 3753.65, + "probability": 0.9286 + }, + { + "start": 3755.57, + "end": 3759.23, + "probability": 0.9812 + }, + { + "start": 3761.39, + "end": 3762.39, + "probability": 0.8882 + }, + { + "start": 3763.67, + "end": 3765.99, + "probability": 0.9846 + }, + { + "start": 3766.99, + "end": 3769.95, + "probability": 0.9496 + }, + { + "start": 3770.75, + "end": 3775.41, + "probability": 0.9922 + }, + { + "start": 3776.31, + "end": 3779.91, + "probability": 0.9878 + }, + { + "start": 3780.35, + "end": 3783.63, + "probability": 0.9952 + }, + { + "start": 3784.53, + "end": 3787.13, + "probability": 0.793 + }, + { + "start": 3788.61, + "end": 3788.67, + "probability": 0.2522 + }, + { + "start": 3788.81, + "end": 3788.97, + "probability": 0.7923 + }, + { + "start": 3789.03, + "end": 3790.55, + "probability": 0.9556 + }, + { + "start": 3790.67, + "end": 3791.85, + "probability": 0.9868 + }, + { + "start": 3793.67, + "end": 3795.57, + "probability": 0.9595 + }, + { + "start": 3797.87, + "end": 3798.63, + "probability": 0.8229 + }, + { + "start": 3800.77, + "end": 3802.15, + "probability": 0.9249 + }, + { + "start": 3805.73, + "end": 3807.21, + "probability": 0.9954 + }, + { + "start": 3809.43, + "end": 3810.19, + "probability": 0.9876 + }, + { + "start": 3812.19, + "end": 3813.13, + "probability": 0.8043 + }, + { + "start": 3814.25, + "end": 3816.51, + "probability": 0.9616 + }, + { + "start": 3818.37, + "end": 3821.14, + "probability": 0.9808 + }, + { + "start": 3822.53, + "end": 3827.73, + "probability": 0.9591 + }, + { + "start": 3829.37, + "end": 3831.47, + "probability": 0.8052 + }, + { + "start": 3832.51, + "end": 3833.79, + "probability": 0.985 + }, + { + "start": 3835.01, + "end": 3837.31, + "probability": 0.9537 + }, + { + "start": 3837.99, + "end": 3839.83, + "probability": 0.9436 + }, + { + "start": 3842.51, + "end": 3843.01, + "probability": 0.9476 + }, + { + "start": 3844.15, + "end": 3844.69, + "probability": 0.9745 + }, + { + "start": 3846.63, + "end": 3849.39, + "probability": 0.7827 + }, + { + "start": 3850.27, + "end": 3853.61, + "probability": 0.9271 + }, + { + "start": 3856.13, + "end": 3859.07, + "probability": 0.9091 + }, + { + "start": 3860.91, + "end": 3862.55, + "probability": 0.9842 + }, + { + "start": 3865.11, + "end": 3866.23, + "probability": 0.7526 + }, + { + "start": 3867.59, + "end": 3873.05, + "probability": 0.9928 + }, + { + "start": 3874.73, + "end": 3876.17, + "probability": 0.9893 + }, + { + "start": 3877.07, + "end": 3879.97, + "probability": 0.9974 + }, + { + "start": 3880.89, + "end": 3881.53, + "probability": 0.9897 + }, + { + "start": 3883.63, + "end": 3886.31, + "probability": 0.9901 + }, + { + "start": 3887.49, + "end": 3888.23, + "probability": 0.9843 + }, + { + "start": 3888.97, + "end": 3889.81, + "probability": 0.9779 + }, + { + "start": 3890.75, + "end": 3891.77, + "probability": 0.9224 + }, + { + "start": 3893.27, + "end": 3895.97, + "probability": 0.6602 + }, + { + "start": 3897.55, + "end": 3898.91, + "probability": 0.9091 + }, + { + "start": 3900.75, + "end": 3902.97, + "probability": 0.9982 + }, + { + "start": 3906.17, + "end": 3906.67, + "probability": 0.9784 + }, + { + "start": 3908.43, + "end": 3910.43, + "probability": 0.8694 + }, + { + "start": 3912.49, + "end": 3913.75, + "probability": 0.9771 + }, + { + "start": 3916.53, + "end": 3917.21, + "probability": 0.9492 + }, + { + "start": 3919.83, + "end": 3920.85, + "probability": 0.875 + }, + { + "start": 3922.87, + "end": 3923.75, + "probability": 0.9731 + }, + { + "start": 3925.43, + "end": 3931.45, + "probability": 0.8496 + }, + { + "start": 3933.03, + "end": 3936.87, + "probability": 0.9827 + }, + { + "start": 3937.11, + "end": 3937.71, + "probability": 0.9455 + }, + { + "start": 3938.01, + "end": 3938.67, + "probability": 0.9258 + }, + { + "start": 3938.67, + "end": 3939.63, + "probability": 0.7497 + }, + { + "start": 3941.45, + "end": 3944.59, + "probability": 0.9832 + }, + { + "start": 3946.33, + "end": 3949.69, + "probability": 0.9664 + }, + { + "start": 3950.97, + "end": 3951.67, + "probability": 0.9217 + }, + { + "start": 3953.01, + "end": 3955.21, + "probability": 0.9917 + }, + { + "start": 3955.93, + "end": 3958.75, + "probability": 0.9978 + }, + { + "start": 3959.13, + "end": 3962.95, + "probability": 0.906 + }, + { + "start": 3965.49, + "end": 3966.62, + "probability": 0.9907 + }, + { + "start": 3969.43, + "end": 3970.45, + "probability": 0.7608 + }, + { + "start": 3975.19, + "end": 3975.77, + "probability": 0.7455 + }, + { + "start": 3978.99, + "end": 3979.61, + "probability": 0.3869 + }, + { + "start": 3982.23, + "end": 3984.95, + "probability": 0.9969 + }, + { + "start": 3991.69, + "end": 3992.35, + "probability": 0.9983 + }, + { + "start": 3995.55, + "end": 3997.49, + "probability": 0.9422 + }, + { + "start": 3999.91, + "end": 4000.67, + "probability": 0.9646 + }, + { + "start": 4003.51, + "end": 4004.83, + "probability": 0.6652 + }, + { + "start": 4006.51, + "end": 4007.95, + "probability": 0.842 + }, + { + "start": 4009.55, + "end": 4014.21, + "probability": 0.9985 + }, + { + "start": 4015.55, + "end": 4016.88, + "probability": 0.792 + }, + { + "start": 4017.03, + "end": 4019.15, + "probability": 0.9547 + }, + { + "start": 4020.99, + "end": 4024.93, + "probability": 0.9836 + }, + { + "start": 4026.29, + "end": 4027.21, + "probability": 0.9998 + }, + { + "start": 4028.63, + "end": 4029.63, + "probability": 0.7576 + }, + { + "start": 4031.59, + "end": 4032.13, + "probability": 0.7498 + }, + { + "start": 4034.09, + "end": 4036.45, + "probability": 0.9534 + }, + { + "start": 4037.97, + "end": 4040.55, + "probability": 0.956 + }, + { + "start": 