diff --git "a/43756/metadata.json" "b/43756/metadata.json" new file mode 100644--- /dev/null +++ "b/43756/metadata.json" @@ -0,0 +1,12622 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "43756", + "quality_score": 0.9194, + "per_segment_quality_scores": [ + { + "start": 93.22, + "end": 93.22, + "probability": 0.1065 + }, + { + "start": 93.22, + "end": 93.22, + "probability": 0.0085 + }, + { + "start": 93.22, + "end": 94.38, + "probability": 0.7957 + }, + { + "start": 94.44, + "end": 98.1, + "probability": 0.9258 + }, + { + "start": 98.66, + "end": 103.5, + "probability": 0.6546 + }, + { + "start": 104.64, + "end": 104.64, + "probability": 0.164 + }, + { + "start": 104.64, + "end": 106.24, + "probability": 0.0446 + }, + { + "start": 106.64, + "end": 110.24, + "probability": 0.8024 + }, + { + "start": 110.66, + "end": 115.78, + "probability": 0.652 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 126.06, + "end": 126.16, + "probability": 0.1626 + }, + { + "start": 126.16, + "end": 126.64, + "probability": 0.5204 + }, + { + "start": 129.22, + "end": 132.14, + "probability": 0.9504 + }, + { + "start": 132.22, + "end": 132.56, + "probability": 0.5797 + }, + { + "start": 132.64, + "end": 132.88, + "probability": 0.8298 + }, + { + "start": 133.1, + "end": 134.14, + "probability": 0.9502 + }, + { + "start": 134.96, + "end": 138.8, + "probability": 0.7855 + }, + { + "start": 138.98, + "end": 142.0, + "probability": 0.6663 + }, + { + "start": 142.2, + "end": 144.0, + "probability": 0.9163 + }, + { + "start": 144.14, + "end": 145.82, + "probability": 0.7058 + }, + { + "start": 147.98, + "end": 149.0, + "probability": 0.7088 + }, + { + "start": 154.53, + "end": 157.48, + "probability": 0.7484 + }, + { + "start": 158.54, + "end": 163.92, + "probability": 0.9427 + }, + { + "start": 165.58, + "end": 171.14, + "probability": 0.6746 + }, + { + "start": 172.84, + "end": 174.16, + "probability": 0.5471 + }, + { + "start": 175.24, + "end": 182.3, + "probability": 0.6229 + }, + { + "start": 182.86, + "end": 188.18, + "probability": 0.7412 + }, + { + "start": 189.92, + "end": 190.54, + "probability": 0.4645 + }, + { + "start": 191.44, + "end": 194.78, + "probability": 0.9189 + }, + { + "start": 195.54, + "end": 200.76, + "probability": 0.9753 + }, + { + "start": 202.16, + "end": 206.12, + "probability": 0.9744 + }, + { + "start": 207.1, + "end": 210.04, + "probability": 0.783 + }, + { + "start": 210.64, + "end": 213.12, + "probability": 0.734 + }, + { + "start": 214.12, + "end": 217.18, + "probability": 0.8747 + }, + { + "start": 219.62, + "end": 221.1, + "probability": 0.7972 + }, + { + "start": 221.46, + "end": 221.46, + "probability": 0.5956 + }, + { + "start": 221.88, + "end": 224.26, + "probability": 0.9522 + }, + { + "start": 225.92, + "end": 227.86, + "probability": 0.6454 + }, + { + "start": 228.52, + "end": 230.46, + "probability": 0.8324 + }, + { + "start": 231.5, + "end": 232.66, + "probability": 0.9858 + }, + { + "start": 233.58, + "end": 234.8, + "probability": 0.737 + }, + { + "start": 235.7, + "end": 237.26, + "probability": 0.973 + }, + { + "start": 238.0, + "end": 241.26, + "probability": 0.6217 + }, + { + "start": 242.04, + "end": 246.22, + "probability": 0.7083 + }, + { + "start": 246.58, + "end": 248.36, + "probability": 0.8882 + }, + { + "start": 249.06, + "end": 255.04, + "probability": 0.8705 + }, + { + "start": 255.54, + "end": 255.92, + "probability": 0.0329 + }, + { + "start": 256.12, + "end": 257.6, + "probability": 0.9653 + }, + { + "start": 258.12, + "end": 261.12, + "probability": 0.9329 + }, + { + "start": 262.08, + "end": 264.88, + "probability": 0.9696 + }, + { + "start": 265.08, + "end": 268.5, + "probability": 0.5801 + }, + { + "start": 268.6, + "end": 270.08, + "probability": 0.7291 + }, + { + "start": 270.28, + "end": 270.5, + "probability": 0.4369 + }, + { + "start": 270.62, + "end": 273.02, + "probability": 0.9034 + }, + { + "start": 275.3, + "end": 275.98, + "probability": 0.2779 + }, + { + "start": 277.08, + "end": 282.28, + "probability": 0.8078 + }, + { + "start": 283.4, + "end": 289.5, + "probability": 0.7819 + }, + { + "start": 290.74, + "end": 292.16, + "probability": 0.4953 + }, + { + "start": 292.72, + "end": 295.16, + "probability": 0.825 + }, + { + "start": 296.1, + "end": 298.16, + "probability": 0.9141 + }, + { + "start": 299.78, + "end": 305.4, + "probability": 0.799 + }, + { + "start": 306.46, + "end": 307.88, + "probability": 0.8354 + }, + { + "start": 308.94, + "end": 309.92, + "probability": 0.9445 + }, + { + "start": 310.24, + "end": 313.4, + "probability": 0.7472 + }, + { + "start": 313.42, + "end": 316.94, + "probability": 0.9302 + }, + { + "start": 317.04, + "end": 318.72, + "probability": 0.367 + }, + { + "start": 319.78, + "end": 321.28, + "probability": 0.583 + }, + { + "start": 322.34, + "end": 328.52, + "probability": 0.9229 + }, + { + "start": 329.5, + "end": 330.84, + "probability": 0.7255 + }, + { + "start": 331.36, + "end": 336.36, + "probability": 0.7268 + }, + { + "start": 339.12, + "end": 342.96, + "probability": 0.7485 + }, + { + "start": 343.6, + "end": 347.92, + "probability": 0.976 + }, + { + "start": 348.72, + "end": 351.56, + "probability": 0.8044 + }, + { + "start": 352.16, + "end": 356.7, + "probability": 0.604 + }, + { + "start": 356.74, + "end": 360.04, + "probability": 0.6878 + }, + { + "start": 360.1, + "end": 360.44, + "probability": 0.7705 + }, + { + "start": 361.12, + "end": 362.72, + "probability": 0.6096 + }, + { + "start": 363.18, + "end": 365.16, + "probability": 0.9767 + }, + { + "start": 365.26, + "end": 365.9, + "probability": 0.5581 + }, + { + "start": 366.24, + "end": 367.32, + "probability": 0.799 + }, + { + "start": 373.42, + "end": 375.74, + "probability": 0.5514 + }, + { + "start": 376.28, + "end": 379.38, + "probability": 0.9521 + }, + { + "start": 379.98, + "end": 384.2, + "probability": 0.9582 + }, + { + "start": 384.26, + "end": 388.98, + "probability": 0.8978 + }, + { + "start": 389.66, + "end": 393.14, + "probability": 0.9978 + }, + { + "start": 393.16, + "end": 395.12, + "probability": 0.8716 + }, + { + "start": 396.7, + "end": 398.4, + "probability": 0.9974 + }, + { + "start": 398.52, + "end": 402.06, + "probability": 0.98 + }, + { + "start": 402.44, + "end": 403.82, + "probability": 0.9211 + }, + { + "start": 404.5, + "end": 405.13, + "probability": 0.706 + }, + { + "start": 405.52, + "end": 409.14, + "probability": 0.9504 + }, + { + "start": 409.8, + "end": 413.44, + "probability": 0.5763 + }, + { + "start": 414.82, + "end": 419.1, + "probability": 0.968 + }, + { + "start": 419.98, + "end": 422.66, + "probability": 0.8732 + }, + { + "start": 423.66, + "end": 425.26, + "probability": 0.7684 + }, + { + "start": 427.26, + "end": 430.24, + "probability": 0.9546 + }, + { + "start": 430.36, + "end": 432.12, + "probability": 0.9736 + }, + { + "start": 433.56, + "end": 434.16, + "probability": 0.7136 + }, + { + "start": 434.4, + "end": 435.84, + "probability": 0.9359 + }, + { + "start": 436.3, + "end": 437.38, + "probability": 0.9556 + }, + { + "start": 437.76, + "end": 439.65, + "probability": 0.916 + }, + { + "start": 439.76, + "end": 442.26, + "probability": 0.8679 + }, + { + "start": 442.9, + "end": 444.9, + "probability": 0.8077 + }, + { + "start": 445.06, + "end": 447.12, + "probability": 0.9613 + }, + { + "start": 448.26, + "end": 450.54, + "probability": 0.7491 + }, + { + "start": 450.66, + "end": 453.1, + "probability": 0.8798 + }, + { + "start": 453.46, + "end": 457.18, + "probability": 0.7644 + }, + { + "start": 460.96, + "end": 462.84, + "probability": 0.7452 + }, + { + "start": 463.84, + "end": 469.46, + "probability": 0.8939 + }, + { + "start": 471.14, + "end": 471.72, + "probability": 0.9641 + }, + { + "start": 472.12, + "end": 473.6, + "probability": 0.9871 + }, + { + "start": 473.62, + "end": 481.68, + "probability": 0.7859 + }, + { + "start": 481.76, + "end": 483.68, + "probability": 0.9387 + }, + { + "start": 484.74, + "end": 488.52, + "probability": 0.9911 + }, + { + "start": 489.42, + "end": 489.96, + "probability": 0.9282 + }, + { + "start": 490.52, + "end": 494.64, + "probability": 0.9596 + }, + { + "start": 494.64, + "end": 499.38, + "probability": 0.8872 + }, + { + "start": 500.5, + "end": 502.04, + "probability": 0.9688 + }, + { + "start": 502.9, + "end": 505.28, + "probability": 0.8665 + }, + { + "start": 506.28, + "end": 507.4, + "probability": 0.4959 + }, + { + "start": 508.54, + "end": 511.62, + "probability": 0.517 + }, + { + "start": 512.46, + "end": 514.44, + "probability": 0.8306 + }, + { + "start": 515.32, + "end": 518.48, + "probability": 0.3288 + }, + { + "start": 519.26, + "end": 520.3, + "probability": 0.6853 + }, + { + "start": 522.78, + "end": 525.28, + "probability": 0.8643 + }, + { + "start": 526.42, + "end": 530.14, + "probability": 0.6352 + }, + { + "start": 531.72, + "end": 535.46, + "probability": 0.4303 + }, + { + "start": 536.28, + "end": 547.16, + "probability": 0.8539 + }, + { + "start": 547.64, + "end": 548.28, + "probability": 0.6233 + }, + { + "start": 548.6, + "end": 550.64, + "probability": 0.9787 + }, + { + "start": 550.94, + "end": 554.48, + "probability": 0.9746 + }, + { + "start": 555.56, + "end": 558.04, + "probability": 0.7654 + }, + { + "start": 558.62, + "end": 562.18, + "probability": 0.8973 + }, + { + "start": 563.0, + "end": 565.72, + "probability": 0.7445 + }, + { + "start": 566.34, + "end": 568.72, + "probability": 0.9882 + }, + { + "start": 569.02, + "end": 569.1, + "probability": 0.703 + }, + { + "start": 569.2, + "end": 571.1, + "probability": 0.9614 + }, + { + "start": 572.6, + "end": 573.76, + "probability": 0.4489 + }, + { + "start": 574.02, + "end": 576.68, + "probability": 0.7709 + }, + { + "start": 577.2, + "end": 579.66, + "probability": 0.6534 + }, + { + "start": 580.4, + "end": 582.62, + "probability": 0.833 + }, + { + "start": 583.5, + "end": 588.18, + "probability": 0.7536 + }, + { + "start": 588.84, + "end": 590.74, + "probability": 0.9985 + }, + { + "start": 591.74, + "end": 594.48, + "probability": 0.9531 + }, + { + "start": 595.44, + "end": 597.96, + "probability": 0.977 + }, + { + "start": 598.54, + "end": 601.68, + "probability": 0.9577 + }, + { + "start": 602.88, + "end": 607.46, + "probability": 0.971 + }, + { + "start": 607.94, + "end": 608.52, + "probability": 0.734 + }, + { + "start": 608.66, + "end": 610.22, + "probability": 0.7649 + }, + { + "start": 611.14, + "end": 613.18, + "probability": 0.9486 + }, + { + "start": 613.32, + "end": 616.7, + "probability": 0.994 + }, + { + "start": 617.58, + "end": 620.6, + "probability": 0.8717 + }, + { + "start": 621.14, + "end": 624.1, + "probability": 0.9511 + }, + { + "start": 624.88, + "end": 626.88, + "probability": 0.9891 + }, + { + "start": 627.42, + "end": 631.14, + "probability": 0.6284 + }, + { + "start": 632.06, + "end": 637.76, + "probability": 0.9717 + }, + { + "start": 638.46, + "end": 641.56, + "probability": 0.8741 + }, + { + "start": 641.56, + "end": 645.56, + "probability": 0.9985 + }, + { + "start": 646.56, + "end": 649.68, + "probability": 0.8003 + }, + { + "start": 650.44, + "end": 655.2, + "probability": 0.9953 + }, + { + "start": 655.98, + "end": 658.58, + "probability": 0.6972 + }, + { + "start": 659.14, + "end": 662.58, + "probability": 0.987 + }, + { + "start": 662.58, + "end": 666.02, + "probability": 0.9709 + }, + { + "start": 666.02, + "end": 667.22, + "probability": 0.6621 + }, + { + "start": 667.74, + "end": 669.44, + "probability": 0.9536 + }, + { + "start": 670.18, + "end": 675.86, + "probability": 0.0671 + }, + { + "start": 675.86, + "end": 675.86, + "probability": 0.1244 + }, + { + "start": 675.86, + "end": 675.86, + "probability": 0.2278 + }, + { + "start": 675.86, + "end": 677.16, + "probability": 0.4304 + }, + { + "start": 677.18, + "end": 678.98, + "probability": 0.5723 + }, + { + "start": 679.06, + "end": 679.38, + "probability": 0.3123 + }, + { + "start": 679.44, + "end": 679.98, + "probability": 0.5958 + }, + { + "start": 680.42, + "end": 681.06, + "probability": 0.5585 + }, + { + "start": 681.12, + "end": 682.72, + "probability": 0.7877 + }, + { + "start": 683.42, + "end": 684.38, + "probability": 0.7759 + }, + { + "start": 684.52, + "end": 688.36, + "probability": 0.9879 + }, + { + "start": 689.38, + "end": 692.84, + "probability": 0.9941 + }, + { + "start": 693.04, + "end": 695.26, + "probability": 0.8702 + }, + { + "start": 695.92, + "end": 699.36, + "probability": 0.9451 + }, + { + "start": 699.96, + "end": 702.82, + "probability": 0.887 + }, + { + "start": 702.84, + "end": 704.58, + "probability": 0.957 + }, + { + "start": 704.74, + "end": 706.28, + "probability": 0.7034 + }, + { + "start": 706.72, + "end": 709.56, + "probability": 0.9954 + }, + { + "start": 709.98, + "end": 711.18, + "probability": 0.8557 + }, + { + "start": 711.8, + "end": 715.22, + "probability": 0.9889 + }, + { + "start": 715.68, + "end": 718.9, + "probability": 0.9747 + }, + { + "start": 718.9, + "end": 723.08, + "probability": 0.998 + }, + { + "start": 723.12, + "end": 729.88, + "probability": 0.9808 + }, + { + "start": 730.44, + "end": 731.2, + "probability": 0.9169 + }, + { + "start": 732.24, + "end": 732.38, + "probability": 0.3674 + }, + { + "start": 732.38, + "end": 735.22, + "probability": 0.7046 + }, + { + "start": 735.78, + "end": 738.5, + "probability": 0.8586 + }, + { + "start": 738.6, + "end": 740.07, + "probability": 0.7676 + }, + { + "start": 740.62, + "end": 742.71, + "probability": 0.8047 + }, + { + "start": 742.86, + "end": 744.32, + "probability": 0.5309 + }, + { + "start": 745.08, + "end": 747.67, + "probability": 0.8111 + }, + { + "start": 748.52, + "end": 752.0, + "probability": 0.9856 + }, + { + "start": 752.0, + "end": 755.22, + "probability": 0.9786 + }, + { + "start": 755.3, + "end": 755.64, + "probability": 0.9222 + }, + { + "start": 756.52, + "end": 758.34, + "probability": 0.5715 + }, + { + "start": 758.92, + "end": 759.66, + "probability": 0.4294 + }, + { + "start": 760.22, + "end": 761.62, + "probability": 0.9688 + }, + { + "start": 762.74, + "end": 765.24, + "probability": 0.8439 + }, + { + "start": 765.3, + "end": 765.66, + "probability": 0.7322 + }, + { + "start": 765.68, + "end": 766.12, + "probability": 0.634 + }, + { + "start": 766.9, + "end": 768.36, + "probability": 0.9758 + }, + { + "start": 768.48, + "end": 770.04, + "probability": 0.7618 + }, + { + "start": 772.18, + "end": 773.1, + "probability": 0.8513 + }, + { + "start": 773.7, + "end": 774.44, + "probability": 0.8505 + }, + { + "start": 775.04, + "end": 776.92, + "probability": 0.703 + }, + { + "start": 777.2, + "end": 778.22, + "probability": 0.8076 + }, + { + "start": 778.44, + "end": 782.36, + "probability": 0.9581 + }, + { + "start": 782.56, + "end": 783.54, + "probability": 0.6907 + }, + { + "start": 783.64, + "end": 785.78, + "probability": 0.6874 + }, + { + "start": 786.72, + "end": 790.26, + "probability": 0.9945 + }, + { + "start": 791.74, + "end": 795.78, + "probability": 0.7044 + }, + { + "start": 795.78, + "end": 798.72, + "probability": 0.9934 + }, + { + "start": 798.92, + "end": 800.2, + "probability": 0.6583 + }, + { + "start": 800.26, + "end": 801.8, + "probability": 0.9734 + }, + { + "start": 802.26, + "end": 805.42, + "probability": 0.796 + }, + { + "start": 806.04, + "end": 814.36, + "probability": 0.9766 + }, + { + "start": 814.64, + "end": 815.66, + "probability": 0.4929 + }, + { + "start": 815.96, + "end": 819.32, + "probability": 0.9702 + }, + { + "start": 820.0, + "end": 820.74, + "probability": 0.7887 + }, + { + "start": 821.2, + "end": 823.14, + "probability": 0.7027 + }, + { + "start": 823.22, + "end": 823.86, + "probability": 0.5734 + }, + { + "start": 823.96, + "end": 827.68, + "probability": 0.9891 + }, + { + "start": 827.68, + "end": 832.92, + "probability": 0.9589 + }, + { + "start": 833.16, + "end": 836.5, + "probability": 0.9788 + }, + { + "start": 836.6, + "end": 837.74, + "probability": 0.9495 + }, + { + "start": 838.0, + "end": 840.74, + "probability": 0.9141 + }, + { + "start": 840.84, + "end": 842.88, + "probability": 0.8356 + }, + { + "start": 843.32, + "end": 850.74, + "probability": 0.9242 + }, + { + "start": 851.16, + "end": 854.14, + "probability": 0.9983 + }, + { + "start": 854.44, + "end": 855.16, + "probability": 0.9172 + }, + { + "start": 855.52, + "end": 856.24, + "probability": 0.9088 + }, + { + "start": 856.38, + "end": 857.04, + "probability": 0.7608 + }, + { + "start": 857.36, + "end": 859.24, + "probability": 0.9141 + }, + { + "start": 859.64, + "end": 861.66, + "probability": 0.9619 + }, + { + "start": 862.56, + "end": 863.76, + "probability": 0.8893 + }, + { + "start": 864.36, + "end": 866.6, + "probability": 0.844 + }, + { + "start": 867.32, + "end": 869.38, + "probability": 0.972 + }, + { + "start": 869.5, + "end": 869.9, + "probability": 0.6209 + }, + { + "start": 869.94, + "end": 870.28, + "probability": 0.7967 + }, + { + "start": 870.74, + "end": 871.38, + "probability": 0.5818 + }, + { + "start": 871.78, + "end": 875.4, + "probability": 0.6548 + }, + { + "start": 880.46, + "end": 882.0, + "probability": 0.8553 + }, + { + "start": 882.24, + "end": 884.38, + "probability": 0.8906 + }, + { + "start": 885.02, + "end": 886.48, + "probability": 0.8242 + }, + { + "start": 887.4, + "end": 893.38, + "probability": 0.8716 + }, + { + "start": 893.38, + "end": 897.14, + "probability": 0.9907 + }, + { + "start": 897.72, + "end": 898.98, + "probability": 0.998 + }, + { + "start": 899.76, + "end": 900.66, + "probability": 0.8806 + }, + { + "start": 901.1, + "end": 905.86, + "probability": 0.928 + }, + { + "start": 906.56, + "end": 907.38, + "probability": 0.8003 + }, + { + "start": 908.08, + "end": 913.24, + "probability": 0.9508 + }, + { + "start": 913.98, + "end": 915.14, + "probability": 0.7189 + }, + { + "start": 915.76, + "end": 918.19, + "probability": 0.9984 + }, + { + "start": 918.94, + "end": 925.24, + "probability": 0.675 + }, + { + "start": 925.68, + "end": 930.48, + "probability": 0.9754 + }, + { + "start": 930.62, + "end": 936.08, + "probability": 0.9983 + }, + { + "start": 937.4, + "end": 939.12, + "probability": 0.7676 + }, + { + "start": 939.4, + "end": 940.64, + "probability": 0.9894 + }, + { + "start": 941.04, + "end": 942.96, + "probability": 0.9777 + }, + { + "start": 942.96, + "end": 945.5, + "probability": 0.9498 + }, + { + "start": 945.64, + "end": 946.78, + "probability": 0.9519 + }, + { + "start": 947.46, + "end": 949.32, + "probability": 0.9485 + }, + { + "start": 950.46, + "end": 951.04, + "probability": 0.8551 + }, + { + "start": 952.14, + "end": 957.48, + "probability": 0.9878 + }, + { + "start": 957.68, + "end": 958.14, + "probability": 0.7536 + }, + { + "start": 958.26, + "end": 959.52, + "probability": 0.9706 + }, + { + "start": 959.68, + "end": 962.34, + "probability": 0.9856 + }, + { + "start": 962.84, + "end": 967.02, + "probability": 0.9823 + }, + { + "start": 967.18, + "end": 968.06, + "probability": 0.9144 + }, + { + "start": 968.84, + "end": 973.36, + "probability": 0.91 + }, + { + "start": 974.36, + "end": 975.84, + "probability": 0.9994 + }, + { + "start": 976.38, + "end": 977.96, + "probability": 0.9819 + }, + { + "start": 978.8, + "end": 983.16, + "probability": 0.8604 + }, + { + "start": 983.16, + "end": 985.26, + "probability": 0.999 + }, + { + "start": 985.92, + "end": 988.26, + "probability": 0.9346 + }, + { + "start": 988.9, + "end": 989.56, + "probability": 0.6752 + }, + { + "start": 989.7, + "end": 991.84, + "probability": 0.9946 + }, + { + "start": 992.36, + "end": 995.94, + "probability": 0.9969 + }, + { + "start": 996.02, + "end": 996.84, + "probability": 0.958 + }, + { + "start": 997.2, + "end": 999.29, + "probability": 0.969 + }, + { + "start": 999.76, + "end": 1001.54, + "probability": 0.9835 + }, + { + "start": 1001.62, + "end": 1001.92, + "probability": 0.7078 + }, + { + "start": 1002.32, + "end": 1004.12, + "probability": 0.9572 + }, + { + "start": 1004.42, + "end": 1007.36, + "probability": 0.6065 + }, + { + "start": 1007.48, + "end": 1009.5, + "probability": 0.778 + }, + { + "start": 1010.04, + "end": 1012.12, + "probability": 0.8062 + }, + { + "start": 1015.28, + "end": 1016.2, + "probability": 0.2822 + }, + { + "start": 1017.34, + "end": 1019.6, + "probability": 0.988 + }, + { + "start": 1020.1, + "end": 1022.3, + "probability": 0.971 + }, + { + "start": 1023.02, + "end": 1023.72, + "probability": 0.5529 + }, + { + "start": 1024.72, + "end": 1025.98, + "probability": 0.7847 + }, + { + "start": 1027.52, + "end": 1030.02, + "probability": 0.863 + }, + { + "start": 1030.52, + "end": 1036.18, + "probability": 0.9701 + }, + { + "start": 1037.26, + "end": 1041.74, + "probability": 0.8828 + }, + { + "start": 1042.92, + "end": 1048.5, + "probability": 0.5859 + }, + { + "start": 1049.2, + "end": 1051.86, + "probability": 0.9066 + }, + { + "start": 1052.48, + "end": 1054.56, + "probability": 0.8425 + }, + { + "start": 1054.66, + "end": 1055.98, + "probability": 0.9377 + }, + { + "start": 1056.36, + "end": 1058.1, + "probability": 0.9502 + }, + { + "start": 1059.2, + "end": 1062.38, + "probability": 0.9521 + }, + { + "start": 1063.78, + "end": 1067.48, + "probability": 0.8422 + }, + { + "start": 1069.66, + "end": 1073.64, + "probability": 0.877 + }, + { + "start": 1074.18, + "end": 1077.54, + "probability": 0.5331 + }, + { + "start": 1079.14, + "end": 1082.3, + "probability": 0.7497 + }, + { + "start": 1083.8, + "end": 1086.6, + "probability": 0.9921 + }, + { + "start": 1088.44, + "end": 1094.58, + "probability": 0.9829 + }, + { + "start": 1095.56, + "end": 1097.36, + "probability": 0.5978 + }, + { + "start": 1098.35, + "end": 1098.77, + "probability": 0.0306 + }, + { + "start": 1100.88, + "end": 1101.6, + "probability": 0.3193 + }, + { + "start": 1101.86, + "end": 1103.83, + "probability": 