diff --git "a/32777/metadata.json" "b/32777/metadata.json" new file mode 100644--- /dev/null +++ "b/32777/metadata.json" @@ -0,0 +1,24487 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "32777", + "quality_score": 0.8893, + "per_segment_quality_scores": [ + { + "start": 58.78, + "end": 62.94, + "probability": 0.7598 + }, + { + "start": 63.06, + "end": 64.48, + "probability": 0.7654 + }, + { + "start": 64.54, + "end": 66.26, + "probability": 0.9328 + }, + { + "start": 66.34, + "end": 68.5, + "probability": 0.9696 + }, + { + "start": 68.82, + "end": 72.06, + "probability": 0.9836 + }, + { + "start": 72.58, + "end": 75.42, + "probability": 0.7438 + }, + { + "start": 75.66, + "end": 75.82, + "probability": 0.6524 + }, + { + "start": 77.82, + "end": 78.76, + "probability": 0.8414 + }, + { + "start": 79.56, + "end": 82.76, + "probability": 0.829 + }, + { + "start": 84.32, + "end": 87.7, + "probability": 0.9584 + }, + { + "start": 87.82, + "end": 89.38, + "probability": 0.8397 + }, + { + "start": 89.52, + "end": 90.44, + "probability": 0.863 + }, + { + "start": 92.74, + "end": 99.64, + "probability": 0.7266 + }, + { + "start": 100.38, + "end": 105.6, + "probability": 0.8628 + }, + { + "start": 109.54, + "end": 110.76, + "probability": 0.7538 + }, + { + "start": 110.78, + "end": 111.28, + "probability": 0.8524 + }, + { + "start": 111.38, + "end": 112.72, + "probability": 0.9604 + }, + { + "start": 120.64, + "end": 121.58, + "probability": 0.1904 + }, + { + "start": 122.5, + "end": 128.46, + "probability": 0.0508 + }, + { + "start": 129.08, + "end": 129.18, + "probability": 0.0081 + }, + { + "start": 135.72, + "end": 137.68, + "probability": 0.1148 + }, + { + "start": 139.5, + "end": 143.5, + "probability": 0.1153 + }, + { + "start": 143.87, + "end": 145.97, + "probability": 0.0339 + }, + { + "start": 146.74, + "end": 147.74, + "probability": 0.101 + }, + { + "start": 148.32, + "end": 148.94, + "probability": 0.0426 + }, + { + "start": 149.22, + "end": 149.74, + "probability": 0.0429 + }, + { + "start": 149.74, + "end": 152.63, + "probability": 0.07 + }, + { + "start": 154.82, + "end": 161.18, + "probability": 0.0664 + }, + { + "start": 253.0, + "end": 253.0, + "probability": 0.0 + }, + { + "start": 253.0, + "end": 253.0, + "probability": 0.0 + }, + { + "start": 253.0, + "end": 253.0, + "probability": 0.0 + }, + { + "start": 253.0, + "end": 253.0, + "probability": 0.0 + }, + { + "start": 253.0, + "end": 253.0, + "probability": 0.0 + }, + { + "start": 253.0, + "end": 253.0, + "probability": 0.0 + }, + { + "start": 253.0, + "end": 253.0, + "probability": 0.0 + }, + { + "start": 253.0, + "end": 253.0, + "probability": 0.0 + }, + { + "start": 253.0, + "end": 253.0, + "probability": 0.0 + }, + { + "start": 253.0, + "end": 253.0, + "probability": 0.0 + }, + { + "start": 253.0, + "end": 253.0, + "probability": 0.0 + }, + { + "start": 253.0, + "end": 253.0, + "probability": 0.0 + }, + { + "start": 253.0, + "end": 253.0, + "probability": 0.0 + }, + { + "start": 253.0, + "end": 253.0, + "probability": 0.0 + }, + { + "start": 253.0, + "end": 253.0, + "probability": 0.0 + }, + { + "start": 253.0, + "end": 253.0, + "probability": 0.0 + }, + { + "start": 253.12, + "end": 253.48, + "probability": 0.0179 + }, + { + "start": 255.44, + "end": 257.56, + "probability": 0.0149 + }, + { + "start": 257.88, + "end": 258.66, + "probability": 0.0376 + }, + { + "start": 259.72, + "end": 266.22, + "probability": 0.0388 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 395.0, + "end": 395.0, + "probability": 0.0 + }, + { + "start": 406.74, + "end": 407.82, + "probability": 0.3793 + }, + { + "start": 407.82, + "end": 409.16, + "probability": 0.0522 + }, + { + "start": 411.1, + "end": 412.16, + "probability": 0.2506 + }, + { + "start": 412.16, + "end": 412.62, + "probability": 0.0346 + }, + { + "start": 412.62, + "end": 412.62, + "probability": 0.1906 + }, + { + "start": 412.62, + "end": 413.3, + "probability": 0.0414 + }, + { + "start": 413.34, + "end": 414.42, + "probability": 0.0595 + }, + { + "start": 416.55, + "end": 418.92, + "probability": 0.2528 + }, + { + "start": 420.48, + "end": 421.4, + "probability": 0.0498 + }, + { + "start": 421.56, + "end": 422.08, + "probability": 0.1219 + }, + { + "start": 422.08, + "end": 424.0, + "probability": 0.0289 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 530.0, + "end": 530.0, + "probability": 0.0 + }, + { + "start": 533.26, + "end": 537.2, + "probability": 0.9134 + }, + { + "start": 537.78, + "end": 539.74, + "probability": 0.9699 + }, + { + "start": 540.2, + "end": 541.66, + "probability": 0.7456 + }, + { + "start": 541.88, + "end": 542.48, + "probability": 0.8096 + }, + { + "start": 542.68, + "end": 543.64, + "probability": 0.9243 + }, + { + "start": 543.8, + "end": 549.8, + "probability": 0.9472 + }, + { + "start": 550.26, + "end": 555.02, + "probability": 0.9332 + }, + { + "start": 555.42, + "end": 557.24, + "probability": 0.9977 + }, + { + "start": 557.3, + "end": 558.0, + "probability": 0.8533 + }, + { + "start": 558.42, + "end": 559.9, + "probability": 0.7937 + }, + { + "start": 560.0, + "end": 562.5, + "probability": 0.9844 + }, + { + "start": 562.5, + "end": 564.88, + "probability": 0.7473 + }, + { + "start": 565.5, + "end": 567.24, + "probability": 0.7664 + }, + { + "start": 567.93, + "end": 569.9, + "probability": 0.6512 + }, + { + "start": 569.96, + "end": 571.4, + "probability": 0.8382 + }, + { + "start": 571.6, + "end": 572.88, + "probability": 0.5441 + }, + { + "start": 573.28, + "end": 576.78, + "probability": 0.1504 + }, + { + "start": 577.28, + "end": 577.64, + "probability": 0.7876 + }, + { + "start": 577.74, + "end": 581.29, + "probability": 0.9791 + }, + { + "start": 581.52, + "end": 582.98, + "probability": 0.91 + }, + { + "start": 583.64, + "end": 589.4, + "probability": 0.8085 + }, + { + "start": 589.9, + "end": 591.58, + "probability": 0.6688 + }, + { + "start": 591.9, + "end": 593.98, + "probability": 0.9863 + }, + { + "start": 594.38, + "end": 597.58, + "probability": 0.8195 + }, + { + "start": 598.06, + "end": 599.36, + "probability": 0.7482 + }, + { + "start": 602.96, + "end": 604.2, + "probability": 0.7913 + }, + { + "start": 604.7, + "end": 608.96, + "probability": 0.9862 + }, + { + "start": 609.44, + "end": 615.58, + "probability": 0.9553 + }, + { + "start": 616.04, + "end": 620.2, + "probability": 0.984 + }, + { + "start": 620.6, + "end": 625.44, + "probability": 0.9736 + }, + { + "start": 626.04, + "end": 628.46, + "probability": 0.8828 + }, + { + "start": 628.46, + "end": 633.66, + "probability": 0.854 + }, + { + "start": 634.92, + "end": 635.54, + "probability": 0.5391 + }, + { + "start": 635.98, + "end": 638.02, + "probability": 0.7249 + }, + { + "start": 638.7, + "end": 640.14, + "probability": 0.9381 + }, + { + "start": 640.92, + "end": 646.42, + "probability": 0.9821 + }, + { + "start": 647.02, + "end": 650.74, + "probability": 0.968 + }, + { + "start": 650.94, + "end": 651.48, + "probability": 0.4619 + }, + { + "start": 651.54, + "end": 653.98, + "probability": 0.9844 + }, + { + "start": 654.06, + "end": 654.94, + "probability": 0.7601 + }, + { + "start": 655.28, + "end": 656.0, + "probability": 0.557 + }, + { + "start": 656.74, + "end": 657.96, + "probability": 0.9634 + }, + { + "start": 658.36, + "end": 661.1, + "probability": 0.984 + }, + { + "start": 661.4, + "end": 661.72, + "probability": 0.4249 + }, + { + "start": 661.74, + "end": 662.66, + "probability": 0.6455 + }, + { + "start": 662.78, + "end": 670.0, + "probability": 0.8522 + }, + { + "start": 670.52, + "end": 675.24, + "probability": 0.9889 + }, + { + "start": 675.38, + "end": 680.48, + "probability": 0.9757 + }, + { + "start": 680.68, + "end": 682.1, + "probability": 0.9112 + }, + { + "start": 683.56, + "end": 684.25, + "probability": 0.667 + }, + { + "start": 684.68, + "end": 690.12, + "probability": 0.9682 + }, + { + "start": 691.04, + "end": 695.78, + "probability": 0.9841 + }, + { + "start": 696.76, + "end": 700.07, + "probability": 0.998 + }, + { + "start": 700.2, + "end": 705.88, + "probability": 0.9995 + }, + { + "start": 706.54, + "end": 707.4, + "probability": 0.4759 + }, + { + "start": 708.33, + "end": 712.74, + "probability": 0.9963 + }, + { + "start": 712.96, + "end": 717.52, + "probability": 0.9867 + }, + { + "start": 719.68, + "end": 721.82, + "probability": 0.7174 + }, + { + "start": 722.34, + "end": 723.22, + "probability": 0.3299 + }, + { + "start": 724.12, + "end": 727.2, + "probability": 0.6586 + }, + { + "start": 727.56, + "end": 732.16, + "probability": 0.8929 + }, + { + "start": 732.36, + "end": 734.79, + "probability": 0.8759 + }, + { + "start": 735.12, + "end": 736.48, + "probability": 0.4977 + }, + { + "start": 737.76, + "end": 741.64, + "probability": 0.4302 + }, + { + "start": 741.64, + "end": 745.06, + "probability": 0.9232 + }, + { + "start": 749.3, + "end": 750.72, + "probability": 0.41 + }, + { + "start": 751.36, + "end": 752.52, + "probability": 0.0257 + }, + { + "start": 753.7, + "end": 757.64, + "probability": 0.6494 + }, + { + "start": 758.8, + "end": 761.14, + "probability": 0.7861 + }, + { + "start": 761.26, + "end": 766.02, + "probability": 0.9658 + }, + { + "start": 766.6, + "end": 768.28, + "probability": 0.9946 + }, + { + "start": 768.4, + "end": 769.12, + "probability": 0.162 + }, + { + "start": 769.12, + "end": 769.72, + "probability": 0.853 + }, + { + "start": 769.94, + "end": 774.88, + "probability": 0.811 + }, + { + "start": 774.92, + "end": 776.36, + "probability": 0.9324 + }, + { + "start": 776.96, + "end": 780.72, + "probability": 0.7696 + }, + { + "start": 781.74, + "end": 783.68, + "probability": 0.9958 + }, + { + "start": 783.72, + "end": 788.14, + "probability": 0.9926 + }, + { + "start": 788.5, + "end": 790.52, + "probability": 0.9937 + }, + { + "start": 790.58, + "end": 791.82, + "probability": 0.8514 + }, + { + "start": 792.28, + "end": 795.9, + "probability": 0.9895 + }, + { + "start": 796.04, + "end": 797.64, + "probability": 0.8174 + }, + { + "start": 797.92, + "end": 799.66, + "probability": 0.9529 + }, + { + "start": 800.52, + "end": 805.14, + "probability": 0.8392 + }, + { + "start": 805.7, + "end": 806.34, + "probability": 0.8842 + }, + { + "start": 807.38, + "end": 809.9, + "probability": 0.9406 + }, + { + "start": 810.02, + "end": 812.26, + "probability": 0.8657 + }, + { + "start": 812.96, + "end": 814.08, + "probability": 0.9377 + }, + { + "start": 814.28, + "end": 817.98, + "probability": 0.994 + }, + { + "start": 818.46, + "end": 820.18, + "probability": 0.9948 + }, + { + "start": 820.26, + "end": 821.06, + "probability": 0.8394 + }, + { + "start": 821.14, + "end": 822.92, + "probability": 0.949 + }, + { + "start": 823.42, + "end": 827.54, + "probability": 0.8545 + }, + { + "start": 828.06, + "end": 829.36, + "probability": 0.6099 + }, + { + "start": 830.04, + "end": 831.74, + "probability": 0.8439 + }, + { + "start": 831.88, + "end": 833.82, + "probability": 0.9945 + }, + { + "start": 833.94, + "end": 838.32, + "probability": 0.9948 + }, + { + "start": 838.54, + "end": 842.16, + "probability": 0.9932 + }, + { + "start": 843.0, + "end": 844.94, + "probability": 0.67 + }, + { + "start": 845.14, + "end": 848.36, + "probability": 0.9673 + }, + { + "start": 848.4, + "end": 851.76, + "probability": 0.9471 + }, + { + "start": 851.8, + "end": 851.8, + "probability": 0.392 + }, + { + "start": 851.82, + "end": 853.66, + "probability": 0.9006 + }, + { + "start": 853.76, + "end": 856.74, + "probability": 0.9889 + }, + { + "start": 856.82, + "end": 858.72, + "probability": 0.9985 + }, + { + "start": 858.86, + "end": 859.5, + "probability": 0.7822 + }, + { + "start": 859.78, + "end": 863.2, + "probability": 0.8835 + }, + { + "start": 863.34, + "end": 865.02, + "probability": 0.8158 + }, + { + "start": 865.04, + "end": 866.32, + "probability": 0.947 + }, + { + "start": 866.42, + "end": 866.42, + "probability": 0.3728 + }, + { + "start": 866.68, + "end": 868.16, + "probability": 0.971 + }, + { + "start": 868.34, + "end": 870.74, + "probability": 0.9424 + }, + { + "start": 870.8, + "end": 872.71, + "probability": 0.9915 + }, + { + "start": 873.14, + "end": 874.2, + "probability": 0.9601 + }, + { + "start": 874.28, + "end": 875.52, + "probability": 0.8307 + }, + { + "start": 876.48, + "end": 879.22, + "probability": 0.7853 + }, + { + "start": 879.3, + "end": 881.16, + "probability": 0.9647 + }, + { + "start": 881.7, + "end": 885.84, + "probability": 0.8629 + }, + { + "start": 886.5, + "end": 888.38, + "probability": 0.2162 + }, + { + "start": 889.0, + "end": 889.2, + "probability": 0.7605 + }, + { + "start": 889.22, + "end": 893.72, + "probability": 0.9861 + }, + { + "start": 893.72, + "end": 898.68, + "probability": 0.9717 + }, + { + "start": 898.76, + "end": 899.2, + "probability": 0.4533 + }, + { + "start": 899.24, + "end": 900.78, + "probability": 0.9532 + }, + { + "start": 901.22, + "end": 902.14, + "probability": 0.9722 + }, + { + "start": 902.32, + "end": 903.4, + "probability": 0.6594 + }, + { + "start": 903.64, + "end": 905.6, + "probability": 0.9111 + }, + { + "start": 905.84, + "end": 906.34, + "probability": 0.9116 + }, + { + "start": 906.42, + "end": 907.1, + "probability": 0.7891 + }, + { + "start": 907.18, + "end": 908.76, + "probability": 0.9274 + }, + { + "start": 908.94, + "end": 909.92, + "probability": 0.5857 + }, + { + "start": 909.98, + "end": 910.33, + "probability": 0.9211 + }, + { + "start": 910.66, + "end": 912.6, + "probability": 0.9731 + }, + { + "start": 912.68, + "end": 916.6, + "probability": 0.859 + }, + { + "start": 916.92, + "end": 920.66, + "probability": 0.9863 + }, + { + "start": 920.66, + "end": 924.24, + "probability": 0.9753 + }, + { + "start": 924.64, + "end": 926.15, + "probability": 0.6788 + }, + { + "start": 926.44, + "end": 928.44, + "probability": 0.9263 + }, + { + "start": 928.52, + "end": 929.44, + "probability": 0.9479 + }, + { + "start": 929.54, + "end": 930.54, + "probability": 0.8662 + }, + { + "start": 930.8, + "end": 931.7, + "probability": 0.9236 + }, + { + "start": 931.76, + "end": 938.4, + "probability": 0.9685 + }, + { + "start": 938.52, + "end": 941.25, + "probability": 0.8122 + }, + { + "start": 941.42, + "end": 943.86, + "probability": 0.72 + }, + { + "start": 943.96, + "end": 946.72, + "probability": 0.9111 + }, + { + "start": 946.96, + "end": 949.1, + "probability": 0.7976 + }, + { + "start": 949.26, + "end": 950.64, + "probability": 0.907 + }, + { + "start": 951.14, + "end": 954.32, + "probability": 0.9414 + }, + { + "start": 954.82, + "end": 955.32, + "probability": 0.3343 + }, + { + "start": 955.32, + "end": 956.7, + "probability": 0.9991 + }, + { + "start": 957.32, + "end": 958.72, + "probability": 0.968 + }, + { + "start": 958.8, + "end": 962.88, + "probability": 0.9706 + }, + { + "start": 963.18, + "end": 969.24, + "probability": 0.8824 + }, + { + "start": 969.54, + "end": 971.04, + "probability": 0.7212 + }, + { + "start": 971.14, + "end": 972.46, + "probability": 0.5385 + }, + { + "start": 972.78, + "end": 977.38, + "probability": 0.9917 + }, + { + "start": 977.56, + "end": 978.5, + "probability": 0.7687 + }, + { + "start": 978.92, + "end": 981.42, + "probability": 0.9788 + }, + { + "start": 981.82, + "end": 982.8, + "probability": 0.674 + }, + { + "start": 985.14, + "end": 988.84, + "probability": 0.1364 + }, + { + "start": 989.54, + "end": 990.22, + "probability": 0.1034 + }, + { + "start": 990.22, + "end": 990.54, + "probability": 0.0857 + }, + { + "start": 990.54, + "end": 990.54, + "probability": 0.3367 + }, + { + "start": 990.54, + "end": 990.54, + "probability": 0.3696 + }, + { + "start": 990.54, + "end": 991.31, + "probability": 0.2161 + }, + { + "start": 991.94, + "end": 993.23, + "probability": 0.675 + }, + { + "start": 993.38, + "end": 993.94, + "probability": 0.8003 + }, + { + "start": 994.22, + "end": 997.0, + "probability": 0.9625 + }, + { + "start": 997.04, + "end": 1000.52, + "probability": 0.9001 + }, + { + "start": 1000.64, + "end": 1001.72, + "probability": 0.8053 + }, + { + "start": 1002.0, + "end": 1003.46, + "probability": 0.7906 + }, + { + "start": 1003.76, + "end": 1004.76, + "probability": 0.8333 + }, + { + "start": 1004.96, + "end": 1007.98, + "probability": 0.6035 + }, + { + "start": 1008.04, + "end": 1011.64, + "probability": 0.9302 + }, + { + "start": 1011.68, + "end": 1012.66, + "probability": 0.7933 + }, + { + "start": 1013.26, + "end": 1014.44, + "probability": 0.8883 + }, + { + "start": 1014.62, + "end": 1018.4, + "probability": 0.8438 + }, + { + "start": 1018.5, + "end": 1020.01, + "probability": 0.8823 + }, + { + "start": 1021.14, + "end": 1025.88, + "probability": 0.9355 + }, + { + "start": 1025.94, + "end": 1030.28, + "probability": 0.4894 + }, + { + "start": 1030.36, + "end": 1034.58, + "probability": 0.9473 + }, + { + "start": 1034.86, + "end": 1038.04, + "probability": 0.7549 + }, + { + "start": 1038.72, + "end": 1041.96, + "probability": 0.9752 + }, + { + "start": 1042.06, + "end": 1044.3, + "probability": 0.8519 + }, + { + "start": 1049.78, + "end": 1052.26, + "probability": 0.6062 + }, + { + "start": 1053.38, + "end": 1055.28, + "probability": 0.9478 + }, + { + "start": 1056.1, + "end": 1058.7, + "probability": 0.9854 + }, + { + "start": 1058.88, + "end": 1059.38, + "probability": 0.7065 + }, + { + "start": 1059.46, + "end": 1059.94, + "probability": 0.9463 + }, + { + "start": 1060.02, + "end": 1060.7, + "probability": 0.9054 + }, + { + "start": 1060.8, + "end": 1061.93, + "probability": 0.8781 + }, + { + "start": 1062.64, + "end": 1064.36, + "probability": 0.7657 + }, + { + "start": 1065.25, + "end": 1068.82, + "probability": 0.736 + }, + { + "start": 1068.88, + "end": 1070.74, + "probability": 0.8638 + }, + { + "start": 1070.8, + "end": 1071.76, + "probability": 0.7668 + }, + { + "start": 1071.9, + "end": 1074.92, + "probability": 0.9934 + }, + { + "start": 1074.92, + "end": 1076.44, + "probability": 0.9685 + }, + { + "start": 1076.74, + "end": 1077.26, + "probability": 0.9802 + }, + { + "start": 1077.34, + "end": 1082.7, + "probability": 0.9979 + }, + { + "start": 1082.74, + "end": 1084.18, + "probability": 0.7668 + }, + { + "start": 1085.08, + "end": 1086.82, + "probability": 0.8654 + }, + { + "start": 1087.0, + "end": 1087.4, + "probability": 0.805 + }, + { + "start": 1087.46, + "end": 1089.1, + "probability": 0.9695 + }, + { + "start": 1089.1, + "end": 1092.48, + "probability": 0.9565 + }, + { + "start": 1092.56, + "end": 1095.72, + "probability": 0.7922 + }, + { + "start": 1095.84, + "end": 1096.6, + "probability": 0.5233 + }, + { + "start": 1096.74, + "end": 1098.4, + "probability": 0.9961 + }, + { + "start": 1099.3, + "end": 1099.74, + "probability": 0.3369 + }, + { + "start": 1099.74, + "end": 1101.44, + "probability": 0.8949 + }, + { + "start": 1101.54, + "end": 1103.9, + "probability": 0.8706 + }, + { + "start": 1104.06, + "end": 1106.62, + "probability": 0.9497 + }, + { + "start": 1107.2, + "end": 1111.68, + "probability": 0.924 + }, + { + "start": 1111.78, + "end": 1116.44, + "probability": 0.6325 + }, + { + "start": 1116.44, + "end": 1117.64, + "probability": 0.7595 + }, + { + "start": 1117.78, + "end": 1119.42, + "probability": 0.9302 + }, + { + "start": 1120.16, + "end": 1123.46, + "probability": 0.9976 + }, + { + "start": 1124.18, + "end": 1124.72, + "probability": 0.7425 + }, + { + "start": 1125.12, + "end": 1127.9, + "probability": 0.8816 + }, + { + "start": 1128.04, + "end": 1129.4, + "probability": 0.9893 + }, + { + "start": 1129.82, + "end": 1131.58, + "probability": 0.9567 + }, + { + "start": 1131.7, + "end": 1132.86, + "probability": 0.9259 + }, + { + "start": 1133.14, + "end": 1134.72, + "probability": 0.9843 + }, + { + "start": 1135.0, + "end": 1136.46, + "probability": 0.7561 + }, + { + "start": 1136.52, + "end": 1137.9, + "probability": 0.8844 + }, + { + "start": 1138.28, + "end": 1138.9, + "probability": 0.7637 + }, + { + "start": 1140.08, + "end": 1143.04, + "probability": 0.9327 + }, + { + "start": 1143.64, + "end": 1146.02, + "probability": 0.7555 + }, + { + "start": 1146.16, + "end": 1148.53, + "probability": 0.8602 + }, + { + "start": 1148.7, + "end": 1151.06, + "probability": 0.9764 + }, + { + "start": 1151.06, + "end": 1153.74, + "probability": 0.9985 + }, + { + "start": 1155.04, + "end": 1155.74, + "probability": 0.5208 + }, + { + "start": 1156.12, + "end": 1159.58, + "probability": 0.9967 + }, + { + "start": 1159.76, + "end": 1159.94, + "probability": 0.4332 + }, + { + "start": 1159.98, + "end": 1160.28, + "probability": 0.6987 + }, + { + "start": 1160.44, + "end": 1165.64, + "probability": 0.9637 + }, + { + "start": 1165.7, + "end": 1168.36, + "probability": 0.9453 + }, + { + "start": 1168.88, + "end": 1169.64, + "probability": 0.9906 + }, + { + "start": 1170.98, + "end": 1172.0, + "probability": 0.5176 + }, + { + "start": 1172.72, + "end": 1172.74, + "probability": 0.0552 + }, + { + "start": 1172.88, + "end": 1175.5, + "probability": 0.894 + }, + { + "start": 1175.66, + "end": 1176.85, + "probability": 0.7573 + }, + { + "start": 1177.5, + "end": 1177.84, + "probability": 0.1873 + }, + { + "start": 1177.84, + "end": 1178.04, + "probability": 0.1571 + }, + { + "start": 1178.2, + "end": 1179.3, + "probability": 0.6577 + }, + { + "start": 1179.32, + "end": 1181.32, + "probability": 0.8295 + }, + { + "start": 1181.4, + "end": 1182.51, + "probability": 0.9956 + }, + { + "start": 1182.7, + "end": 1182.96, + "probability": 0.5351 + }, + { + "start": 1182.98, + "end": 1183.33, + "probability": 0.506 + }, + { + "start": 1183.46, + "end": 1184.98, + "probability": 0.2079 + }, + { + "start": 1185.22, + "end": 1186.62, + "probability": 0.5818 + }, + { + "start": 1186.62, + "end": 1189.08, + "probability": 0.6389 + }, + { + "start": 1189.6, + "end": 1190.44, + "probability": 0.792 + }, + { + "start": 1190.5, + "end": 1192.84, + "probability": 0.9784 + }, + { + "start": 1193.46, + "end": 1194.4, + "probability": 0.9535 + }, + { + "start": 1194.44, + "end": 1199.26, + "probability": 0.925 + }, + { + "start": 1199.36, + "end": 1202.94, + "probability": 0.93 + }, + { + "start": 1202.94, + "end": 1205.78, + "probability": 0.9951 + }, + { + "start": 1206.2, + "end": 1208.26, + "probability": 0.9948 + }, + { + "start": 1208.34, + "end": 1209.65, + "probability": 0.8569 + }, + { + "start": 1210.16, + "end": 1212.1, + "probability": 0.5665 + }, + { + "start": 1212.57, + "end": 1214.22, + "probability": 0.7482 + }, + { + "start": 1214.42, + "end": 1218.88, + "probability": 0.5746 + }, + { + "start": 1218.92, + "end": 1223.14, + "probability": 0.9697 + }, + { + "start": 1224.56, + "end": 1228.6, + "probability": 0.9232 + }, + { + "start": 1229.24, + "end": 1231.54, + "probability": 0.0113 + }, + { + "start": 1232.38, + "end": 1233.32, + "probability": 0.3083 + }, + { + "start": 1233.52, + "end": 1236.4, + "probability": 0.77 + }, + { + "start": 1237.6, + "end": 1237.6, + "probability": 0.0018 + }, + { + "start": 1237.6, + "end": 1240.06, + "probability": 0.3511 + }, + { + "start": 1241.12, + "end": 1241.46, + "probability": 0.604 + }, + { + "start": 1241.52, + "end": 1242.08, + "probability": 0.9331 + }, + { + "start": 1242.2, + "end": 1242.98, + "probability": 0.9593 + }, + { + "start": 1243.1, + "end": 1243.5, + "probability": 0.8793 + }, + { + "start": 1243.58, + "end": 1246.0, + "probability": 0.4263 + }, + { + "start": 1246.0, + "end": 1246.94, + "probability": 0.1412 + }, + { + "start": 1247.08, + "end": 1247.6, + "probability": 0.2368 + }, + { + "start": 1247.72, + "end": 1250.92, + "probability": 0.9755 + }, + { + "start": 1251.2, + "end": 1252.24, + "probability": 0.5475 + }, + { + "start": 1252.28, + "end": 1253.62, + "probability": 0.934 + }, + { + "start": 1253.64, + "end": 1255.38, + "probability": 0.9298 + }, + { + "start": 1255.44, + "end": 1257.3, + "probability": 0.7488 + }, + { + "start": 1257.54, + "end": 1261.0, + "probability": 0.8986 + }, + { + "start": 1261.14, + "end": 1263.06, + "probability": 0.9761 + }, + { + "start": 1263.68, + "end": 1266.82, + "probability": 0.8407 + }, + { + "start": 1268.82, + "end": 1272.14, + "probability": 0.7281 + }, + { + "start": 1272.26, + "end": 1272.76, + "probability": 0.9744 + }, + { + "start": 1272.84, + "end": 1276.82, + "probability": 0.9716 + }, + { + "start": 1277.14, + "end": 1279.7, + "probability": 0.6619 + }, + { + "start": 1279.7, + "end": 1284.06, + "probability": 0.9126 + }, + { + "start": 1284.68, + "end": 1285.04, + "probability": 0.4866 + }, + { + "start": 1285.34, + "end": 1287.58, + "probability": 0.9931 + }, + { + "start": 1287.76, + "end": 1289.94, + "probability": 0.8002 + }, + { + "start": 1290.78, + "end": 1294.42, + "probability": 0.99 + }, + { + "start": 1294.84, + "end": 1296.28, + "probability": 0.7214 + }, + { + "start": 1296.68, + "end": 1301.16, + "probability": 0.8808 + }, + { + "start": 1301.22, + "end": 1301.73, + "probability": 0.9658 + }, + { + "start": 1302.08, + "end": 1303.22, + "probability": 0.5009 + }, + { + "start": 1303.6, + "end": 1307.77, + "probability": 0.9982 + }, + { + "start": 1308.0, + "end": 1309.43, + "probability": 0.9839 + }, + { + "start": 1309.9, + "end": 1313.44, + "probability": 0.5328 + }, + { + "start": 1313.64, + "end": 1314.58, + "probability": 0.9797 + }, + { + "start": 1314.68, + "end": 1316.36, + "probability": 0.9775 + }, + { + "start": 1316.5, + "end": 1317.34, + "probability": 0.939 + }, + { + "start": 1317.58, + "end": 1319.42, + "probability": 0.9977 + }, + { + "start": 1319.56, + "end": 1323.32, + "probability": 0.9885 + }, + { + "start": 1323.42, + "end": 1327.72, + "probability": 0.9932 + }, + { + "start": 1327.78, + "end": 1333.0, + "probability": 0.9363 + }, + { + "start": 1333.42, + "end": 1334.66, + "probability": 0.923 + }, + { + "start": 1334.74, + "end": 1338.16, + "probability": 0.9985 + }, + { + "start": 1338.72, + "end": 1341.36, + "probability": 0.9975 + }, + { + "start": 1341.36, + "end": 1344.36, + "probability": 0.9955 + }, + { + "start": 1344.46, + "end": 1346.28, + "probability": 0.9472 + }, + { + "start": 1346.5, + "end": 1350.76, + "probability": 0.94 + }, + { + "start": 1350.94, + "end": 1352.12, + "probability": 0.9453 + }, + { + "start": 1353.1, + "end": 1355.06, + "probability": 0.7884 + }, + { + "start": 1355.14, + "end": 1355.52, + "probability": 0.848 + }, + { + "start": 1355.64, + "end": 1359.4, + "probability": 0.9731 + }, + { + "start": 1360.32, + "end": 1360.46, + "probability": 0.5989 + }, + { + "start": 1361.14, + "end": 1363.2, + "probability": 0.9878 + }, + { + "start": 1363.56, + "end": 1365.46, + "probability": 0.996 + }, + { + "start": 1365.82, + "end": 1369.58, + "probability": 0.9701 + }, + { + "start": 1369.82, + "end": 1373.7, + "probability": 0.9954 + }, + { + "start": 1374.02, + "end": 1379.34, + "probability": 0.9941 + }, + { + "start": 1379.44, + "end": 1380.74, + "probability": 0.8387 + }, + { + "start": 1381.1, + "end": 1382.02, + "probability": 0.9712 + }, + { + "start": 1382.32, + "end": 1383.6, + "probability": 0.948 + }, + { + "start": 1383.94, + "end": 1384.76, + "probability": 0.8861 + }, + { + "start": 1385.32, + "end": 1390.86, + "probability": 0.9525 + }, + { + "start": 1390.98, + "end": 1391.86, + "probability": 0.6182 + }, + { + "start": 1391.92, + "end": 1393.1, + "probability": 0.8628 + }, + { + "start": 1393.42, + "end": 1398.0, + "probability": 0.9248 + }, + { + "start": 1398.06, + "end": 1399.66, + "probability": 0.9344 + }, + { + "start": 1399.76, + "end": 1403.4, + "probability": 0.9904 + }, + { + "start": 1403.52, + "end": 1404.64, + "probability": 0.8228 + }, + { + "start": 1404.68, + "end": 1405.26, + "probability": 0.4766 + }, + { + "start": 1405.7, + "end": 1407.64, + "probability": 0.9846 + }, + { + "start": 1407.92, + "end": 1410.28, + "probability": 0.9789 + }, + { + "start": 1410.44, + "end": 1414.64, + "probability": 0.9921 + }, + { + "start": 1417.08, + "end": 1417.72, + "probability": 0.4979 + }, + { + "start": 1418.36, + "end": 1422.56, + "probability": 0.9399 + }, + { + "start": 1423.0, + "end": 1426.14, + "probability": 0.9971 + }, + { + "start": 1426.28, + "end": 1426.78, + "probability": 0.8051 + }, + { + "start": 1427.22, + "end": 1430.48, + "probability": 0.9884 + }, + { + "start": 1430.62, + "end": 1432.19, + "probability": 0.9073 + }, + { + "start": 1432.52, + "end": 1435.98, + "probability": 0.9735 + }, + { + "start": 1436.06, + "end": 1437.74, + "probability": 0.8331 + }, + { + "start": 1438.08, + "end": 1440.38, + "probability": 0.8894 + }, + { + "start": 1440.68, + "end": 1442.12, + "probability": 0.9423 + }, + { + "start": 1442.22, + "end": 1443.86, + "probability": 0.9261 + }, + { + "start": 1444.58, + "end": 1445.46, + "probability": 0.587 + }, + { + "start": 1445.84, + "end": 1448.82, + "probability": 0.9928 + }, + { + "start": 1448.96, + "end": 1450.6, + "probability": 0.9901 + }, + { + "start": 1451.3, + "end": 1452.18, + "probability": 0.8617 + }, + { + "start": 1452.24, + "end": 1456.5, + "probability": 0.9521 + }, + { + "start": 1456.56, + "end": 1459.82, + "probability": 0.8882 + }, + { + "start": 1460.1, + "end": 1462.46, + "probability": 0.9985 + }, + { + "start": 1462.46, + "end": 1465.0, + "probability": 0.4653 + }, + { + "start": 1465.28, + "end": 1470.0, + "probability": 0.6151 + }, + { + "start": 1470.28, + "end": 1470.94, + "probability": 0.7564 + }, + { + "start": 1471.0, + "end": 1472.64, + "probability": 0.9776 + }, + { + "start": 1472.8, + "end": 1474.94, + "probability": 0.8296 + }, + { + "start": 1475.04, + "end": 1477.0, + "probability": 0.9961 + }, + { + "start": 1477.38, + "end": 1478.22, + "probability": 0.8456 + }, + { + "start": 1478.32, + "end": 1479.26, + "probability": 0.9604 + }, + { + "start": 1479.38, + "end": 1480.8, + "probability": 0.9868 + }, + { + "start": 1481.16, + "end": 1484.94, + "probability": 0.9603 + }, + { + "start": 1485.28, + "end": 1485.8, + "probability": 0.92 + }, + { + "start": 1485.92, + "end": 1486.77, + "probability": 0.9856 + }, + { + "start": 1488.67, + "end": 1490.1, + "probability": 0.9943 + }, + { + "start": 1490.18, + "end": 1492.06, + "probability": 0.9713 + }, + { + "start": 1492.14, + "end": 1493.84, + "probability": 0.9813 + }, + { + "start": 1493.94, + "end": 1495.52, + "probability": 0.9828 + }, + { + "start": 1495.62, + "end": 1499.34, + "probability": 0.995 + }, + { + "start": 1499.6, + "end": 1506.52, + "probability": 0.9797 + }, + { + "start": 1506.98, + "end": 1507.12, + "probability": 0.2305 + }, + { + "start": 1507.34, + "end": 1510.48, + "probability": 0.8465 + }, + { + "start": 1510.48, + "end": 1513.36, + "probability": 0.9747 + }, + { + "start": 1513.42, + "end": 1516.14, + "probability": 0.9893 + }, + { + "start": 1516.3, + "end": 1519.36, + "probability": 0.8104 + }, + { + "start": 1519.72, + "end": 1523.06, + "probability": 0.9724 + }, + { + "start": 1523.06, + "end": 1528.84, + "probability": 0.9985 + }, + { + "start": 1529.14, + "end": 1532.78, + "probability": 0.9964 + }, + { + "start": 1532.88, + "end": 1533.84, + "probability": 0.8381 + }, + { + "start": 1533.86, + "end": 1534.34, + "probability": 0.882 + }, + { + "start": 1534.4, + "end": 1535.78, + "probability": 0.7581 + }, + { + "start": 1536.06, + "end": 1537.34, + "probability": 0.8631 + }, + { + "start": 1537.44, + "end": 1537.78, + "probability": 0.822 + }, + { + "start": 1539.36, + "end": 1541.72, + "probability": 0.8374 + }, + { + "start": 1541.8, + "end": 1543.36, + "probability": 0.5937 + }, + { + "start": 1545.32, + "end": 1547.4, + "probability": 0.968 + }, + { + "start": 1547.98, + "end": 1550.38, + "probability": 0.9373 + }, + { + "start": 1550.52, + "end": 1553.61, + "probability": 0.9811 + }, + { + "start": 1553.72, + "end": 1556.58, + "probability": 0.802 + }, + { + "start": 1556.68, + "end": 1558.38, + "probability": 0.8805 + }, + { + "start": 1559.1, + "end": 1559.44, + "probability": 0.4671 + }, + { + "start": 1559.74, + "end": 1565.42, + "probability": 0.9212 + }, + { + "start": 1565.52, + "end": 1567.2, + "probability": 0.3423 + }, + { + "start": 1568.16, + "end": 1571.9, + "probability": 0.7261 + }, + { + "start": 1572.44, + "end": 1573.18, + "probability": 0.6075 + }, + { + "start": 1573.28, + "end": 1573.98, + "probability": 0.5215 + }, + { + "start": 1574.04, + "end": 1574.84, + "probability": 0.6835 + }, + { + "start": 1576.7, + "end": 1580.1, + "probability": 0.1931 + }, + { + "start": 1582.18, + "end": 1584.46, + "probability": 0.1374 + }, + { + "start": 1594.62, + "end": 1594.96, + "probability": 0.1015 + }, + { + "start": 1594.96, + "end": 1595.58, + "probability": 0.0619 + }, + { + "start": 1595.58, + "end": 1595.58, + "probability": 0.0907 + }, + { + "start": 1595.58, + "end": 1598.32, + "probability": 0.6205 + }, + { + "start": 1598.6, + "end": 1601.6, + "probability": 0.9681 + }, + { + "start": 1601.66, + "end": 1605.76, + "probability": 0.9797 + }, + { + "start": 1610.12, + "end": 1613.4, + "probability": 0.9772 + }, + { + "start": 1613.4, + "end": 1617.04, + "probability": 0.9658 + }, + { + "start": 1617.44, + "end": 1620.52, + "probability": 0.1395 + }, + { + "start": 1620.66, + "end": 1623.7, + "probability": 0.8892 + }, + { + "start": 1624.3, + "end": 1628.36, + "probability": 0.9626 + }, + { + "start": 1634.66, + "end": 1636.06, + "probability": 0.4019 + }, + { + "start": 1636.06, + "end": 1637.24, + "probability": 0.3594 + }, + { + "start": 1637.76, + "end": 1641.88, + "probability": 0.9313 + }, + { + "start": 1649.28, + "end": 1649.3, + "probability": 0.0568 + }, + { + "start": 1649.3, + "end": 1651.8, + "probability": 0.5226 + }, + { + "start": 1651.9, + "end": 1653.16, + "probability": 0.2531 + }, + { + "start": 1653.16, + "end": 1656.34, + "probability": 0.374 + }, + { + "start": 1656.78, + "end": 1664.4, + "probability": 0.7656 + }, + { + "start": 1664.72, + "end": 1665.0, + "probability": 0.0392 + }, + { + "start": 1665.0, + "end": 1666.69, + "probability": 0.4279 + }, + { + "start": 1666.94, + "end": 1669.3, + "probability": 0.8641 + }, + { + "start": 1669.76, + "end": 1671.62, + "probability": 0.913 + }, + { + "start": 1672.28, + "end": 1674.12, + "probability": 0.9684 + }, + { + "start": 1674.68, + "end": 1675.84, + "probability": 0.7548 + }, + { + "start": 1676.36, + "end": 1678.96, + "probability": 0.7914 + }, + { + "start": 1679.42, + "end": 1680.92, + "probability": 0.9579 + }, + { + "start": 1681.06, + "end": 1682.02, + "probability": 0.938 + }, + { + "start": 1682.48, + "end": 1684.64, + "probability": 0.9739 + }, + { + "start": 1684.64, + "end": 1687.5, + "probability": 0.9109 + }, + { + "start": 1687.76, + "end": 1689.92, + "probability": 0.9564 + }, + { + "start": 1689.96, + "end": 1691.78, + "probability": 0.9983 + }, + { + "start": 1692.04, + "end": 1692.56, + "probability": 0.7895 + }, + { + "start": 1693.26, + "end": 1695.38, + "probability": 0.9723 + }, + { + "start": 1695.54, + "end": 1696.83, + "probability": 0.9775 + }, + { + "start": 1697.56, + "end": 1697.82, + "probability": 0.549 + }, + { + "start": 1697.96, + "end": 1698.58, + "probability": 0.8655 + }, + { + "start": 1698.64, + "end": 1699.26, + "probability": 0.9758 + }, + { + "start": 1699.32, + "end": 1700.14, + "probability": 0.9666 + }, + { + "start": 1700.22, + "end": 1701.34, + "probability": 0.884 + }, + { + "start": 1701.74, + "end": 1703.76, + "probability": 0.9972 + }, + { + "start": 1703.92, + "end": 1705.6, + "probability": 0.5178 + }, + { + "start": 1706.3, + "end": 1708.32, + "probability": 0.9825 + }, + { + "start": 1708.44, + "end": 1709.14, + "probability": 0.7538 + }, + { + "start": 1709.46, + "end": 1710.96, + "probability": 0.9834 + }, + { + "start": 1711.12, + "end": 1711.78, + "probability": 0.6796 + }, + { + "start": 1712.22, + "end": 1713.64, + "probability": 0.8056 + }, + { + "start": 1714.02, + "end": 1715.18, + "probability": 0.9862 + }, + { + "start": 1715.24, + "end": 1715.9, + "probability": 0.9928 + }, + { + "start": 1715.96, + "end": 1717.26, + "probability": 0.7204 + }, + { + "start": 1718.0, + "end": 1718.54, + "probability": 0.8907 + }, + { + "start": 1718.7, + "end": 1720.58, + "probability": 0.9518 + }, + { + "start": 1720.98, + "end": 1722.46, + "probability": 0.9164 + }, + { + "start": 1722.84, + "end": 1723.76, + "probability": 0.6464 + }, + { + "start": 1723.82, + "end": 1725.58, + "probability": 0.9726 + }, + { + "start": 1726.18, + "end": 1728.48, + "probability": 0.9774 + }, + { + "start": 1729.08, + "end": 1731.24, + "probability": 0.9709 + }, + { + "start": 1731.24, + "end": 1733.22, + "probability": 0.9915 + }, + { + "start": 1733.48, + "end": 1734.5, + "probability": 0.9712 + }, + { + "start": 1735.38, + "end": 1738.5, + "probability": 0.9284 + }, + { + "start": 1738.88, + "end": 1740.6, + "probability": 0.9641 + }, + { + "start": 1740.68, + "end": 1741.98, + "probability": 0.9133 + }, + { + "start": 1742.6, + "end": 1745.74, + "probability": 0.9917 + }, + { + "start": 1746.04, + "end": 1746.92, + "probability": 0.9692 + }, + { + "start": 1747.14, + "end": 1749.02, + "probability": 0.9707 + }, + { + "start": 1749.52, + "end": 1751.4, + "probability": 0.9968 + }, + { + "start": 1751.56, + "end": 1754.36, + "probability": 0.7971 + }, + { + "start": 1754.84, + "end": 1755.46, + "probability": 0.7075 + }, + { + "start": 1755.48, + "end": 1756.24, + "probability": 0.8814 + }, + { + "start": 1756.32, + "end": 1758.46, + "probability": 0.9858 + }, + { + "start": 1758.76, + "end": 1759.03, + "probability": 0.0101 + }, + { + "start": 1759.66, + "end": 1761.32, + "probability": 0.9858 + }, + { + "start": 1761.92, + "end": 1764.4, + "probability": 0.9915 + }, + { + "start": 1764.4, + "end": 1767.4, + "probability": 0.9934 + }, + { + "start": 1767.96, + "end": 1768.82, + "probability": 0.9862 + }, + { + "start": 1768.96, + "end": 1770.0, + "probability": 0.7712 + }, + { + "start": 1770.12, + "end": 1772.48, + "probability": 0.827 + }, + { + "start": 1772.54, + "end": 1774.2, + "probability": 0.8294 + }, + { + "start": 1774.3, + "end": 1775.88, + "probability": 0.9446 + }, + { + "start": 1776.8, + "end": 1780.9, + "probability": 0.8746 + }, + { + "start": 1781.1, + "end": 1782.02, + "probability": 0.9655 + }, + { + "start": 1782.46, + "end": 1783.58, + "probability": 0.9949 + }, + { + "start": 1783.62, + "end": 1784.2, + "probability": 0.8116 + }, + { + "start": 1784.32, + "end": 1785.16, + "probability": 0.9169 + }, + { + "start": 1785.66, + "end": 1788.79, + "probability": 0.9294 + }, + { + "start": 1789.76, + "end": 1791.86, + "probability": 0.8233 + }, + { + "start": 1792.26, + "end": 1793.82, + "probability": 0.9824 + }, + { + "start": 1793.88, + "end": 1795.22, + "probability": 0.9554 + }, + { + "start": 1795.3, + "end": 1796.46, + "probability": 0.9941 + }, + { + "start": 1796.86, + "end": 1800.28, + "probability": 0.9861 + }, + { + "start": 1800.9, + "end": 1803.96, + "probability": 0.9267 + }, + { + "start": 1804.4, + "end": 1807.82, + "probability": 0.9824 + }, + { + "start": 1808.02, + "end": 1810.58, + "probability": 0.9534 + }, + { + "start": 1810.58, + "end": 1813.44, + "probability": 0.9827 + }, + { + "start": 1813.5, + "end": 1814.6, + "probability": 0.7908 + }, + { + "start": 1814.8, + "end": 1816.04, + "probability": 0.9902 + }, + { + "start": 1816.68, + "end": 1818.5, + "probability": 0.9934 + }, + { + "start": 1818.74, + "end": 1820.2, + "probability": 0.8113 + }, + { + "start": 1820.28, + "end": 1821.86, + "probability": 0.9181 + }, + { + "start": 1822.4, + "end": 1823.5, + "probability": 0.9509 + }, + { + "start": 1823.62, + "end": 1826.64, + "probability": 0.9985 + }, + { + "start": 1827.3, + "end": 1827.94, + "probability": 0.8014 + }, + { + "start": 1828.1, + "end": 1829.56, + "probability": 0.7554 + }, + { + "start": 1829.94, + "end": 1830.72, + "probability": 0.8807 + }, + { + "start": 1831.28, + "end": 1834.48, + "probability": 0.9937 + }, + { + "start": 1834.84, + "end": 1837.22, + "probability": 0.9619 + }, + { + "start": 1837.68, + "end": 1840.36, + "probability": 0.98 + }, + { + "start": 1840.98, + "end": 1841.42, + "probability": 0.6156 + }, + { + "start": 1841.5, + "end": 1842.85, + "probability": 0.9927 + }, + { + "start": 