4045.99, + "end": 4048.95, + "probability": 0.8917 + }, + { + "start": 4049.13, + "end": 4050.37, + "probability": 0.7581 + }, + { + "start": 4050.43, + "end": 4051.05, + "probability": 0.6496 + }, + { + "start": 4051.57, + "end": 4054.05, + "probability": 0.7603 + }, + { + "start": 4054.37, + "end": 4055.65, + "probability": 0.6386 + }, + { + "start": 4073.97, + "end": 4075.17, + "probability": 0.7462 + }, + { + "start": 4076.59, + "end": 4079.01, + "probability": 0.9291 + }, + { + "start": 4080.09, + "end": 4080.97, + "probability": 0.8246 + }, + { + "start": 4081.95, + "end": 4082.67, + "probability": 0.7644 + }, + { + "start": 4082.75, + "end": 4085.47, + "probability": 0.9917 + }, + { + "start": 4085.59, + "end": 4086.83, + "probability": 0.8424 + }, + { + "start": 4088.09, + "end": 4089.41, + "probability": 0.9944 + }, + { + "start": 4089.77, + "end": 4091.99, + "probability": 0.8563 + }, + { + "start": 4092.17, + "end": 4094.21, + "probability": 0.9939 + }, + { + "start": 4095.05, + "end": 4099.25, + "probability": 0.9086 + }, + { + "start": 4099.49, + "end": 4100.21, + "probability": 0.8591 + }, + { + "start": 4101.33, + "end": 4103.29, + "probability": 0.9688 + }, + { + "start": 4104.11, + "end": 4105.65, + "probability": 0.8789 + }, + { + "start": 4106.15, + "end": 4108.13, + "probability": 0.7365 + }, + { + "start": 4111.11, + "end": 4112.71, + "probability": 0.8604 + }, + { + "start": 4113.49, + "end": 4114.45, + "probability": 0.842 + }, + { + "start": 4115.33, + "end": 4117.67, + "probability": 0.7003 + }, + { + "start": 4118.95, + "end": 4119.31, + "probability": 0.3969 + }, + { + "start": 4119.31, + "end": 4122.03, + "probability": 0.5281 + }, + { + "start": 4122.39, + "end": 4124.23, + "probability": 0.7593 + }, + { + "start": 4125.75, + "end": 4132.73, + "probability": 0.9435 + }, + { + "start": 4133.55, + "end": 4134.54, + "probability": 0.7796 + }, + { + "start": 4135.51, + "end": 4138.51, + "probability": 0.8784 + }, + { + "start": 4138.69, + "end": 4140.45, + "probability": 0.875 + }, + { + "start": 4140.59, + "end": 4141.39, + "probability": 0.9215 + }, + { + "start": 4141.85, + "end": 4142.85, + "probability": 0.9425 + }, + { + "start": 4144.37, + "end": 4148.57, + "probability": 0.8197 + }, + { + "start": 4149.29, + "end": 4151.19, + "probability": 0.9785 + }, + { + "start": 4151.43, + "end": 4154.63, + "probability": 0.9926 + }, + { + "start": 4157.05, + "end": 4158.73, + "probability": 0.8665 + }, + { + "start": 4160.59, + "end": 4161.51, + "probability": 0.3508 + }, + { + "start": 4162.33, + "end": 4162.55, + "probability": 0.743 + }, + { + "start": 4163.77, + "end": 4164.33, + "probability": 0.8669 + }, + { + "start": 4165.53, + "end": 4167.97, + "probability": 0.9208 + }, + { + "start": 4169.23, + "end": 4174.11, + "probability": 0.9963 + }, + { + "start": 4174.17, + "end": 4174.53, + "probability": 0.7423 + }, + { + "start": 4175.99, + "end": 4179.41, + "probability": 0.9956 + }, + { + "start": 4180.79, + "end": 4184.91, + "probability": 0.9765 + }, + { + "start": 4185.13, + "end": 4185.95, + "probability": 0.8673 + }, + { + "start": 4186.55, + "end": 4187.09, + "probability": 0.6734 + }, + { + "start": 4188.41, + "end": 4189.07, + "probability": 0.7251 + }, + { + "start": 4190.13, + "end": 4194.13, + "probability": 0.9883 + }, + { + "start": 4194.73, + "end": 4198.59, + "probability": 0.98 + }, + { + "start": 4199.17, + "end": 4199.59, + "probability": 0.4962 + }, + { + "start": 4200.19, + "end": 4200.47, + "probability": 0.8336 + }, + { + "start": 4202.97, + "end": 4205.99, + "probability": 0.9849 + }, + { + "start": 4206.57, + "end": 4208.35, + "probability": 0.986 + }, + { + "start": 4209.59, + "end": 4212.39, + "probability": 0.9961 + }, + { + "start": 4213.61, + "end": 4214.87, + "probability": 0.9888 + }, + { + "start": 4217.37, + "end": 4225.53, + "probability": 0.9983 + }, + { + "start": 4227.35, + "end": 4229.55, + "probability": 0.7814 + }, + { + "start": 4230.31, + "end": 4230.95, + "probability": 0.1536 + }, + { + "start": 4232.35, + "end": 4234.93, + "probability": 0.9842 + }, + { + "start": 4236.25, + "end": 4241.71, + "probability": 0.9868 + }, + { + "start": 4242.69, + "end": 4243.17, + "probability": 0.6912 + }, + { + "start": 4245.59, + "end": 4247.83, + "probability": 0.9916 + }, + { + "start": 4248.51, + "end": 4251.53, + "probability": 0.8875 + }, + { + "start": 4252.83, + "end": 4254.67, + "probability": 0.8794 + }, + { + "start": 4256.11, + "end": 4257.97, + "probability": 0.8232 + }, + { + "start": 4259.35, + "end": 4260.91, + "probability": 0.9087 + }, + { + "start": 4261.53, + "end": 4263.15, + "probability": 0.947 + }, + { + "start": 4263.75, + "end": 4266.63, + "probability": 0.9935 + }, + { + "start": 4268.59, + "end": 4272.43, + "probability": 0.8058 + }, + { + "start": 4273.73, + "end": 4277.73, + "probability": 0.7004 + }, + { + "start": 4278.93, + "end": 4281.68, + "probability": 0.8491 + }, + { + "start": 4282.49, + "end": 4283.77, + "probability": 0.913 + }, + { + "start": 4284.75, + "end": 4286.87, + "probability": 0.8369 + }, + { + "start": 4287.61, + "end": 4290.79, + "probability": 0.9274 + }, + { + "start": 4291.75, + "end": 4292.93, + "probability": 0.9024 + }, + { + "start": 4295.27, + "end": 4297.63, + "probability": 0.9771 + }, + { + "start": 4297.79, + "end": 4299.97, + "probability": 0.9814 + }, + { + "start": 4301.95, + "end": 4302.71, + "probability": 0.8658 + }, + { + "start": 4302.87, + "end": 4307.51, + "probability": 0.9751 + }, + { + "start": 4308.59, + "end": 4309.49, + "probability": 0.9017 + }, + { + "start": 4310.29, + "end": 4313.97, + "probability": 0.9645 + }, + { + "start": 4315.99, + "end": 4318.41, + "probability": 0.9519 + }, + { + "start": 4319.15, + "end": 4319.83, + "probability": 0.9583 + }, + { + "start": 4320.97, + "end": 4322.25, + "probability": 0.9858 + }, + { + "start": 4323.15, + "end": 4325.47, + "probability": 0.8344 + }, + { + "start": 4326.87, + "end": 4330.45, + "probability": 0.803 + }, + { + "start": 4331.35, + "end": 4333.37, + "probability": 0.9669 + }, + { + "start": 4334.41, + "end": 4336.27, + "probability": 0.9624 + }, + { + "start": 4336.93, + "end": 4344.69, + "probability": 0.9761 + }, + { + "start": 4345.47, + "end": 4348.49, + "probability": 0.9187 + }, + { + "start": 4349.83, + "end": 4351.23, + "probability": 0.9025 + }, + { + "start": 4352.81, + "end": 4354.75, + "probability": 0.9883 + }, + { + "start": 4355.77, + "end": 4358.41, + "probability": 0.9953 + }, + { + "start": 4358.41, + "end": 4362.23, + "probability": 0.9979 + }, + { + "start": 4363.35, + "end": 4365.11, + "probability": 0.9852 + }, + { + "start": 4366.55, + "end": 4371.87, + "probability": 0.9868 + }, + { + "start": 4372.73, + "end": 4375.62, + "probability": 0.981 + }, + { + "start": 4377.43, + "end": 4378.57, + "probability": 0.9812 + }, + { + "start": 4379.21, + "end": 4381.53, + "probability": 0.9639 + }, + { + "start": 4382.59, + "end": 4383.47, + "probability": 0.9835 + }, + { + "start": 4384.87, + "end": 4386.37, + "probability": 0.95 + }, + { + "start": 4388.41, + "end": 4391.31, + "probability": 0.7547 + }, + { + "start": 4392.59, + "end": 4396.21, + "probability": 0.9453 + }, + { + "start": 4399.15, + "end": 4403.01, + "probability": 0.9956 + }, + { + "start": 4403.47, + "end": 4404.13, + "probability": 0.6585 + }, + { + "start": 4406.31, + "end": 4408.71, + "probability": 0.8732 + }, + { + "start": 4409.47, + "end": 4413.13, + "probability": 0.9327 + }, + { + "start": 4414.91, + "end": 4417.47, + "probability": 0.8165 + }, + { + "start": 4418.79, + "end": 4422.33, + "probability": 0.9956 + }, + { + "start": 4424.15, + "end": 4426.07, + "probability": 0.4992 + }, + { + "start": 4426.79, + "end": 4428.79, + "probability": 0.734 + }, + { + "start": 4429.69, + "end": 4429.83, + "probability": 0.08 + }, + { + "start": 4429.95, + "end": 4432.99, + "probability": 0.969 + }, + { + "start": 4433.87, + "end": 4435.75, + "probability": 0.9951 + }, + { + "start": 4438.35, + "end": 4440.31, + "probability": 0.3809 + }, + { + "start": 4440.31, + "end": 4444.73, + "probability": 0.7451 + }, + { + "start": 4445.83, + "end": 4447.29, + "probability": 0.8874 + }, + { + "start": 4449.17, + "end": 4453.0, + "probability": 0.9907 + }, + { + "start": 4454.01, + "end": 4456.43, + "probability": 0.9546 + }, + { + "start": 4457.07, + "end": 4459.79, + "probability": 0.9129 + }, + { + "start": 4459.89, + "end": 4461.39, + "probability": 0.9854 + }, + { + "start": 4466.25, + "end": 4470.15, + "probability": 0.9294 + }, + { + "start": 4471.29, + "end": 4473.05, + "probability": 0.7372 + }, + { + "start": 4474.71, + "end": 4475.97, + "probability": 0.9303 + }, + { + "start": 4478.85, + "end": 4483.17, + "probability": 0.9863 + }, + { + "start": 4484.31, + "end": 4486.21, + "probability": 0.5317 + }, + { + "start": 4487.13, + "end": 4487.23, + "probability": 0.3138 + }, + { + "start": 4487.23, + "end": 4488.59, + "probability": 0.985 + }, + { + "start": 4488.71, + "end": 4490.33, + "probability": 0.9066 + }, + { + "start": 4490.89, + "end": 4493.33, + "probability": 0.9912 + }, + { + "start": 4494.93, + "end": 4499.27, + "probability": 0.8933 + }, + { + "start": 4500.09, + "end": 4504.89, + "probability": 0.9835 + }, + { + "start": 4506.49, + "end": 4509.77, + "probability": 0.965 + }, + { + "start": 4511.81, + "end": 4512.33, + "probability": 0.6459 + }, + { + "start": 4513.13, + "end": 4514.15, + "probability": 0.9974 + }, + { + "start": 4514.81, + "end": 4517.21, + "probability": 0.994 + }, + { + "start": 4518.03, + "end": 4519.17, + "probability": 0.6287 + }, + { + "start": 4519.87, + "end": 4522.13, + "probability": 0.9276 + }, + { + "start": 4522.85, + "end": 4525.75, + "probability": 0.9751 + }, + { + "start": 4526.87, + "end": 4528.47, + "probability": 0.9836 + }, + { + "start": 4529.25, + "end": 4530.89, + "probability": 0.9754 + }, + { + "start": 4531.99, + "end": 4534.01, + "probability": 0.9739 + }, + { + "start": 4534.01, + "end": 4537.75, + "probability": 0.9856 + }, + { + "start": 4539.49, + "end": 4545.75, + "probability": 0.9978 + }, + { + "start": 4547.67, + "end": 4550.71, + "probability": 0.9989 + }, + { + "start": 4551.89, + "end": 4553.55, + "probability": 0.9991 + }, + { + "start": 4554.19, + "end": 4556.33, + "probability": 0.9969 + }, + { + "start": 4557.91, + "end": 4560.33, + "probability": 0.9905 + }, + { + "start": 4560.83, + "end": 4561.23, + "probability": 0.8619 + }, + { + "start": 4563.07, + "end": 4566.35, + "probability": 0.9888 + }, + { + "start": 4567.29, + "end": 4570.07, + "probability": 0.9874 + }, + { + "start": 4571.15, + "end": 4573.09, + "probability": 0.9987 + }, + { + "start": 4574.03, + "end": 4577.87, + "probability": 0.943 + }, + { + "start": 4579.93, + "end": 4581.69, + "probability": 0.9971 + }, + { + "start": 4583.15, + "end": 4586.97, + "probability": 0.9935 + }, + { + "start": 4587.11, + "end": 4590.07, + "probability": 0.9931 + }, + { + "start": 4591.13, + "end": 4592.63, + "probability": 0.4663 + }, + { + "start": 4593.49, + "end": 4598.69, + "probability": 0.9784 + }, + { + "start": 4599.93, + "end": 4601.69, + "probability": 0.9293 + }, + { + "start": 4602.47, + "end": 4604.53, + "probability": 0.6298 + }, + { + "start": 4605.31, + "end": 4607.73, + "probability": 