diff --git "a/24966/metadata.json" "b/24966/metadata.json" new file mode 100644--- /dev/null +++ "b/24966/metadata.json" @@ -0,0 +1,62287 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "24966", + "quality_score": 0.904, + "per_segment_quality_scores": [ + { + "start": 51.01, + "end": 56.26, + "probability": 0.0635 + }, + { + "start": 56.26, + "end": 59.7, + "probability": 0.4624 + }, + { + "start": 59.7, + "end": 64.06, + "probability": 0.9892 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 120.0, + "end": 120.0, + "probability": 0.0 + }, + { + "start": 122.3, + "end": 128.28, + "probability": 0.705 + }, + { + "start": 128.92, + "end": 130.52, + "probability": 0.7665 + }, + { + "start": 130.68, + "end": 137.4, + "probability": 0.9529 + }, + { + "start": 138.02, + "end": 138.79, + "probability": 0.8331 + }, + { + "start": 138.86, + "end": 144.22, + "probability": 0.8245 + }, + { + "start": 144.62, + "end": 145.5, + "probability": 0.7764 + }, + { + "start": 145.56, + "end": 146.88, + "probability": 0.4884 + }, + { + "start": 147.34, + "end": 148.22, + "probability": 0.7534 + }, + { + "start": 148.76, + "end": 152.98, + "probability": 0.7831 + }, + { + "start": 153.4, + "end": 159.3, + "probability": 0.924 + }, + { + "start": 159.36, + "end": 164.8, + "probability": 0.9829 + }, + { + "start": 165.2, + "end": 168.6, + "probability": 0.978 + }, + { + "start": 169.16, + "end": 170.36, + "probability": 0.9574 + }, + { + "start": 170.86, + "end": 176.5, + "probability": 0.9849 + }, + { + "start": 176.5, + "end": 180.42, + "probability": 0.9741 + }, + { + "start": 180.84, + "end": 182.82, + "probability": 0.6275 + }, + { + "start": 182.96, + "end": 184.22, + "probability": 0.935 + }, + { + "start": 184.9, + "end": 188.16, + "probability": 0.9037 + }, + { + "start": 188.7, + "end": 191.22, + "probability": 0.918 + }, + { + "start": 192.02, + "end": 194.28, + "probability": 0.9927 + }, + { + "start": 194.72, + "end": 195.32, + "probability": 0.6746 + }, + { + "start": 196.08, + "end": 196.84, + "probability": 0.7486 + }, + { + "start": 198.96, + "end": 200.16, + "probability": 0.7282 + }, + { + "start": 200.42, + "end": 204.94, + "probability": 0.1157 + }, + { + "start": 206.78, + "end": 206.9, + "probability": 0.0704 + }, + { + "start": 206.9, + "end": 208.86, + "probability": 0.7184 + }, + { + "start": 209.2, + "end": 212.38, + "probability": 0.9173 + }, + { + "start": 212.78, + "end": 213.38, + "probability": 0.3088 + }, + { + "start": 213.48, + "end": 218.54, + "probability": 0.7499 + }, + { + "start": 218.84, + "end": 220.7, + "probability": 0.9569 + }, + { + "start": 221.04, + "end": 227.04, + "probability": 0.978 + }, + { + "start": 227.6, + "end": 230.38, + "probability": 0.9875 + }, + { + "start": 230.86, + "end": 233.1, + "probability": 0.9881 + }, + { + "start": 233.58, + "end": 236.84, + "probability": 0.9855 + }, + { + "start": 237.6, + "end": 238.4, + "probability": 0.9438 + }, + { + "start": 241.14, + "end": 243.34, + "probability": 0.7749 + }, + { + "start": 243.4, + "end": 243.86, + "probability": 0.8046 + }, + { + "start": 243.86, + "end": 245.14, + "probability": 0.8719 + }, + { + "start": 245.14, + "end": 245.96, + "probability": 0.4205 + }, + { + "start": 246.08, + "end": 251.54, + "probability": 0.9929 + }, + { + "start": 251.7, + "end": 252.12, + "probability": 0.355 + }, + { + "start": 252.48, + "end": 254.98, + "probability": 0.8901 + }, + { + "start": 255.06, + "end": 260.7, + "probability": 0.6829 + }, + { + "start": 260.84, + "end": 262.5, + "probability": 0.0664 + }, + { + "start": 263.02, + "end": 263.54, + "probability": 0.2435 + }, + { + "start": 263.54, + "end": 266.56, + "probability": 0.463 + }, + { + "start": 268.02, + "end": 268.02, + "probability": 0.1953 + }, + { + "start": 268.02, + "end": 268.02, + "probability": 0.1386 + }, + { + "start": 268.02, + "end": 268.02, + "probability": 0.1323 + }, + { + "start": 268.02, + "end": 268.02, + "probability": 0.1299 + }, + { + "start": 268.02, + "end": 270.38, + "probability": 0.8941 + }, + { + "start": 270.96, + "end": 273.02, + "probability": 0.9936 + }, + { + "start": 273.82, + "end": 277.44, + "probability": 0.493 + }, + { + "start": 279.7, + "end": 280.48, + "probability": 0.4634 + }, + { + "start": 280.58, + "end": 281.34, + "probability": 0.9505 + }, + { + "start": 281.44, + "end": 282.48, + "probability": 0.9112 + }, + { + "start": 282.52, + "end": 285.4, + "probability": 0.9927 + }, + { + "start": 286.9, + "end": 289.96, + "probability": 0.9899 + }, + { + "start": 290.18, + "end": 293.16, + "probability": 0.6938 + }, + { + "start": 294.64, + "end": 298.96, + "probability": 0.9215 + }, + { + "start": 300.8, + "end": 305.4, + "probability": 0.9547 + }, + { + "start": 306.58, + "end": 310.72, + "probability": 0.8818 + }, + { + "start": 310.78, + "end": 314.82, + "probability": 0.9634 + }, + { + "start": 314.82, + "end": 318.9, + "probability": 0.9427 + }, + { + "start": 320.94, + "end": 325.14, + "probability": 0.8611 + }, + { + "start": 326.28, + "end": 328.68, + "probability": 0.7515 + }, + { + "start": 331.18, + "end": 331.82, + "probability": 0.9412 + }, + { + "start": 332.58, + "end": 333.36, + "probability": 0.9915 + }, + { + "start": 334.18, + "end": 334.8, + "probability": 0.8479 + }, + { + "start": 336.88, + "end": 337.36, + "probability": 0.7961 + }, + { + "start": 337.46, + "end": 340.24, + "probability": 0.9851 + }, + { + "start": 341.96, + "end": 342.94, + "probability": 0.5098 + }, + { + "start": 342.94, + "end": 346.62, + "probability": 0.7818 + }, + { + "start": 347.28, + "end": 351.88, + "probability": 0.9868 + }, + { + "start": 351.88, + "end": 356.06, + "probability": 0.995 + }, + { + "start": 356.96, + "end": 361.66, + "probability": 0.9965 + }, + { + "start": 362.54, + "end": 364.72, + "probability": 0.59 + }, + { + "start": 365.9, + "end": 367.22, + "probability": 0.8521 + }, + { + "start": 369.72, + "end": 372.52, + "probability": 0.9879 + }, + { + "start": 372.52, + "end": 376.7, + "probability": 0.9812 + }, + { + "start": 377.66, + "end": 380.62, + "probability": 0.9539 + }, + { + "start": 380.78, + "end": 381.66, + "probability": 0.9294 + }, + { + "start": 382.4, + "end": 384.15, + "probability": 0.9136 + }, + { + "start": 384.5, + "end": 388.0, + "probability": 0.975 + }, + { + "start": 389.14, + "end": 390.06, + "probability": 0.7716 + }, + { + "start": 391.62, + "end": 392.52, + "probability": 0.7542 + }, + { + "start": 392.66, + "end": 396.03, + "probability": 0.9333 + }, + { + "start": 396.68, + "end": 397.54, + "probability": 0.1766 + }, + { + "start": 397.76, + "end": 401.94, + "probability": 0.5234 + }, + { + "start": 403.62, + "end": 404.8, + "probability": 0.946 + }, + { + "start": 404.88, + "end": 408.22, + "probability": 0.9956 + }, + { + "start": 409.12, + "end": 409.48, + "probability": 0.4985 + }, + { + "start": 409.62, + "end": 411.96, + "probability": 0.9864 + }, + { + "start": 411.96, + "end": 416.06, + "probability": 0.9878 + }, + { + "start": 416.94, + "end": 417.68, + "probability": 0.8846 + }, + { + "start": 417.84, + "end": 420.06, + "probability": 0.778 + }, + { + "start": 420.52, + "end": 422.24, + "probability": 0.535 + }, + { + "start": 422.96, + "end": 426.9, + "probability": 0.9901 + }, + { + "start": 427.84, + "end": 430.22, + "probability": 0.858 + }, + { + "start": 432.42, + "end": 434.84, + "probability": 0.9717 + }, + { + "start": 434.84, + "end": 437.74, + "probability": 0.9736 + }, + { + "start": 438.76, + "end": 444.62, + "probability": 0.9701 + }, + { + "start": 445.82, + "end": 447.96, + "probability": 0.9952 + }, + { + "start": 447.96, + "end": 451.64, + "probability": 0.9707 + }, + { + "start": 452.32, + "end": 453.02, + "probability": 0.7124 + }, + { + "start": 454.66, + "end": 455.8, + "probability": 0.8486 + }, + { + "start": 457.3, + "end": 459.2, + "probability": 0.7364 + }, + { + "start": 459.56, + "end": 461.28, + "probability": 0.8486 + }, + { + "start": 462.18, + "end": 462.72, + "probability": 0.8856 + }, + { + "start": 463.16, + "end": 466.6, + "probability": 0.9873 + }, + { + "start": 467.3, + "end": 470.02, + "probability": 0.8558 + }, + { + "start": 471.12, + "end": 473.62, + "probability": 0.4867 + }, + { + "start": 474.14, + "end": 479.08, + "probability": 0.9763 + }, + { + "start": 480.98, + "end": 481.74, + "probability": 0.6442 + }, + { + "start": 481.86, + "end": 482.44, + "probability": 0.8374 + }, + { + "start": 482.94, + "end": 484.0, + "probability": 0.8972 + }, + { + "start": 485.88, + "end": 490.16, + "probability": 0.9939 + }, + { + "start": 490.86, + "end": 494.88, + "probability": 0.8919 + }, + { + "start": 494.88, + "end": 498.38, + "probability": 0.9968 + }, + { + "start": 499.46, + "end": 506.02, + "probability": 0.8227 + }, + { + "start": 506.02, + "end": 510.38, + "probability": 0.9224 + }, + { + "start": 511.54, + "end": 514.88, + "probability": 0.7515 + }, + { + "start": 516.82, + "end": 519.84, + "probability": 0.7657 + }, + { + "start": 519.92, + "end": 521.34, + "probability": 0.5776 + }, + { + "start": 521.9, + "end": 524.14, + "probability": 0.8511 + }, + { + "start": 525.1, + "end": 526.46, + "probability": 0.9745 + }, + { + "start": 526.92, + "end": 527.34, + "probability": 0.3415 + }, + { + "start": 530.3, + "end": 532.36, + "probability": 0.7387 + }, + { + "start": 532.56, + "end": 538.78, + "probability": 0.994 + }, + { + "start": 538.78, + "end": 543.68, + "probability": 0.9939 + }, + { + "start": 544.16, + "end": 547.39, + "probability": 0.7169 + }, + { + "start": 549.96, + "end": 554.34, + "probability": 0.8262 + }, + { + "start": 555.16, + "end": 558.14, + "probability": 0.9025 + }, + { + "start": 558.3, + "end": 560.63, + "probability": 0.8359 + }, + { + "start": 560.94, + "end": 562.12, + "probability": 0.584 + }, + { + "start": 563.96, + "end": 565.2, + "probability": 0.8579 + }, + { + "start": 565.38, + "end": 568.68, + "probability": 0.8554 + }, + { + "start": 569.3, + "end": 573.64, + "probability": 0.9062 + }, + { + "start": 574.16, + "end": 576.94, + "probability": 0.7676 + }, + { + "start": 578.1, + "end": 578.86, + "probability": 0.4839 + }, + { + "start": 578.9, + "end": 579.86, + "probability": 0.4221 + }, + { + "start": 579.98, + "end": 586.24, + "probability": 0.9292 + }, + { + "start": 586.24, + "end": 591.44, + "probability": 0.9753 + }, + { + "start": 591.44, + "end": 598.24, + "probability": 0.8882 + }, + { + "start": 599.48, + "end": 606.28, + "probability": 0.8399 + }, + { + "start": 606.28, + "end": 610.82, + "probability": 0.9648 + }, + { + "start": 611.22, + "end": 614.12, + "probability": 0.9173 + }, + { + "start": 614.12, + "end": 615.98, + "probability": 0.9734 + }, + { + "start": 616.56, + "end": 619.9, + "probability": 0.9875 + }, + { + "start": 619.9, + "end": 624.66, + "probability": 0.7542 + }, + { + "start": 624.66, + "end": 629.68, + "probability": 0.9565 + }, + { + "start": 629.78, + "end": 632.04, + "probability": 0.9865 + }, + { + "start": 632.04, + "end": 634.26, + "probability": 0.9901 + }, + { + "start": 635.66, + "end": 637.74, + "probability": 0.9834 + }, + { + "start": 638.15, + "end": 641.38, + "probability": 0.6366 + }, + { + "start": 641.4, + "end": 641.9, + "probability": 0.8688 + }, + { + "start": 642.58, + "end": 645.72, + "probability": 0.9503 + }, + { + "start": 645.72, + "end": 647.92, + "probability": 0.8042 + }, + { + "start": 649.3, + "end": 650.58, + "probability": 0.7073 + }, + { + "start": 651.74, + "end": 656.14, + "probability": 0.7308 + }, + { + "start": 656.14, + "end": 662.12, + "probability": 0.9648 + }, + { + "start": 662.12, + "end": 668.1, + "probability": 0.9983 + }, + { + "start": 669.14, + "end": 669.8, + "probability": 0.738 + }, + { + "start": 671.04, + "end": 671.82, + "probability": 0.7653 + }, + { + "start": 671.9, + "end": 672.56, + "probability": 0.7197 + }, + { + "start": 673.75, + "end": 676.96, + "probability": 0.9736 + }, + { + "start": 677.6, + "end": 681.22, + "probability": 0.9583 + }, + { + "start": 682.52, + "end": 682.98, + "probability": 0.5742 + }, + { + "start": 683.08, + "end": 683.54, + "probability": 0.5064 + }, + { + "start": 683.64, + "end": 687.56, + "probability": 0.8855 + }, + { + "start": 688.64, + "end": 689.16, + "probability": 0.4617 + }, + { + "start": 689.18, + "end": 692.36, + "probability": 0.9005 + }, + { + "start": 694.78, + "end": 695.32, + "probability": 0.0049 + }, + { + "start": 695.34, + "end": 695.58, + "probability": 0.018 + }, + { + "start": 695.72, + "end": 696.04, + "probability": 0.1673 + }, + { + "start": 696.32, + "end": 697.78, + "probability": 0.8669 + }, + { + "start": 697.78, + "end": 701.34, + "probability": 0.3607 + }, + { + "start": 702.0, + "end": 703.54, + "probability": 0.9495 + }, + { + "start": 703.54, + "end": 705.86, + "probability": 0.7458 + }, + { + "start": 706.4, + "end": 706.76, + "probability": 0.657 + }, + { + "start": 706.86, + "end": 710.5, + "probability": 0.9266 + }, + { + "start": 711.12, + "end": 713.24, + "probability": 0.8859 + }, + { + "start": 714.5, + "end": 715.34, + "probability": 0.5609 + }, + { + "start": 716.12, + "end": 721.12, + "probability": 0.7745 + }, + { + "start": 721.82, + "end": 723.28, + "probability": 0.7999 + }, + { + "start": 723.28, + "end": 728.98, + "probability": 0.9001 + }, + { + "start": 728.98, + "end": 732.98, + "probability": 0.8638 + }, + { + "start": 733.8, + "end": 737.3, + "probability": 0.8174 + }, + { + "start": 737.88, + "end": 740.21, + "probability": 0.9146 + }, + { + "start": 741.22, + "end": 743.3, + "probability": 0.984 + }, + { + "start": 743.94, + "end": 750.06, + "probability": 0.7493 + }, + { + "start": 750.06, + "end": 754.12, + "probability": 0.7519 + }, + { + "start": 754.86, + "end": 759.58, + "probability": 0.9392 + }, + { + "start": 759.72, + "end": 761.98, + "probability": 0.8859 + }, + { + "start": 762.16, + "end": 762.96, + "probability": 0.6856 + }, + { + "start": 764.44, + "end": 764.56, + "probability": 0.686 + }, + { + "start": 765.14, + "end": 765.96, + "probability": 0.8701 + }, + { + "start": 766.14, + "end": 768.04, + "probability": 0.9927 + }, + { + "start": 768.06, + "end": 768.86, + "probability": 0.907 + }, + { + "start": 769.82, + "end": 773.4, + "probability": 0.8878 + }, + { + "start": 773.6, + "end": 778.56, + "probability": 0.9796 + }, + { + "start": 779.02, + "end": 782.04, + "probability": 0.5106 + }, + { + "start": 782.04, + "end": 782.28, + "probability": 0.4832 + }, + { + "start": 782.44, + "end": 783.54, + "probability": 0.7493 + }, + { + "start": 784.52, + "end": 786.02, + "probability": 0.6755 + }, + { + "start": 786.02, + "end": 787.94, + "probability": 0.655 + }, + { + "start": 788.96, + "end": 791.24, + "probability": 0.7323 + }, + { + "start": 791.26, + "end": 792.3, + "probability": 0.9487 + }, + { + "start": 792.36, + "end": 793.14, + "probability": 0.7344 + }, + { + "start": 793.24, + "end": 797.68, + "probability": 0.9833 + }, + { + "start": 798.24, + "end": 799.74, + "probability": 0.998 + }, + { + "start": 800.38, + "end": 800.56, + "probability": 0.0957 + }, + { + "start": 800.56, + "end": 800.92, + "probability": 0.2829 + }, + { + "start": 801.06, + "end": 803.72, + "probability": 0.8933 + }, + { + "start": 803.82, + "end": 806.94, + "probability": 0.8471 + }, + { + "start": 808.32, + "end": 811.3, + "probability": 0.0164 + }, + { + "start": 811.3, + "end": 811.3, + "probability": 0.1242 + }, + { + "start": 811.3, + "end": 811.52, + "probability": 0.0761 + }, + { + "start": 811.52, + "end": 812.26, + "probability": 0.1987 + }, + { + "start": 812.4, + "end": 813.12, + "probability": 0.5124 + }, + { + "start": 813.46, + "end": 814.46, + "probability": 0.6642 + }, + { + "start": 814.6, + "end": 816.48, + "probability": 0.9654 + }, + { + "start": 817.24, + "end": 822.24, + "probability": 0.9854 + }, + { + "start": 822.72, + "end": 827.78, + "probability": 0.937 + }, + { + "start": 828.12, + "end": 829.68, + "probability": 0.8843 + }, + { + "start": 829.98, + "end": 835.96, + "probability": 0.986 + }, + { + "start": 836.62, + "end": 839.6, + "probability": 0.9917 + }, + { + "start": 840.12, + "end": 842.12, + "probability": 0.8403 + }, + { + "start": 842.88, + "end": 846.0, + "probability": 0.9805 + }, + { + "start": 846.38, + "end": 849.38, + "probability": 0.8055 + }, + { + "start": 849.38, + "end": 851.8, + "probability": 0.8619 + }, + { + "start": 852.32, + "end": 856.32, + "probability": 0.7863 + }, + { + "start": 856.86, + "end": 857.4, + "probability": 0.684 + }, + { + "start": 857.56, + "end": 860.54, + "probability": 0.8059 + }, + { + "start": 861.04, + "end": 863.62, + "probability": 0.8754 + }, + { + "start": 864.0, + "end": 865.32, + "probability": 0.5771 + }, + { + "start": 865.44, + "end": 867.94, + "probability": 0.9354 + }, + { + "start": 868.12, + "end": 869.02, + "probability": 0.4062 + }, + { + "start": 869.08, + "end": 870.16, + "probability": 0.9097 + }, + { + "start": 870.64, + "end": 872.0, + "probability": 0.8227 + }, + { + "start": 872.8, + "end": 873.1, + "probability": 0.8964 + }, + { + "start": 873.44, + "end": 875.84, + "probability": 0.8299 + }, + { + "start": 876.42, + "end": 880.22, + "probability": 0.9009 + }, + { + "start": 881.04, + "end": 883.3, + "probability": 0.9988 + }, + { + "start": 883.84, + "end": 887.72, + "probability": 0.9994 + }, + { + "start": 888.32, + "end": 892.78, + "probability": 0.9963 + }, + { + "start": 893.58, + "end": 896.08, + "probability": 0.7809 + }, + { + "start": 897.06, + "end": 898.86, + "probability": 0.82 + }, + { + "start": 900.18, + "end": 905.18, + "probability": 0.9921 + }, + { + "start": 905.6, + "end": 908.0, + "probability": 0.9974 + }, + { + "start": 908.34, + "end": 911.66, + "probability": 0.9968 + }, + { + "start": 912.36, + "end": 915.72, + "probability": 0.9971 + }, + { + "start": 915.72, + "end": 919.18, + "probability": 0.9949 + }, + { + "start": 919.18, + "end": 920.04, + "probability": 0.9313 + }, + { + "start": 920.14, + "end": 921.34, + "probability": 0.9467 + }, + { + "start": 921.42, + "end": 922.44, + "probability": 0.9698 + }, + { + "start": 922.62, + "end": 923.42, + "probability": 0.7791 + }, + { + "start": 923.6, + "end": 925.66, + "probability": 0.9659 + }, + { + "start": 925.8, + "end": 929.04, + "probability": 0.9941 + }, + { + "start": 929.04, + "end": 933.0, + "probability": 0.9927 + }, + { + "start": 933.1, + "end": 934.66, + "probability": 0.9967 + }, + { + "start": 934.98, + "end": 936.52, + "probability": 0.9924 + }, + { + "start": 936.72, + "end": 938.14, + "probability": 0.709 + }, + { + "start": 938.3, + "end": 941.58, + "probability": 0.916 + }, + { + "start": 941.66, + "end": 942.0, + "probability": 0.7085 + }, + { + "start": 942.34, + "end": 943.22, + "probability": 0.8033 + }, + { + "start": 943.22, + "end": 943.22, + "probability": 0.311 + }, + { + "start": 943.22, + "end": 943.84, + "probability": 0.9542 + }, + { + "start": 944.86, + "end": 949.18, + "probability": 0.994 + }, + { + "start": 949.18, + "end": 952.9, + "probability": 0.9454 + }, + { + "start": 953.5, + "end": 956.74, + "probability": 0.7106 + }, + { + "start": 957.42, + "end": 961.38, + "probability": 0.9448 + }, + { + "start": 962.0, + "end": 965.32, + "probability": 0.7738 + }, + { + "start": 966.0, + "end": 969.14, + "probability": 0.994 + }, + { + "start": 969.14, + "end": 970.0, + "probability": 0.9014 + }, + { + "start": 970.14, + "end": 972.18, + "probability": 0.9955 + }, + { + "start": 972.66, + "end": 975.1, + "probability": 0.9967 + }, + { + "start": 975.54, + "end": 977.92, + "probability": 0.9902 + }, + { + "start": 978.08, + "end": 978.36, + "probability": 0.8972 + }, + { + "start": 978.46, + "end": 979.16, + "probability": 0.8087 + }, + { + "start": 979.42, + "end": 981.22, + "probability": 0.9902 + }, + { + "start": 982.44, + "end": 986.18, + "probability": 0.9983 + }, + { + "start": 986.18, + "end": 990.5, + "probability": 0.9955 + }, + { + "start": 991.0, + "end": 992.64, + "probability": 0.9884 + }, + { + "start": 992.68, + "end": 994.88, + "probability": 0.9865 + }, + { + "start": 995.54, + "end": 998.28, + "probability": 0.988 + }, + { + "start": 998.88, + "end": 1003.28, + "probability": 0.9897 + }, + { + "start": 1003.28, + "end": 1007.68, + "probability": 0.9979 + }, + { + "start": 1008.24, + "end": 1008.6, + "probability": 0.3586 + }, + { + "start": 1008.66, + "end": 1010.18, + "probability": 0.8925 + }, + { + "start": 1010.3, + "end": 1010.76, + "probability": 0.8243 + }, + { + "start": 1010.86, + "end": 1011.74, + "probability": 0.8824 + }, + { + "start": 1012.06, + "end": 1013.26, + "probability": 0.8026 + }, + { + "start": 1013.4, + "end": 1014.96, + "probability": 0.8459 + }, + { + "start": 1015.44, + "end": 1019.5, + "probability": 0.9754 + }, + { + "start": 1019.72, + "end": 1021.88, + "probability": 0.9782 + }, + { + "start": 1022.24, + "end": 1023.34, + "probability": 0.8879 + }, + { + "start": 1023.54, + "end": 1024.56, + "probability": 0.7704 + }, + { + "start": 1025.02, + "end": 1029.08, + "probability": 0.8379 + }, + { + "start": 1029.44, + "end": 1035.04, + "probability": 0.9872 + }, + { + "start": 1035.22, + "end": 1040.52, + "probability": 0.8921 + }, + { + "start": 1040.86, + "end": 1043.74, + "probability": 0.9939 + }, + { + "start": 1044.36, + "end": 1045.76, + "probability": 0.6876 + }, + { + "start": 1046.28, + "end": 1049.42, + "probability": 0.9949 + }, + { + "start": 1049.92, + "end": 1051.26, + "probability": 0.8622 + }, + { + "start": 1051.34, + "end": 1053.14, + "probability": 0.9758 + }, + { + "start": 1053.64, + "end": 1055.86, + "probability": 0.9878 + }, + { + "start": 1055.86, + "end": 1057.7, + "probability": 0.9971 + }, + { + "start": 1059.12, + "end": 1061.94, + "probability": 0.7027 + }, + { + "start": 1062.74, + "end": 1064.5, + "probability": 0.9673 + }, + { + "start": 1064.84, + "end": 1066.36, + "probability": 0.644 + }, + { + "start": 1066.42, + "end": 1068.68, + "probability": 0.9845 + }, + { + "start": 1069.48, + "end": 1070.16, + "probability": 0.9509 + }, + { + "start": 1070.28, + "end": 1073.28, + "probability": 0.998 + }, + { + "start": 1073.74, + "end": 1077.34, + "probability": 0.972 + }, + { + "start": 1077.96, + "end": 1082.66, + "probability": 0.9363 + }, + { + "start": 1083.56, + "end": 1086.8, + "probability": 0.8879 + }, + { + "start": 1086.94, + "end": 1088.58, + "probability": 0.968 + }, + { + "start": 1089.14, + "end": 1090.2, + "probability": 0.7432 + }, + { + "start": 1090.28, + "end": 1093.1, + "probability": 0.9233 + }, + { + "start": 1093.16, + "end": 1094.6, + "probability": 0.9783 + }, + { + "start": 1094.9, + "end": 1096.9, + "probability": 0.9045 + }, + { + "start": 1097.2, + "end": 1097.58, + "probability": 0.855 + }, + { + "start": 1097.96, + "end": 1100.86, + "probability": 0.9731 + }, + { + "start": 1102.02, + "end": 1104.78, + "probability": 0.9985 + }, + { + "start": 1104.78, + "end": 1107.86, + "probability": 0.832 + }, + { + "start": 1108.34, + "end": 1111.54, + "probability": 0.8744 + }, + { + "start": 1112.28, + "end": 1113.79, + "probability": 0.7456 + }, + { + "start": 1114.8, + "end": 1115.29, + "probability": 0.4323 + }, + { + "start": 1116.0, + "end": 1117.42, + "probability": 0.7136 + }, + { + "start": 1117.52, + "end": 1119.36, + "probability": 0.8014 + }, + { + "start": 1119.48, + "end": 1120.25, + "probability": 0.9053 + }, + { + "start": 1122.52, + "end": 1123.72, + "probability": 0.7742 + }, + { + "start": 1123.84, + "end": 1124.18, + "probability": 0.0255 + }, + { + "start": 1124.52, + "end": 1125.72, + "probability": 0.7408 + }, + { + "start": 1125.76, + "end": 1126.51, + "probability": 0.8784 + }, + { + "start": 1126.78, + "end": 1127.88, + "probability": 0.907 + }, + { + "start": 1129.44, + "end": 1132.8, + "probability": 0.979 + }, + { + "start": 1132.88, + "end": 1133.94, + "probability": 0.6244 + }, + { + "start": 1134.04, + "end": 1137.42, + "probability": 0.988 + }, + { + "start": 1138.24, + "end": 1140.39, + "probability": 0.9969 + }, + { + "start": 1140.88, + "end": 1142.16, + "probability": 0.9901 + }, + { + "start": 1142.32, + "end": 1143.74, + "probability": 0.7576 + }, + { + "start": 1144.34, + "end": 1148.82, + "probability": 0.9088 + }, + { + "start": 1149.52, + "end": 1151.06, + "probability": 0.9941 + }, + { + "start": 1151.22, + "end": 1155.14, + "probability": 0.8654 + }, + { + "start": 1155.14, + "end": 1159.0, + "probability": 0.9227 + }, + { + "start": 1159.46, + "end": 1161.96, + "probability": 0.9954 + }, + { + "start": 1162.6, + "end": 1164.62, + "probability": 0.7711 + }, + { + "start": 1165.2, + "end": 1170.8, + "probability": 0.9458 + }, + { + "start": 1171.38, + "end": 1174.68, + "probability": 0.9707 + }, + { + "start": 1175.54, + "end": 1176.8, + "probability": 0.8936 + }, + { + "start": 1176.94, + "end": 1177.5, + "probability": 0.6923 + }, + { + "start": 1177.62, + "end": 1180.58, + "probability": 0.7703 + }, + { + "start": 1181.34, + "end": 1183.48, + "probability": 0.9679 + }, + { + "start": 1183.92, + "end": 1187.72, + "probability": 0.9595 + }, + { + "start": 1187.84, + "end": 1188.62, + "probability": 0.857 + }, + { + "start": 1188.76, + "end": 1191.4, + "probability": 0.946 + }, + { + "start": 1191.88, + "end": 1196.8, + "probability": 0.9795 + }, + { + "start": 1196.8, + "end": 1200.84, + "probability": 0.9985 + }, + { + "start": 1201.16, + "end": 1203.16, + "probability": 0.9404 + }, + { + "start": 1203.56, + "end": 1207.58, + "probability": 0.9979 + }, + { + "start": 1207.98, + "end": 1210.5, + "probability": 0.9934 + }, + { + "start": 1211.06, + "end": 1211.7, + "probability": 0.3273 + }, + { + "start": 1211.74, + "end": 1212.14, + "probability": 0.7568 + }, + { + "start": 1212.6, + "end": 1213.06, + "probability": 0.7231 + }, + { + "start": 1213.1, + "end": 1213.36, + "probability": 0.7566 + }, + { + "start": 1213.46, + "end": 1217.54, + "probability": 0.9169 + }, + { + "start": 1217.62, + "end": 1218.52, + "probability": 0.7888 + }, + { + "start": 1218.58, + "end": 1219.58, + "probability": 0.7939 + }, + { + "start": 1219.68, + "end": 1220.62, + "probability": 0.9951 + }, + { + "start": 1221.44, + "end": 1221.78, + "probability": 0.6248 + }, + { + "start": 1222.5, + "end": 1225.72, + "probability": 0.9515 + }, + { + "start": 1225.86, + "end": 1228.16, + "probability": 0.8208 + }, + { + "start": 1228.64, + "end": 1230.96, + "probability": 0.8337 + }, + { + "start": 1231.02, + "end": 1232.66, + "probability": 0.9591 + }, + { + "start": 1233.68, + "end": 1234.08, + "probability": 0.7135 + }, + { + "start": 1234.18, + "end": 1234.54, + "probability": 0.8813 + }, + { + "start": 1234.68, + "end": 1234.78, + "probability": 0.5155 + }, + { + "start": 1234.92, + "end": 1238.38, + "probability": 0.8892 + }, + { + "start": 1238.8, + "end": 1243.14, + "probability": 0.989 + }, + { + "start": 1243.86, + "end": 1248.44, + "probability": 0.9948 + }, + { + "start": 1248.86, + "end": 1254.72, + "probability": 0.9966 + }, + { + "start": 1255.04, + "end": 1257.76, + "probability": 0.9807 + }, + { + "start": 1258.4, + "end": 1260.18, + "probability": 0.7445 + }, + { + "start": 1260.7, + "end": 1264.36, + "probability": 0.9697 + }, + { + "start": 1264.54, + "end": 1265.62, + "probability": 0.9651 + }, + { + "start": 1265.68, + "end": 1266.94, + "probability": 0.9398 + }, + { + "start": 1267.72, + "end": 1272.96, + "probability": 0.915 + }, + { + "start": 1273.58, + "end": 1274.0, + "probability": 0.0034 + }, + { + "start": 1274.18, + "end": 1274.62, + "probability": 0.0215 + }, + { + "start": 1274.62, + "end": 1274.62, + "probability": 0.4398 + }, + { + "start": 1274.62, + "end": 1274.8, + "probability": 0.3718 + }, + { + "start": 1275.16, + "end": 1277.7, + "probability": 0.5293 + }, + { + "start": 1277.78, + "end": 1278.26, + "probability": 0.7837 + }, + { + "start": 1278.96, + "end": 1278.96, + "probability": 0.0765 + }, + { + "start": 1278.96, + "end": 1280.54, + "probability": 0.6052 + }, + { + "start": 1281.6, + "end": 1286.32, + "probability": 0.9744 + }, + { + "start": 1286.42, + "end": 1287.1, + "probability": 0.9089 + }, + { + "start": 1287.14, + "end": 1290.26, + "probability": 0.9563 + }, + { + "start": 1290.62, + "end": 1291.36, + "probability": 0.467 + }, + { + "start": 1291.4, + "end": 1292.16, + "probability": 0.6023 + }, + { + "start": 1293.02, + "end": 1295.86, + "probability": 0.6143 + }, + { + "start": 1295.9, + "end": 1300.14, + "probability": 0.9989 + }, + { + "start": 1300.18, + "end": 1300.3, + "probability": 0.1356 + }, + { + "start": 1300.3, + "end": 1300.92, + "probability": 0.2991 + }, + { + "start": 1301.14, + "end": 1303.02, + "probability": 0.7772 + }, + { + "start": 1303.76, + "end": 1306.78, + "probability": 0.9146 + }, + { + "start": 1306.78, + "end": 1309.32, + "probability": 0.6547 + }, + { + "start": 1309.6, + "end": 1312.2, + "probability": 0.8595 + }, + { + "start": 1312.56, + "end": 1314.12, + "probability": 0.8474 + }, + { + "start": 1314.44, + "end": 1316.36, + "probability": 0.9915 + }, + { + "start": 1316.72, + "end": 1321.48, + "probability": 0.8337 + }, + { + "start": 1321.84, + "end": 1323.56, + "probability": 0.7336 + }, + { + "start": 1323.98, + "end": 1325.62, + "probability": 0.2845 + }, + { + "start": 1325.7, + "end": 1328.3, + "probability": 0.7059 + }, + { + "start": 1328.36, + "end": 1329.18, + "probability": 0.0177 + }, + { + "start": 1329.36, + "end": 1330.32, + "probability": 0.7208 + }, + { + "start": 1330.4, + "end": 1331.06, + "probability": 0.8698 + }, + { + "start": 1331.1, + "end": 1331.88, + "probability": 0.7937 + }, + { + "start": 1333.2, + "end": 1334.4, + "probability": 0.6607 + }, + { + "start": 1334.52, + "end": 1334.7, + "probability": 0.3063 + }, + { + "start": 1337.13, + "end": 1341.24, + "probability": 0.7871 + }, + { + "start": 1341.66, + "end": 1342.3, + "probability": 0.6843 + }, + { + "start": 1342.66, + "end": 1350.43, + "probability": 0.9504 + }, + { + "start": 1351.96, + "end": 1352.92, + "probability": 0.6826 + }, + { + "start": 1353.14, + "end": 1353.14, + "probability": 0.0066 + }, + { + "start": 1353.14, + "end": 1353.72, + "probability": 0.2568 + }, + { + "start": 1353.86, + "end": 1354.62, + "probability": 0.8965 + }, + { + "start": 1354.96, + "end": 1357.12, + "probability": 0.744 + }, + { + "start": 1357.46, + "end": 1359.82, + "probability": 0.3858 + }, + { + "start": 1360.68, + "end": 1364.18, + "probability": 0.7995 + }, + { + "start": 1366.44, + "end": 1367.88, + "probability": 0.8725 + }, + { + "start": 1368.84, + "end": 1370.54, + "probability": 0.7385 + }, + { + "start": 1371.06, + "end": 1372.58, + "probability": 0.6769 + }, + { + "start": 1373.92, + "end": 1378.26, + "probability": 0.9977 + }, + { + "start": 1379.72, + "end": 1381.9, + "probability": 0.903 + }, + { + "start": 1382.78, + "end": 1385.18, + "probability": 0.9718 + }, + { + "start": 1385.28, + "end": 1385.87, + "probability": 0.7015 + }, + { + "start": 1388.48, + "end": 1390.08, + "probability": 0.8237 + }, + { + "start": 1391.62, + "end": 1393.62, + "probability": 0.6225 + }, + { + "start": 1394.26, + "end": 1395.38, + "probability": 0.7466 + }, + { + "start": 1395.5, + "end": 1396.22, + "probability": 0.8862 + }, + { + "start": 1396.28, + "end": 1397.26, + "probability": 0.2476 + }, + { + "start": 1397.42, + "end": 1398.2, + "probability": 0.6979 + }, + { + "start": 1398.42, + "end": 1399.76, + "probability": 0.5516 + }, + { + "start": 1399.84, + "end": 1403.16, + "probability": 0.7903 + }, + { + "start": 1404.0, + "end": 1406.84, + "probability": 0.9663 + }, + { + "start": 1406.96, + "end": 1407.82, + "probability": 0.8796 + }, + { + "start": 1407.98, + "end": 1409.1, + "probability": 0.3274 + }, + { + "start": 1409.18, + "end": 1410.06, + "probability": 0.8017 + }, + { + "start": 1410.1, + "end": 1414.96, + "probability": 0.9462 + }, + { + "start": 1415.5, + "end": 1416.46, + "probability": 0.4256 + }, + { + "start": 1417.18, + "end": 1419.23, + "probability": 0.8563 + }, + { + "start": 1419.94, + "end": 1428.14, + "probability": 0.9549 + }, + { + "start": 1428.26, + "end": 1429.4, + "probability": 0.6802 + }, + { + "start": 1430.3, + "end": 1431.36, + "probability": 0.8859 + }, + { + "start": 1431.6, + "end": 1433.5, + "probability": 0.9792 + }, + { + "start": 1433.66, + "end": 1434.49, + "probability": 0.5796 + }, + { + "start": 1435.1, + "end": 1436.7, + "probability": 0.8239 + }, + { + "start": 1436.84, + "end": 1438.29, + "probability": 0.995 + }, + { + "start": 1438.74, + "end": 1443.32, + "probability": 0.9074 + }, + { + "start": 1443.76, + "end": 1445.36, + "probability": 0.7049 + }, + { + "start": 1445.92, + "end": 1448.96, + "probability": 0.9932 + }, + { + "start": 1449.3, + "end": 1449.91, + "probability": 0.9457 + }, + { + "start": 1450.64, + "end": 1453.96, + "probability": 0.9924 + }, + { + "start": 1453.96, + "end": 1454.16, + "probability": 0.7665 + }, + { + "start": 1454.84, + "end": 1457.19, + "probability": 0.995 + }, + { + "start": 1457.82, + "end": 1461.58, + "probability": 0.8887 + }, + { + "start": 1462.04, + "end": 1465.6, + "probability": 0.7844 + }, + { + "start": 1465.86, + "end": 1471.18, + "probability": 0.9687 + }, + { + "start": 1471.26, + "end": 1472.58, + "probability": 0.7059 + }, + { + "start": 1473.06, + "end": 1475.42, + "probability": 0.5915 + }, + { + "start": 1476.06, + "end": 1477.04, + "probability": 0.7733 + }, + { + "start": 1477.48, + "end": 1482.44, + "probability": 0.8997 + }, + { + "start": 1482.56, + "end": 1483.5, + "probability": 0.9293 + }, + { + "start": 1483.56, + "end": 1485.16, + "probability": 0.9885 + }, + { + "start": 1485.74, + "end": 1487.94, + "probability": 0.8201 + }, + { + "start": 1488.8, + "end": 1489.76, + "probability": 0.578 + }, + { + "start": 1490.18, + "end": 1492.9, + "probability": 0.9909 + }, + { + "start": 1494.62, + "end": 1495.12, + "probability": 0.6996 + }, + { + "start": 1495.64, + "end": 1497.54, + "probability": 0.96 + }, + { + "start": 1498.22, + "end": 1500.98, + "probability": 0.8086 + }, + { + "start": 1502.06, + "end": 1504.7, + "probability": 0.9404 + }, + { + "start": 1506.08, + "end": 1508.48, + "probability": 0.9956 + }, + { + "start": 1508.58, + "end": 1509.7, + "probability": 0.5789 + }, + { + "start": 1510.1, + "end": 1513.74, + "probability": 0.8603 + }, + { + "start": 1514.5, + "end": 1515.64, + "probability": 0.635 + }, + { + "start": 1516.02, + "end": 1517.11, + "probability": 0.8545 + }, + { + "start": 1517.56, + "end": 1520.06, + "probability": 0.993 + }, + { + "start": 1520.42, + "end": 1521.84, + "probability": 0.7465 + }, + { + "start": 1522.04, + "end": 1526.66, + "probability": 0.9526 + }, + { + "start": 1526.92, + "end": 1530.38, + "probability": 0.8069 + }, + { + "start": 1530.76, + "end": 1534.14, + "probability": 0.9235 + }, + { + "start": 1534.38, + "end": 1535.12, + "probability": 0.8697 + }, + { + "start": 1535.34, + "end": 1538.9, + "probability": 0.9775 + }, + { + "start": 1539.46, + "end": 1540.64, + "probability": 0.9808 + }, + { + "start": 1541.48, + "end": 1543.06, + "probability": 0.8635 + }, + { + "start": 1543.66, + "end": 1548.02, + "probability": 0.877 + }, + { + "start": 1548.58, + "end": 1552.36, + "probability": 0.8617 + }, + { + "start": 1553.4, + "end": 1555.38, + "probability": 0.8504 + }, + { + "start": 1555.58, + "end": 1556.3, + "probability": 0.804 + }, + { + "start": 1556.36, + "end": 1556.94, + "probability": 0.8615 + }, + { + "start": 1557.38, + "end": 1558.5, + "probability": 0.9832 + }, + { + "start": 1558.64, + "end": 1559.3, + "probability": 0.7127 + }, + { + "start": 1559.88, + "end": 1565.06, + "probability": 0.767 + }, + { + "start": 1565.66, + "end": 1569.42, + "probability": 0.9968 + }, + { + "start": 1569.74, + "end": 1570.62, + "probability": 0.8613 + }, + { + "start": 1570.92, + "end": 1572.28, + "probability": 0.9771 + }, + { + "start": 1572.44, + "end": 1572.94, + "probability": 0.1244 + }, + { + "start": 1573.72, + "end": 1574.06, + "probability": 0.234 + }, + { + "start": 1574.78, + "end": 1579.74, + "probability": 0.8488 + }, + { + "start": 1580.1, + "end": 1585.4, + "probability": 0.9713 + }, + { + "start": 1585.42, + "end": 1585.84, + "probability": 0.8482 + }, + { + "start": 1586.2, + "end": 1590.24, + "probability": 0.995 + }, + { + "start": 1590.58, + "end": 1591.7, + "probability": 0.9645 + }, + { + "start": 1592.3, + "end": 1595.38, + "probability": 0.9393 + }, + { + "start": 1595.88, + "end": 1597.58, + "probability": 0.9884 + }, + { + "start": 1597.7, + "end": 1598.1, + "probability": 0.9107 + }, + { + "start": 1598.38, + "end": 1598.8, + "probability": 0.9235 + }, + { + "start": 1598.9, + "end": 1600.72, + "probability": 0.972 + }, + { + "start": 1601.2, + "end": 1604.12, + "probability": 0.7947 + }, + { + "start": 1606.04, + "end": 1607.42, + "probability": 0.9341 + }, + { + "start": 1608.53, + "end": 1611.92, + "probability": 0.7601 + }, + { + "start": 1613.56, + "end": 1615.3, + "probability": 0.8512 + }, + { + "start": 1615.3, + "end": 1615.86, + "probability": 0.6807 + }, + { + "start": 1617.14, + "end": 1617.66, + "probability": 0.8848 + }, + { + "start": 1619.32, + "end": 1619.82, + "probability": 0.7007 + }, + { + "start": 1621.1, + "end": 1621.86, + "probability": 0.7619 + }, + { + "start": 1622.72, + "end": 1623.52, + "probability": 0.7312 + }, + { + "start": 1624.0, + "end": 1625.2, + "probability": 0.6248 + }, + { + "start": 1625.36, + "end": 1627.54, + "probability": 0.7507 + }, + { + "start": 1628.5, + "end": 1629.92, + "probability": 0.9117 + }, + { + "start": 1630.12, + "end": 1632.98, + "probability": 0.8726 + }, + { + "start": 1633.9, + "end": 1634.92, + "probability": 0.9341 + }, + { + "start": 1635.48, + "end": 1638.94, + "probability": 0.9946 + }, + { + "start": 1639.52, + "end": 1644.54, + "probability": 0.9765 + }, + { + "start": 1645.32, + "end": 1649.48, + "probability": 0.9944 + }, + { + "start": 1650.16, + "end": 1652.32, + "probability": 0.9967 + }, + { + "start": 1653.26, + "end": 1655.24, + "probability": 0.9174 + }, + { + "start": 1655.34, + "end": 1656.58, + "probability": 0.855 + }, + { + "start": 1656.74, + "end": 1657.68, + "probability": 0.4805 + }, + { + "start": 1657.72, + "end": 1658.18, + "probability": 0.6102 + }, + { + "start": 1658.26, + "end": 1662.26, + "probability": 0.8212 + }, + { + "start": 1662.32, + "end": 1662.96, + "probability": 0.9205 + }, + { + "start": 1663.4, + "end": 1666.53, + "probability": 0.896 + }, + { + "start": 1667.04, + "end": 1668.48, + "probability": 0.9041 + }, + { + "start": 1669.02, + "end": 1673.1, + "probability": 0.9927 + }, + { + "start": 1673.82, + "end": 1678.12, + "probability": 0.9978 + }, + { + "start": 1678.46, + "end": 1679.72, + "probability": 0.8637 + }, + { + "start": 1680.16, + "end": 1683.2, + "probability": 0.9783 + }, + { + "start": 1683.56, + "end": 1685.54, + "probability": 0.9087 + }, + { + "start": 1685.98, + "end": 1688.5, + "probability": 0.993 + }, + { + "start": 1688.88, + "end": 1695.76, + "probability": 0.9869 + }, + { + "start": 1696.02, + "end": 1698.2, + "probability": 0.9851 + }, + { + "start": 1698.44, + "end": 1698.9, + "probability": 0.526 + }, + { + "start": 1699.4, + "end": 1702.7, + "probability": 0.991 + }, + { + "start": 1703.42, + "end": 1706.88, + "probability": 0.9681 + }, + { + "start": 1707.6, + "end": 1708.34, + "probability": 0.9214 + }, + { + "start": 1708.48, + "end": 1713.24, + "probability": 0.9781 + }, + { + "start": 1713.6, + "end": 1715.5, + "probability": 0.9528 + }, + { + "start": 1715.64, + "end": 1720.2, + "probability": 0.9941 + }, + { + "start": 1721.01, + "end": 1724.72, + "probability": 0.9849 + }, + { + "start": 1724.88, + "end": 1725.99, + "probability": 0.9995 + }, + { + "start": 1726.32, + "end": 1727.22, + "probability": 0.9985 + }, + { + "start": 1728.02, + "end": 1728.44, + "probability": 0.809 + }, + { + "start": 1728.8, + "end": 1732.82, + "probability": 0.9982 + }, + { + "start": 1732.82, + "end": 1738.22, + "probability": 0.9995 + }, + { + "start": 1739.1, + "end": 1741.16, + "probability": 0.9967 + }, + { + "start": 1742.08, + "end": 1743.42, + "probability": 0.5014 + }, + { + "start": 1744.26, + "end": 1746.69, + "probability": 0.895 + }, + { + "start": 1747.66, + "end": 1748.5, + "probability": 0.6995 + }, + { + "start": 1749.1, + "end": 1752.56, + "probability": 0.9926 + }, + { + "start": 1753.16, + "end": 1755.92, + "probability": 0.9937 + }, + { + "start": 1756.64, + "end": 1759.46, + "probability": 0.9915 + }, + { + "start": 1760.12, + "end": 1762.7, + "probability": 0.9227 + }, + { + "start": 1762.86, + "end": 1768.02, + "probability": 0.9893 + }, + { + "start": 1768.32, + "end": 1769.68, + "probability": 0.9904 + }, + { + "start": 1769.76, + "end": 1770.9, + "probability": 0.9451 + }, + { + "start": 1771.0, + "end": 1772.64, + "probability": 0.9647 + }, + { + "start": 1772.74, + "end": 1774.2, + "probability": 0.7673 + }, + { + "start": 1774.52, + "end": 1775.7, + "probability": 0.9582 + }, + { + "start": 1775.82, + "end": 1776.72, + "probability": 0.7753 + }, + { + "start": 1777.12, + "end": 1779.38, + "probability": 0.874 + }, + { + "start": 1779.8, + "end": 1783.82, + "probability": 0.9153 + }, + { + "start": 1784.04, + "end": 1787.4, + "probability": 0.9707 + }, + { + "start": 1787.88, + "end": 1790.16, + "probability": 0.92 + }, + { + "start": 1790.6, + "end": 1791.0, + "probability": 0.8643 + }, + { + "start": 1792.26, + "end": 1793.84, + "probability": 0.5232 + }, + { + "start": 1794.36, + "end": 1796.04, + "probability": 0.957 + }, + { + "start": 1796.76, + "end": 1797.99, + "probability": 0.9323 + }, + { + "start": 1798.72, + "end": 1800.54, + "probability": 0.9255 + }, + { + "start": 1800.82, + "end": 1802.08, + "probability": 0.9798 + }, + { + "start": 1802.22, + "end": 1803.0, + "probability": 0.8608 + }, + { + "start": 1803.4, + "end": 1807.2, + "probability": 0.9685 + }, + { + "start": 1807.28, + "end": 1808.74, + "probability": 0.9067 + }, + { + "start": 1809.36, + "end": 1809.74, + "probability": 0.8474 + }, + { + "start": 1810.82, + "end": 1812.44, + "probability": 0.7488 + }, + { + "start": 1813.1, + "end": 1814.54, + "probability": 0.978 + }, + { + "start": 1815.12, + "end": 1819.38, + "probability": 0.9686 + }, + { + "start": 1819.54, + "end": 1822.02, + "probability": 0.9852 + }, + { + "start": 1822.56, + "end": 1823.54, + "probability": 0.9619 + }, + { + "start": 1824.18, + "end": 1825.8, + "probability": 0.9858 + }, + { + "start": 1826.26, + "end": 1830.58, + "probability": 0.9458 + }, + { + "start": 1830.74, + "end": 1832.78, + "probability": 0.6971 + }, + { + "start": 1833.32, + "end": 1837.96, + "probability": 0.9501 + }, + { + "start": 1838.32, + "end": 1841.26, + "probability": 0.9897 + }, + { + "start": 1841.58, + "end": 1844.9, + "probability": 0.9329 + }, + { + "start": 1844.96, + "end": 1848.2, + "probability": 0.9556 + }, + { + "start": 1848.76, + "end": 1850.36, + "probability": 0.9611 + }, + { + "start": 1850.52, + "end": 1856.16, + "probability": 0.9744 + }, + { + "start": 1856.18, + "end": 1861.98, + "probability": 0.9324 + }, + { + "start": 1862.34, + "end": 1866.14, + "probability": 0.9951 + }, + { + "start": 1866.2, + "end": 1868.8, + "probability": 0.9954 + }, + { + "start": 1870.82, + "end": 1872.72, + "probability": 0.8596 + }, + { + "start": 1873.06, + "end": 1875.18, + "probability": 0.9879 + }, + { + "start": 1875.68, + "end": 1878.07, + "probability": 0.9968 + }, + { + "start": 1878.84, + "end": 1882.4, + "probability": 0.9256 + }, + { + "start": 1883.0, + "end": 1883.6, + "probability": 0.7368 + }, + { + "start": 1883.98, + "end": 1885.2, + "probability": 0.9585 + }, + { + "start": 1885.28, + "end": 1887.82, + "probability": 0.9906 + }, + { + "start": 1888.12, + "end": 1889.68, + "probability": 0.9634 + }, + { + "start": 1890.44, + "end": 1893.8, + "probability": 0.9625 + }, + { + "start": 1894.1, + "end": 1896.44, + "probability": 0.9492 + }, + { + "start": 1896.74, + "end": 1898.84, + "probability": 0.9701 + }, + { + "start": 1899.32, + "end": 1900.86, + "probability": 0.9924 + }, + { + "start": 1901.42, + "end": 1902.32, + "probability": 0.8696 + }, + { + "start": 1902.42, + "end": 1903.12, + "probability": 0.7686 + }, + { + "start": 1903.14, + "end": 1905.96, + "probability": 0.969 + }, + { + "start": 1906.9, + "end": 1908.4, + "probability": 0.9373 + }, + { + "start": 1908.92, + "end": 1909.54, + "probability": 0.8218 + }, + { + "start": 1910.34, + "end": 1912.12, + "probability": 0.8229 + }, + { + "start": 1912.44, + "end": 1915.16, + "probability": 0.9787 + }, + { + "start": 1915.4, + "end": 1919.68, + "probability": 0.8996 + }, + { + "start": 1919.98, + "end": 1921.7, + "probability": 0.9604 + }, + { + "start": 1922.12, + "end": 1923.84, + "probability": 0.962 + }, + { + "start": 1924.14, + "end": 1925.66, + "probability": 0.5215 + }, + { + "start": 1926.2, + "end": 1927.78, + "probability": 0.6037 + }, + { + "start": 1928.7, + "end": 1932.76, + "probability": 0.9961 + }, + { + "start": 1932.88, + "end": 1934.05, + "probability": 0.766 + }, + { + "start": 1934.6, + "end": 1938.0, + "probability": 0.9888 + }, + { + "start": 1938.52, + "end": 1942.8, + "probability": 0.9958 + }, + { + "start": 1942.8, + "end": 1947.88, + "probability": 0.973 + }, + { + "start": 1947.96, + "end": 1948.68, + "probability": 0.7236 + }, + { + "start": 1949.56, + "end": 1950.22, + "probability": 0.9919 + }, + { + "start": 1950.58, + "end": 1951.56, + "probability": 0.9529 + }, + { + "start": 1952.0, + "end": 1954.58, + "probability": 0.9667 + }, + { + "start": 1955.06, + "end": 1956.08, + "probability": 0.8135 + }, + { + "start": 1956.54, + "end": 1957.22, + "probability": 0.732 + }, + { + "start": 1957.32, + "end": 1961.8, + "probability": 0.9902 + }, + { + "start": 1962.24, + "end": 1963.06, + "probability": 0.7941 + }, + { + "start": 1963.56, + "end": 1964.72, + "probability": 0.9648 + }, + { + "start": 1965.16, + "end": 1966.3, + "probability": 0.3963 + }, + { + "start": 1966.82, + "end": 1970.5, + "probability": 0.9331 + }, + { + "start": 1970.5, + "end": 1973.2, + "probability": 0.9796 + }, + { + "start": 1973.7, + "end": 1973.7, + "probability": 0.2011 + }, + { + "start": 1973.7, + "end": 1973.82, + "probability": 0.4556 + }, + { + "start": 1973.96, + "end": 1974.7, + "probability": 0.9724 + }, + { + "start": 1975.08, + "end": 1977.08, + "probability": 0.4538 + }, + { + "start": 1977.36, + "end": 1980.54, + "probability": 0.6192 + }, + { + "start": 1980.6, + "end": 1980.6, + "probability": 0.3281 + }, + { + "start": 1980.6, + "end": 1980.88, + "probability": 0.266 + }, + { + "start": 1983.48, + "end": 1987.2, + "probability": 0.649 + }, + { + "start": 1987.3, + "end": 1994.26, + "probability": 0.9636 + }, + { + "start": 1994.76, + "end": 1999.72, + "probability": 0.9159 + }, + { + "start": 2000.86, + "end": 2005.6, + "probability": 0.8963 + }, + { + "start": 2006.24, + "end": 2010.12, + "probability": 0.9132 + }, + { + "start": 2010.5, + "end": 2011.42, + "probability": 0.9441 + }, + { + "start": 2011.64, + "end": 2014.72, + "probability": 0.9954 + }, + { + "start": 2015.4, + "end": 2018.04, + "probability": 0.9934 + }, + { + "start": 2018.44, + "end": 2020.1, + "probability": 0.9398 + }, + { + "start": 2020.54, + "end": 2023.88, + "probability": 0.9963 + }, + { + "start": 2024.2, + "end": 2027.42, + "probability": 0.9975 + }, + { + "start": 2027.68, + "end": 2032.26, + "probability": 0.9944 + }, + { + "start": 2032.68, + "end": 2034.72, + "probability": 0.7344 + }, + { + "start": 2035.4, + "end": 2038.34, + "probability": 0.9976 + }, + { + "start": 2038.68, + "end": 2039.8, + "probability": 0.9873 + }, + { + "start": 2040.18, + "end": 2043.46, + "probability": 0.9619 + }, + { + "start": 2043.74, + "end": 2044.3, + "probability": 0.9352 + }, + { + "start": 2044.52, + "end": 2044.96, + "probability": 0.4569 + }, + { + "start": 2045.6, + "end": 2045.8, + "probability": 0.439 + }, + { + "start": 2049.14, + "end": 2051.18, + "probability": 0.7494 + }, + { + "start": 2051.54, + "end": 2052.72, + "probability": 0.6885 + }, + { + "start": 2053.18, + "end": 2054.34, + "probability": 0.7814 + }, + { + "start": 2055.22, + "end": 2056.68, + "probability": 0.8106 + }, + { + "start": 2073.04, + "end": 2074.22, + "probability": 0.6341 + }, + { + "start": 2075.52, + "end": 2076.62, + "probability": 0.8502 + }, + { + "start": 2078.12, + "end": 2082.6, + "probability": 0.9868 + }, + { + "start": 2083.52, + "end": 2090.1, + "probability": 0.9641 + }, + { + "start": 2091.2, + "end": 2092.92, + "probability": 0.8498 + }, + { + "start": 2094.04, + "end": 2096.16, + "probability": 0.9088 + }, + { + "start": 2096.78, + "end": 2098.38, + "probability": 0.8472 + }, + { + "start": 2099.22, + "end": 2101.8, + "probability": 0.8944 + }, + { + "start": 2101.86, + "end": 2107.38, + "probability": 0.9625 + }, + { + "start": 2107.5, + "end": 2112.08, + "probability": 0.979 + }, + { + "start": 2112.64, + "end": 2118.64, + "probability": 0.9928 + }, + { + "start": 2119.4, + "end": 2126.04, + "probability": 0.9969 + }, + { + "start": 2126.28, + "end": 2132.56, + "probability": 0.9884 + }, + { + "start": 2132.74, + "end": 2134.28, + "probability": 0.7568 + }, + { + "start": 2134.92, + "end": 2136.08, + "probability": 0.9033 + }, + { + "start": 2136.6, + "end": 2141.84, + "probability": 0.9955 + }, + { + "start": 2142.8, + "end": 2147.34, + "probability": 0.8164 + }, + { + "start": 2147.7, + "end": 2149.24, + "probability": 0.8434 + }, + { + "start": 2149.96, + "end": 2154.7, + "probability": 0.9443 + }, + { + "start": 2155.64, + "end": 2156.6, + "probability": 0.7521 + }, + { + "start": 2156.82, + "end": 2162.34, + "probability": 0.9703 + }, + { + "start": 2162.34, + "end": 2167.76, + "probability": 0.998 + }, + { + "start": 2168.0, + "end": 2169.52, + "probability": 0.9648 + }, + { + "start": 2169.62, + "end": 2173.74, + "probability": 0.9922 + }, + { + "start": 2174.74, + "end": 2177.62, + "probability": 0.7398 + }, + { + "start": 2177.84, + "end": 2184.66, + "probability": 0.8412 + }, + { + "start": 2184.98, + "end": 2185.32, + "probability": 0.6907 + }, + { + "start": 2185.36, + "end": 2187.6, + "probability": 0.8827 + }, + { + "start": 2187.64, + "end": 2194.1, + "probability": 0.9803 + }, + { + "start": 2194.24, + "end": 2195.52, + "probability": 0.9815 + }, + { + "start": 2195.64, + "end": 2197.48, + "probability": 0.9977 + }, + { + "start": 2197.82, + "end": 2204.5, + "probability": 0.9907 + }, + { + "start": 2205.76, + "end": 2210.74, + "probability": 0.9731 + }, + { + "start": 2210.94, + "end": 2217.96, + "probability": 0.9458 + }, + { + "start": 2218.38, + "end": 2220.16, + "probability": 0.9956 + }, + { + "start": 2220.66, + "end": 2223.76, + "probability": 0.9971 + }, + { + "start": 2224.08, + "end": 2228.28, + "probability": 0.7683 + }, + { + "start": 2228.5, + "end": 2231.74, + "probability": 0.9935 + }, + { + "start": 2232.44, + "end": 2237.16, + "probability": 0.9697 + }, + { + "start": 2237.32, + "end": 2238.68, + "probability": 0.4988 + }, + { + "start": 2239.1, + "end": 2242.38, + "probability": 0.7878 + }, + { + "start": 2242.5, + "end": 2243.3, + "probability": 0.9326 + }, + { + "start": 2243.82, + "end": 2246.66, + "probability": 0.9864 + }, + { + "start": 2247.6, + "end": 2248.44, + "probability": 0.6098 + }, + { + "start": 2248.5, + "end": 2250.7, + "probability": 0.9503 + }, + { + "start": 2250.82, + "end": 2251.88, + "probability": 0.7863 + }, + { + "start": 2252.24, + "end": 2253.64, + "probability": 0.7967 + }, + { + "start": 2253.74, + "end": 2255.42, + "probability": 0.9845 + }, + { + "start": 2255.76, + "end": 2257.56, + "probability": 0.9277 + }, + { + "start": 2258.1, + "end": 2260.53, + "probability": 0.9473 + }, + { + "start": 2260.94, + "end": 2263.48, + "probability": 0.6946 + }, + { + "start": 2263.56, + "end": 2264.54, + "probability": 0.9689 + }, + { + "start": 2264.58, + "end": 2265.7, + "probability": 0.9485 + }, + { + "start": 2266.68, + "end": 2268.8, + "probability": 0.981 + }, + { + "start": 2268.92, + "end": 2269.84, + "probability": 0.5383 + }, + { + "start": 2269.84, + "end": 2277.3, + "probability": 0.9829 + }, + { + "start": 2278.74, + "end": 2284.51, + "probability": 0.8843 + }, + { + "start": 2285.42, + "end": 2285.98, + "probability": 0.9771 + }, + { + "start": 2287.44, + "end": 2291.44, + "probability": 0.8475 + }, + { + "start": 2292.04, + "end": 2293.14, + "probability": 0.9252 + }, + { + "start": 2293.96, + "end": 2295.1, + "probability": 0.9865 + }, + { + "start": 2296.46, + "end": 2297.88, + "probability": 0.9722 + }, + { + "start": 2298.5, + "end": 2301.96, + "probability": 0.7694 + }, + { + "start": 2302.96, + "end": 2308.48, + "probability": 0.9878 + }, + { + "start": 2309.32, + "end": 2310.14, + "probability": 0.4508 + }, + { + "start": 2310.26, + "end": 2312.73, + "probability": 0.7887 + }, + { + "start": 2314.16, + "end": 2315.88, + "probability": 0.9968 + }, + { + "start": 2316.4, + "end": 2320.06, + "probability": 0.9845 + }, + { + "start": 2320.4, + "end": 2321.12, + "probability": 0.4248 + }, + { + "start": 2321.2, + "end": 2321.96, + "probability": 0.6633 + }, + { + "start": 2322.06, + "end": 2326.92, + "probability": 0.9851 + }, + { + "start": 2327.04, + "end": 2330.56, + "probability": 0.9969 + }, + { + "start": 2330.8, + "end": 2331.36, + "probability": 0.5261 + }, + { + "start": 2331.46, + "end": 2332.75, + "probability": 0.9625 + }, + { + "start": 2334.4, + "end": 2338.9, + "probability": 0.8355 + }, + { + "start": 2338.98, + "end": 2339.37, + "probability": 0.8633 + }, + { + "start": 2340.34, + "end": 2346.58, + "probability": 0.9924 + }, + { + "start": 2346.68, + "end": 2347.76, + "probability": 0.9529 + }, + { + "start": 2347.98, + "end": 2349.34, + "probability": 0.9084 + }, + { + "start": 2349.82, + "end": 2353.14, + "probability": 0.9956 + }, + { + "start": 2353.56, + "end": 2354.7, + "probability": 0.7372 + }, + { + "start": 2355.66, + "end": 2357.06, + "probability": 0.7874 + }, + { + "start": 2357.16, + "end": 2357.93, + "probability": 0.9858 + }, + { + "start": 2359.06, + "end": 2360.98, + "probability": 0.7922 + }, + { + "start": 2362.24, + "end": 2369.02, + "probability": 0.9028 + }, + { + "start": 2369.08, + "end": 2370.28, + "probability": 0.6829 + }, + { + "start": 2370.38, + "end": 2371.1, + "probability": 0.7757 + }, + { + "start": 2371.92, + "end": 2373.74, + "probability": 0.8564 + }, + { + "start": 2374.28, + "end": 2374.64, + "probability": 0.9633 + }, + { + "start": 2374.78, + "end": 2376.48, + "probability": 0.9551 + }, + { + "start": 2376.58, + "end": 2379.2, + "probability": 0.7641 + }, + { + "start": 2379.4, + "end": 2379.7, + "probability": 0.6989 + }, + { + "start": 2380.04, + "end": 2383.66, + "probability": 0.9717 + }, + { + "start": 2383.86, + "end": 2388.52, + "probability": 0.9141 + }, + { + "start": 2388.84, + "end": 2390.82, + "probability": 0.7016 + }, + { + "start": 2391.56, + "end": 2395.1, + "probability": 0.5989 + }, + { + "start": 2396.22, + "end": 2402.06, + "probability": 0.9001 + }, + { + "start": 2402.2, + "end": 2403.1, + "probability": 0.6727 + }, + { + "start": 2403.52, + "end": 2406.22, + "probability": 0.991 + }, + { + "start": 2406.24, + "end": 2406.24, + "probability": 0.3102 + }, + { + "start": 2406.26, + "end": 2412.14, + "probability": 0.969 + }, + { + "start": 2412.16, + "end": 2413.22, + "probability": 0.7919 + }, + { + "start": 2413.22, + "end": 2415.48, + "probability": 0.6833 + }, + { + "start": 2415.76, + "end": 2419.16, + "probability": 0.7963 + }, + { + "start": 2419.3, + "end": 2420.42, + "probability": 0.9255 + }, + { + "start": 2420.88, + "end": 2422.56, + "probability": 0.9189 + }, + { + "start": 2422.6, + "end": 2423.16, + "probability": 0.3849 + }, + { + "start": 2423.36, + "end": 2423.98, + "probability": 0.6707 + }, + { + "start": 2424.16, + "end": 2424.88, + "probability": 0.9812 + }, + { + "start": 2425.28, + "end": 2426.72, + "probability": 0.9113 + }, + { + "start": 2432.56, + "end": 2436.96, + "probability": 0.9835 + }, + { + "start": 2438.44, + "end": 2439.8, + "probability": 0.6829 + }, + { + "start": 2440.22, + "end": 2440.22, + "probability": 0.395 + }, + { + "start": 2440.22, + "end": 2441.17, + "probability": 0.7635 + }, + { + "start": 2441.48, + "end": 2443.04, + "probability": 0.7144 + }, + { + "start": 2443.62, + "end": 2449.76, + "probability": 0.9356 + }, + { + "start": 2450.42, + "end": 2452.92, + "probability": 0.9835 + }, + { + "start": 2453.04, + "end": 2454.36, + "probability": 0.7581 + }, + { + "start": 2454.46, + "end": 2456.28, + "probability": 0.9978 + }, + { + "start": 2457.1, + "end": 2462.42, + "probability": 0.9897 + }, + { + "start": 2462.6, + "end": 2463.62, + "probability": 0.957 + }, + { + "start": 2464.22, + "end": 2466.66, + "probability": 0.979 + }, + { + "start": 2466.82, + "end": 2471.64, + "probability": 0.9987 + }, + { + "start": 2472.6, + "end": 2473.09, + "probability": 0.5802 + }, + { + "start": 2473.42, + "end": 2475.54, + "probability": 0.9919 + }, + { + "start": 2476.34, + "end": 2478.42, + "probability": 0.9136 + }, + { + "start": 2478.64, + "end": 2480.1, + "probability": 0.7937 + }, + { + "start": 2480.42, + "end": 2482.16, + "probability": 0.9939 + }, + { + "start": 2482.32, + "end": 2482.44, + "probability": 0.4153 + }, + { + "start": 2482.54, + "end": 2486.24, + "probability": 0.9634 + }, + { + "start": 2486.62, + "end": 2487.92, + "probability": 0.8902 + }, + { + "start": 2488.3, + "end": 2490.44, + "probability": 0.9805 + }, + { + "start": 2490.52, + "end": 2492.04, + "probability": 0.985 + }, + { + "start": 2492.4, + "end": 2496.8, + "probability": 0.9916 + }, + { + "start": 2496.8, + "end": 2501.0, + "probability": 0.9963 + }, + { + "start": 2501.68, + "end": 2503.66, + "probability": 0.9964 + }, + { + "start": 2504.72, + "end": 2505.88, + "probability": 0.8964 + }, + { + "start": 2506.02, + "end": 2510.14, + "probability": 0.9062 + }, + { + "start": 2510.22, + "end": 2512.12, + "probability": 0.9924 + }, + { + "start": 2512.74, + "end": 2514.66, + "probability": 0.7048 + }, + { + "start": 2515.22, + "end": 2518.16, + "probability": 0.9578 + }, + { + "start": 2518.16, + "end": 2520.94, + "probability": 0.932 + }, + { + "start": 2521.64, + "end": 2524.04, + "probability": 0.9369 + }, + { + "start": 2524.71, + "end": 2528.12, + "probability": 0.9681 + }, + { + "start": 2528.26, + "end": 2532.06, + "probability": 0.9419 + }, + { + "start": 2532.06, + "end": 2535.78, + "probability": 0.998 + }, + { + "start": 2537.0, + "end": 2541.1, + "probability": 0.9939 + }, + { + "start": 2541.1, + "end": 2547.04, + "probability": 0.9475 + }, + { + "start": 2547.28, + "end": 2547.32, + "probability": 0.1275 + }, + { + "start": 2547.64, + "end": 2548.0, + "probability": 0.2118 + }, + { + "start": 2549.3, + "end": 2550.84, + "probability": 0.0055 + }, + { + "start": 2550.84, + "end": 2551.62, + "probability": 0.3917 + }, + { + "start": 2551.62, + "end": 2551.62, + "probability": 0.5283 + }, + { + "start": 2551.88, + "end": 2554.3, + "probability": 0.9277 + }, + { + "start": 2555.08, + "end": 2555.74, + "probability": 0.514 + }, + { + "start": 2556.01, + "end": 2562.3, + "probability": 0.9922 + }, + { + "start": 2562.66, + "end": 2567.22, + "probability": 0.9941 + }, + { + "start": 2567.7, + "end": 2570.8, + "probability": 0.9581 + }, + { + "start": 2570.9, + "end": 2571.3, + "probability": 0.6128 + }, + { + "start": 2571.6, + "end": 2574.24, + "probability": 0.9769 + }, + { + "start": 2574.54, + "end": 2576.5, + "probability": 0.9835 + }, + { + "start": 2577.1, + "end": 2580.0, + "probability": 0.9628 + }, + { + "start": 2580.48, + "end": 2581.44, + "probability": 0.9891 + }, + { + "start": 2581.56, + "end": 2583.3, + "probability": 0.73 + }, + { + "start": 2583.86, + "end": 2586.26, + "probability": 0.9928 + }, + { + "start": 2586.76, + "end": 2586.92, + "probability": 0.3881 + }, + { + "start": 2586.98, + "end": 2591.42, + "probability": 0.9963 + }, + { + "start": 2592.04, + "end": 2596.22, + "probability": 0.9958 + }, + { + "start": 2596.34, + "end": 2596.92, + "probability": 0.9774 + }, + { + "start": 2597.12, + "end": 2599.48, + "probability": 0.8672 + }, + { + "start": 2599.56, + "end": 2600.81, + "probability": 0.9917 + }, + { + "start": 2602.18, + "end": 2606.8, + "probability": 0.9324 + }, + { + "start": 2606.92, + "end": 2607.8, + "probability": 0.8918 + }, + { + "start": 2608.02, + "end": 2609.78, + "probability": 0.9966 + }, + { + "start": 2611.14, + "end": 2614.78, + "probability": 0.9158 + }, + { + "start": 2614.9, + "end": 2617.54, + "probability": 0.978 + }, + { + "start": 2618.16, + "end": 2620.3, + "probability": 0.9201 + }, + { + "start": 2621.28, + "end": 2625.6, + "probability": 0.9917 + }, + { + "start": 2626.16, + "end": 2626.88, + "probability": 0.7809 + }, + { + "start": 2627.14, + "end": 2632.5, + "probability": 0.9878 + }, + { + "start": 2633.22, + "end": 2638.86, + "probability": 0.9401 + }, + { + "start": 2638.86, + "end": 2642.46, + "probability": 0.9911 + }, + { + "start": 2643.22, + "end": 2646.92, + "probability": 0.9969 + }, + { + "start": 2646.92, + "end": 2652.6, + "probability": 0.9985 + }, + { + "start": 2653.18, + "end": 2655.4, + "probability": 0.8962 + }, + { + "start": 2655.84, + "end": 2662.08, + "probability": 0.9963 + }, + { + "start": 2662.46, + "end": 2662.9, + "probability": 0.5507 + }, + { + "start": 2662.9, + "end": 2665.36, + "probability": 0.8582 + }, + { + "start": 2667.94, + "end": 2668.86, + "probability": 0.1056 + }, + { + "start": 2668.86, + "end": 2669.37, + "probability": 0.708 + }, + { + "start": 2670.02, + "end": 2670.3, + "probability": 0.5772 + }, + { + "start": 2671.6, + "end": 2672.2, + "probability": 0.4063 + }, + { + "start": 2672.24, + "end": 2673.7, + "probability": 0.9084 + }, + { + "start": 2674.16, + "end": 2674.7, + "probability": 0.4259 + }, + { + "start": 2674.7, + "end": 2675.64, + "probability": 0.7514 + }, + { + "start": 2678.56, + "end": 2680.94, + "probability": 0.9347 + }, + { + "start": 2682.08, + "end": 2682.99, + "probability": 0.1418 + }, + { + "start": 2686.72, + "end": 2689.42, + "probability": 0.7522 + }, + { + "start": 2690.96, + "end": 2694.74, + "probability": 0.9987 + }, + { + "start": 2695.38, + "end": 2697.06, + "probability": 0.9911 + }, + { + "start": 2697.66, + "end": 2699.96, + "probability": 0.9983 + }, + { + "start": 2700.3, + "end": 2701.56, + "probability": 0.9985 + }, + { + "start": 2702.2, + "end": 2704.76, + "probability": 0.8866 + }, + { + "start": 2705.26, + "end": 2708.68, + "probability": 0.8413 + }, + { + "start": 2709.2, + "end": 2711.96, + "probability": 0.9106 + }, + { + "start": 2712.78, + "end": 2714.24, + "probability": 0.9419 + }, + { + "start": 2715.06, + "end": 2719.96, + "probability": 0.8536 + }, + { + "start": 2720.4, + "end": 2721.46, + "probability": 0.6609 + }, + { + "start": 2721.58, + "end": 2723.12, + "probability": 0.9402 + }, + { + "start": 2723.16, + "end": 2725.24, + "probability": 0.9661 + }, + { + "start": 2725.84, + "end": 2729.44, + "probability": 0.9904 + }, + { + "start": 2729.44, + "end": 2732.1, + "probability": 0.9919 + }, + { + "start": 2732.32, + "end": 2733.23, + "probability": 0.519 + }, + { + "start": 2734.08, + "end": 2736.96, + "probability": 0.8456 + }, + { + "start": 2737.62, + "end": 2739.76, + "probability": 0.9675 + }, + { + "start": 2739.86, + "end": 2741.06, + "probability": 0.8627 + }, + { + "start": 2741.22, + "end": 2743.1, + "probability": 0.9941 + }, + { + "start": 2743.66, + "end": 2744.82, + "probability": 0.7599 + }, + { + "start": 2745.04, + "end": 2749.34, + "probability": 0.9963 + }, + { + "start": 2749.44, + "end": 2750.38, + "probability": 0.6603 + }, + { + "start": 2751.2, + "end": 2753.42, + "probability": 0.7818 + }, + { + "start": 2753.58, + "end": 2755.24, + "probability": 0.979 + }, + { + "start": 2755.42, + "end": 2756.24, + "probability": 0.6818 + }, + { + "start": 2756.28, + "end": 2758.72, + "probability": 0.9345 + }, + { + "start": 2758.94, + "end": 2759.99, + "probability": 0.7803 + }, + { + "start": 2760.36, + "end": 2763.72, + "probability": 0.9837 + }, + { + "start": 2763.9, + "end": 2765.0, + "probability": 0.9712 + }, + { + "start": 2765.56, + "end": 2767.82, + "probability": 0.8624 + }, + { + "start": 2768.76, + "end": 2773.78, + "probability": 0.9057 + }, + { + "start": 2774.3, + "end": 2775.06, + "probability": 0.9977 + }, + { + "start": 2775.58, + "end": 2777.74, + "probability": 0.9983 + }, + { + "start": 2777.86, + "end": 2781.04, + "probability": 0.6733 + }, + { + "start": 2781.74, + "end": 2782.78, + "probability": 0.7198 + }, + { + "start": 2783.46, + "end": 2785.04, + "probability": 0.934 + }, + { + "start": 2785.46, + "end": 2790.14, + "probability": 0.9986 + }, + { + "start": 2790.14, + "end": 2794.6, + "probability": 0.9928 + }, + { + "start": 2794.6, + "end": 2798.32, + "probability": 0.9966 + }, + { + "start": 2798.82, + "end": 2801.1, + "probability": 0.8546 + }, + { + "start": 2801.26, + "end": 2803.8, + "probability": 0.9301 + }, + { + "start": 2803.82, + "end": 2805.46, + "probability": 0.9966 + }, + { + "start": 2805.54, + "end": 2808.44, + "probability": 0.8033 + }, + { + "start": 2808.98, + "end": 2811.28, + "probability": 0.8041 + }, + { + "start": 2811.42, + "end": 2812.32, + "probability": 0.9153 + }, + { + "start": 2812.62, + "end": 2813.86, + "probability": 0.9956 + }, + { + "start": 2814.24, + "end": 2814.86, + "probability": 0.9762 + }, + { + "start": 2815.5, + "end": 2816.22, + "probability": 0.9595 + }, + { + "start": 2816.32, + "end": 2816.88, + "probability": 0.8172 + }, + { + "start": 2816.94, + "end": 2823.52, + "probability": 0.9695 + }, + { + "start": 2824.1, + "end": 2826.78, + "probability": 0.9913 + }, + { + "start": 2827.3, + "end": 2829.88, + "probability": 0.7038 + }, + { + "start": 2829.9, + "end": 2831.78, + "probability": 0.9994 + }, + { + "start": 2832.56, + "end": 2834.72, + "probability": 0.9958 + }, + { + "start": 2834.9, + "end": 2837.14, + "probability": 0.8969 + }, + { + "start": 2837.94, + "end": 2838.5, + "probability": 0.1304 + }, + { + "start": 2838.5, + "end": 2840.12, + "probability": 0.8354 + }, + { + "start": 2840.44, + "end": 2840.62, + "probability": 0.7238 + }, + { + "start": 2841.04, + "end": 2845.56, + "probability": 0.9439 + }, + { + "start": 2845.7, + "end": 2846.5, + "probability": 0.7463 + }, + { + "start": 2847.28, + "end": 2848.02, + "probability": 0.7733 + }, + { + "start": 2848.22, + "end": 2850.96, + "probability": 0.9858 + }, + { + "start": 2851.12, + "end": 2851.74, + "probability": 0.6238 + }, + { + "start": 2851.98, + "end": 2854.3, + "probability": 0.9144 + }, + { + "start": 2855.08, + "end": 2857.12, + "probability": 0.9883 + }, + { + "start": 2857.12, + "end": 2860.22, + "probability": 0.9212 + }, + { + "start": 2860.34, + "end": 2861.22, + "probability": 0.5433 + }, + { + "start": 2861.98, + "end": 2863.92, + "probability": 0.9343 + }, + { + "start": 2864.02, + "end": 2867.7, + "probability": 0.9192 + }, + { + "start": 2868.3, + "end": 2872.9, + "probability": 0.9603 + }, + { + "start": 2873.26, + "end": 2874.32, + "probability": 0.7872 + }, + { + "start": 2874.44, + "end": 2878.54, + "probability": 0.9941 + }, + { + "start": 2878.62, + "end": 2879.48, + "probability": 0.7444 + }, + { + "start": 2879.96, + "end": 2881.76, + "probability": 0.9905 + }, + { + "start": 2881.92, + "end": 2884.06, + "probability": 0.9865 + }, + { + "start": 2884.36, + "end": 2888.32, + "probability": 0.884 + }, + { + "start": 2888.84, + "end": 2889.12, + "probability": 0.0148 + }, + { + "start": 2889.14, + "end": 2889.26, + "probability": 0.6023 + }, + { + "start": 2889.34, + "end": 2890.28, + "probability": 0.7166 + }, + { + "start": 2890.4, + "end": 2890.94, + "probability": 0.4829 + }, + { + "start": 2891.04, + "end": 2892.04, + "probability": 0.8486 + }, + { + "start": 2892.64, + "end": 2895.74, + "probability": 0.9932 + }, + { + "start": 2896.04, + "end": 2898.36, + "probability": 0.9928 + }, + { + "start": 2898.52, + "end": 2901.82, + "probability": 0.7947 + }, + { + "start": 2902.04, + "end": 2902.76, + "probability": 0.9773 + }, + { + "start": 2903.54, + "end": 2905.5, + "probability": 0.9732 + }, + { + "start": 2905.7, + "end": 2907.46, + "probability": 0.9865 + }, + { + "start": 2907.54, + "end": 2907.8, + "probability": 0.7022 + }, + { + "start": 2908.12, + "end": 2909.84, + "probability": 0.7307 + }, + { + "start": 2910.46, + "end": 2910.98, + "probability": 0.3855 + }, + { + "start": 2911.46, + "end": 2913.7, + "probability": 0.9419 + }, + { + "start": 2914.38, + "end": 2916.98, + "probability": 0.8562 + }, + { + "start": 2917.36, + "end": 2919.1, + "probability": 0.9908 + }, + { + "start": 2920.06, + "end": 2921.46, + "probability": 0.9824 + }, + { + "start": 2922.38, + "end": 2922.8, + "probability": 0.4404 + }, + { + "start": 2923.24, + "end": 2923.94, + "probability": 0.2195 + }, + { + "start": 2924.04, + "end": 2924.32, + "probability": 0.5153 + }, + { + "start": 2924.68, + "end": 2925.02, + "probability": 0.7672 + }, + { + "start": 2927.5, + "end": 2929.88, + "probability": 0.9022 + }, + { + "start": 2929.94, + "end": 2930.96, + "probability": 0.4847 + }, + { + "start": 2931.58, + "end": 2932.42, + "probability": 0.8143 + }, + { + "start": 2933.46, + "end": 2933.62, + "probability": 0.2245 + }, + { + "start": 2933.7, + "end": 2935.84, + "probability": 0.9507 + }, + { + "start": 2936.54, + "end": 2937.84, + "probability": 0.9673 + }, + { + "start": 2938.84, + "end": 2940.58, + "probability": 0.8135 + }, + { + "start": 2940.86, + "end": 2941.04, + "probability": 0.0207 + }, + { + "start": 2941.04, + "end": 2941.46, + "probability": 0.4026 + }, + { + "start": 2941.88, + "end": 2942.88, + "probability": 0.5766 + }, + { + "start": 2942.9, + "end": 2943.74, + "probability": 0.7379 + }, + { + "start": 2944.22, + "end": 2945.8, + "probability": 0.6347 + }, + { + "start": 2947.5, + "end": 2947.82, + "probability": 0.058 + }, + { + "start": 2947.82, + "end": 2947.82, + "probability": 0.2702 + }, + { + "start": 2947.82, + "end": 2949.44, + "probability": 0.8972 + }, + { + "start": 2949.46, + "end": 2951.4, + "probability": 0.9508 + }, + { + "start": 2951.92, + "end": 2954.5, + "probability": 0.98 + }, + { + "start": 2955.58, + "end": 2957.48, + "probability": 0.9727 + }, + { + "start": 2958.96, + "end": 2960.19, + "probability": 0.9048 + }, + { + "start": 2960.5, + "end": 2963.72, + "probability": 0.752 + }, + { + "start": 2964.3, + "end": 2964.64, + "probability": 0.9377 + }, + { + "start": 2966.4, + "end": 2967.61, + "probability": 0.9728 + }, + { + "start": 2968.94, + "end": 2970.38, + "probability": 0.7748 + }, + { + "start": 2971.42, + "end": 2973.14, + "probability": 0.9574 + }, + { + "start": 2973.22, + "end": 2973.74, + "probability": 0.9435 + }, + { + "start": 2974.2, + "end": 2974.86, + "probability": 0.9273 + }, + { + "start": 2975.7, + "end": 2976.36, + "probability": 0.9964 + }, + { + "start": 2977.76, + "end": 2978.28, + "probability": 0.6027 + }, + { + "start": 2979.46, + "end": 2982.02, + "probability": 0.9509 + }, + { + "start": 2982.66, + "end": 2983.56, + "probability": 0.9406 + }, + { + "start": 2984.7, + "end": 2985.72, + "probability": 0.8979 + }, + { + "start": 2986.92, + "end": 2987.5, + "probability": 0.8008 + }, + { + "start": 2988.02, + "end": 2989.88, + "probability": 0.9617 + }, + { + "start": 2990.38, + "end": 2992.26, + "probability": 0.8877 + }, + { + "start": 2993.46, + "end": 2994.04, + "probability": 0.8887 + }, + { + "start": 2994.86, + "end": 2995.0, + "probability": 0.9036 + }, + { + "start": 2995.66, + "end": 2996.98, + "probability": 0.6405 + }, + { + "start": 2998.16, + "end": 2998.92, + "probability": 0.7451 + }, + { + "start": 2999.58, + "end": 3000.7, + "probability": 0.6695 + }, + { + "start": 3000.82, + "end": 3001.18, + "probability": 0.6182 + }, + { + "start": 3001.78, + "end": 3004.04, + "probability": 0.9734 + }, + { + "start": 3004.98, + "end": 3007.42, + "probability": 0.8484 + }, + { + "start": 3008.08, + "end": 3008.78, + "probability": 0.9352 + }, + { + "start": 3009.32, + "end": 3010.0, + "probability": 0.8633 + }, + { + "start": 3010.68, + "end": 3014.22, + "probability": 0.7282 + }, + { + "start": 3014.84, + "end": 3015.85, + "probability": 0.8726 + }, + { + "start": 3016.14, + "end": 3017.82, + "probability": 0.2739 + }, + { + "start": 3018.4, + "end": 3021.14, + "probability": 0.9779 + }, + { + "start": 3022.7, + "end": 3023.52, + "probability": 0.9781 + }, + { + "start": 3024.48, + "end": 3027.28, + "probability": 0.9893 + }, + { + "start": 3027.94, + "end": 3029.12, + "probability": 0.9641 + }, + { + "start": 3029.14, + "end": 3032.88, + "probability": 0.9695 + }, + { + "start": 3034.16, + "end": 3034.68, + "probability": 0.828 + }, + { + "start": 3034.82, + "end": 3036.46, + "probability": 0.7379 + }, + { + "start": 3037.06, + "end": 3040.9, + "probability": 0.9831 + }, + { + "start": 3042.08, + "end": 3044.58, + "probability": 0.9932 + }, + { + "start": 3045.16, + "end": 3046.68, + "probability": 0.9818 + }, + { + "start": 3047.2, + "end": 3051.54, + "probability": 0.9453 + }, + { + "start": 3052.9, + "end": 3054.68, + "probability": 0.9183 + }, + { + "start": 3056.06, + "end": 3059.48, + "probability": 0.9673 + }, + { + "start": 3060.34, + "end": 3060.8, + "probability": 0.3087 + }, + { + "start": 3060.8, + "end": 3064.98, + "probability": 0.943 + }, + { + "start": 3066.24, + "end": 3070.48, + "probability": 0.9351 + }, + { + "start": 3071.0, + "end": 3074.02, + "probability": 0.7915 + }, + { + "start": 3074.56, + "end": 3075.42, + "probability": 0.8683 + }, + { + "start": 3076.64, + "end": 3077.56, + "probability": 0.4507 + }, + { + "start": 3078.08, + "end": 3079.76, + "probability": 0.988 + }, + { + "start": 3082.3, + "end": 3086.92, + "probability": 0.5977 + }, + { + "start": 3087.7, + "end": 3089.06, + "probability": 0.629 + }, + { + "start": 3089.34, + "end": 3090.66, + "probability": 0.9944 + }, + { + "start": 3091.34, + "end": 3093.3, + "probability": 0.9862 + }, + { + "start": 3093.8, + "end": 3093.82, + "probability": 0.8218 + }, + { + "start": 3095.08, + "end": 3098.08, + "probability": 0.9961 + }, + { + "start": 3099.04, + "end": 3101.6, + "probability": 0.8163 + }, + { + "start": 3103.08, + "end": 3103.98, + "probability": 0.8735 + }, + { + "start": 3104.56, + "end": 3105.62, + "probability": 0.8093 + }, + { + "start": 3106.96, + "end": 3109.5, + "probability": 0.8787 + }, + { + "start": 3111.22, + "end": 3112.92, + "probability": 0.8758 + }, + { + "start": 3113.84, + "end": 3115.56, + "probability": 0.9915 + }, + { + "start": 3116.08, + "end": 3119.94, + "probability": 0.945 + }, + { + "start": 3120.16, + "end": 3122.06, + "probability": 0.8604 + }, + { + "start": 3123.36, + "end": 3125.88, + "probability": 0.9187 + }, + { + "start": 3125.88, + "end": 3127.82, + "probability": 0.693 + }, + { + "start": 3128.88, + "end": 3129.74, + "probability": 0.6399 + }, + { + "start": 3131.28, + "end": 3132.78, + "probability": 0.7978 + }, + { + "start": 3133.78, + "end": 3137.1, + "probability": 0.9939 + }, + { + "start": 3137.58, + "end": 3141.26, + "probability": 0.969 + }, + { + "start": 3141.64, + "end": 3143.2, + "probability": 0.9426 + }, + { + "start": 3143.68, + "end": 3147.42, + "probability": 0.9561 + }, + { + "start": 3147.42, + "end": 3151.82, + "probability": 0.9242 + }, + { + "start": 3151.92, + "end": 3152.68, + "probability": 0.906 + }, + { + "start": 3152.8, + "end": 3154.23, + "probability": 0.7987 + }, + { + "start": 3155.42, + "end": 3156.37, + "probability": 0.6758 + }, + { + "start": 3157.14, + "end": 3157.5, + "probability": 0.4812 + }, + { + "start": 3158.22, + "end": 3160.16, + "probability": 0.8469 + }, + { + "start": 3160.8, + "end": 3163.3, + "probability": 0.9188 + }, + { + "start": 3164.08, + "end": 3167.42, + "probability": 0.8745 + }, + { + "start": 3167.44, + "end": 3168.12, + "probability": 0.9037 + }, + { + "start": 3168.22, + "end": 3168.9, + "probability": 0.8477 + }, + { + "start": 3169.3, + "end": 3172.0, + "probability": 0.986 + }, + { + "start": 3172.12, + "end": 3173.22, + "probability": 0.9571 + }, + { + "start": 3173.52, + "end": 3174.14, + "probability": 0.8431 + }, + { + "start": 3174.82, + "end": 3177.06, + "probability": 0.9775 + }, + { + "start": 3178.12, + "end": 3179.58, + "probability": 0.8931 + }, + { + "start": 3180.22, + "end": 3181.63, + "probability": 0.9125 + }, + { + "start": 3182.32, + "end": 3184.78, + "probability": 0.9819 + }, + { + "start": 3185.3, + "end": 3185.86, + "probability": 0.5839 + }, + { + "start": 3186.28, + "end": 3186.94, + "probability": 0.8759 + }, + { + "start": 3187.42, + "end": 3188.56, + "probability": 0.7658 + }, + { + "start": 3189.02, + "end": 3192.66, + "probability": 0.9889 + }, + { + "start": 3192.9, + "end": 3193.16, + "probability": 0.6825 + }, + { + "start": 3193.48, + "end": 3195.34, + "probability": 0.8692 + }, + { + "start": 3195.58, + "end": 3197.96, + "probability": 0.9242 + }, + { + "start": 3198.58, + "end": 3200.38, + "probability": 0.9258 + }, + { + "start": 3202.52, + "end": 3204.38, + "probability": 0.6957 + }, + { + "start": 3206.46, + "end": 3207.68, + "probability": 0.8669 + }, + { + "start": 3208.16, + "end": 3211.32, + "probability": 0.9681 + }, + { + "start": 3212.52, + "end": 3214.9, + "probability": 0.9977 + }, + { + "start": 3216.02, + "end": 3221.48, + "probability": 0.9966 + }, + { + "start": 3222.56, + "end": 3223.12, + "probability": 0.8906 + }, + { + "start": 3223.62, + "end": 3224.7, + "probability": 0.624 + }, + { + "start": 3231.94, + "end": 3238.0, + "probability": 0.1502 + }, + { + "start": 3238.28, + "end": 3238.48, + "probability": 0.0089 + }, + { + "start": 3239.98, + "end": 3243.98, + "probability": 0.9036 + }, + { + "start": 3244.12, + "end": 3244.74, + "probability": 0.6943 + }, + { + "start": 3245.84, + "end": 3248.42, + "probability": 0.921 + }, + { + "start": 3249.26, + "end": 3251.06, + "probability": 0.9155 + }, + { + "start": 3251.46, + "end": 3252.76, + "probability": 0.846 + }, + { + "start": 3253.2, + "end": 3255.98, + "probability": 0.9963 + }, + { + "start": 3256.64, + "end": 3257.08, + "probability": 0.5479 + }, + { + "start": 3257.08, + "end": 3258.01, + "probability": 0.9402 + }, + { + "start": 3258.36, + "end": 3259.22, + "probability": 0.8782 + }, + { + "start": 3259.3, + "end": 3260.28, + "probability": 0.868 + }, + { + "start": 3260.46, + "end": 3263.84, + "probability": 0.8604 + }, + { + "start": 3264.32, + "end": 3265.18, + "probability": 0.7757 + }, + { + "start": 3265.82, + "end": 3267.56, + "probability": 0.9196 + }, + { + "start": 3268.28, + "end": 3272.18, + "probability": 0.7408 + }, + { + "start": 3273.5, + "end": 3275.36, + "probability": 0.7301 + }, + { + "start": 3275.44, + "end": 3275.98, + "probability": 0.8606 + }, + { + "start": 3276.26, + "end": 3278.14, + "probability": 0.9922 + }, + { + "start": 3278.68, + "end": 3279.2, + "probability": 0.8545 + }, + { + "start": 3279.56, + "end": 3280.5, + "probability": 0.8085 + }, + { + "start": 3281.46, + "end": 3282.18, + "probability": 0.9312 + }, + { + "start": 3282.86, + "end": 3285.04, + "probability": 0.9761 + }, + { + "start": 3286.32, + "end": 3288.38, + "probability": 0.8796 + }, + { + "start": 3289.58, + "end": 3291.06, + "probability": 0.5411 + }, + { + "start": 3291.7, + "end": 3292.44, + "probability": 0.7204 + }, + { + "start": 3293.56, + "end": 3294.46, + "probability": 0.9834 + }, + { + "start": 3295.12, + "end": 3295.84, + "probability": 0.7087 + }, + { + "start": 3296.88, + "end": 3298.24, + "probability": 0.9146 + }, + { + "start": 3300.08, + "end": 3303.92, + "probability": 0.8305 + }, + { + "start": 3304.4, + "end": 3306.92, + "probability": 0.8128 + }, + { + "start": 3307.7, + "end": 3308.56, + "probability": 0.6671 + }, + { + "start": 3309.1, + "end": 3312.86, + "probability": 0.6621 + }, + { + "start": 3314.66, + "end": 3319.16, + "probability": 0.877 + }, + { + "start": 3320.46, + "end": 3326.44, + "probability": 0.9929 + }, + { + "start": 3327.56, + "end": 3329.64, + "probability": 0.7194 + }, + { + "start": 3330.22, + "end": 3331.6, + "probability": 0.9721 + }, + { + "start": 3332.86, + "end": 3335.78, + "probability": 0.7508 + }, + { + "start": 3336.86, + "end": 3338.28, + "probability": 0.9469 + }, + { + "start": 3339.1, + "end": 3340.28, + "probability": 0.942 + }, + { + "start": 3340.7, + "end": 3344.22, + "probability": 0.9077 + }, + { + "start": 3344.74, + "end": 3345.6, + "probability": 0.8022 + }, + { + "start": 3346.4, + "end": 3347.8, + "probability": 0.8286 + }, + { + "start": 3348.44, + "end": 3350.66, + "probability": 0.86 + }, + { + "start": 3351.46, + "end": 3352.04, + "probability": 0.5024 + }, + { + "start": 3352.62, + "end": 3356.68, + "probability": 0.5624 + }, + { + "start": 3357.28, + "end": 3358.18, + "probability": 0.9016 + }, + { + "start": 3359.2, + "end": 3361.3, + "probability": 0.9525 + }, + { + "start": 3361.74, + "end": 3364.16, + "probability": 0.9712 + }, + { + "start": 3364.7, + "end": 3366.08, + "probability": 0.788 + }, + { + "start": 3366.82, + "end": 3367.62, + "probability": 0.937 + }, + { + "start": 3370.16, + "end": 3370.86, + "probability": 0.0166 + }, + { + "start": 3370.86, + "end": 3371.35, + "probability": 0.5934 + }, + { + "start": 3371.98, + "end": 3373.0, + "probability": 0.7896 + }, + { + "start": 3373.06, + "end": 3374.48, + "probability": 0.9456 + }, + { + "start": 3375.56, + "end": 3378.16, + "probability": 0.9007 + }, + { + "start": 3378.22, + "end": 3380.12, + "probability": 0.9441 + }, + { + "start": 3380.22, + "end": 3381.06, + "probability": 0.796 + }, + { + "start": 3381.1, + "end": 3381.8, + "probability": 0.428 + }, + { + "start": 3382.12, + "end": 3383.48, + "probability": 0.97 + }, + { + "start": 3383.6, + "end": 3385.1, + "probability": 0.9862 + }, + { + "start": 3385.4, + "end": 3386.22, + "probability": 0.8303 + }, + { + "start": 3386.42, + "end": 3386.92, + "probability": 0.8862 + }, + { + "start": 3387.06, + "end": 3389.2, + "probability": 0.8676 + }, + { + "start": 3389.76, + "end": 3390.56, + "probability": 0.9663 + }, + { + "start": 3391.48, + "end": 3393.52, + "probability": 0.9426 + }, + { + "start": 3394.24, + "end": 3396.84, + "probability": 0.8101 + }, + { + "start": 3397.62, + "end": 3398.7, + "probability": 0.8912 + }, + { + "start": 3399.28, + "end": 3399.92, + "probability": 0.6169 + }, + { + "start": 3400.84, + "end": 3403.64, + "probability": 0.9877 + }, + { + "start": 3404.14, + "end": 3405.64, + "probability": 0.6705 + }, + { + "start": 3405.8, + "end": 3406.4, + "probability": 0.6807 + }, + { + "start": 3406.54, + "end": 3407.6, + "probability": 0.9919 + }, + { + "start": 3407.88, + "end": 3411.8, + "probability": 0.968 + }, + { + "start": 3412.9, + "end": 3415.06, + "probability": 0.5131 + }, + { + "start": 3415.58, + "end": 3417.34, + "probability": 0.6656 + }, + { + "start": 3417.44, + "end": 3418.26, + "probability": 0.6675 + }, + { + "start": 3419.38, + "end": 3420.62, + "probability": 0.8488 + }, + { + "start": 3421.68, + "end": 3425.28, + "probability": 0.8529 + }, + { + "start": 3425.94, + "end": 3427.08, + "probability": 0.8954 + }, + { + "start": 3427.64, + "end": 3429.98, + "probability": 0.7778 + }, + { + "start": 3430.88, + "end": 3433.76, + "probability": 0.9568 + }, + { + "start": 3434.22, + "end": 3436.22, + "probability": 0.9363 + }, + { + "start": 3436.22, + "end": 3436.92, + "probability": 0.3472 + }, + { + "start": 3437.12, + "end": 3438.26, + "probability": 0.8244 + }, + { + "start": 3438.98, + "end": 3439.88, + "probability": 0.9824 + }, + { + "start": 3440.34, + "end": 3442.63, + "probability": 0.9917 + }, + { + "start": 3443.4, + "end": 3444.9, + "probability": 0.859 + }, + { + "start": 3445.14, + "end": 3446.2, + "probability": 0.5288 + }, + { + "start": 3446.84, + "end": 3448.78, + "probability": 0.9517 + }, + { + "start": 3449.22, + "end": 3453.92, + "probability": 0.9553 + }, + { + "start": 3454.58, + "end": 3457.08, + "probability": 0.4292 + }, + { + "start": 3457.72, + "end": 3459.64, + "probability": 0.8303 + }, + { + "start": 3460.22, + "end": 3462.7, + "probability": 0.9747 + }, + { + "start": 3463.3, + "end": 3465.98, + "probability": 0.5923 + }, + { + "start": 3466.8, + "end": 3470.22, + "probability": 0.973 + }, + { + "start": 3470.3, + "end": 3472.02, + "probability": 0.8428 + }, + { + "start": 3472.06, + "end": 3472.24, + "probability": 0.3896 + }, + { + "start": 3473.86, + "end": 3475.92, + "probability": 0.5761 + }, + { + "start": 3475.96, + "end": 3478.36, + "probability": 0.8682 + }, + { + "start": 3479.04, + "end": 3479.54, + "probability": 0.4595 + }, + { + "start": 3480.2, + "end": 3482.18, + "probability": 0.9948 + }, + { + "start": 3482.54, + "end": 3485.62, + "probability": 0.9595 + }, + { + "start": 3485.7, + "end": 3486.2, + "probability": 0.9254 + }, + { + "start": 3486.24, + "end": 3488.62, + "probability": 0.9487 + }, + { + "start": 3488.96, + "end": 3491.78, + "probability": 0.7211 + }, + { + "start": 3492.46, + "end": 3493.22, + "probability": 0.4125 + }, + { + "start": 3493.32, + "end": 3494.1, + "probability": 0.8227 + }, + { + "start": 3494.18, + "end": 3495.01, + "probability": 0.9191 + }, + { + "start": 3495.34, + "end": 3497.06, + "probability": 0.8896 + }, + { + "start": 3497.3, + "end": 3498.31, + "probability": 0.9866 + }, + { + "start": 3498.84, + "end": 3500.46, + "probability": 0.7579 + }, + { + "start": 3505.92, + "end": 3507.94, + "probability": 0.6817 + }, + { + "start": 3508.24, + "end": 3508.68, + "probability": 0.9845 + }, + { + "start": 3510.26, + "end": 3513.24, + "probability": 0.8225 + }, + { + "start": 3513.74, + "end": 3514.72, + "probability": 0.9271 + }, + { + "start": 3514.96, + "end": 3516.84, + "probability": 0.7227 + }, + { + "start": 3516.9, + "end": 3517.86, + "probability": 0.8758 + }, + { + "start": 3517.94, + "end": 3518.78, + "probability": 0.8567 + }, + { + "start": 3521.26, + "end": 3522.58, + "probability": 0.5658 + }, + { + "start": 3523.38, + "end": 3524.66, + "probability": 0.3508 + }, + { + "start": 3525.86, + "end": 3527.1, + "probability": 0.6789 + }, + { + "start": 3528.78, + "end": 3530.02, + "probability": 0.8526 + }, + { + "start": 3530.94, + "end": 3531.78, + "probability": 0.6797 + }, + { + "start": 3532.92, + "end": 3538.86, + "probability": 0.9342 + }, + { + "start": 3539.74, + "end": 3540.58, + "probability": 0.9702 + }, + { + "start": 3542.44, + "end": 3543.94, + "probability": 0.929 + }, + { + "start": 3544.02, + "end": 3544.99, + "probability": 0.7969 + }, + { + "start": 3546.12, + "end": 3547.84, + "probability": 0.3102 + }, + { + "start": 3549.62, + "end": 3550.82, + "probability": 0.5842 + }, + { + "start": 3551.58, + "end": 3554.94, + "probability": 0.9567 + }, + { + "start": 3555.64, + "end": 3558.58, + "probability": 0.7871 + }, + { + "start": 3560.04, + "end": 3561.52, + "probability": 0.7553 + }, + { + "start": 3563.68, + "end": 3564.64, + "probability": 0.6919 + }, + { + "start": 3566.04, + "end": 3566.38, + "probability": 0.506 + }, + { + "start": 3567.06, + "end": 3568.2, + "probability": 0.8355 + }, + { + "start": 3569.08, + "end": 3570.64, + "probability": 0.9673 + }, + { + "start": 3571.38, + "end": 3572.55, + "probability": 0.8871 + }, + { + "start": 3573.26, + "end": 3574.42, + "probability": 0.7431 + }, + { + "start": 3574.46, + "end": 3577.48, + "probability": 0.931 + }, + { + "start": 3579.04, + "end": 3581.64, + "probability": 0.8966 + }, + { + "start": 3586.8, + "end": 3589.32, + "probability": 0.8577 + }, + { + "start": 3590.34, + "end": 3591.18, + "probability": 0.5253 + }, + { + "start": 3591.52, + "end": 3596.32, + "probability": 0.7745 + }, + { + "start": 3597.24, + "end": 3601.24, + "probability": 0.9733 + }, + { + "start": 3603.88, + "end": 3606.08, + "probability": 0.0539 + }, + { + "start": 3606.84, + "end": 3607.74, + "probability": 0.7349 + }, + { + "start": 3609.2, + "end": 3613.08, + "probability": 0.8836 + }, + { + "start": 3613.3, + "end": 3614.56, + "probability": 0.5115 + }, + { + "start": 3614.76, + "end": 3617.32, + "probability": 0.7373 + }, + { + "start": 3618.7, + "end": 3621.61, + "probability": 0.968 + }, + { + "start": 3623.74, + "end": 3629.66, + "probability": 0.9878 + }, + { + "start": 3631.78, + "end": 3632.46, + "probability": 0.6787 + }, + { + "start": 3633.88, + "end": 3641.18, + "probability": 0.7769 + }, + { + "start": 3641.44, + "end": 3642.42, + "probability": 0.7636 + }, + { + "start": 3643.18, + "end": 3651.08, + "probability": 0.8529 + }, + { + "start": 3651.24, + "end": 3653.78, + "probability": 0.4376 + }, + { + "start": 3653.78, + "end": 3655.98, + "probability": 0.9255 + }, + { + "start": 3657.4, + "end": 3658.34, + "probability": 0.8378 + }, + { + "start": 3658.42, + "end": 3659.72, + "probability": 0.8922 + }, + { + "start": 3660.22, + "end": 3661.14, + "probability": 0.9696 + }, + { + "start": 3661.54, + "end": 3662.99, + "probability": 0.8444 + }, + { + "start": 3664.76, + "end": 3667.0, + "probability": 0.9208 + }, + { + "start": 3668.18, + "end": 3669.8, + "probability": 0.763 + }, + { + "start": 3670.34, + "end": 3673.14, + "probability": 0.9312 + }, + { + "start": 3673.76, + "end": 3677.9, + "probability": 0.7145 + }, + { + "start": 3677.9, + "end": 3683.7, + "probability": 0.9788 + }, + { + "start": 3684.38, + "end": 3685.43, + "probability": 0.9966 + }, + { + "start": 3686.12, + "end": 3687.72, + "probability": 0.9729 + }, + { + "start": 3688.04, + "end": 3689.28, + "probability": 0.8672 + }, + { + "start": 3690.56, + "end": 3691.94, + "probability": 0.9736 + }, + { + "start": 3693.5, + "end": 3696.58, + "probability": 0.9924 + }, + { + "start": 3697.46, + "end": 3698.74, + "probability": 0.8826 + }, + { + "start": 3699.6, + "end": 3700.76, + "probability": 0.99 + }, + { + "start": 3701.06, + "end": 3702.21, + "probability": 0.7794 + }, + { + "start": 3702.44, + "end": 3704.36, + "probability": 0.9827 + }, + { + "start": 3705.4, + "end": 3706.84, + "probability": 0.9565 + }, + { + "start": 3707.58, + "end": 3709.48, + "probability": 0.9832 + }, + { + "start": 3710.2, + "end": 3712.74, + "probability": 0.9924 + }, + { + "start": 3713.24, + "end": 3719.16, + "probability": 0.9361 + }, + { + "start": 3719.32, + "end": 3722.7, + "probability": 0.9172 + }, + { + "start": 3722.76, + "end": 3723.5, + "probability": 0.6902 + }, + { + "start": 3724.44, + "end": 3728.62, + "probability": 0.9878 + }, + { + "start": 3729.12, + "end": 3732.36, + "probability": 0.6654 + }, + { + "start": 3732.78, + "end": 3738.38, + "probability": 0.9445 + }, + { + "start": 3738.6, + "end": 3739.1, + "probability": 0.8586 + }, + { + "start": 3739.3, + "end": 3742.56, + "probability": 0.6935 + }, + { + "start": 3743.66, + "end": 3745.12, + "probability": 0.7734 + }, + { + "start": 3746.7, + "end": 3747.14, + "probability": 0.8942 + }, + { + "start": 3749.09, + "end": 3753.22, + "probability": 0.992 + }, + { + "start": 3753.42, + "end": 3754.58, + "probability": 0.9257 + }, + { + "start": 3755.34, + "end": 3757.0, + "probability": 0.8035 + }, + { + "start": 3757.16, + "end": 3758.0, + "probability": 0.9443 + }, + { + "start": 3758.58, + "end": 3761.8, + "probability": 0.936 + }, + { + "start": 3762.4, + "end": 3762.74, + "probability": 0.2527 + }, + { + "start": 3763.14, + "end": 3764.58, + "probability": 0.9824 + }, + { + "start": 3765.46, + "end": 3767.58, + "probability": 0.5037 + }, + { + "start": 3767.62, + "end": 3768.86, + "probability": 0.6153 + }, + { + "start": 3769.08, + "end": 3769.12, + "probability": 0.6166 + }, + { + "start": 3769.12, + "end": 3770.06, + "probability": 0.7578 + }, + { + "start": 3770.3, + "end": 3774.16, + "probability": 0.927 + }, + { + "start": 3774.24, + "end": 3775.32, + "probability": 0.9019 + }, + { + "start": 3776.22, + "end": 3777.04, + "probability": 0.7735 + }, + { + "start": 3777.72, + "end": 3780.32, + "probability": 0.8724 + }, + { + "start": 3781.2, + "end": 3784.88, + "probability": 0.9909 + }, + { + "start": 3785.96, + "end": 3790.86, + "probability": 0.8892 + }, + { + "start": 3790.98, + "end": 3792.4, + "probability": 0.9553 + }, + { + "start": 3792.96, + "end": 3794.02, + "probability": 0.8227 + }, + { + "start": 3794.74, + "end": 3794.9, + "probability": 0.0105 + }, + { + "start": 3795.78, + "end": 3797.56, + "probability": 0.5432 + }, + { + "start": 3798.88, + "end": 3803.54, + "probability": 0.9535 + }, + { + "start": 3803.8, + "end": 3808.1, + "probability": 0.967 + }, + { + "start": 3809.88, + "end": 3817.32, + "probability": 0.9888 + }, + { + "start": 3817.84, + "end": 3818.66, + "probability": 0.9019 + }, + { + "start": 3820.83, + "end": 3822.76, + "probability": 0.2108 + }, + { + "start": 3823.88, + "end": 3828.38, + "probability": 0.9191 + }, + { + "start": 3829.14, + "end": 3835.38, + "probability": 0.8042 + }, + { + "start": 3835.7, + "end": 3839.2, + "probability": 0.995 + }, + { + "start": 3839.2, + "end": 3840.14, + "probability": 0.9722 + }, + { + "start": 3840.9, + "end": 3843.46, + "probability": 0.7201 + }, + { + "start": 3844.28, + "end": 3845.48, + "probability": 0.8569 + }, + { + "start": 3845.7, + "end": 3849.32, + "probability": 0.958 + }, + { + "start": 3849.38, + "end": 3852.62, + "probability": 0.9569 + }, + { + "start": 3853.34, + "end": 3857.62, + "probability": 0.9853 + }, + { + "start": 3857.74, + "end": 3860.34, + "probability": 0.6723 + }, + { + "start": 3861.2, + "end": 3861.36, + "probability": 0.217 + }, + { + "start": 3861.84, + "end": 3865.0, + "probability": 0.9137 + }, + { + "start": 3865.0, + "end": 3868.62, + "probability": 0.9905 + }, + { + "start": 3869.66, + "end": 3871.28, + "probability": 0.8635 + }, + { + "start": 3871.5, + "end": 3876.48, + "probability": 0.8774 + }, + { + "start": 3876.64, + "end": 3878.14, + "probability": 0.7626 + }, + { + "start": 3878.34, + "end": 3881.07, + "probability": 0.9312 + }, + { + "start": 3882.02, + "end": 3882.7, + "probability": 0.71 + }, + { + "start": 3882.88, + "end": 3883.24, + "probability": 0.8011 + }, + { + "start": 3883.38, + "end": 3885.36, + "probability": 0.9754 + }, + { + "start": 3885.46, + "end": 3886.16, + "probability": 0.7393 + }, + { + "start": 3886.62, + "end": 3892.48, + "probability": 0.9492 + }, + { + "start": 3892.56, + "end": 3895.62, + "probability": 0.9238 + }, + { + "start": 3896.24, + "end": 3899.24, + "probability": 0.96 + }, + { + "start": 3899.8, + "end": 3905.22, + "probability": 0.8107 + }, + { + "start": 3905.9, + "end": 3907.48, + "probability": 0.9387 + }, + { + "start": 3907.6, + "end": 3908.64, + "probability": 0.7064 + }, + { + "start": 3909.0, + "end": 3909.34, + "probability": 0.7479 + }, + { + "start": 3909.56, + "end": 3910.74, + "probability": 0.8713 + }, + { + "start": 3911.24, + "end": 3913.34, + "probability": 0.9946 + }, + { + "start": 3913.78, + "end": 3916.96, + "probability": 0.9409 + }, + { + "start": 3917.2, + "end": 3918.8, + "probability": 0.9205 + }, + { + "start": 3919.28, + "end": 3923.3, + "probability": 0.9883 + }, + { + "start": 3924.24, + "end": 3925.12, + "probability": 0.9817 + }, + { + "start": 3925.92, + "end": 3927.46, + "probability": 0.867 + }, + { + "start": 3927.48, + "end": 3929.6, + "probability": 0.9738 + }, + { + "start": 3929.76, + "end": 3931.82, + "probability": 0.9316 + }, + { + "start": 3932.26, + "end": 3934.29, + "probability": 0.792 + }, + { + "start": 3934.32, + "end": 3937.78, + "probability": 0.9987 + }, + { + "start": 3938.64, + "end": 3943.36, + "probability": 0.9221 + }, + { + "start": 3944.14, + "end": 3944.76, + "probability": 0.4418 + }, + { + "start": 3944.94, + "end": 3945.54, + "probability": 0.8809 + }, + { + "start": 3945.62, + "end": 3946.44, + "probability": 0.5474 + }, + { + "start": 3946.56, + "end": 3947.58, + "probability": 0.8365 + }, + { + "start": 3948.48, + "end": 3950.44, + "probability": 0.8419 + }, + { + "start": 3951.2, + "end": 3955.96, + "probability": 0.8857 + }, + { + "start": 3956.06, + "end": 3959.12, + "probability": 0.905 + }, + { + "start": 3959.82, + "end": 3964.68, + "probability": 0.9896 + }, + { + "start": 3965.36, + "end": 3969.82, + "probability": 0.9597 + }, + { + "start": 3970.24, + "end": 3972.2, + "probability": 0.9572 + }, + { + "start": 3972.76, + "end": 3976.4, + "probability": 0.9578 + }, + { + "start": 3977.28, + "end": 3979.12, + "probability": 0.8877 + }, + { + "start": 3980.32, + "end": 3984.42, + "probability": 0.7534 + }, + { + "start": 3984.54, + "end": 3984.66, + "probability": 0.0573 + }, + { + "start": 3984.8, + "end": 3986.78, + "probability": 0.9379 + }, + { + "start": 3987.26, + "end": 3988.76, + "probability": 0.9839 + }, + { + "start": 3989.22, + "end": 3991.92, + "probability": 0.9788 + }, + { + "start": 3992.48, + "end": 3994.18, + "probability": 0.7935 + }, + { + "start": 3994.64, + "end": 3999.86, + "probability": 0.9687 + }, + { + "start": 4000.22, + "end": 4000.66, + "probability": 0.8617 + }, + { + "start": 4000.76, + "end": 4002.14, + "probability": 0.7587 + }, + { + "start": 4002.32, + "end": 4004.04, + "probability": 0.9714 + }, + { + "start": 4004.56, + "end": 4007.04, + "probability": 0.8392 + }, + { + "start": 4007.72, + "end": 4009.22, + "probability": 0.7689 + }, + { + "start": 4012.08, + "end": 4013.48, + "probability": 0.8285 + }, + { + "start": 4014.74, + "end": 4015.22, + "probability": 0.7046 + }, + { + "start": 4015.38, + "end": 4016.16, + "probability": 0.7094 + }, + { + "start": 4019.1, + "end": 4019.6, + "probability": 0.4806 + }, + { + "start": 4019.66, + "end": 4020.48, + "probability": 0.5748 + }, + { + "start": 4020.88, + "end": 4022.46, + "probability": 0.9971 + }, + { + "start": 4022.62, + "end": 4023.14, + "probability": 0.8602 + }, + { + "start": 4023.28, + "end": 4024.98, + "probability": 0.796 + }, + { + "start": 4025.2, + "end": 4028.62, + "probability": 0.9615 + }, + { + "start": 4029.14, + "end": 4030.46, + "probability": 0.8145 + }, + { + "start": 4030.66, + "end": 4031.18, + "probability": 0.4327 + }, + { + "start": 4031.2, + "end": 4032.86, + "probability": 0.9201 + }, + { + "start": 4033.46, + "end": 4035.86, + "probability": 0.9749 + }, + { + "start": 4036.42, + "end": 4037.36, + "probability": 0.9438 + }, + { + "start": 4037.4, + "end": 4037.78, + "probability": 0.8272 + }, + { + "start": 4038.24, + "end": 4040.15, + "probability": 0.8065 + }, + { + "start": 4040.38, + "end": 4041.92, + "probability": 0.9711 + }, + { + "start": 4042.32, + "end": 4044.02, + "probability": 0.938 + }, + { + "start": 4044.5, + "end": 4045.86, + "probability": 0.9745 + }, + { + "start": 4046.86, + "end": 4047.12, + "probability": 0.5443 + }, + { + "start": 4047.2, + "end": 4048.94, + "probability": 0.7236 + }, + { + "start": 4049.22, + "end": 4051.44, + "probability": 0.7749 + }, + { + "start": 4053.2, + "end": 4054.72, + "probability": 0.9882 + }, + { + "start": 4055.46, + "end": 4058.42, + "probability": 0.8213 + }, + { + "start": 4058.94, + "end": 4060.62, + "probability": 0.9001 + }, + { + "start": 4060.76, + "end": 4062.1, + "probability": 0.9762 + }, + { + "start": 4062.92, + "end": 4064.64, + "probability": 0.9852 + }, + { + "start": 4064.86, + "end": 4068.52, + "probability": 0.9521 + }, + { + "start": 4068.94, + "end": 4069.63, + "probability": 0.7491 + }, + { + "start": 4069.68, + "end": 4071.82, + "probability": 0.994 + }, + { + "start": 4072.72, + "end": 4073.06, + "probability": 0.8367 + }, + { + "start": 4073.1, + "end": 4074.14, + "probability": 0.9592 + }, + { + "start": 4074.16, + "end": 4077.84, + "probability": 0.9805 + }, + { + "start": 4078.56, + "end": 4081.0, + "probability": 0.4816 + }, + { + "start": 4081.5, + "end": 4082.54, + "probability": 0.9968 + }, + { + "start": 4083.22, + "end": 4084.94, + "probability": 0.8159 + }, + { + "start": 4085.04, + "end": 4085.76, + "probability": 0.6779 + }, + { + "start": 4086.06, + "end": 4087.96, + "probability": 0.8585 + }, + { + "start": 4088.02, + "end": 4088.71, + "probability": 0.583 + }, + { + "start": 4089.72, + "end": 4095.58, + "probability": 0.9952 + }, + { + "start": 4096.78, + "end": 4097.9, + "probability": 0.6549 + }, + { + "start": 4098.83, + "end": 4101.72, + "probability": 0.9683 + }, + { + "start": 4101.72, + "end": 4104.44, + "probability": 0.9952 + }, + { + "start": 4104.94, + "end": 4106.82, + "probability": 0.7957 + }, + { + "start": 4107.78, + "end": 4110.54, + "probability": 0.8989 + }, + { + "start": 4111.26, + "end": 4114.36, + "probability": 0.944 + }, + { + "start": 4115.18, + "end": 4117.06, + "probability": 0.7108 + }, + { + "start": 4118.4, + "end": 4119.3, + "probability": 0.4959 + }, + { + "start": 4119.9, + "end": 4121.7, + "probability": 0.7913 + }, + { + "start": 4122.96, + "end": 4124.46, + "probability": 0.9871 + }, + { + "start": 4124.54, + "end": 4125.64, + "probability": 0.6033 + }, + { + "start": 4125.66, + "end": 4126.36, + "probability": 0.5735 + }, + { + "start": 4126.8, + "end": 4127.7, + "probability": 0.0122 + }, + { + "start": 4128.54, + "end": 4132.3, + "probability": 0.8723 + }, + { + "start": 4133.02, + "end": 4135.4, + "probability": 0.7769 + }, + { + "start": 4136.06, + "end": 4139.5, + "probability": 0.8422 + }, + { + "start": 4140.98, + "end": 4144.14, + "probability": 0.9564 + }, + { + "start": 4145.1, + "end": 4146.58, + "probability": 0.9619 + }, + { + "start": 4147.56, + "end": 4148.44, + "probability": 0.8102 + }, + { + "start": 4149.98, + "end": 4150.22, + "probability": 0.0579 + }, + { + "start": 4150.22, + "end": 4151.18, + "probability": 0.7488 + }, + { + "start": 4152.34, + "end": 4153.34, + "probability": 0.7152 + }, + { + "start": 4154.54, + "end": 4157.54, + "probability": 0.7139 + }, + { + "start": 4158.42, + "end": 4161.08, + "probability": 0.6011 + }, + { + "start": 4161.88, + "end": 4164.44, + "probability": 0.6814 + }, + { + "start": 4165.42, + "end": 4167.42, + "probability": 0.9836 + }, + { + "start": 4168.14, + "end": 4169.88, + "probability": 0.864 + }, + { + "start": 4170.78, + "end": 4172.72, + "probability": 0.8912 + }, + { + "start": 4173.18, + "end": 4174.82, + "probability": 0.7627 + }, + { + "start": 4175.46, + "end": 4176.16, + "probability": 0.9362 + }, + { + "start": 4177.16, + "end": 4182.3, + "probability": 0.7934 + }, + { + "start": 4183.44, + "end": 4184.12, + "probability": 0.9018 + }, + { + "start": 4184.22, + "end": 4185.52, + "probability": 0.944 + }, + { + "start": 4186.08, + "end": 4187.26, + "probability": 0.9644 + }, + { + "start": 4188.08, + "end": 4191.06, + "probability": 0.8664 + }, + { + "start": 4191.6, + "end": 4193.36, + "probability": 0.5287 + }, + { + "start": 4193.74, + "end": 4194.9, + "probability": 0.8777 + }, + { + "start": 4195.38, + "end": 4199.2, + "probability": 0.9047 + }, + { + "start": 4199.76, + "end": 4201.58, + "probability": 0.8926 + }, + { + "start": 4201.94, + "end": 4203.82, + "probability": 0.9618 + }, + { + "start": 4205.04, + "end": 4206.16, + "probability": 0.8933 + }, + { + "start": 4206.92, + "end": 4207.94, + "probability": 0.9111 + }, + { + "start": 4208.04, + "end": 4210.76, + "probability": 0.6331 + }, + { + "start": 4211.34, + "end": 4212.2, + "probability": 0.7684 + }, + { + "start": 4212.72, + "end": 4214.7, + "probability": 0.5887 + }, + { + "start": 4215.04, + "end": 4217.64, + "probability": 0.927 + }, + { + "start": 4218.72, + "end": 4220.36, + "probability": 0.9629 + }, + { + "start": 4220.44, + "end": 4223.19, + "probability": 0.82 + }, + { + "start": 4224.1, + "end": 4225.12, + "probability": 0.9126 + }, + { + "start": 4225.24, + "end": 4225.5, + "probability": 0.804 + }, + { + "start": 4225.58, + "end": 4226.46, + "probability": 0.657 + }, + { + "start": 4226.7, + "end": 4232.58, + "probability": 0.9691 + }, + { + "start": 4233.02, + "end": 4234.5, + "probability": 0.7985 + }, + { + "start": 4235.16, + "end": 4236.64, + "probability": 0.7378 + }, + { + "start": 4237.78, + "end": 4238.82, + "probability": 0.6719 + }, + { + "start": 4238.92, + "end": 4241.36, + "probability": 0.7898 + }, + { + "start": 4241.36, + "end": 4242.0, + "probability": 0.3186 + }, + { + "start": 4242.8, + "end": 4243.46, + "probability": 0.9728 + }, + { + "start": 4243.58, + "end": 4244.0, + "probability": 0.8513 + }, + { + "start": 4244.38, + "end": 4247.72, + "probability": 0.9836 + }, + { + "start": 4248.72, + "end": 4251.12, + "probability": 0.8809 + }, + { + "start": 4251.96, + "end": 4253.64, + "probability": 0.9247 + }, + { + "start": 4253.74, + "end": 4254.85, + "probability": 0.9672 + }, + { + "start": 4255.2, + "end": 4255.82, + "probability": 0.9486 + }, + { + "start": 4257.0, + "end": 4258.04, + "probability": 0.7595 + }, + { + "start": 4258.88, + "end": 4262.8, + "probability": 0.2233 + }, + { + "start": 4262.8, + "end": 4263.5, + "probability": 0.3125 + }, + { + "start": 4263.82, + "end": 4264.72, + "probability": 0.4373 + }, + { + "start": 4265.48, + "end": 4268.96, + "probability": 0.8795 + }, + { + "start": 4268.96, + "end": 4269.64, + "probability": 0.94 + }, + { + "start": 4270.54, + "end": 4273.92, + "probability": 0.9546 + }, + { + "start": 4274.14, + "end": 4275.48, + "probability": 0.4977 + }, + { + "start": 4275.56, + "end": 4277.42, + "probability": 0.4413 + }, + { + "start": 4277.96, + "end": 4280.75, + "probability": 0.5649 + }, + { + "start": 4281.42, + "end": 4283.12, + "probability": 0.9751 + }, + { + "start": 4283.28, + "end": 4284.42, + "probability": 0.7365 + }, + { + "start": 4284.42, + "end": 4284.66, + "probability": 0.4539 + }, + { + "start": 4284.8, + "end": 4285.47, + "probability": 0.9438 + }, + { + "start": 4286.14, + "end": 4286.38, + "probability": 0.684 + }, + { + "start": 4286.46, + "end": 4287.12, + "probability": 0.8855 + }, + { + "start": 4287.26, + "end": 4288.08, + "probability": 0.6985 + }, + { + "start": 4288.14, + "end": 4288.44, + "probability": 0.7866 + }, + { + "start": 4289.22, + "end": 4290.66, + "probability": 0.9451 + }, + { + "start": 4291.14, + "end": 4292.36, + "probability": 0.9829 + }, + { + "start": 4293.34, + "end": 4294.05, + "probability": 0.6472 + }, + { + "start": 4294.52, + "end": 4295.72, + "probability": 0.9921 + }, + { + "start": 4295.76, + "end": 4298.94, + "probability": 0.9729 + }, + { + "start": 4299.36, + "end": 4299.76, + "probability": 0.2281 + }, + { + "start": 4300.34, + "end": 4301.14, + "probability": 0.474 + }, + { + "start": 4301.14, + "end": 4302.14, + "probability": 0.8975 + }, + { + "start": 4302.46, + "end": 4304.46, + "probability": 0.9517 + }, + { + "start": 4304.98, + "end": 4307.56, + "probability": 0.8776 + }, + { + "start": 4307.92, + "end": 4308.34, + "probability": 0.6694 + }, + { + "start": 4308.46, + "end": 4309.64, + "probability": 0.8583 + }, + { + "start": 4309.76, + "end": 4310.32, + "probability": 0.6163 + }, + { + "start": 4313.04, + "end": 4315.54, + "probability": 0.8091 + }, + { + "start": 4316.32, + "end": 4318.98, + "probability": 0.9678 + }, + { + "start": 4319.14, + "end": 4320.0, + "probability": 0.7779 + }, + { + "start": 4320.1, + "end": 4320.64, + "probability": 0.9218 + }, + { + "start": 4320.84, + "end": 4324.92, + "probability": 0.6566 + }, + { + "start": 4325.08, + "end": 4326.64, + "probability": 0.7565 + }, + { + "start": 4326.82, + "end": 4331.3, + "probability": 0.9924 + }, + { + "start": 4331.92, + "end": 4334.1, + "probability": 0.9946 + }, + { + "start": 4334.18, + "end": 4335.91, + "probability": 0.9742 + }, + { + "start": 4336.62, + "end": 4341.98, + "probability": 0.9321 + }, + { + "start": 4342.52, + "end": 4343.42, + "probability": 0.8463 + }, + { + "start": 4343.66, + "end": 4344.84, + "probability": 0.3147 + }, + { + "start": 4345.1, + "end": 4350.84, + "probability": 0.9984 + }, + { + "start": 4350.84, + "end": 4357.84, + "probability": 0.9985 + }, + { + "start": 4358.14, + "end": 4360.24, + "probability": 0.9956 + }, + { + "start": 4360.88, + "end": 4363.24, + "probability": 0.8275 + }, + { + "start": 4363.32, + "end": 4367.1, + "probability": 0.5397 + }, + { + "start": 4367.66, + "end": 4368.4, + "probability": 0.7805 + }, + { + "start": 4369.02, + "end": 4373.76, + "probability": 0.802 + }, + { + "start": 4374.1, + "end": 4377.68, + "probability": 0.9812 + }, + { + "start": 4378.14, + "end": 4383.76, + "probability": 0.9827 + }, + { + "start": 4384.24, + "end": 4385.82, + "probability": 0.8426 + }, + { + "start": 4386.22, + "end": 4391.26, + "probability": 0.9459 + }, + { + "start": 4391.7, + "end": 4396.28, + "probability": 0.9576 + }, + { + "start": 4396.74, + "end": 4400.2, + "probability": 0.9785 + }, + { + "start": 4400.92, + "end": 4402.52, + "probability": 0.4936 + }, + { + "start": 4403.2, + "end": 4403.72, + "probability": 0.7 + }, + { + "start": 4404.34, + "end": 4408.04, + "probability": 0.9824 + }, + { + "start": 4408.9, + "end": 4410.94, + "probability": 0.6765 + }, + { + "start": 4411.66, + "end": 4414.96, + "probability": 0.9924 + }, + { + "start": 4415.34, + "end": 4419.54, + "probability": 0.977 + }, + { + "start": 4419.58, + "end": 4422.88, + "probability": 0.9058 + }, + { + "start": 4423.36, + "end": 4424.3, + "probability": 0.8591 + }, + { + "start": 4424.54, + "end": 4425.32, + "probability": 0.7738 + }, + { + "start": 4425.52, + "end": 4427.38, + "probability": 0.7442 + }, + { + "start": 4428.32, + "end": 4433.02, + "probability": 0.9965 + }, + { + "start": 4433.02, + "end": 4438.36, + "probability": 0.8794 + }, + { + "start": 4438.82, + "end": 4441.16, + "probability": 0.7356 + }, + { + "start": 4441.22, + "end": 4443.4, + "probability": 0.7922 + }, + { + "start": 4444.0, + "end": 4444.42, + "probability": 0.89 + }, + { + "start": 4444.6, + "end": 4445.24, + "probability": 0.9223 + }, + { + "start": 4445.28, + "end": 4446.1, + "probability": 0.7762 + }, + { + "start": 4446.3, + "end": 4447.18, + "probability": 0.8203 + }, + { + "start": 4447.58, + "end": 4448.58, + "probability": 0.9658 + }, + { + "start": 4449.3, + "end": 4450.54, + "probability": 0.965 + }, + { + "start": 4450.92, + "end": 4456.92, + "probability": 0.9958 + }, + { + "start": 4457.0, + "end": 4462.92, + "probability": 0.9969 + }, + { + "start": 4463.44, + "end": 4466.7, + "probability": 0.749 + }, + { + "start": 4467.08, + "end": 4468.22, + "probability": 0.6079 + }, + { + "start": 4468.64, + "end": 4472.32, + "probability": 0.9336 + }, + { + "start": 4472.42, + "end": 4473.98, + "probability": 0.7619 + }, + { + "start": 4474.7, + "end": 4480.28, + "probability": 0.976 + }, + { + "start": 4480.28, + "end": 4485.72, + "probability": 0.9962 + }, + { + "start": 4486.28, + "end": 4487.66, + "probability": 0.6849 + }, + { + "start": 4488.12, + "end": 4493.08, + "probability": 0.9979 + }, + { + "start": 4493.62, + "end": 4498.56, + "probability": 0.9254 + }, + { + "start": 4499.08, + "end": 