1843.38, + "end": 1844.98, + "probability": 0.9453 + }, + { + "start": 1845.76, + "end": 1847.62, + "probability": 0.7725 + }, + { + "start": 1848.06, + "end": 1850.76, + "probability": 0.9915 + }, + { + "start": 1850.76, + "end": 1854.34, + "probability": 0.9966 + }, + { + "start": 1854.96, + "end": 1859.68, + "probability": 0.9303 + }, + { + "start": 1860.28, + "end": 1862.7, + "probability": 0.9675 + }, + { + "start": 1862.94, + "end": 1863.68, + "probability": 0.8936 + }, + { + "start": 1863.8, + "end": 1868.4, + "probability": 0.9307 + }, + { + "start": 1868.44, + "end": 1871.92, + "probability": 0.7301 + }, + { + "start": 1872.56, + "end": 1874.86, + "probability": 0.952 + }, + { + "start": 1875.14, + "end": 1878.64, + "probability": 0.853 + }, + { + "start": 1879.0, + "end": 1882.62, + "probability": 0.9954 + }, + { + "start": 1883.78, + "end": 1885.86, + "probability": 0.9693 + }, + { + "start": 1886.0, + "end": 1886.62, + "probability": 0.7621 + }, + { + "start": 1886.88, + "end": 1887.92, + "probability": 0.7321 + }, + { + "start": 1888.54, + "end": 1890.03, + "probability": 0.9609 + }, + { + "start": 1890.66, + "end": 1892.56, + "probability": 0.9835 + }, + { + "start": 1892.56, + "end": 1896.42, + "probability": 0.9913 + }, + { + "start": 1897.14, + "end": 1899.0, + "probability": 0.9762 + }, + { + "start": 1899.26, + "end": 1900.48, + "probability": 0.9945 + }, + { + "start": 1900.54, + "end": 1902.28, + "probability": 0.9956 + }, + { + "start": 1902.38, + "end": 1904.76, + "probability": 0.9335 + }, + { + "start": 1905.1, + "end": 1906.16, + "probability": 0.9305 + }, + { + "start": 1906.22, + "end": 1907.74, + "probability": 0.9979 + }, + { + "start": 1908.0, + "end": 1912.68, + "probability": 0.8417 + }, + { + "start": 1912.74, + "end": 1914.64, + "probability": 0.8734 + }, + { + "start": 1915.1, + "end": 1916.18, + "probability": 0.9988 + }, + { + "start": 1916.42, + "end": 1918.18, + "probability": 0.991 + }, + { + "start": 1918.38, + "end": 1920.46, + "probability": 0.998 + }, + { + "start": 1920.74, + "end": 1925.4, + "probability": 0.9883 + }, + { + "start": 1925.72, + "end": 1930.2, + "probability": 0.9866 + }, + { + "start": 1930.34, + "end": 1933.38, + "probability": 0.9956 + }, + { + "start": 1933.38, + "end": 1937.3, + "probability": 0.9589 + }, + { + "start": 1937.48, + "end": 1937.82, + "probability": 0.7193 + }, + { + "start": 1940.14, + "end": 1942.2, + "probability": 0.6823 + }, + { + "start": 1942.2, + "end": 1944.14, + "probability": 0.9865 + }, + { + "start": 1944.24, + "end": 1945.82, + "probability": 0.4632 + }, + { + "start": 1945.88, + "end": 1947.38, + "probability": 0.7943 + }, + { + "start": 1947.52, + "end": 1949.74, + "probability": 0.9878 + }, + { + "start": 1963.78, + "end": 1966.34, + "probability": 0.3295 + }, + { + "start": 1966.42, + "end": 1967.82, + "probability": 0.5211 + }, + { + "start": 1986.66, + "end": 1989.02, + "probability": 0.3651 + }, + { + "start": 1989.2, + "end": 1990.8, + "probability": 0.1295 + }, + { + "start": 1990.96, + "end": 1991.54, + "probability": 0.5941 + }, + { + "start": 1991.68, + "end": 1996.36, + "probability": 0.8214 + }, + { + "start": 1997.06, + "end": 1998.74, + "probability": 0.7505 + }, + { + "start": 1999.08, + "end": 1999.46, + "probability": 0.2115 + }, + { + "start": 1999.46, + "end": 2001.22, + "probability": 0.1318 + }, + { + "start": 2001.34, + "end": 2002.9, + "probability": 0.1284 + }, + { + "start": 2003.26, + "end": 2003.8, + "probability": 0.0682 + }, + { + "start": 2004.18, + "end": 2005.16, + "probability": 0.3108 + }, + { + "start": 2005.38, + "end": 2009.56, + "probability": 0.9396 + }, + { + "start": 2009.56, + "end": 2016.64, + "probability": 0.9442 + }, + { + "start": 2016.9, + "end": 2018.0, + "probability": 0.1161 + }, + { + "start": 2019.08, + "end": 2019.86, + "probability": 0.0968 + }, + { + "start": 2020.7, + "end": 2022.56, + "probability": 0.8825 + }, + { + "start": 2024.1, + "end": 2026.54, + "probability": 0.7324 + }, + { + "start": 2027.62, + "end": 2032.08, + "probability": 0.462 + }, + { + "start": 2033.1, + "end": 2034.34, + "probability": 0.0053 + }, + { + "start": 2037.78, + "end": 2041.1, + "probability": 0.1065 + }, + { + "start": 2043.0, + "end": 2045.82, + "probability": 0.1419 + }, + { + "start": 2046.18, + "end": 2047.42, + "probability": 0.6068 + }, + { + "start": 2047.66, + "end": 2050.24, + "probability": 0.2475 + }, + { + "start": 2050.32, + "end": 2051.82, + "probability": 0.4276 + }, + { + "start": 2058.5, + "end": 2059.26, + "probability": 0.1086 + }, + { + "start": 2065.38, + "end": 2067.33, + "probability": 0.0464 + }, + { + "start": 2067.48, + "end": 2067.48, + "probability": 0.0892 + }, + { + "start": 2067.48, + "end": 2067.48, + "probability": 0.1433 + }, + { + "start": 2067.48, + "end": 2068.18, + "probability": 0.1455 + }, + { + "start": 2071.8, + "end": 2072.98, + "probability": 0.0032 + }, + { + "start": 2074.81, + "end": 2076.46, + "probability": 0.0424 + }, + { + "start": 2076.46, + "end": 2076.46, + "probability": 0.0356 + }, + { + "start": 2076.46, + "end": 2076.97, + "probability": 0.0468 + }, + { + "start": 2078.02, + "end": 2078.51, + "probability": 0.3006 + }, + { + "start": 2078.82, + "end": 2081.18, + "probability": 0.4706 + }, + { + "start": 2082.24, + "end": 2085.22, + "probability": 0.6457 + }, + { + "start": 2086.07, + "end": 2089.78, + "probability": 0.8551 + }, + { + "start": 2091.45, + "end": 2094.44, + "probability": 0.9952 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.0, + "end": 2196.0, + "probability": 0.0 + }, + { + "start": 2196.6, + "end": 2196.62, + "probability": 0.033 + }, + { + "start": 2196.62, + "end": 2197.9, + "probability": 0.2918 + }, + { + "start": 2198.64, + "end": 2200.42, + "probability": 0.8778 + }, + { + "start": 2200.94, + "end": 2205.58, + "probability": 0.9816 + }, + { + "start": 2205.58, + "end": 2211.62, + "probability": 0.996 + }, + { + "start": 2212.62, + "end": 2212.9, + "probability": 0.4058 + }, + { + "start": 2212.96, + "end": 2217.14, + "probability": 0.9794 + }, + { + "start": 2217.48, + "end": 2220.72, + "probability": 0.6233 + }, + { + "start": 2221.22, + "end": 2222.6, + "probability": 0.3508 + }, + { + "start": 2222.64, + "end": 2227.04, + "probability": 0.8216 + }, + { + "start": 2227.48, + "end": 2228.0, + "probability": 0.3864 + }, + { + "start": 2228.56, + "end": 2231.34, + "probability": 0.9043 + }, + { + "start": 2231.58, + "end": 2235.42, + "probability": 0.8372 + }, + { + "start": 2235.7, + "end": 2246.44, + "probability": 0.8361 + }, + { + "start": 2247.1, + "end": 2251.4, + "probability": 0.7995 + }, + { + "start": 2251.62, + "end": 2254.8, + "probability": 0.9889 + }, + { + "start": 2254.92, + "end": 2255.66, + "probability": 0.7317 + }, + { + "start": 2256.0, + "end": 2258.04, + "probability": 0.93 + }, + { + "start": 2258.74, + "end": 2264.2, + "probability": 0.7942 + }, + { + "start": 2264.26, + "end": 2264.78, + "probability": 0.7406 + }, + { + "start": 2265.52, + "end": 2267.76, + "probability": 0.8232 + }, + { + "start": 2268.3, + "end": 2273.82, + "probability": 0.8774 + }, + { + "start": 2273.94, + "end": 2276.46, + "probability": 0.9083 + }, + { + "start": 2276.94, + "end": 2277.16, + "probability": 0.1299 + }, + { + "start": 2278.62, + "end": 2279.28, + "probability": 0.3117 + }, + { + "start": 2288.2, + "end": 2289.0, + "probability": 0.334 + }, + { + "start": 2289.06, + "end": 2290.74, + "probability": 0.5339 + }, + { + "start": 2291.2, + "end": 2295.84, + "probability": 0.9959 + }, + { + "start": 2295.84, + "end": 2300.02, + "probability": 0.9944 + }, + { + "start": 2300.62, + "end": 2300.94, + "probability": 0.3431 + }, + { + "start": 2301.04, + "end": 2305.19, + "probability": 0.9862 + }, + { + "start": 2305.58, + "end": 2306.96, + "probability": 0.9797 + }, + { + "start": 2307.06, + "end": 2310.52, + "probability": 0.9808 + }, + { + "start": 2311.12, + "end": 2312.9, + "probability": 0.9917 + }, + { + "start": 2312.98, + "end": 2318.6, + "probability": 0.9838 + }, + { + "start": 2318.6, + "end": 2323.96, + "probability": 0.7945 + }, + { + "start": 2324.58, + "end": 2325.04, + "probability": 0.382 + }, + { + "start": 2325.14, + "end": 2327.28, + "probability": 0.9922 + }, + { + "start": 2327.28, + "end": 2330.74, + "probability": 0.9877 + }, + { + "start": 2331.24, + "end": 2334.56, + "probability": 0.9289 + }, + { + "start": 2334.56, + "end": 2337.6, + "probability": 0.9547 + }, + { + "start": 2339.0, + "end": 2341.6, + "probability": 0.9962 + }, + { + "start": 2341.7, + "end": 2344.6, + "probability": 0.9741 + }, + { + "start": 2344.6, + "end": 2348.6, + "probability": 0.9908 + }, + { + "start": 2349.44, + "end": 2351.94, + "probability": 0.927 + }, + { + "start": 2351.94, + "end": 2354.48, + "probability": 0.8706 + }, + { + "start": 2354.56, + "end": 2355.92, + "probability": 0.8429 + }, + { + "start": 2356.52, + "end": 2356.86, + "probability": 0.5728 + }, + { + "start": 2357.0, + "end": 2358.4, + "probability": 0.7421 + }, + { + "start": 2358.56, + "end": 2361.94, + "probability": 0.9902 + }, + { + "start": 2362.06, + "end": 2365.6, + "probability": 0.9791 + }, + { + "start": 2365.72, + "end": 2366.02, + "probability": 0.8447 + }, + { + "start": 2366.12, + "end": 2367.49, + "probability": 0.9818 + }, + { + "start": 2367.94, + "end": 2371.02, + "probability": 0.9591 + }, + { + "start": 2371.18, + "end": 2372.94, + "probability": 0.9893 + }, + { + "start": 2373.26, + "end": 2375.32, + "probability": 0.9888 + }, + { + "start": 2375.82, + "end": 2377.7, + "probability": 0.8894 + }, + { + "start": 2377.82, + "end": 2381.1, + "probability": 0.9897 + }, + { + "start": 2381.26, + "end": 2384.52, + "probability": 0.9959 + }, + { + "start": 2385.06, + "end": 2386.18, + "probability": 0.9115 + }, + { + "start": 2386.32, + "end": 2387.44, + "probability": 0.8252 + }, + { + "start": 2387.5, + "end": 2392.26, + "probability": 0.9857 + }, + { + "start": 2392.62, + "end": 2393.34, + "probability": 0.8251 + }, + { + "start": 2393.92, + "end": 2395.42, + "probability": 0.7106 + }, + { + "start": 2395.94, + "end": 2398.4, + "probability": 0.8073 + }, + { + "start": 2399.02, + "end": 2401.04, + "probability": 0.2899 + }, + { + "start": 2401.2, + "end": 2401.76, + "probability": 0.7164 + }, + { + "start": 2401.76, + "end": 2402.99, + "probability": 0.9622 + }, + { + "start": 2403.26, + "end": 2405.8, + "probability": 0.9805 + }, + { + "start": 2406.04, + "end": 2407.76, + "probability": 0.8718 + }, + { + "start": 2407.94, + "end": 2412.22, + "probability": 0.9766 + }, + { + "start": 2412.22, + "end": 2415.92, + "probability": 0.9818 + }, + { + "start": 2416.12, + "end": 2418.34, + "probability": 0.1209 + }, + { + "start": 2418.66, + "end": 2419.78, + "probability": 0.7068 + }, + { + "start": 2419.82, + "end": 2421.12, + "probability": 0.5882 + }, + { + "start": 2421.2, + "end": 2421.78, + "probability": 0.5807 + }, + { + "start": 2421.84, + "end": 2423.34, + "probability": 0.8615 + }, + { + "start": 2445.38, + "end": 2449.64, + "probability": 0.0684 + }, + { + "start": 2449.64, + "end": 2449.64, + "probability": 0.1074 + }, + { + "start": 2449.64, + "end": 2449.64, + "probability": 0.0361 + }, + { + "start": 2449.64, + "end": 2452.72, + "probability": 0.1458 + }, + { + "start": 2452.72, + "end": 2454.34, + "probability": 0.069 + }, + { + "start": 2454.34, + "end": 2454.34, + "probability": 0.0356 + }, + { + "start": 2454.34, + "end": 2454.34, + "probability": 0.0179 + }, + { + "start": 2454.34, + "end": 2455.9, + "probability": 0.6191 + }, + { + "start": 2459.92, + "end": 2466.24, + "probability": 0.7753 + }, + { + "start": 2466.7, + "end": 2468.4, + "probability": 0.0956 + }, + { + "start": 2469.02, + "end": 2473.82, + "probability": 0.8915 + }, + { + "start": 2474.3, + "end": 2475.74, + "probability": 0.5384 + }, + { + "start": 2476.56, + "end": 2480.1, + "probability": 0.8143 + }, + { + "start": 2482.02, + "end": 2483.08, + "probability": 0.7487 + }, + { + "start": 2483.26, + "end": 2484.5, + "probability": 0.7461 + }, + { + "start": 2484.7, + "end": 2486.2, + "probability": 0.8125 + }, + { + "start": 2486.86, + "end": 2490.42, + "probability": 0.9811 + }, + { + "start": 2491.3, + "end": 2494.39, + "probability": 0.9277 + }, + { + "start": 2494.9, + "end": 2498.1, + "probability": 0.9969 + }, + { + "start": 2498.1, + "end": 2501.16, + "probability": 0.9992 + }, + { + "start": 2502.54, + "end": 2504.92, + "probability": 0.7733 + }, + { + "start": 2504.92, + "end": 2508.54, + "probability": 0.9902 + }, + { + "start": 2509.22, + "end": 2509.97, + "probability": 0.1709 + }, + { + "start": 2510.96, + "end": 2511.18, + "probability": 0.343 + }, + { + "start": 2511.34, + "end": 2514.74, + "probability": 0.8366 + }, + { + "start": 2514.8, + "end": 2517.78, + "probability": 0.9377 + }, + { + "start": 2518.04, + "end": 2521.72, + "probability": 0.9312 + }, + { + "start": 2521.72, + "end": 2525.4, + "probability": 0.9943 + }, + { + "start": 2525.6, + "end": 2530.22, + "probability": 0.8647 + }, + { + "start": 2530.36, + "end": 2531.58, + "probability": 0.9626 + }, + { + "start": 2531.92, + "end": 2532.72, + "probability": 0.6728 + }, + { + "start": 2533.1, + "end": 2538.52, + "probability": 0.9072 + }, + { + "start": 2539.52, + "end": 2543.42, + "probability": 0.9703 + }, + { + "start": 2543.86, + "end": 2549.62, + "probability": 0.9854 + }, + { + "start": 2550.04, + "end": 2551.84, + "probability": 0.9796 + }, + { + "start": 2552.26, + "end": 2554.44, + "probability": 0.8809 + }, + { + "start": 2554.74, + "end": 2558.06, + "probability": 0.9982 + }, + { + "start": 2558.88, + "end": 2559.06, + "probability": 0.4789 + }, + { + "start": 2559.28, + "end": 2560.08, + "probability": 0.9537 + }, + { + "start": 2560.14, + "end": 2561.4, + "probability": 0.9302 + }, + { + "start": 2561.82, + "end": 2565.48, + "probability": 0.9682 + }, + { + "start": 2566.18, + "end": 2569.98, + "probability": 0.931 + }, + { + "start": 2569.98, + "end": 2572.46, + "probability": 0.9935 + }, + { + "start": 2574.74, + "end": 2576.8, + "probability": 0.5768 + }, + { + "start": 2576.92, + "end": 2577.48, + "probability": 0.4723 + }, + { + "start": 2577.5, + "end": 2578.0, + "probability": 0.6922 + }, + { + "start": 2578.22, + "end": 2581.52, + "probability": 0.7632 + }, + { + "start": 2581.9, + "end": 2584.2, + "probability": 0.9893 + }, + { + "start": 2584.2, + "end": 2588.64, + "probability": 0.892 + }, + { + "start": 2590.12, + "end": 2594.24, + "probability": 0.8857 + }, + { + "start": 2594.24, + "end": 2598.46, + "probability": 0.9966 + }, + { + "start": 2599.1, + "end": 2601.78, + "probability": 0.9743 + }, + { + "start": 2601.78, + "end": 2606.24, + "probability": 0.9663 + }, + { + "start": 2607.3, + "end": 2610.62, + "probability": 0.9985 + }, + { + "start": 2610.62, + "end": 2614.28, + "probability": 0.9889 + }, + { + "start": 2614.72, + "end": 2617.18, + "probability": 0.9475 + }, + { + "start": 2617.18, + "end": 2620.3, + "probability": 0.8243 + }, + { + "start": 2622.56, + "end": 2629.18, + "probability": 0.7307 + }, + { + "start": 2629.82, + "end": 2633.38, + "probability": 0.9766 + }, + { + "start": 2633.92, + "end": 2635.38, + "probability": 0.8738 + }, + { + "start": 2635.56, + "end": 2640.58, + "probability": 0.9502 + }, + { + "start": 2640.58, + "end": 2645.56, + "probability": 0.9966 + }, + { + "start": 2646.04, + "end": 2651.14, + "probability": 0.9827 + }, + { + "start": 2651.54, + "end": 2652.22, + "probability": 0.7291 + }, + { + "start": 2652.3, + "end": 2652.78, + "probability": 0.7741 + }, + { + "start": 2653.96, + "end": 2656.26, + "probability": 0.6555 + }, + { + "start": 2656.74, + "end": 2659.86, + "probability": 0.7554 + }, + { + "start": 2660.0, + "end": 2660.4, + "probability": 0.6625 + }, + { + "start": 2676.8, + "end": 2676.8, + "probability": 0.3219 + }, + { + "start": 2676.8, + "end": 2678.18, + "probability": 0.6533 + }, + { + "start": 2684.14, + "end": 2686.52, + "probability": 0.6708 + }, + { + "start": 2687.22, + "end": 2688.74, + "probability": 0.9673 + }, + { + "start": 2689.84, + "end": 2696.28, + "probability": 0.996 + }, + { + "start": 2697.04, + "end": 2701.28, + "probability": 0.6378 + }, + { + "start": 2702.0, + "end": 2704.48, + "probability": 0.979 + }, + { + "start": 2705.26, + "end": 2708.22, + "probability": 0.9864 + }, + { + "start": 2708.22, + "end": 2713.12, + "probability": 0.9631 + }, + { + "start": 2714.08, + "end": 2717.28, + "probability": 0.9991 + }, + { + "start": 2717.98, + "end": 2721.42, + "probability": 0.9937 + }, + { + "start": 2721.42, + "end": 2726.64, + "probability": 0.9855 + }, + { + "start": 2727.14, + "end": 2729.13, + "probability": 0.9717 + }, + { + "start": 2729.7, + "end": 2733.18, + "probability": 0.9729 + }, + { + "start": 2734.42, + "end": 2735.92, + "probability": 0.7106 + }, + { + "start": 2737.12, + "end": 2739.76, + "probability": 0.9928 + }, + { + "start": 2739.76, + "end": 2742.58, + "probability": 0.879 + }, + { + "start": 2743.32, + "end": 2746.96, + "probability": 0.9875 + }, + { + "start": 2747.6, + "end": 2753.12, + "probability": 0.9781 + }, + { + "start": 2753.64, + "end": 2759.03, + "probability": 0.9963 + }, + { + "start": 2759.56, + "end": 2760.2, + "probability": 0.672 + }, + { + "start": 2760.3, + "end": 2760.68, + "probability": 0.9337 + }, + { + "start": 2760.7, + "end": 2762.34, + "probability": 0.9415 + }, + { + "start": 2762.44, + "end": 2762.82, + "probability": 0.7937 + }, + { + "start": 2764.02, + "end": 2766.12, + "probability": 0.575 + }, + { + "start": 2766.7, + "end": 2768.77, + "probability": 0.9351 + }, + { + "start": 2769.58, + "end": 2774.86, + "probability": 0.9767 + }, + { + "start": 2775.8, + "end": 2776.56, + "probability": 0.5942 + }, + { + "start": 2776.96, + "end": 2778.7, + "probability": 0.2576 + }, + { + "start": 2778.92, + "end": 2783.17, + "probability": 0.8095 + }, + { + "start": 2783.78, + "end": 2784.56, + "probability": 0.666 + }, + { + "start": 2784.88, + "end": 2785.56, + "probability": 0.748 + }, + { + "start": 2785.8, + "end": 2786.72, + "probability": 0.872 + }, + { + "start": 2794.65, + "end": 2797.61, + "probability": 0.0721 + }, + { + "start": 2798.38, + "end": 2799.56, + "probability": 0.0327 + }, + { + "start": 2802.02, + "end": 2802.12, + "probability": 0.0342 + }, + { + "start": 2803.1, + "end": 2803.1, + "probability": 0.3289 + }, + { + "start": 2803.1, + "end": 2806.38, + "probability": 0.6864 + }, + { + "start": 2806.54, + "end": 2811.22, + "probability": 0.946 + }, + { + "start": 2811.34, + "end": 2815.1, + "probability": 0.9871 + }, + { + "start": 2821.86, + "end": 2825.26, + "probability": 0.9448 + }, + { + "start": 2825.56, + "end": 2828.88, + "probability": 0.9917 + }, + { + "start": 2829.18, + "end": 2831.2, + "probability": 0.2179 + }, + { + "start": 2831.3, + "end": 2834.32, + "probability": 0.9797 + }, + { + "start": 2834.36, + "end": 2835.28, + "probability": 0.645 + }, + { + "start": 2835.46, + "end": 2837.08, + "probability": 0.7671 + }, + { + "start": 2837.6, + "end": 2838.62, + "probability": 0.8716 + }, + { + "start": 2844.1, + "end": 2848.74, + "probability": 0.9895 + }, + { + "start": 2849.32, + "end": 2857.52, + "probability": 0.995 + }, + { + "start": 2858.22, + "end": 2861.0, + "probability": 0.9928 + }, + { + "start": 2861.6, + "end": 2865.02, + "probability": 0.7836 + }, + { + "start": 2865.8, + "end": 2868.34, + "probability": 0.7471 + }, + { + "start": 2869.22, + "end": 2870.4, + "probability": 0.9266 + }, + { + "start": 2870.52, + "end": 2872.1, + "probability": 0.9745 + }, + { + "start": 2872.18, + "end": 2877.08, + "probability": 0.9221 + }, + { + "start": 2878.06, + "end": 2881.76, + "probability": 0.9954 + }, + { + "start": 2882.02, + "end": 2885.28, + "probability": 0.9334 + }, + { + "start": 2885.88, + "end": 2889.92, + "probability": 0.9785 + }, + { + "start": 2890.08, + "end": 2892.76, + "probability": 0.9316 + }, + { + "start": 2892.9, + "end": 2894.8, + "probability": 0.9973 + }, + { + "start": 2895.26, + "end": 2897.36, + "probability": 0.6224 + }, + { + "start": 2898.94, + "end": 2901.32, + "probability": 0.847 + }, + { + "start": 2901.44, + "end": 2903.32, + "probability": 0.8364 + }, + { + "start": 2903.38, + "end": 2903.56, + "probability": 0.5813 + }, + { + "start": 2903.7, + "end": 2907.41, + "probability": 0.8688 + }, + { + "start": 2918.9, + "end": 2919.62, + "probability": 0.5074 + }, + { + "start": 2920.58, + "end": 2921.16, + "probability": 0.6675 + }, + { + "start": 2921.24, + "end": 2921.94, + "probability": 0.8913 + }, + { + "start": 2921.96, + "end": 2922.5, + "probability": 0.9581 + }, + { + "start": 2922.56, + "end": 2924.1, + "probability": 0.6777 + }, + { + "start": 2924.26, + "end": 2927.46, + "probability": 0.9605 + }, + { + "start": 2927.92, + "end": 2930.6, + "probability": 0.8391 + }, + { + "start": 2931.26, + "end": 2932.5, + "probability": 0.9727 + }, + { + "start": 2933.24, + "end": 2936.24, + "probability": 0.8778 + }, + { + "start": 2936.24, + "end": 2940.68, + "probability": 0.9973 + }, + { + "start": 2941.28, + "end": 2947.76, + "probability": 0.7325 + }, + { + "start": 2948.26, + "end": 2950.1, + "probability": 0.9861 + }, + { + "start": 2950.64, + "end": 2951.34, + "probability": 0.6949 + }, + { + "start": 2951.72, + "end": 2956.72, + "probability": 0.9453 + }, + { + "start": 2957.14, + "end": 2961.12, + "probability": 0.9987 + }, + { + "start": 2961.12, + "end": 2966.06, + "probability": 0.8667 + }, + { + "start": 2966.3, + "end": 2967.4, + "probability": 0.7932 + }, + { + "start": 2967.86, + "end": 2975.36, + "probability": 0.9916 + }, + { + "start": 2976.64, + "end": 2981.58, + "probability": 0.5025 + }, + { + "start": 2981.58, + "end": 2984.82, + "probability": 0.9875 + }, + { + "start": 2984.9, + "end": 2990.92, + "probability": 0.9766 + }, + { + "start": 2991.24, + "end": 2994.26, + "probability": 0.9705 + }, + { + "start": 2995.0, + "end": 2999.44, + "probability": 0.9055 + }, + { + "start": 3000.44, + "end": 3004.48, + "probability": 0.8098 + }, + { + "start": 3005.24, + "end": 3006.04, + "probability": 0.7911 + }, + { + "start": 3006.14, + "end": 3007.54, + "probability": 0.813 + }, + { + "start": 3007.56, + "end": 3013.42, + "probability": 0.9034 + }, + { + "start": 3014.18, + "end": 3015.74, + "probability": 0.5765 + }, + { + "start": 3017.3, + "end": 3019.46, + "probability": 0.8555 + }, + { + "start": 3019.6, + "end": 3022.39, + "probability": 0.7967 + }, + { + "start": 3023.32, + "end": 3025.3, + "probability": 0.2625 + }, + { + "start": 3025.74, + "end": 3028.54, + "probability": 0.9424 + }, + { + "start": 3028.98, + "end": 3029.44, + "probability": 0.5837 + }, + { + "start": 3029.54, + "end": 3030.02, + "probability": 0.5926 + }, + { + "start": 3030.1, + "end": 3030.9, + "probability": 0.6584 + }, + { + "start": 3044.95, + "end": 3050.96, + "probability": 0.0252 + }, + { + "start": 3050.96, + "end": 3051.18, + "probability": 0.0492 + }, + { + "start": 3051.18, + "end": 3051.84, + "probability": 0.0495 + }, + { + "start": 3051.84, + "end": 3054.9, + "probability": 0.2821 + }, + { + "start": 3056.54, + "end": 3059.34, + "probability": 0.0125 + }, + { + "start": 3059.34, + "end": 3064.02, + "probability": 0.0796 + }, + { + "start": 3064.02, + "end": 3065.68, + "probability": 0.087 + }, + { + "start": 3065.68, + "end": 3065.68, + "probability": 0.0486 + }, + { + "start": 3065.68, + "end": 3065.68, + "probability": 0.0188 + }, + { + "start": 3065.68, + "end": 3065.68, + "probability": 0.0445 + }, + { + "start": 3065.68, + "end": 3070.2, + "probability": 0.7671 + }, + { + "start": 3072.1, + "end": 3074.4, + "probability": 0.8582 + }, + { + "start": 3074.4, + "end": 3076.62, + "probability": 0.863 + }, + { + "start": 3076.78, + "end": 3077.26, + "probability": 0.915 + }, + { + "start": 3079.26, + "end": 3082.24, + "probability": 0.8923 + }, + { + "start": 3082.58, + "end": 3084.18, + "probability": 0.9684 + }, + { + "start": 3084.78, + "end": 3086.3, + "probability": 0.0496 + }, + { + "start": 3086.94, + "end": 3088.36, + "probability": 0.994 + }, + { + "start": 3088.46, + "end": 3090.3, + "probability": 0.5328 + }, + { + "start": 3090.36, + "end": 3092.66, + "probability": 0.5309 + }, + { + "start": 3099.3, + "end": 3102.04, + "probability": 0.5522 + }, + { + "start": 3102.16, + "end": 3102.54, + "probability": 0.599 + }, + { + "start": 3102.54, + "end": 3107.38, + "probability": 0.9953 + }, + { + "start": 3107.38, + "end": 3109.06, + "probability": 0.7447 + }, + { + "start": 3109.34, + "end": 3115.24, + "probability": 0.9644 + }, + { + "start": 3115.24, + "end": 3118.86, + "probability": 0.9976 + }, + { + "start": 3119.76, + "end": 3123.72, + "probability": 0.9536 + }, + { + "start": 3124.22, + "end": 3126.92, + "probability": 0.9006 + }, + { + "start": 3127.46, + "end": 3133.36, + "probability": 0.9536 + }, + { + "start": 3133.36, + "end": 3135.78, + "probability": 0.9888 + }, + { + "start": 3136.46, + "end": 3138.72, + "probability": 0.9707 + }, + { + "start": 3138.9, + "end": 3144.22, + "probability": 0.9921 + }, + { + "start": 3144.22, + "end": 3151.9, + "probability": 0.995 + }, + { + "start": 3151.9, + "end": 3160.3, + "probability": 0.9936 + }, + { + "start": 3161.04, + "end": 3166.74, + "probability": 0.9929 + }, + { + "start": 3166.9, + "end": 3169.36, + "probability": 0.9606 + }, + { + "start": 3169.5, + "end": 3171.06, + "probability": 0.9617 + }, + { + "start": 3171.1, + "end": 3173.2, + "probability": 0.9025 + }, + { + "start": 3173.34, + "end": 3176.88, + "probability": 0.9723 + }, + { + "start": 3177.2, + "end": 3182.12, + "probability": 0.9925 + }, + { + "start": 3182.66, + "end": 3185.9, + "probability": 0.7925 + }, + { + "start": 3185.9, + "end": 3189.92, + "probability": 0.9847 + }, + { + "start": 3190.1, + "end": 3190.42, + "probability": 0.7538 + }, + { + "start": 3191.98, + "end": 3195.4, + "probability": 0.62 + }, + { + "start": 3196.22, + "end": 3198.77, + "probability": 0.7511 + }, + { + "start": 3199.78, + "end": 3202.1, + "probability": 0.9076 + }, + { + "start": 3221.28, + "end": 3223.45, + "probability": 0.7223 + }, + { + "start": 3224.34, + "end": 3228.98, + "probability": 0.9429 + }, + { + "start": 3228.98, + "end": 3232.28, + "probability": 0.9773 + }, + { + "start": 3232.98, + "end": 3235.6, + "probability": 0.8367 + }, + { + "start": 3235.64, + "end": 3235.94, + "probability": 0.6189 + }, + { + "start": 3238.02, + "end": 3240.76, + "probability": 0.958 + }, + { + "start": 3240.94, + "end": 3242.54, + "probability": 0.9082 + }, + { + "start": 3242.62, + "end": 3244.78, + "probability": 0.9271 + }, + { + "start": 3245.4, + "end": 3245.8, + "probability": 0.531 + }, + { + "start": 3246.1, + "end": 3250.56, + "probability": 0.9633 + }, + { + "start": 3250.96, + "end": 3251.56, + "probability": 0.7568 + }, + { + "start": 3251.74, + "end": 3253.94, + "probability": 0.8939 + }, + { + "start": 3254.14, + "end": 3255.46, + "probability": 0.8522 + }, + { + "start": 3255.82, + "end": 3257.22, + "probability": 0.0706 + }, + { + "start": 3257.4, + "end": 3258.75, + "probability": 0.9092 + }, + { + "start": 3259.26, + "end": 3259.94, + "probability": 0.614 + }, + { + "start": 3260.04, + "end": 3260.52, + "probability": 0.6629 + }, + { + "start": 3260.68, + "end": 3261.52, + "probability": 0.7733 + }, + { + "start": 3268.56, + "end": 3270.3, + "probability": 0.1484 + }, + { + "start": 3271.72, + "end": 3273.18, + "probability": 0.0693 + }, + { + "start": 3273.94, + "end": 3276.32, + "probability": 0.1207 + }, + { + "start": 3276.32, + "end": 3276.4, + "probability": 0.0815 + }, + { + "start": 3276.4, + "end": 3276.4, + "probability": 0.1654 + }, + { + "start": 3276.4, + "end": 3276.4, + "probability": 0.5006 + }, + { + "start": 3276.4, + "end": 3279.98, + "probability": 0.7618 + }, + { + "start": 3280.42, + "end": 3283.18, + "probability": 0.9622 + }, + { + "start": 3283.22, + "end": 3286.04, + "probability": 0.8854 + }, + { + "start": 3286.16, + "end": 3289.9, + "probability": 0.9476 + }, + { + "start": 3293.36, + "end": 3296.64, + "probability": 0.9246 + }, + { + "start": 3298.22, + "end": 3304.5, + "probability": 0.6444 + }, + { + "start": 3305.22, + "end": 3308.72, + "probability": 0.8475 + }, + { + "start": 3309.38, + "end": 3311.9, + "probability": 0.9608 + }, + { + "start": 3312.92, + "end": 3314.24, + "probability": 0.952 + }, + { + "start": 3314.56, + "end": 3317.14, + "probability": 0.8226 + }, + { + "start": 3317.88, + "end": 3319.52, + "probability": 0.7743 + }, + { + "start": 3320.42, + "end": 3320.54, + "probability": 0.7006 + }, + { + "start": 3320.58, + "end": 3326.64, + "probability": 0.9621 + }, + { + "start": 3326.88, + "end": 3330.56, + "probability": 0.9919 + }, + { + "start": 3331.8, + "end": 3334.16, + "probability": 0.988 + }, + { + "start": 3334.16, + "end": 3337.36, + "probability": 0.8683 + }, + { + "start": 3338.16, + "end": 3342.27, + "probability": 0.9974 + }, + { + "start": 3342.36, + "end": 3347.6, + "probability": 0.9966 + }, + { + "start": 3348.36, + "end": 3351.88, + "probability": 0.8294 + }, + { + "start": 3352.52, + "end": 3354.4, + "probability": 0.866 + }, + { + "start": 3354.94, + "end": 3356.6, + "probability": 0.8309 + }, + { + "start": 3356.84, + "end": 3358.46, + "probability": 0.8173 + }, + { + "start": 3358.92, + "end": 3363.56, + "probability": 0.9915 + }, + { + "start": 3363.56, + "end": 3368.5, + "probability": 0.9626 + }, + { + "start": 3369.84, + "end": 3371.7, + "probability": 0.745 + }, + { + "start": 3372.26, + "end": 3375.42, + "probability": 0.9865 + }, + { + "start": 3375.8, + "end": 3376.69, + "probability": 0.9713 + }, + { + "start": 3377.52, + "end": 3380.44, + "probability": 0.9814 + }, + { + "start": 3381.02, + "end": 3382.02, + "probability": 0.8706 + }, + { + "start": 3382.12, + "end": 3385.44, + "probability": 0.993 + }, + { + "start": 3385.44, + "end": 3388.84, + "probability": 0.9889 + }, + { + "start": 3389.46, + "end": 3393.24, + "probability": 0.9885 + }, + { + "start": 3394.18, + "end": 3395.16, + "probability": 0.7821 + }, + { + "start": 3395.38, + "end": 3397.3, + "probability": 0.9591 + }, + { + "start": 3397.72, + "end": 3400.38, + "probability": 0.9946 + }, + { + "start": 3401.0, + "end": 3406.94, + "probability": 0.9889 + }, + { + "start": 3408.2, + "end": 3416.24, + "probability": 0.9044 + }, + { + "start": 3416.44, + "end": 3417.44, + "probability": 0.4692 + }, + { + "start": 3417.66, + "end": 3419.26, + "probability": 0.9272 + }, + { + "start": 3419.74, + "end": 3423.7, + "probability": 0.9949 + }, + { + "start": 3424.48, + "end": 3426.68, + "probability": 0.9422 + }, + { + "start": 3427.14, + "end": 3428.48, + "probability": 0.9152 + }, + { + "start": 3428.58, + "end": 3429.46, + "probability": 0.8319 + }, + { + "start": 3429.92, + "end": 3431.38, + "probability": 0.8046 + }, + { + "start": 3431.82, + "end": 3435.48, + "probability": 0.898 + }, + { + "start": 3436.46, + "end": 3439.2, + "probability": 0.897 + }, + { + "start": 3440.12, + "end": 3441.52, + "probability": 0.9862 + }, + { + "start": 3442.24, + "end": 3445.0, + "probability": 0.771 + }, + { + "start": 3445.58, + "end": 3446.4, + "probability": 0.5001 + }, + { + "start": 3446.94, + "end": 3450.12, + "probability": 0.8706 + }, + { + "start": 3450.76, + "end": 3453.28, + "probability": 0.9676 + }, + { + "start": 3454.3, + "end": 3454.66, + "probability": 0.5706 + }, + { + "start": 3454.84, + "end": 3464.02, + "probability": 0.9404 + }, + { + "start": 3464.52, + "end": 3466.46, + "probability": 0.9902 + }, + { + "start": 3467.04, + "end": 3468.96, + "probability": 0.9777 + }, + { + "start": 3469.38, + "end": 3473.04, + "probability": 0.9937 + }, + { + "start": 3473.96, + "end": 3477.36, + "probability": 0.8178 + }, + { + "start": 3477.36, + "end": 3481.04, + "probability": 0.9829 + }, + { + "start": 3481.74, + "end": 3483.46, + "probability": 0.7976 + }, + { + "start": 3484.0, + "end": 3487.34, + "probability": 0.8813 + }, + { + "start": 3487.84, + "end": 3488.98, + "probability": 0.6668 + }, + { + "start": 3489.06, + "end": 3489.66, + "probability": 0.9586 + }, + { + "start": 3490.04, + "end": 3490.94, + "probability": 0.9328 + }, + { + "start": 3491.64, + "end": 3493.54, + "probability": 0.9629 + }, + { + "start": 3493.98, + "end": 3495.9, + "probability": 0.8477 + }, + { + "start": 3496.32, + "end": 3498.62, + "probability": 0.9843 + }, + { + "start": 3499.84, + "end": 3502.36, + "probability": 0.9799 + }, + { + "start": 3502.82, + "end": 3507.5, + "probability": 0.952 + }, + { + "start": 3508.34, + "end": 3511.0, + "probability": 0.8294 + }, + { + "start": 3511.54, + "end": 3512.22, + "probability": 0.9781 + }, + { + "start": 3512.3, + "end": 3514.68, + "probability": 0.9702 + }, + { + "start": 3515.14, + "end": 3517.44, + "probability": 0.996 + }, + { + "start": 3518.24, + "end": 3520.4, + "probability": 0.6731 + }, + { + "start": 3520.78, + "end": 3523.26, + "probability": 0.9748 + }, + { + "start": 3524.32, + "end": 3528.4, + "probability": 0.9886 + }, + { + "start": 3528.98, + "end": 3531.92, + "probability": 0.979 + }, + { + "start": 3532.52, + "end": 3536.32, + "probability": 0.9933 + }, + { + "start": 3536.68, + "end": 3538.56, + "probability": 0.9941 + }, + { + "start": 3539.12, + "end": 3540.08, + "probability": 0.9495 + }, + { + "start": 3540.26, + "end": 3544.52, + "probability": 0.9472 + }, + { + "start": 3544.68, + "end": 3547.88, + "probability": 0.9577 + }, + { + "start": 3549.28, + "end": 3553.02, + "probability": 0.9932 + }, + { + "start": 3553.4, + "end": 3557.36, + "probability": 0.7496 + }, + { + "start": 3557.36, + "end": 3562.4, + "probability": 0.9226 + }, + { + "start": 3563.1, + "end": 3566.44, + "probability": 0.8374 + }, + { + "start": 3566.44, + "end": 3568.68, + "probability": 0.9859 + }, + { + "start": 3569.18, + "end": 3574.08, + "probability": 0.9913 + }, + { + "start": 3575.3, + "end": 3578.02, + "probability": 0.9927 + }, + { + "start": 3578.06, + "end": 3581.68, + "probability": 0.8611 + }, + { + "start": 3582.22, + "end": 3584.3, + "probability": 0.998 + }, + { + "start": 3585.08, + "end": 3590.16, + "probability": 0.9727 + }, + { + "start": 3590.84, + "end": 3593.26, + "probability": 0.1972 + }, + { + "start": 3594.08, + "end": 3598.6, + "probability": 0.8848 + }, + { + "start": 3598.72, + "end": 3599.22, + "probability": 0.8543 + }, + { + "start": 3599.6, + "end": 3603.22, + "probability": 0.9944 + }, + { + "start": 3603.84, + "end": 3606.04, + "probability": 0.9671 + }, + { + "start": 3606.48, + "end": 3609.1, + "probability": 0.9856 + }, + { + "start": 3609.72, + "end": 3614.42, + "probability": 0.8796 + }, + { + "start": 3615.58, + "end": 3619.9, + "probability": 0.9985 + }, + { + "start": 3619.9, + "end": 3625.04, + "probability": 0.9823 + }, + { + "start": 3626.16, + "end": 3630.4, + "probability": 0.9376 + }, + { + "start": 3630.4, + "end": 3634.3, + "probability": 0.9883 + }, + { + "start": 3634.86, + "end": 3636.46, + "probability": 0.9967 + }, + { + "start": 3637.02, + "end": 3639.54, + "probability": 0.9457 + }, + { + "start": 3640.0, + "end": 3641.48, + "probability": 0.932 + }, + { + "start": 3641.52, + "end": 3646.86, + "probability": 0.9508 + }, + { + "start": 3647.38, + "end": 3649.0, + "probability": 0.9966 + }, + { + "start": 3649.08, + "end": 3651.04, + "probability": 0.7894 + }, + { + "start": 3651.68, + "end": 3655.46, + "probability": 0.9958 + }, + { + "start": 3656.14, + "end": 3660.4, + "probability": 0.998 + }, + { + "start": 3660.4, + "end": 3664.9, + "probability": 0.9968 + }, + { + "start": 3665.64, + "end": 3669.12, + "probability": 0.6621 + }, + { + "start": 3670.04, + "end": 3670.38, + "probability": 0.7136 + }, + { + "start": 3670.62, + "end": 3672.1, + "probability": 0.7509 + }, + { + "start": 3672.2, + "end": 3672.98, + "probability": 0.7963 + }, + { + "start": 3673.38, + "end": 3678.18, + "probability": 0.9875 + }, + { + "start": 3678.9, + "end": 3681.98, + "probability": 0.9297 + }, + { + "start": 3682.66, + "end": 3684.31, + "probability": 0.7018 + }, + { + "start": 3684.78, + "end": 3686.26, + "probability": 0.888 + }, + { + "start": 3687.04, + "end": 3689.0, + "probability": 0.9929 + }, + { + "start": 3689.06, + "end": 3691.36, + "probability": 0.6999 + }, + { + "start": 3691.46, + "end": 3692.78, + "probability": 0.7132 + }, + { + "start": 3693.16, + "end": 3695.34, + "probability": 0.7643 + }, + { + "start": 3695.44, + "end": 3697.62, + "probability": 0.8385 + }, + { + "start": 3697.92, + "end": 3699.24, + "probability": 0.9456 + }, + { + "start": 3699.32, + "end": 3700.56, + "probability": 0.8983 + }, + { + "start": 3700.98, + "end": 3701.52, + "probability": 0.7148 + }, + { + "start": 3702.06, + "end": 3704.7, + "probability": 0.5973 + }, + { + "start": 3706.16, + "end": 3706.78, + "probability": 0.8564 + }, + { + "start": 3706.92, + "end": 3710.98, + "probability": 0.9402 + }, + { + "start": 3711.06, + "end": 3711.78, + "probability": 0.641 + }, + { + "start": 3712.28, + "end": 3712.92, + "probability": 0.5881 + }, + { + "start": 3725.32, + "end": 3727.7, + "probability": 0.8419 + }, + { + "start": 3729.6, + "end": 3734.0, + "probability": 0.9972 + }, + { + "start": 3734.96, + "end": 3737.98, + "probability": 0.999 + }, + { + "start": 3737.98, + "end": 3743.4, + "probability": 0.9569 + }, + { + "start": 3744.26, + "end": 3744.8, + "probability": 0.721 + }, + { + "start": 3749.08, + "end": 3750.0, + "probability": 0.308 + }, + { + "start": 3750.22, + "end": 3754.86, + "probability": 0.8328 + }, + { + "start": 3755.86, + "end": 3760.14, + "probability": 0.9417 + }, + { + "start": 3760.34, + "end": 3762.2, + "probability": 0.8389 + }, + { + "start": 3762.46, + "end": 3765.22, + "probability": 0.9338 + }, + { + "start": 3765.28, + "end": 3767.18, + "probability": 0.999 + }, + { + "start": 3767.42, + "end": 3768.6, + "probability": 0.8875 + }, + { + "start": 3768.74, + "end": 3770.12, + "probability": 0.688 + }, + { + "start": 3771.06, + "end": 3773.18, + "probability": 0.7822 + }, + { + "start": 3773.2, + "end": 3775.36, + "probability": 0.8778 + }, + { + "start": 3775.48, + "end": 3777.32, + "probability": 0.8977 + }, + { + "start": 3777.34, + "end": 3780.1, + "probability": 0.984 + }, + { + "start": 3780.1, + "end": 3783.72, + "probability": 0.9678 + }, + { + "start": 3785.82, + "end": 3787.2, + "probability": 0.5145 + }, + { + "start": 3787.56, + "end": 3790.56, + "probability": 0.7879 + }, + { + "start": 3790.86, + "end": 3791.98, + "probability": 0.8348 + }, + { + "start": 3792.54, + "end": 3796.38, + "probability": 0.9938 + }, + { + "start": 3798.09, + "end": 3800.58, + "probability": 0.7202 + }, + { + "start": 3801.16, + "end": 3802.95, + "probability": 0.8916 + }, + { + "start": 3804.66, + "end": 3809.07, + "probability": 0.9702 + }, + { + "start": 3809.2, + "end": 3813.26, + "probability": 0.9521 + }, + { + "start": 3814.24, + "end": 3821.98, + "probability": 0.9512 + }, + { + "start": 3822.62, + "end": 3826.72, + "probability": 0.9921 + }, + { + "start": 3826.8, + "end": 3831.36, + "probability": 0.8882 + }, + { + "start": 3831.36, + "end": 3834.68, + "probability": 0.9789 + }, + { + "start": 3835.08, + "end": 3838.72, + "probability": 0.9707 + }, + { + "start": 3839.82, + "end": 3841.86, + "probability": 0.98 + }, + { + "start": 3842.1, + "end": 3844.82, + "probability": 0.9877 + }, + { + "start": 3845.84, + "end": 3850.24, + "probability": 0.9924 + }, + { + "start": 3851.3, + "end": 3856.16, + "probability": 0.9862 + }, + { + "start": 3858.9, + "end": 3861.7, + "probability": 0.7564 + }, + { + "start": 3861.8, + "end": 3864.8, + "probability": 0.9099 + }, + { + "start": 3865.74, + "end": 3868.74, + "probability": 0.9549 + }, + { + "start": 3868.78, + "end": 3871.8, + "probability": 0.9374 + }, + { + "start": 3872.44, + "end": 3877.96, + "probability": 0.9921 + }, + { + "start": 3877.96, + "end": 3888.24, + "probability": 0.8701 + }, + { + "start": 3888.36, + "end": 3890.08, + "probability": 0.9872 + }, + { + "start": 3890.18, + "end": 3891.42, + "probability": 0.7504 + }, + { + "start": 3891.94, + "end": 3897.44, + "probability": 