0.4882 + }, + { + "start": 1106.44, + "end": 1109.08, + "probability": 0.0725 + }, + { + "start": 1109.08, + "end": 1109.62, + "probability": 0.2256 + }, + { + "start": 1111.59, + "end": 1111.66, + "probability": 0.0328 + }, + { + "start": 1111.66, + "end": 1112.68, + "probability": 0.1687 + }, + { + "start": 1113.52, + "end": 1116.3, + "probability": 0.1374 + }, + { + "start": 1118.32, + "end": 1121.18, + "probability": 0.8052 + }, + { + "start": 1121.8, + "end": 1125.9, + "probability": 0.8321 + }, + { + "start": 1127.0, + "end": 1127.9, + "probability": 0.4625 + }, + { + "start": 1128.88, + "end": 1131.46, + "probability": 0.939 + }, + { + "start": 1133.8, + "end": 1135.92, + "probability": 0.7323 + }, + { + "start": 1136.78, + "end": 1138.4, + "probability": 0.7828 + }, + { + "start": 1138.5, + "end": 1139.62, + "probability": 0.9409 + }, + { + "start": 1140.02, + "end": 1140.73, + "probability": 0.7889 + }, + { + "start": 1141.96, + "end": 1143.62, + "probability": 0.8649 + }, + { + "start": 1143.66, + "end": 1147.56, + "probability": 0.8557 + }, + { + "start": 1148.46, + "end": 1151.46, + "probability": 0.9984 + }, + { + "start": 1151.52, + "end": 1154.7, + "probability": 0.9968 + }, + { + "start": 1155.72, + "end": 1158.22, + "probability": 0.8268 + }, + { + "start": 1158.66, + "end": 1160.46, + "probability": 0.7057 + }, + { + "start": 1160.64, + "end": 1161.3, + "probability": 0.8046 + }, + { + "start": 1161.8, + "end": 1162.28, + "probability": 0.8521 + }, + { + "start": 1162.4, + "end": 1164.18, + "probability": 0.7988 + }, + { + "start": 1164.34, + "end": 1165.42, + "probability": 0.8276 + }, + { + "start": 1166.1, + "end": 1169.36, + "probability": 0.9227 + }, + { + "start": 1169.36, + "end": 1171.94, + "probability": 0.9912 + }, + { + "start": 1172.72, + "end": 1173.22, + "probability": 0.7115 + }, + { + "start": 1173.36, + "end": 1175.84, + "probability": 0.8853 + }, + { + "start": 1176.14, + "end": 1177.44, + "probability": 0.6846 + }, + { + "start": 1177.56, + "end": 1178.92, + "probability": 0.7452 + }, + { + "start": 1179.02, + "end": 1183.59, + "probability": 0.978 + }, + { + "start": 1185.44, + "end": 1190.32, + "probability": 0.9837 + }, + { + "start": 1191.08, + "end": 1193.82, + "probability": 0.8894 + }, + { + "start": 1194.88, + "end": 1201.02, + "probability": 0.9531 + }, + { + "start": 1202.16, + "end": 1206.02, + "probability": 0.9837 + }, + { + "start": 1206.76, + "end": 1207.8, + "probability": 0.822 + }, + { + "start": 1208.32, + "end": 1209.76, + "probability": 0.8698 + }, + { + "start": 1210.56, + "end": 1211.78, + "probability": 0.9854 + }, + { + "start": 1211.96, + "end": 1217.52, + "probability": 0.9821 + }, + { + "start": 1219.16, + "end": 1220.94, + "probability": 0.8008 + }, + { + "start": 1221.08, + "end": 1222.72, + "probability": 0.6154 + }, + { + "start": 1222.72, + "end": 1224.86, + "probability": 0.669 + }, + { + "start": 1225.72, + "end": 1228.68, + "probability": 0.8635 + }, + { + "start": 1228.7, + "end": 1232.14, + "probability": 0.5442 + }, + { + "start": 1232.36, + "end": 1232.58, + "probability": 0.6151 + }, + { + "start": 1232.94, + "end": 1234.94, + "probability": 0.7327 + }, + { + "start": 1235.14, + "end": 1237.94, + "probability": 0.8284 + }, + { + "start": 1238.46, + "end": 1239.02, + "probability": 0.5945 + }, + { + "start": 1242.38, + "end": 1243.86, + "probability": 0.3015 + }, + { + "start": 1243.88, + "end": 1244.26, + "probability": 0.3269 + }, + { + "start": 1244.96, + "end": 1245.52, + "probability": 0.6053 + }, + { + "start": 1246.32, + "end": 1248.22, + "probability": 0.9422 + }, + { + "start": 1248.7, + "end": 1249.58, + "probability": 0.7061 + }, + { + "start": 1250.18, + "end": 1250.98, + "probability": 0.7546 + }, + { + "start": 1251.12, + "end": 1256.94, + "probability": 0.8608 + }, + { + "start": 1257.5, + "end": 1261.32, + "probability": 0.8745 + }, + { + "start": 1261.82, + "end": 1264.54, + "probability": 0.7623 + }, + { + "start": 1265.52, + "end": 1268.98, + "probability": 0.8679 + }, + { + "start": 1269.86, + "end": 1270.68, + "probability": 0.6978 + }, + { + "start": 1271.28, + "end": 1274.68, + "probability": 0.9897 + }, + { + "start": 1274.68, + "end": 1277.98, + "probability": 0.7884 + }, + { + "start": 1278.66, + "end": 1279.4, + "probability": 0.321 + }, + { + "start": 1279.52, + "end": 1281.88, + "probability": 0.9868 + }, + { + "start": 1282.28, + "end": 1285.74, + "probability": 0.917 + }, + { + "start": 1285.98, + "end": 1288.28, + "probability": 0.9866 + }, + { + "start": 1288.78, + "end": 1292.04, + "probability": 0.991 + }, + { + "start": 1292.6, + "end": 1294.98, + "probability": 0.98 + }, + { + "start": 1295.64, + "end": 1299.18, + "probability": 0.9334 + }, + { + "start": 1299.64, + "end": 1302.48, + "probability": 0.9792 + }, + { + "start": 1302.48, + "end": 1308.1, + "probability": 0.9907 + }, + { + "start": 1308.58, + "end": 1311.78, + "probability": 0.9932 + }, + { + "start": 1311.78, + "end": 1315.9, + "probability": 0.9916 + }, + { + "start": 1316.58, + "end": 1320.38, + "probability": 0.8049 + }, + { + "start": 1320.5, + "end": 1325.7, + "probability": 0.948 + }, + { + "start": 1325.8, + "end": 1328.39, + "probability": 0.7172 + }, + { + "start": 1328.74, + "end": 1331.26, + "probability": 0.7986 + }, + { + "start": 1331.94, + "end": 1336.72, + "probability": 0.8579 + }, + { + "start": 1336.98, + "end": 1337.06, + "probability": 0.6227 + }, + { + "start": 1337.24, + "end": 1338.9, + "probability": 0.877 + }, + { + "start": 1339.84, + "end": 1343.22, + "probability": 0.9295 + }, + { + "start": 1343.5, + "end": 1345.35, + "probability": 0.8181 + }, + { + "start": 1345.94, + "end": 1347.28, + "probability": 0.596 + }, + { + "start": 1347.64, + "end": 1351.66, + "probability": 0.9886 + }, + { + "start": 1351.76, + "end": 1352.08, + "probability": 0.7819 + }, + { + "start": 1352.28, + "end": 1354.64, + "probability": 0.5716 + }, + { + "start": 1356.64, + "end": 1361.0, + "probability": 0.0616 + }, + { + "start": 1364.28, + "end": 1367.42, + "probability": 0.5506 + }, + { + "start": 1369.27, + "end": 1374.54, + "probability": 0.4991 + }, + { + "start": 1374.54, + "end": 1376.96, + "probability": 0.8559 + }, + { + "start": 1376.98, + "end": 1380.63, + "probability": 0.8346 + }, + { + "start": 1382.6, + "end": 1386.38, + "probability": 0.6842 + }, + { + "start": 1387.24, + "end": 1389.74, + "probability": 0.8066 + }, + { + "start": 1390.06, + "end": 1391.94, + "probability": 0.6308 + }, + { + "start": 1393.06, + "end": 1395.42, + "probability": 0.9209 + }, + { + "start": 1395.9, + "end": 1396.8, + "probability": 0.7255 + }, + { + "start": 1397.1, + "end": 1399.6, + "probability": 0.9565 + }, + { + "start": 1399.68, + "end": 1400.22, + "probability": 0.878 + }, + { + "start": 1400.36, + "end": 1403.68, + "probability": 0.8875 + }, + { + "start": 1404.26, + "end": 1405.56, + "probability": 0.748 + }, + { + "start": 1405.78, + "end": 1406.78, + "probability": 0.7279 + }, + { + "start": 1407.0, + "end": 1407.76, + "probability": 0.4226 + }, + { + "start": 1407.96, + "end": 1409.88, + "probability": 0.9617 + }, + { + "start": 1410.12, + "end": 1414.3, + "probability": 0.8825 + }, + { + "start": 1414.82, + "end": 1419.94, + "probability": 0.7741 + }, + { + "start": 1420.48, + "end": 1423.12, + "probability": 0.6236 + }, + { + "start": 1423.48, + "end": 1424.46, + "probability": 0.7172 + }, + { + "start": 1425.3, + "end": 1431.34, + "probability": 0.9396 + }, + { + "start": 1432.36, + "end": 1434.58, + "probability": 0.6733 + }, + { + "start": 1434.84, + "end": 1437.1, + "probability": 0.9189 + }, + { + "start": 1438.76, + "end": 1440.24, + "probability": 0.7061 + }, + { + "start": 1440.3, + "end": 1440.64, + "probability": 0.5585 + }, + { + "start": 1440.68, + "end": 1441.22, + "probability": 0.6799 + }, + { + "start": 1441.68, + "end": 1442.1, + "probability": 0.5844 + }, + { + "start": 1442.28, + "end": 1443.58, + "probability": 0.9008 + }, + { + "start": 1447.9, + "end": 1449.38, + "probability": 0.7149 + }, + { + "start": 1449.9, + "end": 1450.38, + "probability": 0.6451 + }, + { + "start": 1450.9, + "end": 1454.22, + "probability": 0.8604 + }, + { + "start": 1454.84, + "end": 1457.14, + "probability": 0.8896 + }, + { + "start": 1457.86, + "end": 1461.1, + "probability": 0.9622 + }, + { + "start": 1461.2, + "end": 1466.28, + "probability": 0.9779 + }, + { + "start": 1467.8, + "end": 1468.64, + "probability": 0.8662 + }, + { + "start": 1468.82, + "end": 1472.86, + "probability": 0.929 + }, + { + "start": 1473.06, + "end": 1476.52, + "probability": 0.7661 + }, + { + "start": 1477.02, + "end": 1480.52, + "probability": 0.9917 + }, + { + "start": 1481.1, + "end": 1483.86, + "probability": 0.9856 + }, + { + "start": 1484.56, + "end": 1486.68, + "probability": 0.9723 + }, + { + "start": 1487.12, + "end": 1490.1, + "probability": 0.946 + }, + { + "start": 1490.76, + "end": 1492.48, + "probability": 0.8246 + }, + { + "start": 1492.8, + "end": 1493.78, + "probability": 0.7207 + }, + { + "start": 1493.88, + "end": 1495.5, + "probability": 0.9631 + }, + { + "start": 1495.98, + "end": 1497.52, + "probability": 0.9884 + }, + { + "start": 1498.0, + "end": 1500.66, + "probability": 0.8813 + }, + { + "start": 1501.16, + "end": 1502.42, + "probability": 0.9533 + }, + { + "start": 1503.16, + "end": 1505.36, + "probability": 0.9727 + }, + { + "start": 1505.68, + "end": 1507.02, + "probability": 0.9775 + }, + { + "start": 1507.12, + "end": 1511.06, + "probability": 0.9902 + }, + { + "start": 1512.92, + "end": 1513.32, + "probability": 0.318 + }, + { + "start": 1513.42, + "end": 1513.62, + "probability": 0.8729 + }, + { + "start": 1513.72, + "end": 1518.6, + "probability": 0.8316 + }, + { + "start": 1520.28, + "end": 1524.78, + "probability": 0.7221 + }, + { + "start": 1525.32, + "end": 1527.54, + "probability": 0.9675 + }, + { + "start": 1527.68, + "end": 1528.78, + "probability": 0.7599 + }, + { + "start": 1529.44, + "end": 1531.8, + "probability": 0.6715 + }, + { + "start": 1532.28, + "end": 1535.0, + "probability": 0.6652 + }, + { + "start": 1535.22, + "end": 1536.0, + "probability": 0.7909 + }, + { + "start": 1536.24, + "end": 1537.04, + "probability": 0.8643 + }, + { + "start": 1537.16, + "end": 1537.62, + "probability": 0.4085 + }, + { + "start": 1537.78, + "end": 1538.94, + "probability": 0.8639 + }, + { + "start": 1539.24, + "end": 1540.74, + "probability": 0.9544 + }, + { + "start": 1540.86, + "end": 1542.56, + "probability": 0.7479 + }, + { + "start": 1542.96, + "end": 1546.87, + "probability": 0.8923 + }, + { + "start": 1547.86, + "end": 1549.36, + "probability": 0.9839 + }, + { + "start": 1549.5, + "end": 1550.96, + "probability": 0.9754 + }, + { + "start": 1551.12, + "end": 1553.22, + "probability": 0.9209 + }, + { + "start": 1553.6, + "end": 1555.06, + "probability": 0.9741 + }, + { + "start": 1555.44, + "end": 1556.52, + "probability": 0.5452 + }, + { + "start": 1556.58, + "end": 1559.4, + "probability": 0.9823 + }, + { + "start": 1559.82, + "end": 1562.6, + "probability": 0.9523 + }, + { + "start": 1563.02, + "end": 1568.56, + "probability": 0.9872 + }, + { + "start": 1569.2, + "end": 1570.16, + "probability": 0.7256 + }, + { + "start": 1570.28, + "end": 1571.08, + "probability": 0.957 + }, + { + "start": 1571.48, + "end": 1574.88, + "probability": 0.9577 + }, + { + "start": 1575.88, + "end": 1576.42, + "probability": 0.838 + }, + { + "start": 1577.3, + "end": 1577.72, + "probability": 0.7303 + }, + { + "start": 1578.2, + "end": 1579.68, + "probability": 0.612 + }, + { + "start": 1579.76, + "end": 1582.0, + "probability": 0.9867 + }, + { + "start": 1582.14, + "end": 1583.24, + "probability": 0.986 + }, + { + "start": 1583.86, + "end": 1585.64, + "probability": 0.9225 + }, + { + "start": 1585.72, + "end": 1586.1, + "probability": 0.5923 + }, + { + "start": 1586.12, + "end": 1586.38, + "probability": 0.7136 + }, + { + "start": 1586.44, + "end": 1586.84, + "probability": 0.6282 + }, + { + "start": 1586.86, + "end": 1587.92, + "probability": 0.9581 + }, + { + "start": 1589.16, + "end": 1591.44, + "probability": 0.6474 + }, + { + "start": 1592.24, + "end": 1596.08, + "probability": 0.9275 + }, + { + "start": 1596.72, + "end": 1599.54, + "probability": 0.988 + }, + { + "start": 1600.04, + "end": 1601.34, + "probability": 0.8753 + }, + { + "start": 1601.42, + "end": 1603.64, + "probability": 0.9912 + }, + { + "start": 1604.48, + "end": 1608.82, + "probability": 0.9963 + }, + { + "start": 1609.72, + "end": 1610.82, + "probability": 0.9492 + }, + { + "start": 1611.02, + "end": 1616.84, + "probability": 0.9892 + }, + { + "start": 1616.84, + "end": 1622.82, + "probability": 0.9998 + }, + { + "start": 1623.38, + "end": 1624.64, + "probability": 0.7765 + }, + { + "start": 1625.22, + "end": 1626.68, + "probability": 0.9599 + }, + { + "start": 1627.3, + "end": 1629.0, + "probability": 0.8409 + }, + { + "start": 1629.58, + "end": 1635.08, + "probability": 0.999 + }, + { + "start": 1635.08, + "end": 1638.28, + "probability": 0.4544 + }, + { + "start": 1638.8, + "end": 1641.36, + "probability": 0.9951 + }, + { + "start": 1642.24, + "end": 1643.28, + "probability": 0.6929 + }, + { + "start": 1643.6, + "end": 1645.12, + "probability": 0.891 + }, + { + "start": 1645.62, + "end": 1648.52, + "probability": 0.9126 + }, + { + "start": 1648.98, + "end": 1652.2, + "probability": 0.8134 + }, + { + "start": 1653.64, + "end": 1656.54, + "probability": 0.7057 + }, + { + "start": 1656.98, + "end": 1658.56, + "probability": 0.7613 + }, + { + "start": 1659.0, + "end": 1663.0, + "probability": 0.9491 + }, + { + "start": 1663.04, + "end": 1664.34, + "probability": 0.797 + }, + { + "start": 1664.72, + "end": 1666.22, + "probability": 0.9269 + }, + { + "start": 1666.52, + "end": 1669.64, + "probability": 0.9752 + }, + { + "start": 1669.72, + "end": 1671.3, + "probability": 0.991 + }, + { + "start": 1672.0, + "end": 1674.1, + "probability": 0.9162 + }, + { + "start": 1674.74, + "end": 1677.04, + "probability": 0.9722 + }, + { + "start": 1677.42, + "end": 1681.46, + "probability": 0.9897 + }, + { + "start": 1681.74, + "end": 1683.74, + "probability": 0.9816 + }, + { + "start": 1684.51, + "end": 1687.1, + "probability": 0.9988 + }, + { + "start": 1687.48, + "end": 1690.14, + "probability": 0.998 + }, + { + "start": 1690.54, + "end": 1691.1, + "probability": 0.8035 + }, + { + "start": 1691.42, + "end": 1691.72, + "probability": 0.9256 + }, + { + "start": 1691.9, + "end": 1693.26, + "probability": 0.9871 + }, + { + "start": 1693.44, + "end": 1697.1, + "probability": 0.9983 + }, + { + "start": 1697.32, + "end": 1701.26, + "probability": 0.9979 + }, + { + "start": 1701.26, + "end": 1704.54, + "probability": 0.9977 + }, + { + "start": 1704.9, + "end": 1705.7, + "probability": 0.847 + }, + { + "start": 1706.1, + "end": 1707.66, + "probability": 0.6042 + }, + { + "start": 1707.8, + "end": 1711.0, + "probability": 0.8138 + }, + { + "start": 1713.74, + "end": 1714.82, + "probability": 0.7171 + }, + { + "start": 1715.44, + "end": 1719.68, + "probability": 0.9057 + }, + { + "start": 1719.96, + "end": 1722.72, + "probability": 0.951 + }, + { + "start": 1722.86, + "end": 1723.76, + "probability": 0.9761 + }, + { + "start": 1724.3, + "end": 1726.76, + "probability": 0.9193 + }, + { + "start": 1727.56, + "end": 1730.28, + "probability": 0.8115 + }, + { + "start": 1730.58, + "end": 1735.5, + "probability": 0.8887 + }, + { + "start": 1737.48, + "end": 1742.88, + "probability": 0.9214 + }, + { + "start": 1743.42, + "end": 1747.3, + "probability": 0.8699 + }, + { + "start": 1747.34, + "end": 1749.98, + "probability": 0.9496 + }, + { + "start": 1750.76, + "end": 1756.22, + "probability": 0.8425 + }, + { + "start": 1756.78, + "end": 1758.8, + "probability": 0.8185 + }, + { + "start": 1760.06, + "end": 1760.68, + "probability": 0.6951 + }, + { + "start": 1761.58, + "end": 1763.34, + "probability": 0.9004 + }, + { + "start": 1763.34, + "end": 1767.4, + "probability": 0.929 + }, + { + "start": 1767.92, + "end": 1770.46, + "probability": 0.9951 + }, + { + "start": 1773.08, + "end": 1773.36, + "probability": 0.0188 + }, + { + "start": 1773.36, + "end": 1773.46, + "probability": 0.0696 + }, + { + "start": 1774.0, + "end": 1775.62, + "probability": 0.687 + }, + { + "start": 1775.7, + "end": 1776.8, + "probability": 0.936 + }, + { + "start": 1776.92, + "end": 1781.68, + "probability": 0.9702 + }, + { + "start": 1781.84, + "end": 1790.1, + "probability": 0.9845 + }, + { + "start": 1791.08, + "end": 1795.86, + "probability": 0.9597 + }, + { + "start": 1796.66, + "end": 1800.16, + "probability": 0.9798 + }, + { + "start": 1801.04, + "end": 1802.42, + "probability": 0.7472 + }, + { + "start": 1802.56, + "end": 1805.24, + "probability": 0.9646 + }, + { + "start": 1805.92, + "end": 1807.4, + "probability": 0.9727 + }, + { + "start": 1818.68, + "end": 1820.82, + "probability": 0.6019 + }, + { + "start": 1822.12, + "end": 1824.82, + "probability": 0.94 + }, + { + "start": 1825.4, + "end": 1828.9, + "probability": 0.9736 + }, + { + "start": 1829.4, + "end": 1831.38, + "probability": 0.8477 + }, + { + "start": 1832.5, + "end": 1834.18, + "probability": 0.7572 + }, + { + "start": 1834.9, + "end": 1835.88, + "probability": 0.8159 + }, + { + "start": 1837.26, + "end": 1841.42, + "probability": 0.915 + }, + { + "start": 1842.1, + "end": 1843.0, + "probability": 0.9882 + }, + { + "start": 1843.1, + "end": 1844.82, + "probability": 0.9586 + }, + { + "start": 1845.06, + "end": 1846.38, + "probability": 0.943 + }, + { + "start": 1848.0, + "end": 1853.12, + "probability": 0.7856 + }, + { + "start": 1853.9, + "end": 1855.88, + "probability": 0.8441 + }, + { + "start": 1857.6, + "end": 1860.28, + "probability": 0.998 + }, + { + "start": 1862.5, + "end": 1864.36, + "probability": 0.9879 + }, + { + "start": 1864.84, + "end": 1866.2, + "probability": 0.9867 + }, + { + "start": 1868.58, + "end": 1870.68, + "probability": 0.8219 + }, + { + "start": 1871.46, + "end": 1874.27, + "probability": 0.7273 + }, + { + "start": 1875.48, + "end": 1880.64, + "probability": 0.9893 + }, + { + "start": 1881.44, + "end": 1883.3, + "probability": 0.9448 + }, + { + "start": 1883.5, + "end": 1885.66, + "probability": 0.877 + }, + { + "start": 1886.46, + "end": 1888.06, + "probability": 0.9287 + }, + { + "start": 1888.24, + "end": 1889.76, + "probability": 0.8 + }, + { + "start": 1890.34, + "end": 1897.26, + "probability": 0.9873 + }, + { + "start": 1897.38, + "end": 1899.22, + "probability": 0.9542 + }, + { + "start": 1899.32, + "end": 1903.08, + "probability": 0.9946 + }, + { + "start": 1903.14, + "end": 1905.08, + "probability": 0.988 + }, + { + "start": 1905.18, + "end": 1905.96, + "probability": 0.962 + }, + { + "start": 1906.5, + "end": 1911.88, + "probability": 0.9662 + }, + { + "start": 1912.64, + "end": 1918.84, + "probability": 0.9767 + }, + { + "start": 1918.84, + "end": 1922.24, + "probability": 0.9263 + }, + { + "start": 1922.78, + "end": 1924.5, + "probability": 0.9858 + }, + { + "start": 1924.96, + "end": 1929.64, + "probability": 0.8619 + }, + { + "start": 1930.14, + "end": 1932.09, + "probability": 0.998 + }, + { + "start": 1933.26, + "end": 1936.68, + "probability": 0.9929 + }, + { + "start": 1937.32, + "end": 1939.8, + "probability": 0.9293 + }, + { + "start": 1940.06, + "end": 1941.5, + "probability": 0.6951 + }, + { + "start": 1942.18, + "end": 1945.98, + "probability": 0.8647 + }, + { + "start": 1946.74, + "end": 1946.74, + "probability": 0.483 + }, + { + "start": 1946.74, + "end": 1951.28, + "probability": 0.9833 + }, + { + "start": 1951.62, + "end": 1955.36, + "probability": 0.9985 + }, + { + "start": 1955.36, + "end": 1956.02, + "probability": 0.8064 + }, + { + "start": 1956.48, + "end": 1956.64, + "probability": 0.4578 + }, + { + "start": 1957.46, + "end": 1960.5, + "probability": 0.8877 + }, + { + "start": 1960.94, + "end": 1962.46, + "probability": 0.9543 + }, + { + "start": 1962.54, + "end": 1962.94, + "probability": 0.7013 + }, + { + "start": 1963.02, + "end": 1963.38, + "probability": 0.8004 + }, + { + "start": 1963.38, + "end": 1963.92, + "probability": 0.6386 + }, + { + "start": 1964.06, + "end": 1965.66, + "probability": 0.9734 + }, + { + "start": 1969.82, + "end": 1971.4, + "probability": 0.7077 + }, + { + "start": 1973.08, + "end": 1976.62, + "probability": 0.9705 + }, + { + "start": 1977.8, + "end": 1980.92, + "probability": 0.9845 + }, + { + "start": 1980.92, + "end": 1982.4, + "probability": 0.9053 + }, + { + "start": 1983.74, + "end": 1985.86, + "probability": 0.9758 + }, + { + "start": 1987.1, + "end": 1988.6, + "probability": 0.9909 + }, + { + "start": 1989.46, + "end": 1989.8, + "probability": 0.5619 + }, + { + "start": 1989.94, + "end": 1993.58, + "probability": 0.9951 + }, + { + "start": 1995.0, + "end": 1995.98, + "probability": 0.9116 + }, + { + "start": 1996.28, + "end": 1999.84, + "probability": 0.9878 + }, + { + "start": 2000.8, + "end": 2004.5, + "probability": 0.9852 + }, + { + "start": 2004.96, + "end": 2008.48, + "probability": 0.8834 + }, + { + "start": 2008.6, + "end": 2008.7, + "probability": 0.9205 + }, + { + "start": 2009.56, + "end": 2010.16, + "probability": 0.976 + }, + { + "start": 2011.1, + "end": 2013.66, + "probability": 0.9475 + }, + { + "start": 2014.42, + "end": 2016.8, + "probability": 0.976 + }, + { + "start": 2017.42, + "end": 2018.58, + "probability": 0.9816 + }, + { + "start": 2020.22, + "end": 2022.6, + "probability": 0.9426 + }, + { + "start": 2022.78, + "end": 2025.78, + "probability": 0.9533 + }, + { + "start": 2026.86, + "end": 2028.28, + "probability": 0.7988 + }, + { + "start": 2030.72, + "end": 2032.06, + "probability": 0.5586 + }, + { + "start": 2033.22, + "end": 2033.22, + "probability": 0.2369 + }, + { + "start": 2033.22, + "end": 2037.92, + "probability": 