4501.64, + "probability": 0.6896 + }, + { + "start": 4501.89, + "end": 4503.6, + "probability": 0.6032 + }, + { + "start": 4503.6, + "end": 4504.0, + "probability": 0.2617 + }, + { + "start": 4504.84, + "end": 4505.38, + "probability": 0.6553 + }, + { + "start": 4505.5, + "end": 4506.22, + "probability": 0.695 + }, + { + "start": 4506.38, + "end": 4507.02, + "probability": 0.8341 + }, + { + "start": 4507.1, + "end": 4512.08, + "probability": 0.9668 + }, + { + "start": 4512.46, + "end": 4513.62, + "probability": 0.7952 + }, + { + "start": 4514.16, + "end": 4515.2, + "probability": 0.6319 + }, + { + "start": 4515.32, + "end": 4520.34, + "probability": 0.8781 + }, + { + "start": 4520.78, + "end": 4522.98, + "probability": 0.9879 + }, + { + "start": 4523.18, + "end": 4525.04, + "probability": 0.9523 + }, + { + "start": 4525.56, + "end": 4526.52, + "probability": 0.7804 + }, + { + "start": 4527.0, + "end": 4530.5, + "probability": 0.9941 + }, + { + "start": 4530.56, + "end": 4533.82, + "probability": 0.9995 + }, + { + "start": 4534.12, + "end": 4534.46, + "probability": 0.6532 + }, + { + "start": 4534.46, + "end": 4535.7, + "probability": 0.8088 + }, + { + "start": 4535.84, + "end": 4536.7, + "probability": 0.8627 + }, + { + "start": 4537.06, + "end": 4540.52, + "probability": 0.986 + }, + { + "start": 4540.52, + "end": 4543.36, + "probability": 0.9752 + }, + { + "start": 4543.92, + "end": 4544.92, + "probability": 0.7905 + }, + { + "start": 4545.12, + "end": 4545.92, + "probability": 0.8399 + }, + { + "start": 4546.36, + "end": 4551.86, + "probability": 0.8605 + }, + { + "start": 4551.9, + "end": 4555.52, + "probability": 0.8969 + }, + { + "start": 4556.04, + "end": 4557.26, + "probability": 0.7447 + }, + { + "start": 4557.3, + "end": 4561.46, + "probability": 0.9929 + }, + { + "start": 4561.8, + "end": 4565.6, + "probability": 0.8954 + }, + { + "start": 4566.02, + "end": 4570.64, + "probability": 0.9958 + }, + { + "start": 4571.02, + "end": 4575.98, + "probability": 0.9979 + }, + { + "start": 4576.86, + "end": 4581.04, + "probability": 0.9515 + }, + { + "start": 4581.3, + "end": 4583.52, + "probability": 0.9552 + }, + { + "start": 4583.56, + "end": 4584.92, + "probability": 0.823 + }, + { + "start": 4586.08, + "end": 4590.98, + "probability": 0.9434 + }, + { + "start": 4598.44, + "end": 4599.1, + "probability": 0.782 + }, + { + "start": 4599.38, + "end": 4599.68, + "probability": 0.4202 + }, + { + "start": 4600.0, + "end": 4601.3, + "probability": 0.6067 + }, + { + "start": 4602.26, + "end": 4605.76, + "probability": 0.9727 + }, + { + "start": 4606.58, + "end": 4607.9, + "probability": 0.9386 + }, + { + "start": 4608.5, + "end": 4609.78, + "probability": 0.9681 + }, + { + "start": 4610.74, + "end": 4611.62, + "probability": 0.6599 + }, + { + "start": 4612.44, + "end": 4615.32, + "probability": 0.9946 + }, + { + "start": 4615.9, + "end": 4619.42, + "probability": 0.9719 + }, + { + "start": 4620.48, + "end": 4622.9, + "probability": 0.9255 + }, + { + "start": 4623.92, + "end": 4625.0, + "probability": 0.7822 + }, + { + "start": 4625.6, + "end": 4627.88, + "probability": 0.8358 + }, + { + "start": 4628.86, + "end": 4630.42, + "probability": 0.9873 + }, + { + "start": 4631.0, + "end": 4632.76, + "probability": 0.8877 + }, + { + "start": 4633.82, + "end": 4636.08, + "probability": 0.9927 + }, + { + "start": 4636.5, + "end": 4640.74, + "probability": 0.9955 + }, + { + "start": 4642.5, + "end": 4645.26, + "probability": 0.9742 + }, + { + "start": 4646.04, + "end": 4648.92, + "probability": 0.9961 + }, + { + "start": 4649.72, + "end": 4653.76, + "probability": 0.9937 + }, + { + "start": 4654.6, + "end": 4655.58, + "probability": 0.9985 + }, + { + "start": 4656.58, + "end": 4658.02, + "probability": 0.9939 + }, + { + "start": 4659.32, + "end": 4662.02, + "probability": 0.9935 + }, + { + "start": 4662.64, + "end": 4663.58, + "probability": 0.9392 + }, + { + "start": 4665.5, + "end": 4666.76, + "probability": 0.9669 + }, + { + "start": 4666.76, + "end": 4669.32, + "probability": 0.7693 + }, + { + "start": 4669.38, + "end": 4670.88, + "probability": 0.9817 + }, + { + "start": 4672.6, + "end": 4677.06, + "probability": 0.9559 + }, + { + "start": 4677.86, + "end": 4681.68, + "probability": 0.9843 + }, + { + "start": 4682.02, + "end": 4684.3, + "probability": 0.9902 + }, + { + "start": 4684.68, + "end": 4685.12, + "probability": 0.9558 + }, + { + "start": 4686.92, + "end": 4689.1, + "probability": 0.9932 + }, + { + "start": 4689.94, + "end": 4691.56, + "probability": 0.9837 + }, + { + "start": 4692.16, + "end": 4693.72, + "probability": 0.9937 + }, + { + "start": 4694.74, + "end": 4695.68, + "probability": 0.5126 + }, + { + "start": 4696.4, + "end": 4697.1, + "probability": 0.6517 + }, + { + "start": 4697.78, + "end": 4699.08, + "probability": 0.7792 + }, + { + "start": 4699.8, + "end": 4702.34, + "probability": 0.9346 + }, + { + "start": 4702.5, + "end": 4703.45, + "probability": 0.9622 + }, + { + "start": 4703.74, + "end": 4705.24, + "probability": 0.9646 + }, + { + "start": 4705.64, + "end": 4706.8, + "probability": 0.9265 + }, + { + "start": 4707.26, + "end": 4708.58, + "probability": 0.4829 + }, + { + "start": 4709.26, + "end": 4710.16, + "probability": 0.7715 + }, + { + "start": 4711.18, + "end": 4714.12, + "probability": 0.9147 + }, + { + "start": 4715.16, + "end": 4718.3, + "probability": 0.8939 + }, + { + "start": 4718.8, + "end": 4720.02, + "probability": 0.6183 + }, + { + "start": 4720.14, + "end": 4720.9, + "probability": 0.8693 + }, + { + "start": 4722.18, + "end": 4725.66, + "probability": 0.628 + }, + { + "start": 4726.54, + "end": 4727.86, + "probability": 0.9005 + }, + { + "start": 4727.88, + "end": 4730.31, + "probability": 0.9141 + }, + { + "start": 4732.51, + "end": 4736.28, + "probability": 0.7988 + }, + { + "start": 4736.64, + "end": 4737.04, + "probability": 0.5179 + }, + { + "start": 4737.56, + "end": 4741.06, + "probability": 0.9668 + }, + { + "start": 4741.86, + "end": 4742.4, + "probability": 0.9735 + }, + { + "start": 4743.4, + "end": 4746.18, + "probability": 0.9615 + }, + { + "start": 4746.18, + "end": 4749.32, + "probability": 0.8836 + }, + { + "start": 4750.24, + "end": 4750.86, + "probability": 0.9704 + }, + { + "start": 4751.48, + "end": 4752.45, + "probability": 0.8041 + }, + { + "start": 4753.18, + "end": 4758.0, + "probability": 0.9797 + }, + { + "start": 4758.54, + "end": 4761.86, + "probability": 0.9839 + }, + { + "start": 4761.86, + "end": 4766.22, + "probability": 0.9826 + }, + { + "start": 4767.0, + "end": 4769.3, + "probability": 0.994 + }, + { + "start": 4769.92, + "end": 4771.58, + "probability": 0.9983 + }, + { + "start": 4772.52, + "end": 4774.1, + "probability": 0.8054 + }, + { + "start": 4774.2, + "end": 4776.24, + "probability": 0.7909 + }, + { + "start": 4776.26, + "end": 4778.06, + "probability": 0.8632 + }, + { + "start": 4778.96, + "end": 4779.84, + "probability": 0.8525 + }, + { + "start": 4780.36, + "end": 4782.6, + "probability": 0.8408 + }, + { + "start": 4783.3, + "end": 4783.52, + "probability": 0.7382 + }, + { + "start": 4784.06, + "end": 4786.56, + "probability": 0.9727 + }, + { + "start": 4786.96, + "end": 4788.54, + "probability": 0.9595 + }, + { + "start": 4789.46, + "end": 4790.12, + "probability": 0.6616 + }, + { + "start": 4790.88, + "end": 4792.56, + "probability": 0.7208 + }, + { + "start": 4793.94, + "end": 4797.46, + "probability": 0.7905 + }, + { + "start": 4799.7, + "end": 4801.28, + "probability": 0.4048 + }, + { + "start": 4801.58, + "end": 4801.68, + "probability": 0.4518 + }, + { + "start": 4801.68, + "end": 4803.98, + "probability": 0.8929 + }, + { + "start": 4804.96, + "end": 4806.76, + "probability": 0.9612 + }, + { + "start": 4806.88, + "end": 4807.82, + "probability": 0.9113 + }, + { + "start": 4807.86, + "end": 4808.76, + "probability": 0.8077 + }, + { + "start": 4808.84, + "end": 4809.4, + "probability": 0.8634 + }, + { + "start": 4810.18, + "end": 4814.18, + "probability": 0.9618 + }, + { + "start": 4815.34, + "end": 4817.08, + "probability": 0.938 + }, + { + "start": 4818.12, + "end": 4819.22, + "probability": 0.3335 + }, + { + "start": 4819.22, + "end": 4819.72, + "probability": 0.7949 + }, + { + "start": 4819.82, + "end": 4824.48, + "probability": 0.9634 + }, + { + "start": 4825.04, + "end": 4826.46, + "probability": 0.9841 + }, + { + "start": 4827.52, + "end": 4832.88, + "probability": 0.9323 + }, + { + "start": 4833.04, + "end": 4834.95, + "probability": 0.5112 + }, + { + "start": 4836.3, + "end": 4838.38, + "probability": 0.9479 + }, + { + "start": 4838.8, + "end": 4844.22, + "probability": 0.886 + }, + { + "start": 4844.66, + "end": 4845.82, + "probability": 0.9171 + }, + { + "start": 4846.58, + "end": 4850.28, + "probability": 0.954 + }, + { + "start": 4850.66, + "end": 4852.16, + "probability": 0.9369 + }, + { + "start": 4852.44, + "end": 4854.82, + "probability": 0.9261 + }, + { + "start": 4854.94, + "end": 4856.34, + "probability": 0.7226 + }, + { + "start": 4856.52, + "end": 4860.48, + "probability": 0.4265 + }, + { + "start": 4860.48, + "end": 4861.28, + "probability": 0.5335 + }, + { + "start": 4861.66, + "end": 4863.2, + "probability": 0.9018 + }, + { + "start": 4863.62, + "end": 4867.14, + "probability": 0.8877 + }, + { + "start": 4867.86, + "end": 4869.14, + "probability": 0.7625 + }, + { + "start": 4869.16, + "end": 4869.82, + "probability": 0.7982 + }, + { + "start": 4869.94, + "end": 4870.98, + "probability": 0.9799 + }, + { + "start": 4871.5, + "end": 4873.7, + "probability": 0.6513 + }, + { + "start": 4874.16, + "end": 4877.46, + "probability": 0.9857 + }, + { + "start": 4877.46, + "end": 4880.7, + "probability": 0.8785 + }, + { + "start": 4881.06, + "end": 4881.32, + "probability": 0.538 + }, + { + "start": 4881.74, + "end": 4883.58, + "probability": 0.7185 + }, + { + "start": 4883.72, + "end": 4884.9, + "probability": 0.8187 + }, + { + "start": 4885.78, + "end": 4889.81, + "probability": 0.8223 + }, + { + "start": 4889.98, + "end": 4895.48, + "probability": 0.7606 + }, + { + "start": 4895.78, + "end": 4898.88, + "probability": 0.7597 + }, + { + "start": 4899.18, + "end": 4901.18, + "probability": 0.6256 + }, + { + "start": 4901.7, + "end": 4903.5, + "probability": 0.9519 + }, + { + "start": 4904.5, + "end": 4904.6, + "probability": 0.2698 + }, + { + "start": 4904.6, + "end": 4906.4, + "probability": 0.7079 + }, + { + "start": 4907.82, + "end": 4908.62, + "probability": 0.7082 + }, + { + "start": 4909.6, + "end": 4914.64, + "probability": 0.8379 + }, + { + "start": 4915.22, + "end": 4916.16, + "probability": 0.5522 + }, + { + "start": 4916.2, + "end": 4916.4, + "probability": 0.5505 + }, + { + "start": 4916.5, + "end": 4918.54, + "probability": 0.741 + }, + { + "start": 4918.98, + "end": 4920.46, + "probability": 0.8192 + }, + { + "start": 4921.0, + "end": 4922.6, + "probability": 0.9488 + }, + { + "start": 4922.96, + "end": 4924.66, + "probability": 0.6906 + }, + { + "start": 4924.88, + "end": 4926.0, + "probability": 0.8792 + }, + { + "start": 4926.1, + "end": 4927.24, + "probability": 0.7299 + }, + { + "start": 4927.64, + "end": 4929.34, + "probability": 0.9766 + }, + { + "start": 4929.92, + "end": 4930.74, + "probability": 0.9685 + }, + { + "start": 4931.08, + "end": 4932.42, + "probability": 0.8256 + }, + { + "start": 4932.86, + "end": 4933.84, + "probability": 0.9922 + }, + { + "start": 4934.78, + "end": 4936.16, + "probability": 0.9162 + }, + { + "start": 4936.48, + "end": 4937.44, + "probability": 0.7781 + }, + { + "start": 4937.46, + "end": 4938.12, + "probability": 0.7097 + }, + { + "start": 4938.22, + "end": 4938.68, + "probability": 0.7213 + }, + { + "start": 4939.1, + "end": 4943.18, + "probability": 0.9736 + }, + { + "start": 4943.24, + "end": 4943.94, + "probability": 0.679 + }, + { + "start": 4944.38, + "end": 4945.16, + "probability": 0.7417 + }, + { + "start": 4945.48, + "end": 4946.16, + "probability": 0.8143 + }, + { + "start": 4946.52, + "end": 4948.26, + "probability": 0.9183 + }, + { + "start": 4948.62, + "end": 4950.72, + "probability": 0.9653 + }, + { + "start": 4951.12, + "end": 4953.76, + "probability": 0.9804 + }, + { + "start": 4954.3, + "end": 4954.98, + "probability": 0.6138 + }, + { + "start": 4955.36, + "end": 4956.5, + "probability": 0.8794 + }, + { + "start": 4956.64, + "end": 4959.86, + "probability": 0.9873 + }, + { + "start": 4960.22, + "end": 4961.1, + "probability": 0.9312 + }, + { + "start": 4961.22, + "end": 4962.54, + "probability": 0.8127 + }, + { + "start": 4962.9, + "end": 4963.42, + "probability": 0.4947 + }, + { + "start": 4963.54, + "end": 4963.88, + "probability": 0.2986 + }, + { + "start": 4963.9, + "end": 4965.18, + "probability": 0.6342 + }, + { + "start": 4965.54, + "end": 4968.44, + "probability": 0.8662 + }, + { + "start": 4968.44, + "end": 4970.2, + "probability": 0.5962 + }, + { + "start": 4970.52, + "end": 4973.9, + "probability": 0.9373 + }, + { + "start": 4974.34, + "end": 4980.22, + "probability": 0.9339 + }, + { + "start": 4980.6, + "end": 4982.5, + "probability": 0.8498 + }, + { + "start": 4982.9, + "end": 4984.94, + "probability": 0.5543 + }, + { + "start": 4985.32, + "end": 4986.2, + "probability": 0.673 + }, + { + "start": 4986.42, + "end": 4987.58, + "probability": 0.893 + }, + { + "start": 4988.12, + "end": 4989.32, + "probability": 0.5338 + }, + { + "start": 4989.36, + "end": 4991.14, + "probability": 0.9119 + }, + { + "start": 4991.26, + "end": 4991.92, + "probability": 0.7701 + }, + { + "start": 4992.04, + "end": 4992.72, + "probability": 0.8354 + }, + { + "start": 4993.14, + "end": 4998.4, + "probability": 0.9001 + }, + { + "start": 4998.5, + "end": 4998.7, + "probability": 0.4004 + }, + { + "start": 4998.72, + "end": 4999.7, + "probability": 0.3425 + }, + { + "start": 5000.14, + "end": 5001.46, + "probability": 0.8484 + }, + { + "start": 5002.04, + "end": 5003.58, + "probability": 0.7384 + }, + { + "start": 5003.98, + "end": 5006.3, + "probability": 0.9106 + }, + { + "start": 5006.4, + "end": 5007.72, + "probability": 0.9197 + }, + { + "start": 5009.94, + "end": 5011.72, + "probability": 0.8939 + }, + { + "start": 5011.8, + "end": 5013.81, + "probability": 0.9917 + }, + { + "start": 5014.48, + "end": 5015.44, + "probability": 0.3653 + }, + { + "start": 5015.54, + "end": 5019.06, + "probability": 0.6717 + }, + { + "start": 5019.44, + "end": 5020.4, + "probability": 0.0412 + }, + { + "start": 5020.54, + "end": 5023.1, + "probability": 0.7458 + }, + { + "start": 5023.32, + "end": 5023.98, + "probability": 0.8162 + }, + { + "start": 5024.04, + "end": 5025.02, + "probability": 0.687 + }, + { + "start": 5025.08, + "end": 5027.34, + "probability": 0.9234 + }, + { + "start": 5027.58, + "end": 5028.66, + "probability": 0.9802 + }, + { + "start": 5029.16, + "end": 5030.62, + "probability": 0.7533 + }, + { + "start": 5030.84, + "end": 5034.5, + "probability": 0.9949 + }, + { + "start": 5035.7, + "end": 5039.0, + "probability": 0.8659 + }, + { + "start": 5039.0, + "end": 5041.42, + "probability": 0.6437 + }, + { + "start": 5041.96, + "end": 5045.46, + "probability": 0.7993 + }, + { + "start": 5045.94, + "end": 5048.58, + "probability": 0.9751 + }, + { + "start": 5049.08, + "end": 5049.74, + "probability": 0.5643 + }, + { + "start": 5050.58, + "end": 5052.9, + "probability": 0.2417 + }, + { + "start": 5053.44, + "end": 5054.5, + "probability": 0.5426 + }, + { + "start": 5054.74, + "end": 5057.7, + "probability": 0.731 + }, + { + "start": 5058.14, + "end": 5061.08, + "probability": 0.877 + }, + { + "start": 5061.5, + "end": 5064.04, + "probability": 0.9862 + }, + { + "start": 5064.58, + "end": 5065.04, + "probability": 0.9709 + }, + { + "start": 5065.54, + "end": 5066.4, + "probability": 0.9311 + }, + { + "start": 5066.86, + "end": 5067.82, + "probability": 0.6838 + }, + { + "start": 5067.84, + "end": 5069.88, + "probability": 0.5205 + }, + { + "start": 5070.1, + "end": 5070.82, + "probability": 0.6586 + }, + { + "start": 5071.38, + "end": 5073.66, + "probability": 0.8867 + }, + { + "start": 5074.4, + "end": 5075.86, + "probability": 0.8822 + }, + { + "start": 5076.26, + "end": 5076.88, + "probability": 0.342 + }, + { + "start": 5076.94, + "end": 5079.88, + "probability": 0.9594 + }, + { + "start": 5079.88, + "end": 5083.06, + "probability": 0.951 + }, + { + "start": 5083.18, + "end": 5084.4, + "probability": 0.6752 + }, + { + "start": 5084.84, + "end": 5085.22, + "probability": 0.7219 + }, + { + "start": 5085.28, + "end": 5087.35, + "probability": 0.8119 + }, + { + "start": 5087.68, + "end": 5088.64, + "probability": 0.8852 + }, + { + "start": 5089.16, + "end": 5094.06, + "probability": 0.9255 + }, + { + "start": 5094.36, + "end": 5095.1, + "probability": 0.8436 + }, + { + "start": 5095.34, + "end": 5096.46, + "probability": 0.8418 + }, + { + "start": 5097.0, + "end": 5098.38, + "probability": 0.7292 + }, + { + "start": 5099.06, + "end": 5100.42, + "probability": 0.7957 + }, + { + "start": 5100.86, + "end": 5101.98, + "probability": 0.9464 + }, + { + "start": 5102.42, + "end": 5104.08, + "probability": 0.8953 + }, + { + "start": 5104.12, + "end": 5104.36, + "probability": 0.5798 + }, + { + "start": 5104.74, + "end": 5105.26, + "probability": 0.4058 + }, + { + "start": 5105.26, + "end": 5109.36, + "probability": 0.8828 + }, + { + "start": 5109.8, + "end": 5110.48, + "probability": 0.8516 + }, + { + "start": 5111.08, + "end": 5113.26, + "probability": 0.938 + }, + { + "start": 5113.88, + "end": 5116.33, + "probability": 0.9162 + }, + { + "start": 5116.96, + "end": 5119.32, + "probability": 0.6641 + }, + { + "start": 5123.26, + "end": 5124.58, + "probability": 0.835 + }, + { + "start": 5124.96, + "end": 5126.06, + "probability": 0.9374 + }, + { + "start": 5126.34, + "end": 5128.66, + "probability": 0.8466 + }, + { + "start": 5130.18, + "end": 5133.5, + "probability": 0.8003 + }, + { + "start": 5134.32, + "end": 5135.84, + "probability": 0.9078 + }, + { + "start": 5136.54, + "end": 5138.3, + "probability": 0.6902 + }, + { + "start": 5139.1, + "end": 5140.38, + "probability": 0.9946 + }, + { + "start": 5140.98, + "end": 5142.1, + "probability": 0.9969 + }, + { + "start": 5142.94, + "end": 5145.54, + "probability": 0.9978 + }, + { + "start": 5146.6, + "end": 5147.58, + "probability": 0.9963 + }, + { + "start": 5148.64, + "end": 5155.58, + "probability": 0.9746 + }, + { + "start": 5156.04, + "end": 5157.92, + "probability": 0.994 + }, + { + "start": 5158.36, + "end": 5159.65, + "probability": 0.9822 + }, + { + "start": 5160.62, + "end": 5161.15, + "probability": 0.9873 + }, + { + "start": 5162.22, + "end": 5162.77, + "probability": 0.9492 + }, + { + "start": 5163.22, + "end": 5164.96, + "probability": 0.9648 + }, + { + "start": 5165.04, + "end": 5166.04, + "probability": 0.6356 + }, + { + "start": 5166.16, + "end": 5167.3, + "probability": 0.7136 + }, + { + "start": 5167.4, + "end": 5169.18, + "probability": 0.9607 + }, + { + "start": 5169.9, + "end": 5171.64, + "probability": 0.6459 + }, + { + "start": 5172.34, + "end": 5175.44, + "probability": 0.9452 + }, + { + "start": 5176.2, + "end": 5178.12, + "probability": 0.9126 + }, + { + "start": 5178.14, + "end": 5179.32, + "probability": 0.9932 + }, + { + "start": 5179.76, + "end": 5183.16, + "probability": 0.8441 + }, + { + "start": 5183.3, + "end": 5184.82, + "probability": 0.7926 + }, + { + "start": 5185.46, + "end": 5186.84, + "probability": 0.8754 + }, + { + "start": 5186.96, + "end": 5187.82, + "probability": 0.7274 + }, + { + "start": 5188.0, + "end": 5189.78, + "probability": 0.9172 + }, + { + "start": 5189.82, + "end": 5190.34, + "probability": 0.7313 + }, + { + "start": 5190.84, + "end": 5193.0, + "probability": 0.7512 + }, + { + "start": 5193.22, + "end": 5193.32, + "probability": 0.486 + }, + { + "start": 5193.48, + "end": 5193.84, + "probability": 0.3762 + }, + { + "start": 5193.88, + "end": 5194.2, + "probability": 0.7868 + }, + { + "start": 5194.4, + "end": 5195.3, + "probability": 0.574 + }, + { + "start": 5195.44, + "end": 5195.84, + "probability": 0.5536 + }, + { + "start": 5195.96, + "end": 5196.38, + "probability": 0.9396 + }, + { + "start": 5196.5, + "end": 5196.96, + "probability": 0.6076 + }, + { + "start": 5197.14, + "end": 5198.22, + "probability": 0.8024 + }, + { + "start": 5198.66, + "end": 5200.12, + "probability": 0.6876 + }, + { + "start": 5200.56, + "end": 5201.66, + "probability": 0.9469 + }, + { + "start": 5201.72, + "end": 5202.96, + "probability": 0.9648 + }, + { + "start": 5203.04, + "end": 5203.62, + "probability": 0.6019 + }, + { + "start": 5204.4, + "end": 5204.68, + "probability": 0.5104 + }, + { + "start": 5204.76, + "end": 5209.46, + "probability": 0.7094 + }, + { + "start": 5209.82, + "end": 5211.48, + "probability": 0.9457 + }, + { + "start": 5211.52, + "end": 5212.44, + "probability": 0.9184 + }, + { + "start": 5212.66, + "end": 5213.34, + "probability": 0.783 + }, + { + "start": 5213.42, + "end": 5214.14, + "probability": 0.936 + }, + { + "start": 5214.36, + "end": 5215.14, + "probability": 0.8465 + }, + { + "start": 5215.36, + "end": 5216.06, + "probability": 0.8358 + }, + { + "start": 5216.06, + "end": 5217.78, + "probability": 0.8704 + }, + { + "start": 5218.48, + "end": 5221.42, + "probability": 0.8993 + }, + { + "start": 5221.48, + "end": 5221.8, + "probability": 0.4541 + }, + { + "start": 5221.84, + "end": 5222.68, + "probability": 0.9016 + }, + { + "start": 5223.56, + "end": 5225.02, + "probability": 0.924 + }, + { + "start": 5225.78, + "end": 5227.04, + "probability": 0.9374 + }, + { + "start": 5227.3, + "end": 5227.66, + "probability": 0.8623 + }, + { + "start": 5227.76, + "end": 5228.46, + "probability": 0.9886 + }, + { + "start": 5228.72, + "end": 5230.06, + "probability": 0.9865 + }, + { + "start": 5230.56, + "end": 5230.82, + "probability": 0.6238 + }, + { + "start": 5230.96, + "end": 5232.84, + "probability": 0.9507 + }, + { + "start": 5233.46, + "end": 5234.61, + "probability": 0.7363 + }, + { + "start": 5234.78, + "end": 5235.52, + "probability": 0.6525 + }, + { + "start": 5235.56, + "end": 5236.66, + "probability": 0.8464 + }, + { + "start": 5236.72, + "end": 5236.9, + "probability": 0.4351 + }, + { + "start": 5237.14, + "end": 5237.48, + "probability": 0.4805 + }, + { + "start": 5237.56, + "end": 5238.3, + "probability": 0.9253 + }, + { + "start": 5238.38, + "end": 5238.82, + "probability": 0.9416 + }, + { + "start": 5238.84, + "end": 5239.88, + "probability": 0.9452 + }, + { + "start": 5239.9, + "end": 5240.96, + "probability": 0.9038 + }, + { + "start": 5240.98, + "end": 5243.52, + "probability": 0.7781 + }, + { + "start": 5244.56, + "end": 5247.0, + "probability": 0.5635 + }, + { + "start": 5247.28, + "end": 5248.04, + "probability": 0.6091 + }, + { + "start": 5248.08, + "end": 5252.6, + "probability": 0.9788 + }, + { + "start": 5252.72, + "end": 5253.99, + "probability": 0.9834 + }, + { + "start": 5254.64, + "end": 5255.88, + "probability": 0.9733 + }, + { + "start": 5256.6, + "end": 5257.72, + "probability": 0.9592 + }, + { + "start": 5257.76, + "end": 5259.91, + "probability": 0.9629 + }, + { + "start": 5260.12, + "end": 5261.81, + "probability": 0.9854 + }, + { + "start": 5261.94, + "end": 5265.4, + "probability": 0.991 + }, + { + "start": 5266.02, + "end": 5267.5, + "probability": 0.7964 + }, + { + "start": 5267.54, + "end": 5268.66, + "probability": 0.9453 + }, + { + "start": 5269.44, + "end": 5271.66, + "probability": 0.9012 + }, + { + "start": 5272.9, + "end": 5276.9, + "probability": 0.9988 + }, + { + "start": 5277.04, + "end": 5277.94, + "probability": 0.6216 + }, + { + "start": 5279.08, + "end": 5279.44, + "probability": 0.8328 + }, + { + "start": 5279.52, + "end": 5280.26, + "probability": 0.8501 + }, + { + "start": 5280.34, + "end": 5281.72, + "probability": 0.9635 + }, + { + "start": 5281.78, + "end": 5282.26, + "probability": 0.9018 + }, + { + "start": 5282.38, + "end": 5284.06, + "probability": 0.9932 + }, + { + "start": 5284.2, + "end": 5284.56, + "probability": 0.6128 + }, + { + "start": 5284.58, + "end": 5285.04, + "probability": 0.7377 + }, + { + "start": 5285.08, + "end": 5285.58, + "probability": 0.5705 + }, + { + "start": 5285.66, + "end": 5286.56, + "probability": 0.9227 + }, + { + "start": 5286.64, + "end": 5288.16, + "probability": 0.9832 + }, + { + "start": 5289.12, + "end": 5292.76, + "probability": 0.996 + }, + { + "start": 5292.76, + "end": 5295.94, + "probability": 0.9683 + }, + { + "start": 5297.16, + "end": 5297.82, + "probability": 0.5427 + }, + { + "start": 5298.66, + "end": 5299.08, + "probability": 0.722 + }, + { + "start": 5299.12, + "end": 5299.42, + "probability": 0.4697 + }, + { + "start": 5299.5, + "end": 5300.41, + "probability": 0.8391 + }, + { + "start": 5300.94, + "end": 5302.61, + "probability": 0.8785 + }, + { + "start": 5302.8, + "end": 5304.05, + "probability": 0.7517 + }, + { + "start": 5304.68, + "end": 5305.16, + "probability": 0.7349 + }, + { + "start": 5305.78, + "end": 5307.0, + "probability": 0.7727 + }, + { + "start": 5307.14, + "end": 5309.38, + "probability": 0.9799 + }, + { + "start": 5309.52, + "end": 5310.26, + "probability": 0.7179 + }, + { + "start": 5310.54, + "end": 5311.36, + "probability": 0.8428 + }, + { + "start": 5311.6, + "end": 5312.28, + "probability": 0.8061 + }, + { + "start": 5312.54, + "end": 5313.08, + "probability": 0.8374 + }, + { + "start": 5313.14, + "end": 5314.42, + "probability": 0.7659 + }, + { + "start": 5314.72, + "end": 5315.7, + "probability": 0.8054 + }, + { + "start": 5315.94, + "end": 5316.94, + "probability": 0.8635 + }, + { + "start": 5316.94, + "end": 5317.52, + "probability": 0.9094 + }, + { + "start": 5317.7, + "end": 5320.82, + "probability": 0.9443 + }, + { + "start": 5322.33, + "end": 5322.68, + "probability": 0.0367 + }, + { + "start": 5322.68, + "end": 5323.6, + "probability": 0.4567 + }, + { + "start": 5324.1, + "end": 5325.06, + "probability": 0.6416 + }, + { + "start": 5325.28, + "end": 5325.64, + "probability": 0.6117 + }, + { + "start": 5326.34, + "end": 5330.26, + "probability": 0.8438 + }, + { + "start": 5330.54, + "end": 5332.84, + "probability": 0.9131 + }, + { + "start": 5332.98, + "end": 5335.1, + "probability": 0.9553 + }, + { + "start": 5335.28, + "end": 5336.18, + "probability": 0.8697 + }, + { + "start": 5336.28, + "end": 5336.71, + "probability": 0.5359 + }, + { + "start": 5337.16, + "end": 5338.3, + "probability": 0.8414 + }, + { + "start": 5339.22, + "end": 5345.02, + "probability": 0.8149 + }, + { + "start": 5345.68, + "end": 5351.64, + "probability": 0.9871 + }, + { + "start": 5352.0, + "end": 5354.86, + "probability": 0.9499 + }, + { + "start": 5355.0, + "end": 5356.14, + "probability": 0.8589 + }, + { + "start": 5356.58, + "end": 5357.22, + "probability": 0.9684 + }, + { + "start": 5357.78, + "end": 5359.2, + "probability": 0.9145 + }, + { + "start": 5359.26, + "end": 5361.12, + "probability": 0.9177 + }, + { + "start": 5361.32, + "end": 5362.58, + "probability": 0.9534 + }, + { + "start": 5362.74, + "end": 5367.64, + "probability": 0.994 + }, + { + "start": 5367.9, + "end": 5368.22, + "probability": 0.5922 + }, + { + "start": 5368.54, + "end": 5371.06, + "probability": 0.9779 + }, + { + "start": 5371.16, + "end": 5373.82, + "probability": 0.5669 + }, + { + "start": 5374.78, + "end": 5375.66, + "probability": 0.9125 + }, + { + "start": 5377.06, + "end": 5378.36, + "probability": 0.8415 + }, + { + "start": 5378.46, + "end": 5379.12, + "probability": 0.9355 + }, + { + "start": 5379.14, + "end": 5380.34, + "probability": 0.6946 + }, + { + "start": 5380.38, + "end": 5381.22, + "probability": 0.6167 + }, + { + "start": 5381.38, + "end": 5381.86, + "probability": 0.6897 + }, + { + "start": 5385.32, + "end": 5386.48, + "probability": 0.7354 + }, + { + "start": 5387.1, + "end": 5389.28, + "probability": 0.7332 + }, + { + "start": 5390.64, + "end": 5395.44, + "probability": 0.9869 + }, + { + "start": 5395.64, + "end": 5398.28, + "probability": 0.9036 + }, + { + "start": 5399.22, + "end": 5400.56, + "probability": 0.9609 + }, + { + "start": 5401.4, + "end": 5405.01, + "probability": 0.9663 + }, + { + "start": 5405.8, + "end": 5407.96, + "probability": 0.6559 + }, + { + "start": 5409.4, + "end": 5413.18, + "probability": 0.9746 + }, + { + "start": 5413.18, + "end": 5418.0, + "probability": 0.9901 + }, + { + "start": 5418.62, + "end": 5423.94, + "probability": 0.9985 + }, + { + "start": 5425.16, + "end": 5430.94, + "probability": 0.9976 + }, + { + "start": 5432.1, + "end": 5434.9, + "probability": 0.7299 + }, + { + "start": 5435.12, + "end": 5435.96, + "probability": 0.8529 + }, + { + "start": 5436.5, + "end": 5437.46, + "probability": 0.4913 + }, + { + "start": 5438.98, + "end": 5439.14, + "probability": 0.0145 + }, + { + "start": 5439.14, + "end": 5443.96, + "probability": 0.9817 + }, + { + "start": 5444.52, + "end": 5447.1, + "probability": 0.9135 + }, + { + "start": 5447.64, + "end": 5451.64, + "probability": 0.9741 + }, + { + "start": 5453.36, + "end": 5455.66, + "probability": 0.8392 + }, + { + "start": 5456.02, + "end": 5456.14, + "probability": 0.3971 + }, + { + "start": 5457.29, + "end": 5463.98, + "probability": 0.9724 + }, + { + "start": 5465.56, + "end": 5466.4, + "probability": 0.8244 + }, + { + "start": 5466.5, + "end": 5467.36, + "probability": 0.8961 + }, + { + "start": 5467.42, + "end": 5468.42, + "probability": 0.8949 + }, + { + "start": 5468.52, + "end": 5470.44, + "probability": 0.959 + }, + { + "start": 5470.48, + "end": 5471.92, + "probability": 0.9902 + }, + { + "start": 5473.2, + "end": 5474.76, + "probability": 0.8626 + }, + { + "start": 5476.1, + "end": 5478.54, + "probability": 0.9796 + }, + { + "start": 5478.56, + "end": 5482.14, + "probability": 0.6762 + }, + { + "start": 5483.96, + "end": 5488.22, + "probability": 0.9804 + }, + { + "start": 5489.48, + "end": 5491.66, + "probability": 0.9927 + }, + { + "start": 5492.06, + "end": 5494.4, + "probability": 0.8577 + }, + { + "start": 5495.4, + "end": 5497.5, + "probability": 0.8961 + }, + { + "start": 5498.24, + "end": 5499.58, + "probability": 0.9896 + }, + { + "start": 5500.16, + "end": 5503.61, + "probability": 0.7651 + }, + { + "start": 5505.06, + "end": 5509.86, + "probability": 0.9503 + }, + { + "start": 5509.86, + "end": 5511.6, + "probability": 0.9501 + }, + { + "start": 5511.98, + "end": 5512.62, + "probability": 0.4362 + }, + { + "start": 5512.62, + "end": 5513.44, + "probability": 0.9961 + }, + { + "start": 5515.36, + "end": 5515.9, + "probability": 0.8912 + }, + { + "start": 5516.28, + "end": 5517.26, + "probability": 0.7798 + }, + { + "start": 5517.5, + "end": 5518.76, + "probability": 0.8157 + }, + { + "start": 5518.84, + "end": 5520.52, + "probability": 0.7569 + }, + { + "start": 5520.62, + "end": 5522.38, + "probability": 0.9395 + }, + { + "start": 5522.78, + "end": 5523.96, + "probability": 0.9862 + }, + { + "start": 5526.24, + "end": 5530.06, + "probability": 0.884 + }, + { + "start": 5531.16, + "end": 5532.12, + "probability": 0.7507 + }, + { + "start": 5532.3, + "end": 5533.66, + "probability": 0.7889 + }, + { + "start": 5534.08, + "end": 5537.12, + "probability": 0.9574 + }, + { + "start": 5537.64, + "end": 5538.46, + "probability": 0.7327 + }, + { + "start": 5539.18, + "end": 5541.12, + "probability": 0.9957 + }, + { + "start": 5541.94, + "end": 5543.46, + "probability": 0.8993 + }, + { + "start": 5543.96, + "end": 5547.84, + "probability": 0.9679 + }, + { + "start": 5548.24, + "end": 5551.92, + "probability": 0.989 + }, + { + "start": 5552.04, + "end": 5554.54, + "probability": 0.9849 + }, + { + "start": 5555.22, + "end": 5556.54, + "probability": 0.9511 + }, + { + "start": 5557.12, + "end": 5558.14, + "probability": 0.4894 + }, + { + "start": 5559.18, + "end": 5562.18, + "probability": 0.879 + }, + { + "start": 5563.46, + "end": 5564.06, + "probability": 0.7848 + }, + { + "start": 5564.24, + "end": 5567.36, + "probability": 0.9567 + }, + { + "start": 5567.36, + "end": 5568.02, + "probability": 0.5061 + }, + { + "start": 5568.32, + "end": 5569.28, + "probability": 0.9756 + }, + { + "start": 5570.26, + "end": 5570.56, + "probability": 0.9871 + }, + { + "start": 5571.14, + "end": 5573.64, + "probability": 0.9988 + }, + { + "start": 5574.08, + "end": 5575.04, + "probability": 0.6444 + }, + { + "start": 5575.44, + "end": 5576.48, + "probability": 0.975 + }, + { + "start": 5577.18, + "end": 5579.96, + "probability": 0.9961 + }, + { + "start": 5580.54, + "end": 5581.84, + "probability": 0.849 + }, + { + "start": 5582.28, + "end": 5583.38, + "probability": 0.9304 + }, + { + "start": 5583.82, + "end": 5586.66, + "probability": 0.8252 + }, + { + "start": 5587.1, + "end": 5588.4, + "probability": 0.9699 + }, + { + "start": 5589.28, + "end": 5590.46, + "probability": 0.8992 + }, + { + "start": 5590.54, + "end": 5592.36, + "probability": 0.6968 + }, + { + "start": 5593.28, + "end": 5595.98, + "probability": 0.9924 + }, + { + "start": 5596.4, + "end": 5598.84, + "probability": 0.9788 + }, + { + "start": 5600.28, + "end": 5602.3, + "probability": 0.9764 + }, + { + "start": 5603.18, + "end": 5604.34, + "probability": 0.6443 + }, + { + "start": 5604.46, + "end": 5605.23, + "probability": 0.1147 + }, + { + "start": 5606.6, + "end": 5607.94, + "probability": 0.9932 + }, + { + "start": 5608.56, + "end": 5609.78, + "probability": 0.8541 + }, + { + "start": 5610.54, + "end": 5613.52, + "probability": 0.9575 + }, + { + "start": 5614.0, + "end": 5617.08, + "probability": 0.9793 + }, + { + "start": 5617.94, + "end": 5619.66, + "probability": 0.9829 + }, + { + "start": 5620.2, + "end": 5621.48, + "probability": 0.9855 + }, + { + "start": 5621.8, + "end": 5624.66, + "probability": 0.9843 + }, + { + "start": 5625.44, + "end": 5627.18, + "probability": 0.9453 + }, + { + "start": 5627.9, + "end": 5629.24, + "probability": 0.9316 + }, + { + "start": 5629.3, + "end": 5632.04, + "probability": 0.8975 + }, + { + "start": 5632.14, + "end": 5632.82, + "probability": 0.7944 + }, + { + "start": 5633.22, + "end": 5635.64, + "probability": 0.9502 + }, + { + "start": 5636.12, + "end": 5637.14, + "probability": 0.8396 + }, + { + "start": 5637.26, + "end": 5637.84, + "probability": 0.7431 + }, + { + "start": 5638.28, + "end": 5642.08, + "probability": 0.9153 + }, + { + "start": 5642.32, + "end": 5643.14, + "probability": 0.9676 + }, + { + "start": 5644.1, + "end": 5645.92, + "probability": 0.6831 + }, + { + "start": 5645.98, + "end": 5648.28, + "probability": 0.917 + }, + { + "start": 5649.58, + "end": 5652.3, + "probability": 0.9604 + }, + { + "start": 5660.76, + "end": 5665.06, + "probability": 0.4742 + }, + { + "start": 5666.16, + "end": 5669.06, + "probability": 0.9596 + }, + { + "start": 5669.72, + "end": 5670.42, + "probability": 0.7927 + }, + { + "start": 5672.8, + "end": 5675.94, + "probability": 0.9773 + }, + { + "start": 5676.42, + "end": 5680.06, + "probability": 0.9854 + }, + { + "start": 5680.7, + "end": 5681.8, + "probability": 0.5068 + }, + { + "start": 5683.16, + "end": 5688.08, + "probability": 0.9911 + }, + { + "start": 5688.64, + "end": 5690.1, + "probability": 0.6767 + }, + { + "start": 5691.66, + "end": 5695.76, + "probability": 0.9868 + }, + { + "start": 5697.68, + "end": 5700.22, + "probability": 0.7533 + }, + { + "start": 5704.1, + "end": 5706.66, + "probability": 0.9929 + }, + { + "start": 5707.4, + "end": 5708.16, + "probability": 0.7834 + }, + { + "start": 5709.0, + "end": 5710.38, + "probability": 0.915 + }, + { + "start": 5711.36, + "end": 5714.3, + "probability": 0.9153 + }, + { + "start": 5714.98, + "end": 5715.38, + "probability": 0.4624 + }, + { + "start": 5715.66, + "end": 5719.24, + "probability": 0.0506 + }, + { + "start": 5719.6, + "end": 5720.38, + "probability": 0.6915 + }, + { + "start": 5720.56, + "end": 5720.86, + "probability": 0.7271 + }, + { + "start": 5721.18, + "end": 5721.42, + "probability": 0.4946 + }, + { + "start": 5721.42, + "end": 5721.64, + "probability": 0.67 + }, + { + "start": 5723.6, + "end": 5724.12, + "probability": 0.9629 + }, + { + "start": 5725.3, + "end": 5726.28, + "probability": 0.8253 + }, + { + "start": 5726.34, + "end": 5728.98, + "probability": 0.984 + }, + { + "start": 5729.76, + "end": 5730.6, + "probability": 0.7884 + }, + { + "start": 5731.04, + "end": 5734.26, + "probability": 0.9752 + }, + { + "start": 5734.38, + "end": 5735.56, + "probability": 0.9544 + }, + { + "start": 5736.3, + "end": 5736.82, + "probability": 0.6605 + }, + { + "start": 5737.46, + "end": 5742.12, + "probability": 0.8078 + }, + { + "start": 5743.34, + "end": 5746.92, + "probability": 0.8017 + }, + { + "start": 5747.76, + "end": 5750.36, + "probability": 0.6269 + }, + { + "start": 5750.78, + "end": 5751.48, + "probability": 0.8928 + }, + { + "start": 5752.18, + "end": 5754.22, + "probability": 0.8425 + }, + { + "start": 5755.12, + "end": 5757.22, + "probability": 0.9719 + }, + { + "start": 5757.98, + "end": 5763.1, + "probability": 0.9541 + }, + { + "start": 5763.42, + "end": 5764.04, + "probability": 0.1666 + }, + { + "start": 5764.88, + "end": 5767.3, + "probability": 0.98 + }, + { + "start": 5767.84, + "end": 5770.9, + "probability": 0.9313 + }, + { + "start": 5770.98, + "end": 5777.36, + "probability": 0.9664 + }, + { + "start": 5777.8, + "end": 5782.0, + "probability": 0.9209 + }, + { + "start": 5782.68, + "end": 5783.66, + "probability": 0.708 + }, + { + "start": 5785.02, + "end": 5790.16, + "probability": 0.9656 + }, + { + "start": 5790.64, + "end": 5793.92, + "probability": 0.9879 + }, + { + "start": 5794.66, + "end": 5797.43, + "probability": 0.9921 + }, + { + "start": 5798.72, + "end": 5800.56, + "probability": 0.569 + }, + { + "start": 5801.08, + "end": 5801.9, + "probability": 0.7842 + }, + { + "start": 5802.46, + "end": 5805.26, + "probability": 0.9482 + }, + { + "start": 5805.92, + "end": 5806.9, + "probability": 0.6886 + }, + { + "start": 5807.36, + "end": 5808.36, + "probability": 0.9718 + }, + { + "start": 5808.98, + "end": 5810.04, + "probability": 0.9082 + }, + { + "start": 5810.56, + "end": 5811.44, + "probability": 0.9291 + }, + { + "start": 5811.96, + "end": 5816.2, + "probability": 0.8699 + }, + { + "start": 5816.94, + "end": 5819.34, + "probability": 0.8258 + }, + { + "start": 5819.92, + "end": 5820.24, + "probability": 0.9082 + }, + { + "start": 5820.54, + "end": 5821.32, + "probability": 0.7751 + }, + { + "start": 5822.92, + "end": 5823.98, + "probability": 0.9663 + }, + { + "start": 5826.66, + "end": 5827.91, + "probability": 0.9922 + }, + { + "start": 5828.8, + "end": 5829.32, + "probability": 0.6349 + }, + { + "start": 5830.36, + "end": 5831.7, + "probability": 0.9929 + }, + { + "start": 5832.3, + "end": 5834.1, + "probability": 0.8282 + }, + { + "start": 5834.54, + "end": 5835.94, + "probability": 0.9984 + }, + { + "start": 5836.46, + "end": 5839.62, + "probability": 0.8441 + }, + { + "start": 5840.0, + "end": 5841.32, + "probability": 0.7228 + }, + { + "start": 5841.4, + "end": 5842.58, + "probability": 0.882 + }, + { + "start": 5842.92, + "end": 5843.78, + "probability": 0.785 + }, + { + "start": 5843.92, + "end": 5848.6, + "probability": 0.9737 + }, + { + "start": 5848.76, + "end": 5849.84, + "probability": 0.9956 + }, + { + "start": 5850.32, + "end": 5853.62, + "probability": 0.8725 + }, + { + "start": 5854.94, + "end": 5857.82, + "probability": 0.98 + }, + { + "start": 5858.2, + "end": 5861.38, + "probability": 0.9296 + }, + { + "start": 5861.86, + "end": 5862.6, + "probability": 0.8543 + }, + { + "start": 5862.98, + "end": 5863.88, + "probability": 0.6453 + }, + { + "start": 5864.16, + "end": 5866.94, + "probability": 0.9731 + }, + { + "start": 5867.44, + "end": 5869.9, + "probability": 0.7495 + }, + { + "start": 5870.44, + "end": 5872.64, + "probability": 0.7622 + }, + { + "start": 5877.86, + "end": 5880.56, + "probability": 0.8342 + }, + { + "start": 5881.7, + "end": 5882.18, + "probability": 0.5835 + }, + { + "start": 5882.48, + "end": 5883.32, + "probability": 0.8064 + }, + { + "start": 5883.5, + "end": 5884.12, + "probability": 0.8965 + }, + { + "start": 5884.22, + "end": 5885.26, + "probability": 0.6655 + }, + { + "start": 5885.74, + "end": 5886.14, + "probability": 0.9445 + }, + { + "start": 5886.22, + "end": 5892.52, + "probability": 0.9644 + }, + { + "start": 5892.78, + "end": 5894.87, + "probability": 0.9985 + }, + { + "start": 5896.38, + "end": 5898.9, + "probability": 0.9967 + }, + { + "start": 5898.9, + "end": 5903.82, + "probability": 0.9967 + }, + { + "start": 5904.82, + "end": 5905.52, + "probability": 0.6707 + }, + { + "start": 5906.4, + "end": 5907.74, + "probability": 0.8938 + }, + { + "start": 5908.06, + "end": 5909.64, + "probability": 0.9208 + }, + { + "start": 5910.06, + "end": 5913.5, + "probability": 0.9348 + }, + { + "start": 5913.62, + "end": 5916.38, + "probability": 0.92 + }, + { + "start": 5916.46, + "end": 5919.06, + "probability": 0.6005 + }, + { + "start": 5919.34, + "end": 5920.08, + "probability": 0.8285 + }, + { + "start": 5920.2, + "end": 5921.46, + "probability": 0.9196 + }, + { + "start": 5921.94, + "end": 5925.28, + "probability": 0.6531 + }, + { + "start": 5925.38, + "end": 5928.42, + "probability": 0.8753 + }, + { + "start": 5928.7, + "end": 5930.1, + "probability": 0.9761 + }, + { + "start": 5930.62, + "end": 5931.04, + "probability": 0.8969 + }, + { + "start": 5931.12, + "end": 5934.88, + "probability": 0.9766 + }, + { + "start": 5934.98, + "end": 5939.32, + "probability": 0.9976 + }, + { + "start": 5939.88, + "end": 5941.86, + "probability": 0.9501 + }, + { + "start": 5942.54, + "end": 5946.02, + "probability": 0.8919 + }, + { + "start": 5946.4, + "end": 5949.02, + "probability": 0.9888 + }, + { + "start": 5949.66, + "end": 5950.0, + "probability": 0.6281 + }, + { + "start": 5950.34, + "end": 5950.76, + "probability": 0.9281 + }, + { + "start": 5951.22, + "end": 5953.48, + "probability": 0.9653 + }, + { + "start": 5953.84, + "end": 5954.52, + "probability": 0.9893 + }, + { + "start": 5955.66, + "end": 5957.1, + "probability": 0.9929 + }, + { + "start": 5957.58, + "end": 5964.24, + "probability": 0.9797 + }, + { + "start": 5964.24, + "end": 5970.74, + "probability": 0.9426 + }, + { + "start": 5972.58, + "end": 5976.36, + "probability": 0.9451 + }, + { + "start": 5977.3, + "end": 5979.0, + "probability": 0.7344 + }, + { + "start": 5979.18, + "end": 5983.58, + "probability": 0.9948 + }, + { + "start": 5984.02, + "end": 5985.78, + "probability": 0.987 + }, + { + "start": 5986.12, + "end": 5988.06, + "probability": 0.7141 + }, + { + "start": 5988.4, + "end": 5991.42, + "probability": 0.8219 + }, + { + "start": 5991.84, + "end": 5993.84, + "probability": 0.8545 + }, + { + "start": 5993.98, + "end": 5994.18, + "probability": 0.6487 + }, + { + "start": 5994.32, + "end": 5998.68, + "probability": 0.8402 + }, + { + "start": 5998.74, + "end": 6000.58, + "probability": 0.9681 + }, + { + "start": 6001.1, + "end": 6002.58, + "probability": 0.9922 + }, + { + "start": 6003.46, + "end": 6004.4, + "probability": 0.9774 + }, + { + "start": 6004.8, + "end": 6006.44, + "probability": 0.4948 + }, + { + "start": 6006.8, + "end": 6010.08, + "probability": 0.8689 + }, + { + "start": 6010.54, + "end": 6011.34, + "probability": 0.716 + }, + { + "start": 6011.46, + "end": 6012.28, + "probability": 0.8534 + }, + { + "start": 6012.64, + "end": 6014.24, + "probability": 0.8753 + }, + { + "start": 6014.42, + "end": 6016.48, + "probability": 0.9867 + }, + { + "start": 6016.8, + "end": 6017.34, + "probability": 0.5514 + }, + { + "start": 6017.44, + "end": 6018.84, + "probability": 0.946 + }, + { + "start": 6019.26, + "end": 6022.08, + "probability": 0.9535 + }, + { + "start": 6022.38, + "end": 6024.3, + "probability": 0.9754 + }, + { + "start": 6024.7, + "end": 6026.02, + "probability": 0.8976 + }, + { + "start": 6026.4, + "end": 6029.04, + "probability": 0.9704 + }, + { + "start": 6029.52, + "end": 6030.18, + "probability": 0.7156 + }, + { + "start": 6030.62, + "end": 6031.44, + "probability": 0.5586 + }, + { + "start": 6031.8, + "end": 6033.6, + "probability": 0.9919 + }, + { + "start": 6034.16, + "end": 6035.94, + "probability": 0.9562 + }, + { + "start": 6036.38, + "end": 6037.11, + "probability": 0.6495 + }, + { + "start": 6037.64, + "end": 6039.04, + "probability": 0.6004 + }, + { + "start": 6039.42, + "end": 6041.8, + "probability": 0.9345 + }, + { + "start": 6041.88, + "end": 6043.98, + "probability": 0.9409 + }, + { + "start": 6044.08, + "end": 6047.88, + "probability": 0.9746 + }, + { + "start": 6048.24, + "end": 6049.92, + "probability": 0.9171 + }, + { + "start": 6050.18, + "end": 6052.56, + "probability": 0.9877 + }, + { + "start": 6053.0, + "end": 6053.6, + "probability": 0.8057 + }, + { + "start": 6054.04, + "end": 6054.52, + "probability": 0.8206 + }, + { + "start": 6054.94, + "end": 6056.31, + "probability": 0.9598 + }, + { + "start": 6056.54, + "end": 6057.02, + "probability": 0.691 + }, + { + "start": 6057.08, + "end": 6060.06, + "probability": 0.8823 + }, + { + "start": 6060.8, + "end": 6063.1, + "probability": 0.9893 + }, + { + "start": 6063.26, + "end": 6065.32, + "probability": 0.972 + }, + { + "start": 6065.98, + "end": 6068.62, + "probability": 0.9305 + }, + { + "start": 6069.1, + "end": 6072.08, + "probability": 0.9434 + }, + { + "start": 6074.1, + "end": 6077.08, + "probability": 0.9734 + }, + { + "start": 6077.98, + "end": 6082.2, + "probability": 0.9143 + }, + { + "start": 6082.78, + "end": 6084.28, + "probability": 0.6704 + }, + { + "start": 6084.94, + "end": 6087.4, + "probability": 0.9888 + }, + { + "start": 6088.12, + "end": 6092.46, + "probability": 0.8994 + }, + { + "start": 6092.9, + "end": 6094.18, + "probability": 0.5119 + }, + { + "start": 6094.74, + "end": 6096.06, + "probability": 0.9654 + }, + { + "start": 6096.14, + "end": 6097.54, + "probability": 0.9753 + }, + { + "start": 6097.62, + "end": 6099.16, + "probability": 0.9487 + }, + { + "start": 6099.3, + "end": 6100.28, + "probability": 0.7592 + }, + { + "start": 6100.86, + "end": 6103.01, + "probability": 0.9674 + }, + { + "start": 6103.8, + "end": 6104.44, + "probability": 0.7222 + }, + { + "start": 6104.92, + "end": 6106.12, + "probability": 0.9407 + }, + { + "start": 6106.68, + "end": 6109.04, + "probability": 0.9948 + }, + { + "start": 6109.52, + "end": 6111.16, + "probability": 0.7205 + }, + { + "start": 6111.38, + "end": 6113.14, + "probability": 0.9749 + }, + { + "start": 6113.24, + "end": 6114.32, + "probability": 0.8477 + }, + { + "start": 6115.14, + "end": 6116.99, + "probability": 0.9653 + }, + { + "start": 6117.32, + "end": 6118.54, + "probability": 0.9927 + }, + { + "start": 6119.14, + "end": 6121.96, + "probability": 0.997 + }, + { + "start": 6121.96, + "end": 6125.1, + "probability": 0.9968 + }, + { + "start": 6125.4, + "end": 6126.72, + "probability": 0.9681 + }, + { + "start": 6126.8, + "end": 6127.78, + "probability": 0.9753 + }, + { + "start": 6128.04, + "end": 6129.64, + "probability": 0.9731 + }, + { + "start": 6130.0, + "end": 6134.86, + "probability": 0.9861 + }, + { + "start": 6135.18, + "end": 6137.58, + "probability": 0.9883 + }, + { + "start": 6137.66, + "end": 6139.14, + "probability": 0.7475 + }, + { + "start": 6139.48, + "end": 6142.39, + "probability": 0.9961 + }, + { + "start": 6143.06, + "end": 6143.6, + "probability": 0.8328 + }, + { + "start": 6143.92, + "end": 6144.48, + "probability": 0.4906 + }, + { + "start": 6144.96, + "end": 6146.76, + "probability": 0.7413 + }, + { + "start": 6146.76, + "end": 6148.12, + "probability": 0.9363 + }, + { + "start": 6148.34, + "end": 6151.88, + "probability": 0.9913 + }, + { + "start": 6152.44, + "end": 6153.04, + "probability": 0.8786 + }, + { + "start": 6153.38, + "end": 6158.2, + "probability": 0.9675 + }, + { + "start": 6158.26, + "end": 6158.46, + "probability": 0.6512 + }, + { + "start": 6158.72, + "end": 6161.34, + "probability": 0.938 + }, + { + "start": 6161.54, + "end": 6164.3, + "probability": 0.8851 + }, + { + "start": 6165.16, + "end": 6166.38, + "probability": 0.6129 + }, + { + "start": 6166.52, + "end": 6167.8, + "probability": 0.7535 + }, + { + "start": 6167.86, + "end": 6168.64, + "probability": 0.4313 + }, + { + "start": 6169.38, + "end": 6171.08, + "probability": 0.9046 + }, + { + "start": 6185.7, + "end": 6186.7, + "probability": 0.9209 + }, + { + "start": 6187.78, + "end": 6188.28, + "probability": 0.5502 + }, + { + "start": 6188.38, + "end": 6188.78, + "probability": 0.5642 + }, + { + "start": 6188.86, + "end": 6189.76, + "probability": 0.6797 + }, + { + "start": 6189.84, + "end": 6191.16, + "probability": 0.9976 + }, + { + "start": 6191.9, + "end": 6192.8, + "probability": 0.9666 + }, + { + "start": 6194.06, + "end": 6195.68, + "probability": 0.9607 + }, + { + "start": 6195.76, + "end": 6196.82, + "probability": 0.9253 + }, + { + "start": 6197.12, + "end": 6199.1, + "probability": 0.9222 + }, + { + "start": 6199.7, + "end": 6201.76, + "probability": 0.934 + }, + { + "start": 6202.76, + "end": 6205.04, + "probability": 0.9973 + }, + { + "start": 6205.94, + "end": 6206.74, + "probability": 0.9165 + }, + { + "start": 6207.3, + "end": 6210.0, + "probability": 0.9902 + }, + { + "start": 6210.74, + "end": 6211.12, + "probability": 0.9941 + }, + { + "start": 6211.78, + "end": 6214.16, + "probability": 0.999 + }, + { + "start": 6214.82, + "end": 6215.36, + "probability": 0.887 + }, + { + "start": 6218.08, + "end": 6219.46, + "probability": 0.8805 + }, + { + "start": 6219.62, + "end": 6222.38, + "probability": 0.9867 + }, + { + "start": 6222.38, + "end": 6224.6, + "probability": 0.6877 + }, + { + "start": 6224.66, + "end": 6225.41, + "probability": 0.9778 + }, + { + "start": 6227.22, + "end": 6229.64, + "probability": 0.5702 + }, + { + "start": 6231.24, + "end": 6234.58, + "probability": 0.8407 + }, + { + "start": 6234.72, + "end": 6238.33, + "probability": 0.9832 + }, + { + "start": 6239.34, + "end": 6241.18, + "probability": 0.9927 + }, + { + "start": 6242.54, + "end": 6244.56, + "probability": 0.9944 + }, + { + "start": 6246.92, + "end": 6248.46, + "probability": 0.7828 + }, + { + "start": 6249.8, + "end": 6250.67, + "probability": 0.9932 + }, + { + "start": 6251.9, + "end": 6253.92, + "probability": 0.9976 + }, + { + "start": 6254.78, + "end": 6256.35, + "probability": 0.9861 + }, + { + "start": 6256.56, + "end": 6258.04, + "probability": 0.7372 + }, + { + "start": 6258.54, + "end": 6259.32, + "probability": 0.9661 + }, + { + "start": 6259.48, + "end": 6260.26, + "probability": 0.8611 + }, + { + "start": 6260.9, + "end": 6262.38, + "probability": 0.6959 + }, + { + "start": 6262.5, + "end": 6263.29, + "probability": 0.7116 + }, + { + "start": 6265.02, + "end": 6266.6, + "probability": 0.8733 + }, + { + "start": 6266.64, + "end": 6267.5, + "probability": 0.9372 + }, + { + "start": 6267.62, + "end": 6269.14, + "probability": 0.9538 + }, + { + "start": 6269.96, + "end": 6270.92, + "probability": 0.556 + }, + { + "start": 6271.06, + "end": 6272.8, + "probability": 0.8453 + }, + { + "start": 6273.98, + "end": 6274.96, + "probability": 0.5094 + }, + { + "start": 6277.06, + "end": 6278.16, + "probability": 0.9191 + }, + { + "start": 6278.74, + "end": 6284.12, + "probability": 0.8615 + }, + { + "start": 6284.68, + "end": 6286.02, + "probability": 0.7639 + }, + { + "start": 6286.04, + "end": 6286.52, + "probability": 0.8381 + }, + { + "start": 6287.28, + "end": 6288.91, + "probability": 0.8762 + }, + { + "start": 6290.1, + "end": 6291.9, + "probability": 0.641 + }, + { + "start": 6293.42, + "end": 6296.6, + "probability": 0.8984 + }, + { + "start": 6297.34, + "end": 6297.6, + "probability": 0.7667 + }, + { + "start": 6299.04, + "end": 6301.5, + "probability": 0.9807 + }, + { + "start": 6301.6, + "end": 6302.74, + "probability": 0.6165 + }, + { + "start": 6303.56, + "end": 6305.66, + "probability": 0.6313 + }, + { + "start": 6307.18, + "end": 6308.64, + "probability": 0.877 + }, + { + "start": 6311.26, + "end": 6311.94, + "probability": 0.6576 + }, + { + "start": 6312.86, + "end": 6314.04, + "probability": 0.5597 + }, + { + "start": 6314.88, + "end": 6319.73, + "probability": 0.5183 + }, + { + "start": 6320.26, + "end": 6322.42, + "probability": 0.7552 + }, + { + "start": 6324.86, + "end": 6325.4, + "probability": 0.5697 + }, + { + "start": 6325.66, + "end": 6326.98, + "probability": 0.718 + }, + { + "start": 6328.52, + "end": 6330.48, + "probability": 0.5205 + }, + { + "start": 6332.34, + "end": 6338.18, + "probability": 0.9805 + }, + { + "start": 6340.2, + "end": 6345.56, + "probability": 0.9443 + }, + { + "start": 6346.88, + "end": 6347.96, + "probability": 0.9952 + }, + { + "start": 6348.58, + "end": 6356.46, + "probability": 0.9782 + }, + { + "start": 6357.12, + "end": 6359.04, + "probability": 0.8855 + }, + { + "start": 6360.12, + "end": 6361.54, + "probability": 0.9587 + }, + { + "start": 6362.06, + "end": 6363.76, + "probability": 0.9688 + }, + { + "start": 6364.34, + "end": 6366.38, + "probability": 0.989 + }, + { + "start": 6366.52, + "end": 6368.02, + "probability": 0.8579 + }, + { + "start": 6368.06, + "end": 6369.42, + "probability": 0.9583 + }, + { + "start": 6369.96, + "end": 6372.18, + "probability": 0.7504 + }, + { + "start": 6372.82, + "end": 6374.02, + "probability": 0.9086 + }, + { + "start": 6376.66, + "end": 6378.2, + "probability": 0.9911 + }, + { + "start": 6378.82, + "end": 6382.84, + "probability": 0.795 + }, + { + "start": 6386.12, + "end": 6387.36, + "probability": 0.8052 + }, + { + "start": 6388.68, + "end": 6391.3, + "probability": 0.7687 + }, + { + "start": 6392.28, + "end": 6396.34, + "probability": 0.9596 + }, + { + "start": 6396.88, + "end": 6398.28, + "probability": 0.8839 + }, + { + "start": 6399.4, + "end": 6401.7, + "probability": 0.8457 + }, + { + "start": 6402.04, + "end": 6404.06, + "probability": 0.936 + }, + { + "start": 6405.2, + "end": 6408.38, + "probability": 0.9568 + }, + { + "start": 6409.34, + "end": 6411.88, + "probability": 0.9977 + }, + { + "start": 6412.38, + "end": 6414.18, + "probability": 0.9575 + }, + { + "start": 6414.44, + "end": 6414.76, + "probability": 0.5855 + }, + { + "start": 6415.44, + "end": 6417.68, + "probability": 0.9816 + }, + { + "start": 6418.6, + "end": 6423.98, + "probability": 0.981 + }, + { + "start": 6425.02, + "end": 6426.3, + "probability": 0.9599 + }, + { + "start": 6426.96, + "end": 6429.44, + "probability": 0.7771 + }, + { + "start": 6429.98, + "end": 6432.76, + "probability": 0.99 + }, + { + "start": 6433.74, + "end": 6436.78, + "probability": 0.8438 + }, + { + "start": 6437.42, + "end": 6439.26, + "probability": 0.9783 + }, + { + "start": 6440.32, + "end": 6443.76, + "probability": 0.8834 + }, + { + "start": 6446.2, + "end": 6449.62, + "probability": 0.9723 + }, + { + "start": 6450.66, + "end": 6456.08, + "probability": 0.9971 + }, + { + "start": 6456.58, + "end": 6458.32, + "probability": 0.8812 + }, + { + "start": 6459.38, + "end": 6463.12, + "probability": 0.9979 + }, + { + "start": 6463.68, + "end": 6466.22, + "probability": 0.9983 + }, + { + "start": 6466.92, + "end": 6469.18, + "probability": 0.9803 + }, + { + "start": 6469.26, + "end": 6470.68, + "probability": 0.8503 + }, + { + "start": 6470.8, + "end": 6472.54, + "probability": 0.953 + }, + { + "start": 6473.4, + "end": 6475.4, + "probability": 0.923 + }, + { + "start": 6477.32, + "end": 6480.16, + "probability": 0.9789 + }, + { + "start": 6481.1, + "end": 6485.16, + "probability": 0.9629 + }, + { + "start": 6486.3, + "end": 6490.42, + "probability": 0.9854 + }, + { + "start": 6491.1, + "end": 6492.84, + "probability": 0.888 + }, + { + "start": 6493.0, + "end": 6498.6, + "probability": 0.9862 + }, + { + "start": 6499.32, + "end": 6501.38, + "probability": 0.8434 + }, + { + "start": 6502.3, + "end": 6505.18, + "probability": 0.9866 + }, + { + "start": 6505.8, + "end": 6507.18, + "probability": 0.8083 + }, + { + "start": 6507.26, + "end": 6508.26, + "probability": 0.7275 + }, + { + "start": 6508.38, + "end": 6509.78, + "probability": 0.783 + }, + { + "start": 6510.78, + "end": 6512.68, + "probability": 0.964 + }, + { + "start": 6513.34, + "end": 6515.08, + "probability": 0.9918 + }, + { + "start": 6515.8, + "end": 6518.58, + "probability": 0.9237 + }, + { + "start": 6519.14, + "end": 6521.82, + "probability": 0.9028 + }, + { + "start": 6522.86, + "end": 6525.44, + "probability": 0.9547 + }, + { + "start": 6526.56, + "end": 6529.44, + "probability": 0.9705 + }, + { + "start": 6530.02, + "end": 6532.18, + "probability": 0.8972 + }, + { + "start": 6532.44, + "end": 6533.42, + "probability": 0.6724 + }, + { + "start": 6534.42, + "end": 6536.56, + "probability": 0.9789 + }, + { + "start": 6537.22, + "end": 6540.66, + "probability": 0.9371 + }, + { + "start": 6541.42, + "end": 6542.76, + "probability": 0.9832 + }, + { + "start": 6543.68, + "end": 6545.84, + "probability": 0.9558 + }, + { + "start": 6546.26, + "end": 6549.46, + "probability": 0.9938 + }, + { + "start": 6551.46, + "end": 6556.44, + "probability": 0.9972 + }, + { + "start": 6557.26, + "end": 6559.24, + "probability": 0.9925 + }, + { + "start": 6560.22, + "end": 6563.31, + "probability": 0.9004 + }, + { + "start": 6563.44, + "end": 6567.2, + "probability": 0.9916 + }, + { + "start": 6567.94, + "end": 6568.86, + "probability": 0.8059 + }, + { + "start": 6569.5, + "end": 6571.42, + "probability": 0.9941 + }, + { + "start": 6572.18, + "end": 6573.08, + "probability": 0.3914 + }, + { + "start": 6573.5, + "end": 6576.36, + "probability": 0.8177 + }, + { + "start": 6577.78, + "end": 6580.74, + "probability": 0.8313 + }, + { + "start": 6581.94, + "end": 6584.98, + "probability": 0.9963 + }, + { + "start": 6585.12, + "end": 6588.54, + "probability": 0.994 + }, + { + "start": 6589.28, + "end": 6594.3, + "probability": 0.9934 + }, + { + "start": 6594.84, + "end": 6597.2, + "probability": 0.8881 + }, + { + "start": 6598.18, + "end": 6599.86, + "probability": 0.7732 + }, + { + "start": 6600.44, + "end": 6601.2, + "probability": 0.4195 + }, + { + "start": 6601.32, + "end": 6602.78, + "probability": 0.9946 + }, + { + "start": 6602.88, + "end": 6606.22, + "probability": 0.9801 + }, + { + "start": 6606.9, + "end": 6607.96, + "probability": 0.5738 + }, + { + "start": 6608.36, + "end": 6612.34, + "probability": 0.9657 + }, + { + "start": 6612.42, + "end": 6613.2, + "probability": 0.7925 + }, + { + "start": 6613.4, + "end": 6614.02, + "probability": 0.5933 + }, + { + "start": 6615.16, + "end": 6618.22, + "probability": 0.9666 + }, + { + "start": 6618.94, + "end": 6623.04, + "probability": 0.9126 + }, + { + "start": 6623.56, + "end": 6625.7, + "probability": 0.9174 + }, + { + "start": 6626.9, + "end": 6631.02, + "probability": 0.9551 + }, + { + "start": 6631.94, + "end": 6635.62, + "probability": 0.9902 + }, + { + "start": 6636.16, + "end": 6637.72, + "probability": 0.9522 + }, + { + "start": 6638.34, + "end": 6640.14, + "probability": 0.9863 + }, + { + "start": 6640.86, + "end": 6643.66, + "probability": 0.9375 + }, + { + "start": 6644.22, + "end": 6645.82, + "probability": 0.8984 + }, + { + "start": 6646.46, + "end": 6647.04, + "probability": 0.4496 + }, + { + "start": 6647.46, + "end": 6648.68, + "probability": 0.8706 + }, + { + "start": 6649.4, + "end": 6651.86, + "probability": 0.7409 + }, + { + "start": 6653.5, + "end": 6655.42, + "probability": 0.7446 + }, + { + "start": 6661.36, + "end": 6663.06, + "probability": 0.7633 + }, + { + "start": 6666.6, + "end": 6667.32, + "probability": 0.6293 + }, + { + "start": 6669.12, + "end": 6671.52, + "probability": 0.9868 + }, + { + "start": 6673.3, + "end": 6674.59, + "probability": 0.9235 + }, + { + "start": 6675.76, + "end": 6677.32, + "probability": 0.9816 + }, + { + "start": 6678.96, + "end": 6680.14, + "probability": 0.9052 + }, + { + "start": 6680.18, + "end": 6680.2, + "probability": 0.0182 + }, + { + "start": 6680.2, + "end": 6680.84, + "probability": 0.7981 + }, + { + "start": 6680.92, + "end": 6682.42, + "probability": 0.8752 + }, + { + "start": 6683.24, + "end": 6688.06, + "probability": 0.9933 + }, + { + "start": 6689.64, + "end": 6693.4, + "probability": 0.9979 + }, + { + "start": 6693.4, + "end": 6697.32, + "probability": 0.9961 + }, + { + "start": 6698.24, + "end": 6699.18, + "probability": 0.988 + }, + { + "start": 6699.7, + "end": 6701.92, + "probability": 0.6544 + }, + { + "start": 6702.88, + "end": 6704.2, + "probability": 0.933 + }, + { + "start": 6705.14, + "end": 6706.43, + "probability": 0.9453 + }, + { + "start": 6707.32, + "end": 6711.62, + "probability": 0.7932 + }, + { + "start": 6712.7, + "end": 6715.24, + "probability": 0.8865 + }, + { + "start": 6716.56, + "end": 6717.8, + "probability": 0.9772 + }, + { + "start": 6718.52, + "end": 6719.96, + "probability": 0.9985 + }, + { + "start": 6720.92, + "end": 6723.76, + "probability": 0.8001 + }, + { + "start": 6724.98, + "end": 6729.48, + "probability": 0.9092 + }, + { + "start": 6731.66, + "end": 6733.68, + "probability": 0.9644 + }, + { + "start": 6734.04, + "end": 6735.94, + "probability": 0.9102 + }, + { + "start": 6736.0, + "end": 6736.42, + "probability": 0.4666 + }, + { + "start": 6736.42, + "end": 6737.1, + "probability": 0.6113 + }, + { + "start": 6737.24, + "end": 6738.54, + "probability": 0.7886 + }, + { + "start": 6740.24, + "end": 6742.68, + "probability": 0.9424 + }, + { + "start": 6743.2, + "end": 6746.18, + "probability": 0.9317 + }, + { + "start": 6747.6, + "end": 6749.16, + "probability": 0.9183 + }, + { + "start": 6750.06, + "end": 6751.28, + "probability": 0.9324 + }, + { + "start": 6751.74, + "end": 6753.94, + "probability": 0.9232 + }, + { + "start": 6753.96, + "end": 6754.92, + "probability": 0.8548 + }, + { + "start": 6755.36, + "end": 6757.16, + "probability": 0.8229 + }, + { + "start": 6757.68, + "end": 6759.58, + "probability": 0.8579 + }, + { + "start": 6761.04, + "end": 6762.24, + "probability": 0.7614 + }, + { + "start": 6762.64, + "end": 6764.63, + "probability": 0.1621 + }, + { + "start": 6765.14, + "end": 6765.16, + "probability": 0.097 + }, + { + "start": 6765.16, + "end": 6765.9, + "probability": 0.2158 + }, + { + "start": 6765.9, + "end": 6767.06, + "probability": 0.2512 + }, + { + "start": 6767.52, + "end": 6770.46, + "probability": 0.7231 + }, + { + "start": 6771.02, + "end": 6773.82, + "probability": 0.9445 + }, + { + "start": 6773.82, + "end": 6777.96, + "probability": 0.989 + }, + { + "start": 6778.74, + "end": 6780.12, + "probability": 0.99 + }, + { + "start": 6780.94, + "end": 6782.42, + "probability": 0.9543 + }, + { + "start": 6782.62, + "end": 6783.44, + "probability": 0.9299 + }, + { + "start": 6783.94, + "end": 6785.38, + "probability": 0.9659 + }, + { + "start": 6785.72, + "end": 6787.34, + "probability": 0.9955 + }, + { + "start": 6788.32, + "end": 6789.0, + "probability": 0.8947 + }, + { + "start": 6790.34, + "end": 6791.98, + "probability": 0.8562 + }, + { + "start": 6794.22, + "end": 6797.24, + "probability": 0.9197 + }, + { + "start": 6797.6, + "end": 6803.2, + "probability": 0.9678 + }, + { + "start": 6804.96, + "end": 6805.57, + "probability": 0.9199 + }, + { + "start": 6806.58, + "end": 6811.52, + "probability": 0.9957 + }, + { + "start": 6812.76, + "end": 6813.68, + "probability": 0.8943 + }, + { + "start": 6814.22, + "end": 6816.44, + "probability": 0.9837 + }, + { + "start": 6817.38, + "end": 6819.26, + "probability": 0.8942 + }, + { + "start": 6820.18, + "end": 6822.9, + "probability": 0.8385 + }, + { + "start": 6823.84, + "end": 6823.98, + "probability": 0.6146 + }, + { + "start": 6823.98, + "end": 6826.02, + "probability": 0.9443 + }, + { + "start": 6829.98, + "end": 6835.3, + "probability": 0.9634 + }, + { + "start": 6835.9, + "end": 6838.28, + "probability": 0.8848 + }, + { + "start": 6839.22, + "end": 6839.44, + "probability": 0.07 + }, + { + "start": 6839.44, + "end": 6840.21, + "probability": 0.646 + }, + { + "start": 6840.46, + "end": 6841.88, + "probability": 0.9128 + }, + { + "start": 6842.2, + "end": 6843.46, + "probability": 0.93 + }, + { + "start": 6843.84, + "end": 6848.0, + "probability": 0.8394 + }, + { + "start": 6848.38, + "end": 6849.74, + "probability": 0.6957 + }, + { + "start": 6850.56, + "end": 6851.36, + "probability": 0.5582 + }, + { + "start": 6851.4, + "end": 6852.3, + "probability": 0.8095 + }, + { + "start": 6852.78, + "end": 6853.32, + "probability": 0.7385 + }, + { + "start": 6853.42, + "end": 6855.04, + "probability": 0.959 + }, + { + "start": 6856.34, + "end": 6859.66, + "probability": 0.9842 + }, + { + "start": 6859.74, + "end": 6860.16, + "probability": 0.5582 + }, + { + "start": 6862.56, + "end": 6866.3, + "probability": 0.9822 + }, + { + "start": 6868.62, + "end": 6871.64, + "probability": 0.789 + }, + { + "start": 6872.12, + "end": 6876.92, + "probability": 0.863 + }, + { + "start": 6877.52, + "end": 6877.86, + "probability": 0.8802 + }, + { + "start": 6878.72, + "end": 6879.58, + "probability": 0.9329 + }, + { + "start": 6880.1, + "end": 6881.58, + "probability": 0.6244 + }, + { + "start": 6882.42, + "end": 6884.63, + "probability": 0.6362 + }, + { + "start": 6885.56, + "end": 6887.38, + "probability": 0.9915 + }, + { + "start": 6887.94, + "end": 6890.54, + "probability": 0.9302 + }, + { + "start": 6891.88, + "end": 6893.3, + "probability": 0.6828 + }, + { + "start": 6893.44, + "end": 6893.6, + "probability": 0.74 + }, + { + "start": 6893.7, + "end": 6894.58, + "probability": 0.9163 + }, + { + "start": 6895.02, + "end": 6895.78, + "probability": 0.9177 + }, + { + "start": 6896.04, + "end": 6900.14, + "probability": 0.9281 + }, + { + "start": 6901.62, + "end": 6903.74, + "probability": 0.5736 + }, + { + "start": 6903.8, + "end": 6904.88, + "probability": 0.7837 + }, + { + "start": 6907.28, + "end": 6910.3, + "probability": 0.7929 + }, + { + "start": 6911.24, + "end": 6914.92, + "probability": 0.9917 + }, + { + "start": 6915.7, + "end": 6917.9, + "probability": 0.8515 + }, + { + "start": 6918.66, + "end": 6925.0, + "probability": 0.9751 + }, + { + "start": 6925.46, + "end": 6926.06, + "probability": 0.5903 + }, + { + "start": 6926.34, + "end": 6928.0, + "probability": 0.8462 + }, + { + "start": 6928.7, + "end": 6932.7, + "probability": 0.708 + }, + { + "start": 6933.08, + "end": 6935.39, + "probability": 0.9814 + }, + { + "start": 6936.26, + "end": 6937.1, + "probability": 0.9017 + }, + { + "start": 6938.96, + "end": 6940.76, + "probability": 0.9958 + }, + { + "start": 6941.38, + "end": 6943.22, + "probability": 0.7512 + }, + { + "start": 6943.6, + "end": 6946.4, + "probability": 0.9307 + }, + { + "start": 6946.42, + "end": 6946.7, + "probability": 0.8703 + }, + { + "start": 6946.78, + "end": 6947.8, + "probability": 0.7473 + }, + { + "start": 6947.86, + "end": 6948.28, + "probability": 0.5177 + }, + { + "start": 6948.58, + "end": 6949.64, + "probability": 0.8418 + }, + { + "start": 6949.76, + "end": 6950.38, + "probability": 0.0739 + }, + { + "start": 6950.38, + "end": 6951.89, + "probability": 0.8403 + }, + { + "start": 6952.56, + "end": 6956.1, + "probability": 0.812 + }, + { + "start": 6957.1, + "end": 6958.72, + "probability": 0.7484 + }, + { + "start": 6958.9, + "end": 6962.5, + "probability": 0.9818 + }, + { + "start": 6962.76, + "end": 6963.94, + "probability": 0.9426 + }, + { + "start": 6964.88, + "end": 6965.66, + "probability": 0.9702 + }, + { + "start": 6965.76, + "end": 6966.48, + "probability": 0.8734 + }, + { + "start": 6966.66, + "end": 6968.78, + "probability": 0.5456 + }, + { + "start": 6969.18, + "end": 6970.56, + "probability": 0.9919 + }, + { + "start": 6970.88, + "end": 6970.88, + "probability": 0.0765 + }, + { + "start": 6971.12, + "end": 6972.8, + "probability": 0.7887 + }, + { + "start": 6973.14, + "end": 6974.76, + "probability": 0.8875 + }, + { + "start": 6975.54, + "end": 6977.06, + "probability": 0.4562 + }, + { + "start": 6977.06, + "end": 6977.64, + "probability": 0.2404 + }, + { + "start": 6980.72, + "end": 6980.88, + "probability": 0.2771 + }, + { + "start": 6980.88, + "end": 6980.88, + "probability": 0.0541 + }, + { + "start": 6980.88, + "end": 6981.16, + "probability": 0.3594 + }, + { + "start": 6981.2, + "end": 6981.62, + "probability": 0.1404 + }, + { + "start": 6981.66, + "end": 6982.86, + "probability": 0.4614 + }, + { + "start": 6982.86, + "end": 6985.12, + "probability": 0.2216 + }, + { + "start": 6985.12, + "end": 6985.66, + "probability": 0.5678 + }, + { + "start": 6985.78, + "end": 6985.78, + "probability": 0.0407 + }, + { + "start": 6985.78, + "end": 6986.14, + "probability": 0.8375 + }, + { + "start": 6986.32, + "end": 6987.13, + "probability": 0.4229 + }, + { + "start": 6989.16, + "end": 6989.32, + "probability": 0.0745 + }, + { + "start": 6989.32, + "end": 6989.58, + "probability": 0.2347 + }, + { + "start": 6989.7, + "end": 6990.6, + "probability": 0.6195 + }, + { + "start": 6990.6, + "end": 6992.08, + "probability": 0.9514 + }, + { + "start": 6994.22, + "end": 6995.44, + "probability": 0.4905 + }, + { + "start": 6995.44, + "end": 6996.44, + "probability": 0.7216 + }, + { + "start": 6997.66, + "end": 6998.66, + "probability": 0.7753 + }, + { + "start": 6998.82, + "end": 7001.3, + "probability": 0.853 + }, + { + "start": 7001.86, + "end": 7003.74, + "probability": 0.7183 + }, + { + "start": 7004.28, + "end": 7004.76, + "probability": 0.7944 + }, + { + "start": 7004.8, + "end": 7005.16, + "probability": 0.8494 + }, + { + "start": 7005.5, + "end": 7006.38, + "probability": 0.902 + }, + { + "start": 7006.42, + "end": 7008.32, + "probability": 0.9525 + }, + { + "start": 7008.86, + "end": 7010.58, + "probability": 0.8326 + }, + { + "start": 7011.24, + "end": 7013.9, + "probability": 0.9912 + }, + { + "start": 7015.24, + "end": 7016.16, + "probability": 0.7925 + }, + { + "start": 7016.68, + "end": 7019.3, + "probability": 0.7087 + }, + { + "start": 7019.3, + "end": 7022.74, + "probability": 0.9894 + }, + { + "start": 7022.82, + "end": 7023.26, + "probability": 0.8372 + }, + { + "start": 7023.32, + "end": 7023.94, + "probability": 0.664 + }, + { + "start": 7025.0, + "end": 7028.9, + "probability": 0.8381 + }, + { + "start": 7029.02, + "end": 7029.1, + "probability": 0.559 + }, + { + "start": 7029.44, + "end": 7030.42, + "probability": 0.5809 + }, + { + "start": 7030.56, + "end": 7031.82, + "probability": 0.8307 + }, + { + "start": 7031.9, + "end": 7033.55, + "probability": 0.5283 + }, + { + "start": 7038.63, + "end": 7044.24, + "probability": 0.8447 + }, + { + "start": 7044.24, + "end": 7047.28, + "probability": 0.6135 + }, + { + "start": 7047.4, + "end": 7052.22, + "probability": 0.6389 + }, + { + "start": 7053.44, + "end": 7060.48, + "probability": 0.8927 + }, + { + "start": 7060.48, + "end": 7063.18, + "probability": 0.7436 + }, + { + "start": 7063.6, + "end": 7067.54, + "probability": 0.6403 + }, + { + "start": 7067.62, + "end": 7067.84, + "probability": 0.7568 + }, + { + "start": 7068.54, + "end": 7069.98, + "probability": 0.6703 + }, + { + "start": 7070.16, + "end": 7073.2, + "probability": 0.7291 + }, + { + "start": 7073.82, + "end": 7075.7, + "probability": 0.5518 + }, + { + "start": 7076.3, + "end": 7076.56, + "probability": 0.5138 + }, + { + "start": 7076.62, + "end": 7077.38, + "probability": 0.6396 + }, + { + "start": 7077.46, + "end": 7078.06, + "probability": 0.9461 + }, + { + "start": 7078.18, + "end": 7079.66, + "probability": 0.993 + }, + { + "start": 7081.54, + "end": 7082.52, + "probability": 0.9592 + }, + { + "start": 7082.74, + "end": 7083.86, + "probability": 0.9556 + }, + { + "start": 7084.0, + "end": 7084.96, + "probability": 0.8774 + }, + { + "start": 7084.98, + "end": 7085.78, + "probability": 0.9998 + }, + { + "start": 7086.66, + "end": 7087.32, + "probability": 0.5802 + }, + { + "start": 7087.88, + "end": 7091.5, + "probability": 0.9954 + }, + { + "start": 7091.68, + "end": 7095.3, + "probability": 0.9871 + }, + { + "start": 7095.88, + "end": 7096.47, + "probability": 0.8433 + }, + { + "start": 7097.76, + "end": 7098.38, + "probability": 0.9414 + }, + { + "start": 7099.08, + "end": 7102.16, + "probability": 0.9819 + }, + { + "start": 7103.81, + "end": 7105.86, + "probability": 0.9941 + }, + { + "start": 7105.98, + "end": 7108.86, + "probability": 0.9372 + }, + { + "start": 7108.96, + "end": 7110.62, + "probability": 0.5021 + }, + { + "start": 7110.78, + "end": 7113.15, + "probability": 0.5082 + }, + { + "start": 7113.54, + "end": 7115.0, + "probability": 0.981 + }, + { + "start": 7115.8, + "end": 7116.44, + "probability": 0.851 + }, + { + "start": 7116.44, + "end": 7118.88, + "probability": 0.9469 + }, + { + "start": 7118.98, + "end": 7119.92, + "probability": 0.6703 + }, + { + "start": 7120.12, + "end": 7122.06, + "probability": 0.8119 + }, + { + "start": 7122.14, + "end": 7124.18, + "probability": 0.7054 + }, + { + "start": 7124.34, + "end": 7125.82, + "probability": 0.8164 + }, + { + "start": 7126.26, + "end": 7129.22, + "probability": 0.9862 + }, + { + "start": 7129.98, + "end": 7133.0, + "probability": 0.993 + }, + { + "start": 7133.44, + "end": 7135.04, + "probability": 0.9124 + }, + { + "start": 7135.12, + "end": 7135.74, + "probability": 0.6332 + }, + { + "start": 7135.8, + "end": 7141.58, + "probability": 0.9733 + }, + { + "start": 7141.7, + "end": 7142.8, + "probability": 0.9818 + }, + { + "start": 7143.5, + "end": 7145.26, + "probability": 0.994 + }, + { + "start": 7145.3, + "end": 7146.58, + "probability": 0.8297 + }, + { + "start": 7146.78, + "end": 7147.34, + "probability": 0.6791 + }, + { + "start": 7147.42, + "end": 7148.28, + "probability": 0.8791 + }, + { + "start": 7148.8, + "end": 7150.74, + "probability": 0.8745 + }, + { + "start": 7151.2, + "end": 7152.1, + "probability": 0.9967 + }, + { + "start": 7152.74, + "end": 7154.12, + "probability": 0.8846 + }, + { + "start": 7154.3, + "end": 7156.1, + "probability": 0.9196 + }, + { + "start": 7156.54, + "end": 7159.38, + "probability": 0.9802 + }, + { + "start": 7159.38, + "end": 7162.52, + "probability": 0.9968 + }, + { + "start": 7163.16, + "end": 7163.74, + "probability": 0.5406 + }, + { + "start": 7163.88, + "end": 7164.38, + "probability": 0.4681 + }, + { + "start": 7164.44, + "end": 7167.8, + "probability": 0.9469 + }, + { + "start": 7168.3, + "end": 7171.72, + "probability": 0.9917 + }, + { + "start": 7171.96, + "end": 7172.38, + "probability": 0.4698 + }, + { + "start": 7172.4, + "end": 7173.8, + "probability": 0.8795 + }, + { + "start": 7173.92, + "end": 7174.34, + "probability": 0.7833 + }, + { + "start": 7175.1, + "end": 7178.66, + "probability": 0.9788 + }, + { + "start": 7178.92, + "end": 7182.16, + "probability": 0.9423 + }, + { + "start": 7182.7, + "end": 7184.22, + "probability": 0.8862 + }, + { + "start": 7184.56, + "end": 7185.12, + "probability": 0.5987 + }, + { + "start": 7185.14, + "end": 7187.1, + "probability": 0.9531 + }, + { + "start": 7187.46, + "end": 7190.56, + "probability": 0.8647 + }, + { + "start": 7191.38, + "end": 7192.22, + "probability": 0.5776 + }, + { + "start": 7192.26, + "end": 7192.7, + "probability": 0.4899 + }, + { + "start": 7192.92, + "end": 7194.06, + "probability": 0.9809 + }, + { + "start": 7194.38, + "end": 7195.56, + "probability": 0.8241 + }, + { + "start": 7195.56, + "end": 7197.72, + "probability": 0.9172 + }, + { + "start": 7198.54, + "end": 7200.46, + "probability": 0.813 + }, + { + "start": 7201.02, + "end": 7204.92, + "probability": 0.9264 + }, + { + "start": 7205.66, + "end": 7206.42, + "probability": 0.821 + }, + { + "start": 7206.74, + "end": 7208.0, + "probability": 0.9131 + }, + { + "start": 7208.06, + "end": 7209.16, + "probability": 0.5282 + }, + { + "start": 7209.58, + "end": 7212.96, + "probability": 0.9219 + }, + { + "start": 7212.96, + "end": 7216.82, + "probability": 0.9967 + }, + { + "start": 7217.38, + "end": 7217.82, + "probability": 0.373 + }, + { + "start": 7217.9, + "end": 7222.54, + "probability": 0.9736 + }, + { + "start": 7223.22, + "end": 7225.42, + "probability": 0.6557 + }, + { + "start": 7226.4, + "end": 7227.48, + "probability": 0.5818 + }, + { + "start": 7227.56, + "end": 7229.22, + "probability": 0.885 + }, + { + "start": 7229.3, + "end": 7231.12, + "probability": 0.7382 + }, + { + "start": 7232.08, + "end": 7232.58, + "probability": 0.9412 + }, + { + "start": 7234.34, + "end": 7237.46, + "probability": 0.9534 + }, + { + "start": 7237.46, + "end": 7241.0, + "probability": 0.921 + }, + { + "start": 7241.12, + "end": 7241.3, + "probability": 0.4958 + }, + { + "start": 7241.44, + "end": 7243.06, + "probability": 0.825 + }, + { + "start": 7244.26, + "end": 7247.4, + "probability": 0.9256 + }, + { + "start": 7247.56, + "end": 7248.04, + "probability": 0.3667 + }, + { + "start": 7248.68, + "end": 7250.28, + "probability": 0.9954 + }, + { + "start": 7251.48, + "end": 7252.16, + "probability": 0.6507 + }, + { + "start": 7253.74, + "end": 7255.7, + "probability": 0.967 + }, + { + "start": 7255.76, + "end": 7257.82, + "probability": 0.9008 + }, + { + "start": 7257.92, + "end": 7259.28, + "probability": 0.988 + }, + { + "start": 7259.48, + "end": 7259.74, + "probability": 0.6997 + }, + { + "start": 7259.92, + "end": 7262.62, + "probability": 0.6843 + }, + { + "start": 7262.94, + "end": 7264.54, + "probability": 0.9316 + }, + { + "start": 7264.66, + "end": 7266.75, + "probability": 0.9971 + }, + { + "start": 7268.84, + "end": 7272.36, + "probability": 0.8663 + }, + { + "start": 7272.7, + "end": 7273.48, + "probability": 0.5323 + }, + { + "start": 7274.26, + "end": 7278.06, + "probability": 0.8839 + }, + { + "start": 7278.66, + "end": 7280.49, + "probability": 0.7895 + }, + { + "start": 7282.12, + "end": 7288.48, + "probability": 0.9838 + }, + { + "start": 7289.0, + "end": 7291.54, + "probability": 0.9929 + }, + { + "start": 7292.5, + "end": 7294.46, + "probability": 0.9536 + }, + { + "start": 7295.7, + "end": 7297.7, + "probability": 0.8145 + }, + { + "start": 7297.84, + "end": 7299.32, + "probability": 0.9004 + }, + { + "start": 7299.36, + "end": 7300.1, + "probability": 0.7782 + }, + { + "start": 7300.18, + "end": 7300.58, + "probability": 0.4208 + }, + { + "start": 7300.6, + "end": 7305.22, + "probability": 0.9673 + }, + { + "start": 7305.82, + "end": 7307.68, + "probability": 0.9656 + }, + { + "start": 7308.56, + "end": 7309.56, + "probability": 0.9807 + }, + { + "start": 7310.32, + "end": 7314.62, + "probability": 0.9902 + }, + { + "start": 7315.1, + "end": 7316.38, + "probability": 0.629 + }, + { + "start": 7316.68, + "end": 7317.5, + "probability": 0.4723 + }, + { + "start": 7317.5, + "end": 7321.14, + "probability": 0.9176 + }, + { + "start": 7321.34, + "end": 7323.52, + "probability": 0.9961 + }, + { + "start": 7324.52, + "end": 7326.68, + "probability": 0.8395 + }, + { + "start": 7326.94, + "end": 7329.3, + "probability": 0.7664 + }, + { + "start": 7329.94, + "end": 7331.82, + "probability": 0.6423 + }, + { + "start": 7341.02, + "end": 7342.08, + "probability": 0.6209 + }, + { + "start": 7342.7, + "end": 7343.7, + "probability": 0.6649 + }, + { + "start": 7345.32, + "end": 7346.92, + "probability": 0.9528 + }, + { + "start": 7347.02, + "end": 7352.02, + "probability": 0.9791 + }, + { + "start": 7353.26, + "end": 7358.38, + "probability": 0.9259 + }, + { + "start": 7359.38, + "end": 7361.4, + "probability": 0.7282 + }, + { + "start": 7361.96, + "end": 7365.9, + "probability": 0.8935 + }, + { + "start": 7366.44, + "end": 7370.14, + "probability": 0.8462 + }, + { + "start": 7371.04, + "end": 7374.68, + "probability": 0.8418 + }, + { + "start": 7376.6, + "end": 7379.22, + "probability": 0.9321 + }, + { + "start": 7379.22, + "end": 7381.66, + "probability": 0.86 + }, + { + "start": 7382.48, + "end": 7383.84, + "probability": 0.7366 + }, + { + "start": 7384.42, + "end": 7389.26, + "probability": 0.9563 + }, + { + "start": 7389.42, + "end": 7392.52, + "probability": 0.9427 + }, + { + "start": 7393.64, + "end": 7395.88, + "probability": 0.9086 + }, + { + "start": 7396.98, + "end": 7399.22, + "probability": 0.8234 + }, + { + "start": 7399.6, + "end": 7405.0, + "probability": 0.9619 + }, + { + "start": 7405.64, + "end": 7407.74, + "probability": 0.3969 + }, + { + "start": 7409.76, + "end": 7410.92, + "probability": 0.661 + }, + { + "start": 7411.04, + "end": 7412.86, + "probability": 0.5553 + }, + { + "start": 7414.44, + "end": 7416.02, + "probability": 0.5037 + }, + { + "start": 7417.96, + "end": 7419.02, + "probability": 0.373 + }, + { + "start": 7419.12, + "end": 7420.54, + "probability": 0.6993 + }, + { + "start": 7420.58, + "end": 7420.92, + "probability": 0.6814 + }, + { + "start": 7421.1, + "end": 7422.84, + "probability": 0.7443 + }, + { + "start": 7422.94, + "end": 7430.12, + "probability": 0.8086 + }, + { + "start": 7430.18, + "end": 7434.42, + "probability": 0.9783 + }, + { + "start": 7435.18, + "end": 7436.28, + "probability": 0.981 + }, + { + "start": 7437.18, + "end": 7437.7, + "probability": 0.9598 + }, + { + "start": 7438.68, + "end": 7438.8, + "probability": 0.4732 + }, + { + "start": 7438.9, + "end": 7443.64, + "probability": 0.9631 + }, + { + "start": 7445.62, + "end": 7447.96, + "probability": 0.9841 + }, + { + "start": 7450.46, + "end": 7454.0, + "probability": 0.7981 + }, + { + "start": 7454.92, + "end": 7458.72, + "probability": 0.7348 + }, + { + "start": 7459.46, + "end": 7463.08, + "probability": 0.9017 + }, + { + "start": 7463.76, + "end": 7468.16, + "probability": 0.7685 + }, + { + "start": 7468.76, + "end": 7469.5, + "probability": 0.636 + }, + { + "start": 7470.04, + "end": 7473.4, + "probability": 0.973 + }, + { + "start": 7474.04, + "end": 7478.82, + "probability": 0.7684 + }, + { + "start": 7479.46, + "end": 7483.26, + "probability": 0.8517 + }, + { + "start": 7483.72, + "end": 7484.66, + "probability": 0.2642 + }, + { + "start": 7486.22, + "end": 7490.08, + "probability": 0.787 + }, + { + "start": 7490.7, + "end": 7494.66, + "probability": 0.8564 + }, + { + "start": 7495.42, + "end": 7501.72, + "probability": 0.8032 + }, + { + "start": 7501.86, + "end": 7506.76, + "probability": 0.9736 + }, + { + "start": 7507.58, + "end": 7509.22, + "probability": 0.8015 + }, + { + "start": 7510.06, + "end": 7513.08, + "probability": 0.9957 + }, + { + "start": 7513.76, + "end": 7519.54, + "probability": 0.9473 + }, + { + "start": 7520.06, + "end": 7523.58, + "probability": 0.8584 + }, + { + "start": 7527.02, + "end": 7531.64, + "probability": 0.7193 + }, + { + "start": 7532.42, + "end": 7532.84, + "probability": 0.4528 + }, + { + "start": 7533.48, + "end": 7534.46, + "probability": 0.6115 + }, + { + "start": 7534.64, + "end": 7535.04, + "probability": 0.6238 + }, + { + "start": 7535.46, + "end": 7541.34, + "probability": 0.9553 + }, + { + "start": 7542.24, + "end": 7548.88, + "probability": 0.9733 + }, + { + "start": 7549.04, + "end": 7550.58, + "probability": 0.6504 + }, + { + "start": 7551.64, + "end": 7558.76, + "probability": 0.9836 + }, + { + "start": 7558.76, + "end": 7565.44, + "probability": 0.9658 + }, + { + "start": 7566.88, + "end": 7572.48, + "probability": 0.825 + }, + { + "start": 7573.96, + "end": 7575.46, + "probability": 0.5951 + }, + { + "start": 7575.46, + "end": 7576.32, + "probability": 0.6358 + }, + { + "start": 7576.54, + "end": 7576.76, + "probability": 0.388 + }, + { + "start": 7576.92, + "end": 7581.7, + "probability": 0.947 + }, + { + "start": 7582.76, + "end": 7583.14, + "probability": 0.7061 + }, + { + "start": 7584.18, + "end": 7585.28, + "probability": 0.2795 + }, + { + "start": 7585.8, + "end": 7588.26, + "probability": 0.6438 + }, + { + "start": 7589.68, + "end": 7593.79, + "probability": 0.6898 + }, + { + "start": 7594.14, + "end": 7599.84, + "probability": 0.6759 + }, + { + "start": 7601.64, + "end": 7603.0, + "probability": 0.2203 + }, + { + "start": 7603.22, + "end": 7605.04, + "probability": 0.9932 + }, + { + "start": 7605.2, + "end": 7605.94, + "probability": 0.2559 + }, + { + "start": 7606.58, + "end": 7607.46, + "probability": 0.5465 + }, + { + "start": 7607.72, + "end": 7609.4, + "probability": 0.9148 + }, + { + "start": 7609.68, + "end": 7611.58, + "probability": 0.9196 + }, + { + "start": 7612.08, + "end": 7612.34, + "probability": 0.7896 + }, + { + "start": 7613.04, + "end": 7615.6, + "probability": 0.7648 + }, + { + "start": 7616.34, + "end": 7619.33, + "probability": 0.7347 + }, + { + "start": 7620.42, + "end": 7621.86, + "probability": 0.9217 + }, + { + "start": 7629.72, + "end": 7629.8, + "probability": 0.0884 + }, + { + "start": 7629.8, + "end": 7629.92, + "probability": 0.1815 + }, + { + "start": 7642.78, + "end": 7644.32, + "probability": 0.3824 + }, + { + "start": 7645.32, + "end": 7646.6, + "probability": 0.573 + }, + { + "start": 7646.84, + "end": 7646.84, + "probability": 0.5065 + }, + { + "start": 7646.88, + "end": 7649.18, + "probability": 0.9504 + }, + { + "start": 7649.34, + "end": 7654.02, + "probability": 0.9624 + }, + { + "start": 7654.6, + "end": 7657.02, + "probability": 0.8013 + }, + { + "start": 7657.56, + "end": 7658.74, + "probability": 0.8981 + }, + { + "start": 7658.88, + "end": 7660.24, + "probability": 0.2852 + }, + { + "start": 7661.0, + "end": 7665.18, + "probability": 0.9205 + }, + { + "start": 7666.48, + "end": 7667.84, + "probability": 0.81 + }, + { + "start": 7667.84, + "end": 7668.42, + "probability": 0.7539 + }, + { + "start": 7669.54, + "end": 7669.98, + "probability": 0.6266 + }, + { + "start": 7671.82, + "end": 7672.54, + "probability": 0.7821 + }, + { + "start": 7672.72, + "end": 7674.1, + "probability": 0.6453 + }, + { + "start": 7674.1, + "end": 7674.9, + "probability": 0.1097 + }, + { + "start": 7676.4, + "end": 7680.92, + "probability": 0.7647 + }, + { + "start": 7682.12, + "end": 7683.62, + "probability": 0.9186 + }, + { + "start": 7685.8, + "end": 7689.5, + "probability": 0.9789 + }, + { + "start": 7689.96, + "end": 7693.48, + "probability": 0.978 + }, + { + "start": 7694.98, + "end": 7699.8, + "probability": 0.4696 + }, + { + "start": 7702.98, + "end": 7708.48, + "probability": 0.8403 + }, + { + "start": 7708.56, + "end": 7713.0, + "probability": 0.958 + }, + { + "start": 7714.3, + "end": 7724.92, + "probability": 0.9871 + }, + { + "start": 7725.12, + "end": 7726.16, + "probability": 0.7874 + }, + { + "start": 7726.34, + "end": 7727.42, + "probability": 0.8381 + }, + { + "start": 7728.84, + "end": 7730.36, + "probability": 0.893 + }, + { + "start": 7731.7, + "end": 7736.9, + "probability": 0.9733 + }, + { + "start": 7738.88, + "end": 7741.48, + "probability": 0.9684 + }, + { + "start": 7743.16, + "end": 7745.94, + "probability": 0.8125 + }, + { + "start": 7747.54, + "end": 7754.18, + "probability": 0.8209 + }, + { + "start": 7755.2, + "end": 7757.76, + "probability": 0.7496 + }, + { + "start": 7763.22, + "end": 7767.14, + "probability": 0.9807 + }, + { + "start": 7768.92, + "end": 7771.8, + "probability": 0.8079 + }, + { + "start": 7772.16, + "end": 7773.24, + "probability": 0.7593 + }, + { + "start": 7773.42, + "end": 7774.54, + "probability": 0.9557 + }, + { + "start": 7776.24, + "end": 7778.9, + "probability": 0.9526 + }, + { + "start": 7780.94, + "end": 7781.42, + "probability": 0.9399 + }, + { + "start": 7782.26, + "end": 7786.0, + "probability": 0.9725 + }, + { + "start": 7787.44, + "end": 7791.68, + "probability": 0.9866 + }, + { + "start": 7794.78, + "end": 7798.24, + "probability": 0.9964 + }, + { + "start": 7799.38, + "end": 7799.98, + "probability": 0.9191 + }, + { + "start": 7801.2, + "end": 7802.08, + "probability": 0.7613 + }, + { + "start": 7804.06, + "end": 7806.2, + "probability": 0.9617 + }, + { + "start": 7806.44, + "end": 7809.18, + "probability": 0.9592 + }, + { + "start": 7809.28, + "end": 7810.46, + "probability": 0.9939 + }, + { + "start": 7810.58, + "end": 7812.3, + "probability": 0.9927 + }, + { + "start": 7812.64, + "end": 7815.44, + "probability": 0.8638 + }, + { + "start": 7816.5, + "end": 7817.38, + "probability": 0.7238 + }, + { + "start": 7818.4, + "end": 7820.44, + "probability": 0.9878 + }, + { + "start": 7822.86, + "end": 7828.08, + "probability": 0.9722 + }, + { + "start": 7829.84, + "end": 7831.9, + "probability": 0.9927 + }, + { + "start": 7834.04, + "end": 7836.08, + "probability": 0.9111 + }, + { + "start": 7836.32, + "end": 7839.18, + "probability": 0.9414 + }, + { + "start": 7839.42, + "end": 7840.14, + "probability": 0.7238 + }, + { + "start": 7840.44, + "end": 7841.52, + "probability": 0.5986 + }, + { + "start": 7843.54, + "end": 7843.92, + "probability": 0.959 + }, + { + "start": 7845.72, + "end": 7847.74, + "probability": 0.9977 + }, + { + "start": 7849.04, + "end": 7849.54, + "probability": 0.9709 + }, + { + "start": 7850.72, + "end": 7851.88, + "probability": 0.9975 + }, + { + "start": 7853.18, + "end": 7855.08, + "probability": 0.9366 + }, + { + "start": 7856.56, + "end": 7867.62, + "probability": 0.9964 + }, + { + "start": 7868.1, + "end": 7870.62, + "probability": 0.9927 + }, + { + "start": 7871.3, + "end": 7873.52, + "probability": 0.9793 + }, + { + "start": 7875.04, + "end": 7877.7, + "probability": 0.778 + }, + { + "start": 7877.88, + "end": 7878.58, + "probability": 0.6422 + }, + { + "start": 7878.64, + "end": 7879.32, + "probability": 0.9863 + }, + { + "start": 7879.7, + "end": 7881.12, + "probability": 0.6093 + }, + { + "start": 7881.2, + "end": 7882.25, + "probability": 0.9905 + }, + { + "start": 7882.28, + "end": 7883.08, + "probability": 0.6605 + }, + { + "start": 7888.18, + "end": 7889.58, + "probability": 0.9026 + }, + { + "start": 7890.3, + "end": 7893.18, + "probability": 0.9882 + }, + { + "start": 7893.5, + "end": 7895.08, + "probability": 0.995 + }, + { + "start": 7898.08, + "end": 7903.82, + "probability": 0.9728 + }, + { + "start": 7905.18, + "end": 7909.92, + "probability": 0.9535 + }, + { + "start": 7911.38, + "end": 7912.02, + "probability": 0.8772 + }, + { + "start": 7913.16, + "end": 7916.28, + "probability": 0.9969 + }, + { + "start": 7917.0, + "end": 7918.5, + "probability": 0.9352 + }, + { + "start": 7919.6, + "end": 7921.98, + "probability": 0.8159 + }, + { + "start": 7923.18, + "end": 7924.54, + "probability": 0.7554 + }, + { + "start": 7925.92, + "end": 7927.5, + "probability": 0.6863 + }, + { + "start": 7929.68, + "end": 7934.2, + "probability": 0.9664 + }, + { + "start": 7936.84, + "end": 7938.68, + "probability": 0.8608 + }, + { + "start": 7940.12, + "end": 7941.58, + "probability": 0.9729 + }, + { + "start": 7942.14, + "end": 7943.88, + "probability": 0.8029 + }, + { + "start": 7945.62, + "end": 7947.96, + "probability": 0.8607 + }, + { + "start": 7948.58, + "end": 7949.5, + "probability": 0.851 + }, + { + "start": 7951.16, + "end": 7954.44, + "probability": 0.9424 + }, + { + "start": 7954.5, + "end": 7957.76, + "probability": 0.9946 + }, + { + "start": 7958.54, + "end": 7961.34, + "probability": 0.9816 + }, + { + "start": 7962.24, + "end": 7967.22, + "probability": 0.9899 + }, + { + "start": 7967.44, + "end": 7970.14, + "probability": 0.9941 + }, + { + "start": 7970.7, + "end": 7972.34, + "probability": 0.9878 + }, + { + "start": 7973.28, + "end": 7977.62, + "probability": 0.7056 + }, + { + "start": 7978.32, + "end": 7979.6, + "probability": 0.644 + }, + { + "start": 7979.72, + "end": 7985.22, + "probability": 0.9763 + }, + { + "start": 7985.52, + "end": 7988.68, + "probability": 0.7351 + }, + { + "start": 7988.74, + "end": 7989.9, + "probability": 0.6929 + }, + { + "start": 7990.26, + "end": 7992.54, + "probability": 0.9985 + }, + { + "start": 7993.3, + "end": 7993.74, + "probability": 0.8644 + }, + { + "start": 7994.14, + "end": 7996.18, + "probability": 0.6492 + }, + { + "start": 7996.62, + "end": 8000.32, + "probability": 0.8292 + }, + { + "start": 8003.66, + "end": 8004.3, + "probability": 0.5577 + }, + { + "start": 8005.04, + "end": 8006.28, + "probability": 0.8048 + }, + { + "start": 8006.86, + "end": 8008.14, + "probability": 0.9097 + }, + { + "start": 8008.42, + "end": 8010.14, + "probability": 0.9613 + }, + { + "start": 8013.6, + "end": 8015.8, + "probability": 0.8162 + }, + { + "start": 8017.54, + "end": 8020.06, + "probability": 0.7137 + }, + { + "start": 8021.02, + "end": 8024.8, + "probability": 0.9416 + }, + { + "start": 8025.84, + "end": 8028.04, + "probability": 0.993 + }, + { + "start": 8028.72, + "end": 8029.46, + "probability": 0.7873 + }, + { + "start": 8032.36, + "end": 8037.32, + "probability": 0.9602 + }, + { + "start": 8037.44, + "end": 8038.66, + "probability": 0.9496 + }, + { + "start": 8039.9, + "end": 8041.82, + "probability": 0.8811 + }, + { + "start": 8042.78, + "end": 8046.24, + "probability": 0.9541 + }, + { + "start": 8047.72, + "end": 8050.12, + "probability": 0.8087 + }, + { + "start": 8051.22, + "end": 8052.96, + "probability": 0.748 + }, + { + "start": 8054.7, + "end": 8055.84, + "probability": 0.9946 + }, + { + "start": 8056.56, + "end": 8057.7, + "probability": 0.9428 + }, + { + "start": 8059.04, + "end": 8060.96, + "probability": 0.9497 + }, + { + "start": 8064.54, + "end": 8068.72, + "probability": 0.6928 + }, + { + "start": 8069.62, + "end": 8072.56, + "probability": 0.9954 + }, + { + "start": 8073.32, + "end": 8074.5, + "probability": 0.7976 + }, + { + "start": 8078.72, + "end": 8079.92, + "probability": 0.1653 + }, + { + "start": 8079.92, + "end": 8080.2, + "probability": 0.4967 + }, + { + "start": 8081.96, + "end": 8082.82, + "probability": 0.9894 + }, + { + "start": 8083.58, + "end": 8084.54, + "probability": 0.8529 + }, + { + "start": 8085.82, + "end": 8091.32, + "probability": 0.9682 + }, + { + "start": 8094.32, + "end": 8100.8, + "probability": 0.6574 + }, + { + "start": 8105.04, + "end": 8108.14, + "probability": 0.9218 + }, + { + "start": 8108.86, + "end": 8110.48, + "probability": 0.6413 + }, + { + "start": 8111.02, + "end": 8112.94, + "probability": 0.8027 + }, + { + "start": 8114.82, + "end": 8117.78, + "probability": 0.5868 + }, + { + "start": 8119.88, + "end": 8122.98, + "probability": 0.9246 + }, + { + "start": 8125.16, + "end": 8126.96, + "probability": 0.9624 + }, + { + "start": 8129.08, + "end": 8130.08, + "probability": 0.9722 + }, + { + "start": 8131.0, + "end": 8132.2, + "probability": 0.9863 + }, + { + "start": 8137.24, + "end": 8141.98, + "probability": 0.9692 + }, + { + "start": 8143.3, + "end": 8144.36, + "probability": 0.8572 + }, + { + "start": 8145.54, + "end": 8148.32, + "probability": 0.9543 + }, + { + "start": 8149.8, + "end": 8152.88, + "probability": 0.9856 + }, + { + "start": 8153.74, + "end": 8155.86, + "probability": 0.9893 + }, + { + "start": 8156.72, + "end": 8158.34, + "probability": 0.712 + }, + { + "start": 8159.66, + "end": 8161.22, + "probability": 0.6147 + }, + { + "start": 8163.1, + "end": 8164.1, + "probability": 0.8911 + }, + { + "start": 8164.28, + "end": 8166.0, + "probability": 0.9238 + }, + { + "start": 8166.24, + "end": 8171.46, + "probability": 0.9326 + }, + { + "start": 8171.5, + "end": 8172.64, + "probability": 0.9785 + }, + { + "start": 8174.36, + "end": 8174.64, + "probability": 0.833 + }, + { + "start": 8175.26, + "end": 8177.72, + "probability": 0.807 + }, + { + "start": 8178.68, + "end": 8180.74, + "probability": 0.6708 + }, + { + "start": 8181.08, + "end": 8182.72, + "probability": 0.9932 + }, + { + "start": 8183.44, + "end": 8184.34, + "probability": 0.6741 + }, + { + "start": 8186.88, + "end": 8192.48, + "probability": 0.9705 + }, + { + "start": 8192.48, + "end": 8194.56, + "probability": 0.6605 + }, + { + "start": 8196.72, + "end": 8199.76, + "probability": 0.4256 + }, + { + "start": 8200.46, + "end": 8203.28, + "probability": 0.2834 + }, + { + "start": 8204.26, + "end": 8207.76, + "probability": 0.9337 + }, + { + "start": 8208.54, + "end": 8209.6, + "probability": 0.4963 + }, + { + "start": 8209.6, + "end": 8210.02, + "probability": 0.5779 + }, + { + "start": 8211.12, + "end": 8213.16, + "probability": 0.8131 + }, + { + "start": 8213.81, + "end": 8216.16, + "probability": 0.6476 + }, + { + "start": 8217.22, + "end": 8219.52, + "probability": 0.9401 + }, + { + "start": 8220.3, + "end": 8221.04, + "probability": 0.7848 + }, + { + "start": 8221.6, + "end": 8224.86, + "probability": 0.9837 + }, + { + "start": 8225.98, + "end": 8227.05, + "probability": 0.8833 + }, + { + "start": 8227.62, + "end": 8228.67, + "probability": 0.9395 + }, + { + "start": 8228.9, + "end": 8230.01, + "probability": 0.7834 + }, + { + "start": 8230.18, + "end": 8230.82, + "probability": 0.6328 + }, + { + "start": 8231.46, + "end": 8232.66, + "probability": 0.9365 + }, + { + "start": 8233.6, + "end": 8235.44, + "probability": 0.7442 + }, + { + "start": 8236.86, + "end": 8238.62, + "probability": 0.4664 + }, + { + "start": 8239.22, + "end": 8239.98, + "probability": 0.687 + }, + { + "start": 8240.12, + "end": 8241.04, + "probability": 0.8991 + }, + { + "start": 8241.12, + "end": 8246.2, + "probability": 0.9514 + }, + { + "start": 8248.56, + "end": 8251.9, + "probability": 0.8672 + }, + { + "start": 8252.48, + "end": 8253.58, + "probability": 0.6515 + }, + { + "start": 8254.2, + "end": 8256.06, + "probability": 0.8869 + }, + { + "start": 8256.6, + "end": 8259.88, + "probability": 0.8402 + }, + { + "start": 8260.6, + "end": 8261.92, + "probability": 0.792 + }, + { + "start": 8262.5, + "end": 8265.1, + "probability": 0.7863 + }, + { + "start": 8265.48, + "end": 8271.0, + "probability": 0.9712 + }, + { + "start": 8271.36, + "end": 8273.46, + "probability": 0.8501 + }, + { + "start": 8274.02, + "end": 8275.64, + "probability": 0.5698 + }, + { + "start": 8275.72, + "end": 8276.16, + "probability": 0.3396 + }, + { + "start": 8276.2, + "end": 8277.48, + "probability": 0.9139 + }, + { + "start": 8281.2, + "end": 8284.1, + "probability": 0.5022 + }, + { + "start": 8287.92, + "end": 8289.46, + "probability": 0.9419 + }, + { + "start": 8290.02, + "end": 8290.68, + "probability": 0.6629 + }, + { + "start": 8290.84, + "end": 8292.42, + "probability": 0.5019 + }, + { + "start": 8292.56, + "end": 8294.14, + "probability": 0.7557 + }, + { + "start": 8294.5, + "end": 8296.58, + "probability": 0.9932 + }, + { + "start": 8297.84, + "end": 8299.86, + "probability": 0.6918 + }, + { + "start": 8301.3, + "end": 8303.22, + "probability": 0.7212 + }, + { + "start": 8303.66, + "end": 8305.82, + "probability": 0.9673 + }, + { + "start": 8305.94, + "end": 8308.14, + "probability": 0.8925 + }, + { + "start": 8308.18, + "end": 8310.0, + "probability": 0.7658 + }, + { + "start": 8310.62, + "end": 8311.58, + "probability": 0.6406 + }, + { + "start": 8311.66, + "end": 8312.28, + "probability": 0.8805 + }, + { + "start": 8312.6, + "end": 8314.22, + "probability": 0.9883 + }, + { + "start": 8314.32, + "end": 8320.94, + "probability": 0.9332 + }, + { + "start": 8321.42, + "end": 8322.7, + "probability": 0.7774 + }, + { + "start": 8323.7, + "end": 8324.4, + "probability": 0.697 + }, + { + "start": 8325.34, + "end": 8329.14, + "probability": 0.9788 + }, + { + "start": 8330.0, + "end": 8330.86, + "probability": 0.9922 + }, + { + "start": 8331.88, + "end": 8332.18, + "probability": 0.5319 + }, + { + "start": 8332.26, + "end": 8333.26, + "probability": 0.5509 + }, + { + "start": 8333.76, + "end": 8335.52, + "probability": 0.9868 + }, + { + "start": 8336.06, + "end": 8337.28, + "probability": 0.9072 + }, + { + "start": 8337.76, + "end": 8340.28, + "probability": 0.9155 + }, + { + "start": 8340.78, + "end": 8342.0, + "probability": 0.3688 + }, + { + "start": 8342.56, + "end": 8343.88, + "probability": 0.4538 + }, + { + "start": 8344.42, + "end": 8346.58, + "probability": 0.9692 + }, + { + "start": 8347.02, + "end": 8351.26, + "probability": 0.9467 + }, + { + "start": 8352.14, + "end": 8355.92, + "probability": 0.9754 + }, + { + "start": 8355.92, + "end": 8360.68, + "probability": 0.98 + }, + { + "start": 8361.18, + "end": 8361.48, + "probability": 0.6109 + }, + { + "start": 8361.48, + "end": 8361.58, + "probability": 0.6141 + }, + { + "start": 8362.54, + "end": 8363.22, + "probability": 0.9367 + }, + { + "start": 8363.88, + "end": 8370.92, + "probability": 0.9582 + }, + { + "start": 8371.58, + "end": 8373.58, + "probability": 0.9955 + }, + { + "start": 8374.56, + "end": 8376.98, + "probability": 0.584 + }, + { + "start": 8378.1, + "end": 8378.89, + "probability": 0.9453 + }, + { + "start": 8379.84, + "end": 8381.38, + "probability": 0.749 + }, + { + "start": 8382.06, + "end": 8382.92, + "probability": 0.9757 + }, + { + "start": 8383.8, + "end": 8386.78, + "probability": 0.9868 + }, + { + "start": 8387.24, + "end": 8388.67, + "probability": 0.9684 + }, + { + "start": 8389.28, + "end": 8390.08, + "probability": 0.9106 + }, + { + "start": 8390.2, + "end": 8391.04, + "probability": 0.6888 + }, + { + "start": 8391.5, + "end": 8395.26, + "probability": 0.9072 + }, + { + "start": 8395.7, + "end": 8396.54, + "probability": 0.8778 + }, + { + "start": 8396.9, + "end": 8397.64, + "probability": 0.7058 + }, + { + "start": 8398.52, + "end": 8400.68, + "probability": 0.9541 + }, + { + "start": 8401.42, + "end": 8404.4, + "probability": 0.7286 + }, + { + "start": 8404.8, + "end": 8406.66, + "probability": 0.905 + }, + { + "start": 8407.14, + "end": 8408.54, + "probability": 0.9359 + }, + { + "start": 8408.9, + "end": 8417.94, + "probability": 0.9718 + }, + { + "start": 8418.26, + "end": 8418.72, + "probability": 0.5727 + }, + { + "start": 8418.76, + "end": 8422.28, + "probability": 0.9702 + }, + { + "start": 8423.36, + "end": 8424.36, + "probability": 0.6801 + }, + { + "start": 8424.76, + "end": 8433.12, + "probability": 0.9342 + }, + { + "start": 8433.56, + "end": 8438.26, + "probability": 0.7181 + }, + { + "start": 8438.76, + "end": 8444.22, + "probability": 0.9856 + }, + { + "start": 8444.62, + "end": 8448.58, + "probability": 0.8768 + }, + { + "start": 8448.84, + "end": 8452.76, + "probability": 0.7787 + }, + { + "start": 8453.24, + "end": 8457.02, + "probability": 0.8951 + }, + { + "start": 8457.12, + "end": 8457.76, + "probability": 0.4603 + }, + { + "start": 8457.78, + "end": 8459.9, + "probability": 0.5248 + }, + { + "start": 8460.42, + "end": 8462.4, + "probability": 0.9373 + }, + { + "start": 8462.5, + "end": 8463.02, + "probability": 0.4082 + }, + { + "start": 8463.04, + "end": 8464.7, + "probability": 0.768 + }, + { + "start": 8474.32, + "end": 8475.62, + "probability": 0.9675 + }, + { + "start": 8479.42, + "end": 8481.98, + "probability": 0.6455 + }, + { + "start": 8482.92, + "end": 8485.0, + "probability": 0.7876 + }, + { + "start": 8485.1, + "end": 8488.26, + "probability": 0.8614 + }, + { + "start": 8488.26, + "end": 8493.26, + "probability": 0.8369 + }, + { + "start": 8493.52, + "end": 8494.6, + "probability": 0.5062 + }, + { + "start": 8495.44, + "end": 8498.72, + "probability": 0.8254 + }, + { + "start": 8499.28, + "end": 8501.94, + "probability": 0.8138 + }, + { + "start": 8502.16, + "end": 8505.56, + "probability": 0.9062 + }, + { + "start": 8505.7, + "end": 8506.52, + "probability": 0.8532 + }, + { + "start": 8507.24, + "end": 8508.88, + "probability": 0.9548 + }, + { + "start": 8509.02, + "end": 8510.06, + "probability": 0.9291 + }, + { + "start": 8510.46, + "end": 8511.84, + "probability": 0.9672 + }, + { + "start": 8512.16, + "end": 8512.74, + "probability": 0.8032 + }, + { + "start": 8512.86, + "end": 8513.82, + "probability": 0.8159 + }, + { + "start": 8514.4, + "end": 8515.39, + "probability": 0.9143 + }, + { + "start": 8515.96, + "end": 8517.04, + "probability": 0.8264 + }, + { + "start": 8517.08, + "end": 8517.68, + "probability": 0.8958 + }, + { + "start": 8517.76, + "end": 8518.48, + "probability": 0.9203 + }, + { + "start": 8518.54, + "end": 8518.96, + "probability": 0.5574 + }, + { + "start": 8519.06, + "end": 8519.56, + "probability": 0.7693 + }, + { + "start": 8519.7, + "end": 8520.22, + "probability": 0.9154 + }, + { + "start": 8520.3, + "end": 8520.84, + "probability": 0.942 + }, + { + "start": 8520.98, + "end": 8521.68, + "probability": 0.8615 + }, + { + "start": 8521.98, + "end": 8522.86, + "probability": 0.7986 + }, + { + "start": 8523.36, + "end": 8525.04, + "probability": 0.956 + }, + { + "start": 8525.38, + "end": 8526.38, + "probability": 0.9214 + }, + { + "start": 8526.74, + "end": 8527.65, + "probability": 0.8833 + }, + { + "start": 8528.32, + "end": 8533.22, + "probability": 0.9131 + }, + { + "start": 8533.6, + "end": 8535.96, + "probability": 0.9895 + }, + { + "start": 8536.26, + "end": 8537.66, + "probability": 0.8748 + }, + { + "start": 8538.58, + "end": 8543.9, + "probability": 0.8458 + }, + { + "start": 8543.98, + "end": 8544.66, + "probability": 0.2464 + }, + { + "start": 8545.02, + "end": 8545.32, + "probability": 0.7769 + }, + { + "start": 8546.0, + "end": 8546.2, + "probability": 0.251 + }, + { + "start": 8546.2, + "end": 8547.08, + "probability": 0.6227 + }, + { + "start": 8547.6, + "end": 8548.0, + "probability": 0.5158 + }, + { + "start": 8548.34, + "end": 8550.6, + "probability": 0.5919 + }, + { + "start": 8550.92, + "end": 8555.86, + "probability": 0.925 + }, + { + "start": 8555.86, + "end": 8559.22, + "probability": 0.9937 + }, + { + "start": 8559.48, + "end": 8564.34, + "probability": 0.8762 + }, + { + "start": 8564.92, + "end": 8567.82, + "probability": 0.9648 + }, + { + "start": 8567.94, + "end": 8569.2, + "probability": 0.3597 + }, + { + "start": 8569.46, + "end": 8572.24, + "probability": 0.5063 + }, + { + "start": 8572.76, + "end": 8578.26, + "probability": 0.9452 + }, + { + "start": 8578.26, + "end": 8579.74, + "probability": 0.7575 + }, + { + "start": 8579.88, + "end": 8580.72, + "probability": 0.0184 + }, + { + "start": 8584.24, + "end": 8585.16, + "probability": 0.23 + }, + { + "start": 8585.38, + "end": 8585.38, + "probability": 0.137 + }, + { + "start": 8585.38, + "end": 8585.38, + "probability": 0.0947 + }, + { + "start": 8585.38, + "end": 8588.04, + "probability": 0.135 + }, + { + "start": 8588.42, + "end": 8590.08, + "probability": 0.766 + }, + { + "start": 8590.38, + "end": 8592.48, + "probability": 0.9417 + }, + { + "start": 8592.66, + "end": 8595.68, + "probability": 0.9443 + }, + { + "start": 8596.0, + "end": 8596.62, + "probability": 0.8531 + }, + { + "start": 8596.94, + "end": 8597.5, + "probability": 0.6445 + }, + { + "start": 8597.56, + "end": 8598.46, + "probability": 0.7385 + }, + { + "start": 8598.7, + "end": 8601.9, + "probability": 0.8871 + }, + { + "start": 8602.08, + "end": 8605.08, + "probability": 0.7824 + }, + { + "start": 8605.24, + "end": 8606.88, + "probability": 0.7147 + }, + { + "start": 8607.22, + "end": 8608.58, + "probability": 0.7621 + }, + { + "start": 8609.06, + "end": 8609.63, + "probability": 0.9633 + }, + { + "start": 8610.02, + "end": 8610.96, + "probability": 0.9422 + }, + { + "start": 8611.38, + "end": 8613.0, + "probability": 0.7352 + }, + { + "start": 8613.06, + "end": 8614.88, + "probability": 0.8847 + }, + { + "start": 8615.34, + "end": 8615.34, + "probability": 0.0088 + }, + { + "start": 8615.34, + "end": 8618.48, + "probability": 0.992 + }, + { + "start": 8618.76, + "end": 8619.48, + "probability": 0.6945 + }, + { + "start": 8619.88, + "end": 8620.68, + "probability": 0.78 + }, + { + "start": 8621.1, + "end": 8622.2, + "probability": 0.9161 + }, + { + "start": 8622.3, + "end": 8622.88, + "probability": 0.7172 + }, + { + "start": 8623.24, + "end": 8623.84, + "probability": 0.6952 + }, + { + "start": 8623.92, + "end": 8624.78, + "probability": 0.6353 + }, + { + "start": 8625.08, + "end": 8625.92, + "probability": 0.8631 + }, + { + "start": 8626.34, + "end": 8627.44, + "probability": 0.9847 + }, + { + "start": 8627.78, + "end": 8628.94, + "probability": 0.7375 + }, + { + "start": 8629.24, + "end": 8632.86, + "probability": 0.9306 + }, + { + "start": 8633.02, + "end": 8634.74, + "probability": 0.9404 + }, + { + "start": 8635.04, + "end": 8636.52, + "probability": 0.8338 + }, + { + "start": 8636.88, + "end": 8637.22, + "probability": 0.4451 + }, + { + "start": 8637.36, + "end": 8637.88, + "probability": 0.9763 + }, + { + "start": 8637.96, + "end": 8638.78, + "probability": 0.9537 + }, + { + "start": 8638.86, + "end": 8641.18, + "probability": 0.9368 + }, + { + "start": 8641.32, + "end": 8642.98, + "probability": 0.6892 + }, + { + "start": 8643.36, + "end": 8644.02, + "probability": 0.4473 + }, + { + "start": 8644.04, + "end": 8645.52, + "probability": 0.8539 + }, + { + "start": 8647.58, + "end": 8650.32, + "probability": 0.4639 + }, + { + "start": 8650.5, + "end": 8651.58, + "probability": 0.9583 + }, + { + "start": 8653.28, + "end": 8654.14, + "probability": 0.6927 + }, + { + "start": 8654.3, + "end": 8657.12, + "probability": 0.6688 + }, + { + "start": 8658.66, + "end": 8661.92, + "probability": 0.6753 + }, + { + "start": 8663.44, + "end": 8665.02, + "probability": 0.6016 + }, + { + "start": 8665.68, + "end": 8666.66, + "probability": 0.8306 + }, + { + "start": 8667.18, + "end": 8668.0, + "probability": 0.8044 + }, + { + "start": 8673.14, + "end": 8674.68, + "probability": 0.6998 + }, + { + "start": 8674.82, + "end": 8675.14, + "probability": 0.7456 + }, + { + "start": 8675.3, + "end": 8679.08, + "probability": 0.8657 + }, + { + "start": 8680.08, + "end": 8681.24, + "probability": 0.8969 + }, + { + "start": 8682.1, + "end": 8683.66, + "probability": 0.6304 + }, + { + "start": 8683.88, + "end": 8688.68, + "probability": 0.9468 + }, + { + "start": 8689.34, + "end": 8690.32, + "probability": 0.5322 + }, + { + "start": 8691.3, + "end": 8693.74, + "probability": 0.9596 + }, + { + "start": 8695.04, + "end": 8697.44, + "probability": 0.8183 + }, + { + "start": 8697.98, + "end": 8698.84, + "probability": 0.8098 + }, + { + "start": 8698.86, + "end": 8699.52, + "probability": 0.708 + }, + { + "start": 8700.02, + "end": 8701.18, + "probability": 0.5145 + }, + { + "start": 8701.64, + "end": 8703.04, + "probability": 0.8271 + }, + { + "start": 8703.42, + "end": 8709.0, + "probability": 0.8174 + }, + { + "start": 8709.64, + "end": 8710.92, + "probability": 0.7317 + }, + { + "start": 8711.5, + "end": 8713.62, + "probability": 0.788 + }, + { + "start": 8714.34, + "end": 8715.74, + "probability": 0.6912 + }, + { + "start": 8716.16, + "end": 8717.68, + "probability": 0.9688 + }, + { + "start": 8718.08, + "end": 8719.0, + "probability": 0.8662 + }, + { + "start": 8719.42, + "end": 8721.83, + "probability": 0.9871 + }, + { + "start": 8722.58, + "end": 8724.94, + "probability": 0.7787 + }, + { + "start": 8725.34, + "end": 8726.6, + "probability": 0.9429 + }, + { + "start": 8726.68, + "end": 8727.52, + "probability": 0.6851 + }, + { + "start": 8728.06, + "end": 8731.1, + "probability": 0.9175 + }, + { + "start": 8731.26, + "end": 8732.84, + "probability": 0.832 + }, + { + "start": 8733.52, + "end": 8734.96, + "probability": 0.9873 + }, + { + "start": 8735.64, + "end": 8736.8, + "probability": 0.9421 + }, + { + "start": 8737.4, + "end": 8741.88, + "probability": 0.9212 + }, + { + "start": 8742.0, + "end": 8743.4, + "probability": 0.7576 + }, + { + "start": 8743.68, + "end": 8744.28, + "probability": 0.9544 + }, + { + "start": 8745.02, + "end": 8746.04, + "probability": 0.9543 + }, + { + "start": 