0.991 + }, + { + "start": 4608.53, + "end": 4610.93, + "probability": 0.9334 + }, + { + "start": 4613.13, + "end": 4617.59, + "probability": 0.9751 + }, + { + "start": 4621.61, + "end": 4622.43, + "probability": 0.6072 + }, + { + "start": 4623.25, + "end": 4625.99, + "probability": 0.8765 + }, + { + "start": 4627.77, + "end": 4630.55, + "probability": 0.9922 + }, + { + "start": 4630.65, + "end": 4631.25, + "probability": 0.9644 + }, + { + "start": 4632.73, + "end": 4635.53, + "probability": 0.9976 + }, + { + "start": 4636.13, + "end": 4637.39, + "probability": 0.9658 + }, + { + "start": 4637.49, + "end": 4638.01, + "probability": 0.7886 + }, + { + "start": 4638.03, + "end": 4639.07, + "probability": 0.9895 + }, + { + "start": 4639.45, + "end": 4640.21, + "probability": 0.935 + }, + { + "start": 4640.63, + "end": 4641.35, + "probability": 0.9061 + }, + { + "start": 4641.71, + "end": 4642.99, + "probability": 0.6975 + }, + { + "start": 4644.93, + "end": 4646.97, + "probability": 0.9856 + }, + { + "start": 4647.07, + "end": 4648.19, + "probability": 0.9373 + }, + { + "start": 4649.27, + "end": 4652.83, + "probability": 0.9963 + }, + { + "start": 4654.69, + "end": 4657.17, + "probability": 0.9934 + }, + { + "start": 4658.47, + "end": 4660.73, + "probability": 0.9736 + }, + { + "start": 4661.89, + "end": 4664.47, + "probability": 0.9325 + }, + { + "start": 4665.07, + "end": 4667.73, + "probability": 0.9951 + }, + { + "start": 4668.27, + "end": 4669.17, + "probability": 0.9152 + }, + { + "start": 4670.29, + "end": 4672.85, + "probability": 0.9718 + }, + { + "start": 4675.03, + "end": 4679.89, + "probability": 0.9961 + }, + { + "start": 4681.53, + "end": 4683.37, + "probability": 0.847 + }, + { + "start": 4683.99, + "end": 4686.79, + "probability": 0.9985 + }, + { + "start": 4687.63, + "end": 4690.07, + "probability": 0.9886 + }, + { + "start": 4692.79, + "end": 4695.23, + "probability": 0.6276 + }, + { + "start": 4695.29, + "end": 4696.55, + "probability": 0.7184 + }, + { + "start": 4697.29, + "end": 4699.53, + "probability": 0.6838 + }, + { + "start": 4700.91, + "end": 4704.07, + "probability": 0.9852 + }, + { + "start": 4704.67, + "end": 4706.35, + "probability": 0.572 + }, + { + "start": 4706.89, + "end": 4709.35, + "probability": 0.9863 + }, + { + "start": 4709.91, + "end": 4712.15, + "probability": 0.996 + }, + { + "start": 4712.69, + "end": 4714.06, + "probability": 0.5043 + }, + { + "start": 4715.61, + "end": 4720.61, + "probability": 0.8071 + }, + { + "start": 4721.49, + "end": 4725.63, + "probability": 0.9341 + }, + { + "start": 4726.21, + "end": 4726.75, + "probability": 0.5746 + }, + { + "start": 4728.21, + "end": 4732.87, + "probability": 0.998 + }, + { + "start": 4733.17, + "end": 4734.23, + "probability": 0.5491 + }, + { + "start": 4734.33, + "end": 4734.75, + "probability": 0.7709 + }, + { + "start": 4736.23, + "end": 4744.01, + "probability": 0.9348 + }, + { + "start": 4744.69, + "end": 4746.81, + "probability": 0.9646 + }, + { + "start": 4746.93, + "end": 4747.29, + "probability": 0.981 + }, + { + "start": 4749.13, + "end": 4754.33, + "probability": 0.9961 + }, + { + "start": 4755.15, + "end": 4757.09, + "probability": 0.9967 + }, + { + "start": 4757.91, + "end": 4760.29, + "probability": 0.5697 + }, + { + "start": 4761.19, + "end": 4767.53, + "probability": 0.9807 + }, + { + "start": 4768.29, + "end": 4770.47, + "probability": 0.7825 + }, + { + "start": 4771.51, + "end": 4777.19, + "probability": 0.9185 + }, + { + "start": 4778.73, + "end": 4780.11, + "probability": 0.9709 + }, + { + "start": 4780.17, + "end": 4781.35, + "probability": 0.8329 + }, + { + "start": 4781.43, + "end": 4784.73, + "probability": 0.9985 + }, + { + "start": 4786.79, + "end": 4787.97, + "probability": 0.8363 + }, + { + "start": 4788.03, + "end": 4791.83, + "probability": 0.9966 + }, + { + "start": 4793.43, + "end": 4794.73, + "probability": 0.662 + }, + { + "start": 4794.97, + "end": 4797.16, + "probability": 0.9932 + }, + { + "start": 4797.31, + "end": 4798.45, + "probability": 0.9242 + }, + { + "start": 4801.17, + "end": 4802.19, + "probability": 0.9257 + }, + { + "start": 4802.77, + "end": 4805.67, + "probability": 0.9727 + }, + { + "start": 4806.63, + "end": 4807.71, + "probability": 0.9473 + }, + { + "start": 4808.37, + "end": 4809.53, + "probability": 0.981 + }, + { + "start": 4810.49, + "end": 4816.55, + "probability": 0.9987 + }, + { + "start": 4816.67, + "end": 4817.51, + "probability": 0.9606 + }, + { + "start": 4818.75, + "end": 4819.81, + "probability": 0.6599 + }, + { + "start": 4820.83, + "end": 4822.67, + "probability": 0.8595 + }, + { + "start": 4823.35, + "end": 4824.43, + "probability": 0.9557 + }, + { + "start": 4826.71, + "end": 4828.23, + "probability": 0.5205 + }, + { + "start": 4829.41, + "end": 4831.97, + "probability": 0.9602 + }, + { + "start": 4833.05, + "end": 4835.01, + "probability": 0.8342 + }, + { + "start": 4835.75, + "end": 4841.31, + "probability": 0.9838 + }, + { + "start": 4842.21, + "end": 4845.59, + "probability": 0.9647 + }, + { + "start": 4846.03, + "end": 4849.55, + "probability": 0.9556 + }, + { + "start": 4850.71, + "end": 4855.05, + "probability": 0.9873 + }, + { + "start": 4856.13, + "end": 4860.91, + "probability": 0.9944 + }, + { + "start": 4861.43, + "end": 4863.09, + "probability": 0.7223 + }, + { + "start": 4863.87, + "end": 4865.43, + "probability": 0.9976 + }, + { + "start": 4866.05, + "end": 4867.95, + "probability": 0.9781 + }, + { + "start": 4868.49, + "end": 4871.37, + "probability": 0.9913 + }, + { + "start": 4871.97, + "end": 4874.37, + "probability": 0.9849 + }, + { + "start": 4874.93, + "end": 