0.9773 + }, + { + "start": 3897.66, + "end": 3904.5, + "probability": 0.981 + }, + { + "start": 3904.68, + "end": 3906.74, + "probability": 0.9841 + }, + { + "start": 3907.14, + "end": 3909.46, + "probability": 0.8246 + }, + { + "start": 3909.46, + "end": 3912.38, + "probability": 0.7735 + }, + { + "start": 3913.06, + "end": 3915.1, + "probability": 0.9769 + }, + { + "start": 3915.1, + "end": 3918.4, + "probability": 0.9811 + }, + { + "start": 3919.86, + "end": 3920.9, + "probability": 0.5926 + }, + { + "start": 3921.5, + "end": 3925.6, + "probability": 0.8669 + }, + { + "start": 3925.8, + "end": 3926.9, + "probability": 0.9633 + }, + { + "start": 3926.98, + "end": 3927.42, + "probability": 0.5853 + }, + { + "start": 3927.5, + "end": 3927.94, + "probability": 0.9754 + }, + { + "start": 3929.0, + "end": 3929.42, + "probability": 0.4658 + }, + { + "start": 3929.54, + "end": 3930.82, + "probability": 0.6821 + }, + { + "start": 3931.0, + "end": 3933.08, + "probability": 0.7059 + }, + { + "start": 3933.2, + "end": 3934.48, + "probability": 0.9697 + }, + { + "start": 3934.74, + "end": 3937.9, + "probability": 0.9725 + }, + { + "start": 3938.7, + "end": 3939.6, + "probability": 0.7659 + }, + { + "start": 3939.78, + "end": 3941.51, + "probability": 0.9795 + }, + { + "start": 3941.9, + "end": 3943.02, + "probability": 0.8883 + }, + { + "start": 3951.98, + "end": 3952.62, + "probability": 0.7041 + }, + { + "start": 3952.64, + "end": 3953.22, + "probability": 0.7968 + }, + { + "start": 3953.32, + "end": 3955.52, + "probability": 0.9956 + }, + { + "start": 3956.7, + "end": 3958.14, + "probability": 0.5465 + }, + { + "start": 3958.28, + "end": 3958.66, + "probability": 0.7227 + }, + { + "start": 3959.18, + "end": 3962.46, + "probability": 0.9912 + }, + { + "start": 3962.46, + "end": 3965.12, + "probability": 0.8258 + }, + { + "start": 3965.7, + "end": 3967.36, + "probability": 0.8794 + }, + { + "start": 3967.46, + "end": 3969.28, + "probability": 0.8918 + }, + { + "start": 3970.28, + "end": 3975.49, + "probability": 0.9465 + }, + { + "start": 3975.52, + "end": 3980.04, + "probability": 0.9964 + }, + { + "start": 3981.04, + "end": 3984.62, + "probability": 0.9966 + }, + { + "start": 3985.46, + "end": 3989.4, + "probability": 0.993 + }, + { + "start": 3989.66, + "end": 3993.28, + "probability": 0.9955 + }, + { + "start": 3993.28, + "end": 3996.3, + "probability": 0.996 + }, + { + "start": 3996.3, + "end": 3998.04, + "probability": 0.9773 + }, + { + "start": 3998.24, + "end": 3999.0, + "probability": 0.7833 + }, + { + "start": 3999.0, + "end": 4003.64, + "probability": 0.9286 + }, + { + "start": 4003.64, + "end": 4007.28, + "probability": 0.9961 + }, + { + "start": 4007.42, + "end": 4008.56, + "probability": 0.8066 + }, + { + "start": 4009.14, + "end": 4011.62, + "probability": 0.8984 + }, + { + "start": 4011.86, + "end": 4016.3, + "probability": 0.9863 + }, + { + "start": 4016.36, + "end": 4019.52, + "probability": 0.9794 + }, + { + "start": 4019.68, + "end": 4021.72, + "probability": 0.955 + }, + { + "start": 4022.1, + "end": 4023.2, + "probability": 0.845 + }, + { + "start": 4023.48, + "end": 4027.38, + "probability": 0.9756 + }, + { + "start": 4027.88, + "end": 4029.02, + "probability": 0.9136 + }, + { + "start": 4029.36, + "end": 4032.1, + "probability": 0.9953 + }, + { + "start": 4032.76, + "end": 4035.72, + "probability": 0.978 + }, + { + "start": 4036.38, + "end": 4041.64, + "probability": 0.9958 + }, + { + "start": 4042.22, + "end": 4044.52, + "probability": 0.9795 + }, + { + "start": 4045.84, + "end": 4048.32, + "probability": 0.6975 + }, + { + "start": 4048.9, + "end": 4051.44, + "probability": 0.9972 + }, + { + "start": 4051.94, + "end": 4054.9, + "probability": 0.9988 + }, + { + "start": 4054.9, + "end": 4057.57, + "probability": 0.998 + }, + { + "start": 4058.34, + "end": 4059.42, + "probability": 0.9753 + }, + { + "start": 4059.48, + "end": 4060.76, + "probability": 0.9873 + }, + { + "start": 4061.0, + "end": 4061.8, + "probability": 0.984 + }, + { + "start": 4061.92, + "end": 4062.84, + "probability": 0.8067 + }, + { + "start": 4063.02, + "end": 4065.0, + "probability": 0.9958 + }, + { + "start": 4065.1, + "end": 4066.02, + "probability": 0.864 + }, + { + "start": 4066.18, + "end": 4067.54, + "probability": 0.9838 + }, + { + "start": 4067.84, + "end": 4073.18, + "probability": 0.9972 + }, + { + "start": 4073.18, + "end": 4078.48, + "probability": 0.9976 + }, + { + "start": 4078.76, + "end": 4080.5, + "probability": 0.6821 + }, + { + "start": 4081.1, + "end": 4084.7, + "probability": 0.9829 + }, + { + "start": 4085.12, + "end": 4089.56, + "probability": 0.9863 + }, + { + "start": 4089.96, + "end": 4091.02, + "probability": 0.6852 + }, + { + "start": 4091.42, + "end": 4092.16, + "probability": 0.7139 + }, + { + "start": 4092.2, + "end": 4092.78, + "probability": 0.7842 + }, + { + "start": 4092.86, + "end": 4093.6, + "probability": 0.6552 + }, + { + "start": 4093.98, + "end": 4094.38, + "probability": 0.3818 + }, + { + "start": 4094.38, + "end": 4095.82, + "probability": 0.6729 + }, + { + "start": 4096.06, + "end": 4098.26, + "probability": 0.9626 + }, + { + "start": 4099.28, + "end": 4099.28, + "probability": 0.0676 + }, + { + "start": 4099.28, + "end": 4099.28, + "probability": 0.0751 + }, + { + "start": 4099.28, + "end": 4102.42, + "probability": 0.8247 + }, + { + "start": 4102.82, + "end": 4104.62, + "probability": 0.9288 + }, + { + "start": 4104.74, + "end": 4109.01, + "probability": 0.617 + }, + { + "start": 4110.0, + "end": 4110.9, + "probability": 0.8777 + }, + { + "start": 4111.02, + "end": 4115.68, + "probability": 0.9791 + }, + { + "start": 4115.8, + "end": 4117.22, + "probability": 0.6407 + }, + { + "start": 4117.24, + "end": 4118.64, + "probability": 0.9768 + }, + { + "start": 4118.82, + "end": 4121.62, + "probability": 0.9858 + }, + { + "start": 4121.74, + "end": 4125.58, + "probability": 0.9858 + }, + { + "start": 4126.58, + "end": 4130.12, + "probability": 0.8834 + }, + { + "start": 4132.88, + "end": 4136.96, + "probability": 0.7352 + }, + { + "start": 4138.16, + "end": 4141.14, + "probability": 0.7301 + }, + { + "start": 4141.18, + "end": 4142.12, + "probability": 0.4525 + }, + { + "start": 4142.18, + "end": 4142.72, + "probability": 0.5088 + }, + { + "start": 4142.86, + "end": 4143.54, + "probability": 0.5885 + }, + { + "start": 4144.08, + "end": 4145.38, + "probability": 0.5842 + }, + { + "start": 4167.2, + "end": 4169.13, + "probability": 0.1041 + }, + { + "start": 4170.08, + "end": 4172.3, + "probability": 0.0634 + }, + { + "start": 4172.3, + "end": 4173.6, + "probability": 0.1369 + }, + { + "start": 4173.74, + "end": 4176.34, + "probability": 0.534 + }, + { + "start": 4177.65, + "end": 4179.74, + "probability": 0.2873 + }, + { + "start": 4181.18, + "end": 4183.12, + "probability": 0.013 + }, + { + "start": 4183.12, + "end": 4184.58, + "probability": 0.1417 + }, + { + "start": 4184.58, + "end": 4184.58, + "probability": 0.2295 + }, + { + "start": 4184.58, + "end": 4185.35, + "probability": 0.0705 + }, + { + "start": 4186.1, + "end": 4188.3, + "probability": 0.0556 + }, + { + "start": 4189.96, + "end": 4191.86, + "probability": 0.0115 + }, + { + "start": 4191.86, + "end": 4200.24, + "probability": 0.1381 + }, + { + "start": 4207.22, + "end": 4210.08, + "probability": 0.2819 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.0, + "end": 4232.0, + "probability": 0.0 + }, + { + "start": 4232.12, + "end": 4233.58, + "probability": 0.3479 + }, + { + "start": 4233.66, + "end": 4235.06, + "probability": 0.7661 + }, + { + "start": 4235.06, + "end": 4238.24, + "probability": 0.6536 + }, + { + "start": 4241.84, + "end": 4243.16, + "probability": 0.9292 + }, + { + "start": 4243.98, + "end": 4251.58, + "probability": 0.8944 + }, + { + "start": 4251.66, + "end": 4253.34, + "probability": 0.8675 + }, + { + "start": 4253.4, + "end": 4256.24, + "probability": 0.9586 + }, + { + "start": 4256.72, + "end": 4258.8, + "probability": 0.8571 + }, + { + "start": 4259.24, + "end": 4264.48, + "probability": 0.933 + }, + { + "start": 4264.76, + "end": 4267.72, + "probability": 0.9405 + }, + { + "start": 4267.84, + "end": 4271.82, + "probability": 0.9307 + }, + { + "start": 4271.82, + "end": 4276.06, + "probability": 0.9624 + }, + { + "start": 4276.94, + "end": 4280.1, + "probability": 0.9644 + }, + { + "start": 4281.14, + "end": 4282.94, + "probability": 0.8592 + }, + { + "start": 4283.88, + "end": 4284.68, + "probability": 0.4751 + }, + { + "start": 4285.68, + "end": 4289.22, + "probability": 0.7553 + }, + { + "start": 4289.62, + "end": 4290.5, + "probability": 0.6384 + }, + { + "start": 4290.96, + "end": 4294.28, + "probability": 0.9743 + }, + { + "start": 4294.78, + "end": 4295.68, + "probability": 0.7552 + }, + { + "start": 4295.98, + "end": 4299.98, + "probability": 0.9036 + }, + { + "start": 4300.08, + "end": 4302.1, + "probability": 0.5899 + }, + { + "start": 4305.48, + "end": 4307.8, + "probability": 0.9419 + }, + { + "start": 4308.22, + "end": 4309.27, + "probability": 0.9932 + }, + { + "start": 4309.66, + "end": 4310.08, + "probability": 0.6122 + }, + { + "start": 4310.1, + "end": 4312.4, + "probability": 0.7897 + }, + { + "start": 4313.28, + "end": 4314.62, + "probability": 0.8755 + }, + { + "start": 4315.24, + "end": 4317.25, + "probability": 0.9326 + }, + { + "start": 4318.74, + "end": 4319.4, + "probability": 0.1154 + }, + { + "start": 4319.4, + "end": 4320.62, + "probability": 0.0714 + }, + { + "start": 4320.94, + "end": 4322.14, + "probability": 0.7336 + }, + { + "start": 4323.84, + "end": 4326.4, + "probability": 0.6571 + }, + { + "start": 4326.82, + "end": 4328.86, + "probability": 0.987 + }, + { + "start": 4329.34, + "end": 4330.64, + "probability": 0.9946 + }, + { + "start": 4332.9, + "end": 4334.24, + "probability": 0.7091 + }, + { + "start": 4334.34, + "end": 4338.86, + "probability": 0.9463 + }, + { + "start": 4339.02, + "end": 4340.68, + "probability": 0.9201 + }, + { + "start": 4340.7, + "end": 4342.42, + "probability": 0.8116 + }, + { + "start": 4343.38, + "end": 4344.16, + "probability": 0.7278 + }, + { + "start": 4344.92, + "end": 4346.2, + "probability": 0.9697 + }, + { + "start": 4346.92, + "end": 4348.32, + "probability": 0.687 + }, + { + "start": 4350.04, + "end": 4350.92, + "probability": 0.8819 + }, + { + "start": 4352.18, + "end": 4354.18, + "probability": 0.9705 + }, + { + "start": 4355.1, + "end": 4359.62, + "probability": 0.9658 + }, + { + "start": 4360.58, + "end": 4363.68, + "probability": 0.6885 + }, + { + "start": 4364.6, + "end": 4368.48, + "probability": 0.9562 + }, + { + "start": 4369.2, + "end": 4371.6, + "probability": 0.8798 + }, + { + "start": 4371.8, + "end": 4375.94, + "probability": 0.8838 + }, + { + "start": 4376.3, + "end": 4381.56, + "probability": 0.9168 + }, + { + "start": 4381.7, + "end": 4383.44, + "probability": 0.8606 + }, + { + "start": 4383.5, + "end": 4385.62, + "probability": 0.7188 + }, + { + "start": 4386.9, + "end": 4389.8, + "probability": 0.9943 + }, + { + "start": 4390.7, + "end": 4395.66, + "probability": 0.973 + }, + { + "start": 4396.28, + "end": 4396.82, + "probability": 0.9971 + }, + { + "start": 4397.98, + "end": 4400.38, + "probability": 0.6644 + }, + { + "start": 4400.44, + "end": 4401.24, + "probability": 0.9413 + }, + { + "start": 4401.36, + "end": 4402.46, + "probability": 0.6855 + }, + { + "start": 4403.0, + "end": 4406.18, + "probability": 0.9778 + }, + { + "start": 4406.24, + "end": 4407.28, + "probability": 0.7956 + }, + { + "start": 4407.6, + "end": 4414.5, + "probability": 0.7654 + }, + { + "start": 4414.8, + "end": 4415.52, + "probability": 0.854 + }, + { + "start": 4415.72, + "end": 4419.14, + "probability": 0.9263 + }, + { + "start": 4420.66, + "end": 4421.18, + "probability": 0.5139 + }, + { + "start": 4421.42, + "end": 4421.74, + "probability": 0.4992 + }, + { + "start": 4422.12, + "end": 4422.47, + "probability": 0.6509 + }, + { + "start": 4422.72, + "end": 4423.74, + "probability": 0.7657 + }, + { + "start": 4423.78, + "end": 4425.68, + "probability": 0.7908 + }, + { + "start": 4426.2, + "end": 4427.42, + "probability": 0.4219 + }, + { + "start": 4430.24, + "end": 4433.22, + "probability": 0.9268 + }, + { + "start": 4433.7, + "end": 4435.36, + "probability": 0.9675 + }, + { + "start": 4435.84, + "end": 4438.12, + "probability": 0.9004 + }, + { + "start": 4438.58, + "end": 4439.38, + "probability": 0.2371 + }, + { + "start": 4439.9, + "end": 4443.7, + "probability": 0.8955 + }, + { + "start": 4443.78, + "end": 4445.78, + "probability": 0.8745 + }, + { + "start": 4446.0, + "end": 4447.58, + "probability": 0.549 + }, + { + "start": 4448.36, + "end": 4449.76, + "probability": 0.8656 + }, + { + "start": 4450.28, + "end": 4452.28, + "probability": 0.7045 + }, + { + "start": 4453.68, + "end": 4454.16, + "probability": 0.556 + }, + { + "start": 4454.3, + "end": 4455.7, + "probability": 0.8457 + }, + { + "start": 4456.9, + "end": 4459.49, + "probability": 0.9376 + }, + { + "start": 4459.82, + "end": 4460.8, + "probability": 0.883 + }, + { + "start": 4460.8, + "end": 4464.56, + "probability": 0.9631 + }, + { + "start": 4464.96, + "end": 4467.84, + "probability": 0.9316 + }, + { + "start": 4469.34, + "end": 4471.1, + "probability": 0.9852 + }, + { + "start": 4471.76, + "end": 4473.82, + "probability": 0.969 + }, + { + "start": 4473.98, + "end": 4477.84, + "probability": 0.7927 + }, + { + "start": 4478.56, + "end": 4484.0, + "probability": 0.9772 + }, + { + "start": 4484.1, + "end": 4487.74, + "probability": 0.9942 + }, + { + "start": 4488.64, + "end": 4490.22, + "probability": 0.9436 + }, + { + "start": 4494.4, + "end": 4494.72, + "probability": 0.0518 + }, + { + "start": 4498.94, + "end": 4500.74, + "probability": 0.4523 + }, + { + "start": 4501.38, + "end": 4502.36, + "probability": 0.3734 + }, + { + "start": 4502.98, + "end": 4506.4, + "probability": 0.6299 + }, + { + "start": 4506.98, + "end": 4510.0, + "probability": 0.9703 + }, + { + "start": 4510.24, + "end": 4510.54, + "probability": 0.2634 + }, + { + "start": 4510.58, + "end": 4512.42, + "probability": 0.9147 + }, + { + "start": 4512.74, + "end": 4513.82, + "probability": 0.9029 + }, + { + "start": 4514.02, + "end": 4515.53, + "probability": 0.8626 + }, + { + "start": 4517.06, + "end": 4520.26, + "probability": 0.8562 + }, + { + "start": 4520.26, + "end": 4523.72, + "probability": 0.9633 + }, + { + "start": 4523.72, + "end": 4524.22, + "probability": 0.9585 + }, + { + "start": 4524.3, + "end": 4526.2, + "probability": 0.816 + }, + { + "start": 4527.48, + "end": 4531.02, + "probability": 0.9896 + }, + { + "start": 4531.1, + "end": 4532.16, + "probability": 0.6454 + }, + { + "start": 4532.32, + "end": 4534.01, + "probability": 0.7098 + }, + { + "start": 4534.36, + "end": 4536.38, + "probability": 0.8879 + }, + { + "start": 4537.1, + "end": 4540.28, + "probability": 0.8717 + }, + { + "start": 4540.44, + "end": 4545.78, + "probability": 0.8505 + }, + { + "start": 4546.84, + "end": 4549.32, + "probability": 0.9938 + }, + { + "start": 4549.32, + "end": 4552.34, + "probability": 0.9856 + }, + { + "start": 4553.42, + "end": 4556.7, + "probability": 0.9703 + }, + { + "start": 4556.76, + "end": 4557.3, + "probability": 0.4122 + }, + { + "start": 4557.5, + "end": 4561.74, + "probability": 0.9888 + }, + { + "start": 4561.74, + "end": 4566.8, + "probability": 0.995 + }, + { + "start": 4567.0, + "end": 4567.62, + "probability": 0.6012 + }, + { + "start": 4567.94, + "end": 4571.18, + "probability": 0.9399 + }, + { + "start": 4571.18, + "end": 4575.0, + "probability": 0.9966 + }, + { + "start": 4576.12, + "end": 4578.42, + "probability": 0.5515 + }, + { + "start": 4579.62, + "end": 4580.86, + "probability": 0.5857 + }, + { + "start": 4580.98, + "end": 4581.86, + "probability": 0.5797 + }, + { + "start": 4581.92, + "end": 4586.9, + "probability": 0.9045 + }, + { + "start": 4587.1, + "end": 4587.7, + "probability": 0.4578 + }, + { + "start": 4588.84, + "end": 4589.74, + "probability": 0.6336 + }, + { + "start": 4589.8, + "end": 4591.74, + "probability": 0.8612 + }, + { + "start": 4592.16, + "end": 4594.28, + "probability": 0.7239 + }, + { + "start": 4595.06, + "end": 4596.8, + "probability": 0.9233 + }, + { + "start": 4597.4, + "end": 4603.44, + "probability": 0.9695 + }, + { + "start": 4603.9, + "end": 4607.44, + "probability": 0.9793 + }, + { + "start": 4607.54, + "end": 4610.56, + "probability": 0.84 + }, + { + "start": 4611.18, + "end": 4612.08, + "probability": 0.9912 + }, + { + "start": 4612.16, + "end": 4613.09, + "probability": 0.9866 + }, + { + "start": 4613.56, + "end": 4616.86, + "probability": 0.988 + }, + { + "start": 4617.18, + "end": 4623.74, + "probability": 0.9375 + }, + { + "start": 4624.18, + "end": 4624.56, + "probability": 0.7018 + }, + { + "start": 4626.46, + "end": 4627.25, + "probability": 0.9717 + }, + { + "start": 4640.8, + "end": 4644.94, + "probability": 0.3357 + }, + { + "start": 4644.98, + "end": 4647.38, + "probability": 0.9408 + }, + { + "start": 4647.82, + "end": 4648.06, + "probability": 0.5654 + }, + { + "start": 4648.38, + "end": 4649.54, + "probability": 0.5789 + }, + { + "start": 4651.14, + "end": 4658.42, + "probability": 0.9501 + }, + { + "start": 4658.42, + "end": 4661.32, + "probability": 0.9893 + }, + { + "start": 4662.02, + "end": 4664.04, + "probability": 0.9953 + }, + { + "start": 4664.94, + "end": 4666.48, + "probability": 0.8322 + }, + { + "start": 4666.48, + "end": 4667.3, + "probability": 0.7372 + }, + { + "start": 4667.46, + "end": 4672.92, + "probability": 0.5983 + }, + { + "start": 4673.68, + "end": 4676.06, + "probability": 0.6789 + }, + { + "start": 4679.68, + "end": 4682.32, + "probability": 0.8035 + }, + { + "start": 4690.2, + "end": 4692.6, + "probability": 0.6487 + }, + { + "start": 4694.08, + "end": 4699.3, + "probability": 0.8701 + }, + { + "start": 4699.8, + "end": 4706.0, + "probability": 0.8167 + }, + { + "start": 4707.72, + "end": 4708.82, + "probability": 0.7418 + }, + { + "start": 4709.86, + "end": 4717.32, + "probability": 0.9969 + }, + { + "start": 4718.6, + "end": 4720.18, + "probability": 0.8516 + }, + { + "start": 4722.2, + "end": 4727.2, + "probability": 0.981 + }, + { + "start": 4727.32, + "end": 4728.74, + "probability": 0.7396 + }, + { + "start": 4728.8, + "end": 4732.19, + "probability": 0.9979 + }, + { + "start": 4733.16, + "end": 4735.24, + "probability": 0.9912 + }, + { + "start": 4736.32, + "end": 4737.3, + "probability": 0.834 + }, + { + "start": 4742.18, + "end": 4744.65, + "probability": 0.6709 + }, + { + "start": 4745.46, + "end": 4747.48, + "probability": 0.8125 + }, + { + "start": 4747.82, + "end": 4754.7, + "probability": 0.7764 + }, + { + "start": 4754.7, + "end": 4761.8, + "probability": 0.994 + }, + { + "start": 4763.02, + "end": 4766.68, + "probability": 0.9405 + }, + { + "start": 4768.54, + "end": 4772.1, + "probability": 0.9 + }, + { + "start": 4772.7, + "end": 4777.24, + "probability": 0.9839 + }, + { + "start": 4778.46, + "end": 4784.42, + "probability": 0.9431 + }, + { + "start": 4786.1, + "end": 4791.52, + "probability": 0.9831 + }, + { + "start": 4791.52, + "end": 4797.88, + "probability": 0.9774 + }, + { + "start": 4797.98, + "end": 4802.62, + "probability": 0.8565 + }, + { + "start": 4804.56, + "end": 4807.66, + "probability": 0.8969 + }, + { + "start": 4809.2, + "end": 4816.8, + "probability": 0.9725 + }, + { + "start": 4817.34, + "end": 4820.98, + "probability": 0.7145 + }, + { + "start": 4821.36, + "end": 4823.42, + "probability": 0.7016 + }, + { + "start": 4823.5, + "end": 4824.18, + "probability": 0.9839 + }, + { + "start": 4824.94, + "end": 4825.9, + "probability": 0.8799 + }, + { + "start": 4825.9, + "end": 4828.9, + "probability": 0.557 + }, + { + "start": 4829.88, + "end": 4831.32, + "probability": 0.0713 + }, + { + "start": 4834.89, + "end": 4841.1, + "probability": 0.7484 + }, + { + "start": 4842.18, + "end": 4844.7, + "probability": 0.869 + }, + { + "start": 4845.8, + "end": 4848.47, + "probability": 0.9795 + }, + { + "start": 4849.12, + "end": 4851.4, + "probability": 0.913 + }, + { + "start": 4852.36, + "end": 4859.96, + "probability": 0.8954 + }, + { + "start": 4860.94, + "end": 4868.26, + "probability": 0.918 + }, + { + "start": 4869.32, + "end": 4873.13, + "probability": 0.9567 + }, + { + "start": 4873.4, + "end": 4879.52, + "probability": 0.991 + }, + { + "start": 4881.04, + "end": 4886.42, + "probability": 0.9888 + }, + { + "start": 4886.76, + "end": 4887.18, + "probability": 0.8177 + }, + { + "start": 4887.26, + "end": 4888.8, + "probability": 0.9711 + }, + { + "start": 4889.36, + "end": 4893.82, + "probability": 0.6625 + }, + { + "start": 4894.62, + "end": 4898.64, + "probability": 0.9602 + }, + { + "start": 4899.16, + "end": 4899.86, + "probability": 0.0743 + }, + { + "start": 4900.78, + "end": 4900.98, + "probability": 0.0016 + }, + { + "start": 4902.88, + "end": 4903.62, + "probability": 0.1491 + }, + { + "start": 4903.62, + "end": 4903.62, + "probability": 0.0091 + }, + { + "start": 4903.62, + "end": 4905.6, + "probability": 0.7834 + }, + { + "start": 4906.5, + "end": 4914.06, + "probability": 0.958 + }, + { + "start": 4914.06, + "end": 4918.38, + "probability": 0.7233 + }, + { + "start": 4919.32, + "end": 4921.27, + "probability": 0.9238 + }, + { + "start": 4922.19, + "end": 4924.29, + "probability": 0.9536 + }, + { + "start": 4925.12, + "end": 4929.74, + "probability": 0.4844 + }, + { + "start": 4929.74, + "end": 4934.57, + "probability": 0.8708 + }, + { + "start": 4936.24, + "end": 4939.18, + "probability": 0.9379 + }, + { + "start": 4941.06, + "end": 4945.66, + "probability": 0.9907 + }, + { + "start": 4945.66, + "end": 4948.9, + "probability": 0.9778 + }, + { + "start": 4949.28, + "end": 4949.52, + "probability": 0.7918 + }, + { + "start": 4949.56, + "end": 4953.36, + "probability": 0.8425 + }, + { + "start": 4953.6, + "end": 4955.48, + "probability": 0.42 + }, + { + "start": 4955.64, + "end": 4956.94, + "probability": 0.6734 + }, + { + "start": 4958.0, + "end": 4960.26, + "probability": 0.9291 + }, + { + "start": 4961.4, + "end": 4962.57, + "probability": 0.9705 + }, + { + "start": 4963.6, + "end": 4968.64, + "probability": 0.9319 + }, + { + "start": 4969.8, + "end": 4974.48, + "probability": 0.9155 + }, + { + "start": 4976.8, + "end": 4978.3, + "probability": 0.124 + }, + { + "start": 4980.36, + "end": 4987.72, + "probability": 0.7122 + }, + { + "start": 4988.54, + "end": 4996.58, + "probability": 0.9769 + }, + { + "start": 4996.8, + "end": 4998.0, + "probability": 0.9053 + }, + { + "start": 4998.52, + "end": 4999.36, + "probability": 0.7288 + }, + { + "start": 4999.96, + "end": 5001.03, + "probability": 0.9219 + }, + { + "start": 5002.86, + "end": 5005.68, + "probability": 0.9734 + }, + { + "start": 5006.42, + "end": 5008.24, + "probability": 0.8833 + }, + { + "start": 5009.6, + "end": 5015.94, + "probability": 0.9645 + }, + { + "start": 5016.56, + "end": 5017.72, + "probability": 0.6897 + }, + { + "start": 5018.18, + "end": 5019.48, + "probability": 0.9226 + }, + { + "start": 5020.76, + "end": 5022.73, + "probability": 0.9536 + }, + { + "start": 5023.68, + "end": 5026.24, + "probability": 0.8979 + }, + { + "start": 5027.18, + "end": 5029.24, + "probability": 0.5378 + }, + { + "start": 5030.57, + "end": 5035.16, + "probability": 0.8709 + }, + { + "start": 5036.36, + "end": 5040.48, + "probability": 0.7942 + }, + { + "start": 5040.64, + "end": 5042.28, + "probability": 0.6901 + }, + { + "start": 5042.52, + "end": 5043.1, + "probability": 0.619 + }, + { + "start": 5044.64, + "end": 5045.34, + "probability": 0.9482 + }, + { + "start": 5046.02, + "end": 5050.62, + "probability": 0.8421 + }, + { + "start": 5051.14, + "end": 5051.9, + "probability": 0.6114 + }, + { + "start": 5052.5, + "end": 5058.64, + "probability": 0.9807 + }, + { + "start": 5059.86, + "end": 5065.92, + "probability": 0.9307 + }, + { + "start": 5066.8, + "end": 5068.27, + "probability": 0.6909 + }, + { + "start": 5069.62, + "end": 5070.98, + "probability": 0.7423 + }, + { + "start": 5071.82, + "end": 5074.5, + "probability": 0.9701 + }, + { + "start": 5074.78, + "end": 5075.76, + "probability": 0.7369 + }, + { + "start": 5075.8, + "end": 5076.56, + "probability": 0.7353 + }, + { + "start": 5078.42, + "end": 5080.32, + "probability": 0.9902 + }, + { + "start": 5080.4, + "end": 5081.7, + "probability": 0.8806 + }, + { + "start": 5081.76, + "end": 5084.28, + "probability": 0.7896 + }, + { + "start": 5084.44, + "end": 5089.12, + "probability": 0.9888 + }, + { + "start": 5089.78, + "end": 5091.48, + "probability": 0.9976 + }, + { + "start": 5092.02, + "end": 5095.64, + "probability": 0.93 + }, + { + "start": 5096.44, + "end": 5097.52, + "probability": 0.9541 + }, + { + "start": 5098.96, + "end": 5101.84, + "probability": 0.7992 + }, + { + "start": 5102.4, + "end": 5105.54, + "probability": 0.9718 + }, + { + "start": 5106.44, + "end": 5111.44, + "probability": 0.7706 + }, + { + "start": 5112.48, + "end": 5113.84, + "probability": 0.8311 + }, + { + "start": 5114.9, + "end": 5115.62, + "probability": 0.4258 + }, + { + "start": 5115.72, + "end": 5118.72, + "probability": 0.8623 + }, + { + "start": 5119.42, + "end": 5122.28, + "probability": 0.9775 + }, + { + "start": 5122.82, + "end": 5123.98, + "probability": 0.9095 + }, + { + "start": 5124.1, + "end": 5124.87, + "probability": 0.9119 + }, + { + "start": 5125.6, + "end": 5127.64, + "probability": 0.9939 + }, + { + "start": 5128.22, + "end": 5130.06, + "probability": 0.9409 + }, + { + "start": 5130.72, + "end": 5133.9, + "probability": 0.9945 + }, + { + "start": 5134.76, + "end": 5138.16, + "probability": 0.9966 + }, + { + "start": 5138.66, + "end": 5140.18, + "probability": 0.9932 + }, + { + "start": 5142.02, + "end": 5145.6, + "probability": 0.8359 + }, + { + "start": 5146.32, + "end": 5149.82, + "probability": 0.8999 + }, + { + "start": 5150.36, + "end": 5153.78, + "probability": 0.9252 + }, + { + "start": 5157.24, + "end": 5158.7, + "probability": 0.4996 + }, + { + "start": 5161.56, + "end": 5162.66, + "probability": 0.9089 + }, + { + "start": 5165.12, + "end": 5165.66, + "probability": 0.4411 + }, + { + "start": 5166.34, + "end": 5166.94, + "probability": 0.6888 + }, + { + "start": 5167.0, + "end": 5168.38, + "probability": 0.7181 + }, + { + "start": 5169.42, + "end": 5171.72, + "probability": 0.9413 + }, + { + "start": 5172.54, + "end": 5175.57, + "probability": 0.98 + }, + { + "start": 5176.46, + "end": 5180.34, + "probability": 0.8501 + }, + { + "start": 5181.76, + "end": 5186.1, + "probability": 0.9888 + }, + { + "start": 5186.61, + "end": 5191.1, + "probability": 0.999 + }, + { + "start": 5192.2, + "end": 5194.78, + "probability": 0.5225 + }, + { + "start": 5195.0, + "end": 5197.84, + "probability": 0.9683 + }, + { + "start": 5198.62, + "end": 5202.12, + "probability": 0.9927 + }, + { + "start": 5202.74, + "end": 5206.92, + "probability": 0.9678 + }, + { + "start": 5207.6, + "end": 5212.3, + "probability": 0.9683 + }, + { + "start": 5212.48, + "end": 5216.4, + "probability": 0.5673 + }, + { + "start": 5218.0, + "end": 5221.8, + "probability": 0.8678 + }, + { + "start": 5222.8, + "end": 5226.18, + "probability": 0.753 + }, + { + "start": 5227.52, + "end": 5229.06, + "probability": 0.5506 + }, + { + "start": 5231.12, + "end": 5241.18, + "probability": 0.9736 + }, + { + "start": 5241.32, + "end": 5242.24, + "probability": 0.8245 + }, + { + "start": 5243.0, + "end": 5250.24, + "probability": 0.9945 + }, + { + "start": 5251.76, + "end": 5253.72, + "probability": 0.6013 + }, + { + "start": 5254.86, + "end": 5256.68, + "probability": 0.4393 + }, + { + "start": 5257.34, + "end": 5262.32, + "probability": 0.5015 + }, + { + "start": 5263.18, + "end": 5265.36, + "probability": 0.3538 + }, + { + "start": 5265.7, + "end": 5266.48, + "probability": 0.7424 + }, + { + "start": 5267.84, + "end": 5270.22, + "probability": 0.881 + }, + { + "start": 5271.56, + "end": 5272.4, + "probability": 0.5999 + }, + { + "start": 5272.52, + "end": 5275.66, + "probability": 0.9412 + }, + { + "start": 5275.88, + "end": 5279.3, + "probability": 0.7447 + }, + { + "start": 5280.32, + "end": 5282.64, + "probability": 0.7897 + }, + { + "start": 5282.74, + "end": 5285.12, + "probability": 0.7331 + }, + { + "start": 5285.14, + "end": 5289.66, + "probability": 0.9662 + }, + { + "start": 5289.66, + "end": 5294.74, + "probability": 0.947 + }, + { + "start": 5295.6, + "end": 5300.96, + "probability": 0.9885 + }, + { + "start": 5301.66, + "end": 5303.8, + "probability": 0.5788 + }, + { + "start": 5303.8, + "end": 5305.64, + "probability": 0.5283 + }, + { + "start": 5306.42, + "end": 5308.94, + "probability": 0.8434 + }, + { + "start": 5309.0, + "end": 5310.56, + "probability": 0.9663 + }, + { + "start": 5311.08, + "end": 5313.18, + "probability": 0.9709 + }, + { + "start": 5313.22, + "end": 5315.44, + "probability": 0.876 + }, + { + "start": 5315.82, + "end": 5318.18, + "probability": 0.5148 + }, + { + "start": 5318.56, + "end": 5320.7, + "probability": 0.915 + }, + { + "start": 5323.84, + "end": 5325.4, + "probability": 0.9274 + }, + { + "start": 5329.4, + "end": 5331.36, + "probability": 0.9501 + }, + { + "start": 5334.38, + "end": 5338.38, + "probability": 0.8672 + }, + { + "start": 5340.2, + "end": 5340.94, + "probability": 0.9161 + }, + { + "start": 5341.8, + "end": 5344.06, + "probability": 0.013 + }, + { + "start": 5344.62, + "end": 5345.26, + "probability": 0.2405 + }, + { + "start": 5353.7, + "end": 5357.22, + "probability": 0.5776 + }, + { + "start": 5359.84, + "end": 5360.38, + "probability": 0.8542 + }, + { + "start": 5369.6, + "end": 5370.38, + "probability": 0.2492 + }, + { + "start": 5371.48, + "end": 5373.46, + "probability": 0.5005 + }, + { + "start": 5374.14, + "end": 5375.28, + "probability": 0.3728 + }, + { + "start": 5376.56, + "end": 5377.72, + "probability": 0.4181 + }, + { + "start": 5379.86, + "end": 5381.22, + "probability": 0.9299 + }, + { + "start": 5383.2, + "end": 5383.84, + "probability": 0.9406 + }, + { + "start": 5384.84, + "end": 5387.28, + "probability": 0.9662 + }, + { + "start": 5388.12, + "end": 5391.9, + "probability": 0.8446 + }, + { + "start": 5392.0, + "end": 5393.86, + "probability": 0.9209 + }, + { + "start": 5394.24, + "end": 5397.68, + "probability": 0.1093 + }, + { + "start": 5399.41, + "end": 5406.0, + "probability": 0.8912 + }, + { + "start": 5407.16, + "end": 5408.3, + "probability": 0.9963 + }, + { + "start": 5409.36, + "end": 5410.52, + "probability": 0.873 + }, + { + "start": 5410.86, + "end": 5414.6, + "probability": 0.9778 + }, + { + "start": 5414.86, + "end": 5417.36, + "probability": 0.9692 + }, + { + "start": 5417.44, + "end": 5423.04, + "probability": 0.9592 + }, + { + "start": 5423.18, + "end": 5423.44, + "probability": 0.4311 + }, + { + "start": 5423.52, + "end": 5425.08, + "probability": 0.876 + }, + { + "start": 5425.4, + "end": 5429.22, + "probability": 0.9762 + }, + { + "start": 5429.9, + "end": 5433.5, + "probability": 0.991 + }, + { + "start": 5434.26, + "end": 5436.28, + "probability": 0.7325 + }, + { + "start": 5437.22, + "end": 5442.8, + "probability": 0.9655 + }, + { + "start": 5442.94, + "end": 5446.64, + "probability": 0.8681 + }, + { + "start": 5447.84, + "end": 5453.46, + "probability": 0.9847 + }, + { + "start": 5455.78, + "end": 5456.64, + "probability": 0.3721 + }, + { + "start": 5457.18, + "end": 5458.64, + "probability": 0.9922 + }, + { + "start": 5459.24, + "end": 5463.96, + "probability": 0.9397 + }, + { + "start": 5464.08, + "end": 5465.02, + "probability": 0.989 + }, + { + "start": 5465.14, + "end": 5472.8, + "probability": 0.9928 + }, + { + "start": 5472.88, + "end": 5478.34, + "probability": 0.9886 + }, + { + "start": 5478.82, + "end": 5481.42, + "probability": 0.9375 + }, + { + "start": 5482.24, + "end": 5484.78, + "probability": 0.8816 + }, + { + "start": 5485.22, + "end": 5485.84, + "probability": 0.5425 + }, + { + "start": 5486.26, + "end": 5488.82, + "probability": 0.8357 + }, + { + "start": 5489.38, + "end": 5495.3, + "probability": 0.9757 + }, + { + "start": 5495.48, + "end": 5501.46, + "probability": 0.998 + }, + { + "start": 5501.84, + "end": 5506.6, + "probability": 0.9526 + }, + { + "start": 5506.98, + "end": 5508.78, + "probability": 0.7668 + }, + { + "start": 5509.86, + "end": 5510.72, + "probability": 0.6254 + }, + { + "start": 5511.36, + "end": 5517.7, + "probability": 0.9845 + }, + { + "start": 5517.7, + "end": 5520.98, + "probability": 0.9958 + }, + { + "start": 5521.8, + "end": 5522.32, + "probability": 0.4117 + }, + { + "start": 5522.38, + "end": 5522.72, + "probability": 0.5143 + }, + { + "start": 5522.78, + "end": 5528.18, + "probability": 0.9754 + }, + { + "start": 5528.64, + "end": 5530.54, + "probability": 0.6918 + }, + { + "start": 5531.12, + "end": 5532.64, + "probability": 0.8737 + }, + { + "start": 5532.72, + "end": 5534.74, + "probability": 0.8259 + }, + { + "start": 5537.36, + "end": 5540.84, + "probability": 0.96 + }, + { + "start": 5541.56, + "end": 5542.81, + "probability": 0.9069 + }, + { + "start": 5543.22, + "end": 5544.84, + "probability": 0.9111 + }, + { + "start": 5545.04, + "end": 5546.06, + "probability": 0.4749 + }, + { + "start": 5548.96, + "end": 5550.52, + "probability": 0.9521 + }, + { + "start": 5551.52, + "end": 5552.98, + "probability": 0.4045 + }, + { + "start": 5553.68, + "end": 5555.5, + "probability": 0.9951 + }, + { + "start": 5555.64, + "end": 5557.5, + "probability": 0.9613 + }, + { + "start": 5559.49, + "end": 5561.42, + "probability": 0.9844 + }, + { + "start": 5561.5, + "end": 5563.58, + "probability": 0.9442 + }, + { + "start": 5564.86, + "end": 5568.0, + "probability": 0.984 + }, + { + "start": 5568.0, + "end": 5572.64, + "probability": 0.9966 + }, + { + "start": 5573.88, + "end": 5577.8, + "probability": 0.9854 + }, + { + "start": 5577.92, + "end": 5578.82, + "probability": 0.6149 + }, + { + "start": 5578.88, + "end": 5582.68, + "probability": 0.9841 + }, + { + "start": 5582.68, + "end": 5587.9, + "probability": 0.9738 + }, + { + "start": 5588.9, + "end": 5592.3, + "probability": 0.9663 + }, + { + "start": 5592.67, + "end": 5598.92, + "probability": 0.9263 + }, + { + "start": 5600.26, + "end": 5603.26, + "probability": 0.7621 + }, + { + "start": 5603.92, + "end": 5606.02, + "probability": 0.5346 + }, + { + "start": 5606.78, + "end": 5610.66, + "probability": 0.9696 + }, + { + "start": 5611.58, + "end": 5613.36, + "probability": 0.9946 + }, + { + "start": 5613.46, + "end": 5614.6, + "probability": 0.9009 + }, + { + "start": 5615.1, + "end": 5616.52, + "probability": 0.9695 + }, + { + "start": 5618.72, + "end": 5626.48, + "probability": 0.5405 + }, + { + "start": 5627.48, + "end": 5630.16, + "probability": 0.0946 + }, + { + "start": 5630.56, + "end": 5632.98, + "probability": 0.6748 + }, + { + "start": 5633.02, + "end": 5634.5, + "probability": 0.6744 + }, + { + "start": 5634.62, + "end": 5637.12, + "probability": 0.833 + }, + { + "start": 5637.16, + "end": 5641.54, + "probability": 0.8349 + }, + { + "start": 5641.62, + "end": 5644.0, + "probability": 0.7712 + }, + { + "start": 5644.06, + "end": 5647.2, + "probability": 0.9724 + }, + { + "start": 5647.56, + "end": 5648.32, + "probability": 0.2891 + }, + { + "start": 5648.4, + "end": 5651.32, + "probability": 0.5709 + }, + { + "start": 5651.32, + "end": 5654.68, + "probability": 0.9562 + }, + { + "start": 5655.14, + "end": 5656.72, + "probability": 0.9756 + }, + { + "start": 5657.1, + "end": 5659.06, + "probability": 0.9541 + }, + { + "start": 5659.28, + "end": 5660.5, + "probability": 0.9772 + }, + { + "start": 5661.1, + "end": 5662.12, + "probability": 0.404 + }, + { + "start": 5662.74, + "end": 5664.66, + "probability": 0.9829 + }, + { + "start": 5664.96, + "end": 5667.49, + "probability": 0.9307 + }, + { + "start": 5667.54, + "end": 5671.3, + "probability": 0.9781 + }, + { + "start": 5673.26, + "end": 5675.26, + "probability": 0.9557 + }, + { + "start": 5676.1, + "end": 5677.64, + "probability": 0.6491 + }, + { + "start": 5678.24, + "end": 5682.04, + "probability": 0.8422 + }, + { + "start": 5682.08, + "end": 5685.52, + "probability": 0.9948 + }, + { + "start": 5685.98, + "end": 5690.4, + "probability": 0.9833 + }, + { + "start": 5690.54, + "end": 5693.76, + "probability": 0.9984 + }, + { + "start": 5694.06, + "end": 5697.5, + "probability": 0.9868 + }, + { + "start": 5697.88, + "end": 5698.84, + "probability": 0.7881 + }, + { + "start": 5698.92, + "end": 5701.74, + "probability": 0.9656 + }, + { + "start": 5702.62, + "end": 5708.08, + "probability": 0.6748 + }, + { + "start": 5709.0, + "end": 5710.88, + "probability": 0.972 + }, + { + "start": 5711.56, + "end": 5712.84, + "probability": 0.9045 + }, + { + "start": 5713.44, + "end": 5714.06, + "probability": 0.8722 + }, + { + "start": 5714.58, + "end": 5715.7, + "probability": 0.9554 + }, + { + "start": 5716.34, + "end": 5718.62, + "probability": 0.9338 + }, + { + "start": 5719.22, + "end": 5720.94, + "probability": 0.8625 + }, + { + "start": 5721.02, + "end": 5722.62, + "probability": 0.9087 + }, + { + "start": 5723.04, + "end": 5723.72, + "probability": 0.9359 + }, + { + "start": 5723.74, + "end": 5724.66, + "probability": 0.9101 + }, + { + "start": 5724.7, + "end": 5725.28, + "probability": 0.8254 + }, + { + "start": 5725.78, + "end": 5728.32, + "probability": 0.8717 + }, + { + "start": 5728.68, + "end": 5732.3, + "probability": 0.9926 + }, + { + "start": 5732.7, + "end": 5734.0, + "probability": 0.6501 + }, + { + "start": 5734.14, + "end": 5736.52, + "probability": 0.9638 + }, + { + "start": 5737.06, + "end": 5739.31, + "probability": 0.9543 + }, + { + "start": 5740.52, + "end": 5743.48, + "probability": 0.8627 + }, + { + "start": 5743.68, + "end": 5745.6, + "probability": 0.6364 + }, + { + "start": 5745.7, + "end": 5747.12, + "probability": 0.7856 + }, + { + "start": 5747.92, + "end": 5752.14, + "probability": 0.9873 + }, + { + "start": 5753.54, + "end": 5756.9, + "probability": 0.9882 + }, + { + "start": 5757.7, + "end": 5760.76, + "probability": 0.981 + }, + { + "start": 5761.34, + "end": 5762.5, + "probability": 0.9888 + }, + { + "start": 5763.68, + "end": 5765.36, + "probability": 0.9764 + }, + { + "start": 5765.88, + "end": 5769.1, + "probability": 0.8439 + }, + { + "start": 5769.66, + "end": 5771.36, + "probability": 0.9676 + }, + { + "start": 5771.42, + "end": 5775.48, + "probability": 0.9561 + }, + { + "start": 5775.64, + "end": 5778.39, + "probability": 0.9922 + }, + { + "start": 5781.88, + "end": 5784.06, + "probability": 0.9141 + }, + { + "start": 5784.18, + "end": 5784.96, + "probability": 0.7184 + }, + { + "start": 5785.06, + "end": 5786.02, + "probability": 0.8907 + }, + { + "start": 5786.12, + "end": 5786.96, + "probability": 0.9956 + }, + { + "start": 5787.04, + "end": 5788.76, + "probability": 0.9712 + }, + { + "start": 5789.18, + "end": 5790.28, + "probability": 0.9595 + }, + { + "start": 5791.38, + "end": 5793.56, + "probability": 0.6887 + }, + { + "start": 5793.62, + "end": 5797.0, + "probability": 0.6075 + }, + { + "start": 5797.48, + "end": 5800.52, + "probability": 0.9908 + }, + { + "start": 5800.9, + "end": 5802.24, + "probability": 0.6839 + }, + { + "start": 5802.42, + "end": 5804.06, + "probability": 0.99 + }, + { + "start": 5804.64, + "end": 5806.11, + "probability": 0.9858 + }, + { + "start": 5807.52, + "end": 5809.51, + "probability": 0.5322 + }, + { + "start": 5810.1, + "end": 5811.36, + "probability": 0.7336 + }, + { + "start": 5811.52, + "end": 5812.94, + "probability": 0.8401 + }, + { + "start": 5814.24, + "end": 5816.42, + "probability": 0.3228 + }, + { + "start": 5816.96, + "end": 5817.44, + "probability": 0.8613 + }, + { + "start": 5817.48, + "end": 5818.34, + "probability": 0.4208 + }, + { + "start": 5818.36, + "end": 5820.0, + "probability": 0.1522 + }, + { + "start": 5820.16, + "end": 5820.94, + "probability": 0.2642 + }, + { + "start": 5821.1, + "end": 5821.18, + "probability": 0.2082 + }, + { + "start": 5821.18, + "end": 5821.78, + "probability": 0.2558 + }, + { + "start": 5821.84, + "end": 5823.76, + "probability": 0.9539 + }, + { + "start": 5824.52, + "end": 