diff --git "a/31133/metadata.json" "b/31133/metadata.json" new file mode 100644--- /dev/null +++ "b/31133/metadata.json" @@ -0,0 +1,14972 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "31133", + "quality_score": 0.786, + "per_segment_quality_scores": [ + { + "start": 41.1, + "end": 42.32, + "probability": 0.7047 + }, + { + "start": 42.54, + "end": 43.68, + "probability": 0.6248 + }, + { + "start": 43.76, + "end": 44.98, + "probability": 0.7421 + }, + { + "start": 45.32, + "end": 46.36, + "probability": 0.8697 + }, + { + "start": 47.48, + "end": 49.94, + "probability": 0.623 + }, + { + "start": 50.38, + "end": 51.98, + "probability": 0.3236 + }, + { + "start": 52.32, + "end": 53.14, + "probability": 0.9614 + }, + { + "start": 53.5, + "end": 54.04, + "probability": 0.5829 + }, + { + "start": 54.9, + "end": 55.7, + "probability": 0.6448 + }, + { + "start": 55.8, + "end": 60.12, + "probability": 0.6584 + }, + { + "start": 60.52, + "end": 62.26, + "probability": 0.2604 + }, + { + "start": 62.56, + "end": 65.34, + "probability": 0.9585 + }, + { + "start": 65.66, + "end": 68.34, + "probability": 0.9717 + }, + { + "start": 68.86, + "end": 71.06, + "probability": 0.2849 + }, + { + "start": 72.48, + "end": 74.52, + "probability": 0.9411 + }, + { + "start": 76.12, + "end": 82.5, + "probability": 0.2412 + }, + { + "start": 85.44, + "end": 87.54, + "probability": 0.7421 + }, + { + "start": 88.2, + "end": 91.42, + "probability": 0.9194 + }, + { + "start": 92.08, + "end": 94.78, + "probability": 0.8363 + }, + { + "start": 94.84, + "end": 95.66, + "probability": 0.373 + }, + { + "start": 96.08, + "end": 97.66, + "probability": 0.9868 + }, + { + "start": 99.06, + "end": 100.34, + "probability": 0.7146 + }, + { + "start": 101.08, + "end": 102.42, + "probability": 0.9683 + }, + { + "start": 103.34, + "end": 103.96, + "probability": 0.7694 + }, + { + "start": 104.26, + "end": 105.16, + "probability": 0.8729 + }, + { + "start": 105.38, + "end": 109.88, + "probability": 0.9233 + }, + { + "start": 111.45, + "end": 115.54, + "probability": 0.9444 + }, + { + "start": 116.0, + "end": 116.08, + "probability": 0.3479 + }, + { + "start": 116.96, + "end": 118.76, + "probability": 0.6863 + }, + { + "start": 119.24, + "end": 119.74, + "probability": 0.9365 + }, + { + "start": 119.74, + "end": 122.14, + "probability": 0.9913 + }, + { + "start": 122.32, + "end": 123.74, + "probability": 0.3726 + }, + { + "start": 124.62, + "end": 125.18, + "probability": 0.7909 + }, + { + "start": 126.42, + "end": 128.48, + "probability": 0.8496 + }, + { + "start": 129.4, + "end": 131.74, + "probability": 0.8215 + }, + { + "start": 132.58, + "end": 135.26, + "probability": 0.9965 + }, + { + "start": 136.16, + "end": 140.56, + "probability": 0.9908 + }, + { + "start": 140.88, + "end": 142.02, + "probability": 0.6353 + }, + { + "start": 142.9, + "end": 143.44, + "probability": 0.799 + }, + { + "start": 144.78, + "end": 147.36, + "probability": 0.6859 + }, + { + "start": 147.36, + "end": 150.18, + "probability": 0.6949 + }, + { + "start": 150.8, + "end": 151.6, + "probability": 0.8892 + }, + { + "start": 153.26, + "end": 155.58, + "probability": 0.9723 + }, + { + "start": 157.48, + "end": 158.58, + "probability": 0.6143 + }, + { + "start": 158.68, + "end": 159.9, + "probability": 0.6347 + }, + { + "start": 159.96, + "end": 161.18, + "probability": 0.8194 + }, + { + "start": 162.46, + "end": 164.02, + "probability": 0.9731 + }, + { + "start": 165.28, + "end": 167.56, + "probability": 0.9288 + }, + { + "start": 169.1, + "end": 172.54, + "probability": 0.8176 + }, + { + "start": 172.74, + "end": 176.27, + "probability": 0.9904 + }, + { + "start": 176.56, + "end": 179.9, + "probability": 0.812 + }, + { + "start": 180.68, + "end": 181.0, + "probability": 0.7155 + }, + { + "start": 182.88, + "end": 185.72, + "probability": 0.9948 + }, + { + "start": 186.26, + "end": 188.04, + "probability": 0.5063 + }, + { + "start": 188.1, + "end": 188.42, + "probability": 0.7998 + }, + { + "start": 188.52, + "end": 190.92, + "probability": 0.9897 + }, + { + "start": 191.12, + "end": 191.74, + "probability": 0.8271 + }, + { + "start": 191.88, + "end": 192.62, + "probability": 0.7295 + }, + { + "start": 192.84, + "end": 194.5, + "probability": 0.8798 + }, + { + "start": 194.94, + "end": 199.7, + "probability": 0.9532 + }, + { + "start": 200.66, + "end": 202.28, + "probability": 0.9392 + }, + { + "start": 202.82, + "end": 204.36, + "probability": 0.7722 + }, + { + "start": 204.72, + "end": 205.88, + "probability": 0.7764 + }, + { + "start": 206.12, + "end": 209.12, + "probability": 0.9188 + }, + { + "start": 209.7, + "end": 211.66, + "probability": 0.916 + }, + { + "start": 212.5, + "end": 213.96, + "probability": 0.7306 + }, + { + "start": 214.76, + "end": 217.76, + "probability": 0.9463 + }, + { + "start": 218.12, + "end": 219.16, + "probability": 0.9956 + }, + { + "start": 222.04, + "end": 224.82, + "probability": 0.647 + }, + { + "start": 225.58, + "end": 229.46, + "probability": 0.9938 + }, + { + "start": 230.78, + "end": 232.28, + "probability": 0.9157 + }, + { + "start": 233.3, + "end": 234.84, + "probability": 0.9958 + }, + { + "start": 235.72, + "end": 237.0, + "probability": 0.9905 + }, + { + "start": 238.28, + "end": 240.02, + "probability": 0.9607 + }, + { + "start": 240.1, + "end": 242.12, + "probability": 0.6234 + }, + { + "start": 242.36, + "end": 243.04, + "probability": 0.9208 + }, + { + "start": 243.54, + "end": 244.24, + "probability": 0.8721 + }, + { + "start": 244.38, + "end": 246.3, + "probability": 0.8184 + }, + { + "start": 247.8, + "end": 249.5, + "probability": 0.8589 + }, + { + "start": 249.9, + "end": 253.02, + "probability": 0.9688 + }, + { + "start": 255.54, + "end": 259.48, + "probability": 0.6564 + }, + { + "start": 259.98, + "end": 260.48, + "probability": 0.8949 + }, + { + "start": 262.84, + "end": 266.42, + "probability": 0.8271 + }, + { + "start": 267.08, + "end": 268.6, + "probability": 0.9225 + }, + { + "start": 268.68, + "end": 270.36, + "probability": 0.9637 + }, + { + "start": 270.44, + "end": 272.88, + "probability": 0.962 + }, + { + "start": 273.54, + "end": 275.68, + "probability": 0.9246 + }, + { + "start": 277.08, + "end": 281.08, + "probability": 0.9851 + }, + { + "start": 281.08, + "end": 285.9, + "probability": 0.996 + }, + { + "start": 286.04, + "end": 290.5, + "probability": 0.994 + }, + { + "start": 291.6, + "end": 293.6, + "probability": 0.9613 + }, + { + "start": 294.69, + "end": 297.64, + "probability": 0.7692 + }, + { + "start": 298.34, + "end": 298.82, + "probability": 0.3302 + }, + { + "start": 299.22, + "end": 303.0, + "probability": 0.9668 + }, + { + "start": 303.56, + "end": 307.54, + "probability": 0.9916 + }, + { + "start": 308.04, + "end": 313.22, + "probability": 0.9975 + }, + { + "start": 315.56, + "end": 316.74, + "probability": 0.5785 + }, + { + "start": 316.86, + "end": 318.8, + "probability": 0.9789 + }, + { + "start": 318.8, + "end": 321.46, + "probability": 0.9737 + }, + { + "start": 323.88, + "end": 325.3, + "probability": 0.8108 + }, + { + "start": 325.42, + "end": 325.64, + "probability": 0.8035 + }, + { + "start": 326.14, + "end": 328.16, + "probability": 0.9692 + }, + { + "start": 328.46, + "end": 330.58, + "probability": 0.5733 + }, + { + "start": 331.52, + "end": 332.74, + "probability": 0.9502 + }, + { + "start": 333.12, + "end": 335.96, + "probability": 0.9532 + }, + { + "start": 336.52, + "end": 337.46, + "probability": 0.9795 + }, + { + "start": 339.24, + "end": 341.68, + "probability": 0.9783 + }, + { + "start": 341.92, + "end": 343.12, + "probability": 0.8894 + }, + { + "start": 343.24, + "end": 345.1, + "probability": 0.93 + }, + { + "start": 345.62, + "end": 347.92, + "probability": 0.9451 + }, + { + "start": 349.2, + "end": 353.24, + "probability": 0.9647 + }, + { + "start": 354.78, + "end": 355.0, + "probability": 0.9451 + }, + { + "start": 355.56, + "end": 359.32, + "probability": 0.7584 + }, + { + "start": 360.0, + "end": 362.52, + "probability": 0.8919 + }, + { + "start": 362.68, + "end": 363.4, + "probability": 0.4273 + }, + { + "start": 363.66, + "end": 367.16, + "probability": 0.8481 + }, + { + "start": 367.8, + "end": 368.62, + "probability": 0.6229 + }, + { + "start": 368.98, + "end": 371.74, + "probability": 0.9587 + }, + { + "start": 371.8, + "end": 372.86, + "probability": 0.8937 + }, + { + "start": 375.1, + "end": 377.76, + "probability": 0.9691 + }, + { + "start": 377.9, + "end": 380.66, + "probability": 0.9539 + }, + { + "start": 380.72, + "end": 383.64, + "probability": 0.9963 + }, + { + "start": 384.12, + "end": 387.5, + "probability": 0.7486 + }, + { + "start": 388.58, + "end": 389.6, + "probability": 0.7302 + }, + { + "start": 389.76, + "end": 391.54, + "probability": 0.8184 + }, + { + "start": 392.44, + "end": 394.7, + "probability": 0.957 + }, + { + "start": 394.74, + "end": 396.96, + "probability": 0.7178 + }, + { + "start": 397.78, + "end": 399.62, + "probability": 0.9009 + }, + { + "start": 400.02, + "end": 401.34, + "probability": 0.9041 + }, + { + "start": 401.5, + "end": 405.76, + "probability": 0.8895 + }, + { + "start": 408.0, + "end": 409.56, + "probability": 0.8605 + }, + { + "start": 409.76, + "end": 410.68, + "probability": 0.5252 + }, + { + "start": 410.92, + "end": 411.64, + "probability": 0.7625 + }, + { + "start": 411.7, + "end": 415.0, + "probability": 0.9183 + }, + { + "start": 415.8, + "end": 416.94, + "probability": 0.8384 + }, + { + "start": 417.18, + "end": 418.0, + "probability": 0.9561 + }, + { + "start": 418.16, + "end": 418.94, + "probability": 0.8359 + }, + { + "start": 419.1, + "end": 422.54, + "probability": 0.9795 + }, + { + "start": 423.78, + "end": 425.9, + "probability": 0.8861 + }, + { + "start": 428.26, + "end": 429.9, + "probability": 0.53 + }, + { + "start": 430.0, + "end": 436.34, + "probability": 0.9674 + }, + { + "start": 436.52, + "end": 438.84, + "probability": 0.9858 + }, + { + "start": 438.84, + "end": 441.06, + "probability": 0.9225 + }, + { + "start": 442.2, + "end": 444.02, + "probability": 0.629 + }, + { + "start": 444.68, + "end": 446.26, + "probability": 0.6815 + }, + { + "start": 446.58, + "end": 447.48, + "probability": 0.8484 + }, + { + "start": 447.84, + "end": 450.42, + "probability": 0.9506 + }, + { + "start": 451.74, + "end": 455.32, + "probability": 0.9925 + }, + { + "start": 455.32, + "end": 458.18, + "probability": 0.9971 + }, + { + "start": 458.42, + "end": 459.38, + "probability": 0.8513 + }, + { + "start": 459.78, + "end": 463.86, + "probability": 0.994 + }, + { + "start": 464.74, + "end": 466.88, + "probability": 0.9941 + }, + { + "start": 467.06, + "end": 470.38, + "probability": 0.9778 + }, + { + "start": 470.38, + "end": 473.82, + "probability": 0.6672 + }, + { + "start": 475.1, + "end": 479.18, + "probability": 0.8249 + }, + { + "start": 479.76, + "end": 480.0, + "probability": 0.9228 + }, + { + "start": 481.5, + "end": 485.12, + "probability": 0.9916 + }, + { + "start": 485.12, + "end": 490.34, + "probability": 0.9797 + }, + { + "start": 491.36, + "end": 491.66, + "probability": 0.4523 + }, + { + "start": 491.8, + "end": 494.26, + "probability": 0.7344 + }, + { + "start": 494.33, + "end": 497.2, + "probability": 0.903 + }, + { + "start": 497.48, + "end": 497.84, + "probability": 0.8464 + }, + { + "start": 498.56, + "end": 500.34, + "probability": 0.938 + }, + { + "start": 501.02, + "end": 501.76, + "probability": 0.9631 + }, + { + "start": 502.64, + "end": 505.38, + "probability": 0.8755 + }, + { + "start": 505.98, + "end": 508.86, + "probability": 0.8226 + }, + { + "start": 509.52, + "end": 511.04, + "probability": 0.9661 + }, + { + "start": 511.68, + "end": 512.08, + "probability": 0.968 + }, + { + "start": 513.34, + "end": 517.34, + "probability": 0.9764 + }, + { + "start": 517.94, + "end": 519.98, + "probability": 0.9918 + }, + { + "start": 521.02, + "end": 525.4, + "probability": 0.8573 + }, + { + "start": 527.34, + "end": 530.92, + "probability": 0.741 + }, + { + "start": 532.26, + "end": 534.96, + "probability": 0.9023 + }, + { + "start": 535.0, + "end": 535.9, + "probability": 0.9743 + }, + { + "start": 537.36, + "end": 539.2, + "probability": 0.8497 + }, + { + "start": 539.78, + "end": 543.54, + "probability": 0.9596 + }, + { + "start": 543.54, + "end": 547.46, + "probability": 0.9892 + }, + { + "start": 549.76, + "end": 552.18, + "probability": 0.9898 + }, + { + "start": 553.14, + "end": 555.0, + "probability": 0.9965 + }, + { + "start": 556.01, + "end": 559.5, + "probability": 0.9821 + }, + { + "start": 559.6, + "end": 563.0, + "probability": 0.9929 + }, + { + "start": 563.06, + "end": 563.94, + "probability": 0.9168 + }, + { + "start": 565.0, + "end": 565.2, + "probability": 0.6157 + }, + { + "start": 566.16, + "end": 567.8, + "probability": 0.6962 + }, + { + "start": 568.44, + "end": 569.3, + "probability": 0.939 + }, + { + "start": 571.2, + "end": 571.7, + "probability": 0.6978 + }, + { + "start": 574.46, + "end": 577.0, + "probability": 0.9472 + }, + { + "start": 578.62, + "end": 581.92, + "probability": 0.9718 + }, + { + "start": 582.44, + "end": 584.26, + "probability": 0.9795 + }, + { + "start": 585.42, + "end": 590.0, + "probability": 0.9851 + }, + { + "start": 590.5, + "end": 592.36, + "probability": 0.9781 + }, + { + "start": 594.88, + "end": 595.86, + "probability": 0.7624 + }, + { + "start": 597.44, + "end": 601.18, + "probability": 0.9854 + }, + { + "start": 602.82, + "end": 605.84, + "probability": 0.9824 + }, + { + "start": 607.58, + "end": 607.92, + "probability": 0.7892 + }, + { + "start": 608.7, + "end": 610.76, + "probability": 0.5596 + }, + { + "start": 611.46, + "end": 612.12, + "probability": 0.9782 + }, + { + "start": 612.92, + "end": 616.42, + "probability": 0.9654 + }, + { + "start": 616.42, + "end": 620.44, + "probability": 0.9932 + }, + { + "start": 621.9, + "end": 622.74, + "probability": 0.8981 + }, + { + "start": 622.9, + "end": 623.28, + "probability": 0.9627 + }, + { + "start": 623.4, + "end": 624.62, + "probability": 0.9844 + }, + { + "start": 624.92, + "end": 628.38, + "probability": 0.9939 + }, + { + "start": 630.04, + "end": 634.66, + "probability": 0.9194 + }, + { + "start": 635.9, + "end": 636.28, + "probability": 0.8926 + }, + { + "start": 636.82, + "end": 637.34, + "probability": 0.9863 + }, + { + "start": 638.54, + "end": 639.02, + "probability": 0.9785 + }, + { + "start": 640.16, + "end": 640.9, + "probability": 0.8202 + }, + { + "start": 641.64, + "end": 644.16, + "probability": 0.869 + }, + { + "start": 644.64, + "end": 648.78, + "probability": 0.9843 + }, + { + "start": 648.84, + "end": 650.98, + "probability": 0.5615 + }, + { + "start": 651.68, + "end": 654.78, + "probability": 0.9806 + }, + { + "start": 656.46, + "end": 662.92, + "probability": 0.8352 + }, + { + "start": 663.14, + "end": 664.64, + "probability": 0.8866 + }, + { + "start": 665.08, + "end": 667.34, + "probability": 0.9954 + }, + { + "start": 667.88, + "end": 671.62, + "probability": 0.7777 + }, + { + "start": 672.14, + "end": 673.7, + "probability": 0.9548 + }, + { + "start": 675.02, + "end": 675.52, + "probability": 0.9666 + }, + { + "start": 677.84, + "end": 682.64, + "probability": 0.9777 + }, + { + "start": 682.92, + "end": 683.74, + "probability": 0.7945 + }, + { + "start": 684.38, + "end": 689.54, + "probability": 0.9639 + }, + { + "start": 690.28, + "end": 692.59, + "probability": 0.8483 + }, + { + "start": 693.54, + "end": 697.54, + "probability": 0.8459 + }, + { + "start": 699.64, + "end": 701.2, + "probability": 0.7334 + }, + { + "start": 702.46, + "end": 705.62, + "probability": 0.9626 + }, + { + "start": 706.3, + "end": 708.52, + "probability": 0.7209 + }, + { + "start": 708.7, + "end": 712.82, + "probability": 0.906 + }, + { + "start": 713.22, + "end": 715.05, + "probability": 0.6074 + }, + { + "start": 716.28, + "end": 719.72, + "probability": 0.8813 + }, + { + "start": 720.5, + "end": 721.24, + "probability": 0.7784 + }, + { + "start": 722.36, + "end": 722.76, + "probability": 0.9512 + }, + { + "start": 723.36, + "end": 725.94, + "probability": 0.9234 + }, + { + "start": 726.48, + "end": 728.3, + "probability": 0.9886 + }, + { + "start": 728.88, + "end": 731.86, + "probability": 0.9801 + }, + { + "start": 732.74, + "end": 733.96, + "probability": 0.8369 + }, + { + "start": 734.34, + "end": 738.32, + "probability": 0.7105 + }, + { + "start": 746.88, + "end": 747.96, + "probability": 0.7456 + }, + { + "start": 748.14, + "end": 751.22, + "probability": 0.9941 + }, + { + "start": 751.34, + "end": 753.16, + "probability": 0.8875 + }, + { + "start": 753.4, + "end": 756.64, + "probability": 0.9677 + }, + { + "start": 756.82, + "end": 759.46, + "probability": 0.923 + }, + { + "start": 759.92, + "end": 761.07, + "probability": 0.9883 + }, + { + "start": 761.62, + "end": 763.8, + "probability": 0.7509 + }, + { + "start": 764.54, + "end": 767.8, + "probability": 0.9849 + }, + { + "start": 767.8, + "end": 770.7, + "probability": 0.959 + }, + { + "start": 770.88, + "end": 772.68, + "probability": 0.788 + }, + { + "start": 772.74, + "end": 773.22, + "probability": 0.8977 + }, + { + "start": 774.22, + "end": 776.84, + "probability": 0.9197 + }, + { + "start": 778.22, + "end": 780.84, + "probability": 0.9927 + }, + { + "start": 782.68, + "end": 782.86, + "probability": 0.0089 + }, + { + "start": 782.86, + "end": 786.42, + "probability": 0.933 + }, + { + "start": 786.42, + "end": 789.98, + "probability": 0.9937 + }, + { + "start": 790.04, + "end": 791.98, + "probability": 0.9718 + }, + { + "start": 792.0, + "end": 792.86, + "probability": 0.8643 + }, + { + "start": 793.0, + "end": 793.7, + "probability": 0.5085 + }, + { + "start": 794.62, + "end": 794.98, + "probability": 0.537 + }, + { + "start": 795.0, + "end": 795.56, + "probability": 0.8058 + }, + { + "start": 795.7, + "end": 795.94, + "probability": 0.7696 + }, + { + "start": 796.22, + "end": 803.64, + "probability": 0.9912 + }, + { + "start": 803.64, + "end": 805.72, + "probability": 0.9279 + }, + { + "start": 806.72, + "end": 807.7, + "probability": 0.8145 + }, + { + "start": 808.41, + "end": 809.18, + "probability": 0.1815 + }, + { + "start": 809.18, + "end": 812.1, + "probability": 0.958 + }, + { + "start": 812.38, + "end": 812.94, + "probability": 0.3305 + }, + { + "start": 812.96, + "end": 813.72, + "probability": 0.1929 + }, + { + "start": 815.5, + "end": 816.36, + "probability": 0.5797 + }, + { + "start": 822.54, + "end": 824.78, + "probability": 0.8589 + }, + { + "start": 825.48, + "end": 826.28, + "probability": 0.557 + }, + { + "start": 830.8, + "end": 832.94, + "probability": 0.8467 + }, + { + "start": 833.38, + "end": 838.28, + "probability": 0.993 + }, + { + "start": 838.28, + "end": 842.62, + "probability": 0.9966 + }, + { + "start": 843.08, + "end": 843.92, + "probability": 0.9487 + }, + { + "start": 844.42, + "end": 846.32, + "probability": 0.1462 + }, + { + "start": 847.24, + "end": 847.58, + "probability": 0.1317 + }, + { + "start": 847.58, + "end": 850.5, + "probability": 0.797 + }, + { + "start": 850.58, + "end": 852.48, + "probability": 0.9235 + }, + { + "start": 852.8, + "end": 852.82, + "probability": 0.2804 + }, + { + "start": 853.22, + "end": 853.28, + "probability": 0.3745 + }, + { + "start": 853.28, + "end": 853.32, + "probability": 0.3425 + }, + { + "start": 853.32, + "end": 853.9, + "probability": 0.7035 + }, + { + "start": 854.02, + "end": 854.59, + "probability": 0.6797 + }, + { + "start": 854.84, + "end": 856.31, + "probability": 0.7906 + }, + { + "start": 857.4, + "end": 858.72, + "probability": 0.5818 + }, + { + "start": 859.5, + "end": 860.1, + "probability": 0.3475 + }, + { + "start": 861.02, + "end": 865.04, + "probability": 0.9513 + }, + { + "start": 866.82, + "end": 868.68, + "probability": 0.9471 + }, + { + "start": 870.86, + "end": 872.14, + "probability": 0.7319 + }, + { + "start": 872.42, + "end": 874.1, + "probability": 0.9777 + }, + { + "start": 876.64, + "end": 877.56, + "probability": 0.6409 + }, + { + "start": 878.72, + "end": 881.04, + "probability": 0.8099 + }, + { + "start": 882.0, + "end": 883.62, + "probability": 0.9836 + }, + { + "start": 884.56, + "end": 885.34, + "probability": 0.9854 + }, + { + "start": 886.04, + "end": 887.38, + "probability": 0.9885 + }, + { + "start": 887.98, + "end": 889.76, + "probability": 0.7348 + }, + { + "start": 890.68, + "end": 892.68, + "probability": 0.8333 + }, + { + "start": 895.94, + "end": 902.78, + "probability": 0.8804 + }, + { + "start": 903.28, + "end": 904.35, + "probability": 0.7872 + }, + { + "start": 905.18, + "end": 908.0, + "probability": 0.7247 + }, + { + "start": 909.84, + "end": 911.76, + "probability": 0.7914 + }, + { + "start": 912.18, + "end": 912.92, + "probability": 0.7278 + }, + { + "start": 913.18, + "end": 915.06, + "probability": 0.8794 + }, + { + "start": 916.08, + "end": 918.8, + "probability": 0.5141 + }, + { + "start": 920.6, + "end": 925.72, + "probability": 0.9507 + }, + { + "start": 928.23, + "end": 931.1, + "probability": 0.9307 + }, + { + "start": 931.22, + "end": 932.24, + "probability": 0.6592 + }, + { + "start": 932.56, + "end": 933.7, + "probability": 0.9659 + }, + { + "start": 933.88, + "end": 934.22, + "probability": 0.8491 + }, + { + "start": 934.58, + "end": 936.48, + "probability": 0.9771 + }, + { + "start": 937.12, + "end": 939.9, + "probability": 0.7668 + }, + { + "start": 944.02, + "end": 945.4, + "probability": 0.2456 + }, + { + "start": 945.54, + "end": 946.82, + "probability": 0.9387 + }, + { + "start": 949.96, + "end": 955.18, + "probability": 0.9609 + }, + { + "start": 955.3, + "end": 959.46, + "probability": 0.8385 + }, + { + "start": 960.18, + "end": 961.22, + "probability": 0.6925 + }, + { + "start": 961.44, + "end": 963.8, + "probability": 0.9702 + }, + { + "start": 964.56, + "end": 964.94, + "probability": 0.549 + }, + { + "start": 965.92, + "end": 966.3, + "probability": 0.0506 + }, + { + "start": 969.0, + "end": 974.28, + "probability": 0.8563 + }, + { + "start": 976.08, + "end": 979.16, + "probability": 0.5746 + }, + { + "start": 979.24, + "end": 982.64, + "probability": 0.9885 + }, + { + "start": 982.9, + "end": 983.64, + "probability": 0.4394 + }, + { + "start": 983.8, + "end": 984.64, + "probability": 0.7553 + }, + { + "start": 984.94, + "end": 986.18, + "probability": 0.8805 + }, + { + "start": 986.36, + "end": 989.58, + "probability": 0.7259 + }, + { + "start": 989.68, + "end": 990.4, + "probability": 0.8457 + }, + { + "start": 991.14, + "end": 993.22, + "probability": 0.5327 + }, + { + "start": 993.82, + "end": 994.54, + "probability": 0.2426 + }, + { + "start": 994.68, + "end": 999.88, + "probability": 0.8115 + }, + { + "start": 1001.34, + "end": 1002.86, + "probability": 0.6917 + }, + { + "start": 1003.4, + "end": 1005.18, + "probability": 0.9829 + }, + { + "start": 1006.42, + "end": 1008.02, + "probability": 0.9442 + }, + { + "start": 1008.3, + "end": 1012.54, + "probability": 0.7086 + }, + { + "start": 1014.84, + "end": 1016.7, + "probability": 0.9799 + }, + { + "start": 1018.84, + "end": 1021.46, + "probability": 0.9359 + }, + { + "start": 1025.0, + "end": 1027.24, + "probability": 0.6206 + }, + { + "start": 1030.08, + "end": 1032.56, + "probability": 0.9651 + }, + { + "start": 1034.42, + "end": 1037.88, + "probability": 0.9823 + }, + { + "start": 1038.82, + "end": 1039.5, + "probability": 0.969 + }, + { + "start": 1040.14, + "end": 1044.0, + "probability": 0.9031 + }, + { + "start": 1045.85, + "end": 1048.52, + "probability": 0.9886 + }, + { + "start": 1050.14, + "end": 1052.0, + "probability": 0.9805 + }, + { + "start": 1053.58, + "end": 1055.94, + "probability": 0.942 + }, + { + "start": 1057.12, + "end": 1057.5, + "probability": 0.7441 + }, + { + "start": 1058.04, + "end": 1059.83, + "probability": 0.8164 + }, + { + "start": 1061.08, + "end": 1061.78, + "probability": 0.9738 + }, + { + "start": 1064.76, + "end": 1065.08, + "probability": 0.2139 + }, + { + "start": 1065.08, + "end": 1065.18, + "probability": 0.444 + }, + { + "start": 1066.2, + "end": 1067.12, + "probability": 0.9762 + }, + { + "start": 1067.86, + "end": 1068.64, + "probability": 0.9962 + }, + { + "start": 1072.0, + "end": 1072.52, + "probability": 0.0596 + }, + { + "start": 1072.62, + "end": 1074.42, + "probability": 0.9401 + }, + { + "start": 1076.52, + "end": 1078.7, + "probability": 0.0016 + }, + { + "start": 1087.86, + "end": 1089.54, + "probability": 0.0078 + }, + { + "start": 1097.41, + "end": 1098.33, + "probability": 0.3361 + }, + { + "start": 1098.88, + "end": 1100.6, + "probability": 0.7285 + }, + { + "start": 1101.56, + "end": 1103.32, + "probability": 0.5361 + }, + { + "start": 1103.9, + "end": 1106.62, + "probability": 0.7689 + }, + { + "start": 1109.28, + "end": 1109.84, + "probability": 0.3648 + }, + { + "start": 1109.84, + "end": 1112.1, + "probability": 0.6489 + }, + { + "start": 1115.02, + "end": 1119.84, + "probability": 0.9651 + }, + { + "start": 1122.54, + "end": 1123.04, + "probability": 0.8109 + }, + { + "start": 1124.62, + "end": 1125.1, + "probability": 0.8543 + }, + { + "start": 1127.25, + "end": 1128.46, + "probability": 0.0616 + }, + { + "start": 1128.94, + "end": 1129.5, + "probability": 0.8061 + }, + { + "start": 1129.6, + "end": 1132.76, + "probability": 0.9135 + }, + { + "start": 1143.54, + "end": 1145.04, + "probability": 0.8555 + }, + { + "start": 1146.58, + "end": 1147.8, + "probability": 0.9193 + }, + { + "start": 1150.2, + "end": 1153.48, + "probability": 0.9354 + }, + { + "start": 1153.9, + "end": 1156.3, + "probability": 0.837 + }, + { + "start": 1156.54, + "end": 1165.6, + "probability": 0.8242 + }, + { + "start": 1166.34, + "end": 1167.3, + "probability": 0.7822 + }, + { + "start": 1168.88, + "end": 1170.68, + "probability": 0.7357 + }, + { + "start": 1172.66, + "end": 1174.36, + "probability": 0.996 + }, + { + "start": 1174.96, + "end": 1176.58, + "probability": 0.9507 + }, + { + "start": 1177.7, + "end": 1178.76, + "probability": 0.0306 + }, + { + "start": 1179.92, + "end": 1181.58, + "probability": 0.5323 + }, + { + "start": 1181.58, + "end": 1182.6, + "probability": 0.1202 + }, + { + "start": 1183.1, + "end": 1185.09, + "probability": 0.9215 + }, + { + "start": 1186.12, + "end": 1186.32, + "probability": 0.6713 + }, + { + "start": 1186.32, + "end": 1187.82, + "probability": 0.8927 + }, + { + "start": 1189.18, + "end": 1190.42, + "probability": 0.9908 + }, + { + "start": 1191.94, + "end": 1195.72, + "probability": 0.0213 + }, + { + "start": 1196.18, + "end": 1196.7, + "probability": 0.8491 + }, + { + "start": 1197.66, + "end": 1199.48, + "probability": 0.8891 + }, + { + "start": 1201.7, + "end": 1203.86, + "probability": 0.9714 + }, + { + "start": 1205.18, + "end": 1206.96, + "probability": 0.6988 + }, + { + "start": 1207.16, + "end": 1208.21, + "probability": 0.6199 + }, + { + "start": 1209.38, + "end": 1212.68, + "probability": 0.9936 + }, + { + "start": 1213.42, + "end": 1214.8, + "probability": 0.9275 + }, + { + "start": 1215.74, + "end": 1216.8, + "probability": 0.2485 + }, + { + "start": 1219.43, + "end": 1221.3, + "probability": 0.9187 + }, + { + "start": 1222.48, + "end": 1224.96, + "probability": 0.6921 + }, + { + "start": 1225.88, + "end": 1226.38, + "probability": 0.9248 + }, + { + "start": 1228.78, + "end": 1230.92, + "probability": 0.8094 + }, + { + "start": 1231.34, + "end": 1233.36, + "probability": 0.6415 + }, + { + "start": 1234.66, + "end": 1234.9, + "probability": 0.3708 + }, + { + "start": 1235.42, + "end": 1236.0, + "probability": 0.933 + }, + { + "start": 1237.12, + "end": 1237.34, + "probability": 0.9144 + }, + { + "start": 1240.24, + "end": 1240.52, + "probability": 0.0272 + }, + { + "start": 1240.52, + "end": 1240.96, + "probability": 0.7767 + }, + { + "start": 1241.48, + "end": 1242.5, + "probability": 0.7205 + }, + { + "start": 1243.7, + "end": 1245.0, + "probability": 0.9785 + }, + { + "start": 1247.5, + "end": 1248.0, + "probability": 0.9661 + }, + { + "start": 1250.38, + "end": 1251.42, + "probability": 0.842 + }, + { + "start": 1252.26, + "end": 1253.06, + "probability": 0.9263 + }, + { + "start": 1254.4, + "end": 1259.1, + "probability": 0.9491 + }, + { + "start": 1259.14, + "end": 1261.12, + "probability": 0.7555 + }, + { + "start": 1261.54, + "end": 1262.32, + "probability": 0.7975 + }, + { + "start": 1263.76, + "end": 1265.02, + "probability": 0.863 + }, + { + "start": 1266.36, + "end": 1266.88, + "probability": 0.8285 + }, + { + "start": 1267.2, + "end": 1268.06, + "probability": 0.4258 + }, + { + "start": 1268.18, + "end": 1268.94, + "probability": 0.6753 + }, + { + "start": 1270.24, + "end": 1271.52, + "probability": 0.8089 + }, + { + "start": 1272.3, + "end": 1274.04, + "probability": 0.6563 + }, + { + "start": 1275.38, + "end": 1275.94, + "probability": 0.939 + }, + { + "start": 1276.92, + "end": 1277.34, + "probability": 0.9807 + }, + { + "start": 1279.72, + "end": 1280.51, + "probability": 0.9821 + }, + { + "start": 1280.68, + "end": 1281.23, + "probability": 0.9789 + }, + { + "start": 1281.62, + "end": 1284.78, + "probability": 0.9731 + }, + { + "start": 1286.82, + "end": 1287.94, + "probability": 0.6825 + }, + { + "start": 1288.86, + "end": 1291.44, + "probability": 0.8063 + }, + { + "start": 1292.4, + "end": 1292.91, + "probability": 0.7744 + }, + { + "start": 1294.46, + "end": 1295.88, + "probability": 0.7272 + }, + { + "start": 1298.38, + "end": 1300.1, + "probability": 0.9743 + }, + { + "start": 1300.66, + "end": 1301.2, + "probability": 0.5363 + }, + { + "start": 1301.72, + "end": 1302.12, + "probability": 0.903 + }, + { + "start": 1303.24, + "end": 1303.38, + "probability": 0.8807 + }, + { + "start": 1304.16, + "end": 1305.16, + "probability": 0.9658 + }, + { + "start": 1306.54, + "end": 1307.78, + "probability": 0.9712 + }, + { + "start": 1310.58, + "end": 1311.98, + "probability": 0.8662 + }, + { + "start": 1313.62, + "end": 1314.12, + "probability": 0.8307 + }, + { + "start": 1314.76, + "end": 1315.48, + "probability": 0.833 + }, + { + "start": 1319.4, + "end": 1321.1, + "probability": 0.8253 + }, + { + "start": 1321.84, + "end": 1324.02, + "probability": 0.8002 + }, + { + "start": 1325.38, + "end": 1331.3, + "probability": 0.8125 + }, + { + "start": 1333.36, + "end": 1334.58, + "probability": 0.9305 + }, + { + "start": 1335.7, + "end": 1335.96, + "probability": 0.801 + }, + { + "start": 1339.14, + "end": 1339.78, + "probability": 0.5057 + }, + { + "start": 1342.42, + "end": 1343.36, + "probability": 0.8009 + }, + { + "start": 1346.12, + "end": 1347.36, + "probability": 0.7915 + }, + { + "start": 1347.74, + "end": 1350.32, + "probability": 0.9673 + }, + { + "start": 1351.26, + "end": 1352.74, + "probability": 0.9988 + }, + { + "start": 1354.16, + "end": 1355.16, + "probability": 0.8418 + }, + { + "start": 1356.98, + "end": 1357.92, + "probability": 0.9064 + }, + { + "start": 1360.42, + "end": 1363.16, + "probability": 0.9613 + }, + { + "start": 1366.28, + "end": 1366.58, + "probability": 0.0542 + }, + { + "start": 1366.58, + "end": 1369.79, + "probability": 0.5645 + }, + { + "start": 1371.34, + "end": 1371.5, + "probability": 0.1084 + }, + { + "start": 1371.5, + "end": 1371.7, + "probability": 0.4321 + }, + { + "start": 1372.96, + "end": 1375.92, + "probability": 0.9611 + }, + { + "start": 1376.62, + "end": 1377.3, + "probability": 0.866 + }, + { + "start": 1378.96, + "end": 1379.48, + "probability": 0.8304 + }, + { + "start": 1381.06, + "end": 1384.58, + "probability": 0.9703 + }, + { + "start": 1385.84, + "end": 1385.84, + "probability": 0.938 + }, + { + "start": 1386.6, + "end": 1388.68, + "probability": 0.9512 + }, + { + "start": 1391.36, + "end": 1392.46, + "probability": 0.8843 + }, + { + "start": 1393.9, + "end": 1393.9, + "probability": 0.4082 + }, + { + "start": 1394.54, + "end": 1397.08, + "probability": 0.8611 + }, + { + "start": 1397.74, + "end": 1398.38, + "probability": 0.9519 + }, + { + "start": 1399.1, + "end": 1401.5, + "probability": 0.981 + }, + { + "start": 1402.7, + "end": 1403.16, + "probability": 0.8993 + }, + { + "start": 1405.52, + "end": 1407.92, + "probability": 0.7383 + }, + { + "start": 1410.08, + "end": 1413.34, + "probability": 0.8386 + }, + { + "start": 1414.42, + "end": 1416.55, + "probability": 0.8762 + }, + { + "start": 1418.76, + "end": 1418.88, + "probability": 0.0 + }, + { + "start": 1420.34, + "end": 1421.02, + "probability": 0.1092 + }, + { + "start": 1421.26, + "end": 1421.3, + "probability": 0.0072 + }, + { + "start": 1421.3, + "end": 1421.3, + "probability": 0.0283 + }, + { + "start": 1421.48, + "end": 1422.9, + "probability": 0.9324 + }, + { + "start": 1423.46, + "end": 1425.2, + "probability": 0.9782 + }, + { + "start": 1426.5, + "end": 1427.74, + "probability": 0.779 + }, + { + "start": 1431.9, + "end": 1431.94, + "probability": 0.0065 + }, + { + "start": 1431.94, + "end": 1433.96, + "probability": 0.9899 + }, + { + "start": 1435.22, + "end": 1437.51, + "probability": 0.9276 + }, + { + "start": 1438.12, + "end": 1439.72, + "probability": 0.1852 + }, + { + "start": 1440.08, + "end": 1440.78, + "probability": 0.535 + }, + { + "start": 1441.1, + "end": 1442.08, + "probability": 0.9051 + }, + { + "start": 1443.76, + "end": 1447.94, + "probability": 0.1542 + }, + { + "start": 1448.52, + "end": 1449.02, + "probability": 0.8409 + }, + { + "start": 1449.6, + "end": 1450.66, + "probability": 0.8655 + }, + { + "start": 1450.74, + "end": 1451.28, + "probability": 0.5232 + }, + { + "start": 1452.56, + "end": 1455.3, + "probability": 0.9863 + }, + { + "start": 1459.5, + "end": 1460.9, + "probability": 0.8966 + }, + { + "start": 1461.68, + "end": 1462.02, + "probability": 0.7885 + }, + { + "start": 1462.68, + "end": 1464.9, + "probability": 0.2358 + }, + { + "start": 1465.68, + "end": 1466.38, + "probability": 0.146 + }, + { + "start": 1466.5, + "end": 1468.26, + "probability": 0.7223 + }, + { + "start": 1468.78, + "end": 1471.08, + "probability": 0.8477 + }, + { + "start": 1471.48, + "end": 1475.64, + "probability": 0.9241 + }, + { + "start": 1476.14, + "end": 1476.64, + "probability": 0.4516 + }, + { + "start": 1476.74, + "end": 1478.2, + "probability": 0.7225 + }, + { + "start": 1479.52, + "end": 1482.62, + "probability": 0.9472 + }, + { + "start": 1483.26, + "end": 1485.82, + "probability": 0.6516 + }, + { + "start": 1486.14, + "end": 1486.52, + "probability": 0.6919 + }, + { + "start": 1486.88, + "end": 1490.74, + "probability": 0.978 + }, + { + "start": 1491.24, + "end": 1492.3, + "probability": 0.5468 + }, + { + "start": 1493.2, + "end": 1494.74, + "probability": 0.8376 + }, + { + "start": 1495.56, + "end": 1497.36, + "probability": 0.9964 + }, + { + "start": 1499.2, + "end": 1501.44, + "probability": 0.7291 + }, + { + "start": 1501.62, + "end": 1506.71, + "probability": 0.8787 + }, + { + "start": 1507.38, + "end": 1508.56, + "probability": 0.7478 + }, + { + "start": 1508.66, + "end": 1510.1, + "probability": 0.9925 + }, + { + "start": 1510.76, + "end": 1514.06, + "probability": 0.9656 + }, + { + "start": 1514.21, + "end": 1518.1, + "probability": 0.9933 + }, + { + "start": 1518.38, + "end": 1519.52, + "probability": 0.9834 + }, + { + "start": 1520.04, + "end": 1521.24, + "probability": 0.9282 + }, + { + "start": 1522.1, + "end": 1523.4, + "probability": 0.9049 + }, + { + "start": 1524.3, + "end": 1525.0, + "probability": 0.9499 + }, + { + "start": 1525.12, + "end": 1526.08, + "probability": 0.6534 + }, + { + "start": 1526.52, + "end": 1526.76, + "probability": 0.7595 + }, + { + "start": 1527.28, + "end": 1528.46, + "probability": 0.7378 + }, + { + "start": 1529.52, + "end": 1532.66, + "probability": 0.9841 + }, + { + "start": 1533.7, + "end": 1534.88, + "probability": 0.9185 + }, + { + "start": 1535.2, + "end": 1538.58, + "probability": 0.9492 + }, + { + "start": 1538.62, + "end": 1540.52, + "probability": 0.9532 + }, + { + "start": 1540.68, + "end": 1542.86, + "probability": 0.9417 + }, + { + "start": 1546.16, + "end": 1548.2, + "probability": 0.7484 + }, + { + "start": 1549.85, + "end": 1549.92, + "probability": 0.172 + }, + { + "start": 1550.16, + "end": 1551.06, + "probability": 0.6317 + }, + { + "start": 1551.54, + "end": 1553.9, + "probability": 0.9916 + }, + { + "start": 1554.64, + "end": 1555.36, + "probability": 0.8611 + }, + { + "start": 1556.74, + "end": 1557.72, + "probability": 0.5832 + }, + { + "start": 1558.8, + "end": 1565.58, + "probability": 0.0427 + }, + { + "start": 1566.22, + "end": 1569.78, + "probability": 0.9783 + }, + { + "start": 1570.92, + "end": 1571.12, + "probability": 0.0393 + }, + { + "start": 1571.12, + "end": 1571.12, + "probability": 0.1862 + }, + { + "start": 1571.12, + "end": 1571.12, + "probability": 0.0039 + }, + { + "start": 1571.12, + "end": 1573.46, + "probability": 0.7537 + }, + { + "start": 1575.1, + "end": 1575.1, + "probability": 0.0191 + }, + { + "start": 1575.1, + "end": 1575.86, + "probability": 0.6041 + }, + { + "start": 1576.76, + "end": 1579.82, + "probability": 0.6956 + }, + { + "start": 1580.44, + "end": 1585.4, + "probability": 0.9768 + }, + { + "start": 1585.88, + "end": 1587.72, + "probability": 0.7047 + }, + { + "start": 1588.52, + "end": 1590.04, + "probability": 0.9665 + }, + { + "start": 1591.06, + "end": 1591.16, + "probability": 0.9642 + }, + { + "start": 1592.04, + "end": 1593.4, + "probability": 0.9983 + }, + { + "start": 1595.1, + "end": 1599.72, + "probability": 0.6804 + }, + { + "start": 1600.82, + "end": 1603.62, + "probability": 0.9414 + }, + { + "start": 1605.02, + "end": 1605.02, + "probability": 0.0075 + }, + { + "start": 1605.02, + "end": 1605.62, + "probability": 0.67 + }, + { + "start": 1606.78, + "end": 1610.26, + "probability": 0.9983 + }, + { + "start": 1610.96, + "end": 1613.56, + "probability": 0.9847 + }, + { + "start": 1614.46, + "end": 1614.95, + "probability": 0.2143 + }, + { + "start": 1615.5, + "end": 1616.88, + "probability": 0.8247 + }, + { + "start": 1617.44, + "end": 1618.25, + "probability": 0.9846 + }, + { + "start": 1619.04, + "end": 1622.56, + "probability": 0.9542 + }, + { + "start": 1623.2, + "end": 1623.46, + "probability": 0.708 + }, + { + "start": 1625.54, + "end": 1626.22, + "probability": 0.0081 + }, + { + "start": 1627.4, + "end": 1627.4, + "probability": 0.0531 + }, + { + "start": 1627.4, + "end": 1629.32, + "probability": 0.8009 + }, + { + "start": 1629.5, + "end": 1631.66, + "probability": 0.9774 + }, + { + "start": 1633.22, + "end": 1636.9, + "probability": 0.9893 + }, + { + "start": 1637.44, + "end": 1637.94, + "probability": 0.4802 + }, + { + "start": 1652.72, + "end": 1653.6, + "probability": 0.1681 + }, + { + "start": 1653.6, + "end": 1653.6, + "probability": 0.0276 + }, + { + "start": 1653.6, + "end": 1653.6, + "probability": 0.0677 + }, + { + "start": 1653.94, + "end": 1653.94, + "probability": 0.0402 + }, + { + "start": 1653.94, + "end": 1654.56, + "probability": 0.5635 + }, + { + "start": 1654.62, + "end": 1658.24, + "probability": 0.9396 + }, + { + "start": 1658.38, + "end": 1661.12, + "probability": 0.7504 + }, + { + "start": 1661.76, + "end": 1661.76, + "probability": 0.0003 + }, + { + "start": 1670.66, + "end": 1671.8, + "probability": 0.155 + }, + { + "start": 1671.8, + "end": 1672.36, + "probability": 0.0291 + }, + { + "start": 1673.5, + "end": 1674.82, + "probability": 0.1804 + }, + { + "start": 1679.58, + "end": 1684.38, + "probability": 0.2153 + }, + { + "start": 1684.38, + "end": 1685.86, + "probability": 0.0286 + }, + { + "start": 1685.86, + "end": 1687.66, + "probability": 0.1825 + }, + { + "start": 1687.66, + "end": 1689.98, + "probability": 0.1141 + }, + { + "start": 1693.62, + "end": 1696.9, + "probability": 0.0532 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1736.0, + "end": 1736.0, + "probability": 0.0 + }, + { + "start": 1738.6, + "end": 1738.68, + "probability": 0.0001 + }, + { + "start": 1748.44, + "end": 1750.78, + "probability": 0.0243 + }, + { + "start": 1750.78, + "end": 1753.06, + "probability": 0.142 + }, + { + "start": 1753.06, + "end": 1757.46, + "probability": 0.0536 + }, + { + "start": 1757.49, + "end": 1760.34, + "probability": 0.04 + }, + { + "start": 1760.34, + "end": 1762.32, + "probability": 0.1109 + }, + { + "start": 1763.11, + "end": 1763.7, + "probability": 0.0429 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.0, + "end": 2119.0, + "probability": 0.0 + }, + { + "start": 2119.76, + "end": 2120.8, + "probability": 0.1866 + }, + { + "start": 2120.8, + "end": 2122.96, + "probability": 0.2416 + }, + { + "start": 2123.34, + "end": 2124.48, + "probability": 0.0587 + }, + { + "start": 2124.58, + "end": 2125.79, + "probability": 0.0474 + }, + { + "start": 2127.14, + "end": 2127.92, + "probability": 0.2143 + }, + { + "start": 2166.46, + "end": 2166.86, + "probability": 0.0386 + }, + { + "start": 2169.86, + "end": 2171.96, + "probability": 0.0587 + }, + { + "start": 2171.96, + "end": 2173.62, + "probability": 0.0338 + }, + { + "start": 2175.07, + "end": 2176.26, + "probability": 0.0612 + }, + { + "start": 2177.6, + "end": 2181.36, + "probability": 0.0262 + }, + { + "start": 2182.1, + "end": 2183.58, + "probability": 0.0096 + }, + { + "start": 2184.1, + "end": 2187.8, + "probability": 0.0469 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2259.0, + "end": 2259.0, + "probability": 0.0 + }, + { + "start": 2262.38, + "end": 2262.5, + "probability": 0.1475 + }, + { + "start": 2264.74, + "end": 2267.52, + "probability": 0.1496 + }, + { + "start": 2268.54, + "end": 2270.88, + "probability": 0.0762 + }, + { + "start": 2278.8, + "end": 2279.48, + "probability": 0.0301 + }, + { + "start": 2282.31, + "end": 2285.44, + "probability": 0.1144 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.0, + "end": 2387.0, + "probability": 0.0 + }, + { + "start": 2387.12, + "end": 2387.3, + "probability": 0.007 + }, + { + "start": 2387.3, + "end": 2387.6, + "probability": 0.2169 + }, + { + "start": 2387.6, + "end": 2392.1, + "probability": 0.8186 + }, + { + "start": 2392.22, + "end": 2394.0, + "probability": 0.9951 + }, + { + "start": 2394.88, + "end": 2399.06, + "probability": 0.9755 + }, + { + "start": 2399.5, + "end": 2400.42, + "probability": 0.9789 + }, + { + "start": 2400.94, + "end": 2402.14, + "probability": 0.9232 + }, + { + "start": 2402.76, + "end": 2405.36, + "probability": 0.989 + }, + { + "start": 2405.92, + "end": 2410.16, + "probability": 0.9976 + }, + { + "start": 2410.58, + "end": 2412.34, + "probability": 0.9968 + }, + { + "start": 2412.78, + "end": 2413.44, + "probability": 0.9858 + }, + { + "start": 2413.92, + "end": 2415.16, + "probability": 0.8839 + }, + { + "start": 2415.24, + "end": 2416.38, + "probability": 0.8966 + }, + { + "start": 2417.3, + "end": 2422.14, + "probability": 0.8002 + }, + { + "start": 2422.32, + "end": 2423.76, + "probability": 0.9784 + }, + { + "start": 2423.98, + "end": 2425.6, + "probability": 0.929 + }, + { + "start": 2426.02, + "end": 2427.72, + "probability": 0.8159 + }, + { + "start": 2428.08, + "end": 2429.8, + "probability": 0.9927 + }, + { + "start": 2429.92, + "end": 2432.0, + "probability": 0.9932 + }, + { + "start": 2432.08, + "end": 2432.5, + "probability": 0.7448 + }, + { + "start": 2433.16, + "end": 2436.88, + "probability": 0.9854 + }, + { + "start": 2436.96, + "end": 2437.64, + "probability": 0.9088 + }, + { + "start": 2437.7, + "end": 2440.22, + "probability": 0.9921 + }, + { + "start": 2440.64, + "end": 2441.28, + "probability": 0.9939 + }, + { + "start": 2441.94, + "end": 2444.48, + "probability": 0.9935 + }, + { + "start": 2444.94, + "end": 2447.04, + "probability": 0.8937 + }, + { + "start": 2447.24, + "end": 2448.06, + "probability": 0.785 + }, + { + "start": 2449.64, + "end": 2452.22, + "probability": 0.9868 + }, + { + "start": 2452.5, + "end": 2455.32, + "probability": 0.9939 + }, + { + "start": 2455.7, + "end": 2459.87, + "probability": 0.9958 + }, + { + "start": 2460.32, + "end": 2464.22, + "probability": 0.999 + }, + { + "start": 2464.76, + "end": 2465.86, + "probability": 0.8223 + }, + { + "start": 2466.28, + "end": 2468.66, + "probability": 0.8833 + }, + { + "start": 2469.4, + "end": 2471.38, + "probability": 0.9646 + }, + { + "start": 2472.72, + "end": 2473.66, + "probability": 0.873 + }, + { + "start": 2474.52, + "end": 2475.88, + "probability": 0.9863 + }, + { + "start": 2476.6, + "end": 2479.44, + "probability": 0.9816 + }, + { + "start": 2479.8, + "end": 2480.94, + "probability": 0.9187 + }, + { + "start": 2482.02, + "end": 2482.74, + "probability": 0.9897 + }, + { + "start": 2483.68, + "end": 2485.24, + "probability": 0.9259 + }, + { + "start": 2485.68, + "end": 2487.3, + "probability": 0.9932 + }, + { + "start": 2487.76, + "end": 2490.58, + "probability": 0.981 + }, + { + "start": 2490.7, + "end": 2491.1, + "probability": 0.7909 + }, + { + "start": 2491.22, + "end": 2492.49, + "probability": 0.8929 + }, + { + "start": 2493.16, + "end": 2494.04, + "probability": 0.8699 + }, + { + "start": 2494.16, + "end": 2496.52, + "probability": 0.9734 + }, + { + "start": 2497.0, + "end": 2498.5, + "probability": 0.9829 + }, + { + "start": 2498.56, + "end": 2499.78, + "probability": 0.9448 + }, + { + "start": 2500.4, + "end": 2504.2, + "probability": 0.9512 + }, + { + "start": 2504.34, + "end": 2505.8, + "probability": 0.9676 + }, + { + "start": 2506.68, + "end": 2509.52, + "probability": 0.9363 + }, + { + "start": 2510.64, + "end": 2514.44, + "probability": 0.9663 + }, + { + "start": 2514.58, + "end": 2515.0, + "probability": 0.4988 + }, + { + "start": 2515.22, + "end": 2519.6, + "probability": 0.9477 + }, + { + "start": 2519.94, + "end": 2522.92, + "probability": 0.923 + }, + { + "start": 2524.1, + "end": 2524.8, + "probability": 0.8376 + }, + { + "start": 2524.88, + "end": 2527.26, + "probability": 0.9272 + }, + { + "start": 2527.38, + "end": 2528.68, + "probability": 0.8786 + }, + { + "start": 2528.92, + "end": 2530.96, + "probability": 0.9491 + }, + { + "start": 2531.12, + "end": 2533.44, + "probability": 0.9937 + }, + { + "start": 2534.46, + "end": 2536.8, + "probability": 0.9796 + }, + { + "start": 2537.92, + "end": 2541.46, + "probability": 0.9924 + }, + { + "start": 2541.52, + "end": 2542.28, + "probability": 0.6408 + }, + { + "start": 2542.44, + "end": 2543.46, + "probability": 0.8921 + }, + { + "start": 2543.58, + "end": 2545.6, + "probability": 0.9285 + }, + { + "start": 2546.18, + "end": 2546.94, + "probability": 0.9646 + }, + { + "start": 2547.18, + "end": 2549.88, + "probability": 0.9967 + }, + { + "start": 2550.28, + "end": 2553.46, + "probability": 0.9857 + }, + { + "start": 2554.2, + "end": 2556.42, + "probability": 0.9971 + }, + { + "start": 2556.68, + "end": 2559.75, + "probability": 0.9967 + }, + { + "start": 2560.32, + "end": 2562.4, + "probability": 0.9934 + }, + { + "start": 2563.02, + "end": 2565.6, + "probability": 0.9434 + }, + { + "start": 2565.6, + "end": 2567.24, + "probability": 0.5706 + }, + { + "start": 2567.58, + "end": 2568.84, + "probability": 0.8582 + }, + { + "start": 2569.16, + "end": 2573.38, + "probability": 0.9875 + }, + { + "start": 2573.78, + "end": 2574.28, + "probability": 0.3404 + }, + { + "start": 2574.36, + "end": 2574.8, + "probability": 0.7854 + }, + { + "start": 2575.44, + "end": 2577.32, + "probability": 0.3364 + }, + { + "start": 2577.84, + "end": 2578.52, + "probability": 0.8705 + }, + { + "start": 2579.8, + "end": 2583.42, + "probability": 0.999 + }, + { + "start": 2583.42, + "end": 2586.32, + "probability": 0.8449 + }, + { + "start": 2587.46, + "end": 2590.6, + "probability": 0.8586 + }, + { + "start": 2590.86, + "end": 2593.12, + "probability": 0.9324 + }, + { + "start": 2593.78, + "end": 2596.84, + "probability": 0.9803 + }, + { + "start": 2597.78, + "end": 2601.6, + "probability": 0.9268 + }, + { + "start": 2602.74, + "end": 2607.84, + "probability": 0.9904 + }, + { + "start": 2608.18, + "end": 2609.68, + "probability": 0.9787 + }, + { + "start": 2610.12, + "end": 2615.22, + "probability": 0.9906 + }, + { + "start": 2615.38, + "end": 2619.08, + "probability": 0.9899 + }, + { + "start": 2619.44, + "end": 2620.82, + "probability": 0.8724 + }, + { + "start": 2620.88, + "end": 2622.7, + "probability": 0.9219 + }, + { + "start": 2623.44, + "end": 2625.96, + "probability": 0.9695 + }, + { + "start": 2626.12, + "end": 2627.66, + "probability": 0.9966 + }, + { + "start": 2628.1, + "end": 2631.62, + "probability": 0.9731 + }, + { + "start": 2632.08, + "end": 2633.2, + "probability": 0.6329 + }, + { + "start": 2633.6, + "end": 2634.42, + "probability": 0.6358 + }, + { + "start": 2634.64, + "end": 2636.58, + "probability": 0.9139 + }, + { + "start": 2636.68, + "end": 2638.26, + "probability": 0.9802 + }, + { + "start": 2638.34, + "end": 2638.54, + "probability": 0.802 + }, + { + "start": 2639.7, + "end": 2641.94, + "probability": 0.6971 + }, + { + "start": 2642.14, + "end": 2644.76, + "probability": 0.9932 + }, + { + "start": 2644.9, + "end": 2647.86, + "probability": 0.8604 + }, + { + "start": 2648.12, + "end": 2649.86, + "probability": 0.9028 + }, + { + "start": 2650.28, + "end": 2650.42, + "probability": 0.0228 + }, + { + "start": 2650.42, + "end": 2652.28, + "probability": 0.9769 + }, + { + "start": 2657.29, + "end": 2659.66, + "probability": 0.9424 + }, + { + "start": 2662.44, + "end": 2663.3, + "probability": 0.7562 + }, + { + "start": 2664.78, + "end": 2666.44, + "probability": 0.8923 + }, + { + "start": 2667.72, + "end": 2670.72, + "probability": 0.9712 + }, + { + "start": 2678.28, + "end": 2686.26, + "probability": 0.9819 + }, + { + "start": 2687.36, + "end": 2688.66, + "probability": 0.9141 + }, + { + "start": 2689.8, + "end": 2692.21, + "probability": 0.8255 + }, + { + "start": 2692.84, + "end": 2693.28, + "probability": 0.8643 + }, + { + "start": 2694.14, + "end": 2694.68, + "probability": 0.4851 + }, + { + "start": 2696.16, + "end": 2698.26, + "probability": 0.9225 + }, + { + "start": 2698.26, + "end": 2700.8, + "probability": 0.7913 + }, + { + "start": 2701.0, + "end": 2701.62, + "probability": 0.9189 + }, + { + "start": 2704.52, + "end": 2705.01, + "probability": 0.9016 + }, + { + "start": 2707.9, + "end": 2708.56, + "probability": 0.7994 + }, + { + "start": 2708.56, + "end": 2711.42, + "probability": 0.7321 + }, + { + "start": 2711.6, + "end": 2716.4, + "probability": 0.846 + }, + { + "start": 2718.2, + "end": 2721.37, + "probability": 0.7401 + }, + { + "start": 2722.86, + "end": 2724.46, + "probability": 0.9951 + }, + { + "start": 2725.06, + "end": 2726.66, + "probability": 0.6935 + }, + { + "start": 2727.28, + "end": 2728.47, + "probability": 0.7727 + }, + { + "start": 2730.29, + "end": 2733.17, + "probability": 0.9932 + }, + { + "start": 2735.95, + "end": 2736.69, + "probability": 0.7407 + }, + { + "start": 2736.91, + "end": 2737.93, + "probability": 0.9844 + }, + { + "start": 2738.23, + "end": 2740.11, + "probability": 0.7747 + }, + { + "start": 2740.17, + "end": 2740.93, + "probability": 0.8311 + }, + { + "start": 2741.21, + "end": 2746.35, + "probability": 0.9602 + }, + { + "start": 2747.55, + "end": 2748.13, + "probability": 0.5897 + }, + { + "start": 2748.75, + "end": 2749.99, + "probability": 0.9875 + }, + { + "start": 2751.05, + "end": 2754.55, + "probability": 0.8894 + }, + { + "start": 2755.63, + "end": 2756.77, + "probability": 0.6387 + }, + { + "start": 2761.83, + "end": 2762.5, + "probability": 0.3446 + }, + { + "start": 2763.31, + "end": 2765.15, + "probability": 0.9144 + }, + { + "start": 2767.59, + "end": 2768.11, + "probability": 0.4463 + }, + { + "start": 2770.75, + "end": 2775.21, + "probability": 0.0587 + }, + { + "start": 2779.23, + "end": 2782.25, + "probability": 0.4268 + }, + { + "start": 2783.53, + "end": 2784.33, + "probability": 0.7349 + }, + { + "start": 2785.59, + "end": 2785.73, + "probability": 0.119 + }, + { + "start": 2787.57, + "end": 2789.33, + "probability": 0.0212 + }, + { + "start": 2791.75, + "end": 2792.27, + "probability": 0.0527 + }, + { + "start": 2792.27, + "end": 2794.47, + "probability": 0.0749 + }, + { + "start": 2797.17, + "end": 2797.93, + "probability": 0.0628 + }, + { + "start": 2798.53, + "end": 2799.69, + "probability": 0.2301 + }, + { + "start": 2800.27, + "end": 2800.73, + "probability": 0.5695 + }, + { + "start": 2832.77, + "end": 2836.19, + "probability": 0.1419 + }, + { + "start": 2836.19, + "end": 2836.19, + "probability": 0.0511 + }, + { + "start": 2836.19, + "end": 2836.33, + "probability": 0.2527 + }, + { + "start": 2836.33, + "end": 2837.45, + "probability": 0.0677 + }, + { + "start": 2837.45, + "end": 2838.95, + "probability": 0.0361 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2867.0, + "end": 2867.0, + "probability": 0.0 + }, + { + "start": 2868.08, + "end": 2871.42, + "probability": 0.0751 + }, + { + "start": 2871.42, + "end": 2871.42, + "probability": 0.2346 + }, + { + "start": 2873.14, + "end": 2876.88, + "probability": 0.0763 + }, + { + "start": 2876.9, + "end": 2877.42, + "probability": 0.0486 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3331.0, + "end": 3331.0, + "probability": 0.0 + }, + { + "start": 3341.12, + "end": 3342.36, + "probability": 0.0462 + }, + { + "start": 3344.7, + "end": 3345.44, + "probability": 0.0008 + }, + { + "start": 3346.86, + "end": 3350.06, + "probability": 0.0518 + }, + { + "start": 3350.06, + "end": 3350.12, + "probability": 0.072 + }, + { + "start": 3350.12, + "end": 3350.58, + "probability": 0.0496 + }, + { + "start": 3350.58, + "end": 3351.44, + "probability": 0.0466 + }, + { + "start": 3369.58, + "end": 3370.16, + "probability": 0.007 + }, + { + "start": 3371.72, + "end": 3374.66, + "probability": 0.0051 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3539.0, + "end": 3539.0, + "probability": 0.0 + }, + { + "start": 3591.7, + "end": 3591.9, + "probability": 0.0063 + }, + { + "start": 3591.9, + "end": 3592.44, + "probability": 0.1265 + }, + { + "start": 3592.44, + "end": 3594.48, + "probability": 0.0377 + }, + { + "start": 3598.22, + "end": 3601.54, + "probability": 0.14 + }, + { + "start": 3611.04, + "end": 3611.32, + "probability": 0.0009 + }, + { + "start": 3613.9, + "end": 3615.9, + "probability": 0.0298 + }, + { + "start": 3615.94, + "end": 3617.2, + "probability": 0.2965 + }, + { + "start": 3617.28, + "end": 3617.62, + "probability": 0.1888 + }, + { + "start": 3617.62, + "end": 3619.52, + "probability": 0.1885 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3717.0, + "probability": 0.0 + }, + { + "start": 3717.0, + "end": 3721.78, + "probability": 0.9938 + }, + { + "start": 3721.78, + "end": 3726.98, + "probability": 0.9951 + }, + { + "start": 3726.98, + "end": 3732.08, + "probability": 0.9701 + }, + { + "start": 3732.6, + "end": 3734.96, + "probability": 0.9629 + }, + { + "start": 3735.08, + "end": 3735.48, + "probability": 0.8964 + }, + { + "start": 3735.58, + "end": 3736.56, + "probability": 0.9399 + }, + { + "start": 3736.7, + "end": 3737.14, + "probability": 0.947 + }, + { + "start": 3737.68, + "end": 3739.08, + "probability": 0.988 + }, + { + "start": 3739.48, + "end": 3743.02, + "probability": 0.9877 + }, + { + "start": 3743.14, + "end": 3747.12, + "probability": 0.6947 + }, + { + "start": 3747.62, + "end": 3749.74, + "probability": 0.9844 + }, + { + "start": 3750.04, + "end": 3752.08, + "probability": 0.993 + }, + { + "start": 3752.56, + "end": 3755.56, + "probability": 0.9925 + }, + { + "start": 3755.96, + "end": 3759.04, + "probability": 0.891 + }, + { + "start": 3759.68, + "end": 3761.76, + "probability": 0.9792 + }, + { + "start": 3762.4, + "end": 3765.12, + "probability": 0.9749 + }, + { + "start": 3765.46, + "end": 3769.2, + "probability": 0.9963 + }, + { + "start": 3769.2, + "end": 3772.34, + "probability": 0.9601 + }, + { + "start": 3773.56, + "end": 3774.82, + "probability": 0.6725 + }, + { + "start": 3775.34, + "end": 3777.32, + "probability": 0.8838 + }, + { + "start": 3778.08, + "end": 3782.8, + "probability": 0.9754 + }, + { + "start": 3782.8, + "end": 3788.08, + "probability": 0.9861 + }, + { + "start": 3788.8, + "end": 3792.62, + "probability": 0.727 + }, + { + "start": 3792.62, + "end": 3795.74, + "probability": 0.6472 + }, + { + "start": 3796.08, + "end": 3798.8, + "probability": 0.9535 + }, + { + "start": 3799.4, + "end": 3800.12, + "probability": 0.915 + }, + { + "start": 3800.98, + "end": 3805.12, + "probability": 0.9661 + }, + { + "start": 3805.3, + "end": 3809.98, + "probability": 0.9915 + }, + { + "start": 3809.98, + "end": 3815.34, + "probability": 0.9696 + }, + { + "start": 3816.44, + "end": 3821.16, + "probability": 0.9596 + }, + { + "start": 3821.3, + "end": 3825.4, + "probability": 0.9906 + }, + { + "start": 3825.98, + "end": 3826.94, + "probability": 0.9757 + }, + { + "start": 3827.46, + "end": 3828.64, + "probability": 0.7104 + }, + { + "start": 3829.24, + "end": 3833.32, + "probability": 0.9938 + }, + { + "start": 3833.72, + "end": 3837.48, + "probability": 0.9878 + }, + { + "start": 3837.48, + "end": 3841.08, + "probability": 0.9928 + }, + { + "start": 3841.94, + "end": 3846.08, + "probability": 0.9889 + }, + { + "start": 3846.5, + "end": 3847.02, + "probability": 0.5846 + }, + { + "start": 3847.66, + "end": 3851.22, + "probability": 0.8441 + }, + { + "start": 3851.22, + "end": 3854.46, + "probability": 0.9989 + }, + { + "start": 3855.14, + "end": 3855.6, + "probability": 0.6162 + }, + { + "start": 3855.68, + "end": 3859.44, + "probability": 0.9905 + }, + { + "start": 3859.44, + "end": 3864.4, + "probability": 0.8561 + }, + { + "start": 3864.6, + "end": 3867.52, + "probability": 0.9867 + }, + { + "start": 3867.52, + "end": 3869.88, + "probability": 0.9977 + }, + { + "start": 3870.72, + "end": 3870.92, + "probability": 0.7435 + }, + { + "start": 3872.1, + "end": 3872.84, + "probability": 0.5903 + }, + { + "start": 3872.94, + "end": 3873.47, + "probability": 0.9375 + }, + { + "start": 3874.24, + "end": 3874.66, + "probability": 0.7684 + }, + { + "start": 3874.68, + "end": 3875.0, + "probability": 0.8914 + }, + { + "start": 3875.06, + "end": 3877.22, + "probability": 0.6619 + }, + { + "start": 3877.84, + "end": 3879.7, + "probability": 0.6528 + }, + { + "start": 3879.94, + "end": 3880.84, + "probability": 0.7702 + }, + { + "start": 3880.84, + "end": 3881.12, + "probability": 0.5982 + }, + { + "start": 3881.68, + "end": 3882.8, + "probability": 0.5423 + }, + { + "start": 3883.44, + "end": 3884.62, + "probability": 0.8394 + }, + { + "start": 3884.9, + "end": 3886.24, + "probability": 0.4219 + }, + { + "start": 3886.86, + "end": 3886.86, + "probability": 0.357 + }, + { + "start": 3886.9, + "end": 3887.86, + "probability": 0.7502 + }, + { + "start": 3888.76, + "end": 3889.68, + "probability": 0.6536 + }, + { + "start": 3891.92, + "end": 3893.54, + "probability": 0.4844 + }, + { + "start": 3893.7, + "end": 3894.06, + "probability": 0.8923 + }, + { + "start": 3894.88, + "end": 3896.26, + "probability": 0.8196 + }, + { + "start": 3897.06, + "end": 3900.32, + "probability": 0.9415 + }, + { + "start": 3901.0, + "end": 3905.22, + "probability": 0.9795 + }, + { + "start": 3906.1, + "end": 3908.98, + "probability": 0.9973 + }, + { + "start": 3909.31, + "end": 3912.02, + "probability": 0.9922 + }, + { + "start": 3912.86, + "end": 3917.34, + "probability": 0.9873 + }, + { + "start": 3917.48, + "end": 3918.49, + "probability": 0.9575 + }, + { + "start": 3919.44, + "end": 3921.08, + "probability": 0.8081 + }, + { + "start": 3921.28, + "end": 3924.86, + "probability": 0.9194 + }, + { + "start": 3925.02, + "end": 3928.14, + "probability": 0.9145 + }, + { + "start": 3929.02, + "end": 3931.7, + "probability": 0.964 + }, + { + "start": 3932.4, + "end": 3932.48, + "probability": 0.7351 + }, + { + "start": 3932.54, + "end": 3933.84, + "probability": 0.9812 + }, + { + "start": 3934.02, + "end": 3936.08, + "probability": 0.8394 + }, + { + "start": 3936.72, + "end": 3937.16, + "probability": 0.8618 + }, + { + "start": 3938.16, + "end": 3939.98, + "probability": 0.8372 + }, + { + "start": 3940.4, + "end": 3942.54, + "probability": 0.9668 + }, + { + "start": 3943.4, + "end": 3947.38, + "probability": 0.9888 + }, + { + "start": 3947.72, + "end": 3948.92, + "probability": 0.6685 + }, + { + "start": 3949.76, + "end": 3951.96, + "probability": 0.9979 + }, + { + "start": 3952.7, + "end": 3954.24, + "probability": 0.84 + }, + { + "start": 3955.76, + "end": 3957.82, + "probability": 0.9873 + }, + { + "start": 3958.74, + "end": 3959.4, + "probability": 0.9889 + }, + { + "start": 3960.1, + "end": 3963.62, + "probability": 0.9816 + }, + { + "start": 3963.76, + "end": 3965.06, + "probability": 0.9917 + }, + { + "start": 3965.7, + "end": 3967.08, + "probability": 0.8704 + }, + { + "start": 3967.8, + "end": 3971.84, + "probability": 0.9896 + }, + { + "start": 3972.76, + "end": 3973.94, + "probability": 0.8329 + }, + { + "start": 3974.5, + "end": 3976.46, + "probability": 0.9752 + }, + { + "start": 3977.01, + "end": 3980.98, + "probability": 0.9951 + }, + { + "start": 3981.46, + "end": 3981.54, + "probability": 0.0658 + }, + { + "start": 3981.82, + "end": 3984.14, + "probability": 0.7036 + }, + { + "start": 3985.28, + "end": 3988.62, + "probability": 0.5872 + }, + { + "start": 3990.12, + "end": 3992.38, + "probability": 0.8072 + }, + { + "start": 3994.02, + "end": 3995.98, + "probability": 0.8498 + }, + { + "start": 3996.76, + "end": 3997.74, + "probability": 0.9661 + }, + { + "start": 3997.8, + "end": 3999.22, + "probability": 0.903 + }, + { + "start": 3999.34, + "end": 3999.74, + "probability": 0.7412 + }, + { + "start": 4000.34, + "end": 4001.18, + "probability": 0.8258 + }, + { + "start": 4001.86, + "end": 4007.08, + "probability": 0.9893 + }, + { + "start": 4007.82, + "end": 4009.46, + "probability": 0.8849 + }, + { + "start": 4009.68, + "end": 4011.54, + "probability": 0.9855 + }, + { + "start": 4011.66, + "end": 4012.56, + "probability": 0.9233 + }, + { + "start": 4012.92, + "end": 4015.2, + "probability": 0.9288 + }, + { + "start": 4015.38, + "end": 4015.52, + "probability": 0.1889 + }, + { + "start": 4017.68, + "end": 4019.5, + "probability": 0.6013 + }, + { + "start": 4019.5, + "end": 4019.92, + "probability": 0.9354 + }, + { + "start": 4019.92, + "end": 4020.64, + "probability": 0.4353 + }, + { + "start": 4020.64, + "end": 4020.74, + "probability": 0.3848 + }, + { + "start": 4021.1, + "end": 4024.74, + "probability": 0.9435 + }, + { + "start": 4025.42, + "end": 4028.64, + "probability": 0.9956 + }, + { + "start": 4029.08, + "end": 4032.1, + "probability": 0.9692 + }, + { + "start": 4032.42, + "end": 4036.94, + "probability": 0.9434 + }, + { + "start": 4037.16, + "end": 4037.44, + "probability": 0.7133 + }, + { + "start": 4037.64, + "end": 4039.28, + "probability": 0.8304 + }, + { + "start": 4039.86, + "end": 4043.1, + "probability": 0.9257 + }, + { + "start": 4045.8, + "end": 4046.48, + "probability": 0.724 + }, + { + "start": 4047.0, + "end": 4051.28, + "probability": 0.9883 + }, + { + "start": 4051.28, + "end": 4053.34, + "probability": 