0.7827 + }, + { + "start": 2039.56, + "end": 2041.54, + "probability": 0.9175 + }, + { + "start": 2042.48, + "end": 2043.16, + "probability": 0.8181 + }, + { + "start": 2043.3, + "end": 2044.3, + "probability": 0.9743 + }, + { + "start": 2044.64, + "end": 2045.3, + "probability": 0.9039 + }, + { + "start": 2046.3, + "end": 2048.12, + "probability": 0.8487 + }, + { + "start": 2048.66, + "end": 2049.76, + "probability": 0.896 + }, + { + "start": 2050.38, + "end": 2052.1, + "probability": 0.8265 + }, + { + "start": 2052.64, + "end": 2054.16, + "probability": 0.4693 + }, + { + "start": 2054.48, + "end": 2055.86, + "probability": 0.952 + }, + { + "start": 2056.74, + "end": 2060.92, + "probability": 0.9963 + }, + { + "start": 2061.4, + "end": 2066.24, + "probability": 0.9976 + }, + { + "start": 2067.72, + "end": 2070.7, + "probability": 0.9946 + }, + { + "start": 2071.12, + "end": 2074.14, + "probability": 0.9125 + }, + { + "start": 2074.82, + "end": 2076.86, + "probability": 0.9377 + }, + { + "start": 2078.7, + "end": 2079.7, + "probability": 0.8328 + }, + { + "start": 2080.56, + "end": 2083.28, + "probability": 0.9946 + }, + { + "start": 2084.1, + "end": 2087.68, + "probability": 0.9832 + }, + { + "start": 2088.6, + "end": 2090.4, + "probability": 0.9767 + }, + { + "start": 2091.36, + "end": 2094.52, + "probability": 0.9902 + }, + { + "start": 2096.44, + "end": 2100.64, + "probability": 0.9712 + }, + { + "start": 2100.78, + "end": 2101.52, + "probability": 0.8666 + }, + { + "start": 2102.56, + "end": 2105.62, + "probability": 0.9954 + }, + { + "start": 2106.72, + "end": 2109.34, + "probability": 0.9768 + }, + { + "start": 2110.16, + "end": 2114.46, + "probability": 0.9338 + }, + { + "start": 2114.46, + "end": 2117.52, + "probability": 0.9985 + }, + { + "start": 2119.4, + "end": 2121.82, + "probability": 0.6662 + }, + { + "start": 2122.58, + "end": 2126.58, + "probability": 0.9609 + }, + { + "start": 2127.38, + "end": 2127.48, + "probability": 0.0382 + }, + { + "start": 2127.58, + "end": 2127.94, + "probability": 0.0164 + }, + { + "start": 2128.38, + "end": 2131.12, + "probability": 0.7254 + }, + { + "start": 2131.64, + "end": 2132.68, + "probability": 0.983 + }, + { + "start": 2133.5, + "end": 2135.36, + "probability": 0.8749 + }, + { + "start": 2136.24, + "end": 2137.48, + "probability": 0.9739 + }, + { + "start": 2138.0, + "end": 2140.36, + "probability": 0.9849 + }, + { + "start": 2140.48, + "end": 2143.98, + "probability": 0.9924 + }, + { + "start": 2144.5, + "end": 2146.1, + "probability": 0.998 + }, + { + "start": 2146.64, + "end": 2147.44, + "probability": 0.6392 + }, + { + "start": 2148.18, + "end": 2152.28, + "probability": 0.9737 + }, + { + "start": 2152.42, + "end": 2152.42, + "probability": 0.5434 + }, + { + "start": 2152.76, + "end": 2153.46, + "probability": 0.7986 + }, + { + "start": 2154.4, + "end": 2155.66, + "probability": 0.9924 + }, + { + "start": 2155.9, + "end": 2156.32, + "probability": 0.5998 + }, + { + "start": 2156.6, + "end": 2158.92, + "probability": 0.8864 + }, + { + "start": 2159.96, + "end": 2162.48, + "probability": 0.8473 + }, + { + "start": 2163.16, + "end": 2166.4, + "probability": 0.6089 + }, + { + "start": 2166.68, + "end": 2167.74, + "probability": 0.936 + }, + { + "start": 2168.14, + "end": 2168.46, + "probability": 0.9413 + }, + { + "start": 2168.52, + "end": 2169.6, + "probability": 0.9912 + }, + { + "start": 2170.9, + "end": 2171.0, + "probability": 0.0144 + }, + { + "start": 2171.0, + "end": 2173.14, + "probability": 0.8364 + }, + { + "start": 2173.42, + "end": 2173.66, + "probability": 0.7778 + }, + { + "start": 2174.82, + "end": 2177.46, + "probability": 0.719 + }, + { + "start": 2177.98, + "end": 2180.28, + "probability": 0.9233 + }, + { + "start": 2181.22, + "end": 2181.22, + "probability": 0.0216 + }, + { + "start": 2182.22, + "end": 2183.06, + "probability": 0.0078 + }, + { + "start": 2183.06, + "end": 2183.36, + "probability": 0.1262 + }, + { + "start": 2186.2, + "end": 2189.26, + "probability": 0.7044 + }, + { + "start": 2190.44, + "end": 2194.92, + "probability": 0.9047 + }, + { + "start": 2195.8, + "end": 2198.04, + "probability": 0.5954 + }, + { + "start": 2198.3, + "end": 2202.1, + "probability": 0.7627 + }, + { + "start": 2202.54, + "end": 2205.0, + "probability": 0.9117 + }, + { + "start": 2205.46, + "end": 2206.08, + "probability": 0.3376 + }, + { + "start": 2206.56, + "end": 2209.96, + "probability": 0.9325 + }, + { + "start": 2210.2, + "end": 2210.9, + "probability": 0.7896 + }, + { + "start": 2212.3, + "end": 2215.76, + "probability": 0.8571 + }, + { + "start": 2216.36, + "end": 2217.38, + "probability": 0.5633 + }, + { + "start": 2217.96, + "end": 2219.94, + "probability": 0.8247 + }, + { + "start": 2225.22, + "end": 2232.48, + "probability": 0.9754 + }, + { + "start": 2232.86, + "end": 2234.28, + "probability": 0.4021 + }, + { + "start": 2234.84, + "end": 2238.92, + "probability": 0.5745 + }, + { + "start": 2239.3, + "end": 2242.74, + "probability": 0.832 + }, + { + "start": 2242.74, + "end": 2245.32, + "probability": 0.9755 + }, + { + "start": 2245.96, + "end": 2248.26, + "probability": 0.9966 + }, + { + "start": 2249.2, + "end": 2252.6, + "probability": 0.9448 + }, + { + "start": 2253.1, + "end": 2253.84, + "probability": 0.8394 + }, + { + "start": 2254.04, + "end": 2254.88, + "probability": 0.8728 + }, + { + "start": 2255.1, + "end": 2257.34, + "probability": 0.9582 + }, + { + "start": 2257.7, + "end": 2261.66, + "probability": 0.9849 + }, + { + "start": 2262.58, + "end": 2263.38, + "probability": 0.4976 + }, + { + "start": 2263.58, + "end": 2264.32, + "probability": 0.796 + }, + { + "start": 2264.38, + "end": 2266.28, + "probability": 0.8233 + }, + { + "start": 2266.4, + "end": 2270.24, + "probability": 0.8477 + }, + { + "start": 2270.24, + "end": 2274.26, + "probability": 0.9238 + }, + { + "start": 2274.42, + "end": 2278.46, + "probability": 0.9935 + }, + { + "start": 2278.76, + "end": 2280.8, + "probability": 0.9202 + }, + { + "start": 2281.64, + "end": 2284.6, + "probability": 0.9927 + }, + { + "start": 2284.6, + "end": 2288.06, + "probability": 0.9278 + }, + { + "start": 2288.68, + "end": 2295.7, + "probability": 0.9744 + }, + { + "start": 2295.78, + "end": 2296.98, + "probability": 0.501 + }, + { + "start": 2297.28, + "end": 2297.28, + "probability": 0.2836 + }, + { + "start": 2297.3, + "end": 2299.4, + "probability": 0.9726 + }, + { + "start": 2299.96, + "end": 2300.92, + "probability": 0.9415 + }, + { + "start": 2301.7, + "end": 2302.3, + "probability": 0.8433 + }, + { + "start": 2302.9, + "end": 2304.96, + "probability": 0.9733 + }, + { + "start": 2305.36, + "end": 2310.36, + "probability": 0.9661 + }, + { + "start": 2310.96, + "end": 2312.12, + "probability": 0.9914 + }, + { + "start": 2312.58, + "end": 2314.74, + "probability": 0.524 + }, + { + "start": 2314.92, + "end": 2316.46, + "probability": 0.8554 + }, + { + "start": 2317.1, + "end": 2319.22, + "probability": 0.7749 + }, + { + "start": 2322.64, + "end": 2322.88, + "probability": 0.0137 + }, + { + "start": 2323.88, + "end": 2324.22, + "probability": 0.204 + }, + { + "start": 2325.64, + "end": 2326.76, + "probability": 0.0792 + }, + { + "start": 2327.4, + "end": 2329.62, + "probability": 0.1743 + }, + { + "start": 2330.4, + "end": 2330.86, + "probability": 0.2794 + }, + { + "start": 2330.86, + "end": 2331.48, + "probability": 0.2454 + }, + { + "start": 2331.64, + "end": 2332.58, + "probability": 0.0299 + }, + { + "start": 2332.6, + "end": 2332.6, + "probability": 0.0404 + }, + { + "start": 2332.6, + "end": 2332.7, + "probability": 0.0331 + }, + { + "start": 2334.48, + "end": 2336.68, + "probability": 0.4273 + }, + { + "start": 2336.7, + "end": 2339.62, + "probability": 0.79 + }, + { + "start": 2340.62, + "end": 2342.34, + "probability": 0.8737 + }, + { + "start": 2343.16, + "end": 2345.98, + "probability": 0.9852 + }, + { + "start": 2346.7, + "end": 2347.6, + "probability": 0.9567 + }, + { + "start": 2349.28, + "end": 2350.48, + "probability": 0.6667 + }, + { + "start": 2351.66, + "end": 2359.4, + "probability": 0.9844 + }, + { + "start": 2359.46, + "end": 2365.06, + "probability": 0.9495 + }, + { + "start": 2366.76, + "end": 2370.36, + "probability": 0.9648 + }, + { + "start": 2372.02, + "end": 2379.66, + "probability": 0.9901 + }, + { + "start": 2381.48, + "end": 2384.02, + "probability": 0.8977 + }, + { + "start": 2385.02, + "end": 2387.25, + "probability": 0.9955 + }, + { + "start": 2388.34, + "end": 2389.74, + "probability": 0.8162 + }, + { + "start": 2390.66, + "end": 2391.38, + "probability": 0.8705 + }, + { + "start": 2392.32, + "end": 2393.0, + "probability": 0.9702 + }, + { + "start": 2394.1, + "end": 2396.36, + "probability": 0.9671 + }, + { + "start": 2397.96, + "end": 2399.24, + "probability": 0.663 + }, + { + "start": 2399.9, + "end": 2401.32, + "probability": 0.8166 + }, + { + "start": 2402.58, + "end": 2404.16, + "probability": 0.8866 + }, + { + "start": 2405.2, + "end": 2410.76, + "probability": 0.9912 + }, + { + "start": 2412.5, + "end": 2416.16, + "probability": 0.9734 + }, + { + "start": 2417.64, + "end": 2419.06, + "probability": 0.9196 + }, + { + "start": 2419.88, + "end": 2426.24, + "probability": 0.9972 + }, + { + "start": 2427.04, + "end": 2427.28, + "probability": 0.643 + }, + { + "start": 2427.8, + "end": 2430.02, + "probability": 0.8804 + }, + { + "start": 2430.62, + "end": 2433.06, + "probability": 0.7603 + }, + { + "start": 2433.84, + "end": 2437.9, + "probability": 0.8032 + }, + { + "start": 2438.72, + "end": 2440.94, + "probability": 0.9033 + }, + { + "start": 2442.04, + "end": 2444.62, + "probability": 0.8957 + }, + { + "start": 2444.88, + "end": 2445.85, + "probability": 0.8366 + }, + { + "start": 2446.16, + "end": 2446.8, + "probability": 0.8562 + }, + { + "start": 2446.88, + "end": 2449.64, + "probability": 0.9463 + }, + { + "start": 2450.64, + "end": 2454.52, + "probability": 0.8853 + }, + { + "start": 2455.34, + "end": 2461.76, + "probability": 0.9256 + }, + { + "start": 2463.19, + "end": 2469.94, + "probability": 0.9969 + }, + { + "start": 2470.02, + "end": 2470.72, + "probability": 0.6544 + }, + { + "start": 2471.32, + "end": 2472.48, + "probability": 0.6643 + }, + { + "start": 2473.14, + "end": 2480.34, + "probability": 0.9271 + }, + { + "start": 2481.26, + "end": 2481.26, + "probability": 0.0282 + }, + { + "start": 2481.26, + "end": 2481.68, + "probability": 0.4446 + }, + { + "start": 2481.76, + "end": 2482.4, + "probability": 0.7129 + }, + { + "start": 2482.48, + "end": 2485.84, + "probability": 0.9328 + }, + { + "start": 2487.16, + "end": 2495.26, + "probability": 0.8496 + }, + { + "start": 2496.04, + "end": 2498.14, + "probability": 0.8697 + }, + { + "start": 2498.92, + "end": 2503.26, + "probability": 0.9976 + }, + { + "start": 2503.84, + "end": 2504.58, + "probability": 0.7017 + }, + { + "start": 2505.1, + "end": 2508.34, + "probability": 0.8779 + }, + { + "start": 2509.9, + "end": 2511.18, + "probability": 0.5138 + }, + { + "start": 2511.26, + "end": 2517.28, + "probability": 0.9761 + }, + { + "start": 2518.0, + "end": 2519.28, + "probability": 0.971 + }, + { + "start": 2519.8, + "end": 2522.22, + "probability": 0.8494 + }, + { + "start": 2522.84, + "end": 2527.52, + "probability": 0.8962 + }, + { + "start": 2527.54, + "end": 2529.7, + "probability": 0.7803 + }, + { + "start": 2531.86, + "end": 2535.4, + "probability": 0.8102 + }, + { + "start": 2535.44, + "end": 2536.9, + "probability": 0.9362 + }, + { + "start": 2536.9, + "end": 2537.62, + "probability": 0.5707 + }, + { + "start": 2537.76, + "end": 2538.22, + "probability": 0.6691 + }, + { + "start": 2538.72, + "end": 2539.8, + "probability": 0.5669 + }, + { + "start": 2540.2, + "end": 2544.18, + "probability": 0.8823 + }, + { + "start": 2544.2, + "end": 2545.14, + "probability": 0.6013 + }, + { + "start": 2548.76, + "end": 2549.76, + "probability": 0.37 + }, + { + "start": 2550.6, + "end": 2551.54, + "probability": 0.9064 + }, + { + "start": 2552.3, + "end": 2553.39, + "probability": 0.9072 + }, + { + "start": 2554.1, + "end": 2557.74, + "probability": 0.993 + }, + { + "start": 2557.74, + "end": 2561.14, + "probability": 0.9964 + }, + { + "start": 2561.54, + "end": 2562.92, + "probability": 0.8491 + }, + { + "start": 2563.66, + "end": 2565.86, + "probability": 0.9191 + }, + { + "start": 2566.32, + "end": 2570.96, + "probability": 0.9326 + }, + { + "start": 2571.62, + "end": 2576.34, + "probability": 0.9561 + }, + { + "start": 2577.2, + "end": 2577.74, + "probability": 0.8636 + }, + { + "start": 2578.3, + "end": 2579.64, + "probability": 0.9767 + }, + { + "start": 2579.74, + "end": 2581.24, + "probability": 0.8237 + }, + { + "start": 2581.38, + "end": 2583.64, + "probability": 0.8246 + }, + { + "start": 2583.9, + "end": 2587.96, + "probability": 0.9853 + }, + { + "start": 2588.34, + "end": 2590.16, + "probability": 0.7971 + }, + { + "start": 2591.18, + "end": 2594.18, + "probability": 0.8364 + }, + { + "start": 2595.76, + "end": 2598.72, + "probability": 0.9056 + }, + { + "start": 2599.42, + "end": 2601.04, + "probability": 0.9922 + }, + { + "start": 2601.92, + "end": 2606.54, + "probability": 0.9731 + }, + { + "start": 2607.24, + "end": 2609.68, + "probability": 0.9849 + }, + { + "start": 2610.5, + "end": 2615.68, + "probability": 0.9921 + }, + { + "start": 2616.36, + "end": 2619.04, + "probability": 0.9663 + }, + { + "start": 2619.82, + "end": 2625.54, + "probability": 0.9945 + }, + { + "start": 2626.18, + "end": 2628.82, + "probability": 0.952 + }, + { + "start": 2629.36, + "end": 2633.04, + "probability": 0.9847 + }, + { + "start": 2633.74, + "end": 2636.94, + "probability": 0.9966 + }, + { + "start": 2636.94, + "end": 2640.12, + "probability": 0.9974 + }, + { + "start": 2641.02, + "end": 2646.02, + "probability": 0.9801 + }, + { + "start": 2646.66, + "end": 2650.1, + "probability": 0.9953 + }, + { + "start": 2650.7, + "end": 2651.88, + "probability": 0.9951 + }, + { + "start": 2652.76, + "end": 2655.4, + "probability": 0.9914 + }, + { + "start": 2656.26, + "end": 2657.84, + "probability": 0.9198 + }, + { + "start": 2658.42, + "end": 2658.84, + "probability": 0.8318 + }, + { + "start": 2659.82, + "end": 2662.32, + "probability": 0.903 + }, + { + "start": 2662.82, + "end": 2664.5, + "probability": 0.9959 + }, + { + "start": 2664.86, + "end": 2665.49, + "probability": 0.9757 + }, + { + "start": 2666.34, + "end": 2667.92, + "probability": 0.9753 + }, + { + "start": 2668.42, + "end": 2670.72, + "probability": 0.9903 + }, + { + "start": 2671.58, + "end": 2673.84, + "probability": 0.9893 + }, + { + "start": 2674.6, + "end": 2679.78, + "probability": 0.7153 + }, + { + "start": 2680.38, + "end": 2683.28, + "probability": 0.8342 + }, + { + "start": 2684.4, + "end": 2686.46, + "probability": 0.8537 + }, + { + "start": 2688.0, + "end": 2691.38, + "probability": 0.8526 + }, + { + "start": 2691.48, + "end": 2693.46, + "probability": 0.8884 + }, + { + "start": 2694.54, + "end": 2695.92, + "probability": 0.6415 + }, + { + "start": 2696.02, + "end": 2696.74, + "probability": 0.8629 + }, + { + "start": 2696.94, + "end": 2703.74, + "probability": 0.9937 + }, + { + "start": 2704.18, + "end": 2705.88, + "probability": 0.6377 + }, + { + "start": 2706.54, + "end": 2708.78, + "probability": 0.9639 + }, + { + "start": 2710.24, + "end": 2713.06, + "probability": 0.9973 + }, + { + "start": 2714.1, + "end": 2720.38, + "probability": 0.9902 + }, + { + "start": 2721.06, + "end": 2722.28, + "probability": 0.9917 + }, + { + "start": 2723.04, + "end": 2727.74, + "probability": 0.9568 + }, + { + "start": 2728.68, + "end": 2735.24, + "probability": 0.9268 + }, + { + "start": 2735.78, + "end": 2736.62, + "probability": 0.6036 + }, + { + "start": 2737.28, + "end": 2741.38, + "probability": 0.9479 + }, + { + "start": 2741.38, + "end": 2745.66, + "probability": 0.9757 + }, + { + "start": 2746.02, + "end": 2749.5, + "probability": 0.8391 + }, + { + "start": 2749.5, + "end": 2753.56, + "probability": 0.9948 + }, + { + "start": 2754.26, + "end": 2761.9, + "probability": 0.8965 + }, + { + "start": 2762.5, + "end": 2764.0, + "probability": 0.9804 + }, + { + "start": 2766.24, + "end": 2768.81, + "probability": 0.7549 + }, + { + "start": 2769.68, + "end": 2771.02, + "probability": 0.6796 + }, + { + "start": 2771.7, + "end": 2772.5, + "probability": 0.4464 + }, + { + "start": 2772.62, + "end": 2775.26, + "probability": 0.8421 + }, + { + "start": 2779.62, + "end": 2781.56, + "probability": 0.9924 + }, + { + "start": 2781.66, + "end": 2785.86, + "probability": 0.9795 + }, + { + "start": 2785.98, + "end": 2791.68, + "probability": 0.8652 + }, + { + "start": 2792.5, + "end": 2798.56, + "probability": 0.9618 + }, + { + "start": 2799.75, + "end": 2807.12, + "probability": 0.9612 + }, + { + "start": 2808.06, + "end": 2811.4, + "probability": 0.9971 + }, + { + "start": 2811.4, + "end": 2815.76, + "probability": 0.948 + }, + { + "start": 2815.96, + "end": 2816.68, + "probability": 0.8184 + }, + { + "start": 2817.14, + "end": 2818.0, + "probability": 0.6855 + }, + { + "start": 2818.6, + "end": 2825.08, + "probability": 0.9423 + }, + { + "start": 2825.72, + "end": 2827.7, + "probability": 0.8617 + }, + { + "start": 2828.52, + "end": 2830.5, + "probability": 0.9212 + }, + { + "start": 2830.8, + "end": 2833.06, + "probability": 0.9248 + }, + { + "start": 2833.66, + "end": 2834.66, + "probability": 0.9255 + }, + { + "start": 2834.84, + "end": 2836.02, + "probability": 0.9823 + }, + { + "start": 2836.24, + "end": 2841.44, + "probability": 0.8496 + }, + { + "start": 2841.48, + "end": 2844.38, + "probability": 0.9875 + }, + { + "start": 2844.82, + "end": 2848.9, + "probability": 0.9959 + }, + { + "start": 2848.9, + "end": 2852.84, + "probability": 0.9978 + }, + { + "start": 2853.36, + "end": 2856.86, + "probability": 0.8525 + }, + { + "start": 2857.12, + "end": 2858.86, + "probability": 0.9961 + }, + { + "start": 2859.3, + "end": 2862.98, + "probability": 0.9987 + }, + { + "start": 2862.98, + "end": 2868.98, + "probability": 0.9988 + }, + { + "start": 2869.2, + "end": 2870.92, + "probability": 0.8412 + }, + { + "start": 2871.4, + "end": 2875.14, + "probability": 0.9875 + }, + { + "start": 2876.5, + "end": 2879.3, + "probability": 0.7037 + }, + { + "start": 2879.74, + "end": 2882.06, + "probability": 0.9233 + }, + { + "start": 2882.88, + "end": 2883.52, + "probability": 0.3708 + }, + { + "start": 2883.7, + "end": 2886.38, + "probability": 0.9167 + }, + { + "start": 2887.64, + "end": 2888.0, + "probability": 0.6016 + }, + { + "start": 2888.8, + "end": 2890.14, + "probability": 0.7387 + }, + { + "start": 2890.88, + "end": 2893.58, + "probability": 0.9305 + }, + { + "start": 2894.32, + "end": 2897.06, + "probability": 0.9731 + }, + { + "start": 2897.28, + "end": 2901.56, + "probability": 0.8775 + }, + { + "start": 2901.66, + "end": 2904.78, + "probability": 0.9302 + }, + { + "start": 2904.98, + "end": 2905.64, + "probability": 0.6632 + }, + { + "start": 2906.4, + "end": 2907.06, + "probability": 0.987 + }, + { + "start": 2907.24, + "end": 2908.38, + "probability": 0.962 + }, + { + "start": 2908.52, + "end": 2909.06, + "probability": 0.782 + }, + { + "start": 2909.24, + "end": 2911.42, + "probability": 0.9807 + }, + { + "start": 2911.94, + "end": 2913.82, + "probability": 0.9773 + }, + { + "start": 2914.4, + "end": 2917.74, + "probability": 0.9166 + }, + { + "start": 2918.3, + "end": 2920.2, + "probability": 0.9677 + }, + { + "start": 2920.42, + "end": 2921.42, + "probability": 0.8301 + }, + { + "start": 2921.58, + "end": 2922.76, + "probability": 0.948 + }, + { + "start": 2922.82, + "end": 2924.36, + "probability": 0.9827 + }, + { + "start": 2925.02, + "end": 2925.66, + "probability": 0.9051 + }, + { + "start": 2925.8, + "end": 2925.9, + "probability": 0.6307 + }, + { + "start": 2925.96, + "end": 2928.46, + "probability": 0.9905 + }, + { + "start": 2929.04, + "end": 2932.18, + "probability": 0.9905 + }, + { + "start": 2932.18, + "end": 2935.26, + "probability": 0.9905 + }, + { + "start": 2935.8, + "end": 2937.32, + "probability": 0.9402 + }, + { + "start": 2937.5, + "end": 2940.36, + "probability": 0.9749 + }, + { + "start": 2940.36, + "end": 2942.88, + "probability": 0.7662 + }, + { + "start": 2943.38, + "end": 2944.46, + "probability": 0.9127 + }, + { + "start": 2944.58, + "end": 2945.52, + "probability": 0.9849 + }, + { + "start": 2946.28, + "end": 2946.92, + "probability": 0.603 + }, + { + "start": 2947.18, + "end": 2949.2, + "probability": 0.9759 + }, + { + "start": 2949.3, + "end": 2950.26, + "probability": 0.9068 + }, + { + "start": 2950.32, + "end": 2955.42, + "probability": 0.9968 + }, + { + "start": 2955.42, + "end": 2958.5, + "probability": 0.9932 + }, + { + "start": 2959.82, + "end": 2960.5, + "probability": 0.8539 + }, + { + "start": 2960.66, + "end": 2964.3, + "probability": 0.9716 + }, + { + "start": 2964.3, + "end": 2967.34, + "probability": 0.9875 + }, + { + "start": 2967.52, + "end": 2968.47, + "probability": 0.7353 + }, + { + "start": 2968.9, + "end": 2970.88, + "probability": 0.9906 + }, + { + "start": 2970.88, + "end": 2973.46, + "probability": 0.943 + }, + { + "start": 2973.92, + "end": 2976.26, + "probability": 0.9556 + }, + { + "start": 2976.26, + "end": 2980.32, + "probability": 0.9933 + }, + { + "start": 2980.78, + "end": 2981.3, + "probability": 0.76 + }, + { + "start": 2981.42, + "end": 2982.74, + "probability": 0.9893 + }, + { + "start": 2983.16, + "end": 2984.62, + "probability": 0.9575 + }, + { + "start": 2985.3, + "end": 2987.58, + "probability": 0.9961 + }, + { + "start": 2987.66, + "end": 2988.46, + "probability": 0.7778 + }, + { + "start": 2988.56, + "end": 2989.12, + "probability": 0.9355 + }, + { + "start": 2989.42, + "end": 2991.5, + "probability": 0.9727 + }, + { + "start": 2991.5, + "end": 2993.82, + "probability": 