diff --git "a/47513/metadata.json" "b/47513/metadata.json" new file mode 100644--- /dev/null +++ "b/47513/metadata.json" @@ -0,0 +1,24237 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "47513", + "quality_score": 0.8752, + "per_segment_quality_scores": [ + { + "start": 110.9, + "end": 111.66, + "probability": 0.0797 + }, + { + "start": 120.78, + "end": 121.88, + "probability": 0.1678 + }, + { + "start": 124.74, + "end": 126.02, + "probability": 0.7177 + }, + { + "start": 126.28, + "end": 127.05, + "probability": 0.1026 + }, + { + "start": 127.7, + "end": 128.26, + "probability": 0.1623 + }, + { + "start": 128.26, + "end": 128.26, + "probability": 0.1107 + }, + { + "start": 128.26, + "end": 128.34, + "probability": 0.1666 + }, + { + "start": 128.34, + "end": 128.98, + "probability": 0.1702 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.42, + "end": 131.78, + "probability": 0.7765 + }, + { + "start": 132.86, + "end": 137.22, + "probability": 0.8521 + }, + { + "start": 137.22, + "end": 141.0, + "probability": 0.8039 + }, + { + "start": 141.48, + "end": 145.22, + "probability": 0.9899 + }, + { + "start": 146.16, + "end": 150.3, + "probability": 0.5835 + }, + { + "start": 150.48, + "end": 154.3, + "probability": 0.9074 + }, + { + "start": 154.82, + "end": 157.88, + "probability": 0.9863 + }, + { + "start": 158.3, + "end": 165.58, + "probability": 0.9912 + }, + { + "start": 166.2, + "end": 166.96, + "probability": 0.5847 + }, + { + "start": 167.34, + "end": 170.78, + "probability": 0.9968 + }, + { + "start": 171.4, + "end": 174.24, + "probability": 0.978 + }, + { + "start": 175.26, + "end": 182.72, + "probability": 0.8955 + }, + { + "start": 183.8, + "end": 188.84, + "probability": 0.9535 + }, + { + "start": 189.02, + "end": 189.86, + "probability": 0.7773 + }, + { + "start": 190.54, + "end": 193.14, + "probability": 0.981 + }, + { + "start": 193.24, + "end": 193.94, + "probability": 0.5759 + }, + { + "start": 194.48, + "end": 197.08, + "probability": 0.9411 + }, + { + "start": 197.2, + "end": 199.24, + "probability": 0.9775 + }, + { + "start": 202.06, + "end": 203.76, + "probability": 0.9476 + }, + { + "start": 206.09, + "end": 208.14, + "probability": 0.8209 + }, + { + "start": 208.76, + "end": 210.04, + "probability": 0.6572 + }, + { + "start": 211.38, + "end": 214.18, + "probability": 0.8879 + }, + { + "start": 218.42, + "end": 220.08, + "probability": 0.6079 + }, + { + "start": 221.66, + "end": 223.06, + "probability": 0.6453 + }, + { + "start": 223.12, + "end": 224.28, + "probability": 0.989 + }, + { + "start": 224.28, + "end": 228.5, + "probability": 0.9728 + }, + { + "start": 229.36, + "end": 231.62, + "probability": 0.9776 + }, + { + "start": 232.76, + "end": 235.04, + "probability": 0.7488 + }, + { + "start": 235.9, + "end": 237.44, + "probability": 0.9131 + }, + { + "start": 238.22, + "end": 240.52, + "probability": 0.9734 + }, + { + "start": 241.16, + "end": 242.6, + "probability": 0.868 + }, + { + "start": 242.94, + "end": 243.56, + "probability": 0.9121 + }, + { + "start": 243.64, + "end": 246.36, + "probability": 0.9849 + }, + { + "start": 247.68, + "end": 249.58, + "probability": 0.8231 + }, + { + "start": 250.16, + "end": 252.48, + "probability": 0.9216 + }, + { + "start": 253.4, + "end": 255.06, + "probability": 0.8978 + }, + { + "start": 256.08, + "end": 258.94, + "probability": 0.9935 + }, + { + "start": 260.26, + "end": 262.66, + "probability": 0.9823 + }, + { + "start": 263.74, + "end": 266.92, + "probability": 0.9761 + }, + { + "start": 267.88, + "end": 271.0, + "probability": 0.9894 + }, + { + "start": 272.2, + "end": 275.14, + "probability": 0.9965 + }, + { + "start": 275.14, + "end": 278.24, + "probability": 0.9648 + }, + { + "start": 278.34, + "end": 280.16, + "probability": 0.9086 + }, + { + "start": 280.84, + "end": 282.28, + "probability": 0.9829 + }, + { + "start": 282.56, + "end": 284.17, + "probability": 0.8809 + }, + { + "start": 285.24, + "end": 286.74, + "probability": 0.9938 + }, + { + "start": 288.48, + "end": 290.04, + "probability": 0.6672 + }, + { + "start": 290.3, + "end": 292.08, + "probability": 0.8528 + }, + { + "start": 292.58, + "end": 293.96, + "probability": 0.9168 + }, + { + "start": 295.04, + "end": 296.84, + "probability": 0.7856 + }, + { + "start": 298.46, + "end": 305.5, + "probability": 0.9636 + }, + { + "start": 308.44, + "end": 309.9, + "probability": 0.5216 + }, + { + "start": 310.78, + "end": 312.66, + "probability": 0.9878 + }, + { + "start": 313.36, + "end": 313.62, + "probability": 0.8315 + }, + { + "start": 314.14, + "end": 315.1, + "probability": 0.9974 + }, + { + "start": 316.4, + "end": 318.34, + "probability": 0.9275 + }, + { + "start": 319.92, + "end": 321.08, + "probability": 0.9748 + }, + { + "start": 322.08, + "end": 322.6, + "probability": 0.7283 + }, + { + "start": 324.3, + "end": 325.76, + "probability": 0.846 + }, + { + "start": 326.62, + "end": 328.86, + "probability": 0.9407 + }, + { + "start": 329.84, + "end": 334.3, + "probability": 0.9567 + }, + { + "start": 335.56, + "end": 337.22, + "probability": 0.8236 + }, + { + "start": 339.32, + "end": 342.12, + "probability": 0.9347 + }, + { + "start": 342.9, + "end": 347.92, + "probability": 0.9882 + }, + { + "start": 349.9, + "end": 353.38, + "probability": 0.9139 + }, + { + "start": 354.12, + "end": 354.38, + "probability": 0.7685 + }, + { + "start": 355.04, + "end": 356.7, + "probability": 0.7699 + }, + { + "start": 357.3, + "end": 360.42, + "probability": 0.9796 + }, + { + "start": 362.32, + "end": 363.58, + "probability": 0.5562 + }, + { + "start": 363.7, + "end": 365.63, + "probability": 0.98 + }, + { + "start": 368.02, + "end": 371.68, + "probability": 0.963 + }, + { + "start": 372.24, + "end": 373.06, + "probability": 0.787 + }, + { + "start": 373.56, + "end": 375.0, + "probability": 0.9258 + }, + { + "start": 375.98, + "end": 379.24, + "probability": 0.9727 + }, + { + "start": 379.5, + "end": 381.74, + "probability": 0.9247 + }, + { + "start": 381.92, + "end": 384.54, + "probability": 0.9435 + }, + { + "start": 388.55, + "end": 392.56, + "probability": 0.9655 + }, + { + "start": 393.48, + "end": 393.72, + "probability": 0.1223 + }, + { + "start": 393.8, + "end": 395.0, + "probability": 0.894 + }, + { + "start": 395.14, + "end": 398.16, + "probability": 0.9513 + }, + { + "start": 398.48, + "end": 398.92, + "probability": 0.615 + }, + { + "start": 398.96, + "end": 399.56, + "probability": 0.8491 + }, + { + "start": 399.94, + "end": 403.44, + "probability": 0.9693 + }, + { + "start": 404.08, + "end": 410.48, + "probability": 0.9608 + }, + { + "start": 410.7, + "end": 411.72, + "probability": 0.7079 + }, + { + "start": 413.04, + "end": 413.54, + "probability": 0.7429 + }, + { + "start": 414.76, + "end": 421.32, + "probability": 0.9863 + }, + { + "start": 422.1, + "end": 424.98, + "probability": 0.8344 + }, + { + "start": 426.12, + "end": 429.82, + "probability": 0.7698 + }, + { + "start": 430.32, + "end": 433.18, + "probability": 0.991 + }, + { + "start": 433.24, + "end": 434.14, + "probability": 0.8694 + }, + { + "start": 434.22, + "end": 434.4, + "probability": 0.5438 + }, + { + "start": 434.96, + "end": 437.93, + "probability": 0.9109 + }, + { + "start": 438.8, + "end": 440.24, + "probability": 0.9902 + }, + { + "start": 440.34, + "end": 445.06, + "probability": 0.9979 + }, + { + "start": 445.96, + "end": 446.44, + "probability": 0.7511 + }, + { + "start": 447.24, + "end": 448.16, + "probability": 0.9907 + }, + { + "start": 449.18, + "end": 450.32, + "probability": 0.9609 + }, + { + "start": 451.34, + "end": 452.34, + "probability": 0.876 + }, + { + "start": 453.14, + "end": 454.84, + "probability": 0.9727 + }, + { + "start": 455.46, + "end": 457.54, + "probability": 0.8769 + }, + { + "start": 460.91, + "end": 462.6, + "probability": 0.711 + }, + { + "start": 467.49, + "end": 469.64, + "probability": 0.8726 + }, + { + "start": 470.88, + "end": 475.62, + "probability": 0.8581 + }, + { + "start": 476.22, + "end": 478.52, + "probability": 0.9213 + }, + { + "start": 478.52, + "end": 481.98, + "probability": 0.9979 + }, + { + "start": 482.12, + "end": 483.3, + "probability": 0.7482 + }, + { + "start": 484.98, + "end": 489.6, + "probability": 0.8841 + }, + { + "start": 489.72, + "end": 493.42, + "probability": 0.7514 + }, + { + "start": 494.79, + "end": 497.0, + "probability": 0.9443 + }, + { + "start": 498.04, + "end": 499.1, + "probability": 0.9875 + }, + { + "start": 500.2, + "end": 501.86, + "probability": 0.8146 + }, + { + "start": 503.48, + "end": 505.88, + "probability": 0.7668 + }, + { + "start": 506.14, + "end": 509.08, + "probability": 0.8812 + }, + { + "start": 509.86, + "end": 511.58, + "probability": 0.9537 + }, + { + "start": 512.32, + "end": 513.06, + "probability": 0.8893 + }, + { + "start": 513.58, + "end": 515.48, + "probability": 0.9961 + }, + { + "start": 516.36, + "end": 518.41, + "probability": 0.9949 + }, + { + "start": 520.36, + "end": 522.4, + "probability": 0.8231 + }, + { + "start": 522.92, + "end": 526.6, + "probability": 0.5601 + }, + { + "start": 527.58, + "end": 530.26, + "probability": 0.8319 + }, + { + "start": 530.92, + "end": 533.14, + "probability": 0.9265 + }, + { + "start": 534.19, + "end": 537.24, + "probability": 0.5653 + }, + { + "start": 538.06, + "end": 539.28, + "probability": 0.7194 + }, + { + "start": 539.42, + "end": 543.42, + "probability": 0.979 + }, + { + "start": 544.1, + "end": 545.0, + "probability": 0.761 + }, + { + "start": 547.22, + "end": 550.6, + "probability": 0.9771 + }, + { + "start": 551.5, + "end": 554.66, + "probability": 0.9418 + }, + { + "start": 555.76, + "end": 559.28, + "probability": 0.99 + }, + { + "start": 560.24, + "end": 565.96, + "probability": 0.9915 + }, + { + "start": 567.86, + "end": 569.98, + "probability": 0.9873 + }, + { + "start": 570.22, + "end": 571.14, + "probability": 0.8984 + }, + { + "start": 572.2, + "end": 575.34, + "probability": 0.7994 + }, + { + "start": 581.72, + "end": 584.3, + "probability": 0.9824 + }, + { + "start": 584.4, + "end": 586.5, + "probability": 0.8709 + }, + { + "start": 587.42, + "end": 592.36, + "probability": 0.9863 + }, + { + "start": 592.48, + "end": 596.91, + "probability": 0.9566 + }, + { + "start": 597.7, + "end": 600.78, + "probability": 0.8939 + }, + { + "start": 600.78, + "end": 603.72, + "probability": 0.9988 + }, + { + "start": 604.08, + "end": 605.1, + "probability": 0.8464 + }, + { + "start": 605.24, + "end": 606.78, + "probability": 0.7131 + }, + { + "start": 607.26, + "end": 607.98, + "probability": 0.5549 + }, + { + "start": 608.52, + "end": 610.98, + "probability": 0.7202 + }, + { + "start": 611.14, + "end": 611.68, + "probability": 0.9366 + }, + { + "start": 612.08, + "end": 612.84, + "probability": 0.9954 + }, + { + "start": 615.31, + "end": 617.38, + "probability": 0.9677 + }, + { + "start": 618.68, + "end": 625.1, + "probability": 0.7704 + }, + { + "start": 625.34, + "end": 626.38, + "probability": 0.9166 + }, + { + "start": 628.32, + "end": 631.18, + "probability": 0.805 + }, + { + "start": 631.26, + "end": 631.98, + "probability": 0.923 + }, + { + "start": 632.12, + "end": 632.54, + "probability": 0.5048 + }, + { + "start": 632.58, + "end": 634.92, + "probability": 0.9973 + }, + { + "start": 635.66, + "end": 638.32, + "probability": 0.9956 + }, + { + "start": 638.54, + "end": 641.24, + "probability": 0.9041 + }, + { + "start": 641.94, + "end": 643.6, + "probability": 0.705 + }, + { + "start": 643.84, + "end": 644.96, + "probability": 0.9563 + }, + { + "start": 646.74, + "end": 648.0, + "probability": 0.9292 + }, + { + "start": 651.22, + "end": 653.98, + "probability": 0.9984 + }, + { + "start": 654.38, + "end": 655.0, + "probability": 0.9869 + }, + { + "start": 655.58, + "end": 656.44, + "probability": 0.9907 + }, + { + "start": 658.46, + "end": 660.66, + "probability": 0.5776 + }, + { + "start": 660.66, + "end": 662.94, + "probability": 0.9883 + }, + { + "start": 664.4, + "end": 667.38, + "probability": 0.7196 + }, + { + "start": 667.92, + "end": 670.84, + "probability": 0.984 + }, + { + "start": 670.84, + "end": 674.08, + "probability": 0.9804 + }, + { + "start": 674.6, + "end": 675.65, + "probability": 0.9878 + }, + { + "start": 676.52, + "end": 678.94, + "probability": 0.9249 + }, + { + "start": 680.18, + "end": 682.36, + "probability": 0.9181 + }, + { + "start": 682.7, + "end": 686.52, + "probability": 0.9674 + }, + { + "start": 686.94, + "end": 687.14, + "probability": 0.5795 + }, + { + "start": 687.2, + "end": 687.96, + "probability": 0.9324 + }, + { + "start": 689.22, + "end": 693.14, + "probability": 0.9772 + }, + { + "start": 694.02, + "end": 694.44, + "probability": 0.895 + }, + { + "start": 694.58, + "end": 695.14, + "probability": 0.9752 + }, + { + "start": 695.48, + "end": 700.26, + "probability": 0.9008 + }, + { + "start": 701.4, + "end": 702.96, + "probability": 0.9819 + }, + { + "start": 703.32, + "end": 707.78, + "probability": 0.9936 + }, + { + "start": 708.32, + "end": 709.38, + "probability": 0.9867 + }, + { + "start": 710.84, + "end": 711.62, + "probability": 0.9744 + }, + { + "start": 712.44, + "end": 713.56, + "probability": 0.9531 + }, + { + "start": 714.7, + "end": 716.12, + "probability": 0.9764 + }, + { + "start": 716.62, + "end": 718.44, + "probability": 0.946 + }, + { + "start": 721.54, + "end": 722.4, + "probability": 0.9549 + }, + { + "start": 723.02, + "end": 723.96, + "probability": 0.9706 + }, + { + "start": 724.4, + "end": 728.08, + "probability": 0.9427 + }, + { + "start": 728.12, + "end": 729.32, + "probability": 0.7388 + }, + { + "start": 729.98, + "end": 733.0, + "probability": 0.8115 + }, + { + "start": 733.08, + "end": 736.24, + "probability": 0.8945 + }, + { + "start": 737.96, + "end": 740.38, + "probability": 0.9884 + }, + { + "start": 740.48, + "end": 742.06, + "probability": 0.8361 + }, + { + "start": 743.58, + "end": 746.16, + "probability": 0.9858 + }, + { + "start": 746.2, + "end": 746.5, + "probability": 0.4285 + }, + { + "start": 746.52, + "end": 746.94, + "probability": 0.8519 + }, + { + "start": 747.02, + "end": 748.3, + "probability": 0.6716 + }, + { + "start": 748.36, + "end": 748.66, + "probability": 0.6889 + }, + { + "start": 749.44, + "end": 751.24, + "probability": 0.9556 + }, + { + "start": 751.52, + "end": 753.26, + "probability": 0.8999 + }, + { + "start": 754.32, + "end": 756.1, + "probability": 0.8538 + }, + { + "start": 756.1, + "end": 758.86, + "probability": 0.9696 + }, + { + "start": 759.92, + "end": 764.5, + "probability": 0.9905 + }, + { + "start": 765.12, + "end": 767.52, + "probability": 0.9985 + }, + { + "start": 767.52, + "end": 770.52, + "probability": 0.9986 + }, + { + "start": 771.9, + "end": 773.24, + "probability": 0.8756 + }, + { + "start": 774.26, + "end": 776.64, + "probability": 0.9781 + }, + { + "start": 777.14, + "end": 778.2, + "probability": 0.9941 + }, + { + "start": 778.76, + "end": 780.64, + "probability": 0.895 + }, + { + "start": 782.36, + "end": 786.1, + "probability": 0.9355 + }, + { + "start": 787.24, + "end": 788.52, + "probability": 0.9932 + }, + { + "start": 789.46, + "end": 790.58, + "probability": 0.9896 + }, + { + "start": 791.3, + "end": 791.74, + "probability": 0.6132 + }, + { + "start": 792.84, + "end": 795.92, + "probability": 0.9956 + }, + { + "start": 797.1, + "end": 800.6, + "probability": 0.9845 + }, + { + "start": 801.28, + "end": 802.38, + "probability": 0.9683 + }, + { + "start": 805.96, + "end": 806.16, + "probability": 0.9727 + }, + { + "start": 808.78, + "end": 812.08, + "probability": 0.7549 + }, + { + "start": 813.12, + "end": 813.88, + "probability": 0.7957 + }, + { + "start": 814.58, + "end": 816.44, + "probability": 0.9731 + }, + { + "start": 817.42, + "end": 818.18, + "probability": 0.8973 + }, + { + "start": 818.92, + "end": 820.64, + "probability": 0.9763 + }, + { + "start": 821.36, + "end": 824.86, + "probability": 0.9818 + }, + { + "start": 825.74, + "end": 825.88, + "probability": 0.6452 + }, + { + "start": 827.64, + "end": 830.46, + "probability": 0.9359 + }, + { + "start": 830.58, + "end": 832.96, + "probability": 0.6425 + }, + { + "start": 833.04, + "end": 836.14, + "probability": 0.9606 + }, + { + "start": 836.68, + "end": 838.66, + "probability": 0.907 + }, + { + "start": 851.56, + "end": 852.98, + "probability": 0.7227 + }, + { + "start": 853.12, + "end": 853.12, + "probability": 0.5415 + }, + { + "start": 853.12, + "end": 854.28, + "probability": 0.9777 + }, + { + "start": 854.84, + "end": 856.88, + "probability": 0.9094 + }, + { + "start": 857.94, + "end": 859.16, + "probability": 0.6761 + }, + { + "start": 859.26, + "end": 862.0, + "probability": 0.9973 + }, + { + "start": 862.02, + "end": 863.3, + "probability": 0.7403 + }, + { + "start": 864.16, + "end": 868.12, + "probability": 0.9954 + }, + { + "start": 868.18, + "end": 869.8, + "probability": 0.9277 + }, + { + "start": 869.88, + "end": 874.38, + "probability": 0.9949 + }, + { + "start": 875.02, + "end": 879.6, + "probability": 0.988 + }, + { + "start": 880.16, + "end": 881.84, + "probability": 0.8812 + }, + { + "start": 882.0, + "end": 883.38, + "probability": 0.9951 + }, + { + "start": 883.52, + "end": 888.5, + "probability": 0.9738 + }, + { + "start": 888.68, + "end": 889.06, + "probability": 0.4722 + }, + { + "start": 889.16, + "end": 890.14, + "probability": 0.9653 + }, + { + "start": 890.22, + "end": 891.77, + "probability": 0.9675 + }, + { + "start": 892.04, + "end": 893.66, + "probability": 0.7457 + }, + { + "start": 894.02, + "end": 897.44, + "probability": 0.9965 + }, + { + "start": 897.62, + "end": 900.24, + "probability": 0.9975 + }, + { + "start": 900.62, + "end": 901.22, + "probability": 0.9592 + }, + { + "start": 901.4, + "end": 904.08, + "probability": 0.9902 + }, + { + "start": 904.6, + "end": 905.66, + "probability": 0.999 + }, + { + "start": 905.7, + "end": 905.9, + "probability": 0.6405 + }, + { + "start": 906.08, + "end": 907.46, + "probability": 0.8608 + }, + { + "start": 907.84, + "end": 909.04, + "probability": 0.9877 + }, + { + "start": 909.18, + "end": 909.92, + "probability": 0.8982 + }, + { + "start": 911.08, + "end": 913.62, + "probability": 0.9508 + }, + { + "start": 913.72, + "end": 914.9, + "probability": 0.618 + }, + { + "start": 915.06, + "end": 918.8, + "probability": 0.9982 + }, + { + "start": 918.8, + "end": 922.52, + "probability": 0.997 + }, + { + "start": 923.36, + "end": 923.78, + "probability": 0.061 + }, + { + "start": 923.78, + "end": 927.92, + "probability": 0.8563 + }, + { + "start": 927.92, + "end": 930.32, + "probability": 0.9961 + }, + { + "start": 930.8, + "end": 932.22, + "probability": 0.996 + }, + { + "start": 932.28, + "end": 933.92, + "probability": 0.984 + }, + { + "start": 934.46, + "end": 936.26, + "probability": 0.9491 + }, + { + "start": 937.02, + "end": 937.76, + "probability": 0.9508 + }, + { + "start": 938.86, + "end": 942.32, + "probability": 0.9956 + }, + { + "start": 942.32, + "end": 945.86, + "probability": 0.9976 + }, + { + "start": 946.14, + "end": 947.62, + "probability": 0.8857 + }, + { + "start": 948.46, + "end": 951.3, + "probability": 0.9976 + }, + { + "start": 952.04, + "end": 952.34, + "probability": 0.608 + }, + { + "start": 953.42, + "end": 953.76, + "probability": 0.6545 + }, + { + "start": 953.84, + "end": 955.78, + "probability": 0.9692 + }, + { + "start": 955.82, + "end": 956.74, + "probability": 0.2535 + }, + { + "start": 956.74, + "end": 956.76, + "probability": 0.1296 + }, + { + "start": 956.76, + "end": 959.12, + "probability": 0.8878 + }, + { + "start": 959.56, + "end": 963.72, + "probability": 0.9766 + }, + { + "start": 964.24, + "end": 965.81, + "probability": 0.9897 + }, + { + "start": 965.98, + "end": 969.1, + "probability": 0.999 + }, + { + "start": 969.56, + "end": 971.62, + "probability": 0.9932 + }, + { + "start": 972.34, + "end": 976.5, + "probability": 0.9453 + }, + { + "start": 976.94, + "end": 980.01, + "probability": 0.9909 + }, + { + "start": 980.3, + "end": 985.26, + "probability": 0.9782 + }, + { + "start": 986.84, + "end": 988.9, + "probability": 0.7668 + }, + { + "start": 988.94, + "end": 991.78, + "probability": 0.9927 + }, + { + "start": 991.82, + "end": 992.82, + "probability": 0.9518 + }, + { + "start": 992.98, + "end": 996.16, + "probability": 0.9924 + }, + { + "start": 996.94, + "end": 1002.58, + "probability": 0.922 + }, + { + "start": 1002.72, + "end": 1007.58, + "probability": 0.9358 + }, + { + "start": 1007.66, + "end": 1007.66, + "probability": 0.0037 + }, + { + "start": 1008.26, + "end": 1009.4, + "probability": 0.1807 + }, + { + "start": 1009.4, + "end": 1009.4, + "probability": 0.1321 + }, + { + "start": 1009.4, + "end": 1009.4, + "probability": 0.4201 + }, + { + "start": 1009.4, + "end": 1010.27, + "probability": 0.6403 + }, + { + "start": 1010.5, + "end": 1011.34, + "probability": 0.6434 + }, + { + "start": 1012.78, + "end": 1014.68, + "probability": 0.8752 + }, + { + "start": 1015.64, + "end": 1019.94, + "probability": 0.9533 + }, + { + "start": 1021.28, + "end": 1023.36, + "probability": 0.9229 + }, + { + "start": 1023.36, + "end": 1025.7, + "probability": 0.9762 + }, + { + "start": 1026.08, + "end": 1027.9, + "probability": 0.9965 + }, + { + "start": 1028.1, + "end": 1031.66, + "probability": 0.9963 + }, + { + "start": 1033.09, + "end": 1037.52, + "probability": 0.7973 + }, + { + "start": 1038.22, + "end": 1039.51, + "probability": 0.979 + }, + { + "start": 1039.58, + "end": 1040.14, + "probability": 0.7057 + }, + { + "start": 1040.2, + "end": 1043.42, + "probability": 0.9777 + }, + { + "start": 1044.1, + "end": 1046.32, + "probability": 0.9841 + }, + { + "start": 1046.94, + "end": 1047.89, + "probability": 0.9731 + }, + { + "start": 1048.78, + "end": 1050.56, + "probability": 0.8292 + }, + { + "start": 1051.98, + "end": 1055.98, + "probability": 0.9916 + }, + { + "start": 1056.52, + "end": 1056.64, + "probability": 0.6307 + }, + { + "start": 1056.9, + "end": 1057.16, + "probability": 0.425 + }, + { + "start": 1057.16, + "end": 1058.2, + "probability": 0.9546 + }, + { + "start": 1058.26, + "end": 1061.6, + "probability": 0.9883 + }, + { + "start": 1062.62, + "end": 1063.4, + "probability": 0.8979 + }, + { + "start": 1063.5, + "end": 1063.88, + "probability": 0.3353 + }, + { + "start": 1064.0, + "end": 1064.24, + "probability": 0.2343 + }, + { + "start": 1064.3, + "end": 1064.62, + "probability": 0.3152 + }, + { + "start": 1064.62, + "end": 1065.46, + "probability": 0.8494 + }, + { + "start": 1065.58, + "end": 1066.02, + "probability": 0.9811 + }, + { + "start": 1066.14, + "end": 1072.2, + "probability": 0.9787 + }, + { + "start": 1072.2, + "end": 1076.6, + "probability": 0.9956 + }, + { + "start": 1076.64, + "end": 1076.9, + "probability": 0.7795 + }, + { + "start": 1077.59, + "end": 1084.12, + "probability": 0.981 + }, + { + "start": 1084.14, + "end": 1087.43, + "probability": 0.9646 + }, + { + "start": 1088.28, + "end": 1091.42, + "probability": 0.9248 + }, + { + "start": 1092.7, + "end": 1095.68, + "probability": 0.8187 + }, + { + "start": 1095.74, + "end": 1098.04, + "probability": 0.9922 + }, + { + "start": 1098.18, + "end": 1100.46, + "probability": 0.9963 + }, + { + "start": 1100.74, + "end": 1104.26, + "probability": 0.9741 + }, + { + "start": 1104.26, + "end": 1104.26, + "probability": 0.0715 + }, + { + "start": 1104.26, + "end": 1106.94, + "probability": 0.6247 + }, + { + "start": 1106.94, + "end": 1109.3, + "probability": 0.5439 + }, + { + "start": 1109.3, + "end": 1109.3, + "probability": 0.048 + }, + { + "start": 1109.38, + "end": 1109.38, + "probability": 0.263 + }, + { + "start": 1109.42, + "end": 1109.42, + "probability": 0.2764 + }, + { + "start": 1109.92, + "end": 1110.08, + "probability": 0.6807 + }, + { + "start": 1110.16, + "end": 1112.38, + "probability": 0.9783 + }, + { + "start": 1112.38, + "end": 1113.46, + "probability": 0.1642 + }, + { + "start": 1114.02, + "end": 1114.14, + "probability": 0.4625 + }, + { + "start": 1114.16, + "end": 1114.52, + "probability": 0.4778 + }, + { + "start": 1114.58, + "end": 1115.3, + "probability": 0.5428 + }, + { + "start": 1115.42, + "end": 1116.48, + "probability": 0.7562 + }, + { + "start": 1117.1, + "end": 1118.56, + "probability": 0.9414 + }, + { + "start": 1118.7, + "end": 1120.38, + "probability": 0.9934 + }, + { + "start": 1120.48, + "end": 1122.72, + "probability": 0.9625 + }, + { + "start": 1123.12, + "end": 1125.4, + "probability": 0.9924 + }, + { + "start": 1126.1, + "end": 1129.94, + "probability": 0.9886 + }, + { + "start": 1130.6, + "end": 1132.42, + "probability": 0.9639 + }, + { + "start": 1133.88, + "end": 1137.74, + "probability": 0.9909 + }, + { + "start": 1137.84, + "end": 1138.34, + "probability": 0.9027 + }, + { + "start": 1139.06, + "end": 1140.34, + "probability": 0.9238 + }, + { + "start": 1140.36, + "end": 1144.24, + "probability": 0.9795 + }, + { + "start": 1144.36, + "end": 1145.44, + "probability": 0.8776 + }, + { + "start": 1145.54, + "end": 1149.98, + "probability": 0.9906 + }, + { + "start": 1150.75, + "end": 1152.1, + "probability": 0.902 + }, + { + "start": 1152.36, + "end": 1154.16, + "probability": 0.9663 + }, + { + "start": 1154.48, + "end": 1155.26, + "probability": 0.7953 + }, + { + "start": 1155.46, + "end": 1155.54, + "probability": 0.0147 + }, + { + "start": 1155.64, + "end": 1159.04, + "probability": 0.9091 + }, + { + "start": 1159.58, + "end": 1159.86, + "probability": 0.5194 + }, + { + "start": 1159.98, + "end": 1161.59, + "probability": 0.6794 + }, + { + "start": 1162.08, + "end": 1165.44, + "probability": 0.9252 + }, + { + "start": 1165.44, + "end": 1168.5, + "probability": 0.7463 + }, + { + "start": 1168.62, + "end": 1171.36, + "probability": 0.9943 + }, + { + "start": 1171.92, + "end": 1172.84, + "probability": 0.9526 + }, + { + "start": 1173.5, + "end": 1179.14, + "probability": 0.9966 + }, + { + "start": 1179.14, + "end": 1185.42, + "probability": 0.998 + }, + { + "start": 1185.46, + "end": 1186.52, + "probability": 0.9906 + }, + { + "start": 1186.58, + "end": 1187.25, + "probability": 0.9719 + }, + { + "start": 1187.52, + "end": 1187.78, + "probability": 0.4214 + }, + { + "start": 1188.0, + "end": 1191.38, + "probability": 0.8972 + }, + { + "start": 1192.0, + "end": 1193.76, + "probability": 0.9735 + }, + { + "start": 1194.34, + "end": 1195.4, + "probability": 0.8779 + }, + { + "start": 1195.68, + "end": 1196.44, + "probability": 0.8259 + }, + { + "start": 1196.52, + "end": 1198.3, + "probability": 0.9015 + }, + { + "start": 1198.44, + "end": 1202.46, + "probability": 0.9492 + }, + { + "start": 1203.06, + "end": 1205.34, + "probability": 0.9251 + }, + { + "start": 1206.38, + "end": 1211.24, + "probability": 0.9177 + }, + { + "start": 1211.38, + "end": 1211.58, + "probability": 0.738 + }, + { + "start": 1212.14, + "end": 1213.96, + "probability": 0.9346 + }, + { + "start": 1214.14, + "end": 1215.72, + "probability": 0.8676 + }, + { + "start": 1215.88, + "end": 1218.46, + "probability": 0.9501 + }, + { + "start": 1219.9, + "end": 1222.24, + "probability": 0.554 + }, + { + "start": 1222.86, + "end": 1225.42, + "probability": 0.8659 + }, + { + "start": 1226.82, + "end": 1230.4, + "probability": 0.7958 + }, + { + "start": 1236.24, + "end": 1238.52, + "probability": 0.1445 + }, + { + "start": 1239.72, + "end": 1240.3, + "probability": 0.6562 + }, + { + "start": 1245.38, + "end": 1249.84, + "probability": 0.7417 + }, + { + "start": 1250.68, + "end": 1255.06, + "probability": 0.9932 + }, + { + "start": 1255.18, + "end": 1256.18, + "probability": 0.5327 + }, + { + "start": 1256.84, + "end": 1259.3, + "probability": 0.984 + }, + { + "start": 1259.5, + "end": 1260.28, + "probability": 0.8691 + }, + { + "start": 1260.44, + "end": 1261.02, + "probability": 0.3985 + }, + { + "start": 1261.12, + "end": 1266.38, + "probability": 0.9473 + }, + { + "start": 1266.8, + "end": 1267.6, + "probability": 0.8475 + }, + { + "start": 1267.9, + "end": 1268.68, + "probability": 0.7109 + }, + { + "start": 1268.76, + "end": 1269.58, + "probability": 0.9021 + }, + { + "start": 1269.88, + "end": 1270.06, + "probability": 0.445 + }, + { + "start": 1270.1, + "end": 1270.74, + "probability": 0.8409 + }, + { + "start": 1270.96, + "end": 1273.58, + "probability": 0.7802 + }, + { + "start": 1273.74, + "end": 1276.36, + "probability": 0.8966 + }, + { + "start": 1276.46, + "end": 1279.12, + "probability": 0.9755 + }, + { + "start": 1279.28, + "end": 1280.52, + "probability": 0.8686 + }, + { + "start": 1281.06, + "end": 1286.84, + "probability": 0.9359 + }, + { + "start": 1287.26, + "end": 1294.66, + "probability": 0.9071 + }, + { + "start": 1295.22, + "end": 1300.04, + "probability": 0.8374 + }, + { + "start": 1300.66, + "end": 1301.34, + "probability": 0.4045 + }, + { + "start": 1301.94, + "end": 1305.7, + "probability": 0.9863 + }, + { + "start": 1306.0, + "end": 1306.18, + "probability": 0.7209 + }, + { + "start": 1306.56, + "end": 1309.42, + "probability": 0.9501 + }, + { + "start": 1310.18, + "end": 1312.42, + "probability": 0.9147 + }, + { + "start": 1312.96, + "end": 1315.2, + "probability": 0.9736 + }, + { + "start": 1315.6, + "end": 1316.82, + "probability": 0.9823 + }, + { + "start": 1318.48, + "end": 1321.34, + "probability": 0.589 + }, + { + "start": 1321.52, + "end": 1322.74, + "probability": 0.9749 + }, + { + "start": 1322.74, + "end": 1323.52, + "probability": 0.6128 + }, + { + "start": 1323.98, + "end": 1329.12, + "probability": 0.9182 + }, + { + "start": 1329.12, + "end": 1333.28, + "probability": 0.9087 + }, + { + "start": 1334.42, + "end": 1343.1, + "probability": 0.809 + }, + { + "start": 1343.54, + "end": 1345.44, + "probability": 0.5298 + }, + { + "start": 1345.56, + "end": 1351.94, + "probability": 0.8975 + }, + { + "start": 1352.76, + "end": 1353.64, + "probability": 0.63 + }, + { + "start": 1354.46, + "end": 1354.74, + "probability": 0.6636 + }, + { + "start": 1354.74, + "end": 1359.98, + "probability": 0.9384 + }, + { + "start": 1360.8, + "end": 1362.12, + "probability": 0.6179 + }, + { + "start": 1362.6, + "end": 1362.88, + "probability": 0.6022 + }, + { + "start": 1363.12, + "end": 1363.88, + "probability": 0.8167 + }, + { + "start": 1364.0, + "end": 1364.82, + "probability": 0.7052 + }, + { + "start": 1365.2, + "end": 1366.08, + "probability": 0.75 + }, + { + "start": 1366.12, + "end": 1366.92, + "probability": 0.9811 + }, + { + "start": 1366.98, + "end": 1367.7, + "probability": 0.794 + }, + { + "start": 1368.58, + "end": 1369.26, + "probability": 0.2973 + }, + { + "start": 1370.52, + "end": 1372.04, + "probability": 0.679 + }, + { + "start": 1372.72, + "end": 1377.86, + "probability": 0.8639 + }, + { + "start": 1378.92, + "end": 1380.98, + "probability": 0.4976 + }, + { + "start": 1381.52, + "end": 1384.38, + "probability": 0.9581 + }, + { + "start": 1384.44, + "end": 1384.9, + "probability": 0.9549 + }, + { + "start": 1385.12, + "end": 1385.74, + "probability": 0.8344 + }, + { + "start": 1386.14, + "end": 1391.82, + "probability": 0.9817 + }, + { + "start": 1393.24, + "end": 1401.12, + "probability": 0.9887 + }, + { + "start": 1401.78, + "end": 1404.64, + "probability": 0.8933 + }, + { + "start": 1405.0, + "end": 1406.29, + "probability": 0.9453 + }, + { + "start": 1406.9, + "end": 1409.84, + "probability": 0.9834 + }, + { + "start": 1410.48, + "end": 1411.38, + "probability": 0.7534 + }, + { + "start": 1411.94, + "end": 1417.38, + "probability": 0.9875 + }, + { + "start": 1417.98, + "end": 1420.94, + "probability": 0.7293 + }, + { + "start": 1421.5, + "end": 1425.44, + "probability": 0.6834 + }, + { + "start": 1425.66, + "end": 1427.02, + "probability": 0.9907 + }, + { + "start": 1427.54, + "end": 1429.3, + "probability": 0.9966 + }, + { + "start": 1430.08, + "end": 1431.12, + "probability": 0.9839 + }, + { + "start": 1431.82, + "end": 1432.14, + "probability": 0.5765 + }, + { + "start": 1432.16, + "end": 1432.96, + "probability": 0.8979 + }, + { + "start": 1433.32, + "end": 1434.5, + "probability": 0.8664 + }, + { + "start": 1434.82, + "end": 1437.8, + "probability": 0.9491 + }, + { + "start": 1438.18, + "end": 1440.92, + "probability": 0.917 + }, + { + "start": 1441.16, + "end": 1442.39, + "probability": 0.9685 + }, + { + "start": 1443.34, + "end": 1444.36, + "probability": 0.6671 + }, + { + "start": 1444.52, + "end": 1444.93, + "probability": 0.8936 + }, + { + "start": 1445.48, + "end": 1446.27, + "probability": 0.9878 + }, + { + "start": 1446.66, + "end": 1451.66, + "probability": 0.2329 + }, + { + "start": 1452.36, + "end": 1453.48, + "probability": 0.6559 + }, + { + "start": 1454.08, + "end": 1456.32, + "probability": 0.9893 + }, + { + "start": 1456.32, + "end": 1459.38, + "probability": 0.8667 + }, + { + "start": 1459.92, + "end": 1464.56, + "probability": 0.9256 + }, + { + "start": 1466.12, + "end": 1466.92, + "probability": 0.7893 + }, + { + "start": 1467.02, + "end": 1470.9, + "probability": 0.9885 + }, + { + "start": 1470.9, + "end": 1475.22, + "probability": 0.8381 + }, + { + "start": 1476.68, + "end": 1480.48, + "probability": 0.9048 + }, + { + "start": 1481.94, + "end": 1485.74, + "probability": 0.986 + }, + { + "start": 1486.18, + "end": 1490.28, + "probability": 0.9578 + }, + { + "start": 1490.28, + "end": 1494.72, + "probability": 0.9988 + }, + { + "start": 1495.48, + "end": 1500.52, + "probability": 0.9876 + }, + { + "start": 1501.04, + "end": 1503.02, + "probability": 0.9778 + }, + { + "start": 1503.58, + "end": 1504.26, + "probability": 0.5204 + }, + { + "start": 1504.74, + "end": 1507.48, + "probability": 0.9454 + }, + { + "start": 1508.0, + "end": 1511.22, + "probability": 0.9533 + }, + { + "start": 1511.22, + "end": 1514.82, + "probability": 0.9875 + }, + { + "start": 1515.58, + "end": 1518.92, + "probability": 0.9854 + }, + { + "start": 1518.92, + "end": 1525.06, + "probability": 0.8473 + }, + { + "start": 1525.84, + "end": 1529.34, + "probability": 0.8939 + }, + { + "start": 1529.7, + "end": 1535.44, + "probability": 0.897 + }, + { + "start": 1535.94, + "end": 1537.46, + "probability": 0.9259 + }, + { + "start": 1537.8, + "end": 1538.06, + "probability": 0.453 + }, + { + "start": 1538.22, + "end": 1539.28, + "probability": 0.767 + }, + { + "start": 1539.94, + "end": 1548.46, + "probability": 0.9663 + }, + { + "start": 1548.92, + "end": 1549.7, + "probability": 0.8126 + }, + { + "start": 1550.42, + "end": 1550.9, + "probability": 0.589 + }, + { + "start": 1551.62, + "end": 1556.78, + "probability": 0.9981 + }, + { + "start": 1557.44, + "end": 1561.08, + "probability": 0.9998 + }, + { + "start": 1561.08, + "end": 1565.56, + "probability": 0.9885 + }, + { + "start": 1566.42, + "end": 1571.78, + "probability": 0.8723 + }, + { + "start": 1572.2, + "end": 1576.98, + "probability": 0.9752 + }, + { + "start": 1577.7, + "end": 1581.98, + "probability": 0.9263 + }, + { + "start": 1583.82, + "end": 1586.12, + "probability": 0.04 + }, + { + "start": 1586.67, + "end": 1587.36, + "probability": 0.0114 + }, + { + "start": 1587.36, + "end": 1589.66, + "probability": 0.0429 + }, + { + "start": 1590.64, + "end": 1596.64, + "probability": 0.6401 + }, + { + "start": 1596.64, + "end": 1597.0, + "probability": 0.0749 + }, + { + "start": 1598.72, + "end": 1602.38, + "probability": 0.7672 + }, + { + "start": 1603.06, + "end": 1604.16, + "probability": 0.9233 + }, + { + "start": 1604.68, + "end": 1607.68, + "probability": 0.9626 + }, + { + "start": 1608.06, + "end": 1609.36, + "probability": 0.9434 + }, + { + "start": 1609.7, + "end": 1616.1, + "probability": 0.9896 + }, + { + "start": 1617.34, + "end": 1620.14, + "probability": 0.9512 + }, + { + "start": 1620.14, + "end": 1623.92, + "probability": 0.7534 + }, + { + "start": 1624.2, + "end": 1625.0, + "probability": 0.8495 + }, + { + "start": 1625.38, + "end": 1626.8, + "probability": 0.7899 + }, + { + "start": 1627.6, + "end": 1630.32, + "probability": 0.986 + }, + { + "start": 1630.8, + "end": 1635.74, + "probability": 0.7804 + }, + { + "start": 1635.8, + "end": 1641.26, + "probability": 0.9635 + }, + { + "start": 1642.04, + "end": 1645.44, + "probability": 0.9971 + }, + { + "start": 1645.44, + "end": 1649.22, + "probability": 0.8793 + }, + { + "start": 1649.6, + "end": 1655.32, + "probability": 0.9766 + }, + { + "start": 1656.64, + "end": 1661.0, + "probability": 0.7357 + }, + { + "start": 1661.8, + "end": 1664.62, + "probability": 0.9923 + }, + { + "start": 1665.02, + "end": 1670.4, + "probability": 0.5999 + }, + { + "start": 1671.2, + "end": 1674.6, + "probability": 0.7512 + }, + { + "start": 1674.6, + "end": 1678.54, + "probability": 0.9843 + }, + { + "start": 1679.28, + "end": 1683.34, + "probability": 0.9434 + }, + { + "start": 1683.34, + "end": 1686.94, + "probability": 0.7627 + }, + { + "start": 1687.72, + "end": 1691.32, + "probability": 0.9961 + }, + { + "start": 1691.82, + "end": 1695.68, + "probability": 0.8893 + }, + { + "start": 1696.36, + "end": 1699.12, + "probability": 0.9668 + }, + { + "start": 1699.92, + "end": 1700.34, + "probability": 0.8002 + }, + { + "start": 1700.82, + "end": 1701.36, + "probability": 0.6292 + }, + { + "start": 1701.52, + "end": 1706.4, + "probability": 0.7953 + }, + { + "start": 1706.72, + "end": 1711.64, + "probability": 0.9777 + }, + { + "start": 1712.24, + "end": 1716.08, + "probability": 0.6957 + }, + { + "start": 1716.88, + "end": 1719.12, + "probability": 0.8068 + }, + { + "start": 1719.52, + "end": 1722.04, + "probability": 0.9844 + }, + { + "start": 1722.38, + "end": 1726.65, + "probability": 0.9783 + }, + { + "start": 1727.0, + "end": 1728.56, + "probability": 0.7614 + }, + { + "start": 1729.22, + "end": 1729.38, + "probability": 0.185 + }, + { + "start": 1729.82, + "end": 1733.68, + "probability": 0.8457 + }, + { + "start": 1733.68, + "end": 1737.68, + "probability": 0.9722 + }, + { + "start": 1738.1, + "end": 1738.36, + "probability": 0.9719 + }, + { + "start": 1739.06, + "end": 1746.48, + "probability": 0.9888 + }, + { + "start": 1747.16, + "end": 1753.02, + "probability": 0.7854 + }, + { + "start": 1753.88, + "end": 1755.64, + "probability": 0.8428 + }, + { + "start": 1755.74, + "end": 1756.82, + "probability": 0.8089 + }, + { + "start": 1757.18, + "end": 1758.14, + "probability": 0.5977 + }, + { + "start": 1758.5, + "end": 1762.54, + "probability": 0.8356 + }, + { + "start": 1762.92, + "end": 1765.6, + "probability": 0.8409 + }, + { + "start": 1766.06, + "end": 1767.74, + "probability": 0.9321 + }, + { + "start": 1768.36, + "end": 1773.58, + "probability": 0.7848 + }, + { + "start": 1773.68, + "end": 1775.18, + "probability": 0.7816 + }, + { + "start": 1775.74, + "end": 1781.2, + "probability": 0.9929 + }, + { + "start": 1781.6, + "end": 1785.44, + "probability": 0.7927 + }, + { + "start": 1786.06, + "end": 1788.04, + "probability": 0.915 + }, + { + "start": 1788.48, + "end": 1794.54, + "probability": 0.8693 + }, + { + "start": 1795.1, + "end": 1795.84, + "probability": 0.8926 + }, + { + "start": 1797.02, + "end": 1797.24, + "probability": 0.5882 + }, + { + "start": 1799.16, + "end": 1801.34, + "probability": 0.6789 + }, + { + "start": 