0.9971 + }, + { + "start": 4053.46, + "end": 4055.24, + "probability": 0.9207 + }, + { + "start": 4055.46, + "end": 4055.48, + "probability": 0.7007 + }, + { + "start": 4056.14, + "end": 4056.4, + "probability": 0.9366 + }, + { + "start": 4058.7, + "end": 4059.68, + "probability": 0.4959 + }, + { + "start": 4060.92, + "end": 4064.78, + "probability": 0.9822 + }, + { + "start": 4065.2, + "end": 4065.71, + "probability": 0.8532 + }, + { + "start": 4066.22, + "end": 4068.34, + "probability": 0.9212 + }, + { + "start": 4069.78, + "end": 4071.18, + "probability": 0.7936 + }, + { + "start": 4071.68, + "end": 4072.96, + "probability": 0.3577 + }, + { + "start": 4073.2, + "end": 4076.36, + "probability": 0.0575 + }, + { + "start": 4076.36, + "end": 4078.04, + "probability": 0.4464 + }, + { + "start": 4079.02, + "end": 4079.02, + "probability": 0.4788 + }, + { + "start": 4079.02, + "end": 4080.58, + "probability": 0.9715 + }, + { + "start": 4081.7, + "end": 4082.72, + "probability": 0.9029 + }, + { + "start": 4083.58, + "end": 4086.1, + "probability": 0.9796 + }, + { + "start": 4086.32, + "end": 4088.36, + "probability": 0.9787 + }, + { + "start": 4089.54, + "end": 4090.8, + "probability": 0.9897 + }, + { + "start": 4091.04, + "end": 4092.94, + "probability": 0.9495 + }, + { + "start": 4093.22, + "end": 4094.06, + "probability": 0.8608 + }, + { + "start": 4094.88, + "end": 4098.82, + "probability": 0.9454 + }, + { + "start": 4099.44, + "end": 4101.69, + "probability": 0.979 + }, + { + "start": 4102.4, + "end": 4104.78, + "probability": 0.8789 + }, + { + "start": 4105.92, + "end": 4109.48, + "probability": 0.9861 + }, + { + "start": 4110.02, + "end": 4110.64, + "probability": 0.9705 + }, + { + "start": 4111.74, + "end": 4116.26, + "probability": 0.9569 + }, + { + "start": 4118.18, + "end": 4121.46, + "probability": 0.9805 + }, + { + "start": 4121.6, + "end": 4122.24, + "probability": 0.6009 + }, + { + "start": 4122.6, + "end": 4123.16, + "probability": 0.7715 + }, + { + "start": 4123.66, + "end": 4125.34, + "probability": 0.8083 + }, + { + "start": 4126.18, + "end": 4126.96, + "probability": 0.8414 + }, + { + "start": 4127.64, + "end": 4128.8, + "probability": 0.9883 + }, + { + "start": 4129.86, + "end": 4131.04, + "probability": 0.9499 + }, + { + "start": 4131.26, + "end": 4131.78, + "probability": 0.9697 + }, + { + "start": 4132.08, + "end": 4133.22, + "probability": 0.9824 + }, + { + "start": 4133.54, + "end": 4139.3, + "probability": 0.6122 + }, + { + "start": 4139.84, + "end": 4140.8, + "probability": 0.9917 + }, + { + "start": 4141.92, + "end": 4142.76, + "probability": 0.8354 + }, + { + "start": 4142.86, + "end": 4143.68, + "probability": 0.9329 + }, + { + "start": 4144.18, + "end": 4144.62, + "probability": 0.9084 + }, + { + "start": 4145.3, + "end": 4146.22, + "probability": 0.9941 + }, + { + "start": 4147.1, + "end": 4147.38, + "probability": 0.5361 + }, + { + "start": 4148.66, + "end": 4151.06, + "probability": 0.8287 + }, + { + "start": 4151.8, + "end": 4152.64, + "probability": 0.9589 + }, + { + "start": 4153.42, + "end": 4154.82, + "probability": 0.8333 + }, + { + "start": 4155.4, + "end": 4156.57, + "probability": 0.8526 + }, + { + "start": 4156.86, + "end": 4157.46, + "probability": 0.6495 + }, + { + "start": 4157.94, + "end": 4158.74, + "probability": 0.4964 + }, + { + "start": 4159.0, + "end": 4159.96, + "probability": 0.8931 + }, + { + "start": 4160.72, + "end": 4162.5, + "probability": 0.8492 + }, + { + "start": 4163.02, + "end": 4165.52, + "probability": 0.9612 + }, + { + "start": 4166.08, + "end": 4167.1, + "probability": 0.7765 + }, + { + "start": 4167.2, + "end": 4168.15, + "probability": 0.9716 + }, + { + "start": 4168.64, + "end": 4169.9, + "probability": 0.9129 + }, + { + "start": 4169.98, + "end": 4173.5, + "probability": 0.3378 + }, + { + "start": 4173.5, + "end": 4174.1, + "probability": 0.3706 + }, + { + "start": 4174.16, + "end": 4175.12, + "probability": 0.6925 + }, + { + "start": 4175.78, + "end": 4177.24, + "probability": 0.8704 + }, + { + "start": 4177.3, + "end": 4177.5, + "probability": 0.5446 + }, + { + "start": 4177.56, + "end": 4177.94, + "probability": 0.8101 + }, + { + "start": 4178.3, + "end": 4178.88, + "probability": 0.8494 + }, + { + "start": 4179.62, + "end": 4181.04, + "probability": 0.992 + }, + { + "start": 4181.62, + "end": 4182.14, + "probability": 0.714 + }, + { + "start": 4182.78, + "end": 4185.27, + "probability": 0.8711 + }, + { + "start": 4185.7, + "end": 4186.22, + "probability": 0.4738 + }, + { + "start": 4186.38, + "end": 4186.5, + "probability": 0.7318 + }, + { + "start": 4186.96, + "end": 4187.52, + "probability": 0.9811 + }, + { + "start": 4187.72, + "end": 4188.82, + "probability": 0.9514 + }, + { + "start": 4189.22, + "end": 4191.66, + "probability": 0.9751 + }, + { + "start": 4192.04, + "end": 4192.86, + "probability": 0.6818 + }, + { + "start": 4193.22, + "end": 4194.48, + "probability": 0.9399 + }, + { + "start": 4195.08, + "end": 4195.74, + "probability": 0.6686 + }, + { + "start": 4195.84, + "end": 4199.02, + "probability": 0.9328 + }, + { + "start": 4199.44, + "end": 4201.68, + "probability": 0.2439 + }, + { + "start": 4201.86, + "end": 4202.18, + "probability": 0.4988 + }, + { + "start": 4203.1, + "end": 4204.26, + "probability": 0.0269 + }, + { + "start": 4204.26, + "end": 4204.26, + "probability": 0.0462 + }, + { + "start": 4204.26, + "end": 4205.0, + "probability": 0.6369 + }, + { + "start": 4205.56, + "end": 4207.58, + "probability": 0.9604 + }, + { + "start": 4207.64, + "end": 4208.12, + "probability": 0.7058 + }, + { + "start": 4208.36, + "end": 4208.56, + "probability": 0.9047 + }, + { + "start": 4213.56, + "end": 4218.46, + "probability": 0.7483 + }, + { + "start": 4219.5, + "end": 4220.86, + "probability": 0.9604 + }, + { + "start": 4221.5, + "end": 4222.22, + "probability": 0.8713 + }, + { + "start": 4223.1, + "end": 4225.84, + "probability": 0.9735 + }, + { + "start": 4227.06, + "end": 4228.22, + "probability": 0.9454 + }, + { + "start": 4229.4, + "end": 4231.12, + "probability": 0.7637 + }, + { + "start": 4232.44, + "end": 4232.88, + "probability": 0.9858 + }, + { + "start": 4233.84, + "end": 4235.56, + "probability": 0.959 + }, + { + "start": 4237.62, + "end": 4239.92, + "probability": 0.8397 + }, + { + "start": 4241.26, + "end": 4242.82, + "probability": 0.7536 + }, + { + "start": 4244.48, + "end": 4246.1, + "probability": 0.6969 + }, + { + "start": 4248.12, + "end": 4248.48, + "probability": 0.9399 + }, + { + "start": 4249.1, + "end": 4250.18, + "probability": 0.5971 + }, + { + "start": 4251.92, + "end": 4253.8, + "probability": 0.7239 + }, + { + "start": 4254.88, + "end": 4256.74, + "probability": 0.9398 + }, + { + "start": 4257.5, + "end": 4258.72, + "probability": 0.9617 + }, + { + "start": 4259.68, + "end": 4260.63, + "probability": 0.5641 + }, + { + "start": 4262.66, + "end": 4265.26, + "probability": 0.5688 + }, + { + "start": 4265.82, + "end": 4266.38, + "probability": 0.8563 + }, + { + "start": 4267.0, + "end": 4267.14, + "probability": 0.8547 + }, + { + "start": 4268.14, + "end": 4271.98, + "probability": 0.9903 + }, + { + "start": 4273.04, + "end": 4275.64, + "probability": 0.9748 + }, + { + "start": 4277.5, + "end": 4279.08, + "probability": 0.6808 + }, + { + "start": 4280.72, + "end": 4282.7, + "probability": 0.9908 + }, + { + "start": 4283.44, + "end": 4284.04, + "probability": 0.642 + }, + { + "start": 4284.78, + "end": 4285.04, + "probability": 0.7228 + }, + { + "start": 4285.56, + "end": 4288.82, + "probability": 0.906 + }, + { + "start": 4290.0, + "end": 4290.52, + "probability": 0.9806 + }, + { + "start": 4291.48, + "end": 4293.58, + "probability": 0.5865 + }, + { + "start": 4294.62, + "end": 4296.92, + "probability": 0.939 + }, + { + "start": 4297.66, + "end": 4299.98, + "probability": 0.961 + }, + { + "start": 4300.78, + "end": 4302.68, + "probability": 0.9814 + }, + { + "start": 4303.3, + "end": 4305.93, + "probability": 0.9242 + }, + { + "start": 4307.34, + "end": 4308.7, + "probability": 0.8721 + }, + { + "start": 4309.38, + "end": 4312.64, + "probability": 0.9926 + }, + { + "start": 4313.98, + "end": 4315.44, + "probability": 0.8762 + }, + { + "start": 4315.44, + "end": 4316.86, + "probability": 0.6323 + }, + { + "start": 4318.06, + "end": 4318.82, + "probability": 0.7157 + }, + { + "start": 4318.82, + "end": 4319.26, + "probability": 0.7946 + }, + { + "start": 4325.28, + "end": 4327.2, + "probability": 0.5864 + }, + { + "start": 4327.98, + "end": 4331.28, + "probability": 0.9946 + }, + { + "start": 4332.12, + "end": 4335.64, + "probability": 0.9945 + }, + { + "start": 4335.84, + "end": 4337.08, + "probability": 0.9877 + }, + { + "start": 4338.04, + "end": 4341.6, + "probability": 0.9865 + }, + { + "start": 4342.84, + "end": 4346.66, + "probability": 0.9985 + }, + { + "start": 4347.22, + "end": 4349.08, + "probability": 0.9785 + }, + { + "start": 4349.66, + "end": 4352.9, + "probability": 0.8779 + }, + { + "start": 4353.46, + "end": 4354.42, + "probability": 0.8001 + }, + { + "start": 4355.1, + "end": 4358.4, + "probability": 0.9761 + }, + { + "start": 4358.86, + "end": 4361.02, + "probability": 0.9549 + }, + { + "start": 4361.6, + "end": 4363.45, + "probability": 0.9978 + }, + { + "start": 4364.44, + "end": 4368.5, + "probability": 0.9858 + }, + { + "start": 4369.36, + "end": 4374.78, + "probability": 0.9505 + }, + { + "start": 4375.94, + "end": 4378.22, + "probability": 0.9017 + }, + { + "start": 4379.14, + "end": 4383.5, + "probability": 0.9985 + }, + { + "start": 4384.06, + "end": 4386.7, + "probability": 0.9426 + }, + { + "start": 4387.46, + "end": 4393.34, + "probability": 0.9618 + }, + { + "start": 4393.9, + "end": 4397.2, + "probability": 0.9987 + }, + { + "start": 4397.74, + "end": 4398.7, + "probability": 0.9866 + }, + { + "start": 4399.4, + "end": 4402.68, + "probability": 0.9983 + }, + { + "start": 4403.4, + "end": 4404.26, + "probability": 0.8578 + }, + { + "start": 4404.84, + "end": 4406.74, + "probability": 0.9814 + }, + { + "start": 4407.64, + "end": 4411.68, + "probability": 0.9689 + }, + { + "start": 4412.5, + "end": 4413.6, + "probability": 0.9072 + }, + { + "start": 4414.1, + "end": 4414.38, + "probability": 0.6744 + }, + { + "start": 4414.72, + "end": 4416.26, + "probability": 0.7972 + }, + { + "start": 4416.58, + "end": 4419.16, + "probability": 0.8022 + }, + { + "start": 4419.4, + "end": 4423.18, + "probability": 0.7407 + }, + { + "start": 4423.36, + "end": 4424.51, + "probability": 0.9693 + }, + { + "start": 4424.96, + "end": 4425.82, + "probability": 0.8154 + }, + { + "start": 4425.9, + "end": 4425.9, + "probability": 0.5072 + }, + { + "start": 4425.9, + "end": 4426.02, + "probability": 0.497 + }, + { + "start": 4426.86, + "end": 4427.42, + "probability": 0.8196 + }, + { + "start": 4430.08, + "end": 4431.42, + "probability": 0.9695 + }, + { + "start": 4432.5, + "end": 4432.98, + "probability": 0.7814 + }, + { + "start": 4434.9, + "end": 4435.0, + "probability": 0.1745 + }, + { + "start": 4435.0, + "end": 4435.46, + "probability": 0.1897 + }, + { + "start": 4436.76, + "end": 4439.52, + "probability": 0.8808 + }, + { + "start": 4439.66, + "end": 4443.76, + "probability": 0.6107 + }, + { + "start": 4444.32, + "end": 4447.45, + "probability": 0.5003 + }, + { + "start": 4448.76, + "end": 4450.78, + "probability": 0.8079 + }, + { + "start": 4450.78, + "end": 4453.4, + "probability": 0.9728 + }, + { + "start": 4454.1, + "end": 4456.46, + "probability": 0.7303 + }, + { + "start": 4457.32, + "end": 4459.44, + "probability": 0.9623 + }, + { + "start": 4459.66, + "end": 4460.1, + "probability": 0.6483 + }, + { + "start": 4460.14, + "end": 4460.6, + "probability": 0.9493 + }, + { + "start": 4467.58, + "end": 4468.36, + "probability": 0.4317 + }, + { + "start": 4468.94, + "end": 4470.26, + "probability": 0.8197 + }, + { + "start": 4471.18, + "end": 4476.36, + "probability": 0.8422 + }, + { + "start": 4476.58, + "end": 4479.06, + "probability": 0.812 + }, + { + "start": 4479.06, + "end": 4482.58, + "probability": 0.7239 + }, + { + "start": 4483.54, + "end": 4486.96, + "probability": 0.8689 + }, + { + "start": 4487.64, + "end": 4489.8, + "probability": 0.5253 + }, + { + "start": 4491.0, + "end": 4492.3, + "probability": 0.7947 + }, + { + "start": 4494.6, + "end": 4495.32, + "probability": 0.5932 + }, + { + "start": 4495.92, + "end": 4497.4, + "probability": 0.8794 + }, + { + "start": 4498.7, + "end": 4500.76, + "probability": 0.8942 + }, + { + "start": 4501.28, + "end": 4501.58, + "probability": 0.3642 + }, + { + "start": 4502.16, + "end": 4503.72, + "probability": 0.5635 + }, + { + "start": 4505.4, + "end": 4507.74, + "probability": 0.4642 + }, + { + "start": 4508.1, + "end": 4508.6, + "probability": 0.8161 + }, + { + "start": 4509.14, + "end": 4511.46, + "probability": 0.9754 + }, + { + "start": 4512.78, + "end": 4514.06, + "probability": 0.568 + }, + { + "start": 4514.26, + "end": 4514.82, + "probability": 0.934 + }, + { + "start": 4515.88, + "end": 4516.18, + "probability": 0.5845 + }, + { + "start": 4517.48, + "end": 4519.36, + "probability": 0.8271 + }, + { + "start": 4519.86, + "end": 4520.2, + "probability": 0.7212 + }, + { + "start": 4521.62, + "end": 4524.26, + "probability": 0.9915 + }, + { + "start": 4527.2, + "end": 4529.06, + "probability": 0.9628 + }, + { + "start": 4529.44, + "end": 4530.52, + "probability": 0.9793 + }, + { + "start": 4531.12, + "end": 4533.2, + "probability": 0.926 + }, + { + "start": 4534.06, + "end": 4535.22, + "probability": 0.9646 + }, + { + "start": 4536.62, + "end": 4537.8, + "probability": 0.7598 + }, + { + "start": 4538.66, + "end": 4539.88, + "probability": 0.9818 + }, + { + "start": 4540.94, + "end": 4544.5, + "probability": 0.5856 + }, + { + "start": 4545.1, + "end": 4545.98, + "probability": 0.6873 + }, + { + "start": 4546.3, + "end": 4547.38, + "probability": 0.4788 + }, + { + "start": 4547.5, + "end": 4547.84, + "probability": 0.7209 + }, + { + "start": 4548.14, + "end": 4550.8, + "probability": 0.9639 + }, + { + "start": 4551.9, + "end": 4554.46, + "probability": 0.9974 + }, + { + "start": 4554.96, + "end": 4556.7, + "probability": 0.9824 + }, + { + "start": 4557.86, + "end": 4559.12, + "probability": 0.5574 + }, + { + "start": 4560.36, + "end": 4563.36, + "probability": 0.8554 + }, + { + "start": 4563.5, + "end": 4564.8, + "probability": 0.7111 + }, + { + "start": 4565.32, + "end": 4566.86, + "probability": 0.9451 + }, + { + "start": 4567.28, + "end": 4567.9, + "probability": 0.9628 + }, + { + "start": 4568.4, + "end": 4569.35, + "probability": 0.9703 + }, + { + "start": 4570.28, + "end": 4571.72, + "probability": 0.681 + }, + { + "start": 4572.52, + "end": 4572.94, + "probability": 0.4269 + }, + { + "start": 4574.1, + "end": 4574.62, + "probability": 0.5681 + }, + { + "start": 4574.86, + "end": 4575.39, + "probability": 0.9761 + }, + { + "start": 4577.58, + "end": 4578.46, + "probability": 0.848 + }, + { + "start": 4579.46, + "end": 4581.12, + "probability": 0.9606 + }, + { + "start": 4582.46, + "end": 4584.0, + "probability": 0.9379 + }, + { + "start": 4585.54, + "end": 4587.68, + "probability": 0.6748 + }, + { + "start": 4589.38, + "end": 4590.04, + "probability": 0.3791 + }, + { + "start": 4593.52, + "end": 4594.76, + "probability": 0.0354 + }, + { + "start": 4594.76, + "end": 4595.28, + "probability": 0.1429 + }, + { + "start": 4595.48, + "end": 4597.33, + "probability": 0.6317 + }, + { + "start": 4598.26, + "end": 4599.9, + "probability": 0.5693 + }, + { + "start": 4600.48, + "end": 4601.52, + "probability": 0.6094 + }, + { + "start": 4602.9, + "end": 4605.14, + "probability": 0.6655 + }, + { + "start": 4606.69, + "end": 4607.62, + "probability": 0.9504 + }, + { + "start": 4608.66, + "end": 4609.42, + "probability": 0.8934 + }, + { + "start": 4610.22, + "end": 4610.9, + "probability": 0.6106 + }, + { + "start": 4612.22, + "end": 4615.32, + "probability": 0.9208 + }, + { + "start": 4615.94, + "end": 4618.48, + "probability": 0.7866 + }, + { + "start": 4619.46, + "end": 4621.36, + "probability": 0.5953 + }, + { + "start": 4622.6, + "end": 4624.42, + "probability": 0.9852 + }, + { + "start": 4628.32, + "end": 4628.58, + "probability": 0.7092 + }, + { + "start": 4629.06, + "end": 4629.66, + "probability": 0.3133 + }, + { + "start": 4629.84, + "end": 4631.26, + "probability": 0.8741 + }, + { + "start": 4631.46, + "end": 4632.04, + "probability": 0.9674 + }, + { + "start": 4633.6, + "end": 4634.83, + "probability": 0.8879 + }, + { + "start": 4635.96, + "end": 4637.3, + "probability": 0.8286 + }, + { + "start": 4638.14, + "end": 4638.64, + "probability": 0.8621 + }, + { + "start": 4639.68, + "end": 4643.44, + "probability": 0.9951 + }, + { + "start": 4644.9, + "end": 4645.6, + "probability": 0.9399 + }, + { + "start": 4646.2, + "end": 4647.66, + "probability": 0.81 + }, + { + "start": 4649.88, + "end": 4651.36, + "probability": 0.8524 + }, + { + "start": 4651.68, + "end": 4652.7, + "probability": 0.9813 + }, + { + "start": 4652.92, + "end": 4653.1, + "probability": 0.63 + }, + { + "start": 4653.76, + "end": 4655.46, + "probability": 0.9315 + }, + { + "start": 4656.2, + "end": 4657.14, + "probability": 0.9526 + }, + { + "start": 4657.32, + "end": 4658.24, + "probability": 0.8804 + }, + { + "start": 4658.24, + "end": 4659.03, + "probability": 0.723 + }, + { + "start": 4659.62, + "end": 4660.42, + "probability": 0.9908 + }, + { + "start": 4661.16, + "end": 4662.98, + "probability": 0.5346 + }, + { + "start": 4665.1, + "end": 4667.06, + "probability": 0.7175 + }, + { + "start": 4668.6, + "end": 4672.36, + "probability": 0.8706 + }, + { + "start": 4672.52, + "end": 4674.42, + "probability": 0.3407 + }, + { + "start": 4675.9, + "end": 4677.54, + "probability": 0.918 + }, + { + "start": 4678.18, + "end": 4679.82, + "probability": 0.933 + }, + { + "start": 4681.36, + "end": 4682.64, + "probability": 0.7317 + }, + { + "start": 4683.7, + "end": 4685.94, + "probability": 0.8996 + }, + { + "start": 4686.52, + "end": 4687.58, + "probability": 0.9574 + }, + { + "start": 4688.18, + "end": 4690.84, + "probability": 0.8961 + }, + { + "start": 4692.74, + "end": 4693.32, + "probability": 0.9735 + }, + { + "start": 4694.24, + "end": 4701.42, + "probability": 0.6789 + }, + { + "start": 4703.02, + "end": 4704.11, + "probability": 0.8716 + }, + { + "start": 4705.9, + "end": 4707.36, + "probability": 0.6226 + }, + { + "start": 4709.2, + "end": 4712.43, + "probability": 0.9054 + }, + { + "start": 4713.88, + "end": 4714.08, + "probability": 0.6637 + }, + { + "start": 4714.78, + "end": 4717.71, + "probability": 0.7393 + }, + { + "start": 4718.54, + "end": 4721.74, + "probability": 0.9713 + }, + { + "start": 4722.88, + "end": 4724.94, + "probability": 0.6569 + }, + { + "start": 4726.1, + "end": 4728.22, + "probability": 0.7718 + }, + { + "start": 4728.8, + "end": 4729.72, + "probability": 0.9493 + }, + { + "start": 4732.3, + "end": 4735.58, + "probability": 0.9431 + }, + { + "start": 4736.1, + "end": 4736.48, + "probability": 0.7866 + }, + { + "start": 4738.44, + "end": 4742.58, + "probability": 0.9 + }, + { + "start": 4743.1, + "end": 4744.44, + "probability": 0.4654 + }, + { + "start": 4745.8, + "end": 4748.7, + "probability": 0.7652 + }, + { + "start": 4749.56, + "end": 4753.8, + "probability": 0.8772 + }, + { + "start": 4754.34, + "end": 4755.1, + "probability": 0.9009 + }, + { + "start": 4755.42, + "end": 4758.14, + "probability": 0.9363 + }, + { + "start": 4758.42, + "end": 4760.72, + "probability": 0.9449 + }, + { + "start": 4761.3, + "end": 4761.7, + "probability": 0.7798 + }, + { + "start": 4763.46, + "end": 4764.4, + "probability": 0.7314 + }, + { + "start": 4765.12, + "end": 4766.74, + "probability": 0.7837 + }, + { + "start": 4767.2, + "end": 4768.62, + "probability": 0.7817 + }, + { + "start": 4772.34, + "end": 4773.14, + "probability": 0.98 + }, + { + "start": 4774.24, + "end": 4774.96, + "probability": 0.7905 + }, + { + "start": 4775.9, + "end": 4776.72, + "probability": 0.9873 + }, + { + "start": 4778.74, + "end": 4779.74, + "probability": 0.9878 + }, + { + "start": 4780.92, + "end": 4784.42, + "probability": 0.5531 + }, + { + "start": 4785.48, + "end": 4787.12, + "probability": 0.379 + }, + { + "start": 4788.2, + "end": 4789.98, + "probability": 0.711 + }, + { + "start": 4790.32, + "end": 4791.34, + "probability": 0.9036 + }, + { + "start": 4791.52, + "end": 4793.08, + "probability": 0.918 + }, + { + "start": 4793.12, + "end": 4794.32, + "probability": 0.9128 + }, + { + "start": 4794.42, + "end": 4794.8, + "probability": 0.018 + }, + { + "start": 4796.12, + "end": 4801.24, + "probability": 0.7802 + }, + { + "start": 4801.76, + "end": 4802.6, + "probability": 0.6755 + }, + { + "start": 4802.94, + "end": 4805.5, + "probability": 0.9341 + }, + { + "start": 4805.88, + "end": 4808.32, + "probability": 0.5201 + }, + { + "start": 4808.34, + "end": 4809.26, + "probability": 0.7447 + }, + { + "start": 4810.04, + "end": 