5826.24, + "probability": 0.2821 + }, + { + "start": 5826.95, + "end": 5828.56, + "probability": 0.686 + }, + { + "start": 5828.62, + "end": 5830.12, + "probability": 0.8352 + }, + { + "start": 5830.46, + "end": 5834.64, + "probability": 0.9682 + }, + { + "start": 5834.72, + "end": 5835.08, + "probability": 0.2011 + }, + { + "start": 5835.16, + "end": 5836.3, + "probability": 0.4183 + }, + { + "start": 5836.32, + "end": 5837.39, + "probability": 0.9371 + }, + { + "start": 5837.86, + "end": 5839.74, + "probability": 0.9907 + }, + { + "start": 5840.34, + "end": 5842.0, + "probability": 0.2864 + }, + { + "start": 5842.2, + "end": 5842.78, + "probability": 0.9585 + }, + { + "start": 5843.0, + "end": 5845.26, + "probability": 0.8143 + }, + { + "start": 5845.5, + "end": 5845.8, + "probability": 0.5485 + }, + { + "start": 5846.32, + "end": 5848.73, + "probability": 0.7954 + }, + { + "start": 5848.92, + "end": 5849.19, + "probability": 0.4205 + }, + { + "start": 5849.7, + "end": 5850.36, + "probability": 0.6696 + }, + { + "start": 5850.9, + "end": 5854.38, + "probability": 0.377 + }, + { + "start": 5855.4, + "end": 5857.62, + "probability": 0.7359 + }, + { + "start": 5857.72, + "end": 5858.14, + "probability": 0.8876 + }, + { + "start": 5858.32, + "end": 5859.96, + "probability": 0.6144 + }, + { + "start": 5860.26, + "end": 5860.86, + "probability": 0.7961 + }, + { + "start": 5860.98, + "end": 5862.9, + "probability": 0.9128 + }, + { + "start": 5863.06, + "end": 5864.86, + "probability": 0.9812 + }, + { + "start": 5864.96, + "end": 5865.84, + "probability": 0.8857 + }, + { + "start": 5866.1, + "end": 5867.72, + "probability": 0.5358 + }, + { + "start": 5868.02, + "end": 5868.66, + "probability": 0.9688 + }, + { + "start": 5868.84, + "end": 5870.06, + "probability": 0.9425 + }, + { + "start": 5870.16, + "end": 5870.6, + "probability": 0.6065 + }, + { + "start": 5870.78, + "end": 5871.74, + "probability": 0.4677 + }, + { + "start": 5871.74, + "end": 5871.88, + "probability": 0.0874 + }, + { + "start": 5872.26, + "end": 5872.8, + "probability": 0.1433 + }, + { + "start": 5872.8, + "end": 5873.6, + "probability": 0.6863 + }, + { + "start": 5873.68, + "end": 5876.78, + "probability": 0.7737 + }, + { + "start": 5876.94, + "end": 5878.66, + "probability": 0.8838 + }, + { + "start": 5878.74, + "end": 5879.3, + "probability": 0.4099 + }, + { + "start": 5879.3, + "end": 5879.9, + "probability": 0.5605 + }, + { + "start": 5880.24, + "end": 5883.22, + "probability": 0.5209 + }, + { + "start": 5883.3, + "end": 5887.02, + "probability": 0.6586 + }, + { + "start": 5887.1, + "end": 5888.72, + "probability": 0.3904 + }, + { + "start": 5888.88, + "end": 5890.68, + "probability": 0.342 + }, + { + "start": 5891.99, + "end": 5892.56, + "probability": 0.5004 + }, + { + "start": 5892.66, + "end": 5892.96, + "probability": 0.3386 + }, + { + "start": 5892.96, + "end": 5893.66, + "probability": 0.7823 + }, + { + "start": 5894.48, + "end": 5894.62, + "probability": 0.3368 + }, + { + "start": 5894.76, + "end": 5897.16, + "probability": 0.6368 + }, + { + "start": 5897.38, + "end": 5898.03, + "probability": 0.4912 + }, + { + "start": 5898.46, + "end": 5898.62, + "probability": 0.2529 + }, + { + "start": 5898.74, + "end": 5901.08, + "probability": 0.5837 + }, + { + "start": 5901.14, + "end": 5901.68, + "probability": 0.2851 + }, + { + "start": 5901.8, + "end": 5903.26, + "probability": 0.4083 + }, + { + "start": 5905.77, + "end": 5912.44, + "probability": 0.3356 + }, + { + "start": 5912.86, + "end": 5915.08, + "probability": 0.8684 + }, + { + "start": 5915.22, + "end": 5920.4, + "probability": 0.9585 + }, + { + "start": 5921.02, + "end": 5922.32, + "probability": 0.971 + }, + { + "start": 5922.96, + "end": 5925.7, + "probability": 0.7211 + }, + { + "start": 5926.74, + "end": 5927.5, + "probability": 0.0098 + }, + { + "start": 5928.2, + "end": 5928.42, + "probability": 0.3062 + }, + { + "start": 5928.42, + "end": 5933.42, + "probability": 0.2504 + }, + { + "start": 5933.54, + "end": 5934.12, + "probability": 0.3096 + }, + { + "start": 5934.12, + "end": 5934.18, + "probability": 0.394 + }, + { + "start": 5934.32, + "end": 5935.44, + "probability": 0.6467 + }, + { + "start": 5935.7, + "end": 5935.94, + "probability": 0.8087 + }, + { + "start": 5936.08, + "end": 5937.28, + "probability": 0.588 + }, + { + "start": 5937.4, + "end": 5937.46, + "probability": 0.1304 + }, + { + "start": 5937.46, + "end": 5937.46, + "probability": 0.1288 + }, + { + "start": 5937.46, + "end": 5939.46, + "probability": 0.5888 + }, + { + "start": 5939.64, + "end": 5940.06, + "probability": 0.4084 + }, + { + "start": 5940.06, + "end": 5940.5, + "probability": 0.7169 + }, + { + "start": 5940.6, + "end": 5942.0, + "probability": 0.7735 + }, + { + "start": 5942.0, + "end": 5943.0, + "probability": 0.9937 + }, + { + "start": 5943.26, + "end": 5943.46, + "probability": 0.7178 + }, + { + "start": 5943.5, + "end": 5944.66, + "probability": 0.8818 + }, + { + "start": 5944.74, + "end": 5945.38, + "probability": 0.864 + }, + { + "start": 5945.81, + "end": 5949.6, + "probability": 0.6604 + }, + { + "start": 5949.96, + "end": 5953.06, + "probability": 0.5842 + }, + { + "start": 5953.18, + "end": 5953.18, + "probability": 0.3445 + }, + { + "start": 5953.22, + "end": 5954.08, + "probability": 0.6265 + }, + { + "start": 5954.26, + "end": 5957.04, + "probability": 0.6449 + }, + { + "start": 5957.3, + "end": 5959.2, + "probability": 0.9753 + }, + { + "start": 5959.54, + "end": 5961.85, + "probability": 0.891 + }, + { + "start": 5961.92, + "end": 5962.84, + "probability": 0.4263 + }, + { + "start": 5962.9, + "end": 5964.16, + "probability": 0.3883 + }, + { + "start": 5964.26, + "end": 5965.02, + "probability": 0.2269 + }, + { + "start": 5965.34, + "end": 5965.78, + "probability": 0.3721 + }, + { + "start": 5965.78, + "end": 5965.78, + "probability": 0.4054 + }, + { + "start": 5965.84, + "end": 5966.96, + "probability": 0.4623 + }, + { + "start": 5967.04, + "end": 5968.22, + "probability": 0.711 + }, + { + "start": 5968.34, + "end": 5969.0, + "probability": 0.0939 + }, + { + "start": 5969.12, + "end": 5970.3, + "probability": 0.3743 + }, + { + "start": 5970.48, + "end": 5971.18, + "probability": 0.8785 + }, + { + "start": 5971.48, + "end": 5974.08, + "probability": 0.9856 + }, + { + "start": 5974.88, + "end": 5978.7, + "probability": 0.9882 + }, + { + "start": 5979.46, + "end": 5980.02, + "probability": 0.4908 + }, + { + "start": 5980.86, + "end": 5983.48, + "probability": 0.9562 + }, + { + "start": 5983.48, + "end": 5985.54, + "probability": 0.7676 + }, + { + "start": 5985.72, + "end": 5987.98, + "probability": 0.3149 + }, + { + "start": 5988.34, + "end": 5990.58, + "probability": 0.7663 + }, + { + "start": 5990.66, + "end": 5992.08, + "probability": 0.933 + }, + { + "start": 5992.52, + "end": 5994.74, + "probability": 0.8461 + }, + { + "start": 6004.34, + "end": 6005.54, + "probability": 0.6211 + }, + { + "start": 6005.66, + "end": 6006.95, + "probability": 0.9357 + }, + { + "start": 6007.12, + "end": 6009.08, + "probability": 0.7229 + }, + { + "start": 6010.54, + "end": 6013.2, + "probability": 0.8678 + }, + { + "start": 6013.7, + "end": 6015.66, + "probability": 0.9803 + }, + { + "start": 6019.64, + "end": 6022.68, + "probability": 0.8735 + }, + { + "start": 6026.45, + "end": 6028.76, + "probability": 0.8868 + }, + { + "start": 6029.82, + "end": 6032.58, + "probability": 0.9481 + }, + { + "start": 6032.94, + "end": 6034.18, + "probability": 0.9796 + }, + { + "start": 6035.16, + "end": 6039.82, + "probability": 0.998 + }, + { + "start": 6039.82, + "end": 6047.4, + "probability": 0.9933 + }, + { + "start": 6048.96, + "end": 6051.5, + "probability": 0.8667 + }, + { + "start": 6051.76, + "end": 6052.36, + "probability": 0.5034 + }, + { + "start": 6052.52, + "end": 6057.68, + "probability": 0.9884 + }, + { + "start": 6058.52, + "end": 6061.63, + "probability": 0.8814 + }, + { + "start": 6062.98, + "end": 6066.78, + "probability": 0.7161 + }, + { + "start": 6067.86, + "end": 6068.36, + "probability": 0.8682 + }, + { + "start": 6068.58, + "end": 6068.96, + "probability": 0.6855 + }, + { + "start": 6069.78, + "end": 6071.36, + "probability": 0.4177 + }, + { + "start": 6071.36, + "end": 6073.04, + "probability": 0.8455 + }, + { + "start": 6073.18, + "end": 6073.52, + "probability": 0.9176 + }, + { + "start": 6073.6, + "end": 6075.45, + "probability": 0.9858 + }, + { + "start": 6075.66, + "end": 6080.3, + "probability": 0.689 + }, + { + "start": 6080.3, + "end": 6085.76, + "probability": 0.9844 + }, + { + "start": 6086.14, + "end": 6088.9, + "probability": 0.8909 + }, + { + "start": 6089.42, + "end": 6089.52, + "probability": 0.3773 + }, + { + "start": 6090.42, + "end": 6092.6, + "probability": 0.678 + }, + { + "start": 6093.94, + "end": 6095.52, + "probability": 0.159 + }, + { + "start": 6095.66, + "end": 6098.36, + "probability": 0.6973 + }, + { + "start": 6098.82, + "end": 6102.16, + "probability": 0.9219 + }, + { + "start": 6103.24, + "end": 6109.44, + "probability": 0.8672 + }, + { + "start": 6110.18, + "end": 6111.44, + "probability": 0.5854 + }, + { + "start": 6112.82, + "end": 6116.38, + "probability": 0.9783 + }, + { + "start": 6116.58, + "end": 6120.1, + "probability": 0.9851 + }, + { + "start": 6120.14, + "end": 6120.92, + "probability": 0.877 + }, + { + "start": 6121.7, + "end": 6122.86, + "probability": 0.8345 + }, + { + "start": 6122.94, + "end": 6127.06, + "probability": 0.9385 + }, + { + "start": 6132.28, + "end": 6134.44, + "probability": 0.5875 + }, + { + "start": 6135.86, + "end": 6138.48, + "probability": 0.978 + }, + { + "start": 6138.6, + "end": 6139.16, + "probability": 0.7382 + }, + { + "start": 6139.24, + "end": 6140.24, + "probability": 0.8408 + }, + { + "start": 6140.36, + "end": 6140.99, + "probability": 0.9839 + }, + { + "start": 6142.72, + "end": 6151.59, + "probability": 0.9331 + }, + { + "start": 6152.68, + "end": 6153.4, + "probability": 0.6802 + }, + { + "start": 6153.52, + "end": 6156.32, + "probability": 0.5552 + }, + { + "start": 6158.93, + "end": 6161.3, + "probability": 0.82 + }, + { + "start": 6161.44, + "end": 6161.88, + "probability": 0.8363 + }, + { + "start": 6162.3, + "end": 6165.94, + "probability": 0.9499 + }, + { + "start": 6166.6, + "end": 6169.94, + "probability": 0.8109 + }, + { + "start": 6170.18, + "end": 6170.98, + "probability": 0.5255 + }, + { + "start": 6172.68, + "end": 6175.9, + "probability": 0.9731 + }, + { + "start": 6177.02, + "end": 6178.6, + "probability": 0.9986 + }, + { + "start": 6178.68, + "end": 6179.82, + "probability": 0.8942 + }, + { + "start": 6180.14, + "end": 6186.14, + "probability": 0.9976 + }, + { + "start": 6186.38, + "end": 6187.3, + "probability": 0.9285 + }, + { + "start": 6187.4, + "end": 6188.48, + "probability": 0.8816 + }, + { + "start": 6188.62, + "end": 6189.48, + "probability": 0.8903 + }, + { + "start": 6190.36, + "end": 6195.92, + "probability": 0.9925 + }, + { + "start": 6196.04, + "end": 6197.92, + "probability": 0.874 + }, + { + "start": 6198.0, + "end": 6198.74, + "probability": 0.6776 + }, + { + "start": 6200.24, + "end": 6202.46, + "probability": 0.996 + }, + { + "start": 6202.6, + "end": 6203.66, + "probability": 0.9117 + }, + { + "start": 6204.44, + "end": 6207.86, + "probability": 0.9364 + }, + { + "start": 6208.94, + "end": 6210.36, + "probability": 0.9291 + }, + { + "start": 6210.84, + "end": 6211.9, + "probability": 0.917 + }, + { + "start": 6211.98, + "end": 6212.56, + "probability": 0.9788 + }, + { + "start": 6213.54, + "end": 6214.48, + "probability": 0.9312 + }, + { + "start": 6215.36, + "end": 6220.04, + "probability": 0.9878 + }, + { + "start": 6220.7, + "end": 6221.76, + "probability": 0.5715 + }, + { + "start": 6222.76, + "end": 6227.82, + "probability": 0.988 + }, + { + "start": 6228.72, + "end": 6235.56, + "probability": 0.9886 + }, + { + "start": 6236.6, + "end": 6238.96, + "probability": 0.7486 + }, + { + "start": 6239.0, + "end": 6240.56, + "probability": 0.6107 + }, + { + "start": 6241.92, + "end": 6247.06, + "probability": 0.9796 + }, + { + "start": 6249.04, + "end": 6252.18, + "probability": 0.9387 + }, + { + "start": 6252.56, + "end": 6255.56, + "probability": 0.9906 + }, + { + "start": 6256.04, + "end": 6256.28, + "probability": 0.5121 + }, + { + "start": 6256.86, + "end": 6258.65, + "probability": 0.857 + }, + { + "start": 6259.9, + "end": 6263.46, + "probability": 0.9778 + }, + { + "start": 6263.46, + "end": 6267.48, + "probability": 0.8872 + }, + { + "start": 6268.9, + "end": 6270.62, + "probability": 0.8285 + }, + { + "start": 6270.7, + "end": 6271.68, + "probability": 0.6928 + }, + { + "start": 6272.62, + "end": 6273.66, + "probability": 0.8231 + }, + { + "start": 6274.18, + "end": 6276.52, + "probability": 0.9052 + }, + { + "start": 6277.0, + "end": 6283.16, + "probability": 0.9966 + }, + { + "start": 6283.5, + "end": 6284.6, + "probability": 0.9168 + }, + { + "start": 6284.66, + "end": 6287.08, + "probability": 0.7486 + }, + { + "start": 6287.24, + "end": 6291.34, + "probability": 0.9164 + }, + { + "start": 6292.66, + "end": 6296.42, + "probability": 0.9374 + }, + { + "start": 6297.22, + "end": 6299.08, + "probability": 0.9491 + }, + { + "start": 6299.24, + "end": 6301.56, + "probability": 0.8247 + }, + { + "start": 6302.04, + "end": 6302.78, + "probability": 0.7279 + }, + { + "start": 6303.38, + "end": 6304.24, + "probability": 0.9115 + }, + { + "start": 6306.82, + "end": 6310.76, + "probability": 0.9959 + }, + { + "start": 6311.94, + "end": 6316.7, + "probability": 0.9399 + }, + { + "start": 6317.14, + "end": 6320.37, + "probability": 0.9917 + }, + { + "start": 6321.44, + "end": 6323.16, + "probability": 0.9971 + }, + { + "start": 6323.44, + "end": 6327.68, + "probability": 0.9917 + }, + { + "start": 6329.16, + "end": 6330.64, + "probability": 0.9971 + }, + { + "start": 6331.2, + "end": 6333.84, + "probability": 0.9701 + }, + { + "start": 6336.06, + "end": 6337.34, + "probability": 0.9877 + }, + { + "start": 6337.96, + "end": 6339.62, + "probability": 0.916 + }, + { + "start": 6341.42, + "end": 6344.32, + "probability": 0.9419 + }, + { + "start": 6345.28, + "end": 6346.62, + "probability": 0.9669 + }, + { + "start": 6347.4, + "end": 6350.23, + "probability": 0.9377 + }, + { + "start": 6350.76, + "end": 6352.76, + "probability": 0.8179 + }, + { + "start": 6352.78, + "end": 6353.84, + "probability": 0.8796 + }, + { + "start": 6354.64, + "end": 6357.56, + "probability": 0.9409 + }, + { + "start": 6357.94, + "end": 6359.37, + "probability": 0.8051 + }, + { + "start": 6361.52, + "end": 6367.9, + "probability": 0.9517 + }, + { + "start": 6367.9, + "end": 6368.55, + "probability": 0.4284 + }, + { + "start": 6369.5, + "end": 6370.66, + "probability": 0.9941 + }, + { + "start": 6371.24, + "end": 6372.32, + "probability": 0.8054 + }, + { + "start": 6372.42, + "end": 6375.42, + "probability": 0.9961 + }, + { + "start": 6376.0, + "end": 6376.72, + "probability": 0.8682 + }, + { + "start": 6378.08, + "end": 6379.06, + "probability": 0.9475 + }, + { + "start": 6379.28, + "end": 6379.56, + "probability": 0.7629 + }, + { + "start": 6379.7, + "end": 6384.28, + "probability": 0.9859 + }, + { + "start": 6384.94, + "end": 6388.16, + "probability": 0.9528 + }, + { + "start": 6389.66, + "end": 6391.72, + "probability": 0.4718 + }, + { + "start": 6391.78, + "end": 6397.6, + "probability": 0.8313 + }, + { + "start": 6398.74, + "end": 6399.64, + "probability": 0.87 + }, + { + "start": 6400.16, + "end": 6400.96, + "probability": 0.3668 + }, + { + "start": 6402.0, + "end": 6404.9, + "probability": 0.8903 + }, + { + "start": 6404.9, + "end": 6406.6, + "probability": 0.8107 + }, + { + "start": 6406.86, + "end": 6408.68, + "probability": 0.8478 + }, + { + "start": 6410.03, + "end": 6412.74, + "probability": 0.9722 + }, + { + "start": 6413.12, + "end": 6414.14, + "probability": 0.9712 + }, + { + "start": 6414.24, + "end": 6415.34, + "probability": 0.9917 + }, + { + "start": 6416.18, + "end": 6417.26, + "probability": 0.8821 + }, + { + "start": 6417.5, + "end": 6419.08, + "probability": 0.9844 + }, + { + "start": 6419.48, + "end": 6421.06, + "probability": 0.7568 + }, + { + "start": 6421.2, + "end": 6421.34, + "probability": 0.5868 + }, + { + "start": 6421.42, + "end": 6422.0, + "probability": 0.6891 + }, + { + "start": 6423.6, + "end": 6426.12, + "probability": 0.9873 + }, + { + "start": 6426.18, + "end": 6429.36, + "probability": 0.9298 + }, + { + "start": 6429.58, + "end": 6433.88, + "probability": 0.9568 + }, + { + "start": 6434.22, + "end": 6438.62, + "probability": 0.5961 + }, + { + "start": 6438.94, + "end": 6439.82, + "probability": 0.8203 + }, + { + "start": 6440.08, + "end": 6442.1, + "probability": 0.5057 + }, + { + "start": 6444.08, + "end": 6446.2, + "probability": 0.5011 + }, + { + "start": 6446.9, + "end": 6450.16, + "probability": 0.8204 + }, + { + "start": 6451.28, + "end": 6453.74, + "probability": 0.9534 + }, + { + "start": 6454.6, + "end": 6455.55, + "probability": 0.6505 + }, + { + "start": 6455.7, + "end": 6456.42, + "probability": 0.5153 + }, + { + "start": 6456.8, + "end": 6459.46, + "probability": 0.4723 + }, + { + "start": 6459.58, + "end": 6460.28, + "probability": 0.6735 + }, + { + "start": 6460.28, + "end": 6462.68, + "probability": 0.9884 + }, + { + "start": 6462.78, + "end": 6467.22, + "probability": 0.9531 + }, + { + "start": 6467.22, + "end": 6470.82, + "probability": 0.9647 + }, + { + "start": 6471.0, + "end": 6472.7, + "probability": 0.7705 + }, + { + "start": 6472.84, + "end": 6478.46, + "probability": 0.8843 + }, + { + "start": 6479.5, + "end": 6483.72, + "probability": 0.9622 + }, + { + "start": 6484.28, + "end": 6486.81, + "probability": 0.9958 + }, + { + "start": 6487.06, + "end": 6489.48, + "probability": 0.9018 + }, + { + "start": 6489.96, + "end": 6490.44, + "probability": 0.3293 + }, + { + "start": 6490.54, + "end": 6491.52, + "probability": 0.9839 + }, + { + "start": 6493.08, + "end": 6494.74, + "probability": 0.5889 + }, + { + "start": 6494.78, + "end": 6496.72, + "probability": 0.7833 + }, + { + "start": 6496.72, + "end": 6497.16, + "probability": 0.6913 + }, + { + "start": 6497.24, + "end": 6498.16, + "probability": 0.5735 + }, + { + "start": 6498.44, + "end": 6498.7, + "probability": 0.7244 + }, + { + "start": 6498.84, + "end": 6503.48, + "probability": 0.9209 + }, + { + "start": 6503.54, + "end": 6506.82, + "probability": 0.935 + }, + { + "start": 6507.0, + "end": 6510.84, + "probability": 0.812 + }, + { + "start": 6511.02, + "end": 6513.86, + "probability": 0.5308 + }, + { + "start": 6513.94, + "end": 6515.56, + "probability": 0.7729 + }, + { + "start": 6515.84, + "end": 6516.9, + "probability": 0.2987 + }, + { + "start": 6516.9, + "end": 6519.12, + "probability": 0.7627 + }, + { + "start": 6519.52, + "end": 6520.74, + "probability": 0.8239 + }, + { + "start": 6520.74, + "end": 6521.2, + "probability": 0.7021 + }, + { + "start": 6521.32, + "end": 6523.16, + "probability": 0.4263 + }, + { + "start": 6523.34, + "end": 6526.54, + "probability": 0.984 + }, + { + "start": 6527.12, + "end": 6530.82, + "probability": 0.9482 + }, + { + "start": 6530.94, + "end": 6532.46, + "probability": 0.8367 + }, + { + "start": 6533.7, + "end": 6535.72, + "probability": 0.2591 + }, + { + "start": 6535.86, + "end": 6540.72, + "probability": 0.5145 + }, + { + "start": 6540.72, + "end": 6541.18, + "probability": 0.8457 + }, + { + "start": 6541.62, + "end": 6541.72, + "probability": 0.7015 + }, + { + "start": 6542.26, + "end": 6543.7, + "probability": 0.7989 + }, + { + "start": 6543.74, + "end": 6545.2, + "probability": 0.7793 + }, + { + "start": 6545.6, + "end": 6547.08, + "probability": 0.7787 + }, + { + "start": 6547.38, + "end": 6548.88, + "probability": 0.9791 + }, + { + "start": 6549.52, + "end": 6553.96, + "probability": 0.6242 + }, + { + "start": 6554.84, + "end": 6556.9, + "probability": 0.8247 + }, + { + "start": 6557.46, + "end": 6559.26, + "probability": 0.6679 + }, + { + "start": 6559.98, + "end": 6563.76, + "probability": 0.9002 + }, + { + "start": 6563.76, + "end": 6566.72, + "probability": 0.96 + }, + { + "start": 6567.24, + "end": 6568.92, + "probability": 0.5744 + }, + { + "start": 6569.14, + "end": 6569.24, + "probability": 0.343 + }, + { + "start": 6571.16, + "end": 6574.48, + "probability": 0.8413 + }, + { + "start": 6574.62, + "end": 6575.94, + "probability": 0.8682 + }, + { + "start": 6576.02, + "end": 6576.8, + "probability": 0.883 + }, + { + "start": 6589.82, + "end": 6590.68, + "probability": 0.3761 + }, + { + "start": 6590.84, + "end": 6590.84, + "probability": 0.065 + }, + { + "start": 6590.84, + "end": 6594.32, + "probability": 0.98 + }, + { + "start": 6594.9, + "end": 6598.7, + "probability": 0.9514 + }, + { + "start": 6599.52, + "end": 6600.16, + "probability": 0.1253 + }, + { + "start": 6600.8, + "end": 6603.96, + "probability": 0.797 + }, + { + "start": 6608.14, + "end": 6610.28, + "probability": 0.6362 + }, + { + "start": 6610.5, + "end": 6611.84, + "probability": 0.779 + }, + { + "start": 6612.5, + "end": 6617.92, + "probability": 0.972 + }, + { + "start": 6618.04, + "end": 6620.54, + "probability": 0.5875 + }, + { + "start": 6620.6, + "end": 6621.26, + "probability": 0.8456 + }, + { + "start": 6622.56, + "end": 6624.14, + "probability": 0.7996 + }, + { + "start": 6624.74, + "end": 6628.06, + "probability": 0.9807 + }, + { + "start": 6628.06, + "end": 6630.8, + "probability": 0.9958 + }, + { + "start": 6631.38, + "end": 6634.54, + "probability": 0.7937 + }, + { + "start": 6636.3, + "end": 6640.2, + "probability": 0.9596 + }, + { + "start": 6660.02, + "end": 6661.96, + "probability": 0.6513 + }, + { + "start": 6664.46, + "end": 6666.3, + "probability": 0.9894 + }, + { + "start": 6668.24, + "end": 6670.72, + "probability": 0.9645 + }, + { + "start": 6672.6, + "end": 6679.7, + "probability": 0.9559 + }, + { + "start": 6680.38, + "end": 6684.06, + "probability": 0.9747 + }, + { + "start": 6684.06, + "end": 6688.08, + "probability": 0.9802 + }, + { + "start": 6689.24, + "end": 6690.04, + "probability": 0.8527 + }, + { + "start": 6690.96, + "end": 6692.76, + "probability": 0.9454 + }, + { + "start": 6693.58, + "end": 6694.38, + "probability": 0.9893 + }, + { + "start": 6696.84, + "end": 6699.02, + "probability": 0.2952 + }, + { + "start": 6699.7, + "end": 6701.7, + "probability": 0.7839 + }, + { + "start": 6702.5, + "end": 6706.48, + "probability": 0.9894 + }, + { + "start": 6708.32, + "end": 6709.7, + "probability": 0.9192 + }, + { + "start": 6710.52, + "end": 6716.28, + "probability": 0.9893 + }, + { + "start": 6716.46, + "end": 6718.18, + "probability": 0.0419 + }, + { + "start": 6719.38, + "end": 6720.58, + "probability": 0.794 + }, + { + "start": 6721.14, + "end": 6725.86, + "probability": 0.9893 + }, + { + "start": 6725.86, + "end": 6731.86, + "probability": 0.9954 + }, + { + "start": 6732.58, + "end": 6733.48, + "probability": 0.8616 + }, + { + "start": 6736.32, + "end": 6740.34, + "probability": 0.9746 + }, + { + "start": 6741.22, + "end": 6741.83, + "probability": 0.9868 + }, + { + "start": 6744.46, + "end": 6748.6, + "probability": 0.9397 + }, + { + "start": 6748.74, + "end": 6749.54, + "probability": 0.6207 + }, + { + "start": 6750.52, + "end": 6752.3, + "probability": 0.9113 + }, + { + "start": 6752.86, + "end": 6754.52, + "probability": 0.9844 + }, + { + "start": 6755.44, + "end": 6757.0, + "probability": 0.9263 + }, + { + "start": 6757.66, + "end": 6760.5, + "probability": 0.83 + }, + { + "start": 6761.88, + "end": 6763.52, + "probability": 0.856 + }, + { + "start": 6763.64, + "end": 6764.54, + "probability": 0.9622 + }, + { + "start": 6765.04, + "end": 6767.6, + "probability": 0.7038 + }, + { + "start": 6768.12, + "end": 6769.1, + "probability": 0.9323 + }, + { + "start": 6769.8, + "end": 6770.8, + "probability": 0.8789 + }, + { + "start": 6771.48, + "end": 6771.98, + "probability": 0.943 + }, + { + "start": 6773.26, + "end": 6775.64, + "probability": 0.9214 + }, + { + "start": 6776.36, + "end": 6778.4, + "probability": 0.8924 + }, + { + "start": 6779.2, + "end": 6783.66, + "probability": 0.997 + }, + { + "start": 6784.18, + "end": 6785.62, + "probability": 0.9671 + }, + { + "start": 6787.08, + "end": 6790.0, + "probability": 0.9855 + }, + { + "start": 6791.12, + "end": 6795.92, + "probability": 0.9529 + }, + { + "start": 6796.56, + "end": 6799.26, + "probability": 0.7237 + }, + { + "start": 6800.08, + "end": 6802.4, + "probability": 0.7897 + }, + { + "start": 6803.06, + "end": 6805.12, + "probability": 0.8481 + }, + { + "start": 6805.58, + "end": 6806.18, + "probability": 0.8699 + }, + { + "start": 6806.2, + "end": 6811.66, + "probability": 0.9697 + }, + { + "start": 6812.6, + "end": 6812.82, + "probability": 0.4862 + }, + { + "start": 6812.96, + "end": 6816.16, + "probability": 0.9673 + }, + { + "start": 6816.66, + "end": 6818.8, + "probability": 0.9847 + }, + { + "start": 6819.46, + "end": 6824.94, + "probability": 0.9966 + }, + { + "start": 6825.7, + "end": 6829.06, + "probability": 0.9875 + }, + { + "start": 6829.64, + "end": 6830.34, + "probability": 0.9347 + }, + { + "start": 6830.42, + "end": 6831.7, + "probability": 0.959 + }, + { + "start": 6831.88, + "end": 6833.62, + "probability": 0.8267 + }, + { + "start": 6834.38, + "end": 6837.98, + "probability": 0.9341 + }, + { + "start": 6839.06, + "end": 6840.82, + "probability": 0.797 + }, + { + "start": 6841.4, + "end": 6842.63, + "probability": 0.8688 + }, + { + "start": 6843.58, + "end": 6849.6, + "probability": 0.9862 + }, + { + "start": 6852.56, + "end": 6853.16, + "probability": 0.7528 + }, + { + "start": 6854.94, + "end": 6859.62, + "probability": 0.9691 + }, + { + "start": 6860.94, + "end": 6863.76, + "probability": 0.9966 + }, + { + "start": 6865.06, + "end": 6866.84, + "probability": 0.9666 + }, + { + "start": 6867.58, + "end": 6869.12, + "probability": 0.8293 + }, + { + "start": 6870.04, + "end": 6873.16, + "probability": 0.9947 + }, + { + "start": 6873.72, + "end": 6876.0, + "probability": 0.8237 + }, + { + "start": 6876.52, + "end": 6877.68, + "probability": 0.9983 + }, + { + "start": 6878.72, + "end": 6885.16, + "probability": 0.998 + }, + { + "start": 6886.0, + "end": 6888.54, + "probability": 0.9956 + }, + { + "start": 6889.64, + "end": 6892.1, + "probability": 0.9408 + }, + { + "start": 6893.04, + "end": 6895.32, + "probability": 0.9373 + }, + { + "start": 6895.86, + "end": 6897.57, + "probability": 0.9883 + }, + { + "start": 6898.36, + "end": 6904.42, + "probability": 0.9674 + }, + { + "start": 6905.18, + "end": 6906.7, + "probability": 0.9041 + }, + { + "start": 6907.34, + "end": 6910.94, + "probability": 0.9111 + }, + { + "start": 6911.68, + "end": 6913.18, + "probability": 0.8532 + }, + { + "start": 6913.84, + "end": 6914.48, + "probability": 0.9508 + }, + { + "start": 6915.36, + "end": 6919.48, + "probability": 0.9926 + }, + { + "start": 6920.62, + "end": 6925.56, + "probability": 0.9106 + }, + { + "start": 6926.34, + "end": 6930.02, + "probability": 0.9356 + }, + { + "start": 6930.74, + "end": 6932.74, + "probability": 0.9844 + }, + { + "start": 6933.66, + "end": 6934.06, + "probability": 0.6584 + }, + { + "start": 6934.68, + "end": 6936.64, + "probability": 0.9465 + }, + { + "start": 6936.72, + "end": 6938.06, + "probability": 0.9629 + }, + { + "start": 6938.54, + "end": 6939.44, + "probability": 0.9819 + }, + { + "start": 6939.76, + "end": 6940.7, + "probability": 0.9717 + }, + { + "start": 6941.16, + "end": 6942.71, + "probability": 0.9922 + }, + { + "start": 6943.22, + "end": 6943.48, + "probability": 0.2111 + }, + { + "start": 6943.48, + "end": 6949.9, + "probability": 0.5928 + }, + { + "start": 6950.88, + "end": 6951.32, + "probability": 0.6536 + }, + { + "start": 6952.2, + "end": 6954.01, + "probability": 0.783 + }, + { + "start": 6955.36, + "end": 6956.52, + "probability": 0.8816 + }, + { + "start": 6957.62, + "end": 6959.16, + "probability": 0.8289 + }, + { + "start": 6960.66, + "end": 6965.36, + "probability": 0.9801 + }, + { + "start": 6965.88, + "end": 6969.62, + "probability": 0.8009 + }, + { + "start": 6973.3, + "end": 6976.29, + "probability": 0.9985 + }, + { + "start": 6976.8, + "end": 6977.71, + "probability": 0.946 + }, + { + "start": 6978.7, + "end": 6980.05, + "probability": 0.9927 + }, + { + "start": 6981.0, + "end": 6983.38, + "probability": 0.9893 + }, + { + "start": 6984.16, + "end": 6986.18, + "probability": 0.9938 + }, + { + "start": 6986.62, + "end": 6989.18, + "probability": 0.9858 + }, + { + "start": 6989.28, + "end": 6990.06, + "probability": 0.7298 + }, + { + "start": 6990.56, + "end": 6993.28, + "probability": 0.9981 + }, + { + "start": 6993.28, + "end": 6995.94, + "probability": 0.9797 + }, + { + "start": 6997.02, + "end": 6998.86, + "probability": 0.7185 + }, + { + "start": 6999.46, + "end": 7001.4, + "probability": 0.9916 + }, + { + "start": 7002.18, + "end": 7005.9, + "probability": 0.9918 + }, + { + "start": 7006.6, + "end": 7009.5, + "probability": 0.9881 + }, + { + "start": 7010.44, + "end": 7014.2, + "probability": 0.5545 + }, + { + "start": 7014.88, + "end": 7018.3, + "probability": 0.9736 + }, + { + "start": 7018.8, + "end": 7020.7, + "probability": 0.9871 + }, + { + "start": 7021.18, + "end": 7025.46, + "probability": 0.9121 + }, + { + "start": 7026.26, + "end": 7028.96, + "probability": 0.5015 + }, + { + "start": 7029.08, + "end": 7033.78, + "probability": 0.9878 + }, + { + "start": 7034.26, + "end": 7035.7, + "probability": 0.842 + }, + { + "start": 7036.14, + "end": 7037.4, + "probability": 0.8218 + }, + { + "start": 7037.72, + "end": 7040.2, + "probability": 0.99 + }, + { + "start": 7040.3, + "end": 7040.86, + "probability": 0.8147 + }, + { + "start": 7041.24, + "end": 7043.06, + "probability": 0.9868 + }, + { + "start": 7043.18, + "end": 7045.4, + "probability": 0.6082 + }, + { + "start": 7045.94, + "end": 7050.08, + "probability": 0.5851 + }, + { + "start": 7050.74, + "end": 7051.44, + "probability": 0.6706 + }, + { + "start": 7052.92, + "end": 7055.36, + "probability": 0.6958 + }, + { + "start": 7055.66, + "end": 7057.38, + "probability": 0.8171 + }, + { + "start": 7064.24, + "end": 7065.82, + "probability": 0.3606 + }, + { + "start": 7066.0, + "end": 7066.0, + "probability": 0.3688 + }, + { + "start": 7066.0, + "end": 7069.2, + "probability": 0.861 + }, + { + "start": 7069.42, + "end": 7070.7, + "probability": 0.8993 + }, + { + "start": 7070.76, + "end": 7071.54, + "probability": 0.6031 + }, + { + "start": 7071.64, + "end": 7073.3, + "probability": 0.9635 + }, + { + "start": 7073.4, + "end": 7076.74, + "probability": 0.9935 + }, + { + "start": 7077.48, + "end": 7077.98, + "probability": 0.2513 + }, + { + "start": 7078.06, + "end": 7079.0, + "probability": 0.7679 + }, + { + "start": 7079.1, + "end": 7081.44, + "probability": 0.9988 + }, + { + "start": 7081.44, + "end": 7084.88, + "probability": 0.9854 + }, + { + "start": 7085.9, + "end": 7086.96, + "probability": 0.8358 + }, + { + "start": 7087.12, + "end": 7089.76, + "probability": 0.9712 + }, + { + "start": 7089.86, + "end": 7091.7, + "probability": 0.79 + }, + { + "start": 7092.28, + "end": 7095.68, + "probability": 0.8319 + }, + { + "start": 7096.2, + "end": 7100.18, + "probability": 0.8046 + }, + { + "start": 7100.84, + "end": 7105.24, + "probability": 0.9961 + }, + { + "start": 7105.8, + "end": 7109.96, + "probability": 0.9929 + }, + { + "start": 7109.96, + "end": 7113.72, + "probability": 0.9993 + }, + { + "start": 7114.46, + "end": 7121.54, + "probability": 0.9972 + }, + { + "start": 7121.96, + "end": 7127.48, + "probability": 0.9977 + }, + { + "start": 7127.9, + "end": 7129.58, + "probability": 0.8522 + }, + { + "start": 7129.72, + "end": 7134.42, + "probability": 0.999 + }, + { + "start": 7134.76, + "end": 7138.4, + "probability": 0.9148 + }, + { + "start": 7138.6, + "end": 7141.3, + "probability": 0.9913 + }, + { + "start": 7141.86, + "end": 7145.08, + "probability": 0.7835 + }, + { + "start": 7145.34, + "end": 7149.4, + "probability": 0.9948 + }, + { + "start": 7149.72, + "end": 7150.36, + "probability": 0.7073 + }, + { + "start": 7151.24, + "end": 7151.36, + "probability": 0.0944 + }, + { + "start": 7151.36, + "end": 7153.62, + "probability": 0.1745 + }, + { + "start": 7153.68, + "end": 7154.98, + "probability": 0.8596 + }, + { + "start": 7155.34, + "end": 7157.06, + "probability": 0.687 + }, + { + "start": 7157.32, + "end": 7158.74, + "probability": 0.9151 + }, + { + "start": 7158.94, + "end": 7161.26, + "probability": 0.4357 + }, + { + "start": 7161.5, + "end": 7165.64, + "probability": 0.9967 + }, + { + "start": 7166.14, + "end": 7167.12, + "probability": 0.9417 + }, + { + "start": 7167.26, + "end": 7170.08, + "probability": 0.9906 + }, + { + "start": 7170.42, + "end": 7173.34, + "probability": 0.9722 + }, + { + "start": 7173.64, + "end": 7174.6, + "probability": 0.8388 + }, + { + "start": 7174.9, + "end": 7177.68, + "probability": 0.9965 + }, + { + "start": 7177.8, + "end": 7179.6, + "probability": 0.8365 + }, + { + "start": 7179.74, + "end": 7181.44, + "probability": 0.9548 + }, + { + "start": 7181.66, + "end": 7186.16, + "probability": 0.971 + }, + { + "start": 7186.3, + "end": 7186.85, + "probability": 0.3221 + }, + { + "start": 7187.14, + "end": 7187.98, + "probability": 0.3337 + }, + { + "start": 7188.7, + "end": 7193.6, + "probability": 0.9742 + }, + { + "start": 7193.9, + "end": 7194.3, + "probability": 0.4508 + }, + { + "start": 7194.4, + "end": 7194.92, + "probability": 0.4423 + }, + { + "start": 7195.18, + "end": 7196.9, + "probability": 0.0829 + }, + { + "start": 7197.02, + "end": 7199.73, + "probability": 0.3979 + }, + { + "start": 7200.12, + "end": 7201.45, + "probability": 0.8338 + }, + { + "start": 7201.92, + "end": 7202.58, + "probability": 0.632 + }, + { + "start": 7202.9, + "end": 7203.62, + "probability": 0.5557 + }, + { + "start": 7203.76, + "end": 7205.1, + "probability": 0.7163 + }, + { + "start": 7205.16, + "end": 7206.94, + "probability": 0.8657 + }, + { + "start": 7207.08, + "end": 7209.02, + "probability": 0.7262 + }, + { + "start": 7209.26, + "end": 7210.96, + "probability": 0.4951 + }, + { + "start": 7211.32, + "end": 7214.58, + "probability": 0.6918 + }, + { + "start": 7214.64, + "end": 7215.04, + "probability": 0.0084 + }, + { + "start": 7215.04, + "end": 7218.3, + "probability": 0.6943 + }, + { + "start": 7218.98, + "end": 7221.52, + "probability": 0.0742 + }, + { + "start": 7221.52, + "end": 7222.42, + "probability": 0.1416 + }, + { + "start": 7222.8, + "end": 7223.75, + "probability": 0.452 + }, + { + "start": 7224.46, + "end": 7225.44, + "probability": 0.0776 + }, + { + "start": 7225.72, + "end": 7226.08, + "probability": 0.1893 + }, + { + "start": 7226.28, + "end": 7228.14, + "probability": 0.7432 + }, + { + "start": 7228.32, + "end": 7230.27, + "probability": 0.6777 + }, + { + "start": 7230.5, + "end": 7232.78, + "probability": 0.995 + }, + { + "start": 7233.28, + "end": 7237.82, + "probability": 0.9683 + }, + { + "start": 7237.82, + "end": 7241.8, + "probability": 0.9743 + }, + { + "start": 7242.08, + "end": 7245.36, + "probability": 0.9944 + }, + { + "start": 7245.74, + "end": 7247.34, + "probability": 0.844 + }, + { + "start": 7248.06, + "end": 7248.68, + "probability": 0.9709 + }, + { + "start": 7248.76, + "end": 7250.38, + "probability": 0.9976 + }, + { + "start": 7250.76, + "end": 7254.98, + "probability": 0.9906 + }, + { + "start": 7255.16, + "end": 7255.62, + "probability": 0.785 + }, + { + "start": 7255.66, + "end": 7257.76, + "probability": 0.9822 + }, + { + "start": 7258.12, + "end": 7259.26, + "probability": 0.802 + }, + { + "start": 7259.34, + "end": 7263.98, + "probability": 0.9841 + }, + { + "start": 7264.1, + "end": 7265.13, + "probability": 0.9919 + }, + { + "start": 7265.4, + "end": 7267.05, + "probability": 0.9807 + }, + { + "start": 7267.66, + "end": 7267.84, + "probability": 0.0145 + }, + { + "start": 7268.78, + "end": 7269.78, + "probability": 0.1236 + }, + { + "start": 7269.84, + "end": 7270.24, + "probability": 0.3329 + }, + { + "start": 7270.4, + "end": 7271.78, + "probability": 0.1352 + }, + { + "start": 7272.34, + "end": 7274.23, + "probability": 0.0728 + }, + { + "start": 7274.62, + "end": 7276.14, + "probability": 0.7772 + }, + { + "start": 7276.38, + "end": 7278.02, + "probability": 0.3833 + }, + { + "start": 7278.22, + "end": 7278.72, + "probability": 0.4519 + }, + { + "start": 7279.88, + "end": 7280.8, + "probability": 0.0149 + }, + { + "start": 7281.16, + "end": 7282.1, + "probability": 0.1079 + }, + { + "start": 7282.18, + "end": 7285.4, + "probability": 0.0546 + }, + { + "start": 7285.56, + "end": 7289.48, + "probability": 0.1825 + }, + { + "start": 7289.48, + "end": 7290.56, + "probability": 0.0743 + }, + { + "start": 7292.32, + "end": 7294.02, + "probability": 0.0634 + }, + { + "start": 7295.84, + "end": 7296.7, + "probability": 0.0567 + }, + { + "start": 7297.02, + "end": 7297.3, + "probability": 0.3017 + }, + { + "start": 7298.36, + "end": 7301.9, + "probability": 0.0809 + }, + { + "start": 7302.28, + "end": 7302.74, + "probability": 0.0272 + }, + { + "start": 7305.2, + "end": 7307.4, + "probability": 0.4864 + }, + { + "start": 7307.72, + "end": 7312.1, + "probability": 0.9766 + }, + { + "start": 7312.6, + "end": 7313.08, + "probability": 0.6224 + }, + { + "start": 7313.2, + "end": 7314.3, + "probability": 0.8262 + }, + { + "start": 7314.42, + "end": 7316.54, + "probability": 0.8 + }, + { + "start": 7316.58, + "end": 7317.62, + "probability": 0.9824 + }, + { + "start": 7317.74, + "end": 7318.99, + "probability": 0.9648 + }, + { + "start": 7319.22, + "end": 7322.42, + "probability": 0.87 + }, + { + "start": 7322.48, + "end": 7322.84, + "probability": 0.7861 + }, + { + "start": 7323.16, + "end": 7325.32, + "probability": 0.8457 + }, + { + "start": 7325.82, + "end": 7329.97, + "probability": 0.8617 + }, + { + "start": 7330.36, + "end": 7332.68, + "probability": 0.7494 + }, + { + "start": 7332.86, + "end": 7333.64, + "probability": 0.9385 + }, + { + "start": 7343.04, + "end": 7346.5, + "probability": 0.8085 + }, + { + "start": 7347.59, + "end": 7349.54, + "probability": 0.3824 + }, + { + "start": 7350.72, + "end": 7351.38, + "probability": 0.6106 + }, + { + "start": 7352.8, + "end": 7353.62, + "probability": 0.4324 + }, + { + "start": 7355.94, + "end": 7356.3, + "probability": 0.8491 + }, + { + "start": 7357.0, + "end": 7358.36, + "probability": 0.7183 + }, + { + "start": 7359.1, + "end": 7359.58, + "probability": 0.9556 + }, + { + "start": 7361.2, + "end": 7362.52, + "probability": 0.6342 + }, + { + "start": 7366.6, + "end": 7369.26, + "probability": 0.6863 + }, + { + "start": 7370.14, + "end": 7370.78, + "probability": 0.8685 + }, + { + "start": 7371.6, + "end": 7372.48, + "probability": 0.852 + }, + { + "start": 7373.48, + "end": 7375.74, + "probability": 0.7228 + }, + { + "start": 7376.92, + "end": 7380.08, + "probability": 0.909 + }, + { + "start": 7381.26, + "end": 7383.24, + "probability": 0.9325 + }, + { + "start": 7384.74, + "end": 7386.66, + "probability": 0.9221 + }, + { + "start": 7389.5, + "end": 7391.08, + "probability": 0.8354 + }, + { + "start": 7393.76, + "end": 7394.16, + "probability": 0.9666 + }, + { + "start": 7395.9, + "end": 7396.86, + "probability": 0.8935 + }, + { + "start": 7397.8, + "end": 7400.14, + "probability": 0.749 + }, + { + "start": 7401.46, + "end": 7404.12, + "probability": 0.9148 + }, + { + "start": 7406.24, + "end": 7407.86, + "probability": 0.9584 + }, + { + "start": 7408.84, + "end": 7410.68, + "probability": 0.9744 + }, + { + "start": 7412.1, + "end": 7414.54, + "probability": 0.942 + }, + { + "start": 7415.62, + "end": 7417.76, + "probability": 0.9542 + }, + { + "start": 7418.6, + "end": 7420.46, + "probability": 0.7753 + }, + { + "start": 7421.56, + "end": 7427.8, + "probability": 0.6898 + }, + { + "start": 7429.54, + "end": 7432.08, + "probability": 0.9127 + }, + { + "start": 7434.48, + "end": 7436.38, + "probability": 0.76 + }, + { + "start": 7437.7, + "end": 7439.48, + "probability": 0.9438 + }, + { + "start": 7441.04, + "end": 7443.6, + "probability": 0.7404 + }, + { + "start": 7444.94, + "end": 