8746.7, + "end": 8747.58, + "probability": 0.96 + }, + { + "start": 8747.64, + "end": 8752.5, + "probability": 0.9854 + }, + { + "start": 8752.78, + "end": 8755.86, + "probability": 0.1484 + }, + { + "start": 8755.86, + "end": 8758.8, + "probability": 0.5897 + }, + { + "start": 8759.2, + "end": 8760.98, + "probability": 0.8323 + }, + { + "start": 8761.42, + "end": 8765.88, + "probability": 0.8286 + }, + { + "start": 8766.26, + "end": 8768.36, + "probability": 0.8829 + }, + { + "start": 8768.68, + "end": 8771.96, + "probability": 0.986 + }, + { + "start": 8772.58, + "end": 8774.76, + "probability": 0.8271 + }, + { + "start": 8775.02, + "end": 8776.26, + "probability": 0.9727 + }, + { + "start": 8776.52, + "end": 8781.3, + "probability": 0.9807 + }, + { + "start": 8781.64, + "end": 8782.9, + "probability": 0.9432 + }, + { + "start": 8783.18, + "end": 8783.8, + "probability": 0.6093 + }, + { + "start": 8783.96, + "end": 8785.71, + "probability": 0.9739 + }, + { + "start": 8786.36, + "end": 8789.16, + "probability": 0.7537 + }, + { + "start": 8789.6, + "end": 8790.84, + "probability": 0.9971 + }, + { + "start": 8791.24, + "end": 8796.1, + "probability": 0.6425 + }, + { + "start": 8796.78, + "end": 8797.78, + "probability": 0.956 + }, + { + "start": 8798.0, + "end": 8798.88, + "probability": 0.8846 + }, + { + "start": 8799.02, + "end": 8799.48, + "probability": 0.0993 + }, + { + "start": 8800.04, + "end": 8801.58, + "probability": 0.6729 + }, + { + "start": 8802.74, + "end": 8803.2, + "probability": 0.8842 + }, + { + "start": 8803.62, + "end": 8804.22, + "probability": 0.9738 + }, + { + "start": 8806.18, + "end": 8806.76, + "probability": 0.9331 + }, + { + "start": 8808.04, + "end": 8811.12, + "probability": 0.9368 + }, + { + "start": 8811.44, + "end": 8814.0, + "probability": 0.9308 + }, + { + "start": 8814.52, + "end": 8815.22, + "probability": 0.6545 + }, + { + "start": 8815.32, + "end": 8816.94, + "probability": 0.7053 + }, + { + "start": 8817.5, + "end": 8818.72, + "probability": 0.8859 + }, + { + "start": 8818.78, + "end": 8819.62, + "probability": 0.6774 + }, + { + "start": 8819.88, + "end": 8820.18, + "probability": 0.6934 + }, + { + "start": 8820.24, + "end": 8822.3, + "probability": 0.9922 + }, + { + "start": 8822.64, + "end": 8826.08, + "probability": 0.8879 + }, + { + "start": 8826.36, + "end": 8828.7, + "probability": 0.835 + }, + { + "start": 8829.88, + "end": 8831.48, + "probability": 0.6208 + }, + { + "start": 8832.1, + "end": 8834.36, + "probability": 0.9227 + }, + { + "start": 8835.36, + "end": 8837.24, + "probability": 0.8827 + }, + { + "start": 8837.72, + "end": 8839.28, + "probability": 0.964 + }, + { + "start": 8839.62, + "end": 8841.62, + "probability": 0.8264 + }, + { + "start": 8842.2, + "end": 8848.06, + "probability": 0.8984 + }, + { + "start": 8848.9, + "end": 8849.4, + "probability": 0.471 + }, + { + "start": 8850.66, + "end": 8851.26, + "probability": 0.5125 + }, + { + "start": 8851.8, + "end": 8852.34, + "probability": 0.9478 + }, + { + "start": 8852.42, + "end": 8852.86, + "probability": 0.7673 + }, + { + "start": 8852.86, + "end": 8855.0, + "probability": 0.7036 + }, + { + "start": 8855.3, + "end": 8859.7, + "probability": 0.9816 + }, + { + "start": 8860.46, + "end": 8861.84, + "probability": 0.89 + }, + { + "start": 8862.02, + "end": 8863.76, + "probability": 0.9004 + }, + { + "start": 8863.86, + "end": 8866.66, + "probability": 0.9819 + }, + { + "start": 8866.9, + "end": 8867.59, + "probability": 0.8486 + }, + { + "start": 8868.02, + "end": 8868.74, + "probability": 0.7929 + }, + { + "start": 8869.0, + "end": 8870.68, + "probability": 0.7161 + }, + { + "start": 8871.02, + "end": 8871.53, + "probability": 0.4748 + }, + { + "start": 8871.93, + "end": 8875.02, + "probability": 0.7629 + }, + { + "start": 8875.08, + "end": 8876.52, + "probability": 0.7422 + }, + { + "start": 8876.86, + "end": 8876.86, + "probability": 0.0451 + }, + { + "start": 8876.86, + "end": 8878.56, + "probability": 0.6585 + }, + { + "start": 8880.42, + "end": 8881.12, + "probability": 0.5747 + }, + { + "start": 8882.62, + "end": 8885.46, + "probability": 0.8616 + }, + { + "start": 8886.18, + "end": 8887.82, + "probability": 0.9583 + }, + { + "start": 8888.48, + "end": 8890.1, + "probability": 0.6605 + }, + { + "start": 8890.86, + "end": 8895.44, + "probability": 0.831 + }, + { + "start": 8895.52, + "end": 8896.0, + "probability": 0.5826 + }, + { + "start": 8896.04, + "end": 8896.56, + "probability": 0.9606 + }, + { + "start": 8896.98, + "end": 8897.42, + "probability": 0.8984 + }, + { + "start": 8897.5, + "end": 8900.96, + "probability": 0.9683 + }, + { + "start": 8902.42, + "end": 8906.92, + "probability": 0.9332 + }, + { + "start": 8906.96, + "end": 8911.0, + "probability": 0.8616 + }, + { + "start": 8911.38, + "end": 8912.34, + "probability": 0.8357 + }, + { + "start": 8912.72, + "end": 8916.74, + "probability": 0.855 + }, + { + "start": 8916.82, + "end": 8917.82, + "probability": 0.7772 + }, + { + "start": 8918.02, + "end": 8921.06, + "probability": 0.7527 + }, + { + "start": 8921.56, + "end": 8922.68, + "probability": 0.6045 + }, + { + "start": 8922.98, + "end": 8927.56, + "probability": 0.9753 + }, + { + "start": 8928.22, + "end": 8930.52, + "probability": 0.9254 + }, + { + "start": 8931.06, + "end": 8934.4, + "probability": 0.8453 + }, + { + "start": 8934.44, + "end": 8937.54, + "probability": 0.8283 + }, + { + "start": 8938.14, + "end": 8940.9, + "probability": 0.8718 + }, + { + "start": 8941.34, + "end": 8943.8, + "probability": 0.9351 + }, + { + "start": 8943.92, + "end": 8945.18, + "probability": 0.9503 + }, + { + "start": 8945.38, + "end": 8946.36, + "probability": 0.8488 + }, + { + "start": 8946.58, + "end": 8948.24, + "probability": 0.4314 + }, + { + "start": 8948.44, + "end": 8949.7, + "probability": 0.6045 + }, + { + "start": 8950.22, + "end": 8954.22, + "probability": 0.9545 + }, + { + "start": 8954.58, + "end": 8955.46, + "probability": 0.9464 + }, + { + "start": 8956.0, + "end": 8957.88, + "probability": 0.9684 + }, + { + "start": 8958.76, + "end": 8961.14, + "probability": 0.7533 + }, + { + "start": 8961.78, + "end": 8964.14, + "probability": 0.8702 + }, + { + "start": 8964.44, + "end": 8965.54, + "probability": 0.9463 + }, + { + "start": 8965.92, + "end": 8968.64, + "probability": 0.8404 + }, + { + "start": 8968.84, + "end": 8970.4, + "probability": 0.9373 + }, + { + "start": 8970.58, + "end": 8971.64, + "probability": 0.6719 + }, + { + "start": 8971.8, + "end": 8975.97, + "probability": 0.9438 + }, + { + "start": 8976.72, + "end": 8976.84, + "probability": 0.0068 + }, + { + "start": 8976.84, + "end": 8977.19, + "probability": 0.1746 + }, + { + "start": 8977.86, + "end": 8981.0, + "probability": 0.7569 + }, + { + "start": 8981.0, + "end": 8984.1, + "probability": 0.9234 + }, + { + "start": 8984.32, + "end": 8984.66, + "probability": 0.8519 + }, + { + "start": 8985.06, + "end": 8987.08, + "probability": 0.4633 + }, + { + "start": 8987.66, + "end": 8989.62, + "probability": 0.8199 + }, + { + "start": 8990.54, + "end": 8992.78, + "probability": 0.6534 + }, + { + "start": 9008.18, + "end": 9008.92, + "probability": 0.2146 + }, + { + "start": 9009.1, + "end": 9010.22, + "probability": 0.3492 + }, + { + "start": 9010.22, + "end": 9011.2, + "probability": 0.8958 + }, + { + "start": 9011.3, + "end": 9011.86, + "probability": 0.8543 + }, + { + "start": 9011.94, + "end": 9012.88, + "probability": 0.582 + }, + { + "start": 9013.3, + "end": 9015.84, + "probability": 0.7773 + }, + { + "start": 9017.24, + "end": 9017.58, + "probability": 0.6404 + }, + { + "start": 9017.64, + "end": 9022.28, + "probability": 0.9901 + }, + { + "start": 9022.44, + "end": 9025.7, + "probability": 0.9957 + }, + { + "start": 9026.66, + "end": 9028.2, + "probability": 0.7662 + }, + { + "start": 9029.4, + "end": 9031.7, + "probability": 0.8761 + }, + { + "start": 9031.78, + "end": 9032.84, + "probability": 0.8134 + }, + { + "start": 9033.04, + "end": 9033.92, + "probability": 0.9406 + }, + { + "start": 9034.66, + "end": 9036.7, + "probability": 0.8275 + }, + { + "start": 9037.24, + "end": 9038.89, + "probability": 0.9856 + }, + { + "start": 9038.98, + "end": 9039.78, + "probability": 0.9542 + }, + { + "start": 9040.58, + "end": 9044.54, + "probability": 0.9425 + }, + { + "start": 9045.1, + "end": 9048.0, + "probability": 0.9075 + }, + { + "start": 9048.82, + "end": 9050.46, + "probability": 0.8562 + }, + { + "start": 9050.92, + "end": 9051.98, + "probability": 0.8617 + }, + { + "start": 9052.36, + "end": 9053.46, + "probability": 0.9141 + }, + { + "start": 9053.5, + "end": 9055.42, + "probability": 0.9261 + }, + { + "start": 9055.9, + "end": 9057.02, + "probability": 0.9087 + }, + { + "start": 9057.28, + "end": 9057.69, + "probability": 0.9823 + }, + { + "start": 9058.0, + "end": 9058.96, + "probability": 0.9224 + }, + { + "start": 9059.76, + "end": 9061.72, + "probability": 0.943 + }, + { + "start": 9062.02, + "end": 9063.27, + "probability": 0.9797 + }, + { + "start": 9063.78, + "end": 9065.0, + "probability": 0.9157 + }, + { + "start": 9065.62, + "end": 9069.36, + "probability": 0.9741 + }, + { + "start": 9069.52, + "end": 9071.23, + "probability": 0.4798 + }, + { + "start": 9071.3, + "end": 9075.6, + "probability": 0.9233 + }, + { + "start": 9076.14, + "end": 9077.68, + "probability": 0.8254 + }, + { + "start": 9078.36, + "end": 9080.42, + "probability": 0.9277 + }, + { + "start": 9081.02, + "end": 9082.88, + "probability": 0.9836 + }, + { + "start": 9082.96, + "end": 9083.4, + "probability": 0.8875 + }, + { + "start": 9084.0, + "end": 9084.61, + "probability": 0.9928 + }, + { + "start": 9085.6, + "end": 9087.0, + "probability": 0.9745 + }, + { + "start": 9087.38, + "end": 9088.11, + "probability": 0.9312 + }, + { + "start": 9088.78, + "end": 9089.39, + "probability": 0.9578 + }, + { + "start": 9089.9, + "end": 9092.54, + "probability": 0.9556 + }, + { + "start": 9092.96, + "end": 9097.32, + "probability": 0.7936 + }, + { + "start": 9097.78, + "end": 9098.7, + "probability": 0.907 + }, + { + "start": 9098.84, + "end": 9101.76, + "probability": 0.8075 + }, + { + "start": 9102.34, + "end": 9103.58, + "probability": 0.9198 + }, + { + "start": 9104.18, + "end": 9104.92, + "probability": 0.5174 + }, + { + "start": 9105.04, + "end": 9105.86, + "probability": 0.6913 + }, + { + "start": 9106.34, + "end": 9108.52, + "probability": 0.8418 + }, + { + "start": 9108.8, + "end": 9110.58, + "probability": 0.9648 + }, + { + "start": 9110.9, + "end": 9112.89, + "probability": 0.9202 + }, + { + "start": 9113.4, + "end": 9116.3, + "probability": 0.9394 + }, + { + "start": 9117.06, + "end": 9118.8, + "probability": 0.4921 + }, + { + "start": 9120.18, + "end": 9122.08, + "probability": 0.3643 + }, + { + "start": 9122.42, + "end": 9122.86, + "probability": 0.7015 + }, + { + "start": 9122.86, + "end": 9125.86, + "probability": 0.8528 + }, + { + "start": 9126.26, + "end": 9127.82, + "probability": 0.4295 + }, + { + "start": 9128.54, + "end": 9129.18, + "probability": 0.882 + }, + { + "start": 9129.6, + "end": 9134.18, + "probability": 0.8624 + }, + { + "start": 9134.88, + "end": 9137.22, + "probability": 0.7921 + }, + { + "start": 9137.84, + "end": 9141.4, + "probability": 0.9937 + }, + { + "start": 9141.4, + "end": 9145.3, + "probability": 0.5576 + }, + { + "start": 9145.42, + "end": 9148.7, + "probability": 0.9016 + }, + { + "start": 9149.38, + "end": 9150.58, + "probability": 0.7039 + }, + { + "start": 9151.1, + "end": 9152.06, + "probability": 0.5012 + }, + { + "start": 9152.28, + "end": 9156.94, + "probability": 0.921 + }, + { + "start": 9157.42, + "end": 9159.28, + "probability": 0.9609 + }, + { + "start": 9159.7, + "end": 9160.4, + "probability": 0.4882 + }, + { + "start": 9160.44, + "end": 9162.78, + "probability": 0.9651 + }, + { + "start": 9163.6, + "end": 9169.18, + "probability": 0.9546 + }, + { + "start": 9169.72, + "end": 9171.5, + "probability": 0.8352 + }, + { + "start": 9172.12, + "end": 9173.48, + "probability": 0.8717 + }, + { + "start": 9173.6, + "end": 9174.84, + "probability": 0.6517 + }, + { + "start": 9175.42, + "end": 9178.7, + "probability": 0.7077 + }, + { + "start": 9179.02, + "end": 9181.66, + "probability": 0.9778 + }, + { + "start": 9182.24, + "end": 9184.58, + "probability": 0.81 + }, + { + "start": 9184.94, + "end": 9186.72, + "probability": 0.8982 + }, + { + "start": 9187.08, + "end": 9190.92, + "probability": 0.6572 + }, + { + "start": 9191.14, + "end": 9193.14, + "probability": 0.7296 + }, + { + "start": 9193.44, + "end": 9194.64, + "probability": 0.9743 + }, + { + "start": 9195.28, + "end": 9197.04, + "probability": 0.7066 + }, + { + "start": 9197.58, + "end": 9199.58, + "probability": 0.9728 + }, + { + "start": 9200.68, + "end": 9203.34, + "probability": 0.8484 + }, + { + "start": 9203.42, + "end": 9205.48, + "probability": 0.6115 + }, + { + "start": 9205.72, + "end": 9206.28, + "probability": 0.4289 + }, + { + "start": 9206.32, + "end": 9208.24, + "probability": 0.9716 + }, + { + "start": 9209.5, + "end": 9212.96, + "probability": 0.7258 + }, + { + "start": 9213.86, + "end": 9214.4, + "probability": 0.071 + }, + { + "start": 9215.96, + "end": 9218.32, + "probability": 0.2286 + }, + { + "start": 9223.32, + "end": 9225.46, + "probability": 0.8732 + }, + { + "start": 9227.9, + "end": 9229.24, + "probability": 0.6001 + }, + { + "start": 9230.6, + "end": 9232.56, + "probability": 0.5704 + }, + { + "start": 9238.88, + "end": 9239.74, + "probability": 0.7712 + }, + { + "start": 9243.98, + "end": 9245.74, + "probability": 0.7861 + }, + { + "start": 9247.28, + "end": 9248.78, + "probability": 0.8008 + }, + { + "start": 9251.7, + "end": 9253.24, + "probability": 0.2118 + }, + { + "start": 9253.52, + "end": 9254.64, + "probability": 0.9387 + }, + { + "start": 9255.94, + "end": 9262.28, + "probability": 0.984 + }, + { + "start": 9263.08, + "end": 9266.14, + "probability": 0.6976 + }, + { + "start": 9266.9, + "end": 9271.36, + "probability": 0.9977 + }, + { + "start": 9271.36, + "end": 9274.32, + "probability": 0.9966 + }, + { + "start": 9275.72, + "end": 9279.48, + "probability": 0.9957 + }, + { + "start": 9279.48, + "end": 9284.72, + "probability": 0.9977 + }, + { + "start": 9286.18, + "end": 9290.68, + "probability": 0.7321 + }, + { + "start": 9291.2, + "end": 9294.34, + "probability": 0.927 + }, + { + "start": 9294.42, + "end": 9301.12, + "probability": 0.9859 + }, + { + "start": 9302.12, + "end": 9307.64, + "probability": 0.9124 + }, + { + "start": 9308.36, + "end": 9310.28, + "probability": 0.5673 + }, + { + "start": 9310.36, + "end": 9313.28, + "probability": 0.9922 + }, + { + "start": 9313.52, + "end": 9317.84, + "probability": 0.8253 + }, + { + "start": 9318.02, + "end": 9319.28, + "probability": 0.9208 + }, + { + "start": 9320.78, + "end": 9323.62, + "probability": 0.9985 + }, + { + "start": 9323.9, + "end": 9329.02, + "probability": 0.9838 + }, + { + "start": 9329.48, + "end": 9330.34, + "probability": 0.9819 + }, + { + "start": 9332.0, + "end": 9333.24, + "probability": 0.997 + }, + { + "start": 9333.72, + "end": 9335.72, + "probability": 0.8534 + }, + { + "start": 9336.42, + "end": 9337.38, + "probability": 0.6869 + }, + { + "start": 9337.44, + "end": 9341.86, + "probability": 0.8805 + }, + { + "start": 9343.76, + "end": 9345.34, + "probability": 0.8862 + }, + { + "start": 9345.42, + "end": 9349.26, + "probability": 0.8164 + }, + { + "start": 9350.12, + "end": 9352.16, + "probability": 0.8482 + }, + { + "start": 9352.24, + "end": 9353.44, + "probability": 0.7334 + }, + { + "start": 9353.74, + "end": 9358.46, + "probability": 0.9596 + }, + { + "start": 9359.12, + "end": 9362.4, + "probability": 0.9836 + }, + { + "start": 9362.82, + "end": 9363.98, + "probability": 0.6468 + }, + { + "start": 9364.18, + "end": 9368.72, + "probability": 0.9848 + }, + { + "start": 9368.96, + "end": 9370.88, + "probability": 0.9858 + }, + { + "start": 9371.04, + "end": 9372.6, + "probability": 0.8965 + }, + { + "start": 9373.02, + "end": 9377.84, + "probability": 0.957 + }, + { + "start": 9378.28, + "end": 9380.98, + "probability": 0.8722 + }, + { + "start": 9381.52, + "end": 9387.0, + "probability": 0.7609 + }, + { + "start": 9387.56, + "end": 9391.3, + "probability": 0.8242 + }, + { + "start": 9392.22, + "end": 9394.14, + "probability": 0.8889 + }, + { + "start": 9394.68, + "end": 9399.72, + "probability": 0.9807 + }, + { + "start": 9399.9, + "end": 9402.48, + "probability": 0.9951 + }, + { + "start": 9402.74, + "end": 9405.24, + "probability": 0.9976 + }, + { + "start": 9406.52, + "end": 9410.88, + "probability": 0.9005 + }, + { + "start": 9411.1, + "end": 9412.32, + "probability": 0.8968 + }, + { + "start": 9413.2, + "end": 9419.08, + "probability": 0.9913 + }, + { + "start": 9419.48, + "end": 9420.8, + "probability": 0.6976 + }, + { + "start": 9421.18, + "end": 9421.9, + "probability": 0.9235 + }, + { + "start": 9422.16, + "end": 9422.74, + "probability": 0.9552 + }, + { + "start": 9423.02, + "end": 9425.7, + "probability": 0.9809 + }, + { + "start": 9426.58, + "end": 9427.06, + "probability": 0.5439 + }, + { + "start": 9427.38, + "end": 9428.04, + "probability": 0.9549 + }, + { + "start": 9428.68, + "end": 9431.66, + "probability": 0.9856 + }, + { + "start": 9431.88, + "end": 9432.92, + "probability": 0.8389 + }, + { + "start": 9433.14, + "end": 9434.18, + "probability": 0.9216 + }, + { + "start": 9434.44, + "end": 9436.28, + "probability": 0.9131 + }, + { + "start": 9436.3, + "end": 9436.42, + "probability": 0.4493 + }, + { + "start": 9436.5, + "end": 9438.78, + "probability": 0.9826 + }, + { + "start": 9439.28, + "end": 9443.68, + "probability": 0.8933 + }, + { + "start": 9444.34, + "end": 9448.4, + "probability": 0.9766 + }, + { + "start": 9449.04, + "end": 9452.54, + "probability": 0.9812 + }, + { + "start": 9453.24, + "end": 9454.52, + "probability": 0.9775 + }, + { + "start": 9454.62, + "end": 9456.64, + "probability": 0.9952 + }, + { + "start": 9456.98, + "end": 9462.3, + "probability": 0.9355 + }, + { + "start": 9463.04, + "end": 9463.04, + "probability": 0.0488 + }, + { + "start": 9463.04, + "end": 9463.86, + "probability": 0.5341 + }, + { + "start": 9463.9, + "end": 9467.69, + "probability": 0.8965 + }, + { + "start": 9468.5, + "end": 9469.78, + "probability": 0.7614 + }, + { + "start": 9470.16, + "end": 9473.04, + "probability": 0.9363 + }, + { + "start": 9473.82, + "end": 9478.96, + "probability": 0.8726 + }, + { + "start": 9479.64, + "end": 9485.4, + "probability": 0.9846 + }, + { + "start": 9485.5, + "end": 9485.64, + "probability": 0.466 + }, + { + "start": 9486.44, + "end": 9488.58, + "probability": 0.8442 + }, + { + "start": 9489.0, + "end": 9492.42, + "probability": 0.7869 + }, + { + "start": 9493.16, + "end": 9494.8, + "probability": 0.8066 + }, + { + "start": 9496.5, + "end": 9496.94, + "probability": 0.726 + }, + { + "start": 9498.06, + "end": 9498.92, + "probability": 0.5824 + }, + { + "start": 9498.94, + "end": 9499.44, + "probability": 0.4503 + }, + { + "start": 9499.52, + "end": 9502.83, + "probability": 0.7437 + }, + { + "start": 9504.62, + "end": 9505.8, + "probability": 0.9524 + }, + { + "start": 9517.98, + "end": 9520.9, + "probability": 0.7377 + }, + { + "start": 9521.9, + "end": 9522.6, + "probability": 0.8529 + }, + { + "start": 9523.42, + "end": 9525.06, + "probability": 0.6707 + }, + { + "start": 9525.16, + "end": 9529.68, + "probability": 0.9287 + }, + { + "start": 9529.68, + "end": 9535.18, + "probability": 0.9945 + }, + { + "start": 9536.28, + "end": 9539.5, + "probability": 0.9952 + }, + { + "start": 9540.02, + "end": 9545.22, + "probability": 0.9066 + }, + { + "start": 9545.42, + "end": 9546.1, + "probability": 0.8494 + }, + { + "start": 9548.54, + "end": 9552.3, + "probability": 0.0192 + }, + { + "start": 9552.76, + "end": 9555.96, + "probability": 0.9312 + }, + { + "start": 9556.02, + "end": 9558.18, + "probability": 0.8761 + }, + { + "start": 9558.32, + "end": 9559.26, + "probability": 0.6411 + }, + { + "start": 9559.63, + "end": 9561.78, + "probability": 0.998 + }, + { + "start": 9561.96, + "end": 9564.9, + "probability": 0.9451 + }, + { + "start": 9564.9, + "end": 9566.9, + "probability": 0.9954 + }, + { + "start": 9566.96, + "end": 9570.18, + "probability": 0.859 + }, + { + "start": 9570.58, + "end": 9571.58, + "probability": 0.9276 + }, + { + "start": 9573.32, + "end": 9573.9, + "probability": 0.63 + }, + { + "start": 9574.06, + "end": 9577.24, + "probability": 0.894 + }, + { + "start": 9577.26, + "end": 9577.82, + "probability": 0.7543 + }, + { + "start": 9577.86, + "end": 9579.73, + "probability": 0.9927 + }, + { + "start": 9580.92, + "end": 9585.0, + "probability": 0.8378 + }, + { + "start": 9585.04, + "end": 9586.22, + "probability": 0.9724 + }, + { + "start": 9586.84, + "end": 9589.29, + "probability": 0.9917 + }, + { + "start": 9589.88, + "end": 9596.86, + "probability": 0.9958 + }, + { + "start": 9596.86, + "end": 9601.5, + "probability": 0.8797 + }, + { + "start": 9601.62, + "end": 9603.36, + "probability": 0.8001 + }, + { + "start": 9603.46, + "end": 9604.84, + "probability": 0.6166 + }, + { + "start": 9605.08, + "end": 9609.16, + "probability": 0.9805 + }, + { + "start": 9609.78, + "end": 9613.04, + "probability": 0.9678 + }, + { + "start": 9613.5, + "end": 9615.44, + "probability": 0.6796 + }, + { + "start": 9616.2, + "end": 9619.72, + "probability": 0.9839 + }, + { + "start": 9619.74, + "end": 9620.68, + "probability": 0.7137 + }, + { + "start": 9620.96, + "end": 9623.74, + "probability": 0.87 + }, + { + "start": 9624.04, + "end": 9624.49, + "probability": 0.9634 + }, + { + "start": 9625.4, + "end": 9629.86, + "probability": 0.9702 + }, + { + "start": 9630.22, + "end": 9631.24, + "probability": 0.7883 + }, + { + "start": 9631.44, + "end": 9634.42, + "probability": 0.7717 + }, + { + "start": 9634.5, + "end": 9637.54, + "probability": 0.8524 + }, + { + "start": 9637.88, + "end": 9638.78, + "probability": 0.9473 + }, + { + "start": 9638.94, + "end": 9639.06, + "probability": 0.2694 + }, + { + "start": 9639.2, + "end": 9640.04, + "probability": 0.8356 + }, + { + "start": 9640.1, + "end": 9641.1, + "probability": 0.8594 + }, + { + "start": 9641.5, + "end": 9643.18, + "probability": 0.9717 + }, + { + "start": 9644.18, + "end": 9646.76, + "probability": 0.897 + }, + { + "start": 9647.16, + "end": 9648.9, + "probability": 0.763 + }, + { + "start": 9649.08, + "end": 9649.78, + "probability": 0.4851 + }, + { + "start": 9650.02, + "end": 9655.04, + "probability": 0.9806 + }, + { + "start": 9655.04, + "end": 9660.66, + "probability": 0.989 + }, + { + "start": 9661.32, + "end": 9662.84, + "probability": 0.9067 + }, + { + "start": 9663.4, + "end": 9666.44, + "probability": 0.9158 + }, + { + "start": 9667.2, + "end": 9670.79, + "probability": 0.9285 + }, + { + "start": 9671.62, + "end": 9675.12, + "probability": 0.7347 + }, + { + "start": 9675.6, + "end": 9677.3, + "probability": 0.9961 + }, + { + "start": 9678.18, + "end": 9679.29, + "probability": 0.9243 + }, + { + "start": 9679.82, + "end": 9683.68, + "probability": 0.9935 + }, + { + "start": 9683.94, + "end": 9687.29, + "probability": 0.9976 + }, + { + "start": 9687.84, + "end": 9691.86, + "probability": 0.3381 + }, + { + "start": 9692.08, + "end": 9692.94, + "probability": 0.1493 + }, + { + "start": 9692.94, + "end": 9694.34, + "probability": 0.6311 + }, + { + "start": 9694.66, + "end": 9695.32, + "probability": 0.9122 + }, + { + "start": 9695.5, + "end": 9696.06, + "probability": 0.9712 + }, + { + "start": 9696.12, + "end": 9697.02, + "probability": 0.6971 + }, + { + "start": 9697.06, + "end": 9698.76, + "probability": 0.9531 + }, + { + "start": 9699.16, + "end": 9700.2, + "probability": 0.7311 + }, + { + "start": 9700.76, + "end": 9703.48, + "probability": 0.6772 + }, + { + "start": 9704.16, + "end": 9705.7, + "probability": 0.4369 + }, + { + "start": 9706.74, + "end": 9710.5, + "probability": 0.792 + }, + { + "start": 9710.82, + "end": 9713.54, + "probability": 0.978 + }, + { + "start": 9714.98, + "end": 9717.34, + "probability": 0.718 + }, + { + "start": 9717.76, + "end": 9718.42, + "probability": 0.84 + }, + { + "start": 9718.54, + "end": 9719.2, + "probability": 0.6838 + }, + { + "start": 9719.3, + "end": 9721.22, + "probability": 0.9771 + }, + { + "start": 9721.6, + "end": 9722.98, + "probability": 0.8547 + }, + { + "start": 9723.06, + "end": 9724.06, + "probability": 0.9976 + }, + { + "start": 9724.7, + "end": 9726.72, + "probability": 0.98 + }, + { + "start": 9727.34, + "end": 9728.06, + "probability": 0.3838 + }, + { + "start": 9728.06, + "end": 9729.56, + "probability": 0.5756 + }, + { + "start": 9730.42, + "end": 9730.91, + "probability": 0.0632 + }, + { + "start": 9731.42, + "end": 9736.04, + "probability": 0.7964 + }, + { + "start": 9736.04, + "end": 9739.14, + "probability": 0.899 + }, + { + "start": 9739.64, + "end": 9740.3, + "probability": 0.8122 + }, + { + "start": 9740.8, + "end": 9741.4, + "probability": 0.8415 + }, + { + "start": 9742.72, + "end": 9746.52, + "probability": 0.8727 + }, + { + "start": 9747.22, + "end": 9750.88, + "probability": 0.8346 + }, + { + "start": 9751.48, + "end": 9755.64, + "probability": 0.9268 + }, + { + "start": 9755.72, + "end": 9756.28, + "probability": 0.8695 + }, + { + "start": 9757.16, + "end": 9758.78, + "probability": 0.9911 + }, + { + "start": 9759.04, + "end": 9760.06, + "probability": 0.8053 + }, + { + "start": 9760.16, + "end": 9762.12, + "probability": 0.9565 + }, + { + "start": 9762.2, + "end": 9762.82, + "probability": 0.5363 + }, + { + "start": 9763.1, + "end": 9765.42, + "probability": 0.8342 + }, + { + "start": 9765.42, + "end": 9769.1, + "probability": 0.9949 + }, + { + "start": 9769.14, + "end": 9771.86, + "probability": 0.9617 + }, + { + "start": 9772.14, + "end": 9772.67, + "probability": 0.3091 + }, + { + "start": 9773.28, + "end": 9774.46, + "probability": 0.8188 + }, + { + "start": 9774.64, + "end": 9775.82, + "probability": 0.9299 + }, + { + "start": 9776.14, + "end": 9776.84, + "probability": 0.9107 + }, + { + "start": 9777.12, + "end": 9778.6, + "probability": 0.8216 + }, + { + "start": 9778.7, + "end": 9781.06, + "probability": 0.9138 + }, + { + "start": 9781.54, + "end": 9784.99, + "probability": 0.9319 + }, + { + "start": 9785.22, + "end": 9786.98, + "probability": 0.9795 + }, + { + "start": 9787.42, + "end": 9789.6, + "probability": 0.6701 + }, + { + "start": 9790.1, + "end": 9792.47, + "probability": 0.9888 + }, + { + "start": 9792.96, + "end": 9793.74, + "probability": 0.8031 + }, + { + "start": 9793.86, + "end": 9794.94, + "probability": 0.9658 + }, + { + "start": 9795.02, + "end": 9798.42, + "probability": 0.9727 + }, + { + "start": 9799.24, + "end": 9800.28, + "probability": 0.9427 + }, + { + "start": 9800.78, + "end": 9802.2, + "probability": 0.8737 + }, + { + "start": 9802.38, + "end": 9802.68, + "probability": 0.8863 + }, + { + "start": 9802.8, + "end": 9803.12, + "probability": 0.6921 + }, + { + "start": 9803.72, + "end": 9806.88, + "probability": 0.8981 + }, + { + "start": 9807.36, + "end": 9808.16, + "probability": 0.6116 + }, + { + "start": 9808.28, + "end": 9809.64, + "probability": 0.6931 + }, + { + "start": 9809.66, + "end": 9811.78, + "probability": 0.7419 + }, + { + "start": 9814.04, + "end": 9814.88, + "probability": 0.753 + }, + { + "start": 9815.02, + "end": 9816.96, + "probability": 0.9905 + }, + { + "start": 9817.54, + "end": 9817.66, + "probability": 0.5024 + }, + { + "start": 9817.72, + "end": 9819.94, + "probability": 0.8721 + }, + { + "start": 9821.08, + "end": 9823.23, + "probability": 0.9521 + }, + { + "start": 9824.58, + "end": 9826.02, + "probability": 0.7651 + }, + { + "start": 9826.8, + "end": 9827.96, + "probability": 0.7638 + }, + { + "start": 9828.66, + "end": 9829.88, + "probability": 0.6554 + }, + { + "start": 9830.72, + "end": 9832.14, + "probability": 0.9375 + }, + { + "start": 9833.6, + "end": 9834.92, + "probability": 0.95 + }, + { + "start": 9835.6, + "end": 9838.48, + "probability": 0.8257 + }, + { + "start": 9839.58, + "end": 9841.32, + "probability": 0.9504 + }, + { + "start": 9842.32, + "end": 9843.42, + "probability": 0.7113 + }, + { + "start": 9843.54, + "end": 9845.53, + "probability": 0.706 + }, + { + "start": 9845.68, + "end": 9847.66, + "probability": 0.4066 + }, + { + "start": 9847.78, + "end": 9848.18, + "probability": 0.9922 + }, + { + "start": 9848.9, + "end": 9851.04, + "probability": 0.839 + }, + { + "start": 9851.8, + "end": 9853.25, + "probability": 0.726 + }, + { + "start": 9854.32, + "end": 9856.18, + "probability": 0.9564 + }, + { + "start": 9856.7, + "end": 9857.92, + "probability": 0.9313 + }, + { + "start": 9858.62, + "end": 9859.72, + "probability": 0.6827 + }, + { + "start": 9860.38, + "end": 9863.12, + "probability": 0.9264 + }, + { + "start": 9864.72, + "end": 9866.96, + "probability": 0.9988 + }, + { + "start": 9867.72, + "end": 9869.9, + "probability": 0.9847 + }, + { + "start": 9870.48, + "end": 9871.86, + "probability": 0.6603 + }, + { + "start": 9873.32, + "end": 9874.9, + "probability": 0.9182 + }, + { + "start": 9876.14, + "end": 9878.66, + "probability": 0.9955 + }, + { + "start": 9879.22, + "end": 9880.9, + "probability": 0.9697 + }, + { + "start": 9882.54, + "end": 9886.22, + "probability": 0.9409 + }, + { + "start": 9886.98, + "end": 9891.84, + "probability": 0.8907 + }, + { + "start": 9892.56, + "end": 9894.36, + "probability": 0.9883 + }, + { + "start": 9895.02, + "end": 9896.24, + "probability": 0.8115 + }, + { + "start": 9897.32, + "end": 9899.68, + "probability": 0.3031 + }, + { + "start": 9900.68, + "end": 9904.32, + "probability": 0.9292 + }, + { + "start": 9905.02, + "end": 9905.5, + "probability": 0.6963 + }, + { + "start": 9906.76, + "end": 9908.38, + "probability": 0.5949 + }, + { + "start": 9909.16, + "end": 9912.66, + "probability": 0.7136 + }, + { + "start": 9913.92, + "end": 9914.62, + "probability": 0.7665 + }, + { + "start": 9915.32, + "end": 9919.68, + "probability": 0.9038 + }, + { + "start": 9920.2, + "end": 9921.18, + "probability": 0.2717 + }, + { + "start": 9921.54, + "end": 9921.8, + "probability": 0.2057 + }, + { + "start": 9922.28, + "end": 9923.56, + "probability": 0.9484 + }, + { + "start": 9923.94, + "end": 9925.76, + "probability": 0.9878 + }, + { + "start": 9926.3, + "end": 9930.04, + "probability": 0.9222 + }, + { + "start": 9930.78, + "end": 9932.58, + "probability": 0.9388 + }, + { + "start": 9932.62, + "end": 9933.4, + "probability": 0.6925 + }, + { + "start": 9934.54, + "end": 9942.78, + "probability": 0.9751 + }, + { + "start": 9943.28, + "end": 9947.16, + "probability": 0.7184 + }, + { + "start": 9947.34, + "end": 9948.32, + "probability": 0.8569 + }, + { + "start": 9949.18, + "end": 9952.82, + "probability": 0.5319 + }, + { + "start": 9953.3, + "end": 9954.92, + "probability": 0.436 + }, + { + "start": 9955.18, + "end": 9961.04, + "probability": 0.8734 + }, + { + "start": 9961.66, + "end": 9963.44, + "probability": 0.9147 + }, + { + "start": 9964.08, + "end": 9966.54, + "probability": 0.5412 + }, + { + "start": 9966.64, + "end": 9967.56, + "probability": 0.7027 + }, + { + "start": 9968.32, + "end": 9969.28, + "probability": 0.6495 + }, + { + "start": 9970.14, + "end": 9972.26, + "probability": 0.8412 + }, + { + "start": 9973.06, + "end": 9976.94, + "probability": 0.9922 + }, + { + "start": 9977.58, + "end": 9978.6, + "probability": 0.7418 + }, + { + "start": 9978.78, + "end": 9979.44, + "probability": 0.8104 + }, + { + "start": 9980.6, + "end": 9984.8, + "probability": 0.6558 + }, + { + "start": 9985.6, + "end": 9987.22, + "probability": 0.7916 + }, + { + "start": 9987.86, + "end": 9989.34, + "probability": 0.8735 + }, + { + "start": 9989.46, + "end": 9990.14, + "probability": 0.8259 + }, + { + "start": 9994.52, + "end": 9999.14, + "probability": 0.8848 + }, + { + "start": 9999.92, + "end": 10002.58, + "probability": 0.8599 + }, + { + "start": 10002.66, + "end": 10003.63, + "probability": 0.9207 + }, + { + "start": 10004.28, + "end": 10009.8, + "probability": 0.988 + }, + { + "start": 10010.26, + "end": 10012.5, + "probability": 0.9727 + }, + { + "start": 10012.9, + "end": 10013.6, + "probability": 0.8689 + }, + { + "start": 10014.12, + "end": 10017.42, + "probability": 0.9257 + }, + { + "start": 10018.06, + "end": 10022.3, + "probability": 0.9893 + }, + { + "start": 10023.02, + "end": 10024.22, + "probability": 0.9324 + }, + { + "start": 10024.42, + "end": 10028.0, + "probability": 0.945 + }, + { + "start": 10029.26, + "end": 10031.24, + "probability": 0.9676 + }, + { + "start": 10031.58, + "end": 10032.22, + "probability": 0.7345 + }, + { + "start": 10032.36, + "end": 10034.7, + "probability": 0.7485 + }, + { + "start": 10035.2, + "end": 10038.06, + "probability": 0.9617 + }, + { + "start": 10038.06, + "end": 10040.78, + "probability": 0.9424 + }, + { + "start": 10040.94, + "end": 10041.46, + "probability": 0.9446 + }, + { + "start": 10042.14, + "end": 10045.64, + "probability": 0.8865 + }, + { + "start": 10046.14, + "end": 10048.32, + "probability": 0.7585 + }, + { + "start": 10048.86, + "end": 10050.8, + "probability": 0.9894 + }, + { + "start": 10051.62, + "end": 10054.84, + "probability": 0.7889 + }, + { + "start": 10055.2, + "end": 10059.08, + "probability": 0.9348 + }, + { + "start": 10059.84, + "end": 10060.76, + "probability": 0.8356 + }, + { + "start": 10062.24, + "end": 10063.92, + "probability": 0.8902 + }, + { + "start": 10064.56, + "end": 10064.88, + "probability": 0.9242 + }, + { + "start": 10066.36, + "end": 10069.1, + "probability": 0.7586 + }, + { + "start": 10072.78, + "end": 10076.96, + "probability": 0.9714 + }, + { + "start": 10077.76, + "end": 10079.74, + "probability": 0.9653 + }, + { + "start": 10080.84, + "end": 10082.22, + "probability": 0.4262 + }, + { + "start": 10083.7, + "end": 10086.36, + "probability": 0.9688 + }, + { + "start": 10087.64, + "end": 10090.26, + "probability": 0.982 + }, + { + "start": 10092.22, + "end": 10093.22, + "probability": 0.8511 + }, + { + "start": 10094.94, + "end": 10098.44, + "probability": 0.7993 + }, + { + "start": 10099.0, + "end": 10104.4, + "probability": 0.9933 + }, + { + "start": 10108.54, + "end": 10109.42, + "probability": 0.5202 + }, + { + "start": 10111.28, + "end": 10114.0, + "probability": 0.8846 + }, + { + "start": 10114.18, + "end": 10115.4, + "probability": 0.8593 + }, + { + "start": 10116.96, + "end": 10118.26, + "probability": 0.9553 + }, + { + "start": 10119.82, + "end": 10120.96, + "probability": 0.9465 + }, + { + "start": 10121.74, + "end": 10123.42, + "probability": 0.8857 + }, + { + "start": 10127.16, + "end": 10128.86, + "probability": 0.881 + }, + { + "start": 10129.88, + "end": 10132.56, + "probability": 0.8822 + }, + { + "start": 10134.04, + "end": 10138.89, + "probability": 0.8453 + }, + { + "start": 10140.5, + "end": 10142.7, + "probability": 0.8707 + }, + { + "start": 10143.4, + "end": 10146.56, + "probability": 0.982 + }, + { + "start": 10148.46, + "end": 10150.18, + "probability": 0.9861 + }, + { + "start": 10150.3, + "end": 10151.6, + "probability": 0.9015 + }, + { + "start": 10153.62, + "end": 10156.92, + "probability": 0.8915 + }, + { + "start": 10157.98, + "end": 10159.32, + "probability": 0.9641 + }, + { + "start": 10160.98, + "end": 10162.3, + "probability": 0.9819 + }, + { + "start": 10163.4, + "end": 10163.6, + "probability": 0.574 + }, + { + "start": 10164.38, + "end": 10164.92, + "probability": 0.9487 + }, + { + "start": 10166.66, + "end": 10168.01, + "probability": 0.9993 + }, + { + "start": 10169.38, + "end": 10170.32, + "probability": 0.8853 + }, + { + "start": 10171.3, + "end": 10173.23, + "probability": 0.9399 + }, + { + "start": 10174.66, + "end": 10180.56, + "probability": 0.9814 + }, + { + "start": 10182.9, + "end": 10184.94, + "probability": 0.9979 + }, + { + "start": 10186.36, + "end": 10188.58, + "probability": 0.9934 + }, + { + "start": 10189.56, + "end": 10192.06, + "probability": 0.9973 + }, + { + "start": 10193.36, + "end": 10194.72, + "probability": 0.5018 + }, + { + "start": 10195.82, + "end": 10199.06, + "probability": 0.9299 + }, + { + "start": 10199.86, + "end": 10200.82, + "probability": 0.9427 + }, + { + "start": 10201.92, + "end": 10204.46, + "probability": 0.9939 + }, + { + "start": 10205.18, + "end": 10207.92, + "probability": 0.9504 + }, + { + "start": 10209.52, + "end": 10211.86, + "probability": 0.9084 + }, + { + "start": 10212.7, + "end": 10214.7, + "probability": 0.691 + }, + { + "start": 10215.7, + "end": 10215.7, + "probability": 0.8161 + }, + { + "start": 10215.7, + "end": 10216.68, + "probability": 0.7676 + }, + { + "start": 10216.8, + "end": 10217.3, + "probability": 0.951 + }, + { + "start": 10217.38, + "end": 10220.08, + "probability": 0.7958 + }, + { + "start": 10221.58, + "end": 10223.94, + "probability": 0.9551 + }, + { + "start": 10225.46, + "end": 10227.12, + "probability": 0.9438 + }, + { + "start": 10227.54, + "end": 10229.72, + "probability": 0.9931 + }, + { + "start": 10229.86, + "end": 10230.62, + "probability": 0.5668 + }, + { + "start": 10232.18, + "end": 10233.56, + "probability": 0.8677 + }, + { + "start": 10234.56, + "end": 10235.54, + "probability": 0.8867 + }, + { + "start": 10236.84, + "end": 10241.42, + "probability": 0.9434 + }, + { + "start": 10241.48, + "end": 10243.34, + "probability": 0.9972 + }, + { + "start": 10245.08, + "end": 10247.72, + "probability": 0.9491 + }, + { + "start": 10249.08, + "end": 10253.18, + "probability": 0.9948 + }, + { + "start": 10255.56, + "end": 10258.82, + "probability": 0.9406 + }, + { + "start": 10259.54, + "end": 10261.77, + "probability": 0.6658 + }, + { + "start": 10263.34, + "end": 10270.4, + "probability": 0.9946 + }, + { + "start": 10271.34, + "end": 10274.24, + "probability": 0.9923 + }, + { + "start": 10275.46, + "end": 10279.9, + "probability": 0.9944 + }, + { + "start": 10280.46, + "end": 10282.32, + "probability": 0.9948 + }, + { + "start": 10284.1, + "end": 10290.3, + "probability": 0.9966 + }, + { + "start": 10292.0, + "end": 10294.4, + "probability": 0.9536 + }, + { + "start": 10296.48, + "end": 10300.6, + "probability": 0.9989 + }, + { + "start": 10301.84, + "end": 10303.1, + "probability": 0.9263 + }, + { + "start": 10304.16, + "end": 10307.8, + "probability": 0.9988 + }, + { + "start": 10307.8, + "end": 10315.4, + "probability": 0.9824 + }, + { + "start": 10316.96, + "end": 10318.48, + "probability": 0.835 + }, + { + "start": 10319.68, + "end": 10321.74, + "probability": 0.9422 + }, + { + "start": 10323.42, + "end": 10324.32, + "probability": 0.7337 + }, + { + "start": 10324.42, + "end": 10326.64, + "probability": 0.9901 + }, + { + "start": 10326.82, + "end": 10329.3, + "probability": 0.9166 + }, + { + "start": 10330.4, + "end": 10333.54, + "probability": 0.9865 + }, + { + "start": 10334.5, + "end": 10336.42, + "probability": 0.9299 + }, + { + "start": 10338.7, + "end": 10339.74, + "probability": 0.2273 + }, + { + "start": 10340.86, + "end": 10341.28, + "probability": 0.8166 + }, + { + "start": 10342.92, + "end": 10344.46, + "probability": 0.9497 + }, + { + "start": 10345.46, + "end": 10349.36, + "probability": 0.6724 + }, + { + "start": 10349.58, + "end": 10353.76, + "probability": 0.957 + }, + { + "start": 10357.48, + "end": 10363.36, + "probability": 0.9718 + }, + { + "start": 10363.5, + "end": 10364.58, + "probability": 0.3362 + }, + { + "start": 10366.78, + "end": 10371.26, + "probability": 0.8462 + }, + { + "start": 10372.26, + "end": 10376.52, + "probability": 0.9954 + }, + { + "start": 10378.24, + "end": 10380.36, + "probability": 0.9748 + }, + { + "start": 10381.3, + "end": 10384.1, + "probability": 0.8062 + }, + { + "start": 10384.7, + "end": 10385.82, + "probability": 0.9808 + }, + { + "start": 10388.58, + "end": 10394.8, + "probability": 0.9946 + }, + { + "start": 10395.14, + "end": 10404.0, + "probability": 0.8993 + }, + { + "start": 10404.72, + "end": 10409.96, + "probability": 0.9912 + }, + { + "start": 10410.7, + "end": 10412.8, + "probability": 0.9862 + }, + { + "start": 10413.8, + "end": 10415.8, + "probability": 0.9946 + }, + { + "start": 10416.84, + "end": 10419.1, + "probability": 0.9463 + }, + { + "start": 10420.42, + "end": 10424.72, + "probability": 0.9995 + }, + { + "start": 10425.54, + "end": 10428.62, + "probability": 0.1226 + }, + { + "start": 10430.06, + "end": 10430.74, + "probability": 0.0272 + }, + { + "start": 10431.1, + "end": 10431.3, + "probability": 0.2811 + }, + { + "start": 10432.7, + "end": 10435.4, + "probability": 0.7859 + }, + { + "start": 10437.7, + "end": 10438.66, + "probability": 0.9971 + }, + { + "start": 10439.88, + "end": 10441.36, + "probability": 0.5201 + }, + { + "start": 10441.92, + "end": 10442.89, + "probability": 0.9014 + }, + { + "start": 10444.16, + "end": 10445.76, + "probability": 0.6904 + }, + { + "start": 10447.08, + "end": 10448.5, + "probability": 0.8378 + }, + { + "start": 10449.26, + "end": 10452.34, + "probability": 0.9391 + }, + { + "start": 10453.02, + "end": 10455.8, + "probability": 0.9811 + }, + { + "start": 10456.58, + "end": 10458.34, + "probability": 0.9866 + }, + { + "start": 10458.62, + "end": 10460.68, + "probability": 0.0849 + }, + { + "start": 10460.84, + "end": 10461.8, + "probability": 0.4164 + }, + { + "start": 10462.24, + "end": 10462.88, + "probability": 0.6302 + }, + { + "start": 10463.12, + "end": 10463.76, + "probability": 0.0307 + }, + { + "start": 10464.36, + "end": 10465.62, + "probability": 0.0988 + }, + { + "start": 10465.7, + "end": 10466.0, + "probability": 0.559 + }, + { + "start": 10466.46, + "end": 10469.64, + "probability": 0.9626 + }, + { + "start": 10470.96, + "end": 10476.26, + "probability": 0.2719 + }, + { + "start": 10477.16, + "end": 10477.16, + "probability": 0.0901 + }, + { + "start": 10477.16, + "end": 10477.16, + "probability": 0.1268 + }, + { + "start": 10477.16, + "end": 10478.48, + "probability": 0.7959 + }, + { + "start": 10479.3, + "end": 10481.3, + "probability": 0.7282 + }, + { + "start": 10482.32, + "end": 10482.52, + "probability": 0.014 + }, + { + "start": 10482.52, + "end": 10488.68, + "probability": 0.8724 + }, + { + "start": 10489.96, + "end": 10492.3, + "probability": 0.9507 + }, + { + "start": 10494.78, + "end": 10495.82, + "probability": 0.9111 + }, + { + "start": 10498.58, + "end": 10499.54, + "probability": 0.0986 + }, + { + "start": 10499.54, + "end": 10501.02, + "probability": 0.6605 + }, + { + "start": 10501.76, + "end": 10504.76, + "probability": 0.8672 + }, + { + "start": 10505.26, + "end": 10506.02, + "probability": 0.1027 + }, + { + "start": 10506.2, + "end": 10508.76, + "probability": 0.9858 + }, + { + "start": 10509.72, + "end": 10509.72, + "probability": 0.0731 + }, + { + "start": 10509.72, + "end": 10510.08, + "probability": 0.0799 + }, + { + "start": 10510.08, + "end": 10511.84, + "probability": 0.9289 + }, + { + "start": 10511.96, + "end": 10513.29, + "probability": 0.9636 + }, + { + "start": 10513.9, + "end": 10519.24, + "probability": 0.8701 + }, + { + "start": 10519.8, + "end": 10521.78, + "probability": 0.4443 + }, + { + "start": 10522.22, + "end": 10522.64, + "probability": 0.1601 + }, + { + "start": 10523.32, + "end": 10527.2, + "probability": 0.7427 + }, + { + "start": 10528.72, + "end": 10530.62, + "probability": 0.9958 + }, + { + "start": 10531.12, + "end": 10533.74, + "probability": 0.9908 + }, + { + "start": 10534.78, + "end": 10536.78, + "probability": 0.9591 + }, + { + "start": 10538.08, + "end": 10540.32, + "probability": 0.9945 + }, + { + "start": 10540.32, + "end": 10545.74, + "probability": 0.994 + }, + { + "start": 10546.34, + "end": 10548.16, + "probability": 0.9976 + }, + { + "start": 10549.58, + "end": 10551.36, + "probability": 0.7578 + }, + { + "start": 10552.58, + "end": 10553.12, + "probability": 0.7852 + }, + { + "start": 10553.74, + "end": 10558.34, + "probability": 0.9928 + }, + { + "start": 10559.3, + "end": 10561.8, + "probability": 0.9731 + }, + { + "start": 10562.72, + "end": 10570.34, + "probability": 0.9873 + }, + { + "start": 10571.34, + "end": 10575.46, + "probability": 0.9323 + }, + { + "start": 10575.46, + "end": 10579.08, + "probability": 0.9377 + }, + { + "start": 10579.8, + "end": 10579.8, + "probability": 0.2695 + }, + { + "start": 10579.8, + "end": 10580.62, + "probability": 0.9371 + }, + { + "start": 10580.78, + "end": 10583.86, + "probability": 0.667 + }, + { + "start": 10584.92, + "end": 10584.92, + "probability": 0.0001 + }, + { + "start": 10585.78, + "end": 10588.65, + "probability": 0.3056 + }, + { + "start": 10589.04, + "end": 10589.88, + "probability": 0.2039 + }, + { + "start": 10590.34, + "end": 10592.26, + "probability": 0.964 + }, + { + "start": 10594.58, + "end": 10595.12, + "probability": 0.7278 + }, + { + "start": 10595.6, + "end": 10595.6, + "probability": 0.1424 + }, + { + "start": 10595.6, + "end": 10597.72, + "probability": 0.7745 + }, + { + "start": 10600.86, + "end": 10604.06, + "probability": 0.4771 + }, + { + "start": 10605.46, + "end": 10608.06, + "probability": 0.8512 + }, + { + "start": 10608.1, + "end": 10611.48, + "probability": 0.9491 + }, + { + "start": 10612.12, + "end": 10613.42, + "probability": 0.5458 + }, + { + "start": 10613.42, + "end": 10613.48, + "probability": 0.6066 + }, + { + "start": 10613.48, + "end": 10614.14, + "probability": 0.4098 + }, + { + "start": 10614.22, + "end": 10615.22, + "probability": 0.8065 + }, + { + "start": 10616.56, + "end": 10619.16, + "probability": 0.9945 + }, + { + "start": 10619.92, + "end": 10622.02, + "probability": 0.9628 + }, + { + "start": 10622.54, + "end": 10629.64, + "probability": 0.8779 + }, + { + "start": 10629.8, + "end": 10631.16, + "probability": 0.4449 + }, + { + "start": 10631.68, + "end": 10632.84, + "probability": 0.526 + }, + { + "start": 10633.66, + "end": 10637.96, + "probability": 0.4951 + }, + { + "start": 10639.14, + "end": 10640.08, + "probability": 0.0799 + }, + { + "start": 10640.08, + "end": 10640.52, + "probability": 0.4881 + }, + { + "start": 10640.54, + "end": 10643.02, + "probability": 0.0158 + }, + { + "start": 10643.8, + "end": 10644.08, + "probability": 0.6596 + }, + { + "start": 10644.16, + "end": 10644.22, + "probability": 0.5625 + }, + { + "start": 10644.22, + "end": 10650.62, + "probability": 0.9824 + }, + { + "start": 10650.74, + "end": 10652.02, + "probability": 0.8929 + }, + { + "start": 10653.64, + "end": 10657.45, + "probability": 0.9922 + }, + { + "start": 10658.02, + "end": 10664.4, + "probability": 0.989 + }, + { + "start": 10664.94, + "end": 10667.94, + "probability": 0.9838 + }, + { + "start": 10670.8, + "end": 10672.6, + "probability": 0.4051 + }, + { + "start": 10673.18, + "end": 10674.66, + "probability": 0.2587 + }, + { + "start": 10674.66, + "end": 10674.66, + "probability": 0.0287 + }, + { + "start": 10674.66, + "end": 10674.66, + "probability": 0.1567 + }, + { + "start": 10674.66, + "end": 10679.04, + "probability": 0.968 + }, + { + "start": 10680.78, + "end": 10683.52, + "probability": 0.9984 + }, + { + "start": 10684.14, + "end": 10687.52, + "probability": 0.9976 + }, + { + "start": 10687.9, + "end": 10688.2, + "probability": 0.2698 + }, + { + "start": 10689.24, + "end": 10690.48, + "probability": 0.0292 + }, + { + "start": 10693.06, + "end": 10698.78, + "probability": 0.8961 + }, + { + "start": 10699.02, + "end": 10699.76, + "probability": 0.1899 + }, + { + "start": 10699.98, + "end": 10702.5, + "probability": 0.7537 + }, + { + "start": 10703.32, + "end": 10704.12, + "probability": 0.5505 + }, + { + "start": 10704.14, + "end": 10704.98, + "probability": 0.9125 + }, + { + "start": 10705.9, + "end": 10707.72, + "probability": 0.4897 + }, + { + "start": 10708.38, + "end": 10708.74, + "probability": 0.4405 + }, + { + "start": 10708.74, + "end": 10708.78, + "probability": 0.4116 + }, + { + "start": 10708.82, + "end": 10709.88, + "probability": 0.9824 + }, + { + "start": 10710.31, + "end": 10713.38, + "probability": 0.3751 + }, + { + "start": 10713.85, + "end": 10715.78, + "probability": 0.7147 + }, + { + "start": 10715.84, + "end": 10716.88, + "probability": 0.9598 + }, + { + "start": 10717.02, + "end": 10718.44, + "probability": 0.1347 + }, + { + "start": 10718.56, + "end": 10720.3, + "probability": 0.6663 + }, + { + "start": 10720.3, + "end": 10722.4, + "probability": 0.4544 + }, + { + "start": 10722.44, + "end": 10725.56, + "probability": 0.926 + }, + { + "start": 10725.56, + "end": 10726.14, + "probability": 0.4906 + }, + { + "start": 10726.53, + "end": 10727.34, + "probability": 0.6063 + }, + { + "start": 10727.48, + "end": 10730.88, + "probability": 0.9729 + }, + { + "start": 10730.94, + "end": 10731.08, + "probability": 0.5023 + }, + { + "start": 10733.7, + "end": 10735.12, + "probability": 0.8832 + }, + { + "start": 10735.74, + "end": 10737.02, + "probability": 0.7957 + }, + { + "start": 10738.16, + "end": 10739.7, + "probability": 0.9064 + }, + { + "start": 10740.76, + "end": 10744.08, + "probability": 0.9688 + }, + { + "start": 10744.86, + "end": 10748.68, + "probability": 0.9839 + }, + { + "start": 10748.9, + "end": 10756.3, + "probability": 0.6193 + }, + { + "start": 10757.58, + "end": 10758.38, + "probability": 0.7589 + }, + { + "start": 10758.62, + "end": 10762.3, + "probability": 0.8546 + }, + { + "start": 10762.72, + "end": 10762.84, + "probability": 0.2373 + }, + { + "start": 10762.84, + "end": 10765.24, + "probability": 0.9316 + }, + { + "start": 10765.28, + "end": 10769.26, + "probability": 0.933 + }, + { + "start": 10769.26, + "end": 10770.82, + "probability": 0.4962 + }, + { + "start": 10771.56, + "end": 10771.98, + "probability": 0.1824 + }, + { + "start": 10772.24, + "end": 10772.24, + "probability": 0.076 + }, + { + "start": 10772.24, + "end": 10780.64, + "probability": 0.6934 + }, + { + "start": 10781.02, + "end": 10781.7, + "probability": 0.7056 + }, + { + "start": 10785.54, + "end": 10788.34, + "probability": 0.2592 + }, + { + "start": 10788.42, + "end": 10793.22, + "probability": 0.9527 + }, + { + "start": 10793.66, + "end": 10793.68, + "probability": 0.3148 + }, + { + "start": 10793.68, + "end": 10799.68, + "probability": 0.9913 + }, + { + "start": 10799.96, + "end": 10800.56, + "probability": 0.846 + }, + { + "start": 10800.62, + "end": 10801.34, + "probability": 0.7816 + }, + { + "start": 10802.3, + "end": 10802.56, + "probability": 0.7534 + }, + { + "start": 10803.08, + "end": 10803.8, + "probability": 0.4145 + }, + { + "start": 10803.84, + "end": 10804.18, + "probability": 0.1493 + }, + { + "start": 10804.66, + "end": 10806.94, + "probability": 0.8177 + }, + { + "start": 10807.48, + "end": 10811.76, + "probability": 0.9871 + }, + { + "start": 10813.84, + "end": 10818.56, + "probability": 0.9487 + }, + { + "start": 10819.68, + "end": 10821.6, + "probability": 0.9587 + }, + { + "start": 10821.96, + "end": 10823.82, + "probability": 0.8543 + }, + { + "start": 10823.96, + "end": 10825.04, + "probability": 0.6735 + }, + { + "start": 10825.54, + "end": 10827.84, + "probability": 0.9181 + }, + { + "start": 10828.22, + "end": 10831.8, + "probability": 0.0666 + }, + { + "start": 10845.96, + "end": 10846.4, + "probability": 0.4564 + }, + { + "start": 10846.6, + "end": 10847.06, + "probability": 0.4123 + }, + { + "start": 10848.84, + "end": 10855.68, + "probability": 0.916 + }, + { + "start": 10856.3, + "end": 10859.88, + "probability": 0.9792 + }, + { + "start": 10860.36, + "end": 10861.6, + "probability": 0.9539 + }, + { + "start": 10862.76, + "end": 10865.9, + "probability": 0.9727 + }, + { + "start": 10866.48, + "end": 10870.24, + "probability": 0.9886 + }, + { + "start": 10870.24, + "end": 10874.68, + "probability": 0.989 + }, + { + "start": 10877.12, + "end": 10881.9, + "probability": 0.9905 + }, + { + "start": 10882.68, + "end": 10886.9, + "probability": 0.9851 + }, + { + "start": 10886.9, + "end": 10892.46, + "probability": 0.9446 + }, + { + "start": 10893.5, + "end": 10895.4, + "probability": 0.9897 + }, + { + "start": 10896.64, + "end": 10897.98, + "probability": 0.9392 + }, + { + "start": 10899.06, + "end": 10901.34, + "probability": 0.9713 + }, + { + "start": 10902.42, + "end": 10909.6, + "probability": 0.9814 + }, + { + "start": 10909.64, + "end": 10913.2, + "probability": 0.8671 + }, + { + "start": 10914.0, + "end": 10917.88, + "probability": 0.9274 + }, + { + "start": 10919.18, + "end": 10920.7, + "probability": 0.8213 + }, + { + "start": 10921.4, + "end": 10927.96, + "probability": 0.951 + }, + { + "start": 10929.2, + "end": 10931.49, + "probability": 0.7974 + }, + { + "start": 10931.7, + "end": 10938.46, + "probability": 0.925 + }, + { + "start": 10939.54, + "end": 10943.56, + "probability": 0.8038 + }, + { + "start": 10944.26, + "end": 10945.95, + "probability": 0.9897 + }, + { + "start": 10946.86, + "end": 10949.02, + "probability": 0.8178 + }, + { + "start": 10949.58, + "end": 10950.34, + "probability": 0.9399 + }, + { + "start": 10951.8, + "end": 10954.44, + "probability": 0.9988 + }, + { + "start": 10954.44, + "end": 10959.16, + "probability": 0.9944 + }, + { + "start": 10960.12, + "end": 10961.1, + "probability": 0.9102 + }, + { + "start": 10961.32, + "end": 10962.02, + "probability": 0.661 + }, + { + "start": 10962.42, + "end": 10965.42, + "probability": 0.8944 + }, + { + "start": 10965.88, + "end": 10966.8, + "probability": 0.8815 + }, + { + "start": 10966.92, + "end": 10968.74, + "probability": 0.9482 + }, + { + "start": 10969.24, + "end": 10973.08, + "probability": 0.8998 + }, + { + "start": 10974.7, + "end": 10978.12, + "probability": 0.9106 + }, + { + "start": 10980.72, + "end": 10981.24, + "probability": 0.4206 + }, + { + "start": 10981.52, + "end": 10983.58, + "probability": 0.8564 + }, + { + "start": 10983.94, + "end": 10984.62, + "probability": 0.6478 + }, + { + "start": 10985.18, + "end": 10986.9, + "probability": 0.849 + }, + { + "start": 10987.96, + "end": 10990.82, + "probability": 0.988 + }, + { + "start": 10990.82, + "end": 10995.56, + "probability": 0.9099 + }, + { + "start": 10995.96, + "end": 10997.52, + "probability": 0.9143 + }, + { + "start": 10998.38, + "end": 11001.9, + "probability": 0.9285 + }, + { + "start": 11002.48, + "end": 11005.92, + "probability": 0.88 + }, + { + "start": 11006.64, + "end": 11008.69, + "probability": 0.9871 + }, + { + "start": 11009.48, + "end": 11011.58, + "probability": 0.9465 + }, + { + "start": 11012.14, + "end": 11019.92, + "probability": 0.983 + }, + { + "start": 11021.48, + "end": 11023.68, + "probability": 0.4797 + }, + { + "start": 11023.68, + "end": 11024.12, + "probability": 0.8723 + }, + { + "start": 11026.46, + "end": 11027.72, + "probability": 0.8593 + }, + { + "start": 11029.12, + "end": 11031.68, + "probability": 0.7526 + }, + { + "start": 11031.9, + "end": 11031.9, + "probability": 0.049 + }, + { + "start": 11031.9, + "end": 11031.9, + "probability": 0.0604 + }, + { + "start": 11031.9, + "end": 11032.4, + "probability": 0.1371 + }, + { + "start": 11032.4, + "end": 11038.06, + "probability": 0.5335 + }, + { + "start": 11038.42, + "end": 11038.9, + "probability": 0.7631 + }, + { + "start": 11039.16, + "end": 11041.95, + "probability": 0.7715 + }, + { + "start": 11042.96, + "end": 11044.2, + "probability": 0.7054 + }, + { + "start": 11048.28, + "end": 11049.32, + "probability": 0.7936 + }, + { + "start": 11050.72, + "end": 11053.44, + "probability": 0.9925 + }, + { + "start": 11054.74, + "end": 11062.32, + "probability": 0.8577 + }, + { + "start": 11062.54, + "end": 11065.9, + "probability": 0.9707 + }, + { + "start": 11067.34, + "end": 11068.5, + "probability": 0.9468 + }, + { + "start": 11068.68, + "end": 11069.32, + "probability": 0.5225 + }, + { + "start": 11069.42, + "end": 11070.86, + "probability": 0.5053 + }, + { + "start": 11073.44, + "end": 11077.92, + "probability": 0.8383 + }, + { + "start": 11078.62, + "end": 11080.12, + "probability": 0.9819 + }, + { + "start": 11080.66, + "end": 11082.8, + "probability": 0.9839 + }, + { + "start": 11084.46, + "end": 11088.54, + "probability": 0.8351 + }, + { + "start": 11089.38, + "end": 11094.62, + "probability": 0.9888 + }, + { + "start": 11095.72, + "end": 11096.46, + "probability": 0.5392 + }, + { + "start": 11097.52, + "end": 11099.9, + "probability": 0.998 + }, + { + "start": 11101.08, + "end": 11101.4, + "probability": 0.9422 + }, + { + "start": 11102.04, + "end": 11102.96, + "probability": 0.7565 + }, + { + "start": 11103.9, + "end": 11106.32, + "probability": 0.7599 + }, + { + "start": 11107.76, + "end": 11109.34, + "probability": 0.8569 + }, + { + "start": 11109.38, + "end": 11112.08, + "probability": 0.9443 + }, + { + "start": 11112.42, + "end": 11112.7, + "probability": 0.8363 + }, + { + "start": 11113.54, + "end": 11114.2, + "probability": 0.8392 + }, + { + "start": 11115.14, + "end": 11116.66, + "probability": 0.7706 + }, + { + "start": 11117.34, + "end": 11118.2, + "probability": 0.7884 + }, + { + "start": 11119.02, + "end": 11119.8, + "probability": 0.9189 + }, + { + "start": 11120.8, + "end": 11124.5, + "probability": 0.8142 + }, + { + "start": 11125.8, + "end": 11129.58, + "probability": 0.9839 + }, + { + "start": 11130.26, + "end": 11131.98, + "probability": 0.8853 + }, + { + "start": 11133.04, + "end": 11134.18, + "probability": 0.7505 + }, + { + "start": 11134.42, + "end": 11138.14, + "probability": 0.9745 + }, + { + "start": 11139.02, + "end": 11139.96, + "probability": 0.7416 + }, + { + "start": 11140.88, + "end": 11141.98, + "probability": 0.9891 + }, + { + "start": 11142.8, + "end": 11144.58, + "probability": 0.8805 + }, + { + "start": 11145.82, + "end": 11148.12, + "probability": 0.8638 + }, + { + "start": 11150.0, + "end": 11154.22, + "probability": 0.9887 + }, + { + "start": 11155.34, + "end": 11156.58, + "probability": 0.454 + }, + { + "start": 11157.5, + "end": 11159.38, + "probability": 0.2791 + }, + { + "start": 11160.42, + "end": 11162.26, + "probability": 0.7497 + }, + { + "start": 11162.88, + "end": 11164.62, + "probability": 0.866 + }, + { + "start": 11165.5, + "end": 11167.0, + "probability": 0.841 + }, + { + "start": 11167.52, + "end": 11170.92, + "probability": 0.9062 + }, + { + "start": 11171.98, + "end": 11174.98, + "probability": 0.9914 + }, + { + "start": 11175.72, + "end": 11176.28, + "probability": 0.9722 + }, + { + "start": 11177.02, + "end": 11182.18, + "probability": 0.9769 + }, + { + "start": 11182.88, + "end": 11185.28, + "probability": 0.9126 + }, + { + "start": 11186.44, + "end": 11186.92, + "probability": 0.974 + }, + { + "start": 11187.42, + "end": 11189.82, + "probability": 0.9132 + }, + { + "start": 11190.56, + "end": 11192.38, + "probability": 0.5507 + }, + { + "start": 11192.48, + "end": 11193.98, + "probability": 0.8452 + }, + { + "start": 11194.88, + "end": 11195.92, + "probability": 0.8207 + }, + { + "start": 11196.22, + "end": 11202.62, + "probability": 0.9715 + }, + { + "start": 11202.88, + "end": 11206.72, + "probability": 0.9902 + }, + { + "start": 11206.72, + "end": 11211.72, + "probability": 0.954 + }, + { + "start": 11211.78, + "end": 11213.04, + "probability": 0.7945 + }, + { + "start": 11213.96, + "end": 11216.8, + "probability": 0.7748 + }, + { + "start": 11217.36, + "end": 11220.48, + "probability": 0.9727 + }, + { + "start": 11220.76, + "end": 11221.2, + "probability": 0.5018 + }, + { + "start": 11221.72, + "end": 11223.24, + "probability": 0.9564 + }, + { + "start": 11224.18, + "end": 11225.9, + "probability": 0.5466 + }, + { + "start": 11225.92, + "end": 11226.48, + "probability": 0.3499 + }, + { + "start": 11226.56, + "end": 11227.1, + "probability": 0.6739 + }, + { + "start": 11227.12, + "end": 11227.58, + "probability": 0.7745 + }, + { + "start": 11227.68, + "end": 11228.44, + "probability": 0.6886 + }, + { + "start": 11229.4, + "end": 11231.18, + "probability": 0.2883 + }, + { + "start": 11239.54, + "end": 11240.52, + "probability": 0.0004 + }, + { + "start": 11247.08, + "end": 11250.3, + "probability": 0.9214 + }, + { + "start": 11250.3, + "end": 11253.9, + "probability": 0.8327 + }, + { + "start": 11253.94, + "end": 11255.8, + "probability": 0.3458 + }, + { + "start": 11256.32, + "end": 11262.44, + "probability": 0.748 + }, + { + "start": 11263.92, + "end": 11264.5, + "probability": 0.0 + }, + { + "start": 11268.5, + "end": 11269.14, + "probability": 0.0296 + }, + { + "start": 11279.7, + "end": 11285.4, + "probability": 0.049 + }, + { + "start": 11285.52, + "end": 11287.16, + "probability": 0.0341 + }, + { + "start": 11287.28, + "end": 11289.86, + "probability": 0.2246 + }, + { + "start": 11290.32, + "end": 11295.66, + "probability": 0.1961 + }, + { + "start": 11295.66, + "end": 11296.64, + "probability": 0.0391 + }, + { + "start": 11298.98, + "end": 11300.94, + "probability": 0.0406 + }, + { + "start": 11301.96, + "end": 11307.96, + "probability": 0.0312 + }, + { + "start": 11308.64, + "end": 11310.24, + "probability": 0.0721 + }, + { + "start": 11310.78, + "end": 11310.84, + "probability": 0.0031 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.0, + "end": 11311.0, + "probability": 0.0 + }, + { + "start": 11311.16, + "end": 11311.18, + "probability": 0.2017 + }, + { + "start": 11311.18, + "end": 11311.18, + "probability": 0.0983 + }, + { + "start": 11311.18, + "end": 11312.18, + "probability": 0.1118 + }, + { + "start": 11312.26, + "end": 11317.64, + "probability": 0.6771 + }, + { + "start": 11318.3, + "end": 11321.42, + "probability": 0.7848 + }, + { + "start": 11322.16, + "end": 11323.16, + "probability": 0.6762 + }, + { + "start": 11323.48, + "end": 11324.44, + "probability": 0.78 + }, + { + "start": 11324.52, + "end": 11326.5, + "probability": 0.8441 + }, + { + "start": 11327.28, + "end": 11330.36, + "probability": 0.9868 + }, + { + "start": 11331.12, + "end": 11333.92, + "probability": 0.5023 + }, + { + "start": 11334.92, + "end": 11338.54, + "probability": 0.9968 + }, + { + "start": 11339.48, + "end": 11342.74, + "probability": 0.9365 + }, + { + "start": 11342.74, + "end": 11345.1, + "probability": 0.8187 + }, + { + "start": 11345.58, + "end": 11351.6, + "probability": 0.915 + }, + { + "start": 11352.88, + "end": 11355.66, + "probability": 0.9802 + }, + { + "start": 11357.18, + "end": 11359.62, + "probability": 0.9884 + }, + { + "start": 11359.62, + "end": 11362.92, + "probability": 0.9587 + }, + { + "start": 11363.56, + "end": 11366.16, + "probability": 0.9751 + }, + { + "start": 11366.7, + "end": 11369.06, + "probability": 0.7009 + }, + { + "start": 11370.32, + "end": 11375.6, + "probability": 0.9884 + }, + { + "start": 11376.2, + "end": 11377.96, + "probability": 0.9722 + }, + { + "start": 11378.96, + "end": 11379.9, + "probability": 0.7564 + }, + { + "start": 11380.5, + "end": 11384.98, + "probability": 0.8682 + }, + { + "start": 11385.88, + "end": 11391.28, + "probability": 0.9854 + }, + { + "start": 11391.28, + "end": 11403.12, + "probability": 0.8753 + }, + { + "start": 11404.48, + "end": 11407.92, + "probability": 0.9277 + }, + { + "start": 11408.88, + "end": 11410.94, + "probability": 0.8214 + }, + { + "start": 11411.36, + "end": 11413.98, + "probability": 0.9893 + }, + { + "start": 11414.72, + "end": 11418.08, + "probability": 0.9931 + }, + { + "start": 11418.58, + "end": 11421.12, + "probability": 0.9907 + }, + { + "start": 11421.12, + "end": 11424.28, + "probability": 0.9749 + }, + { + "start": 11425.56, + "end": 11426.42, + "probability": 0.6595 + }, + { + "start": 11426.92, + "end": 11429.52, + "probability": 0.4846 + }, + { + "start": 11429.62, + "end": 11432.8, + "probability": 0.8717 + }, + { + "start": 11432.84, + "end": 11436.68, + "probability": 0.9792 + }, + { + "start": 11437.68, + "end": 11441.9, + "probability": 0.9873 + }, + { + "start": 11442.0, + "end": 11445.32, + "probability": 0.9896 + }, + { + "start": 11445.48, + "end": 11445.7, + "probability": 0.6719 + }, + { + "start": 11446.2, + "end": 11446.68, + "probability": 0.5679 + }, + { + "start": 11446.72, + "end": 11447.04, + "probability": 0.5562 + }, + { + "start": 11447.26, + "end": 11452.02, + "probability": 0.9854 + }, + { + "start": 11452.3, + "end": 11453.2, + "probability": 0.7295 + }, + { + "start": 11453.34, + "end": 11455.08, + "probability": 0.7597 + }, + { + "start": 11455.38, + "end": 11455.94, + "probability": 0.4047 + }, + { + "start": 11456.12, + "end": 11456.94, + "probability": 0.6912 + }, + { + "start": 11457.34, + "end": 11458.04, + "probability": 0.5006 + }, + { + "start": 11458.95, + "end": 11462.8, + "probability": 0.5479 + }, + { + "start": 11463.8, + "end": 11466.96, + "probability": 0.7564 + }, + { + "start": 11467.94, + "end": 11468.86, + "probability": 0.5826 + }, + { + "start": 11468.98, + "end": 11469.58, + "probability": 0.688 + }, + { + "start": 11469.72, + "end": 11470.78, + "probability": 0.8348 + }, + { + "start": 11471.22, + "end": 11472.28, + "probability": 0.4545 + }, + { + "start": 11472.52, + "end": 11473.34, + "probability": 0.9653 + }, + { + "start": 11473.48, + "end": 11474.14, + "probability": 0.8423 + }, + { + "start": 11474.94, + "end": 11475.88, + "probability": 0.9594 + }, + { + "start": 11476.04, + "end": 11476.66, + "probability": 0.9426 + }, + { + "start": 11476.76, + "end": 11477.64, + "probability": 0.733 + }, + { + "start": 11478.0, + "end": 11479.18, + "probability": 0.6149 + }, + { + "start": 11479.54, + "end": 11482.66, + "probability": 0.8818 + }, + { + "start": 11483.4, + "end": 11484.44, + "probability": 0.9848 + }, + { + "start": 11484.52, + "end": 11485.42, + "probability": 0.6925 + }, + { + "start": 11485.72, + "end": 11486.48, + "probability": 0.9383 + }, + { + "start": 11486.62, + "end": 11487.18, + "probability": 0.7372 + }, + { + "start": 11487.28, + "end": 11487.82, + "probability": 0.9524 + }, + { + "start": 11487.92, + "end": 11488.68, + "probability": 0.9909 + }, + { + "start": 11489.04, + "end": 11490.06, + "probability": 0.866 + }, + { + "start": 11490.2, + "end": 11491.02, + "probability": 0.9898 + }, + { + "start": 11491.1, + "end": 11491.82, + "probability": 0.7815 + }, + { + "start": 11492.18, + "end": 11494.26, + "probability": 0.8535 + }, + { + "start": 11494.96, + "end": 11496.68, + "probability": 0.8474 + }, + { + "start": 11497.68, + "end": 11498.62, + "probability": 0.7239 + }, + { + "start": 11498.74, + "end": 11499.36, + "probability": 0.5846 + }, + { + "start": 11499.89, + "end": 11503.0, + "probability": 0.8752 + }, + { + "start": 11503.74, + "end": 11504.16, + "probability": 0.3804 + }, + { + "start": 11504.16, + "end": 11505.92, + "probability": 0.1939 + }, + { + "start": 11506.16, + "end": 11506.86, + "probability": 0.6552 + }, + { + "start": 11507.5, + "end": 11508.24, + "probability": 0.5581 + }, + { + "start": 11510.0, + "end": 11512.14, + "probability": 0.2022 + }, + { + "start": 11512.76, + "end": 11513.16, + "probability": 0.3604 + }, + { + "start": 11513.22, + "end": 11513.74, + "probability": 0.0393 + }, + { + "start": 11513.74, + "end": 11515.66, + "probability": 0.1993 + }, + { + "start": 11516.24, + "end": 11516.34, + "probability": 0.5407 + }, + { + "start": 11516.76, + "end": 11517.64, + "probability": 0.6985 + }, + { + "start": 11517.72, + "end": 11519.04, + "probability": 0.8438 + }, + { + "start": 11519.16, + "end": 11520.86, + "probability": 0.9961 + }, + { + "start": 11521.2, + "end": 11524.72, + "probability": 0.9338 + }, + { + "start": 11524.82, + "end": 11527.02, + "probability": 0.939 + }, + { + "start": 11527.54, + "end": 11530.92, + "probability": 0.9956 + }, + { + "start": 11532.38, + "end": 11535.04, + "probability": 0.9905 + }, + { + "start": 11535.08, + "end": 11537.92, + "probability": 0.9419 + }, + { + "start": 11538.04, + "end": 11539.06, + "probability": 0.813 + }, + { + "start": 11539.2, + "end": 11540.32, + "probability": 0.9184 + }, + { + "start": 11540.56, + "end": 11542.32, + "probability": 0.9801 + }, + { + "start": 11542.38, + "end": 11550.1, + "probability": 0.9297 + }, + { + "start": 11550.48, + "end": 11551.94, + "probability": 0.836 + }, + { + "start": 11552.18, + "end": 11554.82, + "probability": 0.9757 + }, + { + "start": 11554.94, + "end": 11555.46, + "probability": 0.7794 + }, + { + "start": 11555.84, + "end": 11557.24, + "probability": 0.7908 + }, + { + "start": 11557.44, + "end": 11557.9, + "probability": 0.783 + }, + { + "start": 11558.28, + "end": 11558.8, + "probability": 0.7857 + }, + { + "start": 11558.88, + "end": 11562.5, + "probability": 0.9668 + }, + { + "start": 11562.58, + "end": 11564.08, + "probability": 0.6898 + }, + { + "start": 11564.66, + "end": 11565.78, + "probability": 0.5738 + }, + { + "start": 11566.46, + "end": 11567.8, + "probability": 0.8079 + }, + { + "start": 11568.54, + "end": 11569.34, + "probability": 0.649 + }, + { + "start": 11569.92, + "end": 11570.68, + "probability": 0.5743 + }, + { + "start": 11571.06, + "end": 11572.7, + "probability": 0.9108 + }, + { + "start": 11573.2, + "end": 11579.42, + "probability": 0.9203 + }, + { + "start": 11579.54, + "end": 11579.76, + "probability": 0.7019 + }, + { + "start": 11579.88, + "end": 11583.72, + "probability": 0.7968 + }, + { + "start": 11584.28, + "end": 11587.74, + "probability": 0.9351 + }, + { + "start": 11588.3, + "end": 11595.2, + "probability": 0.9861 + }, + { + "start": 11595.34, + "end": 11598.16, + "probability": 0.9693 + }, + { + "start": 11598.32, + "end": 11602.76, + "probability": 0.8533 + }, + { + "start": 11602.82, + "end": 11608.5, + "probability": 0.9067 + }, + { + "start": 11609.2, + "end": 11612.98, + "probability": 0.9609 + }, + { + "start": 11613.68, + "end": 11615.7, + "probability": 0.9961 + }, + { + "start": 11615.82, + "end": 11619.46, + "probability": 0.9401 + }, + { + "start": 11619.68, + "end": 11620.82, + "probability": 0.7256 + }, + { + "start": 11620.9, + "end": 11623.28, + "probability": 0.8781 + }, + { + "start": 11623.42, + "end": 11624.02, + "probability": 0.7759 + }, + { + "start": 11624.14, + "end": 11624.96, + "probability": 0.6639 + }, + { + "start": 11624.98, + "end": 11625.38, + "probability": 0.5494 + }, + { + "start": 11625.9, + "end": 11628.4, + "probability": 0.9677 + }, + { + "start": 11628.96, + "end": 11631.52, + "probability": 0.8472 + }, + { + "start": 11631.62, + "end": 11635.68, + "probability": 0.9944 + }, + { + "start": 11635.72, + "end": 11638.3, + "probability": 0.9751 + }, + { + "start": 11638.48, + "end": 11643.3, + "probability": 0.9976 + }, + { + "start": 11644.42, + "end": 11647.06, + "probability": 0.9629 + }, + { + "start": 11647.56, + "end": 11651.02, + "probability": 0.9834 + }, + { + "start": 11652.24, + "end": 11658.76, + "probability": 0.9136 + }, + { + "start": 11658.86, + "end": 11662.58, + "probability": 0.9191 + }, + { + "start": 11663.1, + "end": 11667.26, + "probability": 0.9131 + }, + { + "start": 11667.36, + "end": 11668.78, + "probability": 0.7508 + }, + { + "start": 11669.0, + "end": 11672.52, + "probability": 0.9829 + }, + { + "start": 11672.52, + "end": 11674.86, + "probability": 0.9509 + }, + { + "start": 11674.98, + "end": 11675.38, + "probability": 0.542 + }, + { + "start": 11675.68, + "end": 11676.72, + "probability": 0.5253 + }, + { + "start": 11676.9, + "end": 11678.34, + "probability": 0.896 + }, + { + "start": 11678.78, + "end": 11681.38, + "probability": 0.9919 + }, + { + "start": 11681.74, + "end": 11685.68, + "probability": 0.8655 + }, + { + "start": 11685.88, + "end": 11689.4, + "probability": 0.9255 + }, + { + "start": 11689.78, + "end": 11690.76, + "probability": 0.8162 + }, + { + "start": 11690.96, + "end": 11692.59, + "probability": 0.7342 + }, + { + "start": 11693.06, + "end": 11695.32, + "probability": 0.9499 + }, + { + "start": 11695.88, + "end": 11699.02, + "probability": 0.9679 + }, + { + "start": 11699.02, + "end": 11702.36, + "probability": 0.9988 + }, + { + "start": 11702.84, + "end": 11707.2, + "probability": 0.9922 + }, + { + "start": 11707.36, + "end": 11708.48, + "probability": 0.9022 + }, + { + "start": 11708.82, + "end": 11710.64, + "probability": 0.9842 + }, + { + "start": 11710.92, + "end": 11711.82, + "probability": 0.7795 + }, + { + "start": 11712.1, + "end": 11712.62, + "probability": 0.6637 + }, + { + "start": 11712.92, + "end": 11714.92, + "probability": 0.5858 + }, + { + "start": 11715.38, + "end": 11716.24, + "probability": 0.671 + }, + { + "start": 11716.88, + "end": 11717.64, + "probability": 0.632 + }, + { + "start": 11722.52, + "end": 11724.8, + "probability": 0.8028 + }, + { + "start": 11725.32, + "end": 11727.58, + "probability": 0.8157 + }, + { + "start": 11728.86, + "end": 11729.56, + "probability": 0.1957 + }, + { + "start": 11729.68, + "end": 11730.16, + "probability": 0.4664 + }, + { + "start": 11730.46, + "end": 11730.56, + "probability": 0.7263 + }, + { + "start": 11730.94, + "end": 11734.02, + "probability": 0.7544 + }, + { + "start": 11735.7, + "end": 11736.26, + "probability": 0.0971 + }, + { + "start": 11736.26, + "end": 11739.14, + "probability": 0.9521 + }, + { + "start": 11740.38, + "end": 11741.82, + "probability": 0.5334 + }, + { + "start": 11742.36, + "end": 11744.84, + "probability": 0.7012 + }, + { + "start": 11746.24, + "end": 11746.78, + "probability": 0.7135 + }, + { + "start": 11748.36, + "end": 11748.68, + "probability": 0.1111 + }, + { + "start": 11748.68, + "end": 11749.16, + "probability": 0.1689 + }, + { + "start": 11750.1, + "end": 11751.64, + "probability": 0.7509 + }, + { + "start": 11752.28, + "end": 11752.52, + "probability": 0.3218 + }, + { + "start": 11753.94, + "end": 11754.94, + "probability": 0.7137 + }, + { + "start": 11755.7, + "end": 11759.78, + "probability": 0.8488 + }, + { + "start": 11760.34, + "end": 11762.2, + "probability": 0.8336 + }, + { + "start": 11762.62, + "end": 11763.96, + "probability": 0.833 + }, + { + "start": 11765.5, + "end": 11766.06, + "probability": 0.0223 + }, + { + "start": 11767.34, + "end": 11768.3, + "probability": 0.0968 + }, + { + "start": 11768.3, + "end": 11768.54, + "probability": 0.0423 + }, + { + "start": 11769.78, + "end": 11771.22, + "probability": 0.4655 + }, + { + "start": 11772.0, + "end": 11773.58, + "probability": 0.8082 + }, + { + "start": 11774.16, + "end": 11774.42, + "probability": 0.52 + }, + { + "start": 11774.42, + "end": 11775.48, + "probability": 0.6989 + }, + { + "start": 11775.5, + "end": 11776.4, + "probability": 0.7668 + }, + { + "start": 11776.62, + "end": 11777.94, + "probability": 0.7914 + }, + { + "start": 11778.06, + "end": 11778.92, + "probability": 0.491 + }, + { + "start": 11779.98, + "end": 11780.76, + "probability": 0.0265 + }, + { + "start": 11781.08, + "end": 11781.3, + "probability": 0.3998 + }, + { + "start": 11782.14, + "end": 11783.1, + "probability": 0.7454 + }, + { + "start": 11783.26, + "end": 11785.58, + "probability": 0.7119 + }, + { + "start": 11785.96, + "end": 11787.14, + "probability": 0.9513 + }, + { + "start": 11787.5, + "end": 11789.44, + "probability": 0.366 + }, + { + "start": 11790.16, + "end": 11791.46, + "probability": 0.4766 + }, + { + "start": 11792.16, + "end": 11793.66, + "probability": 0.972 + }, + { + "start": 11794.02, + "end": 11795.56, + "probability": 0.672 + }, + { + "start": 11795.58, + "end": 11798.28, + "probability": 0.8455 + }, + { + "start": 11799.24, + "end": 11801.32, + "probability": 0.9925 + }, + { + "start": 11801.84, + "end": 11803.92, + "probability": 0.9912 + }, + { + "start": 11804.24, + "end": 11804.54, + "probability": 0.6772 + }, + { + "start": 11804.86, + "end": 11806.2, + "probability": 0.0691 + }, + { + "start": 11807.06, + "end": 11809.04, + "probability": 0.2344 + }, + { + "start": 11811.14, + "end": 11811.52, + "probability": 0.7951 + }, + { + "start": 11811.58, + "end": 11812.96, + "probability": 0.8765 + }, + { + "start": 11813.04, + "end": 11813.84, + "probability": 0.741 + }, + { + "start": 11813.92, + "end": 11814.82, + "probability": 0.741 + }, + { + "start": 11816.4, + "end": 11820.5, + "probability": 0.6003 + }, + { + "start": 11822.38, + "end": 11826.04, + "probability": 0.9574 + }, + { + "start": 11826.24, + "end": 11831.2, + "probability": 0.9971 + }, + { + "start": 11831.8, + "end": 11833.58, + "probability": 0.9961 + }, + { + "start": 11834.92, + "end": 11836.94, + "probability": 0.9698 + }, + { + "start": 11837.63, + "end": 11842.7, + "probability": 0.9744 + }, + { + "start": 11844.52, + "end": 11847.9, + "probability": 0.9946 + }, + { + "start": 11848.5, + "end": 11850.82, + "probability": 0.9946 + }, + { + "start": 11852.16, + "end": 11856.26, + "probability": 0.9806 + }, + { + "start": 11857.16, + "end": 11859.58, + "probability": 0.9822 + }, + { + "start": 11860.1, + "end": 11864.3, + "probability": 0.9016 + }, + { + "start": 11864.36, + "end": 11868.38, + "probability": 0.9929 + }, + { + "start": 11868.38, + "end": 11871.56, + "probability": 0.9988 + }, + { + "start": 11872.2, + "end": 11873.78, + "probability": 0.9937 + }, + { + "start": 11873.88, + "end": 11876.34, + "probability": 0.9896 + }, + { + "start": 11877.18, + "end": 11881.02, + "probability": 0.9456 + }, + { + "start": 11881.86, + "end": 11882.62, + "probability": 0.9332 + }, + { + "start": 11884.68, + "end": 11887.74, + "probability": 0.9072 + }, + { + "start": 11888.72, + "end": 11890.82, + "probability": 0.9842 + }, + { + "start": 11891.44, + "end": 11891.98, + "probability": 0.9845 + }, + { + "start": 11892.66, + "end": 11896.96, + "probability": 0.9348 + }, + { + "start": 11897.76, + "end": 11907.28, + "probability": 0.9899 + }, + { + "start": 11907.5, + "end": 11911.06, + "probability": 0.997 + }, + { + "start": 11911.74, + "end": 11916.48, + "probability": 0.9844 + }, + { + "start": 11917.38, + "end": 11918.32, + "probability": 0.9771 + }, + { + "start": 11918.54, + "end": 11920.74, + "probability": 0.9189 + }, + { + "start": 11920.98, + "end": 11924.24, + "probability": 0.9942 + }, + { + "start": 11924.24, + "end": 11928.34, + "probability": 0.9983 + }, + { + "start": 11929.84, + "end": 11934.8, + "probability": 0.9873 + }, + { + "start": 11934.98, + "end": 11936.18, + "probability": 0.9791 + }, + { + "start": 11936.7, + "end": 11940.78, + "probability": 0.9946 + }, + { + "start": 11942.04, + "end": 11946.68, + "probability": 0.7678 + }, + { + "start": 11947.3, + "end": 11953.1, + "probability": 0.9933 + }, + { + "start": 11953.16, + "end": 11953.84, + "probability": 0.9054 + }, + { + "start": 11953.96, + "end": 11955.16, + "probability": 0.9779 + }, + { + "start": 11955.76, + "end": 11958.16, + "probability": 0.9962 + }, + { + "start": 11958.9, + "end": 11960.58, + "probability": 0.8956 + }, + { + "start": 11960.62, + "end": 11962.34, + "probability": 0.855 + }, + { + "start": 11962.36, + "end": 11966.14, + "probability": 0.9787 + }, + { + "start": 11966.56, + "end": 11967.04, + "probability": 0.5891 + }, + { + "start": 11967.22, + "end": 11967.42, + "probability": 0.6263 + }, + { + "start": 11967.42, + "end": 11967.42, + "probability": 0.0297 + }, + { + "start": 11968.14, + "end": 11971.86, + "probability": 0.9429 + }, + { + "start": 11972.18, + "end": 11972.72, + "probability": 0.5141 + }, + { + "start": 11973.52, + "end": 11975.52, + "probability": 0.9968 + }, + { + "start": 11976.46, + "end": 11977.53, + "probability": 0.886 + }, + { + "start": 11978.26, + "end": 11981.25, + "probability": 0.8566 + }, + { + "start": 11982.02, + "end": 11982.72, + "probability": 0.9201 + }, + { + "start": 11983.18, + "end": 11984.2, + "probability": 0.8653 + }, + { + "start": 11984.72, + "end": 11986.22, + "probability": 0.8919 + }, + { + "start": 11986.4, + "end": 11989.26, + "probability": 0.9397 + }, + { + "start": 11990.06, + "end": 11990.74, + "probability": 0.9324 + }, + { + "start": 11992.42, + "end": 11994.18, + "probability": 0.9824 + }, + { + "start": 11994.28, + "end": 11996.32, + "probability": 0.8376 + }, + { + "start": 11996.8, + "end": 12002.0, + "probability": 0.9916 + }, + { + "start": 12004.76, + "end": 12009.58, + "probability": 0.9985 + }, + { + "start": 12010.06, + "end": 12010.94, + "probability": 0.7948 + }, + { + "start": 12011.18, + "end": 12012.02, + "probability": 0.9016 + }, + { + "start": 12012.22, + "end": 12015.44, + "probability": 0.9752 + }, + { + "start": 12016.58, + "end": 12019.24, + "probability": 0.7599 + }, + { + "start": 12020.12, + "end": 12022.7, + "probability": 0.8752 + }, + { + "start": 12022.8, + "end": 12025.14, + "probability": 0.4988 + }, + { + "start": 12025.98, + "end": 12028.18, + "probability": 0.9865 + }, + { + "start": 12028.42, + "end": 12033.06, + "probability": 0.9822 + }, + { + "start": 12033.66, + "end": 12035.18, + "probability": 0.8456 + }, + { + "start": 12035.28, + "end": 12040.04, + "probability": 0.994 + }, + { + "start": 12040.04, + "end": 12044.48, + "probability": 0.9983 + }, + { + "start": 12044.84, + "end": 12046.08, + "probability": 0.7235 + }, + { + "start": 12046.22, + "end": 12046.38, + "probability": 0.5798 + }, + { + "start": 12046.46, + "end": 12047.52, + "probability": 0.9388 + }, + { + "start": 12047.66, + "end": 12049.06, + "probability": 0.9016 + }, + { + "start": 12049.66, + "end": 12052.48, + "probability": 0.9943 + }, + { + "start": 12053.08, + "end": 12054.78, + "probability": 0.7574 + }, + { + "start": 12054.94, + "end": 12059.48, + "probability": 0.9937 + }, + { + "start": 12059.8, + "end": 12062.96, + "probability": 0.9976 + }, + { + "start": 12063.82, + "end": 12067.16, + "probability": 0.907 + }, + { + "start": 12068.06, + "end": 12072.1, + "probability": 0.9961 + }, + { + "start": 12072.28, + "end": 12074.44, + "probability": 0.9406 + }, + { + "start": 12075.28, + "end": 12083.76, + "probability": 0.9945 + }, + { + "start": 12083.76, + "end": 12088.62, + "probability": 0.9922 + }, + { + "start": 12089.12, + "end": 12089.7, + "probability": 0.5576 + }, + { + "start": 12089.78, + "end": 12090.8, + "probability": 0.706 + }, + { + "start": 12090.88, + "end": 12094.12, + "probability": 0.9881 + }, + { + "start": 12094.72, + "end": 12096.9, + "probability": 0.967 + }, + { + "start": 12097.22, + "end": 12100.02, + "probability": 0.9829 + }, + { + "start": 12100.42, + "end": 12102.66, + "probability": 0.9442 + }, + { + "start": 12103.08, + "end": 12103.72, + "probability": 0.8576 + }, + { + "start": 12104.04, + "end": 12107.14, + "probability": 0.9398 + }, + { + "start": 12107.86, + "end": 12111.94, + "probability": 0.6719 + }, + { + "start": 12113.02, + "end": 12116.68, + "probability": 0.9873 + }, + { + "start": 12116.72, + "end": 12117.9, + "probability": 0.7957 + }, + { + "start": 12118.72, + "end": 12122.6, + "probability": 0.6385 + }, + { + "start": 12122.64, + "end": 12122.98, + "probability": 0.6741 + }, + { + "start": 12123.12, + "end": 12124.98, + "probability": 0.5171 + }, + { + "start": 12125.84, + "end": 12126.26, + "probability": 0.5885 + }, + { + "start": 12126.36, + "end": 12127.82, + "probability": 0.6592 + }, + { + "start": 12128.04, + "end": 12130.46, + "probability": 0.8588 + }, + { + "start": 12131.22, + "end": 12134.92, + "probability": 0.7697 + }, + { + "start": 12136.78, + "end": 12137.24, + "probability": 0.4572 + }, + { + "start": 12140.88, + "end": 12142.5, + "probability": 0.6971 + }, + { + "start": 12143.54, + "end": 12143.76, + "probability": 0.6892 + }, + { + "start": 12143.78, + "end": 12144.22, + "probability": 0.7613 + }, + { + "start": 12144.3, + "end": 12145.68, + "probability": 0.9344 + }, + { + "start": 12145.82, + "end": 12146.34, + "probability": 0.9581 + }, + { + "start": 12147.7, + "end": 12148.09, + "probability": 0.8117 + }, + { + "start": 12148.22, + "end": 12148.8, + "probability": 0.8399 + }, + { + "start": 12148.82, + "end": 12149.86, + "probability": 0.6381 + }, + { + "start": 12151.04, + "end": 12152.22, + "probability": 0.9411 + }, + { + "start": 12153.14, + "end": 12154.12, + "probability": 0.7602 + }, + { + "start": 12155.4, + "end": 12157.04, + "probability": 0.8411 + }, + { + "start": 12158.2, + "end": 12159.63, + "probability": 0.8579 + }, + { + "start": 12160.84, + "end": 12163.68, + "probability": 0.989 + }, + { + "start": 12165.04, + "end": 12166.38, + "probability": 0.9899 + }, + { + "start": 12167.6, + "end": 12169.16, + "probability": 0.8257 + }, + { + "start": 12169.26, + "end": 12170.16, + "probability": 0.8334 + }, + { + "start": 12170.18, + "end": 12171.22, + "probability": 0.8165 + }, + { + "start": 12173.68, + "end": 12174.5, + "probability": 0.8572 + }, + { + "start": 12174.52, + "end": 12175.0, + "probability": 0.9426 + }, + { + "start": 12175.58, + "end": 12177.3, + "probability": 0.9927 + }, + { + "start": 12177.4, + "end": 12178.3, + "probability": 0.7304 + }, + { + "start": 12178.38, + "end": 12181.54, + "probability": 0.9236 + }, + { + "start": 12182.76, + "end": 12187.6, + "probability": 0.9726 + }, + { + "start": 12188.34, + "end": 12189.04, + "probability": 0.9729 + }, + { + "start": 12190.3, + "end": 12192.26, + "probability": 0.9971 + }, + { + "start": 12192.36, + "end": 12192.98, + "probability": 0.8574 + }, + { + "start": 12193.78, + "end": 12195.14, + "probability": 0.8602 + }, + { + "start": 12196.04, + "end": 12199.12, + "probability": 0.9952 + }, + { + "start": 12199.64, + "end": 12201.38, + "probability": 0.9445 + }, + { + "start": 12202.4, + "end": 12203.7, + "probability": 0.7643 + }, + { + "start": 12203.82, + "end": 12204.06, + "probability": 0.6691 + }, + { + "start": 12204.76, + "end": 12208.16, + "probability": 0.8978 + }, + { + "start": 12209.16, + "end": 12209.88, + "probability": 0.7694 + }, + { + "start": 12210.38, + "end": 12211.76, + "probability": 0.8569 + }, + { + "start": 12212.34, + "end": 12212.82, + "probability": 0.4865 + }, + { + "start": 12212.92, + "end": 12213.34, + "probability": 0.8145 + }, + { + "start": 12213.62, + "end": 12218.42, + "probability": 0.9042 + }, + { + "start": 12218.84, + "end": 12223.52, + "probability": 0.9748 + }, + { + "start": 12224.14, + "end": 12225.42, + "probability": 0.916 + }, + { + "start": 12226.26, + "end": 12227.5, + "probability": 0.6479 + }, + { + "start": 12228.16, + "end": 12230.24, + "probability": 0.9204 + }, + { + "start": 12230.78, + "end": 12231.72, + "probability": 0.9104 + }, + { + "start": 12232.66, + "end": 12233.34, + "probability": 0.9417 + }, + { + "start": 12233.44, + "end": 12233.86, + "probability": 0.9682 + }, + { + "start": 12233.98, + "end": 12235.84, + "probability": 0.8789 + }, + { + "start": 12236.42, + "end": 12237.62, + "probability": 0.7672 + }, + { + "start": 12238.02, + "end": 12238.68, + "probability": 0.4975 + }, + { + "start": 12238.76, + "end": 12239.98, + "probability": 0.8206 + }, + { + "start": 12240.08, + "end": 12241.98, + "probability": 0.9506 + }, + { + "start": 12242.66, + "end": 12243.92, + "probability": 0.9333 + }, + { + "start": 12244.64, + "end": 12246.7, + "probability": 0.9749 + }, + { + "start": 12247.22, + "end": 12248.84, + "probability": 0.6852 + }, + { + "start": 12249.4, + "end": 12251.35, + "probability": 0.7686 + }, + { + "start": 12252.0, + "end": 12252.84, + "probability": 0.8284 + }, + { + "start": 12253.32, + "end": 12254.18, + "probability": 0.957 + }, + { + "start": 12254.66, + "end": 12254.98, + "probability": 0.8406 + }, + { + "start": 12255.7, + "end": 12258.54, + "probability": 0.8927 + }, + { + "start": 12259.44, + "end": 12261.1, + "probability": 0.7331 + }, + { + "start": 12262.52, + "end": 12264.64, + "probability": 0.993 + }, + { + "start": 12265.42, + "end": 12267.37, + "probability": 0.7186 + }, + { + "start": 12268.12, + "end": 12269.76, + "probability": 0.9111 + }, + { + "start": 12269.96, + "end": 12271.46, + "probability": 0.8989 + }, + { + "start": 12272.08, + "end": 12273.52, + "probability": 0.8018 + }, + { + "start": 12274.32, + "end": 12275.16, + "probability": 0.8301 + }, + { + "start": 12275.8, + "end": 12277.28, + "probability": 0.7076 + }, + { + "start": 12277.84, + "end": 12279.84, + "probability": 0.6646 + }, + { + "start": 12280.62, + "end": 12282.9, + "probability": 0.9597 + }, + { + "start": 12283.3, + "end": 12283.82, + "probability": 0.7757 + }, + { + "start": 12283.96, + "end": 12284.3, + "probability": 0.2921 + }, + { + "start": 12285.14, + "end": 12286.28, + "probability": 0.757 + }, + { + "start": 12286.32, + "end": 12287.6, + "probability": 0.889 + }, + { + "start": 12288.22, + "end": 12291.3, + "probability": 0.9763 + }, + { + "start": 12291.74, + "end": 12292.8, + "probability": 0.9655 + }, + { + "start": 12293.16, + "end": 12294.58, + "probability": 0.7125 + }, + { + "start": 12295.12, + "end": 12298.04, + "probability": 0.8674 + }, + { + "start": 12298.48, + "end": 12299.0, + "probability": 0.5471 + }, + { + "start": 12299.54, + "end": 12302.88, + "probability": 0.8835 + }, + { + "start": 12303.26, + "end": 12303.74, + "probability": 0.6929 + }, + { + "start": 12304.1, + "end": 12304.58, + "probability": 0.8427 + }, + { + "start": 12304.76, + "end": 12307.58, + "probability": 0.9614 + }, + { + "start": 12308.04, + "end": 12310.7, + "probability": 0.998 + }, + { + "start": 12311.18, + "end": 12314.4, + "probability": 0.764 + }, + { + "start": 12314.86, + "end": 12319.2, + "probability": 0.8043 + }, + { + "start": 12319.36, + "end": 12320.12, + "probability": 0.7491 + }, + { + "start": 12320.79, + "end": 12324.37, + "probability": 0.6725 + }, + { + "start": 12324.8, + "end": 12326.92, + "probability": 0.9844 + }, + { + "start": 12327.56, + "end": 12329.5, + "probability": 0.92 + }, + { + "start": 12329.78, + "end": 12332.46, + "probability": 0.9059 + }, + { + "start": 12332.9, + "end": 12336.12, + "probability": 0.9788 + }, + { + "start": 12336.68, + "end": 12340.78, + "probability": 0.7961 + }, + { + "start": 12341.44, + "end": 12342.42, + "probability": 0.6401 + }, + { + "start": 12343.04, + "end": 12345.74, + "probability": 0.9697 + }, + { + "start": 12345.74, + "end": 12349.2, + "probability": 0.7574 + }, + { + "start": 12349.84, + "end": 12350.76, + "probability": 0.9717 + }, + { + "start": 12351.0, + "end": 12353.46, + "probability": 0.9337 + }, + { + "start": 12354.26, + "end": 12356.51, + "probability": 0.8335 + }, + { + "start": 12357.18, + "end": 12357.54, + "probability": 0.4396 + }, + { + "start": 12357.62, + "end": 12359.0, + "probability": 0.9729 + }, + { + "start": 12359.4, + "end": 12361.16, + "probability": 0.9608 + }, + { + "start": 12361.64, + "end": 12363.61, + "probability": 0.8508 + }, + { + "start": 12364.18, + "end": 12365.36, + "probability": 0.9108 + }, + { + "start": 12365.9, + "end": 12366.68, + "probability": 0.5466 + }, + { + "start": 12366.78, + "end": 12367.02, + "probability": 0.8585 + }, + { + "start": 12367.1, + "end": 12369.28, + "probability": 0.9569 + }, + { + "start": 12370.0, + "end": 12370.92, + "probability": 0.8801 + }, + { + "start": 12371.36, + "end": 12373.78, + "probability": 0.9675 + }, + { + "start": 12374.34, + "end": 12378.48, + "probability": 0.8374 + }, + { + "start": 12379.24, + "end": 12380.9, + "probability": 0.9874 + }, + { + "start": 12381.28, + "end": 12382.34, + "probability": 0.6259 + }, + { + "start": 12383.0, + "end": 12384.64, + "probability": 0.6041 + }, + { + "start": 12384.74, + "end": 12385.78, + "probability": 0.8159 + }, + { + "start": 12386.3, + "end": 12389.66, + "probability": 0.9444 + }, + { + "start": 12391.3, + "end": 12391.84, + "probability": 0.3275 + }, + { + "start": 12392.22, + "end": 12394.22, + "probability": 0.9182 + }, + { + "start": 12394.46, + "end": 12398.62, + "probability": 0.9669 + }, + { + "start": 12399.2, + "end": 12401.74, + "probability": 0.9831 + }, + { + "start": 12401.86, + "end": 12402.52, + "probability": 0.6893 + }, + { + "start": 12402.9, + "end": 12404.98, + "probability": 0.6667 + }, + { + "start": 12405.58, + "end": 12407.96, + "probability": 0.981 + }, + { + "start": 12408.28, + "end": 12411.46, + "probability": 0.9899 + }, + { + "start": 12411.46, + "end": 12412.12, + "probability": 0.7972 + }, + { + "start": 12412.73, + "end": 12414.66, + "probability": 0.6689 + }, + { + "start": 12415.18, + "end": 12417.42, + "probability": 0.8427 + }, + { + "start": 12419.52, + "end": 12420.16, + "probability": 0.051 + }, + { + "start": 12420.16, + "end": 12420.16, + "probability": 0.0225 + }, + { + "start": 12420.16, + "end": 12420.16, + "probability": 0.078 + }, + { + "start": 12420.16, + "end": 12421.55, + "probability": 0.9152 + }, + { + "start": 12421.8, + "end": 12422.92, + "probability": 0.9083 + }, + { + "start": 12423.66, + "end": 12424.72, + "probability": 0.7876 + }, + { + "start": 12425.48, + "end": 12428.18, + "probability": 0.9766 + }, + { + "start": 12428.34, + "end": 12430.26, + "probability": 0.8547 + }, + { + "start": 12430.74, + "end": 12432.4, + "probability": 0.8992 + }, + { + "start": 12432.64, + "end": 12432.88, + "probability": 0.6699 + }, + { + "start": 12433.66, + "end": 12434.36, + "probability": 0.5972 + }, + { + "start": 12434.54, + "end": 12435.88, + "probability": 0.7764 + }, + { + "start": 12436.5, + "end": 12437.48, + "probability": 0.9394 + }, + { + "start": 12447.66, + "end": 12450.02, + "probability": 0.7718 + }, + { + "start": 12451.7, + "end": 12452.66, + "probability": 0.7402 + }, + { + "start": 12453.5, + "end": 12454.62, + "probability": 0.8797 + }, + { + "start": 12455.42, + "end": 12457.04, + "probability": 0.9891 + }, + { + "start": 12458.06, + "end": 12461.86, + "probability": 0.9887 + }, + { + "start": 12462.76, + "end": 12464.46, + "probability": 0.9768 + }, + { + "start": 12465.16, + "end": 12466.32, + "probability": 0.9292 + }, + { + "start": 12466.96, + "end": 12472.08, + "probability": 0.9722 + }, + { + "start": 12472.8, + "end": 12475.5, + "probability": 0.7807 + }, + { + "start": 12476.14, + "end": 12477.16, + "probability": 0.9946 + }, + { + "start": 12477.98, + "end": 12480.48, + "probability": 0.9878 + }, + { + "start": 12481.68, + "end": 12483.23, + "probability": 0.9968 + }, + { + "start": 12484.48, + "end": 12486.76, + "probability": 0.9748 + }, + { + "start": 12486.92, + "end": 12487.76, + "probability": 0.7346 + }, + { + "start": 12488.12, + "end": 12491.42, + "probability": 0.9937 + }, + { + "start": 12491.42, + "end": 12495.28, + "probability": 0.9955 + }, + { + "start": 12495.36, + "end": 12499.44, + "probability": 0.9985 + }, + { + "start": 12499.44, + "end": 12504.54, + "probability": 0.9993 + }, + { + "start": 12504.62, + "end": 12510.24, + "probability": 0.9957 + }, + { + "start": 12511.36, + "end": 12511.84, + "probability": 0.4199 + }, + { + "start": 12512.26, + "end": 12513.1, + "probability": 0.2094 + }, + { + "start": 12513.52, + "end": 12516.82, + "probability": 0.9729 + }, + { + "start": 12517.64, + "end": 12518.22, + "probability": 0.2463 + }, + { + "start": 12518.9, + "end": 12519.46, + "probability": 0.5849 + }, + { + "start": 12519.54, + "end": 12525.66, + "probability": 0.9911 + }, + { + "start": 12526.22, + "end": 12526.54, + "probability": 0.8112 + }, + { + "start": 12526.96, + "end": 12528.58, + "probability": 0.9612 + }, + { + "start": 12528.74, + "end": 12530.84, + "probability": 0.9626 + }, + { + "start": 12530.92, + "end": 12534.68, + "probability": 0.651 + }, + { + "start": 12536.16, + "end": 12541.26, + "probability": 0.9033 + }, + { + "start": 12542.22, + "end": 12544.0, + "probability": 0.6168 + }, + { + "start": 12544.48, + "end": 12544.86, + "probability": 0.5365 + }, + { + "start": 12545.1, + "end": 12549.66, + "probability": 0.9958 + }, + { + "start": 12549.66, + "end": 12551.87, + "probability": 0.9993 + }, + { + "start": 12553.26, + "end": 12558.42, + "probability": 0.9857 + }, + { + "start": 12558.76, + "end": 12562.88, + "probability": 0.7169 + }, + { + "start": 12563.22, + "end": 12564.36, + "probability": 0.8819 + }, + { + "start": 12564.5, + "end": 12566.74, + "probability": 0.8027 + }, + { + "start": 12567.34, + "end": 12567.82, + "probability": 0.3836 + }, + { + "start": 12567.9, + "end": 12571.2, + "probability": 0.9836 + }, + { + "start": 12571.22, + "end": 12571.64, + "probability": 0.5236 + }, + { + "start": 12572.28, + "end": 12574.7, + "probability": 0.9827 + }, + { + "start": 12575.52, + "end": 12576.24, + "probability": 0.7895 + }, + { + "start": 12576.42, + "end": 12579.7, + "probability": 0.8231 + }, + { + "start": 12579.88, + "end": 12580.12, + "probability": 0.8604 + }, + { + "start": 12580.5, + "end": 12581.2, + "probability": 0.8805 + }, + { + "start": 12581.84, + "end": 12587.08, + "probability": 0.9971 + }, + { + "start": 12587.66, + "end": 12589.42, + "probability": 0.8407 + }, + { + "start": 12589.54, + "end": 12591.12, + "probability": 0.9831 + }, + { + "start": 12591.58, + "end": 12594.86, + "probability": 0.9944 + }, + { + "start": 12595.38, + "end": 12597.6, + "probability": 0.9909 + }, + { + "start": 12597.7, + "end": 12599.07, + "probability": 0.7996 + }, + { + "start": 12599.92, + "end": 12601.37, + "probability": 0.9938 + }, + { + "start": 12602.08, + "end": 12603.88, + "probability": 0.7424 + }, + { + "start": 12604.0, + "end": 12604.43, + "probability": 0.928 + }, + { + "start": 12605.24, + "end": 12608.68, + "probability": 0.9971 + }, + { + "start": 12608.92, + "end": 12609.8, + "probability": 0.9792 + }, + { + "start": 12610.58, + "end": 12613.5, + "probability": 0.9807 + }, + { + "start": 12614.04, + "end": 12617.3, + "probability": 0.8973 + }, + { + "start": 12617.72, + "end": 12618.2, + "probability": 0.8383 + }, + { + "start": 12619.44, + "end": 12624.52, + "probability": 0.9901 + }, + { + "start": 12625.08, + "end": 12628.74, + "probability": 0.9454 + }, + { + "start": 12629.02, + "end": 12633.52, + "probability": 0.9891 + }, + { + "start": 12634.38, + "end": 12636.5, + "probability": 0.9829 + }, + { + "start": 12636.72, + "end": 12636.96, + "probability": 0.7925 + }, + { + "start": 12638.02, + "end": 12638.7, + "probability": 0.6007 + }, + { + "start": 12638.74, + "end": 12640.16, + "probability": 0.9514 + }, + { + "start": 12641.08, + "end": 12641.66, + "probability": 0.4059 + }, + { + "start": 12642.28, + "end": 12644.6, + "probability": 0.4987 + }, + { + "start": 12645.58, + "end": 12646.56, + "probability": 0.8865 + }, + { + "start": 12647.82, + "end": 12649.52, + "probability": 0.7042 + }, + { + "start": 12650.0, + "end": 12650.74, + "probability": 0.177 + }, + { + "start": 12650.94, + "end": 12651.66, + "probability": 0.7575 + }, + { + "start": 12652.0, + "end": 12655.06, + "probability": 0.9966 + }, + { + "start": 12655.68, + "end": 12657.6, + "probability": 0.9094 + }, + { + "start": 12658.4, + "end": 12659.76, + "probability": 0.4817 + }, + { + "start": 12660.36, + "end": 12661.84, + "probability": 0.0207 + }, + { + "start": 12662.18, + "end": 12662.92, + "probability": 0.7871 + }, + { + "start": 12663.92, + "end": 12664.59, + "probability": 0.9679 + }, + { + "start": 12680.26, + "end": 12683.08, + "probability": 0.9205 + }, + { + "start": 12683.34, + "end": 12683.68, + "probability": 0.4249 + }, + { + "start": 12683.94, + "end": 12684.78, + "probability": 0.5857 + }, + { + "start": 12686.22, + "end": 12691.06, + "probability": 0.7677 + }, + { + "start": 12692.06, + "end": 12693.81, + "probability": 0.7756 + }, + { + "start": 12695.3, + "end": 12696.8, + "probability": 0.6562 + }, + { + "start": 12697.84, + "end": 12699.9, + "probability": 0.1885 + }, + { + "start": 12710.82, + "end": 12711.14, + "probability": 0.9219 + }, + { + "start": 12711.14, + "end": 12711.14, + "probability": 0.1601 + }, + { + "start": 12711.14, + "end": 12711.14, + "probability": 0.0125 + }, + { + "start": 12711.14, + "end": 12711.14, + "probability": 0.1523 + }, + { + "start": 12711.14, + "end": 12715.16, + "probability": 0.3954 + }, + { + "start": 12716.02, + "end": 12716.82, + "probability": 0.5556 + }, + { + "start": 12717.26, + "end": 12718.06, + "probability": 0.8514 + }, + { + "start": 12718.48, + "end": 12721.28, + "probability": 0.7416 + }, + { + "start": 12722.0, + "end": 12723.56, + "probability": 0.9463 + }, + { + "start": 12723.76, + "end": 12724.06, + "probability": 0.9205 + }, + { + "start": 12724.28, + "end": 12724.88, + "probability": 0.9099 + }, + { + "start": 12725.36, + "end": 12726.38, + "probability": 0.8167 + }, + { + "start": 12726.48, + "end": 12728.81, + "probability": 0.4609 + }, + { + "start": 12729.0, + "end": 12729.4, + "probability": 0.4095 + }, + { + "start": 12729.58, + "end": 12731.76, + "probability": 0.7756 + }, + { + "start": 12732.16, + "end": 12732.42, + "probability": 0.7742 + }, + { + "start": 12733.16, + "end": 12733.26, + "probability": 0.0002 + }, + { + "start": 12734.86, + "end": 12738.26, + "probability": 0.144 + }, + { + "start": 12738.8, + "end": 12739.65, + "probability": 0.0746 + }, + { + "start": 12740.1, + "end": 12741.92, + "probability": 0.7119 + }, + { + "start": 12742.52, + "end": 12744.48, + "probability": 0.8538 + }, + { + "start": 12744.96, + "end": 12747.98, + "probability": 0.8945 + }, + { + "start": 12748.46, + "end": 12751.02, + "probability": 0.5514 + }, + { + "start": 12751.34, + "end": 12751.46, + "probability": 0.2346 + }, + { + "start": 12751.56, + "end": 12752.4, + "probability": 0.7973 + }, + { + "start": 12752.44, + "end": 12756.16, + "probability": 0.7405 + }, + { + "start": 12756.3, + "end": 12758.97, + "probability": 0.8864 + }, + { + "start": 12760.44, + "end": 12761.2, + "probability": 0.7842 + }, + { + "start": 12762.1, + "end": 12766.48, + "probability": 0.9907 + }, + { + "start": 12767.4, + "end": 12767.94, + "probability": 0.77 + }, + { + "start": 12768.72, + "end": 12770.66, + "probability": 0.9691 + }, + { + "start": 12771.08, + "end": 12773.12, + "probability": 0.9894 + }, + { + "start": 12773.46, + "end": 12776.26, + "probability": 0.9482 + }, + { + "start": 12776.92, + "end": 12778.72, + "probability": 0.9756 + }, + { + "start": 12780.2, + "end": 12782.94, + "probability": 0.9805 + }, + { + "start": 12783.36, + "end": 12787.12, + "probability": 0.8469 + }, + { + "start": 12787.98, + "end": 12795.4, + "probability": 0.958 + }, + { + "start": 12795.78, + "end": 12796.54, + "probability": 0.706 + }, + { + "start": 12797.22, + "end": 12799.92, + "probability": 0.9595 + }, + { + "start": 12800.4, + "end": 12800.86, + "probability": 0.4979 + }, + { + "start": 12801.36, + "end": 12801.62, + "probability": 0.2311 + }, + { + "start": 12802.3, + "end": 12805.16, + "probability": 0.6706 + }, + { + "start": 12805.24, + "end": 12810.6, + "probability": 0.6967 + }, + { + "start": 12810.68, + "end": 12813.2, + "probability": 0.8575 + }, + { + "start": 12813.78, + "end": 12814.12, + "probability": 0.7256 + }, + { + "start": 12814.36, + "end": 12815.48, + "probability": 0.816 + }, + { + "start": 12815.8, + "end": 12818.61, + "probability": 0.6653 + }, + { + "start": 12818.96, + "end": 12819.96, + "probability": 0.6085 + }, + { + "start": 12820.0, + "end": 12820.56, + "probability": 0.7137 + }, + { + "start": 12820.72, + "end": 12822.54, + "probability": 0.9888 + }, + { + "start": 12824.9, + "end": 12826.22, + "probability": 0.6416 + }, + { + "start": 12826.82, + "end": 12830.6, + "probability": 0.8021 + }, + { + "start": 12831.44, + "end": 12832.76, + "probability": 0.8952 + }, + { + "start": 12833.8, + "end": 12835.82, + "probability": 0.7477 + }, + { + "start": 12836.08, + "end": 12838.02, + "probability": 0.8131 + }, + { + "start": 12840.16, + "end": 12847.64, + "probability": 0.8256 + }, + { + "start": 12848.38, + "end": 12853.58, + "probability": 0.9453 + }, + { + "start": 12854.16, + "end": 12858.62, + "probability": 0.9111 + }, + { + "start": 12859.14, + "end": 12859.58, + "probability": 0.922 + }, + { + "start": 12860.16, + "end": 12861.92, + "probability": 0.6588 + }, + { + "start": 12862.46, + "end": 12863.18, + "probability": 0.5655 + }, + { + "start": 12863.26, + "end": 12863.88, + "probability": 0.7975 + }, + { + "start": 12864.1, + "end": 12866.38, + "probability": 0.9956 + }, + { + "start": 12867.06, + "end": 12870.52, + "probability": 0.8757 + }, + { + "start": 12872.76, + "end": 12872.82, + "probability": 0.3046 + }, + { + "start": 12872.82, + "end": 12873.36, + "probability": 0.5722 + }, + { + "start": 12873.54, + "end": 12875.04, + "probability": 0.5102 + }, + { + "start": 12875.14, + "end": 12878.14, + "probability": 0.2561 + }, + { + "start": 12878.26, + "end": 12879.9, + "probability": 0.1053 + }, + { + "start": 12881.38, + "end": 12883.06, + "probability": 0.1943 + }, + { + "start": 12883.14, + "end": 12883.78, + "probability": 0.3658 + }, + { + "start": 12884.5, + "end": 12885.2, + "probability": 0.0374 + }, + { + "start": 12885.2, + "end": 12886.86, + "probability": 0.256 + }, + { + "start": 12886.94, + "end": 12887.9, + "probability": 0.05 + }, + { + "start": 12888.1, + "end": 12889.73, + "probability": 0.6018 + }, + { + "start": 12890.18, + "end": 12890.96, + "probability": 0.0483 + }, + { + "start": 12891.0, + "end": 12892.28, + "probability": 0.5996 + }, + { + "start": 12892.52, + "end": 12894.09, + "probability": 0.0746 + }, + { + "start": 12894.64, + "end": 12894.66, + "probability": 0.0361 + }, + { + "start": 12894.66, + "end": 12895.08, + "probability": 0.6656 + }, + { + "start": 12895.24, + "end": 12897.5, + "probability": 0.8545 + }, + { + "start": 12898.52, + "end": 12899.02, + "probability": 0.5564 + }, + { + "start": 12899.02, + "end": 12899.54, + "probability": 0.8077 + }, + { + "start": 12899.98, + "end": 12901.76, + "probability": 0.8311 + }, + { + "start": 12902.38, + "end": 12902.38, + "probability": 0.0393 + }, + { + "start": 12902.38, + "end": 12902.7, + "probability": 0.438 + }, + { + "start": 12902.88, + "end": 12903.73, + "probability": 0.634 + }, + { + "start": 12907.04, + "end": 12907.24, + "probability": 0.0862 + }, + { + "start": 12907.24, + "end": 12910.62, + "probability": 0.7084 + }, + { + "start": 12910.68, + "end": 12912.08, + "probability": 0.8771 + }, + { + "start": 12912.48, + "end": 12913.62, + "probability": 0.6264 + }, + { + "start": 12914.82, + "end": 12917.42, + "probability": 0.4858 + }, + { + "start": 12918.2, + "end": 12919.74, + "probability": 0.4851 + }, + { + "start": 12920.54, + "end": 12924.44, + "probability": 0.9863 + }, + { + "start": 12924.56, + "end": 12926.02, + "probability": 0.9502 + }, + { + "start": 12926.3, + "end": 12929.76, + "probability": 0.7359 + }, + { + "start": 12929.86, + "end": 12930.76, + "probability": 0.705 + }, + { + "start": 12930.76, + "end": 12934.04, + "probability": 0.3207 + }, + { + "start": 12934.28, + "end": 12934.42, + "probability": 0.4458 + }, + { + "start": 12935.06, + "end": 12937.88, + "probability": 0.694 + }, + { + "start": 12938.48, + "end": 12940.66, + "probability": 0.8914 + }, + { + "start": 12941.88, + "end": 12949.76, + "probability": 0.9954 + }, + { + "start": 12950.54, + "end": 12956.34, + "probability": 0.9782 + }, + { + "start": 12956.42, + "end": 12958.52, + "probability": 0.9334 + }, + { + "start": 12959.44, + "end": 12961.37, + "probability": 0.9878 + }, + { + "start": 12961.92, + "end": 12965.42, + "probability": 0.8822 + }, + { + "start": 12965.76, + "end": 12967.46, + "probability": 0.9954 + }, + { + "start": 12968.3, + "end": 12968.52, + "probability": 0.525 + }, + { + "start": 12968.64, + "end": 12969.06, + "probability": 0.9286 + }, + { + "start": 12969.1, + "end": 12969.44, + "probability": 0.5508 + }, + { + "start": 12969.54, + "end": 12973.92, + "probability": 0.9875 + }, + { + "start": 12973.96, + "end": 12974.54, + "probability": 0.8363 + }, + { + "start": 12974.58, + "end": 12975.22, + "probability": 0.9734 + }, + { + "start": 12975.24, + "end": 12975.84, + "probability": 0.7078 + }, + { + "start": 12975.92, + "end": 12976.94, + "probability": 0.781 + }, + { + "start": 12977.46, + "end": 12979.26, + "probability": 0.7161 + }, + { + "start": 12979.36, + "end": 12979.74, + "probability": 0.5961 + }, + { + "start": 12979.82, + "end": 12985.24, + "probability": 0.9713 + }, + { + "start": 12985.54, + "end": 12987.3, + "probability": 0.8477 + }, + { + "start": 12988.42, + "end": 12989.04, + "probability": 0.6931 + }, + { + "start": 12989.16, + "end": 12989.76, + "probability": 0.9485 + }, + { + "start": 12989.92, + "end": 12992.97, + "probability": 0.9082 + }, + { + "start": 12993.24, + "end": 12995.52, + "probability": 0.8526 + }, + { + "start": 12996.3, + "end": 12997.54, + "probability": 0.9674 + }, + { + "start": 12998.52, + "end": 13001.98, + "probability": 0.99 + }, + { + "start": 13002.3, + "end": 13007.02, + "probability": 0.9635 + }, + { + "start": 13007.12, + "end": 13010.58, + "probability": 0.9696 + }, + { + "start": 13010.6, + "end": 13015.58, + "probability": 0.9956 + }, + { + "start": 13015.76, + "end": 13018.4, + "probability": 0.5151 + }, + { + "start": 13019.02, + "end": 13021.66, + "probability": 0.8004 + }, + { + "start": 13022.4, + "end": 13023.22, + "probability": 0.8096 + }, + { + "start": 13023.54, + "end": 13023.86, + "probability": 0.5064 + }, + { + "start": 13024.04, + "end": 13025.42, + "probability": 0.8717 + }, + { + "start": 13025.52, + "end": 13028.3, + "probability": 0.9912 + }, + { + "start": 13028.42, + "end": 13028.96, + "probability": 0.658 + }, + { + "start": 13029.5, + "end": 13033.7, + "probability": 0.976 + }, + { + "start": 13033.84, + "end": 13034.96, + "probability": 0.9597 + }, + { + "start": 13035.74, + "end": 13040.84, + "probability": 0.9932 + }, + { + "start": 13040.94, + "end": 13041.86, + "probability": 0.9627 + }, + { + "start": 13041.94, + "end": 13043.1, + "probability": 0.9786 + }, + { + "start": 13043.18, + "end": 13044.64, + "probability": 0.8252 + }, + { + "start": 13044.76, + "end": 13046.5, + "probability": 0.7699 + }, + { + "start": 13046.64, + "end": 13048.48, + "probability": 0.686 + }, + { + "start": 13048.62, + "end": 13050.4, + "probability": 0.9849 + }, + { + "start": 13050.48, + "end": 13054.0, + "probability": 0.9556 + }, + { + "start": 13055.0, + "end": 13056.94, + "probability": 0.9891 + }, + { + "start": 13057.1, + "end": 13057.92, + "probability": 0.9578 + }, + { + "start": 13058.04, + "end": 13058.88, + "probability": 0.8074 + }, + { + "start": 13060.2, + "end": 13063.66, + "probability": 0.9766 + }, + { + "start": 13063.92, + "end": 13064.84, + "probability": 0.7293 + }, + { + "start": 13065.06, + "end": 13066.5, + "probability": 0.9523 + }, + { + "start": 13066.68, + "end": 13068.1, + "probability": 0.853 + }, + { + "start": 13068.16, + "end": 13068.96, + "probability": 0.9579 + }, + { + "start": 13069.72, + "end": 13075.7, + "probability": 0.9578 + }, + { + "start": 13076.02, + "end": 13078.28, + "probability": 0.9761 + }, + { + "start": 13078.88, + "end": 13083.96, + "probability": 0.9563 + }, + { + "start": 13084.5, + "end": 13087.76, + "probability": 0.9701 + }, + { + "start": 13088.24, + "end": 13091.18, + "probability": 0.9961 + }, + { + "start": 13091.28, + "end": 13093.28, + "probability": 0.8705 + }, + { + "start": 13094.06, + "end": 13099.6, + "probability": 0.9968 + }, + { + "start": 13099.6, + "end": 13103.36, + "probability": 0.998 + }, + { + "start": 13103.64, + "end": 13109.0, + "probability": 0.9983 + }, + { + "start": 13109.0, + "end": 13114.12, + "probability": 