diff --git "a/102769/metadata.json" "b/102769/metadata.json" new file mode 100644--- /dev/null +++ "b/102769/metadata.json" @@ -0,0 +1,23457 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "102769", + "quality_score": 0.8726, + "per_segment_quality_scores": [ + { + "start": 71.38, + "end": 71.52, + "probability": 0.1146 + }, + { + "start": 71.52, + "end": 71.52, + "probability": 0.2133 + }, + { + "start": 71.52, + "end": 72.43, + "probability": 0.1111 + }, + { + "start": 73.72, + "end": 77.08, + "probability": 0.0454 + }, + { + "start": 79.14, + "end": 80.44, + "probability": 0.03 + }, + { + "start": 80.55, + "end": 83.04, + "probability": 0.0257 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 155.0, + "end": 155.0, + "probability": 0.0 + }, + { + "start": 161.22, + "end": 164.92, + "probability": 0.8945 + }, + { + "start": 168.64, + "end": 170.0, + "probability": 0.9941 + }, + { + "start": 191.2, + "end": 193.84, + "probability": 0.6986 + }, + { + "start": 194.5, + "end": 195.6, + "probability": 0.5191 + }, + { + "start": 195.66, + "end": 198.98, + "probability": 0.891 + }, + { + "start": 200.48, + "end": 200.72, + "probability": 0.1368 + }, + { + "start": 200.72, + "end": 200.72, + "probability": 0.07 + }, + { + "start": 200.72, + "end": 200.72, + "probability": 0.0643 + }, + { + "start": 200.72, + "end": 202.58, + "probability": 0.8087 + }, + { + "start": 203.54, + "end": 206.44, + "probability": 0.555 + }, + { + "start": 206.68, + "end": 206.98, + "probability": 0.8216 + }, + { + "start": 207.9, + "end": 208.76, + "probability": 0.6427 + }, + { + "start": 209.02, + "end": 210.58, + "probability": 0.6974 + }, + { + "start": 210.58, + "end": 211.36, + "probability": 0.0611 + }, + { + "start": 237.7, + "end": 239.8, + "probability": 0.1182 + }, + { + "start": 240.54, + "end": 242.72, + "probability": 0.5618 + }, + { + "start": 243.56, + "end": 244.74, + "probability": 0.7856 + }, + { + "start": 245.52, + "end": 247.76, + "probability": 0.964 + }, + { + "start": 248.42, + "end": 252.28, + "probability": 0.7912 + }, + { + "start": 252.78, + "end": 255.44, + "probability": 0.994 + }, + { + "start": 256.0, + "end": 261.9, + "probability": 0.8755 + }, + { + "start": 262.76, + "end": 266.44, + "probability": 0.9954 + }, + { + "start": 267.02, + "end": 268.14, + "probability": 0.747 + }, + { + "start": 268.76, + "end": 270.5, + "probability": 0.9888 + }, + { + "start": 271.08, + "end": 276.26, + "probability": 0.9931 + }, + { + "start": 276.26, + "end": 282.06, + "probability": 0.9723 + }, + { + "start": 283.32, + "end": 289.68, + "probability": 0.9831 + }, + { + "start": 290.32, + "end": 292.0, + "probability": 0.8984 + }, + { + "start": 292.34, + "end": 295.68, + "probability": 0.7409 + }, + { + "start": 296.22, + "end": 297.7, + "probability": 0.9623 + }, + { + "start": 298.5, + "end": 301.4, + "probability": 0.6678 + }, + { + "start": 301.98, + "end": 308.26, + "probability": 0.9757 + }, + { + "start": 309.12, + "end": 312.88, + "probability": 0.9447 + }, + { + "start": 313.72, + "end": 316.24, + "probability": 0.9532 + }, + { + "start": 316.94, + "end": 320.26, + "probability": 0.9943 + }, + { + "start": 320.84, + "end": 322.74, + "probability": 0.781 + }, + { + "start": 324.52, + "end": 324.58, + "probability": 0.2148 + }, + { + "start": 324.58, + "end": 324.58, + "probability": 0.4098 + }, + { + "start": 324.58, + "end": 329.9, + "probability": 0.8432 + }, + { + "start": 330.24, + "end": 331.84, + "probability": 0.5998 + }, + { + "start": 332.6, + "end": 333.36, + "probability": 0.9319 + }, + { + "start": 339.52, + "end": 342.14, + "probability": 0.8895 + }, + { + "start": 342.92, + "end": 343.98, + "probability": 0.9066 + }, + { + "start": 347.9, + "end": 350.86, + "probability": 0.6154 + }, + { + "start": 353.04, + "end": 353.68, + "probability": 0.7936 + }, + { + "start": 354.9, + "end": 355.84, + "probability": 0.8061 + }, + { + "start": 366.52, + "end": 368.08, + "probability": 0.7841 + }, + { + "start": 368.78, + "end": 370.5, + "probability": 0.7248 + }, + { + "start": 371.34, + "end": 373.12, + "probability": 0.5613 + }, + { + "start": 373.64, + "end": 374.92, + "probability": 0.9401 + }, + { + "start": 375.4, + "end": 375.76, + "probability": 0.2059 + }, + { + "start": 375.96, + "end": 376.06, + "probability": 0.4896 + }, + { + "start": 376.06, + "end": 376.58, + "probability": 0.7276 + }, + { + "start": 377.4, + "end": 382.16, + "probability": 0.7707 + }, + { + "start": 382.74, + "end": 388.1, + "probability": 0.8352 + }, + { + "start": 388.44, + "end": 390.88, + "probability": 0.6948 + }, + { + "start": 390.96, + "end": 391.62, + "probability": 0.9091 + }, + { + "start": 392.74, + "end": 394.48, + "probability": 0.9948 + }, + { + "start": 395.02, + "end": 398.42, + "probability": 0.7336 + }, + { + "start": 398.74, + "end": 400.36, + "probability": 0.9261 + }, + { + "start": 400.98, + "end": 401.64, + "probability": 0.7249 + }, + { + "start": 402.02, + "end": 402.53, + "probability": 0.7141 + }, + { + "start": 402.84, + "end": 403.2, + "probability": 0.9277 + }, + { + "start": 403.4, + "end": 403.64, + "probability": 0.3814 + }, + { + "start": 403.82, + "end": 404.36, + "probability": 0.9684 + }, + { + "start": 405.0, + "end": 407.5, + "probability": 0.8557 + }, + { + "start": 408.34, + "end": 409.82, + "probability": 0.4206 + }, + { + "start": 411.16, + "end": 413.94, + "probability": 0.9086 + }, + { + "start": 414.92, + "end": 417.36, + "probability": 0.9896 + }, + { + "start": 418.12, + "end": 419.3, + "probability": 0.947 + }, + { + "start": 420.18, + "end": 421.62, + "probability": 0.8055 + }, + { + "start": 422.48, + "end": 424.32, + "probability": 0.9968 + }, + { + "start": 425.32, + "end": 428.14, + "probability": 0.9983 + }, + { + "start": 430.06, + "end": 430.7, + "probability": 0.9875 + }, + { + "start": 431.3, + "end": 432.38, + "probability": 0.993 + }, + { + "start": 433.14, + "end": 434.36, + "probability": 0.9062 + }, + { + "start": 434.98, + "end": 437.48, + "probability": 0.9183 + }, + { + "start": 437.48, + "end": 441.06, + "probability": 0.9563 + }, + { + "start": 441.5, + "end": 444.26, + "probability": 0.9938 + }, + { + "start": 444.9, + "end": 448.58, + "probability": 0.9717 + }, + { + "start": 449.14, + "end": 451.42, + "probability": 0.8372 + }, + { + "start": 452.0, + "end": 453.54, + "probability": 0.8897 + }, + { + "start": 453.86, + "end": 454.06, + "probability": 0.775 + }, + { + "start": 454.5, + "end": 454.9, + "probability": 0.8806 + }, + { + "start": 455.98, + "end": 456.64, + "probability": 0.765 + }, + { + "start": 456.78, + "end": 457.24, + "probability": 0.8598 + }, + { + "start": 458.42, + "end": 459.48, + "probability": 0.9548 + }, + { + "start": 466.7, + "end": 469.1, + "probability": 0.0626 + }, + { + "start": 469.96, + "end": 470.58, + "probability": 0.457 + }, + { + "start": 470.88, + "end": 471.22, + "probability": 0.0621 + }, + { + "start": 473.02, + "end": 475.38, + "probability": 0.7883 + }, + { + "start": 475.84, + "end": 480.92, + "probability": 0.1727 + }, + { + "start": 482.32, + "end": 483.02, + "probability": 0.2029 + }, + { + "start": 484.58, + "end": 485.67, + "probability": 0.7565 + }, + { + "start": 486.74, + "end": 488.74, + "probability": 0.9978 + }, + { + "start": 489.62, + "end": 493.22, + "probability": 0.9725 + }, + { + "start": 493.22, + "end": 497.3, + "probability": 0.9929 + }, + { + "start": 498.0, + "end": 499.76, + "probability": 0.8475 + }, + { + "start": 500.86, + "end": 505.06, + "probability": 0.6978 + }, + { + "start": 505.52, + "end": 506.56, + "probability": 0.8254 + }, + { + "start": 506.76, + "end": 508.42, + "probability": 0.977 + }, + { + "start": 508.78, + "end": 509.96, + "probability": 0.9004 + }, + { + "start": 510.46, + "end": 513.96, + "probability": 0.9936 + }, + { + "start": 514.22, + "end": 515.68, + "probability": 0.7582 + }, + { + "start": 516.16, + "end": 516.94, + "probability": 0.9719 + }, + { + "start": 517.12, + "end": 517.76, + "probability": 0.7285 + }, + { + "start": 518.22, + "end": 520.64, + "probability": 0.9771 + }, + { + "start": 521.08, + "end": 523.76, + "probability": 0.6665 + }, + { + "start": 524.28, + "end": 527.0, + "probability": 0.9554 + }, + { + "start": 527.42, + "end": 530.28, + "probability": 0.9849 + }, + { + "start": 530.66, + "end": 531.2, + "probability": 0.8248 + }, + { + "start": 531.64, + "end": 532.58, + "probability": 0.7352 + }, + { + "start": 533.48, + "end": 537.42, + "probability": 0.9441 + }, + { + "start": 537.94, + "end": 538.48, + "probability": 0.6717 + }, + { + "start": 538.62, + "end": 539.24, + "probability": 0.7757 + }, + { + "start": 539.36, + "end": 542.9, + "probability": 0.6038 + }, + { + "start": 543.5, + "end": 545.18, + "probability": 0.8342 + }, + { + "start": 545.56, + "end": 548.68, + "probability": 0.9839 + }, + { + "start": 549.56, + "end": 550.04, + "probability": 0.6211 + }, + { + "start": 550.26, + "end": 551.6, + "probability": 0.9519 + }, + { + "start": 552.28, + "end": 552.8, + "probability": 0.5942 + }, + { + "start": 561.62, + "end": 561.96, + "probability": 0.1553 + }, + { + "start": 561.96, + "end": 562.45, + "probability": 0.1466 + }, + { + "start": 562.46, + "end": 562.66, + "probability": 0.1037 + }, + { + "start": 562.66, + "end": 562.66, + "probability": 0.0447 + }, + { + "start": 562.66, + "end": 562.78, + "probability": 0.2272 + }, + { + "start": 583.92, + "end": 589.82, + "probability": 0.9974 + }, + { + "start": 591.24, + "end": 592.92, + "probability": 0.9871 + }, + { + "start": 593.76, + "end": 595.38, + "probability": 0.9846 + }, + { + "start": 596.8, + "end": 598.78, + "probability": 0.7392 + }, + { + "start": 600.12, + "end": 600.84, + "probability": 0.9668 + }, + { + "start": 602.3, + "end": 605.66, + "probability": 0.9578 + }, + { + "start": 606.82, + "end": 607.6, + "probability": 0.8528 + }, + { + "start": 609.48, + "end": 611.82, + "probability": 0.795 + }, + { + "start": 612.68, + "end": 613.78, + "probability": 0.7459 + }, + { + "start": 613.84, + "end": 615.98, + "probability": 0.9432 + }, + { + "start": 616.38, + "end": 617.72, + "probability": 0.9971 + }, + { + "start": 618.6, + "end": 620.42, + "probability": 0.6987 + }, + { + "start": 621.3, + "end": 622.14, + "probability": 0.8053 + }, + { + "start": 622.92, + "end": 623.4, + "probability": 0.2931 + }, + { + "start": 623.44, + "end": 624.36, + "probability": 0.9451 + }, + { + "start": 624.5, + "end": 625.66, + "probability": 0.7435 + }, + { + "start": 625.98, + "end": 627.12, + "probability": 0.965 + }, + { + "start": 628.64, + "end": 632.28, + "probability": 0.8734 + }, + { + "start": 633.14, + "end": 635.86, + "probability": 0.9814 + }, + { + "start": 636.88, + "end": 641.88, + "probability": 0.9927 + }, + { + "start": 642.92, + "end": 643.6, + "probability": 0.6076 + }, + { + "start": 644.24, + "end": 645.66, + "probability": 0.9794 + }, + { + "start": 646.42, + "end": 648.42, + "probability": 0.9993 + }, + { + "start": 650.0, + "end": 650.72, + "probability": 0.6182 + }, + { + "start": 650.88, + "end": 651.22, + "probability": 0.8148 + }, + { + "start": 651.4, + "end": 651.96, + "probability": 0.3864 + }, + { + "start": 652.34, + "end": 654.2, + "probability": 0.9673 + }, + { + "start": 654.78, + "end": 655.55, + "probability": 0.7917 + }, + { + "start": 655.84, + "end": 660.54, + "probability": 0.9843 + }, + { + "start": 660.94, + "end": 661.52, + "probability": 0.7843 + }, + { + "start": 662.0, + "end": 663.76, + "probability": 0.7867 + }, + { + "start": 664.38, + "end": 665.04, + "probability": 0.859 + }, + { + "start": 665.8, + "end": 666.62, + "probability": 0.4663 + }, + { + "start": 667.48, + "end": 668.7, + "probability": 0.9509 + }, + { + "start": 677.0, + "end": 678.18, + "probability": 0.6519 + }, + { + "start": 678.74, + "end": 680.54, + "probability": 0.7607 + }, + { + "start": 681.54, + "end": 684.24, + "probability": 0.8721 + }, + { + "start": 685.34, + "end": 685.9, + "probability": 0.5093 + }, + { + "start": 688.34, + "end": 689.06, + "probability": 0.9172 + }, + { + "start": 689.58, + "end": 690.66, + "probability": 0.3759 + }, + { + "start": 690.72, + "end": 693.54, + "probability": 0.8126 + }, + { + "start": 694.18, + "end": 695.28, + "probability": 0.8297 + }, + { + "start": 695.96, + "end": 698.92, + "probability": 0.6229 + }, + { + "start": 699.72, + "end": 702.62, + "probability": 0.9923 + }, + { + "start": 703.28, + "end": 704.06, + "probability": 0.9764 + }, + { + "start": 704.18, + "end": 705.0, + "probability": 0.8665 + }, + { + "start": 705.84, + "end": 709.4, + "probability": 0.9844 + }, + { + "start": 709.54, + "end": 714.34, + "probability": 0.8953 + }, + { + "start": 714.9, + "end": 720.38, + "probability": 0.9327 + }, + { + "start": 720.68, + "end": 721.38, + "probability": 0.5552 + }, + { + "start": 721.82, + "end": 724.96, + "probability": 0.9864 + }, + { + "start": 724.96, + "end": 727.92, + "probability": 0.9878 + }, + { + "start": 728.16, + "end": 728.54, + "probability": 0.5285 + }, + { + "start": 729.48, + "end": 730.16, + "probability": 0.5904 + }, + { + "start": 731.18, + "end": 732.42, + "probability": 0.8891 + }, + { + "start": 740.84, + "end": 741.62, + "probability": 0.5238 + }, + { + "start": 743.44, + "end": 744.58, + "probability": 0.6736 + }, + { + "start": 745.8, + "end": 746.92, + "probability": 0.7036 + }, + { + "start": 746.98, + "end": 748.68, + "probability": 0.8529 + }, + { + "start": 748.82, + "end": 750.68, + "probability": 0.8748 + }, + { + "start": 751.76, + "end": 753.0, + "probability": 0.7903 + }, + { + "start": 753.46, + "end": 757.82, + "probability": 0.7904 + }, + { + "start": 758.48, + "end": 759.76, + "probability": 0.7865 + }, + { + "start": 759.94, + "end": 761.46, + "probability": 0.8508 + }, + { + "start": 761.54, + "end": 763.04, + "probability": 0.9465 + }, + { + "start": 763.8, + "end": 766.07, + "probability": 0.9871 + }, + { + "start": 766.8, + "end": 771.24, + "probability": 0.9564 + }, + { + "start": 772.1, + "end": 772.5, + "probability": 0.4487 + }, + { + "start": 773.08, + "end": 774.22, + "probability": 0.914 + }, + { + "start": 774.74, + "end": 774.92, + "probability": 0.823 + }, + { + "start": 774.94, + "end": 776.56, + "probability": 0.9303 + }, + { + "start": 776.62, + "end": 778.72, + "probability": 0.9879 + }, + { + "start": 779.28, + "end": 780.92, + "probability": 0.9653 + }, + { + "start": 781.34, + "end": 781.76, + "probability": 0.9757 + }, + { + "start": 781.8, + "end": 782.3, + "probability": 0.7566 + }, + { + "start": 782.38, + "end": 785.8, + "probability": 0.9436 + }, + { + "start": 786.32, + "end": 786.74, + "probability": 0.6952 + }, + { + "start": 787.46, + "end": 791.0, + "probability": 0.6772 + }, + { + "start": 791.04, + "end": 793.74, + "probability": 0.6915 + }, + { + "start": 793.74, + "end": 796.18, + "probability": 0.8683 + }, + { + "start": 796.82, + "end": 799.16, + "probability": 0.9941 + }, + { + "start": 799.16, + "end": 804.48, + "probability": 0.9968 + }, + { + "start": 804.82, + "end": 805.54, + "probability": 0.7228 + }, + { + "start": 805.76, + "end": 807.86, + "probability": 0.9698 + }, + { + "start": 808.36, + "end": 810.98, + "probability": 0.9591 + }, + { + "start": 811.38, + "end": 814.54, + "probability": 0.9979 + }, + { + "start": 814.54, + "end": 816.44, + "probability": 0.9399 + }, + { + "start": 817.08, + "end": 817.83, + "probability": 0.8593 + }, + { + "start": 818.38, + "end": 820.42, + "probability": 0.867 + }, + { + "start": 820.5, + "end": 820.76, + "probability": 0.8361 + }, + { + "start": 821.94, + "end": 824.16, + "probability": 0.9824 + }, + { + "start": 824.2, + "end": 825.22, + "probability": 0.7188 + }, + { + "start": 837.42, + "end": 839.34, + "probability": 0.3418 + }, + { + "start": 839.36, + "end": 841.1, + "probability": 0.747 + }, + { + "start": 842.18, + "end": 843.24, + "probability": 0.711 + }, + { + "start": 843.86, + "end": 846.08, + "probability": 0.9683 + }, + { + "start": 847.08, + "end": 852.16, + "probability": 0.993 + }, + { + "start": 853.06, + "end": 854.66, + "probability": 0.9963 + }, + { + "start": 854.88, + "end": 855.98, + "probability": 0.8098 + }, + { + "start": 856.1, + "end": 859.84, + "probability": 0.9378 + }, + { + "start": 860.64, + "end": 862.34, + "probability": 0.7397 + }, + { + "start": 862.58, + "end": 863.48, + "probability": 0.8085 + }, + { + "start": 863.58, + "end": 864.54, + "probability": 0.3618 + }, + { + "start": 865.08, + "end": 868.3, + "probability": 0.9866 + }, + { + "start": 868.74, + "end": 869.4, + "probability": 0.6283 + }, + { + "start": 869.6, + "end": 870.42, + "probability": 0.7579 + }, + { + "start": 871.14, + "end": 874.78, + "probability": 0.9828 + }, + { + "start": 875.56, + "end": 878.96, + "probability": 0.9821 + }, + { + "start": 879.92, + "end": 881.64, + "probability": 0.8999 + }, + { + "start": 882.42, + "end": 883.46, + "probability": 0.9375 + }, + { + "start": 884.06, + "end": 889.08, + "probability": 0.9892 + }, + { + "start": 889.14, + "end": 890.04, + "probability": 0.764 + }, + { + "start": 890.64, + "end": 894.24, + "probability": 0.9926 + }, + { + "start": 894.78, + "end": 900.62, + "probability": 0.9956 + }, + { + "start": 901.34, + "end": 906.62, + "probability": 0.996 + }, + { + "start": 907.26, + "end": 908.26, + "probability": 0.7113 + }, + { + "start": 908.4, + "end": 913.04, + "probability": 0.9608 + }, + { + "start": 914.02, + "end": 914.26, + "probability": 0.7218 + }, + { + "start": 915.72, + "end": 917.62, + "probability": 0.7325 + }, + { + "start": 918.72, + "end": 919.9, + "probability": 0.8999 + }, + { + "start": 938.8, + "end": 938.8, + "probability": 0.3596 + }, + { + "start": 938.8, + "end": 938.8, + "probability": 0.0314 + }, + { + "start": 938.8, + "end": 938.8, + "probability": 0.0054 + }, + { + "start": 938.8, + "end": 938.8, + "probability": 0.0973 + }, + { + "start": 938.8, + "end": 938.8, + "probability": 0.0519 + }, + { + "start": 938.8, + "end": 938.96, + "probability": 0.0648 + }, + { + "start": 950.76, + "end": 951.7, + "probability": 0.227 + }, + { + "start": 958.74, + "end": 962.02, + "probability": 0.9928 + }, + { + "start": 962.02, + "end": 964.66, + "probability": 0.9963 + }, + { + "start": 965.62, + "end": 968.1, + "probability": 0.8378 + }, + { + "start": 968.88, + "end": 970.88, + "probability": 0.9859 + }, + { + "start": 975.16, + "end": 984.0, + "probability": 0.9963 + }, + { + "start": 984.86, + "end": 987.7, + "probability": 0.7993 + }, + { + "start": 988.3, + "end": 989.74, + "probability": 0.9943 + }, + { + "start": 989.86, + "end": 990.44, + "probability": 0.9079 + }, + { + "start": 990.52, + "end": 992.1, + "probability": 0.8992 + }, + { + "start": 992.66, + "end": 995.48, + "probability": 0.9883 + }, + { + "start": 996.14, + "end": 1001.42, + "probability": 0.9811 + }, + { + "start": 1001.84, + "end": 1005.46, + "probability": 0.9932 + }, + { + "start": 1005.68, + "end": 1009.8, + "probability": 0.999 + }, + { + "start": 1010.4, + "end": 1012.66, + "probability": 0.98 + }, + { + "start": 1013.54, + "end": 1017.69, + "probability": 0.99 + }, + { + "start": 1017.96, + "end": 1020.74, + "probability": 0.9991 + }, + { + "start": 1021.2, + "end": 1022.88, + "probability": 0.8712 + }, + { + "start": 1023.04, + "end": 1024.28, + "probability": 0.9233 + }, + { + "start": 1024.76, + "end": 1028.94, + "probability": 0.9969 + }, + { + "start": 1029.2, + "end": 1030.06, + "probability": 0.7935 + }, + { + "start": 1030.98, + "end": 1033.02, + "probability": 0.9346 + }, + { + "start": 1033.5, + "end": 1035.0, + "probability": 0.2236 + }, + { + "start": 1035.04, + "end": 1035.84, + "probability": 0.9773 + }, + { + "start": 1035.98, + "end": 1038.35, + "probability": 0.9824 + }, + { + "start": 1041.86, + "end": 1046.46, + "probability": 0.9988 + }, + { + "start": 1047.04, + "end": 1048.98, + "probability": 0.7037 + }, + { + "start": 1049.62, + "end": 1051.26, + "probability": 0.7496 + }, + { + "start": 1051.34, + "end": 1053.64, + "probability": 0.9933 + }, + { + "start": 1054.08, + "end": 1054.18, + "probability": 0.7093 + }, + { + "start": 1055.02, + "end": 1055.76, + "probability": 0.5332 + }, + { + "start": 1056.16, + "end": 1058.5, + "probability": 0.5997 + }, + { + "start": 1059.24, + "end": 1061.0, + "probability": 0.9539 + }, + { + "start": 1068.68, + "end": 1071.66, + "probability": 0.6535 + }, + { + "start": 1072.24, + "end": 1079.32, + "probability": 0.9932 + }, + { + "start": 1079.6, + "end": 1082.34, + "probability": 0.9446 + }, + { + "start": 1082.9, + "end": 1083.96, + "probability": 0.9873 + }, + { + "start": 1085.1, + "end": 1086.14, + "probability": 0.6116 + }, + { + "start": 1086.56, + "end": 1090.92, + "probability": 0.9981 + }, + { + "start": 1091.42, + "end": 1096.02, + "probability": 0.9549 + }, + { + "start": 1096.16, + "end": 1099.26, + "probability": 0.938 + }, + { + "start": 1099.72, + "end": 1101.06, + "probability": 0.652 + }, + { + "start": 1101.7, + "end": 1105.14, + "probability": 0.9883 + }, + { + "start": 1105.34, + "end": 1109.48, + "probability": 0.9141 + }, + { + "start": 1109.64, + "end": 1112.66, + "probability": 0.7147 + }, + { + "start": 1112.68, + "end": 1116.16, + "probability": 0.8937 + }, + { + "start": 1116.28, + "end": 1116.78, + "probability": 0.5001 + }, + { + "start": 1117.02, + "end": 1122.36, + "probability": 0.9783 + }, + { + "start": 1122.46, + "end": 1126.6, + "probability": 0.9514 + }, + { + "start": 1126.6, + "end": 1131.36, + "probability": 0.9842 + }, + { + "start": 1131.8, + "end": 1134.02, + "probability": 0.9907 + }, + { + "start": 1134.2, + "end": 1135.02, + "probability": 0.6772 + }, + { + "start": 1135.54, + "end": 1140.92, + "probability": 0.8849 + }, + { + "start": 1140.96, + "end": 1145.8, + "probability": 0.7823 + }, + { + "start": 1145.96, + "end": 1149.84, + "probability": 0.9809 + }, + { + "start": 1150.4, + "end": 1151.58, + "probability": 0.5456 + }, + { + "start": 1151.84, + "end": 1153.0, + "probability": 0.8354 + }, + { + "start": 1153.04, + "end": 1154.2, + "probability": 0.7935 + }, + { + "start": 1154.6, + "end": 1156.76, + "probability": 0.667 + }, + { + "start": 1156.84, + "end": 1158.2, + "probability": 0.642 + }, + { + "start": 1158.36, + "end": 1161.24, + "probability": 0.9863 + }, + { + "start": 1161.3, + "end": 1162.34, + "probability": 0.6516 + }, + { + "start": 1162.52, + "end": 1162.74, + "probability": 0.4798 + }, + { + "start": 1162.94, + "end": 1164.46, + "probability": 0.8638 + }, + { + "start": 1164.82, + "end": 1166.12, + "probability": 0.8817 + }, + { + "start": 1166.24, + "end": 1167.34, + "probability": 0.9698 + }, + { + "start": 1167.5, + "end": 1169.58, + "probability": 0.7039 + }, + { + "start": 1170.04, + "end": 1172.16, + "probability": 0.9431 + }, + { + "start": 1172.34, + "end": 1178.5, + "probability": 0.9917 + }, + { + "start": 1178.7, + "end": 1179.84, + "probability": 0.963 + }, + { + "start": 1179.98, + "end": 1180.36, + "probability": 0.778 + }, + { + "start": 1180.68, + "end": 1181.44, + "probability": 0.7395 + }, + { + "start": 1182.68, + "end": 1184.76, + "probability": 0.894 + }, + { + "start": 1198.05, + "end": 1201.28, + "probability": 0.8579 + }, + { + "start": 1201.34, + "end": 1202.06, + "probability": 0.7021 + }, + { + "start": 1204.06, + "end": 1206.14, + "probability": 0.9499 + }, + { + "start": 1206.14, + "end": 1210.3, + "probability": 0.9905 + }, + { + "start": 1211.32, + "end": 1216.02, + "probability": 0.9939 + }, + { + "start": 1216.02, + "end": 1219.18, + "probability": 0.9512 + }, + { + "start": 1220.44, + "end": 1223.22, + "probability": 0.9985 + }, + { + "start": 1223.8, + "end": 1228.88, + "probability": 0.9724 + }, + { + "start": 1229.94, + "end": 1234.58, + "probability": 0.9946 + }, + { + "start": 1234.58, + "end": 1238.74, + "probability": 0.9434 + }, + { + "start": 1239.88, + "end": 1241.28, + "probability": 0.7722 + }, + { + "start": 1241.76, + "end": 1242.9, + "probability": 0.6088 + }, + { + "start": 1243.02, + "end": 1244.84, + "probability": 0.8802 + }, + { + "start": 1245.02, + "end": 1245.74, + "probability": 0.9086 + }, + { + "start": 1245.9, + "end": 1246.42, + "probability": 0.9753 + }, + { + "start": 1246.6, + "end": 1247.08, + "probability": 0.9932 + }, + { + "start": 1247.26, + "end": 1247.76, + "probability": 0.9873 + }, + { + "start": 1248.14, + "end": 1248.58, + "probability": 0.6947 + }, + { + "start": 1249.12, + "end": 1250.66, + "probability": 0.5435 + }, + { + "start": 1251.08, + "end": 1251.94, + "probability": 0.9119 + }, + { + "start": 1252.08, + "end": 1257.82, + "probability": 0.9749 + }, + { + "start": 1258.32, + "end": 1259.52, + "probability": 0.9159 + }, + { + "start": 1259.94, + "end": 1261.34, + "probability": 0.9961 + }, + { + "start": 1261.92, + "end": 1266.02, + "probability": 0.8976 + }, + { + "start": 1266.58, + "end": 1268.06, + "probability": 0.7795 + }, + { + "start": 1268.18, + "end": 1268.96, + "probability": 0.6998 + }, + { + "start": 1269.46, + "end": 1271.16, + "probability": 0.7917 + }, + { + "start": 1271.5, + "end": 1276.38, + "probability": 0.9209 + }, + { + "start": 1276.48, + "end": 1277.8, + "probability": 0.8018 + }, + { + "start": 1278.12, + "end": 1278.46, + "probability": 0.8704 + }, + { + "start": 1278.54, + "end": 1281.86, + "probability": 0.9458 + }, + { + "start": 1281.98, + "end": 1283.76, + "probability": 0.9929 + }, + { + "start": 1284.24, + "end": 1286.64, + "probability": 0.9888 + }, + { + "start": 1286.82, + "end": 1289.24, + "probability": 0.9205 + }, + { + "start": 1289.5, + "end": 1290.32, + "probability": 0.9866 + }, + { + "start": 1290.82, + "end": 1295.0, + "probability": 0.9934 + }, + { + "start": 1295.48, + "end": 1296.38, + "probability": 0.9225 + }, + { + "start": 1296.46, + "end": 1297.86, + "probability": 0.8765 + }, + { + "start": 1298.1, + "end": 1299.04, + "probability": 0.9427 + }, + { + "start": 1299.32, + "end": 1300.0, + "probability": 0.4732 + }, + { + "start": 1300.48, + "end": 1300.9, + "probability": 0.7552 + }, + { + "start": 1301.2, + "end": 1305.5, + "probability": 0.9874 + }, + { + "start": 1305.54, + "end": 1306.16, + "probability": 0.4232 + }, + { + "start": 1306.32, + "end": 1307.14, + "probability": 0.8462 + }, + { + "start": 1307.22, + "end": 1308.04, + "probability": 0.7325 + }, + { + "start": 1308.6, + "end": 1310.0, + "probability": 0.981 + }, + { + "start": 1310.4, + "end": 1311.46, + "probability": 0.8468 + }, + { + "start": 1311.74, + "end": 1313.28, + "probability": 0.9983 + }, + { + "start": 1313.56, + "end": 1315.36, + "probability": 0.9333 + }, + { + "start": 1316.0, + "end": 1316.4, + "probability": 0.5008 + }, + { + "start": 1316.72, + "end": 1317.36, + "probability": 0.8378 + }, + { + "start": 1317.66, + "end": 1319.32, + "probability": 0.8548 + }, + { + "start": 1319.58, + "end": 1320.64, + "probability": 0.432 + }, + { + "start": 1320.96, + "end": 1321.84, + "probability": 0.9689 + }, + { + "start": 1321.94, + "end": 1322.94, + "probability": 0.9047 + }, + { + "start": 1323.02, + "end": 1323.86, + "probability": 0.6837 + }, + { + "start": 1324.26, + "end": 1325.1, + "probability": 0.9861 + }, + { + "start": 1325.22, + "end": 1325.96, + "probability": 0.9907 + }, + { + "start": 1326.0, + "end": 1327.06, + "probability": 0.9698 + }, + { + "start": 1327.42, + "end": 1328.12, + "probability": 0.9008 + }, + { + "start": 1328.9, + "end": 1329.94, + "probability": 0.2751 + }, + { + "start": 1329.94, + "end": 1330.22, + "probability": 0.683 + }, + { + "start": 1330.4, + "end": 1332.76, + "probability": 0.9767 + }, + { + "start": 1333.06, + "end": 1335.78, + "probability": 0.9706 + }, + { + "start": 1336.3, + "end": 1337.08, + "probability": 0.8363 + }, + { + "start": 1337.46, + "end": 1338.6, + "probability": 0.9189 + }, + { + "start": 1339.0, + "end": 1342.38, + "probability": 0.9628 + }, + { + "start": 1342.54, + "end": 1344.9, + "probability": 0.9209 + }, + { + "start": 1345.16, + "end": 1346.62, + "probability": 0.9937 + }, + { + "start": 1346.9, + "end": 1347.12, + "probability": 0.782 + }, + { + "start": 1347.74, + "end": 1348.7, + "probability": 0.5646 + }, + { + "start": 1349.6, + "end": 1351.82, + "probability": 0.9716 + }, + { + "start": 1362.6, + "end": 1366.7, + "probability": 0.8285 + }, + { + "start": 1367.32, + "end": 1369.53, + "probability": 0.934 + }, + { + "start": 1370.62, + "end": 1371.75, + "probability": 0.0425 + }, + { + "start": 1371.78, + "end": 1374.22, + "probability": 0.2288 + }, + { + "start": 1374.42, + "end": 1375.54, + "probability": 0.974 + }, + { + "start": 1375.6, + "end": 1377.54, + "probability": 0.9099 + }, + { + "start": 1378.66, + "end": 1380.26, + "probability": 0.5354 + }, + { + "start": 1380.54, + "end": 1383.04, + "probability": 0.8146 + }, + { + "start": 1383.18, + "end": 1383.32, + "probability": 0.1833 + }, + { + "start": 1383.36, + "end": 1384.76, + "probability": 0.7345 + }, + { + "start": 1384.82, + "end": 1389.56, + "probability": 0.991 + }, + { + "start": 1390.08, + "end": 1391.4, + "probability": 0.8381 + }, + { + "start": 1391.8, + "end": 1393.26, + "probability": 0.8632 + }, + { + "start": 1394.14, + "end": 1394.48, + "probability": 0.4931 + }, + { + "start": 1394.56, + "end": 1398.24, + "probability": 0.978 + }, + { + "start": 1399.36, + "end": 1402.34, + "probability": 0.7646 + }, + { + "start": 1403.28, + "end": 1405.68, + "probability": 0.9465 + }, + { + "start": 1406.12, + "end": 1412.08, + "probability": 0.9897 + }, + { + "start": 1412.66, + "end": 1413.34, + "probability": 0.5965 + }, + { + "start": 1413.84, + "end": 1414.2, + "probability": 0.6298 + }, + { + "start": 1414.26, + "end": 1415.3, + "probability": 0.9854 + }, + { + "start": 1415.36, + "end": 1416.16, + "probability": 0.908 + }, + { + "start": 1416.64, + "end": 1419.22, + "probability": 0.7557 + }, + { + "start": 1419.34, + "end": 1420.14, + "probability": 0.7227 + }, + { + "start": 1420.26, + "end": 1424.7, + "probability": 0.9819 + }, + { + "start": 1425.66, + "end": 1427.48, + "probability": 0.9967 + }, + { + "start": 1428.32, + "end": 1432.52, + "probability": 0.9863 + }, + { + "start": 1433.38, + "end": 1435.58, + "probability": 0.9976 + }, + { + "start": 1436.3, + "end": 1438.0, + "probability": 0.9377 + }, + { + "start": 1438.6, + "end": 1440.94, + "probability": 0.9977 + }, + { + "start": 1441.68, + "end": 1445.72, + "probability": 0.9736 + }, + { + "start": 1446.22, + "end": 1449.34, + "probability": 0.986 + }, + { + "start": 1449.86, + "end": 1454.88, + "probability": 0.991 + }, + { + "start": 1455.32, + "end": 1456.36, + "probability": 0.96 + }, + { + "start": 1456.84, + "end": 1457.32, + "probability": 0.6798 + }, + { + "start": 1459.1, + "end": 1460.66, + "probability": 0.6715 + }, + { + "start": 1461.36, + "end": 1462.46, + "probability": 0.9734 + }, + { + "start": 1467.34, + "end": 1469.16, + "probability": 0.4728 + }, + { + "start": 1470.48, + "end": 1470.7, + "probability": 0.2428 + }, + { + "start": 1481.12, + "end": 1486.58, + "probability": 0.7893 + }, + { + "start": 1487.68, + "end": 1492.3, + "probability": 0.847 + }, + { + "start": 1492.3, + "end": 1498.82, + "probability": 0.8665 + }, + { + "start": 1500.62, + "end": 1501.3, + "probability": 0.2461 + }, + { + "start": 1501.86, + "end": 1505.88, + "probability": 0.8684 + }, + { + "start": 1506.44, + "end": 1507.4, + "probability": 0.9737 + }, + { + "start": 1508.08, + "end": 1515.77, + "probability": 0.9985 + }, + { + "start": 1516.42, + "end": 1523.64, + "probability": 0.9985 + }, + { + "start": 1524.44, + "end": 1525.58, + "probability": 0.9987 + }, + { + "start": 1526.18, + "end": 1527.3, + "probability": 0.9798 + }, + { + "start": 1528.38, + "end": 1529.12, + "probability": 0.3294 + }, + { + "start": 1530.24, + "end": 1534.62, + "probability": 0.9895 + }, + { + "start": 1535.82, + "end": 1543.36, + "probability": 0.6506 + }, + { + "start": 1544.48, + "end": 1547.94, + "probability": 0.6555 + }, + { + "start": 1548.68, + "end": 1549.8, + "probability": 0.6346 + }, + { + "start": 1551.16, + "end": 1553.3, + "probability": 0.9951 + }, + { + "start": 1554.0, + "end": 1556.32, + "probability": 0.6418 + }, + { + "start": 1557.4, + "end": 1559.84, + "probability": 0.8859 + }, + { + "start": 1560.66, + "end": 1561.16, + "probability": 0.835 + }, + { + "start": 1561.98, + "end": 1566.66, + "probability": 0.8795 + }, + { + "start": 1566.86, + "end": 1575.06, + "probability": 0.797 + }, + { + "start": 1576.06, + "end": 1581.54, + "probability": 0.9365 + }, + { + "start": 1582.38, + "end": 1591.16, + "probability": 0.977 + }, + { + "start": 1591.44, + "end": 1593.52, + "probability": 0.8114 + }, + { + "start": 1593.96, + "end": 1594.4, + "probability": 0.8147 + }, + { + "start": 1596.1, + "end": 1596.86, + "probability": 0.6239 + }, + { + "start": 1596.88, + "end": 1598.32, + "probability": 0.9033 + }, + { + "start": 1599.14, + "end": 1600.12, + "probability": 0.669 + }, + { + "start": 1601.4, + "end": 1604.9, + "probability": 0.9943 + }, + { + "start": 1605.0, + "end": 1606.12, + "probability": 0.9736 + }, + { + "start": 1606.34, + "end": 1607.42, + "probability": 0.9636 + }, + { + "start": 1608.04, + "end": 1609.54, + "probability": 0.9946 + }, + { + "start": 1610.36, + "end": 1611.06, + "probability": 0.9016 + }, + { + "start": 1611.1, + "end": 1612.32, + "probability": 0.8487 + }, + { + "start": 1612.42, + "end": 1614.28, + "probability": 0.9401 + }, + { + "start": 1617.1, + "end": 1618.54, + "probability": 0.1301 + }, + { + "start": 1619.1, + "end": 1619.25, + "probability": 0.1048 + }, + { + "start": 1619.82, + "end": 1621.38, + "probability": 0.9563 + }, + { + "start": 1621.9, + "end": 1622.0, + "probability": 0.1004 + }, + { + "start": 1622.0, + "end": 1625.86, + "probability": 0.8962 + }, + { + "start": 1626.26, + "end": 1627.14, + "probability": 0.2567 + }, + { + "start": 1627.14, + "end": 1627.84, + "probability": 0.6785 + }, + { + "start": 1627.92, + "end": 1629.1, + "probability": 0.2143 + }, + { + "start": 1629.8, + "end": 1631.42, + "probability": 0.2522 + }, + { + "start": 1631.5, + "end": 1631.72, + "probability": 0.1414 + }, + { + "start": 1631.72, + "end": 1632.68, + "probability": 0.8059 + }, + { + "start": 1633.0, + "end": 1633.18, + "probability": 0.1939 + }, + { + "start": 1633.18, + "end": 1634.1, + "probability": 0.5692 + }, + { + "start": 1636.22, + "end": 1637.04, + "probability": 0.4743 + }, + { + "start": 1637.34, + "end": 1638.46, + "probability": 0.0263 + }, + { + "start": 1638.76, + "end": 1640.04, + "probability": 0.5777 + }, + { + "start": 1641.1, + "end": 1641.48, + "probability": 0.1793 + }, + { + "start": 1641.48, + "end": 1642.94, + "probability": 0.6036 + }, + { + "start": 1643.8, + "end": 1645.92, + "probability": 0.3195 + }, + { + "start": 1647.04, + "end": 1647.74, + "probability": 0.1232 + }, + { + "start": 1647.76, + "end": 1648.0, + "probability": 0.0607 + }, + { + "start": 1648.0, + "end": 1648.94, + "probability": 0.3433 + }, + { + "start": 1649.14, + "end": 1649.9, + "probability": 0.702 + }, + { + "start": 1650.56, + "end": 1652.56, + "probability": 0.8681 + }, + { + "start": 1659.1, + "end": 1659.4, + "probability": 0.57 + }, + { + "start": 1659.6, + "end": 1660.04, + "probability": 0.8598 + }, + { + "start": 1660.44, + "end": 1663.3, + "probability": 0.8643 + }, + { + "start": 1663.3, + "end": 1666.2, + "probability": 0.9917 + }, + { + "start": 1666.76, + "end": 1667.3, + "probability": 0.7682 + }, + { + "start": 1667.42, + "end": 1670.1, + "probability": 0.9899 + }, + { + "start": 1670.66, + "end": 1671.6, + "probability": 0.9437 + }, + { + "start": 1671.82, + "end": 1675.18, + "probability": 0.8763 + }, + { + "start": 1675.98, + "end": 1678.5, + "probability": 0.242 + }, + { + "start": 1678.94, + "end": 1681.88, + "probability": 0.2202 + }, + { + "start": 1681.88, + "end": 1683.34, + "probability": 0.9596 + }, + { + "start": 1684.08, + "end": 1687.86, + "probability": 0.9731 + }, + { + "start": 1688.08, + "end": 1690.76, + "probability": 0.8826 + }, + { + "start": 1691.4, + "end": 1693.54, + "probability": 0.3047 + }, + { + "start": 1694.18, + "end": 1695.2, + "probability": 0.058 + }, + { + "start": 1695.7, + "end": 1700.92, + "probability": 0.805 + }, + { + "start": 1702.22, + "end": 1704.14, + "probability": 0.925 + }, + { + "start": 1704.78, + "end": 1708.62, + "probability": 0.9435 + }, + { + "start": 1709.32, + "end": 1712.28, + "probability": 0.9976 + }, + { + "start": 1712.28, + "end": 1717.52, + "probability": 0.9836 + }, + { + "start": 1718.78, + "end": 1719.04, + "probability": 0.7044 + }, + { + "start": 1719.32, + "end": 1720.34, + "probability": 0.7032 + }, + { + "start": 1721.16, + "end": 1723.52, + "probability": 0.9718 + }, + { + "start": 1723.9, + "end": 1725.82, + "probability": 0.5257 + }, + { + "start": 1726.4, + "end": 1731.22, + "probability": 0.7199 + }, + { + "start": 1733.74, + "end": 1737.2, + "probability": 0.4752 + }, + { + "start": 1737.7, + "end": 1741.88, + "probability": 0.9353 + }, + { + "start": 1745.12, + "end": 1746.42, + "probability": 0.1217 + }, + { + "start": 1747.32, + "end": 1747.46, + "probability": 0.2319 + }, + { + "start": 1758.4, + "end": 1764.17, + "probability": 0.1169 + }, + { + "start": 