4876.95, + "probability": 0.876 + }, + { + "start": 4877.67, + "end": 4882.37, + "probability": 0.9894 + }, + { + "start": 4882.75, + "end": 4883.01, + "probability": 0.6852 + }, + { + "start": 4884.03, + "end": 4886.97, + "probability": 0.8994 + }, + { + "start": 4887.19, + "end": 4890.45, + "probability": 0.9934 + }, + { + "start": 4913.47, + "end": 4915.51, + "probability": 0.9586 + }, + { + "start": 4915.67, + "end": 4919.33, + "probability": 0.8443 + }, + { + "start": 4919.33, + "end": 4925.15, + "probability": 0.8604 + }, + { + "start": 4926.01, + "end": 4929.67, + "probability": 0.7151 + }, + { + "start": 4930.59, + "end": 4933.09, + "probability": 0.536 + }, + { + "start": 4933.85, + "end": 4936.81, + "probability": 0.882 + }, + { + "start": 4937.33, + "end": 4939.49, + "probability": 0.953 + }, + { + "start": 4940.71, + "end": 4940.83, + "probability": 0.0769 + }, + { + "start": 4941.13, + "end": 4941.9, + "probability": 0.9874 + }, + { + "start": 4943.41, + "end": 4944.61, + "probability": 0.995 + }, + { + "start": 4944.85, + "end": 4946.93, + "probability": 0.9613 + }, + { + "start": 4947.07, + "end": 4947.55, + "probability": 0.6508 + }, + { + "start": 4947.81, + "end": 4948.31, + "probability": 0.6301 + }, + { + "start": 4949.49, + "end": 4952.77, + "probability": 0.9941 + }, + { + "start": 4953.69, + "end": 4956.03, + "probability": 0.2805 + }, + { + "start": 4956.51, + "end": 4961.21, + "probability": 0.9985 + }, + { + "start": 4962.89, + "end": 4964.85, + "probability": 0.9624 + }, + { + "start": 4965.59, + "end": 4968.67, + "probability": 0.8247 + }, + { + "start": 4969.29, + "end": 4973.43, + "probability": 0.9899 + }, + { + "start": 4974.07, + "end": 4976.59, + "probability": 0.9779 + }, + { + "start": 4977.13, + "end": 4978.73, + "probability": 0.9084 + }, + { + "start": 4979.35, + "end": 4982.21, + "probability": 0.9077 + }, + { + "start": 4982.95, + "end": 4983.95, + "probability": 0.9106 + }, + { + "start": 4984.65, + "end": 4986.11, + "probability": 0.541 + }, + { + "start": 4986.99, + "end": 4990.41, + "probability": 0.9784 + }, + { + "start": 4991.11, + "end": 4993.51, + "probability": 0.8983 + }, + { + "start": 4994.23, + "end": 4995.83, + "probability": 0.9175 + }, + { + "start": 4996.37, + "end": 4998.99, + "probability": 0.9788 + }, + { + "start": 4999.57, + "end": 5002.43, + "probability": 0.9551 + }, + { + "start": 5003.13, + "end": 5005.63, + "probability": 0.9095 + }, + { + "start": 5006.49, + "end": 5006.97, + "probability": 0.7201 + }, + { + "start": 5007.09, + "end": 5015.59, + "probability": 0.9941 + }, + { + "start": 5017.59, + "end": 5021.61, + "probability": 0.9774 + }, + { + "start": 5021.61, + "end": 5025.63, + "probability": 0.9991 + }, + { + "start": 5026.15, + "end": 5027.61, + "probability": 0.7652 + }, + { + "start": 5028.21, + "end": 5032.13, + "probability": 0.938 + }, + { + "start": 5033.95, + "end": 5036.85, + "probability": 0.9594 + }, + { + "start": 5037.73, + "end": 5038.67, + "probability": 0.906 + }, + { + "start": 5039.21, + "end": 5046.01, + "probability": 0.9658 + }, + { + "start": 5046.83, + "end": 5048.53, + "probability": 0.8554 + }, + { + "start": 5049.91, + "end": 5051.43, + "probability": 0.9088 + }, + { + "start": 5051.97, + "end": 5056.27, + "probability": 0.9792 + }, + { + "start": 5057.09, + "end": 5058.13, + "probability": 0.6591 + }, + { + "start": 5058.73, + "end": 5060.21, + "probability": 0.8114 + }, + { + "start": 5061.07, + "end": 5062.49, + "probability": 0.6751 + }, + { + "start": 5063.53, + "end": 5067.01, + "probability": 0.8933 + }, + { + "start": 5067.75, + "end": 5069.79, + "probability": 0.9922 + }, + { + "start": 5070.87, + "end": 5076.03, + "probability": 0.969 + }, + { + "start": 5077.41, + "end": 5077.87, + "probability": 0.8691 + }, + { + "start": 5078.53, + "end": 5080.81, + "probability": 0.9967 + }, + { + "start": 5081.45, + "end": 5085.85, + "probability": 0.9341 + }, + { + "start": 5086.43, + "end": 5086.94, + "probability": 0.6578 + }, + { + "start": 5088.01, + "end": 5089.03, + "probability": 0.6472 + }, + { + "start": 5089.95, + "end": 5092.43, + "probability": 0.7632 + }, + { + "start": 5093.05, + "end": 5094.35, + "probability": 0.7581 + }, + { + "start": 5095.07, + "end": 5096.41, + "probability": 0.958 + }, + { + "start": 5097.87, + "end": 5100.91, + "probability": 0.9958 + }, + { + "start": 5101.59, + "end": 5105.69, + "probability": 0.9977 + }, + { + "start": 5106.27, + "end": 5107.37, + "probability": 0.6602 + }, + { + "start": 5108.03, + "end": 5109.69, + "probability": 0.9883 + }, + { + "start": 5110.67, + "end": 5112.77, + "probability": 0.9741 + }, + { + "start": 5113.59, + "end": 5117.53, + "probability": 0.9925 + }, + { + "start": 5118.39, + "end": 5119.23, + "probability": 0.7602 + }, + { + "start": 5119.81, + "end": 5123.91, + "probability": 0.9973 + }, + { + "start": 5124.95, + "end": 5126.45, + "probability": 0.9272 + }, + { + "start": 5127.21, + "end": 5129.57, + "probability": 0.9972 + }, + { + "start": 5130.41, + "end": 5133.93, + "probability": 0.9589 + }, + { + "start": 5134.49, + "end": 5136.37, + "probability": 0.9457 + }, + { + "start": 5137.03, + "end": 5138.41, + "probability": 0.9255 + }, + { + "start": 5139.87, + "end": 5142.97, + "probability": 0.8763 + }, + { + "start": 5144.39, + "end": 5147.45, + "probability": 0.9865 + }, + { + "start": 5148.73, + "end": 5152.51, + "probability": 0.9784 + }, + { + "start": 5153.05, + "end": 5156.29, + "probability": 0.9986 + }, + { + "start": 5156.83, + "end": 5157.91, + "probability": 0.9351 + }, + { + "start": 5158.19, + "end": 5159.15, + "probability": 0.8731 + }, + { + "start": 5159.25, + "end": 