0.947 + }, + { + "start": 13114.74, + "end": 13115.42, + "probability": 0.8069 + }, + { + "start": 13115.56, + "end": 13118.98, + "probability": 0.9627 + }, + { + "start": 13119.75, + "end": 13122.94, + "probability": 0.9367 + }, + { + "start": 13123.14, + "end": 13125.54, + "probability": 0.9442 + }, + { + "start": 13126.24, + "end": 13126.98, + "probability": 0.6992 + }, + { + "start": 13127.04, + "end": 13127.08, + "probability": 0.6545 + }, + { + "start": 13127.18, + "end": 13127.66, + "probability": 0.6387 + }, + { + "start": 13127.86, + "end": 13130.08, + "probability": 0.7682 + }, + { + "start": 13130.28, + "end": 13131.82, + "probability": 0.9018 + }, + { + "start": 13132.2, + "end": 13132.5, + "probability": 0.3654 + }, + { + "start": 13132.56, + "end": 13133.08, + "probability": 0.8046 + }, + { + "start": 13133.16, + "end": 13135.92, + "probability": 0.7994 + }, + { + "start": 13136.0, + "end": 13137.62, + "probability": 0.8718 + }, + { + "start": 13138.34, + "end": 13140.7, + "probability": 0.9613 + }, + { + "start": 13141.22, + "end": 13142.3, + "probability": 0.7764 + }, + { + "start": 13142.7, + "end": 13143.44, + "probability": 0.6987 + }, + { + "start": 13143.88, + "end": 13145.16, + "probability": 0.988 + }, + { + "start": 13145.64, + "end": 13146.32, + "probability": 0.9744 + }, + { + "start": 13146.98, + "end": 13149.6, + "probability": 0.9896 + }, + { + "start": 13150.22, + "end": 13151.08, + "probability": 0.996 + }, + { + "start": 13151.66, + "end": 13152.68, + "probability": 0.9875 + }, + { + "start": 13153.3, + "end": 13154.06, + "probability": 0.7493 + }, + { + "start": 13159.64, + "end": 13160.08, + "probability": 0.8612 + }, + { + "start": 13160.08, + "end": 13160.08, + "probability": 0.0373 + }, + { + "start": 13160.08, + "end": 13161.16, + "probability": 0.5345 + }, + { + "start": 13163.14, + "end": 13164.4, + "probability": 0.6462 + }, + { + "start": 13165.66, + "end": 13166.12, + "probability": 0.7 + }, + { + "start": 13171.14, + "end": 13172.14, + "probability": 0.8947 + }, + { + "start": 13177.06, + "end": 13179.28, + "probability": 0.1658 + }, + { + "start": 13180.62, + "end": 13183.84, + "probability": 0.8182 + }, + { + "start": 13186.04, + "end": 13188.34, + "probability": 0.6223 + }, + { + "start": 13188.86, + "end": 13189.46, + "probability": 0.6828 + }, + { + "start": 13192.38, + "end": 13194.7, + "probability": 0.8618 + }, + { + "start": 13196.4, + "end": 13199.76, + "probability": 0.8199 + }, + { + "start": 13203.06, + "end": 13205.5, + "probability": 0.6039 + }, + { + "start": 13206.2, + "end": 13207.48, + "probability": 0.5672 + }, + { + "start": 13217.38, + "end": 13220.32, + "probability": 0.6175 + }, + { + "start": 13223.4, + "end": 13223.92, + "probability": 0.7413 + }, + { + "start": 13227.8, + "end": 13230.14, + "probability": 0.7774 + }, + { + "start": 13231.78, + "end": 13233.54, + "probability": 0.5485 + }, + { + "start": 13234.94, + "end": 13239.96, + "probability": 0.9663 + }, + { + "start": 13241.3, + "end": 13241.86, + "probability": 0.811 + }, + { + "start": 13243.82, + "end": 13246.24, + "probability": 0.9182 + }, + { + "start": 13246.3, + "end": 13248.0, + "probability": 0.9885 + }, + { + "start": 13248.08, + "end": 13249.22, + "probability": 0.7318 + }, + { + "start": 13249.42, + "end": 13249.54, + "probability": 0.5903 + }, + { + "start": 13251.1, + "end": 13253.02, + "probability": 0.9816 + }, + { + "start": 13255.16, + "end": 13256.8, + "probability": 0.973 + }, + { + "start": 13258.1, + "end": 13258.86, + "probability": 0.8682 + }, + { + "start": 13259.58, + "end": 13264.4, + "probability": 0.9959 + }, + { + "start": 13266.58, + "end": 13272.98, + "probability": 0.9967 + }, + { + "start": 13274.16, + "end": 13280.14, + "probability": 0.7093 + }, + { + "start": 13280.5, + "end": 13282.62, + "probability": 0.9966 + }, + { + "start": 13284.64, + "end": 13287.6, + "probability": 0.9956 + }, + { + "start": 13289.12, + "end": 13289.32, + "probability": 0.4965 + }, + { + "start": 13289.46, + "end": 13290.8, + "probability": 0.9634 + }, + { + "start": 13290.9, + "end": 13297.38, + "probability": 0.9863 + }, + { + "start": 13299.24, + "end": 13303.88, + "probability": 0.8452 + }, + { + "start": 13305.04, + "end": 13307.8, + "probability": 0.9245 + }, + { + "start": 13309.76, + "end": 13311.48, + "probability": 0.803 + }, + { + "start": 13312.6, + "end": 13313.3, + "probability": 0.9305 + }, + { + "start": 13314.6, + "end": 13320.14, + "probability": 0.9565 + }, + { + "start": 13321.28, + "end": 13322.5, + "probability": 0.9286 + }, + { + "start": 13324.5, + "end": 13331.68, + "probability": 0.7462 + }, + { + "start": 13332.86, + "end": 13333.62, + "probability": 0.7202 + }, + { + "start": 13334.42, + "end": 13335.82, + "probability": 0.9795 + }, + { + "start": 13337.92, + "end": 13342.62, + "probability": 0.9841 + }, + { + "start": 13343.9, + "end": 13348.28, + "probability": 0.9863 + }, + { + "start": 13348.56, + "end": 13350.56, + "probability": 0.9753 + }, + { + "start": 13351.18, + "end": 13353.0, + "probability": 0.8511 + }, + { + "start": 13354.44, + "end": 13355.64, + "probability": 0.8157 + }, + { + "start": 13356.9, + "end": 13358.98, + "probability": 0.9668 + }, + { + "start": 13359.76, + "end": 13363.96, + "probability": 0.9868 + }, + { + "start": 13365.46, + "end": 13365.98, + "probability": 0.8027 + }, + { + "start": 13366.9, + "end": 13371.6, + "probability": 0.9976 + }, + { + "start": 13372.2, + "end": 13374.52, + "probability": 0.6947 + }, + { + "start": 13375.36, + "end": 13376.14, + "probability": 0.8361 + }, + { + "start": 13376.7, + "end": 13378.24, + "probability": 0.9955 + }, + { + "start": 13378.78, + "end": 13380.62, + "probability": 0.7518 + }, + { + "start": 13381.56, + "end": 13383.64, + "probability": 0.9592 + }, + { + "start": 13385.22, + "end": 13387.04, + "probability": 0.9932 + }, + { + "start": 13387.12, + "end": 13387.68, + "probability": 0.9114 + }, + { + "start": 13388.06, + "end": 13390.16, + "probability": 0.9982 + }, + { + "start": 13390.82, + "end": 13392.56, + "probability": 0.9819 + }, + { + "start": 13393.62, + "end": 13397.7, + "probability": 0.6552 + }, + { + "start": 13398.06, + "end": 13402.42, + "probability": 0.9101 + }, + { + "start": 13403.04, + "end": 13405.18, + "probability": 0.9473 + }, + { + "start": 13405.22, + "end": 13405.44, + "probability": 0.6063 + }, + { + "start": 13405.66, + "end": 13407.66, + "probability": 0.9438 + }, + { + "start": 13407.8, + "end": 13409.12, + "probability": 0.6551 + }, + { + "start": 13409.22, + "end": 13411.32, + "probability": 0.9428 + }, + { + "start": 13411.44, + "end": 13417.38, + "probability": 0.8771 + }, + { + "start": 13417.38, + "end": 13419.92, + "probability": 0.985 + }, + { + "start": 13421.1, + "end": 13426.7, + "probability": 0.9639 + }, + { + "start": 13427.14, + "end": 13429.0, + "probability": 0.996 + }, + { + "start": 13429.32, + "end": 13429.32, + "probability": 0.0456 + }, + { + "start": 13429.32, + "end": 13429.32, + "probability": 0.2681 + }, + { + "start": 13429.32, + "end": 13430.96, + "probability": 0.9116 + }, + { + "start": 13431.34, + "end": 13435.3, + "probability": 0.9759 + }, + { + "start": 13436.28, + "end": 13438.04, + "probability": 0.938 + }, + { + "start": 13438.5, + "end": 13439.26, + "probability": 0.6637 + }, + { + "start": 13439.46, + "end": 13439.86, + "probability": 0.8295 + }, + { + "start": 13439.86, + "end": 13440.22, + "probability": 0.7137 + }, + { + "start": 13441.44, + "end": 13442.5, + "probability": 0.9379 + }, + { + "start": 13442.6, + "end": 13443.09, + "probability": 0.4759 + }, + { + "start": 13443.26, + "end": 13445.92, + "probability": 0.8673 + }, + { + "start": 13445.98, + "end": 13446.82, + "probability": 0.8457 + }, + { + "start": 13446.86, + "end": 13448.3, + "probability": 0.9614 + }, + { + "start": 13450.62, + "end": 13451.78, + "probability": 0.0117 + }, + { + "start": 13452.62, + "end": 13454.8, + "probability": 0.7714 + }, + { + "start": 13455.34, + "end": 13456.24, + "probability": 0.9863 + }, + { + "start": 13457.02, + "end": 13458.04, + "probability": 0.6195 + }, + { + "start": 13458.64, + "end": 13460.36, + "probability": 0.98 + }, + { + "start": 13480.96, + "end": 13480.96, + "probability": 0.0316 + }, + { + "start": 13480.96, + "end": 13480.96, + "probability": 0.0444 + }, + { + "start": 13480.96, + "end": 13480.96, + "probability": 0.2876 + }, + { + "start": 13480.96, + "end": 13480.96, + "probability": 0.0821 + }, + { + "start": 13480.96, + "end": 13480.96, + "probability": 0.2339 + }, + { + "start": 13480.96, + "end": 13481.76, + "probability": 0.4786 + }, + { + "start": 13483.1, + "end": 13484.02, + "probability": 0.8373 + }, + { + "start": 13485.74, + "end": 13487.78, + "probability": 0.8942 + }, + { + "start": 13488.7, + "end": 13490.94, + "probability": 0.9557 + }, + { + "start": 13492.0, + "end": 13493.02, + "probability": 0.7498 + }, + { + "start": 13493.06, + "end": 13495.4, + "probability": 0.9031 + }, + { + "start": 13495.92, + "end": 13496.78, + "probability": 0.7881 + }, + { + "start": 13497.38, + "end": 13499.58, + "probability": 0.9902 + }, + { + "start": 13500.08, + "end": 13501.61, + "probability": 0.9935 + }, + { + "start": 13502.64, + "end": 13503.9, + "probability": 0.9944 + }, + { + "start": 13504.42, + "end": 13505.84, + "probability": 0.6687 + }, + { + "start": 13505.94, + "end": 13507.3, + "probability": 0.7597 + }, + { + "start": 13507.3, + "end": 13509.66, + "probability": 0.9083 + }, + { + "start": 13509.74, + "end": 13511.05, + "probability": 0.9937 + }, + { + "start": 13512.06, + "end": 13513.38, + "probability": 0.7473 + }, + { + "start": 13514.16, + "end": 13519.62, + "probability": 0.9361 + }, + { + "start": 13520.98, + "end": 13524.64, + "probability": 0.1995 + }, + { + "start": 13525.16, + "end": 13526.06, + "probability": 0.2861 + }, + { + "start": 13530.42, + "end": 13530.7, + "probability": 0.0634 + }, + { + "start": 13530.7, + "end": 13530.7, + "probability": 0.0839 + }, + { + "start": 13530.7, + "end": 13530.7, + "probability": 0.0466 + }, + { + "start": 13530.7, + "end": 13531.05, + "probability": 0.5769 + }, + { + "start": 13531.36, + "end": 13531.96, + "probability": 0.3034 + }, + { + "start": 13532.14, + "end": 13535.96, + "probability": 0.8823 + }, + { + "start": 13535.96, + "end": 13538.22, + "probability": 0.5983 + }, + { + "start": 13539.32, + "end": 13544.88, + "probability": 0.959 + }, + { + "start": 13545.42, + "end": 13547.52, + "probability": 0.9866 + }, + { + "start": 13547.6, + "end": 13549.56, + "probability": 0.984 + }, + { + "start": 13550.1, + "end": 13552.56, + "probability": 0.9399 + }, + { + "start": 13553.16, + "end": 13555.24, + "probability": 0.8244 + }, + { + "start": 13556.06, + "end": 13558.56, + "probability": 0.9497 + }, + { + "start": 13559.14, + "end": 13562.5, + "probability": 0.8995 + }, + { + "start": 13563.48, + "end": 13568.76, + "probability": 0.8253 + }, + { + "start": 13569.32, + "end": 13575.06, + "probability": 0.9966 + }, + { + "start": 13575.44, + "end": 13576.12, + "probability": 0.5848 + }, + { + "start": 13576.24, + "end": 13578.58, + "probability": 0.892 + }, + { + "start": 13578.92, + "end": 13580.76, + "probability": 0.9741 + }, + { + "start": 13581.16, + "end": 13584.4, + "probability": 0.8877 + }, + { + "start": 13584.4, + "end": 13586.24, + "probability": 0.9399 + }, + { + "start": 13586.82, + "end": 13588.3, + "probability": 0.9696 + }, + { + "start": 13588.7, + "end": 13588.9, + "probability": 0.0033 + }, + { + "start": 13590.28, + "end": 13590.46, + "probability": 0.0681 + }, + { + "start": 13590.46, + "end": 13590.56, + "probability": 0.3363 + }, + { + "start": 13590.88, + "end": 13592.28, + "probability": 0.6626 + }, + { + "start": 13592.44, + "end": 13593.16, + "probability": 0.8781 + }, + { + "start": 13594.46, + "end": 13602.08, + "probability": 0.7444 + }, + { + "start": 13602.22, + "end": 13603.46, + "probability": 0.7773 + }, + { + "start": 13603.96, + "end": 13605.38, + "probability": 0.6472 + }, + { + "start": 13605.78, + "end": 13609.32, + "probability": 0.9949 + }, + { + "start": 13609.32, + "end": 13612.56, + "probability": 0.9727 + }, + { + "start": 13613.12, + "end": 13615.82, + "probability": 0.9546 + }, + { + "start": 13616.1, + "end": 13619.14, + "probability": 0.9175 + }, + { + "start": 13619.5, + "end": 13620.26, + "probability": 0.8634 + }, + { + "start": 13620.48, + "end": 13621.76, + "probability": 0.9608 + }, + { + "start": 13622.16, + "end": 13622.82, + "probability": 0.9348 + }, + { + "start": 13622.9, + "end": 13623.38, + "probability": 0.9756 + }, + { + "start": 13623.48, + "end": 13624.7, + "probability": 0.9049 + }, + { + "start": 13625.12, + "end": 13626.1, + "probability": 0.7768 + }, + { + "start": 13626.14, + "end": 13627.78, + "probability": 0.6924 + }, + { + "start": 13628.14, + "end": 13628.74, + "probability": 0.5076 + }, + { + "start": 13628.84, + "end": 13635.64, + "probability": 0.9568 + }, + { + "start": 13635.8, + "end": 13638.31, + "probability": 0.9971 + }, + { + "start": 13638.72, + "end": 13641.18, + "probability": 0.9259 + }, + { + "start": 13641.58, + "end": 13643.0, + "probability": 0.9458 + }, + { + "start": 13643.42, + "end": 13646.85, + "probability": 0.9702 + }, + { + "start": 13647.24, + "end": 13649.74, + "probability": 0.9478 + }, + { + "start": 13650.06, + "end": 13653.62, + "probability": 0.972 + }, + { + "start": 13653.62, + "end": 13656.78, + "probability": 0.9917 + }, + { + "start": 13656.8, + "end": 13657.82, + "probability": 0.9073 + }, + { + "start": 13658.08, + "end": 13658.18, + "probability": 0.6381 + }, + { + "start": 13658.66, + "end": 13660.34, + "probability": 0.6778 + }, + { + "start": 13660.82, + "end": 13662.58, + "probability": 0.8278 + }, + { + "start": 13662.98, + "end": 13664.26, + "probability": 0.6888 + }, + { + "start": 13668.78, + "end": 13671.3, + "probability": 0.9097 + }, + { + "start": 13686.64, + "end": 13686.7, + "probability": 0.0207 + }, + { + "start": 13686.7, + "end": 13686.98, + "probability": 0.5205 + }, + { + "start": 13688.38, + "end": 13693.72, + "probability": 0.4815 + }, + { + "start": 13695.9, + "end": 13696.7, + "probability": 0.7701 + }, + { + "start": 13697.18, + "end": 13698.2, + "probability": 0.7 + }, + { + "start": 13698.26, + "end": 13698.42, + "probability": 0.6625 + }, + { + "start": 13698.56, + "end": 13700.46, + "probability": 0.9956 + }, + { + "start": 13701.54, + "end": 13703.68, + "probability": 0.8925 + }, + { + "start": 13704.96, + "end": 13707.28, + "probability": 0.9128 + }, + { + "start": 13708.18, + "end": 13712.08, + "probability": 0.6382 + }, + { + "start": 13712.22, + "end": 13712.66, + "probability": 0.9426 + }, + { + "start": 13713.98, + "end": 13716.5, + "probability": 0.9106 + }, + { + "start": 13716.8, + "end": 13722.72, + "probability": 0.8706 + }, + { + "start": 13723.46, + "end": 13724.02, + "probability": 0.9821 + }, + { + "start": 13724.82, + "end": 13727.32, + "probability": 0.8612 + }, + { + "start": 13728.64, + "end": 13732.14, + "probability": 0.7926 + }, + { + "start": 13732.72, + "end": 13736.71, + "probability": 0.8539 + }, + { + "start": 13737.74, + "end": 13740.0, + "probability": 0.8992 + }, + { + "start": 13740.08, + "end": 13741.48, + "probability": 0.535 + }, + { + "start": 13742.52, + "end": 13743.1, + "probability": 0.863 + }, + { + "start": 13743.3, + "end": 13745.54, + "probability": 0.7908 + }, + { + "start": 13745.66, + "end": 13746.63, + "probability": 0.9775 + }, + { + "start": 13747.42, + "end": 13749.6, + "probability": 0.8075 + }, + { + "start": 13749.8, + "end": 13750.4, + "probability": 0.794 + }, + { + "start": 13750.58, + "end": 13754.74, + "probability": 0.8178 + }, + { + "start": 13755.4, + "end": 13756.1, + "probability": 0.9763 + }, + { + "start": 13757.34, + "end": 13762.14, + "probability": 0.8853 + }, + { + "start": 13763.3, + "end": 13765.38, + "probability": 0.9629 + }, + { + "start": 13766.16, + "end": 13767.3, + "probability": 0.8572 + }, + { + "start": 13768.08, + "end": 13772.52, + "probability": 0.9907 + }, + { + "start": 13772.52, + "end": 13776.86, + "probability": 0.9147 + }, + { + "start": 13778.02, + "end": 13778.82, + "probability": 0.7059 + }, + { + "start": 13779.88, + "end": 13781.2, + "probability": 0.9695 + }, + { + "start": 13781.38, + "end": 13782.52, + "probability": 0.925 + }, + { + "start": 13783.18, + "end": 13785.66, + "probability": 0.9494 + }, + { + "start": 13786.66, + "end": 13790.16, + "probability": 0.7994 + }, + { + "start": 13790.32, + "end": 13792.9, + "probability": 0.9775 + }, + { + "start": 13794.74, + "end": 13798.7, + "probability": 0.9438 + }, + { + "start": 13799.84, + "end": 13800.52, + "probability": 0.637 + }, + { + "start": 13801.26, + "end": 13803.08, + "probability": 0.7358 + }, + { + "start": 13804.31, + "end": 13806.84, + "probability": 0.7385 + }, + { + "start": 13807.22, + "end": 13807.8, + "probability": 0.9403 + }, + { + "start": 13807.94, + "end": 13810.32, + "probability": 0.9557 + }, + { + "start": 13810.88, + "end": 13811.48, + "probability": 0.8396 + }, + { + "start": 13812.04, + "end": 13812.42, + "probability": 0.7279 + }, + { + "start": 13813.2, + "end": 13814.32, + "probability": 0.9841 + }, + { + "start": 13815.0, + "end": 13818.24, + "probability": 0.8536 + }, + { + "start": 13818.9, + "end": 13819.52, + "probability": 0.8125 + }, + { + "start": 13820.26, + "end": 13822.56, + "probability": 0.9655 + }, + { + "start": 13823.9, + "end": 13825.96, + "probability": 0.9424 + }, + { + "start": 13826.98, + "end": 13830.1, + "probability": 0.9181 + }, + { + "start": 13830.64, + "end": 13835.78, + "probability": 0.9746 + }, + { + "start": 13836.7, + "end": 13837.67, + "probability": 0.7717 + }, + { + "start": 13838.62, + "end": 13842.3, + "probability": 0.8092 + }, + { + "start": 13842.3, + "end": 13846.96, + "probability": 0.8215 + }, + { + "start": 13847.86, + "end": 13852.4, + "probability": 0.8924 + }, + { + "start": 13852.74, + "end": 13853.29, + "probability": 0.9206 + }, + { + "start": 13853.66, + "end": 13856.16, + "probability": 0.789 + }, + { + "start": 13856.46, + "end": 13857.91, + "probability": 0.4127 + }, + { + "start": 13858.26, + "end": 13860.58, + "probability": 0.9277 + }, + { + "start": 13861.48, + "end": 13866.98, + "probability": 0.9401 + }, + { + "start": 13867.06, + "end": 13867.92, + "probability": 0.7715 + }, + { + "start": 13868.02, + "end": 13869.46, + "probability": 0.6443 + }, + { + "start": 13869.94, + "end": 13873.82, + "probability": 0.7937 + }, + { + "start": 13874.48, + "end": 13878.88, + "probability": 0.9703 + }, + { + "start": 13879.04, + "end": 13880.0, + "probability": 0.7277 + }, + { + "start": 13880.5, + "end": 13883.26, + "probability": 0.9777 + }, + { + "start": 13883.7, + "end": 13884.6, + "probability": 0.6746 + }, + { + "start": 13885.3, + "end": 13887.7, + "probability": 0.7317 + }, + { + "start": 13888.1, + "end": 13890.62, + "probability": 0.768 + }, + { + "start": 13890.64, + "end": 13893.04, + "probability": 0.9333 + }, + { + "start": 13893.42, + "end": 13896.22, + "probability": 0.9482 + }, + { + "start": 13896.22, + "end": 13900.34, + "probability": 0.4963 + }, + { + "start": 13900.82, + "end": 13902.42, + "probability": 0.9912 + }, + { + "start": 13902.48, + "end": 13903.8, + "probability": 0.6723 + }, + { + "start": 13904.12, + "end": 13905.94, + "probability": 0.8848 + }, + { + "start": 13906.4, + "end": 13906.58, + "probability": 0.8683 + }, + { + "start": 13908.12, + "end": 13908.48, + "probability": 0.694 + }, + { + "start": 13911.79, + "end": 13912.66, + "probability": 0.597 + }, + { + "start": 13914.08, + "end": 13915.34, + "probability": 0.6708 + }, + { + "start": 13915.34, + "end": 13916.54, + "probability": 0.5516 + }, + { + "start": 13916.68, + "end": 13921.0, + "probability": 0.9694 + }, + { + "start": 13921.0, + "end": 13927.24, + "probability": 0.9902 + }, + { + "start": 13927.38, + "end": 13929.54, + "probability": 0.1555 + }, + { + "start": 13930.34, + "end": 13932.1, + "probability": 0.4896 + }, + { + "start": 13933.48, + "end": 13934.84, + "probability": 0.5406 + }, + { + "start": 13948.46, + "end": 13951.67, + "probability": 0.5779 + }, + { + "start": 13954.92, + "end": 13957.36, + "probability": 0.631 + }, + { + "start": 13957.82, + "end": 13958.42, + "probability": 0.5125 + }, + { + "start": 13958.46, + "end": 13959.3, + "probability": 0.6885 + }, + { + "start": 13959.4, + "end": 13960.62, + "probability": 0.8882 + }, + { + "start": 13961.66, + "end": 13963.34, + "probability": 0.8233 + }, + { + "start": 13964.13, + "end": 13969.46, + "probability": 0.9583 + }, + { + "start": 13969.46, + "end": 13973.32, + "probability": 0.9814 + }, + { + "start": 13973.42, + "end": 13974.9, + "probability": 0.9987 + }, + { + "start": 13975.62, + "end": 13977.33, + "probability": 0.9153 + }, + { + "start": 13978.22, + "end": 13979.5, + "probability": 0.7891 + }, + { + "start": 13979.62, + "end": 13980.04, + "probability": 0.5422 + }, + { + "start": 13980.71, + "end": 13984.06, + "probability": 0.9905 + }, + { + "start": 13984.34, + "end": 13987.76, + "probability": 0.9834 + }, + { + "start": 13988.0, + "end": 13991.08, + "probability": 0.9902 + }, + { + "start": 13991.8, + "end": 13995.66, + "probability": 0.9844 + }, + { + "start": 13996.12, + "end": 13999.76, + "probability": 0.9822 + }, + { + "start": 13999.84, + "end": 14001.5, + "probability": 0.986 + }, + { + "start": 14002.16, + "end": 14005.34, + "probability": 0.8198 + }, + { + "start": 14005.96, + "end": 14007.5, + "probability": 0.8243 + }, + { + "start": 14008.28, + "end": 14008.34, + "probability": 0.1608 + }, + { + "start": 14008.34, + "end": 14010.22, + "probability": 0.748 + }, + { + "start": 14010.3, + "end": 14016.26, + "probability": 0.822 + }, + { + "start": 14016.38, + "end": 14018.38, + "probability": 0.9746 + }, + { + "start": 14019.42, + "end": 14022.36, + "probability": 0.9697 + }, + { + "start": 14022.36, + "end": 14026.24, + "probability": 0.9717 + }, + { + "start": 14026.7, + "end": 14028.36, + "probability": 0.8042 + }, + { + "start": 14029.12, + "end": 14035.4, + "probability": 0.9858 + }, + { + "start": 14035.46, + "end": 14039.16, + "probability": 0.9905 + }, + { + "start": 14039.3, + "end": 14044.48, + "probability": 0.7207 + }, + { + "start": 14045.04, + "end": 14047.96, + "probability": 0.8589 + }, + { + "start": 14048.88, + "end": 14050.24, + "probability": 0.5385 + }, + { + "start": 14051.28, + "end": 14052.62, + "probability": 0.4741 + }, + { + "start": 14053.4, + "end": 14054.74, + "probability": 0.3292 + }, + { + "start": 14056.12, + "end": 14060.95, + "probability": 0.9635 + }, + { + "start": 14062.02, + "end": 14065.6, + "probability": 0.9414 + }, + { + "start": 14066.04, + "end": 14068.54, + "probability": 0.7877 + }, + { + "start": 14069.02, + "end": 14071.44, + "probability": 0.7779 + }, + { + "start": 14071.92, + "end": 14073.14, + "probability": 0.747 + }, + { + "start": 14073.36, + "end": 14078.32, + "probability": 0.9777 + }, + { + "start": 14078.46, + "end": 14081.56, + "probability": 0.9615 + }, + { + "start": 14082.2, + "end": 14085.58, + "probability": 0.8973 + }, + { + "start": 14085.76, + "end": 14088.26, + "probability": 0.9902 + }, + { + "start": 14089.42, + "end": 14090.64, + "probability": 0.9397 + }, + { + "start": 14091.28, + "end": 14094.06, + "probability": 0.79 + }, + { + "start": 14094.98, + "end": 14098.24, + "probability": 0.9526 + }, + { + "start": 14098.28, + "end": 14103.18, + "probability": 0.9941 + }, + { + "start": 14103.85, + "end": 14107.36, + "probability": 0.9976 + }, + { + "start": 14107.48, + "end": 14110.1, + "probability": 0.6765 + }, + { + "start": 14110.24, + "end": 14116.22, + "probability": 0.9565 + }, + { + "start": 14116.22, + "end": 14123.64, + "probability": 0.9034 + }, + { + "start": 14123.64, + "end": 14124.68, + "probability": 0.8425 + }, + { + "start": 14125.22, + "end": 14127.16, + "probability": 0.9145 + }, + { + "start": 14127.26, + "end": 14127.88, + "probability": 0.4906 + }, + { + "start": 14128.38, + "end": 14134.54, + "probability": 0.8745 + }, + { + "start": 14134.76, + "end": 14137.76, + "probability": 0.9885 + }, + { + "start": 14138.22, + "end": 14145.48, + "probability": 0.2751 + }, + { + "start": 14149.82, + "end": 14150.76, + "probability": 0.5662 + }, + { + "start": 14153.34, + "end": 14153.56, + "probability": 0.0466 + }, + { + "start": 14153.56, + "end": 14153.56, + "probability": 0.016 + }, + { + "start": 14153.56, + "end": 14153.56, + "probability": 0.0205 + }, + { + "start": 14153.56, + "end": 14153.56, + "probability": 0.0249 + }, + { + "start": 14153.56, + "end": 14153.56, + "probability": 0.056 + }, + { + "start": 14153.56, + "end": 14153.56, + "probability": 0.0705 + }, + { + "start": 14153.56, + "end": 14157.48, + "probability": 0.3603 + }, + { + "start": 14161.08, + "end": 14164.89, + "probability": 0.3469 + }, + { + "start": 14167.04, + "end": 14167.58, + "probability": 0.1188 + }, + { + "start": 14167.58, + "end": 14167.98, + "probability": 0.2397 + }, + { + "start": 14167.98, + "end": 14168.0, + "probability": 0.1037 + }, + { + "start": 14168.0, + "end": 14169.66, + "probability": 0.3644 + }, + { + "start": 14169.82, + "end": 14177.08, + "probability": 0.0311 + }, + { + "start": 14184.42, + "end": 14185.54, + "probability": 0.1147 + }, + { + "start": 14186.96, + "end": 14187.4, + "probability": 0.5433 + }, + { + "start": 14196.6, + "end": 14199.07, + "probability": 0.498 + }, + { + "start": 14201.64, + "end": 14202.06, + "probability": 0.0315 + }, + { + "start": 14202.06, + "end": 14207.22, + "probability": 0.0726 + }, + { + "start": 14207.44, + "end": 14208.2, + "probability": 0.0223 + }, + { + "start": 14209.67, + "end": 14213.72, + "probability": 0.0454 + }, + { + "start": 14213.72, + "end": 14214.52, + "probability": 0.0991 + }, + { + "start": 14215.18, + "end": 14215.65, + "probability": 0.4234 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.0, + "end": 14257.0, + "probability": 0.0 + }, + { + "start": 14257.32, + "end": 14257.42, + "probability": 0.1365 + }, + { + "start": 14257.42, + "end": 14257.92, + "probability": 0.1115 + }, + { + "start": 14257.94, + "end": 14259.16, + "probability": 0.4306 + }, + { + "start": 14259.3, + "end": 14260.98, + "probability": 0.9866 + }, + { + "start": 14261.98, + "end": 14266.1, + "probability": 0.9715 + }, + { + "start": 14267.26, + "end": 14270.8, + "probability": 0.9248 + }, + { + "start": 14271.8, + "end": 14275.86, + "probability": 0.969 + }, + { + "start": 14276.86, + "end": 14277.52, + "probability": 0.999 + }, + { + "start": 14278.86, + "end": 14279.8, + "probability": 0.8296 + }, + { + "start": 14281.32, + "end": 14282.66, + "probability": 0.8022 + }, + { + "start": 14283.94, + "end": 14291.42, + "probability": 0.9783 + }, + { + "start": 14293.48, + "end": 14295.16, + "probability": 0.8683 + }, + { + "start": 14295.9, + "end": 14296.88, + "probability": 0.921 + }, + { + "start": 14297.9, + "end": 14301.36, + "probability": 0.9957 + }, + { + "start": 14302.32, + "end": 14304.16, + "probability": 0.9734 + }, + { + "start": 14304.94, + "end": 14308.18, + "probability": 0.9445 + }, + { + "start": 14309.12, + "end": 14312.32, + "probability": 0.9806 + }, + { + "start": 14313.0, + "end": 14313.62, + "probability": 0.6314 + }, + { + "start": 14314.18, + "end": 14316.58, + "probability": 0.9161 + }, + { + "start": 14317.76, + "end": 14320.66, + "probability": 0.7676 + }, + { + "start": 14321.8, + "end": 14323.66, + "probability": 0.7518 + }, + { + "start": 14324.74, + "end": 14330.55, + "probability": 0.8929 + }, + { + "start": 14331.92, + "end": 14334.88, + "probability": 0.9922 + }, + { + "start": 14335.58, + "end": 14339.72, + "probability": 0.9474 + }, + { + "start": 14340.32, + "end": 14342.68, + "probability": 0.998 + }, + { + "start": 14343.18, + "end": 14344.18, + "probability": 0.6183 + }, + { + "start": 14344.54, + "end": 14345.84, + "probability": 0.9417 + }, + { + "start": 14346.52, + "end": 14347.96, + "probability": 0.862 + }, + { + "start": 14348.26, + "end": 14350.14, + "probability": 0.4235 + }, + { + "start": 14351.12, + "end": 14354.74, + "probability": 0.0909 + }, + { + "start": 14355.42, + "end": 14356.78, + "probability": 0.5425 + }, + { + "start": 14357.04, + "end": 14360.92, + "probability": 0.8955 + }, + { + "start": 14361.62, + "end": 14364.26, + "probability": 0.9958 + }, + { + "start": 14365.62, + "end": 14377.84, + "probability": 0.7318 + }, + { + "start": 14378.98, + "end": 14382.26, + "probability": 0.8944 + }, + { + "start": 14384.61, + "end": 14386.66, + "probability": 0.0235 + }, + { + "start": 14387.18, + "end": 14389.34, + "probability": 0.1079 + }, + { + "start": 14389.96, + "end": 14390.92, + "probability": 0.8633 + }, + { + "start": 14391.16, + "end": 14394.34, + "probability": 0.9941 + }, + { + "start": 14394.84, + "end": 14399.28, + "probability": 0.9568 + }, + { + "start": 14400.34, + "end": 14402.22, + "probability": 0.0909 + }, + { + "start": 14402.22, + "end": 14402.34, + "probability": 0.1455 + }, + { + "start": 14402.34, + "end": 14402.56, + "probability": 0.1025 + }, + { + "start": 14402.56, + "end": 14408.9, + "probability": 0.923 + }, + { + "start": 14408.9, + "end": 14414.44, + "probability": 0.8464 + }, + { + "start": 14415.32, + "end": 14418.04, + "probability": 0.721 + }, + { + "start": 14418.48, + "end": 14426.02, + "probability": 0.9491 + }, + { + "start": 14426.28, + "end": 14430.34, + "probability": 0.8735 + }, + { + "start": 14430.82, + "end": 14432.14, + "probability": 0.7341 + }, + { + "start": 14432.28, + "end": 14433.32, + "probability": 0.8824 + }, + { + "start": 14434.08, + "end": 14437.02, + "probability": 0.9932 + }, + { + "start": 14437.76, + "end": 14438.6, + "probability": 0.927 + }, + { + "start": 14439.52, + "end": 14441.12, + "probability": 0.9659 + }, + { + "start": 14441.84, + "end": 14445.24, + "probability": 0.9022 + }, + { + "start": 14445.92, + "end": 14450.58, + "probability": 0.9963 + }, + { + "start": 14451.14, + "end": 14457.9, + "probability": 0.9976 + }, + { + "start": 14458.62, + "end": 14460.94, + "probability": 0.9977 + }, + { + "start": 14461.6, + "end": 14462.72, + "probability": 0.7563 + }, + { + "start": 14462.88, + "end": 14464.4, + "probability": 0.7438 + }, + { + "start": 14464.84, + "end": 14466.52, + "probability": 0.8389 + }, + { + "start": 14467.06, + "end": 14467.9, + "probability": 0.7578 + }, + { + "start": 14468.76, + "end": 14471.84, + "probability": 0.7749 + }, + { + "start": 14472.8, + "end": 14475.92, + "probability": 0.8619 + }, + { + "start": 14476.44, + "end": 14481.88, + "probability": 0.9153 + }, + { + "start": 14483.6, + "end": 14487.84, + "probability": 0.9898 + }, + { + "start": 14488.46, + "end": 14489.0, + "probability": 0.4742 + }, + { + "start": 14489.12, + "end": 14490.2, + "probability": 0.9295 + }, + { + "start": 14490.38, + "end": 14493.26, + "probability": 0.7644 + }, + { + "start": 14493.72, + "end": 14498.38, + "probability": 0.8592 + }, + { + "start": 14498.84, + "end": 14500.76, + "probability": 0.8833 + }, + { + "start": 14500.84, + "end": 14501.2, + "probability": 0.3959 + }, + { + "start": 14501.53, + "end": 14507.9, + "probability": 0.9717 + }, + { + "start": 14507.9, + "end": 14514.76, + "probability": 0.9979 + }, + { + "start": 14516.6, + "end": 14517.12, + "probability": 0.4808 + }, + { + "start": 14517.52, + "end": 14518.56, + "probability": 0.6145 + }, + { + "start": 14518.82, + "end": 14524.54, + "probability": 0.9817 + }, + { + "start": 14524.54, + "end": 14529.12, + "probability": 0.9961 + }, + { + "start": 14529.68, + "end": 14534.96, + "probability": 0.5679 + }, + { + "start": 14535.16, + "end": 14540.02, + "probability": 0.9554 + }, + { + "start": 14540.56, + "end": 14543.48, + "probability": 0.9838 + }, + { + "start": 14543.58, + "end": 14548.78, + "probability": 0.979 + }, + { + "start": 14548.78, + "end": 14555.74, + "probability": 0.9701 + }, + { + "start": 14555.82, + "end": 14556.9, + "probability": 0.3945 + }, + { + "start": 14558.08, + "end": 14558.44, + "probability": 0.8955 + }, + { + "start": 14559.24, + "end": 14561.96, + "probability": 0.7766 + }, + { + "start": 14562.22, + "end": 14563.59, + "probability": 0.8252 + }, + { + "start": 14564.56, + "end": 14567.04, + "probability": 0.9263 + }, + { + "start": 14568.54, + "end": 14572.58, + "probability": 0.9871 + }, + { + "start": 14573.18, + "end": 14577.42, + "probability": 0.5818 + }, + { + "start": 14577.76, + "end": 14578.6, + "probability": 0.6638 + }, + { + "start": 14578.6, + "end": 14579.18, + "probability": 0.4153 + }, + { + "start": 14579.28, + "end": 14579.84, + "probability": 0.7148 + }, + { + "start": 14579.84, + "end": 14580.32, + "probability": 0.803 + }, + { + "start": 14580.38, + "end": 14581.1, + "probability": 0.896 + }, + { + "start": 14582.6, + "end": 14586.58, + "probability": 0.0125 + }, + { + "start": 14591.76, + "end": 14592.48, + "probability": 0.0087 + }, + { + "start": 14596.6, + "end": 14597.26, + "probability": 0.003 + }, + { + "start": 14599.28, + "end": 14600.08, + "probability": 0.4717 + }, + { + "start": 14600.08, + "end": 14602.54, + "probability": 0.3933 + }, + { + "start": 14602.94, + "end": 14606.98, + "probability": 0.993 + }, + { + "start": 14607.12, + "end": 14608.18, + "probability": 0.625 + }, + { + "start": 14608.34, + "end": 14611.26, + "probability": 0.9504 + }, + { + "start": 14614.06, + "end": 14616.88, + "probability": 0.9946 + }, + { + "start": 14617.38, + "end": 14617.82, + "probability": 0.6232 + }, + { + "start": 14618.08, + "end": 14619.02, + "probability": 0.6512 + }, + { + "start": 14619.1, + "end": 14623.72, + "probability": 0.9756 + }, + { + "start": 14623.72, + "end": 14628.5, + "probability": 0.99 + }, + { + "start": 14628.7, + "end": 14634.38, + "probability": 0.9967 + }, + { + "start": 14634.38, + "end": 14638.84, + "probability": 0.8749 + }, + { + "start": 14639.18, + "end": 14642.7, + "probability": 0.9813 + }, + { + "start": 14643.08, + "end": 14647.2, + "probability": 0.9779 + }, + { + "start": 14647.82, + "end": 14649.78, + "probability": 0.5184 + }, + { + "start": 14651.88, + "end": 14651.88, + "probability": 0.0875 + }, + { + "start": 14651.88, + "end": 14652.54, + "probability": 0.3418 + }, + { + "start": 14654.24, + "end": 14657.08, + "probability": 0.9849 + }, + { + "start": 14657.5, + "end": 14658.41, + "probability": 0.5679 + }, + { + "start": 14659.94, + "end": 14662.92, + "probability": 0.9775 + }, + { + "start": 14663.84, + "end": 14666.9, + "probability": 0.7947 + }, + { + "start": 14671.28, + "end": 14672.62, + "probability": 0.609 + }, + { + "start": 14672.66, + "end": 14673.34, + "probability": 0.5674 + }, + { + "start": 14673.44, + "end": 14673.54, + "probability": 0.0656 + }, + { + "start": 14673.7, + "end": 14674.64, + "probability": 0.2818 + }, + { + "start": 14675.26, + "end": 14676.9, + "probability": 0.8237 + }, + { + "start": 14677.16, + "end": 14679.18, + "probability": 0.6097 + }, + { + "start": 14679.58, + "end": 14681.48, + "probability": 0.9717 + }, + { + "start": 14682.44, + "end": 14685.1, + "probability": 0.6135 + }, + { + "start": 14685.74, + "end": 14687.96, + "probability": 0.8452 + }, + { + "start": 14688.0, + "end": 14688.62, + "probability": 0.4491 + }, + { + "start": 14688.62, + "end": 14688.9, + "probability": 0.7119 + }, + { + "start": 14691.04, + "end": 14692.44, + "probability": 0.0861 + }, + { + "start": 14693.36, + "end": 14693.66, + "probability": 0.016 + }, + { + "start": 14693.66, + "end": 14693.66, + "probability": 0.111 + }, + { + "start": 14693.66, + "end": 14693.66, + "probability": 0.1157 + }, + { + "start": 14693.66, + "end": 14695.16, + "probability": 0.9448 + }, + { + "start": 14696.06, + "end": 14696.74, + "probability": 0.7812 + }, + { + "start": 14697.28, + "end": 14699.26, + "probability": 0.7495 + }, + { + "start": 14699.26, + "end": 14700.4, + "probability": 0.4861 + }, + { + "start": 14701.16, + "end": 14702.62, + "probability": 0.1678 + }, + { + "start": 14703.3, + "end": 14703.64, + "probability": 0.5079 + }, + { + "start": 14703.64, + "end": 14705.94, + "probability": 0.1978 + }, + { + "start": 14705.94, + "end": 14705.94, + "probability": 0.0399 + }, + { + "start": 14705.94, + "end": 14706.54, + "probability": 0.3827 + }, + { + "start": 14706.64, + "end": 14707.78, + "probability": 0.8157 + }, + { + "start": 14707.94, + "end": 14708.8, + "probability": 0.5507 + }, + { + "start": 14708.92, + "end": 14710.54, + "probability": 0.8149 + }, + { + "start": 14710.54, + "end": 14712.95, + "probability": 0.6267 + }, + { + "start": 14713.36, + "end": 14714.7, + "probability": 0.3009 + }, + { + "start": 14714.82, + "end": 14717.54, + "probability": 0.8191 + }, + { + "start": 14717.54, + "end": 14722.28, + "probability": 0.8736 + }, + { + "start": 14722.99, + "end": 14724.4, + "probability": 0.2002 + }, + { + "start": 14724.48, + "end": 14726.54, + "probability": 0.9333 + }, + { + "start": 14726.58, + "end": 14727.12, + "probability": 0.8557 + }, + { + "start": 14728.0, + "end": 14730.49, + "probability": 0.9789 + }, + { + "start": 14730.96, + "end": 14731.28, + "probability": 0.5029 + }, + { + "start": 14731.44, + "end": 14733.18, + "probability": 0.9937 + }, + { + "start": 14733.22, + "end": 14734.56, + "probability": 0.9908 + }, + { + "start": 14735.04, + "end": 14736.98, + "probability": 0.9985 + }, + { + "start": 14737.4, + "end": 14739.86, + "probability": 0.9251 + }, + { + "start": 14740.46, + "end": 14741.46, + "probability": 0.7359 + }, + { + "start": 14741.56, + "end": 14743.04, + "probability": 0.9949 + }, + { + "start": 14743.08, + "end": 14744.66, + "probability": 0.5168 + }, + { + "start": 14744.78, + "end": 14746.05, + "probability": 0.8295 + }, + { + "start": 14746.62, + "end": 14748.06, + "probability": 0.9546 + }, + { + "start": 14748.1, + "end": 14749.26, + "probability": 0.8139 + }, + { + "start": 14749.36, + "end": 14751.0, + "probability": 0.8582 + }, + { + "start": 14751.6, + "end": 14751.76, + "probability": 0.1385 + }, + { + "start": 14751.76, + "end": 14752.36, + "probability": 0.5065 + }, + { + "start": 14752.78, + "end": 14753.55, + "probability": 0.5671 + }, + { + "start": 14753.74, + "end": 14757.48, + "probability": 0.7954 + }, + { + "start": 14757.84, + "end": 14759.44, + "probability": 0.9645 + }, + { + "start": 14759.6, + "end": 14760.86, + "probability": 0.9861 + }, + { + "start": 14760.94, + "end": 14763.64, + "probability": 0.9963 + }, + { + "start": 14764.54, + "end": 14764.82, + "probability": 0.8537 + }, + { + "start": 14765.66, + "end": 14768.1, + "probability": 0.9887 + }, + { + "start": 14769.28, + "end": 14769.38, + "probability": 0.027 + }, + { + "start": 14769.38, + "end": 14769.72, + "probability": 0.3312 + }, + { + "start": 14769.9, + "end": 14771.2, + "probability": 0.3325 + }, + { + "start": 14771.2, + "end": 14772.52, + "probability": 0.1256 + }, + { + "start": 14772.68, + "end": 14775.56, + "probability": 0.0911 + }, + { + "start": 14777.76, + "end": 14778.48, + "probability": 0.0095 + }, + { + "start": 14778.74, + "end": 14778.74, + "probability": 0.0081 + }, + { + "start": 14778.74, + "end": 14778.74, + "probability": 0.0249 + }, + { + "start": 14778.74, + "end": 14779.66, + "probability": 0.1319 + }, + { + "start": 14780.26, + "end": 14783.08, + "probability": 0.9517 + }, + { + "start": 14783.18, + "end": 14784.04, + "probability": 0.6363 + }, + { + "start": 14784.16, + "end": 14786.82, + "probability": 0.2987 + }, + { + "start": 14787.14, + "end": 14787.76, + "probability": 0.2445 + }, + { + "start": 14788.38, + "end": 14789.76, + "probability": 0.7399 + }, + { + "start": 14790.44, + "end": 14792.44, + "probability": 0.3961 + }, + { + "start": 14793.96, + "end": 14794.48, + "probability": 0.2094 + }, + { + "start": 14795.8, + "end": 14797.6, + "probability": 0.782 + }, + { + "start": 14798.12, + "end": 14798.92, + "probability": 0.3122 + }, + { + "start": 14799.18, + "end": 14799.41, + "probability": 0.2275 + }, + { + "start": 14799.92, + "end": 14800.13, + "probability": 0.2551 + }, + { + "start": 14800.56, + "end": 14801.24, + "probability": 0.9149 + }, + { + "start": 14801.32, + "end": 14801.6, + "probability": 0.407 + }, + { + "start": 14801.64, + "end": 14802.06, + "probability": 0.9172 + }, + { + "start": 14802.32, + "end": 14802.86, + "probability": 0.7372 + }, + { + "start": 14803.5, + "end": 14806.9, + "probability": 0.8564 + }, + { + "start": 14807.44, + "end": 14810.76, + "probability": 0.9595 + }, + { + "start": 14811.5, + "end": 14813.98, + "probability": 0.8394 + }, + { + "start": 14814.56, + "end": 14816.64, + "probability": 0.7535 + }, + { + "start": 14817.14, + "end": 14820.56, + "probability": 0.8375 + }, + { + "start": 14820.64, + "end": 14822.38, + "probability": 0.9513 + }, + { + "start": 14822.48, + "end": 14822.9, + "probability": 0.7194 + }, + { + "start": 14823.18, + "end": 14824.78, + "probability": 0.7376 + }, + { + "start": 14825.22, + "end": 14826.6, + "probability": 0.4846 + }, + { + "start": 14826.72, + "end": 14828.16, + "probability": 0.4103 + }, + { + "start": 14828.52, + "end": 14829.32, + "probability": 0.5151 + }, + { + "start": 14829.64, + "end": 14830.1, + "probability": 0.8769 + }, + { + "start": 14831.86, + "end": 14834.82, + "probability": 0.9614 + }, + { + "start": 14836.0, + "end": 14836.9, + "probability": 0.3992 + }, + { + "start": 14837.04, + "end": 14837.78, + "probability": 0.7995 + }, + { + "start": 14838.35, + "end": 14841.12, + "probability": 0.9817 + }, + { + "start": 14841.86, + "end": 14844.7, + "probability": 0.0194 + }, + { + "start": 14844.7, + "end": 14844.7, + "probability": 0.0174 + }, + { + "start": 14844.7, + "end": 14844.7, + "probability": 0.1712 + }, + { + "start": 14844.7, + "end": 14847.5, + "probability": 0.3911 + }, + { + "start": 14847.6, + "end": 14848.44, + "probability": 0.8053 + }, + { + "start": 14849.04, + "end": 14851.54, + "probability": 0.5568 + }, + { + "start": 14852.38, + "end": 14856.56, + "probability": 0.0506 + }, + { + "start": 14856.56, + "end": 14856.56, + "probability": 0.0533 + }, + { + "start": 14856.9, + "end": 14857.39, + "probability": 0.7758 + }, + { + "start": 14857.66, + "end": 14858.92, + "probability": 0.4329 + }, + { + "start": 14859.33, + "end": 14861.35, + "probability": 0.9746 + }, + { + "start": 14862.1, + "end": 14862.2, + "probability": 0.1296 + }, + { + "start": 14862.42, + "end": 14862.85, + "probability": 0.8299 + }, + { + "start": 14863.24, + "end": 14864.3, + "probability": 0.9167 + }, + { + "start": 14864.44, + "end": 14867.28, + "probability": 0.9705 + }, + { + "start": 14867.82, + "end": 14868.19, + "probability": 0.1887 + }, + { + "start": 14868.6, + "end": 14869.74, + "probability": 0.918 + }, + { + "start": 14869.84, + "end": 14870.7, + "probability": 0.8565 + }, + { + "start": 14870.96, + "end": 14875.44, + "probability": 0.8494 + }, + { + "start": 14875.78, + "end": 14877.28, + "probability": 0.9651 + }, + { + "start": 14878.08, + "end": 14880.6, + "probability": 0.7161 + }, + { + "start": 14880.8, + "end": 14884.16, + "probability": 0.8115 + }, + { + "start": 14884.3, + "end": 14885.78, + "probability": 0.9777 + }, + { + "start": 14885.88, + "end": 14887.28, + "probability": 0.6709 + }, + { + "start": 14887.76, + "end": 14888.86, + "probability": 0.8811 + }, + { + "start": 14889.26, + "end": 14892.14, + "probability": 0.6689 + }, + { + "start": 14892.42, + "end": 14894.05, + "probability": 0.9712 + }, + { + "start": 14894.3, + "end": 14895.62, + "probability": 0.9907 + }, + { + "start": 14895.88, + "end": 14896.46, + "probability": 0.958 + }, + { + "start": 14896.76, + "end": 14898.04, + "probability": 0.736 + }, + { + "start": 14898.28, + "end": 14900.96, + "probability": 0.9829 + }, + { + "start": 14901.28, + "end": 14902.96, + "probability": 0.8089 + }, + { + "start": 14903.04, + "end": 14904.56, + "probability": 0.9796 + }, + { + "start": 14904.82, + "end": 14906.1, + "probability": 0.6525 + }, + { + "start": 14906.28, + "end": 14910.04, + "probability": 0.7675 + }, + { + "start": 14910.16, + "end": 14911.24, + "probability": 0.998 + }, + { + "start": 14911.7, + "end": 14913.45, + "probability": 0.9697 + }, + { + "start": 14913.72, + "end": 14915.08, + "probability": 0.8782 + }, + { + "start": 14915.64, + "end": 14918.94, + "probability": 0.8662 + }, + { + "start": 14919.2, + "end": 14921.86, + "probability": 0.9109 + }, + { + "start": 14922.36, + "end": 14924.44, + "probability": 0.6136 + }, + { + "start": 14924.62, + "end": 14925.74, + "probability": 0.6404 + }, + { + "start": 14926.02, + "end": 14929.14, + "probability": 0.9971 + }, + { + "start": 14929.5, + "end": 14930.55, + "probability": 0.5234 + }, + { + "start": 14931.18, + "end": 14933.5, + "probability": 0.9609 + }, + { + "start": 14933.5, + "end": 14936.42, + "probability": 0.9612 + }, + { + "start": 14937.1, + "end": 14938.46, + "probability": 0.7916 + }, + { + "start": 14938.88, + "end": 14939.42, + "probability": 0.6325 + }, + { + "start": 14939.56, + "end": 14940.62, + "probability": 0.7174 + }, + { + "start": 14940.74, + "end": 14946.46, + "probability": 0.7998 + }, + { + "start": 14946.94, + "end": 14949.16, + "probability": 0.8235 + }, + { + "start": 14949.64, + "end": 14950.04, + "probability": 0.8203 + }, + { + "start": 14950.48, + "end": 14956.9, + "probability": 0.859 + }, + { + "start": 14957.36, + "end": 14959.66, + "probability": 0.7785 + }, + { + "start": 14959.96, + "end": 14961.35, + "probability": 0.856 + }, + { + "start": 14961.96, + "end": 14965.08, + "probability": 0.7735 + }, + { + "start": 14965.36, + "end": 14967.38, + "probability": 0.825 + }, + { + "start": 14967.98, + "end": 14969.74, + "probability": 0.7601 + }, + { + "start": 14970.48, + "end": 14971.53, + "probability": 0.8004 + }, + { + "start": 14972.08, + "end": 14972.56, + "probability": 0.8691 + }, + { + "start": 14972.66, + "end": 14973.3, + "probability": 0.6776 + }, + { + "start": 14973.38, + "end": 14975.28, + "probability": 0.9125 + }, + { + "start": 14975.62, + "end": 14979.54, + "probability": 0.9795 + }, + { + "start": 14979.54, + "end": 14983.64, + "probability": 0.9959 + }, + { + "start": 14983.98, + "end": 14985.78, + "probability": 0.958 + }, + { + "start": 14986.32, + "end": 14989.54, + "probability": 0.9495 + }, + { + "start": 14990.34, + "end": 14991.58, + "probability": 0.7172 + }, + { + "start": 14991.86, + "end": 14992.82, + "probability": 0.7637 + }, + { + "start": 14993.14, + "end": 14995.36, + "probability": 0.9537 + }, + { + "start": 14995.44, + "end": 14995.96, + "probability": 0.9779 + }, + { + "start": 14996.44, + "end": 14998.3, + "probability": 0.6386 + }, + { + "start": 14998.64, + "end": 14999.7, + "probability": 0.8879 + }, + { + "start": 14999.84, + "end": 15001.26, + "probability": 0.8058 + }, + { + "start": 15001.46, + "end": 15003.4, + "probability": 0.707 + }, + { + "start": 15003.42, + "end": 15004.43, + "probability": 0.7092 + }, + { + "start": 15005.18, + "end": 15007.0, + "probability": 0.723 + }, + { + "start": 15007.1, + "end": 15008.12, + "probability": 0.316 + }, + { + "start": 15008.24, + "end": 15008.96, + "probability": 0.5124 + }, + { + "start": 15009.08, + "end": 15009.52, + "probability": 0.8614 + }, + { + "start": 15009.82, + "end": 15011.12, + "probability": 0.9883 + }, + { + "start": 15011.2, + "end": 15011.72, + "probability": 0.2812 + }, + { + "start": 15011.72, + "end": 15012.0, + "probability": 0.5616 + }, + { + "start": 15012.5, + "end": 15015.62, + "probability": 0.8739 + }, + { + "start": 15016.22, + "end": 15019.13, + "probability": 0.9175 + }, + { + "start": 15019.96, + "end": 15022.38, + "probability": 0.4734 + }, + { + "start": 15022.76, + "end": 15025.07, + "probability": 0.9977 + }, + { + "start": 15025.52, + "end": 15026.76, + "probability": 0.8893 + }, + { + "start": 15027.42, + "end": 15027.86, + "probability": 0.9108 + }, + { + "start": 15027.9, + "end": 15028.94, + "probability": 0.9792 + }, + { + "start": 15029.08, + "end": 15030.09, + "probability": 0.6915 + }, + { + "start": 15030.62, + "end": 15031.04, + "probability": 0.6838 + }, + { + "start": 15031.18, + "end": 15033.24, + "probability": 0.5784 + }, + { + "start": 15033.66, + "end": 15035.92, + "probability": 0.9809 + }, + { + "start": 15036.12, + "end": 15036.92, + "probability": 0.508 + }, + { + "start": 15036.98, + "end": 15037.54, + "probability": 0.2949 + }, + { + "start": 15037.7, + "end": 15038.7, + "probability": 0.8718 + }, + { + "start": 15038.8, + "end": 15039.78, + "probability": 0.8081 + }, + { + "start": 15040.0, + "end": 15041.22, + "probability": 0.9331 + }, + { + "start": 15041.3, + "end": 15043.26, + "probability": 0.8953 + }, + { + "start": 15043.44, + "end": 15043.9, + "probability": 0.805 + }, + { + "start": 15044.12, + "end": 15044.64, + "probability": 0.483 + }, + { + "start": 15044.74, + "end": 15045.58, + "probability": 0.9555 + }, + { + "start": 15045.82, + "end": 15046.62, + "probability": 0.8757 + }, + { + "start": 15046.62, + "end": 15047.54, + "probability": 0.1637 + }, + { + "start": 15047.68, + "end": 15049.04, + "probability": 0.6089 + }, + { + "start": 15049.18, + "end": 15051.18, + "probability": 0.9 + }, + { + "start": 15051.3, + "end": 15052.3, + "probability": 0.9473 + }, + { + "start": 15052.76, + "end": 15053.74, + "probability": 0.991 + }, + { + "start": 15053.96, + "end": 15055.12, + "probability": 0.814 + }, + { + "start": 15055.2, + "end": 15055.76, + "probability": 0.6101 + }, + { + "start": 15055.76, + "end": 15058.0, + "probability": 0.5771 + }, + { + "start": 15058.12, + "end": 15059.0, + "probability": 0.9036 + }, + { + "start": 15059.28, + "end": 15061.6, + "probability": 0.7175 + }, + { + "start": 15061.62, + "end": 15063.78, + "probability": 0.9902 + }, + { + "start": 15064.06, + "end": 15065.22, + "probability": 0.7397 + }, + { + "start": 15065.34, + "end": 15065.56, + "probability": 0.249 + }, + { + "start": 15065.56, + "end": 15065.64, + "probability": 0.4262 + }, + { + "start": 15065.64, + "end": 15065.98, + "probability": 0.7042 + }, + { + "start": 15066.18, + "end": 15067.38, + "probability": 0.9773 + }, + { + "start": 15067.48, + "end": 15068.44, + "probability": 0.9028 + }, + { + "start": 15068.44, + "end": 15068.54, + "probability": 0.013 + }, + { + "start": 15068.54, + "end": 15069.44, + "probability": 0.3787 + }, + { + "start": 15069.44, + "end": 15070.56, + "probability": 0.8253 + }, + { + "start": 15070.7, + "end": 15071.22, + "probability": 0.5981 + }, + { + "start": 15071.22, + "end": 15072.9, + "probability": 0.6043 + }, + { + "start": 15073.62, + "end": 15074.04, + "probability": 0.5076 + }, + { + "start": 15074.42, + "end": 15075.06, + "probability": 0.7035 + }, + { + "start": 15075.12, + "end": 15075.52, + "probability": 0.8444 + }, + { + "start": 15076.52, + "end": 15077.94, + "probability": 0.9515 + }, + { + "start": 15078.1, + "end": 15079.4, + "probability": 0.741 + }, + { + "start": 15079.46, + "end": 15080.18, + "probability": 0.7622 + }, + { + "start": 15080.3, + "end": 15080.76, + "probability": 0.8727 + }, + { + "start": 15080.84, + "end": 15081.26, + "probability": 0.4849 + }, + { + "start": 15081.34, + "end": 15081.48, + "probability": 0.2575 + }, + { + "start": 15082.48, + "end": 15083.84, + "probability": 0.3747 + }, + { + "start": 15084.32, + "end": 15087.88, + "probability": 0.5097 + }, + { + "start": 15088.38, + "end": 15088.86, + "probability": 0.5691 + }, + { + "start": 15088.96, + "end": 15089.58, + "probability": 0.541 + }, + { + "start": 15089.64, + "end": 15091.26, + "probability": 0.6619 + }, + { + "start": 15091.34, + "end": 15093.16, + "probability": 0.8414 + }, + { + "start": 15093.68, + "end": 15095.18, + "probability": 0.7048 + }, + { + "start": 15095.34, + "end": 15097.21, + "probability": 0.7444 + }, + { + "start": 15097.38, + "end": 15098.2, + "probability": 0.6222 + }, + { + "start": 15098.2, + "end": 15100.04, + "probability": 0.3082 + }, + { + "start": 15100.04, + "end": 15100.38, + "probability": 0.5511 + }, + { + "start": 15100.68, + "end": 15101.46, + "probability": 0.8516 + }, + { + "start": 15101.66, + "end": 15104.84, + "probability": 0.9572 + }, + { + "start": 15104.84, + "end": 15107.86, + "probability": 0.9728 + }, + { + "start": 15107.94, + "end": 15110.12, + "probability": 0.986 + }, + { + "start": 15110.24, + "end": 15111.26, + "probability": 0.8238 + }, + { + "start": 15111.7, + "end": 15115.14, + "probability": 0.9351 + }, + { + "start": 15115.52, + "end": 15115.9, + "probability": 0.8068 + }, + { + "start": 15116.04, + "end": 15119.22, + "probability": 0.9351 + }, + { + "start": 15119.74, + "end": 15121.94, + "probability": 0.9843 + }, + { + "start": 15122.42, + "end": 15123.14, + "probability": 0.6486 + }, + { + "start": 15123.16, + "end": 15124.24, + "probability": 0.6683 + }, + { + "start": 15124.48, + "end": 15125.3, + "probability": 0.8472 + }, + { + "start": 15125.44, + "end": 15126.08, + "probability": 0.9321 + }, + { + "start": 15130.0, + "end": 15130.6, + "probability": 0.4983 + }, + { + "start": 15130.7, + "end": 15133.31, + "probability": 0.7518 + }, + { + "start": 15133.68, + "end": 15135.32, + "probability": 0.7499 + }, + { + "start": 15137.11, + "end": 15138.02, + "probability": 0.9696 + }, + { + "start": 15138.42, + "end": 15139.4, + "probability": 0.0196 + }, + { + "start": 15140.24, + "end": 15142.02, + "probability": 0.8536 + }, + { + "start": 15144.18, + "end": 15146.33, + "probability": 0.9312 + }, + { + "start": 15148.3, + "end": 15149.68, + "probability": 0.5314 + }, + { + "start": 15149.68, + "end": 15149.98, + "probability": 0.2666 + }, + { + "start": 15150.4, + "end": 15150.98, + "probability": 0.7587 + }, + { + "start": 15151.16, + "end": 15153.32, + "probability": 0.9939 + }, + { + "start": 15153.78, + "end": 15154.92, + "probability": 0.9263 + }, + { + "start": 15155.64, + "end": 15157.42, + "probability": 0.9921 + }, + { + "start": 15157.56, + "end": 15161.56, + "probability": 0.9463 + }, + { + "start": 15162.68, + "end": 15165.36, + "probability": 0.577 + }, + { + "start": 15167.46, + "end": 15171.15, + "probability": 0.2618 + }, + { + "start": 15172.14, + "end": 15172.99, + "probability": 0.2186 + }, + { + "start": 15173.16, + "end": 15174.06, + "probability": 0.1689 + }, + { + "start": 15174.06, + "end": 15174.28, + "probability": 0.2917 + }, + { + "start": 15174.28, + "end": 15176.03, + "probability": 0.7765 + }, + { + "start": 15176.98, + "end": 15177.22, + "probability": 0.7793 + }, + { + "start": 15177.22, + "end": 15178.72, + "probability": 0.9397 + }, + { + "start": 15178.8, + "end": 15179.72, + "probability": 0.8876 + }, + { + "start": 15179.74, + "end": 15180.74, + "probability": 0.9723 + }, + { + "start": 15180.82, + "end": 15181.26, + "probability": 0.7247 + }, + { + "start": 15182.22, + "end": 15182.72, + "probability": 0.886 + }, + { + "start": 15183.36, + "end": 15183.49, + "probability": 0.058 + }, + { + "start": 15183.62, + "end": 15183.64, + "probability": 0.9131 + }, + { + "start": 15183.9, + "end": 15184.78, + "probability": 0.8887 + }, + { + "start": 15184.86, + "end": 15186.44, + "probability": 0.6783 + }, + { + "start": 15186.44, + "end": 15186.92, + "probability": 0.8124 + }, + { + "start": 15187.86, + "end": 15188.64, + "probability": 0.581 + }, + { + "start": 15188.74, + "end": 15188.74, + "probability": 0.5082 + }, + { + "start": 15188.74, + "end": 15189.78, + "probability": 0.7482 + }, + { + "start": 15189.9, + "end": 15191.1, + "probability": 0.7584 + }, + { + "start": 15192.14, + "end": 15196.66, + "probability": 0.9818 + }, + { + "start": 15196.76, + "end": 15197.62, + "probability": 0.7939 + }, + { + "start": 15199.18, + "end": 15204.1, + "probability": 0.971 + }, + { + "start": 15204.96, + "end": 15210.1, + "probability": 0.9692 + }, + { + "start": 15210.1, + "end": 15211.8, + "probability": 0.9356 + }, + { + "start": 15211.88, + "end": 15212.7, + "probability": 0.97 + }, + { + "start": 15213.5, + "end": 15217.12, + "probability": 0.96 + }, + { + "start": 15217.78, + "end": 15220.54, + "probability": 0.8368 + }, + { + "start": 15221.3, + "end": 15222.14, + "probability": 0.7856 + }, + { + "start": 15222.32, + "end": 15223.34, + "probability": 0.6714 + }, + { + "start": 15223.44, + "end": 15225.66, + "probability": 0.9957 + }, + { + "start": 15226.3, + "end": 15226.56, + "probability": 0.3997 + }, + { + "start": 15226.72, + "end": 15226.78, + "probability": 0.2928 + }, + { + "start": 15226.78, + "end": 15228.56, + "probability": 0.8777 + }, + { + "start": 15228.68, + "end": 15229.64, + "probability": 0.6863 + }, + { + "start": 15230.06, + "end": 15232.42, + "probability": 0.7771 + }, + { + "start": 15232.46, + "end": 15233.44, + "probability": 0.7581 + }, + { + "start": 15233.48, + "end": 15233.96, + "probability": 0.8556 + }, + { + "start": 15234.86, + "end": 15237.68, + "probability": 0.8131 + }, + { + "start": 15237.74, + "end": 15238.54, + "probability": 0.819 + }, + { + "start": 15238.66, + "end": 15243.28, + "probability": 0.9315 + }, + { + "start": 15243.52, + "end": 15245.8, + "probability": 0.9689 + }, + { + "start": 15246.48, + "end": 15248.8, + "probability": 0.9897 + }, + { + "start": 15248.88, + "end": 15250.3, + "probability": 0.8273 + }, + { + "start": 15250.32, + "end": 15251.58, + "probability": 0.8546 + }, + { + "start": 15251.76, + "end": 15253.74, + "probability": 0.8178 + }, + { + "start": 15254.36, + "end": 15256.02, + "probability": 0.9537 + }, + { + "start": 15256.18, + "end": 15259.46, + "probability": 0.9697 + }, + { + "start": 15259.94, + "end": 15263.12, + "probability": 0.9684 + }, + { + "start": 15263.6, + "end": 15265.64, + "probability": 0.9708 + }, + { + "start": 15266.02, + "end": 15267.66, + "probability": 0.9398 + }, + { + "start": 15267.72, + "end": 15270.82, + "probability": 0.995 + }, + { + "start": 15271.18, + "end": 15272.72, + "probability": 0.9788 + }, + { + "start": 15272.92, + "end": 15273.42, + "probability": 0.5271 + }, + { + "start": 15273.52, + "end": 15274.76, + "probability": 0.8887 + }, + { + "start": 15275.1, + "end": 15275.82, + "probability": 0.9028 + }, + { + "start": 15276.04, + "end": 15278.9, + "probability": 0.9723 + }, + { + "start": 15279.42, + "end": 15280.6, + "probability": 0.8791 + }, + { + "start": 15281.04, + "end": 15284.1, + "probability": 0.9956 + }, + { + "start": 15284.54, + "end": 15287.1, + "probability": 0.9233 + }, + { + "start": 15287.1, + "end": 15289.38, + "probability": 0.9857 + }, + { + "start": 15289.88, + "end": 15291.45, + "probability": 0.999 + }, + { + "start": 15291.96, + "end": 15293.9, + "probability": 0.9119 + }, + { + "start": 15294.06, + "end": 15295.12, + "probability": 0.7754 + }, + { + "start": 15295.52, + "end": 15297.22, + "probability": 0.981 + }, + { + "start": 15297.5, + "end": 15301.9, + "probability": 0.9975 + }, + { + "start": 15302.14, + "end": 15303.68, + "probability": 0.9963 + }, + { + "start": 15304.06, + "end": 15304.28, + "probability": 0.8053 + }, + { + "start": 15304.36, + "end": 15304.7, + "probability": 0.5566 + }, + { + "start": 15304.74, + "end": 15306.18, + "probability": 0.6839 + }, + { + "start": 15308.48, + "end": 15313.28, + "probability": 0.9465 + }, + { + "start": 15320.48, + "end": 15322.42, + "probability": 0.4891 + }, + { + "start": 15322.92, + "end": 15325.2, + "probability": 0.925 + }, + { + "start": 15329.18, + "end": 15331.54, + "probability": 0.6879 + }, + { + "start": 15333.4, + "end": 15337.0, + "probability": 0.9906 + }, + { + "start": 15337.76, + "end": 15338.34, + "probability": 0.7051 + }, + { + "start": 15341.66, + "end": 15342.32, + "probability": 0.7218 + }, + { + "start": 15343.7, + "end": 15347.46, + "probability": 0.9644 + }, + { + "start": 15347.46, + "end": 15355.36, + "probability": 0.8299 + }, + { + "start": 15357.42, + "end": 15363.06, + "probability": 0.9945 + }, + { + "start": 15365.2, + "end": 15365.52, + "probability": 0.1486 + }, + { + "start": 15367.92, + "end": 15372.38, + "probability": 0.448 + }, + { + "start": 15372.76, + "end": 15373.68, + "probability": 0.5318 + }, + { + "start": 15375.7, + "end": 15376.88, + "probability": 0.7384 + }, + { + "start": 15377.68, + "end": 15379.3, + "probability": 0.8133 + }, + { + "start": 15379.9, + "end": 15382.2, + "probability": 0.9702 + }, + { + "start": 15383.3, + "end": 15385.82, + "probability": 0.9851 + }, + { + "start": 15387.68, + "end": 15388.28, + "probability": 0.776 + }, + { + "start": 15389.36, + "end": 15393.92, + "probability": 0.8188 + }, + { + "start": 15395.44, + "end": 15396.96, + "probability": 0.9736 + }, + { + "start": 15397.64, + "end": 15398.22, + "probability": 0.6985 + }, + { + "start": 15399.24, + "end": 15403.58, + "probability": 0.6375 + }, + { + "start": 15404.74, + "end": 15406.62, + "probability": 0.7207 + }, + { + "start": 15410.82, + "end": 15412.38, + "probability": 0.6817 + }, + { + "start": 15414.66, + "end": 15416.1, + "probability": 0.7373 + }, + { + "start": 15416.3, + "end": 15421.0, + "probability": 0.8989 + }, + { + "start": 15422.74, + "end": 15427.28, + "probability": 0.8938 + }, + { + "start": 15428.12, + "end": 15429.08, + "probability": 0.7247 + }, + { + "start": 15429.54, + "end": 15432.82, + "probability": 0.7964 + }, + { + "start": 15433.52, + "end": 15435.96, + "probability": 0.9651 + }, + { + "start": 15436.66, + "end": 15439.4, + "probability": 0.7366 + }, + { + "start": 15440.08, + "end": 15441.26, + "probability": 0.986 + }, + { + "start": 15441.68, + "end": 15447.02, + "probability": 0.9497 + }, + { + "start": 15447.06, + "end": 15448.36, + "probability": 0.8929 + }, + { + "start": 15448.4, + "end": 15453.02, + "probability": 0.9119 + }, + { + "start": 15453.06, + "end": 15454.28, + "probability": 0.9087 + }, + { + "start": 15454.34, + "end": 15456.36, + "probability": 0.9818 + }, + { + "start": 15456.74, + "end": 15457.18, + "probability": 0.4556 + }, + { + "start": 15458.46, + "end": 15464.32, + "probability": 0.9868 + }, + { + "start": 15466.0, + "end": 15471.0, + "probability": 0.9839 + }, + { + "start": 15473.16, + "end": 15476.78, + "probability": 0.786 + }, + { + "start": 15478.3, + "end": 15480.04, + "probability": 0.4647 + }, + { + "start": 15481.22, + "end": 15482.56, + "probability": 0.811 + }, + { + "start": 15484.2, + "end": 15486.76, + "probability": 0.8778 + }, + { + "start": 15487.52, + "end": 15490.34, + "probability": 0.8389 + }, + { + "start": 15492.68, + "end": 15494.96, + "probability": 0.9497 + }, + { + "start": 15495.88, + "end": 15501.88, + "probability": 0.9933 + }, + { + "start": 15502.06, + "end": 15502.42, + "probability": 0.4105 + }, + { + "start": 15502.62, + "end": 15502.86, + "probability": 0.4072 + }, + { + "start": 15502.92, + "end": 15503.54, + "probability": 0.5015 + }, + { + "start": 15504.04, + "end": 15505.26, + "probability": 0.9807 + }, + { + "start": 15506.56, + "end": 15508.34, + "probability": 0.963 + }, + { + "start": 15508.46, + "end": 15512.02, + "probability": 0.9347 + }, + { + "start": 15512.5, + "end": 15515.84, + "probability": 0.6586 + }, + { + "start": 15516.14, + "end": 15517.04, + "probability": 0.7598 + }, + { + "start": 15517.98, + "end": 15519.62, + "probability": 0.7443 + }, + { + "start": 15520.7, + "end": 15521.8, + "probability": 0.7616 + }, + { + "start": 15522.16, + "end": 15527.05, + "probability": 0.9208 + }, + { + "start": 15527.98, + "end": 15532.78, + "probability": 0.9486 + }, + { + "start": 15534.42, + "end": 15536.46, + "probability": 0.9757 + }, + { + "start": 15538.72, + "end": 15544.32, + "probability": 0.9273 + }, + { + "start": 15545.28, + "end": 15547.2, + "probability": 0.9313 + }, + { + "start": 15549.32, + "end": 15549.86, + "probability": 0.8693 + }, + { + "start": 15551.74, + "end": 15553.02, + "probability": 0.9741 + }, + { + "start": 15553.56, + "end": 15555.42, + "probability": 0.9821 + }, + { + "start": 15555.6, + "end": 15557.46, + "probability": 0.9907 + }, + { + "start": 15557.56, + "end": 15558.82, + "probability": 0.5198 + }, + { + "start": 15558.86, + "end": 15559.38, + "probability": 0.5685 + }, + { + "start": 15559.56, + "end": 15561.74, + "probability": 0.6855 + }, + { + "start": 15562.08, + "end": 15567.6, + "probability": 0.9875 + }, + { + "start": 15567.72, + "end": 15568.0, + "probability": 0.3377 + }, + { + "start": 15568.0, + "end": 15569.5, + "probability": 0.9756 + }, + { + "start": 15569.84, + "end": 15571.28, + "probability": 0.6166 + }, + { + "start": 15571.9, + "end": 15577.72, + "probability": 0.9966 + }, + { + "start": 15577.72, + "end": 15582.88, + "probability": 0.9883 + }, + { + "start": 15583.24, + "end": 15587.72, + "probability": 0.6723 + }, + { + "start": 15587.78, + "end": 15588.58, + "probability": 0.6338 + }, + { + "start": 15588.58, + "end": 15589.62, + "probability": 0.7397 + }, + { + "start": 15589.98, + "end": 15590.8, + "probability": 0.4237 + }, + { + "start": 15590.94, + "end": 15591.24, + "probability": 0.0931 + }, + { + "start": 15591.34, + "end": 15591.34, + "probability": 0.0103 + }, + { + "start": 15595.86, + "end": 15596.98, + "probability": 0.1196 + }, + { + "start": 15603.52, + "end": 15608.16, + "probability": 0.0272 + }, + { + "start": 15609.73, + "end": 15610.16, + "probability": 0.0526 + }, + { + "start": 15610.3, + "end": 15610.64, + "probability": 0.0513 + }, + { + "start": 15610.64, + "end": 15610.64, + "probability": 0.0871 + }, + { + "start": 15610.64, + "end": 15613.34, + "probability": 0.531 + }, + { + "start": 15613.76, + "end": 15616.74, + "probability": 0.9917 + }, + { + "start": 15617.16, + "end": 15618.38, + "probability": 0.7754 + }, + { + "start": 15618.38, + "end": 15620.12, + "probability": 0.9795 + }, + { + "start": 15620.62, + "end": 15621.32, + "probability": 0.7578 + }, + { + "start": 15621.52, + "end": 15622.98, + "probability": 0.9741 + }, + { + "start": 15623.22, + "end": 15626.32, + "probability": 0.6453 + }, + { + "start": 15626.34, + "end": 15634.11, + "probability": 0.639 + }, + { + "start": 15635.66, + "end": 15638.32, + "probability": 0.7531 + }, + { + "start": 15638.7, + "end": 15643.02, + "probability": 0.8845 + }, + { + "start": 15643.04, + "end": 15643.72, + "probability": 0.6963 + }, + { + "start": 15678.14, + "end": 15679.0, + "probability": 0.436 + }, + { + "start": 15679.26, + "end": 15680.38, + "probability": 0.7309 + }, + { + "start": 15680.42, + "end": 15682.18, + "probability": 0.7369 + }, + { + "start": 15682.26, + "end": 15682.34, + "probability": 0.0122 + }, + { + "start": 15686.06, + "end": 15686.32, + "probability": 0.0884 + }, + { + "start": 15686.32, + "end": 15686.32, + "probability": 0.0215 + }, + { + "start": 15686.32, + "end": 15686.32, + "probability": 0.0845 + }, + { + "start": 15686.32, + "end": 15686.78, + "probability": 0.271 + }, + { + "start": 15686.9, + "end": 15687.14, + "probability": 0.5814 + }, + { + "start": 15687.14, + "end": 15687.86, + "probability": 0.5131 + }, + { + "start": 15688.62, + "end": 15690.34, + "probability": 0.4292 + }, + { + "start": 15691.26, + "end": 15694.24, + "probability": 0.4142 + }, + { + "start": 15695.02, + "end": 15695.7, + "probability": 0.498 + }, + { + "start": 15695.86, + "end": 15696.74, + "probability": 0.0934 + }, + { + "start": 15698.74, + "end": 15700.29, + "probability": 0.7947 + }, + { + "start": 15700.7, + "end": 15702.14, + "probability": 0.0752 + }, + { + "start": 15702.32, + "end": 15703.08, + "probability": 0.9067 + }, + { + "start": 15706.06, + "end": 15707.44, + "probability": 0.9201 + }, + { + "start": 15708.02, + "end": 15710.12, + "probability": 0.5409 + }, + { + "start": 15711.28, + "end": 15712.6, + "probability": 0.6978 + }, + { + "start": 15713.24, + "end": 15715.5, + "probability": 0.2335 + }, + { + "start": 15716.74, + "end": 15719.94, + "probability": 0.9444 + }, + { + "start": 15720.52, + "end": 15723.64, + "probability": 0.9826 + }, + { + "start": 15724.7, + "end": 15726.44, + "probability": 0.9688 + }, + { + "start": 15728.02, + "end": 15728.88, + "probability": 0.937 + }, + { + "start": 15729.96, + "end": 15733.96, + "probability": 0.8943 + }, + { + "start": 15734.86, + "end": 15736.92, + "probability": 0.6651 + }, + { + "start": 15738.42, + "end": 15741.46, + "probability": 0.8918 + }, + { + "start": 15741.98, + "end": 15745.16, + "probability": 0.9572 + }, + { + "start": 15745.68, + "end": 15748.66, + "probability": 0.8577 + }, + { + "start": 15750.8, + "end": 15751.52, + "probability": 0.6924 + }, + { + "start": 15751.74, + "end": 15752.18, + "probability": 0.5324 + }, + { + "start": 15752.54, + "end": 15753.67, + "probability": 0.8833 + }, + { + "start": 15755.0, + "end": 15761.14, + "probability": 0.5533 + }, + { + "start": 15762.34, + "end": 15763.88, + "probability": 0.7655 + }, + { + "start": 15764.58, + "end": 15766.98, + "probability": 0.7189 + }, + { + "start": 15768.64, + "end": 15771.16, + "probability": 0.8705 + }, + { + "start": 15771.6, + "end": 15778.34, + "probability": 0.9582 + }, + { + "start": 15780.3, + "end": 15780.92, + "probability": 0.3779 + }, + { + "start": 15781.0, + "end": 15784.14, + "probability": 0.9926 + }, + { + "start": 15784.14, + "end": 15787.72, + "probability": 0.9734 + }, + { + "start": 15788.24, + "end": 15790.02, + "probability": 0.9836 + }, + { + "start": 15791.36, + "end": 15792.6, + "probability": 0.7906 + }, + { + "start": 15793.06, + "end": 15795.86, + "probability": 0.9493 + }, + { + "start": 15797.2, + "end": 15801.56, + "probability": 0.8638 + }, + { + "start": 15801.64, + "end": 15802.3, + "probability": 0.3718 + }, + { + "start": 15803.86, + "end": 15804.36, + "probability": 0.0401 + }, + { + "start": 15804.36, + "end": 15805.96, + "probability": 0.5265 + }, + { + "start": 15806.92, + "end": 15806.94, + "probability": 0.0008 + }, + { + "start": 15807.86, + "end": 15808.34, + "probability": 0.0808 + }, + { + "start": 15808.54, + "end": 15811.12, + "probability": 0.8092 + }, + { + "start": 15812.28, + "end": 15814.66, + "probability": 0.6813 + }, + { + "start": 15815.16, + "end": 15817.44, + "probability": 0.6176 + }, + { + "start": 15817.72, + "end": 15817.94, + "probability": 0.4115 + }, + { + "start": 15818.06, + "end": 15818.98, + "probability": 0.6401 + }, + { + "start": 15818.98, + "end": 15820.82, + "probability": 0.2854 + }, + { + "start": 15821.0, + "end": 15821.82, + "probability": 0.5213 + }, + { + "start": 15822.34, + "end": 15823.34, + "probability": 0.7301 + }, + { + "start": 15823.88, + "end": 15824.06, + "probability": 0.2643 + }, + { + "start": 15826.18, + "end": 15826.46, + "probability": 0.0007 + }, + { + "start": 15827.26, + "end": 15827.5, + "probability": 0.2255 + }, + { + "start": 15827.5, + "end": 15830.5, + "probability": 0.8596 + }, + { + "start": 15830.56, + "end": 15832.02, + "probability": 0.9256 + }, + { + "start": 15832.34, + "end": 15833.3, + "probability": 0.8154 + }, + { + "start": 15833.46, + "end": 15833.96, + "probability": 0.5645 + }, + { + "start": 15834.64, + "end": 15835.72, + "probability": 0.3977 + }, + { + "start": 15837.3, + "end": 15843.64, + "probability": 0.8836 + }, + { + "start": 15845.06, + "end": 15848.31, + "probability": 0.3221 + }, + { + "start": 15849.54, + "end": 15852.5, + "probability": 0.9466 + }, + { + "start": 15853.02, + "end": 15854.94, + "probability": 0.5739 + }, + { + "start": 15856.38, + "end": 15859.02, + "probability": 0.8973 + }, + { + "start": 15859.24, + "end": 15861.2, + "probability": 0.8596 + }, + { + "start": 15862.52, + "end": 15866.78, + "probability": 0.8463 + }, + { + "start": 15867.96, + "end": 15868.24, + "probability": 0.7527 + }, + { + "start": 15868.36, + "end": 15871.54, + "probability": 0.9736 + }, + { + "start": 15872.0, + "end": 15876.52, + "probability": 0.9161 + }, + { + "start": 15877.54, + "end": 15882.52, + "probability": 0.9543 + }, + { + "start": 15882.82, + "end": 15884.86, + "probability": 0.9868 + }, + { + "start": 15884.86, + "end": 15887.64, + "probability": 0.991 + }, + { + "start": 15889.76, + "end": 15892.14, + "probability": 0.5189 + }, + { + "start": 15892.7, + "end": 15893.32, + "probability": 0.6668 + }, + { + "start": 15893.4, + "end": 15898.16, + "probability": 0.9491 + }, + { + "start": 15898.74, + "end": 15902.4, + "probability": 0.9397 + }, + { + "start": 15903.76, + "end": 15904.3, + "probability": 0.8221 + }, + { + "start": 15906.4, + "end": 15908.0, + "probability": 0.1391 + }, + { + "start": 15908.1, + "end": 15908.78, + "probability": 0.1836 + }, + { + "start": 15908.78, + "end": 15910.68, + "probability": 0.0016 + }, + { + "start": 15910.68, + "end": 15910.68, + "probability": 0.3101 + }, + { + "start": 15910.68, + "end": 15910.68, + "probability": 0.0386 + }, + { + "start": 15910.68, + "end": 15911.44, + "probability": 0.6311 + }, + { + "start": 15911.52, + "end": 15914.2, + "probability": 0.7588 + }, + { + "start": 15914.32, + "end": 15917.33, + "probability": 0.7614 + }, + { + "start": 15918.96, + "end": 15924.26, + "probability": 0.9095 + }, + { + "start": 15924.86, + "end": 15928.82, + "probability": 0.9448 + }, + { + "start": 15929.3, + "end": 15929.98, + "probability": 0.0267 + }, + { + "start": 15929.98, + "end": 15931.34, + "probability": 0.4543 + }, + { + "start": 15931.36, + "end": 15932.02, + "probability": 0.2911 + }, + { + "start": 15932.4, + "end": 15932.96, + "probability": 0.0746 + }, + { + "start": 15933.16, + "end": 15933.38, + "probability": 0.5388 + }, + { + "start": 15934.56, + "end": 15937.32, + "probability": 0.6485 + }, + { + "start": 15937.32, + "end": 15942.12, + "probability": 0.7782 + }, + { + "start": 15942.58, + "end": 15943.96, + "probability": 0.7993 + }, + { + "start": 15944.24, + "end": 15944.82, + "probability": 0.137 + }, + { + "start": 15945.28, + "end": 15946.44, + "probability": 0.6931 + }, + { + "start": 15946.58, + "end": 15947.26, + "probability": 0.49 + }, + { + "start": 15947.66, + "end": 15948.0, + "probability": 0.5939 + }, + { + "start": 15948.58, + "end": 15950.12, + "probability": 0.7953 + }, + { + "start": 15950.42, + "end": 15955.02, + "probability": 0.7237 + }, + { + "start": 15955.28, + "end": 15956.1, + "probability": 0.5187 + }, + { + "start": 15956.2, + "end": 15958.28, + "probability": 0.7858 + }, + { + "start": 15958.78, + "end": 15959.27, + "probability": 0.9324 + }, + { + "start": 15959.6, + "end": 15960.78, + "probability": 0.6827 + }, + { + "start": 15960.9, + "end": 15961.42, + "probability": 0.6688 + }, + { + "start": 15961.56, + "end": 15964.3, + "probability": 0.8364 + }, + { + "start": 15964.3, + "end": 15966.74, + "probability": 0.7598 + }, + { + "start": 15966.86, + "end": 15967.37, + "probability": 0.7881 + }, + { + "start": 15967.62, + "end": 15967.92, + "probability": 0.7474 + }, + { + "start": 15967.96, + "end": 15970.02, + "probability": 0.9869 + }, + { + "start": 15971.08, + "end": 15971.59, + "probability": 0.9692 + }, + { + "start": 15972.73, + "end": 15976.92, + "probability": 0.9204 + }, + { + "start": 15976.92, + "end": 15979.76, + "probability": 0.9897 + }, + { + "start": 15980.58, + "end": 15980.86, + "probability": 0.1959 + }, + { + "start": 15980.96, + "end": 15981.22, + "probability": 0.6734 + }, + { + "start": 15981.3, + "end": 15985.64, + "probability": 0.936 + }, + { + "start": 15986.24, + "end": 15987.42, + "probability": 0.8215 + }, + { + "start": 15987.44, + "end": 15990.58, + "probability": 0.7751 + }, + { + "start": 15990.58, + "end": 15993.72, + "probability": 0.8144 + }, + { + "start": 15994.5, + "end": 15996.72, + "probability": 0.9396 + }, + { + "start": 15997.76, + "end": 15998.3, + "probability": 0.8578 + }, + { + "start": 15998.52, + "end": 15998.52, + "probability": 0.2959 + }, + { + "start": 15998.52, + "end": 15999.12, + "probability": 0.8949 + }, + { + "start": 15999.36, + "end": 16000.6, + "probability": 0.6461 + }, + { + "start": 16000.72, + "end": 16001.12, + "probability": 0.6638 + }, + { + "start": 16002.06, + "end": 16002.4, + "probability": 0.4458 + }, + { + "start": 16003.24, + "end": 16005.42, + "probability": 0.9922 + }, + { + "start": 16007.42, + "end": 16007.88, + "probability": 0.5018 + }, + { + "start": 16007.96, + "end": 16010.68, + "probability": 0.8232 + }, + { + "start": 16010.88, + "end": 16014.2, + "probability": 0.8743 + }, + { + "start": 16015.06, + "end": 16017.42, + "probability": 0.7391 + }, + { + "start": 16018.32, + "end": 16019.02, + "probability": 0.3074 + }, + { + "start": 16019.46, + "end": 16022.56, + "probability": 0.7588 + }, + { + "start": 16022.56, + "end": 16026.58, + "probability": 0.8008 + }, + { + "start": 16026.76, + "end": 16031.38, + "probability": 0.8168 + }, + { + "start": 16031.96, + "end": 16034.4, + "probability": 0.7963 + }, + { + "start": 16034.4, + "end": 16037.46, + "probability": 0.9368 + }, + { + "start": 16039.14, + "end": 16041.68, + "probability": 0.8595 + }, + { + "start": 16041.98, + "end": 16045.28, + "probability": 0.9666 + }, + { + "start": 16045.84, + "end": 16047.47, + "probability": 0.9761 + }, + { + "start": 16048.34, + "end": 16049.38, + "probability": 0.9283 + }, + { + "start": 16049.48, + "end": 16049.8, + "probability": 0.3325 + }, + { + "start": 16049.9, + "end": 16051.98, + "probability": 0.8802 + }, + { + "start": 16051.98, + "end": 16054.88, + "probability": 0.9306 + }, + { + "start": 16055.36, + "end": 16056.0, + "probability": 0.8562 + }, + { + "start": 16057.16, + "end": 16059.6, + "probability": 0.8429 + }, + { + "start": 16060.54, + "end": 16063.42, + "probability": 0.557 + }, + { + "start": 16063.42, + "end": 16067.9, + "probability": 0.6731 + }, + { + "start": 16068.5, + "end": 16071.5, + "probability": 0.6287 + }, + { + "start": 16071.57, + "end": 16072.02, + "probability": 0.1134 + }, + { + "start": 16073.41, + "end": 16074.12, + "probability": 0.7253 + }, + { + "start": 16074.94, + "end": 16077.35, + "probability": 0.4313 + }, + { + "start": 16078.52, + "end": 16079.5, + "probability": 0.4072 + }, + { + "start": 16082.74, + "end": 16085.13, + "probability": 0.443 + }, + { + "start": 16087.26, + "end": 16088.93, + "probability": 0.6761 + }, + { + "start": 16094.94, + "end": 16095.14, + "probability": 0.0296 + }, + { + "start": 16096.22, + "end": 16098.08, + "probability": 0.1456 + }, + { + "start": 16098.3, + "end": 16098.76, + "probability": 0.3613 + }, + { + "start": 16099.32, + "end": 16099.52, + "probability": 0.4262 + }, + { + "start": 16100.4, + "end": 16100.72, + "probability": 0.0812 + }, + { + "start": 16100.72, + "end": 16101.42, + "probability": 0.4239 + }, + { + "start": 16101.42, + "end": 16102.42, + "probability": 0.4908 + }, + { + "start": 16103.52, + "end": 16104.94, + "probability": 0.9282 + }, + { + "start": 16106.76, + "end": 16108.06, + "probability": 0.6989 + }, + { + "start": 16108.16, + "end": 16109.74, + "probability": 0.8346 + }, + { + "start": 16110.2, + "end": 16113.24, + "probability": 0.9803 + }, + { + "start": 16113.92, + "end": 16118.24, + "probability": 0.9596 + }, + { + "start": 16118.34, + "end": 16120.12, + "probability": 0.689 + }, + { + "start": 16120.82, + "end": 16122.02, + "probability": 0.8548 + }, + { + "start": 16122.04, + "end": 16124.52, + "probability": 0.9894 + }, + { + "start": 16124.6, + "end": 16125.68, + "probability": 0.8293 + }, + { + "start": 16126.24, + "end": 16127.34, + "probability": 0.9789 + }, + { + "start": 16127.48, + "end": 16129.0, + "probability": 0.9828 + }, + { + "start": 16129.16, + "end": 16130.1, + "probability": 0.978 + }, + { + "start": 16130.68, + "end": 16134.54, + "probability": 0.9783 + }, + { + "start": 16135.48, + "end": 16138.34, + "probability": 0.9953 + }, + { + "start": 16139.28, + "end": 16141.08, + "probability": 0.9972 + }, + { + "start": 16141.22, + "end": 16142.66, + "probability": 0.7759 + }, + { + "start": 16143.12, + "end": 16145.18, + "probability": 0.9949 + }, + { + "start": 16145.26, + "end": 16148.58, + "probability": 0.9749 + }, + { + "start": 16148.84, + "end": 16149.82, + "probability": 0.929 + }, + { + "start": 16149.86, + "end": 16150.46, + "probability": 0.8811 + }, + { + "start": 16150.6, + "end": 16150.88, + "probability": 0.6747 + }, + { + "start": 16150.92, + "end": 16151.54, + "probability": 0.9121 + }, + { + "start": 16151.64, + "end": 16151.86, + "probability": 0.7246 + }, + { + "start": 16152.48, + "end": 16157.08, + "probability": 0.998 + }, + { + "start": 16157.62, + "end": 16160.14, + "probability": 0.9941 + }, + { + "start": 16160.14, + "end": 16163.64, + "probability": 0.9939 + }, + { + "start": 16163.7, + "end": 16165.48, + "probability": 0.9621 + }, + { + "start": 16166.62, + "end": 16166.94, + "probability": 0.9312 + }, + { + "start": 16167.56, + "end": 16168.06, + "probability": 0.3491 + }, + { + "start": 16168.06, + "end": 16168.85, + "probability": 0.6515 + }, + { + "start": 16168.96, + "end": 16171.74, + "probability": 0.8852 + }, + { + "start": 16172.14, + "end": 16173.78, + "probability": 0.8718 + }, + { + "start": 16174.78, + "end": 16175.6, + "probability": 0.8385 + }, + { + "start": 16175.68, + "end": 16176.74, + "probability": 0.9786 + }, + { + "start": 16176.8, + "end": 16178.33, + "probability": 0.9263 + }, + { + "start": 16179.3, + "end": 16182.7, + "probability": 0.9111 + }, + { + "start": 16183.22, + "end": 16185.22, + "probability": 0.8771 + }, + { + "start": 16185.74, + "end": 16188.88, + "probability": 0.8024 + }, + { + "start": 16189.36, + "end": 16189.36, + "probability": 0.005 + }, + { + "start": 16189.36, + "end": 16193.4, + "probability": 0.8376 + }, + { + "start": 16193.62, + "end": 16195.52, + "probability": 0.9013 + }, + { + "start": 16196.26, + "end": 16196.26, + "probability": 0.0558 + }, + { + "start": 16196.26, + "end": 16196.84, + "probability": 0.5956 + }, + { + "start": 16196.88, + "end": 16198.68, + "probability": 0.9044 + }, + { + "start": 16198.76, + "end": 16200.26, + "probability": 0.5066 + }, + { + "start": 16200.62, + "end": 16205.1, + "probability": 0.9695 + }, + { + "start": 16205.1, + "end": 16210.92, + "probability": 0.9905 + }, + { + "start": 16211.56, + "end": 16214.68, + "probability": 0.7915 + }, + { + "start": 16215.4, + "end": 16216.2, + "probability": 0.9355 + }, + { + "start": 16216.26, + "end": 16217.74, + "probability": 0.864 + }, + { + "start": 16217.86, + "end": 16219.34, + "probability": 0.8873 + }, + { + "start": 16219.44, + "end": 16224.82, + "probability": 0.9653 + }, + { + "start": 16225.42, + "end": 16227.53, + "probability": 0.6571 + }, + { + "start": 16228.64, + "end": 16229.86, + "probability": 0.9521 + }, + { + "start": 16230.34, + "end": 16234.34, + "probability": 0.9178 + }, + { + "start": 16234.68, + "end": 16236.24, + "probability": 0.966 + }, + { + "start": 16236.94, + "end": 16237.22, + "probability": 0.4989 + }, + { + "start": 16237.3, + "end": 16238.54, + "probability": 0.8045 + }, + { + "start": 16238.6, + "end": 16244.6, + "probability": 0.9961 + }, + { + "start": 16245.02, + "end": 16247.74, + "probability": 0.8937 + }, + { + "start": 16248.34, + "end": 16253.68, + "probability": 0.901 + }, + { + "start": 16253.9, + "end": 16258.76, + "probability": 0.7482 + }, + { + "start": 16258.76, + "end": 16264.14, + "probability": 0.9856 + }, + { + "start": 16264.52, + "end": 16267.46, + "probability": 0.9673 + }, + { + "start": 16267.68, + "end": 16270.54, + "probability": 0.9608 + }, + { + "start": 16270.9, + "end": 16275.14, + "probability": 0.9364 + }, + { + "start": 16275.14, + "end": 16280.3, + "probability": 0.7622 + }, + { + "start": 16280.36, + "end": 16282.12, + "probability": 0.7721 + }, + { + "start": 16282.76, + "end": 16285.36, + "probability": 0.8325 + }, + { + "start": 16285.9, + "end": 16287.46, + "probability": 0.7523 + }, + { + "start": 16288.06, + "end": 16291.3, + "probability": 0.9685 + }, + { + "start": 16291.78, + "end": 16297.5, + "probability": 0.9937 + }, + { + "start": 16298.12, + "end": 16299.5, + "probability": 0.9911 + }, + { + "start": 16299.62, + "end": 16304.08, + "probability": 0.984 + }, + { + "start": 16304.26, + "end": 16305.18, + "probability": 0.6542 + }, + { + "start": 16305.26, + "end": 16305.56, + "probability": 0.812 + }, + { + "start": 16305.6, + "end": 16308.38, + "probability": 0.992 + }, + { + "start": 16312.18, + "end": 16314.66, + "probability": 0.6839 + }, + { + "start": 16314.84, + "end": 16323.58, + "probability": 0.8894 + }, + { + "start": 16324.24, + "end": 16327.38, + "probability": 0.612 + }, + { + "start": 16329.75, + "end": 16331.52, + "probability": 0.5271 + }, + { + "start": 16331.6, + "end": 16333.52, + "probability": 0.6154 + }, + { + "start": 16334.18, + "end": 16335.96, + "probability": 0.8669 + }, + { + "start": 16336.22, + "end": 16338.06, + "probability": 0.9963 + }, + { + "start": 16338.4, + "end": 16343.52, + "probability": 0.9787 + }, + { + "start": 16343.7, + "end": 16347.0, + "probability": 0.837 + }, + { + "start": 16347.0, + "end": 16349.76, + "probability": 0.9692 + }, + { + "start": 16350.26, + "end": 16352.36, + "probability": 0.866 + }, + { + "start": 16352.76, + "end": 16354.2, + "probability": 0.991 + }, + { + "start": 16354.36, + "end": 16355.34, + "probability": 0.5715 + }, + { + "start": 16355.48, + "end": 16356.44, + "probability": 0.7579 + }, + { + "start": 16356.82, + "end": 16359.54, + "probability": 0.8879 + }, + { + "start": 16359.62, + "end": 16360.22, + "probability": 0.8465 + }, + { + "start": 16360.62, + "end": 16360.98, + "probability": 0.8068 + }, + { + "start": 16361.72, + "end": 16364.04, + "probability": 0.8403 + }, + { + "start": 16365.46, + "end": 16366.38, + "probability": 0.1193 + }, + { + "start": 16368.98, + "end": 16370.82, + "probability": 0.1106 + }, + { + "start": 16373.52, + "end": 16375.49, + "probability": 0.1506 + }, + { + "start": 16386.74, + "end": 16388.96, + "probability": 0.1165 + }, + { + "start": 16389.12, + "end": 16391.78, + "probability": 0.0063 + }, + { + "start": 16392.62, + "end": 16393.36, + "probability": 0.5115 + }, + { + "start": 16405.86, + "end": 16408.08, + "probability": 0.8387 + }, + { + "start": 16408.3, + "end": 16411.46, + "probability": 0.6722 + }, + { + "start": 16411.54, + "end": 16412.91, + "probability": 0.7338 + }, + { + "start": 16415.04, + "end": 16415.72, + "probability": 0.8022 + }, + { + "start": 16415.84, + "end": 16416.4, + "probability": 0.6808 + }, + { + "start": 16416.46, + "end": 16417.76, + "probability": 0.7972 + }, + { + "start": 16417.8, + "end": 16419.1, + "probability": 0.9565 + }, + { + "start": 16419.68, + "end": 16422.28, + "probability": 0.7621 + }, + { + "start": 16423.18, + "end": 16423.76, + "probability": 0.3762 + }, + { + "start": 16424.68, + "end": 16426.42, + "probability": 0.9198 + }, + { + "start": 16427.78, + "end": 16428.16, + "probability": 0.7234 + }, + { + "start": 16430.1, + "end": 16431.32, + "probability": 0.5697 + }, + { + "start": 16431.6, + "end": 16432.6, + "probability": 0.9637 + }, + { + "start": 16433.08, + "end": 16437.26, + "probability": 0.8264 + }, + { + "start": 16438.3, + "end": 16441.56, + "probability": 0.4833 + }, + { + "start": 16442.0, + "end": 16442.54, + "probability": 0.2512 + }, + { + "start": 16442.64, + "end": 16450.64, + "probability": 0.8337 + }, + { + "start": 16450.74, + "end": 16454.88, + "probability": 0.8037 + }, + { + "start": 16455.32, + "end": 16457.06, + "probability": 0.9453 + }, + { + "start": 16457.64, + "end": 16458.9, + "probability": 0.9293 + }, + { + "start": 16459.14, + "end": 16464.32, + "probability": 0.8781 + }, + { + "start": 16466.46, + "end": 16468.3, + "probability": 0.9829 + }, + { + "start": 16468.3, + "end": 16471.78, + "probability": 0.9952 + }, + { + "start": 16473.14, + "end": 16475.67, + "probability": 0.6418 + }, + { + "start": 16477.16, + "end": 16478.78, + "probability": 0.9372 + }, + { + "start": 16479.7, + "end": 16482.76, + "probability": 0.8571 + }, + { + "start": 16483.44, + "end": 16484.76, + "probability": 0.814 + }, + { + "start": 16485.84, + "end": 16490.8, + "probability": 0.9849 + }, + { + "start": 16491.42, + "end": 16493.28, + "probability": 0.8199 + }, + { + "start": 16493.28, + "end": 16498.8, + "probability": 0.8105 + }, + { + "start": 16499.64, + "end": 16500.98, + "probability": 0.7138 + }, + { + "start": 16503.66, + "end": 16506.7, + "probability": 0.4251 + }, + { + "start": 16506.72, + "end": 16509.72, + "probability": 0.7531 + }, + { + "start": 16510.66, + "end": 16511.9, + "probability": 0.7006 + }, + { + "start": 16512.14, + "end": 16514.04, + "probability": 0.5894 + }, + { + "start": 16514.24, + "end": 16516.06, + "probability": 0.3348 + }, + { + "start": 16516.26, + "end": 16520.76, + "probability": 0.9849 + }, + { + "start": 16521.12, + "end": 16522.5, + "probability": 0.7056 + }, + { + "start": 16522.6, + "end": 16525.22, + "probability": 0.8442 + }, + { + "start": 16526.08, + "end": 16527.64, + "probability": 0.8459 + }, + { + "start": 16528.26, + "end": 16528.72, + "probability": 0.7159 + }, + { + "start": 16528.8, + "end": 16531.32, + "probability": 0.9854 + }, + { + "start": 16531.42, + "end": 16535.69, + "probability": 0.8191 + }, + { + "start": 16535.88, + "end": 16541.12, + "probability": 0.995 + }, + { + "start": 16541.72, + "end": 16545.1, + "probability": 0.9437 + }, + { + "start": 16545.76, + "end": 16546.6, + "probability": 0.998 + }, + { + "start": 16549.94, + "end": 16554.24, + "probability": 0.9884 + }, + { + "start": 16554.24, + "end": 16555.8, + "probability": 0.9653 + }, + { + "start": 16555.86, + "end": 16556.36, + "probability": 0.6384 + }, + { + "start": 16556.52, + "end": 16557.54, + "probability": 0.7371 + }, + { + "start": 16557.7, + "end": 16558.6, + "probability": 0.6014 + }, + { + "start": 16559.06, + "end": 16560.56, + "probability": 0.9594 + }, + { + "start": 16560.78, + "end": 16562.94, + "probability": 0.9979 + }, + { + "start": 16563.74, + "end": 16567.78, + "probability": 0.5675 + }, + { + "start": 16569.02, + "end": 16572.01, + "probability": 0.5011 + }, + { + "start": 16572.22, + "end": 16575.08, + "probability": 0.6172 + }, + { + "start": 16575.24, + "end": 16576.99, + "probability": 0.8831 + }, + { + "start": 16577.28, + "end": 16579.1, + "probability": 0.9287 + }, + { + "start": 16579.22, + "end": 16580.58, + "probability": 0.811 + }, + { + "start": 16583.31, + "end": 16585.02, + "probability": 0.0787 + }, + { + "start": 16585.02, + "end": 16585.88, + "probability": 0.049 + }, + { + "start": 16587.04, + "end": 16588.46, + "probability": 0.6971 + }, + { + "start": 16588.56, + "end": 16592.66, + "probability": 0.9539 + }, + { + "start": 16593.94, + "end": 16594.4, + "probability": 0.7146 + }, + { + "start": 16596.56, + "end": 16600.94, + "probability": 0.8095 + }, + { + "start": 16608.1, + "end": 16609.86, + "probability": 0.0099 + }, + { + "start": 16617.6, + "end": 16620.82, + "probability": 0.6912 + }, + { + "start": 16622.52, + "end": 16624.98, + "probability": 0.8909 + }, + { + "start": 16625.88, + "end": 16627.84, + "probability": 0.9409 + }, + { + "start": 16628.7, + "end": 16629.96, + "probability": 0.904 + }, + { + "start": 16630.22, + "end": 16630.22, + "probability": 0.6439 + }, + { + "start": 16631.04, + "end": 16632.0, + "probability": 0.9953 + }, + { + "start": 16632.84, + "end": 16634.2, + "probability": 0.8682 + }, + { + "start": 16634.4, + "end": 16636.5, + "probability": 0.8903 + }, + { + "start": 16636.62, + "end": 16638.08, + "probability": 0.8609 + }, + { + "start": 16639.02, + "end": 16645.58, + "probability": 0.9912 + }, + { + "start": 16646.54, + "end": 16649.7, + "probability": 0.9979 + }, + { + "start": 16649.7, + "end": 16653.58, + "probability": 0.9937 + }, + { + "start": 16654.44, + "end": 16660.08, + "probability": 0.9971 + }, + { + "start": 16660.08, + "end": 16668.24, + "probability": 0.9919 + }, + { + "start": 16668.78, + "end": 16669.76, + "probability": 0.721 + }, + { + "start": 16670.48, + "end": 16673.24, + "probability": 0.7126 + }, + { + "start": 16673.82, + "end": 16675.28, + "probability": 0.9922 + }, + { + "start": 16676.26, + "end": 16683.18, + "probability": 0.9871 + }, + { + "start": 16683.18, + "end": 16688.0, + "probability": 0.9928 + }, + { + "start": 16688.58, + "end": 16690.1, + "probability": 0.7968 + }, + { + "start": 16690.42, + "end": 16692.6, + "probability": 0.9919 + }, + { + "start": 16693.38, + "end": 16693.78, + "probability": 0.9131 + }, + { + "start": 16693.88, + "end": 16694.8, + "probability": 0.7873 + }, + { + "start": 16695.42, + "end": 16697.34, + "probability": 0.9204 + }, + { + "start": 16698.2, + "end": 16699.94, + "probability": 0.9429 + }, + { + "start": 16699.98, + "end": 16701.1, + "probability": 0.9351 + }, + { + "start": 16701.48, + "end": 16702.56, + "probability": 0.8149 + }, + { + "start": 16703.02, + "end": 16704.02, + "probability": 0.9349 + }, + { + "start": 16704.06, + "end": 16706.22, + "probability": 0.9922 + }, + { + "start": 16706.44, + "end": 16710.4, + "probability": 0.9784 + }, + { + "start": 16710.7, + "end": 16711.68, + "probability": 0.8412 + }, + { + "start": 16712.0, + "end": 16712.8, + "probability": 0.9739 + }, + { + "start": 16713.92, + "end": 16717.88, + "probability": 0.995 + }, + { + "start": 16718.44, + "end": 16720.46, + "probability": 0.9865 + }, + { + "start": 16721.06, + "end": 16724.84, + "probability": 0.8224 + }, + { + "start": 16725.18, + "end": 16728.68, + "probability": 0.9847 + }, + { + "start": 16729.24, + "end": 16732.25, + "probability": 0.894 + }, + { + "start": 16732.92, + "end": 16733.55, + "probability": 0.0842 + }, + { + "start": 16734.54, + "end": 16735.58, + "probability": 0.969 + }, + { + "start": 16735.8, + "end": 16736.3, + "probability": 0.9661 + }, + { + "start": 16737.1, + "end": 16738.22, + "probability": 0.7649 + }, + { + "start": 16738.72, + "end": 16739.8, + "probability": 0.9402 + }, + { + "start": 16740.24, + "end": 16741.26, + "probability": 0.6838 + }, + { + "start": 16741.7, + "end": 16743.83, + "probability": 0.9553 + }, + { + "start": 16744.4, + "end": 16747.52, + "probability": 0.9296 + }, + { + "start": 16748.74, + "end": 16749.52, + "probability": 0.943 + }, + { + "start": 16749.88, + "end": 16750.22, + "probability": 0.6968 + }, + { + "start": 16750.36, + "end": 16752.48, + "probability": 0.9929 + }, + { + "start": 16753.54, + "end": 16754.22, + "probability": 0.6532 + }, + { + "start": 16755.62, + "end": 16757.36, + "probability": 0.8998 + }, + { + "start": 16757.56, + "end": 16758.12, + "probability": 0.8697 + }, + { + "start": 16758.22, + "end": 16760.56, + "probability": 0.8866 + }, + { + "start": 16761.24, + "end": 16764.42, + "probability": 0.8475 + }, + { + "start": 16765.54, + "end": 16766.38, + "probability": 0.8872 + }, + { + "start": 16767.2, + "end": 16768.56, + "probability": 0.9913 + }, + { + "start": 16769.46, + "end": 16770.32, + "probability": 0.9365 + }, + { + "start": 16771.36, + "end": 16776.16, + "probability": 0.9674 + }, + { + "start": 16776.16, + "end": 16781.12, + "probability": 0.9534 + }, + { + "start": 16781.4, + "end": 16787.18, + "probability": 0.6144 + }, + { + "start": 16788.4, + "end": 16792.82, + "probability": 0.8401 + }, + { + "start": 16793.58, + "end": 16793.86, + "probability": 0.0917 + }, + { + "start": 16794.52, + "end": 16795.78, + "probability": 0.9963 + }, + { + "start": 16796.28, + "end": 16798.04, + "probability": 0.9758 + }, + { + "start": 16798.62, + "end": 16799.28, + "probability": 0.7805 + }, + { + "start": 16799.3, + "end": 16799.74, + "probability": 0.5225 + }, + { + "start": 16799.86, + "end": 16801.4, + "probability": 0.5257 + }, + { + "start": 16801.68, + "end": 16802.46, + "probability": 0.9483 + }, + { + "start": 16802.64, + "end": 16803.52, + "probability": 0.9384 + }, + { + "start": 16803.88, + "end": 16804.56, + "probability": 0.9127 + }, + { + "start": 16804.68, + "end": 16806.52, + "probability": 0.9373 + }, + { + "start": 16807.14, + "end": 16810.84, + "probability": 0.9924 + }, + { + "start": 16811.02, + "end": 16812.52, + "probability": 0.5232 + }, + { + "start": 16812.7, + "end": 16813.6, + "probability": 0.9187 + }, + { + "start": 16814.08, + "end": 16815.5, + "probability": 0.9422 + }, + { + "start": 16816.2, + "end": 16821.32, + "probability": 0.9881 + }, + { + "start": 16821.32, + "end": 16826.82, + "probability": 0.9872 + }, + { + "start": 16828.16, + "end": 16830.56, + "probability": 0.7859 + }, + { + "start": 16830.68, + "end": 16832.44, + "probability": 0.5478 + }, + { + "start": 16833.1, + "end": 16833.8, + "probability": 0.8578 + }, + { + "start": 16834.32, + "end": 16834.84, + "probability": 0.3504 + }, + { + "start": 16834.94, + "end": 16835.72, + "probability": 0.8803 + }, + { + "start": 16836.56, + "end": 16838.56, + "probability": 0.8548 + }, + { + "start": 16839.98, + "end": 16840.32, + "probability": 0.4386 + }, + { + "start": 16841.28, + "end": 16845.4, + "probability": 0.9683 + }, + { + "start": 16845.96, + "end": 16847.76, + "probability": 0.9946 + }, + { + "start": 16849.1, + "end": 16850.76, + "probability": 0.927 + }, + { + "start": 16850.92, + "end": 16853.54, + "probability": 0.9982 + }, + { + "start": 16853.98, + "end": 16854.82, + "probability": 0.7359 + }, + { + "start": 16855.48, + "end": 16858.48, + "probability": 0.8696 + }, + { + "start": 16859.02, + "end": 16859.98, + "probability": 0.7734 + }, + { + "start": 16860.56, + "end": 16863.56, + "probability": 0.8785 + }, + { + "start": 16864.58, + "end": 16867.64, + "probability": 0.9178 + }, + { + "start": 16868.16, + "end": 16873.02, + "probability": 0.9946 + }, + { + "start": 16873.14, + "end": 16876.6, + "probability": 0.9041 + }, + { + "start": 16876.98, + "end": 16878.09, + "probability": 0.9961 + }, + { + "start": 16878.8, + "end": 16883.9, + "probability": 0.9915 + }, + { + "start": 16885.0, + "end": 16887.72, + "probability": 0.9778 + }, + { + "start": 16888.2, + "end": 16890.1, + "probability": 0.9784 + }, + { + "start": 16890.44, + "end": 16893.25, + "probability": 0.9937 + }, + { + "start": 16894.18, + "end": 16895.36, + "probability": 0.9723 + }, + { + "start": 16895.76, + "end": 16895.98, + "probability": 0.5287 + }, + { + "start": 16896.8, + "end": 16899.04, + "probability": 0.7246 + }, + { + "start": 16899.3, + "end": 16902.24, + "probability": 0.9541 + }, + { + "start": 16902.4, + "end": 16904.68, + "probability": 0.9917 + }, + { + "start": 16904.68, + "end": 16907.74, + "probability": 0.8773 + }, + { + "start": 16908.02, + "end": 16909.74, + "probability": 0.9437 + }, + { + "start": 16910.12, + "end": 16911.42, + "probability": 0.9856 + }, + { + "start": 16911.94, + "end": 16914.29, + "probability": 0.9937 + }, + { + "start": 16915.2, + "end": 16915.48, + "probability": 0.8674 + }, + { + "start": 16915.58, + "end": 16917.78, + "probability": 0.9632 + }, + { + "start": 16917.78, + "end": 16920.0, + "probability": 0.8349 + }, + { + "start": 16920.82, + "end": 16924.08, + "probability": 0.9893 + }, + { + "start": 16924.54, + "end": 16930.28, + "probability": 0.9901 + }, + { + "start": 16930.38, + "end": 16930.94, + "probability": 0.8631 + }, + { + "start": 16931.54, + "end": 16931.88, + "probability": 0.7875 + }, + { + "start": 16932.92, + "end": 16935.8, + "probability": 0.5462 + }, + { + "start": 16937.26, + "end": 16940.48, + "probability": 0.5354 + }, + { + "start": 16952.02, + "end": 16954.64, + "probability": 0.1144 + }, + { + "start": 16955.24, + "end": 16956.62, + "probability": 0.5267 + }, + { + "start": 16956.9, + "end": 16958.08, + "probability": 0.6704 + }, + { + "start": 16958.48, + "end": 16963.58, + "probability": 0.9846 + }, + { + "start": 16963.58, + "end": 16966.82, + "probability": 0.9956 + }, + { + "start": 16966.86, + "end": 16968.26, + "probability": 0.9929 + }, + { + "start": 16968.86, + "end": 16970.56, + "probability": 0.9987 + }, + { + "start": 16970.84, + "end": 16974.5, + "probability": 0.9739 + }, + { + "start": 16974.94, + "end": 16976.32, + "probability": 0.8638 + }, + { + "start": 16976.52, + "end": 16981.26, + "probability": 0.8381 + }, + { + "start": 16982.0, + "end": 16983.94, + "probability": 0.835 + }, + { + "start": 16984.5, + "end": 16989.24, + "probability": 0.9229 + }, + { + "start": 16989.82, + "end": 16993.62, + "probability": 0.9845 + }, + { + "start": 16993.72, + "end": 16994.46, + "probability": 0.8538 + }, + { + "start": 16995.42, + "end": 16999.1, + "probability": 0.9827 + }, + { + "start": 16999.1, + "end": 17002.78, + "probability": 0.9756 + }, + { + "start": 17003.3, + "end": 17006.46, + "probability": 0.9937 + }, + { + "start": 17006.52, + "end": 17012.54, + "probability": 0.6944 + }, + { + "start": 17013.34, + "end": 17016.04, + "probability": 0.9902 + }, + { + "start": 17018.52, + "end": 17021.1, + "probability": 0.7997 + }, + { + "start": 17021.9, + "end": 17024.96, + "probability": 0.7448 + }, + { + "start": 17025.58, + "end": 17026.98, + "probability": 0.5832 + }, + { + "start": 17027.44, + "end": 17029.44, + "probability": 0.9441 + }, + { + "start": 17029.54, + "end": 17030.02, + "probability": 0.5053 + }, + { + "start": 17030.14, + "end": 17030.44, + "probability": 0.7654 + }, + { + "start": 17031.08, + "end": 17035.86, + "probability": 0.8521 + }, + { + "start": 17036.2, + "end": 17040.34, + "probability": 0.9797 + }, + { + "start": 17040.54, + "end": 17045.44, + "probability": 0.998 + }, + { + "start": 17045.6, + "end": 17047.68, + "probability": 0.9093 + }, + { + "start": 17047.86, + "end": 17050.58, + "probability": 0.9945 + }, + { + "start": 17051.08, + "end": 17054.88, + "probability": 0.9936 + }, + { + "start": 17055.22, + "end": 17057.06, + "probability": 0.6453 + }, + { + "start": 17057.24, + "end": 17057.76, + "probability": 0.4698 + }, + { + "start": 17057.86, + "end": 17060.1, + "probability": 0.9011 + }, + { + "start": 17060.16, + "end": 17064.24, + "probability": 0.9951 + }, + { + "start": 17064.66, + "end": 17072.76, + "probability": 0.9954 + }, + { + "start": 17073.42, + "end": 17079.18, + "probability": 0.9928 + }, + { + "start": 17080.0, + "end": 17081.1, + "probability": 0.8005 + }, + { + "start": 17081.96, + "end": 17088.14, + "probability": 0.9987 + }, + { + "start": 17088.66, + "end": 17093.68, + "probability": 0.9333 + }, + { + "start": 17093.76, + "end": 17097.38, + "probability": 0.9287 + }, + { + "start": 17097.96, + "end": 17099.63, + "probability": 0.8208 + }, + { + "start": 17100.04, + "end": 17102.24, + "probability": 0.7745 + }, + { + "start": 17102.7, + "end": 17107.34, + "probability": 0.9912 + }, + { + "start": 17107.76, + "end": 17110.66, + "probability": 0.9964 + }, + { + "start": 17110.88, + "end": 17114.2, + "probability": 0.97 + }, + { + "start": 17114.22, + "end": 17117.4, + "probability": 0.9993 + }, + { + "start": 17117.64, + "end": 17122.1, + "probability": 0.833 + }, + { + "start": 17122.3, + "end": 17123.34, + "probability": 0.9617 + }, + { + "start": 17123.44, + "end": 17124.67, + "probability": 0.9769 + }, + { + "start": 17124.78, + "end": 17128.12, + "probability": 0.9951 + }, + { + "start": 17128.5, + "end": 17130.8, + "probability": 0.9863 + }, + { + "start": 17131.54, + "end": 17133.22, + "probability": 0.602 + }, + { + "start": 17133.4, + "end": 17133.9, + "probability": 0.8287 + }, + { + "start": 17133.9, + "end": 17134.72, + "probability": 0.1574 + }, + { + "start": 17134.82, + "end": 17135.62, + "probability": 0.8347 + }, + { + "start": 17135.8, + "end": 17140.94, + "probability": 0.9629 + }, + { + "start": 17140.94, + "end": 17145.78, + "probability": 0.9909 + }, + { + "start": 17146.14, + "end": 17147.76, + "probability": 0.8345 + }, + { + "start": 17149.62, + "end": 17152.74, + "probability": 0.5002 + }, + { + "start": 17153.26, + "end": 17153.9, + "probability": 0.3843 + }, + { + "start": 17154.13, + "end": 17155.22, + "probability": 0.8127 + }, + { + "start": 17155.32, + "end": 17155.84, + "probability": 0.7023 + }, + { + "start": 17155.96, + "end": 17162.38, + "probability": 0.9956 + }, + { + "start": 17162.88, + "end": 17166.25, + "probability": 0.9941 + }, + { + "start": 17166.74, + "end": 17172.78, + "probability": 0.9951 + }, + { + "start": 17173.06, + "end": 17176.14, + "probability": 0.8677 + }, + { + "start": 17176.96, + "end": 17177.68, + "probability": 0.8797 + }, + { + "start": 17177.78, + "end": 17180.1, + "probability": 0.8435 + }, + { + "start": 17180.48, + "end": 17185.8, + "probability": 0.9771 + }, + { + "start": 17186.04, + "end": 17186.4, + "probability": 0.089 + }, + { + "start": 17186.96, + "end": 17187.32, + "probability": 0.8152 + }, + { + "start": 17188.2, + "end": 17193.26, + "probability": 0.6169 + }, + { + "start": 17195.5, + "end": 17198.12, + "probability": 0.6375 + }, + { + "start": 17214.14, + "end": 17216.36, + "probability": 0.4154 + }, + { + "start": 17217.22, + "end": 17218.76, + "probability": 0.5883 + }, + { + "start": 17220.18, + "end": 17224.34, + "probability": 0.9287 + }, + { + "start": 17226.14, + "end": 17229.3, + "probability": 0.9861 + }, + { + "start": 17230.06, + "end": 17230.9, + "probability": 0.7524 + }, + { + "start": 17231.02, + "end": 17231.32, + "probability": 0.6024 + }, + { + "start": 17231.4, + "end": 17234.94, + "probability": 0.9924 + }, + { + "start": 17234.94, + "end": 17237.92, + "probability": 0.9801 + }, + { + "start": 17238.52, + "end": 17239.76, + "probability": 0.9705 + }, + { + "start": 17240.56, + "end": 17242.18, + "probability": 0.9571 + }, + { + "start": 17242.94, + "end": 17247.68, + "probability": 0.9846 + }, + { + "start": 17249.06, + "end": 17250.74, + "probability": 0.7169 + }, + { + "start": 17251.1, + "end": 17253.8, + "probability": 0.9875 + }, + { + "start": 17255.3, + "end": 17256.54, + "probability": 0.9924 + }, + { + "start": 17257.3, + "end": 17262.76, + "probability": 0.9963 + }, + { + "start": 17263.36, + "end": 17265.43, + "probability": 0.7593 + }, + { + "start": 17266.52, + "end": 17269.74, + "probability": 0.9508 + }, + { + "start": 17270.36, + "end": 17271.98, + "probability": 0.8942 + }, + { + "start": 17273.14, + "end": 17274.54, + "probability": 0.9265 + }, + { + "start": 17275.34, + "end": 17277.96, + "probability": 0.9751 + }, + { + "start": 17278.56, + "end": 17279.7, + "probability": 0.9883 + }, + { + "start": 17280.56, + "end": 17283.68, + "probability": 0.7833 + }, + { + "start": 17284.64, + "end": 17286.36, + "probability": 0.9831 + }, + { + "start": 17287.24, + "end": 17293.42, + "probability": 0.9506 + }, + { + "start": 17294.1, + "end": 17297.18, + "probability": 0.9113 + }, + { + "start": 17297.9, + "end": 17301.7, + "probability": 0.884 + }, + { + "start": 17302.76, + "end": 17309.25, + "probability": 0.976 + }, + { + "start": 17309.92, + "end": 17310.1, + "probability": 0.9674 + }, + { + "start": 17310.22, + "end": 17318.14, + "probability": 0.9868 + }, + { + "start": 17320.16, + "end": 17323.82, + "probability": 0.9971 + }, + { + "start": 17325.34, + "end": 17326.58, + "probability": 0.5218 + }, + { + "start": 17328.22, + "end": 17334.1, + "probability": 0.9773 + }, + { + "start": 17334.88, + "end": 17338.7, + "probability": 0.9948 + }, + { + "start": 17339.5, + "end": 17342.48, + "probability": 0.9377 + }, + { + "start": 17344.36, + "end": 17348.16, + "probability": 0.9517 + }, + { + "start": 17348.74, + "end": 17356.88, + "probability": 0.9852 + }, + { + "start": 17357.56, + "end": 17360.9, + "probability": 0.9961 + }, + { + "start": 17361.4, + "end": 17365.32, + "probability": 0.9903 + }, + { + "start": 17365.46, + "end": 17367.55, + "probability": 0.9844 + }, + { + "start": 17368.0, + "end": 17370.08, + "probability": 0.9958 + }, + { + "start": 17370.86, + "end": 17371.78, + "probability": 0.9606 + }, + { + "start": 17371.9, + "end": 17373.16, + "probability": 0.6618 + }, + { + "start": 17373.56, + "end": 17380.12, + "probability": 0.9866 + }, + { + "start": 17381.0, + "end": 17383.16, + "probability": 0.9897 + }, + { + "start": 17383.68, + "end": 17387.72, + "probability": 0.9467 + }, + { + "start": 17388.2, + "end": 17388.8, + "probability": 0.8826 + }, + { + "start": 17388.9, + "end": 17389.96, + "probability": 0.7518 + }, + { + "start": 17390.16, + "end": 17398.72, + "probability": 0.946 + }, + { + "start": 17399.4, + "end": 17402.06, + "probability": 0.9761 + }, + { + "start": 17402.86, + "end": 17404.74, + "probability": 0.9692 + }, + { + "start": 17405.44, + "end": 17408.76, + "probability": 0.9933 + }, + { + "start": 17409.58, + "end": 17415.28, + "probability": 0.9897 + }, + { + "start": 17416.16, + "end": 17418.68, + "probability": 0.9967 + }, + { + "start": 17419.66, + "end": 17420.86, + "probability": 0.6517 + }, + { + "start": 17421.8, + "end": 17422.12, + "probability": 0.5989 + }, + { + "start": 17422.16, + "end": 17424.09, + "probability": 0.7134 + }, + { + "start": 17424.28, + "end": 17424.92, + "probability": 0.7049 + }, + { + "start": 17425.3, + "end": 17426.7, + "probability": 0.9096 + }, + { + "start": 17427.38, + "end": 17430.44, + "probability": 0.9031 + }, + { + "start": 17437.96, + "end": 17439.22, + "probability": 0.7078 + }, + { + "start": 17443.62, + "end": 17446.4, + "probability": 0.7202 + }, + { + "start": 17447.24, + "end": 17449.44, + "probability": 0.9378 + }, + { + "start": 17450.16, + "end": 17451.26, + "probability": 0.0527 + }, + { + "start": 17454.54, + "end": 17457.14, + "probability": 0.0371 + }, + { + "start": 17457.14, + "end": 17457.94, + "probability": 0.4738 + }, + { + "start": 17457.94, + "end": 17459.78, + "probability": 0.4999 + }, + { + "start": 17460.14, + "end": 17462.02, + "probability": 0.9927 + }, + { + "start": 17462.18, + "end": 17465.56, + "probability": 0.8052 + }, + { + "start": 17466.26, + "end": 17472.38, + "probability": 0.9949 + }, + { + "start": 17474.5, + "end": 17478.94, + "probability": 0.9955 + }, + { + "start": 17478.94, + "end": 17481.88, + "probability": 0.9989 + }, + { + "start": 17481.96, + "end": 17483.52, + "probability": 0.9177 + }, + { + "start": 17484.88, + "end": 17488.58, + "probability": 0.9812 + }, + { + "start": 17489.04, + "end": 17491.4, + "probability": 0.724 + }, + { + "start": 17491.84, + "end": 17493.2, + "probability": 0.6188 + }, + { + "start": 17494.14, + "end": 17494.74, + "probability": 0.5952 + }, + { + "start": 17494.88, + "end": 17496.22, + "probability": 0.5776 + }, + { + "start": 17497.6, + "end": 17498.18, + "probability": 0.6249 + }, + { + "start": 17498.18, + "end": 17498.8, + "probability": 0.5044 + }, + { + "start": 17499.62, + "end": 17500.42, + "probability": 0.6141 + }, + { + "start": 17500.74, + "end": 17502.96, + "probability": 0.9796 + }, + { + "start": 17503.86, + "end": 17506.5, + "probability": 0.986 + }, + { + "start": 17507.82, + "end": 17510.92, + "probability": 0.9608 + }, + { + "start": 17512.18, + "end": 17514.32, + "probability": 0.9443 + }, + { + "start": 17514.4, + "end": 17514.88, + "probability": 0.9206 + }, + { + "start": 17514.98, + "end": 17515.58, + "probability": 0.7952 + }, + { + "start": 17516.02, + "end": 17516.68, + "probability": 