1801.64, + "end": 1804.4, + "probability": 0.9422 + }, + { + "start": 1804.5, + "end": 1805.66, + "probability": 0.7779 + }, + { + "start": 1806.28, + "end": 1808.88, + "probability": 0.9531 + }, + { + "start": 1816.64, + "end": 1817.46, + "probability": 0.4615 + }, + { + "start": 1817.54, + "end": 1817.54, + "probability": 0.3132 + }, + { + "start": 1817.58, + "end": 1818.52, + "probability": 0.6571 + }, + { + "start": 1818.58, + "end": 1818.82, + "probability": 0.5709 + }, + { + "start": 1818.98, + "end": 1821.82, + "probability": 0.9248 + }, + { + "start": 1822.98, + "end": 1826.88, + "probability": 0.9724 + }, + { + "start": 1827.08, + "end": 1831.48, + "probability": 0.6995 + }, + { + "start": 1831.56, + "end": 1835.74, + "probability": 0.9817 + }, + { + "start": 1836.36, + "end": 1839.52, + "probability": 0.9866 + }, + { + "start": 1841.02, + "end": 1844.64, + "probability": 0.9465 + }, + { + "start": 1844.82, + "end": 1847.88, + "probability": 0.9797 + }, + { + "start": 1847.88, + "end": 1851.9, + "probability": 0.9971 + }, + { + "start": 1852.1, + "end": 1853.54, + "probability": 0.9868 + }, + { + "start": 1853.64, + "end": 1854.84, + "probability": 0.9785 + }, + { + "start": 1855.48, + "end": 1861.44, + "probability": 0.9496 + }, + { + "start": 1861.82, + "end": 1866.9, + "probability": 0.9919 + }, + { + "start": 1866.98, + "end": 1867.52, + "probability": 0.9537 + }, + { + "start": 1867.6, + "end": 1868.04, + "probability": 0.984 + }, + { + "start": 1868.1, + "end": 1870.16, + "probability": 0.9765 + }, + { + "start": 1870.64, + "end": 1872.92, + "probability": 0.998 + }, + { + "start": 1874.46, + "end": 1877.74, + "probability": 0.98 + }, + { + "start": 1877.74, + "end": 1880.79, + "probability": 0.9946 + }, + { + "start": 1881.92, + "end": 1884.18, + "probability": 0.842 + }, + { + "start": 1884.18, + "end": 1886.98, + "probability": 0.9951 + }, + { + "start": 1887.08, + "end": 1890.32, + "probability": 0.8224 + }, + { + "start": 1891.28, + "end": 1893.42, + "probability": 0.9204 + }, + { + "start": 1893.6, + "end": 1898.16, + "probability": 0.9933 + }, + { + "start": 1899.8, + "end": 1903.2, + "probability": 0.998 + }, + { + "start": 1904.08, + "end": 1905.24, + "probability": 0.8037 + }, + { + "start": 1905.4, + "end": 1906.16, + "probability": 0.6706 + }, + { + "start": 1906.26, + "end": 1909.82, + "probability": 0.9634 + }, + { + "start": 1909.9, + "end": 1913.73, + "probability": 0.9948 + }, + { + "start": 1914.68, + "end": 1920.44, + "probability": 0.9965 + }, + { + "start": 1921.36, + "end": 1925.46, + "probability": 0.9951 + }, + { + "start": 1925.46, + "end": 1929.1, + "probability": 0.9985 + }, + { + "start": 1929.88, + "end": 1932.88, + "probability": 0.9973 + }, + { + "start": 1932.88, + "end": 1935.88, + "probability": 0.9974 + }, + { + "start": 1937.5, + "end": 1942.5, + "probability": 0.9971 + }, + { + "start": 1943.68, + "end": 1948.35, + "probability": 0.9602 + }, + { + "start": 1949.16, + "end": 1953.16, + "probability": 0.9944 + }, + { + "start": 1953.16, + "end": 1958.28, + "probability": 0.9984 + }, + { + "start": 1959.54, + "end": 1963.62, + "probability": 0.9912 + }, + { + "start": 1965.06, + "end": 1968.64, + "probability": 0.9977 + }, + { + "start": 1968.64, + "end": 1971.86, + "probability": 0.9861 + }, + { + "start": 1972.0, + "end": 1974.2, + "probability": 0.9237 + }, + { + "start": 1974.2, + "end": 1977.32, + "probability": 0.9993 + }, + { + "start": 1978.72, + "end": 1980.96, + "probability": 0.5065 + }, + { + "start": 1981.04, + "end": 1984.43, + "probability": 0.9784 + }, + { + "start": 1984.44, + "end": 1990.42, + "probability": 0.9578 + }, + { + "start": 1990.5, + "end": 1991.08, + "probability": 0.7805 + }, + { + "start": 1991.36, + "end": 1991.95, + "probability": 0.7631 + }, + { + "start": 1992.26, + "end": 1993.32, + "probability": 0.9558 + }, + { + "start": 1993.32, + "end": 1993.94, + "probability": 0.701 + }, + { + "start": 1994.24, + "end": 1999.26, + "probability": 0.9812 + }, + { + "start": 1999.26, + "end": 2002.18, + "probability": 0.9997 + }, + { + "start": 2002.88, + "end": 2006.64, + "probability": 0.6949 + }, + { + "start": 2006.7, + "end": 2009.38, + "probability": 0.955 + }, + { + "start": 2009.64, + "end": 2011.28, + "probability": 0.8616 + }, + { + "start": 2011.36, + "end": 2012.62, + "probability": 0.9862 + }, + { + "start": 2014.12, + "end": 2014.96, + "probability": 0.9128 + }, + { + "start": 2015.28, + "end": 2019.68, + "probability": 0.9701 + }, + { + "start": 2019.86, + "end": 2022.25, + "probability": 0.9518 + }, + { + "start": 2024.02, + "end": 2025.46, + "probability": 0.9545 + }, + { + "start": 2025.62, + "end": 2027.5, + "probability": 0.8851 + }, + { + "start": 2027.64, + "end": 2030.28, + "probability": 0.9718 + }, + { + "start": 2030.28, + "end": 2035.5, + "probability": 0.9837 + }, + { + "start": 2037.16, + "end": 2042.42, + "probability": 0.9416 + }, + { + "start": 2043.6, + "end": 2045.94, + "probability": 0.973 + }, + { + "start": 2046.7, + "end": 2050.4, + "probability": 0.8898 + }, + { + "start": 2050.82, + "end": 2051.06, + "probability": 0.7646 + }, + { + "start": 2051.6, + "end": 2055.26, + "probability": 0.8643 + }, + { + "start": 2056.1, + "end": 2056.4, + "probability": 0.9748 + }, + { + "start": 2057.12, + "end": 2060.1, + "probability": 0.9669 + }, + { + "start": 2060.6, + "end": 2063.5, + "probability": 0.9719 + }, + { + "start": 2063.5, + "end": 2066.08, + "probability": 0.9468 + }, + { + "start": 2067.02, + "end": 2069.58, + "probability": 0.8932 + }, + { + "start": 2070.42, + "end": 2071.14, + "probability": 0.3422 + }, + { + "start": 2072.18, + "end": 2073.16, + "probability": 0.2921 + }, + { + "start": 2075.68, + "end": 2077.14, + "probability": 0.9639 + }, + { + "start": 2077.18, + "end": 2077.9, + "probability": 0.9183 + }, + { + "start": 2078.18, + "end": 2081.92, + "probability": 0.856 + }, + { + "start": 2081.94, + "end": 2082.96, + "probability": 0.9237 + }, + { + "start": 2083.06, + "end": 2084.64, + "probability": 0.168 + }, + { + "start": 2085.16, + "end": 2085.52, + "probability": 0.194 + }, + { + "start": 2085.82, + "end": 2085.82, + "probability": 0.2281 + }, + { + "start": 2086.6, + "end": 2086.64, + "probability": 0.3788 + }, + { + "start": 2086.76, + "end": 2090.06, + "probability": 0.2137 + }, + { + "start": 2090.92, + "end": 2094.92, + "probability": 0.9392 + }, + { + "start": 2095.08, + "end": 2096.1, + "probability": 0.9706 + }, + { + "start": 2096.92, + "end": 2102.0, + "probability": 0.7908 + }, + { + "start": 2102.12, + "end": 2102.18, + "probability": 0.1867 + }, + { + "start": 2102.18, + "end": 2102.18, + "probability": 0.1548 + }, + { + "start": 2102.18, + "end": 2102.66, + "probability": 0.1072 + }, + { + "start": 2102.89, + "end": 2104.8, + "probability": 0.965 + }, + { + "start": 2105.22, + "end": 2105.9, + "probability": 0.7871 + }, + { + "start": 2106.34, + "end": 2107.56, + "probability": 0.5381 + }, + { + "start": 2107.6, + "end": 2111.96, + "probability": 0.963 + }, + { + "start": 2113.89, + "end": 2116.48, + "probability": 0.8223 + }, + { + "start": 2116.48, + "end": 2117.26, + "probability": 0.5254 + }, + { + "start": 2117.26, + "end": 2117.54, + "probability": 0.54 + }, + { + "start": 2117.98, + "end": 2118.1, + "probability": 0.0003 + }, + { + "start": 2118.1, + "end": 2119.56, + "probability": 0.979 + }, + { + "start": 2120.22, + "end": 2121.4, + "probability": 0.9736 + }, + { + "start": 2121.58, + "end": 2122.04, + "probability": 0.6991 + }, + { + "start": 2122.62, + "end": 2125.58, + "probability": 0.947 + }, + { + "start": 2125.7, + "end": 2126.63, + "probability": 0.8767 + }, + { + "start": 2126.82, + "end": 2130.02, + "probability": 0.8735 + }, + { + "start": 2130.08, + "end": 2130.98, + "probability": 0.7059 + }, + { + "start": 2131.12, + "end": 2134.72, + "probability": 0.8814 + }, + { + "start": 2135.34, + "end": 2135.48, + "probability": 0.6537 + }, + { + "start": 2135.62, + "end": 2136.36, + "probability": 0.5164 + }, + { + "start": 2136.66, + "end": 2138.56, + "probability": 0.6511 + }, + { + "start": 2138.88, + "end": 2141.52, + "probability": 0.9878 + }, + { + "start": 2141.52, + "end": 2144.7, + "probability": 0.9973 + }, + { + "start": 2145.16, + "end": 2146.54, + "probability": 0.8 + }, + { + "start": 2147.32, + "end": 2148.6, + "probability": 0.8837 + }, + { + "start": 2148.66, + "end": 2151.94, + "probability": 0.973 + }, + { + "start": 2152.74, + "end": 2154.66, + "probability": 0.9768 + }, + { + "start": 2154.74, + "end": 2158.5, + "probability": 0.9593 + }, + { + "start": 2158.86, + "end": 2159.64, + "probability": 0.7024 + }, + { + "start": 2159.8, + "end": 2165.18, + "probability": 0.9443 + }, + { + "start": 2165.74, + "end": 2167.44, + "probability": 0.9157 + }, + { + "start": 2167.6, + "end": 2171.8, + "probability": 0.8574 + }, + { + "start": 2172.42, + "end": 2174.54, + "probability": 0.9971 + }, + { + "start": 2175.1, + "end": 2175.46, + "probability": 0.6853 + }, + { + "start": 2176.18, + "end": 2176.84, + "probability": 0.8366 + }, + { + "start": 2177.12, + "end": 2180.1, + "probability": 0.9722 + }, + { + "start": 2180.22, + "end": 2180.98, + "probability": 0.7241 + }, + { + "start": 2181.02, + "end": 2183.82, + "probability": 0.9298 + }, + { + "start": 2183.92, + "end": 2185.54, + "probability": 0.9333 + }, + { + "start": 2185.56, + "end": 2189.12, + "probability": 0.9525 + }, + { + "start": 2189.26, + "end": 2191.68, + "probability": 0.9907 + }, + { + "start": 2192.22, + "end": 2197.04, + "probability": 0.9935 + }, + { + "start": 2197.88, + "end": 2198.04, + "probability": 0.4599 + }, + { + "start": 2198.4, + "end": 2203.2, + "probability": 0.9807 + }, + { + "start": 2203.32, + "end": 2206.63, + "probability": 0.9979 + }, + { + "start": 2208.39, + "end": 2210.24, + "probability": 0.7472 + }, + { + "start": 2210.26, + "end": 2212.22, + "probability": 0.9578 + }, + { + "start": 2212.42, + "end": 2213.96, + "probability": 0.8503 + }, + { + "start": 2214.14, + "end": 2217.16, + "probability": 0.9964 + }, + { + "start": 2217.26, + "end": 2218.42, + "probability": 0.9268 + }, + { + "start": 2219.04, + "end": 2221.18, + "probability": 0.7835 + }, + { + "start": 2221.74, + "end": 2222.7, + "probability": 0.9718 + }, + { + "start": 2223.16, + "end": 2224.36, + "probability": 0.5659 + }, + { + "start": 2224.5, + "end": 2229.46, + "probability": 0.6588 + }, + { + "start": 2229.66, + "end": 2234.82, + "probability": 0.9809 + }, + { + "start": 2235.54, + "end": 2238.5, + "probability": 0.9727 + }, + { + "start": 2238.9, + "end": 2240.16, + "probability": 0.8192 + }, + { + "start": 2240.38, + "end": 2245.5, + "probability": 0.846 + }, + { + "start": 2245.94, + "end": 2246.62, + "probability": 0.6972 + }, + { + "start": 2246.72, + "end": 2247.64, + "probability": 0.8643 + }, + { + "start": 2247.74, + "end": 2250.18, + "probability": 0.9818 + }, + { + "start": 2250.7, + "end": 2251.48, + "probability": 0.9198 + }, + { + "start": 2251.94, + "end": 2258.02, + "probability": 0.9675 + }, + { + "start": 2258.56, + "end": 2259.88, + "probability": 0.5279 + }, + { + "start": 2260.02, + "end": 2261.74, + "probability": 0.8603 + }, + { + "start": 2261.86, + "end": 2262.12, + "probability": 0.8356 + }, + { + "start": 2262.22, + "end": 2263.42, + "probability": 0.9736 + }, + { + "start": 2263.62, + "end": 2268.24, + "probability": 0.9801 + }, + { + "start": 2269.48, + "end": 2274.9, + "probability": 0.9951 + }, + { + "start": 2275.34, + "end": 2275.96, + "probability": 0.5913 + }, + { + "start": 2276.28, + "end": 2279.94, + "probability": 0.9784 + }, + { + "start": 2280.26, + "end": 2284.84, + "probability": 0.9934 + }, + { + "start": 2285.48, + "end": 2288.56, + "probability": 0.96 + }, + { + "start": 2289.34, + "end": 2291.28, + "probability": 0.8601 + }, + { + "start": 2291.32, + "end": 2293.0, + "probability": 0.6031 + }, + { + "start": 2293.34, + "end": 2295.02, + "probability": 0.77 + }, + { + "start": 2295.42, + "end": 2296.16, + "probability": 0.7884 + }, + { + "start": 2296.48, + "end": 2299.14, + "probability": 0.9736 + }, + { + "start": 2300.0, + "end": 2302.66, + "probability": 0.9907 + }, + { + "start": 2303.3, + "end": 2306.7, + "probability": 0.9075 + }, + { + "start": 2306.94, + "end": 2313.04, + "probability": 0.9232 + }, + { + "start": 2313.34, + "end": 2314.44, + "probability": 0.7465 + }, + { + "start": 2314.56, + "end": 2316.38, + "probability": 0.8398 + }, + { + "start": 2317.3, + "end": 2319.9, + "probability": 0.8929 + }, + { + "start": 2319.9, + "end": 2323.16, + "probability": 0.997 + }, + { + "start": 2323.3, + "end": 2324.18, + "probability": 0.931 + }, + { + "start": 2324.52, + "end": 2327.4, + "probability": 0.9871 + }, + { + "start": 2327.92, + "end": 2330.44, + "probability": 0.9964 + }, + { + "start": 2330.98, + "end": 2333.0, + "probability": 0.9807 + }, + { + "start": 2333.48, + "end": 2335.26, + "probability": 0.8599 + }, + { + "start": 2335.74, + "end": 2338.0, + "probability": 0.9578 + }, + { + "start": 2338.0, + "end": 2340.98, + "probability": 0.8234 + }, + { + "start": 2341.38, + "end": 2342.46, + "probability": 0.9353 + }, + { + "start": 2342.98, + "end": 2344.18, + "probability": 0.9951 + }, + { + "start": 2344.22, + "end": 2347.46, + "probability": 0.9875 + }, + { + "start": 2348.08, + "end": 2349.64, + "probability": 0.7911 + }, + { + "start": 2349.74, + "end": 2351.36, + "probability": 0.9974 + }, + { + "start": 2351.66, + "end": 2355.66, + "probability": 0.9793 + }, + { + "start": 2355.74, + "end": 2357.36, + "probability": 0.8433 + }, + { + "start": 2357.44, + "end": 2358.65, + "probability": 0.9924 + }, + { + "start": 2360.38, + "end": 2364.3, + "probability": 0.9926 + }, + { + "start": 2364.8, + "end": 2369.08, + "probability": 0.9904 + }, + { + "start": 2369.18, + "end": 2372.9, + "probability": 0.9971 + }, + { + "start": 2372.96, + "end": 2378.02, + "probability": 0.9894 + }, + { + "start": 2378.32, + "end": 2380.46, + "probability": 0.9985 + }, + { + "start": 2380.46, + "end": 2384.84, + "probability": 0.8662 + }, + { + "start": 2385.06, + "end": 2387.88, + "probability": 0.873 + }, + { + "start": 2388.42, + "end": 2389.32, + "probability": 0.4576 + }, + { + "start": 2389.66, + "end": 2390.84, + "probability": 0.8995 + }, + { + "start": 2390.9, + "end": 2391.38, + "probability": 0.9238 + }, + { + "start": 2391.4, + "end": 2392.3, + "probability": 0.851 + }, + { + "start": 2392.34, + "end": 2394.74, + "probability": 0.9606 + }, + { + "start": 2394.86, + "end": 2398.28, + "probability": 0.9352 + }, + { + "start": 2398.3, + "end": 2400.69, + "probability": 0.9958 + }, + { + "start": 2402.62, + "end": 2402.76, + "probability": 0.0531 + }, + { + "start": 2402.76, + "end": 2402.76, + "probability": 0.0026 + }, + { + "start": 2403.94, + "end": 2407.04, + "probability": 0.4397 + }, + { + "start": 2407.22, + "end": 2408.95, + "probability": 0.9619 + }, + { + "start": 2409.26, + "end": 2410.2, + "probability": 0.96 + }, + { + "start": 2411.72, + "end": 2413.5, + "probability": 0.1139 + }, + { + "start": 2413.6, + "end": 2416.4, + "probability": 0.9719 + }, + { + "start": 2416.74, + "end": 2417.36, + "probability": 0.9799 + }, + { + "start": 2417.94, + "end": 2420.56, + "probability": 0.7861 + }, + { + "start": 2421.02, + "end": 2423.9, + "probability": 0.9731 + }, + { + "start": 2423.9, + "end": 2427.52, + "probability": 0.9972 + }, + { + "start": 2427.96, + "end": 2433.76, + "probability": 0.9862 + }, + { + "start": 2433.88, + "end": 2436.58, + "probability": 0.8602 + }, + { + "start": 2436.92, + "end": 2440.72, + "probability": 0.965 + }, + { + "start": 2440.86, + "end": 2443.8, + "probability": 0.9991 + }, + { + "start": 2443.8, + "end": 2447.9, + "probability": 0.9947 + }, + { + "start": 2448.14, + "end": 2451.04, + "probability": 0.9885 + }, + { + "start": 2451.06, + "end": 2454.82, + "probability": 0.9742 + }, + { + "start": 2454.82, + "end": 2459.28, + "probability": 0.9609 + }, + { + "start": 2459.86, + "end": 2461.2, + "probability": 0.498 + }, + { + "start": 2461.38, + "end": 2464.78, + "probability": 0.9521 + }, + { + "start": 2465.36, + "end": 2467.36, + "probability": 0.971 + }, + { + "start": 2467.36, + "end": 2471.68, + "probability": 0.9893 + }, + { + "start": 2471.68, + "end": 2473.5, + "probability": 0.9644 + }, + { + "start": 2473.9, + "end": 2477.02, + "probability": 0.9762 + }, + { + "start": 2477.02, + "end": 2480.32, + "probability": 0.1191 + }, + { + "start": 2480.32, + "end": 2481.89, + "probability": 0.6742 + }, + { + "start": 2482.88, + "end": 2487.02, + "probability": 0.9918 + }, + { + "start": 2487.5, + "end": 2487.88, + "probability": 0.5205 + }, + { + "start": 2487.98, + "end": 2489.08, + "probability": 0.9114 + }, + { + "start": 2489.22, + "end": 2489.82, + "probability": 0.7006 + }, + { + "start": 2490.08, + "end": 2492.96, + "probability": 0.8465 + }, + { + "start": 2493.44, + "end": 2497.42, + "probability": 0.9647 + }, + { + "start": 2497.78, + "end": 2500.94, + "probability": 0.9679 + }, + { + "start": 2501.7, + "end": 2503.82, + "probability": 0.6509 + }, + { + "start": 2503.82, + "end": 2506.7, + "probability": 0.9949 + }, + { + "start": 2507.24, + "end": 2510.76, + "probability": 0.8528 + }, + { + "start": 2511.34, + "end": 2513.74, + "probability": 0.9751 + }, + { + "start": 2514.4, + "end": 2514.4, + "probability": 0.0283 + }, + { + "start": 2514.54, + "end": 2515.26, + "probability": 0.517 + }, + { + "start": 2515.28, + "end": 2519.66, + "probability": 0.987 + }, + { + "start": 2520.4, + "end": 2521.97, + "probability": 0.9889 + }, + { + "start": 2522.64, + "end": 2527.84, + "probability": 0.9868 + }, + { + "start": 2528.36, + "end": 2530.74, + "probability": 0.9988 + }, + { + "start": 2531.06, + "end": 2534.32, + "probability": 0.9653 + }, + { + "start": 2534.46, + "end": 2535.26, + "probability": 0.8382 + }, + { + "start": 2535.54, + "end": 2536.38, + "probability": 0.8003 + }, + { + "start": 2536.78, + "end": 2539.44, + "probability": 0.9788 + }, + { + "start": 2539.9, + "end": 2541.26, + "probability": 0.9772 + }, + { + "start": 2542.02, + "end": 2543.66, + "probability": 0.7725 + }, + { + "start": 2544.26, + "end": 2544.28, + "probability": 0.6099 + }, + { + "start": 2544.5, + "end": 2544.78, + "probability": 0.826 + }, + { + "start": 2544.86, + "end": 2545.54, + "probability": 0.9502 + }, + { + "start": 2545.78, + "end": 2546.48, + "probability": 0.9477 + }, + { + "start": 2546.76, + "end": 2547.8, + "probability": 0.9631 + }, + { + "start": 2548.06, + "end": 2549.54, + "probability": 0.9653 + }, + { + "start": 2550.0, + "end": 2551.08, + "probability": 0.9694 + }, + { + "start": 2551.48, + "end": 2553.6, + "probability": 0.9665 + }, + { + "start": 2554.02, + "end": 2557.86, + "probability": 0.8663 + }, + { + "start": 2557.94, + "end": 2559.14, + "probability": 0.8414 + }, + { + "start": 2559.6, + "end": 2563.96, + "probability": 0.9578 + }, + { + "start": 2564.06, + "end": 2568.26, + "probability": 0.8553 + }, + { + "start": 2568.79, + "end": 2569.86, + "probability": 0.9142 + }, + { + "start": 2570.54, + "end": 2571.82, + "probability": 0.7578 + }, + { + "start": 2572.2, + "end": 2576.56, + "probability": 0.9936 + }, + { + "start": 2576.94, + "end": 2582.6, + "probability": 0.9946 + }, + { + "start": 2583.0, + "end": 2588.98, + "probability": 0.9941 + }, + { + "start": 2589.28, + "end": 2592.58, + "probability": 0.9694 + }, + { + "start": 2592.94, + "end": 2594.8, + "probability": 0.9688 + }, + { + "start": 2595.02, + "end": 2595.52, + "probability": 0.8216 + }, + { + "start": 2596.0, + "end": 2599.16, + "probability": 0.9893 + }, + { + "start": 2599.52, + "end": 2600.98, + "probability": 0.7852 + }, + { + "start": 2601.8, + "end": 2602.78, + "probability": 0.4281 + }, + { + "start": 2602.9, + "end": 2604.38, + "probability": 0.7232 + }, + { + "start": 2604.48, + "end": 2607.6, + "probability": 0.9518 + }, + { + "start": 2608.04, + "end": 2609.0, + "probability": 0.9409 + }, + { + "start": 2609.2, + "end": 2610.7, + "probability": 0.8795 + }, + { + "start": 2611.26, + "end": 2617.06, + "probability": 0.9331 + }, + { + "start": 2617.16, + "end": 2617.78, + "probability": 0.7764 + }, + { + "start": 2618.22, + "end": 2618.54, + "probability": 0.7989 + }, + { + "start": 2618.64, + "end": 2623.04, + "probability": 0.9937 + }, + { + "start": 2623.06, + "end": 2624.4, + "probability": 0.9956 + }, + { + "start": 2625.56, + "end": 2626.86, + "probability": 0.8855 + }, + { + "start": 2627.0, + "end": 2627.83, + "probability": 0.8648 + }, + { + "start": 2628.26, + "end": 2632.03, + "probability": 0.9532 + }, + { + "start": 2634.12, + "end": 2636.84, + "probability": 0.8395 + }, + { + "start": 2637.34, + "end": 2637.52, + "probability": 0.5241 + }, + { + "start": 2638.08, + "end": 2640.24, + "probability": 0.9978 + }, + { + "start": 2641.26, + "end": 2643.0, + "probability": 0.8093 + }, + { + "start": 2643.48, + "end": 2643.8, + "probability": 0.6903 + }, + { + "start": 2644.1, + "end": 2647.34, + "probability": 0.5609 + }, + { + "start": 2647.94, + "end": 2649.61, + "probability": 0.9463 + }, + { + "start": 2650.08, + "end": 2652.68, + "probability": 0.9287 + }, + { + "start": 2652.98, + "end": 2654.76, + "probability": 0.89 + }, + { + "start": 2655.32, + "end": 2658.54, + "probability": 0.9753 + }, + { + "start": 2659.2, + "end": 2660.38, + "probability": 0.8986 + }, + { + "start": 2660.6, + "end": 2661.46, + "probability": 0.5991 + }, + { + "start": 2661.62, + "end": 2663.78, + "probability": 0.8048 + }, + { + "start": 2663.92, + "end": 2667.1, + "probability": 0.9756 + }, + { + "start": 2667.18, + "end": 2670.2, + "probability": 0.9724 + }, + { + "start": 2670.62, + "end": 2672.26, + "probability": 0.9888 + }, + { + "start": 2672.34, + "end": 2674.18, + "probability": 0.9927 + }, + { + "start": 2674.4, + "end": 2677.28, + "probability": 0.5904 + }, + { + "start": 2677.44, + "end": 2677.74, + "probability": 0.6561 + }, + { + "start": 2677.98, + "end": 2680.78, + "probability": 0.9575 + }, + { + "start": 2680.84, + "end": 2682.78, + "probability": 0.9485 + }, + { + "start": 2683.04, + "end": 2684.02, + "probability": 0.9682 + }, + { + "start": 2684.04, + "end": 2687.98, + "probability": 0.9979 + }, + { + "start": 2688.1, + "end": 2689.22, + "probability": 0.9745 + }, + { + "start": 2689.56, + "end": 2692.16, + "probability": 0.9937 + }, + { + "start": 2692.58, + "end": 2692.98, + "probability": 0.6389 + }, + { + "start": 2693.12, + "end": 2693.54, + "probability": 0.8752 + }, + { + "start": 2693.84, + "end": 2698.74, + "probability": 0.9805 + }, + { + "start": 2698.94, + "end": 2702.64, + "probability": 0.818 + }, + { + "start": 2702.98, + "end": 2705.78, + "probability": 0.9799 + }, + { + "start": 2706.24, + "end": 2709.88, + "probability": 0.9548 + }, + { + "start": 2709.92, + "end": 2712.6, + "probability": 0.9466 + }, + { + "start": 2712.76, + "end": 2714.0, + "probability": 0.9345 + }, + { + "start": 2714.26, + "end": 2719.0, + "probability": 0.9983 + }, + { + "start": 2719.24, + "end": 2719.86, + "probability": 0.5015 + }, + { + "start": 2720.22, + "end": 2722.81, + "probability": 0.8969 + }, + { + "start": 2723.28, + "end": 2727.52, + "probability": 0.9875 + }, + { + "start": 2728.14, + "end": 2728.74, + "probability": 0.9629 + }, + { + "start": 2728.92, + "end": 2729.94, + "probability": 0.9951 + }, + { + "start": 2730.14, + "end": 2733.52, + "probability": 0.9409 + }, + { + "start": 2733.84, + "end": 2734.58, + "probability": 0.4949 + }, + { + "start": 2734.72, + "end": 2740.56, + "probability": 0.9803 + }, + { + "start": 2740.8, + "end": 2741.52, + "probability": 0.7241 + }, + { + "start": 2741.98, + "end": 2747.34, + "probability": 0.9951 + }, + { + "start": 2748.0, + "end": 2748.6, + "probability": 0.6576 + }, + { + "start": 2748.72, + "end": 2749.24, + "probability": 0.8241 + }, + { + "start": 2749.32, + "end": 2752.48, + "probability": 0.9341 + }, + { + "start": 2752.9, + "end": 2756.34, + "probability": 0.9937 + }, + { + "start": 2756.52, + "end": 2757.38, + "probability": 0.8901 + }, + { + "start": 2757.38, + "end": 2758.2, + "probability": 0.2851 + }, + { + "start": 2758.26, + "end": 2760.29, + "probability": 0.224 + }, + { + "start": 2761.68, + "end": 2761.68, + "probability": 0.0464 + }, + { + "start": 2761.68, + "end": 2761.78, + "probability": 0.2602 + }, + { + "start": 2762.44, + "end": 2762.9, + "probability": 0.7574 + }, + { + "start": 2763.24, + "end": 2767.8, + "probability": 0.9653 + }, + { + "start": 2767.84, + "end": 2768.7, + "probability": 0.7755 + }, + { + "start": 2768.7, + "end": 2772.34, + "probability": 0.9736 + }, + { + "start": 2772.86, + "end": 2774.16, + "probability": 0.8177 + }, + { + "start": 2774.32, + "end": 2774.68, + "probability": 0.6855 + }, + { + "start": 2774.78, + "end": 2774.98, + "probability": 0.8713 + }, + { + "start": 2775.02, + "end": 2777.24, + "probability": 0.9854 + }, + { + "start": 2777.94, + "end": 2781.1, + "probability": 0.9773 + }, + { + "start": 2781.72, + "end": 2783.42, + "probability": 0.9443 + }, + { + "start": 2783.48, + "end": 2783.94, + "probability": 0.6556 + }, + { + "start": 2784.08, + "end": 2784.76, + "probability": 0.6831 + }, + { + "start": 2784.88, + "end": 2785.96, + "probability": 0.8716 + }, + { + "start": 2786.08, + "end": 2786.91, + "probability": 0.3207 + }, + { + "start": 2786.96, + "end": 2788.88, + "probability": 0.9302 + }, + { + "start": 2789.4, + "end": 2790.22, + "probability": 0.4946 + }, + { + "start": 2790.28, + "end": 2791.92, + "probability": 0.9767 + }, + { + "start": 2792.0, + "end": 2793.56, + "probability": 0.9884 + }, + { + "start": 2794.08, + "end": 2795.2, + "probability": 0.9012 + }, + { + "start": 2795.26, + "end": 2796.2, + "probability": 0.9736 + }, + { + "start": 2796.36, + "end": 2797.26, + "probability": 0.9686 + }, + { + "start": 2797.66, + "end": 2799.7, + "probability": 0.9349 + }, + { + "start": 2800.2, + "end": 2804.66, + "probability": 0.8314 + }, + { + "start": 2804.98, + "end": 2805.64, + "probability": 0.8278 + }, + { + "start": 2805.66, + "end": 2806.2, + "probability": 0.6746 + }, + { + "start": 2806.28, + "end": 2806.84, + "probability": 0.8708 + }, + { + "start": 2807.02, + "end": 2808.82, + "probability": 0.9697 + }, + { + "start": 2809.2, + "end": 2811.0, + "probability": 0.9022 + }, + { + "start": 2811.18, + "end": 2811.42, + "probability": 0.7709 + }, + { + "start": 2811.84, + "end": 2812.26, + "probability": 0.681 + }, + { + "start": 2812.42, + "end": 2815.46, + "probability": 0.7272 + }, + { + "start": 2830.06, + "end": 2831.46, + "probability": 0.4994 + }, + { + "start": 2831.64, + "end": 2831.64, + "probability": 0.4832 + }, + { + "start": 2831.64, + "end": 2832.39, + "probability": 0.5651 + }, + { + "start": 2833.02, + "end": 2835.5, + "probability": 0.9384 + }, + { + "start": 2835.8, + "end": 2837.18, + "probability": 0.9823 + }, + { + "start": 2837.7, + "end": 2838.24, + "probability": 0.7651 + }, + { + "start": 2839.76, + "end": 2840.98, + "probability": 0.4614 + }, + { + "start": 2841.16, + "end": 2842.28, + "probability": 0.4315 + }, + { + "start": 2842.34, + "end": 2844.56, + "probability": 0.714 + }, + { + "start": 2844.62, + "end": 2846.44, + "probability": 0.9919 + }, + { + "start": 2846.46, + "end": 2849.52, + "probability": 0.9083 + }, + { + "start": 2849.58, + "end": 2851.82, + "probability": 0.9603 + }, + { + "start": 2852.06, + "end": 2854.22, + "probability": 0.5434 + }, + { + "start": 2854.22, + "end": 2855.14, + "probability": 0.6018 + }, + { + "start": 2855.24, + "end": 2858.16, + "probability": 0.6766 + }, + { + "start": 2858.3, + "end": 2859.46, + "probability": 0.9905 + }, + { + "start": 2861.44, + "end": 2861.78, + "probability": 0.7588 + }, + { + "start": 2861.88, + "end": 2865.42, + "probability": 0.995 + }, + { + "start": 2866.68, + "end": 2868.54, + "probability": 0.6195 + }, + { + "start": 2869.28, + "end": 2871.78, + "probability": 0.9917 + }, + { + "start": 2872.46, + "end": 2875.04, + "probability": 0.9878 + }, + { + "start": 2875.7, + "end": 2877.86, + "probability": 0.9971 + }, + { + "start": 2878.78, + "end": 2883.7, + "probability": 0.9956 + }, + { + "start": 2884.5, + "end": 2888.26, + "probability": 0.9971 + }, + { + "start": 2889.36, + "end": 2893.1, + "probability": 0.9907 + }, + { + "start": 2894.16, + "end": 2894.5, + "probability": 0.2432 + }, + { + "start": 2894.76, + "end": 2896.82, + "probability": 0.9725 + }, + { + "start": 2898.08, + "end": 2901.4, + "probability": 0.8121 + }, + { + "start": 2903.06, + "end": 2905.92, + "probability": 0.9527 + }, + { + "start": 2907.16, + "end": 2909.76, + "probability": 0.9886 + }, + { + "start": 2911.54, + "end": 2914.7, + "probability": 0.9451 + }, + { + "start": 2917.22, + "end": 2920.0, + "probability": 0.7916 + }, + { + "start": 2921.18, + "end": 2926.08, + "probability": 0.996 + }, + { + "start": 2926.5, + "end": 2927.2, + "probability": 0.4601 + }, + { + "start": 2927.54, + "end": 2928.9, + "probability": 0.5425 + }, + { + "start": 2928.98, + "end": 2929.94, + "probability": 0.968 + }, + { + "start": 2930.14, + "end": 2930.68, + "probability": 0.6558 + }, + { + "start": 2930.9, + "end": 2932.08, + "probability": 0.7204 + }, + { + "start": 2932.48, + "end": 2933.72, + "probability": 0.7177 + }, + { + "start": 2934.2, + "end": 2934.2, + "probability": 0.0675 + }, + { + "start": 2934.2, + "end": 2936.82, + "probability": 0.9299 + }, + { + "start": 2936.9, + "end": 2937.64, + "probability": 0.8373 + }, + { + "start": 2938.0, + "end": 2938.12, + "probability": 0.1917 + }, + { + "start": 2938.42, + "end": 2941.44, + "probability": 0.9841 + }, + { + "start": 2942.22, + "end": 2944.42, + "probability": 0.7121 + }, + { + "start": 2944.42, + "end": 2946.3, + "probability": 0.772 + }, + { + "start": 2946.76, + "end": 2949.6, + "probability": 0.9822 + }, + { + "start": 2949.6, + "end": 2952.12, + "probability": 0.9157 + }, + { + "start": 2952.46, + "end": 2953.22, + "probability": 0.002 + }, + { + "start": 2953.22, + "end": 2953.48, + "probability": 0.0444 + }, + { + "start": 2953.68, + "end": 2954.42, + "probability": 0.5123 + }, + { + "start": 2954.58, + "end": 2955.84, + "probability": 0.978 + }, + { + "start": 2956.08, + "end": 2958.0, + "probability": 0.8726 + }, + { + "start": 2958.06, + "end": 2960.0, + "probability": 0.9717 + }, + { + "start": 2960.08, + "end": 2961.58, + "probability": 0.4406 + }, + { + "start": 2961.74, + "end": 2962.48, + "probability": 0.0476 + }, + { + "start": 2962.48, + "end": 2962.52, + "probability": 0.0185 + }, + { + "start": 2962.52, + "end": 2962.58, + "probability": 0.4387 + }, + { + "start": 2962.8, + "end": 2967.94, + "probability": 0.9862 + }, + { + "start": 2968.54, + "end": 2972.58, + "probability": 0.9961 + }, + { + "start": 2972.58, + "end": 2972.7, + "probability": 0.0499 + }, + { + "start": 2972.82, + "end": 2973.9, + "probability": 0.8354 + }, + { + "start": 2974.1, + "end": 2977.52, + "probability": 0.7129 + }, + { + "start": 2978.2, + "end": 2978.66, + "probability": 0.3889 + }, + { + "start": 2978.66, + "end": 2983.5, + "probability": 0.4722 + }, + { + "start": 2983.56, + "end": 2984.27, + "probability": 0.5597 + }, + { + "start": 2985.32, + "end": 2986.5, + "probability": 0.8313 + }, + { + "start": 2987.2, + "end": 2988.64, + "probability": 0.7106 + }, + { + "start": 2988.68, + "end": 2992.52, + "probability": 0.943 + }, + { + "start": 2992.98, + "end": 2993.02, + "probability": 0.2771 + }, + { + "start": 2993.02, + "end": 2995.12, + "probability": 0.6241 + }, + { + "start": 2996.48, + "end": 2998.68, + "probability": 0.6881 + }, + { + "start": 2999.18, + "end": 3001.31, + "probability": 0.9883 + }, + { + "start": 3001.64, + "end": 3007.36, + "probability": 0.2302 + }, + { + "start": 3007.36, + "end": 3007.36, + "probability": 0.0148 + }, + { + "start": 3007.36, + "end": 3007.36, + "probability": 0.2017 + }, + { + "start": 3007.36, + "end": 3007.84, + "probability": 0.5142 + }, + { + "start": 3007.94, + "end": 3010.16, + "probability": 0.7708 + }, + { + "start": 3010.32, + "end": 3011.76, + "probability": 0.507 + }, + { + "start": 3012.22, + "end": 3013.34, + "probability": 0.6323 + }, + { + "start": 3014.66, + "end": 3014.7, + "probability": 0.0821 + }, + { + "start": 3014.7, + "end": 3014.7, + "probability": 0.1603 + }, + { + "start": 3014.7, + "end": 3015.44, + "probability": 0.4094 + }, + { + "start": 3015.56, + "end": 3016.91, + "probability": 0.5867 + }, + { + "start": 3017.86, + "end": 3019.22, + "probability": 0.9112 + }, + { + "start": 3019.44, + "end": 3023.32, + "probability": 0.9933 + }, + { + "start": 3023.96, + "end": 3024.66, + "probability": 0.85 + }, + { + "start": 3024.8, + "end": 3026.4, + "probability": 0.9452 + }, + { + "start": 3026.48, + "end": 3027.84, + "probability": 0.9952 + }, + { + "start": 3027.96, + "end": 3028.82, + "probability": 0.9453 + }, + { + "start": 3029.16, + "end": 3029.88, + "probability": 0.5592 + }, + { + "start": 3030.32, + "end": 3030.9, + "probability": 0.5697 + }, + { + "start": 3030.98, + "end": 3032.98, + "probability": 0.5506 + }, + { + "start": 3033.06, + "end": 3033.88, + "probability": 0.4824 + }, + { + "start": 3033.98, + "end": 3035.02, + "probability": 0.94 + }, + { + "start": 3035.98, + "end": 3037.5, + "probability": 0.7045 + }, + { + "start": 3037.62, + "end": 3037.78, + "probability": 0.8077 + }, + { + "start": 3037.78, + "end": 3038.0, + "probability": 0.8667 + }, + { + "start": 3038.06, + "end": 3038.92, + "probability": 0.8706 + }, + { + "start": 3039.26, + "end": 3041.3, + "probability": 0.9934 + }, + { + "start": 3041.58, + "end": 3044.18, + "probability": 0.883 + }, + { + "start": 3044.28, + "end": 3049.06, + "probability": 0.8905 + }, + { + "start": 3049.84, + "end": 3052.92, + "probability": 0.6107 + }, + { + "start": 3052.98, + "end": 3053.46, + "probability": 0.2859 + }, + { + "start": 3053.52, + "end": 3053.86, + "probability": 0.1058 + }, + { + "start": 3053.86, + "end": 3061.14, + "probability": 0.5105 + }, + { + "start": 3061.28, + "end": 3063.12, + "probability": 0.0854 + }, + { + "start": 3063.12, + "end": 3063.12, + "probability": 0.0948 + }, + { + "start": 3063.12, + "end": 3063.12, + "probability": 0.1564 + }, + { + "start": 3063.12, + "end": 3063.32, + "probability": 0.0944 + }, + { + "start": 3063.32, + "end": 3064.44, + "probability": 0.7037 + }, + { + "start": 3064.82, + "end": 3065.69, + "probability": 0.9348 + }, + { + "start": 3067.31, + "end": 3068.91, + "probability": 0.3988 + }, + { + "start": 3068.91, + "end": 3069.09, + "probability": 0.0505 + }, + { + "start": 3069.09, + "end": 3069.8, + "probability": 0.6346 + }, + { + "start": 3070.55, + "end": 3074.21, + "probability": 0.894 + }, + { + "start": 3074.81, + "end": 3078.21, + "probability": 0.8643 + }, + { + "start": 3078.33, + "end": 3078.91, + "probability": 0.9783 + }, + { + "start": 3078.97, + "end": 3081.41, + "probability": 0.9958 + }, + { + "start": 3082.05, + "end": 3089.87, + "probability": 0.9737 + }, + { + "start": 3089.95, + "end": 3093.43, + "probability": 0.9791 + }, + { + "start": 3093.85, + "end": 3095.93, + "probability": 0.995 + }, + { + "start": 3096.41, + "end": 3102.49, + "probability": 0.9944 + }, + { + "start": 3102.57, + "end": 3104.77, + "probability": 0.9398 + }, + { + "start": 3105.29, + "end": 3105.35, + "probability": 0.0257 + }, + { + "start": 3105.35, + "end": 3106.25, + "probability": 0.7002 + }, + { + "start": 3106.95, + "end": 3108.65, + "probability": 0.8293 + }, + { + "start": 3109.55, + "end": 3110.89, + "probability": 0.9309 + }, + { + "start": 3111.15, + "end": 3112.05, + "probability": 0.3309 + }, + { + "start": 3112.29, + "end": 3112.29, + "probability": 0.1125 + }, + { + "start": 3112.29, + "end": 3113.59, + "probability": 0.6374 + }, + { + "start": 3113.67, + "end": 3114.75, + "probability": 0.6446 + }, + { + "start": 3116.27, + "end": 3119.01, + "probability": 0.2398 + }, + { + "start": 3119.65, + "end": 3121.21, + "probability": 0.0353 + }, + { + "start": 3121.49, + "end": 3125.43, + "probability": 0.3433 + }, + { + "start": 3125.53, + "end": 3128.41, + "probability": 0.8641 + }, + { + "start": 3128.41, + "end": 3128.92, + "probability": 0.0494 + }, + { + "start": 3129.57, + "end": 3129.69, + "probability": 0.049 + }, + { + "start": 3129.69, + "end": 3132.55, + "probability": 0.762 + }, + { + "start": 3132.57, + "end": 3137.61, + "probability": 0.0466 + }, + { + "start": 3138.69, + "end": 3138.69, + "probability": 0.0174 + }, + { + "start": 3138.69, + "end": 3138.69, + "probability": 0.0963 + }, + { + "start": 3138.69, + "end": 3141.21, + "probability": 0.3446 + }, + { + "start": 3141.69, + "end": 3143.41, + "probability": 0.4512 + }, + { + "start": 3143.41, + "end": 3144.61, + "probability": 0.1563 + }, + { + "start": 3144.61, + "end": 3146.19, + "probability": 0.4942 + }, + { + "start": 3146.53, + "end": 3146.93, + "probability": 0.2904 + }, + { + "start": 3147.09, + "end": 3147.43, + "probability": 0.6807 + }, + { + "start": 3147.43, + "end": 3147.43, + "probability": 0.7641 + }, + { + "start": 3147.43, + "end": 3148.55, + "probability": 0.6828 + }, + { + "start": 3149.96, + "end": 3151.11, + "probability": 0.0486 + }, + { + "start": 3151.15, + "end": 3155.23, + "probability": 0.4064 + }, + { + "start": 3155.6, + "end": 3156.49, + "probability": 0.1552 + }, + { + "start": 3156.67, + "end": 3157.41, + "probability": 0.5446 + }, + { + "start": 3157.41, + "end": 3157.77, + "probability": 0.7069 + }, + { + "start": 3157.93, + "end": 3160.93, + "probability": 0.9652 + }, + { + "start": 3160.97, + "end": 3161.61, + "probability": 0.0131 + }, + { + "start": 3161.61, + "end": 3161.97, + "probability": 0.2466 + }, + { + "start": 3161.97, + "end": 3163.93, + "probability": 0.1411 + }, + { + "start": 3164.63, + "end": 3166.97, + "probability": 0.2676 + }, + { + "start": 3167.09, + "end": 3168.45, + "probability": 0.8712 + }, + { + "start": 3168.63, + "end": 3169.07, + "probability": 0.3354 + }, + { + "start": 3169.07, + "end": 3169.42, + "probability": 0.632 + }, + { + "start": 3170.37, + "end": 3171.03, + "probability": 0.8931 + }, + { + "start": 3171.37, + "end": 3173.67, + "probability": 0.9613 + }, + { + "start": 3173.71, + "end": 3174.97, + "probability": 0.954 + }, + { + "start": 3175.11, + "end": 3175.29, + "probability": 0.2889 + }, + { + "start": 3175.35, + "end": 3175.83, + "probability": 0.6709 + }, + { + "start": 3175.99, + "end": 3177.11, + "probability": 0.9835 + }, + { + "start": 3177.99, + "end": 3179.15, + "probability": 0.9743 + }, + { + "start": 3179.29, + "end": 3184.12, + "probability": 0.9642 + }, + { + "start": 3185.63, + "end": 3187.49, + "probability": 0.1825 + }, + { + "start": 3187.83, + "end": 3188.04, + "probability": 0.0724 + }, + { + "start": 3189.07, + "end": 3190.13, + "probability": 0.8002 + }, + { + "start": 3190.85, + "end": 3191.23, + "probability": 0.6984 + }, + { + "start": 3191.33, + "end": 3194.39, + "probability": 0.4682 + }, + { + "start": 3194.91, + "end": 3196.41, + "probability": 0.8999 + }, + { + "start": 3196.47, + "end": 3197.31, + "probability": 0.6221 + }, + { + "start": 3197.81, + "end": 3202.05, + "probability": 0.799 + }, + { + "start": 3203.11, + "end": 3203.88, + "probability": 0.976 + }, + { + "start": 3204.0, + "end": 3204.0, + "probability": 0.0 + }, + { + "start": 3204.2, + "end": 3205.8, + "probability": 0.8508 + }, + { + "start": 3206.06, + "end": 3207.2, + "probability": 0.999 + }, + { + "start": 3207.7, + "end": 3210.28, + "probability": 0.9873 + }, + { + "start": 3210.6, + "end": 3213.58, + "probability": 0.9359 + }, + { + "start": 3214.12, + "end": 3214.16, + "probability": 0.0243 + }, + { + "start": 3214.2, + "end": 3217.5, + "probability": 0.7959 + }, + { + "start": 3217.82, + "end": 3218.88, + "probability": 0.998 + }, + { + "start": 3220.14, + "end": 3221.74, + "probability": 0.717 + }, + { + "start": 3222.66, + "end": 3226.82, + "probability": 0.9825 + }, + { + "start": 3227.78, + "end": 3229.6, + "probability": 0.9793 + }, + { + "start": 3230.52, + "end": 3233.74, + "probability": 0.9771 + }, + { + "start": 3233.76, + "end": 3239.72, + "probability": 0.0944 + }, + { + "start": 3240.14, + "end": 3242.14, + "probability": 0.5396 + }, + { + "start": 3242.18, + "end": 3242.94, + "probability": 0.6119 + }, + { + "start": 3243.78, + "end": 3246.1, + "probability": 0.4981 + }, + { + "start": 3246.28, + "end": 3248.8, + "probability": 0.0039 + }, + { + "start": 3250.04, + "end": 3250.52, + "probability": 0.001 + }, + { + "start": 3250.54, + "end": 3250.58, + "probability": 0.2188 + }, + { + "start": 3250.58, + "end": 3250.58, + "probability": 0.448 + }, + { + "start": 3250.58, + "end": 3250.58, + "probability": 0.0793 + }, + { + "start": 3250.58, + "end": 3251.78, + "probability": 0.2422 + }, + { + "start": 3251.78, + "end": 3253.74, + "probability": 0.1162 + }, + { + "start": 3256.24, + "end": 3256.52, + "probability": 0.099 + }, + { + "start": 3256.52, + "end": 3256.52, + "probability": 0.5939 + }, + { + "start": 3256.52, + "end": 3256.52, + "probability": 0.4169 + }, + { + "start": 3256.52, + "end": 3259.92, + "probability": 0.8032 + }, + { + "start": 3259.92, + "end": 3261.26, + "probability": 0.7584 + }, + { + "start": 3262.58, + "end": 3265.02, + "probability": 0.8312 + }, + { + "start": 3265.21, + "end": 3268.04, + "probability": 0.672 + }, + { + "start": 3269.18, + "end": 3270.58, + "probability": 0.8943 + }, + { + "start": 3270.64, + "end": 3271.16, + "probability": 0.0995 + }, + { + "start": 3271.2, + "end": 3271.88, + "probability": 0.4177 + }, + { + "start": 3272.08, + "end": 3272.78, + "probability": 0.7375 + }, + { + "start": 3272.94, + "end": 3274.16, + "probability": 0.2633 + }, + { + "start": 3274.28, + "end": 3276.88, + "probability": 0.131 + }, + { + "start": 3277.04, + "end": 3278.12, + "probability": 0.9604 + }, + { + "start": 3278.26, + "end": 3279.6, + "probability": 0.9629 + }, + { + "start": 3279.74, + "end": 3285.6, + "probability": 0.978 + }, + { + "start": 3286.14, + "end": 3286.78, + "probability": 0.3582 + }, + { + "start": 3286.82, + "end": 3287.26, + "probability": 0.9445 + }, + { + "start": 3287.32, + "end": 3291.06, + "probability": 0.9834 + }, + { + "start": 3291.06, + "end": 3291.5, + "probability": 0.0136 + }, + { + "start": 3291.62, + "end": 3292.2, + "probability": 0.7882 + }, + { + "start": 3293.06, + "end": 3297.92, + "probability": 0.7202 + }, + { + "start": 3298.46, + "end": 3299.04, + "probability": 0.5396 + }, + { + "start": 3299.04, + "end": 3299.06, + "probability": 0.1031 + }, + { + "start": 3299.14, + "end": 3300.1, + "probability": 0.0648 + }, + { + "start": 3300.12, + "end": 3301.42, + "probability": 0.1123 + }, + { + "start": 3301.7, + "end": 3302.26, + "probability": 0.2277 + }, + { + "start": 3302.64, + "end": 3302.86, + "probability": 0.3602 + }, + { + "start": 3302.86, + "end": 3305.14, + "probability": 0.7294 + }, + { + "start": 3305.48, + "end": 3306.3, + "probability": 0.9727 + }, + { + "start": 3306.48, + "end": 3307.26, + "probability": 0.6221 + }, + { + "start": 3307.5, + "end": 3308.12, + "probability": 0.7359 + }, + { + "start": 3308.58, + "end": 3309.44, + "probability": 0.361 + }, + { + "start": 3309.72, + "end": 3311.88, + "probability": 0.1288 + }, + { + "start": 3312.22, + "end": 3314.14, + "probability": 0.6455 + }, + { + "start": 3314.86, + "end": 3315.7, + "probability": 0.0023 + }, + { + "start": 3317.36, + "end": 3317.36, + "probability": 0.0662 + }, + { + "start": 3317.46, + "end": 3320.16, + "probability": 0.0508 + }, + { + "start": 3320.88, + "end": 3322.47, + "probability": 0.0868 + }, + { + "start": 3322.54, + "end": 3324.42, + "probability": 0.3355 + }, + { + "start": 3324.52, + "end": 3326.2, + "probability": 0.2976 + }, + { + "start": 3326.52, + "end": 3327.86, + "probability": 0.2688 + }, + { + "start": 3328.9, + "end": 3330.12, + "probability": 0.6256 + }, + { + "start": 3330.18, + "end": 3330.76, + "probability": 0.8994 + }, + { + "start": 3330.84, + "end": 3331.06, + "probability": 0.472 + }, + { + "start": 3331.18, + "end": 3333.46, + "probability": 0.992 + }, + { + "start": 3333.66, + "end": 3334.8, + "probability": 0.7206 + }, + { + "start": 3334.94, + "end": 3335.76, + "probability": 0.6137 + }, + { + "start": 3336.14, + "end": 3336.34, + "probability": 0.6334 + }, + { + "start": 3336.42, + "end": 3340.04, + "probability": 0.9927 + }, + { + "start": 3340.04, + "end": 3345.42, + "probability": 0.989 + }, + { + "start": 3345.52, + "end": 3347.54, + "probability": 0.9902 + }, + { + "start": 3347.82, + "end": 3348.96, + "probability": 0.8668 + }, + { + "start": 3349.12, + "end": 3350.38, + "probability": 0.9655 + }, + { + "start": 3350.52, + "end": 3350.74, + "probability": 0.3191 + }, + { + "start": 3352.44, + "end": 3355.24, + "probability": 0.7825 + }, + { + "start": 3355.42, + "end": 3356.74, + "probability": 0.9866 + }, + { + "start": 3357.34, + "end": 3359.14, + "probability": 0.8363 + }, + { + "start": 3359.92, + "end": 3362.48, + "probability": 0.9368 + }, + { + "start": 3363.86, + "end": 3367.32, + "probability": 0.9541 + }, + { + "start": 3367.46, + "end": 3369.44, + "probability": 0.5452 + }, + { + "start": 3369.54, + "end": 3370.1, + "probability": 0.4978 + }, + { + "start": 3371.36, + "end": 3375.62, + "probability": 0.9218 + }, + { + "start": 3375.7, + "end": 3376.44, + "probability": 0.8427 + }, + { + "start": 3376.5, + "end": 3377.34, + "probability": 0.966 + }, + { + "start": 3377.98, + "end": 3379.22, + "probability": 0.5171 + }, + { + "start": 3380.02, + "end": 3380.68, + "probability": 0.0124 + }, + { + "start": 3380.94, + "end": 3383.5, + "probability": 0.6509 + }, + { + "start": 3383.7, + "end": 3386.04, + "probability": 0.8809 + }, + { + "start": 3386.88, + "end": 3387.88, + "probability": 0.7935 + }, + { + "start": 3388.82, + "end": 3390.06, + "probability": 0.8899 + }, + { + "start": 3390.18, + "end": 3390.76, + "probability": 0.9702 + }, + { + "start": 3391.36, + "end": 3393.8, + "probability": 0.9949 + }, + { + "start": 3394.62, + "end": 3396.79, + "probability": 0.6398 + }, + { + "start": 3397.38, + "end": 3402.12, + "probability": 0.9767 + }, + { + "start": 3402.12, + "end": 3403.24, + "probability": 0.5613 + }, + { + "start": 3404.0, + "end": 3404.76, + "probability": 0.6307 + }, + { + "start": 3404.94, + "end": 3406.26, + "probability": 0.7641 + }, + { + "start": 3406.44, + "end": 3407.84, + "probability": 0.8084 + }, + { + "start": 3408.0, + "end": 3410.16, + "probability": 0.9927 + }, + { + "start": 3410.72, + "end": 3412.96, + "probability": 0.7907 + }, + { + "start": 3413.6, + "end": 3417.28, + "probability": 0.981 + }, + { + "start": 3417.6, + "end": 3418.53, + "probability": 0.8528 + }, + { + "start": 3419.16, + "end": 3420.18, + "probability": 0.9332 + }, + { + "start": 3420.72, + "end": 3421.98, + "probability": 0.9521 + }, + { + "start": 3422.38, + "end": 3425.94, + "probability": 0.9237 + }, + { + "start": 3426.3, + "end": 3431.12, + "probability": 0.9856 + }, + { + "start": 3431.44, + "end": 3435.36, + "probability": 0.9932 + }, + { + "start": 3435.46, + "end": 3435.96, + "probability": 0.2167 + }, + { + "start": 3435.98, + "end": 3437.86, + "probability": 0.6326 + }, + { + "start": 3438.09, + "end": 3439.92, + "probability": 0.98 + }, + { + "start": 3440.16, + "end": 3442.38, + "probability": 0.2536 + }, + { + "start": 3442.5, + "end": 3443.52, + "probability": 0.5213 + }, + { + "start": 3443.64, + "end": 3444.96, + "probability": 0.627 + }, + { + "start": 3445.0, + "end": 3446.16, + "probability": 0.8878 + }, + { + "start": 3448.47, + "end": 3451.28, + "probability": 0.8702 + }, + { + "start": 3452.08, + "end": 3452.12, + "probability": 0.2993 + }, + { + "start": 3452.12, + "end": 3452.12, + "probability": 0.1143 + }, + { + "start": 3452.12, + "end": 3452.42, + "probability": 0.2695 + }, + { + "start": 3452.42, + "end": 3455.32, + "probability": 0.9678 + }, + { + "start": 3455.4, + "end": 3457.68, + "probability": 0.9932 + }, + { + "start": 3458.18, + "end": 3461.34, + "probability": 0.9606 + }, + { + "start": 3461.34, + "end": 3465.72, + "probability": 0.8135 + }, + { + "start": 3465.78, + "end": 3466.4, + "probability": 0.8972 + }, + { + "start": 3466.44, + "end": 3467.94, + "probability": 0.8976 + }, + { + "start": 3468.56, + "end": 3470.04, + "probability": 0.9976 + }, + { + "start": 3471.14, + "end": 3471.56, + "probability": 0.2836 + }, + { + "start": 3472.68, + "end": 3474.9, + "probability": 0.9412 + }, + { + "start": 3475.5, + "end": 3476.36, + "probability": 0.9644 + }, + { + "start": 3476.78, + "end": 3482.82, + "probability": 0.9722 + }, + { + "start": 3483.36, + "end": 3485.94, + "probability": 0.9623 + }, + { + "start": 3486.86, + "end": 3487.62, + "probability": 0.9749 + }, + { + "start": 3488.06, + "end": 3491.3, + "probability": 0.9951 + }, + { + "start": 3491.92, + "end": 3494.32, + "probability": 0.7488 + }, + { + "start": 3495.9, + "end": 3496.32, + "probability": 0.6428 + }, + { + "start": 3496.44, + "end": 3497.82, + "probability": 0.974 + }, + { + "start": 3498.02, + "end": 3500.88, + "probability": 0.7684 + }, + { + "start": 3505.06, + "end": 3505.06, + "probability": 0.0302 + }, + { + "start": 3505.06, + "end": 3505.84, + "probability": 0.2623 + }, + { + "start": 3506.54, + "end": 3507.82, + "probability": 0.2776 + }, + { + "start": 3508.3, + "end": 3510.3, + "probability": 0.4206 + }, + { + "start": 3510.48, + "end": 3512.48, + "probability": 0.9893 + }, + { + "start": 3513.34, + "end": 3514.36, + "probability": 0.8478 + }, + { + "start": 3514.46, + "end": 3515.44, + "probability": 0.5633 + }, + { + "start": 3515.44, + "end": 3517.6, + "probability": 0.5341 + }, + { + "start": 3517.6, + "end": 3518.64, + "probability": 0.6991 + }, + { + "start": 3518.7, + "end": 3519.1, + "probability": 0.4395 + }, + { + "start": 3519.2, + "end": 3521.56, + "probability": 0.5042 + }, + { + "start": 3522.98, + "end": 3524.68, + "probability": 0.6695 + }, + { + "start": 3524.68, + "end": 3528.96, + "probability": 0.9367 + }, + { + "start": 3529.3, + "end": 3529.3, + "probability": 0.9453 + }, + { + "start": 3530.78, + "end": 3533.82, + "probability": 0.9968 + }, + { + "start": 3535.54, + "end": 3538.26, + "probability": 0.998 + }, + { + "start": 3538.58, + "end": 3540.76, + "probability": 0.911 + }, + { + "start": 3541.56, + "end": 3544.82, + "probability": 0.9731 + }, + { + "start": 3546.82, + "end": 3549.78, + "probability": 0.991 + }, + { + "start": 3551.0, + "end": 3552.22, + "probability": 0.8076 + }, + { + "start": 3552.44, + "end": 3553.38, + "probability": 0.9846 + }, + { + "start": 3554.5, + "end": 3557.2, + "probability": 0.991 + }, + { + "start": 3557.26, + "end": 3560.32, + "probability": 0.9328 + }, + { + "start": 3561.22, + "end": 3562.68, + "probability": 0.9433 + }, + { + "start": 3563.36, + "end": 3566.86, + "probability": 0.9521 + }, + { + "start": 3567.8, + "end": 3568.86, + "probability": 0.8977 + }, + { + "start": 3570.0, + "end": 3571.28, + "probability": 0.6849 + }, + { + "start": 3572.38, + "end": 3574.46, + "probability": 0.8571 + }, + { + "start": 3574.52, + "end": 3579.6, + "probability": 0.99 + }, + { + "start": 3580.58, + "end": 3581.26, + "probability": 0.9308 + }, + { + "start": 3582.22, + "end": 3586.16, + "probability": 0.6594 + }, + { + "start": 3587.28, + "end": 3588.4, + "probability": 0.6131 + }, + { + "start": 3588.42, + "end": 3589.06, + "probability": 0.8104 + }, + { + "start": 3589.1, + "end": 3590.58, + "probability": 0.9331 + }, + { + "start": 3590.72, + "end": 3593.0, + "probability": 0.9954 + }, + { + "start": 3594.16, + "end": 3596.12, + "probability": 0.7096 + }, + { + "start": 3597.28, + "end": 3600.24, + "probability": 0.6906 + }, + { + "start": 3601.52, + "end": 3606.29, + "probability": 0.9613 + }, + { + "start": 3609.0, + "end": 3609.82, + "probability": 0.646 + }, + { + "start": 3610.34, + "end": 3612.46, + "probability": 0.9888 + }, + { + "start": 3613.46, + "end": 3615.7, + "probability": 0.9592 + }, + { + "start": 3617.18, + "end": 3617.86, + "probability": 0.8542 + }, + { + "start": 3619.12, + "end": 3620.8, + "probability": 0.9978 + }, + { + "start": 3621.66, + "end": 3626.12, + "probability": 0.9807 + }, + { + "start": 3626.86, + "end": 3630.98, + "probability": 0.6065 + }, + { + "start": 3632.16, + "end": 3634.32, + "probability": 0.6629 + }, + { + "start": 3635.48, + "end": 3637.88, + "probability": 0.9696 + }, + { + "start": 3637.98, + "end": 3640.46, + "probability": 0.9278 + }, + { + "start": 3640.52, + "end": 3640.98, + "probability": 0.8898 + }, + { + "start": 3642.68, + "end": 3646.06, + "probability": 0.7186 + }, + { + "start": 3646.9, + "end": 3649.3, + "probability": 0.9683 + }, + { + "start": 3649.6, + "end": 3650.75, + "probability": 0.9966 + }, + { + "start": 3652.18, + "end": 3655.5, + "probability": 0.9854 + }, + { + "start": 3656.3, + "end": 3659.12, + "probability": 0.9188 + }, + { + "start": 3659.86, + "end": 3660.4, + "probability": 0.7504 + }, + { + "start": 3661.16, + "end": 3664.43, + "probability": 0.6879 + }, + { + "start": 3664.76, + "end": 3666.23, + "probability": 0.9236 + }, + { + "start": 3667.16, + "end": 3667.67, + "probability": 0.9479 + }, + { + "start": 3669.02, + "end": 3670.12, + "probability": 0.7882 + }, + { + "start": 3671.12, + "end": 3674.06, + "probability": 0.733 + }, + { + "start": 3674.1, + "end": 3675.94, + "probability": 0.9854 + }, + { + "start": 3676.68, + "end": 3678.34, + "probability": 0.7777 + }, + { + "start": 3679.16, + "end": 3681.82, + "probability": 0.829 + }, + { + "start": 3682.68, + "end": 3684.7, + "probability": 0.9727 + }, + { + "start": 3686.56, + "end": 3689.82, + "probability": 0.9666 + }, + { + "start": 3689.82, + "end": 3691.34, + "probability": 0.835 + }, + { + "start": 3691.96, + "end": 3693.3, + "probability": 0.6817 + }, + { + "start": 3693.58, + "end": 3696.1, + "probability": 0.8123 + }, + { + "start": 3697.4, + "end": 3698.56, + "probability": 0.8055 + }, + { + "start": 3699.16, + "end": 3699.76, + "probability": 0.9952 + }, + { + "start": 3700.64, + "end": 3703.18, + "probability": 0.9316 + }, + { + "start": 3704.28, + "end": 3705.82, + "probability": 0.9948 + }, + { + "start": 3706.34, + "end": 3708.32, + "probability": 0.8616 + }, + { + "start": 3708.86, + "end": 3711.82, + "probability": 0.9858 + }, + { + "start": 3712.46, + "end": 3713.82, + "probability": 0.9025 + }, + { + "start": 3714.0, + "end": 3714.34, + "probability": 0.7617 + }, + { + "start": 3714.64, + "end": 3715.06, + "probability": 0.6078 + }, + { + "start": 3715.22, + "end": 3717.04, + "probability": 0.8605 + }, + { + "start": 3717.96, + "end": 3718.78, + "probability": 0.8094 + }, + { + "start": 3719.72, + "end": 3720.94, + "probability": 0.3961 + }, + { + "start": 3721.8, + "end": 3724.78, + "probability": 0.2661 + }, + { + "start": 3724.85, + "end": 3726.26, + "probability": 0.0427 + }, + { + "start": 3726.46, + "end": 3727.56, + "probability": 0.2637 + }, + { + "start": 3729.42, + "end": 3731.02, + "probability": 0.9849 + }, + { + "start": 3731.38, + "end": 3732.18, + "probability": 0.1296 + }, + { + "start": 3732.56, + "end": 3734.02, + "probability": 0.702 + }, + { + "start": 3734.22, + "end": 3735.0, + "probability": 0.8234 + }, + { + "start": 3735.22, + "end": 3736.08, + "probability": 0.8311 + }, + { + "start": 3736.76, + "end": 3738.32, + "probability": 0.8642 + }, + { + "start": 3740.6, + "end": 3742.62, + "probability": 0.8125 + }, + { + "start": 3742.62, + "end": 3743.2, + "probability": 0.8356 + }, + { + "start": 3743.2, + "end": 3743.83, + "probability": 0.7165 + }, + { + "start": 3744.52, + "end": 3745.36, + "probability": 0.9732 + }, + { + "start": 3747.2, + "end": 3749.98, + "probability": 0.7571 + }, + { + "start": 3751.92, + "end": 3756.5, + "probability": 0.9749 + }, + { + "start": 3758.38, + "end": 3761.02, + "probability": 0.9648 + }, + { + "start": 3762.66, + "end": 3769.84, + "probability": 0.9954 + }, + { + "start": 3771.4, + "end": 3773.38, + "probability": 0.7846 + }, + { + "start": 3775.58, + "end": 3778.08, + "probability": 0.6961 + }, + { + "start": 3778.52, + "end": 3781.06, + "probability": 0.8217 + }, + { + "start": 3781.18, + "end": 3783.78, + "probability": 0.8657 + }, + { + "start": 3785.0, + "end": 3788.46, + "probability": 0.8303 + }, + { + "start": 3789.8, + "end": 3793.98, + "probability": 0.9943 + }, + { + "start": 3795.8, + "end": 3800.78, + "probability": 0.7069 + }, + { + "start": 3802.68, + "end": 3806.4, + "probability": 0.973 + }, + { + "start": 3806.64, + "end": 3808.34, + "probability": 0.9672 + }, + { + "start": 3808.88, + "end": 3809.56, + "probability": 0.8759 + }, + { + "start": 3812.18, + "end": 3816.48, + "probability": 0.5807 + }, + { + "start": 3817.6, + "end": 3820.98, + "probability": 0.8873 + }, + { + "start": 3821.66, + "end": 3822.72, + "probability": 0.8535 + }, + { + "start": 3823.14, + "end": 3827.11, + "probability": 0.9604 + }, + { + "start": 3827.58, + "end": 3830.32, + "probability": 0.9305 + }, + { + "start": 3830.88, + "end": 3832.78, + "probability": 0.939 + }, + { + "start": 3833.02, + "end": 3837.46, + "probability": 0.7595 + }, + { + "start": 3837.46, + "end": 3840.8, + "probability": 0.9907 + }, + { + "start": 3841.42, + "end": 3843.62, + "probability": 0.5722 + }, + { + "start": 3844.62, + "end": 3849.06, + "probability": 0.7893 + }, + { + "start": 3849.16, + "end": 3850.78, + "probability": 0.6405 + }, + { + "start": 3850.8, + "end": 3852.54, + "probability": 0.8081 + }, + { + "start": 3853.84, + "end": 3854.4, + "probability": 0.8235 + }, + { + "start": 3854.98, + "end": 3858.44, + "probability": 0.99 + }, + { + "start": 3859.78, + "end": 3862.0, + "probability": 0.4961 + }, + { + "start": 3864.42, + "end": 3864.92, + "probability": 0.9407 + }, + { + "start": 3865.78, + "end": 3871.82, + "probability": 0.9773 + }, + { + "start": 3873.84, + "end": 3876.02, + "probability": 0.5373 + }, + { + "start": 3876.28, + "end": 3879.34, + "probability": 0.7793 + }, + { + "start": 3879.78, + "end": 3880.42, + "probability": 0.4262 + }, + { + "start": 3880.56, + "end": 3881.72, + "probability": 0.7995 + }, + { + "start": 3882.18, + "end": 3888.94, + "probability": 0.8211 + }, + { + "start": 3890.36, + "end": 3895.04, + "probability": 0.7355 + }, + { + "start": 3896.1, + "end": 3900.9, + "probability": 0.936 + }, + { + "start": 3902.3, + "end": 3902.92, + "probability": 0.809 + }, + { + "start": 3904.22, + "end": 3904.86, + "probability": 0.8176 + }, + { + "start": 3905.42, + "end": 3910.74, + "probability": 0.9275 + }, + { + "start": 3911.36, + "end": 3916.98, + "probability": 0.5433 + }, + { + "start": 3917.1, + "end": 3918.63, + "probability": 0.9116 + }, + { + "start": 3919.86, + "end": 3921.58, + "probability": 0.6419 + }, + { + "start": 3922.34, + "end": 3922.34, + "probability": 0.4741 + }, + { + "start": 3922.38, + "end": 3922.58, + "probability": 0.6796 + }, + { + "start": 3922.58, + "end": 3924.56, + "probability": 0.6484 + }, + { + "start": 3924.56, + "end": 3924.9, + "probability": 0.9222 + }, + { + "start": 3924.98, + "end": 3926.54, + "probability": 0.8949 + }, + { + "start": 3926.66, + "end": 3927.68, + "probability": 0.6538 + }, + { + "start": 3927.94, + "end": 3929.5, + "probability": 0.3677 + }, + { + "start": 3929.5, + "end": 3932.7, + "probability": 0.7884 + }, + { + "start": 3932.76, + "end": 3933.32, + "probability": 0.5204 + }, + { + "start": 3933.68, + "end": 3935.36, + "probability": 0.848 + }, + { + "start": 3935.36, + "end": 3936.04, + "probability": 0.5825 + }, + { + "start": 3936.16, + "end": 3937.68, + "probability": 0.9497 + }, + { + "start": 3938.06, + "end": 3940.3, + "probability": 0.8234 + }, + { + "start": 3940.74, + "end": 3941.0, + "probability": 0.9601 + }, + { + "start": 3943.28, + "end": 3948.44, + "probability": 0.8488 + }, + { + "start": 3948.84, + "end": 3951.04, + "probability": 0.9948 + }, + { + "start": 3951.16, + "end": 3953.18, + "probability": 0.6504 + }, + { + "start": 3953.18, + "end": 3955.86, + "probability": 0.7933 + }, + { + "start": 3955.86, + "end": 3956.4, + "probability": 0.5372 + }, + { + "start": 3956.5, + "end": 3957.68, + "probability": 0.8389 + }, + { + "start": 3957.68, + "end": 3958.8, + "probability": 0.7314 + }, + { + "start": 3958.88, + "end": 3961.32, + "probability": 0.8245 + }, + { + "start": 3961.6, + "end": 3961.6, + "probability": 0.5534 + }, + { + "start": 3961.68, + "end": 3964.14, + "probability": 0.903 + }, + { + "start": 3964.78, + "end": 3967.3, + "probability": 0.839 + }, + { + "start": 3967.88, + "end": 3971.12, + "probability": 0.6395 + }, + { + "start": 3971.2, + "end": 3973.46, + "probability": 0.8704 + }, + { + "start": 3976.04, + "end": 3977.24, + "probability": 0.6027 + }, + { + "start": 3977.24, + "end": 3978.72, + "probability": 0.3449 + }, + { + "start": 3987.04, + "end": 3988.42, + "probability": 0.4539 + }, + { + "start": 3988.42, + "end": 3988.78, + "probability": 0.8747 + }, + { + "start": 3990.06, + "end": 3990.88, + "probability": 0.9468 + }, + { + "start": 3991.68, + "end": 3992.16, + "probability": 0.7086 + }, + { + "start": 3992.28, + "end": 3993.96, + "probability": 0.5288 + }, + { + "start": 3994.14, + "end": 3994.14, + "probability": 0.5185 + }, + { + "start": 3994.14, + "end": 3995.32, + "probability": 0.7345 + }, + { + "start": 3996.08, + "end": 3997.02, + "probability": 0.9313 + }, + { + "start": 3998.2, + "end": 3999.3, + "probability": 0.6773 + }, + { + "start": 4000.54, + "end": 4003.77, + "probability": 0.9946 + }, + { + "start": 4004.02, + "end": 4009.14, + "probability": 0.9938 + }, + { + "start": 4009.14, + "end": 4014.94, + "probability": 0.9685 + }, + { + "start": 4015.52, + "end": 4017.88, + "probability": 0.9082 + }, + { + "start": 4018.32, + "end": 4021.04, + "probability": 0.8467 + }, + { + "start": 4021.46, + "end": 4022.3, + "probability": 0.6623 + }, + { + "start": 4022.44, + "end": 4023.42, + "probability": 0.7942 + }, + { + "start": 4023.5, + "end": 4024.26, + "probability": 0.7531 + }, + { + "start": 4024.8, + "end": 4028.42, + "probability": 0.9438 + }, + { + "start": 4028.42, + "end": 4032.3, + "probability": 0.97 + }, + { + "start": 4032.84, + "end": 4036.0, + "probability": 0.9601 + }, + { + "start": 4036.44, + "end": 4037.7, + "probability": 0.8543 + }, + { + "start": 4038.33, + "end": 4043.56, + "probability": 0.9862 + }, + { + "start": 4044.18, + "end": 4048.96, + "probability": 0.9861 + }, + { + "start": 4049.7, + "end": 4053.78, + "probability": 0.8988 + }, + { + "start": 4054.0, + "end": 4054.84, + "probability": 0.8995 + }, + { + "start": 4055.84, + "end": 4059.38, + "probability": 0.9916 + }, + { + "start": 4059.38, + "end": 4063.96, + "probability": 0.9218 + }, + { + "start": 4064.4, + "end": 4065.54, + "probability": 0.918 + }, + { + "start": 4066.22, + "end": 4067.6, + "probability": 0.7495 + }, + { + "start": 4068.14, + "end": 4072.58, + "probability": 0.9795 + }, + { + "start": 4073.18, + "end": 4076.1, + "probability": 0.9888 + }, + { + "start": 4076.68, + "end": 4080.82, + "probability": 0.9971 + }, + { + "start": 4081.36, + "end": 4084.26, + "probability": 0.9853 + }, + { + "start": 4084.26, + "end": 4087.72, + "probability": 0.9769 + }, + { + "start": 4088.14, + "end": 4089.22, + "probability": 0.6188 + }, + { + "start": 4089.72, + "end": 4093.72, + "probability": 0.9772 + }, + { + "start": 4093.72, + "end": 4097.62, + "probability": 0.9924 + }, + { + "start": 4098.18, + "end": 4100.75, + "probability": 0.9917 + }, + { + "start": 4101.28, + "end": 4107.46, + "probability": 0.9233 + }, + { + "start": 4107.84, + "end": 4113.3, + "probability": 0.9355 + }, + { + "start": 4113.68, + "end": 4118.3, + "probability": 0.9697 + }, + { + "start": 4118.88, + "end": 4121.38, + "probability": 0.8612 + }, + { + "start": 4121.38, + "end": 4123.98, + "probability": 0.4623 + }, + { + "start": 4124.58, + "end": 4128.62, + "probability": 0.9965 + }, + { + "start": 4128.62, + "end": 4133.46, + "probability": 0.9945 + }, + { + "start": 4134.14, + "end": 4137.04, + "probability": 0.9933 + }, + { + "start": 4137.3, + "end": 4138.32, + "probability": 0.7368 + }, + { + "start": 4138.62, + "end": 4141.44, + "probability": 0.9823 + }, + { + "start": 4142.38, + "end": 4143.78, + "probability": 0.714 + }, + { + "start": 4144.4, + "end": 4146.94, + "probability": 0.8397 + }, + { + "start": 4147.4, + "end": 4148.42, + "probability": 0.7624 + }, + { + "start": 4148.68, + "end": 4154.72, + "probability": 0.809 + }, + { + "start": 4155.14, + "end": 4157.68, + "probability": 0.9984 + }, + { + "start": 4157.68, + "end": 4161.04, + "probability": 0.9406 + }, + { + "start": 4161.46, + "end": 4163.06, + "probability": 0.7728 + }, + { + "start": 4163.08, + "end": 4163.82, + "probability": 0.3804 + }, + { + "start": 4163.92, + "end": 4165.44, + "probability": 0.758 + }, + { + "start": 4165.56, + "end": 4168.36, + "probability": 0.9776 + }, + { + "start": 4169.26, + "end": 4173.54, + "probability": 0.9849 + }, + { + "start": 4173.76, + "end": 4175.92, + "probability": 0.7663 + }, + { + "start": 4175.92, + "end": 4177.28, + "probability": 0.4035 + }, + { + "start": 4177.28, + "end": 4179.06, + "probability": 0.9085 + }, + { + "start": 4179.22, + "end": 4180.24, + "probability": 0.6941 + }, + { + "start": 4180.24, + "end": 4185.42, + "probability": 0.7692 + }, + { + "start": 4185.54, + "end": 4186.96, + "probability": 0.7828 + }, + { + "start": 4187.18, + "end": 4187.54, + "probability": 0.6236 + }, + { + "start": 4187.56, + "end": 4190.18, + "probability": 0.7749 + }, + { + "start": 4190.28, + "end": 4190.3, + "probability": 0.5155 + }, + { + "start": 4190.3, + "end": 4191.18, + "probability": 0.7015 + }, + { + "start": 4191.86, + "end": 4194.9, + "probability": 0.7415 + }, + { + "start": 4194.96, + "end": 4196.78, + "probability": 0.8335 + }, + { + "start": 4196.8, + "end": 4196.82, + "probability": 0.015 + }, + { + "start": 4196.82, + "end": 4196.82, + "probability": 0.0865 + }, + { + "start": 4196.82, + "end": 4197.6, + "probability": 0.2167 + }, + { + "start": 4197.64, + "end": 4199.98, + "probability": 0.6927 + }, + { + "start": 4199.98, + "end": 4201.62, + "probability": 0.2968 + }, + { + "start": 4201.62, + "end": 4202.0, + "probability": 0.6192 + }, + { + "start": 4202.52, + "end": 4204.48, + "probability": 0.1594 + }, + { + "start": 4204.48, + "end": 4204.99, + "probability": 0.6837 + }, + { + "start": 4205.26, + "end": 4205.7, + "probability": 0.6895 + }, + { + "start": 4205.78, + "end": 4206.56, + "probability": 0.6632 + }, + { + "start": 4206.86, + "end": 4208.46, + "probability": 0.6675 + }, + { + "start": 4208.8, + "end": 4208.8, + "probability": 0.0796 + }, + { + "start": 4208.8, + "end": 4210.04, + "probability": 0.0425 + }, + { + "start": 4210.62, + "end": 4210.62, + "probability": 0.0315 + }, + { + "start": 4210.62, + "end": 4213.48, + "probability": 0.8908 + }, + { + "start": 4213.5, + "end": 4215.08, + "probability": 0.4397 + }, + { + "start": 4215.36, + "end": 4215.48, + "probability": 0.4696 + }, + { + "start": 4216.96, + "end": 4218.04, + "probability": 0.0354 + }, + { + "start": 4218.6, + "end": 4219.16, + "probability": 0.3202 + }, + { + "start": 4220.55, + "end": 4222.6, + "probability": 0.391 + }, + { + "start": 4222.7, + "end": 4223.0, + "probability": 0.415 + }, + { + "start": 4223.26, + "end": 4224.08, + "probability": 0.5154 + }, + { + "start": 4224.48, + "end": 4225.71, + "probability": 0.0375 + }, + { + "start": 4227.08, + "end": 4227.86, + "probability": 0.3953 + }, + { + "start": 4227.94, + "end": 4228.02, + "probability": 0.3843 + }, + { + "start": 4228.12, + "end": 4228.86, + "probability": 0.4816 + }, + { + "start": 4229.16, + "end": 4230.67, + "probability": 0.2617 + }, + { + "start": 4231.6, + "end": 4231.94, + "probability": 0.4945 + }, + { + "start": 4232.92, + "end": 4233.52, + "probability": 0.5832 + }, + { + "start": 4233.6, + "end": 4233.96, + "probability": 0.7739 + }, + { + "start": 4234.02, + "end": 4235.59, + "probability": 0.9895 + }, + { + "start": 4236.4, + "end": 4237.46, + "probability": 0.9344 + }, + { + "start": 4238.46, + "end": 4240.82, + "probability": 0.8479 + }, + { + "start": 4240.96, + "end": 4242.84, + "probability": 0.9902 + }, + { + "start": 4243.64, + "end": 4245.26, + "probability": 0.7547 + }, + { + "start": 4246.6, + "end": 4246.68, + "probability": 0.185 + }, + { + "start": 4246.68, + "end": 4247.46, + "probability": 0.3214 + }, + { + "start": 4248.58, + "end": 4249.1, + "probability": 0.9886 + }, + { + "start": 4249.26, + "end": 4251.74, + "probability": 0.7999 + }, + { + "start": 4251.92, + "end": 4252.82, + "probability": 0.6861 + }, + { + "start": 4253.52, + "end": 4254.33, + "probability": 0.9463 + }, + { + "start": 4256.44, + "end": 4256.68, + "probability": 0.6379 + }, + { + "start": 4256.76, + "end": 4260.94, + "probability": 0.8862 + }, + { + "start": 4261.56, + "end": 4261.96, + "probability": 0.1746 + }, + { + "start": 4262.64, + "end": 4264.18, + "probability": 0.8563 + }, + { + "start": 4265.4, + "end": 4267.62, + "probability": 0.9628 + }, + { + "start": 4268.66, + "end": 4270.8, + "probability": 0.9272 + }, + { + "start": 4270.86, + "end": 4271.46, + "probability": 0.9922 + }, + { + "start": 4272.46, + "end": 4273.88, + "probability": 0.9897 + }, + { + "start": 4274.78, + "end": 4275.59, + "probability": 0.526 + }, + { + "start": 4276.98, + "end": 4278.06, + "probability": 0.7324 + }, + { + "start": 4278.76, + "end": 4279.42, + "probability": 0.6346 + }, + { + "start": 4280.28, + "end": 4282.54, + "probability": 0.9625 + }, + { + "start": 4282.6, + "end": 4283.4, + "probability": 0.7764 + }, + { + "start": 4284.14, + "end": 4285.92, + "probability": 0.9146 + }, + { + "start": 4286.88, + "end": 4287.96, + "probability": 0.9729 + }, + { + "start": 4289.22, + "end": 4292.36, + "probability": 0.8357 + }, + { + "start": 4292.5, + "end": 4293.98, + "probability": 0.938 + }, + { + "start": 4294.96, + "end": 4297.32, + "probability": 0.9756 + }, + { + "start": 4298.14, + "end": 4298.69, + "probability": 0.9028 + }, + { + "start": 4299.74, + "end": 4301.98, + "probability": 0.9076 + }, + { + "start": 4302.06, + "end": 4303.68, + "probability": 0.719 + }, + { + "start": 4304.14, + "end": 4304.32, + "probability": 0.4381 + }, + { + "start": 4304.42, + "end": 4306.06, + "probability": 0.957 + }, + { + "start": 4306.78, + "end": 4308.28, + "probability": 0.9363 + }, + { + "start": 4308.84, + "end": 4310.82, + "probability": 0.9426 + }, + { + "start": 4311.52, + "end": 4312.6, + "probability": 0.7485 + }, + { + "start": 4312.94, + "end": 4315.22, + "probability": 0.9815 + }, + { + "start": 4315.36, + "end": 4317.8, + "probability": 0.9898 + }, + { + "start": 4318.72, + "end": 4320.72, + "probability": 0.9411 + }, + { + "start": 4320.8, + "end": 4321.84, + "probability": 0.556 + }, + { + "start": 4322.44, + "end": 4322.96, + "probability": 0.8735 + }, + { + "start": 4324.48, + "end": 4325.38, + "probability": 0.8543 + }, + { + "start": 4325.66, + "end": 4329.3, + "probability": 0.9884 + }, + { + "start": 4330.24, + "end": 4330.34, + "probability": 0.4666 + }, + { + "start": 4330.34, + "end": 4332.22, + "probability": 0.7926 + }, + { + "start": 4332.72, + "end": 4334.38, + "probability": 0.9009 + }, + { + "start": 4334.46, + "end": 4335.36, + "probability": 0.558 + }, + { + "start": 4336.38, + "end": 4338.36, + "probability": 0.8184 + }, + { + "start": 4339.16, + "end": 4341.58, + "probability": 0.9747 + }, + { + "start": 4341.94, + "end": 4343.44, + "probability": 0.9328 + }, + { + "start": 4343.94, + "end": 4344.9, + "probability": 0.6234 + }, + { + "start": 4345.36, + "end": 4346.18, + "probability": 0.7267 + }, + { + "start": 4346.42, + "end": 4346.44, + "probability": 0.0537 + }, + { + "start": 4348.32, + "end": 4350.82, + "probability": 0.9805 + }, + { + "start": 4350.92, + "end": 4351.58, + "probability": 0.7284 + }, + { + "start": 4352.42, + "end": 4353.86, + "probability": 0.93 + }, + { + "start": 4353.94, + "end": 4354.38, + "probability": 0.8195 + }, + { + "start": 4354.6, + "end": 4355.86, + "probability": 0.9399 + }, + { + "start": 4356.14, + "end": 4359.24, + "probability": 0.8442 + }, + { + "start": 4360.24, + "end": 4364.74, + "probability": 0.9761 + }, + { + "start": 4364.84, + "end": 4365.18, + "probability": 0.5221 + }, + { + "start": 4365.9, + "end": 4367.98, + "probability": 0.7566 + }, + { + "start": 4368.88, + "end": 4372.6, + "probability": 0.9448 + }, + { + "start": 4373.2, + "end": 4377.3, + "probability": 0.4265 + }, + { + "start": 4379.86, + "end": 4380.36, + "probability": 0.6874 + }, + { + "start": 4381.16, + "end": 4381.66, + "probability": 0.9341 + }, + { + "start": 4382.52, + "end": 4383.82, + "probability": 0.9747 + }, + { + "start": 4384.84, + "end": 4385.28, + "probability": 0.6289 + }, + { + "start": 4385.9, + "end": 4388.66, + "probability": 0.6848 + }, + { + "start": 4389.2, + "end": 4390.66, + "probability": 0.9738 + }, + { + "start": 4391.92, + "end": 4394.42, + "probability": 0.8057 + }, + { + "start": 4395.32, + "end": 4396.72, + "probability": 0.4451 + }, + { + "start": 4397.16, + "end": 4400.56, + "probability": 0.9938 + }, + { + "start": 4401.18, + "end": 4402.22, + "probability": 0.8308 + }, + { + "start": 4402.3, + "end": 4404.6, + "probability": 0.6033 + }, + { + "start": 4404.78, + "end": 4405.49, + "probability": 0.6002 + }, + { + "start": 4405.66, + "end": 4406.04, + "probability": 0.4727 + }, + { + "start": 4406.06, + "end": 4407.27, + "probability": 0.9553 + }, + { + "start": 4407.86, + "end": 4408.72, + "probability": 0.0253 + }, + { + "start": 4408.72, + "end": 4408.78, + "probability": 0.3324 + }, + { + "start": 4408.9, + "end": 4409.3, + "probability": 0.5532 + }, + { + "start": 4409.9, + "end": 4410.04, + "probability": 0.8801 + }, + { + "start": 4410.12, + "end": 4412.51, + "probability": 0.9616 + }, + { + "start": 4412.94, + "end": 4413.82, + "probability": 0.8053 + }, + { + "start": 4414.14, + "end": 4414.8, + "probability": 0.678 + }, + { + "start": 4415.74, + "end": 4418.64, + "probability": 0.8971 + }, + { + "start": 4431.78, + "end": 4433.22, + "probability": 0.314 + }, + { + "start": 4434.36, + "end": 4434.54, + "probability": 0.0013 + }, + { + "start": 4436.9, + "end": 4438.1, + "probability": 0.2814 + }, + { + "start": 4438.92, + "end": 4439.42, + "probability": 0.0016 + }, + { + "start": 4441.65, + "end": 4444.22, + "probability": 0.0306 + }, + { + "start": 4444.22, + "end": 4444.38, + "probability": 0.0168 + }, + { + "start": 4444.7, + "end": 4448.64, + "probability": 0.0524 + }, + { + "start": 4448.9, + "end": 4450.46, + "probability": 0.031 + }, + { + "start": 4451.02, + "end": 4452.38, + "probability": 0.1946 + }, + { + "start": 4453.02, + "end": 4453.4, + "probability": 0.06 + }, + { + "start": 4458.44, + "end": 4460.44, + "probability": 0.0949 + }, + { + "start": 4464.6, + "end": 4465.14, + "probability": 0.0258 + }, + { + "start": 4469.1, + "end": 4471.56, + "probability": 0.3169 + }, + { + "start": 4472.3, + "end": 4473.84, + "probability": 0.1255 + }, + { + "start": 4474.0, + "end": 4474.0, + "probability": 0.2879 + }, + { + "start": 4474.0, + "end": 4476.6, + "probability": 0.0913 + }, + { + "start": 4477.42, + "end": 4482.86, + "probability": 0.0928 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.0, + "end": 4513.0, + "probability": 0.0 + }, + { + "start": 4513.48, + "end": 4514.62, + "probability": 0.0101 + }, + { + "start": 4514.62, + "end": 4514.62, + "probability": 0.0693 + }, + { + "start": 4514.62, + "end": 4514.62, + "probability": 0.0571 + }, + { + "start": 4514.62, + "end": 4516.49, + "probability": 0.8927 + }, + { + "start": 4518.16, + "end": 4523.64, + "probability": 0.8172 + }, + { + "start": 4524.4, + "end": 4526.44, + "probability": 0.8259 + }, + { + "start": 4527.56, + "end": 4527.76, + "probability": 0.4048 + }, + { + "start": 4527.78, + "end": 4529.66, + "probability": 0.8101 + }, + { + "start": 4529.92, + "end": 4532.52, + "probability": 0.8575 + }, + { + "start": 4533.34, + "end": 4538.7, + "probability": 0.9363 + }, + { + "start": 4540.58, + "end": 4542.32, + "probability": 0.8227 + }, + { + "start": 4542.32, + "end": 4543.24, + "probability": 0.9443 + }, + { + "start": 4543.62, + "end": 4548.18, + "probability": 0.3889 + }, + { + "start": 4548.18, + "end": 4552.82, + "probability": 0.9366 + }, + { + "start": 4555.32, + "end": 4561.48, + "probability": 0.6669 + }, + { + "start": 4562.62, + "end": 4574.34, + "probability": 0.6902 + }, + { + "start": 4574.48, + "end": 4577.4, + "probability": 0.9579 + }, + { + "start": 4578.78, + "end": 4581.22, + "probability": 0.8043 + }, + { + "start": 4581.38, + "end": 4583.84, + "probability": 0.9426 + }, + { + "start": 4584.76, + "end": 4589.9, + "probability": 0.8889 + }, + { + "start": 4591.06, + "end": 4592.86, + "probability": 0.8978 + }, + { + "start": 4593.6, + "end": 4597.88, + "probability": 0.9434 + }, + { + "start": 4598.84, + "end": 4601.62, + "probability": 0.952 + }, + { + "start": 4601.68, + "end": 4602.92, + "probability": 0.9863 + }, + { + "start": 4604.1, + "end": 4609.1, + "probability": 0.8173 + }, + { + "start": 4609.98, + "end": 4611.46, + "probability": 0.8057 + }, + { + "start": 4612.48, + "end": 4614.42, + "probability": 0.9857 + }, + { + "start": 4615.86, + "end": 4617.6, + "probability": 0.8289 + }, + { + "start": 4617.78, + "end": 4624.28, + "probability": 0.9792 + }, + { + "start": 4624.64, + "end": 4625.44, + "probability": 0.9854 + }, + { + "start": 4625.66, + "end": 4626.86, + "probability": 0.9049 + }, + { + "start": 4627.32, + "end": 4632.02, + "probability": 0.7844 + }, + { + "start": 4632.26, + "end": 4634.7, + "probability": 0.9878 + }, + { + "start": 4634.94, + "end": 4636.96, + "probability": 0.95 + }, + { + "start": 4637.02, + "end": 4638.36, + "probability": 0.9941 + }, + { + "start": 4638.88, + "end": 4641.34, + "probability": 0.6046 + }, + { + "start": 4642.06, + "end": 4647.54, + "probability": 0.9815 + }, + { + "start": 4647.88, + "end": 4648.6, + "probability": 0.4194 + }, + { + "start": 4649.14, + "end": 4654.04, + "probability": 