1814.01, + "end": 1816.26, + "probability": 0.128 + }, + { + "start": 1821.24, + "end": 1821.58, + "probability": 0.0214 + }, + { + "start": 1822.54, + "end": 1822.68, + "probability": 0.0033 + }, + { + "start": 1822.68, + "end": 1823.82, + "probability": 0.026 + }, + { + "start": 1826.18, + "end": 1827.3, + "probability": 0.0002 + }, + { + "start": 1829.12, + "end": 1832.0, + "probability": 0.0524 + }, + { + "start": 1833.34, + "end": 1834.46, + "probability": 0.0521 + }, + { + "start": 1834.46, + "end": 1838.03, + "probability": 0.0997 + }, + { + "start": 1936.0, + "end": 1936.0, + "probability": 0.0 + }, + { + "start": 1936.0, + "end": 1936.0, + "probability": 0.0 + }, + { + "start": 1936.0, + "end": 1936.0, + "probability": 0.0 + }, + { + "start": 1936.0, + "end": 1936.0, + "probability": 0.0 + }, + { + "start": 1936.0, + "end": 1936.0, + "probability": 0.0 + }, + { + "start": 1936.0, + "end": 1936.0, + "probability": 0.0 + }, + { + "start": 1936.0, + "end": 1936.0, + "probability": 0.0 + }, + { + "start": 1936.0, + "end": 1936.0, + "probability": 0.0 + }, + { + "start": 1936.0, + "end": 1936.0, + "probability": 0.0 + }, + { + "start": 1936.0, + "end": 1936.0, + "probability": 0.0 + }, + { + "start": 1936.0, + "end": 1936.0, + "probability": 0.0 + }, + { + "start": 1936.0, + "end": 1936.0, + "probability": 0.0 + }, + { + "start": 1936.0, + "end": 1936.0, + "probability": 0.0 + }, + { + "start": 1936.0, + "end": 1936.0, + "probability": 0.0 + }, + { + "start": 1936.0, + "end": 1936.0, + "probability": 0.0 + }, + { + "start": 1936.0, + "end": 1936.0, + "probability": 0.0 + }, + { + "start": 1936.0, + "end": 1936.0, + "probability": 0.0 + }, + { + "start": 1936.0, + "end": 1936.0, + "probability": 0.0 + }, + { + "start": 1936.22, + "end": 1937.02, + "probability": 0.0415 + }, + { + "start": 1938.36, + "end": 1940.08, + "probability": 0.6733 + }, + { + "start": 1940.6, + "end": 1942.1, + "probability": 0.9562 + }, + { + "start": 1943.08, + "end": 1947.9, + "probability": 0.9983 + }, + { + "start": 1947.9, + "end": 1950.78, + "probability": 0.9977 + }, + { + "start": 1951.84, + "end": 1952.66, + "probability": 0.9985 + }, + { + "start": 1953.5, + "end": 1956.04, + "probability": 0.8046 + }, + { + "start": 1958.04, + "end": 1958.78, + "probability": 0.8295 + }, + { + "start": 1959.78, + "end": 1967.76, + "probability": 0.9966 + }, + { + "start": 1968.9, + "end": 1970.28, + "probability": 0.9906 + }, + { + "start": 1972.16, + "end": 1976.88, + "probability": 0.8817 + }, + { + "start": 1978.26, + "end": 1982.72, + "probability": 0.9891 + }, + { + "start": 1984.74, + "end": 1988.82, + "probability": 0.9849 + }, + { + "start": 1990.4, + "end": 1991.54, + "probability": 0.667 + }, + { + "start": 1991.7, + "end": 1995.38, + "probability": 0.8824 + }, + { + "start": 1995.38, + "end": 1996.22, + "probability": 0.9387 + }, + { + "start": 1998.14, + "end": 2002.48, + "probability": 0.9966 + }, + { + "start": 2004.64, + "end": 2005.82, + "probability": 0.9979 + }, + { + "start": 2006.88, + "end": 2009.88, + "probability": 0.9576 + }, + { + "start": 2012.58, + "end": 2015.8, + "probability": 0.9972 + }, + { + "start": 2016.96, + "end": 2018.83, + "probability": 0.8236 + }, + { + "start": 2020.18, + "end": 2024.8, + "probability": 0.8885 + }, + { + "start": 2027.12, + "end": 2029.24, + "probability": 0.9683 + }, + { + "start": 2030.46, + "end": 2034.14, + "probability": 0.9682 + }, + { + "start": 2034.4, + "end": 2036.1, + "probability": 0.9185 + }, + { + "start": 2038.84, + "end": 2039.38, + "probability": 0.8272 + }, + { + "start": 2040.54, + "end": 2043.26, + "probability": 0.9926 + }, + { + "start": 2043.26, + "end": 2046.56, + "probability": 0.9683 + }, + { + "start": 2048.64, + "end": 2049.22, + "probability": 0.9662 + }, + { + "start": 2050.22, + "end": 2054.8, + "probability": 0.8698 + }, + { + "start": 2056.14, + "end": 2058.6, + "probability": 0.9365 + }, + { + "start": 2059.44, + "end": 2061.5, + "probability": 0.9832 + }, + { + "start": 2063.3, + "end": 2066.32, + "probability": 0.9611 + }, + { + "start": 2067.34, + "end": 2072.7, + "probability": 0.9652 + }, + { + "start": 2074.26, + "end": 2075.06, + "probability": 0.857 + }, + { + "start": 2075.84, + "end": 2079.98, + "probability": 0.9761 + }, + { + "start": 2081.06, + "end": 2082.44, + "probability": 0.7979 + }, + { + "start": 2083.28, + "end": 2084.6, + "probability": 0.9963 + }, + { + "start": 2085.34, + "end": 2092.4, + "probability": 0.9977 + }, + { + "start": 2094.18, + "end": 2095.08, + "probability": 0.8529 + }, + { + "start": 2096.12, + "end": 2102.04, + "probability": 0.8883 + }, + { + "start": 2103.14, + "end": 2104.76, + "probability": 0.7488 + }, + { + "start": 2105.48, + "end": 2106.26, + "probability": 0.9906 + }, + { + "start": 2108.38, + "end": 2111.88, + "probability": 0.9854 + }, + { + "start": 2111.88, + "end": 2114.38, + "probability": 0.8946 + }, + { + "start": 2115.5, + "end": 2117.96, + "probability": 0.998 + }, + { + "start": 2118.98, + "end": 2120.48, + "probability": 0.8454 + }, + { + "start": 2121.58, + "end": 2123.48, + "probability": 0.8498 + }, + { + "start": 2124.36, + "end": 2125.05, + "probability": 0.987 + }, + { + "start": 2126.52, + "end": 2128.88, + "probability": 0.9908 + }, + { + "start": 2128.88, + "end": 2131.4, + "probability": 0.9979 + }, + { + "start": 2131.46, + "end": 2132.2, + "probability": 0.7623 + }, + { + "start": 2133.0, + "end": 2134.2, + "probability": 0.9653 + }, + { + "start": 2135.02, + "end": 2137.7, + "probability": 0.8504 + }, + { + "start": 2138.66, + "end": 2141.76, + "probability": 0.98 + }, + { + "start": 2142.68, + "end": 2142.88, + "probability": 0.7682 + }, + { + "start": 2144.7, + "end": 2147.22, + "probability": 0.7769 + }, + { + "start": 2147.76, + "end": 2152.12, + "probability": 0.9792 + }, + { + "start": 2152.24, + "end": 2152.44, + "probability": 0.9368 + }, + { + "start": 2174.44, + "end": 2175.14, + "probability": 0.5338 + }, + { + "start": 2176.36, + "end": 2177.08, + "probability": 0.0768 + }, + { + "start": 2177.54, + "end": 2181.16, + "probability": 0.939 + }, + { + "start": 2183.76, + "end": 2184.02, + "probability": 0.7646 + }, + { + "start": 2187.68, + "end": 2188.94, + "probability": 0.8311 + }, + { + "start": 2190.2, + "end": 2191.6, + "probability": 0.8196 + }, + { + "start": 2192.96, + "end": 2194.87, + "probability": 0.9966 + }, + { + "start": 2195.4, + "end": 2196.44, + "probability": 0.9563 + }, + { + "start": 2197.32, + "end": 2197.86, + "probability": 0.9447 + }, + { + "start": 2198.06, + "end": 2200.5, + "probability": 0.9643 + }, + { + "start": 2200.92, + "end": 2201.62, + "probability": 0.96 + }, + { + "start": 2202.0, + "end": 2204.14, + "probability": 0.9432 + }, + { + "start": 2205.34, + "end": 2210.05, + "probability": 0.9945 + }, + { + "start": 2210.32, + "end": 2211.58, + "probability": 0.5315 + }, + { + "start": 2211.88, + "end": 2213.2, + "probability": 0.9819 + }, + { + "start": 2214.42, + "end": 2214.78, + "probability": 0.9456 + }, + { + "start": 2215.42, + "end": 2218.34, + "probability": 0.9087 + }, + { + "start": 2219.1, + "end": 2223.02, + "probability": 0.9993 + }, + { + "start": 2223.54, + "end": 2224.62, + "probability": 0.9978 + }, + { + "start": 2225.98, + "end": 2227.76, + "probability": 0.9507 + }, + { + "start": 2228.36, + "end": 2231.5, + "probability": 0.9927 + }, + { + "start": 2232.32, + "end": 2234.96, + "probability": 0.9975 + }, + { + "start": 2234.96, + "end": 2240.36, + "probability": 0.9861 + }, + { + "start": 2241.28, + "end": 2242.9, + "probability": 0.9023 + }, + { + "start": 2243.32, + "end": 2245.72, + "probability": 0.8887 + }, + { + "start": 2246.34, + "end": 2249.04, + "probability": 0.9971 + }, + { + "start": 2250.46, + "end": 2253.62, + "probability": 0.9899 + }, + { + "start": 2253.62, + "end": 2257.5, + "probability": 0.978 + }, + { + "start": 2258.14, + "end": 2258.72, + "probability": 0.9505 + }, + { + "start": 2260.18, + "end": 2260.94, + "probability": 0.9474 + }, + { + "start": 2261.08, + "end": 2262.14, + "probability": 0.9741 + }, + { + "start": 2262.5, + "end": 2266.34, + "probability": 0.9977 + }, + { + "start": 2266.74, + "end": 2269.3, + "probability": 0.9952 + }, + { + "start": 2269.74, + "end": 2272.62, + "probability": 0.802 + }, + { + "start": 2273.32, + "end": 2274.54, + "probability": 0.955 + }, + { + "start": 2277.04, + "end": 2278.82, + "probability": 0.981 + }, + { + "start": 2279.08, + "end": 2283.22, + "probability": 0.981 + }, + { + "start": 2284.5, + "end": 2287.42, + "probability": 0.9974 + }, + { + "start": 2287.42, + "end": 2290.6, + "probability": 0.9956 + }, + { + "start": 2292.42, + "end": 2294.88, + "probability": 0.9966 + }, + { + "start": 2295.58, + "end": 2297.96, + "probability": 0.9907 + }, + { + "start": 2298.8, + "end": 2300.68, + "probability": 0.9977 + }, + { + "start": 2300.78, + "end": 2303.16, + "probability": 0.9985 + }, + { + "start": 2303.98, + "end": 2304.22, + "probability": 0.9413 + }, + { + "start": 2306.34, + "end": 2307.42, + "probability": 0.8669 + }, + { + "start": 2308.28, + "end": 2309.6, + "probability": 0.858 + }, + { + "start": 2310.68, + "end": 2315.5, + "probability": 0.9916 + }, + { + "start": 2316.3, + "end": 2322.0, + "probability": 0.9987 + }, + { + "start": 2322.92, + "end": 2326.0, + "probability": 0.9865 + }, + { + "start": 2326.42, + "end": 2326.62, + "probability": 0.8309 + }, + { + "start": 2327.68, + "end": 2329.0, + "probability": 0.6646 + }, + { + "start": 2329.12, + "end": 2334.34, + "probability": 0.9661 + }, + { + "start": 2334.84, + "end": 2335.68, + "probability": 0.8855 + }, + { + "start": 2336.22, + "end": 2337.86, + "probability": 0.9412 + }, + { + "start": 2345.32, + "end": 2347.48, + "probability": 0.7185 + }, + { + "start": 2348.36, + "end": 2353.2, + "probability": 0.9891 + }, + { + "start": 2366.8, + "end": 2367.88, + "probability": 0.6207 + }, + { + "start": 2369.28, + "end": 2370.62, + "probability": 0.725 + }, + { + "start": 2372.26, + "end": 2375.98, + "probability": 0.9631 + }, + { + "start": 2376.56, + "end": 2377.0, + "probability": 0.51 + }, + { + "start": 2377.76, + "end": 2382.7, + "probability": 0.9744 + }, + { + "start": 2383.68, + "end": 2385.12, + "probability": 0.9795 + }, + { + "start": 2385.46, + "end": 2386.28, + "probability": 0.9064 + }, + { + "start": 2387.22, + "end": 2387.92, + "probability": 0.7344 + }, + { + "start": 2389.36, + "end": 2395.2, + "probability": 0.9862 + }, + { + "start": 2395.24, + "end": 2398.02, + "probability": 0.9083 + }, + { + "start": 2398.7, + "end": 2399.86, + "probability": 0.8542 + }, + { + "start": 2401.04, + "end": 2401.68, + "probability": 0.7949 + }, + { + "start": 2402.98, + "end": 2405.88, + "probability": 0.9681 + }, + { + "start": 2405.88, + "end": 2409.14, + "probability": 0.9451 + }, + { + "start": 2409.24, + "end": 2410.72, + "probability": 0.6595 + }, + { + "start": 2411.82, + "end": 2413.14, + "probability": 0.8762 + }, + { + "start": 2413.7, + "end": 2414.36, + "probability": 0.9762 + }, + { + "start": 2415.52, + "end": 2418.4, + "probability": 0.6544 + }, + { + "start": 2419.54, + "end": 2420.9, + "probability": 0.9805 + }, + { + "start": 2421.96, + "end": 2427.42, + "probability": 0.9957 + }, + { + "start": 2428.22, + "end": 2428.91, + "probability": 0.9983 + }, + { + "start": 2429.9, + "end": 2435.14, + "probability": 0.9917 + }, + { + "start": 2435.96, + "end": 2439.24, + "probability": 0.9441 + }, + { + "start": 2439.24, + "end": 2441.86, + "probability": 0.8341 + }, + { + "start": 2442.92, + "end": 2444.38, + "probability": 0.6581 + }, + { + "start": 2444.42, + "end": 2448.64, + "probability": 0.9025 + }, + { + "start": 2449.58, + "end": 2452.02, + "probability": 0.8942 + }, + { + "start": 2453.04, + "end": 2456.34, + "probability": 0.754 + }, + { + "start": 2458.1, + "end": 2461.16, + "probability": 0.9535 + }, + { + "start": 2461.2, + "end": 2463.7, + "probability": 0.8135 + }, + { + "start": 2464.8, + "end": 2466.66, + "probability": 0.6993 + }, + { + "start": 2468.3, + "end": 2472.58, + "probability": 0.9808 + }, + { + "start": 2474.26, + "end": 2476.9, + "probability": 0.8682 + }, + { + "start": 2476.94, + "end": 2479.12, + "probability": 0.4766 + }, + { + "start": 2479.84, + "end": 2485.3, + "probability": 0.7677 + }, + { + "start": 2485.86, + "end": 2487.08, + "probability": 0.9983 + }, + { + "start": 2488.16, + "end": 2491.56, + "probability": 0.8867 + }, + { + "start": 2491.56, + "end": 2495.02, + "probability": 0.9322 + }, + { + "start": 2496.12, + "end": 2498.8, + "probability": 0.8859 + }, + { + "start": 2498.88, + "end": 2501.06, + "probability": 0.9548 + }, + { + "start": 2501.84, + "end": 2502.42, + "probability": 0.7327 + }, + { + "start": 2503.12, + "end": 2507.06, + "probability": 0.8421 + }, + { + "start": 2507.94, + "end": 2508.74, + "probability": 0.8701 + }, + { + "start": 2509.52, + "end": 2510.62, + "probability": 0.946 + }, + { + "start": 2511.26, + "end": 2514.72, + "probability": 0.9538 + }, + { + "start": 2514.76, + "end": 2516.54, + "probability": 0.8768 + }, + { + "start": 2516.84, + "end": 2518.32, + "probability": 0.9019 + }, + { + "start": 2518.7, + "end": 2519.94, + "probability": 0.9745 + }, + { + "start": 2520.96, + "end": 2522.8, + "probability": 0.9845 + }, + { + "start": 2522.8, + "end": 2525.24, + "probability": 0.9083 + }, + { + "start": 2525.36, + "end": 2527.1, + "probability": 0.9854 + }, + { + "start": 2528.1, + "end": 2529.94, + "probability": 0.6483 + }, + { + "start": 2530.86, + "end": 2531.24, + "probability": 0.5348 + }, + { + "start": 2531.98, + "end": 2535.16, + "probability": 0.7339 + }, + { + "start": 2535.18, + "end": 2537.82, + "probability": 0.8191 + }, + { + "start": 2539.61, + "end": 2542.2, + "probability": 0.8362 + }, + { + "start": 2542.48, + "end": 2544.98, + "probability": 0.927 + }, + { + "start": 2545.86, + "end": 2548.58, + "probability": 0.9076 + }, + { + "start": 2549.06, + "end": 2549.48, + "probability": 0.704 + }, + { + "start": 2550.04, + "end": 2550.68, + "probability": 0.5909 + }, + { + "start": 2551.06, + "end": 2552.62, + "probability": 0.9891 + }, + { + "start": 2552.68, + "end": 2553.68, + "probability": 0.907 + }, + { + "start": 2554.26, + "end": 2556.12, + "probability": 0.8167 + }, + { + "start": 2556.9, + "end": 2558.86, + "probability": 0.8096 + }, + { + "start": 2559.2, + "end": 2560.07, + "probability": 0.9224 + }, + { + "start": 2560.82, + "end": 2563.64, + "probability": 0.9628 + }, + { + "start": 2564.78, + "end": 2567.2, + "probability": 0.8911 + }, + { + "start": 2568.28, + "end": 2570.42, + "probability": 0.8751 + }, + { + "start": 2571.04, + "end": 2572.32, + "probability": 0.9278 + }, + { + "start": 2572.44, + "end": 2572.64, + "probability": 0.8337 + }, + { + "start": 2575.24, + "end": 2575.68, + "probability": 0.6139 + }, + { + "start": 2575.72, + "end": 2576.64, + "probability": 0.6846 + }, + { + "start": 2587.14, + "end": 2587.46, + "probability": 0.467 + }, + { + "start": 2588.96, + "end": 2589.18, + "probability": 0.1564 + }, + { + "start": 2589.18, + "end": 2589.18, + "probability": 0.1531 + }, + { + "start": 2589.18, + "end": 2589.18, + "probability": 0.3275 + }, + { + "start": 2589.18, + "end": 2589.18, + "probability": 0.1729 + }, + { + "start": 2589.18, + "end": 2589.2, + "probability": 0.042 + }, + { + "start": 2589.2, + "end": 2589.2, + "probability": 0.1169 + }, + { + "start": 2589.2, + "end": 2589.2, + "probability": 0.0954 + }, + { + "start": 2610.76, + "end": 2612.28, + "probability": 0.0254 + }, + { + "start": 2615.7, + "end": 2621.12, + "probability": 0.9857 + }, + { + "start": 2621.12, + "end": 2624.32, + "probability": 0.9691 + }, + { + "start": 2624.46, + "end": 2630.76, + "probability": 0.992 + }, + { + "start": 2630.86, + "end": 2634.36, + "probability": 0.9957 + }, + { + "start": 2634.58, + "end": 2636.36, + "probability": 0.9857 + }, + { + "start": 2637.32, + "end": 2640.18, + "probability": 0.9868 + }, + { + "start": 2641.62, + "end": 2643.1, + "probability": 0.7932 + }, + { + "start": 2643.88, + "end": 2648.24, + "probability": 0.9883 + }, + { + "start": 2649.74, + "end": 2651.94, + "probability": 0.8279 + }, + { + "start": 2652.02, + "end": 2653.22, + "probability": 0.9756 + }, + { + "start": 2653.8, + "end": 2656.18, + "probability": 0.991 + }, + { + "start": 2657.26, + "end": 2658.9, + "probability": 0.9548 + }, + { + "start": 2659.22, + "end": 2660.73, + "probability": 0.9771 + }, + { + "start": 2661.92, + "end": 2665.08, + "probability": 0.7598 + }, + { + "start": 2665.32, + "end": 2666.5, + "probability": 0.9703 + }, + { + "start": 2666.66, + "end": 2669.26, + "probability": 0.8994 + }, + { + "start": 2669.48, + "end": 2670.18, + "probability": 0.878 + }, + { + "start": 2671.98, + "end": 2672.78, + "probability": 0.8627 + }, + { + "start": 2673.92, + "end": 2676.44, + "probability": 0.5601 + }, + { + "start": 2677.08, + "end": 2678.0, + "probability": 0.9452 + }, + { + "start": 2679.06, + "end": 2679.61, + "probability": 0.9229 + }, + { + "start": 2679.66, + "end": 2680.56, + "probability": 0.7899 + }, + { + "start": 2680.7, + "end": 2682.82, + "probability": 0.8167 + }, + { + "start": 2685.1, + "end": 2686.14, + "probability": 0.6776 + }, + { + "start": 2687.04, + "end": 2688.24, + "probability": 0.9376 + }, + { + "start": 2689.48, + "end": 2690.72, + "probability": 0.9844 + }, + { + "start": 2691.4, + "end": 2695.68, + "probability": 0.9907 + }, + { + "start": 2696.0, + "end": 2696.76, + "probability": 0.9603 + }, + { + "start": 2698.72, + "end": 2699.64, + "probability": 0.8982 + }, + { + "start": 2700.58, + "end": 2701.0, + "probability": 0.9776 + }, + { + "start": 2701.52, + "end": 2702.24, + "probability": 0.8194 + }, + { + "start": 2703.22, + "end": 2708.66, + "probability": 0.9442 + }, + { + "start": 2709.32, + "end": 2709.73, + "probability": 0.7905 + }, + { + "start": 2709.86, + "end": 2712.02, + "probability": 0.9357 + }, + { + "start": 2712.36, + "end": 2712.78, + "probability": 0.7443 + }, + { + "start": 2714.42, + "end": 2719.8, + "probability": 0.976 + }, + { + "start": 2720.9, + "end": 2723.44, + "probability": 0.6716 + }, + { + "start": 2724.24, + "end": 2724.46, + "probability": 0.6962 + }, + { + "start": 2724.9, + "end": 2726.98, + "probability": 0.9007 + }, + { + "start": 2727.1, + "end": 2729.68, + "probability": 0.8803 + }, + { + "start": 2729.86, + "end": 2730.52, + "probability": 0.7122 + }, + { + "start": 2731.1, + "end": 2732.38, + "probability": 0.7388 + }, + { + "start": 2733.82, + "end": 2734.34, + "probability": 0.9638 + }, + { + "start": 2735.3, + "end": 2738.52, + "probability": 0.7974 + }, + { + "start": 2739.22, + "end": 2744.5, + "probability": 0.7809 + }, + { + "start": 2744.6, + "end": 2746.48, + "probability": 0.9518 + }, + { + "start": 2746.96, + "end": 2747.62, + "probability": 0.8511 + }, + { + "start": 2748.94, + "end": 2751.92, + "probability": 0.9839 + }, + { + "start": 2752.06, + "end": 2753.92, + "probability": 0.8516 + }, + { + "start": 2755.22, + "end": 2756.72, + "probability": 0.9426 + }, + { + "start": 2757.08, + "end": 2757.64, + "probability": 0.9745 + }, + { + "start": 2757.8, + "end": 2759.02, + "probability": 0.9805 + }, + { + "start": 2760.88, + "end": 2762.8, + "probability": 0.9566 + }, + { + "start": 2763.04, + "end": 2764.66, + "probability": 0.9678 + }, + { + "start": 2764.74, + "end": 2765.48, + "probability": 0.4968 + }, + { + "start": 2766.12, + "end": 2766.4, + "probability": 0.6353 + }, + { + "start": 2766.74, + "end": 2767.66, + "probability": 0.7118 + }, + { + "start": 2767.8, + "end": 2767.9, + "probability": 0.4671 + }, + { + "start": 2768.0, + "end": 2769.61, + "probability": 0.567 + }, + { + "start": 2769.82, + "end": 2770.3, + "probability": 0.4436 + }, + { + "start": 2770.3, + "end": 2772.02, + "probability": 0.5716 + }, + { + "start": 2772.74, + "end": 2773.62, + "probability": 0.1367 + }, + { + "start": 2774.4, + "end": 2775.62, + "probability": 0.8813 + }, + { + "start": 2776.72, + "end": 2777.56, + "probability": 0.9729 + }, + { + "start": 2778.38, + "end": 2779.24, + "probability": 0.9455 + }, + { + "start": 2779.64, + "end": 2782.24, + "probability": 0.9875 + }, + { + "start": 2782.48, + "end": 2783.1, + "probability": 0.6046 + }, + { + "start": 2783.18, + "end": 2783.7, + "probability": 0.8996 + }, + { + "start": 2784.08, + "end": 2784.34, + "probability": 0.0793 + }, + { + "start": 2784.34, + "end": 2784.86, + "probability": 0.5571 + }, + { + "start": 2785.32, + "end": 2786.78, + "probability": 0.6254 + }, + { + "start": 2786.88, + "end": 2789.54, + "probability": 0.9784 + }, + { + "start": 2789.72, + "end": 2791.1, + "probability": 0.9844 + }, + { + "start": 2791.1, + "end": 2791.2, + "probability": 0.4657 + }, + { + "start": 2791.2, + "end": 2791.44, + "probability": 0.4731 + }, + { + "start": 2791.68, + "end": 2792.7, + "probability": 0.5449 + }, + { + "start": 2793.48, + "end": 2795.9, + "probability": 0.9713 + }, + { + "start": 2796.06, + "end": 2799.24, + "probability": 0.9542 + }, + { + "start": 2800.14, + "end": 2801.72, + "probability": 0.7999 + }, + { + "start": 2802.3, + "end": 2805.04, + "probability": 0.5 + }, + { + "start": 2805.8, + "end": 2806.7, + "probability": 0.998 + }, + { + "start": 2807.9, + "end": 2808.74, + "probability": 0.3497 + }, + { + "start": 2809.78, + "end": 2810.52, + "probability": 0.7454 + }, + { + "start": 2811.9, + "end": 2814.02, + "probability": 0.0615 + }, + { + "start": 2814.02, + "end": 2817.64, + "probability": 0.8425 + }, + { + "start": 2817.76, + "end": 2818.82, + "probability": 0.8155 + }, + { + "start": 2819.54, + "end": 2821.08, + "probability": 0.8956 + }, + { + "start": 2823.04, + "end": 2825.86, + "probability": 0.4044 + }, + { + "start": 2826.72, + "end": 2828.34, + "probability": 0.7809 + }, + { + "start": 2829.72, + "end": 2833.2, + "probability": 0.9132 + }, + { + "start": 2833.68, + "end": 2836.66, + "probability": 0.8357 + }, + { + "start": 2837.12, + "end": 2837.84, + "probability": 0.5846 + }, + { + "start": 2839.18, + "end": 2841.64, + "probability": 0.8488 + }, + { + "start": 2842.18, + "end": 2844.0, + "probability": 0.9659 + }, + { + "start": 2844.64, + "end": 2847.98, + "probability": 0.9169 + }, + { + "start": 2848.3, + "end": 2848.96, + "probability": 0.718 + }, + { + "start": 2849.08, + "end": 2849.99, + "probability": 0.9493 + }, + { + "start": 2850.14, + "end": 2851.08, + "probability": 0.9692 + }, + { + "start": 2851.22, + "end": 2852.32, + "probability": 0.9594 + }, + { + "start": 2852.8, + "end": 2854.4, + "probability": 0.9121 + }, + { + "start": 2855.02, + "end": 2856.06, + "probability": 0.4361 + }, + { + "start": 2856.44, + "end": 2857.18, + "probability": 0.892 + }, + { + "start": 2857.6, + "end": 2858.38, + "probability": 0.6204 + }, + { + "start": 2859.12, + "end": 2861.04, + "probability": 0.5758 + }, + { + "start": 2861.04, + "end": 2862.8, + "probability": 0.97 + }, + { + "start": 2864.48, + "end": 2869.9, + "probability": 0.9624 + }, + { + "start": 2870.04, + "end": 2870.8, + "probability": 0.5605 + }, + { + "start": 2871.7, + "end": 2873.4, + "probability": 0.6642 + }, + { + "start": 2873.7, + "end": 2874.6, + "probability": 0.6986 + }, + { + "start": 2875.68, + "end": 2876.58, + "probability": 0.97 + }, + { + "start": 2876.84, + "end": 2878.64, + "probability": 0.836 + }, + { + "start": 2878.76, + "end": 2880.52, + "probability": 0.9983 + }, + { + "start": 2880.74, + "end": 2882.32, + "probability": 0.976 + }, + { + "start": 2883.02, + "end": 2885.12, + "probability": 0.8896 + }, + { + "start": 2885.86, + "end": 2888.34, + "probability": 0.874 + }, + { + "start": 2888.56, + "end": 2888.98, + "probability": 0.8759 + }, + { + "start": 2889.16, + "end": 2889.6, + "probability": 0.6134 + }, + { + "start": 2889.6, + "end": 2891.32, + "probability": 0.9034 + }, + { + "start": 2899.04, + "end": 2899.04, + "probability": 0.0424 + }, + { + "start": 2899.04, + "end": 2899.86, + "probability": 0.228 + }, + { + "start": 2900.68, + "end": 2901.06, + "probability": 0.3206 + }, + { + "start": 2901.18, + "end": 2904.04, + "probability": 0.8561 + }, + { + "start": 2904.24, + "end": 2905.4, + "probability": 0.7304 + }, + { + "start": 2905.58, + "end": 2907.06, + "probability": 0.4566 + }, + { + "start": 2908.08, + "end": 2908.92, + "probability": 0.2973 + }, + { + "start": 2909.36, + "end": 2909.92, + "probability": 0.2062 + }, + { + "start": 2909.92, + "end": 2910.41, + "probability": 0.9288 + }, + { + "start": 2910.8, + "end": 2913.18, + "probability": 0.646 + }, + { + "start": 2913.76, + "end": 2915.42, + "probability": 0.9484 + }, + { + "start": 2918.94, + "end": 2921.76, + "probability": 0.7001 + }, + { + "start": 2922.86, + "end": 2924.38, + "probability": 0.8594 + }, + { + "start": 2925.44, + "end": 2928.37, + "probability": 0.9774 + }, + { + "start": 2929.02, + "end": 2931.12, + "probability": 0.7196 + }, + { + "start": 2931.42, + "end": 2933.27, + "probability": 0.8971 + }, + { + "start": 2934.9, + "end": 2936.26, + "probability": 0.9761 + }, + { + "start": 2936.84, + "end": 2938.02, + "probability": 0.9868 + }, + { + "start": 2938.06, + "end": 2939.04, + "probability": 0.8835 + }, + { + "start": 2940.18, + "end": 2940.95, + "probability": 0.9714 + }, + { + "start": 2942.0, + "end": 2943.58, + "probability": 0.9967 + }, + { + "start": 2944.8, + "end": 2946.34, + "probability": 0.7896 + }, + { + "start": 2947.14, + "end": 2948.86, + "probability": 0.791 + }, + { + "start": 2950.0, + "end": 2952.08, + "probability": 0.7653 + }, + { + "start": 2952.68, + "end": 2953.44, + "probability": 0.7803 + }, + { + "start": 2954.4, + "end": 2956.36, + "probability": 0.9514 + }, + { + "start": 2957.46, + "end": 2961.24, + "probability": 0.9437 + }, + { + "start": 2962.36, + "end": 2963.14, + "probability": 0.7454 + }, + { + "start": 2964.44, + "end": 2965.7, + "probability": 0.907 + }, + { + "start": 2967.08, + "end": 2968.36, + "probability": 0.888 + }, + { + "start": 2969.26, + "end": 2970.88, + "probability": 0.9878 + }, + { + "start": 2971.18, + "end": 2972.54, + "probability": 0.9702 + }, + { + "start": 2973.52, + "end": 2976.26, + "probability": 0.933 + }, + { + "start": 2977.02, + "end": 2978.1, + "probability": 0.9917 + }, + { + "start": 2978.96, + "end": 2982.5, + "probability": 0.7547 + }, + { + "start": 2983.48, + "end": 2984.92, + "probability": 0.6585 + }, + { + "start": 2985.08, + "end": 2988.46, + "probability": 0.9465 + }, + { + "start": 2989.26, + "end": 2991.76, + "probability": 0.9949 + }, + { + "start": 2992.46, + "end": 2994.78, + "probability": 0.9658 + }, + { + "start": 2995.26, + "end": 3001.58, + "probability": 0.9843 + }, + { + "start": 3001.62, + "end": 3002.08, + "probability": 0.7996 + }, + { + "start": 3003.06, + "end": 3005.26, + "probability": 0.9839 + }, + { + "start": 3006.7, + "end": 3010.8, + "probability": 0.9651 + }, + { + "start": 3010.8, + "end": 3014.3, + "probability": 0.8833 + }, + { + "start": 3015.12, + "end": 3015.76, + "probability": 0.8727 + }, + { + "start": 3015.94, + "end": 3016.36, + "probability": 0.6665 + }, + { + "start": 3016.4, + "end": 3017.04, + "probability": 0.5187 + }, + { + "start": 3017.06, + "end": 3017.93, + "probability": 0.4942 + }, + { + "start": 3018.8, + "end": 3021.34, + "probability": 0.9772 + }, + { + "start": 3021.98, + "end": 3025.26, + "probability": 0.8779 + }, + { + "start": 3025.82, + "end": 3026.38, + "probability": 0.7133 + }, + { + "start": 3026.52, + "end": 3027.86, + "probability": 0.9453 + }, + { + "start": 3028.58, + "end": 3029.12, + "probability": 0.8434 + }, + { + "start": 3029.56, + "end": 3031.4, + "probability": 0.9736 + }, + { + "start": 3032.02, + "end": 3032.54, + "probability": 0.7288 + }, + { + "start": 3033.76, + "end": 3038.14, + "probability": 0.981 + }, + { + "start": 3038.14, + "end": 3040.08, + "probability": 0.9905 + }, + { + "start": 3041.04, + "end": 3044.0, + "probability": 0.9873 + }, + { + "start": 3044.5, + "end": 3045.86, + "probability": 0.9475 + }, + { + "start": 3046.42, + "end": 3049.26, + "probability": 0.8773 + }, + { + "start": 3049.84, + "end": 3050.92, + "probability": 0.8406 + }, + { + "start": 3052.14, + "end": 3052.82, + "probability": 0.9792 + }, + { + "start": 3053.0, + "end": 3054.06, + "probability": 0.7559 + }, + { + "start": 3054.24, + "end": 3055.26, + "probability": 0.4371 + }, + { + "start": 3056.0, + "end": 3057.74, + "probability": 0.8882 + }, + { + "start": 3058.64, + "end": 3060.8, + "probability": 0.5696 + }, + { + "start": 3060.84, + "end": 3061.74, + "probability": 0.993 + }, + { + "start": 3062.92, + "end": 3063.3, + "probability": 0.5256 + }, + { + "start": 3063.98, + "end": 3068.28, + "probability": 0.8012 + }, + { + "start": 3068.42, + "end": 3070.26, + "probability": 0.8694 + }, + { + "start": 3070.98, + "end": 3071.32, + "probability": 0.2705 + }, + { + "start": 3071.44, + "end": 3073.28, + "probability": 0.9817 + }, + { + "start": 3073.92, + "end": 3076.0, + "probability": 0.8671 + }, + { + "start": 3076.54, + "end": 3076.96, + "probability": 0.9767 + }, + { + "start": 3077.66, + "end": 3078.48, + "probability": 0.7686 + }, + { + "start": 3078.76, + "end": 3079.3, + "probability": 0.8915 + }, + { + "start": 3079.88, + "end": 3080.46, + "probability": 0.9306 + }, + { + "start": 3081.3, + "end": 3082.42, + "probability": 0.9902 + }, + { + "start": 3083.9, + "end": 3085.26, + "probability": 0.9818 + }, + { + "start": 3086.32, + "end": 3087.14, + "probability": 0.9113 + }, + { + "start": 3088.26, + "end": 3090.74, + "probability": 0.9214 + }, + { + "start": 3090.82, + "end": 3091.66, + "probability": 0.8562 + }, + { + "start": 3092.4, + "end": 3095.48, + "probability": 0.7962 + }, + { + "start": 3096.66, + "end": 3096.68, + "probability": 0.3538 + }, + { + "start": 3097.28, + "end": 3099.6, + "probability": 0.7252 + }, + { + "start": 3099.6, + "end": 3102.78, + "probability": 0.6765 + }, + { + "start": 3102.82, + "end": 3104.56, + "probability": 0.7604 + }, + { + "start": 3105.48, + "end": 3106.6, + "probability": 0.5256 + }, + { + "start": 3106.72, + "end": 3110.02, + "probability": 0.7412 + }, + { + "start": 3113.5, + "end": 3114.72, + "probability": 0.7391 + }, + { + "start": 3115.78, + "end": 3118.6, + "probability": 0.9166 + }, + { + "start": 3121.0, + "end": 3123.52, + "probability": 0.6364 + }, + { + "start": 3124.86, + "end": 3126.1, + "probability": 0.9899 + }, + { + "start": 3127.04, + "end": 3129.48, + "probability": 0.7661 + }, + { + "start": 3130.06, + "end": 3131.76, + "probability": 0.9651 + }, + { + "start": 3132.66, + "end": 3133.4, + "probability": 0.8014 + }, + { + "start": 3135.02, + "end": 3136.98, + "probability": 0.8877 + }, + { + "start": 3137.42, + "end": 3140.08, + "probability": 0.8198 + }, + { + "start": 3140.58, + "end": 3142.24, + "probability": 0.73 + }, + { + "start": 3142.46, + "end": 3143.48, + "probability": 0.7508 + }, + { + "start": 3144.72, + "end": 3147.32, + "probability": 0.9769 + }, + { + "start": 3147.32, + "end": 3150.16, + "probability": 0.9943 + }, + { + "start": 3150.8, + "end": 3152.12, + "probability": 0.6904 + }, + { + "start": 3152.88, + "end": 3153.84, + "probability": 0.6354 + }, + { + "start": 3153.98, + "end": 3157.22, + "probability": 0.8236 + }, + { + "start": 3157.74, + "end": 3157.96, + "probability": 0.7429 + }, + { + "start": 3158.32, + "end": 3158.88, + "probability": 0.7675 + }, + { + "start": 3159.32, + "end": 3160.86, + "probability": 0.9825 + }, + { + "start": 3161.14, + "end": 3161.56, + "probability": 0.3358 + }, + { + "start": 3162.06, + "end": 3162.3, + "probability": 0.5181 + }, + { + "start": 3163.22, + "end": 3163.86, + "probability": 0.9191 + }, + { + "start": 3164.36, + "end": 3168.52, + "probability": 0.9719 + }, + { + "start": 3169.46, + "end": 3173.94, + "probability": 0.8843 + }, + { + "start": 3175.0, + "end": 3177.98, + "probability": 0.9728 + }, + { + "start": 3178.1, + "end": 3181.34, + "probability": 0.9873 + }, + { + "start": 3182.12, + "end": 3184.6, + "probability": 0.7512 + }, + { + "start": 3184.92, + "end": 3186.13, + "probability": 0.9134 + }, + { + "start": 3187.24, + "end": 3189.32, + "probability": 0.996 + }, + { + "start": 3190.72, + "end": 3191.56, + "probability": 0.8348 + }, + { + "start": 3201.48, + "end": 3202.58, + "probability": 0.7995 + }, + { + "start": 3208.82, + "end": 3208.92, + "probability": 0.5153 + }, + { + "start": 3208.96, + "end": 3209.1, + "probability": 0.1642 + }, + { + "start": 3215.62, + "end": 3217.36, + "probability": 0.6271 + }, + { + "start": 3219.42, + "end": 3222.68, + "probability": 0.8826 + }, + { + "start": 3222.9, + "end": 3226.74, + "probability": 0.8278 + }, + { + "start": 3227.64, + "end": 3230.38, + "probability": 0.9609 + }, + { + "start": 3231.26, + "end": 3234.02, + "probability": 0.9849 + }, + { + "start": 3234.1, + "end": 3235.4, + "probability": 0.9583 + }, + { + "start": 3235.54, + "end": 3236.94, + "probability": 0.8908 + }, + { + "start": 3237.08, + "end": 3238.32, + "probability": 0.6693 + }, + { + "start": 3238.98, + "end": 3239.9, + "probability": 0.9708 + }, + { + "start": 3240.96, + "end": 3242.58, + "probability": 0.6987 + }, + { + "start": 3242.76, + "end": 3245.54, + "probability": 0.9814 + }, + { + "start": 3245.74, + "end": 3246.8, + "probability": 0.75 + }, + { + "start": 3247.52, + "end": 3249.26, + "probability": 0.6322 + }, + { + "start": 3249.48, + "end": 3251.64, + "probability": 0.7251 + }, + { + "start": 3252.4, + "end": 3255.34, + "probability": 0.8441 + }, + { + "start": 3256.08, + "end": 3257.46, + "probability": 0.837 + }, + { + "start": 3257.82, + "end": 3258.26, + "probability": 0.9191 + }, + { + "start": 3258.78, + "end": 3259.32, + "probability": 0.5088 + }, + { + "start": 3259.34, + "end": 3261.3, + "probability": 0.9845 + }, + { + "start": 3261.34, + "end": 3263.24, + "probability": 0.9492 + }, + { + "start": 3264.18, + "end": 3268.34, + "probability": 0.9413 + }, + { + "start": 3268.34, + "end": 3271.04, + "probability": 0.9749 + }, + { + "start": 3272.32, + "end": 3272.92, + "probability": 0.6594 + }, + { + "start": 3273.06, + "end": 3273.6, + "probability": 0.3962 + }, + { + "start": 3273.7, + "end": 3273.86, + "probability": 0.3838 + }, + { + "start": 3273.94, + "end": 3277.8, + "probability": 0.9744 + }, + { + "start": 3278.42, + "end": 3281.64, + "probability": 0.8486 + }, + { + "start": 3282.78, + "end": 3286.94, + "probability": 0.9644 + }, + { + "start": 3287.38, + "end": 3290.4, + "probability": 0.7303 + }, + { + "start": 3290.6, + "end": 3291.52, + "probability": 0.7389 + }, + { + "start": 3292.8, + "end": 3296.42, + "probability": 0.9332 + }, + { + "start": 3296.62, + "end": 3299.06, + "probability": 0.9355 + }, + { + "start": 3299.74, + "end": 3300.31, + "probability": 0.9329 + }, + { + "start": 3301.18, + "end": 3302.34, + "probability": 0.8423 + }, + { + "start": 3303.14, + "end": 3304.84, + "probability": 0.981 + }, + { + "start": 3306.03, + "end": 3308.72, + "probability": 0.9574 + }, + { + "start": 3309.24, + "end": 3310.04, + "probability": 0.9889 + }, + { + "start": 3311.96, + "end": 3312.56, + "probability": 0.7532 + }, + { + "start": 3312.74, + "end": 3316.14, + "probability": 0.9505 + }, + { + "start": 3317.06, + "end": 3317.72, + "probability": 0.769 + }, + { + "start": 3318.46, + "end": 3320.76, + "probability": 0.9979 + }, + { + "start": 3321.8, + "end": 3326.22, + "probability": 0.9886 + }, + { + "start": 3328.34, + "end": 3329.26, + "probability": 0.9268 + }, + { + "start": 3330.42, + "end": 3331.54, + "probability": 0.8521 + }, + { + "start": 3332.41, + "end": 3332.88, + "probability": 0.6056 + }, + { + "start": 3333.56, + "end": 3333.76, + "probability": 0.8922 + }, + { + "start": 3334.9, + "end": 3336.42, + "probability": 0.8317 + }, + { + "start": 3336.94, + "end": 3339.22, + "probability": 0.6205 + }, + { + "start": 3340.02, + "end": 3340.62, + "probability": 0.8849 + }, + { + "start": 3341.7, + "end": 3343.34, + "probability": 0.9017 + }, + { + "start": 3343.94, + "end": 3344.28, + "probability": 0.7949 + }, + { + "start": 3344.42, + "end": 3345.46, + "probability": 0.7555 + }, + { + "start": 3345.98, + "end": 3346.36, + "probability": 0.9507 + }, + { + "start": 3346.56, + "end": 3347.36, + "probability": 0.7844 + }, + { + "start": 3348.6, + "end": 3350.38, + "probability": 0.5221 + }, + { + "start": 3351.38, + "end": 3352.29, + "probability": 0.685 + }, + { + "start": 3353.16, + "end": 3356.25, + "probability": 0.7694 + }, + { + "start": 3356.64, + "end": 3357.54, + "probability": 0.8579 + }, + { + "start": 3358.48, + "end": 3359.04, + "probability": 0.6887 + }, + { + "start": 3359.18, + "end": 3361.12, + "probability": 0.9603 + }, + { + "start": 3363.32, + "end": 3366.1, + "probability": 0.8452 + }, + { + "start": 3369.22, + "end": 3369.68, + "probability": 0.8085 + }, + { + "start": 3373.84, + "end": 3375.28, + "probability": 0.8983 + }, + { + "start": 3381.18, + "end": 3381.56, + "probability": 0.4852 + }, + { + "start": 3382.8, + "end": 3383.42, + "probability": 0.8648 + }, + { + "start": 3388.92, + "end": 3389.54, + "probability": 0.6379 + }, + { + "start": 3390.26, + "end": 3391.7, + "probability": 0.7628 + }, + { + "start": 3392.26, + "end": 