5159.91, + "probability": 0.9645 + }, + { + "start": 5161.01, + "end": 5163.03, + "probability": 0.9145 + }, + { + "start": 5163.59, + "end": 5168.19, + "probability": 0.969 + }, + { + "start": 5168.19, + "end": 5172.25, + "probability": 0.998 + }, + { + "start": 5172.77, + "end": 5175.77, + "probability": 0.9737 + }, + { + "start": 5177.07, + "end": 5178.17, + "probability": 0.5844 + }, + { + "start": 5178.29, + "end": 5178.95, + "probability": 0.3753 + }, + { + "start": 5179.03, + "end": 5184.21, + "probability": 0.7022 + }, + { + "start": 5184.81, + "end": 5185.39, + "probability": 0.638 + }, + { + "start": 5185.71, + "end": 5186.35, + "probability": 0.7618 + }, + { + "start": 5186.47, + "end": 5189.55, + "probability": 0.9598 + }, + { + "start": 5190.83, + "end": 5193.77, + "probability": 0.9934 + }, + { + "start": 5194.35, + "end": 5196.03, + "probability": 0.9928 + }, + { + "start": 5196.69, + "end": 5199.31, + "probability": 0.999 + }, + { + "start": 5199.83, + "end": 5206.81, + "probability": 0.9905 + }, + { + "start": 5208.15, + "end": 5209.01, + "probability": 0.6134 + }, + { + "start": 5209.83, + "end": 5213.59, + "probability": 0.737 + }, + { + "start": 5214.13, + "end": 5215.75, + "probability": 0.9362 + }, + { + "start": 5216.77, + "end": 5218.89, + "probability": 0.8608 + }, + { + "start": 5219.85, + "end": 5221.71, + "probability": 0.9463 + }, + { + "start": 5222.51, + "end": 5223.41, + "probability": 0.6847 + }, + { + "start": 5223.61, + "end": 5228.31, + "probability": 0.9147 + }, + { + "start": 5229.49, + "end": 5232.41, + "probability": 0.8471 + }, + { + "start": 5233.03, + "end": 5234.79, + "probability": 0.9932 + }, + { + "start": 5235.39, + "end": 5237.05, + "probability": 0.9365 + }, + { + "start": 5237.17, + "end": 5237.69, + "probability": 0.9775 + }, + { + "start": 5238.49, + "end": 5239.87, + "probability": 0.9844 + }, + { + "start": 5240.87, + "end": 5244.21, + "probability": 0.9839 + }, + { + "start": 5244.79, + "end": 5245.95, + "probability": 0.8934 + }, + { + "start": 5246.45, + "end": 5250.13, + "probability": 0.8892 + }, + { + "start": 5251.19, + "end": 5252.21, + "probability": 0.9584 + }, + { + "start": 5253.05, + "end": 5254.11, + "probability": 0.9308 + }, + { + "start": 5254.83, + "end": 5256.33, + "probability": 0.9646 + }, + { + "start": 5257.51, + "end": 5259.55, + "probability": 0.9912 + }, + { + "start": 5260.07, + "end": 5262.05, + "probability": 0.8167 + }, + { + "start": 5262.95, + "end": 5264.25, + "probability": 0.5555 + }, + { + "start": 5264.73, + "end": 5270.83, + "probability": 0.9852 + }, + { + "start": 5271.37, + "end": 5274.11, + "probability": 0.9954 + }, + { + "start": 5275.53, + "end": 5277.55, + "probability": 0.7505 + }, + { + "start": 5278.09, + "end": 5279.15, + "probability": 0.9503 + }, + { + "start": 5280.07, + "end": 5281.14, + "probability": 0.9868 + }, + { + "start": 5281.79, + "end": 5285.27, + "probability": 0.9179 + }, + { + "start": 5286.13, + "end": 5287.55, + "probability": 0.981 + }, + { + "start": 5288.39, + "end": 5293.15, + "probability": 0.9962 + }, + { + "start": 5293.85, + "end": 5295.77, + "probability": 0.9892 + }, + { + "start": 5296.39, + "end": 5298.29, + "probability": 0.879 + }, + { + "start": 5299.63, + "end": 5301.67, + "probability": 0.9915 + }, + { + "start": 5302.21, + "end": 5303.27, + "probability": 0.8775 + }, + { + "start": 5304.13, + "end": 5310.43, + "probability": 0.9937 + }, + { + "start": 5311.07, + "end": 5311.83, + "probability": 0.8974 + }, + { + "start": 5312.83, + "end": 5319.27, + "probability": 0.9607 + }, + { + "start": 5320.43, + "end": 5322.13, + "probability": 0.9886 + }, + { + "start": 5322.67, + "end": 5329.03, + "probability": 0.9812 + }, + { + "start": 5329.65, + "end": 5333.97, + "probability": 0.9875 + }, + { + "start": 5334.51, + "end": 5335.95, + "probability": 0.9946 + }, + { + "start": 5337.29, + "end": 5342.81, + "probability": 0.9977 + }, + { + "start": 5343.35, + "end": 5345.09, + "probability": 0.9946 + }, + { + "start": 5346.05, + "end": 5351.81, + "probability": 0.9937 + }, + { + "start": 5352.35, + "end": 5353.15, + "probability": 0.8447 + }, + { + "start": 5354.03, + "end": 5354.85, + "probability": 0.964 + }, + { + "start": 5356.19, + "end": 5356.43, + "probability": 0.8149 + }, + { + "start": 5357.39, + "end": 5359.45, + "probability": 0.9368 + }, + { + "start": 5359.65, + "end": 5360.89, + "probability": 0.8896 + }, + { + "start": 5361.49, + "end": 5362.87, + "probability": 0.9492 + }, + { + "start": 5385.35, + "end": 5386.29, + "probability": 0.6307 + }, + { + "start": 5387.19, + "end": 5388.75, + "probability": 0.6948 + }, + { + "start": 5389.83, + "end": 5391.04, + "probability": 0.7428 + }, + { + "start": 5393.63, + "end": 5397.65, + "probability": 0.9977 + }, + { + "start": 5400.09, + "end": 5401.35, + "probability": 0.953 + }, + { + "start": 5402.97, + "end": 5406.63, + "probability": 0.9856 + }, + { + "start": 5408.53, + "end": 5410.69, + "probability": 0.9982 + }, + { + "start": 5411.83, + "end": 5413.19, + "probability": 0.9824 + }, + { + "start": 5414.61, + "end": 5416.21, + "probability": 0.936 + }, + { + "start": 5418.03, + "end": 5418.83, + "probability": 0.9717 + }, + { + "start": 5420.91, + "end": 5427.59, + "probability": 0.974 + }, + { + "start": 5428.87, + "end": 5429.73, + "probability": 0.7647 + }, + { + "start": 5430.63, + "end": 5435.05, + "probability": 0.9733 + }, + { + "start": 5436.37, + "end": 5439.05, + "probability": 0.999 + }, + { + "start": 5440.73, + "end": 5443.35, + "probability": 0.999 + }, + { + "start": 5445.63, + "end": 5449.13, + "probability": 0.8335 + }, + { + "start": 