7445.68, + "probability": 0.9853 + }, + { + "start": 7446.26, + "end": 7447.08, + "probability": 0.7567 + }, + { + "start": 7447.88, + "end": 7448.28, + "probability": 0.6898 + }, + { + "start": 7448.84, + "end": 7449.88, + "probability": 0.6295 + }, + { + "start": 7450.64, + "end": 7452.3, + "probability": 0.7954 + }, + { + "start": 7453.14, + "end": 7455.22, + "probability": 0.9067 + }, + { + "start": 7456.1, + "end": 7457.78, + "probability": 0.9257 + }, + { + "start": 7458.72, + "end": 7460.36, + "probability": 0.9805 + }, + { + "start": 7461.3, + "end": 7463.02, + "probability": 0.9576 + }, + { + "start": 7463.82, + "end": 7467.5, + "probability": 0.9056 + }, + { + "start": 7468.7, + "end": 7469.44, + "probability": 0.941 + }, + { + "start": 7469.98, + "end": 7470.86, + "probability": 0.92 + }, + { + "start": 7471.78, + "end": 7472.72, + "probability": 0.8753 + }, + { + "start": 7473.34, + "end": 7474.34, + "probability": 0.8211 + }, + { + "start": 7475.48, + "end": 7477.38, + "probability": 0.712 + }, + { + "start": 7478.32, + "end": 7478.84, + "probability": 0.9544 + }, + { + "start": 7479.98, + "end": 7480.88, + "probability": 0.9635 + }, + { + "start": 7482.8, + "end": 7484.52, + "probability": 0.9405 + }, + { + "start": 7485.72, + "end": 7487.52, + "probability": 0.9781 + }, + { + "start": 7489.04, + "end": 7491.4, + "probability": 0.966 + }, + { + "start": 7492.74, + "end": 7495.16, + "probability": 0.9746 + }, + { + "start": 7497.18, + "end": 7498.12, + "probability": 0.9772 + }, + { + "start": 7499.64, + "end": 7500.72, + "probability": 0.4703 + }, + { + "start": 7501.56, + "end": 7503.26, + "probability": 0.7683 + }, + { + "start": 7503.94, + "end": 7506.32, + "probability": 0.8398 + }, + { + "start": 7507.08, + "end": 7507.54, + "probability": 0.953 + }, + { + "start": 7508.34, + "end": 7509.04, + "probability": 0.8758 + }, + { + "start": 7510.16, + "end": 7510.58, + "probability": 0.9741 + }, + { + "start": 7511.56, + "end": 7512.54, + "probability": 0.9779 + }, + { + "start": 7513.84, + "end": 7515.78, + "probability": 0.9418 + }, + { + "start": 7516.6, + "end": 7517.08, + "probability": 0.9937 + }, + { + "start": 7517.92, + "end": 7518.74, + "probability": 0.9899 + }, + { + "start": 7519.32, + "end": 7521.02, + "probability": 0.9438 + }, + { + "start": 7522.08, + "end": 7522.56, + "probability": 0.7732 + }, + { + "start": 7523.42, + "end": 7526.62, + "probability": 0.6523 + }, + { + "start": 7528.52, + "end": 7530.88, + "probability": 0.7026 + }, + { + "start": 7531.48, + "end": 7533.28, + "probability": 0.9572 + }, + { + "start": 7534.52, + "end": 7538.54, + "probability": 0.959 + }, + { + "start": 7539.5, + "end": 7541.86, + "probability": 0.9336 + }, + { + "start": 7543.43, + "end": 7545.14, + "probability": 0.947 + }, + { + "start": 7546.32, + "end": 7547.74, + "probability": 0.5189 + }, + { + "start": 7548.86, + "end": 7549.14, + "probability": 0.9517 + }, + { + "start": 7549.96, + "end": 7550.72, + "probability": 0.6492 + }, + { + "start": 7552.64, + "end": 7555.8, + "probability": 0.8132 + }, + { + "start": 7556.7, + "end": 7558.68, + "probability": 0.9735 + }, + { + "start": 7559.52, + "end": 7560.36, + "probability": 0.9947 + }, + { + "start": 7560.92, + "end": 7561.66, + "probability": 0.9359 + }, + { + "start": 7564.08, + "end": 7566.92, + "probability": 0.8454 + }, + { + "start": 7567.56, + "end": 7569.56, + "probability": 0.9886 + }, + { + "start": 7570.2, + "end": 7571.84, + "probability": 0.7899 + }, + { + "start": 7572.7, + "end": 7573.06, + "probability": 0.9067 + }, + { + "start": 7573.84, + "end": 7574.86, + "probability": 0.9545 + }, + { + "start": 7575.8, + "end": 7577.46, + "probability": 0.9305 + }, + { + "start": 7578.12, + "end": 7578.6, + "probability": 0.9827 + }, + { + "start": 7579.22, + "end": 7580.08, + "probability": 0.6151 + }, + { + "start": 7580.72, + "end": 7581.12, + "probability": 0.9842 + }, + { + "start": 7581.78, + "end": 7582.48, + "probability": 0.985 + }, + { + "start": 7583.32, + "end": 7585.46, + "probability": 0.9885 + }, + { + "start": 7586.44, + "end": 7588.64, + "probability": 0.9173 + }, + { + "start": 7589.38, + "end": 7589.82, + "probability": 0.7188 + }, + { + "start": 7590.54, + "end": 7591.34, + "probability": 0.8281 + }, + { + "start": 7592.12, + "end": 7592.5, + "probability": 0.9114 + }, + { + "start": 7593.72, + "end": 7594.54, + "probability": 0.8253 + }, + { + "start": 7595.42, + "end": 7595.86, + "probability": 0.9917 + }, + { + "start": 7596.54, + "end": 7597.56, + "probability": 0.9807 + }, + { + "start": 7598.7, + "end": 7599.1, + "probability": 0.9893 + }, + { + "start": 7599.72, + "end": 7600.74, + "probability": 0.7366 + }, + { + "start": 7601.88, + "end": 7602.3, + "probability": 0.991 + }, + { + "start": 7603.52, + "end": 7604.26, + "probability": 0.567 + }, + { + "start": 7605.02, + "end": 7605.5, + "probability": 0.966 + }, + { + "start": 7606.46, + "end": 7607.24, + "probability": 0.8754 + }, + { + "start": 7608.12, + "end": 7608.5, + "probability": 0.9739 + }, + { + "start": 7609.16, + "end": 7610.1, + "probability": 0.9789 + }, + { + "start": 7611.64, + "end": 7614.7, + "probability": 0.7166 + }, + { + "start": 7615.54, + "end": 7615.92, + "probability": 0.5562 + }, + { + "start": 7617.2, + "end": 7617.96, + "probability": 0.5948 + }, + { + "start": 7620.0, + "end": 7624.98, + "probability": 0.8124 + }, + { + "start": 7625.72, + "end": 7626.48, + "probability": 0.8034 + }, + { + "start": 7627.44, + "end": 7628.44, + "probability": 0.9398 + }, + { + "start": 7629.54, + "end": 7629.94, + "probability": 0.9762 + }, + { + "start": 7630.68, + "end": 7631.38, + "probability": 0.9282 + }, + { + "start": 7633.98, + "end": 7634.98, + "probability": 0.9915 + }, + { + "start": 7635.7, + "end": 7636.92, + "probability": 0.8546 + }, + { + "start": 7639.04, + "end": 7643.66, + "probability": 0.8625 + }, + { + "start": 7644.48, + "end": 7644.82, + "probability": 0.9382 + }, + { + "start": 7645.68, + "end": 7646.82, + "probability": 0.9047 + }, + { + "start": 7647.64, + "end": 7648.54, + "probability": 0.9618 + }, + { + "start": 7649.1, + "end": 7649.92, + "probability": 0.9781 + }, + { + "start": 7651.08, + "end": 7654.4, + "probability": 0.9672 + }, + { + "start": 7655.18, + "end": 7656.0, + "probability": 0.967 + }, + { + "start": 7656.9, + "end": 7657.34, + "probability": 0.9785 + }, + { + "start": 7658.04, + "end": 7659.02, + "probability": 0.8472 + }, + { + "start": 7659.9, + "end": 7661.62, + "probability": 0.9409 + }, + { + "start": 7662.88, + "end": 7665.1, + "probability": 0.8687 + }, + { + "start": 7666.6, + "end": 7668.52, + "probability": 0.5272 + }, + { + "start": 7669.7, + "end": 7670.2, + "probability": 0.9396 + }, + { + "start": 7671.22, + "end": 7672.24, + "probability": 0.7784 + }, + { + "start": 7673.38, + "end": 7675.24, + "probability": 0.9087 + }, + { + "start": 7675.94, + "end": 7676.38, + "probability": 0.979 + }, + { + "start": 7678.24, + "end": 7681.12, + "probability": 0.9138 + }, + { + "start": 7681.96, + "end": 7682.48, + "probability": 0.9894 + }, + { + "start": 7683.32, + "end": 7684.18, + "probability": 0.8665 + }, + { + "start": 7684.98, + "end": 7685.44, + "probability": 0.9914 + }, + { + "start": 7686.42, + "end": 7687.24, + "probability": 0.8741 + }, + { + "start": 7688.26, + "end": 7688.68, + "probability": 0.9964 + }, + { + "start": 7689.58, + "end": 7690.3, + "probability": 0.9866 + }, + { + "start": 7691.3, + "end": 7693.18, + "probability": 0.6146 + }, + { + "start": 7694.28, + "end": 7694.64, + "probability": 0.8882 + }, + { + "start": 7696.64, + "end": 7697.72, + "probability": 0.9126 + }, + { + "start": 7698.88, + "end": 7699.38, + "probability": 0.99 + }, + { + "start": 7699.9, + "end": 7700.56, + "probability": 0.8548 + }, + { + "start": 7702.68, + "end": 7704.36, + "probability": 0.8865 + }, + { + "start": 7706.14, + "end": 7706.64, + "probability": 0.9803 + }, + { + "start": 7707.9, + "end": 7708.7, + "probability": 0.9052 + }, + { + "start": 7711.1, + "end": 7715.32, + "probability": 0.934 + }, + { + "start": 7716.7, + "end": 7718.7, + "probability": 0.942 + }, + { + "start": 7719.27, + "end": 7721.6, + "probability": 0.698 + }, + { + "start": 7723.0, + "end": 7725.22, + "probability": 0.8444 + }, + { + "start": 7726.34, + "end": 7727.28, + "probability": 0.7599 + }, + { + "start": 7729.92, + "end": 7731.4, + "probability": 0.8937 + }, + { + "start": 7732.18, + "end": 7733.56, + "probability": 0.9321 + }, + { + "start": 7734.4, + "end": 7734.9, + "probability": 0.9847 + }, + { + "start": 7735.58, + "end": 7737.54, + "probability": 0.9517 + }, + { + "start": 7738.22, + "end": 7739.08, + "probability": 0.9509 + }, + { + "start": 7739.78, + "end": 7740.16, + "probability": 0.9414 + }, + { + "start": 7740.98, + "end": 7741.96, + "probability": 0.9464 + }, + { + "start": 7742.6, + "end": 7743.1, + "probability": 0.9598 + }, + { + "start": 7743.9, + "end": 7744.66, + "probability": 0.9435 + }, + { + "start": 7745.66, + "end": 7746.06, + "probability": 0.9653 + }, + { + "start": 7747.02, + "end": 7747.78, + "probability": 0.7928 + }, + { + "start": 7748.68, + "end": 7748.96, + "probability": 0.7143 + }, + { + "start": 7749.84, + "end": 7750.92, + "probability": 0.4034 + }, + { + "start": 7752.76, + "end": 7755.48, + "probability": 0.8621 + }, + { + "start": 7756.78, + "end": 7758.92, + "probability": 0.34 + }, + { + "start": 7759.6, + "end": 7760.2, + "probability": 0.2491 + }, + { + "start": 7761.14, + "end": 7763.22, + "probability": 0.3623 + }, + { + "start": 7764.72, + "end": 7765.48, + "probability": 0.9894 + }, + { + "start": 7766.46, + "end": 7767.38, + "probability": 0.743 + }, + { + "start": 7768.68, + "end": 7770.32, + "probability": 0.9755 + }, + { + "start": 7770.86, + "end": 7772.68, + "probability": 0.5606 + }, + { + "start": 7773.38, + "end": 7775.24, + "probability": 0.9402 + }, + { + "start": 7776.6, + "end": 7780.98, + "probability": 0.9484 + }, + { + "start": 7783.38, + "end": 7783.78, + "probability": 0.7258 + }, + { + "start": 7786.24, + "end": 7787.04, + "probability": 0.9598 + }, + { + "start": 7788.08, + "end": 7789.96, + "probability": 0.9841 + }, + { + "start": 7791.14, + "end": 7793.02, + "probability": 0.9702 + }, + { + "start": 7793.62, + "end": 7795.38, + "probability": 0.8955 + }, + { + "start": 7797.48, + "end": 7798.68, + "probability": 0.8291 + }, + { + "start": 7799.32, + "end": 7800.04, + "probability": 0.8027 + }, + { + "start": 7800.56, + "end": 7801.4, + "probability": 0.876 + }, + { + "start": 7802.28, + "end": 7805.32, + "probability": 0.8955 + }, + { + "start": 7805.98, + "end": 7808.26, + "probability": 0.9597 + }, + { + "start": 7809.82, + "end": 7810.28, + "probability": 0.7078 + }, + { + "start": 7812.06, + "end": 7813.06, + "probability": 0.5865 + }, + { + "start": 7815.48, + "end": 7817.2, + "probability": 0.8101 + }, + { + "start": 7817.84, + "end": 7819.92, + "probability": 0.9475 + }, + { + "start": 7820.98, + "end": 7822.98, + "probability": 0.9415 + }, + { + "start": 7823.72, + "end": 7825.34, + "probability": 0.8369 + }, + { + "start": 7826.22, + "end": 7827.94, + "probability": 0.9729 + }, + { + "start": 7828.54, + "end": 7829.26, + "probability": 0.9826 + }, + { + "start": 7829.96, + "end": 7830.98, + "probability": 0.9872 + }, + { + "start": 7831.82, + "end": 7833.96, + "probability": 0.9794 + }, + { + "start": 7834.82, + "end": 7836.72, + "probability": 0.9466 + }, + { + "start": 7838.6, + "end": 7839.04, + "probability": 0.7529 + }, + { + "start": 7840.06, + "end": 7841.1, + "probability": 0.8969 + }, + { + "start": 7852.16, + "end": 7852.9, + "probability": 0.8183 + }, + { + "start": 7859.26, + "end": 7861.68, + "probability": 0.411 + }, + { + "start": 7862.6, + "end": 7863.26, + "probability": 0.7593 + }, + { + "start": 7863.78, + "end": 7864.66, + "probability": 0.7313 + }, + { + "start": 7865.38, + "end": 7867.02, + "probability": 0.9496 + }, + { + "start": 7867.86, + "end": 7869.76, + "probability": 0.7419 + }, + { + "start": 7870.22, + "end": 7871.76, + "probability": 0.8948 + }, + { + "start": 7872.18, + "end": 7873.76, + "probability": 0.9665 + }, + { + "start": 7873.94, + "end": 7874.64, + "probability": 0.7369 + }, + { + "start": 7875.18, + "end": 7875.86, + "probability": 0.9686 + }, + { + "start": 7876.56, + "end": 7878.26, + "probability": 0.6884 + }, + { + "start": 7879.16, + "end": 7882.44, + "probability": 0.9068 + }, + { + "start": 7883.06, + "end": 7884.98, + "probability": 0.9658 + }, + { + "start": 7885.54, + "end": 7886.42, + "probability": 0.9913 + }, + { + "start": 7887.6, + "end": 7891.4, + "probability": 0.9803 + }, + { + "start": 7892.46, + "end": 7896.94, + "probability": 0.9902 + }, + { + "start": 7898.24, + "end": 7898.98, + "probability": 0.9621 + }, + { + "start": 7899.78, + "end": 7900.74, + "probability": 0.7228 + }, + { + "start": 7901.64, + "end": 7906.0, + "probability": 0.9594 + }, + { + "start": 7906.66, + "end": 7908.4, + "probability": 0.5112 + }, + { + "start": 7909.54, + "end": 7910.72, + "probability": 0.6866 + }, + { + "start": 7914.26, + "end": 7915.44, + "probability": 0.4023 + }, + { + "start": 7916.56, + "end": 7918.38, + "probability": 0.8462 + }, + { + "start": 7919.02, + "end": 7920.8, + "probability": 0.9249 + }, + { + "start": 7921.72, + "end": 7923.38, + "probability": 0.9688 + }, + { + "start": 7924.08, + "end": 7925.74, + "probability": 0.9476 + }, + { + "start": 7926.3, + "end": 7930.48, + "probability": 0.9614 + }, + { + "start": 7931.3, + "end": 7932.1, + "probability": 0.8763 + }, + { + "start": 7933.48, + "end": 7934.28, + "probability": 0.7307 + }, + { + "start": 7935.18, + "end": 7937.18, + "probability": 0.9371 + }, + { + "start": 7937.94, + "end": 7938.7, + "probability": 0.9765 + }, + { + "start": 7939.52, + "end": 7940.46, + "probability": 0.9504 + }, + { + "start": 7941.26, + "end": 7943.36, + "probability": 0.9846 + }, + { + "start": 7943.96, + "end": 7945.9, + "probability": 0.9467 + }, + { + "start": 7947.92, + "end": 7948.36, + "probability": 0.8654 + }, + { + "start": 7949.36, + "end": 7950.22, + "probability": 0.9079 + }, + { + "start": 7950.82, + "end": 7951.56, + "probability": 0.9122 + }, + { + "start": 7952.24, + "end": 7953.38, + "probability": 0.4986 + }, + { + "start": 7954.76, + "end": 7956.34, + "probability": 0.755 + }, + { + "start": 7957.48, + "end": 7959.8, + "probability": 0.608 + }, + { + "start": 7960.4, + "end": 7961.22, + "probability": 0.1026 + }, + { + "start": 7963.2, + "end": 7964.2, + "probability": 0.0164 + }, + { + "start": 7966.42, + "end": 7968.82, + "probability": 0.5999 + }, + { + "start": 7969.82, + "end": 7972.02, + "probability": 0.5017 + }, + { + "start": 7973.02, + "end": 7974.1, + "probability": 0.9233 + }, + { + "start": 7975.68, + "end": 7975.98, + "probability": 0.2893 + }, + { + "start": 7977.3, + "end": 7978.48, + "probability": 0.7163 + }, + { + "start": 7979.64, + "end": 7979.94, + "probability": 0.0561 + }, + { + "start": 7981.42, + "end": 7981.6, + "probability": 0.0214 + }, + { + "start": 7981.6, + "end": 7983.62, + "probability": 0.0668 + }, + { + "start": 7984.03, + "end": 7987.53, + "probability": 0.0187 + }, + { + "start": 7988.38, + "end": 7989.3, + "probability": 0.0049 + }, + { + "start": 8125.08, + "end": 8126.56, + "probability": 0.4932 + }, + { + "start": 8127.48, + "end": 8129.5, + "probability": 0.7652 + }, + { + "start": 8129.64, + "end": 8132.44, + "probability": 0.8743 + }, + { + "start": 8132.98, + "end": 8137.04, + "probability": 0.9546 + }, + { + "start": 8138.5, + "end": 8140.42, + "probability": 0.6478 + }, + { + "start": 8140.46, + "end": 8140.88, + "probability": 0.8467 + }, + { + "start": 8150.1, + "end": 8151.04, + "probability": 0.4443 + }, + { + "start": 8151.6, + "end": 8154.22, + "probability": 0.7511 + }, + { + "start": 8156.8, + "end": 8158.14, + "probability": 0.8822 + }, + { + "start": 8158.48, + "end": 8160.92, + "probability": 0.9639 + }, + { + "start": 8162.34, + "end": 8169.8, + "probability": 0.9668 + }, + { + "start": 8170.64, + "end": 8172.86, + "probability": 0.7444 + }, + { + "start": 8173.98, + "end": 8177.48, + "probability": 0.9961 + }, + { + "start": 8177.78, + "end": 8181.0, + "probability": 0.9596 + }, + { + "start": 8181.72, + "end": 8185.14, + "probability": 0.979 + }, + { + "start": 8186.5, + "end": 8187.96, + "probability": 0.6076 + }, + { + "start": 8188.9, + "end": 8193.14, + "probability": 0.7473 + }, + { + "start": 8195.44, + "end": 8196.36, + "probability": 0.5257 + }, + { + "start": 8197.32, + "end": 8200.98, + "probability": 0.8641 + }, + { + "start": 8201.06, + "end": 8201.46, + "probability": 0.9218 + }, + { + "start": 8201.5, + "end": 8205.2, + "probability": 0.9825 + }, + { + "start": 8206.23, + "end": 8209.8, + "probability": 0.9972 + }, + { + "start": 8209.86, + "end": 8211.06, + "probability": 0.9877 + }, + { + "start": 8212.66, + "end": 8212.86, + "probability": 0.3534 + }, + { + "start": 8213.0, + "end": 8213.54, + "probability": 0.929 + }, + { + "start": 8213.54, + "end": 8221.26, + "probability": 0.9725 + }, + { + "start": 8221.92, + "end": 8224.74, + "probability": 0.9805 + }, + { + "start": 8225.28, + "end": 8226.62, + "probability": 0.8234 + }, + { + "start": 8227.58, + "end": 8229.14, + "probability": 0.965 + }, + { + "start": 8230.0, + "end": 8231.62, + "probability": 0.8384 + }, + { + "start": 8231.7, + "end": 8232.88, + "probability": 0.9889 + }, + { + "start": 8233.26, + "end": 8234.88, + "probability": 0.8206 + }, + { + "start": 8236.3, + "end": 8238.26, + "probability": 0.4796 + }, + { + "start": 8238.28, + "end": 8240.4, + "probability": 0.7438 + }, + { + "start": 8240.64, + "end": 8241.68, + "probability": 0.9051 + }, + { + "start": 8242.1, + "end": 8245.24, + "probability": 0.9974 + }, + { + "start": 8245.34, + "end": 8250.42, + "probability": 0.9567 + }, + { + "start": 8251.96, + "end": 8256.0, + "probability": 0.9941 + }, + { + "start": 8256.42, + "end": 8259.52, + "probability": 0.8888 + }, + { + "start": 8261.06, + "end": 8261.26, + "probability": 0.377 + }, + { + "start": 8261.48, + "end": 8266.24, + "probability": 0.9753 + }, + { + "start": 8266.68, + "end": 8268.64, + "probability": 0.7143 + }, + { + "start": 8271.27, + "end": 8274.84, + "probability": 0.9744 + }, + { + "start": 8275.18, + "end": 8275.78, + "probability": 0.4966 + }, + { + "start": 8275.84, + "end": 8276.46, + "probability": 0.8126 + }, + { + "start": 8277.94, + "end": 8280.8, + "probability": 0.9214 + }, + { + "start": 8281.4, + "end": 8282.52, + "probability": 0.7636 + }, + { + "start": 8282.9, + "end": 8287.14, + "probability": 0.9403 + }, + { + "start": 8287.64, + "end": 8291.16, + "probability": 0.9774 + }, + { + "start": 8291.16, + "end": 8297.98, + "probability": 0.9153 + }, + { + "start": 8298.98, + "end": 8304.34, + "probability": 0.932 + }, + { + "start": 8305.04, + "end": 8311.04, + "probability": 0.9874 + }, + { + "start": 8311.04, + "end": 8314.9, + "probability": 0.9978 + }, + { + "start": 8315.64, + "end": 8320.14, + "probability": 0.6038 + }, + { + "start": 8320.72, + "end": 8322.7, + "probability": 0.9844 + }, + { + "start": 8323.3, + "end": 8327.92, + "probability": 0.9754 + }, + { + "start": 8328.74, + "end": 8331.62, + "probability": 0.9822 + }, + { + "start": 8331.96, + "end": 8332.58, + "probability": 0.9476 + }, + { + "start": 8332.68, + "end": 8333.66, + "probability": 0.4566 + }, + { + "start": 8333.72, + "end": 8338.3, + "probability": 0.9468 + }, + { + "start": 8339.24, + "end": 8339.8, + "probability": 0.5209 + }, + { + "start": 8340.99, + "end": 8343.36, + "probability": 0.998 + }, + { + "start": 8345.47, + "end": 8349.52, + "probability": 0.9183 + }, + { + "start": 8350.44, + "end": 8357.64, + "probability": 0.9758 + }, + { + "start": 8357.64, + "end": 8362.12, + "probability": 0.9762 + }, + { + "start": 8362.86, + "end": 8366.52, + "probability": 0.9962 + }, + { + "start": 8367.42, + "end": 8371.8, + "probability": 0.8558 + }, + { + "start": 8372.4, + "end": 8376.44, + "probability": 0.9614 + }, + { + "start": 8376.88, + "end": 8378.36, + "probability": 0.5714 + }, + { + "start": 8378.8, + "end": 8383.32, + "probability": 0.9789 + }, + { + "start": 8384.42, + "end": 8389.36, + "probability": 0.9545 + }, + { + "start": 8390.22, + "end": 8393.24, + "probability": 0.9896 + }, + { + "start": 8394.44, + "end": 8399.02, + "probability": 0.9985 + }, + { + "start": 8399.74, + "end": 8404.86, + "probability": 0.9796 + }, + { + "start": 8404.86, + "end": 8408.62, + "probability": 0.9925 + }, + { + "start": 8409.28, + "end": 8410.9, + "probability": 0.8242 + }, + { + "start": 8411.42, + "end": 8415.0, + "probability": 0.7839 + }, + { + "start": 8415.86, + "end": 8417.54, + "probability": 0.8839 + }, + { + "start": 8418.94, + "end": 8420.16, + "probability": 0.7954 + }, + { + "start": 8420.78, + "end": 8424.82, + "probability": 0.7914 + }, + { + "start": 8425.54, + "end": 8425.78, + "probability": 0.1243 + }, + { + "start": 8427.32, + "end": 8429.14, + "probability": 0.9756 + }, + { + "start": 8429.84, + "end": 8431.94, + "probability": 0.9944 + }, + { + "start": 8432.88, + "end": 8437.23, + "probability": 0.9895 + }, + { + "start": 8438.63, + "end": 8440.52, + "probability": 0.967 + }, + { + "start": 8440.66, + "end": 8441.18, + "probability": 0.9033 + }, + { + "start": 8441.66, + "end": 8442.94, + "probability": 0.9892 + }, + { + "start": 8443.68, + "end": 8444.1, + "probability": 0.9227 + }, + { + "start": 8444.3, + "end": 8445.7, + "probability": 0.9826 + }, + { + "start": 8446.04, + "end": 8449.8, + "probability": 0.8829 + }, + { + "start": 8450.36, + "end": 8455.12, + "probability": 0.9424 + }, + { + "start": 8455.74, + "end": 8461.4, + "probability": 0.8748 + }, + { + "start": 8462.02, + "end": 8465.14, + "probability": 0.99 + }, + { + "start": 8465.3, + "end": 8466.04, + "probability": 0.85 + }, + { + "start": 8466.18, + "end": 8469.14, + "probability": 0.9915 + }, + { + "start": 8469.26, + "end": 8472.64, + "probability": 0.933 + }, + { + "start": 8472.64, + "end": 8476.4, + "probability": 0.9767 + }, + { + "start": 8476.9, + "end": 8477.7, + "probability": 0.747 + }, + { + "start": 8478.48, + "end": 8482.54, + "probability": 0.9588 + }, + { + "start": 8482.54, + "end": 8486.04, + "probability": 0.9597 + }, + { + "start": 8488.04, + "end": 8492.82, + "probability": 0.9933 + }, + { + "start": 8493.5, + "end": 8496.42, + "probability": 0.8579 + }, + { + "start": 8497.14, + "end": 8500.34, + "probability": 0.9766 + }, + { + "start": 8500.98, + "end": 8503.08, + "probability": 0.996 + }, + { + "start": 8503.72, + "end": 8505.12, + "probability": 0.9996 + }, + { + "start": 8505.66, + "end": 8507.5, + "probability": 0.9628 + }, + { + "start": 8508.04, + "end": 8509.86, + "probability": 0.9984 + }, + { + "start": 8510.38, + "end": 8514.86, + "probability": 0.9741 + }, + { + "start": 8515.54, + "end": 8519.24, + "probability": 0.9906 + }, + { + "start": 8520.0, + "end": 8524.88, + "probability": 0.8299 + }, + { + "start": 8525.3, + "end": 8527.18, + "probability": 0.9561 + }, + { + "start": 8527.8, + "end": 8531.74, + "probability": 0.9741 + }, + { + "start": 8532.74, + "end": 8534.6, + "probability": 0.9417 + }, + { + "start": 8534.6, + "end": 8539.42, + "probability": 0.992 + }, + { + "start": 8540.0, + "end": 8543.22, + "probability": 0.8241 + }, + { + "start": 8543.22, + "end": 8546.8, + "probability": 0.9885 + }, + { + "start": 8548.88, + "end": 8549.44, + "probability": 0.7495 + }, + { + "start": 8549.5, + "end": 8550.49, + "probability": 0.9551 + }, + { + "start": 8550.88, + "end": 8552.28, + "probability": 0.9989 + }, + { + "start": 8553.52, + "end": 8554.16, + "probability": 0.9497 + }, + { + "start": 8554.68, + "end": 8555.44, + "probability": 0.9981 + }, + { + "start": 8555.96, + "end": 8558.13, + "probability": 0.9989 + }, + { + "start": 8558.48, + "end": 8559.14, + "probability": 0.638 + }, + { + "start": 8559.14, + "end": 8559.32, + "probability": 0.3754 + }, + { + "start": 8559.54, + "end": 8560.66, + "probability": 0.7555 + }, + { + "start": 8562.46, + "end": 8568.4, + "probability": 0.8687 + }, + { + "start": 8569.14, + "end": 8572.44, + "probability": 0.9337 + }, + { + "start": 8573.4, + "end": 8575.92, + "probability": 0.9757 + }, + { + "start": 8576.08, + "end": 8576.88, + "probability": 0.8775 + }, + { + "start": 8577.38, + "end": 8580.16, + "probability": 0.9873 + }, + { + "start": 8581.15, + "end": 8583.92, + "probability": 0.8545 + }, + { + "start": 8584.62, + "end": 8586.3, + "probability": 0.7183 + }, + { + "start": 8586.88, + "end": 8591.74, + "probability": 0.9065 + }, + { + "start": 8592.66, + "end": 8593.9, + "probability": 0.7275 + }, + { + "start": 8594.1, + "end": 8596.54, + "probability": 0.9336 + }, + { + "start": 8597.0, + "end": 8598.12, + "probability": 0.89 + }, + { + "start": 8598.58, + "end": 8603.38, + "probability": 0.9933 + }, + { + "start": 8603.78, + "end": 8607.28, + "probability": 0.9084 + }, + { + "start": 8607.74, + "end": 8611.08, + "probability": 0.9996 + }, + { + "start": 8611.08, + "end": 8617.62, + "probability": 0.9863 + }, + { + "start": 8617.62, + "end": 8622.13, + "probability": 0.9922 + }, + { + "start": 8623.68, + "end": 8627.53, + "probability": 0.9924 + }, + { + "start": 8628.18, + "end": 8629.98, + "probability": 0.9966 + }, + { + "start": 8630.5, + "end": 8631.68, + "probability": 0.7485 + }, + { + "start": 8632.24, + "end": 8634.76, + "probability": 0.8811 + }, + { + "start": 8635.48, + "end": 8638.34, + "probability": 0.7712 + }, + { + "start": 8638.62, + "end": 8640.52, + "probability": 0.9971 + }, + { + "start": 8641.54, + "end": 8643.78, + "probability": 0.9971 + }, + { + "start": 8644.4, + "end": 8646.68, + "probability": 0.988 + }, + { + "start": 8648.38, + "end": 8648.38, + "probability": 0.027 + }, + { + "start": 8648.38, + "end": 8651.78, + "probability": 0.7009 + }, + { + "start": 8652.4, + "end": 8656.8, + "probability": 0.953 + }, + { + "start": 8656.8, + "end": 8661.5, + "probability": 0.9937 + }, + { + "start": 8661.98, + "end": 8662.8, + "probability": 0.8287 + }, + { + "start": 8664.28, + "end": 8669.46, + "probability": 0.9904 + }, + { + "start": 8670.94, + "end": 8672.82, + "probability": 0.7992 + }, + { + "start": 8672.92, + "end": 8673.98, + "probability": 0.6588 + }, + { + "start": 8674.3, + "end": 8677.06, + "probability": 0.9955 + }, + { + "start": 8677.06, + "end": 8680.52, + "probability": 0.9849 + }, + { + "start": 8681.2, + "end": 8686.48, + "probability": 0.9829 + }, + { + "start": 8687.18, + "end": 8689.7, + "probability": 0.6762 + }, + { + "start": 8690.02, + "end": 8694.68, + "probability": 0.9888 + }, + { + "start": 8694.7, + "end": 8698.62, + "probability": 0.8 + }, + { + "start": 8698.98, + "end": 8703.6, + "probability": 0.8762 + }, + { + "start": 8704.99, + "end": 8708.14, + "probability": 0.9987 + }, + { + "start": 8708.46, + "end": 8712.28, + "probability": 0.9812 + }, + { + "start": 8713.42, + "end": 8721.08, + "probability": 0.9917 + }, + { + "start": 8721.48, + "end": 8722.7, + "probability": 0.7841 + }, + { + "start": 8723.5, + "end": 8724.84, + "probability": 0.7361 + }, + { + "start": 8724.94, + "end": 8727.6, + "probability": 0.9779 + }, + { + "start": 8728.84, + "end": 8730.6, + "probability": 0.8726 + }, + { + "start": 8730.9, + "end": 8732.68, + "probability": 0.9785 + }, + { + "start": 8732.82, + "end": 8734.32, + "probability": 0.9772 + }, + { + "start": 8734.34, + "end": 8735.08, + "probability": 0.5876 + }, + { + "start": 8735.5, + "end": 8736.88, + "probability": 0.9021 + }, + { + "start": 8737.36, + "end": 8740.1, + "probability": 0.9897 + }, + { + "start": 8740.1, + "end": 8743.42, + "probability": 0.995 + }, + { + "start": 8743.7, + "end": 8748.14, + "probability": 0.989 + }, + { + "start": 8749.44, + "end": 8753.02, + "probability": 0.8596 + }, + { + "start": 8753.56, + "end": 8754.7, + "probability": 0.8518 + }, + { + "start": 8755.24, + "end": 8760.17, + "probability": 0.9485 + }, + { + "start": 8761.3, + "end": 8762.54, + "probability": 0.9869 + }, + { + "start": 8762.6, + "end": 8763.04, + "probability": 0.7236 + }, + { + "start": 8763.06, + "end": 8766.38, + "probability": 0.8507 + }, + { + "start": 8766.58, + "end": 8769.98, + "probability": 0.9898 + }, + { + "start": 8771.42, + "end": 8772.02, + "probability": 0.9907 + }, + { + "start": 8772.72, + "end": 8775.0, + "probability": 0.9799 + }, + { + "start": 8775.68, + "end": 8776.48, + "probability": 0.9346 + }, + { + "start": 8777.2, + "end": 8780.62, + "probability": 0.9689 + }, + { + "start": 8781.38, + "end": 8782.28, + "probability": 0.649 + }, + { + "start": 8783.1, + "end": 8787.6, + "probability": 0.8532 + }, + { + "start": 8788.06, + "end": 8795.14, + "probability": 0.9811 + }, + { + "start": 8795.58, + "end": 8798.18, + "probability": 0.991 + }, + { + "start": 8798.18, + "end": 8801.98, + "probability": 0.9873 + }, + { + "start": 8802.04, + "end": 8802.3, + "probability": 0.4126 + }, + { + "start": 8802.36, + "end": 8803.52, + "probability": 0.3309 + }, + { + "start": 8803.84, + "end": 8804.28, + "probability": 0.5183 + }, + { + "start": 8804.38, + "end": 8805.94, + "probability": 0.7758 + }, + { + "start": 8806.14, + "end": 8807.35, + "probability": 0.8787 + }, + { + "start": 8807.62, + "end": 8810.1, + "probability": 0.9771 + }, + { + "start": 8810.12, + "end": 8811.88, + "probability": 0.9819 + }, + { + "start": 8813.09, + "end": 8816.44, + "probability": 0.9264 + }, + { + "start": 8817.04, + "end": 8821.28, + "probability": 0.9155 + }, + { + "start": 8822.14, + "end": 8825.74, + "probability": 0.9883 + }, + { + "start": 8825.8, + "end": 8826.81, + "probability": 0.8071 + }, + { + "start": 8826.98, + "end": 8827.6, + "probability": 0.6444 + }, + { + "start": 8827.76, + "end": 8828.06, + "probability": 0.8586 + }, + { + "start": 8828.52, + "end": 8829.04, + "probability": 0.8148 + }, + { + "start": 8831.18, + "end": 8831.82, + "probability": 0.1401 + }, + { + "start": 8832.58, + "end": 8833.97, + "probability": 0.4947 + }, + { + "start": 8834.14, + "end": 8835.14, + "probability": 0.8107 + }, + { + "start": 8835.74, + "end": 8836.78, + "probability": 0.6373 + }, + { + "start": 8836.78, + "end": 8838.18, + "probability": 0.716 + }, + { + "start": 8839.46, + "end": 8841.12, + "probability": 0.9546 + }, + { + "start": 8841.22, + "end": 8841.88, + "probability": 0.9083 + }, + { + "start": 8842.54, + "end": 8846.22, + "probability": 0.66 + }, + { + "start": 8847.51, + "end": 8849.11, + "probability": 0.089 + }, + { + "start": 8849.5, + "end": 8854.14, + "probability": 0.7745 + }, + { + "start": 8855.2, + "end": 8857.22, + "probability": 0.9038 + }, + { + "start": 8858.92, + "end": 8859.66, + "probability": 0.5917 + }, + { + "start": 8859.94, + "end": 8861.52, + "probability": 0.747 + }, + { + "start": 8861.86, + "end": 8865.44, + "probability": 0.9814 + }, + { + "start": 8865.44, + "end": 8868.98, + "probability": 0.9717 + }, + { + "start": 8869.78, + "end": 8872.64, + "probability": 0.8568 + }, + { + "start": 8873.42, + "end": 8874.16, + "probability": 0.5807 + }, + { + "start": 8874.2, + "end": 8875.32, + "probability": 0.7467 + }, + { + "start": 8875.44, + "end": 8880.94, + "probability": 0.9829 + }, + { + "start": 8880.94, + "end": 8886.08, + "probability": 0.993 + }, + { + "start": 8886.68, + "end": 8889.5, + "probability": 0.9581 + }, + { + "start": 8889.6, + "end": 8892.64, + "probability": 0.9497 + }, + { + "start": 8893.2, + "end": 8894.46, + "probability": 0.6332 + }, + { + "start": 8895.32, + "end": 8900.82, + "probability": 0.9917 + }, + { + "start": 8901.38, + "end": 8903.34, + "probability": 0.7472 + }, + { + "start": 8903.56, + "end": 8909.38, + "probability": 0.9879 + }, + { + "start": 8909.38, + "end": 8914.12, + "probability": 0.9315 + }, + { + "start": 8914.88, + "end": 8916.88, + "probability": 0.9845 + }, + { + "start": 8917.0, + "end": 8918.52, + "probability": 0.9678 + }, + { + "start": 8918.58, + "end": 8921.4, + "probability": 0.9393 + }, + { + "start": 8923.02, + "end": 8925.57, + "probability": 0.4048 + }, + { + "start": 8926.28, + "end": 8927.78, + "probability": 0.916 + }, + { + "start": 8928.22, + "end": 8933.22, + "probability": 0.9376 + }, + { + "start": 8934.04, + "end": 8934.76, + "probability": 0.8137 + }, + { + "start": 8934.84, + "end": 8938.06, + "probability": 0.8483 + }, + { + "start": 8938.16, + "end": 8940.34, + "probability": 0.7617 + }, + { + "start": 8940.8, + "end": 8944.94, + "probability": 0.9924 + }, + { + "start": 8945.38, + "end": 8946.98, + "probability": 0.9836 + }, + { + "start": 8948.48, + "end": 8954.1, + "probability": 0.9142 + }, + { + "start": 8954.1, + "end": 8958.84, + "probability": 0.988 + }, + { + "start": 8959.6, + "end": 8963.04, + "probability": 0.7679 + }, + { + "start": 8963.1, + "end": 8968.98, + "probability": 0.9941 + }, + { + "start": 8969.1, + "end": 8975.14, + "probability": 0.9836 + }, + { + "start": 8975.14, + "end": 8982.59, + "probability": 0.9995 + }, + { + "start": 8983.24, + "end": 8984.42, + "probability": 0.6975 + }, + { + "start": 8984.56, + "end": 8990.18, + "probability": 0.9985 + }, + { + "start": 8990.66, + "end": 8993.96, + "probability": 0.9992 + }, + { + "start": 8994.5, + "end": 8995.36, + "probability": 0.8866 + }, + { + "start": 8996.26, + "end": 8999.28, + "probability": 0.984 + }, + { + "start": 8999.74, + "end": 9004.74, + "probability": 0.973 + }, + { + "start": 9005.08, + "end": 9005.38, + "probability": 0.8308 + }, + { + "start": 9005.52, + "end": 9008.3, + "probability": 0.9728 + }, + { + "start": 9008.32, + "end": 9009.6, + "probability": 0.91 + }, + { + "start": 9010.32, + "end": 9015.68, + "probability": 0.9816 + }, + { + "start": 9015.74, + "end": 9016.86, + "probability": 0.8864 + }, + { + "start": 9017.0, + "end": 9017.52, + "probability": 0.8778 + }, + { + "start": 9017.64, + "end": 9018.5, + "probability": 0.8881 + }, + { + "start": 9018.62, + "end": 9019.76, + "probability": 0.941 + }, + { + "start": 9020.38, + "end": 9023.98, + "probability": 0.9653 + }, + { + "start": 9024.86, + "end": 9027.22, + "probability": 0.7601 + }, + { + "start": 9027.22, + "end": 9031.3, + "probability": 0.9904 + }, + { + "start": 9032.12, + "end": 9034.85, + "probability": 0.9834 + }, + { + "start": 9035.04, + "end": 9037.6, + "probability": 0.995 + }, + { + "start": 9038.96, + "end": 9041.26, + "probability": 0.9963 + }, + { + "start": 9041.88, + "end": 9044.5, + "probability": 0.5614 + }, + { + "start": 9044.6, + "end": 9048.68, + "probability": 0.9935 + }, + { + "start": 9048.68, + "end": 9052.52, + "probability": 0.9941 + }, + { + "start": 9052.68, + "end": 9054.18, + "probability": 0.7789 + }, + { + "start": 9054.3, + "end": 9057.78, + "probability": 0.9254 + }, + { + "start": 9058.2, + "end": 9061.64, + "probability": 0.9473 + }, + { + "start": 9061.78, + "end": 9062.02, + "probability": 0.7975 + }, + { + "start": 9062.02, + "end": 9062.96, + "probability": 0.669 + }, + { + "start": 9063.0, + "end": 9063.66, + "probability": 0.7017 + }, + { + "start": 9063.66, + "end": 9064.3, + "probability": 0.7398 + }, + { + "start": 9064.46, + "end": 9066.3, + "probability": 0.9102 + }, + { + "start": 9066.5, + "end": 9068.12, + "probability": 0.8657 + }, + { + "start": 9068.12, + "end": 9070.66, + "probability": 0.864 + }, + { + "start": 9071.58, + "end": 9071.94, + "probability": 0.4713 + }, + { + "start": 9072.38, + "end": 9073.44, + "probability": 0.8854 + }, + { + "start": 9073.92, + "end": 9076.8, + "probability": 0.9175 + }, + { + "start": 9077.24, + "end": 9079.44, + "probability": 0.9077 + }, + { + "start": 9080.56, + "end": 9083.96, + "probability": 0.9669 + }, + { + "start": 9087.72, + "end": 9090.6, + "probability": 0.6127 + }, + { + "start": 9091.0, + "end": 9092.96, + "probability": 0.002 + }, + { + "start": 9093.82, + "end": 9093.82, + "probability": 0.2584 + }, + { + "start": 9093.82, + "end": 9093.82, + "probability": 0.0218 + }, + { + "start": 9093.82, + "end": 9095.12, + "probability": 0.1982 + }, + { + "start": 9095.92, + "end": 9098.3, + "probability": 0.985 + }, + { + "start": 9098.34, + "end": 9100.09, + "probability": 0.8652 + }, + { + "start": 9101.26, + "end": 9104.44, + "probability": 0.9481 + }, + { + "start": 9105.4, + "end": 9108.58, + "probability": 0.8131 + }, + { + "start": 9109.3, + "end": 9112.66, + "probability": 0.9828 + }, + { + "start": 9113.76, + "end": 9118.39, + "probability": 0.9331 + }, + { + "start": 9118.52, + "end": 9124.22, + "probability": 0.9939 + }, + { + "start": 9124.4, + "end": 9125.3, + "probability": 0.7417 + }, + { + "start": 9125.78, + "end": 9129.22, + "probability": 0.9436 + }, + { + "start": 9129.9, + "end": 9133.08, + "probability": 0.9849 + }, + { + "start": 9133.08, + "end": 9137.3, + "probability": 0.9962 + }, + { + "start": 9138.18, + "end": 9143.56, + "probability": 0.9967 + }, + { + "start": 9143.56, + "end": 9149.2, + "probability": 0.9308 + }, + { + "start": 9150.7, + "end": 9155.46, + "probability": 0.9836 + }, + { + "start": 9155.46, + "end": 9162.1, + "probability": 0.9618 + }, + { + "start": 9162.1, + "end": 9167.62, + "probability": 0.919 + }, + { + "start": 9168.54, + "end": 9173.68, + "probability": 0.9493 + }, + { + "start": 9173.68, + "end": 9179.28, + "probability": 0.9905 + }, + { + "start": 9180.3, + "end": 9182.64, + "probability": 0.9979 + }, + { + "start": 9183.12, + "end": 9184.7, + "probability": 0.8041 + }, + { + "start": 9184.84, + "end": 9190.62, + "probability": 0.9484 + }, + { + "start": 9191.14, + "end": 9195.9, + "probability": 0.9803 + }, + { + "start": 9196.28, + "end": 9197.92, + "probability": 0.7385 + }, + { + "start": 9198.84, + "end": 9202.02, + "probability": 0.9012 + }, + { + "start": 9202.9, + "end": 9203.7, + "probability": 0.6659 + }, + { + "start": 9204.64, + "end": 9209.78, + "probability": 0.9491 + }, + { + "start": 9210.24, + "end": 9216.18, + "probability": 0.9943 + }, + { + "start": 9216.92, + "end": 9220.5, + "probability": 0.998 + }, + { + "start": 9220.5, + "end": 9223.82, + "probability": 0.9413 + }, + { + "start": 9224.36, + "end": 9228.3, + "probability": 0.9402 + }, + { + "start": 9229.24, + "end": 9234.82, + "probability": 0.9943 + }, + { + "start": 9235.32, + "end": 9237.1, + "probability": 0.9023 + }, + { + "start": 9237.56, + "end": 9241.3, + "probability": 0.9209 + }, + { + "start": 9241.76, + "end": 9245.14, + "probability": 0.9914 + }, + { + "start": 9246.7, + "end": 9249.74, + "probability": 0.583 + }, + { + "start": 9251.0, + "end": 9253.92, + "probability": 0.4845 + }, + { + "start": 9254.54, + "end": 9256.98, + "probability": 0.9957 + }, + { + "start": 9257.58, + "end": 9264.26, + "probability": 0.9572 + }, + { + "start": 9264.66, + "end": 9265.0, + "probability": 0.369 + }, + { + "start": 9265.1, + "end": 9265.94, + "probability": 0.9111 + }, + { + "start": 9266.16, + "end": 9268.98, + "probability": 0.9935 + }, + { + "start": 9269.32, + "end": 9273.3, + "probability": 0.9805 + }, + { + "start": 9274.44, + "end": 9279.62, + "probability": 0.9945 + }, + { + "start": 9279.96, + "end": 9285.14, + "probability": 0.9932 + }, + { + "start": 9285.72, + "end": 9286.84, + "probability": 0.6783 + }, + { + "start": 9287.28, + "end": 9292.96, + "probability": 0.9906 + }, + { + "start": 9292.96, + "end": 9298.28, + "probability": 0.9072 + }, + { + "start": 9299.02, + "end": 9299.34, + "probability": 0.4612 + }, + { + "start": 9299.54, + "end": 9301.48, + "probability": 0.812 + }, + { + "start": 9301.94, + "end": 9304.42, + "probability": 0.9925 + }, + { + "start": 9304.86, + "end": 9305.3, + "probability": 0.7006 + }, + { + "start": 9305.98, + "end": 9310.06, + "probability": 0.9626 + }, + { + "start": 9312.04, + "end": 9314.22, + "probability": 0.9729 + }, + { + "start": 9315.11, + "end": 9317.58, + "probability": 0.3474 + }, + { + "start": 9318.2, + "end": 9319.3, + "probability": 0.5272 + }, + { + "start": 9319.46, + "end": 9324.66, + "probability": 0.9814 + }, + { + "start": 9327.16, + "end": 9328.76, + "probability": 0.6143 + }, + { + "start": 9329.02, + "end": 9329.54, + "probability": 0.2491 + }, + { + "start": 9330.78, + "end": 