4813.58, + "probability": 0.6643 + }, + { + "start": 4813.84, + "end": 4813.84, + "probability": 0.301 + }, + { + "start": 4813.94, + "end": 4814.42, + "probability": 0.7726 + }, + { + "start": 4814.5, + "end": 4815.27, + "probability": 0.9722 + }, + { + "start": 4815.5, + "end": 4815.64, + "probability": 0.4168 + }, + { + "start": 4815.64, + "end": 4816.42, + "probability": 0.5591 + }, + { + "start": 4816.62, + "end": 4816.8, + "probability": 0.613 + }, + { + "start": 4816.84, + "end": 4817.18, + "probability": 0.1071 + }, + { + "start": 4817.18, + "end": 4817.53, + "probability": 0.7422 + }, + { + "start": 4817.8, + "end": 4820.9, + "probability": 0.625 + }, + { + "start": 4820.98, + "end": 4821.14, + "probability": 0.2389 + }, + { + "start": 4821.14, + "end": 4823.4, + "probability": 0.6785 + }, + { + "start": 4823.62, + "end": 4823.96, + "probability": 0.6778 + }, + { + "start": 4824.8, + "end": 4826.04, + "probability": 0.9321 + }, + { + "start": 4826.14, + "end": 4827.34, + "probability": 0.8291 + }, + { + "start": 4827.74, + "end": 4829.66, + "probability": 0.9899 + }, + { + "start": 4830.04, + "end": 4833.72, + "probability": 0.9152 + }, + { + "start": 4834.02, + "end": 4837.66, + "probability": 0.9277 + }, + { + "start": 4837.9, + "end": 4838.34, + "probability": 0.1137 + }, + { + "start": 4839.08, + "end": 4839.64, + "probability": 0.1141 + }, + { + "start": 4839.64, + "end": 4840.58, + "probability": 0.3289 + }, + { + "start": 4840.64, + "end": 4842.9, + "probability": 0.062 + }, + { + "start": 4843.42, + "end": 4844.0, + "probability": 0.0695 + }, + { + "start": 4845.15, + "end": 4846.06, + "probability": 0.349 + }, + { + "start": 4846.66, + "end": 4846.66, + "probability": 0.0979 + }, + { + "start": 4846.66, + "end": 4846.66, + "probability": 0.0422 + }, + { + "start": 4846.66, + "end": 4847.04, + "probability": 0.1711 + }, + { + "start": 4847.12, + "end": 4848.56, + "probability": 0.9363 + }, + { + "start": 4848.9, + "end": 4850.0, + "probability": 0.7954 + }, + { + "start": 4850.4, + "end": 4853.78, + "probability": 0.8374 + }, + { + "start": 4853.9, + "end": 4856.39, + "probability": 0.8638 + }, + { + "start": 4857.42, + "end": 4858.88, + "probability": 0.96 + }, + { + "start": 4861.02, + "end": 4861.04, + "probability": 0.2195 + }, + { + "start": 4861.04, + "end": 4861.74, + "probability": 0.1967 + }, + { + "start": 4862.3, + "end": 4862.78, + "probability": 0.3397 + }, + { + "start": 4863.06, + "end": 4866.58, + "probability": 0.3603 + }, + { + "start": 4866.78, + "end": 4870.24, + "probability": 0.762 + }, + { + "start": 4871.08, + "end": 4871.12, + "probability": 0.1966 + }, + { + "start": 4871.12, + "end": 4872.44, + "probability": 0.585 + }, + { + "start": 4872.72, + "end": 4873.44, + "probability": 0.9202 + }, + { + "start": 4874.37, + "end": 4876.41, + "probability": 0.9962 + }, + { + "start": 4877.86, + "end": 4881.64, + "probability": 0.7613 + }, + { + "start": 4884.84, + "end": 4884.84, + "probability": 0.8896 + }, + { + "start": 4885.5, + "end": 4887.84, + "probability": 0.893 + }, + { + "start": 4887.96, + "end": 4888.42, + "probability": 0.468 + }, + { + "start": 4888.66, + "end": 4889.2, + "probability": 0.6071 + }, + { + "start": 4889.38, + "end": 4890.74, + "probability": 0.84 + }, + { + "start": 4891.75, + "end": 4892.78, + "probability": 0.9044 + }, + { + "start": 4893.48, + "end": 4893.76, + "probability": 0.937 + }, + { + "start": 4895.14, + "end": 4896.23, + "probability": 0.9658 + }, + { + "start": 4897.98, + "end": 4901.42, + "probability": 0.6857 + }, + { + "start": 4903.6, + "end": 4904.32, + "probability": 0.8551 + }, + { + "start": 4905.27, + "end": 4913.1, + "probability": 0.7382 + }, + { + "start": 4915.0, + "end": 4916.12, + "probability": 0.8799 + }, + { + "start": 4917.72, + "end": 4926.4, + "probability": 0.6669 + }, + { + "start": 4927.32, + "end": 4930.34, + "probability": 0.825 + }, + { + "start": 4931.16, + "end": 4932.54, + "probability": 0.869 + }, + { + "start": 4933.74, + "end": 4936.08, + "probability": 0.1134 + }, + { + "start": 4936.44, + "end": 4937.2, + "probability": 0.8982 + }, + { + "start": 4937.32, + "end": 4937.42, + "probability": 0.8903 + }, + { + "start": 4937.76, + "end": 4939.96, + "probability": 0.9144 + }, + { + "start": 4940.38, + "end": 4941.78, + "probability": 0.8782 + }, + { + "start": 4943.12, + "end": 4945.24, + "probability": 0.7002 + }, + { + "start": 4947.4, + "end": 4952.0, + "probability": 0.1338 + }, + { + "start": 4955.3, + "end": 4955.5, + "probability": 0.1245 + }, + { + "start": 4956.3, + "end": 4958.46, + "probability": 0.7388 + }, + { + "start": 4958.96, + "end": 4960.44, + "probability": 0.9463 + }, + { + "start": 4960.82, + "end": 4963.02, + "probability": 0.9897 + }, + { + "start": 4963.78, + "end": 4964.06, + "probability": 0.8768 + }, + { + "start": 4964.76, + "end": 4966.3, + "probability": 0.9583 + }, + { + "start": 4967.56, + "end": 4968.26, + "probability": 0.8816 + }, + { + "start": 4969.4, + "end": 4969.6, + "probability": 0.9653 + }, + { + "start": 4970.5, + "end": 4971.62, + "probability": 0.7375 + }, + { + "start": 4972.48, + "end": 4974.65, + "probability": 0.9471 + }, + { + "start": 4974.88, + "end": 4975.28, + "probability": 0.7933 + }, + { + "start": 4975.7, + "end": 4977.22, + "probability": 0.9541 + }, + { + "start": 4977.36, + "end": 4979.5, + "probability": 0.8792 + }, + { + "start": 4988.5, + "end": 4989.14, + "probability": 0.4014 + }, + { + "start": 4989.14, + "end": 4989.78, + "probability": 0.7175 + }, + { + "start": 4989.78, + "end": 4992.04, + "probability": 0.2712 + }, + { + "start": 5005.02, + "end": 5006.08, + "probability": 0.4862 + }, + { + "start": 5006.4, + "end": 5007.89, + "probability": 0.509 + }, + { + "start": 5008.02, + "end": 5008.7, + "probability": 0.8358 + }, + { + "start": 5008.7, + "end": 5008.7, + "probability": 0.6083 + }, + { + "start": 5008.78, + "end": 5009.54, + "probability": 0.7293 + }, + { + "start": 5010.88, + "end": 5012.72, + "probability": 0.9014 + }, + { + "start": 5014.36, + "end": 5016.88, + "probability": 0.6595 + }, + { + "start": 5016.88, + "end": 5017.36, + "probability": 0.6055 + }, + { + "start": 5017.84, + "end": 5020.66, + "probability": 0.6341 + }, + { + "start": 5022.78, + "end": 5023.8, + "probability": 0.8847 + }, + { + "start": 5024.14, + "end": 5024.74, + "probability": 0.8874 + }, + { + "start": 5032.28, + "end": 5033.9, + "probability": 0.6862 + }, + { + "start": 5036.06, + "end": 5037.06, + "probability": 0.7716 + }, + { + "start": 5037.22, + "end": 5038.38, + "probability": 0.7846 + }, + { + "start": 5038.48, + "end": 5038.74, + "probability": 0.5287 + }, + { + "start": 5038.88, + "end": 5040.22, + "probability": 0.8756 + }, + { + "start": 5040.22, + "end": 5042.22, + "probability": 0.9351 + }, + { + "start": 5042.56, + "end": 5045.76, + "probability": 0.8951 + }, + { + "start": 5046.2, + "end": 5047.7, + "probability": 0.9166 + }, + { + "start": 5049.12, + "end": 5050.28, + "probability": 0.9227 + }, + { + "start": 5050.96, + "end": 5052.9, + "probability": 0.9211 + }, + { + "start": 5054.0, + "end": 5054.94, + "probability": 0.9541 + }, + { + "start": 5055.9, + "end": 5058.3, + "probability": 0.9711 + }, + { + "start": 5059.62, + "end": 5060.58, + "probability": 0.7869 + }, + { + "start": 5061.1, + "end": 5064.84, + "probability": 0.9116 + }, + { + "start": 5065.98, + "end": 5068.72, + "probability": 0.8853 + }, + { + "start": 5069.3, + "end": 5069.78, + "probability": 0.6583 + }, + { + "start": 5070.98, + "end": 5073.28, + "probability": 0.9373 + }, + { + "start": 5074.36, + "end": 5076.98, + "probability": 0.9913 + }, + { + "start": 5078.9, + "end": 5083.72, + "probability": 0.9791 + }, + { + "start": 5085.04, + "end": 5086.78, + "probability": 0.8516 + }, + { + "start": 5087.5, + "end": 5088.2, + "probability": 0.9565 + }, + { + "start": 5088.98, + "end": 5089.52, + "probability": 0.5629 + }, + { + "start": 5090.08, + "end": 5091.18, + "probability": 0.9888 + }, + { + "start": 5091.28, + "end": 5094.8, + "probability": 0.9735 + }, + { + "start": 5095.6, + "end": 5098.5, + "probability": 0.9255 + }, + { + "start": 5099.92, + "end": 5100.72, + "probability": 0.5122 + }, + { + "start": 5100.86, + "end": 5102.24, + "probability": 0.9481 + }, + { + "start": 5102.3, + "end": 5104.8, + "probability": 0.9924 + }, + { + "start": 5104.98, + "end": 5107.4, + "probability": 0.9634 + }, + { + "start": 5107.44, + "end": 5109.14, + "probability": 0.9739 + }, + { + "start": 5110.26, + "end": 5112.3, + "probability": 0.97 + }, + { + "start": 5113.84, + "end": 5114.76, + "probability": 0.9824 + }, + { + "start": 5115.52, + "end": 5119.18, + "probability": 0.9916 + }, + { + "start": 5119.84, + "end": 5123.02, + "probability": 0.9235 + }, + { + "start": 5123.72, + "end": 5125.52, + "probability": 0.9119 + }, + { + "start": 5127.08, + "end": 5128.44, + "probability": 0.8138 + }, + { + "start": 5129.32, + "end": 5133.44, + "probability": 0.9754 + }, + { + "start": 5133.8, + "end": 5135.7, + "probability": 0.8647 + }, + { + "start": 5136.14, + "end": 5139.08, + "probability": 0.6821 + }, + { + "start": 5140.2, + "end": 5140.2, + "probability": 0.0089 + }, + { + "start": 5140.2, + "end": 5141.44, + "probability": 0.8291 + }, + { + "start": 5141.54, + "end": 5143.06, + "probability": 0.9829 + }, + { + "start": 5144.02, + "end": 5145.34, + "probability": 0.9362 + }, + { + "start": 5145.52, + "end": 5146.7, + "probability": 0.9663 + }, + { + "start": 5146.98, + "end": 5147.78, + "probability": 0.7902 + }, + { + "start": 5147.86, + "end": 5150.4, + "probability": 0.9941 + }, + { + "start": 5150.44, + "end": 5151.04, + "probability": 0.1425 + }, + { + "start": 5152.66, + "end": 5154.32, + "probability": 0.9844 + }, + { + "start": 5154.56, + "end": 5156.88, + "probability": 0.9854 + }, + { + "start": 5157.38, + "end": 5159.76, + "probability": 0.9554 + }, + { + "start": 5159.84, + "end": 5160.54, + "probability": 0.9319 + }, + { + "start": 5160.6, + "end": 5164.66, + "probability": 0.9717 + }, + { + "start": 5165.04, + "end": 5165.63, + "probability": 0.6859 + }, + { + "start": 5166.32, + "end": 5167.4, + "probability": 0.8826 + }, + { + "start": 5167.58, + "end": 5167.78, + "probability": 0.4279 + }, + { + "start": 5167.9, + "end": 5168.72, + "probability": 0.9312 + }, + { + "start": 5168.84, + "end": 5169.84, + "probability": 0.6616 + }, + { + "start": 5170.48, + "end": 5172.62, + "probability": 0.9686 + }, + { + "start": 5174.46, + "end": 5179.18, + "probability": 0.9003 + }, + { + "start": 5179.34, + "end": 5182.6, + "probability": 0.983 + }, + { + "start": 5183.08, + "end": 5183.62, + "probability": 0.8437 + }, + { + "start": 5184.32, + "end": 5187.22, + "probability": 0.999 + }, + { + "start": 5187.72, + "end": 5188.02, + "probability": 0.915 + }, + { + "start": 5188.18, + "end": 5189.04, + "probability": 0.7667 + }, + { + "start": 5189.64, + "end": 5191.64, + "probability": 0.9233 + }, + { + "start": 5192.72, + "end": 5196.02, + "probability": 0.7977 + }, + { + "start": 5196.72, + "end": 5197.94, + "probability": 0.6244 + }, + { + "start": 5198.7, + "end": 5200.0, + "probability": 0.9915 + }, + { + "start": 5200.06, + "end": 5201.36, + "probability": 0.9945 + }, + { + "start": 5202.26, + "end": 5202.78, + "probability": 0.7359 + }, + { + "start": 5202.96, + "end": 5203.82, + "probability": 0.9519 + }, + { + "start": 5203.88, + "end": 5204.52, + "probability": 0.8842 + }, + { + "start": 5204.66, + "end": 5205.96, + "probability": 0.9517 + }, + { + "start": 5206.08, + "end": 5207.16, + "probability": 0.7694 + }, + { + "start": 5207.3, + "end": 5208.6, + "probability": 0.5701 + }, + { + "start": 5208.64, + "end": 5212.2, + "probability": 0.9811 + }, + { + "start": 5213.12, + "end": 5215.42, + "probability": 0.9797 + }, + { + "start": 5215.78, + "end": 5216.62, + "probability": 0.9048 + }, + { + "start": 5217.0, + "end": 5217.43, + "probability": 0.9922 + }, + { + "start": 5217.68, + "end": 5218.52, + "probability": 0.9654 + }, + { + "start": 5219.12, + "end": 5221.82, + "probability": 0.9893 + }, + { + "start": 5222.66, + "end": 5224.76, + "probability": 0.9699 + }, + { + "start": 5225.62, + "end": 5227.96, + "probability": 0.9821 + }, + { + "start": 5228.88, + "end": 5229.9, + "probability": 0.9943 + }, + { + "start": 5230.42, + "end": 5231.36, + "probability": 0.9641 + }, + { + "start": 5232.46, + "end": 5234.3, + "probability": 0.7994 + }, + { + "start": 5234.38, + "end": 5235.74, + "probability": 0.978 + }, + { + "start": 5235.82, + "end": 5237.06, + "probability": 0.892 + }, + { + "start": 5237.92, + "end": 5240.4, + "probability": 0.9867 + }, + { + "start": 5240.48, + "end": 5241.6, + "probability": 0.9864 + }, + { + "start": 5241.72, + "end": 5242.77, + "probability": 0.9518 + }, + { + "start": 5242.94, + "end": 5244.9, + "probability": 0.9871 + }, + { + "start": 5245.6, + "end": 5246.18, + "probability": 0.6219 + }, + { + "start": 5248.1, + "end": 5250.6, + "probability": 0.9393 + }, + { + "start": 5251.48, + "end": 5252.4, + "probability": 0.9365 + }, + { + "start": 5253.48, + "end": 5256.32, + "probability": 0.9447 + }, + { + "start": 5256.86, + "end": 5259.82, + "probability": 0.9943 + }, + { + "start": 5260.46, + "end": 5262.74, + "probability": 0.8597 + }, + { + "start": 5263.34, + "end": 5266.2, + "probability": 0.8658 + }, + { + "start": 5266.92, + "end": 5270.68, + "probability": 0.8415 + }, + { + "start": 5271.54, + "end": 5274.58, + "probability": 0.8229 + }, + { + "start": 5275.26, + "end": 5277.73, + "probability": 0.6858 + }, + { + "start": 5278.7, + "end": 5280.22, + "probability": 0.8839 + }, + { + "start": 5280.8, + "end": 5281.12, + "probability": 0.8049 + }, + { + "start": 5281.68, + "end": 5283.32, + "probability": 0.9919 + }, + { + "start": 5284.08, + "end": 5287.12, + "probability": 0.9878 + }, + { + "start": 5288.12, + "end": 5290.72, + "probability": 0.998 + }, + { + "start": 5291.56, + "end": 5292.2, + "probability": 0.7552 + }, + { + "start": 5293.48, + "end": 5294.56, + "probability": 0.7972 + }, + { + "start": 5294.7, + "end": 5296.18, + "probability": 0.9021 + }, + { + "start": 5297.14, + "end": 5300.08, + "probability": 0.9991 + }, + { + "start": 5300.74, + "end": 5304.32, + "probability": 0.9607 + }, + { + "start": 5305.46, + "end": 5306.4, + "probability": 0.603 + }, + { + "start": 5307.08, + "end": 5307.9, + "probability": 0.5397 + }, + { + "start": 5308.74, + "end": 5310.72, + "probability": 0.7843 + }, + { + "start": 5311.7, + "end": 5313.08, + "probability": 0.9336 + }, + { + "start": 5313.6, + "end": 5315.3, + "probability": 0.9742 + }, + { + "start": 5315.88, + "end": 5317.6, + "probability": 0.8116 + }, + { + "start": 5319.3, + "end": 5321.38, + "probability": 0.4977 + }, + { + "start": 5321.58, + "end": 5323.86, + "probability": 0.9778 + }, + { + "start": 5324.56, + "end": 5327.18, + "probability": 0.9261 + }, + { + "start": 5327.74, + "end": 5330.02, + "probability": 0.9583 + }, + { + "start": 5330.1, + "end": 5330.84, + "probability": 0.8008 + }, + { + "start": 5330.88, + "end": 5333.12, + "probability": 0.967 + }, + { + "start": 5333.72, + "end": 5335.64, + "probability": 0.7998 + }, + { + "start": 5335.72, + "end": 5337.24, + "probability": 0.7034 + }, + { + "start": 5337.42, + "end": 5339.78, + "probability": 0.8918 + }, + { + "start": 5339.92, + "end": 5340.8, + "probability": 0.9684 + }, + { + "start": 5341.54, + "end": 5345.62, + "probability": 0.9943 + }, + { + "start": 5345.86, + "end": 5347.7, + "probability": 0.6649 + }, + { + "start": 5348.66, + "end": 5351.16, + "probability": 0.8684 + }, + { + "start": 5351.78, + "end": 5354.14, + "probability": 0.7958 + }, + { + "start": 5354.5, + "end": 5355.98, + "probability": 0.8295 + }, + { + "start": 5357.0, + "end": 5360.06, + "probability": 0.9868 + }, + { + "start": 5360.28, + "end": 5362.58, + "probability": 0.6837 + }, + { + "start": 5362.76, + "end": 5364.64, + "probability": 0.0785 + }, + { + "start": 5366.14, + "end": 5366.92, + "probability": 0.914 + }, + { + "start": 5367.1, + "end": 5367.56, + "probability": 0.8529 + }, + { + "start": 5367.68, + "end": 5370.24, + "probability": 0.9917 + }, + { + "start": 5370.46, + "end": 5370.98, + "probability": 0.7522 + }, + { + "start": 5372.28, + "end": 5380.58, + "probability": 0.9744 + }, + { + "start": 5380.77, + "end": 5386.08, + "probability": 0.9903 + }, + { + "start": 5386.94, + "end": 5388.2, + "probability": 0.855 + }, + { + "start": 5389.08, + "end": 5390.79, + "probability": 0.9832 + }, + { + "start": 5391.76, + "end": 5394.04, + "probability": 0.9547 + }, + { + "start": 5394.2, + "end": 5395.32, + "probability": 0.6408 + }, + { + "start": 5395.76, + "end": 5396.61, + "probability": 0.9941 + }, + { + "start": 5397.72, + "end": 5398.74, + "probability": 0.823 + }, + { + "start": 5400.14, + "end": 5400.56, + "probability": 0.9343 + }, + { + "start": 5401.64, + "end": 5403.48, + "probability": 0.984 + }, + { + "start": 5404.96, + "end": 5407.32, + "probability": 0.9852 + }, + { + "start": 5408.14, + "end": 5410.88, + "probability": 0.9841 + }, + { + "start": 5411.62, + "end": 5413.54, + "probability": 0.9573 + }, + { + "start": 5414.4, + "end": 5417.06, + "probability": 0.9189 + }, + { + "start": 5417.44, + "end": 5418.34, + "probability": 0.8181 + }, + { + "start": 5418.98, + "end": 5420.28, + "probability": 0.9985 + }, + { + "start": 5421.32, + "end": 5423.1, + "probability": 0.947 + }, + { + "start": 5423.32, + "end": 5424.1, + "probability": 0.9897 + }, + { + "start": 5425.26, + "end": 5427.76, + "probability": 0.9974 + }, + { + "start": 5428.06, + "end": 5430.82, + "probability": 0.9788 + }, + { + "start": 5431.66, + "end": 5434.08, + "probability": 0.9711 + }, + { + "start": 5434.3, + "end": 5435.22, + "probability": 0.7717 + }, + { + "start": 5436.4, + "end": 5439.98, + "probability": 0.9921 + }, + { + "start": 5440.18, + "end": 5441.38, + "probability": 0.9521 + }, + { + "start": 5441.94, + "end": 5445.32, + "probability": 0.9702 + }, + { + "start": 5446.08, + "end": 5447.9, + "probability": 0.9188 + }, + { + "start": 5448.54, + "end": 5449.24, + "probability": 0.9781 + }, + { + "start": 5449.3, + "end": 5452.28, + "probability": 0.7224 + }, + { + "start": 5453.66, + "end": 5454.7, + "probability": 0.9364 + }, + { + "start": 5455.69, + "end": 5456.12, + "probability": 0.8454 + }, + { + "start": 5456.98, + "end": 5460.18, + "probability": 0.7195 + }, + { + "start": 5461.15, + "end": 5461.74, + "probability": 0.7212 + }, + { + "start": 5463.06, + "end": 5464.32, + "probability": 0.9486 + }, + { + "start": 5465.14, + "end": 5465.74, + "probability": 0.9166 + }, + { + "start": 5466.44, + "end": 5467.14, + "probability": 0.9835 + }, + { + "start": 5467.66, + "end": 5468.96, + "probability": 0.9573 + }, + { + "start": 5469.66, + "end": 5470.96, + "probability": 0.9284 + }, + { + "start": 5471.48, + "end": 5473.54, + "probability": 0.1846 + }, + { + "start": 5473.86, + "end": 5477.66, + "probability": 0.399 + }, + { + "start": 5477.72, + "end": 5478.38, + "probability": 0.8384 + }, + { + "start": 5478.52, + "end": 5478.8, + "probability": 0.6618 + }, + { + "start": 5479.58, + "end": 5484.54, + "probability": 0.9986 + }, + { + "start": 5484.6, + "end": 5485.76, + "probability": 0.942 + }, + { + "start": 5486.62, + "end": 5488.62, + "probability": 0.7008 + }, + { + "start": 5488.7, + "end": 5491.52, + "probability": 0.8935 + }, + { + "start": 5491.94, + "end": 5492.86, + "probability": 0.8446 + }, + { + "start": 5493.34, + "end": 5496.24, + "probability": 0.9541 + }, + { + "start": 5496.28, + "end": 5500.2, + "probability": 0.9047 + }, + { + "start": 5500.2, + "end": 5503.52, + "probability": 0.9977 + }, + { + "start": 5503.92, + "end": 5505.28, + "probability": 0.9979 + }, + { + "start": 5505.82, + "end": 5507.46, + "probability": 0.917 + }, + { + "start": 5507.54, + "end": 5510.1, + "probability": 0.996 + }, + { + "start": 5510.28, + "end": 5510.79, + "probability": 0.6981 + }, + { + "start": 5511.44, + "end": 5513.18, + "probability": 0.8775 + }, + { + "start": 5515.1, + "end": 5518.82, + "probability": 0.9586 + }, + { + "start": 5518.98, + "end": 5519.5, + "probability": 0.8742 + }, + { + "start": 5519.62, + "end": 5520.62, + "probability": 0.8646 + }, + { + "start": 5521.38, + "end": 5523.74, + "probability": 0.9882 + }, + { + "start": 5523.84, + "end": 5524.46, + "probability": 0.7911 + }, + { + "start": 5524.64, + "end": 5525.66, + "probability": 0.5983 + }, + { + "start": 5526.12, + "end": 5527.34, + "probability": 0.9154 + }, + { + "start": 5527.54, + "end": 5528.32, + "probability": 0.8308 + }, + { + "start": 5528.42, + "end": 5532.21, + "probability": 0.8744 + }, + { + "start": 5533.22, + "end": 5534.04, + "probability": 0.8196 + }, + { + "start": 5534.7, + "end": 5535.52, + "probability": 0.6024 + }, + { + "start": 5536.12, + "end": 5537.07, + "probability": 0.7894 + }, + { + "start": 5537.68, + "end": 5538.82, + "probability": 0.972 + }, + { + "start": 