0.9883 + }, + { + "start": 4654.04, + "end": 4659.92, + "probability": 0.9149 + }, + { + "start": 4660.32, + "end": 4660.82, + "probability": 0.6187 + }, + { + "start": 4660.92, + "end": 4661.74, + "probability": 0.7279 + }, + { + "start": 4661.74, + "end": 4663.4, + "probability": 0.5093 + }, + { + "start": 4663.4, + "end": 4665.1, + "probability": 0.8109 + }, + { + "start": 4665.32, + "end": 4665.8, + "probability": 0.469 + }, + { + "start": 4665.84, + "end": 4667.04, + "probability": 0.804 + }, + { + "start": 4681.24, + "end": 4682.38, + "probability": 0.6562 + }, + { + "start": 4682.38, + "end": 4682.78, + "probability": 0.9341 + }, + { + "start": 4683.48, + "end": 4684.76, + "probability": 0.6463 + }, + { + "start": 4686.32, + "end": 4688.78, + "probability": 0.8832 + }, + { + "start": 4689.66, + "end": 4691.86, + "probability": 0.9458 + }, + { + "start": 4692.1, + "end": 4695.84, + "probability": 0.9637 + }, + { + "start": 4696.74, + "end": 4698.7, + "probability": 0.991 + }, + { + "start": 4699.42, + "end": 4705.36, + "probability": 0.9868 + }, + { + "start": 4705.64, + "end": 4707.5, + "probability": 0.8526 + }, + { + "start": 4707.6, + "end": 4709.42, + "probability": 0.8135 + }, + { + "start": 4709.52, + "end": 4712.52, + "probability": 0.9733 + }, + { + "start": 4712.6, + "end": 4713.76, + "probability": 0.602 + }, + { + "start": 4713.9, + "end": 4714.74, + "probability": 0.9897 + }, + { + "start": 4714.82, + "end": 4718.13, + "probability": 0.5365 + }, + { + "start": 4718.86, + "end": 4721.3, + "probability": 0.8014 + }, + { + "start": 4721.94, + "end": 4724.28, + "probability": 0.8315 + }, + { + "start": 4724.34, + "end": 4730.58, + "probability": 0.9731 + }, + { + "start": 4732.04, + "end": 4733.26, + "probability": 0.9944 + }, + { + "start": 4733.58, + "end": 4737.96, + "probability": 0.7494 + }, + { + "start": 4738.6, + "end": 4744.04, + "probability": 0.9512 + }, + { + "start": 4744.48, + "end": 4746.5, + "probability": 0.5199 + }, + { + "start": 4746.5, + "end": 4747.18, + "probability": 0.1095 + }, + { + "start": 4748.1, + "end": 4750.6, + "probability": 0.6221 + }, + { + "start": 4750.8, + "end": 4751.98, + "probability": 0.7023 + }, + { + "start": 4752.46, + "end": 4753.16, + "probability": 0.6467 + }, + { + "start": 4753.26, + "end": 4753.7, + "probability": 0.3514 + }, + { + "start": 4753.74, + "end": 4754.66, + "probability": 0.4935 + }, + { + "start": 4754.78, + "end": 4755.24, + "probability": 0.8251 + }, + { + "start": 4755.96, + "end": 4759.94, + "probability": 0.8742 + }, + { + "start": 4760.3, + "end": 4760.94, + "probability": 0.7522 + }, + { + "start": 4760.98, + "end": 4762.04, + "probability": 0.9152 + }, + { + "start": 4762.32, + "end": 4762.86, + "probability": 0.6402 + }, + { + "start": 4763.3, + "end": 4764.94, + "probability": 0.882 + }, + { + "start": 4764.98, + "end": 4766.1, + "probability": 0.7106 + }, + { + "start": 4766.46, + "end": 4766.78, + "probability": 0.6542 + }, + { + "start": 4772.46, + "end": 4773.36, + "probability": 0.6099 + }, + { + "start": 4773.58, + "end": 4774.8, + "probability": 0.3037 + }, + { + "start": 4774.94, + "end": 4775.86, + "probability": 0.7152 + }, + { + "start": 4775.88, + "end": 4776.38, + "probability": 0.2831 + }, + { + "start": 4776.64, + "end": 4777.02, + "probability": 0.6421 + }, + { + "start": 4777.08, + "end": 4777.5, + "probability": 0.8922 + }, + { + "start": 4777.64, + "end": 4778.39, + "probability": 0.795 + }, + { + "start": 4778.84, + "end": 4780.42, + "probability": 0.9531 + }, + { + "start": 4780.48, + "end": 4781.88, + "probability": 0.8093 + }, + { + "start": 4782.38, + "end": 4783.26, + "probability": 0.8477 + }, + { + "start": 4783.88, + "end": 4784.84, + "probability": 0.8695 + }, + { + "start": 4784.96, + "end": 4785.7, + "probability": 0.5456 + }, + { + "start": 4786.02, + "end": 4790.08, + "probability": 0.9116 + }, + { + "start": 4790.68, + "end": 4791.54, + "probability": 0.7148 + }, + { + "start": 4791.7, + "end": 4792.88, + "probability": 0.9176 + }, + { + "start": 4793.16, + "end": 4795.14, + "probability": 0.6895 + }, + { + "start": 4795.34, + "end": 4796.36, + "probability": 0.5889 + }, + { + "start": 4796.52, + "end": 4797.2, + "probability": 0.7738 + }, + { + "start": 4797.78, + "end": 4798.66, + "probability": 0.9321 + }, + { + "start": 4799.42, + "end": 4802.16, + "probability": 0.9395 + }, + { + "start": 4802.26, + "end": 4803.74, + "probability": 0.6118 + }, + { + "start": 4804.08, + "end": 4808.22, + "probability": 0.9145 + }, + { + "start": 4808.28, + "end": 4810.3, + "probability": 0.9852 + }, + { + "start": 4810.94, + "end": 4814.06, + "probability": 0.9631 + }, + { + "start": 4814.89, + "end": 4817.67, + "probability": 0.8348 + }, + { + "start": 4819.28, + "end": 4820.0, + "probability": 0.9771 + }, + { + "start": 4820.08, + "end": 4820.34, + "probability": 0.6268 + }, + { + "start": 4820.38, + "end": 4822.48, + "probability": 0.6675 + }, + { + "start": 4822.92, + "end": 4824.6, + "probability": 0.7539 + }, + { + "start": 4825.2, + "end": 4828.2, + "probability": 0.9666 + }, + { + "start": 4828.58, + "end": 4829.2, + "probability": 0.33 + }, + { + "start": 4829.56, + "end": 4830.28, + "probability": 0.4789 + }, + { + "start": 4830.6, + "end": 4831.82, + "probability": 0.3622 + }, + { + "start": 4831.96, + "end": 4833.56, + "probability": 0.5898 + }, + { + "start": 4833.62, + "end": 4834.38, + "probability": 0.664 + }, + { + "start": 4834.7, + "end": 4836.4, + "probability": 0.9542 + }, + { + "start": 4837.14, + "end": 4837.58, + "probability": 0.8912 + }, + { + "start": 4838.78, + "end": 4841.7, + "probability": 0.8552 + }, + { + "start": 4842.22, + "end": 4843.06, + "probability": 0.5994 + }, + { + "start": 4843.56, + "end": 4844.52, + "probability": 0.4014 + }, + { + "start": 4844.58, + "end": 4847.14, + "probability": 0.6616 + }, + { + "start": 4847.22, + "end": 4848.7, + "probability": 0.8038 + }, + { + "start": 4848.72, + "end": 4849.78, + "probability": 0.6666 + }, + { + "start": 4849.96, + "end": 4850.76, + "probability": 0.7824 + }, + { + "start": 4851.24, + "end": 4851.72, + "probability": 0.9046 + }, + { + "start": 4852.24, + "end": 4853.8, + "probability": 0.876 + }, + { + "start": 4855.38, + "end": 4857.44, + "probability": 0.9954 + }, + { + "start": 4857.48, + "end": 4858.3, + "probability": 0.9843 + }, + { + "start": 4858.36, + "end": 4859.26, + "probability": 0.8279 + }, + { + "start": 4859.34, + "end": 4860.32, + "probability": 0.6288 + }, + { + "start": 4860.52, + "end": 4862.24, + "probability": 0.8591 + }, + { + "start": 4862.38, + "end": 4863.96, + "probability": 0.887 + }, + { + "start": 4864.34, + "end": 4866.7, + "probability": 0.9482 + }, + { + "start": 4866.82, + "end": 4870.02, + "probability": 0.9075 + }, + { + "start": 4870.14, + "end": 4872.36, + "probability": 0.9836 + }, + { + "start": 4872.36, + "end": 4873.36, + "probability": 0.8243 + }, + { + "start": 4873.46, + "end": 4874.16, + "probability": 0.1422 + }, + { + "start": 4874.16, + "end": 4875.12, + "probability": 0.5458 + }, + { + "start": 4876.12, + "end": 4878.92, + "probability": 0.887 + }, + { + "start": 4881.78, + "end": 4882.52, + "probability": 0.0869 + }, + { + "start": 4883.7, + "end": 4886.34, + "probability": 0.9674 + }, + { + "start": 4886.44, + "end": 4887.98, + "probability": 0.8645 + }, + { + "start": 4888.46, + "end": 4889.42, + "probability": 0.7954 + }, + { + "start": 4889.54, + "end": 4890.76, + "probability": 0.8779 + }, + { + "start": 4890.82, + "end": 4892.84, + "probability": 0.9784 + }, + { + "start": 4893.32, + "end": 4894.76, + "probability": 0.7476 + }, + { + "start": 4894.86, + "end": 4898.62, + "probability": 0.8354 + }, + { + "start": 4899.0, + "end": 4902.32, + "probability": 0.8114 + }, + { + "start": 4902.98, + "end": 4903.42, + "probability": 0.3529 + }, + { + "start": 4903.42, + "end": 4905.36, + "probability": 0.4808 + }, + { + "start": 4906.76, + "end": 4911.48, + "probability": 0.8358 + }, + { + "start": 4911.84, + "end": 4912.6, + "probability": 0.8005 + }, + { + "start": 4912.7, + "end": 4913.34, + "probability": 0.7738 + }, + { + "start": 4913.54, + "end": 4913.76, + "probability": 0.823 + }, + { + "start": 4914.22, + "end": 4915.92, + "probability": 0.7512 + }, + { + "start": 4916.06, + "end": 4917.6, + "probability": 0.9154 + }, + { + "start": 4917.68, + "end": 4920.98, + "probability": 0.0827 + }, + { + "start": 4921.78, + "end": 4924.56, + "probability": 0.6648 + }, + { + "start": 4925.7, + "end": 4926.04, + "probability": 0.7137 + }, + { + "start": 4926.2, + "end": 4927.83, + "probability": 0.9178 + }, + { + "start": 4928.58, + "end": 4929.9, + "probability": 0.1311 + }, + { + "start": 4929.9, + "end": 4930.11, + "probability": 0.3885 + }, + { + "start": 4930.8, + "end": 4931.28, + "probability": 0.699 + }, + { + "start": 4931.74, + "end": 4932.66, + "probability": 0.6383 + }, + { + "start": 4932.66, + "end": 4934.28, + "probability": 0.2849 + }, + { + "start": 4934.28, + "end": 4934.28, + "probability": 0.4162 + }, + { + "start": 4934.28, + "end": 4936.46, + "probability": 0.5912 + }, + { + "start": 4936.66, + "end": 4937.1, + "probability": 0.6889 + }, + { + "start": 4937.83, + "end": 4939.64, + "probability": 0.7561 + }, + { + "start": 4939.64, + "end": 4940.76, + "probability": 0.707 + }, + { + "start": 4942.2, + "end": 4943.42, + "probability": 0.8938 + }, + { + "start": 4943.74, + "end": 4944.16, + "probability": 0.758 + }, + { + "start": 4944.16, + "end": 4945.8, + "probability": 0.4961 + }, + { + "start": 4945.96, + "end": 4947.82, + "probability": 0.8209 + }, + { + "start": 4948.48, + "end": 4951.34, + "probability": 0.9869 + }, + { + "start": 4951.34, + "end": 4956.88, + "probability": 0.5386 + }, + { + "start": 4957.18, + "end": 4958.6, + "probability": 0.9946 + }, + { + "start": 4959.12, + "end": 4959.64, + "probability": 0.6574 + }, + { + "start": 4959.74, + "end": 4963.7, + "probability": 0.9933 + }, + { + "start": 4963.76, + "end": 4967.34, + "probability": 0.8751 + }, + { + "start": 4967.84, + "end": 4969.64, + "probability": 0.9839 + }, + { + "start": 4969.74, + "end": 4971.13, + "probability": 0.9966 + }, + { + "start": 4971.74, + "end": 4973.16, + "probability": 0.9657 + }, + { + "start": 4973.78, + "end": 4975.88, + "probability": 0.9737 + }, + { + "start": 4976.06, + "end": 4978.88, + "probability": 0.97 + }, + { + "start": 4978.96, + "end": 4983.34, + "probability": 0.9841 + }, + { + "start": 4983.5, + "end": 4985.7, + "probability": 0.9642 + }, + { + "start": 4986.64, + "end": 4991.64, + "probability": 0.9789 + }, + { + "start": 4991.7, + "end": 4992.84, + "probability": 0.7586 + }, + { + "start": 4993.34, + "end": 4995.64, + "probability": 0.9862 + }, + { + "start": 4996.04, + "end": 5000.24, + "probability": 0.9902 + }, + { + "start": 5000.84, + "end": 5003.3, + "probability": 0.9827 + }, + { + "start": 5003.64, + "end": 5004.78, + "probability": 0.8494 + }, + { + "start": 5004.84, + "end": 5005.56, + "probability": 0.8295 + }, + { + "start": 5005.72, + "end": 5007.26, + "probability": 0.8615 + }, + { + "start": 5007.68, + "end": 5010.38, + "probability": 0.7236 + }, + { + "start": 5011.36, + "end": 5011.44, + "probability": 0.0527 + }, + { + "start": 5011.44, + "end": 5012.89, + "probability": 0.8389 + }, + { + "start": 5014.1, + "end": 5017.18, + "probability": 0.9668 + }, + { + "start": 5017.92, + "end": 5022.44, + "probability": 0.9878 + }, + { + "start": 5024.38, + "end": 5025.52, + "probability": 0.6756 + }, + { + "start": 5025.64, + "end": 5030.88, + "probability": 0.9875 + }, + { + "start": 5031.04, + "end": 5032.72, + "probability": 0.9692 + }, + { + "start": 5033.28, + "end": 5037.76, + "probability": 0.8515 + }, + { + "start": 5038.58, + "end": 5041.52, + "probability": 0.8811 + }, + { + "start": 5041.66, + "end": 5042.28, + "probability": 0.7492 + }, + { + "start": 5042.5, + "end": 5044.25, + "probability": 0.9644 + }, + { + "start": 5044.64, + "end": 5046.96, + "probability": 0.9315 + }, + { + "start": 5047.08, + "end": 5054.62, + "probability": 0.9951 + }, + { + "start": 5055.36, + "end": 5058.42, + "probability": 0.981 + }, + { + "start": 5059.48, + "end": 5061.12, + "probability": 0.7446 + }, + { + "start": 5061.32, + "end": 5066.36, + "probability": 0.8823 + }, + { + "start": 5066.68, + "end": 5068.36, + "probability": 0.8521 + }, + { + "start": 5068.62, + "end": 5070.92, + "probability": 0.9833 + }, + { + "start": 5071.3, + "end": 5072.66, + "probability": 0.7773 + }, + { + "start": 5072.74, + "end": 5074.16, + "probability": 0.937 + }, + { + "start": 5074.94, + "end": 5080.02, + "probability": 0.9839 + }, + { + "start": 5080.84, + "end": 5084.04, + "probability": 0.8767 + }, + { + "start": 5084.14, + "end": 5091.78, + "probability": 0.8842 + }, + { + "start": 5091.9, + "end": 5096.54, + "probability": 0.9718 + }, + { + "start": 5097.84, + "end": 5100.44, + "probability": 0.9183 + }, + { + "start": 5100.54, + "end": 5101.2, + "probability": 0.9952 + }, + { + "start": 5102.14, + "end": 5104.64, + "probability": 0.9781 + }, + { + "start": 5106.0, + "end": 5108.02, + "probability": 0.9669 + }, + { + "start": 5109.58, + "end": 5111.26, + "probability": 0.6011 + }, + { + "start": 5111.56, + "end": 5113.76, + "probability": 0.2639 + }, + { + "start": 5114.38, + "end": 5117.58, + "probability": 0.8122 + }, + { + "start": 5117.76, + "end": 5119.26, + "probability": 0.4395 + }, + { + "start": 5121.22, + "end": 5122.28, + "probability": 0.7678 + }, + { + "start": 5122.38, + "end": 5122.72, + "probability": 0.6295 + }, + { + "start": 5123.5, + "end": 5124.48, + "probability": 0.6501 + }, + { + "start": 5125.1, + "end": 5128.7, + "probability": 0.8714 + }, + { + "start": 5129.74, + "end": 5131.42, + "probability": 0.8513 + }, + { + "start": 5131.44, + "end": 5132.54, + "probability": 0.7141 + }, + { + "start": 5132.94, + "end": 5134.64, + "probability": 0.8675 + }, + { + "start": 5134.7, + "end": 5139.18, + "probability": 0.9932 + }, + { + "start": 5139.26, + "end": 5140.16, + "probability": 0.9242 + }, + { + "start": 5140.76, + "end": 5142.04, + "probability": 0.8159 + }, + { + "start": 5142.54, + "end": 5146.3, + "probability": 0.9594 + }, + { + "start": 5146.42, + "end": 5147.22, + "probability": 0.8674 + }, + { + "start": 5147.26, + "end": 5151.5, + "probability": 0.9299 + }, + { + "start": 5152.02, + "end": 5154.26, + "probability": 0.8966 + }, + { + "start": 5154.88, + "end": 5156.7, + "probability": 0.6216 + }, + { + "start": 5157.42, + "end": 5159.92, + "probability": 0.7301 + }, + { + "start": 5159.94, + "end": 5160.42, + "probability": 0.4226 + }, + { + "start": 5160.64, + "end": 5162.68, + "probability": 0.7972 + }, + { + "start": 5163.44, + "end": 5166.18, + "probability": 0.9912 + }, + { + "start": 5166.42, + "end": 5167.22, + "probability": 0.7701 + }, + { + "start": 5168.16, + "end": 5169.84, + "probability": 0.9771 + }, + { + "start": 5169.98, + "end": 5171.42, + "probability": 0.9983 + }, + { + "start": 5171.9, + "end": 5173.92, + "probability": 0.9858 + }, + { + "start": 5174.44, + "end": 5174.98, + "probability": 0.4464 + }, + { + "start": 5175.02, + "end": 5175.26, + "probability": 0.7965 + }, + { + "start": 5175.36, + "end": 5175.74, + "probability": 0.8402 + }, + { + "start": 5175.84, + "end": 5177.0, + "probability": 0.8962 + }, + { + "start": 5177.14, + "end": 5179.18, + "probability": 0.8171 + }, + { + "start": 5179.3, + "end": 5180.88, + "probability": 0.878 + }, + { + "start": 5181.62, + "end": 5183.5, + "probability": 0.9311 + }, + { + "start": 5183.6, + "end": 5185.4, + "probability": 0.928 + }, + { + "start": 5185.66, + "end": 5187.84, + "probability": 0.8277 + }, + { + "start": 5188.32, + "end": 5189.04, + "probability": 0.7813 + }, + { + "start": 5189.58, + "end": 5191.54, + "probability": 0.8076 + }, + { + "start": 5191.62, + "end": 5193.2, + "probability": 0.9239 + }, + { + "start": 5193.28, + "end": 5194.84, + "probability": 0.9817 + }, + { + "start": 5195.34, + "end": 5197.66, + "probability": 0.8447 + }, + { + "start": 5197.92, + "end": 5200.54, + "probability": 0.9674 + }, + { + "start": 5201.12, + "end": 5204.32, + "probability": 0.506 + }, + { + "start": 5204.56, + "end": 5206.06, + "probability": 0.9768 + }, + { + "start": 5206.42, + "end": 5207.4, + "probability": 0.9585 + }, + { + "start": 5207.58, + "end": 5208.62, + "probability": 0.9648 + }, + { + "start": 5209.84, + "end": 5211.16, + "probability": 0.8798 + }, + { + "start": 5211.38, + "end": 5213.58, + "probability": 0.9803 + }, + { + "start": 5213.64, + "end": 5215.62, + "probability": 0.9935 + }, + { + "start": 5216.16, + "end": 5221.36, + "probability": 0.7644 + }, + { + "start": 5221.96, + "end": 5223.26, + "probability": 0.6991 + }, + { + "start": 5223.26, + "end": 5223.9, + "probability": 0.7113 + }, + { + "start": 5224.38, + "end": 5226.32, + "probability": 0.843 + }, + { + "start": 5226.72, + "end": 5229.7, + "probability": 0.8472 + }, + { + "start": 5229.98, + "end": 5230.88, + "probability": 0.63 + }, + { + "start": 5231.52, + "end": 5233.48, + "probability": 0.7439 + }, + { + "start": 5233.92, + "end": 5236.3, + "probability": 0.9266 + }, + { + "start": 5236.64, + "end": 5238.14, + "probability": 0.7399 + }, + { + "start": 5238.44, + "end": 5239.55, + "probability": 0.9595 + }, + { + "start": 5239.98, + "end": 5242.88, + "probability": 0.8765 + }, + { + "start": 5243.12, + "end": 5243.91, + "probability": 0.5176 + }, + { + "start": 5244.52, + "end": 5245.0, + "probability": 0.5641 + }, + { + "start": 5245.1, + "end": 5246.14, + "probability": 0.6358 + }, + { + "start": 5246.5, + "end": 5248.74, + "probability": 0.7844 + }, + { + "start": 5249.86, + "end": 5250.76, + "probability": 0.9583 + }, + { + "start": 5255.62, + "end": 5256.66, + "probability": 0.165 + }, + { + "start": 5256.66, + "end": 5256.66, + "probability": 0.4175 + }, + { + "start": 5256.98, + "end": 5258.47, + "probability": 0.1084 + }, + { + "start": 5258.78, + "end": 5260.76, + "probability": 0.1739 + }, + { + "start": 5291.2, + "end": 5294.08, + "probability": 0.5994 + }, + { + "start": 5295.74, + "end": 5297.34, + "probability": 0.9237 + }, + { + "start": 5297.48, + "end": 5298.92, + "probability": 0.8914 + }, + { + "start": 5299.18, + "end": 5301.09, + "probability": 0.9488 + }, + { + "start": 5301.48, + "end": 5304.56, + "probability": 0.95 + }, + { + "start": 5304.78, + "end": 5305.34, + "probability": 0.6872 + }, + { + "start": 5305.36, + "end": 5309.0, + "probability": 0.9939 + }, + { + "start": 5309.54, + "end": 5312.08, + "probability": 0.9845 + }, + { + "start": 5312.74, + "end": 5317.28, + "probability": 0.9956 + }, + { + "start": 5317.98, + "end": 5320.18, + "probability": 0.874 + }, + { + "start": 5320.84, + "end": 5323.74, + "probability": 0.998 + }, + { + "start": 5323.94, + "end": 5324.94, + "probability": 0.0191 + }, + { + "start": 5325.06, + "end": 5331.08, + "probability": 0.8932 + }, + { + "start": 5331.84, + "end": 5332.26, + "probability": 0.0262 + }, + { + "start": 5332.26, + "end": 5332.26, + "probability": 0.0373 + }, + { + "start": 5332.26, + "end": 5333.8, + "probability": 0.5284 + }, + { + "start": 5334.12, + "end": 5335.32, + "probability": 0.9849 + }, + { + "start": 5336.34, + "end": 5338.72, + "probability": 0.8123 + }, + { + "start": 5340.12, + "end": 5343.34, + "probability": 0.9639 + }, + { + "start": 5343.44, + "end": 5343.44, + "probability": 0.0278 + }, + { + "start": 5343.46, + "end": 5343.46, + "probability": 0.0121 + }, + { + "start": 5343.46, + "end": 5347.7, + "probability": 0.985 + }, + { + "start": 5348.38, + "end": 5352.57, + "probability": 0.9829 + }, + { + "start": 5353.56, + "end": 5356.04, + "probability": 0.7544 + }, + { + "start": 5356.88, + "end": 5360.42, + "probability": 0.9904 + }, + { + "start": 5360.42, + "end": 5365.66, + "probability": 0.998 + }, + { + "start": 5365.74, + "end": 5368.78, + "probability": 0.9948 + }, + { + "start": 5368.82, + "end": 5369.06, + "probability": 0.8363 + }, + { + "start": 5369.64, + "end": 5369.66, + "probability": 0.0013 + }, + { + "start": 5369.66, + "end": 5371.38, + "probability": 0.8046 + }, + { + "start": 5371.58, + "end": 5376.62, + "probability": 0.988 + }, + { + "start": 5376.76, + "end": 5377.94, + "probability": 0.4895 + }, + { + "start": 5378.0, + "end": 5380.14, + "probability": 0.8522 + }, + { + "start": 5382.08, + "end": 5383.94, + "probability": 0.8256 + }, + { + "start": 5385.02, + "end": 5386.1, + "probability": 0.9107 + }, + { + "start": 5387.75, + "end": 5391.36, + "probability": 0.0484 + }, + { + "start": 5412.04, + "end": 5413.84, + "probability": 0.7376 + }, + { + "start": 5414.72, + "end": 5415.58, + "probability": 0.9224 + }, + { + "start": 5417.82, + "end": 5419.72, + "probability": 0.45 + }, + { + "start": 5420.42, + "end": 5422.78, + "probability": 0.7788 + }, + { + "start": 5423.82, + "end": 5424.28, + "probability": 0.8914 + }, + { + "start": 5425.86, + "end": 5426.68, + "probability": 0.8705 + }, + { + "start": 5429.1, + "end": 5431.1, + "probability": 0.8848 + }, + { + "start": 5432.0, + "end": 5432.44, + "probability": 0.9902 + }, + { + "start": 5433.24, + "end": 5434.12, + "probability": 0.8425 + }, + { + "start": 5435.48, + "end": 5438.82, + "probability": 0.9476 + }, + { + "start": 5439.14, + "end": 5441.26, + "probability": 0.9338 + }, + { + "start": 5441.7, + "end": 5442.04, + "probability": 0.016 + }, + { + "start": 5442.7, + "end": 5443.86, + "probability": 0.6721 + }, + { + "start": 5444.78, + "end": 5445.66, + "probability": 0.2959 + }, + { + "start": 5446.66, + "end": 5448.94, + "probability": 0.7536 + }, + { + "start": 5449.54, + "end": 5452.08, + "probability": 0.9634 + }, + { + "start": 5452.86, + "end": 5453.22, + "probability": 0.985 + }, + { + "start": 5453.74, + "end": 5454.68, + "probability": 0.9121 + }, + { + "start": 5455.76, + "end": 5457.88, + "probability": 0.9552 + }, + { + "start": 5459.02, + "end": 5461.04, + "probability": 0.7156 + }, + { + "start": 5461.84, + "end": 5463.76, + "probability": 0.9137 + }, + { + "start": 5464.98, + "end": 5467.68, + "probability": 0.9596 + }, + { + "start": 5468.56, + "end": 5470.9, + "probability": 0.8202 + }, + { + "start": 5471.7, + "end": 5473.6, + "probability": 0.9084 + }, + { + "start": 5475.22, + "end": 5477.34, + "probability": 0.9543 + }, + { + "start": 5478.0, + "end": 5479.52, + "probability": 0.9933 + }, + { + "start": 5480.32, + "end": 5481.2, + "probability": 0.9202 + }, + { + "start": 5482.0, + "end": 5482.44, + "probability": 0.9434 + }, + { + "start": 5483.76, + "end": 5484.66, + "probability": 0.9728 + }, + { + "start": 5485.8, + "end": 5488.08, + "probability": 0.7639 + }, + { + "start": 5488.6, + "end": 5489.02, + "probability": 0.9046 + }, + { + "start": 5489.62, + "end": 5490.54, + "probability": 0.9294 + }, + { + "start": 5493.3, + "end": 5495.7, + "probability": 0.8841 + }, + { + "start": 5496.82, + "end": 5497.98, + "probability": 0.946 + }, + { + "start": 5499.5, + "end": 5501.8, + "probability": 0.9777 + }, + { + "start": 5502.66, + "end": 5503.16, + "probability": 0.9893 + }, + { + "start": 5504.22, + "end": 5505.44, + "probability": 0.7756 + }, + { + "start": 5506.04, + "end": 5509.46, + "probability": 0.9663 + }, + { + "start": 5510.72, + "end": 5512.52, + "probability": 0.975 + }, + { + "start": 5513.74, + "end": 5515.54, + "probability": 0.7895 + }, + { + "start": 5516.58, + "end": 5516.9, + "probability": 0.8079 + }, + { + "start": 5517.74, + "end": 5518.74, + "probability": 0.8579 + }, + { + "start": 5520.08, + "end": 5522.3, + "probability": 0.6445 + }, + { + "start": 5525.52, + "end": 5528.62, + "probability": 0.8767 + }, + { + "start": 5529.74, + "end": 5531.46, + "probability": 0.7551 + }, + { + "start": 5532.58, + "end": 5534.52, + "probability": 0.9807 + }, + { + "start": 5535.76, + "end": 5538.68, + "probability": 0.9598 + }, + { + "start": 5539.94, + "end": 5542.18, + "probability": 0.167 + }, + { + "start": 5546.4, + "end": 5554.12, + "probability": 0.5181 + }, + { + "start": 5554.92, + "end": 5556.88, + "probability": 0.7418 + }, + { + "start": 5559.16, + "end": 5564.36, + "probability": 0.9041 + }, + { + "start": 5565.48, + "end": 5567.42, + "probability": 0.9919 + }, + { + "start": 5568.18, + "end": 5570.4, + "probability": 0.7773 + }, + { + "start": 5571.34, + "end": 5572.98, + "probability": 0.9827 + }, + { + "start": 5574.18, + "end": 5576.52, + "probability": 0.8593 + }, + { + "start": 5577.26, + "end": 5577.74, + "probability": 0.971 + }, + { + "start": 5578.4, + "end": 5579.58, + "probability": 0.9096 + }, + { + "start": 5582.16, + "end": 5582.68, + "probability": 0.8677 + }, + { + "start": 5583.92, + "end": 5585.06, + "probability": 0.783 + }, + { + "start": 5585.92, + "end": 5588.12, + "probability": 0.9624 + }, + { + "start": 5589.5, + "end": 5591.74, + "probability": 0.8351 + }, + { + "start": 5591.76, + "end": 5594.96, + "probability": 0.9769 + }, + { + "start": 5595.5, + "end": 5598.28, + "probability": 0.9355 + }, + { + "start": 5600.32, + "end": 5602.82, + "probability": 0.8009 + }, + { + "start": 5605.04, + "end": 5607.84, + "probability": 0.8311 + }, + { + "start": 5608.81, + "end": 5610.8, + "probability": 0.9878 + }, + { + "start": 5611.44, + "end": 5611.92, + "probability": 0.9839 + }, + { + "start": 5612.68, + "end": 5613.86, + "probability": 0.9647 + }, + { + "start": 5614.6, + "end": 5615.14, + "probability": 0.9883 + }, + { + "start": 5615.76, + "end": 5616.82, + "probability": 0.9613 + }, + { + "start": 5617.48, + "end": 5619.78, + "probability": 0.9701 + }, + { + "start": 5622.58, + "end": 5623.92, + "probability": 0.9599 + }, + { + "start": 5624.68, + "end": 5625.88, + "probability": 0.5783 + }, + { + "start": 5626.86, + "end": 5628.72, + "probability": 0.7435 + }, + { + "start": 5631.52, + "end": 5633.84, + "probability": 0.7991 + }, + { + "start": 5634.72, + "end": 5635.14, + "probability": 0.9551 + }, + { + "start": 5636.32, + "end": 5637.2, + "probability": 0.8695 + }, + { + "start": 5638.44, + "end": 5640.22, + "probability": 0.9873 + }, + { + "start": 5642.12, + "end": 5643.06, + "probability": 0.9041 + }, + { + "start": 5643.86, + "end": 5644.76, + "probability": 0.9741 + }, + { + "start": 5645.8, + "end": 5647.96, + "probability": 0.9662 + }, + { + "start": 5649.02, + "end": 5651.76, + "probability": 0.8994 + }, + { + "start": 5653.04, + "end": 5655.46, + "probability": 0.9357 + }, + { + "start": 5656.58, + "end": 5658.82, + "probability": 0.8084 + }, + { + "start": 5660.5, + "end": 5662.42, + "probability": 0.9728 + }, + { + "start": 5663.98, + "end": 5666.22, + "probability": 0.9595 + }, + { + "start": 5668.02, + "end": 5670.14, + "probability": 0.947 + }, + { + "start": 5671.22, + "end": 5672.16, + "probability": 0.9965 + }, + { + "start": 5672.86, + "end": 5674.1, + "probability": 0.9502 + }, + { + "start": 5675.0, + "end": 5676.56, + "probability": 0.962 + }, + { + "start": 5677.98, + "end": 5679.84, + "probability": 0.8792 + }, + { + "start": 5682.24, + "end": 5683.68, + "probability": 0.6108 + }, + { + "start": 5684.42, + "end": 5684.98, + "probability": 0.8612 + }, + { + "start": 5686.28, + "end": 5687.3, + "probability": 0.889 + }, + { + "start": 5688.72, + "end": 5690.36, + "probability": 0.9337 + }, + { + "start": 5691.96, + "end": 5694.02, + "probability": 0.6211 + }, + { + "start": 5697.34, + "end": 5697.8, + "probability": 0.9128 + }, + { + "start": 5699.2, + "end": 5700.02, + "probability": 0.8783 + }, + { + "start": 5701.16, + "end": 5703.78, + "probability": 0.9513 + }, + { + "start": 5704.04, + "end": 5707.22, + "probability": 0.8288 + }, + { + "start": 5707.82, + "end": 5708.26, + "probability": 0.9756 + }, + { + "start": 5708.94, + "end": 5709.68, + "probability": 0.8866 + }, + { + "start": 5711.1, + "end": 5713.54, + "probability": 0.8501 + }, + { + "start": 5714.86, + "end": 5715.94, + "probability": 0.5092 + }, + { + "start": 5717.5, + "end": 5717.94, + "probability": 0.9065 + }, + { + "start": 5718.68, + "end": 5719.54, + "probability": 0.886 + }, + { + "start": 5722.54, + "end": 5724.72, + "probability": 0.9673 + }, + { + "start": 5725.34, + "end": 5725.86, + "probability": 0.9907 + }, + { + "start": 5726.5, + "end": 5727.5, + "probability": 0.8479 + }, + { + "start": 5728.44, + "end": 5730.5, + "probability": 0.9904 + }, + { + "start": 5731.38, + "end": 5733.74, + "probability": 0.9536 + }, + { + "start": 5735.93, + "end": 5739.12, + "probability": 0.8271 + }, + { + "start": 5739.8, + "end": 5740.04, + "probability": 0.5657 + }, + { + "start": 5740.78, + "end": 5741.88, + "probability": 0.7416 + }, + { + "start": 5743.7, + "end": 5746.88, + "probability": 0.9097 + }, + { + "start": 5747.75, + "end": 5750.08, + "probability": 0.7725 + }, + { + "start": 5751.08, + "end": 5753.94, + "probability": 0.9379 + }, + { + "start": 5755.56, + "end": 5759.94, + "probability": 0.8677 + }, + { + "start": 5761.88, + "end": 5762.7, + "probability": 0.2599 + }, + { + "start": 5764.1, + "end": 5764.86, + "probability": 0.8667 + }, + { + "start": 5767.4, + "end": 5773.98, + "probability": 0.4092 + }, + { + "start": 5774.94, + "end": 5775.6, + "probability": 0.5498 + }, + { + "start": 5779.5, + "end": 5780.32, + "probability": 0.5859 + }, + { + "start": 5781.48, + "end": 5782.26, + "probability": 0.8858 + }, + { + "start": 5782.78, + "end": 5783.72, + "probability": 0.8273 + }, + { + "start": 5784.48, + "end": 5786.4, + "probability": 0.9524 + }, + { + "start": 5787.5, + "end": 5788.02, + "probability": 0.9777 + }, + { + "start": 5789.16, + "end": 5790.06, + "probability": 0.9824 + }, + { + "start": 5790.82, + "end": 5791.28, + "probability": 0.8069 + }, + { + "start": 5792.0, + "end": 5792.82, + "probability": 0.9473 + }, + { + "start": 5793.72, + "end": 5794.26, + "probability": 0.9588 + }, + { + "start": 5794.88, + "end": 5795.78, + "probability": 0.9051 + }, + { + "start": 5796.46, + "end": 5798.5, + "probability": 0.9847 + }, + { + "start": 5799.14, + "end": 5799.62, + "probability": 0.9636 + }, + { + "start": 5800.24, + "end": 5801.18, + "probability": 0.8272 + }, + { + "start": 5802.12, + "end": 5802.54, + "probability": 0.9919 + }, + { + "start": 5803.5, + "end": 5805.44, + "probability": 0.6841 + }, + { + "start": 5806.26, + "end": 5807.08, + "probability": 0.7501 + }, + { + "start": 5808.62, + "end": 5811.68, + "probability": 0.8944 + }, + { + "start": 5812.44, + "end": 5812.86, + "probability": 0.9139 + }, + { + "start": 5814.22, + "end": 5815.04, + "probability": 0.8307 + }, + { + "start": 5816.22, + "end": 5816.68, + "probability": 0.9826 + }, + { + "start": 5817.46, + "end": 5818.14, + "probability": 0.9659 + }, + { + "start": 5819.44, + "end": 5821.06, + "probability": 0.9771 + }, + { + "start": 5822.64, + "end": 5825.12, + "probability": 0.9487 + }, + { + "start": 5827.86, + "end": 5829.76, + "probability": 0.974 + }, + { + "start": 5831.04, + "end": 5833.04, + "probability": 0.855 + }, + { + "start": 5834.96, + "end": 5836.76, + "probability": 0.8101 + }, + { + "start": 5837.8, + "end": 5839.68, + "probability": 0.9718 + }, + { + "start": 5840.88, + "end": 5842.52, + "probability": 0.9604 + }, + { + "start": 5843.66, + "end": 5846.26, + "probability": 0.8944 + }, + { + "start": 5847.06, + "end": 5847.54, + "probability": 0.9831 + }, + { + "start": 5848.42, + "end": 5849.38, + "probability": 0.7019 + }, + { + "start": 5850.32, + "end": 5853.22, + "probability": 0.7234 + }, + { + "start": 5854.48, + "end": 5855.36, + "probability": 0.968 + }, + { + "start": 5856.9, + "end": 5859.8, + "probability": 0.5182 + }, + { + "start": 5861.38, + "end": 5861.8, + "probability": 0.1974 + }, + { + "start": 5863.12, + "end": 5865.1, + "probability": 0.8417 + }, + { + "start": 5866.48, + "end": 5868.64, + "probability": 0.9404 + }, + { + "start": 5869.38, + "end": 5869.78, + "probability": 0.9553 + }, + { + "start": 5870.54, + "end": 5874.0, + "probability": 0.9419 + }, + { + "start": 5874.42, + "end": 5876.68, + "probability": 0.0156 + }, + { + "start": 5879.62, + "end": 5879.74, + "probability": 0.0214 + }, + { + "start": 5879.74, + "end": 5880.08, + "probability": 0.0994 + }, + { + "start": 5881.06, + "end": 5883.46, + "probability": 0.5775 + }, + { + "start": 5885.9, + "end": 5887.68, + "probability": 0.7164 + }, + { + "start": 5888.98, + "end": 5891.2, + "probability": 0.7879 + }, + { + "start": 5892.24, + "end": 5894.44, + "probability": 0.8864 + }, + { + "start": 5895.24, + "end": 5897.22, + "probability": 0.7787 + }, + { + "start": 5898.14, + "end": 5900.16, + "probability": 0.9055 + }, + { + "start": 5901.36, + "end": 5903.48, + "probability": 0.979 + }, + { + "start": 5904.68, + "end": 5907.0, + "probability": 0.988 + }, + { + "start": 5908.0, + "end": 5908.4, + "probability": 0.9141 + }, + { + "start": 5909.88, + "end": 5911.48, + "probability": 0.4589 + }, + { + "start": 5912.7, + "end": 5914.64, + "probability": 0.8209 + }, + { + "start": 5915.62, + "end": 5917.98, + "probability": 0.9417 + }, + { + "start": 5918.7, + "end": 5920.42, + "probability": 0.804 + }, + { + "start": 5921.42, + "end": 5922.3, + "probability": 0.6466 + }, + { + "start": 5923.46, + "end": 5925.62, + "probability": 0.989 + }, + { + "start": 5926.98, + "end": 5927.78, + "probability": 0.99 + }, + { + "start": 5929.92, + "end": 5930.84, + "probability": 0.9827 + }, + { + "start": 5931.76, + "end": 5934.08, + "probability": 0.966 + }, + { + "start": 5935.26, + "end": 5939.92, + "probability": 0.9074 + }, + { + "start": 5940.52, + "end": 5943.02, + "probability": 0.9566 + }, + { + "start": 5943.68, + "end": 5946.38, + "probability": 0.9902 + }, + { + "start": 5947.14, + "end": 5949.08, + "probability": 0.9765 + }, + { + "start": 5952.04, + "end": 5956.9, + "probability": 0.9325 + }, + { + "start": 5959.1, + "end": 5959.6, + "probability": 0.5051 + }, + { + "start": 5960.66, + "end": 5961.12, + "probability": 0.7469 + }, + { + "start": 5962.68, + "end": 5964.68, + "probability": 0.8343 + }, + { + "start": 5966.04, + "end": 5966.78, + "probability": 0.9701 + }, + { + "start": 5967.62, + "end": 5968.94, + "probability": 0.6496 + }, + { + "start": 5970.04, + "end": 5972.08, + "probability": 0.9876 + }, + { + "start": 5973.14, + "end": 5975.0, + "probability": 0.9658 + }, + { + "start": 5976.38, + "end": 5977.9, + "probability": 0.9808 + }, + { + "start": 5978.84, + "end": 5980.46, + "probability": 0.9393 + }, + { + "start": 5982.4, + "end": 5982.9, + "probability": 0.5463 + }, + { + "start": 5984.62, + "end": 5985.52, + "probability": 0.9079 + }, + { + "start": 5986.5, + "end": 5987.42, + "probability": 0.9938 + }, + { + "start": 5989.78, + "end": 5991.11, + "probability": 0.9937 + }, + { + "start": 5992.18, + "end": 5994.04, + "probability": 0.7776 + }, + { + "start": 5994.96, + "end": 5995.94, + "probability": 0.5381 + }, + { + "start": 5997.48, + "end": 5998.48, + "probability": 0.962 + }, + { + "start": 5999.32, + "end": 6001.26, + "probability": 0.9664 + }, + { + "start": 6002.34, + "end": 6004.4, + "probability": 0.9888 + }, + { + "start": 6005.56, + "end": 6006.32, + "probability": 0.9923 + }, + { + "start": 6006.84, + "end": 6007.98, + "probability": 0.7452 + }, + { + "start": 6011.42, + "end": 6012.66, + "probability": 0.7794 + }, + { + "start": 6014.7, + "end": 6015.1, + "probability": 0.7563 + }, + { + "start": 6019.36, + "end": 6021.02, + "probability": 0.6787 + }, + { + "start": 6022.6, + "end": 6024.14, + "probability": 0.509 + }, + { + "start": 6025.36, + "end": 6027.36, + "probability": 0.8804 + }, + { + "start": 6028.72, + "end": 6030.64, + "probability": 0.535 + }, + { + "start": 6031.74, + "end": 6032.9, + "probability": 0.4999 + }, + { + "start": 6034.04, + "end": 6035.0, + "probability": 0.854 + }, + { + "start": 6036.28, + "end": 6038.58, + "probability": 0.5387 + }, + { + "start": 6039.96, + "end": 6042.34, + "probability": 0.9138 + }, + { + "start": 6043.44, + "end": 6045.46, + "probability": 0.9447 + }, + { + "start": 6047.04, + "end": 6048.02, + "probability": 0.9907 + }, + { + "start": 6049.78, + "end": 6050.7, + "probability": 0.9727 + }, + { + "start": 6052.04, + "end": 6054.3, + "probability": 0.9693 + }, + { + "start": 6055.62, + "end": 6057.84, + "probability": 0.9666 + }, + { + "start": 6059.78, + "end": 6062.1, + "probability": 0.7079 + }, + { + "start": 6063.52, + "end": 6065.36, + "probability": 0.7775 + }, + { + "start": 6066.76, + "end": 6068.56, + "probability": 0.9574 + }, + { + "start": 6069.4, + "end": 6070.22, + "probability": 0.9744 + }, + { + "start": 6070.9, + "end": 6071.84, + "probability": 0.6012 + }, + { + "start": 6073.54, + "end": 6074.64, + "probability": 0.4893 + }, + { + "start": 6077.52, + "end": 6078.26, + "probability": 0.5727 + }, + { + "start": 6079.46, + "end": 6081.74, + "probability": 0.851 + }, + { + "start": 6082.4, + "end": 6085.4, + "probability": 0.9422 + }, + { + "start": 6085.54, + "end": 6088.04, + "probability": 0.9675 + }, + { + "start": 6089.4, + "end": 6091.4, + "probability": 0.9104 + }, + { + "start": 6091.66, + "end": 6091.98, + "probability": 0.4851 + }, + { + "start": 6091.98, + "end": 6093.2, + "probability": 0.264 + }, + { + "start": 6096.0, + "end": 6098.0, + "probability": 0.0192 + }, + { + "start": 6103.8, + "end": 6105.04, + "probability": 0.1002 + }, + { + "start": 6105.84, + "end": 6106.36, + "probability": 0.0568 + }, + { + "start": 6106.88, + "end": 6107.16, + "probability": 0.0038 + }, + { + "start": 6197.34, + "end": 6198.03, + "probability": 0.301 + }, + { + "start": 6199.5, + "end": 6203.4, + "probability": 0.7936 + }, + { + "start": 6203.46, + "end": 6205.15, + "probability": 0.8837 + }, + { + "start": 6205.3, + "end": 6208.69, + "probability": 0.9712 + }, + { + "start": 6209.06, + "end": 6215.8, + "probability": 0.9652 + }, + { + "start": 6216.1, + "end": 6216.1, + "probability": 0.0065 + }, + { + "start": 6218.18, + "end": 6218.88, + "probability": 0.3582 + }, + { + "start": 6219.44, + "end": 6220.78, + "probability": 0.0399 + }, + { + "start": 6220.78, + "end": 6221.48, + "probability": 0.7344 + }, + { + "start": 6221.48, + "end": 6223.74, + "probability": 0.7478 + }, + { + "start": 6223.84, + "end": 6224.64, + "probability": 0.7463 + }, + { + "start": 6225.34, + "end": 6225.76, + "probability": 0.9504 + }, + { + "start": 6225.88, + "end": 6230.12, + "probability": 0.9855 + }, + { + "start": 6238.12, + "end": 6242.54, + "probability": 0.9518 + }, + { + "start": 6242.54, + "end": 6244.42, + "probability": 0.9551 + }, + { + "start": 6244.5, + "end": 6246.44, + "probability": 0.6779 + }, + { + "start": 6246.44, + "end": 6248.5, + "probability": 0.9472 + }, + { + "start": 6249.46, + "end": 6250.9, + "probability": 0.4621 + }, + { + "start": 6251.88, + "end": 6252.54, + "probability": 0.8962 + }, + { + "start": 6253.06, + "end": 6254.0, + "probability": 0.7105 + }, + { + "start": 6255.64, + "end": 6257.56, + "probability": 0.9338 + }, + { + "start": 6258.68, + "end": 6259.1, + "probability": 0.9883 + }, + { + "start": 6260.04, + "end": 6260.9, + "probability": 0.9022 + }, + { + "start": 6261.84, + "end": 