0.9533 + }, + { + "start": 17516.9, + "end": 17517.6, + "probability": 0.7134 + }, + { + "start": 17517.88, + "end": 17519.68, + "probability": 0.9856 + }, + { + "start": 17519.76, + "end": 17520.56, + "probability": 0.9868 + }, + { + "start": 17520.64, + "end": 17521.36, + "probability": 0.5338 + }, + { + "start": 17522.16, + "end": 17526.02, + "probability": 0.9952 + }, + { + "start": 17527.4, + "end": 17531.38, + "probability": 0.9935 + }, + { + "start": 17533.52, + "end": 17533.52, + "probability": 0.3591 + }, + { + "start": 17533.52, + "end": 17533.68, + "probability": 0.6606 + }, + { + "start": 17534.26, + "end": 17538.4, + "probability": 0.7501 + }, + { + "start": 17539.12, + "end": 17541.84, + "probability": 0.8773 + }, + { + "start": 17542.5, + "end": 17546.24, + "probability": 0.9917 + }, + { + "start": 17546.64, + "end": 17550.28, + "probability": 0.8184 + }, + { + "start": 17551.32, + "end": 17552.62, + "probability": 0.5931 + }, + { + "start": 17555.9, + "end": 17559.44, + "probability": 0.5285 + }, + { + "start": 17560.36, + "end": 17560.36, + "probability": 0.1014 + }, + { + "start": 17560.36, + "end": 17560.36, + "probability": 0.0684 + }, + { + "start": 17560.36, + "end": 17564.74, + "probability": 0.9526 + }, + { + "start": 17564.76, + "end": 17566.5, + "probability": 0.9052 + }, + { + "start": 17567.14, + "end": 17570.74, + "probability": 0.9233 + }, + { + "start": 17571.38, + "end": 17575.34, + "probability": 0.9953 + }, + { + "start": 17575.82, + "end": 17577.32, + "probability": 0.9609 + }, + { + "start": 17577.64, + "end": 17583.88, + "probability": 0.8398 + }, + { + "start": 17584.14, + "end": 17591.34, + "probability": 0.9639 + }, + { + "start": 17591.34, + "end": 17597.04, + "probability": 0.9835 + }, + { + "start": 17598.02, + "end": 17600.32, + "probability": 0.6698 + }, + { + "start": 17600.4, + "end": 17600.9, + "probability": 0.3837 + }, + { + "start": 17600.98, + "end": 17601.4, + "probability": 0.9138 + }, + { + "start": 17602.34, + "end": 17605.3, + "probability": 0.9795 + }, + { + "start": 17605.3, + "end": 17608.9, + "probability": 0.9414 + }, + { + "start": 17609.44, + "end": 17611.42, + "probability": 0.8964 + }, + { + "start": 17611.96, + "end": 17613.04, + "probability": 0.9776 + }, + { + "start": 17613.12, + "end": 17614.26, + "probability": 0.8088 + }, + { + "start": 17614.58, + "end": 17620.02, + "probability": 0.6666 + }, + { + "start": 17620.18, + "end": 17621.48, + "probability": 0.5058 + }, + { + "start": 17621.8, + "end": 17624.24, + "probability": 0.9401 + }, + { + "start": 17624.82, + "end": 17626.06, + "probability": 0.8406 + }, + { + "start": 17626.38, + "end": 17633.34, + "probability": 0.9754 + }, + { + "start": 17633.56, + "end": 17635.92, + "probability": 0.9939 + }, + { + "start": 17636.0, + "end": 17637.46, + "probability": 0.9187 + }, + { + "start": 17638.14, + "end": 17638.98, + "probability": 0.7126 + }, + { + "start": 17639.7, + "end": 17642.3, + "probability": 0.8303 + }, + { + "start": 17642.86, + "end": 17645.12, + "probability": 0.8346 + }, + { + "start": 17646.28, + "end": 17648.3, + "probability": 0.9837 + }, + { + "start": 17652.24, + "end": 17653.88, + "probability": 0.5244 + }, + { + "start": 17654.48, + "end": 17654.88, + "probability": 0.7872 + }, + { + "start": 17655.66, + "end": 17656.16, + "probability": 0.8091 + }, + { + "start": 17656.2, + "end": 17659.64, + "probability": 0.9449 + }, + { + "start": 17660.12, + "end": 17662.54, + "probability": 0.8016 + }, + { + "start": 17663.08, + "end": 17666.24, + "probability": 0.9686 + }, + { + "start": 17667.1, + "end": 17669.02, + "probability": 0.7351 + }, + { + "start": 17669.66, + "end": 17671.82, + "probability": 0.9653 + }, + { + "start": 17671.94, + "end": 17674.28, + "probability": 0.9222 + }, + { + "start": 17674.78, + "end": 17675.74, + "probability": 0.8418 + }, + { + "start": 17676.14, + "end": 17676.86, + "probability": 0.9407 + }, + { + "start": 17678.32, + "end": 17678.98, + "probability": 0.8224 + }, + { + "start": 17679.18, + "end": 17680.14, + "probability": 0.9163 + }, + { + "start": 17680.58, + "end": 17682.04, + "probability": 0.8677 + }, + { + "start": 17683.06, + "end": 17686.4, + "probability": 0.9892 + }, + { + "start": 17687.16, + "end": 17689.6, + "probability": 0.9264 + }, + { + "start": 17690.2, + "end": 17691.77, + "probability": 0.9599 + }, + { + "start": 17692.48, + "end": 17694.9, + "probability": 0.8242 + }, + { + "start": 17695.68, + "end": 17699.26, + "probability": 0.9676 + }, + { + "start": 17699.32, + "end": 17699.6, + "probability": 0.2875 + }, + { + "start": 17699.68, + "end": 17699.88, + "probability": 0.6141 + }, + { + "start": 17699.94, + "end": 17701.2, + "probability": 0.9597 + }, + { + "start": 17702.52, + "end": 17703.42, + "probability": 0.9255 + }, + { + "start": 17704.72, + "end": 17706.72, + "probability": 0.9009 + }, + { + "start": 17706.9, + "end": 17707.16, + "probability": 0.6533 + }, + { + "start": 17707.18, + "end": 17707.88, + "probability": 0.3662 + }, + { + "start": 17707.96, + "end": 17711.06, + "probability": 0.9398 + }, + { + "start": 17711.24, + "end": 17713.74, + "probability": 0.5831 + }, + { + "start": 17714.36, + "end": 17715.86, + "probability": 0.8613 + }, + { + "start": 17716.44, + "end": 17717.46, + "probability": 0.8519 + }, + { + "start": 17717.64, + "end": 17718.4, + "probability": 0.9763 + }, + { + "start": 17718.62, + "end": 17719.58, + "probability": 0.7573 + }, + { + "start": 17719.98, + "end": 17723.7, + "probability": 0.9806 + }, + { + "start": 17724.36, + "end": 17725.5, + "probability": 0.7695 + }, + { + "start": 17725.88, + "end": 17729.28, + "probability": 0.9619 + }, + { + "start": 17731.2, + "end": 17737.62, + "probability": 0.978 + }, + { + "start": 17738.48, + "end": 17742.44, + "probability": 0.9005 + }, + { + "start": 17742.44, + "end": 17745.7, + "probability": 0.7213 + }, + { + "start": 17746.32, + "end": 17749.44, + "probability": 0.9546 + }, + { + "start": 17750.48, + "end": 17751.84, + "probability": 0.5128 + }, + { + "start": 17752.78, + "end": 17757.84, + "probability": 0.9783 + }, + { + "start": 17758.38, + "end": 17762.16, + "probability": 0.9332 + }, + { + "start": 17763.02, + "end": 17766.46, + "probability": 0.6816 + }, + { + "start": 17767.16, + "end": 17771.21, + "probability": 0.7766 + }, + { + "start": 17773.96, + "end": 17773.96, + "probability": 0.1003 + }, + { + "start": 17773.96, + "end": 17773.96, + "probability": 0.225 + }, + { + "start": 17773.96, + "end": 17776.22, + "probability": 0.4966 + }, + { + "start": 17777.68, + "end": 17779.42, + "probability": 0.5235 + }, + { + "start": 17780.4, + "end": 17783.26, + "probability": 0.69 + }, + { + "start": 17784.2, + "end": 17786.38, + "probability": 0.9163 + }, + { + "start": 17786.62, + "end": 17789.04, + "probability": 0.9339 + }, + { + "start": 17790.0, + "end": 17792.22, + "probability": 0.9206 + }, + { + "start": 17792.66, + "end": 17794.18, + "probability": 0.9212 + }, + { + "start": 17795.22, + "end": 17796.02, + "probability": 0.962 + }, + { + "start": 17796.58, + "end": 17800.12, + "probability": 0.6829 + }, + { + "start": 17800.58, + "end": 17806.5, + "probability": 0.9756 + }, + { + "start": 17807.04, + "end": 17808.04, + "probability": 0.8806 + }, + { + "start": 17809.02, + "end": 17812.24, + "probability": 0.9934 + }, + { + "start": 17812.58, + "end": 17814.12, + "probability": 0.7432 + }, + { + "start": 17815.02, + "end": 17817.24, + "probability": 0.9628 + }, + { + "start": 17817.4, + "end": 17818.06, + "probability": 0.8595 + }, + { + "start": 17818.34, + "end": 17821.1, + "probability": 0.9559 + }, + { + "start": 17821.26, + "end": 17824.7, + "probability": 0.9505 + }, + { + "start": 17825.6, + "end": 17827.52, + "probability": 0.7492 + }, + { + "start": 17827.64, + "end": 17828.68, + "probability": 0.9388 + }, + { + "start": 17828.68, + "end": 17832.22, + "probability": 0.5105 + }, + { + "start": 17832.32, + "end": 17834.0, + "probability": 0.6188 + }, + { + "start": 17834.46, + "end": 17836.7, + "probability": 0.8447 + }, + { + "start": 17836.78, + "end": 17837.18, + "probability": 0.5134 + }, + { + "start": 17838.94, + "end": 17839.14, + "probability": 0.5779 + }, + { + "start": 17839.2, + "end": 17839.58, + "probability": 0.8669 + }, + { + "start": 17839.96, + "end": 17841.93, + "probability": 0.749 + }, + { + "start": 17843.02, + "end": 17843.68, + "probability": 0.6309 + }, + { + "start": 17843.8, + "end": 17843.98, + "probability": 0.4591 + }, + { + "start": 17844.02, + "end": 17844.32, + "probability": 0.8748 + }, + { + "start": 17844.6, + "end": 17847.94, + "probability": 0.9473 + }, + { + "start": 17848.16, + "end": 17850.76, + "probability": 0.8275 + }, + { + "start": 17851.1, + "end": 17851.82, + "probability": 0.7981 + }, + { + "start": 17851.88, + "end": 17852.7, + "probability": 0.8611 + }, + { + "start": 17853.48, + "end": 17855.66, + "probability": 0.8892 + }, + { + "start": 17856.34, + "end": 17858.14, + "probability": 0.7821 + }, + { + "start": 17858.78, + "end": 17860.28, + "probability": 0.9392 + }, + { + "start": 17861.04, + "end": 17865.1, + "probability": 0.9969 + }, + { + "start": 17865.1, + "end": 17868.9, + "probability": 0.8499 + }, + { + "start": 17869.2, + "end": 17869.68, + "probability": 0.8921 + }, + { + "start": 17869.78, + "end": 17870.86, + "probability": 0.9615 + }, + { + "start": 17871.42, + "end": 17871.88, + "probability": 0.9139 + }, + { + "start": 17871.92, + "end": 17872.3, + "probability": 0.6077 + }, + { + "start": 17872.38, + "end": 17877.66, + "probability": 0.937 + }, + { + "start": 17877.78, + "end": 17882.78, + "probability": 0.9664 + }, + { + "start": 17882.78, + "end": 17887.5, + "probability": 0.8989 + }, + { + "start": 17887.64, + "end": 17887.9, + "probability": 0.8738 + }, + { + "start": 17888.72, + "end": 17890.04, + "probability": 0.9956 + }, + { + "start": 17890.14, + "end": 17891.23, + "probability": 0.5579 + }, + { + "start": 17891.62, + "end": 17892.24, + "probability": 0.9403 + }, + { + "start": 17892.56, + "end": 17894.74, + "probability": 0.9877 + }, + { + "start": 17895.16, + "end": 17895.78, + "probability": 0.9816 + }, + { + "start": 17896.14, + "end": 17897.5, + "probability": 0.9642 + }, + { + "start": 17897.76, + "end": 17900.82, + "probability": 0.8314 + }, + { + "start": 17901.14, + "end": 17901.78, + "probability": 0.9633 + }, + { + "start": 17902.88, + "end": 17903.22, + "probability": 0.6219 + }, + { + "start": 17903.5, + "end": 17904.32, + "probability": 0.873 + }, + { + "start": 17905.68, + "end": 17908.44, + "probability": 0.8339 + }, + { + "start": 17911.02, + "end": 17911.64, + "probability": 0.7385 + }, + { + "start": 17918.54, + "end": 17919.78, + "probability": 0.873 + }, + { + "start": 17922.13, + "end": 17924.82, + "probability": 0.6931 + }, + { + "start": 17928.54, + "end": 17929.46, + "probability": 0.5737 + }, + { + "start": 17929.54, + "end": 17931.56, + "probability": 0.729 + }, + { + "start": 17931.64, + "end": 17935.78, + "probability": 0.9154 + }, + { + "start": 17939.92, + "end": 17941.24, + "probability": 0.4962 + }, + { + "start": 17942.16, + "end": 17944.12, + "probability": 0.9933 + }, + { + "start": 17945.04, + "end": 17949.1, + "probability": 0.9636 + }, + { + "start": 17950.56, + "end": 17955.26, + "probability": 0.9823 + }, + { + "start": 17956.42, + "end": 17960.08, + "probability": 0.9941 + }, + { + "start": 17960.96, + "end": 17963.44, + "probability": 0.4343 + }, + { + "start": 17964.32, + "end": 17966.6, + "probability": 0.9902 + }, + { + "start": 17968.5, + "end": 17971.52, + "probability": 0.9812 + }, + { + "start": 17971.7, + "end": 17973.38, + "probability": 0.9762 + }, + { + "start": 17973.92, + "end": 17976.16, + "probability": 0.8452 + }, + { + "start": 17976.82, + "end": 17978.0, + "probability": 0.9196 + }, + { + "start": 17978.46, + "end": 17979.84, + "probability": 0.6287 + }, + { + "start": 17980.28, + "end": 17981.44, + "probability": 0.8107 + }, + { + "start": 17981.88, + "end": 17985.54, + "probability": 0.9265 + }, + { + "start": 17986.04, + "end": 17988.0, + "probability": 0.8698 + }, + { + "start": 17988.4, + "end": 17991.5, + "probability": 0.9438 + }, + { + "start": 17992.26, + "end": 17992.58, + "probability": 0.4812 + }, + { + "start": 17992.72, + "end": 17998.7, + "probability": 0.9927 + }, + { + "start": 17999.46, + "end": 18001.84, + "probability": 0.8435 + }, + { + "start": 18002.22, + "end": 18007.22, + "probability": 0.9846 + }, + { + "start": 18007.5, + "end": 18008.71, + "probability": 0.9229 + }, + { + "start": 18009.28, + "end": 18010.78, + "probability": 0.663 + }, + { + "start": 18011.58, + "end": 18019.2, + "probability": 0.9906 + }, + { + "start": 18019.7, + "end": 18026.5, + "probability": 0.9775 + }, + { + "start": 18028.08, + "end": 18030.26, + "probability": 0.6391 + }, + { + "start": 18030.52, + "end": 18031.74, + "probability": 0.8808 + }, + { + "start": 18032.76, + "end": 18033.42, + "probability": 0.8151 + }, + { + "start": 18033.48, + "end": 18036.16, + "probability": 0.9717 + }, + { + "start": 18036.16, + "end": 18041.16, + "probability": 0.6494 + }, + { + "start": 18041.98, + "end": 18048.6, + "probability": 0.974 + }, + { + "start": 18049.16, + "end": 18052.0, + "probability": 0.8447 + }, + { + "start": 18052.32, + "end": 18054.94, + "probability": 0.8149 + }, + { + "start": 18055.82, + "end": 18060.92, + "probability": 0.6077 + }, + { + "start": 18061.26, + "end": 18063.6, + "probability": 0.9634 + }, + { + "start": 18064.02, + "end": 18065.01, + "probability": 0.9585 + }, + { + "start": 18065.5, + "end": 18067.28, + "probability": 0.2024 + }, + { + "start": 18067.42, + "end": 18070.6, + "probability": 0.9314 + }, + { + "start": 18071.48, + "end": 18071.78, + "probability": 0.929 + }, + { + "start": 18072.56, + "end": 18076.4, + "probability": 0.7389 + }, + { + "start": 18076.5, + "end": 18078.39, + "probability": 0.8795 + }, + { + "start": 18078.76, + "end": 18080.08, + "probability": 0.9688 + }, + { + "start": 18080.76, + "end": 18082.3, + "probability": 0.8582 + }, + { + "start": 18082.8, + "end": 18085.32, + "probability": 0.9932 + }, + { + "start": 18085.66, + "end": 18091.4, + "probability": 0.9214 + }, + { + "start": 18092.06, + "end": 18095.0, + "probability": 0.7184 + }, + { + "start": 18095.54, + "end": 18100.4, + "probability": 0.7288 + }, + { + "start": 18101.08, + "end": 18102.2, + "probability": 0.6952 + }, + { + "start": 18102.44, + "end": 18104.54, + "probability": 0.7341 + }, + { + "start": 18105.02, + "end": 18106.36, + "probability": 0.4461 + }, + { + "start": 18106.48, + "end": 18109.34, + "probability": 0.7978 + }, + { + "start": 18109.78, + "end": 18112.82, + "probability": 0.7264 + }, + { + "start": 18113.18, + "end": 18114.66, + "probability": 0.9365 + }, + { + "start": 18115.28, + "end": 18116.4, + "probability": 0.307 + }, + { + "start": 18116.74, + "end": 18119.12, + "probability": 0.954 + }, + { + "start": 18119.38, + "end": 18122.12, + "probability": 0.8438 + }, + { + "start": 18122.4, + "end": 18124.5, + "probability": 0.572 + }, + { + "start": 18124.88, + "end": 18127.8, + "probability": 0.9714 + }, + { + "start": 18127.94, + "end": 18132.78, + "probability": 0.9406 + }, + { + "start": 18133.4, + "end": 18135.08, + "probability": 0.7975 + }, + { + "start": 18135.4, + "end": 18137.9, + "probability": 0.9631 + }, + { + "start": 18138.1, + "end": 18141.38, + "probability": 0.9784 + }, + { + "start": 18142.04, + "end": 18144.68, + "probability": 0.9043 + }, + { + "start": 18144.68, + "end": 18148.0, + "probability": 0.9205 + }, + { + "start": 18148.32, + "end": 18150.4, + "probability": 0.9681 + }, + { + "start": 18150.86, + "end": 18152.06, + "probability": 0.5151 + }, + { + "start": 18152.38, + "end": 18154.46, + "probability": 0.9463 + }, + { + "start": 18154.78, + "end": 18158.78, + "probability": 0.8 + }, + { + "start": 18158.86, + "end": 18160.98, + "probability": 0.9269 + }, + { + "start": 18161.18, + "end": 18164.36, + "probability": 0.9542 + }, + { + "start": 18164.8, + "end": 18167.42, + "probability": 0.8989 + }, + { + "start": 18168.2, + "end": 18169.1, + "probability": 0.528 + }, + { + "start": 18169.78, + "end": 18171.68, + "probability": 0.5551 + }, + { + "start": 18171.76, + "end": 18173.66, + "probability": 0.8108 + }, + { + "start": 18173.72, + "end": 18174.42, + "probability": 0.5904 + }, + { + "start": 18174.96, + "end": 18175.6, + "probability": 0.282 + }, + { + "start": 18183.34, + "end": 18186.18, + "probability": 0.7691 + }, + { + "start": 18187.8, + "end": 18191.02, + "probability": 0.9589 + }, + { + "start": 18191.32, + "end": 18193.04, + "probability": 0.9512 + }, + { + "start": 18193.24, + "end": 18195.22, + "probability": 0.835 + }, + { + "start": 18195.94, + "end": 18197.36, + "probability": 0.9351 + }, + { + "start": 18197.68, + "end": 18198.7, + "probability": 0.4097 + }, + { + "start": 18198.72, + "end": 18202.08, + "probability": 0.9879 + }, + { + "start": 18203.3, + "end": 18204.12, + "probability": 0.8562 + }, + { + "start": 18204.22, + "end": 18204.76, + "probability": 0.9429 + }, + { + "start": 18204.78, + "end": 18206.28, + "probability": 0.9367 + }, + { + "start": 18206.42, + "end": 18207.72, + "probability": 0.6447 + }, + { + "start": 18209.4, + "end": 18210.5, + "probability": 0.8921 + }, + { + "start": 18211.38, + "end": 18216.58, + "probability": 0.9836 + }, + { + "start": 18219.09, + "end": 18219.52, + "probability": 0.1666 + }, + { + "start": 18219.52, + "end": 18220.48, + "probability": 0.8804 + }, + { + "start": 18220.76, + "end": 18221.86, + "probability": 0.8129 + }, + { + "start": 18222.18, + "end": 18224.72, + "probability": 0.932 + }, + { + "start": 18224.84, + "end": 18225.71, + "probability": 0.7239 + }, + { + "start": 18225.88, + "end": 18227.22, + "probability": 0.9852 + }, + { + "start": 18227.56, + "end": 18229.62, + "probability": 0.9514 + }, + { + "start": 18229.72, + "end": 18231.86, + "probability": 0.7279 + }, + { + "start": 18232.24, + "end": 18234.42, + "probability": 0.7471 + }, + { + "start": 18234.86, + "end": 18236.26, + "probability": 0.9678 + }, + { + "start": 18236.82, + "end": 18240.32, + "probability": 0.9776 + }, + { + "start": 18240.8, + "end": 18243.02, + "probability": 0.964 + }, + { + "start": 18244.46, + "end": 18244.9, + "probability": 0.7393 + }, + { + "start": 18245.62, + "end": 18246.64, + "probability": 0.5365 + }, + { + "start": 18246.96, + "end": 18249.86, + "probability": 0.9856 + }, + { + "start": 18249.98, + "end": 18251.58, + "probability": 0.916 + }, + { + "start": 18252.18, + "end": 18253.68, + "probability": 0.9517 + }, + { + "start": 18254.46, + "end": 18258.96, + "probability": 0.8077 + }, + { + "start": 18259.6, + "end": 18261.32, + "probability": 0.9838 + }, + { + "start": 18261.4, + "end": 18262.44, + "probability": 0.7534 + }, + { + "start": 18262.56, + "end": 18263.66, + "probability": 0.7008 + }, + { + "start": 18264.46, + "end": 18267.6, + "probability": 0.9777 + }, + { + "start": 18268.28, + "end": 18268.94, + "probability": 0.6812 + }, + { + "start": 18269.02, + "end": 18274.88, + "probability": 0.9908 + }, + { + "start": 18275.42, + "end": 18278.96, + "probability": 0.7968 + }, + { + "start": 18280.06, + "end": 18281.92, + "probability": 0.9839 + }, + { + "start": 18282.02, + "end": 18282.48, + "probability": 0.8483 + }, + { + "start": 18282.56, + "end": 18284.21, + "probability": 0.8961 + }, + { + "start": 18284.82, + "end": 18286.3, + "probability": 0.9131 + }, + { + "start": 18286.88, + "end": 18288.8, + "probability": 0.967 + }, + { + "start": 18289.36, + "end": 18290.1, + "probability": 0.7601 + }, + { + "start": 18290.56, + "end": 18291.86, + "probability": 0.6529 + }, + { + "start": 18291.86, + "end": 18293.38, + "probability": 0.8908 + }, + { + "start": 18293.5, + "end": 18295.2, + "probability": 0.9215 + }, + { + "start": 18295.66, + "end": 18296.82, + "probability": 0.8255 + }, + { + "start": 18296.86, + "end": 18300.18, + "probability": 0.9818 + }, + { + "start": 18300.46, + "end": 18300.64, + "probability": 0.6898 + }, + { + "start": 18300.7, + "end": 18302.02, + "probability": 0.8629 + }, + { + "start": 18302.34, + "end": 18304.04, + "probability": 0.9919 + }, + { + "start": 18304.56, + "end": 18309.98, + "probability": 0.9389 + }, + { + "start": 18310.42, + "end": 18310.78, + "probability": 0.4404 + }, + { + "start": 18310.9, + "end": 18314.38, + "probability": 0.9468 + }, + { + "start": 18314.6, + "end": 18315.14, + "probability": 0.5542 + }, + { + "start": 18315.68, + "end": 18316.68, + "probability": 0.8433 + }, + { + "start": 18316.76, + "end": 18318.14, + "probability": 0.9189 + }, + { + "start": 18318.9, + "end": 18321.08, + "probability": 0.9871 + }, + { + "start": 18321.12, + "end": 18324.54, + "probability": 0.9814 + }, + { + "start": 18324.54, + "end": 18328.88, + "probability": 0.9872 + }, + { + "start": 18329.9, + "end": 18331.56, + "probability": 0.8979 + }, + { + "start": 18331.76, + "end": 18332.0, + "probability": 0.7887 + }, + { + "start": 18332.14, + "end": 18336.64, + "probability": 0.9971 + }, + { + "start": 18337.4, + "end": 18339.4, + "probability": 0.9237 + }, + { + "start": 18339.62, + "end": 18340.62, + "probability": 0.99 + }, + { + "start": 18340.78, + "end": 18344.74, + "probability": 0.9579 + }, + { + "start": 18344.84, + "end": 18346.08, + "probability": 0.9604 + }, + { + "start": 18346.38, + "end": 18347.46, + "probability": 0.9655 + }, + { + "start": 18347.46, + "end": 18348.62, + "probability": 0.9764 + }, + { + "start": 18348.88, + "end": 18349.64, + "probability": 0.7533 + }, + { + "start": 18349.84, + "end": 18351.2, + "probability": 0.9243 + }, + { + "start": 18351.82, + "end": 18355.44, + "probability": 0.9249 + }, + { + "start": 18355.7, + "end": 18356.76, + "probability": 0.864 + }, + { + "start": 18358.56, + "end": 18359.32, + "probability": 0.5333 + }, + { + "start": 18359.62, + "end": 18360.28, + "probability": 0.6213 + }, + { + "start": 18360.6, + "end": 18365.3, + "probability": 0.9963 + }, + { + "start": 18365.3, + "end": 18370.41, + "probability": 0.937 + }, + { + "start": 18370.8, + "end": 18371.0, + "probability": 0.0752 + }, + { + "start": 18371.14, + "end": 18374.58, + "probability": 0.9142 + }, + { + "start": 18374.7, + "end": 18378.02, + "probability": 0.9759 + }, + { + "start": 18378.1, + "end": 18379.3, + "probability": 0.9053 + }, + { + "start": 18379.36, + "end": 18380.2, + "probability": 0.7388 + }, + { + "start": 18380.2, + "end": 18380.96, + "probability": 0.9557 + }, + { + "start": 18381.54, + "end": 18385.0, + "probability": 0.9257 + }, + { + "start": 18386.12, + "end": 18386.72, + "probability": 0.343 + }, + { + "start": 18388.58, + "end": 18389.7, + "probability": 0.2057 + }, + { + "start": 18389.7, + "end": 18389.7, + "probability": 0.0152 + }, + { + "start": 18389.7, + "end": 18389.7, + "probability": 0.4039 + }, + { + "start": 18390.26, + "end": 18392.1, + "probability": 0.9272 + }, + { + "start": 18392.14, + "end": 18392.34, + "probability": 0.4207 + }, + { + "start": 18392.38, + "end": 18393.44, + "probability": 0.8999 + }, + { + "start": 18393.46, + "end": 18396.82, + "probability": 0.9574 + }, + { + "start": 18396.9, + "end": 18398.2, + "probability": 0.7534 + }, + { + "start": 18398.26, + "end": 18398.28, + "probability": 0.631 + }, + { + "start": 18398.56, + "end": 18402.8, + "probability": 0.8933 + }, + { + "start": 18402.9, + "end": 18403.72, + "probability": 0.6255 + }, + { + "start": 18403.86, + "end": 18410.22, + "probability": 0.9988 + }, + { + "start": 18410.88, + "end": 18413.38, + "probability": 0.9886 + }, + { + "start": 18413.62, + "end": 18416.96, + "probability": 0.8877 + }, + { + "start": 18416.96, + "end": 18420.2, + "probability": 0.9882 + }, + { + "start": 18420.38, + "end": 18423.52, + "probability": 0.9683 + }, + { + "start": 18424.2, + "end": 18424.74, + "probability": 0.6051 + }, + { + "start": 18424.84, + "end": 18426.48, + "probability": 0.9417 + }, + { + "start": 18427.64, + "end": 18428.9, + "probability": 0.3798 + }, + { + "start": 18428.94, + "end": 18431.0, + "probability": 0.6692 + }, + { + "start": 18440.1, + "end": 18441.34, + "probability": 0.8101 + }, + { + "start": 18441.4, + "end": 18442.46, + "probability": 0.73 + }, + { + "start": 18443.06, + "end": 18447.91, + "probability": 0.9826 + }, + { + "start": 18449.1, + "end": 18449.1, + "probability": 0.8077 + }, + { + "start": 18449.5, + "end": 18450.4, + "probability": 0.5898 + }, + { + "start": 18450.48, + "end": 18453.98, + "probability": 0.98 + }, + { + "start": 18454.02, + "end": 18456.14, + "probability": 0.8428 + }, + { + "start": 18456.36, + "end": 18459.1, + "probability": 0.9014 + }, + { + "start": 18459.26, + "end": 18461.6, + "probability": 0.8341 + }, + { + "start": 18461.72, + "end": 18462.02, + "probability": 0.8765 + }, + { + "start": 18462.86, + "end": 18464.94, + "probability": 0.8286 + }, + { + "start": 18465.76, + "end": 18466.68, + "probability": 0.9605 + }, + { + "start": 18466.86, + "end": 18475.86, + "probability": 0.956 + }, + { + "start": 18477.12, + "end": 18479.68, + "probability": 0.958 + }, + { + "start": 18479.8, + "end": 18480.76, + "probability": 0.5252 + }, + { + "start": 18481.22, + "end": 18482.88, + "probability": 0.8952 + }, + { + "start": 18483.46, + "end": 18484.84, + "probability": 0.8789 + }, + { + "start": 18485.34, + "end": 18488.18, + "probability": 0.8707 + }, + { + "start": 18488.48, + "end": 18494.28, + "probability": 0.9409 + }, + { + "start": 18495.56, + "end": 18502.23, + "probability": 0.9573 + }, + { + "start": 18503.46, + "end": 18506.02, + "probability": 0.9241 + }, + { + "start": 18506.58, + "end": 18511.62, + "probability": 0.7971 + }, + { + "start": 18512.32, + "end": 18516.64, + "probability": 0.8562 + }, + { + "start": 18517.32, + "end": 18518.89, + "probability": 0.9731 + }, + { + "start": 18519.5, + "end": 18521.9, + "probability": 0.7953 + }, + { + "start": 18522.4, + "end": 18526.1, + "probability": 0.7133 + }, + { + "start": 18526.59, + "end": 18528.2, + "probability": 0.9326 + }, + { + "start": 18528.26, + "end": 18528.6, + "probability": 0.5713 + }, + { + "start": 18528.84, + "end": 18530.32, + "probability": 0.943 + }, + { + "start": 18530.44, + "end": 18531.48, + "probability": 0.9558 + }, + { + "start": 18531.7, + "end": 18534.48, + "probability": 0.9609 + }, + { + "start": 18534.48, + "end": 18537.4, + "probability": 0.9943 + }, + { + "start": 18538.26, + "end": 18542.5, + "probability": 0.9485 + }, + { + "start": 18543.34, + "end": 18543.86, + "probability": 0.6451 + }, + { + "start": 18544.06, + "end": 18547.48, + "probability": 0.8145 + }, + { + "start": 18547.52, + "end": 18549.3, + "probability": 0.729 + }, + { + "start": 18550.26, + "end": 18557.82, + "probability": 0.9909 + }, + { + "start": 18559.06, + "end": 18563.76, + "probability": 0.9793 + }, + { + "start": 18565.6, + "end": 18567.64, + "probability": 0.8856 + }, + { + "start": 18568.16, + "end": 18574.26, + "probability": 0.9459 + }, + { + "start": 18574.86, + "end": 18577.6, + "probability": 0.8686 + }, + { + "start": 18577.8, + "end": 18581.16, + "probability": 0.7335 + }, + { + "start": 18581.16, + "end": 18588.6, + "probability": 0.7124 + }, + { + "start": 18588.68, + "end": 18590.84, + "probability": 0.7675 + }, + { + "start": 18590.94, + "end": 18592.36, + "probability": 0.9521 + }, + { + "start": 18592.46, + "end": 18593.56, + "probability": 0.814 + }, + { + "start": 18594.0, + "end": 18595.34, + "probability": 0.9633 + }, + { + "start": 18596.36, + "end": 18599.24, + "probability": 0.9908 + }, + { + "start": 18599.24, + "end": 18603.12, + "probability": 0.9917 + }, + { + "start": 18603.82, + "end": 18608.2, + "probability": 0.9786 + }, + { + "start": 18608.9, + "end": 18610.98, + "probability": 0.8528 + }, + { + "start": 18611.28, + "end": 18614.8, + "probability": 0.8096 + }, + { + "start": 18615.36, + "end": 18619.04, + "probability": 0.9978 + }, + { + "start": 18619.6, + "end": 18623.22, + "probability": 0.9199 + }, + { + "start": 18623.76, + "end": 18626.52, + "probability": 0.9972 + }, + { + "start": 18627.46, + "end": 18628.7, + "probability": 0.9556 + }, + { + "start": 18628.88, + "end": 18631.5, + "probability": 0.9958 + }, + { + "start": 18632.26, + "end": 18636.26, + "probability": 0.9913 + }, + { + "start": 18636.96, + "end": 18639.48, + "probability": 0.7297 + }, + { + "start": 18639.8, + "end": 18642.76, + "probability": 0.9934 + }, + { + "start": 18643.92, + "end": 18646.74, + "probability": 0.8041 + }, + { + "start": 18647.5, + "end": 18649.06, + "probability": 0.8538 + }, + { + "start": 18650.38, + "end": 18651.73, + "probability": 0.6695 + }, + { + "start": 18651.94, + "end": 18652.78, + "probability": 0.9154 + }, + { + "start": 18652.88, + "end": 18654.3, + "probability": 0.9801 + }, + { + "start": 18654.4, + "end": 18656.1, + "probability": 0.9985 + }, + { + "start": 18656.84, + "end": 18661.76, + "probability": 0.9207 + }, + { + "start": 18661.76, + "end": 18665.7, + "probability": 0.997 + }, + { + "start": 18665.88, + "end": 18666.92, + "probability": 0.619 + }, + { + "start": 18667.06, + "end": 18668.92, + "probability": 0.9423 + }, + { + "start": 18669.02, + "end": 18674.1, + "probability": 0.9954 + }, + { + "start": 18674.54, + "end": 18677.94, + "probability": 0.9965 + }, + { + "start": 18678.3, + "end": 18683.04, + "probability": 0.9927 + }, + { + "start": 18683.4, + "end": 18688.92, + "probability": 0.9844 + }, + { + "start": 18689.3, + "end": 18690.38, + "probability": 0.8774 + }, + { + "start": 18690.66, + "end": 18693.78, + "probability": 0.9919 + }, + { + "start": 18693.96, + "end": 18694.3, + "probability": 0.8365 + }, + { + "start": 18694.92, + "end": 18695.22, + "probability": 0.7419 + }, + { + "start": 18695.5, + "end": 18696.06, + "probability": 0.613 + }, + { + "start": 18696.2, + "end": 18697.6, + "probability": 0.9677 + }, + { + "start": 18697.6, + "end": 18698.14, + "probability": 0.541 + }, + { + "start": 18698.36, + "end": 18700.0, + "probability": 0.8731 + }, + { + "start": 18700.92, + "end": 18702.54, + "probability": 0.8265 + }, + { + "start": 18704.18, + "end": 18706.72, + "probability": 0.9565 + }, + { + "start": 18708.06, + "end": 18709.22, + "probability": 0.7799 + }, + { + "start": 18709.64, + "end": 18711.78, + "probability": 0.9198 + }, + { + "start": 18711.94, + "end": 18712.04, + "probability": 0.1318 + }, + { + "start": 18714.16, + "end": 18714.74, + "probability": 0.9046 + }, + { + "start": 18717.48, + "end": 18718.56, + "probability": 0.4691 + }, + { + "start": 18718.96, + "end": 18718.96, + "probability": 0.3958 + }, + { + "start": 18718.96, + "end": 18719.66, + "probability": 0.6788 + }, + { + "start": 18719.98, + "end": 18721.04, + "probability": 0.7823 + }, + { + "start": 18721.72, + "end": 18723.5, + "probability": 0.9951 + }, + { + "start": 18724.26, + "end": 18724.8, + "probability": 0.7495 + }, + { + "start": 18725.86, + "end": 18729.76, + "probability": 0.9654 + }, + { + "start": 18730.3, + "end": 18734.3, + "probability": 0.7817 + }, + { + "start": 18734.3, + "end": 18734.3, + "probability": 0.1401 + }, + { + "start": 18734.3, + "end": 18737.84, + "probability": 0.7967 + }, + { + "start": 18738.36, + "end": 18739.52, + "probability": 0.9651 + }, + { + "start": 18740.04, + "end": 18743.32, + "probability": 0.9891 + }, + { + "start": 18743.44, + "end": 18744.86, + "probability": 0.6642 + }, + { + "start": 18745.26, + "end": 18746.98, + "probability": 0.8929 + }, + { + "start": 18750.7, + "end": 18750.98, + "probability": 0.1351 + }, + { + "start": 18750.98, + "end": 18750.98, + "probability": 0.2581 + }, + { + "start": 18750.98, + "end": 18753.76, + "probability": 0.9652 + }, + { + "start": 18753.88, + "end": 18755.04, + "probability": 0.767 + }, + { + "start": 18755.14, + "end": 18756.46, + "probability": 0.4178 + }, + { + "start": 18757.74, + "end": 18760.91, + "probability": 0.9391 + }, + { + "start": 18763.02, + "end": 18764.01, + "probability": 0.5703 + }, + { + "start": 18764.94, + "end": 18768.24, + "probability": 0.4234 + }, + { + "start": 18768.7, + "end": 18769.81, + "probability": 0.8334 + }, + { + "start": 18770.12, + "end": 18771.36, + "probability": 0.9583 + }, + { + "start": 18771.54, + "end": 18772.36, + "probability": 0.7524 + }, + { + "start": 18772.58, + "end": 18773.6, + "probability": 0.8569 + }, + { + "start": 18773.68, + "end": 18775.5, + "probability": 0.9629 + }, + { + "start": 18775.88, + "end": 18780.99, + "probability": 0.9428 + }, + { + "start": 18781.68, + "end": 18783.62, + "probability": 0.8657 + }, + { + "start": 18784.0, + "end": 18785.38, + "probability": 0.6657 + }, + { + "start": 18785.82, + "end": 18793.7, + "probability": 0.9791 + }, + { + "start": 18794.32, + "end": 18795.18, + "probability": 0.8736 + }, + { + "start": 18796.6, + "end": 18798.21, + "probability": 0.9966 + }, + { + "start": 18799.1, + "end": 18801.42, + "probability": 0.7947 + }, + { + "start": 18802.18, + "end": 18804.04, + "probability": 0.8871 + }, + { + "start": 18805.41, + "end": 18808.58, + "probability": 0.8235 + }, + { + "start": 18809.24, + "end": 18811.94, + "probability": 0.7576 + }, + { + "start": 18812.78, + "end": 18819.72, + "probability": 0.9443 + }, + { + "start": 18820.6, + "end": 18821.34, + "probability": 0.9634 + }, + { + "start": 18821.94, + "end": 18822.66, + "probability": 0.8696 + }, + { + "start": 18824.06, + "end": 18824.92, + "probability": 0.878 + }, + { + "start": 18826.38, + "end": 18827.78, + "probability": 0.8698 + }, + { + "start": 18828.5, + "end": 18830.38, + "probability": 0.8978 + }, + { + "start": 18831.14, + "end": 18834.08, + "probability": 0.7761 + }, + { + "start": 18835.26, + "end": 18835.86, + "probability": 0.8457 + }, + { + "start": 18836.02, + "end": 18837.14, + "probability": 0.9583 + }, + { + "start": 18837.4, + "end": 18838.7, + "probability": 0.9915 + }, + { + "start": 18838.86, + "end": 18840.22, + "probability": 0.9602 + }, + { + "start": 18840.94, + "end": 18841.92, + "probability": 0.7321 + }, + { + "start": 18842.38, + "end": 18843.28, + "probability": 0.9431 + }, + { + "start": 18843.58, + "end": 18846.84, + "probability": 0.9078 + }, + { + "start": 18848.66, + "end": 18848.82, + "probability": 0.6689 + }, + { + "start": 18848.94, + "end": 18849.28, + "probability": 0.9377 + }, + { + "start": 18850.2, + "end": 18851.6, + "probability": 0.9073 + }, + { + "start": 18852.22, + "end": 18853.9, + "probability": 0.9946 + }, + { + "start": 18854.4, + "end": 18857.06, + "probability": 0.8594 + }, + { + "start": 18857.42, + "end": 18858.35, + "probability": 0.9102 + }, + { + "start": 18859.36, + "end": 18860.68, + "probability": 0.9717 + }, + { + "start": 18860.8, + "end": 18862.79, + "probability": 0.9963 + }, + { + "start": 18863.86, + "end": 18864.76, + "probability": 0.863 + }, + { + "start": 18865.64, + "end": 18869.68, + "probability": 0.9882 + }, + { + "start": 18870.62, + "end": 18872.76, + "probability": 0.8392 + }, + { + "start": 18873.54, + "end": 18874.43, + "probability": 0.77 + }, + { + "start": 18874.7, + "end": 18877.95, + "probability": 0.9495 + }, + { + "start": 18879.56, + "end": 18880.13, + "probability": 0.9177 + }, + { + "start": 18881.36, + "end": 18886.64, + "probability": 0.9355 + }, + { + "start": 18887.56, + "end": 18890.84, + "probability": 0.9006 + }, + { + "start": 18890.92, + "end": 18895.78, + "probability": 0.9759 + }, + { + "start": 18896.34, + "end": 18898.94, + "probability": 0.9627 + }, + { + "start": 18899.5, + "end": 18900.18, + "probability": 0.9762 + }, + { + "start": 18901.52, + "end": 18902.16, + "probability": 0.3192 + }, + { + "start": 18902.58, + "end": 18903.38, + "probability": 0.5799 + }, + { + "start": 18904.0, + "end": 18904.72, + "probability": 0.878 + }, + { + "start": 18904.8, + "end": 18906.36, + "probability": 0.7709 + }, + { + "start": 18906.48, + "end": 18908.3, + "probability": 0.7664 + }, + { + "start": 18909.22, + "end": 18913.84, + "probability": 0.7358 + }, + { + "start": 18914.74, + "end": 18916.68, + "probability": 0.5334 + }, + { + "start": 18917.74, + "end": 18920.48, + "probability": 0.9583 + }, + { + "start": 18921.0, + "end": 18923.01, + "probability": 0.0948 + }, + { + "start": 18923.96, + "end": 18926.16, + "probability": 0.4575 + }, + { + "start": 18927.84, + "end": 18928.18, + "probability": 0.1869 + }, + { + "start": 18928.18, + "end": 18928.18, + "probability": 0.043 + }, + { + "start": 18928.18, + "end": 18930.26, + "probability": 0.2564 + }, + { + "start": 18930.6, + "end": 18934.2, + "probability": 0.8167 + }, + { + "start": 18939.56, + "end": 18940.68, + "probability": 0.1221 + }, + { + "start": 18940.68, + "end": 18943.98, + "probability": 0.3214 + }, + { + "start": 18944.78, + "end": 18947.96, + "probability": 0.6103 + }, + { + "start": 18949.42, + "end": 18950.96, + "probability": 0.255 + }, + { + "start": 18951.42, + "end": 18951.68, + "probability": 0.7803 + }, + { + "start": 18951.94, + "end": 18955.9, + "probability": 0.9948 + }, + { + "start": 18955.96, + "end": 18956.68, + "probability": 0.8867 + }, + { + "start": 18956.92, + "end": 18958.16, + "probability": 0.1781 + }, + { + "start": 18958.16, + "end": 18962.73, + "probability": 0.9971 + }, + { + "start": 18963.86, + "end": 18965.9, + "probability": 0.7476 + }, + { + "start": 18966.66, + "end": 18968.66, + "probability": 0.9752 + }, + { + "start": 18968.66, + "end": 18971.18, + "probability": 0.9897 + }, + { + "start": 18971.4, + "end": 18974.8, + "probability": 0.9611 + }, + { + "start": 18974.84, + "end": 18975.82, + "probability": 0.7779 + }, + { + "start": 18976.04, + "end": 18977.42, + "probability": 0.808 + }, + { + "start": 18977.8, + "end": 18980.92, + "probability": 0.9499 + }, + { + "start": 18981.04, + "end": 18982.44, + "probability": 0.7592 + }, + { + "start": 18983.54, + "end": 18986.32, + "probability": 0.9945 + }, + { + "start": 18987.36, + "end": 18989.27, + "probability": 0.8677 + }, + { + "start": 18990.12, + "end": 18991.1, + "probability": 0.4899 + }, + { + "start": 18992.72, + "end": 18995.58, + "probability": 0.9213 + }, + { + "start": 18996.74, + "end": 18998.8, + "probability": 0.9919 + }, + { + "start": 19000.76, + "end": 19010.66, + "probability": 0.9917 + }, + { + "start": 19012.86, + "end": 19014.26, + "probability": 0.8162 + }, + { + "start": 19015.76, + "end": 19016.52, + "probability": 0.9778 + }, + { + "start": 19019.4, + "end": 19023.78, + "probability": 0.989 + }, + { + "start": 19025.6, + "end": 19027.47, + "probability": 0.7636 + }, + { + "start": 19028.66, + "end": 19030.8, + "probability": 0.9791 + }, + { + "start": 19032.06, + "end": 19034.24, + "probability": 0.948 + }, + { + "start": 19036.44, + "end": 19040.14, + "probability": 0.9696 + }, + { + "start": 19041.5, + "end": 19044.14, + "probability": 0.9976 + }, + { + "start": 19046.62, + "end": 19049.22, + "probability": 0.8956 + }, + { + "start": 19050.28, + "end": 19052.36, + "probability": 0.9713 + }, + { + "start": 19053.36, + "end": 19056.16, + "probability": 0.9763 + }, + { + "start": 19057.34, + "end": 19058.3, + "probability": 0.9198 + }, + { + "start": 19059.8, + "end": 19060.78, + "probability": 0.9768 + }, + { + "start": 19061.52, + "end": 19063.58, + "probability": 0.9179 + }, + { + "start": 19065.08, + "end": 19067.32, + "probability": 0.995 + }, + { + "start": 19068.72, + "end": 19070.44, + "probability": 0.7676 + }, + { + "start": 19071.14, + "end": 19072.54, + "probability": 0.8959 + }, + { + "start": 19073.5, + "end": 19074.86, + "probability": 0.9505 + }, + { + "start": 19076.28, + "end": 19077.34, + "probability": 0.9001 + }, + { + "start": 19078.56, + "end": 19083.74, + "probability": 0.9962 + }, + { + "start": 19083.8, + "end": 19085.7, + "probability": 0.9382 + }, + { + "start": 19086.6, + "end": 19087.84, + "probability": 0.9128 + }, + { + "start": 19088.76, + "end": 19092.48, + "probability": 0.887 + }, + { + "start": 19093.28, + "end": 19096.16, + "probability": 0.9783 + }, + { + "start": 19097.58, + "end": 19100.9, + "probability": 0.9863 + }, + { + "start": 19100.9, + "end": 19103.58, + "probability": 0.9526 + }, + { + "start": 19105.14, + "end": 19107.12, + "probability": 0.8199 + }, + { + "start": 19108.42, + "end": 19109.54, + "probability": 0.9204 + }, + { + "start": 19110.1, + "end": 19110.88, + "probability": 0.9563 + }, + { + "start": 19114.26, + "end": 19114.94, + "probability": 0.8485 + }, + { + "start": 19116.02, + "end": 19117.22, + "probability": 0.883 + }, + { + "start": 19118.06, + "end": 19119.2, + "probability": 0.9768 + }, + { + "start": 19120.56, + "end": 19124.54, + "probability": 0.7106 + }, + { + "start": 19126.24, + "end": 19131.12, + "probability": 0.9968 + }, + { + "start": 19131.18, + "end": 19131.92, + "probability": 0.9652 + }, + { + "start": 19132.92, + "end": 19134.04, + "probability": 0.6719 + }, + { + "start": 19134.98, + "end": 19136.74, + "probability": 0.9976 + }, + { + "start": 19137.62, + "end": 19138.81, + "probability": 0.0655 + }, + { + "start": 19140.02, + "end": 19141.46, + "probability": 0.9453 + }, + { + "start": 19141.8, + "end": 19142.08, + "probability": 0.381 + }, + { + "start": 19142.08, + "end": 19143.26, + "probability": 0.8677 + }, + { + "start": 19143.3, + "end": 19143.86, + "probability": 0.0188 + }, + { + "start": 19144.44, + "end": 19148.02, + "probability": 0.8874 + }, + { + "start": 19149.18, + "end": 19151.64, + "probability": 0.6243 + }, + { + "start": 19152.4, + "end": 19154.92, + "probability": 0.9955 + }, + { + "start": 19155.8, + "end": 19158.08, + "probability": 0.9287 + }, + { + "start": 19158.66, + "end": 19161.09, + "probability": 0.9863 + }, + { + "start": 19162.16, + "end": 19166.48, + "probability": 0.999 + }, + { + "start": 19167.2, + "end": 19172.89, + "probability": 0.9727 + }, + { + "start": 19174.16, + "end": 19176.32, + "probability": 0.0403 + }, + { + "start": 19176.67, + "end": 19182.76, + "probability": 0.9943 + }, + { + "start": 19182.88, + "end": 19183.34, + "probability": 0.9482 + }, + { + "start": 19184.12, + "end": 19187.44, + "probability": 0.9847 + }, + { + "start": 19188.42, + "end": 19190.88, + "probability": 0.8938 + }, + { + "start": 19192.12, + "end": 19193.24, + "probability": 0.9212 + }, + { + "start": 19194.76, + "end": 19196.18, + "probability": 0.8041 + }, + { + "start": 19197.98, + "end": 19200.3, + "probability": 0.7514 + }, + { + "start": 19201.66, + "end": 19203.74, + "probability": 0.9946 + }, + { + "start": 19205.1, + "end": 19208.36, + "probability": 0.9941 + }, + { + "start": 19208.36, + "end": 19211.96, + "probability": 0.9899 + }, + { + "start": 19212.82, + "end": 19216.0, + "probability": 0.9591 + }, + { + "start": 19218.16, + "end": 19221.22, + "probability": 0.9971 + }, + { + "start": 19222.84, + "end": 19226.82, + "probability": 0.9954 + }, + { + "start": 19227.34, + "end": 19228.44, + "probability": 0.2076 + }, + { + "start": 19229.0, + "end": 19231.18, + "probability": 0.5143 + }, + { + "start": 19231.46, + "end": 19234.24, + "probability": 0.2995 + }, + { + "start": 19234.24, + "end": 19236.49, + "probability": 0.7257 + }, + { + "start": 19237.04, + "end": 19239.84, + "probability": 0.2047 + }, + { + "start": 19239.84, + "end": 19239.84, + "probability": 0.4897 + }, + { + "start": 19239.84, + "end": 19239.84, + "probability": 0.0892 + }, + { + "start": 19239.84, + "end": 19241.99, + "probability": 0.7498 + }, + { + "start": 19242.5, + "end": 19244.78, + "probability": 0.9374 + }, + { + "start": 19246.74, + "end": 19247.86, + "probability": 0.1303 + }, + { + "start": 19248.8, + "end": 19248.9, + "probability": 0.2325 + }, + { + "start": 19249.86, + "end": 19249.96, + "probability": 0.1638 + }, + { + "start": 19249.96, + "end": 19250.78, + "probability": 0.5832 + }, + { + "start": 19250.98, + "end": 19251.54, + "probability": 0.7754 + }, + { + "start": 19251.6, + "end": 19253.18, + "probability": 0.7214 + }, + { + "start": 19254.18, + "end": 19255.42, + "probability": 0.712 + }, + { + "start": 19256.72, + "end": 19260.6, + "probability": 0.9493 + }, + { + "start": 19261.94, + "end": 19266.48, + "probability": 0.9922 + }, + { + "start": 19266.6, + "end": 19270.14, + "probability": 0.8916 + }, + { + "start": 19270.72, + "end": 19272.62, + "probability": 0.9972 + }, + { + "start": 19274.12, + "end": 19276.18, + "probability": 0.8223 + }, + { + "start": 19277.18, + "end": 19278.92, + "probability": 0.9922 + }, + { + "start": 19281.3, + "end": 19288.8, + "probability": 0.9956 + }, + { + "start": 19289.3, + "end": 19292.1, + "probability": 0.9907 + }, + { + "start": 19292.26, + "end": 19292.88, + "probability": 0.6875 + }, + { + "start": 19293.48, + "end": 19300.94, + "probability": 0.9482 + }, + { + "start": 19301.86, + "end": 19303.44, + "probability": 0.9769 + }, + { + "start": 19304.3, + "end": 19306.16, + "probability": 0.9541 + }, + { + "start": 19306.78, + "end": 19307.24, + "probability": 0.0364 + }, + { + "start": 19307.34, + "end": 19307.72, + "probability": 0.2167 + }, + { + "start": 19307.72, + "end": 19307.72, + "probability": 0.2315 + }, + { + "start": 19307.72, + "end": 19312.8, + "probability": 0.5972 + }, + { + "start": 19313.06, + "end": 19314.14, + "probability": 0.879 + }, + { + "start": 19315.56, + "end": 19320.46, + "probability": 0.0816 + }, + { + "start": 19321.5, + "end": 19323.06, + "probability": 0.0461 + }, + { + "start": 19323.6, + "end": 19325.34, + "probability": 0.9307 + }, + { + "start": 19325.52, + "end": 19332.26, + "probability": 0.9624 + }, + { + "start": 19333.2, + "end": 19334.0, + "probability": 0.2017 + }, + { + "start": 19336.74, + "end": 19337.3, + "probability": 0.204 + }, + { + "start": 19337.3, + "end": 19337.3, + "probability": 0.0121 + }, + { + "start": 19337.3, + "end": 19337.3, + "probability": 0.1905 + }, + { + "start": 19337.3, + "end": 19337.86, + "probability": 0.3295 + }, + { + "start": 19337.9, + "end": 19338.7, + "probability": 0.8201 + }, + { + "start": 19338.76, + "end": 19343.44, + "probability": 0.9191 + }, + { + "start": 19343.58, + "end": 19344.32, + "probability": 0.6697 + }, + { + "start": 19344.38, + "end": 19346.02, + "probability": 0.9639 + }, + { + "start": 19348.44, + "end": 19352.12, + "probability": 0.9945 + }, + { + "start": 19353.48, + "end": 19354.9, + "probability": 0.9433 + }, + { + "start": 19355.34, + "end": 19356.36, + "probability": 0.7953 + }, + { + "start": 19356.5, + "end": 19357.52, + "probability": 0.9437 + }, + { + "start": 19358.9, + "end": 19366.16, + "probability": 0.9518 + }, + { + "start": 19366.7, + "end": 19368.7, + "probability": 0.1589 + }, + { + "start": 19368.82, + "end": 19369.48, + "probability": 0.1926 + }, + { + "start": 19370.64, + "end": 19370.64, + "probability": 0.0084 + }, + { + "start": 19371.1, + "end": 19372.42, + "probability": 0.6182 + }, + { + "start": 19372.52, + "end": 19372.94, + "probability": 0.4539 + }, + { + "start": 19373.2, + "end": 19376.94, + "probability": 0.9929 + }, + { + "start": 19377.49, + "end": 19377.56, + "probability": 0.255 + }, + { + "start": 19377.56, + "end": 19378.42, + "probability": 0.7345 + }, + { + "start": 19378.82, + "end": 19379.4, + "probability": 0.5145 + }, + { + "start": 19379.74, + "end": 19379.86, + "probability": 0.2095 + }, + { + "start": 19380.63, + "end": 19383.48, + "probability": 0.024 + }, + { + "start": 19383.6, + "end": 19383.76, + "probability": 0.6821 + }, + { + "start": 19385.9, + "end": 19391.6, + "probability": 0.9669 + }, + { + "start": 19391.6, + "end": 19394.48, + "probability": 0.9962 + }, + { + "start": 19395.94, + "end": 19399.92, + "probability": 0.9722 + }, + { + "start": 19401.46, + "end": 19402.52, + "probability": 0.7482 + }, + { + "start": 19403.72, + "end": 19407.3, + "probability": 0.6556 + }, + { + "start": 19408.14, + "end": 19411.2, + "probability": 0.9216 + }, + { + "start": 19413.14, + "end": 19413.86, + "probability": 0.0338 + }, + { + "start": 19413.86, + "end": 19414.72, + "probability": 0.0682 + }, + { + "start": 19416.12, + "end": 19416.42, + "probability": 0.3217 + }, + { + "start": 19417.68, + "end": 19422.0, + "probability": 0.0188 + }, + { + "start": 19423.04, + "end": 19423.32, + "probability": 0.0576 + }, + { + "start": 19423.32, + "end": 19423.32, + "probability": 0.0758 + }, + { + "start": 19423.32, + "end": 19423.32, + "probability": 0.0507 + }, + { + "start": 19423.32, + "end": 19428.72, + "probability": 0.6835 + }, + { + "start": 19429.5, + "end": 19429.52, + "probability": 0.0072 + }, + { + "start": 19429.52, + "end": 19429.8, + "probability": 0.0041 + }, + { + "start": 19430.24, + "end": 19432.88, + "probability": 0.0087 + }, + { + "start": 19433.04, + "end": 19437.66, + "probability": 0.8022 + }, + { + "start": 19437.88, + "end": 19440.86, + "probability": 0.9669 + }, + { + "start": 19442.02, + "end": 19442.06, + "probability": 0.877 + }, + { + "start": 19444.92, + "end": 19446.28, + "probability": 0.8717 + }, + { + "start": 19447.26, + "end": 19452.66, + "probability": 0.6652 + }, + { + "start": 19452.84, + "end": 19455.39, + "probability": 0.9763 + }, + { + "start": 19458.1, + "end": 19462.6, + "probability": 0.1097 + }, + { + "start": 19463.96, + "end": 19464.7, + "probability": 0.1855 + }, + { + "start": 19464.7, + "end": 19464.82, + "probability": 0.1671 + }, + { + "start": 19464.82, + "end": 19464.82, + "probability": 0.1669 + }, + { + "start": 19464.82, + "end": 19464.82, + "probability": 0.0778 + }, + { + "start": 19464.82, + "end": 19464.82, + "probability": 0.0163 + }, + { + "start": 19464.82, + "end": 19469.16, + "probability": 0.6965 + }, + { + "start": 19470.34, + "end": 19473.84, + "probability": 0.4668 + }, + { + "start": 19475.24, + "end": 19478.82, + "probability": 0.9835 + }, + { + "start": 19479.52, + "end": 19481.08, + "probability": 0.8691 + }, + { + "start": 19482.38, + "end": 19487.04, + "probability": 0.8325 + }, + { + "start": 19487.22, + "end": 19487.63, + "probability": 0.0202 + }, + { + "start": 19488.22, + "end": 19490.94, + "probability": 0.5723 + }, + { + "start": 19490.94, + "end": 19492.76, + "probability": 0.7595 + }, + { + "start": 19492.78, + "end": 19494.06, + "probability": 0.7344 + }, + { + "start": 19494.08, + "end": 19494.82, + "probability": 0.5653 + }, + { + "start": 19495.84, + "end": 19496.7, + "probability": 0.6869 + }, + { + "start": 19497.34, + "end": 19497.7, + "probability": 0.0345 + }, + { + "start": 19497.7, + "end": 19497.7, + "probability": 0.0648 + }, + { + "start": 19497.7, + "end": 19498.24, + "probability": 0.4184 + }, + { + "start": 19498.54, + "end": 19499.1, + "probability": 0.8971 + }, + { + "start": 19499.52, + "end": 19502.18, + "probability": 0.6113 + }, + { + "start": 19502.18, + "end": 19503.46, + "probability": 0.479 + }, + { + "start": 19503.56, + "end": 19504.0, + "probability": 0.8718 + }, + { + "start": 19504.14, + "end": 19505.5, + "probability": 0.3362 + }, + { + "start": 19506.4, + "end": 19507.06, + "probability": 0.1355 + }, + { + "start": 19507.44, + "end": 19509.92, + "probability": 0.9961 + }, + { + "start": 19510.12, + "end": 19512.0, + "probability": 0.8155 + }, + { + "start": 19512.0, + "end": 19513.08, + "probability": 0.9443 + }, + { + "start": 19514.0, + "end": 19516.46, + "probability": 0.8219 + }, + { + "start": 19516.6, + "end": 19518.74, + "probability": 0.9498 + }, + { + "start": 19521.22, + "end": 19522.36, + "probability": 0.9934 + }, + { + "start": 19525.42, + "end": 19526.8, + "probability": 0.9995 + }, + { + "start": 19528.56, + "end": 19530.42, + "probability": 0.9807 + }, + { + "start": 19531.56, + "end": 19534.46, + "probability": 0.6461 + }, + { + "start": 19537.2, + "end": 19539.24, + "probability": 0.9882 + }, + { + "start": 19541.76, + "end": 19542.8, + "probability": 0.7081 + }, + { + "start": 19544.56, + "end": 19545.64, + "probability": 0.9335 + }, + { + "start": 19546.84, + "end": 19553.37, + "probability": 0.9731 + }, + { + "start": 19554.86, + "end": 19555.02, + "probability": 0.0607 + }, + { + "start": 19555.02, + "end": 19559.36, + "probability": 0.9837 + }, + { + "start": 19561.9, + "end": 19569.42, + "probability": 0.8062 + }, + { + "start": 19572.04, + "end": 19575.72, + "probability": 0.5746 + }, + { + "start": 19576.34, + "end": 19577.68, + "probability": 0.6111 + }, + { + "start": 19577.9, + "end": 19580.68, + "probability": 0.8442 + }, + { + "start": 19581.98, + "end": 19583.78, + "probability": 0.8057 + }, + { + "start": 19584.78, + "end": 19586.88, + "probability": 0.9848 + }, + { + "start": 19588.12, + "end": 19593.54, + "probability": 0.378 + }, + { + "start": 19594.09, + "end": 19597.58, + "probability": 0.9451 + }, + { + "start": 19597.7, + "end": 19598.7, + "probability": 0.0875 + }, + { + "start": 19598.96, + "end": 19600.56, + "probability": 0.1519 + }, + { + "start": 19600.6, + "end": 19603.44, + "probability": 0.7628 + }, + { + "start": 19603.58, + "end": 19607.28, + "probability": 0.7425 + }, + { + "start": 19608.16, + "end": 19610.14, + "probability": 0.9949 + }, + { + "start": 19610.18, + "end": 19611.2, + "probability": 0.9878 + }, + { + "start": 19611.52, + "end": 19612.0, + "probability": 0.3827 + }, + { + "start": 19613.12, + "end": 19615.1, + "probability": 0.7195 + }, + { + "start": 19615.22, + "end": 19617.46, + "probability": 0.832 + }, + { + "start": 19617.46, + "end": 19618.32, + "probability": 0.9412 + }, + { + "start": 19618.44, + "end": 19620.76, + "probability": 0.974 + }, + { + "start": 19621.74, + "end": 19622.76, + "probability": 0.0506 + }, + { + "start": 19625.68, + "end": 19625.86, + "probability": 0.0361 + }, + { + "start": 19625.86, + "end": 19626.35, + "probability": 0.4334 + }, + { + "start": 19627.08, + "end": 19628.12, + "probability": 0.7795 + }, + { + "start": 19628.58, + "end": 19630.4, + "probability": 0.9951 + }, + { + "start": 19631.52, + "end": 19633.04, + "probability": 0.9971 + }, + { + "start": 19634.23, + "end": 19634.96, + "probability": 0.2576 + }, + { + "start": 19636.78, + "end": 19638.44, + "probability": 0.1928 + }, + { + "start": 19638.7, + "end": 19640.96, + "probability": 0.8893 + }, + { + "start": 19641.04, + "end": 19642.9, + "probability": 0.601 + }, + { + "start": 19644.34, + "end": 19645.3, + "probability": 0.0506 + }, + { + "start": 19646.18, + "end": 19648.28, + "probability": 0.168 + }, + { + "start": 19648.3, + "end": 19648.36, + "probability": 0.2113 + }, + { + "start": 19648.36, + "end": 19648.74, + "probability": 0.1789 + }, + { + "start": 19648.74, + "end": 19650.38, + "probability": 0.8939 + }, + { + "start": 19650.74, + "end": 19651.88, + "probability": 0.7375 + }, + { + "start": 19652.6, + "end": 19653.22, + "probability": 0.0841 + }, + { + "start": 19653.74, + "end": 19654.32, + "probability": 0.9143 + }, + { + "start": 19655.98, + "end": 19667.28, + "probability": 0.8853 + }, + { + "start": 19668.6, + "end": 19671.14, + "probability": 0.9814 + }, + { + "start": 19671.28, + "end": 19671.74, + "probability": 0.8263 + }, + { + "start": 19673.46, + "end": 19677.74, + "probability": 0.9983 + }, + { + "start": 19679.72, + "end": 19686.8, + "probability": 0.9767 + }, + { + "start": 19688.6, + "end": 19690.42, + "probability": 0.9978 + }, + { + "start": 19692.82, + "end": 19698.16, + "probability": 0.9923 + }, + { + "start": 19698.16, + "end": 19704.08, + "probability": 0.9546 + }, + { + "start": 19705.32, + "end": 19714.98, + "probability": 0.9655 + }, + { + "start": 19715.22, + "end": 19721.16, + "probability": 0.9832 + }, + { + "start": 19721.2, + "end": 19724.98, + "probability": 0.9952 + }, + { + "start": 19726.2, + "end": 19728.66, + "probability": 0.9569 + }, + { + "start": 19729.62, + "end": 19733.18, + "probability": 0.8802 + }, + { + "start": 19733.6, + "end": 19735.68, + "probability": 0.3361 + }, + { + "start": 19736.42, + "end": 19737.02, + "probability": 0.2802 + }, + { + "start": 19737.3, + "end": 19742.04, + "probability": 0.9768 + }, + { + "start": 19742.2, + "end": 19742.76, + "probability": 0.4882 + }, + { + "start": 19742.8, + "end": 19742.82, + "probability": 0.351 + }, + { + "start": 19743.16, + "end": 19744.46, + "probability": 0.7988 + }, + { + "start": 19744.62, + "end": 19746.62, + "probability": 0.1468 + }, + { + "start": 19746.62, + "end": 19747.76, + "probability": 0.7608 + }, + { + "start": 19748.08, + "end": 19750.96, + "probability": 0.6105 + }, + { + "start": 19753.04, + "end": 19758.92, + "probability": 0.9666 + }, + { + "start": 19758.92, + "end": 19763.88, + "probability": 0.9526 + }, + { + "start": 19763.88, + "end": 19768.4, + "probability": 0.8787 + }, + { + "start": 19769.22, + "end": 19771.6, + "probability": 0.8775 + }, + { + "start": 19772.42, + "end": 19772.8, + "probability": 0.7435 + }, + { + "start": 19772.86, + "end": 19775.08, + "probability": 0.8745 + }, + { + "start": 19775.22, + "end": 19778.6, + "probability": 0.8687 + }, + { + "start": 19779.0, + "end": 19779.16, + "probability": 0.2194 + }, + { + "start": 19780.65, + "end": 19784.28, + "probability": 0.6752 + }, + { + "start": 19785.08, + "end": 19787.24, + "probability": 0.598 + }, + { + "start": 19788.22, + "end": 19788.96, + "probability": 0.3711 + }, + { + "start": 19789.26, + "end": 19790.06, + "probability": 0.9301 + }, + { + "start": 19790.1, + "end": 19794.28, + "probability": 0.8348 + }, + { + "start": 19794.6, + "end": 19797.12, + "probability": 0.6243 + }, + { + "start": 19797.9, + "end": 19799.16, + "probability": 0.9969 + }, + { + "start": 19800.42, + "end": 19808.4, + "probability": 0.9855 + }, + { + "start": 19809.56, + "end": 19817.8, + "probability": 0.9751 + }, + { + "start": 19818.8, + "end": 19820.32, + "probability": 0.296 + }, + { + "start": 19821.94, + "end": 19822.1, + "probability": 0.453 + }, + { + "start": 19823.7, + "end": 19824.67, + "probability": 0.0546 + }, + { + "start": 19826.2, + "end": 19827.74, + "probability": 0.1859 + }, + { + "start": 19827.74, + "end": 19828.98, + "probability": 0.2368 + }, + { + "start": 19829.24, + "end": 19830.02, + "probability": 0.3684 + }, + { + "start": 19830.14, + "end": 19831.69, + "probability": 0.0979 + }, + { + "start": 19832.56, + "end": 19833.34, + "probability": 0.0333 + }, + { + "start": 19833.34, + "end": 19833.92, + "probability": 0.1609 + }, + { + "start": 19834.48, + "end": 19835.96, + "probability": 0.6853 + }, + { + "start": 19836.18, + "end": 19837.35, + "probability": 0.2132 + }, + { + "start": 19838.71, + "end": 19839.34, + "probability": 0.7683 + }, + { + "start": 19839.44, + "end": 19843.37, + "probability": 0.1761 + }, + { + "start": 19843.56, + "end": 19843.68, + "probability": 0.3147 + }, + { + "start": 19845.36, + "end": 19845.46, + "probability": 0.1473 + }, + { + "start": 19845.46, + "end": 19845.46, + "probability": 0.194 + }, + { + "start": 19845.46, + "end": 19845.46, + "probability": 0.07 + }, + { + "start": 19845.46, + "end": 19846.76, + "probability": 0.6423 + }, + { + "start": 19846.76, + "end": 19846.82, + "probability": 0.3673 + }, + { + "start": 19846.9, + "end": 19847.32, + "probability": 0.657 + }, + { + "start": 19847.6, + "end": 19847.96, + "probability": 0.2929 + }, + { + "start": 19847.98, + "end": 19848.86, + "probability": 0.9505 + }, + { + "start": 19849.06, + "end": 19852.22, + "probability": 0.8249 + }, + { + "start": 19852.22, + "end": 19854.44, + "probability": 0.6396 + }, + { + "start": 19855.18, + "end": 19857.24, + "probability": 0.6702 + }, + { + "start": 19857.66, + "end": 19858.96, + "probability": 0.7281 + }, + { + "start": 19859.5, + "end": 19864.76, + "probability": 0.1615 + }, + { + "start": 19865.76, + "end": 19866.74, + "probability": 0.0417 + }, + { + "start": 19867.08, + "end": 19867.08, + "probability": 0.0317 + }, + { + "start": 19867.08, + "end": 19867.08, + "probability": 0.1558 + }, + { + "start": 19867.08, + "end": 19867.12, + "probability": 0.1585 + }, + { + "start": 19867.28, + "end": 19867.28, + "probability": 0.2385 + }, + { + "start": 19867.36, + "end": 19869.82, + "probability": 0.5134 + }, + { + "start": 19869.98, + "end": 19872.04, + "probability": 0.4735 + }, + { + "start": 19872.24, + "end": 19872.87, + "probability": 0.4731 + }, + { + "start": 19873.78, + "end": 19873.94, + "probability": 0.1583 + }, + { + "start": 19873.94, + "end": 19877.98, + "probability": 0.1879 + }, + { + "start": 19878.26, + "end": 19880.46, + "probability": 0.6491 + }, + { + "start": 19880.58, + "end": 19881.3, + "probability": 0.7963 + }, + { + "start": 19882.02, + "end": 19883.28, + "probability": 0.793 + }, + { + "start": 19883.89, + "end": 19890.38, + "probability": 0.8799 + }, + { + "start": 19891.74, + "end": 19897.9, + "probability": 0.9889 + }, + { + "start": 19899.12, + "end": 19901.44, + "probability": 0.8227 + }, + { + "start": 19901.46, + "end": 19906.1, + "probability": 0.9854 + }, + { + "start": 19906.26, + "end": 19910.26, + "probability": 0.982 + }, + { + "start": 19910.98, + "end": 19911.4, + "probability": 0.9154 + }, + { + "start": 19911.54, + "end": 19917.07, + "probability": 0.9373 + }, + { + "start": 19918.1, + "end": 19922.4, + "probability": 0.7966 + }, + { + "start": 19923.66, + "end": 19924.54, + "probability": 0.9701 + }, + { + "start": 19925.38, + "end": 19926.62, + "probability": 0.7349 + }, + { + "start": 19926.78, + "end": 19929.06, + "probability": 0.9102 + }, + { + "start": 19929.06, + "end": 19934.62, + "probability": 0.9977 + }, + { + "start": 19937.12, + "end": 19940.24, + "probability": 0.9595 + }, + { + "start": 19941.24, + "end": 19944.52, + "probability": 0.9976 + }, + { + "start": 19945.92, + "end": 19949.1, + "probability": 0.9928 + }, + { + "start": 19949.18, + "end": 19950.14, + "probability": 0.8813 + }, + { + "start": 19951.14, + "end": 19953.12, + "probability": 0.9924 + }, + { + "start": 19954.72, + "end": 19956.22, + "probability": 0.8621 + }, + { + "start": 19956.9, + "end": 19959.42, + "probability": 0.8545 + }, + { + "start": 19959.52, + "end": 19960.82, + "probability": 0.7039 + }, + { + "start": 19961.44, + "end": 19962.96, + "probability": 0.6991 + }, + { + "start": 19963.08, + "end": 19964.02, + "probability": 0.7725 + }, + { + "start": 19964.04, + "end": 19965.16, + "probability": 0.9109 + }, + { + "start": 19965.74, + "end": 19970.64, + "probability": 0.9849 + }, + { + "start": 19971.24, + "end": 19973.84, + "probability": 0.9985 + }, + { + "start": 19974.9, + "end": 19983.44, + "probability": 0.9961 + }, + { + "start": 19983.54, + "end": 19983.96, + "probability": 0.3997 + }, + { + "start": 19984.12, + "end": 19986.1, + "probability": 0.775 + }, + { + "start": 19986.48, + "end": 19989.46, + "probability": 0.3586 + }, + { + "start": 19990.42, + "end": 19992.38, + "probability": 0.7972 + }, + { + "start": 19992.96, + "end": 19997.42, + "probability": 0.7965 + }, + { + "start": 19998.28, + "end": 20000.1, + "probability": 0.2951 + }, + { + "start": 20000.28, + "end": 20004.16, + "probability": 0.2654 + }, + { + "start": 20004.16, + "end": 20006.34, + "probability": 0.9518 + }, + { + "start": 20006.9, + "end": 20008.72, + "probability": 0.9097 + }, + { + "start": 20011.98, + "end": 20014.78, + "probability": 0.2949 + }, + { + "start": 20015.32, + "end": 20018.64, + "probability": 0.9883 + }, + { + "start": 20018.72, + "end": 20019.9, + "probability": 0.9385 + }, + { + "start": 20022.58, + "end": 20024.52, + "probability": 0.8494 + }, + { + "start": 20024.8, + "end": 20027.64, + "probability": 0.2914 + }, + { + "start": 20027.88, + "end": 20032.3, + "probability": 0.7388 + }, + { + "start": 20033.84, + "end": 20034.54, + "probability": 0.8763 + }, + { + "start": 20035.86, + "end": 20038.56, + "probability": 0.9816 + }, + { + "start": 20038.64, + "end": 20043.04, + "probability": 0.8789 + }, + { + "start": 20043.88, + "end": 20045.56, + "probability": 0.9897 + }, + { + "start": 20046.46, + "end": 20051.48, + "probability": 0.7744 + }, + { + "start": 20051.48, + "end": 20056.3, + "probability": 0.9291 + }, + { + "start": 20057.87, + "end": 20066.18, + "probability": 0.9658 + }, + { + "start": 20066.6, + "end": 20068.77, + "probability": 0.9949 + }, + { + "start": 20070.8, + "end": 20075.36, + "probability": 0.9758 + }, + { + "start": 20075.36, + "end": 20079.32, + "probability": 0.9701 + }, + { + "start": 20080.14, + "end": 20087.84, + "probability": 0.9744 + }, + { + "start": 20087.84, + "end": 20090.92, + "probability": 0.9988 + }, + { + "start": 20091.9, + "end": 20099.1, + "probability": 0.6743 + }, + { + "start": 20105.24, + "end": 20108.34, + "probability": 0.6326 + }, + { + "start": 20108.34, + "end": 20110.8, + "probability": 0.1015 + }, + { + "start": 20112.61, + "end": 20114.08, + "probability": 0.0402 + }, + { + "start": 20115.72, + "end": 20116.04, + "probability": 0.0253 + }, + { + "start": 20117.44, + "end": 20118.46, + "probability": 0.0836 + }, + { + "start": 20118.46, + "end": 20118.56, + "probability": 0.2517 + }, + { + "start": 20118.62, + "end": 20120.68, + "probability": 0.1392 + }, + { + "start": 20124.96, + "end": 20126.12, + "probability": 0.4692 + }, + { + "start": 20133.2, + "end": 20134.92, + "probability": 0.1162 + }, + { + "start": 20138.24, + "end": 20139.9, + "probability": 0.2893 + }, + { + "start": 20140.5, + "end": 20145.36, + "probability": 0.0316 + }, + { + "start": 20145.84, + "end": 20146.26, + "probability": 0.2439 + }, + { + "start": 20154.54, + "end": 20155.52, + "probability": 0.2509 + }, + { + "start": 20158.05, + "end": 20161.12, + "probability": 0.0098 + }, + { + "start": 20161.12, + "end": 20161.2, + "probability": 0.0534 + }, + { + "start": 20161.2, + "end": 20161.38, + "probability": 0.1407 + }, + { + "start": 20161.38, + "end": 20161.88, + "probability": 0.1258 + }, + { + "start": 20163.58, + "end": 20163.68, + "probability": 0.2061 + }, + { + "start": 20163.68, + "end": 20168.32, + "probability": 0.1066 + }, + { + "start": 20177.0, + "end": 20177.0, + "probability": 0.0 + }, + { + "start": 20177.0, + "end": 20177.0, + "probability": 0.0 + }, + { + "start": 20177.0, + "end": 20177.0, + "probability": 0.0 + }, + { + "start": 20177.0, + "end": 20177.0, + "probability": 0.0 + }, + { + "start": 20177.0, + "end": 20177.0, + "probability": 0.0 + }, + { + "start": 20177.0, + "end": 20177.0, + "probability": 0.0 + }, + { + "start": 20177.0, + "end": 20177.0, + "probability": 0.0 + }, + { + "start": 20177.0, + "end": 20177.0, + "probability": 0.0 + }, + { + "start": 20177.0, + "end": 20177.0, + "probability": 0.0 + }, + { + "start": 20177.0, + "end": 20177.0, + "probability": 0.0 + }, + { + "start": 20177.14, + "end": 20177.14, + "probability": 0.0296 + }, + { + "start": 20177.14, + "end": 20177.14, + "probability": 0.0783 + }, + { + "start": 20177.14, + "end": 20179.9, + "probability": 0.2955 + }, + { + "start": 20180.0, + "end": 20181.3, + "probability": 0.5627 + }, + { + "start": 20181.3, + "end": 20181.64, + "probability": 0.4521 + }, + { + "start": 20183.2, + "end": 20183.46, + "probability": 0.0286 + }, + { + "start": 20183.48, + "end": 20183.48, + "probability": 0.1965 + }, + { + "start": 20183.48, + "end": 20187.94, + "probability": 0.9078 + }, + { + "start": 20187.96, + "end": 20189.3, + "probability": 0.8976 + }, + { + "start": 20191.2, + "end": 20191.3, + "probability": 0.2771 + }, + { + "start": 20203.8, + "end": 20207.12, + "probability": 0.0915 + }, + { + "start": 20311.0, + "end": 20311.0, + "probability": 0.0 + }, + { + "start": 20311.0, + "end": 20311.0, + "probability": 0.0 + }, + { + "start": 20311.0, + "end": 20311.0, + "probability": 0.0 + }, + { + "start": 20311.0, + "end": 20311.0, + "probability": 0.0 + }, + { + "start": 20311.0, + "end": 20311.0, + "probability": 0.0 + }, + { + "start": 20311.0, + "end": 20311.0, + "probability": 0.0 + }, + { + "start": 20311.0, + "end": 20311.0, + "probability": 0.0 + }, + { + "start": 20311.0, + "end": 20311.0, + "probability": 0.0 + }, + { + "start": 20311.0, + "end": 20311.0, + "probability": 0.0 + }, + { + "start": 20311.0, + "end": 20311.0, + "probability": 0.0 + }, + { + "start": 20311.0, + "end": 20311.0, + "probability": 0.0 + }, + { + "start": 20311.0, + "end": 20311.0, + "probability": 0.0 + }, + { + "start": 20311.0, + "end": 20311.0, + "probability": 0.0 + }, + { + "start": 20311.0, + "end": 20311.0, + "probability": 0.0 + }, + { + "start": 20311.82, + "end": 20311.82, + "probability": 0.1027 + }, + { + "start": 20311.82, + "end": 20311.82, + "probability": 0.0424 + }, + { + "start": 20311.82, + "end": 20311.82, + "probability": 0.1445 + }, + { + "start": 20311.82, + "end": 20311.82, + "probability": 0.0975 + }, + { + "start": 20311.82, + "end": 20318.22, + "probability": 0.7449 + }, + { + "start": 20319.26, + "end": 20321.09, + "probability": 0.6285 + }, + { + "start": 20321.26, + "end": 20324.04, + "probability": 0.5226 + }, + { + "start": 20324.24, + "end": 20329.1, + "probability": 0.9774 + }, + { + "start": 20329.62, + "end": 20332.08, + "probability": 0.9447 + }, + { + "start": 20332.16, + "end": 20333.12, + "probability": 0.7198 + }, + { + "start": 20333.56, + "end": 20335.84, + "probability": 0.5353 + }, + { + "start": 20336.54, + "end": 20340.12, + "probability": 0.9982 + }, + { + "start": 20340.12, + "end": 20345.26, + "probability": 0.9971 + }, + { + "start": 20345.26, + "end": 20350.62, + "probability": 0.9992 + }, + { + "start": 20351.2, + "end": 20353.64, + "probability": 0.9834 + }, + { + "start": 20355.36, + "end": 20358.52, + "probability": 0.9669 + }, + { + "start": 20359.22, + "end": 20364.08, + "probability": 0.9942 + }, + { + "start": 20364.86, + "end": 20364.96, + "probability": 0.8599 + }, + { + "start": 20365.58, + "end": 20366.36, + "probability": 0.1537 + }, + { + "start": 20367.8, + "end": 20369.16, + "probability": 0.8363 + }, + { + "start": 20369.86, + "end": 20374.87, + "probability": 0.9381 + }, + { + "start": 20376.1, + "end": 20378.92, + "probability": 0.9943 + }, + { + "start": 20378.92, + "end": 20382.02, + "probability": 0.9874 + }, + { + "start": 20383.56, + "end": 20387.12, + "probability": 0.9055 + }, + { + "start": 20387.12, + "end": 20391.02, + "probability": 0.9992 + }, + { + "start": 20391.82, + "end": 20395.78, + "probability": 0.9974 + }, + { + "start": 20396.26, + "end": 20398.32, + "probability": 0.5937 + }, + { + "start": 20399.44, + "end": 20402.46, + "probability": 0.9362 + }, + { + "start": 20403.26, + "end": 20405.54, + "probability": 0.7248 + }, + { + "start": 20407.1, + "end": 20409.34, + "probability": 0.7128 + }, + { + "start": 20409.98, + "end": 20414.82, + "probability": 0.9465 + }, + { + "start": 20415.08, + "end": 20418.2, + "probability": 0.2525 + }, + { + "start": 20418.68, + "end": 20422.12, + "probability": 0.9863 + }, + { + "start": 20422.94, + "end": 20426.5, + "probability": 0.9741 + }, + { + "start": 20426.88, + "end": 20428.36, + "probability": 0.835 + }, + { + "start": 20430.08, + "end": 20432.84, + "probability": 0.691 + }, + { + "start": 20433.76, + "end": 20437.26, + "probability": 0.9731 + }, + { + "start": 20437.84, + "end": 20441.74, + "probability": 0.9749 + }, + { + "start": 20442.32, + "end": 20443.76, + "probability": 0.8698 + }, + { + "start": 20444.36, + "end": 20448.22, + "probability": 0.8838 + }, + { + "start": 20448.86, + "end": 20451.56, + "probability": 0.9694 + }, + { + "start": 20452.14, + "end": 20454.88, + "probability": 0.9505 + }, + { + "start": 20454.88, + "end": 20458.58, + "probability": 0.9511 + }, + { + "start": 20459.62, + "end": 20460.1, + "probability": 0.8019 + }, + { + "start": 20460.84, + "end": 20461.98, + "probability": 0.9729 + }, + { + "start": 20462.12, + "end": 20466.32, + "probability": 0.9406 + }, + { + "start": 20467.12, + "end": 20471.42, + "probability": 0.9707 + }, + { + "start": 20471.96, + "end": 20476.7, + "probability": 0.9678 + }, + { + "start": 20476.7, + "end": 20481.28, + "probability": 0.9915 + }, + { + "start": 20483.08, + "end": 20485.7, + "probability": 0.953 + }, + { + "start": 20486.64, + "end": 20491.66, + "probability": 0.8307 + }, + { + "start": 20491.66, + "end": 20497.2, + "probability": 0.8831 + }, + { + "start": 20498.44, + "end": 20502.67, + "probability": 0.8857 + }, + { + "start": 20504.4, + "end": 20505.92, + "probability": 0.9583 + }, + { + "start": 20506.74, + "end": 20512.36, + "probability": 0.9723 + }, + { + "start": 20512.54, + "end": 20513.88, + "probability": 0.9583 + }, + { + "start": 20515.0, + "end": 20520.78, + "probability": 0.9134 + }, + { + "start": 20521.46, + "end": 20525.0, + "probability": 0.931 + }, + { + "start": 20526.14, + "end": 20528.32, + "probability": 0.9863 + }, + { + "start": 20528.32, + "end": 20532.38, + "probability": 0.9911 + }, + { + "start": 20532.88, + "end": 20535.26, + "probability": 0.9779 + }, + { + "start": 20535.36, + "end": 20538.54, + "probability": 0.7792 + }, + { + "start": 20538.68, + "end": 20540.06, + "probability": 0.8437 + }, + { + "start": 20540.66, + "end": 20545.04, + "probability": 0.9587 + }, + { + "start": 20546.2, + "end": 20549.68, + "probability": 0.9749 + }, + { + "start": 20549.68, + "end": 20553.74, + "probability": 0.9481 + }, + { + "start": 20554.42, + "end": 20557.16, + "probability": 0.9923 + }, + { + "start": 20557.16, + "end": 20561.2, + "probability": 0.9853 + }, + { + "start": 20561.96, + "end": 20564.98, + "probability": 0.9596 + }, + { + "start": 20564.98, + "end": 20570.58, + "probability": 0.9601 + }, + { + "start": 20572.4, + "end": 20575.97, + "probability": 0.9714 + }, + { + "start": 20577.52, + "end": 20579.44, + "probability": 0.9065 + }, + { + "start": 20580.12, + "end": 20584.14, + "probability": 0.9797 + }, + { + "start": 20584.36, + "end": 20587.24, + "probability": 0.8227 + }, + { + "start": 20588.0, + "end": 20588.28, + "probability": 0.3218 + }, + { + "start": 20588.48, + "end": 20593.8, + "probability": 0.8384 + }, + { + "start": 20593.8, + "end": 20599.02, + "probability": 0.9902 + }, + { + "start": 20599.56, + "end": 20604.92, + "probability": 0.9857 + }, + { + "start": 20605.04, + "end": 20610.24, + "probability": 0.9888 + }, + { + "start": 20611.32, + "end": 20611.86, + "probability": 0.5873 + }, + { + "start": 20611.92, + "end": 20612.74, + "probability": 0.6119 + }, + { + "start": 20612.9, + "end": 20616.02, + "probability": 0.938 + }, + { + "start": 20616.1, + "end": 20617.3, + "probability": 0.8476 + }, + { + "start": 20618.0, + "end": 20618.96, + "probability": 0.778 + }, + { + "start": 20618.98, + "end": 20620.32, + "probability": 0.9315 + }, + { + "start": 20621.04, + "end": 20621.44, + "probability": 0.7318 + }, + { + "start": 20622.14, + "end": 20624.81, + "probability": 0.988 + }, + { + "start": 20625.82, + "end": 20626.26, + "probability": 0.1249 + }, + { + "start": 20627.28, + "end": 20630.26, + "probability": 0.2226 + }, + { + "start": 20630.56, + "end": 20631.42, + "probability": 0.8461 + }, + { + "start": 20631.92, + "end": 20632.32, + "probability": 0.6614 + }, + { + "start": 20632.4, + "end": 20635.76, + "probability": 0.649 + }, + { + "start": 20636.48, + "end": 20636.82, + "probability": 0.4401 + }, + { + "start": 20636.94, + "end": 20637.88, + "probability": 0.4245 + }, + { + "start": 20639.12, + "end": 20639.28, + "probability": 0.6875 + }, + { + "start": 20639.42, + "end": 20640.2, + "probability": 0.4602 + }, + { + "start": 20641.15, + "end": 20646.2, + "probability": 0.5017 + }, + { + "start": 20648.12, + "end": 20649.04, + "probability": 0.8201 + }, + { + "start": 20649.12, + "end": 20651.88, + "probability": 0.8379 + }, + { + "start": 20653.38, + "end": 20655.1, + "probability": 0.8526 + }, + { + "start": 20655.2, + "end": 20656.82, + "probability": 0.8682 + }, + { + "start": 20656.9, + "end": 20658.16, + "probability": 0.9354 + }, + { + "start": 20659.4, + "end": 20662.1, + "probability": 0.9177 + }, + { + "start": 20662.64, + "end": 20664.84, + "probability": 0.9704 + }, + { + "start": 20664.9, + "end": 20666.28, + "probability": 0.97 + }, + { + "start": 20666.36, + "end": 20667.58, + "probability": 0.8938 + }, + { + "start": 20667.98, + "end": 20669.28, + "probability": 0.9528 + }, + { + "start": 20669.3, + "end": 20672.58, + "probability": 0.9924 + }, + { + "start": 20673.1, + "end": 20675.6, + "probability": 0.9892 + }, + { + "start": 20676.5, + "end": 20683.52, + "probability": 0.9854 + }, + { + "start": 20683.68, + "end": 20686.1, + "probability": 0.9943 + }, + { + "start": 20686.76, + "end": 20689.98, + "probability": 0.9771 + }, + { + "start": 20690.34, + "end": 20696.26, + "probability": 0.9984 + }, + { + "start": 20697.42, + "end": 20698.02, + "probability": 0.6964 + }, + { + "start": 20698.18, + "end": 20698.92, + "probability": 0.7803 + }, + { + "start": 20699.0, + "end": 20704.28, + "probability": 0.9966 + }, + { + "start": 20704.64, + "end": 20704.64, + "probability": 0.0005 + }, + { + "start": 20704.64, + "end": 20706.4, + "probability": 0.9882 + }, + { + "start": 20706.66, + "end": 20707.74, + "probability": 0.8605 + }, + { + "start": 20707.82, + "end": 20708.31, + "probability": 0.4397 + }, + { + "start": 20709.16, + "end": 20710.38, + "probability": 0.524 + }, + { + "start": 20710.52, + "end": 20711.88, + "probability": 0.6602 + }, + { + "start": 20712.4, + "end": 20716.5, + "probability": 0.9578 + }, + { + "start": 20717.0, + "end": 20721.94, + "probability": 0.9831 + }, + { + "start": 20722.52, + "end": 20723.52, + "probability": 0.8142 + }, + { + "start": 20725.94, + "end": 20726.98, + "probability": 0.6726 + }, + { + "start": 20728.02, + "end": 20731.54, + "probability": 0.9228 + }, + { + "start": 20732.26, + "end": 20735.78, + "probability": 0.9556 + }, + { + "start": 20735.84, + "end": 20740.0, + "probability": 0.9819 + }, + { + "start": 20740.14, + "end": 20740.44, + "probability": 0.3654 + }, + { + "start": 20740.96, + "end": 20744.74, + "probability": 0.9839 + }, + { + "start": 20744.86, + "end": 20751.2, + "probability": 0.9077 + }, + { + "start": 20751.98, + "end": 20754.16, + "probability": 0.9102 + }, + { + "start": 20754.28, + "end": 20755.56, + "probability": 0.9133 + }, + { + "start": 20755.92, + "end": 20757.64, + "probability": 0.9968 + }, + { + "start": 20758.2, + "end": 20763.44, + "probability": 0.8911 + }, + { + "start": 20763.58, + "end": 20765.12, + "probability": 0.8786 + }, + { + "start": 20765.62, + "end": 20771.4, + "probability": 0.9854 + }, + { + "start": 20771.56, + "end": 20774.66, + "probability": 0.9962 + }, + { + "start": 20775.24, + "end": 20776.18, + "probability": 0.7732 + }, + { + "start": 20776.32, + "end": 20777.72, + "probability": 0.5949 + }, + { + "start": 20777.86, + "end": 20780.22, + "probability": 0.854 + }, + { + "start": 20780.3, + "end": 20781.34, + "probability": 0.9014 + }, + { + "start": 20781.42, + "end": 20782.22, + "probability": 0.9297 + }, + { + "start": 20782.3, + "end": 20782.8, + "probability": 0.6769 + }, + { + "start": 20782.92, + "end": 20783.26, + "probability": 0.9657 + }, + { + "start": 20783.26, + "end": 20784.08, + "probability": 0.983 + }, + { + "start": 20784.44, + "end": 20785.66, + "probability": 0.9666 + }, + { + "start": 20785.66, + "end": 20786.6, + "probability": 0.8465 + }, + { + "start": 20786.74, + "end": 20788.49, + "probability": 0.9954 + }, + { + "start": 20788.66, + "end": 20790.69, + "probability": 0.9245 + }, + { + "start": 20791.44, + "end": 20793.6, + "probability": 0.9711 + }, + { + "start": 20793.8, + "end": 20797.0, + "probability": 0.9912 + }, + { + "start": 20797.04, + "end": 20799.3, + "probability": 0.9898 + }, + { + "start": 20799.62, + "end": 20800.9, + "probability": 0.9521 + }, + { + "start": 20800.92, + "end": 20803.64, + "probability": 0.9892 + }, + { + "start": 20804.16, + "end": 20806.34, + "probability": 0.9907 + }, + { + "start": 20806.68, + "end": 20807.7, + "probability": 0.9893 + }, + { + "start": 20807.86, + "end": 20808.88, + "probability": 0.8687 + }, + { + "start": 20808.9, + "end": 20809.6, + "probability": 0.7243 + }, + { + "start": 20810.12, + "end": 20810.92, + "probability": 0.859 + }, + { + "start": 20811.0, + "end": 20812.1, + "probability": 0.9345 + }, + { + "start": 20812.24, + "end": 20815.92, + "probability": 0.9946 + }, + { + "start": 20816.28, + "end": 20818.32, + "probability": 0.9829 + }, + { + "start": 20818.42, + "end": 20819.74, + "probability": 0.9714 + }, + { + "start": 20820.16, + "end": 20821.28, + "probability": 0.9682 + }, + { + "start": 20821.38, + "end": 20823.24, + "probability": 0.7396 + }, + { + "start": 20823.84, + "end": 20827.64, + "probability": 0.9543 + }, + { + "start": 20828.5, + "end": 20828.94, + "probability": 0.8348 + }, + { + "start": 20829.16, + "end": 20832.54, + "probability": 0.9832 + }, + { + "start": 20832.54, + "end": 20835.64, + "probability": 0.9924 + }, + { + "start": 20835.76, + "end": 20837.1, + "probability": 0.712 + }, + { + "start": 20837.54, + "end": 20838.92, + "probability": 0.9895 + }, + { + "start": 20839.1, + "end": 20840.1, + "probability": 0.7193 + }, + { + "start": 20840.44, + "end": 20843.7, + "probability": 0.6767 + }, + { + "start": 20843.72, + "end": 20850.38, + "probability": 0.9951 + }, + { + "start": 20850.46, + "end": 20851.04, + "probability": 0.7463 + }, + { + "start": 20851.1, + "end": 20851.68, + "probability": 0.2983 + }, + { + "start": 20851.82, + "end": 20853.6, + "probability": 0.8524 + }, + { + "start": 20854.68, + "end": 20857.26, + "probability": 0.959 + }, + { + "start": 20858.34, + "end": 20859.18, + "probability": 0.6795 + }, + { + "start": 20860.54, + "end": 20860.82, + "probability": 0.3193 + }, + { + "start": 20870.72, + "end": 20871.62, + "probability": 0.062 + }, + { + "start": 20871.92, + "end": 20872.74, + "probability": 0.4501 + }, + { + "start": 20872.94, + "end": 20873.48, + "probability": 0.2623 + }, + { + "start": 20873.92, + "end": 20875.32, + "probability": 0.9072 + }, + { + "start": 20877.32, + "end": 20879.74, + "probability": 0.5965 + }, + { + "start": 20879.84, + "end": 20881.08, + "probability": 0.9047 + }, + { + "start": 20881.22, + "end": 20884.21, + "probability": 0.98 + }, + { + "start": 20884.66, + "end": 20886.86, + "probability": 0.9038 + }, + { + "start": 20888.88, + "end": 20888.98, + "probability": 0.7831 + }, + { + "start": 20890.92, + "end": 20891.7, + "probability": 0.8884 + }, + { + "start": 20891.82, + "end": 20893.3, + "probability": 0.6741 + }, + { + "start": 20893.4, + "end": 20894.98, + "probability": 0.9206 + }, + { + "start": 20895.06, + "end": 20896.28, + "probability": 0.8999 + }, + { + "start": 20896.46, + "end": 20900.64, + "probability": 0.9872 + }, + { + "start": 20902.22, + "end": 20907.04, + "probability": 0.9989 + }, + { + "start": 20908.42, + "end": 20913.02, + "probability": 0.9907 + }, + { + "start": 20913.5, + "end": 20920.56, + "probability": 0.9216 + }, + { + "start": 20921.92, + "end": 20925.0, + "probability": 0.9841 + }, + { + "start": 20925.0, + "end": 20928.8, + "probability": 0.9774 + }, + { + "start": 20930.3, + "end": 20933.12, + "probability": 0.9971 + }, + { + "start": 20933.76, + "end": 20936.9, + "probability": 0.9984 + }, + { + "start": 20937.58, + "end": 20939.42, + "probability": 0.9866 + }, + { + "start": 20940.08, + "end": 20940.56, + "probability": 0.8822 + }, + { + "start": 20940.58, + "end": 20944.52, + "probability": 0.921 + }, + { + "start": 20944.96, + "end": 20949.22, + "probability": 0.8928 + }, + { + "start": 20950.36, + "end": 20951.38, + "probability": 0.705 + }, + { + "start": 20952.48, + "end": 20955.84, + "probability": 0.9963 + }, + { + "start": 20956.42, + "end": 20961.78, + "probability": 0.9895 + }, + { + "start": 20962.26, + "end": 20963.03, + "probability": 0.9231 + }, + { + "start": 20963.8, + "end": 20964.32, + "probability": 0.984 + }, + { + "start": 20965.42, + "end": 20970.44, + "probability": 0.9856 + }, + { + "start": 20972.5, + "end": 20974.92, + "probability": 0.8852 + }, + { + "start": 20976.22, + "end": 20978.76, + "probability": 0.9954 + }, + { + "start": 20979.92, + "end": 20981.28, + "probability": 0.9836 + }, + { + "start": 20981.34, + "end": 20982.32, + "probability": 0.9383 + }, + { + "start": 20982.48, + "end": 20984.2, + "probability": 0.9026 + }, + { + "start": 20985.58, + "end": 20989.0, + "probability": 0.8762 + }, + { + "start": 20989.54, + "end": 20995.32, + "probability": 0.9838 + }, + { + "start": 20996.7, + "end": 21000.88, + "probability": 0.9947 + }, + { + "start": 21003.3, + "end": 21003.3, + "probability": 0.011 + }, + { + "start": 21003.3, + "end": 21007.98, + "probability": 0.9703 + }, + { + "start": 21007.98, + "end": 21015.34, + "probability": 0.9834 + }, + { + "start": 21015.46, + "end": 21019.42, + "probability": 0.997 + }, + { + "start": 21019.9, + "end": 21024.74, + "probability": 0.9787 + }, + { + "start": 21027.74, + "end": 21029.04, + "probability": 0.9323 + }, + { + "start": 21029.18, + "end": 21030.2, + "probability": 0.7779 + }, + { + "start": 21030.28, + "end": 21032.09, + "probability": 0.9951 + }, + { + "start": 21032.52, + "end": 21033.78, + "probability": 0.8262 + }, + { + "start": 21034.02, + "end": 21036.12, + "probability": 0.983 + }, + { + "start": 21037.0, + "end": 21038.9, + "probability": 0.9918 + }, + { + "start": 21039.44, + "end": 21044.06, + "probability": 0.9448 + }, + { + "start": 21045.66, + "end": 21051.82, + "probability": 0.9871 + }, + { + "start": 21052.36, + "end": 21056.56, + "probability": 0.9728 + }, + { + "start": 21058.26, + "end": 21061.38, + "probability": 0.9843 + }, + { + "start": 21062.86, + "end": 21064.31, + "probability": 0.9061 + }, + { + "start": 21064.88, + "end": 21068.35, + "probability": 0.9942 + }, + { + "start": 21069.32, + "end": 21072.42, + "probability": 0.9778 + }, + { + "start": 21073.02, + "end": 21078.14, + "probability": 0.9947 + }, + { + "start": 21078.96, + "end": 21079.22, + "probability": 0.2678 + }, + { + "start": 21079.62, + "end": 21081.74, + "probability": 0.6773 + }, + { + "start": 21082.76, + "end": 21085.08, + "probability": 0.9792 + }, + { + "start": 21086.1, + "end": 21087.96, + "probability": 0.9944 + }, + { + "start": 21089.3, + "end": 21090.96, + "probability": 0.9644 + }, + { + "start": 21091.28, + "end": 21095.14, + "probability": 0.8868 + }, + { + "start": 21103.48, + "end": 21105.58, + "probability": 0.8399 + }, + { + "start": 21115.5, + "end": 21116.28, + "probability": 0.5882 + }, + { + "start": 21116.92, + "end": 21117.6, + "probability": 0.819 + }, + { + "start": 21122.29, + "end": 21125.7, + "probability": 0.7422 + }, + { + "start": 21127.06, + "end": 21136.64, + "probability": 0.3754 + }, + { + "start": 21137.6, + "end": 21140.12, + "probability": 0.3888 + }, + { + "start": 21140.28, + "end": 21140.74, + "probability": 0.8212 + }, + { + "start": 21140.82, + "end": 21143.04, + "probability": 0.9911 + }, + { + "start": 21143.28, + "end": 21143.88, + "probability": 0.9577 + }, + { + "start": 21143.96, + "end": 21145.02, + "probability": 0.9616 + }, + { + "start": 21145.1, + "end": 21146.04, + "probability": 0.8101 + }, + { + "start": 21146.32, + "end": 21147.04, + "probability": 0.9265 + }, + { + "start": 21147.64, + "end": 21151.62, + "probability": 0.9683 + }, + { + "start": 21151.66, + "end": 21152.7, + "probability": 0.5772 + }, + { + "start": 21152.8, + "end": 21154.04, + "probability": 0.807 + }, + { + "start": 21154.26, + "end": 21159.02, + "probability": 0.9292 + }, + { + "start": 21162.48, + "end": 21165.12, + "probability": 0.9989 + }, + { + "start": 21167.32, + "end": 21167.88, + "probability": 0.515 + }, + { + "start": 21168.26, + "end": 21168.62, + "probability": 0.3466 + }, + { + "start": 21169.94, + "end": 21172.8, + "probability": 0.946 + }, + { + "start": 21173.28, + "end": 21173.69, + "probability": 0.895 + }, + { + "start": 21173.88, + "end": 21177.28, + "probability": 0.8673 + }, + { + "start": 21177.78, + "end": 21178.48, + "probability": 0.9678 + }, + { + "start": 21178.56, + "end": 21179.51, + "probability": 0.9456 + }, + { + "start": 21180.02, + "end": 21182.14, + "probability": 0.8574 + }, + { + "start": 21183.38, + "end": 21186.58, + "probability": 0.823 + }, + { + "start": 21187.1, + "end": 21188.22, + "probability": 0.8847 + }, + { + "start": 21188.9, + "end": 21190.92, + "probability": 0.9473 + }, + { + "start": 21191.44, + "end": 21194.02, + "probability": 0.9328 + }, + { + "start": 21194.12, + "end": 21195.0, + "probability": 0.9921 + }, + { + "start": 21195.08, + "end": 21196.58, + "probability": 0.9783 + }, + { + "start": 21197.3, + "end": 21197.82, + "probability": 0.1854 + }, + { + "start": 21198.06, + "end": 21201.2, + "probability": 0.694 + }, + { + "start": 21203.3, + "end": 21205.14, + "probability": 0.6513 + }, + { + "start": 21205.9, + "end": 21207.22, + "probability": 0.8322 + }, + { + "start": 21208.38, + "end": 21213.32, + "probability": 0.8818 + }, + { + "start": 21213.98, + "end": 21216.36, + "probability": 0.9417 + }, + { + "start": 21216.82, + "end": 21221.0, + "probability": 0.9939 + }, + { + "start": 21221.14, + "end": 21221.65, + "probability": 0.9276 + }, + { + "start": 21222.54, + "end": 21228.08, + "probability": 0.9543 + }, + { + "start": 21228.62, + "end": 21231.14, + "probability": 0.9873 + }, + { + "start": 21231.5, + "end": 21233.08, + "probability": 0.994 + }, + { + "start": 21233.6, + "end": 21236.46, + "probability": 0.7026 + }, + { + "start": 21236.54, + "end": 21238.5, + "probability": 0.7922 + }, + { + "start": 21239.26, + "end": 21240.76, + "probability": 0.9966 + }, + { + "start": 21241.3, + "end": 21242.18, + "probability": 0.6998 + }, + { + "start": 21242.28, + "end": 21243.18, + "probability": 0.6523 + }, + { + "start": 21243.86, + "end": 21248.02, + "probability": 0.9717 + }, + { + "start": 21248.44, + "end": 21253.5, + "probability": 0.9663 + }, + { + "start": 21256.0, + "end": 21257.76, + "probability": 0.894 + }, + { + "start": 21258.3, + "end": 21259.62, + "probability": 0.8177 + }, + { + "start": 21260.06, + "end": 21261.68, + "probability": 0.9976 + }, + { + "start": 21262.36, + "end": 21263.63, + "probability": 0.8882 + }, + { + "start": 21264.58, + "end": 21265.66, + "probability": 0.9609 + }, + { + "start": 21267.08, + "end": 21270.48, + "probability": 0.9613 + }, + { + "start": 21270.82, + "end": 21271.74, + "probability": 0.5928 + }, + { + "start": 21272.48, + "end": 21273.07, + "probability": 0.937 + }, + { + "start": 21273.72, + "end": 21277.16, + "probability": 0.811 + }, + { + "start": 21277.88, + "end": 21281.06, + "probability": 0.701 + }, + { + "start": 21281.26, + "end": 21284.94, + "probability": 0.994 + }, + { + "start": 21285.58, + "end": 21287.26, + "probability": 0.9146 + }, + { + "start": 21287.7, + "end": 21289.36, + "probability": 0.702 + }, + { + "start": 21289.38, + "end": 21290.1, + "probability": 0.822 + }, + { + "start": 21290.4, + "end": 21292.32, + "probability": 0.9623 + }, + { + "start": 21293.5, + "end": 21295.14, + "probability": 0.6577 + }, + { + "start": 21295.22, + "end": 21299.44, + "probability": 0.9572 + }, + { + "start": 21299.52, + "end": 21302.6, + "probability": 0.9041 + }, + { + "start": 21303.52, + "end": 21304.18, + "probability": 0.8312 + }, + { + "start": 21304.28, + "end": 21305.0, + "probability": 0.8983 + }, + { + "start": 21305.42, + "end": 21306.6, + "probability": 0.947 + }, + { + "start": 21307.08, + "end": 21308.4, + "probability": 0.9888 + }, + { + "start": 21308.48, + "end": 21309.28, + "probability": 0.8245 + }, + { + "start": 21309.92, + "end": 21315.84, + "probability": 0.9335 + }, + { + "start": 21315.98, + "end": 21316.76, + "probability": 0.7611 + }, + { + "start": 21317.16, + "end": 21318.48, + "probability": 0.7269 + }, + { + "start": 21321.0, + "end": 21324.72, + "probability": 0.8607 + }, + { + "start": 21326.04, + "end": 21326.86, + "probability": 0.8296 + }, + { + "start": 21326.88, + "end": 21331.34, + "probability": 0.9323 + }, + { + "start": 21332.06, + "end": 21336.88, + "probability": 0.9985 + }, + { + "start": 21337.28, + "end": 21337.58, + "probability": 0.7803 + }, + { + "start": 21337.58, + "end": 21338.48, + "probability": 0.632 + }, + { + "start": 21339.7, + "end": 21340.86, + "probability": 0.8031 + }, + { + "start": 21340.96, + "end": 21341.96, + "probability": 0.75 + }, + { + "start": 21342.1, + "end": 21342.62, + "probability": 0.4813 + }, + { + "start": 21342.74, + "end": 21343.86, + "probability": 0.7481 + }, + { + "start": 21343.92, + "end": 21344.8, + "probability": 0.4338 + }, + { + "start": 21345.22, + "end": 21347.06, + "probability": 0.809 + }, + { + "start": 21347.82, + "end": 21348.42, + "probability": 0.7348 + }, + { + "start": 21348.48, + "end": 21350.5, + "probability": 0.9937 + }, + { + "start": 21351.56, + "end": 21354.2, + "probability": 0.8078 + }, + { + "start": 21354.24, + "end": 21355.18, + "probability": 0.8573 + }, + { + "start": 21355.92, + "end": 21358.34, + "probability": 0.9792 + }, + { + "start": 21359.42, + "end": 21362.76, + "probability": 0.9369 + }, + { + "start": 21363.26, + "end": 21364.22, + "probability": 0.6568 + }, + { + "start": 21364.3, + "end": 21366.94, + "probability": 0.8685 + }, + { + "start": 21367.54, + "end": 21368.52, + "probability": 0.9338 + }, + { + "start": 21369.72, + "end": 21372.72, + "probability": 0.917 + }, + { + "start": 21373.5, + "end": 21376.2, + "probability": 0.9367 + }, + { + "start": 21376.58, + "end": 21378.14, + "probability": 0.8967 + }, + { + "start": 21378.66, + "end": 21380.9, + "probability": 0.9971 + }, + { + "start": 21381.08, + "end": 21382.54, + "probability": 0.749 + }, + { + "start": 21384.02, + "end": 21384.74, + "probability": 0.9548 + }, + { + "start": 21385.16, + "end": 21386.48, + "probability": 0.994 + }, + { + "start": 21386.52, + "end": 21389.22, + "probability": 0.8146 + }, + { + "start": 21389.34, + "end": 21390.54, + "probability": 0.8388 + }, + { + "start": 21390.62, + "end": 21392.7, + "probability": 0.9897 + }, + { + "start": 21393.34, + "end": 21396.9, + "probability": 0.9736 + }, + { + "start": 21397.42, + "end": 21398.24, + "probability": 0.9761 + }, + { + "start": 21398.94, + "end": 21400.0, + "probability": 0.9424 + }, + { + "start": 21400.36, + "end": 21401.72, + "probability": 0.9627 + }, + { + "start": 21402.14, + "end": 21404.86, + "probability": 0.9932 + }, + { + "start": 21405.14, + "end": 21406.7, + "probability": 0.9977 + }, + { + "start": 21407.56, + "end": 21408.1, + "probability": 0.8618 + }, + { + "start": 21408.24, + "end": 21409.1, + "probability": 0.937 + }, + { + "start": 21409.68, + "end": 21412.56, + "probability": 0.639 + }, + { + "start": 21412.96, + "end": 21416.28, + "probability": 0.5638 + }, + { + "start": 21417.02, + "end": 21419.48, + "probability": 0.6636 + }, + { + "start": 21419.48, + "end": 21421.4, + "probability": 0.7518 + }, + { + "start": 21421.76, + "end": 21422.34, + "probability": 0.8771 + }, + { + "start": 21422.44, + "end": 21422.92, + "probability": 0.8979 + }, + { + "start": 21422.98, + "end": 21423.26, + "probability": 0.5473 + }, + { + "start": 21423.28, + "end": 21423.68, + "probability": 0.9618 + }, + { + "start": 21424.0, + "end": 21424.94, + "probability": 0.8097 + }, + { + "start": 21425.14, + "end": 21428.1, + "probability": 0.865 + }, + { + "start": 21428.28, + "end": 21428.58, + "probability": 0.7411 + }, + { + "start": 21429.02, + "end": 21430.6, + "probability": 0.6679 + }, + { + "start": 21431.68, + "end": 21434.82, + "probability": 0.8624 + }, + { + "start": 21435.52, + "end": 21439.02, + "probability": 0.7288 + }, + { + "start": 21439.04, + "end": 21441.8, + "probability": 0.6827 + }, + { + "start": 21442.3, + "end": 21444.62, + "probability": 0.621 + }, + { + "start": 21445.06, + "end": 21450.59, + "probability": 0.9282 + }, + { + "start": 21451.86, + "end": 21454.36, + "probability": 0.9985 + }, + { + "start": 21454.58, + "end": 21455.48, + "probability": 0.4333 + }, + { + "start": 21455.82, + "end": 21457.32, + "probability": 0.9435 + }, + { + "start": 21457.36, + "end": 21458.62, + "probability": 0.9318 + }, + { + "start": 21458.9, + "end": 21461.14, + "probability": 0.7216 + }, + { + "start": 21462.1, + "end": 21465.36, + "probability": 0.8461 + }, + { + "start": 21466.08, + "end": 21467.18, + "probability": 0.991 + }, + { + "start": 21468.0, + "end": 21468.77, + "probability": 0.9341 + }, + { + "start": 21469.22, + "end": 21469.92, + "probability": 0.7736 + }, + { + "start": 21470.74, + "end": 21473.84, + "probability": 0.9291 + }, + { + "start": 21474.34, + "end": 21475.7, + "probability": 0.9809 + }, + { + "start": 21476.08, + "end": 21478.9, + "probability": 0.5631 + }, + { + "start": 21479.64, + "end": 21482.28, + "probability": 0.6575 + }, + { + "start": 21482.7, + "end": 21485.74, + "probability": 0.8076 + }, + { + "start": 21486.16, + "end": 21487.76, + "probability": 0.7947 + }, + { + "start": 21488.12, + "end": 21489.25, + "probability": 0.9871 + }, + { + "start": 21489.38, + "end": 21492.3, + "probability": 0.8632 + }, + { + "start": 21492.36, + "end": 21493.6, + "probability": 0.8018 + }, + { + "start": 21495.38, + "end": 21497.28, + "probability": 0.597 + }, + { + "start": 21497.5, + "end": 21499.04, + "probability": 0.7561 + }, + { + "start": 21500.24, + "end": 21501.08, + "probability": 0.8038 + }, + { + "start": 21515.26, + "end": 21516.66, + "probability": 0.8599 + }, + { + "start": 21517.36, + "end": 21519.38, + "probability": 0.3383 + }, + { + "start": 21519.52, + "end": 21521.4, + "probability": 0.4425 + }, + { + "start": 21521.4, + "end": 21522.22, + "probability": 0.5322 + }, + { + "start": 21523.58, + "end": 21531.1, + "probability": 0.9854 + }, + { + "start": 21532.56, + "end": 21534.1, + "probability": 0.5758 + }, + { + "start": 21535.2, + "end": 21536.68, + "probability": 0.731 + }, + { + "start": 21536.84, + "end": 21541.88, + "probability": 0.9879 + }, + { + "start": 21542.54, + "end": 21543.1, + "probability": 0.8894 + }, + { + "start": 21543.28, + "end": 21547.06, + "probability": 0.9525 + }, + { + "start": 21547.9, + "end": 21548.56, + "probability": 0.8818 + }, + { + "start": 21548.64, + "end": 21551.14, + "probability": 0.852 + }, + { + "start": 21551.2, + "end": 21552.22, + "probability": 0.9614 + }, + { + "start": 21552.26, + "end": 21553.98, + "probability": 0.8159 + }, + { + "start": 21554.04, + "end": 21555.4, + "probability": 0.6728 + }, + { + "start": 21555.96, + "end": 21558.6, + "probability": 0.9966 + }, + { + "start": 21559.4, + "end": 21562.04, + "probability": 0.9941 + }, + { + "start": 21562.24, + "end": 21563.0, + "probability": 0.9468 + }, + { + "start": 21563.08, + "end": 21566.04, + "probability": 0.9956 + }, + { + "start": 21566.04, + "end": 21570.72, + "probability": 0.8225 + }, + { + "start": 21572.08, + "end": 21575.44, + "probability": 0.8695 + }, + { + "start": 21576.16, + "end": 21577.56, + "probability": 0.988 + }, + { + "start": 21577.78, + "end": 21579.34, + "probability": 0.3184 + }, + { + "start": 21579.86, + "end": 21581.68, + "probability": 0.8395 + }, + { + "start": 21581.74, + "end": 21587.62, + "probability": 0.9341 + }, + { + "start": 21587.62, + "end": 21591.16, + "probability": 0.6302 + }, + { + "start": 21592.5, + "end": 21598.04, + "probability": 0.988 + }, + { + "start": 21598.54, + "end": 21604.0, + "probability": 0.8457 + }, + { + "start": 21604.04, + "end": 21607.17, + "probability": 0.7869 + }, + { + "start": 21607.7, + "end": 21608.04, + "probability": 0.8831 + }, + { + "start": 21608.2, + "end": 21608.98, + "probability": 0.7289 + }, + { + "start": 21609.16, + "end": 21610.06, + "probability": 0.6652 + }, + { + "start": 21610.22, + "end": 21612.14, + "probability": 0.879 + }, + { + "start": 21612.8, + "end": 21613.62, + "probability": 0.8615 + }, + { + "start": 21613.78, + "end": 21614.64, + "probability": 0.7493 + }, + { + "start": 21614.74, + "end": 21615.52, + "probability": 0.8463 + }, + { + "start": 21615.66, + "end": 21617.15, + "probability": 0.9883 + }, + { + "start": 21617.26, + "end": 21619.72, + "probability": 0.8086 + }, + { + "start": 21619.78, + "end": 21620.36, + "probability": 0.9563 + }, + { + "start": 21620.76, + "end": 21621.98, + "probability": 0.7948 + }, + { + "start": 21622.84, + "end": 21626.36, + "probability": 0.8796 + }, + { + "start": 21626.5, + "end": 21627.5, + "probability": 0.825 + }, + { + "start": 21628.46, + "end": 21631.4, + "probability": 0.7241 + }, + { + "start": 21632.1, + "end": 21635.66, + "probability": 0.9072 + }, + { + "start": 21635.82, + "end": 21641.28, + "probability": 0.9456 + }, + { + "start": 21641.36, + "end": 21642.4, + "probability": 0.6505 + }, + { + "start": 21642.5, + "end": 21644.84, + "probability": 0.8017 + }, + { + "start": 21645.6, + "end": 21653.54, + "probability": 0.8311 + }, + { + "start": 21653.54, + "end": 21658.94, + "probability": 0.9884 + }, + { + "start": 21659.74, + "end": 21661.78, + "probability": 0.9876 + }, + { + "start": 21662.42, + "end": 21663.4, + "probability": 0.8528 + }, + { + "start": 21663.62, + "end": 21667.66, + "probability": 0.9867 + }, + { + "start": 21668.22, + "end": 21669.2, + "probability": 0.5697 + }, + { + "start": 21669.44, + "end": 21673.32, + "probability": 0.969 + }, + { + "start": 21673.32, + "end": 21676.74, + "probability": 0.9926 + }, + { + "start": 21676.88, + "end": 21677.84, + "probability": 0.8129 + }, + { + "start": 21678.04, + "end": 21682.74, + "probability": 0.9026 + }, + { + "start": 21682.74, + "end": 21685.8, + "probability": 0.9941 + }, + { + "start": 21686.54, + "end": 21693.1, + "probability": 0.7944 + }, + { + "start": 21693.16, + "end": 21693.96, + "probability": 0.7745 + }, + { + "start": 21694.18, + "end": 21699.81, + "probability": 0.991 + }, + { + "start": 21700.3, + "end": 21700.96, + "probability": 0.255 + }, + { + "start": 21701.88, + "end": 21702.72, + "probability": 0.3838 + }, + { + "start": 21702.8, + "end": 21707.7, + "probability": 0.8032 + }, + { + "start": 21708.06, + "end": 21708.44, + "probability": 0.5952 + }, + { + "start": 21708.46, + "end": 21709.48, + "probability": 0.8061 + }, + { + "start": 21710.46, + "end": 21711.56, + "probability": 0.6835 + }, + { + "start": 21711.88, + "end": 21716.9, + "probability": 0.9961 + }, + { + "start": 21717.0, + "end": 21717.96, + "probability": 0.9277 + }, + { + "start": 21718.04, + "end": 21719.7, + "probability": 0.9795 + }, + { + "start": 21720.22, + "end": 21724.44, + "probability": 0.9938 + }, + { + "start": 21724.48, + "end": 21730.66, + "probability": 0.9962 + }, + { + "start": 21730.8, + "end": 21737.02, + "probability": 0.9963 + }, + { + "start": 21737.26, + "end": 21737.78, + "probability": 0.7391 + }, + { + "start": 21738.56, + "end": 21740.18, + "probability": 0.5082 + }, + { + "start": 21740.76, + "end": 21742.32, + "probability": 0.4266 + }, + { + "start": 21743.52, + "end": 21744.86, + "probability": 0.939 + }, + { + "start": 21757.26, + "end": 21759.3, + "probability": 0.5956 + }, + { + "start": 21761.14, + "end": 21761.28, + "probability": 0.0278 + }, + { + "start": 21762.18, + "end": 21763.46, + "probability": 0.2361 + }, + { + "start": 21763.5, + "end": 21764.12, + "probability": 0.4117 + }, + { + "start": 21764.9, + "end": 21768.72, + "probability": 0.9527 + }, + { + "start": 21769.54, + "end": 21771.12, + "probability": 0.9432 + }, + { + "start": 21772.56, + "end": 21776.22, + "probability": 0.9902 + }, + { + "start": 21776.22, + "end": 21780.88, + "probability": 0.8167 + }, + { + "start": 21783.34, + "end": 21784.48, + "probability": 0.8391 + }, + { + "start": 21785.1, + "end": 21785.78, + "probability": 0.7803 + }, + { + "start": 21786.74, + "end": 21787.66, + "probability": 0.8335 + }, + { + "start": 21788.63, + "end": 21791.14, + "probability": 0.7204 + }, + { + "start": 21791.52, + "end": 21794.06, + "probability": 0.9805 + }, + { + "start": 21794.42, + "end": 21795.56, + "probability": 0.5157 + }, + { + "start": 21796.18, + "end": 21797.68, + "probability": 0.5276 + }, + { + "start": 21798.52, + "end": 21804.54, + "probability": 0.9519 + }, + { + "start": 21805.06, + "end": 21805.64, + "probability": 0.6034 + }, + { + "start": 21805.74, + "end": 21811.0, + "probability": 0.8969 + }, + { + "start": 21811.06, + "end": 21812.66, + "probability": 0.8935 + }, + { + "start": 21813.18, + "end": 21816.42, + "probability": 0.5809 + }, + { + "start": 21817.52, + "end": 21819.42, + "probability": 0.8427 + }, + { + "start": 21820.04, + "end": 21822.58, + "probability": 0.9904 + }, + { + "start": 21823.24, + "end": 21824.5, + "probability": 0.9258 + }, + { + "start": 21825.02, + "end": 21826.3, + "probability": 0.9102 + }, + { + "start": 21827.9, + "end": 21829.12, + "probability": 0.9673 + }, + { + "start": 21829.82, + "end": 21834.32, + "probability": 0.8816 + }, + { + "start": 21835.48, + "end": 21836.48, + "probability": 0.9731 + }, + { + "start": 21837.08, + "end": 21840.18, + "probability": 0.9599 + }, + { + "start": 21840.48, + "end": 21841.3, + "probability": 0.8677 + }, + { + "start": 21843.22, + "end": 21844.8, + "probability": 0.9278 + }, + { + "start": 21845.26, + "end": 21845.36, + "probability": 0.7722 + }, + { + "start": 21845.4, + "end": 21845.88, + "probability": 0.9191 + }, + { + "start": 21845.94, + "end": 21850.32, + "probability": 0.9604 + }, + { + "start": 21850.56, + "end": 21851.29, + "probability": 0.9464 + }, + { + "start": 21851.72, + "end": 21853.24, + "probability": 0.6945 + }, + { + "start": 21853.88, + "end": 21854.86, + "probability": 0.9766 + }, + { + "start": 21855.9, + "end": 21855.92, + "probability": 0.9829 + }, + { + "start": 21856.44, + "end": 21859.76, + "probability": 0.9309 + }, + { + "start": 21860.36, + "end": 21862.6, + "probability": 0.8605 + }, + { + "start": 21863.54, + "end": 21865.82, + "probability": 0.9218 + }, + { + "start": 21867.49, + "end": 21873.18, + "probability": 0.9897 + }, + { + "start": 21873.46, + "end": 21874.58, + "probability": 0.8943 + }, + { + "start": 21875.6, + "end": 21877.54, + "probability": 0.999 + }, + { + "start": 21878.4, + "end": 21879.3, + "probability": 0.5779 + }, + { + "start": 21880.44, + "end": 21881.56, + "probability": 0.9972 + }, + { + "start": 21882.52, + "end": 21886.22, + "probability": 0.9668 + }, + { + "start": 21886.76, + "end": 21891.0, + "probability": 0.8798 + }, + { + "start": 21891.28, + "end": 21892.34, + "probability": 0.6662 + }, + { + "start": 21892.7, + "end": 21893.58, + "probability": 0.8942 + }, + { + "start": 21893.96, + "end": 21895.38, + "probability": 0.9872 + }, + { + "start": 21895.72, + "end": 21898.2, + "probability": 0.4412 + }, + { + "start": 21898.2, + "end": 21898.2, + "probability": 0.0463 + }, + { + "start": 21898.2, + "end": 21900.2, + "probability": 0.8868 + }, + { + "start": 21900.46, + "end": 21901.74, + "probability": 0.9741 + }, + { + "start": 21902.0, + "end": 21903.08, + "probability": 0.8929 + }, + { + "start": 21903.48, + "end": 21903.9, + "probability": 0.8494 + }, + { + "start": 21904.33, + "end": 21911.52, + "probability": 0.9741 + }, + { + "start": 21912.36, + "end": 21916.14, + "probability": 0.979 + }, + { + "start": 21916.94, + "end": 21920.58, + "probability": 0.9961 + }, + { + "start": 21920.78, + "end": 21921.3, + "probability": 0.8395 + }, + { + "start": 21921.62, + "end": 21922.08, + "probability": 0.561 + }, + { + "start": 21922.2, + "end": 21924.12, + "probability": 0.9534 + }, + { + "start": 21924.68, + "end": 21926.34, + "probability": 0.9751 + }, + { + "start": 21926.58, + "end": 21927.46, + "probability": 0.4473 + }, + { + "start": 21928.62, + "end": 21929.96, + "probability": 0.837 + }, + { + "start": 21933.64, + "end": 21935.72, + "probability": 0.8397 + }, + { + "start": 21937.26, + "end": 21939.28, + "probability": 0.2477 + }, + { + "start": 21940.08, + "end": 21940.28, + "probability": 0.0723 + }, + { + "start": 21941.36, + "end": 21941.68, + "probability": 0.2065 + }, + { + "start": 21942.6, + "end": 21942.6, + "probability": 0.1677 + }, + { + "start": 21943.36, + "end": 21945.08, + "probability": 0.4639 + }, + { + "start": 21948.04, + "end": 21948.06, + "probability": 0.0008 + }, + { + "start": 21953.32, + "end": 21953.82, + "probability": 0.0646 + }, + { + "start": 21953.82, + "end": 21955.04, + "probability": 0.182 + }, + { + "start": 21956.6, + "end": 21958.4, + "probability": 0.4055 + }, + { + "start": 21958.56, + "end": 21960.82, + "probability": 0.3904 + }, + { + "start": 21961.4, + "end": 21962.66, + "probability": 0.9231 + }, + { + "start": 21963.18, + "end": 21965.56, + "probability": 0.8962 + }, + { + "start": 21965.9, + "end": 21967.65, + "probability": 0.9775 + }, + { + "start": 21968.8, + "end": 21969.7, + "probability": 0.0091 + }, + { + "start": 21969.7, + "end": 21970.22, + "probability": 0.4146 + }, + { + "start": 21970.38, + "end": 21973.7, + "probability": 0.8933 + }, + { + "start": 21973.82, + "end": 21975.28, + "probability": 0.7873 + }, + { + "start": 21975.36, + "end": 21976.18, + "probability": 0.9086 + }, + { + "start": 21976.48, + "end": 21977.14, + "probability": 0.9255 + }, + { + "start": 21977.26, + "end": 21978.04, + "probability": 0.8163 + }, + { + "start": 21978.5, + "end": 21982.56, + "probability": 0.9447 + }, + { + "start": 21983.1, + "end": 21985.32, + "probability": 0.997 + }, + { + "start": 21985.88, + "end": 21986.46, + "probability": 0.6713 + }, + { + "start": 21986.7, + "end": 21987.7, + "probability": 0.873 + }, + { + "start": 21987.76, + "end": 21988.58, + "probability": 0.6422 + }, + { + "start": 21988.98, + "end": 21989.7, + "probability": 0.665 + }, + { + "start": 21989.8, + "end": 21991.4, + "probability": 0.8883 + }, + { + "start": 21992.08, + "end": 21994.92, + "probability": 0.9014 + }, + { + "start": 21995.3, + "end": 21997.76, + "probability": 0.9979 + }, + { + "start": 21998.2, + "end": 21999.16, + "probability": 0.753 + }, + { + "start": 21999.28, + "end": 22003.24, + "probability": 0.9833 + }, + { + "start": 22003.6, + "end": 22006.2, + "probability": 0.9533 + }, + { + "start": 22006.56, + "end": 22008.26, + "probability": 0.9927 + }, + { + "start": 22008.62, + "end": 22010.94, + "probability": 0.9905 + }, + { + "start": 22011.28, + "end": 22013.22, + "probability": 0.7199 + }, + { + "start": 22013.58, + "end": 22017.5, + "probability": 0.9974 + }, + { + "start": 22017.5, + "end": 22022.0, + "probability": 0.966 + }, + { + "start": 22023.1, + "end": 22023.96, + "probability": 0.6634 + }, + { + "start": 22024.4, + "end": 22025.46, + "probability": 0.8715 + }, + { + "start": 22025.8, + "end": 22027.38, + "probability": 0.8694 + }, + { + "start": 22027.56, + "end": 22032.32, + "probability": 0.9024 + }, + { + "start": 22032.4, + "end": 22035.59, + "probability": 0.9897 + }, + { + "start": 22036.55, + "end": 22037.71, + "probability": 0.2617 + }, + { + "start": 22037.88, + "end": 22038.9, + "probability": 0.85 + }, + { + "start": 22039.02, + "end": 22041.7, + "probability": 0.8396 + }, + { + "start": 22041.78, + "end": 22043.64, + "probability": 0.9857 + }, + { + "start": 22043.98, + "end": 22044.76, + "probability": 0.6668 + }, + { + "start": 22045.12, + "end": 