0.996 + }, + { + "start": 2994.34, + "end": 2994.54, + "probability": 0.6166 + }, + { + "start": 2995.1, + "end": 2997.08, + "probability": 0.5048 + }, + { + "start": 2997.22, + "end": 2999.98, + "probability": 0.7964 + }, + { + "start": 3004.28, + "end": 3008.34, + "probability": 0.9752 + }, + { + "start": 3010.32, + "end": 3013.7, + "probability": 0.9855 + }, + { + "start": 3013.8, + "end": 3017.94, + "probability": 0.9795 + }, + { + "start": 3018.72, + "end": 3021.04, + "probability": 0.6827 + }, + { + "start": 3021.82, + "end": 3028.78, + "probability": 0.9746 + }, + { + "start": 3029.46, + "end": 3033.32, + "probability": 0.578 + }, + { + "start": 3033.36, + "end": 3037.34, + "probability": 0.8907 + }, + { + "start": 3037.9, + "end": 3041.42, + "probability": 0.8583 + }, + { + "start": 3042.14, + "end": 3043.78, + "probability": 0.9925 + }, + { + "start": 3044.34, + "end": 3049.16, + "probability": 0.981 + }, + { + "start": 3049.8, + "end": 3058.16, + "probability": 0.9972 + }, + { + "start": 3059.0, + "end": 3060.18, + "probability": 0.8836 + }, + { + "start": 3061.3, + "end": 3066.0, + "probability": 0.9839 + }, + { + "start": 3066.64, + "end": 3067.46, + "probability": 0.759 + }, + { + "start": 3068.2, + "end": 3072.99, + "probability": 0.9447 + }, + { + "start": 3074.54, + "end": 3079.95, + "probability": 0.9695 + }, + { + "start": 3080.78, + "end": 3086.52, + "probability": 0.9957 + }, + { + "start": 3087.22, + "end": 3089.32, + "probability": 0.4095 + }, + { + "start": 3089.32, + "end": 3089.52, + "probability": 0.5415 + }, + { + "start": 3089.54, + "end": 3097.01, + "probability": 0.8104 + }, + { + "start": 3097.88, + "end": 3098.72, + "probability": 0.0035 + }, + { + "start": 3099.48, + "end": 3101.88, + "probability": 0.1187 + }, + { + "start": 3101.88, + "end": 3102.96, + "probability": 0.0287 + }, + { + "start": 3104.08, + "end": 3104.74, + "probability": 0.0217 + }, + { + "start": 3104.74, + "end": 3107.47, + "probability": 0.1039 + }, + { + "start": 3109.04, + "end": 3111.66, + "probability": 0.0357 + }, + { + "start": 3111.66, + "end": 3111.66, + "probability": 0.0277 + }, + { + "start": 3111.66, + "end": 3114.18, + "probability": 0.0619 + }, + { + "start": 3115.66, + "end": 3117.22, + "probability": 0.0508 + }, + { + "start": 3118.84, + "end": 3118.94, + "probability": 0.0635 + }, + { + "start": 3120.24, + "end": 3122.32, + "probability": 0.598 + }, + { + "start": 3122.48, + "end": 3124.34, + "probability": 0.9569 + }, + { + "start": 3124.96, + "end": 3126.38, + "probability": 0.9167 + }, + { + "start": 3127.28, + "end": 3129.1, + "probability": 0.6421 + }, + { + "start": 3132.18, + "end": 3132.24, + "probability": 0.027 + }, + { + "start": 3132.24, + "end": 3132.24, + "probability": 0.1948 + }, + { + "start": 3132.24, + "end": 3132.24, + "probability": 0.2651 + }, + { + "start": 3132.24, + "end": 3132.24, + "probability": 0.3123 + }, + { + "start": 3132.24, + "end": 3132.24, + "probability": 0.2909 + }, + { + "start": 3132.24, + "end": 3132.24, + "probability": 0.3992 + }, + { + "start": 3132.24, + "end": 3132.24, + "probability": 0.0904 + }, + { + "start": 3132.24, + "end": 3137.44, + "probability": 0.9213 + }, + { + "start": 3138.28, + "end": 3138.96, + "probability": 0.5078 + }, + { + "start": 3139.44, + "end": 3145.04, + "probability": 0.7891 + }, + { + "start": 3145.84, + "end": 3150.44, + "probability": 0.985 + }, + { + "start": 3158.26, + "end": 3159.76, + "probability": 0.9969 + }, + { + "start": 3161.54, + "end": 3166.74, + "probability": 0.7969 + }, + { + "start": 3167.22, + "end": 3170.92, + "probability": 0.8393 + }, + { + "start": 3172.12, + "end": 3176.72, + "probability": 0.9781 + }, + { + "start": 3177.54, + "end": 3180.28, + "probability": 0.978 + }, + { + "start": 3181.02, + "end": 3183.88, + "probability": 0.9863 + }, + { + "start": 3184.48, + "end": 3187.96, + "probability": 0.9677 + }, + { + "start": 3189.18, + "end": 3189.36, + "probability": 0.4118 + }, + { + "start": 3189.54, + "end": 3191.16, + "probability": 0.9801 + }, + { + "start": 3191.6, + "end": 3195.22, + "probability": 0.8507 + }, + { + "start": 3196.02, + "end": 3196.32, + "probability": 0.384 + }, + { + "start": 3196.8, + "end": 3197.0, + "probability": 0.9165 + }, + { + "start": 3197.22, + "end": 3199.44, + "probability": 0.8568 + }, + { + "start": 3199.78, + "end": 3204.44, + "probability": 0.9659 + }, + { + "start": 3205.74, + "end": 3208.54, + "probability": 0.9954 + }, + { + "start": 3208.9, + "end": 3209.62, + "probability": 0.7444 + }, + { + "start": 3209.8, + "end": 3211.2, + "probability": 0.7336 + }, + { + "start": 3211.92, + "end": 3216.9, + "probability": 0.9889 + }, + { + "start": 3217.64, + "end": 3221.94, + "probability": 0.9942 + }, + { + "start": 3223.18, + "end": 3225.0, + "probability": 0.7991 + }, + { + "start": 3225.38, + "end": 3229.5, + "probability": 0.8309 + }, + { + "start": 3230.28, + "end": 3236.92, + "probability": 0.9663 + }, + { + "start": 3238.26, + "end": 3242.2, + "probability": 0.9694 + }, + { + "start": 3243.44, + "end": 3245.8, + "probability": 0.7635 + }, + { + "start": 3246.88, + "end": 3249.7, + "probability": 0.9929 + }, + { + "start": 3249.7, + "end": 3252.9, + "probability": 0.9095 + }, + { + "start": 3253.42, + "end": 3255.92, + "probability": 0.887 + }, + { + "start": 3256.92, + "end": 3257.8, + "probability": 0.8785 + }, + { + "start": 3259.14, + "end": 3261.08, + "probability": 0.9961 + }, + { + "start": 3261.6, + "end": 3264.86, + "probability": 0.9985 + }, + { + "start": 3265.3, + "end": 3270.34, + "probability": 0.9699 + }, + { + "start": 3271.96, + "end": 3272.92, + "probability": 0.7757 + }, + { + "start": 3274.68, + "end": 3277.02, + "probability": 0.9868 + }, + { + "start": 3277.8, + "end": 3279.72, + "probability": 0.8847 + }, + { + "start": 3280.52, + "end": 3285.74, + "probability": 0.9776 + }, + { + "start": 3286.82, + "end": 3292.94, + "probability": 0.933 + }, + { + "start": 3293.6, + "end": 3297.46, + "probability": 0.776 + }, + { + "start": 3298.26, + "end": 3306.58, + "probability": 0.873 + }, + { + "start": 3307.26, + "end": 3313.22, + "probability": 0.9937 + }, + { + "start": 3314.48, + "end": 3316.12, + "probability": 0.6175 + }, + { + "start": 3316.7, + "end": 3318.3, + "probability": 0.7502 + }, + { + "start": 3318.92, + "end": 3323.4, + "probability": 0.9877 + }, + { + "start": 3323.94, + "end": 3324.65, + "probability": 0.9897 + }, + { + "start": 3325.62, + "end": 3326.42, + "probability": 0.9035 + }, + { + "start": 3327.02, + "end": 3331.64, + "probability": 0.9811 + }, + { + "start": 3332.9, + "end": 3336.94, + "probability": 0.9913 + }, + { + "start": 3337.06, + "end": 3342.3, + "probability": 0.9971 + }, + { + "start": 3343.18, + "end": 3343.8, + "probability": 0.9146 + }, + { + "start": 3344.76, + "end": 3345.44, + "probability": 0.806 + }, + { + "start": 3345.88, + "end": 3350.08, + "probability": 0.957 + }, + { + "start": 3351.58, + "end": 3352.72, + "probability": 0.4922 + }, + { + "start": 3353.64, + "end": 3354.68, + "probability": 0.7083 + }, + { + "start": 3355.34, + "end": 3362.44, + "probability": 0.9831 + }, + { + "start": 3364.56, + "end": 3367.23, + "probability": 0.9872 + }, + { + "start": 3367.9, + "end": 3372.6, + "probability": 0.9785 + }, + { + "start": 3373.3, + "end": 3379.64, + "probability": 0.9393 + }, + { + "start": 3380.2, + "end": 3386.92, + "probability": 0.9784 + }, + { + "start": 3388.5, + "end": 3394.32, + "probability": 0.9595 + }, + { + "start": 3394.32, + "end": 3399.0, + "probability": 0.9982 + }, + { + "start": 3399.48, + "end": 3405.8, + "probability": 0.9919 + }, + { + "start": 3408.3, + "end": 3409.58, + "probability": 0.6546 + }, + { + "start": 3409.78, + "end": 3412.24, + "probability": 0.6629 + }, + { + "start": 3412.82, + "end": 3415.92, + "probability": 0.9802 + }, + { + "start": 3416.3, + "end": 3419.26, + "probability": 0.9853 + }, + { + "start": 3419.72, + "end": 3422.6, + "probability": 0.9644 + }, + { + "start": 3422.62, + "end": 3423.06, + "probability": 0.7408 + }, + { + "start": 3423.12, + "end": 3423.48, + "probability": 0.2699 + }, + { + "start": 3424.06, + "end": 3425.76, + "probability": 0.9653 + }, + { + "start": 3428.0, + "end": 3431.4, + "probability": 0.9591 + }, + { + "start": 3434.44, + "end": 3436.4, + "probability": 0.9593 + }, + { + "start": 3444.82, + "end": 3445.8, + "probability": 0.7731 + }, + { + "start": 3445.96, + "end": 3448.12, + "probability": 0.9976 + }, + { + "start": 3449.38, + "end": 3451.9, + "probability": 0.8724 + }, + { + "start": 3454.64, + "end": 3456.56, + "probability": 0.9719 + }, + { + "start": 3457.34, + "end": 3463.64, + "probability": 0.9237 + }, + { + "start": 3464.36, + "end": 3466.08, + "probability": 0.8457 + }, + { + "start": 3466.76, + "end": 3468.98, + "probability": 0.8143 + }, + { + "start": 3469.88, + "end": 3470.98, + "probability": 0.538 + }, + { + "start": 3471.48, + "end": 3476.94, + "probability": 0.7911 + }, + { + "start": 3477.62, + "end": 3481.14, + "probability": 0.899 + }, + { + "start": 3482.36, + "end": 3483.18, + "probability": 0.3181 + }, + { + "start": 3483.26, + "end": 3484.66, + "probability": 0.3168 + }, + { + "start": 3484.8, + "end": 3486.46, + "probability": 0.6866 + }, + { + "start": 3486.86, + "end": 3487.76, + "probability": 0.5304 + }, + { + "start": 3488.32, + "end": 3490.36, + "probability": 0.6433 + }, + { + "start": 3491.56, + "end": 3494.74, + "probability": 0.9211 + }, + { + "start": 3495.26, + "end": 3497.52, + "probability": 0.7562 + }, + { + "start": 3497.64, + "end": 3499.64, + "probability": 0.9429 + }, + { + "start": 3500.12, + "end": 3503.54, + "probability": 0.8887 + }, + { + "start": 3503.62, + "end": 3504.32, + "probability": 0.8514 + }, + { + "start": 3510.66, + "end": 3512.55, + "probability": 0.8138 + }, + { + "start": 3513.26, + "end": 3516.3, + "probability": 0.8566 + }, + { + "start": 3517.62, + "end": 3517.84, + "probability": 0.1276 + }, + { + "start": 3519.02, + "end": 3520.94, + "probability": 0.1802 + }, + { + "start": 3521.72, + "end": 3524.02, + "probability": 0.7946 + }, + { + "start": 3524.92, + "end": 3525.64, + "probability": 0.9863 + }, + { + "start": 3527.04, + "end": 3528.27, + "probability": 0.9885 + }, + { + "start": 3529.22, + "end": 3531.08, + "probability": 0.783 + }, + { + "start": 3532.1, + "end": 3538.98, + "probability": 0.8562 + }, + { + "start": 3539.28, + "end": 3542.68, + "probability": 0.8753 + }, + { + "start": 3542.88, + "end": 3543.28, + "probability": 0.9302 + }, + { + "start": 3543.4, + "end": 3543.78, + "probability": 0.8757 + }, + { + "start": 3543.9, + "end": 3544.7, + "probability": 0.9282 + }, + { + "start": 3544.74, + "end": 3545.86, + "probability": 0.7918 + }, + { + "start": 3546.94, + "end": 3549.6, + "probability": 0.9814 + }, + { + "start": 3551.4, + "end": 3554.78, + "probability": 0.7762 + }, + { + "start": 3556.84, + "end": 3558.7, + "probability": 0.9656 + }, + { + "start": 3559.48, + "end": 3560.68, + "probability": 0.9792 + }, + { + "start": 3561.94, + "end": 3563.1, + "probability": 0.9654 + }, + { + "start": 3564.62, + "end": 3567.62, + "probability": 0.9958 + }, + { + "start": 3567.62, + "end": 3571.06, + "probability": 0.9871 + }, + { + "start": 3572.54, + "end": 3575.5, + "probability": 0.7963 + }, + { + "start": 3576.04, + "end": 3577.8, + "probability": 0.9443 + }, + { + "start": 3578.84, + "end": 3580.54, + "probability": 0.9722 + }, + { + "start": 3581.6, + "end": 3583.72, + "probability": 0.9321 + }, + { + "start": 3584.52, + "end": 3585.04, + "probability": 0.4994 + }, + { + "start": 3585.26, + "end": 3593.08, + "probability": 0.9967 + }, + { + "start": 3593.92, + "end": 3598.88, + "probability": 0.8086 + }, + { + "start": 3600.2, + "end": 3602.78, + "probability": 0.999 + }, + { + "start": 3604.06, + "end": 3607.08, + "probability": 0.9895 + }, + { + "start": 3607.44, + "end": 3611.46, + "probability": 0.8888 + }, + { + "start": 3613.62, + "end": 3615.94, + "probability": 0.843 + }, + { + "start": 3618.24, + "end": 3619.41, + "probability": 0.9504 + }, + { + "start": 3620.5, + "end": 3621.86, + "probability": 0.9836 + }, + { + "start": 3623.14, + "end": 3623.94, + "probability": 0.9622 + }, + { + "start": 3625.1, + "end": 3625.98, + "probability": 0.5824 + }, + { + "start": 3627.1, + "end": 3630.6, + "probability": 0.9961 + }, + { + "start": 3630.6, + "end": 3634.08, + "probability": 0.9642 + }, + { + "start": 3636.12, + "end": 3637.22, + "probability": 0.5874 + }, + { + "start": 3638.88, + "end": 3643.3, + "probability": 0.9896 + }, + { + "start": 3643.96, + "end": 3646.12, + "probability": 0.9438 + }, + { + "start": 3647.1, + "end": 3649.06, + "probability": 0.9517 + }, + { + "start": 3651.42, + "end": 3654.85, + "probability": 0.8589 + }, + { + "start": 3655.56, + "end": 3657.76, + "probability": 0.9307 + }, + { + "start": 3658.28, + "end": 3661.32, + "probability": 0.927 + }, + { + "start": 3662.86, + "end": 3667.0, + "probability": 0.9788 + }, + { + "start": 3667.94, + "end": 3671.26, + "probability": 0.5185 + }, + { + "start": 3672.56, + "end": 3675.82, + "probability": 0.9896 + }, + { + "start": 3676.22, + "end": 3677.22, + "probability": 0.8329 + }, + { + "start": 3677.72, + "end": 3678.48, + "probability": 0.8728 + }, + { + "start": 3678.72, + "end": 3680.82, + "probability": 0.9891 + }, + { + "start": 3683.0, + "end": 3684.08, + "probability": 0.9712 + }, + { + "start": 3685.0, + "end": 3689.3, + "probability": 0.991 + }, + { + "start": 3690.56, + "end": 3693.04, + "probability": 0.8503 + }, + { + "start": 3693.04, + "end": 3698.78, + "probability": 0.9317 + }, + { + "start": 3700.74, + "end": 3704.08, + "probability": 0.8164 + }, + { + "start": 3704.9, + "end": 3708.76, + "probability": 0.9827 + }, + { + "start": 3709.38, + "end": 3712.64, + "probability": 0.9041 + }, + { + "start": 3714.12, + "end": 3714.28, + "probability": 0.6789 + }, + { + "start": 3714.88, + "end": 3714.98, + "probability": 0.9987 + }, + { + "start": 3715.66, + "end": 3716.82, + "probability": 0.9709 + }, + { + "start": 3718.34, + "end": 3719.8, + "probability": 0.7941 + }, + { + "start": 3721.44, + "end": 3724.54, + "probability": 0.9879 + }, + { + "start": 3727.94, + "end": 3732.8, + "probability": 0.9969 + }, + { + "start": 3735.16, + "end": 3736.46, + "probability": 0.9385 + }, + { + "start": 3738.69, + "end": 3743.14, + "probability": 0.6855 + }, + { + "start": 3743.66, + "end": 3745.4, + "probability": 0.9787 + }, + { + "start": 3748.18, + "end": 3749.84, + "probability": 0.9914 + }, + { + "start": 3751.2, + "end": 3753.32, + "probability": 0.8818 + }, + { + "start": 3753.44, + "end": 3756.42, + "probability": 0.7854 + }, + { + "start": 3757.44, + "end": 3759.9, + "probability": 0.8223 + }, + { + "start": 3762.34, + "end": 3767.46, + "probability": 0.8993 + }, + { + "start": 3768.18, + "end": 3771.68, + "probability": 0.9708 + }, + { + "start": 3772.4, + "end": 3775.62, + "probability": 0.9973 + }, + { + "start": 3775.82, + "end": 3776.26, + "probability": 0.7308 + }, + { + "start": 3778.2, + "end": 3780.56, + "probability": 0.8558 + }, + { + "start": 3780.88, + "end": 3782.74, + "probability": 0.9808 + }, + { + "start": 3790.34, + "end": 3792.52, + "probability": 0.4859 + }, + { + "start": 3793.88, + "end": 3800.34, + "probability": 0.6305 + }, + { + "start": 3801.62, + "end": 3802.42, + "probability": 0.5188 + }, + { + "start": 3803.34, + "end": 3805.77, + "probability": 0.7313 + }, + { + "start": 3805.96, + "end": 3806.44, + "probability": 0.6903 + }, + { + "start": 3806.56, + "end": 3807.0, + "probability": 0.3345 + }, + { + "start": 3807.14, + "end": 3809.46, + "probability": 0.8028 + }, + { + "start": 3810.72, + "end": 3815.34, + "probability": 0.8459 + }, + { + "start": 3819.22, + "end": 3823.56, + "probability": 0.7076 + }, + { + "start": 3823.7, + "end": 3826.1, + "probability": 0.9829 + }, + { + "start": 3827.34, + "end": 3829.2, + "probability": 0.9976 + }, + { + "start": 3830.4, + "end": 3833.66, + "probability": 0.9848 + }, + { + "start": 3835.55, + "end": 3838.92, + "probability": 0.9729 + }, + { + "start": 3840.44, + "end": 3841.34, + "probability": 0.8935 + }, + { + "start": 3842.74, + "end": 3844.74, + "probability": 0.9781 + }, + { + "start": 3845.42, + "end": 3847.28, + "probability": 0.8738 + }, + { + "start": 3847.48, + "end": 3850.0, + "probability": 0.9988 + }, + { + "start": 3850.06, + "end": 3850.74, + "probability": 0.7492 + }, + { + "start": 3851.28, + "end": 3853.14, + "probability": 0.7709 + }, + { + "start": 3854.76, + "end": 3859.98, + "probability": 0.9714 + }, + { + "start": 3860.92, + "end": 3861.9, + "probability": 0.8549 + }, + { + "start": 3862.1, + "end": 3864.02, + "probability": 0.644 + }, + { + "start": 3864.12, + "end": 3866.56, + "probability": 0.9244 + }, + { + "start": 3867.76, + "end": 3868.82, + "probability": 0.8712 + }, + { + "start": 3868.92, + "end": 3871.52, + "probability": 0.9918 + }, + { + "start": 3872.24, + "end": 3876.76, + "probability": 0.9513 + }, + { + "start": 3878.48, + "end": 3879.74, + "probability": 0.7973 + }, + { + "start": 3880.22, + "end": 3883.26, + "probability": 0.8538 + }, + { + "start": 3884.18, + "end": 3885.96, + "probability": 0.9729 + }, + { + "start": 3886.78, + "end": 3891.28, + "probability": 0.9865 + }, + { + "start": 3891.84, + "end": 3893.68, + "probability": 0.8832 + }, + { + "start": 3894.26, + "end": 3897.1, + "probability": 0.9532 + }, + { + "start": 3897.32, + "end": 3900.08, + "probability": 0.885 + }, + { + "start": 3900.68, + "end": 3902.2, + "probability": 0.9277 + }, + { + "start": 3902.5, + "end": 3904.12, + "probability": 0.8163 + }, + { + "start": 3904.18, + "end": 3904.76, + "probability": 0.9852 + }, + { + "start": 3908.64, + "end": 3914.7, + "probability": 0.8445 + }, + { + "start": 3915.22, + "end": 3916.2, + "probability": 0.9251 + }, + { + "start": 3917.32, + "end": 3921.4, + "probability": 0.9595 + }, + { + "start": 3923.24, + "end": 3928.36, + "probability": 0.9169 + }, + { + "start": 3928.42, + "end": 3928.66, + "probability": 0.3166 + }, + { + "start": 3928.7, + "end": 3929.56, + "probability": 0.6084 + }, + { + "start": 3930.54, + "end": 3933.42, + "probability": 0.9393 + }, + { + "start": 3934.72, + "end": 3936.06, + "probability": 0.8413 + }, + { + "start": 3936.72, + "end": 3940.48, + "probability": 0.9445 + }, + { + "start": 3941.14, + "end": 3941.54, + "probability": 0.9498 + }, + { + "start": 3942.96, + "end": 3943.94, + "probability": 0.7712 + }, + { + "start": 3944.6, + "end": 3945.6, + "probability": 0.8741 + }, + { + "start": 3945.98, + "end": 3947.28, + "probability": 0.6229 + }, + { + "start": 3947.38, + "end": 3948.06, + "probability": 0.3854 + }, + { + "start": 3948.16, + "end": 3949.02, + "probability": 0.8051 + }, + { + "start": 3949.44, + "end": 3950.1, + "probability": 0.8347 + }, + { + "start": 3950.16, + "end": 3950.98, + "probability": 0.7717 + }, + { + "start": 3951.56, + "end": 3952.5, + "probability": 0.9136 + }, + { + "start": 3952.92, + "end": 3958.62, + "probability": 0.8844 + }, + { + "start": 3959.88, + "end": 3962.98, + "probability": 0.993 + }, + { + "start": 3964.18, + "end": 3967.86, + "probability": 0.9697 + }, + { + "start": 3967.94, + "end": 3969.06, + "probability": 0.6014 + }, + { + "start": 3969.06, + "end": 3969.9, + "probability": 0.9416 + }, + { + "start": 3970.72, + "end": 3974.94, + "probability": 0.9939 + }, + { + "start": 3975.76, + "end": 3977.4, + "probability": 0.9382 + }, + { + "start": 3977.4, + "end": 3980.14, + "probability": 0.9762 + }, + { + "start": 3980.8, + "end": 3981.54, + "probability": 0.5971 + }, + { + "start": 3982.58, + "end": 3982.98, + "probability": 0.7542 + }, + { + "start": 3983.2, + "end": 3984.3, + "probability": 0.8228 + }, + { + "start": 3984.78, + "end": 3986.94, + "probability": 0.9702 + }, + { + "start": 3986.98, + "end": 3987.32, + "probability": 0.907 + }, + { + "start": 3987.44, + "end": 3989.68, + "probability": 0.835 + }, + { + "start": 3991.04, + "end": 3992.05, + "probability": 0.849 + }, + { + "start": 3992.74, + "end": 3996.92, + "probability": 0.9884 + }, + { + "start": 3998.02, + "end": 4001.48, + "probability": 0.7712 + }, + { + "start": 4001.6, + "end": 4003.28, + "probability": 0.9616 + }, + { + "start": 4005.68, + "end": 4008.92, + "probability": 0.94 + }, + { + "start": 4010.04, + "end": 4014.2, + "probability": 0.9189 + }, + { + "start": 4014.2, + "end": 4019.52, + "probability": 0.9143 + }, + { + "start": 4019.56, + "end": 4021.52, + "probability": 0.913 + }, + { + "start": 4022.06, + "end": 4023.88, + "probability": 0.8789 + }, + { + "start": 4024.34, + "end": 4025.68, + "probability": 0.6961 + }, + { + "start": 4026.22, + "end": 4029.16, + "probability": 0.782 + }, + { + "start": 4031.76, + "end": 4034.9, + "probability": 0.845 + }, + { + "start": 4035.6, + "end": 4036.48, + "probability": 0.8971 + }, + { + "start": 4037.32, + "end": 4039.8, + "probability": 0.9812 + }, + { + "start": 4040.34, + "end": 4043.14, + "probability": 0.989 + }, + { + "start": 4043.34, + "end": 4046.44, + "probability": 0.9926 + }, + { + "start": 4047.44, + "end": 4051.22, + "probability": 0.9744 + }, + { + "start": 4051.88, + "end": 4054.31, + "probability": 0.8955 + }, + { + "start": 4056.22, + "end": 4058.98, + "probability": 0.9911 + }, + { + "start": 4060.42, + "end": 4062.5, + "probability": 0.9766 + }, + { + "start": 4063.0, + "end": 4063.74, + "probability": 0.9485 + }, + { + "start": 4063.84, + "end": 4065.3, + "probability": 0.9829 + }, + { + "start": 4065.38, + "end": 4067.72, + "probability": 0.983 + }, + { + "start": 4068.48, + "end": 4071.1, + "probability": 0.9163 + }, + { + "start": 4071.44, + "end": 4072.58, + "probability": 0.7689 + }, + { + "start": 4072.64, + "end": 4073.94, + "probability": 0.9005 + }, + { + "start": 4075.01, + "end": 