9330.82, + "probability": 0.5257 + }, + { + "start": 9330.82, + "end": 9332.44, + "probability": 0.9775 + }, + { + "start": 9332.72, + "end": 9333.68, + "probability": 0.948 + }, + { + "start": 9333.98, + "end": 9334.64, + "probability": 0.7776 + }, + { + "start": 9334.68, + "end": 9336.64, + "probability": 0.9293 + }, + { + "start": 9338.0, + "end": 9338.18, + "probability": 0.0059 + }, + { + "start": 9338.18, + "end": 9338.22, + "probability": 0.116 + }, + { + "start": 9338.22, + "end": 9340.92, + "probability": 0.2954 + }, + { + "start": 9341.14, + "end": 9341.68, + "probability": 0.6473 + }, + { + "start": 9341.74, + "end": 9342.02, + "probability": 0.8262 + }, + { + "start": 9342.12, + "end": 9342.6, + "probability": 0.5313 + }, + { + "start": 9342.62, + "end": 9344.38, + "probability": 0.6051 + }, + { + "start": 9344.96, + "end": 9345.6, + "probability": 0.7427 + }, + { + "start": 9345.72, + "end": 9347.12, + "probability": 0.9879 + }, + { + "start": 9347.84, + "end": 9350.28, + "probability": 0.975 + }, + { + "start": 9353.22, + "end": 9357.28, + "probability": 0.9927 + }, + { + "start": 9358.08, + "end": 9358.83, + "probability": 0.9761 + }, + { + "start": 9360.14, + "end": 9364.14, + "probability": 0.993 + }, + { + "start": 9364.24, + "end": 9366.11, + "probability": 0.8298 + }, + { + "start": 9367.78, + "end": 9370.66, + "probability": 0.98 + }, + { + "start": 9370.68, + "end": 9377.41, + "probability": 0.9858 + }, + { + "start": 9378.34, + "end": 9381.46, + "probability": 0.96 + }, + { + "start": 9382.0, + "end": 9384.6, + "probability": 0.7122 + }, + { + "start": 9386.2, + "end": 9391.84, + "probability": 0.9891 + }, + { + "start": 9392.94, + "end": 9394.3, + "probability": 0.9803 + }, + { + "start": 9394.84, + "end": 9396.02, + "probability": 0.5476 + }, + { + "start": 9396.26, + "end": 9401.8, + "probability": 0.9773 + }, + { + "start": 9402.34, + "end": 9402.84, + "probability": 0.7887 + }, + { + "start": 9402.88, + "end": 9404.6, + "probability": 0.8964 + }, + { + "start": 9405.0, + "end": 9407.1, + "probability": 0.9303 + }, + { + "start": 9407.6, + "end": 9407.98, + "probability": 0.7175 + }, + { + "start": 9408.48, + "end": 9411.96, + "probability": 0.9112 + }, + { + "start": 9412.02, + "end": 9414.19, + "probability": 0.8895 + }, + { + "start": 9415.14, + "end": 9420.43, + "probability": 0.9062 + }, + { + "start": 9421.1, + "end": 9426.68, + "probability": 0.9713 + }, + { + "start": 9426.8, + "end": 9427.44, + "probability": 0.5934 + }, + { + "start": 9427.88, + "end": 9428.5, + "probability": 0.8536 + }, + { + "start": 9428.56, + "end": 9431.2, + "probability": 0.8477 + }, + { + "start": 9432.64, + "end": 9436.42, + "probability": 0.9853 + }, + { + "start": 9436.7, + "end": 9438.06, + "probability": 0.846 + }, + { + "start": 9438.18, + "end": 9438.86, + "probability": 0.7869 + }, + { + "start": 9439.2, + "end": 9441.16, + "probability": 0.9906 + }, + { + "start": 9441.54, + "end": 9443.42, + "probability": 0.7802 + }, + { + "start": 9443.48, + "end": 9443.92, + "probability": 0.8777 + }, + { + "start": 9444.3, + "end": 9448.72, + "probability": 0.9824 + }, + { + "start": 9449.06, + "end": 9450.32, + "probability": 0.5548 + }, + { + "start": 9450.8, + "end": 9454.9, + "probability": 0.9687 + }, + { + "start": 9455.38, + "end": 9455.76, + "probability": 0.6205 + }, + { + "start": 9455.8, + "end": 9456.26, + "probability": 0.843 + }, + { + "start": 9456.26, + "end": 9461.24, + "probability": 0.9976 + }, + { + "start": 9461.66, + "end": 9465.3, + "probability": 0.8152 + }, + { + "start": 9465.32, + "end": 9465.52, + "probability": 0.6322 + }, + { + "start": 9466.8, + "end": 9468.54, + "probability": 0.7733 + }, + { + "start": 9469.04, + "end": 9474.08, + "probability": 0.9722 + }, + { + "start": 9482.94, + "end": 9484.22, + "probability": 0.6546 + }, + { + "start": 9484.34, + "end": 9485.04, + "probability": 0.7988 + }, + { + "start": 9485.3, + "end": 9486.96, + "probability": 0.6972 + }, + { + "start": 9487.16, + "end": 9489.38, + "probability": 0.9746 + }, + { + "start": 9489.58, + "end": 9492.08, + "probability": 0.9974 + }, + { + "start": 9492.84, + "end": 9493.86, + "probability": 0.981 + }, + { + "start": 9495.06, + "end": 9495.44, + "probability": 0.5332 + }, + { + "start": 9495.56, + "end": 9496.16, + "probability": 0.7715 + }, + { + "start": 9496.38, + "end": 9497.7, + "probability": 0.9846 + }, + { + "start": 9498.04, + "end": 9500.42, + "probability": 0.9447 + }, + { + "start": 9500.6, + "end": 9504.06, + "probability": 0.8647 + }, + { + "start": 9504.24, + "end": 9506.38, + "probability": 0.9926 + }, + { + "start": 9506.44, + "end": 9510.7, + "probability": 0.9955 + }, + { + "start": 9511.3, + "end": 9514.18, + "probability": 0.9312 + }, + { + "start": 9514.58, + "end": 9520.0, + "probability": 0.9929 + }, + { + "start": 9520.0, + "end": 9525.64, + "probability": 0.9925 + }, + { + "start": 9525.68, + "end": 9528.12, + "probability": 0.9675 + }, + { + "start": 9528.74, + "end": 9529.52, + "probability": 0.6216 + }, + { + "start": 9529.92, + "end": 9532.78, + "probability": 0.9966 + }, + { + "start": 9532.86, + "end": 9533.55, + "probability": 0.9924 + }, + { + "start": 9534.0, + "end": 9534.78, + "probability": 0.9771 + }, + { + "start": 9535.3, + "end": 9536.33, + "probability": 0.9856 + }, + { + "start": 9536.82, + "end": 9539.84, + "probability": 0.9731 + }, + { + "start": 9540.38, + "end": 9541.12, + "probability": 0.8639 + }, + { + "start": 9541.24, + "end": 9544.0, + "probability": 0.9819 + }, + { + "start": 9544.38, + "end": 9547.58, + "probability": 0.9459 + }, + { + "start": 9547.76, + "end": 9548.6, + "probability": 0.9345 + }, + { + "start": 9548.68, + "end": 9549.54, + "probability": 0.9825 + }, + { + "start": 9549.66, + "end": 9556.28, + "probability": 0.9889 + }, + { + "start": 9556.32, + "end": 9557.8, + "probability": 0.9849 + }, + { + "start": 9558.4, + "end": 9558.9, + "probability": 0.7638 + }, + { + "start": 9559.5, + "end": 9563.02, + "probability": 0.8464 + }, + { + "start": 9563.32, + "end": 9567.19, + "probability": 0.9951 + }, + { + "start": 9567.68, + "end": 9571.0, + "probability": 0.9976 + }, + { + "start": 9571.04, + "end": 9572.76, + "probability": 0.992 + }, + { + "start": 9572.86, + "end": 9573.86, + "probability": 0.8267 + }, + { + "start": 9574.14, + "end": 9575.98, + "probability": 0.9634 + }, + { + "start": 9576.06, + "end": 9578.54, + "probability": 0.9504 + }, + { + "start": 9578.8, + "end": 9579.44, + "probability": 0.7858 + }, + { + "start": 9579.68, + "end": 9581.28, + "probability": 0.9971 + }, + { + "start": 9581.44, + "end": 9584.36, + "probability": 0.9122 + }, + { + "start": 9584.76, + "end": 9588.66, + "probability": 0.9609 + }, + { + "start": 9588.72, + "end": 9588.98, + "probability": 0.7799 + }, + { + "start": 9589.14, + "end": 9590.57, + "probability": 0.8827 + }, + { + "start": 9590.96, + "end": 9592.72, + "probability": 0.9573 + }, + { + "start": 9593.06, + "end": 9593.5, + "probability": 0.751 + }, + { + "start": 9593.78, + "end": 9595.06, + "probability": 0.9062 + }, + { + "start": 9595.48, + "end": 9597.14, + "probability": 0.9953 + }, + { + "start": 9597.26, + "end": 9598.18, + "probability": 0.7442 + }, + { + "start": 9598.26, + "end": 9599.24, + "probability": 0.9244 + }, + { + "start": 9599.72, + "end": 9601.3, + "probability": 0.9584 + }, + { + "start": 9601.46, + "end": 9604.34, + "probability": 0.9135 + }, + { + "start": 9604.5, + "end": 9606.1, + "probability": 0.8116 + }, + { + "start": 9606.22, + "end": 9607.83, + "probability": 0.9922 + }, + { + "start": 9608.18, + "end": 9611.92, + "probability": 0.9333 + }, + { + "start": 9612.18, + "end": 9615.08, + "probability": 0.9978 + }, + { + "start": 9615.08, + "end": 9617.86, + "probability": 0.9979 + }, + { + "start": 9618.1, + "end": 9621.8, + "probability": 0.9917 + }, + { + "start": 9622.68, + "end": 9627.6, + "probability": 0.9702 + }, + { + "start": 9628.26, + "end": 9629.4, + "probability": 0.6895 + }, + { + "start": 9629.5, + "end": 9630.5, + "probability": 0.6951 + }, + { + "start": 9630.64, + "end": 9633.72, + "probability": 0.737 + }, + { + "start": 9633.72, + "end": 9636.1, + "probability": 0.9067 + }, + { + "start": 9636.18, + "end": 9636.88, + "probability": 0.7522 + }, + { + "start": 9637.4, + "end": 9638.62, + "probability": 0.7459 + }, + { + "start": 9639.04, + "end": 9639.88, + "probability": 0.7871 + }, + { + "start": 9640.66, + "end": 9640.88, + "probability": 0.8466 + }, + { + "start": 9641.2, + "end": 9641.72, + "probability": 0.967 + }, + { + "start": 9642.42, + "end": 9646.52, + "probability": 0.9679 + }, + { + "start": 9646.98, + "end": 9651.72, + "probability": 0.9883 + }, + { + "start": 9652.68, + "end": 9654.18, + "probability": 0.4934 + }, + { + "start": 9654.34, + "end": 9655.96, + "probability": 0.7206 + }, + { + "start": 9656.1, + "end": 9660.98, + "probability": 0.9886 + }, + { + "start": 9661.46, + "end": 9663.5, + "probability": 0.7746 + }, + { + "start": 9663.68, + "end": 9668.82, + "probability": 0.9701 + }, + { + "start": 9669.42, + "end": 9671.18, + "probability": 0.513 + }, + { + "start": 9671.3, + "end": 9674.64, + "probability": 0.5741 + }, + { + "start": 9674.76, + "end": 9674.98, + "probability": 0.4748 + }, + { + "start": 9675.12, + "end": 9678.26, + "probability": 0.754 + }, + { + "start": 9678.62, + "end": 9680.24, + "probability": 0.8629 + }, + { + "start": 9680.8, + "end": 9681.46, + "probability": 0.8127 + }, + { + "start": 9681.78, + "end": 9683.02, + "probability": 0.9851 + }, + { + "start": 9683.5, + "end": 9685.44, + "probability": 0.7911 + }, + { + "start": 9685.52, + "end": 9687.02, + "probability": 0.9727 + }, + { + "start": 9687.2, + "end": 9688.8, + "probability": 0.8544 + }, + { + "start": 9689.12, + "end": 9691.98, + "probability": 0.7599 + }, + { + "start": 9692.72, + "end": 9695.8, + "probability": 0.9766 + }, + { + "start": 9696.16, + "end": 9696.36, + "probability": 0.2952 + }, + { + "start": 9696.42, + "end": 9697.28, + "probability": 0.5993 + }, + { + "start": 9697.4, + "end": 9699.86, + "probability": 0.9962 + }, + { + "start": 9700.1, + "end": 9702.88, + "probability": 0.9572 + }, + { + "start": 9702.88, + "end": 9706.0, + "probability": 0.9829 + }, + { + "start": 9706.3, + "end": 9708.12, + "probability": 0.8756 + }, + { + "start": 9708.38, + "end": 9713.96, + "probability": 0.9767 + }, + { + "start": 9713.96, + "end": 9716.68, + "probability": 0.8423 + }, + { + "start": 9717.2, + "end": 9721.62, + "probability": 0.9427 + }, + { + "start": 9722.04, + "end": 9723.7, + "probability": 0.9861 + }, + { + "start": 9724.4, + "end": 9727.7, + "probability": 0.3935 + }, + { + "start": 9728.92, + "end": 9730.8, + "probability": 0.7406 + }, + { + "start": 9731.96, + "end": 9733.94, + "probability": 0.9132 + }, + { + "start": 9734.68, + "end": 9735.04, + "probability": 0.9832 + }, + { + "start": 9735.74, + "end": 9736.72, + "probability": 0.5607 + }, + { + "start": 9737.38, + "end": 9737.7, + "probability": 0.9844 + }, + { + "start": 9738.3, + "end": 9739.18, + "probability": 0.8221 + }, + { + "start": 9739.9, + "end": 9741.36, + "probability": 0.9722 + }, + { + "start": 9741.94, + "end": 9742.22, + "probability": 0.7798 + }, + { + "start": 9742.8, + "end": 9743.66, + "probability": 0.5674 + }, + { + "start": 9745.69, + "end": 9748.44, + "probability": 0.9294 + }, + { + "start": 9749.54, + "end": 9751.26, + "probability": 0.9331 + }, + { + "start": 9752.44, + "end": 9754.08, + "probability": 0.9398 + }, + { + "start": 9755.08, + "end": 9756.52, + "probability": 0.7452 + }, + { + "start": 9764.7, + "end": 9765.02, + "probability": 0.7041 + }, + { + "start": 9765.84, + "end": 9766.76, + "probability": 0.6173 + }, + { + "start": 9767.3, + "end": 9768.98, + "probability": 0.8434 + }, + { + "start": 9769.82, + "end": 9770.28, + "probability": 0.937 + }, + { + "start": 9774.96, + "end": 9776.5, + "probability": 0.524 + }, + { + "start": 9777.96, + "end": 9778.42, + "probability": 0.7838 + }, + { + "start": 9778.98, + "end": 9779.74, + "probability": 0.6504 + }, + { + "start": 9781.94, + "end": 9784.2, + "probability": 0.7976 + }, + { + "start": 9785.56, + "end": 9787.1, + "probability": 0.892 + }, + { + "start": 9789.16, + "end": 9792.7, + "probability": 0.8771 + }, + { + "start": 9793.7, + "end": 9795.14, + "probability": 0.9275 + }, + { + "start": 9796.96, + "end": 9797.64, + "probability": 0.8036 + }, + { + "start": 9798.36, + "end": 9799.1, + "probability": 0.3669 + }, + { + "start": 9800.26, + "end": 9801.94, + "probability": 0.8085 + }, + { + "start": 9802.74, + "end": 9804.18, + "probability": 0.9564 + }, + { + "start": 9805.74, + "end": 9806.9, + "probability": 0.7604 + }, + { + "start": 9807.72, + "end": 9809.42, + "probability": 0.7687 + }, + { + "start": 9810.28, + "end": 9811.76, + "probability": 0.9141 + }, + { + "start": 9813.5, + "end": 9815.1, + "probability": 0.7932 + }, + { + "start": 9815.7, + "end": 9817.12, + "probability": 0.8605 + }, + { + "start": 9818.0, + "end": 9819.44, + "probability": 0.7269 + }, + { + "start": 9820.14, + "end": 9821.54, + "probability": 0.7833 + }, + { + "start": 9823.24, + "end": 9827.24, + "probability": 0.8167 + }, + { + "start": 9828.22, + "end": 9829.56, + "probability": 0.9596 + }, + { + "start": 9830.32, + "end": 9831.74, + "probability": 0.9555 + }, + { + "start": 9833.46, + "end": 9835.3, + "probability": 0.9678 + }, + { + "start": 9835.98, + "end": 9836.38, + "probability": 0.9417 + }, + { + "start": 9837.14, + "end": 9837.88, + "probability": 0.6499 + }, + { + "start": 9839.38, + "end": 9842.22, + "probability": 0.8094 + }, + { + "start": 9843.96, + "end": 9845.92, + "probability": 0.8365 + }, + { + "start": 9846.74, + "end": 9848.2, + "probability": 0.9602 + }, + { + "start": 9849.22, + "end": 9850.5, + "probability": 0.7823 + }, + { + "start": 9851.64, + "end": 9852.46, + "probability": 0.6128 + }, + { + "start": 9852.98, + "end": 9853.86, + "probability": 0.8683 + }, + { + "start": 9854.92, + "end": 9857.1, + "probability": 0.8702 + }, + { + "start": 9858.5, + "end": 9860.12, + "probability": 0.8812 + }, + { + "start": 9861.02, + "end": 9863.2, + "probability": 0.5566 + }, + { + "start": 9863.92, + "end": 9865.16, + "probability": 0.8958 + }, + { + "start": 9865.92, + "end": 9867.38, + "probability": 0.8979 + }, + { + "start": 9869.1, + "end": 9869.58, + "probability": 0.9535 + }, + { + "start": 9870.24, + "end": 9874.36, + "probability": 0.5733 + }, + { + "start": 9875.16, + "end": 9875.52, + "probability": 0.9722 + }, + { + "start": 9876.66, + "end": 9877.42, + "probability": 0.9192 + }, + { + "start": 9878.14, + "end": 9879.62, + "probability": 0.9226 + }, + { + "start": 9881.72, + "end": 9883.06, + "probability": 0.6154 + }, + { + "start": 9883.72, + "end": 9885.22, + "probability": 0.8324 + }, + { + "start": 9886.34, + "end": 9886.86, + "probability": 0.9862 + }, + { + "start": 9888.08, + "end": 9889.02, + "probability": 0.9038 + }, + { + "start": 9889.56, + "end": 9891.1, + "probability": 0.9498 + }, + { + "start": 9892.14, + "end": 9893.24, + "probability": 0.9287 + }, + { + "start": 9893.92, + "end": 9895.28, + "probability": 0.8537 + }, + { + "start": 9895.96, + "end": 9897.3, + "probability": 0.9661 + }, + { + "start": 9898.44, + "end": 9900.18, + "probability": 0.9414 + }, + { + "start": 9901.36, + "end": 9902.6, + "probability": 0.9831 + }, + { + "start": 9903.74, + "end": 9905.08, + "probability": 0.9338 + }, + { + "start": 9906.84, + "end": 9910.56, + "probability": 0.89 + }, + { + "start": 9913.08, + "end": 9914.56, + "probability": 0.1741 + }, + { + "start": 9914.56, + "end": 9915.2, + "probability": 0.632 + }, + { + "start": 9916.32, + "end": 9918.3, + "probability": 0.8142 + }, + { + "start": 9919.06, + "end": 9922.52, + "probability": 0.9438 + }, + { + "start": 9923.34, + "end": 9925.22, + "probability": 0.9809 + }, + { + "start": 9926.44, + "end": 9928.02, + "probability": 0.8735 + }, + { + "start": 9930.04, + "end": 9930.7, + "probability": 0.4514 + }, + { + "start": 9931.46, + "end": 9932.78, + "probability": 0.9455 + }, + { + "start": 9933.66, + "end": 9935.42, + "probability": 0.9562 + }, + { + "start": 9936.28, + "end": 9938.09, + "probability": 0.857 + }, + { + "start": 9938.94, + "end": 9939.36, + "probability": 0.965 + }, + { + "start": 9939.9, + "end": 9940.6, + "probability": 0.9286 + }, + { + "start": 9941.42, + "end": 9941.84, + "probability": 0.8914 + }, + { + "start": 9943.02, + "end": 9943.88, + "probability": 0.9214 + }, + { + "start": 9944.94, + "end": 9946.6, + "probability": 0.9866 + }, + { + "start": 9947.5, + "end": 9949.16, + "probability": 0.6188 + }, + { + "start": 9949.9, + "end": 9950.16, + "probability": 0.5508 + }, + { + "start": 9950.7, + "end": 9951.42, + "probability": 0.705 + }, + { + "start": 9952.54, + "end": 9953.92, + "probability": 0.884 + }, + { + "start": 9954.78, + "end": 9955.2, + "probability": 0.938 + }, + { + "start": 9955.98, + "end": 9956.84, + "probability": 0.9312 + }, + { + "start": 9957.88, + "end": 9959.18, + "probability": 0.786 + }, + { + "start": 9962.48, + "end": 9962.76, + "probability": 0.8123 + }, + { + "start": 9963.96, + "end": 9964.86, + "probability": 0.8755 + }, + { + "start": 9965.52, + "end": 9968.76, + "probability": 0.9314 + }, + { + "start": 9971.12, + "end": 9973.3, + "probability": 0.9507 + }, + { + "start": 9975.05, + "end": 9976.8, + "probability": 0.8745 + }, + { + "start": 9978.32, + "end": 9978.62, + "probability": 0.9587 + }, + { + "start": 9979.32, + "end": 9980.38, + "probability": 0.775 + }, + { + "start": 9981.06, + "end": 9983.9, + "probability": 0.8451 + }, + { + "start": 9985.02, + "end": 9985.44, + "probability": 0.9824 + }, + { + "start": 9986.2, + "end": 9987.4, + "probability": 0.9742 + }, + { + "start": 9988.28, + "end": 9989.56, + "probability": 0.8828 + }, + { + "start": 9990.6, + "end": 9992.02, + "probability": 0.8995 + }, + { + "start": 9993.32, + "end": 9994.38, + "probability": 0.6565 + }, + { + "start": 9995.86, + "end": 9997.94, + "probability": 0.7737 + }, + { + "start": 9998.82, + "end": 10000.24, + "probability": 0.8835 + }, + { + "start": 10002.02, + "end": 10005.92, + "probability": 0.8979 + }, + { + "start": 10007.48, + "end": 10008.88, + "probability": 0.7464 + }, + { + "start": 10009.68, + "end": 10010.96, + "probability": 0.9534 + }, + { + "start": 10013.26, + "end": 10016.62, + "probability": 0.7543 + }, + { + "start": 10018.94, + "end": 10020.64, + "probability": 0.7732 + }, + { + "start": 10022.1, + "end": 10023.32, + "probability": 0.9552 + }, + { + "start": 10024.96, + "end": 10027.58, + "probability": 0.9669 + }, + { + "start": 10028.62, + "end": 10030.14, + "probability": 0.9327 + }, + { + "start": 10033.92, + "end": 10036.2, + "probability": 0.9541 + }, + { + "start": 10036.82, + "end": 10038.46, + "probability": 0.9656 + }, + { + "start": 10039.92, + "end": 10040.38, + "probability": 0.9777 + }, + { + "start": 10041.22, + "end": 10042.16, + "probability": 0.8381 + }, + { + "start": 10042.76, + "end": 10044.38, + "probability": 0.7287 + }, + { + "start": 10045.06, + "end": 10045.54, + "probability": 0.9347 + }, + { + "start": 10046.42, + "end": 10047.24, + "probability": 0.8916 + }, + { + "start": 10048.1, + "end": 10050.02, + "probability": 0.9092 + }, + { + "start": 10050.94, + "end": 10052.32, + "probability": 0.9125 + }, + { + "start": 10054.46, + "end": 10055.92, + "probability": 0.8481 + }, + { + "start": 10056.9, + "end": 10058.84, + "probability": 0.9769 + }, + { + "start": 10059.46, + "end": 10060.88, + "probability": 0.9423 + }, + { + "start": 10062.04, + "end": 10062.48, + "probability": 0.684 + }, + { + "start": 10063.02, + "end": 10063.72, + "probability": 0.2746 + }, + { + "start": 10065.06, + "end": 10066.0, + "probability": 0.9209 + }, + { + "start": 10066.56, + "end": 10067.32, + "probability": 0.8832 + }, + { + "start": 10068.12, + "end": 10068.54, + "probability": 0.8044 + }, + { + "start": 10069.2, + "end": 10070.06, + "probability": 0.9174 + }, + { + "start": 10070.94, + "end": 10071.34, + "probability": 0.9779 + }, + { + "start": 10072.04, + "end": 10072.82, + "probability": 0.8716 + }, + { + "start": 10073.65, + "end": 10075.7, + "probability": 0.9438 + }, + { + "start": 10078.52, + "end": 10078.94, + "probability": 0.8389 + }, + { + "start": 10079.48, + "end": 10080.56, + "probability": 0.5909 + }, + { + "start": 10081.86, + "end": 10082.36, + "probability": 0.9953 + }, + { + "start": 10084.7, + "end": 10087.02, + "probability": 0.5425 + }, + { + "start": 10087.8, + "end": 10088.76, + "probability": 0.3948 + }, + { + "start": 10091.13, + "end": 10094.76, + "probability": 0.6888 + }, + { + "start": 10096.0, + "end": 10098.0, + "probability": 0.903 + }, + { + "start": 10098.76, + "end": 10100.5, + "probability": 0.9479 + }, + { + "start": 10101.08, + "end": 10101.74, + "probability": 0.9729 + }, + { + "start": 10102.3, + "end": 10103.2, + "probability": 0.9277 + }, + { + "start": 10103.96, + "end": 10105.78, + "probability": 0.9722 + }, + { + "start": 10106.96, + "end": 10107.7, + "probability": 0.9877 + }, + { + "start": 10109.02, + "end": 10109.96, + "probability": 0.9808 + }, + { + "start": 10110.46, + "end": 10112.04, + "probability": 0.9945 + }, + { + "start": 10112.48, + "end": 10114.16, + "probability": 0.8714 + }, + { + "start": 10115.2, + "end": 10119.56, + "probability": 0.947 + }, + { + "start": 10120.28, + "end": 10120.96, + "probability": 0.9862 + }, + { + "start": 10121.92, + "end": 10122.7, + "probability": 0.5465 + }, + { + "start": 10123.92, + "end": 10125.9, + "probability": 0.9677 + }, + { + "start": 10128.4, + "end": 10128.82, + "probability": 0.791 + }, + { + "start": 10130.46, + "end": 10131.6, + "probability": 0.7034 + }, + { + "start": 10133.1, + "end": 10135.1, + "probability": 0.6085 + }, + { + "start": 10135.76, + "end": 10137.68, + "probability": 0.8053 + }, + { + "start": 10138.48, + "end": 10140.14, + "probability": 0.8884 + }, + { + "start": 10140.7, + "end": 10142.38, + "probability": 0.9715 + }, + { + "start": 10143.48, + "end": 10145.1, + "probability": 0.944 + }, + { + "start": 10145.92, + "end": 10147.6, + "probability": 0.8764 + }, + { + "start": 10149.66, + "end": 10150.16, + "probability": 0.9492 + }, + { + "start": 10151.44, + "end": 10152.3, + "probability": 0.9629 + }, + { + "start": 10153.16, + "end": 10154.98, + "probability": 0.9528 + }, + { + "start": 10155.76, + "end": 10157.64, + "probability": 0.8643 + }, + { + "start": 10158.9, + "end": 10159.6, + "probability": 0.966 + }, + { + "start": 10160.3, + "end": 10161.2, + "probability": 0.9183 + }, + { + "start": 10162.26, + "end": 10163.1, + "probability": 0.9875 + }, + { + "start": 10164.48, + "end": 10165.54, + "probability": 0.7959 + }, + { + "start": 10166.76, + "end": 10167.52, + "probability": 0.9886 + }, + { + "start": 10169.3, + "end": 10170.2, + "probability": 0.9777 + }, + { + "start": 10171.22, + "end": 10173.1, + "probability": 0.8057 + }, + { + "start": 10173.4, + "end": 10174.92, + "probability": 0.796 + }, + { + "start": 10175.34, + "end": 10177.0, + "probability": 0.9558 + }, + { + "start": 10178.0, + "end": 10179.4, + "probability": 0.5405 + }, + { + "start": 10181.02, + "end": 10181.78, + "probability": 0.7937 + }, + { + "start": 10182.54, + "end": 10184.06, + "probability": 0.8903 + }, + { + "start": 10185.18, + "end": 10186.78, + "probability": 0.9364 + }, + { + "start": 10188.48, + "end": 10188.98, + "probability": 0.9313 + }, + { + "start": 10190.96, + "end": 10191.52, + "probability": 0.9672 + }, + { + "start": 10192.56, + "end": 10194.08, + "probability": 0.9327 + }, + { + "start": 10196.36, + "end": 10198.56, + "probability": 0.9238 + }, + { + "start": 10200.26, + "end": 10204.32, + "probability": 0.932 + }, + { + "start": 10204.86, + "end": 10208.02, + "probability": 0.9231 + }, + { + "start": 10209.74, + "end": 10210.88, + "probability": 0.9388 + }, + { + "start": 10211.6, + "end": 10212.38, + "probability": 0.9751 + }, + { + "start": 10212.94, + "end": 10214.38, + "probability": 0.9768 + }, + { + "start": 10215.38, + "end": 10217.44, + "probability": 0.9695 + }, + { + "start": 10218.1, + "end": 10220.54, + "probability": 0.9526 + }, + { + "start": 10221.18, + "end": 10221.94, + "probability": 0.9885 + }, + { + "start": 10223.92, + "end": 10224.96, + "probability": 0.9907 + }, + { + "start": 10225.78, + "end": 10227.76, + "probability": 0.5427 + }, + { + "start": 10228.32, + "end": 10231.12, + "probability": 0.9583 + }, + { + "start": 10231.7, + "end": 10232.48, + "probability": 0.6049 + }, + { + "start": 10233.74, + "end": 10234.52, + "probability": 0.989 + }, + { + "start": 10236.46, + "end": 10237.96, + "probability": 0.8057 + }, + { + "start": 10238.88, + "end": 10242.62, + "probability": 0.9161 + }, + { + "start": 10245.58, + "end": 10246.44, + "probability": 0.672 + }, + { + "start": 10247.88, + "end": 10248.68, + "probability": 0.7075 + }, + { + "start": 10249.66, + "end": 10251.62, + "probability": 0.9526 + }, + { + "start": 10252.14, + "end": 10253.88, + "probability": 0.6619 + }, + { + "start": 10254.92, + "end": 10256.4, + "probability": 0.7721 + }, + { + "start": 10257.7, + "end": 10258.42, + "probability": 0.734 + }, + { + "start": 10258.76, + "end": 10260.54, + "probability": 0.9268 + }, + { + "start": 10260.94, + "end": 10264.36, + "probability": 0.7346 + }, + { + "start": 10265.86, + "end": 10267.0, + "probability": 0.918 + }, + { + "start": 10267.8, + "end": 10268.52, + "probability": 0.8828 + }, + { + "start": 10269.32, + "end": 10270.22, + "probability": 0.9913 + }, + { + "start": 10271.9, + "end": 10272.86, + "probability": 0.9575 + }, + { + "start": 10274.68, + "end": 10278.18, + "probability": 0.9244 + }, + { + "start": 10278.72, + "end": 10279.44, + "probability": 0.9952 + }, + { + "start": 10280.22, + "end": 10285.5, + "probability": 0.8246 + }, + { + "start": 10286.0, + "end": 10288.24, + "probability": 0.0573 + }, + { + "start": 10288.34, + "end": 10288.64, + "probability": 0.5523 + }, + { + "start": 10288.64, + "end": 10290.16, + "probability": 0.703 + }, + { + "start": 10290.56, + "end": 10291.26, + "probability": 0.0118 + }, + { + "start": 10292.42, + "end": 10292.48, + "probability": 0.0 + }, + { + "start": 10299.0, + "end": 10300.22, + "probability": 0.0262 + }, + { + "start": 10301.68, + "end": 10305.52, + "probability": 0.0154 + }, + { + "start": 10389.4, + "end": 10390.28, + "probability": 0.0188 + }, + { + "start": 10390.28, + "end": 10390.6, + "probability": 0.0564 + }, + { + "start": 10390.6, + "end": 10392.16, + "probability": 0.1094 + }, + { + "start": 10392.16, + "end": 10393.16, + "probability": 0.2183 + }, + { + "start": 10394.08, + "end": 10394.52, + "probability": 0.5942 + }, + { + "start": 10398.52, + "end": 10400.62, + "probability": 0.9565 + }, + { + "start": 10400.8, + "end": 10403.62, + "probability": 0.7793 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.0, + "end": 10553.0, + "probability": 0.0 + }, + { + "start": 10553.75, + "end": 10556.62, + "probability": 0.5197 + }, + { + "start": 10557.94, + "end": 10559.46, + "probability": 0.7246 + }, + { + "start": 10560.8, + "end": 10561.14, + "probability": 0.9517 + }, + { + "start": 10562.28, + "end": 10563.14, + "probability": 0.7689 + }, + { + "start": 10564.64, + "end": 10566.76, + "probability": 0.8451 + }, + { + "start": 10569.34, + "end": 10569.88, + "probability": 0.9037 + }, + { + "start": 10572.06, + "end": 10573.26, + "probability": 0.8706 + }, + { + "start": 10574.98, + "end": 10579.22, + "probability": 0.9535 + }, + { + "start": 10580.42, + "end": 10580.9, + "probability": 0.9941 + }, + { + "start": 10581.66, + "end": 10584.58, + "probability": 0.516 + }, + { + "start": 10586.16, + "end": 10588.0, + "probability": 0.3897 + }, + { + "start": 10588.0, + "end": 10588.1, + "probability": 0.6129 + }, + { + "start": 10588.34, + "end": 10592.76, + "probability": 0.1984 + }, + { + "start": 10597.84, + "end": 10598.84, + "probability": 0.724 + }, + { + "start": 10599.76, + "end": 10600.56, + "probability": 0.2385 + }, + { + "start": 10601.66, + "end": 10604.4, + "probability": 0.8274 + }, + { + "start": 10606.54, + "end": 10607.04, + "probability": 0.5272 + }, + { + "start": 10607.68, + "end": 10610.38, + "probability": 0.9287 + }, + { + "start": 10611.2, + "end": 10612.64, + "probability": 0.8473 + }, + { + "start": 10613.3, + "end": 10614.26, + "probability": 0.9331 + }, + { + "start": 10615.94, + "end": 10616.52, + "probability": 0.8882 + }, + { + "start": 10617.42, + "end": 10618.1, + "probability": 0.9921 + }, + { + "start": 10618.62, + "end": 10619.16, + "probability": 0.8883 + }, + { + "start": 10621.52, + "end": 10623.06, + "probability": 0.831 + }, + { + "start": 10625.12, + "end": 10628.04, + "probability": 0.6984 + }, + { + "start": 10628.22, + "end": 10629.74, + "probability": 0.8962 + }, + { + "start": 10629.98, + "end": 10631.84, + "probability": 0.9461 + }, + { + "start": 10632.54, + "end": 10634.58, + "probability": 0.9808 + }, + { + "start": 10635.6, + "end": 10637.74, + "probability": 0.9194 + }, + { + "start": 10638.58, + "end": 10639.0, + "probability": 0.9922 + }, + { + "start": 10639.94, + "end": 10641.06, + "probability": 0.9702 + }, + { + "start": 10641.6, + "end": 10643.32, + "probability": 0.9218 + }, + { + "start": 10644.46, + "end": 10644.98, + "probability": 0.9896 + }, + { + "start": 10645.78, + "end": 10646.74, + "probability": 0.8786 + }, + { + "start": 10647.48, + "end": 10649.04, + "probability": 0.8946 + }, + { + "start": 10650.14, + "end": 10650.58, + "probability": 0.9202 + }, + { + "start": 10651.24, + "end": 10651.98, + "probability": 0.6938 + }, + { + "start": 10652.66, + "end": 10653.16, + "probability": 0.9867 + }, + { + "start": 10653.8, + "end": 10654.58, + "probability": 0.9687 + }, + { + "start": 10655.24, + "end": 10657.22, + "probability": 0.9821 + }, + { + "start": 10658.62, + "end": 10660.91, + "probability": 0.9266 + }, + { + "start": 10663.28, + "end": 10663.8, + "probability": 0.9836 + }, + { + "start": 10665.4, + "end": 10666.28, + "probability": 0.9649 + }, + { + "start": 10667.08, + "end": 10667.52, + "probability": 0.8333 + }, + { + "start": 10668.62, + "end": 10669.52, + "probability": 0.7638 + }, + { + "start": 10671.75, + "end": 10674.94, + "probability": 0.838 + }, + { + "start": 10675.96, + "end": 10676.42, + "probability": 0.8994 + }, + { + "start": 10677.76, + "end": 10678.9, + "probability": 0.6877 + }, + { + "start": 10679.96, + "end": 10680.32, + "probability": 0.9692 + }, + { + "start": 10680.98, + "end": 10681.74, + "probability": 0.4986 + }, + { + "start": 10682.44, + "end": 10682.84, + "probability": 0.9357 + }, + { + "start": 10683.9, + "end": 10684.58, + "probability": 0.8768 + }, + { + "start": 10686.44, + "end": 10688.62, + "probability": 0.9321 + }, + { + "start": 10689.46, + "end": 10691.78, + "probability": 0.9661 + }, + { + "start": 10694.04, + "end": 10694.76, + "probability": 0.9403 + }, + { + "start": 10695.28, + "end": 10696.3, + "probability": 0.8631 + }, + { + "start": 10696.7, + "end": 10698.58, + "probability": 0.904 + }, + { + "start": 10699.0, + "end": 10700.72, + "probability": 0.7173 + }, + { + "start": 10702.02, + "end": 10702.74, + "probability": 0.9637 + }, + { + "start": 10703.66, + "end": 10704.78, + "probability": 0.927 + }, + { + "start": 10705.98, + "end": 10706.28, + "probability": 0.8713 + }, + { + "start": 10707.1, + "end": 10707.92, + "probability": 0.8543 + }, + { + "start": 10712.18, + "end": 10713.12, + "probability": 0.9921 + }, + { + "start": 10715.38, + "end": 10717.14, + "probability": 0.859 + }, + { + "start": 10717.76, + "end": 10720.36, + "probability": 0.9353 + }, + { + "start": 10720.92, + "end": 10721.84, + "probability": 0.9131 + }, + { + "start": 10724.8, + "end": 10725.88, + "probability": 0.6535 + }, + { + "start": 10726.99, + "end": 10729.38, + "probability": 0.8008 + }, + { + "start": 10732.64, + "end": 10735.32, + "probability": 0.7877 + }, + { + "start": 10736.48, + "end": 10738.28, + "probability": 0.6041 + }, + { + "start": 10740.54, + "end": 10742.52, + "probability": 0.8604 + }, + { + "start": 10744.06, + "end": 10746.0, + "probability": 0.8491 + }, + { + "start": 10746.7, + "end": 10748.48, + "probability": 0.8695 + }, + { + "start": 10749.36, + "end": 10749.82, + "probability": 0.953 + }, + { + "start": 10751.16, + "end": 10751.9, + "probability": 0.8261 + }, + { + "start": 10753.16, + "end": 10754.62, + "probability": 0.9114 + }, + { + "start": 10757.91, + "end": 10759.3, + "probability": 0.3651 + }, + { + "start": 10762.0, + "end": 10762.72, + "probability": 0.241 + }, + { + "start": 10763.32, + "end": 10763.62, + "probability": 0.8452 + }, + { + "start": 10764.86, + "end": 10765.94, + "probability": 0.7828 + }, + { + "start": 10766.62, + "end": 10768.12, + "probability": 0.7675 + }, + { + "start": 10768.92, + "end": 10769.42, + "probability": 0.9697 + }, + { + "start": 10770.18, + "end": 10771.06, + "probability": 0.8664 + }, + { + "start": 10771.74, + "end": 10772.22, + "probability": 0.9845 + }, + { + "start": 10772.76, + "end": 10773.46, + "probability": 0.8492 + }, + { + "start": 10774.3, + "end": 10774.64, + "probability": 0.9902 + }, + { + "start": 10775.58, + "end": 10776.34, + "probability": 0.9849 + }, + { + "start": 10777.72, + "end": 10779.58, + "probability": 0.979 + }, + { + "start": 10780.64, + "end": 10784.58, + "probability": 0.9771 + }, + { + "start": 10785.66, + "end": 10787.22, + "probability": 0.5321 + }, + { + "start": 10788.9, + "end": 10793.04, + "probability": 0.7393 + }, + { + "start": 10794.36, + "end": 10794.82, + "probability": 0.9554 + }, + { + "start": 10795.4, + "end": 10796.28, + "probability": 0.7964 + }, + { + "start": 10797.1, + "end": 10798.96, + "probability": 0.9617 + }, + { + "start": 10799.62, + "end": 10801.36, + "probability": 0.9557 + }, + { + "start": 10802.1, + "end": 10803.8, + "probability": 0.9135 + }, + { + "start": 10805.36, + "end": 10806.84, + "probability": 0.8682 + }, + { + "start": 10807.9, + "end": 10808.78, + "probability": 0.8524 + }, + { + "start": 10811.16, + "end": 10814.72, + "probability": 0.7712 + }, + { + "start": 10816.13, + "end": 10818.64, + "probability": 0.94 + }, + { + "start": 10819.54, + "end": 10820.42, + "probability": 0.9076 + }, + { + "start": 10821.06, + "end": 10821.88, + "probability": 0.9116 + }, + { + "start": 10822.46, + "end": 10822.9, + "probability": 0.6034 + }, + { + "start": 10823.8, + "end": 10824.72, + "probability": 0.9215 + }, + { + "start": 10825.44, + "end": 10825.92, + "probability": 0.945 + }, + { + "start": 10826.88, + "end": 10827.8, + "probability": 0.8899 + }, + { + "start": 10828.72, + "end": 10829.2, + "probability": 0.9736 + }, + { + "start": 10830.36, + "end": 10831.16, + "probability": 0.9431 + }, + { + "start": 10833.36, + "end": 10833.9, + "probability": 0.8937 + }, + { + "start": 10834.52, + "end": 10835.64, + "probability": 0.6025 + }, + { + "start": 10836.62, + "end": 10844.06, + "probability": 0.7703 + }, + { + "start": 10844.36, + "end": 10845.62, + "probability": 0.3336 + }, + { + "start": 10846.62, + "end": 10848.32, + "probability": 0.7305 + }, + { + "start": 10849.36, + "end": 10850.94, + "probability": 0.7722 + }, + { + "start": 10852.08, + "end": 10853.28, + "probability": 0.8517 + }, + { + "start": 10854.08, + "end": 10854.54, + "probability": 0.971 + }, + { + "start": 10856.6, + "end": 10857.34, + "probability": 0.8183 + }, + { + "start": 10859.16, + "end": 10859.5, + "probability": 0.9185 + }, + { + "start": 10860.32, + "end": 10861.08, + "probability": 0.7574 + }, + { + "start": 10862.06, + "end": 10863.54, + "probability": 0.647 + }, + { + "start": 10864.08, + "end": 10867.76, + "probability": 0.9472 + }, + { + "start": 10868.56, + "end": 10871.84, + "probability": 0.9703 + }, + { + "start": 10872.76, + "end": 10874.42, + "probability": 0.927 + }, + { + "start": 10886.62, + "end": 10890.52, + "probability": 0.5875 + }, + { + "start": 10891.32, + "end": 10892.98, + "probability": 0.1342 + }, + { + "start": 10893.8, + "end": 10895.4, + "probability": 0.3896 + }, + { + "start": 10896.46, + "end": 10898.12, + "probability": 0.1894 + }, + { + "start": 10900.24, + "end": 10901.54, + "probability": 0.1921 + }, + { + "start": 10907.21, + "end": 10907.48, + "probability": 0.0756 + }, + { + "start": 10907.78, + "end": 10908.04, + "probability": 0.3409 + }, + { + "start": 10908.04, + "end": 10908.04, + "probability": 0.4197 + }, + { + "start": 10908.82, + "end": 10911.5, + "probability": 0.5159 + }, + { + "start": 10913.08, + "end": 10916.02, + "probability": 0.6412 + }, + { + "start": 10917.22, + "end": 10918.7, + "probability": 0.9338 + }, + { + "start": 10919.3, + "end": 10920.64, + "probability": 0.4957 + }, + { + "start": 10921.92, + "end": 10924.92, + "probability": 0.9031 + }, + { + "start": 10926.06, + "end": 10928.16, + "probability": 0.8929 + }, + { + "start": 10928.76, + "end": 10930.32, + "probability": 0.9739 + }, + { + "start": 10931.36, + "end": 10932.88, + "probability": 0.9825 + }, + { + "start": 10933.56, + "end": 10935.44, + "probability": 0.9708 + }, + { + "start": 10936.3, + "end": 10936.98, + "probability": 0.7344 + }, + { + "start": 10937.9, + "end": 10938.88, + "probability": 0.4946 + }, + { + "start": 10940.02, + "end": 10941.58, + "probability": 0.9612 + }, + { + "start": 10942.4, + "end": 10946.02, + "probability": 0.7462 + }, + { + "start": 10946.76, + "end": 10949.88, + "probability": 0.9798 + }, + { + "start": 10950.52, + "end": 10951.66, + "probability": 0.7608 + }, + { + "start": 10952.62, + "end": 10953.92, + "probability": 0.7529 + }, + { + "start": 10955.12, + "end": 10957.96, + "probability": 0.8469 + }, + { + "start": 10958.6, + "end": 10960.44, + "probability": 0.8735 + }, + { + "start": 10961.02, + "end": 10961.88, + "probability": 0.9912 + }, + { + "start": 10962.68, + "end": 10963.66, + "probability": 0.9736 + }, + { + "start": 10964.32, + "end": 10966.02, + "probability": 0.9801 + }, + { + "start": 10968.8, + "end": 10971.08, + "probability": 0.7638 + }, + { + "start": 10971.96, + "end": 10973.8, + "probability": 0.9052 + }, + { + "start": 10974.98, + "end": 10975.84, + "probability": 0.9836 + }, + { + "start": 10977.14, + "end": 10978.02, + "probability": 0.8506 + }, + { + "start": 10979.94, + "end": 10980.76, + "probability": 0.953 + }, + { + "start": 10981.4, + "end": 10982.26, + "probability": 0.93 + }, + { + "start": 10982.58, + "end": 10984.28, + "probability": 0.9428 + }, + { + "start": 10984.38, + "end": 10985.78, + "probability": 0.8599 + }, + { + "start": 10986.66, + "end": 10987.4, + "probability": 0.9934 + }, + { + "start": 10988.66, + "end": 10989.52, + "probability": 0.8584 + }, + { + "start": 10990.66, + "end": 10992.3, + "probability": 0.8186 + }, + { + "start": 10994.02, + "end": 10995.16, + "probability": 0.6996 + }, + { + "start": 10996.28, + "end": 11000.22, + "probability": 0.8497 + }, + { + "start": 11000.88, + "end": 11002.4, + "probability": 0.9174 + }, + { + "start": 11003.24, + "end": 11006.76, + "probability": 0.9745 + }, + { + "start": 11007.28, + "end": 11010.6, + "probability": 0.8604 + }, + { + "start": 11011.66, + "end": 11013.84, + "probability": 0.9367 + }, + { + "start": 11014.8, + "end": 11016.7, + "probability": 0.956 + }, + { + "start": 11016.96, + "end": 11018.38, + "probability": 0.9466 + }, + { + "start": 11018.74, + "end": 11020.2, + "probability": 0.9819 + }, + { + "start": 11020.92, + "end": 11024.4, + "probability": 0.9465 + }, + { + "start": 11025.16, + "end": 11027.12, + "probability": 0.9214 + }, + { + "start": 11028.42, + "end": 11031.94, + "probability": 0.8522 + }, + { + "start": 11032.82, + "end": 11034.86, + "probability": 0.8911 + }, + { + "start": 11035.16, + "end": 11036.28, + "probability": 0.7256 + }, + { + "start": 11037.56, + "end": 11037.66, + "probability": 0.0243 + }, + { + "start": 11043.18, + "end": 11044.08, + "probability": 0.1112 + }, + { + "start": 11082.3, + "end": 11087.28, + "probability": 0.0128 + }, + { + "start": 11087.28, + "end": 11087.28, + "probability": 0.0336 + }, + { + "start": 11131.02, + "end": 