22046.98, + "probability": 0.9926 + }, + { + "start": 22047.04, + "end": 22047.64, + "probability": 0.7872 + }, + { + "start": 22047.74, + "end": 22048.98, + "probability": 0.7481 + }, + { + "start": 22049.32, + "end": 22053.98, + "probability": 0.9961 + }, + { + "start": 22054.2, + "end": 22055.51, + "probability": 0.9995 + }, + { + "start": 22056.4, + "end": 22058.86, + "probability": 0.8818 + }, + { + "start": 22059.12, + "end": 22060.69, + "probability": 0.9961 + }, + { + "start": 22061.18, + "end": 22065.5, + "probability": 0.9965 + }, + { + "start": 22065.62, + "end": 22066.3, + "probability": 0.8428 + }, + { + "start": 22067.44, + "end": 22067.86, + "probability": 0.4734 + }, + { + "start": 22070.02, + "end": 22073.4, + "probability": 0.7087 + }, + { + "start": 22074.4, + "end": 22075.9, + "probability": 0.8253 + }, + { + "start": 22076.92, + "end": 22079.66, + "probability": 0.8284 + }, + { + "start": 22097.78, + "end": 22099.34, + "probability": 0.6088 + }, + { + "start": 22100.26, + "end": 22104.92, + "probability": 0.992 + }, + { + "start": 22105.5, + "end": 22106.56, + "probability": 0.953 + }, + { + "start": 22107.44, + "end": 22108.35, + "probability": 0.9565 + }, + { + "start": 22109.4, + "end": 22110.01, + "probability": 0.9348 + }, + { + "start": 22110.38, + "end": 22113.92, + "probability": 0.9733 + }, + { + "start": 22114.0, + "end": 22115.03, + "probability": 0.8529 + }, + { + "start": 22115.5, + "end": 22115.74, + "probability": 0.5201 + }, + { + "start": 22115.84, + "end": 22116.48, + "probability": 0.7972 + }, + { + "start": 22116.66, + "end": 22117.56, + "probability": 0.7515 + }, + { + "start": 22117.58, + "end": 22118.26, + "probability": 0.7271 + }, + { + "start": 22118.62, + "end": 22119.06, + "probability": 0.6321 + }, + { + "start": 22119.06, + "end": 22119.7, + "probability": 0.9381 + }, + { + "start": 22119.76, + "end": 22120.58, + "probability": 0.887 + }, + { + "start": 22120.68, + "end": 22121.97, + "probability": 0.9982 + }, + { + "start": 22123.6, + "end": 22125.92, + "probability": 0.824 + }, + { + "start": 22126.54, + "end": 22130.9, + "probability": 0.9401 + }, + { + "start": 22131.0, + "end": 22134.22, + "probability": 0.8608 + }, + { + "start": 22134.98, + "end": 22138.26, + "probability": 0.9963 + }, + { + "start": 22138.26, + "end": 22142.64, + "probability": 0.9488 + }, + { + "start": 22143.06, + "end": 22143.8, + "probability": 0.7742 + }, + { + "start": 22143.92, + "end": 22147.14, + "probability": 0.8343 + }, + { + "start": 22147.7, + "end": 22151.32, + "probability": 0.9402 + }, + { + "start": 22151.76, + "end": 22152.84, + "probability": 0.9599 + }, + { + "start": 22153.48, + "end": 22155.86, + "probability": 0.9035 + }, + { + "start": 22156.0, + "end": 22157.02, + "probability": 0.6416 + }, + { + "start": 22157.18, + "end": 22160.32, + "probability": 0.9515 + }, + { + "start": 22160.4, + "end": 22161.1, + "probability": 0.7489 + }, + { + "start": 22161.42, + "end": 22164.28, + "probability": 0.9686 + }, + { + "start": 22164.62, + "end": 22166.72, + "probability": 0.9865 + }, + { + "start": 22166.82, + "end": 22170.28, + "probability": 0.8747 + }, + { + "start": 22170.86, + "end": 22171.86, + "probability": 0.9935 + }, + { + "start": 22171.88, + "end": 22174.66, + "probability": 0.9866 + }, + { + "start": 22175.46, + "end": 22177.16, + "probability": 0.9615 + }, + { + "start": 22177.26, + "end": 22178.4, + "probability": 0.9166 + }, + { + "start": 22178.42, + "end": 22179.64, + "probability": 0.9509 + }, + { + "start": 22179.8, + "end": 22182.78, + "probability": 0.8854 + }, + { + "start": 22183.2, + "end": 22186.22, + "probability": 0.9744 + }, + { + "start": 22186.7, + "end": 22188.72, + "probability": 0.8426 + }, + { + "start": 22188.86, + "end": 22190.54, + "probability": 0.9614 + }, + { + "start": 22191.0, + "end": 22192.3, + "probability": 0.8909 + }, + { + "start": 22192.38, + "end": 22193.37, + "probability": 0.9316 + }, + { + "start": 22194.2, + "end": 22195.1, + "probability": 0.919 + }, + { + "start": 22195.16, + "end": 22198.84, + "probability": 0.9907 + }, + { + "start": 22198.86, + "end": 22199.5, + "probability": 0.5872 + }, + { + "start": 22200.06, + "end": 22204.62, + "probability": 0.9755 + }, + { + "start": 22205.34, + "end": 22207.6, + "probability": 0.9964 + }, + { + "start": 22209.2, + "end": 22215.8, + "probability": 0.845 + }, + { + "start": 22216.12, + "end": 22219.6, + "probability": 0.9985 + }, + { + "start": 22219.88, + "end": 22220.91, + "probability": 0.7258 + }, + { + "start": 22221.1, + "end": 22222.06, + "probability": 0.6704 + }, + { + "start": 22222.44, + "end": 22224.2, + "probability": 0.9976 + }, + { + "start": 22224.32, + "end": 22224.62, + "probability": 0.8376 + }, + { + "start": 22225.54, + "end": 22226.76, + "probability": 0.7244 + }, + { + "start": 22227.22, + "end": 22229.06, + "probability": 0.9883 + }, + { + "start": 22229.12, + "end": 22230.24, + "probability": 0.999 + }, + { + "start": 22230.3, + "end": 22232.1, + "probability": 0.9972 + }, + { + "start": 22232.68, + "end": 22234.58, + "probability": 0.8116 + }, + { + "start": 22234.96, + "end": 22235.94, + "probability": 0.9644 + }, + { + "start": 22236.06, + "end": 22237.34, + "probability": 0.8032 + }, + { + "start": 22237.42, + "end": 22238.31, + "probability": 0.989 + }, + { + "start": 22238.8, + "end": 22239.51, + "probability": 0.9792 + }, + { + "start": 22240.12, + "end": 22243.72, + "probability": 0.9958 + }, + { + "start": 22244.14, + "end": 22246.1, + "probability": 0.9751 + }, + { + "start": 22246.48, + "end": 22249.64, + "probability": 0.968 + }, + { + "start": 22249.7, + "end": 22249.94, + "probability": 0.8553 + }, + { + "start": 22251.24, + "end": 22251.5, + "probability": 0.8056 + }, + { + "start": 22253.58, + "end": 22255.04, + "probability": 0.6857 + }, + { + "start": 22256.06, + "end": 22256.2, + "probability": 0.7602 + }, + { + "start": 22257.52, + "end": 22259.78, + "probability": 0.896 + }, + { + "start": 22261.58, + "end": 22264.24, + "probability": 0.8036 + }, + { + "start": 22265.08, + "end": 22267.08, + "probability": 0.9027 + }, + { + "start": 22268.2, + "end": 22269.0, + "probability": 0.7312 + }, + { + "start": 22269.74, + "end": 22273.22, + "probability": 0.8357 + }, + { + "start": 22274.32, + "end": 22275.14, + "probability": 0.5484 + }, + { + "start": 22276.46, + "end": 22277.28, + "probability": 0.9813 + }, + { + "start": 22290.88, + "end": 22296.52, + "probability": 0.8244 + }, + { + "start": 22304.45, + "end": 22305.59, + "probability": 0.0837 + }, + { + "start": 22305.85, + "end": 22310.0, + "probability": 0.0539 + }, + { + "start": 22323.14, + "end": 22324.2, + "probability": 0.2388 + }, + { + "start": 22325.5, + "end": 22326.46, + "probability": 0.5131 + }, + { + "start": 22327.42, + "end": 22328.02, + "probability": 0.132 + }, + { + "start": 22332.48, + "end": 22332.62, + "probability": 0.7844 + }, + { + "start": 22333.66, + "end": 22335.78, + "probability": 0.5343 + }, + { + "start": 22338.62, + "end": 22340.16, + "probability": 0.7561 + }, + { + "start": 22343.3, + "end": 22349.5, + "probability": 0.9803 + }, + { + "start": 22351.94, + "end": 22356.57, + "probability": 0.9985 + }, + { + "start": 22356.72, + "end": 22362.54, + "probability": 0.9845 + }, + { + "start": 22364.58, + "end": 22369.02, + "probability": 0.9884 + }, + { + "start": 22370.68, + "end": 22374.1, + "probability": 0.9467 + }, + { + "start": 22377.42, + "end": 22382.34, + "probability": 0.8211 + }, + { + "start": 22383.06, + "end": 22388.26, + "probability": 0.9465 + }, + { + "start": 22389.86, + "end": 22390.7, + "probability": 0.9239 + }, + { + "start": 22391.84, + "end": 22392.56, + "probability": 0.645 + }, + { + "start": 22393.8, + "end": 22397.34, + "probability": 0.8832 + }, + { + "start": 22397.34, + "end": 22402.24, + "probability": 0.993 + }, + { + "start": 22403.94, + "end": 22406.18, + "probability": 0.8751 + }, + { + "start": 22407.06, + "end": 22410.78, + "probability": 0.9581 + }, + { + "start": 22410.88, + "end": 22414.58, + "probability": 0.9358 + }, + { + "start": 22415.16, + "end": 22418.92, + "probability": 0.9175 + }, + { + "start": 22420.6, + "end": 22425.34, + "probability": 0.9497 + }, + { + "start": 22426.1, + "end": 22435.14, + "probability": 0.9552 + }, + { + "start": 22435.3, + "end": 22436.24, + "probability": 0.9305 + }, + { + "start": 22437.74, + "end": 22444.3, + "probability": 0.8295 + }, + { + "start": 22444.94, + "end": 22446.22, + "probability": 0.9708 + }, + { + "start": 22446.74, + "end": 22450.28, + "probability": 0.8364 + }, + { + "start": 22450.84, + "end": 22452.32, + "probability": 0.7129 + }, + { + "start": 22453.44, + "end": 22454.24, + "probability": 0.8177 + }, + { + "start": 22455.88, + "end": 22461.88, + "probability": 0.9721 + }, + { + "start": 22461.88, + "end": 22467.82, + "probability": 0.9944 + }, + { + "start": 22469.72, + "end": 22471.12, + "probability": 0.9585 + }, + { + "start": 22471.82, + "end": 22473.1, + "probability": 0.8918 + }, + { + "start": 22474.42, + "end": 22485.46, + "probability": 0.9699 + }, + { + "start": 22487.0, + "end": 22488.96, + "probability": 0.8718 + }, + { + "start": 22489.82, + "end": 22490.94, + "probability": 0.8343 + }, + { + "start": 22491.54, + "end": 22493.24, + "probability": 0.8388 + }, + { + "start": 22493.26, + "end": 22494.84, + "probability": 0.9836 + }, + { + "start": 22495.44, + "end": 22498.88, + "probability": 0.9841 + }, + { + "start": 22499.6, + "end": 22500.18, + "probability": 0.7707 + }, + { + "start": 22500.72, + "end": 22502.1, + "probability": 0.8545 + }, + { + "start": 22503.14, + "end": 22504.32, + "probability": 0.8891 + }, + { + "start": 22505.02, + "end": 22508.74, + "probability": 0.8066 + }, + { + "start": 22509.66, + "end": 22513.48, + "probability": 0.9917 + }, + { + "start": 22513.92, + "end": 22517.8, + "probability": 0.9815 + }, + { + "start": 22518.48, + "end": 22520.82, + "probability": 0.9857 + }, + { + "start": 22521.44, + "end": 22523.88, + "probability": 0.7834 + }, + { + "start": 22524.54, + "end": 22525.38, + "probability": 0.5887 + }, + { + "start": 22526.12, + "end": 22530.78, + "probability": 0.8513 + }, + { + "start": 22531.96, + "end": 22533.32, + "probability": 0.9365 + }, + { + "start": 22533.92, + "end": 22540.28, + "probability": 0.9829 + }, + { + "start": 22541.24, + "end": 22542.96, + "probability": 0.892 + }, + { + "start": 22543.72, + "end": 22546.08, + "probability": 0.9696 + }, + { + "start": 22547.56, + "end": 22552.74, + "probability": 0.7937 + }, + { + "start": 22553.38, + "end": 22554.84, + "probability": 0.8738 + }, + { + "start": 22555.84, + "end": 22563.08, + "probability": 0.9504 + }, + { + "start": 22564.7, + "end": 22573.26, + "probability": 0.9861 + }, + { + "start": 22573.62, + "end": 22575.4, + "probability": 0.8954 + }, + { + "start": 22576.56, + "end": 22579.52, + "probability": 0.8777 + }, + { + "start": 22580.08, + "end": 22581.9, + "probability": 0.6283 + }, + { + "start": 22582.3, + "end": 22583.44, + "probability": 0.9448 + }, + { + "start": 22583.98, + "end": 22590.28, + "probability": 0.8704 + }, + { + "start": 22590.9, + "end": 22596.02, + "probability": 0.8372 + }, + { + "start": 22596.6, + "end": 22599.0, + "probability": 0.8924 + }, + { + "start": 22599.12, + "end": 22600.12, + "probability": 0.7201 + }, + { + "start": 22600.7, + "end": 22603.26, + "probability": 0.9439 + }, + { + "start": 22603.92, + "end": 22608.98, + "probability": 0.9641 + }, + { + "start": 22609.94, + "end": 22610.74, + "probability": 0.9456 + }, + { + "start": 22612.02, + "end": 22618.16, + "probability": 0.9635 + }, + { + "start": 22618.46, + "end": 22622.34, + "probability": 0.959 + }, + { + "start": 22623.12, + "end": 22625.52, + "probability": 0.9705 + }, + { + "start": 22626.38, + "end": 22629.02, + "probability": 0.8198 + }, + { + "start": 22629.56, + "end": 22630.86, + "probability": 0.952 + }, + { + "start": 22630.94, + "end": 22632.0, + "probability": 0.808 + }, + { + "start": 22632.1, + "end": 22633.0, + "probability": 0.8217 + }, + { + "start": 22633.72, + "end": 22637.12, + "probability": 0.9731 + }, + { + "start": 22637.7, + "end": 22638.8, + "probability": 0.571 + }, + { + "start": 22639.62, + "end": 22645.32, + "probability": 0.9949 + }, + { + "start": 22645.32, + "end": 22652.8, + "probability": 0.998 + }, + { + "start": 22652.8, + "end": 22658.08, + "probability": 0.9819 + }, + { + "start": 22659.22, + "end": 22664.56, + "probability": 0.8237 + }, + { + "start": 22664.56, + "end": 22668.94, + "probability": 0.988 + }, + { + "start": 22669.3, + "end": 22675.28, + "probability": 0.9927 + }, + { + "start": 22677.26, + "end": 22679.88, + "probability": 0.8937 + }, + { + "start": 22680.46, + "end": 22682.22, + "probability": 0.9327 + }, + { + "start": 22683.16, + "end": 22692.24, + "probability": 0.9744 + }, + { + "start": 22693.1, + "end": 22695.92, + "probability": 0.9229 + }, + { + "start": 22696.36, + "end": 22697.5, + "probability": 0.9048 + }, + { + "start": 22698.14, + "end": 22700.12, + "probability": 0.8773 + }, + { + "start": 22700.62, + "end": 22706.28, + "probability": 0.9949 + }, + { + "start": 22706.34, + "end": 22707.52, + "probability": 0.3477 + }, + { + "start": 22712.26, + "end": 22713.08, + "probability": 0.6407 + }, + { + "start": 22713.8, + "end": 22718.48, + "probability": 0.9681 + }, + { + "start": 22718.48, + "end": 22723.3, + "probability": 0.685 + }, + { + "start": 22723.44, + "end": 22725.34, + "probability": 0.5499 + }, + { + "start": 22725.56, + "end": 22727.16, + "probability": 0.5928 + }, + { + "start": 22727.56, + "end": 22728.7, + "probability": 0.92 + }, + { + "start": 22729.72, + "end": 22729.82, + "probability": 0.1694 + }, + { + "start": 22731.62, + "end": 22732.66, + "probability": 0.0858 + }, + { + "start": 22734.88, + "end": 22738.38, + "probability": 0.1836 + }, + { + "start": 22741.6, + "end": 22743.56, + "probability": 0.0405 + }, + { + "start": 22744.54, + "end": 22746.48, + "probability": 0.1043 + }, + { + "start": 22747.94, + "end": 22747.94, + "probability": 0.0945 + }, + { + "start": 22749.84, + "end": 22753.92, + "probability": 0.4855 + }, + { + "start": 22754.72, + "end": 22755.8, + "probability": 0.8655 + }, + { + "start": 22756.9, + "end": 22764.12, + "probability": 0.8459 + }, + { + "start": 22764.56, + "end": 22768.5, + "probability": 0.6938 + }, + { + "start": 22768.88, + "end": 22769.9, + "probability": 0.976 + }, + { + "start": 22770.72, + "end": 22774.1, + "probability": 0.9851 + }, + { + "start": 22775.64, + "end": 22779.38, + "probability": 0.6076 + }, + { + "start": 22779.48, + "end": 22780.34, + "probability": 0.812 + }, + { + "start": 22780.88, + "end": 22782.42, + "probability": 0.8101 + }, + { + "start": 22782.46, + "end": 22784.26, + "probability": 0.8405 + }, + { + "start": 22784.42, + "end": 22786.31, + "probability": 0.9796 + }, + { + "start": 22786.62, + "end": 22788.48, + "probability": 0.969 + }, + { + "start": 22789.1, + "end": 22792.98, + "probability": 0.7909 + }, + { + "start": 22793.16, + "end": 22796.04, + "probability": 0.4503 + }, + { + "start": 22796.88, + "end": 22797.79, + "probability": 0.1664 + }, + { + "start": 22798.48, + "end": 22798.82, + "probability": 0.7139 + }, + { + "start": 22801.24, + "end": 22802.48, + "probability": 0.5233 + }, + { + "start": 22813.72, + "end": 22820.62, + "probability": 0.9421 + }, + { + "start": 22821.56, + "end": 22824.55, + "probability": 0.2364 + }, + { + "start": 22826.92, + "end": 22828.98, + "probability": 0.6984 + }, + { + "start": 22829.1, + "end": 22833.64, + "probability": 0.8009 + }, + { + "start": 22834.18, + "end": 22837.66, + "probability": 0.9692 + }, + { + "start": 22841.74, + "end": 22847.68, + "probability": 0.8818 + }, + { + "start": 22853.44, + "end": 22856.61, + "probability": 0.6763 + }, + { + "start": 22858.48, + "end": 22862.32, + "probability": 0.9004 + }, + { + "start": 22862.96, + "end": 22863.04, + "probability": 0.0064 + }, + { + "start": 22863.16, + "end": 22867.58, + "probability": 0.9905 + }, + { + "start": 22867.58, + "end": 22869.96, + "probability": 0.7638 + }, + { + "start": 22870.1, + "end": 22873.67, + "probability": 0.8154 + }, + { + "start": 22874.0, + "end": 22875.92, + "probability": 0.4763 + }, + { + "start": 22876.22, + "end": 22880.34, + "probability": 0.8896 + }, + { + "start": 22880.88, + "end": 22882.06, + "probability": 0.7274 + }, + { + "start": 22882.58, + "end": 22885.46, + "probability": 0.9004 + }, + { + "start": 22885.54, + "end": 22892.14, + "probability": 0.7846 + }, + { + "start": 22892.36, + "end": 22896.34, + "probability": 0.9045 + }, + { + "start": 22897.68, + "end": 22904.68, + "probability": 0.8929 + }, + { + "start": 22905.2, + "end": 22911.36, + "probability": 0.9642 + }, + { + "start": 22911.6, + "end": 22912.22, + "probability": 0.5352 + }, + { + "start": 22912.64, + "end": 22917.9, + "probability": 0.9655 + }, + { + "start": 22918.2, + "end": 22920.04, + "probability": 0.6498 + }, + { + "start": 22920.12, + "end": 22921.36, + "probability": 0.9133 + }, + { + "start": 22921.8, + "end": 22928.8, + "probability": 0.9101 + }, + { + "start": 22928.8, + "end": 22934.58, + "probability": 0.9825 + }, + { + "start": 22934.58, + "end": 22939.74, + "probability": 0.9914 + }, + { + "start": 22940.48, + "end": 22943.48, + "probability": 0.9966 + }, + { + "start": 22943.48, + "end": 22948.16, + "probability": 0.9881 + }, + { + "start": 22948.16, + "end": 22951.22, + "probability": 0.9456 + }, + { + "start": 22951.5, + "end": 22957.7, + "probability": 0.9287 + }, + { + "start": 22957.72, + "end": 22961.46, + "probability": 0.615 + }, + { + "start": 22961.98, + "end": 22965.44, + "probability": 0.9749 + }, + { + "start": 22965.54, + "end": 22966.82, + "probability": 0.8584 + }, + { + "start": 22967.42, + "end": 22969.24, + "probability": 0.6897 + }, + { + "start": 22969.36, + "end": 22977.14, + "probability": 0.8544 + }, + { + "start": 22977.76, + "end": 22980.9, + "probability": 0.4737 + }, + { + "start": 22981.48, + "end": 22984.1, + "probability": 0.8017 + }, + { + "start": 22984.24, + "end": 22984.62, + "probability": 0.5763 + }, + { + "start": 22984.68, + "end": 22988.78, + "probability": 0.9269 + }, + { + "start": 22988.78, + "end": 22993.44, + "probability": 0.9419 + }, + { + "start": 22993.8, + "end": 22998.12, + "probability": 0.9957 + }, + { + "start": 22998.3, + "end": 23000.39, + "probability": 0.9032 + }, + { + "start": 23000.64, + "end": 23005.72, + "probability": 0.9595 + }, + { + "start": 23005.84, + "end": 23006.64, + "probability": 0.4771 + }, + { + "start": 23006.96, + "end": 23008.32, + "probability": 0.699 + }, + { + "start": 23008.64, + "end": 23011.96, + "probability": 0.7607 + }, + { + "start": 23012.88, + "end": 23018.16, + "probability": 0.8079 + }, + { + "start": 23018.24, + "end": 23021.52, + "probability": 0.5964 + }, + { + "start": 23021.78, + "end": 23022.62, + "probability": 0.5131 + }, + { + "start": 23022.68, + "end": 23024.16, + "probability": 0.0319 + }, + { + "start": 23039.28, + "end": 23040.74, + "probability": 0.4673 + }, + { + "start": 23041.5, + "end": 23042.0, + "probability": 0.5557 + }, + { + "start": 23042.88, + "end": 23044.6, + "probability": 0.6825 + }, + { + "start": 23045.6, + "end": 23046.68, + "probability": 0.7632 + }, + { + "start": 23047.3, + "end": 23049.32, + "probability": 0.9554 + }, + { + "start": 23049.92, + "end": 23052.26, + "probability": 0.2514 + }, + { + "start": 23054.3, + "end": 23060.46, + "probability": 0.0701 + }, + { + "start": 23069.68, + "end": 23073.48, + "probability": 0.6568 + }, + { + "start": 23073.92, + "end": 23077.8, + "probability": 0.7968 + }, + { + "start": 23078.48, + "end": 23078.56, + "probability": 0.0077 + }, + { + "start": 23078.68, + "end": 23080.08, + "probability": 0.5209 + }, + { + "start": 23080.5, + "end": 23090.44, + "probability": 0.9015 + }, + { + "start": 23092.44, + "end": 23092.78, + "probability": 0.4478 + }, + { + "start": 23093.02, + "end": 23096.56, + "probability": 0.6067 + }, + { + "start": 23096.72, + "end": 23097.28, + "probability": 0.7819 + }, + { + "start": 23098.8, + "end": 23101.08, + "probability": 0.9971 + }, + { + "start": 23101.28, + "end": 23102.18, + "probability": 0.6668 + }, + { + "start": 23102.28, + "end": 23105.92, + "probability": 0.9854 + }, + { + "start": 23106.06, + "end": 23107.52, + "probability": 0.9319 + }, + { + "start": 23107.68, + "end": 23111.58, + "probability": 0.957 + }, + { + "start": 23111.72, + "end": 23112.42, + "probability": 0.5687 + }, + { + "start": 23112.48, + "end": 23113.44, + "probability": 0.7399 + }, + { + "start": 23118.54, + "end": 23118.94, + "probability": 0.6742 + }, + { + "start": 23127.46, + "end": 23129.66, + "probability": 0.5699 + }, + { + "start": 23130.36, + "end": 23132.1, + "probability": 0.7972 + }, + { + "start": 23132.22, + "end": 23134.7, + "probability": 0.8179 + }, + { + "start": 23135.86, + "end": 23139.94, + "probability": 0.8707 + }, + { + "start": 23140.58, + "end": 23143.64, + "probability": 0.6436 + }, + { + "start": 23145.04, + "end": 23150.46, + "probability": 0.8707 + }, + { + "start": 23151.48, + "end": 23155.54, + "probability": 0.5308 + }, + { + "start": 23155.96, + "end": 23157.8, + "probability": 0.4116 + }, + { + "start": 23158.02, + "end": 23159.04, + "probability": 0.6724 + }, + { + "start": 23159.24, + "end": 23163.14, + "probability": 0.9565 + }, + { + "start": 23163.14, + "end": 23167.54, + "probability": 0.644 + }, + { + "start": 23168.18, + "end": 23169.42, + "probability": 0.0907 + }, + { + "start": 23169.48, + "end": 23174.24, + "probability": 0.7795 + }, + { + "start": 23175.58, + "end": 23177.62, + "probability": 0.1592 + }, + { + "start": 23177.62, + "end": 23177.72, + "probability": 0.0638 + }, + { + "start": 23177.72, + "end": 23177.72, + "probability": 0.5216 + }, + { + "start": 23177.72, + "end": 23186.7, + "probability": 0.7785 + }, + { + "start": 23188.15, + "end": 23190.5, + "probability": 0.7581 + }, + { + "start": 23191.04, + "end": 23191.7, + "probability": 0.3805 + }, + { + "start": 23192.6, + "end": 23193.1, + "probability": 0.2844 + }, + { + "start": 23197.48, + "end": 23199.66, + "probability": 0.7302 + }, + { + "start": 23199.76, + "end": 23203.84, + "probability": 0.2394 + }, + { + "start": 23204.42, + "end": 23205.44, + "probability": 0.5175 + }, + { + "start": 23205.44, + "end": 23206.94, + "probability": 0.2165 + }, + { + "start": 23207.06, + "end": 23208.68, + "probability": 0.468 + }, + { + "start": 23211.0, + "end": 23213.84, + "probability": 0.5675 + }, + { + "start": 23214.38, + "end": 23215.62, + "probability": 0.71 + }, + { + "start": 23217.06, + "end": 23218.52, + "probability": 0.5842 + }, + { + "start": 23219.16, + "end": 23220.83, + "probability": 0.669 + }, + { + "start": 23222.76, + "end": 23226.22, + "probability": 0.5562 + }, + { + "start": 23227.62, + "end": 23229.4, + "probability": 0.5067 + }, + { + "start": 23230.8, + "end": 23235.29, + "probability": 0.8594 + }, + { + "start": 23239.95, + "end": 23242.02, + "probability": 0.1824 + }, + { + "start": 23242.54, + "end": 23243.02, + "probability": 0.2373 + }, + { + "start": 23243.02, + "end": 23243.9, + "probability": 0.0807 + }, + { + "start": 23245.02, + "end": 23245.22, + "probability": 0.0492 + }, + { + "start": 23245.22, + "end": 23245.22, + "probability": 0.1274 + }, + { + "start": 23245.22, + "end": 23245.22, + "probability": 0.4006 + }, + { + "start": 23245.22, + "end": 23245.22, + "probability": 0.0062 + }, + { + "start": 23245.22, + "end": 23245.22, + "probability": 0.018 + }, + { + "start": 23245.22, + "end": 23247.02, + "probability": 0.1663 + }, + { + "start": 23247.12, + "end": 23247.44, + "probability": 0.5188 + }, + { + "start": 23247.66, + "end": 23248.78, + "probability": 0.56 + }, + { + "start": 23249.28, + "end": 23251.98, + "probability": 0.5414 + }, + { + "start": 23252.68, + "end": 23252.94, + "probability": 0.3536 + }, + { + "start": 23254.26, + "end": 23254.8, + "probability": 0.5381 + }, + { + "start": 23255.7, + "end": 23256.22, + "probability": 0.5003 + }, + { + "start": 23256.22, + "end": 23257.12, + "probability": 0.9387 + }, + { + "start": 23259.37, + "end": 23261.84, + "probability": 0.9167 + }, + { + "start": 23263.94, + "end": 23265.94, + "probability": 0.928 + }, + { + "start": 23266.06, + "end": 23267.58, + "probability": 0.9641 + }, + { + "start": 23267.58, + "end": 23271.76, + "probability": 0.4033 + }, + { + "start": 23275.9, + "end": 23276.86, + "probability": 0.0317 + }, + { + "start": 23278.4, + "end": 23281.5, + "probability": 0.2886 + }, + { + "start": 23281.68, + "end": 23281.84, + "probability": 0.1746 + }, + { + "start": 23281.84, + "end": 23283.14, + "probability": 0.2117 + }, + { + "start": 23284.48, + "end": 23286.44, + "probability": 0.8108 + }, + { + "start": 23286.64, + "end": 23288.02, + "probability": 0.2626 + }, + { + "start": 23289.12, + "end": 23290.61, + "probability": 0.8616 + }, + { + "start": 23290.82, + "end": 23291.2, + "probability": 0.212 + }, + { + "start": 23291.36, + "end": 23293.15, + "probability": 0.5834 + }, + { + "start": 23295.07, + "end": 23298.28, + "probability": 0.8999 + }, + { + "start": 23299.2, + "end": 23300.14, + "probability": 0.4924 + }, + { + "start": 23300.3, + "end": 23300.44, + "probability": 0.0466 + }, + { + "start": 23300.44, + "end": 23300.56, + "probability": 0.0462 + }, + { + "start": 23300.62, + "end": 23300.8, + "probability": 0.7875 + }, + { + "start": 23300.96, + "end": 23301.96, + "probability": 0.7973 + }, + { + "start": 23309.02, + "end": 23312.92, + "probability": 0.8105 + }, + { + "start": 23314.12, + "end": 23314.34, + "probability": 0.0416 + }, + { + "start": 23315.08, + "end": 23316.36, + "probability": 0.0931 + }, + { + "start": 23316.39, + "end": 23321.34, + "probability": 0.9658 + }, + { + "start": 23321.48, + "end": 23326.94, + "probability": 0.6663 + }, + { + "start": 23326.94, + "end": 23328.92, + "probability": 0.2599 + }, + { + "start": 23329.04, + "end": 23330.52, + "probability": 0.1153 + }, + { + "start": 23330.64, + "end": 23331.68, + "probability": 0.9253 + }, + { + "start": 23332.48, + "end": 23335.16, + "probability": 0.996 + }, + { + "start": 23336.52, + "end": 23341.56, + "probability": 0.6512 + }, + { + "start": 23343.72, + "end": 23347.72, + "probability": 0.3384 + }, + { + "start": 23347.72, + "end": 23350.16, + "probability": 0.5597 + }, + { + "start": 23350.16, + "end": 23351.9, + "probability": 0.3629 + }, + { + "start": 23352.42, + "end": 23356.6, + "probability": 0.9924 + }, + { + "start": 23357.84, + "end": 23359.88, + "probability": 0.7645 + }, + { + "start": 23360.32, + "end": 23363.02, + "probability": 0.8697 + }, + { + "start": 23363.66, + "end": 23364.34, + "probability": 0.6865 + }, + { + "start": 23365.12, + "end": 23370.24, + "probability": 0.9722 + }, + { + "start": 23370.38, + "end": 23371.98, + "probability": 0.7663 + }, + { + "start": 23372.12, + "end": 23376.64, + "probability": 0.9918 + }, + { + "start": 23376.74, + "end": 23377.3, + "probability": 0.6179 + }, + { + "start": 23377.46, + "end": 23378.14, + "probability": 0.7285 + }, + { + "start": 23378.8, + "end": 23382.08, + "probability": 0.9777 + }, + { + "start": 23383.62, + "end": 23387.64, + "probability": 0.9977 + }, + { + "start": 23388.3, + "end": 23391.66, + "probability": 0.9912 + }, + { + "start": 23392.14, + "end": 23394.86, + "probability": 0.8367 + }, + { + "start": 23395.0, + "end": 23396.62, + "probability": 0.9878 + }, + { + "start": 23397.28, + "end": 23398.23, + "probability": 0.8095 + }, + { + "start": 23398.98, + "end": 23400.26, + "probability": 0.9868 + }, + { + "start": 23400.38, + "end": 23401.38, + "probability": 0.9861 + }, + { + "start": 23401.52, + "end": 23402.36, + "probability": 0.8319 + }, + { + "start": 23403.78, + "end": 23406.22, + "probability": 0.1839 + }, + { + "start": 23407.22, + "end": 23407.8, + "probability": 0.7607 + }, + { + "start": 23407.8, + "end": 23409.28, + "probability": 0.9399 + }, + { + "start": 23409.48, + "end": 23410.2, + "probability": 0.9775 + }, + { + "start": 23411.64, + "end": 23414.26, + "probability": 0.9813 + }, + { + "start": 23415.44, + "end": 23417.38, + "probability": 0.9976 + }, + { + "start": 23420.48, + "end": 23422.72, + "probability": 0.6474 + }, + { + "start": 23423.42, + "end": 23427.3, + "probability": 0.8828 + }, + { + "start": 23428.08, + "end": 23430.39, + "probability": 0.986 + }, + { + "start": 23431.88, + "end": 23432.76, + "probability": 0.7466 + }, + { + "start": 23433.36, + "end": 23437.44, + "probability": 0.9019 + }, + { + "start": 23437.66, + "end": 23438.54, + "probability": 0.0891 + }, + { + "start": 23438.68, + "end": 23439.22, + "probability": 0.1318 + }, + { + "start": 23439.22, + "end": 23439.96, + "probability": 0.3786 + }, + { + "start": 23439.96, + "end": 23440.38, + "probability": 0.0484 + }, + { + "start": 23440.38, + "end": 23440.38, + "probability": 0.0423 + }, + { + "start": 23440.38, + "end": 23445.96, + "probability": 0.7892 + }, + { + "start": 23446.3, + "end": 23450.56, + "probability": 0.812 + }, + { + "start": 23451.3, + "end": 23455.3, + "probability": 0.6606 + }, + { + "start": 23455.4, + "end": 23456.48, + "probability": 0.7402 + }, + { + "start": 23456.6, + "end": 23458.02, + "probability": 0.9959 + }, + { + "start": 23458.46, + "end": 23459.18, + "probability": 0.9973 + }, + { + "start": 23459.24, + "end": 23461.94, + "probability": 0.7909 + }, + { + "start": 23462.54, + "end": 23466.08, + "probability": 0.9298 + }, + { + "start": 23466.34, + "end": 23467.98, + "probability": 0.4187 + }, + { + "start": 23468.2, + "end": 23469.9, + "probability": 0.9214 + }, + { + "start": 23470.54, + "end": 23470.54, + "probability": 0.0083 + }, + { + "start": 23470.54, + "end": 23472.44, + "probability": 0.9525 + }, + { + "start": 23472.66, + "end": 23473.82, + "probability": 0.8002 + }, + { + "start": 23474.62, + "end": 23475.68, + "probability": 0.9326 + }, + { + "start": 23476.02, + "end": 23478.76, + "probability": 0.9745 + }, + { + "start": 23478.82, + "end": 23479.96, + "probability": 0.9674 + }, + { + "start": 23479.96, + "end": 23481.48, + "probability": 0.6499 + }, + { + "start": 23481.55, + "end": 23482.04, + "probability": 0.2869 + }, + { + "start": 23482.04, + "end": 23484.16, + "probability": 0.9945 + }, + { + "start": 23484.65, + "end": 23487.04, + "probability": 0.9934 + }, + { + "start": 23487.12, + "end": 23488.74, + "probability": 0.9368 + }, + { + "start": 23488.74, + "end": 23491.0, + "probability": 0.9971 + }, + { + "start": 23491.14, + "end": 23492.66, + "probability": 0.9929 + }, + { + "start": 23492.98, + "end": 23494.2, + "probability": 0.9907 + }, + { + "start": 23494.88, + "end": 23495.96, + "probability": 0.5524 + }, + { + "start": 23496.52, + "end": 23496.76, + "probability": 0.0672 + }, + { + "start": 23496.76, + "end": 23499.42, + "probability": 0.9404 + }, + { + "start": 23499.42, + "end": 23500.6, + "probability": 0.8263 + }, + { + "start": 23500.82, + "end": 23501.56, + "probability": 0.1157 + }, + { + "start": 23501.78, + "end": 23503.96, + "probability": 0.6642 + }, + { + "start": 23504.06, + "end": 23504.64, + "probability": 0.1078 + }, + { + "start": 23504.76, + "end": 23506.36, + "probability": 0.7995 + }, + { + "start": 23506.44, + "end": 23509.02, + "probability": 0.455 + }, + { + "start": 23509.6, + "end": 23510.16, + "probability": 0.7341 + }, + { + "start": 23510.48, + "end": 23512.64, + "probability": 0.4131 + }, + { + "start": 23513.16, + "end": 23514.82, + "probability": 0.6175 + }, + { + "start": 23517.52, + "end": 23518.68, + "probability": 0.4915 + }, + { + "start": 23518.92, + "end": 23522.34, + "probability": 0.9968 + }, + { + "start": 23522.38, + "end": 23523.38, + "probability": 0.9478 + }, + { + "start": 23524.8, + "end": 23526.76, + "probability": 0.9966 + }, + { + "start": 23528.32, + "end": 23531.86, + "probability": 0.9709 + }, + { + "start": 23531.96, + "end": 23532.84, + "probability": 0.7488 + }, + { + "start": 23533.02, + "end": 23534.36, + "probability": 0.9202 + }, + { + "start": 23534.4, + "end": 23535.7, + "probability": 0.9262 + }, + { + "start": 23536.56, + "end": 23539.14, + "probability": 0.9825 + }, + { + "start": 23539.56, + "end": 23540.3, + "probability": 0.0042 + }, + { + "start": 23540.42, + "end": 23542.7, + "probability": 0.8767 + }, + { + "start": 23542.82, + "end": 23545.52, + "probability": 0.8643 + }, + { + "start": 23545.62, + "end": 23546.4, + "probability": 0.7216 + }, + { + "start": 23546.84, + "end": 23548.64, + "probability": 0.8127 + }, + { + "start": 23548.82, + "end": 23549.28, + "probability": 0.0623 + }, + { + "start": 23549.32, + "end": 23549.54, + "probability": 0.2957 + }, + { + "start": 23549.58, + "end": 23551.88, + "probability": 0.7157 + }, + { + "start": 23552.08, + "end": 23553.08, + "probability": 0.8409 + }, + { + "start": 23553.22, + "end": 23554.28, + "probability": 0.7115 + }, + { + "start": 23554.74, + "end": 23555.0, + "probability": 0.0258 + }, + { + "start": 23555.7, + "end": 23557.08, + "probability": 0.0367 + }, + { + "start": 23557.08, + "end": 23557.72, + "probability": 0.3193 + }, + { + "start": 23557.8, + "end": 23557.8, + "probability": 0.6006 + }, + { + "start": 23557.82, + "end": 23561.76, + "probability": 0.7036 + }, + { + "start": 23561.88, + "end": 23563.04, + "probability": 0.6735 + }, + { + "start": 23563.12, + "end": 23563.78, + "probability": 0.7758 + }, + { + "start": 23565.0, + "end": 23565.28, + "probability": 0.2371 + }, + { + "start": 23565.28, + "end": 23566.52, + "probability": 0.392 + }, + { + "start": 23566.6, + "end": 23567.44, + "probability": 0.8036 + }, + { + "start": 23567.48, + "end": 23568.38, + "probability": 0.1709 + }, + { + "start": 23568.9, + "end": 23569.76, + "probability": 0.4796 + }, + { + "start": 23570.04, + "end": 23570.53, + "probability": 0.8843 + }, + { + "start": 23570.92, + "end": 23571.93, + "probability": 0.9644 + }, + { + "start": 23572.12, + "end": 23574.38, + "probability": 0.973 + }, + { + "start": 23574.86, + "end": 23577.84, + "probability": 0.9574 + }, + { + "start": 23578.5, + "end": 23580.66, + "probability": 0.8864 + }, + { + "start": 23581.02, + "end": 23583.14, + "probability": 0.865 + }, + { + "start": 23583.34, + "end": 23584.52, + "probability": 0.4184 + }, + { + "start": 23584.6, + "end": 23586.16, + "probability": 0.6597 + }, + { + "start": 23586.16, + "end": 23589.16, + "probability": 0.0391 + }, + { + "start": 23589.16, + "end": 23589.16, + "probability": 0.0451 + }, + { + "start": 23589.16, + "end": 23589.16, + "probability": 0.2771 + }, + { + "start": 23589.16, + "end": 23589.63, + "probability": 0.3796 + }, + { + "start": 23590.5, + "end": 23591.82, + "probability": 0.3317 + }, + { + "start": 23592.0, + "end": 23592.44, + "probability": 0.8352 + }, + { + "start": 23592.62, + "end": 23593.1, + "probability": 0.5365 + }, + { + "start": 23593.34, + "end": 23594.69, + "probability": 0.6031 + }, + { + "start": 23595.34, + "end": 23595.5, + "probability": 0.2687 + }, + { + "start": 23596.04, + "end": 23597.02, + "probability": 0.8655 + }, + { + "start": 23597.52, + "end": 23599.86, + "probability": 0.9059 + }, + { + "start": 23600.04, + "end": 23601.42, + "probability": 0.7644 + }, + { + "start": 23601.96, + "end": 23602.44, + "probability": 0.4966 + }, + { + "start": 23602.44, + "end": 23602.7, + "probability": 0.5092 + }, + { + "start": 23602.82, + "end": 23604.78, + "probability": 0.949 + }, + { + "start": 23605.98, + "end": 23607.04, + "probability": 0.778 + }, + { + "start": 23608.72, + "end": 23610.26, + "probability": 0.9863 + }, + { + "start": 23610.36, + "end": 23611.24, + "probability": 0.8032 + }, + { + "start": 23611.28, + "end": 23612.78, + "probability": 0.9278 + }, + { + "start": 23613.14, + "end": 23614.96, + "probability": 0.675 + }, + { + "start": 23615.04, + "end": 23618.92, + "probability": 0.7309 + }, + { + "start": 23619.92, + "end": 23620.62, + "probability": 0.7281 + }, + { + "start": 23620.72, + "end": 23622.41, + "probability": 0.9966 + }, + { + "start": 23624.14, + "end": 23629.32, + "probability": 0.8403 + }, + { + "start": 23629.4, + "end": 23630.36, + "probability": 0.7711 + }, + { + "start": 23630.42, + "end": 23631.24, + "probability": 0.4505 + }, + { + "start": 23631.24, + "end": 23632.32, + "probability": 0.0988 + }, + { + "start": 23632.32, + "end": 23632.32, + "probability": 0.4997 + }, + { + "start": 23632.32, + "end": 23632.38, + "probability": 0.4753 + }, + { + "start": 23632.38, + "end": 23636.04, + "probability": 0.7478 + }, + { + "start": 23636.38, + "end": 23639.86, + "probability": 0.8934 + }, + { + "start": 23639.96, + "end": 23641.78, + "probability": 0.3573 + }, + { + "start": 23641.84, + "end": 23642.54, + "probability": 0.8326 + }, + { + "start": 23642.6, + "end": 23643.52, + "probability": 0.4594 + }, + { + "start": 23643.76, + "end": 23643.88, + "probability": 0.6729 + }, + { + "start": 23644.44, + "end": 23644.44, + "probability": 0.7273 + }, + { + "start": 23645.08, + "end": 23645.34, + "probability": 0.3041 + }, + { + "start": 23645.34, + "end": 23645.96, + "probability": 0.1033 + }, + { + "start": 23646.02, + "end": 23649.9, + "probability": 0.3673 + }, + { + "start": 23649.96, + "end": 23650.92, + "probability": 0.6252 + }, + { + "start": 23651.04, + "end": 23651.74, + "probability": 0.7264 + }, + { + "start": 23652.22, + "end": 23653.34, + "probability": 0.8852 + }, + { + "start": 23653.46, + "end": 23654.16, + "probability": 0.9837 + }, + { + "start": 23654.42, + "end": 23657.44, + "probability": 0.9806 + }, + { + "start": 23657.44, + "end": 23660.54, + "probability": 0.9971 + }, + { + "start": 23660.72, + "end": 23661.68, + "probability": 0.9767 + }, + { + "start": 23661.82, + "end": 23663.82, + "probability": 0.8288 + }, + { + "start": 23663.9, + "end": 23664.8, + "probability": 0.9937 + }, + { + "start": 23664.86, + "end": 23666.7, + "probability": 0.7742 + }, + { + "start": 23667.18, + "end": 23667.39, + "probability": 0.0394 + }, + { + "start": 23668.3, + "end": 23669.6, + "probability": 0.0414 + }, + { + "start": 23670.18, + "end": 23670.6, + "probability": 0.8752 + }, + { + "start": 23670.74, + "end": 23672.62, + "probability": 0.3147 + }, + { + "start": 23673.08, + "end": 23673.8, + "probability": 0.7012 + }, + { + "start": 23674.08, + "end": 23676.04, + "probability": 0.78 + }, + { + "start": 23676.74, + "end": 23678.86, + "probability": 0.9299 + }, + { + "start": 23678.96, + "end": 23679.59, + "probability": 0.9696 + }, + { + "start": 23680.44, + "end": 23681.35, + "probability": 0.9349 + }, + { + "start": 23681.98, + "end": 23687.3, + "probability": 0.9656 + }, + { + "start": 23687.3, + "end": 23692.96, + "probability": 0.9922 + }, + { + "start": 23693.0, + "end": 23695.34, + "probability": 0.9832 + }, + { + "start": 23695.56, + "end": 23696.88, + "probability": 0.9941 + }, + { + "start": 23697.62, + "end": 23699.3, + "probability": 0.9624 + }, + { + "start": 23699.36, + "end": 23700.68, + "probability": 0.9496 + }, + { + "start": 23701.3, + "end": 23703.12, + "probability": 0.9985 + }, + { + "start": 23703.54, + "end": 23707.04, + "probability": 0.9958 + }, + { + "start": 23707.3, + "end": 23709.74, + "probability": 0.9974 + }, + { + "start": 23710.2, + "end": 23711.4, + "probability": 0.965 + }, + { + "start": 23711.7, + "end": 23713.04, + "probability": 0.9937 + }, + { + "start": 23713.5, + "end": 23717.44, + "probability": 0.7548 + }, + { + "start": 23717.98, + "end": 23722.42, + "probability": 0.7284 + }, + { + "start": 23722.44, + "end": 23726.84, + "probability": 0.9844 + }, + { + "start": 23727.42, + "end": 23729.9, + "probability": 0.8886 + }, + { + "start": 23730.34, + "end": 23731.74, + "probability": 0.9927 + }, + { + "start": 23731.84, + "end": 23734.48, + "probability": 0.9273 + }, + { + "start": 23734.94, + "end": 23739.8, + "probability": 0.963 + }, + { + "start": 23740.12, + "end": 23742.88, + "probability": 0.9155 + }, + { + "start": 23743.02, + "end": 23745.64, + "probability": 0.9819 + }, + { + "start": 23745.72, + "end": 23750.46, + "probability": 0.8092 + }, + { + "start": 23750.5, + "end": 23751.66, + "probability": 0.0291 + }, + { + "start": 23752.44, + "end": 23753.56, + "probability": 0.786 + }, + { + "start": 23753.82, + "end": 23755.0, + "probability": 0.7611 + }, + { + "start": 23755.28, + "end": 23758.42, + "probability": 0.892 + }, + { + "start": 23759.0, + "end": 23759.0, + "probability": 0.1914 + }, + { + "start": 23759.0, + "end": 23759.18, + "probability": 0.0486 + }, + { + "start": 23759.32, + "end": 23762.52, + "probability": 0.9932 + }, + { + "start": 23762.52, + "end": 23765.98, + "probability": 0.9906 + }, + { + "start": 23766.12, + "end": 23766.94, + "probability": 0.8142 + }, + { + "start": 23767.4, + "end": 23768.34, + "probability": 0.648 + }, + { + "start": 23768.46, + "end": 23769.52, + "probability": 0.7304 + }, + { + "start": 23770.14, + "end": 23772.44, + "probability": 0.6566 + }, + { + "start": 23772.52, + "end": 23773.14, + "probability": 0.201 + }, + { + "start": 23773.16, + "end": 23773.82, + "probability": 0.8218 + }, + { + "start": 23774.02, + "end": 23775.16, + "probability": 0.6159 + }, + { + "start": 23775.16, + "end": 23775.88, + "probability": 0.9184 + }, + { + "start": 23776.48, + "end": 23778.84, + "probability": 0.8418 + }, + { + "start": 23779.02, + "end": 23780.14, + "probability": 0.6688 + }, + { + "start": 23780.6, + "end": 23782.02, + "probability": 0.9736 + }, + { + "start": 23782.96, + "end": 23783.4, + "probability": 0.7178 + }, + { + "start": 23783.46, + "end": 23783.78, + "probability": 0.8923 + }, + { + "start": 23783.88, + "end": 23786.5, + "probability": 0.9907 + }, + { + "start": 23786.88, + "end": 23788.06, + "probability": 0.9637 + }, + { + "start": 23788.14, + "end": 23790.46, + "probability": 0.4891 + }, + { + "start": 23790.46, + "end": 23792.04, + "probability": 0.5009 + }, + { + "start": 23792.28, + "end": 23793.6, + "probability": 0.8179 + }, + { + "start": 23793.7, + "end": 23793.86, + "probability": 0.9219 + }, + { + "start": 23793.92, + "end": 23794.62, + "probability": 0.9666 + }, + { + "start": 23795.22, + "end": 23795.92, + "probability": 0.6861 + }, + { + "start": 23796.22, + "end": 23797.36, + "probability": 0.6769 + }, + { + "start": 23797.72, + "end": 23799.3, + "probability": 0.8376 + }, + { + "start": 23799.4, + "end": 23800.96, + "probability": 0.6521 + }, + { + "start": 23801.04, + "end": 23802.02, + "probability": 0.6232 + }, + { + "start": 23802.16, + "end": 23803.04, + "probability": 0.7209 + }, + { + "start": 23803.24, + "end": 23806.1, + "probability": 0.9208 + }, + { + "start": 23806.3, + "end": 23807.78, + "probability": 0.5029 + }, + { + "start": 23808.6, + "end": 23809.6, + "probability": 0.7474 + }, + { + "start": 23809.9, + "end": 23810.34, + "probability": 0.2204 + }, + { + "start": 23810.4, + "end": 23812.74, + "probability": 0.3199 + }, + { + "start": 23813.32, + "end": 23814.28, + "probability": 0.2356 + }, + { + "start": 23814.5, + "end": 23815.26, + "probability": 0.63 + }, + { + "start": 23815.66, + "end": 23818.5, + "probability": 0.818 + }, + { + "start": 23819.16, + "end": 23821.66, + "probability": 0.9896 + }, + { + "start": 23822.04, + "end": 23824.48, + "probability": 0.8728 + }, + { + "start": 23824.9, + "end": 23826.2, + "probability": 0.7082 + }, + { + "start": 23826.54, + "end": 23827.14, + "probability": 0.7233 + }, + { + "start": 23827.7, + "end": 23829.68, + "probability": 0.8845 + }, + { + "start": 23830.04, + "end": 23831.52, + "probability": 0.9487 + }, + { + "start": 23831.56, + "end": 23831.88, + "probability": 0.9218 + }, + { + "start": 23831.98, + "end": 23832.96, + "probability": 0.9858 + }, + { + "start": 23846.54, + "end": 23850.96, + "probability": 0.6279 + }, + { + "start": 23851.74, + "end": 23853.64, + "probability": 0.4853 + }, + { + "start": 23853.96, + "end": 23854.26, + "probability": 0.5217 + }, + { + "start": 23854.28, + "end": 23854.86, + "probability": 0.269 + }, + { + "start": 23854.92, + "end": 23855.66, + "probability": 0.646 + }, + { + "start": 23856.02, + "end": 23858.98, + "probability": 0.0315 + }, + { + "start": 23859.28, + "end": 23860.3, + "probability": 0.7812 + }, + { + "start": 23860.54, + "end": 23861.22, + "probability": 0.2777 + }, + { + "start": 23872.58, + "end": 23873.42, + "probability": 0.9041 + }, + { + "start": 23877.26, + "end": 23878.36, + "probability": 0.0767 + }, + { + "start": 23878.9, + "end": 23879.98, + "probability": 0.138 + }, + { + "start": 23880.74, + "end": 23880.94, + "probability": 0.0447 + }, + { + "start": 23881.54, + "end": 23883.66, + "probability": 0.193 + }, + { + "start": 23884.28, + "end": 23885.0, + "probability": 0.1138 + }, + { + "start": 23888.9, + "end": 23891.42, + "probability": 0.389 + }, + { + "start": 23901.08, + "end": 23902.26, + "probability": 0.124 + }, + { + "start": 23902.54, + "end": 23902.54, + "probability": 0.515 + }, + { + "start": 23902.54, + "end": 23903.28, + "probability": 0.3484 + }, + { + "start": 23903.44, + "end": 23904.72, + "probability": 0.694 + }, + { + "start": 23904.78, + "end": 23905.72, + "probability": 0.8029 + }, + { + "start": 23905.8, + "end": 23907.24, + "probability": 0.9373 + }, + { + "start": 23907.8, + "end": 23913.78, + "probability": 0.9857 + }, + { + "start": 23913.98, + "end": 23914.88, + "probability": 0.9068 + }, + { + "start": 23915.02, + "end": 23917.06, + "probability": 0.9954 + }, + { + "start": 23917.6, + "end": 23920.18, + "probability": 0.9993 + }, + { + "start": 23921.5, + "end": 23926.44, + "probability": 0.9987 + }, + { + "start": 23927.0, + "end": 23929.04, + "probability": 0.999 + }, + { + "start": 23929.04, + "end": 23932.93, + "probability": 0.9121 + }, + { + "start": 23934.3, + "end": 23936.8, + "probability": 0.9327 + }, + { + "start": 23937.22, + "end": 23938.96, + "probability": 0.8689 + }, + { + "start": 23939.64, + "end": 23941.28, + "probability": 0.9961 + }, + { + "start": 23941.82, + "end": 23944.28, + "probability": 0.9924 + }, + { + "start": 23944.28, + "end": 23947.8, + "probability": 0.9931 + }, + { + "start": 23948.84, + "end": 23949.2, + "probability": 0.5354 + }, + { + "start": 23949.28, + "end": 23949.92, + "probability": 0.8038 + }, + { + "start": 23950.24, + "end": 23951.28, + "probability": 0.6433 + }, + { + "start": 23951.38, + "end": 23952.3, + "probability": 0.83 + }, + { + "start": 23952.58, + "end": 23956.56, + "probability": 0.9927 + }, + { + "start": 23956.56, + "end": 23962.74, + "probability": 0.994 + }, + { + "start": 23964.38, + "end": 23969.16, + "probability": 0.9311 + }, + { + "start": 23969.84, + "end": 23972.14, + "probability": 0.9735 + }, + { + "start": 23972.76, + "end": 23975.02, + "probability": 0.9937 + }, + { + "start": 23975.48, + "end": 23977.46, + "probability": 0.9796 + }, + { + "start": 23978.0, + "end": 23983.06, + "probability": 0.9919 + }, + { + "start": 23983.74, + "end": 23985.48, + "probability": 0.9609 + }, + { + "start": 23985.74, + "end": 23990.74, + "probability": 0.9362 + }, + { + "start": 23991.14, + "end": 23995.58, + "probability": 0.9872 + }, + { + "start": 23996.0, + "end": 23997.37, + "probability": 0.8906 + }, + { + "start": 23997.98, + "end": 23998.78, + "probability": 0.9062 + }, + { + "start": 23998.9, + "end": 24000.04, + "probability": 0.9533 + }, + { + "start": 24000.14, + "end": 24004.52, + "probability": 0.9619 + }, + { + "start": 24005.6, + "end": 24011.32, + "probability": 0.9829 + }, + { + "start": 24012.18, + "end": 24016.4, + "probability": 0.9921 + }, + { + "start": 24016.4, + "end": 24020.68, + "probability": 0.9927 + }, + { + "start": 24020.78, + "end": 24022.06, + "probability": 0.9312 + }, + { + "start": 24022.48, + "end": 24024.38, + "probability": 0.9976 + }, + { + "start": 24025.04, + "end": 24031.4, + "probability": 0.9914 + }, + { + "start": 24032.36, + "end": 24037.84, + "probability": 0.9485 + }, + { + "start": 24038.46, + "end": 24042.2, + "probability": 0.9908 + }, + { + "start": 24042.9, + "end": 24043.98, + "probability": 0.8118 + }, + { + "start": 24044.48, + "end": 24049.42, + "probability": 0.959 + }, + { + "start": 24049.74, + "end": 24051.42, + "probability": 0.8779 + }, + { + "start": 24051.88, + "end": 24053.46, + "probability": 0.8853 + }, + { + "start": 24053.56, + "end": 24054.93, + "probability": 0.9619 + }, + { + "start": 24056.26, + "end": 24057.36, + "probability": 0.6947 + }, + { + "start": 24057.42, + "end": 24059.05, + "probability": 0.9629 + }, + { + "start": 24059.92, + "end": 24061.84, + "probability": 0.9958 + }, + { + "start": 24061.96, + "end": 24063.24, + "probability": 0.9617 + }, + { + "start": 24063.66, + "end": 24065.34, + "probability": 0.9742 + }, + { + "start": 24065.98, + "end": 24071.26, + "probability": 0.96 + }, + { + "start": 24072.36, + "end": 24078.14, + "probability": 0.9856 + }, + { + "start": 24079.04, + "end": 24084.66, + "probability": 0.9276 + }, + { + "start": 24085.12, + "end": 24086.32, + "probability": 0.8297 + }, + { + "start": 24086.76, + "end": 24087.9, + "probability": 0.8746 + }, + { + "start": 24088.28, + "end": 24089.28, + "probability": 0.8059 + }, + { + "start": 24089.44, + "end": 24089.92, + "probability": 0.7595 + }, + { + "start": 24091.4, + "end": 24091.86, + "probability": 0.7528 + }, + { + "start": 24095.82, + "end": 24099.08, + "probability": 0.6106 + }, + { + "start": 24100.28, + "end": 24101.46, + "probability": 0.874 + }, + { + "start": 24101.98, + "end": 24102.66, + "probability": 0.4452 + }, + { + "start": 24103.52, + "end": 24104.2, + "probability": 0.8318 + }, + { + "start": 24105.9, + "end": 24107.93, + "probability": 0.7672 + }, + { + "start": 24110.0, + "end": 24110.38, + "probability": 0.2374 + }, + { + "start": 24111.9, + "end": 24113.16, + "probability": 0.7587 + }, + { + "start": 24113.26, + "end": 24113.8, + "probability": 0.1201 + }, + { + "start": 24114.1, + "end": 24116.58, + "probability": 0.4935 + }, + { + "start": 24117.34, + "end": 24118.0, + "probability": 0.5786 + }, + { + "start": 24118.42, + "end": 24120.04, + "probability": 0.6218 + }, + { + "start": 24121.64, + "end": 24125.68, + "probability": 0.8706 + }, + { + "start": 24126.0, + "end": 24126.28, + "probability": 0.1878 + }, + { + "start": 24126.28, + "end": 24127.27, + "probability": 0.6248 + }, + { + "start": 24129.94, + "end": 24136.44, + "probability": 0.9937 + }, + { + "start": 24137.3, + "end": 24139.58, + "probability": 0.9948 + }, + { + "start": 24139.58, + "end": 24141.78, + "probability": 0.9985 + }, + { + "start": 24142.8, + "end": 24147.22, + "probability": 0.1253 + }, + { + "start": 24147.96, + "end": 24148.22, + "probability": 0.1264 + }, + { + "start": 24148.22, + "end": 24148.22, + "probability": 0.049 + }, + { + "start": 24148.22, + "end": 24152.34, + "probability": 0.6851 + }, + { + "start": 24152.94, + "end": 24154.1, + "probability": 0.7717 + }, + { + "start": 24155.62, + "end": 24158.84, + "probability": 0.7467 + }, + { + "start": 24159.4, + "end": 24163.64, + "probability": 0.9868 + }, + { + "start": 24163.94, + "end": 24165.03, + "probability": 0.7635 + }, + { + "start": 24165.74, + "end": 24169.3, + "probability": 0.9455 + }, + { + "start": 24170.04, + "end": 24171.04, + "probability": 0.8335 + }, + { + "start": 24171.3, + "end": 24173.86, + "probability": 0.9788 + }, + { + "start": 24173.98, + "end": 24174.62, + "probability": 0.7536 + }, + { + "start": 24174.76, + "end": 24175.0, + "probability": 0.5237 + }, + { + "start": 24175.22, + "end": 24176.19, + "probability": 0.8476 + }, + { + "start": 24176.96, + "end": 24180.12, + "probability": 0.9961 + }, + { + "start": 24180.98, + "end": 24183.8, + "probability": 0.9979 + }, + { + "start": 24183.96, + "end": 24186.94, + "probability": 0.9769 + }, + { + "start": 24187.36, + "end": 24190.74, + "probability": 0.9927 + }, + { + "start": 24191.3, + "end": 24193.88, + "probability": 0.996 + }, + { + "start": 24193.88, + "end": 24197.1, + "probability": 0.995 + }, + { + "start": 24197.86, + "end": 24198.24, + "probability": 0.7515 + }, + { + "start": 24198.42, + "end": 24201.4, + "probability": 0.9929 + }, + { + "start": 24201.82, + "end": 24203.48, + "probability": 0.9963 + }, + { + "start": 24204.44, + "end": 24206.34, + "probability": 0.9947 + }, + { + "start": 24206.76, + "end": 24208.33, + "probability": 0.9596 + }, + { + "start": 24209.36, + "end": 24211.32, + "probability": 0.9978 + }, + { + "start": 24211.76, + "end": 24214.16, + "probability": 0.7295 + }, + { + "start": 24214.28, + "end": 24215.38, + "probability": 0.9084 + }, + { + "start": 24215.4, + "end": 24216.34, + "probability": 0.9937 + }, + { + "start": 24216.52, + "end": 24220.58, + "probability": 0.9714 + }, + { + "start": 24220.94, + "end": 24221.88, + "probability": 0.7041 + }, + { + "start": 24222.12, + "end": 24223.32, + "probability": 0.7658 + }, + { + "start": 24224.26, + "end": 24225.18, + "probability": 0.9583 + }, + { + "start": 24225.3, + "end": 24229.54, + "probability": 0.9762 + }, + { + "start": 24230.46, + "end": 24234.36, + "probability": 0.9615 + }, + { + "start": 24234.54, + "end": 24237.02, + "probability": 0.9956 + }, + { + "start": 24237.36, + "end": 24239.58, + "probability": 0.7695 + }, + { + "start": 24239.72, + "end": 24241.08, + "probability": 0.8564 + }, + { + "start": 24241.24, + "end": 24244.3, + "probability": 0.8939 + }, + { + "start": 24244.36, + "end": 24245.42, + "probability": 0.7309 + }, + { + "start": 24245.8, + "end": 24247.88, + "probability": 0.9798 + }, + { + "start": 24248.1, + "end": 24249.18, + "probability": 0.681 + }, + { + "start": 24249.42, + "end": 24250.8, + "probability": 0.6334 + }, + { + "start": 24251.3, + "end": 24252.22, + "probability": 0.2018 + }, + { + "start": 24252.62, + "end": 24252.68, + "probability": 0.6003 + }, + { + "start": 24252.68, + "end": 24253.96, + "probability": 0.8695 + }, + { + "start": 24254.36, + "end": 24256.24, + "probability": 0.964 + }, + { + "start": 24256.28, + "end": 24258.48, + "probability": 0.9958 + }, + { + "start": 24258.64, + "end": 24259.22, + "probability": 0.9106 + }, + { + "start": 24259.64, + "end": 24260.22, + "probability": 0.1982 + }, + { + "start": 24260.52, + "end": 24262.84, + "probability": 0.0256 + }, + { + "start": 24270.12, + "end": 24271.02, + "probability": 0.0713 + }, + { + "start": 24271.48, + "end": 24272.7, + "probability": 0.0589 + }, + { + "start": 24280.92, + "end": 24281.96, + "probability": 0.1864 + }, + { + "start": 24282.74, + "end": 24283.0, + "probability": 0.0031 + }, + { + "start": 24283.9, + "end": 24285.48, + "probability": 0.195 + }, + { + "start": 24285.68, + "end": 24285.72, + "probability": 0.216 + }, + { + "start": 24285.72, + "end": 24287.22, + "probability": 0.446 + }, + { + "start": 24288.34, + "end": 24290.6, + "probability": 0.9367 + }, + { + "start": 24290.6, + "end": 24294.42, + "probability": 0.59 + }, + { + "start": 24295.44, + "end": 24299.32, + "probability": 0.8655 + }, + { + "start": 24300.02, + "end": 24301.84, + "probability": 0.8179 + }, + { + "start": 24303.0, + "end": 24307.0, + "probability": 0.8647 + }, + { + "start": 24307.3, + "end": 24308.2, + "probability": 0.8274 + }, + { + "start": 24308.88, + "end": 24310.84, + "probability": 0.9409 + }, + { + "start": 24310.9, + "end": 24312.04, + "probability": 0.6973 + }, + { + "start": 24313.24, + "end": 24317.84, + "probability": 0.9183 + }, + { + "start": 24318.36, + "end": 24320.98, + "probability": 0.8452 + }, + { + "start": 24321.56, + "end": 24326.44, + "probability": 0.6351 + }, + { + "start": 24326.68, + "end": 24329.42, + "probability": 0.6773 + }, + { + "start": 24329.96, + "end": 24333.94, + "probability": 0.9014 + }, + { + "start": 24335.38, + "end": 24337.5, + "probability": 0.9146 + }, + { + "start": 24337.54, + "end": 24338.56, + "probability": 0.8218 + }, + { + "start": 24339.04, + "end": 24340.08, + "probability": 0.9392 + }, + { + "start": 24342.66, + "end": 24344.97, + "probability": 0.8878 + }, + { + "start": 24345.5, + "end": 24347.97, + "probability": 0.8829 + }, + { + "start": 24348.54, + "end": 24350.6, + "probability": 0.9082 + }, + { + "start": 24351.18, + "end": 24351.42, + "probability": 0.7814 + }, + { + "start": 24351.54, + "end": 24353.72, + "probability": 0.8569 + }, + { + "start": 24353.74, + "end": 24354.82, + "probability": 0.7046 + }, + { + "start": 24355.0, + "end": 24358.04, + "probability": 0.5754 + }, + { + "start": 24358.18, + "end": 24360.7, + "probability": 0.9835 + }, + { + "start": 24361.0, + "end": 24362.3, + "probability": 0.8625 + }, + { + "start": 24362.63, + "end": 24365.42, + "probability": 0.9551 + }, + { + "start": 24366.06, + "end": 24367.88, + "probability": 0.9263 + }, + { + "start": 24367.96, + "end": 24370.08, + "probability": 0.7591 + }, + { + "start": 24370.26, + "end": 24373.58, + "probability": 0.9865 + }, + { + "start": 24373.78, + "end": 24374.68, + "probability": 0.8619 + }, + { + "start": 24375.12, + "end": 24375.78, + "probability": 0.9226 + }, + { + "start": 24375.82, + "end": 24377.98, + "probability": 0.775 + }, + { + "start": 24378.28, + "end": 24379.18, + "probability": 0.8528 + }, + { + "start": 24380.82, + "end": 24382.2, + "probability": 0.6084 + }, + { + "start": 24383.3, + "end": 24387.9, + "probability": 0.9051 + }, + { + "start": 24388.96, + "end": 24389.74, + "probability": 0.701 + }, + { + "start": 24391.26, + "end": 24392.18, + "probability": 0.6285 + }, + { + "start": 24392.26, + "end": 24393.46, + "probability": 0.994 + }, + { + "start": 24394.12, + "end": 24397.86, + "probability": 0.8376 + }, + { + "start": 24397.98, + "end": 24401.04, + "probability": 0.9943 + }, + { + "start": 24401.54, + "end": 24402.6, + "probability": 0.5098 + }, + { + "start": 24403.64, + "end": 24405.32, + "probability": 0.9082 + }, + { + "start": 24406.2, + "end": 24407.53, + "probability": 0.9424 + }, + { + "start": 24408.42, + "end": 24410.22, + "probability": 0.9409 + }, + { + "start": 24410.28, + "end": 24410.78, + "probability": 0.5282 + }, + { + "start": 24410.92, + "end": 24412.15, + "probability": 0.7833 + }, + { + "start": 24412.3, + "end": 24413.12, + "probability": 0.3496 + }, + { + "start": 24414.34, + "end": 24415.16, + "probability": 0.8042 + }, + { + "start": 24415.9, + "end": 24417.25, + "probability": 0.9087 + }, + { + "start": 24418.74, + "end": 24419.31, + "probability": 0.7795 + }, + { + "start": 24419.52, + "end": 24421.34, + "probability": 0.9502 + }, + { + "start": 24421.98, + "end": 24425.2, + "probability": 0.9469 + }, + { + "start": 24426.06, + "end": 24427.12, + "probability": 0.7808 + }, + { + "start": 24427.42, + "end": 24429.76, + "probability": 0.9663 + }, + { + "start": 24430.52, + "end": 24432.96, + "probability": 0.9029 + }, + { + "start": 24433.72, + "end": 24435.12, + "probability": 0.8673 + }, + { + "start": 24436.4, + "end": 24436.88, + "probability": 0.4314 + }, + { + "start": 24436.96, + "end": 24438.58, + "probability": 0.6258 + }, + { + "start": 24438.64, + "end": 24439.78, + "probability": 0.9297 + }, + { + "start": 24441.14, + "end": 24441.97, + "probability": 0.6648 + }, + { + "start": 24442.72, + "end": 24444.42, + "probability": 0.9347 + }, + { + "start": 24445.76, + "end": 24447.0, + "probability": 0.9153 + }, + { + "start": 24447.12, + "end": 24448.32, + "probability": 0.9573 + }, + { + "start": 24448.48, + "end": 24450.0, + "probability": 0.7791 + }, + { + "start": 24450.58, + "end": 24452.0, + "probability": 0.808 + }, + { + "start": 24452.3, + "end": 24452.66, + "probability": 0.1841 + }, + { + "start": 24453.06, + "end": 24454.98, + "probability": 0.6816 + }, + { + "start": 24456.88, + "end": 24457.46, + "probability": 0.4526 + }, + { + "start": 24458.54, + "end": 24459.0, + "probability": 0.414 + }, + { + "start": 24459.06, + "end": 24459.62, + "probability": 0.8604 + }, + { + "start": 24459.96, + "end": 24460.85, + "probability": 0.7803 + }, + { + "start": 24460.98, + "end": 24464.86, + "probability": 0.7769 + }, + { + "start": 24465.76, + "end": 24465.84, + "probability": 0.2767 + }, + { + "start": 24465.84, + "end": 24465.84, + "probability": 0.0384 + }, + { + "start": 24465.84, + "end": 24465.84, + "probability": 0.6486 + }, + { + "start": 24465.84, + "end": 24466.48, + "probability": 0.3011 + }, + { + "start": 24467.26, + "end": 24468.94, + "probability": 0.9499 + }, + { + "start": 24469.98, + "end": 24470.56, + "probability": 0.6475 + }, + { + "start": 24470.96, + "end": 24471.62, + "probability": 0.7488 + }, + { + "start": 24472.04, + "end": 24472.7, + "probability": 0.8924 + }, + { + "start": 24473.4, + "end": 24474.45, + "probability": 0.3621 + }, + { + "start": 24474.9, + "end": 24475.58, + "probability": 0.5897 + }, + { + "start": 24476.48, + "end": 24477.5, + "probability": 0.6847 + }, + { + "start": 24479.18, + "end": 24480.96, + "probability": 0.9863 + }, + { + "start": 24481.16, + "end": 24481.72, + "probability": 0.6952 + }, + { + "start": 24482.12, + "end": 24483.16, + "probability": 0.9296 + }, + { + "start": 24483.9, + "end": 24484.94, + "probability": 0.7643 + }, + { + "start": 24485.64, + "end": 24486.53, + "probability": 0.8343 + }, + { + "start": 24486.98, + "end": 24488.64, + "probability": 0.911 + }, + { + "start": 24489.0, + "end": 24490.6, + "probability": 0.9766 + }, + { + "start": 24491.06, + "end": 24492.1, + "probability": 0.7937 + }, + { + "start": 24492.18, + "end": 24497.7, + "probability": 0.8864 + }, + { + "start": 24497.8, + "end": 24498.18, + "probability": 0.3959 + }, + { + "start": 24498.2, + "end": 24504.04, + "probability": 0.9827 + }, + { + "start": 24504.2, + "end": 24506.86, + "probability": 0.9672 + }, + { + "start": 24507.46, + "end": 24508.86, + "probability": 0.9121 + }, + { + "start": 24509.1, + "end": 24510.7, + "probability": 0.9224 + }, + { + "start": 24511.02, + "end": 24512.88, + "probability": 0.9563 + }, + { + "start": 24513.02, + "end": 24515.94, + "probability": 0.8572 + }, + { + "start": 24516.78, + "end": 24517.1, + "probability": 0.9875 + }, + { + "start": 24517.64, + "end": 24522.4, + "probability": 0.9877 + }, + { + "start": 24522.72, + "end": 24524.54, + "probability": 0.6982 + }, + { + "start": 24524.84, + "end": 24527.46, + "probability": 0.9499 + }, + { + "start": 24528.1, + "end": 24529.52, + "probability": 0.9258 + }, + { + "start": 24529.78, + "end": 24530.8, + "probability": 0.8823 + }, + { + "start": 24531.32, + "end": 24532.06, + "probability": 0.8079 + }, + { + "start": 24532.1, + "end": 24534.4, + "probability": 0.8753 + }, + { + "start": 24534.86, + "end": 24537.76, + "probability": 0.9749 + }, + { + "start": 24538.12, + "end": 24538.92, + "probability": 0.5007 + }, + { + "start": 24539.92, + "end": 24540.24, + "probability": 0.7853 + }, + { + "start": 24542.16, + "end": 24544.44, + "probability": 0.8151 + }, + { + "start": 24556.02, + "end": 24557.16, + "probability": 0.6385 + }, + { + "start": 24557.4, + "end": 24559.48, + "probability": 0.3167 + }, + { + "start": 24560.32, + "end": 24563.0, + "probability": 0.9724 + }, + { + "start": 24564.24, + "end": 24566.0, + "probability": 0.99 + }, + { + "start": 24566.74, + "end": 24568.72, + "probability": 0.9897 + }, + { + "start": 24568.8, + "end": 24569.74, + "probability": 0.922 + }, + { + "start": 24569.82, + "end": 24570.65, + "probability": 0.5298 + }, + { + "start": 24570.9, + "end": 24571.94, + "probability": 0.6419 + }, + { + "start": 24572.56, + "end": 24575.46, + "probability": 0.9648 + }, + { + "start": 24575.9, + "end": 24579.16, + "probability": 0.98 + }, + { + "start": 24579.64, + "end": 24584.0, + "probability": 0.9866 + }, + { + "start": 24584.28, + "end": 24584.79, + "probability": 0.6931 + }, + { + "start": 24585.7, + "end": 24586.78, + "probability": 0.7316 + }, + { + "start": 24587.62, + "end": 24590.46, + "probability": 0.8377 + }, + { + "start": 24591.02, + "end": 24593.66, + "probability": 0.9971 + }, + { + "start": 24594.24, + "end": 24594.87, + "probability": 0.9812 + }, + { + "start": 24595.28, + "end": 24596.38, + "probability": 0.999 + }, + { + "start": 24597.36, + "end": 24600.94, + "probability": 0.9811 + }, + { + "start": 24601.28, + "end": 24602.12, + "probability": 0.806 + }, + { + "start": 24602.24, + "end": 24603.9, + "probability": 0.998 + }, + { + "start": 24604.14, + "end": 24605.64, + "probability": 0.9292 + }, + { + "start": 24605.88, + "end": 24608.18, + "probability": 0.9814 + }, + { + "start": 24608.66, + "end": 24610.72, + "probability": 0.9912 + }, + { + "start": 24610.94, + "end": 24612.62, + "probability": 0.9883 + }, + { + "start": 24614.0, + "end": 24616.34, + "probability": 0.9826 + }, + { + "start": 24616.82, + "end": 24618.12, + "probability": 0.9689 + }, + { + "start": 24619.68, + "end": 24620.98, + "probability": 0.9552 + }, + { + "start": 24621.54, + "end": 24624.26, + "probability": 0.9728 + }, + { + "start": 24624.6, + "end": 24627.38, + "probability": 0.7305 + }, + { + "start": 24627.54, + "end": 24628.08, + "probability": 0.8935 + }, + { + "start": 24628.2, + "end": 24630.92, + "probability": 0.9788 + }, + { + "start": 24631.74, + "end": 24634.1, + "probability": 0.9426 + }, + { + "start": 24634.32, + "end": 24635.01, + "probability": 0.7678 + }, + { + "start": 24635.36, + "end": 24636.04, + "probability": 0.9219 + }, + { + "start": 24636.18, + "end": 24640.58, + "probability": 0.7411 + }, + { + "start": 24641.6, + "end": 24641.6, + "probability": 0.1628 + }, + { + "start": 24641.6, + "end": 24642.54, + "probability": 0.7084 + }, + { + "start": 24642.62, + "end": 24643.46, + "probability": 0.9285 + }, + { + "start": 24643.74, + "end": 24645.6, + "probability": 0.9242 + }, + { + "start": 24645.92, + "end": 24647.52, + "probability": 0.8132 + }, + { + "start": 24647.76, + "end": 24648.68, + "probability": 0.727 + }, + { + "start": 24649.76, + "end": 24652.24, + "probability": 0.9917 + }, + { + "start": 24652.26, + "end": 24653.7, + "probability": 0.7895 + }, + { + "start": 24653.74, + "end": 24656.06, + "probability": 0.952 + }, + { + "start": 24656.6, + "end": 24658.41, + "probability": 0.9938 + }, + { + "start": 24658.66, + "end": 24659.71, + "probability": 0.7979 + }, + { + "start": 24660.34, + "end": 24662.42, + "probability": 0.9619 + }, + { + "start": 24662.84, + "end": 24664.1, + "probability": 0.7804 + }, + { + "start": 24664.42, + "end": 24667.5, + "probability": 0.8407 + }, + { + "start": 24668.12, + "end": 24669.67, + "probability": 0.8951 + }, + { + "start": 24670.46, + "end": 24674.36, + "probability": 0.8912 + }, + { + "start": 24674.66, + "end": 24677.28, + "probability": 0.9155 + }, + { + "start": 24678.12, + "end": 24680.82, + "probability": 0.9727 + }, + { + "start": 24681.2, + "end": 24683.98, + "probability": 0.9683 + }, + { + "start": 24684.22, + "end": 24685.24, + "probability": 0.9858 + }, + { + "start": 24685.42, + "end": 24688.5, + "probability": 0.8347 + }, + { + "start": 24689.24, + "end": 24691.12, + "probability": 0.7194 + }, + { + "start": 24691.16, + "end": 24694.38, + "probability": 0.8569 + }, + { + "start": 24694.88, + "end": 24696.92, + "probability": 0.9487 + }, + { + "start": 24697.2, + "end": 24699.44, + "probability": 0.9785 + }, + { + "start": 24699.92, + "end": 24702.84, + "probability": 0.9956 + }, + { + "start": 24703.24, + "end": 24706.68, + "probability": 0.9715 + }, + { + "start": 24707.08, + "end": 24709.29, + "probability": 0.9662 + }, + { + "start": 24709.52, + "end": 24710.5, + "probability": 0.9725 + }, + { + "start": 24710.66, + "end": 24711.08, + "probability": 0.6457 + }, + { + "start": 24711.4, + "end": 24711.64, + "probability": 0.6337 + }, + { + "start": 24714.4, + "end": 24716.06, + "probability": 0.7595 + }, + { + "start": 24723.32, + "end": 24725.96, + "probability": 0.5018 + }, + { + "start": 24726.52, + "end": 24728.72, + "probability": 0.6812 + }, + { + "start": 24729.18, + "end": 24729.9, + "probability": 0.8336 + }, + { + "start": 24729.96, + "end": 24731.74, + "probability": 0.9774 + }, + { + "start": 24731.82, + "end": 24735.04, + "probability": 0.9434 + }, + { + "start": 24736.32, + "end": 24739.98, + "probability": 0.9867 + }, + { + "start": 24740.06, + "end": 24741.34, + "probability": 0.9224 + }, + { + "start": 24741.92, + "end": 24744.86, + "probability": 0.9582 + }, + { + "start": 24744.94, + "end": 24745.84, + "probability": 0.7791 + }, + { + "start": 24746.68, + "end": 24748.02, + "probability": 0.9403 + }, + { + "start": 24748.1, + "end": 24749.21, + "probability": 0.9272 + }, + { + "start": 24749.66, + "end": 24749.88, + "probability": 0.4891 + }, + { + "start": 24750.12, + "end": 24751.28, + "probability": 0.9255 + }, + { + "start": 24751.92, + "end": 24752.4, + "probability": 0.8633 + }, + { + "start": 24753.02, + "end": 24760.04, + "probability": 0.7146 + }, + { + "start": 24760.14, + "end": 24761.14, + "probability": 0.3898 + }, + { + "start": 24761.32, + "end": 24761.56, + "probability": 0.6677 + }, + { + "start": 24762.48, + "end": 24763.02, + "probability": 0.0388 + }, + { + "start": 24763.14, + "end": 24763.92, + "probability": 0.6274 + }, + { + "start": 24765.12, + "end": 24768.26, + "probability": 0.9666 + }, + { + "start": 24768.96, + "end": 24769.28, + "probability": 0.7889 + }, + { + "start": 24769.32, + "end": 24771.04, + "probability": 0.9706 + }, + { + "start": 24771.44, + "end": 24774.32, + "probability": 0.9137 + }, + { + "start": 24774.82, + "end": 24777.42, + "probability": 0.9803 + }, + { + "start": 24778.24, + "end": 24778.82, + "probability": 0.7635 + }, + { + "start": 24779.36, + "end": 24780.68, + "probability": 0.7394 + }, + { + "start": 24780.82, + "end": 24781.22, + "probability": 0.8458 + }, + { + "start": 24781.28, + "end": 24781.64, + "probability": 0.584 + }, + { + "start": 24781.78, + "end": 24782.74, + "probability": 0.7276 + }, + { + "start": 24783.0, + "end": 24783.78, + "probability": 0.9536 + }, + { + "start": 24784.08, + "end": 24785.34, + "probability": 0.6324 + }, + { + "start": 24785.4, + "end": 24786.12, + "probability": 0.7407 + }, + { + "start": 24786.44, + "end": 24787.68, + "probability": 0.8456 + }, + { + "start": 24788.4, + "end": 24790.12, + "probability": 0.9653 + }, + { + "start": 24790.38, + "end": 24793.02, + "probability": 0.7769 + }, + { + "start": 24793.18, + "end": 24795.28, + "probability": 0.9266 + }, + { + "start": 24796.08, + "end": 24798.24, + "probability": 0.8232 + }, + { + "start": 24798.92, + "end": 24799.44, + "probability": 0.8773 + }, + { + "start": 24799.54, + "end": 24801.02, + "probability": 0.9001 + }, + { + "start": 24801.18, + "end": 24801.7, + "probability": 0.9034 + }, + { + "start": 24802.26, + "end": 24802.78, + "probability": 0.9804 + }, + { + "start": 24803.74, + "end": 24807.84, + "probability": 0.8481 + }, + { + "start": 24808.64, + "end": 24811.3, + "probability": 0.7178 + }, + { + "start": 24812.0, + "end": 24813.38, + "probability": 0.8392 + }, + { + "start": 24813.92, + "end": 24814.94, + "probability": 0.9576 + }, + { + "start": 24815.72, + "end": 24822.0, + "probability": 0.7612 + }, + { + "start": 24822.72, + "end": 24822.98, + "probability": 0.065 + }, + { + "start": 24822.98, + "end": 24822.98, + "probability": 0.3357 + }, + { + "start": 24822.98, + "end": 24823.08, + "probability": 0.2148 + }, + { + "start": 24823.46, + "end": 24827.74, + "probability": 0.7654 + }, + { + "start": 24828.14, + "end": 24829.42, + "probability": 0.8472 + }, + { + "start": 24829.58, + "end": 24830.94, + "probability": 0.4311 + }, + { + "start": 24830.94, + "end": 24831.8, + "probability": 0.8334 + }, + { + "start": 24831.94, + "end": 24833.67, + "probability": 0.9474 + }, + { + "start": 24834.26, + "end": 24838.92, + "probability": 0.8612 + }, + { + "start": 24839.02, + "end": 24842.24, + "probability": 0.6798 + }, + { + "start": 24843.0, + "end": 24844.96, + "probability": 0.8678 + }, + { + "start": 24845.66, + "end": 24848.7, + "probability": 0.8476 + }, + { + "start": 24849.14, + "end": 24851.66, + "probability": 0.9673 + }, + { + "start": 24852.58, + "end": 24856.6, + "probability": 0.9596 + }, + { + "start": 24856.94, + "end": 24858.18, + "probability": 0.5348 + }, + { + "start": 24858.2, + "end": 24861.1, + "probability": 0.8787 + }, + { + "start": 24861.12, + "end": 24861.76, + "probability": 0.7064 + }, + { + "start": 24862.3, + "end": 24865.92, + "probability": 0.4944 + }, + { + "start": 24866.02, + "end": 24866.42, + "probability": 0.7258 + }, + { + "start": 24866.92, + "end": 24867.34, + "probability": 0.6188 + }, + { + "start": 24867.34, + "end": 24868.14, + "probability": 0.8704 + }, + { + "start": 24868.54, + "end": 24870.14, + "probability": 0.898 + }, + { + "start": 24870.96, + "end": 24874.78, + "probability": 0.4579 + }, + { + "start": 24875.36, + "end": 24875.98, + "probability": 0.4421 + }, + { + "start": 24876.0, + "end": 24876.4, + "probability": 0.6459 + }, + { + "start": 24876.88, + "end": 24877.9, + "probability": 0.8551 + }, + { + "start": 24878.14, + "end": 24879.56, + "probability": 0.9066 + }, + { + "start": 24879.96, + "end": 24884.12, + "probability": 0.5779 + }, + { + "start": 24885.28, + "end": 24886.54, + "probability": 0.8508 + }, + { + "start": 24886.74, + "end": 24888.46, + "probability": 0.9888 + }, + { + "start": 24888.9, + "end": 24891.52, + "probability": 0.9822 + }, + { + "start": 24892.67, + "end": 24899.7, + "probability": 0.8831 + }, + { + "start": 24900.12, + "end": 24901.34, + "probability": 0.9506 + }, + { + "start": 24901.76, + "end": 24902.74, + "probability": 0.8412 + }, + { + "start": 24903.18, + "end": 24907.7, + "probability": 0.9546 + }, + { + "start": 24907.7, + "end": 24913.94, + "probability": 0.9983 + }, + { + "start": 24914.4, + "end": 24916.16, + "probability": 0.9637 + }, + { + "start": 24916.64, + "end": 24918.18, + "probability": 0.953 + }, + { + "start": 24918.6, + "end": 24919.58, + "probability": 0.7432 + }, + { + "start": 24919.66, + "end": 24924.36, + "probability": 0.9641 + }, + { + "start": 24924.98, + "end": 24927.24, + "probability": 0.8074 + }, + { + "start": 24927.64, + "end": 24928.82, + "probability": 0.6792 + }, + { + "start": 24929.1, + "end": 24930.32, + "probability": 0.8731 + }, + { + "start": 24930.6, + "end": 24933.86, + "probability": 0.9365 + }, + { + "start": 24934.22, + "end": 24935.88, + "probability": 0.6719 + }, + { + "start": 24936.0, + "end": 24937.54, + "probability": 0.5101 + }, + { + "start": 24937.88, + "end": 24940.3, + "probability": 0.9631 + }, + { + "start": 24940.36, + "end": 24941.24, + "probability": 0.8619 + }, + { + "start": 24941.36, + "end": 24941.77, + "probability": 0.5313 + }, + { + "start": 24942.36, + "end": 24944.7, + "probability": 0.6688 + }, + { + "start": 24944.74, + "end": 24946.82, + "probability": 0.9807 + }, + { + "start": 24947.26, + "end": 24950.92, + "probability": 0.8877 + }, + { + "start": 24951.6, + "end": 24952.67, + "probability": 0.4515 + }, + { + "start": 24953.28, + "end": 24956.74, + "probability": 0.915 + }, + { + "start": 24957.14, + "end": 24959.8, + "probability": 0.8003 + }, + { + "start": 24961.02, + "end": 24962.66, + "probability": 0.9717 + }, + { + "start": 24962.76, + "end": 24963.64, + "probability": 0.8872 + }, + { + "start": 24964.12, + "end": 24964.3, + "probability": 0.3283 + }, + { + "start": 24964.32, + "end": 24964.68, + "probability": 0.9308 + }, + { + "start": 24964.92, + "end": 24965.78, + "probability": 0.8997 + }, + { + "start": 24966.36, + "end": 24968.88, + "probability": 0.774 + }, + { + "start": 24969.5, + "end": 24972.98, + "probability": 0.7727 + }, + { + "start": 24973.04, + "end": 24973.58, + "probability": 0.8044 + }, + { + "start": 24974.72, + "end": 24976.2, + "probability": 0.1652 + }, + { + "start": 24976.32, + "end": 24978.26, + "probability": 0.5523 + }, + { + "start": 24978.28, + "end": 24979.3, + "probability": 0.4184 + }, + { + "start": 24989.52, + "end": 24989.64, + "probability": 0.0722 + }, + { + "start": 24989.64, + "end": 24989.64, + "probability": 0.0781 + }, + { + "start": 24989.64, + "end": 24989.64, + "probability": 0.0917 + }, + { + "start": 24989.64, + "end": 24992.8, + "probability": 0.5284 + }, + { + "start": 24993.54, + "end": 24995.44, + "probability": 0.8209 + }, + { + "start": 24996.48, + "end": 24999.8, + "probability": 0.7764 + }, + { + "start": 25000.84, + "end": 25001.96, + "probability": 0.7874 + }, + { + "start": 25002.24, + "end": 25003.21, + "probability": 0.0635 + }, + { + "start": 25003.58, + "end": 25004.18, + "probability": 0.0978 + }, + { + "start": 25004.76, + "end": 25009.18, + "probability": 0.8943 + }, + { + "start": 25010.26, + "end": 25011.96, + "probability": 0.9031 + }, + { + "start": 25012.88, + "end": 25016.84, + "probability": 0.9941 + }, + { + "start": 25016.84, + "end": 25019.64, + "probability": 0.9998 + }, + { + "start": 25020.62, + "end": 25022.28, + "probability": 0.8234 + }, + { + "start": 25022.82, + "end": 25024.02, + "probability": 0.9403 + }, + { + "start": 25024.1, + "end": 25029.06, + "probability": 0.7372 + }, + { + "start": 25029.18, + "end": 25030.23, + "probability": 0.626 + }, + { + "start": 25030.82, + "end": 25031.57, + "probability": 0.9615 + }, + { + "start": 25032.18, + "end": 25033.32, + "probability": 0.8991 + }, + { + "start": 25035.14, + "end": 25038.72, + "probability": 0.9507 + }, + { + "start": 25039.74, + "end": 25041.2, + "probability": 0.8682 + }, + { + "start": 25042.26, + "end": 25045.52, + "probability": 0.9939 + }, + { + "start": 25046.16, + "end": 25047.48, + "probability": 0.8232 + }, + { + "start": 25047.58, + "end": 25048.4, + "probability": 0.862 + }, + { + "start": 25049.2, + "end": 25050.22, + "probability": 0.8238 + }, + { + "start": 25050.3, + "end": 25052.68, + "probability": 0.9871 + }, + { + "start": 25052.78, + "end": 25053.48, + "probability": 0.8418 + }, + { + "start": 25053.96, + "end": 25056.2, + "probability": 0.9895 + }, + { + "start": 25057.46, + "end": 25057.58, + "probability": 0.8171 + }, + { + "start": 25057.8, + "end": 25058.76, + "probability": 0.8707 + }, + { + "start": 25058.86, + "end": 25059.48, + "probability": 0.4876 + }, + { + "start": 25059.6, + "end": 25062.18, + "probability": 0.9941 + }, + { + "start": 25062.18, + "end": 25066.04, + "probability": 0.894 + }, + { + "start": 25066.3, + "end": 25068.92, + "probability": 0.7328 + }, + { + "start": 25069.08, + "end": 25071.6, + "probability": 0.9883 + }, + { + "start": 25071.98, + "end": 25072.8, + "probability": 0.9134 + }, + { + "start": 25072.92, + "end": 25073.58, + "probability": 0.7382 + }, + { + "start": 25073.82, + "end": 25075.0, + "probability": 0.9814 + }, + { + "start": 25075.92, + "end": 25078.92, + "probability": 0.9653 + }, + { + "start": 25079.7, + "end": 25080.52, + "probability": 0.6978 + }, + { + "start": 25081.36, + "end": 25085.12, + "probability": 0.9397 + }, + { + "start": 25085.58, + "end": 25086.14, + "probability": 0.9138 + }, + { + "start": 25087.02, + "end": 25090.7, + "probability": 0.9941 + }, + { + "start": 25090.8, + "end": 25092.36, + "probability": 0.9663 + }, + { + "start": 25092.42, + "end": 25093.39, + "probability": 0.9624 + }, + { + "start": 25093.54, + "end": 25094.72, + "probability": 0.9304 + }, + { + "start": 25095.48, + "end": 25096.3, + "probability": 0.738 + }, + { + "start": 25096.48, + "end": 25098.0, + "probability": 0.9145 + }, + { + "start": 25098.26, + "end": 25101.0, + "probability": 0.9951 + }, + { + "start": 25102.14, + "end": 25106.1, + "probability": 0.8419 + }, + { + "start": 25106.36, + "end": 25108.04, + "probability": 0.9814 + }, + { + "start": 25108.24, + "end": 25111.92, + "probability": 0.9194 + }, + { + "start": 25111.98, + "end": 25114.04, + "probability": 0.8536 + }, + { + "start": 25114.16, + "end": 25115.22, + "probability": 0.9841 + }, + { + "start": 25115.72, + "end": 25116.0, + "probability": 0.4957 + }, + { + "start": 25116.18, + "end": 25117.72, + "probability": 0.9182 + }, + { + "start": 25117.8, + "end": 25121.58, + "probability": 0.9386 + }, + { + "start": 25122.22, + "end": 25124.24, + "probability": 0.9783 + }, + { + "start": 25124.34, + "end": 25125.06, + "probability": 0.8549 + }, + { + "start": 25125.22, + "end": 25126.87, + "probability": 0.9741 + }, + { + "start": 25127.04, + "end": 25127.94, + "probability": 0.807 + }, + { + "start": 25128.02, + "end": 25132.06, + "probability": 0.8127 + }, + { + "start": 25132.06, + "end": 25135.52, + "probability": 0.9862 + }, + { + "start": 25136.34, + "end": 25137.98, + "probability": 0.8558 + }, + { + "start": 25138.6, + "end": 25142.92, + "probability": 0.9811 + }, + { + "start": 25143.78, + "end": 25147.08, + "probability": 0.9348 + }, + { + "start": 25147.52, + "end": 25148.9, + "probability": 0.6107 + }, + { + "start": 25149.58, + "end": 25153.78, + "probability": 0.8766 + }, + { + "start": 25154.32, + "end": 25158.88, + "probability": 0.9824 + }, + { + "start": 25158.94, + "end": 25160.2, + "probability": 0.8122 + }, + { + "start": 25160.28, + "end": 25162.62, + "probability": 0.978 + }, + { + "start": 25162.72, + "end": 25163.28, + "probability": 0.5988 + }, + { + "start": 25163.48, + "end": 25165.58, + "probability": 0.997 + }, + { + "start": 25166.4, + "end": 25168.42, + "probability": 0.9551 + }, + { + "start": 25168.42, + "end": 25170.78, + "probability": 0.9606 + }, + { + "start": 25171.66, + "end": 25174.12, + "probability": 0.9725 + }, + { + "start": 25174.62, + "end": 25177.76, + "probability": 0.9962 + }, + { + "start": 25177.82, + "end": 25179.76, + "probability": 0.9944 + }, + { + "start": 25180.26, + "end": 25182.5, + "probability": 0.9839 + }, + { + "start": 25182.6, + "end": 25184.58, + "probability": 0.97 + }, + { + "start": 25185.38, + "end": 25188.26, + "probability": 0.9888 + }, + { + "start": 25188.4, + "end": 25190.44, + "probability": 0.9766 + }, + { + "start": 25190.62, + "end": 25192.0, + "probability": 0.916 + }, + { + "start": 25192.04, + "end": 25196.7, + "probability": 0.9784 + }, + { + "start": 25197.9, + "end": 25198.94, + "probability": 0.9392 + }, + { + "start": 25201.38, + "end": 25202.9, + "probability": 0.0173 + }, + { + "start": 25203.9, + "end": 25206.3, + "probability": 0.198 + }, + { + "start": 25206.5, + "end": 25206.94, + "probability": 0.0109 + }, + { + "start": 25207.52, + "end": 25208.14, + "probability": 0.0946 + }, + { + "start": 25210.52, + "end": 25210.62, + "probability": 0.4076 + }, + { + "start": 25210.62, + "end": 25210.62, + "probability": 0.4999 + }, + { + "start": 25210.62, + "end": 25210.62, + "probability": 0.0099 + }, + { + "start": 25210.62, + "end": 25211.16, + "probability": 0.0254 + }, + { + "start": 25213.04, + "end": 25214.38, + "probability": 0.5236 + }, + { + "start": 25216.44, + "end": 25217.06, + "probability": 0.7129 + }, + { + "start": 25219.14, + "end": 25220.92, + "probability": 0.7389 + }, + { + "start": 25223.36, + "end": 25224.9, + "probability": 0.042 + }, + { + "start": 25225.04, + "end": 25226.22, + "probability": 0.8136 + }, + { + "start": 25226.34, + "end": 25227.04, + "probability": 0.7672 + }, + { + "start": 25229.12, + "end": 25231.08, + "probability": 0.7849 + }, + { + "start": 25243.08, + "end": 25243.36, + "probability": 0.4491 + }, + { + "start": 25245.78, + "end": 25250.24, + "probability": 0.6204 + }, + { + "start": 25251.12, + "end": 25251.44, + "probability": 0.6275 + }, + { + "start": 25251.5, + "end": 25254.56, + "probability": 0.9865 + }, + { + "start": 25254.76, + "end": 25257.84, + "probability": 0.8474 + }, + { + "start": 25259.4, + "end": 25260.08, + "probability": 0.923 + }, + { + "start": 25260.14, + "end": 25264.54, + "probability": 0.9385 + }, + { + "start": 25265.5, + "end": 25267.43, + "probability": 0.6562 + }, + { + "start": 25268.24, + "end": 25269.7, + "probability": 0.8601 + }, + { + "start": 25270.78, + "end": 25278.78, + "probability": 0.9353 + }, + { + "start": 25280.02, + "end": 25280.92, + "probability": 0.9912 + }, + { + "start": 25281.12, + "end": 25283.01, + "probability": 0.8594 + }, + { + "start": 25284.74, + "end": 25285.96, + "probability": 0.7989 + }, + { + "start": 25287.28, + "end": 25289.72, + "probability": 0.8611 + }, + { + "start": 25289.88, + "end": 25290.94, + "probability": 0.8904 + }, + { + "start": 25292.4, + "end": 25293.26, + "probability": 0.004 + }, + { + "start": 25294.48, + "end": 25294.96, + "probability": 0.6082 + }, + { + "start": 25296.22, + "end": 25299.4, + "probability": 0.61 + }, + { + "start": 25300.22, + "end": 25301.28, + "probability": 0.8471 + }, + { + "start": 25302.6, + "end": 25308.22, + "probability": 0.787 + }, + { + "start": 25308.4, + "end": 25314.26, + "probability": 0.9749 + }, + { + "start": 25314.88, + "end": 25315.64, + "probability": 0.8384 + }, + { + "start": 25317.14, + "end": 25321.24, + "probability": 0.8266 + }, + { + "start": 25322.24, + "end": 25324.76, + "probability": 0.5109 + }, + { + "start": 25325.54, + "end": 25327.3, + "probability": 0.9968 + }, + { + "start": 25327.86, + "end": 25330.84, + "probability": 0.9683 + }, + { + "start": 25330.92, + "end": 25335.19, + "probability": 0.9878 + }, + { + "start": 25335.96, + "end": 25336.94, + "probability": 0.8181 + }, + { + "start": 25337.46, + "end": 25339.5, + "probability": 0.8398 + }, + { + "start": 25339.56, + "end": 25340.56, + "probability": 0.9109 + }, + { + "start": 25342.16, + "end": 25346.88, + "probability": 0.9462 + }, + { + "start": 25347.78, + "end": 25350.12, + "probability": 0.7266 + }, + { + "start": 25351.52, + "end": 25353.8, + "probability": 0.5627 + }, + { + "start": 25354.06, + "end": 25355.6, + "probability": 0.9546 + }, + { + "start": 25356.36, + "end": 25358.76, + "probability": 0.9679 + }, + { + "start": 25359.72, + "end": 25360.54, + "probability": 0.8358 + }, + { + "start": 25361.2, + "end": 25363.32, + "probability": 0.9688 + }, + { + "start": 25363.86, + "end": 25365.16, + "probability": 0.9884 + }, + { + "start": 25365.32, + "end": 25368.1, + "probability": 0.9985 + }, + { + "start": 25369.68, + "end": 25374.14, + "probability": 0.9634 + }, + { + "start": 25375.26, + "end": 25378.24, + "probability": 0.9316 + }, + { + "start": 25379.24, + "end": 25383.28, + "probability": 0.9037 + }, + { + "start": 25385.08, + "end": 25386.0, + "probability": 0.7632 + }, + { + "start": 25387.04, + "end": 25390.7, + "probability": 0.9957 + }, + { + "start": 25391.48, + "end": 25394.92, + "probability": 0.9476 + }, + { + "start": 25395.16, + "end": 25399.78, + "probability": 0.9943 + }, + { + "start": 25399.98, + "end": 25401.5, + "probability": 0.9937 + }, + { + "start": 25402.92, + "end": 25407.18, + "probability": 0.9689 + }, + { + "start": 25408.0, + "end": 25414.12, + "probability": 0.8601 + }, + { + "start": 25414.2, + "end": 25414.2, + "probability": 0.0 + }, + { + "start": 25416.22, + "end": 25419.38, + "probability": 0.9595 + }, + { + "start": 25419.72, + "end": 25421.84, + "probability": 0.903 + }, + { + "start": 25422.34, + "end": 25425.68, + "probability": 0.9824 + }, + { + "start": 25426.24, + "end": 25428.5, + "probability": 0.8351 + }, + { + "start": 25429.32, + "end": 25431.8, + "probability": 0.9755 + }, + { + "start": 25431.94, + "end": 25437.26, + "probability": 0.9834 + }, + { + "start": 25437.84, + "end": 25439.88, + "probability": 0.9937 + }, + { + "start": 25439.98, + "end": 25444.56, + "probability": 0.9623 + }, + { + "start": 25445.1, + "end": 25448.7, + "probability": 0.9295 + }, + { + "start": 25449.46, + "end": 25452.52, + "probability": 0.9069 + }, + { + "start": 25452.98, + "end": 25454.24, + "probability": 0.9248 + }, + { + "start": 25454.46, + "end": 25456.08, + "probability": 0.8933 + }, + { + "start": 25456.16, + "end": 25456.98, + "probability": 0.6079 + }, + { + "start": 25457.52, + "end": 25458.72, + "probability": 0.697 + }, + { + "start": 25459.02, + "end": 25460.25, + "probability": 0.8022 + }, + { + "start": 25460.58, + "end": 25460.93, + "probability": 0.0209 + }, + { + "start": 25461.32, + "end": 25462.44, + "probability": 0.8593 + }, + { + "start": 25462.48, + "end": 25463.7, + "probability": 0.8797 + }, + { + "start": 25464.14, + "end": 25464.82, + "probability": 0.7663 + }, + { + "start": 25465.92, + "end": 25467.1, + "probability": 0.4925 + }, + { + "start": 25467.98, + "end": 25469.64, + "probability": 0.5084 + }, + { + "start": 25470.0, + "end": 25471.18, + "probability": 0.7066 + }, + { + "start": 25471.28, + "end": 25472.94, + "probability": 0.4363 + }, + { + "start": 25473.2, + "end": 25474.5, + "probability": 0.8523 + }, + { + "start": 25474.66, + "end": 25477.28, + "probability": 0.9333 + }, + { + "start": 25483.7, + "end": 25484.24, + "probability": 0.5002 + }, + { + "start": 25485.36, + "end": 25486.9, + "probability": 0.7557 + }, + { + "start": 25487.84, + "end": 25488.18, + "probability": 0.9507 + }, + { + "start": 25489.36, + "end": 25492.36, + "probability": 0.5398 + }, + { + "start": 25493.92, + "end": 25495.02, + "probability": 0.9165 + }, + { + "start": 25496.98, + "end": 25499.5, + "probability": 0.123 + }, + { + "start": 25501.04, + "end": 25503.64, + "probability": 0.209 + }, + { + "start": 25524.96, + "end": 25527.72, + "probability": 0.6272 + }, + { + "start": 25529.02, + "end": 25532.4, + "probability": 0.9164 + }, + { + "start": 25533.4, + "end": 25534.34, + "probability": 0.8436 + }, + { + "start": 25534.46, + "end": 25538.42, + "probability": 0.9531 + }, + { + "start": 25538.9, + "end": 25541.86, + "probability": 0.8394 + }, + { + "start": 25541.94, + "end": 25544.24, + "probability": 0.9657 + }, + { + "start": 25544.24, + "end": 25545.24, + "probability": 0.5678 + }, + { + "start": 25545.68, + "end": 25546.4, + "probability": 0.9395 + }, + { + "start": 25546.5, + "end": 25546.96, + "probability": 0.6849 + }, + { + "start": 25547.1, + "end": 25548.17, + "probability": 0.981 + }, + { + "start": 25549.5, + "end": 25552.28, + "probability": 0.988 + }, + { + "start": 25552.28, + "end": 25555.22, + "probability": 0.9869 + }, + { + "start": 25555.64, + "end": 25558.26, + "probability": 0.9947 + }, + { + "start": 25558.26, + "end": 25561.36, + "probability": 0.9407 + }, + { + "start": 25561.56, + "end": 25562.96, + "probability": 0.9759 + }, + { + "start": 25563.4, + "end": 25569.18, + "probability": 0.9487 + }, + { + "start": 25569.58, + "end": 25571.62, + "probability": 0.9255 + }, + { + "start": 25572.22, + "end": 25573.08, + "probability": 0.6498 + }, + { + "start": 25573.88, + "end": 25575.19, + "probability": 0.9648 + }, + { + "start": 25576.26, + "end": 25577.97, + "probability": 0.5387 + }, + { + "start": 25580.98, + "end": 25584.1, + "probability": 0.845 + }, + { + "start": 25584.74, + "end": 25586.67, + "probability": 0.8019 + }, + { + "start": 25587.1, + "end": 25588.7, + "probability": 0.8688 + }, + { + "start": 25590.86, + "end": 25597.46, + "probability": 0.9878 + }, + { + "start": 25598.74, + "end": 25600.32, + "probability": 0.959 + }, + { + "start": 25600.36, + "end": 25601.62, + "probability": 0.9761 + }, + { + "start": 25602.2, + "end": 25606.98, + "probability": 0.9985 + }, + { + "start": 25607.62, + "end": 25613.18, + "probability": 0.9812 + }, + { + "start": 25613.18, + "end": 25619.24, + "probability": 0.9832 + }, + { + "start": 25620.08, + "end": 25624.96, + "probability": 0.8823 + }, + { + "start": 25625.06, + "end": 25626.86, + "probability": 0.9739 + }, + { + "start": 25627.32, + "end": 25629.04, + "probability": 0.9507 + }, + { + "start": 25629.18, + "end": 25632.04, + "probability": 0.8702 + }, + { + "start": 25632.48, + "end": 25635.9, + "probability": 0.8303 + }, + { + "start": 25636.16, + "end": 25637.84, + "probability": 0.6953 + }, + { + "start": 25637.9, + "end": 25639.85, + "probability": 0.9041 + }, + { + "start": 25640.4, + "end": 25644.58, + "probability": 0.8015 + }, + { + "start": 25644.72, + "end": 25646.39, + "probability": 0.9106 + }, + { + "start": 25646.76, + "end": 25649.6, + "probability": 0.9862 + }, + { + "start": 25649.92, + "end": 25652.34, + "probability": 0.6795 + }, + { + "start": 25652.48, + "end": 25658.32, + "probability": 0.9296 + }, + { + "start": 25658.46, + "end": 25664.62, + "probability": 0.9105 + }, + { + "start": 25664.76, + "end": 25670.36, + "probability": 0.9854 + }, + { + "start": 25670.58, + "end": 25674.08, + "probability": 0.9956 + }, + { + "start": 25674.3, + "end": 25676.86, + "probability": 0.4897 + }, + { + "start": 25676.94, + "end": 25680.16, + "probability": 0.7727 + }, + { + "start": 25680.88, + "end": 25682.44, + "probability": 0.9524 + }, + { + "start": 25683.36, + "end": 25689.06, + "probability": 0.9983 + }, + { + "start": 25689.06, + "end": 25692.24, + "probability": 0.9922 + }, + { + "start": 25693.44, + "end": 25693.98, + "probability": 0.6177 + }, + { + "start": 25694.3, + "end": 25696.7, + "probability": 0.7384 + }, + { + "start": 25696.74, + "end": 25699.78, + "probability": 0.9862 + }, + { + "start": 25700.62, + "end": 25702.98, + "probability": 0.5837 + }, + { + "start": 25704.54, + "end": 25707.16, + "probability": 0.7578 + }, + { + "start": 25708.36, + "end": 25709.66, + "probability": 0.3696 + }, + { + "start": 25711.69, + "end": 25720.3, + "probability": 0.9204 + }, + { + "start": 25722.16, + "end": 25726.64, + "probability": 0.1365 + }, + { + "start": 25727.82, + "end": 25728.0, + "probability": 0.1093 + }, + { + "start": 25733.76, + "end": 25734.32, + "probability": 0.0563 + }, + { + "start": 25756.6, + "end": 25757.72, + "probability": 0.2394 + }, + { + "start": 25757.88, + "end": 25758.86, + "probability": 0.5666 + }, + { + "start": 25759.02, + "end": 25760.2, + "probability": 0.932 + }, + { + "start": 25760.34, + "end": 25762.0, + "probability": 0.9585 + }, + { + "start": 25762.48, + "end": 25763.04, + "probability": 0.8599 + }, + { + "start": 25764.72, + "end": 25766.26, + "probability": 0.9879 + }, + { + "start": 25766.34, + "end": 25767.79, + "probability": 0.8976 + }, + { + "start": 25768.86, + "end": 25769.72, + "probability": 0.8255 + }, + { + "start": 25771.14, + "end": 25771.64, + "probability": 0.83 + }, + { + "start": 25773.66, + "end": 25776.38, + "probability": 0.9962 + }, + { + "start": 25776.76, + "end": 25777.14, + "probability": 0.8062 + }, + { + "start": 25778.0, + "end": 25779.7, + "probability": 0.9233 + }, + { + "start": 25781.46, + "end": 25783.72, + "probability": 0.1807 + }, + { + "start": 25783.92, + "end": 25784.7, + "probability": 0.5546 + }, + { + "start": 25784.76, + "end": 25785.85, + "probability": 0.9756 + }, + { + "start": 25786.42, + "end": 25788.86, + "probability": 0.8882 + }, + { + "start": 25789.68, + "end": 25791.5, + "probability": 0.9589 + }, + { + "start": 25791.66, + "end": 25792.66, + "probability": 0.7641 + }, + { + "start": 25792.98, + "end": 25793.82, + "probability": 0.9409 + }, + { + "start": 25793.9, + "end": 25794.44, + "probability": 0.8673 + }, + { + "start": 25795.12, + "end": 25797.12, + "probability": 0.9235 + }, + { + "start": 25798.16, + "end": 25800.28, + "probability": 0.5435 + }, + { + "start": 25800.34, + "end": 25802.2, + "probability": 0.8789 + }, + { + "start": 25802.28, + "end": 25803.56, + "probability": 0.9136 + }, + { + "start": 25804.64, + "end": 25806.42, + "probability": 0.9863 + }, + { + "start": 25806.46, + "end": 25808.22, + "probability": 0.9779 + }, + { + "start": 25809.34, + "end": 25810.06, + "probability": 0.9336 + }, + { + "start": 25811.24, + "end": 25814.38, + "probability": 0.9294 + }, + { + "start": 25815.68, + "end": 25817.96, + "probability": 0.9766 + }, + { + "start": 25819.4, + "end": 25823.24, + "probability": 0.7747 + }, + { + "start": 25824.32, + "end": 25824.92, + "probability": 0.9644 + }, + { + "start": 25826.02, + "end": 25826.8, + "probability": 0.7804 + }, + { + "start": 25827.86, + "end": 25829.3, + "probability": 0.9719 + }, + { + "start": 25830.18, + "end": 25832.36, + "probability": 0.8499 + }, + { + "start": 25833.28, + "end": 25834.52, + "probability": 0.9954 + }, + { + "start": 25835.88, + "end": 25837.44, + "probability": 0.9225 + }, + { + "start": 25837.84, + "end": 25839.94, + "probability": 0.9754 + }, + { + "start": 25840.44, + "end": 25841.8, + "probability": 0.9578 + }, + { + "start": 25841.86, + "end": 25842.06, + "probability": 0.7311 + }, + { + "start": 25842.1, + "end": 25843.78, + "probability": 0.9897 + }, + { + "start": 25844.76, + "end": 25845.92, + "probability": 0.9283 + }, + { + "start": 25846.92, + "end": 25848.52, + "probability": 0.6364 + }, + { + "start": 25849.5, + "end": 25850.64, + "probability": 0.9954 + }, + { + "start": 25850.72, + "end": 25851.5, + "probability": 0.9946 + }, + { + "start": 25851.68, + "end": 25853.52, + "probability": 0.998 + }, + { + "start": 25853.6, + "end": 25856.32, + "probability": 0.9953 + }, + { + "start": 25856.72, + "end": 25859.82, + "probability": 0.9956 + }, + { + "start": 25861.29, + "end": 25863.96, + "probability": 0.7206 + }, + { + "start": 25864.8, + "end": 25867.86, + "probability": 0.8401 + }, + { + "start": 25869.04, + "end": 25871.46, + "probability": 0.9919 + }, + { + "start": 25872.0, + "end": 25874.75, + "probability": 0.9681 + }, + { + "start": 25876.14, + "end": 25878.83, + "probability": 0.9954 + }, + { + "start": 25880.16, + "end": 25884.84, + "probability": 0.8232 + }, + { + "start": 25886.14, + "end": 25886.82, + "probability": 0.9818 + }, + { + "start": 25887.7, + "end": 25889.18, + "probability": 0.992 + }, + { + "start": 25889.92, + "end": 25892.0, + "probability": 0.5943 + }, + { + "start": 25892.6, + "end": 25895.7, + "probability": 0.9587 + }, + { + "start": 25898.36, + "end": 25900.06, + "probability": 0.7061 + }, + { + "start": 25900.58, + "end": 25901.08, + "probability": 0.4257 + }, + { + "start": 25901.68, + "end": 25904.82, + "probability": 0.9707 + }, + { + "start": 25906.08, + "end": 25910.06, + "probability": 0.9753 + }, + { + "start": 25910.92, + "end": 25916.12, + "probability": 0.9908 + }, + { + "start": 25917.56, + "end": 25918.86, + "probability": 0.9595 + }, + { + "start": 25919.64, + "end": 25920.78, + "probability": 0.9828 + }, + { + "start": 25921.62, + "end": 25922.86, + "probability": 0.999 + }, + { + "start": 25924.16, + "end": 25926.33, + "probability": 0.9882 + }, + { + "start": 25927.32, + "end": 25929.04, + "probability": 0.9953 + }, + { + "start": 25929.96, + "end": 25931.84, + "probability": 0.9871 + }, + { + "start": 25932.4, + "end": 25934.92, + "probability": 0.9922 + }, + { + "start": 25935.92, + "end": 25940.44, + "probability": 0.9795 + }, + { + "start": 25941.02, + "end": 25944.3, + "probability": 0.9986 + }, + { + "start": 25945.44, + "end": 25947.3, + "probability": 0.9673 + }, + { + "start": 25948.26, + "end": 25952.02, + "probability": 0.9858 + }, + { + "start": 25952.54, + "end": 25953.62, + "probability": 0.6725 + }, + { + "start": 25954.24, + "end": 25957.9, + "probability": 0.9723 + }, + { + "start": 25958.7, + "end": 25959.62, + "probability": 0.9565 + }, + { + "start": 25960.44, + "end": 25960.84, + "probability": 0.5307 + }, + { + "start": 25961.02, + "end": 25962.88, + "probability": 0.8726 + }, + { + "start": 25962.94, + "end": 25967.26, + "probability": 0.8759 + }, + { + "start": 25968.26, + "end": 25973.4, + "probability": 0.9693 + }, + { + "start": 25973.54, + "end": 25974.72, + "probability": 0.9664 + }, + { + "start": 25976.3, + "end": 25977.86, + "probability": 0.9802 + }, + { + "start": 25978.78, + "end": 25979.86, + "probability": 0.9826 + }, + { + "start": 25980.44, + "end": 25987.78, + "probability": 0.7899 + }, + { + "start": 25988.54, + "end": 25991.96, + "probability": 0.9907 + }, + { + "start": 25992.72, + "end": 25993.46, + "probability": 0.9543 + }, + { + "start": 25993.58, + "end": 25995.36, + "probability": 0.926 + }, + { + "start": 25996.0, + "end": 25999.32, + "probability": 0.8767 + }, + { + "start": 25999.44, + "end": 25999.6, + "probability": 0.6022 + }, + { + "start": 25999.76, + "end": 26001.53, + "probability": 0.9766 + }, + { + "start": 26002.08, + "end": 26004.78, + "probability": 0.7773 + }, + { + "start": 26004.94, + "end": 26007.8, + "probability": 0.9949 + }, + { + "start": 26007.98, + "end": 26008.02, + "probability": 0.873 + }, + { + "start": 26011.2, + "end": 26014.12, + "probability": 0.8063 + }, + { + "start": 26014.28, + "end": 26015.44, + "probability": 0.5099 + }, + { + "start": 26015.66, + "end": 26017.46, + "probability": 0.9694 + }, + { + "start": 26017.56, + "end": 26020.08, + "probability": 0.9558 + }, + { + "start": 26020.7, + "end": 26024.96, + "probability": 0.9619 + }, + { + "start": 26025.38, + "end": 26030.06, + "probability": 0.9666 + }, + { + "start": 26030.2, + "end": 26030.46, + "probability": 0.6684 + }, + { + "start": 26030.58, + "end": 26031.52, + "probability": 0.8467 + }, + { + "start": 26032.34, + "end": 26036.66, + "probability": 0.9954 + }, + { + "start": 26036.66, + "end": 26041.5, + "probability": 0.9944 + }, + { + "start": 26042.02, + "end": 26044.68, + "probability": 0.9958 + }, + { + "start": 26044.68, + "end": 26047.44, + "probability": 0.9949 + }, + { + "start": 26048.54, + "end": 26050.13, + "probability": 0.9987 + }, + { + "start": 26050.42, + "end": 26051.86, + "probability": 0.9976 + }, + { + "start": 26053.2, + "end": 26056.02, + "probability": 0.9961 + }, + { + "start": 26056.66, + "end": 26061.52, + "probability": 0.9346 + }, + { + "start": 26062.22, + "end": 26063.17, + "probability": 0.8726 + }, + { + "start": 26064.0, + "end": 26066.12, + "probability": 0.7923 + }, + { + "start": 26066.52, + "end": 26068.54, + "probability": 0.9683 + }, + { + "start": 26069.1, + "end": 26072.28, + "probability": 0.7347 + }, + { + "start": 26073.08, + "end": 26078.32, + "probability": 0.64 + }, + { + "start": 26078.46, + "end": 26080.28, + "probability": 0.9243 + }, + { + "start": 26080.34, + "end": 26081.26, + "probability": 0.8832 + }, + { + "start": 26082.2, + "end": 26083.5, + "probability": 0.9463 + }, + { + "start": 26084.3, + "end": 26087.56, + "probability": 0.9639 + }, + { + "start": 26088.08, + "end": 26093.0, + "probability": 0.994 + }, + { + "start": 26093.0, + "end": 26097.54, + "probability": 0.9949 + }, + { + "start": 26099.5, + "end": 26103.01, + "probability": 0.9758 + }, + { + "start": 26103.26, + "end": 26105.6, + "probability": 0.6993 + }, + { + "start": 26105.74, + "end": 26107.22, + "probability": 0.9872 + }, + { + "start": 26108.1, + "end": 26109.2, + "probability": 0.9899 + }, + { + "start": 26109.36, + "end": 26110.02, + "probability": 0.8237 + }, + { + "start": 26110.08, + "end": 26111.4, + "probability": 0.9795 + }, + { + "start": 26111.84, + "end": 26113.38, + "probability": 0.6171 + }, + { + "start": 26113.42, + "end": 26114.32, + "probability": 0.6763 + }, + { + "start": 26114.4, + "end": 26115.2, + "probability": 0.9118 + }, + { + "start": 26116.4, + "end": 26124.22, + "probability": 0.9904 + }, + { + "start": 26124.3, + "end": 26128.02, + "probability": 0.7799 + }, + { + "start": 26128.08, + "end": 26129.22, + "probability": 0.9878 + }, + { + "start": 26129.22, + "end": 26132.6, + "probability": 0.993 + }, + { + "start": 26133.86, + "end": 26134.98, + "probability": 0.8942 + }, + { + "start": 26135.08, + "end": 26137.14, + "probability": 0.9621 + }, + { + "start": 26137.98, + "end": 26140.06, + "probability": 0.9909 + }, + { + "start": 26140.1, + "end": 26140.92, + "probability": 0.8555 + }, + { + "start": 26141.08, + "end": 26142.8, + "probability": 0.6208 + }, + { + "start": 26142.86, + "end": 26143.7, + "probability": 0.8403 + }, + { + "start": 26143.84, + "end": 26147.24, + "probability": 0.666 + }, + { + "start": 26147.88, + "end": 26148.62, + "probability": 0.395 + }, + { + "start": 26149.08, + "end": 26149.66, + "probability": 0.7505 + }, + { + "start": 26149.74, + "end": 26150.4, + "probability": 0.7466 + }, + { + "start": 26150.5, + "end": 26151.06, + "probability": 0.7374 + }, + { + "start": 26152.82, + "end": 26155.64, + "probability": 0.9725 + }, + { + "start": 26157.4, + "end": 26158.8, + "probability": 0.7609 + }, + { + "start": 26158.84, + "end": 26159.36, + "probability": 0.8662 + }, + { + "start": 26159.82, + "end": 26160.68, + "probability": 0.6324 + }, + { + "start": 26161.0, + "end": 26161.42, + "probability": 0.5651 + }, + { + "start": 26161.76, + "end": 26164.62, + "probability": 0.7577 + }, + { + "start": 26164.72, + "end": 26168.28, + "probability": 0.4182 + }, + { + "start": 26168.88, + "end": 26171.34, + "probability": 0.684 + }, + { + "start": 26171.4, + "end": 26173.5, + "probability": 0.8267 + }, + { + "start": 26174.26, + "end": 26175.16, + "probability": 0.7529 + }, + { + "start": 26175.24, + "end": 26176.56, + "probability": 0.8818 + }, + { + "start": 26176.68, + "end": 26177.42, + "probability": 0.4429 + }, + { + "start": 26178.74, + "end": 26179.36, + "probability": 0.4662 + }, + { + "start": 26179.58, + "end": 26181.22, + "probability": 0.8472 + }, + { + "start": 26181.72, + "end": 26183.54, + "probability": 0.96 + }, + { + "start": 26184.16, + "end": 26185.3, + "probability": 0.9634 + }, + { + "start": 26185.46, + "end": 26185.58, + "probability": 0.7557 + }, + { + "start": 26186.94, + "end": 26188.4, + "probability": 0.9631 + }, + { + "start": 26188.9, + "end": 26189.38, + "probability": 0.4719 + }, + { + "start": 26190.04, + "end": 26190.78, + "probability": 0.9912 + }, + { + "start": 26192.5, + "end": 26193.54, + "probability": 0.9651 + }, + { + "start": 26193.66, + "end": 26194.58, + "probability": 0.9744 + }, + { + "start": 26194.66, + "end": 26194.74, + "probability": 0.5874 + }, + { + "start": 26194.88, + "end": 26199.52, + "probability": 0.8811 + }, + { + "start": 26199.64, + "end": 26202.8, + "probability": 0.9718 + }, + { + "start": 26203.22, + "end": 26203.58, + "probability": 0.2476 + }, + { + "start": 26203.58, + "end": 26204.46, + "probability": 0.6679 + }, + { + "start": 26204.46, + "end": 26205.72, + "probability": 0.782 + }, + { + "start": 26206.06, + "end": 26207.79, + "probability": 0.9817 + }, + { + "start": 26208.86, + "end": 26212.2, + "probability": 0.9619 + }, + { + "start": 26212.34, + "end": 26215.8, + "probability": 0.9969 + }, + { + "start": 26215.88, + "end": 26217.44, + "probability": 0.4038 + }, + { + "start": 26218.62, + "end": 26221.14, + "probability": 0.7646 + }, + { + "start": 26221.22, + "end": 26221.72, + "probability": 0.6252 + }, + { + "start": 26222.52, + "end": 26226.2, + "probability": 0.8176 + }, + { + "start": 26227.1, + "end": 26228.6, + "probability": 0.9712 + }, + { + "start": 26229.46, + "end": 26229.72, + "probability": 0.962 + }, + { + "start": 26229.88, + "end": 26230.86, + "probability": 0.8831 + }, + { + "start": 26231.44, + "end": 26232.68, + "probability": 0.9634 + }, + { + "start": 26234.06, + "end": 26235.34, + "probability": 0.3882 + }, + { + "start": 26235.38, + "end": 26235.56, + "probability": 0.3841 + }, + { + "start": 26235.56, + "end": 26237.4, + "probability": 0.8923 + }, + { + "start": 26238.16, + "end": 26238.7, + "probability": 0.7745 + }, + { + "start": 26239.68, + "end": 26239.94, + "probability": 0.7135 + }, + { + "start": 26239.98, + "end": 26242.97, + "probability": 0.9908 + }, + { + "start": 26244.14, + "end": 26245.66, + "probability": 0.778 + }, + { + "start": 26246.64, + "end": 26249.54, + "probability": 0.6185 + }, + { + "start": 26249.84, + "end": 26251.18, + "probability": 0.9836 + }, + { + "start": 26251.28, + "end": 26251.48, + "probability": 0.3463 + }, + { + "start": 26251.68, + "end": 26251.88, + "probability": 0.4867 + }, + { + "start": 26253.22, + "end": 26255.56, + "probability": 0.9546 + }, + { + "start": 26259.12, + "end": 26259.68, + "probability": 0.3127 + }, + { + "start": 26260.0, + "end": 26260.66, + "probability": 0.5878 + }, + { + "start": 26261.26, + "end": 26263.28, + "probability": 0.7871 + }, + { + "start": 26264.62, + "end": 26265.04, + "probability": 0.9525 + }, + { + "start": 26265.06, + "end": 26265.4, + "probability": 0.8671 + }, + { + "start": 26265.46, + "end": 26267.02, + "probability": 0.98 + }, + { + "start": 26267.42, + "end": 26267.98, + "probability": 0.6773 + }, + { + "start": 26268.12, + "end": 26269.42, + "probability": 0.4502 + }, + { + "start": 26269.44, + "end": 26270.14, + "probability": 0.5036 + }, + { + "start": 26270.26, + "end": 26272.3, + "probability": 0.9528 + }, + { + "start": 26272.38, + "end": 26273.2, + "probability": 0.8273 + }, + { + "start": 26273.46, + "end": 26274.52, + "probability": 0.6094 + }, + { + "start": 26274.74, + "end": 26275.82, + "probability": 0.5938 + }, + { + "start": 26275.92, + "end": 26276.76, + "probability": 0.6968 + }, + { + "start": 26276.9, + "end": 26281.7, + "probability": 0.9421 + }, + { + "start": 26282.18, + "end": 26283.76, + "probability": 0.9731 + }, + { + "start": 26284.62, + "end": 26288.26, + "probability": 0.9944 + }, + { + "start": 26288.54, + "end": 26291.08, + "probability": 0.9892 + }, + { + "start": 26291.08, + "end": 26293.16, + "probability": 0.9834 + }, + { + "start": 26293.26, + "end": 26297.34, + "probability": 0.9973 + }, + { + "start": 26297.46, + "end": 26297.88, + "probability": 0.3624 + }, + { + "start": 26297.94, + "end": 26300.28, + "probability": 0.9332 + }, + { + "start": 26300.4, + "end": 26300.9, + "probability": 0.6345 + }, + { + "start": 26301.52, + "end": 26304.26, + "probability": 0.8821 + }, + { + "start": 26305.1, + "end": 26305.66, + "probability": 0.8804 + }, + { + "start": 26306.26, + "end": 26308.96, + "probability": 0.8037 + }, + { + "start": 26309.5, + "end": 26312.24, + "probability": 0.7934 + }, + { + "start": 26312.28, + "end": 26313.02, + "probability": 0.624 + }, + { + "start": 26313.06, + "end": 26314.36, + "probability": 0.6248 + }, + { + "start": 26314.36, + "end": 26314.64, + "probability": 0.7687 + }, + { + "start": 26314.72, + "end": 26315.54, + "probability": 0.8368 + }, + { + "start": 26315.58, + "end": 26316.78, + "probability": 0.7035 + }, + { + "start": 26319.12, + "end": 26323.26, + "probability": 0.5662 + }, + { + "start": 26323.76, + "end": 26324.92, + "probability": 0.6591 + }, + { + "start": 26325.12, + "end": 26325.86, + "probability": 0.7419 + }, + { + "start": 26325.96, + "end": 26327.1, + "probability": 0.4875 + }, + { + "start": 26327.14, + "end": 26328.54, + "probability": 0.5061 + }, + { + "start": 26329.0, + "end": 26331.24, + "probability": 0.9136 + }, + { + "start": 26331.26, + "end": 26332.34, + "probability": 0.5416 + }, + { + "start": 26332.48, + "end": 26334.44, + "probability": 0.8839 + }, + { + "start": 26334.46, + "end": 26335.04, + "probability": 0.8999 + }, + { + "start": 26335.06, + "end": 26335.54, + "probability": 0.4566 + }, + { + "start": 26335.9, + "end": 26337.0, + "probability": 0.9036 + }, + { + "start": 26337.28, + "end": 26340.56, + "probability": 0.9761 + }, + { + "start": 26341.56, + "end": 26342.5, + "probability": 0.3168 + }, + { + "start": 26343.66, + "end": 26345.7, + "probability": 0.9951 + }, + { + "start": 26345.76, + "end": 26347.74, + "probability": 0.7993 + }, + { + "start": 26348.1, + "end": 26349.64, + "probability": 0.507 + }, + { + "start": 26349.7, + "end": 26351.02, + "probability": 0.6261 + }, + { + "start": 26351.12, + "end": 26351.98, + "probability": 0.9109 + }, + { + "start": 26352.02, + "end": 26355.04, + "probability": 0.9162 + }, + { + "start": 26355.5, + "end": 26355.96, + "probability": 0.566 + }, + { + "start": 26356.9, + "end": 26359.38, + "probability": 0.9009 + }, + { + "start": 26359.42, + "end": 26359.94, + "probability": 0.5319 + }, + { + "start": 26360.2, + "end": 26361.08, + "probability": 0.3049 + }, + { + "start": 26361.3, + "end": 26363.62, + "probability": 0.4697 + }, + { + "start": 26363.78, + "end": 26364.52, + "probability": 0.1723 + }, + { + "start": 26365.6, + "end": 26367.5, + "probability": 0.9361 + }, + { + "start": 26368.24, + "end": 26374.72, + "probability": 0.8855 + }, + { + "start": 26374.84, + "end": 26376.86, + "probability": 0.2705 + }, + { + "start": 26377.56, + "end": 26380.8, + "probability": 0.4718 + }, + { + "start": 26380.9, + "end": 26381.68, + "probability": 0.766 + }, + { + "start": 26382.2, + "end": 26382.46, + "probability": 0.6603 + }, + { + "start": 26383.32, + "end": 26385.54, + "probability": 0.7792 + }, + { + "start": 26385.86, + "end": 26387.26, + "probability": 0.9364 + }, + { + "start": 26387.44, + "end": 26389.02, + "probability": 0.9902 + }, + { + "start": 26391.14, + "end": 26394.18, + "probability": 0.7473 + }, + { + "start": 26394.42, + "end": 26394.42, + "probability": 0.5613 + }, + { + "start": 26394.42, + "end": 26396.86, + "probability": 0.9805 + }, + { + "start": 26396.88, + "end": 26397.62, + "probability": 0.9485 + }, + { + "start": 26398.3, + "end": 26398.87, + "probability": 0.2873 + }, + { + "start": 26404.86, + "end": 26405.48, + "probability": 0.0243 + }, + { + "start": 26406.04, + "end": 26410.86, + "probability": 0.0634 + }, + { + "start": 26413.98, + "end": 26416.86, + "probability": 0.4943 + }, + { + "start": 26417.22, + "end": 26418.16, + "probability": 0.798 + }, + { + "start": 26418.46, + "end": 26419.94, + "probability": 0.4974 + }, + { + "start": 26421.36, + "end": 26425.9, + "probability": 0.6506 + }, + { + "start": 26426.3, + "end": 26428.06, + "probability": 0.9747 + }, + { + "start": 26428.6, + "end": 26429.56, + "probability": 0.7886 + }, + { + "start": 26430.3, + "end": 26434.18, + "probability": 0.9575 + }, + { + "start": 26434.84, + "end": 26436.94, + "probability": 0.8903 + }, + { + "start": 26437.52, + "end": 26438.56, + "probability": 0.7504 + }, + { + "start": 26438.66, + "end": 26440.0, + "probability": 0.5957 + }, + { + "start": 26440.4, + "end": 26441.6, + "probability": 0.9233 + }, + { + "start": 26441.64, + "end": 26445.4, + "probability": 0.9734 + }, + { + "start": 26446.02, + "end": 26447.36, + "probability": 0.9829 + }, + { + "start": 26447.78, + "end": 26449.98, + "probability": 0.9371 + }, + { + "start": 26450.7, + "end": 26451.4, + "probability": 0.4953 + }, + { + "start": 26452.06, + "end": 26454.45, + "probability": 0.9966 + }, + { + "start": 26455.14, + "end": 26456.86, + "probability": 0.9491 + }, + { + "start": 26457.44, + "end": 26458.62, + "probability": 0.777 + }, + { + "start": 26459.16, + "end": 26461.84, + "probability": 0.7613 + }, + { + "start": 26462.58, + "end": 26465.36, + "probability": 0.9354 + }, + { + "start": 26465.56, + "end": 26468.06, + "probability": 0.9581 + }, + { + "start": 26468.58, + "end": 26469.48, + "probability": 0.8144 + }, + { + "start": 26469.98, + "end": 26470.82, + "probability": 0.9192 + }, + { + "start": 26471.28, + "end": 26473.16, + "probability": 0.9972 + }, + { + "start": 26473.44, + "end": 26478.02, + "probability": 0.998 + }, + { + "start": 26478.28, + "end": 26479.36, + "probability": 0.6138 + }, + { + "start": 26479.4, + "end": 26481.94, + "probability": 0.9174 + }, + { + "start": 26482.3, + "end": 26486.42, + "probability": 0.7768 + }, + { + "start": 26487.66, + "end": 26489.88, + "probability": 0.9658 + }, + { + "start": 26490.54, + "end": 26491.88, + "probability": 0.7855 + }, + { + "start": 26492.68, + "end": 26493.32, + "probability": 0.543 + }, + { + "start": 26493.34, + "end": 26501.36, + "probability": 0.9591 + }, + { + "start": 26502.26, + "end": 26506.62, + "probability": 0.9575 + }, + { + "start": 26506.62, + "end": 26510.84, + "probability": 0.7208 + }, + { + "start": 26511.12, + "end": 26511.12, + "probability": 0.0155 + }, + { + "start": 26511.12, + "end": 26511.94, + "probability": 0.2937 + }, + { + "start": 26511.94, + "end": 26512.58, + "probability": 0.4394 + }, + { + "start": 26512.62, + "end": 26513.34, + "probability": 0.6462 + }, + { + "start": 26513.36, + "end": 26514.14, + "probability": 0.8351 + }, + { + "start": 26518.08, + "end": 26522.02, + "probability": 0.1927 + }, + { + "start": 26522.88, + "end": 26525.38, + "probability": 0.0237 + }, + { + "start": 26526.98, + "end": 26531.64, + "probability": 0.1997 + }, + { + "start": 26531.78, + "end": 26532.44, + "probability": 0.3086 + }, + { + "start": 26532.44, + "end": 26532.44, + "probability": 0.0693 + }, + { + "start": 26532.44, + "end": 26533.42, + "probability": 0.3702 + }, + { + "start": 26534.24, + "end": 26536.26, + "probability": 0.509 + }, + { + "start": 26536.52, + "end": 26537.98, + "probability": 0.8405 + }, + { + "start": 26538.12, + "end": 26542.18, + "probability": 0.9927 + }, + { + "start": 26542.18, + "end": 26545.78, + "probability": 0.6626 + }, + { + "start": 26545.78, + "end": 26547.52, + "probability": 0.5478 + }, + { + "start": 26547.78, + "end": 26549.62, + "probability": 0.6449 + }, + { + "start": 26550.36, + "end": 26552.96, + "probability": 0.9585 + }, + { + "start": 26554.5, + "end": 26555.34, + "probability": 0.2434 + }, + { + "start": 26556.08, + "end": 26557.14, + "probability": 0.8273 + }, + { + "start": 26561.15, + "end": 26570.56, + "probability": 0.546 + }, + { + "start": 26571.08, + "end": 26577.14, + "probability": 0.6767 + }, + { + "start": 26577.18, + "end": 26577.8, + "probability": 0.5738 + }, + { + "start": 26578.26, + "end": 26579.06, + "probability": 0.8246 + }, + { + "start": 26579.1, + "end": 26579.56, + "probability": 0.9542 + }, + { + "start": 26581.52, + "end": 26586.06, + "probability": 0.0806 + }, + { + "start": 26590.86, + "end": 26596.28, + "probability": 0.3061 + }, + { + "start": 26596.8, + "end": 26598.04, + "probability": 0.0739 + }, + { + "start": 26598.7, + "end": 26598.74, + "probability": 0.05 + }, + { + "start": 26599.18, + "end": 26603.62, + "probability": 0.5787 + }, + { + "start": 26603.96, + "end": 26608.06, + "probability": 0.9764 + }, + { + "start": 26608.06, + "end": 26611.72, + "probability": 0.5405 + }, + { + "start": 26611.72, + "end": 26611.98, + "probability": 0.0378 + }, + { + "start": 26612.0, + "end": 26612.0, + "probability": 0.0 + }, + { + "start": 26612.0, + "end": 26612.0, + "probability": 0.0 + }, + { + "start": 26617.94, + "end": 26621.14, + "probability": 0.9926 + }, + { + "start": 26621.22, + "end": 26621.52, + "probability": 0.8437 + }, + { + "start": 26633.98, + "end": 26635.18, + "probability": 0.7686 + }, + { + "start": 26636.3, + "end": 26637.26, + "probability": 0.795 + }, + { + "start": 26639.04, + "end": 26642.9, + "probability": 0.7998 + }, + { + "start": 26645.3, + "end": 26650.94, + "probability": 0.9915 + }, + { + "start": 26652.4, + "end": 26655.64, + "probability": 0.962 + }, + { + "start": 26657.46, + "end": 26660.38, + "probability": 0.7323 + }, + { + "start": 26662.5, + "end": 26662.5, + "probability": 0.0367 + }, + { + "start": 26662.5, + "end": 26668.16, + "probability": 0.6593 + }, + { + "start": 26668.3, + "end": 26669.52, + "probability": 0.7455 + }, + { + "start": 26670.66, + "end": 26674.58, + "probability": 0.9249 + }, + { + "start": 26675.26, + "end": 26679.96, + "probability": 0.8559 + }, + { + "start": 26681.3, + "end": 26687.2, + "probability": 0.8968 + }, + { + "start": 26688.02, + "end": 26691.2, + "probability": 0.911 + }, + { + "start": 26691.54, + "end": 26694.2, + "probability": 0.9966 + }, + { + "start": 26694.2, + "end": 26694.66, + "probability": 0.8428 + }, + { + "start": 26695.76, + "end": 26696.16, + "probability": 0.9034 + }, + { + "start": 26697.08, + "end": 26699.46, + "probability": 0.9478 + }, + { + "start": 26700.2, + "end": 26701.86, + "probability": 0.5017 + }, + { + "start": 26703.36, + "end": 26706.2, + "probability": 0.9398 + }, + { + "start": 26708.22, + "end": 26708.96, + "probability": 0.76 + }, + { + "start": 26709.82, + "end": 26710.06, + "probability": 0.6319 + }, + { + "start": 26713.82, + "end": 26715.36, + "probability": 0.7236 + }, + { + "start": 26716.56, + "end": 26722.78, + "probability": 0.9961 + }, + { + "start": 26725.42, + "end": 26727.24, + "probability": 0.6689 + }, + { + "start": 26727.4, + "end": 26728.48, + "probability": 0.476 + }, + { + "start": 26728.68, + "end": 26729.9, + "probability": 0.5948 + }, + { + "start": 26729.94, + "end": 26730.1, + "probability": 0.0777 + }, + { + "start": 26730.1, + "end": 26732.61, + "probability": 0.4138 + }, + { + "start": 26733.28, + "end": 26734.47, + "probability": 0.5144 + }, + { + "start": 26735.16, + "end": 26739.94, + "probability": 0.9934 + }, + { + "start": 26740.46, + "end": 26743.72, + "probability": 0.9775 + }, + { + "start": 26747.78, + "end": 26749.28, + "probability": 0.6489 + }, + { + "start": 26749.74, + "end": 26755.16, + "probability": 0.734 + }, + { + "start": 26755.38, + "end": 26757.02, + "probability": 0.9395 + }, + { + "start": 26757.14, + "end": 26758.86, + "probability": 0.9517 + }, + { + "start": 26759.0, + "end": 26759.22, + "probability": 0.8843 + }, + { + "start": 26759.86, + "end": 26761.0, + "probability": 0.7821 + }, + { + "start": 26762.36, + "end": 26762.64, + "probability": 0.4192 + }, + { + "start": 26762.7, + "end": 26766.3, + "probability": 0.5904 + }, + { + "start": 26766.56, + "end": 26770.42, + "probability": 0.9862 + }, + { + "start": 26770.5, + "end": 26771.98, + "probability": 0.7804 + }, + { + "start": 26772.22, + "end": 26773.24, + "probability": 0.8459 + }, + { + "start": 26773.32, + "end": 26774.48, + "probability": 0.759 + }, + { + "start": 26775.6, + "end": 26776.8, + "probability": 0.7625 + }, + { + "start": 26776.94, + "end": 26782.56, + "probability": 0.9493 + }, + { + "start": 26783.28, + "end": 26787.32, + "probability": 0.8651 + }, + { + "start": 26788.58, + "end": 26791.42, + "probability": 0.9592 + }, + { + "start": 26792.16, + "end": 26795.68, + "probability": 0.9762 + }, + { + "start": 26796.68, + "end": 26798.0, + "probability": 0.7624 + }, + { + "start": 26798.96, + "end": 26801.38, + "probability": 0.9527 + }, + { + "start": 26802.04, + "end": 26806.32, + "probability": 0.8756 + }, + { + "start": 26808.12, + "end": 26809.38, + "probability": 0.862 + }, + { + "start": 26810.04, + "end": 26812.76, + "probability": 0.9966 + }, + { + "start": 26813.96, + "end": 26817.32, + "probability": 0.7855 + }, + { + "start": 26818.06, + "end": 26819.9, + "probability": 0.9794 + }, + { + "start": 26820.34, + "end": 26822.92, + "probability": 0.9622 + }, + { + "start": 26823.52, + "end": 26825.68, + "probability": 0.9795 + }, + { + "start": 26825.74, + "end": 26828.9, + "probability": 0.9983 + }, + { + "start": 26829.02, + "end": 26829.92, + "probability": 0.8135 + }, + { + "start": 26830.44, + "end": 26837.1, + "probability": 0.9976 + }, + { + "start": 26837.5, + "end": 26840.82, + "probability": 0.9868 + }, + { + "start": 26841.4, + "end": 26842.49, + "probability": 0.7593 + }, + { + "start": 26842.84, + "end": 26847.16, + "probability": 0.9937 + }, + { + "start": 26847.82, + "end": 26853.06, + "probability": 0.996 + }, + { + "start": 26853.36, + "end": 26854.06, + "probability": 0.7237 + }, + { + "start": 26854.52, + "end": 26856.82, + "probability": 0.0074 + }, + { + "start": 26857.92, + "end": 26860.7, + "probability": 0.9188 + }, + { + "start": 26861.8, + "end": 26863.0, + "probability": 0.776 + }, + { + "start": 26863.08, + "end": 26864.7, + "probability": 0.8319 + }, + { + "start": 26865.12, + "end": 26866.66, + "probability": 0.9682 + }, + { + "start": 26866.82, + "end": 26868.72, + "probability": 0.8979 + }, + { + "start": 26869.04, + "end": 26873.68, + "probability": 0.9319 + }, + { + "start": 26874.0, + "end": 26876.1, + "probability": 0.367 + }, + { + "start": 26876.52, + "end": 26878.08, + "probability": 0.9173 + }, + { + "start": 26878.2, + "end": 26878.76, + "probability": 0.7601 + }, + { + "start": 26882.3, + "end": 26882.54, + "probability": 0.3734 + }, + { + "start": 26882.6, + "end": 26883.84, + "probability": 0.6515 + }, + { + "start": 26883.84, + "end": 26889.78, + "probability": 0.8947 + }, + { + "start": 26889.86, + "end": 26894.5, + "probability": 0.8662 + }, + { + "start": 26894.76, + "end": 26896.18, + "probability": 0.9762 + }, + { + "start": 26896.56, + "end": 26897.16, + "probability": 0.5751 + }, + { + "start": 26897.66, + "end": 26898.9, + "probability": 0.9265 + }, + { + "start": 26899.64, + "end": 26900.5, + "probability": 0.7475 + }, + { + "start": 26900.68, + "end": 26903.54, + "probability": 0.8325 + }, + { + "start": 26904.2, + "end": 26907.74, + "probability": 0.9747 + }, + { + "start": 26908.02, + "end": 26914.62, + "probability": 0.9924 + }, + { + "start": 26915.16, + "end": 26917.64, + "probability": 0.9803 + }, + { + "start": 26918.18, + "end": 26918.18, + "probability": 0.0115 + }, + { + "start": 26918.18, + "end": 26922.21, + "probability": 0.522 + }, + { + "start": 26923.58, + "end": 26925.64, + "probability": 0.7784 + }, + { + "start": 26925.88, + "end": 26928.2, + "probability": 0.9173 + }, + { + "start": 26928.8, + "end": 26931.69, + "probability": 0.9331 + }, + { + "start": 26931.9, + "end": 26932.46, + "probability": 0.4133 + }, + { + "start": 26932.82, + "end": 26933.72, + "probability": 0.718 + }, + { + "start": 26933.8, + "end": 26934.86, + "probability": 0.8273 + }, + { + "start": 26935.52, + "end": 26939.42, + "probability": 0.9494 + }, + { + "start": 26941.12, + "end": 26945.34, + "probability": 0.8239 + }, + { + "start": 26946.22, + "end": 26947.57, + "probability": 0.61 + }, + { + "start": 26948.06, + "end": 26950.32, + "probability": 0.9397 + }, + { + "start": 26950.44, + "end": 26952.5, + "probability": 0.7444 + }, + { + "start": 26952.56, + "end": 26957.38, + "probability": 0.9482 + }, + { + "start": 26957.72, + "end": 26960.68, + "probability": 0.8649 + }, + { + "start": 26960.96, + "end": 26962.48, + "probability": 0.8519 + }, + { + "start": 26963.5, + "end": 26965.8, + "probability": 0.7263 + }, + { + "start": 26966.34, + "end": 26967.32, + "probability": 0.9137 + }, + { + "start": 26967.56, + "end": 26968.42, + "probability": 0.9678 + }, + { + "start": 26969.0, + "end": 26969.54, + "probability": 0.911 + }, + { + "start": 26969.58, + "end": 26970.42, + "probability": 0.9693 + }, + { + "start": 26970.98, + "end": 26973.42, + "probability": 0.9849 + }, + { + "start": 26973.94, + "end": 26978.2, + "probability": 0.9806 + }, + { + "start": 26979.38, + "end": 26982.92, + "probability": 0.9341 + }, + { + "start": 26982.98, + "end": 26984.18, + "probability": 0.5268 + }, + { + "start": 26986.7, + "end": 26995.66, + "probability": 0.9757 + }, + { + "start": 26996.68, + "end": 27004.76, + "probability": 0.9959 + }, + { + "start": 27005.68, + "end": 27007.94, + "probability": 0.962 + }, + { + "start": 27008.56, + "end": 27010.52, + "probability": 0.9971 + }, + { + "start": 27011.7, + "end": 27013.46, + "probability": 0.9988 + }, + { + "start": 27013.82, + "end": 27019.68, + "probability": 0.9978 + }, + { + "start": 27021.22, + "end": 27023.25, + "probability": 0.9761 + }, + { + "start": 27023.86, + "end": 27026.76, + "probability": 0.9916 + }, + { + "start": 27028.0, + "end": 27030.0, + "probability": 0.9937 + }, + { + "start": 27030.7, + "end": 27034.26, + "probability": 0.9962 + }, + { + "start": 27035.12, + "end": 27039.07, + "probability": 0.9985 + }, + { + "start": 27039.14, + "end": 27045.36, + "probability": 0.9979 + }, + { + "start": 27046.92, + "end": 27050.08, + "probability": 0.8462 + }, + { + "start": 27050.84, + "end": 27053.52, + "probability": 0.9438 + }, + { + "start": 27054.76, + "end": 27055.96, + "probability": 0.3635 + }, + { + "start": 27057.92, + "end": 27060.42, + "probability": 0.7781 + }, + { + "start": 27060.96, + "end": 27063.66, + "probability": 0.9823 + }, + { + "start": 27065.42, + "end": 27066.72, + "probability": 0.9448 + }, + { + "start": 27066.74, + "end": 27069.5, + "probability": 0.9546 + }, + { + "start": 27069.6, + "end": 27071.02, + "probability": 0.8709 + }, + { + "start": 27071.32, + "end": 27075.3, + "probability": 0.9939 + }, + { + "start": 27076.0, + "end": 27081.48, + "probability": 0.9985 + }, + { + "start": 27082.14, + "end": 27088.6, + "probability": 0.9972 + }, + { + "start": 27088.94, + "end": 27091.36, + "probability": 0.9818 + }, + { + "start": 27093.2, + "end": 27096.66, + "probability": 0.9329 + }, + { + "start": 27097.48, + "end": 27101.2, + "probability": 0.9455 + }, + { + "start": 27102.64, + "end": 27106.1, + "probability": 0.9987 + }, + { + "start": 27106.64, + "end": 27108.78, + "probability": 0.9497 + }, + { + "start": 27109.12, + "end": 27113.68, + "probability": 0.9986 + }, + { + "start": 27114.14, + "end": 27117.72, + "probability": 0.9936 + }, + { + "start": 27117.72, + "end": 27121.28, + "probability": 0.9844 + }, + { + "start": 27122.62, + "end": 27123.36, + "probability": 0.7785 + }, + { + "start": 27123.9, + "end": 27124.96, + "probability": 0.9351 + }, + { + "start": 27125.74, + "end": 27128.26, + "probability": 0.991 + }, + { + "start": 27128.8, + "end": 27131.68, + "probability": 0.998 + }, + { + "start": 27132.96, + "end": 27135.24, + "probability": 0.9976 + }, + { + "start": 27135.98, + "end": 27139.6, + "probability": 0.9948 + }, + { + "start": 27140.14, + "end": 27145.04, + "probability": 0.9839 + }, + { + "start": 27151.32, + "end": 27158.18, + "probability": 0.9949 + }, + { + "start": 27158.52, + "end": 27159.64, + "probability": 0.784 + }, + { + "start": 27160.2, + "end": 27162.34, + "probability": 0.9017 + }, + { + "start": 27162.88, + "end": 27165.78, + "probability": 0.9499 + }, + { + "start": 27165.82, + "end": 27166.82, + "probability": 0.8851 + }, + { + "start": 27168.36, + "end": 27171.06, + "probability": 0.7405 + }, + { + "start": 27172.16, + "end": 27173.58, + "probability": 0.9032 + }, + { + "start": 27174.0, + "end": 27176.62, + "probability": 0.97 + }, + { + "start": 27177.62, + "end": 27181.5, + "probability": 0.8654 + }, + { + "start": 27182.06, + "end": 27185.32, + "probability": 0.9636 + }, + { + "start": 27185.72, + "end": 27188.1, + "probability": 0.9727 + }, + { + "start": 27189.46, + "end": 27191.3, + "probability": 0.6243 + }, + { + "start": 27191.8, + "end": 27193.04, + "probability": 0.905 + }, + { + "start": 27194.64, + "end": 27196.72, + "probability": 0.984 + }, + { + "start": 27197.44, + "end": 27199.0, + "probability": 0.8598 + }, + { + "start": 27199.48, + "end": 27204.18, + "probability": 0.9829 + }, + { + "start": 27205.3, + "end": 27209.98, + "probability": 0.9977 + }, + { + "start": 27210.92, + "end": 27213.24, + "probability": 0.848 + }, + { + "start": 27213.94, + "end": 27215.5, + "probability": 0.9768 + }, + { + "start": 27215.9, + "end": 27219.32, + "probability": 0.9712 + }, + { + "start": 27221.64, + "end": 27223.66, + "probability": 0.7753 + }, + { + "start": 27224.02, + "end": 27226.22, + "probability": 0.9678 + }, + { + "start": 27226.6, + "end": 27229.22, + "probability": 0.9921 + }, + { + "start": 27230.36, + "end": 27233.34, + "probability": 0.9018 + }, + { + "start": 27233.92, + "end": 27238.04, + "probability": 0.9984 + }, + { + "start": 27238.54, + "end": 27244.04, + "probability": 0.9987 + }, + { + "start": 27244.98, + "end": 27247.64, + "probability": 0.9466 + }, + { + "start": 27248.32, + "end": 27249.52, + "probability": 0.8759 + }, + { + "start": 27250.3, + "end": 27251.72, + "probability": 0.957 + }, + { + "start": 27252.32, + "end": 27256.18, + "probability": 0.9684 + }, + { + "start": 27256.7, + "end": 27258.12, + "probability": 0.9715 + }, + { + "start": 27258.84, + "end": 27261.78, + "probability": 0.9135 + }, + { + "start": 27262.3, + "end": 27263.04, + "probability": 0.7331 + }, + { + "start": 27264.38, + "end": 27267.22, + "probability": 0.7516 + }, + { + "start": 27267.88, + "end": 27269.76, + "probability": 0.9773 + }, + { + "start": 27269.9, + "end": 27271.3, + "probability": 0.9065 + }, + { + "start": 27271.66, + "end": 27273.38, + "probability": 0.99 + }, + { + "start": 27273.52, + "end": 27274.52, + "probability": 0.9622 + }, + { + "start": 27275.04, + "end": 27279.6, + "probability": 0.9891 + }, + { + "start": 27280.78, + "end": 27283.6, + "probability": 0.8289 + }, + { + "start": 27284.58, + "end": 27287.54, + "probability": 0.8407 + }, + { + "start": 27288.02, + "end": 27290.54, + "probability": 0.9836 + }, + { + "start": 27291.4, + "end": 27293.12, + "probability": 0.9736 + }, + { + "start": 27293.52, + "end": 27297.84, + "probability": 0.8793 + }, + { + "start": 27299.0, + "end": 27302.38, + "probability": 0.8991 + }, + { + "start": 27303.06, + "end": 27305.48, + "probability": 0.9603 + }, + { + "start": 27306.28, + "end": 27307.72, + "probability": 0.9932 + }, + { + "start": 27308.82, + "end": 27312.02, + "probability": 0.8729 + }, + { + "start": 27312.52, + "end": 27316.7, + "probability": 0.9348 + }, + { + "start": 27317.2, + "end": 27318.0, + "probability": 0.7349 + }, + { + "start": 27318.12, + "end": 27323.2, + "probability": 0.9739 + }, + { + "start": 27323.2, + "end": 27325.8, + "probability": 0.1033 + }, + { + "start": 27326.3, + "end": 27330.68, + "probability": 0.9951 + }, + { + "start": 27331.04, + "end": 27334.14, + "probability": 0.9478 + }, + { + "start": 27334.8, + "end": 27338.86, + "probability": 0.9802 + }, + { + "start": 27339.22, + "end": 27342.78, + "probability": 0.9972 + }, + { + "start": 27343.14, + "end": 27345.04, + "probability": 0.9359 + }, + { + "start": 27346.54, + "end": 27349.54, + "probability": 0.9791 + }, + { + "start": 27350.16, + "end": 27356.2, + "probability": 0.9945 + }, + { + "start": 27356.2, + "end": 27364.44, + "probability": 0.9825 + }, + { + "start": 27365.42, + "end": 27371.0, + "probability": 0.724 + }, + { + "start": 27371.52, + "end": 27375.4, + "probability": 0.8414 + }, + { + "start": 27376.08, + "end": 27377.78, + "probability": 0.8729 + }, + { + "start": 27378.02, + "end": 27378.7, + "probability": 0.9286 + }, + { + "start": 27378.9, + "end": 27385.86, + "probability": 0.9907 + }, + { + "start": 27386.96, + "end": 27391.16, + "probability": 0.9915 + }, + { + "start": 27391.84, + "end": 27396.78, + "probability": 0.9363 + }, + { + "start": 27397.38, + "end": 27400.1, + "probability": 0.8901 + }, + { + "start": 27401.22, + "end": 27402.21, + "probability": 0.9001 + }, + { + "start": 27402.38, + "end": 27405.22, + "probability": 0.9634 + }, + { + "start": 27405.78, + "end": 27409.44, + "probability": 0.9756 + }, + { + "start": 27409.44, + "end": 27414.52, + "probability": 0.9149 + }, + { + "start": 27415.06, + "end": 27419.36, + "probability": 0.97 + }, + { + "start": 27420.58, + "end": 27423.4, + "probability": 0.8799 + }, + { + "start": 27424.0, + "end": 27426.7, + "probability": 0.9568 + }, + { + "start": 27427.34, + "end": 27428.68, + "probability": 0.9457 + }, + { + "start": 27429.24, + "end": 27431.22, + "probability": 0.9805 + }, + { + "start": 27431.48, + "end": 27433.32, + "probability": 0.9255 + }, + { + "start": 27433.74, + "end": 27437.26, + "probability": 0.9877 + }, + { + "start": 27439.46, + "end": 27441.72, + "probability": 0.8195 + }, + { + "start": 27442.3, + "end": 27446.52, + "probability": 0.987 + }, + { + "start": 27447.34, + "end": 27451.44, + "probability": 0.9583 + }, + { + "start": 27452.12, + "end": 27455.72, + "probability": 0.9976 + }, + { + "start": 27456.22, + "end": 27459.6, + "probability": 0.9897 + }, + { + "start": 27460.64, + "end": 27463.44, + "probability": 0.9874 + }, + { + "start": 27463.96, + "end": 27468.98, + "probability": 0.9908 + }, + { + "start": 27470.22, + "end": 27471.74, + "probability": 0.9457 + }, + { + "start": 27471.84, + "end": 27475.82, + "probability": 0.7168 + }, + { + "start": 27476.28, + "end": 27478.58, + "probability": 0.9921 + }, + { + "start": 27479.14, + "end": 27482.44, + "probability": 0.973 + }, + { + "start": 27483.52, + "end": 27486.56, + "probability": 0.9875 + }, + { + "start": 27487.34, + "end": 27490.18, + "probability": 0.7001 + }, + { + "start": 27491.0, + "end": 27493.9, + "probability": 0.9231 + }, + { + "start": 27494.32, + "end": 27496.18, + "probability": 0.9753 + }, + { + "start": 27496.62, + "end": 27503.34, + "probability": 0.9785 + }, + { + "start": 27504.08, + "end": 27509.08, + "probability": 0.9373 + }, + { + "start": 27510.02, + "end": 27514.86, + "probability": 0.9685 + }, + { + "start": 27515.5, + "end": 27516.18, + "probability": 0.7917 + }, + { + "start": 27516.8, + "end": 27524.66, + "probability": 0.9838 + }, + { + "start": 27524.98, + "end": 27527.88, + "probability": 0.9014 + }, + { + "start": 27528.22, + "end": 27528.36, + "probability": 0.7057 + }, + { + "start": 27529.06, + "end": 27530.22, + "probability": 0.6732 + }, + { + "start": 27530.38, + "end": 27532.5, + "probability": 0.9482 + }, + { + "start": 27537.6, + "end": 27541.38, + "probability": 0.8608 + }, + { + "start": 27541.96, + "end": 27544.48, + "probability": 0.5062 + }, + { + "start": 27544.48, + "end": 27545.94, + "probability": 0.9871 + }, + { + "start": 27548.7, + "end": 27551.64, + "probability": 0.6733 + }, + { + "start": 27551.76, + "end": 27554.32, + "probability": 0.933 + }, + { + "start": 27554.54, + "end": 27556.02, + "probability": 0.8388 + }, + { + "start": 27556.3, + "end": 27559.28, + "probability": 0.9154 + }, + { + "start": 27559.28, + "end": 27562.22, + "probability": 0.8715 + }, + { + "start": 27562.62, + "end": 27566.98, + "probability": 0.4966 + }, + { + "start": 27573.32, + "end": 27574.82, + "probability": 0.4764 + }, + { + "start": 27575.38, + "end": 27578.68, + "probability": 0.9436 + }, + { + "start": 27579.38, + "end": 27584.1, + "probability": 0.8278 + }, + { + "start": 27584.56, + "end": 27586.6, + "probability": 0.8246 + }, + { + "start": 27586.72, + "end": 27590.98, + "probability": 0.9901 + }, + { + "start": 27602.36, + "end": 27607.16, + "probability": 0.7337 + }, + { + "start": 27608.66, + "end": 27611.74, + "probability": 0.9961 + }, + { + "start": 27611.74, + "end": 27611.86, + "probability": 0.142 + }, + { + "start": 27612.58, + "end": 27612.9, + "probability": 0.1061 + }, + { + "start": 27613.8, + "end": 27614.38, + "probability": 0.8077 + }, + { + "start": 27615.6, + "end": 27617.02, + "probability": 0.9154 + }, + { + "start": 27618.3, + "end": 27620.74, + "probability": 0.9896 + }, + { + "start": 27621.08, + "end": 27626.7, + "probability": 0.9256 + }, + { + "start": 27629.42, + "end": 27631.66, + "probability": 0.749 + }, + { + "start": 27632.58, + "end": 27634.8, + "probability": 0.9937 + }, + { + "start": 27636.46, + "end": 27640.6, + "probability": 0.9097 + }, + { + "start": 27642.62, + "end": 27643.24, + "probability": 0.5972 + }, + { + "start": 27644.5, + "end": 27644.94, + "probability": 0.0224 + }, + { + "start": 27644.94, + "end": 27647.3, + "probability": 0.7439 + }, + { + "start": 27647.36, + "end": 27647.36, + "probability": 0.1632 + }, + { + "start": 27648.18, + "end": 27649.9, + "probability": 0.1321 + }, + { + "start": 27651.36, + "end": 27652.74, + "probability": 0.8167 + }, + { + "start": 27654.1, + "end": 27657.1, + "probability": 0.7153 + }, + { + "start": 27657.74, + "end": 27658.9, + "probability": 0.7781 + }, + { + "start": 27660.48, + "end": 27661.64, + "probability": 0.9653 + }, + { + "start": 27661.8, + "end": 27662.68, + "probability": 0.9941 + }, + { + "start": 27662.78, + "end": 27663.44, + "probability": 0.963 + }, + { + "start": 27663.6, + "end": 27664.08, + "probability": 0.8258 + }, + { + "start": 27665.7, + "end": 27670.2, + "probability": 0.9893 + }, + { + "start": 27670.52, + "end": 27671.16, + "probability": 0.1648 + }, + { + "start": 27671.4, + "end": 27673.18, + "probability": 0.2867 + }, + { + "start": 27674.22, + "end": 27674.42, + "probability": 0.0003 + }, + { + "start": 27676.7, + "end": 27676.92, + "probability": 0.0838 + }, + { + "start": 27676.92, + "end": 27676.92, + "probability": 0.0186 + }, + { + "start": 27676.92, + "end": 27676.92, + "probability": 0.0546 + }, + { + "start": 27676.92, + "end": 27677.24, + "probability": 0.2751 + }, + { + "start": 27677.32, + "end": 27677.94, + "probability": 0.5912 + }, + { + "start": 27678.24, + "end": 27680.32, + "probability": 0.4488 + }, + { + "start": 27680.36, + "end": 27683.04, + "probability": 0.7839 + }, + { + "start": 27684.7, + "end": 27688.64, + "probability": 0.1482 + }, + { + "start": 27689.68, + "end": 27689.7, + "probability": 0.0369 + }, + { + "start": 27689.7, + "end": 27691.68, + "probability": 0.6387 + }, + { + "start": 27691.94, + "end": 27692.98, + "probability": 0.4283 + }, + { + "start": 27693.32, + "end": 27694.12, + "probability": 0.8169 + }, + { + "start": 27695.3, + "end": 27697.28, + "probability": 0.0167 + }, + { + "start": 27697.94, + "end": 27698.26, + "probability": 0.0067 + }, + { + "start": 27698.3, + "end": 27698.5, + "probability": 0.2401 + }, + { + "start": 27698.5, + "end": 27698.5, + "probability": 0.0764 + }, + { + "start": 27698.5, + "end": 27699.84, + "probability": 0.2469 + }, + { + "start": 27699.86, + "end": 27707.48, + "probability": 0.7183 + }, + { + "start": 27708.58, + "end": 27712.9, + "probability": 0.5903 + }, + { + "start": 27712.9, + "end": 27713.12, + "probability": 0.5615 + }, + { + "start": 27714.74, + "end": 27715.54, + "probability": 0.2567 + }, + { + "start": 27715.54, + "end": 27716.46, + "probability": 0.7516 + }, + { + "start": 27717.0, + "end": 27717.36, + "probability": 0.6064 + }, + { + "start": 27717.36, + "end": 27718.58, + "probability": 0.1434 + }, + { + "start": 27720.26, + "end": 27720.48, + "probability": 0.1392 + }, + { + "start": 27720.48, + "end": 27720.48, + "probability": 0.1115 + }, + { + "start": 27720.48, + "end": 27720.82, + "probability": 0.1496 + }, + { + "start": 27720.82, + "end": 27721.16, + "probability": 0.058 + }, + { + "start": 27721.16, + "end": 27721.35, + "probability": 0.2467 + }, + { + "start": 27721.48, + "end": 27722.34, + "probability": 0.6379 + }, + { + "start": 27722.36, + "end": 27723.86, + "probability": 0.8424 + }, + { + "start": 27724.02, + "end": 27726.4, + "probability": 0.9796 + }, + { + "start": 27726.4, + "end": 27726.82, + "probability": 0.0968 + }, + { + "start": 27727.18, + "end": 27727.88, + "probability": 0.7681 + }, + { + "start": 27727.98, + "end": 27730.38, + "probability": 0.9185 + }, + { + "start": 27730.44, + "end": 27731.16, + "probability": 0.8197 + }, + { + "start": 27731.4, + "end": 27734.02, + "probability": 0.8608 + }, + { + "start": 27735.46, + "end": 27737.14, + "probability": 0.9631 + }, + { + "start": 27737.2, + "end": 27742.86, + "probability": 0.9739 + }, + { + "start": 27743.26, + "end": 27744.42, + "probability": 0.6233 + }, + { + "start": 27744.72, + "end": 27747.28, + "probability": 0.8143 + }, + { + "start": 27747.56, + "end": 27748.22, + "probability": 0.857 + }, + { + "start": 27748.34, + "end": 27749.82, + "probability": 0.5545 + }, + { + "start": 27750.06, + "end": 27751.4, + "probability": 0.6133 + }, + { + "start": 27751.48, + "end": 27752.06, + "probability": 0.7306 + }, + { + "start": 27752.1, + "end": 27754.6, + "probability": 0.8951 + }, + { + "start": 27755.26, + "end": 27758.52, + "probability": 0.9955 + }, + { + "start": 27758.62, + "end": 27762.08, + "probability": 0.7604 + }, + { + "start": 27762.18, + "end": 27764.51, + "probability": 0.9331 + }, + { + "start": 27766.3, + "end": 27771.24, + "probability": 0.8633 + }, + { + "start": 27773.44, + "end": 27777.96, + "probability": 0.8061 + }, + { + "start": 27778.84, + "end": 27781.42, + "probability": 0.4838 + }, + { + "start": 27781.76, + "end": 27785.6, + "probability": 0.9499 + }, + { + "start": 27785.7, + "end": 27786.68, + "probability": 0.7449 + }, + { + "start": 27786.7, + "end": 27788.38, + "probability": 0.9779 + }, + { + "start": 27789.65, + "end": 27793.0, + "probability": 0.9778 + }, + { + "start": 27793.76, + "end": 27796.94, + "probability": 0.9921 + }, + { + "start": 27797.68, + "end": 27800.0, + "probability": 0.9776 + }, + { + "start": 27800.14, + "end": 27802.24, + "probability": 0.9991 + }, + { + "start": 27804.22, + "end": 27805.06, + "probability": 0.4205 + }, + { + "start": 27805.4, + "end": 27805.58, + "probability": 0.1842 + }, + { + "start": 27805.58, + "end": 27808.98, + "probability": 0.6942 + }, + { + "start": 27808.98, + "end": 27809.3, + "probability": 0.5691 + }, + { + "start": 27810.36, + "end": 27814.58, + "probability": 0.9627 + }, + { + "start": 27815.1, + "end": 27816.34, + "probability": 0.9678 + }, + { + "start": 27817.04, + "end": 27818.37, + "probability": 0.9873 + }, + { + "start": 27819.16, + "end": 27820.48, + "probability": 0.9563 + }, + { + "start": 27820.92, + "end": 27823.14, + "probability": 0.8713 + }, + { + "start": 27824.06, + "end": 27827.34, + "probability": 0.9893 + }, + { + "start": 27828.0, + "end": 27829.12, + "probability": 0.9607 + }, + { + "start": 27830.16, + "end": 27834.62, + "probability": 0.9981 + }, + { + "start": 27835.38, + "end": 27837.88, + "probability": 0.7107 + }, + { + "start": 27837.94, + "end": 27838.62, + "probability": 0.9747 + }, + { + "start": 27838.84, + "end": 27840.18, + "probability": 0.8277 + }, + { + "start": 27841.14, + "end": 27842.61, + "probability": 0.98 + }, + { + "start": 27843.0, + "end": 27843.91, + "probability": 0.9229 + }, + { + "start": 27844.92, + "end": 27845.48, + "probability": 0.8845 + }, + { + "start": 27845.62, + "end": 27846.0, + "probability": 0.9119 + }, + { + "start": 27846.12, + "end": 27849.72, + "probability": 0.9825 + }, + { + "start": 27850.48, + "end": 27851.68, + "probability": 0.9399 + }, + { + "start": 27852.86, + "end": 27854.72, + "probability": 0.9967 + }, + { + "start": 27854.8, + "end": 27856.46, + "probability": 0.9924 + }, + { + "start": 27857.14, + "end": 27859.14, + "probability": 0.9819 + }, + { + "start": 27859.32, + "end": 27860.86, + "probability": 0.9663 + }, + { + "start": 27861.24, + "end": 27864.88, + "probability": 0.9967 + }, + { + "start": 27865.16, + "end": 27865.52, + "probability": 0.585 + }, + { + "start": 27866.0, + "end": 27868.5, + "probability": 0.995 + }, + { + "start": 27869.36, + "end": 27870.0, + "probability": 0.832 + }, + { + "start": 27870.58, + "end": 27873.18, + "probability": 0.9918 + }, + { + "start": 27874.5, + "end": 27875.2, + "probability": 0.6809 + }, + { + "start": 27875.26, + "end": 27876.1, + "probability": 0.9231 + }, + { + "start": 27876.24, + "end": 27879.76, + "probability": 0.7312 + }, + { + "start": 27879.96, + "end": 27881.2, + "probability": 0.9831 + }, + { + "start": 27881.94, + "end": 27884.74, + "probability": 0.9888 + }, + { + "start": 27885.36, + "end": 27887.32, + "probability": 0.9956 + }, + { + "start": 27887.32, + "end": 27890.58, + "probability": 0.9977 + }, + { + "start": 27890.72, + "end": 27893.84, + "probability": 0.9977 + }, + { + "start": 27894.28, + "end": 27895.8, + "probability": 0.9966 + }, + { + "start": 27895.84, + "end": 27896.88, + "probability": 0.8008 + }, + { + "start": 27896.98, + "end": 27900.6, + "probability": 0.8144 + }, + { + "start": 27901.1, + "end": 27901.98, + "probability": 0.9034 + }, + { + "start": 27902.04, + "end": 27906.46, + "probability": 0.9754 + }, + { + "start": 27906.52, + "end": 27910.86, + "probability": 0.9961 + }, + { + "start": 27911.66, + "end": 27913.58, + "probability": 0.9976 + }, + { + "start": 27913.7, + "end": 27917.54, + "probability": 0.9821 + }, + { + "start": 27918.1, + "end": 27921.08, + "probability": 0.7787 + }, + { + "start": 27921.92, + "end": 27923.34, + "probability": 0.6983 + }, + { + "start": 27924.44, + "end": 27926.52, + "probability": 0.8189 + }, + { + "start": 27927.82, + "end": 27931.23, + "probability": 0.8925 + }, + { + "start": 27934.04, + "end": 27935.12, + "probability": 0.7366 + }, + { + "start": 27937.64, + "end": 27940.64, + "probability": 0.5109 + }, + { + "start": 27941.5, + "end": 27943.48, + "probability": 0.8745 + }, + { + "start": 27943.8, + "end": 27946.6, + "probability": 0.9861 + }, + { + "start": 27947.1, + "end": 27951.04, + "probability": 0.889 + }, + { + "start": 27951.48, + "end": 27953.7, + "probability": 0.9764 + }, + { + "start": 27954.36, + "end": 27955.24, + "probability": 0.7919 + }, + { + "start": 27955.7, + "end": 27956.86, + "probability": 0.9783 + }, + { + "start": 27956.9, + "end": 27958.02, + "probability": 0.5626 + }, + { + "start": 27958.12, + "end": 27959.1, + "probability": 0.7125 + }, + { + "start": 27959.8, + "end": 27962.42, + "probability": 0.9813 + }, + { + "start": 27962.98, + "end": 27966.3, + "probability": 0.992 + }, + { + "start": 27967.2, + "end": 27970.48, + "probability": 0.8975 + }, + { + "start": 27971.2, + "end": 27973.96, + "probability": 0.9966 + }, + { + "start": 27975.06, + "end": 27976.42, + "probability": 0.6424 + }, + { + "start": 27977.12, + "end": 27979.14, + "probability": 0.8782 + }, + { + "start": 27979.6, + "end": 27979.88, + "probability": 0.8137 + }, + { + "start": 27979.96, + "end": 27983.44, + "probability": 0.9876 + }, + { + "start": 27983.44, + "end": 27988.6, + "probability": 0.8838 + }, + { + "start": 27988.66, + "end": 27991.26, + "probability": 0.9865 + }, + { + "start": 27992.1, + "end": 27993.88, + "probability": 0.9539 + }, + { + "start": 27994.1, + "end": 27995.68, + "probability": 0.7755 + }, + { + "start": 27995.78, + "end": 28000.7, + "probability": 0.9093 + }, + { + "start": 28001.24, + "end": 28004.58, + "probability": 0.8393 + }, + { + "start": 28005.61, + "end": 28009.88, + "probability": 0.8366 + }, + { + "start": 28010.04, + "end": 28015.08, + "probability": 0.874 + }, + { + "start": 28015.76, + "end": 28018.16, + "probability": 0.9536 + }, + { + "start": 28018.32, + "end": 28023.1, + "probability": 0.6027 + }, + { + "start": 28023.34, + "end": 28024.4, + "probability": 0.398 + }, + { + "start": 28024.76, + "end": 28027.38, + "probability": 0.4668 + }, + { + "start": 28027.8, + "end": 28029.64, + "probability": 0.6046 + }, + { + "start": 28029.84, + "end": 28034.08, + "probability": 0.9941 + }, + { + "start": 28034.08, + "end": 28038.12, + "probability": 0.9825 + }, + { + "start": 28038.12, + "end": 28044.72, + "probability": 0.9146 + }, + { + "start": 28045.34, + "end": 28047.32, + "probability": 0.98 + }, + { + "start": 28048.16, + "end": 28050.84, + "probability": 0.9955 + }, + { + "start": 28051.34, + "end": 28051.92, + "probability": 0.8997 + }, + { + "start": 28052.0, + "end": 28052.42, + "probability": 0.8172 + }, + { + "start": 28052.46, + "end": 28053.18, + "probability": 0.853 + }, + { + "start": 28053.28, + "end": 28054.14, + "probability": 0.8757 + }, + { + "start": 28054.26, + "end": 28055.3, + "probability": 0.8427 + }, + { + "start": 28055.54, + "end": 28057.5, + "probability": 0.9935 + }, + { + "start": 28058.34, + "end": 28059.36, + "probability": 0.7276 + }, + { + "start": 28059.56, + "end": 28063.68, + "probability": 0.9963 + }, + { + "start": 28064.48, + "end": 28068.04, + "probability": 0.7874 + }, + { + "start": 28068.36, + "end": 28069.36, + "probability": 0.9129 + }, + { + "start": 28069.64, + "end": 28070.46, + "probability": 0.8683 + }, + { + "start": 28072.0, + "end": 28073.0, + "probability": 0.1468 + }, + { + "start": 28073.0, + "end": 28073.94, + "probability": 0.8474 + }, + { + "start": 28074.66, + "end": 28075.06, + "probability": 0.0657 + }, + { + "start": 28075.44, + "end": 28077.66, + "probability": 0.2165 + }, + { + "start": 28077.74, + "end": 28078.22, + "probability": 0.2718 + }, + { + "start": 28078.65, + "end": 28079.32, + "probability": 0.6277 + }, + { + "start": 28079.42, + "end": 28080.46, + "probability": 0.0219 + }, + { + "start": 28080.82, + "end": 28081.14, + "probability": 0.6484 + }, + { + "start": 28081.3, + "end": 28081.94, + "probability": 0.7036 + }, + { + "start": 28082.06, + "end": 28087.34, + "probability": 0.7694 + }, + { + "start": 28088.4, + "end": 28093.42, + "probability": 0.6652 + }, + { + "start": 28094.06, + "end": 28096.96, + "probability": 0.925 + }, + { + "start": 28097.72, + "end": 28099.14, + "probability": 0.8245 + }, + { + "start": 28099.98, + "end": 28100.62, + "probability": 0.6832 + }, + { + "start": 28100.82, + "end": 28102.58, + "probability": 0.6662 + }, + { + "start": 28102.74, + "end": 28103.68, + "probability": 0.9362 + }, + { + "start": 28104.18, + "end": 28107.88, + "probability": 0.9941 + }, + { + "start": 28107.96, + "end": 28111.92, + "probability": 0.9904 + }, + { + "start": 28112.76, + "end": 28115.9, + "probability": 0.7463 + }, + { + "start": 28116.02, + "end": 28118.58, + "probability": 0.7573 + }, + { + "start": 28120.9, + "end": 28123.42, + "probability": 0.5438 + }, + { + "start": 28123.88, + "end": 28126.47, + "probability": 0.9688 + }, + { + "start": 28127.62, + "end": 28131.36, + "probability": 0.7391 + }, + { + "start": 28131.42, + "end": 28133.26, + "probability": 0.9225 + }, + { + "start": 28134.3, + "end": 28138.0, + "probability": 0.9888 + }, + { + "start": 28139.12, + "end": 28141.32, + "probability": 0.9625 + }, + { + "start": 28141.82, + "end": 28142.68, + "probability": 0.9546 + }, + { + "start": 28142.78, + "end": 28144.02, + "probability": 0.977 + }, + { + "start": 28145.84, + "end": 28147.32, + "probability": 0.3158 + }, + { + "start": 28147.38, + "end": 28147.9, + "probability": 0.8259 + }, + { + "start": 28148.44, + "end": 28148.56, + "probability": 0.0319 + }, + { + "start": 28148.56, + "end": 28149.22, + "probability": 0.6472 + }, + { + "start": 28149.46, + "end": 28149.94, + "probability": 0.7368 + }, + { + "start": 28149.96, + "end": 28153.78, + "probability": 0.9866 + }, + { + "start": 28153.82, + "end": 28158.1, + "probability": 0.975 + }, + { + "start": 28158.16, + "end": 28159.26, + "probability": 0.7424 + }, + { + "start": 28160.05, + "end": 28162.24, + "probability": 0.9768 + }, + { + "start": 28163.12, + "end": 28167.92, + "probability": 0.9988 + }, + { + "start": 28168.0, + "end": 28169.9, + "probability": 0.9832 + }, + { + "start": 28170.6, + "end": 28171.9, + "probability": 0.9976 + }, + { + "start": 28172.7, + "end": 28176.78, + "probability": 0.9323 + }, + { + "start": 28177.06, + "end": 28177.58, + "probability": 0.6392 + }, + { + "start": 28179.34, + "end": 28181.8, + "probability": 0.9067 + }, + { + "start": 28182.74, + "end": 28184.22, + "probability": 0.8755 + }, + { + "start": 28184.4, + "end": 28186.36, + "probability": 0.9288 + }, + { + "start": 28186.44, + "end": 28187.92, + "probability": 0.5542 + }, + { + "start": 28188.64, + "end": 28189.36, + "probability": 0.6527 + }, + { + "start": 28189.5, + "end": 28191.58, + "probability": 0.9343 + }, + { + "start": 28191.62, + "end": 28192.76, + "probability": 0.7684 + }, + { + "start": 28193.3, + "end": 28196.3, + "probability": 0.8766 + }, + { + "start": 28196.38, + "end": 28197.9, + "probability": 0.9902 + }, + { + "start": 28198.02, + "end": 28198.64, + "probability": 0.88 + }, + { + "start": 28199.54, + "end": 28202.68, + "probability": 0.9843 + }, + { + "start": 28202.72, + "end": 28205.52, + "probability": 0.9285 + }, + { + "start": 28207.18, + "end": 28209.06, + "probability": 0.5115 + }, + { + "start": 28210.4, + "end": 28212.43, + "probability": 0.5683 + }, + { + "start": 28212.54, + "end": 28213.0, + "probability": 0.0839 + }, + { + "start": 28213.0, + "end": 28214.07, + "probability": 0.3414 + }, + { + "start": 28215.04, + "end": 28219.52, + "probability": 0.9626 + }, + { + "start": 28219.6, + "end": 28222.28, + "probability": 0.9954 + }, + { + "start": 28222.62, + "end": 28226.26, + "probability": 0.7927 + }, + { + "start": 28226.68, + "end": 28227.03, + "probability": 0.6636 + }, + { + "start": 28227.2, + "end": 28227.82, + "probability": 0.349 + }, + { + "start": 28227.96, + "end": 28228.66, + "probability": 0.871 + }, + { + "start": 28228.84, + "end": 28234.46, + "probability": 0.958 + }, + { + "start": 28234.74, + "end": 28236.42, + "probability": 0.86 + }, + { + "start": 28236.54, + "end": 28239.0, + "probability": 0.7872 + }, + { + "start": 28239.28, + "end": 28241.74, + "probability": 0.9338 + }, + { + "start": 28241.8, + "end": 28243.38, + "probability": 0.7963 + }, + { + "start": 28243.42, + "end": 28243.84, + "probability": 0.5142 + }, + { + "start": 28243.9, + "end": 28246.32, + "probability": 0.989 + }, + { + "start": 28246.6, + "end": 28247.96, + "probability": 0.5082 + }, + { + "start": 28248.16, + "end": 28248.36, + "probability": 0.6517 + }, + { + "start": 28248.46, + "end": 28248.96, + "probability": 0.7239 + }, + { + "start": 28249.12, + "end": 28250.62, + "probability": 0.7183 + }, + { + "start": 28251.28, + "end": 28252.74, + "probability": 0.8999 + }, + { + "start": 28253.74, + "end": 28256.66, + "probability": 0.9474 + }, + { + "start": 28257.52, + "end": 28260.42, + "probability": 0.963 + }, + { + "start": 28260.88, + "end": 28263.28, + "probability": 0.9977 + }, + { + "start": 28263.8, + "end": 28266.26, + "probability": 0.9899 + }, + { + "start": 28266.26, + "end": 28269.08, + "probability": 0.9883 + }, + { + "start": 28269.16, + "end": 28271.0, + "probability": 0.9888 + }, + { + "start": 28272.08, + "end": 28272.86, + "probability": 0.4689 + }, + { + "start": 28272.88, + "end": 28273.54, + "probability": 0.5173 + }, + { + "start": 28273.68, + "end": 28278.38, + "probability": 0.7487 + }, + { + "start": 28278.86, + "end": 28280.86, + "probability": 0.9912 + }, + { + "start": 28280.86, + "end": 28283.5, + "probability": 0.5889 + }, + { + "start": 28283.68, + "end": 28284.4, + "probability": 0.7634 + }, + { + "start": 28284.52, + "end": 28284.94, + "probability": 0.0855 + }, + { + "start": 28285.0, + "end": 28285.5, + "probability": 0.6204 + }, + { + "start": 28285.68, + "end": 28286.32, + "probability": 0.4199 + }, + { + "start": 28287.1, + "end": 28289.6, + "probability": 0.8829 + }, + { + "start": 28290.22, + "end": 28293.64, + "probability": 0.7285 + }, + { + "start": 28293.94, + "end": 28293.94, + "probability": 0.5322 + }, + { + "start": 28294.08, + "end": 28295.34, + "probability": 0.628 + }, + { + "start": 28295.4, + "end": 28295.92, + "probability": 0.4975 + }, + { + "start": 28296.78, + "end": 28300.9, + "probability": 0.4752 + }, + { + "start": 28300.9, + "end": 28304.4, + "probability": 0.7261 + }, + { + "start": 28304.9, + "end": 28306.01, + "probability": 0.9805 + }, + { + "start": 28307.22, + "end": 28308.04, + "probability": 0.535 + }, + { + "start": 28308.16, + "end": 28309.68, + "probability": 0.874 + }, + { + "start": 28311.49, + "end": 28313.58, + "probability": 0.9904 + }, + { + "start": 28313.62, + "end": 28313.86, + "probability": 0.8597 + }, + { + "start": 28314.9, + "end": 28317.34, + "probability": 0.0379 + }, + { + "start": 28317.34, + "end": 28317.84, + "probability": 0.1548 + }, + { + "start": 28319.32, + "end": 28319.46, + "probability": 0.0182 + }, + { + "start": 28319.76, + "end": 28320.14, + "probability": 0.6486 + }, + { + "start": 28321.3, + "end": 28322.36, + "probability": 0.5753 + }, + { + "start": 28322.66, + "end": 28324.68, + "probability": 0.9575 + }, + { + "start": 28324.72, + "end": 28327.66, + "probability": 0.8102 + }, + { + "start": 28327.72, + "end": 28330.0, + "probability": 0.4688 + }, + { + "start": 28330.2, + "end": 28332.16, + "probability": 0.0316 + }, + { + "start": 28332.6, + "end": 28334.1, + "probability": 0.6077 + }, + { + "start": 28334.24, + "end": 28334.7, + "probability": 0.7918 + }, + { + "start": 28334.84, + "end": 28335.54, + "probability": 0.8755 + }, + { + "start": 28335.68, + "end": 28337.98, + "probability": 0.8301 + }, + { + "start": 28338.36, + "end": 28339.99, + "probability": 0.9941 + }, + { + "start": 28340.2, + "end": 28345.9, + "probability": 0.9492 + }, + { + "start": 28346.06, + "end": 28350.56, + "probability": 0.9688 + }, + { + "start": 28350.6, + "end": 28351.36, + "probability": 0.6791 + }, + { + "start": 28351.4, + "end": 28354.22, + "probability": 0.977 + }, + { + "start": 28354.38, + "end": 28355.35, + "probability": 0.0629 + }, + { + "start": 28356.16, + "end": 28356.32, + "probability": 0.3332 + }, + { + "start": 28356.32, + "end": 28356.48, + "probability": 0.2805 + }, + { + "start": 28358.16, + "end": 28359.26, + "probability": 0.4199 + }, + { + "start": 28360.16, + "end": 28360.36, + "probability": 0.216 + }, + { + "start": 28360.36, + "end": 28360.36, + "probability": 0.4017 + }, + { + "start": 28360.36, + "end": 28360.36, + "probability": 0.0549 + }, + { + "start": 28360.36, + "end": 28360.72, + "probability": 0.4331 + }, + { + "start": 28361.4, + "end": 28362.2, + "probability": 0.6127 + }, + { + "start": 28362.4, + "end": 28363.78, + "probability": 0.9225 + }, + { + "start": 28364.94, + "end": 28365.14, + "probability": 0.0481 + }, + { + "start": 28365.14, + "end": 28365.16, + "probability": 0.0835 + }, + { + "start": 28365.16, + "end": 28369.67, + "probability": 0.9181 + }, + { + "start": 28370.64, + "end": 28371.3, + "probability": 0.5362 + }, + { + "start": 28371.3, + "end": 28372.08, + "probability": 0.5354 + }, + { + "start": 28372.22, + "end": 28374.14, + "probability": 0.473 + }, + { + "start": 28374.34, + "end": 28376.94, + "probability": 0.8435 + }, + { + "start": 28377.02, + "end": 28377.3, + "probability": 0.3672 + }, + { + "start": 28377.4, + "end": 28380.18, + "probability": 0.7023 + }, + { + "start": 28380.84, + "end": 28386.08, + "probability": 0.9746 + }, + { + "start": 28386.18, + "end": 28388.24, + "probability": 0.9905 + }, + { + "start": 28388.34, + "end": 28389.62, + "probability": 0.9902 + }, + { + "start": 28389.66, + "end": 28393.9, + "probability": 0.7333 + }, + { + "start": 28393.96, + "end": 28395.22, + "probability": 0.8645 + }, + { + "start": 28395.64, + "end": 28396.58, + "probability": 0.8686 + }, + { + "start": 28396.66, + "end": 28400.02, + "probability": 0.949 + }, + { + "start": 28400.06, + "end": 28402.82, + "probability": 0.9928 + }, + { + "start": 28402.9, + "end": 28404.66, + "probability": 0.9766 + }, + { + "start": 28404.7, + "end": 28405.86, + "probability": 0.5301 + }, + { + "start": 28406.0, + "end": 28408.05, + "probability": 0.8576 + }, + { + "start": 28408.4, + "end": 28409.22, + "probability": 0.81 + }, + { + "start": 28409.34, + "end": 28411.84, + "probability": 0.9462 + }, + { + "start": 28411.84, + "end": 28412.98, + "probability": 0.6318 + }, + { + "start": 28413.22, + "end": 28414.72, + "probability": 0.8649 + }, + { + "start": 28415.14, + "end": 28416.3, + "probability": 0.7041 + }, + { + "start": 28416.86, + "end": 28418.18, + "probability": 0.6436 + }, + { + "start": 28418.98, + "end": 28423.72, + "probability": 0.8852 + }, + { + "start": 28425.1, + "end": 28427.8, + "probability": 0.6947 + }, + { + "start": 28428.1, + "end": 28428.54, + "probability": 0.2627 + }, + { + "start": 28428.54, + "end": 28429.5, + "probability": 0.6603 + }, + { + "start": 28429.82, + "end": 28430.0, + "probability": 0.4975 + }, + { + "start": 28430.18, + "end": 28430.62, + "probability": 0.8613 + }, + { + "start": 28431.78, + "end": 28433.86, + "probability": 0.948 + }, + { + "start": 28435.1, + "end": 28436.34, + "probability": 0.7513 + }, + { + "start": 28437.68, + "end": 28439.44, + "probability": 0.8429 + }, + { + "start": 28440.3, + "end": 28441.64, + "probability": 0.7261 + }, + { + "start": 28442.98, + "end": 28444.48, + "probability": 0.4034 + }, + { + "start": 28445.54, + "end": 28447.46, + "probability": 0.8232 + }, + { + "start": 28447.82, + "end": 28454.54, + "probability": 0.8119 + }, + { + "start": 28455.22, + "end": 28457.4, + "probability": 0.9619 + }, + { + "start": 28457.92, + "end": 28458.1, + "probability": 0.0037 + }, + { + "start": 28458.1, + "end": 28460.06, + "probability": 0.6558 + }, + { + "start": 28460.2, + "end": 28462.22, + "probability": 0.9921 + }, + { + "start": 28463.48, + "end": 28464.24, + "probability": 0.8817 + }, + { + "start": 28464.24, + "end": 28464.26, + "probability": 0.156 + }, + { + "start": 28464.26, + "end": 28465.98, + "probability": 0.7694 + }, + { + "start": 28465.98, + "end": 28467.24, + "probability": 0.9958 + }, + { + "start": 28467.46, + "end": 28470.46, + "probability": 0.9896 + }, + { + "start": 28471.12, + "end": 28474.58, + "probability": 0.9305 + }, + { + "start": 28475.36, + "end": 28477.84, + "probability": 0.9894 + }, + { + "start": 28478.34, + "end": 28479.78, + "probability": 0.999 + }, + { + "start": 28480.04, + "end": 28485.56, + "probability": 0.8468 + }, + { + "start": 28485.6, + "end": 28486.34, + "probability": 0.4838 + }, + { + "start": 28486.36, + "end": 28486.66, + "probability": 0.777 + }, + { + "start": 28487.16, + "end": 28488.46, + "probability": 0.1734 + }, + { + "start": 28488.86, + "end": 28489.76, + "probability": 0.5156 + }, + { + "start": 28489.76, + "end": 28491.26, + "probability": 0.7919 + }, + { + "start": 28492.04, + "end": 28492.24, + "probability": 0.4268 + }, + { + "start": 28492.48, + "end": 28495.18, + "probability": 0.9773 + }, + { + "start": 28495.54, + "end": 28495.54, + "probability": 0.7487 + }, + { + "start": 28495.64, + "end": 28497.2, + "probability": 0.8872 + }, + { + "start": 28497.78, + "end": 28499.16, + "probability": 0.633 + }, + { + "start": 28499.5, + "end": 28504.42, + "probability": 0.9155 + }, + { + "start": 28504.68, + "end": 28505.48, + "probability": 0.8814 + }, + { + "start": 28505.74, + "end": 28509.2, + "probability": 0.7794 + }, + { + "start": 28509.2, + "end": 28510.92, + "probability": 0.7426 + }, + { + "start": 28511.12, + "end": 28511.8, + "probability": 0.853 + }, + { + "start": 28511.8, + "end": 28513.82, + "probability": 0.5834 + }, + { + "start": 28514.04, + "end": 28514.18, + "probability": 0.0722 + }, + { + "start": 28516.78, + "end": 28517.1, + "probability": 0.6381 + }, + { + "start": 28517.55, + "end": 28518.72, + "probability": 0.4152 + }, + { + "start": 28518.8, + "end": 28520.0, + "probability": 0.5235 + }, + { + "start": 28520.14, + "end": 28522.06, + "probability": 0.7328 + }, + { + "start": 28522.76, + "end": 28525.38, + "probability": 0.2284 + }, + { + "start": 28525.7, + "end": 28526.2, + "probability": 0.316 + }, + { + "start": 28526.34, + "end": 28526.88, + "probability": 0.9365 + }, + { + "start": 28526.92, + "end": 28529.68, + "probability": 0.959 + }, + { + "start": 28529.68, + "end": 28530.5, + "probability": 0.6065 + }, + { + "start": 28531.16, + "end": 28531.74, + "probability": 0.6683 + }, + { + "start": 28532.22, + "end": 28533.5, + "probability": 0.4908 + }, + { + "start": 28533.9, + "end": 28535.5, + "probability": 0.7533 + }, + { + "start": 28535.58, + "end": 28536.44, + "probability": 0.8063 + }, + { + "start": 28536.48, + "end": 28537.8, + "probability": 0.5363 + }, + { + "start": 28538.86, + "end": 28540.24, + "probability": 0.6988 + }, + { + "start": 28543.94, + "end": 28545.14, + "probability": 0.2806 + }, + { + "start": 28545.74, + "end": 28548.42, + "probability": 0.792 + }, + { + "start": 28548.42, + "end": 28549.52, + "probability": 0.8677 + }, + { + "start": 28549.68, + "end": 28550.1, + "probability": 0.8053 + }, + { + "start": 28550.84, + "end": 28552.36, + "probability": 0.5178 + }, + { + "start": 28552.42, + "end": 28552.65, + "probability": 0.5317 + }, + { + "start": 28553.06, + "end": 28553.44, + "probability": 0.3063 + }, + { + "start": 28553.48, + "end": 28553.62, + "probability": 0.3062 + }, + { + "start": 28553.74, + "end": 28555.1, + "probability": 0.4656 + }, + { + "start": 28556.88, + "end": 28557.22, + "probability": 0.6649 + }, + { + "start": 28557.3, + "end": 28557.98, + "probability": 0.8407 + }, + { + "start": 28558.1, + "end": 28558.22, + "probability": 0.609 + }, + { + "start": 28558.34, + "end": 28559.62, + "probability": 0.6762 + }, + { + "start": 28559.72, + "end": 28559.94, + "probability": 0.8694 + }, + { + "start": 28560.04, + "end": 28560.46, + "probability": 0.6149 + }, + { + "start": 28560.74, + "end": 28561.92, + "probability": 0.4734 + }, + { + "start": 28562.06, + "end": 28563.76, + "probability": 0.8551 + }, + { + "start": 28564.42, + "end": 28565.26, + "probability": 0.477 + }, + { + "start": 28565.38, + "end": 28570.98, + "probability": 0.9855 + }, + { + "start": 28571.14, + "end": 28571.92, + "probability": 0.3016 + }, + { + "start": 28572.18, + "end": 28572.52, + "probability": 0.1031 + }, + { + "start": 28572.58, + "end": 28573.22, + "probability": 0.0772 + }, + { + "start": 28573.22, + "end": 28573.61, + "probability": 0.1552 + }, + { + "start": 28573.86, + "end": 28574.66, + "probability": 0.4401 + }, + { + "start": 28574.66, + "end": 28575.32, + "probability": 0.4109 + }, + { + "start": 28575.42, + "end": 28575.88, + "probability": 0.6989 + }, + { + "start": 28575.98, + "end": 28576.18, + "probability": 0.7589 + }, + { + "start": 28576.26, + "end": 28577.0, + "probability": 0.8788 + }, + { + "start": 28577.45, + "end": 28579.8, + "probability": 0.9512 + }, + { + "start": 28579.98, + "end": 28582.3, + "probability": 0.8057 + }, + { + "start": 28583.0, + "end": 28584.18, + "probability": 0.485 + }, + { + "start": 28584.26, + "end": 28584.52, + "probability": 0.0689 + }, + { + "start": 28584.78, + "end": 28586.96, + "probability": 0.9276 + }, + { + "start": 28587.44, + "end": 28588.6, + "probability": 0.8824 + }, + { + "start": 28588.72, + "end": 28590.46, + "probability": 0.6026 + }, + { + "start": 28590.48, + "end": 28591.6, + "probability": 0.9819 + }, + { + "start": 28591.76, + "end": 28592.02, + "probability": 0.2639 + }, + { + "start": 28592.04, + "end": 28593.86, + "probability": 0.68 + }, + { + "start": 28594.2, + "end": 28595.7, + "probability": 0.4451 + }, + { + "start": 28595.8, + "end": 28598.66, + "probability": 0.895 + }, + { + "start": 28599.52, + "end": 28601.42, + "probability": 0.7917 + }, + { + "start": 28601.48, + "end": 28601.72, + "probability": 0.2836 + }, + { + "start": 28601.8, + "end": 28604.66, + "probability": 0.9648 + }, + { + "start": 28604.66, + "end": 28608.08, + "probability": 0.6961 + }, + { + "start": 28608.1, + "end": 28608.82, + "probability": 0.9299 + }, + { + "start": 28608.82, + "end": 28609.76, + "probability": 0.8112 + }, + { + "start": 28609.76, + "end": 28609.76, + "probability": 0.0296 + }, + { + "start": 28609.86, + "end": 28610.66, + "probability": 0.7508 + }, + { + "start": 28610.66, + "end": 28612.0, + "probability": 0.5461 + }, + { + "start": 28612.04, + "end": 28613.52, + "probability": 0.7566 + }, + { + "start": 28613.64, + "end": 28616.06, + "probability": 0.7943 + }, + { + "start": 28616.25, + "end": 28619.76, + "probability": 0.9816 + }, + { + "start": 28620.18, + "end": 28622.08, + "probability": 0.8604 + }, + { + "start": 28622.56, + "end": 28626.54, + "probability": 0.9919 + }, + { + "start": 28627.14, + "end": 28629.62, + "probability": 0.8868 + }, + { + "start": 28630.02, + "end": 28634.28, + "probability": 0.9924 + }, + { + "start": 28634.28, + "end": 28639.9, + "probability": 0.999 + }, + { + "start": 28640.4, + "end": 28641.03, + "probability": 0.4467 + }, + { + "start": 28641.78, + "end": 28645.4, + "probability": 0.6839 + }, + { + "start": 28646.86, + "end": 28648.62, + "probability": 0.975 + }, + { + "start": 28649.38, + "end": 28650.0, + "probability": 0.7139 + }, + { + "start": 28650.04, + "end": 28650.36, + "probability": 0.9149 + }, + { + "start": 28654.6, + "end": 28656.56, + "probability": 0.0162 + }, + { + "start": 28658.37, + "end": 28661.98, + "probability": 0.8904 + }, + { + "start": 28662.2, + "end": 28662.56, + "probability": 0.2952 + }, + { + "start": 28662.58, + "end": 28663.74, + "probability": 0.5248 + }, + { + "start": 28663.92, + "end": 28665.34, + "probability": 0.9761 + }, + { + "start": 28666.16, + "end": 28669.16, + "probability": 0.7596 + }, + { + "start": 28670.02, + "end": 28675.27, + "probability": 0.9889 + }, + { + "start": 28675.86, + "end": 28678.27, + "probability": 0.9844 + }, + { + "start": 28678.5, + "end": 28683.86, + "probability": 0.7374 + }, + { + "start": 28684.2, + "end": 28687.44, + "probability": 0.2801 + }, + { + "start": 28688.0, + "end": 28688.56, + "probability": 0.1663 + }, + { + "start": 28688.56, + "end": 28689.8, + "probability": 0.0333 + }, + { + "start": 28689.8, + "end": 28689.8, + "probability": 0.0223 + }, + { + "start": 28689.8, + "end": 28689.8, + "probability": 0.2883 + }, + { + "start": 28689.8, + "end": 28689.8, + "probability": 0.2756 + }, + { + "start": 28689.8, + "end": 28690.56, + "probability": 0.767 + }, + { + "start": 28690.72, + "end": 28692.36, + "probability": 0.7021 + }, + { + "start": 28692.36, + "end": 28693.13, + "probability": 0.4624 + }, + { + "start": 28693.32, + "end": 28694.7, + "probability": 0.1958 + }, + { + "start": 28694.72, + "end": 28697.56, + "probability": 0.8975 + }, + { + "start": 28698.26, + "end": 28699.1, + "probability": 0.4428 + }, + { + "start": 28700.12, + "end": 28701.2, + "probability": 0.6653 + }, + { + "start": 28701.4, + "end": 28706.36, + "probability": 0.9816 + }, + { + "start": 28706.44, + "end": 28706.74, + "probability": 0.7213 + }, + { + "start": 28706.78, + "end": 28707.14, + "probability": 0.8988 + }, + { + "start": 28707.24, + "end": 28707.42, + "probability": 0.8467 + }, + { + "start": 28707.42, + "end": 28708.21, + "probability": 0.7801 + }, + { + "start": 28708.8, + "end": 28709.04, + "probability": 0.985 + }, + { + "start": 28709.4, + "end": 28709.4, + "probability": 0.8537 + }, + { + "start": 28709.4, + "end": 28709.96, + "probability": 0.1784 + }, + { + "start": 28710.24, + "end": 28711.14, + "probability": 0.4945 + }, + { + "start": 28711.94, + "end": 28712.84, + "probability": 0.0685 + }, + { + "start": 28712.84, + "end": 28713.16, + "probability": 0.5566 + }, + { + "start": 28713.26, + "end": 28714.22, + "probability": 0.896 + }, + { + "start": 28714.24, + "end": 28715.14, + "probability": 0.8322 + }, + { + "start": 28715.66, + "end": 28716.74, + "probability": 0.0055 + }, + { + "start": 28716.78, + "end": 28717.38, + "probability": 0.6709 + }, + { + "start": 28717.48, + "end": 28718.42, + "probability": 0.6878 + }, + { + "start": 28718.52, + "end": 28719.58, + "probability": 0.1233 + }, + { + "start": 28720.5, + "end": 28721.34, + "probability": 0.3127 + }, + { + "start": 28722.68, + "end": 28722.68, + "probability": 0.0739 + }, + { + "start": 28722.68, + "end": 28722.84, + "probability": 0.0595 + }, + { + "start": 28722.84, + "end": 28722.84, + "probability": 0.1725 + }, + { + "start": 28722.84, + "end": 28723.96, + "probability": 0.7227 + }, + { + "start": 28724.38, + "end": 28726.19, + "probability": 0.9315 + }, + { + "start": 28727.18, + "end": 28729.56, + "probability": 0.7969 + }, + { + "start": 28732.38, + "end": 28736.48, + "probability": 0.9858 + }, + { + "start": 28737.02, + "end": 28739.22, + "probability": 0.9985 + }, + { + "start": 28739.62, + "end": 28742.1, + "probability": 0.9705 + }, + { + "start": 28742.2, + "end": 28743.64, + "probability": 0.8359 + }, + { + "start": 28744.0, + "end": 28745.52, + "probability": 0.6432 + }, + { + "start": 28745.56, + "end": 28746.32, + "probability": 0.9634 + }, + { + "start": 28747.6, + "end": 28750.58, + "probability": 0.4958 + }, + { + "start": 28750.72, + "end": 28754.12, + "probability": 0.7764 + }, + { + "start": 28754.36, + "end": 28754.76, + "probability": 0.068 + }, + { + "start": 28754.76, + "end": 28755.46, + "probability": 0.5284 + }, + { + "start": 28756.22, + "end": 28757.76, + "probability": 0.8881 + }, + { + "start": 28757.84, + "end": 28758.66, + "probability": 0.863 + }, + { + "start": 28760.4, + "end": 28761.5, + "probability": 0.0522 + }, + { + "start": 28762.0, + "end": 28762.4, + "probability": 0.7204 + }, + { + "start": 28762.46, + "end": 28765.28, + "probability": 0.97 + }, + { + "start": 28765.94, + "end": 28766.78, + "probability": 0.5641 + }, + { + "start": 28767.2, + "end": 28770.04, + "probability": 0.9872 + }, + { + "start": 28770.04, + "end": 28773.88, + "probability": 0.9651 + }, + { + "start": 28774.3, + "end": 28778.58, + "probability": 0.9524 + }, + { + "start": 28778.7, + "end": 28782.68, + "probability": 0.9946 + }, + { + "start": 28783.24, + "end": 28784.8, + "probability": 0.9951 + }, + { + "start": 28784.88, + "end": 28785.7, + "probability": 0.6179 + }, + { + "start": 28785.78, + "end": 28789.42, + "probability": 0.978 + }, + { + "start": 28789.84, + "end": 28791.04, + "probability": 0.9658 + }, + { + "start": 28791.58, + "end": 28792.95, + "probability": 0.9327 + }, + { + "start": 28793.24, + "end": 28794.54, + "probability": 0.9982 + }, + { + "start": 28794.66, + "end": 28795.84, + "probability": 0.998 + }, + { + "start": 28796.38, + "end": 28797.36, + "probability": 0.9777 + }, + { + "start": 28797.42, + "end": 28797.96, + "probability": 0.8654 + }, + { + "start": 28798.16, + "end": 28801.4, + "probability": 0.9912 + }, + { + "start": 28802.26, + "end": 28802.8, + "probability": 0.7428 + }, + { + "start": 28802.86, + "end": 28804.14, + "probability": 0.8404 + }, + { + "start": 28804.62, + "end": 28808.96, + "probability": 0.7314 + }, + { + "start": 28809.28, + "end": 28813.46, + "probability": 0.8684 + }, + { + "start": 28813.78, + "end": 28817.78, + "probability": 0.7466 + }, + { + "start": 28817.8, + "end": 28819.2, + "probability": 0.6417 + }, + { + "start": 28819.66, + "end": 28823.84, + "probability": 0.9372 + }, + { + "start": 28824.46, + "end": 28827.08, + "probability": 0.9958 + }, + { + "start": 28827.28, + "end": 28832.1, + "probability": 0.9878 + }, + { + "start": 28832.64, + "end": 28836.68, + "probability": 0.9786 + }, + { + "start": 28837.1, + "end": 28839.17, + "probability": 0.9976 + }, + { + "start": 28839.84, + "end": 28842.86, + "probability": 0.9863 + }, + { + "start": 28843.38, + "end": 28845.1, + "probability": 0.743 + }, + { + "start": 28845.18, + "end": 28846.66, + "probability": 0.9504 + }, + { + "start": 28847.1, + "end": 28851.88, + "probability": 0.9956 + }, + { + "start": 28851.98, + "end": 28853.22, + "probability": 0.9812 + }, + { + "start": 28853.36, + "end": 28854.34, + "probability": 0.9447 + }, + { + "start": 28854.34, + "end": 28855.66, + "probability": 0.9775 + }, + { + "start": 28856.3, + "end": 28857.76, + "probability": 0.908 + }, + { + "start": 28858.3, + "end": 28859.42, + "probability": 0.88 + }, + { + "start": 28859.54, + "end": 28861.81, + "probability": 0.9908 + }, + { + "start": 28862.24, + "end": 28865.42, + "probability": 0.966 + }, + { + "start": 28865.66, + "end": 28869.1, + "probability": 0.9512 + }, + { + "start": 28869.58, + "end": 28870.36, + "probability": 0.9707 + }, + { + "start": 28870.48, + "end": 28873.04, + "probability": 0.9985 + }, + { + "start": 28873.04, + "end": 28876.64, + "probability": 0.9891 + }, + { + "start": 28877.1, + "end": 28878.64, + "probability": 0.9929 + }, + { + "start": 28880.5, + "end": 28881.84, + "probability": 0.8272 + }, + { + "start": 28882.5, + "end": 28886.9, + "probability": 0.9919 + }, + { + "start": 28886.94, + "end": 28888.88, + "probability": 0.8199 + }, + { + "start": 28889.28, + "end": 28892.12, + "probability": 0.9917 + }, + { + "start": 28892.18, + "end": 28892.56, + "probability": 0.8224 + }, + { + "start": 28892.62, + "end": 28893.3, + "probability": 0.9581 + }, + { + "start": 28893.42, + "end": 28893.8, + "probability": 0.8152 + }, + { + "start": 28894.14, + "end": 28898.08, + "probability": 0.9967 + }, + { + "start": 28898.2, + "end": 28899.82, + "probability": 0.8262 + }, + { + "start": 28900.02, + "end": 28900.76, + "probability": 0.9471 + }, + { + "start": 28900.92, + "end": 28901.44, + "probability": 0.9102 + }, + { + "start": 28901.84, + "end": 28903.34, + "probability": 0.9545 + }, + { + "start": 28903.6, + "end": 28904.76, + "probability": 0.8536 + }, + { + "start": 28905.14, + "end": 28907.96, + "probability": 0.9256 + }, + { + "start": 28908.52, + "end": 28909.79, + "probability": 0.96 + }, + { + "start": 28910.28, + "end": 28911.4, + "probability": 0.9596 + }, + { + "start": 28911.64, + "end": 28914.54, + "probability": 0.9021 + }, + { + "start": 28914.58, + "end": 28915.28, + "probability": 0.566 + }, + { + "start": 28915.42, + "end": 28916.56, + "probability": 0.7831 + }, + { + "start": 28916.64, + "end": 28918.62, + "probability": 0.9149 + }, + { + "start": 28919.18, + "end": 28922.68, + "probability": 0.8873 + }, + { + "start": 28923.18, + "end": 28924.86, + "probability": 0.9502 + }, + { + "start": 28924.9, + "end": 28926.67, + "probability": 0.8619 + }, + { + "start": 28926.98, + "end": 28927.84, + "probability": 0.3019 + }, + { + "start": 28928.0, + "end": 28930.44, + "probability": 0.8498 + }, + { + "start": 28930.44, + "end": 28931.34, + "probability": 0.9238 + }, + { + "start": 28932.22, + "end": 28933.34, + "probability": 0.9903 + }, + { + "start": 28933.7, + "end": 28934.84, + "probability": 0.6054 + }, + { + "start": 28935.04, + "end": 28939.16, + "probability": 0.9867 + }, + { + "start": 28939.76, + "end": 28941.9, + "probability": 0.5723 + }, + { + "start": 28943.3, + "end": 28946.22, + "probability": 0.894 + }, + { + "start": 28947.06, + "end": 28950.56, + "probability": 0.9669 + }, + { + "start": 28951.66, + "end": 28952.84, + "probability": 0.911 + }, + { + "start": 28953.74, + "end": 28954.42, + "probability": 0.6583 + }, + { + "start": 28955.8, + "end": 28959.98, + "probability": 0.9647 + }, + { + "start": 28961.46, + "end": 28964.34, + "probability": 0.96 + }, + { + "start": 28965.12, + "end": 28968.7, + "probability": 0.9964 + }, + { + "start": 28970.14, + "end": 28971.68, + "probability": 0.6623 + }, + { + "start": 28972.26, + "end": 28976.66, + "probability": 0.8203 + }, + { + "start": 28977.62, + "end": 28979.6, + "probability": 0.9982 + }, + { + "start": 28980.24, + "end": 28983.6, + "probability": 0.974 + }, + { + "start": 28983.98, + "end": 28985.24, + "probability": 0.7461 + }, + { + "start": 28985.68, + "end": 28987.56, + "probability": 0.8475 + }, + { + "start": 28988.68, + "end": 28991.59, + "probability": 0.9632 + }, + { + "start": 28993.04, + "end": 28994.17, + "probability": 0.735 + }, + { + "start": 28994.7, + "end": 28996.9, + "probability": 0.8332 + }, + { + "start": 28998.16, + "end": 29000.38, + "probability": 0.9128 + }, + { + "start": 29001.56, + "end": 29002.63, + "probability": 0.9752 + }, + { + "start": 29003.5, + "end": 29006.72, + "probability": 0.9895 + }, + { + "start": 29006.8, + "end": 29009.34, + "probability": 0.8766 + }, + { + "start": 29009.34, + "end": 29009.84, + "probability": 0.4434 + }, + { + "start": 29011.08, + "end": 29017.14, + "probability": 0.9964 + }, + { + "start": 29017.92, + "end": 29019.88, + "probability": 0.8884 + }, + { + "start": 29021.0, + "end": 29023.84, + "probability": 0.9255 + }, + { + "start": 29024.7, + "end": 29027.98, + "probability": 0.9939 + }, + { + "start": 29029.0, + "end": 29031.28, + "probability": 0.6648 + }, + { + "start": 29032.26, + "end": 29037.3, + "probability": 0.9721 + }, + { + "start": 29038.2, + "end": 29041.76, + "probability": 0.7186 + }, + { + "start": 29041.82, + "end": 29043.64, + "probability": 0.7616 + }, + { + "start": 29044.5, + "end": 29045.7, + "probability": 0.2558 + }, + { + "start": 29048.1, + "end": 29050.58, + "probability": 0.8901 + }, + { + "start": 29051.24, + "end": 29051.9, + "probability": 0.4179 + }, + { + "start": 29051.9, + "end": 29053.48, + "probability": 0.8555 + }, + { + "start": 29053.54, + "end": 29054.28, + "probability": 0.6241 + }, + { + "start": 29054.38, + "end": 29054.48, + "probability": 0.4803 + }, + { + "start": 29055.6, + "end": 29057.72, + "probability": 0.7641 + }, + { + "start": 29058.34, + "end": 29060.72, + "probability": 0.9382 + }, + { + "start": 29061.36, + "end": 29065.08, + "probability": 0.7615 + }, + { + "start": 29065.08, + "end": 29067.6, + "probability": 0.9788 + }, + { + "start": 29067.68, + "end": 29068.0, + "probability": 0.3758 + }, + { + "start": 29068.22, + "end": 29071.3, + "probability": 0.9214 + }, + { + "start": 29071.3, + "end": 29074.48, + "probability": 0.9949 + }, + { + "start": 29074.54, + "end": 29079.08, + "probability": 0.9817 + }, + { + "start": 29079.72, + "end": 29081.46, + "probability": 0.9973 + }, + { + "start": 29082.24, + "end": 29083.98, + "probability": 0.9033 + }, + { + "start": 29085.36, + "end": 29088.52, + "probability": 0.95 + }, + { + "start": 29089.46, + "end": 29091.42, + "probability": 0.9111 + }, + { + "start": 29092.26, + "end": 29095.82, + "probability": 0.9591 + }, + { + "start": 29096.14, + "end": 29098.45, + "probability": 0.9943 + }, + { + "start": 29098.8, + "end": 29102.36, + "probability": 0.9771 + }, + { + "start": 29103.1, + "end": 29103.58, + "probability": 0.8723 + }, + { + "start": 29103.8, + "end": 29105.28, + "probability": 0.9353 + }, + { + "start": 29105.6, + "end": 29105.74, + "probability": 0.7546 + }, + { + "start": 29105.82, + "end": 29106.86, + "probability": 0.9748 + }, + { + "start": 29106.92, + "end": 29107.4, + "probability": 0.4677 + }, + { + "start": 29107.44, + "end": 29107.5, + "probability": 0.4462 + }, + { + "start": 29107.62, + "end": 29108.24, + "probability": 0.8613 + }, + { + "start": 29108.82, + "end": 29110.5, + "probability": 0.927 + }, + { + "start": 29111.16, + "end": 29112.9, + "probability": 0.679 + }, + { + "start": 29113.58, + "end": 29114.86, + "probability": 0.9045 + }, + { + "start": 29115.5, + "end": 29121.76, + "probability": 0.9916 + }, + { + "start": 29121.76, + "end": 29125.0, + "probability": 0.8508 + }, + { + "start": 29125.96, + "end": 29129.32, + "probability": 0.9629 + }, + { + "start": 29130.32, + "end": 29131.0, + "probability": 0.6084 + }, + { + "start": 29131.5, + "end": 29132.62, + "probability": 0.6484 + }, + { + "start": 29132.74, + "end": 29134.62, + "probability": 0.851 + }, + { + "start": 29134.92, + "end": 29135.62, + "probability": 0.9312 + }, + { + "start": 29135.98, + "end": 29137.48, + "probability": 0.9929 + }, + { + "start": 29138.14, + "end": 29140.52, + "probability": 0.9868 + }, + { + "start": 29141.26, + "end": 29143.48, + "probability": 0.9609 + }, + { + "start": 29143.66, + "end": 29144.72, + "probability": 0.8242 + }, + { + "start": 29145.58, + "end": 29147.76, + "probability": 0.9933 + }, + { + "start": 29149.18, + "end": 29150.33, + "probability": 0.9897 + }, + { + "start": 29151.64, + "end": 29153.42, + "probability": 0.9906 + }, + { + "start": 29154.44, + "end": 29158.02, + "probability": 0.7535 + }, + { + "start": 29158.02, + "end": 29160.24, + "probability": 0.9863 + }, + { + "start": 29161.02, + "end": 29162.92, + "probability": 0.8707 + }, + { + "start": 29163.76, + "end": 29165.42, + "probability": 0.8904 + }, + { + "start": 29166.42, + "end": 29167.74, + "probability": 0.8051 + }, + { + "start": 29167.8, + "end": 29173.36, + "probability": 0.7928 + }, + { + "start": 29173.82, + "end": 29175.48, + "probability": 0.9773 + }, + { + "start": 29176.1, + "end": 29177.24, + "probability": 0.9814 + }, + { + "start": 29177.62, + "end": 29179.14, + "probability": 0.9766 + }, + { + "start": 29179.24, + "end": 29180.42, + "probability": 0.821 + }, + { + "start": 29181.18, + "end": 29182.66, + "probability": 0.8261 + }, + { + "start": 29183.12, + "end": 29185.68, + "probability": 0.829 + }, + { + "start": 29186.42, + "end": 29190.93, + "probability": 0.9976 + }, + { + "start": 29191.36, + "end": 29193.06, + "probability": 0.5039 + }, + { + "start": 29193.34, + "end": 29193.54, + "probability": 0.052 + }, + { + "start": 29194.38, + "end": 29196.95, + "probability": 0.9539 + }, + { + "start": 29197.96, + "end": 29199.04, + "probability": 0.7687 + }, + { + "start": 29199.8, + "end": 29200.06, + "probability": 0.031 + }, + { + "start": 29200.06, + "end": 29200.96, + "probability": 0.3403 + }, + { + "start": 29202.22, + "end": 29204.75, + "probability": 0.1201 + }, + { + "start": 29205.98, + "end": 29207.72, + "probability": 0.6165 + }, + { + "start": 29208.16, + "end": 29208.68, + "probability": 0.4732 + }, + { + "start": 29209.18, + "end": 29209.36, + "probability": 0.0228 + }, + { + "start": 29209.52, + "end": 29212.86, + "probability": 0.8297 + }, + { + "start": 29213.1, + "end": 29213.76, + "probability": 0.5877 + }, + { + "start": 29214.48, + "end": 29215.0, + "probability": 0.4627 + }, + { + "start": 29215.0, + "end": 29217.48, + "probability": 0.1323 + }, + { + "start": 29218.44, + "end": 29218.46, + "probability": 0.1644 + }, + { + "start": 29218.46, + "end": 29219.22, + "probability": 0.4858 + }, + { + "start": 29219.22, + "end": 29220.2, + "probability": 0.6968 + }, + { + "start": 29220.2, + "end": 29222.38, + "probability": 0.5425 + }, + { + "start": 29222.44, + "end": 29223.1, + "probability": 0.5907 + }, + { + "start": 29223.1, + "end": 29227.6, + "probability": 0.0342 + }, + { + "start": 29227.68, + "end": 29229.34, + "probability": 0.6061 + }, + { + "start": 29229.62, + "end": 29232.46, + "probability": 0.724 + }, + { + "start": 29232.66, + "end": 29235.8, + "probability": 0.7632 + }, + { + "start": 29236.0, + "end": 29239.48, + "probability": 0.6078 + }, + { + "start": 29240.0, + "end": 29241.94, + "probability": 0.9901 + }, + { + "start": 29242.56, + "end": 29244.26, + "probability": 0.921 + }, + { + "start": 29244.5, + "end": 29246.56, + "probability": 0.5262 + }, + { + "start": 29247.06, + "end": 29248.48, + "probability": 0.8261 + }, + { + "start": 29249.38, + "end": 29251.28, + "probability": 0.9907 + }, + { + "start": 29251.96, + "end": 29253.8, + "probability": 0.9883 + }, + { + "start": 29254.28, + "end": 29256.52, + "probability": 0.9413 + }, + { + "start": 29257.1, + "end": 29258.66, + "probability": 0.7042 + }, + { + "start": 29259.46, + "end": 29261.12, + "probability": 0.8467 + }, + { + "start": 29261.24, + "end": 29264.3, + "probability": 0.9001 + }, + { + "start": 29264.44, + "end": 29266.5, + "probability": 0.98 + }, + { + "start": 29267.42, + "end": 29269.9, + "probability": 0.8294 + }, + { + "start": 29270.46, + "end": 29272.62, + "probability": 0.9482 + }, + { + "start": 29273.12, + "end": 29280.23, + "probability": 0.9971 + }, + { + "start": 29281.73, + "end": 29286.18, + "probability": 0.9958 + }, + { + "start": 29287.14, + "end": 29288.26, + "probability": 0.8373 + }, + { + "start": 29288.44, + "end": 29288.98, + "probability": 0.7782 + }, + { + "start": 29290.08, + "end": 29290.74, + "probability": 0.0102 + }, + { + "start": 29290.9, + "end": 29292.36, + "probability": 0.7951 + }, + { + "start": 29292.48, + "end": 29293.56, + "probability": 0.7454 + }, + { + "start": 29293.56, + "end": 29293.9, + "probability": 0.3942 + }, + { + "start": 29293.96, + "end": 29295.54, + "probability": 0.7936 + }, + { + "start": 29295.54, + "end": 29295.86, + "probability": 0.6805 + }, + { + "start": 29296.52, + "end": 29297.48, + "probability": 0.9854 + }, + { + "start": 29298.06, + "end": 29300.4, + "probability": 0.8706 + }, + { + "start": 29301.36, + "end": 29303.22, + "probability": 0.8861 + }, + { + "start": 29303.32, + "end": 29304.26, + "probability": 0.8466 + }, + { + "start": 29305.14, + "end": 29306.9, + "probability": 0.8157 + }, + { + "start": 29307.02, + "end": 29307.98, + "probability": 0.9602 + }, + { + "start": 29308.64, + "end": 29310.66, + "probability": 0.5576 + }, + { + "start": 29311.32, + "end": 29316.1, + "probability": 0.9877 + }, + { + "start": 29316.86, + "end": 29319.18, + "probability": 0.9391 + }, + { + "start": 29320.06, + "end": 29322.98, + "probability": 0.957 + }, + { + "start": 29323.72, + "end": 29326.04, + "probability": 0.9696 + }, + { + "start": 29326.68, + "end": 29330.86, + "probability": 0.9895 + }, + { + "start": 29331.48, + "end": 29332.88, + "probability": 0.4988 + }, + { + "start": 29332.9, + "end": 29333.98, + "probability": 0.4745 + }, + { + "start": 29334.7, + "end": 29335.38, + "probability": 0.8441 + }, + { + "start": 29336.02, + "end": 29337.74, + "probability": 0.7773 + }, + { + "start": 29338.66, + "end": 29343.5, + "probability": 0.9963 + }, + { + "start": 29343.5, + "end": 29348.2, + "probability": 0.9925 + }, + { + "start": 29348.98, + "end": 29352.64, + "probability": 0.9565 + }, + { + "start": 29353.32, + "end": 29354.82, + "probability": 0.954 + }, + { + "start": 29355.16, + "end": 29355.6, + "probability": 0.5903 + }, + { + "start": 29356.0, + "end": 29357.5, + "probability": 0.951 + }, + { + "start": 29357.8, + "end": 29358.72, + "probability": 0.9703 + }, + { + "start": 29359.06, + "end": 29361.34, + "probability": 0.987 + }, + { + "start": 29362.18, + "end": 29365.31, + "probability": 0.9315 + }, + { + "start": 29366.8, + "end": 29366.96, + "probability": 0.7411 + }, + { + "start": 29385.6, + "end": 29386.2, + "probability": 0.0107 + }, + { + "start": 29386.2, + "end": 29387.34, + "probability": 0.6409 + }, + { + "start": 29387.56, + "end": 29388.28, + "probability": 0.7649 + }, + { + "start": 29388.34, + "end": 29389.66, + "probability": 0.8907 + }, + { + "start": 29389.78, + "end": 29393.28, + "probability": 0.9932 + }, + { + "start": 29393.32, + "end": 29394.8, + "probability": 0.9659 + }, + { + "start": 29396.4, + "end": 29399.7, + "probability": 0.884 + }, + { + "start": 29402.82, + "end": 29403.68, + "probability": 0.9891 + }, + { + "start": 29403.68, + "end": 29406.6, + "probability": 0.9439 + }, + { + "start": 29407.66, + "end": 29408.74, + "probability": 0.7953 + }, + { + "start": 29408.8, + "end": 29409.79, + "probability": 0.9379 + }, + { + "start": 29410.08, + "end": 29412.02, + "probability": 0.9975 + }, + { + "start": 29412.94, + "end": 29414.62, + "probability": 0.9761 + }, + { + "start": 29415.68, + "end": 29417.6, + "probability": 0.9893 + }, + { + "start": 29418.44, + "end": 29420.98, + "probability": 0.9667 + }, + { + "start": 29421.78, + "end": 29426.52, + "probability": 0.9918 + }, + { + "start": 29426.94, + "end": 29429.08, + "probability": 0.7431 + }, + { + "start": 29430.16, + "end": 29432.88, + "probability": 0.9988 + }, + { + "start": 29434.28, + "end": 29435.56, + "probability": 0.9941 + }, + { + "start": 29436.62, + "end": 29440.34, + "probability": 0.9872 + }, + { + "start": 29441.16, + "end": 29443.22, + "probability": 0.9863 + }, + { + "start": 29443.8, + "end": 29444.54, + "probability": 0.6329 + }, + { + "start": 29445.36, + "end": 29449.54, + "probability": 0.8875 + }, + { + "start": 29450.6, + "end": 29451.72, + "probability": 0.8778 + }, + { + "start": 29451.82, + "end": 29453.46, + "probability": 0.9164 + }, + { + "start": 29453.96, + "end": 29458.84, + "probability": 0.996 + }, + { + "start": 29459.84, + "end": 29461.96, + "probability": 0.7489 + }, + { + "start": 29462.84, + "end": 29464.4, + "probability": 0.9971 + }, + { + "start": 29465.26, + "end": 29466.3, + "probability": 0.9411 + }, + { + "start": 29467.24, + "end": 29470.2, + "probability": 0.8721 + }, + { + "start": 29471.28, + "end": 29472.42, + "probability": 0.9235 + }, + { + "start": 29472.48, + "end": 29477.94, + "probability": 0.9844 + }, + { + "start": 29478.64, + "end": 29481.42, + "probability": 0.9091 + }, + { + "start": 29482.16, + "end": 29486.39, + "probability": 0.9927 + }, + { + "start": 29487.64, + "end": 29493.6, + "probability": 0.9922 + }, + { + "start": 29493.6, + "end": 29498.06, + "probability": 0.9954 + }, + { + "start": 29499.26, + "end": 29502.94, + "probability": 0.9941 + }, + { + "start": 29502.94, + "end": 29508.64, + "probability": 0.9995 + }, + { + "start": 29509.72, + "end": 29510.74, + "probability": 0.9985 + }, + { + "start": 29511.54, + "end": 29513.14, + "probability": 0.9745 + }, + { + "start": 29513.82, + "end": 29515.72, + "probability": 0.9917 + }, + { + "start": 29516.5, + "end": 29519.82, + "probability": 0.9781 + }, + { + "start": 29520.6, + "end": 29521.34, + "probability": 0.5766 + }, + { + "start": 29522.16, + "end": 29523.24, + "probability": 0.7834 + }, + { + "start": 29524.24, + "end": 29524.54, + "probability": 0.7285 + }, + { + "start": 29525.12, + "end": 29528.82, + "probability": 0.9784 + }, + { + "start": 29529.62, + "end": 29531.32, + "probability": 0.8726 + }, + { + "start": 29532.14, + "end": 29538.46, + "probability": 0.9636 + }, + { + "start": 29539.46, + "end": 29544.84, + "probability": 0.946 + }, + { + "start": 29545.62, + "end": 29547.88, + "probability": 0.9983 + }, + { + "start": 29548.46, + "end": 29549.7, + "probability": 0.8659 + }, + { + "start": 29550.28, + "end": 29551.44, + "probability": 0.9871 + }, + { + "start": 29552.12, + "end": 29553.28, + "probability": 0.9944 + }, + { + "start": 29553.46, + "end": 29556.7, + "probability": 0.9795 + }, + { + "start": 29557.22, + "end": 29560.02, + "probability": 0.8631 + }, + { + "start": 29560.14, + "end": 29561.44, + "probability": 0.6777 + }, + { + "start": 29561.88, + "end": 29564.26, + "probability": 0.9886 + }, + { + "start": 29565.62, + "end": 29568.38, + "probability": 0.9679 + }, + { + "start": 29569.16, + "end": 29572.18, + "probability": 0.958 + }, + { + "start": 29573.22, + "end": 29578.82, + "probability": 0.6562 + }, + { + "start": 29579.64, + "end": 29582.72, + "probability": 0.9901 + }, + { + "start": 29582.72, + "end": 29586.88, + "probability": 0.8287 + }, + { + "start": 29587.62, + "end": 29591.3, + "probability": 0.9963 + }, + { + "start": 29592.88, + "end": 29594.38, + "probability": 0.9941 + }, + { + "start": 29595.0, + "end": 29598.7, + "probability": 0.995 + }, + { + "start": 29598.7, + "end": 29602.54, + "probability": 0.9634 + }, + { + "start": 29603.42, + "end": 29603.8, + "probability": 0.894 + }, + { + "start": 29604.4, + "end": 29608.1, + "probability": 0.9761 + }, + { + "start": 29608.1, + "end": 29612.4, + "probability": 0.9978 + }, + { + "start": 29613.52, + "end": 29613.96, + "probability": 0.4326 + }, + { + "start": 29614.02, + "end": 29614.9, + "probability": 0.7869 + }, + { + "start": 29615.1, + "end": 29618.28, + "probability": 0.9985 + }, + { + "start": 29619.46, + "end": 29625.54, + "probability": 0.9988 + }, + { + "start": 29626.6, + "end": 29629.26, + "probability": 0.9958 + }, + { + "start": 29629.26, + "end": 29631.58, + "probability": 0.9924 + }, + { + "start": 29633.02, + "end": 29638.12, + "probability": 0.9837 + }, + { + "start": 29638.82, + "end": 29639.8, + "probability": 0.8978 + }, + { + "start": 29640.5, + "end": 29642.52, + "probability": 0.9896 + }, + { + "start": 29643.0, + "end": 29644.76, + "probability": 0.9815 + }, + { + "start": 29645.22, + "end": 29649.1, + "probability": 0.9938 + }, + { + "start": 29649.1, + "end": 29652.32, + "probability": 0.9705 + }, + { + "start": 29654.46, + "end": 29655.26, + "probability": 0.8417 + }, + { + "start": 29656.48, + "end": 29658.38, + "probability": 0.9845 + }, + { + "start": 29659.34, + "end": 29662.42, + "probability": 0.8777 + }, + { + "start": 29663.22, + "end": 29667.61, + "probability": 0.9269 + }, + { + "start": 29668.94, + "end": 29672.04, + "probability": 0.9242 + }, + { + "start": 29672.86, + "end": 29674.82, + "probability": 0.9487 + }, + { + "start": 29675.62, + "end": 29677.64, + "probability": 0.9934 + }, + { + "start": 29679.3, + "end": 29683.1, + "probability": 0.9489 + }, + { + "start": 29684.32, + "end": 29685.62, + "probability": 0.9643 + }, + { + "start": 29686.88, + "end": 29691.1, + "probability": 0.9937 + }, + { + "start": 29691.1, + "end": 29695.5, + "probability": 0.9986 + }, + { + "start": 29696.28, + "end": 29697.84, + "probability": 0.8417 + }, + { + "start": 29698.74, + "end": 29700.1, + "probability": 0.9895 + }, + { + "start": 29700.84, + "end": 29701.9, + "probability": 0.9939 + }, + { + "start": 29702.42, + "end": 29704.84, + "probability": 0.9976 + }, + { + "start": 29704.84, + "end": 29708.5, + "probability": 0.9499 + }, + { + "start": 29708.86, + "end": 29709.26, + "probability": 0.6459 + }, + { + "start": 29709.3, + "end": 29711.44, + "probability": 0.5699 + }, + { + "start": 29711.56, + "end": 29713.22, + "probability": 0.9404 + }, + { + "start": 29713.76, + "end": 29715.28, + "probability": 0.8805 + }, + { + "start": 29718.3, + "end": 29718.9, + "probability": 0.9986 + }, + { + "start": 29719.9, + "end": 29720.9, + "probability": 0.3208 + }, + { + "start": 29721.73, + "end": 29726.88, + "probability": 0.4519 + }, + { + "start": 29728.36, + "end": 29730.57, + "probability": 0.9353 + }, + { + "start": 29732.56, + "end": 29736.61, + "probability": 0.85 + }, + { + "start": 29737.62, + "end": 29739.64, + "probability": 0.9466 + }, + { + "start": 29739.7, + "end": 29745.34, + "probability": 0.9643 + }, + { + "start": 29745.64, + "end": 29749.14, + "probability": 0.7384 + }, + { + "start": 29749.26, + "end": 29753.42, + "probability": 0.8332 + }, + { + "start": 29753.52, + "end": 29754.78, + "probability": 0.99 + }, + { + "start": 29754.86, + "end": 29756.02, + "probability": 0.7022 + }, + { + "start": 29756.22, + "end": 29756.58, + "probability": 0.7562 + }, + { + "start": 29756.72, + "end": 29761.16, + "probability": 0.9504 + }, + { + "start": 29762.06, + "end": 29762.66, + "probability": 0.8045 + }, + { + "start": 29762.8, + "end": 29764.15, + "probability": 0.6761 + }, + { + "start": 29764.42, + "end": 29766.84, + "probability": 0.8848 + }, + { + "start": 29768.76, + "end": 29770.92, + "probability": 0.9083 + }, + { + "start": 29771.82, + "end": 29772.64, + "probability": 0.3505 + }, + { + "start": 29773.66, + "end": 29774.9, + "probability": 0.9888 + }, + { + "start": 29776.08, + "end": 29780.1, + "probability": 0.8109 + }, + { + "start": 29780.5, + "end": 29781.32, + "probability": 0.546 + }, + { + "start": 29781.56, + "end": 29782.36, + "probability": 0.9143 + }, + { + "start": 29782.66, + "end": 29783.66, + "probability": 0.8327 + }, + { + "start": 29784.26, + "end": 29785.54, + "probability": 0.9788 + }, + { + "start": 29786.38, + "end": 29788.58, + "probability": 0.7974 + }, + { + "start": 29788.66, + "end": 29792.06, + "probability": 0.9822 + }, + { + "start": 29792.4, + "end": 29796.74, + "probability": 0.9816 + }, + { + "start": 29796.98, + "end": 29800.38, + "probability": 0.6168 + }, + { + "start": 29800.78, + "end": 29804.52, + "probability": 0.866 + }, + { + "start": 29805.0, + "end": 29806.04, + "probability": 0.8292 + }, + { + "start": 29806.42, + "end": 29809.32, + "probability": 0.8896 + }, + { + "start": 29810.06, + "end": 29811.86, + "probability": 0.9785 + }, + { + "start": 29813.22, + "end": 29814.82, + "probability": 0.96 + }, + { + "start": 29815.52, + "end": 29820.7, + "probability": 0.994 + }, + { + "start": 29820.7, + "end": 29824.76, + "probability": 0.9899 + }, + { + "start": 29825.76, + "end": 29828.06, + "probability": 0.9557 + }, + { + "start": 29829.22, + "end": 29830.68, + "probability": 0.9292 + }, + { + "start": 29831.48, + "end": 29837.74, + "probability": 0.9832 + }, + { + "start": 29837.74, + "end": 29843.88, + "probability": 0.9971 + }, + { + "start": 29844.58, + "end": 29845.94, + "probability": 0.8118 + }, + { + "start": 29846.62, + "end": 29849.5, + "probability": 0.5246 + }, + { + "start": 29850.34, + "end": 29851.26, + "probability": 0.8847 + }, + { + "start": 29854.14, + "end": 29855.11, + "probability": 0.8936 + }, + { + "start": 29857.96, + "end": 29862.3, + "probability": 0.7883 + }, + { + "start": 29863.54, + "end": 29864.92, + "probability": 0.7525 + }, + { + "start": 29866.08, + "end": 29869.64, + "probability": 0.9666 + }, + { + "start": 29870.92, + "end": 29874.24, + "probability": 0.9782 + }, + { + "start": 29875.04, + "end": 29876.32, + "probability": 0.9172 + }, + { + "start": 29877.22, + "end": 29879.04, + "probability": 0.6803 + }, + { + "start": 29879.8, + "end": 29883.58, + "probability": 0.7623 + }, + { + "start": 29883.74, + "end": 29886.88, + "probability": 0.7495 + }, + { + "start": 29887.56, + "end": 29889.9, + "probability": 0.9324 + }, + { + "start": 29890.88, + "end": 29893.98, + "probability": 0.8863 + }, + { + "start": 29894.18, + "end": 29900.36, + "probability": 0.9747 + }, + { + "start": 29900.36, + "end": 29905.16, + "probability": 0.9832 + }, + { + "start": 29906.2, + "end": 29906.9, + "probability": 0.5664 + }, + { + "start": 29907.8, + "end": 29910.24, + "probability": 0.5974 + }, + { + "start": 29911.26, + "end": 29912.88, + "probability": 0.6888 + }, + { + "start": 29913.0, + "end": 29916.14, + "probability": 0.9616 + }, + { + "start": 29917.06, + "end": 29918.38, + "probability": 0.6777 + }, + { + "start": 29919.54, + "end": 29921.04, + "probability": 0.983 + }, + { + "start": 29921.9, + "end": 29926.9, + "probability": 0.9937 + }, + { + "start": 29928.22, + "end": 29928.56, + "probability": 0.3783 + }, + { + "start": 29928.64, + "end": 29931.94, + "probability": 0.9941 + }, + { + "start": 29932.34, + "end": 29937.82, + "probability": 0.9709 + }, + { + "start": 29937.94, + "end": 29940.94, + "probability": 0.8801 + }, + { + "start": 29941.74, + "end": 29943.6, + "probability": 0.5072 + }, + { + "start": 29945.14, + "end": 29947.16, + "probability": 0.9873 + }, + { + "start": 29948.04, + "end": 29951.68, + "probability": 0.9938 + }, + { + "start": 29951.92, + "end": 29956.2, + "probability": 0.9924 + }, + { + "start": 29956.64, + "end": 29965.18, + "probability": 0.9767 + }, + { + "start": 29966.14, + "end": 29966.52, + "probability": 0.5166 + }, + { + "start": 29966.66, + "end": 29967.86, + "probability": 0.7667 + }, + { + "start": 29968.04, + "end": 29971.7, + "probability": 0.9426 + }, + { + "start": 29973.13, + "end": 29974.49, + "probability": 0.7961 + }, + { + "start": 29974.94, + "end": 29975.52, + "probability": 0.8252 + }, + { + "start": 29976.52, + "end": 29979.53, + "probability": 0.9595 + }, + { + "start": 29980.18, + "end": 29984.93, + "probability": 0.9701 + }, + { + "start": 29985.28, + "end": 29987.9, + "probability": 0.9499 + }, + { + "start": 29988.38, + "end": 29989.68, + "probability": 0.883 + }, + { + "start": 29989.82, + "end": 29990.96, + "probability": 0.7369 + }, + { + "start": 29991.94, + "end": 29992.73, + "probability": 0.5693 + }, + { + "start": 29993.04, + "end": 29995.3, + "probability": 0.8929 + }, + { + "start": 29995.94, + "end": 30000.98, + "probability": 0.979 + }, + { + "start": 30000.98, + "end": 30003.98, + "probability": 0.9755 + }, + { + "start": 30007.78, + "end": 30010.18, + "probability": 0.7314 + }, + { + "start": 30011.4, + "end": 30014.56, + "probability": 0.9555 + }, + { + "start": 30015.24, + "end": 30018.96, + "probability": 0.8612 + }, + { + "start": 30019.8, + "end": 30023.12, + "probability": 0.927 + }, + { + "start": 30023.26, + "end": 30029.72, + "probability": 0.8187 + }, + { + "start": 30030.54, + "end": 30031.2, + "probability": 0.9848 + }, + { + "start": 30031.28, + "end": 30032.22, + "probability": 0.7736 + }, + { + "start": 30032.32, + "end": 30034.38, + "probability": 0.6819 + }, + { + "start": 30036.02, + "end": 30038.46, + "probability": 0.4987 + }, + { + "start": 30039.12, + "end": 30044.58, + "probability": 0.8297 + }, + { + "start": 30045.16, + "end": 30049.0, + "probability": 0.9933 + }, + { + "start": 30049.08, + "end": 30051.5, + "probability": 0.8344 + }, + { + "start": 30051.88, + "end": 30053.04, + "probability": 0.9341 + }, + { + "start": 30053.1, + "end": 30054.28, + "probability": 0.9744 + }, + { + "start": 30055.88, + "end": 30058.18, + "probability": 0.8977 + }, + { + "start": 30058.32, + "end": 30059.32, + "probability": 0.9741 + }, + { + "start": 30059.44, + "end": 30059.98, + "probability": 0.7625 + }, + { + "start": 30060.84, + "end": 30064.66, + "probability": 0.9906 + }, + { + "start": 30064.76, + "end": 30065.12, + "probability": 0.8918 + }, + { + "start": 30065.26, + "end": 30065.5, + "probability": 0.7455 + }, + { + "start": 30065.66, + "end": 30067.04, + "probability": 0.5365 + }, + { + "start": 30067.42, + "end": 30070.99, + "probability": 0.9309 + }, + { + "start": 30072.78, + "end": 30076.46, + "probability": 0.9085 + }, + { + "start": 30077.8, + "end": 30079.68, + "probability": 0.966 + }, + { + "start": 30080.28, + "end": 30081.4, + "probability": 0.9866 + }, + { + "start": 30081.5, + "end": 30083.08, + "probability": 0.9619 + }, + { + "start": 30083.4, + "end": 30084.67, + "probability": 0.742 + }, + { + "start": 30086.22, + "end": 30089.91, + "probability": 0.9635 + }, + { + "start": 30091.14, + "end": 30093.9, + "probability": 0.9253 + }, + { + "start": 30094.64, + "end": 30098.74, + "probability": 0.9153 + }, + { + "start": 30099.22, + "end": 30102.63, + "probability": 0.9399 + }, + { + "start": 30103.56, + "end": 30107.08, + "probability": 0.8717 + }, + { + "start": 30107.34, + "end": 30107.97, + "probability": 0.9851 + }, + { + "start": 30108.18, + "end": 30110.82, + "probability": 0.9766 + }, + { + "start": 30111.42, + "end": 30113.78, + "probability": 0.9975 + }, + { + "start": 30116.5, + "end": 30117.72, + "probability": 0.6258 + }, + { + "start": 30118.42, + "end": 30121.5, + "probability": 0.5346 + }, + { + "start": 30121.6, + "end": 30123.52, + "probability": 0.8452 + }, + { + "start": 30124.26, + "end": 30125.54, + "probability": 0.9766 + }, + { + "start": 30127.14, + "end": 30129.92, + "probability": 0.9812 + }, + { + "start": 30130.14, + "end": 30133.48, + "probability": 0.9907 + }, + { + "start": 30136.96, + "end": 30139.4, + "probability": 0.9684 + }, + { + "start": 30139.48, + "end": 30141.18, + "probability": 0.9521 + }, + { + "start": 30142.14, + "end": 30143.29, + "probability": 0.9229 + }, + { + "start": 30144.24, + "end": 30147.52, + "probability": 0.5161 + }, + { + "start": 30148.28, + "end": 30150.86, + "probability": 0.9734 + }, + { + "start": 30151.74, + "end": 30155.24, + "probability": 0.9279 + }, + { + "start": 30155.88, + "end": 30159.88, + "probability": 0.9417 + }, + { + "start": 30160.46, + "end": 30161.58, + "probability": 0.9946 + }, + { + "start": 30162.6, + "end": 30166.98, + "probability": 0.9897 + }, + { + "start": 30169.41, + "end": 30175.02, + "probability": 0.8264 + }, + { + "start": 30175.46, + "end": 30175.98, + "probability": 0.3286 + }, + { + "start": 30176.24, + "end": 30176.94, + "probability": 0.4729 + }, + { + "start": 30177.06, + "end": 30178.04, + "probability": 0.6126 + }, + { + "start": 30178.74, + "end": 30181.68, + "probability": 0.9193 + }, + { + "start": 30181.94, + "end": 30184.12, + "probability": 0.746 + }, + { + "start": 30184.48, + "end": 30190.72, + "probability": 0.9922 + }, + { + "start": 30191.04, + "end": 30194.64, + "probability": 0.9922 + }, + { + "start": 30194.76, + "end": 30195.42, + "probability": 0.6187 + }, + { + "start": 30195.42, + "end": 30196.0, + "probability": 0.8079 + }, + { + "start": 30198.46, + "end": 30199.59, + "probability": 0.9598 + }, + { + "start": 30201.08, + "end": 30202.02, + "probability": 0.9907 + }, + { + "start": 30203.1, + "end": 30204.22, + "probability": 0.9932 + }, + { + "start": 30206.26, + "end": 30211.08, + "probability": 0.9964 + }, + { + "start": 30212.56, + "end": 30214.28, + "probability": 0.6164 + }, + { + "start": 30215.56, + "end": 30217.8, + "probability": 0.9191 + }, + { + "start": 30218.78, + "end": 30220.67, + "probability": 0.5619 + }, + { + "start": 30221.82, + "end": 30223.31, + "probability": 0.9639 + }, + { + "start": 30224.34, + "end": 30232.34, + "probability": 0.988 + }, + { + "start": 30232.98, + "end": 30233.38, + "probability": 0.7106 + }, + { + "start": 30233.44, + "end": 30235.1, + "probability": 0.9219 + }, + { + "start": 30235.58, + "end": 30236.62, + "probability": 0.7987 + }, + { + "start": 30241.22, + "end": 30242.42, + "probability": 0.7979 + }, + { + "start": 30242.68, + "end": 30243.66, + "probability": 0.1423 + }, + { + "start": 30243.84, + "end": 30247.72, + "probability": 0.8128 + }, + { + "start": 30250.14, + "end": 30253.3, + "probability": 0.9839 + }, + { + "start": 30253.82, + "end": 30254.6, + "probability": 0.7515 + }, + { + "start": 30255.16, + "end": 30258.2, + "probability": 0.8992 + }, + { + "start": 30258.94, + "end": 30261.8, + "probability": 0.9849 + }, + { + "start": 30264.54, + "end": 30265.7, + "probability": 0.8973 + }, + { + "start": 30266.66, + "end": 30268.42, + "probability": 0.4458 + }, + { + "start": 30268.82, + "end": 30271.04, + "probability": 0.8941 + }, + { + "start": 30271.98, + "end": 30272.42, + "probability": 0.5056 + }, + { + "start": 30272.84, + "end": 30275.72, + "probability": 0.8406 + }, + { + "start": 30276.14, + "end": 30276.98, + "probability": 0.923 + }, + { + "start": 30277.06, + "end": 30281.84, + "probability": 0.9598 + }, + { + "start": 30282.26, + "end": 30284.24, + "probability": 0.998 + }, + { + "start": 30284.3, + "end": 30285.18, + "probability": 0.7771 + }, + { + "start": 30285.54, + "end": 30288.52, + "probability": 0.9907 + }, + { + "start": 30289.04, + "end": 30291.98, + "probability": 0.442 + }, + { + "start": 30292.43, + "end": 30298.32, + "probability": 0.6592 + }, + { + "start": 30298.56, + "end": 30300.02, + "probability": 0.9524 + }, + { + "start": 30300.36, + "end": 30301.52, + "probability": 0.6457 + }, + { + "start": 30301.9, + "end": 30304.48, + "probability": 0.7357 + }, + { + "start": 30304.7, + "end": 30307.74, + "probability": 0.8448 + }, + { + "start": 30307.74, + "end": 30308.66, + "probability": 0.4707 + }, + { + "start": 30309.1, + "end": 30310.98, + "probability": 0.8667 + }, + { + "start": 30311.26, + "end": 30311.7, + "probability": 0.6799 + }, + { + "start": 30312.02, + "end": 30317.0, + "probability": 0.9694 + }, + { + "start": 30317.08, + "end": 30318.08, + "probability": 0.9053 + }, + { + "start": 30318.4, + "end": 30321.76, + "probability": 0.955 + }, + { + "start": 30322.4, + "end": 30323.9, + "probability": 0.825 + }, + { + "start": 30324.72, + "end": 30328.86, + "probability": 0.8315 + }, + { + "start": 30329.0, + "end": 30329.0, + "probability": 0.0036 + }, + { + "start": 30329.0, + "end": 30330.1, + "probability": 0.6998 + }, + { + "start": 30330.36, + "end": 30331.08, + "probability": 0.8375 + }, + { + "start": 30331.16, + "end": 30332.5, + "probability": 0.7509 + }, + { + "start": 30332.5, + "end": 30333.36, + "probability": 0.4275 + }, + { + "start": 30333.6, + "end": 30334.16, + "probability": 0.3101 + }, + { + "start": 30334.18, + "end": 30334.7, + "probability": 0.4556 + }, + { + "start": 30334.74, + "end": 30335.5, + "probability": 0.3055 + }, + { + "start": 30338.78, + "end": 30341.34, + "probability": 0.0034 + }, + { + "start": 30349.1, + "end": 30349.66, + "probability": 0.168 + }, + { + "start": 30350.5, + "end": 30356.02, + "probability": 0.7642 + }, + { + "start": 30356.52, + "end": 30361.82, + "probability": 0.8113 + }, + { + "start": 30364.24, + "end": 30364.32, + "probability": 0.1547 + }, + { + "start": 30364.32, + "end": 30366.66, + "probability": 0.4947 + }, + { + "start": 30367.48, + "end": 30368.46, + "probability": 0.77 + }, + { + "start": 30368.9, + "end": 30372.78, + "probability": 0.9674 + }, + { + "start": 30373.24, + "end": 30374.36, + "probability": 0.4015 + }, + { + "start": 30375.22, + "end": 30377.92, + "probability": 0.9149 + }, + { + "start": 30378.88, + "end": 30381.34, + "probability": 0.6261 + }, + { + "start": 30383.18, + "end": 30384.46, + "probability": 0.7052 + }, + { + "start": 30384.8, + "end": 30388.58, + "probability": 0.7963 + }, + { + "start": 30388.66, + "end": 30392.42, + "probability": 0.6468 + }, + { + "start": 30392.66, + "end": 30393.26, + "probability": 0.5265 + }, + { + "start": 30393.36, + "end": 30394.0, + "probability": 0.6692 + }, + { + "start": 30394.32, + "end": 30395.0, + "probability": 0.9264 + }, + { + "start": 30395.06, + "end": 30396.2, + "probability": 0.7297 + }, + { + "start": 30396.2, + "end": 30397.48, + "probability": 0.0167 + }, + { + "start": 30403.42, + "end": 30405.44, + "probability": 0.8052 + }, + { + "start": 30406.54, + "end": 30408.42, + "probability": 0.5123 + }, + { + "start": 30409.92, + "end": 30409.92, + "probability": 0.1638 + }, + { + "start": 30409.92, + "end": 30411.08, + "probability": 0.1473 + }, + { + "start": 30412.18, + "end": 30412.76, + "probability": 0.4184 + }, + { + "start": 30413.42, + "end": 30413.56, + "probability": 0.484 + }, + { + "start": 30414.24, + "end": 30415.42, + "probability": 0.6726 + }, + { + "start": 30415.66, + "end": 30421.7, + "probability": 0.819 + }, + { + "start": 30422.38, + "end": 30424.32, + "probability": 0.4117 + }, + { + "start": 30425.04, + "end": 30430.34, + "probability": 0.9857 + }, + { + "start": 30434.66, + "end": 30436.96, + "probability": 0.9127 + }, + { + "start": 30437.1, + "end": 30437.44, + "probability": 0.6045 + }, + { + "start": 30437.8, + "end": 30440.4, + "probability": 0.5936 + }, + { + "start": 30440.52, + "end": 30442.0, + "probability": 0.1527 + }, + { + "start": 30445.68, + "end": 30446.44, + "probability": 0.2971 + }, + { + "start": 30447.98, + "end": 30452.92, + "probability": 0.1107 + }, + { + "start": 30454.24, + "end": 30456.08, + "probability": 0.0003 + }, + { + "start": 30471.04, + "end": 30476.24, + "probability": 0.8027 + }, + { + "start": 30476.28, + "end": 30479.32, + "probability": 0.9333 + }, + { + "start": 30480.94, + "end": 30483.9, + "probability": 0.9899 + }, + { + "start": 30485.04, + "end": 30486.34, + "probability": 0.9774 + }, + { + "start": 30487.34, + "end": 30490.64, + "probability": 0.9874 + }, + { + "start": 30491.52, + "end": 30493.1, + "probability": 0.6647 + }, + { + "start": 30493.88, + "end": 30495.26, + "probability": 0.9402 + }, + { + "start": 30496.22, + "end": 30497.94, + "probability": 0.98 + }, + { + "start": 30499.36, + "end": 30502.38, + "probability": 0.8947 + }, + { + "start": 30503.28, + "end": 30505.72, + "probability": 0.9846 + }, + { + "start": 30506.54, + "end": 30508.9, + "probability": 0.9803 + }, + { + "start": 30510.48, + "end": 30513.48, + "probability": 0.8042 + }, + { + "start": 30514.72, + "end": 30520.54, + "probability": 0.9268 + }, + { + "start": 30520.74, + "end": 30526.74, + "probability": 0.9624 + }, + { + "start": 30527.58, + "end": 30529.98, + "probability": 0.9883 + }, + { + "start": 30531.26, + "end": 30539.42, + "probability": 0.9913 + }, + { + "start": 30540.92, + "end": 30542.76, + "probability": 0.8914 + }, + { + "start": 30542.96, + "end": 30548.94, + "probability": 0.9851 + }, + { + "start": 30549.96, + "end": 30552.1, + "probability": 0.9944 + }, + { + "start": 30553.0, + "end": 30554.04, + "probability": 0.753 + }, + { + "start": 30555.02, + "end": 30556.56, + "probability": 0.8887 + }, + { + "start": 30557.28, + "end": 30558.56, + "probability": 0.9875 + }, + { + "start": 30559.22, + "end": 30561.64, + "probability": 0.96 + }, + { + "start": 30562.76, + "end": 30568.72, + "probability": 0.9939 + }, + { + "start": 30569.64, + "end": 30569.98, + "probability": 0.9463 + }, + { + "start": 30570.52, + "end": 30574.26, + "probability": 0.9977 + }, + { + "start": 30574.26, + "end": 30576.56, + "probability": 0.9976 + }, + { + "start": 30577.16, + "end": 30580.94, + "probability": 0.9381 + }, + { + "start": 30581.12, + "end": 30583.02, + "probability": 0.9639 + }, + { + "start": 30583.36, + "end": 30585.76, + "probability": 0.9286 + }, + { + "start": 30586.66, + "end": 30588.86, + "probability": 0.9577 + }, + { + "start": 30591.98, + "end": 30594.73, + "probability": 0.9805 + }, + { + "start": 30595.62, + "end": 30600.12, + "probability": 0.9941 + }, + { + "start": 30601.42, + "end": 30605.32, + "probability": 0.9914 + }, + { + "start": 30607.3, + "end": 30609.9, + "probability": 0.9827 + }, + { + "start": 30610.92, + "end": 30612.8, + "probability": 0.9938 + }, + { + "start": 30613.54, + "end": 30615.34, + "probability": 0.9644 + }, + { + "start": 30616.72, + "end": 30619.74, + "probability": 0.8425 + }, + { + "start": 30620.62, + "end": 30622.72, + "probability": 0.8309 + }, + { + "start": 30623.32, + "end": 30625.24, + "probability": 0.997 + }, + { + "start": 30625.4, + "end": 30627.1, + "probability": 0.9963 + }, + { + "start": 30627.62, + "end": 30630.66, + "probability": 0.979 + }, + { + "start": 30630.8, + "end": 30632.0, + "probability": 0.9673 + }, + { + "start": 30632.58, + "end": 30633.74, + "probability": 0.9624 + }, + { + "start": 30635.34, + "end": 30641.04, + "probability": 0.9976 + }, + { + "start": 30642.32, + "end": 30645.26, + "probability": 0.5403 + }, + { + "start": 30645.38, + "end": 30649.56, + "probability": 0.9849 + }, + { + "start": 30650.14, + "end": 30652.49, + "probability": 0.9965 + }, + { + "start": 30653.36, + "end": 30656.22, + "probability": 0.87 + }, + { + "start": 30656.8, + "end": 30659.92, + "probability": 0.969 + }, + { + "start": 30661.1, + "end": 30663.68, + "probability": 0.9651 + }, + { + "start": 30664.66, + "end": 30668.34, + "probability": 0.9658 + }, + { + "start": 30668.9, + "end": 30670.34, + "probability": 0.5266 + }, + { + "start": 30670.44, + "end": 30672.88, + "probability": 0.809 + }, + { + "start": 30673.18, + "end": 30674.68, + "probability": 0.5588 + }, + { + "start": 30674.94, + "end": 30675.1, + "probability": 0.2708 + }, + { + "start": 30675.1, + "end": 30678.26, + "probability": 0.9517 + }, + { + "start": 30678.28, + "end": 30679.58, + "probability": 0.8297 + }, + { + "start": 30679.72, + "end": 30682.0, + "probability": 0.9937 + }, + { + "start": 30682.6, + "end": 30684.78, + "probability": 0.6188 + }, + { + "start": 30684.9, + "end": 30685.22, + "probability": 0.3387 + }, + { + "start": 30685.22, + "end": 30685.22, + "probability": 0.2784 + }, + { + "start": 30685.24, + "end": 30685.56, + "probability": 0.7958 + }, + { + "start": 30685.62, + "end": 30686.69, + "probability": 0.9868 + }, + { + "start": 30687.02, + "end": 30687.6, + "probability": 0.9385 + }, + { + "start": 30688.26, + "end": 30689.19, + "probability": 0.9912 + }, + { + "start": 30690.46, + "end": 30691.76, + "probability": 0.981 + }, + { + "start": 30694.16, + "end": 30695.24, + "probability": 0.9664 + }, + { + "start": 30696.32, + "end": 30699.2, + "probability": 0.8052 + }, + { + "start": 30699.2, + "end": 30701.44, + "probability": 0.5889 + }, + { + "start": 30701.54, + "end": 30701.96, + "probability": 0.577 + }, + { + "start": 30702.52, + "end": 30702.92, + "probability": 0.8388 + }, + { + "start": 30703.84, + "end": 30705.72, + "probability": 0.9775 + }, + { + "start": 30705.86, + "end": 30707.76, + "probability": 0.8854 + }, + { + "start": 30707.94, + "end": 30710.34, + "probability": 0.78 + }, + { + "start": 30710.54, + "end": 30711.22, + "probability": 0.9449 + }, + { + "start": 30711.32, + "end": 30711.92, + "probability": 0.8175 + }, + { + "start": 30712.88, + "end": 30714.52, + "probability": 0.9648 + }, + { + "start": 30716.26, + "end": 30717.82, + "probability": 0.8821 + }, + { + "start": 30718.76, + "end": 30722.16, + "probability": 