3393.04, + "probability": 0.1449 + }, + { + "start": 3393.38, + "end": 3394.52, + "probability": 0.9636 + }, + { + "start": 3414.98, + "end": 3415.54, + "probability": 0.5253 + }, + { + "start": 3416.22, + "end": 3417.22, + "probability": 0.7651 + }, + { + "start": 3418.64, + "end": 3419.33, + "probability": 0.7296 + }, + { + "start": 3422.62, + "end": 3423.6, + "probability": 0.9727 + }, + { + "start": 3423.76, + "end": 3426.28, + "probability": 0.9969 + }, + { + "start": 3426.54, + "end": 3429.78, + "probability": 0.9971 + }, + { + "start": 3431.6, + "end": 3434.08, + "probability": 0.9653 + }, + { + "start": 3434.16, + "end": 3435.68, + "probability": 0.9923 + }, + { + "start": 3436.58, + "end": 3437.74, + "probability": 0.9447 + }, + { + "start": 3438.84, + "end": 3441.8, + "probability": 0.9974 + }, + { + "start": 3442.02, + "end": 3444.26, + "probability": 0.9985 + }, + { + "start": 3446.7, + "end": 3447.84, + "probability": 0.9338 + }, + { + "start": 3448.84, + "end": 3451.92, + "probability": 0.989 + }, + { + "start": 3454.06, + "end": 3458.32, + "probability": 0.9543 + }, + { + "start": 3458.78, + "end": 3460.04, + "probability": 0.9169 + }, + { + "start": 3461.02, + "end": 3462.32, + "probability": 0.9993 + }, + { + "start": 3463.38, + "end": 3466.9, + "probability": 0.7637 + }, + { + "start": 3468.0, + "end": 3470.96, + "probability": 0.9983 + }, + { + "start": 3471.98, + "end": 3472.96, + "probability": 0.8049 + }, + { + "start": 3473.3, + "end": 3474.79, + "probability": 0.9944 + }, + { + "start": 3474.98, + "end": 3475.44, + "probability": 0.7351 + }, + { + "start": 3476.46, + "end": 3477.18, + "probability": 0.9685 + }, + { + "start": 3477.8, + "end": 3479.02, + "probability": 0.833 + }, + { + "start": 3479.54, + "end": 3481.92, + "probability": 0.9963 + }, + { + "start": 3483.24, + "end": 3487.94, + "probability": 0.9976 + }, + { + "start": 3488.0, + "end": 3488.76, + "probability": 0.7755 + }, + { + "start": 3491.56, + "end": 3493.12, + "probability": 0.8949 + }, + { + "start": 3493.96, + "end": 3494.93, + "probability": 0.8261 + }, + { + "start": 3495.06, + "end": 3497.22, + "probability": 0.9946 + }, + { + "start": 3497.86, + "end": 3500.12, + "probability": 0.9851 + }, + { + "start": 3502.58, + "end": 3504.0, + "probability": 0.5371 + }, + { + "start": 3504.2, + "end": 3505.84, + "probability": 0.8258 + }, + { + "start": 3505.92, + "end": 3508.86, + "probability": 0.993 + }, + { + "start": 3508.86, + "end": 3513.26, + "probability": 0.9807 + }, + { + "start": 3514.16, + "end": 3516.04, + "probability": 0.9504 + }, + { + "start": 3517.28, + "end": 3519.66, + "probability": 0.9815 + }, + { + "start": 3520.24, + "end": 3523.24, + "probability": 0.9979 + }, + { + "start": 3524.34, + "end": 3527.74, + "probability": 0.9954 + }, + { + "start": 3528.44, + "end": 3530.35, + "probability": 0.9521 + }, + { + "start": 3531.78, + "end": 3534.22, + "probability": 0.9885 + }, + { + "start": 3534.96, + "end": 3535.48, + "probability": 0.9645 + }, + { + "start": 3536.0, + "end": 3536.64, + "probability": 0.506 + }, + { + "start": 3537.7, + "end": 3540.7, + "probability": 0.9738 + }, + { + "start": 3541.78, + "end": 3542.42, + "probability": 0.8636 + }, + { + "start": 3543.0, + "end": 3547.36, + "probability": 0.9646 + }, + { + "start": 3548.18, + "end": 3548.94, + "probability": 0.7281 + }, + { + "start": 3549.7, + "end": 3550.76, + "probability": 0.9982 + }, + { + "start": 3551.62, + "end": 3554.66, + "probability": 0.9732 + }, + { + "start": 3555.22, + "end": 3555.98, + "probability": 0.8667 + }, + { + "start": 3557.08, + "end": 3560.06, + "probability": 0.9987 + }, + { + "start": 3560.68, + "end": 3564.2, + "probability": 0.9883 + }, + { + "start": 3564.8, + "end": 3567.44, + "probability": 0.9246 + }, + { + "start": 3568.58, + "end": 3570.28, + "probability": 0.9965 + }, + { + "start": 3570.68, + "end": 3571.1, + "probability": 0.6851 + }, + { + "start": 3571.26, + "end": 3571.76, + "probability": 0.6608 + }, + { + "start": 3572.22, + "end": 3574.42, + "probability": 0.7987 + }, + { + "start": 3576.14, + "end": 3577.66, + "probability": 0.9512 + }, + { + "start": 3578.24, + "end": 3579.86, + "probability": 0.8218 + }, + { + "start": 3580.25, + "end": 3582.84, + "probability": 0.8735 + }, + { + "start": 3583.74, + "end": 3585.8, + "probability": 0.9769 + }, + { + "start": 3586.1, + "end": 3586.5, + "probability": 0.4531 + }, + { + "start": 3586.52, + "end": 3588.12, + "probability": 0.9946 + }, + { + "start": 3588.86, + "end": 3590.58, + "probability": 0.722 + }, + { + "start": 3591.34, + "end": 3595.24, + "probability": 0.9823 + }, + { + "start": 3596.18, + "end": 3597.64, + "probability": 0.9031 + }, + { + "start": 3599.16, + "end": 3601.28, + "probability": 0.9552 + }, + { + "start": 3601.44, + "end": 3603.17, + "probability": 0.9922 + }, + { + "start": 3604.06, + "end": 3605.42, + "probability": 0.9631 + }, + { + "start": 3605.5, + "end": 3607.32, + "probability": 0.9848 + }, + { + "start": 3607.42, + "end": 3609.54, + "probability": 0.9967 + }, + { + "start": 3610.4, + "end": 3612.64, + "probability": 0.9818 + }, + { + "start": 3614.4, + "end": 3616.2, + "probability": 0.7681 + }, + { + "start": 3617.04, + "end": 3619.7, + "probability": 0.9672 + }, + { + "start": 3620.8, + "end": 3623.4, + "probability": 0.9793 + }, + { + "start": 3623.48, + "end": 3624.58, + "probability": 0.9368 + }, + { + "start": 3625.32, + "end": 3627.12, + "probability": 0.9678 + }, + { + "start": 3627.76, + "end": 3628.34, + "probability": 0.6462 + }, + { + "start": 3629.18, + "end": 3631.94, + "probability": 0.9979 + }, + { + "start": 3632.82, + "end": 3634.82, + "probability": 0.9016 + }, + { + "start": 3635.72, + "end": 3638.55, + "probability": 0.7445 + }, + { + "start": 3641.9, + "end": 3643.84, + "probability": 0.9893 + }, + { + "start": 3644.44, + "end": 3646.28, + "probability": 0.9913 + }, + { + "start": 3646.48, + "end": 3648.72, + "probability": 0.9971 + }, + { + "start": 3649.54, + "end": 3652.24, + "probability": 0.9312 + }, + { + "start": 3652.86, + "end": 3654.04, + "probability": 0.8739 + }, + { + "start": 3654.76, + "end": 3659.72, + "probability": 0.9429 + }, + { + "start": 3660.34, + "end": 3660.66, + "probability": 0.7559 + }, + { + "start": 3660.86, + "end": 3664.24, + "probability": 0.9825 + }, + { + "start": 3665.52, + "end": 3668.04, + "probability": 0.6818 + }, + { + "start": 3668.62, + "end": 3670.7, + "probability": 0.9093 + }, + { + "start": 3670.78, + "end": 3671.0, + "probability": 0.8138 + }, + { + "start": 3672.86, + "end": 3673.34, + "probability": 0.7715 + }, + { + "start": 3673.42, + "end": 3675.08, + "probability": 0.9851 + }, + { + "start": 3675.18, + "end": 3676.96, + "probability": 0.9897 + }, + { + "start": 3682.74, + "end": 3684.61, + "probability": 0.8779 + }, + { + "start": 3684.88, + "end": 3685.84, + "probability": 0.9834 + }, + { + "start": 3686.54, + "end": 3688.44, + "probability": 0.6065 + }, + { + "start": 3689.2, + "end": 3691.1, + "probability": 0.9381 + }, + { + "start": 3693.98, + "end": 3695.74, + "probability": 0.5141 + }, + { + "start": 3696.5, + "end": 3699.28, + "probability": 0.9688 + }, + { + "start": 3699.96, + "end": 3700.32, + "probability": 0.8703 + }, + { + "start": 3700.42, + "end": 3701.7, + "probability": 0.9956 + }, + { + "start": 3701.74, + "end": 3702.08, + "probability": 0.974 + }, + { + "start": 3702.16, + "end": 3703.2, + "probability": 0.8695 + }, + { + "start": 3703.3, + "end": 3703.66, + "probability": 0.9688 + }, + { + "start": 3704.3, + "end": 3705.9, + "probability": 0.8191 + }, + { + "start": 3706.1, + "end": 3708.43, + "probability": 0.8865 + }, + { + "start": 3709.94, + "end": 3712.18, + "probability": 0.1027 + }, + { + "start": 3714.96, + "end": 3717.56, + "probability": 0.0915 + }, + { + "start": 3740.48, + "end": 3743.96, + "probability": 0.9727 + }, + { + "start": 3744.32, + "end": 3744.44, + "probability": 0.5889 + }, + { + "start": 3744.5, + "end": 3744.84, + "probability": 0.8153 + }, + { + "start": 3744.9, + "end": 3746.2, + "probability": 0.8737 + }, + { + "start": 3746.42, + "end": 3746.78, + "probability": 0.8935 + }, + { + "start": 3746.96, + "end": 3747.58, + "probability": 0.9542 + }, + { + "start": 3747.94, + "end": 3748.5, + "probability": 0.9328 + }, + { + "start": 3748.62, + "end": 3749.18, + "probability": 0.9864 + }, + { + "start": 3749.8, + "end": 3750.5, + "probability": 0.9597 + }, + { + "start": 3751.48, + "end": 3752.46, + "probability": 0.9816 + }, + { + "start": 3753.98, + "end": 3755.48, + "probability": 0.835 + }, + { + "start": 3756.02, + "end": 3757.22, + "probability": 0.8945 + }, + { + "start": 3757.78, + "end": 3759.92, + "probability": 0.9722 + }, + { + "start": 3759.92, + "end": 3760.2, + "probability": 0.6574 + }, + { + "start": 3760.4, + "end": 3760.64, + "probability": 0.8691 + }, + { + "start": 3760.9, + "end": 3761.34, + "probability": 0.8515 + }, + { + "start": 3762.0, + "end": 3766.16, + "probability": 0.9399 + }, + { + "start": 3766.84, + "end": 3768.5, + "probability": 0.9434 + }, + { + "start": 3769.48, + "end": 3771.12, + "probability": 0.8858 + }, + { + "start": 3771.72, + "end": 3773.94, + "probability": 0.9863 + }, + { + "start": 3774.52, + "end": 3775.48, + "probability": 0.8987 + }, + { + "start": 3776.08, + "end": 3780.34, + "probability": 0.98 + }, + { + "start": 3781.04, + "end": 3782.96, + "probability": 0.7999 + }, + { + "start": 3783.74, + "end": 3784.44, + "probability": 0.5705 + }, + { + "start": 3784.98, + "end": 3786.52, + "probability": 0.9192 + }, + { + "start": 3787.0, + "end": 3791.36, + "probability": 0.9766 + }, + { + "start": 3792.32, + "end": 3795.08, + "probability": 0.9835 + }, + { + "start": 3795.88, + "end": 3797.14, + "probability": 0.7181 + }, + { + "start": 3797.44, + "end": 3800.37, + "probability": 0.9928 + }, + { + "start": 3800.5, + "end": 3802.28, + "probability": 0.9259 + }, + { + "start": 3802.98, + "end": 3808.82, + "probability": 0.8724 + }, + { + "start": 3809.38, + "end": 3810.92, + "probability": 0.9317 + }, + { + "start": 3811.34, + "end": 3812.51, + "probability": 0.9716 + }, + { + "start": 3813.04, + "end": 3814.07, + "probability": 0.9922 + }, + { + "start": 3815.22, + "end": 3817.76, + "probability": 0.7391 + }, + { + "start": 3818.56, + "end": 3820.08, + "probability": 0.8555 + }, + { + "start": 3820.08, + "end": 3822.64, + "probability": 0.9601 + }, + { + "start": 3823.34, + "end": 3824.34, + "probability": 0.9065 + }, + { + "start": 3824.64, + "end": 3826.39, + "probability": 0.8311 + }, + { + "start": 3827.32, + "end": 3827.96, + "probability": 0.9036 + }, + { + "start": 3828.64, + "end": 3830.28, + "probability": 0.9213 + }, + { + "start": 3830.72, + "end": 3832.54, + "probability": 0.9457 + }, + { + "start": 3833.52, + "end": 3833.68, + "probability": 0.699 + }, + { + "start": 3834.18, + "end": 3835.78, + "probability": 0.8245 + }, + { + "start": 3835.9, + "end": 3838.36, + "probability": 0.8174 + }, + { + "start": 3838.42, + "end": 3841.78, + "probability": 0.7513 + }, + { + "start": 3842.32, + "end": 3844.86, + "probability": 0.9562 + }, + { + "start": 3845.2, + "end": 3848.84, + "probability": 0.9814 + }, + { + "start": 3851.98, + "end": 3855.14, + "probability": 0.9963 + }, + { + "start": 3856.72, + "end": 3860.44, + "probability": 0.9076 + }, + { + "start": 3861.28, + "end": 3861.74, + "probability": 0.8867 + }, + { + "start": 3862.66, + "end": 3863.98, + "probability": 0.7237 + }, + { + "start": 3864.26, + "end": 3865.42, + "probability": 0.952 + }, + { + "start": 3865.76, + "end": 3866.86, + "probability": 0.9727 + }, + { + "start": 3867.26, + "end": 3868.06, + "probability": 0.9891 + }, + { + "start": 3868.14, + "end": 3868.8, + "probability": 0.9518 + }, + { + "start": 3869.8, + "end": 3870.28, + "probability": 0.8977 + }, + { + "start": 3871.1, + "end": 3872.82, + "probability": 0.9881 + }, + { + "start": 3874.2, + "end": 3876.9, + "probability": 0.9555 + }, + { + "start": 3877.62, + "end": 3878.18, + "probability": 0.9073 + }, + { + "start": 3879.08, + "end": 3879.92, + "probability": 0.9558 + }, + { + "start": 3880.0, + "end": 3885.18, + "probability": 0.9491 + }, + { + "start": 3885.46, + "end": 3889.48, + "probability": 0.9376 + }, + { + "start": 3889.84, + "end": 3893.54, + "probability": 0.9056 + }, + { + "start": 3893.54, + "end": 3896.32, + "probability": 0.9959 + }, + { + "start": 3896.4, + "end": 3897.08, + "probability": 0.6846 + }, + { + "start": 3897.1, + "end": 3898.48, + "probability": 0.5452 + }, + { + "start": 3899.08, + "end": 3902.14, + "probability": 0.9891 + }, + { + "start": 3902.14, + "end": 3905.04, + "probability": 0.8354 + }, + { + "start": 3905.46, + "end": 3908.0, + "probability": 0.9161 + }, + { + "start": 3908.24, + "end": 3909.72, + "probability": 0.963 + }, + { + "start": 3910.04, + "end": 3913.48, + "probability": 0.9644 + }, + { + "start": 3913.84, + "end": 3914.5, + "probability": 0.9793 + }, + { + "start": 3914.66, + "end": 3915.1, + "probability": 0.968 + }, + { + "start": 3915.64, + "end": 3916.34, + "probability": 0.9502 + }, + { + "start": 3917.12, + "end": 3918.02, + "probability": 0.9946 + }, + { + "start": 3918.2, + "end": 3919.2, + "probability": 0.9216 + }, + { + "start": 3919.38, + "end": 3920.44, + "probability": 0.9951 + }, + { + "start": 3921.04, + "end": 3925.24, + "probability": 0.9888 + }, + { + "start": 3925.5, + "end": 3926.86, + "probability": 0.9713 + }, + { + "start": 3926.98, + "end": 3928.02, + "probability": 0.7389 + }, + { + "start": 3928.44, + "end": 3929.76, + "probability": 0.9838 + }, + { + "start": 3929.86, + "end": 3930.42, + "probability": 0.7717 + }, + { + "start": 3930.78, + "end": 3932.32, + "probability": 0.9858 + }, + { + "start": 3932.64, + "end": 3934.2, + "probability": 0.9032 + }, + { + "start": 3934.34, + "end": 3935.34, + "probability": 0.9819 + }, + { + "start": 3935.38, + "end": 3936.5, + "probability": 0.7593 + }, + { + "start": 3936.5, + "end": 3937.94, + "probability": 0.9751 + }, + { + "start": 3938.32, + "end": 3938.7, + "probability": 0.9891 + }, + { + "start": 3939.12, + "end": 3941.06, + "probability": 0.8747 + }, + { + "start": 3941.44, + "end": 3942.12, + "probability": 0.5413 + }, + { + "start": 3942.46, + "end": 3943.12, + "probability": 0.6131 + }, + { + "start": 3943.48, + "end": 3944.3, + "probability": 0.9539 + }, + { + "start": 3944.6, + "end": 3945.74, + "probability": 0.9951 + }, + { + "start": 3945.84, + "end": 3946.68, + "probability": 0.8984 + }, + { + "start": 3946.88, + "end": 3948.04, + "probability": 0.8256 + }, + { + "start": 3948.1, + "end": 3949.3, + "probability": 0.8695 + }, + { + "start": 3950.0, + "end": 3951.66, + "probability": 0.9688 + }, + { + "start": 3952.02, + "end": 3952.54, + "probability": 0.9941 + }, + { + "start": 3952.74, + "end": 3953.72, + "probability": 0.8552 + }, + { + "start": 3953.98, + "end": 3955.92, + "probability": 0.7891 + }, + { + "start": 3956.6, + "end": 3956.84, + "probability": 0.7444 + }, + { + "start": 3956.86, + "end": 3957.3, + "probability": 0.7048 + }, + { + "start": 3959.18, + "end": 3961.44, + "probability": 0.9634 + }, + { + "start": 3962.08, + "end": 3962.54, + "probability": 0.702 + }, + { + "start": 3963.5, + "end": 3964.7, + "probability": 0.979 + }, + { + "start": 3964.88, + "end": 3965.12, + "probability": 0.8924 + }, + { + "start": 3965.46, + "end": 3966.6, + "probability": 0.9766 + }, + { + "start": 3967.0, + "end": 3967.3, + "probability": 0.3973 + }, + { + "start": 3967.62, + "end": 3968.62, + "probability": 0.8254 + }, + { + "start": 3969.48, + "end": 3969.98, + "probability": 0.3891 + }, + { + "start": 3970.22, + "end": 3971.34, + "probability": 0.9768 + }, + { + "start": 3971.88, + "end": 3974.52, + "probability": 0.7842 + }, + { + "start": 3975.7, + "end": 3976.28, + "probability": 0.7168 + }, + { + "start": 3977.58, + "end": 3978.36, + "probability": 0.9905 + }, + { + "start": 3994.62, + "end": 3995.32, + "probability": 0.6071 + }, + { + "start": 3995.86, + "end": 3997.52, + "probability": 0.7694 + }, + { + "start": 4000.42, + "end": 4003.58, + "probability": 0.9957 + }, + { + "start": 4005.34, + "end": 4010.04, + "probability": 0.9971 + }, + { + "start": 4011.34, + "end": 4015.08, + "probability": 0.9569 + }, + { + "start": 4015.32, + "end": 4016.0, + "probability": 0.9745 + }, + { + "start": 4016.54, + "end": 4020.22, + "probability": 0.6457 + }, + { + "start": 4020.36, + "end": 4022.86, + "probability": 0.9813 + }, + { + "start": 4023.0, + "end": 4025.44, + "probability": 0.8202 + }, + { + "start": 4026.9, + "end": 4028.9, + "probability": 0.606 + }, + { + "start": 4030.48, + "end": 4030.48, + "probability": 0.0984 + }, + { + "start": 4030.48, + "end": 4033.54, + "probability": 0.9885 + }, + { + "start": 4034.42, + "end": 4035.02, + "probability": 0.9879 + }, + { + "start": 4036.72, + "end": 4043.42, + "probability": 0.8564 + }, + { + "start": 4044.24, + "end": 4046.06, + "probability": 0.6993 + }, + { + "start": 4046.82, + "end": 4049.6, + "probability": 0.9877 + }, + { + "start": 4050.06, + "end": 4052.16, + "probability": 0.9722 + }, + { + "start": 4053.18, + "end": 4055.48, + "probability": 0.9149 + }, + { + "start": 4056.2, + "end": 4056.65, + "probability": 0.5714 + }, + { + "start": 4058.28, + "end": 4061.44, + "probability": 0.9792 + }, + { + "start": 4061.98, + "end": 4066.88, + "probability": 0.998 + }, + { + "start": 4067.9, + "end": 4072.42, + "probability": 0.9961 + }, + { + "start": 4074.64, + "end": 4077.41, + "probability": 0.7868 + }, + { + "start": 4079.0, + "end": 4081.6, + "probability": 0.9191 + }, + { + "start": 4081.74, + "end": 4084.87, + "probability": 0.9294 + }, + { + "start": 4086.0, + "end": 4088.02, + "probability": 0.8734 + }, + { + "start": 4089.28, + "end": 4090.24, + "probability": 0.7016 + }, + { + "start": 4091.26, + "end": 4096.1, + "probability": 0.7407 + }, + { + "start": 4096.9, + "end": 4100.54, + "probability": 0.962 + }, + { + "start": 4101.26, + "end": 4101.62, + "probability": 0.9398 + }, + { + "start": 4104.64, + "end": 4106.9, + "probability": 0.8125 + }, + { + "start": 4106.9, + "end": 4109.88, + "probability": 0.6444 + }, + { + "start": 4111.28, + "end": 4113.06, + "probability": 0.2669 + }, + { + "start": 4113.08, + "end": 4114.75, + "probability": 0.9951 + }, + { + "start": 4114.94, + "end": 4115.44, + "probability": 0.8258 + }, + { + "start": 4116.32, + "end": 4119.52, + "probability": 0.8313 + }, + { + "start": 4119.9, + "end": 4121.42, + "probability": 0.7794 + }, + { + "start": 4122.26, + "end": 4124.8, + "probability": 0.924 + }, + { + "start": 4125.52, + "end": 4126.14, + "probability": 0.8797 + }, + { + "start": 4126.74, + "end": 4128.76, + "probability": 0.8601 + }, + { + "start": 4129.22, + "end": 4129.94, + "probability": 0.8452 + }, + { + "start": 4130.52, + "end": 4132.2, + "probability": 0.9846 + }, + { + "start": 4132.3, + "end": 4132.82, + "probability": 0.78 + }, + { + "start": 4133.52, + "end": 4137.28, + "probability": 0.7272 + }, + { + "start": 4138.32, + "end": 4141.02, + "probability": 0.9002 + }, + { + "start": 4141.7, + "end": 4144.5, + "probability": 0.9817 + }, + { + "start": 4145.08, + "end": 4147.94, + "probability": 0.9869 + }, + { + "start": 4148.38, + "end": 4152.36, + "probability": 0.671 + }, + { + "start": 4153.58, + "end": 4156.98, + "probability": 0.9964 + }, + { + "start": 4158.02, + "end": 4160.28, + "probability": 0.889 + }, + { + "start": 4160.92, + "end": 4164.63, + "probability": 0.8098 + }, + { + "start": 4165.5, + "end": 4166.3, + "probability": 0.7632 + }, + { + "start": 4166.64, + "end": 4169.24, + "probability": 0.9937 + }, + { + "start": 4170.1, + "end": 4173.46, + "probability": 0.9536 + }, + { + "start": 4173.74, + "end": 4174.96, + "probability": 0.9927 + }, + { + "start": 4175.56, + "end": 4176.42, + "probability": 0.7919 + }, + { + "start": 4177.08, + "end": 4178.42, + "probability": 0.9915 + }, + { + "start": 4179.88, + "end": 4181.48, + "probability": 0.4299 + }, + { + "start": 4182.64, + "end": 4183.34, + "probability": 0.7333 + }, + { + "start": 4184.12, + "end": 4186.52, + "probability": 0.9775 + }, + { + "start": 4186.98, + "end": 4187.92, + "probability": 0.9447 + }, + { + "start": 4188.72, + "end": 4189.8, + "probability": 0.8934 + }, + { + "start": 4190.38, + "end": 4192.16, + "probability": 0.9046 + }, + { + "start": 4193.14, + "end": 4194.7, + "probability": 0.9657 + }, + { + "start": 4195.82, + "end": 4199.06, + "probability": 0.6865 + }, + { + "start": 4199.54, + "end": 4200.8, + "probability": 0.9985 + }, + { + "start": 4201.32, + "end": 4202.32, + "probability": 0.9788 + }, + { + "start": 4203.3, + "end": 4204.68, + "probability": 0.9616 + }, + { + "start": 4205.32, + "end": 4205.9, + "probability": 0.9736 + }, + { + "start": 4207.18, + "end": 4209.3, + "probability": 0.9894 + }, + { + "start": 4209.86, + "end": 4216.26, + "probability": 0.9824 + }, + { + "start": 4216.66, + "end": 4217.04, + "probability": 0.7728 + }, + { + "start": 4218.8, + "end": 4219.44, + "probability": 0.7353 + }, + { + "start": 4219.66, + "end": 4221.54, + "probability": 0.672 + }, + { + "start": 4222.14, + "end": 4223.46, + "probability": 0.8442 + }, + { + "start": 4223.58, + "end": 4224.96, + "probability": 0.9839 + }, + { + "start": 4232.76, + "end": 4234.26, + "probability": 0.1473 + }, + { + "start": 4248.06, + "end": 4248.06, + "probability": 0.0451 + }, + { + "start": 4248.06, + "end": 4248.1, + "probability": 0.0517 + }, + { + "start": 4274.68, + "end": 4279.52, + "probability": 0.8107 + }, + { + "start": 4280.26, + "end": 4281.94, + "probability": 0.9495 + }, + { + "start": 4282.18, + "end": 4285.88, + "probability": 0.7693 + }, + { + "start": 4285.92, + "end": 4290.78, + "probability": 0.9675 + }, + { + "start": 4290.82, + "end": 4295.24, + "probability": 0.9559 + }, + { + "start": 4295.38, + "end": 4297.52, + "probability": 0.9317 + }, + { + "start": 4297.64, + "end": 4298.74, + "probability": 0.7904 + }, + { + "start": 4298.9, + "end": 4300.06, + "probability": 0.9432 + }, + { + "start": 4300.24, + "end": 4301.2, + "probability": 0.957 + }, + { + "start": 4301.24, + "end": 4305.14, + "probability": 0.932 + }, + { + "start": 4305.3, + "end": 4305.8, + "probability": 0.8482 + }, + { + "start": 4306.22, + "end": 4308.24, + "probability": 0.9939 + }, + { + "start": 4308.4, + "end": 4308.9, + "probability": 0.5084 + }, + { + "start": 4308.96, + "end": 4309.58, + "probability": 0.7154 + }, + { + "start": 4309.64, + "end": 4310.78, + "probability": 0.9895 + }, + { + "start": 4311.42, + "end": 4315.18, + "probability": 0.9785 + }, + { + "start": 4315.74, + "end": 4319.48, + "probability": 0.9983 + }, + { + "start": 4319.6, + "end": 4323.98, + "probability": 0.9878 + }, + { + "start": 4323.98, + "end": 4327.5, + "probability": 0.9982 + }, + { + "start": 4327.76, + "end": 4329.34, + "probability": 0.9749 + }, + { + "start": 4329.84, + "end": 4331.48, + "probability": 0.9854 + }, + { + "start": 4332.44, + "end": 4336.34, + "probability": 0.9808 + }, + { + "start": 4336.34, + "end": 4339.62, + "probability": 0.9972 + }, + { + "start": 4340.26, + "end": 4344.32, + "probability": 0.9832 + }, + { + "start": 4344.58, + "end": 4345.66, + "probability": 0.7284 + }, + { + "start": 4346.26, + "end": 4348.82, + "probability": 0.9844 + }, + { + "start": 4349.62, + "end": 4352.78, + "probability": 0.8551 + }, + { + "start": 4353.98, + "end": 4357.48, + "probability": 0.6793 + }, + { + "start": 4357.48, + "end": 4363.34, + "probability": 0.8547 + }, + { + "start": 4363.74, + "end": 4369.1, + "probability": 0.8744 + }, + { + "start": 4369.18, + "end": 4370.42, + "probability": 0.8706 + }, + { + "start": 4370.92, + "end": 4375.98, + "probability": 0.9866 + }, + { + "start": 4376.54, + "end": 4378.48, + "probability": 0.9601 + }, + { + "start": 4378.68, + "end": 4381.3, + "probability": 0.9892 + }, + { + "start": 4381.74, + "end": 4384.28, + "probability": 0.7901 + }, + { + "start": 4384.62, + "end": 4389.04, + "probability": 0.9941 + }, + { + "start": 4389.68, + "end": 4395.92, + "probability": 0.9816 + }, + { + "start": 4396.34, + "end": 4397.48, + "probability": 0.7643 + }, + { + "start": 4397.9, + "end": 4400.16, + "probability": 0.9254 + }, + { + "start": 4400.76, + "end": 4402.9, + "probability": 0.9723 + }, + { + "start": 4403.14, + "end": 4407.6, + "probability": 0.8376 + }, + { + "start": 4407.78, + "end": 4409.06, + "probability": 0.8755 + }, + { + "start": 4409.14, + "end": 4414.32, + "probability": 0.8862 + }, + { + "start": 4414.42, + "end": 4417.98, + "probability": 0.9846 + }, + { + "start": 4418.02, + "end": 4420.38, + "probability": 0.7048 + }, + { + "start": 4420.84, + "end": 4421.7, + "probability": 0.9304 + }, + { + "start": 4422.04, + "end": 4423.34, + "probability": 0.9054 + }, + { + "start": 4423.5, + "end": 4424.16, + "probability": 0.8098 + }, + { + "start": 4424.26, + "end": 4424.94, + "probability": 0.7797 + }, + { + "start": 4425.34, + "end": 4429.0, + "probability": 0.9746 + }, + { + "start": 4429.46, + "end": 4432.7, + "probability": 0.8957 + }, + { + "start": 4432.98, + "end": 4433.75, + "probability": 0.7034 + }, + { + "start": 4434.6, + "end": 4441.74, + "probability": 0.9268 + }, + { + "start": 4442.5, + "end": 4445.2, + "probability": 0.929 + }, + { + "start": 4445.4, + "end": 4446.32, + "probability": 0.8068 + }, + { + "start": 4446.42, + "end": 4449.22, + "probability": 0.7937 + }, + { + "start": 4449.24, + "end": 4452.68, + "probability": 0.932 + }, + { + "start": 4453.02, + "end": 4455.04, + "probability": 0.8665 + }, + { + "start": 4455.44, + "end": 4456.88, + "probability": 0.9031 + }, + { + "start": 4457.36, + "end": 4459.7, + "probability": 0.9944 + }, + { + "start": 4459.8, + "end": 4460.06, + "probability": 0.8565 + }, + { + "start": 4460.56, + "end": 4461.38, + "probability": 0.3813 + }, + { + "start": 4462.42, + "end": 4463.9, + "probability": 0.4667 + }, + { + "start": 4464.02, + "end": 4464.12, + "probability": 0.5501 + }, + { + "start": 4464.3, + "end": 4465.26, + "probability": 0.927 + }, + { + "start": 4465.38, + "end": 4465.56, + "probability": 0.844 + }, + { + "start": 4465.68, + "end": 4467.0, + "probability": 0.6436 + }, + { + "start": 4467.04, + "end": 4467.26, + "probability": 0.8446 + }, + { + "start": 4467.38, + "end": 4468.2, + "probability": 0.8002 + }, + { + "start": 4468.3, + "end": 4468.54, + "probability": 0.7768 + }, + { + "start": 4469.24, + "end": 4470.16, + "probability": 0.926 + }, + { + "start": 4470.92, + "end": 4471.72, + "probability": 0.3494 + }, + { + "start": 4472.04, + "end": 4474.5, + "probability": 0.7813 + }, + { + "start": 4489.7, + "end": 4490.6, + "probability": 0.7838 + }, + { + "start": 4491.14, + "end": 4492.98, + "probability": 0.7186 + }, + { + "start": 4494.48, + "end": 4502.48, + "probability": 0.9927 + }, + { + "start": 4503.4, + "end": 4503.68, + "probability": 0.8683 + }, + { + "start": 4505.42, + "end": 4510.96, + "probability": 0.9852 + }, + { + "start": 4511.04, + "end": 4513.68, + "probability": 0.9427 + }, + { + "start": 4515.6, + "end": 4516.46, + "probability": 0.8999 + }, + { + "start": 4516.52, + "end": 4519.3, + "probability": 0.9283 + }, + { + "start": 4519.94, + "end": 4524.18, + "probability": 0.9796 + }, + { + "start": 4524.26, + "end": 4525.8, + "probability": 0.8672 + }, + { + "start": 4526.62, + "end": 4529.06, + "probability": 0.9784 + }, + { + "start": 4529.84, + "end": 4530.6, + "probability": 0.9833 + }, + { + "start": 4530.72, + "end": 4532.14, + "probability": 0.9773 + }, + { + "start": 4532.24, + "end": 4535.78, + "probability": 0.9554 + }, + { + "start": 4536.76, + "end": 4545.58, + "probability": 0.9619 + }, + { + "start": 4546.74, + "end": 4548.02, + "probability": 0.9887 + }, + { + "start": 4548.94, + "end": 4550.18, + "probability": 0.7427 + }, + { + "start": 4551.46, + "end": 4553.28, + "probability": 0.6665 + }, + { + "start": 4554.34, + "end": 4556.0, + "probability": 0.8881 + }, + { + "start": 4556.88, + "end": 4560.2, + "probability": 0.9794 + }, + { + "start": 4560.36, + "end": 4563.55, + "probability": 0.999 + }, + { + "start": 4564.24, + "end": 4567.26, + "probability": 0.9784 + }, + { + "start": 4567.92, + "end": 4569.78, + "probability": 0.9978 + }, + { + "start": 4570.38, + "end": 4572.74, + "probability": 0.9885 + }, + { + "start": 4573.53, + "end": 4577.18, + "probability": 0.9919 + }, + { + "start": 4578.06, + "end": 4578.5, + "probability": 0.6966 + }, + { + "start": 4578.58, + "end": 4580.06, + "probability": 0.9913 + }, + { + "start": 4580.48, + "end": 4582.24, + "probability": 0.8528 + }, + { + "start": 4583.1, + "end": 4583.58, + "probability": 0.9616 + }, + { + "start": 4584.42, + "end": 4585.14, + "probability": 0.7598 + }, + { + "start": 4585.9, + "end": 4586.88, + "probability": 0.832 + }, + { + "start": 4587.22, + "end": 4590.3, + "probability": 0.9771 + }, + { + "start": 4590.38, + "end": 4591.04, + "probability": 0.7458 + }, + { + "start": 4591.16, + "end": 4591.28, + "probability": 0.7334 + }, + { + "start": 4591.86, + "end": 4592.84, + "probability": 0.8315 + }, + { + "start": 4593.74, + "end": 4595.52, + "probability": 0.8448 + }, + { + "start": 4595.82, + "end": 4599.26, + "probability": 0.9586 + }, + { + "start": 4599.44, + "end": 4600.76, + "probability": 0.8665 + }, + { + "start": 4601.42, + "end": 4604.52, + "probability": 0.9871 + }, + { + "start": 4605.0, + "end": 4606.62, + "probability": 0.8478 + }, + { + "start": 4606.7, + "end": 4606.96, + "probability": 0.4067 + }, + { + "start": 4607.64, + "end": 4609.12, + "probability": 0.3674 + }, + { + "start": 4609.3, + "end": 4609.92, + "probability": 0.8218 + }, + { + "start": 4610.48, + "end": 4613.2, + "probability": 0.9703 + }, + { + "start": 4614.26, + "end": 4615.38, + "probability": 0.9326 + }, + { + "start": 4616.76, + "end": 4618.87, + "probability": 0.4945 + }, + { + "start": 4619.46, + "end": 4620.54, + "probability": 0.7249 + }, + { + "start": 4622.46, + "end": 4624.1, + "probability": 0.6683 + }, + { + "start": 4624.36, + "end": 4627.38, + "probability": 0.4291 + }, + { + "start": 4627.38, + "end": 4627.78, + "probability": 0.7085 + }, + { + "start": 4627.86, + "end": 4628.18, + "probability": 0.835 + }, + { + "start": 4628.24, + "end": 4629.44, + "probability": 0.8601 + }, + { + "start": 4629.88, + "end": 4631.0, + "probability": 0.9824 + }, + { + "start": 4631.08, + "end": 4635.04, + "probability": 0.8491 + }, + { + "start": 4635.9, + "end": 4638.22, + "probability": 0.9671 + }, + { + "start": 4638.22, + "end": 4641.46, + "probability": 0.988 + }, + { + "start": 4641.82, + "end": 4644.66, + "probability": 0.9666 + }, + { + "start": 4644.7, + "end": 4646.56, + "probability": 0.9924 + }, + { + "start": 4648.44, + "end": 4649.34, + "probability": 0.7099 + }, + { + "start": 4650.1, + "end": 4651.44, + "probability": 0.7077 + }, + { + "start": 4652.22, + "end": 4654.48, + "probability": 0.86 + }, + { + "start": 4655.06, + "end": 4657.48, + "probability": 0.978 + }, + { + "start": 4658.24, + "end": 4660.24, + "probability": 0.9063 + }, + { + "start": 4660.76, + "end": 4663.9, + "probability": 0.8068 + }, + { + "start": 4664.02, + "end": 4665.28, + "probability": 0.9642 + }, + { + "start": 4665.78, + "end": 4667.12, + "probability": 0.988 + }, + { + "start": 4667.82, + "end": 4668.16, + "probability": 0.9279 + }, + { + "start": 4668.54, + "end": 4669.2, + "probability": 0.8384 + }, + { + "start": 4669.26, + "end": 4670.12, + "probability": 0.8953 + }, + { + "start": 4670.28, + "end": 4671.9, + "probability": 0.9838 + }, + { + "start": 4672.38, + "end": 4675.3, + "probability": 0.9842 + }, + { + "start": 4676.2, + "end": 4676.98, + "probability": 0.947 + }, + { + "start": 4677.76, + "end": 4680.92, + "probability": 0.9976 + }, + { + "start": 4681.04, + "end": 4683.22, + "probability": 0.9555 + }, + { + "start": 4683.38, + "end": 4684.86, + "probability": 0.9741 + }, + { + "start": 4685.34, + "end": 4688.9, + "probability": 0.983 + }, + { + "start": 4688.9, + "end": 4691.88, + "probability": 0.9771 + }, + { + "start": 4693.76, + "end": 4696.4, + "probability": 0.7065 + }, + { + "start": 4698.46, + "end": 4699.32, + "probability": 0.43 + }, + { + "start": 4700.72, + "end": 4702.4, + "probability": 0.1309 + }, + { + "start": 4702.4, + "end": 4702.4, + "probability": 0.0237 + }, + { + "start": 4702.4, + "end": 4702.4, + "probability": 0.0762 + }, + { + "start": 4702.4, + "end": 4704.16, + "probability": 0.709 + }, + { + "start": 4704.26, + "end": 4705.02, + "probability": 0.9103 + }, + { + "start": 4705.04, + "end": 4707.84, + "probability": 0.9868 + }, + { + "start": 4709.3, + "end": 4711.46, + "probability": 0.9479 + }, + { + "start": 4711.8, + "end": 4712.82, + "probability": 0.9928 + }, + { + "start": 4712.98, + "end": 4713.28, + "probability": 0.2336 + }, + { + "start": 4713.42, + "end": 4714.04, + "probability": 0.734 + }, + { + "start": 4714.28, + "end": 4715.47, + "probability": 0.7565 + }, + { + "start": 4715.86, + "end": 4716.36, + "probability": 0.7442 + }, + { + "start": 4716.96, + "end": 4721.36, + "probability": 0.9938 + }, + { + "start": 4722.34, + "end": 4722.34, + "probability": 0.0725 + }, + { + "start": 4722.34, + "end": 4724.44, + "probability": 0.8615 + }, + { + "start": 4724.56, + "end": 4728.12, + "probability": 0.9538 + }, + { + "start": 4728.12, + "end": 4730.32, + "probability": 0.9993 + }, + { + "start": 4730.36, + "end": 4731.56, + "probability": 0.9256 + }, + { + "start": 4731.62, + "end": 4732.16, + "probability": 0.9558 + }, + { + "start": 4733.24, + "end": 4733.68, + "probability": 0.4436 + }, + { + "start": 4733.76, + "end": 4734.44, + "probability": 0.6885 + }, + { + "start": 4735.4, + "end": 4736.14, + "probability": 0.8865 + }, + { + "start": 4736.34, + "end": 4737.06, + "probability": 0.9742 + }, + { + "start": 4737.26, + "end": 4739.36, + "probability": 0.0288 + }, + { + "start": 4739.4, + "end": 4742.38, + "probability": 0.6455 + }, + { + "start": 4742.44, + "end": 4743.71, + "probability": 0.8994 + }, + { + "start": 4743.92, + "end": 4744.84, + "probability": 0.4987 + }, + { + "start": 4746.5, + "end": 4747.9, + "probability": 0.6744 + }, + { + "start": 4748.62, + "end": 4748.62, + "probability": 0.6865 + }, + { + "start": 4749.44, + "end": 4752.5, + "probability": 0.5871 + }, + { + "start": 4753.06, + "end": 4758.26, + "probability": 0.9966 + }, + { + "start": 4758.68, + "end": 4761.68, + "probability": 0.9317 + }, + { + "start": 4762.02, + "end": 4766.17, + "probability": 0.8406 + }, + { + "start": 4766.54, + "end": 4768.1, + "probability": 0.9933 + }, + { + "start": 4768.26, + "end": 4768.4, + "probability": 0.4244 + }, + { + "start": 4768.4, + "end": 4771.38, + "probability": 0.9447 + }, + { + "start": 4771.42, + "end": 4776.06, + "probability": 0.9601 + }, + { + "start": 4776.58, + "end": 4777.84, + "probability": 0.7194 + }, + { + "start": 4778.04, + "end": 4778.46, + "probability": 0.6924 + }, + { + "start": 4778.76, + "end": 4780.12, + "probability": 0.9545 + }, + { + "start": 4780.64, + "end": 4782.42, + "probability": 0.8372 + }, + { + "start": 4783.1, + "end": 4783.44, + "probability": 0.2112 + }, + { + "start": 4783.6, + "end": 4784.32, + "probability": 0.1126 + }, + { + "start": 4785.18, + "end": 4786.09, + "probability": 0.3055 + }, + { + "start": 4786.58, + "end": 4788.14, + "probability": 0.3023 + }, + { + "start": 4788.3, + "end": 4788.6, + "probability": 0.0459 + }, + { + "start": 4788.6, + "end": 4788.7, + "probability": 0.1269 + }, + { + "start": 4788.7, + "end": 4789.2, + "probability": 0.4657 + }, + { + "start": 4789.32, + "end": 4791.42, + "probability": 0.8639 + }, + { + "start": 4791.46, + "end": 4791.9, + "probability": 0.3461 + }, + { + "start": 4791.92, + "end": 4793.7, + "probability": 0.5886 + }, + { + "start": 4794.6, + "end": 4795.88, + "probability": 0.6086 + }, + { + "start": 4796.42, + "end": 4800.88, + "probability": 0.8265 + }, + { + "start": 4801.48, + "end": 4804.18, + "probability": 0.8868 + }, + { + "start": 4804.78, + "end": 4805.32, + "probability": 0.9111 + }, + { + "start": 4806.02, + "end": 4808.76, + "probability": 0.8911 + }, + { + "start": 4808.88, + "end": 4810.1, + "probability": 0.7916 + }, + { + "start": 4822.14, + "end": 4822.14, + "probability": 0.199 + }, + { + "start": 4823.2, + "end": 4824.6, + "probability": 0.2236 + }, + { + "start": 4825.24, + "end": 4826.02, + "probability": 0.8499 + }, + { + "start": 4826.2, + "end": 4827.41, + "probability": 0.0678 + }, + { + "start": 4828.1, + "end": 4828.24, + "probability": 0.1248 + }, + { + "start": 4830.12, + "end": 4830.3, + "probability": 0.0684 + }, + { + "start": 4836.68, + "end": 4837.18, + "probability": 0.0115 + }, + { + "start": 4837.22, + "end": 4840.2, + "probability": 0.5906 + }, + { + "start": 4843.98, + "end": 4844.5, + "probability": 0.4827 + }, + { + "start": 4846.61, + "end": 4849.4, + "probability": 0.9727 + }, + { + "start": 4850.14, + "end": 4850.6, + "probability": 0.9752 + }, + { + "start": 4851.66, + "end": 4852.9, + "probability": 0.7741 + }, + { + "start": 4854.92, + "end": 4858.32, + "probability": 0.9971 + }, + { + "start": 4859.88, + "end": 4860.44, + "probability": 0.5085 + }, + { + "start": 4860.56, + "end": 4861.1, + "probability": 