5539.26, + "end": 5542.14, + "probability": 0.9749 + }, + { + "start": 5543.82, + "end": 5544.54, + "probability": 0.3898 + }, + { + "start": 5545.86, + "end": 5548.18, + "probability": 0.8658 + }, + { + "start": 5548.7, + "end": 5550.3, + "probability": 0.9492 + }, + { + "start": 5550.86, + "end": 5551.58, + "probability": 0.9778 + }, + { + "start": 5552.2, + "end": 5552.64, + "probability": 0.7624 + }, + { + "start": 5552.66, + "end": 5553.38, + "probability": 0.8878 + }, + { + "start": 5553.52, + "end": 5554.34, + "probability": 0.9719 + }, + { + "start": 5554.68, + "end": 5555.33, + "probability": 0.9824 + }, + { + "start": 5556.18, + "end": 5556.96, + "probability": 0.6116 + }, + { + "start": 5557.54, + "end": 5559.62, + "probability": 0.8358 + }, + { + "start": 5560.24, + "end": 5560.96, + "probability": 0.9519 + }, + { + "start": 5561.78, + "end": 5564.92, + "probability": 0.9177 + }, + { + "start": 5565.94, + "end": 5567.66, + "probability": 0.8209 + }, + { + "start": 5568.58, + "end": 5569.86, + "probability": 0.999 + }, + { + "start": 5570.32, + "end": 5570.98, + "probability": 0.8995 + }, + { + "start": 5571.32, + "end": 5573.52, + "probability": 0.8223 + }, + { + "start": 5574.74, + "end": 5576.88, + "probability": 0.4458 + }, + { + "start": 5576.88, + "end": 5577.54, + "probability": 0.3348 + }, + { + "start": 5579.38, + "end": 5585.02, + "probability": 0.7353 + }, + { + "start": 5585.02, + "end": 5587.48, + "probability": 0.7432 + }, + { + "start": 5589.44, + "end": 5591.4, + "probability": 0.0315 + }, + { + "start": 5591.4, + "end": 5591.4, + "probability": 0.0791 + }, + { + "start": 5591.4, + "end": 5592.98, + "probability": 0.0417 + }, + { + "start": 5592.98, + "end": 5596.86, + "probability": 0.2082 + }, + { + "start": 5597.12, + "end": 5599.16, + "probability": 0.8374 + }, + { + "start": 5599.74, + "end": 5600.1, + "probability": 0.3816 + }, + { + "start": 5600.12, + "end": 5600.54, + "probability": 0.8014 + }, + { + "start": 5608.78, + "end": 5611.7, + "probability": 0.0056 + }, + { + "start": 5615.36, + "end": 5616.78, + "probability": 0.9617 + }, + { + "start": 5619.56, + "end": 5620.2, + "probability": 0.7217 + }, + { + "start": 5620.88, + "end": 5622.9, + "probability": 0.7072 + }, + { + "start": 5623.46, + "end": 5624.64, + "probability": 0.6626 + }, + { + "start": 5626.96, + "end": 5628.44, + "probability": 0.8281 + }, + { + "start": 5628.98, + "end": 5629.18, + "probability": 0.9549 + }, + { + "start": 5630.5, + "end": 5631.02, + "probability": 0.4295 + }, + { + "start": 5631.24, + "end": 5631.76, + "probability": 0.6585 + }, + { + "start": 5632.02, + "end": 5634.34, + "probability": 0.453 + }, + { + "start": 5634.46, + "end": 5635.48, + "probability": 0.5104 + }, + { + "start": 5638.2, + "end": 5638.68, + "probability": 0.2852 + }, + { + "start": 5638.98, + "end": 5641.8, + "probability": 0.6956 + }, + { + "start": 5644.84, + "end": 5648.38, + "probability": 0.917 + }, + { + "start": 5649.04, + "end": 5651.32, + "probability": 0.9532 + }, + { + "start": 5652.64, + "end": 5652.8, + "probability": 0.521 + }, + { + "start": 5653.7, + "end": 5653.9, + "probability": 0.8291 + }, + { + "start": 5655.12, + "end": 5657.26, + "probability": 0.9966 + }, + { + "start": 5657.86, + "end": 5660.04, + "probability": 0.8877 + }, + { + "start": 5660.84, + "end": 5663.84, + "probability": 0.9529 + }, + { + "start": 5665.08, + "end": 5668.16, + "probability": 0.9946 + }, + { + "start": 5669.42, + "end": 5670.84, + "probability": 0.7959 + }, + { + "start": 5671.16, + "end": 5673.18, + "probability": 0.9976 + }, + { + "start": 5674.08, + "end": 5677.2, + "probability": 0.819 + }, + { + "start": 5678.16, + "end": 5680.56, + "probability": 0.8513 + }, + { + "start": 5680.84, + "end": 5684.68, + "probability": 0.9603 + }, + { + "start": 5685.44, + "end": 5687.45, + "probability": 0.9985 + }, + { + "start": 5688.82, + "end": 5691.62, + "probability": 0.9448 + }, + { + "start": 5692.36, + "end": 5694.76, + "probability": 0.8225 + }, + { + "start": 5695.34, + "end": 5697.58, + "probability": 0.956 + }, + { + "start": 5699.34, + "end": 5704.02, + "probability": 0.9956 + }, + { + "start": 5706.22, + "end": 5708.14, + "probability": 0.6327 + }, + { + "start": 5708.7, + "end": 5712.42, + "probability": 0.9868 + }, + { + "start": 5712.98, + "end": 5714.26, + "probability": 0.9922 + }, + { + "start": 5715.24, + "end": 5717.29, + "probability": 0.9978 + }, + { + "start": 5718.46, + "end": 5720.46, + "probability": 0.9972 + }, + { + "start": 5720.46, + "end": 5723.7, + "probability": 0.9816 + }, + { + "start": 5724.34, + "end": 5725.44, + "probability": 0.6725 + }, + { + "start": 5726.6, + "end": 5727.7, + "probability": 0.8662 + }, + { + "start": 5729.12, + "end": 5730.24, + "probability": 0.951 + }, + { + "start": 5731.66, + "end": 5734.56, + "probability": 0.9451 + }, + { + "start": 5735.02, + "end": 5736.26, + "probability": 0.9913 + }, + { + "start": 5736.98, + "end": 5740.44, + "probability": 0.9617 + }, + { + "start": 5741.92, + "end": 5743.44, + "probability": 0.9884 + }, + { + "start": 5744.02, + "end": 5748.44, + "probability": 0.9878 + }, + { + "start": 5749.46, + "end": 5750.56, + "probability": 0.8948 + }, + { + "start": 5750.78, + "end": 5751.74, + "probability": 0.5499 + }, + { + "start": 5752.04, + "end": 5754.82, + "probability": 0.9621 + }, + { + "start": 5756.08, + "end": 5761.22, + "probability": 0.9919 + }, + { + "start": 5762.2, + "end": 5764.34, + "probability": 0.6356 + }, + { + "start": 5766.06, + "end": 5768.54, + "probability": 0.9988 + }, + { + "start": 5769.24, + "end": 5772.98, + "probability": 0.9995 + }, + { + "start": 5773.54, + "end": 5774.62, + "probability": 0.8023 + }, + { + "start": 5774.96, + "end": 5778.36, + "probability": 0.9944 + }, + { + "start": 5778.36, + "end": 5783.6, + "probability": 0.9994 + }, + { + "start": 5784.08, + "end": 5788.68, + "probability": 0.9531 + }, + { + "start": 5789.22, + "end": 5789.92, + "probability": 0.8864 + }, + { + "start": 5791.3, + "end": 5793.86, + "probability": 0.9951 + }, + { + "start": 5794.42, + "end": 5797.42, + "probability": 0.8983 + }, + { + "start": 5798.24, + "end": 5799.82, + "probability": 0.8526 + }, + { + "start": 5800.16, + "end": 5803.72, + "probability": 0.9851 + }, + { + "start": 5804.26, + "end": 5805.88, + "probability": 0.9807 + }, + { + "start": 5806.48, + "end": 5808.76, + "probability": 0.9992 + }, + { + "start": 5809.52, + "end": 5810.38, + "probability": 0.9997 + }, + { + "start": 5810.92, + "end": 5813.16, + "probability": 0.9951 + }, + { + "start": 5814.0, + "end": 5817.12, + "probability": 0.9951 + }, + { + "start": 5817.68, + "end": 5820.24, + "probability": 0.6536 + }, + { + "start": 5820.76, + "end": 5823.34, + "probability": 0.9102 + }, + { + "start": 5823.44, + "end": 5824.04, + "probability": 0.7481 + }, + { + "start": 5824.42, + "end": 5825.66, + "probability": 0.9419 + }, + { + "start": 5826.1, + "end": 5826.92, + "probability": 0.8818 + }, + { + "start": 5827.6, + "end": 5829.94, + "probability": 0.9946 + }, + { + "start": 5830.0, + "end": 5830.4, + "probability": 0.839 + }, + { + "start": 5830.5, + "end": 5831.54, + "probability": 0.4857 + }, + { + "start": 5832.92, + "end": 5838.82, + "probability": 0.8713 + }, + { + "start": 5839.2, + "end": 5842.28, + "probability": 0.998 + }, + { + "start": 5843.28, + "end": 5846.22, + "probability": 0.7843 + }, + { + "start": 5846.74, + "end": 5848.38, + "probability": 0.998 + }, + { + "start": 5850.62, + "end": 5851.93, + "probability": 0.9507 + }, + { + "start": 5852.54, + "end": 5854.4, + "probability": 0.9932 + }, + { + "start": 5854.66, + "end": 5860.18, + "probability": 0.9842 + }, + { + "start": 5861.38, + "end": 5865.44, + "probability": 0.9854 + }, + { + "start": 5865.78, + "end": 5867.08, + "probability": 0.9852 + }, + { + "start": 5867.36, + "end": 5867.9, + "probability": 0.9749 + }, + { + "start": 5869.62, + "end": 5871.48, + "probability": 0.9224 + }, + { + "start": 5872.14, + "end": 5873.3, + "probability": 0.8916 + }, + { + "start": 5874.66, + "end": 5875.8, + "probability": 0.9762 + }, + { + "start": 5876.52, + "end": 5880.08, + "probability": 0.9623 + }, + { + "start": 5880.58, + "end": 5883.14, + "probability": 0.9983 + }, + { + "start": 5884.0, + "end": 5887.9, + "probability": 0.9927 + }, + { + "start": 5888.62, + "end": 5889.62, + "probability": 0.9595 + }, + { + "start": 5893.96, + "end": 5894.36, + "probability": 0.9197 + }, + { + "start": 5894.5, + "end": 5895.66, + "probability": 0.9815 + }, + { + "start": 5895.92, + "end": 5897.0, + "probability": 0.988 + }, + { + "start": 5897.72, + "end": 5899.6, + "probability": 0.885 + }, + { + "start": 5900.42, + "end": 5903.72, + "probability": 0.9961 + }, + { + "start": 5903.72, + "end": 5906.74, + "probability": 0.9984 + }, + { + "start": 5907.84, + "end": 5910.0, + "probability": 0.9963 + }, + { + "start": 5910.68, + "end": 5912.74, + "probability": 0.9918 + }, + { + "start": 5913.72, + "end": 5916.59, + "probability": 0.9104 + }, + { + "start": 5918.12, + "end": 5919.48, + "probability": 0.9466 + }, + { + "start": 5921.34, + "end": 5922.58, + "probability": 0.9847 + }, + { + "start": 5923.64, + "end": 5925.8, + "probability": 0.9557 + }, + { + "start": 5927.04, + "end": 5927.86, + "probability": 0.9818 + }, + { + "start": 5929.18, + "end": 5935.42, + "probability": 0.9922 + }, + { + "start": 5936.36, + "end": 5938.76, + "probability": 0.9531 + }, + { + "start": 5939.36, + "end": 5942.44, + "probability": 0.9967 + }, + { + "start": 5942.44, + "end": 5944.8, + "probability": 0.9715 + }, + { + "start": 5947.62, + "end": 5950.78, + "probability": 0.9793 + }, + { + "start": 5951.48, + "end": 5953.18, + "probability": 0.9953 + }, + { + "start": 5953.96, + "end": 5958.1, + "probability": 0.9612 + }, + { + "start": 5959.42, + "end": 5964.14, + "probability": 0.8746 + }, + { + "start": 5965.02, + "end": 5966.5, + "probability": 0.9814 + }, + { + "start": 5967.38, + "end": 5968.84, + "probability": 0.9883 + }, + { + "start": 5970.55, + "end": 5972.44, + "probability": 0.4318 + }, + { + "start": 5973.04, + "end": 5977.94, + "probability": 0.9917 + }, + { + "start": 5977.94, + "end": 5982.16, + "probability": 0.9962 + }, + { + "start": 5982.9, + "end": 5984.2, + "probability": 0.8152 + }, + { + "start": 5984.58, + "end": 5985.62, + "probability": 0.7261 + }, + { + "start": 5985.66, + "end": 5987.72, + "probability": 0.9723 + }, + { + "start": 5988.22, + "end": 5990.38, + "probability": 0.9855 + }, + { + "start": 5990.68, + "end": 5993.41, + "probability": 0.981 + }, + { + "start": 5994.62, + "end": 5995.6, + "probability": 0.7639 + }, + { + "start": 5995.78, + "end": 6002.28, + "probability": 0.994 + }, + { + "start": 6003.02, + "end": 6006.24, + "probability": 0.6369 + }, + { + "start": 6007.8, + "end": 6012.32, + "probability": 0.9973 + }, + { + "start": 6013.08, + "end": 6015.26, + "probability": 0.9937 + }, + { + "start": 6015.58, + "end": 6016.18, + "probability": 0.8073 + }, + { + "start": 6017.42, + "end": 6021.06, + "probability": 0.9976 + }, + { + "start": 6021.68, + "end": 6022.56, + "probability": 0.8887 + }, + { + "start": 6023.12, + "end": 6024.18, + "probability": 0.9561 + }, + { + "start": 6024.82, + "end": 6026.26, + "probability": 0.9979 + }, + { + "start": 6027.38, + "end": 6029.16, + "probability": 0.9578 + }, + { + "start": 6030.02, + "end": 6033.6, + "probability": 0.9883 + }, + { + "start": 6034.62, + "end": 6040.86, + "probability": 0.9939 + }, + { + "start": 6040.9, + "end": 6042.7, + "probability": 0.9729 + }, + { + "start": 6043.9, + "end": 6044.44, + "probability": 0.4364 + }, + { + "start": 6044.62, + "end": 6045.66, + "probability": 0.9432 + }, + { + "start": 6046.08, + "end": 6048.22, + "probability": 0.9823 + }, + { + "start": 6049.48, + "end": 6050.74, + "probability": 0.9687 + }, + { + "start": 6051.26, + "end": 6053.72, + "probability": 0.9733 + }, + { + "start": 6054.22, + "end": 6054.58, + "probability": 0.8986 + }, + { + "start": 6055.62, + "end": 6058.18, + "probability": 0.8538 + }, + { + "start": 6059.02, + "end": 6061.38, + "probability": 0.9569 + }, + { + "start": 6062.04, + "end": 6064.5, + "probability": 0.9919 + }, + { + "start": 6066.6, + "end": 6070.9, + "probability": 0.9588 + }, + { + "start": 6073.36, + "end": 6076.1, + "probability": 0.958 + }, + { + "start": 6076.8, + "end": 6081.34, + "probability": 0.916 + }, + { + "start": 6082.28, + "end": 6088.88, + "probability": 0.8314 + }, + { + "start": 6090.48, + "end": 6091.24, + "probability": 0.7051 + }, + { + "start": 6091.36, + "end": 6096.98, + "probability": 0.9521 + }, + { + "start": 6097.72, + "end": 6098.32, + "probability": 0.7194 + }, + { + "start": 6098.88, + "end": 6100.56, + "probability": 0.8936 + }, + { + "start": 6100.68, + "end": 6101.6, + "probability": 0.89 + }, + { + "start": 6102.04, + "end": 6104.76, + "probability": 0.9712 + }, + { + "start": 6107.08, + "end": 6112.54, + "probability": 0.9849 + }, + { + "start": 6112.98, + "end": 6115.04, + "probability": 0.9715 + }, + { + "start": 6115.94, + "end": 6116.88, + "probability": 0.6455 + }, + { + "start": 6117.08, + "end": 6117.71, + "probability": 0.899 + }, + { + "start": 6118.14, + "end": 6121.58, + "probability": 0.9641 + }, + { + "start": 6122.18, + "end": 6124.72, + "probability": 0.9922 + }, + { + "start": 6124.9, + "end": 6127.32, + "probability": 0.9821 + }, + { + "start": 6127.9, + "end": 6130.38, + "probability": 0.9785 + }, + { + "start": 6131.62, + "end": 6133.24, + "probability": 0.8604 + }, + { + "start": 6134.02, + "end": 6137.44, + "probability": 0.9831 + }, + { + "start": 6138.54, + "end": 6141.96, + "probability": 0.9983 + }, + { + "start": 6143.1, + "end": 6146.01, + "probability": 0.6704 + }, + { + "start": 6146.7, + "end": 6147.8, + "probability": 0.9037 + }, + { + "start": 6149.12, + "end": 6152.68, + "probability": 0.927 + }, + { + "start": 6152.86, + "end": 6156.6, + "probability": 0.975 + }, + { + "start": 6156.66, + "end": 6157.92, + "probability": 0.7632 + }, + { + "start": 6158.44, + "end": 6159.98, + "probability": 0.9965 + }, + { + "start": 6160.8, + "end": 6163.0, + "probability": 0.9329 + }, + { + "start": 6163.08, + "end": 6165.12, + "probability": 0.9428 + }, + { + "start": 6165.84, + "end": 6169.34, + "probability": 0.9038 + }, + { + "start": 6170.28, + "end": 6171.96, + "probability": 0.9725 + }, + { + "start": 6173.66, + "end": 6175.14, + "probability": 0.9694 + }, + { + "start": 6176.1, + "end": 6178.54, + "probability": 0.9996 + }, + { + "start": 6179.24, + "end": 6180.28, + "probability": 0.9939 + }, + { + "start": 6180.86, + "end": 6182.94, + "probability": 0.999 + }, + { + "start": 6183.88, + "end": 6185.56, + "probability": 0.9802 + }, + { + "start": 6186.22, + "end": 6190.24, + "probability": 0.9205 + }, + { + "start": 6191.48, + "end": 6192.5, + "probability": 0.9961 + }, + { + "start": 6194.14, + "end": 6196.5, + "probability": 0.6711 + }, + { + "start": 6199.2, + "end": 6202.28, + "probability": 0.9116 + }, + { + "start": 6202.32, + "end": 6205.72, + "probability": 0.9852 + }, + { + "start": 6206.36, + "end": 6206.58, + "probability": 0.7699 + }, + { + "start": 6207.46, + "end": 6208.4, + "probability": 0.9632 + }, + { + "start": 6208.76, + "end": 6210.72, + "probability": 0.6074 + }, + { + "start": 6210.76, + "end": 6211.9, + "probability": 0.6332 + }, + { + "start": 6212.46, + "end": 6214.48, + "probability": 0.8558 + }, + { + "start": 6214.52, + "end": 6217.82, + "probability": 0.9517 + }, + { + "start": 6218.52, + "end": 6220.16, + "probability": 0.3574 + }, + { + "start": 6220.16, + "end": 6220.16, + "probability": 0.4903 + }, + { + "start": 6220.16, + "end": 6221.72, + "probability": 0.6157 + }, + { + "start": 6222.39, + "end": 6224.31, + "probability": 0.988 + }, + { + "start": 6225.24, + "end": 6226.5, + "probability": 0.9865 + }, + { + "start": 6227.68, + "end": 6230.42, + "probability": 0.98 + }, + { + "start": 6230.72, + "end": 6234.28, + "probability": 0.9976 + }, + { + "start": 6234.28, + "end": 6236.96, + "probability": 0.9971 + }, + { + "start": 6238.0, + "end": 6240.14, + "probability": 0.9185 + }, + { + "start": 6240.46, + "end": 6242.12, + "probability": 0.9891 + }, + { + "start": 6243.08, + "end": 6247.92, + "probability": 0.9745 + }, + { + "start": 6248.66, + "end": 6250.58, + "probability": 0.9854 + }, + { + "start": 6251.04, + "end": 6254.18, + "probability": 0.9565 + }, + { + "start": 6255.12, + "end": 6259.08, + "probability": 0.9963 + }, + { + "start": 6259.78, + "end": 6262.72, + "probability": 0.9963 + }, + { + "start": 6264.16, + "end": 6266.96, + "probability": 0.9943 + }, + { + "start": 6267.4, + "end": 6271.22, + "probability": 0.9811 + }, + { + "start": 6271.96, + "end": 6274.72, + "probability": 0.9453 + }, + { + "start": 6275.54, + "end": 6278.84, + "probability": 0.9985 + }, + { + "start": 6278.9, + "end": 6279.32, + "probability": 0.845 + }, + { + "start": 6279.62, + "end": 6280.88, + "probability": 0.7666 + }, + { + "start": 6280.96, + "end": 6284.46, + "probability": 0.8587 + }, + { + "start": 6284.62, + "end": 6284.78, + "probability": 0.8988 + }, + { + "start": 6288.18, + "end": 6289.44, + "probability": 0.6191 + }, + { + "start": 6289.44, + "end": 6289.56, + "probability": 0.9396 + }, + { + "start": 6290.74, + "end": 6292.18, + "probability": 0.7165 + }, + { + "start": 6292.62, + "end": 6292.66, + "probability": 0.2221 + }, + { + "start": 6292.66, + "end": 6293.1, + "probability": 0.5406 + }, + { + "start": 6293.9, + "end": 6302.18, + "probability": 0.9977 + }, + { + "start": 6303.78, + "end": 6305.8, + "probability": 0.7552 + }, + { + "start": 6306.7, + "end": 6311.96, + "probability": 0.9709 + }, + { + "start": 6312.46, + "end": 6314.94, + "probability": 0.9972 + }, + { + "start": 6315.36, + "end": 6316.9, + "probability": 0.6747 + }, + { + "start": 6317.8, + "end": 6320.62, + "probability": 0.9883 + }, + { + "start": 6320.62, + "end": 6324.66, + "probability": 0.9854 + }, + { + "start": 6326.6, + "end": 6327.42, + "probability": 0.89 + }, + { + "start": 6328.9, + "end": 6335.46, + "probability": 0.9963 + }, + { + "start": 6336.26, + "end": 6336.7, + "probability": 0.9604 + }, + { + "start": 6337.92, + "end": 6338.8, + "probability": 0.9992 + }, + { + "start": 6339.84, + "end": 6344.0, + "probability": 0.9765 + }, + { + "start": 6345.34, + "end": 6347.96, + "probability": 0.9668 + }, + { + "start": 6349.54, + "end": 6351.04, + "probability": 0.9805 + }, + { + "start": 6352.1, + "end": 6353.97, + "probability": 0.998 + }, + { + "start": 6354.06, + "end": 6356.4, + "probability": 0.9937 + }, + { + "start": 6357.86, + "end": 6359.8, + "probability": 0.9827 + }, + { + "start": 6360.92, + "end": 6363.0, + "probability": 0.9927 + }, + { + "start": 6363.06, + "end": 6365.68, + "probability": 0.9991 + }, + { + "start": 6367.92, + "end": 6371.66, + "probability": 0.9784 + }, + { + "start": 6371.88, + "end": 6374.84, + "probability": 0.9133 + }, + { + "start": 6376.46, + "end": 6378.54, + "probability": 0.9942 + }, + { + "start": 6382.9, + "end": 6382.96, + "probability": 0.9131 + }, + { + "start": 6384.4, + "end": 6387.62, + "probability": 0.9961 + }, + { + "start": 6390.14, + "end": 6390.46, + "probability": 0.9487 + }, + { + "start": 6391.1, + "end": 6392.06, + "probability": 0.9717 + }, + { + "start": 6393.02, + "end": 6396.98, + "probability": 0.9849 + }, + { + "start": 6399.52, + "end": 6402.44, + "probability": 0.9983 + }, + { + "start": 6402.44, + "end": 6407.7, + "probability": 0.9977 + }, + { + "start": 6408.42, + "end": 6408.9, + "probability": 0.4016 + }, + { + "start": 6411.02, + "end": 6415.56, + "probability": 0.9961 + }, + { + "start": 6415.78, + "end": 6416.42, + "probability": 0.6211 + }, + { + "start": 6417.04, + "end": 6417.7, + "probability": 0.9234 + }, + { + "start": 6418.92, + "end": 6422.96, + "probability": 0.8301 + }, + { + "start": 6423.08, + "end": 6423.68, + "probability": 0.8929 + }, + { + "start": 6424.32, + "end": 6425.74, + "probability": 0.8508 + }, + { + "start": 6427.66, + "end": 6431.98, + "probability": 0.9985 + }, + { + "start": 6432.64, + "end": 6433.44, + "probability": 0.8922 + }, + { + "start": 6433.72, + "end": 6434.04, + "probability": 0.9542 + }, + { + "start": 6434.92, + "end": 6437.88, + "probability": 0.7423 + }, + { + "start": 6437.96, + "end": 6438.16, + "probability": 0.7153 + }, + { + "start": 6438.8, + "end": 6440.92, + "probability": 0.8394 + }, + { + "start": 6442.1, + "end": 6443.08, + "probability": 0.9758 + }, + { + "start": 6444.3, + "end": 6444.6, + "probability": 0.5221 + }, + { + "start": 6444.76, + "end": 6445.28, + "probability": 0.8954 + }, + { + "start": 6448.12, + "end": 6450.14, + "probability": 0.9229 + }, + { + "start": 6451.22, + "end": 6453.82, + "probability": 0.9953 + }, + { + "start": 6454.18, + "end": 6455.47, + "probability": 0.9934 + }, + { + "start": 6457.34, + "end": 6458.62, + "probability": 0.9753 + }, + { + "start": 6459.2, + "end": 