0.5523 + }, + { + "start": 30723.92, + "end": 30726.72, + "probability": 0.7864 + }, + { + "start": 30727.58, + "end": 30728.88, + "probability": 0.8422 + }, + { + "start": 30729.6, + "end": 30731.34, + "probability": 0.9971 + }, + { + "start": 30731.9, + "end": 30734.12, + "probability": 0.9897 + }, + { + "start": 30734.54, + "end": 30735.26, + "probability": 0.3115 + }, + { + "start": 30735.32, + "end": 30735.8, + "probability": 0.2433 + }, + { + "start": 30735.96, + "end": 30738.46, + "probability": 0.8829 + }, + { + "start": 30739.06, + "end": 30740.17, + "probability": 0.9238 + }, + { + "start": 30740.96, + "end": 30742.4, + "probability": 0.9053 + }, + { + "start": 30742.5, + "end": 30743.6, + "probability": 0.94 + }, + { + "start": 30743.66, + "end": 30744.8, + "probability": 0.8974 + }, + { + "start": 30745.44, + "end": 30748.38, + "probability": 0.9911 + }, + { + "start": 30749.08, + "end": 30753.98, + "probability": 0.8136 + }, + { + "start": 30754.82, + "end": 30755.82, + "probability": 0.9077 + }, + { + "start": 30756.68, + "end": 30757.5, + "probability": 0.8936 + }, + { + "start": 30759.14, + "end": 30759.86, + "probability": 0.7636 + }, + { + "start": 30759.94, + "end": 30763.22, + "probability": 0.9871 + }, + { + "start": 30764.68, + "end": 30767.0, + "probability": 0.9883 + }, + { + "start": 30767.96, + "end": 30771.82, + "probability": 0.9902 + }, + { + "start": 30771.82, + "end": 30775.86, + "probability": 0.9016 + }, + { + "start": 30776.04, + "end": 30776.8, + "probability": 0.4218 + }, + { + "start": 30778.52, + "end": 30778.54, + "probability": 0.0002 + }, + { + "start": 30780.54, + "end": 30781.46, + "probability": 0.1379 + }, + { + "start": 30781.48, + "end": 30781.56, + "probability": 0.0651 + }, + { + "start": 30781.56, + "end": 30784.3, + "probability": 0.817 + }, + { + "start": 30785.5, + "end": 30789.08, + "probability": 0.8159 + }, + { + "start": 30789.78, + "end": 30791.12, + "probability": 0.9082 + }, + { + "start": 30792.64, + "end": 30794.18, + "probability": 0.6933 + }, + { + "start": 30794.58, + "end": 30794.98, + "probability": 0.5857 + }, + { + "start": 30795.36, + "end": 30798.74, + "probability": 0.9965 + }, + { + "start": 30798.88, + "end": 30800.1, + "probability": 0.0536 + }, + { + "start": 30800.12, + "end": 30802.38, + "probability": 0.7832 + }, + { + "start": 30802.38, + "end": 30803.58, + "probability": 0.5359 + }, + { + "start": 30803.74, + "end": 30804.92, + "probability": 0.7551 + }, + { + "start": 30805.79, + "end": 30811.78, + "probability": 0.988 + }, + { + "start": 30813.38, + "end": 30818.84, + "probability": 0.8376 + }, + { + "start": 30819.78, + "end": 30821.18, + "probability": 0.7519 + }, + { + "start": 30821.88, + "end": 30825.38, + "probability": 0.9858 + }, + { + "start": 30826.48, + "end": 30827.96, + "probability": 0.8138 + }, + { + "start": 30828.54, + "end": 30831.84, + "probability": 0.9925 + }, + { + "start": 30831.84, + "end": 30835.8, + "probability": 0.9945 + }, + { + "start": 30835.9, + "end": 30836.74, + "probability": 0.6396 + }, + { + "start": 30836.76, + "end": 30837.27, + "probability": 0.5591 + }, + { + "start": 30838.04, + "end": 30839.96, + "probability": 0.7882 + }, + { + "start": 30840.4, + "end": 30843.72, + "probability": 0.9525 + }, + { + "start": 30844.28, + "end": 30845.56, + "probability": 0.9043 + }, + { + "start": 30846.26, + "end": 30846.9, + "probability": 0.9517 + }, + { + "start": 30847.84, + "end": 30849.7, + "probability": 0.9893 + }, + { + "start": 30850.64, + "end": 30853.24, + "probability": 0.9549 + }, + { + "start": 30853.38, + "end": 30854.68, + "probability": 0.3312 + }, + { + "start": 30854.92, + "end": 30855.12, + "probability": 0.792 + }, + { + "start": 30855.34, + "end": 30858.44, + "probability": 0.9368 + }, + { + "start": 30859.82, + "end": 30861.58, + "probability": 0.8039 + }, + { + "start": 30862.64, + "end": 30864.9, + "probability": 0.9028 + }, + { + "start": 30865.78, + "end": 30867.72, + "probability": 0.9977 + }, + { + "start": 30867.76, + "end": 30873.58, + "probability": 0.9678 + }, + { + "start": 30873.84, + "end": 30874.32, + "probability": 0.8282 + }, + { + "start": 30874.5, + "end": 30875.14, + "probability": 0.5507 + }, + { + "start": 30875.32, + "end": 30879.16, + "probability": 0.9578 + }, + { + "start": 30879.2, + "end": 30880.26, + "probability": 0.7139 + }, + { + "start": 30880.38, + "end": 30881.41, + "probability": 0.6622 + }, + { + "start": 30881.74, + "end": 30883.14, + "probability": 0.5821 + }, + { + "start": 30883.74, + "end": 30884.46, + "probability": 0.9679 + }, + { + "start": 30884.66, + "end": 30888.76, + "probability": 0.881 + }, + { + "start": 30888.86, + "end": 30890.44, + "probability": 0.9771 + }, + { + "start": 30891.22, + "end": 30893.04, + "probability": 0.3607 + }, + { + "start": 30893.32, + "end": 30896.78, + "probability": 0.6655 + }, + { + "start": 30896.9, + "end": 30901.56, + "probability": 0.6578 + }, + { + "start": 30902.42, + "end": 30904.74, + "probability": 0.9941 + }, + { + "start": 30905.54, + "end": 30906.3, + "probability": 0.0378 + }, + { + "start": 30907.38, + "end": 30910.06, + "probability": 0.9811 + }, + { + "start": 30918.5, + "end": 30918.84, + "probability": 0.7808 + }, + { + "start": 30930.06, + "end": 30930.32, + "probability": 0.3489 + }, + { + "start": 30930.32, + "end": 30930.88, + "probability": 0.6149 + }, + { + "start": 30930.98, + "end": 30931.5, + "probability": 0.8428 + }, + { + "start": 30931.62, + "end": 30934.48, + "probability": 0.9738 + }, + { + "start": 30936.74, + "end": 30941.7, + "probability": 0.8764 + }, + { + "start": 30944.73, + "end": 30947.96, + "probability": 0.8696 + }, + { + "start": 30950.25, + "end": 30953.48, + "probability": 0.8094 + }, + { + "start": 30953.52, + "end": 30955.48, + "probability": 0.8928 + }, + { + "start": 30957.14, + "end": 30959.62, + "probability": 0.9886 + }, + { + "start": 30959.62, + "end": 30962.54, + "probability": 0.9731 + }, + { + "start": 30963.64, + "end": 30964.32, + "probability": 0.5056 + }, + { + "start": 30964.44, + "end": 30966.84, + "probability": 0.9644 + }, + { + "start": 30967.6, + "end": 30971.04, + "probability": 0.9842 + }, + { + "start": 30971.12, + "end": 30974.78, + "probability": 0.9529 + }, + { + "start": 30974.92, + "end": 30978.18, + "probability": 0.9487 + }, + { + "start": 30978.18, + "end": 30980.7, + "probability": 0.7944 + }, + { + "start": 30982.26, + "end": 30987.55, + "probability": 0.7296 + }, + { + "start": 30988.34, + "end": 30989.94, + "probability": 0.7562 + }, + { + "start": 30990.08, + "end": 30990.24, + "probability": 0.4202 + }, + { + "start": 30990.34, + "end": 30990.88, + "probability": 0.8889 + }, + { + "start": 30990.96, + "end": 30993.16, + "probability": 0.6507 + }, + { + "start": 30993.5, + "end": 30996.3, + "probability": 0.9177 + }, + { + "start": 30998.0, + "end": 31001.46, + "probability": 0.6203 + }, + { + "start": 31001.62, + "end": 31005.02, + "probability": 0.8003 + }, + { + "start": 31005.02, + "end": 31009.22, + "probability": 0.8975 + }, + { + "start": 31009.22, + "end": 31014.16, + "probability": 0.9284 + }, + { + "start": 31014.78, + "end": 31015.32, + "probability": 0.5915 + }, + { + "start": 31015.5, + "end": 31017.9, + "probability": 0.8042 + }, + { + "start": 31019.8, + "end": 31020.8, + "probability": 0.5267 + }, + { + "start": 31020.84, + "end": 31022.62, + "probability": 0.8888 + }, + { + "start": 31022.72, + "end": 31024.32, + "probability": 0.9674 + }, + { + "start": 31024.7, + "end": 31025.76, + "probability": 0.5373 + }, + { + "start": 31026.02, + "end": 31027.25, + "probability": 0.6781 + }, + { + "start": 31027.96, + "end": 31029.32, + "probability": 0.9855 + }, + { + "start": 31029.4, + "end": 31030.72, + "probability": 0.7831 + }, + { + "start": 31031.4, + "end": 31031.7, + "probability": 0.5437 + }, + { + "start": 31031.8, + "end": 31032.08, + "probability": 0.8398 + }, + { + "start": 31032.08, + "end": 31034.4, + "probability": 0.9782 + }, + { + "start": 31035.7, + "end": 31039.68, + "probability": 0.9759 + }, + { + "start": 31039.68, + "end": 31043.1, + "probability": 0.9229 + }, + { + "start": 31044.66, + "end": 31045.44, + "probability": 0.5202 + }, + { + "start": 31046.3, + "end": 31046.92, + "probability": 0.2951 + }, + { + "start": 31046.98, + "end": 31048.12, + "probability": 0.7669 + }, + { + "start": 31048.18, + "end": 31049.92, + "probability": 0.903 + }, + { + "start": 31050.58, + "end": 31052.94, + "probability": 0.5877 + }, + { + "start": 31054.12, + "end": 31056.4, + "probability": 0.8263 + }, + { + "start": 31056.48, + "end": 31059.26, + "probability": 0.9835 + }, + { + "start": 31059.7, + "end": 31061.64, + "probability": 0.9565 + }, + { + "start": 31063.0, + "end": 31063.58, + "probability": 0.6812 + }, + { + "start": 31063.6, + "end": 31067.14, + "probability": 0.8254 + }, + { + "start": 31067.14, + "end": 31071.76, + "probability": 0.9543 + }, + { + "start": 31071.82, + "end": 31072.64, + "probability": 0.7629 + }, + { + "start": 31072.74, + "end": 31076.68, + "probability": 0.8086 + }, + { + "start": 31077.34, + "end": 31082.4, + "probability": 0.8393 + }, + { + "start": 31082.48, + "end": 31082.7, + "probability": 0.6269 + }, + { + "start": 31082.82, + "end": 31083.52, + "probability": 0.6166 + }, + { + "start": 31083.52, + "end": 31084.36, + "probability": 0.5586 + }, + { + "start": 31085.0, + "end": 31085.75, + "probability": 0.8621 + }, + { + "start": 31086.5, + "end": 31086.66, + "probability": 0.1561 + }, + { + "start": 31087.64, + "end": 31089.92, + "probability": 0.8986 + }, + { + "start": 31090.02, + "end": 31091.24, + "probability": 0.8857 + }, + { + "start": 31091.32, + "end": 31092.72, + "probability": 0.6681 + }, + { + "start": 31093.06, + "end": 31094.14, + "probability": 0.4661 + }, + { + "start": 31094.24, + "end": 31095.44, + "probability": 0.8955 + }, + { + "start": 31096.78, + "end": 31099.7, + "probability": 0.9935 + }, + { + "start": 31103.66, + "end": 31108.48, + "probability": 0.4584 + }, + { + "start": 31108.7, + "end": 31109.4, + "probability": 0.5397 + }, + { + "start": 31109.42, + "end": 31110.6, + "probability": 0.8091 + }, + { + "start": 31115.84, + "end": 31116.46, + "probability": 0.1074 + }, + { + "start": 31117.38, + "end": 31117.68, + "probability": 0.608 + }, + { + "start": 31118.02, + "end": 31118.64, + "probability": 0.3207 + }, + { + "start": 31118.84, + "end": 31118.86, + "probability": 0.4661 + }, + { + "start": 31119.92, + "end": 31121.36, + "probability": 0.1799 + }, + { + "start": 31121.54, + "end": 31124.96, + "probability": 0.7111 + }, + { + "start": 31126.54, + "end": 31126.96, + "probability": 0.2029 + }, + { + "start": 31126.96, + "end": 31128.34, + "probability": 0.2585 + }, + { + "start": 31128.48, + "end": 31132.54, + "probability": 0.851 + }, + { + "start": 31132.6, + "end": 31135.7, + "probability": 0.8994 + }, + { + "start": 31136.24, + "end": 31139.4, + "probability": 0.9856 + }, + { + "start": 31140.32, + "end": 31142.46, + "probability": 0.8551 + }, + { + "start": 31142.58, + "end": 31145.82, + "probability": 0.8554 + }, + { + "start": 31146.66, + "end": 31149.58, + "probability": 0.9658 + }, + { + "start": 31150.1, + "end": 31150.16, + "probability": 0.0012 + }, + { + "start": 31151.04, + "end": 31151.4, + "probability": 0.0244 + }, + { + "start": 31151.4, + "end": 31153.05, + "probability": 0.7493 + }, + { + "start": 31154.04, + "end": 31155.16, + "probability": 0.8514 + }, + { + "start": 31155.28, + "end": 31156.04, + "probability": 0.3991 + }, + { + "start": 31156.44, + "end": 31157.86, + "probability": 0.9035 + }, + { + "start": 31158.0, + "end": 31158.8, + "probability": 0.7007 + }, + { + "start": 31159.74, + "end": 31161.94, + "probability": 0.583 + }, + { + "start": 31162.32, + "end": 31162.86, + "probability": 0.9465 + }, + { + "start": 31163.4, + "end": 31164.68, + "probability": 0.7219 + }, + { + "start": 31164.76, + "end": 31165.76, + "probability": 0.8452 + }, + { + "start": 31166.16, + "end": 31167.28, + "probability": 0.6355 + }, + { + "start": 31167.62, + "end": 31169.04, + "probability": 0.7416 + }, + { + "start": 31169.76, + "end": 31171.26, + "probability": 0.9924 + }, + { + "start": 31171.36, + "end": 31175.3, + "probability": 0.9845 + }, + { + "start": 31176.08, + "end": 31179.78, + "probability": 0.9518 + }, + { + "start": 31180.44, + "end": 31181.62, + "probability": 0.8931 + }, + { + "start": 31181.8, + "end": 31187.72, + "probability": 0.9387 + }, + { + "start": 31188.78, + "end": 31189.94, + "probability": 0.9286 + }, + { + "start": 31190.06, + "end": 31196.22, + "probability": 0.9862 + }, + { + "start": 31197.14, + "end": 31199.58, + "probability": 0.9943 + }, + { + "start": 31199.7, + "end": 31201.56, + "probability": 0.8784 + }, + { + "start": 31202.36, + "end": 31205.24, + "probability": 0.9894 + }, + { + "start": 31206.84, + "end": 31209.18, + "probability": 0.9509 + }, + { + "start": 31209.72, + "end": 31213.56, + "probability": 0.988 + }, + { + "start": 31214.14, + "end": 31217.06, + "probability": 0.9955 + }, + { + "start": 31217.4, + "end": 31218.3, + "probability": 0.786 + }, + { + "start": 31218.42, + "end": 31219.76, + "probability": 0.6726 + }, + { + "start": 31220.52, + "end": 31224.6, + "probability": 0.9896 + }, + { + "start": 31225.34, + "end": 31228.72, + "probability": 0.9297 + }, + { + "start": 31229.52, + "end": 31235.58, + "probability": 0.9976 + }, + { + "start": 31235.8, + "end": 31236.26, + "probability": 0.8503 + }, + { + "start": 31236.36, + "end": 31237.46, + "probability": 0.7176 + }, + { + "start": 31237.62, + "end": 31243.04, + "probability": 0.9731 + }, + { + "start": 31243.58, + "end": 31247.44, + "probability": 0.9983 + }, + { + "start": 31247.9, + "end": 31248.5, + "probability": 0.7811 + }, + { + "start": 31249.0, + "end": 31253.08, + "probability": 0.9385 + }, + { + "start": 31254.77, + "end": 31257.46, + "probability": 0.4829 + }, + { + "start": 31258.38, + "end": 31259.54, + "probability": 0.6313 + }, + { + "start": 31259.64, + "end": 31261.06, + "probability": 0.8752 + }, + { + "start": 31261.36, + "end": 31264.1, + "probability": 0.9771 + }, + { + "start": 31264.74, + "end": 31270.22, + "probability": 0.9854 + }, + { + "start": 31270.98, + "end": 31277.3, + "probability": 0.993 + }, + { + "start": 31278.16, + "end": 31279.43, + "probability": 0.8153 + }, + { + "start": 31280.44, + "end": 31284.48, + "probability": 0.9956 + }, + { + "start": 31284.48, + "end": 31289.5, + "probability": 0.9937 + }, + { + "start": 31290.26, + "end": 31291.26, + "probability": 0.6445 + }, + { + "start": 31292.08, + "end": 31292.52, + "probability": 0.7629 + }, + { + "start": 31292.62, + "end": 31293.22, + "probability": 0.7062 + }, + { + "start": 31293.62, + "end": 31298.48, + "probability": 0.7844 + }, + { + "start": 31299.22, + "end": 31300.08, + "probability": 0.8024 + }, + { + "start": 31300.26, + "end": 31301.1, + "probability": 0.7928 + }, + { + "start": 31301.2, + "end": 31301.82, + "probability": 0.879 + }, + { + "start": 31301.88, + "end": 31303.48, + "probability": 0.968 + }, + { + "start": 31304.08, + "end": 31307.02, + "probability": 0.7654 + }, + { + "start": 31308.0, + "end": 31311.14, + "probability": 0.8603 + }, + { + "start": 31311.82, + "end": 31314.07, + "probability": 0.7134 + }, + { + "start": 31315.26, + "end": 31318.62, + "probability": 0.9556 + }, + { + "start": 31319.48, + "end": 31322.34, + "probability": 0.9922 + }, + { + "start": 31322.9, + "end": 31325.18, + "probability": 0.9788 + }, + { + "start": 31325.9, + "end": 31329.56, + "probability": 0.8968 + }, + { + "start": 31330.36, + "end": 31332.32, + "probability": 0.9038 + }, + { + "start": 31332.66, + "end": 31334.18, + "probability": 0.9905 + }, + { + "start": 31334.5, + "end": 31336.98, + "probability": 0.9809 + }, + { + "start": 31337.68, + "end": 31340.9, + "probability": 0.938 + }, + { + "start": 31342.08, + "end": 31348.0, + "probability": 0.9962 + }, + { + "start": 31348.52, + "end": 31351.16, + "probability": 0.9618 + }, + { + "start": 31352.48, + "end": 31357.8, + "probability": 0.8752 + }, + { + "start": 31358.56, + "end": 31362.14, + "probability": 0.9956 + }, + { + "start": 31362.72, + "end": 31364.16, + "probability": 0.7808 + }, + { + "start": 31364.46, + "end": 31369.66, + "probability": 0.9897 + }, + { + "start": 31370.12, + "end": 31374.88, + "probability": 0.9951 + }, + { + "start": 31375.52, + "end": 31380.28, + "probability": 0.7316 + }, + { + "start": 31380.58, + "end": 31380.76, + "probability": 0.1018 + }, + { + "start": 31380.84, + "end": 31383.62, + "probability": 0.8555 + }, + { + "start": 31384.06, + "end": 31385.36, + "probability": 0.8127 + }, + { + "start": 31385.86, + "end": 31388.74, + "probability": 0.9739 + }, + { + "start": 31388.82, + "end": 31394.46, + "probability": 0.9026 + }, + { + "start": 31394.76, + "end": 31395.28, + "probability": 0.9043 + }, + { + "start": 31396.16, + "end": 31400.32, + "probability": 0.9445 + }, + { + "start": 31400.44, + "end": 31401.62, + "probability": 0.7329 + }, + { + "start": 31402.16, + "end": 31406.5, + "probability": 0.9941 + }, + { + "start": 31406.5, + "end": 31410.06, + "probability": 0.9957 + }, + { + "start": 31410.1, + "end": 31412.3, + "probability": 0.5479 + }, + { + "start": 31412.62, + "end": 31414.0, + "probability": 0.4348 + }, + { + "start": 31414.4, + "end": 31419.6, + "probability": 0.9946 + }, + { + "start": 31419.78, + "end": 31421.64, + "probability": 0.7602 + }, + { + "start": 31422.46, + "end": 31425.96, + "probability": 0.9575 + }, + { + "start": 31426.98, + "end": 31427.42, + "probability": 0.6009 + }, + { + "start": 31427.7, + "end": 31433.42, + "probability": 0.9063 + }, + { + "start": 31433.54, + "end": 31434.88, + "probability": 0.9658 + }, + { + "start": 31435.56, + "end": 31438.94, + "probability": 0.9873 + }, + { + "start": 31439.7, + "end": 31441.18, + "probability": 0.8905 + }, + { + "start": 31441.18, + "end": 31445.2, + "probability": 0.9541 + }, + { + "start": 31445.26, + "end": 31447.38, + "probability": 0.854 + }, + { + "start": 31447.68, + "end": 31455.94, + "probability": 0.754 + }, + { + "start": 31456.74, + "end": 31457.52, + "probability": 0.959 + }, + { + "start": 31457.52, + "end": 31458.96, + "probability": 0.9314 + }, + { + "start": 31459.44, + "end": 31462.44, + "probability": 0.979 + }, + { + "start": 31462.44, + "end": 31466.32, + "probability": 0.9954 + }, + { + "start": 31466.82, + "end": 31469.02, + "probability": 0.9106 + }, + { + "start": 31469.16, + "end": 31469.7, + "probability": 0.8466 + }, + { + "start": 31469.82, + "end": 31475.82, + "probability": 0.9939 + }, + { + "start": 31476.2, + "end": 31481.54, + "probability": 0.9861 + }, + { + "start": 31481.54, + "end": 31485.74, + "probability": 0.9343 + }, + { + "start": 31485.9, + "end": 31486.45, + "probability": 0.5114 + }, + { + "start": 31486.64, + "end": 31487.62, + "probability": 0.8445 + }, + { + "start": 31488.02, + "end": 31489.34, + "probability": 0.7004 + }, + { + "start": 31489.48, + "end": 31490.28, + "probability": 0.6648 + }, + { + "start": 31490.58, + "end": 31493.38, + "probability": 0.7965 + }, + { + "start": 31494.9, + "end": 31496.56, + "probability": 0.658 + }, + { + "start": 31496.7, + "end": 31501.44, + "probability": 0.9922 + }, + { + "start": 31501.5, + "end": 31503.54, + "probability": 0.9718 + }, + { + "start": 31504.38, + "end": 31506.8, + "probability": 0.9771 + }, + { + "start": 31507.34, + "end": 31509.48, + "probability": 0.898 + }, + { + "start": 31510.24, + "end": 31512.72, + "probability": 0.9844 + }, + { + "start": 31513.08, + "end": 31514.62, + "probability": 0.9897 + }, + { + "start": 31515.06, + "end": 31517.54, + "probability": 0.9886 + }, + { + "start": 31518.6, + "end": 31521.28, + "probability": 0.7769 + }, + { + "start": 31521.8, + "end": 31522.58, + "probability": 0.9762 + }, + { + "start": 31523.9, + "end": 31527.02, + "probability": 0.8322 + }, + { + "start": 31527.78, + "end": 31528.7, + "probability": 0.7051 + }, + { + "start": 31529.74, + "end": 31531.04, + "probability": 0.8058 + }, + { + "start": 31531.68, + "end": 31540.6, + "probability": 0.9429 + }, + { + "start": 31541.26, + "end": 31545.2, + "probability": 0.8272 + }, + { + "start": 31545.2, + "end": 31549.34, + "probability": 0.8003 + }, + { + "start": 31550.0, + "end": 31553.42, + "probability": 0.9844 + }, + { + "start": 31553.42, + "end": 31557.84, + "probability": 0.9395 + }, + { + "start": 31558.1, + "end": 31558.59, + "probability": 0.8618 + }, + { + "start": 31559.02, + "end": 31565.02, + "probability": 0.8742 + }, + { + "start": 31565.18, + "end": 31567.12, + "probability": 0.6859 + }, + { + "start": 31571.28, + "end": 31576.12, + "probability": 0.9521 + }, + { + "start": 31577.06, + "end": 31577.82, + "probability": 0.9212 + }, + { + "start": 31578.4, + "end": 31580.4, + "probability": 0.7689 + }, + { + "start": 31580.94, + "end": 31581.3, + "probability": 0.4963 + }, + { + "start": 31581.6, + "end": 31584.82, + "probability": 0.9905 + }, + { + "start": 31586.8, + "end": 31593.02, + "probability": 0.9875 + }, + { + "start": 31593.42, + "end": 31596.54, + "probability": 0.9241 + }, + { + "start": 31596.92, + "end": 31601.44, + "probability": 0.9786 + }, + { + "start": 31601.58, + "end": 31607.5, + "probability": 0.9946 + }, + { + "start": 31608.6, + "end": 31609.38, + "probability": 0.5949 + }, + { + "start": 31609.52, + "end": 31610.98, + "probability": 0.6468 + }, + { + "start": 31611.0, + "end": 31612.06, + "probability": 0.4091 + }, + { + "start": 31612.3, + "end": 31612.66, + "probability": 0.6013 + }, + { + "start": 31613.08, + "end": 31615.04, + "probability": 0.585 + }, + { + "start": 31615.86, + "end": 31617.18, + "probability": 0.819 + }, + { + "start": 31617.92, + "end": 31622.44, + "probability": 0.9695 + }, + { + "start": 31622.68, + "end": 31623.42, + "probability": 0.3226 + }, + { + "start": 31623.52, + "end": 31625.8, + "probability": 0.9947 + }, + { + "start": 31626.16, + "end": 31631.24, + "probability": 0.8541 + }, + { + "start": 31631.36, + "end": 31633.14, + "probability": 0.9961 + }, + { + "start": 31633.96, + "end": 31639.3, + "probability": 0.9946 + }, + { + "start": 31639.5, + "end": 31642.82, + "probability": 0.8791 + }, + { + "start": 31643.62, + "end": 31645.4, + "probability": 0.8131 + }, + { + "start": 31645.58, + "end": 31646.28, + "probability": 0.9709 + }, + { + "start": 31646.36, + "end": 31647.4, + "probability": 0.9377 + }, + { + "start": 31647.6, + "end": 31648.62, + "probability": 0.9294 + }, + { + "start": 31648.74, + "end": 31649.84, + "probability": 0.8006 + }, + { + "start": 31650.46, + "end": 31654.38, + "probability": 0.9828 + }, + { + "start": 31654.64, + "end": 31655.2, + "probability": 0.5298 + }, + { + "start": 31655.38, + "end": 31657.58, + "probability": 0.8872 + }, + { + "start": 31657.7, + "end": 31661.24, + "probability": 0.9779 + }, + { + "start": 31661.32, + "end": 31663.58, + "probability": 0.7752 + }, + { + "start": 31663.76, + "end": 31663.94, + "probability": 0.5269 + }, + { + "start": 31664.58, + "end": 31667.44, + "probability": 0.9062 + }, + { + "start": 31667.86, + "end": 31669.38, + "probability": 0.939 + }, + { + "start": 31670.16, + "end": 31672.04, + "probability": 0.9893 + }, + { + "start": 31672.24, + "end": 31675.09, + "probability": 0.9209 + }, + { + "start": 31675.9, + "end": 31677.38, + "probability": 0.9843 + }, + { + "start": 31677.46, + "end": 31678.22, + "probability": 0.9905 + }, + { + "start": 31678.3, + "end": 31679.38, + "probability": 0.8929 + }, + { + "start": 31679.88, + "end": 31680.98, + "probability": 0.9728 + }, + { + "start": 31681.04, + "end": 31682.14, + "probability": 0.9949 + }, + { + "start": 31683.98, + "end": 31686.6, + "probability": 0.9779 + }, + { + "start": 31687.84, + "end": 31693.44, + "probability": 0.9888 + }, + { + "start": 31693.96, + "end": 31695.18, + "probability": 0.9467 + }, + { + "start": 31695.52, + "end": 31696.98, + "probability": 0.8835 + }, + { + "start": 31697.08, + "end": 31699.34, + "probability": 0.9733 + }, + { + "start": 31699.88, + "end": 31700.3, + "probability": 0.9677 + }, + { + "start": 31700.86, + "end": 31701.18, + "probability": 0.1044 + }, + { + "start": 31701.18, + "end": 31702.06, + "probability": 0.7729 + }, + { + "start": 31702.52, + "end": 31707.32, + "probability": 0.9597 + }, + { + "start": 31707.44, + "end": 31707.92, + "probability": 0.6428 + }, + { + "start": 31708.26, + "end": 31712.04, + "probability": 0.998 + }, + { + "start": 31712.04, + "end": 31716.7, + "probability": 0.9919 + }, + { + "start": 31717.54, + "end": 31719.98, + "probability": 0.9811 + }, + { + "start": 31720.98, + "end": 31727.2, + "probability": 0.9261 + }, + { + "start": 31727.86, + "end": 31730.8, + "probability": 0.9753 + }, + { + "start": 31731.16, + "end": 31734.06, + "probability": 0.9806 + }, + { + "start": 31734.88, + "end": 31737.7, + "probability": 0.6841 + }, + { + "start": 31738.6, + "end": 31743.62, + "probability": 0.7933 + }, + { + "start": 31744.36, + "end": 31745.86, + "probability": 0.9324 + }, + { + "start": 31746.64, + "end": 31749.62, + "probability": 0.7301 + }, + { + "start": 31750.2, + "end": 31752.94, + "probability": 0.8767 + }, + { + "start": 31753.7, + "end": 31755.28, + "probability": 0.9991 + }, + { + "start": 31755.38, + "end": 31759.42, + "probability": 0.9971 + }, + { + "start": 31759.6, + "end": 31760.04, + "probability": 0.6326 + }, + { + "start": 31760.16, + "end": 31761.04, + "probability": 0.9596 + }, + { + "start": 31761.14, + "end": 31761.72, + "probability": 0.949 + }, + { + "start": 31761.82, + "end": 31762.64, + "probability": 0.5269 + }, + { + "start": 31762.84, + "end": 31767.78, + "probability": 0.9831 + }, + { + "start": 31768.14, + "end": 31770.16, + "probability": 0.788 + }, + { + "start": 31770.72, + "end": 31771.96, + "probability": 0.9441 + }, + { + "start": 31772.12, + "end": 31778.78, + "probability": 0.7936 + }, + { + "start": 31779.0, + "end": 31780.76, + "probability": 0.8857 + }, + { + "start": 31781.04, + "end": 31782.4, + "probability": 0.9221 + }, + { + "start": 31783.38, + "end": 31785.01, + "probability": 0.8843 + }, + { + "start": 31785.92, + "end": 31786.42, + "probability": 0.5482 + }, + { + "start": 31786.54, + "end": 31789.4, + "probability": 0.9928 + }, + { + "start": 31789.78, + "end": 31790.38, + "probability": 0.7765 + }, + { + "start": 31790.78, + "end": 31795.06, + "probability": 0.9767 + }, + { + "start": 31795.44, + "end": 31796.5, + "probability": 0.9707 + }, + { + "start": 31796.86, + "end": 31799.1, + "probability": 0.9884 + }, + { + "start": 31799.5, + "end": 31801.36, + "probability": 0.9504 + }, + { + "start": 31801.54, + "end": 31802.76, + "probability": 0.9761 + }, + { + "start": 31803.32, + "end": 31804.96, + "probability": 0.8936 + }, + { + "start": 31805.08, + "end": 31808.2, + "probability": 0.9722 + }, + { + "start": 31808.78, + "end": 31809.44, + "probability": 0.1982 + }, + { + "start": 31809.52, + "end": 31809.54, + "probability": 0.1825 + }, + { + "start": 31809.54, + "end": 31812.54, + "probability": 0.7742 + }, + { + "start": 31813.0, + "end": 31817.54, + "probability": 0.6912 + }, + { + "start": 31818.08, + "end": 31821.02, + "probability": 0.9783 + }, + { + "start": 31821.02, + "end": 31824.26, + "probability": 0.9951 + }, + { + "start": 31824.62, + "end": 31827.14, + "probability": 0.971 + }, + { + "start": 31827.64, + "end": 31832.44, + "probability": 0.9455 + }, + { + "start": 31833.0, + "end": 31835.8, + "probability": 0.7729 + }, + { + "start": 31836.22, + "end": 31839.22, + "probability": 0.9027 + }, + { + "start": 31839.22, + "end": 31842.6, + "probability": 0.9638 + }, + { + "start": 31843.1, + "end": 31846.08, + "probability": 0.9302 + }, + { + "start": 31846.54, + "end": 31849.3, + "probability": 0.9115 + }, + { + "start": 31849.68, + "end": 31853.7, + "probability": 0.9865 + }, + { + "start": 31854.1, + "end": 31855.44, + "probability": 0.7101 + }, + { + "start": 31855.52, + "end": 31856.2, + "probability": 0.9743 + }, + { + "start": 31856.28, + "end": 31856.82, + "probability": 0.5858 + }, + { + "start": 31857.58, + "end": 31860.7, + "probability": 0.9691 + }, + { + "start": 31860.7, + "end": 31862.98, + "probability": 0.9852 + }, + { + "start": 31863.76, + "end": 31864.98, + "probability": 0.8809 + }, + { + "start": 31865.44, + "end": 31866.1, + "probability": 0.7092 + }, + { + "start": 31866.18, + "end": 31872.94, + "probability": 0.9257 + }, + { + "start": 31875.68, + "end": 31880.54, + "probability": 0.9954 + }, + { + "start": 31880.54, + "end": 31884.2, + "probability": 0.9993 + }, + { + "start": 31884.54, + "end": 31885.36, + "probability": 0.7731 + }, + { + "start": 31885.7, + "end": 31886.72, + "probability": 0.9556 + }, + { + "start": 31887.0, + "end": 31891.04, + "probability": 0.996 + }, + { + "start": 31891.44, + "end": 31892.7, + "probability": 0.7304 + }, + { + "start": 31893.34, + "end": 31896.88, + "probability": 0.9377 + }, + { + "start": 31896.88, + "end": 31896.88, + "probability": 0.2996 + }, + { + "start": 31897.1, + "end": 31899.38, + "probability": 0.6445 + }, + { + "start": 31899.38, + "end": 31899.82, + "probability": 0.3766 + }, + { + "start": 31900.2, + "end": 31900.38, + "probability": 0.0054 + }, + { + "start": 31900.38, + "end": 31902.66, + "probability": 0.6121 + }, + { + "start": 31903.18, + "end": 31906.5, + "probability": 0.9342 + }, + { + "start": 31906.84, + "end": 31906.94, + "probability": 0.8717 + }, + { + "start": 31907.26, + "end": 31909.68, + "probability": 0.8897 + }, + { + "start": 31909.84, + "end": 31910.5, + "probability": 0.8704 + }, + { + "start": 31910.5, + "end": 31912.24, + "probability": 0.9129 + }, + { + "start": 31912.34, + "end": 31912.44, + "probability": 0.0058 + }, + { + "start": 31912.44, + "end": 31913.21, + "probability": 0.7385 + }, + { + "start": 31914.62, + "end": 31918.5, + "probability": 0.8823 + }, + { + "start": 31918.74, + "end": 31923.08, + "probability": 0.8688 + }, + { + "start": 31923.38, + "end": 31927.48, + "probability": 0.9433 + }, + { + "start": 31927.98, + "end": 31929.68, + "probability": 0.9799 + }, + { + "start": 31930.2, + "end": 31933.18, + "probability": 0.9912 + }, + { + "start": 31933.28, + "end": 31939.3, + "probability": 0.955 + }, + { + "start": 31939.54, + "end": 31941.14, + "probability": 0.9849 + }, + { + "start": 31941.6, + "end": 31942.36, + "probability": 0.8057 + }, + { + "start": 31942.74, + "end": 31943.62, + "probability": 0.6116 + }, + { + "start": 31943.72, + "end": 31944.46, + "probability": 0.9465 + }, + { + "start": 31944.56, + "end": 31945.22, + "probability": 0.8805 + }, + { + "start": 31945.34, + "end": 31946.4, + "probability": 0.7637 + }, + { + "start": 31946.58, + "end": 31948.12, + "probability": 0.9224 + }, + { + "start": 31948.44, + "end": 31949.28, + "probability": 0.6138 + }, + { + "start": 31949.7, + "end": 31954.06, + "probability": 0.9939 + }, + { + "start": 31954.64, + "end": 31959.12, + "probability": 0.9539 + }, + { + "start": 31959.48, + "end": 31965.6, + "probability": 0.9072 + }, + { + "start": 31965.72, + "end": 31966.06, + "probability": 0.3421 + }, + { + "start": 31966.06, + "end": 31969.34, + "probability": 0.9528 + }, + { + "start": 31969.76, + "end": 31970.74, + "probability": 0.9805 + }, + { + "start": 31971.5, + "end": 31976.7, + "probability": 0.9446 + }, + { + "start": 31977.08, + "end": 31978.44, + "probability": 0.8711 + }, + { + "start": 31978.62, + "end": 31980.46, + "probability": 0.7662 + }, + { + "start": 31980.76, + "end": 31985.5, + "probability": 0.9771 + }, + { + "start": 31985.74, + "end": 31986.38, + "probability": 0.6163 + }, + { + "start": 31986.52, + "end": 31986.64, + "probability": 0.0962 + }, + { + "start": 31986.64, + "end": 31987.2, + "probability": 0.5619 + }, + { + "start": 31988.52, + "end": 31989.56, + "probability": 0.9295 + }, + { + "start": 31990.0, + "end": 31991.06, + "probability": 0.7079 + }, + { + "start": 31991.86, + "end": 31994.46, + "probability": 0.7266 + }, + { + "start": 31995.22, + "end": 31999.28, + "probability": 0.7905 + }, + { + "start": 32000.16, + "end": 32007.36, + "probability": 0.5045 + }, + { + "start": 32007.46, + "end": 32008.7, + "probability": 0.6644 + }, + { + "start": 32009.16, + "end": 32010.86, + "probability": 0.7442 + }, + { + "start": 32011.1, + "end": 32011.68, + "probability": 0.7667 + }, + { + "start": 32012.02, + "end": 32012.56, + "probability": 0.0069 + }, + { + "start": 32012.56, + "end": 32012.56, + "probability": 0.4204 + }, + { + "start": 32012.56, + "end": 32013.07, + "probability": 0.3123 + }, + { + "start": 32014.84, + "end": 32014.92, + "probability": 0.3068 + }, + { + "start": 32014.92, + "end": 32015.96, + "probability": 0.7164 + }, + { + "start": 32016.2, + "end": 32016.72, + "probability": 0.8762 + }, + { + "start": 32016.94, + "end": 32018.34, + "probability": 0.9293 + }, + { + "start": 32018.5, + "end": 32020.32, + "probability": 0.9268 + }, + { + "start": 32020.76, + "end": 32024.48, + "probability": 0.801 + }, + { + "start": 32025.06, + "end": 32028.64, + "probability": 0.8545 + }, + { + "start": 32028.94, + "end": 32029.6, + "probability": 0.6905 + }, + { + "start": 32029.84, + "end": 32030.2, + "probability": 0.6614 + }, + { + "start": 32030.28, + "end": 32030.88, + "probability": 0.8765 + }, + { + "start": 32031.2, + "end": 32031.64, + "probability": 0.7812 + }, + { + "start": 32031.8, + "end": 32032.46, + "probability": 0.5024 + }, + { + "start": 32032.74, + "end": 32034.6, + "probability": 0.8917 + }, + { + "start": 32035.36, + "end": 32036.1, + "probability": 0.7221 + }, + { + "start": 32036.44, + "end": 32037.58, + "probability": 0.7009 + }, + { + "start": 32038.9, + "end": 32040.86, + "probability": 0.8261 + }, + { + "start": 32040.94, + "end": 32042.86, + "probability": 0.8325 + }, + { + "start": 32043.04, + "end": 32044.66, + "probability": 0.655 + }, + { + "start": 32044.78, + "end": 32045.14, + "probability": 0.4704 + }, + { + "start": 32045.22, + "end": 32048.44, + "probability": 0.8859 + }, + { + "start": 32048.58, + "end": 32049.82, + "probability": 0.777 + }, + { + "start": 32050.18, + "end": 32050.82, + "probability": 0.9472 + }, + { + "start": 32050.9, + "end": 32051.78, + "probability": 0.736 + }, + { + "start": 32052.2, + "end": 32053.02, + "probability": 0.9839 + }, + { + "start": 32053.14, + "end": 32055.22, + "probability": 0.977 + }, + { + "start": 32056.26, + "end": 32058.26, + "probability": 0.8375 + }, + { + "start": 32059.32, + "end": 32061.38, + "probability": 0.9607 + }, + { + "start": 32063.24, + "end": 32065.32, + "probability": 0.805 + }, + { + "start": 32065.7, + "end": 32070.39, + "probability": 0.7673 + }, + { + "start": 32071.1, + "end": 32076.62, + "probability": 0.9648 + }, + { + "start": 32076.68, + "end": 32077.86, + "probability": 0.9401 + }, + { + "start": 32077.96, + "end": 32078.74, + "probability": 0.944 + }, + { + "start": 32079.02, + "end": 32079.52, + "probability": 0.5715 + }, + { + "start": 32079.66, + "end": 32080.84, + "probability": 0.7419 + }, + { + "start": 32081.44, + "end": 32082.84, + "probability": 0.957 + }, + { + "start": 32083.46, + "end": 32084.76, + "probability": 0.9225 + }, + { + "start": 32084.82, + "end": 32088.32, + "probability": 0.8992 + }, + { + "start": 32088.9, + "end": 32091.92, + "probability": 0.7634 + }, + { + "start": 32091.96, + "end": 32094.07, + "probability": 0.9731 + }, + { + "start": 32094.5, + "end": 32097.12, + "probability": 0.8843 + }, + { + "start": 32097.2, + "end": 32101.4, + "probability": 0.7764 + }, + { + "start": 32105.74, + "end": 32106.94, + "probability": 0.8728 + }, + { + "start": 32107.84, + "end": 32111.32, + "probability": 0.4904 + }, + { + "start": 32111.78, + "end": 32112.7, + "probability": 0.3688 + }, + { + "start": 32114.48, + "end": 32115.02, + "probability": 0.8499 + }, + { + "start": 32115.32, + "end": 32120.88, + "probability": 0.9906 + }, + { + "start": 32120.88, + "end": 32121.68, + "probability": 0.4613 + }, + { + "start": 32126.16, + "end": 32130.34, + "probability": 0.9849 + }, + { + "start": 32131.22, + "end": 32132.76, + "probability": 0.9858 + }, + { + "start": 32132.82, + "end": 32136.34, + "probability": 0.8107 + }, + { + "start": 32136.56, + "end": 32140.69, + "probability": 0.9043 + }, + { + "start": 32143.42, + "end": 32145.66, + "probability": 0.9626 + }, + { + "start": 32146.92, + "end": 32148.04, + "probability": 0.6019 + }, + { + "start": 32150.04, + "end": 32152.68, + "probability": 0.8402 + }, + { + "start": 32153.8, + "end": 32154.9, + "probability": 0.8797 + }, + { + "start": 32155.52, + "end": 32157.24, + "probability": 0.7323 + }, + { + "start": 32157.88, + "end": 32159.1, + "probability": 0.8798 + }, + { + "start": 32159.7, + "end": 32160.56, + "probability": 0.9836 + }, + { + "start": 32160.96, + "end": 32163.7, + "probability": 0.9863 + }, + { + "start": 32164.34, + "end": 32165.24, + "probability": 0.9248 + }, + { + "start": 32166.2, + "end": 32169.34, + "probability": 0.6662 + }, + { + "start": 32170.2, + "end": 32170.2, + "probability": 0.8164 + }, + { + "start": 32173.58, + "end": 32175.08, + "probability": 0.9533 + }, + { + "start": 32175.52, + "end": 32179.54, + "probability": 0.9118 + }, + { + "start": 32179.64, + "end": 32180.48, + "probability": 0.7413 + }, + { + "start": 32181.08, + "end": 32184.76, + "probability": 0.9884 + }, + { + "start": 32184.96, + "end": 32185.44, + "probability": 0.8958 + }, + { + "start": 32185.78, + "end": 32191.5, + "probability": 0.9689 + }, + { + "start": 32193.2, + "end": 32194.88, + "probability": 0.3387 + }, + { + "start": 32195.24, + "end": 32196.82, + "probability": 0.8279 + }, + { + "start": 32197.62, + "end": 32199.92, + "probability": 0.994 + }, + { + "start": 32200.98, + "end": 32201.76, + "probability": 0.6009 + }, + { + "start": 32203.8, + "end": 32206.4, + "probability": 0.922 + }, + { + "start": 32206.88, + "end": 32207.72, + "probability": 0.7738 + }, + { + "start": 32207.78, + "end": 32210.98, + "probability": 0.8077 + }, + { + "start": 32213.28, + "end": 32213.96, + "probability": 0.7949 + }, + { + "start": 32214.06, + "end": 32215.1, + "probability": 0.7265 + }, + { + "start": 32215.34, + "end": 32216.57, + "probability": 0.8965 + }, + { + "start": 32216.94, + "end": 32217.64, + "probability": 0.9217 + }, + { + "start": 32217.68, + "end": 32218.4, + "probability": 0.9079 + }, + { + "start": 32219.08, + "end": 32221.7, + "probability": 0.8599 + }, + { + "start": 32222.22, + "end": 32223.35, + "probability": 0.84 + }, + { + "start": 32224.26, + "end": 32229.44, + "probability": 0.8817 + }, + { + "start": 32232.19, + "end": 32235.48, + "probability": 0.6806 + }, + { + "start": 32236.06, + "end": 32238.88, + "probability": 0.7438 + }, + { + "start": 32239.88, + "end": 32240.46, + "probability": 0.9239 + }, + { + "start": 32241.54, + "end": 32243.86, + "probability": 0.7103 + }, + { + "start": 32245.48, + "end": 32246.68, + "probability": 0.9028 + }, + { + "start": 32247.58, + "end": 32249.84, + "probability": 0.994 + }, + { + "start": 32250.85, + "end": 32253.28, + "probability": 0.7991 + }, + { + "start": 32254.44, + "end": 32258.41, + "probability": 0.9974 + }, + { + "start": 32259.2, + "end": 32259.2, + "probability": 0.9434 + }, + { + "start": 32261.14, + "end": 32262.02, + "probability": 0.9741 + }, + { + "start": 32263.02, + "end": 32264.2, + "probability": 0.9724 + }, + { + "start": 32264.52, + "end": 32265.1, + "probability": 0.8199 + }, + { + "start": 32265.24, + "end": 32265.86, + "probability": 0.7235 + }, + { + "start": 32266.02, + "end": 32269.52, + "probability": 0.97 + }, + { + "start": 32270.18, + "end": 32271.54, + "probability": 0.897 + }, + { + "start": 32275.0, + "end": 32275.38, + "probability": 0.6592 + }, + { + "start": 32275.98, + "end": 32278.34, + "probability": 0.9751 + }, + { + "start": 32279.52, + "end": 32281.48, + "probability": 0.8692 + }, + { + "start": 32281.62, + "end": 32283.54, + "probability": 0.8936 + }, + { + "start": 32284.58, + "end": 32287.68, + "probability": 0.9985 + }, + { + "start": 32288.44, + "end": 32288.85, + "probability": 0.9805 + }, + { + "start": 32289.06, + "end": 32292.1, + "probability": 0.9285 + }, + { + "start": 32292.96, + "end": 32293.98, + "probability": 0.735 + }, + { + "start": 32295.28, + "end": 32296.14, + "probability": 0.8553 + }, + { + "start": 32297.5, + "end": 32297.72, + "probability": 0.9417 + }, + { + "start": 32298.38, + "end": 32302.94, + "probability": 0.9631 + }, + { + "start": 32303.86, + "end": 32307.58, + "probability": 0.8884 + }, + { + "start": 32311.42, + "end": 32315.32, + "probability": 0.995 + }, + { + "start": 32316.4, + "end": 32320.08, + "probability": 0.8103 + }, + { + "start": 32322.45, + "end": 32326.02, + "probability": 0.6839 + }, + { + "start": 32326.42, + "end": 32327.26, + "probability": 0.8167 + }, + { + "start": 32328.3, + "end": 32329.52, + "probability": 0.7966 + }, + { + "start": 32330.6, + "end": 32331.98, + "probability": 0.9604 + }, + { + "start": 32332.78, + "end": 32333.5, + "probability": 0.6895 + }, + { + "start": 32333.52, + "end": 32336.86, + "probability": 0.9812 + }, + { + "start": 32337.26, + "end": 32337.78, + "probability": 0.7605 + }, + { + "start": 32338.48, + "end": 32339.04, + "probability": 0.3829 + }, + { + "start": 32340.55, + "end": 32343.56, + "probability": 0.4715 + }, + { + "start": 32344.16, + "end": 32344.72, + "probability": 0.6276 + }, + { + "start": 32345.82, + "end": 32347.92, + "probability": 0.8543 + }, + { + "start": 32348.86, + "end": 32352.1, + "probability": 0.9638 + }, + { + "start": 32353.12, + "end": 32353.72, + "probability": 0.8209 + }, + { + "start": 32353.76, + "end": 32354.98, + "probability": 0.9878 + }, + { + "start": 32355.48, + "end": 32355.86, + "probability": 0.856 + }, + { + "start": 32356.16, + "end": 32356.76, + "probability": 0.9482 + }, + { + "start": 32356.98, + "end": 32357.9, + "probability": 0.9927 + }, + { + "start": 32358.38, + "end": 32359.41, + "probability": 0.0248 + }, + { + "start": 32360.24, + "end": 32361.22, + "probability": 0.7397 + }, + { + "start": 32362.02, + "end": 32363.42, + "probability": 0.978 + }, + { + "start": 32363.48, + "end": 32366.88, + "probability": 0.9813 + }, + { + "start": 32366.98, + "end": 32367.92, + "probability": 0.7585 + }, + { + "start": 32368.14, + "end": 32371.14, + "probability": 0.8129 + }, + { + "start": 32372.26, + "end": 32372.9, + "probability": 0.8711 + }, + { + "start": 32374.0, + "end": 32375.06, + "probability": 0.5848 + }, + { + "start": 32375.66, + "end": 32376.3, + "probability": 0.7782 + }, + { + "start": 32377.3, + "end": 32379.88, + "probability": 0.9893 + }, + { + "start": 32380.8, + "end": 32383.96, + "probability": 0.8848 + }, + { + "start": 32384.84, + "end": 32385.08, + "probability": 0.809 + }, + { + "start": 32386.2, + "end": 32387.0, + "probability": 0.7894 + }, + { + "start": 32387.56, + "end": 32388.66, + "probability": 0.9877 + }, + { + "start": 32389.24, + "end": 32389.38, + "probability": 0.9788 + }, + { + "start": 32390.72, + "end": 32393.58, + "probability": 0.6523 + }, + { + "start": 32393.76, + "end": 32394.22, + "probability": 0.8275 + }, + { + "start": 32394.66, + "end": 32395.68, + "probability": 0.6979 + }, + { + "start": 32396.12, + "end": 32397.13, + "probability": 0.9482 + }, + { + "start": 32397.98, + "end": 32399.99, + "probability": 0.989 + }, + { + "start": 32400.56, + "end": 32401.62, + "probability": 0.8381 + }, + { + "start": 32401.94, + "end": 32403.08, + "probability": 0.9407 + }, + { + "start": 32403.5, + "end": 32405.87, + "probability": 0.6644 + }, + { + "start": 32408.44, + "end": 32409.64, + "probability": 0.8351 + }, + { + "start": 32410.14, + "end": 32412.86, + "probability": 0.8649 + }, + { + "start": 32412.92, + "end": 32414.44, + "probability": 0.692 + }, + { + "start": 32414.44, + "end": 32416.96, + "probability": 0.7539 + }, + { + "start": 32416.96, + "end": 32418.1, + "probability": 0.313 + }, + { + "start": 32418.62, + "end": 32421.56, + "probability": 0.7577 + }, + { + "start": 32421.56, + "end": 32422.84, + "probability": 0.9894 + }, + { + "start": 32423.06, + "end": 32424.82, + "probability": 0.8477 + }, + { + "start": 32425.12, + "end": 32426.14, + "probability": 0.7349 + }, + { + "start": 32426.4, + "end": 32427.56, + "probability": 0.6988 + }, + { + "start": 32428.14, + "end": 32428.72, + "probability": 0.831 + }, + { + "start": 32430.48, + "end": 32430.62, + "probability": 0.3042 + }, + { + "start": 32430.62, + "end": 32430.62, + "probability": 0.1482 + }, + { + "start": 32430.62, + "end": 32430.62, + "probability": 0.3523 + }, + { + "start": 32430.62, + "end": 32435.66, + "probability": 0.9714 + }, + { + "start": 32436.7, + "end": 32437.22, + "probability": 0.9249 + }, + { + "start": 32437.24, + "end": 32438.08, + "probability": 0.8018 + }, + { + "start": 32438.18, + "end": 32440.42, + "probability": 0.8888 + }, + { + "start": 32441.3, + "end": 32445.26, + "probability": 0.9812 + }, + { + "start": 32445.82, + "end": 32446.62, + "probability": 0.699 + }, + { + "start": 32447.24, + "end": 32449.96, + "probability": 0.979 + }, + { + "start": 32453.2, + "end": 32457.08, + "probability": 0.9151 + }, + { + "start": 32457.74, + "end": 32462.4, + "probability": 0.9773 + }, + { + "start": 32462.7, + "end": 32463.54, + "probability": 0.8463 + }, + { + "start": 32464.66, + "end": 32466.86, + "probability": 0.989 + }, + { + "start": 32467.08, + "end": 32467.84, + "probability": 0.6674 + }, + { + "start": 32468.3, + "end": 32471.18, + "probability": 0.9874 + }, + { + "start": 32471.56, + "end": 32473.88, + "probability": 0.8119 + }, + { + "start": 32474.32, + "end": 32475.68, + "probability": 0.7034 + }, + { + "start": 32476.3, + "end": 32477.56, + "probability": 0.9032 + }, + { + "start": 32477.84, + "end": 32481.9, + "probability": 0.8817 + }, + { + "start": 32482.48, + "end": 32483.66, + "probability": 0.6003 + }, + { + "start": 32483.8, + "end": 32484.36, + "probability": 0.9937 + }, + { + "start": 32485.2, + "end": 32487.68, + "probability": 0.9346 + }, + { + "start": 32488.54, + "end": 32489.98, + "probability": 0.6692 + }, + { + "start": 32490.8, + "end": 32493.26, + "probability": 0.7734 + }, + { + "start": 32493.62, + "end": 32494.36, + "probability": 0.9096 + }, + { + "start": 32495.14, + "end": 32495.72, + "probability": 0.6765 + }, + { + "start": 32496.3, + "end": 32496.94, + "probability": 0.8501 + }, + { + "start": 32498.14, + "end": 32498.78, + "probability": 0.6008 + }, + { + "start": 32499.04, + "end": 32499.44, + "probability": 0.777 + }, + { + "start": 32499.68, + "end": 32502.72, + "probability": 0.9827 + }, + { + "start": 32502.88, + "end": 32504.38, + "probability": 0.6104 + }, + { + "start": 32504.66, + "end": 32507.9, + "probability": 0.9927 + }, + { + "start": 32508.38, + "end": 32510.98, + "probability": 0.981 + }, + { + "start": 32511.34, + "end": 32514.87, + "probability": 0.8599 + }, + { + "start": 32516.06, + "end": 32518.4, + "probability": 0.9952 + }, + { + "start": 32518.72, + "end": 32519.5, + "probability": 0.9585 + }, + { + "start": 32520.26, + "end": 32522.66, + "probability": 0.9709 + }, + { + "start": 32524.18, + "end": 32524.84, + "probability": 0.7547 + }, + { + "start": 32527.56, + "end": 32528.44, + "probability": 0.8279 + }, + { + "start": 32529.02, + "end": 32534.42, + "probability": 0.9888 + }, + { + "start": 32535.44, + "end": 32536.86, + "probability": 0.8735 + }, + { + "start": 32537.3, + "end": 32541.47, + "probability": 0.9318 + }, + { + "start": 32542.04, + "end": 32545.56, + "probability": 0.8875 + }, + { + "start": 32546.5, + "end": 32553.38, + "probability": 0.7619 + }, + { + "start": 32554.12, + "end": 32555.32, + "probability": 0.736 + }, + { + "start": 32555.96, + "end": 32556.44, + "probability": 0.8537 + }, + { + "start": 32557.0, + "end": 32560.32, + "probability": 0.8839 + }, + { + "start": 32560.6, + "end": 32561.48, + "probability": 0.5986 + }, + { + "start": 32561.58, + "end": 32562.2, + "probability": 0.6362 + }, + { + "start": 32562.88, + "end": 32566.36, + "probability": 0.8933 + }, + { + "start": 32566.68, + "end": 32569.8, + "probability": 0.794 + }, + { + "start": 32569.94, + "end": 32570.34, + "probability": 0.9575 + }, + { + "start": 32571.58, + "end": 32573.06, + "probability": 0.9346 + }, + { + "start": 32573.06, + "end": 32574.54, + "probability": 0.609 + }, + { + "start": 32575.12, + "end": 32575.58, + "probability": 0.5457 + }, + { + "start": 32575.72, + "end": 32582.74, + "probability": 0.9552 + }, + { + "start": 32583.2, + "end": 32583.96, + "probability": 0.9311 + }, + { + "start": 32584.04, + "end": 32586.34, + "probability": 0.9478 + }, + { + "start": 32586.48, + "end": 32587.96, + "probability": 0.7717 + }, + { + "start": 32588.92, + "end": 32589.9, + "probability": 0.9723 + }, + { + "start": 32590.74, + "end": 32591.4, + "probability": 0.7541 + }, + { + "start": 32591.88, + "end": 32595.07, + "probability": 0.9204 + }, + { + "start": 32595.54, + "end": 32596.88, + "probability": 0.9548 + }, + { + "start": 32597.46, + "end": 32600.98, + "probability": 0.702 + }, + { + "start": 32601.74, + "end": 32604.16, + "probability": 0.77 + }, + { + "start": 32604.72, + "end": 32605.72, + "probability": 0.6044 + }, + { + "start": 32606.22, + "end": 32607.8, + "probability": 0.8549 + }, + { + "start": 32609.4, + "end": 32610.5, + "probability": 0.9788 + }, + { + "start": 32610.78, + "end": 32614.04, + "probability": 0.9852 + }, + { + "start": 32614.9, + "end": 32618.12, + "probability": 0.934 + }, + { + "start": 32618.84, + "end": 32620.36, + "probability": 0.5052 + }, + { + "start": 32621.64, + "end": 32622.86, + "probability": 0.4944 + }, + { + "start": 32623.46, + "end": 32625.58, + "probability": 0.9488 + }, + { + "start": 32626.04, + "end": 32628.44, + "probability": 0.9077 + }, + { + "start": 32628.88, + "end": 32630.28, + "probability": 0.8904 + }, + { + "start": 32630.72, + "end": 32632.88, + "probability": 0.9869 + }, + { + "start": 32632.96, + "end": 32633.54, + "probability": 0.5415 + }, + { + "start": 32634.0, + "end": 32634.86, + "probability": 0.8596 + }, + { + "start": 32635.82, + "end": 32636.06, + "probability": 0.3856 + }, + { + "start": 32636.06, + "end": 32641.14, + "probability": 0.973 + }, + { + "start": 32641.52, + "end": 32642.08, + "probability": 0.7928 + }, + { + "start": 32642.38, + "end": 32642.88, + "probability": 0.5445 + }, + { + "start": 32642.88, + "end": 32643.76, + "probability": 0.5968 + }, + { + "start": 32643.9, + "end": 32645.42, + "probability": 0.9543 + }, + { + "start": 32645.6, + "end": 32646.64, + "probability": 0.9175 + }, + { + "start": 32646.82, + "end": 32649.48, + "probability": 0.8509 + }, + { + "start": 32650.16, + "end": 32652.1, + "probability": 0.9382 + }, + { + "start": 32653.04, + "end": 32656.57, + "probability": 0.8899 + }, + { + "start": 32658.34, + "end": 32662.22, + "probability": 0.0013 + }, + { + "start": 32663.8, + "end": 32663.9, + "probability": 0.0346 + }, + { + "start": 32663.9, + "end": 32663.9, + "probability": 0.4601 + }, + { + "start": 32663.9, + "end": 32663.9, + "probability": 0.3089 + }, + { + "start": 32663.9, + "end": 32666.42, + "probability": 0.5584 + }, + { + "start": 32666.58, + "end": 32670.54, + "probability": 0.4763 + }, + { + "start": 32671.72, + "end": 32674.52, + "probability": 0.5634 + }, + { + "start": 32675.44, + "end": 32676.1, + "probability": 0.7662 + }, + { + "start": 32676.42, + "end": 32679.66, + "probability": 0.8042 + }, + { + "start": 32679.78, + "end": 32681.4, + "probability": 0.908 + }, + { + "start": 32681.4, + "end": 32683.76, + "probability": 0.9917 + }, + { + "start": 32683.76, + "end": 32688.28, + "probability": 0.9664 + }, + { + "start": 32688.82, + "end": 32693.6, + "probability": 0.9312 + }, + { + "start": 32693.62, + "end": 32694.18, + "probability": 0.9156 + }, + { + "start": 32696.8, + "end": 32698.49, + "probability": 0.7649 + }, + { + "start": 32699.62, + "end": 32704.88, + "probability": 0.9714 + }, + { + "start": 32705.64, + "end": 32706.86, + "probability": 0.9928 + }, + { + "start": 32707.64, + "end": 32714.46, + "probability": 0.9745 + }, + { + "start": 32716.12, + "end": 32717.44, + "probability": 0.851 + }, + { + "start": 32717.78, + "end": 32724.26, + "probability": 0.9146 + }, + { + "start": 32725.34, + "end": 32727.7, + "probability": 0.941 + }, + { + "start": 32728.3, + "end": 32732.16, + "probability": 0.9919 + }, + { + "start": 32732.98, + "end": 32736.58, + "probability": 0.9298 + }, + { + "start": 32738.6, + "end": 32741.84, + "probability": 0.9836 + }, + { + "start": 32742.98, + "end": 32744.52, + "probability": 0.9768 + }, + { + "start": 32748.42, + "end": 32751.62, + "probability": 0.8875 + }, + { + "start": 32751.64, + "end": 32754.72, + "probability": 0.8892 + }, + { + "start": 32755.38, + "end": 32758.14, + "probability": 0.4795 + }, + { + "start": 32758.28, + "end": 32762.03, + "probability": 0.9961 + }, + { + "start": 32762.28, + "end": 32762.66, + "probability": 0.931 + }, + { + "start": 32762.82, + "end": 32763.24, + "probability": 0.8221 + }, + { + "start": 32764.26, + "end": 32766.82, + "probability": 0.9404 + }, + { + "start": 32767.92, + "end": 32770.84, + "probability": 0.9692 + }, + { + "start": 32772.2, + "end": 32778.3, + "probability": 0.9669 + }, + { + "start": 32779.04, + "end": 32782.42, + "probability": 0.9958 + }, + { + "start": 32782.46, + "end": 32783.16, + "probability": 0.8596 + }, + { + "start": 32783.46, + "end": 32784.16, + "probability": 0.6631 + }, + { + "start": 32785.0, + "end": 32785.72, + "probability": 0.6382 + }, + { + "start": 32786.06, + "end": 32786.92, + "probability": 0.8923 + }, + { + "start": 32787.06, + "end": 32788.78, + "probability": 0.9336 + }, + { + "start": 32789.28, + "end": 32791.32, + "probability": 0.9443 + }, + { + "start": 32791.38, + "end": 32791.78, + "probability": 0.4908 + }, + { + "start": 32791.8, + "end": 32794.64, + "probability": 0.843 + }, + { + "start": 32794.66, + "end": 32797.58, + "probability": 0.9896 + }, + { + "start": 32797.62, + "end": 32801.12, + "probability": 0.6516 + }, + { + "start": 32801.76, + "end": 32801.86, + "probability": 0.523 + }, + { + "start": 32801.86, + "end": 32805.0, + "probability": 0.8735 + }, + { + "start": 32805.76, + "end": 32809.5, + "probability": 0.9214 + }, + { + "start": 32810.24, + "end": 32810.94, + "probability": 0.5748 + }, + { + "start": 32811.14, + "end": 32811.77, + "probability": 0.595 + }, + { + "start": 32812.84, + "end": 32813.44, + "probability": 0.4519 + }, + { + "start": 32813.62, + "end": 32816.08, + "probability": 0.8867 + }, + { + "start": 32816.62, + "end": 32817.1, + "probability": 0.7649 + }, + { + "start": 32817.24, + "end": 32821.36, + "probability": 0.9949 + }, + { + "start": 32821.52, + "end": 32821.62, + "probability": 0.4005 + }, + { + "start": 32822.12, + "end": 32822.4, + "probability": 0.7275 + }, + { + "start": 32822.6, + "end": 32823.09, + "probability": 0.1609 + }, + { + "start": 32823.98, + "end": 32824.0, + "probability": 0.6771 + }, + { + "start": 32824.0, + "end": 32824.1, + "probability": 0.8955 + }, + { + "start": 32825.94, + "end": 32826.22, + "probability": 0.3837 + }, + { + "start": 32826.78, + "end": 32830.16, + "probability": 0.8989 + }, + { + "start": 32830.72, + "end": 32831.24, + "probability": 0.9475 + }, + { + "start": 32831.56, + "end": 32831.58, + "probability": 0.5886 + }, + { + "start": 32831.58, + "end": 32833.32, + "probability": 0.9341 + }, + { + "start": 32833.46, + "end": 32838.86, + "probability": 0.9151 + }, + { + "start": 32839.44, + "end": 32841.94, + "probability": 0.7834 + }, + { + "start": 32842.58, + "end": 32845.26, + "probability": 0.9783 + }, + { + "start": 32845.82, + "end": 32845.84, + "probability": 0.2416 + }, + { + "start": 32845.84, + "end": 32849.16, + "probability": 0.8016 + }, + { + "start": 32849.64, + "end": 32852.22, + "probability": 0.9905 + }, + { + "start": 32852.24, + "end": 32853.78, + "probability": 0.7327 + }, + { + "start": 32854.14, + "end": 32856.3, + "probability": 0.929 + }, + { + "start": 32856.46, + "end": 32857.24, + "probability": 0.9614 + }, + { + "start": 32857.58, + "end": 32859.8, + "probability": 0.993 + }, + { + "start": 32860.1, + "end": 32861.44, + "probability": 0.9443 + }, + { + "start": 32862.34, + "end": 32862.34, + "probability": 0.2843 + }, + { + "start": 32862.38, + "end": 32865.13, + "probability": 0.9614 + }, + { + "start": 32865.34, + "end": 32868.28, + "probability": 0.9485 + }, + { + "start": 32868.7, + "end": 32871.74, + "probability": 0.9973 + }, + { + "start": 32872.58, + "end": 32875.58, + "probability": 0.9985 + }, + { + "start": 32876.24, + "end": 32876.48, + "probability": 0.5167 + }, + { + "start": 32876.52, + "end": 32876.92, + "probability": 0.7094 + }, + { + "start": 32877.02, + "end": 32880.46, + "probability": 0.9045 + }, + { + "start": 32880.46, + "end": 32885.06, + "probability": 0.9724 + }, + { + "start": 32885.24, + "end": 32887.82, + "probability": 0.9102 + }, + { + "start": 32887.86, + "end": 32889.4, + "probability": 0.7345 + }, + { + "start": 32889.94, + "end": 32890.9, + "probability": 0.0798 + }, + { + "start": 32890.9, + "end": 32892.52, + "probability": 0.6051 + }, + { + "start": 32894.18, + "end": 32895.8, + "probability": 0.3758 + }, + { + "start": 32895.94, + "end": 32897.62, + "probability": 0.9863 + }, + { + "start": 32898.14, + "end": 32900.96, + "probability": 0.9844 + }, + { + "start": 32901.16, + "end": 32901.36, + "probability": 0.8641 + }, + { + "start": 32901.36, + "end": 32903.06, + "probability": 0.8646 + }, + { + "start": 32903.46, + "end": 32906.16, + "probability": 0.9097 + }, + { + "start": 32906.52, + "end": 32908.1, + "probability": 0.9905 + }, + { + "start": 32908.26, + "end": 32908.4, + "probability": 0.4138 + }, + { + "start": 32908.6, + "end": 32908.76, + "probability": 0.4644 + }, + { + "start": 32909.36, + "end": 32914.68, + "probability": 0.9794 + }, + { + "start": 32914.86, + "end": 32915.28, + "probability": 0.2553 + }, + { + "start": 32915.28, + "end": 32916.56, + "probability": 0.7241 + }, + { + "start": 32916.62, + "end": 32917.33, + "probability": 0.7681 + }, + { + "start": 32917.68, + "end": 32917.82, + "probability": 0.446 + }, + { + "start": 32917.82, + "end": 32921.88, + "probability": 0.9409 + }, + { + "start": 32923.14, + "end": 32925.24, + "probability": 0.982 + }, + { + "start": 32926.86, + "end": 32929.85, + "probability": 0.6825 + }, + { + "start": 32931.84, + "end": 32935.06, + "probability": 0.8921 + }, + { + "start": 32935.12, + "end": 32935.54, + "probability": 0.8818 + }, + { + "start": 32935.64, + "end": 32937.0, + "probability": 0.8078 + }, + { + "start": 32937.04, + "end": 32939.0, + "probability": 0.9924 + }, + { + "start": 32939.1, + "end": 32939.44, + "probability": 0.3654 + }, + { + "start": 32940.34, + "end": 32941.98, + "probability": 0.976 + }, + { + "start": 32942.02, + "end": 32945.84, + "probability": 0.9886 + }, + { + "start": 32946.88, + "end": 32949.44, + "probability": 0.9985 + }, + { + "start": 32949.54, + "end": 32949.7, + "probability": 0.8835 + }, + { + "start": 32950.04, + "end": 32950.72, + "probability": 0.7573 + }, + { + "start": 32950.76, + "end": 32953.78, + "probability": 0.9961 + }, + { + "start": 32953.88, + "end": 32955.02, + "probability": 0.9438 + }, + { + "start": 32955.56, + "end": 32957.52, + "probability": 0.9993 + }, + { + "start": 32958.32, + "end": 32960.76, + "probability": 0.9871 + }, + { + "start": 32961.26, + "end": 32961.42, + "probability": 0.86 + }, + { + "start": 32961.42, + "end": 32961.52, + "probability": 0.0516 + }, + { + "start": 32961.6, + "end": 32962.4, + "probability": 0.9099 + }, + { + "start": 32963.28, + "end": 32968.14, + "probability": 0.242 + }, + { + "start": 32968.28, + "end": 32970.04, + "probability": 0.9844 + }, + { + "start": 32970.44, + "end": 32972.38, + "probability": 0.9432 + }, + { + "start": 32972.94, + "end": 32973.68, + "probability": 0.7941 + }, + { + "start": 32973.76, + "end": 32974.9, + "probability": 0.8629 + }, + { + "start": 32975.84, + "end": 32978.16, + "probability": 0.9883 + }, + { + "start": 32978.18, + "end": 32979.88, + "probability": 0.5289 + }, + { + "start": 32980.16, + "end": 32980.16, + "probability": 0.8518 + }, + { + "start": 32980.18, + "end": 32981.52, + "probability": 0.9282 + }, + { + "start": 32981.62, + "end": 32982.5, + "probability": 0.8353 + }, + { + "start": 32982.8, + "end": 32988.08, + "probability": 0.9917 + }, + { + "start": 32989.76, + "end": 32990.68, + "probability": 0.6123 + }, + { + "start": 32991.8, + "end": 32993.86, + "probability": 0.9977 + }, + { + "start": 32994.7, + "end": 32996.38, + "probability": 0.9744 + }, + { + "start": 32997.16, + "end": 32998.9, + "probability": 0.9199 + }, + { + "start": 32999.08, + "end": 32999.18, + "probability": 0.6572 + }, + { + "start": 33000.24, + "end": 33001.66, + "probability": 0.7399 + }, + { + "start": 33002.42, + "end": 33005.82, + "probability": 0.8922 + }, + { + "start": 33006.3, + "end": 33008.18, + "probability": 0.6794 + }, + { + "start": 33008.34, + "end": 33009.06, + "probability": 0.6935 + }, + { + "start": 33009.9, + "end": 33012.18, + "probability": 0.8125 + }, + { + "start": 33012.36, + "end": 33014.14, + "probability": 0.9419 + }, + { + "start": 33014.36, + "end": 33015.36, + "probability": 0.9329 + }, + { + "start": 33015.42, + "end": 33015.93, + "probability": 0.9512 + }, + { + "start": 33016.22, + "end": 33017.16, + "probability": 0.9746 + }, + { + "start": 33017.42, + "end": 33020.3, + "probability": 0.9796 + }, + { + "start": 33020.3, + "end": 33024.02, + "probability": 0.999 + }, + { + "start": 33025.36, + "end": 33028.26, + "probability": 0.9241 + }, + { + "start": 33029.54, + "end": 33030.3, + "probability": 0.9811 + }, + { + "start": 33031.56, + "end": 33034.62, + "probability": 0.9548 + }, + { + "start": 33034.94, + "end": 33038.2, + "probability": 0.7159 + }, + { + "start": 33038.42, + "end": 33039.12, + "probability": 0.5847 + }, + { + "start": 33039.72, + "end": 33040.58, + "probability": 0.4709 + }, + { + "start": 33040.68, + "end": 33041.51, + "probability": 0.7964 + }, + { + "start": 33042.3, + "end": 33045.14, + "probability": 0.8047 + }, + { + "start": 33046.0, + "end": 33049.25, + "probability": 0.9973 + }, + { + "start": 33049.84, + "end": 33049.84, + "probability": 0.1868 + }, + { + "start": 33049.84, + "end": 33053.38, + "probability": 0.9902 + }, + { + "start": 33054.2, + "end": 33056.7, + "probability": 0.7993 + }, + { + "start": 33057.26, + "end": 33060.04, + "probability": 0.9778 + }, + { + "start": 33060.82, + "end": 33061.14, + "probability": 0.9444 + }, + { + "start": 33061.68, + "end": 33062.16, + "probability": 0.7368 + }, + { + "start": 33062.76, + "end": 33064.68, + "probability": 0.9971 + }, + { + "start": 33065.32, + "end": 33065.32, + "probability": 0.4765 + }, + { + "start": 33065.32, + "end": 33065.8, + "probability": 0.4972 + }, + { + "start": 33066.72, + "end": 33072.08, + "probability": 0.2003 + }, + { + "start": 33072.08, + "end": 33072.08, + "probability": 0.1697 + }, + { + "start": 33072.08, + "end": 33072.08, + "probability": 0.0244 + }, + { + "start": 33072.08, + "end": 33072.08, + "probability": 0.1546 + }, + { + "start": 33072.08, + "end": 33072.64, + "probability": 0.2567 + }, + { + "start": 33073.22, + "end": 33074.6, + "probability": 0.6244 + }, + { + "start": 33074.72, + "end": 33076.18, + "probability": 0.7924 + }, + { + "start": 33076.24, + "end": 33076.78, + "probability": 0.8021 + }, + { + "start": 33078.1, + "end": 33078.48, + "probability": 0.8563 + }, + { + "start": 33079.56, + "end": 33080.72, + "probability": 0.6497 + }, + { + "start": 33082.6, + "end": 33085.44, + "probability": 0.852 + }, + { + "start": 33085.94, + "end": 33086.14, + "probability": 0.988 + }, + { + "start": 33089.0, + "end": 33092.88, + "probability": 0.9646 + }, + { + "start": 33095.5, + "end": 33096.42, + "probability": 0.9175 + }, + { + "start": 33096.76, + "end": 33100.2, + "probability": 0.8706 + }, + { + "start": 33100.78, + "end": 33101.98, + "probability": 0.7082 + }, + { + "start": 33103.72, + "end": 33106.15, + "probability": 0.9802 + }, + { + "start": 33107.94, + "end": 33109.3, + "probability": 0.9302 + }, + { + "start": 33109.72, + "end": 33110.92, + "probability": 0.5021 + }, + { + "start": 33111.22, + "end": 33114.32, + "probability": 0.7173 + }, + { + "start": 33114.4, + "end": 33115.08, + "probability": 0.407 + }, + { + "start": 33115.46, + "end": 33117.08, + "probability": 0.9418 + }, + { + "start": 33117.18, + "end": 33117.96, + "probability": 0.7378 + }, + { + "start": 33118.06, + "end": 33119.62, + "probability": 0.4602 + }, + { + "start": 33120.06, + "end": 33126.68, + "probability": 0.9893 + }, + { + "start": 33127.06, + "end": 33130.1, + "probability": 0.7866 + }, + { + "start": 33130.1, + "end": 33131.28, + "probability": 0.8286 + }, + { + "start": 33132.28, + "end": 33136.34, + "probability": 0.6693 + }, + { + "start": 33136.34, + "end": 33138.54, + "probability": 0.949 + }, + { + "start": 33138.62, + "end": 33141.52, + "probability": 0.967 + }, + { + "start": 33141.94, + "end": 33142.92, + "probability": 0.9895 + }, + { + "start": 33143.32, + "end": 33143.58, + "probability": 0.7637 + }, + { + "start": 33143.6, + "end": 33144.32, + "probability": 0.9976 + }, + { + "start": 33145.28, + "end": 33146.38, + "probability": 0.6771 + }, + { + "start": 33146.92, + "end": 33147.34, + "probability": 0.3795 + }, + { + "start": 33147.4, + "end": 33149.28, + "probability": 0.9883 + }, + { + "start": 33150.26, + "end": 33151.7, + "probability": 0.9302 + }, + { + "start": 33152.22, + "end": 33153.66, + "probability": 0.876 + }, + { + "start": 33153.88, + "end": 33155.38, + "probability": 0.8835 + }, + { + "start": 33156.78, + "end": 33158.76, + "probability": 0.998 + }, + { + "start": 33159.02, + "end": 33160.07, + "probability": 0.8726 + }, + { + "start": 33160.24, + "end": 33161.06, + "probability": 0.2258 + }, + { + "start": 33161.5, + "end": 33163.82, + "probability": 0.8293 + }, + { + "start": 33163.9, + "end": 33165.98, + "probability": 0.753 + }, + { + "start": 33166.52, + "end": 33166.7, + "probability": 0.7558 + }, + { + "start": 33166.76, + "end": 33167.92, + "probability": 0.8873 + }, + { + "start": 33168.36, + "end": 33169.52, + "probability": 0.9937 + }, + { + "start": 33170.24, + "end": 33171.26, + "probability": 0.989 + }, + { + "start": 33171.7, + "end": 33172.3, + "probability": 0.9659 + }, + { + "start": 33173.28, + "end": 33175.24, + "probability": 0.9951 + }, + { + "start": 33175.32, + "end": 33177.62, + "probability": 0.9082 + }, + { + "start": 33177.94, + "end": 33179.44, + "probability": 0.2718 + }, + { + "start": 33179.6, + "end": 33180.1, + "probability": 0.4178 + }, + { + "start": 33181.56, + "end": 33182.98, + "probability": 0.5504 + }, + { + "start": 33183.5, + "end": 33186.62, + "probability": 0.9727 + }, + { + "start": 33187.18, + "end": 33188.28, + "probability": 0.5954 + }, + { + "start": 33188.92, + "end": 33191.16, + "probability": 0.9443 + }, + { + "start": 33192.8, + "end": 33193.4, + "probability": 0.4348 + }, + { + "start": 33194.54, + "end": 33196.38, + "probability": 0.9664 + }, + { + "start": 33196.76, + "end": 33198.98, + "probability": 0.9932 + }, + { + "start": 33199.68, + "end": 33202.22, + "probability": 0.9866 + }, + { + "start": 33202.98, + "end": 33207.76, + "probability": 0.9733 + }, + { + "start": 33208.68, + "end": 33209.48, + "probability": 0.6103 + }, + { + "start": 33211.02, + "end": 33213.18, + "probability": 0.9783 + }, + { + "start": 33214.66, + "end": 33219.8, + "probability": 0.838 + }, + { + "start": 33222.52, + "end": 33224.1, + "probability": 0.9924 + }, + { + "start": 33224.16, + "end": 33224.78, + "probability": 0.5026 + }, + { + "start": 33225.44, + "end": 33228.0, + "probability": 0.964 + }, + { + "start": 33228.74, + "end": 33229.23, + "probability": 0.9287 + }, + { + "start": 33230.14, + "end": 33231.8, + "probability": 0.9705 + }, + { + "start": 33233.32, + "end": 33234.76, + "probability": 0.9615 + }, + { + "start": 33234.88, + "end": 33236.4, + "probability": 0.6405 + }, + { + "start": 33236.48, + "end": 33237.36, + "probability": 0.8331 + }, + { + "start": 33240.32, + "end": 33243.94, + "probability": 0.9494 + }, + { + "start": 33244.96, + "end": 33249.46, + "probability": 0.9958 + }, + { + "start": 33250.52, + "end": 33251.83, + "probability": 0.9963 + }, + { + "start": 33253.0, + "end": 33253.8, + "probability": 0.9932 + }, + { + "start": 33255.02, + "end": 33256.54, + "probability": 0.6652 + }, + { + "start": 33257.78, + "end": 33259.4, + "probability": 0.9702 + }, + { + "start": 33260.14, + "end": 33262.32, + "probability": 0.9764 + }, + { + "start": 33262.36, + "end": 33264.64, + "probability": 0.1818 + }, + { + "start": 33265.26, + "end": 33266.58, + "probability": 0.6039 + }, + { + "start": 33266.84, + "end": 33268.66, + "probability": 0.9906 + }, + { + "start": 33269.04, + "end": 33272.62, + "probability": 0.9478 + }, + { + "start": 33273.82, + "end": 33276.26, + "probability": 0.9989 + }, + { + "start": 33276.42, + "end": 33279.06, + "probability": 0.8089 + }, + { + "start": 33279.28, + "end": 33283.13, + "probability": 0.8267 + }, + { + "start": 33283.76, + "end": 33284.56, + "probability": 0.9574 + }, + { + "start": 33284.82, + "end": 33285.9, + "probability": 0.9595 + }, + { + "start": 33286.14, + "end": 33289.2, + "probability": 0.9927 + }, + { + "start": 33290.18, + "end": 33291.63, + "probability": 0.3465 + }, + { + "start": 33292.62, + "end": 33294.06, + "probability": 0.7802 + }, + { + "start": 33294.08, + "end": 33296.4, + "probability": 0.6421 + }, + { + "start": 33297.7, + "end": 33302.32, + "probability": 0.8088 + }, + { + "start": 33303.06, + "end": 33304.52, + "probability": 0.8236 + }, + { + "start": 33304.9, + "end": 33307.2, + "probability": 0.7478 + }, + { + "start": 33308.3, + "end": 33309.42, + "probability": 0.8938 + }, + { + "start": 33309.48, + "end": 33310.96, + "probability": 0.9734 + }, + { + "start": 33311.56, + "end": 33312.3, + "probability": 0.8582 + }, + { + "start": 33314.28, + "end": 33314.74, + "probability": 0.6165 + }, + { + "start": 33315.54, + "end": 33316.48, + "probability": 0.7405 + }, + { + "start": 33316.48, + "end": 33317.78, + "probability": 0.5121 + }, + { + "start": 33318.28, + "end": 33320.14, + "probability": 0.9005 + }, + { + "start": 33320.28, + "end": 33323.06, + "probability": 0.9359 + }, + { + "start": 33323.12, + "end": 33325.06, + "probability": 0.5178 + }, + { + "start": 33325.72, + "end": 33326.38, + "probability": 0.7277 + }, + { + "start": 33326.5, + "end": 33328.76, + "probability": 0.9504 + }, + { + "start": 33328.88, + "end": 33330.42, + "probability": 0.9913 + }, + { + "start": 33331.24, + "end": 33332.37, + "probability": 0.796 + }, + { + "start": 33336.6, + "end": 33337.22, + "probability": 0.063 + }, + { + "start": 33337.22, + "end": 33337.22, + "probability": 0.1733 + }, + { + "start": 33337.22, + "end": 33337.22, + "probability": 0.0797 + }, + { + "start": 33337.22, + "end": 33340.12, + "probability": 0.9098 + }, + { + "start": 33340.3, + "end": 33341.06, + "probability": 0.6218 + }, + { + "start": 33341.56, + "end": 33342.18, + "probability": 0.5117 + }, + { + "start": 33342.18, + "end": 33343.24, + "probability": 0.6795 + }, + { + "start": 33343.7, + "end": 33347.04, + "probability": 0.5802 + }, + { + "start": 33347.04, + "end": 33349.88, + "probability": 0.9143 + }, + { + "start": 33349.9, + "end": 33350.58, + "probability": 0.6269 + }, + { + "start": 33350.94, + "end": 33353.6, + "probability": 0.3908 + }, + { + "start": 33354.38, + "end": 33355.94, + "probability": 0.7701 + }, + { + "start": 33356.04, + "end": 33356.62, + "probability": 0.7832 + }, + { + "start": 33356.7, + "end": 33358.8, + "probability": 0.5797 + }, + { + "start": 33359.16, + "end": 33359.16, + "probability": 0.0602 + }, + { + "start": 33359.16, + "end": 33361.79, + "probability": 0.9762 + }, + { + "start": 33361.98, + "end": 33365.28, + "probability": 0.9712 + }, + { + "start": 33365.8, + "end": 33366.08, + "probability": 0.4497 + }, + { + "start": 33368.58, + "end": 33369.28, + "probability": 0.1665 + }, + { + "start": 33370.2, + "end": 33370.42, + "probability": 0.0627 + }, + { + "start": 33370.42, + "end": 33370.42, + "probability": 0.0036 + }, + { + "start": 33370.42, + "end": 33371.18, + "probability": 0.4472 + }, + { + "start": 33372.28, + "end": 33372.52, + "probability": 0.6824 + }, + { + "start": 33373.44, + "end": 33374.66, + "probability": 0.6478 + }, + { + "start": 33375.86, + "end": 33377.26, + "probability": 0.7781 + }, + { + "start": 33380.31, + "end": 33384.38, + "probability": 0.8907 + }, + { + "start": 33385.92, + "end": 33389.38, + "probability": 0.8941 + }, + { + "start": 33390.3, + "end": 33393.7, + "probability": 0.9664 + }, + { + "start": 33394.04, + "end": 33396.46, + "probability": 0.9886 + }, + { + "start": 33397.72, + "end": 33403.74, + "probability": 0.7518 + }, + { + "start": 33405.0, + "end": 33406.24, + "probability": 0.733 + }, + { + "start": 33406.78, + "end": 33408.86, + "probability": 0.8905 + }, + { + "start": 33409.12, + "end": 33410.98, + "probability": 0.9655 + }, + { + "start": 33412.1, + "end": 33413.94, + "probability": 0.8413 + }, + { + "start": 33414.14, + "end": 33416.06, + "probability": 0.9761 + }, + { + "start": 33416.18, + "end": 33417.74, + "probability": 0.9161 + }, + { + "start": 33418.66, + "end": 33419.12, + "probability": 0.9451 + }, + { + "start": 33419.26, + "end": 33424.84, + "probability": 0.9925 + }, + { + "start": 33425.1, + "end": 33425.88, + "probability": 0.7047 + }, + { + "start": 33426.66, + "end": 33429.32, + "probability": 0.9875 + }, + { + "start": 33430.9, + "end": 33435.12, + "probability": 0.9761 + }, + { + "start": 33436.14, + "end": 33439.62, + "probability": 0.8687 + }, + { + "start": 33439.68, + "end": 33444.22, + "probability": 0.9967 + }, + { + "start": 33444.22, + "end": 33447.56, + "probability": 0.9998 + }, + { + "start": 33448.96, + "end": 33454.54, + "probability": 0.9953 + }, + { + "start": 33455.16, + "end": 33460.14, + "probability": 0.9897 + }, + { + "start": 33460.98, + "end": 33468.16, + "probability": 0.9785 + }, + { + "start": 33468.94, + "end": 33472.22, + "probability": 0.8751 + }, + { + "start": 33472.74, + "end": 33476.02, + "probability": 0.9829 + }, + { + "start": 33476.1, + "end": 33476.66, + "probability": 0.7436 + }, + { + "start": 33476.76, + "end": 33477.46, + "probability": 0.6081 + }, + { + "start": 33478.52, + "end": 33482.5, + "probability": 0.9743 + }, + { + "start": 33482.58, + "end": 33486.08, + "probability": 0.9331 + }, + { + "start": 33486.08, + "end": 33491.38, + "probability": 0.9924 + }, + { + "start": 33492.82, + "end": 33496.96, + "probability": 0.9534 + }, + { + "start": 33497.14, + "end": 33497.48, + "probability": 0.8309 + }, + { + "start": 33497.66, + "end": 33503.22, + "probability": 0.9598 + }, + { + "start": 33503.22, + "end": 33507.98, + "probability": 0.9307 + }, + { + "start": 33508.92, + "end": 33513.2, + "probability": 0.8256 + }, + { + "start": 33513.88, + "end": 33515.42, + "probability": 0.9567 + }, + { + "start": 33515.66, + "end": 33518.22, + "probability": 0.9868 + }, + { + "start": 33519.28, + "end": 33520.86, + "probability": 0.9369 + }, + { + "start": 33521.84, + "end": 33523.22, + "probability": 0.7921 + }, + { + "start": 33523.94, + "end": 33526.7, + "probability": 0.9624 + }, + { + "start": 33526.7, + "end": 33529.96, + "probability": 0.8493 + }, + { + "start": 33531.32, + "end": 33533.68, + "probability": 0.9852 + }, + { + "start": 33534.04, + "end": 33534.74, + "probability": 0.708 + }, + { + "start": 33534.88, + "end": 33535.56, + "probability": 0.7169 + }, + { + "start": 33536.04, + "end": 33538.9, + "probability": 0.6664 + }, + { + "start": 33539.46, + "end": 33542.44, + "probability": 0.8785 + }, + { + "start": 33542.44, + "end": 33544.94, + "probability": 0.9957 + }, + { + "start": 33545.8, + "end": 33547.2, + "probability": 0.9543 + }, + { + "start": 33547.42, + "end": 33549.64, + "probability": 0.9465 + }, + { + "start": 33550.1, + "end": 33552.88, + "probability": 0.9511 + }, + { + "start": 33554.18, + "end": 33557.54, + "probability": 0.7253 + }, + { + "start": 33557.68, + "end": 33560.12, + "probability": 0.9725 + }, + { + "start": 33561.36, + "end": 33563.2, + "probability": 0.9764 + }, + { + "start": 33563.28, + "end": 33564.38, + "probability": 0.3074 + }, + { + "start": 33564.4, + "end": 33566.56, + "probability": 0.331 + }, + { + "start": 33566.7, + "end": 33568.24, + "probability": 0.9518 + }, + { + "start": 33570.1, + "end": 33573.64, + "probability": 0.9971 + }, + { + "start": 33573.78, + "end": 33579.84, + "probability": 0.9919 + }, + { + "start": 33580.38, + "end": 33581.28, + "probability": 0.9933 + }, + { + "start": 33582.16, + "end": 33585.02, + "probability": 0.916 + }, + { + "start": 33585.6, + "end": 33589.62, + "probability": 0.7261 + }, + { + "start": 33590.58, + "end": 33595.08, + "probability": 0.9905 + }, + { + "start": 33595.74, + "end": 33599.26, + "probability": 0.9458 + }, + { + "start": 33600.98, + "end": 33601.12, + "probability": 0.4327 + }, + { + "start": 33601.2, + "end": 33603.48, + "probability": 0.7268 + }, + { + "start": 33603.8, + "end": 33607.4, + "probability": 0.8743 + }, + { + "start": 33607.48, + "end": 33608.26, + "probability": 0.8638 + }, + { + "start": 33608.86, + "end": 33610.84, + "probability": 0.9383 + }, + { + "start": 33611.0, + "end": 33612.72, + "probability": 0.8171 + }, + { + "start": 33613.78, + "end": 33615.88, + "probability": 0.8807 + }, + { + "start": 33616.64, + "end": 33617.82, + "probability": 0.8842 + }, + { + "start": 33618.56, + "end": 33621.8, + "probability": 0.9746 + }, + { + "start": 33622.32, + "end": 33623.96, + "probability": 0.899 + }, + { + "start": 33624.58, + "end": 33626.0, + "probability": 0.9893 + }, + { + "start": 33626.12, + "end": 33627.58, + "probability": 0.9122 + }, + { + "start": 33627.92, + "end": 33628.22, + "probability": 0.5514 + }, + { + "start": 33628.3, + "end": 33628.76, + "probability": 0.9678 + }, + { + "start": 33628.9, + "end": 33629.78, + "probability": 0.538 + }, + { + "start": 33630.44, + "end": 33631.88, + "probability": 0.9081 + }, + { + "start": 33632.2, + "end": 33632.7, + "probability": 0.9372 + }, + { + "start": 33633.36, + "end": 33634.52, + "probability": 0.9735 + }, + { + "start": 33634.56, + "end": 33635.98, + "probability": 0.9546 + }, + { + "start": 33636.1, + "end": 33637.78, + "probability": 0.8668 + }, + { + "start": 33638.42, + "end": 33640.38, + "probability": 0.9792 + }, + { + "start": 33641.0, + "end": 33642.66, + "probability": 0.9325 + }, + { + "start": 33643.3, + "end": 33648.36, + "probability": 0.9827 + }, + { + "start": 33649.08, + "end": 33650.96, + "probability": 0.8701 + }, + { + "start": 33651.08, + "end": 33653.16, + "probability": 0.9958 + }, + { + "start": 33653.9, + "end": 33655.92, + "probability": 0.8914 + }, + { + "start": 33656.44, + "end": 33659.7, + "probability": 0.5922 + }, + { + "start": 33660.34, + "end": 33663.62, + "probability": 0.98 + }, + { + "start": 33663.98, + "end": 33666.72, + "probability": 0.9261 + }, + { + "start": 33667.38, + "end": 33671.9, + "probability": 0.9887 + }, + { + "start": 33672.74, + "end": 33674.76, + "probability": 0.9922 + }, + { + "start": 33675.12, + "end": 33677.44, + "probability": 0.7768 + }, + { + "start": 33678.18, + "end": 33681.42, + "probability": 0.9367 + }, + { + "start": 33681.78, + "end": 33684.36, + "probability": 0.9949 + }, + { + "start": 33684.92, + "end": 33685.73, + "probability": 0.97 + }, + { + "start": 33685.86, + "end": 33686.16, + "probability": 0.4989 + }, + { + "start": 33686.2, + "end": 33687.2, + "probability": 0.8361 + }, + { + "start": 33687.34, + "end": 33691.38, + "probability": 0.9675 + }, + { + "start": 33692.84, + "end": 33700.6, + "probability": 0.9335 + }, + { + "start": 33701.96, + "end": 33704.8, + "probability": 0.7584 + }, + { + "start": 33704.92, + "end": 33707.03, + "probability": 0.9873 + }, + { + "start": 33707.64, + "end": 33710.12, + "probability": 0.9874 + }, + { + "start": 33710.46, + "end": 33711.64, + "probability": 0.8444 + }, + { + "start": 33712.34, + "end": 33713.44, + "probability": 0.6514 + }, + { + "start": 33713.54, + "end": 33714.3, + "probability": 0.8047 + }, + { + "start": 33714.38, + "end": 33715.98, + "probability": 0.8767 + }, + { + "start": 33716.42, + "end": 33717.32, + "probability": 0.9183 + }, + { + "start": 33717.56, + "end": 33719.58, + "probability": 0.9727 + }, + { + "start": 33720.08, + "end": 33724.58, + "probability": 0.9849 + }, + { + "start": 33724.58, + "end": 33729.16, + "probability": 0.9302 + }, + { + "start": 33730.26, + "end": 33732.32, + "probability": 0.9082 + }, + { + "start": 33733.86, + "end": 33734.34, + "probability": 0.7345 + }, + { + "start": 33735.7, + "end": 33736.58, + "probability": 0.6838 + }, + { + "start": 33737.16, + "end": 33737.38, + "probability": 0.6903 + }, + { + "start": 33738.58, + "end": 33743.4, + "probability": 0.9749 + }, + { + "start": 33743.88, + "end": 33744.96, + "probability": 0.7633 + }, + { + "start": 33745.7, + "end": 33749.76, + "probability": 0.9626 + }, + { + "start": 33750.36, + "end": 33752.18, + "probability": 0.9773 + }, + { + "start": 33752.26, + "end": 33755.1, + "probability": 0.8735 + }, + { + "start": 33755.86, + "end": 33757.89, + "probability": 0.9353 + }, + { + "start": 33758.54, + "end": 33760.02, + "probability": 0.9092 + }, + { + "start": 33760.14, + "end": 33763.7, + "probability": 0.9484 + }, + { + "start": 33764.22, + "end": 33770.16, + "probability": 0.9044 + }, + { + "start": 33770.74, + "end": 33774.08, + "probability": 0.8204 + }, + { + "start": 33774.22, + "end": 33780.04, + "probability": 0.9884 + }, + { + "start": 33780.38, + "end": 33784.8, + "probability": 0.9543 + }, + { + "start": 33785.56, + "end": 33788.7, + "probability": 0.8931 + }, + { + "start": 33790.32, + "end": 33791.8, + "probability": 0.654 + }, + { + "start": 33792.32, + "end": 33792.76, + "probability": 0.7585 + }, + { + "start": 33792.86, + "end": 33797.84, + "probability": 0.9802 + }, + { + "start": 33798.88, + "end": 33799.54, + "probability": 0.8448 + }, + { + "start": 33800.5, + "end": 33804.62, + "probability": 0.9914 + }, + { + "start": 33805.72, + "end": 33809.74, + "probability": 0.9829 + }, + { + "start": 33811.04, + "end": 33812.28, + "probability": 0.8105 + }, + { + "start": 33812.92, + "end": 33816.0, + "probability": 0.9824 + }, + { + "start": 33817.02, + "end": 33818.45, + "probability": 0.9372 + }, + { + "start": 33819.14, + "end": 33823.3, + "probability": 0.7157 + }, + { + "start": 33825.5, + "end": 33830.86, + "probability": 0.8281 + }, + { + "start": 33832.24, + "end": 33832.79, + "probability": 0.9912 + }, + { + "start": 33833.64, + "end": 33836.28, + "probability": 0.5936 + }, + { + "start": 33836.5, + "end": 33837.62, + "probability": 0.7139 + }, + { + "start": 33838.36, + "end": 33844.36, + "probability": 0.8171 + }, + { + "start": 33846.4, + "end": 33847.82, + "probability": 0.9341 + }, + { + "start": 33849.5, + "end": 33854.32, + "probability": 0.9292 + }, + { + "start": 33855.04, + "end": 33858.68, + "probability": 0.9653 + }, + { + "start": 33858.78, + "end": 33859.94, + "probability": 0.8494 + }, + { + "start": 33860.8, + "end": 33862.0, + "probability": 0.949 + }, + { + "start": 33862.32, + "end": 33865.62, + "probability": 0.9854 + }, + { + "start": 33866.88, + "end": 33867.82, + "probability": 0.7483 + }, + { + "start": 33867.86, + "end": 33872.3, + "probability": 0.9958 + }, + { + "start": 33873.98, + "end": 33877.72, + "probability": 0.9761 + }, + { + "start": 33878.9, + "end": 33882.74, + "probability": 0.9719 + }, + { + "start": 33883.42, + "end": 33885.78, + "probability": 0.9137 + }, + { + "start": 33885.98, + "end": 33886.94, + "probability": 0.7075 + }, + { + "start": 33886.94, + "end": 33888.24, + "probability": 0.838 + }, + { + "start": 33889.02, + "end": 33890.74, + "probability": 0.9966 + }, + { + "start": 33891.86, + "end": 33895.82, + "probability": 0.9757 + }, + { + "start": 33896.4, + "end": 33897.44, + "probability": 0.608 + }, + { + "start": 33898.26, + "end": 33900.22, + "probability": 0.9195 + }, + { + "start": 33901.22, + "end": 33902.46, + "probability": 0.6379 + }, + { + "start": 33902.64, + "end": 33907.48, + "probability": 0.9561 + }, + { + "start": 33908.26, + "end": 33909.58, + "probability": 0.9062 + }, + { + "start": 33911.69, + "end": 33913.7, + "probability": 0.6574 + }, + { + "start": 33914.4, + "end": 33915.88, + "probability": 0.9893 + }, + { + "start": 33916.56, + "end": 33920.12, + "probability": 0.9364 + }, + { + "start": 33921.18, + "end": 33922.78, + "probability": 0.6952 + }, + { + "start": 33923.64, + "end": 33924.92, + "probability": 0.9858 + }, + { + "start": 33924.98, + "end": 33926.36, + "probability": 0.9668 + }, + { + "start": 33926.86, + "end": 33928.02, + "probability": 0.725 + }, + { + "start": 33928.2, + "end": 33929.36, + "probability": 0.9446 + }, + { + "start": 33930.62, + "end": 33931.22, + "probability": 0.903 + }, + { + "start": 33932.24, + "end": 33932.44, + "probability": 0.0905 + }, + { + "start": 33933.22, + "end": 33934.08, + "probability": 0.5208 + }, + { + "start": 33934.08, + "end": 33934.74, + "probability": 0.7904 + }, + { + "start": 33935.04, + "end": 33935.84, + "probability": 0.5877 + }, + { + "start": 33936.46, + "end": 33939.4, + "probability": 0.8026 + }, + { + "start": 33940.4, + "end": 33940.88, + "probability": 0.8612 + }, + { + "start": 33940.88, + "end": 33944.52, + "probability": 0.8378 + }, + { + "start": 33944.52, + "end": 33948.58, + "probability": 0.9758 + }, + { + "start": 33949.42, + "end": 33950.58, + "probability": 0.8609 + }, + { + "start": 33950.66, + "end": 33951.4, + "probability": 0.8621 + }, + { + "start": 33951.44, + "end": 33951.78, + "probability": 0.7906 + }, + { + "start": 33951.96, + "end": 33954.5, + "probability": 0.7776 + }, + { + "start": 33954.84, + "end": 33956.28, + "probability": 0.5525 + }, + { + "start": 33956.3, + "end": 33956.78, + "probability": 0.5728 + }, + { + "start": 33959.18, + "end": 33961.58, + "probability": 0.9751 + }, + { + "start": 33962.52, + "end": 33967.32, + "probability": 0.9721 + }, + { + "start": 33967.76, + "end": 33969.0, + "probability": 0.9934 + }, + { + "start": 33969.24, + "end": 33969.82, + "probability": 0.6215 + }, + { + "start": 33969.96, + "end": 33970.66, + "probability": 0.6972 + }, + { + "start": 33970.72, + "end": 33972.24, + "probability": 0.9863 + }, + { + "start": 33972.36, + "end": 33972.78, + "probability": 0.9111 + }, + { + "start": 33972.82, + "end": 33976.68, + "probability": 0.9978 + }, + { + "start": 33977.3, + "end": 33978.58, + "probability": 0.9873 + }, + { + "start": 33979.18, + "end": 33981.94, + "probability": 0.983 + }, + { + "start": 33982.12, + "end": 33984.26, + "probability": 0.8718 + }, + { + "start": 33985.64, + "end": 33986.72, + "probability": 0.7489 + }, + { + "start": 33986.76, + "end": 33987.4, + "probability": 0.9501 + }, + { + "start": 33987.48, + "end": 33988.13, + "probability": 0.9686 + }, + { + "start": 33989.72, + "end": 33991.34, + "probability": 0.9443 + }, + { + "start": 33991.9, + "end": 33993.46, + "probability": 0.9878 + }, + { + "start": 33994.14, + "end": 33995.28, + "probability": 0.894 + }, + { + "start": 33996.22, + "end": 33997.26, + "probability": 0.9531 + }, + { + "start": 33997.98, + "end": 33999.46, + "probability": 0.9805 + }, + { + "start": 34000.12, + "end": 34003.76, + "probability": 0.9885 + }, + { + "start": 34004.08, + "end": 34005.4, + "probability": 0.9653 + }, + { + "start": 34006.3, + "end": 34007.9, + "probability": 0.9325 + }, + { + "start": 34008.8, + "end": 34010.38, + "probability": 0.8857 + }, + { + "start": 34010.88, + "end": 34011.67, + "probability": 0.9307 + }, + { + "start": 34012.86, + "end": 34014.3, + "probability": 0.9851 + }, + { + "start": 34015.3, + "end": 34016.72, + "probability": 0.8945 + }, + { + "start": 34017.3, + "end": 34019.52, + "probability": 0.9977 + }, + { + "start": 34020.54, + "end": 34021.17, + "probability": 0.9246 + }, + { + "start": 34023.18, + "end": 34027.0, + "probability": 0.7565 + }, + { + "start": 34027.86, + "end": 34030.52, + "probability": 0.9421 + }, + { + "start": 34031.88, + "end": 34033.98, + "probability": 0.9782 + }, + { + "start": 34034.68, + "end": 34038.46, + "probability": 0.9149 + }, + { + "start": 34039.62, + "end": 34040.06, + "probability": 0.8545 + }, + { + "start": 34041.24, + "end": 34042.5, + "probability": 0.9474 + }, + { + "start": 34043.0, + "end": 34043.88, + "probability": 0.9678 + }, + { + "start": 34044.34, + "end": 34046.7, + "probability": 0.9891 + }, + { + "start": 34046.78, + "end": 34048.08, + "probability": 0.7126 + }, + { + "start": 34048.28, + "end": 34049.14, + "probability": 0.7119 + }, + { + "start": 34050.26, + "end": 34053.52, + "probability": 0.9932 + }, + { + "start": 34054.38, + "end": 34055.7, + "probability": 0.9939 + }, + { + "start": 34056.44, + "end": 34059.32, + "probability": 0.9158 + }, + { + "start": 34059.94, + "end": 34062.32, + "probability": 0.9769 + }, + { + "start": 34063.5, + "end": 34065.2, + "probability": 0.8671 + }, + { + "start": 34065.82, + "end": 34067.1, + "probability": 0.9758 + }, + { + "start": 34068.16, + "end": 34072.23, + "probability": 0.99 + }, + { + "start": 34072.82, + "end": 34074.34, + "probability": 0.788 + }, + { + "start": 34075.14, + "end": 34078.61, + "probability": 0.9951 + }, + { + "start": 34079.12, + "end": 34080.34, + "probability": 0.7026 + }, + { + "start": 34080.78, + "end": 34084.2, + "probability": 0.8843 + }, + { + "start": 34084.28, + "end": 34085.46, + "probability": 0.8495 + }, + { + "start": 34085.72, + "end": 34087.22, + "probability": 0.7639 + }, + { + "start": 34087.38, + "end": 34088.98, + "probability": 0.9885 + }, + { + "start": 34089.6, + "end": 34092.96, + "probability": 0.8435 + }, + { + "start": 34093.32, + "end": 34094.9, + "probability": 0.5572 + }, + { + "start": 34095.02, + "end": 34095.42, + "probability": 0.441 + }, + { + "start": 34095.8, + "end": 34099.62, + "probability": 0.9174 + }, + { + "start": 34099.78, + "end": 34102.82, + "probability": 0.9852 + }, + { + "start": 34103.1, + "end": 34106.24, + "probability": 0.9882 + }, + { + "start": 34106.34, + "end": 34107.78, + "probability": 0.7971 + }, + { + "start": 34107.9, + "end": 34108.82, + "probability": 0.857 + }, + { + "start": 34109.32, + "end": 34111.6, + "probability": 0.9264 + }, + { + "start": 34112.18, + "end": 34114.96, + "probability": 0.9971 + }, + { + "start": 34115.08, + "end": 34115.66, + "probability": 0.8364 + }, + { + "start": 34115.8, + "end": 34116.24, + "probability": 0.9498 + }, + { + "start": 34117.08, + "end": 34119.26, + "probability": 0.9784 + }, + { + "start": 34119.86, + "end": 34119.94, + "probability": 0.0968 + }, + { + "start": 34120.04, + "end": 34120.76, + "probability": 0.8334 + }, + { + "start": 34121.38, + "end": 34122.44, + "probability": 0.9098 + }, + { + "start": 34122.52, + "end": 34124.06, + "probability": 0.9871 + }, + { + "start": 34124.32, + "end": 34125.11, + "probability": 0.8465 + }, + { + "start": 34125.92, + "end": 34128.0, + "probability": 0.7874 + }, + { + "start": 34128.06, + "end": 34129.7, + "probability": 0.8542 + }, + { + "start": 34130.68, + "end": 34131.86, + "probability": 0.6621 + }, + { + "start": 34132.28, + "end": 34137.98, + "probability": 0.8381 + }, + { + "start": 34138.1, + "end": 34142.0, + "probability": 0.7882 + }, + { + "start": 34142.0, + "end": 34145.22, + "probability": 0.9285 + }, + { + "start": 34145.38, + "end": 34145.64, + "probability": 0.4594 + }, + { + "start": 34145.92, + "end": 34146.54, + "probability": 0.0819 + }, + { + "start": 34146.9, + "end": 34147.38, + "probability": 0.7488 + }, + { + "start": 34147.46, + "end": 34148.36, + "probability": 0.6016 + }, + { + "start": 34148.52, + "end": 34150.9, + "probability": 0.1805 + }, + { + "start": 34150.94, + "end": 34153.22, + "probability": 0.8925 + }, + { + "start": 34153.74, + "end": 34155.7, + "probability": 0.979 + }, + { + "start": 34156.16, + "end": 34157.4, + "probability": 0.5829 + }, + { + "start": 34157.86, + "end": 34161.2, + "probability": 0.9236 + }, + { + "start": 34161.78, + "end": 34162.22, + "probability": 0.7769 + }, + { + "start": 34162.46, + "end": 34162.96, + "probability": 0.7631 + }, + { + "start": 34163.42, + "end": 34164.96, + "probability": 0.4821 + }, + { + "start": 34165.08, + "end": 34166.14, + "probability": 0.9492 + }, + { + "start": 34166.74, + "end": 34167.34, + "probability": 0.9424 + }, + { + "start": 34167.98, + "end": 34169.32, + "probability": 0.7479 + }, + { + "start": 34170.26, + "end": 34170.52, + "probability": 0.9434 + }, + { + "start": 34170.82, + "end": 34173.16, + "probability": 0.8708 + }, + { + "start": 34174.06, + "end": 34175.66, + "probability": 0.9448 + }, + { + "start": 34176.77, + "end": 34178.56, + "probability": 0.7629 + }, + { + "start": 34179.48, + "end": 34181.97, + "probability": 0.7206 + }, + { + "start": 34182.38, + "end": 34185.47, + "probability": 0.981 + }, + { + "start": 34186.04, + "end": 34189.68, + "probability": 0.9661 + }, + { + "start": 34189.84, + "end": 34191.16, + "probability": 0.9462 + }, + { + "start": 34191.18, + "end": 34191.48, + "probability": 0.62 + }, + { + "start": 34191.68, + "end": 34194.0, + "probability": 0.9475 + }, + { + "start": 34194.1, + "end": 34196.54, + "probability": 0.5737 + }, + { + "start": 34197.64, + "end": 34198.32, + "probability": 0.7195 + }, + { + "start": 34199.36, + "end": 34203.26, + "probability": 0.9863 + }, + { + "start": 34204.56, + "end": 34206.2, + "probability": 0.8736 + }, + { + "start": 34206.76, + "end": 34209.13, + "probability": 0.9682 + }, + { + "start": 34210.12, + "end": 34213.06, + "probability": 0.8967 + }, + { + "start": 34216.42, + "end": 34224.22, + "probability": 0.5494 + }, + { + "start": 34225.0, + "end": 34229.1, + "probability": 0.6506 + }, + { + "start": 34229.4, + "end": 34234.5, + "probability": 0.9966 + }, + { + "start": 34236.16, + "end": 34239.6, + "probability": 0.9797 + }, + { + "start": 34240.48, + "end": 34244.42, + "probability": 0.9966 + }, + { + "start": 34245.1, + "end": 34246.12, + "probability": 0.731 + }, + { + "start": 34246.2, + "end": 34248.97, + "probability": 0.9335 + }, + { + "start": 34249.84, + "end": 34250.64, + "probability": 0.3298 + }, + { + "start": 34252.2, + "end": 34254.28, + "probability": 0.7435 + }, + { + "start": 34255.1, + "end": 34258.7, + "probability": 0.9629 + }, + { + "start": 34259.98, + "end": 34262.94, + "probability": 0.9736 + }, + { + "start": 34262.94, + "end": 34265.6, + "probability": 0.7763 + }, + { + "start": 34265.68, + "end": 34266.76, + "probability": 0.8829 + }, + { + "start": 34266.82, + "end": 34270.88, + "probability": 0.98 + }, + { + "start": 34271.8, + "end": 34273.4, + "probability": 0.9546 + }, + { + "start": 34274.4, + "end": 34276.68, + "probability": 0.9868 + }, + { + "start": 34277.6, + "end": 34279.02, + "probability": 0.9871 + }, + { + "start": 34280.12, + "end": 34282.46, + "probability": 0.9985 + }, + { + "start": 34283.02, + "end": 34288.22, + "probability": 0.9706 + }, + { + "start": 34290.08, + "end": 34291.08, + "probability": 0.9802 + }, + { + "start": 34291.96, + "end": 34294.2, + "probability": 0.9911 + }, + { + "start": 34294.2, + "end": 34297.38, + "probability": 0.9395 + }, + { + "start": 34297.88, + "end": 34299.92, + "probability": 0.563 + }, + { + "start": 34300.04, + "end": 34305.3, + "probability": 0.9232 + }, + { + "start": 34306.52, + "end": 34307.28, + "probability": 0.7096 + }, + { + "start": 34307.54, + "end": 34309.84, + "probability": 0.9941 + }, + { + "start": 34310.22, + "end": 34313.94, + "probability": 0.8722 + }, + { + "start": 34314.78, + "end": 34316.42, + "probability": 0.9919 + }, + { + "start": 34316.82, + "end": 34318.78, + "probability": 0.9143 + }, + { + "start": 34318.86, + "end": 34319.92, + "probability": 0.9274 + }, + { + "start": 34320.46, + "end": 34321.36, + "probability": 0.7397 + }, + { + "start": 34321.46, + "end": 34322.42, + "probability": 0.8618 + }, + { + "start": 34322.48, + "end": 34323.64, + "probability": 0.7753 + }, + { + "start": 34323.88, + "end": 34324.52, + "probability": 0.9705 + }, + { + "start": 34324.6, + "end": 34327.64, + "probability": 0.5815 + }, + { + "start": 34328.68, + "end": 34329.54, + "probability": 0.8746 + }, + { + "start": 34330.92, + "end": 34333.06, + "probability": 0.6313 + }, + { + "start": 34333.16, + "end": 34335.32, + "probability": 0.9893 + }, + { + "start": 34336.36, + "end": 34338.54, + "probability": 0.999 + }, + { + "start": 34339.68, + "end": 34340.38, + "probability": 0.5904 + }, + { + "start": 34341.0, + "end": 34342.9, + "probability": 0.9937 + }, + { + "start": 34343.06, + "end": 34343.82, + "probability": 0.9964 + }, + { + "start": 34344.96, + "end": 34346.8, + "probability": 0.9774 + }, + { + "start": 34347.9, + "end": 34351.36, + "probability": 0.8585 + }, + { + "start": 34351.9, + "end": 34352.6, + "probability": 0.9292 + }, + { + "start": 34353.06, + "end": 34354.58, + "probability": 0.9526 + }, + { + "start": 34355.06, + "end": 34356.06, + "probability": 0.9163 + }, + { + "start": 34356.58, + "end": 34359.24, + "probability": 0.9551 + }, + { + "start": 34360.26, + "end": 34362.78, + "probability": 0.9452 + }, + { + "start": 34363.48, + "end": 34366.26, + "probability": 0.9849 + }, + { + "start": 34366.94, + "end": 34369.36, + "probability": 0.6652 + }, + { + "start": 34369.92, + "end": 34373.38, + "probability": 0.6717 + }, + { + "start": 34373.78, + "end": 34376.6, + "probability": 0.9208 + }, + { + "start": 34376.9, + "end": 34377.9, + "probability": 0.9085 + }, + { + "start": 34378.59, + "end": 34382.46, + "probability": 0.6977 + }, + { + "start": 34382.84, + "end": 34385.12, + "probability": 0.7769 + }, + { + "start": 34385.9, + "end": 34386.92, + "probability": 0.9846 + }, + { + "start": 34387.32, + "end": 34390.52, + "probability": 0.9878 + }, + { + "start": 34390.52, + "end": 34392.22, + "probability": 0.2786 + }, + { + "start": 34392.22, + "end": 34394.88, + "probability": 0.9666 + }, + { + "start": 34395.3, + "end": 34395.82, + "probability": 0.3543 + }, + { + "start": 34395.84, + "end": 34396.76, + "probability": 0.7958 + }, + { + "start": 34397.04, + "end": 34397.62, + "probability": 0.7397 + }, + { + "start": 34398.14, + "end": 34399.9, + "probability": 0.8864 + }, + { + "start": 34402.88, + "end": 34402.88, + "probability": 0.4354 + }, + { + "start": 34402.88, + "end": 34407.67, + "probability": 0.9749 + }, + { + "start": 34408.1, + "end": 34409.06, + "probability": 0.6368 + }, + { + "start": 34409.12, + "end": 34409.8, + "probability": 0.8694 + }, + { + "start": 34410.42, + "end": 34412.14, + "probability": 0.5748 + }, + { + "start": 34412.3, + "end": 34413.88, + "probability": 0.9844 + }, + { + "start": 34413.96, + "end": 34417.58, + "probability": 0.958 + }, + { + "start": 34417.98, + "end": 34421.72, + "probability": 0.998 + }, + { + "start": 34422.52, + "end": 34424.92, + "probability": 0.9744 + }, + { + "start": 34425.64, + "end": 34426.12, + "probability": 0.9346 + }, + { + "start": 34426.78, + "end": 34429.42, + "probability": 0.8345 + }, + { + "start": 34429.58, + "end": 34430.98, + "probability": 0.9302 + }, + { + "start": 34431.38, + "end": 34433.67, + "probability": 0.8885 + }, + { + "start": 34434.72, + "end": 34438.18, + "probability": 0.8771 + }, + { + "start": 34438.36, + "end": 34440.0, + "probability": 0.8041 + }, + { + "start": 34441.5, + "end": 34443.36, + "probability": 0.7214 + }, + { + "start": 34444.6, + "end": 34446.66, + "probability": 0.7756 + }, + { + "start": 34448.08, + "end": 34449.86, + "probability": 0.7223 + }, + { + "start": 34450.66, + "end": 34451.9, + "probability": 0.9795 + }, + { + "start": 34453.04, + "end": 34460.72, + "probability": 0.9673 + }, + { + "start": 34461.52, + "end": 34463.68, + "probability": 0.6863 + }, + { + "start": 34464.32, + "end": 34466.16, + "probability": 0.9211 + }, + { + "start": 34466.72, + "end": 34469.06, + "probability": 0.95 + }, + { + "start": 34469.94, + "end": 34474.08, + "probability": 0.8691 + }, + { + "start": 34474.72, + "end": 34483.42, + "probability": 0.9935 + }, + { + "start": 34483.78, + "end": 34486.58, + "probability": 0.9341 + }, + { + "start": 34487.78, + "end": 34493.5, + "probability": 0.743 + }, + { + "start": 34493.58, + "end": 34495.96, + "probability": 0.9465 + }, + { + "start": 34496.2, + "end": 34499.32, + "probability": 0.9629 + }, + { + "start": 34500.34, + "end": 34500.94, + "probability": 0.3709 + }, + { + "start": 34501.5, + "end": 34504.8, + "probability": 0.7825 + }, + { + "start": 34505.64, + "end": 34506.92, + "probability": 0.2597 + }, + { + "start": 34508.18, + "end": 34508.9, + "probability": 0.7856 + }, + { + "start": 34509.8, + "end": 34514.62, + "probability": 0.9553 + }, + { + "start": 34515.14, + "end": 34515.54, + "probability": 0.4048 + }, + { + "start": 34515.88, + "end": 34516.44, + "probability": 0.6046 + }, + { + "start": 34517.14, + "end": 34520.56, + "probability": 0.7334 + }, + { + "start": 34522.78, + "end": 34526.02, + "probability": 0.7406 + }, + { + "start": 34526.62, + "end": 34527.46, + "probability": 0.7498 + }, + { + "start": 34528.64, + "end": 34530.1, + "probability": 0.7815 + }, + { + "start": 34530.98, + "end": 34532.22, + "probability": 0.9375 + }, + { + "start": 34533.48, + "end": 34534.24, + "probability": 0.9492 + }, + { + "start": 34535.06, + "end": 34538.54, + "probability": 0.967 + }, + { + "start": 34539.28, + "end": 34540.12, + "probability": 0.9642 + }, + { + "start": 34540.96, + "end": 34543.76, + "probability": 0.9667 + }, + { + "start": 34544.72, + "end": 34547.24, + "probability": 0.9313 + }, + { + "start": 34548.22, + "end": 34549.18, + "probability": 0.7325 + }, + { + "start": 34551.56, + "end": 34555.74, + "probability": 0.9943 + }, + { + "start": 34557.12, + "end": 34561.06, + "probability": 0.8849 + }, + { + "start": 34561.2, + "end": 34562.66, + "probability": 0.981 + }, + { + "start": 34563.5, + "end": 34565.7, + "probability": 0.8491 + }, + { + "start": 34566.46, + "end": 34567.96, + "probability": 0.8318 + }, + { + "start": 34568.84, + "end": 34571.88, + "probability": 0.855 + }, + { + "start": 34573.32, + "end": 34575.66, + "probability": 0.7407 + }, + { + "start": 34576.12, + "end": 34581.12, + "probability": 0.9456 + }, + { + "start": 34582.26, + "end": 34584.6, + "probability": 0.9891 + }, + { + "start": 34585.88, + "end": 34587.14, + "probability": 0.9147 + }, + { + "start": 34587.8, + "end": 34588.18, + "probability": 0.7589 + }, + { + "start": 34588.22, + "end": 34589.52, + "probability": 0.7718 + }, + { + "start": 34589.6, + "end": 34595.06, + "probability": 0.9614 + }, + { + "start": 34596.22, + "end": 34597.2, + "probability": 0.4954 + }, + { + "start": 34597.34, + "end": 34597.52, + "probability": 0.1348 + }, + { + "start": 34597.54, + "end": 34600.04, + "probability": 0.9863 + }, + { + "start": 34601.04, + "end": 34601.46, + "probability": 0.7542 + }, + { + "start": 34601.82, + "end": 34604.48, + "probability": 0.8811 + }, + { + "start": 34604.5, + "end": 34606.36, + "probability": 0.9902 + }, + { + "start": 34607.37, + "end": 34613.12, + "probability": 0.9559 + }, + { + "start": 34613.38, + "end": 34617.94, + "probability": 0.9945 + }, + { + "start": 34618.3, + "end": 34621.18, + "probability": 0.9919 + }, + { + "start": 34621.18, + "end": 34623.14, + "probability": 0.5474 + }, + { + "start": 34623.14, + "end": 34629.76, + "probability": 0.9973 + }, + { + "start": 34629.9, + "end": 34630.34, + "probability": 0.5546 + }, + { + "start": 34631.18, + "end": 34633.98, + "probability": 0.979 + }, + { + "start": 34635.08, + "end": 34635.52, + "probability": 0.6539 + }, + { + "start": 34636.2, + "end": 34639.6, + "probability": 0.9354 + }, + { + "start": 34639.68, + "end": 34641.68, + "probability": 0.9578 + }, + { + "start": 34642.42, + "end": 34643.64, + "probability": 0.5551 + }, + { + "start": 34644.12, + "end": 34644.56, + "probability": 0.6542 + }, + { + "start": 34644.56, + "end": 34645.3, + "probability": 0.9283 + }, + { + "start": 34645.82, + "end": 34648.64, + "probability": 0.9153 + }, + { + "start": 34649.42, + "end": 34656.12, + "probability": 0.9548 + }, + { + "start": 34657.08, + "end": 34660.92, + "probability": 0.9939 + }, + { + "start": 34660.92, + "end": 34664.82, + "probability": 0.9781 + }, + { + "start": 34665.5, + "end": 34668.18, + "probability": 0.9839 + }, + { + "start": 34669.26, + "end": 34672.52, + "probability": 0.9874 + }, + { + "start": 34673.48, + "end": 34675.97, + "probability": 0.9903 + }, + { + "start": 34676.54, + "end": 34677.96, + "probability": 0.7992 + }, + { + "start": 34678.78, + "end": 34680.76, + "probability": 0.9113 + }, + { + "start": 34680.94, + "end": 34682.28, + "probability": 0.9446 + }, + { + "start": 34682.78, + "end": 34687.94, + "probability": 0.7249 + }, + { + "start": 34687.94, + "end": 34691.24, + "probability": 0.9966 + }, + { + "start": 34691.54, + "end": 34693.08, + "probability": 0.9661 + }, + { + "start": 34694.28, + "end": 34697.78, + "probability": 0.853 + }, + { + "start": 34698.92, + "end": 34700.54, + "probability": 0.8231 + }, + { + "start": 34701.14, + "end": 34705.22, + "probability": 0.9816 + }, + { + "start": 34705.22, + "end": 34710.4, + "probability": 0.9891 + }, + { + "start": 34711.22, + "end": 34713.5, + "probability": 0.9008 + }, + { + "start": 34713.5, + "end": 34717.04, + "probability": 0.9973 + }, + { + "start": 34717.48, + "end": 34718.97, + "probability": 0.6969 + }, + { + "start": 34719.26, + "end": 34725.74, + "probability": 0.8965 + }, + { + "start": 34727.6, + "end": 34727.88, + "probability": 0.3538 + }, + { + "start": 34727.94, + "end": 34730.8, + "probability": 0.8286 + }, + { + "start": 34730.94, + "end": 34735.92, + "probability": 0.9972 + }, + { + "start": 34736.14, + "end": 34741.76, + "probability": 0.663 + }, + { + "start": 34744.94, + "end": 34748.46, + "probability": 0.9982 + }, + { + "start": 34748.46, + "end": 34750.88, + "probability": 0.9763 + }, + { + "start": 34750.94, + "end": 34752.14, + "probability": 0.9252 + }, + { + "start": 34752.54, + "end": 34752.78, + "probability": 0.1725 + }, + { + "start": 34752.86, + "end": 34759.02, + "probability": 0.951 + }, + { + "start": 34759.64, + "end": 34760.96, + "probability": 0.9868 + }, + { + "start": 34761.96, + "end": 34764.16, + "probability": 0.8491 + }, + { + "start": 34765.34, + "end": 34769.0, + "probability": 0.9902 + }, + { + "start": 34769.9, + "end": 34770.34, + "probability": 0.6427 + }, + { + "start": 34770.42, + "end": 34776.12, + "probability": 0.9833 + }, + { + "start": 34776.12, + "end": 34781.8, + "probability": 0.9878 + }, + { + "start": 34782.88, + "end": 34785.42, + "probability": 0.7702 + }, + { + "start": 34786.1, + "end": 34789.12, + "probability": 0.9858 + }, + { + "start": 34789.12, + "end": 34793.76, + "probability": 0.973 + }, + { + "start": 34794.68, + "end": 34797.2, + "probability": 0.8273 + }, + { + "start": 34797.94, + "end": 34799.42, + "probability": 0.7221 + }, + { + "start": 34800.06, + "end": 34803.16, + "probability": 0.9526 + }, + { + "start": 34803.98, + "end": 34807.22, + "probability": 0.9952 + }, + { + "start": 34807.44, + "end": 34808.4, + "probability": 0.9109 + }, + { + "start": 34808.86, + "end": 34811.74, + "probability": 0.9271 + }, + { + "start": 34812.16, + "end": 34816.24, + "probability": 0.8336 + }, + { + "start": 34816.24, + "end": 34820.56, + "probability": 0.9781 + }, + { + "start": 34820.68, + "end": 34821.88, + "probability": 0.7486 + }, + { + "start": 34822.2, + "end": 34823.36, + "probability": 0.7488 + }, + { + "start": 34823.96, + "end": 34824.44, + "probability": 0.6458 + }, + { + "start": 34824.66, + "end": 34825.82, + "probability": 0.9691 + }, + { + "start": 34826.24, + "end": 34827.18, + "probability": 0.686 + }, + { + "start": 34827.32, + "end": 34828.88, + "probability": 0.6068 + }, + { + "start": 34829.52, + "end": 34830.04, + "probability": 0.816 + }, + { + "start": 34830.18, + "end": 34832.52, + "probability": 0.9849 + }, + { + "start": 34832.52, + "end": 34833.92, + "probability": 0.7534 + }, + { + "start": 34834.32, + "end": 34836.14, + "probability": 0.8517 + }, + { + "start": 34836.62, + "end": 34838.62, + "probability": 0.965 + }, + { + "start": 34838.62, + "end": 34841.76, + "probability": 0.9477 + }, + { + "start": 34842.4, + "end": 34843.04, + "probability": 0.6931 + }, + { + "start": 34843.2, + "end": 34844.6, + "probability": 0.7781 + }, + { + "start": 34844.78, + "end": 34847.54, + "probability": 0.8757 + }, + { + "start": 34847.6, + "end": 34849.52, + "probability": 0.3794 + }, + { + "start": 34850.88, + "end": 34851.36, + "probability": 0.2561 + }, + { + "start": 34851.36, + "end": 34852.82, + "probability": 0.3835 + }, + { + "start": 34853.08, + "end": 34855.42, + "probability": 0.7181 + }, + { + "start": 34855.42, + "end": 34855.58, + "probability": 0.4228 + }, + { + "start": 34855.66, + "end": 34858.08, + "probability": 0.2863 + }, + { + "start": 34858.14, + "end": 34860.3, + "probability": 0.5508 + }, + { + "start": 34860.74, + "end": 34862.5, + "probability": 0.754 + }, + { + "start": 34862.98, + "end": 34864.86, + "probability": 0.7728 + }, + { + "start": 34865.24, + "end": 34867.3, + "probability": 0.2606 + }, + { + "start": 34867.34, + "end": 34868.2, + "probability": 0.8382 + }, + { + "start": 34868.88, + "end": 34873.08, + "probability": 0.5863 + }, + { + "start": 34877.86, + "end": 34884.76, + "probability": 0.3343 + }, + { + "start": 34887.88, + "end": 34889.66, + "probability": 0.2438 + }, + { + "start": 34889.9, + "end": 34896.6, + "probability": 0.8097 + }, + { + "start": 34897.32, + "end": 34899.22, + "probability": 0.7339 + }, + { + "start": 34900.26, + "end": 34902.46, + "probability": 0.4777 + }, + { + "start": 34902.54, + "end": 34904.54, + "probability": 0.7691 + }, + { + "start": 34905.02, + "end": 34907.34, + "probability": 0.4147 + }, + { + "start": 34907.52, + "end": 34910.12, + "probability": 0.6677 + }, + { + "start": 34910.66, + "end": 34913.9, + "probability": 0.8411 + }, + { + "start": 34914.92, + "end": 34915.87, + "probability": 0.0137 + } + ], + "segments_count": 12454, + "words_count": 61504, + "avg_words_per_segment": 4.9385, + "avg_segment_duration": 2.1225, + "avg_words_per_minute": 105.5937, + "plenum_id": "24966", + "duration": 34947.53, + "title": null, + "plenum_date": "2012-08-06" +} \ No newline at end of file