6262.24, + "probability": 0.9474 + }, + { + "start": 6262.82, + "end": 6263.64, + "probability": 0.8772 + }, + { + "start": 6264.32, + "end": 6270.12, + "probability": 0.7978 + }, + { + "start": 6271.56, + "end": 6273.5, + "probability": 0.8577 + }, + { + "start": 6274.82, + "end": 6276.4, + "probability": 0.8251 + }, + { + "start": 6277.92, + "end": 6280.02, + "probability": 0.977 + }, + { + "start": 6282.86, + "end": 6285.04, + "probability": 0.9238 + }, + { + "start": 6285.8, + "end": 6287.54, + "probability": 0.9418 + }, + { + "start": 6288.82, + "end": 6291.16, + "probability": 0.7286 + }, + { + "start": 6291.94, + "end": 6293.48, + "probability": 0.8915 + }, + { + "start": 6294.18, + "end": 6296.08, + "probability": 0.9296 + }, + { + "start": 6296.84, + "end": 6297.16, + "probability": 0.9329 + }, + { + "start": 6297.76, + "end": 6298.38, + "probability": 0.5881 + }, + { + "start": 6305.56, + "end": 6309.44, + "probability": 0.4453 + }, + { + "start": 6310.46, + "end": 6315.42, + "probability": 0.7988 + }, + { + "start": 6316.22, + "end": 6317.02, + "probability": 0.842 + }, + { + "start": 6318.04, + "end": 6318.46, + "probability": 0.9827 + }, + { + "start": 6319.44, + "end": 6320.28, + "probability": 0.9842 + }, + { + "start": 6321.04, + "end": 6322.82, + "probability": 0.8436 + }, + { + "start": 6323.6, + "end": 6324.04, + "probability": 0.8958 + }, + { + "start": 6324.7, + "end": 6325.22, + "probability": 0.9236 + }, + { + "start": 6328.0, + "end": 6329.32, + "probability": 0.9409 + }, + { + "start": 6330.2, + "end": 6331.24, + "probability": 0.9253 + }, + { + "start": 6334.9, + "end": 6336.76, + "probability": 0.77 + }, + { + "start": 6338.0, + "end": 6338.32, + "probability": 0.9479 + }, + { + "start": 6339.32, + "end": 6340.18, + "probability": 0.64 + }, + { + "start": 6341.18, + "end": 6341.64, + "probability": 0.6445 + }, + { + "start": 6342.84, + "end": 6343.66, + "probability": 0.9653 + }, + { + "start": 6344.52, + "end": 6346.16, + "probability": 0.9106 + }, + { + "start": 6346.9, + "end": 6348.48, + "probability": 0.9811 + }, + { + "start": 6350.12, + "end": 6351.68, + "probability": 0.9269 + }, + { + "start": 6352.66, + "end": 6353.1, + "probability": 0.9497 + }, + { + "start": 6353.68, + "end": 6354.5, + "probability": 0.7068 + }, + { + "start": 6355.16, + "end": 6356.76, + "probability": 0.9714 + }, + { + "start": 6357.68, + "end": 6358.08, + "probability": 0.7006 + }, + { + "start": 6358.6, + "end": 6359.46, + "probability": 0.5971 + }, + { + "start": 6359.98, + "end": 6361.6, + "probability": 0.9051 + }, + { + "start": 6362.48, + "end": 6365.16, + "probability": 0.939 + }, + { + "start": 6366.3, + "end": 6368.34, + "probability": 0.757 + }, + { + "start": 6369.36, + "end": 6369.82, + "probability": 0.9795 + }, + { + "start": 6370.42, + "end": 6371.28, + "probability": 0.9577 + }, + { + "start": 6372.1, + "end": 6372.52, + "probability": 0.9837 + }, + { + "start": 6373.26, + "end": 6374.1, + "probability": 0.899 + }, + { + "start": 6375.24, + "end": 6376.96, + "probability": 0.9888 + }, + { + "start": 6379.92, + "end": 6381.04, + "probability": 0.0777 + }, + { + "start": 6381.04, + "end": 6381.82, + "probability": 0.5658 + }, + { + "start": 6382.3, + "end": 6383.88, + "probability": 0.8675 + }, + { + "start": 6384.36, + "end": 6385.82, + "probability": 0.5489 + }, + { + "start": 6387.24, + "end": 6390.18, + "probability": 0.7485 + }, + { + "start": 6394.12, + "end": 6394.66, + "probability": 0.7098 + }, + { + "start": 6395.2, + "end": 6396.28, + "probability": 0.5383 + }, + { + "start": 6396.88, + "end": 6398.64, + "probability": 0.9111 + }, + { + "start": 6399.8, + "end": 6402.02, + "probability": 0.4853 + }, + { + "start": 6402.72, + "end": 6403.24, + "probability": 0.9851 + }, + { + "start": 6403.92, + "end": 6404.88, + "probability": 0.8223 + }, + { + "start": 6405.76, + "end": 6408.24, + "probability": 0.7974 + }, + { + "start": 6409.62, + "end": 6411.96, + "probability": 0.8977 + }, + { + "start": 6412.76, + "end": 6413.22, + "probability": 0.9787 + }, + { + "start": 6414.44, + "end": 6415.52, + "probability": 0.9661 + }, + { + "start": 6416.24, + "end": 6417.94, + "probability": 0.9505 + }, + { + "start": 6419.0, + "end": 6422.24, + "probability": 0.9521 + }, + { + "start": 6428.18, + "end": 6430.42, + "probability": 0.3963 + }, + { + "start": 6431.36, + "end": 6432.12, + "probability": 0.804 + }, + { + "start": 6432.22, + "end": 6433.56, + "probability": 0.6972 + }, + { + "start": 6433.94, + "end": 6434.52, + "probability": 0.2138 + }, + { + "start": 6434.52, + "end": 6436.7, + "probability": 0.3374 + }, + { + "start": 6438.16, + "end": 6440.32, + "probability": 0.9188 + }, + { + "start": 6444.64, + "end": 6448.1, + "probability": 0.8191 + }, + { + "start": 6449.02, + "end": 6449.88, + "probability": 0.362 + }, + { + "start": 6451.4, + "end": 6452.64, + "probability": 0.4808 + }, + { + "start": 6453.4, + "end": 6454.8, + "probability": 0.3433 + }, + { + "start": 6456.12, + "end": 6457.64, + "probability": 0.7858 + }, + { + "start": 6457.7, + "end": 6457.7, + "probability": 0.4417 + }, + { + "start": 6457.72, + "end": 6458.94, + "probability": 0.5673 + }, + { + "start": 6464.22, + "end": 6468.54, + "probability": 0.3814 + }, + { + "start": 6472.24, + "end": 6472.92, + "probability": 0.0424 + }, + { + "start": 6474.58, + "end": 6479.78, + "probability": 0.299 + }, + { + "start": 6483.02, + "end": 6485.05, + "probability": 0.3461 + }, + { + "start": 6486.06, + "end": 6486.28, + "probability": 0.1113 + }, + { + "start": 6488.46, + "end": 6490.48, + "probability": 0.6264 + }, + { + "start": 6490.62, + "end": 6492.02, + "probability": 0.0857 + }, + { + "start": 6496.14, + "end": 6496.76, + "probability": 0.0345 + }, + { + "start": 6497.68, + "end": 6497.94, + "probability": 0.0296 + }, + { + "start": 6499.18, + "end": 6499.5, + "probability": 0.1128 + }, + { + "start": 6500.72, + "end": 6501.49, + "probability": 0.0094 + }, + { + "start": 6502.12, + "end": 6502.72, + "probability": 0.166 + }, + { + "start": 6507.03, + "end": 6507.81, + "probability": 0.1743 + }, + { + "start": 6509.54, + "end": 6509.88, + "probability": 0.0322 + }, + { + "start": 6510.24, + "end": 6510.84, + "probability": 0.0169 + }, + { + "start": 6514.66, + "end": 6516.47, + "probability": 0.0974 + }, + { + "start": 6518.41, + "end": 6520.92, + "probability": 0.2588 + }, + { + "start": 6521.5, + "end": 6522.5, + "probability": 0.3108 + }, + { + "start": 6523.13, + "end": 6523.53, + "probability": 0.3113 + }, + { + "start": 6525.02, + "end": 6526.54, + "probability": 0.399 + }, + { + "start": 6527.46, + "end": 6527.92, + "probability": 0.5124 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.0, + "end": 6699.0, + "probability": 0.0 + }, + { + "start": 6699.29, + "end": 6702.66, + "probability": 0.9932 + }, + { + "start": 6703.14, + "end": 6703.66, + "probability": 0.733 + }, + { + "start": 6704.42, + "end": 6705.09, + "probability": 0.5978 + }, + { + "start": 6706.4, + "end": 6708.1, + "probability": 0.9087 + }, + { + "start": 6708.92, + "end": 6709.62, + "probability": 0.9903 + }, + { + "start": 6710.4, + "end": 6711.54, + "probability": 0.889 + }, + { + "start": 6713.17, + "end": 6715.3, + "probability": 0.3787 + }, + { + "start": 6715.3, + "end": 6715.6, + "probability": 0.3067 + }, + { + "start": 6716.44, + "end": 6719.92, + "probability": 0.765 + }, + { + "start": 6720.66, + "end": 6721.74, + "probability": 0.9368 + }, + { + "start": 6722.74, + "end": 6725.58, + "probability": 0.948 + }, + { + "start": 6728.56, + "end": 6729.28, + "probability": 0.6011 + }, + { + "start": 6730.44, + "end": 6731.96, + "probability": 0.9368 + }, + { + "start": 6732.54, + "end": 6734.3, + "probability": 0.924 + }, + { + "start": 6735.32, + "end": 6737.58, + "probability": 0.9806 + }, + { + "start": 6738.8, + "end": 6741.54, + "probability": 0.9889 + }, + { + "start": 6743.1, + "end": 6746.74, + "probability": 0.9468 + }, + { + "start": 6747.34, + "end": 6749.18, + "probability": 0.9496 + }, + { + "start": 6750.1, + "end": 6750.8, + "probability": 0.9714 + }, + { + "start": 6751.32, + "end": 6754.04, + "probability": 0.7431 + }, + { + "start": 6754.9, + "end": 6755.6, + "probability": 0.9346 + }, + { + "start": 6756.8, + "end": 6757.8, + "probability": 0.7125 + }, + { + "start": 6761.82, + "end": 6765.66, + "probability": 0.6581 + }, + { + "start": 6767.08, + "end": 6769.46, + "probability": 0.9385 + }, + { + "start": 6770.44, + "end": 6772.18, + "probability": 0.9191 + }, + { + "start": 6772.54, + "end": 6774.22, + "probability": 0.9838 + }, + { + "start": 6774.64, + "end": 6776.78, + "probability": 0.9845 + }, + { + "start": 6777.62, + "end": 6779.76, + "probability": 0.7917 + }, + { + "start": 6782.78, + "end": 6786.5, + "probability": 0.9322 + }, + { + "start": 6787.2, + "end": 6787.94, + "probability": 0.9796 + }, + { + "start": 6788.74, + "end": 6789.28, + "probability": 0.9823 + }, + { + "start": 6790.62, + "end": 6794.88, + "probability": 0.9693 + }, + { + "start": 6796.05, + "end": 6798.46, + "probability": 0.979 + }, + { + "start": 6800.56, + "end": 6802.44, + "probability": 0.9052 + }, + { + "start": 6803.12, + "end": 6804.44, + "probability": 0.6529 + }, + { + "start": 6806.92, + "end": 6807.4, + "probability": 0.813 + }, + { + "start": 6808.8, + "end": 6809.72, + "probability": 0.8284 + }, + { + "start": 6810.32, + "end": 6811.98, + "probability": 0.8805 + }, + { + "start": 6812.8, + "end": 6814.64, + "probability": 0.8599 + }, + { + "start": 6815.4, + "end": 6816.96, + "probability": 0.9575 + }, + { + "start": 6818.28, + "end": 6820.08, + "probability": 0.9819 + }, + { + "start": 6820.78, + "end": 6822.26, + "probability": 0.9668 + }, + { + "start": 6822.8, + "end": 6824.28, + "probability": 0.7311 + }, + { + "start": 6825.36, + "end": 6827.52, + "probability": 0.7021 + }, + { + "start": 6828.2, + "end": 6829.02, + "probability": 0.9447 + }, + { + "start": 6830.02, + "end": 6831.19, + "probability": 0.884 + }, + { + "start": 6831.98, + "end": 6833.48, + "probability": 0.918 + }, + { + "start": 6835.92, + "end": 6836.2, + "probability": 0.7197 + }, + { + "start": 6837.02, + "end": 6837.94, + "probability": 0.9577 + }, + { + "start": 6838.8, + "end": 6840.38, + "probability": 0.9156 + }, + { + "start": 6841.32, + "end": 6842.8, + "probability": 0.871 + }, + { + "start": 6844.32, + "end": 6846.04, + "probability": 0.9899 + }, + { + "start": 6846.94, + "end": 6848.7, + "probability": 0.7903 + }, + { + "start": 6850.92, + "end": 6851.36, + "probability": 0.6243 + }, + { + "start": 6852.22, + "end": 6853.24, + "probability": 0.8406 + }, + { + "start": 6855.12, + "end": 6856.9, + "probability": 0.98 + }, + { + "start": 6857.74, + "end": 6859.04, + "probability": 0.8478 + }, + { + "start": 6860.02, + "end": 6862.62, + "probability": 0.9231 + }, + { + "start": 6863.56, + "end": 6866.24, + "probability": 0.8356 + }, + { + "start": 6867.0, + "end": 6869.24, + "probability": 0.9415 + }, + { + "start": 6870.38, + "end": 6872.14, + "probability": 0.9928 + }, + { + "start": 6877.06, + "end": 6879.04, + "probability": 0.7196 + }, + { + "start": 6879.96, + "end": 6883.94, + "probability": 0.9475 + }, + { + "start": 6885.2, + "end": 6885.9, + "probability": 0.9948 + }, + { + "start": 6886.74, + "end": 6887.72, + "probability": 0.7944 + }, + { + "start": 6888.72, + "end": 6891.44, + "probability": 0.8442 + }, + { + "start": 6892.54, + "end": 6893.28, + "probability": 0.9928 + }, + { + "start": 6894.32, + "end": 6895.22, + "probability": 0.9149 + }, + { + "start": 6896.12, + "end": 6897.04, + "probability": 0.9954 + }, + { + "start": 6898.62, + "end": 6899.66, + "probability": 0.9903 + }, + { + "start": 6900.22, + "end": 6901.88, + "probability": 0.6414 + }, + { + "start": 6902.62, + "end": 6904.38, + "probability": 0.5223 + }, + { + "start": 6905.04, + "end": 6906.06, + "probability": 0.7402 + }, + { + "start": 6907.24, + "end": 6909.04, + "probability": 0.9319 + }, + { + "start": 6911.48, + "end": 6911.94, + "probability": 0.7386 + }, + { + "start": 6912.48, + "end": 6913.68, + "probability": 0.7583 + }, + { + "start": 6914.72, + "end": 6916.38, + "probability": 0.9623 + }, + { + "start": 6917.42, + "end": 6919.32, + "probability": 0.6805 + }, + { + "start": 6920.52, + "end": 6922.18, + "probability": 0.9498 + }, + { + "start": 6924.19, + "end": 6924.44, + "probability": 0.4976 + }, + { + "start": 6925.9, + "end": 6926.8, + "probability": 0.5986 + }, + { + "start": 6927.68, + "end": 6929.68, + "probability": 0.844 + }, + { + "start": 6930.28, + "end": 6932.12, + "probability": 0.7139 + }, + { + "start": 6932.28, + "end": 6935.56, + "probability": 0.9648 + }, + { + "start": 6936.02, + "end": 6936.62, + "probability": 0.0013 + }, + { + "start": 6937.58, + "end": 6940.76, + "probability": 0.0205 + }, + { + "start": 6941.42, + "end": 6943.08, + "probability": 0.0967 + }, + { + "start": 6943.08, + "end": 6943.4, + "probability": 0.3887 + }, + { + "start": 6943.48, + "end": 6944.36, + "probability": 0.2837 + }, + { + "start": 6944.36, + "end": 6946.16, + "probability": 0.8684 + }, + { + "start": 6947.78, + "end": 6948.82, + "probability": 0.0263 + }, + { + "start": 6950.98, + "end": 6951.24, + "probability": 0.0573 + }, + { + "start": 6951.24, + "end": 6951.24, + "probability": 0.0447 + }, + { + "start": 6951.24, + "end": 6951.7, + "probability": 0.046 + }, + { + "start": 6951.72, + "end": 6952.62, + "probability": 0.4749 + }, + { + "start": 6952.78, + "end": 6953.52, + "probability": 0.8683 + }, + { + "start": 6953.52, + "end": 6954.42, + "probability": 0.9463 + }, + { + "start": 6954.52, + "end": 6954.74, + "probability": 0.8473 + }, + { + "start": 6954.8, + "end": 6954.9, + "probability": 0.6683 + }, + { + "start": 6954.96, + "end": 6956.7, + "probability": 0.8451 + }, + { + "start": 6956.7, + "end": 6956.8, + "probability": 0.5648 + }, + { + "start": 7047.0, + "end": 7047.0, + "probability": 0.0 + }, + { + "start": 7047.0, + "end": 7047.0, + "probability": 0.0 + }, + { + "start": 7047.14, + "end": 7048.45, + "probability": 0.6199 + }, + { + "start": 7050.02, + "end": 7053.52, + "probability": 0.7392 + }, + { + "start": 7053.68, + "end": 7054.3, + "probability": 0.6487 + }, + { + "start": 7055.78, + "end": 7058.68, + "probability": 0.9507 + }, + { + "start": 7058.98, + "end": 7060.28, + "probability": 0.8798 + }, + { + "start": 7060.34, + "end": 7062.52, + "probability": 0.9282 + }, + { + "start": 7063.12, + "end": 7064.56, + "probability": 0.1487 + }, + { + "start": 7085.07, + "end": 7087.78, + "probability": 0.6963 + }, + { + "start": 7088.32, + "end": 7090.5, + "probability": 0.8441 + }, + { + "start": 7090.9, + "end": 7092.83, + "probability": 0.7703 + }, + { + "start": 7092.9, + "end": 7094.78, + "probability": 0.9197 + }, + { + "start": 7097.12, + "end": 7100.2, + "probability": 0.9126 + }, + { + "start": 7100.8, + "end": 7102.54, + "probability": 0.9149 + }, + { + "start": 7103.32, + "end": 7104.66, + "probability": 0.9784 + }, + { + "start": 7106.84, + "end": 7110.22, + "probability": 0.6743 + }, + { + "start": 7110.92, + "end": 7111.78, + "probability": 0.5337 + }, + { + "start": 7113.06, + "end": 7114.62, + "probability": 0.775 + }, + { + "start": 7116.14, + "end": 7116.58, + "probability": 0.5461 + }, + { + "start": 7117.24, + "end": 7118.22, + "probability": 0.9361 + }, + { + "start": 7119.42, + "end": 7121.14, + "probability": 0.8047 + }, + { + "start": 7124.44, + "end": 7128.52, + "probability": 0.7211 + }, + { + "start": 7130.1, + "end": 7130.82, + "probability": 0.9731 + }, + { + "start": 7131.74, + "end": 7133.52, + "probability": 0.8264 + }, + { + "start": 7134.06, + "end": 7137.76, + "probability": 0.9342 + }, + { + "start": 7138.8, + "end": 7140.64, + "probability": 0.7018 + }, + { + "start": 7142.74, + "end": 7144.76, + "probability": 0.7389 + }, + { + "start": 7145.88, + "end": 7147.84, + "probability": 0.9534 + }, + { + "start": 7150.44, + "end": 7153.46, + "probability": 0.9792 + }, + { + "start": 7154.54, + "end": 7156.66, + "probability": 0.9896 + }, + { + "start": 7157.22, + "end": 7158.96, + "probability": 0.8625 + }, + { + "start": 7159.72, + "end": 7160.0, + "probability": 0.7396 + }, + { + "start": 7160.68, + "end": 7161.48, + "probability": 0.8398 + }, + { + "start": 7162.62, + "end": 7163.12, + "probability": 0.9725 + }, + { + "start": 7163.96, + "end": 7165.0, + "probability": 0.8848 + }, + { + "start": 7166.52, + "end": 7168.7, + "probability": 0.953 + }, + { + "start": 7170.72, + "end": 7171.22, + "probability": 0.992 + }, + { + "start": 7172.38, + "end": 7173.16, + "probability": 0.6207 + }, + { + "start": 7176.24, + "end": 7178.3, + "probability": 0.9764 + }, + { + "start": 7179.0, + "end": 7182.66, + "probability": 0.9851 + }, + { + "start": 7187.44, + "end": 7189.94, + "probability": 0.8042 + }, + { + "start": 7191.14, + "end": 7191.56, + "probability": 0.8308 + }, + { + "start": 7192.2, + "end": 7192.9, + "probability": 0.5653 + }, + { + "start": 7195.12, + "end": 7197.04, + "probability": 0.9649 + }, + { + "start": 7198.31, + "end": 7202.18, + "probability": 0.9714 + }, + { + "start": 7202.72, + "end": 7203.38, + "probability": 0.9366 + }, + { + "start": 7204.42, + "end": 7205.32, + "probability": 0.8607 + }, + { + "start": 7206.34, + "end": 7206.78, + "probability": 0.9909 + }, + { + "start": 7207.68, + "end": 7208.46, + "probability": 0.6797 + }, + { + "start": 7209.34, + "end": 7211.18, + "probability": 0.8682 + }, + { + "start": 7212.08, + "end": 7212.52, + "probability": 0.7843 + }, + { + "start": 7213.12, + "end": 7213.98, + "probability": 0.7103 + }, + { + "start": 7215.12, + "end": 7215.46, + "probability": 0.9106 + }, + { + "start": 7216.08, + "end": 7216.94, + "probability": 0.8603 + }, + { + "start": 7217.92, + "end": 7220.34, + "probability": 0.9089 + }, + { + "start": 7220.86, + "end": 7222.4, + "probability": 0.7891 + }, + { + "start": 7222.78, + "end": 7224.38, + "probability": 0.985 + }, + { + "start": 7224.52, + "end": 7226.4, + "probability": 0.7598 + }, + { + "start": 7227.2, + "end": 7229.16, + "probability": 0.9847 + }, + { + "start": 7230.82, + "end": 7232.52, + "probability": 0.8378 + }, + { + "start": 7233.64, + "end": 7235.6, + "probability": 0.74 + }, + { + "start": 7236.74, + "end": 7237.14, + "probability": 0.9624 + }, + { + "start": 7237.76, + "end": 7238.68, + "probability": 0.7318 + }, + { + "start": 7240.94, + "end": 7242.64, + "probability": 0.8348 + }, + { + "start": 7243.04, + "end": 7245.02, + "probability": 0.9015 + }, + { + "start": 7246.26, + "end": 7247.84, + "probability": 0.9008 + }, + { + "start": 7249.16, + "end": 7249.62, + "probability": 0.9951 + }, + { + "start": 7250.68, + "end": 7251.7, + "probability": 0.9738 + }, + { + "start": 7252.74, + "end": 7254.16, + "probability": 0.8293 + }, + { + "start": 7255.8, + "end": 7256.16, + "probability": 0.916 + }, + { + "start": 7257.36, + "end": 7258.18, + "probability": 0.8621 + }, + { + "start": 7259.6, + "end": 7262.9, + "probability": 0.9708 + }, + { + "start": 7266.4, + "end": 7266.9, + "probability": 0.9231 + }, + { + "start": 7268.1, + "end": 7269.24, + "probability": 0.936 + }, + { + "start": 7270.52, + "end": 7272.42, + "probability": 0.9487 + }, + { + "start": 7273.06, + "end": 7273.46, + "probability": 0.9603 + }, + { + "start": 7274.38, + "end": 7275.2, + "probability": 0.9332 + }, + { + "start": 7275.78, + "end": 7278.78, + "probability": 0.8839 + }, + { + "start": 7280.88, + "end": 7283.94, + "probability": 0.628 + }, + { + "start": 7286.66, + "end": 7288.4, + "probability": 0.5506 + }, + { + "start": 7296.52, + "end": 7298.82, + "probability": 0.5573 + }, + { + "start": 7301.72, + "end": 7304.2, + "probability": 0.7786 + }, + { + "start": 7305.4, + "end": 7306.44, + "probability": 0.8792 + }, + { + "start": 7309.42, + "end": 7310.3, + "probability": 0.5257 + }, + { + "start": 7310.82, + "end": 7312.7, + "probability": 0.6026 + }, + { + "start": 7313.34, + "end": 7314.8, + "probability": 0.9719 + }, + { + "start": 7315.34, + "end": 7318.5, + "probability": 0.921 + }, + { + "start": 7319.1, + "end": 7320.56, + "probability": 0.8424 + }, + { + "start": 7324.28, + "end": 7325.9, + "probability": 0.8811 + }, + { + "start": 7326.22, + "end": 7329.02, + "probability": 0.9642 + }, + { + "start": 7329.54, + "end": 7330.94, + "probability": 0.6284 + }, + { + "start": 7332.84, + "end": 7334.66, + "probability": 0.8962 + }, + { + "start": 7335.18, + "end": 7335.98, + "probability": 0.8591 + }, + { + "start": 7337.22, + "end": 7339.34, + "probability": 0.959 + }, + { + "start": 7340.66, + "end": 7342.52, + "probability": 0.937 + }, + { + "start": 7343.26, + "end": 7346.98, + "probability": 0.8873 + }, + { + "start": 7348.23, + "end": 7350.64, + "probability": 0.8288 + }, + { + "start": 7351.62, + "end": 7354.14, + "probability": 0.682 + }, + { + "start": 7355.24, + "end": 7356.16, + "probability": 0.923 + }, + { + "start": 7357.18, + "end": 7358.48, + "probability": 0.784 + }, + { + "start": 7359.38, + "end": 7361.16, + "probability": 0.9395 + }, + { + "start": 7365.84, + "end": 7366.34, + "probability": 0.8056 + }, + { + "start": 7367.56, + "end": 7368.54, + "probability": 0.6549 + }, + { + "start": 7370.56, + "end": 7373.56, + "probability": 0.8926 + }, + { + "start": 7374.26, + "end": 7374.68, + "probability": 0.8979 + }, + { + "start": 7375.68, + "end": 7376.72, + "probability": 0.9823 + }, + { + "start": 7377.98, + "end": 7381.26, + "probability": 0.7412 + }, + { + "start": 7382.4, + "end": 7384.36, + "probability": 0.8469 + }, + { + "start": 7385.12, + "end": 7385.68, + "probability": 0.9548 + }, + { + "start": 7386.36, + "end": 7387.32, + "probability": 0.788 + }, + { + "start": 7387.88, + "end": 7392.46, + "probability": 0.9521 + }, + { + "start": 7393.02, + "end": 7393.5, + "probability": 0.9842 + }, + { + "start": 7394.24, + "end": 7395.3, + "probability": 0.7747 + }, + { + "start": 7395.88, + "end": 7399.72, + "probability": 0.8578 + }, + { + "start": 7400.48, + "end": 7402.28, + "probability": 0.6807 + }, + { + "start": 7403.12, + "end": 7403.44, + "probability": 0.9461 + }, + { + "start": 7404.5, + "end": 7405.4, + "probability": 0.7111 + }, + { + "start": 7406.28, + "end": 7406.76, + "probability": 0.8894 + }, + { + "start": 7407.5, + "end": 7408.38, + "probability": 0.9305 + }, + { + "start": 7408.98, + "end": 7410.78, + "probability": 0.9347 + }, + { + "start": 7411.32, + "end": 7412.82, + "probability": 0.9237 + }, + { + "start": 7413.38, + "end": 7415.26, + "probability": 0.961 + }, + { + "start": 7416.78, + "end": 7419.94, + "probability": 0.8931 + }, + { + "start": 7421.62, + "end": 7422.34, + "probability": 0.7251 + }, + { + "start": 7423.64, + "end": 7424.46, + "probability": 0.7177 + }, + { + "start": 7425.48, + "end": 7425.82, + "probability": 0.9502 + }, + { + "start": 7426.62, + "end": 7427.48, + "probability": 0.8488 + }, + { + "start": 7428.54, + "end": 7434.56, + "probability": 0.9125 + }, + { + "start": 7435.62, + "end": 7438.16, + "probability": 0.9809 + }, + { + "start": 7439.82, + "end": 7441.84, + "probability": 0.8871 + }, + { + "start": 7442.96, + "end": 7444.64, + "probability": 0.9736 + }, + { + "start": 7446.16, + "end": 7449.24, + "probability": 0.8359 + }, + { + "start": 7450.1, + "end": 7453.78, + "probability": 0.7931 + }, + { + "start": 7455.76, + "end": 7459.06, + "probability": 0.9027 + }, + { + "start": 7464.48, + "end": 7464.48, + "probability": 0.0661 + }, + { + "start": 7465.54, + "end": 7466.32, + "probability": 0.7495 + }, + { + "start": 7468.02, + "end": 7468.72, + "probability": 0.343 + }, + { + "start": 7471.66, + "end": 7474.12, + "probability": 0.7738 + }, + { + "start": 7475.02, + "end": 7477.02, + "probability": 0.9455 + }, + { + "start": 7477.64, + "end": 7479.74, + "probability": 0.9719 + }, + { + "start": 7480.96, + "end": 7482.72, + "probability": 0.955 + }, + { + "start": 7483.62, + "end": 7484.72, + "probability": 0.6416 + }, + { + "start": 7485.26, + "end": 7486.16, + "probability": 0.9155 + }, + { + "start": 7486.86, + "end": 7487.28, + "probability": 0.9132 + }, + { + "start": 7488.14, + "end": 7489.12, + "probability": 0.7753 + }, + { + "start": 7489.64, + "end": 7490.06, + "probability": 0.9502 + }, + { + "start": 7490.66, + "end": 7491.42, + "probability": 0.9307 + }, + { + "start": 7492.16, + "end": 7492.4, + "probability": 0.6581 + }, + { + "start": 7493.14, + "end": 7493.96, + "probability": 0.7935 + }, + { + "start": 7494.36, + "end": 7496.14, + "probability": 0.9542 + }, + { + "start": 7496.48, + "end": 7498.26, + "probability": 0.8713 + }, + { + "start": 7498.96, + "end": 7499.98, + "probability": 0.9834 + }, + { + "start": 7500.6, + "end": 7502.48, + "probability": 0.8743 + }, + { + "start": 7502.5, + "end": 7505.84, + "probability": 0.9641 + }, + { + "start": 7506.32, + "end": 7507.54, + "probability": 0.3618 + }, + { + "start": 7507.92, + "end": 7509.86, + "probability": 0.8567 + }, + { + "start": 7510.38, + "end": 7512.44, + "probability": 0.922 + }, + { + "start": 7513.6, + "end": 7515.12, + "probability": 0.9038 + }, + { + "start": 7517.2, + "end": 7518.88, + "probability": 0.7959 + }, + { + "start": 7519.76, + "end": 7521.28, + "probability": 0.9139 + }, + { + "start": 7522.72, + "end": 7524.64, + "probability": 0.8301 + }, + { + "start": 7525.18, + "end": 7529.2, + "probability": 0.9706 + }, + { + "start": 7530.16, + "end": 7531.04, + "probability": 0.7644 + }, + { + "start": 7531.58, + "end": 7532.56, + "probability": 0.6035 + }, + { + "start": 7533.24, + "end": 7535.18, + "probability": 0.9672 + }, + { + "start": 7536.82, + "end": 7538.62, + "probability": 0.9513 + }, + { + "start": 7539.46, + "end": 7541.4, + "probability": 0.9927 + }, + { + "start": 7542.08, + "end": 7544.88, + "probability": 0.5694 + }, + { + "start": 7545.78, + "end": 7546.48, + "probability": 0.9421 + }, + { + "start": 7547.36, + "end": 7548.26, + "probability": 0.8424 + }, + { + "start": 7549.2, + "end": 7551.26, + "probability": 0.8877 + }, + { + "start": 7551.96, + "end": 7554.14, + "probability": 0.8535 + }, + { + "start": 7555.8, + "end": 7557.48, + "probability": 0.6857 + }, + { + "start": 7558.2, + "end": 7560.0, + "probability": 0.9843 + }, + { + "start": 7560.62, + "end": 7563.6, + "probability": 0.9871 + }, + { + "start": 7564.3, + "end": 7566.64, + "probability": 0.9774 + }, + { + "start": 7567.26, + "end": 7569.02, + "probability": 0.7568 + }, + { + "start": 7570.42, + "end": 7574.08, + "probability": 0.9569 + }, + { + "start": 7575.94, + "end": 7577.7, + "probability": 0.8737 + }, + { + "start": 7578.2, + "end": 7580.16, + "probability": 0.82 + }, + { + "start": 7581.36, + "end": 7581.36, + "probability": 0.5811 + }, + { + "start": 7582.14, + "end": 7583.24, + "probability": 0.6541 + }, + { + "start": 7583.9, + "end": 7585.9, + "probability": 0.8636 + }, + { + "start": 7588.06, + "end": 7590.28, + "probability": 0.9306 + }, + { + "start": 7590.84, + "end": 7591.36, + "probability": 0.6548 + }, + { + "start": 7592.92, + "end": 7593.86, + "probability": 0.9725 + }, + { + "start": 7594.66, + "end": 7599.5, + "probability": 0.9327 + }, + { + "start": 7601.39, + "end": 7606.46, + "probability": 0.82 + }, + { + "start": 7607.12, + "end": 7609.9, + "probability": 0.7373 + }, + { + "start": 7610.32, + "end": 7611.88, + "probability": 0.95 + }, + { + "start": 7612.18, + "end": 7613.58, + "probability": 0.9343 + }, + { + "start": 7614.36, + "end": 7616.02, + "probability": 0.9716 + }, + { + "start": 7616.58, + "end": 7618.12, + "probability": 0.881 + }, + { + "start": 7619.58, + "end": 7622.7, + "probability": 0.9463 + }, + { + "start": 7623.5, + "end": 7625.1, + "probability": 0.9606 + }, + { + "start": 7625.66, + "end": 7629.1, + "probability": 0.6256 + }, + { + "start": 7631.14, + "end": 7633.08, + "probability": 0.9391 + }, + { + "start": 7635.88, + "end": 7637.86, + "probability": 0.959 + }, + { + "start": 7638.48, + "end": 7642.74, + "probability": 0.9783 + }, + { + "start": 7643.4, + "end": 7645.24, + "probability": 0.9549 + }, + { + "start": 7646.02, + "end": 7650.84, + "probability": 0.9539 + }, + { + "start": 7651.92, + "end": 7652.64, + "probability": 0.9929 + }, + { + "start": 7653.22, + "end": 7654.14, + "probability": 0.6636 + }, + { + "start": 7654.8, + "end": 7656.62, + "probability": 0.8108 + }, + { + "start": 7657.22, + "end": 7659.08, + "probability": 0.938 + }, + { + "start": 7659.8, + "end": 7661.56, + "probability": 0.9724 + }, + { + "start": 7661.86, + "end": 7663.52, + "probability": 0.9772 + }, + { + "start": 7663.94, + "end": 7665.94, + "probability": 0.9623 + }, + { + "start": 7666.92, + "end": 7668.98, + "probability": 0.9591 + }, + { + "start": 7672.88, + "end": 7673.8, + "probability": 0.5351 + }, + { + "start": 7674.8, + "end": 7675.68, + "probability": 0.641 + }, + { + "start": 7677.16, + "end": 7680.62, + "probability": 0.9494 + }, + { + "start": 7682.2, + "end": 7683.02, + "probability": 0.6514 + }, + { + "start": 7683.58, + "end": 7685.62, + "probability": 0.9222 + }, + { + "start": 7686.54, + "end": 7690.6, + "probability": 0.6754 + }, + { + "start": 7692.53, + "end": 7695.18, + "probability": 0.8042 + }, + { + "start": 7695.64, + "end": 7697.92, + "probability": 0.6259 + }, + { + "start": 7698.62, + "end": 7700.76, + "probability": 0.9195 + }, + { + "start": 7701.88, + "end": 7703.78, + "probability": 0.953 + }, + { + "start": 7704.1, + "end": 7705.8, + "probability": 0.9488 + }, + { + "start": 7706.18, + "end": 7711.66, + "probability": 0.9854 + }, + { + "start": 7711.9, + "end": 7718.22, + "probability": 0.9805 + }, + { + "start": 7718.96, + "end": 7720.5, + "probability": 0.8399 + }, + { + "start": 7721.69, + "end": 7725.03, + "probability": 0.6471 + }, + { + "start": 7725.66, + "end": 7726.9, + "probability": 0.6782 + }, + { + "start": 7726.96, + "end": 7729.62, + "probability": 0.6343 + }, + { + "start": 7738.72, + "end": 7741.7, + "probability": 0.9938 + }, + { + "start": 7742.46, + "end": 7744.06, + "probability": 0.0982 + }, + { + "start": 7757.44, + "end": 7757.78, + "probability": 0.0118 + }, + { + "start": 7757.78, + "end": 7759.14, + "probability": 0.806 + }, + { + "start": 7759.2, + "end": 7761.88, + "probability": 0.1098 + }, + { + "start": 7761.88, + "end": 7762.34, + "probability": 0.4096 + }, + { + "start": 7769.14, + "end": 7770.18, + "probability": 0.035 + }, + { + "start": 7777.44, + "end": 7779.2, + "probability": 0.057 + }, + { + "start": 7780.68, + "end": 7781.68, + "probability": 0.0222 + }, + { + "start": 7782.28, + "end": 7783.28, + "probability": 0.3579 + }, + { + "start": 7783.28, + "end": 7784.56, + "probability": 0.1344 + }, + { + "start": 7784.64, + "end": 7784.74, + "probability": 0.2587 + }, + { + "start": 7787.22, + "end": 7790.3, + "probability": 0.2707 + }, + { + "start": 7790.86, + "end": 7791.02, + "probability": 0.4185 + }, + { + "start": 7791.02, + "end": 7792.34, + "probability": 0.119 + }, + { + "start": 7792.75, + "end": 7795.9, + "probability": 0.1732 + }, + { + "start": 7825.55, + "end": 7828.14, + "probability": 0.7403 + }, + { + "start": 7828.84, + "end": 7829.84, + "probability": 0.5862 + }, + { + "start": 7830.42, + "end": 7832.52, + "probability": 0.9417 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.7, + "end": 7838.78, + "probability": 0.9966 + }, + { + "start": 7839.4, + "end": 7846.6, + "probability": 0.859 + }, + { + "start": 7846.9, + "end": 7846.9, + "probability": 0.0068 + }, + { + "start": 7846.9, + "end": 7850.9, + "probability": 0.941 + }, + { + "start": 7851.1, + "end": 7856.6, + "probability": 0.7854 + }, + { + "start": 7856.7, + "end": 7859.64, + "probability": 0.7633 + }, + { + "start": 7859.72, + "end": 7860.28, + "probability": 0.6538 + }, + { + "start": 7860.42, + "end": 7864.2, + "probability": 0.8384 + }, + { + "start": 7864.68, + "end": 7866.98, + "probability": 0.9855 + }, + { + "start": 7867.52, + "end": 7869.54, + "probability": 0.8208 + }, + { + "start": 7869.62, + "end": 7871.14, + "probability": 0.687 + }, + { + "start": 7871.66, + "end": 7874.8, + "probability": 0.9785 + }, + { + "start": 7875.86, + "end": 7878.6, + "probability": 0.9932 + }, + { + "start": 7878.6, + "end": 7882.1, + "probability": 0.8794 + }, + { + "start": 7883.02, + "end": 7884.12, + "probability": 0.7813 + }, + { + "start": 7884.16, + "end": 7884.46, + "probability": 0.4346 + }, + { + "start": 7884.54, + "end": 7885.22, + "probability": 0.6576 + }, + { + "start": 7885.54, + "end": 7887.08, + "probability": 0.9787 + }, + { + "start": 7887.86, + "end": 7888.88, + "probability": 0.4722 + }, + { + "start": 7890.38, + "end": 7890.68, + "probability": 0.0517 + }, + { + "start": 7890.68, + "end": 7891.59, + "probability": 0.814 + }, + { + "start": 7891.72, + "end": 7893.61, + "probability": 0.9643 + }, + { + "start": 7894.36, + "end": 7896.96, + "probability": 0.0787 + }, + { + "start": 7897.74, + "end": 7899.06, + "probability": 0.1882 + }, + { + "start": 7899.06, + "end": 7899.06, + "probability": 0.0571 + }, + { + "start": 7899.06, + "end": 7899.06, + "probability": 0.0339 + }, + { + "start": 7899.06, + "end": 7900.32, + "probability": 0.6711 + }, + { + "start": 7900.74, + "end": 7904.88, + "probability": 0.9525 + }, + { + "start": 7905.22, + "end": 7906.48, + "probability": 0.7753 + }, + { + "start": 7906.62, + "end": 7907.96, + "probability": 0.9749 + }, + { + "start": 7909.3, + "end": 7910.94, + "probability": 0.6004 + }, + { + "start": 7911.24, + "end": 7914.14, + "probability": 0.9473 + }, + { + "start": 7914.8, + "end": 7917.26, + "probability": 0.7803 + }, + { + "start": 7917.6, + "end": 7919.56, + "probability": 0.9873 + }, + { + "start": 7921.3, + "end": 7923.08, + "probability": 0.4422 + }, + { + "start": 7923.4, + "end": 7924.9, + "probability": 0.6319 + }, + { + "start": 7925.4, + "end": 7925.78, + "probability": 0.5072 + }, + { + "start": 7925.86, + "end": 7926.06, + "probability": 0.0212 + }, + { + "start": 7926.06, + "end": 7927.4, + "probability": 0.8121 + }, + { + "start": 7927.58, + "end": 7932.0, + "probability": 0.8362 + }, + { + "start": 7932.16, + "end": 7932.98, + "probability": 0.937 + }, + { + "start": 7934.48, + "end": 7934.5, + "probability": 0.2212 + }, + { + "start": 7934.5, + "end": 7940.0, + "probability": 0.4357 + }, + { + "start": 7945.22, + "end": 7950.04, + "probability": 0.5686 + }, + { + "start": 7950.16, + "end": 7952.08, + "probability": 0.1166 + }, + { + "start": 7952.56, + "end": 7955.5, + "probability": 0.996 + }, + { + "start": 7955.5, + "end": 7962.14, + "probability": 0.8586 + }, + { + "start": 7962.2, + "end": 7966.68, + "probability": 0.9409 + }, + { + "start": 7966.68, + "end": 7969.34, + "probability": 0.7619 + }, + { + "start": 7969.74, + "end": 7975.38, + "probability": 0.6653 + }, + { + "start": 7975.72, + "end": 7980.9, + "probability": 0.5602 + }, + { + "start": 7980.92, + "end": 7983.58, + "probability": 0.6656 + }, + { + "start": 7983.68, + "end": 7985.84, + "probability": 0.1446 + }, + { + "start": 7986.04, + "end": 7989.14, + "probability": 0.9744 + }, + { + "start": 7989.5, + "end": 7992.84, + "probability": 0.9718 + }, + { + "start": 7992.94, + "end": 7996.2, + "probability": 0.7524 + }, + { + "start": 7996.48, + "end": 8000.22, + "probability": 0.7426 + }, + { + "start": 8002.36, + "end": 8004.92, + "probability": 0.6899 + }, + { + "start": 8004.92, + "end": 8006.9, + "probability": 0.6624 + }, + { + "start": 8007.0, + "end": 8010.76, + "probability": 0.9917 + }, + { + "start": 8010.84, + "end": 8013.62, + "probability": 0.8557 + }, + { + "start": 8014.1, + "end": 8018.02, + "probability": 0.9844 + }, + { + "start": 8018.02, + "end": 8021.34, + "probability": 0.8936 + }, + { + "start": 8021.7, + "end": 8025.88, + "probability": 0.9444 + }, + { + "start": 8026.18, + "end": 8029.3, + "probability": 0.9438 + }, + { + "start": 8029.3, + "end": 8031.7, + "probability": 0.9883 + }, + { + "start": 8031.96, + "end": 8034.32, + "probability": 0.9398 + }, + { + "start": 8034.94, + "end": 8036.54, + "probability": 0.799 + }, + { + "start": 8036.54, + "end": 8037.28, + "probability": 0.6701 + }, + { + "start": 8037.7, + "end": 8038.48, + "probability": 0.7312 + }, + { + "start": 8038.52, + "end": 8039.6, + "probability": 0.8491 + }, + { + "start": 8039.76, + "end": 8041.96, + "probability": 0.1491 + }, + { + "start": 8041.96, + "end": 8041.96, + "probability": 0.1619 + }, + { + "start": 8041.96, + "end": 8041.96, + "probability": 0.5501 + }, + { + "start": 8041.96, + "end": 8043.52, + "probability": 0.6419 + }, + { + "start": 8044.1, + "end": 8044.12, + "probability": 0.2782 + }, + { + "start": 8044.12, + "end": 8046.66, + "probability": 0.7729 + }, + { + "start": 8047.12, + "end": 8048.94, + "probability": 0.7718 + }, + { + "start": 8049.1, + "end": 8051.76, + "probability": 0.9609 + }, + { + "start": 8051.92, + "end": 8052.18, + "probability": 0.0077 + }, + { + "start": 8053.1, + "end": 8055.8, + "probability": 0.7555 + }, + { + "start": 8056.0, + "end": 8057.94, + "probability": 0.4749 + }, + { + "start": 8057.94, + "end": 8057.94, + "probability": 0.1295 + }, + { + "start": 8057.94, + "end": 8058.84, + "probability": 0.5419 + }, + { + "start": 8058.84, + "end": 8061.58, + "probability": 0.995 + }, + { + "start": 8061.6, + "end": 8062.74, + "probability": 0.7873 + }, + { + "start": 8063.22, + "end": 8063.38, + "probability": 0.0468 + }, + { + "start": 8063.38, + "end": 8063.38, + "probability": 0.284 + }, + { + "start": 8063.38, + "end": 8063.38, + "probability": 0.0482 + }, + { + "start": 8063.38, + "end": 8063.38, + "probability": 0.3489 + }, + { + "start": 8063.38, + "end": 8065.82, + "probability": 0.935 + }, + { + "start": 8065.94, + "end": 8066.52, + "probability": 0.6803 + }, + { + "start": 8067.16, + "end": 8070.3, + "probability": 0.1082 + }, + { + "start": 8070.3, + "end": 8070.3, + "probability": 0.1644 + }, + { + "start": 8070.3, + "end": 8070.3, + "probability": 0.0184 + }, + { + "start": 8070.3, + "end": 8071.0, + "probability": 0.9019 + }, + { + "start": 8071.24, + "end": 8071.48, + "probability": 0.729 + }, + { + "start": 8071.54, + "end": 8072.76, + "probability": 0.8612 + }, + { + "start": 8073.11, + "end": 8076.34, + "probability": 0.869 + }, + { + "start": 8076.4, + "end": 8076.4, + "probability": 0.406 + }, + { + "start": 8076.4, + "end": 8077.51, + "probability": 0.7523 + }, + { + "start": 8078.6, + "end": 8080.9, + "probability": 0.508 + }, + { + "start": 8081.02, + "end": 8082.64, + "probability": 0.2038 + }, + { + "start": 8082.78, + "end": 8087.26, + "probability": 0.9908 + }, + { + "start": 8087.26, + "end": 8093.5, + "probability": 0.9362 + }, + { + "start": 8094.34, + "end": 8097.18, + "probability": 0.9154 + }, + { + "start": 8097.18, + "end": 8099.55, + "probability": 0.9976 + }, + { + "start": 8100.1, + "end": 8104.88, + "probability": 0.5775 + }, + { + "start": 8104.94, + "end": 8109.3, + "probability": 0.8257 + }, + { + "start": 8109.32, + "end": 8111.62, + "probability": 0.5522 + }, + { + "start": 8112.16, + "end": 8113.92, + "probability": 0.1711 + }, + { + "start": 8115.16, + "end": 