5451.05, + "end": 5452.27, + "probability": 0.8935 + }, + { + "start": 5453.87, + "end": 5455.81, + "probability": 0.6784 + }, + { + "start": 5457.15, + "end": 5458.77, + "probability": 0.6651 + }, + { + "start": 5459.81, + "end": 5461.61, + "probability": 0.8695 + }, + { + "start": 5462.61, + "end": 5465.77, + "probability": 0.9945 + }, + { + "start": 5466.73, + "end": 5468.85, + "probability": 0.9541 + }, + { + "start": 5469.75, + "end": 5473.13, + "probability": 0.947 + }, + { + "start": 5475.51, + "end": 5478.19, + "probability": 0.9072 + }, + { + "start": 5479.69, + "end": 5480.15, + "probability": 0.7161 + }, + { + "start": 5480.91, + "end": 5481.67, + "probability": 0.8877 + }, + { + "start": 5483.89, + "end": 5484.83, + "probability": 0.8844 + }, + { + "start": 5486.45, + "end": 5489.35, + "probability": 0.9686 + }, + { + "start": 5490.79, + "end": 5496.25, + "probability": 0.9979 + }, + { + "start": 5496.88, + "end": 5501.91, + "probability": 0.993 + }, + { + "start": 5503.37, + "end": 5506.93, + "probability": 0.9966 + }, + { + "start": 5508.49, + "end": 5511.25, + "probability": 0.9172 + }, + { + "start": 5513.05, + "end": 5516.68, + "probability": 0.8864 + }, + { + "start": 5517.55, + "end": 5521.03, + "probability": 0.9949 + }, + { + "start": 5523.41, + "end": 5525.77, + "probability": 0.9237 + }, + { + "start": 5528.61, + "end": 5531.97, + "probability": 0.7241 + }, + { + "start": 5533.39, + "end": 5534.21, + "probability": 0.9317 + }, + { + "start": 5535.21, + "end": 5538.07, + "probability": 0.9997 + }, + { + "start": 5539.45, + "end": 5541.23, + "probability": 0.994 + }, + { + "start": 5543.17, + "end": 5545.13, + "probability": 0.9889 + }, + { + "start": 5545.91, + "end": 5549.11, + "probability": 0.988 + }, + { + "start": 5550.57, + "end": 5551.13, + "probability": 0.8255 + }, + { + "start": 5553.21, + "end": 5553.31, + "probability": 0.148 + }, + { + "start": 5553.31, + "end": 5557.45, + "probability": 0.9946 + }, + { + "start": 5559.55, + "end": 5561.09, + "probability": 0.9157 + }, + { + "start": 5562.39, + "end": 5568.01, + "probability": 0.9731 + }, + { + "start": 5568.85, + "end": 5573.37, + "probability": 0.9976 + }, + { + "start": 5574.33, + "end": 5579.23, + "probability": 0.9976 + }, + { + "start": 5581.23, + "end": 5582.59, + "probability": 0.9618 + }, + { + "start": 5583.91, + "end": 5588.43, + "probability": 0.9908 + }, + { + "start": 5589.27, + "end": 5590.39, + "probability": 0.9834 + }, + { + "start": 5591.51, + "end": 5594.59, + "probability": 0.9634 + }, + { + "start": 5596.03, + "end": 5597.99, + "probability": 0.9351 + }, + { + "start": 5599.11, + "end": 5600.21, + "probability": 0.7652 + }, + { + "start": 5601.89, + "end": 5606.13, + "probability": 0.9939 + }, + { + "start": 5606.47, + "end": 5607.93, + "probability": 0.8432 + }, + { + "start": 5608.61, + "end": 5609.73, + "probability": 0.9257 + }, + { + "start": 5610.69, + "end": 5612.33, + "probability": 0.6698 + }, + { + "start": 5613.77, + "end": 5615.29, + "probability": 0.9178 + }, + { + "start": 5615.79, + "end": 5617.97, + "probability": 0.9991 + }, + { + "start": 5619.03, + "end": 5620.97, + "probability": 0.9996 + }, + { + "start": 5621.49, + "end": 5624.41, + "probability": 0.8833 + }, + { + "start": 5626.39, + "end": 5628.84, + "probability": 0.8961 + }, + { + "start": 5630.83, + "end": 5631.81, + "probability": 0.9654 + }, + { + "start": 5642.73, + "end": 5644.05, + "probability": 0.63 + }, + { + "start": 5645.61, + "end": 5648.67, + "probability": 0.8341 + }, + { + "start": 5649.99, + "end": 5651.33, + "probability": 0.9982 + }, + { + "start": 5651.41, + "end": 5652.18, + "probability": 0.9212 + }, + { + "start": 5652.53, + "end": 5653.37, + "probability": 0.8057 + }, + { + "start": 5654.67, + "end": 5661.13, + "probability": 0.9806 + }, + { + "start": 5661.13, + "end": 5661.43, + "probability": 0.1419 + }, + { + "start": 5663.39, + "end": 5664.85, + "probability": 0.6409 + }, + { + "start": 5666.51, + "end": 5672.29, + "probability": 0.9943 + }, + { + "start": 5673.53, + "end": 5676.13, + "probability": 0.9979 + }, + { + "start": 5677.01, + "end": 5679.83, + "probability": 0.8856 + }, + { + "start": 5680.39, + "end": 5683.39, + "probability": 0.7903 + }, + { + "start": 5684.49, + "end": 5687.93, + "probability": 0.8928 + }, + { + "start": 5687.93, + "end": 5693.23, + "probability": 0.9936 + }, + { + "start": 5693.91, + "end": 5696.95, + "probability": 0.9756 + }, + { + "start": 5698.07, + "end": 5698.52, + "probability": 0.998 + }, + { + "start": 5699.43, + "end": 5701.39, + "probability": 0.9823 + }, + { + "start": 5702.35, + "end": 5704.79, + "probability": 0.732 + }, + { + "start": 5706.07, + "end": 5708.29, + "probability": 0.9357 + }, + { + "start": 5709.25, + "end": 5710.61, + "probability": 0.9225 + }, + { + "start": 5713.67, + "end": 5716.23, + "probability": 0.7225 + }, + { + "start": 5716.85, + "end": 5719.71, + "probability": 0.9435 + }, + { + "start": 5720.23, + "end": 5722.67, + "probability": 0.9544 + }, + { + "start": 5723.55, + "end": 5724.73, + "probability": 0.9894 + }, + { + "start": 5725.35, + "end": 5727.29, + "probability": 0.5371 + }, + { + "start": 5727.89, + "end": 5730.01, + "probability": 0.8021 + }, + { + "start": 5730.61, + "end": 5733.23, + "probability": 0.9551 + }, + { + "start": 5733.61, + "end": 5734.39, + "probability": 0.6156 + }, + { + "start": 5734.63, + "end": 5737.37, + "probability": 0.9395 + }, + { + "start": 5737.93, + "end": 5742.77, + "probability": 0.9315 + }, + { + "start": 5743.67, + "end": 5745.77, + "probability": 0.7881 + }, + { + "start": 5746.39, + "end": 5747.95, + "probability": 0.9171 + }, + { + "start": 