4078.44, + "probability": 0.8777 + }, + { + "start": 4079.24, + "end": 4080.08, + "probability": 0.6801 + }, + { + "start": 4080.94, + "end": 4082.28, + "probability": 0.9275 + }, + { + "start": 4082.9, + "end": 4083.44, + "probability": 0.9705 + }, + { + "start": 4086.3, + "end": 4089.32, + "probability": 0.9772 + }, + { + "start": 4089.68, + "end": 4091.6, + "probability": 0.9862 + }, + { + "start": 4092.12, + "end": 4092.78, + "probability": 0.8808 + }, + { + "start": 4093.02, + "end": 4095.74, + "probability": 0.9432 + }, + { + "start": 4096.0, + "end": 4096.66, + "probability": 0.7945 + }, + { + "start": 4097.4, + "end": 4098.3, + "probability": 0.5202 + }, + { + "start": 4098.96, + "end": 4100.66, + "probability": 0.9818 + }, + { + "start": 4101.34, + "end": 4102.16, + "probability": 0.7192 + }, + { + "start": 4102.58, + "end": 4103.7, + "probability": 0.4028 + }, + { + "start": 4104.92, + "end": 4108.12, + "probability": 0.9523 + }, + { + "start": 4109.02, + "end": 4112.56, + "probability": 0.996 + }, + { + "start": 4112.74, + "end": 4113.94, + "probability": 0.8691 + }, + { + "start": 4115.06, + "end": 4116.26, + "probability": 0.7888 + }, + { + "start": 4117.08, + "end": 4118.52, + "probability": 0.6079 + }, + { + "start": 4119.28, + "end": 4122.1, + "probability": 0.9544 + }, + { + "start": 4123.74, + "end": 4124.72, + "probability": 0.8629 + }, + { + "start": 4125.68, + "end": 4128.98, + "probability": 0.9897 + }, + { + "start": 4129.14, + "end": 4130.08, + "probability": 0.6856 + }, + { + "start": 4130.18, + "end": 4130.76, + "probability": 0.3737 + }, + { + "start": 4131.58, + "end": 4135.4, + "probability": 0.9928 + }, + { + "start": 4136.08, + "end": 4138.94, + "probability": 0.9482 + }, + { + "start": 4139.12, + "end": 4141.3, + "probability": 0.9479 + }, + { + "start": 4142.54, + "end": 4145.3, + "probability": 0.8599 + }, + { + "start": 4146.04, + "end": 4146.44, + "probability": 0.6713 + }, + { + "start": 4146.54, + "end": 4147.56, + "probability": 0.9814 + }, + { + "start": 4148.06, + "end": 4151.74, + "probability": 0.9951 + }, + { + "start": 4151.88, + "end": 4152.24, + "probability": 0.4373 + }, + { + "start": 4152.58, + "end": 4153.88, + "probability": 0.8903 + }, + { + "start": 4154.02, + "end": 4154.44, + "probability": 0.417 + }, + { + "start": 4154.48, + "end": 4155.18, + "probability": 0.6256 + }, + { + "start": 4155.86, + "end": 4159.04, + "probability": 0.8874 + }, + { + "start": 4159.08, + "end": 4159.72, + "probability": 0.8671 + }, + { + "start": 4160.12, + "end": 4161.58, + "probability": 0.9734 + }, + { + "start": 4161.9, + "end": 4162.74, + "probability": 0.779 + }, + { + "start": 4163.38, + "end": 4165.48, + "probability": 0.996 + }, + { + "start": 4165.94, + "end": 4167.94, + "probability": 0.9492 + }, + { + "start": 4169.4, + "end": 4171.42, + "probability": 0.9965 + }, + { + "start": 4172.68, + "end": 4174.3, + "probability": 0.5624 + }, + { + "start": 4174.34, + "end": 4177.02, + "probability": 0.9525 + }, + { + "start": 4177.02, + "end": 4180.06, + "probability": 0.8773 + }, + { + "start": 4180.62, + "end": 4185.34, + "probability": 0.9976 + }, + { + "start": 4186.1, + "end": 4186.94, + "probability": 0.8723 + }, + { + "start": 4187.12, + "end": 4188.04, + "probability": 0.9461 + }, + { + "start": 4188.12, + "end": 4190.04, + "probability": 0.829 + }, + { + "start": 4190.7, + "end": 4192.08, + "probability": 0.9342 + }, + { + "start": 4192.96, + "end": 4194.4, + "probability": 0.7076 + }, + { + "start": 4195.1, + "end": 4195.46, + "probability": 0.2578 + }, + { + "start": 4195.5, + "end": 4196.02, + "probability": 0.8942 + }, + { + "start": 4196.12, + "end": 4198.4, + "probability": 0.979 + }, + { + "start": 4198.4, + "end": 4201.22, + "probability": 0.8628 + }, + { + "start": 4202.32, + "end": 4206.18, + "probability": 0.9541 + }, + { + "start": 4206.78, + "end": 4212.0, + "probability": 0.7157 + }, + { + "start": 4212.6, + "end": 4216.22, + "probability": 0.9839 + }, + { + "start": 4217.0, + "end": 4219.34, + "probability": 0.9957 + }, + { + "start": 4219.82, + "end": 4220.26, + "probability": 0.9814 + }, + { + "start": 4221.86, + "end": 4222.14, + "probability": 0.5477 + }, + { + "start": 4222.48, + "end": 4224.64, + "probability": 0.7805 + }, + { + "start": 4224.84, + "end": 4226.92, + "probability": 0.671 + }, + { + "start": 4246.6, + "end": 4248.32, + "probability": 0.5878 + }, + { + "start": 4250.64, + "end": 4252.86, + "probability": 0.6505 + }, + { + "start": 4254.48, + "end": 4258.1, + "probability": 0.9945 + }, + { + "start": 4259.42, + "end": 4262.24, + "probability": 0.8873 + }, + { + "start": 4263.48, + "end": 4266.78, + "probability": 0.9828 + }, + { + "start": 4267.48, + "end": 4274.26, + "probability": 0.9817 + }, + { + "start": 4276.02, + "end": 4278.98, + "probability": 0.9572 + }, + { + "start": 4279.46, + "end": 4281.54, + "probability": 0.8789 + }, + { + "start": 4282.5, + "end": 4289.3, + "probability": 0.8814 + }, + { + "start": 4290.46, + "end": 4295.08, + "probability": 0.9877 + }, + { + "start": 4295.08, + "end": 4299.54, + "probability": 0.9268 + }, + { + "start": 4300.82, + "end": 4302.0, + "probability": 0.7482 + }, + { + "start": 4302.58, + "end": 4305.82, + "probability": 0.9872 + }, + { + "start": 4306.38, + "end": 4308.78, + "probability": 0.9139 + }, + { + "start": 4309.3, + "end": 4312.38, + "probability": 0.9816 + }, + { + "start": 4313.96, + "end": 4315.3, + "probability": 0.8013 + }, + { + "start": 4315.46, + "end": 4317.24, + "probability": 0.9957 + }, + { + "start": 4317.64, + "end": 4318.64, + "probability": 0.8324 + }, + { + "start": 4319.12, + "end": 4320.32, + "probability": 0.755 + }, + { + "start": 4321.44, + "end": 4324.7, + "probability": 0.9725 + }, + { + "start": 4325.32, + "end": 4331.26, + "probability": 0.9888 + }, + { + "start": 4332.3, + "end": 4337.4, + "probability": 0.7501 + }, + { + "start": 4339.46, + "end": 4340.52, + "probability": 0.6095 + }, + { + "start": 4341.46, + "end": 4343.26, + "probability": 0.9967 + }, + { + "start": 4344.42, + "end": 4346.28, + "probability": 0.9984 + }, + { + "start": 4347.4, + "end": 4353.28, + "probability": 0.9972 + }, + { + "start": 4354.42, + "end": 4355.78, + "probability": 0.8337 + }, + { + "start": 4357.04, + "end": 4359.96, + "probability": 0.8034 + }, + { + "start": 4361.6, + "end": 4363.4, + "probability": 0.7298 + }, + { + "start": 4364.4, + "end": 4370.88, + "probability": 0.9914 + }, + { + "start": 4370.88, + "end": 4378.04, + "probability": 0.9925 + }, + { + "start": 4378.88, + "end": 4381.74, + "probability": 0.8403 + }, + { + "start": 4382.74, + "end": 4387.38, + "probability": 0.9868 + }, + { + "start": 4387.38, + "end": 4392.36, + "probability": 0.9928 + }, + { + "start": 4392.54, + "end": 4393.9, + "probability": 0.7834 + }, + { + "start": 4396.68, + "end": 4402.62, + "probability": 0.9098 + }, + { + "start": 4403.28, + "end": 4407.18, + "probability": 0.9919 + }, + { + "start": 4408.54, + "end": 4409.8, + "probability": 0.6657 + }, + { + "start": 4409.96, + "end": 4414.12, + "probability": 0.9349 + }, + { + "start": 4414.94, + "end": 4419.5, + "probability": 0.9912 + }, + { + "start": 4419.5, + "end": 4424.52, + "probability": 0.9958 + }, + { + "start": 4425.14, + "end": 4432.3, + "probability": 0.9774 + }, + { + "start": 4432.3, + "end": 4438.38, + "probability": 0.9835 + }, + { + "start": 4438.84, + "end": 4441.78, + "probability": 0.8462 + }, + { + "start": 4442.38, + "end": 4445.54, + "probability": 0.7812 + }, + { + "start": 4447.0, + "end": 4453.8, + "probability": 0.9923 + }, + { + "start": 4454.92, + "end": 4456.16, + "probability": 0.0051 + }, + { + "start": 4456.18, + "end": 4457.09, + "probability": 0.1151 + }, + { + "start": 4457.94, + "end": 4459.33, + "probability": 0.477 + }, + { + "start": 4459.62, + "end": 4463.1, + "probability": 0.9802 + }, + { + "start": 4463.8, + "end": 4467.64, + "probability": 0.9911 + }, + { + "start": 4468.46, + "end": 4472.3, + "probability": 0.9867 + }, + { + "start": 4473.46, + "end": 4478.7, + "probability": 0.9893 + }, + { + "start": 4479.46, + "end": 4481.19, + "probability": 0.9442 + }, + { + "start": 4482.36, + "end": 4484.74, + "probability": 0.9682 + }, + { + "start": 4485.34, + "end": 4485.52, + "probability": 0.0536 + }, + { + "start": 4485.52, + "end": 4485.52, + "probability": 0.0398 + }, + { + "start": 4485.52, + "end": 4485.52, + "probability": 0.1697 + }, + { + "start": 4485.52, + "end": 4489.48, + "probability": 0.9255 + }, + { + "start": 4490.58, + "end": 4492.64, + "probability": 0.9121 + }, + { + "start": 4493.56, + "end": 4496.3, + "probability": 0.7598 + }, + { + "start": 4496.82, + "end": 4502.5, + "probability": 0.99 + }, + { + "start": 4503.72, + "end": 4504.16, + "probability": 0.678 + }, + { + "start": 4504.3, + "end": 4510.2, + "probability": 0.963 + }, + { + "start": 4511.16, + "end": 4513.56, + "probability": 0.7228 + }, + { + "start": 4514.1, + "end": 4521.28, + "probability": 0.8249 + }, + { + "start": 4521.92, + "end": 4524.46, + "probability": 0.9655 + }, + { + "start": 4525.2, + "end": 4530.32, + "probability": 0.99 + }, + { + "start": 4531.64, + "end": 4534.34, + "probability": 0.9983 + }, + { + "start": 4534.86, + "end": 4539.34, + "probability": 0.9801 + }, + { + "start": 4540.06, + "end": 4540.82, + "probability": 0.8065 + }, + { + "start": 4541.48, + "end": 4546.0, + "probability": 0.7995 + }, + { + "start": 4546.88, + "end": 4550.36, + "probability": 0.9972 + }, + { + "start": 4551.3, + "end": 4557.04, + "probability": 0.7542 + }, + { + "start": 4557.56, + "end": 4560.06, + "probability": 0.5507 + }, + { + "start": 4560.22, + "end": 4565.46, + "probability": 0.7468 + }, + { + "start": 4565.6, + "end": 4566.22, + "probability": 0.0111 + }, + { + "start": 4566.28, + "end": 4568.7, + "probability": 0.9805 + }, + { + "start": 4570.34, + "end": 4571.1, + "probability": 0.6776 + }, + { + "start": 4571.2, + "end": 4576.12, + "probability": 0.9893 + }, + { + "start": 4576.12, + "end": 4580.66, + "probability": 0.9932 + }, + { + "start": 4581.28, + "end": 4582.52, + "probability": 0.9805 + }, + { + "start": 4583.0, + "end": 4583.95, + "probability": 0.9113 + }, + { + "start": 4584.48, + "end": 4584.56, + "probability": 0.1467 + }, + { + "start": 4584.56, + "end": 4584.56, + "probability": 0.4171 + }, + { + "start": 4584.56, + "end": 4586.64, + "probability": 0.4968 + }, + { + "start": 4587.48, + "end": 4591.38, + "probability": 0.749 + }, + { + "start": 4591.42, + "end": 4594.12, + "probability": 0.7339 + }, + { + "start": 4595.1, + "end": 4598.06, + "probability": 0.9485 + }, + { + "start": 4598.72, + "end": 4601.16, + "probability": 0.9946 + }, + { + "start": 4601.22, + "end": 4604.72, + "probability": 0.9891 + }, + { + "start": 4605.2, + "end": 4613.18, + "probability": 0.9471 + }, + { + "start": 4613.54, + "end": 4614.36, + "probability": 0.6475 + }, + { + "start": 4614.84, + "end": 4618.94, + "probability": 0.941 + }, + { + "start": 4619.18, + "end": 4621.96, + "probability": 0.8386 + }, + { + "start": 4622.4, + "end": 4622.96, + "probability": 0.7424 + }, + { + "start": 4623.68, + "end": 4626.33, + "probability": 0.6631 + }, + { + "start": 4626.6, + "end": 4626.6, + "probability": 0.3203 + }, + { + "start": 4626.66, + "end": 4633.52, + "probability": 0.0453 + }, + { + "start": 4636.44, + "end": 4638.64, + "probability": 0.0673 + }, + { + "start": 4639.46, + "end": 4639.76, + "probability": 0.1048 + }, + { + "start": 4639.76, + "end": 4640.22, + "probability": 0.1386 + }, + { + "start": 4640.28, + "end": 4640.28, + "probability": 0.1104 + }, + { + "start": 4640.44, + "end": 4640.44, + "probability": 0.1116 + }, + { + "start": 4640.44, + "end": 4643.3, + "probability": 0.1908 + }, + { + "start": 4644.44, + "end": 4648.76, + "probability": 0.9531 + }, + { + "start": 4650.4, + "end": 4656.62, + "probability": 0.6658 + }, + { + "start": 4657.64, + "end": 4661.5, + "probability": 0.0068 + }, + { + "start": 4661.86, + "end": 4662.0, + "probability": 0.0311 + }, + { + "start": 4662.22, + "end": 4662.22, + "probability": 0.1192 + }, + { + "start": 4662.22, + "end": 4662.22, + "probability": 0.0435 + }, + { + "start": 4662.22, + "end": 4663.7, + "probability": 0.8785 + }, + { + "start": 4663.88, + "end": 4667.7, + "probability": 0.9614 + }, + { + "start": 4668.2, + "end": 4668.64, + "probability": 0.0289 + }, + { + "start": 4669.66, + "end": 4670.82, + "probability": 0.2992 + }, + { + "start": 4671.46, + "end": 4672.88, + "probability": 0.4802 + }, + { + "start": 4673.42, + "end": 4674.72, + "probability": 0.0429 + }, + { + "start": 4674.94, + "end": 4675.74, + "probability": 0.2118 + }, + { + "start": 4676.02, + "end": 4676.86, + "probability": 0.2534 + }, + { + "start": 4678.88, + "end": 4681.84, + "probability": 0.2831 + }, + { + "start": 4681.88, + "end": 4683.62, + "probability": 0.2542 + }, + { + "start": 4684.36, + "end": 4685.52, + "probability": 0.9268 + }, + { + "start": 4686.44, + "end": 4691.0, + "probability": 0.7641 + }, + { + "start": 4691.0, + "end": 4695.0, + "probability": 0.9888 + }, + { + "start": 4695.4, + "end": 4696.8, + "probability": 0.5269 + }, + { + "start": 4696.92, + "end": 4698.68, + "probability": 0.7104 + }, + { + "start": 4698.88, + "end": 4700.8, + "probability": 0.6137 + }, + { + "start": 4702.68, + "end": 4704.83, + "probability": 0.7534 + }, + { + "start": 4705.22, + "end": 4706.6, + "probability": 0.9243 + }, + { + "start": 4706.74, + "end": 4707.72, + "probability": 0.4102 + }, + { + "start": 4708.32, + "end": 4709.84, + "probability": 0.6709 + }, + { + "start": 4710.44, + "end": 4713.98, + "probability": 0.8516 + }, + { + "start": 4714.82, + "end": 4718.16, + "probability": 0.9973 + }, + { + "start": 4719.04, + "end": 4722.4, + "probability": 0.9953 + }, + { + "start": 4723.02, + "end": 4726.74, + "probability": 0.9846 + }, + { + "start": 4727.74, + "end": 4731.26, + "probability": 0.9905 + }, + { + "start": 4731.8, + "end": 4733.98, + "probability": 0.8422 + }, + { + "start": 4734.96, + "end": 4738.64, + "probability": 0.9724 + }, + { + "start": 4739.08, + "end": 4740.94, + "probability": 0.9794 + }, + { + "start": 4741.38, + "end": 4743.14, + "probability": 0.7963 + }, + { + "start": 4743.34, + "end": 4745.94, + "probability": 0.995 + }, + { + "start": 4746.84, + "end": 4747.96, + "probability": 0.5107 + }, + { + "start": 4748.04, + "end": 4751.42, + "probability": 0.9421 + }, + { + "start": 4752.12, + "end": 4754.62, + "probability": 0.8958 + }, + { + "start": 4755.04, + "end": 4757.48, + "probability": 0.9777 + }, + { + "start": 4757.88, + "end": 4761.2, + "probability": 0.7927 + }, + { + "start": 4761.74, + "end": 4764.74, + "probability": 0.9951 + }, + { + "start": 4765.24, + "end": 4768.38, + "probability": 0.9932 + }, + { + "start": 4769.54, + "end": 4773.04, + "probability": 0.7949 + }, + { + "start": 4773.62, + "end": 4778.1, + "probability": 0.9976 + }, + { + "start": 4778.82, + "end": 4781.86, + "probability": 0.6531 + }, + { + "start": 4782.52, + "end": 4784.98, + "probability": 0.9194 + }, + { + "start": 4785.98, + "end": 4787.2, + "probability": 0.8108 + }, + { + "start": 4787.26, + "end": 4793.3, + "probability": 0.998 + }, + { + "start": 4793.3, + "end": 4797.96, + "probability": 0.995 + }, + { + "start": 4798.56, + "end": 4801.52, + "probability": 0.9985 + }, + { + "start": 4801.52, + "end": 4806.58, + "probability": 0.9415 + }, + { + "start": 4806.72, + "end": 4812.86, + "probability": 0.8732 + }, + { + "start": 4813.56, + "end": 4815.92, + "probability": 0.8366 + }, + { + "start": 4816.44, + "end": 4819.56, + "probability": 0.8398 + }, + { + "start": 4820.04, + "end": 4823.9, + "probability": 0.9814 + }, + { + "start": 4824.56, + "end": 4827.12, + "probability": 0.9819 + }, + { + "start": 4827.6, + "end": 4830.8, + "probability": 0.9942 + }, + { + "start": 4831.24, + "end": 4836.04, + "probability": 0.9321 + }, + { + "start": 4836.04, + "end": 4838.08, + "probability": 0.9611 + }, + { + "start": 4838.48, + "end": 4841.06, + "probability": 0.9229 + }, + { + "start": 4841.58, + "end": 4844.07, + "probability": 0.9986 + }, + { + "start": 4844.82, + "end": 4852.18, + "probability": 0.9834 + }, + { + "start": 4853.66, + "end": 4858.66, + "probability": 0.9993 + }, + { + "start": 4859.3, + "end": 4863.94, + "probability": 0.9832 + }, + { + "start": 4864.78, + "end": 4867.06, + "probability": 0.884 + }, + { + "start": 4867.74, + "end": 4868.98, + "probability": 0.9749 + }, + { + "start": 4869.06, + "end": 4870.34, + "probability": 0.7555 + }, + { + "start": 4870.44, + "end": 4874.28, + "probability": 0.8481 + }, + { + "start": 4874.82, + "end": 4877.66, + "probability": 0.9887 + }, + { + "start": 4877.66, + "end": 4881.34, + "probability": 0.9879 + }, + { + "start": 4882.04, + "end": 4882.04, + "probability": 0.252 + }, + { + "start": 4882.04, + "end": 4885.22, + "probability": 0.998 + }, + { + "start": 4885.22, + "end": 4888.46, + "probability": 0.9948 + }, + { + "start": 4889.08, + "end": 4892.1, + "probability": 0.9989 + }, + { + "start": 4892.32, + "end": 4892.92, + "probability": 0.7096 + }, + { + "start": 4893.38, + "end": 4897.38, + "probability": 0.9805 + }, + { + "start": 4897.98, + "end": 4901.12, + "probability": 0.9976 + }, + { + "start": 4901.54, + "end": 4905.98, + "probability": 0.9983 + }, + { + "start": 4905.98, + "end": 4911.78, + "probability": 0.9994 + }, + { + "start": 4912.28, + "end": 4912.78, + "probability": 0.4565 + }, + { + "start": 4912.88, + "end": 4914.36, + "probability": 0.689 + }, + { + "start": 4914.8, + "end": 4920.22, + "probability": 0.9921 + }, + { + "start": 4920.92, + "end": 4922.18, + "probability": 0.4942 + }, + { + "start": 4922.26, + "end": 4922.64, + "probability": 0.8609 + }, + { + "start": 4922.78, + "end": 4926.34, + "probability": 0.9415 + }, + { + "start": 4926.76, + "end": 4929.98, + "probability": 0.9887 + }, + { + "start": 4930.46, + "end": 4932.12, + "probability": 0.7948 + }, + { + "start": 4932.26, + "end": 4935.42, + "probability": 0.8634 + }, + { + "start": 4935.98, + "end": 4939.96, + "probability": 0.9946 + }, + { + "start": 4940.74, + "end": 4943.94, + "probability": 0.8821 + }, + { + "start": 4945.24, + "end": 4947.34, + "probability": 0.9525 + }, + { + "start": 4949.44, + "end": 4949.54, + "probability": 0.1867 + }, + { + "start": 4949.54, + "end": 4950.22, + "probability": 0.0513 + }, + { + "start": 4950.64, + "end": 4954.74, + "probability": 0.9941 + }, + { + "start": 4954.8, + "end": 4958.82, + "probability": 0.8223 + }, + { + "start": 4959.28, + "end": 4960.6, + "probability": 0.7539 + }, + { + "start": 4961.1, + "end": 4964.2, + "probability": 0.9895 + }, + { + "start": 4964.2, + "end": 4967.66, + "probability": 0.9977 + }, + { + "start": 4967.98, + "end": 4969.36, + "probability": 0.8346 + }, + { + "start": 4969.5, + "end": 4971.72, + "probability": 0.9748 + }, + { + "start": 4972.2, + "end": 4976.62, + "probability": 0.9421 + }, + { + "start": 4977.1, + "end": 4978.02, + "probability": 0.9175 + }, + { + "start": 4978.08, + "end": 4982.22, + "probability": 0.9801 + }, + { + "start": 4982.22, + "end": 4985.52, + "probability": 0.782 + }, + { + "start": 4985.96, + "end": 4989.36, + "probability": 0.9966 + }, + { + "start": 4990.08, + "end": 4990.96, + "probability": 0.5722 + }, + { + "start": 4991.18, + "end": 4994.12, + "probability": 0.9745 + }, + { + "start": 4994.58, + "end": 4995.92, + "probability": 0.6057 + }, + { + "start": 4996.54, + "end": 4998.48, + "probability": 0.7604 + }, + { + "start": 4999.08, + "end": 5002.64, + "probability": 0.9951 + }, + { + "start": 5003.22, + "end": 5004.04, + "probability": 0.936 + }, + { + "start": 5004.16, + "end": 5007.76, + "probability": 0.9798 + }, + { + "start": 5007.76, + "end": 5011.22, + "probability": 0.996 + }, + { + "start": 5011.68, + "end": 5015.0, + "probability": 0.8572 + }, + { + "start": 5015.38, + "end": 5016.96, + "probability": 0.6378 + }, + { + "start": 5017.06, + "end": 5019.4, + "probability": 0.6827 + }, + { + "start": 5019.76, + "end": 5023.48, + "probability": 0.9891 + }, + { + "start": 5024.54, + "end": 5026.14, + "probability": 0.9858 + }, + { + "start": 5026.96, + "end": 5030.52, + "probability": 0.9897 + }, + { + "start": 5031.2, + "end": 5035.18, + "probability": 0.9304 + }, + { + "start": 5035.7, + "end": 5035.7, + "probability": 0.0778 + }, + { + "start": 5035.7, + "end": 5039.48, + "probability": 0.8308 + }, + { + "start": 5039.82, + "end": 5040.92, + "probability": 0.0808 + }, + { + "start": 5040.92, + "end": 5040.94, + "probability": 0.0306 + }, + { + "start": 5040.94, + "end": 5043.95, + "probability": 0.8783 + }, + { + "start": 5044.9, + "end": 5048.1, + "probability": 0.9478 + }, + { + "start": 5048.86, + "end": 5052.84, + "probability": 0.9478 + }, + { + "start": 5052.98, + "end": 5055.02, + "probability": 0.9475 + }, + { + "start": 5055.16, + "end": 5055.94, + "probability": 0.4007 + }, + { + "start": 5056.52, + "end": 5058.9, + "probability": 0.6857 + }, + { + "start": 5059.44, + "end": 5063.96, + "probability": 0.9966 + }, + { + "start": 5064.42, + "end": 5066.4, + "probability": 0.9722 + }, + { + "start": 5066.54, + "end": 5067.08, + "probability": 0.9045 + }, + { + "start": 5068.24, + "end": 5070.18, + "probability": 0.7291 + }, + { + "start": 5070.32, + "end": 5071.74, + "probability": 0.8253 + }, + { + "start": 5091.02, + "end": 5091.02, + "probability": 0.5269 + }, + { + "start": 5091.06, + "end": 5092.28, + "probability": 0.5965 + }, + { + "start": 5092.44, + "end": 5093.44, + "probability": 0.9373 + }, + { + "start": 5093.58, + "end": 5094.3, + "probability": 0.9398 + }, + { + "start": 5094.58, + "end": 5096.66, + "probability": 0.0117 + }, + { + "start": 5097.08, + "end": 5098.04, + "probability": 0.1721 + }, + { + "start": 5098.04, + "end": 5098.04, + "probability": 0.0014 + }, + { + "start": 