8119.36, + "probability": 0.9722 + }, + { + "start": 8119.36, + "end": 8122.26, + "probability": 0.9932 + }, + { + "start": 8122.36, + "end": 8125.1, + "probability": 0.5804 + }, + { + "start": 8125.68, + "end": 8126.42, + "probability": 0.5553 + }, + { + "start": 8127.04, + "end": 8128.88, + "probability": 0.5742 + }, + { + "start": 8128.9, + "end": 8130.96, + "probability": 0.8315 + }, + { + "start": 8131.06, + "end": 8132.72, + "probability": 0.1848 + }, + { + "start": 8133.26, + "end": 8135.5, + "probability": 0.9829 + }, + { + "start": 8135.58, + "end": 8136.88, + "probability": 0.8039 + }, + { + "start": 8137.38, + "end": 8140.44, + "probability": 0.587 + }, + { + "start": 8140.52, + "end": 8143.68, + "probability": 0.921 + }, + { + "start": 8144.24, + "end": 8148.22, + "probability": 0.5882 + }, + { + "start": 8150.06, + "end": 8153.64, + "probability": 0.957 + }, + { + "start": 8154.4, + "end": 8154.58, + "probability": 0.2457 + }, + { + "start": 8154.7, + "end": 8156.78, + "probability": 0.606 + }, + { + "start": 8157.24, + "end": 8160.29, + "probability": 0.9873 + }, + { + "start": 8160.94, + "end": 8161.54, + "probability": 0.6462 + }, + { + "start": 8161.68, + "end": 8163.36, + "probability": 0.7059 + }, + { + "start": 8163.44, + "end": 8166.06, + "probability": 0.9832 + }, + { + "start": 8166.48, + "end": 8169.74, + "probability": 0.9304 + }, + { + "start": 8170.26, + "end": 8170.42, + "probability": 0.0246 + }, + { + "start": 8170.58, + "end": 8173.56, + "probability": 0.669 + }, + { + "start": 8173.7, + "end": 8176.43, + "probability": 0.9771 + }, + { + "start": 8176.86, + "end": 8177.08, + "probability": 0.7641 + }, + { + "start": 8178.28, + "end": 8179.76, + "probability": 0.8064 + }, + { + "start": 8179.84, + "end": 8180.32, + "probability": 0.814 + }, + { + "start": 8180.5, + "end": 8181.58, + "probability": 0.9464 + }, + { + "start": 8181.66, + "end": 8182.7, + "probability": 0.8609 + }, + { + "start": 8183.06, + "end": 8185.51, + "probability": 0.9691 + }, + { + "start": 8187.28, + "end": 8189.06, + "probability": 0.8346 + }, + { + "start": 8189.14, + "end": 8191.72, + "probability": 0.5086 + }, + { + "start": 8192.16, + "end": 8193.14, + "probability": 0.7137 + }, + { + "start": 8193.36, + "end": 8194.98, + "probability": 0.8792 + }, + { + "start": 8195.62, + "end": 8197.98, + "probability": 0.8643 + }, + { + "start": 8198.08, + "end": 8200.02, + "probability": 0.817 + }, + { + "start": 8200.5, + "end": 8200.78, + "probability": 0.3836 + }, + { + "start": 8200.8, + "end": 8202.49, + "probability": 0.6964 + }, + { + "start": 8202.82, + "end": 8203.86, + "probability": 0.8761 + }, + { + "start": 8203.9, + "end": 8204.97, + "probability": 0.7704 + }, + { + "start": 8205.06, + "end": 8205.74, + "probability": 0.8667 + }, + { + "start": 8205.88, + "end": 8206.88, + "probability": 0.6822 + }, + { + "start": 8207.1, + "end": 8208.75, + "probability": 0.3398 + }, + { + "start": 8209.08, + "end": 8209.08, + "probability": 0.1829 + }, + { + "start": 8209.28, + "end": 8209.72, + "probability": 0.7027 + }, + { + "start": 8209.86, + "end": 8211.2, + "probability": 0.6087 + }, + { + "start": 8211.96, + "end": 8214.69, + "probability": 0.7383 + }, + { + "start": 8215.2, + "end": 8215.4, + "probability": 0.6249 + }, + { + "start": 8215.94, + "end": 8216.54, + "probability": 0.8588 + }, + { + "start": 8216.66, + "end": 8218.78, + "probability": 0.8462 + }, + { + "start": 8219.0, + "end": 8221.58, + "probability": 0.8437 + }, + { + "start": 8222.16, + "end": 8224.88, + "probability": 0.8129 + }, + { + "start": 8226.64, + "end": 8231.1, + "probability": 0.9772 + }, + { + "start": 8231.11, + "end": 8235.04, + "probability": 0.7936 + }, + { + "start": 8236.24, + "end": 8239.1, + "probability": 0.9931 + }, + { + "start": 8239.62, + "end": 8243.12, + "probability": 0.8538 + }, + { + "start": 8244.22, + "end": 8245.4, + "probability": 0.9313 + }, + { + "start": 8246.04, + "end": 8248.72, + "probability": 0.9988 + }, + { + "start": 8249.86, + "end": 8252.56, + "probability": 0.9766 + }, + { + "start": 8253.62, + "end": 8256.16, + "probability": 0.9267 + }, + { + "start": 8256.68, + "end": 8262.36, + "probability": 0.9844 + }, + { + "start": 8262.98, + "end": 8265.94, + "probability": 0.9873 + }, + { + "start": 8266.5, + "end": 8270.64, + "probability": 0.9338 + }, + { + "start": 8271.9, + "end": 8274.46, + "probability": 0.908 + }, + { + "start": 8275.2, + "end": 8281.64, + "probability": 0.989 + }, + { + "start": 8283.34, + "end": 8284.58, + "probability": 0.9351 + }, + { + "start": 8284.82, + "end": 8290.16, + "probability": 0.983 + }, + { + "start": 8290.28, + "end": 8290.32, + "probability": 0.1769 + }, + { + "start": 8290.48, + "end": 8290.52, + "probability": 0.1511 + }, + { + "start": 8290.66, + "end": 8295.64, + "probability": 0.9971 + }, + { + "start": 8296.26, + "end": 8297.66, + "probability": 0.8479 + }, + { + "start": 8298.26, + "end": 8298.3, + "probability": 0.1329 + }, + { + "start": 8298.32, + "end": 8299.56, + "probability": 0.7961 + }, + { + "start": 8299.68, + "end": 8304.88, + "probability": 0.9895 + }, + { + "start": 8304.88, + "end": 8309.38, + "probability": 0.9844 + }, + { + "start": 8310.76, + "end": 8314.94, + "probability": 0.8413 + }, + { + "start": 8316.22, + "end": 8318.53, + "probability": 0.9518 + }, + { + "start": 8319.36, + "end": 8321.39, + "probability": 0.7721 + }, + { + "start": 8322.18, + "end": 8322.18, + "probability": 0.0075 + }, + { + "start": 8322.18, + "end": 8323.88, + "probability": 0.3752 + }, + { + "start": 8324.02, + "end": 8324.48, + "probability": 0.716 + }, + { + "start": 8324.62, + "end": 8325.36, + "probability": 0.6212 + }, + { + "start": 8326.54, + "end": 8331.2, + "probability": 0.9156 + }, + { + "start": 8331.64, + "end": 8332.78, + "probability": 0.8823 + }, + { + "start": 8333.08, + "end": 8335.7, + "probability": 0.8901 + }, + { + "start": 8336.14, + "end": 8338.8, + "probability": 0.8114 + }, + { + "start": 8339.22, + "end": 8340.61, + "probability": 0.7991 + }, + { + "start": 8341.22, + "end": 8346.0, + "probability": 0.9927 + }, + { + "start": 8346.54, + "end": 8348.96, + "probability": 0.9681 + }, + { + "start": 8349.38, + "end": 8349.82, + "probability": 0.71 + }, + { + "start": 8350.26, + "end": 8352.3, + "probability": 0.6404 + }, + { + "start": 8352.46, + "end": 8354.54, + "probability": 0.6352 + }, + { + "start": 8355.64, + "end": 8357.72, + "probability": 0.9109 + }, + { + "start": 8373.92, + "end": 8375.98, + "probability": 0.9211 + }, + { + "start": 8378.34, + "end": 8379.16, + "probability": 0.7496 + }, + { + "start": 8379.2, + "end": 8386.14, + "probability": 0.9757 + }, + { + "start": 8386.14, + "end": 8389.12, + "probability": 0.9968 + }, + { + "start": 8389.98, + "end": 8391.58, + "probability": 0.9973 + }, + { + "start": 8391.84, + "end": 8399.34, + "probability": 0.9545 + }, + { + "start": 8399.96, + "end": 8403.22, + "probability": 0.7851 + }, + { + "start": 8405.52, + "end": 8410.58, + "probability": 0.9553 + }, + { + "start": 8412.04, + "end": 8415.76, + "probability": 0.763 + }, + { + "start": 8417.88, + "end": 8420.46, + "probability": 0.9645 + }, + { + "start": 8421.24, + "end": 8423.2, + "probability": 0.8594 + }, + { + "start": 8423.94, + "end": 8425.08, + "probability": 0.713 + }, + { + "start": 8426.04, + "end": 8429.74, + "probability": 0.8416 + }, + { + "start": 8430.58, + "end": 8433.98, + "probability": 0.9394 + }, + { + "start": 8434.38, + "end": 8435.2, + "probability": 0.8607 + }, + { + "start": 8436.0, + "end": 8438.44, + "probability": 0.7504 + }, + { + "start": 8439.02, + "end": 8440.5, + "probability": 0.7986 + }, + { + "start": 8441.08, + "end": 8441.32, + "probability": 0.0608 + }, + { + "start": 8441.48, + "end": 8444.88, + "probability": 0.6371 + }, + { + "start": 8445.48, + "end": 8447.0, + "probability": 0.9116 + }, + { + "start": 8448.14, + "end": 8450.76, + "probability": 0.9549 + }, + { + "start": 8450.88, + "end": 8453.46, + "probability": 0.9429 + }, + { + "start": 8454.58, + "end": 8456.26, + "probability": 0.8406 + }, + { + "start": 8456.84, + "end": 8458.0, + "probability": 0.7283 + }, + { + "start": 8458.08, + "end": 8460.88, + "probability": 0.9953 + }, + { + "start": 8460.88, + "end": 8464.56, + "probability": 0.998 + }, + { + "start": 8465.0, + "end": 8466.82, + "probability": 0.978 + }, + { + "start": 8466.9, + "end": 8469.58, + "probability": 0.9944 + }, + { + "start": 8469.62, + "end": 8470.7, + "probability": 0.9774 + }, + { + "start": 8473.33, + "end": 8477.28, + "probability": 0.9696 + }, + { + "start": 8478.06, + "end": 8480.14, + "probability": 0.8283 + }, + { + "start": 8480.3, + "end": 8483.44, + "probability": 0.9523 + }, + { + "start": 8484.06, + "end": 8486.64, + "probability": 0.9951 + }, + { + "start": 8486.64, + "end": 8490.1, + "probability": 0.88 + }, + { + "start": 8490.7, + "end": 8493.88, + "probability": 0.9521 + }, + { + "start": 8493.92, + "end": 8494.74, + "probability": 0.8588 + }, + { + "start": 8495.44, + "end": 8500.26, + "probability": 0.9269 + }, + { + "start": 8500.74, + "end": 8503.25, + "probability": 0.5603 + }, + { + "start": 8504.84, + "end": 8505.44, + "probability": 0.9543 + }, + { + "start": 8507.1, + "end": 8509.62, + "probability": 0.7943 + }, + { + "start": 8511.3, + "end": 8513.96, + "probability": 0.9954 + }, + { + "start": 8514.12, + "end": 8517.36, + "probability": 0.9948 + }, + { + "start": 8517.88, + "end": 8518.16, + "probability": 0.9011 + }, + { + "start": 8519.1, + "end": 8520.4, + "probability": 0.8238 + }, + { + "start": 8520.8, + "end": 8525.9, + "probability": 0.9556 + }, + { + "start": 8526.42, + "end": 8531.64, + "probability": 0.9932 + }, + { + "start": 8532.34, + "end": 8534.2, + "probability": 0.886 + }, + { + "start": 8534.54, + "end": 8537.06, + "probability": 0.9923 + }, + { + "start": 8537.78, + "end": 8540.38, + "probability": 0.931 + }, + { + "start": 8542.0, + "end": 8545.2, + "probability": 0.7949 + }, + { + "start": 8545.8, + "end": 8547.18, + "probability": 0.8645 + }, + { + "start": 8547.8, + "end": 8550.14, + "probability": 0.8787 + }, + { + "start": 8550.14, + "end": 8554.88, + "probability": 0.9733 + }, + { + "start": 8556.04, + "end": 8557.12, + "probability": 0.734 + }, + { + "start": 8557.12, + "end": 8559.02, + "probability": 0.9546 + }, + { + "start": 8559.18, + "end": 8560.31, + "probability": 0.3252 + }, + { + "start": 8561.5, + "end": 8562.34, + "probability": 0.4987 + }, + { + "start": 8562.34, + "end": 8563.2, + "probability": 0.4185 + }, + { + "start": 8564.38, + "end": 8566.66, + "probability": 0.9933 + }, + { + "start": 8566.66, + "end": 8570.88, + "probability": 0.9402 + }, + { + "start": 8571.06, + "end": 8571.32, + "probability": 0.4467 + }, + { + "start": 8571.46, + "end": 8572.04, + "probability": 0.4258 + }, + { + "start": 8572.04, + "end": 8573.92, + "probability": 0.7982 + }, + { + "start": 8573.92, + "end": 8576.9, + "probability": 0.9454 + }, + { + "start": 8578.22, + "end": 8578.84, + "probability": 0.7473 + }, + { + "start": 8586.94, + "end": 8591.04, + "probability": 0.487 + }, + { + "start": 8591.3, + "end": 8591.3, + "probability": 0.1128 + }, + { + "start": 8591.3, + "end": 8591.3, + "probability": 0.0604 + }, + { + "start": 8591.3, + "end": 8592.74, + "probability": 0.6998 + }, + { + "start": 8603.8, + "end": 8606.16, + "probability": 0.7073 + }, + { + "start": 8606.9, + "end": 8606.9, + "probability": 0.021 + }, + { + "start": 8609.52, + "end": 8611.14, + "probability": 0.0676 + }, + { + "start": 8611.14, + "end": 8612.22, + "probability": 0.1579 + }, + { + "start": 8612.86, + "end": 8613.38, + "probability": 0.1067 + }, + { + "start": 8615.21, + "end": 8616.16, + "probability": 0.0558 + }, + { + "start": 8617.26, + "end": 8620.36, + "probability": 0.0302 + }, + { + "start": 8620.36, + "end": 8621.86, + "probability": 0.0245 + }, + { + "start": 8621.86, + "end": 8621.98, + "probability": 0.3326 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.0, + "end": 8704.0, + "probability": 0.0 + }, + { + "start": 8704.26, + "end": 8704.52, + "probability": 0.0479 + }, + { + "start": 8705.46, + "end": 8711.26, + "probability": 0.877 + }, + { + "start": 8711.9, + "end": 8714.96, + "probability": 0.9898 + }, + { + "start": 8715.54, + "end": 8720.56, + "probability": 0.9299 + }, + { + "start": 8721.14, + "end": 8721.82, + "probability": 0.9124 + }, + { + "start": 8722.58, + "end": 8723.6, + "probability": 0.5217 + }, + { + "start": 8724.6, + "end": 8726.62, + "probability": 0.5238 + }, + { + "start": 8727.08, + "end": 8728.96, + "probability": 0.9922 + }, + { + "start": 8729.48, + "end": 8734.32, + "probability": 0.9883 + }, + { + "start": 8734.32, + "end": 8740.02, + "probability": 0.9941 + }, + { + "start": 8740.74, + "end": 8749.08, + "probability": 0.9844 + }, + { + "start": 8749.4, + "end": 8750.4, + "probability": 0.8148 + }, + { + "start": 8750.56, + "end": 8751.56, + "probability": 0.9435 + }, + { + "start": 8751.94, + "end": 8756.7, + "probability": 0.9675 + }, + { + "start": 8757.02, + "end": 8757.26, + "probability": 0.7515 + }, + { + "start": 8758.1, + "end": 8759.76, + "probability": 0.9888 + }, + { + "start": 8759.86, + "end": 8761.1, + "probability": 0.6361 + }, + { + "start": 8761.28, + "end": 8762.18, + "probability": 0.398 + }, + { + "start": 8762.2, + "end": 8763.38, + "probability": 0.8178 + }, + { + "start": 8772.28, + "end": 8773.84, + "probability": 0.7255 + }, + { + "start": 8780.76, + "end": 8781.8, + "probability": 0.7705 + }, + { + "start": 8782.44, + "end": 8783.7, + "probability": 0.5544 + }, + { + "start": 8784.84, + "end": 8790.64, + "probability": 0.7599 + }, + { + "start": 8791.1, + "end": 8792.34, + "probability": 0.9713 + }, + { + "start": 8792.94, + "end": 8795.16, + "probability": 0.9871 + }, + { + "start": 8795.98, + "end": 8796.56, + "probability": 0.2636 + }, + { + "start": 8797.98, + "end": 8800.38, + "probability": 0.9095 + }, + { + "start": 8801.38, + "end": 8805.08, + "probability": 0.9781 + }, + { + "start": 8805.56, + "end": 8810.2, + "probability": 0.9916 + }, + { + "start": 8810.82, + "end": 8814.12, + "probability": 0.9926 + }, + { + "start": 8814.8, + "end": 8815.98, + "probability": 0.9902 + }, + { + "start": 8816.52, + "end": 8818.18, + "probability": 0.9946 + }, + { + "start": 8818.96, + "end": 8819.84, + "probability": 0.717 + }, + { + "start": 8820.44, + "end": 8821.94, + "probability": 0.7286 + }, + { + "start": 8822.4, + "end": 8823.2, + "probability": 0.9095 + }, + { + "start": 8823.28, + "end": 8827.12, + "probability": 0.9822 + }, + { + "start": 8827.34, + "end": 8828.25, + "probability": 0.9624 + }, + { + "start": 8828.8, + "end": 8833.54, + "probability": 0.9971 + }, + { + "start": 8834.24, + "end": 8836.86, + "probability": 0.8158 + }, + { + "start": 8837.28, + "end": 8841.32, + "probability": 0.989 + }, + { + "start": 8842.1, + "end": 8844.45, + "probability": 0.9987 + }, + { + "start": 8844.7, + "end": 8845.16, + "probability": 0.5934 + }, + { + "start": 8845.34, + "end": 8846.74, + "probability": 0.8882 + }, + { + "start": 8847.18, + "end": 8849.02, + "probability": 0.9736 + }, + { + "start": 8850.12, + "end": 8851.66, + "probability": 0.9451 + }, + { + "start": 8851.74, + "end": 8853.82, + "probability": 0.95 + }, + { + "start": 8854.58, + "end": 8860.1, + "probability": 0.9172 + }, + { + "start": 8860.1, + "end": 8864.6, + "probability": 0.9855 + }, + { + "start": 8865.48, + "end": 8866.18, + "probability": 0.9683 + }, + { + "start": 8866.26, + "end": 8867.28, + "probability": 0.8286 + }, + { + "start": 8867.74, + "end": 8869.68, + "probability": 0.9066 + }, + { + "start": 8870.92, + "end": 8873.4, + "probability": 0.9884 + }, + { + "start": 8873.8, + "end": 8877.11, + "probability": 0.9862 + }, + { + "start": 8877.88, + "end": 8881.3, + "probability": 0.9504 + }, + { + "start": 8881.68, + "end": 8882.22, + "probability": 0.7562 + }, + { + "start": 8882.82, + "end": 8883.68, + "probability": 0.3778 + }, + { + "start": 8884.12, + "end": 8888.3, + "probability": 0.9815 + }, + { + "start": 8889.2, + "end": 8892.62, + "probability": 0.9906 + }, + { + "start": 8893.4, + "end": 8896.42, + "probability": 0.9907 + }, + { + "start": 8896.78, + "end": 8900.48, + "probability": 0.901 + }, + { + "start": 8900.84, + "end": 8906.28, + "probability": 0.9785 + }, + { + "start": 8906.54, + "end": 8907.08, + "probability": 0.8191 + }, + { + "start": 8907.92, + "end": 8908.46, + "probability": 0.8809 + }, + { + "start": 8908.54, + "end": 8909.8, + "probability": 0.9806 + }, + { + "start": 8910.0, + "end": 8914.2, + "probability": 0.9974 + }, + { + "start": 8914.68, + "end": 8916.18, + "probability": 0.9365 + }, + { + "start": 8917.02, + "end": 8917.88, + "probability": 0.6993 + }, + { + "start": 8917.96, + "end": 8919.14, + "probability": 0.9297 + }, + { + "start": 8919.28, + "end": 8921.24, + "probability": 0.985 + }, + { + "start": 8922.46, + "end": 8927.32, + "probability": 0.9932 + }, + { + "start": 8927.78, + "end": 8931.8, + "probability": 0.9937 + }, + { + "start": 8931.8, + "end": 8935.44, + "probability": 0.9988 + }, + { + "start": 8937.2, + "end": 8940.06, + "probability": 0.9962 + }, + { + "start": 8940.6, + "end": 8944.74, + "probability": 0.8257 + }, + { + "start": 8945.56, + "end": 8947.42, + "probability": 0.9982 + }, + { + "start": 8947.98, + "end": 8949.84, + "probability": 0.9822 + }, + { + "start": 8950.36, + "end": 8954.62, + "probability": 0.9046 + }, + { + "start": 8955.26, + "end": 8959.44, + "probability": 0.9461 + }, + { + "start": 8959.92, + "end": 8961.8, + "probability": 0.9946 + }, + { + "start": 8962.62, + "end": 8963.06, + "probability": 0.5963 + }, + { + "start": 8963.48, + "end": 8963.82, + "probability": 0.79 + }, + { + "start": 8964.24, + "end": 8966.04, + "probability": 0.8501 + }, + { + "start": 8966.14, + "end": 8967.48, + "probability": 0.6925 + }, + { + "start": 8967.76, + "end": 8968.88, + "probability": 0.6278 + }, + { + "start": 8968.94, + "end": 8970.3, + "probability": 0.9422 + }, + { + "start": 8983.3, + "end": 8984.64, + "probability": 0.6601 + }, + { + "start": 8984.64, + "end": 8985.06, + "probability": 0.8904 + }, + { + "start": 8985.84, + "end": 8988.44, + "probability": 0.6713 + }, + { + "start": 8989.12, + "end": 8990.82, + "probability": 0.8777 + }, + { + "start": 8990.9, + "end": 8992.3, + "probability": 0.9107 + }, + { + "start": 8992.4, + "end": 8996.0, + "probability": 0.906 + }, + { + "start": 8996.84, + "end": 9001.29, + "probability": 0.981 + }, + { + "start": 9001.48, + "end": 9002.52, + "probability": 0.616 + }, + { + "start": 9002.62, + "end": 9003.56, + "probability": 0.8613 + }, + { + "start": 9004.22, + "end": 9006.14, + "probability": 0.9918 + }, + { + "start": 9007.16, + "end": 9011.84, + "probability": 0.884 + }, + { + "start": 9012.52, + "end": 9015.48, + "probability": 0.8028 + }, + { + "start": 9016.8, + "end": 9020.28, + "probability": 0.9967 + }, + { + "start": 9021.66, + "end": 9027.44, + "probability": 0.9694 + }, + { + "start": 9027.78, + "end": 9030.5, + "probability": 0.999 + }, + { + "start": 9031.4, + "end": 9031.98, + "probability": 0.4733 + }, + { + "start": 9032.78, + "end": 9035.72, + "probability": 0.9217 + }, + { + "start": 9036.5, + "end": 9040.83, + "probability": 0.8778 + }, + { + "start": 9043.02, + "end": 9044.42, + "probability": 0.9709 + }, + { + "start": 9044.74, + "end": 9047.2, + "probability": 0.9745 + }, + { + "start": 9047.86, + "end": 9051.76, + "probability": 0.988 + }, + { + "start": 9051.82, + "end": 9053.64, + "probability": 0.944 + }, + { + "start": 9054.12, + "end": 9055.54, + "probability": 0.9949 + }, + { + "start": 9056.6, + "end": 9059.22, + "probability": 0.5091 + }, + { + "start": 9059.42, + "end": 9061.18, + "probability": 0.8929 + }, + { + "start": 9062.26, + "end": 9063.29, + "probability": 0.8004 + }, + { + "start": 9064.42, + "end": 9065.6, + "probability": 0.8704 + }, + { + "start": 9066.48, + "end": 9068.38, + "probability": 0.936 + }, + { + "start": 9069.0, + "end": 9075.64, + "probability": 0.9805 + }, + { + "start": 9075.64, + "end": 9080.84, + "probability": 0.9992 + }, + { + "start": 9081.56, + "end": 9082.28, + "probability": 0.6816 + }, + { + "start": 9082.9, + "end": 9084.48, + "probability": 0.8827 + }, + { + "start": 9085.42, + "end": 9085.8, + "probability": 0.6076 + }, + { + "start": 9085.84, + "end": 9086.58, + "probability": 0.9851 + }, + { + "start": 9086.64, + "end": 9087.46, + "probability": 0.9764 + }, + { + "start": 9087.78, + "end": 9093.52, + "probability": 0.972 + }, + { + "start": 9094.32, + "end": 9096.5, + "probability": 0.8511 + }, + { + "start": 9097.06, + "end": 9099.1, + "probability": 0.9834 + }, + { + "start": 9100.14, + "end": 9103.66, + "probability": 0.9895 + }, + { + "start": 9104.38, + "end": 9108.86, + "probability": 0.9417 + }, + { + "start": 9109.18, + "end": 9114.62, + "probability": 0.8931 + }, + { + "start": 9115.1, + "end": 9116.56, + "probability": 0.7806 + }, + { + "start": 9117.4, + "end": 9123.76, + "probability": 0.9766 + }, + { + "start": 9124.8, + "end": 9128.46, + "probability": 0.9709 + }, + { + "start": 9129.0, + "end": 9130.66, + "probability": 0.9869 + }, + { + "start": 9131.0, + "end": 9137.84, + "probability": 0.9966 + }, + { + "start": 9138.8, + "end": 9140.84, + "probability": 0.9014 + }, + { + "start": 9141.62, + "end": 9143.1, + "probability": 0.9546 + }, + { + "start": 9144.16, + "end": 9145.5, + "probability": 0.96 + }, + { + "start": 9146.46, + "end": 9156.44, + "probability": 0.9907 + }, + { + "start": 9157.04, + "end": 9162.28, + "probability": 0.9927 + }, + { + "start": 9163.5, + "end": 9167.1, + "probability": 0.6865 + }, + { + "start": 9167.56, + "end": 9168.86, + "probability": 0.7083 + }, + { + "start": 9169.22, + "end": 9170.56, + "probability": 0.5712 + }, + { + "start": 9170.56, + "end": 9172.71, + "probability": 0.7241 + }, + { + "start": 9172.94, + "end": 9173.34, + "probability": 0.6622 + }, + { + "start": 9173.42, + "end": 9174.72, + "probability": 0.6692 + }, + { + "start": 9175.06, + "end": 9175.58, + "probability": 0.4206 + }, + { + "start": 9175.58, + "end": 9177.3, + "probability": 0.9705 + }, + { + "start": 9177.78, + "end": 9177.92, + "probability": 0.4911 + }, + { + "start": 9177.96, + "end": 9179.57, + "probability": 0.933 + }, + { + "start": 9179.66, + "end": 9180.5, + "probability": 0.7064 + }, + { + "start": 9180.54, + "end": 9182.1, + "probability": 0.8354 + }, + { + "start": 9182.14, + "end": 9183.02, + "probability": 0.5399 + }, + { + "start": 9183.06, + "end": 9184.28, + "probability": 0.865 + }, + { + "start": 9185.42, + "end": 9187.3, + "probability": 0.7685 + }, + { + "start": 9188.16, + "end": 9188.18, + "probability": 0.28 + }, + { + "start": 9188.18, + "end": 9189.02, + "probability": 0.7116 + }, + { + "start": 9189.54, + "end": 9190.1, + "probability": 0.9329 + }, + { + "start": 9191.18, + "end": 9191.62, + "probability": 0.7696 + }, + { + "start": 9191.86, + "end": 9193.06, + "probability": 0.7986 + }, + { + "start": 9193.46, + "end": 9195.6, + "probability": 0.2177 + }, + { + "start": 9196.54, + "end": 9197.96, + "probability": 0.4661 + }, + { + "start": 9198.58, + "end": 9199.6, + "probability": 0.2822 + }, + { + "start": 9199.7, + "end": 9201.42, + "probability": 0.4833 + }, + { + "start": 9202.78, + "end": 9205.9, + "probability": 0.1143 + }, + { + "start": 9206.11, + "end": 9208.82, + "probability": 0.5528 + }, + { + "start": 9208.98, + "end": 9210.16, + "probability": 0.5542 + }, + { + "start": 9211.56, + "end": 9213.16, + "probability": 0.976 + }, + { + "start": 9215.37, + "end": 9217.6, + "probability": 0.6889 + }, + { + "start": 9217.7, + "end": 9218.84, + "probability": 0.944 + }, + { + "start": 9219.38, + "end": 9221.58, + "probability": 0.5762 + }, + { + "start": 9222.86, + "end": 9223.78, + "probability": 0.7776 + }, + { + "start": 9223.8, + "end": 9229.35, + "probability": 0.8224 + }, + { + "start": 9230.7, + "end": 9235.2, + "probability": 0.9805 + }, + { + "start": 9235.2, + "end": 9239.28, + "probability": 0.9907 + }, + { + "start": 9239.92, + "end": 9243.44, + "probability": 0.8179 + }, + { + "start": 9244.36, + "end": 9248.58, + "probability": 0.9745 + }, + { + "start": 9249.44, + "end": 9251.64, + "probability": 0.9958 + }, + { + "start": 9252.54, + "end": 9256.92, + "probability": 0.8765 + }, + { + "start": 9258.02, + "end": 9262.32, + "probability": 0.9915 + }, + { + "start": 9263.36, + "end": 9267.34, + "probability": 0.9141 + }, + { + "start": 9267.98, + "end": 9272.16, + "probability": 0.9836 + }, + { + "start": 9273.06, + "end": 9278.12, + "probability": 0.9939 + }, + { + "start": 9279.74, + "end": 9285.56, + "probability": 0.993 + }, + { + "start": 9286.18, + "end": 9290.5, + "probability": 0.995 + }, + { + "start": 9291.46, + "end": 9292.8, + "probability": 0.6926 + }, + { + "start": 9292.94, + "end": 9295.46, + "probability": 0.8307 + }, + { + "start": 9295.62, + "end": 9300.28, + "probability": 0.9884 + }, + { + "start": 9300.32, + "end": 9300.78, + "probability": 0.7441 + }, + { + "start": 9301.64, + "end": 9304.26, + "probability": 0.833 + }, + { + "start": 9304.92, + "end": 9307.96, + "probability": 0.9427 + }, + { + "start": 9307.96, + "end": 9310.48, + "probability": 0.9961 + }, + { + "start": 9310.82, + "end": 9313.12, + "probability": 0.9822 + }, + { + "start": 9314.42, + "end": 9320.7, + "probability": 0.8789 + }, + { + "start": 9321.52, + "end": 9325.6, + "probability": 0.7054 + }, + { + "start": 9326.56, + "end": 9326.92, + "probability": 0.8711 + }, + { + "start": 9327.2, + "end": 9330.66, + "probability": 0.9979 + }, + { + "start": 9330.66, + "end": 9334.52, + "probability": 0.9922 + }, + { + "start": 9335.04, + "end": 9340.76, + "probability": 0.7613 + }, + { + "start": 9340.84, + "end": 9343.26, + "probability": 0.9215 + }, + { + "start": 9347.44, + "end": 9352.9, + "probability": 0.754 + }, + { + "start": 9353.16, + "end": 9355.96, + "probability": 0.9033 + }, + { + "start": 9356.18, + "end": 9358.18, + "probability": 0.6077 + }, + { + "start": 9359.62, + "end": 9360.72, + "probability": 0.1756 + }, + { + "start": 9360.9, + "end": 9362.06, + "probability": 0.9142 + }, + { + "start": 9362.93, + "end": 9368.94, + "probability": 0.9077 + }, + { + "start": 9368.94, + "end": 9370.44, + "probability": 0.7919 + }, + { + "start": 9370.62, + "end": 9371.56, + "probability": 0.6779 + }, + { + "start": 9371.6, + "end": 9373.64, + "probability": 0.7367 + }, + { + "start": 9373.94, + "end": 9379.22, + "probability": 0.7964 + }, + { + "start": 9380.02, + "end": 9382.68, + "probability": 0.9788 + }, + { + "start": 9383.12, + "end": 9387.88, + "probability": 0.9686 + }, + { + "start": 9387.88, + "end": 9393.18, + "probability": 0.8072 + }, + { + "start": 9393.28, + "end": 9396.04, + "probability": 0.4767 + }, + { + "start": 9396.32, + "end": 9397.52, + "probability": 0.5081 + }, + { + "start": 9397.62, + "end": 9403.78, + "probability": 0.9873 + }, + { + "start": 9403.88, + "end": 9408.82, + "probability": 0.8213 + }, + { + "start": 9409.08, + "end": 9413.08, + "probability": 0.9775 + }, + { + "start": 9413.1, + "end": 9414.76, + "probability": 0.6256 + }, + { + "start": 9414.84, + "end": 9415.94, + "probability": 0.788 + }, + { + "start": 9416.0, + "end": 9416.42, + "probability": 0.7345 + }, + { + "start": 9416.44, + "end": 9417.82, + "probability": 0.802 + }, + { + "start": 9440.58, + "end": 9441.54, + "probability": 0.6105 + }, + { + "start": 9441.6, + "end": 9441.98, + "probability": 0.9436 + }, + { + "start": 9442.68, + "end": 9446.52, + "probability": 0.6314 + }, + { + "start": 9447.24, + "end": 9452.1, + "probability": 0.9814 + }, + { + "start": 9452.86, + "end": 9453.74, + "probability": 0.6593 + }, + { + "start": 9454.36, + "end": 9455.3, + "probability": 0.998 + }, + { + "start": 9456.0, + "end": 9457.84, + "probability": 0.9689 + }, + { + "start": 9458.7, + "end": 9459.64, + "probability": 0.8313 + }, + { + "start": 9460.52, + "end": 9463.08, + "probability": 0.9985 + }, + { + "start": 9464.28, + "end": 9468.14, + "probability": 0.9918 + }, + { + "start": 9468.96, + "end": 9470.18, + "probability": 0.9375 + }, + { + "start": 9470.68, + "end": 9471.94, + "probability": 0.9484 + }, + { + "start": 9472.3, + "end": 9473.96, + "probability": 0.9932 + }, + { + "start": 9474.16, + "end": 9475.62, + "probability": 0.9941 + }, + { + "start": 9476.24, + "end": 9477.98, + "probability": 0.9849 + }, + { + "start": 9478.44, + "end": 9480.4, + "probability": 0.8532 + }, + { + "start": 9481.08, + "end": 9481.44, + "probability": 0.2615 + }, + { + "start": 9481.68, + "end": 9483.12, + "probability": 0.9201 + }, + { + "start": 9483.56, + "end": 9486.82, + "probability": 0.9917 + }, + { + "start": 9487.94, + "end": 9492.96, + "probability": 0.9966 + }, + { + "start": 9493.48, + "end": 9496.04, + "probability": 0.999 + }, + { + "start": 9497.14, + "end": 9497.88, + "probability": 0.681 + }, + { + "start": 9498.7, + "end": 9499.58, + "probability": 0.7979 + }, + { + "start": 9500.28, + "end": 9504.92, + "probability": 0.9896 + }, + { + "start": 9504.92, + "end": 9510.28, + "probability": 0.9918 + }, + { + "start": 9510.28, + "end": 9515.58, + "probability": 0.9974 + }, + { + "start": 9517.36, + "end": 9517.68, + "probability": 0.3848 + }, + { + "start": 9517.9, + "end": 9522.6, + "probability": 0.9305 + }, + { + "start": 9524.18, + "end": 9529.3, + "probability": 0.9966 + }, + { + "start": 9530.28, + "end": 9530.86, + "probability": 0.3097 + }, + { + "start": 9531.56, + "end": 9532.38, + "probability": 0.8306 + }, + { + "start": 9533.16, + "end": 9533.16, + "probability": 0.0632 + }, + { + "start": 9533.18, + "end": 9533.18, + "probability": 0.0407 + }, + { + "start": 9533.18, + "end": 9537.6, + "probability": 0.9764 + }, + { + "start": 9538.48, + "end": 9541.28, + "probability": 0.9859 + }, + { + "start": 9542.46, + "end": 9545.78, + "probability": 0.8701 + }, + { + "start": 9546.66, + "end": 9550.68, + "probability": 0.9812 + }, + { + "start": 9551.5, + "end": 9555.58, + "probability": 0.9649 + }, + { + "start": 9555.58, + "end": 9560.2, + "probability": 0.987 + }, + { + "start": 9561.4, + "end": 9564.12, + "probability": 0.9134 + }, + { + "start": 9565.62, + "end": 9566.38, + "probability": 0.8031 + }, + { + "start": 9567.04, + "end": 9568.34, + "probability": 0.9819 + }, + { + "start": 9569.16, + "end": 9571.96, + "probability": 0.8612 + }, + { + "start": 9572.48, + "end": 9576.54, + "probability": 0.9861 + }, + { + "start": 9577.02, + "end": 9578.64, + "probability": 0.9751 + }, + { + "start": 9579.42, + "end": 9584.72, + "probability": 0.9899 + }, + { + "start": 9585.2, + "end": 9586.78, + "probability": 0.9906 + }, + { + "start": 9588.14, + "end": 9589.82, + "probability": 0.9677 + }, + { + "start": 9590.48, + "end": 9591.78, + "probability": 0.9801 + }, + { + "start": 9592.22, + "end": 9595.58, + "probability": 0.9972 + }, + { + "start": 9596.12, + "end": 9602.2, + "probability": 0.9934 + }, + { + "start": 9603.62, + "end": 9608.52, + "probability": 0.9859 + }, + { + "start": 9609.78, + "end": 9611.0, + "probability": 0.9231 + }, + { + "start": 9611.78, + "end": 9615.66, + "probability": 0.9431 + }, + { + "start": 9616.44, + "end": 9618.38, + "probability": 0.6167 + }, + { + "start": 9618.6, + "end": 9620.12, + "probability": 0.86 + }, + { + "start": 9620.66, + "end": 9624.62, + "probability": 0.9943 + }, + { + "start": 9624.62, + "end": 9627.44, + "probability": 0.9595 + }, + { + "start": 9627.52, + "end": 9629.62, + "probability": 0.8469 + }, + { + "start": 9630.3, + "end": 9631.62, + "probability": 0.6282 + }, + { + "start": 9632.18, + "end": 9633.22, + "probability": 0.7935 + }, + { + "start": 9633.32, + "end": 9635.18, + "probability": 0.9863 + }, + { + "start": 9635.58, + "end": 9639.8, + "probability": 0.9949 + }, + { + "start": 9639.92, + "end": 9640.62, + "probability": 0.8652 + }, + { + "start": 9641.24, + "end": 9641.98, + "probability": 0.4173 + }, + { + "start": 9642.06, + "end": 9643.88, + "probability": 0.7333 + }, + { + "start": 9644.2, + "end": 9646.86, + "probability": 0.7704 + }, + { + "start": 9657.94, + "end": 9659.3, + "probability": 0.5896 + }, + { + "start": 9659.3, + "end": 9659.68, + "probability": 0.6059 + }, + { + "start": 9661.48, + "end": 9664.34, + "probability": 0.6825 + }, + { + "start": 9665.18, + "end": 9666.4, + "probability": 0.9631 + }, + { + "start": 9666.5, + "end": 9666.98, + "probability": 0.8661 + }, + { + "start": 9667.04, + "end": 9669.02, + "probability": 0.9337 + }, + { + "start": 9669.1, + "end": 9669.68, + "probability": 0.6616 + }, + { + "start": 9669.86, + "end": 9672.2, + "probability": 0.9883 + }, + { + "start": 9672.26, + "end": 9672.92, + "probability": 0.711 + }, + { + "start": 9673.34, + "end": 9675.9, + "probability": 0.9812 + }, + { + "start": 9678.34, + "end": 9680.32, + "probability": 0.9776 + }, + { + "start": 9680.84, + "end": 9681.19, + "probability": 0.9751 + }, + { + "start": 9682.02, + "end": 9682.7, + "probability": 0.9761 + }, + { + "start": 9685.04, + "end": 9686.4, + "probability": 0.6503 + }, + { + "start": 9686.66, + "end": 9689.1, + "probability": 0.9514 + }, + { + "start": 9689.26, + "end": 9691.2, + "probability": 0.9803 + }, + { + "start": 9691.92, + "end": 9692.54, + "probability": 0.8687 + }, + { + "start": 9692.6, + "end": 9693.34, + "probability": 0.597 + }, + { + "start": 9693.4, + "end": 9695.4, + "probability": 0.7949 + }, + { + "start": 9695.98, + "end": 9696.32, + "probability": 0.8193 + }, + { + "start": 9697.08, + "end": 9699.7, + "probability": 0.9607 + }, + { + "start": 9699.76, + "end": 9700.92, + "probability": 0.9254 + }, + { + "start": 9701.32, + "end": 9704.12, + "probability": 0.9753 + }, + { + "start": 9704.88, + "end": 9707.4, + "probability": 0.6602 + }, + { + "start": 9707.69, + "end": 9710.36, + "probability": 0.9855 + }, + { + "start": 9710.42, + "end": 9712.28, + "probability": 0.9196 + }, + { + "start": 9712.64, + "end": 9714.3, + "probability": 0.9527 + }, + { + "start": 9714.42, + "end": 9716.5, + "probability": 0.9963 + }, + { + "start": 9717.06, + "end": 9721.28, + "probability": 0.9264 + }, + { + "start": 9721.6, + "end": 9723.84, + "probability": 0.9976 + }, + { + "start": 9724.24, + "end": 9725.46, + "probability": 0.6501 + }, + { + "start": 9725.5, + "end": 9725.68, + "probability": 0.8477 + }, + { + "start": 9725.86, + "end": 9727.0, + "probability": 0.9015 + }, + { + "start": 9727.08, + "end": 9734.68, + "probability": 0.9033 + }, + { + "start": 9735.14, + "end": 9737.96, + "probability": 0.9778 + }, + { + "start": 9738.4, + "end": 9739.68, + "probability": 0.9587 + }, + { + "start": 9740.14, + "end": 9743.32, + "probability": 0.931 + }, + { + "start": 9743.44, + "end": 9746.08, + "probability": 0.7035 + }, + { + "start": 9746.1, + "end": 9746.38, + "probability": 0.6756 + }, + { + "start": 9746.94, + "end": 9749.82, + "probability": 0.9893 + }, + { + "start": 9750.08, + "end": 9751.28, + "probability": 0.7772 + }, + { + "start": 9751.56, + "end": 9752.9, + "probability": 0.8621 + }, + { + "start": 9753.08, + "end": 9754.32, + "probability": 0.8113 + }, + { + "start": 9755.32, + "end": 9759.34, + "probability": 0.8801 + }, + { + "start": 9759.44, + "end": 9761.26, + "probability": 0.9485 + }, + { + "start": 9761.36, + "end": 9763.24, + "probability": 0.9429 + }, + { + "start": 9763.54, + "end": 9764.46, + "probability": 0.9188 + }, + { + "start": 9764.8, + "end": 9766.28, + "probability": 0.9951 + }, + { + "start": 9766.78, + "end": 9768.32, + "probability": 0.988 + }, + { + "start": 9768.62, + "end": 9769.68, + "probability": 0.881 + }, + { + "start": 9769.78, + "end": 9770.52, + "probability": 0.7826 + }, + { + "start": 9770.56, + "end": 9771.7, + "probability": 0.9988 + }, + { + "start": 9771.74, + "end": 9772.35, + "probability": 0.8511 + }, + { + "start": 9773.12, + "end": 9774.94, + "probability": 0.8688 + }, + { + "start": 9774.94, + "end": 9777.64, + "probability": 0.9279 + }, + { + "start": 9777.72, + "end": 9780.04, + "probability": 0.976 + }, + { + "start": 9780.04, + "end": 9782.32, + "probability": 0.8869 + }, + { + "start": 9782.76, + "end": 9783.4, + "probability": 0.8219 + }, + { + "start": 9784.02, + "end": 9786.48, + "probability": 0.8817 + }, + { + "start": 9786.98, + "end": 9789.12, + "probability": 0.9077 + }, + { + "start": 9789.12, + "end": 9791.44, + "probability": 0.7314 + }, + { + "start": 9791.84, + "end": 9793.06, + "probability": 0.8506 + }, + { + "start": 9793.16, + "end": 9794.04, + "probability": 0.7968 + }, + { + "start": 9794.12, + "end": 9794.91, + "probability": 0.9951 + }, + { + "start": 9795.1, + "end": 9795.92, + "probability": 0.9766 + }, + { + "start": 9796.5, + "end": 9797.46, + "probability": 0.6396 + }, + { + "start": 9797.92, + "end": 9798.62, + "probability": 0.584 + }, + { + "start": 9798.7, + "end": 9799.22, + "probability": 0.5034 + }, + { + "start": 9799.28, + "end": 9801.64, + "probability": 0.8744 + }, + { + "start": 9801.78, + "end": 9802.76, + "probability": 0.8493 + }, + { + "start": 9802.9, + "end": 9803.54, + "probability": 0.6905 + }, + { + "start": 9803.74, + "end": 9804.36, + "probability": 0.837 + }, + { + "start": 9804.52, + "end": 9804.88, + "probability": 0.8026 + }, + { + "start": 9805.22, + "end": 9805.59, + "probability": 0.785 + }, + { + "start": 9806.7, + "end": 9808.52, + "probability": 0.8322 + }, + { + "start": 9808.56, + "end": 9810.08, + "probability": 0.9756 + }, + { + "start": 9810.2, + "end": 9815.88, + "probability": 0.8883 + }, + { + "start": 9816.26, + "end": 9817.68, + "probability": 0.9619 + }, + { + "start": 9817.74, + "end": 9818.46, + "probability": 0.774 + }, + { + "start": 9819.06, + "end": 9822.3, + "probability": 0.9961 + }, + { + "start": 9822.38, + "end": 9823.36, + "probability": 0.9307 + }, + { + "start": 9823.96, + "end": 9824.98, + "probability": 0.8864 + }, + { + "start": 9825.12, + "end": 9825.4, + "probability": 0.8985 + }, + { + "start": 9825.46, + "end": 9827.98, + "probability": 0.9098 + }, + { + "start": 9828.58, + "end": 9829.64, + "probability": 0.9716 + }, + { + "start": 9830.38, + "end": 9832.25, + "probability": 0.7933 + }, + { + "start": 9832.56, + "end": 9834.75, + "probability": 0.6679 + }, + { + "start": 9834.98, + "end": 9836.8, + "probability": 0.9938 + }, + { + "start": 9836.8, + "end": 9842.48, + "probability": 0.9232 + }, + { + "start": 9842.74, + "end": 9844.4, + "probability": 0.8343 + }, + { + "start": 9844.42, + "end": 9845.66, + "probability": 0.5529 + }, + { + "start": 9845.68, + "end": 9847.0, + "probability": 0.8444 + }, + { + "start": 9847.24, + "end": 9847.68, + "probability": 0.8732 + }, + { + "start": 9847.96, + "end": 9848.38, + "probability": 0.6398 + }, + { + "start": 9848.8, + "end": 9850.56, + "probability": 0.8919 + }, + { + "start": 9851.1, + "end": 9852.76, + "probability": 0.8895 + }, + { + "start": 9861.08, + "end": 9861.96, + "probability": 0.4226 + }, + { + "start": 9862.04, + "end": 9862.48, + "probability": 0.8841 + }, + { + "start": 9865.52, + "end": 