0.7601 + }, + { + "start": 4861.44, + "end": 4863.04, + "probability": 0.9868 + }, + { + "start": 4864.8, + "end": 4869.52, + "probability": 0.9871 + }, + { + "start": 4870.36, + "end": 4873.1, + "probability": 0.7419 + }, + { + "start": 4874.2, + "end": 4875.92, + "probability": 0.8717 + }, + { + "start": 4876.98, + "end": 4877.66, + "probability": 0.8949 + }, + { + "start": 4878.44, + "end": 4880.64, + "probability": 0.8795 + }, + { + "start": 4881.16, + "end": 4882.56, + "probability": 0.9772 + }, + { + "start": 4882.78, + "end": 4883.58, + "probability": 0.9264 + }, + { + "start": 4883.72, + "end": 4884.23, + "probability": 0.7551 + }, + { + "start": 4884.38, + "end": 4885.24, + "probability": 0.8572 + }, + { + "start": 4886.08, + "end": 4889.1, + "probability": 0.9385 + }, + { + "start": 4890.74, + "end": 4891.28, + "probability": 0.8842 + }, + { + "start": 4892.26, + "end": 4895.2, + "probability": 0.9818 + }, + { + "start": 4896.38, + "end": 4897.64, + "probability": 0.9163 + }, + { + "start": 4898.22, + "end": 4900.2, + "probability": 0.9413 + }, + { + "start": 4901.22, + "end": 4902.28, + "probability": 0.9332 + }, + { + "start": 4903.34, + "end": 4906.48, + "probability": 0.7685 + }, + { + "start": 4906.54, + "end": 4910.56, + "probability": 0.9727 + }, + { + "start": 4910.68, + "end": 4910.68, + "probability": 0.3222 + }, + { + "start": 4910.68, + "end": 4911.02, + "probability": 0.8844 + }, + { + "start": 4913.1, + "end": 4913.22, + "probability": 0.1429 + }, + { + "start": 4913.22, + "end": 4913.22, + "probability": 0.3821 + }, + { + "start": 4913.22, + "end": 4913.22, + "probability": 0.1512 + }, + { + "start": 4913.22, + "end": 4915.52, + "probability": 0.7754 + }, + { + "start": 4915.8, + "end": 4918.48, + "probability": 0.9373 + }, + { + "start": 4918.52, + "end": 4920.1, + "probability": 0.9528 + }, + { + "start": 4921.76, + "end": 4925.4, + "probability": 0.8983 + }, + { + "start": 4925.4, + "end": 4925.56, + "probability": 0.0853 + }, + { + "start": 4926.96, + "end": 4927.56, + "probability": 0.776 + }, + { + "start": 4927.56, + "end": 4928.36, + "probability": 0.8631 + }, + { + "start": 4928.54, + "end": 4929.7, + "probability": 0.8121 + }, + { + "start": 4929.72, + "end": 4931.34, + "probability": 0.7265 + }, + { + "start": 4931.42, + "end": 4932.4, + "probability": 0.9619 + }, + { + "start": 4933.44, + "end": 4937.54, + "probability": 0.9764 + }, + { + "start": 4937.6, + "end": 4939.12, + "probability": 0.871 + }, + { + "start": 4939.14, + "end": 4939.3, + "probability": 0.7654 + }, + { + "start": 4939.32, + "end": 4939.52, + "probability": 0.8963 + }, + { + "start": 4939.58, + "end": 4942.32, + "probability": 0.9338 + }, + { + "start": 4942.46, + "end": 4942.76, + "probability": 0.6006 + }, + { + "start": 4944.28, + "end": 4948.9, + "probability": 0.9825 + }, + { + "start": 4949.92, + "end": 4951.88, + "probability": 0.917 + }, + { + "start": 4953.63, + "end": 4955.9, + "probability": 0.8281 + }, + { + "start": 4956.64, + "end": 4958.4, + "probability": 0.897 + }, + { + "start": 4959.2, + "end": 4960.4, + "probability": 0.9604 + }, + { + "start": 4961.62, + "end": 4961.62, + "probability": 0.5218 + }, + { + "start": 4961.78, + "end": 4962.56, + "probability": 0.9421 + }, + { + "start": 4962.66, + "end": 4963.9, + "probability": 0.9612 + }, + { + "start": 4963.96, + "end": 4964.74, + "probability": 0.9659 + }, + { + "start": 4964.78, + "end": 4965.58, + "probability": 0.9861 + }, + { + "start": 4966.28, + "end": 4968.46, + "probability": 0.8197 + }, + { + "start": 4969.36, + "end": 4970.82, + "probability": 0.9438 + }, + { + "start": 4971.34, + "end": 4972.82, + "probability": 0.7542 + }, + { + "start": 4972.86, + "end": 4975.22, + "probability": 0.9648 + }, + { + "start": 4975.52, + "end": 4977.44, + "probability": 0.9924 + }, + { + "start": 4978.04, + "end": 4978.91, + "probability": 0.4271 + }, + { + "start": 4979.08, + "end": 4979.32, + "probability": 0.7253 + }, + { + "start": 4982.68, + "end": 4983.9, + "probability": 0.7296 + }, + { + "start": 4984.12, + "end": 4985.18, + "probability": 0.677 + }, + { + "start": 4987.84, + "end": 4993.08, + "probability": 0.8799 + }, + { + "start": 4993.88, + "end": 4995.0, + "probability": 0.7103 + }, + { + "start": 4995.0, + "end": 4996.74, + "probability": 0.9951 + }, + { + "start": 5013.28, + "end": 5014.68, + "probability": 0.7654 + }, + { + "start": 5016.96, + "end": 5018.46, + "probability": 0.9608 + }, + { + "start": 5019.08, + "end": 5019.99, + "probability": 0.8628 + }, + { + "start": 5021.6, + "end": 5021.96, + "probability": 0.9341 + }, + { + "start": 5022.94, + "end": 5023.28, + "probability": 0.5407 + }, + { + "start": 5024.04, + "end": 5024.54, + "probability": 0.9558 + }, + { + "start": 5025.84, + "end": 5029.56, + "probability": 0.9953 + }, + { + "start": 5030.16, + "end": 5031.12, + "probability": 0.9368 + }, + { + "start": 5031.28, + "end": 5032.38, + "probability": 0.6825 + }, + { + "start": 5032.56, + "end": 5035.18, + "probability": 0.7906 + }, + { + "start": 5036.56, + "end": 5039.37, + "probability": 0.8447 + }, + { + "start": 5040.74, + "end": 5042.22, + "probability": 0.9606 + }, + { + "start": 5042.92, + "end": 5044.22, + "probability": 0.777 + }, + { + "start": 5045.02, + "end": 5046.74, + "probability": 0.9979 + }, + { + "start": 5047.8, + "end": 5048.9, + "probability": 0.945 + }, + { + "start": 5050.46, + "end": 5051.06, + "probability": 0.6235 + }, + { + "start": 5051.18, + "end": 5054.84, + "probability": 0.9961 + }, + { + "start": 5055.58, + "end": 5057.46, + "probability": 0.9607 + }, + { + "start": 5058.76, + "end": 5059.56, + "probability": 0.9386 + }, + { + "start": 5060.46, + "end": 5061.44, + "probability": 0.7513 + }, + { + "start": 5062.14, + "end": 5064.36, + "probability": 0.8226 + }, + { + "start": 5065.82, + "end": 5066.62, + "probability": 0.9807 + }, + { + "start": 5067.04, + "end": 5068.62, + "probability": 0.8777 + }, + { + "start": 5068.94, + "end": 5071.34, + "probability": 0.9852 + }, + { + "start": 5071.94, + "end": 5074.96, + "probability": 0.9307 + }, + { + "start": 5076.02, + "end": 5077.6, + "probability": 0.875 + }, + { + "start": 5078.98, + "end": 5083.82, + "probability": 0.9922 + }, + { + "start": 5084.28, + "end": 5085.06, + "probability": 0.7887 + }, + { + "start": 5085.82, + "end": 5086.48, + "probability": 0.8315 + }, + { + "start": 5087.18, + "end": 5089.56, + "probability": 0.966 + }, + { + "start": 5090.2, + "end": 5090.9, + "probability": 0.8072 + }, + { + "start": 5092.14, + "end": 5095.36, + "probability": 0.9613 + }, + { + "start": 5095.94, + "end": 5100.9, + "probability": 0.7875 + }, + { + "start": 5101.48, + "end": 5104.1, + "probability": 0.851 + }, + { + "start": 5105.06, + "end": 5105.6, + "probability": 0.9471 + }, + { + "start": 5107.02, + "end": 5108.38, + "probability": 0.8248 + }, + { + "start": 5109.32, + "end": 5110.3, + "probability": 0.884 + }, + { + "start": 5111.06, + "end": 5111.68, + "probability": 0.9685 + }, + { + "start": 5112.72, + "end": 5115.34, + "probability": 0.9897 + }, + { + "start": 5116.38, + "end": 5117.5, + "probability": 0.7463 + }, + { + "start": 5119.42, + "end": 5120.86, + "probability": 0.9747 + }, + { + "start": 5121.02, + "end": 5121.8, + "probability": 0.7821 + }, + { + "start": 5122.24, + "end": 5124.82, + "probability": 0.8086 + }, + { + "start": 5125.18, + "end": 5127.58, + "probability": 0.9971 + }, + { + "start": 5127.76, + "end": 5129.68, + "probability": 0.9667 + }, + { + "start": 5130.2, + "end": 5132.64, + "probability": 0.9033 + }, + { + "start": 5132.92, + "end": 5134.6, + "probability": 0.9961 + }, + { + "start": 5134.92, + "end": 5139.6, + "probability": 0.7801 + }, + { + "start": 5140.0, + "end": 5140.06, + "probability": 0.6221 + }, + { + "start": 5140.18, + "end": 5144.2, + "probability": 0.9966 + }, + { + "start": 5144.52, + "end": 5144.72, + "probability": 0.8931 + }, + { + "start": 5145.34, + "end": 5146.3, + "probability": 0.8317 + }, + { + "start": 5147.22, + "end": 5147.42, + "probability": 0.8372 + }, + { + "start": 5148.04, + "end": 5150.68, + "probability": 0.9846 + }, + { + "start": 5151.38, + "end": 5152.6, + "probability": 0.932 + }, + { + "start": 5153.12, + "end": 5154.22, + "probability": 0.9386 + }, + { + "start": 5156.76, + "end": 5156.94, + "probability": 0.2542 + }, + { + "start": 5157.44, + "end": 5158.1, + "probability": 0.8568 + }, + { + "start": 5159.26, + "end": 5159.88, + "probability": 0.967 + }, + { + "start": 5161.72, + "end": 5164.0, + "probability": 0.9835 + }, + { + "start": 5165.16, + "end": 5165.84, + "probability": 0.9934 + }, + { + "start": 5167.34, + "end": 5168.56, + "probability": 0.9872 + }, + { + "start": 5169.32, + "end": 5169.98, + "probability": 0.3941 + }, + { + "start": 5170.78, + "end": 5172.4, + "probability": 0.9573 + }, + { + "start": 5173.16, + "end": 5175.66, + "probability": 0.9264 + }, + { + "start": 5175.8, + "end": 5176.78, + "probability": 0.9753 + }, + { + "start": 5177.56, + "end": 5178.5, + "probability": 0.9556 + }, + { + "start": 5180.18, + "end": 5180.9, + "probability": 0.9213 + }, + { + "start": 5182.58, + "end": 5183.0, + "probability": 0.9609 + }, + { + "start": 5183.08, + "end": 5183.8, + "probability": 0.8354 + }, + { + "start": 5184.02, + "end": 5184.65, + "probability": 0.9727 + }, + { + "start": 5185.34, + "end": 5186.38, + "probability": 0.3291 + }, + { + "start": 5186.96, + "end": 5191.66, + "probability": 0.9934 + }, + { + "start": 5192.88, + "end": 5193.58, + "probability": 0.958 + }, + { + "start": 5194.34, + "end": 5194.64, + "probability": 0.895 + }, + { + "start": 5195.64, + "end": 5198.06, + "probability": 0.972 + }, + { + "start": 5199.02, + "end": 5203.28, + "probability": 0.9752 + }, + { + "start": 5204.02, + "end": 5205.34, + "probability": 0.991 + }, + { + "start": 5205.94, + "end": 5207.56, + "probability": 0.9764 + }, + { + "start": 5208.04, + "end": 5208.99, + "probability": 0.4524 + }, + { + "start": 5209.26, + "end": 5209.96, + "probability": 0.6129 + }, + { + "start": 5210.06, + "end": 5212.82, + "probability": 0.958 + }, + { + "start": 5212.9, + "end": 5215.94, + "probability": 0.3684 + }, + { + "start": 5223.96, + "end": 5225.5, + "probability": 0.0681 + }, + { + "start": 5230.84, + "end": 5230.86, + "probability": 0.0362 + }, + { + "start": 5230.86, + "end": 5230.86, + "probability": 0.1161 + }, + { + "start": 5230.86, + "end": 5230.88, + "probability": 0.1997 + }, + { + "start": 5230.88, + "end": 5230.88, + "probability": 0.067 + }, + { + "start": 5230.88, + "end": 5230.9, + "probability": 0.2157 + }, + { + "start": 5230.9, + "end": 5230.9, + "probability": 0.0247 + }, + { + "start": 5239.84, + "end": 5240.08, + "probability": 0.0844 + }, + { + "start": 5247.02, + "end": 5247.55, + "probability": 0.171 + }, + { + "start": 5258.64, + "end": 5262.82, + "probability": 0.613 + }, + { + "start": 5264.64, + "end": 5268.72, + "probability": 0.9955 + }, + { + "start": 5269.9, + "end": 5270.88, + "probability": 0.9805 + }, + { + "start": 5274.5, + "end": 5275.54, + "probability": 0.6495 + }, + { + "start": 5276.14, + "end": 5278.16, + "probability": 0.9976 + }, + { + "start": 5278.28, + "end": 5282.06, + "probability": 0.991 + }, + { + "start": 5283.82, + "end": 5288.84, + "probability": 0.9946 + }, + { + "start": 5290.04, + "end": 5291.64, + "probability": 0.9959 + }, + { + "start": 5292.28, + "end": 5294.26, + "probability": 0.7131 + }, + { + "start": 5294.42, + "end": 5295.5, + "probability": 0.9873 + }, + { + "start": 5296.88, + "end": 5298.84, + "probability": 0.9741 + }, + { + "start": 5299.48, + "end": 5300.84, + "probability": 0.8438 + }, + { + "start": 5302.02, + "end": 5304.08, + "probability": 0.9922 + }, + { + "start": 5305.24, + "end": 5306.86, + "probability": 0.9956 + }, + { + "start": 5308.12, + "end": 5308.74, + "probability": 0.4997 + }, + { + "start": 5310.52, + "end": 5311.56, + "probability": 0.8855 + }, + { + "start": 5311.64, + "end": 5313.82, + "probability": 0.9285 + }, + { + "start": 5314.22, + "end": 5314.74, + "probability": 0.9496 + }, + { + "start": 5314.84, + "end": 5315.58, + "probability": 0.6143 + }, + { + "start": 5315.6, + "end": 5316.5, + "probability": 0.9932 + }, + { + "start": 5318.14, + "end": 5320.84, + "probability": 0.9955 + }, + { + "start": 5320.84, + "end": 5324.56, + "probability": 0.7626 + }, + { + "start": 5326.14, + "end": 5327.4, + "probability": 0.9963 + }, + { + "start": 5328.36, + "end": 5329.18, + "probability": 0.7285 + }, + { + "start": 5329.58, + "end": 5330.66, + "probability": 0.8768 + }, + { + "start": 5332.22, + "end": 5336.9, + "probability": 0.9655 + }, + { + "start": 5338.1, + "end": 5339.3, + "probability": 0.9998 + }, + { + "start": 5339.9, + "end": 5342.34, + "probability": 0.9991 + }, + { + "start": 5343.36, + "end": 5344.78, + "probability": 0.9509 + }, + { + "start": 5345.66, + "end": 5347.32, + "probability": 0.9528 + }, + { + "start": 5348.54, + "end": 5351.4, + "probability": 0.9969 + }, + { + "start": 5351.6, + "end": 5356.78, + "probability": 0.9343 + }, + { + "start": 5356.86, + "end": 5356.96, + "probability": 0.7386 + }, + { + "start": 5358.62, + "end": 5360.15, + "probability": 0.9918 + }, + { + "start": 5361.5, + "end": 5364.08, + "probability": 0.9701 + }, + { + "start": 5365.5, + "end": 5372.6, + "probability": 0.9963 + }, + { + "start": 5372.72, + "end": 5373.3, + "probability": 0.2632 + }, + { + "start": 5373.34, + "end": 5373.88, + "probability": 0.8432 + }, + { + "start": 5373.96, + "end": 5374.7, + "probability": 0.8258 + }, + { + "start": 5375.42, + "end": 5376.14, + "probability": 0.9757 + }, + { + "start": 5377.5, + "end": 5379.54, + "probability": 0.9019 + }, + { + "start": 5380.7, + "end": 5382.02, + "probability": 0.9902 + }, + { + "start": 5383.18, + "end": 5387.44, + "probability": 0.9939 + }, + { + "start": 5388.9, + "end": 5391.62, + "probability": 0.9899 + }, + { + "start": 5392.2, + "end": 5396.24, + "probability": 0.9774 + }, + { + "start": 5397.04, + "end": 5398.21, + "probability": 0.9972 + }, + { + "start": 5399.14, + "end": 5400.96, + "probability": 0.9206 + }, + { + "start": 5401.8, + "end": 5405.54, + "probability": 0.9726 + }, + { + "start": 5407.06, + "end": 5409.66, + "probability": 0.9967 + }, + { + "start": 5410.3, + "end": 5411.16, + "probability": 0.7541 + }, + { + "start": 5411.86, + "end": 5412.56, + "probability": 0.7337 + }, + { + "start": 5413.08, + "end": 5414.22, + "probability": 0.9269 + }, + { + "start": 5414.88, + "end": 5416.34, + "probability": 0.9601 + }, + { + "start": 5417.0, + "end": 5420.29, + "probability": 0.9685 + }, + { + "start": 5421.13, + "end": 5423.4, + "probability": 0.9004 + }, + { + "start": 5423.74, + "end": 5424.12, + "probability": 0.0142 + }, + { + "start": 5424.6, + "end": 5425.82, + "probability": 0.2984 + }, + { + "start": 5426.72, + "end": 5426.76, + "probability": 0.4369 + }, + { + "start": 5427.02, + "end": 5429.2, + "probability": 0.9495 + }, + { + "start": 5429.82, + "end": 5431.32, + "probability": 0.9458 + }, + { + "start": 5432.34, + "end": 5433.96, + "probability": 0.874 + }, + { + "start": 5434.94, + "end": 5435.04, + "probability": 0.2036 + }, + { + "start": 5435.04, + "end": 5436.26, + "probability": 0.9014 + }, + { + "start": 5438.06, + "end": 5439.74, + "probability": 0.5247 + }, + { + "start": 5441.0, + "end": 5441.94, + "probability": 0.9174 + }, + { + "start": 5442.6, + "end": 5443.38, + "probability": 0.3565 + }, + { + "start": 5444.08, + "end": 5446.86, + "probability": 0.9827 + }, + { + "start": 5447.74, + "end": 5449.32, + "probability": 0.6557 + }, + { + "start": 5449.52, + "end": 5452.6, + "probability": 0.9487 + }, + { + "start": 5453.26, + "end": 5455.64, + "probability": 0.9125 + }, + { + "start": 5456.68, + "end": 5457.75, + "probability": 0.6595 + }, + { + "start": 5458.6, + "end": 5460.9, + "probability": 0.9897 + }, + { + "start": 5461.54, + "end": 5462.72, + "probability": 0.9217 + }, + { + "start": 5463.86, + "end": 5467.58, + "probability": 0.829 + }, + { + "start": 5468.26, + "end": 5471.72, + "probability": 0.9639 + }, + { + "start": 5471.78, + "end": 5472.64, + "probability": 0.843 + }, + { + "start": 5473.02, + "end": 5473.82, + "probability": 0.9715 + }, + { + "start": 5474.9, + "end": 5476.39, + "probability": 0.628 + }, + { + "start": 5477.36, + "end": 5478.72, + "probability": 0.4978 + }, + { + "start": 5479.82, + "end": 5482.04, + "probability": 0.9686 + }, + { + "start": 5483.08, + "end": 5484.34, + "probability": 0.7658 + }, + { + "start": 5484.68, + "end": 5485.84, + "probability": 0.9482 + }, + { + "start": 5486.66, + "end": 5491.04, + "probability": 0.9891 + }, + { + "start": 5491.54, + "end": 5492.81, + "probability": 0.9795 + }, + { + "start": 5493.94, + "end": 5495.64, + "probability": 0.58 + }, + { + "start": 5496.4, + "end": 5497.64, + "probability": 0.9613 + }, + { + "start": 5498.26, + "end": 5502.82, + "probability": 0.9883 + }, + { + "start": 5502.82, + "end": 5506.88, + "probability": 0.9928 + }, + { + "start": 5507.38, + "end": 5507.9, + "probability": 0.3543 + }, + { + "start": 5509.08, + "end": 5509.82, + "probability": 0.8062 + }, + { + "start": 5511.5, + "end": 5513.5, + "probability": 0.9189 + }, + { + "start": 5514.3, + "end": 5516.4, + "probability": 0.856 + }, + { + "start": 5516.88, + "end": 5517.24, + "probability": 0.9757 + }, + { + "start": 5517.8, + "end": 5518.94, + "probability": 0.9543 + }, + { + "start": 5519.58, + "end": 5521.08, + "probability": 0.953 + }, + { + "start": 5521.22, + "end": 5526.06, + "probability": 0.8602 + }, + { + "start": 5526.56, + "end": 5527.6, + "probability": 0.8369 + }, + { + "start": 5527.74, + "end": 5528.34, + "probability": 0.7015 + }, + { + "start": 5529.62, + "end": 5530.82, + "probability": 0.8953 + }, + { + "start": 5531.38, + "end": 5537.1, + "probability": 0.9604 + }, + { + "start": 5537.52, + "end": 5538.46, + "probability": 0.8853 + }, + { + "start": 5539.4, + "end": 5541.28, + "probability": 0.8093 + }, + { + "start": 5541.38, + "end": 5541.98, + "probability": 0.8298 + }, + { + "start": 5542.88, + "end": 5544.3, + "probability": 0.9006 + }, + { + "start": 5544.56, + "end": 5546.92, + "probability": 0.9733 + }, + { + "start": 5546.96, + "end": 5548.44, + "probability": 0.752 + }, + { + "start": 5548.52, + "end": 5549.22, + "probability": 0.0195 + }, + { + "start": 5550.5, + "end": 5550.96, + "probability": 0.2731 + }, + { + "start": 5551.14, + "end": 5551.82, + "probability": 0.6271 + }, + { + "start": 5551.86, + "end": 5556.56, + "probability": 0.9437 + }, + { + "start": 5557.28, + "end": 5560.98, + "probability": 0.97 + }, + { + "start": 5568.32, + "end": 5569.22, + "probability": 0.4462 + }, + { + "start": 5570.18, + "end": 5570.66, + "probability": 0.6548 + }, + { + "start": 5571.68, + "end": 5572.66, + "probability": 0.7622 + }, + { + "start": 5572.7, + "end": 5572.98, + "probability": 0.9287 + }, + { + "start": 5573.08, + "end": 5574.08, + "probability": 0.7879 + }, + { + "start": 5574.08, + "end": 5574.42, + "probability": 0.7577 + }, + { + "start": 5574.48, + "end": 5575.4, + "probability": 0.9749 + }, + { + "start": 5575.46, + "end": 5575.56, + "probability": 0.8798 + }, + { + "start": 5575.82, + "end": 5577.92, + "probability": 0.9604 + }, + { + "start": 5579.26, + "end": 5580.0, + "probability": 0.6246 + }, + { + "start": 5580.72, + "end": 5581.32, + "probability": 0.9022 + }, + { + "start": 5582.3, + "end": 5586.04, + "probability": 0.9845 + }, + { + "start": 5590.7, + "end": 5591.28, + "probability": 0.5156 + }, + { + "start": 5591.8, + "end": 5597.78, + "probability": 0.7075 + }, + { + "start": 5598.48, + "end": 5600.9, + "probability": 0.8658 + }, + { + "start": 5601.6, + "end": 5604.58, + "probability": 0.9619 + }, + { + "start": 5605.14, + "end": 5606.98, + "probability": 0.9396 + }, + { + "start": 5607.68, + "end": 5610.42, + "probability": 0.7927 + }, + { + "start": 5610.78, + "end": 5610.96, + "probability": 0.945 + }, + { + "start": 5629.45, + "end": 5632.86, + "probability": 0.039 + }, + { + "start": 5634.44, + "end": 5639.37, + "probability": 0.0071 + }, + { + "start": 5641.63, + "end": 5644.22, + "probability": 0.6344 + }, + { + "start": 5661.5, + "end": 5662.4, + "probability": 0.0717 + }, + { + "start": 5663.44, + "end": 5666.86, + "probability": 0.2525 + }, + { + "start": 5667.0, + "end": 5670.1, + "probability": 0.1649 + }, + { + "start": 5670.74, + "end": 5672.98, + "probability": 0.1821 + }, + { + "start": 5679.22, + "end": 5679.54, + "probability": 0.0 + }, + { + "start": 5680.36, + "end": 5682.04, + "probability": 0.1767 + }, + { + "start": 5682.64, + "end": 5685.28, + "probability": 0.1153 + }, + { + "start": 5687.37, + "end": 5689.36, + "probability": 0.07 + }, + { + "start": 5693.66, + "end": 5694.98, + "probability": 0.1634 + }, + { + "start": 5696.26, + "end": 5700.12, + "probability": 0.0689 + }, + { + "start": 5700.7, + "end": 5701.96, + "probability": 0.076 + }, + { + "start": 5703.72, + "end": 5704.78, + "probability": 0.0 + }, + { + "start": 5705.0, + "end": 5705.0, + "probability": 0.0 + }, + { + "start": 5705.0, + "end": 5705.0, + "probability": 0.0 + }, + { + "start": 5705.0, + "end": 5705.0, + "probability": 0.0 + }, + { + "start": 5705.0, + "end": 5705.0, + "probability": 0.0 + }, + { + "start": 5705.0, + "end": 5705.0, + "probability": 0.0 + }, + { + "start": 5705.0, + "end": 5705.0, + "probability": 0.0 + }, + { + "start": 5705.0, + "end": 5705.0, + "probability": 0.0 + }, + { + "start": 5705.0, + "end": 5705.0, + "probability": 0.0 + }, + { + "start": 5705.0, + "end": 5705.0, + "probability": 0.0 + }, + { + "start": 5705.0, + "end": 5705.0, + "probability": 0.0 + }, + { + "start": 5705.0, + "end": 5705.0, + "probability": 0.0 + }, + { + "start": 5705.12, + "end": 5705.26, + "probability": 0.1144 + }, + { + "start": 5705.26, + "end": 5707.56, + "probability": 0.0622 + }, + { + "start": 5707.56, + "end": 5708.76, + "probability": 0.694 + }, + { + "start": 5718.82, + "end": 5719.5, + "probability": 0.722 + }, + { + "start": 5719.68, + "end": 5722.22, + "probability": 0.9756 + }, + { + "start": 5722.6, + "end": 5724.04, + "probability": 0.9912 + }, + { + "start": 5724.2, + "end": 5725.72, + "probability": 0.9765 + }, + { + "start": 5725.94, + "end": 5726.84, + "probability": 0.8833 + }, + { + "start": 5727.82, + "end": 5729.36, + "probability": 0.9989 + }, + { + "start": 5729.62, + "end": 5729.78, + "probability": 0.3726 + }, + { + "start": 5730.88, + "end": 5735.1, + "probability": 0.8422 + }, + { + "start": 5735.8, + "end": 5738.38, + "probability": 0.9168 + }, + { + "start": 5739.4, + "end": 5741.58, + "probability": 0.891 + }, + { + "start": 5742.22, + "end": 5743.32, + "probability": 0.8564 + }, + { + "start": 5743.44, + "end": 5746.54, + "probability": 0.8554 + }, + { + "start": 5747.24, + "end": 5750.28, + "probability": 0.9925 + }, + { + "start": 5750.66, + "end": 5752.74, + "probability": 0.9571 + }, + { + "start": 5753.24, + "end": 5754.52, + "probability": 0.9744 + }, + { + "start": 5755.32, + "end": 5757.44, + "probability": 0.9214 + }, + { + "start": 5758.0, + "end": 5760.4, + "probability": 0.9922 + }, + { + "start": 5760.94, + "end": 5763.86, + "probability": 0.4595 + }, + { + "start": 5765.02, + "end": 5766.76, + "probability": 0.7906 + }, + { + "start": 5766.88, + "end": 5768.66, + "probability": 0.9898 + }, + { + "start": 5768.66, + "end": 5771.12, + "probability": 0.9974 + }, + { + "start": 5771.8, + "end": 5773.16, + "probability": 0.5703 + }, + { + "start": 5774.64, + "end": 5776.78, + "probability": 0.601 + }, + { + "start": 5777.2, + "end": 5780.62, + "probability": 0.9369 + }, + { + "start": 5780.62, + "end": 5783.44, + "probability": 0.9969 + }, + { + "start": 5784.2, + "end": 5785.1, + "probability": 0.5708 + }, + { + "start": 5787.3, + "end": 5789.94, + "probability": 0.9774 + }, + { + "start": 5790.9, + "end": 5794.26, + "probability": 0.9988 + }, + { + "start": 5794.26, + "end": 5798.7, + "probability": 0.9915 + }, + { + "start": 5798.88, + "end": 5804.19, + "probability": 0.9742 + }, + { + "start": 5804.9, + "end": 5805.5, + "probability": 0.9065 + }, + { + "start": 5806.82, + "end": 5809.9, + "probability": 0.894 + }, + { + "start": 5810.8, + "end": 5814.28, + "probability": 0.9631 + }, + { + "start": 5814.78, + "end": 5818.12, + "probability": 0.9983 + }, + { + "start": 5818.7, + "end": 5821.84, + "probability": 0.9854 + }, + { + "start": 5822.06, + "end": 5828.56, + "probability": 0.7627 + }, + { + "start": 5828.6, + "end": 5834.24, + "probability": 0.9795 + }, + { + "start": 5834.76, + "end": 5837.18, + "probability": 0.9975 + }, + { + "start": 5837.18, + "end": 5839.52, + "probability": 0.9813 + }, + { + "start": 5840.04, + "end": 5843.14, + "probability": 0.9941 + }, + { + "start": 5843.14, + "end": 5847.26, + "probability": 0.991 + }, + { + "start": 5847.78, + "end": 5849.34, + "probability": 0.9479 + }, + { + "start": 5850.1, + "end": 5850.68, + "probability": 0.4719 + }, + { + "start": 5850.98, + "end": 5852.06, + "probability": 0.9148 + }, + { + "start": 5852.16, + "end": 5855.32, + "probability": 0.9769 + }, + { + "start": 5855.78, + "end": 5859.64, + "probability": 0.8107 + }, + { + "start": 5860.52, + "end": 5862.84, + "probability": 0.745 + }, + { + "start": 5863.24, + "end": 5864.9, + "probability": 0.614 + }, + { + "start": 5866.52, + "end": 5867.98, + "probability": 0.8782 + }, + { + "start": 5868.68, + "end": 5871.98, + "probability": 0.8258 + }, + { + "start": 5872.18, + "end": 5872.66, + "probability": 0.6908 + }, + { + "start": 5873.32, + "end": 5873.9, + "probability": 0.8768 + }, + { + "start": 5875.86, + "end": 5877.98, + "probability": 0.9943 + }, + { + "start": 5908.96, + "end": 5910.58, + "probability": 0.6606 + }, + { + "start": 5911.44, + "end": 5912.42, + "probability": 0.7332 + }, + { + "start": 5913.32, + "end": 5913.76, + "probability": 0.6581 + }, + { + "start": 5915.08, + "end": 5918.48, + "probability": 0.9249 + }, + { + "start": 5918.52, + "end": 5922.08, + "probability": 0.8752 + }, + { + "start": 5922.08, + "end": 5924.22, + "probability": 0.8463 + }, + { + "start": 5924.82, + "end": 5930.58, + "probability": 0.9795 + }, + { + "start": 5930.84, + "end": 5931.88, + "probability": 0.6444 + }, + { + "start": 5932.0, + "end": 5937.6, + "probability": 0.9417 + }, + { + "start": 5937.76, + "end": 5939.16, + "probability": 0.7905 + }, + { + "start": 5939.88, + "end": 5941.08, + "probability": 0.8658 + }, + { + "start": 5941.32, + "end": 5942.23, + "probability": 0.8055 + }, + { + "start": 5942.44, + "end": 5942.92, + "probability": 0.468 + }, + { + "start": 5942.98, + "end": 5943.76, + "probability": 0.5872 + }, + { + "start": 5944.22, + "end": 5945.32, + "probability": 0.8729 + }, + { + "start": 5945.94, + "end": 5947.36, + "probability": 0.8752 + }, + { + "start": 5947.6, + "end": 5948.44, + "probability": 0.8516 + }, + { + "start": 5948.58, + "end": 5949.42, + "probability": 0.8804 + }, + { + "start": 5949.94, + "end": 5954.96, + "probability": 0.8887 + }, + { + "start": 5955.66, + "end": 5957.54, + "probability": 0.8505 + }, + { + "start": 5958.62, + "end": 5959.82, + "probability": 0.8672 + }, + { + "start": 5960.16, + "end": 5961.8, + "probability": 0.9331 + }, + { + "start": 5962.1, + "end": 5964.48, + "probability": 0.9713 + }, + { + "start": 5964.6, + "end": 5967.5, + "probability": 0.9207 + }, + { + "start": 5967.94, + "end": 5970.34, + "probability": 0.9409 + }, + { + "start": 5970.44, + "end": 5972.96, + "probability": 0.6487 + }, + { + "start": 5973.78, + "end": 5977.2, + "probability": 0.9908 + }, + { + "start": 5977.78, + "end": 5979.58, + "probability": 0.736 + }, + { + "start": 5980.32, + "end": 5981.96, + "probability": 0.8537 + }, + { + "start": 5982.46, + "end": 5985.84, + "probability": 0.9265 + }, + { + "start": 5985.88, + "end": 5986.62, + "probability": 0.4756 + }, + { + "start": 5987.18, + "end": 5989.0, + "probability": 0.8372 + }, + { + "start": 5989.14, + "end": 5990.76, + "probability": 0.8177 + }, + { + "start": 5990.84, + "end": 5992.86, + "probability": 0.9951 + }, + { + "start": 5992.94, + "end": 5993.82, + "probability": 0.679 + }, + { + "start": 5993.92, + "end": 5994.96, + "probability": 0.8119 + }, + { + "start": 5995.3, + "end": 5996.26, + "probability": 0.8754 + }, + { + "start": 5996.62, + "end": 5998.8, + "probability": 0.8862 + }, + { + "start": 5999.1, + "end": 6002.66, + "probability": 0.972 + }, + { + "start": 6002.84, + "end": 6003.64, + "probability": 0.9452 + }, + { + "start": 6003.78, + "end": 6004.46, + "probability": 0.9872 + }, + { + "start": 6004.54, + "end": 6005.72, + "probability": 0.9657 + }, + { + "start": 6005.8, + "end": 6007.64, + "probability": 0.8538 + }, + { + "start": 6008.0, + "end": 6010.36, + "probability": 0.992 + }, + { + "start": 6010.74, + "end": 6011.35, + "probability": 0.7192 + }, + { + "start": 6012.04, + "end": 6018.16, + "probability": 0.9767 + }, + { + "start": 6018.54, + "end": 6022.9, + "probability": 0.9909 + }, + { + "start": 6023.44, + "end": 6024.82, + "probability": 0.9854 + }, + { + "start": 6025.36, + "end": 6028.02, + "probability": 0.9868 + }, + { + "start": 6028.46, + "end": 6031.54, + "probability": 0.9985 + }, + { + "start": 6031.64, + "end": 6034.48, + "probability": 0.9686 + }, + { + "start": 6034.98, + "end": 6035.62, + "probability": 0.4214 + }, + { + "start": 6036.08, + "end": 6038.0, + "probability": 0.9575 + }, + { + "start": 6038.3, + "end": 6039.6, + "probability": 0.8203 + }, + { + "start": 6040.08, + "end": 6044.44, + "probability": 0.9973 + }, + { + "start": 6044.54, + "end": 6045.15, + "probability": 0.5396 + }, + { + "start": 6045.86, + "end": 6046.18, + "probability": 0.948 + }, + { + "start": 6046.72, + "end": 6048.22, + "probability": 0.9863 + }, + { + "start": 6048.88, + "end": 6050.2, + "probability": 0.9965 + }, + { + "start": 6050.46, + "end": 6052.14, + "probability": 0.5845 + }, + { + "start": 6053.1, + "end": 6054.12, + "probability": 0.6019 + }, + { + "start": 6054.86, + "end": 6058.3, + "probability": 0.9923 + }, + { + "start": 6058.52, + "end": 6060.46, + "probability": 0.9752 + }, + { + "start": 6060.58, + "end": 6061.02, + "probability": 0.9302 + }, + { + "start": 6061.18, + "end": 6061.98, + "probability": 0.8544 + }, + { + "start": 6062.0, + "end": 6065.1, + "probability": 0.9046 + }, + { + "start": 6065.62, + "end": 6067.38, + "probability": 0.6817 + }, + { + "start": 6067.88, + "end": 6071.28, + "probability": 0.6546 + }, + { + "start": 6072.08, + "end": 6073.38, + "probability": 0.9824 + }, + { + "start": 6073.92, + "end": 6074.4, + "probability": 0.9824 + }, + { + "start": 6074.76, + "end": 6078.42, + "probability": 0.9481 + }, + { + "start": 6078.88, + "end": 6081.26, + "probability": 0.1 + }, + { + "start": 6081.26, + "end": 6081.26, + "probability": 0.1307 + }, + { + "start": 6081.26, + "end": 6082.22, + "probability": 0.7422 + }, + { + "start": 6082.38, + "end": 6082.62, + "probability": 0.5829 + }, + { + "start": 6082.86, + "end": 6083.94, + "probability": 0.5041 + }, + { + "start": 6084.14, + "end": 6087.75, + "probability": 0.7775 + }, + { + "start": 6088.92, + "end": 6090.06, + "probability": 0.9802 + }, + { + "start": 6090.52, + "end": 6092.72, + "probability": 0.9485 + }, + { + "start": 6093.38, + "end": 6096.76, + "probability": 0.9673 + }, + { + "start": 6097.06, + "end": 6098.04, + "probability": 0.9338 + }, + { + "start": 6098.48, + "end": 6099.33, + "probability": 0.9761 + }, + { + "start": 6099.62, + "end": 6100.4, + "probability": 0.8667 + }, + { + "start": 6100.86, + "end": 6102.32, + "probability": 0.9852 + }, + { + "start": 6103.16, + "end": 6106.7, + "probability": 0.9861 + }, + { + "start": 6106.86, + "end": 6109.7, + "probability": 0.9911 + }, + { + "start": 6110.6, + "end": 6112.88, + "probability": 0.5571 + }, + { + "start": 6112.98, + "end": 6114.3, + "probability": 0.6096 + }, + { + "start": 6114.62, + "end": 6115.2, + "probability": 0.3341 + }, + { + "start": 6115.24, + "end": 6115.32, + "probability": 0.328 + }, + { + "start": 6115.32, + "end": 6115.62, + "probability": 0.6091 + }, + { + "start": 6116.33, + "end": 6117.6, + "probability": 0.9943 + }, + { + "start": 6117.92, + "end": 6119.82, + "probability": 0.8576 + }, + { + "start": 6120.78, + "end": 6121.36, + "probability": 0.9684 + }, + { + "start": 6122.08, + "end": 6123.26, + "probability": 0.9562 + }, + { + "start": 6123.54, + "end": 6126.82, + "probability": 0.6308 + }, + { + "start": 6127.38, + "end": 6128.12, + "probability": 0.2959 + }, + { + "start": 6128.78, + "end": 6130.86, + "probability": 0.7814 + }, + { + "start": 6131.28, + "end": 6133.4, + "probability": 0.5458 + }, + { + "start": 6133.78, + "end": 6134.58, + "probability": 0.7786 + }, + { + "start": 6135.4, + "end": 6135.88, + "probability": 0.9927 + }, + { + "start": 6136.88, + "end": 6139.34, + "probability": 0.4949 + }, + { + "start": 6139.62, + "end": 6142.82, + "probability": 0.7537 + }, + { + "start": 6143.7, + "end": 6144.52, + "probability": 0.7609 + }, + { + "start": 6144.6, + "end": 6146.58, + "probability": 0.7893 + }, + { + "start": 6147.0, + "end": 6148.32, + "probability": 0.5317 + }, + { + "start": 6148.48, + "end": 6149.67, + "probability": 0.939 + }, + { + "start": 6150.36, + "end": 6154.14, + "probability": 0.8612 + }, + { + "start": 6154.2, + "end": 6155.06, + "probability": 0.6209 + }, + { + "start": 6155.76, + "end": 6157.9, + "probability": 0.9543 + }, + { + "start": 6158.02, + "end": 6159.34, + "probability": 0.9427 + }, + { + "start": 6160.2, + "end": 6162.3, + "probability": 0.7585 + }, + { + "start": 6162.82, + "end": 6163.8, + "probability": 0.8201 + }, + { + "start": 6164.32, + "end": 6166.12, + "probability": 0.6197 + }, + { + "start": 6166.46, + "end": 6167.64, + "probability": 0.9583 + }, + { + "start": 6168.0, + "end": 6169.06, + "probability": 0.6767 + }, + { + "start": 6169.26, + "end": 6171.46, + "probability": 0.997 + }, + { + "start": 6171.82, + "end": 6173.18, + "probability": 0.672 + }, + { + "start": 6173.24, + "end": 6176.36, + "probability": 0.6784 + }, + { + "start": 6176.78, + "end": 6180.06, + "probability": 0.9715 + }, + { + "start": 6180.88, + "end": 6183.06, + "probability": 0.9534 + }, + { + "start": 6183.4, + "end": 6187.52, + "probability": 0.8057 + }, + { + "start": 6187.62, + "end": 6188.04, + "probability": 0.686 + }, + { + "start": 6188.88, + "end": 6191.24, + "probability": 0.8375 + }, + { + "start": 6191.36, + "end": 6192.86, + "probability": 0.9764 + }, + { + "start": 6193.56, + "end": 6194.68, + "probability": 0.769 + }, + { + "start": 6195.94, + "end": 6197.26, + "probability": 0.6714 + }, + { + "start": 6197.84, + "end": 6198.44, + "probability": 0.6567 + }, + { + "start": 6198.96, + "end": 6200.4, + "probability": 0.9448 + }, + { + "start": 6200.6, + "end": 6201.14, + "probability": 0.6565 + }, + { + "start": 6201.26, + "end": 6201.4, + "probability": 0.6522 + }, + { + "start": 6201.64, + "end": 6203.3, + "probability": 0.6121 + }, + { + "start": 6203.38, + "end": 6204.0, + "probability": 0.7754 + }, + { + "start": 6204.56, + "end": 6206.76, + "probability": 0.9705 + }, + { + "start": 6207.3, + "end": 6209.1, + "probability": 0.8694 + }, + { + "start": 6209.44, + "end": 6210.12, + "probability": 0.7552 + }, + { + "start": 6210.2, + "end": 6212.5, + "probability": 0.8285 + }, + { + "start": 6212.94, + "end": 6215.0, + "probability": 0.9604 + }, + { + "start": 6215.38, + "end": 6215.76, + "probability": 0.7313 + }, + { + "start": 6216.06, + "end": 6216.64, + "probability": 0.7831 + }, + { + "start": 6217.46, + "end": 6218.44, + "probability": 0.9572 + }, + { + "start": 6218.52, + "end": 6218.86, + "probability": 0.6202 + }, + { + "start": 6218.96, + "end": 6219.36, + "probability": 0.4861 + }, + { + "start": 6219.4, + "end": 6219.76, + "probability": 0.8002 + }, + { + "start": 6219.9, + "end": 6220.22, + "probability": 0.5636 + }, + { + "start": 6220.28, + "end": 6220.5, + "probability": 0.717 + }, + { + "start": 6220.52, + "end": 6221.22, + "probability": 0.7468 + }, + { + "start": 6221.3, + "end": 6221.56, + "probability": 0.7202 + }, + { + "start": 6222.72, + "end": 6224.28, + "probability": 0.6277 + }, + { + "start": 6225.68, + "end": 6226.2, + "probability": 0.7413 + }, + { + "start": 6226.84, + "end": 6228.56, + "probability": 0.9662 + }, + { + "start": 6245.02, + "end": 6248.2, + "probability": 0.6905 + }, + { + "start": 6249.1, + "end": 6250.72, + "probability": 0.9994 + }, + { + "start": 6251.46, + "end": 6255.44, + "probability": 0.8997 + }, + { + "start": 6256.66, + "end": 6260.8, + "probability": 0.992 + }, + { + "start": 6261.58, + "end": 6264.94, + "probability": 0.9932 + }, + { + "start": 6265.04, + "end": 6267.86, + "probability": 0.7446 + }, + { + "start": 6268.58, + "end": 6270.16, + "probability": 0.8119 + }, + { + "start": 6271.52, + "end": 6274.22, + "probability": 0.9814 + }, + { + "start": 6275.08, + "end": 6276.2, + "probability": 0.5623 + }, + { + "start": 6276.34, + "end": 6277.08, + "probability": 0.93 + }, + { + "start": 6277.44, + "end": 6277.58, + "probability": 0.4183 + }, + { + "start": 6277.8, + "end": 6279.14, + "probability": 0.9468 + }, + { + "start": 6280.12, + "end": 6282.96, + "probability": 0.9921 + }, + { + "start": 6283.1, + "end": 6285.72, + "probability": 0.9922 + }, + { + "start": 6285.72, + "end": 6288.27, + "probability": 0.997 + }, + { + "start": 6289.46, + "end": 6290.42, + "probability": 0.9519 + }, + { + "start": 6291.16, + "end": 6293.02, + "probability": 0.7662 + }, + { + "start": 6293.98, + "end": 6295.88, + "probability": 0.9857 + }, + { + "start": 6296.9, + "end": 6299.3, + "probability": 0.9826 + }, + { + "start": 6299.44, + "end": 6301.34, + "probability": 0.5897 + }, + { + "start": 6302.52, + "end": 6303.6, + "probability": 0.6731 + }, + { + "start": 6304.64, + "end": 6307.8, + "probability": 0.9852 + }, + { + "start": 6307.96, + "end": 6308.5, + "probability": 0.6928 + }, + { + "start": 6309.0, + "end": 6312.88, + "probability": 0.8792 + }, + { + "start": 6313.21, + "end": 6317.76, + "probability": 0.8507 + }, + { + "start": 6318.04, + "end": 6320.14, + "probability": 0.9082 + }, + { + "start": 6320.78, + "end": 6322.9, + "probability": 0.9976 + }, + { + "start": 6325.02, + "end": 6330.12, + "probability": 0.9971 + }, + { + "start": 6330.12, + "end": 6334.22, + "probability": 0.9997 + }, + { + "start": 6334.38, + "end": 6335.66, + "probability": 0.9966 + }, + { + "start": 6335.82, + "end": 6336.66, + "probability": 0.7983 + }, + { + "start": 6336.74, + "end": 6337.68, + "probability": 0.8744 + }, + { + "start": 6337.84, + "end": 6339.02, + "probability": 0.8832 + }, + { + "start": 6339.12, + "end": 6342.08, + "probability": 0.9673 + }, + { + "start": 6343.78, + "end": 6344.58, + "probability": 0.8293 + }, + { + "start": 6345.4, + "end": 6348.42, + "probability": 0.9862 + }, + { + "start": 6348.42, + "end": 6351.62, + "probability": 0.986 + }, + { + "start": 6351.68, + "end": 6351.92, + "probability": 0.2557 + }, + { + "start": 6352.08, + "end": 6352.83, + "probability": 0.8667 + }, + { + "start": 6353.68, + "end": 6358.01, + "probability": 0.8642 + }, + { + "start": 6359.5, + "end": 6361.36, + "probability": 0.7412 + }, + { + "start": 6361.42, + "end": 6363.0, + "probability": 0.6853 + }, + { + "start": 6363.06, + "end": 6363.32, + "probability": 0.7312 + }, + { + "start": 6363.42, + "end": 6364.33, + "probability": 0.9575 + }, + { + "start": 6365.82, + "end": 6369.56, + "probability": 0.9906 + }, + { + "start": 6369.66, + "end": 6371.98, + "probability": 0.9261 + }, + { + "start": 6372.12, + "end": 6372.92, + "probability": 0.8452 + }, + { + "start": 6373.04, + "end": 6373.46, + "probability": 0.9421 + }, + { + "start": 6374.02, + "end": 6375.01, + "probability": 0.9268 + }, + { + "start": 6377.06, + "end": 6378.65, + "probability": 0.9956 + }, + { + "start": 6379.56, + "end": 6381.6, + "probability": 0.9644 + }, + { + "start": 6381.82, + "end": 6385.08, + "probability": 0.9978 + }, + { + "start": 6386.62, + "end": 6387.94, + "probability": 0.9983 + }, + { + "start": 6388.56, + "end": 6389.44, + "probability": 0.9341 + }, + { + "start": 6389.62, + "end": 6390.52, + "probability": 0.7788 + }, + { + "start": 6390.86, + "end": 6391.96, + "probability": 0.8472 + }, + { + "start": 6392.14, + "end": 6394.8, + "probability": 0.9906 + }, + { + "start": 6395.04, + "end": 6398.02, + "probability": 0.9639 + }, + { + "start": 6398.14, + "end": 6401.68, + "probability": 0.9927 + }, + { + "start": 6401.72, + "end": 6401.98, + "probability": 0.5575 + }, + { + "start": 6401.98, + "end": 6403.08, + "probability": 0.8926 + }, + { + "start": 6403.38, + "end": 6403.9, + "probability": 0.6601 + }, + { + "start": 6404.08, + "end": 6405.2, + "probability": 0.8496 + }, + { + "start": 6405.8, + "end": 6407.57, + "probability": 0.9444 + }, + { + "start": 6408.12, + "end": 6409.8, + "probability": 0.887 + }, + { + "start": 6409.84, + "end": 6412.88, + "probability": 0.9644 + }, + { + "start": 6412.92, + "end": 6413.64, + "probability": 0.9202 + }, + { + "start": 6413.76, + "end": 6415.48, + "probability": 0.9873 + }, + { + "start": 6415.56, + "end": 6416.33, + "probability": 0.9126 + }, + { + "start": 6416.7, + "end": 6418.76, + "probability": 0.9804 + }, + { + "start": 6419.98, + "end": 6422.28, + "probability": 0.9758 + }, + { + "start": 6422.36, + "end": 6423.26, + "probability": 0.746 + }, + { + "start": 6423.28, + "end": 6425.2, + "probability": 0.9502 + }, + { + "start": 6425.28, + "end": 6425.94, + "probability": 0.6886 + }, + { + "start": 6426.26, + "end": 6428.28, + "probability": 0.9914 + }, + { + "start": 6429.04, + "end": 6429.8, + "probability": 0.9202 + }, + { + "start": 6429.86, + "end": 6433.28, + "probability": 0.9924 + }, + { + "start": 6434.51, + "end": 6434.7, + "probability": 0.1047 + }, + { + "start": 6434.7, + "end": 6434.7, + "probability": 0.0245 + }, + { + "start": 6434.78, + "end": 6435.65, + "probability": 0.9425 + }, + { + "start": 6435.86, + "end": 6437.2, + "probability": 0.9715 + }, + { + "start": 6437.42, + "end": 6437.84, + "probability": 0.8111 + }, + { + "start": 6438.2, + "end": 6438.8, + "probability": 0.9507 + }, + { + "start": 6438.86, + "end": 6439.58, + "probability": 0.8854 + }, + { + "start": 6439.7, + "end": 6440.84, + "probability": 0.8794 + }, + { + "start": 6441.6, + "end": 6442.04, + "probability": 0.7441 + }, + { + "start": 6442.26, + "end": 6445.18, + "probability": 0.9983 + }, + { + "start": 6445.46, + "end": 6446.52, + "probability": 0.6612 + }, + { + "start": 6446.62, + "end": 6447.24, + "probability": 0.9221 + }, + { + "start": 6447.32, + "end": 6447.34, + "probability": 0.5225 + }, + { + "start": 6447.34, + "end": 6447.86, + "probability": 0.7105 + }, + { + "start": 6448.52, + "end": 6449.86, + "probability": 0.9691 + }, + { + "start": 6449.96, + "end": 6451.92, + "probability": 0.9575 + }, + { + "start": 6452.02, + "end": 6453.4, + "probability": 0.8178 + }, + { + "start": 6453.68, + "end": 6454.32, + "probability": 0.9488 + }, + { + "start": 6454.42, + "end": 6455.54, + "probability": 0.9861 + }, + { + "start": 6455.9, + "end": 6456.96, + "probability": 0.9909 + }, + { + "start": 6457.06, + "end": 6457.92, + "probability": 0.9362 + }, + { + "start": 6457.94, + "end": 6458.66, + "probability": 0.9717 + }, + { + "start": 6458.74, + "end": 6459.82, + "probability": 0.8523 + }, + { + "start": 6460.14, + "end": 6461.98, + "probability": 0.9724 + }, + { + "start": 6462.32, + "end": 6462.74, + "probability": 0.4802 + }, + { + "start": 6462.86, + "end": 6463.65, + "probability": 0.6127 + }, + { + "start": 6463.86, + "end": 6465.44, + "probability": 0.8715 + }, + { + "start": 6465.82, + "end": 6466.32, + "probability": 0.8504 + }, + { + "start": 6466.42, + "end": 6466.98, + "probability": 0.6607 + }, + { + "start": 6467.06, + "end": 6468.18, + "probability": 0.9532 + }, + { + "start": 6468.28, + "end": 6468.88, + "probability": 0.9858 + }, + { + "start": 6469.32, + "end": 6469.88, + "probability": 0.9624 + }, + { + "start": 6470.28, + "end": 6470.85, + "probability": 0.9581 + }, + { + "start": 6471.48, + "end": 6472.54, + "probability": 0.9171 + }, + { + "start": 6472.98, + "end": 6475.54, + "probability": 0.9667 + }, + { + "start": 6476.0, + "end": 6476.74, + "probability": 0.9617 + }, + { + "start": 6477.16, + "end": 6480.96, + "probability": 0.8765 + }, + { + "start": 6480.98, + "end": 6482.08, + "probability": 0.9108 + }, + { + "start": 6482.1, + "end": 6483.0, + "probability": 0.8335 + }, + { + "start": 6483.06, + "end": 6485.18, + "probability": 0.9667 + }, + { + "start": 6485.72, + "end": 6488.24, + "probability": 0.9888 + }, + { + "start": 6489.04, + "end": 6489.04, + "probability": 0.295 + }, + { + "start": 6489.04, + "end": 6489.5, + "probability": 0.7953 + }, + { + "start": 6489.6, + "end": 6492.16, + "probability": 0.9771 + }, + { + "start": 6492.2, + "end": 6492.68, + "probability": 0.7741 + }, + { + "start": 6492.92, + "end": 6493.74, + "probability": 0.7572 + }, + { + "start": 6493.86, + "end": 6494.54, + "probability": 0.8029 + }, + { + "start": 6494.68, + "end": 6494.84, + "probability": 0.855 + }, + { + "start": 6495.08, + "end": 6496.36, + "probability": 0.8775 + }, + { + "start": 6496.7, + "end": 6497.96, + "probability": 0.8436 + }, + { + "start": 6498.34, + "end": 6499.34, + "probability": 0.9677 + }, + { + "start": 6499.5, + "end": 6500.08, + "probability": 0.6416 + }, + { + "start": 6500.2, + "end": 6502.94, + "probability": 0.9873 + }, + { + "start": 6503.5, + "end": 6506.04, + "probability": 0.9289 + }, + { + "start": 6506.12, + "end": 6507.52, + "probability": 0.9941 + }, + { + "start": 6507.98, + "end": 6509.68, + "probability": 0.9519 + }, + { + "start": 6509.72, + "end": 6510.36, + "probability": 0.9238 + }, + { + "start": 6510.38, + "end": 6513.02, + "probability": 0.9931 + }, + { + "start": 6513.46, + "end": 6514.42, + "probability": 0.9126 + }, + { + "start": 6514.48, + "end": 6517.04, + "probability": 0.9346 + }, + { + "start": 6517.38, + "end": 6517.38, + "probability": 0.2623 + }, + { + "start": 6517.38, + "end": 6519.3, + "probability": 0.979 + }, + { + "start": 6519.58, + "end": 6520.72, + "probability": 0.9136 + }, + { + "start": 6520.76, + "end": 6524.18, + "probability": 0.9896 + }, + { + "start": 6524.22, + "end": 6524.4, + "probability": 0.7251 + }, + { + "start": 6525.22, + "end": 6527.64, + "probability": 0.9209 + }, + { + "start": 6528.52, + "end": 6529.46, + "probability": 0.4665 + }, + { + "start": 6530.44, + "end": 6531.98, + "probability": 0.7684 + }, + { + "start": 6532.14, + "end": 6534.54, + "probability": 0.9467 + }, + { + "start": 6551.42, + "end": 6552.14, + "probability": 0.7056 + }, + { + "start": 6552.28, + "end": 6553.0, + "probability": 0.6682 + }, + { + "start": 6553.1, + "end": 6553.92, + "probability": 0.7751 + }, + { + "start": 6555.0, + "end": 6555.94, + "probability": 0.9188 + }, + { + "start": 6557.06, + "end": 6561.68, + "probability": 0.9305 + }, + { + "start": 6563.72, + "end": 6563.72, + "probability": 0.2938 + }, + { + "start": 6563.72, + "end": 6567.4, + "probability": 0.8273 + }, + { + "start": 6567.56, + "end": 6569.88, + "probability": 0.7781 + }, + { + "start": 6569.98, + "end": 6570.32, + "probability": 0.7504 + }, + { + "start": 6571.46, + "end": 6573.3, + "probability": 0.9695 + }, + { + "start": 6573.74, + "end": 6574.34, + "probability": 0.2962 + }, + { + "start": 6575.32, + "end": 6575.42, + "probability": 0.6855 + }, + { + "start": 6575.42, + "end": 6576.22, + "probability": 0.9117 + }, + { + "start": 6576.44, + "end": 6577.94, + "probability": 0.24 + }, + { + "start": 6578.1, + "end": 6578.9, + "probability": 0.7606 + }, + { + "start": 6579.26, + "end": 6579.56, + "probability": 0.5875 + }, + { + "start": 6580.8, + "end": 6582.46, + "probability": 0.31 + }, + { + "start": 6582.64, + "end": 6583.06, + "probability": 0.4672 + }, + { + "start": 6583.78, + "end": 6584.76, + "probability": 0.936 + }, + { + "start": 6585.9, + "end": 6586.54, + "probability": 0.6996 + }, + { + "start": 6587.16, + "end": 6588.78, + "probability": 0.9974 + }, + { + "start": 6589.58, + "end": 6592.16, + "probability": 0.8037 + }, + { + "start": 6592.96, + "end": 6595.82, + "probability": 0.9373 + }, + { + "start": 6596.88, + "end": 6602.16, + "probability": 0.9972 + }, + { + "start": 6603.5, + "end": 6604.49, + "probability": 0.7924 + }, + { + "start": 6605.58, + "end": 6605.98, + "probability": 0.912 + }, + { + "start": 6606.1, + "end": 6609.34, + "probability": 0.9871 + }, + { + "start": 6609.34, + "end": 6612.44, + "probability": 0.933 + }, + { + "start": 6612.6, + "end": 6613.18, + "probability": 0.8086 + }, + { + "start": 6613.56, + "end": 6614.78, + "probability": 0.9194 + }, + { + "start": 6615.5, + "end": 6617.06, + "probability": 0.9653 + }, + { + "start": 6617.56, + "end": 6618.8, + "probability": 0.9366 + }, + { + "start": 6618.9, + "end": 6619.24, + "probability": 0.8287 + }, + { + "start": 6619.78, + "end": 6621.82, + "probability": 0.929 + }, + { + "start": 6622.36, + "end": 6625.04, + "probability": 0.8882 + }, + { + "start": 6625.46, + "end": 6627.22, + "probability": 0.9953 + }, + { + "start": 6628.1, + "end": 6630.0, + "probability": 0.7555 + }, + { + "start": 6630.94, + "end": 6633.0, + "probability": 0.9586 + }, + { + "start": 6633.3, + "end": 6633.74, + "probability": 0.8078 + }, + { + "start": 6633.82, + "end": 6634.52, + "probability": 0.9426 + }, + { + "start": 6634.58, + "end": 6635.39, + "probability": 0.9761 + }, + { + "start": 6636.18, + "end": 6637.78, + "probability": 0.936 + }, + { + "start": 6638.3, + "end": 6638.66, + "probability": 0.4168 + }, + { + "start": 6639.36, + "end": 6643.94, + "probability": 0.9912 + }, + { + "start": 6644.38, + "end": 6644.82, + "probability": 0.5201 + }, + { + "start": 6645.0, + "end": 6645.82, + "probability": 0.8359 + }, + { + "start": 6646.22, + "end": 6647.34, + "probability": 0.9172 + }, + { + "start": 6648.48, + "end": 6649.97, + "probability": 0.834 + }, + { + "start": 6650.36, + "end": 6652.0, + "probability": 0.9073 + }, + { + "start": 6652.9, + "end": 6653.22, + "probability": 0.8492 + }, + { + "start": 6653.66, + "end": 6654.56, + "probability": 0.6689 + }, + { + "start": 6655.1, + "end": 6657.34, + "probability": 0.9642 + }, + { + "start": 6657.52, + "end": 6658.93, + "probability": 0.623 + }, + { + "start": 6659.44, + "end": 6660.26, + "probability": 0.9486 + }, + { + "start": 6660.36, + "end": 6663.44, + "probability": 0.9858 + }, + { + "start": 6663.76, + "end": 6664.75, + "probability": 0.5343 + }, + { + "start": 6665.22, + "end": 6665.82, + "probability": 0.8707 + }, + { + "start": 6666.28, + "end": 6667.04, + "probability": 0.9716 + }, + { + "start": 6667.36, + "end": 6671.14, + "probability": 0.9453 + }, + { + "start": 6671.5, + "end": 6672.79, + "probability": 0.9831 + }, + { + "start": 6673.0, + "end": 6673.46, + "probability": 0.9156 + }, + { + "start": 6674.04, + "end": 6674.94, + "probability": 0.8526 + }, + { + "start": 6675.94, + "end": 6677.68, + "probability": 0.937 + }, + { + "start": 6677.8, + "end": 6679.72, + "probability": 0.996 + }, + { + "start": 6681.46, + "end": 6681.76, + "probability": 0.4006 + }, + { + "start": 6682.8, + "end": 6685.58, + "probability": 0.9058 + }, + { + "start": 6685.78, + "end": 6687.12, + "probability": 0.9167 + }, + { + "start": 6687.24, + "end": 6688.22, + "probability": 0.936 + }, + { + "start": 6688.32, + "end": 6690.24, + "probability": 0.8174 + }, + { + "start": 6691.16, + "end": 6692.88, + "probability": 0.9866 + }, + { + "start": 6693.42, + "end": 6694.52, + "probability": 0.9644 + }, + { + "start": 6694.92, + "end": 6696.46, + "probability": 0.9786 + }, + { + "start": 6697.18, + "end": 6698.24, + "probability": 0.8973 + }, + { + "start": 6698.56, + "end": 6698.96, + "probability": 0.8463 + }, + { + "start": 6699.18, + "end": 6700.46, + "probability": 0.9241 + }, + { + "start": 6702.14, + "end": 6705.18, + "probability": 0.9974 + }, + { + "start": 6705.18, + "end": 6707.52, + "probability": 0.986 + }, + { + "start": 6707.66, + "end": 6708.15, + "probability": 0.799 + }, + { + "start": 6708.96, + "end": 6709.82, + "probability": 0.6841 + }, + { + "start": 6709.98, + "end": 6710.98, + "probability": 0.9554 + }, + { + "start": 6711.44, + "end": 6712.04, + "probability": 0.7586 + }, + { + "start": 6712.28, + "end": 6712.72, + "probability": 0.8449 + }, + { + "start": 6713.18, + "end": 6716.56, + "probability": 0.9686 + }, + { + "start": 6716.9, + "end": 6717.02, + "probability": 0.9438 + }, + { + "start": 6717.58, + "end": 6719.16, + "probability": 0.9742 + }, + { + "start": 6719.8, + "end": 6720.38, + "probability": 0.9014 + }, + { + "start": 6721.0, + "end": 6725.28, + "probability": 0.9971 + }, + { + "start": 6726.2, + "end": 6727.8, + "probability": 0.0361 + }, + { + "start": 6728.8, + "end": 6729.22, + "probability": 0.0776 + }, + { + "start": 6729.22, + "end": 6729.22, + "probability": 0.0234 + }, + { + "start": 6729.22, + "end": 6729.22, + "probability": 0.0304 + }, + { + "start": 6729.22, + "end": 6731.02, + "probability": 0.8997 + }, + { + "start": 6731.24, + "end": 6734.11, + "probability": 0.8739 + }, + { + "start": 6734.82, + "end": 6736.56, + "probability": 0.7981 + }, + { + "start": 6736.8, + "end": 6741.24, + "probability": 0.9765 + }, + { + "start": 6741.9, + "end": 6742.96, + "probability": 0.9853 + }, + { + "start": 6743.0, + "end": 6744.84, + "probability": 0.9924 + }, + { + "start": 6744.96, + "end": 6745.9, + "probability": 0.6591 + }, + { + "start": 6746.4, + "end": 6748.7, + "probability": 0.9447 + }, + { + "start": 6750.72, + "end": 6753.68, + "probability": 0.9911 + }, + { + "start": 6754.28, + "end": 6758.02, + "probability": 0.8971 + }, + { + "start": 6758.6, + "end": 6759.5, + "probability": 0.813 + }, + { + "start": 6759.96, + "end": 6761.7, + "probability": 0.8713 + }, + { + "start": 6762.4, + "end": 6765.96, + "probability": 0.9829 + }, + { + "start": 6766.52, + "end": 6769.62, + "probability": 0.9194 + }, + { + "start": 6770.28, + "end": 6771.06, + "probability": 0.6961 + }, + { + "start": 6771.98, + "end": 6772.8, + "probability": 0.69 + }, + { + "start": 6773.08, + "end": 6774.26, + "probability": 0.9453 + }, + { + "start": 6774.32, + "end": 6774.66, + "probability": 0.3985 + }, + { + "start": 6774.72, + "end": 6775.06, + "probability": 0.7418 + }, + { + "start": 6775.18, + "end": 6775.32, + "probability": 0.7258 + }, + { + "start": 6775.42, + "end": 6776.42, + "probability": 0.8892 + }, + { + "start": 6776.56, + "end": 6776.96, + "probability": 0.7638 + }, + { + "start": 6777.22, + "end": 6777.66, + "probability": 0.8918 + }, + { + "start": 6778.56, + "end": 6779.0, + "probability": 0.4963 + }, + { + "start": 6779.84, + "end": 6782.22, + "probability": 0.6197 + }, + { + "start": 6784.3, + "end": 6784.54, + "probability": 0.8078 + }, + { + "start": 6785.74, + "end": 6786.3, + "probability": 0.5607 + }, + { + "start": 6786.46, + "end": 6787.5, + "probability": 0.9657 + }, + { + "start": 6795.7, + "end": 6795.7, + "probability": 0.1547 + }, + { + "start": 6795.7, + "end": 6795.7, + "probability": 0.3475 + }, + { + "start": 6795.7, + "end": 6795.72, + "probability": 0.1201 + }, + { + "start": 6795.72, + "end": 6795.8, + "probability": 0.0322 + }, + { + "start": 6795.82, + "end": 6795.88, + "probability": 0.0288 + }, + { + "start": 6819.88, + "end": 6820.82, + "probability": 0.7457 + }, + { + "start": 6822.46, + "end": 6826.62, + "probability": 0.8828 + }, + { + "start": 6826.66, + "end": 6831.56, + "probability": 0.9712 + }, + { + "start": 6833.0, + "end": 6835.16, + "probability": 0.727 + }, + { + "start": 6835.96, + "end": 6838.24, + "probability": 0.9824 + }, + { + "start": 6839.12, + "end": 6840.66, + "probability": 0.6214 + }, + { + "start": 6840.82, + "end": 6843.84, + "probability": 0.9971 + }, + { + "start": 6844.72, + "end": 6847.48, + "probability": 0.9897 + }, + { + "start": 6849.34, + "end": 6852.7, + "probability": 0.993 + }, + { + "start": 6852.7, + "end": 6855.74, + "probability": 0.9983 + }, + { + "start": 6856.28, + "end": 6858.18, + "probability": 0.8352 + }, + { + "start": 6858.18, + "end": 6861.08, + "probability": 0.9872 + }, + { + "start": 6861.68, + "end": 6863.24, + "probability": 0.8143 + }, + { + "start": 6864.78, + "end": 6865.82, + "probability": 0.9468 + }, + { + "start": 6866.54, + "end": 6867.66, + "probability": 0.7276 + }, + { + "start": 6868.24, + "end": 6870.56, + "probability": 0.8232 + }, + { + "start": 6871.1, + "end": 6871.8, + "probability": 0.9243 + }, + { + "start": 6871.92, + "end": 6872.76, + "probability": 0.8901 + }, + { + "start": 6873.12, + "end": 6873.74, + "probability": 0.9201 + }, + { + "start": 6873.84, + "end": 6874.4, + "probability": 0.9643 + }, + { + "start": 6874.48, + "end": 6874.96, + "probability": 0.9828 + }, + { + "start": 6874.98, + "end": 6875.46, + "probability": 0.9323 + }, + { + "start": 6875.92, + "end": 6876.98, + "probability": 0.9689 + }, + { + "start": 6878.36, + "end": 6878.76, + "probability": 0.7196 + }, + { + "start": 6878.9, + "end": 6881.58, + "probability": 0.9714 + }, + { + "start": 6881.72, + "end": 6883.36, + "probability": 0.9883 + }, + { + "start": 6884.34, + "end": 6885.94, + "probability": 0.9546 + }, + { + "start": 6886.0, + "end": 6886.34, + "probability": 0.4866 + }, + { + "start": 6886.44, + "end": 6889.52, + "probability": 0.9259 + }, + { + "start": 6889.62, + "end": 6891.66, + "probability": 0.9957 + }, + { + "start": 6892.1, + "end": 6893.32, + "probability": 0.46 + }, + { + "start": 6894.76, + "end": 6895.46, + "probability": 0.8848 + }, + { + "start": 6895.6, + "end": 6898.59, + "probability": 0.9893 + }, + { + "start": 6899.06, + "end": 6899.82, + "probability": 0.9709 + }, + { + "start": 6899.82, + "end": 6900.66, + "probability": 0.9788 + }, + { + "start": 6900.76, + "end": 6901.48, + "probability": 0.9523 + }, + { + "start": 6902.24, + "end": 6906.66, + "probability": 0.9536 + }, + { + "start": 6907.22, + "end": 6909.84, + "probability": 0.9351 + }, + { + "start": 6910.4, + "end": 6912.2, + "probability": 0.9683 + }, + { + "start": 6918.78, + "end": 6920.3, + "probability": 0.9923 + }, + { + "start": 6921.82, + "end": 6926.38, + "probability": 0.9967 + }, + { + "start": 6926.66, + "end": 6927.56, + "probability": 0.903 + }, + { + "start": 6927.62, + "end": 6928.28, + "probability": 0.9449 + }, + { + "start": 6928.34, + "end": 6928.76, + "probability": 0.9974 + }, + { + "start": 6929.04, + "end": 6929.54, + "probability": 0.9744 + }, + { + "start": 6929.94, + "end": 6930.26, + "probability": 0.8083 + }, + { + "start": 6930.36, + "end": 6930.7, + "probability": 0.873 + }, + { + "start": 6930.8, + "end": 6931.12, + "probability": 0.8576 + }, + { + "start": 6931.3, + "end": 6932.04, + "probability": 0.8843 + }, + { + "start": 6932.46, + "end": 6933.56, + "probability": 0.9451 + }, + { + "start": 6934.78, + "end": 6937.98, + "probability": 0.9924 + }, + { + "start": 6939.12, + "end": 6940.16, + "probability": 0.9615 + }, + { + "start": 6940.64, + "end": 6941.06, + "probability": 0.8476 + }, + { + "start": 6941.78, + "end": 6943.22, + "probability": 0.6671 + }, + { + "start": 6943.84, + "end": 6947.06, + "probability": 0.9865 + }, + { + "start": 6948.32, + "end": 6949.98, + "probability": 0.9354 + }, + { + "start": 6950.96, + "end": 6951.32, + "probability": 0.943 + }, + { + "start": 6951.44, + "end": 6952.52, + "probability": 0.9946 + }, + { + "start": 6953.44, + "end": 6954.86, + "probability": 0.9844 + }, + { + "start": 6956.0, + "end": 6957.04, + "probability": 0.9197 + }, + { + "start": 6957.32, + "end": 6958.46, + "probability": 0.9387 + }, + { + "start": 6958.74, + "end": 6960.56, + "probability": 0.9915 + }, + { + "start": 6961.6, + "end": 6966.62, + "probability": 0.993 + }, + { + "start": 6967.84, + "end": 6968.54, + "probability": 0.7562 + }, + { + "start": 6969.56, + "end": 6970.4, + "probability": 0.3854 + }, + { + "start": 6971.52, + "end": 6974.4, + "probability": 0.8948 + }, + { + "start": 6975.86, + "end": 6980.5, + "probability": 0.9349 + }, + { + "start": 6980.58, + "end": 6980.9, + "probability": 0.7996 + }, + { + "start": 6981.84, + "end": 6984.36, + "probability": 0.9961 + }, + { + "start": 6984.46, + "end": 6985.17, + "probability": 0.9912 + }, + { + "start": 6985.3, + "end": 6986.0, + "probability": 0.981 + }, + { + "start": 6987.04, + "end": 6988.52, + "probability": 0.8761 + }, + { + "start": 6988.6, + "end": 6990.46, + "probability": 0.9617 + }, + { + "start": 6990.66, + "end": 6991.12, + "probability": 0.8477 + }, + { + "start": 6991.3, + "end": 6992.47, + "probability": 0.8649 + }, + { + "start": 6993.54, + "end": 6995.32, + "probability": 0.9896 + }, + { + "start": 6995.9, + "end": 6999.36, + "probability": 0.9229 + }, + { + "start": 7000.14, + "end": 7001.68, + "probability": 0.9756 + }, + { + "start": 7003.16, + "end": 7005.14, + "probability": 0.959 + }, + { + "start": 7006.16, + "end": 7009.1, + "probability": 0.9507 + }, + { + "start": 7009.68, + "end": 7010.84, + "probability": 0.8009 + }, + { + "start": 7011.16, + "end": 7013.04, + "probability": 0.9819 + }, + { + "start": 7013.66, + "end": 7014.42, + "probability": 0.9592 + }, + { + "start": 7015.18, + "end": 7015.8, + "probability": 0.8187 + }, + { + "start": 7016.8, + "end": 7017.74, + "probability": 0.6133 + }, + { + "start": 7019.82, + "end": 7021.82, + "probability": 0.626 + }, + { + "start": 7022.0, + "end": 7023.82, + "probability": 0.9036 + }, + { + "start": 7054.9, + "end": 7055.74, + "probability": 0.6173 + }, + { + "start": 7056.58, + "end": 7057.34, + "probability": 0.8033 + }, + { + "start": 7058.92, + "end": 7065.48, + "probability": 0.9958 + }, + { + "start": 7066.96, + "end": 7068.86, + "probability": 0.8125 + }, + { + "start": 7070.36, + "end": 7078.32, + "probability": 0.9849 + }, + { + "start": 7078.94, + "end": 7080.52, + "probability": 0.933 + }, + { + "start": 7081.58, + "end": 7083.18, + "probability": 0.975 + }, + { + "start": 7084.64, + "end": 7088.12, + "probability": 0.9984 + }, + { + "start": 7088.12, + "end": 7092.16, + "probability": 0.9935 + }, + { + "start": 7092.28, + "end": 7092.5, + "probability": 0.3161 + }, + { + "start": 7092.54, + "end": 7095.34, + "probability": 0.0211 + }, + { + "start": 7095.34, + "end": 7097.46, + "probability": 0.4933 + }, + { + "start": 7097.66, + "end": 7099.8, + "probability": 0.7645 + }, + { + "start": 7099.88, + "end": 7100.6, + "probability": 0.9722 + }, + { + "start": 7102.34, + "end": 7102.54, + "probability": 0.9046 + }, + { + "start": 7105.21, + "end": 7108.3, + "probability": 0.9324 + }, + { + "start": 7108.48, + "end": 7109.42, + "probability": 0.8409 + }, + { + "start": 7109.8, + "end": 7112.54, + "probability": 0.9937 + }, + { + "start": 7112.54, + "end": 7115.96, + "probability": 0.9944 + }, + { + "start": 7117.44, + "end": 7120.52, + "probability": 0.7725 + }, + { + "start": 7121.68, + "end": 7123.98, + "probability": 0.8396 + }, + { + "start": 7125.76, + "end": 7126.78, + "probability": 0.897 + }, + { + "start": 7127.0, + "end": 7135.72, + "probability": 0.9469 + }, + { + "start": 7136.46, + "end": 7136.72, + "probability": 0.9054 + }, + { + "start": 7138.6, + "end": 7140.12, + "probability": 0.9127 + }, + { + "start": 7140.78, + "end": 7142.1, + "probability": 0.9875 + }, + { + "start": 7142.86, + "end": 7145.64, + "probability": 0.9924 + }, + { + "start": 7147.02, + "end": 7148.6, + "probability": 0.8542 + }, + { + "start": 7149.44, + "end": 7153.22, + "probability": 0.9973 + }, + { + "start": 7153.22, + "end": 7159.04, + "probability": 0.9944 + }, + { + "start": 7159.98, + "end": 7162.66, + "probability": 0.9781 + }, + { + "start": 7163.22, + "end": 7168.42, + "probability": 0.9943 + }, + { + "start": 7168.82, + "end": 7169.42, + "probability": 0.8101 + }, + { + "start": 7169.72, + "end": 7170.12, + "probability": 0.7488 + }, + { + "start": 7170.36, + "end": 7170.88, + "probability": 0.8562 + }, + { + "start": 7171.3, + "end": 7171.96, + "probability": 0.6074 + }, + { + "start": 7172.62, + "end": 7177.46, + "probability": 0.9887 + }, + { + "start": 7178.78, + "end": 7184.0, + "probability": 0.9983 + }, + { + "start": 7184.82, + "end": 7186.22, + "probability": 0.9997 + }, + { + "start": 7187.12, + "end": 7190.22, + "probability": 0.9917 + }, + { + "start": 7190.86, + "end": 7191.88, + "probability": 0.9066 + }, + { + "start": 7192.42, + "end": 7196.68, + "probability": 0.9661 + }, + { + "start": 7197.38, + "end": 7198.84, + "probability": 0.9927 + }, + { + "start": 7199.58, + "end": 7199.98, + "probability": 0.9387 + }, + { + "start": 7200.76, + "end": 7201.14, + "probability": 0.9293 + }, + { + "start": 7201.78, + "end": 7203.8, + "probability": 0.9224 + }, + { + "start": 7204.68, + "end": 7210.28, + "probability": 0.9983 + }, + { + "start": 7212.18, + "end": 7217.0, + "probability": 0.9961 + }, + { + "start": 7217.74, + "end": 7223.0, + "probability": 0.9956 + }, + { + "start": 7223.44, + "end": 7224.88, + "probability": 0.9987 + }, + { + "start": 7225.48, + "end": 7229.44, + "probability": 0.9944 + }, + { + "start": 7230.74, + "end": 7233.42, + "probability": 0.9814 + }, + { + "start": 7234.24, + "end": 7235.16, + "probability": 0.5515 + }, + { + "start": 7235.88, + "end": 7237.3, + "probability": 0.6309 + }, + { + "start": 7238.06, + "end": 7242.36, + "probability": 0.9912 + }, + { + "start": 7243.08, + "end": 7246.78, + "probability": 0.9614 + }, + { + "start": 7247.64, + "end": 7250.16, + "probability": 0.8835 + }, + { + "start": 7250.72, + "end": 7255.6, + "probability": 0.94 + }, + { + "start": 7256.26, + "end": 7256.8, + "probability": 0.5255 + }, + { + "start": 7257.98, + "end": 7261.34, + "probability": 0.9939 + }, + { + "start": 7262.04, + "end": 7265.78, + "probability": 0.9843 + }, + { + "start": 7265.78, + "end": 7269.78, + "probability": 0.9973 + }, + { + "start": 7270.24, + "end": 7274.74, + "probability": 0.9992 + }, + { + "start": 7275.62, + "end": 7277.22, + "probability": 0.4535 + }, + { + "start": 7278.28, + "end": 7278.92, + "probability": 0.9008 + }, + { + "start": 7279.44, + "end": 7280.26, + "probability": 0.8067 + }, + { + "start": 7280.84, + "end": 7282.46, + "probability": 0.9697 + }, + { + "start": 7283.08, + "end": 7286.3, + "probability": 0.9771 + }, + { + "start": 7287.32, + "end": 7290.1, + "probability": 0.9747 + }, + { + "start": 7290.66, + "end": 7294.54, + "probability": 0.9951 + }, + { + "start": 7294.98, + "end": 7300.36, + "probability": 0.9978 + }, + { + "start": 7301.98, + "end": 7302.5, + "probability": 0.8168 + }, + { + "start": 7303.16, + "end": 7304.22, + "probability": 0.7717 + }, + { + "start": 7304.88, + "end": 7308.36, + "probability": 0.7359 + }, + { + "start": 7309.56, + "end": 7310.42, + "probability": 0.971 + }, + { + "start": 7311.28, + "end": 7311.7, + "probability": 0.9862 + }, + { + "start": 7313.48, + "end": 7314.06, + "probability": 0.8387 + }, + { + "start": 7315.38, + "end": 7320.22, + "probability": 0.9843 + }, + { + "start": 7320.98, + "end": 7321.54, + "probability": 0.5609 + }, + { + "start": 7322.26, + "end": 7326.14, + "probability": 0.9731 + }, + { + "start": 7327.32, + "end": 7334.3, + "probability": 0.8992 + }, + { + "start": 7335.38, + "end": 7337.01, + "probability": 0.9875 + }, + { + "start": 7337.9, + "end": 7339.16, + "probability": 0.9967 + }, + { + "start": 7339.82, + "end": 7342.52, + "probability": 0.9769 + }, + { + "start": 7344.52, + "end": 7347.26, + "probability": 0.8643 + }, + { + "start": 7348.32, + "end": 7348.54, + "probability": 0.0217 + }, + { + "start": 7349.34, + "end": 7349.76, + "probability": 0.9744 + }, + { + "start": 7352.52, + "end": 7358.36, + "probability": 0.9864 + }, + { + "start": 7359.34, + "end": 7360.16, + "probability": 0.9901 + }, + { + "start": 7361.26, + "end": 7361.8, + "probability": 0.8817 + }, + { + "start": 7362.86, + "end": 7364.07, + "probability": 0.6553 + }, + { + "start": 7364.36, + "end": 7366.93, + "probability": 0.9778 + }, + { + "start": 7367.92, + "end": 7368.98, + "probability": 0.9482 + }, + { + "start": 7370.08, + "end": 7370.86, + "probability": 0.7208 + }, + { + "start": 7371.3, + "end": 7374.4, + "probability": 0.8557 + }, + { + "start": 7374.44, + "end": 7379.1, + "probability": 0.4796 + }, + { + "start": 7379.18, + "end": 7379.74, + "probability": 0.6926 + }, + { + "start": 7384.52, + "end": 7386.16, + "probability": 0.6753 + }, + { + "start": 7387.1, + "end": 7389.12, + "probability": 0.9184 + }, + { + "start": 7391.88, + "end": 7392.68, + "probability": 0.7505 + }, + { + "start": 7392.84, + "end": 7393.62, + "probability": 0.9036 + }, + { + "start": 7393.86, + "end": 7394.36, + "probability": 0.7987 + }, + { + "start": 7394.84, + "end": 7396.22, + "probability": 0.9802 + }, + { + "start": 7397.1, + "end": 7399.56, + "probability": 0.9901 + }, + { + "start": 7399.64, + "end": 7401.92, + "probability": 0.6839 + }, + { + "start": 7402.02, + "end": 7402.5, + "probability": 0.9249 + }, + { + "start": 7402.64, + "end": 7405.52, + "probability": 0.9937 + }, + { + "start": 7405.88, + "end": 7406.84, + "probability": 0.1228 + }, + { + "start": 7406.9, + "end": 7407.9, + "probability": 0.448 + }, + { + "start": 7410.92, + "end": 7414.8, + "probability": 0.9162 + }, + { + "start": 7414.86, + "end": 7417.08, + "probability": 0.9907 + }, + { + "start": 7422.18, + "end": 7423.12, + "probability": 0.6729 + }, + { + "start": 7423.3, + "end": 7426.86, + "probability": 0.9849 + }, + { + "start": 7427.1, + "end": 7431.24, + "probability": 0.9883 + }, + { + "start": 7431.24, + "end": 7434.8, + "probability": 0.9954 + }, + { + "start": 7434.84, + "end": 7437.56, + "probability": 0.9939 + }, + { + "start": 7438.24, + "end": 7439.18, + "probability": 0.8442 + }, + { + "start": 7439.94, + "end": 7441.5, + "probability": 0.774 + }, + { + "start": 7441.56, + "end": 7443.24, + "probability": 0.511 + }, + { + "start": 7444.31, + "end": 7449.62, + "probability": 0.7695 + }, + { + "start": 7449.62, + "end": 7453.92, + "probability": 0.9947 + }, + { + "start": 7454.46, + "end": 7455.96, + "probability": 0.8636 + }, + { + "start": 7456.84, + "end": 7457.56, + "probability": 0.5302 + }, + { + "start": 7458.58, + "end": 7461.72, + "probability": 0.895 + }, + { + "start": 7462.78, + "end": 7464.38, + "probability": 0.6769 + }, + { + "start": 7464.38, + "end": 7466.74, + "probability": 0.8045 + }, + { + "start": 7466.9, + "end": 7469.14, + "probability": 0.9576 + }, + { + "start": 7469.14, + "end": 7469.96, + "probability": 0.8068 + }, + { + "start": 7470.46, + "end": 7470.82, + "probability": 0.4102 + }, + { + "start": 7470.84, + "end": 7472.28, + "probability": 0.9895 + }, + { + "start": 7472.52, + "end": 7472.94, + "probability": 0.5667 + }, + { + "start": 7473.12, + "end": 7473.72, + "probability": 0.1732 + }, + { + "start": 7474.02, + "end": 7477.5, + "probability": 0.5748 + }, + { + "start": 7477.76, + "end": 7480.58, + "probability": 0.0124 + }, + { + "start": 7480.62, + "end": 7482.84, + "probability": 0.2341 + }, + { + "start": 7483.02, + "end": 7487.02, + "probability": 0.968 + }, + { + "start": 7487.56, + "end": 7488.62, + "probability": 0.7655 + }, + { + "start": 7489.55, + "end": 7492.6, + "probability": 0.0372 + }, + { + "start": 7492.6, + "end": 7498.12, + "probability": 0.9238 + }, + { + "start": 7498.76, + "end": 7502.1, + "probability": 0.996 + }, + { + "start": 7503.22, + "end": 7505.74, + "probability": 0.8947 + }, + { + "start": 7506.68, + "end": 7510.36, + "probability": 0.9941 + }, + { + "start": 7510.36, + "end": 7514.34, + "probability": 0.968 + }, + { + "start": 7514.52, + "end": 7515.98, + "probability": 0.9041 + }, + { + "start": 7516.6, + "end": 7517.98, + "probability": 0.9965 + }, + { + "start": 7519.0, + "end": 7524.12, + "probability": 0.9188 + }, + { + "start": 7525.16, + "end": 7529.12, + "probability": 0.9948 + }, + { + "start": 7529.84, + "end": 7534.94, + "probability": 0.9893 + }, + { + "start": 7534.94, + "end": 7539.8, + "probability": 0.9985 + }, + { + "start": 7539.8, + "end": 7544.54, + "probability": 0.9995 + }, + { + "start": 7545.02, + "end": 7545.51, + "probability": 0.8433 + }, + { + "start": 7545.62, + "end": 7548.4, + "probability": 0.8629 + }, + { + "start": 7548.4, + "end": 7551.02, + "probability": 0.9989 + }, + { + "start": 7551.56, + "end": 7553.1, + "probability": 0.9894 + }, + { + "start": 7554.02, + "end": 7555.6, + "probability": 0.9633 + }, + { + "start": 7556.52, + "end": 7557.0, + "probability": 0.1928 + }, + { + "start": 7557.04, + "end": 7558.28, + "probability": 0.5815 + }, + { + "start": 7559.2, + "end": 7559.8, + "probability": 0.55 + }, + { + "start": 7560.04, + "end": 7560.62, + "probability": 0.4676 + }, + { + "start": 7561.16, + "end": 7562.7, + "probability": 0.7827 + }, + { + "start": 7563.32, + "end": 7563.5, + "probability": 0.6122 + }, + { + "start": 7563.92, + "end": 7567.54, + "probability": 0.9795 + }, + { + "start": 7568.7, + "end": 7571.67, + "probability": 0.8573 + }, + { + "start": 7572.66, + "end": 7575.1, + "probability": 0.7437 + }, + { + "start": 7575.14, + "end": 7577.92, + "probability": 0.9118 + }, + { + "start": 7578.32, + "end": 7579.62, + "probability": 0.9241 + }, + { + "start": 7580.08, + "end": 7584.48, + "probability": 0.8637 + }, + { + "start": 7584.7, + "end": 7585.2, + "probability": 0.562 + }, + { + "start": 7585.72, + "end": 7588.36, + "probability": 0.9762 + }, + { + "start": 7588.94, + "end": 7589.22, + "probability": 0.7672 + }, + { + "start": 7589.58, + "end": 7591.48, + "probability": 0.9938 + }, + { + "start": 7591.82, + "end": 7594.4, + "probability": 0.9928 + }, + { + "start": 7594.74, + "end": 7597.02, + "probability": 0.9862 + }, + { + "start": 7597.26, + "end": 7599.8, + "probability": 0.5136 + }, + { + "start": 7599.9, + "end": 7600.94, + "probability": 0.7661 + }, + { + "start": 7600.94, + "end": 7604.18, + "probability": 0.9986 + }, + { + "start": 7605.1, + "end": 7608.25, + "probability": 0.9939 + }, + { + "start": 7609.05, + "end": 7613.71, + "probability": 0.9797 + }, + { + "start": 7613.79, + "end": 7615.17, + "probability": 0.9283 + }, + { + "start": 7615.65, + "end": 7619.87, + "probability": 0.9604 + }, + { + "start": 7620.23, + "end": 7621.49, + "probability": 0.9541 + }, + { + "start": 7622.25, + "end": 7623.67, + "probability": 0.8654 + }, + { + "start": 7624.13, + "end": 7627.59, + "probability": 0.9119 + }, + { + "start": 7628.37, + "end": 7629.07, + "probability": 0.7449 + }, + { + "start": 7629.65, + "end": 7630.47, + "probability": 0.6647 + }, + { + "start": 7631.69, + "end": 7635.17, + "probability": 0.6159 + }, + { + "start": 7636.45, + "end": 7637.37, + "probability": 0.6411 + }, + { + "start": 7638.15, + "end": 7639.23, + "probability": 0.6235 + }, + { + "start": 7639.79, + "end": 7642.67, + "probability": 0.8752 + }, + { + "start": 7644.31, + "end": 7651.73, + "probability": 0.9339 + }, + { + "start": 7653.83, + "end": 7656.43, + "probability": 0.6598 + }, + { + "start": 7660.47, + "end": 7660.79, + "probability": 0.6246 + }, + { + "start": 7684.61, + "end": 7686.25, + "probability": 0.2322 + }, + { + "start": 7687.37, + "end": 7688.53, + "probability": 0.0187 + }, + { + "start": 7689.89, + "end": 7691.21, + "probability": 0.0383 + }, + { + "start": 7692.81, + "end": 7693.09, + "probability": 0.0063 + }, + { + "start": 7695.45, + "end": 7695.59, + "probability": 0.0434 + }, + { + "start": 7695.59, + "end": 7695.81, + "probability": 0.0276 + }, + { + "start": 7695.81, + "end": 7697.19, + "probability": 0.1129 + }, + { + "start": 7698.27, + "end": 7699.71, + "probability": 0.2795 + }, + { + "start": 7702.37, + "end": 7704.41, + "probability": 0.0844 + }, + { + "start": 7704.63, + "end": 7706.69, + "probability": 0.064 + }, + { + "start": 7714.27, + "end": 7715.25, + "probability": 0.0058 + }, + { + "start": 7715.25, + "end": 7716.31, + "probability": 0.3636 + }, + { + "start": 7716.57, + "end": 7717.77, + "probability": 0.4666 + }, + { + "start": 7717.77, + "end": 7720.66, + "probability": 0.116 + }, + { + "start": 7721.21, + "end": 7721.67, + "probability": 0.1429 + }, + { + "start": 7721.67, + "end": 7721.81, + "probability": 0.0478 + }, + { + "start": 7722.71, + "end": 7723.28, + "probability": 0.1309 + }, + { + "start": 7723.73, + "end": 7724.01, + "probability": 0.1014 + }, + { + "start": 7724.21, + "end": 7725.19, + "probability": 0.2169 + }, + { + "start": 7725.81, + "end": 7727.73, + "probability": 0.3703 + }, + { + "start": 7728.15, + "end": 7730.41, + "probability": 0.0206 + }, + { + "start": 7730.41, + "end": 7730.47, + "probability": 0.0048 + }, + { + "start": 7730.59, + "end": 7730.69, + "probability": 0.036 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7731.0, + "end": 7731.0, + "probability": 0.0 + }, + { + "start": 7744.24, + "end": 7749.82, + "probability": 0.2814 + }, + { + "start": 7749.86, + "end": 7756.57, + "probability": 0.0379 + }, + { + "start": 7763.36, + "end": 7766.38, + "probability": 0.0083 + }, + { + "start": 7766.44, + "end": 7766.44, + "probability": 0.2138 + }, + { + "start": 7766.44, + "end": 7768.02, + "probability": 0.0051 + }, + { + "start": 7768.48, + "end": 7769.92, + "probability": 0.1402 + }, + { + "start": 7769.92, + "end": 7770.2, + "probability": 0.0517 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.0, + "end": 7876.0, + "probability": 0.0 + }, + { + "start": 7876.47, + "end": 7880.94, + "probability": 0.9753 + }, + { + "start": 7882.16, + "end": 7886.54, + "probability": 0.9181 + }, + { + "start": 7888.0, + "end": 7888.36, + "probability": 0.5884 + }, + { + "start": 7888.94, + "end": 7889.92, + "probability": 0.9949 + }, + { + "start": 7890.5, + "end": 7895.74, + "probability": 0.9794 + }, + { + "start": 7896.7, + "end": 7897.8, + "probability": 0.99 + }, + { + "start": 7899.3, + "end": 7904.6, + "probability": 0.9681 + }, + { + "start": 7905.4, + "end": 7906.54, + "probability": 0.853 + }, + { + "start": 7907.14, + "end": 7909.12, + "probability": 0.999 + }, + { + "start": 7909.98, + "end": 7913.6, + "probability": 0.9953 + }, + { + "start": 7914.76, + "end": 7917.6, + "probability": 0.97 + }, + { + "start": 7917.6, + "end": 7920.72, + "probability": 0.979 + }, + { + "start": 7921.64, + "end": 7924.0, + "probability": 0.9486 + }, + { + "start": 7925.3, + "end": 7928.22, + "probability": 0.9826 + }, + { + "start": 7928.22, + "end": 7929.94, + "probability": 0.9822 + }, + { + "start": 7931.34, + "end": 7932.96, + "probability": 0.7375 + }, + { + "start": 7933.26, + "end": 7935.24, + "probability": 0.9956 + }, + { + "start": 7936.62, + "end": 7940.24, + "probability": 0.9224 + }, + { + "start": 7940.72, + "end": 7942.54, + "probability": 0.9332 + }, + { + "start": 7943.38, + "end": 7944.5, + "probability": 0.9692 + }, + { + "start": 7945.22, + "end": 7947.04, + "probability": 0.8844 + }, + { + "start": 7947.84, + "end": 7952.48, + "probability": 0.9525 + }, + { + "start": 7952.48, + "end": 7957.54, + "probability": 0.981 + }, + { + "start": 7957.54, + "end": 7961.18, + "probability": 0.9997 + }, + { + "start": 7962.48, + "end": 7965.52, + "probability": 0.9848 + }, + { + "start": 7965.52, + "end": 7969.2, + "probability": 0.9974 + }, + { + "start": 7970.1, + "end": 7971.54, + "probability": 0.8063 + }, + { + "start": 7971.82, + "end": 7975.56, + "probability": 0.8776 + }, + { + "start": 7976.02, + "end": 7977.7, + "probability": 0.8852 + }, + { + "start": 7978.7, + "end": 7981.04, + "probability": 0.9945 + }, + { + "start": 7981.56, + "end": 7984.44, + "probability": 0.9204 + }, + { + "start": 7987.14, + "end": 7990.76, + "probability": 0.9967 + }, + { + "start": 7991.24, + "end": 7992.12, + "probability": 0.8588 + }, + { + "start": 7992.6, + "end": 7995.76, + "probability": 0.9251 + }, + { + "start": 7996.12, + "end": 8000.34, + "probability": 0.9891 + }, + { + "start": 8000.98, + "end": 8002.42, + "probability": 0.8604 + }, + { + "start": 8003.04, + "end": 8005.5, + "probability": 0.8806 + }, + { + "start": 8006.66, + "end": 8012.1, + "probability": 0.9656 + }, + { + "start": 8013.4, + "end": 8014.54, + "probability": 0.999 + }, + { + "start": 8015.5, + "end": 8016.64, + "probability": 0.6392 + }, + { + "start": 8017.18, + "end": 8021.18, + "probability": 0.888 + }, + { + "start": 8021.34, + "end": 8025.52, + "probability": 0.9773 + }, + { + "start": 8026.06, + "end": 8027.62, + "probability": 0.9718 + }, + { + "start": 8028.54, + "end": 8030.96, + "probability": 0.9886 + }, + { + "start": 8031.48, + "end": 8033.34, + "probability": 0.9882 + }, + { + "start": 8033.82, + "end": 8037.94, + "probability": 0.9867 + }, + { + "start": 8038.5, + "end": 8040.42, + "probability": 0.9485 + }, + { + "start": 8041.44, + "end": 8043.46, + "probability": 0.8666 + }, + { + "start": 8044.3, + "end": 8044.78, + "probability": 0.6247 + }, + { + "start": 8045.76, + "end": 8047.44, + "probability": 0.9918 + }, + { + "start": 8048.36, + "end": 8049.86, + "probability": 0.5671 + }, + { + "start": 8050.94, + "end": 8052.66, + "probability": 0.9842 + }, + { + "start": 8053.34, + "end": 8053.66, + "probability": 0.9557 + }, + { + "start": 8054.18, + "end": 8058.42, + "probability": 0.9457 + }, + { + "start": 8058.8, + "end": 8061.38, + "probability": 0.9925 + }, + { + "start": 8062.24, + "end": 8065.1, + "probability": 0.616 + }, + { + "start": 8066.6, + "end": 8066.62, + "probability": 0.3693 + }, + { + "start": 8066.62, + "end": 8067.84, + "probability": 0.7909 + }, + { + "start": 8068.48, + "end": 8070.24, + "probability": 0.9819 + }, + { + "start": 8070.3, + "end": 8076.22, + "probability": 0.9813 + }, + { + "start": 8076.38, + "end": 8079.06, + "probability": 0.8885 + }, + { + "start": 8079.38, + "end": 8079.96, + "probability": 0.7359 + }, + { + "start": 8080.26, + "end": 8080.9, + "probability": 0.4545 + }, + { + "start": 8081.86, + "end": 8085.92, + "probability": 0.9362 + }, + { + "start": 8086.86, + "end": 8091.44, + "probability": 0.9976 + }, + { + "start": 8092.1, + "end": 8092.62, + "probability": 0.8194 + }, + { + "start": 8094.7, + "end": 8095.02, + "probability": 0.8275 + }, + { + "start": 8095.62, + "end": 8099.22, + "probability": 0.9746 + }, + { + "start": 8099.7, + "end": 8100.99, + "probability": 0.9559 + }, + { + "start": 8101.94, + "end": 8104.3, + "probability": 0.9399 + }, + { + "start": 8105.58, + "end": 8107.06, + "probability": 0.9977 + }, + { + "start": 8107.78, + "end": 8110.94, + "probability": 0.9476 + }, + { + "start": 8111.4, + "end": 8112.78, + "probability": 0.9683 + }, + { + "start": 8113.44, + "end": 8116.18, + "probability": 0.9961 + }, + { + "start": 8118.02, + "end": 8122.78, + "probability": 0.9561 + }, + { + "start": 8123.56, + "end": 8126.44, + "probability": 0.9948 + }, + { + "start": 8127.44, + "end": 8128.08, + "probability": 0.7051 + }, + { + "start": 8128.76, + "end": 8130.06, + "probability": 0.9463 + }, + { + "start": 8131.02, + "end": 8132.82, + "probability": 0.987 + }, + { + "start": 8134.52, + "end": 8139.22, + "probability": 0.9712 + }, + { + "start": 8139.86, + "end": 8141.7, + "probability": 0.9567 + }, + { + "start": 8141.8, + "end": 8147.28, + "probability": 0.9966 + }, + { + "start": 8148.06, + "end": 8148.56, + "probability": 0.8354 + }, + { + "start": 8148.6, + "end": 8150.9, + "probability": 0.7107 + }, + { + "start": 8151.12, + "end": 8152.24, + "probability": 0.9692 + }, + { + "start": 8152.86, + "end": 8157.26, + "probability": 0.9967 + }, + { + "start": 8157.92, + "end": 8159.7, + "probability": 0.9606 + }, + { + "start": 8160.74, + "end": 8161.86, + "probability": 0.9157 + }, + { + "start": 8162.42, + "end": 8165.88, + "probability": 0.9858 + }, + { + "start": 8166.48, + "end": 8167.4, + "probability": 0.9031 + }, + { + "start": 8167.88, + "end": 8168.64, + "probability": 0.9574 + }, + { + "start": 8168.74, + "end": 8169.26, + "probability": 0.8103 + }, + { + "start": 8169.82, + "end": 8171.02, + "probability": 0.9742 + }, + { + "start": 8171.12, + "end": 8174.83, + "probability": 0.9915 + }, + { + "start": 8175.96, + "end": 8178.14, + "probability": 0.9946 + }, + { + "start": 8179.4, + "end": 8179.8, + "probability": 0.4246 + }, + { + "start": 8179.86, + "end": 8182.22, + "probability": 0.7993 + }, + { + "start": 8182.38, + "end": 8184.4, + "probability": 0.8823 + }, + { + "start": 8184.9, + "end": 8187.8, + "probability": 0.988 + }, + { + "start": 8188.54, + "end": 8188.9, + "probability": 0.9295 + }, + { + "start": 8189.14, + "end": 8189.8, + "probability": 0.8737 + }, + { + "start": 8190.3, + "end": 8193.68, + "probability": 0.8164 + }, + { + "start": 8194.02, + "end": 8195.46, + "probability": 0.9758 + }, + { + "start": 8196.1, + "end": 8197.22, + "probability": 0.998 + }, + { + "start": 8197.68, + "end": 8203.12, + "probability": 0.9612 + }, + { + "start": 8204.18, + "end": 8207.98, + "probability": 0.9667 + }, + { + "start": 8208.14, + "end": 8209.14, + "probability": 0.9819 + }, + { + "start": 8210.04, + "end": 8214.14, + "probability": 0.7925 + }, + { + "start": 8214.52, + "end": 8219.66, + "probability": 0.9199 + }, + { + "start": 8220.04, + "end": 8224.38, + "probability": 0.9978 + }, + { + "start": 8224.94, + "end": 8226.46, + "probability": 0.9717 + }, + { + "start": 8226.72, + "end": 8227.36, + "probability": 0.837 + }, + { + "start": 8227.72, + "end": 8228.4, + "probability": 0.5944 + }, + { + "start": 8228.52, + "end": 8230.9, + "probability": 0.9912 + }, + { + "start": 8230.94, + "end": 8231.28, + "probability": 0.7953 + }, + { + "start": 8231.56, + "end": 8233.64, + "probability": 0.8025 + }, + { + "start": 8233.84, + "end": 8236.36, + "probability": 0.8921 + }, + { + "start": 8237.06, + "end": 8239.04, + "probability": 0.5013 + }, + { + "start": 8239.1, + "end": 8240.48, + "probability": 0.4568 + }, + { + "start": 8240.98, + "end": 8242.24, + "probability": 0.7048 + }, + { + "start": 8242.34, + "end": 8243.62, + "probability": 0.9506 + }, + { + "start": 8244.44, + "end": 8247.62, + "probability": 0.7451 + }, + { + "start": 8247.96, + "end": 8248.84, + "probability": 0.4222 + }, + { + "start": 8249.72, + "end": 8251.36, + "probability": 0.9785 + }, + { + "start": 8251.98, + "end": 8253.82, + "probability": 0.7423 + }, + { + "start": 8254.68, + "end": 8255.88, + "probability": 0.7209 + }, + { + "start": 8256.88, + "end": 8258.5, + "probability": 0.9956 + }, + { + "start": 8259.46, + "end": 8262.84, + "probability": 0.9473 + }, + { + "start": 8263.52, + "end": 8267.58, + "probability": 0.932 + }, + { + "start": 8268.1, + "end": 8269.68, + "probability": 0.8928 + }, + { + "start": 8270.76, + "end": 8272.58, + "probability": 0.9572 + }, + { + "start": 8272.58, + "end": 8275.22, + "probability": 0.9867 + }, + { + "start": 8277.34, + "end": 8279.48, + "probability": 0.509 + }, + { + "start": 8279.6, + "end": 8281.04, + "probability": 0.646 + }, + { + "start": 8284.89, + "end": 8286.76, + "probability": 0.4516 + }, + { + "start": 8287.3, + "end": 8290.22, + "probability": 0.7788 + }, + { + "start": 8290.88, + "end": 8295.2, + "probability": 0.5985 + }, + { + "start": 8296.92, + "end": 8298.34, + "probability": 0.7439 + }, + { + "start": 8298.42, + "end": 8299.56, + "probability": 0.8837 + }, + { + "start": 8300.0, + "end": 8302.88, + "probability": 0.9067 + }, + { + "start": 8303.0, + "end": 8303.2, + "probability": 0.753 + }, + { + "start": 8305.02, + "end": 8306.5, + "probability": 0.7362 + }, + { + "start": 8306.84, + "end": 8309.38, + "probability": 0.9468 + }, + { + "start": 8309.54, + "end": 8310.12, + "probability": 0.8198 + }, + { + "start": 8310.86, + "end": 8312.88, + "probability": 0.8904 + }, + { + "start": 8315.71, + "end": 8319.04, + "probability": 0.5088 + }, + { + "start": 8319.56, + "end": 8319.78, + "probability": 0.0235 + }, + { + "start": 8320.5, + "end": 8324.6, + "probability": 0.1505 + }, + { + "start": 8324.86, + "end": 8327.36, + "probability": 0.5252 + }, + { + "start": 8330.07, + "end": 8332.82, + "probability": 0.7165 + }, + { + "start": 8333.52, + "end": 8336.82, + "probability": 0.5789 + }, + { + "start": 8339.94, + "end": 8340.0, + "probability": 0.874 + }, + { + "start": 8340.08, + "end": 8340.16, + "probability": 0.4598 + }, + { + "start": 8340.22, + "end": 8342.84, + "probability": 0.7834 + }, + { + "start": 8342.98, + "end": 8343.78, + "probability": 0.7168 + }, + { + "start": 8343.84, + "end": 8343.94, + "probability": 0.87 + }, + { + "start": 8343.94, + "end": 8344.2, + "probability": 0.7725 + }, + { + "start": 8344.98, + "end": 8345.16, + "probability": 0.3224 + }, + { + "start": 8345.66, + "end": 8345.94, + "probability": 0.579 + }, + { + "start": 8349.04, + "end": 8352.4, + "probability": 0.7591 + }, + { + "start": 8352.79, + "end": 8353.0, + "probability": 0.175 + }, + { + "start": 8353.3, + "end": 8353.86, + "probability": 0.4288 + }, + { + "start": 8353.88, + "end": 8357.26, + "probability": 0.427 + }, + { + "start": 8357.3, + "end": 8357.6, + "probability": 0.7289 + }, + { + "start": 8357.66, + "end": 8358.46, + "probability": 0.1452 + }, + { + "start": 8358.52, + "end": 8360.38, + "probability": 0.5995 + }, + { + "start": 8361.54, + "end": 8364.12, + "probability": 0.5021 + }, + { + "start": 8364.36, + "end": 8368.14, + "probability": 0.4946 + }, + { + "start": 8368.14, + "end": 8368.64, + "probability": 0.1459 + }, + { + "start": 8371.5, + "end": 8372.18, + "probability": 0.7168 + }, + { + "start": 8373.04, + "end": 8374.66, + "probability": 0.737 + }, + { + "start": 8377.3, + "end": 8381.8, + "probability": 0.9839 + }, + { + "start": 8382.42, + "end": 8383.26, + "probability": 0.3291 + }, + { + "start": 8384.14, + "end": 8385.06, + "probability": 0.7999 + }, + { + "start": 8386.06, + "end": 8388.92, + "probability": 0.7647 + }, + { + "start": 8391.64, + "end": 8394.98, + "probability": 0.7033 + }, + { + "start": 8395.72, + "end": 8399.84, + "probability": 0.9316 + }, + { + "start": 8401.32, + "end": 8402.88, + "probability": 0.9011 + }, + { + "start": 8404.06, + "end": 8406.22, + "probability": 0.8623 + }, + { + "start": 8406.4, + "end": 8407.95, + "probability": 0.998 + }, + { + "start": 8409.26, + "end": 8411.56, + "probability": 0.9995 + }, + { + "start": 8412.74, + "end": 8415.84, + "probability": 0.9467 + }, + { + "start": 8416.5, + "end": 8423.32, + "probability": 0.9843 + }, + { + "start": 8423.4, + "end": 8424.9, + "probability": 0.9065 + }, + { + "start": 8425.7, + "end": 8427.04, + "probability": 0.9956 + }, + { + "start": 8431.4, + "end": 8432.42, + "probability": 0.5947 + }, + { + "start": 8433.04, + "end": 8434.56, + "probability": 0.9719 + }, + { + "start": 8434.64, + "end": 8439.12, + "probability": 0.9961 + }, + { + "start": 8440.56, + "end": 8446.22, + "probability": 0.9962 + }, + { + "start": 8446.84, + "end": 8449.54, + "probability": 0.9985 + }, + { + "start": 8449.54, + "end": 8451.78, + "probability": 0.9987 + }, + { + "start": 8453.88, + "end": 8456.44, + "probability": 0.9233 + }, + { + "start": 8456.62, + "end": 8458.04, + "probability": 0.8433 + }, + { + "start": 8459.14, + "end": 8462.38, + "probability": 0.9785 + }, + { + "start": 8462.48, + "end": 8463.0, + "probability": 0.6477 + }, + { + "start": 8463.04, + "end": 8463.52, + "probability": 0.8021 + }, + { + "start": 8464.26, + "end": 8468.38, + "probability": 0.8369 + }, + { + "start": 8469.26, + "end": 8471.12, + "probability": 0.9969 + }, + { + "start": 8471.48, + "end": 8473.96, + "probability": 0.9984 + }, + { + "start": 8474.96, + "end": 8479.48, + "probability": 0.999 + }, + { + "start": 8481.34, + "end": 8484.4, + "probability": 0.9835 + }, + { + "start": 8484.52, + "end": 8484.94, + "probability": 0.5873 + }, + { + "start": 8485.18, + "end": 8490.0, + "probability": 0.8792 + }, + { + "start": 8491.34, + "end": 8492.76, + "probability": 0.6079 + }, + { + "start": 8494.0, + "end": 8495.46, + "probability": 0.95 + }, + { + "start": 8495.64, + "end": 8496.82, + "probability": 0.9676 + }, + { + "start": 8496.9, + "end": 8497.85, + "probability": 0.9125 + }, + { + "start": 8500.21, + "end": 8505.46, + "probability": 0.7452 + }, + { + "start": 8506.3, + "end": 8506.76, + "probability": 0.8811 + }, + { + "start": 8506.8, + "end": 8509.1, + "probability": 0.848 + }, + { + "start": 8509.3, + "end": 8510.82, + "probability": 0.911 + }, + { + "start": 8511.44, + "end": 8512.42, + "probability": 0.9057 + }, + { + "start": 8513.14, + "end": 8521.78, + "probability": 0.9661 + }, + { + "start": 8521.78, + "end": 8526.5, + "probability": 0.992 + }, + { + "start": 8526.58, + "end": 8527.62, + "probability": 0.5836 + }, + { + "start": 8527.76, + "end": 8529.02, + "probability": 0.8056 + }, + { + "start": 8529.84, + "end": 8532.44, + "probability": 0.9893 + }, + { + "start": 8533.64, + "end": 8534.12, + "probability": 0.2887 + }, + { + "start": 8534.12, + "end": 8537.08, + "probability": 0.6113 + }, + { + "start": 8537.3, + "end": 8541.1, + "probability": 0.868 + }, + { + "start": 8541.66, + "end": 8542.26, + "probability": 0.6278 + }, + { + "start": 8542.68, + "end": 8544.26, + "probability": 0.9748 + }, + { + "start": 8545.54, + "end": 8546.48, + "probability": 0.9386 + }, + { + "start": 8546.72, + "end": 8546.72, + "probability": 0.3945 + }, + { + "start": 8546.72, + "end": 8547.04, + "probability": 0.0465 + }, + { + "start": 8547.1, + "end": 8550.6, + "probability": 0.9546 + }, + { + "start": 8551.0, + "end": 8553.39, + "probability": 0.9971 + }, + { + "start": 8554.28, + "end": 8555.62, + "probability": 0.9874 + }, + { + "start": 8556.62, + "end": 8560.34, + "probability": 0.9551 + }, + { + "start": 8560.92, + "end": 8561.32, + "probability": 0.567 + }, + { + "start": 8563.62, + "end": 8566.84, + "probability": 0.6844 + }, + { + "start": 8566.84, + "end": 8569.88, + "probability": 0.931 + }, + { + "start": 8570.72, + "end": 8574.04, + "probability": 0.9869 + }, + { + "start": 8575.32, + "end": 8576.58, + "probability": 0.9224 + }, + { + "start": 8577.24, + "end": 8577.92, + "probability": 0.8247 + }, + { + "start": 8578.0, + "end": 8578.48, + "probability": 0.6082 + }, + { + "start": 8578.48, + "end": 8582.1, + "probability": 0.474 + }, + { + "start": 8582.12, + "end": 8584.9, + "probability": 0.9397 + }, + { + "start": 8585.86, + "end": 8589.98, + "probability": 0.9956 + }, + { + "start": 8590.1, + "end": 8590.86, + "probability": 0.8969 + }, + { + "start": 8591.14, + "end": 8591.4, + "probability": 0.0254 + }, + { + "start": 8591.4, + "end": 8591.48, + "probability": 0.0269 + }, + { + "start": 8591.48, + "end": 8593.54, + "probability": 0.6108 + }, + { + "start": 8593.64, + "end": 8594.02, + "probability": 0.5413 + }, + { + "start": 8594.02, + "end": 8594.98, + "probability": 0.9131 + }, + { + "start": 8595.64, + "end": 8601.54, + "probability": 0.9871 + }, + { + "start": 8601.76, + "end": 8604.54, + "probability": 0.9701 + }, + { + "start": 8605.14, + "end": 8605.86, + "probability": 0.2126 + }, + { + "start": 8607.3, + "end": 8609.82, + "probability": 0.174 + }, + { + "start": 8609.82, + "end": 8609.82, + "probability": 0.1153 + }, + { + "start": 8609.82, + "end": 8610.26, + "probability": 0.3629 + }, + { + "start": 8611.8, + "end": 8612.58, + "probability": 0.3909 + }, + { + "start": 8612.62, + "end": 8612.94, + "probability": 0.2164 + }, + { + "start": 8612.94, + "end": 8614.27, + "probability": 0.0858 + }, + { + "start": 8615.74, + "end": 8615.88, + "probability": 0.4812 + }, + { + "start": 8615.98, + "end": 8617.68, + "probability": 0.8818 + }, + { + "start": 8617.68, + "end": 8618.09, + "probability": 0.6888 + }, + { + "start": 8618.38, + "end": 8618.82, + "probability": 0.8858 + }, + { + "start": 8618.92, + "end": 8619.64, + "probability": 0.9253 + }, + { + "start": 8620.52, + "end": 8622.6, + "probability": 0.0124 + }, + { + "start": 8622.6, + "end": 8624.28, + "probability": 0.6722 + }, + { + "start": 8624.28, + "end": 8625.5, + "probability": 0.3359 + }, + { + "start": 8625.68, + "end": 8626.06, + "probability": 0.9476 + }, + { + "start": 8627.0, + "end": 8628.34, + "probability": 0.9008 + }, + { + "start": 8628.52, + "end": 8629.12, + "probability": 0.873 + }, + { + "start": 8629.18, + "end": 8629.6, + "probability": 0.7813 + }, + { + "start": 8629.76, + "end": 8632.62, + "probability": 0.7281 + }, + { + "start": 8632.68, + "end": 8634.58, + "probability": 0.9486 + }, + { + "start": 8634.64, + "end": 8635.54, + "probability": 0.7197 + }, + { + "start": 8636.02, + "end": 8636.94, + "probability": 0.9819 + }, + { + "start": 8637.84, + "end": 8638.56, + "probability": 0.0133 + }, + { + "start": 8638.56, + "end": 8642.52, + "probability": 0.5068 + }, + { + "start": 8643.26, + "end": 8644.82, + "probability": 0.3401 + }, + { + "start": 8644.82, + "end": 8644.82, + "probability": 0.1114 + }, + { + "start": 8644.82, + "end": 8645.2, + "probability": 0.5384 + }, + { + "start": 8645.74, + "end": 8648.3, + "probability": 0.7122 + }, + { + "start": 8648.3, + "end": 8648.64, + "probability": 0.2036 + }, + { + "start": 8649.18, + "end": 8649.9, + "probability": 0.9138 + }, + { + "start": 8650.16, + "end": 8650.26, + "probability": 0.2908 + }, + { + "start": 8650.26, + "end": 8651.02, + "probability": 0.8141 + }, + { + "start": 8651.12, + "end": 8652.42, + "probability": 0.7278 + }, + { + "start": 8652.48, + "end": 8652.9, + "probability": 0.5796 + }, + { + "start": 8653.58, + "end": 8654.24, + "probability": 0.6382 + }, + { + "start": 8655.74, + "end": 8656.68, + "probability": 0.8368 + }, + { + "start": 8656.76, + "end": 8659.08, + "probability": 0.9781 + }, + { + "start": 8659.36, + "end": 8660.94, + "probability": 0.9368 + }, + { + "start": 8661.98, + "end": 8662.4, + "probability": 0.8362 + }, + { + "start": 8663.28, + "end": 8668.36, + "probability": 0.9735 + }, + { + "start": 8668.94, + "end": 8669.84, + "probability": 0.6607 + }, + { + "start": 8670.58, + "end": 8672.7, + "probability": 0.9878 + }, + { + "start": 8672.7, + "end": 8676.41, + "probability": 0.9524 + }, + { + "start": 8677.3, + "end": 8680.46, + "probability": 0.999 + }, + { + "start": 8680.46, + "end": 8682.4, + "probability": 0.9992 + }, + { + "start": 8684.24, + "end": 8687.92, + "probability": 0.972 + }, + { + "start": 8687.92, + "end": 8690.24, + "probability": 0.9995 + }, + { + "start": 8690.82, + "end": 8696.0, + "probability": 0.9927 + }, + { + "start": 8696.52, + "end": 8697.4, + "probability": 0.687 + }, + { + "start": 8697.78, + "end": 8698.28, + "probability": 0.59 + }, + { + "start": 8698.42, + "end": 8698.98, + "probability": 0.9958 + }, + { + "start": 8699.3, + "end": 8702.52, + "probability": 0.9699 + }, + { + "start": 8702.52, + "end": 8704.76, + "probability": 0.6657 + }, + { + "start": 8704.82, + "end": 8705.04, + "probability": 0.1175 + }, + { + "start": 8705.04, + "end": 8707.86, + "probability": 0.9929 + }, + { + "start": 8707.98, + "end": 8709.94, + "probability": 0.9939 + }, + { + "start": 8710.58, + "end": 8711.16, + "probability": 0.8152 + }, + { + "start": 8712.46, + "end": 8714.58, + "probability": 0.3574 + }, + { + "start": 8714.86, + "end": 8714.88, + "probability": 0.1805 + }, + { + "start": 8714.88, + "end": 8715.0, + "probability": 0.014 + }, + { + "start": 8715.14, + "end": 8716.06, + "probability": 0.6928 + }, + { + "start": 8716.64, + "end": 8718.14, + "probability": 0.9075 + }, + { + "start": 8718.14, + "end": 8718.96, + "probability": 0.5205 + }, + { + "start": 8719.06, + "end": 8720.26, + "probability": 0.6324 + }, + { + "start": 8721.46, + "end": 8721.74, + "probability": 0.849 + }, + { + "start": 8722.22, + "end": 8725.6, + "probability": 0.991 + }, + { + "start": 8726.36, + "end": 8727.6, + "probability": 0.2297 + }, + { + "start": 8728.56, + "end": 8732.08, + "probability": 0.8975 + }, + { + "start": 8732.46, + "end": 8734.6, + "probability": 0.9969 + }, + { + "start": 8735.98, + "end": 8738.16, + "probability": 0.9971 + }, + { + "start": 8738.86, + "end": 8739.16, + "probability": 0.957 + }, + { + "start": 8741.76, + "end": 8744.52, + "probability": 0.6493 + }, + { + "start": 8745.14, + "end": 8746.94, + "probability": 0.9259 + }, + { + "start": 8747.56, + "end": 8754.68, + "probability": 0.9825 + }, + { + "start": 8754.86, + "end": 8755.1, + "probability": 0.3715 + }, + { + "start": 8755.1, + "end": 8758.02, + "probability": 0.8384 + }, + { + "start": 8758.34, + "end": 8758.94, + "probability": 0.6532 + }, + { + "start": 8759.02, + "end": 8760.26, + "probability": 0.7528 + }, + { + "start": 8760.3, + "end": 8760.32, + "probability": 0.0867 + }, + { + "start": 8760.32, + "end": 8760.38, + "probability": 0.5992 + }, + { + "start": 8760.38, + "end": 8761.54, + "probability": 0.5659 + }, + { + "start": 8761.64, + "end": 8762.2, + "probability": 0.6777 + }, + { + "start": 8762.5, + "end": 8764.24, + "probability": 0.9912 + }, + { + "start": 8764.24, + "end": 8766.77, + "probability": 0.8926 + }, + { + "start": 8767.7, + "end": 8769.46, + "probability": 0.9902 + }, + { + "start": 8769.46, + "end": 8770.87, + "probability": 0.5416 + }, + { + "start": 8771.2, + "end": 8773.4, + "probability": 0.7079 + }, + { + "start": 8773.44, + "end": 8776.82, + "probability": 0.9941 + }, + { + "start": 8776.82, + "end": 8778.08, + "probability": 0.0061 + }, + { + "start": 8778.08, + "end": 8779.44, + "probability": 0.4233 + }, + { + "start": 8779.54, + "end": 8781.38, + "probability": 0.985 + }, + { + "start": 8781.48, + "end": 8781.7, + "probability": 0.5981 + }, + { + "start": 8781.8, + "end": 8782.16, + "probability": 0.4878 + }, + { + "start": 8782.94, + "end": 8786.0, + "probability": 0.9965 + }, + { + "start": 8786.0, + "end": 8790.96, + "probability": 0.9683 + }, + { + "start": 8791.56, + "end": 8793.4, + "probability": 0.9931 + }, + { + "start": 8793.56, + "end": 8794.76, + "probability": 0.9928 + }, + { + "start": 8795.32, + "end": 8797.52, + "probability": 0.991 + }, + { + "start": 8797.82, + "end": 8803.1, + "probability": 0.9878 + }, + { + "start": 8803.44, + "end": 8805.52, + "probability": 0.7389 + }, + { + "start": 8805.64, + "end": 8809.78, + "probability": 0.9964 + }, + { + "start": 8810.06, + "end": 8815.16, + "probability": 0.9971 + }, + { + "start": 8816.24, + "end": 8816.34, + "probability": 0.4226 + }, + { + "start": 8816.34, + "end": 8816.87, + "probability": 0.262 + }, + { + "start": 8817.02, + "end": 8817.96, + "probability": 0.5128 + }, + { + "start": 8818.1, + "end": 8818.8, + "probability": 0.9551 + }, + { + "start": 8818.8, + "end": 8818.94, + "probability": 0.4026 + }, + { + "start": 8818.94, + "end": 8819.58, + "probability": 0.4875 + }, + { + "start": 8819.9, + "end": 8820.88, + "probability": 0.929 + }, + { + "start": 8820.88, + "end": 8822.52, + "probability": 0.9554 + }, + { + "start": 8823.24, + "end": 8823.74, + "probability": 0.0001 + }, + { + "start": 8823.74, + "end": 8825.74, + "probability": 0.818 + }, + { + "start": 8825.94, + "end": 8828.14, + "probability": 0.9554 + }, + { + "start": 8829.08, + "end": 8829.87, + "probability": 0.5025 + }, + { + "start": 8830.4, + "end": 8831.48, + "probability": 0.5628 + }, + { + "start": 8832.62, + "end": 8835.44, + "probability": 0.9088 + }, + { + "start": 8836.08, + "end": 8836.9, + "probability": 0.3958 + }, + { + "start": 8838.3, + "end": 8838.42, + "probability": 0.1663 + }, + { + "start": 8839.2, + "end": 8839.64, + "probability": 0.1266 + }, + { + "start": 8839.72, + "end": 8840.52, + "probability": 0.2747 + }, + { + "start": 8840.52, + "end": 8840.52, + "probability": 0.0549 + }, + { + "start": 8840.61, + "end": 8840.96, + "probability": 0.6962 + }, + { + "start": 8841.94, + "end": 8844.48, + "probability": 0.5588 + }, + { + "start": 8844.48, + "end": 8848.34, + "probability": 0.4945 + }, + { + "start": 8849.0, + "end": 8851.77, + "probability": 0.947 + }, + { + "start": 8852.92, + "end": 8853.8, + "probability": 0.792 + }, + { + "start": 8854.8, + "end": 8856.92, + "probability": 0.8206 + }, + { + "start": 8858.46, + "end": 8859.06, + "probability": 0.9897 + }, + { + "start": 8859.86, + "end": 8861.4, + "probability": 0.9883 + }, + { + "start": 8862.06, + "end": 8864.36, + "probability": 0.9929 + }, + { + "start": 8864.56, + "end": 8868.04, + "probability": 0.9961 + }, + { + "start": 8868.42, + "end": 8869.2, + "probability": 0.9919 + }, + { + "start": 8869.74, + "end": 8873.84, + "probability": 0.9849 + }, + { + "start": 8875.1, + "end": 8876.28, + "probability": 0.8008 + }, + { + "start": 8877.02, + "end": 8878.5, + "probability": 0.9766 + }, + { + "start": 8878.88, + "end": 8882.58, + "probability": 0.9929 + }, + { + "start": 8883.14, + "end": 8884.78, + "probability": 0.9624 + }, + { + "start": 8885.32, + "end": 8887.76, + "probability": 0.8271 + }, + { + "start": 8888.46, + "end": 8889.68, + "probability": 0.5711 + }, + { + "start": 8891.06, + "end": 8891.64, + "probability": 0.5907 + }, + { + "start": 8892.32, + "end": 8893.36, + "probability": 0.9984 + }, + { + "start": 8893.88, + "end": 8897.3, + "probability": 0.9972 + }, + { + "start": 8898.36, + "end": 8900.94, + "probability": 0.9915 + }, + { + "start": 8901.54, + "end": 8903.68, + "probability": 0.8696 + }, + { + "start": 8904.82, + "end": 8909.98, + "probability": 0.858 + }, + { + "start": 8910.86, + "end": 8915.68, + "probability": 0.8604 + }, + { + "start": 8916.44, + "end": 8917.78, + "probability": 0.857 + }, + { + "start": 8918.2, + "end": 8919.92, + "probability": 0.9784 + }, + { + "start": 8920.44, + "end": 8924.02, + "probability": 0.9454 + }, + { + "start": 8924.62, + "end": 8925.56, + "probability": 0.7798 + }, + { + "start": 8925.62, + "end": 8928.2, + "probability": 0.2432 + }, + { + "start": 8928.71, + "end": 8929.9, + "probability": 0.2441 + }, + { + "start": 8929.9, + "end": 8930.06, + "probability": 0.1631 + }, + { + "start": 8930.18, + "end": 8934.42, + "probability": 0.7606 + }, + { + "start": 8934.8, + "end": 8935.82, + "probability": 0.6204 + }, + { + "start": 8936.68, + "end": 8939.12, + "probability": 0.8727 + }, + { + "start": 8940.3, + "end": 8941.04, + "probability": 0.9082 + }, + { + "start": 8941.84, + "end": 8943.56, + "probability": 0.7015 + }, + { + "start": 8944.1, + "end": 8945.76, + "probability": 0.9764 + }, + { + "start": 8946.7, + "end": 8947.8, + "probability": 0.9714 + }, + { + "start": 8948.3, + "end": 8950.2, + "probability": 0.8463 + }, + { + "start": 8950.84, + "end": 8951.32, + "probability": 0.5552 + }, + { + "start": 8951.68, + "end": 8952.5, + "probability": 0.5293 + }, + { + "start": 8952.6, + "end": 8954.56, + "probability": 0.8824 + }, + { + "start": 8955.89, + "end": 8959.54, + "probability": 0.9958 + }, + { + "start": 8959.54, + "end": 8966.52, + "probability": 0.9486 + }, + { + "start": 8967.6, + "end": 8968.36, + "probability": 0.7098 + }, + { + "start": 8969.02, + "end": 8970.4, + "probability": 0.6839 + }, + { + "start": 8970.82, + "end": 8973.56, + "probability": 0.9916 + }, + { + "start": 8973.7, + "end": 8973.9, + "probability": 0.9128 + }, + { + "start": 8974.12, + "end": 8976.24, + "probability": 0.9678 + }, + { + "start": 8977.22, + "end": 8981.24, + "probability": 0.9896 + }, + { + "start": 8981.82, + "end": 8983.76, + "probability": 0.924 + }, + { + "start": 8984.56, + "end": 8985.42, + "probability": 0.6837 + }, + { + "start": 8987.36, + "end": 8988.14, + "probability": 0.7224 + }, + { + "start": 8988.38, + "end": 8992.24, + "probability": 0.5863 + }, + { + "start": 8992.88, + "end": 8996.86, + "probability": 0.3842 + }, + { + "start": 8997.76, + "end": 8999.26, + "probability": 0.0224 + }, + { + "start": 8999.28, + "end": 9001.94, + "probability": 0.7179 + }, + { + "start": 9001.94, + "end": 9002.68, + "probability": 0.3431 + }, + { + "start": 9003.54, + "end": 9006.56, + "probability": 0.228 + }, + { + "start": 9009.76, + "end": 9010.72, + "probability": 0.0511 + }, + { + "start": 9010.72, + "end": 9011.18, + "probability": 0.0702 + }, + { + "start": 9011.2, + "end": 9012.24, + "probability": 0.7947 + }, + { + "start": 9012.66, + "end": 9017.6, + "probability": 0.9868 + }, + { + "start": 9017.7, + "end": 9018.48, + "probability": 0.8354 + }, + { + "start": 9019.12, + "end": 9023.88, + "probability": 0.983 + }, + { + "start": 9024.74, + "end": 9028.18, + "probability": 0.9939 + }, + { + "start": 9028.34, + "end": 9030.32, + "probability": 0.979 + }, + { + "start": 9030.72, + "end": 9033.06, + "probability": 0.9856 + }, + { + "start": 9033.52, + "end": 9034.88, + "probability": 0.7107 + }, + { + "start": 9035.44, + "end": 9041.46, + "probability": 0.9842 + }, + { + "start": 9041.98, + "end": 9045.34, + "probability": 0.9779 + }, + { + "start": 9045.52, + "end": 9045.96, + "probability": 0.8227 + }, + { + "start": 9046.06, + "end": 9046.72, + "probability": 0.1002 + }, + { + "start": 9046.88, + "end": 9049.48, + "probability": 0.9478 + }, + { + "start": 9050.08, + "end": 9051.58, + "probability": 0.7692 + }, + { + "start": 9052.1, + "end": 9054.02, + "probability": 0.8102 + }, + { + "start": 9054.08, + "end": 9057.08, + "probability": 0.9727 + }, + { + "start": 9057.14, + "end": 9061.1, + "probability": 0.9734 + }, + { + "start": 9061.58, + "end": 9066.13, + "probability": 0.9886 + }, + { + "start": 9066.38, + "end": 9067.72, + "probability": 0.7576 + }, + { + "start": 9067.72, + "end": 9068.08, + "probability": 0.0463 + }, + { + "start": 9068.1, + "end": 9069.84, + "probability": 0.5347 + }, + { + "start": 9070.46, + "end": 9071.9, + "probability": 0.6968 + }, + { + "start": 9072.28, + "end": 9073.28, + "probability": 0.5872 + }, + { + "start": 9073.74, + "end": 9078.34, + "probability": 0.6468 + }, + { + "start": 9078.4, + "end": 9079.5, + "probability": 0.9751 + }, + { + "start": 9080.18, + "end": 9081.88, + "probability": 0.8626 + }, + { + "start": 9082.64, + "end": 9083.4, + "probability": 0.946 + }, + { + "start": 9083.6, + "end": 9085.72, + "probability": 0.5258 + }, + { + "start": 9085.84, + "end": 9088.24, + "probability": 0.6399 + }, + { + "start": 9089.14, + "end": 9090.52, + "probability": 0.9819 + }, + { + "start": 9090.58, + "end": 9091.56, + "probability": 0.999 + }, + { + "start": 9092.7, + "end": 9098.22, + "probability": 0.9917 + }, + { + "start": 9099.34, + "end": 9103.68, + "probability": 0.994 + }, + { + "start": 9104.12, + "end": 9106.56, + "probability": 0.8945 + }, + { + "start": 9107.76, + "end": 9109.76, + "probability": 0.9175 + }, + { + "start": 9110.22, + "end": 9112.76, + "probability": 0.9944 + }, + { + "start": 9114.54, + "end": 9115.26, + "probability": 0.4488 + }, + { + "start": 9115.66, + "end": 9119.75, + "probability": 0.8326 + }, + { + "start": 9120.08, + "end": 9122.27, + "probability": 0.5795 + }, + { + "start": 9122.74, + "end": 9123.48, + "probability": 0.8198 + }, + { + "start": 9123.5, + "end": 9125.36, + "probability": 0.9782 + }, + { + "start": 9125.46, + "end": 9125.7, + "probability": 0.6722 + }, + { + "start": 9125.78, + "end": 9129.8, + "probability": 0.2991 + }, + { + "start": 9129.92, + "end": 9132.0, + "probability": 0.915 + }, + { + "start": 9132.64, + "end": 9134.24, + "probability": 0.9785 + }, + { + "start": 9134.3, + "end": 9136.68, + "probability": 0.9935 + }, + { + "start": 9136.78, + "end": 9138.84, + "probability": 0.9873 + }, + { + "start": 9139.88, + "end": 9143.5, + "probability": 0.9887 + }, + { + "start": 9143.98, + "end": 9148.0, + "probability": 0.9893 + }, + { + "start": 9148.48, + "end": 9152.28, + "probability": 0.9693 + }, + { + "start": 9152.62, + "end": 9154.23, + "probability": 0.9976 + }, + { + "start": 9154.66, + "end": 9156.86, + "probability": 0.9676 + }, + { + "start": 9157.66, + "end": 9159.56, + "probability": 0.9935 + }, + { + "start": 9159.62, + "end": 9161.42, + "probability": 0.9849 + }, + { + "start": 9162.0, + "end": 9164.58, + "probability": 0.5125 + }, + { + "start": 9165.47, + "end": 9166.24, + "probability": 0.783 + }, + { + "start": 9166.24, + "end": 