5099.06, + "end": 5102.22, + "probability": 0.0904 + }, + { + "start": 5103.14, + "end": 5108.04, + "probability": 0.7222 + }, + { + "start": 5108.04, + "end": 5108.64, + "probability": 0.0691 + }, + { + "start": 5109.14, + "end": 5109.14, + "probability": 0.1398 + }, + { + "start": 5109.14, + "end": 5109.14, + "probability": 0.1331 + }, + { + "start": 5109.14, + "end": 5109.14, + "probability": 0.0946 + }, + { + "start": 5109.14, + "end": 5111.06, + "probability": 0.4586 + }, + { + "start": 5111.24, + "end": 5113.04, + "probability": 0.7964 + }, + { + "start": 5113.06, + "end": 5115.86, + "probability": 0.9652 + }, + { + "start": 5116.02, + "end": 5116.26, + "probability": 0.2018 + }, + { + "start": 5116.6, + "end": 5117.8, + "probability": 0.8602 + }, + { + "start": 5118.58, + "end": 5119.2, + "probability": 0.0586 + }, + { + "start": 5119.2, + "end": 5120.06, + "probability": 0.6538 + }, + { + "start": 5120.24, + "end": 5124.0, + "probability": 0.9425 + }, + { + "start": 5124.68, + "end": 5125.34, + "probability": 0.284 + }, + { + "start": 5125.36, + "end": 5126.32, + "probability": 0.4941 + }, + { + "start": 5126.42, + "end": 5127.48, + "probability": 0.7866 + }, + { + "start": 5127.6, + "end": 5128.1, + "probability": 0.9661 + }, + { + "start": 5128.54, + "end": 5128.98, + "probability": 0.8981 + }, + { + "start": 5129.1, + "end": 5130.82, + "probability": 0.5828 + }, + { + "start": 5131.76, + "end": 5134.4, + "probability": 0.8671 + }, + { + "start": 5134.96, + "end": 5136.3, + "probability": 0.6531 + }, + { + "start": 5136.44, + "end": 5138.14, + "probability": 0.9213 + }, + { + "start": 5138.22, + "end": 5138.7, + "probability": 0.4081 + }, + { + "start": 5139.28, + "end": 5140.26, + "probability": 0.9777 + }, + { + "start": 5141.3, + "end": 5143.64, + "probability": 0.9571 + }, + { + "start": 5144.2, + "end": 5146.2, + "probability": 0.7388 + }, + { + "start": 5146.66, + "end": 5148.4, + "probability": 0.9199 + }, + { + "start": 5149.14, + "end": 5151.0, + "probability": 0.9849 + }, + { + "start": 5151.88, + "end": 5156.5, + "probability": 0.746 + }, + { + "start": 5156.84, + "end": 5159.5, + "probability": 0.9752 + }, + { + "start": 5160.08, + "end": 5163.18, + "probability": 0.9912 + }, + { + "start": 5165.06, + "end": 5168.24, + "probability": 0.9965 + }, + { + "start": 5168.96, + "end": 5170.36, + "probability": 0.7617 + }, + { + "start": 5170.82, + "end": 5173.0, + "probability": 0.8726 + }, + { + "start": 5173.48, + "end": 5174.98, + "probability": 0.976 + }, + { + "start": 5176.32, + "end": 5178.54, + "probability": 0.9779 + }, + { + "start": 5179.24, + "end": 5181.36, + "probability": 0.9331 + }, + { + "start": 5181.84, + "end": 5182.88, + "probability": 0.777 + }, + { + "start": 5183.0, + "end": 5183.3, + "probability": 0.3754 + }, + { + "start": 5183.38, + "end": 5185.34, + "probability": 0.8965 + }, + { + "start": 5186.18, + "end": 5189.22, + "probability": 0.9759 + }, + { + "start": 5189.46, + "end": 5190.6, + "probability": 0.9144 + }, + { + "start": 5191.32, + "end": 5192.32, + "probability": 0.9164 + }, + { + "start": 5193.72, + "end": 5195.7, + "probability": 0.733 + }, + { + "start": 5196.92, + "end": 5200.16, + "probability": 0.9918 + }, + { + "start": 5201.18, + "end": 5204.12, + "probability": 0.9954 + }, + { + "start": 5204.94, + "end": 5209.26, + "probability": 0.9836 + }, + { + "start": 5209.86, + "end": 5211.2, + "probability": 0.9638 + }, + { + "start": 5212.42, + "end": 5214.24, + "probability": 0.9021 + }, + { + "start": 5214.76, + "end": 5217.94, + "probability": 0.9533 + }, + { + "start": 5218.46, + "end": 5220.46, + "probability": 0.9945 + }, + { + "start": 5221.42, + "end": 5224.56, + "probability": 0.795 + }, + { + "start": 5225.36, + "end": 5227.06, + "probability": 0.9943 + }, + { + "start": 5229.04, + "end": 5230.4, + "probability": 0.8811 + }, + { + "start": 5230.46, + "end": 5231.58, + "probability": 0.9663 + }, + { + "start": 5231.7, + "end": 5233.82, + "probability": 0.9509 + }, + { + "start": 5234.58, + "end": 5237.08, + "probability": 0.9922 + }, + { + "start": 5237.68, + "end": 5239.86, + "probability": 0.9983 + }, + { + "start": 5240.76, + "end": 5241.4, + "probability": 0.9127 + }, + { + "start": 5241.94, + "end": 5242.58, + "probability": 0.5171 + }, + { + "start": 5242.6, + "end": 5245.56, + "probability": 0.8001 + }, + { + "start": 5245.7, + "end": 5246.76, + "probability": 0.8537 + }, + { + "start": 5247.22, + "end": 5247.94, + "probability": 0.8686 + }, + { + "start": 5248.86, + "end": 5250.22, + "probability": 0.8302 + }, + { + "start": 5250.76, + "end": 5254.36, + "probability": 0.9971 + }, + { + "start": 5254.48, + "end": 5255.28, + "probability": 0.9797 + }, + { + "start": 5258.36, + "end": 5259.34, + "probability": 0.9631 + }, + { + "start": 5259.5, + "end": 5263.12, + "probability": 0.9404 + }, + { + "start": 5263.26, + "end": 5265.48, + "probability": 0.7528 + }, + { + "start": 5265.66, + "end": 5266.1, + "probability": 0.9648 + }, + { + "start": 5266.32, + "end": 5266.9, + "probability": 0.838 + }, + { + "start": 5267.72, + "end": 5268.7, + "probability": 0.8201 + }, + { + "start": 5269.42, + "end": 5270.6, + "probability": 0.9897 + }, + { + "start": 5271.2, + "end": 5272.72, + "probability": 0.9375 + }, + { + "start": 5272.86, + "end": 5276.04, + "probability": 0.943 + }, + { + "start": 5276.42, + "end": 5277.78, + "probability": 0.947 + }, + { + "start": 5278.16, + "end": 5278.72, + "probability": 0.9014 + }, + { + "start": 5279.0, + "end": 5279.66, + "probability": 0.75 + }, + { + "start": 5280.9, + "end": 5282.8, + "probability": 0.8782 + }, + { + "start": 5283.24, + "end": 5286.1, + "probability": 0.9512 + }, + { + "start": 5286.62, + "end": 5287.54, + "probability": 0.8017 + }, + { + "start": 5288.44, + "end": 5290.74, + "probability": 0.9713 + }, + { + "start": 5291.24, + "end": 5294.84, + "probability": 0.9235 + }, + { + "start": 5295.0, + "end": 5295.56, + "probability": 0.7451 + }, + { + "start": 5297.48, + "end": 5299.14, + "probability": 0.9478 + }, + { + "start": 5299.24, + "end": 5300.64, + "probability": 0.9767 + }, + { + "start": 5301.66, + "end": 5303.96, + "probability": 0.9232 + }, + { + "start": 5304.3, + "end": 5307.0, + "probability": 0.7906 + }, + { + "start": 5307.44, + "end": 5308.94, + "probability": 0.9297 + }, + { + "start": 5309.38, + "end": 5311.08, + "probability": 0.8976 + }, + { + "start": 5311.74, + "end": 5314.9, + "probability": 0.9609 + }, + { + "start": 5315.28, + "end": 5316.26, + "probability": 0.8201 + }, + { + "start": 5317.36, + "end": 5319.5, + "probability": 0.9727 + }, + { + "start": 5320.34, + "end": 5322.22, + "probability": 0.9839 + }, + { + "start": 5322.4, + "end": 5324.62, + "probability": 0.9966 + }, + { + "start": 5325.38, + "end": 5328.16, + "probability": 0.9754 + }, + { + "start": 5328.72, + "end": 5329.3, + "probability": 0.9336 + }, + { + "start": 5330.04, + "end": 5330.78, + "probability": 0.9535 + }, + { + "start": 5331.24, + "end": 5334.32, + "probability": 0.9796 + }, + { + "start": 5334.8, + "end": 5335.74, + "probability": 0.8491 + }, + { + "start": 5336.8, + "end": 5338.18, + "probability": 0.8819 + }, + { + "start": 5338.82, + "end": 5342.84, + "probability": 0.9236 + }, + { + "start": 5343.88, + "end": 5345.64, + "probability": 0.9972 + }, + { + "start": 5346.22, + "end": 5349.3, + "probability": 0.9984 + }, + { + "start": 5349.68, + "end": 5353.9, + "probability": 0.7404 + }, + { + "start": 5354.68, + "end": 5356.12, + "probability": 0.744 + }, + { + "start": 5357.9, + "end": 5360.6, + "probability": 0.6699 + }, + { + "start": 5361.9, + "end": 5364.76, + "probability": 0.6866 + }, + { + "start": 5365.9, + "end": 5368.88, + "probability": 0.8068 + }, + { + "start": 5370.06, + "end": 5373.3, + "probability": 0.8168 + }, + { + "start": 5374.34, + "end": 5377.38, + "probability": 0.6589 + }, + { + "start": 5378.4, + "end": 5381.4, + "probability": 0.8606 + }, + { + "start": 5382.5, + "end": 5385.64, + "probability": 0.9602 + }, + { + "start": 5386.92, + "end": 5390.42, + "probability": 0.8833 + }, + { + "start": 5391.78, + "end": 5395.34, + "probability": 0.5459 + }, + { + "start": 5396.8, + "end": 5400.24, + "probability": 0.9192 + }, + { + "start": 5401.68, + "end": 5404.68, + "probability": 0.9738 + }, + { + "start": 5406.28, + "end": 5409.3, + "probability": 0.6963 + }, + { + "start": 5410.78, + "end": 5414.3, + "probability": 0.7784 + }, + { + "start": 5415.8, + "end": 5418.8, + "probability": 0.9596 + }, + { + "start": 5420.5, + "end": 5421.76, + "probability": 0.9863 + }, + { + "start": 5422.56, + "end": 5424.16, + "probability": 0.9333 + }, + { + "start": 5425.92, + "end": 5430.62, + "probability": 0.745 + }, + { + "start": 5431.94, + "end": 5434.92, + "probability": 0.8365 + }, + { + "start": 5436.3, + "end": 5439.5, + "probability": 0.8895 + }, + { + "start": 5440.86, + "end": 5444.24, + "probability": 0.7083 + }, + { + "start": 5445.78, + "end": 5448.76, + "probability": 0.8582 + }, + { + "start": 5449.98, + "end": 5453.14, + "probability": 0.9582 + }, + { + "start": 5454.72, + "end": 5457.34, + "probability": 0.742 + }, + { + "start": 5458.58, + "end": 5461.08, + "probability": 0.8603 + }, + { + "start": 5462.4, + "end": 5465.42, + "probability": 0.7655 + }, + { + "start": 5466.68, + "end": 5470.2, + "probability": 0.8879 + }, + { + "start": 5471.86, + "end": 5475.16, + "probability": 0.618 + }, + { + "start": 5476.52, + "end": 5480.3, + "probability": 0.9314 + }, + { + "start": 5481.78, + "end": 5484.84, + "probability": 0.9811 + }, + { + "start": 5486.2, + "end": 5488.8, + "probability": 0.9797 + }, + { + "start": 5490.02, + "end": 5492.58, + "probability": 0.735 + }, + { + "start": 5494.12, + "end": 5496.84, + "probability": 0.7196 + }, + { + "start": 5498.24, + "end": 5500.8, + "probability": 0.9697 + }, + { + "start": 5502.36, + "end": 5504.29, + "probability": 0.6816 + }, + { + "start": 5506.96, + "end": 5506.96, + "probability": 0.0283 + }, + { + "start": 5506.96, + "end": 5506.96, + "probability": 0.2343 + }, + { + "start": 5506.96, + "end": 5506.96, + "probability": 0.1407 + }, + { + "start": 5506.96, + "end": 5508.22, + "probability": 0.6732 + }, + { + "start": 5508.26, + "end": 5508.98, + "probability": 0.8783 + }, + { + "start": 5509.04, + "end": 5509.84, + "probability": 0.5305 + }, + { + "start": 5511.22, + "end": 5514.64, + "probability": 0.9628 + }, + { + "start": 5516.02, + "end": 5517.3, + "probability": 0.8326 + }, + { + "start": 5518.28, + "end": 5519.88, + "probability": 0.4945 + }, + { + "start": 5521.44, + "end": 5524.84, + "probability": 0.8312 + }, + { + "start": 5526.14, + "end": 5527.38, + "probability": 0.9592 + }, + { + "start": 5527.94, + "end": 5529.22, + "probability": 0.9158 + }, + { + "start": 5530.54, + "end": 5534.5, + "probability": 0.9707 + }, + { + "start": 5535.96, + "end": 5539.08, + "probability": 0.658 + }, + { + "start": 5540.26, + "end": 5541.24, + "probability": 0.9128 + }, + { + "start": 5541.76, + "end": 5543.32, + "probability": 0.8228 + }, + { + "start": 5544.8, + "end": 5547.68, + "probability": 0.9692 + }, + { + "start": 5549.12, + "end": 5549.68, + "probability": 0.9749 + }, + { + "start": 5550.66, + "end": 5553.03, + "probability": 0.4965 + }, + { + "start": 5554.64, + "end": 5557.38, + "probability": 0.7513 + }, + { + "start": 5558.58, + "end": 5562.52, + "probability": 0.9531 + }, + { + "start": 5564.18, + "end": 5567.7, + "probability": 0.8895 + }, + { + "start": 5569.2, + "end": 5571.44, + "probability": 0.8986 + }, + { + "start": 5573.22, + "end": 5576.48, + "probability": 0.9044 + }, + { + "start": 5577.94, + "end": 5580.36, + "probability": 0.9856 + }, + { + "start": 5582.06, + "end": 5585.62, + "probability": 0.6749 + }, + { + "start": 5587.0, + "end": 5589.8, + "probability": 0.9629 + }, + { + "start": 5591.56, + "end": 5594.44, + "probability": 0.9896 + }, + { + "start": 5595.88, + "end": 5596.76, + "probability": 0.9868 + }, + { + "start": 5597.4, + "end": 5598.88, + "probability": 0.9265 + }, + { + "start": 5600.24, + "end": 5604.04, + "probability": 0.6305 + }, + { + "start": 5605.18, + "end": 5608.5, + "probability": 0.9393 + }, + { + "start": 5609.92, + "end": 5613.68, + "probability": 0.9438 + }, + { + "start": 5614.76, + "end": 5618.08, + "probability": 0.4644 + }, + { + "start": 5619.7, + "end": 5622.48, + "probability": 0.9283 + }, + { + "start": 5623.56, + "end": 5626.56, + "probability": 0.9292 + }, + { + "start": 5627.8, + "end": 5630.6, + "probability": 0.9572 + }, + { + "start": 5632.16, + "end": 5635.28, + "probability": 0.7652 + }, + { + "start": 5636.64, + "end": 5640.0, + "probability": 0.8327 + }, + { + "start": 5641.34, + "end": 5644.7, + "probability": 0.9509 + }, + { + "start": 5645.94, + "end": 5649.36, + "probability": 0.7721 + }, + { + "start": 5650.84, + "end": 5654.02, + "probability": 0.8916 + }, + { + "start": 5655.16, + "end": 5658.54, + "probability": 0.8445 + }, + { + "start": 5659.66, + "end": 5662.64, + "probability": 0.938 + }, + { + "start": 5663.62, + "end": 5665.38, + "probability": 0.9278 + }, + { + "start": 5666.22, + "end": 5668.6, + "probability": 0.6399 + }, + { + "start": 5669.5, + "end": 5672.44, + "probability": 0.9637 + }, + { + "start": 5673.5, + "end": 5676.6, + "probability": 0.9478 + }, + { + "start": 5677.86, + "end": 5680.72, + "probability": 0.9734 + }, + { + "start": 5681.7, + "end": 5686.44, + "probability": 0.7121 + }, + { + "start": 5687.36, + "end": 5688.52, + "probability": 0.9697 + }, + { + "start": 5692.72, + "end": 5695.21, + "probability": 0.8977 + }, + { + "start": 5695.56, + "end": 5696.96, + "probability": 0.904 + }, + { + "start": 5716.7, + "end": 5717.68, + "probability": 0.4712 + }, + { + "start": 5717.92, + "end": 5721.22, + "probability": 0.6531 + }, + { + "start": 5721.34, + "end": 5722.98, + "probability": 0.5719 + }, + { + "start": 5723.16, + "end": 5726.08, + "probability": 0.8938 + }, + { + "start": 5727.0, + "end": 5731.18, + "probability": 0.9919 + }, + { + "start": 5731.98, + "end": 5735.5, + "probability": 0.9936 + }, + { + "start": 5735.98, + "end": 5738.1, + "probability": 0.9565 + }, + { + "start": 5738.62, + "end": 5741.12, + "probability": 0.804 + }, + { + "start": 5742.32, + "end": 5745.0, + "probability": 0.9623 + }, + { + "start": 5745.06, + "end": 5748.16, + "probability": 0.972 + }, + { + "start": 5749.62, + "end": 5751.86, + "probability": 0.989 + }, + { + "start": 5752.1, + "end": 5753.22, + "probability": 0.8276 + }, + { + "start": 5753.38, + "end": 5753.76, + "probability": 0.6499 + }, + { + "start": 5754.06, + "end": 5754.66, + "probability": 0.7281 + }, + { + "start": 5755.04, + "end": 5755.3, + "probability": 0.9643 + }, + { + "start": 5756.42, + "end": 5760.3, + "probability": 0.9846 + }, + { + "start": 5760.3, + "end": 5763.64, + "probability": 0.9922 + }, + { + "start": 5764.36, + "end": 5767.32, + "probability": 0.9926 + }, + { + "start": 5768.3, + "end": 5768.74, + "probability": 0.4588 + }, + { + "start": 5768.82, + "end": 5769.24, + "probability": 0.8884 + }, + { + "start": 5769.38, + "end": 5771.12, + "probability": 0.9099 + }, + { + "start": 5772.04, + "end": 5775.14, + "probability": 0.9722 + }, + { + "start": 5776.0, + "end": 5779.52, + "probability": 0.969 + }, + { + "start": 5780.16, + "end": 5783.18, + "probability": 0.9856 + }, + { + "start": 5785.22, + "end": 5788.6, + "probability": 0.9524 + }, + { + "start": 5788.94, + "end": 5791.52, + "probability": 0.7302 + }, + { + "start": 5792.54, + "end": 5795.56, + "probability": 0.9692 + }, + { + "start": 5795.56, + "end": 5799.38, + "probability": 0.9722 + }, + { + "start": 5799.76, + "end": 5802.06, + "probability": 0.9939 + }, + { + "start": 5803.78, + "end": 5807.02, + "probability": 0.9923 + }, + { + "start": 5807.12, + "end": 5811.14, + "probability": 0.9852 + }, + { + "start": 5811.58, + "end": 5815.72, + "probability": 0.9979 + }, + { + "start": 5816.4, + "end": 5817.4, + "probability": 0.8877 + }, + { + "start": 5818.12, + "end": 5821.34, + "probability": 0.9794 + }, + { + "start": 5821.74, + "end": 5823.34, + "probability": 0.9356 + }, + { + "start": 5824.28, + "end": 5827.16, + "probability": 0.8349 + }, + { + "start": 5827.16, + "end": 5830.3, + "probability": 0.9756 + }, + { + "start": 5831.06, + "end": 5831.42, + "probability": 0.6682 + }, + { + "start": 5831.66, + "end": 5832.18, + "probability": 0.7852 + }, + { + "start": 5832.66, + "end": 5833.68, + "probability": 0.9247 + }, + { + "start": 5834.1, + "end": 5837.68, + "probability": 0.9899 + }, + { + "start": 5839.12, + "end": 5839.88, + "probability": 0.7733 + }, + { + "start": 5840.42, + "end": 5843.28, + "probability": 0.9912 + }, + { + "start": 5844.0, + "end": 5844.28, + "probability": 0.318 + }, + { + "start": 5844.54, + "end": 5845.7, + "probability": 0.9404 + }, + { + "start": 5846.16, + "end": 5849.0, + "probability": 0.9766 + }, + { + "start": 5849.7, + "end": 5850.68, + "probability": 0.7431 + }, + { + "start": 5851.84, + "end": 5857.08, + "probability": 0.9979 + }, + { + "start": 5857.64, + "end": 5860.18, + "probability": 0.9873 + }, + { + "start": 5861.14, + "end": 5862.08, + "probability": 0.7745 + }, + { + "start": 5862.3, + "end": 5862.74, + "probability": 0.8763 + }, + { + "start": 5862.94, + "end": 5867.02, + "probability": 0.9934 + }, + { + "start": 5867.02, + "end": 5871.5, + "probability": 0.8807 + }, + { + "start": 5872.08, + "end": 5873.96, + "probability": 0.9783 + }, + { + "start": 5874.58, + "end": 5877.04, + "probability": 0.8309 + }, + { + "start": 5878.3, + "end": 5880.6, + "probability": 0.9941 + }, + { + "start": 5881.36, + "end": 5882.16, + "probability": 0.8653 + }, + { + "start": 5882.28, + "end": 5887.88, + "probability": 0.9738 + }, + { + "start": 5888.44, + "end": 5891.04, + "probability": 0.988 + }, + { + "start": 5892.3, + "end": 5893.64, + "probability": 0.952 + }, + { + "start": 5894.26, + "end": 5896.22, + "probability": 0.7209 + }, + { + "start": 5897.74, + "end": 5898.78, + "probability": 0.6717 + }, + { + "start": 5899.98, + "end": 5901.72, + "probability": 0.8619 + }, + { + "start": 5902.34, + "end": 5903.6, + "probability": 0.8408 + }, + { + "start": 5903.98, + "end": 5906.88, + "probability": 0.9429 + }, + { + "start": 5907.92, + "end": 5911.92, + "probability": 0.9688 + }, + { + "start": 5913.5, + "end": 5917.33, + "probability": 0.9702 + }, + { + "start": 5917.84, + "end": 5918.62, + "probability": 0.6656 + }, + { + "start": 5919.02, + "end": 5921.47, + "probability": 0.9551 + }, + { + "start": 5922.3, + "end": 5924.7, + "probability": 0.9653 + }, + { + "start": 5924.78, + "end": 5928.06, + "probability": 0.9797 + }, + { + "start": 5928.58, + "end": 5929.7, + "probability": 0.7773 + }, + { + "start": 5930.5, + "end": 5935.66, + "probability": 0.8665 + }, + { + "start": 5936.36, + "end": 5940.4, + "probability": 0.843 + }, + { + "start": 5941.18, + "end": 5946.16, + "probability": 0.8841 + }, + { + "start": 5947.04, + "end": 5950.64, + "probability": 0.9941 + }, + { + "start": 5951.28, + "end": 5954.72, + "probability": 0.9316 + }, + { + "start": 5955.26, + "end": 5955.92, + "probability": 0.5739 + }, + { + "start": 5957.2, + "end": 5958.8, + "probability": 0.9976 + }, + { + "start": 5960.0, + "end": 5963.42, + "probability": 0.9958 + }, + { + "start": 5964.02, + "end": 5965.8, + "probability": 0.6225 + }, + { + "start": 5967.32, + "end": 5969.14, + "probability": 0.877 + }, + { + "start": 5969.78, + "end": 5972.64, + "probability": 0.7771 + }, + { + "start": 5973.2, + "end": 5976.46, + "probability": 0.9896 + }, + { + "start": 5977.8, + "end": 5979.34, + "probability": 0.8596 + }, + { + "start": 5980.04, + "end": 5983.36, + "probability": 0.7462 + }, + { + "start": 5985.28, + "end": 5986.92, + "probability": 0.9434 + }, + { + "start": 5987.42, + "end": 5988.56, + "probability": 0.9784 + }, + { + "start": 5988.98, + "end": 5989.88, + "probability": 0.6134 + }, + { + "start": 5989.94, + "end": 5991.12, + "probability": 0.7501 + }, + { + "start": 5991.16, + "end": 5993.58, + "probability": 0.8248 + }, + { + "start": 5995.68, + "end": 5996.92, + "probability": 0.8497 + }, + { + "start": 5997.04, + "end": 5997.56, + "probability": 0.547 + }, + { + "start": 5997.76, + "end": 6002.78, + "probability": 0.9834 + }, + { + "start": 6003.88, + "end": 6005.76, + "probability": 0.908 + }, + { + "start": 6006.28, + "end": 6008.38, + "probability": 0.9334 + }, + { + "start": 6009.96, + "end": 6011.24, + "probability": 0.9072 + }, + { + "start": 6012.74, + "end": 6013.42, + "probability": 0.9647 + }, + { + "start": 6014.18, + "end": 6017.86, + "probability": 0.9861 + }, + { + "start": 6020.5, + "end": 6023.42, + "probability": 0.9976 + }, + { + "start": 6023.42, + "end": 6026.98, + "probability": 0.9944 + }, + { + "start": 6027.92, + "end": 6031.34, + "probability": 0.9585 + }, + { + "start": 6032.36, + "end": 6033.98, + "probability": 0.9099 + }, + { + "start": 6034.56, + "end": 6035.96, + "probability": 0.8708 + }, + { + "start": 6036.34, + "end": 6037.62, + "probability": 0.5832 + }, + { + "start": 6037.8, + "end": 6038.24, + "probability": 0.8476 + }, + { + "start": 6038.72, + "end": 6039.56, + "probability": 0.8193 + }, + { + "start": 6039.6, + "end": 6040.5, + "probability": 0.8185 + }, + { + "start": 6040.74, + "end": 6041.66, + "probability": 0.9924 + }, + { + "start": 6042.94, + "end": 6046.46, + "probability": 0.9513 + }, + { + "start": 6048.04, + "end": 6052.64, + "probability": 0.9882 + }, + { + "start": 6052.8, + "end": 6054.1, + "probability": 0.9587 + }, + { + "start": 6055.38, + "end": 6055.58, + "probability": 0.4777 + }, + { + "start": 6058.0, + "end": 6059.22, + "probability": 0.9329 + }, + { + "start": 6060.2, + "end": 6061.36, + "probability": 0.7561 + }, + { + "start": 6061.66, + "end": 6062.62, + "probability": 0.7407 + }, + { + "start": 