6460.14, + "probability": 0.9307 + }, + { + "start": 6460.7, + "end": 6466.02, + "probability": 0.9989 + }, + { + "start": 6467.1, + "end": 6468.86, + "probability": 0.7148 + }, + { + "start": 6469.54, + "end": 6473.62, + "probability": 0.999 + }, + { + "start": 6474.14, + "end": 6478.96, + "probability": 0.9727 + }, + { + "start": 6479.38, + "end": 6481.86, + "probability": 0.8343 + }, + { + "start": 6482.78, + "end": 6483.36, + "probability": 0.8559 + }, + { + "start": 6483.7, + "end": 6484.66, + "probability": 0.9149 + }, + { + "start": 6485.72, + "end": 6486.5, + "probability": 0.7842 + }, + { + "start": 6487.74, + "end": 6488.82, + "probability": 0.9152 + }, + { + "start": 6490.32, + "end": 6491.48, + "probability": 0.8566 + }, + { + "start": 6494.1, + "end": 6496.04, + "probability": 0.973 + }, + { + "start": 6497.04, + "end": 6498.64, + "probability": 0.8657 + }, + { + "start": 6499.74, + "end": 6500.7, + "probability": 0.7676 + }, + { + "start": 6501.76, + "end": 6503.52, + "probability": 0.9904 + }, + { + "start": 6503.7, + "end": 6504.2, + "probability": 0.8542 + }, + { + "start": 6504.26, + "end": 6504.62, + "probability": 0.7147 + }, + { + "start": 6504.68, + "end": 6506.52, + "probability": 0.8798 + }, + { + "start": 6506.86, + "end": 6507.24, + "probability": 0.3195 + }, + { + "start": 6508.72, + "end": 6511.62, + "probability": 0.8897 + }, + { + "start": 6512.32, + "end": 6513.84, + "probability": 0.9029 + }, + { + "start": 6514.66, + "end": 6515.4, + "probability": 0.488 + }, + { + "start": 6516.44, + "end": 6516.48, + "probability": 0.8408 + }, + { + "start": 6517.52, + "end": 6523.82, + "probability": 0.9224 + }, + { + "start": 6523.94, + "end": 6525.18, + "probability": 0.8008 + }, + { + "start": 6525.78, + "end": 6527.1, + "probability": 0.9049 + }, + { + "start": 6528.16, + "end": 6528.86, + "probability": 0.5249 + }, + { + "start": 6529.7, + "end": 6530.66, + "probability": 0.8894 + }, + { + "start": 6532.34, + "end": 6533.54, + "probability": 0.9598 + }, + { + "start": 6534.68, + "end": 6535.24, + "probability": 0.9553 + }, + { + "start": 6536.08, + "end": 6538.0, + "probability": 0.9496 + }, + { + "start": 6539.02, + "end": 6539.92, + "probability": 0.9763 + }, + { + "start": 6540.58, + "end": 6544.02, + "probability": 0.9105 + }, + { + "start": 6544.18, + "end": 6544.52, + "probability": 0.9197 + }, + { + "start": 6544.6, + "end": 6545.88, + "probability": 0.4699 + }, + { + "start": 6545.9, + "end": 6547.52, + "probability": 0.8698 + }, + { + "start": 6547.78, + "end": 6548.4, + "probability": 0.5017 + }, + { + "start": 6548.48, + "end": 6548.98, + "probability": 0.8171 + }, + { + "start": 6550.2, + "end": 6552.26, + "probability": 0.9861 + }, + { + "start": 6552.88, + "end": 6554.33, + "probability": 0.9873 + }, + { + "start": 6555.18, + "end": 6557.56, + "probability": 0.9654 + }, + { + "start": 6558.88, + "end": 6561.74, + "probability": 0.9738 + }, + { + "start": 6564.92, + "end": 6565.58, + "probability": 0.9611 + }, + { + "start": 6566.42, + "end": 6567.34, + "probability": 0.8264 + }, + { + "start": 6568.14, + "end": 6571.22, + "probability": 0.8098 + }, + { + "start": 6571.78, + "end": 6574.34, + "probability": 0.8596 + }, + { + "start": 6575.06, + "end": 6576.15, + "probability": 0.9215 + }, + { + "start": 6578.08, + "end": 6580.4, + "probability": 0.95 + }, + { + "start": 6580.9, + "end": 6582.3, + "probability": 0.9478 + }, + { + "start": 6583.88, + "end": 6584.74, + "probability": 0.6831 + }, + { + "start": 6586.04, + "end": 6590.2, + "probability": 0.9048 + }, + { + "start": 6590.8, + "end": 6591.58, + "probability": 0.9333 + }, + { + "start": 6592.14, + "end": 6592.96, + "probability": 0.9562 + }, + { + "start": 6593.54, + "end": 6594.24, + "probability": 0.615 + }, + { + "start": 6595.04, + "end": 6596.0, + "probability": 0.9821 + }, + { + "start": 6596.84, + "end": 6597.77, + "probability": 0.7939 + }, + { + "start": 6598.34, + "end": 6600.7, + "probability": 0.9274 + }, + { + "start": 6600.78, + "end": 6603.4, + "probability": 0.922 + }, + { + "start": 6604.72, + "end": 6605.8, + "probability": 0.998 + }, + { + "start": 6606.98, + "end": 6607.62, + "probability": 0.6013 + }, + { + "start": 6608.74, + "end": 6610.5, + "probability": 0.944 + }, + { + "start": 6611.46, + "end": 6612.1, + "probability": 0.7254 + }, + { + "start": 6612.7, + "end": 6613.18, + "probability": 0.6304 + }, + { + "start": 6615.48, + "end": 6617.98, + "probability": 0.8933 + }, + { + "start": 6618.9, + "end": 6619.66, + "probability": 0.8134 + }, + { + "start": 6621.16, + "end": 6623.9, + "probability": 0.8772 + }, + { + "start": 6625.36, + "end": 6627.14, + "probability": 0.9668 + }, + { + "start": 6627.94, + "end": 6628.68, + "probability": 0.9021 + }, + { + "start": 6629.08, + "end": 6632.06, + "probability": 0.8036 + }, + { + "start": 6635.16, + "end": 6637.78, + "probability": 0.905 + }, + { + "start": 6638.4, + "end": 6640.36, + "probability": 0.9543 + }, + { + "start": 6641.24, + "end": 6644.22, + "probability": 0.9725 + }, + { + "start": 6645.38, + "end": 6647.82, + "probability": 0.9878 + }, + { + "start": 6650.16, + "end": 6650.84, + "probability": 0.704 + }, + { + "start": 6651.46, + "end": 6651.92, + "probability": 0.9591 + }, + { + "start": 6652.54, + "end": 6654.06, + "probability": 0.8641 + }, + { + "start": 6655.72, + "end": 6659.16, + "probability": 0.9831 + }, + { + "start": 6660.66, + "end": 6661.64, + "probability": 0.8995 + }, + { + "start": 6662.32, + "end": 6662.82, + "probability": 0.8195 + }, + { + "start": 6662.84, + "end": 6666.28, + "probability": 0.9532 + }, + { + "start": 6666.74, + "end": 6669.96, + "probability": 0.7242 + }, + { + "start": 6670.36, + "end": 6673.5, + "probability": 0.891 + }, + { + "start": 6674.02, + "end": 6676.9, + "probability": 0.9463 + }, + { + "start": 6678.36, + "end": 6680.1, + "probability": 0.7988 + }, + { + "start": 6680.34, + "end": 6683.3, + "probability": 0.9851 + }, + { + "start": 6683.38, + "end": 6686.06, + "probability": 0.7431 + }, + { + "start": 6686.1, + "end": 6687.22, + "probability": 0.7766 + }, + { + "start": 6688.06, + "end": 6690.68, + "probability": 0.8167 + }, + { + "start": 6691.22, + "end": 6692.74, + "probability": 0.9099 + }, + { + "start": 6692.92, + "end": 6694.46, + "probability": 0.9775 + }, + { + "start": 6694.62, + "end": 6695.46, + "probability": 0.9587 + }, + { + "start": 6695.6, + "end": 6695.9, + "probability": 0.8922 + }, + { + "start": 6696.68, + "end": 6697.1, + "probability": 0.871 + }, + { + "start": 6697.74, + "end": 6698.24, + "probability": 0.8783 + }, + { + "start": 6700.48, + "end": 6701.28, + "probability": 0.847 + }, + { + "start": 6701.82, + "end": 6703.28, + "probability": 0.974 + }, + { + "start": 6704.44, + "end": 6706.94, + "probability": 0.9204 + }, + { + "start": 6707.74, + "end": 6708.08, + "probability": 0.8107 + }, + { + "start": 6708.64, + "end": 6709.38, + "probability": 0.9186 + }, + { + "start": 6710.8, + "end": 6711.66, + "probability": 0.8675 + }, + { + "start": 6712.45, + "end": 6713.46, + "probability": 0.9272 + }, + { + "start": 6714.32, + "end": 6714.98, + "probability": 0.9804 + }, + { + "start": 6718.28, + "end": 6720.96, + "probability": 0.9937 + }, + { + "start": 6721.6, + "end": 6724.84, + "probability": 0.9785 + }, + { + "start": 6725.52, + "end": 6725.88, + "probability": 0.7005 + }, + { + "start": 6727.3, + "end": 6728.66, + "probability": 0.3507 + }, + { + "start": 6728.88, + "end": 6729.42, + "probability": 0.895 + }, + { + "start": 6729.58, + "end": 6729.88, + "probability": 0.7888 + }, + { + "start": 6730.46, + "end": 6732.76, + "probability": 0.9465 + }, + { + "start": 6733.06, + "end": 6734.6, + "probability": 0.9837 + }, + { + "start": 6734.92, + "end": 6736.04, + "probability": 0.8276 + }, + { + "start": 6737.58, + "end": 6742.66, + "probability": 0.9419 + }, + { + "start": 6743.38, + "end": 6745.5, + "probability": 0.9351 + }, + { + "start": 6747.44, + "end": 6748.16, + "probability": 0.6793 + }, + { + "start": 6748.96, + "end": 6751.36, + "probability": 0.8169 + }, + { + "start": 6752.4, + "end": 6755.4, + "probability": 0.7683 + }, + { + "start": 6756.22, + "end": 6757.3, + "probability": 0.832 + }, + { + "start": 6758.62, + "end": 6760.22, + "probability": 0.9929 + }, + { + "start": 6761.54, + "end": 6761.98, + "probability": 0.8885 + }, + { + "start": 6761.98, + "end": 6764.16, + "probability": 0.9902 + }, + { + "start": 6764.24, + "end": 6765.44, + "probability": 0.7472 + }, + { + "start": 6766.6, + "end": 6768.72, + "probability": 0.9988 + }, + { + "start": 6771.0, + "end": 6772.74, + "probability": 0.9835 + }, + { + "start": 6775.82, + "end": 6777.06, + "probability": 0.9448 + }, + { + "start": 6777.5, + "end": 6779.16, + "probability": 0.9863 + }, + { + "start": 6779.8, + "end": 6782.32, + "probability": 0.8771 + }, + { + "start": 6783.64, + "end": 6783.86, + "probability": 0.6879 + }, + { + "start": 6784.98, + "end": 6787.42, + "probability": 0.866 + }, + { + "start": 6788.42, + "end": 6790.12, + "probability": 0.8598 + }, + { + "start": 6791.4, + "end": 6791.78, + "probability": 0.9557 + }, + { + "start": 6792.9, + "end": 6793.7, + "probability": 0.9633 + }, + { + "start": 6794.28, + "end": 6796.6, + "probability": 0.9595 + }, + { + "start": 6797.32, + "end": 6800.54, + "probability": 0.9929 + }, + { + "start": 6801.28, + "end": 6803.04, + "probability": 0.8282 + }, + { + "start": 6804.24, + "end": 6807.82, + "probability": 0.9971 + }, + { + "start": 6808.36, + "end": 6810.12, + "probability": 0.9976 + }, + { + "start": 6810.66, + "end": 6814.32, + "probability": 0.9937 + }, + { + "start": 6815.2, + "end": 6815.94, + "probability": 0.6826 + }, + { + "start": 6816.98, + "end": 6819.68, + "probability": 0.9977 + }, + { + "start": 6821.42, + "end": 6822.04, + "probability": 0.8171 + }, + { + "start": 6822.24, + "end": 6823.56, + "probability": 0.9275 + }, + { + "start": 6825.02, + "end": 6825.56, + "probability": 0.9863 + }, + { + "start": 6826.17, + "end": 6827.66, + "probability": 0.6327 + }, + { + "start": 6828.8, + "end": 6830.34, + "probability": 0.9927 + }, + { + "start": 6831.28, + "end": 6834.22, + "probability": 0.9739 + }, + { + "start": 6836.12, + "end": 6837.34, + "probability": 0.917 + }, + { + "start": 6837.48, + "end": 6838.68, + "probability": 0.9185 + }, + { + "start": 6838.7, + "end": 6839.94, + "probability": 0.9432 + }, + { + "start": 6840.04, + "end": 6840.95, + "probability": 0.9362 + }, + { + "start": 6842.22, + "end": 6843.52, + "probability": 0.7014 + }, + { + "start": 6843.72, + "end": 6844.38, + "probability": 0.5524 + }, + { + "start": 6844.92, + "end": 6848.9, + "probability": 0.9178 + }, + { + "start": 6850.26, + "end": 6852.16, + "probability": 0.8587 + }, + { + "start": 6852.88, + "end": 6856.78, + "probability": 0.9636 + }, + { + "start": 6857.4, + "end": 6858.28, + "probability": 0.8945 + }, + { + "start": 6860.16, + "end": 6860.42, + "probability": 0.1017 + }, + { + "start": 6860.42, + "end": 6860.52, + "probability": 0.835 + }, + { + "start": 6860.86, + "end": 6861.68, + "probability": 0.7487 + }, + { + "start": 6863.26, + "end": 6864.42, + "probability": 0.9362 + }, + { + "start": 6865.3, + "end": 6867.54, + "probability": 0.9319 + }, + { + "start": 6868.38, + "end": 6869.48, + "probability": 0.9856 + }, + { + "start": 6871.32, + "end": 6874.6, + "probability": 0.9958 + }, + { + "start": 6875.42, + "end": 6875.88, + "probability": 0.8014 + }, + { + "start": 6876.74, + "end": 6878.34, + "probability": 0.6157 + }, + { + "start": 6879.1, + "end": 6880.6, + "probability": 0.9988 + }, + { + "start": 6881.22, + "end": 6884.36, + "probability": 0.9984 + }, + { + "start": 6885.48, + "end": 6887.4, + "probability": 0.7981 + }, + { + "start": 6888.36, + "end": 6891.54, + "probability": 0.9462 + }, + { + "start": 6892.38, + "end": 6893.5, + "probability": 0.9517 + }, + { + "start": 6895.48, + "end": 6897.66, + "probability": 0.6295 + }, + { + "start": 6898.78, + "end": 6900.22, + "probability": 0.9974 + }, + { + "start": 6901.14, + "end": 6904.66, + "probability": 0.9938 + }, + { + "start": 6904.68, + "end": 6905.98, + "probability": 0.9124 + }, + { + "start": 6907.2, + "end": 6908.92, + "probability": 0.8985 + }, + { + "start": 6909.0, + "end": 6909.36, + "probability": 0.9281 + }, + { + "start": 6909.44, + "end": 6910.14, + "probability": 0.7641 + }, + { + "start": 6910.98, + "end": 6913.08, + "probability": 0.9883 + }, + { + "start": 6914.54, + "end": 6916.92, + "probability": 0.7735 + }, + { + "start": 6917.32, + "end": 6918.88, + "probability": 0.9123 + }, + { + "start": 6920.14, + "end": 6922.88, + "probability": 0.9678 + }, + { + "start": 6923.52, + "end": 6926.38, + "probability": 0.5637 + }, + { + "start": 6926.46, + "end": 6926.48, + "probability": 0.0518 + }, + { + "start": 6927.02, + "end": 6929.1, + "probability": 0.9747 + }, + { + "start": 6932.7, + "end": 6934.84, + "probability": 0.4687 + }, + { + "start": 6935.58, + "end": 6940.02, + "probability": 0.6058 + }, + { + "start": 6940.34, + "end": 6943.94, + "probability": 0.8385 + }, + { + "start": 6944.56, + "end": 6946.52, + "probability": 0.9347 + }, + { + "start": 6946.6, + "end": 6947.34, + "probability": 0.7668 + }, + { + "start": 6947.94, + "end": 6949.74, + "probability": 0.6982 + }, + { + "start": 6950.52, + "end": 6952.12, + "probability": 0.3371 + }, + { + "start": 6955.16, + "end": 6958.9, + "probability": 0.6889 + }, + { + "start": 6960.4, + "end": 6961.6, + "probability": 0.9613 + }, + { + "start": 6961.96, + "end": 6963.16, + "probability": 0.7689 + }, + { + "start": 6963.5, + "end": 6965.06, + "probability": 0.8348 + }, + { + "start": 6965.74, + "end": 6966.66, + "probability": 0.7749 + }, + { + "start": 6967.2, + "end": 6967.64, + "probability": 0.7785 + }, + { + "start": 6967.88, + "end": 6968.82, + "probability": 0.937 + }, + { + "start": 6968.86, + "end": 6971.44, + "probability": 0.9857 + }, + { + "start": 6972.4, + "end": 6973.72, + "probability": 0.8876 + }, + { + "start": 6975.02, + "end": 6976.84, + "probability": 0.9945 + }, + { + "start": 6978.46, + "end": 6980.18, + "probability": 0.9634 + }, + { + "start": 6980.86, + "end": 6981.38, + "probability": 0.4805 + }, + { + "start": 6982.56, + "end": 6985.06, + "probability": 0.9747 + }, + { + "start": 6985.84, + "end": 6990.18, + "probability": 0.9824 + }, + { + "start": 6990.38, + "end": 6994.66, + "probability": 0.9901 + }, + { + "start": 6994.66, + "end": 6998.48, + "probability": 0.955 + }, + { + "start": 6998.5, + "end": 7001.76, + "probability": 0.923 + }, + { + "start": 7001.76, + "end": 7005.82, + "probability": 0.883 + }, + { + "start": 7006.68, + "end": 7008.46, + "probability": 0.8644 + }, + { + "start": 7008.88, + "end": 7012.6, + "probability": 0.9771 + }, + { + "start": 7013.86, + "end": 7017.08, + "probability": 0.9919 + }, + { + "start": 7017.54, + "end": 7020.72, + "probability": 0.9953 + }, + { + "start": 7020.8, + "end": 7021.1, + "probability": 0.6385 + }, + { + "start": 7021.16, + "end": 7022.02, + "probability": 0.9202 + }, + { + "start": 7022.62, + "end": 7024.04, + "probability": 0.6525 + }, + { + "start": 7024.34, + "end": 7025.28, + "probability": 0.7642 + }, + { + "start": 7025.42, + "end": 7026.26, + "probability": 0.9285 + }, + { + "start": 7026.62, + "end": 7027.78, + "probability": 0.9626 + }, + { + "start": 7027.84, + "end": 7028.0, + "probability": 0.6479 + }, + { + "start": 7028.08, + "end": 7028.8, + "probability": 0.7537 + }, + { + "start": 7029.28, + "end": 7030.34, + "probability": 0.9234 + }, + { + "start": 7030.46, + "end": 7032.1, + "probability": 0.9932 + }, + { + "start": 7033.26, + "end": 7034.12, + "probability": 0.7614 + }, + { + "start": 7034.66, + "end": 7036.88, + "probability": 0.8964 + }, + { + "start": 7037.7, + "end": 7040.72, + "probability": 0.956 + }, + { + "start": 7041.32, + "end": 7043.84, + "probability": 0.9426 + }, + { + "start": 7044.6, + "end": 7045.44, + "probability": 0.8508 + }, + { + "start": 7045.8, + "end": 7047.04, + "probability": 0.9361 + }, + { + "start": 7047.16, + "end": 7047.96, + "probability": 0.9455 + }, + { + "start": 7048.46, + "end": 7049.02, + "probability": 0.7407 + }, + { + "start": 7049.84, + "end": 7051.64, + "probability": 0.6655 + }, + { + "start": 7052.02, + "end": 7052.2, + "probability": 0.7419 + }, + { + "start": 7052.3, + "end": 7054.16, + "probability": 0.9691 + }, + { + "start": 7054.7, + "end": 7054.98, + "probability": 0.4939 + }, + { + "start": 7055.22, + "end": 7057.74, + "probability": 0.9697 + }, + { + "start": 7058.5, + "end": 7062.26, + "probability": 0.9948 + }, + { + "start": 7062.4, + "end": 7063.34, + "probability": 0.8635 + }, + { + "start": 7063.8, + "end": 7064.5, + "probability": 0.4089 + }, + { + "start": 7064.66, + "end": 7064.74, + "probability": 0.626 + }, + { + "start": 7064.92, + "end": 7065.02, + "probability": 0.9163 + }, + { + "start": 7065.12, + "end": 7065.54, + "probability": 0.8449 + }, + { + "start": 7065.62, + "end": 7067.2, + "probability": 0.6377 + }, + { + "start": 7067.42, + "end": 7067.88, + "probability": 0.7872 + }, + { + "start": 7068.28, + "end": 7069.62, + "probability": 0.9845 + }, + { + "start": 7069.7, + "end": 7070.42, + "probability": 0.8701 + }, + { + "start": 7070.74, + "end": 7073.28, + "probability": 0.7685 + }, + { + "start": 7073.7, + "end": 7074.92, + "probability": 0.9326 + }, + { + "start": 7075.38, + "end": 7075.66, + "probability": 0.8027 + }, + { + "start": 7075.7, + "end": 7077.84, + "probability": 0.9884 + }, + { + "start": 7078.28, + "end": 7079.88, + "probability": 0.7466 + }, + { + "start": 7080.36, + "end": 7081.38, + "probability": 0.9967 + }, + { + "start": 7081.42, + "end": 7083.18, + "probability": 0.9929 + }, + { + "start": 7083.76, + "end": 7083.76, + "probability": 0.4534 + }, + { + "start": 7083.92, + "end": 7084.82, + "probability": 0.7551 + }, + { + "start": 7084.94, + "end": 7085.66, + "probability": 0.7687 + }, + { + "start": 7086.08, + "end": 7089.34, + "probability": 0.9677 + }, + { + "start": 7089.6, + "end": 7089.96, + "probability": 0.8667 + }, + { + "start": 7090.64, + "end": 7091.44, + "probability": 0.6649 + }, + { + "start": 7091.48, + "end": 7096.02, + "probability": 0.9845 + }, + { + "start": 7096.62, + "end": 7097.78, + "probability": 0.9745 + }, + { + "start": 7098.44, + "end": 7099.14, + "probability": 0.8727 + }, + { + "start": 7099.5, + "end": 7100.16, + "probability": 0.8897 + }, + { + "start": 7100.22, + "end": 7102.82, + "probability": 0.6978 + }, + { + "start": 7103.28, + "end": 7104.96, + "probability": 0.796 + }, + { + "start": 7105.0, + "end": 7107.58, + "probability": 0.9679 + }, + { + "start": 7107.72, + "end": 7108.88, + "probability": 0.8785 + }, + { + "start": 7108.98, + "end": 7110.04, + "probability": 0.9974 + }, + { + "start": 7111.02, + "end": 7111.38, + "probability": 0.5488 + }, + { + "start": 7112.38, + "end": 7112.52, + "probability": 0.0538 + }, + { + "start": 7112.78, + "end": 7112.92, + "probability": 0.805 + }, + { + "start": 7112.92, + "end": 7113.56, + "probability": 0.6636 + }, + { + "start": 7113.84, + "end": 7114.81, + "probability": 0.9453 + }, + { + "start": 7115.54, + "end": 7116.5, + "probability": 0.9086 + }, + { + "start": 7117.1, + "end": 7118.46, + "probability": 0.9123 + }, + { + "start": 7118.82, + "end": 7119.12, + "probability": 0.8942 + }, + { + "start": 7119.3, + "end": 7119.52, + "probability": 0.9094 + }, + { + "start": 7119.54, + "end": 7120.14, + "probability": 0.8661 + }, + { + "start": 7120.52, + "end": 7121.18, + "probability": 0.8344 + }, + { + "start": 7121.32, + "end": 7123.06, + "probability": 0.9291 + }, + { + "start": 7123.48, + "end": 7125.5, + "probability": 0.1251 + }, + { + "start": 7125.5, + "end": 7125.5, + "probability": 0.0226 + }, + { + "start": 7125.5, + "end": 7126.72, + "probability": 0.9526 + }, + { + "start": 7126.88, + "end": 7127.9, + "probability": 0.8087 + }, + { + "start": 7128.4, + "end": 7129.12, + "probability": 0.7201 + }, + { + "start": 7129.48, + "end": 7130.0, + "probability": 0.8446 + }, + { + "start": 7132.14, + "end": 7132.92, + "probability": 0.7449 + }, + { + "start": 7132.92, + "end": 7133.2, + "probability": 0.753 + }, + { + "start": 7133.2, + "end": 7134.4, + "probability": 0.9948 + }, + { + "start": 7135.12, + "end": 7137.98, + "probability": 0.7149 + }, + { + "start": 7138.54, + "end": 7141.3, + "probability": 0.9948 + }, + { + "start": 7141.94, + "end": 7142.04, + "probability": 0.423 + }, + { + "start": 7142.12, + "end": 7144.98, + "probability": 0.9359 + }, + { + "start": 7145.14, + "end": 7145.75, + "probability": 0.9035 + }, + { + "start": 7145.9, + "end": 7146.76, + "probability": 0.9592 + }, + { + "start": 7147.18, + "end": 7148.7, + "probability": 0.961 + }, + { + "start": 7149.38, + "end": 7152.36, + "probability": 0.9678 + }, + { + "start": 7152.36, + "end": 7156.9, + "probability": 0.9715 + }, + { + "start": 7157.52, + "end": 7158.9, + "probability": 0.9787 + }, + { + "start": 7159.4, + "end": 7161.36, + "probability": 0.9528 + }, + { + "start": 7162.02, + "end": 7164.58, + "probability": 0.9912 + }, + { + "start": 7165.14, + "end": 7167.42, + "probability": 0.9927 + }, + { + "start": 7168.28, + "end": 7171.46, + "probability": 0.9767 + }, + { + "start": 7171.58, + "end": 7172.46, + "probability": 0.717 + }, + { + "start": 7172.7, + "end": 7174.18, + "probability": 0.9873 + }, + { + "start": 7174.68, + "end": 7176.76, + "probability": 0.9978 + }, + { + "start": 7176.94, + "end": 7177.82, + "probability": 0.8085 + }, + { + "start": 7178.24, + "end": 7179.39, + "probability": 0.9771 + }, + { + "start": 7179.42, + "end": 7181.76, + "probability": 0.8218 + }, + { + "start": 7181.96, + "end": 7182.66, + "probability": 0.6676 + }, + { + "start": 7182.82, + "end": 7182.92, + "probability": 0.1652 + }, + { + "start": 7184.1, + "end": 7185.1, + "probability": 0.7198 + }, + { + "start": 7186.06, + "end": 7186.18, + "probability": 0.1065 + }, + { + "start": 7186.4, + "end": 7188.38, + "probability": 0.8853 + }, + { + "start": 7189.08, + "end": 7190.26, + "probability": 0.7336 + }, + { + "start": 7190.4, + "end": 7190.42, + "probability": 0.0539 + }, + { + "start": 7190.42, + "end": 7191.24, + "probability": 0.7701 + }, + { + "start": 7191.58, + "end": 7192.9, + "probability": 0.9748 + }, + { + "start": 7192.98, + "end": 7193.64, + "probability": 0.9307 + }, + { + "start": 7193.86, + "end": 7194.54, + "probability": 0.9593 + }, + { + "start": 7195.62, + "end": 7196.52, + "probability": 0.8512 + }, + { + "start": 7197.52, + "end": 7198.76, + "probability": 0.5009 + }, + { + "start": 7198.94, + "end": 7199.16, + "probability": 0.3669 + }, + { + "start": 7199.42, + "end": 7200.86, + "probability": 0.1507 + }, + { + "start": 7200.86, + "end": 7202.86, + "probability": 0.4045 + }, + { + "start": 7202.96, + "end": 7203.26, + "probability": 0.088 + }, + { + "start": 7203.26, + "end": 7205.64, + "probability": 0.6678 + }, + { + "start": 7205.64, + "end": 7205.82, + "probability": 0.4613 + }, + { + "start": 7205.96, + "end": 7206.44, + "probability": 0.8328 + }, + { + "start": 7206.58, + "end": 7207.76, + "probability": 0.9753 + }, + { + "start": 7208.9, + "end": 7210.7, + "probability": 0.2816 + }, + { + "start": 7211.64, + "end": 7214.22, + "probability": 0.0217 + }, + { + "start": 7214.96, + "end": 7215.54, + "probability": 0.0214 + }, + { + "start": 7217.04, + "end": 7218.68, + "probability": 0.3197 + }, + { + "start": 7218.68, + "end": 7219.4, + "probability": 0.15 + }, + { + "start": 7219.64, + "end": 7220.1, + "probability": 0.7211 + }, + { + "start": 7220.18, + "end": 7220.7, + "probability": 0.7809 + }, + { + "start": 7221.26, + "end": 7221.48, + "probability": 0.9707 + }, + { + "start": 7222.38, + "end": 7223.94, + "probability": 0.8687 + }, + { + "start": 7224.04, + "end": 7224.58, + "probability": 0.3779 + }, + { + "start": 7224.8, + "end": 7225.28, + "probability": 0.7363 + }, + { + "start": 7225.88, + "end": 7226.52, + "probability": 0.8711 + }, + { + "start": 7227.06, + "end": 7228.06, + "probability": 0.9551 + }, + { + "start": 7228.12, + "end": 7230.24, + "probability": 0.9956 + }, + { + "start": 7230.6, + "end": 7231.42, + "probability": 0.9484 + }, + { + "start": 7231.8, + "end": 7232.92, + "probability": 0.9703 + }, + { + "start": 7233.04, + "end": 7233.34, + "probability": 0.8332 + }, + { + "start": 7233.42, + "end": 7235.46, + "probability": 0.9876 + }, + { + "start": 7235.78, + "end": 7241.22, + "probability": 0.9957 + }, + { + "start": 7241.92, + "end": 7244.9, + "probability": 0.973 + }, + { + "start": 7245.2, + "end": 7248.0, + "probability": 0.9985 + }, + { + "start": 7248.24, + "end": 7253.0, + "probability": 0.969 + }, + { + "start": 7253.16, + "end": 7253.8, + "probability": 0.7017 + }, + { + "start": 7254.12, + "end": 7254.9, + "probability": 0.9207 + }, + { + "start": 7255.08, + "end": 7260.42, + "probability": 0.9774 + }, + { + "start": 7260.5, + "end": 7262.78, + "probability": 0.0381 + }, + { + "start": 7263.32, + "end": 7265.88, + "probability": 0.0815 + }, + { + "start": 7285.32, + "end": 7285.76, + "probability": 0.0173 + }, + { + "start": 7285.76, + "end": 7286.96, + "probability": 0.0698 + }, + { + "start": 7287.32, + "end": 7290.28, + "probability": 0.2075 + }, + { + "start": 7290.32, + "end": 7290.38, + "probability": 0.0449 + }, + { + "start": 7292.22, + "end": 7293.94, + "probability": 0.0934 + }, + { + "start": 7294.02, + "end": 7295.16, + "probability": 0.1096 + }, + { + "start": 7296.34, + "end": 7301.44, + "probability": 0.0785 + }, + { + "start": 7302.1, + "end": 7304.08, + "probability": 0.0034 + }, + { + "start": 7314.24, + "end": 7314.74, + "probability": 0.023 + }, + { + "start": 7324.17, + "end": 7327.09, + "probability": 0.0586 + }, + { + "start": 7331.45, + "end": 7334.26, + "probability": 0.0368 + }, + { + "start": 7334.72, + "end": 7335.24, + "probability": 0.2059 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.0, + "end": 7344.0, + "probability": 0.0 + }, + { + "start": 7344.62, + "end": 7348.32, + "probability": 0.77 + }, + { + "start": 7349.0, + "end": 7349.8, + "probability": 0.8008 + }, + { + "start": 7350.38, + "end": 7354.38, + "probability": 0.8939 + }, + { + "start": 7356.04, + "end": 7356.64, + "probability": 0.1941 + }, + { + "start": 7356.7, + "end": 7356.92, + "probability": 0.1948 + }, + { + "start": 7356.92, + "end": 7357.04, + "probability": 0.4461 + }, + { + "start": 7358.22, + "end": 7360.28, + "probability": 0.9297 + }, + { + "start": 7360.32, + "end": 7361.75, + "probability": 0.9607 + }, + { + "start": 7362.7, + "end": 7363.14, + "probability": 0.7585 + }, + { + "start": 7363.54, + "end": 7364.72, + "probability": 0.9973 + }, + { + "start": 7365.78, + "end": 7367.0, + "probability": 0.0569 + }, + { + "start": 7367.0, + "end": 7368.6, + "probability": 0.9407 + }, + { + "start": 7368.8, + "end": 7370.44, + "probability": 0.9945 + }, + { + "start": 7370.9, + "end": 7372.64, + "probability": 0.8944 + }, + { + "start": 7373.19, + "end": 7375.72, + "probability": 0.8511 + }, + { + "start": 7376.26, + "end": 7377.4, + "probability": 0.5622 + }, + { + "start": 7377.6, + "end": 7379.44, + "probability": 0.9961 + }, + { + "start": 7380.04, + "end": 7382.2, + "probability": 0.9991 + }, + { + "start": 7382.46, + "end": 7385.12, + "probability": 0.9999 + }, + { + "start": 7385.32, + "end": 7385.58, + "probability": 0.7269 + }, + { + "start": 7386.38, + "end": 7388.78, + "probability": 0.8578 + }, + { + "start": 7388.86, + "end": 7391.61, + "probability": 0.979 + }, + { + "start": 7392.88, + "end": 7393.38, + "probability": 0.8568 + }, + { + "start": 7394.06, + "end": 7394.7, + "probability": 0.5168 + }, + { + "start": 7395.88, + "end": 7395.92, + "probability": 0.2692 + }, + { + "start": 7395.92, + "end": 7396.44, + "probability": 0.5032 + }, + { + "start": 7396.92, + "end": 7398.92, + "probability": 0.8828 + }, + { + "start": 7399.36, + "end": 7401.09, + "probability": 0.9966 + }, + { + "start": 7401.52, + "end": 7401.52, + "probability": 0.0371 + }, + { + "start": 7401.52, + "end": 7403.54, + "probability": 0.6571 + }, + { + "start": 7403.98, + "end": 7406.33, + "probability": 0.9649 + }, + { + "start": 7407.12, + "end": 7407.8, + "probability": 0.9133 + }, + { + "start": 7408.14, + "end": 7408.35, + "probability": 0.6749 + }, + { + "start": 7408.84, + "end": 7409.86, + "probability": 0.7349 + }, + { + "start": 7409.96, + "end": 7411.0, + "probability": 0.9555 + }, + { + "start": 7411.24, + "end": 7412.32, + "probability": 0.9636 + }, + { + "start": 7412.96, + "end": 7415.88, + "probability": 0.9441 + }, + { + "start": 7416.28, + "end": 7418.3, + "probability": 0.9893 + }, + { + "start": 7418.66, + "end": 7420.44, + "probability": 0.8049 + }, + { + "start": 7422.4, + "end": 7422.4, + "probability": 0.2932 + }, + { + "start": 7422.4, + "end": 7424.56, + "probability": 0.5731 + }, + { + "start": 7424.68, + "end": 7425.36, + "probability": 0.0379 + }, + { + "start": 7425.36, + "end": 7426.14, + "probability": 0.5441 + }, + { + "start": 7426.2, + "end": 7427.48, + "probability": 0.7223 + }, + { + "start": 7428.58, + "end": 7430.56, + "probability": 0.936 + }, + { + "start": 7431.36, + "end": 7431.38, + "probability": 0.2583 + }, + { + "start": 7431.64, + "end": 7433.58, + "probability": 0.434 + }, + { + "start": 7433.7, + "end": 7434.66, + "probability": 0.0692 + }, + { + "start": 7435.1, + "end": 7435.1, + "probability": 0.2017 + }, + { + "start": 7435.1, + "end": 7441.26, + "probability": 0.9222 + }, + { + "start": 7441.72, + "end": 7442.94, + "probability": 0.8564 + }, + { + "start": 7443.4, + "end": 7444.78, + "probability": 0.9645 + }, + { + "start": 7445.14, + "end": 7447.22, + "probability": 0.9917 + }, + { + "start": 7447.44, + "end": 7449.42, + "probability": 0.7764 + }, + { + "start": 7450.69, + "end": 7453.88, + "probability": 0.8945 + }, + { + "start": 7453.98, + "end": 7454.52, + "probability": 0.5834 + }, + { + "start": 7454.58, + "end": 7455.98, + "probability": 0.9731 + }, + { + "start": 7456.7, + "end": 7457.04, + "probability": 0.2213 + }, + { + "start": 7457.18, + "end": 7458.16, + "probability": 0.0862 + }, + { + "start": 7458.8, + "end": 7459.12, + "probability": 0.3829 + }, + { + "start": 7459.2, + "end": 7460.18, + "probability": 0.9856 + }, + { + "start": 7460.64, + "end": 7463.1, + "probability": 0.9612 + }, + { + "start": 7463.72, + "end": 7465.84, + "probability": 0.9587 + }, + { + "start": 7466.62, + "end": 7468.68, + "probability": 0.8235 + }, + { + "start": 7468.82, + "end": 7469.52, + "probability": 0.7724 + }, + { + "start": 7469.98, + "end": 7473.52, + "probability": 0.9463 + }, + { + "start": 7474.14, + "end": 7476.88, + "probability": 0.936 + }, + { + "start": 7477.54, + "end": 7482.22, + "probability": 0.8696 + }, + { + "start": 7482.42, + "end": 7483.26, + "probability": 0.4451 + }, + { + "start": 7483.72, + "end": 7486.58, + "probability": 0.9019 + }, + { + "start": 7487.12, + "end": 7489.02, + "probability": 0.8661 + }, + { + "start": 7489.6, + "end": 7491.92, + "probability": 0.877 + }, + { + "start": 7492.3, + "end": 7493.8, + "probability": 0.8911 + }, + { + "start": 7493.9, + "end": 7494.52, + "probability": 0.6823 + }, + { + "start": 7494.92, + "end": 7499.42, + "probability": 0.9412 + }, + { + "start": 7500.0, + "end": 7501.04, + "probability": 0.963 + }, + { + "start": 7502.06, + "end": 7503.96, + "probability": 0.9946 + }, + { + "start": 7504.56, + "end": 7508.16, + "probability": 0.9834 + }, + { + "start": 7508.16, + "end": 7511.66, + "probability": 0.9989 + }, + { + "start": 7512.14, + "end": 7512.8, + "probability": 0.6885 + }, + { + "start": 7513.74, + "end": 7513.94, + "probability": 0.2595 + }, + { + "start": 7514.14, + "end": 7515.44, + "probability": 0.926 + }, + { + "start": 7516.24, + "end": 7518.22, + "probability": 0.9693 + }, + { + "start": 7518.22, + "end": 7520.98, + "probability": 0.9897 + }, + { + "start": 7521.5, + "end": 7521.94, + "probability": 0.9997 + }, + { + "start": 7522.58, + "end": 7525.94, + "probability": 0.8527 + }, + { + "start": 7526.5, + "end": 7528.02, + "probability": 0.8408 + }, + { + "start": 7528.42, + "end": 7531.6, + "probability": 0.9761 + }, + { + "start": 7532.12, + "end": 7534.18, + "probability": 0.9787 + }, + { + "start": 7534.72, + "end": 7535.42, + "probability": 0.8281 + }, + { + "start": 7535.94, + "end": 7537.5, + "probability": 0.9963 + }, + { + "start": 7537.64, + "end": 7538.38, + "probability": 0.9248 + }, + { + "start": 7538.92, + "end": 7540.42, + "probability": 0.8562 + }, + { + "start": 7540.8, + "end": 7542.02, + "probability": 0.429 + }, + { + "start": 7542.12, + "end": 7542.76, + "probability": 0.75 + }, + { + "start": 7543.08, + "end": 7543.5, + "probability": 0.4702 + }, + { + "start": 7543.68, + "end": 7545.3, + "probability": 0.9147 + }, + { + "start": 7545.62, + "end": 7548.72, + "probability": 0.9968 + }, + { + "start": 7549.58, + "end": 7550.06, + "probability": 0.5299 + }, + { + "start": 7550.58, + "end": 7551.94, + "probability": 0.4815 + }, + { + "start": 7552.08, + "end": 7553.86, + "probability": 0.5618 + }, + { + "start": 7554.34, + "end": 7556.24, + "probability": 0.9307 + }, + { + "start": 7556.64, + "end": 7558.32, + "probability": 0.5202 + }, + { + "start": 7558.58, + "end": 7563.42, + "probability": 0.9688 + }, + { + "start": 7563.86, + "end": 7564.26, + "probability": 0.461 + }, + { + "start": 7564.86, + "end": 7566.26, + "probability": 0.9607 + }, + { + "start": 7566.34, + "end": 7567.1, + "probability": 0.8264 + }, + { + "start": 7567.56, + "end": 7568.26, + "probability": 0.9716 + }, + { + "start": 7570.32, + "end": 7573.68, + "probability": 0.9878 + }, + { + "start": 7573.74, + "end": 7574.7, + "probability": 0.9595 + }, + { + "start": 7575.16, + "end": 7575.66, + "probability": 0.7079 + }, + { + "start": 7575.86, + "end": 7576.72, + "probability": 0.9332 + }, + { + "start": 7576.82, + "end": 7578.88, + "probability": 0.8818 + }, + { + "start": 7579.4, + "end": 7580.1, + "probability": 0.9194 + }, + { + "start": 7580.64, + "end": 7582.8, + "probability": 0.9926 + }, + { + "start": 7582.8, + "end": 7586.02, + "probability": 0.9737 + }, + { + "start": 7587.28, + "end": 7590.42, + "probability": 0.7915 + }, + { + "start": 7590.84, + "end": 7593.54, + "probability": 0.9924 + }, + { + "start": 7593.58, + "end": 7595.48, + "probability": 0.9348 + }, + { + "start": 7595.68, + "end": 7596.52, + "probability": 0.9049 + }, + { + "start": 7596.92, + "end": 7599.64, + "probability": 0.9785 + }, + { + "start": 7600.9, + "end": 7602.12, + "probability": 0.7238 + }, + { + "start": 7602.38, + "end": 7604.35, + "probability": 0.9819 + }, + { + "start": 7605.06, + "end": 7607.54, + "probability": 0.887 + }, + { + "start": 7607.66, + "end": 7609.32, + "probability": 0.9197 + }, + { + "start": 7609.86, + "end": 7610.26, + "probability": 0.7858 + }, + { + "start": 7612.22, + "end": 7612.58, + "probability": 0.838 + }, + { + "start": 7612.6, + "end": 7613.36, + "probability": 0.6015 + }, + { + "start": 7613.62, + "end": 7614.52, + "probability": 0.8179 + }, + { + "start": 7614.92, + "end": 7615.7, + "probability": 0.745 + }, + { + "start": 7615.84, + "end": 7616.34, + "probability": 0.7093 + }, + { + "start": 7616.74, + "end": 7617.74, + "probability": 0.9128 + }, + { + "start": 7618.16, + "end": 7619.12, + "probability": 0.9082 + }, + { + "start": 7619.26, + "end": 7619.82, + "probability": 0.915 + }, + { + "start": 7620.38, + "end": 7622.98, + "probability": 0.9916 + }, + { + "start": 7623.44, + "end": 7625.02, + "probability": 0.265 + }, + { + "start": 7625.04, + "end": 7626.48, + "probability": 0.6652 + }, + { + "start": 7626.88, + "end": 7627.72, + "probability": 0.3759 + }, + { + "start": 7628.12, + "end": 7629.24, + "probability": 0.8698 + }, + { + "start": 7630.16, + "end": 7634.8, + "probability": 0.874 + }, + { + "start": 7635.79, + "end": 7638.32, + "probability": 0.9545 + }, + { + "start": 7638.46, + "end": 7640.3, + "probability": 0.908 + }, + { + "start": 7640.72, + "end": 7644.18, + "probability": 0.6419 + }, + { + "start": 7644.48, + "end": 7646.36, + "probability": 0.695 + }, + { + "start": 7646.5, + "end": 7648.36, + "probability": 0.7726 + }, + { + "start": 7649.18, + "end": 7651.74, + "probability": 0.6462 + }, + { + "start": 7652.36, + "end": 7659.6, + "probability": 0.8086 + }, + { + "start": 7659.6, + "end": 7665.74, + "probability": 0.9497 + }, + { + "start": 7665.76, + "end": 7671.34, + "probability": 0.8578 + }, + { + "start": 7671.64, + "end": 7674.74, + "probability": 0.9941 + }, + { + "start": 7675.34, + "end": 7675.98, + "probability": 0.5661 + }, + { + "start": 7676.04, + "end": 7679.18, + "probability": 0.9794 + }, + { + "start": 7679.3, + "end": 7680.38, + "probability": 0.9625 + }, + { + "start": 7680.94, + "end": 7683.62, + "probability": 0.9961 + }, + { + "start": 7684.3, + "end": 7686.24, + "probability": 0.9777 + }, + { + "start": 7686.8, + "end": 7689.16, + "probability": 0.9771 + }, + { + "start": 7689.74, + "end": 7691.7, + "probability": 0.9754 + }, + { + "start": 7691.9, + "end": 7695.15, + "probability": 0.9531 + }, + { + "start": 7695.84, + "end": 7700.06, + "probability": 0.969 + }, + { + "start": 7700.52, + "end": 7701.94, + "probability": 0.6368 + }, + { + "start": 7702.5, + "end": 7704.1, + "probability": 0.9233 + }, + { + "start": 7704.14, + "end": 7706.76, + "probability": 0.9442 + }, + { + "start": 7707.18, + "end": 7709.12, + "probability": 0.6933 + }, + { + "start": 7709.46, + "end": 7711.54, + "probability": 0.9246 + }, + { + "start": 7712.0, + "end": 7716.26, + "probability": 0.973 + }, + { + "start": 7716.74, + "end": 7722.0, + "probability": 0.9751 + }, + { + "start": 7722.62, + "end": 7724.26, + "probability": 0.9944 + }, + { + "start": 7725.06, + "end": 7725.76, + "probability": 0.7439 + }, + { + "start": 7726.08, + "end": 7727.86, + "probability": 0.9803 + }, + { + "start": 7728.38, + "end": 7730.92, + "probability": 0.7352 + }, + { + "start": 7731.1, + "end": 7732.8, + "probability": 0.9324 + }, + { + "start": 7733.42, + "end": 7735.92, + "probability": 0.7519 + }, + { + "start": 7737.3, + "end": 7739.26, + "probability": 0.8792 + }, + { + "start": 7739.96, + "end": 7740.48, + "probability": 0.6868 + }, + { + "start": 7741.18, + "end": 7741.18, + "probability": 0.7929 + }, + { + "start": 7741.34, + "end": 7743.08, + "probability": 0.6021 + }, + { + "start": 7749.18, + "end": 7749.76, + "probability": 0.3926 + }, + { + "start": 7749.82, + "end": 7752.22, + "probability": 0.8775 + }, + { + "start": 7752.44, + "end": 7758.04, + "probability": 0.9144 + }, + { + "start": 7758.66, + "end": 7759.7, + "probability": 0.8663 + }, + { + "start": 7760.66, + "end": 7761.74, + "probability": 0.7599 + }, + { + "start": 7762.54, + "end": 7766.4, + "probability": 0.8589 + }, + { + "start": 7767.16, + "end": 7767.9, + "probability": 0.7545 + }, + { + "start": 7768.88, + "end": 7769.82, + "probability": 0.9938 + }, + { + "start": 7770.52, + "end": 7771.92, + "probability": 0.6555 + }, + { + "start": 7773.34, + "end": 7775.24, + "probability": 0.9929 + }, + { + "start": 7776.1, + "end": 7777.54, + "probability": 0.978 + }, + { + "start": 7779.3, + "end": 7783.66, + "probability": 0.9666 + }, + { + "start": 7784.56, + "end": 7785.46, + "probability": 0.9951 + }, + { + "start": 7786.42, + "end": 7788.88, + "probability": 0.5091 + }, + { + "start": 7789.82, + "end": 7791.52, + "probability": 0.7047 + }, + { + "start": 7792.18, + "end": 7794.56, + "probability": 0.8553 + }, + { + "start": 7795.18, + "end": 7799.34, + "probability": 0.8611 + }, + { + "start": 7801.6, + "end": 7805.46, + "probability": 0.9536 + }, + { + "start": 7806.12, + "end": 7807.92, + "probability": 0.9216 + }, + { + "start": 7808.32, + "end": 7810.64, + "probability": 0.9946 + }, + { + "start": 7811.18, + "end": 7814.06, + "probability": 0.8852 + }, + { + "start": 7814.16, + "end": 7814.72, + "probability": 0.8185 + }, + { + "start": 7815.22, + "end": 7816.3, + "probability": 0.5905 + }, + { + "start": 7816.46, + "end": 7817.09, + "probability": 0.8326 + }, + { + "start": 7818.34, + "end": 7819.96, + "probability": 0.8762 + }, + { + "start": 7821.14, + "end": 7822.54, + "probability": 0.9684 + }, + { + "start": 7823.1, + "end": 7826.34, + "probability": 0.7993 + }, + { + "start": 7826.46, + "end": 7828.3, + "probability": 0.8733 + }, + { + "start": 7828.78, + "end": 7830.0, + "probability": 0.9703 + }, + { + "start": 7830.86, + "end": 7834.18, + "probability": 0.9323 + }, + { + "start": 7834.24, + "end": 7835.94, + "probability": 0.7703 + }, + { + "start": 7836.7, + "end": 7838.16, + "probability": 0.9717 + }, + { + "start": 7838.5, + "end": 7840.68, + "probability": 0.9271 + }, + { + "start": 7840.86, + "end": 7841.65, + "probability": 0.5996 + }, + { + "start": 7842.42, + "end": 7844.77, + "probability": 0.67 + }, + { + "start": 7845.28, + "end": 7845.94, + "probability": 0.5303 + }, + { + "start": 7847.58, + "end": 7848.22, + "probability": 0.3588 + }, + { + "start": 7848.8, + "end": 7850.8, + "probability": 0.3262 + }, + { + "start": 7850.9, + "end": 7850.94, + "probability": 0.4858 + }, + { + "start": 7851.42, + "end": 7851.96, + "probability": 0.7631 + }, + { + "start": 7852.1, + "end": 7852.62, + "probability": 0.8422 + }, + { + "start": 7852.72, + "end": 7857.2, + "probability": 0.8337 + }, + { + "start": 7857.42, + "end": 7858.32, + "probability": 0.9904 + }, + { + "start": 7859.46, + "end": 7860.12, + "probability": 0.325 + }, + { + "start": 7869.98, + "end": 7871.62, + "probability": 0.0303 + }, + { + "start": 7872.72, + "end": 7873.4, + "probability": 0.0851 + } + ], + "segments_count": 2991, + "words_count": 14077, + "avg_words_per_segment": 4.7065, + "avg_segment_duration": 1.471, + "avg_words_per_minute": 104.6721, + "plenum_id": "31133", + "duration": 8069.2, + "title": null, + "plenum_date": "2013-08-28" +} \ No newline at end of file