9866.52, + "probability": 0.795 + }, + { + "start": 9866.82, + "end": 9868.24, + "probability": 0.8683 + }, + { + "start": 9868.34, + "end": 9873.88, + "probability": 0.9634 + }, + { + "start": 9874.56, + "end": 9879.76, + "probability": 0.9919 + }, + { + "start": 9879.86, + "end": 9882.34, + "probability": 0.9912 + }, + { + "start": 9882.44, + "end": 9887.3, + "probability": 0.9852 + }, + { + "start": 9887.34, + "end": 9888.26, + "probability": 0.8672 + }, + { + "start": 9888.54, + "end": 9889.78, + "probability": 0.96 + }, + { + "start": 9890.1, + "end": 9891.36, + "probability": 0.7804 + }, + { + "start": 9891.94, + "end": 9894.72, + "probability": 0.8635 + }, + { + "start": 9895.24, + "end": 9899.06, + "probability": 0.9327 + }, + { + "start": 9899.4, + "end": 9901.08, + "probability": 0.7076 + }, + { + "start": 9901.72, + "end": 9905.24, + "probability": 0.9915 + }, + { + "start": 9905.7, + "end": 9907.32, + "probability": 0.6547 + }, + { + "start": 9907.68, + "end": 9908.66, + "probability": 0.8691 + }, + { + "start": 9909.5, + "end": 9910.44, + "probability": 0.9851 + }, + { + "start": 9910.82, + "end": 9913.8, + "probability": 0.9903 + }, + { + "start": 9913.9, + "end": 9914.72, + "probability": 0.9536 + }, + { + "start": 9914.82, + "end": 9915.44, + "probability": 0.529 + }, + { + "start": 9915.7, + "end": 9916.58, + "probability": 0.6986 + }, + { + "start": 9916.58, + "end": 9917.3, + "probability": 0.6682 + }, + { + "start": 9917.64, + "end": 9918.55, + "probability": 0.8665 + }, + { + "start": 9919.2, + "end": 9919.48, + "probability": 0.8209 + }, + { + "start": 9919.88, + "end": 9920.1, + "probability": 0.8927 + }, + { + "start": 9920.18, + "end": 9920.28, + "probability": 0.7579 + }, + { + "start": 9920.28, + "end": 9920.52, + "probability": 0.712 + }, + { + "start": 9920.58, + "end": 9922.08, + "probability": 0.7718 + }, + { + "start": 9923.0, + "end": 9924.36, + "probability": 0.9388 + }, + { + "start": 9924.74, + "end": 9925.97, + "probability": 0.9946 + }, + { + "start": 9926.08, + "end": 9926.84, + "probability": 0.6626 + }, + { + "start": 9926.9, + "end": 9927.62, + "probability": 0.9849 + }, + { + "start": 9927.68, + "end": 9928.72, + "probability": 0.7716 + }, + { + "start": 9928.8, + "end": 9930.66, + "probability": 0.9647 + }, + { + "start": 9930.92, + "end": 9932.61, + "probability": 0.9274 + }, + { + "start": 9933.22, + "end": 9934.54, + "probability": 0.9925 + }, + { + "start": 9934.76, + "end": 9935.86, + "probability": 0.9968 + }, + { + "start": 9936.18, + "end": 9937.22, + "probability": 0.9555 + }, + { + "start": 9937.3, + "end": 9937.48, + "probability": 0.3144 + }, + { + "start": 9937.86, + "end": 9938.38, + "probability": 0.6682 + }, + { + "start": 9939.06, + "end": 9941.46, + "probability": 0.9109 + }, + { + "start": 9942.1, + "end": 9943.06, + "probability": 0.9956 + }, + { + "start": 9943.82, + "end": 9945.09, + "probability": 0.9647 + }, + { + "start": 9945.6, + "end": 9946.36, + "probability": 0.9549 + }, + { + "start": 9946.48, + "end": 9947.46, + "probability": 0.9709 + }, + { + "start": 9947.54, + "end": 9948.32, + "probability": 0.9134 + }, + { + "start": 9948.48, + "end": 9950.02, + "probability": 0.9941 + }, + { + "start": 9950.38, + "end": 9951.52, + "probability": 0.7919 + }, + { + "start": 9951.58, + "end": 9952.76, + "probability": 0.9702 + }, + { + "start": 9953.26, + "end": 9956.38, + "probability": 0.9794 + }, + { + "start": 9957.02, + "end": 9959.24, + "probability": 0.9484 + }, + { + "start": 9960.26, + "end": 9963.8, + "probability": 0.989 + }, + { + "start": 9964.86, + "end": 9966.5, + "probability": 0.9895 + }, + { + "start": 9966.62, + "end": 9967.41, + "probability": 0.9933 + }, + { + "start": 9967.52, + "end": 9968.6, + "probability": 0.9936 + }, + { + "start": 9968.62, + "end": 9969.64, + "probability": 0.8995 + }, + { + "start": 9970.12, + "end": 9971.1, + "probability": 0.7749 + }, + { + "start": 9971.92, + "end": 9973.7, + "probability": 0.9944 + }, + { + "start": 9973.76, + "end": 9974.2, + "probability": 0.9196 + }, + { + "start": 9974.7, + "end": 9976.16, + "probability": 0.9841 + }, + { + "start": 9976.88, + "end": 9981.66, + "probability": 0.9189 + }, + { + "start": 9981.92, + "end": 9983.09, + "probability": 0.9883 + }, + { + "start": 9983.6, + "end": 9986.04, + "probability": 0.9917 + }, + { + "start": 9986.1, + "end": 9987.94, + "probability": 0.9734 + }, + { + "start": 9987.98, + "end": 9989.46, + "probability": 0.9539 + }, + { + "start": 9990.04, + "end": 9990.68, + "probability": 0.9854 + }, + { + "start": 9990.78, + "end": 9991.4, + "probability": 0.8436 + }, + { + "start": 9991.5, + "end": 9991.96, + "probability": 0.606 + }, + { + "start": 9992.42, + "end": 9993.44, + "probability": 0.5612 + }, + { + "start": 9993.58, + "end": 9996.9, + "probability": 0.9937 + }, + { + "start": 9996.96, + "end": 9997.68, + "probability": 0.7005 + }, + { + "start": 9997.7, + "end": 9999.82, + "probability": 0.9675 + }, + { + "start": 10000.08, + "end": 10002.3, + "probability": 0.9468 + }, + { + "start": 10002.7, + "end": 10004.78, + "probability": 0.9933 + }, + { + "start": 10005.0, + "end": 10007.48, + "probability": 0.9038 + }, + { + "start": 10007.56, + "end": 10009.4, + "probability": 0.9514 + }, + { + "start": 10009.8, + "end": 10011.87, + "probability": 0.989 + }, + { + "start": 10012.58, + "end": 10014.2, + "probability": 0.9636 + }, + { + "start": 10014.24, + "end": 10014.86, + "probability": 0.6139 + }, + { + "start": 10015.26, + "end": 10016.98, + "probability": 0.9546 + }, + { + "start": 10017.12, + "end": 10018.96, + "probability": 0.9849 + }, + { + "start": 10018.98, + "end": 10020.3, + "probability": 0.6894 + }, + { + "start": 10020.46, + "end": 10021.46, + "probability": 0.7847 + }, + { + "start": 10021.46, + "end": 10022.4, + "probability": 0.8768 + }, + { + "start": 10023.04, + "end": 10023.4, + "probability": 0.6649 + }, + { + "start": 10024.14, + "end": 10027.06, + "probability": 0.9799 + }, + { + "start": 10028.3, + "end": 10028.96, + "probability": 0.492 + }, + { + "start": 10029.72, + "end": 10032.04, + "probability": 0.9662 + }, + { + "start": 10032.2, + "end": 10034.5, + "probability": 0.939 + }, + { + "start": 10034.52, + "end": 10035.84, + "probability": 0.9438 + }, + { + "start": 10036.3, + "end": 10037.99, + "probability": 0.8085 + }, + { + "start": 10038.78, + "end": 10040.62, + "probability": 0.7641 + }, + { + "start": 10041.26, + "end": 10043.64, + "probability": 0.8001 + }, + { + "start": 10043.66, + "end": 10047.2, + "probability": 0.9563 + }, + { + "start": 10047.56, + "end": 10049.14, + "probability": 0.9192 + }, + { + "start": 10049.66, + "end": 10052.9, + "probability": 0.9961 + }, + { + "start": 10053.28, + "end": 10053.84, + "probability": 0.5296 + }, + { + "start": 10053.9, + "end": 10054.76, + "probability": 0.832 + }, + { + "start": 10054.8, + "end": 10057.42, + "probability": 0.9539 + }, + { + "start": 10058.14, + "end": 10059.38, + "probability": 0.7647 + }, + { + "start": 10059.48, + "end": 10060.36, + "probability": 0.2695 + }, + { + "start": 10060.4, + "end": 10062.0, + "probability": 0.8957 + }, + { + "start": 10062.4, + "end": 10063.78, + "probability": 0.9257 + }, + { + "start": 10064.38, + "end": 10066.34, + "probability": 0.5535 + }, + { + "start": 10066.46, + "end": 10068.06, + "probability": 0.0924 + }, + { + "start": 10068.4, + "end": 10069.42, + "probability": 0.9054 + }, + { + "start": 10069.48, + "end": 10071.98, + "probability": 0.9735 + }, + { + "start": 10072.12, + "end": 10073.68, + "probability": 0.1689 + }, + { + "start": 10074.0, + "end": 10075.5, + "probability": 0.7352 + }, + { + "start": 10075.5, + "end": 10075.64, + "probability": 0.811 + }, + { + "start": 10076.16, + "end": 10077.24, + "probability": 0.614 + }, + { + "start": 10077.3, + "end": 10078.0, + "probability": 0.4166 + }, + { + "start": 10078.08, + "end": 10079.12, + "probability": 0.7297 + }, + { + "start": 10079.18, + "end": 10079.56, + "probability": 0.9739 + }, + { + "start": 10080.74, + "end": 10081.28, + "probability": 0.897 + }, + { + "start": 10082.28, + "end": 10083.58, + "probability": 0.995 + }, + { + "start": 10085.02, + "end": 10091.04, + "probability": 0.9918 + }, + { + "start": 10091.76, + "end": 10093.32, + "probability": 0.9972 + }, + { + "start": 10093.46, + "end": 10097.88, + "probability": 0.9966 + }, + { + "start": 10098.66, + "end": 10099.8, + "probability": 0.734 + }, + { + "start": 10100.4, + "end": 10101.27, + "probability": 0.9888 + }, + { + "start": 10101.94, + "end": 10105.26, + "probability": 0.9883 + }, + { + "start": 10105.86, + "end": 10109.18, + "probability": 0.8087 + }, + { + "start": 10109.94, + "end": 10111.82, + "probability": 0.9956 + }, + { + "start": 10112.64, + "end": 10114.04, + "probability": 0.9321 + }, + { + "start": 10115.24, + "end": 10116.78, + "probability": 0.9951 + }, + { + "start": 10117.76, + "end": 10119.42, + "probability": 0.9974 + }, + { + "start": 10120.1, + "end": 10122.5, + "probability": 0.9261 + }, + { + "start": 10122.52, + "end": 10125.14, + "probability": 0.8253 + }, + { + "start": 10126.0, + "end": 10127.02, + "probability": 0.9966 + }, + { + "start": 10127.12, + "end": 10127.94, + "probability": 0.9243 + }, + { + "start": 10128.92, + "end": 10129.4, + "probability": 0.4532 + }, + { + "start": 10129.42, + "end": 10130.02, + "probability": 0.8676 + }, + { + "start": 10130.1, + "end": 10130.54, + "probability": 0.6984 + }, + { + "start": 10130.58, + "end": 10131.14, + "probability": 0.4749 + }, + { + "start": 10131.32, + "end": 10132.94, + "probability": 0.8906 + }, + { + "start": 10133.08, + "end": 10134.14, + "probability": 0.7953 + }, + { + "start": 10134.42, + "end": 10135.3, + "probability": 0.5947 + }, + { + "start": 10135.38, + "end": 10136.38, + "probability": 0.9827 + }, + { + "start": 10136.7, + "end": 10138.66, + "probability": 0.9336 + }, + { + "start": 10139.4, + "end": 10140.58, + "probability": 0.9072 + }, + { + "start": 10141.4, + "end": 10144.3, + "probability": 0.9795 + }, + { + "start": 10144.96, + "end": 10145.44, + "probability": 0.9783 + }, + { + "start": 10146.1, + "end": 10146.9, + "probability": 0.9283 + }, + { + "start": 10147.48, + "end": 10149.62, + "probability": 0.9536 + }, + { + "start": 10150.7, + "end": 10152.74, + "probability": 0.8101 + }, + { + "start": 10153.64, + "end": 10155.76, + "probability": 0.997 + }, + { + "start": 10156.68, + "end": 10157.42, + "probability": 0.6345 + }, + { + "start": 10157.72, + "end": 10161.68, + "probability": 0.9476 + }, + { + "start": 10162.8, + "end": 10163.18, + "probability": 0.899 + }, + { + "start": 10164.14, + "end": 10165.56, + "probability": 0.938 + }, + { + "start": 10166.2, + "end": 10170.04, + "probability": 0.993 + }, + { + "start": 10170.8, + "end": 10171.7, + "probability": 0.9917 + }, + { + "start": 10172.52, + "end": 10174.48, + "probability": 0.9993 + }, + { + "start": 10175.48, + "end": 10179.0, + "probability": 0.9968 + }, + { + "start": 10179.58, + "end": 10180.22, + "probability": 0.8 + }, + { + "start": 10180.6, + "end": 10181.94, + "probability": 0.996 + }, + { + "start": 10182.18, + "end": 10182.86, + "probability": 0.9972 + }, + { + "start": 10184.0, + "end": 10184.9, + "probability": 0.9629 + }, + { + "start": 10185.38, + "end": 10187.44, + "probability": 0.9751 + }, + { + "start": 10187.92, + "end": 10190.02, + "probability": 0.7517 + }, + { + "start": 10191.18, + "end": 10194.96, + "probability": 0.9968 + }, + { + "start": 10195.0, + "end": 10196.32, + "probability": 0.998 + }, + { + "start": 10197.6, + "end": 10199.25, + "probability": 0.7812 + }, + { + "start": 10200.22, + "end": 10204.14, + "probability": 0.9846 + }, + { + "start": 10204.64, + "end": 10205.5, + "probability": 0.8359 + }, + { + "start": 10206.26, + "end": 10207.86, + "probability": 0.9954 + }, + { + "start": 10208.94, + "end": 10211.64, + "probability": 0.7667 + }, + { + "start": 10212.74, + "end": 10215.0, + "probability": 0.9178 + }, + { + "start": 10215.56, + "end": 10217.14, + "probability": 0.9344 + }, + { + "start": 10218.2, + "end": 10220.48, + "probability": 0.776 + }, + { + "start": 10221.06, + "end": 10221.22, + "probability": 0.6691 + }, + { + "start": 10222.88, + "end": 10223.42, + "probability": 0.7345 + }, + { + "start": 10223.9, + "end": 10225.56, + "probability": 0.9315 + }, + { + "start": 10225.64, + "end": 10227.2, + "probability": 0.6436 + }, + { + "start": 10227.24, + "end": 10228.64, + "probability": 0.9124 + }, + { + "start": 10231.98, + "end": 10234.54, + "probability": 0.9873 + }, + { + "start": 10236.46, + "end": 10238.74, + "probability": 0.98 + }, + { + "start": 10240.46, + "end": 10241.74, + "probability": 0.7825 + }, + { + "start": 10241.82, + "end": 10242.65, + "probability": 0.5323 + }, + { + "start": 10243.06, + "end": 10244.3, + "probability": 0.8984 + }, + { + "start": 10244.34, + "end": 10244.84, + "probability": 0.9691 + }, + { + "start": 10244.88, + "end": 10245.8, + "probability": 0.698 + }, + { + "start": 10247.84, + "end": 10255.92, + "probability": 0.9655 + }, + { + "start": 10257.94, + "end": 10263.0, + "probability": 0.9858 + }, + { + "start": 10263.76, + "end": 10264.82, + "probability": 0.8391 + }, + { + "start": 10266.22, + "end": 10269.48, + "probability": 0.9941 + }, + { + "start": 10270.4, + "end": 10270.7, + "probability": 0.8176 + }, + { + "start": 10270.74, + "end": 10270.94, + "probability": 0.733 + }, + { + "start": 10271.0, + "end": 10274.8, + "probability": 0.9907 + }, + { + "start": 10275.78, + "end": 10278.58, + "probability": 0.995 + }, + { + "start": 10281.08, + "end": 10284.0, + "probability": 0.9985 + }, + { + "start": 10284.72, + "end": 10287.24, + "probability": 0.9971 + }, + { + "start": 10288.68, + "end": 10290.8, + "probability": 0.7759 + }, + { + "start": 10292.06, + "end": 10293.24, + "probability": 0.9182 + }, + { + "start": 10294.14, + "end": 10298.54, + "probability": 0.9731 + }, + { + "start": 10298.72, + "end": 10300.04, + "probability": 0.6728 + }, + { + "start": 10300.9, + "end": 10302.32, + "probability": 0.7774 + }, + { + "start": 10302.5, + "end": 10302.52, + "probability": 0.2439 + }, + { + "start": 10302.7, + "end": 10307.34, + "probability": 0.9525 + }, + { + "start": 10307.36, + "end": 10309.68, + "probability": 0.989 + }, + { + "start": 10309.68, + "end": 10312.26, + "probability": 0.8442 + }, + { + "start": 10313.34, + "end": 10314.64, + "probability": 0.6778 + }, + { + "start": 10315.26, + "end": 10316.08, + "probability": 0.898 + }, + { + "start": 10316.18, + "end": 10316.4, + "probability": 0.6787 + }, + { + "start": 10316.48, + "end": 10318.34, + "probability": 0.8386 + }, + { + "start": 10318.34, + "end": 10318.62, + "probability": 0.4274 + }, + { + "start": 10319.72, + "end": 10320.96, + "probability": 0.949 + }, + { + "start": 10321.92, + "end": 10328.26, + "probability": 0.9862 + }, + { + "start": 10328.34, + "end": 10332.68, + "probability": 0.9974 + }, + { + "start": 10333.42, + "end": 10337.2, + "probability": 0.9678 + }, + { + "start": 10338.12, + "end": 10338.52, + "probability": 0.668 + }, + { + "start": 10338.78, + "end": 10340.99, + "probability": 0.988 + }, + { + "start": 10341.42, + "end": 10343.26, + "probability": 0.9658 + }, + { + "start": 10344.0, + "end": 10347.1, + "probability": 0.9122 + }, + { + "start": 10347.96, + "end": 10350.62, + "probability": 0.8883 + }, + { + "start": 10351.62, + "end": 10352.38, + "probability": 0.7789 + }, + { + "start": 10352.5, + "end": 10353.36, + "probability": 0.7621 + }, + { + "start": 10353.42, + "end": 10356.68, + "probability": 0.9844 + }, + { + "start": 10357.16, + "end": 10362.04, + "probability": 0.9761 + }, + { + "start": 10362.64, + "end": 10366.4, + "probability": 0.7904 + }, + { + "start": 10367.16, + "end": 10367.74, + "probability": 0.8505 + }, + { + "start": 10368.34, + "end": 10371.3, + "probability": 0.9182 + }, + { + "start": 10372.24, + "end": 10374.3, + "probability": 0.9794 + }, + { + "start": 10375.66, + "end": 10376.56, + "probability": 0.7936 + }, + { + "start": 10377.66, + "end": 10378.58, + "probability": 0.8385 + }, + { + "start": 10378.72, + "end": 10381.68, + "probability": 0.9073 + }, + { + "start": 10381.68, + "end": 10384.08, + "probability": 0.9333 + }, + { + "start": 10384.76, + "end": 10385.94, + "probability": 0.8526 + }, + { + "start": 10386.54, + "end": 10386.82, + "probability": 0.3518 + }, + { + "start": 10387.1, + "end": 10388.28, + "probability": 0.9851 + }, + { + "start": 10388.32, + "end": 10390.36, + "probability": 0.786 + }, + { + "start": 10391.58, + "end": 10392.4, + "probability": 0.3558 + }, + { + "start": 10393.0, + "end": 10394.82, + "probability": 0.7839 + }, + { + "start": 10395.0, + "end": 10397.8, + "probability": 0.9669 + }, + { + "start": 10398.38, + "end": 10400.8, + "probability": 0.8191 + }, + { + "start": 10401.74, + "end": 10403.55, + "probability": 0.9431 + }, + { + "start": 10404.32, + "end": 10404.64, + "probability": 0.6674 + }, + { + "start": 10404.74, + "end": 10405.94, + "probability": 0.8966 + }, + { + "start": 10407.52, + "end": 10408.94, + "probability": 0.5006 + }, + { + "start": 10410.36, + "end": 10411.8, + "probability": 0.7561 + }, + { + "start": 10412.86, + "end": 10418.72, + "probability": 0.9829 + }, + { + "start": 10421.28, + "end": 10423.66, + "probability": 0.8008 + }, + { + "start": 10424.44, + "end": 10426.16, + "probability": 0.8416 + }, + { + "start": 10435.22, + "end": 10436.28, + "probability": 0.5633 + }, + { + "start": 10437.74, + "end": 10438.92, + "probability": 0.7427 + }, + { + "start": 10439.54, + "end": 10440.88, + "probability": 0.3571 + }, + { + "start": 10441.54, + "end": 10443.14, + "probability": 0.5785 + }, + { + "start": 10443.14, + "end": 10443.52, + "probability": 0.8471 + }, + { + "start": 10445.58, + "end": 10448.6, + "probability": 0.9878 + }, + { + "start": 10448.68, + "end": 10449.12, + "probability": 0.5773 + }, + { + "start": 10449.26, + "end": 10449.7, + "probability": 0.7757 + }, + { + "start": 10449.86, + "end": 10450.96, + "probability": 0.043 + }, + { + "start": 10451.54, + "end": 10452.72, + "probability": 0.6182 + }, + { + "start": 10452.86, + "end": 10453.72, + "probability": 0.6143 + }, + { + "start": 10453.8, + "end": 10454.46, + "probability": 0.8422 + }, + { + "start": 10454.52, + "end": 10456.5, + "probability": 0.9829 + }, + { + "start": 10456.5, + "end": 10459.26, + "probability": 0.9963 + }, + { + "start": 10459.58, + "end": 10461.28, + "probability": 0.9988 + }, + { + "start": 10461.94, + "end": 10463.72, + "probability": 0.9939 + }, + { + "start": 10463.84, + "end": 10466.64, + "probability": 0.9903 + }, + { + "start": 10466.96, + "end": 10469.24, + "probability": 0.9973 + }, + { + "start": 10469.5, + "end": 10470.42, + "probability": 0.4268 + }, + { + "start": 10470.5, + "end": 10472.38, + "probability": 0.9222 + }, + { + "start": 10472.96, + "end": 10474.14, + "probability": 0.8066 + }, + { + "start": 10474.4, + "end": 10476.32, + "probability": 0.7693 + }, + { + "start": 10477.64, + "end": 10480.8, + "probability": 0.979 + }, + { + "start": 10481.12, + "end": 10482.26, + "probability": 0.9829 + }, + { + "start": 10483.24, + "end": 10483.96, + "probability": 0.7491 + }, + { + "start": 10484.82, + "end": 10486.77, + "probability": 0.8296 + }, + { + "start": 10488.62, + "end": 10491.0, + "probability": 0.8128 + }, + { + "start": 10491.6, + "end": 10492.74, + "probability": 0.9364 + }, + { + "start": 10493.12, + "end": 10496.64, + "probability": 0.9086 + }, + { + "start": 10497.32, + "end": 10498.32, + "probability": 0.9474 + }, + { + "start": 10498.44, + "end": 10499.84, + "probability": 0.6883 + }, + { + "start": 10500.02, + "end": 10500.68, + "probability": 0.9758 + }, + { + "start": 10501.12, + "end": 10504.6, + "probability": 0.9647 + }, + { + "start": 10504.6, + "end": 10507.36, + "probability": 0.9919 + }, + { + "start": 10507.48, + "end": 10508.37, + "probability": 0.9937 + }, + { + "start": 10509.2, + "end": 10512.74, + "probability": 0.9476 + }, + { + "start": 10513.1, + "end": 10513.82, + "probability": 0.9048 + }, + { + "start": 10513.94, + "end": 10515.06, + "probability": 0.913 + }, + { + "start": 10515.6, + "end": 10517.37, + "probability": 0.8156 + }, + { + "start": 10517.48, + "end": 10519.66, + "probability": 0.8961 + }, + { + "start": 10519.98, + "end": 10521.49, + "probability": 0.8951 + }, + { + "start": 10521.92, + "end": 10523.06, + "probability": 0.9721 + }, + { + "start": 10523.22, + "end": 10523.96, + "probability": 0.946 + }, + { + "start": 10523.98, + "end": 10524.92, + "probability": 0.9624 + }, + { + "start": 10525.06, + "end": 10525.67, + "probability": 0.9598 + }, + { + "start": 10526.38, + "end": 10527.78, + "probability": 0.9983 + }, + { + "start": 10528.38, + "end": 10531.28, + "probability": 0.9974 + }, + { + "start": 10532.22, + "end": 10534.46, + "probability": 0.8323 + }, + { + "start": 10534.5, + "end": 10536.16, + "probability": 0.9201 + }, + { + "start": 10536.32, + "end": 10537.3, + "probability": 0.9651 + }, + { + "start": 10537.4, + "end": 10540.62, + "probability": 0.9949 + }, + { + "start": 10540.78, + "end": 10546.62, + "probability": 0.9409 + }, + { + "start": 10546.94, + "end": 10549.52, + "probability": 0.9926 + }, + { + "start": 10549.56, + "end": 10550.8, + "probability": 0.5075 + }, + { + "start": 10551.98, + "end": 10555.76, + "probability": 0.9686 + }, + { + "start": 10556.38, + "end": 10559.74, + "probability": 0.7006 + }, + { + "start": 10560.2, + "end": 10560.8, + "probability": 0.9155 + }, + { + "start": 10561.12, + "end": 10561.68, + "probability": 0.9699 + }, + { + "start": 10561.92, + "end": 10562.5, + "probability": 0.8167 + }, + { + "start": 10562.9, + "end": 10564.6, + "probability": 0.7547 + }, + { + "start": 10564.98, + "end": 10565.78, + "probability": 0.9917 + }, + { + "start": 10566.78, + "end": 10568.02, + "probability": 0.9966 + }, + { + "start": 10569.82, + "end": 10576.72, + "probability": 0.9905 + }, + { + "start": 10577.04, + "end": 10578.58, + "probability": 0.9533 + }, + { + "start": 10578.74, + "end": 10579.24, + "probability": 0.9372 + }, + { + "start": 10579.54, + "end": 10579.93, + "probability": 0.9729 + }, + { + "start": 10580.1, + "end": 10581.8, + "probability": 0.9364 + }, + { + "start": 10582.08, + "end": 10583.94, + "probability": 0.9821 + }, + { + "start": 10584.24, + "end": 10585.33, + "probability": 0.9329 + }, + { + "start": 10586.04, + "end": 10591.84, + "probability": 0.992 + }, + { + "start": 10592.2, + "end": 10593.46, + "probability": 0.9269 + }, + { + "start": 10593.62, + "end": 10595.02, + "probability": 0.9612 + }, + { + "start": 10595.68, + "end": 10595.76, + "probability": 0.5171 + }, + { + "start": 10595.84, + "end": 10598.59, + "probability": 0.992 + }, + { + "start": 10598.76, + "end": 10601.06, + "probability": 0.9159 + }, + { + "start": 10601.18, + "end": 10602.04, + "probability": 0.5117 + }, + { + "start": 10602.36, + "end": 10603.9, + "probability": 0.9183 + }, + { + "start": 10604.0, + "end": 10604.72, + "probability": 0.9172 + }, + { + "start": 10604.8, + "end": 10607.02, + "probability": 0.8987 + }, + { + "start": 10607.08, + "end": 10609.72, + "probability": 0.9382 + }, + { + "start": 10609.74, + "end": 10611.5, + "probability": 0.9885 + }, + { + "start": 10611.94, + "end": 10613.88, + "probability": 0.8862 + }, + { + "start": 10614.8, + "end": 10615.7, + "probability": 0.8647 + }, + { + "start": 10616.34, + "end": 10618.5, + "probability": 0.6119 + }, + { + "start": 10619.42, + "end": 10623.7, + "probability": 0.985 + }, + { + "start": 10625.32, + "end": 10625.82, + "probability": 0.8718 + }, + { + "start": 10625.86, + "end": 10629.46, + "probability": 0.9434 + }, + { + "start": 10629.94, + "end": 10630.32, + "probability": 0.6764 + }, + { + "start": 10630.42, + "end": 10634.34, + "probability": 0.9224 + }, + { + "start": 10634.64, + "end": 10636.08, + "probability": 0.9917 + }, + { + "start": 10636.18, + "end": 10638.26, + "probability": 0.9802 + }, + { + "start": 10638.76, + "end": 10640.51, + "probability": 0.9657 + }, + { + "start": 10640.86, + "end": 10641.78, + "probability": 0.8797 + }, + { + "start": 10642.0, + "end": 10643.92, + "probability": 0.9912 + }, + { + "start": 10644.44, + "end": 10649.46, + "probability": 0.9706 + }, + { + "start": 10649.46, + "end": 10654.46, + "probability": 0.8287 + }, + { + "start": 10654.64, + "end": 10658.69, + "probability": 0.9985 + }, + { + "start": 10658.97, + "end": 10663.45, + "probability": 0.9954 + }, + { + "start": 10663.93, + "end": 10666.83, + "probability": 0.9956 + }, + { + "start": 10667.03, + "end": 10667.47, + "probability": 0.7299 + }, + { + "start": 10668.57, + "end": 10671.15, + "probability": 0.9067 + }, + { + "start": 10671.23, + "end": 10672.73, + "probability": 0.8558 + }, + { + "start": 10673.01, + "end": 10674.09, + "probability": 0.3913 + }, + { + "start": 10674.13, + "end": 10675.37, + "probability": 0.9871 + }, + { + "start": 10682.57, + "end": 10684.09, + "probability": 0.6728 + }, + { + "start": 10684.09, + "end": 10684.43, + "probability": 0.847 + }, + { + "start": 10684.45, + "end": 10684.65, + "probability": 0.4388 + }, + { + "start": 10684.81, + "end": 10684.85, + "probability": 0.5644 + }, + { + "start": 10684.91, + "end": 10686.41, + "probability": 0.9834 + }, + { + "start": 10687.35, + "end": 10687.69, + "probability": 0.7084 + }, + { + "start": 10687.75, + "end": 10688.13, + "probability": 0.7619 + }, + { + "start": 10688.19, + "end": 10689.25, + "probability": 0.9521 + }, + { + "start": 10690.41, + "end": 10691.99, + "probability": 0.3486 + }, + { + "start": 10692.01, + "end": 10692.73, + "probability": 0.0603 + }, + { + "start": 10692.73, + "end": 10692.95, + "probability": 0.0977 + }, + { + "start": 10693.13, + "end": 10693.83, + "probability": 0.8519 + }, + { + "start": 10694.47, + "end": 10696.11, + "probability": 0.7275 + }, + { + "start": 10696.25, + "end": 10697.63, + "probability": 0.8816 + }, + { + "start": 10697.81, + "end": 10698.73, + "probability": 0.6242 + }, + { + "start": 10698.81, + "end": 10699.11, + "probability": 0.3888 + }, + { + "start": 10699.23, + "end": 10699.67, + "probability": 0.7677 + }, + { + "start": 10699.75, + "end": 10701.65, + "probability": 0.6357 + }, + { + "start": 10701.65, + "end": 10702.55, + "probability": 0.9713 + }, + { + "start": 10703.25, + "end": 10703.74, + "probability": 0.1242 + }, + { + "start": 10704.59, + "end": 10706.05, + "probability": 0.2842 + }, + { + "start": 10706.31, + "end": 10710.21, + "probability": 0.7361 + }, + { + "start": 10711.87, + "end": 10715.01, + "probability": 0.5045 + }, + { + "start": 10715.13, + "end": 10715.65, + "probability": 0.1146 + }, + { + "start": 10715.65, + "end": 10716.49, + "probability": 0.2336 + }, + { + "start": 10716.63, + "end": 10717.12, + "probability": 0.5298 + }, + { + "start": 10717.53, + "end": 10717.93, + "probability": 0.6226 + }, + { + "start": 10718.97, + "end": 10720.51, + "probability": 0.5291 + }, + { + "start": 10722.43, + "end": 10723.51, + "probability": 0.0197 + }, + { + "start": 10724.41, + "end": 10725.07, + "probability": 0.0104 + }, + { + "start": 10726.71, + "end": 10728.31, + "probability": 0.0575 + }, + { + "start": 10728.43, + "end": 10728.43, + "probability": 0.3902 + }, + { + "start": 10728.43, + "end": 10728.43, + "probability": 0.2991 + }, + { + "start": 10728.43, + "end": 10728.43, + "probability": 0.2299 + }, + { + "start": 10729.23, + "end": 10730.17, + "probability": 0.0854 + }, + { + "start": 10730.71, + "end": 10731.81, + "probability": 0.0875 + }, + { + "start": 10732.61, + "end": 10732.85, + "probability": 0.3206 + }, + { + "start": 10732.85, + "end": 10733.97, + "probability": 0.6563 + }, + { + "start": 10735.07, + "end": 10736.93, + "probability": 0.3298 + }, + { + "start": 10737.23, + "end": 10739.75, + "probability": 0.7473 + }, + { + "start": 10740.13, + "end": 10742.01, + "probability": 0.351 + }, + { + "start": 10742.77, + "end": 10743.61, + "probability": 0.3689 + }, + { + "start": 10743.81, + "end": 10745.53, + "probability": 0.8673 + }, + { + "start": 10746.81, + "end": 10747.39, + "probability": 0.3148 + }, + { + "start": 10747.39, + "end": 10751.09, + "probability": 0.4361 + }, + { + "start": 10751.27, + "end": 10752.31, + "probability": 0.0714 + }, + { + "start": 10756.77, + "end": 10759.27, + "probability": 0.0402 + }, + { + "start": 10760.91, + "end": 10766.89, + "probability": 0.5198 + }, + { + "start": 10766.89, + "end": 10767.55, + "probability": 0.0112 + }, + { + "start": 10771.95, + "end": 10789.0, + "probability": 0.0 + }, + { + "start": 10789.0, + "end": 10789.0, + "probability": 0.0 + }, + { + "start": 10789.0, + "end": 10789.0, + "probability": 0.0 + }, + { + "start": 10789.0, + "end": 10789.0, + "probability": 0.0 + }, + { + "start": 10789.0, + "end": 10789.0, + "probability": 0.0 + }, + { + "start": 10789.0, + "end": 10789.0, + "probability": 0.0 + }, + { + "start": 10789.08, + "end": 10790.12, + "probability": 0.175 + }, + { + "start": 10791.66, + "end": 10794.5, + "probability": 0.2188 + }, + { + "start": 10794.8, + "end": 10794.82, + "probability": 0.2247 + }, + { + "start": 10794.82, + "end": 10794.82, + "probability": 0.0548 + }, + { + "start": 10794.82, + "end": 10794.82, + "probability": 0.0265 + }, + { + "start": 10794.82, + "end": 10797.1, + "probability": 0.2469 + }, + { + "start": 10797.18, + "end": 10798.35, + "probability": 0.725 + }, + { + "start": 10798.5, + "end": 10799.14, + "probability": 0.7177 + }, + { + "start": 10799.14, + "end": 10800.1, + "probability": 0.3551 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.0, + "end": 13818.0, + "probability": 0.0 + }, + { + "start": 13818.46, + "end": 13822.82, + "probability": 0.7881 + }, + { + "start": 13823.4, + "end": 13826.08, + "probability": 0.3308 + }, + { + "start": 13826.7, + "end": 13827.88, + "probability": 0.3613 + }, + { + "start": 13828.44, + "end": 13830.58, + "probability": 0.7425 + }, + { + "start": 13836.56, + "end": 13837.2, + "probability": 0.7024 + }, + { + "start": 13837.3, + "end": 13839.16, + "probability": 0.9895 + }, + { + "start": 13839.18, + "end": 13840.44, + "probability": 0.8942 + }, + { + "start": 13840.46, + "end": 13842.82, + "probability": 0.9269 + }, + { + "start": 13843.58, + "end": 13846.67, + "probability": 0.9577 + }, + { + "start": 13846.82, + "end": 13849.94, + "probability": 0.9763 + }, + { + "start": 13850.56, + "end": 13852.52, + "probability": 0.2131 + }, + { + "start": 13852.52, + "end": 13853.0, + "probability": 0.5979 + }, + { + "start": 13853.3, + "end": 13858.22, + "probability": 0.9152 + }, + { + "start": 13858.68, + "end": 13862.56, + "probability": 0.8714 + }, + { + "start": 13862.56, + "end": 13865.3, + "probability": 0.4315 + }, + { + "start": 13866.18, + "end": 13867.14, + "probability": 0.715 + }, + { + "start": 13867.18, + "end": 13869.03, + "probability": 0.9978 + }, + { + "start": 13869.12, + "end": 13872.86, + "probability": 0.8628 + }, + { + "start": 13873.22, + "end": 13876.08, + "probability": 0.8804 + }, + { + "start": 13877.0, + "end": 13878.98, + "probability": 0.9237 + }, + { + "start": 13879.18, + "end": 13880.46, + "probability": 0.9417 + }, + { + "start": 13880.94, + "end": 13882.0, + "probability": 0.9587 + }, + { + "start": 13882.14, + "end": 13884.36, + "probability": 0.9943 + }, + { + "start": 13884.76, + "end": 13886.7, + "probability": 0.7541 + }, + { + "start": 13886.78, + "end": 13887.12, + "probability": 0.4671 + }, + { + "start": 13887.62, + "end": 13888.34, + "probability": 0.9647 + }, + { + "start": 13888.86, + "end": 13892.0, + "probability": 0.9894 + }, + { + "start": 13892.64, + "end": 13895.5, + "probability": 0.9922 + }, + { + "start": 13896.12, + "end": 13899.06, + "probability": 0.9733 + }, + { + "start": 13899.22, + "end": 13899.52, + "probability": 0.6923 + }, + { + "start": 13899.66, + "end": 13900.54, + "probability": 0.881 + }, + { + "start": 13900.7, + "end": 13901.94, + "probability": 0.8734 + }, + { + "start": 13902.06, + "end": 13902.8, + "probability": 0.618 + }, + { + "start": 13903.02, + "end": 13903.38, + "probability": 0.5761 + }, + { + "start": 13903.38, + "end": 13906.86, + "probability": 0.991 + }, + { + "start": 13907.34, + "end": 13908.08, + "probability": 0.6455 + }, + { + "start": 13909.54, + "end": 13911.2, + "probability": 0.3145 + }, + { + "start": 13911.2, + "end": 13912.66, + "probability": 0.3994 + }, + { + "start": 13912.84, + "end": 13914.02, + "probability": 0.5183 + }, + { + "start": 13914.42, + "end": 13914.5, + "probability": 0.6384 + }, + { + "start": 13914.56, + "end": 13914.86, + "probability": 0.8414 + }, + { + "start": 13914.92, + "end": 13915.32, + "probability": 0.6916 + }, + { + "start": 13915.42, + "end": 13916.9, + "probability": 0.7249 + }, + { + "start": 13917.14, + "end": 13917.24, + "probability": 0.2264 + }, + { + "start": 13917.32, + "end": 13920.58, + "probability": 0.9842 + }, + { + "start": 13920.88, + "end": 13923.56, + "probability": 0.8695 + }, + { + "start": 13923.66, + "end": 13927.92, + "probability": 0.9077 + }, + { + "start": 13928.38, + "end": 13929.52, + "probability": 0.8488 + }, + { + "start": 13930.18, + "end": 13932.0, + "probability": 0.9839 + }, + { + "start": 13932.1, + "end": 13935.08, + "probability": 0.9917 + }, + { + "start": 13935.08, + "end": 13938.2, + "probability": 0.6717 + }, + { + "start": 13938.28, + "end": 13940.16, + "probability": 0.4931 + }, + { + "start": 13940.18, + "end": 13940.78, + "probability": 0.6534 + }, + { + "start": 13940.84, + "end": 13941.24, + "probability": 0.9201 + }, + { + "start": 13941.34, + "end": 13941.9, + "probability": 0.4383 + }, + { + "start": 13941.96, + "end": 13944.74, + "probability": 0.9957 + }, + { + "start": 13944.88, + "end": 13950.98, + "probability": 0.9485 + }, + { + "start": 13951.48, + "end": 13951.48, + "probability": 0.024 + }, + { + "start": 13951.48, + "end": 13951.48, + "probability": 0.2871 + }, + { + "start": 13951.48, + "end": 13953.42, + "probability": 0.8966 + }, + { + "start": 13953.58, + "end": 13955.78, + "probability": 0.9445 + }, + { + "start": 13956.26, + "end": 13956.26, + "probability": 0.2772 + }, + { + "start": 13956.5, + "end": 13957.42, + "probability": 0.0257 + }, + { + "start": 13957.66, + "end": 13957.66, + "probability": 0.3631 + }, + { + "start": 13957.66, + "end": 13958.28, + "probability": 0.0316 + }, + { + "start": 13958.52, + "end": 13959.52, + "probability": 0.4018 + }, + { + "start": 13959.92, + "end": 13961.18, + "probability": 0.6958 + }, + { + "start": 13961.4, + "end": 13962.71, + "probability": 0.7174 + }, + { + "start": 13962.84, + "end": 13963.72, + "probability": 0.8394 + }, + { + "start": 13963.72, + "end": 13966.83, + "probability": 0.8898 + }, + { + "start": 13968.34, + "end": 13968.54, + "probability": 0.0211 + }, + { + "start": 13968.54, + "end": 13968.54, + "probability": 0.0515 + }, + { + "start": 13968.54, + "end": 13970.48, + "probability": 0.9172 + }, + { + "start": 13971.2, + "end": 13974.12, + "probability": 0.9505 + }, + { + "start": 13974.24, + "end": 13974.38, + "probability": 0.7107 + }, + { + "start": 13974.42, + "end": 13974.8, + "probability": 0.8308 + }, + { + "start": 13974.9, + "end": 13978.82, + "probability": 0.9895 + }, + { + "start": 13978.82, + "end": 13982.14, + "probability": 0.9951 + }, + { + "start": 13982.22, + "end": 13982.62, + "probability": 0.698 + }, + { + "start": 13983.38, + "end": 13986.96, + "probability": 0.9846 + }, + { + "start": 13987.06, + "end": 13987.68, + "probability": 0.6621 + }, + { + "start": 13987.74, + "end": 13988.58, + "probability": 0.9741 + }, + { + "start": 13989.28, + "end": 13991.62, + "probability": 0.9035 + }, + { + "start": 13992.74, + "end": 13995.74, + "probability": 0.8846 + }, + { + "start": 13996.14, + "end": 13998.08, + "probability": 0.6687 + }, + { + "start": 13998.38, + "end": 14000.1, + "probability": 0.8394 + }, + { + "start": 14000.84, + "end": 14002.64, + "probability": 0.9067 + }, + { + "start": 14008.37, + "end": 14011.64, + "probability": 0.5391 + }, + { + "start": 14012.66, + "end": 14019.94, + "probability": 0.9839 + }, + { + "start": 14021.08, + "end": 14025.42, + "probability": 0.9713 + }, + { + "start": 14026.9, + "end": 14029.96, + "probability": 0.9961 + }, + { + "start": 14030.12, + "end": 14031.54, + "probability": 0.8472 + }, + { + "start": 14032.26, + "end": 14037.46, + "probability": 0.6734 + }, + { + "start": 14038.82, + "end": 14039.74, + "probability": 0.7407 + }, + { + "start": 14039.82, + "end": 14041.9, + "probability": 0.9827 + }, + { + "start": 14042.16, + "end": 14043.26, + "probability": 0.8129 + }, + { + "start": 14043.3, + "end": 14046.56, + "probability": 0.9688 + }, + { + "start": 14047.06, + "end": 14048.48, + "probability": 0.4459 + }, + { + "start": 14048.64, + "end": 14053.24, + "probability": 0.9932 + }, + { + "start": 14053.56, + "end": 14054.74, + "probability": 0.6823 + }, + { + "start": 14054.88, + "end": 14056.68, + "probability": 0.9812 + }, + { + "start": 14056.78, + "end": 14059.58, + "probability": 0.9546 + }, + { + "start": 14059.94, + "end": 14061.24, + "probability": 0.4983 + }, + { + "start": 14061.38, + "end": 14064.04, + "probability": 0.851 + }, + { + "start": 14064.6, + "end": 14067.38, + "probability": 0.8963 + }, + { + "start": 14067.46, + "end": 14068.3, + "probability": 0.6872 + }, + { + "start": 14069.16, + "end": 14069.72, + "probability": 0.6256 + }, + { + "start": 14069.78, + "end": 14072.16, + "probability": 0.9557 + }, + { + "start": 14072.24, + "end": 14073.08, + "probability": 0.6892 + }, + { + "start": 14073.18, + "end": 14075.3, + "probability": 0.8978 + }, + { + "start": 14075.9, + "end": 14077.74, + "probability": 0.236 + }, + { + "start": 14077.88, + "end": 14078.74, + "probability": 0.8587 + }, + { + "start": 14079.1, + "end": 14082.06, + "probability": 0.9821 + }, + { + "start": 14082.14, + "end": 14082.9, + "probability": 0.6986 + }, + { + "start": 14083.46, + "end": 14084.08, + "probability": 0.6679 + }, + { + "start": 14084.66, + "end": 14085.28, + "probability": 0.6893 + }, + { + "start": 14086.06, + "end": 14089.54, + "probability": 0.7386 + }, + { + "start": 14090.72, + "end": 14093.12, + "probability": 0.9265 + }, + { + "start": 14093.7, + "end": 14098.04, + "probability": 0.9855 + }, + { + "start": 14098.64, + "end": 14100.92, + "probability": 0.9923 + }, + { + "start": 14101.74, + "end": 14103.22, + "probability": 0.4653 + }, + { + "start": 14103.22, + "end": 14108.7, + "probability": 0.9888 + }, + { + "start": 14109.5, + "end": 14114.24, + "probability": 0.9771 + }, + { + "start": 14115.36, + "end": 14116.76, + "probability": 0.2465 + }, + { + "start": 14117.44, + "end": 14123.2, + "probability": 0.9941 + }, + { + "start": 14123.86, + "end": 14126.68, + "probability": 0.749 + }, + { + "start": 14127.16, + "end": 14131.04, + "probability": 0.9565 + }, + { + "start": 14131.04, + "end": 14134.24, + "probability": 0.5208 + }, + { + "start": 14135.06, + "end": 14136.94, + "probability": 0.1312 + }, + { + "start": 14137.26, + "end": 14140.96, + "probability": 0.9456 + }, + { + "start": 14140.96, + "end": 14144.46, + "probability": 0.9841 + }, + { + "start": 14144.66, + "end": 14145.3, + "probability": 0.2183 + }, + { + "start": 14145.3, + "end": 14150.3, + "probability": 0.9378 + }, + { + "start": 14150.74, + "end": 14153.32, + "probability": 0.6953 + }, + { + "start": 14153.68, + "end": 14157.64, + "probability": 0.964 + }, + { + "start": 14158.04, + "end": 14159.95, + "probability": 0.9851 + }, + { + "start": 14160.4, + "end": 14161.92, + "probability": 0.9932 + }, + { + "start": 14162.84, + "end": 14165.96, + "probability": 0.9554 + }, + { + "start": 14165.96, + "end": 14167.92, + "probability": 0.9956 + }, + { + "start": 14168.62, + "end": 14171.16, + "probability": 0.3991 + }, + { + "start": 14172.26, + "end": 14175.72, + "probability": 0.89 + }, + { + "start": 14175.72, + "end": 14179.92, + "probability": 0.6798 + }, + { + "start": 14180.3, + "end": 14181.08, + "probability": 0.1344 + }, + { + "start": 14181.08, + "end": 14183.4, + "probability": 0.649 + }, + { + "start": 14183.52, + "end": 14185.04, + "probability": 0.6702 + }, + { + "start": 14185.92, + "end": 14187.2, + "probability": 0.3949 + }, + { + "start": 14187.2, + "end": 14191.46, + "probability": 0.9268 + }, + { + "start": 14192.16, + "end": 14194.68, + "probability": 0.0786 + }, + { + "start": 14194.68, + "end": 14197.76, + "probability": 0.9743 + }, + { + "start": 14197.76, + "end": 14200.22, + "probability": 0.8963 + }, + { + "start": 14200.78, + "end": 14201.3, + "probability": 0.1474 + }, + { + "start": 14201.74, + "end": 14202.38, + "probability": 0.6318 + }, + { + "start": 14203.48, + "end": 14204.76, + "probability": 0.477 + }, + { + "start": 14205.12, + "end": 14208.1, + "probability": 0.9806 + }, + { + "start": 14208.16, + "end": 14209.84, + "probability": 0.9563 + }, + { + "start": 14209.86, + "end": 14210.5, + "probability": 0.555 + }, + { + "start": 14211.2, + "end": 14212.14, + "probability": 0.2418 + }, + { + "start": 14212.6, + "end": 14215.4, + "probability": 0.9045 + }, + { + "start": 14215.4, + "end": 14219.06, + "probability": 0.7272 + }, + { + "start": 14219.22, + "end": 14219.64, + "probability": 0.3834 + }, + { + "start": 14219.64, + "end": 14220.3, + "probability": 0.3111 + }, + { + "start": 14220.46, + "end": 14222.4, + "probability": 0.4988 + }, + { + "start": 14222.98, + "end": 14226.18, + "probability": 0.996 + }, + { + "start": 14226.86, + "end": 14227.78, + "probability": 0.0175 + }, + { + "start": 14227.82, + "end": 14233.12, + "probability": 0.7645 + }, + { + "start": 14233.32, + "end": 14234.24, + "probability": 0.7262 + }, + { + "start": 14234.58, + "end": 14237.64, + "probability": 0.9684 + }, + { + "start": 14238.08, + "end": 14239.33, + "probability": 0.9442 + }, + { + "start": 14239.78, + "end": 14242.98, + "probability": 0.9882 + }, + { + "start": 14243.88, + "end": 14246.52, + "probability": 0.963 + }, + { + "start": 14246.7, + "end": 14247.0, + "probability": 0.8127 + }, + { + "start": 14247.28, + "end": 14248.7, + "probability": 0.8177 + }, + { + "start": 14249.46, + "end": 14251.08, + "probability": 0.9019 + }, + { + "start": 14251.16, + "end": 14253.5, + "probability": 0.8776 + }, + { + "start": 14260.76, + "end": 14261.72, + "probability": 0.9268 + }, + { + "start": 14262.46, + "end": 14263.42, + "probability": 0.7867 + }, + { + "start": 14263.66, + "end": 14264.6, + "probability": 0.9863 + }, + { + "start": 14264.64, + "end": 14266.74, + "probability": 0.7056 + }, + { + "start": 14266.96, + "end": 14267.06, + "probability": 0.8584 + }, + { + "start": 14267.4, + "end": 14269.86, + "probability": 0.7348 + }, + { + "start": 14270.44, + "end": 14274.16, + "probability": 0.9414 + }, + { + "start": 14274.8, + "end": 14279.16, + "probability": 0.9795 + }, + { + "start": 14279.16, + "end": 14282.22, + "probability": 0.9039 + }, + { + "start": 14282.8, + "end": 14286.08, + "probability": 0.9937 + }, + { + "start": 14286.64, + "end": 14289.38, + "probability": 0.6513 + }, + { + "start": 14289.84, + "end": 14291.5, + "probability": 0.8501 + }, + { + "start": 14291.6, + "end": 14292.08, + "probability": 0.6995 + }, + { + "start": 14292.16, + "end": 14293.86, + "probability": 0.8774 + }, + { + "start": 14294.34, + "end": 14296.36, + "probability": 0.9022 + }, + { + "start": 14296.48, + "end": 14297.06, + "probability": 0.9271 + }, + { + "start": 14297.56, + "end": 14301.16, + "probability": 0.9764 + }, + { + "start": 14301.16, + "end": 14301.98, + "probability": 0.5812 + }, + { + "start": 14302.34, + "end": 14306.22, + "probability": 0.8979 + }, + { + "start": 14306.42, + "end": 14307.06, + "probability": 0.6424 + }, + { + "start": 14307.16, + "end": 14311.52, + "probability": 0.907 + }, + { + "start": 14311.66, + "end": 14313.26, + "probability": 0.9573 + }, + { + "start": 14314.9, + "end": 14316.74, + "probability": 0.3326 + }, + { + "start": 14316.74, + "end": 14317.6, + "probability": 0.8286 + }, + { + "start": 14317.68, + "end": 14319.62, + "probability": 0.8093 + }, + { + "start": 14319.9, + "end": 14324.14, + "probability": 0.9926 + }, + { + "start": 14324.14, + "end": 14328.8, + "probability": 0.9883 + }, + { + "start": 14328.94, + "end": 14331.42, + "probability": 0.9749 + }, + { + "start": 14331.5, + "end": 14334.56, + "probability": 0.8568 + }, + { + "start": 14334.72, + "end": 14336.78, + "probability": 0.9604 + }, + { + "start": 14336.98, + "end": 14338.44, + "probability": 0.8994 + }, + { + "start": 14338.52, + "end": 14339.74, + "probability": 0.5036 + }, + { + "start": 14339.8, + "end": 14340.1, + "probability": 0.4643 + }, + { + "start": 14340.2, + "end": 14343.38, + "probability": 0.9976 + }, + { + "start": 14343.5, + "end": 14344.02, + "probability": 0.6616 + }, + { + "start": 14344.12, + "end": 14345.16, + "probability": 0.7141 + }, + { + "start": 14345.6, + "end": 14348.24, + "probability": 0.9484 + }, + { + "start": 14348.9, + "end": 14350.46, + "probability": 0.9517 + }, + { + "start": 14350.56, + "end": 14351.76, + "probability": 0.9875 + }, + { + "start": 14351.84, + "end": 14355.24, + "probability": 0.7907 + }, + { + "start": 14355.52, + "end": 14355.52, + "probability": 0.0646 + }, + { + "start": 14355.52, + "end": 14359.94, + "probability": 0.9332 + }, + { + "start": 14360.56, + "end": 14364.68, + "probability": 0.9897 + }, + { + "start": 14365.3, + "end": 14366.9, + "probability": 0.5905 + }, + { + "start": 14367.2, + "end": 14367.56, + "probability": 0.2957 + }, + { + "start": 14367.62, + "end": 14370.22, + "probability": 0.8073 + }, + { + "start": 14370.92, + "end": 14372.1, + "probability": 0.9345 + }, + { + "start": 14372.42, + "end": 14373.14, + "probability": 0.6846 + }, + { + "start": 14374.0, + "end": 14377.16, + "probability": 0.8876 + }, + { + "start": 14377.32, + "end": 14378.44, + "probability": 0.9011 + }, + { + "start": 14378.94, + "end": 14383.34, + "probability": 0.8697 + }, + { + "start": 14383.64, + "end": 14384.88, + "probability": 0.9589 + }, + { + "start": 14384.96, + "end": 14389.78, + "probability": 0.9283 + }, + { + "start": 14389.88, + "end": 14390.84, + "probability": 0.8975 + }, + { + "start": 14391.1, + "end": 14392.4, + "probability": 0.8011 + }, + { + "start": 14392.74, + "end": 14396.02, + "probability": 0.9725 + }, + { + "start": 14396.1, + "end": 14396.52, + "probability": 0.7918 + }, + { + "start": 14396.62, + "end": 14397.14, + "probability": 0.8757 + }, + { + "start": 14397.4, + "end": 14398.46, + "probability": 0.9725 + }, + { + "start": 14398.74, + "end": 14399.64, + "probability": 0.8041 + }, + { + "start": 14400.32, + "end": 14406.68, + "probability": 0.9756 + }, + { + "start": 14406.82, + "end": 14407.46, + "probability": 0.81 + }, + { + "start": 14408.02, + "end": 14410.36, + "probability": 0.6496 + }, + { + "start": 14411.04, + "end": 14412.34, + "probability": 0.9155 + }, + { + "start": 14412.82, + "end": 14414.7, + "probability": 0.9737 + }, + { + "start": 14415.14, + "end": 14418.7, + "probability": 0.9986 + }, + { + "start": 14419.06, + "end": 14422.26, + "probability": 0.9736 + }, + { + "start": 14422.64, + "end": 14424.88, + "probability": 0.753 + }, + { + "start": 14425.46, + "end": 14426.56, + "probability": 0.943 + }, + { + "start": 14426.9, + "end": 14432.04, + "probability": 0.962 + }, + { + "start": 14432.58, + "end": 14436.44, + "probability": 0.9704 + }, + { + "start": 14437.38, + "end": 14437.88, + "probability": 0.7656 + }, + { + "start": 14438.8, + "end": 14442.1, + "probability": 0.988 + }, + { + "start": 14442.94, + "end": 14446.46, + "probability": 0.9956 + }, + { + "start": 14447.18, + "end": 14449.16, + "probability": 0.9987 + }, + { + "start": 14449.3, + "end": 14454.4, + "probability": 0.9888 + }, + { + "start": 14455.22, + "end": 14459.62, + "probability": 0.9536 + }, + { + "start": 14460.06, + "end": 14461.26, + "probability": 0.99 + }, + { + "start": 14461.62, + "end": 14465.24, + "probability": 0.9927 + }, + { + "start": 14465.36, + "end": 14469.48, + "probability": 0.9857 + }, + { + "start": 14470.1, + "end": 14472.98, + "probability": 0.9945 + }, + { + "start": 14473.58, + "end": 14475.32, + "probability": 0.9097 + }, + { + "start": 14475.7, + "end": 14479.1, + "probability": 0.9673 + }, + { + "start": 14479.58, + "end": 14479.58, + "probability": 0.1012 + }, + { + "start": 14479.58, + "end": 14480.22, + "probability": 0.5727 + }, + { + "start": 14481.26, + "end": 14483.18, + "probability": 0.8945 + }, + { + "start": 14483.52, + "end": 14486.29, + "probability": 0.8035 + }, + { + "start": 14486.44, + "end": 14487.84, + "probability": 0.9961 + }, + { + "start": 14488.45, + "end": 14490.06, + "probability": 0.8275 + }, + { + "start": 14490.12, + "end": 14490.66, + "probability": 0.6768 + }, + { + "start": 14491.4, + "end": 14497.42, + "probability": 0.9023 + }, + { + "start": 14498.32, + "end": 14499.14, + "probability": 0.6179 + }, + { + "start": 14499.18, + "end": 14500.28, + "probability": 0.6642 + }, + { + "start": 14500.56, + "end": 14503.04, + "probability": 0.9367 + }, + { + "start": 14503.32, + "end": 14505.2, + "probability": 0.6073 + }, + { + "start": 14505.28, + "end": 14506.64, + "probability": 0.8022 + }, + { + "start": 14507.28, + "end": 14508.38, + "probability": 0.0961 + }, + { + "start": 14508.38, + "end": 14508.38, + "probability": 0.4656 + }, + { + "start": 14508.46, + "end": 14509.16, + "probability": 0.038 + }, + { + "start": 14509.24, + "end": 14509.86, + "probability": 0.1735 + }, + { + "start": 14509.92, + "end": 14510.28, + "probability": 0.2959 + }, + { + "start": 14510.5, + "end": 14512.24, + "probability": 0.8584 + }, + { + "start": 14512.34, + "end": 14515.06, + "probability": 0.9753 + }, + { + "start": 14515.52, + "end": 14516.12, + "probability": 0.5763 + }, + { + "start": 14516.28, + "end": 14516.88, + "probability": 0.8682 + }, + { + "start": 14517.0, + "end": 14518.38, + "probability": 0.7351 + }, + { + "start": 14519.82, + "end": 14521.64, + "probability": 0.8782 + }, + { + "start": 14536.46, + "end": 14537.84, + "probability": 0.6256 + }, + { + "start": 14537.92, + "end": 14540.38, + "probability": 0.7265 + }, + { + "start": 14540.84, + "end": 14541.88, + "probability": 0.9288 + }, + { + "start": 14541.96, + "end": 14542.78, + "probability": 0.6883 + }, + { + "start": 14542.84, + "end": 14545.9, + "probability": 0.7423 + }, + { + "start": 14545.9, + "end": 14547.88, + "probability": 0.8773 + }, + { + "start": 14548.38, + "end": 14550.58, + "probability": 0.7356 + }, + { + "start": 14550.58, + "end": 14553.96, + "probability": 0.9889 + }, + { + "start": 14554.46, + "end": 14558.0, + "probability": 0.9888 + }, + { + "start": 14558.78, + "end": 14560.72, + "probability": 0.9309 + }, + { + "start": 14561.36, + "end": 14564.47, + "probability": 0.9914 + }, + { + "start": 14565.54, + "end": 14568.96, + "probability": 0.8601 + }, + { + "start": 14569.36, + "end": 14573.32, + "probability": 0.9127 + }, + { + "start": 14574.16, + "end": 14575.22, + "probability": 0.9331 + }, + { + "start": 14575.3, + "end": 14576.01, + "probability": 0.9331 + }, + { + "start": 14576.58, + "end": 14577.64, + "probability": 0.8011 + }, + { + "start": 14577.88, + "end": 14579.46, + "probability": 0.669 + }, + { + "start": 14579.96, + "end": 14581.22, + "probability": 0.8976 + }, + { + "start": 14581.68, + "end": 14586.12, + "probability": 0.9487 + }, + { + "start": 14586.2, + "end": 14586.76, + "probability": 0.8082 + }, + { + "start": 14586.82, + "end": 14587.62, + "probability": 0.8962 + }, + { + "start": 14587.96, + "end": 14590.11, + "probability": 0.9842 + }, + { + "start": 14590.18, + "end": 14594.88, + "probability": 0.0415 + }, + { + "start": 14594.88, + "end": 14596.4, + "probability": 0.3202 + }, + { + "start": 14596.5, + "end": 14600.9, + "probability": 0.9954 + }, + { + "start": 14601.0, + "end": 14603.88, + "probability": 0.8979 + }, + { + "start": 14603.9, + "end": 14605.02, + "probability": 0.7753 + }, + { + "start": 14605.48, + "end": 14607.98, + "probability": 0.9963 + }, + { + "start": 14608.36, + "end": 14609.29, + "probability": 0.7224 + }, + { + "start": 14609.84, + "end": 14612.5, + "probability": 0.7759 + }, + { + "start": 14612.88, + "end": 14614.14, + "probability": 0.9961 + }, + { + "start": 14614.34, + "end": 14614.52, + "probability": 0.4951 + }, + { + "start": 14614.6, + "end": 14617.36, + "probability": 0.8491 + }, + { + "start": 14617.64, + "end": 14619.6, + "probability": 0.9286 + }, + { + "start": 14619.96, + "end": 14620.99, + "probability": 0.9597 + }, + { + "start": 14621.1, + "end": 14623.7, + "probability": 0.9797 + }, + { + "start": 14624.12, + "end": 14624.66, + "probability": 0.6602 + }, + { + "start": 14624.76, + "end": 14627.34, + "probability": 0.8384 + }, + { + "start": 14627.62, + "end": 14629.06, + "probability": 0.9791 + }, + { + "start": 14629.18, + "end": 14632.58, + "probability": 0.9111 + }, + { + "start": 14632.58, + "end": 14636.82, + "probability": 0.9742 + }, + { + "start": 14637.52, + "end": 14639.32, + "probability": 0.9731 + }, + { + "start": 14639.46, + "end": 14639.52, + "probability": 0.4598 + }, + { + "start": 14639.64, + "end": 14639.84, + "probability": 0.8707 + }, + { + "start": 14639.9, + "end": 14640.44, + "probability": 0.7192 + }, + { + "start": 14640.76, + "end": 14642.56, + "probability": 0.4761 + }, + { + "start": 14642.62, + "end": 14645.46, + "probability": 0.9922 + }, + { + "start": 14645.54, + "end": 14648.66, + "probability": 0.9739 + }, + { + "start": 14648.7, + "end": 14650.56, + "probability": 0.9272 + }, + { + "start": 14650.8, + "end": 14653.32, + "probability": 0.9156 + }, + { + "start": 14653.9, + "end": 14660.92, + "probability": 0.9155 + }, + { + "start": 14661.38, + "end": 14661.76, + "probability": 0.716 + }, + { + "start": 14662.0, + "end": 14662.56, + "probability": 0.7769 + }, + { + "start": 14663.0, + "end": 14667.36, + "probability": 0.8804 + }, + { + "start": 14667.76, + "end": 14670.1, + "probability": 0.9937 + }, + { + "start": 14670.26, + "end": 14671.34, + "probability": 0.8541 + }, + { + "start": 14671.62, + "end": 14674.24, + "probability": 0.9891 + }, + { + "start": 14674.7, + "end": 14675.46, + "probability": 0.8657 + }, + { + "start": 14675.54, + "end": 14676.56, + "probability": 0.7485 + }, + { + "start": 14676.94, + "end": 14679.16, + "probability": 0.9937 + }, + { + "start": 14679.4, + "end": 14679.98, + "probability": 0.4381 + }, + { + "start": 14680.1, + "end": 14681.42, + "probability": 0.9673 + }, + { + "start": 14681.78, + "end": 14683.22, + "probability": 0.8998 + }, + { + "start": 14683.58, + "end": 14687.9, + "probability": 0.969 + }, + { + "start": 14688.32, + "end": 14688.86, + "probability": 0.8242 + }, + { + "start": 14689.06, + "end": 14689.86, + "probability": 0.8005 + }, + { + "start": 14689.94, + "end": 14690.58, + "probability": 0.8646 + }, + { + "start": 14690.66, + "end": 14693.96, + "probability": 0.9455 + }, + { + "start": 14694.26, + "end": 14694.82, + "probability": 0.8927 + }, + { + "start": 14695.12, + "end": 14695.68, + "probability": 0.9927 + }, + { + "start": 14695.9, + "end": 14698.8, + "probability": 0.5248 + }, + { + "start": 14699.06, + "end": 14701.7, + "probability": 0.7853 + }, + { + "start": 14701.84, + "end": 14703.54, + "probability": 0.8327 + }, + { + "start": 14703.8, + "end": 14704.48, + "probability": 0.7301 + }, + { + "start": 14704.58, + "end": 14706.26, + "probability": 0.9177 + }, + { + "start": 14706.6, + "end": 14708.74, + "probability": 0.9845 + }, + { + "start": 14708.76, + "end": 14710.24, + "probability": 0.9546 + }, + { + "start": 14710.66, + "end": 14714.06, + "probability": 0.9867 + }, + { + "start": 14714.5, + "end": 14715.96, + "probability": 0.9001 + }, + { + "start": 14716.2, + "end": 14720.46, + "probability": 0.9658 + }, + { + "start": 14720.9, + "end": 14721.34, + "probability": 0.6889 + }, + { + "start": 14721.96, + "end": 14723.64, + "probability": 0.791 + }, + { + "start": 14724.76, + "end": 14727.28, + "probability": 0.9397 + }, + { + "start": 14727.42, + "end": 14728.6, + "probability": 0.8614 + }, + { + "start": 14729.42, + "end": 14730.44, + "probability": 0.6864 + }, + { + "start": 14731.2, + "end": 14734.09, + "probability": 0.8454 + }, + { + "start": 14735.12, + "end": 14737.1, + "probability": 0.6118 + }, + { + "start": 14737.66, + "end": 14737.92, + "probability": 0.3184 + }, + { + "start": 14738.16, + "end": 14740.68, + "probability": 0.2945 + }, + { + "start": 14741.0, + "end": 14746.35, + "probability": 0.5495 + }, + { + "start": 14746.58, + "end": 14747.84, + "probability": 0.4748 + }, + { + "start": 14748.02, + "end": 14749.66, + "probability": 0.5829 + }, + { + "start": 14749.84, + "end": 14750.44, + "probability": 0.6796 + }, + { + "start": 14750.64, + "end": 14752.18, + "probability": 0.5207 + }, + { + "start": 14752.22, + "end": 14754.32, + "probability": 0.7697 + }, + { + "start": 14754.52, + "end": 14755.3, + "probability": 0.6525 + }, + { + "start": 14755.92, + "end": 14757.24, + "probability": 0.0211 + }, + { + "start": 14758.56, + "end": 14760.52, + "probability": 0.2813 + }, + { + "start": 14761.66, + "end": 14764.78, + "probability": 0.7596 + }, + { + "start": 14766.92, + "end": 14769.04, + "probability": 0.7212 + }, + { + "start": 14769.42, + "end": 14773.08, + "probability": 0.9268 + }, + { + "start": 14774.92, + "end": 14777.06, + "probability": 0.4089 + }, + { + "start": 14777.75, + "end": 14781.72, + "probability": 0.6178 + }, + { + "start": 14782.12, + "end": 14782.72, + "probability": 0.7125 + }, + { + "start": 14782.78, + "end": 14784.13, + "probability": 0.9704 + }, + { + "start": 14784.38, + "end": 14785.12, + "probability": 0.7351 + }, + { + "start": 14785.2, + "end": 14785.98, + "probability": 0.6822 + }, + { + "start": 14786.06, + "end": 14787.0, + "probability": 0.7666 + }, + { + "start": 14787.12, + "end": 14788.12, + "probability": 0.8046 + }, + { + "start": 14788.92, + "end": 14790.14, + "probability": 0.7812 + }, + { + "start": 14790.76, + "end": 14791.96, + "probability": 0.9798 + }, + { + "start": 14792.42, + "end": 14793.22, + "probability": 0.7742 + }, + { + "start": 14793.32, + "end": 14796.68, + "probability": 0.7187 + }, + { + "start": 14796.74, + "end": 14798.48, + "probability": 0.5082 + }, + { + "start": 14798.94, + "end": 14801.96, + "probability": 0.9033 + }, + { + "start": 14802.0, + "end": 14804.36, + "probability": 0.4776 + }, + { + "start": 14808.37, + "end": 14810.82, + "probability": 0.7525 + }, + { + "start": 14810.9, + "end": 14812.96, + "probability": 0.3037 + }, + { + "start": 14813.18, + "end": 14813.62, + "probability": 0.7008 + }, + { + "start": 14813.94, + "end": 14815.66, + "probability": 0.8437 + }, + { + "start": 14815.74, + "end": 14816.74, + "probability": 0.7857 + }, + { + "start": 14816.86, + "end": 14817.26, + "probability": 0.4968 + }, + { + "start": 14819.6, + "end": 14824.0, + "probability": 0.8838 + }, + { + "start": 14826.5, + "end": 14827.22, + "probability": 0.4817 + }, + { + "start": 14831.54, + "end": 14835.86, + "probability": 0.2808 + }, + { + "start": 14835.96, + "end": 14838.24, + "probability": 0.5266 + }, + { + "start": 14838.32, + "end": 14841.47, + "probability": 0.9612 + }, + { + "start": 14841.72, + "end": 14844.22, + "probability": 0.7657 + }, + { + "start": 14844.38, + "end": 14847.92, + "probability": 0.9924 + }, + { + "start": 14847.92, + "end": 14851.4, + "probability": 0.9513 + }, + { + "start": 14851.78, + "end": 14852.8, + "probability": 0.5739 + }, + { + "start": 14855.6, + "end": 14856.52, + "probability": 0.7427 + }, + { + "start": 14857.06, + "end": 14858.54, + "probability": 0.5265 + }, + { + "start": 14858.56, + "end": 14860.92, + "probability": 0.7901 + }, + { + "start": 14861.22, + "end": 14866.1, + "probability": 0.1253 + }, + { + "start": 14866.68, + "end": 14868.96, + "probability": 0.2523 + }, + { + "start": 14869.02, + "end": 14871.62, + "probability": 0.0225 + }, + { + "start": 14872.22, + "end": 14873.76, + "probability": 0.5461 + }, + { + "start": 14875.0, + "end": 14878.52, + "probability": 0.864 + }, + { + "start": 14879.78, + "end": 14886.4, + "probability": 0.8446 + }, + { + "start": 14886.96, + "end": 14892.64, + "probability": 0.8253 + }, + { + "start": 14893.5, + "end": 14899.74, + "probability": 0.9039 + }, + { + "start": 14900.4, + "end": 14902.76, + "probability": 0.8065 + }, + { + "start": 14903.38, + "end": 14906.12, + "probability": 0.98 + }, + { + "start": 14906.76, + "end": 14909.4, + "probability": 0.925 + }, + { + "start": 14910.14, + "end": 14916.24, + "probability": 0.8874 + }, + { + "start": 14917.34, + "end": 14921.26, + "probability": 0.9779 + }, + { + "start": 14923.22, + "end": 14924.22, + "probability": 0.4076 + }, + { + "start": 14933.02, + "end": 14935.88, + "probability": 0.5626 + }, + { + "start": 14936.14, + "end": 14938.1, + "probability": 0.5213 + }, + { + "start": 14938.52, + "end": 14940.5, + "probability": 0.6888 + }, + { + "start": 14941.34, + "end": 14944.14, + "probability": 0.8071 + }, + { + "start": 14944.94, + "end": 14948.34, + "probability": 0.9451 + }, + { + "start": 14949.22, + "end": 14952.86, + "probability": 0.8732 + }, + { + "start": 14955.24, + "end": 14957.86, + "probability": 0.8009 + }, + { + "start": 14958.9, + "end": 14961.84, + "probability": 0.9358 + }, + { + "start": 14962.56, + "end": 14969.4, + "probability": 0.9154 + }, + { + "start": 14969.92, + "end": 14974.18, + "probability": 0.9777 + }, + { + "start": 14974.74, + "end": 14981.22, + "probability": 0.7588 + }, + { + "start": 14981.86, + "end": 14987.32, + "probability": 0.9003 + }, + { + "start": 14988.5, + "end": 14990.5, + "probability": 0.8277 + }, + { + "start": 14990.7, + "end": 14993.06, + "probability": 0.9716 + }, + { + "start": 14993.32, + "end": 14996.68, + "probability": 0.8772 + }, + { + "start": 14997.48, + "end": 15001.24, + "probability": 0.897 + }, + { + "start": 15001.98, + "end": 15007.38, + "probability": 0.9309 + }, + { + "start": 15008.14, + "end": 15011.86, + "probability": 0.9475 + }, + { + "start": 15011.9, + "end": 15013.92, + "probability": 0.8643 + }, + { + "start": 15014.34, + "end": 15016.82, + "probability": 0.9884 + }, + { + "start": 15017.34, + "end": 15019.72, + "probability": 0.6904 + }, + { + "start": 15020.26, + "end": 15023.86, + "probability": 0.826 + }, + { + "start": 15025.26, + "end": 15027.98, + "probability": 0.9521 + }, + { + "start": 15029.18, + "end": 15034.16, + "probability": 0.9542 + }, + { + "start": 15034.96, + "end": 15037.92, + "probability": 0.8602 + }, + { + "start": 15038.48, + "end": 15040.64, + "probability": 0.7748 + }, + { + "start": 15040.74, + "end": 15042.48, + "probability": 0.7752 + }, + { + "start": 15044.6, + "end": 15049.46, + "probability": 0.9202 + }, + { + "start": 15050.94, + "end": 15053.16, + "probability": 0.9778 + }, + { + "start": 15054.5, + "end": 15056.48, + "probability": 0.9884 + }, + { + "start": 15057.4, + "end": 15062.68, + "probability": 0.8599 + }, + { + "start": 15064.6, + "end": 15068.34, + "probability": 0.6637 + }, + { + "start": 15068.7, + "end": 15070.74, + "probability": 0.741 + }, + { + "start": 15070.88, + "end": 15072.5, + "probability": 0.8999 + }, + { + "start": 15073.04, + "end": 15075.0, + "probability": 0.8864 + }, + { + "start": 15075.76, + "end": 15077.9, + "probability": 0.9666 + }, + { + "start": 15078.58, + "end": 15084.86, + "probability": 0.8474 + }, + { + "start": 15086.59, + "end": 15089.06, + "probability": 0.8296 + }, + { + "start": 15089.7, + "end": 15092.02, + "probability": 0.8431 + }, + { + "start": 15092.4, + "end": 15094.56, + "probability": 0.8478 + }, + { + "start": 15095.0, + "end": 15096.6, + "probability": 0.8696 + }, + { + "start": 15096.66, + "end": 15098.16, + "probability": 0.7959 + }, + { + "start": 15098.3, + "end": 15100.38, + "probability": 0.9031 + }, + { + "start": 15101.1, + "end": 15103.6, + "probability": 0.8728 + }, + { + "start": 15104.52, + "end": 15104.52, + "probability": 0.0248 + }, + { + "start": 15104.52, + "end": 15105.43, + "probability": 0.674 + }, + { + "start": 15106.0, + "end": 15107.5, + "probability": 0.8439 + }, + { + "start": 15108.68, + "end": 15110.3, + "probability": 0.9592 + }, + { + "start": 15111.42, + "end": 15112.98, + "probability": 0.9266 + }, + { + "start": 15115.44, + "end": 15120.54, + "probability": 0.9887 + }, + { + "start": 15121.16, + "end": 15124.54, + "probability": 0.8966 + }, + { + "start": 15125.22, + "end": 15125.94, + "probability": 0.9784 + }, + { + "start": 15126.52, + "end": 15132.6, + "probability": 0.8467 + }, + { + "start": 15133.48, + "end": 15135.54, + "probability": 0.8828 + }, + { + "start": 15140.86, + "end": 15143.3, + "probability": 0.5053 + }, + { + "start": 15144.6, + "end": 15145.64, + "probability": 0.5276 + }, + { + "start": 15146.5, + "end": 15148.82, + "probability": 0.8506 + }, + { + "start": 15151.73, + "end": 15154.58, + "probability": 0.9198 + }, + { + "start": 15156.38, + "end": 15161.64, + "probability": 0.9613 + }, + { + "start": 15162.84, + "end": 15163.9, + "probability": 0.8719 + }, + { + "start": 15167.52, + "end": 15168.2, + "probability": 0.8901 + }, + { + "start": 15169.24, + "end": 15172.36, + "probability": 0.895 + }, + { + "start": 15173.56, + "end": 15174.28, + "probability": 0.983 + }, + { + "start": 15175.7, + "end": 15176.84, + "probability": 0.7557 + }, + { + "start": 15178.18, + "end": 15179.84, + "probability": 0.9001 + }, + { + "start": 15180.06, + "end": 15182.0, + "probability": 0.9085 + }, + { + "start": 15183.89, + "end": 15188.26, + "probability": 0.9139 + }, + { + "start": 15188.94, + "end": 15191.94, + "probability": 0.6419 + }, + { + "start": 15193.06, + "end": 15195.2, + "probability": 0.9027 + }, + { + "start": 15197.12, + "end": 15199.64, + "probability": 0.9667 + }, + { + "start": 15200.78, + "end": 15201.6, + "probability": 0.9905 + }, + { + "start": 15202.2, + "end": 15203.36, + "probability": 0.8763 + }, + { + "start": 15204.78, + "end": 15207.14, + "probability": 0.9855 + }, + { + "start": 15208.04, + "end": 15208.62, + "probability": 0.9897 + }, + { + "start": 15209.64, + "end": 15210.6, + "probability": 0.91 + }, + { + "start": 15213.88, + "end": 15215.94, + "probability": 0.7739 + }, + { + "start": 15216.26, + "end": 15219.3, + "probability": 0.7866 + }, + { + "start": 15219.72, + "end": 15221.84, + "probability": 0.9729 + }, + { + "start": 15222.56, + "end": 15224.6, + "probability": 0.8833 + }, + { + "start": 15225.86, + "end": 15230.76, + "probability": 0.9628 + }, + { + "start": 15232.08, + "end": 15238.08, + "probability": 0.9458 + }, + { + "start": 15238.8, + "end": 15239.66, + "probability": 0.6124 + }, + { + "start": 15240.6, + "end": 15243.48, + "probability": 0.8647 + }, + { + "start": 15244.04, + "end": 15248.62, + "probability": 0.9695 + }, + { + "start": 15249.7, + "end": 15252.5, + "probability": 0.9615 + }, + { + "start": 15253.76, + "end": 15255.84, + "probability": 0.9893 + }, + { + "start": 15256.6, + "end": 15259.18, + "probability": 0.9518 + }, + { + "start": 15259.5, + "end": 15261.46, + "probability": 0.8242 + }, + { + "start": 15261.94, + "end": 15264.06, + "probability": 0.9669 + }, + { + "start": 15264.67, + "end": 15267.38, + "probability": 0.5435 + }, + { + "start": 15267.56, + "end": 15269.1, + "probability": 0.9913 + }, + { + "start": 15269.5, + "end": 15270.82, + "probability": 0.8822 + }, + { + "start": 15270.98, + "end": 15272.54, + "probability": 0.9368 + }, + { + "start": 15272.92, + "end": 15274.98, + "probability": 0.9668 + }, + { + "start": 15275.42, + "end": 15277.62, + "probability": 0.8088 + }, + { + "start": 15277.9, + "end": 15281.86, + "probability": 0.9434 + }, + { + "start": 15282.18, + "end": 15283.31, + "probability": 0.5822 + }, + { + "start": 15283.98, + "end": 15285.68, + "probability": 0.9438 + }, + { + "start": 15285.92, + "end": 15287.96, + "probability": 0.8417 + }, + { + "start": 15289.14, + "end": 15291.2, + "probability": 0.9333 + }, + { + "start": 15292.8, + "end": 15293.56, + "probability": 0.6238 + }, + { + "start": 15294.24, + "end": 15295.36, + "probability": 0.9168 + }, + { + "start": 15296.54, + "end": 15298.1, + "probability": 0.9252 + }, + { + "start": 15298.28, + "end": 15300.39, + "probability": 0.8688 + }, + { + "start": 15301.84, + "end": 15303.52, + "probability": 0.741 + }, + { + "start": 15303.72, + "end": 15306.18, + "probability": 0.9696 + }, + { + "start": 15306.24, + "end": 15308.74, + "probability": 0.8522 + }, + { + "start": 15310.1, + "end": 15310.86, + "probability": 0.9882 + }, + { + "start": 15311.38, + "end": 15312.26, + "probability": 0.8768 + }, + { + "start": 15313.6, + "end": 15315.92, + "probability": 0.8027 + }, + { + "start": 15316.2, + "end": 15318.02, + "probability": 0.9763 + }, + { + "start": 15318.24, + "end": 15320.48, + "probability": 0.7665 + }, + { + "start": 15320.8, + "end": 15322.4, + "probability": 0.8868 + }, + { + "start": 15323.18, + "end": 15325.02, + "probability": 0.9379 + }, + { + "start": 15326.44, + "end": 15332.46, + "probability": 0.7607 + }, + { + "start": 15333.38, + "end": 15335.18, + "probability": 0.9274 + }, + { + "start": 15337.06, + "end": 15338.84, + "probability": 0.8832 + }, + { + "start": 15340.96, + "end": 15343.26, + "probability": 0.9403 + }, + { + "start": 15343.54, + "end": 15345.54, + "probability": 0.8643 + }, + { + "start": 15345.72, + "end": 15347.22, + "probability": 0.9373 + }, + { + "start": 15347.98, + "end": 15350.44, + "probability": 0.4124 + }, + { + "start": 15350.44, + "end": 15351.28, + "probability": 0.5539 + }, + { + "start": 15351.44, + "end": 15352.86, + "probability": 0.7722 + }, + { + "start": 15353.02, + "end": 15354.88, + "probability": 0.8492 + }, + { + "start": 15355.4, + "end": 15356.8, + "probability": 0.6318 + }, + { + "start": 15356.94, + "end": 15358.62, + "probability": 0.9422 + }, + { + "start": 15358.68, + "end": 15361.64, + "probability": 0.9082 + }, + { + "start": 15362.54, + "end": 15364.66, + "probability": 0.4885 + }, + { + "start": 15365.3, + "end": 15367.5, + "probability": 0.9139 + }, + { + "start": 15369.38, + "end": 15371.14, + "probability": 0.8186 + }, + { + "start": 15371.92, + "end": 15375.94, + "probability": 0.9642 + }, + { + "start": 15376.8, + "end": 15380.5, + "probability": 0.9894 + }, + { + "start": 15381.12, + "end": 15382.86, + "probability": 0.582 + }, + { + "start": 15383.38, + "end": 15384.5, + "probability": 0.6421 + }, + { + "start": 15385.42, + "end": 15386.48, + "probability": 0.884 + }, + { + "start": 15387.54, + "end": 15389.28, + "probability": 0.9585 + }, + { + "start": 15389.98, + "end": 15391.24, + "probability": 0.8844 + }, + { + "start": 15393.96, + "end": 15396.62, + "probability": 0.9326 + }, + { + "start": 15396.78, + "end": 15398.48, + "probability": 0.8844 + }, + { + "start": 15398.64, + "end": 15402.12, + "probability": 0.9487 + }, + { + "start": 15402.2, + "end": 15404.24, + "probability": 0.7074 + }, + { + "start": 15404.78, + "end": 15411.9, + "probability": 0.9497 + }, + { + "start": 15413.6, + "end": 15416.1, + "probability": 0.9895 + }, + { + "start": 15420.58, + "end": 15421.5, + "probability": 0.2179 + }, + { + "start": 15422.98, + "end": 15427.66, + "probability": 0.9501 + }, + { + "start": 15428.2, + "end": 15430.28, + "probability": 0.9706 + }, + { + "start": 15430.36, + "end": 15432.22, + "probability": 0.9757 + }, + { + "start": 15432.5, + "end": 15434.2, + "probability": 0.6586 + }, + { + "start": 15434.3, + "end": 15436.46, + "probability": 0.9819 + }, + { + "start": 15437.28, + "end": 15438.94, + "probability": 0.8861 + }, + { + "start": 15439.12, + "end": 15440.8, + "probability": 0.5889 + }, + { + "start": 15441.26, + "end": 15443.1, + "probability": 0.965 + }, + { + "start": 15444.92, + "end": 15446.52, + "probability": 0.9132 + }, + { + "start": 15446.66, + "end": 15448.8, + "probability": 0.8172 + }, + { + "start": 15448.98, + "end": 15450.56, + "probability": 0.9805 + }, + { + "start": 15451.16, + "end": 15452.76, + "probability": 0.9473 + }, + { + "start": 15452.8, + "end": 15454.24, + "probability": 0.9795 + }, + { + "start": 15454.74, + "end": 15456.12, + "probability": 0.8168 + }, + { + "start": 15456.78, + "end": 15458.1, + "probability": 0.7969 + }, + { + "start": 15458.32, + "end": 15461.4, + "probability": 0.9468 + }, + { + "start": 15461.86, + "end": 15463.42, + "probability": 0.9054 + }, + { + "start": 15464.69, + "end": 15468.08, + "probability": 0.954 + }, + { + "start": 15468.42, + "end": 15469.92, + "probability": 0.9731 + }, + { + "start": 15471.84, + "end": 15474.18, + "probability": 0.9895 + }, + { + "start": 15474.88, + "end": 15478.02, + "probability": 0.9868 + }, + { + "start": 15478.66, + "end": 15479.33, + "probability": 0.2207 + }, + { + "start": 15480.18, + "end": 15480.98, + "probability": 0.9385 + }, + { + "start": 15481.5, + "end": 15482.28, + "probability": 0.8976 + }, + { + "start": 15482.6, + "end": 15484.88, + "probability": 0.9061 + }, + { + "start": 15485.26, + "end": 15487.06, + "probability": 0.9597 + }, + { + "start": 15488.02, + "end": 15489.92, + "probability": 0.9407 + }, + { + "start": 15490.96, + "end": 15493.6, + "probability": 0.8989 + }, + { + "start": 15493.72, + "end": 15495.2, + "probability": 0.5707 + }, + { + "start": 15496.24, + "end": 15498.56, + "probability": 0.7459 + }, + { + "start": 15499.2, + "end": 15500.88, + "probability": 0.8357 + }, + { + "start": 15501.26, + "end": 15503.1, + "probability": 0.8718 + }, + { + "start": 15504.12, + "end": 15506.04, + "probability": 0.8599 + }, + { + "start": 15506.18, + "end": 15507.8, + "probability": 0.8552 + }, + { + "start": 15509.86, + "end": 15511.52, + "probability": 0.3204 + }, + { + "start": 15511.52, + "end": 15512.26, + "probability": 0.5127 + }, + { + "start": 15512.54, + "end": 15514.36, + "probability": 0.7873 + }, + { + "start": 15515.26, + "end": 15516.98, + "probability": 0.9465 + }, + { + "start": 15517.5, + "end": 15519.22, + "probability": 0.9117 + }, + { + "start": 15520.02, + "end": 15521.84, + "probability": 0.8816 + }, + { + "start": 15522.42, + "end": 15524.02, + "probability": 0.9258 + }, + { + "start": 15524.7, + "end": 15525.5, + "probability": 0.9941 + }, + { + "start": 15526.9, + "end": 15527.8, + "probability": 0.8623 + }, + { + "start": 15528.58, + "end": 15532.96, + "probability": 0.9605 + }, + { + "start": 15533.62, + "end": 15535.24, + "probability": 0.9076 + }, + { + "start": 15535.36, + "end": 15537.24, + "probability": 0.8193 + }, + { + "start": 15538.3, + "end": 15540.26, + "probability": 0.9789 + }, + { + "start": 15540.92, + "end": 15542.36, + "probability": 0.7877 + }, + { + "start": 15542.48, + "end": 15544.34, + "probability": 0.8656 + }, + { + "start": 15544.8, + "end": 15546.44, + "probability": 0.9604 + }, + { + "start": 15547.14, + "end": 15548.82, + "probability": 0.9774 + }, + { + "start": 15549.08, + "end": 15550.54, + "probability": 0.9442 + }, + { + "start": 15550.94, + "end": 15552.72, + "probability": 0.9777 + }, + { + "start": 15553.08, + "end": 15555.26, + "probability": 0.9738 + }, + { + "start": 15555.74, + "end": 15559.46, + "probability": 0.6842 + }, + { + "start": 15559.56, + "end": 15560.28, + "probability": 0.7688 + }, + { + "start": 15560.46, + "end": 15563.06, + "probability": 0.8765 + }, + { + "start": 15563.16, + "end": 15564.02, + "probability": 0.5443 + }, + { + "start": 15564.62, + "end": 15568.42, + "probability": 0.6034 + }, + { + "start": 15569.54, + "end": 15572.14, + "probability": 0.2917 + }, + { + "start": 15573.7, + "end": 15574.88, + "probability": 0.0102 + }, + { + "start": 15575.7, + "end": 15578.2, + "probability": 0.0723 + }, + { + "start": 15609.7, + "end": 15610.46, + "probability": 0.2205 + }, + { + "start": 15611.06, + "end": 15613.66, + "probability": 0.4004 + }, + { + "start": 15614.6, + "end": 15614.92, + "probability": 0.5477 + }, + { + "start": 15615.9, + "end": 15619.72, + "probability": 0.8219 + }, + { + "start": 15619.72, + "end": 15626.36, + "probability": 0.902 + }, + { + "start": 15626.44, + "end": 15633.38, + "probability": 0.9902 + }, + { + "start": 15634.3, + "end": 15635.1, + "probability": 0.7281 + }, + { + "start": 15635.14, + "end": 15637.66, + "probability": 0.9424 + }, + { + "start": 15638.12, + "end": 15640.94, + "probability": 0.9803 + }, + { + "start": 15641.36, + "end": 15646.74, + "probability": 0.8333 + }, + { + "start": 15647.12, + "end": 15649.14, + "probability": 0.9841 + }, + { + "start": 15650.5, + "end": 15652.18, + "probability": 0.9762 + }, + { + "start": 15652.26, + "end": 15654.26, + "probability": 0.7964 + }, + { + "start": 15654.5, + "end": 15656.89, + "probability": 0.9268 + }, + { + "start": 15657.72, + "end": 15658.42, + "probability": 0.8233 + }, + { + "start": 15659.42, + "end": 15663.3, + "probability": 0.847 + }, + { + "start": 15663.84, + "end": 15665.2, + "probability": 0.5861 + }, + { + "start": 15665.28, + "end": 15666.4, + "probability": 0.9563 + }, + { + "start": 15666.46, + "end": 15671.06, + "probability": 0.9641 + }, + { + "start": 15671.44, + "end": 15676.0, + "probability": 0.9879 + }, + { + "start": 15679.46, + "end": 15680.66, + "probability": 0.12 + }, + { + "start": 15681.38, + "end": 15681.58, + "probability": 0.6129 + }, + { + "start": 15688.34, + "end": 15692.3, + "probability": 0.6568 + }, + { + "start": 15692.38, + "end": 15693.78, + "probability": 0.9558 + }, + { + "start": 15693.96, + "end": 15694.64, + "probability": 0.7971 + }, + { + "start": 15694.76, + "end": 15695.46, + "probability": 0.8886 + }, + { + "start": 15695.56, + "end": 15697.52, + "probability": 0.1748 + }, + { + "start": 15698.06, + "end": 15704.84, + "probability": 0.8003 + }, + { + "start": 15704.84, + "end": 15705.38, + "probability": 0.0049 + } + ], + "segments_count": 4844, + "words_count": 22401, + "avg_words_per_segment": 4.6245, + "avg_segment_duration": 1.8488, + "avg_words_per_minute": 85.4187, + "plenum_id": "47513", + "duration": 15734.96, + "title": null, + "plenum_date": "2015-12-07" +} \ No newline at end of file