5748.73, + "end": 5752.25, + "probability": 0.9636 + }, + { + "start": 5753.43, + "end": 5756.39, + "probability": 0.8229 + }, + { + "start": 5757.09, + "end": 5760.07, + "probability": 0.9899 + }, + { + "start": 5763.47, + "end": 5764.45, + "probability": 0.6813 + }, + { + "start": 5765.61, + "end": 5768.73, + "probability": 0.9974 + }, + { + "start": 5769.45, + "end": 5770.41, + "probability": 0.9753 + }, + { + "start": 5771.21, + "end": 5772.29, + "probability": 0.9541 + }, + { + "start": 5772.41, + "end": 5776.83, + "probability": 0.8694 + }, + { + "start": 5778.13, + "end": 5779.23, + "probability": 0.9875 + }, + { + "start": 5779.69, + "end": 5781.55, + "probability": 0.9371 + }, + { + "start": 5783.19, + "end": 5785.75, + "probability": 0.7483 + }, + { + "start": 5786.13, + "end": 5786.97, + "probability": 0.5201 + }, + { + "start": 5787.05, + "end": 5787.71, + "probability": 0.7925 + }, + { + "start": 5788.15, + "end": 5789.35, + "probability": 0.9383 + }, + { + "start": 5790.07, + "end": 5791.26, + "probability": 0.9941 + }, + { + "start": 5792.09, + "end": 5794.27, + "probability": 0.9848 + }, + { + "start": 5794.75, + "end": 5796.61, + "probability": 0.9863 + }, + { + "start": 5797.53, + "end": 5803.19, + "probability": 0.996 + }, + { + "start": 5803.69, + "end": 5805.95, + "probability": 0.9794 + }, + { + "start": 5806.65, + "end": 5807.51, + "probability": 0.7591 + }, + { + "start": 5808.19, + "end": 5809.53, + "probability": 0.9937 + }, + { + "start": 5812.81, + "end": 5815.71, + "probability": 0.9527 + }, + { + "start": 5817.21, + "end": 5819.23, + "probability": 0.84 + }, + { + "start": 5819.29, + "end": 5820.95, + "probability": 0.917 + }, + { + "start": 5822.81, + "end": 5824.79, + "probability": 0.7503 + }, + { + "start": 5826.17, + "end": 5829.05, + "probability": 0.965 + }, + { + "start": 5830.93, + "end": 5831.71, + "probability": 0.8513 + }, + { + "start": 5833.51, + "end": 5834.81, + "probability": 0.9844 + }, + { + "start": 5834.95, + "end": 5835.83, + "probability": 0.9211 + }, + { + "start": 5835.91, + "end": 5840.08, + "probability": 0.9733 + }, + { + "start": 5842.13, + "end": 5845.61, + "probability": 0.9987 + }, + { + "start": 5848.77, + "end": 5850.29, + "probability": 0.8395 + }, + { + "start": 5851.31, + "end": 5853.87, + "probability": 0.8983 + }, + { + "start": 5854.89, + "end": 5856.13, + "probability": 0.892 + }, + { + "start": 5860.39, + "end": 5861.29, + "probability": 0.6256 + }, + { + "start": 5862.45, + "end": 5864.31, + "probability": 0.9729 + }, + { + "start": 5865.23, + "end": 5867.57, + "probability": 0.9919 + }, + { + "start": 5869.49, + "end": 5874.67, + "probability": 0.9947 + }, + { + "start": 5874.67, + "end": 5878.19, + "probability": 0.9828 + }, + { + "start": 5879.23, + "end": 5879.97, + "probability": 0.9316 + }, + { + "start": 5880.81, + "end": 5881.39, + "probability": 0.8968 + }, + { + "start": 5883.73, + "end": 5884.69, + "probability": 0.912 + }, + { + "start": 5885.37, + "end": 5886.69, + "probability": 0.8237 + }, + { + "start": 5887.55, + "end": 5889.23, + "probability": 0.9224 + }, + { + "start": 5889.77, + "end": 5890.69, + "probability": 0.9794 + }, + { + "start": 5891.81, + "end": 5893.81, + "probability": 0.9963 + }, + { + "start": 5895.95, + "end": 5900.27, + "probability": 0.9956 + }, + { + "start": 5901.07, + "end": 5902.23, + "probability": 0.8975 + }, + { + "start": 5903.01, + "end": 5904.29, + "probability": 0.9882 + }, + { + "start": 5905.51, + "end": 5909.05, + "probability": 0.998 + }, + { + "start": 5909.67, + "end": 5911.83, + "probability": 0.995 + }, + { + "start": 5912.73, + "end": 5914.33, + "probability": 0.9655 + }, + { + "start": 5914.89, + "end": 5918.41, + "probability": 0.7847 + }, + { + "start": 5918.99, + "end": 5920.05, + "probability": 0.9209 + }, + { + "start": 5920.69, + "end": 5922.89, + "probability": 0.9884 + }, + { + "start": 5923.63, + "end": 5927.43, + "probability": 0.9265 + }, + { + "start": 5928.35, + "end": 5931.47, + "probability": 0.9733 + }, + { + "start": 5932.55, + "end": 5937.87, + "probability": 0.9958 + }, + { + "start": 5938.79, + "end": 5940.81, + "probability": 0.9318 + }, + { + "start": 5941.43, + "end": 5943.0, + "probability": 0.8404 + }, + { + "start": 5944.17, + "end": 5946.21, + "probability": 0.9907 + }, + { + "start": 5946.69, + "end": 5950.49, + "probability": 0.9756 + }, + { + "start": 5951.11, + "end": 5953.25, + "probability": 0.916 + }, + { + "start": 5953.83, + "end": 5959.65, + "probability": 0.9668 + }, + { + "start": 5959.91, + "end": 5960.31, + "probability": 0.7748 + }, + { + "start": 5961.23, + "end": 5963.75, + "probability": 0.6908 + }, + { + "start": 5963.91, + "end": 5968.69, + "probability": 0.9836 + }, + { + "start": 5969.23, + "end": 5970.17, + "probability": 0.8977 + }, + { + "start": 5970.89, + "end": 5974.37, + "probability": 0.8614 + }, + { + "start": 5975.05, + "end": 5975.87, + "probability": 0.7476 + }, + { + "start": 5976.51, + "end": 5977.53, + "probability": 0.4665 + }, + { + "start": 5978.07, + "end": 5982.33, + "probability": 0.9626 + }, + { + "start": 5982.67, + "end": 5983.37, + "probability": 0.6725 + }, + { + "start": 5983.69, + "end": 5984.45, + "probability": 0.4929 + }, + { + "start": 5985.37, + "end": 5992.97, + "probability": 0.7156 + }, + { + "start": 5994.73, + "end": 5995.78, + "probability": 0.1713 + } + ], + "segments_count": 1521, + "words_count": 7070, + "avg_words_per_segment": 4.6483, + "avg_segment_duration": 2.076, + "avg_words_per_minute": 68.3128, + "plenum_id": "1436", + "duration": 6209.67, + "title": null, + "plenum_date": "2009-03-30" +} \ No newline at end of file