6062.98, + "end": 6065.36, + "probability": 0.9867 + }, + { + "start": 6065.42, + "end": 6066.04, + "probability": 0.9312 + }, + { + "start": 6067.7, + "end": 6069.72, + "probability": 0.9899 + }, + { + "start": 6069.96, + "end": 6071.94, + "probability": 0.9679 + }, + { + "start": 6072.24, + "end": 6075.36, + "probability": 0.9551 + }, + { + "start": 6076.5, + "end": 6081.96, + "probability": 0.9955 + }, + { + "start": 6082.6, + "end": 6086.02, + "probability": 0.9933 + }, + { + "start": 6086.62, + "end": 6089.22, + "probability": 0.9838 + }, + { + "start": 6089.84, + "end": 6092.74, + "probability": 0.9969 + }, + { + "start": 6092.74, + "end": 6096.8, + "probability": 0.9976 + }, + { + "start": 6097.18, + "end": 6097.38, + "probability": 0.8041 + }, + { + "start": 6099.7, + "end": 6101.82, + "probability": 0.9915 + }, + { + "start": 6101.98, + "end": 6103.36, + "probability": 0.8302 + }, + { + "start": 6115.38, + "end": 6116.08, + "probability": 0.5371 + }, + { + "start": 6117.46, + "end": 6119.0, + "probability": 0.8537 + }, + { + "start": 6120.34, + "end": 6124.14, + "probability": 0.9835 + }, + { + "start": 6125.48, + "end": 6128.8, + "probability": 0.9938 + }, + { + "start": 6130.46, + "end": 6135.2, + "probability": 0.9961 + }, + { + "start": 6136.22, + "end": 6137.54, + "probability": 0.9717 + }, + { + "start": 6138.24, + "end": 6138.9, + "probability": 0.9517 + }, + { + "start": 6139.78, + "end": 6140.92, + "probability": 0.912 + }, + { + "start": 6141.5, + "end": 6144.54, + "probability": 0.9941 + }, + { + "start": 6145.22, + "end": 6148.72, + "probability": 0.9875 + }, + { + "start": 6150.24, + "end": 6151.43, + "probability": 0.925 + }, + { + "start": 6152.34, + "end": 6155.04, + "probability": 0.7493 + }, + { + "start": 6156.42, + "end": 6158.36, + "probability": 0.7021 + }, + { + "start": 6159.28, + "end": 6159.94, + "probability": 0.9532 + }, + { + "start": 6160.64, + "end": 6161.18, + "probability": 0.9557 + }, + { + "start": 6161.86, + "end": 6162.34, + "probability": 0.9542 + }, + { + "start": 6163.36, + "end": 6166.04, + "probability": 0.9869 + }, + { + "start": 6167.4, + "end": 6169.22, + "probability": 0.9865 + }, + { + "start": 6169.88, + "end": 6176.2, + "probability": 0.8049 + }, + { + "start": 6177.32, + "end": 6178.8, + "probability": 0.984 + }, + { + "start": 6179.58, + "end": 6180.54, + "probability": 0.6723 + }, + { + "start": 6181.26, + "end": 6183.16, + "probability": 0.9108 + }, + { + "start": 6183.72, + "end": 6188.92, + "probability": 0.925 + }, + { + "start": 6190.78, + "end": 6192.02, + "probability": 0.713 + }, + { + "start": 6193.06, + "end": 6194.08, + "probability": 0.8763 + }, + { + "start": 6194.66, + "end": 6199.34, + "probability": 0.9032 + }, + { + "start": 6200.32, + "end": 6202.0, + "probability": 0.9904 + }, + { + "start": 6202.78, + "end": 6203.56, + "probability": 0.7873 + }, + { + "start": 6204.16, + "end": 6206.0, + "probability": 0.6729 + }, + { + "start": 6207.26, + "end": 6208.68, + "probability": 0.9904 + }, + { + "start": 6209.38, + "end": 6213.58, + "probability": 0.959 + }, + { + "start": 6214.4, + "end": 6216.04, + "probability": 0.9973 + }, + { + "start": 6216.64, + "end": 6218.3, + "probability": 0.8066 + }, + { + "start": 6219.04, + "end": 6220.08, + "probability": 0.9265 + }, + { + "start": 6221.56, + "end": 6226.16, + "probability": 0.9329 + }, + { + "start": 6227.12, + "end": 6231.3, + "probability": 0.9858 + }, + { + "start": 6232.08, + "end": 6234.54, + "probability": 0.9309 + }, + { + "start": 6235.66, + "end": 6237.8, + "probability": 0.9799 + }, + { + "start": 6238.5, + "end": 6239.82, + "probability": 0.9228 + }, + { + "start": 6241.02, + "end": 6242.4, + "probability": 0.7722 + }, + { + "start": 6243.64, + "end": 6245.78, + "probability": 0.9277 + }, + { + "start": 6246.3, + "end": 6248.06, + "probability": 0.979 + }, + { + "start": 6248.94, + "end": 6249.64, + "probability": 0.8297 + }, + { + "start": 6250.2, + "end": 6250.92, + "probability": 0.9473 + }, + { + "start": 6252.86, + "end": 6257.38, + "probability": 0.9989 + }, + { + "start": 6258.26, + "end": 6259.14, + "probability": 0.792 + }, + { + "start": 6259.76, + "end": 6263.3, + "probability": 0.9773 + }, + { + "start": 6263.84, + "end": 6265.46, + "probability": 0.9498 + }, + { + "start": 6266.54, + "end": 6272.78, + "probability": 0.994 + }, + { + "start": 6273.46, + "end": 6273.98, + "probability": 0.964 + }, + { + "start": 6274.74, + "end": 6275.9, + "probability": 0.976 + }, + { + "start": 6277.16, + "end": 6282.32, + "probability": 0.9068 + }, + { + "start": 6283.78, + "end": 6286.42, + "probability": 0.9785 + }, + { + "start": 6287.78, + "end": 6288.64, + "probability": 0.8801 + }, + { + "start": 6289.18, + "end": 6292.03, + "probability": 0.9976 + }, + { + "start": 6293.3, + "end": 6294.46, + "probability": 0.9235 + }, + { + "start": 6295.66, + "end": 6298.36, + "probability": 0.9323 + }, + { + "start": 6299.16, + "end": 6300.62, + "probability": 0.9297 + }, + { + "start": 6301.86, + "end": 6304.66, + "probability": 0.8138 + }, + { + "start": 6305.46, + "end": 6307.98, + "probability": 0.9761 + }, + { + "start": 6307.98, + "end": 6312.32, + "probability": 0.9982 + }, + { + "start": 6314.04, + "end": 6318.24, + "probability": 0.8463 + }, + { + "start": 6319.64, + "end": 6323.5, + "probability": 0.9979 + }, + { + "start": 6324.08, + "end": 6326.46, + "probability": 0.9969 + }, + { + "start": 6327.72, + "end": 6331.06, + "probability": 0.9933 + }, + { + "start": 6332.72, + "end": 6336.82, + "probability": 0.9538 + }, + { + "start": 6336.9, + "end": 6338.44, + "probability": 0.9768 + }, + { + "start": 6338.94, + "end": 6342.5, + "probability": 0.9907 + }, + { + "start": 6343.18, + "end": 6345.68, + "probability": 0.9235 + }, + { + "start": 6347.76, + "end": 6354.24, + "probability": 0.9308 + }, + { + "start": 6354.24, + "end": 6359.76, + "probability": 0.9855 + }, + { + "start": 6360.48, + "end": 6361.6, + "probability": 0.6121 + }, + { + "start": 6362.32, + "end": 6363.0, + "probability": 0.9669 + }, + { + "start": 6363.52, + "end": 6365.24, + "probability": 0.8757 + }, + { + "start": 6366.54, + "end": 6368.2, + "probability": 0.7735 + }, + { + "start": 6368.88, + "end": 6372.82, + "probability": 0.9176 + }, + { + "start": 6373.68, + "end": 6381.0, + "probability": 0.9675 + }, + { + "start": 6381.0, + "end": 6385.92, + "probability": 0.9952 + }, + { + "start": 6387.68, + "end": 6391.22, + "probability": 0.9631 + }, + { + "start": 6392.4, + "end": 6395.3, + "probability": 0.9335 + }, + { + "start": 6396.52, + "end": 6399.6, + "probability": 0.9799 + }, + { + "start": 6399.6, + "end": 6404.8, + "probability": 0.9963 + }, + { + "start": 6405.44, + "end": 6409.92, + "probability": 0.9998 + }, + { + "start": 6411.56, + "end": 6413.98, + "probability": 0.7467 + }, + { + "start": 6413.98, + "end": 6417.86, + "probability": 0.8279 + }, + { + "start": 6418.82, + "end": 6424.94, + "probability": 0.9476 + }, + { + "start": 6425.68, + "end": 6430.52, + "probability": 0.9043 + }, + { + "start": 6431.02, + "end": 6431.56, + "probability": 0.4507 + }, + { + "start": 6431.62, + "end": 6432.88, + "probability": 0.8118 + }, + { + "start": 6433.02, + "end": 6434.64, + "probability": 0.9846 + }, + { + "start": 6435.44, + "end": 6437.7, + "probability": 0.94 + }, + { + "start": 6437.7, + "end": 6441.34, + "probability": 0.9695 + }, + { + "start": 6442.12, + "end": 6445.52, + "probability": 0.7211 + }, + { + "start": 6445.64, + "end": 6447.04, + "probability": 0.9996 + }, + { + "start": 6447.52, + "end": 6453.78, + "probability": 0.9847 + }, + { + "start": 6454.89, + "end": 6457.28, + "probability": 0.507 + }, + { + "start": 6457.92, + "end": 6463.54, + "probability": 0.9675 + }, + { + "start": 6464.34, + "end": 6465.68, + "probability": 0.7558 + }, + { + "start": 6466.26, + "end": 6467.36, + "probability": 0.7845 + }, + { + "start": 6467.96, + "end": 6472.88, + "probability": 0.7897 + }, + { + "start": 6472.88, + "end": 6478.82, + "probability": 0.9287 + }, + { + "start": 6479.5, + "end": 6481.82, + "probability": 0.7469 + }, + { + "start": 6483.06, + "end": 6484.3, + "probability": 0.7924 + }, + { + "start": 6484.88, + "end": 6489.12, + "probability": 0.9785 + }, + { + "start": 6489.78, + "end": 6492.78, + "probability": 0.9937 + }, + { + "start": 6493.38, + "end": 6497.54, + "probability": 0.9685 + }, + { + "start": 6497.54, + "end": 6503.72, + "probability": 0.9941 + }, + { + "start": 6504.4, + "end": 6509.82, + "probability": 0.998 + }, + { + "start": 6509.82, + "end": 6515.2, + "probability": 0.9872 + }, + { + "start": 6515.92, + "end": 6518.32, + "probability": 0.9986 + }, + { + "start": 6518.32, + "end": 6522.76, + "probability": 0.9953 + }, + { + "start": 6523.64, + "end": 6524.3, + "probability": 0.7482 + }, + { + "start": 6525.0, + "end": 6528.32, + "probability": 0.9946 + }, + { + "start": 6528.42, + "end": 6531.3, + "probability": 0.9958 + }, + { + "start": 6532.26, + "end": 6537.52, + "probability": 0.9702 + }, + { + "start": 6538.26, + "end": 6539.34, + "probability": 0.9802 + }, + { + "start": 6541.34, + "end": 6543.36, + "probability": 0.9358 + }, + { + "start": 6544.04, + "end": 6546.32, + "probability": 0.9312 + }, + { + "start": 6563.72, + "end": 6566.66, + "probability": 0.5952 + }, + { + "start": 6567.98, + "end": 6569.1, + "probability": 0.8297 + }, + { + "start": 6569.74, + "end": 6570.5, + "probability": 0.8187 + }, + { + "start": 6571.88, + "end": 6573.92, + "probability": 0.9377 + }, + { + "start": 6575.66, + "end": 6576.42, + "probability": 0.9985 + }, + { + "start": 6578.74, + "end": 6581.42, + "probability": 0.7751 + }, + { + "start": 6582.3, + "end": 6583.77, + "probability": 0.9221 + }, + { + "start": 6585.02, + "end": 6588.3, + "probability": 0.9335 + }, + { + "start": 6588.9, + "end": 6590.82, + "probability": 0.7866 + }, + { + "start": 6591.6, + "end": 6594.56, + "probability": 0.9828 + }, + { + "start": 6595.92, + "end": 6598.12, + "probability": 0.9944 + }, + { + "start": 6598.12, + "end": 6602.52, + "probability": 0.9302 + }, + { + "start": 6603.58, + "end": 6604.66, + "probability": 0.934 + }, + { + "start": 6605.58, + "end": 6605.86, + "probability": 0.3353 + }, + { + "start": 6605.88, + "end": 6609.74, + "probability": 0.8462 + }, + { + "start": 6610.38, + "end": 6615.5, + "probability": 0.9955 + }, + { + "start": 6616.84, + "end": 6619.54, + "probability": 0.6829 + }, + { + "start": 6621.1, + "end": 6624.34, + "probability": 0.9987 + }, + { + "start": 6625.22, + "end": 6628.3, + "probability": 0.9698 + }, + { + "start": 6629.0, + "end": 6630.97, + "probability": 0.8728 + }, + { + "start": 6631.8, + "end": 6634.68, + "probability": 0.9937 + }, + { + "start": 6635.52, + "end": 6637.62, + "probability": 0.9987 + }, + { + "start": 6639.48, + "end": 6640.04, + "probability": 0.6649 + }, + { + "start": 6641.12, + "end": 6645.96, + "probability": 0.7283 + }, + { + "start": 6646.84, + "end": 6648.34, + "probability": 0.4016 + }, + { + "start": 6648.42, + "end": 6651.74, + "probability": 0.8709 + }, + { + "start": 6652.8, + "end": 6657.4, + "probability": 0.8879 + }, + { + "start": 6658.48, + "end": 6660.92, + "probability": 0.993 + }, + { + "start": 6661.96, + "end": 6664.7, + "probability": 0.895 + }, + { + "start": 6665.9, + "end": 6668.2, + "probability": 0.9023 + }, + { + "start": 6668.72, + "end": 6671.58, + "probability": 0.9737 + }, + { + "start": 6671.58, + "end": 6674.34, + "probability": 0.9805 + }, + { + "start": 6675.08, + "end": 6675.8, + "probability": 0.9429 + }, + { + "start": 6677.0, + "end": 6678.48, + "probability": 0.9579 + }, + { + "start": 6679.78, + "end": 6681.0, + "probability": 0.8774 + }, + { + "start": 6681.56, + "end": 6682.8, + "probability": 0.7461 + }, + { + "start": 6683.66, + "end": 6687.8, + "probability": 0.951 + }, + { + "start": 6688.7, + "end": 6690.46, + "probability": 0.9821 + }, + { + "start": 6691.42, + "end": 6693.42, + "probability": 0.9872 + }, + { + "start": 6694.6, + "end": 6696.08, + "probability": 0.8337 + }, + { + "start": 6697.44, + "end": 6700.38, + "probability": 0.7821 + }, + { + "start": 6700.54, + "end": 6701.66, + "probability": 0.9901 + }, + { + "start": 6706.96, + "end": 6710.21, + "probability": 0.9907 + }, + { + "start": 6710.66, + "end": 6711.3, + "probability": 0.9049 + }, + { + "start": 6711.4, + "end": 6712.14, + "probability": 0.8347 + }, + { + "start": 6712.46, + "end": 6713.2, + "probability": 0.8398 + }, + { + "start": 6714.32, + "end": 6715.88, + "probability": 0.9672 + }, + { + "start": 6717.16, + "end": 6719.26, + "probability": 0.4973 + }, + { + "start": 6719.94, + "end": 6721.44, + "probability": 0.69 + }, + { + "start": 6722.18, + "end": 6723.76, + "probability": 0.9893 + }, + { + "start": 6725.26, + "end": 6729.68, + "probability": 0.9332 + }, + { + "start": 6729.72, + "end": 6731.94, + "probability": 0.9398 + }, + { + "start": 6734.46, + "end": 6737.06, + "probability": 0.9829 + }, + { + "start": 6738.18, + "end": 6739.86, + "probability": 0.9849 + }, + { + "start": 6741.12, + "end": 6742.38, + "probability": 0.9722 + }, + { + "start": 6743.46, + "end": 6744.52, + "probability": 0.9585 + }, + { + "start": 6745.1, + "end": 6746.69, + "probability": 0.9546 + }, + { + "start": 6751.6, + "end": 6752.54, + "probability": 0.5753 + }, + { + "start": 6752.76, + "end": 6755.18, + "probability": 0.8091 + }, + { + "start": 6755.26, + "end": 6756.36, + "probability": 0.911 + }, + { + "start": 6757.9, + "end": 6760.98, + "probability": 0.9208 + }, + { + "start": 6763.22, + "end": 6764.0, + "probability": 0.9408 + }, + { + "start": 6764.1, + "end": 6764.7, + "probability": 0.927 + }, + { + "start": 6764.74, + "end": 6767.46, + "probability": 0.9634 + }, + { + "start": 6768.46, + "end": 6769.42, + "probability": 0.8195 + }, + { + "start": 6770.46, + "end": 6771.62, + "probability": 0.8 + }, + { + "start": 6773.0, + "end": 6776.54, + "probability": 0.991 + }, + { + "start": 6776.54, + "end": 6779.56, + "probability": 0.9902 + }, + { + "start": 6781.36, + "end": 6781.8, + "probability": 0.3785 + }, + { + "start": 6782.26, + "end": 6782.88, + "probability": 0.8667 + }, + { + "start": 6782.88, + "end": 6785.22, + "probability": 0.9932 + }, + { + "start": 6785.32, + "end": 6785.44, + "probability": 0.8892 + }, + { + "start": 6786.4, + "end": 6787.44, + "probability": 0.9175 + }, + { + "start": 6788.14, + "end": 6788.84, + "probability": 0.8274 + }, + { + "start": 6789.36, + "end": 6790.44, + "probability": 0.8995 + }, + { + "start": 6791.62, + "end": 6792.3, + "probability": 0.8979 + }, + { + "start": 6794.94, + "end": 6795.84, + "probability": 0.7546 + }, + { + "start": 6797.8, + "end": 6798.6, + "probability": 0.8913 + }, + { + "start": 6800.2, + "end": 6802.12, + "probability": 0.9714 + }, + { + "start": 6803.5, + "end": 6806.4, + "probability": 0.9868 + }, + { + "start": 6808.18, + "end": 6810.44, + "probability": 0.9613 + }, + { + "start": 6811.58, + "end": 6812.78, + "probability": 0.9037 + }, + { + "start": 6813.64, + "end": 6814.62, + "probability": 0.4076 + }, + { + "start": 6815.6, + "end": 6818.46, + "probability": 0.8962 + }, + { + "start": 6819.86, + "end": 6820.94, + "probability": 0.9399 + }, + { + "start": 6821.02, + "end": 6823.24, + "probability": 0.9321 + }, + { + "start": 6823.74, + "end": 6824.62, + "probability": 0.4648 + }, + { + "start": 6825.12, + "end": 6826.52, + "probability": 0.846 + }, + { + "start": 6827.24, + "end": 6827.76, + "probability": 0.7078 + }, + { + "start": 6828.34, + "end": 6829.98, + "probability": 0.986 + }, + { + "start": 6830.86, + "end": 6833.16, + "probability": 0.9927 + }, + { + "start": 6835.16, + "end": 6838.66, + "probability": 0.9945 + }, + { + "start": 6838.9, + "end": 6839.44, + "probability": 0.7072 + }, + { + "start": 6840.02, + "end": 6841.04, + "probability": 0.7513 + }, + { + "start": 6841.9, + "end": 6842.5, + "probability": 0.9872 + }, + { + "start": 6843.56, + "end": 6844.52, + "probability": 0.5891 + }, + { + "start": 6844.52, + "end": 6845.46, + "probability": 0.7375 + }, + { + "start": 6849.98, + "end": 6855.02, + "probability": 0.9373 + }, + { + "start": 6855.18, + "end": 6856.04, + "probability": 0.8479 + }, + { + "start": 6858.14, + "end": 6860.62, + "probability": 0.9969 + }, + { + "start": 6862.72, + "end": 6866.3, + "probability": 0.8491 + }, + { + "start": 6868.32, + "end": 6869.36, + "probability": 0.9417 + }, + { + "start": 6870.98, + "end": 6873.36, + "probability": 0.8842 + }, + { + "start": 6875.28, + "end": 6876.56, + "probability": 0.8779 + }, + { + "start": 6877.26, + "end": 6880.84, + "probability": 0.7574 + }, + { + "start": 6881.78, + "end": 6882.9, + "probability": 0.4544 + }, + { + "start": 6883.9, + "end": 6887.66, + "probability": 0.9281 + }, + { + "start": 6888.08, + "end": 6889.08, + "probability": 0.7795 + }, + { + "start": 6891.26, + "end": 6894.99, + "probability": 0.9155 + }, + { + "start": 6895.58, + "end": 6896.56, + "probability": 0.4742 + }, + { + "start": 6897.28, + "end": 6898.72, + "probability": 0.9646 + }, + { + "start": 6900.34, + "end": 6901.62, + "probability": 0.992 + }, + { + "start": 6903.4, + "end": 6904.04, + "probability": 0.6611 + }, + { + "start": 6907.1, + "end": 6908.02, + "probability": 0.6586 + }, + { + "start": 6908.76, + "end": 6909.72, + "probability": 0.7371 + }, + { + "start": 6910.56, + "end": 6911.11, + "probability": 0.9768 + }, + { + "start": 6912.12, + "end": 6912.82, + "probability": 0.6901 + }, + { + "start": 6913.64, + "end": 6915.08, + "probability": 0.7102 + }, + { + "start": 6915.76, + "end": 6916.51, + "probability": 0.6696 + }, + { + "start": 6918.02, + "end": 6919.18, + "probability": 0.8126 + }, + { + "start": 6919.78, + "end": 6920.94, + "probability": 0.9885 + }, + { + "start": 6921.84, + "end": 6923.02, + "probability": 0.9771 + }, + { + "start": 6924.34, + "end": 6926.78, + "probability": 0.8394 + }, + { + "start": 6927.94, + "end": 6928.66, + "probability": 0.9963 + }, + { + "start": 6929.26, + "end": 6929.94, + "probability": 0.959 + }, + { + "start": 6930.46, + "end": 6932.82, + "probability": 0.9169 + }, + { + "start": 6935.8, + "end": 6936.14, + "probability": 0.7388 + }, + { + "start": 6937.24, + "end": 6942.38, + "probability": 0.9922 + }, + { + "start": 6943.04, + "end": 6944.78, + "probability": 0.9956 + }, + { + "start": 6945.26, + "end": 6946.64, + "probability": 0.8806 + }, + { + "start": 6947.44, + "end": 6949.18, + "probability": 0.9718 + }, + { + "start": 6949.48, + "end": 6954.28, + "probability": 0.984 + }, + { + "start": 6954.4, + "end": 6955.52, + "probability": 0.8707 + }, + { + "start": 6955.58, + "end": 6955.8, + "probability": 0.6554 + }, + { + "start": 6957.86, + "end": 6961.08, + "probability": 0.7479 + }, + { + "start": 6961.6, + "end": 6962.0, + "probability": 0.6895 + }, + { + "start": 6962.9, + "end": 6965.58, + "probability": 0.8477 + }, + { + "start": 6966.84, + "end": 6971.93, + "probability": 0.9962 + }, + { + "start": 6972.88, + "end": 6973.66, + "probability": 0.4858 + }, + { + "start": 6973.74, + "end": 6975.92, + "probability": 0.8693 + }, + { + "start": 6976.1, + "end": 6977.62, + "probability": 0.4862 + }, + { + "start": 6977.7, + "end": 6981.72, + "probability": 0.9394 + }, + { + "start": 6981.82, + "end": 6984.84, + "probability": 0.8874 + }, + { + "start": 6986.3, + "end": 6987.9, + "probability": 0.6643 + }, + { + "start": 6988.56, + "end": 6990.44, + "probability": 0.5628 + }, + { + "start": 6994.6, + "end": 6996.62, + "probability": 0.6863 + }, + { + "start": 6997.16, + "end": 6998.3, + "probability": 0.9988 + }, + { + "start": 6999.1, + "end": 7001.4, + "probability": 0.9888 + }, + { + "start": 7003.44, + "end": 7004.62, + "probability": 0.738 + }, + { + "start": 7005.36, + "end": 7007.76, + "probability": 0.8976 + }, + { + "start": 7009.4, + "end": 7009.58, + "probability": 0.9072 + }, + { + "start": 7011.84, + "end": 7012.64, + "probability": 0.9933 + }, + { + "start": 7013.22, + "end": 7013.92, + "probability": 0.9 + }, + { + "start": 7015.68, + "end": 7017.56, + "probability": 0.9709 + }, + { + "start": 7018.76, + "end": 7019.82, + "probability": 0.5686 + }, + { + "start": 7022.32, + "end": 7027.32, + "probability": 0.9406 + }, + { + "start": 7028.2, + "end": 7029.4, + "probability": 0.981 + }, + { + "start": 7030.16, + "end": 7033.18, + "probability": 0.9877 + }, + { + "start": 7034.5, + "end": 7035.54, + "probability": 0.7898 + }, + { + "start": 7036.42, + "end": 7041.73, + "probability": 0.9133 + }, + { + "start": 7042.44, + "end": 7048.86, + "probability": 0.8023 + }, + { + "start": 7051.06, + "end": 7051.96, + "probability": 0.5944 + }, + { + "start": 7052.9, + "end": 7054.7, + "probability": 0.9977 + }, + { + "start": 7055.48, + "end": 7057.98, + "probability": 0.9563 + }, + { + "start": 7058.9, + "end": 7061.74, + "probability": 0.8475 + }, + { + "start": 7062.86, + "end": 7064.48, + "probability": 0.7903 + }, + { + "start": 7065.02, + "end": 7070.42, + "probability": 0.9938 + }, + { + "start": 7070.42, + "end": 7073.78, + "probability": 0.9796 + }, + { + "start": 7075.24, + "end": 7077.18, + "probability": 0.838 + }, + { + "start": 7078.48, + "end": 7079.52, + "probability": 0.59 + }, + { + "start": 7080.5, + "end": 7086.68, + "probability": 0.9668 + }, + { + "start": 7087.76, + "end": 7089.88, + "probability": 0.9628 + }, + { + "start": 7090.46, + "end": 7091.42, + "probability": 0.7565 + }, + { + "start": 7092.12, + "end": 7093.66, + "probability": 0.9783 + }, + { + "start": 7094.48, + "end": 7097.62, + "probability": 0.9858 + }, + { + "start": 7099.18, + "end": 7100.2, + "probability": 0.8865 + }, + { + "start": 7101.02, + "end": 7104.3, + "probability": 0.801 + }, + { + "start": 7105.24, + "end": 7108.26, + "probability": 0.998 + }, + { + "start": 7110.72, + "end": 7113.66, + "probability": 0.8317 + }, + { + "start": 