11135.68, + "probability": 0.5363 + }, + { + "start": 11136.4, + "end": 11138.74, + "probability": 0.9937 + }, + { + "start": 11139.28, + "end": 11143.14, + "probability": 0.9184 + }, + { + "start": 11143.8, + "end": 11145.54, + "probability": 0.4096 + }, + { + "start": 11146.24, + "end": 11148.62, + "probability": 0.9694 + }, + { + "start": 11148.66, + "end": 11149.06, + "probability": 0.8208 + }, + { + "start": 11152.3, + "end": 11154.02, + "probability": 0.8921 + }, + { + "start": 11154.8, + "end": 11156.52, + "probability": 0.2707 + }, + { + "start": 11156.52, + "end": 11158.64, + "probability": 0.4138 + }, + { + "start": 11160.02, + "end": 11162.48, + "probability": 0.8418 + }, + { + "start": 11163.02, + "end": 11163.96, + "probability": 0.0228 + }, + { + "start": 11168.24, + "end": 11172.52, + "probability": 0.5453 + }, + { + "start": 11173.24, + "end": 11176.56, + "probability": 0.6625 + }, + { + "start": 11176.8, + "end": 11181.16, + "probability": 0.9781 + }, + { + "start": 11181.16, + "end": 11185.92, + "probability": 0.9882 + }, + { + "start": 11186.56, + "end": 11192.4, + "probability": 0.9883 + }, + { + "start": 11192.4, + "end": 11201.64, + "probability": 0.9984 + }, + { + "start": 11202.32, + "end": 11205.08, + "probability": 0.9989 + }, + { + "start": 11205.68, + "end": 11206.56, + "probability": 0.6037 + }, + { + "start": 11207.16, + "end": 11207.98, + "probability": 0.9685 + }, + { + "start": 11208.08, + "end": 11211.82, + "probability": 0.9261 + }, + { + "start": 11211.82, + "end": 11215.96, + "probability": 0.993 + }, + { + "start": 11216.04, + "end": 11216.82, + "probability": 0.5636 + }, + { + "start": 11217.32, + "end": 11218.92, + "probability": 0.9227 + }, + { + "start": 11219.96, + "end": 11225.34, + "probability": 0.9883 + }, + { + "start": 11225.74, + "end": 11229.76, + "probability": 0.9985 + }, + { + "start": 11230.38, + "end": 11231.78, + "probability": 0.8041 + }, + { + "start": 11232.3, + "end": 11235.26, + "probability": 0.7826 + }, + { + "start": 11235.26, + "end": 11238.32, + "probability": 0.9682 + }, + { + "start": 11239.14, + "end": 11241.26, + "probability": 0.9542 + }, + { + "start": 11242.16, + "end": 11243.9, + "probability": 0.9984 + }, + { + "start": 11244.62, + "end": 11247.54, + "probability": 0.9962 + }, + { + "start": 11247.66, + "end": 11248.58, + "probability": 0.7615 + }, + { + "start": 11248.64, + "end": 11251.56, + "probability": 0.9987 + }, + { + "start": 11252.2, + "end": 11253.9, + "probability": 0.5156 + }, + { + "start": 11254.44, + "end": 11258.96, + "probability": 0.9941 + }, + { + "start": 11259.28, + "end": 11260.58, + "probability": 0.499 + }, + { + "start": 11261.2, + "end": 11263.2, + "probability": 0.9872 + }, + { + "start": 11263.8, + "end": 11265.4, + "probability": 0.7716 + }, + { + "start": 11266.02, + "end": 11270.56, + "probability": 0.9946 + }, + { + "start": 11270.64, + "end": 11272.64, + "probability": 0.9988 + }, + { + "start": 11272.64, + "end": 11275.42, + "probability": 0.998 + }, + { + "start": 11275.6, + "end": 11277.08, + "probability": 0.9335 + }, + { + "start": 11277.84, + "end": 11280.02, + "probability": 0.8615 + }, + { + "start": 11281.0, + "end": 11282.74, + "probability": 0.9904 + }, + { + "start": 11283.62, + "end": 11292.12, + "probability": 0.9695 + }, + { + "start": 11292.3, + "end": 11293.66, + "probability": 0.9714 + }, + { + "start": 11294.16, + "end": 11299.58, + "probability": 0.9783 + }, + { + "start": 11299.58, + "end": 11303.26, + "probability": 0.999 + }, + { + "start": 11303.72, + "end": 11308.84, + "probability": 0.9543 + }, + { + "start": 11309.24, + "end": 11310.5, + "probability": 0.98 + }, + { + "start": 11310.64, + "end": 11311.98, + "probability": 0.9743 + }, + { + "start": 11312.08, + "end": 11316.04, + "probability": 0.9956 + }, + { + "start": 11316.24, + "end": 11317.33, + "probability": 0.9133 + }, + { + "start": 11319.14, + "end": 11327.24, + "probability": 0.9785 + }, + { + "start": 11328.28, + "end": 11331.34, + "probability": 0.9951 + }, + { + "start": 11331.74, + "end": 11331.88, + "probability": 0.3992 + }, + { + "start": 11332.38, + "end": 11334.02, + "probability": 0.9336 + }, + { + "start": 11334.34, + "end": 11334.76, + "probability": 0.8333 + }, + { + "start": 11335.06, + "end": 11338.36, + "probability": 0.996 + }, + { + "start": 11338.62, + "end": 11342.58, + "probability": 0.9712 + }, + { + "start": 11344.16, + "end": 11346.64, + "probability": 0.9987 + }, + { + "start": 11346.64, + "end": 11350.14, + "probability": 0.9937 + }, + { + "start": 11350.48, + "end": 11354.2, + "probability": 0.9988 + }, + { + "start": 11355.2, + "end": 11356.08, + "probability": 0.875 + }, + { + "start": 11357.12, + "end": 11365.4, + "probability": 0.9958 + }, + { + "start": 11366.14, + "end": 11369.56, + "probability": 0.9736 + }, + { + "start": 11369.56, + "end": 11372.64, + "probability": 0.9948 + }, + { + "start": 11372.92, + "end": 11377.02, + "probability": 0.9973 + }, + { + "start": 11377.2, + "end": 11378.84, + "probability": 0.9932 + }, + { + "start": 11379.36, + "end": 11382.84, + "probability": 0.9967 + }, + { + "start": 11383.12, + "end": 11383.86, + "probability": 0.872 + }, + { + "start": 11385.12, + "end": 11388.36, + "probability": 0.9799 + }, + { + "start": 11388.46, + "end": 11389.0, + "probability": 0.9308 + }, + { + "start": 11389.12, + "end": 11389.58, + "probability": 0.9543 + }, + { + "start": 11389.72, + "end": 11391.9, + "probability": 0.979 + }, + { + "start": 11393.08, + "end": 11395.3, + "probability": 0.9821 + }, + { + "start": 11395.74, + "end": 11397.96, + "probability": 0.9563 + }, + { + "start": 11398.28, + "end": 11403.88, + "probability": 0.9955 + }, + { + "start": 11404.74, + "end": 11406.6, + "probability": 0.9268 + }, + { + "start": 11406.72, + "end": 11411.32, + "probability": 0.9053 + }, + { + "start": 11411.64, + "end": 11416.16, + "probability": 0.9907 + }, + { + "start": 11416.94, + "end": 11419.96, + "probability": 0.98 + }, + { + "start": 11420.8, + "end": 11422.18, + "probability": 0.9401 + }, + { + "start": 11422.38, + "end": 11430.84, + "probability": 0.9915 + }, + { + "start": 11431.22, + "end": 11437.14, + "probability": 0.9775 + }, + { + "start": 11437.88, + "end": 11439.24, + "probability": 0.9032 + }, + { + "start": 11439.64, + "end": 11444.48, + "probability": 0.9978 + }, + { + "start": 11445.16, + "end": 11447.9, + "probability": 0.8431 + }, + { + "start": 11448.5, + "end": 11449.88, + "probability": 0.7141 + }, + { + "start": 11450.4, + "end": 11451.8, + "probability": 0.9887 + }, + { + "start": 11452.82, + "end": 11456.1, + "probability": 0.9934 + }, + { + "start": 11456.22, + "end": 11458.28, + "probability": 0.9818 + }, + { + "start": 11458.42, + "end": 11459.22, + "probability": 0.7798 + }, + { + "start": 11459.34, + "end": 11460.34, + "probability": 0.9723 + }, + { + "start": 11460.98, + "end": 11465.6, + "probability": 0.9956 + }, + { + "start": 11466.04, + "end": 11472.45, + "probability": 0.9183 + }, + { + "start": 11474.5, + "end": 11477.72, + "probability": 0.9625 + }, + { + "start": 11478.44, + "end": 11479.6, + "probability": 0.9033 + }, + { + "start": 11480.42, + "end": 11485.72, + "probability": 0.9976 + }, + { + "start": 11486.12, + "end": 11488.76, + "probability": 0.9943 + }, + { + "start": 11489.34, + "end": 11490.66, + "probability": 0.9938 + }, + { + "start": 11491.36, + "end": 11495.07, + "probability": 0.9921 + }, + { + "start": 11495.44, + "end": 11499.5, + "probability": 0.9973 + }, + { + "start": 11499.78, + "end": 11500.72, + "probability": 0.4008 + }, + { + "start": 11501.1, + "end": 11502.86, + "probability": 0.9372 + }, + { + "start": 11503.04, + "end": 11505.66, + "probability": 0.9956 + }, + { + "start": 11505.96, + "end": 11509.3, + "probability": 0.9207 + }, + { + "start": 11509.42, + "end": 11511.18, + "probability": 0.1602 + }, + { + "start": 11511.18, + "end": 11513.92, + "probability": 0.9422 + }, + { + "start": 11515.1, + "end": 11519.01, + "probability": 0.9953 + }, + { + "start": 11519.42, + "end": 11522.46, + "probability": 0.7963 + }, + { + "start": 11522.8, + "end": 11524.96, + "probability": 0.5862 + }, + { + "start": 11525.67, + "end": 11530.84, + "probability": 0.996 + }, + { + "start": 11531.46, + "end": 11533.68, + "probability": 0.175 + }, + { + "start": 11534.0, + "end": 11537.6, + "probability": 0.9445 + }, + { + "start": 11537.6, + "end": 11541.16, + "probability": 0.9901 + }, + { + "start": 11541.68, + "end": 11545.6, + "probability": 0.9644 + }, + { + "start": 11547.04, + "end": 11547.9, + "probability": 0.7443 + }, + { + "start": 11548.64, + "end": 11550.54, + "probability": 0.6943 + }, + { + "start": 11550.98, + "end": 11553.28, + "probability": 0.9271 + }, + { + "start": 11553.78, + "end": 11557.56, + "probability": 0.6886 + }, + { + "start": 11557.62, + "end": 11558.68, + "probability": 0.9081 + }, + { + "start": 11559.18, + "end": 11563.38, + "probability": 0.9695 + }, + { + "start": 11563.62, + "end": 11565.94, + "probability": 0.9978 + }, + { + "start": 11566.38, + "end": 11570.68, + "probability": 0.9722 + }, + { + "start": 11570.78, + "end": 11572.14, + "probability": 0.9098 + }, + { + "start": 11572.36, + "end": 11573.12, + "probability": 0.9199 + }, + { + "start": 11573.18, + "end": 11574.2, + "probability": 0.937 + }, + { + "start": 11574.54, + "end": 11577.26, + "probability": 0.9712 + }, + { + "start": 11577.82, + "end": 11578.9, + "probability": 0.8602 + }, + { + "start": 11579.32, + "end": 11580.08, + "probability": 0.9404 + }, + { + "start": 11580.24, + "end": 11581.22, + "probability": 0.9683 + }, + { + "start": 11581.52, + "end": 11583.14, + "probability": 0.9513 + }, + { + "start": 11583.5, + "end": 11585.72, + "probability": 0.5696 + }, + { + "start": 11586.5, + "end": 11587.82, + "probability": 0.6981 + }, + { + "start": 11588.36, + "end": 11591.02, + "probability": 0.9797 + }, + { + "start": 11591.18, + "end": 11592.48, + "probability": 0.8174 + }, + { + "start": 11592.86, + "end": 11593.6, + "probability": 0.9493 + }, + { + "start": 11593.66, + "end": 11595.42, + "probability": 0.9737 + }, + { + "start": 11595.5, + "end": 11598.65, + "probability": 0.9858 + }, + { + "start": 11599.46, + "end": 11601.82, + "probability": 0.7342 + }, + { + "start": 11601.88, + "end": 11602.64, + "probability": 0.9819 + }, + { + "start": 11602.94, + "end": 11605.88, + "probability": 0.8372 + }, + { + "start": 11605.92, + "end": 11609.44, + "probability": 0.8522 + }, + { + "start": 11610.24, + "end": 11611.28, + "probability": 0.9795 + }, + { + "start": 11611.74, + "end": 11614.16, + "probability": 0.851 + }, + { + "start": 11614.52, + "end": 11615.54, + "probability": 0.7391 + }, + { + "start": 11616.12, + "end": 11618.18, + "probability": 0.9747 + }, + { + "start": 11618.24, + "end": 11621.68, + "probability": 0.981 + }, + { + "start": 11622.28, + "end": 11626.6, + "probability": 0.9958 + }, + { + "start": 11626.6, + "end": 11629.46, + "probability": 0.9791 + }, + { + "start": 11629.78, + "end": 11634.5, + "probability": 0.9989 + }, + { + "start": 11634.86, + "end": 11638.6, + "probability": 0.9951 + }, + { + "start": 11638.96, + "end": 11643.78, + "probability": 0.9968 + }, + { + "start": 11643.82, + "end": 11647.44, + "probability": 0.8783 + }, + { + "start": 11647.44, + "end": 11649.62, + "probability": 0.9915 + }, + { + "start": 11649.72, + "end": 11650.24, + "probability": 0.9281 + }, + { + "start": 11650.66, + "end": 11651.06, + "probability": 0.9262 + }, + { + "start": 11651.32, + "end": 11652.96, + "probability": 0.7094 + }, + { + "start": 11653.42, + "end": 11655.92, + "probability": 0.9823 + }, + { + "start": 11656.34, + "end": 11659.48, + "probability": 0.806 + }, + { + "start": 11660.12, + "end": 11663.32, + "probability": 0.918 + }, + { + "start": 11663.38, + "end": 11666.92, + "probability": 0.9797 + }, + { + "start": 11668.14, + "end": 11669.62, + "probability": 0.7954 + }, + { + "start": 11669.76, + "end": 11671.94, + "probability": 0.8591 + }, + { + "start": 11672.46, + "end": 11675.66, + "probability": 0.9795 + }, + { + "start": 11676.16, + "end": 11678.62, + "probability": 0.9948 + }, + { + "start": 11678.9, + "end": 11681.16, + "probability": 0.6824 + }, + { + "start": 11681.89, + "end": 11688.14, + "probability": 0.9917 + }, + { + "start": 11688.34, + "end": 11690.02, + "probability": 0.8502 + }, + { + "start": 11690.58, + "end": 11692.22, + "probability": 0.9893 + }, + { + "start": 11692.94, + "end": 11694.56, + "probability": 0.9428 + }, + { + "start": 11694.74, + "end": 11697.7, + "probability": 0.992 + }, + { + "start": 11697.78, + "end": 11700.68, + "probability": 0.9221 + }, + { + "start": 11701.76, + "end": 11705.44, + "probability": 0.734 + }, + { + "start": 11705.88, + "end": 11712.66, + "probability": 0.9012 + }, + { + "start": 11713.2, + "end": 11716.88, + "probability": 0.9986 + }, + { + "start": 11717.24, + "end": 11720.34, + "probability": 0.9409 + }, + { + "start": 11720.54, + "end": 11721.62, + "probability": 0.7737 + }, + { + "start": 11721.66, + "end": 11721.98, + "probability": 0.459 + }, + { + "start": 11722.1, + "end": 11725.02, + "probability": 0.8875 + }, + { + "start": 11725.42, + "end": 11727.68, + "probability": 0.9867 + }, + { + "start": 11727.98, + "end": 11731.44, + "probability": 0.9932 + }, + { + "start": 11732.34, + "end": 11735.42, + "probability": 0.9834 + }, + { + "start": 11735.5, + "end": 11737.3, + "probability": 0.8075 + }, + { + "start": 11737.58, + "end": 11738.89, + "probability": 0.958 + }, + { + "start": 11739.08, + "end": 11740.5, + "probability": 0.9197 + }, + { + "start": 11741.06, + "end": 11741.42, + "probability": 0.6471 + }, + { + "start": 11741.48, + "end": 11742.12, + "probability": 0.9639 + }, + { + "start": 11742.62, + "end": 11744.06, + "probability": 0.8704 + }, + { + "start": 11744.06, + "end": 11745.44, + "probability": 0.6887 + }, + { + "start": 11747.0, + "end": 11750.22, + "probability": 0.984 + }, + { + "start": 11751.28, + "end": 11751.94, + "probability": 0.3107 + }, + { + "start": 11751.98, + "end": 11752.58, + "probability": 0.9214 + }, + { + "start": 11752.66, + "end": 11753.58, + "probability": 0.9854 + }, + { + "start": 11753.62, + "end": 11754.66, + "probability": 0.6672 + }, + { + "start": 11755.14, + "end": 11756.26, + "probability": 0.9672 + }, + { + "start": 11756.8, + "end": 11759.66, + "probability": 0.9835 + }, + { + "start": 11760.16, + "end": 11761.12, + "probability": 0.6903 + }, + { + "start": 11761.16, + "end": 11762.56, + "probability": 0.7601 + }, + { + "start": 11762.7, + "end": 11763.72, + "probability": 0.6068 + }, + { + "start": 11764.16, + "end": 11766.44, + "probability": 0.9842 + }, + { + "start": 11766.52, + "end": 11766.96, + "probability": 0.7599 + }, + { + "start": 11767.08, + "end": 11768.68, + "probability": 0.9475 + }, + { + "start": 11768.9, + "end": 11770.18, + "probability": 0.9132 + }, + { + "start": 11770.34, + "end": 11770.7, + "probability": 0.7306 + }, + { + "start": 11770.74, + "end": 11771.54, + "probability": 0.882 + }, + { + "start": 11771.62, + "end": 11772.33, + "probability": 0.7838 + }, + { + "start": 11773.18, + "end": 11777.78, + "probability": 0.989 + }, + { + "start": 11778.72, + "end": 11780.1, + "probability": 0.7592 + }, + { + "start": 11780.5, + "end": 11780.76, + "probability": 0.4562 + }, + { + "start": 11780.84, + "end": 11783.04, + "probability": 0.7434 + }, + { + "start": 11783.18, + "end": 11784.16, + "probability": 0.8345 + }, + { + "start": 11784.74, + "end": 11786.68, + "probability": 0.7902 + }, + { + "start": 11786.68, + "end": 11787.38, + "probability": 0.724 + }, + { + "start": 11787.44, + "end": 11791.3, + "probability": 0.9588 + }, + { + "start": 11791.68, + "end": 11795.24, + "probability": 0.9944 + }, + { + "start": 11795.76, + "end": 11801.0, + "probability": 0.973 + }, + { + "start": 11801.22, + "end": 11801.88, + "probability": 0.7601 + }, + { + "start": 11801.96, + "end": 11803.64, + "probability": 0.8181 + }, + { + "start": 11803.88, + "end": 11804.82, + "probability": 0.8921 + }, + { + "start": 11805.0, + "end": 11806.82, + "probability": 0.6323 + }, + { + "start": 11806.82, + "end": 11807.7, + "probability": 0.8311 + }, + { + "start": 11808.0, + "end": 11811.2, + "probability": 0.9911 + }, + { + "start": 11811.22, + "end": 11811.44, + "probability": 0.7585 + }, + { + "start": 11811.98, + "end": 11814.96, + "probability": 0.9278 + }, + { + "start": 11815.4, + "end": 11818.18, + "probability": 0.6918 + }, + { + "start": 11819.04, + "end": 11820.92, + "probability": 0.597 + }, + { + "start": 11823.0, + "end": 11826.64, + "probability": 0.8695 + }, + { + "start": 11826.82, + "end": 11828.68, + "probability": 0.2349 + }, + { + "start": 11829.52, + "end": 11830.8, + "probability": 0.8217 + }, + { + "start": 11832.3, + "end": 11836.52, + "probability": 0.8613 + }, + { + "start": 11837.48, + "end": 11840.78, + "probability": 0.9631 + }, + { + "start": 11840.78, + "end": 11845.58, + "probability": 0.9951 + }, + { + "start": 11846.62, + "end": 11847.8, + "probability": 0.2748 + }, + { + "start": 11849.82, + "end": 11855.92, + "probability": 0.7245 + }, + { + "start": 11856.7, + "end": 11859.4, + "probability": 0.9959 + }, + { + "start": 11861.8, + "end": 11862.1, + "probability": 0.9504 + }, + { + "start": 11862.88, + "end": 11867.42, + "probability": 0.9854 + }, + { + "start": 11868.48, + "end": 11872.18, + "probability": 0.9854 + }, + { + "start": 11872.56, + "end": 11877.28, + "probability": 0.9939 + }, + { + "start": 11878.4, + "end": 11883.74, + "probability": 0.708 + }, + { + "start": 11884.08, + "end": 11884.58, + "probability": 0.8033 + }, + { + "start": 11885.28, + "end": 11888.52, + "probability": 0.8813 + }, + { + "start": 11889.3, + "end": 11890.72, + "probability": 0.6322 + }, + { + "start": 11891.3, + "end": 11893.5, + "probability": 0.6245 + }, + { + "start": 11893.64, + "end": 11895.07, + "probability": 0.9917 + }, + { + "start": 11895.62, + "end": 11896.34, + "probability": 0.9634 + }, + { + "start": 11897.7, + "end": 11898.26, + "probability": 0.8208 + }, + { + "start": 11899.38, + "end": 11899.92, + "probability": 0.785 + }, + { + "start": 11900.92, + "end": 11902.56, + "probability": 0.6665 + }, + { + "start": 11916.68, + "end": 11917.44, + "probability": 0.6062 + }, + { + "start": 11918.32, + "end": 11919.2, + "probability": 0.7346 + }, + { + "start": 11920.38, + "end": 11922.84, + "probability": 0.9917 + }, + { + "start": 11923.02, + "end": 11927.86, + "probability": 0.9869 + }, + { + "start": 11928.38, + "end": 11932.22, + "probability": 0.9851 + }, + { + "start": 11932.78, + "end": 11936.98, + "probability": 0.9945 + }, + { + "start": 11937.74, + "end": 11942.9, + "probability": 0.9914 + }, + { + "start": 11942.9, + "end": 11947.8, + "probability": 0.9918 + }, + { + "start": 11949.7, + "end": 11952.34, + "probability": 0.952 + }, + { + "start": 11952.42, + "end": 11953.72, + "probability": 0.9806 + }, + { + "start": 11954.2, + "end": 11956.78, + "probability": 0.9427 + }, + { + "start": 11957.36, + "end": 11962.24, + "probability": 0.9614 + }, + { + "start": 11962.38, + "end": 11967.98, + "probability": 0.9956 + }, + { + "start": 11968.54, + "end": 11970.52, + "probability": 0.9949 + }, + { + "start": 11972.28, + "end": 11973.7, + "probability": 0.8634 + }, + { + "start": 11973.8, + "end": 11979.66, + "probability": 0.9689 + }, + { + "start": 11979.7, + "end": 11984.04, + "probability": 0.9757 + }, + { + "start": 11985.2, + "end": 11990.96, + "probability": 0.98 + }, + { + "start": 11991.8, + "end": 11993.64, + "probability": 0.9612 + }, + { + "start": 11994.2, + "end": 11999.8, + "probability": 0.9897 + }, + { + "start": 12000.36, + "end": 12004.28, + "probability": 0.7775 + }, + { + "start": 12004.28, + "end": 12007.8, + "probability": 0.9932 + }, + { + "start": 12008.6, + "end": 12012.16, + "probability": 0.7747 + }, + { + "start": 12013.62, + "end": 12017.02, + "probability": 0.8683 + }, + { + "start": 12018.26, + "end": 12021.0, + "probability": 0.7537 + }, + { + "start": 12021.7, + "end": 12023.98, + "probability": 0.9761 + }, + { + "start": 12024.96, + "end": 12027.44, + "probability": 0.9914 + }, + { + "start": 12027.44, + "end": 12032.04, + "probability": 0.9561 + }, + { + "start": 12032.9, + "end": 12033.82, + "probability": 0.8391 + }, + { + "start": 12034.42, + "end": 12035.5, + "probability": 0.9757 + }, + { + "start": 12036.08, + "end": 12039.84, + "probability": 0.9802 + }, + { + "start": 12039.84, + "end": 12044.26, + "probability": 0.9878 + }, + { + "start": 12045.32, + "end": 12049.64, + "probability": 0.9443 + }, + { + "start": 12050.44, + "end": 12056.28, + "probability": 0.9846 + }, + { + "start": 12057.58, + "end": 12060.42, + "probability": 0.9798 + }, + { + "start": 12060.42, + "end": 12064.8, + "probability": 0.9963 + }, + { + "start": 12065.36, + "end": 12068.24, + "probability": 0.766 + }, + { + "start": 12069.06, + "end": 12073.92, + "probability": 0.9828 + }, + { + "start": 12073.92, + "end": 12077.16, + "probability": 0.9269 + }, + { + "start": 12077.94, + "end": 12079.86, + "probability": 0.574 + }, + { + "start": 12080.46, + "end": 12085.34, + "probability": 0.9628 + }, + { + "start": 12086.08, + "end": 12090.34, + "probability": 0.9849 + }, + { + "start": 12090.34, + "end": 12094.9, + "probability": 0.983 + }, + { + "start": 12095.92, + "end": 12102.72, + "probability": 0.8628 + }, + { + "start": 12103.2, + "end": 12103.46, + "probability": 0.4363 + }, + { + "start": 12103.5, + "end": 12103.86, + "probability": 0.9478 + }, + { + "start": 12103.96, + "end": 12104.74, + "probability": 0.7916 + }, + { + "start": 12105.52, + "end": 12108.16, + "probability": 0.9871 + }, + { + "start": 12108.86, + "end": 12109.97, + "probability": 0.9978 + }, + { + "start": 12111.08, + "end": 12117.34, + "probability": 0.9971 + }, + { + "start": 12118.28, + "end": 12122.96, + "probability": 0.9984 + }, + { + "start": 12123.58, + "end": 12125.78, + "probability": 0.9803 + }, + { + "start": 12126.34, + "end": 12129.4, + "probability": 0.9917 + }, + { + "start": 12130.06, + "end": 12130.86, + "probability": 0.4761 + }, + { + "start": 12131.62, + "end": 12134.38, + "probability": 0.938 + }, + { + "start": 12134.7, + "end": 12134.9, + "probability": 0.8019 + }, + { + "start": 12135.84, + "end": 12137.56, + "probability": 0.7369 + }, + { + "start": 12138.56, + "end": 12141.18, + "probability": 0.8648 + }, + { + "start": 12148.5, + "end": 12149.04, + "probability": 0.4122 + }, + { + "start": 12152.02, + "end": 12152.3, + "probability": 0.876 + }, + { + "start": 12157.88, + "end": 12159.0, + "probability": 0.8586 + }, + { + "start": 12161.14, + "end": 12163.06, + "probability": 0.2275 + }, + { + "start": 12164.14, + "end": 12165.06, + "probability": 0.2673 + }, + { + "start": 12165.06, + "end": 12165.06, + "probability": 0.0075 + }, + { + "start": 12165.06, + "end": 12170.5, + "probability": 0.7952 + }, + { + "start": 12171.34, + "end": 12173.86, + "probability": 0.9824 + }, + { + "start": 12174.2, + "end": 12175.66, + "probability": 0.8765 + }, + { + "start": 12175.72, + "end": 12177.05, + "probability": 0.9468 + }, + { + "start": 12177.26, + "end": 12178.94, + "probability": 0.8629 + }, + { + "start": 12179.42, + "end": 12183.22, + "probability": 0.7183 + }, + { + "start": 12183.46, + "end": 12183.96, + "probability": 0.522 + }, + { + "start": 12184.2, + "end": 12187.12, + "probability": 0.9492 + }, + { + "start": 12188.25, + "end": 12191.18, + "probability": 0.9961 + }, + { + "start": 12191.18, + "end": 12194.68, + "probability": 0.998 + }, + { + "start": 12194.94, + "end": 12195.46, + "probability": 0.7005 + }, + { + "start": 12195.6, + "end": 12196.28, + "probability": 0.7249 + }, + { + "start": 12196.34, + "end": 12198.51, + "probability": 0.9946 + }, + { + "start": 12198.76, + "end": 12201.9, + "probability": 0.9411 + }, + { + "start": 12202.06, + "end": 12204.14, + "probability": 0.9178 + }, + { + "start": 12204.52, + "end": 12205.18, + "probability": 0.8794 + }, + { + "start": 12205.24, + "end": 12207.36, + "probability": 0.9817 + }, + { + "start": 12207.36, + "end": 12211.98, + "probability": 0.9971 + }, + { + "start": 12212.02, + "end": 12216.58, + "probability": 0.9971 + }, + { + "start": 12216.68, + "end": 12220.4, + "probability": 0.9401 + }, + { + "start": 12221.04, + "end": 12222.42, + "probability": 0.9854 + }, + { + "start": 12222.54, + "end": 12227.44, + "probability": 0.9871 + }, + { + "start": 12228.44, + "end": 12231.84, + "probability": 0.9876 + }, + { + "start": 12232.34, + "end": 12236.56, + "probability": 0.9602 + }, + { + "start": 12236.56, + "end": 12241.12, + "probability": 0.9013 + }, + { + "start": 12241.64, + "end": 12243.08, + "probability": 0.904 + }, + { + "start": 12243.28, + "end": 12245.58, + "probability": 0.9502 + }, + { + "start": 12245.8, + "end": 12246.46, + "probability": 0.7626 + }, + { + "start": 12246.52, + "end": 12248.84, + "probability": 0.9595 + }, + { + "start": 12249.04, + "end": 12251.56, + "probability": 0.9897 + }, + { + "start": 12251.7, + "end": 12252.94, + "probability": 0.7599 + }, + { + "start": 12253.0, + "end": 12253.94, + "probability": 0.8727 + }, + { + "start": 12254.02, + "end": 12257.02, + "probability": 0.9949 + }, + { + "start": 12257.02, + "end": 12259.7, + "probability": 0.9922 + }, + { + "start": 12260.02, + "end": 12261.62, + "probability": 0.9543 + }, + { + "start": 12262.86, + "end": 12267.54, + "probability": 0.8745 + }, + { + "start": 12267.58, + "end": 12270.06, + "probability": 0.9749 + }, + { + "start": 12270.16, + "end": 12272.86, + "probability": 0.96 + }, + { + "start": 12273.54, + "end": 12277.0, + "probability": 0.9488 + }, + { + "start": 12277.94, + "end": 12282.04, + "probability": 0.9545 + }, + { + "start": 12282.68, + "end": 12284.16, + "probability": 0.7995 + }, + { + "start": 12284.6, + "end": 12288.64, + "probability": 0.9965 + }, + { + "start": 12289.12, + "end": 12290.42, + "probability": 0.9633 + }, + { + "start": 12290.9, + "end": 12295.41, + "probability": 0.9972 + }, + { + "start": 12295.86, + "end": 12298.52, + "probability": 0.982 + }, + { + "start": 12298.86, + "end": 12303.52, + "probability": 0.9904 + }, + { + "start": 12303.98, + "end": 12306.4, + "probability": 0.8607 + }, + { + "start": 12307.43, + "end": 12312.24, + "probability": 0.9907 + }, + { + "start": 12312.42, + "end": 12314.96, + "probability": 0.9855 + }, + { + "start": 12314.96, + "end": 12317.48, + "probability": 0.9585 + }, + { + "start": 12318.08, + "end": 12322.64, + "probability": 0.987 + }, + { + "start": 12322.86, + "end": 12323.06, + "probability": 0.7515 + }, + { + "start": 12323.92, + "end": 12324.44, + "probability": 0.5872 + }, + { + "start": 12324.58, + "end": 12325.54, + "probability": 0.8086 + }, + { + "start": 12325.68, + "end": 12330.48, + "probability": 0.7632 + }, + { + "start": 12330.6, + "end": 12332.86, + "probability": 0.9528 + }, + { + "start": 12333.4, + "end": 12338.08, + "probability": 0.9814 + }, + { + "start": 12339.02, + "end": 12340.4, + "probability": 0.7148 + }, + { + "start": 12343.36, + "end": 12344.34, + "probability": 0.4188 + }, + { + "start": 12346.34, + "end": 12348.9, + "probability": 0.7456 + }, + { + "start": 12349.9, + "end": 12351.92, + "probability": 0.6958 + }, + { + "start": 12353.4, + "end": 12354.26, + "probability": 0.1601 + }, + { + "start": 12356.44, + "end": 12357.42, + "probability": 0.17 + }, + { + "start": 12358.76, + "end": 12359.56, + "probability": 0.2393 + }, + { + "start": 12360.19, + "end": 12361.58, + "probability": 0.101 + }, + { + "start": 12361.58, + "end": 12362.2, + "probability": 0.3175 + }, + { + "start": 12362.58, + "end": 12363.0, + "probability": 0.2948 + }, + { + "start": 12363.46, + "end": 12367.14, + "probability": 0.1068 + }, + { + "start": 12368.44, + "end": 12369.14, + "probability": 0.0528 + }, + { + "start": 12369.3, + "end": 12369.72, + "probability": 0.2847 + }, + { + "start": 12370.26, + "end": 12372.27, + "probability": 0.6431 + }, + { + "start": 12372.74, + "end": 12373.46, + "probability": 0.3456 + }, + { + "start": 12374.84, + "end": 12376.94, + "probability": 0.2928 + }, + { + "start": 12377.0, + "end": 12378.22, + "probability": 0.644 + }, + { + "start": 12378.42, + "end": 12381.32, + "probability": 0.7291 + }, + { + "start": 12383.48, + "end": 12383.5, + "probability": 0.4412 + }, + { + "start": 12383.5, + "end": 12383.74, + "probability": 0.015 + }, + { + "start": 12386.44, + "end": 12388.72, + "probability": 0.4643 + }, + { + "start": 12390.38, + "end": 12391.78, + "probability": 0.5479 + }, + { + "start": 12393.05, + "end": 12394.9, + "probability": 0.1953 + }, + { + "start": 12395.26, + "end": 12396.9, + "probability": 0.1556 + }, + { + "start": 12397.02, + "end": 12397.58, + "probability": 0.2003 + }, + { + "start": 12397.64, + "end": 12398.98, + "probability": 0.6384 + }, + { + "start": 12401.64, + "end": 12402.54, + "probability": 0.5471 + }, + { + "start": 12402.54, + "end": 12403.17, + "probability": 0.6183 + }, + { + "start": 12403.88, + "end": 12405.8, + "probability": 0.7004 + }, + { + "start": 12406.46, + "end": 12408.52, + "probability": 0.7783 + }, + { + "start": 12410.76, + "end": 12414.84, + "probability": 0.8891 + }, + { + "start": 12415.78, + "end": 12419.44, + "probability": 0.8818 + }, + { + "start": 12420.12, + "end": 12421.64, + "probability": 0.954 + }, + { + "start": 12422.34, + "end": 12423.86, + "probability": 0.9528 + }, + { + "start": 12424.98, + "end": 12426.02, + "probability": 0.5254 + }, + { + "start": 12426.86, + "end": 12429.94, + "probability": 0.9375 + }, + { + "start": 12431.52, + "end": 12435.12, + "probability": 0.9602 + }, + { + "start": 12436.6, + "end": 12440.18, + "probability": 0.313 + }, + { + "start": 12440.9, + "end": 12442.5, + "probability": 0.9099 + }, + { + "start": 12443.2, + "end": 12444.5, + "probability": 0.9325 + }, + { + "start": 12445.36, + "end": 12446.96, + "probability": 0.8645 + }, + { + "start": 12448.4, + "end": 12448.88, + "probability": 0.854 + }, + { + "start": 12449.94, + "end": 12450.96, + "probability": 0.9475 + }, + { + "start": 12451.5, + "end": 12451.82, + "probability": 0.9668 + }, + { + "start": 12452.44, + "end": 12455.04, + "probability": 0.8664 + }, + { + "start": 12456.2, + "end": 12458.38, + "probability": 0.3798 + }, + { + "start": 12459.28, + "end": 12460.68, + "probability": 0.8011 + }, + { + "start": 12461.08, + "end": 12463.34, + "probability": 0.5859 + }, + { + "start": 12463.58, + "end": 12464.96, + "probability": 0.9364 + }, + { + "start": 12465.7, + "end": 12468.76, + "probability": 0.9359 + }, + { + "start": 12469.66, + "end": 12470.56, + "probability": 0.9666 + }, + { + "start": 12471.52, + "end": 12472.42, + "probability": 0.866 + }, + { + "start": 12473.16, + "end": 12473.62, + "probability": 0.9812 + }, + { + "start": 12474.48, + "end": 12475.32, + "probability": 0.699 + }, + { + "start": 12476.18, + "end": 12477.8, + "probability": 0.6491 + }, + { + "start": 12478.14, + "end": 12479.74, + "probability": 0.913 + }, + { + "start": 12480.2, + "end": 12481.68, + "probability": 0.9526 + }, + { + "start": 12482.4, + "end": 12483.78, + "probability": 0.876 + }, + { + "start": 12486.14, + "end": 12487.72, + "probability": 0.7507 + }, + { + "start": 12488.4, + "end": 12488.9, + "probability": 0.9717 + }, + { + "start": 12491.02, + "end": 12492.02, + "probability": 0.7058 + }, + { + "start": 12492.64, + "end": 12494.2, + "probability": 0.9312 + }, + { + "start": 12496.68, + "end": 12498.74, + "probability": 0.854 + }, + { + "start": 12499.8, + "end": 12503.02, + "probability": 0.812 + }, + { + "start": 12503.64, + "end": 12504.44, + "probability": 0.7891 + }, + { + "start": 12506.16, + "end": 12507.92, + "probability": 0.8511 + }, + { + "start": 12508.88, + "end": 12513.58, + "probability": 0.9535 + }, + { + "start": 12516.44, + "end": 12518.82, + "probability": 0.9352 + }, + { + "start": 12520.34, + "end": 12521.34, + "probability": 0.3339 + }, + { + "start": 12522.04, + "end": 12523.74, + "probability": 0.84 + }, + { + "start": 12524.7, + "end": 12524.96, + "probability": 0.6862 + }, + { + "start": 12525.82, + "end": 12526.78, + "probability": 0.555 + }, + { + "start": 12527.48, + "end": 12530.4, + "probability": 0.7726 + }, + { + "start": 12532.12, + "end": 12534.46, + "probability": 0.8981 + }, + { + "start": 12535.34, + "end": 12536.4, + "probability": 0.8486 + }, + { + "start": 12537.76, + "end": 12538.34, + "probability": 0.9434 + }, + { + "start": 12539.36, + "end": 12539.86, + "probability": 0.9521 + }, + { + "start": 12540.3, + "end": 12541.72, + "probability": 0.9587 + }, + { + "start": 12542.08, + "end": 12543.58, + "probability": 0.7009 + }, + { + "start": 12544.32, + "end": 12547.48, + "probability": 0.9113 + }, + { + "start": 12548.12, + "end": 12551.18, + "probability": 0.9705 + }, + { + "start": 12552.02, + "end": 12552.92, + "probability": 0.7726 + }, + { + "start": 12554.92, + "end": 12556.96, + "probability": 0.9102 + }, + { + "start": 12558.62, + "end": 12562.46, + "probability": 0.9162 + }, + { + "start": 12563.28, + "end": 12566.06, + "probability": 0.8866 + }, + { + "start": 12566.58, + "end": 12568.14, + "probability": 0.8065 + }, + { + "start": 12569.62, + "end": 12572.5, + "probability": 0.6384 + }, + { + "start": 12573.04, + "end": 12573.34, + "probability": 0.9071 + }, + { + "start": 12573.96, + "end": 12576.9, + "probability": 0.9794 + }, + { + "start": 12577.48, + "end": 12579.29, + "probability": 0.8031 + }, + { + "start": 12580.52, + "end": 12581.04, + "probability": 0.9316 + }, + { + "start": 12582.22, + "end": 12583.24, + "probability": 0.8887 + }, + { + "start": 12583.78, + "end": 12586.46, + "probability": 0.9065 + }, + { + "start": 12587.62, + "end": 12589.94, + "probability": 0.5976 + }, + { + "start": 12591.02, + "end": 12592.9, + "probability": 0.9185 + }, + { + "start": 12593.74, + "end": 12594.06, + "probability": 0.9868 + }, + { + "start": 12595.12, + "end": 12595.82, + "probability": 0.5052 + }, + { + "start": 12597.26, + "end": 12599.32, + "probability": 0.8428 + }, + { + "start": 12600.28, + "end": 12602.34, + "probability": 0.948 + }, + { + "start": 12603.32, + "end": 12603.84, + "probability": 0.99 + }, + { + "start": 12604.62, + "end": 12605.72, + "probability": 0.8301 + }, + { + "start": 12607.54, + "end": 12609.32, + "probability": 0.8389 + }, + { + "start": 12609.58, + "end": 12611.28, + "probability": 0.927 + }, + { + "start": 12611.87, + "end": 12616.26, + "probability": 0.3654 + }, + { + "start": 12616.26, + "end": 12616.82, + "probability": 0.5987 + }, + { + "start": 12619.18, + "end": 12620.3, + "probability": 0.6729 + }, + { + "start": 12622.96, + "end": 12625.14, + "probability": 0.8587 + }, + { + "start": 12625.38, + "end": 12626.82, + "probability": 0.8358 + }, + { + "start": 12626.84, + "end": 12628.44, + "probability": 0.7917 + }, + { + "start": 12630.04, + "end": 12630.48, + "probability": 0.9862 + }, + { + "start": 12631.28, + "end": 12632.38, + "probability": 0.9221 + }, + { + "start": 12633.08, + "end": 12633.34, + "probability": 0.6984 + }, + { + "start": 12634.22, + "end": 12634.86, + "probability": 0.5183 + }, + { + "start": 12636.72, + "end": 12639.02, + "probability": 0.8015 + }, + { + "start": 12640.3, + "end": 12641.48, + "probability": 0.9196 + }, + { + "start": 12643.16, + "end": 12645.42, + "probability": 0.791 + }, + { + "start": 12646.54, + "end": 12649.3, + "probability": 0.5216 + }, + { + "start": 12649.94, + "end": 12652.38, + "probability": 0.7353 + }, + { + "start": 12653.76, + "end": 12657.7, + "probability": 0.9346 + }, + { + "start": 12658.97, + "end": 12662.5, + "probability": 0.8408 + }, + { + "start": 12663.54, + "end": 12665.06, + "probability": 0.6962 + }, + { + "start": 12666.16, + "end": 12667.92, + "probability": 0.8758 + }, + { + "start": 12668.46, + "end": 12670.1, + "probability": 0.842 + }, + { + "start": 12672.3, + "end": 12672.82, + "probability": 0.7993 + }, + { + "start": 12673.64, + "end": 12674.5, + "probability": 0.821 + }, + { + "start": 12676.1, + "end": 12678.52, + "probability": 0.9628 + }, + { + "start": 12680.17, + "end": 12684.48, + "probability": 0.9419 + }, + { + "start": 12685.3, + "end": 12685.92, + "probability": 0.5856 + }, + { + "start": 12687.38, + "end": 12689.04, + "probability": 0.7462 + }, + { + "start": 12690.12, + "end": 12691.72, + "probability": 0.8411 + }, + { + "start": 12693.82, + "end": 12695.82, + "probability": 0.9421 + }, + { + "start": 12696.62, + "end": 12698.9, + "probability": 0.9641 + }, + { + "start": 12699.36, + "end": 12701.06, + "probability": 0.9417 + }, + { + "start": 12701.44, + "end": 12703.26, + "probability": 0.9733 + }, + { + "start": 12703.68, + "end": 12705.14, + "probability": 0.9099 + }, + { + "start": 12706.9, + "end": 12707.36, + "probability": 0.9432 + }, + { + "start": 12707.94, + "end": 12708.86, + "probability": 0.758 + }, + { + "start": 12709.58, + "end": 12710.06, + "probability": 0.7307 + }, + { + "start": 12710.74, + "end": 12711.6, + "probability": 0.7671 + }, + { + "start": 12711.8, + "end": 12713.28, + "probability": 0.9423 + }, + { + "start": 12713.58, + "end": 12714.96, + "probability": 0.9194 + }, + { + "start": 12716.22, + "end": 12718.5, + "probability": 0.9756 + }, + { + "start": 12719.4, + "end": 12719.86, + "probability": 0.8586 + }, + { + "start": 12720.66, + "end": 12721.68, + "probability": 0.9328 + }, + { + "start": 12722.86, + "end": 12725.26, + "probability": 0.9322 + }, + { + "start": 12726.72, + "end": 12728.38, + "probability": 0.9457 + }, + { + "start": 12730.66, + "end": 12731.28, + "probability": 0.9702 + }, + { + "start": 12732.04, + "end": 12733.22, + "probability": 0.6055 + }, + { + "start": 12734.66, + "end": 12735.82, + "probability": 0.7975 + }, + { + "start": 12738.22, + "end": 12738.96, + "probability": 0.3501 + }, + { + "start": 12739.72, + "end": 12741.2, + "probability": 0.9844 + }, + { + "start": 12741.64, + "end": 12742.58, + "probability": 0.0216 + }, + { + "start": 12745.4, + "end": 12746.56, + "probability": 0.5729 + }, + { + "start": 12747.06, + "end": 12748.88, + "probability": 0.8141 + }, + { + "start": 12749.16, + "end": 12750.74, + "probability": 0.9015 + }, + { + "start": 12750.78, + "end": 12754.4, + "probability": 0.3822 + }, + { + "start": 12755.3, + "end": 12756.74, + "probability": 0.7414 + }, + { + "start": 12757.6, + "end": 12762.72, + "probability": 0.5887 + }, + { + "start": 12763.7, + "end": 12765.6, + "probability": 0.8142 + }, + { + "start": 12766.6, + "end": 12768.5, + "probability": 0.7676 + }, + { + "start": 12770.44, + "end": 12770.84, + "probability": 0.9152 + }, + { + "start": 12772.08, + "end": 12775.16, + "probability": 0.9585 + }, + { + "start": 12776.58, + "end": 12778.12, + "probability": 0.8414 + }, + { + "start": 12779.02, + "end": 12780.36, + "probability": 0.986 + }, + { + "start": 12781.42, + "end": 12783.12, + "probability": 0.9776 + }, + { + "start": 12784.04, + "end": 12786.1, + "probability": 0.9327 + }, + { + "start": 12786.8, + "end": 12788.1, + "probability": 0.9794 + }, + { + "start": 12789.44, + "end": 12790.12, + "probability": 0.9933 + }, + { + "start": 12791.1, + "end": 12791.82, + "probability": 0.2808 + }, + { + "start": 12793.08, + "end": 12793.53, + "probability": 0.1195 + }, + { + "start": 12794.28, + "end": 12795.38, + "probability": 0.7263 + }, + { + "start": 12796.48, + "end": 12798.0, + "probability": 0.938 + }, + { + "start": 12798.66, + "end": 12800.3, + "probability": 0.9391 + }, + { + "start": 12801.92, + "end": 12803.78, + "probability": 0.8861 + }, + { + "start": 12804.48, + "end": 12806.28, + "probability": 0.9607 + }, + { + "start": 12807.64, + "end": 12809.8, + "probability": 0.943 + }, + { + "start": 12811.1, + "end": 12812.84, + "probability": 0.5943 + }, + { + "start": 12813.56, + "end": 12815.14, + "probability": 0.9124 + }, + { + "start": 12816.0, + "end": 12817.48, + "probability": 0.9679 + }, + { + "start": 12818.38, + "end": 12819.14, + "probability": 0.9849 + }, + { + "start": 12820.58, + "end": 12821.5, + "probability": 0.9605 + }, + { + "start": 12822.6, + "end": 