9167.56, + "probability": 0.8231 + }, + { + "start": 9167.94, + "end": 9169.68, + "probability": 0.1066 + }, + { + "start": 9170.72, + "end": 9171.72, + "probability": 0.0746 + }, + { + "start": 9172.08, + "end": 9172.16, + "probability": 0.0224 + }, + { + "start": 9172.18, + "end": 9173.86, + "probability": 0.6491 + }, + { + "start": 9174.58, + "end": 9181.58, + "probability": 0.994 + }, + { + "start": 9182.18, + "end": 9185.66, + "probability": 0.8239 + }, + { + "start": 9187.3, + "end": 9188.93, + "probability": 0.6379 + }, + { + "start": 9189.12, + "end": 9189.22, + "probability": 0.9017 + }, + { + "start": 9189.68, + "end": 9193.2, + "probability": 0.9397 + }, + { + "start": 9193.96, + "end": 9195.42, + "probability": 0.9789 + }, + { + "start": 9195.5, + "end": 9196.78, + "probability": 0.9612 + }, + { + "start": 9197.28, + "end": 9197.78, + "probability": 0.5423 + }, + { + "start": 9198.26, + "end": 9202.2, + "probability": 0.7439 + }, + { + "start": 9202.46, + "end": 9203.42, + "probability": 0.8885 + }, + { + "start": 9203.94, + "end": 9205.35, + "probability": 0.8777 + }, + { + "start": 9205.88, + "end": 9208.04, + "probability": 0.9326 + }, + { + "start": 9208.65, + "end": 9208.72, + "probability": 0.0085 + }, + { + "start": 9208.72, + "end": 9210.44, + "probability": 0.8908 + }, + { + "start": 9210.92, + "end": 9214.08, + "probability": 0.9744 + }, + { + "start": 9214.56, + "end": 9215.46, + "probability": 0.7452 + }, + { + "start": 9216.12, + "end": 9218.98, + "probability": 0.8962 + }, + { + "start": 9219.5, + "end": 9224.78, + "probability": 0.9882 + }, + { + "start": 9224.94, + "end": 9225.18, + "probability": 0.4606 + }, + { + "start": 9225.66, + "end": 9226.62, + "probability": 0.0024 + }, + { + "start": 9227.76, + "end": 9229.16, + "probability": 0.7778 + }, + { + "start": 9229.7, + "end": 9230.14, + "probability": 0.2478 + }, + { + "start": 9230.14, + "end": 9231.44, + "probability": 0.1076 + }, + { + "start": 9231.92, + "end": 9235.72, + "probability": 0.9748 + }, + { + "start": 9235.76, + "end": 9238.44, + "probability": 0.9849 + }, + { + "start": 9239.0, + "end": 9240.48, + "probability": 0.967 + }, + { + "start": 9240.88, + "end": 9241.82, + "probability": 0.6819 + }, + { + "start": 9241.9, + "end": 9242.74, + "probability": 0.7307 + }, + { + "start": 9245.68, + "end": 9247.96, + "probability": 0.8172 + }, + { + "start": 9248.5, + "end": 9251.94, + "probability": 0.9616 + }, + { + "start": 9252.9, + "end": 9254.21, + "probability": 0.8433 + }, + { + "start": 9255.46, + "end": 9259.14, + "probability": 0.9862 + }, + { + "start": 9259.82, + "end": 9260.28, + "probability": 0.5688 + }, + { + "start": 9260.7, + "end": 9264.1, + "probability": 0.9882 + }, + { + "start": 9265.08, + "end": 9269.12, + "probability": 0.988 + }, + { + "start": 9269.12, + "end": 9273.16, + "probability": 0.9897 + }, + { + "start": 9273.76, + "end": 9275.64, + "probability": 0.7931 + }, + { + "start": 9275.78, + "end": 9277.32, + "probability": 0.9729 + }, + { + "start": 9277.96, + "end": 9281.42, + "probability": 0.9878 + }, + { + "start": 9281.82, + "end": 9284.3, + "probability": 0.8853 + }, + { + "start": 9284.48, + "end": 9285.16, + "probability": 0.9713 + }, + { + "start": 9286.0, + "end": 9287.7, + "probability": 0.9595 + }, + { + "start": 9288.86, + "end": 9292.32, + "probability": 0.9283 + }, + { + "start": 9292.78, + "end": 9297.52, + "probability": 0.9961 + }, + { + "start": 9297.66, + "end": 9301.92, + "probability": 0.9902 + }, + { + "start": 9302.52, + "end": 9304.14, + "probability": 0.998 + }, + { + "start": 9305.2, + "end": 9307.34, + "probability": 0.8987 + }, + { + "start": 9307.86, + "end": 9308.88, + "probability": 0.9972 + }, + { + "start": 9309.7, + "end": 9309.96, + "probability": 0.9927 + }, + { + "start": 9311.24, + "end": 9315.72, + "probability": 0.9531 + }, + { + "start": 9316.14, + "end": 9318.06, + "probability": 0.488 + }, + { + "start": 9318.32, + "end": 9318.82, + "probability": 0.0691 + }, + { + "start": 9319.12, + "end": 9320.08, + "probability": 0.5396 + }, + { + "start": 9320.08, + "end": 9322.34, + "probability": 0.7613 + }, + { + "start": 9323.0, + "end": 9325.84, + "probability": 0.914 + }, + { + "start": 9326.1, + "end": 9328.28, + "probability": 0.9786 + }, + { + "start": 9328.5, + "end": 9328.84, + "probability": 0.7675 + }, + { + "start": 9329.46, + "end": 9330.33, + "probability": 0.8532 + }, + { + "start": 9330.7, + "end": 9332.3, + "probability": 0.9575 + }, + { + "start": 9333.18, + "end": 9334.74, + "probability": 0.9793 + }, + { + "start": 9335.4, + "end": 9337.26, + "probability": 0.9417 + }, + { + "start": 9337.42, + "end": 9337.54, + "probability": 0.5188 + }, + { + "start": 9337.64, + "end": 9338.96, + "probability": 0.785 + }, + { + "start": 9339.08, + "end": 9339.92, + "probability": 0.8094 + }, + { + "start": 9339.92, + "end": 9340.74, + "probability": 0.4039 + }, + { + "start": 9340.92, + "end": 9342.3, + "probability": 0.9686 + }, + { + "start": 9342.52, + "end": 9344.12, + "probability": 0.9507 + }, + { + "start": 9344.22, + "end": 9344.88, + "probability": 0.9222 + }, + { + "start": 9345.0, + "end": 9349.44, + "probability": 0.994 + }, + { + "start": 9350.22, + "end": 9350.62, + "probability": 0.4086 + }, + { + "start": 9351.12, + "end": 9351.54, + "probability": 0.619 + }, + { + "start": 9351.54, + "end": 9354.3, + "probability": 0.6974 + }, + { + "start": 9354.3, + "end": 9358.28, + "probability": 0.997 + }, + { + "start": 9358.72, + "end": 9359.3, + "probability": 0.1477 + }, + { + "start": 9359.64, + "end": 9360.56, + "probability": 0.9274 + }, + { + "start": 9360.84, + "end": 9364.06, + "probability": 0.9109 + }, + { + "start": 9364.08, + "end": 9364.08, + "probability": 0.3358 + }, + { + "start": 9364.24, + "end": 9364.6, + "probability": 0.0365 + }, + { + "start": 9365.06, + "end": 9366.4, + "probability": 0.9569 + }, + { + "start": 9367.04, + "end": 9372.13, + "probability": 0.6395 + }, + { + "start": 9372.7, + "end": 9372.86, + "probability": 0.5327 + }, + { + "start": 9373.58, + "end": 9373.68, + "probability": 0.6526 + }, + { + "start": 9374.74, + "end": 9374.86, + "probability": 0.423 + }, + { + "start": 9375.52, + "end": 9376.72, + "probability": 0.9963 + }, + { + "start": 9377.52, + "end": 9381.52, + "probability": 0.9913 + }, + { + "start": 9382.1, + "end": 9384.96, + "probability": 0.8258 + }, + { + "start": 9385.14, + "end": 9387.8, + "probability": 0.9893 + }, + { + "start": 9388.18, + "end": 9389.17, + "probability": 0.9827 + }, + { + "start": 9389.88, + "end": 9391.06, + "probability": 0.9706 + }, + { + "start": 9391.42, + "end": 9393.56, + "probability": 0.8135 + }, + { + "start": 9394.3, + "end": 9402.62, + "probability": 0.7983 + }, + { + "start": 9403.24, + "end": 9406.84, + "probability": 0.7202 + }, + { + "start": 9406.84, + "end": 9409.62, + "probability": 0.9898 + }, + { + "start": 9410.14, + "end": 9413.46, + "probability": 0.993 + }, + { + "start": 9413.46, + "end": 9416.52, + "probability": 0.9953 + }, + { + "start": 9417.69, + "end": 9423.04, + "probability": 0.9739 + }, + { + "start": 9423.66, + "end": 9428.06, + "probability": 0.9824 + }, + { + "start": 9428.54, + "end": 9429.22, + "probability": 0.7595 + }, + { + "start": 9429.4, + "end": 9429.83, + "probability": 0.8159 + }, + { + "start": 9430.52, + "end": 9432.16, + "probability": 0.8838 + }, + { + "start": 9432.56, + "end": 9433.06, + "probability": 0.9607 + }, + { + "start": 9433.16, + "end": 9434.56, + "probability": 0.9946 + }, + { + "start": 9434.9, + "end": 9436.48, + "probability": 0.9854 + }, + { + "start": 9437.13, + "end": 9439.2, + "probability": 0.9895 + }, + { + "start": 9439.66, + "end": 9440.4, + "probability": 0.9297 + }, + { + "start": 9440.6, + "end": 9442.42, + "probability": 0.9928 + }, + { + "start": 9442.76, + "end": 9444.56, + "probability": 0.9932 + }, + { + "start": 9445.08, + "end": 9445.7, + "probability": 0.9824 + }, + { + "start": 9446.48, + "end": 9448.85, + "probability": 0.8157 + }, + { + "start": 9449.42, + "end": 9456.32, + "probability": 0.9822 + }, + { + "start": 9456.72, + "end": 9461.24, + "probability": 0.9973 + }, + { + "start": 9461.68, + "end": 9462.54, + "probability": 0.9314 + }, + { + "start": 9462.96, + "end": 9465.56, + "probability": 0.9897 + }, + { + "start": 9465.94, + "end": 9467.68, + "probability": 0.99 + }, + { + "start": 9468.2, + "end": 9470.56, + "probability": 0.9919 + }, + { + "start": 9471.04, + "end": 9473.3, + "probability": 0.999 + }, + { + "start": 9473.82, + "end": 9477.66, + "probability": 0.8655 + }, + { + "start": 9477.84, + "end": 9480.68, + "probability": 0.9432 + }, + { + "start": 9481.99, + "end": 9483.68, + "probability": 0.8289 + }, + { + "start": 9484.54, + "end": 9486.2, + "probability": 0.7342 + }, + { + "start": 9486.98, + "end": 9489.02, + "probability": 0.9836 + }, + { + "start": 9489.14, + "end": 9490.78, + "probability": 0.9564 + }, + { + "start": 9491.04, + "end": 9494.66, + "probability": 0.7356 + }, + { + "start": 9495.46, + "end": 9497.62, + "probability": 0.6885 + }, + { + "start": 9497.62, + "end": 9499.22, + "probability": 0.7291 + }, + { + "start": 9499.92, + "end": 9504.53, + "probability": 0.9849 + }, + { + "start": 9505.64, + "end": 9506.8, + "probability": 0.5598 + }, + { + "start": 9507.28, + "end": 9507.88, + "probability": 0.9141 + }, + { + "start": 9508.26, + "end": 9508.94, + "probability": 0.8893 + }, + { + "start": 9509.76, + "end": 9512.02, + "probability": 0.9706 + }, + { + "start": 9512.44, + "end": 9512.78, + "probability": 0.8002 + }, + { + "start": 9512.82, + "end": 9515.9, + "probability": 0.9772 + }, + { + "start": 9515.92, + "end": 9518.32, + "probability": 0.9967 + }, + { + "start": 9518.64, + "end": 9523.12, + "probability": 0.906 + }, + { + "start": 9524.47, + "end": 9526.28, + "probability": 0.6675 + }, + { + "start": 9527.0, + "end": 9528.46, + "probability": 0.9824 + }, + { + "start": 9528.8, + "end": 9530.02, + "probability": 0.9519 + }, + { + "start": 9530.4, + "end": 9532.02, + "probability": 0.902 + }, + { + "start": 9532.48, + "end": 9536.06, + "probability": 0.9885 + }, + { + "start": 9536.82, + "end": 9538.56, + "probability": 0.9907 + }, + { + "start": 9538.98, + "end": 9540.74, + "probability": 0.9917 + }, + { + "start": 9541.04, + "end": 9541.52, + "probability": 0.7974 + }, + { + "start": 9542.28, + "end": 9544.38, + "probability": 0.9731 + }, + { + "start": 9544.76, + "end": 9546.46, + "probability": 0.9043 + }, + { + "start": 9546.92, + "end": 9549.16, + "probability": 0.9791 + }, + { + "start": 9549.74, + "end": 9551.46, + "probability": 0.795 + }, + { + "start": 9551.56, + "end": 9554.24, + "probability": 0.9874 + }, + { + "start": 9554.72, + "end": 9556.76, + "probability": 0.8677 + }, + { + "start": 9557.18, + "end": 9560.54, + "probability": 0.9912 + }, + { + "start": 9560.54, + "end": 9564.74, + "probability": 0.9615 + }, + { + "start": 9565.22, + "end": 9571.06, + "probability": 0.9972 + }, + { + "start": 9571.5, + "end": 9573.88, + "probability": 0.9993 + }, + { + "start": 9575.84, + "end": 9578.12, + "probability": 0.7703 + }, + { + "start": 9578.18, + "end": 9578.78, + "probability": 0.6729 + }, + { + "start": 9578.84, + "end": 9579.62, + "probability": 0.7687 + }, + { + "start": 9579.7, + "end": 9583.18, + "probability": 0.9949 + }, + { + "start": 9584.14, + "end": 9585.56, + "probability": 0.4289 + }, + { + "start": 9585.96, + "end": 9586.46, + "probability": 0.7463 + }, + { + "start": 9591.34, + "end": 9592.58, + "probability": 0.6047 + }, + { + "start": 9593.58, + "end": 9594.72, + "probability": 0.8103 + }, + { + "start": 9595.38, + "end": 9596.26, + "probability": 0.5588 + }, + { + "start": 9596.34, + "end": 9601.82, + "probability": 0.9945 + }, + { + "start": 9603.0, + "end": 9607.87, + "probability": 0.9561 + }, + { + "start": 9608.58, + "end": 9609.2, + "probability": 0.8564 + }, + { + "start": 9609.82, + "end": 9612.9, + "probability": 0.992 + }, + { + "start": 9613.86, + "end": 9617.58, + "probability": 0.7619 + }, + { + "start": 9618.4, + "end": 9623.36, + "probability": 0.9628 + }, + { + "start": 9623.78, + "end": 9629.2, + "probability": 0.9738 + }, + { + "start": 9629.26, + "end": 9631.04, + "probability": 0.9496 + }, + { + "start": 9631.1, + "end": 9633.2, + "probability": 0.998 + }, + { + "start": 9633.8, + "end": 9634.3, + "probability": 0.9681 + }, + { + "start": 9634.9, + "end": 9635.72, + "probability": 0.736 + }, + { + "start": 9636.76, + "end": 9640.63, + "probability": 0.9894 + }, + { + "start": 9641.54, + "end": 9644.16, + "probability": 0.9991 + }, + { + "start": 9645.16, + "end": 9645.56, + "probability": 0.9596 + }, + { + "start": 9646.38, + "end": 9647.16, + "probability": 0.8938 + }, + { + "start": 9647.78, + "end": 9648.22, + "probability": 0.8162 + }, + { + "start": 9649.26, + "end": 9650.3, + "probability": 0.9014 + }, + { + "start": 9651.04, + "end": 9651.78, + "probability": 0.7615 + }, + { + "start": 9652.32, + "end": 9655.8, + "probability": 0.9716 + }, + { + "start": 9657.14, + "end": 9658.34, + "probability": 0.9878 + }, + { + "start": 9659.84, + "end": 9663.14, + "probability": 0.89 + }, + { + "start": 9663.84, + "end": 9667.02, + "probability": 0.9541 + }, + { + "start": 9668.0, + "end": 9669.24, + "probability": 0.9897 + }, + { + "start": 9670.28, + "end": 9671.0, + "probability": 0.9917 + }, + { + "start": 9671.54, + "end": 9675.0, + "probability": 0.9951 + }, + { + "start": 9676.9, + "end": 9678.08, + "probability": 0.2381 + }, + { + "start": 9678.08, + "end": 9678.08, + "probability": 0.0206 + }, + { + "start": 9678.08, + "end": 9678.38, + "probability": 0.3334 + }, + { + "start": 9678.96, + "end": 9680.14, + "probability": 0.8878 + }, + { + "start": 9681.02, + "end": 9683.96, + "probability": 0.4539 + }, + { + "start": 9684.76, + "end": 9687.88, + "probability": 0.8354 + }, + { + "start": 9688.66, + "end": 9689.15, + "probability": 0.8186 + }, + { + "start": 9690.2, + "end": 9693.9, + "probability": 0.9885 + }, + { + "start": 9694.64, + "end": 9697.38, + "probability": 0.9077 + }, + { + "start": 9697.78, + "end": 9699.0, + "probability": 0.8553 + }, + { + "start": 9699.46, + "end": 9700.74, + "probability": 0.8442 + }, + { + "start": 9701.82, + "end": 9702.66, + "probability": 0.9756 + }, + { + "start": 9703.26, + "end": 9705.3, + "probability": 0.9931 + }, + { + "start": 9705.96, + "end": 9706.78, + "probability": 0.9041 + }, + { + "start": 9707.62, + "end": 9709.56, + "probability": 0.9464 + }, + { + "start": 9711.16, + "end": 9712.94, + "probability": 0.9242 + }, + { + "start": 9713.04, + "end": 9713.94, + "probability": 0.9259 + }, + { + "start": 9714.08, + "end": 9715.37, + "probability": 0.9823 + }, + { + "start": 9717.04, + "end": 9720.02, + "probability": 0.7178 + }, + { + "start": 9720.24, + "end": 9720.32, + "probability": 0.748 + }, + { + "start": 9720.42, + "end": 9721.72, + "probability": 0.9769 + }, + { + "start": 9722.12, + "end": 9722.56, + "probability": 0.8157 + }, + { + "start": 9724.58, + "end": 9727.18, + "probability": 0.7599 + }, + { + "start": 9728.24, + "end": 9731.8, + "probability": 0.9958 + }, + { + "start": 9732.3, + "end": 9733.04, + "probability": 0.9292 + }, + { + "start": 9734.28, + "end": 9741.9, + "probability": 0.9918 + }, + { + "start": 9742.1, + "end": 9743.0, + "probability": 0.9893 + }, + { + "start": 9743.72, + "end": 9744.68, + "probability": 0.994 + }, + { + "start": 9745.48, + "end": 9748.24, + "probability": 0.9952 + }, + { + "start": 9748.24, + "end": 9750.05, + "probability": 0.9976 + }, + { + "start": 9751.08, + "end": 9758.14, + "probability": 0.9355 + }, + { + "start": 9758.76, + "end": 9760.16, + "probability": 0.8838 + }, + { + "start": 9760.7, + "end": 9761.92, + "probability": 0.9717 + }, + { + "start": 9762.72, + "end": 9766.74, + "probability": 0.9978 + }, + { + "start": 9767.28, + "end": 9767.76, + "probability": 0.7553 + }, + { + "start": 9767.94, + "end": 9768.82, + "probability": 0.7775 + }, + { + "start": 9769.3, + "end": 9772.58, + "probability": 0.9507 + }, + { + "start": 9773.66, + "end": 9775.78, + "probability": 0.9512 + }, + { + "start": 9776.58, + "end": 9777.32, + "probability": 0.4376 + }, + { + "start": 9777.84, + "end": 9778.92, + "probability": 0.8174 + }, + { + "start": 9780.0, + "end": 9783.3, + "probability": 0.7516 + }, + { + "start": 9783.48, + "end": 9787.32, + "probability": 0.9451 + }, + { + "start": 9787.98, + "end": 9789.66, + "probability": 0.8589 + }, + { + "start": 9790.4, + "end": 9795.1, + "probability": 0.833 + }, + { + "start": 9795.24, + "end": 9797.6, + "probability": 0.9971 + }, + { + "start": 9798.22, + "end": 9801.12, + "probability": 0.7724 + }, + { + "start": 9801.68, + "end": 9805.98, + "probability": 0.9868 + }, + { + "start": 9806.54, + "end": 9807.86, + "probability": 0.7281 + }, + { + "start": 9811.04, + "end": 9812.72, + "probability": 0.7697 + }, + { + "start": 9821.9, + "end": 9822.04, + "probability": 0.4683 + }, + { + "start": 9822.22, + "end": 9822.72, + "probability": 0.1522 + }, + { + "start": 9822.94, + "end": 9823.12, + "probability": 0.1618 + }, + { + "start": 9823.12, + "end": 9823.12, + "probability": 0.1894 + }, + { + "start": 9823.12, + "end": 9823.14, + "probability": 0.0218 + }, + { + "start": 9823.14, + "end": 9823.14, + "probability": 0.0103 + }, + { + "start": 9830.16, + "end": 9830.26, + "probability": 0.4077 + }, + { + "start": 9835.74, + "end": 9836.16, + "probability": 0.2409 + }, + { + "start": 9838.46, + "end": 9839.63, + "probability": 0.9858 + }, + { + "start": 9840.68, + "end": 9841.9, + "probability": 0.5283 + }, + { + "start": 9843.02, + "end": 9846.94, + "probability": 0.9941 + }, + { + "start": 9848.04, + "end": 9850.48, + "probability": 0.5441 + }, + { + "start": 9850.54, + "end": 9851.31, + "probability": 0.3694 + }, + { + "start": 9851.48, + "end": 9851.86, + "probability": 0.4212 + }, + { + "start": 9851.88, + "end": 9853.04, + "probability": 0.9563 + }, + { + "start": 9853.54, + "end": 9854.72, + "probability": 0.6586 + }, + { + "start": 9855.06, + "end": 9857.8, + "probability": 0.6193 + }, + { + "start": 9858.92, + "end": 9861.76, + "probability": 0.9292 + }, + { + "start": 9862.7, + "end": 9864.78, + "probability": 0.845 + }, + { + "start": 9865.58, + "end": 9866.8, + "probability": 0.4977 + }, + { + "start": 9867.88, + "end": 9871.26, + "probability": 0.9858 + }, + { + "start": 9872.34, + "end": 9874.98, + "probability": 0.8153 + }, + { + "start": 9875.14, + "end": 9875.6, + "probability": 0.7965 + }, + { + "start": 9876.04, + "end": 9880.18, + "probability": 0.9481 + }, + { + "start": 9880.92, + "end": 9886.9, + "probability": 0.9585 + }, + { + "start": 9887.56, + "end": 9889.48, + "probability": 0.8073 + }, + { + "start": 9890.5, + "end": 9894.14, + "probability": 0.8964 + }, + { + "start": 9895.32, + "end": 9895.68, + "probability": 0.9142 + }, + { + "start": 9895.76, + "end": 9899.18, + "probability": 0.9552 + }, + { + "start": 9900.0, + "end": 9901.94, + "probability": 0.3497 + }, + { + "start": 9902.58, + "end": 9904.24, + "probability": 0.5032 + }, + { + "start": 9905.3, + "end": 9913.0, + "probability": 0.7433 + }, + { + "start": 9913.04, + "end": 9914.34, + "probability": 0.9553 + }, + { + "start": 9914.9, + "end": 9917.34, + "probability": 0.8127 + }, + { + "start": 9918.58, + "end": 9922.4, + "probability": 0.9386 + }, + { + "start": 9923.56, + "end": 9925.82, + "probability": 0.6154 + }, + { + "start": 9926.46, + "end": 9927.32, + "probability": 0.7866 + }, + { + "start": 9927.98, + "end": 9928.96, + "probability": 0.8619 + }, + { + "start": 9929.42, + "end": 9930.3, + "probability": 0.8632 + }, + { + "start": 9930.64, + "end": 9931.78, + "probability": 0.9691 + }, + { + "start": 9932.7, + "end": 9934.36, + "probability": 0.9123 + }, + { + "start": 9935.1, + "end": 9938.24, + "probability": 0.949 + }, + { + "start": 9938.88, + "end": 9941.76, + "probability": 0.7822 + }, + { + "start": 9942.7, + "end": 9948.14, + "probability": 0.9971 + }, + { + "start": 9948.2, + "end": 9949.06, + "probability": 0.9535 + }, + { + "start": 9950.2, + "end": 9950.3, + "probability": 0.3022 + }, + { + "start": 9950.48, + "end": 9950.48, + "probability": 0.4642 + }, + { + "start": 9951.0, + "end": 9955.42, + "probability": 0.8549 + }, + { + "start": 9956.06, + "end": 9956.68, + "probability": 0.8631 + }, + { + "start": 9956.9, + "end": 9957.42, + "probability": 0.8168 + }, + { + "start": 9957.5, + "end": 9958.74, + "probability": 0.8141 + }, + { + "start": 9959.62, + "end": 9961.78, + "probability": 0.9902 + }, + { + "start": 9962.52, + "end": 9963.2, + "probability": 0.7382 + }, + { + "start": 9963.28, + "end": 9963.98, + "probability": 0.9709 + }, + { + "start": 9964.58, + "end": 9965.7, + "probability": 0.772 + }, + { + "start": 9965.96, + "end": 9968.56, + "probability": 0.9688 + }, + { + "start": 9969.78, + "end": 9970.72, + "probability": 0.9289 + }, + { + "start": 9971.0, + "end": 9972.28, + "probability": 0.8589 + }, + { + "start": 9972.38, + "end": 9974.84, + "probability": 0.9916 + }, + { + "start": 9975.64, + "end": 9977.12, + "probability": 0.9103 + }, + { + "start": 9977.86, + "end": 9982.24, + "probability": 0.9096 + }, + { + "start": 9982.66, + "end": 9984.42, + "probability": 0.8962 + }, + { + "start": 9985.56, + "end": 9988.46, + "probability": 0.4947 + }, + { + "start": 9988.86, + "end": 9992.4, + "probability": 0.9834 + }, + { + "start": 9993.52, + "end": 9994.04, + "probability": 0.6439 + }, + { + "start": 9994.42, + "end": 9995.82, + "probability": 0.9265 + }, + { + "start": 9996.5, + "end": 9998.18, + "probability": 0.9598 + }, + { + "start": 9998.72, + "end": 10002.84, + "probability": 0.946 + }, + { + "start": 10003.9, + "end": 10004.98, + "probability": 0.9243 + }, + { + "start": 10011.0, + "end": 10012.22, + "probability": 0.8684 + }, + { + "start": 10012.9, + "end": 10016.68, + "probability": 0.9805 + }, + { + "start": 10017.36, + "end": 10018.86, + "probability": 0.702 + }, + { + "start": 10020.04, + "end": 10021.1, + "probability": 0.7336 + }, + { + "start": 10022.0, + "end": 10025.74, + "probability": 0.9834 + }, + { + "start": 10026.44, + "end": 10026.66, + "probability": 0.9021 + }, + { + "start": 10027.1, + "end": 10028.54, + "probability": 0.9899 + }, + { + "start": 10028.98, + "end": 10030.21, + "probability": 0.9678 + }, + { + "start": 10031.8, + "end": 10038.0, + "probability": 0.9327 + }, + { + "start": 10038.18, + "end": 10038.56, + "probability": 0.8022 + }, + { + "start": 10039.8, + "end": 10042.82, + "probability": 0.8977 + }, + { + "start": 10043.26, + "end": 10045.72, + "probability": 0.9559 + }, + { + "start": 10046.64, + "end": 10049.36, + "probability": 0.9175 + }, + { + "start": 10049.84, + "end": 10051.06, + "probability": 0.8375 + }, + { + "start": 10051.86, + "end": 10054.63, + "probability": 0.9957 + }, + { + "start": 10054.76, + "end": 10057.98, + "probability": 0.9911 + }, + { + "start": 10059.94, + "end": 10063.94, + "probability": 0.9685 + }, + { + "start": 10064.3, + "end": 10069.18, + "probability": 0.9926 + }, + { + "start": 10070.5, + "end": 10074.72, + "probability": 0.9333 + }, + { + "start": 10075.72, + "end": 10076.14, + "probability": 0.7463 + }, + { + "start": 10076.22, + "end": 10077.22, + "probability": 0.5659 + }, + { + "start": 10077.3, + "end": 10079.34, + "probability": 0.9937 + }, + { + "start": 10079.78, + "end": 10080.56, + "probability": 0.9883 + }, + { + "start": 10081.1, + "end": 10082.16, + "probability": 0.9792 + }, + { + "start": 10082.98, + "end": 10083.48, + "probability": 0.7771 + }, + { + "start": 10084.6, + "end": 10085.12, + "probability": 0.9437 + }, + { + "start": 10085.76, + "end": 10087.76, + "probability": 0.9901 + }, + { + "start": 10088.32, + "end": 10089.04, + "probability": 0.8088 + }, + { + "start": 10089.62, + "end": 10090.36, + "probability": 0.948 + }, + { + "start": 10091.18, + "end": 10091.36, + "probability": 0.8066 + }, + { + "start": 10091.88, + "end": 10092.96, + "probability": 0.8919 + }, + { + "start": 10093.5, + "end": 10094.96, + "probability": 0.8765 + }, + { + "start": 10095.52, + "end": 10097.5, + "probability": 0.9806 + }, + { + "start": 10097.68, + "end": 10099.54, + "probability": 0.9199 + }, + { + "start": 10100.12, + "end": 10102.4, + "probability": 0.9492 + }, + { + "start": 10103.34, + "end": 10106.06, + "probability": 0.984 + }, + { + "start": 10106.38, + "end": 10107.1, + "probability": 0.8429 + }, + { + "start": 10107.62, + "end": 10109.68, + "probability": 0.8595 + }, + { + "start": 10110.14, + "end": 10110.46, + "probability": 0.975 + }, + { + "start": 10111.76, + "end": 10114.79, + "probability": 0.9795 + }, + { + "start": 10115.84, + "end": 10118.78, + "probability": 0.8097 + }, + { + "start": 10118.94, + "end": 10124.18, + "probability": 0.9858 + }, + { + "start": 10124.84, + "end": 10126.1, + "probability": 0.8491 + }, + { + "start": 10126.16, + "end": 10128.2, + "probability": 0.9414 + }, + { + "start": 10128.82, + "end": 10133.44, + "probability": 0.6077 + }, + { + "start": 10133.52, + "end": 10136.24, + "probability": 0.8741 + }, + { + "start": 10136.48, + "end": 10137.64, + "probability": 0.7495 + }, + { + "start": 10138.3, + "end": 10138.86, + "probability": 0.7728 + }, + { + "start": 10139.02, + "end": 10140.43, + "probability": 0.0165 + }, + { + "start": 10140.66, + "end": 10142.28, + "probability": 0.4196 + }, + { + "start": 10142.28, + "end": 10143.42, + "probability": 0.2673 + }, + { + "start": 10143.88, + "end": 10144.8, + "probability": 0.3645 + }, + { + "start": 10145.06, + "end": 10146.44, + "probability": 0.9058 + }, + { + "start": 10146.64, + "end": 10147.4, + "probability": 0.9328 + }, + { + "start": 10147.44, + "end": 10149.56, + "probability": 0.9626 + }, + { + "start": 10150.18, + "end": 10152.72, + "probability": 0.9912 + }, + { + "start": 10153.3, + "end": 10154.14, + "probability": 0.5533 + }, + { + "start": 10154.88, + "end": 10155.4, + "probability": 0.7767 + }, + { + "start": 10157.34, + "end": 10160.54, + "probability": 0.9507 + }, + { + "start": 10162.64, + "end": 10164.6, + "probability": 0.981 + }, + { + "start": 10164.72, + "end": 10166.2, + "probability": 0.9626 + }, + { + "start": 10166.52, + "end": 10167.2, + "probability": 0.8929 + }, + { + "start": 10167.7, + "end": 10169.3, + "probability": 0.988 + }, + { + "start": 10170.12, + "end": 10171.78, + "probability": 0.8972 + }, + { + "start": 10172.16, + "end": 10176.04, + "probability": 0.9856 + }, + { + "start": 10176.66, + "end": 10179.32, + "probability": 0.9896 + }, + { + "start": 10179.8, + "end": 10182.54, + "probability": 0.9412 + }, + { + "start": 10182.6, + "end": 10183.64, + "probability": 0.973 + }, + { + "start": 10185.16, + "end": 10186.38, + "probability": 0.9167 + }, + { + "start": 10186.44, + "end": 10189.14, + "probability": 0.9203 + }, + { + "start": 10189.24, + "end": 10191.62, + "probability": 0.9917 + }, + { + "start": 10192.28, + "end": 10196.14, + "probability": 0.9977 + }, + { + "start": 10197.46, + "end": 10198.7, + "probability": 0.5903 + }, + { + "start": 10199.38, + "end": 10202.9, + "probability": 0.9531 + }, + { + "start": 10204.16, + "end": 10205.42, + "probability": 0.9963 + }, + { + "start": 10206.64, + "end": 10212.64, + "probability": 0.9346 + }, + { + "start": 10213.58, + "end": 10215.86, + "probability": 0.8156 + }, + { + "start": 10216.2, + "end": 10217.26, + "probability": 0.5465 + }, + { + "start": 10217.28, + "end": 10218.94, + "probability": 0.9282 + }, + { + "start": 10219.6, + "end": 10220.86, + "probability": 0.939 + }, + { + "start": 10221.54, + "end": 10222.44, + "probability": 0.7687 + }, + { + "start": 10222.72, + "end": 10225.14, + "probability": 0.9438 + }, + { + "start": 10225.34, + "end": 10226.18, + "probability": 0.884 + }, + { + "start": 10226.7, + "end": 10231.0, + "probability": 0.9966 + }, + { + "start": 10231.46, + "end": 10232.46, + "probability": 0.7217 + }, + { + "start": 10232.72, + "end": 10232.92, + "probability": 0.8424 + }, + { + "start": 10233.74, + "end": 10237.76, + "probability": 0.9941 + }, + { + "start": 10238.28, + "end": 10241.8, + "probability": 0.9937 + }, + { + "start": 10242.2, + "end": 10243.12, + "probability": 0.9977 + }, + { + "start": 10243.66, + "end": 10243.96, + "probability": 0.8794 + }, + { + "start": 10245.24, + "end": 10246.48, + "probability": 0.9839 + }, + { + "start": 10247.24, + "end": 10248.88, + "probability": 0.984 + }, + { + "start": 10249.6, + "end": 10251.74, + "probability": 0.9506 + }, + { + "start": 10252.18, + "end": 10253.36, + "probability": 0.9052 + }, + { + "start": 10253.94, + "end": 10256.7, + "probability": 0.6854 + }, + { + "start": 10257.65, + "end": 10259.88, + "probability": 0.9282 + }, + { + "start": 10260.66, + "end": 10261.42, + "probability": 0.9351 + }, + { + "start": 10261.56, + "end": 10264.66, + "probability": 0.9691 + }, + { + "start": 10264.9, + "end": 10265.48, + "probability": 0.8601 + }, + { + "start": 10265.78, + "end": 10266.32, + "probability": 0.7511 + }, + { + "start": 10266.86, + "end": 10268.42, + "probability": 0.6206 + }, + { + "start": 10269.08, + "end": 10270.56, + "probability": 0.9294 + }, + { + "start": 10271.32, + "end": 10275.94, + "probability": 0.8338 + }, + { + "start": 10276.28, + "end": 10277.12, + "probability": 0.9659 + }, + { + "start": 10277.66, + "end": 10279.24, + "probability": 0.9526 + }, + { + "start": 10279.38, + "end": 10281.2, + "probability": 0.9802 + }, + { + "start": 10282.08, + "end": 10285.22, + "probability": 0.9683 + }, + { + "start": 10285.64, + "end": 10285.88, + "probability": 0.5819 + }, + { + "start": 10285.92, + "end": 10288.76, + "probability": 0.9922 + }, + { + "start": 10289.7, + "end": 10293.5, + "probability": 0.9352 + }, + { + "start": 10294.66, + "end": 10295.4, + "probability": 0.0081 + }, + { + "start": 10296.36, + "end": 10299.64, + "probability": 0.9152 + }, + { + "start": 10299.82, + "end": 10299.98, + "probability": 0.2673 + }, + { + "start": 10302.18, + "end": 10303.98, + "probability": 0.6617 + }, + { + "start": 10304.8, + "end": 10306.55, + "probability": 0.9038 + }, + { + "start": 10306.88, + "end": 10307.18, + "probability": 0.7983 + }, + { + "start": 10307.96, + "end": 10308.39, + "probability": 0.9575 + }, + { + "start": 10309.66, + "end": 10310.52, + "probability": 0.9945 + }, + { + "start": 10311.56, + "end": 10312.94, + "probability": 0.9919 + }, + { + "start": 10325.96, + "end": 10326.86, + "probability": 0.6013 + }, + { + "start": 10326.86, + "end": 10327.34, + "probability": 0.0072 + }, + { + "start": 10336.7, + "end": 10340.4, + "probability": 0.1542 + }, + { + "start": 10340.4, + "end": 10342.3, + "probability": 0.097 + }, + { + "start": 10342.3, + "end": 10342.3, + "probability": 0.1436 + }, + { + "start": 10342.3, + "end": 10342.79, + "probability": 0.2888 + }, + { + "start": 10346.19, + "end": 10349.7, + "probability": 0.6582 + }, + { + "start": 10350.08, + "end": 10350.88, + "probability": 0.4174 + }, + { + "start": 10351.66, + "end": 10354.46, + "probability": 0.8058 + }, + { + "start": 10356.48, + "end": 10357.14, + "probability": 0.8291 + }, + { + "start": 10357.44, + "end": 10359.34, + "probability": 0.5862 + }, + { + "start": 10360.8, + "end": 10364.26, + "probability": 0.9396 + }, + { + "start": 10365.44, + "end": 10369.44, + "probability": 0.9808 + }, + { + "start": 10370.86, + "end": 10373.42, + "probability": 0.9873 + }, + { + "start": 10374.22, + "end": 10376.68, + "probability": 0.9512 + }, + { + "start": 10377.24, + "end": 10378.48, + "probability": 0.9246 + }, + { + "start": 10379.14, + "end": 10381.66, + "probability": 0.821 + }, + { + "start": 10382.04, + "end": 10382.46, + "probability": 0.9584 + }, + { + "start": 10382.58, + "end": 10384.27, + "probability": 0.5601 + }, + { + "start": 10386.1, + "end": 10386.82, + "probability": 0.8614 + }, + { + "start": 10387.2, + "end": 10390.08, + "probability": 0.1075 + }, + { + "start": 10390.08, + "end": 10390.46, + "probability": 0.0985 + }, + { + "start": 10390.88, + "end": 10394.94, + "probability": 0.9683 + }, + { + "start": 10396.68, + "end": 10397.96, + "probability": 0.7472 + }, + { + "start": 10398.58, + "end": 10402.24, + "probability": 0.9614 + }, + { + "start": 10402.92, + "end": 10404.52, + "probability": 0.99 + }, + { + "start": 10405.04, + "end": 10405.8, + "probability": 0.999 + }, + { + "start": 10406.36, + "end": 10408.64, + "probability": 0.5446 + }, + { + "start": 10408.88, + "end": 10410.66, + "probability": 0.969 + }, + { + "start": 10411.62, + "end": 10413.24, + "probability": 0.9189 + }, + { + "start": 10414.18, + "end": 10414.42, + "probability": 0.2319 + }, + { + "start": 10414.9, + "end": 10418.5, + "probability": 0.9933 + }, + { + "start": 10419.78, + "end": 10420.8, + "probability": 0.6635 + }, + { + "start": 10421.12, + "end": 10423.5, + "probability": 0.9237 + }, + { + "start": 10423.5, + "end": 10427.38, + "probability": 0.9617 + }, + { + "start": 10427.46, + "end": 10428.94, + "probability": 0.8318 + }, + { + "start": 10429.42, + "end": 10430.4, + "probability": 0.79 + }, + { + "start": 10431.2, + "end": 10431.22, + "probability": 0.7358 + }, + { + "start": 10436.36, + "end": 10439.1, + "probability": 0.9927 + }, + { + "start": 10439.4, + "end": 10441.18, + "probability": 0.9005 + }, + { + "start": 10441.6, + "end": 10442.0, + "probability": 0.7077 + }, + { + "start": 10442.5, + "end": 10443.59, + "probability": 0.7009 + }, + { + "start": 10444.52, + "end": 10445.38, + "probability": 0.5718 + }, + { + "start": 10445.48, + "end": 10445.74, + "probability": 0.7007 + }, + { + "start": 10447.4, + "end": 10447.9, + "probability": 0.7796 + }, + { + "start": 10448.52, + "end": 10449.72, + "probability": 0.696 + }, + { + "start": 10452.0, + "end": 10453.66, + "probability": 0.6221 + }, + { + "start": 10461.54, + "end": 10463.56, + "probability": 0.8068 + }, + { + "start": 10463.86, + "end": 10464.58, + "probability": 0.3805 + }, + { + "start": 10465.08, + "end": 10466.5, + "probability": 0.9303 + }, + { + "start": 10467.08, + "end": 10468.18, + "probability": 0.4984 + }, + { + "start": 10483.56, + "end": 10485.94, + "probability": 0.9985 + }, + { + "start": 10487.08, + "end": 10487.96, + "probability": 0.601 + }, + { + "start": 10487.96, + "end": 10487.96, + "probability": 0.8972 + }, + { + "start": 10488.2, + "end": 10488.2, + "probability": 0.863 + }, + { + "start": 10488.44, + "end": 10488.54, + "probability": 0.7046 + }, + { + "start": 10488.58, + "end": 10489.24, + "probability": 0.7612 + }, + { + "start": 10489.44, + "end": 10490.54, + "probability": 0.8879 + }, + { + "start": 10490.84, + "end": 10492.22, + "probability": 0.9791 + }, + { + "start": 10493.4, + "end": 10494.24, + "probability": 0.9597 + }, + { + "start": 10494.54, + "end": 10495.42, + "probability": 0.8647 + }, + { + "start": 10497.1, + "end": 10498.96, + "probability": 0.9735 + }, + { + "start": 10500.36, + "end": 10500.86, + "probability": 0.7897 + }, + { + "start": 10502.78, + "end": 10503.44, + "probability": 0.7249 + }, + { + "start": 10505.74, + "end": 10507.6, + "probability": 0.5119 + }, + { + "start": 10508.38, + "end": 10510.38, + "probability": 0.9154 + }, + { + "start": 10511.8, + "end": 10514.2, + "probability": 0.8398 + }, + { + "start": 10515.26, + "end": 10515.96, + "probability": 0.8278 + }, + { + "start": 10517.1, + "end": 10519.58, + "probability": 0.9746 + }, + { + "start": 10521.06, + "end": 10521.42, + "probability": 0.8831 + }, + { + "start": 10522.66, + "end": 10523.52, + "probability": 0.841 + }, + { + "start": 10524.78, + "end": 10526.8, + "probability": 0.9762 + }, + { + "start": 10529.68, + "end": 10537.28, + "probability": 0.7243 + }, + { + "start": 10537.42, + "end": 10539.14, + "probability": 0.6162 + }, + { + "start": 10539.36, + "end": 10540.4, + "probability": 0.5312 + }, + { + "start": 10542.48, + "end": 10543.02, + "probability": 0.6942 + }, + { + "start": 10544.4, + "end": 10546.74, + "probability": 0.9698 + }, + { + "start": 10549.88, + "end": 10551.78, + "probability": 0.8473 + }, + { + "start": 10552.4, + "end": 10555.06, + "probability": 0.9901 + }, + { + "start": 10556.16, + "end": 10557.52, + "probability": 0.9985 + }, + { + "start": 10560.36, + "end": 10562.84, + "probability": 0.9596 + }, + { + "start": 10564.98, + "end": 10566.08, + "probability": 0.931 + }, + { + "start": 10567.06, + "end": 10567.78, + "probability": 0.6768 + }, + { + "start": 10569.18, + "end": 10569.78, + "probability": 0.6343 + }, + { + "start": 10570.88, + "end": 10571.27, + "probability": 0.8955 + }, + { + "start": 10573.04, + "end": 10574.23, + "probability": 0.8726 + }, + { + "start": 10575.02, + "end": 10579.86, + "probability": 0.9137 + }, + { + "start": 10580.48, + "end": 10583.48, + "probability": 0.5563 + }, + { + "start": 10585.7, + "end": 10587.2, + "probability": 0.995 + }, + { + "start": 10588.2, + "end": 10589.36, + "probability": 0.9968 + }, + { + "start": 10590.16, + "end": 10590.6, + "probability": 0.8928 + }, + { + "start": 10592.72, + "end": 10594.32, + "probability": 0.9763 + }, + { + "start": 10596.12, + "end": 10597.86, + "probability": 0.9575 + }, + { + "start": 10598.96, + "end": 10600.94, + "probability": 0.6755 + }, + { + "start": 10600.98, + "end": 