7114.88, + "end": 7115.8, + "probability": 0.7942 + }, + { + "start": 7117.66, + "end": 7121.6, + "probability": 0.9846 + }, + { + "start": 7122.12, + "end": 7122.94, + "probability": 0.8842 + }, + { + "start": 7124.22, + "end": 7127.6, + "probability": 0.9437 + }, + { + "start": 7128.22, + "end": 7129.9, + "probability": 0.8515 + }, + { + "start": 7131.9, + "end": 7135.36, + "probability": 0.6238 + }, + { + "start": 7136.0, + "end": 7137.8, + "probability": 0.9861 + }, + { + "start": 7139.32, + "end": 7139.64, + "probability": 0.8843 + }, + { + "start": 7140.5, + "end": 7142.2, + "probability": 0.8889 + }, + { + "start": 7144.14, + "end": 7144.36, + "probability": 0.0756 + }, + { + "start": 7144.36, + "end": 7144.92, + "probability": 0.6309 + }, + { + "start": 7146.32, + "end": 7150.26, + "probability": 0.9685 + }, + { + "start": 7152.2, + "end": 7153.1, + "probability": 0.7561 + }, + { + "start": 7155.14, + "end": 7156.24, + "probability": 0.7114 + }, + { + "start": 7157.02, + "end": 7162.28, + "probability": 0.989 + }, + { + "start": 7164.58, + "end": 7166.36, + "probability": 0.959 + }, + { + "start": 7169.36, + "end": 7172.18, + "probability": 0.8145 + }, + { + "start": 7172.28, + "end": 7173.88, + "probability": 0.9622 + }, + { + "start": 7174.68, + "end": 7177.81, + "probability": 0.9941 + }, + { + "start": 7178.2, + "end": 7182.0, + "probability": 0.9769 + }, + { + "start": 7183.2, + "end": 7186.04, + "probability": 0.9945 + }, + { + "start": 7186.58, + "end": 7187.5, + "probability": 0.9727 + }, + { + "start": 7188.24, + "end": 7191.84, + "probability": 0.7907 + }, + { + "start": 7193.08, + "end": 7195.94, + "probability": 0.9394 + }, + { + "start": 7195.94, + "end": 7199.76, + "probability": 0.9349 + }, + { + "start": 7201.16, + "end": 7201.56, + "probability": 0.3876 + }, + { + "start": 7201.72, + "end": 7206.62, + "probability": 0.9643 + }, + { + "start": 7206.62, + "end": 7210.9, + "probability": 0.942 + }, + { + "start": 7212.04, + "end": 7217.8, + "probability": 0.9439 + }, + { + "start": 7218.86, + "end": 7219.46, + "probability": 0.5359 + }, + { + "start": 7220.34, + "end": 7223.4, + "probability": 0.9198 + }, + { + "start": 7224.2, + "end": 7225.22, + "probability": 0.9272 + }, + { + "start": 7225.82, + "end": 7228.54, + "probability": 0.9334 + }, + { + "start": 7229.34, + "end": 7231.7, + "probability": 0.8155 + }, + { + "start": 7232.22, + "end": 7233.2, + "probability": 0.9844 + }, + { + "start": 7235.08, + "end": 7240.9, + "probability": 0.9831 + }, + { + "start": 7241.58, + "end": 7245.26, + "probability": 0.9906 + }, + { + "start": 7246.16, + "end": 7250.6, + "probability": 0.9931 + }, + { + "start": 7250.6, + "end": 7255.96, + "probability": 0.9608 + }, + { + "start": 7257.82, + "end": 7258.48, + "probability": 0.4844 + }, + { + "start": 7258.58, + "end": 7264.33, + "probability": 0.9941 + }, + { + "start": 7265.5, + "end": 7266.0, + "probability": 0.7048 + }, + { + "start": 7266.06, + "end": 7270.37, + "probability": 0.9381 + }, + { + "start": 7271.72, + "end": 7272.0, + "probability": 0.936 + }, + { + "start": 7272.08, + "end": 7272.5, + "probability": 0.9063 + }, + { + "start": 7272.66, + "end": 7276.78, + "probability": 0.8474 + }, + { + "start": 7277.54, + "end": 7280.34, + "probability": 0.9009 + }, + { + "start": 7281.08, + "end": 7284.76, + "probability": 0.988 + }, + { + "start": 7285.96, + "end": 7288.86, + "probability": 0.885 + }, + { + "start": 7289.92, + "end": 7290.92, + "probability": 0.9136 + }, + { + "start": 7291.58, + "end": 7292.66, + "probability": 0.9047 + }, + { + "start": 7293.1, + "end": 7293.64, + "probability": 0.8755 + }, + { + "start": 7293.8, + "end": 7294.42, + "probability": 0.9899 + }, + { + "start": 7294.88, + "end": 7296.4, + "probability": 0.99 + }, + { + "start": 7297.44, + "end": 7300.94, + "probability": 0.9533 + }, + { + "start": 7301.5, + "end": 7305.26, + "probability": 0.998 + }, + { + "start": 7305.86, + "end": 7308.84, + "probability": 0.9401 + }, + { + "start": 7309.64, + "end": 7310.43, + "probability": 0.74 + }, + { + "start": 7313.32, + "end": 7314.76, + "probability": 0.6378 + }, + { + "start": 7315.82, + "end": 7316.78, + "probability": 0.9192 + }, + { + "start": 7317.96, + "end": 7318.6, + "probability": 0.9715 + }, + { + "start": 7318.66, + "end": 7319.48, + "probability": 0.8896 + }, + { + "start": 7319.68, + "end": 7321.22, + "probability": 0.9907 + }, + { + "start": 7322.32, + "end": 7323.3, + "probability": 0.9683 + }, + { + "start": 7323.98, + "end": 7327.78, + "probability": 0.9534 + }, + { + "start": 7328.8, + "end": 7334.58, + "probability": 0.7907 + }, + { + "start": 7335.8, + "end": 7340.32, + "probability": 0.9935 + }, + { + "start": 7341.2, + "end": 7342.76, + "probability": 0.508 + }, + { + "start": 7342.84, + "end": 7344.4, + "probability": 0.5331 + }, + { + "start": 7345.26, + "end": 7345.56, + "probability": 0.2822 + }, + { + "start": 7345.56, + "end": 7345.56, + "probability": 0.4588 + }, + { + "start": 7345.56, + "end": 7345.56, + "probability": 0.0958 + }, + { + "start": 7345.56, + "end": 7347.26, + "probability": 0.2368 + }, + { + "start": 7348.3, + "end": 7349.74, + "probability": 0.5107 + }, + { + "start": 7350.38, + "end": 7352.08, + "probability": 0.5214 + }, + { + "start": 7352.75, + "end": 7356.62, + "probability": 0.7668 + }, + { + "start": 7357.12, + "end": 7359.08, + "probability": 0.6139 + }, + { + "start": 7359.08, + "end": 7359.08, + "probability": 0.0041 + }, + { + "start": 7359.08, + "end": 7360.08, + "probability": 0.4699 + }, + { + "start": 7360.22, + "end": 7360.94, + "probability": 0.763 + }, + { + "start": 7361.0, + "end": 7361.7, + "probability": 0.7208 + }, + { + "start": 7361.82, + "end": 7362.14, + "probability": 0.0072 + }, + { + "start": 7363.4, + "end": 7366.06, + "probability": 0.5654 + }, + { + "start": 7366.38, + "end": 7369.96, + "probability": 0.1225 + }, + { + "start": 7371.14, + "end": 7372.08, + "probability": 0.0884 + }, + { + "start": 7372.08, + "end": 7372.08, + "probability": 0.1833 + }, + { + "start": 7372.08, + "end": 7372.08, + "probability": 0.2492 + }, + { + "start": 7372.08, + "end": 7372.16, + "probability": 0.066 + }, + { + "start": 7372.16, + "end": 7372.74, + "probability": 0.3314 + }, + { + "start": 7373.0, + "end": 7377.82, + "probability": 0.473 + }, + { + "start": 7379.27, + "end": 7383.04, + "probability": 0.2068 + }, + { + "start": 7383.14, + "end": 7384.18, + "probability": 0.0777 + }, + { + "start": 7384.34, + "end": 7386.46, + "probability": 0.3451 + }, + { + "start": 7386.78, + "end": 7388.05, + "probability": 0.2884 + }, + { + "start": 7388.48, + "end": 7390.52, + "probability": 0.2366 + }, + { + "start": 7390.69, + "end": 7392.64, + "probability": 0.485 + }, + { + "start": 7394.5, + "end": 7397.54, + "probability": 0.045 + }, + { + "start": 7397.96, + "end": 7398.8, + "probability": 0.5679 + }, + { + "start": 7398.8, + "end": 7399.26, + "probability": 0.3972 + }, + { + "start": 7400.38, + "end": 7401.2, + "probability": 0.0537 + }, + { + "start": 7401.59, + "end": 7403.94, + "probability": 0.043 + }, + { + "start": 7404.52, + "end": 7406.48, + "probability": 0.3128 + }, + { + "start": 7407.2, + "end": 7407.3, + "probability": 0.2996 + }, + { + "start": 7407.38, + "end": 7410.76, + "probability": 0.2979 + }, + { + "start": 7410.76, + "end": 7411.54, + "probability": 0.025 + }, + { + "start": 7412.14, + "end": 7413.76, + "probability": 0.0021 + }, + { + "start": 7414.16, + "end": 7414.52, + "probability": 0.013 + }, + { + "start": 7414.52, + "end": 7414.52, + "probability": 0.1714 + }, + { + "start": 7414.52, + "end": 7416.55, + "probability": 0.0992 + }, + { + "start": 7417.88, + "end": 7418.52, + "probability": 0.0714 + }, + { + "start": 7418.52, + "end": 7418.52, + "probability": 0.1208 + }, + { + "start": 7418.78, + "end": 7418.78, + "probability": 0.1685 + }, + { + "start": 7418.8, + "end": 7419.18, + "probability": 0.5107 + }, + { + "start": 7419.18, + "end": 7419.24, + "probability": 0.2018 + }, + { + "start": 7419.24, + "end": 7419.78, + "probability": 0.0711 + }, + { + "start": 7420.0, + "end": 7420.0, + "probability": 0.0 + }, + { + "start": 7420.0, + "end": 7420.0, + "probability": 0.0 + }, + { + "start": 7420.0, + "end": 7420.0, + "probability": 0.0 + }, + { + "start": 7420.0, + "end": 7420.0, + "probability": 0.0 + }, + { + "start": 7420.0, + "end": 7420.0, + "probability": 0.0 + }, + { + "start": 7420.12, + "end": 7422.44, + "probability": 0.1277 + }, + { + "start": 7422.8, + "end": 7424.56, + "probability": 0.4759 + }, + { + "start": 7428.18, + "end": 7433.08, + "probability": 0.5995 + }, + { + "start": 7433.7, + "end": 7438.32, + "probability": 0.1808 + }, + { + "start": 7438.78, + "end": 7440.96, + "probability": 0.1428 + }, + { + "start": 7440.96, + "end": 7440.96, + "probability": 0.0104 + }, + { + "start": 7440.96, + "end": 7441.72, + "probability": 0.0468 + }, + { + "start": 7442.46, + "end": 7443.66, + "probability": 0.0114 + }, + { + "start": 7444.36, + "end": 7444.96, + "probability": 0.2405 + }, + { + "start": 7445.34, + "end": 7445.34, + "probability": 0.6065 + }, + { + "start": 7445.74, + "end": 7446.26, + "probability": 0.026 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.0, + "end": 7545.0, + "probability": 0.0 + }, + { + "start": 7545.46, + "end": 7546.36, + "probability": 0.0393 + }, + { + "start": 7546.36, + "end": 7546.36, + "probability": 0.0521 + }, + { + "start": 7546.36, + "end": 7551.64, + "probability": 0.653 + }, + { + "start": 7553.36, + "end": 7554.72, + "probability": 0.7512 + }, + { + "start": 7555.4, + "end": 7556.6, + "probability": 0.5721 + }, + { + "start": 7558.82, + "end": 7560.16, + "probability": 0.8661 + }, + { + "start": 7560.28, + "end": 7565.26, + "probability": 0.9847 + }, + { + "start": 7566.14, + "end": 7572.18, + "probability": 0.6865 + }, + { + "start": 7572.3, + "end": 7574.92, + "probability": 0.6739 + }, + { + "start": 7578.46, + "end": 7578.7, + "probability": 0.921 + }, + { + "start": 7580.08, + "end": 7580.5, + "probability": 0.0837 + }, + { + "start": 7601.62, + "end": 7603.56, + "probability": 0.5656 + }, + { + "start": 7604.85, + "end": 7607.84, + "probability": 0.6974 + }, + { + "start": 7608.74, + "end": 7614.68, + "probability": 0.8316 + }, + { + "start": 7615.44, + "end": 7618.46, + "probability": 0.6244 + }, + { + "start": 7621.64, + "end": 7622.62, + "probability": 0.6823 + }, + { + "start": 7624.84, + "end": 7625.56, + "probability": 0.6739 + }, + { + "start": 7628.82, + "end": 7632.6, + "probability": 0.7516 + }, + { + "start": 7633.6, + "end": 7633.98, + "probability": 0.8138 + }, + { + "start": 7635.06, + "end": 7640.24, + "probability": 0.9958 + }, + { + "start": 7640.94, + "end": 7643.94, + "probability": 0.8621 + }, + { + "start": 7645.02, + "end": 7646.74, + "probability": 0.9741 + }, + { + "start": 7647.52, + "end": 7648.56, + "probability": 0.9974 + }, + { + "start": 7650.62, + "end": 7653.06, + "probability": 0.9843 + }, + { + "start": 7655.14, + "end": 7656.12, + "probability": 0.9971 + }, + { + "start": 7657.18, + "end": 7659.74, + "probability": 0.9906 + }, + { + "start": 7660.48, + "end": 7661.24, + "probability": 0.9841 + }, + { + "start": 7664.22, + "end": 7664.94, + "probability": 0.7188 + }, + { + "start": 7667.3, + "end": 7668.16, + "probability": 0.9543 + }, + { + "start": 7669.62, + "end": 7670.9, + "probability": 0.9041 + }, + { + "start": 7672.14, + "end": 7674.88, + "probability": 0.9836 + }, + { + "start": 7675.72, + "end": 7676.56, + "probability": 0.2321 + }, + { + "start": 7678.08, + "end": 7679.88, + "probability": 0.6652 + }, + { + "start": 7681.68, + "end": 7685.48, + "probability": 0.6464 + }, + { + "start": 7686.22, + "end": 7687.52, + "probability": 0.9013 + }, + { + "start": 7687.7, + "end": 7693.46, + "probability": 0.5569 + }, + { + "start": 7694.32, + "end": 7696.14, + "probability": 0.8203 + }, + { + "start": 7697.16, + "end": 7700.6, + "probability": 0.7634 + }, + { + "start": 7701.22, + "end": 7703.22, + "probability": 0.6108 + }, + { + "start": 7703.88, + "end": 7704.64, + "probability": 0.9382 + }, + { + "start": 7705.3, + "end": 7708.52, + "probability": 0.7667 + }, + { + "start": 7709.3, + "end": 7710.18, + "probability": 0.9261 + }, + { + "start": 7710.92, + "end": 7713.2, + "probability": 0.9345 + }, + { + "start": 7713.98, + "end": 7714.74, + "probability": 0.9649 + }, + { + "start": 7715.28, + "end": 7716.28, + "probability": 0.9861 + }, + { + "start": 7716.94, + "end": 7717.72, + "probability": 0.376 + }, + { + "start": 7718.52, + "end": 7720.94, + "probability": 0.7085 + }, + { + "start": 7722.68, + "end": 7723.88, + "probability": 0.423 + }, + { + "start": 7724.44, + "end": 7727.6, + "probability": 0.9886 + }, + { + "start": 7729.14, + "end": 7732.88, + "probability": 0.968 + }, + { + "start": 7734.34, + "end": 7740.96, + "probability": 0.7804 + }, + { + "start": 7741.74, + "end": 7744.14, + "probability": 0.7344 + }, + { + "start": 7744.78, + "end": 7746.88, + "probability": 0.4199 + }, + { + "start": 7747.66, + "end": 7749.38, + "probability": 0.8307 + }, + { + "start": 7749.94, + "end": 7750.8, + "probability": 0.8678 + }, + { + "start": 7751.56, + "end": 7753.32, + "probability": 0.9826 + }, + { + "start": 7753.84, + "end": 7756.32, + "probability": 0.9951 + }, + { + "start": 7758.68, + "end": 7763.16, + "probability": 0.8475 + }, + { + "start": 7764.0, + "end": 7766.3, + "probability": 0.9564 + }, + { + "start": 7769.36, + "end": 7771.88, + "probability": 0.9938 + }, + { + "start": 7773.08, + "end": 7775.16, + "probability": 0.6561 + }, + { + "start": 7776.1, + "end": 7776.62, + "probability": 0.2648 + }, + { + "start": 7777.96, + "end": 7781.04, + "probability": 0.4115 + }, + { + "start": 7781.62, + "end": 7783.36, + "probability": 0.7506 + }, + { + "start": 7784.02, + "end": 7787.06, + "probability": 0.9508 + }, + { + "start": 7788.16, + "end": 7789.46, + "probability": 0.9456 + }, + { + "start": 7790.26, + "end": 7793.1, + "probability": 0.8648 + }, + { + "start": 7795.82, + "end": 7800.76, + "probability": 0.7766 + }, + { + "start": 7801.64, + "end": 7803.5, + "probability": 0.7288 + }, + { + "start": 7803.62, + "end": 7809.96, + "probability": 0.9702 + }, + { + "start": 7810.8, + "end": 7813.64, + "probability": 0.9966 + }, + { + "start": 7814.66, + "end": 7817.07, + "probability": 0.9103 + }, + { + "start": 7818.14, + "end": 7819.42, + "probability": 0.8308 + }, + { + "start": 7820.14, + "end": 7822.0, + "probability": 0.9233 + }, + { + "start": 7822.8, + "end": 7823.04, + "probability": 0.1373 + }, + { + "start": 7824.16, + "end": 7828.12, + "probability": 0.2291 + }, + { + "start": 7829.0, + "end": 7832.52, + "probability": 0.9925 + }, + { + "start": 7833.62, + "end": 7835.82, + "probability": 0.9955 + }, + { + "start": 7837.02, + "end": 7839.24, + "probability": 0.6676 + }, + { + "start": 7840.04, + "end": 7840.98, + "probability": 0.6443 + }, + { + "start": 7841.56, + "end": 7844.28, + "probability": 0.9901 + }, + { + "start": 7845.02, + "end": 7848.92, + "probability": 0.9775 + }, + { + "start": 7849.38, + "end": 7851.56, + "probability": 0.3232 + }, + { + "start": 7851.86, + "end": 7853.46, + "probability": 0.6239 + }, + { + "start": 7853.58, + "end": 7855.74, + "probability": 0.5002 + }, + { + "start": 7857.2, + "end": 7861.22, + "probability": 0.7794 + }, + { + "start": 7861.94, + "end": 7864.14, + "probability": 0.9893 + }, + { + "start": 7866.74, + "end": 7869.3, + "probability": 0.5147 + }, + { + "start": 7870.52, + "end": 7871.8, + "probability": 0.0933 + }, + { + "start": 7872.22, + "end": 7873.02, + "probability": 0.9235 + }, + { + "start": 7874.14, + "end": 7875.04, + "probability": 0.189 + }, + { + "start": 7880.04, + "end": 7881.98, + "probability": 0.4178 + }, + { + "start": 7882.62, + "end": 7882.8, + "probability": 0.03 + }, + { + "start": 7882.84, + "end": 7886.2, + "probability": 0.7885 + }, + { + "start": 7886.44, + "end": 7888.74, + "probability": 0.2624 + }, + { + "start": 7888.82, + "end": 7889.9, + "probability": 0.8461 + }, + { + "start": 7890.02, + "end": 7890.86, + "probability": 0.8493 + }, + { + "start": 7891.7, + "end": 7895.14, + "probability": 0.9644 + }, + { + "start": 7895.62, + "end": 7899.12, + "probability": 0.9557 + }, + { + "start": 7904.28, + "end": 7906.5, + "probability": 0.9993 + }, + { + "start": 7906.5, + "end": 7908.72, + "probability": 0.9803 + }, + { + "start": 7910.08, + "end": 7910.76, + "probability": 0.8418 + }, + { + "start": 7912.16, + "end": 7913.02, + "probability": 0.5277 + }, + { + "start": 7913.06, + "end": 7913.68, + "probability": 0.7729 + }, + { + "start": 7913.74, + "end": 7915.12, + "probability": 0.9643 + }, + { + "start": 7915.84, + "end": 7918.68, + "probability": 0.6178 + }, + { + "start": 7918.82, + "end": 7922.86, + "probability": 0.8664 + }, + { + "start": 7922.86, + "end": 7924.9, + "probability": 0.5398 + }, + { + "start": 7925.9, + "end": 7930.36, + "probability": 0.9762 + }, + { + "start": 7930.8, + "end": 7935.58, + "probability": 0.8481 + }, + { + "start": 7935.58, + "end": 7940.12, + "probability": 0.9099 + }, + { + "start": 7941.12, + "end": 7943.1, + "probability": 0.8113 + }, + { + "start": 7943.1, + "end": 7946.28, + "probability": 0.8151 + }, + { + "start": 7947.32, + "end": 7950.68, + "probability": 0.9809 + }, + { + "start": 7950.68, + "end": 7953.58, + "probability": 0.9762 + }, + { + "start": 7954.58, + "end": 7958.72, + "probability": 0.9388 + }, + { + "start": 7961.44, + "end": 7962.56, + "probability": 0.9245 + }, + { + "start": 7963.52, + "end": 7966.08, + "probability": 0.9594 + }, + { + "start": 7967.6, + "end": 7970.78, + "probability": 0.4973 + }, + { + "start": 7971.52, + "end": 7973.76, + "probability": 0.8041 + }, + { + "start": 7973.94, + "end": 7975.88, + "probability": 0.2756 + }, + { + "start": 7976.0, + "end": 7976.78, + "probability": 0.8204 + }, + { + "start": 7978.34, + "end": 7979.14, + "probability": 0.5506 + }, + { + "start": 7979.28, + "end": 7980.44, + "probability": 0.8223 + }, + { + "start": 7980.6, + "end": 7984.34, + "probability": 0.9583 + }, + { + "start": 7984.34, + "end": 7988.1, + "probability": 0.9917 + }, + { + "start": 7989.12, + "end": 7992.7, + "probability": 0.939 + }, + { + "start": 7992.7, + "end": 7995.74, + "probability": 0.9871 + }, + { + "start": 7996.18, + "end": 7997.28, + "probability": 0.98 + }, + { + "start": 7997.96, + "end": 7999.44, + "probability": 0.8423 + }, + { + "start": 7999.52, + "end": 8002.04, + "probability": 0.9941 + }, + { + "start": 8002.7, + "end": 8007.04, + "probability": 0.9645 + }, + { + "start": 8007.68, + "end": 8011.62, + "probability": 0.7768 + }, + { + "start": 8011.82, + "end": 8012.66, + "probability": 0.5956 + }, + { + "start": 8012.72, + "end": 8013.6, + "probability": 0.8556 + }, + { + "start": 8015.08, + "end": 8017.24, + "probability": 0.6405 + }, + { + "start": 8017.94, + "end": 8020.84, + "probability": 0.9871 + }, + { + "start": 8020.96, + "end": 8025.42, + "probability": 0.9735 + }, + { + "start": 8026.74, + "end": 8030.5, + "probability": 0.9867 + }, + { + "start": 8031.1, + "end": 8035.16, + "probability": 0.694 + }, + { + "start": 8035.36, + "end": 8040.02, + "probability": 0.5755 + }, + { + "start": 8041.48, + "end": 8043.32, + "probability": 0.6893 + }, + { + "start": 8044.12, + "end": 8045.46, + "probability": 0.751 + }, + { + "start": 8046.08, + "end": 8049.78, + "probability": 0.9496 + }, + { + "start": 8050.38, + "end": 8052.3, + "probability": 0.9876 + }, + { + "start": 8054.38, + "end": 8058.62, + "probability": 0.9214 + }, + { + "start": 8059.22, + "end": 8062.1, + "probability": 0.8584 + }, + { + "start": 8062.92, + "end": 8065.32, + "probability": 0.8474 + }, + { + "start": 8065.86, + "end": 8067.09, + "probability": 0.8204 + }, + { + "start": 8067.38, + "end": 8068.62, + "probability": 0.9 + }, + { + "start": 8072.19, + "end": 8076.06, + "probability": 0.5811 + }, + { + "start": 8076.1, + "end": 8076.8, + "probability": 0.2758 + }, + { + "start": 8077.04, + "end": 8077.58, + "probability": 0.4862 + }, + { + "start": 8078.5, + "end": 8079.04, + "probability": 0.7253 + }, + { + "start": 8094.16, + "end": 8101.08, + "probability": 0.1562 + }, + { + "start": 8101.66, + "end": 8102.54, + "probability": 0.4004 + }, + { + "start": 8103.97, + "end": 8106.32, + "probability": 0.0823 + }, + { + "start": 8106.32, + "end": 8106.32, + "probability": 0.0915 + }, + { + "start": 8106.4, + "end": 8107.08, + "probability": 0.4227 + }, + { + "start": 8112.42, + "end": 8112.52, + "probability": 0.0564 + }, + { + "start": 8113.24, + "end": 8116.52, + "probability": 0.0404 + }, + { + "start": 8117.5, + "end": 8119.32, + "probability": 0.0149 + }, + { + "start": 8119.84, + "end": 8121.9, + "probability": 0.0245 + }, + { + "start": 8125.56, + "end": 8126.3, + "probability": 0.0857 + }, + { + "start": 8144.6, + "end": 8144.88, + "probability": 0.3977 + }, + { + "start": 8144.88, + "end": 8145.78, + "probability": 0.011 + }, + { + "start": 8145.78, + "end": 8146.36, + "probability": 0.0662 + }, + { + "start": 8146.36, + "end": 8146.52, + "probability": 0.0648 + }, + { + "start": 8146.52, + "end": 8146.52, + "probability": 0.0308 + }, + { + "start": 8146.52, + "end": 8146.581, + "probability": 0.0 + }, + { + "start": 8146.581, + "end": 8146.581, + "probability": 0.0 + }, + { + "start": 8146.581, + "end": 8146.581, + "probability": 0.0 + }, + { + "start": 8146.581, + "end": 8146.581, + "probability": 0.0 + }, + { + "start": 8146.581, + "end": 8146.581, + "probability": 0.0 + } + ], + "segments_count": 2521, + "words_count": 12936, + "avg_words_per_segment": 5.1313, + "avg_segment_duration": 2.3439, + "avg_words_per_minute": 95.2743, + "plenum_id": "43756", + "duration": 8146.58, + "title": null, + "plenum_date": "2015-07-07" +} \ No newline at end of file