12824.54, + "probability": 0.9805 + }, + { + "start": 12825.18, + "end": 12826.88, + "probability": 0.9309 + }, + { + "start": 12827.74, + "end": 12828.4, + "probability": 0.9946 + }, + { + "start": 12829.12, + "end": 12829.9, + "probability": 0.9837 + }, + { + "start": 12830.84, + "end": 12831.64, + "probability": 0.9235 + }, + { + "start": 12832.82, + "end": 12833.88, + "probability": 0.399 + }, + { + "start": 12834.88, + "end": 12835.56, + "probability": 0.7634 + }, + { + "start": 12836.14, + "end": 12837.12, + "probability": 0.882 + }, + { + "start": 12838.4, + "end": 12839.26, + "probability": 0.986 + }, + { + "start": 12839.82, + "end": 12840.86, + "probability": 0.9041 + }, + { + "start": 12841.68, + "end": 12843.6, + "probability": 0.984 + }, + { + "start": 12844.14, + "end": 12846.2, + "probability": 0.8643 + }, + { + "start": 12846.78, + "end": 12848.46, + "probability": 0.9239 + }, + { + "start": 12849.14, + "end": 12850.64, + "probability": 0.986 + }, + { + "start": 12852.61, + "end": 12854.72, + "probability": 0.3712 + }, + { + "start": 12854.72, + "end": 12855.2, + "probability": 0.5841 + }, + { + "start": 12856.44, + "end": 12858.32, + "probability": 0.8745 + }, + { + "start": 12859.8, + "end": 12861.48, + "probability": 0.8292 + }, + { + "start": 12863.06, + "end": 12864.02, + "probability": 0.8272 + }, + { + "start": 12865.58, + "end": 12866.36, + "probability": 0.7523 + }, + { + "start": 12866.58, + "end": 12868.32, + "probability": 0.8511 + }, + { + "start": 12868.66, + "end": 12870.7, + "probability": 0.8525 + }, + { + "start": 12871.28, + "end": 12872.2, + "probability": 0.9832 + }, + { + "start": 12872.92, + "end": 12873.92, + "probability": 0.7776 + }, + { + "start": 12874.98, + "end": 12875.78, + "probability": 0.7708 + }, + { + "start": 12876.88, + "end": 12880.42, + "probability": 0.8009 + }, + { + "start": 12881.52, + "end": 12886.26, + "probability": 0.9827 + }, + { + "start": 12887.12, + "end": 12887.92, + "probability": 0.9921 + }, + { + "start": 12888.64, + "end": 12889.74, + "probability": 0.7006 + }, + { + "start": 12890.62, + "end": 12891.56, + "probability": 0.9292 + }, + { + "start": 12894.02, + "end": 12895.14, + "probability": 0.8507 + }, + { + "start": 12896.12, + "end": 12898.88, + "probability": 0.9475 + }, + { + "start": 12899.78, + "end": 12903.66, + "probability": 0.7061 + }, + { + "start": 12904.64, + "end": 12907.9, + "probability": 0.927 + }, + { + "start": 12910.34, + "end": 12913.66, + "probability": 0.8001 + }, + { + "start": 12914.64, + "end": 12918.54, + "probability": 0.9409 + }, + { + "start": 12920.76, + "end": 12921.68, + "probability": 0.8722 + }, + { + "start": 12922.26, + "end": 12923.22, + "probability": 0.8494 + }, + { + "start": 12924.6, + "end": 12925.0, + "probability": 0.5201 + }, + { + "start": 12926.98, + "end": 12927.94, + "probability": 0.7271 + }, + { + "start": 12929.02, + "end": 12930.86, + "probability": 0.7136 + }, + { + "start": 12932.24, + "end": 12939.0, + "probability": 0.8541 + }, + { + "start": 12941.39, + "end": 12947.56, + "probability": 0.7831 + }, + { + "start": 12948.22, + "end": 12949.12, + "probability": 0.9882 + }, + { + "start": 12949.9, + "end": 12950.98, + "probability": 0.9602 + }, + { + "start": 12951.94, + "end": 12953.94, + "probability": 0.9738 + }, + { + "start": 12954.32, + "end": 12956.12, + "probability": 0.9816 + }, + { + "start": 12956.62, + "end": 12958.42, + "probability": 0.982 + }, + { + "start": 12958.86, + "end": 12960.7, + "probability": 0.9529 + }, + { + "start": 12961.16, + "end": 12961.8, + "probability": 0.7944 + }, + { + "start": 12964.16, + "end": 12964.9, + "probability": 0.7946 + }, + { + "start": 12966.52, + "end": 12967.22, + "probability": 0.9536 + }, + { + "start": 12967.74, + "end": 12968.56, + "probability": 0.8224 + }, + { + "start": 12971.9, + "end": 12974.54, + "probability": 0.5154 + }, + { + "start": 12975.98, + "end": 12977.26, + "probability": 0.5735 + }, + { + "start": 12978.62, + "end": 12979.42, + "probability": 0.9768 + }, + { + "start": 12981.96, + "end": 12982.62, + "probability": 0.3908 + }, + { + "start": 12983.14, + "end": 12984.24, + "probability": 0.5623 + }, + { + "start": 12984.44, + "end": 12986.5, + "probability": 0.6387 + }, + { + "start": 12986.58, + "end": 12987.52, + "probability": 0.6462 + }, + { + "start": 12988.08, + "end": 12988.42, + "probability": 0.8663 + }, + { + "start": 12989.72, + "end": 12990.66, + "probability": 0.2859 + }, + { + "start": 12991.6, + "end": 12994.44, + "probability": 0.0522 + }, + { + "start": 12994.48, + "end": 12995.0, + "probability": 0.0005 + }, + { + "start": 12996.18, + "end": 12996.72, + "probability": 0.2573 + }, + { + "start": 12997.29, + "end": 12997.36, + "probability": 0.7622 + }, + { + "start": 12997.36, + "end": 12998.27, + "probability": 0.0286 + }, + { + "start": 13000.4, + "end": 13000.4, + "probability": 0.1059 + }, + { + "start": 13005.56, + "end": 13008.22, + "probability": 0.2199 + }, + { + "start": 13008.22, + "end": 13008.24, + "probability": 0.2272 + }, + { + "start": 13010.22, + "end": 13011.4, + "probability": 0.0451 + }, + { + "start": 13014.24, + "end": 13014.3, + "probability": 0.2384 + }, + { + "start": 13017.0, + "end": 13017.99, + "probability": 0.0136 + }, + { + "start": 13020.38, + "end": 13021.24, + "probability": 0.0106 + }, + { + "start": 13037.02, + "end": 13039.32, + "probability": 0.0719 + }, + { + "start": 13040.68, + "end": 13043.44, + "probability": 0.1367 + }, + { + "start": 13054.33, + "end": 13055.22, + "probability": 0.0212 + }, + { + "start": 13076.9, + "end": 13077.92, + "probability": 0.0385 + }, + { + "start": 13118.12, + "end": 13119.34, + "probability": 0.0206 + }, + { + "start": 13119.4, + "end": 13120.12, + "probability": 0.0499 + }, + { + "start": 13120.36, + "end": 13120.36, + "probability": 0.2442 + }, + { + "start": 13120.52, + "end": 13121.2, + "probability": 0.122 + }, + { + "start": 13121.34, + "end": 13123.24, + "probability": 0.0834 + }, + { + "start": 13139.37, + "end": 13141.7, + "probability": 0.0065 + }, + { + "start": 13142.78, + "end": 13144.42, + "probability": 0.2341 + }, + { + "start": 13145.62, + "end": 13145.72, + "probability": 0.5361 + }, + { + "start": 13145.72, + "end": 13147.02, + "probability": 0.6055 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.0, + "end": 13302.0, + "probability": 0.0 + }, + { + "start": 13302.2, + "end": 13303.88, + "probability": 0.6719 + }, + { + "start": 13305.52, + "end": 13307.94, + "probability": 0.8764 + }, + { + "start": 13308.74, + "end": 13309.04, + "probability": 0.9465 + }, + { + "start": 13309.58, + "end": 13312.04, + "probability": 0.9299 + }, + { + "start": 13312.82, + "end": 13313.26, + "probability": 0.9556 + }, + { + "start": 13314.08, + "end": 13317.04, + "probability": 0.9724 + }, + { + "start": 13320.14, + "end": 13320.92, + "probability": 0.9712 + }, + { + "start": 13322.48, + "end": 13323.22, + "probability": 0.5546 + }, + { + "start": 13324.08, + "end": 13325.64, + "probability": 0.9604 + }, + { + "start": 13325.84, + "end": 13328.36, + "probability": 0.8997 + }, + { + "start": 13329.62, + "end": 13331.9, + "probability": 0.8991 + }, + { + "start": 13332.82, + "end": 13333.24, + "probability": 0.9188 + }, + { + "start": 13334.02, + "end": 13334.86, + "probability": 0.9184 + }, + { + "start": 13336.02, + "end": 13336.48, + "probability": 0.7961 + }, + { + "start": 13337.72, + "end": 13338.78, + "probability": 0.8815 + }, + { + "start": 13339.44, + "end": 13341.58, + "probability": 0.9656 + }, + { + "start": 13342.22, + "end": 13344.22, + "probability": 0.9812 + }, + { + "start": 13345.18, + "end": 13345.6, + "probability": 0.9915 + }, + { + "start": 13346.22, + "end": 13347.04, + "probability": 0.7203 + }, + { + "start": 13348.44, + "end": 13353.62, + "probability": 0.9346 + }, + { + "start": 13354.4, + "end": 13354.7, + "probability": 0.9639 + }, + { + "start": 13355.26, + "end": 13356.28, + "probability": 0.7517 + }, + { + "start": 13357.5, + "end": 13359.04, + "probability": 0.92 + }, + { + "start": 13359.44, + "end": 13361.12, + "probability": 0.9456 + }, + { + "start": 13361.52, + "end": 13363.3, + "probability": 0.8684 + }, + { + "start": 13363.88, + "end": 13364.56, + "probability": 0.899 + }, + { + "start": 13365.4, + "end": 13366.52, + "probability": 0.9444 + }, + { + "start": 13368.78, + "end": 13370.58, + "probability": 0.9368 + }, + { + "start": 13372.5, + "end": 13375.18, + "probability": 0.536 + }, + { + "start": 13375.92, + "end": 13379.18, + "probability": 0.8649 + }, + { + "start": 13380.28, + "end": 13381.24, + "probability": 0.7678 + }, + { + "start": 13381.98, + "end": 13383.18, + "probability": 0.9006 + }, + { + "start": 13384.68, + "end": 13387.72, + "probability": 0.9469 + }, + { + "start": 13389.48, + "end": 13391.98, + "probability": 0.9379 + }, + { + "start": 13393.18, + "end": 13395.46, + "probability": 0.8604 + }, + { + "start": 13396.1, + "end": 13396.58, + "probability": 0.9772 + }, + { + "start": 13397.48, + "end": 13398.34, + "probability": 0.8231 + }, + { + "start": 13399.52, + "end": 13401.14, + "probability": 0.7847 + }, + { + "start": 13401.82, + "end": 13402.7, + "probability": 0.5343 + }, + { + "start": 13403.7, + "end": 13407.34, + "probability": 0.7812 + }, + { + "start": 13410.32, + "end": 13411.26, + "probability": 0.6949 + }, + { + "start": 13415.62, + "end": 13418.38, + "probability": 0.299 + }, + { + "start": 13418.94, + "end": 13420.4, + "probability": 0.6309 + }, + { + "start": 13423.08, + "end": 13424.78, + "probability": 0.9176 + }, + { + "start": 13425.02, + "end": 13426.7, + "probability": 0.8881 + }, + { + "start": 13428.4, + "end": 13428.82, + "probability": 0.9238 + }, + { + "start": 13429.84, + "end": 13430.66, + "probability": 0.7797 + }, + { + "start": 13432.6, + "end": 13433.08, + "probability": 0.9922 + }, + { + "start": 13433.9, + "end": 13434.78, + "probability": 0.7635 + }, + { + "start": 13437.96, + "end": 13441.68, + "probability": 0.9599 + }, + { + "start": 13442.7, + "end": 13443.88, + "probability": 0.5323 + }, + { + "start": 13445.5, + "end": 13446.46, + "probability": 0.764 + }, + { + "start": 13450.3, + "end": 13451.62, + "probability": 0.9153 + }, + { + "start": 13452.36, + "end": 13454.18, + "probability": 0.6334 + }, + { + "start": 13456.36, + "end": 13456.8, + "probability": 0.9873 + }, + { + "start": 13457.62, + "end": 13458.46, + "probability": 0.7907 + }, + { + "start": 13459.04, + "end": 13459.46, + "probability": 0.9715 + }, + { + "start": 13460.14, + "end": 13461.02, + "probability": 0.7557 + }, + { + "start": 13461.22, + "end": 13462.84, + "probability": 0.9396 + }, + { + "start": 13463.0, + "end": 13464.68, + "probability": 0.8837 + }, + { + "start": 13464.94, + "end": 13466.3, + "probability": 0.8835 + }, + { + "start": 13467.76, + "end": 13469.9, + "probability": 0.679 + }, + { + "start": 13471.38, + "end": 13472.36, + "probability": 0.6051 + }, + { + "start": 13473.36, + "end": 13473.88, + "probability": 0.9824 + }, + { + "start": 13474.54, + "end": 13477.06, + "probability": 0.9122 + }, + { + "start": 13477.76, + "end": 13479.64, + "probability": 0.975 + }, + { + "start": 13480.34, + "end": 13482.28, + "probability": 0.9674 + }, + { + "start": 13483.8, + "end": 13486.44, + "probability": 0.9813 + }, + { + "start": 13487.64, + "end": 13488.78, + "probability": 0.8983 + }, + { + "start": 13489.5, + "end": 13490.36, + "probability": 0.9478 + }, + { + "start": 13491.28, + "end": 13491.68, + "probability": 0.8767 + }, + { + "start": 13492.72, + "end": 13493.58, + "probability": 0.9298 + }, + { + "start": 13494.58, + "end": 13495.06, + "probability": 0.9945 + }, + { + "start": 13495.92, + "end": 13497.06, + "probability": 0.4805 + }, + { + "start": 13497.86, + "end": 13502.62, + "probability": 0.6999 + }, + { + "start": 13503.25, + "end": 13506.08, + "probability": 0.3858 + }, + { + "start": 13506.7, + "end": 13508.06, + "probability": 0.7172 + }, + { + "start": 13508.74, + "end": 13512.7, + "probability": 0.7599 + }, + { + "start": 13513.6, + "end": 13515.06, + "probability": 0.7217 + }, + { + "start": 13515.74, + "end": 13516.56, + "probability": 0.7904 + }, + { + "start": 13517.48, + "end": 13519.42, + "probability": 0.8999 + }, + { + "start": 13520.18, + "end": 13521.14, + "probability": 0.7349 + }, + { + "start": 13521.76, + "end": 13523.28, + "probability": 0.9491 + }, + { + "start": 13523.94, + "end": 13527.58, + "probability": 0.9489 + }, + { + "start": 13528.48, + "end": 13531.68, + "probability": 0.9255 + }, + { + "start": 13532.66, + "end": 13535.9, + "probability": 0.9476 + }, + { + "start": 13536.72, + "end": 13538.28, + "probability": 0.9651 + }, + { + "start": 13539.06, + "end": 13539.68, + "probability": 0.9438 + }, + { + "start": 13540.22, + "end": 13543.4, + "probability": 0.9625 + }, + { + "start": 13544.14, + "end": 13544.82, + "probability": 0.9853 + }, + { + "start": 13545.62, + "end": 13546.38, + "probability": 0.2537 + }, + { + "start": 13546.98, + "end": 13548.96, + "probability": 0.4025 + }, + { + "start": 13549.82, + "end": 13551.34, + "probability": 0.9727 + }, + { + "start": 13555.82, + "end": 13557.26, + "probability": 0.4346 + }, + { + "start": 13559.82, + "end": 13560.7, + "probability": 0.6924 + }, + { + "start": 13561.76, + "end": 13565.3, + "probability": 0.7591 + }, + { + "start": 13567.9, + "end": 13568.62, + "probability": 0.9709 + }, + { + "start": 13573.32, + "end": 13574.28, + "probability": 0.6575 + }, + { + "start": 13575.5, + "end": 13577.94, + "probability": 0.9432 + }, + { + "start": 13578.6, + "end": 13579.3, + "probability": 0.8676 + }, + { + "start": 13580.36, + "end": 13583.46, + "probability": 0.9588 + }, + { + "start": 13584.62, + "end": 13586.44, + "probability": 0.9909 + }, + { + "start": 13587.08, + "end": 13588.8, + "probability": 0.9703 + }, + { + "start": 13589.66, + "end": 13591.44, + "probability": 0.9887 + }, + { + "start": 13592.64, + "end": 13593.32, + "probability": 0.8032 + }, + { + "start": 13595.28, + "end": 13596.32, + "probability": 0.645 + }, + { + "start": 13597.32, + "end": 13599.1, + "probability": 0.9305 + }, + { + "start": 13600.06, + "end": 13601.98, + "probability": 0.8463 + }, + { + "start": 13604.7, + "end": 13606.38, + "probability": 0.8791 + }, + { + "start": 13606.6, + "end": 13608.58, + "probability": 0.7443 + }, + { + "start": 13609.04, + "end": 13611.26, + "probability": 0.8061 + }, + { + "start": 13612.86, + "end": 13614.38, + "probability": 0.4379 + }, + { + "start": 13615.08, + "end": 13618.46, + "probability": 0.8035 + }, + { + "start": 13619.48, + "end": 13620.14, + "probability": 0.9795 + }, + { + "start": 13620.68, + "end": 13621.26, + "probability": 0.9117 + }, + { + "start": 13622.04, + "end": 13623.48, + "probability": 0.9761 + }, + { + "start": 13624.74, + "end": 13625.46, + "probability": 0.9644 + }, + { + "start": 13626.14, + "end": 13626.92, + "probability": 0.9813 + }, + { + "start": 13627.1, + "end": 13628.56, + "probability": 0.9699 + }, + { + "start": 13628.82, + "end": 13630.72, + "probability": 0.9832 + }, + { + "start": 13631.4, + "end": 13632.18, + "probability": 0.7916 + }, + { + "start": 13633.34, + "end": 13634.18, + "probability": 0.6109 + }, + { + "start": 13635.3, + "end": 13636.12, + "probability": 0.8214 + }, + { + "start": 13637.58, + "end": 13638.6, + "probability": 0.8254 + }, + { + "start": 13639.4, + "end": 13641.64, + "probability": 0.9677 + }, + { + "start": 13642.7, + "end": 13644.24, + "probability": 0.9738 + }, + { + "start": 13645.58, + "end": 13646.1, + "probability": 0.8835 + }, + { + "start": 13647.18, + "end": 13648.04, + "probability": 0.5583 + }, + { + "start": 13650.36, + "end": 13651.92, + "probability": 0.9647 + }, + { + "start": 13652.58, + "end": 13654.7, + "probability": 0.9731 + }, + { + "start": 13655.66, + "end": 13656.34, + "probability": 0.7974 + }, + { + "start": 13657.68, + "end": 13658.54, + "probability": 0.4042 + }, + { + "start": 13659.7, + "end": 13660.58, + "probability": 0.8413 + }, + { + "start": 13662.32, + "end": 13663.42, + "probability": 0.6553 + }, + { + "start": 13664.84, + "end": 13666.6, + "probability": 0.9447 + }, + { + "start": 13667.56, + "end": 13669.36, + "probability": 0.9411 + }, + { + "start": 13670.3, + "end": 13672.02, + "probability": 0.8901 + }, + { + "start": 13673.4, + "end": 13674.2, + "probability": 0.9806 + }, + { + "start": 13675.5, + "end": 13676.78, + "probability": 0.9359 + }, + { + "start": 13677.8, + "end": 13679.7, + "probability": 0.9669 + }, + { + "start": 13681.14, + "end": 13681.94, + "probability": 0.7928 + }, + { + "start": 13683.48, + "end": 13684.78, + "probability": 0.7624 + }, + { + "start": 13685.4, + "end": 13690.54, + "probability": 0.9224 + }, + { + "start": 13691.78, + "end": 13692.3, + "probability": 0.9857 + }, + { + "start": 13694.92, + "end": 13695.86, + "probability": 0.6722 + }, + { + "start": 13696.9, + "end": 13697.2, + "probability": 0.9338 + }, + { + "start": 13699.32, + "end": 13700.28, + "probability": 0.835 + }, + { + "start": 13701.78, + "end": 13705.06, + "probability": 0.9785 + }, + { + "start": 13705.76, + "end": 13707.02, + "probability": 0.8347 + }, + { + "start": 13708.7, + "end": 13711.1, + "probability": 0.9812 + }, + { + "start": 13712.16, + "end": 13715.18, + "probability": 0.9242 + }, + { + "start": 13716.0, + "end": 13718.22, + "probability": 0.9284 + }, + { + "start": 13719.5, + "end": 13722.62, + "probability": 0.8261 + }, + { + "start": 13723.52, + "end": 13724.4, + "probability": 0.8667 + }, + { + "start": 13726.92, + "end": 13727.94, + "probability": 0.8698 + }, + { + "start": 13728.14, + "end": 13729.9, + "probability": 0.6045 + }, + { + "start": 13730.14, + "end": 13731.92, + "probability": 0.9322 + }, + { + "start": 13732.04, + "end": 13733.86, + "probability": 0.9647 + }, + { + "start": 13734.4, + "end": 13739.1, + "probability": 0.989 + }, + { + "start": 13740.14, + "end": 13742.88, + "probability": 0.8069 + }, + { + "start": 13745.58, + "end": 13745.98, + "probability": 0.9792 + }, + { + "start": 13750.3, + "end": 13753.66, + "probability": 0.8927 + }, + { + "start": 13755.22, + "end": 13755.58, + "probability": 0.1444 + }, + { + "start": 13755.58, + "end": 13755.94, + "probability": 0.0149 + }, + { + "start": 13756.52, + "end": 13757.16, + "probability": 0.6975 + }, + { + "start": 13757.66, + "end": 13761.3, + "probability": 0.6783 + }, + { + "start": 13763.14, + "end": 13764.42, + "probability": 0.544 + }, + { + "start": 13765.1, + "end": 13767.54, + "probability": 0.7904 + }, + { + "start": 13767.62, + "end": 13770.28, + "probability": 0.4976 + }, + { + "start": 13770.82, + "end": 13771.58, + "probability": 0.3121 + }, + { + "start": 13771.6, + "end": 13772.42, + "probability": 0.752 + }, + { + "start": 13773.72, + "end": 13774.66, + "probability": 0.1589 + }, + { + "start": 13776.08, + "end": 13778.68, + "probability": 0.1306 + }, + { + "start": 13780.58, + "end": 13786.58, + "probability": 0.0212 + }, + { + "start": 13787.1, + "end": 13789.94, + "probability": 0.0252 + }, + { + "start": 13790.78, + "end": 13792.76, + "probability": 0.0123 + }, + { + "start": 13793.62, + "end": 13794.32, + "probability": 0.0052 + }, + { + "start": 13886.5, + "end": 13887.14, + "probability": 0.0585 + }, + { + "start": 13887.14, + "end": 13887.66, + "probability": 0.0451 + }, + { + "start": 13888.28, + "end": 13888.56, + "probability": 0.0262 + }, + { + "start": 13893.7, + "end": 13894.7, + "probability": 0.3346 + }, + { + "start": 13902.92, + "end": 13903.46, + "probability": 0.01 + }, + { + "start": 13905.24, + "end": 13905.62, + "probability": 0.0995 + }, + { + "start": 13906.82, + "end": 13909.58, + "probability": 0.2239 + }, + { + "start": 13911.06, + "end": 13916.0, + "probability": 0.0968 + }, + { + "start": 13916.82, + "end": 13919.4, + "probability": 0.0311 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14015.0, + "end": 14015.0, + "probability": 0.0 + }, + { + "start": 14027.5, + "end": 14029.8, + "probability": 0.121 + }, + { + "start": 14029.8, + "end": 14032.76, + "probability": 0.0832 + }, + { + "start": 14032.76, + "end": 14032.76, + "probability": 0.0071 + }, + { + "start": 14039.18, + "end": 14042.74, + "probability": 0.4914 + }, + { + "start": 14043.92, + "end": 14044.4, + "probability": 0.0792 + }, + { + "start": 14044.4, + "end": 14044.4, + "probability": 0.0549 + }, + { + "start": 14044.4, + "end": 14048.72, + "probability": 0.1103 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.0, + "end": 14149.0, + "probability": 0.0 + }, + { + "start": 14149.56, + "end": 14152.19, + "probability": 0.0386 + }, + { + "start": 14153.92, + "end": 14155.16, + "probability": 0.0208 + }, + { + "start": 14155.16, + "end": 14159.04, + "probability": 0.0984 + }, + { + "start": 14162.12, + "end": 14163.68, + "probability": 0.013 + }, + { + "start": 14166.51, + "end": 14168.61, + "probability": 0.0388 + }, + { + "start": 14169.58, + "end": 14172.02, + "probability": 0.0525 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.0, + "end": 14271.0, + "probability": 0.0 + }, + { + "start": 14271.2, + "end": 14271.52, + "probability": 0.5198 + }, + { + "start": 14273.38, + "end": 14274.56, + "probability": 0.6689 + }, + { + "start": 14274.78, + "end": 14278.72, + "probability": 0.9296 + }, + { + "start": 14278.82, + "end": 14280.6, + "probability": 0.68 + }, + { + "start": 14280.94, + "end": 14281.68, + "probability": 0.7834 + }, + { + "start": 14282.14, + "end": 14284.88, + "probability": 0.8177 + }, + { + "start": 14285.12, + "end": 14286.94, + "probability": 0.9506 + }, + { + "start": 14287.12, + "end": 14288.5, + "probability": 0.7975 + }, + { + "start": 14288.56, + "end": 14291.12, + "probability": 0.9645 + }, + { + "start": 14291.44, + "end": 14292.34, + "probability": 0.9497 + }, + { + "start": 14292.42, + "end": 14296.16, + "probability": 0.9282 + }, + { + "start": 14296.34, + "end": 14300.9, + "probability": 0.9851 + }, + { + "start": 14302.88, + "end": 14309.04, + "probability": 0.9821 + }, + { + "start": 14309.46, + "end": 14310.66, + "probability": 0.9881 + }, + { + "start": 14311.38, + "end": 14313.58, + "probability": 0.9954 + }, + { + "start": 14314.28, + "end": 14319.4, + "probability": 0.9963 + }, + { + "start": 14319.46, + "end": 14320.62, + "probability": 0.9635 + }, + { + "start": 14320.84, + "end": 14324.1, + "probability": 0.9923 + }, + { + "start": 14324.1, + "end": 14327.3, + "probability": 0.9526 + }, + { + "start": 14328.52, + "end": 14329.58, + "probability": 0.9351 + }, + { + "start": 14330.38, + "end": 14333.94, + "probability": 0.9581 + }, + { + "start": 14334.74, + "end": 14338.76, + "probability": 0.9949 + }, + { + "start": 14339.34, + "end": 14343.72, + "probability": 0.9762 + }, + { + "start": 14344.3, + "end": 14344.58, + "probability": 0.8685 + }, + { + "start": 14345.26, + "end": 14346.26, + "probability": 0.7194 + }, + { + "start": 14347.52, + "end": 14347.76, + "probability": 0.0246 + }, + { + "start": 14347.76, + "end": 14348.14, + "probability": 0.4055 + }, + { + "start": 14348.26, + "end": 14350.88, + "probability": 0.9937 + }, + { + "start": 14350.92, + "end": 14352.92, + "probability": 0.9875 + }, + { + "start": 14353.92, + "end": 14357.0, + "probability": 0.9806 + }, + { + "start": 14358.24, + "end": 14360.09, + "probability": 0.8936 + }, + { + "start": 14360.28, + "end": 14360.54, + "probability": 0.8655 + }, + { + "start": 14360.72, + "end": 14361.5, + "probability": 0.8669 + }, + { + "start": 14361.54, + "end": 14364.1, + "probability": 0.9059 + }, + { + "start": 14364.62, + "end": 14367.46, + "probability": 0.9647 + }, + { + "start": 14367.72, + "end": 14370.0, + "probability": 0.9805 + }, + { + "start": 14371.18, + "end": 14376.34, + "probability": 0.1411 + }, + { + "start": 14376.34, + "end": 14381.06, + "probability": 0.9848 + }, + { + "start": 14381.18, + "end": 14382.54, + "probability": 0.9941 + }, + { + "start": 14382.62, + "end": 14385.12, + "probability": 0.9954 + }, + { + "start": 14392.76, + "end": 14401.82, + "probability": 0.9584 + }, + { + "start": 14402.68, + "end": 14405.48, + "probability": 0.9868 + }, + { + "start": 14406.22, + "end": 14407.26, + "probability": 0.9708 + }, + { + "start": 14407.34, + "end": 14408.6, + "probability": 0.8605 + }, + { + "start": 14408.98, + "end": 14410.42, + "probability": 0.9238 + }, + { + "start": 14410.74, + "end": 14411.36, + "probability": 0.6485 + }, + { + "start": 14411.56, + "end": 14412.46, + "probability": 0.8605 + }, + { + "start": 14412.74, + "end": 14414.12, + "probability": 0.1859 + }, + { + "start": 14414.22, + "end": 14415.24, + "probability": 0.7512 + }, + { + "start": 14415.28, + "end": 14415.8, + "probability": 0.7757 + }, + { + "start": 14415.82, + "end": 14416.52, + "probability": 0.8321 + }, + { + "start": 14416.96, + "end": 14418.18, + "probability": 0.9817 + }, + { + "start": 14418.32, + "end": 14419.38, + "probability": 0.979 + }, + { + "start": 14419.42, + "end": 14423.48, + "probability": 0.8524 + }, + { + "start": 14426.08, + "end": 14432.98, + "probability": 0.9792 + }, + { + "start": 14433.42, + "end": 14435.04, + "probability": 0.8236 + }, + { + "start": 14435.66, + "end": 14438.34, + "probability": 0.8451 + }, + { + "start": 14438.8, + "end": 14439.84, + "probability": 0.948 + }, + { + "start": 14439.98, + "end": 14443.34, + "probability": 0.9961 + }, + { + "start": 14443.92, + "end": 14450.2, + "probability": 0.9869 + }, + { + "start": 14450.84, + "end": 14453.48, + "probability": 0.9901 + }, + { + "start": 14453.8, + "end": 14455.65, + "probability": 0.9851 + }, + { + "start": 14455.98, + "end": 14458.74, + "probability": 0.6218 + }, + { + "start": 14458.94, + "end": 14460.76, + "probability": 0.6718 + }, + { + "start": 14461.2, + "end": 14463.8, + "probability": 0.9839 + }, + { + "start": 14464.06, + "end": 14464.56, + "probability": 0.8641 + }, + { + "start": 14464.66, + "end": 14466.02, + "probability": 0.9163 + }, + { + "start": 14466.14, + "end": 14467.8, + "probability": 0.9401 + }, + { + "start": 14468.52, + "end": 14471.24, + "probability": 0.1766 + }, + { + "start": 14471.24, + "end": 14477.82, + "probability": 0.8714 + }, + { + "start": 14478.28, + "end": 14483.2, + "probability": 0.9316 + }, + { + "start": 14483.9, + "end": 14489.82, + "probability": 0.9814 + }, + { + "start": 14490.46, + "end": 14495.44, + "probability": 0.9763 + }, + { + "start": 14495.44, + "end": 14498.64, + "probability": 0.9897 + }, + { + "start": 14498.82, + "end": 14500.68, + "probability": 0.6959 + }, + { + "start": 14500.84, + "end": 14501.59, + "probability": 0.8141 + }, + { + "start": 14502.2, + "end": 14502.82, + "probability": 0.6905 + }, + { + "start": 14502.92, + "end": 14506.62, + "probability": 0.9407 + }, + { + "start": 14506.68, + "end": 14507.6, + "probability": 0.605 + }, + { + "start": 14508.48, + "end": 14509.68, + "probability": 0.944 + }, + { + "start": 14509.86, + "end": 14512.58, + "probability": 0.9937 + }, + { + "start": 14512.66, + "end": 14514.26, + "probability": 0.7469 + }, + { + "start": 14515.34, + "end": 14522.14, + "probability": 0.956 + }, + { + "start": 14522.88, + "end": 14526.52, + "probability": 0.963 + }, + { + "start": 14526.66, + "end": 14528.02, + "probability": 0.9602 + }, + { + "start": 14528.32, + "end": 14530.78, + "probability": 0.9689 + }, + { + "start": 14530.9, + "end": 14532.76, + "probability": 0.8579 + }, + { + "start": 14533.58, + "end": 14536.36, + "probability": 0.9302 + }, + { + "start": 14536.98, + "end": 14540.08, + "probability": 0.8062 + }, + { + "start": 14541.28, + "end": 14542.26, + "probability": 0.9652 + }, + { + "start": 14542.82, + "end": 14544.34, + "probability": 0.815 + }, + { + "start": 14544.66, + "end": 14545.0, + "probability": 0.7375 + }, + { + "start": 14545.08, + "end": 14545.57, + "probability": 0.4065 + }, + { + "start": 14545.78, + "end": 14547.26, + "probability": 0.9817 + }, + { + "start": 14547.44, + "end": 14549.16, + "probability": 0.9082 + }, + { + "start": 14550.26, + "end": 14551.42, + "probability": 0.6714 + }, + { + "start": 14551.52, + "end": 14551.86, + "probability": 0.9014 + }, + { + "start": 14552.46, + "end": 14556.02, + "probability": 0.9509 + }, + { + "start": 14556.4, + "end": 14559.6, + "probability": 0.953 + }, + { + "start": 14560.02, + "end": 14562.5, + "probability": 0.6613 + }, + { + "start": 14562.5, + "end": 14562.88, + "probability": 0.2868 + }, + { + "start": 14562.88, + "end": 14566.84, + "probability": 0.9797 + }, + { + "start": 14567.46, + "end": 14570.0, + "probability": 0.9827 + }, + { + "start": 14570.6, + "end": 14571.06, + "probability": 0.5203 + }, + { + "start": 14571.06, + "end": 14575.06, + "probability": 0.9951 + }, + { + "start": 14575.06, + "end": 14575.06, + "probability": 0.1136 + }, + { + "start": 14575.06, + "end": 14577.56, + "probability": 0.9825 + }, + { + "start": 14577.66, + "end": 14578.14, + "probability": 0.3084 + }, + { + "start": 14578.92, + "end": 14581.16, + "probability": 0.6525 + }, + { + "start": 14581.16, + "end": 14583.48, + "probability": 0.8324 + }, + { + "start": 14586.5, + "end": 14589.28, + "probability": 0.1444 + }, + { + "start": 14600.66, + "end": 14601.32, + "probability": 0.5077 + }, + { + "start": 14601.32, + "end": 14601.58, + "probability": 0.1101 + }, + { + "start": 14601.64, + "end": 14602.14, + "probability": 0.4626 + }, + { + "start": 14602.8, + "end": 14604.54, + "probability": 0.5615 + }, + { + "start": 14605.18, + "end": 14605.7, + "probability": 0.7352 + }, + { + "start": 14605.84, + "end": 14608.16, + "probability": 0.9684 + }, + { + "start": 14610.19, + "end": 14614.16, + "probability": 0.7352 + }, + { + "start": 14615.32, + "end": 14621.02, + "probability": 0.7048 + }, + { + "start": 14622.02, + "end": 14625.42, + "probability": 0.853 + }, + { + "start": 14626.14, + "end": 14628.54, + "probability": 0.7048 + }, + { + "start": 14629.46, + "end": 14633.14, + "probability": 0.9779 + }, + { + "start": 14633.74, + "end": 14635.54, + "probability": 0.8257 + }, + { + "start": 14636.1, + "end": 14636.24, + "probability": 0.3034 + }, + { + "start": 14636.74, + "end": 14636.96, + "probability": 0.0293 + }, + { + "start": 14636.96, + "end": 14639.64, + "probability": 0.6768 + }, + { + "start": 14640.3, + "end": 14641.12, + "probability": 0.483 + }, + { + "start": 14641.32, + "end": 14642.3, + "probability": 0.7425 + }, + { + "start": 14642.4, + "end": 14646.14, + "probability": 0.6257 + }, + { + "start": 14646.44, + "end": 14648.26, + "probability": 0.8577 + }, + { + "start": 14648.62, + "end": 14653.98, + "probability": 0.6897 + }, + { + "start": 14654.04, + "end": 14657.4, + "probability": 0.78 + }, + { + "start": 14658.38, + "end": 14659.42, + "probability": 0.9546 + }, + { + "start": 14660.44, + "end": 14663.24, + "probability": 0.9864 + }, + { + "start": 14663.5, + "end": 14665.42, + "probability": 0.9976 + }, + { + "start": 14665.88, + "end": 14667.46, + "probability": 0.9503 + }, + { + "start": 14667.86, + "end": 14668.76, + "probability": 0.6754 + }, + { + "start": 14669.22, + "end": 14670.72, + "probability": 0.756 + }, + { + "start": 14671.0, + "end": 14672.22, + "probability": 0.9553 + }, + { + "start": 14672.84, + "end": 14676.25, + "probability": 0.4962 + }, + { + "start": 14676.72, + "end": 14677.24, + "probability": 0.2368 + }, + { + "start": 14677.24, + "end": 14680.08, + "probability": 0.6912 + }, + { + "start": 14680.24, + "end": 14681.5, + "probability": 0.0295 + }, + { + "start": 14682.1, + "end": 14682.38, + "probability": 0.8096 + }, + { + "start": 14683.94, + "end": 14683.94, + "probability": 0.0305 + }, + { + "start": 14683.94, + "end": 14683.94, + "probability": 0.2081 + }, + { + "start": 14683.94, + "end": 14686.54, + "probability": 0.7281 + }, + { + "start": 14687.14, + "end": 14688.66, + "probability": 0.7393 + }, + { + "start": 14688.96, + "end": 14690.84, + "probability": 0.9652 + }, + { + "start": 14691.14, + "end": 14692.24, + "probability": 0.9844 + }, + { + "start": 14693.0, + "end": 14694.34, + "probability": 0.7746 + }, + { + "start": 14694.4, + "end": 14694.95, + "probability": 0.9126 + }, + { + "start": 14695.64, + "end": 14699.9, + "probability": 0.9703 + }, + { + "start": 14700.22, + "end": 14700.56, + "probability": 0.7106 + }, + { + "start": 14700.7, + "end": 14701.59, + "probability": 0.9252 + }, + { + "start": 14702.1, + "end": 14703.24, + "probability": 0.9814 + }, + { + "start": 14703.6, + "end": 14704.44, + "probability": 0.9658 + }, + { + "start": 14704.8, + "end": 14706.7, + "probability": 0.8953 + }, + { + "start": 14707.2, + "end": 14708.2, + "probability": 0.9484 + }, + { + "start": 14708.54, + "end": 14709.85, + "probability": 0.4457 + }, + { + "start": 14709.96, + "end": 14711.32, + "probability": 0.6235 + }, + { + "start": 14711.68, + "end": 14712.64, + "probability": 0.9476 + }, + { + "start": 14713.18, + "end": 14716.14, + "probability": 0.9792 + }, + { + "start": 14716.54, + "end": 14717.48, + "probability": 0.5089 + }, + { + "start": 14718.24, + "end": 14719.16, + "probability": 0.9517 + }, + { + "start": 14719.84, + "end": 14721.08, + "probability": 0.8722 + }, + { + "start": 14721.62, + "end": 14727.24, + "probability": 0.7982 + }, + { + "start": 14727.66, + "end": 14729.78, + "probability": 0.4387 + }, + { + "start": 14730.34, + "end": 14731.42, + "probability": 0.9002 + }, + { + "start": 14731.96, + "end": 14733.65, + "probability": 0.9561 + }, + { + "start": 14734.44, + "end": 14734.58, + "probability": 0.5514 + }, + { + "start": 14734.58, + "end": 14739.86, + "probability": 0.8995 + }, + { + "start": 14740.4, + "end": 14742.66, + "probability": 0.696 + }, + { + "start": 14743.06, + "end": 14746.1, + "probability": 0.9815 + }, + { + "start": 14746.52, + "end": 14746.88, + "probability": 0.6276 + }, + { + "start": 14746.92, + "end": 14749.8, + "probability": 0.9818 + }, + { + "start": 14749.86, + "end": 14750.24, + "probability": 0.9288 + }, + { + "start": 14751.2, + "end": 14753.57, + "probability": 0.9824 + }, + { + "start": 14754.14, + "end": 14755.88, + "probability": 0.6816 + }, + { + "start": 14756.74, + "end": 14757.76, + "probability": 0.8487 + }, + { + "start": 14758.38, + "end": 14762.2, + "probability": 0.8257 + }, + { + "start": 14762.2, + "end": 14766.34, + "probability": 0.8988 + }, + { + "start": 14766.86, + "end": 14770.08, + "probability": 0.9551 + }, + { + "start": 14770.7, + "end": 14771.02, + "probability": 0.891 + }, + { + "start": 14771.1, + "end": 14772.3, + "probability": 0.9047 + }, + { + "start": 14772.8, + "end": 14776.46, + "probability": 0.8955 + }, + { + "start": 14776.82, + "end": 14779.27, + "probability": 0.9869 + }, + { + "start": 14779.74, + "end": 14782.86, + "probability": 0.9937 + }, + { + "start": 14783.26, + "end": 14786.12, + "probability": 0.8617 + }, + { + "start": 14786.5, + "end": 14787.86, + "probability": 0.7501 + }, + { + "start": 14788.14, + "end": 14789.26, + "probability": 0.0464 + }, + { + "start": 14789.58, + "end": 14790.48, + "probability": 0.9907 + }, + { + "start": 14790.64, + "end": 14791.2, + "probability": 0.7678 + }, + { + "start": 14791.56, + "end": 14792.4, + "probability": 0.7895 + }, + { + "start": 14792.46, + "end": 14795.16, + "probability": 0.6705 + }, + { + "start": 14795.58, + "end": 14796.94, + "probability": 0.8836 + }, + { + "start": 14797.5, + "end": 14799.6, + "probability": 0.8418 + }, + { + "start": 14800.06, + "end": 14801.74, + "probability": 0.0199 + }, + { + "start": 14801.98, + "end": 14804.51, + "probability": 0.1775 + }, + { + "start": 14805.62, + "end": 14807.94, + "probability": 0.195 + }, + { + "start": 14808.46, + "end": 14808.66, + "probability": 0.3296 + }, + { + "start": 14808.66, + "end": 14808.66, + "probability": 0.4549 + }, + { + "start": 14808.98, + "end": 14808.98, + "probability": 0.0204 + }, + { + "start": 14808.98, + "end": 14808.98, + "probability": 0.0939 + }, + { + "start": 14808.98, + "end": 14809.7, + "probability": 0.4885 + }, + { + "start": 14809.88, + "end": 14810.9, + "probability": 0.4275 + }, + { + "start": 14810.92, + "end": 14812.24, + "probability": 0.7783 + }, + { + "start": 14812.44, + "end": 14814.04, + "probability": 0.0967 + }, + { + "start": 14814.04, + "end": 14814.8, + "probability": 0.112 + }, + { + "start": 14814.82, + "end": 14815.48, + "probability": 0.6476 + }, + { + "start": 14815.72, + "end": 14817.37, + "probability": 0.9439 + }, + { + "start": 14817.88, + "end": 14821.04, + "probability": 0.9406 + }, + { + "start": 14821.94, + "end": 14822.28, + "probability": 0.3947 + }, + { + "start": 14822.52, + "end": 14824.68, + "probability": 0.9715 + }, + { + "start": 14824.8, + "end": 14826.06, + "probability": 0.959 + }, + { + "start": 14826.62, + "end": 14829.38, + "probability": 0.7539 + }, + { + "start": 14829.58, + "end": 14830.96, + "probability": 0.9087 + }, + { + "start": 14831.68, + "end": 14834.82, + "probability": 0.9126 + }, + { + "start": 14835.02, + "end": 14836.36, + "probability": 0.8604 + }, + { + "start": 14837.04, + "end": 14839.52, + "probability": 0.6661 + }, + { + "start": 14839.74, + "end": 14841.56, + "probability": 0.9929 + }, + { + "start": 14841.76, + "end": 14844.6, + "probability": 0.8927 + }, + { + "start": 14844.84, + "end": 14846.9, + "probability": 0.9454 + }, + { + "start": 14847.08, + "end": 14849.65, + "probability": 0.9299 + }, + { + "start": 14850.62, + "end": 14851.52, + "probability": 0.7579 + }, + { + "start": 14851.74, + "end": 14853.02, + "probability": 0.9366 + }, + { + "start": 14853.14, + "end": 14857.82, + "probability": 0.9692 + }, + { + "start": 14857.92, + "end": 14858.72, + "probability": 0.3678 + }, + { + "start": 14859.6, + "end": 14861.92, + "probability": 0.9927 + }, + { + "start": 14862.06, + "end": 14863.42, + "probability": 0.9893 + }, + { + "start": 14864.5, + "end": 14867.68, + "probability": 0.9844 + }, + { + "start": 14867.74, + "end": 14869.9, + "probability": 0.9685 + }, + { + "start": 14871.18, + "end": 14875.48, + "probability": 0.9924 + }, + { + "start": 14875.58, + "end": 14875.92, + "probability": 0.4559 + }, + { + "start": 14875.92, + "end": 14877.1, + "probability": 0.7644 + }, + { + "start": 14878.68, + "end": 14880.64, + "probability": 0.9863 + }, + { + "start": 14882.27, + "end": 14886.78, + "probability": 0.9926 + }, + { + "start": 14887.6, + "end": 14889.52, + "probability": 0.8834 + }, + { + "start": 14889.74, + "end": 14890.04, + "probability": 0.7669 + }, + { + "start": 14890.78, + "end": 14891.62, + "probability": 0.7108 + }, + { + "start": 14892.12, + "end": 14896.16, + "probability": 0.9186 + }, + { + "start": 14896.88, + "end": 14899.78, + "probability": 0.9146 + }, + { + "start": 14900.34, + "end": 14903.06, + "probability": 0.825 + }, + { + "start": 14903.1, + "end": 14904.46, + "probability": 0.7417 + }, + { + "start": 14904.54, + "end": 14906.56, + "probability": 0.3658 + }, + { + "start": 14906.68, + "end": 14907.06, + "probability": 0.3644 + }, + { + "start": 14907.12, + "end": 14907.52, + "probability": 0.2866 + }, + { + "start": 14907.58, + "end": 14908.04, + "probability": 0.489 + }, + { + "start": 14910.14, + "end": 14911.42, + "probability": 0.5667 + }, + { + "start": 14927.6, + "end": 14928.52, + "probability": 0.0481 + }, + { + "start": 14930.34, + "end": 14935.18, + "probability": 0.0421 + }, + { + "start": 14935.18, + "end": 14935.59, + "probability": 0.0173 + }, + { + "start": 14937.02, + "end": 14937.02, + "probability": 0.085 + }, + { + "start": 14937.02, + "end": 14937.66, + "probability": 0.1186 + }, + { + "start": 14938.26, + "end": 14938.28, + "probability": 0.1956 + }, + { + "start": 14939.58, + "end": 14943.06, + "probability": 0.044 + }, + { + "start": 15015.79, + "end": 15015.79, + "probability": 0.0 + }, + { + "start": 15015.79, + "end": 15015.79, + "probability": 0.0 + }, + { + "start": 15015.79, + "end": 15015.79, + "probability": 0.0 + } + ], + "segments_count": 4894, + "words_count": 23514, + "avg_words_per_segment": 4.8047, + "avg_segment_duration": 2.0126, + "avg_words_per_minute": 93.9571, + "plenum_id": "32777", + "duration": 15015.79, + "title": null, + "plenum_date": "2013-12-04" +} \ No newline at end of file