10601.88, + "probability": 0.7473 + }, + { + "start": 10602.16, + "end": 10605.44, + "probability": 0.9938 + }, + { + "start": 10607.22, + "end": 10608.46, + "probability": 0.954 + }, + { + "start": 10609.9, + "end": 10611.8, + "probability": 0.7672 + }, + { + "start": 10613.64, + "end": 10615.78, + "probability": 0.9634 + }, + { + "start": 10617.48, + "end": 10618.08, + "probability": 0.5832 + }, + { + "start": 10618.74, + "end": 10619.7, + "probability": 0.5142 + }, + { + "start": 10620.56, + "end": 10621.38, + "probability": 0.8681 + }, + { + "start": 10623.2, + "end": 10627.28, + "probability": 0.9507 + }, + { + "start": 10628.52, + "end": 10629.98, + "probability": 0.9368 + }, + { + "start": 10631.46, + "end": 10631.95, + "probability": 0.6646 + }, + { + "start": 10632.66, + "end": 10636.72, + "probability": 0.8016 + }, + { + "start": 10637.38, + "end": 10638.04, + "probability": 0.5905 + }, + { + "start": 10638.9, + "end": 10639.84, + "probability": 0.9701 + }, + { + "start": 10640.36, + "end": 10643.69, + "probability": 0.9405 + }, + { + "start": 10646.02, + "end": 10653.74, + "probability": 0.9843 + }, + { + "start": 10655.5, + "end": 10657.8, + "probability": 0.8611 + }, + { + "start": 10659.0, + "end": 10659.7, + "probability": 0.4009 + }, + { + "start": 10660.78, + "end": 10664.24, + "probability": 0.9945 + }, + { + "start": 10665.96, + "end": 10666.88, + "probability": 0.9712 + }, + { + "start": 10668.12, + "end": 10671.26, + "probability": 0.9739 + }, + { + "start": 10673.44, + "end": 10674.7, + "probability": 0.7821 + }, + { + "start": 10675.6, + "end": 10677.8, + "probability": 0.7935 + }, + { + "start": 10679.76, + "end": 10683.82, + "probability": 0.8323 + }, + { + "start": 10685.78, + "end": 10686.68, + "probability": 0.5684 + }, + { + "start": 10687.94, + "end": 10691.96, + "probability": 0.401 + }, + { + "start": 10693.52, + "end": 10698.32, + "probability": 0.9265 + }, + { + "start": 10699.54, + "end": 10700.3, + "probability": 0.5715 + }, + { + "start": 10701.82, + "end": 10703.14, + "probability": 0.5774 + }, + { + "start": 10704.24, + "end": 10705.44, + "probability": 0.6056 + }, + { + "start": 10706.62, + "end": 10709.22, + "probability": 0.8455 + }, + { + "start": 10710.58, + "end": 10711.96, + "probability": 0.8743 + }, + { + "start": 10713.36, + "end": 10715.94, + "probability": 0.9791 + }, + { + "start": 10718.08, + "end": 10718.8, + "probability": 0.8014 + }, + { + "start": 10721.3, + "end": 10721.88, + "probability": 0.766 + }, + { + "start": 10722.98, + "end": 10724.34, + "probability": 0.9201 + }, + { + "start": 10725.28, + "end": 10726.1, + "probability": 0.8444 + }, + { + "start": 10727.52, + "end": 10729.54, + "probability": 0.899 + }, + { + "start": 10730.38, + "end": 10733.48, + "probability": 0.9485 + }, + { + "start": 10733.56, + "end": 10736.52, + "probability": 0.9068 + }, + { + "start": 10737.54, + "end": 10739.16, + "probability": 0.9165 + }, + { + "start": 10739.94, + "end": 10742.12, + "probability": 0.9531 + }, + { + "start": 10742.64, + "end": 10743.62, + "probability": 0.8022 + }, + { + "start": 10744.66, + "end": 10745.78, + "probability": 0.9949 + }, + { + "start": 10746.9, + "end": 10749.68, + "probability": 0.988 + }, + { + "start": 10751.96, + "end": 10755.1, + "probability": 0.9421 + }, + { + "start": 10755.22, + "end": 10755.6, + "probability": 0.7646 + }, + { + "start": 10756.02, + "end": 10758.4, + "probability": 0.7123 + }, + { + "start": 10759.46, + "end": 10760.24, + "probability": 0.8765 + }, + { + "start": 10761.24, + "end": 10763.52, + "probability": 0.8111 + }, + { + "start": 10764.58, + "end": 10765.68, + "probability": 0.9597 + }, + { + "start": 10766.88, + "end": 10772.14, + "probability": 0.9871 + }, + { + "start": 10773.46, + "end": 10775.82, + "probability": 0.9686 + }, + { + "start": 10776.6, + "end": 10779.56, + "probability": 0.8027 + }, + { + "start": 10780.52, + "end": 10781.38, + "probability": 0.6714 + }, + { + "start": 10782.24, + "end": 10783.44, + "probability": 0.9822 + }, + { + "start": 10784.88, + "end": 10785.92, + "probability": 0.9617 + }, + { + "start": 10786.96, + "end": 10787.44, + "probability": 0.5394 + }, + { + "start": 10788.92, + "end": 10790.4, + "probability": 0.9859 + }, + { + "start": 10791.86, + "end": 10792.02, + "probability": 0.9856 + }, + { + "start": 10793.34, + "end": 10794.44, + "probability": 0.333 + }, + { + "start": 10794.44, + "end": 10797.26, + "probability": 0.7517 + }, + { + "start": 10798.12, + "end": 10799.03, + "probability": 0.6708 + }, + { + "start": 10800.46, + "end": 10800.84, + "probability": 0.6416 + }, + { + "start": 10801.8, + "end": 10805.52, + "probability": 0.988 + }, + { + "start": 10806.2, + "end": 10810.52, + "probability": 0.9844 + }, + { + "start": 10811.08, + "end": 10813.18, + "probability": 0.9642 + }, + { + "start": 10813.9, + "end": 10814.38, + "probability": 0.8997 + }, + { + "start": 10815.24, + "end": 10817.18, + "probability": 0.9753 + }, + { + "start": 10817.38, + "end": 10817.6, + "probability": 0.7659 + }, + { + "start": 10819.14, + "end": 10820.66, + "probability": 0.8538 + }, + { + "start": 10821.18, + "end": 10822.7, + "probability": 0.8111 + }, + { + "start": 10824.5, + "end": 10827.16, + "probability": 0.6482 + }, + { + "start": 10829.32, + "end": 10830.24, + "probability": 0.9915 + }, + { + "start": 10831.18, + "end": 10832.98, + "probability": 0.9685 + }, + { + "start": 10834.24, + "end": 10835.59, + "probability": 0.7201 + }, + { + "start": 10837.3, + "end": 10841.42, + "probability": 0.8243 + }, + { + "start": 10841.42, + "end": 10843.2, + "probability": 0.8764 + }, + { + "start": 10845.58, + "end": 10847.4, + "probability": 0.915 + }, + { + "start": 10847.98, + "end": 10849.02, + "probability": 0.5348 + }, + { + "start": 10849.9, + "end": 10852.52, + "probability": 0.8475 + }, + { + "start": 10853.78, + "end": 10854.38, + "probability": 0.2947 + }, + { + "start": 10857.46, + "end": 10860.34, + "probability": 0.4257 + }, + { + "start": 10860.94, + "end": 10864.14, + "probability": 0.7301 + }, + { + "start": 10865.66, + "end": 10868.96, + "probability": 0.9463 + }, + { + "start": 10869.56, + "end": 10870.74, + "probability": 0.9612 + }, + { + "start": 10874.26, + "end": 10874.98, + "probability": 0.2854 + }, + { + "start": 10875.76, + "end": 10879.0, + "probability": 0.8569 + }, + { + "start": 10882.76, + "end": 10883.92, + "probability": 0.9108 + }, + { + "start": 10884.9, + "end": 10885.6, + "probability": 0.7686 + }, + { + "start": 10886.12, + "end": 10889.38, + "probability": 0.9231 + }, + { + "start": 10889.68, + "end": 10890.6, + "probability": 0.8123 + }, + { + "start": 10890.72, + "end": 10891.48, + "probability": 0.48 + }, + { + "start": 10892.84, + "end": 10893.5, + "probability": 0.5165 + }, + { + "start": 10895.0, + "end": 10896.5, + "probability": 0.5899 + }, + { + "start": 10897.54, + "end": 10898.08, + "probability": 0.9294 + }, + { + "start": 10898.82, + "end": 10903.16, + "probability": 0.8154 + }, + { + "start": 10906.24, + "end": 10906.72, + "probability": 0.9896 + }, + { + "start": 10907.72, + "end": 10909.84, + "probability": 0.9935 + }, + { + "start": 10910.76, + "end": 10912.18, + "probability": 0.9899 + }, + { + "start": 10913.3, + "end": 10914.34, + "probability": 0.9729 + }, + { + "start": 10915.54, + "end": 10916.54, + "probability": 0.902 + }, + { + "start": 10916.96, + "end": 10917.37, + "probability": 0.9626 + }, + { + "start": 10917.64, + "end": 10918.18, + "probability": 0.4562 + }, + { + "start": 10918.64, + "end": 10919.58, + "probability": 0.4012 + }, + { + "start": 10920.84, + "end": 10921.38, + "probability": 0.7513 + }, + { + "start": 10921.84, + "end": 10922.62, + "probability": 0.474 + }, + { + "start": 10922.98, + "end": 10927.12, + "probability": 0.7827 + }, + { + "start": 10927.24, + "end": 10928.14, + "probability": 0.3097 + }, + { + "start": 10928.42, + "end": 10928.64, + "probability": 0.8882 + }, + { + "start": 10930.28, + "end": 10933.16, + "probability": 0.8451 + }, + { + "start": 10934.98, + "end": 10938.46, + "probability": 0.9793 + }, + { + "start": 10941.1, + "end": 10942.06, + "probability": 0.988 + }, + { + "start": 10944.24, + "end": 10945.18, + "probability": 0.9767 + }, + { + "start": 10945.66, + "end": 10946.36, + "probability": 0.7581 + }, + { + "start": 10946.42, + "end": 10947.8, + "probability": 0.9109 + }, + { + "start": 10949.0, + "end": 10951.12, + "probability": 0.9614 + }, + { + "start": 10951.8, + "end": 10952.86, + "probability": 0.7759 + }, + { + "start": 10955.38, + "end": 10955.94, + "probability": 0.9659 + }, + { + "start": 10956.74, + "end": 10957.32, + "probability": 0.9389 + }, + { + "start": 10958.28, + "end": 10959.94, + "probability": 0.9569 + }, + { + "start": 10961.32, + "end": 10961.72, + "probability": 0.5558 + }, + { + "start": 10963.04, + "end": 10965.48, + "probability": 0.9395 + }, + { + "start": 10967.92, + "end": 10969.04, + "probability": 0.9946 + }, + { + "start": 10971.24, + "end": 10973.68, + "probability": 0.8494 + }, + { + "start": 10975.08, + "end": 10977.66, + "probability": 0.9913 + }, + { + "start": 10978.86, + "end": 10981.02, + "probability": 0.9371 + }, + { + "start": 10982.84, + "end": 10985.02, + "probability": 0.994 + }, + { + "start": 10986.12, + "end": 10988.42, + "probability": 0.5652 + }, + { + "start": 10990.14, + "end": 10993.32, + "probability": 0.6735 + }, + { + "start": 10994.44, + "end": 10995.82, + "probability": 0.4962 + }, + { + "start": 10997.84, + "end": 10999.16, + "probability": 0.9883 + }, + { + "start": 10999.96, + "end": 11002.26, + "probability": 0.9785 + }, + { + "start": 11002.94, + "end": 11006.92, + "probability": 0.6784 + }, + { + "start": 11007.64, + "end": 11011.76, + "probability": 0.9746 + }, + { + "start": 11014.28, + "end": 11016.38, + "probability": 0.9989 + }, + { + "start": 11017.88, + "end": 11018.46, + "probability": 0.4358 + }, + { + "start": 11019.48, + "end": 11023.26, + "probability": 0.9741 + }, + { + "start": 11023.84, + "end": 11024.62, + "probability": 0.8951 + }, + { + "start": 11026.34, + "end": 11028.14, + "probability": 0.999 + }, + { + "start": 11029.12, + "end": 11034.84, + "probability": 0.9841 + }, + { + "start": 11035.9, + "end": 11036.56, + "probability": 0.9837 + }, + { + "start": 11037.14, + "end": 11039.16, + "probability": 0.9037 + }, + { + "start": 11040.4, + "end": 11041.36, + "probability": 0.6788 + }, + { + "start": 11042.44, + "end": 11043.04, + "probability": 0.6964 + }, + { + "start": 11043.78, + "end": 11045.73, + "probability": 0.474 + }, + { + "start": 11047.56, + "end": 11049.76, + "probability": 0.6548 + }, + { + "start": 11050.62, + "end": 11052.37, + "probability": 0.6011 + }, + { + "start": 11054.18, + "end": 11058.55, + "probability": 0.9971 + }, + { + "start": 11061.26, + "end": 11061.54, + "probability": 0.5005 + }, + { + "start": 11062.08, + "end": 11064.8, + "probability": 0.8331 + }, + { + "start": 11064.86, + "end": 11065.62, + "probability": 0.6723 + }, + { + "start": 11066.12, + "end": 11069.12, + "probability": 0.9818 + }, + { + "start": 11069.86, + "end": 11071.02, + "probability": 0.778 + }, + { + "start": 11071.2, + "end": 11071.64, + "probability": 0.365 + }, + { + "start": 11072.5, + "end": 11078.14, + "probability": 0.9085 + }, + { + "start": 11079.22, + "end": 11084.38, + "probability": 0.9959 + }, + { + "start": 11085.1, + "end": 11089.82, + "probability": 0.9861 + }, + { + "start": 11090.26, + "end": 11091.7, + "probability": 0.8609 + }, + { + "start": 11092.16, + "end": 11093.08, + "probability": 0.9849 + }, + { + "start": 11093.18, + "end": 11093.66, + "probability": 0.9827 + }, + { + "start": 11094.78, + "end": 11095.46, + "probability": 0.9586 + }, + { + "start": 11096.24, + "end": 11098.36, + "probability": 0.7951 + }, + { + "start": 11098.92, + "end": 11099.54, + "probability": 0.8928 + }, + { + "start": 11100.24, + "end": 11101.5, + "probability": 0.9912 + }, + { + "start": 11101.96, + "end": 11106.3, + "probability": 0.9857 + }, + { + "start": 11107.64, + "end": 11108.14, + "probability": 0.7943 + }, + { + "start": 11109.32, + "end": 11111.5, + "probability": 0.9284 + }, + { + "start": 11112.46, + "end": 11113.22, + "probability": 0.7378 + }, + { + "start": 11114.34, + "end": 11116.72, + "probability": 0.9774 + }, + { + "start": 11117.2, + "end": 11120.18, + "probability": 0.9466 + }, + { + "start": 11122.74, + "end": 11124.96, + "probability": 0.6569 + }, + { + "start": 11128.1, + "end": 11128.66, + "probability": 0.5961 + }, + { + "start": 11129.32, + "end": 11131.08, + "probability": 0.6769 + }, + { + "start": 11133.26, + "end": 11134.86, + "probability": 0.7537 + }, + { + "start": 11136.86, + "end": 11139.02, + "probability": 0.6172 + }, + { + "start": 11142.7, + "end": 11147.02, + "probability": 0.9014 + }, + { + "start": 11147.9, + "end": 11148.72, + "probability": 0.9084 + }, + { + "start": 11151.24, + "end": 11152.96, + "probability": 0.7091 + }, + { + "start": 11155.26, + "end": 11156.8, + "probability": 0.8254 + }, + { + "start": 11157.76, + "end": 11159.71, + "probability": 0.7884 + }, + { + "start": 11161.14, + "end": 11164.74, + "probability": 0.8898 + }, + { + "start": 11165.28, + "end": 11165.48, + "probability": 0.6592 + }, + { + "start": 11166.26, + "end": 11166.89, + "probability": 0.6983 + }, + { + "start": 11167.32, + "end": 11167.98, + "probability": 0.6262 + }, + { + "start": 11168.02, + "end": 11173.16, + "probability": 0.8227 + }, + { + "start": 11173.96, + "end": 11174.52, + "probability": 0.7979 + }, + { + "start": 11175.26, + "end": 11177.8, + "probability": 0.9915 + }, + { + "start": 11178.5, + "end": 11179.18, + "probability": 0.9808 + }, + { + "start": 11180.6, + "end": 11182.28, + "probability": 0.7664 + }, + { + "start": 11183.24, + "end": 11185.04, + "probability": 0.7061 + }, + { + "start": 11185.98, + "end": 11189.86, + "probability": 0.6961 + }, + { + "start": 11190.92, + "end": 11191.88, + "probability": 0.9099 + }, + { + "start": 11193.48, + "end": 11196.5, + "probability": 0.2231 + }, + { + "start": 11197.74, + "end": 11199.15, + "probability": 0.9058 + }, + { + "start": 11201.38, + "end": 11203.82, + "probability": 0.8867 + }, + { + "start": 11204.84, + "end": 11207.72, + "probability": 0.7081 + }, + { + "start": 11209.12, + "end": 11209.84, + "probability": 0.6107 + }, + { + "start": 11210.86, + "end": 11211.58, + "probability": 0.9424 + }, + { + "start": 11212.34, + "end": 11215.04, + "probability": 0.8878 + }, + { + "start": 11218.76, + "end": 11223.28, + "probability": 0.7867 + }, + { + "start": 11224.6, + "end": 11225.92, + "probability": 0.9592 + }, + { + "start": 11227.82, + "end": 11234.1, + "probability": 0.5777 + }, + { + "start": 11234.22, + "end": 11235.46, + "probability": 0.8704 + }, + { + "start": 11236.26, + "end": 11237.54, + "probability": 0.8558 + }, + { + "start": 11240.5, + "end": 11243.08, + "probability": 0.9852 + }, + { + "start": 11244.24, + "end": 11244.66, + "probability": 0.6345 + }, + { + "start": 11246.06, + "end": 11247.58, + "probability": 0.7239 + }, + { + "start": 11251.2, + "end": 11252.44, + "probability": 0.6464 + }, + { + "start": 11253.94, + "end": 11255.18, + "probability": 0.8465 + }, + { + "start": 11256.32, + "end": 11257.3, + "probability": 0.8059 + }, + { + "start": 11258.56, + "end": 11265.24, + "probability": 0.9236 + }, + { + "start": 11265.86, + "end": 11268.9, + "probability": 0.981 + }, + { + "start": 11269.8, + "end": 11270.8, + "probability": 0.5144 + }, + { + "start": 11271.78, + "end": 11273.04, + "probability": 0.5522 + }, + { + "start": 11273.68, + "end": 11275.6, + "probability": 0.8657 + }, + { + "start": 11276.08, + "end": 11277.2, + "probability": 0.8905 + }, + { + "start": 11277.64, + "end": 11278.42, + "probability": 0.8162 + }, + { + "start": 11279.06, + "end": 11282.96, + "probability": 0.9681 + }, + { + "start": 11283.42, + "end": 11284.72, + "probability": 0.6037 + }, + { + "start": 11285.26, + "end": 11285.26, + "probability": 0.2793 + }, + { + "start": 11285.26, + "end": 11286.96, + "probability": 0.7109 + }, + { + "start": 11287.42, + "end": 11287.98, + "probability": 0.9878 + }, + { + "start": 11288.1, + "end": 11294.02, + "probability": 0.9618 + }, + { + "start": 11294.54, + "end": 11295.84, + "probability": 0.9661 + }, + { + "start": 11297.02, + "end": 11298.34, + "probability": 0.7999 + }, + { + "start": 11300.02, + "end": 11305.2, + "probability": 0.8138 + }, + { + "start": 11306.94, + "end": 11308.1, + "probability": 0.9486 + }, + { + "start": 11309.32, + "end": 11310.44, + "probability": 0.1641 + }, + { + "start": 11312.14, + "end": 11313.08, + "probability": 0.776 + }, + { + "start": 11313.66, + "end": 11314.38, + "probability": 0.9819 + }, + { + "start": 11315.68, + "end": 11317.18, + "probability": 0.8684 + }, + { + "start": 11317.3, + "end": 11317.62, + "probability": 0.8708 + }, + { + "start": 11317.7, + "end": 11318.04, + "probability": 0.968 + }, + { + "start": 11318.16, + "end": 11318.28, + "probability": 0.5092 + }, + { + "start": 11318.5, + "end": 11318.9, + "probability": 0.793 + }, + { + "start": 11320.1, + "end": 11322.3, + "probability": 0.9535 + }, + { + "start": 11322.38, + "end": 11323.52, + "probability": 0.6807 + }, + { + "start": 11323.84, + "end": 11324.86, + "probability": 0.7569 + }, + { + "start": 11325.8, + "end": 11326.98, + "probability": 0.9778 + }, + { + "start": 11327.64, + "end": 11329.06, + "probability": 0.9917 + }, + { + "start": 11329.4, + "end": 11330.12, + "probability": 0.8773 + }, + { + "start": 11332.1, + "end": 11334.74, + "probability": 0.9844 + }, + { + "start": 11335.58, + "end": 11336.76, + "probability": 0.9243 + }, + { + "start": 11339.6, + "end": 11344.34, + "probability": 0.9518 + }, + { + "start": 11346.46, + "end": 11347.74, + "probability": 0.5896 + }, + { + "start": 11349.36, + "end": 11350.72, + "probability": 0.899 + }, + { + "start": 11352.04, + "end": 11353.0, + "probability": 0.95 + }, + { + "start": 11355.0, + "end": 11358.48, + "probability": 0.9375 + }, + { + "start": 11358.94, + "end": 11359.74, + "probability": 0.7731 + }, + { + "start": 11359.88, + "end": 11364.38, + "probability": 0.9822 + }, + { + "start": 11365.58, + "end": 11367.16, + "probability": 0.8633 + }, + { + "start": 11367.86, + "end": 11368.2, + "probability": 0.638 + }, + { + "start": 11369.38, + "end": 11369.94, + "probability": 0.864 + }, + { + "start": 11371.16, + "end": 11372.42, + "probability": 0.9341 + }, + { + "start": 11373.16, + "end": 11375.46, + "probability": 0.9602 + }, + { + "start": 11377.52, + "end": 11378.98, + "probability": 0.9692 + }, + { + "start": 11380.12, + "end": 11381.8, + "probability": 0.8799 + }, + { + "start": 11382.34, + "end": 11382.72, + "probability": 0.7945 + }, + { + "start": 11384.38, + "end": 11385.8, + "probability": 0.9333 + }, + { + "start": 11386.82, + "end": 11387.62, + "probability": 0.3879 + }, + { + "start": 11388.92, + "end": 11389.58, + "probability": 0.9274 + }, + { + "start": 11390.32, + "end": 11390.78, + "probability": 0.9521 + }, + { + "start": 11391.36, + "end": 11392.42, + "probability": 0.9956 + }, + { + "start": 11393.4, + "end": 11395.98, + "probability": 0.9353 + }, + { + "start": 11396.62, + "end": 11398.78, + "probability": 0.9941 + }, + { + "start": 11399.92, + "end": 11402.48, + "probability": 0.8624 + }, + { + "start": 11403.46, + "end": 11405.46, + "probability": 0.9308 + }, + { + "start": 11406.1, + "end": 11407.82, + "probability": 0.9929 + }, + { + "start": 11409.86, + "end": 11411.72, + "probability": 0.7148 + }, + { + "start": 11412.12, + "end": 11414.68, + "probability": 0.828 + }, + { + "start": 11422.9, + "end": 11423.22, + "probability": 0.1329 + }, + { + "start": 11435.47, + "end": 11439.04, + "probability": 0.333 + }, + { + "start": 11439.22, + "end": 11441.24, + "probability": 0.167 + }, + { + "start": 11441.68, + "end": 11442.8, + "probability": 0.7343 + }, + { + "start": 11443.12, + "end": 11445.15, + "probability": 0.7441 + }, + { + "start": 11447.94, + "end": 11451.04, + "probability": 0.7443 + }, + { + "start": 11452.24, + "end": 11456.46, + "probability": 0.8755 + }, + { + "start": 11456.72, + "end": 11461.1, + "probability": 0.8763 + }, + { + "start": 11461.3, + "end": 11462.2, + "probability": 0.6973 + }, + { + "start": 11462.76, + "end": 11470.49, + "probability": 0.9773 + }, + { + "start": 11471.06, + "end": 11474.98, + "probability": 0.925 + }, + { + "start": 11475.5, + "end": 11480.88, + "probability": 0.9976 + }, + { + "start": 11481.52, + "end": 11484.08, + "probability": 0.9722 + }, + { + "start": 11484.8, + "end": 11491.48, + "probability": 0.9933 + }, + { + "start": 11491.84, + "end": 11493.66, + "probability": 0.9925 + }, + { + "start": 11494.2, + "end": 11498.14, + "probability": 0.9937 + }, + { + "start": 11498.84, + "end": 11500.06, + "probability": 0.6478 + }, + { + "start": 11500.1, + "end": 11500.85, + "probability": 0.9026 + }, + { + "start": 11501.22, + "end": 11505.86, + "probability": 0.9707 + }, + { + "start": 11506.82, + "end": 11511.76, + "probability": 0.9028 + }, + { + "start": 11512.0, + "end": 11516.66, + "probability": 0.9954 + }, + { + "start": 11517.4, + "end": 11526.38, + "probability": 0.9871 + }, + { + "start": 11526.38, + "end": 11533.1, + "probability": 0.9984 + }, + { + "start": 11533.98, + "end": 11536.6, + "probability": 0.8967 + }, + { + "start": 11537.28, + "end": 11539.58, + "probability": 0.9662 + }, + { + "start": 11540.12, + "end": 11544.62, + "probability": 0.986 + }, + { + "start": 11545.8, + "end": 11554.66, + "probability": 0.971 + }, + { + "start": 11555.68, + "end": 11562.16, + "probability": 0.8136 + }, + { + "start": 11566.52, + "end": 11568.08, + "probability": 0.7899 + }, + { + "start": 11568.96, + "end": 11571.14, + "probability": 0.9536 + }, + { + "start": 11572.66, + "end": 11575.5, + "probability": 0.9312 + }, + { + "start": 11576.22, + "end": 11578.2, + "probability": 0.7998 + }, + { + "start": 11578.2, + "end": 11579.72, + "probability": 0.9701 + }, + { + "start": 11580.06, + "end": 11581.56, + "probability": 0.4997 + }, + { + "start": 11581.68, + "end": 11581.78, + "probability": 0.1891 + }, + { + "start": 11582.66, + "end": 11583.08, + "probability": 0.4832 + }, + { + "start": 11584.5, + "end": 11584.5, + "probability": 0.1374 + }, + { + "start": 11584.5, + "end": 11585.26, + "probability": 0.0854 + }, + { + "start": 11585.54, + "end": 11585.6, + "probability": 0.055 + }, + { + "start": 11585.6, + "end": 11585.72, + "probability": 0.5391 + }, + { + "start": 11586.5, + "end": 11587.22, + "probability": 0.9495 + }, + { + "start": 11589.2, + "end": 11590.18, + "probability": 0.897 + }, + { + "start": 11591.18, + "end": 11591.8, + "probability": 0.4527 + }, + { + "start": 11593.76, + "end": 11597.8, + "probability": 0.9932 + }, + { + "start": 11597.8, + "end": 11601.72, + "probability": 0.9682 + }, + { + "start": 11601.78, + "end": 11608.66, + "probability": 0.9844 + }, + { + "start": 11609.18, + "end": 11613.96, + "probability": 0.9015 + }, + { + "start": 11613.96, + "end": 11618.76, + "probability": 0.9603 + }, + { + "start": 11619.52, + "end": 11619.98, + "probability": 0.3199 + }, + { + "start": 11621.94, + "end": 11623.42, + "probability": 0.4544 + }, + { + "start": 11624.08, + "end": 11627.58, + "probability": 0.8876 + }, + { + "start": 11628.32, + "end": 11632.4, + "probability": 0.9734 + }, + { + "start": 11632.94, + "end": 11637.6, + "probability": 0.9932 + }, + { + "start": 11637.84, + "end": 11641.78, + "probability": 0.9922 + }, + { + "start": 11643.08, + "end": 11645.52, + "probability": 0.8602 + }, + { + "start": 11646.1, + "end": 11649.74, + "probability": 0.9278 + }, + { + "start": 11650.7, + "end": 11655.54, + "probability": 0.718 + }, + { + "start": 11656.1, + "end": 11658.74, + "probability": 0.7582 + }, + { + "start": 11659.2, + "end": 11659.88, + "probability": 0.5782 + }, + { + "start": 11661.4, + "end": 11666.3, + "probability": 0.918 + }, + { + "start": 11666.84, + "end": 11670.1, + "probability": 0.9412 + }, + { + "start": 11671.18, + "end": 11672.38, + "probability": 0.9939 + }, + { + "start": 11672.9, + "end": 11677.56, + "probability": 0.9967 + }, + { + "start": 11678.48, + "end": 11678.9, + "probability": 0.9971 + }, + { + "start": 11683.68, + "end": 11689.24, + "probability": 0.9966 + }, + { + "start": 11689.76, + "end": 11695.8, + "probability": 0.9689 + }, + { + "start": 11698.66, + "end": 11701.88, + "probability": 0.9979 + }, + { + "start": 11701.94, + "end": 11709.02, + "probability": 0.9707 + }, + { + "start": 11710.42, + "end": 11713.06, + "probability": 0.9001 + }, + { + "start": 11713.2, + "end": 11719.02, + "probability": 0.8108 + }, + { + "start": 11719.94, + "end": 11724.74, + "probability": 0.9194 + }, + { + "start": 11730.6, + "end": 11732.02, + "probability": 0.7687 + }, + { + "start": 11732.64, + "end": 11735.1, + "probability": 0.9847 + }, + { + "start": 11735.66, + "end": 11739.1, + "probability": 0.924 + }, + { + "start": 11740.34, + "end": 11743.66, + "probability": 0.8618 + }, + { + "start": 11744.16, + "end": 11748.22, + "probability": 0.9966 + }, + { + "start": 11751.4, + "end": 11753.32, + "probability": 0.7856 + }, + { + "start": 11753.48, + "end": 11755.58, + "probability": 0.4987 + }, + { + "start": 11755.88, + "end": 11757.66, + "probability": 0.8637 + }, + { + "start": 11758.36, + "end": 11761.64, + "probability": 0.9291 + }, + { + "start": 11762.4, + "end": 11768.14, + "probability": 0.9563 + }, + { + "start": 11769.24, + "end": 11773.22, + "probability": 0.9593 + }, + { + "start": 11773.26, + "end": 11777.42, + "probability": 0.9909 + }, + { + "start": 11778.32, + "end": 11783.26, + "probability": 0.884 + }, + { + "start": 11784.0, + "end": 11790.71, + "probability": 0.9797 + }, + { + "start": 11792.18, + "end": 11794.72, + "probability": 0.99 + }, + { + "start": 11795.52, + "end": 11797.34, + "probability": 0.9903 + }, + { + "start": 11797.66, + "end": 11801.1, + "probability": 0.7689 + }, + { + "start": 11801.58, + "end": 11804.1, + "probability": 0.7746 + }, + { + "start": 11805.02, + "end": 11809.3, + "probability": 0.9841 + }, + { + "start": 11809.3, + "end": 11814.38, + "probability": 0.9917 + }, + { + "start": 11815.26, + "end": 11817.8, + "probability": 0.963 + }, + { + "start": 11817.86, + "end": 11820.52, + "probability": 0.9958 + }, + { + "start": 11821.28, + "end": 11828.64, + "probability": 0.717 + }, + { + "start": 11829.16, + "end": 11831.06, + "probability": 0.9919 + }, + { + "start": 11831.66, + "end": 11832.46, + "probability": 0.8455 + }, + { + "start": 11833.52, + "end": 11835.36, + "probability": 0.9957 + }, + { + "start": 11843.96, + "end": 11845.38, + "probability": 0.1642 + }, + { + "start": 11845.38, + "end": 11845.7, + "probability": 0.1176 + }, + { + "start": 11845.7, + "end": 11845.7, + "probability": 0.0074 + }, + { + "start": 11845.7, + "end": 11848.16, + "probability": 0.5175 + }, + { + "start": 11848.86, + "end": 11852.39, + "probability": 0.5632 + }, + { + "start": 11853.07, + "end": 11857.13, + "probability": 0.5632 + }, + { + "start": 11857.88, + "end": 11862.34, + "probability": 0.9959 + }, + { + "start": 11862.9, + "end": 11864.82, + "probability": 0.9934 + }, + { + "start": 11865.14, + "end": 11870.74, + "probability": 0.9724 + }, + { + "start": 11871.44, + "end": 11873.34, + "probability": 0.9941 + }, + { + "start": 11874.56, + "end": 11876.9, + "probability": 0.9896 + }, + { + "start": 11879.84, + "end": 11886.14, + "probability": 0.9122 + }, + { + "start": 11886.2, + "end": 11890.3, + "probability": 0.9929 + }, + { + "start": 11890.72, + "end": 11892.66, + "probability": 0.9727 + }, + { + "start": 11893.1, + "end": 11895.62, + "probability": 0.9907 + }, + { + "start": 11895.84, + "end": 11897.66, + "probability": 0.7954 + }, + { + "start": 11898.54, + "end": 11899.36, + "probability": 0.8094 + }, + { + "start": 11899.58, + "end": 11904.14, + "probability": 0.8726 + }, + { + "start": 11904.5, + "end": 11906.8, + "probability": 0.735 + }, + { + "start": 11907.34, + "end": 11910.74, + "probability": 0.8619 + }, + { + "start": 11911.28, + "end": 11914.06, + "probability": 0.9883 + }, + { + "start": 11914.54, + "end": 11920.6, + "probability": 0.9704 + }, + { + "start": 11921.1, + "end": 11924.64, + "probability": 0.9953 + }, + { + "start": 11925.08, + "end": 11928.98, + "probability": 0.7888 + }, + { + "start": 11929.64, + "end": 11931.06, + "probability": 0.9676 + }, + { + "start": 11932.7, + "end": 11935.22, + "probability": 0.7275 + }, + { + "start": 11936.22, + "end": 11938.56, + "probability": 0.9202 + }, + { + "start": 11939.14, + "end": 11940.44, + "probability": 0.519 + }, + { + "start": 11943.68, + "end": 11944.44, + "probability": 0.2456 + }, + { + "start": 11945.43, + "end": 11948.5, + "probability": 0.8173 + }, + { + "start": 11953.24, + "end": 11954.34, + "probability": 0.3485 + }, + { + "start": 11954.9, + "end": 11955.54, + "probability": 0.6689 + }, + { + "start": 11959.0, + "end": 11959.16, + "probability": 0.5612 + }, + { + "start": 11961.3, + "end": 11963.44, + "probability": 0.9466 + }, + { + "start": 11964.39, + "end": 11966.54, + "probability": 0.8053 + }, + { + "start": 11967.42, + "end": 11968.1, + "probability": 0.2623 + }, + { + "start": 11968.6, + "end": 11969.8, + "probability": 0.9821 + }, + { + "start": 11970.08, + "end": 11970.66, + "probability": 0.2326 + }, + { + "start": 11970.92, + "end": 11973.14, + "probability": 0.834 + }, + { + "start": 11974.04, + "end": 11974.7, + "probability": 0.8715 + }, + { + "start": 11974.72, + "end": 11975.84, + "probability": 0.6425 + }, + { + "start": 11975.98, + "end": 11976.6, + "probability": 0.4704 + }, + { + "start": 11977.48, + "end": 11980.12, + "probability": 0.0727 + }, + { + "start": 11980.66, + "end": 11983.12, + "probability": 0.0278 + }, + { + "start": 11989.58, + "end": 11989.58, + "probability": 0.444 + }, + { + "start": 11989.58, + "end": 11990.04, + "probability": 0.3842 + }, + { + "start": 11991.22, + "end": 11994.0, + "probability": 0.8245 + }, + { + "start": 11994.92, + "end": 11996.06, + "probability": 0.9326 + }, + { + "start": 12003.42, + "end": 12008.46, + "probability": 0.7765 + }, + { + "start": 12009.48, + "end": 12010.46, + "probability": 0.9062 + }, + { + "start": 12012.0, + "end": 12016.34, + "probability": 0.9532 + }, + { + "start": 12016.88, + "end": 12017.82, + "probability": 0.7351 + }, + { + "start": 12018.7, + "end": 12018.72, + "probability": 0.9204 + }, + { + "start": 12019.34, + "end": 12021.26, + "probability": 0.9967 + }, + { + "start": 12021.9, + "end": 12023.62, + "probability": 0.9951 + }, + { + "start": 12026.5, + "end": 12029.1, + "probability": 0.7398 + }, + { + "start": 12029.22, + "end": 12029.43, + "probability": 0.0261 + }, + { + "start": 12029.98, + "end": 12030.1, + "probability": 0.1884 + }, + { + "start": 12031.68, + "end": 12032.16, + "probability": 0.1745 + }, + { + "start": 12032.56, + "end": 12033.24, + "probability": 0.6798 + }, + { + "start": 12033.32, + "end": 12034.02, + "probability": 0.7833 + }, + { + "start": 12034.16, + "end": 12034.78, + "probability": 0.8206 + }, + { + "start": 12034.82, + "end": 12035.58, + "probability": 0.6921 + }, + { + "start": 12035.82, + "end": 12036.3, + "probability": 0.305 + }, + { + "start": 12036.38, + "end": 12036.7, + "probability": 0.307 + }, + { + "start": 12037.52, + "end": 12038.64, + "probability": 0.6606 + }, + { + "start": 12038.78, + "end": 12039.3, + "probability": 0.8876 + }, + { + "start": 12039.56, + "end": 12039.98, + "probability": 0.7322 + }, + { + "start": 12040.1, + "end": 12040.72, + "probability": 0.5897 + }, + { + "start": 12040.94, + "end": 12041.5, + "probability": 0.8729 + }, + { + "start": 12042.2, + "end": 12043.12, + "probability": 0.7892 + }, + { + "start": 12043.16, + "end": 12043.98, + "probability": 0.9583 + }, + { + "start": 12044.04, + "end": 12045.08, + "probability": 0.5908 + }, + { + "start": 12045.28, + "end": 12045.8, + "probability": 0.5979 + }, + { + "start": 12045.92, + "end": 12046.32, + "probability": 0.6852 + }, + { + "start": 12046.5, + "end": 12048.24, + "probability": 0.1691 + }, + { + "start": 12049.08, + "end": 12049.48, + "probability": 0.9362 + }, + { + "start": 12049.94, + "end": 12050.6, + "probability": 0.9322 + }, + { + "start": 12050.78, + "end": 12051.22, + "probability": 0.9295 + }, + { + "start": 12051.34, + "end": 12051.98, + "probability": 0.6401 + }, + { + "start": 12052.06, + "end": 12053.0, + "probability": 0.6683 + }, + { + "start": 12053.04, + "end": 12053.64, + "probability": 0.6213 + }, + { + "start": 12054.14, + "end": 12055.09, + "probability": 0.5964 + }, + { + "start": 12056.08, + "end": 12057.56, + "probability": 0.6698 + }, + { + "start": 12057.68, + "end": 12058.36, + "probability": 0.2049 + }, + { + "start": 12059.22, + "end": 12061.1, + "probability": 0.8748 + }, + { + "start": 12061.18, + "end": 12062.02, + "probability": 0.8145 + }, + { + "start": 12062.12, + "end": 12062.68, + "probability": 0.7644 + }, + { + "start": 12062.74, + "end": 12063.78, + "probability": 0.9402 + }, + { + "start": 12064.02, + "end": 12064.68, + "probability": 0.9815 + }, + { + "start": 12065.38, + "end": 12068.08, + "probability": 0.7622 + }, + { + "start": 12068.62, + "end": 12069.35, + "probability": 0.5664 + }, + { + "start": 12070.74, + "end": 12072.28, + "probability": 0.8808 + }, + { + "start": 12072.44, + "end": 12073.04, + "probability": 0.9521 + }, + { + "start": 12073.14, + "end": 12073.5, + "probability": 0.8927 + }, + { + "start": 12073.96, + "end": 12074.66, + "probability": 0.3756 + }, + { + "start": 12074.76, + "end": 12075.38, + "probability": 0.4042 + }, + { + "start": 12075.48, + "end": 12076.18, + "probability": 0.8934 + }, + { + "start": 12076.48, + "end": 12077.08, + "probability": 0.713 + }, + { + "start": 12078.04, + "end": 12080.66, + "probability": 0.656 + }, + { + "start": 12080.78, + "end": 12081.3, + "probability": 0.7274 + }, + { + "start": 12081.38, + "end": 12082.06, + "probability": 0.2138 + }, + { + "start": 12082.18, + "end": 12082.92, + "probability": 0.6158 + }, + { + "start": 12083.24, + "end": 12085.42, + "probability": 0.7647 + }, + { + "start": 12085.54, + "end": 12085.86, + "probability": 0.9854 + }, + { + "start": 12086.48, + "end": 12088.86, + "probability": 0.6705 + }, + { + "start": 12089.04, + "end": 12089.78, + "probability": 0.5602 + }, + { + "start": 12090.5, + "end": 12091.3, + "probability": 0.9482 + }, + { + "start": 12091.4, + "end": 12092.02, + "probability": 0.7029 + }, + { + "start": 12092.08, + "end": 12093.12, + "probability": 0.8989 + }, + { + "start": 12093.24, + "end": 12094.58, + "probability": 0.848 + }, + { + "start": 12096.82, + "end": 12098.96, + "probability": 0.744 + }, + { + "start": 12098.96, + "end": 12103.32, + "probability": 0.7944 + }, + { + "start": 12125.92, + "end": 12126.3, + "probability": 0.3531 + }, + { + "start": 12126.3, + "end": 12127.16, + "probability": 0.7511 + }, + { + "start": 12127.24, + "end": 12129.12, + "probability": 0.7183 + }, + { + "start": 12129.22, + "end": 12129.9, + "probability": 0.8292 + }, + { + "start": 12130.75, + "end": 12134.72, + "probability": 0.976 + }, + { + "start": 12135.54, + "end": 12136.08, + "probability": 0.69 + }, + { + "start": 12137.38, + "end": 12138.3, + "probability": 0.7593 + }, + { + "start": 12138.82, + "end": 12139.58, + "probability": 0.672 + }, + { + "start": 12158.74, + "end": 12159.04, + "probability": 0.0025 + }, + { + "start": 12159.04, + "end": 12161.94, + "probability": 0.7745 + }, + { + "start": 12162.7, + "end": 12165.3, + "probability": 0.9717 + }, + { + "start": 12165.48, + "end": 12169.7, + "probability": 0.9798 + }, + { + "start": 12169.7, + "end": 12172.86, + "probability": 0.9754 + }, + { + "start": 12173.52, + "end": 12179.22, + "probability": 0.4256 + }, + { + "start": 12205.18, + "end": 12208.44, + "probability": 0.7981 + }, + { + "start": 12208.96, + "end": 12210.12, + "probability": 0.4087 + }, + { + "start": 12210.98, + "end": 12212.44, + "probability": 0.3885 + }, + { + "start": 12213.12, + "end": 12215.5, + "probability": 0.1629 + }, + { + "start": 12218.2, + "end": 12222.84, + "probability": 0.1514 + }, + { + "start": 12294.0, + "end": 12294.0, + "probability": 0.0 + }, + { + "start": 12294.0, + "end": 12294.0, + "probability": 0.0 + }, + { + "start": 12294.0, + "end": 12294.0, + "probability": 0.0 + }, + { + "start": 12294.0, + "end": 12294.0, + "probability": 0.0 + }, + { + "start": 12294.0, + "end": 12294.0, + "probability": 0.0 + }, + { + "start": 12294.0, + "end": 12294.0, + "probability": 0.0 + }, + { + "start": 12294.0, + "end": 12294.0, + "probability": 0.0 + }, + { + "start": 12294.0, + "end": 12294.0, + "probability": 0.0 + }, + { + "start": 12294.0, + "end": 12294.0, + "probability": 0.0 + }, + { + "start": 12294.0, + "end": 12294.0, + "probability": 0.0 + }, + { + "start": 12294.0, + "end": 12294.0, + "probability": 0.0 + } + ], + "segments_count": 4688, + "words_count": 22695, + "avg_words_per_segment": 4.8411, + "avg_segment_duration": 1.7228, + "avg_words_per_minute": 110.7613, + "plenum_id": "102769", + "duration": 12294.0, + "title": null, + "plenum_date": "2021-12-20" +} \ No newline at end of file